HNGYHIT

Joachim Heintze
Peter Bock Hrsg.

Lehrbuch
zur Experimental-
physik

Band4: Wellen und Optik

@ Springer Spektrum



Lehrbuch zur Experimentalphysik Band 4:
Wellen und Optik



Joachim Heintze
Peter Bock (Hrsg.)

Lehrbuch zur
Experimentalphysik
Band 4: Wellen und Optik

@ Springer Spektrum



Joachim Heintze

Fak. Physik und Astronomie,
Physikalisches Institut
Universitat Heidelberg
Heidelberg, Deutschland

Herausgeber

Peter Bock

Fak. Physik und Astronomie, Physikalisches
Institut

Universitat Heidelberg

Heidelberg, Deutschland

E-mail: bock@physi.uni-heidelberg.de

ISBN 978-3-662-54491-4 ISBN 978-3-662-54492-1 (eBook)
https://doi.org/10.1007 /978-3-662-54492-1

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detail-
lierte bibliografische Daten sind im Internet iiber http://dnb.d-nb.de abrufbar.

Springer Spektrum

© Springer-Verlag GmbH Deutschland 2017

Das Werk einschliefSlich aller seiner Teile ist urheberrechtlich geschiitzt. Jede Verwertung, die nicht aus-
driicklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt
insbesondere fiir Vervielfiltigungen, Bearbeitungen, Ubersetzungen, Mikroverfilmungen und die Einspeiche-
rung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt
auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen-
und Markenschutz-Gesetzgebung als frei zu betrachten wéren und daher von jedermann benutzt werden
diirften.

Der Verlag, die Autoren und die Herausgeber gehen davon aus, dass die Angaben und Informationen in
diesem Werk zum Zeitpunkt der Veréffentlichung vollstindig und korrekt sind. Weder der Verlag noch die
Autoren oder die Herausgeber tibernehmen, ausdriicklich oder implizit, Gewahr fiir den Inhalt des Werkes,
etwaige Fehler oder Auerungen. Der Verlag bleibt im Hinblick auf geografische Zuordnungen und Gebiets-
bezeichnungen in veréffentlichten Karten und Institutionsadressen neutral.

Planung: Margit Maly
Illustrationen: Dr. ]. Pyrlik, scientific design, Hamburg

Gedruckt auf sdurefreiem und chlorfrei gebleichtem Papier.
Springer Spektrum ist ein Imprint der eingetragenen Gesellschaft Springer-Verlag GmbH, DE und ist ein Teil

von Springer Nature.
Die Anschrift der Gesellschaft ist: Heidelberger Platz 3, 14197 Berlin, Germany


https://doi.org/10.1007/978-3-662-54492-1

Vorwort

Uber viele Jahrzehnte wurde im groflen Hoérsaal im Physikalischen Institut der Universitit
Heidelberg, am Philosophenweg 12, eine grofSe Physikvorlesung veranstaltet.

Haupt- und Nebenfach-Studenten hérten gemeinsam diese Vorlesung. In den 1970er Jahren
platzte dann jedoch der Hoérsaal aus allen Néhten. Die Vorlesungen waren total tiberfiillt.
Herr Heintze erkannte, dass dies gedndert werden muss. Als Dekan sorgte er fiir den Neu-
bau des neuen Horsaalgebdudes INF 308. 1979 wurde hier schliefSlich die erste Vorlesung
gehalten.

Herrn Heintze war, wie man daran sehen kann, die Lehre sehr wichtig, besonders die Vorle-
sung. Bisher hatte ich ihn als Institutsdirektor oder groflen Wissenschaftler erlebt. Von 1981
an lernte ich ihn auch als Vorlesungsdozent kennen.

Anders als manche anderen Dozenten hat Herr Heintze iiber die Zeit hinweg alle Kapitel der
Experimentalphysik behandelt, so dass ich das gesamte Programm der Vorlesung kennen
lernen durfte. Neue Methoden wurden gepriift, traditionelle Erkenntnisse erhalten, histo-
rische Experimente restauriert. Herr Heintze stellte sich mir dabei nicht nur als Professor
dar, sondern er war auch Ingenieur. So bauten wir gemeinsam {iiber die Jahre hinweg vie-
le Experimente fiir unsere Studenten. Auch der beriihmte Heidelberger Lowenschuss ist so
entstanden, mit dem die Superposition von Bewegungen veranschaulicht wird.

In dieser Vorlesungsphase habe ich viel gelernt und den Sinn und Lerneffekt der Experi-
mente verstanden. Fiir mich ist Herr Heintze der Vater dieser Vorlesung und ein véterlicher
Freund geworden.

Auch die Idee zu diesem Buch entstand hier in dieser Vorlesung. Ich erinnere mich, dass
Herr Heintze einmal am Dozentenschreibtisch safl, unweit meines Schreibtisches. Und er
nahm aus unserer kleinen Bibliothek ein Buch nach dem andern, fand aber nicht das, was er
suchte und war recht unzufrieden dabei. Nach einiger Zeit machte ich Herrn Heintze klar,
dass nur er in der Lage sei, dies zu dndern. Er hatte in genau dieser Vorlesung grofie Erfah-
rung und er kannte die Vorlesung von Otto Haxel, den er auch manchmal hatte vertreten
miissen. Zunachst stief3 die Idee eines eigenen Buches nicht auf Zustimmung — Herr Heintze
verneinte, so einfach sei dies nicht und tiberhaupt ... Kurze Zeit spéter jedoch stand er auf
und verlie§ das Gebdude, um nach 15 Minuten zuriick zu kehren. Er sagte: ,Ich habe mir
das tiberlegt, ich werde ein Buch schreiben.”

Auch nach seiner Emeritierung 1991 haben wir zusammen Experimente aufgebaut und
ausgewertet, um einiges naher zu untersuchen, was in vielen Physikbtichern nicht richtig
dargestellt ist. Bei der Weihnachtsfeier 2011 sagte er mir: ,, Wir miissen uns nochmal mit der
anomalen Dispersion beschiftigen.” Leider kam es nicht mehr dazu.

30 Jahre hat es gedauert, bis die Physikbiicher zur Experimentalphysik entstanden sind.
Herrn Heintze war es nicht mehr vergénnt sein Werk zu vollenden. So fiihlen wir uns ver-
pflichtet, dies zu tun. Moge es dazu dienen unseren Studenten die Schonheit der Physik
aufzuzeigen, Zusammenhinge zu sehen, das Studium zu erleichtern und damit dieses Ver-
machtnis zu erkennen und weiter zu tragen.

Hans-Georg Siebig, Vorlesungsassistent



Vorwort

Dies ist der vierte Band des Physikbuchs unseres Vaters. Er war Physiker mit Leib und Seele.
Gelang die Vorlesung oder das Experiment, kam er gut gelaunt nach Hause. Dahinter steckte
seine tiefe Liebe zur Physik und das Bediirfnis diese Erkenntnis zu verbreiten.

In der Forschung hatte er das Gliick in einer {iberaus spannenden Zeit bei der Entwick-
lung der Elementarteilchenphysik durch ,elegante” Losungen und ,schéne” Experimente
an CERN und DESY mitzuwirken. Dabei wurden nicht nur Erfolge gefeiert. Auch wenn es
mal nicht so recht voranging, setzte man sich mit den Kollegen erst mal bei gutem Essen
Zusammen.

Nachdenken konnte unser Vater am besten bei koérperlicher Arbeit und zwar an der fri-
schen Luft. Manche Steinplatte in unserem Garten ldsst sich wohl so der Losung eines
physikalischen Problems zuordnen. Detektoren aus Heidelberg wiederum hiefen Tulpe und
Margerite.

Vielerlei Pléne fiir die Zeit nach seiner Emeritierung gab er auf, um dieses Buch zu schreiben.
Dies fiihrte ihn zu einem immer tieferen Verstdndnis der klassischen Physik und zu intensi-
ver Auseinandersetzung mit der modernen Forschung. Sein Anspruch war es, vorgefertigte
Denkwege nur zu beschreiten, wenn sie auch seiner strengen Uberpriifung standhielten. War
das nicht der Fall, mussten neue Wege gefunden werden, um Zusammenhénge darzustellen.

Prof. Dr. Peter Bock hat es iibernommen, das Buch im Sinne unseres Vaters nach dessen Tod
zu vervollstandigen. IThm gilt unser besonderer Dank.

Geschwister Heintze



Vorwort

Das vorliegende Buch ist der vierte Band der Lehrbuchreihe von Joachim Heintze (1926-
2012), die im Zusammenhang mit seinen Vorlesungen iiber Experimentalphysik an der
Universitdt Heidelberg entstanden ist.

Es behandelt die Wellenerscheinungen in all ihren Formen, insbesondere die Optik. Wie die
vorangegangenen Bande enthilt es neben Grundwissen etliche weitergehende Informatio-
nen, als Beispiele seien der FEL und die Korrelationsinterferometrie genannt. Ein weiteres
Kennzeichen des ,,Heintze” sind die historischen Anmerkungen und biographischen Noti-
zen in den Fufinoten.

An dem von J. Heintze verfassten Text wurden, von wenigen Ausnahmen abgesehen,
keine Verdnderungen vorgenommen. Hinzugefiigt wurden die meisten Ubungsaufgaben.
Ergédnzungen gab es in den Bereichen Spektroskopie und Mikroskopie. Weil das Buch Wel-
lenerscheinungen aus allen Gebieten der Physik enthédlt, wurde aus aktuellem Anlass ein
Abschnitt tiber Gravitationswellen angefiigt. Dies ist insofern etwas heikel, als dieser Band
nattirlich kein Lehrbuch {iber Allgemeine Relativitdtstheorie sein kann, aber trotzdem etli-
che Sachverhalte daraus benétigt werden. Hier liefSen sich Briicken schlagen zu Dingen, die
J. Heintze bereits an anderen Stellen behandelt hatte.

Bei der Bearbeitung des vorliegenden Bandes habe ich vielerlei Unterstiitzung erfahren. So
hat sich Herr M. Heintze um die Probleme des Copyrights bei den Abbildungen gekiim-
mert. Herr R. Weis hat die Rechner-Infrastruktur bereitgestellt und alle software installiert
und gewartet, die zur Bearbeitung und Sicherung des Textes notwendig ist. Frithere LateX-
Versionen des Buches wurden von Herrn C. Werner erzeugt, dessen Daten ich iibernehmen
konnte. Die Zeichnungen wurden von Herrn J. Pyrlik angefertigt, der auch alle anderen
Abbildungen fiir den Druck aufbereitet hat. Dieses Buch ware nicht entstanden ohne die Un-
terstiitzung durch die Vorlesungstechniker, Herrn H.-G. Siebig und G. Jahnichen sowie die
fotografische Tatigkeit von Herrn R. Nonnenmacher. Viele experimentelle Aufbauten zur Fo-
tografie von Beugungsfiguren gehen auf Herrn J. Wagner zuriick, dem ich dafiir zu groflem
Dank verpflichtet bin. Herr W. Trost hat einige Passagen dieses Bandes kritisch durchgese-
hen.

Mein besonderer Dank gilt Frau A. Pucci, Kirchhoff-Institut der Universitdt Heidelberg und
Herrn J. Engelhardt, Krebsforschungszentrum Heidelberg und BioQuant-Zentrum Heidel-
berg, die Abbildungen zur Fourierspektroskopie bzw. zur STED-Mikroskopie angefertigt
und zur Verfiigung gestellt haben und mich auf Fehler oder Unklarheiten im Text hinge-
wiesen haben. Zu sehr groflem Dank bin ich auch den Herren B. Willke, B. Knispel, S. Kaufer
und P. Oppermann vom Max Planck-Institut fiir Gravitationsphysik in Hannover verpflich-
tet, die mich tiber viele Details der Gravitationswellenexperimente aufgeklart haben.

Die Entstehung des Gesamt-Werkes hat H. G. Siebig in seinem Vorwort eingehend geschil-
dert und seinen Schlusssétzen kann ich mich voll anschliefien.

P. Bock



Joachim Heintze (1926-2012) studierte nach dem Ende des Zweiten Weltkrieges in Berlin und
Gottingen Physik und wurde in Goéttingen Schiiler von Otto Haxel, dem er nach Heidelberg
folgte, wo er seine Promotion abschloss und sich auch habilitierte. Anschlieflend arbeitete er
mehrere Jahre am CERN in Genf. Von 1963 an bis zu seiner Emeritierung 1991 war er Ordi-
narius fiir Physik am I. Physikalischen Institut der Universitat Heidelberg, wo er zeitweilig
auch als Dekan wirkte.

Als Forscher ist sein Name untrennbar mit der Entwicklung von Spurendetektoren fiir
hochenergetisch geladene Teilchen verbunden. Durch seine Arbeiten iiber schwache Wech-
selwirkung und Elektron-Positron-Vernichtung hat er die Teilchenphysik tiber viele Jahre
hinweg wesentlich mitgepragt.

Fiir seine Arbeiten {iber seltene Pionen-Zerfélle erhielt er 1963 den Physikpreis der DPG;
1992 wurde ihm der Max Born-Preis verliehen. J. Heintze war auch ein engagierter Lehrer;
dieses Buch ist aus seinen Vorlesungen tiber Experimentalphysik fiir Studenten der ersten
Semester hervorgegangen.
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Bisher haben wir uns bei der physikalischen Be-
schreibung der Natur zweier Grundkonzepte be-
dient: Teilchen und Felder. Wir haben die Bewegung
von Teilchen studiert und die rdumliche und zeitli-
che Veranderung von Feldern. Wellen sind Naturer-
scheinungen, die prinzipiell als spezielle Bewegung
eines Teilchensystems oder durch raum-zeitlich ver-
anderliche Felder beschrieben werden konnen. Sie
zeigen aber ein so ausgeprdgtes und eigenartiges
Verhalten und sind von so zentraler Bedeutung, dass
man sie als ein eigenstiandiges Grundkonzept der
Physik behandeln kann.

Wir wollen uns in diesem Kapitel zunachst anhand
von einfachen Beispielen mit den Grundbegriffen
der Wellenlehre vertraut machen; danach folgt eine
Einfithrung in die mathematische Beschreibung von
Wellen.

1.1 Typische Wellenformen

Beim Stichwort ,Wellen” denkt man zuerst an Wasser-
wellen. Diese sind jedoch ein ausgesprochen komplizier-
tes Phdnomen, und wir werden uns schon aus diesem
Grund tiberwiegend an andere Wellenerscheinungen hal-
ten. Wellen sind nicht notwendigerweise mit einer peri-
odischen Bewegung verbunden; es gibt periodische und
aperiodische Wellenformen. Wir werden uns sogleich mit
beiden Erscheinungen befassen.

Wellenausbreitung auf einem elastischen Seil

Ein elastisches Seil sei an einem Ende fest eingespannt.
Das andere Ende halten wir in der Hand und ziehen
das Seil ein Stiick in die Lange, so dass eine bestimmte
Seilspannung erzeugt wird'. Wird nun das Seil einmal
rasch und ruckartig nach oben und unten bewegt, so
entsteht eine Deformation des Seils, wie in Abb. 1.1 ge-
zeigt. Die Ausbauchung lduft als eine aperiodische Welle
mit einer bestimmten Geschwindigkeit v nach rechts. Wir
konnen auch eine periodische Welle erzeugen, indem wir
die Hand ein paar Mal periodisch auf- und abbewegen
(Abb. 1.2). Die Ausbreitungsgeschwindigkeit des Signals
ist in beiden Féllen die gleiche. Man kann sie beeinflussen,
indem man das Seil mehr oder weniger spannt.

Dieser einfache Grundversuch zeigt sehr deutlich, wie
zweckmiflig es ist, die Welle als eigenstandiges Konzept

1 Fiir die im folgenden beschriebenen Versuche ist ein weicher Gum-
mischlauch besonders geeignet.
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Abbildung 1.1 Aperiodische Welle auf einem Gummiseil

Abbildung 1.2 Periodische Welle

/‘4,

Abbildung 1.3 Unpolarisierte Welle

einzufiihren. Es ist zwar sicherlich moglich, die Bewe-
gung eines jeden Seilstiickchens fiir sich zu diskutieren;
das Phidnomen, das beobachtet wird, sollte aber anders
und direkt erfasst werden, eben als Ausbreitung einer
Welle. Man bezeichnet den Vorgang manchmal auch als
Ausbreitung einer Storung, denn die am linken Ende
des Seils kurzzeitig erzeugte Storung der Gleichgewichts-
form verschwindet nicht etwa lokal, sondern wandert in
wunderbarer Weise das Seil entlang. Man kann auch von
Signaliibertragung sprechen; das Gummiseil ist bei dem
Versuch nur der ziemlich uninteressante Trdger der Er-
scheinung: Das Wesentliche ist die Welle.

Polarisation. Wenn die seitliche Auslenkung stets in ei-
ner bestimmten Richtung erfolgt, spricht man von einer
linear polarisierten Welle. In Abb. 1.1 und Abb. 1.2 ist
die Polarisationsrichtung vertikal. Man konnte auch eine
linear polarisierte Welle mit dazu senkrechter Schwin-
gungsrichtung erzeugen, indem man die Hand in ho-
rizontaler Richtung bewegt. Schwieriger ist die Erzeu-
gung einer unpolarisierten Welle; dazu muss man die
Hand zwar periodisch, aber mit ganz unregelmafsiig
wechselnder Richtung bewegen (Abb. 1.3). Bewegt man
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Abbildung 1.4 Zirkular polarisierte Seilwellen

die Hand periodisch auf einer Kreisbahn, entsteht ei-
ne zirkular polarisierte Welle, und zwar je nach dem
Drehsinn eine links- oder rechtsdrehend zirkular po-
larisierte Welle (Abb. 1.4). Die zirkulare Polarisation
kann mathematisch auch dargestellt werden als Uberla-
gerung von zwei linear polarisierten Wellen; wir wer-
den darauf in Kap. 9 zuriickkommen. Ebensogut kann
man auch eine linear polarisierte Welle durch Uberlage-
rung von zwei gegenldufig zirkular polarisierten Wellen
darstellen.

Transversale und longitudinale Wellen. Die in Abb. 1.1-
1.4 dargestellten Wellen sind samtlich transversal, d.h.
die Auslenkung erfolgt quer zur Ausbreitungsrichtung.
Es gibt auch longitudinale Wellen, bei denen die Aus-
lenkung in Richtung der Ausbreitung erfolgt. Zu ihrer
Demonstration benutzt man am besten statt des Gum-
mischlauchs eine (auch ,Slinky” genannte) Spielzeug-
schraubenfeder (Abb. 1.5).

Wird bei dieser Feder an einem Ende ein Stof3 in axialer
Richtung ausgefiihrt, so lduft die Stérung als Verdichtung
die Schraubenfeder entlang. Die Ausbreitungsgeschwin-
digkeit der longitudinalen Welle ist im Allgemeinen eine
andere als die der transversalen Wellen, die man natiirlich
auch auf der Schraubenfeder erzeugen kann.

Reflexion. Wir kehren zu den Experimenten mit dem
Gummiseil zuriick. Erreicht die aperiodische Storung
(Abb. 1.1) das fest eingespannte Ende des Seils, so erfolgt
eine Reflexion, das Signal lauft zuriick, und zwar mit um-
gekehrtem Vorzeichen (Abb. 1.6). Das gleiche geschieht,
wenn ein periodisches Signal das Seilende erreicht. In
diesem Fall bezeichnet man die Vorzeichenumkehr als
Phasensprung um 7t, denn es ist cos(a + 71) = — cosa.
Um die Vorgédnge bei der Reflexion im einzelnen zu ver-
stehen, muss man sich iiber die Randbedingungen am

Abbildung 1.5 Longitudinale aperiodische Welle auf einer Schraubenfeder
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Abbildung 1.6 Reflexion einer Seilwelle

Seilende und iiber deren Auswirkung klar werden. Wir
wollen dies sogleich fiir zwei verschiedene Situationen
tun, beim fest eingespannten und beim lose eingespann-
ten Seil. Im zweiten Fall ist das Seil nicht direkt, son-
dern iiber einen langen diinnen Faden mit einer festen
Wand verbunden. Dadurch kann die Spannkraft iiber-
tragen werden, und das Seil ist dennoch vertikal frei
beweglich.

,Fest eingespannt” heifdt, dass am hinteren Ende die Ge-
schwindigkeit der Seilbewegung Null ist, d. h. dass keine
Auslenkung erfolgt. ,Lose eingespannt” heifit, dass am
hinteren Ende keine Kraft in vertikaler Richtung auf das
Seil einwirkt; dann muss am Ende das Seil stets eine hori-
zontale Tangente haben.

Wir wollen dies in Formeln fassen. Die Wellenfunkti-
on y(x,t) beschreibt die Auslenkung des Seils, x sei die




x-Koordinate am Seilende, Fy die in y-Richtung wirkende
Kraft. Dann sind die Randbedingungen:

Jfest”s y(xg,t) =0 bzw. (B_y) =0, (1.1
at X=XE

Jose”:  Fy(xg,t) =0 bzw. (8_}/) =0. (1.2
ax X=XE
Man kann die Randbedingungen statt durch Einspannen
auch durch Uberlagerung mit einer gegenldufigen Welle
genau gleicher Form erfiillen:

m fest”: Die gegenldufige Welle hat umgekehrtes Vorzei-
chen.
=, lose”: Die gegenldaufige Welle hat gleiches Vorzeichen.

Mit Hilfe einer fiktiven gegenldufigen Welle kann man
leicht die Einzelheiten des Bewegungsablaufs bei der Re-
flexion konstruieren, wie in Abb. 1.6 fiir den Fall des fest
eingespannten Seils gezeigt ist.

Signaliibertragung auf einem Koaxialkabel

Ebenso wie ein mechanisches Signal auf einem Seil kann
ein elektrisches Signal auf einem Kabel tibertragen wer-
den. Im Labor benutzt man dazu meistens ein Koaxial-
kabel. Abbildung 1.7 zeigt ein solches und einige Bauele-
mente, wie man sie zur Herstellung von Verbindungen
benotigt. Auf den Innenleiter wird ein Spannungsim-
puls U(t) gegeben; der Auflenleiter, bestehend aus einem
Drahtgeflecht, schliefit den Stromkreis. Er ist meist geer-
det und sowohl am Impulsgenerator als auch am Emp-
fanger mit dem Gehéduse verbunden.

Abbildung 1.7 Koaxialkabel und -stecker. In der Mitte ein ,50 ()-Abschluss-
widerstand”
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Abbildung 1.8 Versuchsanordnung zur Messung der Reflexion am Abschluss-
widerstand R
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Abbildung 1.9 Messergebnisse mit der in Abb. 1.8 gezeigten Anordnung. 1:
einlaufendes Signal, 2: reflektiertes Signal

2 p_s00

Um Bedingungen analog zum einseitig fest eingespann-
ten Seil herzustellen, versehen wir das Kabel am Ende
mit einem Kurzschlussstecker. Dadurch wird erzwungen,
dass dort stets die Spannung U = 0 herrscht. Das Hin-
und Zuriicklaufen des elektrischen Signals kann nun mit
Hilfe eines Oszillographen in der in Abb. 1.8 gezeigten
Schaltung beobachtet werden.

Zuniéchst wird der Oszillographenstrahl vertikal abge-
lenkt, wenn das vom Impulsgenerator G erzeugte Signal
auf dem Hinweg anliegt; sodann sieht man mit der Ver-
zogerung, die der doppelten Laufzeit des Signals auf dem
Kabel entspricht, das am Kurzschluss reflektierte Signal
(Abb. 1.9a). Es hat gleiche Form, aber entgegengesetz-
tes Vorzeichen. Durch Verdnderung der Kabelldnge kann
man sich davon tiberzeugen, dass die Laufzeit proportio-
nal zur Kabelldnge [ ist und dass die Geschwindigkeit des
Signals auf dem Kabel etwa 20 cm/ns ist. Das entspricht
2/3 Lichtgeschwindigkeit.

Dem ,lose” eingespannten Seil entspricht ein Koaxialka-
bel, das am Ende offen gelassen wird: Wie Abb. 1.9b zeigt,
wird das Signal ohne Vorzeichenumkehr reflektiert. Wird
das Kabel mit einem Ohmschen Widerstand R abgeschlos-
sen, beobachtet man eine Reflexion mit verminderter Am-
plitude (Abb. 1.9c und d). Bei einem bestimmten Wert von



1.1 Typische Wellenformen

R tritt tiberhaupt keine Reflexion auf (Abb. 1.9¢); man be-
zeichnet diesen Wert von R als den Wellenwiderstand des
Kabels. Das fiir unseren Versuch verwendete Kabel hat-
te einen Wellenwiderstand von 50 Q). Solche ,,50 Q)-Kabel”
werden haufig im Labor verwendet.

Wie der Wellenwiderstand zustande kommt, werden wir
spédter untersuchen (Kap. 3). Wir bemerken hier, dass der
Ausgangswiderstand des Impulsgenerators G in Abb. 1.8
gleich dem Wellenwiderstand des Kabels sein sollte, eben-
so der Eingangswiderstand des Gerits, in das das Signal
eingespeist wird. Auf diese Weise werden Reflexionen
und Mehrfachpulse vermieden. Der Eingangswiderstand
des Oszillographen in der Schaltung von Abb. 1.8 sollte
dagegen grof3 gegen den Wellenwiderstand sein.

Stehende Wellen

Die bisher besprochenen Erscheinungen werden unter
dem Sammelbegriff laufende Wellen zusammengefasst.
Es gibt noch ein anderes Wellenphdnomen: stehende Wel-
len. Man kann sie erzeugen, indem man das eine Ende
des Gummiseils gelinde, aber mit der richtigen Frequenz,
auf- und abbewegt. Abbildung 1.10 zeigt das Ergebnis:
Bei einer bestimmten Frequenz erzeugt man die Grund-
schwingung, bei der doppelten Frequenz die erste Ober-
schwingung und so fort. Die Stellen, wo das Seil stdn-
dig in Ruhe bleibt, nennt man Schwingungsknoten, die
Stellen maximaler Auslenkung Schwingungsbauche. Die
Nummerierung der Oberschwingungen entspricht also
der Zahl der Knoten. Ein Zusammenhang zwischen ste-
henden und laufenden Wellen ist vielleicht intuitiv klar;
er wird in Abschn. 1.5 mathematisch verdeutlicht wer-
den. Andererseits ist es offensichtlich, dass eine stehende
Welle nichts anderes ist als die harmonische Schwingung
eines ausgedehnten elastischen Mediums, in diesem Fall
des Gummiseils. Das zeigt, dass zwischen der Wellenlehre
und der Physik der Schwingungen ein sehr enger Zusam-
menhang besteht.

Zweidimensionale Wellen

Seilwellen und Signale auf einer Koaxialleitung sind Bei-
spiele fiir die Wellenausbreitung in einem eindimensiona-
len System. Auf einer Fliissigkeitsoberfliche stehen zwei
Dimensionen fiir die Wellenausbreitung zur Verfiigung,
man spricht von zweidimensionalen Wellen. Wir kénnen
sie mit Hilfe eines Wellentrogs studieren, einer flachen
Wanne, in der mit einer geeigneten Vorrichtung Oberfla-
chenwellen erzeugt werden konnen. Wird im Wellentrog
ein diinner Stift periodisch auf- und abbewegt, so entste-
hen Kreiswellen: Die Wellenfronten, d. h. die Linien, die

Il

Abbildung 1.11 Wellen auf einer Oberflache: Kreiswellen und gerade Wellen
im Wellentrog

durch die Wellenberge (bzw. durch die Wellentéler) gebil-
det werden, verlaufen kreisférmig (Abb. 1.11a). Wird als
Erreger eine gerade Schiene auf- und abbewegt, so sind
die Wellenfronten gerade Linien (Abb. 1.11b). Man kann
im Wellentrog auch stehende Wellen erzeugen, indem
man dem Erreger gegeniiber eine feste Wand aufstellt,
an der die Wellen reflektiert werden. Es muss dann wie
in Abb. 1.10 eine ganze Zahl von Wellenbergen im Zwi-
schenraum zwischen Erreger und Wand Platz haben. Die
Einfachheit dieses Versuchs tduscht dariiber hinweg, dass
in einem zweidimensionalen System eine ungeheure Viel-
falt von stehenden Wellen moglich ist. Befestigt man eine
diinne Metallplatte auf einem Stativ und streicht sie am
Rande mit einem Geigenbogen an, so kann man diese
Vielfalt erzeugen. Man kann sie sichtbar machen, indem
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a

Abbildung 1.12 Chladnische Klangfiguren. Die Platte wird bei b mit dem Bogen angestrichen, bei a ist ein Finger an den Rand gelegt. Einspannung am wei3en

Punkt

man die Platte mit Sand bestreut: Die Kérnchen sam-
meln sich auf den Knotenlinien der schwingenden Platte,
d.h. dort, wo die Platte stindig in Ruhe bleibt. Abbil-
dung 1.12 zeigt ein paar Beispiele fiir die ,Chladnischen
Klangfiguren”.? Je nach Plattenform, Einspannungsart
und Erregung entstehen die unterschiedlichsten Schwin-
gungsformen: Im 19. Jahrhundert ein Eldorado fiir die
mathematische Physik, heute ein Kreuz fiir manche Ge-
biete der Technik, wenn es darum geht, Vibrationen zu
vermeiden.

Dreidimensionale Wellen

Das Licht und die Schallwellen, mit deren Hilfe wir mit
der Umwelt kommunizieren, sind Wellen im dreidimen-
sionalen Raum, meist Wellenfelder recht komplizierter
Struktur. In der Physik versucht man, komplexe Wel-
lenstrukturen auf einfache Formen zuriickzufiihren. Be-
sonders wichtig sind ebene Wellen und Kugelwellen.
Abbildung 1.13a zeigt als Beispiel einen Ausschnitt aus ei-
ner ebenen Schallwelle. Die Wellenberge sind hier durch
einen erhohten Druck bzw. durch erhohte Molekiilzahl-

2Ernst Florens Friedrich Chladni (1756-1827) gilt mit Recht als
»Vater der Akustik”. Er lebte als Privatgelehrter allein von seinen
Einkiinften aus Privatunterricht, Vortragen und Buch-Publikationen.
Sein bedeutendster Schiiler war Wilhelm Weber (Bd. III/11.4). Ein
Hohepunkt diirfte es fiir Chladni gewesen sein, als Napoleon ihm
in Anerkennung der franzdsischen Ubersetzung seines Werkes ,Die
Akustik” 6000 Goldfranken zukommen liefS. — Seine Werke hatten
groflen Einfluss auf die weitere Entwicklung der Akustik und auf die
Theorie der Musikinstrumente. Weniger erfolgreich war er mit den
von ihm erfundenen Musikinstrumenten, dem ,Euphonium” und
dem ,Klavizylinder”, mit denen er auch auf Konzertreisen ging. Er
war und blieb ihr einziger Virtuose.

Abbildung 1.13 Ausschnitte aus Wellen im Raum: a ebene Schallwelle, b Ku-
gelwelle

dichte gegeben. (Die Inhomogenitét der Dichteverteilung
in Abb. 1.13a ist stark tibertrieben.) In Abb. 1.13b ist ein
Ausschnitt aus einer Kugelwelle dargestellt. Bei einer aus-
laufenden Kugelwelle bewegen sich die Wellenfronten
unter standiger Vergrofierung der Radien nach aufien.
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1.2 Ebene harmonische Wellen

Die physikalische Grof8e, die in der Welle oszilliert, z. B.
die Auslenkung bei einer Seilwelle, die Hohe der Was-
seroberflache bei einer Wasserwelle, den zeitlich und
raumlich veranderlichem Druck in einer Schallwelle, be-
schreibt man durch eine Wellenfunktion ¢(r,t). Wir
betrachten den einfachen Sonderfall einer ebenen harmo-
nischen Welle, die sich in x-Richtung ausbreitet. Fiir die
Wellenfunktion sind folgende Schreibweisen tiblich:

2r 2r
P(x, t) = g cos (Tx + Tt)
= 1 cos (27rvx & 27Tvt)
= g cos (kx + wt)

1.3)

Wir bevorzugen der Kiirze halber die Schreibweise (kx +
wt). Py ist die Amplitude der Welle, das Argument des
Cosinus (kx + wt) nennt man die Phase der Welle. Die ver-
schiedenen Groflen, die man zur Charakterisierung der
Welle benutzt, sind in Tab. 1.1 zusammengestellt. Die hier
als Symbole verwendeten Buchstaben sind international
iiblich. In der Technik wird jedoch héufig die Frequenz
mit f statt mit v bezeichnet.

Der Ausdruck (1.3) ist geeignet, sowohl eindimensionale
Wellen (z. B. Wellen auf einem in x-Richtung gespannten
Seil), als auch geradlinige zweidimensionale Wellen (z. B.
auf einer Wasseroberfldche) und ebene Wellen im dreidi-
mensionalen Raum darzustellen. Im letzten Falle sind die
Wellenfronten, allgemein definiert als Flachen gleicher
Phase, Ebenen senkrecht zur x-Achse (vgl. Abb. 1.13a).

Wir wollen das rdumliche und zeitliche Verhalten der
Wellenfunktion (1.3) untersuchen. In Abb. 1.14 ist diese
Funktion dargestellt. Abbildung 1.14a zeigt die Funktion
P(x,0). Zu einem spéteren Zeitpunkt ¢ verschiebt sich die

Tabelle 1.1 Physikalische GréBen zur Beschreibung der harmonischen Wellen

p(x1)

Periode T

Frequenz v=1/T
Kreisfrequenz! w=2mv=2nr/T
Wellenldnge A

Wellenzahl? 7=1/A
Kreiswellenzahl! k=2nv=2m/A
Amplitude o

Phase (kx — wt)

1 Gewohnlich sagt man , Frequenz w”, ,Wellenzahl k.
2 Die Wellenzahl  (gesprochen: ,v Schlange®) ist in nur der Spektro-
skopie gebrauchlich.

a = (x,t)

Abbildung 1.14 Grafische Darstellung der Wellenfunktion (1.3): a ¢(x, 0) =
P cos kx, b i = g cos(kx — wt), c i = g cos(kx + wt)

Verteilung, wie in Abb. 1.14b und c gezeigt, und zwar in
+x-Richtung, wenn die Wellenfunktion

P(x,t) = g cos(kx — wt) (1.4)
lautet und in der entgegengesetzten Richtung fiir
P(x, t) = g cos(kx + wt) . (1.5)

Die Punkte gleicher Phase bewegen sich dabei mit einer
bestimmten Geschwindigkeit nach rechts oder nach links.
Um diese Geschwindigkeit zu ermitteln, betrachten wir
z.B. das Maximum der Wellenfunktion. Fiir dieses gilt
(kx + wt) = 0, es ist also

wt  dx w
Den Betrag dieser Geschwindigkeit bezeichnet man als
die Phasengeschwindigkeit der Welle. Wir erhalten:

w:)w.

Phasengeschwindigkeit: vpp = n 1.7)

Die Phasengeschwindigkeit ist die Geschwindigkeit, mit
der bei einer unendlich ausgedehnten sinusférmigen Wel-
le die Wellenberge vorwirts riicken; dass dies nicht unbe-
dingt mit der bei Abb. 1.9 eingefiihrten Signalgeschwin-
digkeit identisch ist, werden wir etwas spéter diskutieren.

Die grofie Bedeutung der harmonischen Wellen liegt ein-
mal darin, dass sie leicht zu erzeugen sind (ndmlich
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mit Hilfe eines harmonischen Oszillators), und dass sie
sich im Allgemeinen durch einfaches Verhalten auszeich-
nen. Vor allem aber sind sie wichtig, weil mit Hilfe von
harmonischen Wellen jede beliebige periodische oder ape-
riodische Wellenform dargestellt werden kann. Das ist der
Inhalt von Fouriers Theorem, das wir als ndchstes bespre-
chen wollen.

1.3 Fourier-Analyse und -Synthese
von Funktionen

In diesem Abschnitt gibt es viele Formeln; es lohnt sich
aber, das Formelwerk sorgfiltig anzuschauen. Wir be-
trachten eine periodische Funktion der Zeit, also eine
Funktion f(t), deren Verlauf sich jeweils nach einer gewis-
sen Zeit T exakt wiederholt:

FE+T) =£(1).

Das Fouriersche Theorem® besagt fiir solche Funktionen,
die wir fr(t) nennen wollen: Eine periodische Funktion
fr(t) kann als Uberlagerung einer Grundschwingung (Fre-
quenz vy = 1/T) mit harmonischen Oberschwingungen
der Frequenz nvy durch folgenden Ausdruck dargestellt
werden:

1.8)

A o0
fr(t) = 70 + ) . (A cosnwt + By sinnwt),
) n=1 (1.9)
mit w = =iy
T

Die Fourier-Koeffizienten A, und B,, konnen nach einem
einfachen Rezept berechnet werden:

T/2

Ay = % / fr(t) cosnwtdt,
~T/2
e (1.10)
B, = T / fr(t) sinnwt dt .
~T/2

3Jean Baptiste de Fourier (1768-1830), franzosischer Mathematiker
und Physiker. Fourier entwickelte sein auch fiir die Mathematik fun-
damental wichtige Methode im Zusammenhang mit der von ihm
aufgestellten Warmeleitungsgleichung Bd. II, GL. (6.26). Die Anwen-
dung auf Probleme der Schwingungen und Wellen stammt von
Georg Simon Ohm. Von Ohm stammt auch die Erkenntnis, dass
der Klangcharakter der Musikinstrumente durch das Spektrum der
Oberschwingungen bestimmt wird.
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Dies gilt auch fiir den konstanten Term Ap: Man erkennt,
dass A(/2 nichts anderes als der zeitliche Mittelwert von
fr(t) ist. - Wenn die Funktion fr(t) , gerade” ist, d. h. wenn
f(—t) = f(t) ist, geniigt zur Darstellung der Funktion die
Cosinusreihe; ist fr(t) eine ,ungerade” Funktion (f(—t) =
—f (1)), gentigt die Sinusreihe.

Die rechnerische Bestimmung der Fourier-Koeffizienten
nennt man Fourier-Analyse; die Erzeugung der Funktion
fr(t) durch Uberlagerung von harmonischen Schwingun-
gen bei gegebenen Koeffizienten A, und B, nennt man
Fourier-Synthese. Wir betrachten einige Beispiele.

Ungerade symmetrische Rechteckfunktion:

da . 1.
fr(t) = - (smwt+ 3 sin 3wt

+ 1 sin 5wt + ) o
5 .
Ungerade Sigezahnfunktion:
2 1
fr(t) = — (sinwt + 3 sin 2wt
& 1 (1.12)
+ gsin3a)t+...)
Ungerade Dreieckfunktion:
8 in 3wt
fr(h) = == (sinwt - 51“9“’
T . (1.13)
sin5wt
25
Gerade asymmetrische Rechteckfunktion:
4 1 i
fr(t) = ? (z ST os wt
. (1.14)
sin2wt
cosZwt+...) .
2wt

In Abb. 1.15 sind die entsprechenden Funktionen darge-
stellt. Wie man sieht, sind die Funktionen in Abb. 1.15a—c
ungerade, in Abb. 1.15d gerade. Abbildung 1.16 zeigt am
Beispiel der ungeraden symmetrischen Rechteckfunktion
die Summation iiber die ersten Terme der Fourier-Reihe,
Abb. 1.17 das zugehorige Fourier-Spektrum.

Auf die gleiche Weise kann man auch rdumlich periodi-
sche Funktionen mit der Periodizitit A darstellen, d.h.
solche Funktionen, fiir die gilt:

falx+A) =falx). (1.15)
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Abbildung 1.15 Grafische Darstellungen zu (1.11)—(1.14)

ft) fi=sinwt
/

_ sin3wt
3

f3
/

_ sinbwt

fs =

3]

fitfs+fs

Abbildung 1.16 Zur Fourier-Synthese der symmetrischen Rechteckfunktion

Man hat nur in (1.9)-(1.14) t durch x, T durch A und w
durch k zu ersetzen. Statt (1.9) erhédlt man dann

falx) = % + Y (Ay cos nkx + B, sin nkx) ,
L (1.16)
it k="
mit k= T

Zur Darstellung einer in +x-Richtung laufenden Welle
durch harmonische Teilwellen miissen wir nach (1.4) das

vvvvvvvvvvvv

Abbildung 1.17 Fourier-Spektrum der symmetrischen Rechteckfunktion
(1.11)

Argument (kx — wt) einfithren. Wir ersetzen dazu in (1.16)
die Variable x durch

s = (x - %t) = (X — Upnt) (1.17)

bzw. durch s = (x + vppt), wenn wir die Darstellung einer
nach —x laufenden Welle wiinschen.

Eine Fourier-Darstellung ist nicht nur bei periodischen
Funktionen mdglich; aperiodische Funktionen lassen sich
darstellen durch ein Fourier-Integral:

f(t) = %/[A(w)coswt—i—B(w)sinwt] dw . (1.18)
0

Die Funktionen A(w) und B(w) erhdlt man folgenderma-
Ben:

+o00
Alw) = / F(t) coswtdt
- (1.19)

+o00
B(w) = /f(t)sinwtdt.

Die Darstellung einer aperiodischen Funktion der Koor-
dinate x erhédlt man wie in (1.18), indem man ¢ durch x
und w durch k ersetzt, und die Darstellung einer einzel-
nen Wellengruppe erreicht man mit (1.17):

fls) =

1 (o)
p / [A(k) cos ks + B(k) sinks| dk . (1.20)
0
Die Formeln (1.18) und (1.19) lassen sich durch einen

Grenziibergang aus (1.9) und (1.10) ableiten: Wir kon-
nen aus einer periodischen Funktion eine aperiodische

1
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Abbildung 1.18 Aperiodische §i0)
Rechteckfunktion

machen, indem wir die periodische Wiederholung ins Un-
endliche verschieben, also die Grundfrequenz v; =1/T
gegen Null streben lassen. Dadurch wird automatisch die
Folge der Oberschwingungsfrequenzen v, = n/T belie-
big dicht, und aus der Summation in der Fourier-Reihe
(1.9) wird eine Integration tiber eine kontinuierlich ver-
anderliche Frequenz. Man mache sich klar, dass in (1.9)
w eine durch die Periode T gegebene konstante Grofe ist
(die ,,Grundfrequenz”), wihrend w in (1.18) eine Variable
ist, hervorgegangen aus den Frequenzen nw in (1.9) und
(1.10).

Ein Anwendungsbeispiel: Eine aperiodische Rechteck-
funktion der in Abb. 1.18 gezeigten Form ist gegeben
durch

f(t)=a furlt|<t, f(H)=0 furlt>7t. (1.21)
Mit (1.19) erhélt man (s. Abb. 1.19)
+oo
Alw) = /f(t) cos wt dt
e - (1.22)
:a/coswtdt: ST

-T
Da f(t) eine gerade Funktion von ¢ ist, ist B(w) = 0. Wir

rechnen nach, dass (1.22), eingesetzt in (1.18), wieder die
Rechteckfunktion (1.21) ergibt:

[e]

2a [ sinwT cos wt
floy = T [ T dw =
Aw)
N\ P
0 ﬂ\/m 37T am 5T wr

Abbildung 1.19 Fourier-Spektrum der aperiodischen Rechteckfunktion
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Mit der bekannten Formel fiir sin(a £ B) erhédlt man
sinwTcoswt = J(sinw(t + ) +sinw(t — t)), und damit

f(t):ﬂ (/ sinwc(ur—kt) dw—l—/Sinw(T_t) dw)
0

7T w
0
a
= — (1 +1).
n(1+2)

In einer Integraltafel findet man, dass

/smaxdx:—i-g fira >0,
0 (1.23)

:—g fiira < 0

ist. Damit erhalt man fiir die Integrale I; und I,

11:+§ fuirt+t>0, alsoflirt>—1
:—g firt+t<0, alsofirt< —7

12:4% fiirT— >0, alsofirt<t
:—g firt—t<0, alsofiirt>rt.

Damit erhalt man

< -1 f(t):%(—g+§):o,
t> T f(t):%(g—g)zo,
—T<t<T: f(t):%(ngg):u,

in Ubereinstimmung mit (1.21). Mit weiteren Beispielen
zu (1.18) und (1.20) werden wir uns in Abschn. 4.3 be-
fassen. Wir ziehen hier aus (1.9)-(1.20) den wichtigen
Schluss: Wenn fiir ein bestimmtes Wellenphinomen das
Verhalten der harmonischen Wellen bekannt ist, ldsst sich
die Ausbreitung jeder beliebigen periodischen oder aperi-
odischen Welle berechnen.

1.4 Dispersion von Wellen
Gruppengeschwindigkeit

Streng periodische Wellenziige, wie wir sie in (1.3) und
(1.9) betrachtet haben, sind eine mathematische Fiktion.
Sie sind rdumlich und zeitlich unendlich ausgedehnt und
koénnen schon deshalb physikalisch nicht existieren. Phy-
sikalische Realitdt haben lediglich begrenzte Wellenziige,
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Abbildung 1.20 Eine Wellengruppe. v ist die Gruppengeschwindigkeit

z.B. eine Wellengruppe, wie sie in Abb. 1.20 dargestellt
ist. Sie bewegt sich mit der Gruppengeschwindigkeit
Vg VOrwirts. vg ist, wie wir gleich sehen werden, nicht
notwendig mit der in (1.7) definierten Phasengeschwin-
digkeit vp}, identisch.

Zur Darstellung einer solchen Wellengruppe durch ein
Fourier-Integral wird nur ein begrenzter Bereich von Wel-
lenzahlen in der Umgebung der mittleren Wellenzahl
ko =21 /Ay benodtigt. Wir werden dies in Abschn. 4.3
noch quantitativ untersuchen. v ist nur dann gleich der
Phasengeschwindigkeit v, der Teilwellen, wenn die Wel-
lenberge der Teilwellen alle mit der gleichen Geschwin-
digkeit vorwérts marschieren, wenn also innerhalb des
betrachteten Wellenzahlbereichs vpp, nicht von k abhéngt.
Ansonsten sind vg und v, voneinander verschieden. Eine

Formel von recht allgemeiner Giiltigkeit* ist:

Gruppengeschwindigkeit: vy = (i—i) . (1.24)
k=ko

Durch Differenzieren der Gleichung w = vphk (1.7) erhalt
man aus (1.24)

dou h
vg = Z)ph(ko) + ko ( di ) _

ph )
dA Jaza,

Der zweite Ausdruck ergibt sich mit Hilfe der Beziehung
k=2m/A. Wenn die Phasengeschwindigkeit nicht von
der Wellenzahl abhingt, spricht man von dispersions-
freien Wellen (den Grund fiir diese Bezeichnung werden
wir in Kiirze diskutieren). Wie oben schon festgestellt,
ist dann vg = vpp,; das folgt tibrigens auch aus (1.25). In
diesem Fall ist es tiberfliissig, zwischen Gruppen- und
Phasengeschwindigkeit zu unterscheiden, man schreibt
dann:

(1.25)

= vpn(Ao) — Ao <

Wellengeschwindigkeit fiir dispersionsfreie Wellen:
w (1.26)

Vg =Uph =U= .

4(1.24) gilt nicht bei stark geddmpften Wellen. Ein Beispiel folgt in
Abschn. 5.3 bei der Diskussion der anomalen Dispersion.

Abbildung 1.21 Die Wellenfunktion (1.28)

Um (1.24) plausibel zu machen, betrachten wir die Uber-
lagerung von zwei Wellen, die gleiche Amplitude haben
sollen, und die sich in Kreisfrequenz und Wellenzahl nur
wenig voneinander unterscheiden:

P(x,t) = o [cos(kx — wt) +cos(K'x —w't)] . (1.27)

Diesen Ausdruck formen wir mit cosa + cospf =
2cos 3 (a + B) - cos 3 (« — B) um. Genauso sind wir schon
in Bd. 1/12.4 bei der Behandlung der Schwebungen eines
Koppelpendels vorgegangen. Wir setzen

w+w x~2w,
k+k =~ 2k,

w—w =Aw,
k=K = Ak,

und erhalten

Akx — Awt

P(x, t) = 21 cos cos(kx — wt) . (1.28)

Die Uberlagerung der beiden Wellenziige ergibt eine peri-
odische Folge von Wellengruppen (Abb. 1.21). Die einzel-
nen Gruppen bewegen sich, wie man mit einer Gleichung
analog zu (1.6) feststellt, mit der Geschwindigkeit

Aw  dw
& Y (429
also mit der Gruppengeschwindigkeit (1.24). — Die hier
betrachtete Wellenfunktion (1.28) hat {ibrigens auch prak-
tische Bedeutung: Bei Schallwellen sind Schwebungen
haufig zu beobachten.

Gruppengeschwindigkeit, Phasengeschwindigkeit und
relativistische Grenzgeschwindigkeit. Nach der Rela-
tivitdtstheorie stellt die Vakuum-Lichtgeschwindigkeit ¢
eine Grenzgeschwindigkeit dar (Bd. 1/15.7). Kein Signal
und keine Wirkung kann mit einer Geschwindigkeitv > ¢
iibertragen werden. Wir werden im Folgenden bei elek-
tromagnetischen Wellen auf Situationen stofien, in denen
Uph > c ist. Ist das ein Widerspruch zur Relativitatstheo-
rie? Nein, denn von einer Signalgeschwindigkeit kann
man nur sprechen, wenn festgestellt werden kann, wann
das Signal ausgesandt und wann es empfangen wird. Als
Signal kann nicht eine rdumlich und zeitlich unendlich
ausgedehnte Welle mit konstanter Amplitude dienen. Be-
sitzt ein Signal einen Anfangspunkt, pflanzt sich dieser
mit einer Geschwindigkeit v < ¢ fort.




14

Die Dispersionsrelation

Wenn die Wellenzahl und die Frequenz nicht zueinander
proportional sind, ist nicht nur vg # vy, es ergibt sich
noch ein zweiter Effekt: Im Zuge der Wellenausbreitung
dndert sich die Form der Wellengruppe, weil die einzel-
nen Partialwellen aufler Takt geraten. Das fiihrt im All-
gemeinen zu einer Verbreiterung, die Wellengruppe , zer-
flieit”. Man spricht davon, dass Dispersion VorliegtS. Bei
konstanter Phasengeschwindigkeit sind die Wellen dage-
gen dispersionsfrei; wir haben diesen Ausdruck schon im
Zusammenhang mit (1.26) gebraucht.

Um das Dispersionsverhalten einer Welle zu charakte-
risieren gibt man gewdhnlich nicht vy, sondern w als
Funktion von k an. Diese Beziehung wird ,Dispersions-
relation” genannt

Dispersionsrelation: w = f(k) . (1.30)

Fir dispersionsfreie Wellen lautet die Dispersionrelation

w = vppk = vgk o<k . (1.31)
Bei jedem speziellen Wellenphdnomen wird man die Fra-
ge nach der Dispersionsrelation stellen miissen.

Wie wir in Kap. 2 nachweisen werden, sind die Seilwel-
len und die elektrischen Wellen auf einem Koaxialkabel
in weiten Frequenz-Bereichen schwach geddmpft und
dann dispersionsfrei. Diesem Umstand verdanken wir,
dass die Signaliibertragung auf Gummiseil und Koaxi-
alkabel funktioniert, wie in Abb. 1.1-1.9 gezeigt. Auch
Schallwellen und elektromagnetische Wellen im Vakuum
sind dispersionsfrei, Wasserwellen und elektromagneti-
sche Wellen in Materie sind dagegen im Allgemeinen
nicht dispersionsfrei, wenn auch in ganz unterschiedli-
chem Mafle. Man kann das quantifizieren, indem man in
(1.25) auf der rechten Seite den ersten mit dem zweiten
Term vergleicht: Bei Wasserwellen kénnen beide Terme
von gleicher Grofienordnung sein, bei sichtbarem Licht
in Glas ist der zweite Term nur ca. 1% des ersten. Da-
her braucht man sich in der Optik nicht stindig um
Dispersionseffekte zu kitmmern, wahrend bei Wasserwel-
len solche Effekte hdufig das Erscheinungsbild wesentlich
bestimmen.

5 Von (lateinisch) dispergere = zerstreuen, verteilen. Der Ausdruck
bezieht sich aber urspriinglich nicht auf das ZerflieSen von Wellen-
gruppen, sondern auf die farbige Aufficherung eines weifien Licht-
strahls durch ein Prisma, die von Newton beobachtet und genau
untersucht wurde. Auch bei diesem Phanomen ist die Abhangigkeit
der Phasengeschwindigkeit von der Wellenldnge die Ursache.

1 Grundbegriffe der Wellenphysik

1.5 Die klassische Wellengleichung
Laufende Wellen

Wir suchen eine Differentialgleichung, die die Ausbrei-
tung einer Stérung in einer Dimension (entlang der x-
Achse) beschreibt. Die Ausbreitungsgeschwindigkeit sei
v, die Form der Stérung soll sich im Laufe der Zeit nicht
dndern, es soll sich also um einen dispersionsfreien Aus-
breitungsprozess handeln. Der Vorgang ist in Abb. 1.22
dargestellt. Die Wellenfunktion

Pl t) = f(x - ot)

beschreibt die Ausbreitung der Stérung nach rechts, in der
~+x-Richtung, die Wellenfunktion

P (x8) = f(x + ot)

wiirde die Ausbreitung nach links beschreiben. Wie sind
die ortlichen Verdanderungen von ¥ (zu einer bestimm-
ten Zeit) mit den zeitlichen Verdnderungen (an einem
bestimmten Ort) miteinander verbunden? Um die par-
tiellen Ableitungen der Funktion ¢(x, ) zu bilden, set-
zen wir P(x,t) = f(s) mit s = x = vt. Mit df /ds = ' und
d?f/ds? = f" erhalten wir unter Anwendung der Ketten-
regel

(1.32)

(1.33)

W _ W

& —f , E = :I:Uf ,

92 92

% :f// , a_tlzp — UZf// .

Wir erhalten also folgende Differentialgleichung:

Py 0%
— =V = . 1.34
oz~ ¥ a2 (1.34)

Dies ist die sogenannte klassische Wellengleichung.
(1.34) gilt fiir dispersionsfreie Wellen in einer Dimension.
Die Gleichung kann auf drei Dimensionen verallgemei-
nert werden, indem man, wie schon frither in dhnlichen
Féllen, die Ableitung 9°/0x?> ersetzt durch den Laplace-
Operator:

P _ oo 2 (Y Py 0%y
— =" AAYp =0 <ﬁ+W+¥> (1.35)

P _(x,t)  Pp(x,0) P (x,1)

‘/\

Abbildung 1.22 Ausbreitung einer Stérung (dispersionsfrei)




1.5 Die klassische Wellengleichung

Bereits in einer Dimension enthilt die Wellengleichung ei-
ne grofse Vielfalt von Losungen, namlich alle Funktionen
der Form

P(x, t) =f(x —ot) + g(x +ot), (1.36)
wobei f und g beliebige Funktionen sind. Sie miissen nur
differenzierbar sein. Konkrete Losungen von (1.34) oder
(1.35) unter vorgegebenen Bedingungen zu finden, ist im
Allgemeinen eine Aufgabe fiir die mathematische Phy-
sik, und wir werden uns nur in Ausnahmefillen damit
befassen. Man kann jedoch auch ohne Rechnung aus der
Wellengleichung folgendes ablesen:

1. Die Gleichungen sind linear, d. h. man kann verschie-
dene Losungen superponieren.

2. Sobald wir bei der Untersuchung eines physikalischen
Vorgangs auf eine Gleichung des Typs (1.34) oder (1.35)
stoflen, wissen wir, dass Wellen auftreten konnen und
wir kénnen auch sogleich ihre Ausbreitungsgeschwin-
digkeit angeben. In Kap. 2 werden wir davon mehrfach
Gebrauch machen.

3. Die klassische Wellengleichung gilt auch fiir Sinus-
und Cosinuswellen mit Dispersion, wie man durch
Einsetzen feststellen kann. Die konstante Grofie v ist
dann durch die von der Wellenldnge abhiangige Grofie
Uph ZU ersetzen.

Stehende Wellen

Sind auch stehende Wellen Losungen der Wellenglei-
chung? Wir beschrianken uns auf die Diskussion des ein-
dimensionalen Falles, weil da bereits das Wesentliche zu
erkennen ist. Eine stehende Welle ist gegeben durch fol-
genden Ausdruck:

p(x, 1) = g()f (t) - (1.37)
Die Ortsfunktion g(x) oszilliert nach Mafigabe der Zeit-
funktion f(t), ohne sich dabei entlang der x-Achse zu
verschieben. Genau das war das Charakteristikum der
stehenden Wellen in Abb. 1.10. Wir setzen (1.37) in die
Wellengleichung (1.34) ein und erhalten:

2 2
s T =0T

Dieser Ausdruck kann folgendermafien geschrieben wer-
den:
1 () o di(x)
fD a2 3@ 4
Links steht eine Funktion von ¢, rechts eine Funktion von

x. Wenn beide Funktionen fiir alle Werte von x und ¢
gleich sein sollen, gibt es nur eine Méglichkeit: Sie miissen

(1.38)

konstant sein. Wir setzen diese Konstante gleich K und er-
halten zwei gewohnliche Differentialgleichungen:

2
& =kf(, (1.39)
d2
d—xﬁ - U—K2g(x) . (1.40)

Durch den Produktansatz (1.37) ist etwas hochst Beacht-
liches gelungen: Die partielle Differentialgleichung (1.34)
wurde in zwei gewohnliche Differentialgleichungen zer-
legt! Das ist deshalb bemerkenswert, weil gewohnliche
Differentialgleichungen viel leichter zu l6sen sind als
partielle. Die Konstante K nennt man die Separationskon-
stante. Sie kommt sowohl in der Differentialgleichung fiir
g(x) als auch in der fiir f(¢) vor und ist von grofier Bedeu-
tung fiir die Eigenschaften der Losungsfunktionen.

Die allgemeine Losung von (1.39) ist

f(t) = C1e\/Et + C2€7\/Et .

c1 und ¢, sind Konstanten. Mit K > 0 divergiert der erste
Term fiir t — oo und der zweite fiir t — —oo. Wenn die Lo-
sung fiir alle Zeiten endlich sein soll, muss K < 0 sein. Wir
setzen K = —w? und erhalten damit eine wohlbekannte
Differentialgleichung:

&f + W} =0. (1.41)

dr?

Das ist eine Schwingungsgleichung. Die Losung ist

f(t) = focos(wt + ¢4) .

Auch (1.40) erweist sich fiir K < 0 als eine Schwingungs-
gleichung. Die Losung ist

g(x) = ggcos (%x + <px) .

@y und @; legen nur den Nullpunkt der x-Achse und den
Zeitnullpunkt fest. Wir beschranken uns auf den Fall ¢, =
—m/2und ¢; = 0 und setzen fogp = Yo und w/v = k (vgl.
(1.26)). Damit erhalten wir:

P(x,t) = P sinkx cos wt . (1.42)

w bzw. k = w/v konnen in (1.42) zunéchst noch beliebi-
ge Werte annehmen. Im konkreten Fall muss man jedoch
Randbedingungen beachten, durch die die Grofien w und
k festgelegt werden. Wie das geht, und was das fiir Konse-
quenzen hat, werden wir in Abschn. 2.1 am Beispiel einer
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an beiden Enden eingespannten schwingende Saite sehen.
Die Gleichungen (1.39) und (1.40) gehoren zur Familie
der Eigenwertgleichungen: Eine lineare Operation, hier
der , Operator” d?/de? bzw. d2/dx?, angewandt auf ei-
ne Funktion f (t) bzw. g(t), reproduziert diese Funktionen,
multipliziert mit einem konstanten Faktor. Eigenwertpro-
bleme wie das der schwingenden Saite werden uns vor
allem in der Quantenphysik noch 6fter begegnen.

Man kann die Losung (1.42) auch auf einem anderen
Wege erhalten. Wir gehen von der allgemeinen Losung
der Wellengleichung, also von (1.36) aus und betrachten
die Uberlagerung von zwei gegenldufigen harmonischen
Wellen gleicher Wellenzahl und gleicher Amplitude:

P(x,t) = % sink(x — ot) + Yo sink(x + ot) .

: (1.43)

Mit kv = w und sin(x &+ B) = sina cos £ cosasin  er-
hélt man hieraus

P(x, t) = P sinkx cos wt ,

1 Grundbegriffe der Wellenphysik
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Abbildung 1.23 Eine stehende Welle als Superposition zweier laufender Wel-
len

was mit (1.42) identisch ist. Eine stehende Welle kann al-
so aufgefasst werden als Superposition von zwei Wellen
gleicher Amplitude und Frequenz, die in entgegengesetz-
ter Richtung laufen (Abb. 1.23).



Ubungsaufgaben

Ubungsaufgaben

1.1. Reflexion einer Seilwelle am losen Ende. Skizzie-
ren Sie in Analogie zu Abb. 1.6 den Ablauf der Reflexion
einer Seilwelle, wenn das Seilende lose eingespannt ist.
Unter welcher Bedingung erfiillen die ankommende und
die gegenldufige reflektierte Welle zusammen die Rand-
bedingung (1.2)?

1.2. Kabelclipping. Das in Abb. 1.8 skizzierte Experi-
ment werde in der folgenden Weise durchgefiihrt:

(1) Der Generator erzeugt statt eines rechteckigen einen
trapezformigen Spannungsimpuls: Die Spannung
steigt innerhalb einer Zeit T = 5ns auf ihren Maximal-
wert an, bleibt fiir eine Zeit T = 50ns konstant und
fallt danach innerhalb der Zeit T wieder auf null ab.

(2) Das am Oszillographen angeschlossene Kabel ist am
anderen Ende kurzgeschlossen (R =0). Seine Lan-
ge betrdgt | = 20cm, die Signalgeschwindigkeit ist
20 cm/ns.

(3) Der Ausgangswiderstand des Generators ist gleich der
Kabelimpedanz, der Eingangswiderstand des Oszillo-
graphen ist als unendlich grofd anzusehen.

Wie sieht das beobachtete Signal aus? Wie grofs sind die
Signalhthe und die Anstiegszeit im Vergleich zum Signal,
das man erhilt, wenn an den Oszillographen statt des re-
flektierenden Kabels ein Widerstand R gleich dem Kabel-
Wellenwiderstand angeschlossen ist?

1.3. Fourier-Reihe. In einer Spule mit Eisenkern fliefSe
ein periodischer Wechselstrom I = Ij sin wt. Der Magnet-
fluss @, aufaddiert iiber alle Spulenwindungen, hdngt in
nichtlinearer Weise vom Strom ab und wir machen die
grobe Néherung ¢ = LI — LI3/3I§ fiir I < I, wobei Ig die
magnetische Séttigung beschreiben soll.

a) Geben Sie die Fourier-Reihe der Spannung an der
Spule an, wenn Iy < I ist. Zahlenbeispiel: Iy = Is/2. (Hin-
weis: Trigonometrische Funktionen mit hoheren Frequen-
zen lassen sich mit Additionstheoremen auf Funktionen
mit niedrigeren Frequenzen zuriickfiihren, z. B. cos 3wt =
cos 2wt - cos wt + sin2wt - sinwt, ...).

b) Eine kleine, extern verursachte statische Vormagne-
tisierung erzeuge bei verschwindendem Strom I einen
endlichen Fluss ®ey, der die Magnetisierungskurve ver-
schiebt:

@ =L(I+1Iy) —L(I+1Iu)°/31%.

Es ist also @ext = LIy(1 — I3,/312). Wie dndert sich die
Fourier-Reihe?

¢) Man betrachte den Fall Iy > Is, aber ohne Vormagne-
tisierung (Ips = 0). Ohne die Fourier-Reihe explizit anzu-
geben, kann man sagen, welche cos- oder sin-Terme bei
welchen Frequenzen auftreten.

d) Eine andere, realistischere Aufgabenstellung wire die
Vorgabe einer sinusférmigen Spannung und die Frage
nach dem Strom. Besitzt die Fourier-Reihe fiir [y < Is end-
lich viele oder unendlich viele Summanden?

1.4. Dispersionsrelation.

a) Die Dispersionsrelation fiir eine ebene Welle laute: w =
wp - sinkL fiir 0 < kL < 7t/2. Wie verlaufen die Phasen-
und die Gruppengeschwindigkeit als Funktion von k?

b) Schallwellen in Festkérpern folgen qualitativ der-
artigen Dispersionsrelationen. Die kiirzesten denkba-
ren Schallwellenldngen hatten die Grofienordnung des
Atomabstandes und wir setzen als Richtwert L ~ 1nm
ein. Typische Schallgeschwindigkeiten in Festkorpern
sind Uph = 5-103m/s. Zeigen Sie, dass diese Dispersions-
relation fiir technisch {ibliche Frequenzen bis hinauf zu
Ultraschallwellen im GHz-Bereich eine konstante Schall-
geschwindigkeit vorhersagt.

1.5. Losungen der klassischen Wellengleichung. Wel-
che der folgenden eindimensionalen , Ausbreitungsvor-
gange” sind Losungen der dispersionsfreien Wellenglei-
chung (1.34), lassen sich also in der Form (1.36) darstellen?
Alle Parameter aufSer x und f sind Konstanten, von deren
Werten die Antwort u. U. abhédngt.

C —22/(2)

Pt =7 (Bd.1I, GL (6.10)),  (1.44)
Pl 1) = et/ ) (1.45)
P(x,t) =sin(kyx — wt) + cos(kpx + wt) , (1.46)
P(x, t) =sin(kyx — wqt) sin(kox + wot) , (1.47)
P(x,t) =sin(k®x® — w?t?) . (1.48)

1.6. Federkette. In einer linearen Kette gleicher Mas-
sen m sei jede Masse mit ihren Nachbarn tiber gleich
lange Federn mit der Federkonstanten « verbunden. Auf
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der Kette kénnen sich longitudinale Wellen ausbreiten.
Man zeige: Solange die Wellenldnge grofs gegen den Ab-
stand a der Massen ist, kann man zur Beschreibung des
Systems anstelle der Bewegungsgleichungen fiir die ein-
zelnen Massen die Wellengleichung (1.34) verwenden.
Hinweise: Die Federmasse sei zu vernachlassigen. In der
Néhe einer herausgegriffenen Masse am mittleren Ort ¥;
gilt fiir die gleichzeitige Auslenkung ¢ (X, t) einer nahe
gelegenen anderen Masse am mittleren Ort X;, die Taylor-

1 Grundbegriffe der Wellenphysik

Entwicklung
— _ d —
Pt ~ 90+ SE| - (E-T)
x5,
1%y 2
+ 3 02 (X —x)"+..

Wie grof3 ist die Ausbreitungsgeschwindigkeit fiir m =
01kg,a=2cmund a = 1INm—1?
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Als erstes untersuchen wir quantitativ die Seilwel-
len, mit denen wir in Kap. 1 die Diskussion der
Wellenphysik begannen, sowie die Schwingungen
einer Saite als Musterbeispiel fiir stehende Wellen
und fiir ein sogenanntes ,Eigenwertproblem”. So-
dann diskutieren wir Schallwellen in Gasen, in Fliis-
sigkeiten und in Festkorpern und geben einen Ein-
blick in die komplizierte Physik der Wasserwellen.
Im vierten Abschnitt behandeln wir elektromagneti-
sche Wellen im Vakuum, ihre Erzeugung mit einem
schwingenden Dipol und das Spektrum der elektro-
magnetischen Wellen. Dann werden in Abschn. 2.5
elektromagnetische Wellen in nicht leitender und
in leitender Materie diskutiert, sowie ihre Ausbrei-
tung auf Kabeln und auf speziellen Wellenleitern
fiir Mikrowellen, den sogenannten Hohlleitern. Am
Schluss geht es noch um Phéanomene, die auftreten,
wenn sich der ,Sender” schneller als die Phasenge-
schwindigkeit der Wellen bewegt.

Wellen auf einem elastischen
Seil

2.1

Das elastische Seil, das wir hier betrachten, ist dadurch
definiert, dass es nur in seiner Langsrichtung Kréfte iiber-
tragen kann, das Seil soll also keine Biegesteifigkeit be-
sitzen. Auch soll bei Verformungen keine mechanische
Energie in Warme verwandelt werden. Wir nehmen an,
dass an beiden Enden des Seils mit der Kraft S in hori-
zontaler Richtung gezogen wird. Dadurch entsteht im Seil
eine Spannung

S
A 7
wenn A die Querschnittsflache ist. Wird das Seil aus sei-
ner Ruhelage y = 0 ausgelenkt, bildet sich eine Seilwelle
der Form y = y(x, t), wie in Abb. 1.1 gezeigt wurde. Wir
wollen nun die Wellengeschwindigkeit v berechnen. Die
an den Enden des Seils angreifenden Krifte £S wol-
len das Seil wieder gerade ziehen; dadurch entsteht eine
riicktreibende Kraft, die wir als erstes berechnen miis-
sen. Infolge der Auslenkung wird das Seil etwas gedehnt.
Bei kleiner Auslenkung kénnen wir die von der Aus-
lenkung abhéngige zusétzliche Spannkraft gegentiber der
Vorspannung durch die Kraft S vernachldssigen. Auch
nehmen wir an, dass der in Abb. 2.1a definierte Winkel a
stets so klein ist, dass wir sina = tana = dy/0Jx setzen
konnen.

o= 2.1)

Wir denken uns das Seil zur Zeit t an der Stelle xj in
zwei Abschnitte geteilt. An den Enden dieser Abschnit-
te wirken in diesem Augenblick die in Abb. 2.1b und ¢
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Abbildung 2.1 Zur Berechnung der Geschwindigkeit von Seilwellen. a Die
Seilwelle, b und c die an der Stelle x zur Zeit t im Seil wirkenden Krafte

eingezeichneten Krifte. Die y-Komponenten dieser Kraf-
te sind

F;b) (xp,t) = —Ssina = —8§ g_}/ ,
x X0 (22)

F (xo,t) = —F) (xo,8) .

Auf das Seilstiick zwischen xg und x¢ + dx wirkt also in y-
Richtung die Kraft

F;m (xo,t) + F;C) (xo +dx, t)

_ g% Iy
BRI FRRET:

2.3)

xp+dx

Ist p = m/I die Seilmasse pro Meter, dann hat das Seil-
stiick zwischen xp und xp + dx die Masse p dx und die
Beschleunigung ist

%y  So%y

T (2.4)
Das ist eine eindimensionale Wellengleichung fiir disper-
sionsfreie Wellen. Auf dem elastischen Seil konnen sich
also Wellen dispersionsfrei ausbreiten, wie am Ende von
Abschn. 1.4 behauptet wurde. Die Wellengeschwindigkeit
ist nach (1.34)

(2.5)

Bei einem homogenen Seil (also nicht z. B. bei einer mit
Silber umwickelten Darmsaite) kann man mit (2.1) und
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mit ¢ = m/I hierfiir auch v = /0 /p schreiben, wenn p
die Dichte des Materials ist. Die Dispersionsrelation (1.30)
des elastischen Seils lautet:

w = §k.
u

Wir wollen uns noch Gleichungen beschaffen, in de-
nen nicht die Auslenkung y(x, t), sondern die Geschwin-
digkeit der transversalen Seilbewegung & = dy/dt vor-

kommt. Wir setzen F, = F;b) = —F;C). Auf das differenti-
elle Seilstiick der Lange dx, also der Masse y dx, wirkt die
Kraft

(2.6)

oF
Fy(x,t) = Fy(x +dx,t) = ——Jdx,

ox

und die Newtonsche Bewegungsgleichung ergibt:

oF, oz

Wenn man (2.2) partiell nach der Zeit differenziert, erhalt
man
oF,

ot

oF,

ot ox

a2y

otox 2.8)

(2.7) und (2.8) werden sich in Kap. 3 als niitzlich erweisen.

Die schwingende Saite

Wir wollen nun Lésungen von (2.4) fiir den Fall von ste-
henden Wellen auf einem beidseitig eingespannten elasti-
schen Seil suchen. Wegen der Anwendung des Folgenden
in der Musik spricht man hier von den Schwingungen ei-
ner Saite. Durch die Randbedingungen

y(x,t) =0 firx=0

fiir alle Zeiten t (2.
y(x8) = 0 fijrx:L} ir alle Zeitent  (2.9)

werden die moglichen Schwingungsformen in charakte-
ristischer Weise eingeschrankt. Die Betrachtung ist nicht
nur wichtig als physikalische Grundlage vieler Musikin-
strumente, sondern auch als erstes Beispiel eines Eigen-
wertproblems. Solche Probleme spielen in der Physik eine
grofSe Rolle, besonders auch in der Quantenphysik (Bd. V,
Kap. 4-8).

Zur Losung der Wellengleichung gehen wir wie in Ab-
schn. 1.5 vor. Der Produktansatz (1.37) fiihrt auf die Ei-

Y
n=1
il
~ o -~ T
S ~a - L
Y
n=2
--
/’ \\
7z N
N x
~ 7 o
So_ -7 /\_/‘L
Y
n=3
-
Va N
s N

Abbildung 2.2 Eigenschwingungen einer Saite

genwertgleichungen (1.39) und (1.40) und auf die Losung
(1.42):

y(x, t) = yo sinkx cos wt . (2.10)

Durch diesen Ansatz wird die Randbedingung y(0,t) =0
automatisch erfiillt. Damit auch y(L, ) = 0 ist, muss gel-
ten sinkL = 0 oder

kL =0,m,2m,3m,...nm, (2.11)

wobei n eine beliebige ganze Zahl ist. kL = 0 bedeutet
k = 0, also keine Anregung; das ist uninteressant. Fiir n =
1 erhdlt man die Grundschwingung, fiir n = 2 die erste
Oberschwingung, fiir n = 3 die zweite Oberschwingung,
usw.! Man bezeichnet diese verschiedenen Schwingungs-
formen als Eigenschwingungen oder auch als Schwin-
gungsmoden; die zugehdrigen Schwingungsformen sind
in Abb. 2.2 dargestellt. Die Stellen zwischen den Punk-
ten x = 0 und x = L, wo die Saite stdndig in Ruhe bleibt,
bezeichnet man als Knoten, die Stellen maximaler Aus-
lenkung als Schwingungsbduche. Durch die nach (2.11)
erlaubten Wellenzahlen sind folgende Wellenldngen gege-
ben:

M=, n=123,.. (2.12)

! Die erste Oberschwingung heift auf englisch ,second harmonic”,
die zweite , third harmonic” usw. Die Grundschwingung nennt man
fundamental mode”.
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Abbildung 2.3 Dispersionsre- w . K
lation der realen und der idealen _ real </
Saite. Der Effekt der Biegesteifig- w, 5N ideal
keit ist stark tbertrieben
k

Man nennt sie die Eigenwerte der Wellenlinge. Nur
fur diese Wellenldngen bzw. fiir die Wellenzahlen k, =
27/ Ay existieren Losungen der Wellengleichung, die die
Randbedingungen (2.9) erfiillen. Die zugehorigen Eigen-
frequenzen sind gegeben durch w, = vk, bzw. durch

vy =0/ Ay
m |S 2m [S

Die Eigenwerte der Wellenldngen (2.12) sind durch die
Geometrie der Anordnung festgelegt, die Eigenfrequen-
zen v, dagegen durch die Geometrie und durch die Di-
spersionsrelation.

1’1_2L ]/ll

In diesem Zusammenhang ist interessant, dass bei ei-
ner realen Saite die Biegesteifigkeit nicht vollkommen
vernachléssigbar ist, wie zu Anfang dieses Kapitels ange-
nommen wurde. Die Steifigkeit der Saite fithrt zu einer
zusétzlichen riicktreibenden Kraft und zu einer Dispersi-
onsrelation

W= 2R gkt (2.14)
H

Das wirkt sich besonders bei Oberschwingungen mit ho-

hem 1 aus: Wie man in Abb. 2.3 abliest, sind die Frequen-

zen v, etwas grofler als die durch (2.13) gegebenen, sie

sind nicht exakt ein ganzzahliges Vielfaches der Grund-

frequenz vy.

Nattirlich kann eine Saite nicht nur ,sinusférmig”
schwingen: Es sind auch Uberlagerungen von Schwin-
gungsmoden moglich. Betrachten wir eine in der Mitte
angezupfte Saite. Die zeitliche Entwicklung der Wellen-
funktion y(x, t) erhdlt man am einfachsten, indem man
nach dem Muster von Abb. 1.23 zwei gegenldufige Wellen
tiberlagert, deren Form der Dreiecksfunktion Abb. 1.15¢
entspricht. Bei x =0 und x = L bleibt die Saite stindig
in Ruhe. Im Gegensatz zu den stehenden Sinuswellen in
Abb. 1.23 dndert sich jedoch wéahrend der Schwingung die
Form der ausgelenkten Saite stindig, wie Abb. 2.4 zeigt.
Dass eine Formdnderung auftreten muss, erkennt man
auch, wenn man die Fourier-Komponenten betrachtet.
Die einzelnen Fourier-Komponenten haben ganz unter-
schiedliches Zeitverhalten. Wir ersetzen in (1.13) wt durch

2 Spezielle Wellenerscheinungen

Abbildung 2.4 Schwingung einer in der Mitte angezupften Saite

Abbildung 2.5 Saitenschwin-
gung auf einem Streichinstrument
(,Helmholtz-Schwingung”)

kx &+ wt mit k = 7/L und w = vk. Dann bilden wir die
Summe f (kx 4+ wt) + f (kx — wt):

16a

. 1.
y=—3 (smkx cos wt — g sin 3kx cos 3wt

1
+ gsinSkaOSSwt - —|—>

Die Schwingung einer an beiden Enden fest eingespann-
ten Saite wird durch Luftreibung und durch Dissipation
von Energie im Material der Saite geddmpft. Wenn die
Q-Werte? fiir alle Eigenschwingungsmoden von gleicher
Groflenordnung sind, klingen die hochfrequenten Ober-
schwingungen zuerst ab, und die in der Mitte angezupfte
Saite schwingt nach einiger Zeit nur noch sinusférmig in
der Grundschwingung.

Die schwingende Saite allein ergibt nur einen kaum ver-
nehmbaren Ton. Bei einem Musikinstrument sind die Sai-
ten iiber einen Steg gespannt, der die Schwingungen auf
einen Resonanzkorper iibertrdgt. Der Klangcharakter des
Instruments (und was der Spieler daraus macht) hangt
vom Spektrum der Obertone, von Einschwingvorgédngen,
von der Dampfung der einzelnen Schwingungsmoden
und insbesondere vom Zusammenwirken der Saite mit
dem Resonanzkorper des Instruments ab.

Abbildung 2.5 zeigt die Bewegung der Saite eines Streich-
instruments. Die Saite wird dicht vor dem Steg mit ei-

2 Nach seiner Definition in Bd. I, Gl. (12.18) ist der Q-Wert gleich 27t
mal der Zahl der Schwingungen, die ablaufen, bis die Schwingungs-
energie auf 1/e abgesunken ist.



2.2 Schallwellen

nem Bogen angestrichen. Wie Helmholtz mit einer raffi-
nierten stroboskopischen Messmethode herausgefunden
hat, lduft dann mit konstanter Geschwindigkeit zwischen
Steg B und Sattel A eine dreieckige Deformation der
Saite hin und her. Die einhiillende Kurve dieser Bewe-
gung ist die vom Auge wahrgenommene , sinusférmige”
Auslenkung, in Abb. 2.5 gestrichelt eingezeichnet. Es han-
delt sich aber um eine sehr obertonreiche Schwingung,
deren Spektrum auch die geraden Vielfachen der Grund-
frequenz enthilt. Will man auf einem Streichinstrument
einen schénen Ton hervorbringen, ist das erste Erforder-
nis, dass man im richtigen Bereich streicht und dabei
Bogendruck und Bogengeschwindigkeit so dosiert, dass
eine saubere und stabile ,,Helmholtz-Schwingung” ent-
steht.

2.2 Schallwellen

Schallwellen in Gasen

Schallwellen breiten sich in Gasen als longitudinale
Druckwellen aus. Wir beschranken uns auf den Fall einer
ebenen periodischen Welle (Abb. 2.6a). Druck und Dich-
te enthalten aufier den konstanten Werten py und pg noch
zeitlich veranderliche Anteile p und p:

(2.15)
(2.16)

p(x,t) = po+plxt),
p(x,t) = po +p(x,t),

wobei gewohnlich die Wechselgrofsen p und p klein ge-
gen die statischen Groflen py und pg sind. Selbst in einer
lautstarken Disco erreicht die Amplitude des Schallwech-
seldrucks p nur etwa 0,1 mbar, wahrend pg ~ 1bar ist.

Verbunden mit den Druck- und Dichtednderungen ent-
steht im Gas eine oszillierende Verschiebung der Gas-
teilchen und eine Stromungsgeschwindigkeit ¢(x,t), die
sogenannte Schallschnelle. Jede dieser Groflen konnen
wir mit der Wellenfunktion ¢ (x, t) identifizieren. Wir kon-
zentrieren uns auf den Druck p(x, t).

Unter dem Einfluss der Druckkraft F = AAp wird die in
dem Volumenelement AAx (Abb. 2.6b) enthaltene Luft be-
schleunigt:

F=Ap(x) —p(x+ Ax)] = —A%Ax = Am

oac
ot
Wir setzen Am = pgAAx und erhalten

dp ot

Der rdaumlich verénderliche Druck hat also eine zeitliche
Anderung der Geschwindigkeit zur Folge. Die rdumliche

a Dichte-Maxima
i Ty

ple+Az)

Abbildung 2.6 Zur Ableitung von (2.17)

Anderung der Geschwindigkeit bewirkt eine zeitliche An-
derung der Dichte: Aus der Kontinuitatsgleichung Bd. II,
Gl. (3.33) folgt mit Bd. II, GL. (3.27) (vgl. auch Bd. III,
GIn. (1.7) und (1.8))

dp oc

= o= 2.1

ot — Mox (2.18)
wenn wir auf der rechten Seite den kleinen variablen An-
teil g(x, t) gegeniiber pg vernachlassigen.

Die Dichtednderung ist aufgrund des Zusammenhangs
zwischen Druck und Dichte mit einer Druckdnderung
verbunden:

o _dpap
ot dpot’
Mit (2.18) erhalten wir
o __ dpie
i Podp 5 (2.19)

Wir differenzieren (2.17) partiell nach x und (2.19) partiell
nach t:

’p ¥

dp 9%
P05 -
0 otox

i i
aw? Pt e

(2.20)

Wegen 9%¢/0xdt = 0°¢/dtdx konnen wir aus diesen Glei-
chungen ¢(x, t) eliminieren und erhalten
Pp _ dpp

7 Ao .21)
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Tabelle 2.1 Schallgeschwindigkeit in verschiedenen Stoffen (20 °C)
vs(m/s)

Gase:
Kohlendioxid 266
Luft (trocken) 343
Luft (NTP) 331
Wasserstoff 1309
Fliissigkeiten:
Glyzerin 1900
Quecksilber 1450
Wasser 1486
Seewasser 1520
Festkorper: Ugl) vét) véd)
Blei 2050 710 1200
Eisen 5950 3220 5180
Aluminium 6360 3130 5110
Beryllium 12890 8880 12870
Eis (—4°C) 4000 2000 3300
Plexiglas 2700 1300 2200
Kronglas 5100 2800 4500
Basalt 5900 3100 5100
Beton 4000 2500 3900

Das ist eine Wellengleichung vom Typ (1.34). Die Wellen
sind also dispersionsfrei, und die Schallgeschwindigkeit
ist nach (2.21):

(2.22)

Zur Berechnung von dp/dp miissen wir die Zustands-
dnderung des Gases betrachten. Die Schallschwingungen
erfolgen so schnell, dass die Warmeleitung im Gas ver-
nachlassigt werden kann, d.h. die Kompression erfolgt
adiabatisch und nach der Adiabatengleichung Bd. II,
Gl. (8.30) ist p = const p*. Damit erhalten wir

dp k-1 _ Kp
— = constx =—. (2.23)
dp 3 P

Mit der allgemeinen Zustandsgleichung der idealen Gase
Bd. I, GL. (4.23) konnen wir auch p/p = RT /M setzen. Die
Schallgeschwindigkeit in Gasen ist also

oo [F_ [RT
s = P_ M

(2.24)

2 Spezielle Wellenerscheinungen

Sie hangt von der Temperatur des Gases und dessen Mo-
lekulargewicht M sowie vom Adiabaten-Exponenten x ab,
aber nicht vom Druck. Im oberen Teil von Tab. 2.1 findet
man einige Zahlenwerte fiir v5 nach (2.24); sie stimmen
sehr gut mit den experimentell bestimmten Werten iiber-
ein.?

Stehende Schallwellen

Stehende Schallwellen kann man in einer beidseitig ab-
geschlossenen Rohre der Lange L erzeugen. Die Randbe-
dingungen lauten ¢(0,t) = ¢(L, t) = 0 und man bekommt
dhnliche Schwingungsmoden wie bei der schwingenden
Saite, es gilt A, = 2L/n.

Auch in einem einseitig offenen Rohr kann man stehende
Schallwellen erzeugen, z.B. in der in Abb. 2.7 gezeig-
ten Anordnung (,,Quinckesches Rohr”). Vor der Offnung
befindet sich eine Stimmgabel. Wird die im Rohr be-
findliche Gassdule resonant angeregt, so bildet sich im
Rohr eine stehende Welle aus. Die Randbedingungen sind
hier durchaus anders als bei der beidseitig eingespannten
schwingenden Saite. Es muss namlich gelten

p(L,t) = po
¢

(dt)::o (2.25)

} fur alle Zeiten ¢.

Am offenen Ende herrscht der konstante Druck pg, wah-
rend die Geschwindigkeit ¢ beliebige Werte annehmen
kann; am geschlossenen Ende wird dem Druck keine Be-
dingung aufgezwungen, es muss aber ¢ = 0 sein. Diese

Abbildung 2.7 Anordnung
zur Erzeugung stehender Schall-
wellen (,, Quinckesches Rohr").
Die Lange L der Gassaule kann
durch Heben und Senken des
Flussigkeitsspiegels verandert
werden

i C—

~

BN

3 Die Theorie der Schallwellen stammt bereits von Isaak Newton.
Newton wusste aber noch nichts von adiabatischen Zustandsdnde-
rungen; er benutzte die Boyle-Mariottesche Gleichung p/p = const.
Er erhielt so einen etwas zu kleinen Wert fiir die Schallgeschwindig-
keit in Luft, ndmlich vs = \/p/p = 290m/s statt 340m/s.
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Abbildung 2.8 Schallwechseldruck und Schallschnelle bei einer stehenden
Schallwelle im Quinckeschen Rohr

Bedingungen lassen sich erfiillen, wenn genau 1/4, 3/4,
5/4, ... Wellenldngen in das Rohr passen. Resonanz tritt
ein, wenn

_2n+1

L=L, 1

A, n=01,2,... (2.26)

Die Verhiltnisse sind in Abb. 2.8 dargestellt. p(x,t) und
¢(x,t) sind gegeneinander rdumlich und zeitlich um
90° phasenverschoben: Die , Druckknoten” und die , Ge-
schwindigkeitsbauche” fallen rdumlich zusammen; die
Beschleunigung ist dort am grofiten, wo das maximale
Druckgefille herrscht.

Wegen der Endeffekte an der Offnung ist L etwas gro-
Ber als die geometrische Lange des Rohrs, gemessen iiber
dem Wasserspiegel. Man kann dennoch mit dem Quin-
ckeschen Rohr die Wellenldnge der Schallwellen messen,
indem man durch Heben und Senken des Wasserspie-
gels einige Langen L, bestimmt und die Differenzen bil-
det: L,+1 — Ly, = A/2. Da die Dampfung gering ist, sind
die Resonanzen ziemlich scharf. Mit der Frequenz v der
Stimmgabel erhdlt man dann die Schallgeschwindigkeit
vs = Av.

Die Phasenbeziehung zwischen p(x, t) und €(x, t)

Stehende Wellen. Man kann die in Abb. 2.8 dargestellte
Phasenbeziehung auch rechnerisch ermitteln. Setzen wir
fiir p(x, t) eine stehende Welle an:

p(x,t) = pg coskx coswt, (2.27)

so erhalten wir mit (2.17), (2.19) und (2.22) die Beziehun-
gen

p . - oc
Fr i kpg sinkx cos wt = —pq m (2.28)
op ~ . oc
a_;t? = — wpp coskxsinwt = —pgvga . (2.29)
Daraus folgt:
. _ Ppo . )
C(x, t) = sinkx sin wt . (2.30)
P00s

In Ubereinstimmung mit Abb. 2.8 sind bei stehenden Wel-
len p(x,t) und &(x, t) sowohl rdumlich als auch zeitlich um
90° gegeneinander phasenverschoben.

Laufende Wellen. Um zu ergriinden, welche Phasenbe-
ziehungen in laufenden Schallwellen herrschen, machen
wir statt (2.27) den Ansatz

p(x,t) = posin(kx — wt) . (2.31)
Analog zu (2.28) und (2.29) erhalten wir:
p _ e
E kpg cos(kx — wt) = —po 3
p B 0T
3 = ~who cos(kx — wt) = —pov; 3
Daraus folgt
- _ Po .
C(x, t) = — sin(kx — wt) . (2.32)

L00s

(2.31) stellt eine in +x-Richtung laufende Welle dar. Fiir
eine in —x-Richtung laufende Welle

p(x, t) = posin(kx + wt)

erhalten wir auf die gleiche Weise

&(x,t) = — 10

sin(kx + wt) .
000s

(2.33)

Bei einer in x-Richtung laufenden Welle sind also p(x, t)
und ¢(x, t) in Phase, wihrend sie bei einer in —x-Richtung
laufenden Welle um 180° phasenverschoben sind. Diese
Verhiltnisse sind in Abb. 2.9 dargestellt. — Auf diese Weise
entscheidet ganz allgemein die Phase bei Wellen aller Art
iiber die Wellenausbreitung.

Schallwellen in Flissigkeiten und Festkérpern

Die Gleichung (2.22) gilt auch in Festkorpern und Fliissig-
keiten. Dort ist die Schallgeschwindigkeit im Allgemeinen
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Abbildung 2.9 Druck- und Geschwindigkeitsverteilung in einer laufenden
Welle (Momentaufnahme). (a) in +x-Richtung laufend, (b) in —x-Richtung lau-
fend
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Abbildung 2.10 Kompressionswelle in einem Stab, schematisch. Querauslen-
kung stark tbertrieben.

grofer als in Gasen (vgl. Tab. 2.1); dies liegt an der sehr
geringen Kompressibilitdt kondensierter Materie. Fiir die
Schallgeschwindigkeit in Fliissigkeiten erhalten wir

_ Jdp _ JK
vs_\/dp_ﬁ’

wobei K der Kompressionsmodul der Fliissigkeit ist (vgl.
Bd. II, Gl (1.7)). In einem dreidimensional ausgedehnten
Festkorper ist die Berechnung von dp/dp fiir den Defor-
mationszustand einer longitudinalen Schallwelle weitaus
komplizierter. Man muss auch die Querkontraktion be-
riicksichtigen und erhaélt

A JE__1-p _\/%(1—14)
S - — .
o (T4 u)(1—2u) p (1+p)
Eist der Elastizitatsmodul, y < % ist die Poissonsche Zahl,
die das Verhiltnis Querkontraktion/Elongation bei der
Dehnung eines Stabes angibt (vgl. Bd. II, Gl. (1.5)). Bei
longitudinalen Schallwellen in einem langen diinnen Stab

(Abb. 2.10) ist das Ergebnis wieder einfacher, da sich das
Material seitlich ausdehnen kann:

(2.34)

(2.35)

(2.36)

2 Spezielle Wellenerscheinungen

Transversale Schallwellen. Die markanteste Besonder-
heit der Schallausbreitung in einem Festkorper ist, dass
aufgrund der Scherfestigkeit auch transversale Schallwel-
len moéglich sind. Die Schallgeschwindigkeit fiir Transver-
salwellen ist vom Schubmodul G abhéngig:

(2.37)

Da nach Bd. II, GL (1.14) G = E/2(1 + ) ist, ist o!" deut-
lich kleiner als die Geschwindigkeit der longitudinalen
Wellen. Diese Tatsache hat zu der Erkenntnis gefiihrt, dass
das Innere der Erde in einer ausgedehnten Zone fliissig
ist. Von Erdbebenzentren oder von unterirdischen Explo-
sionen gehen sowohl longitudinale als auch transversale
Wellen aus. Sie konnen aufgrund ihrer unterschiedlichen
Ausbreitungsgeschwindigkeiten identifiziert werden.
Man stellt fest, dass sich in einer Tiefe von 2900 km eine
Diskontinuitét befindet, bei der sich die Schallgeschwin-
digkeit sprunghaft d&ndert und unterhalb der sich nur
noch longitudinale Wellen durch den Erdkoérper fort-
pflanzen konnen. Das bedeutet, dass unterhalb dieser
Diskontinuitdt das Erdinnere fliissig ist. In einer Tiefe von
5100km findet man nochmals eine sprunghafte Ande-
rung der Schallgeschwindigkeit. Dort beginnt der feste
innere Erdkern, der einen Radius von ca. 1250km hat
(Bd. I1I, Abb. 15.36).

2.3 Wasserwellen

Die Wellen, die man an der Oberfliche von Fliissigkei-
ten sieht, insbesondere Wasserwellen, sind zweifellos das
am ldngsten bekannte Wellenphdnomen, aber keineswegs
das einfachste. Zunichst ist die Bewegung der Fliissigkeit
eine komplizierte (Abb. 2.11a). Die einzelnen Fliissigkeits-
teilchen bewegen sich bei Wellen in tiefem Wasser auf
Kreisbahnen, deren Radien nach unten hin abnehmen. Im
Flachwasser werden aus den Kreisen langgestreckte El-
lipsen. Die Stromlinien fiihren dagegen in weiten Bogen
von der Oberflache vor dem Wellenberg zur Oberflache
hinter dem Wellenberg (Abb. 2.11b). Man muss ein Weil-
chen nachdenken, bis man den Zusammenhang zwischen
beiden Bildern durchschaut hat. Die Bewegung erfolgt al-
so sowohl transversal als auch longitudinal. Sodann gibt
es zwei verschiedene Mechanismen fiir die riicktreiben-
de Kraft: Die Oberflichenspannung und die Schwerkraft.
Die Oberflachenspannung dominiert bei sehr kurzen Wel-
len, die Schwerkraft bei langeren. Man unterscheidet da-
her Kapillarwellen und Schwerewellen.

Interessant ist die Dispersionsrelation fiir Fliissigkeitswel-
len. Sie lautet:

w? = (%1@ + gk) F(kh) . (2.38)
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Abbildung 2.11 Bewegungen in einer Wasserwelle, sichtbar gemacht durch
Zusatz von Aluminiumflittern. a Bahnbewegung der Fliissigkeitsteilchen (lan-
gere Belichtungszeit bei der fotografischen Aufnahme), b Stromlinien (kurze
Belichtungszeit). Aus A. Sommerfeld (1945)

Hierbei ist g die Fallbeschleunigung, ¢ die Oberflachen-
spannung, p die Dichte und & die Tiefe der Fliissigkeit.
Der erste Term beschreibt die Kapillarwellen, der zweite
die Schwerewellen. Die Funktion F(kh) ist gegeben durch

1— e—Zkh

(2.39)

Tiefwasserwellen. Wir diskutieren zunachst den Fall
h > A, also kh > 27t. In diesem Fall wird F(kh) ~ 1. Mit
(2.38) erhélt man dann fiir die Phasengeschwindigkeit

g 2no 1
A oA

k:

L
I 21

(2.40)

=100

_w_
Uph—?—

Tiefwasserwellen sind also keineswegs dispersionsfrei. In
Abb. 2.12 ist die Phasengeschwindigkeit als Funktion der
Wellenldnge A = 271/k aufgetragen. Unterhalb des Mini-
mums bei A = 1,7 cm laufen die Wellen umso schneller,
je kiirzer die Wellenlange ist: Die Riickstellkraft wird hier

Uph (m/s)

051

0,23 1->

i A(cm)

17em 5 10 15

Abbildung 2.12 Phasengeschwindigkeit von Tiefwasserwellen

von der Oberflichenspannung besorgt und ist umso gro-
fer, je kleiner der Kriimmungsradius der Wellenkuppen
ist. Oberhalb des Minimums, im Bereich der Schwere-
wellen, nimmt dagegen vp, mit A zu. Man kann dieses
Verhalten demonstrieren, indem man an einem Punkt
der Wasserfldche ein ,Signal” erzeugt, das im wesentli-
chen aus einem einzigen Wellenberg besteht. Ein solcher
Wellenberg enthélt nach Fourier eine Vielzahl von har-
monischen Teilwellen. Ist deren Wellenliange kleiner als
1,7 cm (man erreicht das, indem man einen Wassertropfen
auf eine Wasseroberfldche fallen lisst), so sieht man, dass
die kurzen Wellen am schnellsten laufen. Ist dagegen die
Léange der Wellen grofier als 1,7 cm (man erreicht das, in-
dem man einen Stein in einen Teich wirft), so sieht man
deutlich, dass die langen Wellen voranlaufen. Man kann
das leicht ausprobieren.

Flachwasserwellen. Dieser Fall ist besonders fiir Schwe-
rewellen interessant. Er ist realisiert, wenn kh < 1, also
h < A/2m ist. Dann kann man F(kh) ~ kh setzen und die
Dispersionsrelation (2.38) nimmt fiir Schwerewellen fol-
gende Form an:

w? = ghk? . (2.41)
Die Wellen sind also dispersionsfrei und breiten sich mit
einer Geschwindigkeit aus, die nur von der Wassertiefe

abhéngt:
Uph = \/g_h :

Je flacher das Wasser ist, desto langsamer laufen die Wel-
len. Das erkldrt, warum bei flachen Sandstrénden die
Wellen immer parallel zur Kiistenlinie das Ufer erreichen.
Man versteht auch qualitativ, warum sich die Wellen im
Flachwasser brechen: Bei hohen Wellen ist die Wassertiefe
fiir die Wellenberge erheblich grofser als fiir die Wellenta-
ler; die Wellenberge laufen schneller und kippen iiber.

(2.42)

Die Dispersionsfreiheit der Flachwasserwellen kann auch
zu recht unangenehmen Naturerscheinungen fiihren. Im
Pazifischen Ozean beobachtet man mitunter sogenannte
,Tsunamis”, das sind sehr lange und sehr hohe Wel-
len, die sich infolge von Erdbeben ausbilden kénnen. Bei
einer Wellenldnge von z.B. A =~ 50km sind die Bedin-
gungen fiir Flachwasserwellen selbst in der Tiefsee (h ~
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5km) noch erfiillt. Ein solches Ungetiim rast dann nach
(2.42) mit einer Geschwindigkeit von fast 1000 km /h tiber
den Ozean und richtet auf Inseln und an Festlandkiisten
verheerenden Schaden an. Ein dhnliches, aber gliicklicher-
weise nicht so drastisches Phdnomen ist am Genfer See be-
kannt. Es wird dort ,seiches” genannt (gesprochen 3dsch)
und kommt durch extreme Luftdruckschwankungen zu-
stande, die am Ostlichen Ende des Sees, am Talausgang
des Wallis, entstehen konnen. Die Bewegung des Wassers
bei den seiches entspricht dem Schwappen des Wassers
in der Badewanne. Das ist die Grundschwingung einer
stehenden Welle, die der Dispersionsrelation (2.42) folgt.
Gewohnlich ist die Amplitude nur einige Dezimeter, aber
am 03.10. 1841 stieg die Wasserhohe in Genf innerhalb ei-
ner halben Stunde um 1,9 m an!

2.4 Elektromagnetische Wellen
(Grundbegriffe)

Wie wir schon aus Bd. III/15.4 wissen, folgerte Maxwell
aus seinen Gleichungen, dass es elektromagnetische Wel-
len geben miisse. Qualitativ wurde das Zustandekommen
der Wellen mit Bd. III, Abb. 15.32 plausibel gemacht. Wir
wollen dies nun quantitativ untersuchen.

Elektromagnetische Wellen im Vakuum

Berechnung mit der Integralform der Maxwell-Glei-
chungen. Wie die Verkettung der zeitabhidngigen elektri-
schen und magnetischen Felder funktioniert, erkennt man
am besten, wenn man von der Integralform der Maxwell-
Gleichungen Bd. III, GlIn. (15.51)-(15.54) ausgeht. Wir be-
trachten das Vakuum, in dem p; = 0 und j = 0 ist, und
schreiben Bd. III, GIn. (15.52) und (15.54) in der Form

fE-ds:—i/B-dA,
ot

C A
?{B-ds—e E/E-dA
C A

Wir haben hier gegeniiber Bd. III, Gl. (15.52) die Reihen-
folge von Integration und Differentiation vertauscht. Das
ist zuldssig, wenn die Integration mit einer Kurve C aus-
geflihrt wird, die im Raum festliegt.

(2.43)

(2.44)

Wir betrachten in Abb. 2.13 ein Flachenelement in der
(x,y)-Ebene und berechnen auf der Randkurve dieses
Flachenelements das Linienintegral in (2.43) fiir ein elek-
trisches Feld, das in y-Richtung zeigt und nur von x und ¢

2 Spezielle Wellenerscheinungen

2{@

| AY =z r+dz
=y F

z

Abbildung 2.13 Zur Ableitung von (2.46) und (2.47)

abhéngt:

E = (0,E,(x,1),0), (2.45)

7{1:" -ds = Ey(x +dx,t)dy — Ey(x,t)dy

Ok, drd

= 5, drdy.
Das Flachenintegral in (2.43) ergibt [ B-dA = B, dxdy,
und wir erhalten mit (2.43)

o, _ .

L= (2.46)

In der (x,z)-Ebene ergibt die Integration um das Flachen-
element dx dz:

?{E-ds:o.

Daraus folgt mit (2.43) 9B, /dt = 0, B, = const. Nun sind
wir an einem zeitlich konstanten Anteil des B-Feldes nicht
interessiert und setzen B, = 0. Die z-Komponente des B-
Feldes ist nach (2.46) offenbar nicht Null zu setzen. Die
Integrale in (2.44) ergeben

%B -ds = B;(x,t)dz — B;(x +dx, t) dz

0B,
=5 dxdz,

/E-dA:Eydxdz.

Daraus folgt mit (2.44)
JoE
Y _ _L% ) (2.47)
ot €oMo O0X

Wir differenzieren (2.46) und (2.47) nach x und nach t. Wie
beim Ubergang von (2.17) und (2.19) nach (2.21) erhalten
wir die Wellengleichungen

92B, 1 9B,

PE, 1 0Ky _
o2 €0Ho ox2 -

ot?

2.4
€opo 0x* 249
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Das zeitlich verdanderliche E-Feld (2.45) ist also mit ei-
nem in z-Richtung weisenden B-Feld verkniipft, welches
ebenfalls zeitlich veranderlich ist. Das Zusammenwirken
beider Felder bildet eine sich in x-Richtung ausbreitende
elektromagnetische Welle.

Berechnung mit der differentiellen Form. Mathema-
tisch eleganter lassen sich die Wellengleichungen mit den
Maxwell-Gleichungen in differentieller Form ableiten. Fiir
pg = 0 und j = 0 nehmen Bd. III, Gln. (15.55)—(15.58) fol-
gende Form an:

oB

V-E=0, VxE:—E, (2.49)
oE
V'BZO, VXB:€0V0§~ (250)
Aus diesen Gleichungen folgt unmittelbar
E 1 1 B
%:—%(VXB)Z—VX%
o corto (2.51)
=———Vx(VXE).
€oHo

Unter Beachtung der Vorschriften fiir die Anwendung des
V-Operators wenden wir die Formel fiir das doppelte
Vektorprodukt an:

Vx(VxE)=V(V-E)—(V-V)E. (2.52)

Da im Vakuum V - E = 0 ist, ergibt das die Wellenglei-
chung
PE 1 (&E  0*E  OE
=ty t=os |-
a2 eouo \9x2  9y? 022

Auf die gleiche Weise erhilt man fiir das B-Feld die Wel-
lengleichung

(2.53)

8 o8
a2 922 )’

Was zu Maxwells Zeiten eine schwierige und uniiber-
sichtliche Rechnung war, haben wir mit Hilfe des V-
Operators und der Vektorrechnung in wenigen Zeilen
geschafft. Allerdings bleibt hinter der mathematischen
Zauberei die Physik vollstandig verborgen.

(2.53) und (2.54) sind Wellengleichungen vom Typ (1.35).
Es gibt also in der Maxwellschen Theorie elektromagne-
tische Wellen. Im Vakuum sind sie dispersionsfrei und
breiten sich mit der Geschwindigkeit

2 2
0°B 1 (8 B (2.54)

W - €oHo ﬁ

1
v/ €0Ho

(2.55)

Tabelle 2.2 Komponenten des Vektors V x a

da;  day
(V xa)y W =
da,  0dy
(V xa), = ax
day  day
(V xa), n oy

aus. Die Ausbreitungsgeschwindigkeit der Wellen kann
direkt gemessen werden. Das Produkt epug kann aber
auch durch Messung der relativen Stdrke elektrischer
und magnetischer Kréfte bestimmt werden (vgl. Bd. III,
Gln. (11.39)~(11.41)). Die gute Ubereinstimmung der Re-
sultate ist ein wichtiger Konsistenztest fiir die Maxwell-
sche Theorie.

Die Struktur der elektromagnetischen Wellen. Wir
betrachten die allgemeinste Form einer ebenen Wel-
le, die sich in x-Richtung ausbreitet. Bei einer sol-
chen Welle hingen die Komponenten des E-Vektors nur
von x und f, nicht aber von y und z ab: E(x,t) =
(Ex(x,t),Ey(x,t), Ez(x,t)). Daraus folgt V - E = 0E,/0x.
Diese Grofle muss nach der ersten Gleichung in (2.49)
Null sein: E, ist raumlich konstant und kann daher kei-
nen Beitrag zu der in x-Richtung laufenden Welle leisten.
Die gleiche Schlussfolgerung ergibt sich mit (2.50) auch
fiir das B-Feld. Es gibt also in der Maxwellschen Theorie
keine longitudinalen, sondern nur transversale elektro-
magnetische Wellen.

Um herauszufinden, wie bei einer solchen Welle das E-
Feld und das B-Feld miteinander verkniipft sind, machen
wir den Ansatz

E(x,t) = (0,E,(x,t),0)

2.56
mit Ey,(x,t) = Egsin(kx — wt) . (2.56)

Dies bezeichnet man als eine in y-Richtung linear polari-
sierte Welle, d. h. wir definieren die Polarisationsrichtung
einer elektromagnetischen Welle als die Richtung des E-
Vektors. Damit man die nun folgende Rechnung besser
nachvollziehen kann, sind in Tab. 2.2 die Komponenten
des Vektors V x a angegeben. Aus (2.49) und (2.50) fol-
gen mit (2.56) wieder (2.46) und (2.47):

aa% o % / (2.57)
% = —kEg cos(kx — wt) ,

;286% _ _% ) (2.58)
% = C%EO cos(kx — wt) .

Das sind zwei Differentialgleichungen fiir das B-Feld,
die simultan zu l6sen sind. Wenn man bedenkt, dass
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Abbildung 2.14 Elektromagnetische Welle, nach rechts laufend
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nach (1.7) ¢ = w/k ist, erkennt man die Losung mit
bloflem Auge:
. Eop .

B(x,t) = (0,0,B;) mit B(x,t) = - sin(kx — wt) .
Unser Ergebnis ist in Abb. 2.14 gezeigt: E, und B; sind in
Phase, wenn die Welle in +x-Richtung lauft. Lauft sie in
—x-Richtung, ist E, (x,t) = Egsin(kx + wt). Man erhélt in
der zweiten Gleichung auf der rechten Seite von (2.58) ein
Minuszeichen, und es folgt

E
B, = —?0 sin(kx 4 wt) .

B, ist gegen E, um 180° phasenverschoben. Unser Ergeb-

nis ist also E
x,t
Balr ) = 250

(2.59)
je nachdem, in welcher Richtung die Welle lauft. Die E-
Feldlinien in der (x,y)-Ebene sind in Abb. 2.15 gezeigt.
Fiir die Betrdge der Feldgroflen haben wir erhalten:

B:

E
= (2.60)

Diese Formel sollte man sich merken. Zur Veranschau-
lichung dieses Grofienverhdltnisses betrachten wir ein
Elektron, dass sich mit der Geschwindigkeit v in einem
statischen E- und B-Feld senkrecht zu den Magnetfeld-
linien bewegt. Wenn B = E/c ist, dann ist die Lorentz-
kraft eBv = eEv/c, also fiir v < ¢ gegen die elektrische
Kraft vernachléssigbar. Deshalb sind elektrische Wirkun-
gen von elektromagnetischen Wellen viel leichter nachzu-

-

Abbildung 2.15 E-Feld in Abb. 2.14. Die Dichte der Feldlinien variiert sinus-
formig

2 Spezielle Wellenerscheinungen

Erzeugung elektromagnetischer Wellen,
Dipolstrahlung

Eine ruhende elektrische Ladung erzeugt ein zeitlich kon-
stantes elektrisches Feld und ein konstanter elektrischer
Strom erzeugt ein zeitlich konstantes Magnetfeld. Eine
Ladung, die sich mit konstanter Geschwindigkeit be-
wegt, erzeugt zwar variable Felder, aber durch Wechsel
des Koordinatensystems kann man wieder zur ruhenden
Ladung zuriickkehren. Zur Erzeugung elektromagneti-
scher Wellen, die abgestrahlt werden, muss man daher
beschleunigte Ladungen bzw. zeitlich verdnderliche elek-
trische Strome benutzen. Die Beschleunigung der Ladun-
gen kann longitudinal oder transversal relativ zu ihrer
Geschwindigkeit erfolgen. Wir betrachten vorerst das ein-
fachste System und stellen den allgemeinen Fall bis Kap. 3
zuriick.

Der Prototyp einer Anordnung zur Erzeugung elektro-
magnetischer Wellen ist der schwingende Dipol, auch
Hertzscher Dipol genannt. Eine negative elektrische La-
dung —q befinde sich im Zentrum des Koordinatensys-
tems (Abb. 2.16), eine positive Ladung +4 im Abstand
z(t) = zg sinwt. Das zeitlich verdnderliche Dipolmoment
p = gz ist gegeben durch

p(t) = po sinwt = gz sinwt . (2.61)

Da die Abstrahlung elektromagnetischer Wellen von der
Beschleunigung der Ladung abhdngt, berechnen wir

d2p

2 = —w2p0 sinwt .

(2.62)

In der unmittelbaren Nahe des schwingenden Dipols ent-
steht eine komplizierte Verteilung zeitlich veranderlicher
elektrischer und magnetischer Felder, das sogenannte
Nahfeld. Im Abstand r > z;, d. h. in der Fernzone, besitzt
das elektromagnetische Feld dagegen eine sehr einfache
geometrische Struktur: Es lauft eine elektromagnetische
Kugelwelle im Raum nach aufien. In Abb. 2.17 sind die

Abbildung 2.16 Schwingender z
Dipol

+
}z(t) = 2p sinwt
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a

{ Dipol

Abbildung 2.17 Dipolstrahlung. a E-Feldlinien, b die Richtungen von von E,
Bundr

elektrischen Feldlinien sowie die Richtungen der E- und
B-Vektoren dargestellt. Die Welle ist in der (r, z)-Ebene li-
near polarisiert, das Verhiltnis der E- und B-Feldstdrken
entspricht dem in (2.59) berechneten Wert. Fiir den Betrag
der transversalen E-Feldstédrke ergibt die Rechnung:

_ w?ppsin®

E (r,0,t) = Treor sin(kr — wt) . (2.63)

Die Wellenzahl ist k = w/c. Setzt man dies in (2.63) ein, so
erhalt man:

sin(kr — wt) = sinw (g - t) = —sinwt’, (2.64)
wobei t' =t — r/c die retardierte Zeit genannt wird. Die
Phase in (2.63) entspricht genau der Phase von d?p/dt?,
verzogert um die Laufzeit der Welle.

Wir wollen nun die einzelnen Faktoren in (2.63) disku-
tieren. Der Faktor w? im Zihler kommt daher, dass die
Feldstarke proportional zu d2p /d#? ist. Man erkennt, dass
es fiir die Erzeugung elektromagnetischer Wellen vor al-
lem auf die Frequenz der Dipolschwingung ankommt:
Ein Faktor 100 in der Frequenz bringt einen Faktor 10*
in der Feldstirke und sogar einen Faktor 10% in der ab-
gestrahlten Energie, denn diese ist, wie wir in Kap. 3
sehen werden, dem Quadrat der Feldstdrke proportio-
nal. pg sin ¢ ist die Projektion der Dipolamplitude auf eine
Ebene senkrecht zur Ausbreitungsrichtung. In Richtung
der z-Achse (sin ¢ = 0), also in der Schwingungsrichtung

a z

Abbildung 2.18 Dipolantenne

Y
o
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des Dipols, werden keine Wellen abgestrahlt; quer zur
Schwingungsrichtung ist die Abstrahlung am grofiten.
Bemerkenswert ist auch, dass die Feldstdrke nur propor-
tional zu 1/r abfallt, also viel langsamer als das Feld einer
Punktladung (E 1/ %) oder eines statischen elektrischen
Dipols (E « 1/7). Wir werden auf diesen Umstand im
Zusammenhang mit dem Energietransport in der elek-
tromagnetischen Welle (Abschn. 3.3) zuriickkommen. Das
E-Feld der Dipolstrahlung hat iibrigens auch eine longitu-
dinale Komponente

wpg cos U

Ey (r,8,1) = 27regcr?

cos(kr — wt) . (2.65)
Da sie proportional zu 1/7? abféllt, kann sie gewdhnlich
gegeniiber E; vernachldssigt werden. Sie muss jedoch
existieren, weil sonst die Feldlinien nicht in sich geschlos-
sen sein konnten (vgl. Abb. 2.17).

Zur technischen Realisierung eines schwingenden Dipols
schliefit man an einen Hochfrequenzoszillator zwei Drah-
te an, eine Dipolantenne, wie in Abb. 2.18 gezeigt. Die
Abstrahlung funktioniert am besten, wenn die Lange der
Antenne der halben Wellenldnge entspricht. Es bildet sich
dann auf dem Antennendraht eine stehende Welle aus,
wie in Abb. 2.18b gezeigt. Man kann sich die Anord-
nung auch als einen entarteten Schwingkreis vorstellen,
der durch den HF-Generator resonant erregt wird. Der
Antennendraht stellt die Induktivitat L dar, die Drahten-
den die Kapazitdt C. Man mache sich klar, dass bei dem
in Abb. 2.19 gezeigten Ubergang vom Schwingkreis zur

Abbildung 2.19 Ubergang vom Schwingkreis zur Dipolantenne
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Dipolantenne nicht nur die Abstrahlung von Wellen geo-
metrisch begiinstigt wird, sondern dass auch das Produkt
LC verringert und somit die Eigenfrequenz des Kreises er-
hoht wird.

Stehende Wellen

Zur Erzeugung von stehenden elektromagnetischen Wel-
len stellt man in einigem Abstand vor einer leitenden
Platte einen Sender mit einer in y-Richtung zeigenden Di-
polantenne auf. Das Eindringen der elektromagnetischen
Welle in das leitende Material werden wir weiter unten
diskutieren. Nahe der Plattenoberflache ist im wesent-
lichen E, = 0. An der Plattenoberfldche flieffen hochfre-
quente Strome, die ihrerseits elektromagnetische Wellen
abstrahlen, was zu einer Reflexion der einfallenden Welle
fithrt (Abb. 2.20a). Abbildung 2.20b zeigt eine Moment-
aufnahme des E- und B-Feldes: In der stehenden Welle
sind E(x,t) und B(x, t) gegeneinander um 90° phasenver-
schoben, genau wie p(x,t) und €(x,t) in der stehenden
Schallwelle (Abb. 2.8). Zum Nachweis der Schwingungs-
béauche des E- und B-Feldes kann man eine Dipolantenne
(fir E) bzw. eine Induktionsschleife (fiir B) benutzen: Man
findet dann die nach Abb. 2.20 erwartete Feldverteilung.
Mit einer Versuchsanordnung dieser Art gelang Heinrich
Hertz der Nachweis der elektromagnetischen Wellen. Die
von Hertz erfundene Sendeanlage ist in Abb. 2.21 ge-
zeigt?.

4 Heinrich Hertz (1857-1894) war Physikprofessor in Karlsruhe und
in Bonn. Er entdeckte die elektromagnetischen Wellen 1888 noch an
der Technischen Hochschule Karlsruhe. Zur Erzeugung des hoch-
frequenten Stroms in der Dipolantenne diente ihm eine von einem
Induktorium gespeiste Funkenstrecke (Abb. 2.21). Hertz hatte be-
merkt, dass beim Funkeniiberschlag in dieser Anordnung nicht ein
Gleichstrom, sondern ein Wechselstrom flieSen muss, gerade so wie
im Schwingkreis von Bd. III, Abb. 17.16, wenn der Schalter geschlos-
sen wird. Die Frequenz der Schwingung kann aus der Kapazitit
und der Induktivitit der Dipolantenne mit Bd. III, Gl. (17.58) be-
rechnet werden. Der Stromfluss im Funken halt typisch 107*s an;
die Schwingungsdauer liegt im Bereich von 10=7-10"8s, so dass
viele Schwingungen erfolgen, bevor der Funken abreifit. Da die
Funken in rascher Folge entstehen, ergibt sich ein quasistationarer
Betrieb. Als Empfanger benutzte Hertz eine Leiterschleife oder einen
zweiten Dipol, angeschlossen an eine Funkenstrecke mit einem Elek-
trodenabstand von einigen 1072 mm. Zunéchst bestimmte Hertz mit
stehenden Wellen bei einer Frequenz v ~ 30 MHz die Wellenldnge
(A =~ 10 m). Daraus folgerte er, dass elektromagnetische Wellen exis-
tieren, und dass sie sich mit derselben Geschwindigkeit ausbreiten,
wie das Licht (Av ~ 3 - 103 m/s). Dann baute er eine Ubertragungs-
anlage fiir Wellen von 500 MHz (A = 60 cm), bei der die Sende- und
Empfangsdipole in Parabolspiegel eingebaut waren. Damit demons-
trierte er die geradlinige Ausbreitung, die Polarisation, die Reflexion
und die Brechung von elektromagnetischen Wellen. Die Polarisation
untersuchte er mit einem ,Hertzschen Gitter” (Abb. 9.4), die Bre-
chung mit einem Prisma aus Pech. Heute lassen sich diese Versuche
leicht mit cm-Wellen im Horsaal nachstellen. — Das Wort ,, Rundfunk”
erinnert noch an den Hertzschen Funkensender.

2 Spezielle Wellenerscheinungen
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Abbildung 2.20 Stehende elektromagnetische Welle. a Das E-Feld, b Pha-
senlage von E und B
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Abbildung 2.21 a Hertzscher Funkensender. Das ,, Induktorium” ist ein Hoch-
spannungstransformator, dessen Primarwicklung iber einen elektromechani-
schen Unterbrecher (Prinzip der Klingel) an galvanische Elemente angeschlossen
ist. b Hertzs Dipole fiir 30 MHz und fiir 500 MHz

Technische Anwendungen,
Spektrum der elektromagnetischen Wellen

Elektromagnetische Wellen sind heute iiber einen riesigen
Bereich von Wellenldngen bzw. Frequenzen bekannt. Ta-
belle 2.3 gibt eine Ubersicht. Der Niederfrequenz (NF-)
Bereich wurde mit aufgenommen, weil der Transport nie-
derfrequenter Stréme auf Ubertragungsleitungen auch als
elektromagnetisches Wellenphdnomen aufgefasst werden
kann; fiir freie Wellen spielt dieser Bereich nur sehr gele-
gentlich eine Rolle.

Fiir die drahtlose Nachrichtentechnik ist vor allem der
Hochfrequenz (HF-)Bereich interessant: Die hochfre-
quente Welle kann moduliert werden. Im einfachsten Fall
geschieht das durch Zerhacken der Welle in kurze und
lange Wellenziige zur Ubertragung von Morsezeichen.
Zur Ubermittlung komplexer Information kann man die
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Abbildung 2.22 Modulation einer Tragerwelle (cur) mit einer Tonfrequenz
wy. a f(t) nach (2.66), b Frequenzspektrum

Amplitude der Welle modulieren. Soll z. B. ein Ton mit der
Frequenz wy; = 27tv iibertragen werden, so wird die An-
tenne gespeist mit einem Signal proportional zu

f(t) = (1 +acoswpmt) sinwrt, (2.66)

wie in Abb. 2.22a gezeigt. wr ist die (hochfrequente) Tra-
gerfrequenz. Mit der Formel fiir sin(a &= ) kénnen wir
diesen Ausdruck umformen:

f(t) = sinwrt
a . a . (2.67)
+ Esm(wT—i-wM)t—i- Esm(wT—wM)t.
Im Frequenzspektrum der modulierten Welle erscheinen
also zwei Seitenbander, wie in Abb. 2.22b gezeigt. Sollen
mehrere Tonfrequenzen tibertragen werden, z. B. ein Sym-
phoniekonzert, so wird dafiir eine gewisse Bandbreite

AV = 2Umax (2.68)

benétigt, wobei vmax die hochste Frequenz ist, die man
zur Wiedergabe des Klangcharakters braucht. Gew6hn-
lich begniigt man sich beim Rundfunk mit vmax ~ 5kHz,
also mit Av ~ 10kHz.>

Der HF-Bereich wird unterteilt in die Bereiche der Lang-
wellen (LW), Mittelwellen (MW), Kurzwellen (KW) und
Ultrakurzwellen (UKW), wie in Tab. 2.3 gezeigt. Die ein-
zelnen Wellenldngenbereiche unterscheiden sich durch
ihre Ausbreitungseigenschaften. Langwellen konnen ein
Stiick weit der Kriitmmung der Erdoberfldche folgen. Da-
bei wirkt sich aus, dass die topographischen Strukturen
der Erdoberflache < A sind, und dass die Leitfdhigkeit des
Bodens die Ausbreitung der ,Bodenwelle” unterstiitzt.
Kurzwellen laufen weitgehend geradeaus, eignen sich

5Zum Thema ,Modulation von hochfrequenten Wellen” lasst sich
noch sehr viel mehr sagen. So gibt es auer der hier kurz beschriebe-
nen Amplitudenmodulation (AM) auch Frequenzmodulation (FM)
und Phasenmodulation (PM). Naheres dartiber bei F.S. Crawford,
Schwingungen und Wellen (Berkeley Physik Kurs Band 3), im Text zu
den Aufgaben 27-32, Kap. 6, und zu Aufgabe 58, Kap. 9. Man fin-
det dort auch viele interessante technische Einzelheiten zu diesem
Thema.

Tabelle 2.3 Das elektromagnetische Spektrum

Wellenlénge Frequenz v
Niederfrequenz > 30km < 10kHz
Hochfrequenz:
Langwelle 30 km-1 km ~ 100 kHz
Mittelwelle 1km-100 m ~ 1MHz
Kurzwelle 100 m-10m ~ 10 MHz
Ultrakurzwelle 10m-1m ~ 100 MHz
Dezimeterwellen 1m-10cm ~1GHz
Mikrowellen 10 cm-1 mm ~ 30 GHz
Infrarot 1 mm-0,8 pm ~ 101851
Sichtbares Licht 0,8 um—0,4 um ~ 107!
Ultraviolett 400 nm-10nm ~ 100571
Rontgen- u. y-Strahlen < 10nm > 10751

aber dennoch zur weltweiten Nachrichteniibermittlung,
da die ,Raumwelle” an der Ionosphaére, einer elektrisch
leitenden Schicht in der oberen Atmosphére, und am Erd-
boden reflektiert wird. Wir werden dies im néachsten Ab-
schnitt noch genauer diskutieren. Im UKW-Bereich wird
die Ionosphire fiir elektromagnetische Wellen durchléds-
sig: Ultrakurzwellen eignen sich daher zum Nachrichten-
verkehr mit Satelliten. Aulerdem zeichnet sich der UKW-
Bereich dadurch aus, dass in diesem Frequenzbereich bei
vorgegebener Bandbreite Av eine grofie Zahl von Sendern
ohne Uberlappung untergebracht werden kann. Bei ei-
ner Bandbreite von Av = 10kHz lassen sich im Bereich
von 3 x 107 — 3 x 108 Hz theoretisch sogar 10* Sender
unterbringen, im MW-Bereich (3 x 10° — 3 x 10° Hz) dage-
gen nur etwa 100. Dies und die geringere Reichweite der
auf geradlinige Ubertragung angewiesenen UKW-Sender
wirkt sich vorteilhaft auf die Reduzierung des ,Wellen-
salats” aus. Fiir das Fernsehen benétigt man zur Ubertra-
gung der vielen Bildelemente weitaus hohere Bandbreiten
(= 10MHz). Es wird daher am unteren Ende des UKW-
Bereichs und bei den Dezimeterwellen untergebracht.

Der Dezimeter- und Mikrowellenbereich spielte zunachst
vor allem in der Radartechnik, fiir Richtfunkstrecken und
fiir die wissenschaftliche Forschung (z.B. in der Atom-
und Festkorperphysik) eine Rolle. Er wird seit Lange-
rem auch fiir die Kommunikations- und Haushaltstechnik
genutzt: Die Mobiltelefonnetze laufen mit Frequenzen
v =~ 1GHz, der Mikrowellenherd mit v ~ 2,4 GHz und
das Satellitenfernsehen nutzt den Frequenzbereich von
10-12GHz (A =~ 3cm).® Unterhalb der Millimeterwellen

6 Die Mobiltelefonnetze funktionieren mit einer raffinierten Emp-
fangs- und Sendetechnik, die nur bei diesen Frequenzen auf engstem
Raum technisch realisiert werden kann. Ebenso wichtig ist die oben
erwédhnte Relation zwischen Bandbreite und Tragerfrequenz. Beim
Mikrowellenherd wird die Absorption der Wellen in Wasser aus-
genutzt (Abschn. 5.3, Abb. 5.19), und das Satellitenfernsehen wére
bei lingeren Wellenlingen unbezahlbar. Wir werden darauf bei
Abb. 8.20 zuriickkommen.
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endet die Moglichkeit, mit den Methoden der Elektrotech-
nik elektromagnetische Wellen herzustellen.

Im anschliefenden Spektralbereich (Infrarot bis Ultra-
violett) liegt die thermische Strahlung heifler Korper
(Bd. II/7) und die Strahlung der Atome und Molekiile.
Fiir den Menschen und seine Technik besonders wichtig
ist klarerweise der fiir das menschliche Auge sichtbare
Spektralbereich. Dieser Bereich umfasst im elektromagne-
tischen Spektrum nur eine einzige , Oktave” (A ~ 800 nm
bis A ~ 400 nm). Die Physik und Technik dieses Bereichs
bezeichnet man gemeinhin als Optik; sie wird in den fol-
genden Kapiteln der Wellenlehre im Vordergrund stehen.

Rontgenstrahlung und <-Strahlung: Die Bezeichnung
der kiirzesten elektromagnetischen Welle richtet sich
weniger nach der Wellenliange als nach der Herkunft
der Strahlen. Rontgenstrahlung nennt man die elektro-
magnetische Strahlung, die man mit der Réntgenrohre
(Bd. V/1.3) herstellen kann oder die auf dhnliche Weise
erzeugt wurde; y-Strahlung nennt man die elektromagne-
tische Strahlung von Atomkernen oder aus Elementar-
teilchen-Prozessen. Die technische Bedeutung dieses
Spektralbereichs beruht vor allem auf der grofien Durch-
dringungsfahigkeit der Strahlung, kombiniert mit sehr
kurzer Wellenldnge. Sie wird in der medizinischen Dia-
gnostik, in der Strahlentherapie sowie fiir Material- und
Strukturuntersuchungen ausgenutzt. Naheres dazu folgt
in Bd. V, Bd. V, Abschn. 1.3 und 9.4.

2.5 Mebhr liber elektromagnetische
Wellen

Elektromagnetische Wellen in nichtleitender
Materie

Die Ubertragung der bisherigen Ergebnisse auf die Aus-
breitung elektromagnetischer Wellen in Materie ist sehr
einfach, wenn die Materie nicht leitet und wenn folgende
Voraussetzungen erfiillt sind:

Satz 2.1

Die Materie soll homogen und isotrop sein, die Ab-
sorption elektromagnetischer Wellen soll vernach-
lassigbar sein und die E- und B-Felder in der Welle
sollen nicht zu grof3 sein, so dass die Polarisation P
und die Magnetisierung M der Materie proportional
zu E und B sind.”

71st die zuletzt genannte Voraussetzung nicht erfiillt, kommt man
zur nichtlinearen Optik, einem interessanten Gebiet, das im Zusam-
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Wie in Bd. III, Kap. 14 und 15 gezeigt wurde, ldsst sich
dann der Einfluss der Materie mit Hilfe der Parameter ¢
und p erfassen und wir brauchen lediglich in den Max-
wellschen Gleichungen (2.49) und (2.50) und den daraus
abgeleiteten Formeln die Feldkonstanten ¢y und ¢ durch
€ep und ppg zu ersetzen. Wir erhalten also statt (2.53) und
(2.54), wenn wir uns hier der Einfachheit halber wie bei
(2.48) auf eine Dimension beschranken:

?E, 1
2 = 2 7
ot €€QUMy OX (2.69)
?B. 1 9B,
o2 eeoppg 0x2

Diese Gleichungen beschreiben ebene Wellen, die sich in
x-Richtung ausbreiten. Es zeigt sich, dass € (und auch y)
von der Frequenz der Welle abhédngig sind. Die Wellen
sind daher nicht dispersionsfrei. Gliicklicherweise ist die
Frequenzabhéngigkeit von € und y iiber weite Bereiche
sehr schwach, so dass dort die typischen Dispersionser-
scheinungen wie das Zerflieffen von Wellengruppen nicht
sehr ausgeprégt sind.

Die Phasengeschwindigkeit der Wellen im dielektrischen
Medium bezeichnen wir mit ¢ypeq:

1 _ Gyac

Uph = C = = ,
PR e VER

(2.70)

wobei wir hier zur Verdeutlichung die Vakuum-
Lichtgeschwindigkeit (2.55) mit einem Index gekenn-
zeichnet haben. Aus Griinden, die in Kap. 5 diskutiert
werden, bezeichnet man NG als den Brechungsindex n:

Cmed = % mit n=./ey. (2.71)
Fiir das Magnetfeld B erhélt man analog zu (2.60)
B= E_nE . (2.72)
Cmed ¢

Da die Frequenz der Welle im Medium und im Vakuum
dieselbe sein muss, erhalten wir mit den bekannten Bezie-
hungen zwischen Frequenz, Wellenldnge und Wellenzahl
(Tab. 1.1) aus ¢ = Av und (2.71):

Avac
Amed = P

kmed = 1kvac - (2.73)

Normalerweise ist n > 1, es werden im Medium die Wel-
lenldangen wverkiirzt. Davon und von (2.71) macht man

menhang mit dem Laser zahlreiche technische Anwendungen findet.
Wir kommen darauf am Ende von Kap. 9 zurtick.



2.5 Mehr Uber elektromagnetische Wellen

bei Ferrit-Antennen Gebrauch. Dank der hohen Permea-
bilitdt y von Ferriten (Bd. III, Tab. 14.5) kann man fiir
den UKW-Bereich sehr kurze Dipol-Antennen bauen, die
die Bedingung L ~ A /2 erfiillen. Gewohnlich sind jedoch
Substanzen, die die in Satz 2.1 genannten Bedingungen er-
fiillen, nicht magnetisch, so dass man u = 1 setzen kann.
Man schreibt deshalb sehr héufig

n=+e. (2.74)

Dies wird auch als die Maxwellsche Relation bezeichnet.

Wie kommt es zustande, dass die Lichtgeschwindigkeit
in einem Medium kleiner ist als im Vakuum? Die primére
Welle erzeugt im Medium eine zeitlich verdanderliche Po-
larisation. Das bedeutet, dass es im Medium schwingende
Ladungen gibt, und diese miissen elektromagnetische
Wellen abstrahlen. Die Uberlagerung der priméaren Wel-
le mit den sekundér erzeugten ergibt eine in Vorwarts-
richtung laufende Welle mit einer um den Faktor 1/n
verkiirzten Wellenldnge. Wir werden das in Bd. V/1.2
quantitativ untersuchen.

Elektromagnetische Wellen in leitender Materie

Wellen im Bereich der Ohmschen Leitfdhigkeit. Wenn
man die Ausbreitung elektromagnetischer Wellen in ei-
nem leitenden Medium berechnen will, muss man bei
der Aufstellung der Wellengleichung in (2.49) und (2.50)
B durch ppoH ersetzen und man darf die Stromdich-
te des Leitungsstroms in der Maxwell-Gleichung Bd. III,
Gl. (15.58) nicht gleich Null setzen. Wir behalten also die-
sen Term bei und setzen nach dem Ohmschen Gesetz
Bd. III, GL. (6.11)
j=0aE.

Dann erhalten wir mit den Materialgleichungen Bd. III,
Gl. (15.59) in einem Rechnungsgang, der genauso verlauft
wie derjenige, der zu der Wellengleichung (2.53) fiihrte:

?’E, Oy, 1 9%E,
o2 MG T T
med

(2.75)
Wir suchen eine Losung dieser Gleichung, die eine peri-
odische Funktion der Zeit ist, die also den Faktor sin wt
oder cos wt enthilt. Die partielle Differentiation nach der
Zeit ergibt dann fiir den ersten Term auf der rechten Sei-
te den Vorfaktor ppgoew, fir den zweiten den Vorfaktor

w?/ cfned. Wir konnen also den zweiten Term vernachlas-
sigen, wenn
w? < HWOe)
00elW =
> HHoOe ol

med

gilt. Mit u =~ 1 und cpeq = ¢ ist das der Fall fiir alle Fre-

quenzen
Oel

w L wy = —.
€0

(2.76)
wy ist diejenige Frequenz, bei der der ,Verschiebungs-
strom” einen dem Leitungsstrom vergleichbaren Beitrag
in (2.75) liefern wiirde. In Metallen ist das eine sehr hohe
Frequenz, z. B. berechnet man fiir Cu:

wy =65-108s"1, 1y =108s"1. (2.77)
Fiir so hohe Frequenzen ist das Ohmsche Gesetz langst
nicht mehr giiltig. Es erfordert ndmlich, dass sich ein
der momentanen elektrischen Feldstdrke entsprechender
Strom einstellt. Das ist nur moglich, wenn die Periode T
der elektromagnetischen Welle deutlich grofer ist als die
in Bd. III, GL. (9.14) definierte Stofizeit T der Ladungs-
trager. Nach Bd. III, Gl. (9.16) ist T = ogme/ nee?. Daher
gelten unsere Uberlegungen nur fiir den Frequenzbereich

270 27nee?

= — . 2.78
w K wg p- He0u (2.78)

ws wird auch die Stofifrequenz der Ladungstrdger ge-
nannt. Fiir Cu berechnet man
wg~25-10%s71, vgr~4-108s71. (2.79)
Dieser Frequenz entspricht eine Wellenldnge von 7,5 pm.
Sie liegt im infraroten Spektralbereich. Vom Niederfre-
quenzbereich bis zu den Mikrowellen und bis ins ferne
Infrarot (A ~ 30 um, v ~ 1013 s71) sind bei Metallen (2.76)
und (2.78) erfiillt. Wir erhalten aus (2.75) die Wellenglei-
chung
?’E, dE, (2.80)
ox2  MHoTe T .
Durch den Ohmschen Leitungsstrom wird Joulesche Wér-
me erzeugt. Dadurch wird der Welle Energie entzogen,
die elektromagnetische Welle wird geddmpft. Wir machen
deshalb den Ansatz:
Ey(x,t) = Ege” " cos(kx — wt) . (2.81)
Durch Einsetzen stellt man fest, dass dies eine Losung von
(2.80) ist, wenn man fiir v und k setzt:

HHoTe1wW HOe1w
U V 2 \/ 2e(c?
Die elektromagnetische Welle wird also im Leiter expo-
nentiell geddmpft mit einer Eindringtiefe

(2.82)

i 1 [2epc? 1
0 Woaw  \/TCHHQVT

(2.83)
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Tabelle 2.4 Eindringtiefe elektromagnetischer Wellen in Kupfer

Frequenz v Eindringtiefe d
10GHz 0,67 um

100 MHz 6,7 pm

1MHz 67 pm

10kHz 0,67 mm

50Hz lcm

Fiir Kupfer ergibt diese Formel d = 6,7 cm//v(s~!). Eini-
ge Werte sind in Tab. 2.4 angegeben. Wie man sieht, kann
man Felder im Bereich des technischen Wechselstroms
mit Kupferblech praktisch nicht abschirmen. Man nimmt
dafiir magnetisch weiches Eisenblech, um den grofien
Faktor p in (2.83) auszunutzen.

(2.83) besagt, dass im tieferen Inneren eines metallischen
Leiters kein hochfrequentes elektrisches Feld bestehen
kann. Infolgedessen kann dort auch kein hochfrequen-
ter Wechselstrom fliefSen. Qualitativ hatten wir das bereits
in Bd. I1I/15.3 bei der Diskussion der Wirbelstrome fest-
gestellt. Ein hochfrequenter Strom fliefSt effektiv nur an
der Oberflache des Leiters in einer Schicht, deren Dicke
durch (2.83) gegeben ist. Dieser Skin-Effekt bewirkt, dass
bei einem Draht, dessen Dicke D grofs gegen die Skintie-
fe d ist, der ohmsche Widerstand im Hochfrequenzbereich
drastisch zunimmt. Um den Widerstand einer Leitung
klein zu halten, verwendet man mitunter ,,HF-Litze”, ein
Biindel von diinnen, durch eine Lackschicht gegeneinan-
der isolierten Kupferdrédhten. Es besitzt eine viel grofiere
Oberflache als ein einzelner massiver Kupferdraht.

Frequenz der Wellen w 2 ws. In diesem Bereich kann
man bei der Maxwellgleichung nicht vom Ohmschen
Gesetz j < 0| E ausgehen und es liegen komplizierte Ver-
héltnisse vor. Bei Metallen betrifft das, wie wir gesehen
haben, auch den sichtbaren Spektralbereich; darauf wer-
den wir in Abschn. 5.4 zuriickkommen. Bei sehr hohen
Frequenzen spielt noch ein neuer Mechanismus der Wel-
lenausbreitung eine Rolle, sogenannte Plasmawellen, mit
denen wir uns nun befassen wollen.

Plasmawellen. Wie wir aus Bd. III/8 wissen, bezeichnet
man in der Physik als Plasma ein vollstandig oder teil-
weise ionisiertes Gas, welches nach aufsen hin elektrisch
neutral ist. Es enthilt freie Elektronen und positive Ionen.
Werden alle Elektronen gemeinsam gegen die positiven
Ionen verschoben und dann losgelassen, fiihren sie eine
Schwingung aus, deren Frequenz man unschwer berech-
nen kann.

Betrachten wir ein quaderférmiges, mit einem Plasma
gefiilltes Volumen, welches pro Volumeneinheit n. freie
Elektronen enthalt (Abb. 2.23). Werden die Elektronen um
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Abbildung 2.23 Zur Ableitung A n
von (2.84) 1 Az

4,
++++++++ + +)

ein Stiick Az verschoben, entsteht ein elektrisches Feld,
das wir mit Bd. III, Gl. (2.16) berechnen koénnen:

neJeAAZ

_ el
E= €0A

€0A n

| Mefe
€0

Az‘ .

Das E-Feld zeigt in Abb. 2.23 in z-Richtung. Fiir jedes
Elektron (Ladung g. = —e, Masse m,) gilt die Bewegungs-
gleichung:

d?(Az)
T

Wir erhalten also eine Schwingungsgleichung;:

d?(Az)
dr?

He€?

Az=0,
Me€Q

d.h. die Elektronen oszillieren mit der Frequenz

Nee?
wp = ;
P Me€Q

Diese Frequenz wird Plasmafrequenz genannt. Die so-
eben berechnete Schwingung ist die Grundschwingung
der Elektronen in einem Plasma, die Schwingung mit der
niedrigsten Frequenz, vergleichbar mit dem Schwappen
des Wassers in der Badewanne. Es sind auch Plasma-
schwingungen hoherer Frequenz moglich. Als Plasma-
wellen konnen elektromagnetische Wellen nahezu unge-
dampft durch das leitende Medium laufen.

(2.84)

Plasmawellen und Plasmafrequenz spielen z.B. bei der
Ausbreitung von Radiowellen eine wichtige Rolle. Durch
die kurzwellige UV-Strahlung der Sonne wird die Luft
in den obersten Schichten der Atmosphére ionisiert. Es
entsteht ein Plasma mit einer Elektronendichte ne =
10'-10'>m~3, die sogenannte Ionosphire. Die Plasma-
frequenz liegt nach (2.84) wegen der geringen Elek-
tronendichte relativ niedrig, ndmlich bei vy = w}, /271 ~
3-10 MHz; die zugehdrige Wellenlédnge ist Ap ~ 30-100 m.
Unterhalb von A ~ 10m wird die Ionosphare fiir Radio-
wellen durchldssig. Der Funkverkehr mit Satelliten ist
daher im UKW- und Dezimeterwellenbereich moglich.
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Radiowellen im Kurz-, Mittel- und Langwellenbereich
(A > Ap) werden dagegen an der Ionosphire reflektiert;
durch mehrfache Reflexion an Ionosphére und Erdober-
flache wird in diesem Wellenldngenbereich weltweite
Ubertragung méoglich, wihrend die Reichweite der UKW-
und Fernsehsender auf Sichtweite eingeschrankt ist, so-
fern nicht ein Satellit oder eine Ubertragungsleitung zu
Hilfe genommen wird.

Plasmawellen kann es auch in kondensierter Materie
geben: In einem Metall kénnen die Leitungselektronen
kollektiv gegen die positiven Ionen schwingen. Die Plas-
mafrequenz liegt dabei nach (2.84) im Ultravioletten.
Oberhalb von w;, werden Metalle transparent. Bei sehr ho-
her Frequenz beteiligen sich sogar alle Elektronen an der
Plasmaschwingung, dann spielt die Bindung der Elektro-
nen keine Rolle mehr. Deshalb sind alle Stoffe, Metalle
wie Isolatoren, fiir Rontgenstrahlen durchsichtig. Die Ab-
sorption der Strahlen erfolgt nur noch durch die schon
in Bd. I/17.3 genannten Quanteneffekte, auf die wir in
Bd. V/2 zuriickkommen werden.

Elektromagnetische Wellen
auf einer Ubertragungsleitung

Zur Ubertragung von Gleichstrom und von technischem
Wechselstrom benutzt man gewohnliche Dréhte. Bei
Wechselstromen hoherer Frequenz erweist sich dies als
unzweckmafsig: Durch induktive und kapazitive Kopp-
lung wird ein unerwiinschtes Ubersprechen von Stér-
signalen verursacht; bei hohen Frequenzen wirken die
Dréhte als Antennen und es kommt zur Abstrahlung
von elektromagnetischen Wellen. Um diese Nachteile zu
vermeiden, verwendet man im Hochfrequenzbereich spe-
zielle Ubertragungsleitungen, z. B. Koaxialkabel, die be-
reits in Abschn. 1.1 besprochen wurden (Abb. 1.7 und
Abb. 1.8). Die Ubertragung einer hochfrequenten Wech-
selspannung durch eine solche Leitung erfolgt als Aus-
breitung einer elektromagnetischen Welle auf der Lei-
tung. Bei der Koaxialleitung besteht der besondere Vor-
teil, dass die elektrischen und magnetischen Felder nicht
in den Aufienraum aufierhalb des Kabels eindringen, wie
in Abb. 2.24 gezeigt ist.

Wir wollen die Signalausbreitung auf dem Koaxialkabel
berechnen. Das Beispiel in Abb. 1.8 zeigt iiberdeutlich,
dass hier die in Bd. III/15.2 genannten Voraussetzun-
gen fiir die Anwendung der quasistationdren Naherung
nicht gegeben zu sein scheinen. Das Koaxialkabel ist
nichts anderes als ein langer Zylinderkondensator, und
offensichtlich verteilt sich die Ladung auf diesem Kon-
densator nicht gleichméaflig wie im elektrostatischen Fall,
sondern Ladung und Spannung laufen als elektromagne-
tische Welle das Kabel entlang. Dennoch kann man das

Abbildung 2.25 Ersatzschalt-
bild fir die Koaxial-Leitung

Problem der Signalausbreitung auf dem Kabel mit ei-
nem Ansatz 16sen, der auf der quasistationdren Naherung
aufbaut, ndmlich auf den Formeln Q = CU und Ujgq =
—LdI/dt. Wir teilen das Kabel in kurze Teilstiicke auf,
und machen uns klar, dass ein Stiick Ax der Leitung ei-
ne gewisse Kapazitit AC = C'Ax und eine Induktivitat
AL = L' Ax besitzt, wobei C' und L’ Kapazitit und Induk-
tivitat pro Meter sind. Wir stellen also die Leitung durch
das Ersatzschaltbild in Abb. 2.25 dar. Es gilt nun

U(x+ Ax) = U(x) — AL% ,
I(x+ Ax) =I(x) —AC%—ltJ .

Die erste Gleichung folgt aus dem Induktionsgesetz, die
zweite besagt, dass der Strom an der Stelle x + Ax vermin-
dert ist um den Strom, der in die Kapazitidt AC geflossen
ist. Wir schaffen U(x) und I(x) nach links und dividieren
durch Ax. Fiir Ax — 0 erhdlt man die Differentialgleichun-
gen

au ol Al

ox  ot’ ox

U

€ (2.85)

Diese Gleichungen (bzw. die etwas komplizierteren, die
man erhdlt, wenn man auch noch die elektrischen Wi-
derstinde der Leitung beriicksichtigt) werden auch die
Telegraphengleichungen genannt. Indem man die eine
Gleichung nach x, die andere nach ¢ differenziert, erhalt
man nach dem Muster von (2.20) und (2.21):

921 1 9%

Pu_ 1 Pu F_ 1P
o2 L/C'ox2”

7 " D0 a2’ (2.86)
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Abbildung 2.26 Lecher-
Leitung

| 2r

Das sind Wellengleichungen fiir dispersionsfreie Wellen,
falls L' und C’ frequenzunabhingig sind. Solange diese
Voraussetzung erfiillt ist, kénnen iiber ein Koaxialka-
bel Signale ohne Formanderung {ibertragen werden (vgl.
Abb. 1.8 und Abschn. 1.4).

Fiir das Koaxialkabel hatten wir L’ in Bd. III, Gl. (15.19)
angegeben und C’ in Bd. III, Gl. (3.28) berechnet:

271€
V=Bl oo T 2.87
2 " ri’ In(r,/1;) 287)
Fiir eine Anordnung von zwei parallelen Dréhten
(Lecher-Leitung, Abb. 2.26) gilt

L = ﬂlnﬁ

7T r

TTEQ

(2.88)

In beiden Féllen ist die Ausbreitungsgeschwindigkeit der
Signale nach (2.86)

1 1
v = = =cC.

VL'C! v/ €oHo

(2.89)

Ist der Raum zwischen den Leitern mit einem Dielek-
trikum gefiillt, so ist nach (2.70) v = ¢/, /€j. So erhilt
man z.B. fiir das in Abb. 1.7 dargestellte mit Polyathy-
len isolierte Kabel (1/€ = 1,5) eine Signalgeschwindigkeit
VR %C, wie schon in Abschn. 1.1 experimentell festgestellt
wurde.

Man kann auch stehende Wellen auf einer Ubertragungs-
leitung erzeugen, z.B. auf der in Abb. 2.27 gezeigten
Lecherleitung. Die Einkopplung der Hochfrequenz (v =
100 MHz) erfolgt induktiv am Ende A, dort entsteht al-
so ein Spannungsbauch. Um stehende Wellen zu erhalten,
wird die Leitung am Ende B in einem Spannungsknoten
kurzgeschlossen, also nach (21 + 1) /4 Wellenldngen. Die
Lage der Spannungsb&duche bzw. Spannungsknoten kann
man mit dem hochohmigen Messkopf eines Oszillogra-
phen, bzw. zur Demonstration, mit einem aufgesetzten
Lampchen sichtbar machen. Die Anordnung in Abb. 2.28
ist dazu geeignet nachzupriifen, ob tatsachlich in einem
Dielektrikum die von der Maxwellschen Relation n = /€
geforderte Verkiirzung der Wellenldnge eintritt. Zu die-
sem Zweck kann man das letzte Stiick der Leitung in
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Abbildung 2.27 Stehende Welle auf einer Lecher-Leitung. Bei dem Versuch
gibt es nur ein Lampchen, das entlang der Leitung verschoben wird

N= o |
~ |
H,0
E(z)
-
vt \\\

Abbildung 2.28 Versuchsanordnung zur Messung der Wellenlange in Wasser

Wasser fiihren. In der Luft (¢ &~ 1) erhédlt man A =~ Ayac =
3 m, was mit der Formel A = ¢/v iibereinstimmt, im Was-
ser dagegen A = 3,3 cm, d. h. wir erhalten bei 100 MHz

nH,0 = 9. (2.90)
Das entspricht genau der Erwartung, wenn man von der
in Bd. III, Tab. 4.1 angegebenen Dielektrizitdtskonstante
€ = 81 ausgeht.

Wellenleiter fiir Mikrowellen

Es ist ohne weiteres klar, dass eine Lecher-Leitung auch
funktioniert, wenn man statt der beiden Drahte zwei Plat-
ten der Breite a verwendet, die sich im Abstand b gegen-
iiber stehen. Ein Beispiel ist die Streifenleitung in Bd. III,
Abb. 15.11d. Erstaunlicherweise funktioniert ein Wellen-
leiter auch, wenn man die beiden Platten durch leitende
Seitenwénde verbindet, wie Abb. 2.29 zeigt. Ein solcher
Hohlleiter hat interessante Eigenschaften, wie wir gleich
sehen werden. Auch ist er besonders gut zum verlustar-
men Transport von Mikrowellen im Bereich von A ~ 1cm
bis A ~ 10cm (v =~ 10 GHz) geeignet.

Das elektrische Feld muss senkrecht auf den Leitero-
berflachen stehen. Diese Randbedingung erfiillt das in
Abb. 2.29 eingezeichnete Feld: Das E-Feld zeigt in y-Rich-
tung, und an den Seitenwénden, bei x = 0 und x = g, ist
E, = 0. Wir machen den Ansatz E = (0, Ey, 0) mit

Ey(x,z,t) = Eqgsinkyx cos(k.z — wt)

2.91
mit ky = g . ( )
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Y a ‘
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Abbildung 2.29 Elektrisches Feld in einem Hohlleiter mit rechteckigem Quer-
schnitt, zu (2.91)

Es erweist sich als zweckmaéfig, E, durch einen Imaginir-
teil isin(k;z — wt) zu ergédnzen und von dem komplexen
Ansatz

kzz—wt)

E,(x,2,t) = Eqsinkexell (2.92)

auszugehen. Setzt man dies in die Wellengleichung (2.53)

?’E, , (9%E, 9°E, 9E,
- i ay? Tz

o2 ox?

ein, erhalt man

—wzﬁy = —czk?clviy — c2k§f5y
2 (2.93)
w

Unser Ansatz ist also eine Losung der Wellengleichung,
wenn

(2.94)

ist. Je nach dem Vorzeichen von k; laufen die Wellen in
+z-Richtung oder in —z-Richtung, vorausgesetzt, dass k;
eine reelle Zahl ist. Die Frequenz w muss also grofier sein
als die Grenzfrequenz wy:

CcTt

w > wg = - (2.95)

Der Grenzfrequenz wy entspricht im Vakuum eine Wellen-
lange

2
Ag:—nc:Za.

o8 (2.96)

Auf die Frage, wie man das Auftreten der Grenzfrequenz
physikalisch anschaulich verstehen kann, werden wir in
Abschn. 4.1 zuriickkommen.

Abbildung 2.30 Eine héhere
Schwingungsmode (m = 2) im
rechteckigen Hohlleiter

Y

Wenn w > wy ist, lauft die Welle mit der Phasengeschwin-
digkeit
Oph = kﬂ S 2.97)
z 1— (wg/w)?

durch den Wellenleiter. Das ist offensichtlich stets grofier
als c. Kein Malheur, wie wir am Ende von Abschn. 1.4 ge-
sehen haben. Die Gruppengeschwindigkeit ist nach (1.24)
und (2.94)

_dw 1

== _ —c /1 — 2
g ak — di/dw c\/1— (wg/w)?.

Wie es sein muss, ist Ug < C.

(2.98)

Wenn w < wyg ist, wird k, imagindr. Wir setzen k; = ik,
und erhalten als Losung der Wellengleichung

L o
Ey(x,2,t) = Eg sink,xe e 1!

Ey(x,z,t) = Re Ey = Epsin kxxe*kéz cos wt . (2.99)
Die Amplitude der Welle nimmt exponentiell ab, sie kann
sich im Hohlleiter nicht ausbreiten.

Die in Abb. 2.29 gezeigte Feldverteilung ist nur die ein-
fachste Form des Feldes. Die Randbedingungen werden
auch erfiillt, wenn

2
mr % T (2.100)

i
ist (Abb. 2.30). Fiir die hoheren Moden liegen die Grenz-
frequenzen bei

(m) _ mcTT

wg ' = = mwg . (2.101)

Wenn w im Bereich von weg bis w(z) liegt, wenn also die
Vakuum-Wellenldnge der Mikrowelle im Bereich

a<A<2a (2.102)
liegt, kann sich im Wellenleiter nur die Grundmode mit

ke = mm/a ausbreiten. In der Praxis werden Hohlleiter
meist in dem durch (2.102) gegebenen Bereich betrieben.

39




40

Schnitt
A-A

N
a S

)\ -
S

Abbildung 2.31 Elektrische und magnetische Feldlinien im Hobhlleiter.
a Grundschwingung der TE-Mode, b Grundschwingung der TM-Mode

Wie sieht das zu (2.91) gehérende Magnetfeld aus? Die
B-Feldlinien umschlingen den Bereich, in dem sich das
E-Feld am raschesten dndert. Das ist bei der durch den
Hohlleiter laufenden Welle der Bereich zwischen Wellen-
berg und Wellental der E-Feldstirke. Es ergibt sich das
in Abb. 2.31a gezeigte Feldlinienbild. Im Gegensatz zur
elektromagnetischen Welle im Vakuum, im Koax-Kabel
und auf der Lecher-Leitung hat hier also das B-Feld auch
eine Komponente in der Ausbreitungsrichtung. Nur das
E-Feld ist rein transversal. Man nennt das eine TE-Welle
(transversal elektrisch). Es gibt im Hohlleiter auch TM-
Wellen, bei denen das Magnetfeld rein transversal ist,
wihrend das E-Feld eine longitudinale Komponente hat.
Abb. 2.31b zeigt als Beispiel eine TM-Welle, hier in einem
Hohlleiter mit kreisformigem Querschnitt.

Warum ist der Transport von Mikrowellen im Hohllei-
ter besonders verlustarm? Wie die Feldlinienbilder in den
Abb. 2.29 und 2.30 zeigen, entspringen und enden die E-
Feldlinien auf den Leiteroberflachen. Dort miissen Ladun-
gen sitzen und hochfrequente Strome fliefen, die Joule-
sche Wiarme erzeugen. Infolge des Skineffektes flieffen
diese Strome nur in einer diinnen Oberflichenschicht; im
Hohlleiter kann man dank der grofien Oberflache trotz-
dem den Widerstand klein halten. Auch kann man den
Hohlleiter aus supraleitendem Material bauen. Dann ar-
beitet der Hohlleiter nahezu verlustfrei.

In der praktischen Verwirklichung sieht eine Mikrowel-
lenapparatur aus wie eine besonders sorgfaltig ausgefiihr-
te Klempnerarbeit (Abb. 2.32). Hohlleiter fiir Dezimeter-

2 Spezielle Wellenerscheinungen

Abbildung 2.32 Mikrowellen-Apparatur fiir 8-12,4 GHz (Praktikumsversuch,
Univ. Heidelberg). HR: Auszumessender Hohlraum-Resonator, A: abstimmbarer
Resonator, D: Detektor-Diode, R: Richtkoppler (siehe auch Aufgabe 7.2)

wellen sehen aus wie eine Entliiftungsanlage. In beiden
Féllen enthilt jedoch das Hohlleitersystem viele Raffines-
sen, besonders bei der Ein- und Auskopplung der Wellen,
bei Verzweigungen und dort, wo verschiedene Hohlleiter-
stiicke zusammengesetzt werden®.

In einem Hohlleiter kénnen sich auch stehende Wellen ho-
her Amplitude ausbilden. Sie sind identisch mit den Reso-
nanzen in einem Hohlraum-Resonator, die in Bd. I11/17.3
besprochen wurden. Die Apparatur in Abb. 2.32 dient zur
experimentellen Bestimmung solcher Resonanzfrequen-
zen.

2.6 Bugwellen und StoBwellen

Bisher wurde in diesem Kapitel angenommen, dass der
,Sender”, d. h. die Vorrichtung, von der die Wellen aus-
gehen, sich in Ruhe befindet. Den Doppler-Effekt, d.h.
die Phédnomene, die man bei bewegtem Sender oder
Empfanger beobachtet, haben wir bereits in Bd. 1/14.4
besprochen. Wir wollen nun ein spezielles Phdnomen
untersuchen, das auftritt, wenn sich der Sender mit ei-
ner Geschwindigkeit bewegt, die oberhalb der Phasenge-
schwindigkeit der Welle liegt.

Nehmen wir an, der Sender bewegt sich mit der konstan-
ten Geschwindigkeit v geradlinig in einem Medium, in
dem die Phasengeschwindigkeit der ausgesandten Wellen
Uph ist. Zur Zeitt = 0 befinde sich der Sender bei A. Wenn

0 < Upp ist, bilden die Wellenfronten zur Zeit t = AB/v
das in Abb. 2.33a gezeigte System von Kugelwellen. Der
Empféanger (1) registriert eine hohere Frequenz, der Emp-
fanger (2) eine niedrigere: Das ist das vertraute Phanomen
des Doppler-Effekts. Wenn jedoch v > vy, ist, bildet sich

8Giehe z.B. The Feynman Lectures on Physics, Band II, Abschnitt
24.6 (Addison-Wesley, 1964), G. Nimtz, Mikrowellen, Einfiihrung in
Theorie und Anwendung (Hanser-Verlag, 1980).



2.6 Bugwellen und StoBwellen

2 1

0 v /N 0

) ]
b

o
N/

P

Abbildung 2.33 Zur Ableitung von (2.103). Der gréBte Kreis stellt den Wel-
lenberg dar, der vom Sender in Punkt A erzeugt wurde. Der im Punkt B erzeugte
Wellenberg hat sich gerade noch nicht vom Sender geldst. a v < vy, bv > vy,

das in Abb. 2.33b gezeigte System von Kugelwellen. Es
entsteht eine kegelférmige Wellenfront, die unter dem
Winkel ¢ gegen die Richtung von v fortschreitet. Dabei ist

AP Ut 0
cosﬁ::—P—hzih.

= (2.103)
AB ot v

Der interessante Punkt ist nun, dass zur Herstellung der
Wellenfront keineswegs ein Sender durch das Medium
bewegt werden muss, der periodische Wellen emittiert. Es
geniigt ein mit der konstanten Geschwindigkeit v beweg-
tes Objekt, von dem eine Storung des Mediums ausgeht.

Der Cerenkov-Effekt

Wir betrachten ein geladenes Teilchen, das sich mit der
Geschwindigkeit v > vpp, in einem durchsichtigen Medi-
um mit dem Brechungsindex n bewegt. Die Phasenge-
schwindigkeit elektromagnetischer Wellen ist nach (2.71)
Cmed = ¢/n. Das Vorhandensein der Ladung am Punkt A
in Abb. 2.33b kann von einem Beobachter am Ort P nicht
eher wahrgenommen werden als zur Zeit t = AP/cpeq-
Es entsteht eine elektromagnetische Bugwelle mit der in
Abb. 2.33b eingezeichneten Wellenfront. Unter dem durch

(2.103) gegebenen Winkel wird Licht emittiert, tiberwie-
gend im ultravioletten und sichtbaren Spektralbereich.
Der physikalische Mechanismus, der zur Erzeugung des
Lichts fiihrt, ist die auf dem Kegelmantel plétzlich ein-
setzende Polarisation des Mediums durch das elektrische
Feld der Ladung.

Der Effekt wirvd nach seinem Entdecker Cerenkov-Effekt
genannt. Der Cerenkov-Winkel 9. ist gegeben durch

cos O = mit g = % : (2.104)

%/

Cerenkov-Strahlung wird emittiert, sobald 8 > 1/n ist. In
Glas (n = 1,5) erzeugt ein Elektron mit Ey;, > 0,17 MeV
Cerenkov-Licht, in Luft (7 = 1,00027) erst mit Ey, >
21 MeV. Beim Proton sind die entsprechenden Zahlen
Exin > 320MeV und Ey, > 39GeV. Da der Cerenkov-
Effekt nur von der Geschwindigkeit der Teilchen abhédngt,
kann er in Kombination mit einer Impulsmessung zur
Teilchenidentifizierung benutzt werden.

Schiffswellen

Wohlbekannt ist die Bugwelle bei Wasserfahrzeugen. Sie
entsteht infolge der Wasserverdrangung. Das Phanomen
ist jedoch ungleich komplizierter als der Cerenkov-Ef-
fekt. Das liegt daran, dass die elektromagnetischen Wellen
auch in einem Medium nahezu dispersionsfrei sind, was
fiir Wasserwellen absolut nicht zutrifft. Aufgrund der Di-
spersionsrelation (2.40) kann sich hinter dem Schiff eine
Heckwelle ausbilden, deren Wellenldnge so bemessen ist,
dass sie sich mit der gleichen Geschwindigkeit vorwarts
bewegt wie das Schiff. Das Interessante ist die Bugwelle.
Sie bildet sich bei einem mit konstanter Geschwindigkeit
im Tiefwasser fahrenden Schiff nur in einem Winkelbe-
reich ¢ < ¢y aus, wobei ) = arctan(1/+/8) = 19,5° ist
(Abb. 2.34). ¥y ist unabhdingig von der Geschwindigkeit
des Schiffs. Dieses liberaus seltsame Phanomen wurde
von Lord Kelvin erkannt und berechnet. Scotland rules
the waves!

Abbildung 2.34 Bug- und Heckwelle eines mit konstanter Geschwindigkeit
fahrenden Schiffs

41




42

StoBwellen

Ein wichtiges und interessantes Phdnomen entsteht bei
der Bugwelle eines Kérpers, der mit Uberschallgeschwin-
digkeit durch die Luft bewegt wird. Normalerweise sind
Schallwellen dispersionsfrei und die Bugwelle lauft in der
in (2.103) berechneten Richtung. Die starke adiabatische
Kompression der Luft in der Bugwelle fiihrt aber dazu,
dass die Temperatur ansteigt. Infolgedessen wird nach
(2.24) die Ausbreitungsgeschwindigkeit der auf die Wel-
lenfront der Bugwelle folgenden Wellen erhoht, sie holen
die Bugwelle ein und es kommt zur Ausbildung einer sehr
steilen Wellenfront, einer Stofwelle. Diese Erscheinung
macht sich besonders unliebsam bemerkbar bei Flugzeu-
gen oder Geschossen, die mit Uberschallgeschwindigkeit
fliegen. Abbildung 2.35 zeigt die Stofswelle eines fliegen-
den Geschosses. Diese Phianomene wurden zuerst von
Ernst Mach studiert’”. Man bezeichnet die kegelférmige
Stowelle auch als Machkegel, und als Machzahl das
Verhiltnis von Fluggeschwindigkeit zu Schallgeschwin-
digkeit.

Stofiwellen entstehen nicht nur als Folge der schnellen Be-
wegung eines Korpers. Ein Beispiel dafiir, wie eine Stofs-
welle scheinbar aus dem Nichts entstehen kann, liefert

9 Ernst Mach (1838-1916), Ssterreichischer Physiker und Philosoph,
wirkte in Graz, Prag und Wien. Er schuf die Grundlagen zur expe-
rimentellen Untersuchung und zum Verstindnis der Gasdynamik,
in diesem Zusammenhang auch Grundlagen der Kurzzeitfotogra-
fie. Noch bedeutender sind seine Beitrdge zur Erkenntnistheorie
als prominenter Vertreter des sogenannten Positivismus. Danach
sollen nur Beobachtungen und messbare Gréfien in die Naturwissen-
schaften Eingang finden. Seine Ansichten hatten positiven Einfluss
auf Einsteins Relativitdtstheorie und Heisenbergs Quantenmecha-
nik. Allerdings fiihrte seine Hypothesenfeindlichkeit auch dazu,
dass er rigoros die kinetische Gastheorie und den Atomismus ab-
lehnte.

2 Spezielle Wellenerscheinungen

Abbildung 2.35 Ein mit Uberschallgeschwindigkeit fliegendes Geschoss

die Flutwelle, die man mitunter an ausgedehnten flachen
Wattenkiisten bei Eintreten der Flut beobachtet: hinter der
Stofsfront ist die Wellengeschwindigkeit wegen des hohe-
ren Wasserstands hoher als davor. Nach (2.42) kann eine
Flutwelle bei 40 cm Hohe eine Geschwindigkeit von2m/s
entwickeln! Es empfiehlt sich, diesen Umstand bei Spa-
ziergdngen auf dem Watt zu beachten, besonders an der
franzosischen Atlantikkdiste.



Ubungsaufgaben

Ubungsaufgaben

2.1. Schallgeschwindigkeit in Gasen. Fiir Luft und
Kohlendioxid wurden bei der Temperatur T = 273K
die Schallgeschwindigkeiten vg = 331m/s und 259m/s
gemessen. Die Molmassen sind 0,029kg/mol und
0,044 kg/mol. Wie grof8 sind nach der idealen Gasglei-
chung die Verhéltnisse von Druck zu Dichte py/pg und
welche adiabatischen Exponenten « erhdlt man aus den
Schallgeschwindigkeiten? Im CO,-Molekiil sind die Ato-
me linear angeordnet. Welche Erkldrung gibt es dafiir,
dass die Koeffizienten x fiir Luft und CO, voneinander
abweichen?

2.2. Grundfrequenz einer Pfeife. Eine Pfeife erzeugt
in der Luftatmosphére eine Schallfrequenz v = 500 Hz.
Wie grof8 wire die Frequenz, wenn die Pfeife mit Helium
bei Atmosphéarendruck betrieben wiirde?

2.3. Warum verlduft die Schallausbreitung in idea-
len Gasen adiabatisch? In Schallwellen existieren neben
Druck- und Dichteschwankungen auch periodische Tem-
peraturschwankungen T'(x, t) = Tp sin(kx — wt).

a) Betrachten Sie einen ebenen Schnitt durch das Gas
senkrecht zur Schallrichtung, der an der Stelle des grof-
ten Temperaturgradienten liegt und mit der Schallwelle
mitlduft. Wie viel Energie pro Flache wird durch Warme-
leitung (Warmeleitfdhigkeit = A) wéhrend einer Halbpe-
riode durch diese Grenzflache transportiert?

b) Die innere Energie pro Gasmenge (in mol) oszilliert
ebenfalls. Wie gro8 ist die Amplitude U als Funktion
von Ty? Wie viel innere Energie steckt in der Schallwel-
le zwischen zwei solcher Grenzflachen, die um eine halbe
Wellenldnge auseinander liegen?

¢) Warum beweisen die Resultate von Teil a) und b)
die adiabatische Natur der Schallwellen in idealen Ga-
sen? Zahlenbeispiel: Luft unter Normalbedingungen,
Schallfrequenz 1kHz. Die Warmeleitfdhigkeit ist A =
0,024Wm~1K~1.

d) Wie grof ist ist die Temperatur-Amplitude Ty in
Luft unter Normalbedingungen bei einer Druckamplitu-
de pp = 1Pa?

2.4. Temperierte Stimmung. In der Musik wird das
Frequenzintervall von einer Oktave in 12 Halbtone einge-
teilt, wobei die Oktave einer Frequenz-Verdopplung oder
Halbierung entspricht. Welche relative Genauigkeit bei

der Einschédtzung der Frequenz erreicht ein Musiker min-
destens, wenn er {iber das absolute Gehor verfiigt?

2.5. Eigenschwingungen einer Saite. In einem kleine-
ren Fliigel sei die Saite fiir den tiefsten Ton Ag, 4 Oktaven
unterhalb des Kammertons A4 mit der Frequenz 440 Hz,
L = 1,36 m lang. Sie besteht aus einem 1,2 mm dicken spe-
ziellen Stahldraht, der mit zwei dicht liegenden Lagen
Kupferdraht umwickelt ist, die an den Enden nicht einge-
spannt sind. Der maximale Aufiendurchmesser der Kom-
bination ist 6mm, die Dichten sind pppant =7.9¢ cm 3
und pcy, =89¢g cm 2 und der Fiillfaktor der Kupferwick-
lung betrdgt 7 = 0,8.

a) Wie grof ist die Zugkraft an der Saite? Wie grof8 ist die
Zugspannung?

b) Wie lang miisste die Saite sein, wenn man bei gleicher
Zugkraft die Kupferummantelung weglassen wiirde?

¢) In der Mittel- und Oberlage des Instruments besitzen
die Saiten keinen Kupfermantel. Wie lang wére eine Saite
beim Kammerton A4, wenn Zugkraft und Drahtradius so
grofs wéaren wie bei der tiefsten Frequenz? (In der Realitat
sind die Drahtdurchmesser etwas kleiner).

d) Die Zahl der Saiten pro Ton variiert von einer (tiefster
Ton) bis drei (Mittel- und Oberlage). In welcher Grofien-
ordnung wird die gesamte Zugkraft auf den Rahmen bei
einem Tonumfang von etwas tiber 7 Oktaven liegen?

2.6. Stehende Welle auf einem Fadenpendel. Schldgt
man seitlich an die Mitte eines ruhenden Fadenpendels,
kann man auf dem Faden eine ndherungsweise harmoni-
sche stehende Welle beobachten, bei der der Faden seitlich
schwingt, aber die Pendelmasse keine horizontalen Aus-
schldge macht. Das Pendel habe die Lange L. Es gebe nur
ein Schwingungsmaximum in unmittelbarer Nahe zur Fa-
denmitte.

a) Wie grof3 ist die Wellenzahl k? Zahlenbeispiel: Pendel-
lainge L = 1,8m. Es werde eine Schwingungsdauer T =
0,20s gemessen. Wie grofs ist die Ausbreitungsgeschwin-
digkeit einer Beule auf dem Faden?

b) Wie grof$ ist das Verhiltnis zwischen der Fadenmas-
se mr und der angehédngten Masse m? Ist die implizit ge-
machte Voraussetzung mr < m gerechtfertigt? Liegt das
Amplitudenmaximum etwas oberhalb oder etwas unter-
halb der Fadenmitte?
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¢) Ein idealisierter Grenzfall, der praktisch nie erreicht
werden kann, ist der Faden konstanter Lange, der bei
Verbiegungen Energie weder speichert noch in Warme
verwandelt. Wie viel kinetische Energie steckt in der ste-
henden Welle zum Zeitpunkt des gestreckten Fadens,
wenn mr, L, und T vorgegeben sind und der Maximalaus-
schlag xg ist? Diese Energie muss zum Zeitpunkt der
Maximalauslenkung als potentielle Energie in der Anhe-
bung der Masse m durch die Fadenkriimmung stecken.
Rechnen Sie nach, dass diese Aussage konsistent mit (2.5)
ist.

2 Spezielle Wellenerscheinungen

2.7. Dispersion von Tiefwasserwellen. a) Wie grof3 ist
die Ausbreitungsgeschwindigkeit einer Wasserwelle mit
der Wellenlinge A1 = 30cm? Die Oberflaichenspannung
betragt c = 0,072Nm~1.

b) Dieser Welle sei eine zweite iiberlagert. Bei welcher
Wellenldnge A, bewegt sich diese Welle nicht relativ zur
ersten?

¢) Wie grof ist die Minimalgeschwindigkeit der Wasser-
wellen und bei welcher Wellenldnge tritt sie auf?
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In diesem Kapitel werden wir uns mit der energe-
tischen Seite der Wellenausbreitung befassen. Dabei
werden wir zu einer vertieften Anschauung des
Ausbreitungsvorgangs gelangen und noch einige
Groen und Begriffe einfiihren, die fiir die Physik
der Wellen wichtig sind. Auch werden wir einen
Einblick in die Begriffswelt der technischen Akus-
tik und der Photometrie gewinnen und uns kurz mit
den physikalischen Grundlagen des Gehors und des
Sehvermogens befassen.

In Kap. 2 wurde darauf hingewiesen, dass elektro-
magnetische Wellen von beschleunigten Ladungen
abgestrahlt werden. Wir berechnen nun die Strah-
lungsleistung eines schwingenden Dipols und geben
eine allgemeine Formel fiir die Strahlung beschleu-
nigter Ladungen an. Im Anschluss daran wird das
interessante Phdnomen der Synchrotronstrahlung
diskutiert.

Wellen transportieren nicht nur Energie, sondern
auch Impuls. Das fiihrt im letzten Abschnitt zum
Phanomen des Strahlungsdrucks und schliefSlich so-
gar zu der wohl berithmtesten physikalischen For-

mel, Einsteins E = mc?2.

3.1 Der Wellenwiderstand

Allgemeine Definition

Es ist intuitiv klar, dass zum Antreiben einer Welle Ener-
gie erforderlich ist. Fiir die zu leistende Arbeit ist der
Wellenwiderstand die mafigebliche Grofle. Wir wollen
zunéchst diesen Begriff moglichst allgemein definieren.
Damit sich in einem Medium Wellen ausbreiten kénnen,
miissen die rdumlichen und die zeitlichen Anderungen
von zwei physikalischen Groen i(x, t) und x(x, t) wech-
selseitig miteinander verkniipft sein:

9 _
ox

ox 9 _ _pox
5 o~ Pax-

(3.1)

Wir haben mehrere Beispiele fiir solche Gleichungen ken-
nen gelernt, die in Tab. 3.1 zusammengestellt sind. Die
Konstanten & und B entnimmt man den angegebenen
Gleichungen. Die unterste Zeile erhélt man, indem man
in (2.46) und (2.47) B, durch pgH, ersetzt. Durch partielle
Differentiation dieser Gleichungen nach t und nach x ent-
stehen Wellengleichungen fiir ¢ und x (vgl. (2.21)), wobei
man fiir die Phasengeschwindigkeit erhalt:
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Tabelle 3.1 Beispiele zu (3.1)
Wellentyp P X « B
Seilwelle Fy ¢ S
(2.7), (2.8)
Schallwelle P ¢ 00 00 ?
(2.17), (2.19) £
1
el. magn. Welle Ey, B, 1 —
(2.46), (2.47) €oto
Ey H; Ho 1/€
w p
Uph = — =4/ — . 3.2

Wir nehmen nun eine in +x-Richtung laufende ebene har-
monische Welle an:

P(x, t) = o sin(kx — wt) (3.3)

x(x, 1) = xosin(kx — wt) '
und stellen uns die Frage: In welchem Verhéltnis miissen
die Amplituden der Wellenfunktionen ¢(x,t) und x(x, )
stehen, damit die Wellenausbreitung funktioniert? Indem
wir (3.3) in die erste Gleichung (3.1) einsetzen, erhalten
wir

Yok cos(kx — wt) = axow cos(kx — wt) .

Daraus folgt mit (3.2):
Yo w
o= Yp = Ve, (3.4)
Pplxt) = Vapx(xt) . (3.5)

Nun ist bei einem bestimmten Wellenphdnomen die Wahl
der GroBen i (x,t) und x(x, t) keineswegs eindeutig fest-
gelegt, z. B. kann man bei Schallwellen zwischen Druck-
und Dichtednderung, Auslenkung und Geschwindigkeit
der Luftteilchen wéahlen. Es zeigt sich, dass von die-
ser Wahl zwar nicht das Verhiltnis a/f, wohl aber das
Produkt af abhédngt. Fiir energetische Betrachtungen ist
folgende Wahl zweckmafig:

1) = Riicktreibende Kraft (bzw. Druck) } (3.6)
X = Geschwindigkeit . '

Mit dieser Definition wird die Grofde

X0

—_
Vap ="



3.1 Der Wellenwiderstand

als Wellenwiderstand bezeichnet. Je nach der Festlegung
in (3.6) wird bei mechanischen Wellen der Wellenwider-
stand in Ns/m = kg/s oder in Ns/m? = kg/m?s ge-
messen. Bei elektrischen Wellen muss man die GroSen ¢
und x so wihlen, dass sich der Wellenwiderstand in Ohm
ergibt. Das bedeutet, dass man bei elektromagnetischen
Wellen fiir das Magnetfeld nicht B, sondern die in A/m
gemessene Grofie H zu verwenden hat. Die entsprechen-
den Werte von « und f sind in der untersten Zeile von
Tab. 3.1 angegeben.

Der Wellenwiderstand ist eine Eigenschaft des Mediums,
in dem die Wellenausbreitung stattfindet. Wenn die Wel-
len in diesem Medium absorbiert werden, nimmt nicht
nur die Amplitude der Welle ab, es entsteht auch eine Pha-
senverschiebung zwischen (x, ) und x(x, t). Wie in der
Wechselstromtechnik kann man das durch einen komple-
xen Wellenwiderstand ausdriicken. Von dieser Komplika-
tion sehen wir im Folgenden ab. Auflerdem nehmen wir
an, dass die Dispersion der Welle klein ist, so dass man
nach (1.26) mit einer einheitlichen Wellengeschwindigkeit
rechnen kann. Wir werden nun die physikalische Bedeu-
tung des Wellenwiderstands untersuchen.

Die Rolle des Wellenwiderstands
am Beispiel der Seilwellen

Bei der Wellenausbreitung auf einem elastischen Seil ist
nach Tab. 3.1 der Wellenwiderstand

Z=/Syu.

Nach (3.5) und (3.6) gilt also:

(3.8)

Fy(x,t) = Z&(x,t) . (3.9)

Belastung des ,,Senders” bei einer Seilwelle. Nehmen
wir an, dass bei x = 0 an das Seil ein ,,Sender” fiir harmo-
nische Seilwellen angeschlossen ist, z.B. die in Abb. 3.1
gezeigte Vorrichtung, enthaltend eine Feder mit der Fe-
derkonstanten x und eine Masse m. Bei abgehdngtem Seil

Abbildung 3.1
Seilwellen

»Sender” fiir

Abbildung 3.2 Motor als
Sender fiir Seilwellen

lautet die Bewegungsgleichung des Senders

d?y
mﬁ = —KYy.

Der Sender kann also mit der Frequenz wy = vx/m
schwingen. Mit angehdngtem Seil wirkt auf den Sen-
der die Reaktionskraft —Fy(O, t); also nach (3.9) die Kraft
—Z7¢(0,t). Nun ist ¢(0,t) = dy/dt, die Geschwindigkeit
des Senders in senkrechter Richtung. Wir erhalten fiir den
belasteten Sender die Bewegungsgleichung

d’y . dy

Mm——o +2Z—=+xy=0.

T2 ar (3.10)

Der Sender fithrt eine geddmpfte Schwingung aus. Es
wird ihm durch die Anregung von Schwingungen auf
dem Seil stindig Energie entzogen. Den Dampfungsterm
Zdy/dt nennt man auch die Strahlungsdimpfung des
Senders. Die pro Sekunde abgegebene Energie, die Strah-
lungsleistung, ist nach (3.9):

P(t) = Fy(0,1)2(0, ) = Z&%(0,t) . (3.11)
Soll die Schwingung des Senders nicht alsbald infolge
der Strahlungsddmpfung zum Stillstand kommen, muss
dem Sender stindig Energie zugefiihrt werden. Man kann
den Sender auch durch die in Abb. 3.2 gezeigte Vorrich-
tung ersetzen: Ein Motor erzeugt iiber ein Kurbelgestdange
die auf- und abwdrtsgehende Bewegung mit der Fre-
quenz wy. Durch die Konstruktion ist die Amplitude yg
und die Geschwindigkeit ¢(0, t) = woyp cos wot vorgege-
ben. Damit das Ganze funktioniert, muss der Motor die
Leistung P(t) nach (3.11) aufbringen kénnen, er muss leis-
tungsmifSig an den Wellenwiderstand des Seils angepasst
sein.

»,Terminierung” der Seilwelle. Die vom Sender abgege-
bene Energie verschwindet keineswegs, indem sie etwa
sogleich in Warme verwandelt wird; sie wandert mit der
Seilwelle nach rechts, also mit der Wellengeschwindig-
keit v. Dabei erfolgt die Bewegung des Seils (mit entspre-
chender Verzogerung) an jeder Stelle x wie die Bewegung
bei x = 0. Dem entspricht, dass an jeder Stelle des Seils
zwischen Fy(x,t) und &(x,t) das Verhéltnis Z herrscht,
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Abbildung 3.3 , Abschlusswi-
derstand” fiir Seilwellen

=4

wie schon in (3.9) angegeben. An jeder Stelle ist der
momentane Energiefluss gleich der in (3.11) berechneten
Leistung

Energie

Wr%heit = Fy(x, H)e(x, t) = ZE&2(x,t) . (3.12)
Schneidet man nun irgendwo das Seil ab und befestigt es
an einer Vorrichtung wie in Abb. 3.3 gezeigt, so ,,bemerkt”
das Seil tiberhaupt nicht die Veranderung, sofern der Ra-
dius r der Kugel und die Viskositdt # der Fliissigkeit so
aufeinander abgestimmt sind, dass F, /¢ = Z ist. Da nach
der Stokes’schen Formel Bd. II, Gl. (3.24) auf die Kugel die
Kraft F,, = 67tirC wirkt, muss folgende Bedingung erfiillt
sein:

6rtnr =2 = /Sy .

In diesem Fall ist das Seil mit seinem Wellenwiderstand
terminiert, es tritt keine Reflexion auf, und es gelingt,
die gesamte Wellenenergie im ,, Abschlusswiderstand” in
Warme umzusetzen. Das gleiche Phdnomen wurde schon
in Abb. 1.9 gezeigt.

(3.13)

Reflexion. Wird das Seil bei x = L an einer starren Wand
befestigt, ist ¢(L, t) = 0 und die Welle wird mit umgekehr-
tem Vorzeichen reflektiert (Abb. 1.6). ¢(L,t) = 0 bedeutet
nach (3.7), dass der Wellenwiderstand der starren Wand
unendlich grof ist. Ganz allgemein ist die Reflexion an ei-
ner Diskontinuitdt abhingig vom Wellenwiderstand vor
und hinter der Diskontinuitdt. Wir werden das in Ab-
schn. 5.4 am Beispiel des Lichts quantitativ studieren.
Will man einen reflexionsfreien Ubergang der Wellen
zwischen zwei Medien erreichen, miissen die Wellenwi-
derstdnde der beiden Medien gleich sein, oder durch eine
Vorrichtung aneinander angepasst werden. Bei mecha-
nischen Wellen muss aus einer groflen Auslenkung bei
kleiner Kraft eine kleine Auslenkung bei grofier Kraft
gemacht werden. Das ist mit einem Hebelmechanismus
im Prinzip moglich, in der Praxis aber nicht so einfach.
Wir fassen zusammen: Der Wellenwiderstand eines Me-
diums ist sowohl fiir die Strahlungsdampfung des Sen-
ders als auch fiir die Reflexion an einer Diskontinuitat
mafsgeblich.

3 Energie- und Impulstransport in Wellen

Energietransport in Wellen

Wie wir am Beispiel der Seilwelle gesehen haben, trans-
portiert eine Welle Energie, und zwar lauft auf dem Seil
pro Zeiteinheit die durch (3.12) gegebene Energie an einer
Stelle x vorbei. Wir betrachten nun den Energiefluss in ei-
ner Welle im dreidimensionalen Raum. Die Energie wird
in einer dispersionsfreien Welle mit der Wellengeschwin-
digkeit v transportiert. Bei der Stromung einer Fliissigkeit
ist die Stromdichte j das Produkt von Dichte p und Stro-
mungsgeschwindigkeit v (vgl. Bd. II, Gl. (3.27)). In der
Welle gibt es eine Energiedichte u(r, t). Man berechnet da-
mit die Energiestromdichte

jE=uv. (3.14)

Die Intensitit einer periodischen Welle ist definiert als der
Betrag dieser Grofle, gemittelt {iber eine Wellenperiode

I=|jg| =mv. (3.15)

I dA ist die Energie, die pro Zeiteinheit durch ein Flachen-
element dA stromt, das senkrecht zur Ausbreitungsrich-
tung aufgestellt ist.

Wie die im Folgenden behandelten Beispiele zeigen, ist
die Energiedichte in einer Welle proportional zum Qua-
drat der Wellenamplitude. Im Allgemeinen ist die Wel-
lengeschwindigkeit v unabhingig von der Amplitude. In
solchen Féllen gilt also:

Satz 3.1

Die Intensitdt der Welle ist proportional zum Qua-
drat der Wellenamplitude.

Dies gilt nach (3.12) auch fiir die Seilwelle, denn
aus y(x,t) =ypsin(kx — wt) folgt &(x,t) =dy/ot =
—wypcos(kx — wt), und es ist ¢ xy3. Bei sinusférmi-
gen Wellen rechnet man meistens wie beim Wechselstrom
mit den Effektivwerten Bd. III, Gl. (17.12). Dann ist z. B.

1, 2
¥ = 53/0 = Yett -

3.2 Energietransport in Schallwellen

Bei der Berechnung der Energiedichte in einer Schall-
welle, auch Schalldichte genannt, machen wir es uns
leicht. Da die Materieteilchen eine harmonische Schwin-
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gung ausfiihren, ist der Mittelwert der potentiellen Ener-
gie gleich dem Mittelwert der kinetischen (vgl. Bd. I,
Gl. (12.8)). Die Gesamtenergie ist die Summe von beidem,
also ist ihre Dichte doppelt so grof8 wie die mittlere Dichte

der kinetischen Energie i, = % pE_z. Man erhalt

= pe2. (3.16)

Die Intensitdt der Schallwellen,
nannt, ist demnach

auch Schallstiarke ge-

— 72
[ = pogt? = pvs% . (3.17)

Der Wellenwiderstand fiir Schallwellen ist mit (3.7), (2.22)

und Tab. 3.1
_Po_ 9P _
7 === L = .
%o [y 00s

In der Akustik rechnet man auch mit dem Verhaltnis
der Druckamplitude zur Amplitude der Auslenkung X
der Materieteilchen. Da ¢y = wX ist, folgt fiir diese, als
Schallhirte bezeichnete Grofse

(3.18)

Po_ wz. (3.19)
Xo

Aufgrund der viel hoheren Dichte und der hohe-
ren Schallgeschwindigkeit ist der Wellenwiderstand von
Fliissigkeiten und Festkorpern sehr viel hoher als der von
Gasen. Schallwellen werden daher an Fliissigkeitsoberfla-
chen und an festen Wanden fast vollstandig reflektiert.
Will man das vermeiden, muss man die Wand mit ei-
nem Stoff geringer Dichte und hoher Schallabsorption
bedecken, also mit einem Stoff, in dem die oszillatorische
Bewegung der Schallwelle rasch in Warmebewegung um-
gesetzt wird. Faserstoffe und speziell geformte Schaum-
gummiteile sind hierfiir geeignet.

Schallpegel und Lautstarke

Fiir den wissenschaftlichen Gebrauch gentigt die Angabe
der Schallintensitét I in W/m?. In der Technik wird statt
dessen hdufig der sogenannte Schallpegel L, gemessen in
Dezibel, angegeben. Die Definition ist

L= 101og1i Dezibel . (3.20)
0

Die Verwendung der Dezibel in der technischen Akus-
tik ist sinnvoll, weil die vom menschlichen Ohr subjektiv

empfundene Lautstirke proportional zum Schallpegel,
nicht etwa proportional zur Intensitit in Watt/m? ist:
Das Ohr hat eine angenéhert logarithmische Empfindlich-
keitskurve (,, Weber-Fechnersches Gesetz”).

Das Dezibel (abgekiirzt: dB) ist, wie z. B. auch das Winkel-
maf3 Radian, eine dimensionslose Einheit. Die Bezugsin-
tensitdt Iy ist nach internationaler Vereinbarung festgelegt
auf

Ip = 10> Watt/m? . (3.21)

Der Logarithmus in (3.20) ist der dekadische Logarith-
mus. Ebensogut kann man den Schallpegel auch mit dem
Verhiltnis der Amplituden des Schallwechseldrucks defi-
nieren. Da I o p? ist, ist

L, = 20log ﬁﬂ dB. (3.22)
0

Der Bezugswert pg ist bei Luft (NTP) auf pog = 20 uPa
festgelegt. Damit stimmen die Schallpegelangaben in
(3.20) und (3.22) nahezu {iberein ((20 uPa)?/pvs = 0,94 -
1012 Watt).

Das Dezibel wird in der Technik generell als Maf fiir In-

tensitdts- oder Leistungsverhaltnisse benutzt, vor allem

auch in der Elektronik. Ein Intensitatszuwachs um 20 dB

(= 2 Bel) entspricht einem Intensititsverhiltnis I /I, =
100: | |

1010g1—l =20 — logI—1 =2

2 2 (3.23)

Das Amplitudenverhiltnis ist in diesem Falle ein Faktor
10. Ein Intensitdtszuwachs um 3 dB (= 0,3 Bel) entspricht
einem Intensitatsverhéltnis von

L/, =10 =199~ 2. (3.24)
Hier ist das Amplitudenverhéltnis v/2 = 1,414. Diese Be-
trachtungsweise sollte man sich merken, weil man bei der
elektronischen Verarbeitung von Analog-Signalen haufig
mit ,Abschwichern” konfrontiert wird, deren Wert in De-
zibel angegeben ist. Auch Verstarkungsgrade werden oft
in dB angegeben.

Die Lautstirke-Empfindung ist nun frequenzabhéngig.
Man hat deshalb eine in Phon gemessene Lautstirke A
dadurch definiert, dass man fiir die Referenzfrequenz
1000 Hz setzt:

A (Phon) = L (Dezibel) (fiir v = 1000Hz) . (3.25)
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Abbildung 3.4 Kurven gleicher Lautstdrke A(v) = const

Mit Hilfe einer Anzahl von Versuchspersonen wurden die
Kurven gleicher Lautstirke A(v) = const ermittelt. Das
Ergebnis ist in Abb. 3.4 dargestellt; eingetragen ist auch
die Horschwelle (gestrichelte Linie). Die Schmerzgrenze
liegt etwa bei 120 Phon. In Tab. 3.2 sind die Lautstarken
fiir einige typische Schallfelder angegeben. Man mache
sich klar, dass Phon ein logarithmisches Mafs ist: Wenn
in einem geschlossenen Raum 1 Trompeter eine Lautstér-
ke von 90 Phon erzeugt, so erzeugen in demselben Raum
3 Trompeter eine Lautstarke von 94,7 Phon; 10 Trompeter
bringen es auf 100 Phon. Das ergibt die folgende Rech-
nung: Wenn Ay = 10log (I; /Iy) = 90 Phon ist, dann ist

I I
As = 101og 2L — 10 (Tog 1L + log 3
Iy Ip

= 94,771 Phon ,
Ao = 10log 0L _ 10 (1og h +log 10>
Iy Iy
= 100 Phon .

Noch ein Rechenexempel: Wenn man mit 10 Lautspre-
chern in einem Raum eine Lautstirke von 100 Phon
erzeugt, reduziert sich der Larm bei Abschalten von 9

Tabelle 3.2 Lautstarke in verschiedenen Schallfeldern

Schallquelle Phon
leises Fliistern 10
ruhige Wohnung 20
normales Sprechen 50
starker Straflenverkehr 80
10 Watt-Lautsprecher 100
(3m Abstand)

Presslufthammer (1 m) 120
(Schmerzgrenze)

Diisentriebwerk (50 m) 130

3 Energie- und Impulstransport in Wellen

Lautsprechern nur um 10%, da die Schallempfindung
proportional zu den Phon ist!

Anstelle des Phon wird heute gewohnlich die Einheit
dB(A) benutzt. Man kann sie direkt an einem entspre-
chend eingerichteten Schallwechseldruck-Messgerét ab-
lesen. Das Gerit enthélt ein Mikrophon und einen Ver-
stiarker, dessen Verstiarkungsgrad in bestimmter Weise
(entsprechend der international festgelegten ,Bewer-
tungskurve A”) von der Frequenz abhdngt, so dass die
Anzeige in grober Ndherung den Phon entspricht.

Das Horen

Es ist interessant, die Amplituden Xy der Schallwellen aus-

zurechnen. Mit 2 = %E% und ¢y = wky folgt aus (3.17) :

2]
pvsw?

Bei v = 1000 Hz liegt die Horschwelle etwa bei [ = 2,5 x
1012w/ m?. Die Amplitude der Schallwellen in Luft ist
dann %) ~ 0,2 x 10~ %m, das ist weniger als ein Atom-
durchmesser! An der Schmerzgrenze (120 Phon) betragt
die Amplitude ca. 10 pm. Diese Zahlen und die Ausmafie
des in Abb. 3.4 dargestelltem Horbereichs machen deut-
lich, dass das menschliche Ohr ein echtes Wunderwerk
der Natur ist.

In Abb. 3.5 sieht man das Ende des Gehorgangs mit dem
Trommelfell. Die dahinter liegende Paukenhdhle ist mit
Luft gefiillt. Fiir den gelegentlichen Druckausgleich sorgt
die in den Rachenraum fiihrende Eustachische Réhre. Die
eigentlichen Organe enthilt das Innenohr. Es ist mit ei-
ner Fliissigkeit, einer Lymphe, gefiillt und steht mit der
Paukenhohle nur tiber zwei mit Membranen verschlos-
sene Offnungen in Verbindung. Man nennt sie das ovale

ovales Fenster
rundes Fenster

.. Bogengénge
—— Steighiigel A

Hammer
Schnecke
Cochlea

. —-/T"
S | =
- Trommelfell  Paukenhghle ™
Eustachische Réhre

Abbildung 3.5 Das Ohr, nach H.-G. Bénninghaus u. Th. Lenarz (2001)
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a Vorhoftreppe

ovales

rundes
Fenster

Paukentreppe

Basilarmembran

Abbildung 3.6 Die Cochlea, abgerollt und grob schematisiert, im Langs- und
Querschnitt

und das runde Fenster. Die Bogengidnge gehdren zum
Gleichgewichtsorgan. Das fiir Schallwellen empfindliche
Organ, die Schnecke oder Cochlea, ist grob schematisch in
Abb. 3.6a dargestellt. Sie ist bis auf die genannten Fenster
und die Durchfithrungen fiir den Hornerv fest von Kno-
chen eingeschlossen.

Das erste Problem ist, die Schallschwingungen der Luft
(Z = 415kg/m?s) auf die Lymphe (Z &~ 1,5 - 10° kg/m? 5)
zu lbertragen. Eine regelrechte Impedanzanpassung ist
dabei nicht erforderlich, da ja der Schall nicht in der
Flussigkeit als Schallwelle weiterlaufen soll. Die Wellen-
bewegung wird in der Lymphe nur auf einen Bereich
iibertragen, der sehr klein gegen die Schallwellenldnge
ist. Diese Aufgabe kann der aus dem Trommelfell und
den Gehorknochelchen Hammer, Amboss und Steigbiigel
bestehende Mechanismus erfiillen. Die ,FufSplatte” des
Steigbtigels wirkt dabei direkt auf das ovale Fenster der
Cochlea.

Die Cochlea ist langs durch eine Scheidewand in zwei
Bereiche aufgeteilt, die in Abb. 3.5 wie zwei ineinander
geschachtelte Wendeltreppen in der knochernen Schne-
cke stecken. Diese Scheidewand ist teilweise starr, zum
Teil aber durch die hochelastische Basilarmembran gebil-
det. Sie ist in Langsrichtung nur wenig, in Querrichtung
aber straff gespannt. Die durch das ovale Fenster auf die
nahezu inkompressible Fliissigkeit {ibertragenen Druck-
schwankungen miissen auf irgendeinem Wege an das
runde Fenster gelangen, da dieses neben dem ovalen
Fenster der einzige nachgiebige Teil der Cochlea-Wand
ist.

Messungen haben gezeigt, dass die Querspannung der
Basilarmembran von vorn nach hinten exponentiell ab-
nimmt. Das Verhiltnis von Spannung zu Masse, also die
Frequenz der Eigenschwingungen der Membran, nimmt
dementsprechend von vorn nach hinten ab. Empfangt
das Ohr einen Ton mit der Frequenz v, dann wird durch

die Druckschwankungen der Lymphe in der Vorhoftrep-
pe die Basilarmembran an einer ganz bestimmten Stelle
resonant zu Schwingungen angeregt, wie Abb. 3.6b zeigt.
Bei hohen Frequenzen liegt diese Stelle vorn, bei tiefen
am hinteren Ende der Cochlea. Die Basilarmembran ist
nun iiber die sogenannten Haarzellen an die Nerven-
fasern des Hornervs gekoppelt. Die Schwingungen der
Membran werden durch die inneren Haarzellen {iber den
Hornerv und eine neuronale Zwischenstation auf den Au-
diocortex, einen Teil des Gehirns, iibertragen. Durch einen
Riickkopplungseffekt, bei dem von der Zwischenstation
aus iiber die dufieren Haarzellen die lokale Bewegung der
Basilarmembran verstarkt wird, wird eine Entddmpfung
der Schwingung und damit eine hohe Trennschérfe er-
reicht.

Mit diesem Mechanismus, dessen elektromechanische
und neuronale Funktionsweise noch keineswegs vollstan-
dig geklart ist, wird uns und unsern vierbeinigen und
gefiederten Artgenossen die wunderbare Welt der Ge-
rausche und der Tone erschlossen, die uns entziicken oder
erschrecken kénnen, die aber jedenfalls fiir eine differen-
zierte Kommunikation mit der Umwelt sorgen.

3.3 Energietransport in
elektromagnetischen Wellen

Der Wellenwiderstand

Bei einer elektrischen Ubertragungsleitung ist der Wellen-
widerstand das Verhilinis von Spannung U zu Strom [
in einer laufenden Welle. Es ist also ¢(x,t) = U(x, t) und
x(x,t) =1I(x,t). Aus (2.85) entnehmen wir a =L/, f =
1/C’. Also gilt fiir den Wellenwiderstand der Leitung:

z:\/@:\/g.

L’ und C’ sind von der Geometrie der Leitung abhingig.
Zwei Beispiele wurden schon in (2.87) und (2.88) gegeben.
Da bei der laufenden Welle Strom und Spannung in Pha-
se sind, ist Z ein rein Ohmscher Widerstand. Wir hatten
bereits in Abb. 1.9 festgestellt, dass keine Reflexion auf-
tritt, wenn eine Ubertragungsleitung mit dem Widerstand
R = Z abgeschlossen wird.

(3.26)

Auch bei einer freien elektromagnetischen Welle kann
man einen Wellenwiderstand berechnen. Um ihn in Ohm
zu erhalten, muss man, wie schon bei Tab. 3.1 bemerkt,
neben der in V/m gemessenen elektrischen Feldstdarke E
fiir das Magnetfeld die Feldgrofle H = B/ up einfiihren,
denn H wird in A/m gemessen. Mit (2.71) und (2.72) er-
halten wir

Iy

= (3.27)
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Rp=377Q
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Abbildung 3.7 a Kann man eine elektromagnetische Welle durch ein Tuch
mit dem Flachenwiderstand Z,. reflexionsfrei absorbieren? b Ersatzschaltbild
zu (a)

||7

Der Wellenwiderstand des Vakuums ist

Zoae = B2 —37702.
€0

Man konnte auf den Gedanken kommen, dass man
freie elektromagnetische Wellen reflexionsfrei absorbie-
ren kann, wie Abb. 3.7a zeigt: Man spannt ein Tuch auf,
das einen Flachenwiderstand von 377 Q) besitzt (der Fla-
chenwiderstand wurde in Bd. III, Gl. (6.6) definiert). Ein
solches Tuch ldsst sich sehr einfach mit einer geeigne-
ten Widerstandspaste oder mit Graphit-Spray herstellen.
Die vollstandige Absorption der Welle funktioniert aber
nicht: Hinter dem Tuch geht ndmlich der Raum weiter,
und infolgedessen gibt es eine reflektierte und eine durch-
gelassene Welle; nur ein Teil der Energie wird im Tuch
absorbiert. Die vergleichbare Schaltung mit einem Koaxi-
alkabel ist in Abb. 3.7b gezeigt. Auch hier gibt es eine
Reflexion, denn das von links kommende Signal sieht
einen Abschlusswiderstand Z/2.

(3.28)

Noch starker wird natiirlich die Reflexion, wenn sich hin-
ter der 377 ()-Schicht eine Metallplatte befindet. Es ist also
nicht so einfach, ein Flugzeug oder ein Schiff fiir den Ra-
dar unsichtbar zu machen. Um die Reflexion klein zu
halten, braucht man ein absorbierendes Medium, dessen
Wellenwiderstand an der Oberfliche angepasst ist und
dessen Absorptionsvermogen allmédhlich, d.h. erst auf
Strecken von mehreren Wellenldngen zunimmt.

Energiedichte und Intensitat
bei elektromagnetischen Wellen

Die Energiedichte u(r,t) in einer elektromagnetischen
Welle ist gegeben durch die Summe der elektrischen und
magnetischen Feldenergie. Wir benutzen die in Bd. III/16

3 Energie- und Impulstransport in Wellen

abgeleitete Formel (16.35)

u(r,t):%(E-D+B~H).

Bei nicht zu starken Feldern und in isotropen Medien
gelten die Materialgleichungen Bd. III, GI. (15.59). Damit

erhalt man
U= ! (€€QE2 + LBZ) .
2 Mo

Nach (2.72) ist B = E/cmeq- Mit (2.70) folgt B?/uug =
eegE? und schlieBlich
u(r,t) = eeq (E(r, 1)) (3.29)

Die iiber eine Periode der Welle zeitlich gemittelte Ener-
giedichte ist bei sinusférmigen Wellen

_ €€
= O]:"2,

> (3.30)

wobei Eg die Amplitude der elektrischen Feldstdrke in
der Welle ist. Fiir die Intensitat der Welle erhalten wir mit
(3.15) und (2.70):

1 €ey 1E2
I'= tmedil = E% = 570 . (3.31)

Im Vakuum ist die Intensitdt der elektromagnetischen
Welle

€pC

I=F. (3.32)

Fiir eine Wellenldngen-unabhéngige Messung der Intensi-
tdt, insbesondere im Spektralbereich vom Infrarot bis zum
Ultraviolett, benutzt man ein Bolometer. Das ist ein ge-
schwirztes Widerstandsthermometer, das die auffallende
Strahlung fast vollstandig absorbiert, und das gewohnlich
in eine Wheatstonesche Briickenschaltung eingebaut ist.

Dipolstrahlung

Bei einem schwingenden Dipol erhalten wir fiir die Inten-
sitdt der auslaufenden Kugelwelle mit (2.63):

GOC 2

€cn _ piwt  sin? 9
2 70 '

G0 = 32m2epc3 12

(3.33)
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Abbildung 3.8 Intensitat der Dipolstrahlung, Polardiagramm. Der Dipol
schwingt in Richtung & = 0°. Die Lénge der Strecke r(®) ist proportional zur
Intensitét, die unter dem Winkel ¢ emittiert wird. Die Intensitatsverteilung ist
rotationssymmetrisch um die z-Achse

Die in dieser Gleichung auftretenden Faktoren wurden
bereits bei (2.63) diskutiert; die Winkelabhédngigkeit der
Intensitdtsverteilung ist in Abb. 3.8 dargestellt.

Den gesamten Fluss @ der Strahlungsenergie durch eine
Kugelfliche vom Radius r erhalten wir durch Integration
mit dem in Abb. 3.9 gezeigten Flachenelement!

T 27 5 4
= [ [ 1w 0)sinoasdg =
D, = I(r,9)r"sin Q= e
9=0 ¢=0

(3.34)

Diese GrofSe ist unabhédngig vom Radius r der Kugelfla-
che, weil die Amplitude der Dipolstrahlung (2.63) propor-
tional zu 1/r abféllt: Das ist also der Kernpunkt bei der
Ausbreitung elektromagnetischer Wellen. Die in (3.34) be-
rechnete Grofle stellt zugleich die Strahlungsleistung P
des schwingenden Dipols dar.

Strahlung beschleunigter Ladungen

In Kap. 2 haben wir qualitativ begriindet, warum elektro-
magnetische Wellen bei der Beschleunigung von Ladun-
gen entstehen. Eine allgemeine Formel, die dies quantita-
tiv beschreibt, wurde von dem irischen Physiker Joseph
Larmor abgeleitet. Vorausgesetzt, dass die Geschwindig-
keit der Ladung v < cist, ist die Strahlungsleistung

€7 bmeged \ dt ] 6megm2c3 \ dt )

(3.35)

P=9

In dieser Formel ist p der Impuls des beschleunigten Teil-
chens. Man sieht sogleich, dass bei vorgegebener Impuls-

1 Das Integral foﬂ sin® 9d9 berechnet man mit der Substitution
cos® = u.

Abbildung 3.9 Zur Ableitung

rsind dy
von (3.34) —

rdd
dA=r2sing dd de

anderung, also bei einer vorgegebenen, auf die Ladung
einwirkenden Kraft, die Strahlungsleistung P o 1/m? ist.
Ein Elektron strahlt unter diesen Umstinden 4 - 10° mal
so viel Energie ab wie ein Proton.

Die Winkelverteilung der Strahlung beziiglich der Rich-
tung der Beschleunigung ist d®,/dQ o sin® ¢, genau wie
bei der Dipolstrahlung. In Abb. 3.10a ist dies fiir longi-
tudinale Beschleunigung gezeigt, in Abb. 3.10b fiir trans-
versale Beschleunigung, also fiir die Bewegung auf einer
Kreisbahn.

(3.35) gilt nur fiir den Fall v < c. Ist diese Voraussetzung
nicht erfiillt, andern sich die Verhaltnisse drastisch. Wie
Abb. 3.11 zeigt, rutscht bereits bei v/c = 0,5 (Elektronen-
energie 80keV) in der Winkelverteilung das Maximum
der Intensitdt nach vorn, und gleichzeitig nimmt die ins-
gesamt abgestrahlte Energie sehr betrdchtlich zu. Man
kann diese erstaunliche Veranderung der Abstrahlung re-
lativ einfach qualitativ auf eine Lorentz-Transformation

Kreisbahn

Abbildung 3.10 Strahlungsleistung pro Raumwinkelelementbei v < ¢ (y =
1). a longitudinale, b transversale Beschleunigung. Die Polardiagramme sind
rotationssymmetrisch um die strich-punktierten Achsen
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Abbildung 3.11 Strahlungsleistung pro Raumwinkelelement bei v = 0,5¢
(v = 1,15). a longitudinale, b und c transversale Beschleunigung. Punktiert:
Diagramme aus Abb. 3.10 bei gleicher Beschleunigung

zurtickfithren, wenn man davon ausgeht, dass die Emis-
sion von elektromagnetischer Strahlung der Frequenz v
der Emission von Photonen mit der Energie E, = hv und
dem Impulsp, = E, /cgleichzusetzenist (vgl. Bd.1/15.8).
Betrachten wir ein Koordinatensystem S’ mit den Ko-
ordinatenachsen x/, ¥ und z/, das sich in Abb. 3.11b
und c parallel zur x-Achse mit der Geschwindigkeit v
bewegt. In diesem Koordinatensystem bewegt sich das
Elektron nicht in x’-Richtung. Es wird aber in (—z)-
Richtung beschleunigt und emittiert Strahlung mit der
in den Abb. 3.11b und ¢ gepunktet eingezeichneten Win-
kelverteilung. Sind p/, und E/, Impuls und Energie eines
Photons im System S’, dann erhélt man im Laborsystem
(x,y,z) den Impuls p,, und die Energie E., mit der Lorentz-
Transformation (vgl. Bd. 1/15.3):

prx =7 (P +0E,/2) , v =1/V1=/2,
Pyy =Py

p’YZZPZYZI

EV:W(E%—i-vp’y) .

Fiir ein Photon, das in x’-Richtung emittiert wird, ist p’yx =
Ip,,| = E/,/c. Es erhdlt im Laborsystem die Energie

/

o vE 0
E4(0 ):y<E;+T"’> =1E, (1+2) .

3 Energie- und Impulstransport in Wellen

Bei Emission in —x'-Richtung erhdlt man mit p/, =
—lpy| = —E) /¢

o _opt (19 _ g [1=0/c
E7(18O)_7E7(1 c)_E“/1+v/c'

Fiir ein Photon, das im System S’ in y/-Richtung aus-
gesandt wird, ist p!, = (0,E,/c,0). Es bewegt sich im
Laborsystem mit der Energie E,(90°) = 7E/, und gegen
die x-Achse unter dem Winkel ¢, mit

pw _ _Ey/e ¢

tant¥, = 4 = L — — |
T Py YOEL /2 v

Fiir v = ¢ erhdlt man
E,(0°) = 29E!,
E,(90°) = yE’7 .

E.(180°) ~ 0,
+(180%) (3.36)

Ist v > 1, nimmt die Energie der nach vorn emittierten
Photonen infolge des Lorentz-Schubs enorm zu, und fast
die gesamte Strahlungsleistung ist nach vorn auf den Be-
reich innerhalb des Winkels

1 2
ﬁxz—:\/l—v—z
Y c

konzentriert. Bei einer Elektronenenergie von 5GeV ist
¥R 104, also ist 9y & 0,1 mrad. Es entsteht ein nadelschar-
fer Strahl energiereicher Photonen, emittiert in Richtung
der Teilchengeschwindigkeit v.

(3.37)

Synchrotronstrahlung

Bei einem Linearbeschleuniger (Bd. III, Abb. 5.14) ist dp/dt
durch die Feldstdrke gegeben, mit der die Teilchen be-
schleunigt werden. Selbst bei den hochsten erreichbaren
Feldern ist die Strahlungsleistung vollstindig vernachlas-
sigbar gegentiber der Hochfrequenzleistung, die zur Be-
schleunigung der Teilchen erforderlich ist. Nicht so beim
Synchrotron (Bd. III, Abb. 13.21): Auf einer Kreisbahn
andert sich standig die Impulsrichtung. Die Strahlungs-
leistung P kann man mit (3.35) berechnen, wenn das Teil-
chen zu einem bestimmten Zeitpunkt ruht, also in einem
Intertialsystem, das sich mit der Teilchengeschwindig-
keit v =~ c tangential zur Kreisbahn bewegt. Nach Bd. III,
Gl (12.15) erzeugt dort das Magnetfeld B eine elektrische
Kraft F = dp/dt = eycB. Man kann B durch den Bahnra-
dius p ersetzen: B = p/ep < E/p « 7/ p. Bei einer Lorentz-
Transformation in das Laborsystem bleibt P als Quotient
aus Energie und Zeit invariant. Es folgt, dass die Strah-
lungsleistung der Synchrotronstrahlung

4 E\*1
Po‘lz:<_2) —~
mc 0

(3.38)
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Abbildung 3.12 Normiertes Spektrum der Synchrotron-Strahlung

ist, also mit der vierten Potenz der Teilchenenergie E
anwdachst. Die Notwendigkeit, diesen Energieverlust mit
Hilfe von Beschleunigungsstrecken zu kompensieren,
wird bei Elektronen zum begrenzenden Faktor fiir das
Synchrotronprinzip. Bei dem Elektron-Positron-Speicher-
ring LEP des CERN (E ~ 100 GeV, p ~ 4km) verloren die
Elektronen bei jedem Umlauf 3% ihrer Energie durch
Synchrotron-Strahlung. Das diirfte ungefahr die Grenze
des Vertretbaren sein. Als Alternative kann man Elektro-
nen und Positronen mit Linearbeschleunigern auf hohe
Energien bringen und zwei gegenlaufige Strahlen aufein-
ander schieflen. Ein solcher linear collider war bereits bei
~ 100 GeV in Betrieb (SLC) und es ist geplant, mit einer
neuen Anlage (ILC) weit hohere Energien zu erreichen.
Bei Synchrotrons und bei Speicherringen fiir Protonen
ist die Situation entschérft: Die Synchrotronstrahlung ist
nach (3.38) um einen Faktor (mp /me)* ~ 1013 reduziert.

Die Synchrotronstrahlung ist nicht nur ein argerliches
Problem beim Bau von Elektronensynchrotrons. Das
Spektrum ist kontinuierlich und es erstreckt sich bis in
den Bereich der kritischen Frequenz w. (Abb. 3.12). w.
ist durch die Elektronenenergie E und durch den Kriim-
mungsradius der Bahn gegeben:

E 3
wC:3<—2) S35,
m) p "l p

Nach Bd. III, Gl. (13.44) ist p = p/eB. Bei relativistischen
Elektronen ist der Impuls p = E/c. Also ist

(3.39)

e
We = 372EB .
Das entspricht einer Wellenldnge

_2nme 1 3,6-10°m - Tesla

N = 2me -
€7 3 e 2B ¥2B

(3.40)

Mit Elektronenenergien von einigen 100MeV erreicht
man den sonst schwer zuganglichen Bereich des kurzwel-
ligen Ultraviolett (A = 10-100nm), und mit einigen GeV
den Rontgenbereich (A ~ 0,1 nm). Man kann also die Syn-
chrotronstrahlung als intensive Quelle von UV- und Ront-
genstrahlen fiir Naturwissenschaft und Technik nutzbar
machen (Spektroskopie, Strukturuntersuchungen, Litho-
graphie). Aus diesem Grund wurden in den letzten Jahr-

T

T

T

Abbildung 3.13 Prinzip des ,Wigglers”

Abbildung 3.14 Strukturierung

der Strahlpakete beim FEL O@ U

i

)\‘)\‘)\

zehnten zahlreiche Elektronenspeicherringe eigens zur
Erzeugung von Synchrotronstrahlung gebaut.

Um die Intensitit der Synchrotronstrahlung zu erhdhen,
baut man in den Speicherring gerade Strecken ein, in de-
nen man den Strahl zwischen den Polen von starken Per-
manentmagneten laufen ldsst. Die Magnete lenken den
Strahl abwechselnd nach links und nach rechts ab, wie
Abb. 3.13 zeigt. Mit einem solchen Wiggler verstarkt man
die Synchrotronstrahlung einer einzelnen Ablenkung Np,-
fach, wenn der Wiggler N, Magnete enthilt.

Die Elektronen laufen durch den Wiggler naturgemafs
langsamer als das Licht. Durch geeignete Wahl der Ab-
stinde und der Feldstirke kann man erreichen, dass sie
bei einer bestimmten Wellenldnge zwischen zwei aufein-
anderfolgenden Magneten gerade um eine Wellenldnge
hinter den Wellenbergen der Synchrotronstrahlung zu-
riickbleiben. Dann ist die neu erzeugte Synchrotronstrah-
lung in Phase mit der bereits vorhandenen, die Strahlung
der einzelnen Wiggler-Elemente wird kohérent, d.h. es
addieren sich die Feldstarken, die Welle erreicht eine
Feldstirke E « Ny, und eine Intensitat I o< N2: Aus dem
Wiggler wird ein Undulator. Die Wellenldnge, bei der das
funktioniert, nennt man die Undulatorwellenldnge Ay.

Wir erinnern uns, dass bei der Hochfrequenzbeschleuni-
gung die Teilchen immer als Strahlpakete (,bunches”)
beschleunigt werden. Das gilt fiir Synchrotrons, Speicher-
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Abbildung 3.15 Der Krebsne-
bel, Aufnahme NASA Hubble
Space Telescope. Die Syn-
chrotronstrahlung wird dem
gleichméaBigen Leuchten im Inne-
ren des Nebels zugeordnet, das
hier leicht blau gefarbt wurde

ringe und Linearbeschleuniger. Mit Kunstgriffen kann
man nun erreichen, dass diese Strahlpakete beim Durch-
laufen des Undulators die in Abb. 3.14 gezeigte Struktur
erhalten. Im Idealfall ist nun im Bereich der Undulator-
Wellenldnge die von allen Elektronen erzeugte Synchro-
tronstrahlung kohérent. Die Intensitdt wéchst proportio-
nal zu Ng an, wobei N, die Zahl der Elektronen im Strahl-
paket ist. Auch im Realfall kann man mit einem solchen
Freie-Elektronen-Laser (FEL) die Intensitdt der Synchro-
tronstrahlung um viele Grolenordnungen erhéhen.?

Synchrotronstrahlung spielt auch in der Astronomie eine
grofe Rolle. Ein Beispiel ist der Krebsnebel (Abb. 3.15),
entstanden bei einer Supernova-Explosion, die im Jahre
1054 n. Chr. beobachtet wurde. Das Spektrum erstreckt
sich vom Radiowellenbereich bis ins kurzwellige UV.
Wie die genauere Analyse zeigt, bewegen sich Elektro-
nen mit einer Energie E ~ 10'?eV in einem Magnetfeld
B~107"T.

Der Poynting-Vektor

Die in (3.14) eingefiihrte Energieflussdichte kann bei elek-
tromagnetischen Wellen mit Hilfe des Poynting-Vektors
S durch die Feldvektoren E und H ausgedriickt werden:

je=S=ExH. (3.41)

2 Niheres dazu in den Artikeln von A. Richter, Physikalische Blitter
54, 31 (1998) und T. Tschentscher, A. Schwarz und D. Rathje, Physik
in unserer Zeit, 41, 64 (2010).

3 Energie- und Impulstransport in Wellen

Das ist eine einfache Formel, die man sich leicht merken
kann. Thre Begriindung ist weniger einfach; wer sich die-
ser Miihsal entziehen will, mdge hinter (3.43) weiterlesen.
Wir betrachten ein Volumen V, in dem elektrische Ladun-
gen und elektromagnetische Felder enthalten sind. Nur
die elektrischen Felder erzeugen Joulesche Warme, und
zwar pro Zeiteinheit insgesamt die Wéarme

/E-deV,
\%

wobei ji, die Stromdichte des Leitungsstroms ist. Die Max-
well-Gleichung Bd. III, Gl. (15.58) lautet:

. oD

JL = V xH — E .
NunistE- (V xH) =H-(V xE) — V- (E x H).3 Nach
Bd. III, Gl. (15.56) ist V x E = —dB/dt. Wir konnen also
die erzeugte Joulesche Warme wie folgt durch die elek-
tromagnetischen Feldgrofien ausdriicken:

/E-deV
1%
(3.42)
oB oD

3 Wie im mathematischen Anhang, Bd. I/M.7 ausgefiihrt wird, kann
man mit dem Operator V rechnen, wie mit einem gewdhnlichen
Vektor, wenn man die fiir das Differenzieren giiltigen Regeln beach-
tet. Mit Bd. I, Gln. (21.76), (21.131) und (21.127) erhélt man

V- (ExH)=H-(VxE)—E-(V xH).

Daraus folgt ohne weiteres die oben angegebene Beziehung.
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Abbildung 3.16 Poynting- a
Vektoren: a Ebene Wellen nach
rechts laufend, b nach links

laufend. ¢ Schnitt durch eine
Kugelwelle, abgestrahlt von

einem schwingenden Dipol

Aus Bd. III, GIn. (16.30) und (16.31) folgt, dass rechts ne-
ben dem Term V - (E x H) die zeitliche Anderung der
Energiedichte des elektromagnetischen Feldes steht:

ou oD oB

. Z=Z4+H ==,

of ot T
E x H ist der in (3.41) definierte Poynting-Vektor S. Man
erkennt, dass (3.42) die korrekte Energiebilanz darstellt,
wenn man S mit jg identifiziert. Gleichung (3.42) muss fiir
jedes Volumenelement gelten:

—3—1::E-jL+diVS.
Diese Gleichung besagt in Worten: Die Abnahme der elek-
tromagnetischen Feldenergie im Volumenelement dV ist
gleich der Summe von der dort erzeugten Jouleschen
Waiarme und der nach aufien abgestrahlten Energie. Glei-
chung (3.43) entspricht genau der Kontinuitédtsgleichung
Bd. II, GL. (3.36) der Stromungslehre:

(3.43)

9% _

ot

p ist die Dichte der Fliissigkeit, j die Stromdichte und
pdV die Masse der Fliissigkeit, die pro Sekunde im Vo-
lumenelement dV neu entsteht. Die unterschiedlichen
Vorzeichen von E - ji, und ji kommen daher, dass die Joule-
sche Warme auf der Verlustseite, die Quelldnichte ji auf
der Gewinnseite positiv gerechnet wird. In Abb. 3.16 sind
Poynting-Vektoren fiir ebene Wellen und fiir die Kugel-
wellen eines strahlenden Dipols angegeben.

—p+divj.

Die Intensitdt wurde definiert als die Energieflussdichte
bezogen auf eine Flache senkrecht zur Ausbreitungsrich-
tung der Welle. Mit Hilfe des Poynting-Vektors kann man
auch sehr einfach den Energiefluss durch ein schiefste-
hendes Flachenelement angeben (Abb. 3.17):

dd.=S5-dA =S -7#dA =Scos?dA, (3.44)

Abbildung 3.17 Energiefluss . | dA
durch das Flachenelement dA, zu
(3.44)

wobei S den zeitlichen Mittelwert iiber eine Wellenpe-
riode bezeichnet. Da es uns im folgenden stets nur auf
diesen Mittelwert ankommt, werden wir kiinftig das Mit-
telwertszeichen weglassen und statt S einfach S schreiben.

Ausgedehnte Strahlungsquellen, Radiometrie

Zur Beschreibung des Energietransports bei ausgedehn-
ten Strahlungsquellen ist es notwendig, einige zusatzliche
Begriffe einzufiihren. Man nennt sie die radiometrischen
Grofien und versieht sie mit einem Index e, um klar-
zustellen, dass sie zur Kennzeichnung der Energie der
Strahlung dienen. Wir versuchen, das Thema kurz und
iibersichtlich abzuhandeln.

Wir haben bereits in (3.34) mit dem Gesamtstrahlungs-
fluss eines schwingenden Dipols ein Beispiel fiir den
Strahlungsfluss @, berechnet. Wenn es keine Absorpti-
on gibt, ist er identisch mit der Strahlungsleistung des
Dipols, gemessen in Watt. Man kann den Strahlungs-
fluss auch durch ein begrenztes Flachenstiick berechnen
(Abb. 3.18a). Mit Hilfe von (3.44) erhalten wir, wenn
nur eine punktférmige Strahlungsquelle vorhanden ist

a
i @;
\
b
dA
an A

e

Abbildung 3.18 Zur Berechnung des Strahlungsflusses. a in (3.45), b in
(3.47)
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(z.B. ein sehr kleiner schwingender Dipol):

cbe:/S'dA:/ScosﬁdA. (3.45)
A A

Bei Vorhandensein mehrerer Strahlungsquellen, die unab-
héngig voneinander (,,inkohdrent”) Strahlung emittieren,
ergibt sich*

<:De:/(51+52+...)dA
A

(3.46)
= /(S1C05191 +Spcosth +...)dA
A

Sind die Strahlungsquellen kontinuierlich verteilt
(Abb. 3.18b), so erhdlt man

@e://j—gcos&deA,
AQ

(3.47)

wobei die Integration iiber d(2 iiber den gesamten Raum-
winkelbereich zu erstrecken ist, in dem Strahlung einféllt.
Die hier auftretende Grofie dS/d(2 heifst Strahldichte Le:

_ds @,
T dQ T cos?®dQdA

Man kann L. sowohl fiir die auf eine Flache einfallen-
de als auch fiir die von einer Flache abgestrahlte Energie
berechnen. Die Einheit ist W/m? sr. Hier ist ,,sr” die Ab-
kiirzung fiir die Raumwinkeleinheit Steradian (vgl. Bd. I,
Gl (21.5)).

Héufig interessiert man sich fiir d®./dA, also fiir die
gesamte, iiber alle Strahlungsrichtungen integrierte Ener-
gieflussdichte. Je nachdem ob das Flachenelement dA
auf der Oberfldache des Strahlers oder auf der bestrahlten
Flache liegt, nennt man diese Grofse spezifische Ausstrah-
lung M. oder Bestrahlungsstirke E.. Die Integration
iiber die Strahlungsrichtung wird gewohnlich iiber den
halben Raumwinkel (2 = 27) erstreckt, die Einheit ist
W/m?:

Le (3.48)

dA liegt auf dem Strahler:

Me = % - / Lecos 9d02, (3.49)
27

dA liegt auf dem Empfanger:

E.= d (3.50)

)
dAe = /Lecosﬁdﬂ.
27

4 Wenn zwischen der Strahlung der einzelnen Quellen eine Phasen-
beziehung besteht (,kohdrente Strahlung”), muss man die E- und
die H-Vektoren addieren und erst dann den S-Vektor berechnen. Das
ergibt nattirlich etwas anderes als die Summe S; in (3.46). Auf die et-
was komplizierte Frage der Kohédrenz von Strahlung werden wir in
Kap. 7 eingehen.

3 Energie- und Impulstransport in Wellen

AR A

Abbildung 3.19 Strahlungsfluss durch eine von der Quelle weit entfernte Fla-
che, zu (3.52)

Dem bisher gebrauchten Begriff , Intensitit einer Welle”
entspricht in der Radiometrie die Bestrahlungsstirke E, |
auf einem Flachenelement, das senkrecht zum Poynting-
Vektor der einfallenden Welle aufgestellt ist.?

Der Strahlungsfluss pro Raumwinkelelement, d®./d(2,
der von der gesamten Fldche eines Strahlers in einer be-
stimmten Richtung abgegeben wird, wird Strahlstirke I,
genannt:

do

e_
To) —A/LecosﬁdA.

Hier ist ¢ der Winkel zwischen der Richtung des Norma-
lenvektors 71 auf dem Flachenelement dA des Strahlers
und der Beobachtungsrichtung. Die Integration erfolgt
uber die Flache des Strahlers, die Einheit ist W/sr. Diese
Grofle spielt vor allem dann eine Rolle, wenn die Strah-
lenquelle, gemessen an ihrer Ausdehnung, weit entfernt
ist (Abb. 3.19).

I =

(3.51)

Der Strahlungsfluss durch eine kleine Fliche A’ ist dann
gegeben durch

Al 4
=27 (3.52)
7
Der Fluss ist proportional zur Strahlstirke und nimmt

umgekehrt proportional zu r? ab.

Im Allgemeinen sind L, und I, Funktionen des Winkels ©.
Ein wichtiger Spezialfall ist der Lambert-Strahler, der da-
durch gekennzeichnet ist, dass die Strahldichte L. auf
seiner Oberfldache konstant ist und nicht von ¢ abhangt
(Abb. 3.20a). Fiir eine ebene Flache gilt dann nach (3.51)
das Lambertsche Gesetz:

Ie = LeAcos®, (3.53)
d.h. L. ist zu cos ¢ proportional (Abb. 3.20b). A cos ¢ ist
die Projektion der Fliche A auf eine Ebene senkrecht zur
Beobachtungsrichtung. Richtet man einen Strahlungsde-
tektor, der nur ein kleines Stiick der strahlenden Flache

5 Wie man sieht, ist die Begriffsbildung, die im Zusammenhang
mit ausgedehnten Lichtquellen notwendig wird, etwas kompliziert.
Gliicklicherweise sind seit einiger Zeit wenigstens die Bezeichnun-
gen und Formelzeichen genormt. Wir werden uns davon nicht
abhalten lassen, weiterhin den Begriff , Intensitdt” und die Formel-
zeichen von (3.15) zu verwenden, zumal der Buchstabe E mit der
elektrischen Feldstarke und der Energie schon mehrfach belegt ist.



3.3 Energietransport in elektromagnetischen Wellen
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Abbildung 3.20 a Strahldichte und b Strahlstdrke eines Lambertstrahlers und
der Sonne als Funktion des Winkels ¢. ¢ Gerat zur Messung der Strahldichte L.
Wenn die Flache des Strahlers vollsténdig vom Akzeptanzbereich des Geréts er-
fasst wird, zeigt es die Strahlstarke I an. D ist der lichtempfindliche Detektor,
z.B. ein Bolometer

sieht, auf einen Lambert-Strahler (Abb. 3.20¢), so ist die
Anzeige tiberall konstant und unabhéngig vom Winkel 8.
Die Flache eines Lambert-Strahlers erscheint also stets
gleichmiflig hell, auch wenn die Oberfldache nicht eben
ist. Eine leuchtende Kugel und eine leuchtende Kreis-
scheibe sehen bei einem Lambert-Strahler genau gleich
aus. Der Vollmond ist ein gutes Beispiel dazu. Die Sonne
zeigt dagegen deutliche Abweichungen vom Lambert-
schen Gesetz (Abb. 3.20). Sie wird zum Rand hin etwas
dunkler.

Das Lambertsche Gesetz gilt in guter Naherung fiir die
Strahlung einer rauen, diffus reflektierenden Fldche, z. B.
fiir eine frische Schneefldche. Das erschwert es ungemein,
bei Neuschnee die Neigung einer Flache abzuschatzen.

In idealer Weise folgt die Strahlung eines schwarzen Koér-
pers (Bd. II/7) dem Lambertschen Gesetz, denn im Innern
des Hohlraums besteht ein homogenes Strahlungsfeld mit
der Energiedichte u, in dem keine Richtung ausgezeich-
net ist. Die Energiedichte der Strahlung, die innerhalb
des Hohlraums im Raumwinkelelement d(2 in Richtung
des Einheitsvektors § lauft, ist u d() /4. Hat der Hohl-
raum eine kleine Offnung (Abb. 3.21), so tritt durch das
Flachenelement dA der Offnung in der Zeit dt in Rich-
tung § die Strahlungsenergie, die in dem Volumenelement
dV = cdtcos # dA enthalten ist:

dd. dt = dAcosﬁucht .
47

Offnung des
Hohlraumes

dV=cdt costy dA

Abbildung 3.21 Lambertstrahlung des schwarzen Korpers: Zur Ableitung von
(3.54)

Es besteht dort also nach (3.48) die Strahldichte

uc

e = E ’ (354)

die nur von der Energiedichte der Strahlung im Hohl-
raum abhdngt. Wegen der Konstanz von L. lédsst sich die
spezifische Ausstrahlung M. leicht berechnen: Mit d(2 =
27 sin® d¢ erhélt man

/2
uc

M. = 271l / cosfsinddd = wle = * . (355)
0

Diese Formel wird im Zusammenhang mit dem Stefan-
Boltzmannschen Gesetz in Bd. V /2.1 benétigt.

Spektrale Grofien. Wenn sich die Strahlung iiber einen
ausgedehnten Wellenldngenbereich erstreckt, ist es
zweckmaiflig, radiometrische Grofien einzufiihren, die
sich auf einen bestimmten Wellenldngenbereich dA be-
ziehen, sogenannte Spektrale Grofien. Sie werden durch
einen Index A gekennzeichnet. So wird z. B. der Spektrale
Strahlungsfluss @, , definiert:

do,
P (A) = I (3.56)
Den Gesamt-Strahlungsfluss (3.56) erhdlt man durch Inte-
gration:

@, — / @, dA . (3.57)
0

Entsprechendes gilt fiir die anderen spektralen Grofien
Ley, Mg p, Ee p und I . Man kann die spektralen Grofsen
nattirlich auch auf die Frequenz beziehen. Dann ist z. B.

Doy dv = =P,y dA . (3.58)
Daraus folgt mitv =c¢/A
dv c
@e,/\ == —a(perv == ﬁ®e,v . (359)
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Photometrie

Wenn die Strahlung im sichtbaren Spektralbereich liegt,
kommt es in der Technik wie im tdglichen Leben ge-
wohnlich nicht auf die Strahlungsenergie, sondern auf
die vom Auge wahrgenommene Helligkeit, also auf den
visuellen Eindruck an. Aus diesem Grund werden ne-
ben den radiometrischen Groflen noch photometrische
Grofien definiert. Die Empfindlichkeit des Auges hangt
von der Wellenldnge ab, wie Abb. 3.22 zeigt. In die-
sem Diagramm gibt es zwei Kurven, entsprechend den
zwei lichtempfindlichen Elementen auf der Netzhaut des
menschlichen Auges: den Zapfchen, mit Farbempfindung
ausgestattet und fiir das Tagessehen verantwortlich, und
den Stabchen, fiir das Nachtsehen, ohne Farbdiskrimi-
nierung, aber lichtempfindlicher als die Zapfchen. Im
hellen Licht lasst die Empfindlichkeit der Stabchen sehr
stark nach. Wenn man ins Dunkle kommt, dauert es ei-
nige Zeit, bis sie ihre Empfindlichkeit wiedergewinnen
(Adaption). Man kann diesen Effekt beim Autofahren
ausnutzen: Wenn man vom hellen Sonnenlicht in einen
dunklen Tunnel fahren muss, empfiehlt es sich, einige Zeit
vor der Einfahrt ein Auge zu schlieflen und erst im Tunnel
wieder zu 6ffnen. — Die Sehschwelle ist definiert als der
Strahlungsfluss, der aus einer punktférmigen Weifslicht-
quelle ins dunkel-adaptierte Auge fallt und gerade noch
wahrgenommen wird. Sie liegt bei ca. 10~!” Watt. Das ent-
spricht einem Fluss von 20-30 Photonen pro Sekunde!

Dem Licht einer bestimmten Wellenlinge wird bei der
Wahrnehmung des optischen Reizes eine bestimmte Far-
be zugeordnet, wie Tab. 3.3 zeigt. Fiir das Farbsehen
sind die Zapfchen mit drei verschiedenen Rezeptoren aus-
gestattet. Die Empfindlichkeit dieser Rezeptoren ist als
Funktion der Wellenlange in Abb. 3.23 aufgetragen. Die
unterschiedliche Reizung der Rezeptoren bestimmt den
Farbeindruck. Das jedenfalls ist die Aussage der Drei-
komponententheorie, die 1802 von Th. Young aufgestellt
und gegen Ende des 19. Jahrhunderts durch Helmholtz
auf der Grundlage von prazisen Experimenten detail-

Abbildung 3.22 Relative 14
Empfindlichkeit des menschlichen
Auges. V(A): Zapfchen, V/(A):
Stabchen
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Tabelle 3.3 Wellenlangen der Spektralfarben

Farbe A (nm)

violett 400-440
blau 440-495
griin 495-580
gelb 580-620
orange 620-640
rot 640-750

N
1~ 1
400 450 500 550 600 650
A (nm)

Abbildung 3.23 Spektrale Empfindlichkeit der Farbrezeptoren beim Men-
schen. b: ,blaue” Rezeptoren, g: ,griine” Rezeptoren, r: ,rote” Rezeptoren

liert ausgearbeitet wurde. Sie erkldrt weitgehend die bei
der Wahrnehmung von Farben beobachteten Phianomene,
wie z.B. dass der gleiche Farbeindruck mit ganz unter-
schiedlichen optischen Spektren hervorgerufen werden
kann. Urspriinglich beruhte die Dreikomponententheorie
ausschliefilich auf der Untersuchung der verschiedenen
Arten von Farbenblindheit. In der zweiten Halfte des
20. Jahrhunderts konnte die Theorie mit den Methoden
der Mikrospektrometrie und der Mikroelektrophysiologie
durch die direkte Reizung der einzelnen Rezeptoren un-
termauert werden. Es zeigt sich, dass auch die Stiabchen
bei der Farbempfindung ein Wortchen mitzureden haben.

In der Photometrie geht man von der Empfindlichkeits-
kurve V(A) in Abb. 3.22 aus. Man definiert den Licht-
strom, indem man den Strahlungsfluss @, , mit der Emp-
findlichkeitskurve V(A) wichtet:

@, — Km/V(A)cDe,A i .
0

(3.60)

Der Index v steht fiir visuell. Durch Festlegung eines Zah-
lenwerts von Ky, wird als SI-Einheit fiir den Lichtstrom
das Lumen (abgekiirzt Im) definiert:

Km = 6831m/W . (3.61)

Der Zahlenfaktor ist so gewahlt, dass der Anschluss an
frither iibliche Einheiten gewahrleistet ist.
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Tabelle 3.4 Lichtstrom verschiedener Lichtquellen

Lichtquelle Lumen
Leuchtdiode 102
Gliithlampe, 60 W 730
Leuchtstoffrohre, 40 W 2300
Hg-Dampflampe, 100 W 5000
Xe-Hochdrucklampe, 500 W 50000

Zur Charakterisierung der Strahlungsleistung von Licht-
quellen wird der totale Lichtstrom in Lumen angegeben,
d.h. die Integration in (3.47) wird iiber eine geschlossene
Flache erstreckt, die die Lichtquelle umschliefit. Tabel-
le 3.4 gibt einige Beispiele.

Auch die iibrigen radiometrischen Gréfien konnen analog
zu (3.60) in photometrische Gréflen umgerechnet werden.
Tabelle 3.5 gibt eine Ubersicht. Es entstehen dabei abgelei-
tete Einheiten, von denen einige mit neuen Namen belegt
werden. Besonders hervorzuheben ist die Einheit candela
(Iat. fiir Kerze) fiir die Lichtstiarke I

lcd =11m/sr, (3.62)

weil diese Einheit im SI-System aus historischen und
messtechnischen Griinden als Basiseinheit gefiihrt wird.
Eine gewdhnliche Kerze hat eine Lichtstarke von etwa
0,5cd. Fiir die Beleuchtungstechnik wichtig sind die Be-
leuchtungsstarken, die von natiirlichen Lichtquellen er-
zeugt werden, und die, die fiir bestimmte Tatigkeiten als
erforderlich gelten. Tabelle 3.6 gibt einen Uberblick und
zeigt, dass das menschliche Auge iiber einen enormen dy-
namischen Bereich verfiigt.

Tabelle 3.5 Radiometrische und photometrische GroBen und Einheiten

Radiometrie

Do Strahlungsfluss [Watt (W)]
(radiant flux)

Qe Strahlungsenergie [W s]
(radiant energy)

I Strahlstarke [W /sr]

(radiant intensity)
L Strahldichte [W/m? st]
(radiance)
Spez. Ausstrahlung [W/m?]
(radiant exitance)

ES Bestrahlungsstéirke1 [W/m?]
(irradiance)

M.

! Diese GroBe, angegeben fiir ein Flichenelement, das senkrecht zum Poyntingvektor S steht, ist identisch mit der bei (3.15) definierten

Intensitét.

Tabelle 3.6 Beleuchtungsstérken

Natiirliche Lichtquellen:

Mittagssonne:

Sommer 70000 Ix
Winter 6000 1x
mondhelle Nacht 0,21x
sternklare Nacht 3-10~*1x
(Neumond)

Fiir Titigkeiten empfohlen:

Lesen 100 1x
Handarbeit 500 1x
Prézisionsarbeit 1000 1x

3.4 Impulstransport in Wellen,

Strahlungsdruck

Eine Welle transportiert nicht nur Energie, sondern auch
Impuls. Wenn die Energie absorbiert wird, wird auch Im-
puls auf den Absorber tibertragen. Dadurch entsteht ein
Druck, der sogenannte Strahlungsdruck. Wie kommt das
zustande?

Elektromagnetische Wellen

Betrachten wir eine ebene elektromagnetische Welle, die
in x-Richtung lauft und senkrecht auf einen Absorber fallt.
Die Feldvektoren sind E(x,t) = (0,E;,0) und B(x,t) =
(0,0, B;). Die Absorption der Welle erfolgt dadurch, dass
das elektrische Feld durch die Kraft Fe = gE im Absorber
Ladungen in Bewegung setzt und dass die auf die Ladun-
gen lbertragene Energie im Absorber dissipiert und in

Photometrie

Dy Lichtstrom [Lumen (Im)]
(Iuminous flux)

@ Lichtmenge [Im ]
(quantity of light)

I&, Lichtstéarke [Im/sr = Candela (cd)]
(luminous intensity)

I Leuchtdichte [Im/m?2 sr = cd/ mz]
(luminance)

M, Spez. Lichtausstrahlung [Im /m?]
(luminous exitance)

= Beleuchtungsstérke [Im/ m? = Lux (Ix)]
(illumination)
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Abbildung 3.24 Gedankenexperiment zum Impulstransport durch eine Welle

Empfinger

Warme umgewandelt wird. Gemittelt iiber eine Periode
der Welle ist die {ibertragene Leistung

—— =v-Fe =quyEy .

5 (3.63)

Auf die bewegten Ladungen wirkt auch die Lorentz-
Kraft Fy = gq(v x B), erzeugt durch das B-Feld der Welle.
Da v und gE im zeitlichen Mittel die gleiche Richtung
haben, haben auch gv und E die gleiche Richtung. Die
Lorentz-Kraft zeigt also in die Richtung des Poynting-
Vektors § = (E x H), also in die Ausbreitungsrichtung der
Welle. Im Zeitintervall dt wird auf die Ladung g der Im-
puls

dw

—  quyEy
dp = Fpndt = B, = ——=
p m quybz c c

(3.64)
tibertragen, denn nach (2.59) ist B, = E,/c. Die Summe
dieser Impulsiibertrage, berechnet pro Zeit- und Flachen-
einheit, ergibt den Strahlungsdruck.

Wir stellen uns nun vor, dass in einem Wagen, der rei-
bungslos auf Schienen laufen kann, vom Ende A her
mit einer Richtantenne elektromagnetische Wellen ausge-
sandt werden (Abb. 3.24). Sie sollen am anderen Ende B
reflexionsfrei absorbiert werden. Wenn es nur den bei B
ausgetibten Strahlungsdruck gébe, miisste sich der Wa-
gen aufgrund des Strahlungsdrucks, also ohne Einwir-
kung von auflen, in Bewegung setzen. Das ist zweifellos
Unsinn. Der Sender bei A muss bei der Emission der Wel-
len einen Riickstofs erhalten, der entgegengesetzt gleich
der vom Strahlungsdruck ausgeiibten Kraft ist. Wenn bei
Emission und Absorption der Welle Energie und Impuls
erhalten bleiben sollen, muss die Welle selbst Energie und
Impuls enthalten.

Die Energiedichte # wurde in (3.30) angegeben. Die Im-
pulsdichte der Welle, gewohnlich mit g bezeichnet, ver-
hélt sich zur Energiedichte u wie der in (3.64) berechnete
Impulsiibertrag dp zum Energieiibertrag dW. Es ist also

g=-3%. (3.65)

o=

§ ist ein Einheitsvektor in Ausbreitungsrichtung.

Nun kénnen wir den Strahlungsdruck berechnen. In ei-
nem reflexionsfrei absorbierenden Medium wird in der

3 Energie- und Impulstransport in Wellen

Zeit dt auf der Flache A die Energie 1icA dt absorbiert, pro
Zeit- und Flacheneinheit also die Energie 1c (vgl. (3.15)).
Ebenso ist der Impulsiibertrag pro Zeit- und Flachenein-
heit gegeben durch gc:

S =us.

o=l

gc= (3.66)

Der Betrag dieser vektoriellen Grofle ist der Strahlungs-
druck bei vollstaindiger Absorption der Welle:

Prad =10 . (3.67)

Wird die Welle vollstindig reflektiert, wird die Impuls-
dichte der Welle von +g in —g umgewandelt. Der Strah-
lungsdruck ist

Prad = 210 . (3.68)

Von einer besonderen physikalischen Bedeutung ist der
Strahlungsdruck, der sich im thermischen Gleichgewicht
in einem Hohlraum einstellt. Mit seiner Hilfe kann
man das Stefan-Boltzmannsche Gesetz auf die klassi-
sche Elektrodynamik und den II. Hauptsatz zuriickfiihren
(Bd. 1I/9.4). Wir bringen nun die Ableitung der dort
verwendeten Gleichung Bd. II, Gl. (9.30), p = u/3: Die
Strahlung im Hohlraum kann man als Uberlagerung von
ebenen Wellen beschreiben, deren Richtungen isotrop ver-
teilt sind. Da im thermischen Gleichgewicht von jedem
Flachenelement der Hohlraumwand ebenso viel Energie
abgestrahlt wie absorbiert wird, gehen wir von (3.68) aus.
Die Mittlung iiber die Raumrichtungen fiihren wir mit
dem in der kinetischen Gastheorie erprobten Schnellver-
fahren durch (siehe Bd. II, Gl (5.7)): Im Endeffekt fallt
1/6 der Strahlung senkrecht auf das Flachenelement. Der
Strahlungsdruck ist also, wie behauptet,
2u u

Prad = 6 3 (3.69)
Unter gewohnlichen Umstanden bewirkt der Strahlungs-
druck nur winzige Effekte. Es war deshalb sehr schwierig,
diesen schon von Maxwell postulierten Effekt im Labor
nachzuweisen, besonders weil thermische Effekte infol-
ge der Absorption von Strahlung die wirklichen Effekte
des Drucks iiberdecken kénnen. Erst nach jahrelangen
Vorarbeiten gelang es 1901 dem russischen Physiker Le-
bedev, den Strahlungsdruck des Lichts nachzuweisen. In
der Astronomie spielt er dagegen eine durchaus hand-
feste Rolle: Er bewirkt, dass der aus Staubteilchen ge-
bildete, hell leuchtende Kometenschweif stets von der
Sonne weg weist (Abb. 3.25). Auch muss er bei der Be-
rechnung des hydrostatischen Gleichgewichts im Innern
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Abbildung 3.25 Richtung des Kometenschweifs

heifler Sterne neben dem Gasdruck beriicksichtigt wer-
den. In der Kosmologie des frithen Universums spielte
der Strahlungsdruck sogar eine dominierende Rolle (siehe
Bd.I1/7.4).

Strahlungsdruck und Lichtquanten. Eine sehr einfache
Erklarung fiir den Strahlungsdruck erhdlt man, wenn
man davon ausgeht, dass eine ebene elektromagnetische
Welle der Frequenz v als ein Strom von Lichtquanten
der Energie hv betrachtet werden kann (Bd. 1/15.8). Ent-
hélt die Welle pro Volumeneinheit n Lichtquanten, ist die
Energiedichte i = nhv. Jedes Lichtquant hat nach Bd. I,
Gl. (15.58) den Impuls hv/c. Im Zeitintervall At treffen
nAcAt Quanten auf die Wandfldche A. Sie bewirken einen
Kraftstof3

FAt = nAcAtl% .
Also ist der Strahlungsdruck

F

Prad = A= nhv =1u. (3.70)

Diese Uberlegung zeigt nicht etwa, dass der Strahlungs-
druck ein Quantenphdnomen ist, sondern nur, dass in
diesem Punkt die Beschreibungen mit Lichtquanten und
mit der Maxwellschen Theorie konsistent sind. Wie man
dariiber hinaus die Lichtquanten mit den klassischen
elektromagnetischen Wellen vereinbaren kann, werden
wir in Bd. V/3.6 diskutieren.

Schallwellen

Auch bei Schallwellen gibt es einen Strahlungsdruck. Das
bedeutet, dass der mittlere Druck in einer ebenen Schall-
welle hoher ist, als der Umgebungsdruck pg. Das ist

Torsionsdraht
AN

Scheibe

Sp G
() -

Abbildung 3.26 Schallradiometer. Der Durchmesser der Scheibe muss d > A
sein. Sp: Spiegel zur Ablesung mit Lichtzeiger. G: Gegengewicht

seltsam, denn der zeitliche Mittelwert des Schallwechsel-
drucks p in (2.15) ist Null. Des Rétsels Losung: Wir hatten
in (2.17) und (2.18) fiir die Dichte den konstanten Wert
0o eingesetzt: Setzt man statt dessen p = p(x,t) aus (2.16)
ein, erhdlt man eine weitaus kompliziertere Differential-
gleichung. Thre Losung kann angendhert werden durch

p(x,t) = po + Po cos(kx — wt)

3.71
+ 21 cos? (kx — wt) . 67
Der zeitliche Mittelwert ist
pP=po+u — Prad=1u. (3.72)

Der Strahlungsdruck des Schalls ist winzig. Selbst bei ei-
nem Schallpegel von 100 dB erhilt man nur

1 102W
s 330m/s

=3.10"°Pa=3-10 ""bar.

Der Schallwechseldruck ist unter diesen Umstanden nach
Abb. 3.4 und (3.22) 2 Pa! Der Schallstrahlungsdruck kann
dennoch mit dem in Abb. 3.26 gezeigten Schallradiometer
gemessen werden.

Strahlungsdruck und Aquivalenz von Masse und
Energie

Bei ndherer Betrachtung gibt es in dem bei Abb. 3.24
beschriebenen Gedankenexperiment doch noch ein Pro-
blem. Nachdem der Sender eingeschaltet wurde, wirkt
auf den Wagen zundchst nur der Riickstoff der emit-
tierten Wellen, der Wagen setzt sich in beschleunigte
Bewegung. Erst wenn auf der Empféangerseite der Strah-
lungsdruck wirksam wird, wird die Beschleunigung des
Wagens durch das Kréftegleichgewicht gestoppt. Der Wa-
gen rollt aber mit konstanter Geschwindigkeit weiter.
Anscheinend hat sich der Schwerpunkt der Anordnung
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Abbildung 3.27 Einsteins Gedankenexperiment zur Aquivalenz von Masse
und Energie

in Bewegung gesetzt, obgleich keine Einwirkung von au-
Ben stattgefunden hat.

Auf dieses Problem wurde Einstein aufmerksam. Er 16s-
te es, indem er die in der relativistischen Mechanik
(Bd. 1/15.4) entwickelte Formel E = mc? auf die elektro-
magnetische Welle anwandte, bei der eine Ruhemasse gar
nicht vorhanden ist. Er behauptete, dass der Transport der
elektromagnetischen Feldenergie E dem Transport einer
Masse m = E/c? entspricht, der bei der Berechnung des
Schwerpunkts mit zu beriicksichtigen ist. Der Einfachheit
halber nehmen wir an, dass der Sender nur einen kurzen
Lichtblitz der Dauer T < L/c emittiert. Der Wagen rollt
dann eine Strecke 6 und bleibt stehen, wenn das Licht den
Empféanger erreicht hat. Im Lichtblitz steckt die Energie
E = uAct. Das Massendquivalent ist also nach Einstein

E UAT
m=—=—.

7
c2 c (373

3 Energie- und Impulstransport in Wellen

Vor der Emission des Lichts liegt in Abb. 3.27a der
Schwerpunkt des Systems bei

1) ML/2)+m-0 L M
s M—+m T 2M+m’

wenn M die Masse des Wagens ist. Nach Ankunft des
Lichts beim Empfanger liegt er, wie Abb. 3.27b zeigt, bei

x = {M(%—é) —I—m(L—(S)] M—li-m

M
m+M’

(3.74)

- E—é—i—]\%(L—J)]

Die Strecke 6 konnen wir mit (3.67) berechnen. Der Wagen
hat bei der Emission den Impuls

Ip| = FT = pragAT = UAT

erhalten. Er rollt mit der Geschwindigkeit V = |p|/M
wihrend der Zeit t = (L — §)/c. Die zuriickgelegte Stre-
cke ist ATL s

UAT L — m
—_— =_—(L-¢

M ¢ M( )

An dieser Stelle wurde von Einsteins Formel (3.73) Ge-
brauch gemacht. Setzt man dies in (3.74) ein, erhdlt man
xgl) = xgz): Der Schwerpunkt bleibt in Ruhe, auch wenn
sich der Wagen bewegt, sofern die Strahlungsenergie ein
Aquivalent von Masse ist und sofern fiir diese Aquivalenz

die Formel m = E/c? gilt.

6=Vt=

Einsteins Behandlung des Strahlungsdruck-Problems
blieb noch jahrzehntelang der einzige Hinweis darauf,
dass die Aquivalenz von Masse und Energie tatsichlich
besteht. Positronen und Mesonen wurden erst viel spater
entdeckt, und auch die Massenspektrometrie und die Un-
tersuchung der Radioaktivitdt erreichten erst viel spéter
die Genauigkeit, die man fiir einen Vergleich der Diffe-
renzen von Atommassen mit den Energieumsétzen beim
radioaktiven Zerfall braucht.



Ubungsaufgaben

Ubungsaufgaben

3.1.  Schallstirke und Schallwechseldruck. Wie grof3
ist ist die Druckamplitude p einer Schallwelle in Luft
unter Normalbedingungen bei einem Schallpegel L, =
50dB?

3.2. Reflexionsfreie Aufspaltung eines Signals. Ein
hochfrequentes Signal, das von einem Koaxialkabel mit
der Impedanz Z transportiert wird, soll in zwei Signale
mit gleichen Amplituden aufgespalten werden. Zu die-
sem Zweck werden an das Kabelende zwei andere gleich-
artige Kabel in der folgenden Weise angeschlossen: Die
Kabelméntel werden direkt miteinander verbunden. Die
drei Innenleiter werden unter Zwischenschaltung dreier
gleicher Ohmscher Widerstinde R miteinander verbun-
den (Sternschaltung). Wie grofs muss R sein, damit an
der Verbindungsstelle keine Signalreflexionen auftreten?
Wie grof3 sind die Ausgangssignale, die an den beiden
Ausgéngen abgegriffen werden im Vergleich zum ur-
spriinglich eingespeisten Signal? Wie viel % der Leistung
des Generators gehen in dem Widerstandsnetzwerk ver-
loren?

3.3. Wellenwiderstand eines Koaxialkabels und ei-
ner Streifenleitung. a) Geben Sie den Wellenwiderstand
(3.26) eines Koaxialkabels als Funktion des Innenradius r;
und des Auflenradius r; an. Die Dielektrizititskonstan-
te des Materials im Zwischenraum sei € = 2,2. Wie grofs
muss 7; sein, wenn r;, = 0,15cm gewéhlt wird und der
Wellenwiderstand Z = 50 () sein soll? Wie grofs sind die
Kapazitdt und die Induktivitit pro m Kabellange?

b) Die Gleichungen (2.87) setzen voraus, dass der Strom
in den Leitern in einer diinnen Schicht nahe der Oberfla-
che fliefit. Ab welcher Frequenz betrigt die Eindringtiefe
in einen Kupferleiter weniger als 10 % des inneren Leiter-
radius 7;?

c) Eine Streifenleitung bestehe aus zwei langen parallelen
Metallbdandern im Abstand d mit der Breite b. Wie grof3
muss das Verhéltnis d /b sein, wenn der Wellenwiderstand
50 Q) sein soll (¢ = 1)?

3.4. Feldstirken in einem Laserstrahl. a) Wie grofS
sind die Amplituden der elektrischen und der magne-
tische Feldstirke in einem kontinuierlichen Laserstrahl
mit der Leistung P = 1 mW und dem Radius ¢, = 1 mm?
Rechnen Sie zunidchst mit einem konstanten und dann,
realistischer, mit einem Gaufischen Strahlprofil fiir die In-
tensitat: I(r) = Iy - exp(—12/0?).

b) Wie grof3 sind die Amplituden der elektrischen und der
magnetischen Feldstdrke in einem gepulsten Strahl glei-
chen Durchmessers mit der Energie 1m] pro Puls und
einer Pulsdauer t = 10ns?

3.5. Kometenschweif. a) Kometen besitzen schmale
Typ I- und diffuse Typ II-Schweife, wobei letztere aus
Staubteilchen bestehen. Ein kleines Teilchen im Staub-
schweif eines Kometen unterliegt dem von der Sonne
ausgehenden Strahlungsdruck und der Schwerkraft der
Sonne. Wie grof ist deren Verhiltnis fiir ein Teilchen mit
dem Radius 7 = 1 um und der Dichte p = 2gcm~3? Die
Leuchtkraft der Sonne ist P = 3,8 - 102 W. Das Produkt
aus der Sonnenmasse und der Gravitationskonstanten er-
hilt man aus dem Keplerschen Gesetz fiir die Erdbahn,
der mittlere Abstand der Sonne von der Erde ist Rg;qe =
1,5 10% km.

b) Den Einfluss der Schwerkraft des Kometenkerns auf ein
Staubteilchen braucht man schon in unmittelbarer Nahe
zum Kern nicht zu berticksichtigen. Der Komet lege am
sonnenndchsten Punkt seiner Bahn eine Strecke s zurtick,
deren Verhiltnis zu seinem Abstand R von der Sonne
s/R = 0,1 betrdgt. Um welchen Abstand AR im Verhiltnis
zur Laufstrecke s wird sich das Staubteilchen im gleichen
Zeitraum von der Bahn des Kometenkerns entfernen?
Hinweis: Bei kleinen AR ist fiir die Radialbewegung des
Staubteilchens relativ zur Bahn des Kometenkerns nur
der Strahlungsdruck verantwortlich. Warum? Aus wel-
chen Griinden ist der Staubschweif diffus und gebogen?

3.6. Magnetischer und elektrischer Dipol. a) Aus der
Elektrizitatslehre ist bekannt, dass ein von einem Strom [
durchflossener kreisférmiger Drahtring mit dem Radius r
ein magnetisches Dipolmoment 7721 besitzt. Ist der Strom
ein Wechselstrom, emittiert der Drahtring elektromagne-
tische Wellen wie ein elektrischer Dipol; nur sind in der
Fernzone die elektrische und die magnetische Feldstar-
ke miteinander vertauscht. Schlieen Sie aus (3.34) auf
die Gleichung fiir die Leistung des magnetischen Dipols,
indem Sie die elektrischen durch entsprechende magneti-
sche Grofien ersetzen und eine Dimensionsanalyse durch-
flihren. Zahlenbeispiel: ¥ = 5cm, Frequenz v = 5,5 MHz,
Stromamplitude Iy = 10mA. Wie hingt die Leistung von
v ab?

b) Zum Vergleich betrachten wir einen elektrischen Dipol,
bei dem ein gleich grofier Strom wihrend der Zeit 1/v
iiber eine Strecke 2r hin- und herfliefit, genauer gesagt,
wir wéahlen als Amplitude des elektrischen Dipolmo-
ments p. = 2rly/v. Wie grof8 ist die abgestrahlte Leistung?
Wie dndert sich die Leistung des elektrischen Dipols mit
der Frequenz, wenn man die Lange r und die Stromstérke
Iy konstant halt?

c) Ein Mobiltelefon besitze bei einer Frequenz v =
1,8 GHz eine Sendeleistung von 1W. Wie grofs ist p,?
Man vergleiche mit dem extrapolierten Dipolmoment von
Teil b) fiir das Zahlenbeispiel von Teil a).
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3.7. Abstrahlung eines geladenen Teilchens. a) Ein
Elektron befinde sich in einem elektrischen Wechselfeld
mit der Amplitude Ey. Es fiithrt darin periodische Schwin-
gungen aus, die wir zunéchst als ungedampft annehmen.
Wie groff ist die die Schwingungsamplitude und wel-
che Amplituden des elektrischen Dipolmoments und des
Elektronen-Impulses ergeben sich daraus? Das beschleu-
nigte Elektron stahlt elektromagnetische Wellen ab. Veri-
fizieren Sie, dass (3.34) und (3.35) 4quivalent sind.

b) Die Abstrahlung fiihrt zu einer Dimpfung der Elektro-
nenschwingung. Die obige Rechnung setzt voraus, dass
die Energieabstrahlung pro Schwingungsperiode klein im
Vergleich zur durchschnittlichen kinetischen Energie des
Elektrons ist. Was folgt aus dieser Bedingung fiir die Fre-
quenz der Schwingung?

3.8. Poynting-Vektor. Eine Gleichspannungsquelle ist
iiber ein Koaxialkabel mit einem Ohmschen Verbraucher
verbunden. Wie grof8 sind die elektrische Feldstédrke, die
magnetische Feldstdrke und der Poynting-Vektor, wenn
die Spannung U, der Strom I und der Innen- und der Au-
Benradius bekannt sind? Man zeige: Die vom Poynting-
Vektor transportierte Leistung ist P = IU.

3 Energie- und Impulstransport in Wellen

3.9. Energiefluss im Kondensator. Ein Plattenkonden-
sator mit einem Dielektrikum besitze kreisféormige Plat-
ten, deren Abstand d viel kleiner als der Kondensa-
torradius ist. Wahrend einer Aufladung entsteht ein
zeitabhingiges elektrisches Feld E(t). Die Aufladung er-
folge so langsam, dass E(t) im Kondensatorinneren mit
Ausnahme des Randbereichs tiberall gleich grof3 ist.

a) Zwischen den Kondensatorplatten entsteht wegen
(2.44) ein magnetisches Ringfeld H. Wie groB ist H(r, ) als
Funktion des Abstands r zur Symmetrieachse?

b) Wie grof8 ist der Poynting-Vektor und wie ist er bei der
Kondensatoraufladung gerichtet?

c) Wie grof ist der Energiefluss durch eine konzentrisch
zur Symmetrieachse liegende Zylinderfliche mit dem Ra-
dius r innerhalb des Kondensators? Rechnen Sie nach:
Dieser Energiefluss ist gleich der zeitlichen Anderung
der elektrischen Feldenergie innerhalb des Zylindervolu-
mens.

d) Beschreiben Sie, wie elektrische Energie von einer Bat-
terie in einen Kondensator transportiert wird.
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In den vorangegangenen Kapiteln sind wir zwar
mit der mathematischen Beschreibung von Wellen-
erscheinungen schon ziemlich weit gediehen; es
lohnt sich aber, die mathematische Darstellung von
Wellen noch etwas weiter zu treiben. Das wird sich
bei der Behandlung optischer Probleme bewé&hren;
auch wird sich zeigen, dass die hier eingefiihrten
Begriffe und Methoden in der Quantenmechanik un-
entbehrlich sind. Wir fithren den Wellenvektor k und
die Darstellung von Wellenfunktionen mit komple-
xen Zahlen ein. Als Beispiel behandeln wir das Ver-
halten einer linearen Kette von Massenpunkten, die
durch Federn miteinander verbunden sind. Dann
diskutieren wir die mathematische Beschreibung
von Wellenziigen endlicher Linge und von soge-
nannten Wellenpaketen. Das fiihrt auf eine wichtige
Beziehung zwischen zeitlicher Dauer und Bandbrei-
te des Wellenzugs, auf die klassische Unschirferela-
tion. Am Schluss des Kapitels wird ausgehend von
dem in Abschn. 1.3 eingefiihrten Fourier-Integral die
Fourier-Transformation behandelt, die besonders in
der Optik eine grofse Rolle spielt.

4.1 Der Wellenvektor

Ebene Wellen im Raum

Wir haben bisher den Fall betrachtet, dass sich die ebene
Welle entlang der x-Achse eines kartesischen Koordi-
natensystems fortpflanzt. Um die Ausbreitung in einer
beliebigen Richtung zu beschreiben, fithren wir den Wel-
lenvektor

k = kit = (ky ky, k) 4.1)

ein. 7 ist der Einheitsvektor in Ausbreitungsrichtung, er
steht senkrecht auf den Flichen gleicher Phase. |k| ist
gleich der Wellenzahl. Es gilt also

M=k=\BrB+B=T @2
Die Wellenfunktion ebener Wellen schreibt man:
Y(r,t) = Ppocos(k-r — wt) . (4.3)

Abbildung 4.1 zeigt einen Ausschnitt aus den Wellen-
fronten. Fiir die in x-Richtung laufende ebene Welle gilt
k = (k,0,0), womit (4.3) in (1.3) tibergeht.
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Abbildung 4.1 Wellenfronten (Ausschnitte) und Wellenvektor einer ebenen
Welle

Gekriimmte Wellenfronten

Da die Richtung des k-Vektors durch die Flachennormale
fi der Wellenfronten gegeben ist, ist das eben eingefiihr-
te Konzept auch fiir gekriimmte Wellenfronten brauchbar.
Besonders einfach wird das bei der in Abb. 4.2 gezeigten
Kugelwelle. Legt man den Ursprung des Koordinatensys-
tems in das Zentrum der Kugelwelle, so ist die Wellen-
funktion

P(rt) = é cos(k-r— wt) = é cos(kr —wt), (4.4)

denn in diesem Falle sind k und r gleichgerichtet. Die
Amplitude der Welle ist (1) = A/r. Der Amplituden-
faktor A héangt bei vernachldssigbarer Absorption nicht
von r ab, kann aber winkelabhédngig sein, wie z. B. bei der

Abbildung 4.2 Wellenfronten und Wellenvektoren einer Kugelwelle. a Raum-
liche Darstellung, b Zentralschnitt, zu vergleichen mit der Darstellung der
Poynting-Vektoren in Abb. 3.16¢
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Dipolstrahlung (2.63). Die Unterscheidung von ,, Amplitu-
de” und ,, Amplitudenfaktor” ist wichtig, da beide Grofien
verschiedene Dimensionen haben.

Die 1/r-Abhangigkeit der Amplitude bewirkt nach
Satz 3.1, dass die Intensitit mit 1/72 abfillt, also dass
der Strahlungsfluss durch eine Fldche, die die Quelle um-
schliefit, unabhéngig von der Grofie der Flache ist (vgl.
(3.34)). Dementsprechend ist bei Kreiswellen, z. B. bei den
in Abb. 1.11 gezeigten Kreiswellen auf einer Wasserober-
fliche, die Amplitude proportional zu 1//7:

P(rt) = A cos(kr — wt) .

NG (4.5)

Wellenausbreitung in einem Hohlleiter

In Abschn. 2.5 hatten wir die Eigenschaften eines Hohl-
leiters fir Mikrowellen diskutiert und festgestellt, dass
sich im Hohlleiter die in den Abb. 2.29 und 2.30 gezeigte
Welle nur ausbreiten kann, wenn die Frequenz der Welle
w > wg = crt/a ist. Diese auf den ersten Blick erstaunli-
che Tatsache kann man leicht verstehen, wenn man sich
klarmacht, dass die Welle (2.91)

="

Ey(x,z,t) = Egsinkyx cos(k.z — wt) , .

erzeugt werden kann durch die Uberlagerung von zwei
ebenen Wellen mit der Frequenz w und den Wellenvekto-

ren
kl = (er O/kz) ’ k2 = (_kXIOrkZ) .

Es ist ndmlich, wie wir gleich nachrechnen werden,

(4.6)

sin(ky - r — wt) —sin(ky - ¥ — wt) 47)

= 2sinkyx cos(k.z — wt) . '
Wie Abb. 4.3 zeigt, sind die beiden Wellen bei x =0
und bei x =a um 180° phasenverschoben, bei x = a/2
aber stets in Phase. Dadurch entsteht die in z-Richtung
durch den Hohlleiter laufende Welle. Die Betrdge der
Wellenvektoren sind gleich: k; = ky = \/k% + k2. Die Wel-
lenausbreitung in z-Richtung funktioniert offensichtlich
nur, wenn die Vektoren k; und k; eine z-Komponente ha-
ben, wenn also k; = kp > ky ist. Daraus folgt, dass

w = cky = cky > ck :%

sein muss, wie in (2.95) angegeben. — Zur Begriindung
von (4.7): Mit kyx = a und k;z — wt = B sowie mit (4.6)
erhdlt man
sin(ky - ¥ — wt) —sin(ky - ¥ — wt)
= sin(a + ) —sin(—a + )
sin(a + B) + sin(a — )
2sina cos B = 2sinkyx cos(k.z — wt) ,

was mit (4.7) identisch ist.
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Abbildung 4.3 Wellenausbreitung in einem Hohlleiter, dargestellt als Uber-
lagerung von zwei ebenen Wellen. Man sieht aus der y-Richtung auf den in
Abb. 2.29 und Abb. 2.31a gezeigten Hohlleiter

4.2 Komplexe Darstellung
von Wellen

Wie bei Schwingungen und wie beim Wechselstrom er-
weist sich auch bei den Wellen die Darstellung durch
komplexe Zahlen mitunter als zweckméfiig, denn mit
Exponentialfunktionen ist leichter zu rechnen als mit
Cosinus- und Sinusfunktionen. Ahnlich wie bei den me-
chanischen Schwingungen (Bd. 1/12.5) wird ausgehend
von el? = cos ¢ + isin ¢ den reellen Wellenfunktionen ein
Imaginérteil hinzugefiigt. Man schreibt bei ebenen har-
monischen Wellen statt (1.3) und (4.3):

(x, t) = poe' =) (4.8)

P(r,t) = oelr=et (4.9)
und fiir Kugelwellen statt (4.4):

. ei(krfwt)

Pl 1) = A—— (4.10)

Diese Darstellung ist besonders praktisch, wenn die Am-
plituden von mehreren Wellen gleicher Frequenz, aber
verschiedener Phase zu addieren sind. In diesem Zu-
sammenhang kann man auch die komplexe Amplitude
J)g einfiihren, wie schon beim Wechselstrom in Bd. III,
Gl. (17.4). Man schreibt z.B. fiir eine um den Winkel ¢
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phasenverschobene Welle

1,Z7(x, f) = woei(kxfwtjt(p)

_ ll)oei¢ei(kx7Wt)b _ J)Oei(kxfwt) ) (4.11)
In der komplexen Amplitude steckt also auch der Phasen-
winkel '
II)O = ll)()el(P . (412)
Da man den Imaginarteil in (4.8)—(4.11) aus rechentechni-
schen Griinden hinzugefiigt hat, muss man ihn vor einer
Anwendung des Rechenergebnisses in der Physik wieder
entfernen, d.h. zum Realteil der Wellenfunktion tiberge-
hen. Diese Aussage bezieht sich aber zundchst nur auf
Ausdriicke, die linear in der Wellenfunktion sind; bei
quadratischen Ausdriicken, z.B. bei der Berechnung von
Energiedichten, ist Vorsicht geboten. Gehen wir von einer
reellen Wellenfunktion ¢ = ¢ cos(kx — wt) aus, so ist
¥? = 5 cos? (kx — wt) . (4.13)
Das Quadrat der zugehdorigen komplexen Wellenfunktion
(4.8) ergibt:
IIV)Z _ ll)(%eiZ(kxfwt) ) (414)
Der Realteil ist Re(/?) = 93 cos 2(kx — wt), was von (4.13)
vollkommen verschieden ist. Der zeitliche Mittelwert die-
ser Grofle, den man z.B. zur Berechnung der Intensitéat
braucht, ist Null. Man muss deshalb anders vorgehen: Um
das Quadrat der Amplitude der reellen Wellenfunktion zu
erhalten, berechnet man das Betragsquadrat von 1, denn
es gilt

(4.15)

Die Intensitit einer elektromagnetischen Welle ist dann

nach (3.32)
2

v

C€EQ Cep £

I=—EF==2
2 2
wobei Eg die Amplitude der gewdhnlichen harmonischen

Welle ist, und E die komplexe Wellenfunktion.

, (4.16)

Die lineare Kette

Als Beispiel, das zeigt, wie vorteilhaft die komplexe
Schreibweise sein kann, berechnen wir die Wellenausbrei-
tung auf einer linearen Kette von Massenpunkten, die
durch Federn miteinander verbunden sind (Abb. 4.4). Die
Massen m und die Federn sollen alle gleich sein (Lénge 4,
Federkonstante «). Auf dieser Kette konnen longitudinale
Wellen laufen wie in dem diinnen Stab in Abb. 2.10. Sie
haben jedoch ganz andere Eigenschaften.
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Abbildung 4.4 Longitudinale Welle auf einer linearen Kette. x, = na ist die
Ruhelage, &, die Auslenkung der n-ten Masse. Gesamtlange der Kette Na > a
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Abbildung 4.5 Dispersionsrelation der Wellen auf einer linearen Kette. Fiir
k < kmax, d. h. fiir A > a ist w o k; die Wellen sind dann dispersionsfrei

Mit den in Abb. 4.4 angegebenen Bezeichnungen ist die
Bewegungsgleichung der n-ten Masse

d?g,

"ar

= —a(8py1— &) + (& — En1)
= (250 — En1 — Gn1) -

Der Ansatz (x,t) = Ae!®=«! beschreibt eine in x-
Richtung laufende Welle, bei der sich die Massenpunkte
mit der Amplitude A und der Frequenz w um ihre Ruhe-
lage bewegen. Wir setzen dies mitx = x, = naund ¢ = G,
in (4.17) ein und erhalten

(4.17)

_me2ellkin—wt] _ _a(zei[erwt} _ oilk(nta)—wi]

_ ei[k(xn—u)—wt]>
— _D(ei[kxn—wt] (2 _ eiku _ e—iku) )

Mit der Euler-Formel e'? + e ¢ = 2 cos ¢ wird daraus

2u 4o ka
2 _ 2R — 2 ein2 22
W= (1 — coska) o sin” =, (4.18)
4o | | ka
w(k) =1/ Pl (4.19)

Wir legen den Nullpunkt der x-Achse nach x;,, und erhal-
ten

&(x,t) = Reé(x,t) = Acos (kx — w(k)t).

Wihrend bei den Wellen in Abschn. 2.1 w « k und somit
die Phasengeschwindigkeit Uph = W /k konstant ist, ist bei
der linearen Kette w eine nichtlineare Funktion von k: Die
Wellen sind nicht dispersionsfrei. Uberdies ist w eine peri-
odische Funktion von k (Abb. 4.5). Deshalb gentigt es, das
Intervall von k = —7t/abis k = kmax = 7t/a zu betrachten.



4.3 Wellengruppen und Wellenpakete

a k= Kmax §7z

¢ 5£: ™ fn

Abbildung 4.6 Auslenkung ¢, der Massenpunkte bei longitudinalen Wellen
auf einer linearen Kette. Zur Zeit t = 0: o, zur Zeit t = T /4: o. T ist die Periode
der Wellen in (b)—(d)

Die Wellen mit den Wellenzahlen k und k + 2kmax haben
die gleiche Frequenz w, sieche die Punkte A und A’ bzw.
B und B’ in Abb. 4.5. Sie fiihren auch zu den gleichen
Schwingungsformen der linearen Kette.

Tabelle 4.1 Zu Abb. 4.6: Wellenzahlen k, Frequenzen w und Phasengeschwin-
digkeiten in Abb. 4.6a—d

k w vph

T 4n u\/ﬂ
a m a\'m
T 20 u\/ﬁ
2a m T\ m
5 20 a\/@
2 m 57\ m

a [
3tV m

Wie das zustande kommt, zeigt Abb. 4.6. Dort ist zundchst
in Abb. 4.6a die Welle mit kmax und mit der kiirzest mogli-
chen Wellenldnge Apin = 2a gezeigt, sodann in Abb. 4.6b
eine Welle mitk = 71/2a, A = 4a. Die Abb. 4.6c und d zeigt
zwei Fille von k > kmax. Die Auslenkung der Massen-
punkte ist in beiden Féllen die gleiche wie in Abb. 4.6b,
und zwar nicht nur zur Zeit t = 0, sondern auch zu ei-
nem spéteren Zeitpunkt. Hochst bemerkenswert ist dabei,
dass die nach +x laufende Welle mit k = 37r/2a dquiva-
lent zu einer nach —x laufenden Welle mit k = 77/2a ist.
Das kann man mit Abb. 4.6 im einzelnen verfolgen, wenn
man die in Tab. 4.1 angegebenen Phasengeschwindigkei-
ten berticksichtigt. Die Untersuchung der linearen Kette
ist eine notwendige Voriibung fiir die Gitterschwingun-
gen in einem Kristall. Wir werden darauf am Ende von
Bd. V/2.2 zuriickkommen.

4.3 Wellengruppen und
Wellenpakete

In diesem Abschnitt geht es um die Frage, wie man
mathematisch von unendlich ausgedehnten Wellen zu
Wellenziigen endlicher Lange und zu sehr kurzen Wel-
lengruppen, d.h. zu sogenannten Wellenpaketen kom-
men kann. Wir werden sehen, dass dies gelingt, wenn
man unendlich lange Wellenziige unterschiedlicher Fre-
quenz einander {iberlagert. Dabei zeigt sich, dass man zur
Darstellung eines Wellenzugs der Lange Ax Wellen mit
Wellenzahlen in einem Bereich Ak benétigt, und zur Dar-
stellung eines Wellenzugs der zeitlichen Dauer At braucht
man Wellen aus einem Frequenzintervall mit der Band-
breite Aw. Zwischen Ax und Ak sowie zwischen At und
Aw besteht eine einfache Beziehung, die wir als die klas-
sische Unschirferelation bezeichnen werden.

Zeitabhangige Signale

Wir beginnen mit der Diskussion von Funktionen f (),
d.h. von Signalen, wie sie von einem irgendwo aufgestell-
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Abbildung 4.7 Eine feste
Frequenz

Aw)

ten Empfangsgerat fiir Wellen registriert werden konnen.
Im folgenden ist an einigen Beispielen der Zusammen-
hang zwischen Frequenzspektrum und Signalform darge-
stellt.

Festfrequenz. Das Frequenzspektrum enthélt eine einzi-
ge Linie bei der Frequenz wq (Abb. 4.7), das ,Signal” ist

f(t) = cos wot . (4.20)
Schwebungssignal. Das Frequenzspektrum enthalt zwei
Linien w; und w, im Abstand Aw (Abb. 4.8). Das Signal
oszilliert mit der Frequenz wy = (w1 + wy)/2 und zeigt
das schon von frither bekannte Phanomen der Schwebun-
gen:

A
f(t) = coswt + cos wat = 2cos TWtcos wot . (4.21)
Die Nullstellen der Einhiillenden haben voneinander den
Abstand
At =21/Aw .

N Frequenzen im Intervall Aw. Jetzt fiillen wir das In-
tervall zwischen w; und wy; mit N — 2 Frequenzen im
konstanten Frequenzabstand éw (Abb. 4.9). Insgesamt ha-
ben wir dann N Frequenzen im Intervall Aw und es gilt:

(N-1)dw = Aw . (4.22)
Wie wir spater beweisen werden, ergibt die Superposition:

1 N-1

f(t) =< Y cos(wy + ndéw)t
N n=0
1 sin (%N&ut) (4.23)

= ————— % coswpt = a(t) cos wyt ,
N sin (%&ut)

mitwy = (w1 +wy) /2. Die Amplitudenfunktion a(t) ist in
Abb. 4.9 gestrichelt eingezeichnet. Sie enthilt einen rasch
oszillierenden Anteil im Zdhler und einen langsam oszil-
lierenden im Nenner. Der Nenner wird Null fiir

—dwt=mmn, m=0,1,2,...
t_m27T (4.24)
T w
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Abbildung 4.9 N Frequenzen im Intervall Aw

Der Zahler wird Null fiir

1
EN&wt:m’n, m =0,1,2,...

S (4.25)

" Now

Der Betrag der Amplitudenfunktion erreicht seinen Ma-
ximalwert, wenn der Nenner Null wird, also wenn (4.24)
erfiillt ist. Dannist m’ = 0, N, 2N, . .. Wie man durch Diffe-
renzieren von Zihler und Nenner ausrechnen kann (vgl.
Bd. I, Gl (21.86)), ist bei den Maxima |a| = 1. Zwischen
diesen Hauptmaxima liegen N — 1 Nullstellen des Zahlers
und N — 2 Nebenmaxima. Die Hohe dieser Nebenmaxima
ist klein verglichen mit der Hohe des Hauptmaximumes.
Wenn wir sie vernachldssigen, erhalten wir eine Folge von
relativ kurzen Signalen im Zeitabstand

AT =27 /éw ~ 2N/ Aw (4.26)
mit der Zeitdauer
At =4t /Néw ~ 41t/ Aw , (4.27)

wobei die Ndherungen fiir N > 1 gelten.

Kontinuierliches Spektrum im Frequenzbereich Aw. Es
ist nun klar, wie man zu einem einzelnen Signal bzw.
zu einem Wellenpaket kommt (Abb. 4.10): Man muss bei
konstanter Bandbreite Aw die Zahl N der Frequenzen
immer mehr vergrofiern, d. h. zu einem kontinuierlichen



4.3 Wellengruppen und Wellenpakete

Abbildung 4.10 Konti- Aw) Aw
nuierliches Spektrum mit —
konstanter Amplitude im Bereich AL
w1 Sw < W w
Wy Wy W w
f®)
Vr\y/\vh\[ UAMVAV P
At
Abbildung 4.11 Zeitlich be- Alw) Aw

grenzter Wellenzug, At = 27

Spektrum und von der Summe (4.23) zu einem Fourier-
Integral {ibergehen. Da wir uns hier auf gerade Funktio-
nen der Zeit (f(—t) = f(t)) beschrankt haben, brauchen
wir vom Fourier-Integral (1.18) nur den Cosinusterm:

[ee]

/A(w) coswtdw .
0

ft) = (4.28)

1
T

Mit dem Frequenzspektrum in Abb. 4.10 erhalten wir

©o w2
ft) = %/A(w)coswtdw = i/coswtdw
0 O (4.29)
= m(smwzt —sinwqt) .

Man kann das Ergebnis mit der Formel Bd. I, Gl. (21.63)
fiir sina — sin B und mit wy = (w1 + wy)/2 in folgender
Form schreiben:

sin (%Awt)

t) = cos wot . 4.30
Die in Abb. 4.10 definierte Dauer des Signals ist
At =4r/Aw . (4.31)

Zeitlich begrenzter Wellenzug konstanter Amplitude.
Wie wir soeben gesehen haben, gehort zu einem rechte-
ckigen Frequenzspektrum, zentriert um die Frequenz wy,
ein Wellenpaket, dessen Einhiillende durch die Funktion
sinx/x (mit x = %Awt) gegeben ist. Umgekehrt gehort zu

einem rechteckigen Wellenpaket der Frequenz wy ein Fre-
quenzspektrum der Form sinx/x, das um wy zentriert ist
(Abb. 4.11):

sin [(w — w)At/2)
(w — wp)At/2

Alw) = (4.32)

Man berechnet A(w) mit (1.19), indem man f(t) =
(1/7) cos wyt setzt und von —T bis +7 integriert.! Auch
hier kommt man auf die Beziehung (4.31).

Gauf3sche Signalform. Der Vergleich von Abb. 4.10 und
Abb. 4.11 legt die Vermutung nahe, dass es zwischen bei-
den Féllen ein Zwischending geben sollte: ein Frequenz-
spektrum in Form einer Glockenkurve ohne oszillierende
Auslédufer (Abb. 4.12), welches ein Signal derselben Form
ergibt. In der Tat hat die Gauflkurve diese Eigenschalft.
Setzt man in (4.28)

A(w) = e~ (@=w0)?/205 (4.33)
so erhélt man mit einer etwas lingeren Rechnung?
1 —2 /202
ft) = e t cos wot . (4.34)

\/27o?

! Bei der Berechnung ergibt sich noch ein zweiter Term mit w + wy
statt w — wy. Da jedoch die Funktion sinx/x fiir grofse Werte von x
praktisch Null ist, kann dieser Term gewohnlich vernachldssigt wer-
den.

2 Zur Berechnung des Integrals (4.28) setzen wir coswt = 1 (el“! +
e~@") und erhalten mit (4.33)

f() = % /ef[(uHUD)z,iztrfum]/zt,tzu dw
0

(o]
+/e—[(w—w0)2+i2173,wt}/2¢73, dwl .
0

Den Exponenten im ersten Integral schreiben wir —(w? — 2(wp +
io2t)w + w3) /2072 Wir addieren und subtrahieren im Zahler (wp +
ic2t)? und erhalten

(W — wg — 102 4)? + Wk — wk — 2iwo? t + okt
202

Mit (w — wp — iU’Z)t)/\/EU’w =y und dw = V20, du ergibt dann das
erste Integral
22 %
= / e du.

0

ef(,.,) dw = eiw0t87

In einer Integraltafel findet man [;° e du = \/71/2. Das zweite In-
—iwpt

tegral fiihrt auf das gleiche Ergebnis, jedoch mit dem Faktor ¢
Wenn man o, = 1/0; setzt, erhélt man (4.34).
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Abbildung 4.12 Zu (4.33) und
(4.34): GauBsches Signal

Die Rechnung fiihrt auf die folgende Relation zwischen o}
und o,:

o=1/0, . (4.35)

Das Produkt aus Bandbreite und Signaldauer ist also wie
in (4.27) konstant.

Wellenpakete im Raum

Die bisher betrachteten Signale f(t) konnen in einem
Empfanger registriert werden, wenn ein Wellenzug be-
grenzter Lange, ein Wellenpaket, vom Sender zum Emp-
fanger lauft. Wir betrachten die raumliche Struktur von
Wellenpaketen nur in einer Dimension, der Ausbreitungs-
richtung (= x-Richtung). Unsere Wellenpakete sind also
ebene Wellen in Form einer flachen Scheibe, deren Ampli-
tude nur in einem engen Raumbereich Ax wesentlich von
Null verschieden ist. Man kann auch Wellenpakete kon-
struieren, die in allen drei Raumrichtungen eingeschrankt
sind; das Wesentliche ldsst sich jedoch im eindimensiona-
len Fall erkennen.

Um die mathematische Darstellung fiir eine Momentauf-
nahme eines eindimensionalen Wellenzugs oder Wellen-
pakets zu erhalten, brauchen wir blof in (4.20)—(4.35) die
Frequenz w durch die Wellenzahl k und die Zeit ¢ durch
die Koordinate x zu ersetzen. Fiir ein gauf3férmiges Signal
zur Zeit t = 0 erhalten wir beispielsweise

A(k) e~ (k=ko)*/20¢ (Wellenzahlspektrum)  (4.36)

f(x) o e % /2% cos kox (Signalform) (4.37)
Auch hier gilt oxo, = 1: Je breiter das Wellenzahlspek-
trum, desto schmaler das Signal. Soll das Signal nicht bei
x = 0 zentriert sein, sondern bei der Koordinate x, ersetzt
man einfach x durch x — xq:

f(x) e~ (x%0)?/20F g (ko(x —x0)) - (4.38)
Entsprechend kann man die Wellengruppe (4.23) oder das
Wellenpaket (4.30) raumlich darstellen; in diesen Fillen

4 \Weiteres zur mathematischen Darstellung von Wellen
gilt analog zu (4.27) und (4.31)

AkAx = 47 . (4.39)
Die Darstellung eines raum-zeitlich laufenden Wellen-
pakets bereitet keine Schwierigkeiten, jedenfalls solange
die Wellen dispersionsfrei sind. Wir ersetzen nunmehr x
durch x — vt, wobei v = w/k die Wellengeschwindigkeit
ist. Fiir ein Gauf$sches Wellenpaket, kurz Gauf3-Paket
genannt, erhalten wir

1 (o)
—/A ) cosk(x — vt) dk
o

—e —(x—0t)2 /202

mit A(k) =

cosko(x —vt),

~ k)27 (4.40)

oy =1 /0] k -
Die Funktion f(x,t) ist in Abb. 4.13 dargestellt. Sind die
Wellen nicht dispersionsfrei, d. h. pflanzen sich die einzel-
nen Teilwellen mit etwas unterschiedlicher Geschwindig-
keit fort, so geraten die Phasen alsbald auseinander, das
Wellenpaket verbreitert sich und , zerfliefst”, wie schon in
Abschn. 1.4 angesprochen. Dann wird alles komplizierter.
Wir werden das spater genauer studieren (Bd. V/3.7).

Die klassische Unscharferelation

Ein hervorstechendes Merkmal aller Wellengruppen und
Wellenpakete ist der Zusammenhang zwischen der spek-
tralen Breite und der zeitlichen oder rdumlichen Breite
des Signals, den wir u.a. schon bei (4.27), (4.31), (4.35)
und (4.39) diskutiert haben: Das Produkt aus Bandbrei-
te und Signalbreite ist konstant. Der genaue Wert dieser
Konstanten hiangt von der Form des Signals und der
Definition der , Breite” ab. Hédufig verwendet man die
Halbwertsbreiten statt der in Abb. 4.9 und Abb. 4.10
eingezeichneten Basisbreiten. Mit At (Basis) ~ 2At (Halb-
wert) und Aw (Basis) = Aw (Halbwert) erhdlt man statt
(4.31) und (4.39) mitv = w /27

AwAt =21, AAt=1, AkAx=~2m. (4.41)

Diese wichtigen Beziehungen werden als die klassische
Unschirferelation bezeichnet.

Abbildung 4.13 GauBsches
Wellenpaket nach (4.40)




4.4 Die Fourier-Transformation

Wenn die Signalform festliegt und die , Breite” genau defi-
niert ist, erhdlt man nattirlich statt der Ndherungsformeln
(4.41) exakte Gleichungen. Zum Beispiel gilt bei gauffor-
migen Signalen nach (4.35) und (4.40)

AwAt =1, AkAx =1, (4.42)
wenn man als Breiten die Standardabweichungen ¢ der
Gaufi-Funktionen definiert. Die Halbwertsbreite einer
Gaufikurve ist 2,36 mal grofier als die Standardabwei-
chung o, und es ist 2,362 = 5,6 ~ 271; also ist (4.42) mit
(4.41) vertraglich.

Zu (4.23)

Wir wollen hier die Berechnung von (4.23) nachtragen,
denn diese Formel spielt bei verschiedenen Problemen
der Wellenausbreitung eine Rolle. Zunichst gehen wir zur
komplexen Schreibweise tiber und erhalten damit an Stel-
le der Summe in (4.23)

e1w1t Z eméwt )
n=0

¥ 1S o ndw)t
= Hwrrnow)t
o = n§:0 e (4.43)

Der Faktor el“1f kann ausgeklammert werden. Die ver-
bleibende Summe ist eine endliche geometrische Reihe
der Form

N-1 | . N2 . \N-1
Y e =1+e"4 (e“”) +...4 (e“”)
n=0

(4.44)

Sie kann ohne weiteres aufsummiert werden (siehe Bd. I,
Gl. (21.64)). Das Ergebnis ist

N-1 _ iNg

Yy el — 1-e7%
_ pl

n=0 T—e¥

Nun wenden wir einen Trick an und schreiben:
1 _eiNe  oiNg/2 o—iNg/2 _ 4iNg/2

1—ei?

T elp/2
N—1)¢/2 sin(N¢/2)
sin(¢/2)

—ip/2 _ oip/2
¢ ¢ (4.45)

Setzen wir dies mit ¢ = dwt in (4.43) ein, so ergibt sich

v 1

i) - Ne sin (%N&wt)

i(wit+(N-1)dwt/2) (4.46)

sin (%(Swt

Nun ist nach (4.22) (N — 1)éw = Aw, also ist der Expo-
nent i(wq + Aw/2)t = iwgt. Wir bilden den Realteil und

sin z/x

1,0

009 o1

Abbildung 4.14 Die Funktion sin x/x

erhalten schlieflich in Ubereinstimmung mit (4.23):

f(t) =Re (V(t)) = %coswot% . (447)
2

Damit ist mathematisch das Zustandekommen der in
Abb. 4.9 gezeigten Funktion f(t) geklart.

Man kann {iibrigens einen Grenziibergang durchfiihren,
mit dem man direkt von (4.23) nach (4.30) gelangt. Fiir
N — o0, éw — 0 mit der Nebenbedingung Ndw = Aw =
const erhalten wir

1 sin (%Néwt)

N sin %&ut

sin (%Awt)
—a (4.48)
7Awt
denn es ist sinx = x fiir kleine Werte von x. Die hier auf-
tretende Funktion sinx/x ist in Abb. 4.14 maf3stdblich
dargestellt. Den Verlauf dieser Kurve sollte man sich mer-
ken. Sie wird uns in der Physik der Wellen noch haufig
begegnen.

4.4 Die Fourier-Transformation

Die Verkniipfungen zwischen der Funktion f(¢) und den
Funktionen A(w) und B(w) in (1.19) bezeichnet man
auch als Fourier-Transformationen. Man nennt die Be-
rechnung von A(w) aus f(t) eine Fourier-Cosinustrans-
formation, und die entsprechende Formel mit B(w) und
sin wt eine Fourier-Sinustransformation. Gewohnlich be-
zeichnet man jedoch als Fourier-Transformation die Glei-
chung, die entsteht, wenn man von vornherein cos wt und
sin wt zu el“! zusammenfasst. Mit der Definition

F(w) = A(w) +1B(w) (4.49)
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Abbildung 4.15 a Exponen- ait
tiell gedampfte Schwingung, f®
b Lorentz-Kurve

und mit (1.19) erhdlt man dann

+00
= / F(t)elt dt . (4.50)

Wie berechnet man nun f(¢) aus F(w)? Esist A(w) = (F+
F*)/2 und B(w) = (F — F*)/2i. Setzen wir dies in (1.18)
ein, erhalten wir

f(t):% /(F+F*)coswtdw
1/ (F—F") smwtdw}
0
£t = % [ [Fl@e it de
0

. 4.51)
+/P*(w)ei“’t dw].

0
Nun ist F*(w) = A(w) — iB(w) = A(—w) + iB(—w) =
F(—w), denn A ist eine gerade Funktion von w, und B
eine ungerade. Macht man also im zweiten Integral die

Substitution u = —w, so erhilt man
/F*(w)ei‘*’t dw = — /F(u)e’i”t du
0 0
0
= / (F(u) _1“t> du .

—00
Auf die Bezeichnung der Integrationsvariablen kommt es
nicht an. Wir setzen w statt # und erhalten schliefSlich

+o00
1

£t = 5- / Flw)e “dw.  (452)

— 00
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Die Funktionen f(t) und F(w) kénnen durch Fourier-
Transformationen ineinander iibergefiihrt werden, sie bil-
den ein Fourier-Paar. Gewohnlich bezeichnet man (4.50)
als Fourier-Transformation und (4.52) als die inverse
Fourier-Transformation. Die Gleichungen sind fast, aber
nicht ganz symmetrisch.? In symbolischer Form schreibt
man auch

w)=F{f(t)}, f(t)=F {F(w)}. (453

Man kann die Fourier-Transformation ebenso bei Funktio-
nen der Ortskoordinate x anwenden. x tritt an die Stelle
der Zeit t, und die Frequenz w = 27r/T wird durch die
Wellenzahl k = 27t /L ersetzt. L ist die rdumliche Periode
der betreffenden Sinus- und Cosinusfunktionen. Man be-
zeichnet k in diesem Zusammenhang auch als die Raum-
frequenz oder Ortsfrequenz. Da das Argument bei einer
in x-Richtung fortschreitenden Welle (kx — wt) ist, ist es
zweckmiBig, bei der Darstellung von Ortsfunktionen in
den Exponenten von (4.52) und (4.50) die Vorzeichen zu

vertauschen:
ikx
f(x) e"™dk,
T o /

/f “ik

(4.54)

Ein Beispiel. Als Beispiel zu (4.50) berechnen wir die
Fourier-Transformierte der in Abb. 4.15a gezeigten Funk-
tion
f(t) = foe T/ coswyt  firt >0,
f(Hy=0 firt<o0.

Mit cos ¢ = 1 (el? + e~i¢) und mit (4.50) erhdlt man

(4.55)
[e(—l"/2+iwo+iw)t_,'_e(—F/Z—iwo-&—iw)t} dt

[e]
e—[F/Z i(wwp)]t +]c2_0/e r/2—i(w— wo)]tdt
0

0
Ay - + .
2 [r/z —i(w+wy) T/2 —1(w - wo)]
(4.56)

3 Man findet in der Literatur verschiedene Schreibweisen fiir (4.50)
und (4.52). Man kann z.B. den Faktor 1/27 in die Definition von
F(w) aufnehmen: F/(w) = F(w)/27t. Dann verschwindet er in (4.52),
taucht aber in (4.50) wieder auf. Man kann ihn auch symmetrisch
auf die beiden Gleichungen verteilen: Dann muss man zweimal V2
statt einmal 271 schreiben. Auch die Vorzeichen im Exponenten sind
Definitionssache: Schreibt man in (4.49) Minus statt Plus, werden sie
in (4.50) und (4.52) vertauscht. Auf jeden Fall sind die Vorzeichen der
Exponenten in diesen beiden Gleichungen verschieden.



4.4 Die Fourier-Transformation

Fiir schwache Dampfung (I' < wp) hat diese Funktion
zwei weit auseinander liegende, schmale Maxima, ei-
nes bei w < 0 und eines bei w > 0. Wir untersuchen das
Frequenzspektrum fiir w ~ wy. Dort ist der erste Term
vernachléssigbar. Es folgt:

Flw) =0 1 _fo I'/2+i(w —wo)

(w) == - =— .
2T /2—i(w—wpy) 2T%2/4+ (w— wp)?

Um die reelle Funktion f(x) zuriickzuerhalten, benétigt
man in (4.54) sowohl den Realteil als auch den Imaginér-
teil von F(w):

+00
flx)= % / (Re F(w) coskx — Im F(w) sinkx) dk .

Das Frequenzspektrum des Signals (4.55) ist also gegeben
durch die zwei Funktionen

_fo I2/4
ReF(w) a f(w—w0)2+1"2/4 !

4.57)

_@ w — wy
el 2 (w—wg)2+T2/4"

wobei man den ersten Term den absorptiven und den
zweiten Term den dispersiven Anteil von F nennt. Mit
(4.16) kann man auch ausrechnen, wie sich die Energie
auf die verschiedenen Frequenzen verteilt. Das Leistungs-
spektrum des exponentiell abklingenden Signals ist gege-
ben durch

2 :f_g I?/4+ (w — wp)?
4 (I2/4+ (w—wo)?)?
T2 (wy—w)?+72’

|F(w)]
(4.58)

wobei ¢ =1T1/2 ist. Wir finden eine Lorentz-Kurve
(Abb. 4.15b). In diese Form geht bei der erzwunge-
nen Schwingung die Resonanzkurve im Fall schwa-
cher Dampfung I' < wq tber, wie in Bd. 1/12.3 vor-
gerechnet ist. Gleichung (4.58) ist ein bemerkenswertes
Resultat, das uns im Zusammenhang mit der Licht-
emission durch Atome noch mehrfach beschiftigen
wird.

Zur Formulierung der Unscharferelation geht man hier
von der Halbwertsbreite der Lorentz-Kurve aus. Es ist
|F(w)|?> = |F(wo)|?/2 fiir |w — wg| = I'/2. Die Halbwerts-
breite ist also

1
(Aw)pwp =T = — .

= (4.59)

7 ist die Abklingzeitkonstante der Energie, denn letztere
ist proportional zu e~ . Fiir die Frequenz v gilt also

1
27TTE

(Av)pwB = (4.60)

Auch diese Gleichungen gelten exakt, wie (4.42).

Fourier-Transformationen sind in weiten Bereichen der
mathematischen Physik, der Naturwissenschaft und
Technik sehr wichtig, besonders in der Optik und in
der Bildverarbeitung. So beruht die ,Computertomo-
graphie” in der medizinischen Diagnostik auf einer
raffinierten Anwendung von Fourier-Transformationen.
Wir werden in diesem Buch in Kap. 7 und 8 weite-
ren Gebrauch von Fourier-Transformationen machen. Wir
werden auch zu der Erkenntnis vordringen, dass eine
gewohnliche Linse als , Fourier-Transformator” benutzt
werden kann, d.h. als ein Gerdt zur Ausfithrung von
Fourier-Transformationen.
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Ubungsaufgaben

Abbildung 4.16 Parallelschal-
tung aus einem Widerstand und
einer Kapazitat

Q
1
T

=

4.1. Wellenzahl-Vektor. Eine Welle mit der Wellenldn-
ge A =3m und der Frequenz v = 10 Hz bewegt sich
unter einem Winkel von 30 Grad relativ zur x-Achse und
60 Grad relativ zur y-Achse eines Kartesischen Koordina-
tensystems. Welchen Wert hat der Wellenzahl-Vektor k?

4.2. Phase eines Wellenfeldes. Zeigen Sie, dass in ei-
nem beliebigen Wellenfeld, in dem der Wellenzahl-Vek-
tor ortsabhdngig ist, die Phasendifferenz zwischen den
Raumpunkten r; und r, zu einem festen Zeitpunkt gege-
ben ist durch

]Zk(r) -dr.

r

P2 — @1 = (461)

Dieses Integral ist unabhédngig vom Integrationsweg.

4.3. Fourier-Transformation von Funktionen nach Re-
chenoperationen. Es sei fiir eine beliebige Funktion £ (f)
die komplexe Fourier-Transformierte F(w) bekannt.

a) Wie andert sich F(w), wenn die Funktion zeitlich ver-
schoben wird: f(f + 7)?

b) Welche Fourier-Transformierte hat die zeitliche Ablei-
tung df (t)/dt einer Funktion? (Machen Sie sich wegen
der Konvergenz des Fourier-Integrals keine Sorge. Die
Mathematik lehrt: Solange die Ableitung mit Ausnahme
einer begrenzten Zahl von Spriingen stetig und in ihrer
Grofse beschrankt ist, gibt es keine Probleme).

¢) Es seien fiir zwei beliebige Funktionen fi(f) und
f2(t) die komplexen Fourier-Transformierten Fy(w) und
Fy(w) bekannt. Die Fourier-Transformierte der ,gefalte-
ten” Funktion [ fi(t —t')f (') dt ist F1(w)Fa(w). Wie
kann man sich das durch Einsetzen eines der Fourier-In-
tegrale in dieses Integral plausibel machen?

d) Als Beispiel zu Teil c) studiere man ein RC-Glied
(Abb. 4.16) mit einem komplexen Widerstand (siehe
Bd. IlI/17.1), in das eine Stromquelle mit groffem Innen-
widerstand einen Strom I(#) einspeist. Driicken Sie den

a
— ;

b
. t

C

+7

‘ t

d
-7 +7 L

Abbildung 4.17 Einige Funktionen mit Singularitaten

Spannungsabfall durch ein Faltungsintegral aus. Was hat
das Ohmsche Gesetz fiir Wechselstrom mit den Fourier-
Transformierten des Stroms, des Spannungsabfalls und
der Antwort-Funktion des RC-Glieds auf einen Stromim-
puls zu tun?

44. Fourier-Transformierte von Funktionen mit
Spriingen und Knicken. a) Ermitteln Sie Schritt fiir
Schritt die komplexen Fourier-Transformierten folgen-
der Funktionen und verwenden Sie dabei fiir die Falle (2)
bis (5) die Rechenregeln der vorigen Aufgabe:

(1) abgeschragte Stufenfunktion der Abb. 4.17a (der kon-
stante Wert fiir t > 0 ist der Grenzfall der Funktion
e~ fiir v — 0, die Stammfunktion der Funktion xe*
ist xe* —e%),

(2) Rechteckfunktion zwischen den Zeiten —7 und O,
(Abb. 4.17b),

(3) Rechteckfunktion zwischen den Zeiten —T und +71
(vgl. mit Abb. 1.18 und (1.22)),

(4) abgeschragte Stufe abwarts (Abb. 4.17c¢),

(5) symmetrische Dreieckfunktion (Abb. 4.17d).

b) Wie verhalten sich die Fourier-Transformierten von
(1) bis (5) im Grenzfall w — c0? Welche Regeln iiber das
Verhalten der Fourier-Transformierten von Funktionen
mit Spriingen oder Knicken kann man fiir den Grenzfall
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w — o0 aus obigen Beispielen und denen im Buchtext ab-
lesen?

c) Als weiteres Beispiel ersetze man in Abb. 4.15a die Co-
sinus- durch die Sinus-Funktion und vergleiche mit (4.56).
Eine gleichartige Situation hat man in Abb. 4.11.

4.5. Korrespondenz zwischen Fourierpaaren. Da
Fourier-Transformationen umkehrbar sind, muss jede
Information iiber Strukturen in einer Funktion in irgend
einer Weise in ihrer Fourier-Transformierten wiederzufin-
den sein. Geben Sie die korrespondierenden Parameter

zwischen folgenden Funktionen und ihren Fourier-Trans-
formierten an:

(1) Nadelimpuls zur Zeit ty (Abb. 4.7),

(2) zwei Nadelimpulse zu den Zeiten —At/2 und At/2
(Abb. 4.8),

(3) Rechteckimpuls der Dauer AT, zentriert um die Zeit fy
(Abb. 4.10),

(4) N Nadelimpulse zu den Zeiten ty — At/2N bis ty +
AT/2N (Abb. 4.9),

(5) Gaufisches Signal mit der Varianz oy, zentriert um die
Zeit ty (Abb. 4.12).

79




Brechung und Reflexion

5.1  Experimentelle Grundlagen und Huygenssches Prinzip . . . . . 82
5.2 Totalreflexion . ... ...... ... .. .. .. .. .. .. .. .. 85
5.3 Dispersion und Absorption . ... ................. 88
5.4  Reflexion und Transmission . . .. ................. 93
Ubungsaufgaben ... ........................ 99
© Springer-Verlag GmbH Deutschland 2017 81

J. Heintze / P. Bock (Hrsg.), Lehrbuch zur Experimentalphysik Band 4: Wellen und Optik, https:/ /doi.org/10.1007 /978-3-662-54492-1_5


https://doi.org/10.1007/978-3-662-54492-1_5

82

Bisher haben wir untersucht, wie die Wellenaus-
breitung in einem Medium einheitlicher Beschaffen-
heit funktioniert. Dabei kam es uns vor allem auf
die physikalische Natur der verschiedenen Wellen-
phanomene an. Wir wollen nun die Ausbreitung
von Wellen unter komplizierteren Bedingungen stu-
dieren. Wir werden auf eine Reihe von neuen Er-
scheinungen stofSen: Brechung, Reflexion, Interfe-
renz und Beugung von Wellen. Diese Phdnomene
wurden beim Studium der Lichtausbreitung ent-
deckt, und sie sind auch vor allem im Zusammen-
hang mit sichtbarem Licht von technischer Bedeu-
tung. Man bezeichnet daher das in den folgenden
Kapiteln behandelte Gebiet meist als ,Optik”, ob-
gleich die gleichen Phanomene bei Wellen aller Art
auftreten.

Wir beginnen mit Brechung und Reflexion von Licht
an einer ebenen Grenzflache, die zwei unterschiedli-
che Medien voneinander trennt, und mit dem Huy-
gensschen Prinzip, mit dem man auf einfache Weise
das Verhalten von Wellen beschreiben kann. Dabei
wird der Brechungsindex als die hier mafigebliche
Grofse eingefiihrt. Sodann befassen wir uns mit dem
interessanten Phanomen der Totalreflexion und sei-
nen Anwendungen. Im dritten Abschnitt wird die
Abhéngigkeit des Brechungsindex von der Licht-
wellenldnge studiert, die Dispersion des Lichts (vgl.
Abschn. 1.4). Es zeigt sich, dass sie physikalisch eng
verkniipft ist mit der Absorption des Lichts. Mit
einem einfachen Modell konnen wir die Frequenz-
abhangigkeit des Brechungsindex und des Absorp-
tionskoeffizienten berechnen. Dabei wird ein kom-
plexer Brechungsindex eingefiihrt, der beide GrofSen
verbindet. Im letzten Abschnitt untersuchen wir die
Reflexion des Lichts an transparenten Stoffen und an
Metallen. Auch hier leistet der komplexe Brechungs-
index gute Dienste.

5.1 Experimentelle Grundlagen und

Huygenssches Prinzip
Reflexionsgesetz und Brechungsgesetz

Zur Demonstration und zur quantitativen Untersuchung
der Brechung und Reflexion von Licht an einer ebenen
Grenzflache eignet sich die in Abb. 5.1 gezeigte Anord-
nung. Wir lassen von einer weit entfernten Lichtquelle
durch einen schmalen Spalt Licht auf eine dicke halbkreis-
formige Glasplatte fallen. Die Platte ist auf ihrem Umfang

5 Brechung und Reflexion

N
/

/S
<

e
~

Medium 1,/
B
B

o
=
™

Medium 1

Abbildung 5.1 Apparat zur Untersuchung von Brechung und Reflexion
(,,Snelliussches Rad")

allseitig poliert und auf einer Winkelskala montiert. Man
beobachtet, dass der Lichtstrahl an der Grenzfliche so-
wohl reflektiert als auch gebrochen wird. Der einfallende
Strahl und das Lot auf der Grenzflache definieren die
Einfallsebene. Diese Ebene enthélt auch den reflektier-
ten und den gebrochenen Strahl. Durch Verdrehen der
halbkreisférmigen Scheibe kann man als Funktion des
Einfallswinkels . = B1 den Reflexionswinkel B, und den
Austrittswinkel des gebrochenen Strahls 3, messen.

Fiir den reflektierten Strahl gilt die einfache Gesetzmafig-
keit

,Br = ,Be . (5.1)

Das Reflexionsgesetz war schon den alten Griechen be-
kannt; das Brechungsgesetz, das den Winkel B, angibt,
richtig zu formulieren, gelang erst ca. 1610 dem holldn-
dischen Physiker Willebrord Snel. Auf experimentellem
Wege fand er heraus, dass zwischen 1 und p;, folgender
Zusammenhang besteht:

nysinfB; = nysin B .

(5.2)

Wir schreiben hier 1 statt Be, denn das Snelliussche Bre-
chungsgesetz (5.2) gilt in der gleichen Form auch bei



5.1 Experimentelle Grundlagen und Huygenssches Prinzip
umgekehrtem Strahlengang, wenn also das Licht vom
Medium 2 in das Medium 1 eintritt (Abb. 5.1b). n; und n,
sind die Brechungsindizes, Materialkonstanten, die fiir
die beiden Medien 1 und 2 charakteristisch sind. Fiir das
Vakuum wird n = 1 durch Definition festgelegt. Gew6hn-
lich ist n > 1; ist np, > 11, so nennt man den Stoff 2 das
,optisch dichtere Medium” und den Stoff 1 das ,optisch
diinnere Medium”. Wie (5.2) und Abb. 5.1 zeigen, wird
der Lichtstrahl beim Ubergang in das optisch dichtere Me-
dium zum Lot auf der Grenzflache hin abgelenkt, beim
Ubergang ins optisch diinnere Medium dagegen vom Lot
weg gebrochen.

Tabelle 5.1 gibt einige Zahlenwerte fiir den Brechungs-
index. Er hdngt von der chemischen Beschaffenheit und
von der Dichte der Stoffe ab. Fiir eine bestimmte Substanz
nimmt er mit der Dichte zu; bei Gasen weicht er ge-
wohnlich nur sehr wenig vom Vakuumwertn = 1 ab, und
(n — 1) ist der Gasdichte proportional. Gewohnlich wird
der Unterschied zwischen dem ,Brechungsindex gegen
Luft” und dem Brechungsindex n , gegen das Vakuum”
vernachlassigt. Im Ubrigen ist der Brechungsindex auch
von der Wellenldnge des Lichts abhidngig. Dies werden
wir in Abschn. 5.3 noch genauer diskutieren. Dort wird
auch die in Tab. 5.1 angegebene Grofie Vp erklart.

Das Huygenssche Prinzip

Der Gedanke, dass das Licht ein Wellenphdnomen sein
konnte, wurde von Francesco Grimaldi in Bologna und
von Robert Hooke in London Mitte des 17. Jahrhun-
derts aufgebracht. Eine Methode, mit dieser Vorstellung
die Ausbreitung des Lichts und insbesondere die Bre-
chung und Reflexion von Licht zu beschreiben, entwi-
ckelte Christiaan Huygens!. Er ging dabei von einem
Prinzip aus, das ganz allgemein ermdglicht, die Ausbrei-
tung von Wellen zu diskutieren und zu berechnen, wenn
die Ausbreitungsgeschwindigkeit der Wellen und zu ir-
gendeinem Zeitpunkt die Form einer Wellenfront bekannt
sind. Das Huygenssche Prinzip lautet:

1 Christiaan Huygens (1629-1695) ist uns schon als einer der grofien
Pioniere der Mechanik bekannt (Bd. I, Kap. 3 und 4). Er begriinde-
te mit seinem ,,Traité de la lumiere” von 1690 die Wellentheorie des
Lichts. Sie wurde zundchst wenig beachtet. Im 18. Jahrhundert stand
vielmehr Newtons Korpuskulartheorie des Lichts im Vordergrund,
verdffentlicht in Newtons ,Opticks” (1704). Der Grund: Niemand
konnte eine Antwort auf die Frage geben, wie sich die Wellen im
Weltraum ausbreiten sollen, und wie die enorm hohe Lichtgeschwin-
digkeit zustande kommt. Nach (2.36) miisste das Vakuum einen fast
masselosen Stoff mit einem Elastizitaitsmodul weit hoher als dem
von Stahl enthalten, der iiberdies weder die Planetenbewegung noch
sonst einen Bewegungsablauf beeinflusst! Da schienen die Lichtteil-
chen schon eher plausibel zu sein, obgleich mit ihnen Brechung und
Dispersion nur mit hochst kiinstlichen Annahmen erklart werden
konnen.

Tabelle 5.1 Brechungsindex und Dispersionsindex verschiedener Stoffe (A =
589 nm, 20 °C)

Substanz n Vb
Luft (NTP) 1,00027 100
Wasser 1,3330 56,4
Benzol 1,5013 29,3
Schwefelkohlenstoff CS, 1,6319 18,4
Borkronglas BK1 1,5100 62,9
Schwerflintglas SF6 1,8065 25,4
Diamant 2,417

Abbildung 5.2 Huygenssche Konstruktion von Wellenfronten

Satz 5.1

Jeder Punkt der Wellenfront kann als Ausgangs-
punkt einer Kugelwelle, auch Elementarwelle ge-
nannt, betrachtet werden. Den Verlauf der Wellen-
front zu einem spéateren Zeitpunkt erhdlt man als
Einhiillende der einzelnen Elementarwellen.

Das Huygenssche Prinzip erméglicht auch die graphische
Konstruktion der Wellenausbreitung. Abbildung 5.2 zeigt
ein Beispiel. Bei der , Huygensschen Konstruktion” wer-
den nur die nach vorn (in Ausbreitungsrichtung) laufen-
den halbkugelférmigen Elementarwellen beriicksichtigt.
Eine Begriindung fiir diese recht kiinstliche Annahme
gibt es nicht; wir werden darauf in Abschn. 8.3 zurtick-
kommen. Die Elementarwellen breiten sich mit der Wel-
lengeschwindigkeit des betreffenden Mediums aus, was
bei der Konstruktion durch die Radien der Elementarwel-
len berticksichtigt werden kann. Um das Brechungsgesetz
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Abbildung 5.3 Zur Ableitung des Brechungsgesetzes

abzuleiten, ging Huygens von Fermats* Hypothese aus,
dass die Lichtgeschwindigkeit in einem dichten Medium
um den Faktor 1/ kleiner ist als im Vakuum:

(5.3)

Cmed = =

Das Brechungsgesetz erhielt Huygens mit der in Abb. 5.3
gezeigten Konstruktion. Zum Zeitpunkt t = 0 soll eine
Wellenfront der einfallenden Welle im Punkt A die Grenz-
flache zwischen den Medien 1 und 2 erreicht haben, und
es beginnt nun von A aus die Emission einer Elementar-
welle in das Medium 2 hinein. Zum Zeitpunkt t = 7 hat
diese Welle den Radius c,T = c7/ny. Zu diesem Zeitpunkt
hat die Wellenfront im Medium 1 die Strecke c;7 = ¢t/m;
zuriickgelegt und die Grenzflache in Punkt B erreicht,
und es beginnt die Emission einer Elementarwelle von B
aus. Wahrend der Zeit 7 sind auf der Strecke AB zahl-
reiche Elementarwellen gestartet; die zum Zeitpunkt 7/2
emittierte ist als Beispiel eingezeichnet. Die Einhiillende
dieser Elementarwellen ist durch die Gerade BC gegeben.
In Abb. 5.3 liest man ab:

g = GT g T
sin 1 = 1B’ sin By = 1B (5.4)

Daraus folgt mit (5.3) das Brechungsgesetz:
M _ G (55)

Sil‘lﬁz a Co B ny ’

2 Auf Fermat und auf die interessante Geschichte des Brechungsge-
setzes kommen wir in Kap. 6 zurtick.

5 Brechung und Reflexion

Abbildung 5.4 Zur Ableitung des Reflexionsgesetzes

In dhnlicher Weise kann man das Reflexionsgesetz (5.1)
ableiten, wie Abb. 5.4 zeigt. Dass tiberhaupt eine reflek-
tierte Welle entsteht, ldsst sich allerdings nicht aus dem
Huygensschen Prinzip folgern, ebensowenig, wie die In-
tensitdten des reflektierten und des gebrochenen Strahls.
Wir werden darauf in Abschn. 5.4 zuriickkommen.

Anwendungen

Wir wollen sogleich zwei einfache Anwendungen be-
trachten, bei denen die Brechung von Licht an einer
ebenen Grenzfliche ausgenutzt wird. Abbildung 5.5 zeigt
den Lichtdurchgang durch eine Glasplatte, deren Vorder-
und Riickseite durch parallele Ebenen gebildet werden,
eine sogenannte planparallele Platte. Wenn sich vor und
hinter der Platte das gleiche Medium befindet, ist der
Austrittswinkel gleich dem Einfallswinkel, d. h. der Licht-
strahl wird parallel versetzt. Mit Hilfe des Brechungsge-
setzes berechnet man:

cos
n2 —sin?

Wie man der Formel ansieht, ist die Versetzung A fiir klei-
ne Winkel & sehr klein und angendhert proportional zu
«. Diesen Umstand kann man sich zunutze machen, um
durch Verdrehen der Platte eine sehr feine Justierung der
Strahllage zu erreichen.

A=dsina (1 — (5.6)

Abbildung 5.5 Planparallele Platte



5.2 Totalreflexion

Abbildung 5.6 a Prisma, symmetrischer Strahlendurchgang; b zur Ableitung
von (5.7)

Als Prisma bezeichnet man in der Optik einen Glaskor-
per, der zwei ebene, polierte und unter einem bestimmten
Winkel & gegeneinander geneigte Flachen enthélt. Durch
ein Prisma wird ein Lichtstrahl um einen bestimmten
Winkel v abgelenkt, den man (mit einiger Miihe) als
Funktion des Einfallswinkel B; berechnen kann.®> Sehr
einfach ist die Berechnung des Ablenkwinkels bei sym-
metrischem Durchgang des Lichtstrahls, der sich {ibri-
gens auch als Winkel der minimalen Ablenkung erweist
(Abb. 5.6). In diesem Fall gilt

14
‘BZ_E’

denn der Winkel ¢ ergénzt sowohl B, als auch a /2 zu 90°.
Daraus folgt mit dem Brechungsgesetz (5.2) und mit 1 =
Y/2+ B2

i —2|_ & nsin % ,

v = 2arcsin (nsing) -

sin

(5.7)

Hier ist n der Brechungsindex des Prismas. Fiir kleine
Winkel « und damit kleine Winkel vy gilt die Ndherung;:

yrm—1)a. (5.8)

Da der Brechungsindex fiir verschiedene Lichtwellenldn-
gen etwas unterschiedlich ist, kann man mit einem Prisma

3 Das Ergebnis ist

v=pH+ arcsin{sin:x\/n2 — sin® B1 — cosasin ,61}— .

die Zerlegung des Lichts nach Wellenlingen bewirken.
Wir werden darauf in Abschn. 5.3 und in Abschn. 6.4 zu-
riickkommen.

5.2 Totalreflexion

Findet der Ubergang des Lichts vom optisch diinneren
ins optisch dichtere Medium statt, so ldsst sich fiir jeden
Einfallswinkel B; das Brechungsgesetz erfiillen. Wegen
n1/ny <1 gibt es immer einen Winkel B, der die Glei-
chung

. ny .
sin B = é sin 81

befriedigt. Das ist nicht so, wenn der Ubergang vom op-

tisch dichteren ins optisch diinnere Medium erfolgt. Da

sin B < 1 sein muss, gibt es keinen gebrochenen Strahl
mehr, sobald n1 sin 1 /1, > 1 wird, d. h. wenn

. np

sin 81 > "

(5.9)

ist. In diesem Falle wird das einfallende Licht vollstindig
reflektiert, es tritt Totalreflexion ein (Abb. 5.7). Grenzt ein
Medium mit dem Brechungsindex n ans Vakuum, so lau-
tet die Bedingung fiir Totalreflexion

sinf1 > sinfr =1/n. (5.10)

Bt heifit der Totalreflexionswinkel des Mediums. Beim
Ubergang Wasser-Luft (n; = 1,33 und n, = 1) erfolgt To-
talreflexion bei B > 48,7°. Es ist reizvoll, sich mit einer
Tauchermaske bei sehr ruhigem Wasser auf den Grund
eines Schwimmbeckens zu setzen und seine Umwelt zu
betrachten. Man kann dann testen, ob man sich richtig
iiberlegt hat, wie die Welt aus dieser Froschperspektive
aussieht.

Auch bei Totalreflexion hort die Welle nicht abrupt an
der Grenzflache auf: Sie dringt noch mit einer Eindring-
tiefe von der Grofienordnung einer Wellenldnge in das

Medium 2 ‘ 9y

Medium 1

? . Ny
/ B = arc sin —=
m

Abbildung 5.7 Totalreflexion (n; > n,)
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Abbildung 5.8 Eindringtiefe bei der Totalreflexion von Mikrowellen

ARAAN

Abbildung 5.9 Wellenfronten der einfallenden, der reflektierten und der eva-
neszenten Welle. Die Strichdicke deutet die Amplitude der Welle an

nach dem Brechungsgesetz ,verbotene” Medium ein.
Man kann das leicht an einem gebiindelten Strahl von
Mikrowellen (A ~ 2 cm) mit Hilfe von zwei 90°-Prismen
aus Paraffin nachweisen (Abb. 5.8). Der Brechungsindex
ist n = 1,46, so dass bei einem Einfallswinkel von 45°
an der Grenzflache Paraffin-Luft Totalreflexion vorliegt.
Dementsprechend weist in der Konfiguration (a) der De-
tektor I die volle Intensitat nach, wahrend der Detektor II
die Intensitat 0 anzeigt. Wird dagegen das zweite Paraffin-
Prisma mit einem Abstand d < A hinter das erste gestellt,
so zeigt Detektor I nichts mehr an, wahrend Detektor 11
die volle Intensitdt nachweist. Durch Verdnderung der
Spaltbreite d kann man einen kontinuierlichen Ubergang
zwischen (a) und (b) erreichen.

Die bei der Totalreflexion in den ,verbotenen” Bereich
eindringende Welle nennt man auch die evaneszente
Welle (Abb. 5.9). Ihre Amplitude nimmt exponentiell mit
dem Abstand von der Grenzfldche ab; der Energiefluss ist
parallel zur Grenzflache. Zwei Medien, z. B. zwei Glaskor-
per oder ein Glaskorper und eine Plastikfolie, sind nur
dann in ,optischem Kontakt”, wenn der Spalt zwischen
den beiden Medien klein gegen die Lichtwellenldnge ist.

5 Brechung und Reflexion

Nur bei aufgedampften Schichten und beim Ubergang
Festkorper—Fliissigkeit ist der optische Kontakt automa-
tisch gewdhrleistet.

Anwendungen der Totalreflexion

Reflektierende Prismen. Es gibt eine Vielzahl von An-
wendungen, in denen die Totalreflexion in einem Prisma
zur Ablenkung eines Lichtstrahls um einen bestimmten
Winkel oder zur Bildumkehr verwendet wird. Wir be-
gniigen uns mit zwei Beispielen. Abbildung 5.10 zeigt
als Beispiel einen sogenannten Tripelspiegel. Er entsteht
im Prinzip dadurch, dass man von einem Wiirfel die
Ecke abschneidet (Abb. 5.10). Er hat die Eigenschaft, dass
er einen durch die Schnittflache eintretenden Lichtstrahl
nach dreimaliger Totalreflexion in seine Ausgangsrich-
tung zuriickwirft. Die in der Verkehrstechnik eingesetzten
Riickstrahler basieren auf diesem Prinzip. Ein weiteres
Beispiel aus der Wunderwelt der reflektierenden Prismen
ist in Abb. 5.11 gezeigt. Blickt man durch ein Dove-
Prisma, so sieht man infolge der Spiegelung an der Ba-
sisfliche die Welt auf dem Kopfe stehend, aber nicht
seitenverkehrt. Dreht man das Prisma um seine Langsach-
se, so rotiert das Koordinatensystem (x,’) doppelt so
schnell wie das Prisma!

Lichtleiter und Fiberoptik. Man kann aufgrund der To-
talreflexion auf komplizierten Wegen Licht durch einen
gekriimmten, allseitig polierten Plexiglasstab leiten. Von
solchen Lichtleitern wird z.B. in der Teilchenphysik Ge-
brauch gemacht, um das Licht von einem Szintillator auf
den Photomultiplier zu bringen (Abb. 5.12). Im Prinzip

Abbildung 5.10 Tripelspiegel

Abbildung 5.11 Dove-Prisma
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Abbildung 5.12 Szintillations-

zahler mit Lichtleiter
Platte aus

Szintillator-
material

Lichtleiter

Photo-
multiplier

lieSe sich Licht auf diese Weise iiber grofie Entfernungen
transportieren; auch konnte man aus diinnen Glasfasern
flexible Lichtleiter aufbauen, denn die Totalreflexion er-
folgt verlustfrei. In der Praxis erwies es sich jedoch als
sehr schwierig, Oberflichen hinreichend sauber herzu-
stellen und zu erhalten. Der Durchbruch gelang erst mit
der Entwicklung ummantelter optischer Fasern, bei de-
nen die totalreflektierende Oberfliche im Innern des Ma-
terials liegt (Abb. 5.13). Die gebrduchlichste Art ist der
Typ (a), ein sogenannter Multimoden-Lichtwellenleiter,
so genannt, weil das Licht auf vielen verschiedenen We-
gen durch den Kern des Lichtleiters gelangen kann. Zwei
mogliche Wege sind in Abb. 5.13 eingezeichnet. Im Kern
der Faser kann Licht durch Totalreflexion transportiert
werden, solange

sin B > nv/nk (5.11)

ist. ny ist der Brechungsindex des Mantels, nx der des
Kerns. Fur den maximalen Einfallswinkel amax gilt nach
(5.2) und (5.9):

Mg SIN Xmax = nK\/l — sin® Bmin = \/nﬁ — n%\/[ ,

dennesistsina’ = cos B. Mitng = 1,6, my = 1,5 und ny ~
1 (Luft) erreicht man z. B. apmax = 34°.

Indem man einige 1000 Fasern dieser Art sorgfiltig auf-
einanderschichtet und an beiden Enden des Biindels eine
Linse aufklebt, kann man einen flexiblen Lichtleiter kon-
struieren, in dem mit guter Aufldsung Bilder {ibertragen
werden kénnen. Man kann mit einem solchen Endoskop
in unzugéngliche Hohlrdume hineinschauen, wovon heu-
te in der Technik und in der Medizin ausgiebig Gebrauch
gemacht wird. Vielleicht noch wichtiger sind die Anwen-
dungen der Fiberoptik in der Nachrichtentechnik. Man

—————— ca. 100pm

ca. Sum

Abbildung 5.13 Lichtwellenleiter fiir , Fiber-Optik": @a Multimoden-Fiber, b Fi-
ber mit in radialer Richtung abnehmendem ny, ¢ Ein-Moden-Fiber

kann im Prinzip mit der hohen Frequenz der Lichtwelle
sehr grofie Datenfliisse iibertragen. Signalraten im Be-
reich von 10°bit/s sind méglich. (Zum Vergleich: auf
einer normalen Telefonleitung kénnen 3 x 10% bit/s iiber-
tragen werden). Bei fiberoptischen Kabeln, die fiir grofiere
Entfernungen tauglich sein sollen, sind jedoch zwei Pro-
bleme zu l6sen: Erstens muss die Lichtabsorption genii-
gend klein sein. Hier erreicht man heute mit Quarzfasern
héchster Reinheit Daimpfungen von ca. 0,2 dB/km bei der
Wellenldnge A = 1,59 um. Damit sind nach 50km noch
10 % der Leistung vorhanden. Zweitens miissen die Lauf-
zeitdifferenzen aufgrund verschiedener Lichtwege klein
sein, damit aufeinanderfolgende Signale am Ende noch
getrennt registriert werden. In einem Kabel vom Typ (a)
betragen die Laufzeitdifferenzen zwischen den verschie-
denen Lichtwegen

AT _ mx K4
L~ ¢ \nyu !

wie man mit (5.11) ausrechnen kann. Man kommt leicht
in den Bereich von AT/L ~ 100ns/km. Damit ist die
Ubertragungsrate bei einer Kabellinge L ~ 1km auf ca.
10° bit/s begrenzt. Wesentlich giinstiger ist der Typ (b) in
Abb. 5.13. Durch den nach auflen hin kontinuierlich ab-
nehmenden Brechungsindex kann man AT/L auf einige
ns/km reduzieren. Am giinstigsten (und am teuersten) ist
der Typ (c), der sogenannte Ein-Moden-Lichtwellenleiter.
Bei sehr kleinen Kerndurchmessern spielt die Wellenldn-
ge des Lichts eine Rolle. Wie beim Hohlleiter kann sich
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bei richtiger Dimensionierung der Faser nur noch die
Grundwelle ausbreiten. Es gibt dann keine Laufzeitdiffe-
renzen mehr, vorausgesetzt, es wird monochromatisches
Licht verwendet. Das ist aber in der Praxis der Fall: Man
verwendet zur Datentibertragung als Lichtquelle Halblei-
terlaser (Bd. V, Abb. 2.28), deren Wellenldnge genau in das
Minimum der Absorption des Quarzes bei 1,59 um fallt.

5.3 Dispersion und Absorption

Mit der Dispersion von Wellen hatten wir uns schon in
Abschn. 1.4 befasst. In Kap. 2 haben wir die Dispersion
von Wasserwellen besprochen; nun wollen wir die Di-
spersion von elektromagnetischen Wellen untersuchen.

Fallt ein weifler Lichtstrahl auf ein Prisma, so wird er in
Farben zerlegt, wie in Abb. 5.14 gezeigt ist (vgl. Tab. 3.3).
Das beruht darauf, dass sich Weif$licht, z. B. das Sonnen-
licht, als Uberlagerung von Licht verschiedener Wellen-
langen erweist, und dass im Material des Prismas die
Phasengeschwindigkeit der Lichtwellen und damit auch
der Brechungsindex von der Wellenlinge abhédngt. Ro-
tes Licht (A =~ 700nm) wird am schwéchsten, violettes
(A = 420nm) am stédrksten gebrochen, der Brechungsin-
dex nimmt also mit abnehmender Wellenldnge zu. Dieser
Verlauf wird in der Optik als normale Dispersion be-
zeichnet.

Die Abhéngigkeit des Brechungsindex von der Wellenldn-
ge ist im sichtbaren Spektralbereich gewohnlich klein, wie
Tab. 5.2 an einigen Beispielen zeigt. Als Maf fiir die Di-
spersion eines Materials gibt man den Dispersionsindex,

\\ve\% /rot
/ orange
gelb
griin
blau
Nviolett

Abbildung 5.14 Spektrale Zerlegung des weiBen Lichts in einem Prisma
(schematisch)

Tabelle 5.2  Brechungsindex von Wasser und von optischen Glasern im sicht-
baren Spektralbereich

A Wasser Kronglas Schwerflintglas
(nm) H,O K3 SE,

706,5 1,3300 1,5140 1,7430

643,8 1,3314 1,5160 1,7485

589,3 1,3330 1,5182 1,7550

480,0 1,3374 1,5249 1,7764

404,7 1,3427 1,5331 1,8059

5 Brechung und Reflexion

Tabelle 5.3 Statische Dielektrizitatskonstante € und Brechungsindex (A =
589 nm, 20 °C)

Substanz € n?

Polare Molekiile

H,O (fliissig) 80,3 1,77

NHj (fliissig) 17,4 1,76
Ionenbindung

KCl 4,94 2,20

Glas (BK 1) 6,2 2,28
homoopolare Bindung

Benzol 2,28 2,25

CS, 2,64 2,66
auch Abbe-Zahl genannt, an:

vp= =l (5.12)
ng —nc

Mit D bezeichnet man die gelbe Linie des Natrium (Ap =
589,3nm), mit F und C zwei Linien im Wasserstoffspek-
trum (Ar = 486,1nm, Ac = 656,3nm). Vp gibt nach (5.8)
im wesentlichen das Verhéltnis der Ablenkung zur Auf-
facherung des Lichts in Abb. 5.14 an. Zahlenwerte fiir
Vp wurden bereits in Tab. 5.1 angegeben. Je kleiner Vp,
desto grofler ist die Dispersion. Etwas anschaulichere
Zahlen lassen sich in Tab. 5.2 ablesen: Uber den ganzen
sichtbaren Spektralbereich hinweg &ndert sich der Bre-
chungsindex beim Wasser und beim Kronglas nur um 1 %,
beim Schwerflint nur um 3,5 %.

Wir wollen nun untersuchen, wie die Dispersion zustande
kommt. In (2.74) wurde behauptet, dass bei nichtmagneti-
schen Stoffen 1 = /€ sein soll (,Maxwellsche Relation”).
Wie Tab. 5.3 zeigt, ist das nur bei manchen Stoffen der Fall.
Besonders grofie Abweichungen findet man beim Wasser.
Wir hatten jedoch gerade beim Wasser experimentell fest-
gestellt, dass noch im Radiowellenbereich n? =2 = 8list
(Gl. (2.90)). Es zeigt sich, dass der Brechungsindex in
gewissen Spektralbereichen ganz erheblich von der Fre-
quenz der elektromagnetischen Strahlung abhédngt, und
zwar bei den in der Tabelle genannten Stoffgruppen in
ganz unterschiedlicher Weise. In Abb. 5.15a ist das sche-
matisch dargestellt. Bei Substanzen mit polaren Mole-
kiilen gibt es drei Regionen starker Variation: Im Mi-
krowellenbereich, im Infrarot und im Ultraviolett. Bei
nichtpolaren Stoffen mit Ionenbindung entféllt die Varia-
tion von n im Mikrowellenbereich, und bei Stoffen mit
homdopolarer Bindung sowie bei Edelgasen gibt es nur
noch die Variation im Ultravioletten. Deshalb stimmt bei
diesen Stoffen bis hin zum sichtbaren Spektralbereich 12
mit der statischen Dielektrizitdtskonstante iiberein. Da die
Maxwellsche Relation allgemeine Giiltigkeit beansprucht,
muss € von der Frequenz abhdngen (,,Dielektrische Funk-
tion”). Wir werden nun zeigen, dass eine solche Abhdn-
gigkeit in der Tat zu erwarten ist, und dass damit der
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Abbildung 5.15 Frequenzabhangigkeit des Brechungsindex n(w) und des
Absorptionskoeffizienten j(w ), schematisch

Verlauf der Kurven in Abb. 5.15a qualitativ erklart wer-
den kann. Auch wird sich herausstellen, dass ein enger
Zusammenhang zwischen Dispersion und Absorption be-
steht. Dort, wo sich der Brechungsindex drastisch dndert,
wird die Strahlung auch stark absorbiert, wie Abb. 5.15b
zeigt.

Dispersion und molekulare Polarisierbarkeit

Wie in Bd. III/4 diskutiert wurde, ist die Dielektrizitats-
konstante € durch die molekulare Polarisierbarkeit « ge-
geben. Das gilt nicht nur im statischen Fall, sondern auch
bei hohen Frequenzen. Kombiniert man Bd. III, Gl. (4.21)
mit (2.74), erhélt man fiir verdiinnte Medien

(5.13)

wobei N die Zahl der Molekiile pro Volumeneinheit ist.*
Fiir dichte Medien muss berticksichtigt werden, dass das
am Ort des Molekiils wirksame Feld von dem &ufSeren
Feld E abweicht. Nach Bd. III, Gl. (4.24) gilt dann

N
€:1+&—1’12

1—Na/3¢y (5.14)

Die molekulare Polarisierbarkeit a« hat nach Bd. III,
Gl. (4.33) drei Anteile:

O= e +0a5+ag. (5.15)

4 Gewohnlich wird in diesem Buch die Teilchenzahldichte mit n
bezeichnet. Um eine Verwechslung mit dem Brechungsindex n zu
vermeiden, nennen wir sie in der Optik N.

ne beriicksichtigt die Verschiebung der Elektronen im
Atom, a; die Verschiebung von positiven und negativen
Ionen gegeneinander und a4 die Ausrichtung permanen-
ter Dipolmomente, sofern solche vorhanden sind. Alle
drei Anteile sind frequenzabhingig. Wie Abb. 5.15 zeigt,
verschwindet mit zunehmender Frequenz zunidchst der
Beitrag von a4, dann (nach starker Variation im Infraro-
ten) verschwindet der Beitrag von «; und schlieSlich wird
oberhalb des Ultravioletten auch der Beitrag von a. zu
Null, der Brechungsindex wird dann n = 1. Was sind die
physikalischen Ursachen dieser Phdnomene?

Dipol-Polarisierbarkeit. Die Dipol-Polarisierbarkeit oy
kommt durch das Wechselspiel zwischen der Richtwir-
kung des dufseren Feldes und der thermischen Bewegung
zustande. Die Einstellung des Gleichgewichtszustands er-
folgt nicht momentan; sie beansprucht im Mittel eine
Zeit 1, die Relaxationszeit. Fiir w < 27t/T kénnen die
Dipolmomente den momentanen Werten der Elektrischen
Feldstarke folgen, a(w) bleibt konstant gleich dem sta-
tischen Wert «(0). Fiir w > 271/7 kann die Einstellung
der Dipolmomente dem Wechselfeld nicht mehr folgen,
es wird ag(w) = 0. Der Ubergang erfolgt bei

W wg=21/T. (5.16)
Bei Wasser, einer typischen Fliissigkeit mit polaren Mo-
lekiilen, ist T & 10105, wq liegt also im Mikrowellenbe-
reich bei v ~ 10 GHz. Dadurch wird erklarlich, dass bei
100MHz noch n = \/8_1 gemessen wird (vgl. Abb. 2.28
und (2.90)), wéahrend im optischen Bereich n bedeutend
Kkleiner ist. Mit der Bewegung der H,O-Dipolmolekiile ist
infolge der Fliissigkeitsreibung die in Abb. 5.15b gezeig-
te Absorption von Energie verbunden. Die dabei erzeugte
Warme ist die physikalische Grundlage des Mikrowellen-
herdes.

Ionische Polarisierbarkeit. Die Ionen sind in einem Fest-
korper oder im Molekiilverband elastisch an eine Ru-
helage gebunden. Das elektrische Feld E(t) = E( cos wt
erzwingt eine Schwingung der Ionen mit der Frequenz w;
z.B. schwingen im NaCl-Kristall die Na™-Ionen und die
Cl™-Ionen gegeneinander. Die Eigenfrequenz wy dieser
Gitterschwingung liegt im Infrarot. Der Kurvenverlauf in
Abb. 5.15 passt gut zu dieser Vorstellung. n(w) verhalt
sich wie die dispersive Amplitude einer erzwungenen
Schwingung, u(w) wie der absorptive Anteil. Diese Be-
griffe wurden in Bd. I/12.3 eingefiihrt. Wir wiederholen
das Wichtigste in Kiirze. Dabei gehen wir wie in Bd.1/12.5
von der Behandlung der erzwungenen Schwingung mit
komplexen Groflen aus. Die auf die Ladungen einwirken-
de elektrische Feldstarke ist dann E(t) = Ege!!, und die
Schwingungsgleichung lautet
2y v
dx +T dx + wi¥

_ @eiwt
dr? dt ’

(5.17)
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I' ist die Ddmpfungskonstante, wy die Eigenfrequenz der
Ionenschwingung; g und m sind die Ladung und die re-
duzierte Masse der Ionen. Durch den Ansatz ¥(t) = ¥el“*
mit ¥y = xpel® wird diese Gleichung gelost. Man erhalt

1 Eo ;
ﬁq—oe‘“’t . (5.18)
wy — w=+iwl m
Durch die Verschiebung der Ladungen entsteht ein Dipol-
moment. Analog zu Bd. III, Gl. (4.17) setzen wir

pt) = qx(t) = &(w)E(1) . (5.19)
&(w) ist die komplexe Polarisierbarkeit:
2
f(w) = —— T/ (5.20)

w%—uﬂ—i—iwf'

Sie ist zur (komplexen) Amplitude der erzwungenen
Schwingung proportional. Den Realteil von &(w) nennt
man auch den dispersiven, den Imaginérteil den absorpti-
ven Teil der Polarisierbarkeit. Wir multiplizieren in (5.20)

Zahler und Nenner mit w% — w? — iwI und erhalten:
2 2 2
y q wi —w
Red(w) = agisp(w) = — , (5.21)
P m (W — w?)? + 22
2
r
M (w) = agpe(w) = % “ (5.22)

(w3 — w2)2 + 22

In Abb. 5.16a und b sind die Amplitude |¥;| und die Phase
¢ der Schwingung als Funktion von w aufgetragen. Uns
interessieren a4isp und agps. Der Vergleich mit Abb. 5.15
zeigt, dass agjsp mit 7(w) und a,ps mit p(w) eng zusam-
menhédngen.

Fiir Frequenzen w, die nicht nahe bei der Resonanzfre-
quenz wy liegen, ist (w3 — w?) > I'w. Dann ist a,ps gegen
agisp vernachldssigbar und man kann nach (5.21) fiir die
Polarisierbarkeit a schreiben:

2
a(w) = % . (5.23)

Aufierhalb der Resonanzstelle wird gewohnlich dieser
Ausdruck verwendet.

Elektronische Polarisierbarkeit. In Abb. 5.15 wird der
Kurvenverlauf im Ultraviolett auf die elektronische Pola-
risierbarkeit zuriickgefiihrt. Offensichtlich verhalten sich
n(w) und p(w) im UV ganz dhnlich wie im IR. Das ist
uberraschend, denn sicher sind die einzelnen Elektronen
im Atom nicht durch elastische Krifte an eine Ruhela-
ge gebunden; die Elektronenbewegung ist ganz anderer
Art. Angesichts der genannten Ahnlichkeit legen wir den-
noch im Folgenden das von H. A. Lorentz vorgeschlagene

5 Brechung und Reflexion
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wo/I'=2000 wo/I'=4

Abbildung 5.16 a Amplitude und b Phase der lonenschwingung; Polarisier-
barkeit: ¢ dispersiver und d absorptiver Teil

Modell elastisch gebundener Elektronen® zugrunde, das
wir vorerst nur durch seinen Erfolg rechtfertigen konnen.

Im Allgemeinen gibt es sowohl bei ionischen als auch bei
der elektronischen Polarisierbarkeit mehrere Resonanz-
stellen, deren Beitrdge sich addieren. Das ist besonders
bei ae der Fall. Im sichtbaren Spektralbereich, in einiger
Entfernung von den Resonanzstellen, kann man die Po-
larisierbarkeit ae(w) darstellen durch eine Superposition
von mehreren Termen des Typs (5.23):

te(w) = Sy _fi

= . 5.24
me & w? — w? 6-24)

5 Diese Modellvorstellung entwickelte Hendrik Antoon Lorentz
(1853-1928) im Rahmen seiner , Elektronentheorie”, eines epochalen
Werkes, das er 1892, fiinf Jahre vor der Entdeckung des Elektrons
verdffentlichte. Er stiitzte sich dabei auf Helmholtz’ Idee, zur Er-
klarung der Faradayschen Gesetze der Elektrolyse eine atomistische
Struktur der Elektrizitdt anzunehmen.



5.3 Dispersion und Absorption

Die Groflen fy werden die Oszillatorenstirken genannt.
Sie geben an, mit welchem Gewicht die Resonanz mit der
Frequenz wy in der Summe zu versehen ist, damit der
experimentell bestimmte Verlauf von a. richtig wiederge-
geben wird.

Das Oszillatormodell des Atoms wird sich im Folgen-
den als sehr erfolgreich erweisen. Eine Begriindung dafiir
kann erst in Bd. V/6.4 gegeben werden. Auch die quan-
tenmechanische Beschreibung des Atoms fiihrt zu (5.21)-
(5.24). Dabei werden die hier eingefiihrten Grofien wy, Iy
und f; im Sinne der Quantenmechanik prézise definiert.®

Brechungsindex und Absorptionskoeffizient

Unser Ziel ist es nun, Brechungsindex und Absorpti-
onskoeffizient mit der molekularen Polarisierbarkeit des
Mediums (5.20) zu berechnen. Da &(w) eine komplexe
Grofle ist, hat auch die mit (5.13) und (5.14) zu berech-
nende Dielektrizitdtskonstante einen Realteil und einen
Imaginarteil:

é(w) = er +i€r . (5.25)

Die erste Wellengleichung in (2.69) nimmt dann folgende

Form an: ) )

0°E &(w) 0°E

¥ ¥

= . 5.26
0x2 2 o2 (5.26)

Hierbei haben wir die Permeabilitit u = 1 gesetzt. Wir su-

chen eine Losung der Form

Ey(x,t) = Egel(r=«h) | (5.27)
Durch Einsetzen in (5.26) erhélt man

G}

. . w 27
w? =& mitky = — = .
c Avac

Da € komplex ist, wird auch die Wellenzahl komplex. Wir
haben erhalten:

k= Veky = kg, (5.28)
wobei 71 der komplexe Brechungsindex
= ng +ing (5.29)

ist. Was das alles zu bedeuten hat, werden wir sofort se-
hen. Wir setzen (5.28) in (5.27) ein:

Ey(x/ i’) _ Eoe—nlkoxei(anox—wt) )

6wy sind die Frequenzen, bei denen Ubergénge vom Grundzustand

des Atoms in angeregte Zustande durch Absorption von Lichtquan-
ten verursacht werden konnen, 1/} ist die mittlere Lebensdauer
dieser Zustande, und f; ist proportional zur Ubergangswahrschein—
lichkeit vom Grundzustand des Atoms in den angeregten Zustand.
Im Prinzip konnen diese Groflen quantenmechanisch berechnet wer-
den.

n sichtbar

—

w

Abbildung 5.17 Brechungsindex im Sichtbaren und bei kiirzeren Wellen
a...b, c...d: Gebiete anomaler Dispersion

Der Realteil von Ey(x,t) ist die elektrische Feldstirke in
der Welle:

Ey(x,t) = Ege k0% cos (kx — wt) , (5.30)
mit k = nrkg = 271/ Apeq- Wie man sieht, bestimmt der
Imaginérteil von 71 die Absorption der Welle, und der Re-
alteil von 71 ist mit dem gewohnlichen Brechungsindex
identisch. nikj ist der Absorptionskoeffizient p(w).

Wir kénnen also 7n(w) und p(w) mit dem dispersiven
und absorptiven Anteil der molekularen Polarisierbarkeit
berechnen. Bei verdiinnten Medien, bei denen (5.13) an-
gewendet werden kann, ist das ganz einfach. In dieser
Gleichung ist Na/€j eine kleine Grofie. Dann ist

() = VE = /1+N1x(w) zl—i—Na(w) ’
€0 2€Q

und es folgt
Nas
n(w) = g =14+ e (@) (5.31)
2€Q
N
u(w) = kony = ko (1 T ”‘;b—eso(“’)) . (5.32)

Es ist uns damit gelungen, den komplizierten Verlauf von
n(w) und p(w) in Abb. 5.15 im Bereich der ionischen
und der elektronischen Polarisierbarkeit auf das Verhalten
eines Oszillators zuriickzufiihren. Da die elektronischen
Resonanzen gewohnlich im Ultraviolett, die ionischen im
Infrarot liegen, ist im sichtbaren Spektralbereich (5.24)
giiltig. Es dominiert der Beitrag von ae(w) in der Form
(5.24):

Nga i

n=1+
2meen T w2 — w?

(5.33)

Dazu kommt noch ein kleiner Beitrag, der die Ausldu-
fer von aj(w) enthilt. Beide Beitrdge bewirken, dass n
mit zunehmender Lichtfrequenz wéchst (Abb. 5.17). Man
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spricht von normaler Dispersion, wie schon im Zusam-
menhang mit Abb. 5.14 bemerkt. An den Resonanzstellen
gibt es dagegen Gebiete anomaler Dispersion, in denen
n mit wachsendem w abnimmt, z.B. in Abb. 5.17 zwi-
schen a und b sowie zwischen ¢ und d. Wie man sieht,
wird spétestens oberhalb der letzten Resonanzstelle der
Brechungsindex n < 1, also ist cpeq > ¢. Das ist nichts
ungewohnliches, siehe (2.97). Aber auch die mit (1.25) be-
rechnete Gruppengeschwindigkeit wird hier grofier als
¢, denn im Gebiet anomaler Dispersion ist dop/dA < 0.
Dennoch besteht hier kein Widerspruch zur Relativitats-
theorie, denn (1.24) und (1.25) gelten nicht bei starker
Dampfung. Wenn man die Dampfung berticksichtigt, er-
halt man das Resultat, dass sich eine Wellenfront nur mit
der Geschwindigkeit ¢ ausbreitet. Das liegt daran, dass
das Signal infolge der Dampfung deformiert wird.

Brechungsindex von Gasen. Bei Gasen geringer Dichte
beeinflussen sich die Atome gegenseitig nur wenig, und
man kann (5.31) und (5.32) direkt experimentell {iberprii-
fen. Besonders eindrucksvoll gelingt dies mit Natrium-
Dampf, denn das Na-Atom hat im gelben Spektralbereich
eine elektronische Resonanzstelle mit grofSer Oszillatoren-
starke. Man kann die anomale Dispersion sogar in einem
Vorlesungsversuch vorfiihren. Zwischen einer Bogenlam-
pe und einem Spektralapparat wird ein Rohr aufgestellt,
das an beiden Enden mit Glasfenstern verschlossen, aber
nicht vollstindig evakuiert ist. Auf einem hinter dem
Spektralapparat aufgestellten Schirm sieht man das Licht
der Bogenlampe in horizontaler Richtung spektral zerlegt.
In der Mitte des Rohrs befinden sich einige Stiickchen
Natrium. Wird an dieser Stelle das Rohr erhitzt, wie in
Abb. 5.18a gezeigt, verdampft etwas Natrium und man
beobachtet im Gelben eine scharf ausgepragte Absorption
bei der Wellenldnge A = 589 nm. Das ist die Wellenlan-
ge der bekannten Natrium D-Linien. Wird nun das Rohr
auf der Unterseite starker erhitzt und auf der Obersei-
te gekiihlt, verdampft unten das Natrium, wihrend es
oben kondensiert. Von unten nach oben gelangen die
Na-Atome wegen der im Rohr befindlichen Luft durch
Diffusion. Das erfordert, dass die Konzentration N der
Na-Atome nach oben hin (in z-Richtung) kontinuierlich
abnimmt, denn die Diffusionsstromdichte ist nach Bd. II,
Gl (6.4) jp(z,t) « —dN/0z. Der Na-Dampf wirkt dann
wie ein Prisma, das das Licht in vertikaler Richtung spek-
tral zerlegt. Obgleich die Dampfdichte natiirlich immer
noch klein ist, wird das Licht in der Ndhe der Resonanz-
stelle nach oben und nach unten abgelenkt, wie Abb. 5.18b
zeigt. Abbildung 5.18c zeigt das Zustandekommen der
Ablenkungen noch einmal schematisch. Abbildung 5.18b
beweist, dass unmittelbar vor der Resonanzstelle ag;sp
grofe positive Werte, unmittelbar dahinter grofie negati-
ve Werte annimmt, gerade so, wie in Abb. 5.16c¢ fiir den
Fall schwacher Dampfung gezeigt ist. Zwischen den bei-
den Spitzen in Abb. 5.18b liegt das Gebiet der anomalen
Dispersion.

5 Brechung und Reflexion
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Abbildung 5.18 Vorlesungsversuch zur anomalen Dispersion im Natrium-
dampf

Brechungsindex von kondensierter Materie. Bei kon-
densierter Materie treten gegeniiber der verdiinnten, d. h.
gasformigen Materie zwei Komplikationen auf: Erstens

muss i1 = /& mit der komplizierten Formel (5.14) berech-
net werden, vor allem aber werden die Absorptionslinien
durch die Wechselwirkung zwischen den Atomen erheb-
lich verbreitert. Dadurch werden an den Resonanzstellen
auch die Spitzen der Dispersionskurve abgeflacht und
verbreitert. Als ein Beispiel sind in Abb. 5.19 n(w) und
p(w) fiir fliissiges Wasser gezeigt. Der Ubergang von der
Dipol- zur ionischen Polarisierbarkeit ist deutlich zu se-
hen. Auch im Ganzen ist der in Abb. 5.15 idealisierte und
schematisierte Verlauf der Funktionen n(w) und p(w)
noch zu erkennen. — Man beachte den logarithmischen
Mafstab und die enorme Variation des Absorptionsko-
effizienten um 8-10 Grofienordnungen an den Grenzen
des sichtbaren Spektralbereichs. Man kann dartiber spe-
kulieren, wie gut es sich trifft, dass das Maximum der
Sonnenstrahlung gerade in das Minimum der Wasserab-
sorption fallt, und dass dieses Minimum so ausgepréagt ist.
Sonst wiirde es wohl kaum einen ,,sichtbaren” Spektralbe-
reich geben, weil es niemanden gébe, der Augen im Kopfe
hat.

Brechungsindex fiir Rontgenstrahlen. Im Roéntgenbe-
reich ist w grofl gegen alle wy. Dann geht (5.24) tiber in
a(w) = —(g%/me) Lfi/w?*. Sowohl in der Lorentzschen
Elektronentheorie als auch in der Quantenmechanik ist
Y fx = Z, der Anzahl der Elektronen im Atom. Die Polari-
sierbarkeit « ist so klein, dass (5.13) auch in kondensierter
Materie angewandt werden kann. Der Brechungsindex im



5.4 Reflexion und Transmission

04"

sichtbarer
Bereich

2

N " e

0 T T T T T T
108 1010 1012 1014 1016 1018

1064 p(em)
10-1 -

]b8 ]dl() ]6]2 ‘1614 ]6|U ‘10‘18
v (Hz)

Abbildung 5.19 Brechungsindex und Absorptionskoeffizient von Wasser als
Funktion der Frequenz

Roéntgenbereich ist also

n(w) =1+

NZe2< 1

wp
— | =1-—. (634
2¢giie —w2> 2w? (5:34)

wp ist die Plasmafrequenz (2.84), berechnet mit allen Elek-
tronen des Atoms. Auch hier ist n <1 und v, > c. Die
Gruppengeschwindigkeit ist jedoch vg < ¢, wie man mit
(1.24) nachrechnen kann.

5.4 Reflexion und Transmission

Wir wollen nun untersuchen, welcher Bruchteil einer Wel-
le an der Grenzfliche zwischen zwei Medien reflektiert
und welcher durchgelassen wird. Diese Frage blieb in Ab-
schn. 5.1 unbeantwortet. Wir gehen dabei von elektroma-
gnetischen Wellen aus; die wesentlichen Ergebnisse lassen
sich auch auf andere Wellenerscheinungen tibertragen.

Reflexion von Licht an transparenten Dielektrika

Senkrechter Lichteinfall. Wir betrachten eine ebene Wel-
le, die senkrecht auf ein nicht absorbierendes Dielektri-

Abbildung 5.20 Zu (5.35):

Orientierung der Feldvektoren

beim Ubergang der Welle vom
Medium 1 ins Medium 2 (n <
m)

wl \E[; =
\
PJ \\ o

kum einfillt, z. B. den Einfall von sichtbarem Licht auf
Glas. Abbildung 5.20 zeigt die E- und B-Vektoren der
einfallenden, der durchgelassenen und der reflektierten
Welle. Die Vektoren sind jeweils entsprechend der Aus-
breitungsrichtung orientiert (vgl. (2.59)). Es ist in der
Abbildung angenommen, dass die Welle in ein dichteres
Medium lauft (n; < np), und dass daher bei der Reflexion
wie in Abb. 1.6 ein ,Phasensprung um 7t erfolgt.

An der Grenzflache miissen nach Bd. III, Gln. (4.42) und
(14.14) die Tangentialkomponenten von E und H stetig
sein. Unter Bezugnahme auf Abb. 5.20 erhalten wir:

Ee—E.=Eq, Be+Br=Bg. (5.35)
Wir setzen B = ypH und eliminieren aus (5.35) H mit Hilfe
des Wellenwiderstands Z = E/H:

Ee E Eq4 71
Zl Zl Zz e + T Z2 d (5 36)

Z1 und Z, sind die Wellenwiderstande der beiden Medi-
en. Aus (5.35) und (5.36) folgt:

E  Zi—7, E4

p.:E_e_Z1+Z2’

L 27
B Ee B 21+ 7> .

(5.37)

p und 7 sind die Reflexions- bzw. Transmissionskoeffi-
zienten. Fiir das Verhiltnis der Intensitaten erhilt man
unter Beachtung von (3.31):

Rk _EB_(Z-Z)
T le E2 \Zi+2Z

I E iz, 4212,
Ie E% Zy (Z1 + Zz)z

(5.38)

R ist das Reflexionsvermogen, auch Reflektivitit ge-
nannt; T ist die Transmission. Man sieht, dass fiir Z; >
Zy und flir Z1 < Z praktisch die gesamte Strahlung re-
flektiert wird, wéahrend bei Z; ~ Z, die Welle nahezu
ungeschwicht durch die Grenzflache tritt. Die in Abb.5.20
eingezeichneten Pfeilrichtungen entsprechen positiven
Feldstarken. Fiir Z; > Z; ist p > 0 und bei bei der Reflexi-
on erleidet der E-Vektor einen , Phasensprung um 7”, fiir
Z1 < Zy ist p < 0 und die Reflexion erfolgt gleichphasig.
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5 Brechung und Reflexion

Glas — Luft

Luft — Glas AN

Abbildung 5.21 Vorzeichenkonvention in (5.42) und (5.43): Definition der
positiven Feldrichtungen und der Winkel. ®: Der Vektor zeigt auf den Betrachter

Das entspricht genau dem schon in Abschn. 1.1 diskutier-
ten Verhalten von Wellen bei der Reflexion (vgl. Abb. 1.6
und Abb. 1.9).

Wir haben (5.37) und (5.38) mit dem Wellenwiderstand Z
geschrieben, denn dann gelten sie fiir Wellen aller Art,
also z.B. auch fiir Schallwellen. Bei elektromagnetischen

Wellen ist nach (3.27) Z = /upuo/€e€p. In der Optik ist es
gewohnlich zuldssig, 1 = yp =1 zu setzen. In diesem
Fall nimmt (5.36) die Form

n
Ee+Er = —2E4
ny

an, und man erhalt fiir senkrechten Lichteinfall die Glei-
chungen

- np —np = 21’11

- , = , 5.39
: np + 1 np + 1 ( )
_ 2
R— (u) r=_4mm 5y
n +ny (np +mq)

Mit Befriedigung stellt man fest, dass diese Rechnungen
mit dem Energiesatz in Einklang sind: Es folgt aus (5.40)
wie aus (5.38):

R+T=1. (5.41)

Schréger Lichteinfall. Um Reflexion und Transmission
bei schrdg einfallendem Licht zu berechnen, muss man
zusédtzlich die Stetigkeitsbedingungen fiir die Normal-
komponenten der Felder beriicksichtigen. Es zeigt sich
dabei, dass die in (5.37) definierten Reflexions- und Trans-
missionskoeffizienten davon abhidngen, ob das Licht par-
allel (]|) oder senkrecht (L) zur Einfallsebene polarisiert
ist. Die Richtungen, in denen E als positiv gerechnet wer-
den soll, legen wir mit Abb. 5.21 fest. Mit Hilfe der Gln.

~1,0

1 1
0 30 6 ) 60 90

Abbildung 5.22 Reflexionskoeffizienten von linear polarisiertem Licht an der
Grenzflache Luft/Glas (n = 1,5), nach (5.42)

Bd. 11, (4.42) und Bd. III, (14.14) erhdlt man dann nach
langerer Rechnung die Fresnelschen Formeln”:

_sin(B1 — B2)
sin(1+ Ba) ’

_ tan(B1 — Bo)

= tan(By + B2)
_ 2sin By cos By
 sin(B1+p2)

2sin 5 cos B1

T = sin(Bq + B2) cos(B1 — B2)

Sie gelten fiir den Ubergang des Lichts von (1) nach (2).
B1 und B, sind die in Abb. 5.21 definierten Winkel. Die
Brechungsindizes n; und n, treten bei dieser Formulie-
rung der Fresnelschen Formeln nicht in Erscheinung; sie
stecken in der Relation 71sin 81 = nysin f; und daher
bei vorgegebenem 1 in dem hier einzusetzenden Wert
von f5.

(5.42)

(5.43)

Das negative Vorzeichen von p, zeigt an, dass E; die
entgegengesetzte Richtung hat, wie in Abb. 5.21 ange-
nommen: Wenn f1 > B, (d.h. np > ny), findet bei der
Reflexion ein Phasensprung um r statt. In Abb. 5.20 wur-
de das von vornherein unterstellt: Daher tritt in (5.39)
kein negatives Vorzeichen auf. Im Ubrigen lassen sich die
Formeln (5.39) fiir 81 — 0 aus (5.42) und (5.43) herleiten
(Aufgabe 5.4).

Abbildung 5.22 zeigt die Reflexionskoeffizienten p; und
p| fur die Reflexion an einer Grenzfliche zwischen Glas

(n =1,5) und Luft (n = 1). In Abb. 5.23 sind die entspre-

7 Fresnel leitete die Formeln aus seiner Lichttheorie ab, 40 Jahre vor
Maxwell. Er behandelte dabei das Licht als Transversalwellen in ei-
nem elastischen Medium. Mit der gleichen Theorie konnte er auch
die komplizierten Phianomene der Doppelbrechung (Abschn. 9.3)
quantitativ erklaren.
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Abbildung 5.23 Reflexionsvermégen von Glas (n = 1,5) als Funktion des
Einfallswinkels B

chenden Kurven fiir das Reflexionsvermogen R aufgetra-
gen. Bei kleinen Winkeln 1, d. h. bei nahezu senkrechtem
Lichteinfall, ist R ~ 4 %.

R | nimmt mit wachsendem Einfallswinkel monoton zu,
wiéahrend R zundchst abnimmt und bei einem bestimm-
ten Winkel, dem Brewster-Winkel, sogar Null wird. Wir
werden auf dieses Verhalten sogleich zuriickkommen. In
der Nidhe von B1 = 90° (bei n1 < np) bzw. bei n; > np in
der Niahe von 1 = B, dem Totalreflexionswinkel (5.10),
erreicht R in jedem Falle sehr grofle Werte. Qualitativ kann
man dieses Verhalten ohne weiteres am Snelliusschen Rad
(Abb. 5.1) oder auch in der Natur an einer glatten Wasser-
flache beobachten.

Der Brewster-Winkel. Wie die Nullstellen von p| und R,
zustandekommen, ist in (5.42) leicht abzulesen: Wenn

propa=3 (544)

ist, wird der Tangens im Nenner unendlich und es folgt
p| = 0. Mit dem Brechungsgesetz und (5.44) erhélt man

flir [31 = ,3]32

T
ny sin B = np sin (E — [3]3) = 11y cos BB

tan B = Z—j : (5.45)

Beim Ubergang Luft — Glas (15 > ny) ist B > 45°, beim
Ubergang Glas — Luft (n; > n,) dagegen B < 45°.
Gleichung (5.44) besagt, dass die Reflexion verschwindet,

wenn der reflektierte Strahl senkrecht auf dem gebroche-
nen stehen wiirde, denn nach dem Reflexionsgesetz ist

R

R,

Abbildung 5.24 Brewster-Winkel und Dipolstrahlung

Br = B1. Man kann dies auch ohne Bezug auf die Fres-
nelschen Formeln begriinden, wenn man davon ausgeht,
dass das einfallende Licht im Dielektrikum Elektronen zu
Schwingungen anregt. Die Elektronen bilden zusammen
mit den Atomkernen schwingende Dipole, deren Aus-
strahlung die reflektierte Welle erzeugt. Nun strahlt ein
Dipol nicht in seiner Achsenrichtung (Abb. 3.8). Im Di-
elektrikum schwingen die Dipole senkrecht zur Fortpflan-
zungsrichtung der gebrochenen Welle. Wie Abb. 5.24a
zeigt, verschwindet p|, wenn der reflektierte Strahl senk-
recht auf dem gebrochenen stehen wiirde, wenn also
(5.44) erfuillt ist. Der senkrecht zur Einfallsebene polari-
sierte Strahl wird dagegen unter allen Winkeln reflektiert
(Abb. 5.24b).

Man sollte den physikalischen Gehalt dieser Betrachtung
nicht tiberschétzen; z. B. wird es schwierig, auf diese Wei-
se zu erkliren, warum es auch beim Ubergang Glas —
Vakuum einen Brewster-Winkel gibt. Sie ist aber eine gu-
te Geddchtnisstiitze: Beim Brewster-Winkel ist B 4 B2 =
90°.

Verhalten der Phase bei der Reflexion. Aufier den Kur-
ven in Abb. 5.23 wird uns im Folgenden immer wieder
der Phasensprung bei der Reflexion an einer Grenzfla-
che beschiftigen. Im Bereich der gewohnlichen Reflexion
kann man ihn ohne weiteres an den Vorzeichen von p in
Abb. 5.22 ablesen. Dabei ist nattirlich die Vorzeichenkon-
vention von Abb. 5.21 zu beachten. Das Ergebnis ist, dass
bei der Reflexion am optisch dichteren Medium stets ein
Phasensprung um 7 stattfindet, wahrend die Welle am
optisch diinneren Medium ohne Phasensprung reflektiert
wird. Das entspricht dem in Abschn. 1.1 beschriebenen
Verhalten von Seilwellen. Im Bereich der Totalreflexion
zeigt die Phase der reflektierten Welle das in Abb. 5.25
dargestellte sonderbare Verhalten. Auch das folgt aus den
Fresnelschen Formeln und dem Brechungsgesetz; um das
nachzuvollziehen, muss man allerdings das Verhalten der
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Abbildung 5.25 Phasensprung an der Grenzflache Luft/Glas (n = 1,5) bei
Totalreflexion

der Sinus- und Tangensfunktion in der komplexen Zah-
lenebene studieren, was wir erst spdter tun wollen. Fiir
die Praxis bedeuten die Kurven, dass man mittels To-
talreflexion die Phase von elektromagnetischen Wellen
manipulieren kann.

Reflexion an Metallen

Wegen ihrer fast alltdglichen Bedeutung lassen wir uns
noch auf eine Diskussion der metallischen Reflexion von
Licht ein, obgleich dies ein kompliziertes Thema ist. Die
im Bereich der Ohmschen Leitfdhigkeit anzusetzende
Wellengleichung (2.80) haben wir bereits in Abschn. 2.5
gelost. Wir wiederholen die Rechnung noch einmal mit
komplexen Grofien: Die Wellengleichung
0’E oE

axz = W‘O%Ig

ergibt mit E(x,t) = Egel(r—wh) die Beziehung

o B o
k= = iwupgog = wyygaelem/ ,

y _ [WHHOTe] N HO W .
k—,/i2 (1+41) Peu? (1+41),

denn es ist e7/* = cos 45° +isin45° = (1+1i)/V/2. Setzt
man (5.46) in E(x,t) ein, erhélt man unsere fritheren Er-
gebnisse (2.81) und (2.82).

Wir setzen nun k = itky = (g + ing)ky und definieren da-
mit wie in (5.29) einen komplexen Brechungsindex 7. Im
Bereich der Ohmschen Leitfahigkeit erhédlt man mit (5.46)
und mitky = w/c

(5.46)

(5.47)

c OelW o,
NR=ny=n=— yelzz Vel.
w \ 2eqc 2epw

5 Brechung und Reflexion

Tabelle 5.4 Reflexionsvermdgen von Metallen bei A = 25,5 um

1—R (%)

gemessen berechnet
Ag 1,13 1,15
Cu 1,17 1,27
Al 1,97 1,60
Ni 3,20 3,16
Hg 7,66 V255
Konstantan 5,20 5,05

Fir Kupferistbeiv =~ 3 - 10251 (A ~ 0,1 mm) ng = n; =
420. Metalle haben also im Ohmschen Bereich sehr ho-
he Brechungsindizes. Eine elektromagnetische Welle, die
unter irgendeinem Winkel auf die Metalloberfldche fallt,
lauft fast senkrecht zur Oberflache in das Metall hinein
und wird auf einer Strecke absorbiert, die sehr kurz ver-
glichen mit der Vakuum-Wellenldnge ist. Das hat ein sehr
hohes Reflexionsvermogen zur Folge. Wir konnen bei der
Berechnung von R (5.40) anwenden, indem wir n; =1
und 1, = 71 setzen und (4.16) berticksichtigen:

L |E]2 |n—12% |n—1+in|?

R=2=0L _ I = :
L |E? [|n+1> |n+1+inf?
_ (n=1)2+n*  2m2-2n+1
C (n+1)24n2 2n242n+1

C1-1/n+1/2* 1-1/n ___ 2

- ~ ~1-2 4
1+1/n+1/2n2  1+1/n (5.48)

Fiir n ~ 1000 liegt das in der Tat sehr nahe bei R = 1. Man
kann durch Messung von R experimentell nachpriifen, bis
zu welchen Frequenzen (5.47) gilt, und ob man bei v ~
103 Hz noch mit der Ohmschen Leitfihigkeit rechnen
kann, wie bei (2.79) behauptet wurde. Solche Messungen
wurden von Hagen und Rubens durchgefiihrt (Tab. 5.4).
Die Ubereinstimmung der gemessenen mit den berechne-
ten Werten ist erstaunlich gut.

Die Verhiltnisse miissen sich dndern, wenn sich das
Gleichgewicht zwischen der Elektronenbewegung und
dem elektrischen Feld der Welle nicht mehr einstellen
kann, wenn also w groier als die in (2.78) definierte
Stofifrequenz wg wird. In Abb. 5.26 ist als Funktion der
Wellenlédnge das Reflexionsvermdgen einiger Metalle im
Bereich von A = 100-1000 nm aufgetragen. Man sieht so-
fort, dass hier komplizierte Verhiltnisse vorliegen, wie
es nach den Ausfithrungen in Abschn. 2.5 auch zu er-
warten war. Die hohe Reflektivitit der Metalle findet
bei einer mehr oder weniger scharf definierten kritischen
Wellenldnge A. ein Ende. Silber reflektiert noch im gan-
zen sichtbaren Spektralbereich gut, Aluminium sogar bis
A = 80nm. Die Brechungsindizes ng und nj nehmen je-
doch schon im nahen Infrarot stark ab, und in diinner
Schicht werden die Metalle durchsichtig.
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Abbildung 5.26 Reflexionsvermdgen von Metallen (senkrechter Lichteinfall)
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Abbildung 5.27 Reflexion von linear polarisiertem Licht im sichtbaren Spek-
tralbereich an einer Metalloberflache als Funktion des Einfallswinkels, schema-
tisch

Abbildung 5.26 gilt fiir senkrechten Lichteinfall. In
Abb. 5.27 ist schematisch gezeigt, wie das Reflexions-
vermogen bei Metallen vom Einfallswinkel und von der
Polarisation des Lichts abhdngt. Man kann diese Kurven
mit Abb. 5.23 vergleichen. Der Winkel, bei dem RH ein Mi-
nimum hat, entspricht dem Brewster-Winkel.

Esist bemerkenswert, dass alle diese Kurven mit Hilfe des
komplexen Brechungsindex

~

i(w) = nr(w) + ing(w) (5.49)
berechnet werden konnen, also mit Hilfe von nur zwei Pa-
rametern.® ng und #ny sind als Funktion von w fiir jedes
Metall experimentell zu bestimmen, z. B. durch Messung
des Reflexionsvermogens unter bestimmten Winkeln. In
Abb. 5.28 sind als Beispiel die Indizes von Silber gezeigt.
Die kritische Wellenldnge liegt bei A. = 330 nm. Bis dahin
ist der Brechungsindex nahezu rein imaginéar. Erst weit
hinter dem rechten Bildrand wéachst ng auf den durch
(5.47) gegebenen Wert. Die Welle wird auch im Sichtba-
ren stark absorbiert und daher reflektiert. Erst unterhalb
von A, gewinnt ng die Oberhand.

8 Die dazu erforderlichen Formeln findet man z. B. bei J. H. Weaver,
C. Krafka, D.W. Lynch und E.E. Koch, Optical Properties of Me-
tals, Fachinformationszentrum Energie-Physik-Mathematik, Karls-
ruhe (1981). Das Werk enthélt auch umfangreiche Tabellen fiir ng
und ny.
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Abbildung 5.28 ng und n fiir Silber. a Messungen (nach J. H. Weaver et al.),
b mit (5.52) berechnet

Wir versuchen, dieses Verhalten mit dem Modell des frei-
en Elektronengases (Bd. I11/9.1) zu erkldren. Dabei gehen
wir von (5.20) aus. Die Eigenfrequenz der Elektronen ist
wqy = 0, denn die freien Elektronen sind an keine Ruhela-
ge gebunden. Die Dampfungskonstante I” ist ein Maf da-
fiir, wie schnell die Schwingungsenergie dissipiert wird.
Beim Elektronengas geschieht dies durch St6le, und wir
setzten deshalb I' = 1/71, wobei T die Stofizeit in Bd. III,
Gl. (9.14) ist. Die komplexe Polarisierbarkeit des Elektro-
nengases ist demnach

ez/me

T tiw/T (550

&(w) =

Die dielektrische Funktion &(w) berechnet man mit (5.13),

obgleich ein Metall kein , verdiinntes Medium” ist: Das

ist berechtigt, denn die Elektronen bewegen sich frei im

Metall und spiiren deshalb das mittlere Feld, und nicht
das lokale Feld Bd. III, Gl. (4.23). Wir erhalten

Ne? 1 w?/w?

é(w)=1 N P

Cegme w2 —iw/t 0 1—-i/wt’ (5:51)

wp ist die mit (2.84) berechnete Plasmafrequenz des freien
Elektronengases.

Im Bereich von Abb. 5.28 ist w > 1/7, also wt > 1.
Damit wird &(w) die rein reelle Funktion e(w) =1 —
(wp/w)? und wir erhalten fiir den Brechungsindex

i(w) = Je(w) = /T-wd/w?

Man erkennt klar zwei Bereiche:

w<wp: nr=0, nI:,/wI%/wZ—l,
w>wp: n=0, nR:,/l—wI%/wz.

(5.52)
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Diese Funktionen sind in Abb. 5.28b aufgetragen, wo-
bei wp, = 27tc/ A gesetzt wurde. Die wesentlichen Eigen-
schaften von Abb. 5.28a sind qualitativ wiedergegeben.
Die Abweichungen sind darauf zurtickzufiihren, dass Ag
zu den Ubergangsmetallen zu rechnen ist, bei denen die
duferen Elektronenschalen der Ionen nicht abgeschlossen
sind. Bei den , einfachen” Metallen, zu denen die Erdalka-
lien und auch das dreiwertige Aluminium gehéren, haben
die Ionen im Metallgitter abgeschlossene Elektronenscha-
len. In diesen Féllen ist die Ubereinstimmung mit (5.52)
besser. Insbesondere stimmt bei einfachen Metallen die
kritische Wellenlange A. mit dem fiir das freie Elektronen-
gas berechneten Wert

€gMe
Nee?

AP — e (5.53)

recht gut tiberein.

Korperfarben

Als weifses Licht bezeichnet man eine Strahlung, die al-
le Wellenldngen des sichtbaren Spektralbereichs mit un-
gefdhr gleicher Intensitdt enthélt. Wie kommt nun die
weifle Farbe einer Substanz zustande? Die verbliiffende
Antwort lautet: Durch wiederholte Brechung und Refle-
xion des Lichts an den Oberflachen eines feinverteilten,
transparenten und vollkommen farblosen Mediums. Ty-
pische Beispiele sind Streuzucker, Streusalz, Schnee und
Eierschnee, oder auch Wolken. Auch ein grofier Hau-
fen farbloser Plastikfolie erscheint weifs. Das Licht wird
solange an den inneren Grenzflachen gebrochen und re-
flektiert, bis es wieder herauskommt. Der Vorgang fiihrt
zu einer diffusen Reflexion des einfallenden Lichts, die
tiber 90 % betragen kann. Weifle Malerfarbe besteht aus
feinverteilten farblosen Kristillchen (z.B. TiO,, PbO) in
farblosen transparenten Bindemitteln wie z. B. Leinél oder
synthetischen Harzen. Ist in den Partikeln eine schwache

5 Brechung und Reflexion

Absorption ohne Bevorzugung bestimmter Wellenlangen
gegeben, so erscheint die Oberfldche grau und mit zuneh-
mender Absorption schlielich schwarz.” Schwarze Farbe
lasst sich keinesfalls dadurch erreichen, dass nach Auf-
treffen auf eine glatte Oberfldche alles Licht innerhalb von
wenigen Wellenldngen absorbiert wird; dann ergibt sich
ndmlich metallische Reflexion.

Die bunten Malerfarben entstehen, wenn die in das Medi-
um eingebetteten Partikel, das Pigment, selektiv gewisse
Wellenldngenbereiche im sichtbaren Spektrum absorbie-
ren. Wird z.B. das Licht im roten, gelben und griinen
Spektralbereich absorbiert, so entsteht blaue Farbe. Es ist
verstandlich, dass je nach dem spektralen Verlauf der
Absorption eine unendliche Vielfalt von Farben erreicht
werden kann.

Nicht alle Oberflichenfarben kommen auf die genannte
Weise zustande. An der glatten Oberfldche eines stark ab-
sorbierenden Mediums kann ein Farbeindruck dadurch
entstehen, dass ein bestimmter Wellenldngenbereich we-
niger stark absorbiert und daher auch weniger stark
reflektiert wird. So kommt z. B. die Farbe des Goldes zu-
stande. Wie Abb. 5.26 zeigt, sinkt die Reflektivitit des
Goldes bei A < 550nm ab. Das reflektierte Licht ist da-
her rétlich—gelb, wihrend eine diinne Goldschicht von
einigen um Dicke in der Durchsicht blaugriin erscheint.
Wiederum ganz anders ist das Verhalten von gefarbtem
Glas. Hier ist die Konzentration der absorbierenden Mole-
kiile so klein, dass 11 < ng ist. Somit erfolgt die Reflexion
unselektiv nach (5.40). Dass das farbige Glas auch in der
Draufsicht farbig erscheint, liegt an der Reflexion auf der
Riickseite. Auch dabei kommt die selektive Absorption
innerhalb des Farbglases zum Tragen. Wird die Riicksei-
te mit schwarzer Farbe in optischen Kontakt gebracht,
so verschwindet der Farbeindruck. — Mit diesem kurzen
Einblick in die Physik der Farben wollen wir es vorerst
bewenden lassen. In Kap. 7 und 9 kommen wir noch auf
einen anderen Mechanismus der Farbentstehung zu spre-
chen (Stichwort: Interferenzfarben).

9 Die graue Farbe an der Unterseite dicker Wolken erklart sich da-
durch, dass dort infolge der Lichtstreuung in den dariiberliegenden
Wolkenschichten nur noch wenig Licht ankommt.
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Abbildung 5.29 Strahlengang
bei 90° Lichtablenkung in einem
Pellin-Broca-Prisma

5.1. Umlenkprisma. Ein unverspiegeltes Umlenkpris-
ma soll Licht mit geringsten Verlusten parallel versetzt in
die riickwiértige Richtung reflektieren. Wie grof$ muss der
Brechungsindex des Glases sein und wie grof$ ist das Ver-
héltnis der reflektierten zur ankommenden Intensitat?

5.2. Lichtablenkung im Pellin-Broca-Prisma. Abbil-
dung 5.29 zeigt den Strahlengang in einem ,,Pellin-Broca-
Prisma”. Einer der Prismenwinkel ist 90°, der Nach-
barwinkel ist v = 75°. Ein Lichtstrahl wird aus seiner
urspriinglichen Richtung um 90° abgelenkt. Der Einfalls-
winkel des Lichtstrahls auf das Prisma sei a, wegen des
90°-Prismenwinkels ist der Ausfallswinkel dann ebenfalls
«. An der riickwartigen Prismenseite findet Totalreflexion
statt.

a) Welchen Winkel bilden der an der Prismenriickseite
einfallende und der totalreflektierte Lichtstrahl miteinan-
der und wie grof3 ist der Einfallswinkel an der Riickseite?
Wie grofl muss der Brechungsindex des Glases mindes-
tens sein, damit das Prisma wie beschrieben funktioniert?

b) Bei einem fest eingestellten Ablenkwinkel 90° han-
gen der Einfallswinkel und der Brechungsindex eindeutig
miteinander zusammen. Bis zu welchem maximalen Bre-
chungsindex funktioniert das Prisma?

¢) Zwischen welchen Werten variiert « als Funktion der
Wellenldnge fiir die beiden in Tab. 5.2 aufgefiihrten Glas-
sorten?

d) Welchen Vorteil gegeniiber einem gleichschenkligen
Prisma hat die Anordnung, wenn man sie als Monochro-
mator verwendet?

5.3. Brechung im Medium mit variablem Brechungs-
index. Uber einer ebenen Oberfliche befinde sich ein op-
tisches Medium mit einem hohenabhéngigen Brechungs-
index, der von einem unteren Anfangswert 71 nach oben
kontinuierlich abnimmt, bis er einen Grenzwert ng er-

reicht (z. B. Luft Giber der Erdoberflache oder eine Salzlo-
sung in einem Glasgefaf3). Ein schrdg von oben kommen-
der Lichtstrahl wird abgelenkt und sein Neigungswinkel
relativ zur Vertikalen dndert sich von ag auf aq. Wie ist
der Zusammenhang zwischen ay und «1? (Hinweis: Be-
trachten Sie die sukzessive Brechung an infinitesimalen
Schichten und stellen Sie eine Differentialgleichung zwi-
schen dem Ablenkwinkel und dem Brechungsindex auf.)

Was passiert, wenn man ein Lichtsignal fast parallel zum
Boden von unten nach oben schickt? Zahlenbeispiel: n; =
1,400, ny = 1,333.

5.4. Lichttransmission und Reflexion an einer Grenz-
fliche bei fast senkrechtem Lichteinfall. Ein Lichtstrahl
falle unter kleinem Winkel 8; zur Normalen auf die ebe-
ne Grenzflache zwischen zwei durchsichtigen Medien mit
den Brechungsindizes 1, und n1. Berechnen Sie aus (5.42)
und (5.43) die Amplituden und Intensitdten des durchge-
lassenen und reflektierten Lichts im Grenzfall §; — 0 und
zeigen Sie: Die Korrekturen zu (5.39) sind proportional zu
pB3. (Hinweis: Benutzen Sie die Taylorentwicklungen der
sin- und der cos-Funktion).

5.5. Normale Dispersion. Versuchen Sie, die Wellen-
langenabhéngigkeit der Brechungsindizes fiir die beiden
Glassorten in Tab. 5.2 mit (5.33) zu beschreiben, wobei
jeweils nur eine einzige Resonanzfrequenz bzw. Reso-
nanzwellenlinge verwendet werden soll. Man beachte:
Die Wellenldnge in Tab. 5.2 ist die Vakuum-Wellenlinge,
nicht die im Medium. Welche Resonanzwellenldngen er-
geben sich? Hinweis: Suchen Sie nach einem linearen
Zusammenhang zwischen einer geeigneten Funktion des
Brechungsindex und dem Quadrat der Frequenz, oder al-
ternativ nach einem linearen Zusammenhang zwischen
einer Funktion, gebildet aus dem Brechungsindex und der
Wellenldnge, und dem Quadrat der Wellenldnge. Geben
die Messwerte in Tab. 5.2 irgendwelche Hinweise auf die
Existenz weiterer Resonanzfrequenzen?

5.6. Optik der Rontgenstrahlen. Im Rontgenbereich
ist der Brechungsindex eines Materials durch (5.34) gege-
ben.

a) Wie grofS ist der Brechungsindex n fiir Rontgenstrah-
lung der Wellenldnge A = 0,2nm in Silizium (Z = 14, A =
28 ¢g/mol, p = 2,33 g/cm’)?

b) Bei welchen Einfallswinkeln wird Rontgenstrahlung
dieser Wellenldnge, aus Luft kommend, an einer ebenen
Siliziumoberflache totalreflektiert?
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¢) Um wie viel weicht die Phasengeschwindigkeit von der
Lichtgeschwindigkeit c ab? Um wie viel weicht die Grup-
pengeschwindigkeit von c ab?

5.7. Transmission und Reflexion von Metallen. In
Warmeschutzverglasungen werden die Glasscheiben mit
einer diinnen Metallschicht versehen, die man mit dem
Auge nicht wahrnimmt. Ermitteln Sie aus Abb. 5.28
und (5.47) die Brechungsindizes ng und n; von Sil-
ber fiir die beiden Wellenldngen A = 600nm und 20 um

5 Brechung und Reflexion

(warum diese typischen Wellenldngen?). Wie grofs sind
die Absorptionskoeffizienten? Nach welcher Strecke x
hat sich die Intensitit der sichtbaren Strahlung bei
einem Durchgang durch eine Schicht um 20% redu-
ziert? Wie stark wird die Infrarotstrahlung bei einmali-
gem Durchgang durch eine solche Schicht geschwacht?
Warum darf man zur Berechnung des Reflexionsvermo-
gens einer solchen Schicht (5.48) nicht verwenden (hierzu
mehr in Aufgabe 7.6)? (Leitfahigkeit von Silber: o =
6,7-107Q 1m™1).
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In der geometrischen Optik wird die Ausbreitung
des Lichts mit Hilfe von Lichtstrahlen beschrieben.
Das ist eine Ndherung, bei der die Wellennatur des
Lichts aufler Acht gelassen wird. Sie dient in erster
Linie dazu, den Weg des Lichts durch ein optisches
Instrument auf einfache Weise zu berechnen. Man
geht dabei von den Gesetzen der Reflexion und
der Lichtbrechung aus, sowie von der geradlinigen
Ausbreitung des Lichts im Vakuum und in homo-
genen Medien. Diese drei Gesetze lassen sich auf ein
gemeinsames Prinzip zurtickfiihren, auf das Fermat-
sche Prinzip, mit dem wir uns im ersten Abschnitt
befassen werden. Es ermoglicht einerseits manche
Probleme auf sehr einfache Art zu losen, anderer-
seits ist es auch als Prinzip hochst interessant.

Der zweite Abschnitt ist das Kernstiick des Kapitels.
Es wird untersucht, wie die optische Abbildung ei-
nes Gegenstandes zustande kommt, und wie man
bei Linsen und bei Linsensystemen Ort und Gro-
3e des Bildes berechnen oder grafisch konstruieren
kann. In dhnlicher Weise ldsst sich dann auch die
Abbildung durch Spiegel behandeln (Abschn. 6.3).
Im letzten Abschnitt geht es um die praktische An-
wendung: Wir untersuchen, wie der Strahlengang in
optischen Instrumenten durch Blenden beeinflusst
wird. Sodann werden das menschliche Auge und die
Funktionsweise von einigen optischen Instrumenten
diskutiert: Fotoapparat, Lupe, Mikroskop, Fernrohr,
Prismenspektrometer und Diaprojektor.

Lichtstrahlen und Fermatsches
Prinzip

6.1

Unter einem Lichtstrahl versteht man gewohnlich ein eng
begrenztes Lichtbiindel: den Lichtstrahl, der durch eine
kleine C)ffnung in einen dunklen Raum fallt, die durch die
Wolken brechenden Sonnenstrahlen, den Strahl des Laser-
Lichtzeigers. Man konnte hier von , physischen” Licht-
strahlen sprechen.

In der geometrischen Optik ist der Lichtstrahl eher ein
mathematisches Konzept. Er ist definiert als die Linie, ent-
lang der sich das Licht im Raum ausbreitet. Dabei wird
angenommen, dass der Strahl im Vakuum und in homo-
genen Medien geradlinig verlduft. Das ist in Wirklichkeit
nicht immer so einfach. Die Grenzen der geometrischen
Optik erkennt man deutlich am Beispiel der Lochkamera

6 Geometrische Optik

Abbildung 6.1 Prinzip der Lochkamera

(Abb. 6.1), von Alters her als ,,camera obscura” bekannt,
dem Urtyp eines bilderzeugenden Gerits.!

In die Vorderwand eines Kastens wird eine Lochblende
angebracht, auf der Riickwand wird ein Film angebracht
oder eine Mattscheibe eingebaut. Dort erzeugen die ein-
fallenden Lichtstrahlen ein auf dem Kopf stehendes Bild
der Auflenwelt. Die Bildschérfe hdngt vom Lochdurch-
messer ab, wie Abb. 6.2 zeigt. Bei einer grofen Off-
nung muss das Bild offensichtlich sehr verwaschen sein;
bei hinreichend kleiner Offnung wird das Bild ziemlich
scharf. Verkleinert man die Offnung noch weiter, wird es

Abbildung 6.2 Lochkamera: Bilder mit verschiedenen Lochdurchmessern.
a1,5mm, b 0,7mm, c 0,4mm, d 0,2 mm. Die Abstande des Gegenstands und
der Mattscheibe vom Loch betrugen jeweils 35 cm

! Die Lochkamera war schon den alten Griechen bekannt. Den ersten
wissenschaftlichen Gebrauch davon machte der arabische Physiker
Abu Ali al Hasan ibn al Haitham (965-1038), im Westen Alhazen
genannt. Er benutzte sie zur Beobachtung einer Sonnenfinsternis. —
Im Gegensatz zu den alten Griechen, die die Lichtausbreitung fiir
einen Vorgang hielten, der keine Zeit beansprucht, war er der Mei-
nung, dass sich das Licht mit endlicher Geschwindigkeit ausbreitet.
Auch nahm er an, dass die Lichtgeschwindigkeit in dichteren Me-
dien kleiner sei als in der Luft. Er beschrieb als erster korrekt die
Funktionsweise der Linse und das menschliche Auge. Seine Werke
wurden ins Lateinische iibersetzt und hatten grofien Einfluss auf die
Entwicklung der abendldndischen Wissenschaft.
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Abbildung 6.3 Wellenfronten einer ebenen Welle hinter einer Lochblende

wieder unscharf. Die Ursache ist die Beugung des Lichts
an der Eintrittsdffnung, bei der sich die Wellennatur des
Lichts zeigt. Wellen kénnen hinter dem Loch nicht gerad-
linig als scharf begrenzte Strahlen weiterlaufen (Huygens-
sches Prinzip!). Abbildung 6.3 zeigt schematisch das Wel-
lenfeld hinter einer Lochblende. Die dort eingezeichneten
Wellenfronten enden nicht abrupt, sondern die Amplitu-
de nimmt nach auflen hin allmédhlich ab. Wir werden das
in Kap. 8 quantitativ untersuchen. In der geometrischen
Optik wird angenommen, dass sich das Licht innerhalb
der gestrichelten Linien ausbreitet, mit Lichtstrahlen, die
innerhalb der Blendendffnung und parallel zu den ge-
strichelten Linien verlaufen. Die Beugungserscheinungen
auferhalb dieser Linien werden vernachléssigt bzw. nach-
tréglich in pauschaler Weise beriicksichtigt.

Unser Ziel ist es also, mit Hilfe von Lichtstrahlen den Weg
des Lichts durch ein optisches System zu verfolgen, in
dem es reflektierende und lichtbrechende Flachen gibt.
Ausgeriistet mit den bereits gewonnenen Erkenntnissen:
geradlinige Ausbreitung des Lichts, Reflexionsgesetz (5.1)
und Brechungsgesetz (5.2), konnten wir unmittelbar ans
Werk gehen. Bevor wir darauf eingehen, fragen wir: Gibt
es einen Zusammenhang zwischen den drei, hier bezie-
hungslos nebeneinander stehenden Gesetzen? Gibt es ein
iibergeordnetes Prinzip, aus dem sich die drei Gesetze
ableiten lassen? Das gibt es in der Tat. Das Fermatsche
Prinzip geht davon aus, dass sich das Licht in einem ho-
mogenen Medium mit der konstanten Geschwindigkeit v
ausbreitet und besagt:

Satz 6.1

Das Licht lauft von einem Punkt A zum Punkt B auf
dem Wege, den es in der kiirzesten Zeit zuriicklegen
kann.

Eine verbliiffende Behauptung: Wie schafft es das Licht,
diesen Weg ausfindig zu machen? Bevor wir darauf ein-
gehen, untersuchen wir zunéchst, wie sich die gerad-
linige Lichtausbreitung, das Reflexionsgesetz und das
Brechungsgesetz aus dem Fermatschen Prinzip ableiten
lassen.

Abbildung 6.4 Fermatsches Prinzip: a zur geradlinigen Lichtausbreitung,
b zum Reflexionsgesetz, ¢ zum Brechungsgesetz. Ausgezogene Linien: der wirk-
liche Strahlengang. Gestrichelt: alternative Wege

In Abb. 6.4a ist das Medium homogen, daher ist die Licht-
geschwindigkeit v konstant und der kiirzesten Laufzeit
entspricht die kiirzeste Wegstrecke. Das ist die Gerade AB.
Zur Reflexion: Das Licht soll auf dem Umweg iiber die
Spiegeloberfliche von A nach B gelangen. Dass die Stre-
cke ACB in Abb. 6.4b kiirzer ist als z. B. die Strecken AC’B
oder AC"B, sieht man, wenn man die Dreiecke ACP, AC'P
und AC”P nach unten klappt: Die Linie A'CB mit 81 = B>
ist eine Gerade und somit kiirzer als die Linien iiber C’
oder C”. Der Reflexionswinkel muss also gleich dem Ein-
fallswinkel sein.

Um das Brechungsgesetz abzuleiten, stellte Fermat die
Hypothese auf, dass die Lichtgeschwindigkeit in durch-
sichtigen Medien um einen Faktor 1/n kleiner als im
Vakuum ist:

6.1)

S| a

n soll eine Materialkonstante sein. Die Laufzeit des Lichts
auf dem Weg ACB in Abb. 6.4c ist dann

I I 1
ho = — + = = ~(mh +nby) .
01 (%) c
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Fermat definierte die optische Weglinge mit

lopt = ml +n3lp (6.2)
und fragte sich: Fiir welchen Wert von x in Abb. 6.4c
ist lopt ein Minimum? Die Antwort zu finden, war fiir
Fermat nicht einfach, denn damals (1664) war die Diffe-
rentialrechnung noch nicht bekannt. Fiir uns ist das kein
Problem: Das Minimum liegt dort, wo dlopt/dx = 0 ist;
die entsprechende Koordinate sei x = xy.

lopt = mVa? +x2 +ny\/b? 4 (d —x)?, (6.3)

dlopt 2x9 2(d — xp)
E =m —ny
dx /sy 24/a% +x3 24/02 + (d — x0)*
X0 d— X0 0

“ M) T P h(x)

Wir sparen uns die Miihe, die zweite Ableitung zu berech-
nen, und tragen die Funktion /,pt(x) in Abb. 6.5 auf. Bei xq
liegt ein Minimum. Wie man in Abb. 6.4c ablesen kann, ist
x0/l1(x9) = sinB1 und (d — x0)/Ip(xp) = sin Bp. Es muss
also gelten:

ny sin ,31 =Ny sin ,32 .

Wir haben das Snelliussche Brechungsgesetz (5.2) erhal-
ten. Fermat ist mit seinem Prinzip zum Brechungsgesetz
gelangt, und zwar mit der richtigen physikalischen Be-
grindung (6.1).2 Der experimentelle Beweis fiir Fermats
Hypothese wurde allerdings erst 200 Jahre spéter von
Foucault geliefert, dem es gelang, die Lichtgeschwindig-
keit in Wasser zu messen (vgl. Bd. 1/1.4). Die Frage,
warum das Licht im optisch dichteren Medium langsamer
als im Vakuum lauft, wurde erst im 20. Jahrhundert beant-
wortet. Wir werden darauf in Bd. V/1.2 zurtickkommen.
In Abb. 6.5 erkennt man, dass sich die optische Wegldnge
in der Umgebung von x( bei einer infinitesimalen Ver-
schiebung des Weges nicht dndert; genau das ist ja auch

2 Zur Vorgeschichte des Fermatschen Prinzips und des Brechungsge-
setzes: Die geradlinige Ausbreitung des Lichts und das Reflexions-
gesetz waren schon Bestandteil der Optik des Euklid (280 v.Chr.).
Heron von Alexandria (1. Jahrh. n. Chr.), vor allem bekannt gewor-
den als erfindungsreicher Ingenieur, stellte die These auf, dass das
Licht zwischen zwei Punkten auf dem kiirzesten Weg lduft. Er brach-
te damit die geradlinige Ausbreitung und das Reflexionsgesetz in
einen ursdchlichen Zusammenhang, iibrigens mit der in Abb. 6.4b
gezeigten Uberlegung. Das Brechungsgesetz, in der Antike nur in
der Néherung fiir kleine Winkel bekannt, wurde von Willebrord
Snel (1591-1626), Professor an der Universitdt Leiden, auf experi-
mentellem Wege ermittelt. René Descartes leitete es (ohne Snel zu
erwdhnen) in seinem 1637 erschienenen Werk ,La Dioptrique” aus
den von ihm aufgestellten allgemeinen Naturprinzipien ab. Danach
soll das Licht an der Oberfliche des Mediums einen Stof3 erfah-
ren, der die Brechung des Lichtstrahls bewirkt. Fermat schienen (mit
Recht) Descartes Uberlegungen inkonsistent zu sein. Er stellte die
Hypothese (6.1) auf und ankniipfend an Heron erhielt er dann das
Brechungsgesetz, nun mit der richtigen Begriindung.
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Abbildung 6.5 Optische Weg-
lange als Funktion von x in (6.3)

lopf (T)

die Aussage der Extremalbedingung

(dlopt> o
dx -

Zum gleichen Befund kommt man in Abb. 6.4a und b,
wenn man die optische Wegldnge als Funktion von x be-
rechnet. Damit begriinden wir eine zweite Formulierung
des Fermatschen Prinzips:

(6.4)

Satz 6.2

Ein Lichtstrahl lauft von Punkt A nach Punkt B auf
einem Wege, dessen optische Weglange sich bei einer
kleinen Verschiebung des Weges nicht dndert.

Wir bringen diese Aussage auf eine mathematische Form,
die bei allen optischen Systemen und auch bei kontinu-
ierlich verdnderlichen Brechungsindizes giiltig bleibt. Die
optische Weglange ist dann gegeben durch ein Linieninte-
gral, berechnet auf dem geometrischen Weg von A nach B

B
lopt = /n(x,y,z) ds. (6.5)
A
Das Fermatsche Prinzip (Formulierung II) besagt
B
) /n(x,y,z) ds| =0, (6.6)
A

wobei sich das Symbol § auf eine kleine Variation des In-
tegrationsweges bezieht.

Die Formulierung des Fermatschen Prinzips mit Satz 6.2
erweist sich im Gegensatz zu Satz 6.1 als allgemeingiiltig.
Um zu zeigen, dass die in Satz 6.1 gegebene Formulierung
unzureichend ist, betrachten wir ein Rotationsellipsoid,
das auf der Innenseite verspiegelt ist. Ein Schnitt durch
das Ellipsoid entlang der Rotationsachse ist in Abb. 6.6a
gezeigt. A und B sind die Brennpunkte, die Bogenldnge s
ist eine entlang der Schnittlinie gemessene Koordinate.
Ein Lichtstrahl, der von A auf den Punkt C bei der Bogen-
lange sy gerichtet ist, wird nach B reflektiert. Das kénnte
man mit einiger Miihe beweisen, indem man geometrisch



6.1 Lichtstrahlen und Fermatsches Prinzip

Abbildung 6.6 Schnitt durch ein verspiegeltes Rotationsellipsoid: a Strahlen-
gang bei Reflexion des Lichts im Punkt C, b Reflexion an einer innerhalb des
Ellipsoids verlaufenden Fléche, die das Ellipsoid im Punkt C berihrt

Abbildung 6.7 Lichtstrahl
durch eine planparallele Platte

zeigt, dass B1 = B ist. Viel einfacher ist der Beweis mit
dem Fermatschen Prinzip. Da bei der Ellipse /1 + I, kon-
stant ist, gilt fiir den Strahl ACB

() o
dS S$=8p

Der Strahl kann nach Satz 6.2 auf diesem Wege von A nach
B laufen. Das gilt aber fiir jeden beliebigen Punkt auf der
Oberfldche des Ellipsoids, z. B. auch fiir den Punkt C': Alle
Strahlen vom Brennpunkt A laufen zum Brennpunkt B. Es
gibt hier kein Minimum der Laufzeit, Satz 6.1 wére nicht
anwendbar.

Nun betrachten wir Abb. 6.6b. Die reflektierende Fla-
che beriihrt die Ellipse im Punkt C und verlduft ganz
innerhalb des Ellipsoids. Auch in diesem Fall ist die Refle-
xionsbedingung bei C erfiillt. Diesmal wére aber der Weg
tiber C’ kiirzer: Das Licht lduft hier auf einem Wege, auf
dem opt ein Maximum hat. Satz 6.2 ist erfiillt, Satz 6.1 da-
gegen nicht.

Obgleich die pragnante Formulierung mit der kiirzesten
Zeit unvollstandig ist, leistet sie doch oft gute Dienste.
So sieht man in Abb. 6.7 sofort ein, weshalb das Licht
durch die planparallele Platte nicht auf der geometrisch
kiirzesten Linie von A nach B lauft, sondern einen etwas
langeren Luftweg in Kauf nimmt, um den Weg im Glas
(v = ¢/n) zu verkiirzen.

Einige Anwendungen des Fermatschen Prinzips

Umkehrbarkeit des Strahlengangs. Wir haben bisher
den Weg untersucht, auf dem das Licht ,von A nach B”
lauft. Da die Lichtgeschwindigkeit nicht davon abhangt,
in welcher Richtung dieser Weg durchlaufen wird, wiirde
das Licht ,,von B nach A” die gleiche Zeit brauchen, also
wiirde es auch auf exakt dem gleichen Wege laufen. Das
ist das Prinzip von der Umkehrbarkeit des Strahlengangs,
das sich oft als niitzlich erweist.

Optische Abbildung. Wir stellen uns die Aufgabe, ein
,optisches System” zu konstruieren, mit Hilfe dessen alle
Strahlen, die von P ausgehen und in das System eintre-
ten, in P’ wieder zusammengefiihrt werden (Abb. 6.8).
Das Fermatsche Prinzip lehrt, wie das System gebaut sein
muss, das eine solche optische Abbildung bewerkstel-
ligt: Alle Strahlen miissen, unabhdngig vom Winkel « in
Abb. 6.8, auf dem Weg von Punkt P nach P’ die glei-
che optische Weglinge durchlaufen. Man sieht sogleich,
dass man das auf einfache Weise mit einem linsenférmi-
gen Glaskorper erreichen kann. Aufgrund der kleineren
Lichtgeschwindigkeit im Glas kénnen die Unterschiede
der geometrischen Weglinge kompensiert werden. Wie
einfach” das in Wirklichkeit ist, werden wir im nachsten
Abschnitt sehen.

In P’ entsteht ein reelles Bild von P, so benannt im Ge-
gensatz zu einem virtuellen Bild. Was ein virtuelles Bild
ist, konnte man schon in Abb. 6.4b erkennen. Die Strah-
len, die man bei B sieht, scheinen von A’ her zu kommen
(Abb. 6.9). Ein Beobachter bei B hat tatséchlich den Ein-
druck, dass sich die Lichtquelle A bei A" befindet. A" ist
das virtuelle Bild von A. Wie handfest ein virtuelles Bild
ist, zeigt ein Blick in den Spiegel. — Wir fassen zusammen:

Satz 6.3

Reelles Bild: Im Bildpunkt P’ laufen die von P aus-
gehenden Strahlen zusammen. Die Strahlen konver-
gierenin P’.

opt. System

0

Abbildung 6.8 Optisches System mit abbildenden Eigenschaften
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Abbildung 6.10 Sonnenuntergang und Wetterleuchten

Satz 6.4

Virtuelles Bild: Im Bildpunkt P’ laufen die riick-
wartigen Verlangerungen der Strahlen zusammen,
die den Beobachter erreichen. Die Strahlen scheinen
von P’ her zu divergieren.

Man kann das reelle Bild auf einem diffus reflektierenden
Bildschirm auffangen und sichtbar machen, das virtuelle
nicht. Wir werden im folgenden hédufig mit reellen und
virtuellen Bildern zu tun haben.

Sonnenuntergang, Wetterleuchten und Gradientenlin-
sen. Wenn man am Meeresstrand steht und fasziniert
den Sonnenuntergang betrachtet, befindet sich die Son-
ne schon unter dem Horizont, in Abb. 6.10a in Position 2.
Als die Sonne den Horizont erreichte (Position 1), sahen
wir sie noch unter einem Winkel von ¢ = 35 am Abend-
himmel. Das Phanomen erklart sich mit dem Fermatschen
Prinzip: In den oberen Luftschichten sind Dichte und
Brechungsindex kleiner als in den unteren, die Lichtge-
schwindigkeit v = c/n also groler. Die Lichtstrahlen der
untergehenden Sonne machen daher einen geometrischen
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A - B

Abbildung 6.11 Lichtstrahl in einem Medium mit variablem Brechungsindex:
Kochsalzlésung, in der Konzentration und Brechungsindex von unten nach oben
hin abnehmen

Abbildung 6.12 Gradientenlinse. Die Abnahme des Brechungsindex ist durch
die Schattierung dargestellt

Umweg durch die obere Atmosphire, um die kiirzeste
Laufzeit zu erreichen.

Ahnliche Effekte fiihren zu den als Fata Morgana bekann-
ten Phanomen® und zu den im Sommer héufig auf sonne-
nerhitzten Landstrafien beobachteten Luftspiegelungen.
Weniger bekannt ist, dass der gleiche Effekt bei Schallwel-
len dazu fiihrt, dass man bei weit entfernten Gewittern
keinen Donner hoért. Man sieht nur noch das Wetter-
leuchten — sehr eindrucksvoll bei starken Gewittern. Die
Schallstrahlen nehmen den in Abb. 6.10b gezeigten Ver-
lauf, denn die Schallgeschwindigkeit in der Luft ist nach
(2.24) vs = VxkRT /M. Sie nimmt in der Atmosphére nach
unten hin zu, da die Temperatur nach oben abnimmt.

Die Kriimmung von Lichtstrahlen in einem Medium mit
variablem Brechungsindex ldsst sich auch im Horsaal
demonstrieren. In einem Glastrog werden Salzlésungen
abnehmender Konzentration iibereinander geschichtet.
Durch Diffusion stellt sich nach einiger Zeit ein anné-
hernd konstanter Gradient dn/dz ein. In Abb. 6.11 ist
der Verlauf des Lichtstrahls von A nach B zu sehen. Der
Effekt ldsst sich auch technisch ausnutzen. Wenn man
eine durchsichtige Platte in der Weise prédpariert, dass
von einer Achse senkrecht zur Plattenebene aus gerech-
net, der Brechungsindex in radialer Richtung abnimmt,
entsteht eine Anordnung mit abbildenden Eigenschaften
(Abb. 6.12). Solche Gradientenlinsen spielen in der Laser-
physik eine Rolle (Stichwort: Selbstfokussierung, (9.46))
und sogar im menschlichen Auge (Abb. 6.38).

3 Siehe z.B. A.B. Fraser u. W. H. Mach, Scientific American 234, Jan.
1976, S. 102-111.



6.2 Abbildung mit Linsen

AbschlieBende Bemerkungen

Wie schafft es nun das Licht, den vom Fermatschen Prin-
zip vorgeschriebenen Weg zu finden? Die Antwort steckt
in der Verbindung zur Wellenoptik: Die Lichtstrahlen
stehen senkrecht auf den Wellenfronten. Genau in die-
ser Richtung breitet sich die Welle aus, weil genau in
dieser Richtung die Huygensschen Elementarwellen mit-
einander maximal konstruktiv interferieren. In anderen
Richtungen l6schen sie sich durch destruktive Interferenz
weitgehend aus. Der Lichtstrahl ,findet” also in gewisser
Weise tatsdchlich den richtigen Weg, indem das Licht an-
dere Wege abtastet und verwirft.

Verglichen mit den expliziten Berechnungen von Wellen-
fronten ist das Operieren mit Lichtstrahlen und mit dem
Fermatschen Prinzip eine enorme Vereinfachung. Dar-
iiber hinaus hatte aber das Fermatsche Prinzip grofien
Einfluss auf die Entwicklung der theoretischen Physik. Es
fithrte im 19. Jahrhundert zu dem von Lagrange und von
Hamilton formulierten ,Prinzip der kleinsten Wirkung”,
das spater bei der Entwicklung der Quantenmechanik ei-
ne grofe Rolle spielte.

Wir kdnnen auch eine Frage von praktischer Bedeutung
stellen: Wie genau miissen in Abb. 6.8 die optischen Weg-
langen der einzelnen Strahlen {iibereinstimmen, damit
eine scharfe Abbildung zustande kommt? Die Antwort
ergibt sich aus dem Zusammenhang mit der Wellenaus-
breitung: Damit sich die Strahlen in P’ phasenrichtig
iiberlagern, muss gelten

Algpt < A . 6.7)

Da die Wellenldnge des sichtbaren Lichts A ~ 500 nm ist,
stellt dies sehr hohe Anforderungen an die MafShaltigkeit
und an die optische Homogenitédt der verwendeten Bau-
elemente.

6.2 Abbildung mit Linsen

Abbildung durch Aspharische und durch Sphérische
Flachen

Wir untersuchen zunéchst die optische Abbildung durch
eine einzelne gekriimmte Flache. Ein Gegenstands-
punkt G soll auf einen Bildpunkt B abgebildet werden.
G liegt in einem Medium mit dem Brechungsindex 14,
B liegt in einem Medium mit dem Brechungsindex ;.
Wie muss die Grenzfliche zwischen den beiden Medien

Abbildung 6.13 Schnitt durch eine kartesische Flache

aussehen? Zunichst muss die Flache offensichtlich ro-
tationssymmetrisch um die Achse GB sein. Nach dem
Fermatschen Prinzip muss weiterhin in Abb. 6.13 gelten

ml +naly = nyg+nyb, (6.8)
und zwar fiir alle von den Lichtstrahlen erreichbaren
Punkte A auf der Fldche. S ist der Scheitelpunkt der Fla-
che, ¢ die Gegenstandsweite, b die Bildweite. Mit (6.8)
ist es einfach, die Kurve in Abb. 6.13 punktweise zu
konstruieren (Aufgabe 6.1). Eine analytische Formel fiir
eine solche kartesische Fliche* zu finden, ist dagegen im
Allgemeinen schwierig. Nur in Sonderfallen erhilt man
einfache Flachen, wie z. B. eine Kugelfldche oder ein Rota-
tionshyperboloid.

Obgleich die kartesische Fliache die exakte Abbildung
von G auf B ermdglicht, ist ihr praktischer Nutzen recht
begrenzt. Die Abbildung ist eben nur fiir die beiden
Punkte G und B exakt, und das auch nur fiir monochro-
matisches Licht, wegen der optischen Dispersion. Unser
Ziel ist aber, mit Tages- oder Lampenlicht beleuchtete,
rdumlich ausgedehnte Gegenstande optisch abzubilden.
Im Ubrigen ist es schwierig und aufwendig, kartesische
Flachen mit der durch (6.7) geforderten Genauigkeit her-
zustellen.’ Relativ einfach ist es hingegen, diese Genauig-
keit bei sphérischen Flachen durch Schleifen zu erreichen.
Die Kugelfliche hat namlich die Eigenschaft, dass zwei
Fldchen, eine konvex und eine konkav, in beliebiger Stel-
lung genau zusammenpassen. Das Schleifwerkzeug aus
Stahl und das Rohmaterial aus Glas, beide anndhernd
sphérisch, werden mit einem Schleifmittel versehen und
moglichst unregelméfiig gegeneinander bewegt. Diese
Prozedur wird mit einem immer feiner gekérnten Schleif-
mittel solange wiederholt, bis alle Abweichungen von der
Kugelflache abgetragen sind und eine optische Politur er-
reicht ist.

450 benannt nach Descartes, der dieses Problem in seinem Buch La
Dioptrique untersuchte.

5 Erst in neuerer Zeit sind Verfahren entwickelt worden, mit denen
man asphérische Linsen mit der erforderlichen Prézision kosten-
giinstig herstellen kann. Ein Kunststoff hoher optischer Homogenitat
wird in eine polierte Form gegossen. Asphérische Linsen befinden
sich seitdem im Vormarsch, besonders beim Bau von Kamera-Objek-
tiven.
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Abbildung 6.14 Abbildung durch eine sphérische Flache
Wir betrachten also eine Kugelflache vom Radius R, die a

sich im Scheitelpunkt S moglichst gut an eine kartesische
Flache anschmiegt. Der entsprechende Kriimmungskreis
ist in Abb. 6.13 gestrichelt eingezeichnet. Eine gute Abbil-
dung von G auf B kann man nur fiir paraxiale Strahlen
erwarten. Das sind solche Strahlen, die nahe der Achse
GB verlaufen. Wir berechnen mit den in Abb. 6.14 defi-
nierten Groflen den Zusammenhang zwischen g, b und
R. Dabei gehen wir nicht vom Fermatschen Prinzip aus,
sondern vom Brechungsgesetz, weil dann die Naherun-
gen, die hier gemacht werden, besser zu erkennen sind.
In Abb. 6.14 liest man ab:

h

tany = o R (6.9)

’canoc—L
- 7 b—A’

P sinf =
Nun ist % = « + B, denn ¢ und (« + B) ergénzen den-
selben Winkel zu 180°. Ebenso ist f = ¢, + 7. Das Bre-
chungsgesetz 11 sin; = ny sin ¢, ergibt also

ny sin(a + B) = ny sin(p — ) . (6.10)
Fiir paraxiale Strahlen ist A gegeniiber ¢ und b zu vernach-
lassigen. Auflerdem sind &, § und -y kleine Winkel, und

man kann Sinus und Tangens durch die Winkel ersetzen.
Aus (6.10) und (6.9) folgt dann

m(a+p) =n(f—7)

ho Ry, (b
7’11 g R - ”2 R b 7

ny Ny
i Tyt (6.11)

Die Winkel &, 3, v treten in dieser Formel nicht mehr auf:
Sie gilt also fiir alle achsennahen Punkte P. Der Punkt G
wird in paraxialer Ndherung korrekt auf B abgebildet.
Auflerdem sehen wir, dass die Lage des Punkts G auf der
durch S und M fithrenden Geraden beliebig gewahlt wer-
den kann. Ein und dieselbe Kugelfldche bildet also mit
paraxialen Strahlen alle links von S liegenden Punkte G
auf Punkte rechts von S ab, wobei die Lage des Bildpunkts
mit (6.11) berechnet werden kann. Wegen der Umkehr-
barkeit des Strahlengangs wiirde auch B auf G abgebildet
werden. Man nennt deshalb B und G zueinander konju-
gierte Punkte.

B

fy

Abbildung 6.15 Bildseitiger und gegenstandsseitiger Brennpunkt. MaBstab-
lichfirny =1,m =15

Brennpunkte und Brennweiten. Wo liegt das Bild, wenn
der Gegenstand nach links ins Unendliche verschoben
wird (Abb. 6.15a)?

n n Ny —1n
A, 2_2-"
0 b R

p—

R=:f,. (612

nz —n

Man nennt f, die bildseitige Brennweite und F; den bild-
seitigen Brennpunkt. Wo muss der Gegenstandspunkt
liegen, damit sich das Bild nach rechts ins Unendliche ver-
schiebt (Abb. 6.15b)?

n np np —m n
g 00 R np — 1y

R=f. (6.13)

Man nennt fo die gegenstandsseitige Brennweite und
F¢ den gegenstandsseitigen Brennpunkt. Mit (6.13) und
(6.12) kann man (6.11) auf folgende Formen bringen:

_”_28'fg _mb-fy

Cmg—f ' ° mb—f’

(6.14)

Die Vorzeichenkonvention. Die Formel (6.11) erweist
sich als ein duflerst leistungsfihiges Instrument, wenn
man mit der in Tab. 6.1 gegebenen Vorzeichenkonvention
auch negative Werte von g, b und R zuldsst. Die Vorzei-
chen von f, und f;, ergeben sich aus (6.12) und (6.13). Auf



6.2 Abbildung mit Linsen

Tabelle 6.1 Vorzeichenkonvention in (6.11)—(6.13). ,Vor $” und , hinter S
gesehen in Strahlrichtung

Punkt vor S hinter S
G g§>0 g§<o0
B b<0 b>0
M R<0 R>0
Fq fe>0 fe <0
Fy fo<0 fo>0

den ersten Blick scheinen die Festlegungen etwas verwir-
rend zu sein. Man kann sie sich aber ganz leicht merken:
Man braucht sich nur Abb. 6.14 einzuprdgen, also die
Konfiguration, von der wir ausgegangen sind: In dieser
Anordnung sind alle Gréfien positiv. Wir betrachten eini-
ge Beispiele zu negativen Werten von g, b und R. Wenn
sich in Abb. 6.14 der Punkt G von links kommend dem
Brennpunkt F¢ ndhert, strebt nach (6.14) b — +o0, solan-
ge g > fo ist. Die Bildweite b springt aber zu negativen
Werten, sowie g < f, ist. Das Bild entsteht nun links vom
Scheitel S. Der zugehdrige Strahlengang ist in Abb. 6.16a
gezeigt: Die riickwértigen Verldngerungen der auslaufen-
den Strahlen schneiden sich in B, es handelt sich also nach
Satz 6.4 um ein virtuelles Bild des Punktes G.

Auch g kann in (6.14) negative Werte annehmen, z.B.
dann, wenn b > 0, aber b < f;, ist. Diese Situation tritt ein,
wenn von links ein konvergentes Strahlenbiindel einfallt.

Q
o

R<6\\\ ==
g<0 A=
b<0

Abbildung 6.16 Beispiele zur Vorzeichenkonvention

Die Verlangerungen dieser Strahlen schneiden sich im vir-
tuellen Gegenstandspunkt G (Abb. 6.16b).

Andere Moglichkeiten, einen virtuellen Gegenstand-
spunkt (¢ < 0) abzubilden, erhédlt man fiir R<0
(Abb. 6.16c und d). Hier sind nach (6.12) und (6.13) f;
und f;, negativ. Ist nun [g| < |f;|, entsteht ein reelles Bild
bei b > 0; ist dagegen |g| > |fy|, erhdlt man ein virtuelles
Bild des virtuellen Gegenstandes.

Man kann sich merken: Im virtuellen Bild treffen sich die
riickwartigen Verldngerungen der auslaufenden Strahlen,
es liegt vor dem Scheitel S (b < 0). Im virtuellen Ge-
genstand treffen sich die in Strahlrichtung verldngerten
einlaufenden Strahlen, er liegt hinter dem Scheitel S (g <
0). Das virtuelle Bild entsteht bei divergent auslaufenden
Strahlen, der virtuelle Gegenstand entspricht konvergent
einlaufenden Strahlen.

Sphaérische Linsen

Wie schon erwihnt, ist die Abbildungsgleichung (6.11)
eine dufierst niitzliche Formel. Man kann mit ihr die pa-
raxialen Strahlen durch ein optisches System verfolgen,
das aus einer beliebigen Anzahl sphérischer Flachen und
entsprechend vielen Bereichen mit unterschiedlichen Bre-
chungsindizes besteht (Abb. 6.17). Die einzige Bedingung
ist, dass die Mittelpunkte der sphérischen Flachen auf
einer geraden Linie liegen. Man nennt sie die optische
Achse des Systems. Man beginnt mit einem Punkt Gy,
der auf der optischen Achse im Abstand g; vom Schei-
telpunkt S; der ersten Fldache liegt, und berechnet mit
(6.11) die Bildweite by unter der Annahme, dass im ge-
samten Raum hinter der Flache (1) der Brechungsindex
n = ny ist, d. h. die Flachen (2)—(IN) werden zunéchst igno-
riert. Der Bildpunkt By wird dann identifiziert mit dem
Gegenstandspunkt G, den man mit der Fliche (2) auf
den Bildpunkt B; abbildet. Dabei wird angenommen, dass
der Brechungsindex im gesamten Raum vor dieser Flache
n = nyp, hinter der Flache n = n3 ist. In vielen Fillen wird
Gy ein virtueller Gegenstand sein (g < 0); wie wir gese-
hen haben, beeintrachtigt das die Anwendung von (6.11)
in keiner Weise. Das Verfahren wird fortgesetzt bis man
hinter der N-ten Flache den endgiiltigen Bildpunkt B be-
rechnet hat.

Mo e

Fliche()AM2) (3)  (4)..

Abbildung 6.17 Ein optisches System. Als Beispiel ist ein Fotoobjektiv
JTessar” gezeigt

109




110

= s Sy
By Gy My M,
Go 2 R,

b, d— b<0
92 Ry <0

Abbildung 6.18 Abbildung durch eine Linse: zur Ableitung von (6.18)

Fliche 1

Abbildung 6.19 Zur Bestimmung des optischen Zentrums einer Linse

Wir wenden dieses Verfahren auf die in Abb. 6.18 ge-
zeigte Linse an. Der Gegenstandspunkt G; befinde sich
zwischen S1 und Fy, . Es entsteht wie in Abb. 6.16a ein vir-
tuelles Bild B; im Abstand b; < 0 vom Scheitelpunkt S;.
Nach (6.11) ist

ny Ny Ny —m

@1 b Ry

(6.15)

Die Gegenstandsweite fiir die Abbildung durch die Fla-
che (2) ist positiv. Da by < 0 ist, miissen wir setzen
g =-b+d, (6.16)

denn g> muss von S, aus gemessen werden. Die Abbil-
dungsgleichung lautet nun

1n2 m ny —mnp

Sorit e = R (6.17)

denn an der Flache (2) laufen die Strahlen in der Richtung
ny — n1. Wir addieren (6.15) und (6.17) und erhalten

n ny 1 1) nod
A =) ([ —— — |+ —2— .
g1 b (2 =m) (R1 Ry bi(by —4d)

Hatten wir mit einer Gegenstandsweite g1 > f;; begon-
nen, so hitten wir ein reelles Bild G1 mit b; > 0 erhalten,
das rechts von S, liegt. In diesem Fall ist g» < 0, und wir
wiirden g» = — (b1 — d) setzen. Auch in diesem Falle gilt
also (6.16) und damit (6.18).

(6.18)

Optisches Zentrum. Das optische Zentrum einer Linse
ist ein Punkt auf der optische Achse mit der Eigenschaft,

6 Geometrische Optik

dass jeder Lichtstrahl, der durch diesen Punkt hindurch-
geht, vor und hinter der Linse exakt die gleiche Rich-
tung hat. Dass ein solcher Punkt existiert, zeigen wir in
Abb. 6.19. Wir nehmen auf der Kugelfldche (1) einen belie-
bigen Punkt A an und zeichnen die Gerade AM). Parallel
dazu zeichnen wir eine Gerade durch M. Sie schneidet
die Kugelfldche (2) in B. Nun betrachten wir einen Licht-
strahl, der innerhalb der Linse auf der Geraden AB liuft.
Er muss nach dem Brechungsgesetz hinter der Linse ge-
nau die gleiche Richtung haben, wie vor der Linse. Das
folgt daraus, dass die in Abb. 6.19 eingezeichneten Radi-
en Ry und R; senkrecht auf den Flachen (1) und (2) stehen,
und dass die bei A und B gekennzeichneten Winkel gleich
sind. Nun sind die Dreiecke M;CB und M1CA einander
im geometrischen Sinne dhnlich. Daher stehen die Seiten
der beiden Dreiecke in einem festen Verhiltnis und es gilt
die Proportion M>C/M;C = R, /R;. Die Lage des Punktes
C hangt also nicht von der Lage des Punktes A auf der Fla-
che (1) ab: Alle Lichtstrahlen, die bei C die optische Achse
schneiden, miissen hinter der Linse die gleiche Richtung
haben, wie vor der Linse: C ist das ,optische Zentrum”
der Linse. Seine Lage auf der optischen Achse kann man
in Abb. 6.19 ablesen: Es ist

R1/Ry = AC/BC = 5,C/5,C, (6.19)

denn die Konstruktion gilt auch fiir Punkte A, die beliebig
dicht bei S; liegen.

In den Punkten A und B sind nicht nur die Flachennor-
malen, sondern auch die Tangentialebenen zueinander
parallel. Ein Lichtstrahl durch das optische Zentrum wird
daher wie beim Durchgang durch eine planparallele Plat-
te seitlich versetzt (Abb. 6.7). Bei einer diinnen Linse ist
fiir paraxiale Strahlen diese Verschiebung vollstandig ver-
nachlédssigbar. Der durch das optische Zentrum fiihrende
Strahl lduft in diesem Fall geradlinig durch die Linse hin-
durch.

Linsenformen. Die Linsen in Abb. 6.18 und Abb. 6.19
nennt man bikonvexe Linsen. Man kann mit den gleichen
Radien Linsen sehr unterschiedlicher Form herstellen.
Abbildung 6.20 gibt eine Ubersicht. Die Lage des opti-
schen Zentrums ist jeweils eingezeichnet. Wie man sieht,
gibt es zwei Arten von Linsen: Solche, die in der Mitte di-
cker sind als am Rand, und solche, die in der Mitte diinner
als am Rand sind. Wenn n, > nq ist, wirkt die in der Mitte
dickere Linse als Sammellinse, die in der Mitte diinnere
als Zerstreuungslinse. Diese beiden Linsentypen werden
in Zeichnungen manchmal auch durch die in Abb. 6.21
gezeigten Symbole dargestellt.

Diinne Linsen

Bei einer diinnen Linse kann man den zweiten Term auf
der rechten Seite von (6.18) gegeniiber dem ersten ver-
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Abbildung 6.20 Verschiedene Linsenformen. Punkte: Optische Zentren, je-
weils konstruiert wie in Abb. 6.19. Striche: Hauptebenen, berechnet mit (6.35)

Abbildung 6.21 a Sammel- a b
linse, b Zerstreuungslinse in
symbolischer Darstellung

nachlassigen. Auflerdem kann man statt mit den Grofsen
g1, b1 und g, by mit einer Bildweite b und einer Gegen-
standsweite ¢ rechnen, die beide vom optischen Zentrum
aus gemessen werden. Die Brennweite der Linse erhalt
man, indem man die Grenzfélle b — oo und g — o be-
trachtet. Gleichung (6.18) ergibt dann fiir die diinne Linse

fo=fo=—m Rike g

np—mn Ry —Ry

(6.20)

f ist die Brennweite der Linse. Da die Linse gewo6hnlich in
Luft betrieben wird, setzen wir im folgenden n; = 1 und
ny = n. Aus (6.18) erhdlt man dann die Gleichungen

, (6.21)

(6.22)

Gegenstands-
ebene

Linsen-
ebene

Abbildung 6.22 Abbildung von Punkten, die nicht auf der optischen Achse
liegen

Die erste Gleichung wird die Gaufssche Abbildungsglei-
chung genannt, die zweite die Linsenmacherformel. P
ist die Brechkraft der Linse. Sie wird gemessen in Diop-
trien, definiert als Kehrwert der in Metern gemessenen
Brennweite. Als Zahlenbeispiel berechnen wir Brennweite
und Brechkraft fiir eine bikonvexe Linse mit Ry = 50 cm,
R, = -30cm,n =1,5:

1 1 1) _ 80
f_0’5(50+30)_3ooocm ’

f=375cm, P =2,66Dioptrien.

Fur die bikonkave Linse mit Ry = —50cm, R, = 30cm,
n = 1,5 erhalten wir

1 11\ 40
- 0’5( 50 30) = 1500 ™
f=-375cm, P = —2,66Dioptrien.

Die Brennweite ist bei allen Sammellinsen positiv, bei
allen Zerstreuungslinsen negativ. Wie sich das auf die Ab-
bildung und auf die Bildkonstruktion auswirkt, werden
wir gleich sehen.

Abbildung eines flichenhaft ausgedehnten Gegen-
stands. Die Abbildungsgleichung (6.21) gilt nicht nur fiir
Punkte auf der optischen Achse, sie gilt ndherungsweise
auch fiir Punkte in der in Abb. 6.22 dargestellten Ge-
genstandsebene, sofern die Strahlen, die vom Punkt G
aus durch die Linse laufen als paraxial betrachtet wer-
den kénnen. Die Lage des Bildpunktes B in der Bildebene
ist durch den Strahl gegeben, der geradlinig durch das
optische Zentrum C der Linse lauft. Fiir die Abstande zwi-
schen den Ebenen gilt (6.21):
1 1 1

- ==
g b f
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Abbildung 6.23 Geometrische Bildkonstruktion nach Satz 6.5

Abbildung 6.24 Erzeugung virtueller Bilder mit einer Sammellinse und mit
einer Zerstreuungslinse

Sehr bequem lasst sich die Lage der Bildpunkte mit der in
Abb. 6.23 gezeigten Konstruktion ermitteln.® Die Linse ist
durch eine Ebene senkrecht zur optischen Achse ersetzt,
die die Achse in C schneidet. Dann gilt folgendes:

Satz 6.5

1. Der Parallelstrahl wird an der Linsenebene so ge-
brochen, dass er durch den Brennpunkt Fy, fiihrt.

2. Der Brennstrahl (d.h. der durch den Brenn-
punkt F¢ fiihrende Strahl) verlduft hinter der
Linse parallel zur optischen Achse.

3. Der Mittelpunktsstrahl lduft ungebrochen durch
den Punkt C.

Offensichtlich geniigen bereits zwei dieser Strahlen, um
die Lage von B zu konstruieren. Dabei spielt es keine Rol-
le, ob die Strahlen (1) und (2) tatsdchlich die Linse treffen,
denn diese Strahlen sind hier nur Konstruktionshilfen.

6 Diese Konstruktion ist in der Praxis gut zu gebrauchen, wenn man
schnell die ungefahre Lage des Bildpunkts ermitteln will. Wenn es
auf einige Genauigkeit ankommt, sollte man unbedingt mit der Ab-
bildungsgleichung und dem Taschenrechner arbeiten. Dasselbe gilt
auch fiir die Bildkonstruktion mit Hilfe der Hauptebenen, die man
bei dicken Linsen und bei Linsensystemen anwenden kann (siehe
weiter unten).

6 Geometrische Optik

Tabelle 6.2  Eigenschaften der optischen Abbildung mit Linsen

Gegenstandsweite Bild

Sammellinse:

g>f reell, umgekehrt
f<g<2f vergrofiert
g=2f gleich grof3
g>2f verkleinert

0<g<f virtuell, aufrecht

vergrofiert

Zerstreuungslinse:

g§>0 virtuell, aufrecht
verkleinert
' Yy
¢ Yg

F, C F, B
G 7
Yp B'

m_q f f Tp—~
g b

Abbildung 6.25 Zur Ableitung von (6.24)—(6.26)

Sofern der Gegenstand aufSerhalb der Brennweite liegt,
entsteht ein reelles umgekehrtes Bild. Im Bereich g > 2f
ist das Bild verkleinert, bei ¢ = 2f sind Bild und Gegen-
stand gleich grofs, und im Bereich f < g < 2f ist das Bild
vergrofert. Ist ¢ < f, entsteht ein aufrecht stehendes vir-
tuelles Bild (Abb. 6.24a).

Die gleiche Bildkonstruktion funktioniert auch bei Zer-
streuungslinsen. Man muss nur beriicksichtigen, dass
nach (6.20) die Brennweite einer Zerstreuungslinse nega-
tiv ist. F}, liegt vor der Linse und Fq dahinter. Man muss
also die entsprechenden Strahlverldngerungen betrach-
ten (Abb. 6.24b). Bei jeder Lage des Gegenstands entsteht
ein verkleinertes, aufrechtes virtuelles Bild, sofern g > 0
ist (reeller Gegenstand). — Es lohnt sich, den Inhalt von
Tab. 6.2 im Kopf zu haben.

Transversaler und longitudinaler Abbildungsmaf$stab.
In Abb. 6.23 kann man auch den Abbildungsmafistab ab-
lesen. Dazu wird eine y-Achse eingefiihrt, wie Abb. 6.25
zeigt. AuSerdem definiert man die Absténde x¢ und x;, als
Absténde der Punkte G bzw. B von den Brennpunkten F,
bzw. Fj . x, ist positiv links von F, und negativ, wenn G
rechts von F, liegt. Bei x; ist es umgekehrt. In Abb. 6.25
sind xg, x, und y¢ positiv, i, ist negativ. Haben y; und y,
entgegengesetzte Vorzeichen, entspricht das einem umge-
kehrten Bild. Bei gleichem Vorzeichen ist das Bild aufrecht
stehend.
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Der transversale Abbildungsmafistab Mt ist definiert
durch

MT::y—b.

6.23
Ye (6.23)

Aus der Ahnlichkeit der in Abb. 6.25 schattierten Dreiecke
folgt

ol _ f _ % (624)
ve Y f
Ebenso folgt mit den Dreiecken CGG’ und CBB’
b
Il _ b (6.25)
Yy &
Damit erhalten wir
b
M=-2-_f__ % (6.26)
g %3 f

Das Minuszeichen zeigt an, dass ein umgekehrtes Bild
entsteht, wenn g, b, f, Xg und x;, positiv sind.

Der longitudinale AbbildungsmafSstab M, gibt an, wie
sich die Bildweite bei Anderung der Gegenstandsweite
verhélt. Man definiert also

dx,

My = .
L dxg

(6.27)

Zur Berechnung dieser Grofle braucht man eine Bezie-
hung zwischen x; und x;. Man erhélt sie mit (6.24)

XXy =f2 . (6.28)

Das ist die Newtonsche Abbildungsgleichung. Wir diffe-
renzieren die Gleichung x, = f2/x,:

2
M, = o —M3 . (6.29)

2
Xg

Der longitudinale Abbildungsmafsstab ist also vom trans-
versalen verschieden. Wenn Mt < 1 ist, ist My, winzig.
Darauf beruht, dass wir mit unserem Auge ein schar-
fes Bild von einem dreidimensionalen Gegenstand sehen,
und dass man mit einer Kamera eine Landschaft foto-
grafieren kann, so dass Vorder- und Hintergrund scharf
abgebildet werden.

Abbildungsfehler

Die einfachen Formeln fiir die optische Abbildung, die
wir bisher abgeleitet haben, gelten nur fiir paraxiale Strah-
len und auch dann nur fiir monochromatisches Licht.
In Wirklichkeit weicht der Strahlengang durch eine Lin-
se hdufig von dieser einfachen Theorie ab. Diese Ab-
weichungen bezeichnet man als Abbildungsfehler oder
Aberration. Es ist iiblich, die Abbildungsfehler nach be-
stimmten Typen zu klassifizieren. Das macht die Diskus-
sion tbersichtlicher und ist auch insofern sinnvoll, als
die Korrekturmoglichkeiten fiir die einzelnen Fehlertypen
verschieden sind.

Befassen wir uns zunéchst mit der chromatischen Aber-
ration, auch Farbfehler genannt. Sie kommt ganz einfach
dadurch zustande, dass der Brechungsindex von der Wel-
lenldnge abhédngt (Abschn. 5.3). Bei normaler Dispersion
nimmt der Brechungsindex mit abnehmender Wellenldn-
ge zu, blaues Licht wird stiarker gebrochen als rotes. Man
erhilt daher bei der Abbildung eines Punkts, von dem
weifles Licht ausgeht, den in Abb. 6.26 gezeigten Strah-
lengang. Wo auch immer man die Bildebene definiert, der
,Bildpunkt” hat immer farbige Rander. Es gibt jedoch eine
engste kreisformige Einschniirung des Strahlenbiindels,
eine ,,Strahltaille”, und dort sind auch die Farbeffekte am
wenigsten ausgepragt. Man kann den Farbfehler betracht-
lich vermindern, indem man die Sammellinse mit einer
Zerstreuungslinse geringerer Brechkraft, aber starkerer
Dispersion zusammenklebt. Eine solche Linsenkombina-
tion bezeichnet man als Achromat.

Als sphirische Aberration oder Offnungsfehler bezeich-
net man die Fehler, die bei der Abbildung eines auf der
optischen Achse liegenden Punktes entstehen, weil die
sphérisch geschliffene Linse eben nicht die zur Abbildung
von G auf B gehorende kartesische Flache ist. Strahlen,
die weiter auflen auf die Linse treffen, schneiden sich
nicht im paraxialen Bildpunkt: Sie werden zu stark ge-
brochen. In Abb. 6.27a ist das bei einer plankonvexen
Linse fiir parallelen Lichteinfall gezeigt. Der Punkt G liegt
in grofier Entfernung auf der optischen Achse. Das Aus-
maf der sphdrischen Aberration hingt bei vorgegebener
Brennweite stark von der Form der Linse ab. Schon wenn
man die plankonvexe Linse in Abb. 6.27a umdreht, wird
die sphédrische Aberration stark reduziert (Abb. 6.27b). In

Abbildung 6.26 Chromatische Aberration. Der Effekt ist in der Zeichnung
stark Uibertrieben
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jedem Fall erhélt man statt des Bildpunkts einen kreis-
runden Fleck, dessen Durchmesser nicht am paraxialen
Brennpunkt, sondern kurz davor am kleinsten ist. Auch
die sphérische Aberration ldsst sich durch Kombination
der Sammellinse mit einer Zerstreuungslinse korrigieren,
wenn man die richtigen Linsenformen wihlt.

Weitere Abbildungsfehler treten auf, wenn der Punkt G
nicht auf der optischen Achse liegt, wenn also der Mit-
telpunktsstrahl mit der optischen Achse einen Winkel a
einschliefst. Schon bei relativ kleinen Winkeln zeigt sich
ein Abbildungsfehler, der die Koma genannt wird. Der
Bildpunkt erhélt einen kometenartigen Schweif. Die Ursa-
che ist der asymmetrische Durchgang der Strahlen durch
die Linse. Abbildung 6.27c zeigt das an Strahlen in der
Meridionalebene, der Ebene, die den Mittelpunktstrahl
und die optische Achse enthilt. Man sieht sofort, dass
das nicht gut gehen kann. Die Berechnung der Koma ist
kompliziert. Sehr einfach ist dagegen die Demonstration:
Man erzeugt mit einer Sammellinse im Sonnenlicht den
bekannten Brennfleck. Wenn man nun die Linse ein we-
nig schief halt, entsteht sofort das charakteristische Bild
der Koma. Probieren Sie es aus!

Beschriankt man sich auf ein schmales Strahlenbiindel,
das den Mittelpunktsstrahl enthélt, tritt bei schrigem
Lichteinfall immer noch ein Abbildungsfehler auf, der so-
genannte Astigmatismus. (Nicht zu verwechseln mit dem
Astigmatismus des Auges, der durch eine Deformation
der Hornhaut verursacht wird.) Er besteht darin, dass die
Brennweite der Linse in der eben definierten Meridional-
ebene kiirzer ist als die Brennweite fiir Strahlen in der
Sagittalebene. Diese Ebene steht senkrecht auf der Meri-
dionalebene und enthalt ebenfalls den Mittelpunktsstrahl.
Der Effekt ist in Abb. 6.27d gezeigt: Das hinter der Linse
noch kreisrunde Strahlenbiindel schniirt sich im meridio-
nalen Fokus zu einer Linie zusammen, die senkrecht auf
der Meridionalebene steht. Im sagittalen Fokus entsteht,
senkrecht zur Sagittalebene, ebenfalls ein linienhaftes Bild
des Gegenstandpunkts. Dazwischen liegt eine kreisfor-
mige Strahltaille. Dort erhdlt man die beste Bildqualitat.
Auch dies kann man im Sonnenlicht mit einer Lupe stu-
dieren, wenn man eine Lochblende (ca. 5 mm @) vor die
Lupe hilt.

Wenn alle bisher diskutierten Abbildungsfehler korrigiert
wiéren, wiirde eine saubere Punkt-zu-Punkt Abbildung
erfolgen. Selbst dann gibt es noch weitere Abbildungs-
fehler: Die Bildfeldwo6lbung ist leicht zu verstehen: Bei
Abwesenheit aller anderen Abbildungsfehler werden in
Abb. 6.27e die Punkte G, G/, G”,... exakt auf die Bild-
punkte B, B/, B”, ... abgebildet. Riickt man nun die Punk-
te G, G/, G”, ... auf die Gegenstandsebene, so verschie-
ben sich die Bildpunkte nach der Abbildungsgleichung
1/¢+1/b=1/f nach vorn. Die Bildfliche ist zwangs-
laufig gewolbt, und zwar bei einer Sammellinse so, wie
Abb. 6.27e zeigt. Bei einer Zerstreuungslinse wolbt sich
das Bildfeld in entgegengesetzter Richtung. Daher kann
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Abbildung 6.27 Monochromatische Abbildungsfehler: a und b spharische
Aberration an einer plankonvexen Linse, ¢ zur Koma, d Astigmatismus, e Bild-
feldwolbung, f tonnenférmige und kissenformige Verzeichnung. Gestrichelt:
Bild ohne Verzeichnung

man durch eine Kombination von Sammel- und Zerstreu-
ungslinsen ein ebenes Bildfeld erreichen. Es muss die
Petzval-Bedingung

nifiy +nafp =0 (6.30)
erfiillt sein. Die Verzeichnung, der letzte der klassischen
Abbildungsfehler, beruht darauf, dass der Abbildungs-
mafistab Mt = y;,/ye, unter Umstinden vom Absolutwert
von Y, abhiangt. Nimmt Mt mit wachsendem y;, ab, wird
ein Quadrat in der Gegenstandsebene in eine tonnenar-
tige Figur abgebildet. Nimmt Mt mit y;, zu, entsteht eine
kissenartige Verzeichnung (Abb. 6.27f). Schaut man durch
eine grofle bikonvexe Lupe auf ein Stiick Millimeterpa-
pier, wird die kissenformige Verzeichnung sofort sichtbar.
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Das alles hort sich ziemlich frustrierend an, aber letzten
Endes kann man mit dem entsprechenden Aufwand alle
Fehlertypen unter vorgegebenen Grenzen halten, indem
man statt einer einzelnen Linse ein Linsensystem verwen-
det.

Dicke Linsen und Linsensysteme

Wenn man eine Linse mit kurzer Brennweite braucht,
muss man zu einer dicken Linse greifen. Wie kann man
dann die Lage des Bildes ermitteln? Eine zweite Fra-
ge: Jeder weif3, was passiert, wenn man zwei elektrische
Widerstande hintereinander schaltet. Was passiert aber,
wenn man zwei Linsen hintereinander stellt? Diesen Fra-
gen wollen wir nun nachgehen.

Eine fiir dicke Linsen giiltige Abbildungsgleichung ken-
nen wir schon (Gl. (6.18)). Man sieht schnell, dass es miih-
sam wird, mit dieser Gleichung direkt etwas anzufangen.
Daher konstruieren wir bei einer dicken Linse mit dem im
Text zu Abb. 6.18 angegebenen Verfahren die paraxialen
Strahlengédnge fiir g1 — co und fiir b, — co. Die Ergeb-
nisse sind in Abb. 6.28a und b gezeigt. Man erhélt den
bildseitigen und den gegenstandsseitigen Brennpunkt.
Verldngert man nun die Strahlen gradlinig von aufsen
ins Innere der Linse, erhdlt man die gestrichelten Linien.

Abbildung 6.28 Zur Definition der sogenannten Kardinalelemente einer di-
cken Linse: a bildseitige Hauptebene H’, b gegenstandsseitige Hauptebene H,
¢ Knotenpunkte

— ht— b=
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Abbildung 6.29 Bildkonstruktion bei einer dicken Linse

Die Schnittpunkte dieser Linien definieren zwei Fldchen,
die im paraxialen Gebiet Ebenen sind. Man nennt sie die
gegenstandsseitige und die bildseitige Hauptebene. Sie
schneiden die optische Achse in den Hauptpunkten. So-
wohl die Ebenen als auch die Punkte werden mit H bzw.
H’ bezeichnet. In Abb. 6.28¢ sind wie in Abb. 6.19 Strahlen
konstruiert, die ihre Richtung beim Durchgang durch die
Linse nicht dndern. Ihre Verldngerungen schneiden die
optische Achse in den Knotenpunkten K und K’'. Wenn
sich vor und hinter der Linse das gleiche Medium befin-
det, fallen K und K’ mit den Hauptpunkten zusammen.
Dies wird im Folgenden angenommen.

Damit haben wir alle Ingredienzien beieinander, um die
einfache Bildkonstruktion nach Satz 6.5 auch bei dicken
Linsen anwenden zu koénnen (Abb. 6.29). Die Konstruk-
tion von Brennstrahl und Parallelstrahl ist klar. Der
Mittelpunktsstrahl ist auf der Gegenstandsseite auf den
Punkt H gerichtet; er verldsst die Linse, parallel verscho-
ben, scheinbar vom Punkt H" ausgehend. Gegenstands-,
Bild- und Brennweite werden von den Hauptebenen H
bzw. H' aus gemessen. Fiir den Abbildungsmafistab erhilt
man aus der Ahnlichkeit von Dreiecken wie bei der diin-
nen Linse in Abb. 6.25:

MT_yb_ b: f:—ﬁ

(6.31)
Yg 8 Xg f

Daraus folgt wieder die Newtonsche Abbildungsglei-
chung

XgXp :f2 , (6.32)

und mit x¢ = ¢ — f, x;, = b — f erhélt man die Gaufische
Abbildungsgleichung

gh—fg—fo=0 — (6.33)

oQ | =
S| =
N

Die nun folgenden Formeln sind nicht so leicht abzulei-
ten, es ist aber einfach, sie anzuwenden. Sie ermoglichen,
in paraxialer Ndherung mehr als nur die Abbildung durch
eine einzelne diinne Linse zu berechnen. Man erhilt aus
(6.15)—(6.18) flr die Brennweite der dicken Linse und fiir
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die Abstinde der Hauptebenen von den Linsenscheiteln:

1 1 1 (n=1d
I (n—1) <R—1 &R ) (6.34)
— n—1f
h=5H= - {{—2,
(6.35)
WG = 1/
n R1

Hierbei ist die Vorzeichenkonvention: Wenn 1 bzw. I’ po-
sitiv sind, liegen die Hauptebenen rechts von S1 bzw. von
Sy (Lichteinfall von links).

Linsensysteme. Auch bei einem Linsensystem, das aus
mehreren dicken oder diinnen Linsen besteht, kann
man das Bild eines Gegenstandes mit Hilfe von zwei
Hauptebenen konstruieren. Besteht das System aus zwei
Linsen, erhdlt man fiir die Brennweite des Systems und
fur die Lage der Hauptebenen die folgenden einfachen
Formeln:

1_1.1_4
f A R AR’
_—_f_d 7 /:_f_d
h=HH=7, =TT = .

(6.36)
(6.37)

Hierin bezeichnet H; die gegenstandsseitige Hauptebene
von Linse 1, H} die bildseitige Hauptebene von Linse 2,
die Strahlrichtung verlduft von 1 nach 2. h und h’ sind po-
sitiv, wenn die Hauptebenen H und H' des Systems rechts
von Hy bzw. von H; liegen. Es ist d = H{H». Bei diinnen
Linsen ist d einfach der Abstand zwischen den Linsenebe-
nen. Fiir d = 0 erhélt man aus (6.36)

1 1 1

]? fl +]72 - P=P1+P;, (6.38)

die Brechkrifte der beiden Linsen addieren sich.

Fir d # 0 wird es komplizierter, aber es zeigt sich, dass
solche einfachen Systeme interessante Eigenschaften ha-
ben kénnen. Wir betrachten dazu ein Beispiel: In Abb. 6.30
seien L1 und L, diinne Linsen mit den Brennweiten f; =

+30cm, f, = —30cm, und es sei d = 20 cm. Dann ist nach
(6.36) f = 45cm. Aus (6.37) folgt
900 , 900
h—_—?)o——?)OCm, h——%——?)OCm

Die Hauptebenen H und H' und die von dort gemessenen
Brennpunkte F; und Fj, sind in Abb. 6.30 eingezeichnet.
Die Bildkonstruktion ist wie in Abb. 6.29 denkbar einfach.
Die Zeichnung ist maf$stédblich. Wie in der geometrischen
Optik tiblich, sind jedoch die Mafstdbe in Richtung der
optischen Achse und senkrecht dazu sehr unterschiedlich.
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Abbildung 6.30 Beispiel zur Bildkonstruktion bei einem Linsensystem

Unser Beispiel zeigt, dass die Hauptebenen auch weit au-
Berhalb des Linsensystems liegen konnen. Dies ist z.B.
fur den Bau von Teleobjektiven von Vorteil: Man kann
eine grofle Brennweite erzielen, ohne dass die Objektiv-
linse einen ebenso groflen Abstand von der Filmebene
haben muss. Das Linsensystem in Abb. 6.30 hat noch eine
weitere interessante Eigenschaft: Wenn 1 = ny ist, ist die
Petzval-Bedingung (6.30) erfiillt, es gibt also keine Bild-
feldwolbung. Auch erkennt man, dass die Kombination
einer Sammellinse mit einer Zerstreuungslinse gleicher
Stdrke als Sammellinse wirkt, wenn d # 0 ist. Die physi-
kalische Ursache dafiir hatten wir schon bei der magneti-
schen Quadrupollinse in Bd. III, Abb. 13.18 angesprochen.

Gewohnlich besteht ein Linsensystem aus mehreren spha-
risch geschliffenen Linsen, die sich in der Form und
héufig auch im Brechungsindex voneinander unterschei-
den. Erstaunlicherweise kann man mit solchen Linsen-
systemen erreichen, dass fiir jeden in der Praxis vor-
kommenden Zweck die Abbildungsfehler unter das ge-
wiinschte Maf3 gedriickt werden. Das ,,gewiinschte Maf3”
wird dabei durch den Verwendungszweck und durch
den Kostenfaktor definiert. Eine vollstindige Beseitigung
der Abbildungsfehler ist weder méglich noch sinnvoll,
denn durch Beugungsphédnomene ist der Schirfe der op-
tischen Abbildung eine Grenze gesetzt. Mit einem guten
Linsensystem kann man aber auch bei riesigen Offnungs-
winkeln, bei schrédg einfallenden und bei achsenfernen
Strahlen in die heile Welt der paraxialen Ndherung zu-
riickkehren — eine bewundernswerte Leistung der profes-
sionellen Optiker.”

7 Bei der Optimierung eines Linsensystems ist das ,ray tracing”, bei
dem der Strahlverlauf mit dem Brechungsgesetz fiir viele Einzel-
strahlen durchgerechnet wird, eine unschitzbare Hilfe. Auf diese
Weise wird ein Linsensystem mit dem Computer dem Verwendungs-
zweck entsprechend optimiert. Die Ausgangsbasis, d.h. die Grund-
konfiguration, von der man am besten ausgeht, verrat der Computer
jedoch nicht. Hier sind gute theoretische Kenntnisse, Erfahrung und
Intuition gefragt. Meist wird von altbewahrten Konstruktionen aus-
gegangen, bei Kamera-Objektiven z. B. von Tessar, Sonnar oder einer
Handvoll anderer Objektive. Nur selten wird ein neues erfolgreiches
Grundkonzept erfunden.
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Die Abbildung eines Punktes mit einem ebenen Spiegel
hatten wir schon bei Abb. 6.9 diskutiert. Auch die Abbil-
dung eines rdumlich ausgedehnten Gegenstands ist uns
vertraut: Wann immer wir in den Spiegel blicken, sehen
wir hinter dem Spiegel unser Bild, ein virtuelles Bild wie
bei der Punktabbildung. Die Abbildungsmafistibe sind
Mt = My, = +1. Zwischen diesem Bild und den Bildern,
die man mit einer Linse erzeugen kann, besteht ein grund-
sétzlicher Unterschied: Dort ist das Bild eines rechtshén-
digen Koordinatensystems stets wieder rechtshdndig, ob
es sich um ein umgekehrtes reelles oder um ein aufrecht
stehendes virtuelles Bild handelt. Wenn man eine Buch-
seite abbildet, erhdlt man mit der Linse stets die Schrift
und nicht Spiegelschrift. Bei der Abbildung durch einen
ebenen Spiegel entsteht jedoch aus einem rechtshdndigen
Koordinatensystem ein linkshandiges: Der Spiegel fiihrt
die als Inversion bezeichnete Koordinatentransformation
' = —r durch (vgl. Bd. I, Abb. 8.13). Erst nach einer gera-
den Zahl von Spiegelungen erhélt man als Bild wieder ein
rechtshidndiges Koordinatensystem.

Durch Reflexion an einer gekriimmten Flache kann man
wie bei der Lichtbrechung an einer kartesischen Flache
erreichen, dass ein Gegenstandspunkt G exakt auf einen
Bildpunkt B abgebildet wird. Das ist besonders dann von
praktischem Interesse, wenn die Lage eines der konju-
gierten Punkte festliegt, wenn z. B. die Gegenstandsweite
g = oo ist. Von Alters her ist bekannt, dass man in diesem
Fall einen Parabolspiegel einsetzen kann: Alle Strahlen,
die parallel zur Achse eines Rotationsparaboloids einfal-
len, werden im Brennpunkt vereinigt (Abb. 6.31a). Dass
das stimmt, beweisen wir mit dem Fermatschen Prinzip.

Abbildung 6.31 Zur Ableitung a
von (6.39)

bpu;
Y

Da es sich bei der gesuchten Flache jedenfalls um eine
Rotationsflache handeln muss, konnen wir unsere Unter-
suchung auf die (x, y)-Ebene in Abb. 6.31 beschrdanken. S
ist der Scheitelpunkt der spiegelnden Fldche, der Brenn-
punkt F liege bei x = f. Welche Form hat der Spiegel?
Nach dem Fermatschen Prinzip Satz 6.2 lauft das parallel
zur x-Achse aus dem Unendlichen einfallende Licht auf
dem Weg tiber den Punkt P(x,y) nach F, wenn fiir alle
Punkte auf der in Abb. 6.31b gezeichneten Kurve die Sum-
me der Strecken /1 + I, = 2f ist, denn das ist die optische
Weglédnge fiir einen auf der x-Achse laufenden Strahl. Es
muss also gelten

12:2f—11:2f—(f—x) :f+x.

Nach dem Satz des Pythagoras ist andererseits 13 = y> +
(f — x)2. Wir erhalten also f2 + 2fx + x2 = y? + f2 — 2fx +
x?, und daraus folgt:

]/2

x(y) = E . (6.39)

Das ist die Gleichung einer in x-Richtung gedffneten Para-

bel; der Parabolspiegel entsteht durch die Rotation dieser
Kurve um die x-Achse.

Spharische Spiegel

Aus den gleichen Griinden, aus denen man vorzugswei-
se sphérische Linsen anfertigt, stellt man auch sphari-
sche Spiegel her. Wir untersuchen zundchst die Lage des
Brennpunkts. In Abb. 6.32 ist der Zentralschnitt durch
eine Kugelflache gezeigt. Die Gleichung des Kreises ist
(x — R)? +y* = R%. Daraus folgt

x(y) :R:I:\/R2—y2:R(1:t\/1—y2/R2).

Fiir den spharischen Spiegel interessiert uns nur die Fla-
che in der Nédhe von x = 0. Dort gilt das Minuszeichen,

Abbildung 6.32 Zur Ableitung y
von (6.40)
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und wir kénnen /1 — y?/R? in eine Taylor-Reihe entwi-
ckeln. Fiir y < R erhélt man

2 4
2 4
x(y) = Je+ a5 +

Der Vergleich mit (6.39) zeigt, dass die Brennweite des
sphérischen Spiegels

(6.40)

ist. Die Abweichung der Kugelflache vom Paraboloid ist
fiir y < R ziemlich klein. Bei y = 0,1R ist x(y) — y*/2R ~
107°R.

Wie mit der sphérischen Linse kann man auch mit dem
sphérischen Spiegel einen rdumlich ausgedehnten Ge-
genstand in guter Qualitdt abbilden, wenn man sich auf
paraxiale Strahlen beschrankt. Fiir die Bildkonstruktion
kann man das einfache Verfahren nach Satz 6.5 anwen-
den, wobei der Spiegel durch eine ebene Flache ersetzt
wird. Sie entspricht der Linsenebene in Abb. 6.24. ,,Brenn-
strahl” und , Parallelstrahl” behalten ihre Bedeutung, der
,Mittelpunktsstrahl” ist hier durch einen Strahl durch das
Kugelzentrum zu ersetzen. Abbildung 6.33a zeigt ein Bei-
spiel.

Auch die Abbildungsgleichungen der diinnen Linse gel-
ten beim sphérischen Spiegel unverdndert. Man muss
nur bei der Vorzeichenkonvention eine Anderung vor-
nehmen: Die Bildweite b ist positiv zu rechnen, wenn
das Bild B, von der Richtung des einfallenden Lichts aus
gesehen, vor S liegt. In Abb. 6.33b liest man an den schraf-
fierten Dreiecken ab:

s—f_ f

¥ _g~f_ f

— 2
vl ~ f  b—f g=-Hb-f)=r.

(6.41)

Rechts steht die Newtonsche Abbildungsgleichung (6.28).
Wenn man die Klammern ausmultipliziert, erhédlt man die

Gaufische Abbildungsgleichung (6.21).

Liegt der Gegenstand innerhalb der Brennweite, ist g < f
und b wird negativ. Es entsteht ein vergrofsertes virtuelles
Bild, das hinter dem Spiegel liegt (Abb. 6.33c). — So viel
zur Theorie des Hohlspiegels. Es ist reizvoll, in der Praxis
auszuprobieren, was man in einem Hohlspiegel hinrei-
chend kurzer Brennweite sieht, von sich selbst und von
einem vor den Spiegel gehaltenen Bleistift. Notfalls kann
man auch einen blanken Léffel nehmen.
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Abbildung 6.33 Abbildung mit sphérischen Spiegeln: a Bildkonstruktion,
b zur Ableitung von (6.41). In a erhélt man ein reelles Bild, in c und d virtuelle
Bilder

Bei einem konvexen sphirischen Spiegel ist die Brenn-
weite negativ. Daher ist fiir ¢ > 0 stets b < 0 und |b| < f:
Es entsteht ein verkleinertes virtuelles Bild (Abb. 6.33d).
Auch das kann man mit dem blanken Loffel ausprobie-
ren.

6.4 Anwendungen

Strahlengang in einem optischen System, Apertur-
und Feldblende

In den vorigen Abschnitten haben wir , Konstruktions-
strahlen” betrachtet, mit deren Hilfe man das Bild eines
Gegenstands bei der optischen Abbildung konstruieren
kann. Wir wollen nun den tatsdchlichen Strahlengang
durch optische Systeme untersuchen. Aufler den abbil-
denden Elementen spielen dabei auch zwei Blenden eine



6.4 Anwendungen

opt. System

Abbildung 6.34 Optisches System mit Aperturblende (AB), Eintrittspupil-
le (EP) und Austrittspupille (AP). Die eingezeichneten Linsen stehen symbolisch
fir die optischen Elemente vor und hinter der Blende

wichtige Rolle. Die Aperturblende begrenzt das Strahlen-
biindel, das von einem auf der optischen Achse liegenden
Punkt G ausgeht und bei B die Bildebene erreicht. Die
Aperturblende bestimmt also den Strahlungsfluss durch
das optische System und damit die Bildhelligkeit.

Die zweite Blende ist die Feldblende, auch Gesichtsfeld-
blende genannt. Sie bestimmt, welcher Ausschnitt aus der
Gegenstandsebene bzw. aus dem Gegenstandsraum auf
der Bildebene abgebildet wird. Bei einem Fotoapparat ist
die Lage und die Funktionsweise beider Blenden offen-
sichtlich: Die Aperturblende ist die verstellbare Blende,
die man von vorn in das Objektiv hinein schauend sehen
kann, die Gesichtsfeldblende ist der direkt vor der Filme-
bene angebrachte Metallrahmen. Sind in einem optischen
System solche mechanischen Blenden nicht eingebaut,
gibt es trotzdem eine Apertur- und eine Feldblende: Dann
iibernimmt jeweils eine der Linsenfassungen diese Rol-
le. Wir betrachten nun die Wirkungsweise dieser Blenden
genauer. Dabei nehmen wir an, dass die Blenden kreisfor-
mig sind.

Aperturblende, Eintritts- und Austrittspupille. Das
Strahlenbiindel, das durch die Aperturblende begrenzt
wird, verlauft vor dem optischen System innerhalb ei-
nes kegelférmigen Bereichs. Wir nennen den halben Off-
nungswinkel des Kegels 1, und die auf dem Kegelman-
tel verlaufenden Strahlen die Randstrahlen (Abb. 6.34).
Die Randstrahlen streifen definitionsgemafs den Rand der
Aperturblende, nachdem sie die vor der Blende liegenden
Linsen durchlaufen haben. Betrachtet man die Apertur-
blende als Gegenstand, kann man das Bild konstruieren,
das diese Linsen von der Aperturblende entwerfen. Man
erhilt eine kreisformige Offnung, die direkt auf dem ein-
laufenden Strahlenkegel liegt (Umkehrbarkeit des Strah-
lengangs!). Man nennt dieses Bild der Aperturblende die
Eintrittspupille (EP). Bei manchen optischen Geriten,
z.B. bei Fernrohren, bildet die Fassung der vordersten
Linse die Aperturblende. Dann ist sie auch gleichzeitig
die EP. Sonst muss man Lage und Durchmesser der EP mit
der Abbildungsgleichung berechnen, um den Offnungs-
winkel des akzeptierten Strahlenkegels zu ermitteln.

Ebenso erhélt man den Strahlenkegel mit dem halben Off-
nungswinkel u’, der hinter dem optischen System zum
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Abbildung 6.35 a Strahlengang im optischen System von Abb. 6.30, mit ein-
gebauter Aperturblende AB, b Details zum Strahlengang von G nach B, ¢ Details
zum Strahlengang von G’ nach B’

Bildpunkt B lauft. Die Austrittspupille (AP) ist das Bild
der Aperturblende, das die hinter der Blende liegenden
Linsen entwerfen. Bei einem fiir visuelle Beobachtungen
bestimmten Geriét (z. B. beim Fernrohr oder beim Mikro-
skop) sollte die AP ca. 15mm hinter dem Gerét liegen und
etwa den Durchmesser der Pupille des Auges haben.

In Abb. 6.34 sind die Pupillen eingezeichnet. Es ist hier
angenommen, dass bei der Abbildung der Aperturblende
reelle Bilder entstehen. Haufig sind die Bilder der Blende
jedoch virtuell. Wie sich das auswirkt, diskutieren wir am
Beispiel des optischen Systems von Abb. 6.30. Wir neh-
men an, dass auf der Mitte zwischen den beiden Linsen
eine Aperturblende AB mit 2cm Durchmesser eingebaut
ist. Die Durchmesser der Linsen seien 4 cm (Abb. 6.35a).
Fiir die Abbildung der Blende durch L ist g = +10cm zu
setzen, die Abbildung erfolgt nach links. Mit f = +30cm

folgt
1 (1 1\, 1__ 20
v \30 10/)™ T 30 -
1
, b 15

Das Bild EP der Aperturblende ist virtuell und liegt 15cm
rechts von L1, der Durchmesser ist 1,5 - 2cm = 3 cm. Auf

1,5.
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diese Eintrittspupille sind vor der Linse L; die Rand-
strahlen des von G ausgehenden Strahlenkegels gerichtet.
Auch die Austrittspupille AP entsteht hier als virtuelles
Bild der Blende: Mit ¢ = 10cm, f = —30 cm erhdlt man

(1 1y 1_ 40
b "3 10/ T 30 -
Mg b _ 75

:—7 =
b 5cm, 2 10

=0,75.

Die Austrittspupille liegt 7,5 cm links von Ly; ihr Durch-
messer ist 1,5 cm. Der Rand der AP liegt auf der Verlange-
rung der Randstrahlen des Strahlenbiindels zwischen L;
und B. Damit ist der Strahlengang fiir den auf der opti-
schen Achse liegenden Punkt G festgelegt. Zwischen den
Linsen L1 und L, verlaufen die Strahlen geradlinig. Sie be-
rithren dabei zwangslaufig den Rand der Aperturblende.
Da in Abb. 6.35a der Strahlenverlauf zwischen den Linsen
nicht gut zu erkennen ist, ist dieser Bereich in Abb. 6.35b
noch einmal vergrofert dargestellt.

Fiir die Konstruktion des Strahlengangs, der von einem
nicht auf der optischen Achse liegenden Punkt G’ zum
Bildpunkt B fiihrt, zeichnet man zunéchst den Haupt-
strahl. Das ist der Strahl, der von G’ aus auf den Mittel-
punkt der EP gerichtet ist (Strahl (1) in Abb. 6.35c). Er
muss innerhalb des optischen Systems durch das Zen-
trum der Aperturblende laufen, denn das Zentrum der EP
ist ja das von L; entworfene virtuelle Bild dieses Punkts.
Ganz entsprechend scheint hinter dem Linsensystem der
Hauptstrahl, von B’ aus gesehen, vom Zentrum der AP
herzukommen (Strahl (2) in Abb. 6.35c). Auf die gleiche
Weise kann man auch die Randstrahlen des von G’ nach
B’ fithrenden Strahlenbiindels konstruieren. Nun muss
man priifen, ob diese Randstrahlen auch durch alle Lin-
sen des Systems hindurchkommen. In Abb. 6.35 ist das
der Fall. Ware jedoch der Durchmesser von L; 3 cm statt
4 cm, wiirde das Strahlenbiindel beschnitten werden. Die-
ser Abschattung oder Vignetierung genannte Effekt fiihrt
zu einer Abnahme der Helligkeit am Bildrand.

Manchmal ist nicht offensichtlich, welches Bauelement in
einem optischen System die Aperturblende bildet. Dann
muss man rechnerisch ausprobieren, welches Bauelement
die stérkste Einschrankung fiir den Offnungswinkel u lie-
fert: Das ist dann die Aperturblende. Wie das funktioniert,
zeigt Abb. 6.36. Die mechanische Blende von Abb. 6.35 ist
herausgenommen. Als Aperturblende kommen jetzt nur
die Fassungen von L; und Ly in Betracht. Wére die Fas-
sung von L die Blende, so wire sie auch zugleich die EP.
Wire die Fassung von L; die Blende, dann wére die EP
das von L; entworfene Bild von L;. Es ist in Abb. 6.36a
eingezeichnet (g = 20cm, b = —60cm, gemessen ab L,
Mt = 3). Wie man sieht, ist fiir die von G ausgehenden
Strahlen die Fassung von L; die Aperturblende und zu-
gleich die EP. Die in Abb. 6.36 ebenfalls eingezeichnete AP
ist das von L, entworfene Bild der Fassung von L;. — Lage
allerdings die Gegenstandsebene rechts des Punktes xp in
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Abbildung 6.36 a Strahlengang im optischen System von Abb. 6.30, ohne
Einbau einer Blende. b Details zum Strahlengang von G nach B, ¢ Details zum
Strahlengang von G’ nach B’

Abb. 6.36a, wiirde die Fassung von L, die Rolle der Aper-
turblende iibernehmen.

Die Aperturblende hat noch eine zweite wichtige Funk-
tion. Sie stellt die Offnung dar, an der die Beugung des
Lichts erfolgt, durch die letztlich die Scharfe der Ab-
bildung begrenzt wird. Wie wir in Abschn. 8.2 sehen
werden, entsteht bei der Abbildung eines Punktes mit ei-
ner Linse in der Bildebene nicht ein Punkt, sondern ein
Beugungsscheibchen. Sein Radius ist

bA

p=127, (6.42)

b ist die Bildweite®, D der Durchmesser der Aperturblen-
de und A die Wellenldnge des Lichts; der Faktor 1,22 ergibt
sich aus der Lage der ersten Nullstelle der Besselfunktion
J1. Wie sich das auf die Eigenschaften der optischen In-
strumente auswirkt, werden wir weiter unten besprechen.

8 Bei Linsensystemen ist b gleich dem Abstand zwischen der Aus-
trittspupille und der Bildebene zu setzen.
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Die Feldblende. Sie begrenzt das Biindel der Haupt-
strahlen, die von achsenfernen Punkten ausgehend zur
Abbildung gelangen. Wenn keine besondere Feldblende
im optischen System eingebaut ist, iibernimmt eine der
Linsenfassungen diese Rolle. Man begrenzt das Gesichts-
feld nicht nur, um uninteressante Objekte von der Ab-
bildung auszuschlieflen, sondern auch, um Strahlen mit
iberméafligen Abbildungsfehlern zu unterdriicken und
um die Vignetierung in Grenzen zu halten.

Soll das Gesichtsfeld scharf begrenzt erscheinen, muss
die Feldblende in der Bildebene liegen, wie z.B. beim
Fotoapparat, oder auf diese Ebene scharf abgebildet wer-
den. Die Feldblende definiert im Gegenstandsraum einen
Kegel mit dem Offnungswinkel 2w, genannt Gesichts-
feldwinkel. Man ermittelt ihn, indem man das Bild der
Feldblende berechnet, das die gegenstandsseitig vor der
Feldblende liegenden Linsen von der Feldblende entwer-
fen. Dieses Bild nennt man auch Eintrittsluke. Damit
haben wir alles beisammen, was fiir den Strahlengang in
einem optischen Instrument wichtig ist.

Das Auge

In Abb. 6.37 ist das menschliche Auge im Schnitt sche-
matisch dargestellt. Das optische System des Auges er-
zeugt ein umgekehrtes, reelles Bild der Aufsenwelt auf
der Netzhaut, auf der sich die lichtempfindlichen Zapf-
chen und Stdbchen befinden, die schon bei Abb. 3.22
erwdhnt wurden. Hinter der Netzhaut liegt die Aderhaut
(Choroid), die die Zapfchen und Stdbchen mit Blut ver-
sorgt. Sie enthdlt ein dunkles Pigment, das das von der
Netzhaut durchgelassene Licht absorbiert, vergleichbar
mit der schwarzen Farbe im Inneren eines Fotoapparats.’
Die Lichtbrechung findet hauptsdchlich an der Grenz-
flache Luft-Hornhaut statt, denn die Brechungsindizes
der tibrigen Komponenten des Auges unterscheiden sich
nur wenig voneinander. Die Hauptebenen des optischen
Systems liegen kurz hinter dem Scheitelpunkt der Horn-
haut. Sie haben voneinander nur einen Abstand von ca.
0,25 mm. Man kann daher die abbildenden Elemente des
Auges ndherungsweise als eine diinne Linse betrachten,
deren optisches Zentrum dicht hinter dem Scheitelpunkt
der Hornhaut liegt. Da sich vor und hinter der Hornhaut
nicht das gleiche Medium befindet, sind die gegenstands-
und die bildseitige Brennweite voneinander verschieden:

Es ist fg(A> = 16 mm, fb(A> = 24mm. Das Auge ist drehbar
um einen Punkt, der 13,5mm hinter dem Hornhautschei-
tel liegt.

9 Bei Tieren, die auf nichtlichen Beutefang angewiesen sind, sind in
dieser Schicht statt des dunklen Pigments reflektierende zinkhaltige
Kristdllchen eingelagert, so dass das Licht zweimal durch die Netz-
haut lduft. Dadurch wird die Empfindlichkeit des Auges erhtht. Das
dann noch tibrigbleibende Licht verursacht die gelb-griine Reflexion
des Scheinwerferlichts aus den Augen der Katze am Straflenrand.

fg =16mm —+—— f;=24mm —

Abbildung 6.37 Das Auge. L: Augenlinse, H: Hornhaut, K: Kammerwasser,
I: Iris, C: Ciliarmuskel, G: Glaskérper (eine gallertartige Masse), LH: Lederhaut,
A: Aderhaut, N: Netzhaut (Retina), S: Sehnerv

Ciliarmuskel

Glaskérper
n=1,337

Kammerwasser

n=1,336
n=1,406

n=1,386

Abbildung 6.38 Struktur der Augenlinse

Wenn der ringformige Ciliarmuskel entspannt ist, wird
die Augenlinse in radialer Richtung gestreckt und flach
gezogen, wie in der Abbildung gezeigt ist. Beim ent-
spanntem, ,normalsichtigen” Auge wird dann ein unend-
lich ferner Gegenstand (g > 5m) auf die Netzhaut scharf
abgebildet. Wenn sich der Ciliarmuskel kontrahiert, kann
sich die Augenlinse aufgrund ihrer Elastizitdt zusammen-
ziehen. Durch diesen Akkomodation genannten Vorgang
verringert sich die Brennweite des optischen Systems. Bei
der maximalen Kontraktion ist f, ~ 20mm; damit kann
ein Gegenstand, der sich im Nahpunkt ca. 10 cm vor dem
Auge befindet, noch scharf auf die Netzhaut abgebildet
werden. Das erfordert jedoch betrachtliche Anstrengung.
Ohne Ermiidung kann man auf gg = 25 cm akkommodie-
ren. Dieser Abstand wird in der Optik als die deutliche
Sehweite bezeichnet. Vor der Augenlinse befindet sich die
Iris. Sie bildet die Aperturblende des Auges und enthalt
eine ringférmige und eine radialwirkende Muskulatur.
Dadurch kann die Offnung von 2mm Durchmesser bei
grofier Helligkeit bis auf 8 mm bei Dunkelheit variiert
werden.

Bei der Akkomodation wird die sehr spezielle Konstruk-
tion der Augenlinse ausgenutzt (Abb. 6.38). Durch die
zwiebelartige Struktur der Linse entsteht die Kombina-
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tion einer Bikonvexlinse mit einer Gradientenlinse (vgl.
Abb. 6.12). Erst dadurch erhilt die Augenlinse die erfor-
derliche Brechkraft. Im Ubrigen ist das Auge, als optisches
Instrument betrachtet, relativ einfach konstruiert. Das
sehr gute Bild von der Auienwelt, das wir wahrnehmen,
entsteht erst durch einen komplexen Bildverarbeitungs-
prozess, der bereits in der Netzhaut mit Kontrastverstar-
kung und Bewegungsmeldung auf neuronaler Grundlage
beginnt und der im Sehzentrum des Gehirns seinen Ab-
schluss findet. Insbesondere ist das raumliche Bild der
Aufienwelt ein Produkt dieser zerebralen Bildverarbei-
tung. Das beidaugige Sehen spielt dabei nur bis ca. 50m
eine Rolle.!”

Ist die Abbildung im Auge beugungsbegrenzt? Ja und
Nein. Bei Leuten mit sehr guten Augen sind die Abbil-
dungsfehler so klein, dass das Bild einer Punktquelle auf
der Netzhaut durch das Beugungsscheibchen dominiert
wird. Es hat bei einer Pupille von 3mm & nach (6.42)
einen Radius p ~ 3 pm. Wo die optische Achse des Auges
auf die Netzhaut trifft, befindet sich eine Region mit be-
sonders hoher Zapfchendichte, die ,fovea centralis”. Die
Zapfchen haben dort voneinander einen Abstand von ca.
3 um! Es ist erstaunlich, dass die Evolution eine so gute
Anpassung an das optimale Auge zustande gebracht hat.
Moglicherweise war damals infolge des Evolutionsdrucks
die Fehlsichtigkeit noch nicht so verbreitet wie heutzuta-

ge.

Kurzsichtigkeit. Beim kurzsichtigen Auge wird ein weit
entfernter Punkt nicht auf, sondern vor der Netzhaut
scharf abgebildet (Abb. 6.39a). Das kann daran liegen,
dass der Augapfel zu lang ist, oder dass die Kriim-
mung der Hornhaut nicht stimmt. Bei entspanntem Auge
erreicht das Bild die Netzhaut erst mit der Gegenstands-
weite g1 (Abb. 6.39b). Zur Korrektur setzt man im Ab-
stand d vor das Auge eine Zerstreuungslinse mit der
Brennweite f(') = —(g; — d) (Abb. 6.39¢). Sie erzeugt vom
unendlich fernen Gegenstand ein virtuelles Bild, das das
kurzsichtige Auge nun scharf sehen kann.

Weitsichtigkeit. Hier liegt bei entspanntem Auge das
Bild des unendlich fernen Punkts hinter der Netzhaut.
Dieses Manko kann eventuell noch durch Akkomodati-
on ausgeglichen werden. Wenn sich aber der Gegenstand

10 Man erkennt das, indem man iiber einen markanten Gegenstand
in der Entfernung L einen sehr weit entfernten Gegenstand anvi-
siert, und mal das rechte, mal das linke Auge abdeckt. Solange
L <50m ist, sieht man zwei unterschiedliche Bilder. Die zerebra-
le Bildverarbeitung macht aus dieser Information ein Bild und eine
Entfernungsschitzung. Bei grofleren Entfernungen beruht die Ent-
fernungsschéatzung allein auf der zerebralen Mustererkennung und
darauf, dass man weifs (oder zu wissen glaubt), wie grof$ die Ge-
genstdnde sind. Dabei wird der Winkel, unter dem der Gegenstand
erscheint, ausgewertet. Dieses Verfahren wird schon im Nahbereich
eingesetzt und mit dem beiddugigen Sehen kombiniert.
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Abbildung 6.39 Zur Fehlsichtigkeit und zu ihrer Korrektur. a—c: Kurzsichtig-
keit, d—f: Weitsichtigkeit

in der deutlichen Sehweite gy = 25cm befindet, gelingt
dies auch bei starker Kontraktion des Ciliarmuskels nicht
mehr (Abb. 6.39d). Die Augenlinse kann erst einen Gegen-
stand im Abstand g, scharf abbilden (Abb. 6.39). Abhilfe
schafft eine Sammellinse, die von dem Objekt bei g¢ ein
virtuelles Bild im Abstand g, erzeugt (Abb. 6.39f). Die
Brennweite dieser Linse erhédlt man mit (6.21):

1 1 1 (g2 —d)(go—4d)
- (L) 82 8
N AL ERLAT- L St
go—d g —d f 82— &0

70

Mit zunehmendem Alter nimmt die Elastizitdt der Au-
genlinse und damit die Akkommodationsfdhigkeit ab.
Dann braucht auch der Normalsichtige eine Lesebrille.
Der Kurzsichtige kann sich gewo6hnlich mit dem Abneh-
men der Brille behelfen.

Astigmatismus. Diese Form der Fehlsichtigkeit liegt vor,
wenn die Hornhaut des Auges nicht rotationssymme-
trisch ist. In vielen Fillen kann man hier mit einer zylin-

drisch geschliffenen Brille Abhilfe schaffen.
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L /\

Abbildung 6.40 Korrekte Position der Brille

Brillen und Kontaktlinsen. Die Aufgabe der Brille ist
es, das Bild der Auflenwelt auf die Netzhaut zu bringen,
ohne die Brennweite des visuellen Systems zu verdn-
dern. Sonst wiirde sich nach (6.26) auch der Abbildungs-
mafistab dndern, und das sollte man nach Moglichkeit
vermeiden, besonders bei Personen mit ungleichen Au-

gen. Deshalb wird das Brillenglas moglichst im gegen-

standsseitigen Brennpunkt FéA) vor das Auge gesetzt (d ~

16 mm): Nach (6.36) ist dann die Brennweite des aus zwei
Linsen bestehenden Systems

1 1 d 1

1

7@ TR T
wenn d = f(4) ist. Dass sich dann die GréRe des Bildes auf
der Netzhaut nicht andert, sieht man mit Abb. 6.40 auch
direkt ein: Sie ist durch den dort gezeichneten Strahl gege-
ben. Dieser Strahl wird durch eine vor das Auge gesetzte
Linse nicht beeinflusst, wenn deren optisches Zentrum

= (6.43)

in FéA) liegt. Bei Kontaktlinsen ist das natiirlich anders:
Hier ist d = 0 und die resultierende Brechkraft ist P =
P@ 4 PL) Brennweite und Abbildungsmafstab andern
sich dementsprechend. Besonders bei Personen mit un-
gleichen Augen kann das zu Problemen fiihren, weil sich
dann die zerebrale Bildverarbeitung umstellen muss. Das
ist mit einer gewissen Eingewthnungszeit und oft auch
mit Kopfschmerzen verbunden.

Optische Instrumente

Fotoapparat. Die grofSe Erfindung bei der Fotografie war
nicht der Fotoapparat, sondern die Fotoplatte, mit der
aufgrund einer photochemischen Reaktion ein Bild dau-
erhaft festgehalten werden kann. Ein guter Fotoapparat
ist dennoch ein technisches Meisterwerk: ein Objektiv, das
fir betrachtliche Gesichtsfeldwinkel und auch fiir achsen-
ferne Strahlen ein sauber korrigiertes Bild erzeugt, und
eine Mechanik, die die Blende und die Belichtungszei-
ten mit hoher Prézision einzustellen bzw. elektronisch
zu steuern gestattet. Ein Beispiel fiir ein leistungsfdhiges
Kamera-Objektiv wurde schon in Abb. 6.17 gezeigt. Das
Prinzip des Fotoapparats ist denkbar einfach (Abb. 6.41):
Mit einer Objektivlinse wird der Gegenstand auf die Fil-
mebene abgebildet.

Abbildung 6.41 Prinzip des a
Fotoapparats. a Abbildung ei-
nes unendlich weit entfernten
Punktes, b Gesichtsfeldwinkel

F,

—

Feldblende

2w

wl

b—s—o

Feldblende

Beim Fotoapparat kommt es offensichtlich auf die Be-
strahlungsstirke in der Bildebene an, gemessen in
W/cm?. Wie hiangt diese GroBe von den Eigenschaften
der Kamera ab? Nehmen wir an, der Gegenstand sei eine
leuchtende Fldche, die sich im Abstand g vor der Ka-
mera befindet. Der Strahlungsfluss d®e, der von einem
Flachenelement dA, ausgehend durch die Aperturblen-
de der Kamera tritt, ist proportional zu (D?/g?%) dAg ~
(D?/ xé) dAg, wenn D der Durchmesser der Eintrittspupil-
le ist. Im zugehdrigen Flachenelement dA; der Bildebene
ist dann die Beleuchtungsstarke

DZ xé DZ

do. D?dA; D2 _
x§ f2 f2 ’

Ee = X — =
2 2A 12
dAb Xg dAb ngT

Dabei wurde von (6.26) Gebrauch gemacht. Man definiert
das

Offnungsverhiltnis = D/f . (6.44)

Diese Grofse ist beim Fotoapparat und bei allen anderen
Flachen abbildenden optischen Instrumenten mafigeblich
fiir die Bildhelligkeit.!! Oft benutzt man auch den Kehr-
wert, die

Blendenzahl = f /D . (6.45)

Bei einem Fotoapparat mit einer von Hand verstellba-
ren Aperturblende findet man auf dem Blendenring die

11 Nicht so beim Fernrohr, wenn dieses einen Punkt, z. B. einen Fix-
stern abbildet! (Aufgabe 6.11Db).
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Abbildung 6.42 Die Lupe. a Sehwinkel ohne Lupe. b Strahlengang durch die
Lupe. Gestrichelt: Extrapolierte Strahlen zum virtuellen Bild

Blendenzahlen angegeben: 1, 1.4, 2, 2.8, 4, 5.6, 8, ... Sie
sind abgestuft im Verhaltnis 1: v/2. Wenn man von ei-
ner Blendenzahl zur ndchst hoheren gehen und dabei die
Belichtung konstant halten will, muss man die Belich-
tungszeit verdoppeln. Eine Veranderung der Blendenzahl
kann fiir die Praxis durchaus von Interesse sein, denn
auch die Schérfentiefe, d.h. der Entfernungsbereich, in
dem die Gegenstdnde noch ausreichend scharf auf die
Filmebene abgebildet werden, hiangt vom Offnungsver-
héltnis ab: grofse Blendenzahl — grofie Schérfentiefe. Bei
der Kamera in Abb. 6.41 ist f /D = 4, sie ist eingestellt auf
,Blende 4”.

Den Gesichtsfeldwinkel der Kamera ermittelt man folgen-
dermafien: Feldblende ist der Metallrahmen unmittelbar
vor dem Film. Bei auf unendlich eingestellter Kamera liegt
der Film in der Brennebene des Objektivs. Also liegt die
Eintrittsluke im Unendlichen. Wie Abb. 6.41b zeigt, er-
scheint sie unter dem Winkel 2w mit
tanw = tanw’ =a/2f ; (6.46)
a ist die Diagonale der Feldblende. Beim Kleinbildformat
ist 2 = 43 mm; das Normalobjektiv hat eine Brennweite
f &~ 50mm. Also ist der Offnungswinkel 2w ~ 46°. Bei ei-
nem Weitwinkelobjektiv mit f = 36 mm ist 2w = 62°, und
bei einem Teleobjektiv mit f > 80 mm wird 2w < 30°. Das
,Kochtopfgewehr”, mit dem der Tierfotograf auf die Jagd
geht, hat ein Teleobjektiv mit f ~ 1m. Dann ist der Ge-
sichtsfeldwinkel nur noch 2w ~ 2,5°. Um ein brauchbares
Offnungsverhiltnis zu erhalten, benétigt man nun ein Ob-

jektiv mit den Abmessungen eines Kochtopfs — ein teurer
Spas.

Lupe. Wie grofs ein Gegenstand auf der Netzhaut abge-
bildet wird, hiangt von dem Winkel ab, unter dem wir
ihn sehen. Man kann diesen Winkel vergrofiern, indem
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man den Gegenstand nédher ans Auge bringt. Dem sind
jedoch natiirliche Grenzen gesetzt, wie wir gerade gese-
hen haben. Auf die Dauer kann man einen Gegenstand
nur in der deutlichen Sehweite betrachten (Abb. 6.42a).
Abhilfe schafft eine Lupe, eine Sammellinse, die vor das
Auge gebracht wird. Hélt man den Gegenstand so, dass
er innerhalb der Brennweite der Lupe liegt, sieht man ein
vergrofiertes virtuelles Bild, das in einen angenehmen Ab-
stand gebracht werden kann (Abb. 6.42b). Man definiert
die Vergrofierung als das Verhiltnis der Sehwinkel mit
und ohne Instrument:

o
r=—2,

- (6.47)

wobei a, stets auf die deutliche Sehweite gy = 25 cm be-
zogen wird. (Der Begriff , Vergroflerung” ist nicht mit
dem in (6.23) definierten Begriff , Abbildungsmafistab”
verwechseln!). Ist y, die Grofie des Gegenstands, y; d1e
Bildgrofle, erhdlt man mit Abb. 6.42 und (6.26) in Klein-
winkelndherung

80 _ 8of+1b|
a+|b| a+|b| fa+|bl’

denn es ist M = —xp/f und x, =b —f = —(|b] 4 f). Ge-
wohnlich hélt man die Lupe so, dass der Gegenstand in
der Brennebene liegt. Dann kann man mit entspanntem
Auge durch die Lupe sehen. Es strebt |b| — co und wir
erhalten

(6.48)

80
Ir=¢<-. 6.49
f (6.49)

Nun ist die Vergroflerung unabhéngig vom Abstand a. Va-
riiert man 4, dndert sich lediglich das Gesichtsfeld, aber
der Winkel &,, bleibt konstant, ein verbliiffender Effekt!

Mikroskop. Eine starkere Vergroflerung als mit der Lu-
pe erreicht man mit dem Mikroskop. Das Prinzip ist in
Abb. 6.43 gezeigt. Das Objektiv erzeugt ein vergrofier-
tes, reelles Bild des Gegenstands, der sich dicht vor dem
gegenstandsseitigen Brennpunkt des Objektivs befindet.
Dieses Zwischenbild wird dann durch eine Lupe betrach-
tet. Man erkennt sogleich ein Problem: Der Durchmesser
der Lupe sollte der Grole des Auges angepasst sein, da-
mit man das Auge dicht an das Mikroskop heranbringen
kann. Die Strahlen, die in Abb. 6.43 zur Pfeilspitze des
Zwischenbildes fiihren, treffen nicht mehr die Lupe. Ab-
hilfe schafft eine zusédtzliche Linse, die gestrichelt einge-
zeichnete Feldlinse. Sie bildet das Objektiv auf die Lupe
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Abbildung 6.43 Prinzip des Mikroskops. Ausgezogene Linie: Strahlengang
ohne Feldlinse, gestrichelt: mit Feldlinse

ab. Alle Strahlen, die vom Objektiv kommend das Zwi-
schenbild erreichen, treffen nun auch die Lupe. Aufgrund
ihrer Lage in der Ebene des Zwischenbildes beeinflusst
die Feldlinse im Ubrigen nicht den Strahlengang der opti-
schen Abbildung.

Die Lupe, hier auch die Augenlinse genannt, und die
Feldlinse bilden zusammen das Okular des Mikroskops.
In der Praxis ist es unzweckméfig, die Feldlinse in der
Ebene des Zwischenbildes anzubringen: Dann wird jeder
Kratzer und jedes Stdubchen auf der Feldlinse scharf ge-
sehen. Vor allem mochte man dort auch die Feldblende
und ein Okularmikrometer oder ein Fadenkreuz anbrin-
gen konnen. Auflerdem hat das Okular in Abb. 6.43 den
Nachteil, dass die Austrittspupille in der Ebene der Lupe
liegt. Man mochte sie aber an eine fiir die visuelle Be-
obachtung giinstige Stelle bringen, ndmlich in die Nédhe
des Augen-Drehpunkts. Dann kann man ohne Kopfbe-
wegung das Gesichtsfeld durchmustern und die jeweils
interessante Struktur auf die fovea centralis abbilden. Es
gibt fiir die Konstruktion des Okulars eine Vielzahl von

Feldblende AP
/

4

Abbildung 6.44 Ramsden-Okular. Gewéhnlichist f; = £, und d = 2f; /3

:

N/

Moglichkeiten; eine einfache Version ist das in Abb. 6.44
gezeigte Ramsden-Okular. Es besteht aus zwei Plankon-
vexlinsen gleicher Brennweite (f; = f»).

Objektiv und Okular sind durch ein Rohr, den Tubus,
starr miteinander verbunden. Als Tubusldnge L bezeich-
net man den Abstand zwischen der bildseitigen Brenn-
ebene des Objektivs und der gegenstandsseitigen Brenn-
ebene des Okulars. Sie betragt gewohnlich L = 160 mm.
Zum Mikroskopieren verschiebt man den Tubus mit einer
Réndelschraube solange, bis man mit entspanntem Auge
ein scharfes Bild sieht. Ist M1; der Abbildungsmafistab
des Objektivs, I, die Vergroflerung des Okulars, ist die
GesamtvergroBlerung des Mikroskops

160 - 2
_ 160-250 ¢ 50

I'=|Mnl| I~ h

L g
At

wobei fi die Brennweite des Objektivs, f, die des Okulars
ist, hier beide gemessen in Millimetern.

Besondere Kunst erfordert die Konstruktion des Objek-
tivs. Hier kommt es darauf an, bei minimalen Abbil-
dungsfehlern einen moglichst grofen Offnungswinkel auf
der Gegenstandsseite zu erreichen. Dieser Winkel ist fiir
die Helligkeit des Bildes und vor allem fiir das Auf-
losungsvermogen des Mikroskops mafigeblich. Wie wir
gleich sehen werden, kommt es hier auf eine moglichst
grofie numerische Apertur nsinu an. n ist der Brechungs-
index des Mediums vor der Objektivlinse, u der Off-
nungswinkel des Strahlenkegels, der durch die Eintritts-
pupille begrenzt wird. Will man eine moglichst starke Ver-
grofierung erreichen (was keineswegs immer der Fall ist),
verwendet man ein Immersionsobjektiv. Zwischen das
Deckglas, mit dem das Objekt (z.B. ein Gewebeschnitt)
abgedeckt ist, und das Objektiv wird ein Tropfen Immer-
sionsdl gebracht, das den gleichen Brechungsindex hat
wie Deckglas und Objektivlinse. Dadurch vermeidet man
Reflexionsverluste und erhalt einen Offnungswinkel, der
nicht durch Totalreflexion begrenzt ist (Abb. 6.45). Aufer-
dem kommt der Brechungsindex des Ols der numerischen
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Abbildung 6.45 Immersions-
objektiv
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M/}
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Apertur zugute.!> Zur Berechnung des Auflosungsver-
mogens nehmen wir an, vor dem Mikroskop befinden
sich zwei leuchtende Punkte, einer auf der optischen Ach-
se, einer im Abstand y daneben. Sie werden nach (6.42)
als Beugungsscheibchen mit dem Radius p = 1,22Ab/D in
der Zwischenbildebene abgebildet. Die Mittelpunkte der
Scheibchen haben voneinander den Abstand y'. Dass es
sich um zwei Objektpunkte handelt, kann man erkennen,
solange A

Y 2 Yin = p = 1275
ist (,,Rayleighsches Kriterium”). Ein gutes Objektiv erfiillt
die sogenannte Sinusbedingung.'®* Mit den Bezeichnun-
gen von Abb. 6.43 erhélt man

(6.51)

nysinu = n'y’ sinu’ ~y'u’ = y/z% . (6.52)

n und n’ sind die Brechungsindizes vor und hinter dem
Objektiv. Hier ist also n' =1 zu setzen. Fiir das Auf-
I6sungsvermogen erhalten wir mit der Sinusbedingung
und dem Rayleigh-Kriterium

Ymin D _ -
nsinu 2b " nsinu

Ve, = (6.53)

12Das in Abb. 6.45 gezeigte Immersionsobjektiv enthilt noch eine
besondere Raffinesse: Wie schon Huygens herausgefunden hat, ist
die Kugel eine kartesische Flache fiir die Abbildung des Punkts P
auf den virtuellen Bildpunkt P/, wenn MP = R/n und MP’ = nR ist.
Dieser Umstand wird in L und L, gleich zweimal ausgenutzt. Da-
durch wird der Offnungswinkel ohne sphérische Aberration soweit
reduziert, dass die weitere Korrektur kein Problem mehr ist.

13 Wenn bei einem optischen System die sphérische Aberration kor-
rigiert ist, werden die auf der optischen Achse liegenden Punkte
exakt auf den paraxialen Bildpunkt abgebildet, wie grof$ auch im-
mer der Offnungswinkel u sein mag. Abbe und unabhéngig von ihm
Helmholtz haben gezeigt, dass dies auch fiir achsennahe Punkte gilt,
wenn zusitzlich die Sinusbedingung nysinu = n'y’ sinu’ erfiillt ist.
Insbesondere wird dadurch die sonst sehr lastige Koma eliminiert.
Néheres dazu z. B. bei Max Born, Optik, § 28, Springer-Verlag (1932
und 1986).
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Mit einem Immersionsobjektiv kann man nsinu = 1,35
erreichen. Man sollte also nach dieser, auf Helmholtz
zuriickgehenden Uberlegung mit dem Mikroskop noch
Strukturen bis zu ymin ~ 0,4A erkennen konnen. Wir wer-
den auf diese Frage in Abschn. 8.4 und Abschn. 9.3 noch
einmal zurtickkommen.

Konfokales Laser-Mikroskop. Die eben besprochene
klassische Mikroskopie bildet nur eine Objektebene scharf
ab, Gebiete davor und dahinter tiberlappen und erschei-
nen verschwommen. Fiir die Untersuchung biologischer
Objekte miissen deshalb meist diinne Schnitte angefertigt
werden. Mit einem konfokalen Laser-Scan-Mikroskop
(CLSM, ,Confocal Laser Scanning Microscope”) lassen
sich heutzutage drei-dimensionale Bilder gewinnen. Das
Verfahren unterscheidet sich wesentlich von der klassi-
schen Mikroskopie:

1. Im Objekt wird kurzzeitig immer nur ein kleines Vo-
lumen von der Grole der Auflosung beleuchtet, und
dieses wird auch nur beobachtet.

2. Das Anregungsvolumen im Objekt wird, im Allgemei-
nen mit Hilfe von Spiegeln, sukzessive in allen drei
Raumrichtungen verschoben (,,Scanning”), was hinter-
her eine 3-dimensionale Bildrekonstruktion und das
Anfertigen beliebiger Bildschnitte mit einem Compu-
ter erlaubt.

3. Meist werden in das Objekt, gezielt an bestimmten
Stellen, fluoreszierende Farbstoffe eingebracht. Diese
markieren die Struktur des Objektes. Die Farbstoff-
molekiile werden angeregt und emittieren Fluores-
zenzlicht, aus dem das Bild rekonstruiert wird. Das
Fluoreszenzlicht ist langwelliger als das zur Anregung
benutzte, sodass man es zur Beobachtung mit Filtern
abtrennen kann.

4. Um fir jeden Rasterpunkt eine ausreichende Lichtin-
tensitdt zu erreichen, wird zur Beleuchtung ein Laser
eingesetzt (,Laser Scanning”).

5. Die Beleuchtung des Objekts und die Sammlung des
Fluoreszenzlichts erfolgen durch das gleiche Objektiv.

6. Zur Eingrenzung des beleuchteten Volumenelements
gibt es im Beleuchtungsstrahlengang eine kleine
Blende (,,Beleuchtungsblende”, englische Bezeichnung
,pinhole”), auf die das Laserlicht fokussiert wird. Die-
se Blende wird durch optische Komponenten des Sys-
tems in das Objekt abgebildet. Der minimal méogliche
Radius des Blendenbildes entspricht der oben erwahn-
ten Auflosung.

7. Dieses Blendenbild im Objekt wird durch das Objektiv
und weitere Linsen in einer Zwischenbildebene abge-
bildet, in der sich wiederum eine Blende befindet, die
das Fluoreszenzlicht auf seinem Weg zum Detektor
passieren muss, die , Detektionsblende”. Die Detek-
tionsblende und die Beleuchtungsblende liegen also
konfokal zueinander (,,Confocal Laser Scanning Mi-
croscope”).

Der Aufbau eines CLSM ist in Abb. 6.46 schematisch
dargestellt. Zur Vereinfachung ist nur ein Scan-Spiegel
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Abbildung 6.46 Aufbau eines konfokalen Laser-Scan-Mikroskops. BI: Be-
leuchtungsblende (oder Ende einer Lichtleiterfaser), Sd: dichroitischer Spiegel,
Sc: Scanspiegel, D: Detektionsblende, T: telemetrisches Linsensystem, O: Objek-
tiv, P: Objekt. Gestrichelt: Strahlengang fiir gedrehte Position des Scanspiegels

eingezeichnet. Der dichroitische Spiegel, ausgestattet mit
einer Spezialbeschichtung, reflektiert das Laserlicht zum
Scan-Spiegel, wahrend er das Fluoreszenzlicht durch-
lasst. Wie man sieht, befinden sich zwischen Objektiv
und Zwischenbildebene mehrere Linsen. Die ersten bei-
den hinter dem Objektiv stellen ein telemetrisches Sys-
tem dar. Parallel gebiindeltes Licht, das in dieses System
eintritt, tritt parallel gebiindelt wieder aus. Das Linsen-
paar bildet einen Scan-Spiegel auf die Eintrittspupille des
Objektivs ab. Deshalb muss ein Lichtbiindel, das von ei-
nem beliebigen Punkt des Objekts startet, nach seiner
Begrenzung durch die Eintrittspupille immer vollstan-
dig auf dem Scan-Spiegel landen (gestrichelte Linien in
Abb. 6.46). Man mache sich klar, dass eine Verdrehung
des Scan-Spiegels, obwohl sie den Lichtweg vom Spiegel
bis zum Objekt und zurtick verdndert, auf dem Lichtweg
zur Detektionsblende allenfalls kleine Parallelverschie-
bungen von Lichtstrahlen hervorruft. Der Fokus an der
Detektionsblende wird daher beim Scannen nicht seitlich
verschoben.

Wegen der Divergenz des Lichts im Anregungsvolumen
werden Partien davor und dahinter schwécher beleuch-
tet. Das von diesen Stellen ausgesandte Fluoreszenzlicht
ist auflerdem in der Zwischenbildebene wegen der un-
schérferen optischen Abbildung iiber eine grofiere Flache
verteilt als dasjenige aus dem Anregungsvolumen. Die
Detektionsblende unterdriickt daher Fluoreszenzlicht aus
den unerwiinschten Zonen des Objekts, was die Raste-
rung in axialer Richtung und somit die drei-dimensionale
Darstellung ermdoglicht.

Um Rauschen im Bild zu minimieren, sind eine unter-
grundfreie Umsetzung des detektierten Lichts in elektri-
sche Signale und deren rauscharme Verstarkung erforder-
lich. Hierzu dienen Photomultiplier (Bd. III, Abb. 9.21)
oder Avalanche-Photodioden. Letztere unterscheiden sich
von normalen Photodioden (Bd. III, Abb. 10.23) dadurch,
dass sich an die intrinsische lichtsensitive Zone nicht eine
n-dotierte Schicht, sondern eine pn*-Zone mit hoher elek-
trischer Feldstdrke anschliefit, in der eine Ladungstrager-

Vervielfachung um bis zu drei Gréfienordnungen durch
StoBe stattfindet.

Das mit dem CLSM erreichbare laterale Auflosungsver-
mogen'* ist durch das Beugungsscheibchen begrenzt, das
bei der Beleuchtung des Objekts auftritt. Es ist aber nicht
gleich dem Auflésungsvermogen eines normalen Mikro-
skops mit gleicher numerischer Apertur, sondern kann

um einen Faktor bis zu v/2 besser sein. Das hat folgen-
den Grund: Die Intensitdt des Fluoreszenzlichtes am Ent-
stehungsort ist entsprechend dem Beugungsscheibchen
verteilt. Jeder leuchtende Punkt des Objekts erzeugt aber
wiederum ein Beugungsscheibchen, und beide Effekte
iiberlagern sich beim Lichtnachweis. Hat nun die De-
tektionsblende in der Zwischenbildebene einen deutlich
kleineren Radius als das dort befindliche Bild der Be-
leuchtungsblende, muss sozusagen die Beugungsablen-
kung bei der Beleuchtung des Objekts durch die Beu-
gungsablenkung des Fluoreszenzlichts riickgéngig ge-
macht werden. Die Wahrscheinlichkeiten fiir die beiden
Ablenkungen sind zu multiplizieren. Das fiihrt insgesamt
zu einer Verschmilerung der Intensitdtsverteilung, die
man beim Scannen iiber einen , Farbstoffklecks” hinweg
findet. In der Praxis ist es tiblich, als Auflésungsvermo-
gen die volle Halbwertsbreite dieser Intensititsverteilung
anzugeben, was sich per definitionem etwas von (6.53)
unterscheidet. Die axiale Auflésung ist um so besser, je
grofier der Winkel u, also je divergenter das Licht ist,
was eine kleine Objektivbrennweite bedeutet. Das Ver-
héltnis des axialen zum lateralen Auflosungsvermogen
hédngt vom genauen 3-dimensionalen Strahlprofil in der
Umgebung des Anregungsvolumens ab und wird vom
Winkel u bestimmt. Mit obiger Definition des Auflosungs-
vermogens und kleiner Detektionsblende gelten die theo-
retischen Ndherungsformeln

(lateral) , (6.54)

YHWB ~ .
nsinu

0,457

n(1— cosu) (655

YHWB ~ (axial) ,

was mit Hochleistungsobjektiven fast erreicht wird.

Die Scanzeiten liegen im Bereich von Zehntel Sekunden.
Um die Zeit fiir die Rasterung eines kompletten Bildes
zu verkiirzen, gibt es Tricks: Statt kreisformiger Blenden
werden Spalte verwendet, die verschoben und gedreht
werden (Linienscanner) oder die Beleuchtung des Objekts
erfolgt durch eine rotierende Scheibe mit spiralférmig an-
geordneten Offnungen (,Nipkov-Scheibe”). Man benotigt
dann eine parallele Lichtdetektion in vielen Kandlen, z. B.
mit einer CCD-Kamera.

Fiir biologische und medizinische Anwendungen gibt es
eine ganze Reihe von Farbstoffen. Eine Methode, sie in
Zellen zu implantieren, ist die Inmunfluoreszenz, bei der
Farbstoffe an Antikorper gebunden werden, die in der

14 Auflssungsvermogen in der Ebene senkrecht zur optischen Achse.
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Zelle an Antigene andocken. Es wurden auch fluoreszie-
rende Proteine entdeckt und isoliert (GFP = ,green fluo-
rescent protein”), deren Gene in Zellen die Bildung fluo-
reszierender Proteine auslosen, die ihrerseits mit anderen
Proteinen Bindungen eingehen, ohne deren Funktionen
zu zerstoren. Das macht Untersuchungen an lebenden
Zellen moglich.

Die konfokale Lasermikroskopie kann auch ohne Fluo-
reszenz als Reflexionsmikroskopie genutzt werden, z.B.
beim Abtasten von Materialoberflachen.

Als Weiterentwicklung des CLSM ist die konfokale 47-
Lasermikroskopie zu nennen. Hierbei wird ein Objekt
aus zwei diametral entgegengesetzten Richtungen durch
zwei Objektive mit Laserlicht beleuchtet. Die Struktur des
Lichtfelds in axialer Richtung ist eine andere: Man erhalt
im Anregungsvolumen eine stehende Lichtwelle mit ei-
nem starken Intensititsmaximum in der Mitte und zwei
schwécheren davor und dahinter. Weil sich die Messwer-
te entfalten lassen, erreicht man mit der konfokalen 47t-
Lasermikroskopie in axialer Richtung eine etwas bessere
Auflosung als in der lateralen. Einen Qualitétssprung der
lateralen Auflésung ermoglichte die STED-Mikroskopie,
deren Besprechung wir bis Abschn. 9.3 zuriickstellen.'®

Fernrohr. Das Grundprinzip des Fernrohrs dhnelt dem
des Mikroskops. Man verwendet jedoch ein Objektiv mit
grofier Brennweite. Da der Gegenstand weit entfernt ist,
entsteht das Zwischenbild in oder nahe der bildseitigen
Brennebene des Objektivs (Abb. 6.47). Es wird wie beim
Mikroskop durch ein Okular betrachtet, das hier als ein-
fache Sammellinse dargestellt ist. Die Scharfeinstellung
erfolgt durch Verschieben des Okulars. Bei Einstellung auf
oo féllt der bildseitige Brennpunkt des Objektivs mit dem
gegenstandsseitigen Brennpunkt des Okulars zusammen.
Ein paralleles, unter dem Einfallswinkel «, einfallendes
Strahlenbiindel verldsst das Fernrohr als paralleles Strah-
lenbiindel unter dem Winkel ar,. Die Vergroflerung ist

r—m_A

=5 (6.56)

wobei f; die Brennweite des Objektivs, f, die des Okulars
ist. Als optisches System betrachtet, ist die Brennweite des
Fernrohrs f = oo, dennin (6.36) istnund = f; + f, und dar-
aus folgt 1/f = 0. Man nennt ein solches System afokal
oder teleskopisch.

Wie beim Mikroskop ist beim Fernrohr das Auflosungs-
vermogen letztlich durch die Gréfie des Beugungsscheib-
chens begrenzt, das auch hier durch Beugung an der
Fassung der Objektivlinse entsteht. Die von zwei weit
entfernten Punkten in das Fernrohr einfallenden Strahlen

15 Eine umfassende Darstellung findet man in dem Buch: J. B. Paw-
ley (ed.), ,Handbook of Biological Confocal Microscopy”, Third
Edition, Springer, 2006
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Fb(l):Fq(z)
Abbildung 6.47 Prinzip des Fernrohrs (,astronomisches Fernrohr”). L;: Ob-

jektiv, Ly: Okular (symbolisch). PS ist der ,Parallelstrahl”. Vor L; lauft er durch
F\", hinter L, durch F*)

Strahlen v
ranien vom Umkehrlinse Ly

: Objektiv L,
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Abbildung 6.48 ,Terrestrische Fernrohre”: a Bildumkehr mit Linse, b und
¢ mit Prismen. FB: Feldblende
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schliefien einen kleinen Winkel ¢ ein. Man kann sie noch
als zwei Punkte erkennen, wenn ¢ > @nin ist. Mit (6.42)
erhalt man N

o
= = = 1,22— ,
Pmin fl D

(6.57)
denn hieristb = f1. Ein grofler Durchmesser der Fernrohr-
offnung fordert also nicht nur die Bildhelligkeit, sondern
auch das Auflésungsvermdogen.

Den in Abb. 6.47 gezeigten Typ nennt man astronomi-
sches oder Keplersches Fernrohr. Das Bild, das man
sieht, ist umgekehrt. In der Astronomie stort das wenig,
um so mehr aber bei Beobachtungen auf der Erdober-
flache. Man muss also noch eine Bildumkehr einbauen.
Dafiir gibt es zwei Moglichkeiten. Man kann zwischen
dem Zwischenbild und dem Okular noch eine Sammel-
linse einbauen, wie Abb. 6.48a zeigt. Das ohnehin schon
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Abbildung 6.49 Hollandisches Fernrohr. Bezeichnungen wie in Abb. 6.47

lange Geréat wird noch ldnger und erinnert dann stark an
Lord Nelsons Zeiten. Wesentlich eleganter ist die Bildum-
kehr mit Prismen (Abb. 6.48b und c). Das ist die heute
gebrduchliche Form des terrestrischen Fernrohrs. Wie bei
der mehrfachen Reflexion in den Prismen die korrekte
Bildumkehr zustande kommt, ist eine verzwickte Ange-
legenheit. In Abb. 6.48b und c sind nur die Projektionen
der Strahlengdnge auf die Zeichenebene gezeigt. Jeden-
falls erkennt man, dass die Bildumkehr mit Prismen zu
kurzen und handlichen Fernrohren fithrt. Man beachte
die aufwendige Konstruktion des Okulars, mit der man
ein grofles Gesichtsfeld bei sehr kleinen Abbildungsfeh-
lern erreicht, sowie das achromatische Objektiv.

Die &lteste Form ist das hollindische oder, Galileische
Fernrohr'® (Abb. 6.49). Hier besteht das Okular aus einer
Zerstreuungslinse. Auch hier ist fi + f, = d (mit f, < 0)
und (6.56) bleibt abgesehen vom Vorzeichen giiltig. Das
hollandische Fernrohr zeichnet sich durch eine relativ
kurze Bauldnge aus: | = f; — |f2|. Sein Nachteil ist, dass bei
starkerer Vergrofserung das Gesichtsfeld sehr klein ist. Mit
schwacher Vergroerung fithrt das hollandische Fernrohr
heute noch als Opernglas ein Schattendasein. Neuerdings
hat es in der Laserphysik eine Renaissance erlebt: Man be-
nutzt es in umgekehrter Richtung als Strahlaufweiter fiir
Laser mit hoher Leistung. Beim holldndischen Fernrohr
gibt es namlich kein reelles Zwischenbild, wo es infolge
extrem hoher Strahldichte zur Ionisation der Luft kom-
men konnte.

16 Das Fernrohr wurde zu Anfang des 17. Jahrhunderts in Hol-
land erfunden, angeblich von einem Brillenmacher-Lehrling, der in
der Mittagspause mit Linsen spielte. Meister Lippershey versuch-
te, es zum Patent anzumelden, was ihm aber nicht gelang, denn
die Erfindung wurde von der Regierung beschlagnahmt, wegen ih-
rer offensichtlichen Bedeutung fiir das Militirwesen. Galilei hatte
jedoch davon gehort und binnen kurzem ein sehr leistungsfahiges
Instrument hergestellt, und zwar mit selbst geschliffenen Linsen.
Wie hoch die Qualitiat von Galileis Linsen war, erkennt man an den
bahnbrechenden Entdeckungen, die er alsbald machte: Jupitermon-
de, Saturnring, ... Sein erstes Fernrohr hatte 3-fache Vergréfierung,
sein letztes vergroflerte 32-fach. Galilei ist derjenige, der erkannte,
dass es in der Optik auf hochste Prazision ankommt. — Kepler hat
das Keplersche Fernrohr selber nie gebaut oder benutzt, es aber in
seinem 1611 erschienenen Optik-Buch , Dioptrice” beschrieben. Das
Buch enthélt auch eine genaue Theorie der Linsen (in Kleinwinkelna-
herung), die Entdeckung der Totalreflexion und anderes.

Abbildung 6.50 Spiegelteleskop. P:
C: Cassegrain-Fokus

N: Newton-Fokus,

Primarfokus,

Spiegelteleskope. In der Astronomie wird das ,,astrono-
mische Fernrohr” nur noch fiir Sonderzwecke verwendet.
Im Allgemeinen mochte man ein Teleskop mit mdglichst
grofer Offnung haben, um auch lichtschwache Objekte
beobachten zu koénnen und um ein gutes Auflosungsver-
mogen zu erreichen. Das ldsst sich mit Spiegelteleskopen
sehr viel einfacher realisieren als mit Linsen, zumal Spie-
gel von vornherein frei von chromatischer Aberration
sind. Das Prinzip ist in Abb. 6.50 gezeigt. Um das im pri-
maéren Fokus erzeugte Bild beobachten und ausmessen zu
kénnen, wird der Strahlengang mit Hilfe von Hilfsspie-
geln nach aufien umgelenkt. Newton, der das Spiegeltele-
skop erfand und als erster verwendete, benutzte hierfiir
einen unter 45° aufgestellten ebenen Spiegel (Newton-
Fokus). Man kann auch das Licht mit einem konvexen
Spiegel durch eine Bohrung im Hauptspiegel nach aufien
fiihren (Cassegrain-Fokus). Damit kann man gleichzeitig
die Brennweite f; vergréflern und Abbildungsfehler ver-
ringern.

Die Spiegel selbst wurden bis vor einigen Jahren form-
stabil aus einer dicken sphérisch geschliffenen Platte her-
gestellt. Das Material war eine spezielle Glaskeramik mit
extrem kleinem Ausdehnungskoeffizienten. Das bekann-
teste Instrument dieser Art ist das Spiegelteleskop mit 5 m
Durchmesser auf dem Mount Palomar in Kalifornien. Seit
einiger Zeit werden Grofdteleskope aus relativ leichten
Einzelspiegeln aufgebaut, die als Teilflichen eines grofien
Paraboloids geschliffen und poliert sind. Sie kénnen rech-
nergesteuert individuell justiert werden. Damit kann man
Spiegelbewegungen, die aufgrund der Leichtbauweise
entstehen, stindig kompensieren. Durch rasches Verstel-
len der Einzelspiegel optimiert man das Bild eines hellen
Sternes im Vordergrund des Gesichtsfelds: Damit wird
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Abbildung 6.51 100 m-Radioteleskop in Effelsberg bei Bonn

die Spiegelstellung auch fiir die anderen Objekte im Ge-
sichtsfeld optimiert. Bei kleineren Spiegeln kann man auf
diese Weise sogar das Funkeln der Sterne, das sogenannte
,seeing” ausgleichen. Dieses fiir die Astronomie dufSerst
lastige Phdnomen wird durch Turbulenzen in der At-
mosphare verursacht, die zu lokalen Schwankungen des
Brechungsindex fiihren. Hier sind jedoch Bewegungen im
Millisekundenbereich erforderlich. Die Einzelspiegel der
Grofiteleskope sind dafiir zwar zu schwer, nicht aber die
Hilfsspiegel, mit denen man den Primérfokus zugénglich
macht. Auch gibt es auf der Erde Orte mit extrem kleiner
Luftunruhe. So wird mit den 8 m-Teleskopen der Euro-
pédischen Stidsternwarte auf einem Berg in Chile die beu-
gungsbegrenzte Auflosung nahezu erreicht. Sie betragt
nach (6.57) ¢min = 8- 10 8rad ~2-102 Bogensekunden.

In der Radioastronomie sind grofie Parabolspiegel als An-
tennen schon lange im Gebrauch. Abbildung 6.51 zeigt
als Beispiel ein Radioteleskop mit 100 m Durchmesser. Es
ist ausgelegt fiir den Wellenldngenbereich 50 cm — 6 mm
(v =0,6 — 50 GHz). Trotz des riesigen Durchmessers ist
die Winkelaufldsung eines solchen Radioteleskopes recht
bescheiden, wie man mit (6.57) nachrechnen kann. Dem
kann man abhelfen, indem man mehrere Radiotelesko-
pe in grofien Abstinden voneinander aufstellt und die
Signale phasenrichtig zusammenfiihrt (long baseline ra-
dioastronomy). In (6.57) entspricht dann D dem Durch-
messer der Anlage.

Um ein Teleskop fiir den Réntgenbereich zu konstruie-
ren, muss man andere Wege beschreiten. Man nutzt aus,
dass Rontgenstrahlen von einer Oberfldche bei streifen-
dem Einfall totalreflektiert werden, da n < 1 ist. Mit den
in Abb. 6.52 gezeigten Flachen kann man das Rontgenlicht
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- Rotations- *} Rotations-

Hyperboloid | Paraboloid

Abbildung 6.52 Rontgenteleskop

einer entfernten Punktquelle auf einen Punkt abbilden.!”
Unser heutiges Wissen auf den Gebieten der Astrophy-
sik und der Kosmologie beruht zum guten Teil darauf,
dass teleskopische Beobachtungen fast im gesamten Be-
reich des elektromagnetischen Spektrums moglich sind.
Im Rontgenbereich findet man sowohl thermische Quel-
len, darunter Objekte, deren Temperatur so hoch ist, dass
sie im sichtbaren Spektralbereich nicht beobachtet wur-
den, als auch nicht-thermische. Hier wird die Rontgen-
strahlung z. B. als Synchrotronstrahlung erzeugt.

Prismenspektrometer, Monochromator. Das Prinzip ist
in Abb. 6.53 gezeigt. Mit der Lichtquelle, deren Spektrum
ausgemessen werden soll, wird ein Spalt beleuchtet. Die-
ser Spalt wird mit Hilfe von Linsen auf eine Bildebene
abgebildet. Dabei wird das Licht durch ein Prisma ge-
leitet. Der Winkel, um den die Lichtstrahlen im Prisma
abgelenkt werden, hiangt von der Wellenldnge des Lichts
und vom Einfallswinkel ab. Deshalb muss das Licht als
paralleles Strahlenbiindel durch das Prisma gefiihrt wer-
den. In der Bildebene entsteht dann das Spektrum, und
zwar erhdlt man je nach Art der Lichtquelle ein Linien-
spektrum (z. B. bei einer Gasentladungslampe) oder ein
kontinuierliches Spektrum (z. B. bei einer glithenden Me-
talloberfliche). Die einzelnen Spektrallinien, die man im
ersten Falle beobachtet, sind also Bilder des Eintritts-
spalts. Man kann das Spektrum durch ein Okular betrach-
ten, auf einer Skala ausmessen oder fotografieren; man
kann aber auch in der Bildebene nochmals einen Spalt an-
bringen und dahinter ein Messinstrument aufstellen, das
die Lichtintensitét als Funktion des Ablenkungswinkels vy
misst. Fiir solche Messungen muss das Spektrometer so
eingerichtet sein, dass man den Ablenkwinkel 7y konti-
nuierlich verstellen kann. Das Prisma wird dabei so mit-
bewegt, dass der Strahlengang stets symmetrisch bleibt.

17 Zur Funktionsweise: Das Rotations-Paraboloid allein wiirde zu ei-
ner unhandlichen Bauldnge fithren und auflerdem fiir nicht exakt
achsenparallele Strahlen zu einer gigantischen Koma. Beide Pro-
bleme behebt das nachgeschaltete Rotations-Hyperboloid, erfunden
von H. Wolters (1951). Die Apertur ist nur ein schmaler Kreisring.
Zur Vergrofierung der Lichtsammelfliche werden mehrere Instru-
mente ineinander geschachtelt. Beobachtungen sind nattirlich nur im
Weltraum moglich, da die Atmosphire die Réntgenstrahlung absor-
biert.



6.4 Anwendungen

Abbildung 6.53 Prismenspek- \
trometer Lichtquelle ®

Eintrittsspalt

Dann befindet sich der Ablenkwinkel in einem Extremum
(vgl. Text zu Abb. 5.6), und < ist von kleinen Justier-
fehlern unabhéngig. Auch ist dann das durch Beugung
begrenzte Auflgsungsvermogen des Prismenspektrome-
ters maximal. Die Aperturblende wird hier durch das
Prisma definiert, die Breite des Lichtbiindels direkt hinter
dem Prisma sei d. Wenn man den Eintrittsspalt hinrei-
chend schmal macht, entsteht in der Bildebene eine Linie
mit der Breite

—— (659)
denn diese Form nimmt (6.42) bei einer rechteckigen Off-
nung der Breite d an. Zwei Linien mit den Wellenlédngen
A1 und Ay erscheinen in der Bildebene bei y; und y;. Thr
Abstand ist proportional zu A; — A1 und hiangt vom Pris-
menwinkel &, dem Brechungsindex # und der Dispersion
dn/dA ab. Die Auflésung des Spektrometers wird auch
hier mit dem Rayleighschen Kriterium bestimmt: Die Wel-
lenlédngendifferenz Ay — A1 = AA gilt als auflosbar, wenn
Y2 — Y1 = AYmin ist. Dem Gleichheitszeichen entspricht
die Wellenldngendifferenz AAmin. Man definiert das Auf-
l6sungsvermogen von Spektrometern generell mit R =
A/ AAmin, damit ein gutes Aufldsungsvermogen auch ei-
ner groflen Zahl R entspricht. Zur Berechnung von y, — 4
bilden wir das Differential von (5.7) und beachten, dass n
von A abhéngt:

Ay Y+a dn o
TCOST = aA)me Slnz .

Der Winkel A7y fiihrt zu der gesuchten seitlichen Verschie-
bung: y» —y; = fAy. Wir erhalten an der Auflosungsgren-
ze mit (6.58)

dn L 1
far= zfaAAmmssmEscos('y/Z—l-tx/Z)

A

wobei mit der Kantenlédnge s des Prismas erweitert wur-
de. Nun liest man aus Abb. 6.53 ab: B = 2ssina /2 und
d =scos(y/2 + a/2), sodass sich das sehr einfache Re-
sultat

(6.59)

ergibt. B ist die Basisbreite des Prismas.!® Ein Zah-
lenbeispiel: Schwerflintglas hat bei der Wellenlédnge der
Natrium-D-Linien (A ~ 589,3nm) n = 1,63 und dn/dA =
750/cm. Ein Prisma mit der Basisbreite 5 cm hat also eine
Auflésung A/ AAmin = 3750. Es folgt

589,3nm
3750

Das reicht aus, um die beiden Na-D-Linien (AA = 0,6 nm)
deutlich zu trennen.

A min = =0,16nm .

Die in Abb. 6.53 gezeigte Apparatur kann nicht nur zum
Ausmessen von Spektren verwendet werden, sondern
auch als Monochromator: Wenn man in der Bildebene
einen Spalt einbaut, kann man je nach Spaltbreite einen
schmalen Bereich aus dem Spektrum einer Lichtquelle
ausblenden und fiir andere Experimente nutzen.

Diaprojektor. Das Diapositiv wird mit einer Objektivlin-
se auf die Projektionsfliche abgebildet. Das Wesentliche
ist nun, das Diapositiv richtig zu beleuchten. Dazu dient
eine Lichtquelle und eine Sammellinse, genannt Konden-
sor (Abb. 6.54). Der Kondensor bildet die Lichtquelle in
das Objektiv ab. Dadurch wird sichergestellt, dass alle
Strahlen, die durch das Diapositiv laufen, auch zur Bil-
derzeugung auf der Projektionswand beitragen. Der Ab-
bildungsstrahlengang (Diapositiv—-Objektiv-Projektions-
wand) und der Beleuchtungsstrahlengang (Lichtquelle-
Kondensor-Objektiv—Projektionswand) sind in Abb. 6.54
eingezeichnet. Der Rahmen des Diapositivs wirkt als Ge-
sichtsfeldblende beim Abbildungsstrahlengang und als

18 Die Basisbreite ist immer wie in Abb. 6.53 zu ermitteln. Wird das
Prisma nicht voll ausgeleuchtet, muss man es sich entsprechend
abgeschnitten denken. Die Herleitung von (6.59) setzt einen symme-
trischen Strahlengang voraus, also ein Verschieben von Quelle und
Bildpunkt. Da man sich im Minimum des Ablenkwinkels befindet,
kommt aber fiir eine feststehende Quelle fast dasselbe heraus.
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/
Kondensor

Abbildung 6.54 Diaprojektor, a Abbildungs- und b Beleuchtungsstrahlengang

Aperturblende beim Beleuchtungsstrahlengang. Damit skop spielt die Beleuchtung des Objekts eine grofie Rol-
die Projektion des Dias gut funktioniert, miissen beide le, und zur Optimierung des Beleuchtungsstrahlengangs
Strahlengénge richtig aufgebaut sein. Auch beim Mikro- ~wird mitunter ein betrachtlicher Aufwand getrieben.



Ubungsaufgaben

Ubungsaufgaben

6.1. Fermatsches Prinzip. Ein aus dem Unendlichen
kommendes Biindel paralleler Lichtstrahlen werde wie in
Abb. 6.14 an der Grenzflache zweier Medien gebrochen
und auf einen Punkt B fokussiert. Bestimmen Sie bei vor-
gegebener Bildweite b die Form der brechenden Flédche als
Funktion A(h) mit Hilfe des Fermatschen Prinzips in der
Form (6.8). Zeigen Sie, dass ein Rotationsellipsoid heraus-
kommt und dass sich fiir kleine Werte von & (6.12) ergibt.
Hinweise: (1) Weil der Winkel « verschwindet, gentigt es,
wenn man in Abb. 6.14 die Langen [; ab der Tangential-
flache durch den Scheitelpunkt S zahlt. (2) Fiir eine Kugel
gilt bei kleinen h: A(h) = h?/2R.

6.2. Linse in einem Medium. Eine Linse, bestehend
aus Glas mit einem Brechungsindex n = 1,5, besitzt in
Luft eine Brennweite f = 5 cm. Wie grofS ist die Brennwei-
te unter Wasser (n = 1,33)?

6.3. Abbildung durch eine ebene brechende Flache.
Ein unter Wasser liegender Gegenstand scheint, wenn
man senkrecht von oben auf ihn herabschaut, angeho-
ben zu sein. Berechnen Sie die Position seines Bildes,
wenn er sich um g = 20 cm unterhalb der Wasseroberfla-
che befindet. Wie grof ist der Abbildungsmafistab? Um
welchen Faktor dndert sich der Sehwinkel bei der Ab-
bildung, wenn die Augen des Betrachters einen Abstand
h = 50 cm von der Wasseroberfldche haben?

6.4. Bestimmung der Brennweite einer diinnen Lin-
se nach Bessel. Ein Gegenstand wird mit einer Linse
auf einen im Abstand D = 80cm stehenden Schirm ab-
gebildet. Man findet bei Verschiebung der Linse zwei
Positionen, bei denen ein scharfes Bild entsteht, die um
d = 25cm auseinander liegen. Wie grofs ist die Brennweite
der Linse? (Anmerkung: Die , diinne Linse” charakteri-
siert man dadurch, dass man den Abstand zwischen den
Hauptebenen null setzt).

6.5. Brennweite und Hauptebenen einer plankonve-
xen Linse. Die Linse in Abb. 6.29 werde durch eine eine
plankonvexe Linse ersetzt, deren hinterer Kriimmungsra-
dius Ry = coist. Leiten Sie fiir diesen Spezialfall (6.34) und
(6.35) her. Hinweis: Verfolgen Sie den Weg von Lichtstrah-
len durch das System, die parallel zur optischen Achse
von rechts oder links kommen und bestimmen Sie die
Positionen der Brennpunkte und danach die Lagen der
Hauptebenen. Es werde h < d < f vorausgesetzt.

6.6. Zweidiinne Linsen. a) Zwei diinne Sammellinsen
mit gleichen Brennweiten f; = f, werden im Abstand d =
3f1 voneinander aufgestellt. Ermitteln Sie fiir paraxiale

Strahlen, die von links oder rechts aus dem Unendlichen
kommen, deren Verlauf durch das System und bestimmen
Sie die Lage der Brennpunkte und der Hauptebenen. Man
vergleiche mit (6.34) und (6.35).

b) Wohin und mit welchem Abbildungsmafistab wird ein
Gegenstand abgebildet, der sich auf einer Hauptebene be-
findet?

¢) In Luft werden eine Sammellinse mit der Brennwei-
te fi und eine Zerstreuungslinse mit der Brennweite f,
im Abstand d voneinander aufgestellt. Unter welchen Be-
dingungen fiir f;, f und d verhélt sich das kombinierte
System wie eine Sammellinse?

6.7. Beugungsunschidrfe und chromatische Aberrati-
on. Eine Linse mit der Brennweite f = 5cm bilde einen
sehr weit entfernten leuchtenden Punkt als Beugungs-
scheibchen in der Brennebene ab. Wie grofS ist der Radi-
us des ersten Beugungs-Minimums fiir die Wellenldnge
589 nm bei einem Objektivdurchmesser D = 1cm?

Das Glas des Linse besitzt fiir die Lichtwellenldnge A =
589nm einen Brechungsindex n = 1,5100, aber fiir die
Wellenldnge A = 486 nm den Brechungsindex n = 1,5157.
Bei Scharfeinstellung auf die erste Wellenldnge ist fiir
die zweite Wellenldnge das geometrisch-optische Bild des
Gegenstandspunkts eine Scheibe. Man vergleiche deren
Radius mit dem Radius des Beugungsminimums.

6.8. Korrektur des chromatischen Linsenfehlers. Ei-
ne Kombination aus einer plankonkaven Zerstreuungs-
linse und einer Sammellinse, wie sie im rechten Teil von
Abb. 6.17 gezeigt ist, soll auf chromatische Aberration
korrigiert werden, indem zwei verschiedenen Glassor-
ten verwendet werden. Die Kompensation erfolgt bei den
Fraunhoferschen Linien C und F. Als Material werden
ein Kronglas mit dem Brechungsindex n(D) = 1,5100 und
der Abbe-Zahl Vp = 62,9 und ein Flintglas mit n(D) =
1,755 und Vp = 26,8 benutzt. Die Linsen sollen als diinn
angenommen werden. Die Gesamtbrennweite bei der
Fraunhofer-Linie D sei f = 10cm. Wie grofs miissen die
Kriimmungsradien der Linsen sein? Hinweis: Rechnen
Sie zunachst mit den Brechungsindizes fiir die Linien C
und F und fiihren Sie erst in der Endformel die Abbe-Zahl
und den Brechungsindex n(D) ein.

6.9. Sphirische Aberration. Eine Linse mit einer
Brennweite f = 5cm und dem Brechungsindex n =1,5
bilde einen sehr weit entfernten, auf der optischen Achse
liegenden Punkt ab. Die Linse ist plankonvex, die ebene
Seite ist dem Gegenstand zugewandt.
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a) Wie grof3 ist der Kriimmungsradius R der Linse?

b) Der Durchmesser der Blendendffnung sei D = 1cm.
Ein Lichtstrahl parallel zur optischen Achse, der am Blen-
denrand durch die Linse tritt, schneidet die optische
Achse nicht mehr im Brennpunkt, sondern in einem Ab-
stand s, von ihm. Daher ist das Bild des Blendenrandes in
der Brennebene ein Kreis. Wie grofs ist dessen Radius 7,?
Vergleichen Sie diesen Abbildungsfehler mit den Resulta-
ten der Aufgabe 6.7.

Hinweise fiir die Herleitung einer Formel: Ersetzen Sie
in der Rechnung die Brennweite durch den Kriimmungs-
radius und den Blendendurchmesser D durch den Ein-
fallswinkel « des Strahls an der hinteren Linsenoberfla-
che: D = 2R - sina. Die bei der Rechnung auftretenden
Cosinus- und Sinusfunktionen von « und f (B ist der
Ausfallswinkel an der hinteren Linsenoberflache) sind na-
herungsweise durch Reihenentwicklungen bis zur Potenz

&2 zu ersetzen.

6.10. Prismenfernrohr. Wenn man auf einem Prismen-
fernrohr z. B. die Bezeichnung 7 x 50 sieht, bedeutet dies,
dass das Fernrohr 7-fach vergrofert und der Durchmes-
ser des Objektivs 50mm betragt. Abbildung 6.48b ist
mafistiblich, der Abstand zwischen den Aufienseiten von
Objektiv und Okular ist 15cm. Das Objektiv betrachten
wir als diinne Linse, das Okular nicht. Die Ablenkprismen
erzeugen im Mafistab 1 : 1 ein virtuelles Bild des Objek-
tivs, das auf der Okular-Achse im Abstand s = 15cm vor
der Feldblende FB, also knapp 5cm vor dem Fernrohr
liegt. Fiir uns ist dieses Bild ,,das Objektiv”. Die Pupille ei-
nes Beobachters befinde sich in einem Abstand d = 1,5cm
vom Okular.

a) Wo liegen in Abb. 6.48b der bildseitige Brennpunkt
des Objektivs und der gegenstandsseitige Brennpunkt des
Okulars und wie grofd sind die Brennweiten f; des Objek-
tivs und f, des Okulars?

b) Wo liegt die gegenstandsseitige Hauptebene des Oku-
lars?

¢) Die Optimierung des Strahlengangs erfordert es, dass
das Objektiv vom Okular auf die Augenpupille abgebil-
det wird, wodurch das Objektiv und die Augenpupille als
Ein- und Austrittspupille des Systems fixiert werden. Wie
grofs ist die Bildweite dieser Abbildung und wo liegt die
bildseitige Hauptebene des Okulars?
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d) Gilt fiir das Aufldsungsvermdgen eines 7 x 50-Fern-
rohrs bei hellem Licht (6.57) oder ist die Winkelauflgsung
durch das Auge des Betrachters begrenzt?

e) In Abb. 6.48b fdllt auf, dass das Objektiv relativ einfach
strukturiert ist, wahrend das Okular sehr kompliziert auf-
gebaut ist. Warum ist das so (vgl. Aufgaben 6.7 und 6.9)?

f) Kneift man beim Blick durch ein Prismenfernrohr ein
Auge zu und blickt mit dem anderen aus groflem Abstand
durch eine Fernrohrhilfte, sicht man von weit entfernten
Gegenstanden ein scharfes Bild, aber der beobachtbare
Bildausschnitt ist winzig. Was definiert hier die Aus-
trittspupille, wo liegt die Eintrittspupille, wo liegt die
Austrittsluke und und welchem Element des Fernrohrs
entspricht hier die Eintrittsluke?

6.11. Beleuchtungsstirke einer Fotoaufnahme. a) Eine
kreisrunde leuchtende Fliche mit dem Radius 7. besit-
ze senkrecht zu ihrer Oberfliche eine Strahldichte L,
(Einheit: W/(m?sr)). Sie wird von einem in groSem
Abstand g befindlichen Fotoapparat abgebildet, der die
Brennweite f < ¢ und den Blendendurchmesser D < f
besitzt.

Wie grof ist der in den Fotoapparat eintretende Strah-
lungsfluss (Einheit: W)?

Wie grofs ist das Bild und wie grofs ist die Bestrahlungs-
stirke E, (Einheit: W/m?) im Bild? (Zahlenbeispiel: L, =
10W/(m?sr), Blendenzahl f/D = 4).

Kann man ein Objektiv erfinden, mit dem man eine Be-
strahlungsstdrke E, im Bild erreicht, die grofier als das
2rt-fache der Strahldichte L, der Quelle ist?

b) Ein leuchtender Punkt besitze eine Strahlstarke I,. Er
wird mit dem gleichen Fotoapparat im gleichen Abstand
abgebildet. Wie grofs ist der in den Fotoapparat eintreten-
de Strahlungsfluss?

Der Punkt erzeugt eine Beugungsfigur. Wie grof3 ist der
Radius des ersten Beugungsminimums? Als Maf fiir die
Bestrahlungsstarke nehmen wir das Verhéltnis des Strah-
lungsflusses zur Flache, die von dem berechneten Radius
eingeschlossen wird. Wie hangt dieser E.-Mittelwert von
f, D, g und der Wellenldnge A ab? Warum strebt man
bei astronomischen Fernrohren einen grofflen Durchmes-
ser D an?
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Interferenz entsteht bei der Uberlagerung von zwei
oder mehreren Wellen, die untereinander eine feste
Phasenbeziehung haben. Man nennt solche Wellen
kohirent. Wir befassen uns zunachst mit der Interfe-
renz von zwei Wellen gleicher Frequenz. Dabei kann
man am besten das Grundsatzliche diskutieren: die
Erzeugung kohirenter Wellen und das Zustande-
kommen des Interferenzterms, der die Intensitat
des Wellenfeldes mafigeblich beeinflusst. Die Dis-
kussion in Abschn. 7.1 erstreckt sich aber auch auf
Phinomene wie die schillernden Farben eines Ol-
flecks auf dem nassen Asphalt, auf die optische
Vergiitung von Oberflachen und auf interferome-
trische Messmethoden. Im zweiten Abschnitt geht
es um die Kohdrenz: Wovon hingt die feste Pha-
senbeziehung zwischen den interferierenden Wellen
ab? Die hier gewonnenen Erkenntnisse finden ei-
ne interessante Anwendung in der Astronomie: Mit
interferometrischen Methoden kann man die Durch-
messer von Sternen bestimmen, obgleich diese im
Teleskop nur als punktférmige Objekte erscheinen!
Im dritten Abschnitt behandeln wir Vielstrahlinter-
ferenzen und deren Anwendungen, u.a. auch die
erstaunlichen Eigenschaften einer beidseitig etwas
durchscheinend verspiegelten Platte. Sie bilden die
Grundlage fiir das Fabry-Pérot-Interferometer, fiir
Interferenzfilter, und vor allem fiir den Laser-Reso-
nator, den wir am Schluss des Kapitels besprechen.

Interferenz von zwei
Wellenziigen

7.1

Grundlagen: Interferenzterm, Phasendifferenz und
Gangunterschied

Wir beginnen mit einer Vortibung, in der wir einige Be-
griffe einfiihren und Formeln ableiten, die wir im Fol-
genden immer wieder brauchen werden. Abbildung 7.1a
zeigt den schon aus Abb. 1.11 bekannten Wellentrog,
in dem diesmal zwei Stifte periodisch auf- und abbe-
wegt werden. Von jeder der beiden Punktquellen Q; und
Q> gehen Kreiswellen aus, die sich tiberlagern. Da die
Bewegung der Stifte durch einen gemeinsamen Antrieb
bewirkt wird, ist die relative Phase der beiden Kreiswel-
len fest vorgegeben, sie sind kohdrent. Wo Wellenberg auf
Wellenberg oder Wellental auf Wellental treffen, entstehen
doppelt so hohe Wellenberge bzw. doppelt so tiefe Wel-
lentiler. Man nennt dies konstruktive Interferenz. Dort,
wo Wellenberg und Wellental zusammentreffen, bleibt
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Abbildung 7.1 Interferenz von zwei Wellenziigen. a Grundversuch im Wellen-
trog, b schematische Darstellung: e Wellenberge, o Wellentéler bei konstrukti-
ver Interferenz, x destruktive Interferenz

T P
Q@ -

Q>

Abbildung 7.2 Definition der Vektoren in (7.1)

die Oberfldche ruhig, dort ist die Interferenz destruktiv.
Die gesamte Wasseroberfldche vor Q; und Q ist in Zo-
nen konstruktiver und destruktiver Interferenz aufgeteilt.
Abbildung 7.1b zeigt dies schematisch. Wir wollen nun
dieses Wellenfeld berechnen. In Abb. 7.2 sind die hier ver-
wendeten Vektoren definiert. Es ist

rn=r—d/2, rn=r+d/2. (7.1)
A1(r1,t) und Ay (1o, t) seien die Hohen der von Qp und
Q> ausgehenden Kreiswellen, Ajp und Ay deren Am-
plituden, ki und k; die Wellenvektoren. Ihr Betrag ist
k=2m/A. Da es sich nur um Kreiswellen handelt, ist
k- r; = kr;. Es ist also

Ax(r1,t) = Ago(r1) cos(kry — wt — ¢1) , 7.2)
Ax(ry, t) = Agg(rp) cos(kry — wt — @a) . '
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@1 und ¢, sind die Phasen der beiden Sender Q; und
Qy.In Abb. 7.1 ist 1= @2 und A1Q(O) = Ay (0) Wir blei-
ben jedoch zunéchst bei dem allgemeineren Ausdruck
(7.2). Die Intensitdten der Wellen sind proportional zum
Quadrat der Wellenfunktion, gemittelt iiber die Zeit. Den
Proportionalitdtsfaktor nennen wir K. Wenn jeweils nur
eine der beiden Punktquellen eingeschaltet ware, wiir-
de man bei P in Abb. 7.2 die Intensitiaten [} = KA% bzw
L = KA% messen. In dem Wellenfeld, das durch die Uber-
lagerung der beiden Teilwellen entsteht, muss man bei
der Berechnung der Intensitdt zunédchst die Wellenfunk-
tion des resultierenden Feldes berechnen, erst dann wird
quadriert und zeitlich gemittelt. Fiir das Quadrat der Wel-
lenfunktion und fiir die Intensitét erhalten wir

A2(r,t) = (Ay(1,) + Ay (r, 1))
=A? 4 A3 42414,

I(r) = K(Aq(r,£) + Aa(r, 1))

=L+DL+ ZK(AlAz) .

(7.3)

(7.4)

Die Intensitit I(r) ist also verschieden von der Summe
der Intensititen der Teilwellen: Das ist das wesentliche
Kennzeichen der Interferenz. Die Ursache ist das Auftre-
ten des Interferenzterms 2KA1A;. Wir berechnen diesen
Term. Mit kr; — ¢; = ; folgt aus (7.2)

A1Ay = A1pAno(cosag cos wt + sin iy sin wt)
- (cos ap cos wt + sin ay sin wt)
= AjpAgp[cos aq cos ay cos? wt

+ sin &y sin ap sin? wt + (. ..) cos wtsinwt| .

Nun ist cos? wt = sin? wt = % und cos wtsinwt = 0. Wir
erhalten deshalb fiir den Interferenzterm

2KA1Ay = KAjpAgg cos(ag — a2) (7.5)
Mit I; = KA%,/2 und I, = KA%/2 folgt schlieglich
I(r) =L + I + 2y/I1 1, cos &, (7.6)

0= k(l’l — 7‘2) + (ng — goz) . (7.7)

Maximal konstruktive Interferenz besteht, wenn [ = I; +
I + 2+/111, ist, wenn also die Phasendifferenz

6=2mtm, m=0%1,42,... (7.8)

Abbildung 7.3 Zu (7.14) r =
@)
+ =
l r
T ,"2 /
@2/6: d sind

ist. Maximal destruktive Interferenz erhdlt man fiir I =
I + I — 2y/I1 1. Dann ist

S=m'n, m'=2m+1=41,43,45,... (7.9)

Statt durch die Phasendifferenz kann man die Interferenz
auch durch den Gangunterschied G = ry — rp charakteri-
sieren. Wenn die Sender Q; und Q» gleichphasig schwin-
gen (@1 = ¢2), entspricht der Phasendifferenz § = 27t der
Gangunterschied A. Allgemein gilt fiir

1) 27
—¢: G=A—, 6=""G=1KG. 7.1
p1=¢2: G AZTC , 0 1 G =kG (7.10)
Maximal konstruktive Interferenz:
(7.11)
G=mA,
maximal destruktive Interferenz:
(7.12)

A

Nach (4.4) und (4.5) sind die Amplituden bei Kugelwellen
proportional zu 1/r; und bei Kreiswellen proportional zu
1//7i. In groem Abstand von den Punktquellen (r > d)
kann man bei der Berechnung der Amplituden A; und
A, die Unterschiede zwischen 7, rp und r vernachlassi-
gen. Dann ist bei gleicher Erregung an den Punktquellen
L (r) = L (r). Wir erhalten mit (7.6)

I(r) = 2I;(1 + cos §) = 4 cos? g . (7.13)

Bei maximal destruktiver Interferenz geht in diesem Fal-
le die Intensitat bis auf Null zurtick, wie schon Abb. 7.1
zeigte.

Wenn r > d ist, zeigen die Vektoren rq, r; und r anni-
hernd in die gleiche Richtung, und nach Abb. 7.3 ist der
Gangunterschied

G =dsin? . (7.14)
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Abbildung 7.4 Linien gleichen Gangunterschieds (gestrichelt) und deren
Asymptoten (ausgezogen)

Abbildung 7.5 Interferenzstreifen auf einer Ebene, die entlang der punktier-
ten Linie senkrecht auf der Zeichenebene von Abb. 7.4 steht

Fiir den Winkel ¢ in Abb. 7.3 gilt bei maximal konstrukti-
ver bzw. bei maximal destruktiver Interferenz:

sintd = mE ,

sind = (2m+1)ﬁ .

konstruktiv:
(7.15)

destruktiv:

Im Wellentrog haben wir es mit der Wellenausbreitung
auf einer ebenen Fliche zu tun. Auf dieser Flache gibt
es Linien gleichen Gangunterschieds G = r; — r, = const.
Aufgrund dieser Bedingung erhélt man Hyperbeln, in de-
ren Brennpunkten die Quellen Q; und Q liegen (vgl.
auch Bd. 1/21.1). Man kann sie in Abb. 7.1 erkennen.
Die durch (7.15) gegebenen Geraden sind die Asymptoten
dieser Hyperbeln (Abb. 7.4). Bei der Wellenausbreitung
im dreidimensionalen Raum werden durch die Bedin-
gung G = r; —rp = const hyperbolische Flachen definiert,
rotationssymmetrisch um die durch Q; und Q, fithren-
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de Gerade. Abbildung 7.4 kann auch als ein Schnitt
durch diese Fldchen aufgefasst werden. Wenn man senk-
recht zur Zeichenebene entlang der punktierten Linie eine
Ebene aufstellt und auf dieser Ebene die Intensitdt re-
gistriert, erhdlt man durch konstruktive und destruktive
Interferenz ein Streifenmuster (Abb. 7.5). Die ,Interfe-
renzstreifen” entstehen als Schnittlinien der Ebene mit
den Hyperboloiden. Bei m = 0 liegt der Streifen ,nullter
Ordnung”; bei m = £1 liegen die Streifen ,erster Ord-
nung” und so fort.

Interferenzen mit elektromagnetischen Wellen

Wir sind in (7.2) davon ausgegangen, dass die Wellen-
funktion eine skalare Grofie ist. Wie geht man nun bei
elektromagnetischen Wellen vor, bei denen die Wellen-
funktion E(r,t) ein Vektor ist? Es zeigt sich, dass man
in fast allen in der Praxis vorkommenden Féllen mit der
eben entwickelten skalaren Beschreibung der Interferenz-
phédnomene auskommt. Anstelle von (7.3) erhdlt man

E2(r,t) = (4 (1) + Ea(r, 1))

(7.16)
=E? 4+ E3+2E; -E.

Wenn die Vektoren E; und E; in die gleiche Richtung
zeigen, ist E1 - E; = E1Ej, und es dndert sich nichts gegen-
iiber (7.3). Dieser Fall liegt vor, wenn zwei kohérente, in
der gleichen Richtung linear polarisierte Wellen iiberla-
gert werden, aber auch bei zwei kohdrenten unpolarisier-
ten Wellen. Hier sorgt ndmlich die Kohédrenz der Wellen
dafiir, dass E; || E; ist. Man beobachtet also auch mit ,na-
tlirlichem Licht”, wie es von Temperaturstrahlern (Sonne,
Bogenlampe, Gliihbirne) emittiert wird, die durch (7.6)-
(7.15) beschriebenen Interferenzerscheinungen, wenn es
gelingt, zwei koharente Wellen herzustellen.

Stehen die Vektoren E; und E, senkrecht aufeinander,
ist in (7.16) E; - E; =0, es gibt keine Interferenzstrei-
fen. Die Uberlagerung von zwei kohdrenten, senkrecht
zueinander linear polarisierten Wellen fiihrt zwar zu in-
teressanten Phidnomenen, die wir in Kap. 9 besprechen
werden; die Interferenzerscheinungen, auf die es uns hier
in diesem Kapitel ankommt, gibt es aber nicht.

Die Vektornatur des elektrischen Feldes bereitet uns also
keine besonderen Probleme. Eine ganz andere Frage ist,
wie man kohérente elektromagnetische Wellen erzeugt.
Im technischen Hochfrequenzbereich ist das verhaltnis-
mafiig einfach: Man speist zwei parallel zueinander ste-
hende Dipolantennen aus dem gleichen HF-Generator.
Das geht aber nicht bei sichtbarem Licht. Der erste Nach-
weis von Interferenzen mit Licht gelang um 1800 dem
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Abbildung 7.6 Youngsches Experiment. a Prinzip, b realistischere Darstel-
lung, c das in der Bildebene beobachtete Interferenzbild. Die beiden Beugungs-
scheibchen sind gestrichelt eingezeichnet

englischen Arzt Thomas Young! mit einer Versuchsanord-
nung, deren Prinzip bis heute als exemplarisch gilt. Es ist
in Abb. 7.6a gezeigt. Licht fallt von links auf die feine Off-
nung Q. Im Idealfall einer sehr kleinen Offnung geht von
Qo eine Kugelwelle aus. Sie trifft auf die kleinen, nahe

! Thomas Young (1773-1829), ein echtes Wunderkind, hatte mit zwei
Jahren Lesen gelernt, mit vier die Bibel bereits zweimal durchgele-
sen und noch als Jugendlicher alle klassischen und noch ein halbes
Dutzend orientalische Sprachen gelernt. Auf Betreiben seines ver-
mogenden Grofionkels, eines Londoner Augenarztes, studierte er
Medizin, u.a. in Géttingen, wo er Lichtenbergs grofiartige Physik-
vorlesung horte. Nach seiner Promotion {ibernahm er die Praxis
seines Grofionkels, interessierte sich aber mehr fiir das Auge und
das Licht als fiir seine Patienten. Er entdeckte, wie die Adaption
des Auges funktioniert, erkannte, was Astigmatismus ist und schuf
die Grundlage der Theorie des Farbensehens, die dann 50 Jahre
spater von Helmholz vervollkommnet wurde (Abschn. 3.3). Er tat
auch den ersten Schritt zur Entzifferung der Hieroglyphen: Er kam
auf die Idee, dass auf dem Stein von Rosette die besonders einge-
rahmten Zeichengruppen Kénigsnamen sind. Da dieser Stein den
gleichen Text auch in griechischer Schrift enthalt, konnte er durch
Vergleich der Texte die ersten dgyptischen Schriftzeichen entziffern.
— Mit seiner Wellentheorie erklarte Young eine ganze Reihe von Inter-
ferenzphdnomenen, die wir im Folgenden besprechen werden, z.B.
die Farben diinner Blattchen und die Newtonschen Ringe. Mit diesen
bestimmte er auch als erster die Wellenlange des Lichts und deren
Abhéngigkeit von der Farbe.

beieinander liegenden Offnungen Q; und Q. Wenn die
Strecken QpQ; und QpQ> gleich lang sind, sind die Wel-
len, die nun von Q; und Q; ausgehen, phasengleich, und
erzeugen auf der Bildebene B Interferenzstreifen. Die Ma-
xima liegen nach (7.15) unter dem Winkel ¢ mit

sindt =m R
Youngs Versuchsanordnung ist in Abb. 7.6b gezeigt. Die
Durchmesser D der Offnungen Qp, Q1 und Q; betrugen
einige zehntel mm. Sie waren somit grof3 gegen die Licht-
wellenldnge. Infolgedessen gingen von diesen Offnungen
keine Kugelwellen aus, sondern zwei durch Beugung an
den Offnungen aufgeweitete Strahlenkegel. Nach (6.42)
sieht man in der Bildebene zwei Beugungsscheibchen mit
dem Radius p = 1,22(AL,/D), deren Zentren voneinan-
der den Abstand (1 + L,/Ly)d haben. Mit L; = L, = 2m,
A =500nm, D =0,2mm, d = 1mm ist p = 6,1 mm und
man erhélt das in Abb. 7.6¢ gezeigte Bild. In der Uber-
lappungszone treten Interferenzstreifen auf. Young beob-
achtete, dass sich bei einer Veranderung des Abstands d
der Streifenabstand verdndert, wie von (7.17) vorherge-
sagt, und dass die Streifen verschwinden, wenn eine der
Offnungen zugehalten wird. Damit bewies Young die
Wellennatur des Lichts. Newtons damals allgemein aner-
kannte Korpuskulartheorie des Lichts war widerlegt.

(7.17)

Das Experiment ist leichter durchzufiihren, wenn man
statt der kreisrunden Offnungen schmale Spalte benutzt.
Man spricht daher meist vom Doppelspalt-Experiment.
Es spielt bis heute in der Physik eine bedeutende Rolle.
Wir werden darauf in Kap. 8 und spéter im Zusammen-
hang mit der Quantenmechanik zurtickkommen.

Young gelang es zunédchst nicht, die Fachwelt von der
Wellentheorie zu tiberzeugen. Der Einwand war, dass die
Interferenzstreifen von Young mit , gebeugtem” Licht be-
obachtet wurden, tiber dessen Natur man keine klare
Vorstellung hatte. Den Ausschlag zugunsten der Wel-
lentheorie gaben erst 15 Jahre spdter die Experimen-
te von Fresnel®. Sie sind in Abb. 7.7 gezeigt. Bei dem
Doppelspiegel-Experiment (Abb. 7.7a) dienen die Spie-
gelbilder der punktférmigen Lichtquelle Qp als kohi-
rent strahlende Punktquellen. Die interferierenden Wellen
werden hier nicht durch Beugung, sondern durch Refle-
xion erzeugt. Beim Fresnelschen Biprisma (Abb. 7.7b)
entstehen sie durch Brechung an zwei sehr schmalen Pris-
men. Damit war das Interferenzphdnomen unabhangig
von Beugungserscheinungen nachgewiesen.

2 Auguste Fresnel (1788-1827) war im Gegensatz zu Young durchaus
kein Wunderkind. Hochstens wire zu berichten, dass er nach sorgfiil-
tigen technologischen Studien fiir sich und seine Freunde Pfeile, Bgen
und Blasrohre baute, die sich als gefahrliche Schusswaffen erwiesen
und mit denen er die gesamte Dorfbevolkerung gegen sich aufbrach-
te. Als Schiiler und Student war er eher unauffillig. Im néchsten
Kapitel findet man mehr iiber Fresnels interessanten Lebenslauf.
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Abbildung 7.7 Fresnels Interferenzversuche. a Doppelspiegel, b Biprisma. Q;
und @, sind virtuelle Bilder der Punktlichtquelle Qp. A konstruktive, B destruk-
tive Interferenz

Die kohdrenten Wellenziige werden bei den bisher be-
schriebenen Versuchen erzeugt durch Teilung der Wellen-
front, die von einer Punktquelle ausgeht. Man kann auch
auf andere Weise aus einer Welle zwei interferenzfihige
Wellen machen: durch Aufteilung der Wellenamplitude.
Nehmen wir an, eine ebene Welle fillt unter dem Win-
kel B auf eine planparallele Platte aus durchsichtigem
Material. Dann wird sie sowohl an der Vorderseite als
auch an der Riickseite teilweise reflektiert und teilweise
durchgelassen. Fiir die Lichtstrahlen, d. h. fiir die auf den
Wellenfronten senkrecht stehenden geraden Linien, ergibt
sich der in Abb. 7.8 gezeigte Verlauf. Da fiir § < 60° nur
ein kleiner Teil der Welle reflektiert wird (vgl. Abb. 5.23),
kann man in diesem Winkelbereich weitere Reflexionen
in der Platte vernachlédssigen, man hat es auch hier mit
Zweistrahlinterferenzen zu tun. Die Wellenfelder vor und
hinter der Platte enthalten jeweils zwei Anteile, die mit-
einander interferieren.

Wir berechnen die Differenz der optischen Weglingen
der beiden reflektierten Wellen. Mit Hilfe der beiden in
Abb. 7.8 eingezeichneten rechtwinkligen Dreiecke und
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Abbildung 7.8 Reflexion und
Transmission einer ebenen Welle
an einer planparallelen Platte

mit dem Brechungsgesetz erhdlt man

Alopt:n(ﬁ—kﬁ)—@:%—Zdtanﬁ/sinﬁ
_ 2nd 2\ /
—m(l—sm ﬁ)—Zdncos[S
=2d\/n? —sin? B, (7.18)

wobei n der Brechungsindex und d die Dicke der Platte
ist. Wie man in Abb. 7.8 erkennt, erfolgt die Reflexion der
einen Teilwelle am optisch dichteren Medium, die der an-
deren am optisch diinneren. Es tritt also ein zuséatzlicher
Phasensprung um 7t auf, und die Phasendifferenz zwi-
schen den beiden reflektierten Wellen ist

(7.19)

Bei der durchgelassenen Welle gilt ebenfalls (7.18), es gibt
aber keinen Phasensprung. Man erhalt

_ 4

°=73

n2 —sin® B . (7.20)

Mit diesen Formeln kann man eine Fiille von Interferen-
zerscheinungen quantitativ behandeln.

Interferenzen gleicher Neigung. Sind d, n und A vorge-
geben, hangt die Phasendifferenz zwischen den beiden
interferierenden Wellen nur noch vom Einfallswinkel
ab. Das fithrt dazu, dass man mit einer ausgedehnten
monochromatischen Lichtquelle Interferenzstreifen beob-
achten kann. Die in Abb. 7.9 gezeigte Linse fokussiert
Wellen, die unter einem bestimmten Winkel j einfallen,
in der Brennebene. Daher entstehen dort je nach dem Nei-
gungswinkel B helle oder dunkle Interferenzstreifen. Man
nennt sie Streifen gleicher Neigung. Die Linse in Abb. 7.9
kann natiirlich auch die Augenlinse sein. Damit man die
Streifen sieht, muss man das Auge auf unendlich einstel-
len, denn es interferieren hier parallele Wellenziige. Man
nennt solche Streifen auch virtuelle Interferenzstreifen.
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Abbildung 7.10 Erzeugung von reellen Interferenzstreifen mit einer diinnen
planparallelen Platte

Es gibt noch eine andere Moglichkeit, mit einer plan-
parallelen Platte eine Welle in zwei kohérente Teilwellen
aufzuspalten. Der Strahlengang ist in Abb. 7.10a gezeigt.
Q ist eine monochromatische Punktquelle. Die beiden bei
P interferierenden Wellen mit den Einfallswinkeln 1 und
B2 werden an der Vorder- und Riickseite der Platte reflek-
tiert. Wenn a > d ist, ist §1 ~ B, und die Phasendifferenz
ist in guter Naherung durch (7.19) gegeben. Wie die zu
P' und P” fithrenden Linien zeigen, gilt dies unabhén-
gig davon, wie weit der Punkt P von der Platte entfernt

Abbildung 7.11 Zur Entstehung der Farben diinner Blattchen

ist. Sofern der Abstand a der Quelle von der Platte grof3
gegen die Plattendicke d ist, ist in P’ die Phasendifferenz
genauso grofd wie in P”. Der gesamte Raum vor der Platte
ist von reellen Interferenzstreifen durchzogen, die iiber-
all aufgefangen werden konnen. Dies zeigt eindriicklich
der von R.W. Pohl eingefiihrte Demonstrationsversuch,
bei dem eine Glimmerplatte und eine Hg-Spektrallampe
verwendet werden (Abb. 7.10b). Die Lampe beleuchtet ei-
ne Lochblende. Wird die Lochblende entfernt, d. h. wird
hier die Punktquelle durch eine ausgedehnte Lichtquel-
le ersetzt, verschwinden die Interferenzstreifen, weil sich
nunin P destruktive und konstruktive Interferenzen tiber-
lagern. Man kann dann nur noch mit Hilfe einer Linse die
virtuellen Interferenzstreifen gleicher Neigung beobach-
ten.

Interferenzen gleicher Dicke. Dieser Typ von Interfe-
renzerscheinungen entsteht, wenn der Einfallswinkel S
durch die Versuchsanordnung fest vorgegeben und die
Dicke variabel ist. Man kann dann im monochromati-
schen Licht dhnlich wie in Abb. 7.9 virtuelle Interferenz-
streifen beobachten, die diesmal die Konturen gleicher
Dicke nachzeichnen. In manchen Féllen entstehen auch
reelle Interferenzstreifen. Zum Beispiel zeigt sich, dass In-
terferenzen von dem in Abb. 7.10 gezeigten Typ sogar
mit einer ausgedehnten Weifllichtquelle beobachtet wer-
den, wenn die Platte sehr diinn ist und man sein Auge
auf die Oberfldache der Platte akkommodiert (Abb. 7.11).
Dann sieht man von jeder Stelle der Oberfldche nur Strah-
len aus einem eng begrenzten Einfallswinkelbereich Ap.
Je nach Schichtdicke und Wellenldnge ist die Interferenz
konstruktiv oder destruktiv. Bei Beleuchtung mit Weifs-
licht bewirkt das die Verstirkung oder Unterdriickung
gewisser Wellenldngenbereiche. Das fiihrt zu den schil-
lernden Farben diinner Schichten, deren Dicke von Ort zu
Ort etwas schwankt. Die Seifenblase und der Olfleck auf
dem Wasser oder auf dem nassen Asphalt sind Beispiele
dazu. Die Farben diinner Blédttchen sind also Interferen-
zen gleicher Dicke.

Da der Gangunterschied der interferierenden Strahlen
proportional zur Schichtdicke ist, tritt das Phanomen nur
bei sehr diinnen Schichten auf. Bei dicken Schichten (d >>
A) sind keine Farben mehr sichtbar, weil sich dann beim
Punkt P in Abb. 7.11 auch in dem kleinen, vom Auge
erfassten Winkelbereich konstruktive und destruktive In-
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Abbildung 7.12 Zwei Anordnungen zur Erzeugung von Interferenzen gleicher
Dicke. a Fizeaustreifen, b Newtonsche Ringe

terferenzen tiberlagern. Dennoch kann man Interferenzen
gleicher Dicke auch bei grofieren Schichtdicken beobach-
ten, wenn das Licht senkrecht oder fast senkrecht zur
Oberflache einfallt. Dann ist in (7.18) sin? B gegentiber 1>
vollstindig vernachldssigbar, und die Interferenz hangt
nur noch von d und A ab. Zwei klassische Beispiele sind
in Abb. 7.12 gezeigt.

In Abb. 7.12a sind zwei planparallele Platten aufeinan-
der gelegt und an einem Ende mit einem Abstandsstiick
auseinandergehalten. Es entsteht ein Luftkeil, an dessen
Oberflache man bei monochromatischer Beleuchtung die
sogenannten Fizeaustreifen beobachten kann. Das Licht
soll nahezu senkrecht einfallen. Wir betrachten die Re-
flexion an der Unterseite der oberen Platte und an der
Oberseite der unteren. Die Differenz der optischen Weg-
langen ist Alopt = 2d(x) = 2ax. Bei der Reflexion an der
unteren Platte entsteht ein Phasensprung um 7. Man er-
hélt deshalb destruktive Interferenz, wenn 2ax = mA ist.
Der Abstand zwischen zwei dunklen Streifen ist

mA—(m—-1)A A

Ax = = .
X 20 20

(7.21)

Er hangt nur von A und vom Winkel « ab.

In Abb. 7.12b ist die Entstehung der Newtonschen Ringe
gezeigt, eines bekannten Phanomens, das sich manchmal
auch bei zwischen Glasplatten gerahmten Dias unlieb-
sam bemerkbar macht. Auf eine optisch plane Glasplatte
ist eine plankonvexe Linse mit dem Kriimmungsradius R
gelegt. Bei Beleuchtung mit Weifllicht sieht man in Re-
flexion und in Transmission nahe der Mitte einige bunte
Ringe. Bei monochromatischem Licht reicht das Ringsys-
tem bis weit nach aufien. Die Ringe sind genau kreisrund,
vorausgesetzt, dass Linse und Platte hinreichend prézise
geschliffen und poliert sind. Der Radius der dunklen In-
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terferenzringe ist
r = V2Rh = |/RAlopt = VmAR,

denn auch hier gibt es den Phasensprung um 7. Diese
Beziehung erhilt man aus 12 ~ (R + h)? — R%. Beide Ver-
fahren zur Erzeugung von Interferenzen gleicher Dicke
werden in der optischen Industrie zur Qualitdtskontrolle
bei Linsen und bei Platten eingesetzt.

(7.22)

Anwendungen

Interferenzen von zwei Lichtwellen finden in der Tech-
nologie (,,optische Vergiitung von Oberflichen”) und in
der Messtechnik (,,Interferometrie”) zahlreiche Anwen-
dungen. Wir beschranken uns auf wenige Beispiele.

Reflexvermindernde Schichten. An der Grenzfliche
zwischen zwei durchsichtigen Medien mit verschiedenen
Brechungsindizes, z. B. an der Grenzfldche zwischen Luft
und Glas, wird ein Teil des einfallenden Lichts reflek-
tiert. Dieser Effekt ist besonders bei Linsensystemen sehr
storend, denn diese enthalten gewdohnlich viele solche
Grenzflachen. Man kann die Reflexion weitgehend unter-
driicken, indem man auf das Glas eine sogenannte A /4-
Schicht aufdampft (optische Vergiitung). Wie Abb. 7.13
zeigt, wird das Licht an der Vorder- und an der Riickseite
dieser Schicht reflektiert. Dabei entsteht bei senkrechtem
Lichteinfall ein Gangunterschied G = A/2, vorausgesetzt
die Reflexion findet beide Male am optisch dichteren
oder beide Male am optisch diinneren Medium statt.
Die reflektierte Welle kann fiir eine bestimmte Wellenldn-
ge durch destruktive Interferenz vollstindig ausgelscht
werden, wenn man den Brechungsindex der Schicht ge-
eignet wahlt. Wir berechnen n; mit (5.39):

np —m
1y + 1y

ny —n
_ Mmoo
n3 + np

Ny = /NMns . (723)

Die Formel zeigt, dass die gleiche Schicht bei den Uber-
gangen Glas-Luft und Luft-Glas wirksam ist.

LAy~

——
® |®

Abbildung 7.13 Reflexvermindernde Schicht
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Abbildung 7.14 Michelson-Interferometer

In der Praxis wahlt man die Schichtdicke so, dass die de-
struktive Interferenz fiir gelb-griines Licht (A ~ 560nm)
maximal wird. (Daher kommt der purpurne Schimmer
optisch vergiiteter Linsen). Als Aufdampfmaterial mit
niedrigem Brechungsindex kommt vor allem Magnesi-
umfluorid MgF; in Frage. Dann ist n, = 1,38, und um
(7.23) streng zu erfiillen, miisste n3 = 1,9 sein. Das ist
ein sehr hoher Wert. Man kann aber mit einer MgF,-Ver-
glitung auch bei n3 ~ 1,5 die Reflexion reduzieren, und
zwar von R = 4 % (unvergiitet) auf R =~ 1 % (Aufgabe 7.4).
Das ist fiir die meisten Zwecke ausreichend. Will man ein
besseres Resultat erzielen, muss man zu 2- oder 3-facher
Beschichtung greifen, und das ist natiirlich aufwéandiger.

Das Michelson-Interferometer. Das Experiment von Mi-
chelson und Morley, in dem die Konstanz der Lichtge-
schwindigkeit nachgewiesen wurde, haben wir schon in
Bd. 1/13 besprochen. Wir wollen nun das Michelson-
Interferometer genauer betrachten. Der Aufbau des In-
terferometers ist in Abb. 7.14 gezeigt. Es hat auch heute
noch grofie Bedeutung, z.B. in der Spektroskopie und
als Instrument fiir hochprézise Langenmessungen. Das
von links einfallende Licht wird an einem halbdurch-
lassigen Spiegel, dem Strahlteiler T, in zwei Teilwellen
zerlegt. Nach Reflexion an den Spiegeln S; bzw. S, lau-
fen die Teilwellen nochmals tiber den halbdurchlédssigen
Spiegel und gelangen dann zum Detektor. In dem zu S;
fithrenden Arm ist eine Kompensationsplatte eingebaut,
die abgesehen von der Verspiegelung baugleich mit dem
Strahlteiler ist. Sie bewirkt, dass die optischen Wegldn-
gen in beiden Armen gleich sind, wenn die geometrischen
Langen tibereinstimmen. Dies gilt dann unabhéngig von
der Lichtwellenldnge und der Dispersion im Strahlteiler.
Der Spiegel S; kann mit Hilfe einer Mikrometerschraube

in Richtung des Arms verschoben werden. Vom Detektor
aus gesehen ist S das im Strahlteiler erzeugte Spiegelbild
von Sy. Mit Hilfe von Stellschrauben kénnen die Spiegel
so justiert werden, dass S’1 und S, miteinander einen klei-
nen Winkel « einschliefSen. Von der Position des Detektors
aus sieht man dann Interferenzstreifen gleicher Dicke.
Man kann sie mit dem Auge betrachten, oder auch, wie
in Abb. 7.14 gezeigt, auf eine Blendendffnung abbilden,
hinter der sich ein Photomultiplier oder eine Photodiode
befindet. Sie haben wie die Fizeau-Streifen voneinander
einen konstanten Abstand, der aufler von der Wellenlédnge
nur vom Winkel « abhédngt. Nach (7.21) liegt bei sicht-
barem Licht der Streifenabstand fiir z.B. & = 10~ *rad
im Bereich von Millimetern. Da beide Teilwellen je ein-
mal am Strahlteiler reflektiert und einmal durchgelassen
werden, ist unabhédngig vom Reflexionsgrad des Strahl-
teilers I; ~ I,. Man erhilt daher ein sehr kontrastreiches
Interferenzbild. Wird nun S; um die Strecke A/2 parallel
verschoben, verschiebt sich das Streifenmuster genau um
den Streifenabstand Ax. Verschiebt man S; um die Strecke
Ad, wandern an der Blendendffnung N Streifen vorbei,
und es ist
Ad=N A
=N3.

Es ist kein Problem, die an der Blende im Detektor vor-
beilaufenden Streifen elektronisch zu zdhlen. Auch kann
man mit einigen Tricks elektronisch den Abstand zwi-
schen zwei Streifen mit einer Genauigkeit von 1/1000
des Streifenabstands messen. Daher kann man mit dem
Michelson-Interferometer Ldngenmessungen mit einer
Genauigkeit im Nanometerbereich durchfiihren, voraus-
gesetzt, man hat eine Lichtquelle mit genau bekannter
Wellenlédnge. Diese Voraussetzung erfiillt z.B. der Jod-
stabilisierte Helium-Neon-Laser. Wie diese Stabilisierung

funktioniert, wird am Ende des Kapitels erklart.3

Das FTIR-Spektrometer. Sein Name ist die Abkiir-
zung fiir ,Fourier-Transformations-Infrarot-Spektrome-
ter”. Ziel ist es, die Wellenldngenabhingigkeit der Ab-
sorption oder Reflexion von Proben fiir infrarotes Licht
zu untersuchen. Zur Beleuchtung wird eine thermische
Quelle mit einem kontinuierlichen Spektrum, aus Si-C
bestehend und Globar genannt, verwendet. Die Probe

3 Die erste und historisch gesehen wichtigste Langenmessung mit
einem Michelson-Interferometer war die Vermessung des Pariser
Urmeters durch Michelson und Benoit. Das Ergebnis war 1m =
(1553163,5 + 0,1) mal die Wellenldnge der roten Linie im Cadmi-
um-Spektrum. Damals (1895) gab es weder elektronische Zahlung
noch eine Lichtquelle, mit der ein 1 m langer koharenter Wellenzug
erzeugt werden konnte. Wie die damit verbundenen messtechni-
schen Probleme gemeistert wurden, findet man z. B. bei Max Born,
,Optik”, S. 129 (Springer-Verlag, 1985). Auf dieser Messung und auf
ihren spéteren Wiederholungen beruhten die genauen Angaben von
Lichtwellenldngen in Einheiten des metrischen Systems, die in der
Folgezeit bei der Aufklarung der Atomstruktur eine entscheidende
Rolle spielten.
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befindet sich hinter einem Interferometer, das die Wellen-
langenselektion ermdglicht.

Dies ist ein Michelson-Interferometer, von dem ein Spie-
gel mit einer Prazisionsmechanik um insgesamt eine Stre-
cke L verschoben werden kann. Die Spiegel sind hier so
orientiert, dass man statt des oben erwidhnten Strichmus-
ters ein System konzentrischer Ringe beobachtet, deren
Radien wellenldngenabhédngig sind. Fiir monochromati-
sche Strahlung lasst sich die Intensitdt im Zentralbereich
mit (7.13) und (7.10) fiir eine Zweistrahlinterferenz be-
rechnen, wobei hier § durch die Weglangendifferenz x
zwischen den Interferometerarmen entsteht:

a(x) = L0

(1+cosd)dk mit (S:ZxZTH:Zxk.

(7.24)
Die Wahl des x-Nullpunkts sorgt dafiir, dass in (7.24)
nur cos-Terme vorkommen. Gleichung (7.24) wurde in
differentieller Form geschrieben. Von der Quelle werden
simultan viele Frequenzen emittiert. Da die Wellenpha-
sen vollig unkorreliert sind, addieren sich die Intensitédten
und nicht die Amplituden der Teilwellen:

I(x) = / dIsl((k) (1 + cos(2xk)) dk . (7.25)
0

Abgesehen von dem konstanten Term, der lediglich zu
einer rechnerischen Komplikation fiihrt, ist die Intensi-
tat I(x) die Fourier-Transformierte des Wellenzahl-Spek-
trums dIi(k)/dk. Gleichung (7.25) lasst sich daher mit
Hilfe eines Computers numerisch umkehren: Man fiihrt
N + 1 Intensitdtsmessungen bei den Spiegelstellungen

X0=0,x =Ax= xy =NAx =1L

N,...

durch, diskretisiert das Inversionsproblem und erhalt im
Idealfall

dIk(k) k 3 k
&% F(k) = const + Ax;)l(xi) cos(2xk) . (7.26)

Die rekonstruierte Funktion F(k) ist eine periodische
Funktion von k. Die Periodizitdt ko ergibt sich aus der
Bedingung 2x1kg = 2Axky = 27t zu kg = m/Ax = N7t /L.
Fir alle x; sind dann die Phasen 2x;kq in (7.26) ganzzah-
lige Vielfache von 27t, und fiir die Wellenzahl kpax = ko/2
sind sie ganzzahlige Vielfache von 7t. Deshalb ist die
Funktion F(k) um die Stelle k = kmax Symmetrisch: Zu
jeder Wellenzahl k unterhalb von kmax gibt es eine ande-
re oberhalb von kpax mit dem gleichen Funktionswert F.
Es ist nicht moglich, gleichzeitig das Spektrum unterhalb
und oberhalb von knax zu rekonstruieren, man beschrankt
sich auf die Wellenzahlen k < kmax. Die kleinste Periodizi-
tat Ak in der Summe (7.26) weist der Term proportional
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Abbildung 7.15 Strahlengang in einem FTIR-Spektrometer. Q: Lichtquelle,
Sph: spharische Spiegel, B: Aperturblende, S, und Sg: fester und bewegli-
cher Interferometer-Spiegel, S: Spiegelbild von Sg, ST: Strahlteiler, P: Probe,
D: Detektor. 1,1” und 2,2’: Paare von Lichtwegen mit unterschiedlichem Gang-
unterschied. Der Lichtweg 3, vom gleichen Punkt der Quelle kommend wie 1,
verlauft im Interferometer parallel zu 1 und trifft wieder auf 1 in der Probe

zu cos(2NAxk) = cos(2Lk) auf, es ist Ak = 7t/L. Feine-
re Details, also kleinere Wellenzahldifferenzen und die
entsprechenden Frequenzdifferenzen Av = cAk/2m las-
sen sich nicht auflésen. Das Spektrum ist also im Bereich

0 < k < kmax = N7t /2L (7.27)

mit der Auflésung

Ak =m/L (7.28)

rekonstruierbar. Die spektrale Auflosung ist durch den
Hubweg L begrenzt. Die Tatsache, dass kmax nicht gleich
NAk ist, sondern nur halb so grofs, wird in der Nach-
richtentechnik als das Nyquistsche Abtasttheorem be-
zeichnet. Wird die Folge der Messungen (der ,Scan”)
nicht ab x = 0, sondern ab x = Ly, in N Schritten mit
dem Gesamthub L durchgefiihrt, ldsst sich ein Spek-
trum im Bereich kmin = 7T/Lmin < k < kmax = 7T/ Lmin +
Nrt/2L ermitteln. In der Praxis miissen an die Resultate
Phasenkorrekturen angebracht werden, weshalb zu (7.26)
Sinuskomponenten hinzugefiigt werden miissen.

In einem FTIR-Spektrometer werden fiir optische Abbil-
dungen Spiegel verwendet (Abb. 7.15). Die Strahlung der
Quelle Q wird zunéchst auf eine Aperturblende B fokus-
siert und, bevor sie in das Interferometer eintritt, parallel
gebtindelt. Der Strahlteiler ST muss infrarotdurchléssig
sein, verwendet wird z. B. KBr. Nach Verlassen des Inter-
ferometers wird der IR-Strahl auf die Probe P fokussiert
und gelangt zuletzt zu einem IR-Detektor D, der ein
Halbleiterdetektor oder ein pyroelektrischer Detektor sein
kann. Als Hilfsmittel zur Kalibration der Wellenldnge und
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Abbildung 7.16 Transmission von Infrarotstrahlung durch eine 70 nm dicke
organische Halbleiterschicht (CBP) auf einem Silizium-Wafer bei senkrechtem
Lichteinfall. Das Spektrum wurde normiert auf die Absorption eines reinen Sili-
zium-Wafers, andernfalls ware die Absorption durch den organischen Halbleiter
nicht zu erkennen. Man sieht am MaBstab, dass diese Analyse eine hohe Genau-
igkeit der Intensitatsmessung voraussetzt. Aufnahme: A. Pucci, Kirchhoff-Institut
der Universitat Heidelberg

zur Steuerung dient ein Laserstrahl bekannter Frequenz,
z.B. der eines He/Ne-Lasers, der zusatzlich eingekoppelt
und detektiert wird. Damit Licht mit den unrekonstruier-
baren Wellenzahlen nicht in den Detektor gelangt, muss
es mit einem geeigneten Fenster unterdriickt werden. Als
Beispiel zeigt Abb. 7.16 das Absorptionsspektrum eines
organischen Halbleiters. Ein Zahlenbeispiel findet man in
Aufg.7.7.

FTIR-Spektrometer haben heute die ,,dispersiven” Instru-
mente verdrangt, die auf einem Reflexionsgitter (Ab-
schn. 8.2) basieren. Letztere selektieren nacheinander N
Frequenzen, bei denen die Intensitdt gemessen wird. Da
bei N Scans in einem FTIR-Spektrometer jeweils die In-
tensitat des gesamten Spektrums registriert wird, erhalt
man eine N-fache Erhohung der Intensitit gegeniiber ei-
nem dispersiven Instrument. Wenn der statistische Fehler
der Messung vom Rauschen dominiert wird, steigt der
Rauschpegel gegeniiber einem dispersiven Instrument
nur um einen Faktor v/N an. Es lasst sich zeigen, dass
die Fourier-Transformation (7.26) diesem Sachverhalt kei-
nen Abbruch tut. Das Signal-zu-Rauschverhéltnis eines
FTIR-Spektrometers ist also um einen Faktor proportional
zu /N besser, was erheblich kiirzere Messzeiten ermog-
licht.

Ein zusétzlicher Vorteil des FTIR-Spektrometers gegen-
iiber dem Gitterspektrometer ist sein hoherer Lichtdurch-
satz. Darunter versteht man den Bruchteil der Leistung
der Lichtquelle, der in den Detektor gelangt. Detektiert
wird nicht nur das Lichtbiindel, das senkrecht auf die
Interferometerspiegel trifft, sondern auch jedes, das um
einen nicht zu groflen Neigungswinkel 8 dagegen gekippt
ist (Abb. 7.15 und 7.17). Von B hiangt der Gangunterschied
zwischen zwei Lichtstrahlen ab, die an den beiden In-
terferometerspiegeln reflektiert werden. Man findet ihn
fiir den maximalen Spiegelabstand mit (7.18), indem man

Abbildung 7.17 Detailan-

sicht des Gangunterschieds 2
zwischen den Strahlen 2 und 2’
aus Abb. 7.15. Die Buchstaben A
bis D entsprechen Abb. 7.8

dort n =1 und d = L setzt: 2L cos  ~ 2L — LB?. Die die-
sem Gangunterschied entsprechende Phase 47tLcos3/A
darf sich von der grofiten in (7.26) auftretenden Pha-
se 2Lk um nicht mehr als 271 unterscheiden, woraus

folgt:
27L B3 A
#:m = Pmax=1\/T -

Der Radius der Aperturblende ist dann Bmaxf, wenn f die
Brennweite des abbildenden Spiegels ist (Abb. 7.15), und
die Blende hat die Fliche 7tf?A /L. Hierin lasst sich A/L
durch das maximale Auflsungsvermogen R des Interfe-
rometers ausdriicken, das bei der minimalen Wellenlédnge
Amin Vorliegt:

_kmax 2w 27l 2
R="Nc "ok A L R

Im Gegensatz zum FTIR-Spektrometer erfolgt bei einem
dispersiven Instrument die Wellenldngenselektion durch
eine Lichtablenkung senkrecht zur mittleren Strahlrich-
tung, wie wir am Beispiel des Prismenspektrometers ge-
sehen haben. Am Spektrometereingang befindet sich eine
spaltformige Blende der Breite Bmaxf, wobei der Strahl-
Offnungswinkel Bmax durch das Auflosungsvermogen R
des Spektrometers begrenzt ist. Wie man aus den Resul-
taten des nédchsten Kapitels ablesen kann, ergibt sich fiir
das Gitter Bmax ~ 1/R. Mit der vertikalen Hohe / des
Beleuchtungsspalts erhdlt man als Flache der Apertur-
blende Bmaxfh = fi/R. Als Verhiltnis der Blendenflichen
zwischen den beiden Spektrometertypen erhélt man bei
gleicher Auflosung den von der Wellenldnge unabhangi-
gen Wert 27tf2/fh = 27tf /h. Aus konstruktiven Griinden
ist die Spalthohe immer deutlich kleiner als die Brennwei-
te, sodass das FTIR-Spektrometer um rund zwei GrofSen-
ordnungen im Vorteil ist. Wie man in Abb. 7.15 erkennt,
bedingt die Begrenzung des Offnungswinkels durch die
Aperturblende automatisch auch eine Begrenzung des
nutzbaren Lichtquellendurchmessers.

Die obigen Uberlegungen sind nicht spezifisch fiir In-
frarotstrahlung. In der Tat werden Instrumente, die auf
diesem Prinzip basieren, auch im Bereich des sichtbaren
Lichts und im nahen Ultraviolett eingesetzt.
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Bei den bisherigen Betrachtungen sind wir haufig von
einer monochromatischen Punktlichtquelle ausgegangen.
Das war eine Idealisierung, die unsere Uberlegungen er-
heblich erleichterte. Reale Lichtquellen sind aber weder
streng monochromatisch noch punktférmig. Wir wollen
nun untersuchen, wie sich das auf die Kohdrenz des
Strahlungsfeldes auswirkt. Zunéchst bleiben wir jedoch
bei der Punktlichtquelle.

Quasimonochromatische Punktquelle, zeitliche und
raumliche Kohéarenz

In Abschn. 4.3 wurde gezeigt, dass ein zeitlich begrenz-
ter Wellenzug mit der Frequenz vy und der Dauer At
ein Frequenzspektrum mit der Bandbreite Av = 1/ At ent-
hilt (Gl (4.41)). Auch das Umgekehrte gilt: In einem
Wellenzug, der aus einer Lichtquelle mit der Bandbrei-
te Av stammt, ist die Phase nur eine Zeit At ~ 1/Av
stabil. Alle Lichtquellen haben eine endliche Bandbrei-
te. Kommt das Licht aus einem Monochromator, ist die
Bandbreite durch die Einstellung des Gerats gegeben, bei
einer Spektrallampe durch die Lichtemission der Ato-
me, durch deren thermische Bewegung und durch den
Gasdruck — wir werden darauf in Bd. V/1.1 eingehen.
Auch ein Laserstrahl hat eine endliche Bandbreite: Wir
werden das in Abschn. 7.4 diskutieren. Eine feste Phasen-
beziehung besteht in einer Lichtwelle nur wahrend der
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Kohirenzzeit

1

Ate ~ — . 7.29
o o (7.29)

Eine Lichtwelle mit relativ schmaler Bandbreite nennt
man quasimonochromatisch. Wie man sich eine solche
Welle vorzustellen hat, und wie sie z. B. bei der Lichtemis-
sion durch Atome zustande kommt, zeigt die Rechnersi-
mulation in Abb. 7.18. Es wurde angenommen, dass die
Atome unabhidngig voneinander, also zu statistisch ver-
teilten Zeitpunkten, Wellenziige mit der Feldstdrke

E(t) = Ege /7 (7.30)

emittieren (Abb. 7.18a). Abbildung 7.18b zeigt die Uberla-
gerung solcher Wellenziige bei im Mittel 100 Emissionsak-
ten im Zeitintervall 7. Die Phasenlage der resultierenden
Welle beziiglich einer Referenzwelle mit der festen Fre-
quenz wy ist in Abb. 7.18c gezeigt. Man sieht, dass die
Phase nur fiir gewisse Zeitabschnitte (At.); einigermafien
stabil bleibt. Danach verschiebt sich die Phase der Welle
in einer nicht vorhersagbaren Weise. In den Zonen zwi-
schen den einzelnen Abschnitten interferieren die Wellen
destruktiv. Daher sind die kohdrenten Abschnitte durch
Bereiche reduzierter Amplitude voneinander getrennt.
Innerhalb der Abschnitte bleibt die Amplitude einiger-
maflen konstant. Sie schwankt jedoch von Abschnitt zu
Abschnitt betrachtlich um den Langzeit-Mittelwert. Dass
die Struktur der Welle nicht von der begrenzten Statis-
tik herriihrt, sondern ein Kohdrenzphdnomen ist, zeigen
Abb. 7.18d und e, bei denen die Welle mit 10* Emissions-
akten pro Zeitintervall T berechnet wurde. Eine einfache

cos wot

30 "~ 50 60 {

Abbildung 7.18 Amplitude und Phase einer quasimonochromatischen Welle. a Einzelner Wellenzug, b Amplitude und ¢ Phase (in Radian) bei Uberlagerung von
100 Wellenziigen pro Zeitintervall 7, d und e bei 10* Wellenziigen /7. Auf der Zeitachse ist die Zahl der Schwingungen aufgetragen
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Abbildung 7.19 Messung der Koharenzlange mit dem Michelson-Interfero-
meter (Praktikumsversuch, Universitdt Heidelberg). Das Wellenlédngenintervall
AA wird am Austrittsspalt des Monochromators eingestellt. Ausgezogen: Theo-
retische Kurve (Ag = 546 nm)

Formel zur Beschreibung einer quasimonochromatischen
Welle ist

E(t) = Eo(t) cos (kox — wot + 6(t)) . (7.31)

Wir wollen nun die Kohdrenzzeit At. mit (7.29) abschét-
zen. In Abschn. 4.4 haben wir mit Hilfe der Fourier-
Transformation das Frequenzspektrum eines exponen-
tiell abklingenden Signals berechnet. Wir erhielten die
Lorentz-Kurve (4.57) mit der Halbwertsbreite (4.60):

(Av)gws = 1/27t15 = 1/ 717 .

Die Abklingzeit der Amplitude T in Abb. 7.18a entspricht
15 Schwingungen. Man erwartet also mit (7.29)

At = T = 45 Schwingungen . (7.32)

Das stimmt mit Abb. 7.18c und e qualitativ {iberein.*

Der Kohédrenzzeit At. entspricht bei der fortlaufenden
Welle die Kohidrenzliange

B = @NIg - (7.33)

Man kann sie verhaltnismafSig leicht mit einem Michel-
son-Interferometer bestimmen. Wenn die Arme des Inter-
ferometers auf genau gleiche Linge eingestellt sind, sieht

4 Zur quantitativen Definition der zeitlichen Kohérenz einer quasi-
monochromatischen Welle berechnet man die normierte Autokorre-
lationsfunktion

E(H)E*(t+1)

c) = E(OE (1)

E(t) ist die komplexe Amplitude der Welle. Die zeitliche Mittelung
erfolgt tiber eine lange Zeit T > At.. Offenbar ist C(0) = 1. At ist
die Zeit, in der |C(t)| auf 1/e abgefallen ist. Es zeigt sich, dass |C|
identisch ist mit der Grofe V, die wir in (7.35) definieren werden.

Tabelle 7.1 Typische Werte fiir die Kohérenzlange von Lichtquellen

Lichtquelle Ax.
Weif3licht einige um
Hg-Bogenlampe einige mm
Spektrallampe einige cm
Laser einige 100 m

man die Interferenzstreifen optimal, weil bei der Uberla-
gerung der beiden Teilwellen stets Bereiche gleicher Phase
zusammentreffen. Die Interferenzstreifen verschwinden,
wenn man in Abb. 7.14 den Spiegel S; um FAx. ver-
schiebt. Messergebnisse sind in Abb. 7.19 gezeigt. In
Tab. 7.1 findet man typische Werte fiir die Kohdrenzldn-
gen einiger Lichtquellen. Auch das weifse Licht hat noch
eine Kohédrenzldnge. Definiert man hier die Bandbreite
durch den Bereich, in dem die Empfindlichkeit des Au-
ges V(A) > 5% vom Maximalwert ist, erhdlt man mit
Abb. 3.22, (7.33) und (7.29)

Av_ AA _200nm _ 1

vo  Ag  600nm 3
c 3c

Axc = — ~ — =3Ag.

YT Av v 0

(7.34)

vg und Ag sind mittlere Werte der Frequenz bzw.
der Wellenldnge. Man kann also mit dem Michelson-
Interferometer oder mit anderen interferometrischen Vor-
richtungen auch ,Weillicht-Interferenzen” beobachten,
eine gute Methode, die Lichtwege auf gleiche Lange ein-
zustellen.

Ax. gibt direkt die longitudinale Kohirenz des Wellenfel-
des an. Die transversale Kohidrenz der Wellen bedeutet,
wie weit zwei quer zur Ausbreitungsrichtung liegende
Punkte noch auf der gleichen Wellenfront liegen kénnen.
Auch diese Grofse ist durch At. und Ax. gegeben: Wenn
beim Youngschen Experiment (Abb. 7.6) der Gangun-
terschied zwischen den interferierenden Wellen G > Ax.
wird, verschwinden die Interferenzstreifen. Die Breite des
Bereichs in der Beobachtungsebene, in dem man die Strei-
fen sieht, entspricht der transversalen Kohdrenz.

Diese longitudinale und transversale Kohdrenz des Wel-
lenfeldes kann man wunderschon beobachten, wenn man
auf ruhigem Wasser mit einem Boot in eine Zone mit vom
Wind erregten Kapillarwellen gerdt. Man sieht deutlich,
tiber welche Strecke die Phase der Wellen in Ausbrei-
tungsrichtung erhalten bleibt und wie weit quer zu dieser
Richtung die Wellenfronten reichen.

Teilweise Koharenz, Visibilitat. Es ist klar, dass beim
Uberschreiten des Kohirenzbereichs die Interferenzstrei-
fen nicht plotzlich verschwinden: Der Kontrast zwi-
schen maximaler und minimaler Intensitat, I[;ax und Iyin,
nimmt allmahlich ab. Als Mafs fir die Qualitat der Streifen
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Abbildung 7.20 Messung /
der raumlichen Koharenz mit Bildschirm %\
dem , Optischen Stethoskop” 0
(Gedankenexperiment) @ 2
Py
— 5 —

definiert man die Sichtbarkeit, auch Visibilitit genannt,
folgendermafien:

V= Imax - Imin

. 7.35
Imax + Imin ( )

Imax und I iy sind die Intensitdten in zwei nebeneinander
liegenden hellen und dunklen Interferenzstreifen. V =1
bedeutet I,;n =0, V =0 bedeutet Iin = Imax, also kei-
nerlei Interferenzstreifen.

Wir konnen damit eine quantitative Definition der Ko-
hirenz vornehmen. Wir machen uns zunachst klar, dass
Kohirenz eine Eigenschaft des Strahlungsfeldes ist, und
eine Frage der Korrelationen innerhalb dieses Feldes. Ist
die Phase am Punkt r zur Zeit t bekannt, kann man ver-
suchen, die Phase am Ort + zur Zeit ' vorherzusagen.
Trifft diese Vorhersage genau zu, ist das Wellenfeld an den
beiden Raum-Zeitpunkten vollstindig kohirent. Trifft sie
mit gleicher Wahrscheinlichkeit das falsche wie das rich-
tige Vorzeichen der Phase, ist es inkohdrent. Dazwischen
liegt das Gebiet der teilweisen Kohirenz. Eine praktische
Methode, die Kohiarenz des Wellenfeldes zu messen, ist
die Beobachtung von Interferenzstreifen. Zumindest im
Gedankenexperiment kann man die raumliche Kohérenz
eines beliebigen Wellenfeldes mit dem in Abb. 7.20 ge-
zeigten Optischen Stethoskop® messen: Es besteht aus

LN

Abbildung 7.21 Zur Ableitung der Kohérenzbedingung (7.36)

5Nach S.G. Lipson, H.S. Lipson und D.S. Tannhauser, ,Optik”,
Springer-Verlag (1997).
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zwei Ein-Moden-Lichtwellenleitern gleicher Lénge. Die
beiden zusammengefiihrten Enden dienen als Punktquel-
len in einem Youngschen Interferenz-Experiment. Bei
vollstandiger Kohdrenz ist V = 1 und bei Inkohédrenz ist
V = 0. Bei teilweiser Kohdrenz kann man die Visibilitat
der Streifen als quantitatives Maf3 fiir den Kohédrenzgrad
verwenden.

Ausgedehnte Lichtquellen, Kohdrenzbedingung

Jede Lichtquelle hat eine rdumliche Ausdehnung, und
gewdohnlich emittieren die Atome in der Lichtquelle ihr
Licht ganz unabhdngig voneinander. Man nennt eine
solche Lichtquelle inkohdrent, denn es gibt keine Pha-
senbeziehung zwischen den von verschiedenen Punkten
der Quelle abgestrahlten Wellen. Wie wir gleich sehen
werden, ist dennoch das Strahlungsfeld der Lichtquelle
in einem begrenzten Winkelbereich kohérent. Qualitativ
kann man sich das mit Abb. 7.21 klarmachen. Das von A
ausgehende Licht der Wellenldnge A ist an den Punkten
C und D zweifellos kohdrent und gleichphasig, denn die
Strecken AC und AD sind gleich lang. Die Lichtwege von
B nach C und D seien [; und l,. Wir berechnen die Diffe-
renz [y — Ip.

b+d\>2 b—d\?
ll_l+(2),lzl+(2),

2-5 LN (h+L)(lh—1) =bd.

4

Nun ist Iy + I = 2I, wenn [ grofs gegen b und d ist. Es

folgtly — I, = bd /2. Auch das von B nach C und D laufen-

de Licht ist noch anndhernd gleichphasig, falls (I; — ) <

A/2 ist. Jeder Punkt zwischen C und D wird von jedem

Punkt der Quelle mit anndhernd gleichphasigen Wellen

erreicht, wenn

bd A A

h—Db= 2] < 5 - b< i

ist. Manchmal ist es praktisch, von dem in Abb. 7.21

eingezeichneten Winkel 7y ~ d /I auszugehen. Die Koha-
renzbedingung ist also

oder 'y<&.

IA
b< — b

; (7.36)

Obgleich die Lichtemission von A und B und von den an-
deren Quellpunkten nicht korreliert ist, entsteht zwischen
C und D ein kohdrentes Strahlungsfeld. Gleichung (7.36)
ist ein leicht anwendbares Kriterium dafiir, ob eine aus-
gedehnte Lichtquelle ndherungsweise als Punktquelle be-
trachtet werden kann oder nicht.
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Abbildung 7.22 Interferenzversuch mit ausgedehnter Lichtquelle. Ina und b
sind die Langen / und I’ stark verkleinert dargestellt

Wir untersuchen nun den Vorgang quantitativ. Das wird
etwas miihsam, lohnt sich aber, schon wegen der An-
wendungen in der Astronomie, die wir anschliefflend be-
sprechen. In Abb. 7.22a ist nochmals der Versuchsaufbau
des Youngschen Experiments (Abb. 7.6) gezeigt, anstelle
der Punktlichtquelle Qg diesmal mit einer flichenhaften
Lichtquelle. Aufierdem ist hinter der Blende mit den bei-
den kleinen Offnungen eine Linse angebracht. Sie bildet
die Lichtquelle auf die Bildebene ab wie Abb. 7.22b zeigt,
und bewirkt, dass die Beugungsscheibchen, die sich in

Abb. 7.6c nur teilweise iiberlappen, genau zur Deckung
kommen.

Zur Vereinfachung nehmen wir zunichst an, die Off-
nungen seien sehr klein und die Lichtquelle sei mono-
chromatisch. Dann erzeugt der Punkt A der Quelle in
der Bildebene ein Interferenzbild, dessen Intensitatsver-
teilung nach (7.13), (7.10) und (7.14) durch

I(z') = 2I1 (1 + cos §)

21 2, .
TG = Tdsll’l& ~

2nd (7.37)

mit = vz

gegeben ist. (Wir verwenden hier und im Folgenden die
Bezeichnungen von Abb. 7.22.) Diese Intensitdtsvertei-
lung ist in Abb. 7.22c als ausgezogene Linie dargestellt.
Die Interferenzstreifen sind um das bei z' =0 liegen-
de Maximum nullter Ordnung symmetrisch angeordnet.
Das gleiche Streifenmuster entsteht durch Wellen, die
von den iiber oder unter A liegenden Punkten ausgehen.
Das von dem Punkt (z1,0) ausgehende Licht erzeugt die
in Abb. 7.22c gestrichelt eingezeichnete Intensitédtsvertei-
lung. Sie ist um das bei z] liegende Bild des Punkts (z1,0)
zentriert, denn dort liegt das Maximum nullter Ordnung:
Infolge der optischen Abbildung sind die optischen Weg-
langen z1Q1z] und z1Q»z] gleich. Entsprechend liegen die
Interferenzstreifen, die von anderen Punkten erzeugt wer-
den. So gehort die gepunktete Linie in Abb. 7.22¢ zu dem
von zp = —z1 ausgehenden Licht. Die resultierende Inten-
sitdtsverteilung ist nach (7.37) gegeben durch

+b'/2 ord
I(z')=K / 1 +cos% (2 —zy)|dz . (7.38)
—b'/2
Kist eine Konstante. Die Integration ergibt
Al b'd  2md
I(z') = Kb’ + K—; sin T8 cos 2051 (7.39)

rtd Al Al

Die Intensitit oszilliert um den Mittelwert I = Kb'. Wir
schreiben (7.39)

I(z’):T(l—FSIZ‘BCOS5),
. _md,,  md

(7.40)

B ist also proportional zur Breite b der Lichtquelle, und
die Funktion sin 8/ (ausgezogene Kurve in Abb. 7.23a,
vgl. auch Abb. 4.14) bestimmt die Kontraste im Interfe-
renzbild. Die Maxima und die Minima der Intensitit sind

28], i[5

Imax :T<1+
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Abbildung 7.23 a Die Funktionen sin 3/ B (ausgezogen) und2J; (B) /B (ge-
strichelt), b Visibilitat derlnterferenzstreifen, nach (7.41) und (7.43)

NANA
ARVIVATE

I(z") ﬂ:g;V:054

AAUVA'S

1)) | B=mV=0

Abbildung 7.24 |Intensitdt in der Bildebene in Abb. 7.22bei verschiedenen
Werten von 8, monochromatisches Licht und sehr kleine Blendendffnungen vor-
ausgesetzt

Daraus folgt fiir die in (7.35) definierte Visibilitat

mit ,Bzrg—f\d

sin

i

(7.41)

Diese Funktion ist in Abb. 7.23b durch die ausgezogene
Kurve dargestellt. In Abb. 7.24 sieht man I(Z) fiir einige
Werte von B. Die Interferenzstreifen verschwinden zum
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Abbildung 7.25 Zur Entstehung der Interferenzbilder mit V = 0,64 und V =
0in Abb. 7.24

ersten Mal fiir B = 7, also wenn

_n

=7

(7.42)

ist, erscheinen dann aber wieder, wobei im Bereich
B = m...2m Vorzeichenumkehr erfolgt: Bei z' =0 liegt
nun ein Minimum der Intensitit. Wie dieses Verhal-
ten zustandekommt, kann man sich mit Abb. 7.25 klar-
machen. Abbildung 7.25a zeigt die (1 + cosd)-Kurven,
die bei Abb. 7.24b zum Interferenzbild beitragen (vgl.
Abb. 7.22¢). Das Maximum der Intensitit liegt bei z’ = 0,
das Minimum bei § = 71, also bei z/ = Al'/2d. Die Visi-
bilitdit V = 0 wird bei g = &7 erreicht, weil dann das
Interferenzmaximum nullter Ordnung vom einen Rand
der Quelle mit dem Interferenzmaximum erster Ord-
nung vom anderen Rand zusammenfillt. Dann ist, wie
Abb. 7.25b zeigt, die z’-Achse gleichmiflig mit (1 + cos §)-
Kurven belegt, und die Summation ergibt einen konstan-
ten Wert. Wird nun die Lichtquelle nochmals verbreitert,
bevolkern die neu hinzugekommenen Kurven das Gebiet
um z’' = Al'/2d, d.h. es entsteht nun dort das Interferenz-
Maximum, und das Minimum liegt bei z’ = 0.

(7.42) zeigt, dass die , Koharenzbedingung” (7.36) angibt,
wie weit die Lichtquelle verbreitert werden kann, bis die
Streifen zum ersten Mal verschwinden. Die Nebenmaxi-
ma der Visibilitdtskurve werden nicht beriicksichtigt.

Wir hatten vorausgesetzt, dass die C)ffnungen Q1 und
Q> sehr klein seien, so dass man hinter der Blende von
zwei Kugelwellen ausgehen kann. Bei gréSeren Offnun-
gen mit dem Durchmesser D erhilt man in der Bildebene
zwei Beugungsscheibchen, deren Radius nach (6.42) p =
1,22A1/D ist. Sie liegen Dank der Linse genau aufeinan-
der. Die mittlere Intensitét I entspricht dann der Intensi-
tatsverteilung in einem Beugungsscheibchen, auf die wir
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in Kap. 8 zuriickkommen werden. Sie ist in Abb. 7.26 als
gestrichelte Linie angegeben. Abbildung 7.26a zeigt die
Interferenzstreifen nach (7.40), wobei V = 0,5 angenom-
men wurde. Wird aulerdem die Bandbreite des Lichts
vergrofiert, fallt die Visibilitdt der Streifen entsprechend
der abnehmenden transversalen Kohdrenz mit zuneh-
mender Ordnung der Interferenzstreifen ab (Abb. 7.26b).
In jedem Fall gilt: Je grofier der Abstand zwischen den
Offnungen, desto mehr riicken die Streifen zusammen;
je grofer der Durchmesser der Offnungen, desto kleiner
wird der Radius des Beugungsscheibchens.

In der Praxis hat man es oft mit kreisformigen Licht-
quellen zu tun. Dann wird die Berechnung der Visibilitat
etwas schwieriger, das Ergebnis ist aber sehr dhnlich. Statt
(7.41) erhélt man

_ 27Rd

2]1(5)‘ mit f == (7.43)

V() = ’T

J1(B) ist die Besselfunktion erster Ordnung, auf die wir
bereits in Bd. III/17 bei der Berechnung des Magnetfelds
in einem zylindrischen Hohlraum-Resonator gestofien
sind (Bd. III, Abb. 17.28). R ist der Radius der Lichtquel-
le. Die Funktionen 2J;(B)/p und V(B) sind in Abb. 7.23
gestrichelt eingetragen. Die erste Nullstelle der Bessel-
funktion J1(B) liegt bei = 3,83 = 1,227, also bei

2Rd

— =122.
IA ’

(7.44)

Bei kreisformigen Lichtquellen lautet demnach die Koha-
renzbedingung (7.36)

A

R < 0,61£l oder v < 0'61E .

- (7.45)

Interferometrische Methoden in der Astronomie

Bekanntlich erscheinen Fixsterne auch im Teleskop als
punktféormige Objekte, d.h. sie werden in der Brenne-
bene des Teleskopobjektivs als ein Beugungsscheibchen
abgebildet, dessen Radius vom Durchmesser des Ob-
jektivs abhdngt. Der Winkeldurchmesser des Sterns, ¢ =
2R/1 (Abb. 7.27a), ist viel kleiner als das durch (6.57) ge-
gebene Auflosungsvermdgen des Teleskops. Im Prinzip
konnte man trotzdem, gestiitzt auf (7.44), Sterndurchmes-
ser interferometrisch bestimmen, indem man vor einem
Teleskop im variablen Abstand d zwei Offnungen an-
bringt. Das Bild des Sterns in der Brennebene ist dann
ein Beugungsscheibchen mit grolerem Radius, entspre-
chend dem kleineren Durchmesser der Offnungen Q

Z/

Abbildung 7.26 Intensitaten bei groBeren Blendendffnungen, a mit mono-
chromatischem Licht, b mit quasimonochromatischem Licht

A B

Abbildung 7.27 Stellar-Interferometrie. a Zur Definition des Winkeldurch-
messers, b Michelsons Stellar-Interferometer. Die Pfeile hinter Q; und Q, zeigen
die Aufweitung des Strahls infolge der Beugung an den Offnungen. Alle Winkel
sind in den Zeichnungen maBlos tbertrieben

und Q. Auf dem Scheibchen erscheinen Interferenzstrei-
fen, und man kann die Visibilitit der Streifen als Funktion
von d messen (Gl. (7.43)). Die Streifen verschwinden nach
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(7.44) bei
Al A
=122—=122—.
4=1 2R T
Auf diese Weise kann man den Winkeldurchmesser des
Sterns bestimmen. Kennt man die Entfernung [, ist R in
Metern angebbar.

(7.46)

Bei nédherer Betrachtung scheint das jedoch kaum prakti-
kabel: Die ndchsten Fixsterne liegen in einer Entfernung
von ca. 10Lj &~ 107 m. Hétten sie einen Durchmesser wie
die Sonne (2R = 10° m), miisste bei A ~ 0,5 um

17 . 10—6
d=122 —et0 1077

2R 1o m=60m

sein. So grofie Fernrohre sind nicht realisierbar. Auflerdem
wiirden die Interferenzstreifen soweit zusammenriicken,
dass sie nicht mehr auflésbar waren. Dennoch gelingt es,
Sterndurchmesser interferometrisch zu bestimmen. Vor
dem Instrument in Abb. 7.27a werden, wie in Abb. 7.27b
gezeigt, vier Spiegel angebracht. S; und S; sind verschieb-
bar, d. h. der Abstand d ist veranderlich. Das auf S; und S,
fallende Licht wird tiber S3 bzw. S in das Fernrohr gelei-
tet. Die Strecken $153A’ und $,S4A’ miissen genau gleich
lang sein. Der grofSe Trick: Fiir die Visibilitat ist d mafs-
geblich, fiir den Streifenabstand jedoch d’, der Abstand
zwischen S3 und S4. Dies werden wir sogleich beweisen.

Um die Zeichnung in Abb. 7.27b zu vereinfachen, neh-
men wir an, dass der in Abb. 7.27a von A kommende
Strahl parallel zur optischen Achse verlduft. Dann erzeugt
das von A kommende Licht ein System von Interferenz-
streifen, bei dem der Streifen nullter Ordnung bei A" auf
der optischen Achse liegt (9((A) = 0); der Interferenz-
streifen 1. Ordnung entsteht nach (7.15) unter dem Winkel
01(A) = A/d'. Fir das unter dem Winkel ¢ einfallende
Licht von B liegt der Interferenzstreifen nullter Ordnung
unter dem Winkel 8)(B) bei B'. Dieser Winkel ist dadurch
gegeben, dass die iiber das Spiegelsystem fiihrenden op-
tischen Weglédngen von B nach B’ genau gleich lang sind.
Es muss also in Abb. 7.27b G — G’ = 0 sein: ¢d = 9 (B)d’.
Daraus folgt
d
9, (B) = E&'

Bei einem rechteckigen Stern wiirde das erste Minimum
der Visibilitt entstehen, wenn 9} (B) = ¢ (A) ist (vgl. den
Kommentar zu Abb. 7.22¢):

(7.47)

Da die Sterne rund sind, ist diese Gleichung durch (7.46)
zu ersetzen. Jedenfalls ist die Einstellung des Instruments
fiir V = 0 unabhéngig von d’. Man kann also d’ so klein
machen, dass die Interferenzstreifen weit genug ausein-
ander liegen, und d so grofs, wie es die mechanische
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Stabilitdt des Aufbaus erlaubt. Dem sind allerdings Gren-
zen gesetzt: Die ,genaue” Gleichheit von S;S3A’ und
5,54A" erfordert, dass die Spiegelpositionen innerhalb
eines kleinen Bruchteils einer Wellenldnge konstant gehal-
ten werden konnen; sonst werden die Interferenzstreifen
verwischt. Auch werden die Messungen leicht durch Tur-
bulenzen in der Atmosphére gestort, die die Laufzeiten
des Lichts von A und B nach S; und S, beeinflussen.

Das Prinzip der Stellar-Interferometrie wurde schon
von Fizeau vorgeschlagen. Die erste Bestimmung eines
Fixstern-Durchmessers gelang Michelson 1920 mit einem
Instrument, bei dem d bis auf 6 m gebracht werden konn-
te, und an einem Objekt, bei dem man aufgrund von
Helligkeit und Farbe einen grofien Durchmesser erwar-
tete. Das war die Beteigeuze, ein sehr heller, rétlicher
Stern im Orion, im Hertzsprung-Russel-Diagramm (Bd. I,
Abb. 1.4) als Riesenstern eingestuft. Die Interferenzstrei-
fen verschwanden bei d = 301 cm. Daraus ergab sich mit
(7.46) ein Winkeldurchmesser von ¢ = 0,23 urad = 0,05
Bogensekunden. Die parallaktisch bestimmte Entfernung
der Beteigeuze ist [ = 1,7 - 1018 m. Daraus ergibt sich ein
Durchmesser von 3,9 - 1011 m, 280 mal grofler als der
Durchmesser der Sonne.

Damit war erwiesen, wie grof$ Riesensterne tatsdchlich
sind. Bei anderen Sterntypen versagt die Methode, denn 4
lasst sich nicht mehr wesentlich vergréfSern. Dennoch hat
sie in der Astronomie gute Dienste geleistet, besonders bei
der Auffindung und Vermessung von Doppelsternsyste-
men, die mit dem Teleskop allein nicht aufgeldst werden
konnten.

Korrelations-Interferometrie. Machen wir uns klar, dass
mit dem optischen Stellar-Interferometer im Prinzip nur
die Korrelation der Phasen der auf S; und S, fallenden
Wellen gemessen wird. Nun haben wir schon in Abb. 7.18
gesehen, dass in einem quasimonochromatischen Wellen-
zug die Amplitude anndhernd konstant ist, solange die
Phase der Welle anndhernd stabil bleibt. Phase und Am-
plitude zeigen in Abb. 7.18 dieselbe Korrelation. Man
kann vermuten, dass dies generell gilt. Dann kénnte man
die schwierige Messung der Phasen in Michelsons Stellar-
Interferometer durch Intensitdtsmessungen ersetzen.

Diese Vermutung wird durch die (keineswegs einfache)
Theorie bestétigt: Misst man an zwei Punkten, die von-
einander den Abstand d haben, die Intensitiaten, so sind
deren Schwankungen um ihre Mittelwerte in der gleichen
Weise miteinander korreliert, wie die Phasen des Sternen-
lichts.

Auf diesem Grundgedanken basiert die von R. Hanbury-
Brown (1916-2002) und R.Q.Twiss (1920-2005) entwi-
ckelte Korrelations-Interferometrie. Die Anlage ist sche-
matisch in Abb. 7.28 gezeigt. Das Licht des Sterns wird mit
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Abbildung 7.28 Korrelations-Interferometrie nach Hanbury-Brown und Twiss

zwei Parabolspiegeln auf die Photomultiplier PM1 und
PM2 fokussiert. Die Spiegel sind auf Schienen montiert.
Sie kénnen zur Variation von d gegeneinander verscho-
ben werden. Die Verzdgerungsleitung, ein Koaxialkabel
geeigneter Lange, kompensiert die Laufzeit des Lichts
auf der Strecke a. Im Korrelator werden die Abweichun-
gen Al; und Al von den Mittelwerten I; und I heraus-
gefiltert, miteinander multipliziert und zeitlich gemittelt.
Haben Al; und Al, iiberwiegend gleiche Vorzeichen, er-
hilt man am Ausgang ein Gleichstromsignal. Die funk-
tionale Abhangigkeit des Signals von 4 und ¢ = 2R /[ ist
wie bei der optischen Interferometrie durch (7.43) gege-
ben. Die Genauigkeit, mit der die Ldngen der Leitungen
von PM1 und PM2 zum Korrelator mit den Sollwerten
libereinstimmen miissen, ist nun nicht mehr durch die
Lichtwellenldngen, sondern nur durch die Kohirenzzeit
gegeben, in der Praxis sogar nur durch die Zeitkonstanten
der Signalverarbeitung. Daher kann man ohne Probleme d
bis auf einige hundert Meter vergrofiern; auch stéren nun
atmospharische Turbulenzen nicht mehr die Messung.
Man kann Winkeldurchmesser bis 0,0005 Bogensekunden
messen und gewinnt einen Faktor 100 gegeniiber Michel-
sons Stellar-Interferometer!

7.3 \Vielstrahlinterferenz

Im ersten Abschnitt haben wir die Interferenz von zwei
kohédrenten Wellenziigen betrachtet. Es gibt aber auch
Situationen, bei denen sich viele kohdrente Wellen tiber-
lagern. Schon bei den im ersten Abschnitt behandelten
Interferenzerscheinungen an planparallelen Platten hat

man es eigentlich mit Vielstrahlinterferenz zu tun; nur im
Fall geringer Reflektivitdt der Oberflachen kann man die
Mehrfachreflexionen vernachldssigen, wie wir es getan
hatten. Bei der nun folgenden Diskussion der Vielstrahl-
Interferenz beschrénken wir uns auf einige Beispiele,
die physikalisch besonders interessant und technisch von
grofler Bedeutung sind.

Dielektrische Spiegel

Abbildung 7.29 zeigt eine Glasplatte, auf der viele A/4-
Schichten aus transparenten Dielektrika aufgedampft
sind. Dabei wurde abwechselnd ein Material mit relativ
hohen und ein Material mit niedrigen Brechungsindex
verwendet. Das einfallende Licht trifft zuerst auf eine
Schicht mit hohem Brechungsindex. Das hat zur Folge,
dass nur an der Flache (1) ein Phasensprung um 7t statt-
findet, nicht aber an der Flache (2), denn dort erfolgt die
Reflexion am optisch diinneren Medium. Die an (1) und
(2) reflektierten Wellen 16schen sich daher nicht gegen-
seitig aus, wie bei der reflexvermindernden Schicht in
Abb. 7.13. Beide Wellen sind gegeniiber dem einfallen-
den Licht um 7 phasenverschoben, und sie interferieren
miteinander konstruktiv. Das an den Schichten (3) und
(4) reflektierte Licht verldsst die Beschichtung mit der
Phasenverschiebung 7w + 271, und so geht es fort: Alle
Teilwellen des reflektierten Lichts sind in Phase, sie ver-
starken sich. Da die Absorption in den sehr diinnen trans-
parenten Schichten vernachldssigbar ist, kann man mit
entsprechend vielen Schichten ein sehr hohes Reflexions-
vermogen erreichen, bis zu R ~ 0,999. Das funktioniert
natiirlich nur in dem Wellenldngenbereich, auf den die
A/4-Schichten abgestimmt sind, und nur bei senkrech-
tem Lichteinfall. Man kann auch dielektrische Spiegel fiir
einen vorgegebenen Einfallswinkel B herstellen, indem
man die Schichtdicken entsprechend wahlt. Mit einem
sorgfiltig hergestellten Silberspiegel erreicht man ,nur”
R ~ 0,98, das allerdings fast im ganzen sichtbaren und
infraroten Spektralbereich und weitgehend unabhingig
vom Einfallswinkel (Abb. 5.26).

Abbildung 7.29 Dielektrischer

Spiegel
TiO, (n=2,2)
SiO, (n=1,45)
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Das Etalon: Eigenschaften und Anwendungen

Wir untersuchen die optischen Eigenschaften einer auf
beiden Seiten verspiegelten planparallelen Glasplatte. Die
Spiegel sollen eine hohe Reflektivitét besitzen, aber noch
etwas transparent sein. Im Sprachgebrauch der Optik
nennt man eine solche Platte ein Etalon. Monochromati-
sches Licht mit der Wellenldnge A soll unter dem Winkel
auf die Platte fallen. Niemand wird sich wundern, dass
das Licht fast vollstindig reflektiert wird. Dennoch: Bei
einer bestimmten Plattendicke wird alles Licht durchge-
lassen! Wie das zustande kommt, zeigt Abb. 7.30. Bei der
ersten Reflexion an der Oberseite der Platte ist die Am-
plitude der reflektierten Welle pEg; nur ein kleiner Teil
der Welle wird mit der Amplitude TEy durchgelassen.
o= VRund T = /T sind die Reflexions -und Transmissi-
onskoeffizienten der Spiegel. An der Unterseite der Platte
wird von der Amplitude der Welle wiederum der Bruch-
teil p reflektiert und der Bruchteil T durchgelassen. Also
tritt die Welle im ersten Durchgang an der Unterseite mit
der Amplitude T2Ey = TE, aus. Der grofite Teil der Welle
wird reflektiert und zwar wird das Licht wegen der ho-
hen Reflektivitdt der Spiegel in der Platte noch sehr oft
hin und her reflektiert. Im zweiten Durchgang ist die Am-
plitude der durchgelassenen Welle Egtp?T = E(TR, beim
dritten EgTR? und so fort. Der Gangunterschied, der sich
ergibt, wenn das Licht einmal im Etalon hin und her lduft,
ist nach (7.18)

G = 2dncos ' = 2d\/n% —sin? B (7.48)
Die entsprechende Phasendifferenz ist
2nG G
S=kG="H"-—-= 7.49
oY (7.49)

denn die Phasenspriinge bei der Reflexion am optisch
diinneren Medium sind Null.® Wenn nun die Bedingung

G=mA bzw. 6§=2mn (m=1,23,...) (7.50)
Abbildung 7.30 Zur Wirkungs- w
weise des Etalons
ﬁ ////
T
d S
| 7

VAN

6 Die Formeln gelten auch, wenn die beiden Reflexionen am optisch
dichteren Medium stattfinden. Dann addieren sich die Phasenspriin-
ge zu 271. Bei metallischer Verspiegelung sind die Phasenspriinge bei
der Reflexion nicht einfach 0 oder 7. Das bewirkt, dass (7.48) und
(7.49) entsprechend modifiziert werden miissen. Das hat aber keine
tiefgreifenden Folgen.

7 Interferenz

erfullt ist, interferieren alle Teilwellen konstruktiv, die
Amplitude der durchgelassenen Welle ist

T
Ed:EOT(1+R+R2+...):E0ﬁ.

Das bedeutet 100 % Transmission, falls die Absorption
in den Spiegeln vernachléssigbar ist, denn dann ist (1 —
R) = T. Die reflektierte Welle wird durch Interferenz aus-
geldscht: Die erste Teilwelle macht bei der Reflexion am
optisch dichteren Medium einen Phasensprung um 7,
wihrend alle anderen Teilwellen die Platte ohne Phasen-
sprung verlassen.

Fiir den Fall, dass G # mA bzw. § # 2m7r ist, kann man
die Intensitédt der durchgelassenen Welle leicht berechnen,
wenn man die komplexe Schreibweise verwendet. Die
elektrischen Feldstdrken der durchgelassenen Teilwellen
sind

>

B = gyt EP = EoTRE@H),
]::53) _ EOTRZei(wt+25) L

Man erhilt auch hier eine geometrische Reihe, die auf-
summiert werden kann:

v EoethT
Eq(t) = ——— . 7.51
d( ) 1 — Reld (7.51)
Die Intensitdten der durchgelassenen und der einfallen-
den Welle, I; und Iy, sind nach (4.16) proportional zu |E|?:

LT IpT?
|1 Rei|? - 1+R?2—-2Rcosd

4=

Man schreibt dies gewohnlich mit cos § = 1 —2sin® §/2 in
folgender Form:

I &
T® _d _
Iy (1—R)2+4Rsin%(5/2)
_ _T/A-R? (7.52)
14 Fsin?(6/2)
. . 4R
mit F = A-RE" (7.53)

T® ist die Transmission der Platte, F der Kontrastfaktor.
Im Zahler von (7.52) steht der fiir 6 = 2m7t erreichte Ma-
ximalwert von T®;

o _ T

max — (71 — R)2 . (7.54)

Wenn die Absorption des Lichts in den Spiegeln klein
ist, ist T~ (1 — R) und T{A ~ 1. Fiir diesen Fall ist in
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Abbildung 7.31 Transmission des Lichts durch das Etalon als Funktion der
Phasendifferenz § (Airy-Funktion)

Abbildung 7.32 Die stehende Welle im Etalon

Abb. 7.31 T®) als Funktion von J aufgetragen. Bei hoher
Reflektivitdt der Spiegel ist nach (7.53) F grof3, und die Be-
reiche, in denen Licht durchgelassen wird, sind schmal.
Thre Halbwertsbreite ist gegeben durch 1 + Fsin?(6/2) =
2, also durch sin?(6/2) = 1/F. Nun ist in der Nahe der
Maxima § = 2mm + € und

N

1) . n 2MIT+€ .
2 E = Sll’l2— = Sll’l2

€ __€
2 2

~ S (7.55)

sin .
4

Die Halbwertsbreite der Durchlassbereiche ist (Ad)wp =
2¢ mit €2/4 = 1/F. Damit erhalt man

4
T
Das ist bei R ~ 1 sehr klein gegen den Abstand zwischen

zwei benachbarten Maxima der Transmission. Dieser Ab-
stand ist nach (7.50) 277, und es folgt

(Ad)rws =

1-R 1-R

(B0)iw _ 2 N (750)

271 \/E B VR

Bei einer dielektrischen Verspiegelung mit R = 0,99 er-
reicht man z.B. (A8)gws /27t = 1/300.

Mathematisch ist damit wohl alles geklért; aber haben wir
auch physikalisch verstanden, wie trotz des hohen Refle-
xionsvermdogens der Spiegel die Transmission der Platte
T®) ~ 1 sein kann? Machen wir uns klar, dass die Ampli-
tuden der in der Platte reflektierten Teilwellen immer um

a e d

Abbildung 7.33 Fabry-Pérot-Interferometer. a Strahlengang, b und c Einsatz
des Instruments in der Spektrometrie. In b und c ist das Interferometer nur durch
zwei senkrechte Striche angedeutet

den Faktor p/t grofer sind als die der austretenden Wel-
len. Wenn G = mA ist, entsteht durch die Uberlagerung
der hin- und her reflektierten Wellen in der Platte eine ste-
hende Welle hoher Amplitude (Abb. 7.32). Die Amplitude
wiéchst so lange, bis die durch Einstrahlung zugefiihrte
Energie wieder herauskommt, und sei die Reflektivitat
der Spiegel auch noch so hoch. Die beidseitig verspiegelte
planparallele Platte ist nichts anderes als ein Hohlraum-
Resonator fiir optische Frequenzen, der in einer sehr ho-
hen Oberschwingung angeregt wird!

Das Fabry-Pérot-Interferometer. Das von Charles Fa-
bry (1867-1945) und Alfred Pérot (1863-1925) erfundene
Interferometer besteht aus zwei einseitig verspiegelten
Glasplatten, die so montiert sind, dass sich die verspie-
gelten Flachen gegeniiber stehen (Abb. 7.33a). Die Platten
sind etwas keilformig geschliffen, damit die Reflexion an
den Aufsenseiten keine storenden Effekte verursacht. Die
Luftschicht zwischen den Spiegeln bildet ein Etalon, des-
sen Dicke beliebig gewdhlt werden kann. Auch ist Fein-
justierung moglich: Man kann den Gangunterschied G
durch Verschieben der Spiegel mit piezoelektrischen Stell-
elementen oder durch Verdnderung der Luftdichte genau
kontrolliert kontinuierlich verdndern. In Abb. 7.33b misst
der Detektor als Funktion von G die Transmission des
Interferometers mit Licht aus einer Punktquelle, die z. B.
durch die Ausgangsblende eines Monochromators reali-
siert sein kann. In Abb. 7.33c kann die Lichtquelle auch
ausgedehnt sein, z.B. eine Spektrallampe. Bei einer mo-
nochromatischen Lichtquelle wird das Licht nur durchge-
lassen und in der Brennebene der Linse fokussiert, wenn
es unter dem Winkel B, auf das Interferometer fallt, fiir
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Gy = m\ el

Abbildung 7.34 Hinter dem Fabry-Pérot-Interferometer gemessene Intensitat
als Funktion des Gangunterschieds G a fiir zwei nahe benachbarte Wellenlan-
gen, b fiir zwei Wellenldngen am Rande des freien Spektralbereichs

den G = 2d/n? — sin? Bm = mA ist. Es entsteht ein Ring-
system mit den Radien R, = f tan B,

Die erste Anwendung fand das Instrument in der hoch-
auflosenden Spektrometrie. Wird ein Fabry-Pérot-Interfe-
rometer als zusatzliches Element in einen Spektralapparat
eingebaut, kann man erkennen, ob eine Spektrallinie aus
mehreren dicht beieinander liegenden Komponenten be-
steht und die Struktur der Spektrallinie ausmessen. In
Abb. 7.34a ist fiir zwei nahe benachbarte Wellenldngen Aq
und A, die hinter dem Interferometer gemessene Inten-
sitdt als Funktion von G aufgetragen. Die Maxima der
Transmission liegen bei G; und G,. Die Halbwertsbreite
der Linien ist (AG)gwg = A(2/7V/F), denn nach (7.49) ist
dG = (A/2m) dd, und (Ad)pws ist durch (7.56) gegeben.
Die Linien gelten als auflosbar, wenn G, — G1 > (AG)pws
ist. Nunist G, — Gy = m(A; — A1) = mAA; es muss also

AL > (AN)min = (A )pwp = LG HWE
A 2 _A(1-R) (7.57)
T maJE m 7w

sein. Das Auflosungsvermogen R definiert man wie in
(6.59):

A 71\/1? ~m T
(AA) min 2 77 (1-R)

R = (7.58)

Bei etwas durchscheinend versilberten Platten ist R ~
0,95 und 71v/F/2 =~ 60. Mit d im Bereich von einigen cm

7 Interferenz

erreicht man grofie Werte von m und ein Aufldsungsver-
mogen R = 10° — 107. Das reicht aus, um die Hyperfein-
struktur” von Spektrallinien genau zu vermessen. Allein
schon damit hat das ,Fabry-Pérot” in der ersten Hilfte
des 20. Jahrhunderts einen wichtigen Beitrag zur Atom-
und Kernphysik geleistet.

Der freie Spektralbereich. Wie Abb. 7.34b zeigt, be-
steht noch ein zweites Problem bei der hochauflosenden
Spektroskopie: Wenn G, und G} zusammenfallen, gibt es
Konfusion. Damit die Wellenldngen eindeutig bestimmt
werden konnen, muss G, < G’1 sein, also

m(A+AA) < (m+1)A,

AN < A . (7.59)
m
Die konfusionsfreie Zone wird der freie Spektralbereich
(FSB) genannt. Der fiir die Messung von Wellenlangen-
differenzen nutzbare Bereich ist also
2
A2 _m<l

— o (7.60)
Der freie Spektralbereich ist auch unter anderen Gesichts-
punkten interessant: Bei einem vorgegebenen Wert von G
lasst ein Etalon nur Licht mit ganz bestimmten Wellen-
langen hindurch treten. Sie sind jeweils durch den FSB
voneinander getrennt. Auf der Wellenlangenskala muss

cG6 G
S

sein (Abb. 7.35). Auf der Frequenzskala sind die Durch-
lassbereiche dquidistant verteilt:

A=G (7.61)

C c c

c
Puelarel

3 cr

v= m (7.62)

c
c

’Die Hyperfeinstruktur (HFS) einer Spektrallinie entsteht, wenn
der Atomkern ein magnetisches Dipolmoment oder ein elektrisches
Quadrupolmoment besitzt, d.h. wenn der Kern magnetisch oder
nicht kugelrund ist. Auflerdem muss der Atomkern einen Drehim-
puls (Kernspin) haben. Durch Messung der HFS konnten diese Kern-
momente quantitativ bestimmt werden. Grole Meister auf diesem
Gebiet waren Hans Kopfermann (1895-1963), damals TH Berlin-
Charlottenburg, und Hermann Schiiler (1894-1964), am Astrophysi-
kalischen Observatorium in Potsdam tatig. Bei der Interpretation der
HFS-Spektren tat sich Schiilers Assistent Theodor Schmidt (1908-
1986) besonders hervor: Entdeckung des Kern-Quadrupolmoments,
Entdeckung der ,Schmidt-Linien” in der Systematik der magne-
tischen Kernmomente. Nach dem Krieg wirkte Kopfermann als
Physik-Professor in Gottingen und Heidelberg; er trug viel zum Wie-
deraufbau der Physik in Deutschland bei. Schiiler war ab 1950 Leiter
der Forschungsstelle fiir Spektroskopie der Max-Planck-Gesellschaft
in Hechingen. Schmidt wurde von den Russen mit einem Raketen-
Experten gleichen Namens verwechselt und in die Sowjet-Union ver-
schleppt. Nach seiner Riickkehr (1953) erhielt er eine Anstellung,
spater eine ordentliche Professur an der Universitat Freiburg/Breis-
gau.
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Abbildung 7.35 Durchlassbereiche des Etalon bei G = const als Funktion der
Wellenlange und der Frequenz

Es gilt also fiir den freien Spektralbereich

(Bv)rss = = - (7.63)

G/c ist die Zeit, die das Licht braucht, um einmal zwi-
schen den Spiegeln hin und her zu laufen. Wir berechnen
noch die Halbwertsbreite der Durchlassbereiche. Nach
(7.49) ist v = ¢ /27tG. Dann folgt mit (7.56)

¢(1—R)

= (7.64)

(Av)HwB =~

Das Verhiltnis F = (Av)psp/ (Av)aws = TVR/(1 — R)
wird als Finesse bezeichnet.

Interferenzfilter. Nach (7.61) liegen auf der Wellenldn-
genskala bei kleinen Werten von m die Durchlassbereiche
so weit auseinander, dass man mit gewohnlichen Farbfil-
tern einen der Bereiche isolieren kann: Die Kombination
ergibt dann einen Wellenldngenfilter auflerordentlicher
Trennscharfe.

Zur Herstellung eines solchen Interferenzfilters wird auf
eine Glasplatte als Trager ein dielektrischer Spiegel aufge-
dampft. Darauf kommt eine Schicht der Dicke A/2 oder
mA /2, wobei m eine kleine Zahl ist, und darauf nochmals
ein dielektrischer Spiegel. Die mittlere Schicht bildet das
Etalon. Mit der Dicke dieser Schicht und der Reflektivitat
der Spiegel kann man die Halbwertsbreite des Durchlass-
bereichs einstellen. Sie ist in (7.57) angegeben. Die Form
der Durchlasskurve ist zundchst durch (7.52) gegeben;
durch eine raffiniertere Beschichtung kann man jedoch
erreichen, dass der Durchlassbereich anndhernd rechte-
ckiges Profil hat.

7.4 Laser I: Der Laser-Resonator

Das Fabry-Pérot-Etalon hat noch einen weiteren und
sehr wesentlichen Beitrag zur Physik geleistet: Als Hohl-
raum-Resonator fiir optische Frequenzen ermdoglicht es
das Funktionieren des Lasers. Zwischen die Spiegel des
Etalons wird ein aktives Material gebracht (Abb. 7.36).
Das ist ein Stoff, der in einem bestimmten Wellenldngen-
bereich Licht nicht absorbiert, sondern verstarkt. Jeder
Verstarker kann durch Riickkopplung in einen Oszilla-
tor verwandelt werden. Diese Riickkopplung besorgt der
durch die beiden Spiegel in Abb. 7.36 gebildete Laser-
Resonator. Ist in dieser Anordnung einmal eine auf der
Achse laufende Welle vorhanden, so wird sie verstarkt
und es entsteht zwischen den Spiegeln aufgrund des ho-
hen Q-Wertes des optischen Resonators eine stehende
Welle sehr hoher Amplitude. Nur einer der Spiegel muss
ein wenig transparent sein: Durch diesen tritt dann der
Laserstrahl als hochgradig koharente Welle nach auflen.

Wie das ,,aktive Material” funktioniert, wird in Bd. V /2.4
erklart werden. Gewohnlich wirkt es nur in einem schma-
len Frequenzbereich verstiarkend, im Bereich einer Spek-
trallinie. Dort ist die Verstarkung dann anndhernd pro-
portional zur Intensitdt im Linienprofil (Abb. 7.37a). Da-
mit der Resonator anschwingt, muss die Verstarkung des
Lichts beim einmaligen Hin- und Herlaufen grofier sein,
als die Verluste, d. h. die Intensitidt des Lichts muss ober-
halb der Laserschwelle liegen. In diesem Bereich kdnnen
mehrere Schwingungsmoden des Laser-Resonators lie-
gen, wie Abb. 7.37a zeigt. Ihr Abstand ist durch (7.63)
gegeben. Das abgestrahlte Laserlicht besteht aus meh-
reren, nahe beieinander liegenden Linien (Abb. 7.37b).
Will man eine einzelne Schwingungsmode isolieren, baut
man zwischen die Laserspiegel noch ein beidseitig ver-
spiegeltes Etalon als Interferenzfilter ein. Es bewirkt, dass
die Verstarkung des aktiven Mediums nur bei der durch
das Filter ausgewahlten Frequenz zum tragen kommt

aktives Material

—
—

d !

1o I

[N/

Abbildung 7.36 Zum Prinzip des Lasers. a Laserresonator mit ebenen Spie-
geln, b konfokale Anordnung mit Hohlspiegeln
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Abbildung 7.37 a Longitudinale Schwingungsmoden des Laserresonators
und Profil der Spektrallinie, b Intensitatsverteilung des Laserlichts

v

(Aufgabe 7.5). Einfacher ist es, den freien Spektralbereich
so grofd zu machen, dass in dem verstarkten Frequenzbe-
reich nur eine Schwingungsmode liegt. Dazu muss man
nach (7.63) den Abstand zwischen den Spiegeln hinrei-
chend klein machen; das geht natiirlich nach (7.64) auf
Kosten der Bandbreite und der Kohédrenzldnge.

Die Bandbreite des Laserlichts ist nicht ohne weiteres
durch (7.64) gegeben. Diese Formel gilt nur bei vernach-
lassigbarer Absorption und fiir unendlich ausgedehnte
Spiegel. In der Anordnung von Abb. 7.36a treten betracht-
liche Verluste durch Beugung (Kap. 8) von Licht auf:
Bei jedem Durchgang schwappt ein Teil der Lichtwelle
iber den Rand der Spiegel hinaus. Wesentlich giinsti-
ger ist die in Abb. 7.36b gezeigte konfokale Anordnung,
in der zwei Hohlspiegel den Laserresonator bilden. Der
Kriimmungsradius der Spiegel ist d, die Brennpunkte
beider Spiegel liegen also genau in der Mitte des Resona-
tors. Dann kann man (7.64) ndherungsweise anwenden.
Ein Beispiel: Ein Helium-Neon-Laser (A = 0,6328 pm, v ~
0,5-10%° s’l) mitd = 1mund R = 0,98 hat eine Frequenz-
breite

_c(1=R) 3-108

Av ~ = 0,02 ~ 10°Hz .
v 7T-2d 27 0.0 0" Hz

(7.65)

Die relative Frequenzbreite ist Av/v ~ 2 - 107, die Koha-
renzldnge ist Ax, = c/Av ~ 300 m.

Anwendungsbeispiel: Anschluss des Laserlichts an
einen sekundidren Langenstandard. Wie wir gesehen
haben, hiangt der genaue Wert der Wellenlédnge beim La-
ser vom Abstand d zwischen den Spiegeln ab. Fiir die
oben erwdhnten préazisen Lingenmessungen mit dem Mi-
chelson-Interferometer muss man aber die Wellenlédnge
des Laserlichts genau kennen. Wie man das erreichen
kann, zeigt Abb. 7.38 am Beispiel eines lod-stabilisierten
Helium-Neon-Lasers. Zwischen den Spiegeln S; und S;
befindet sich eine Zelle, die das aktive Material enthalt,

7 Interferenz

Abbildung 7.38 lod- a
stabilisierter He-Ne-Laser. g
a Aufbau, b Intensitét des La- S, C———]
serlichts als Funktion von d T2
He/Ne
d

P
Lo

Stellelemente
A
B
d

hier ein Gemisch von He und Ne, und eine zweite Zelle
mit Ioddampf. Durch Kiihlen mit einem Peltier-Element
kann der Dampfdruck des Iods eingestellt werden. Bei-
de Zellen sind unter dem Brewsterwinkel mit Fenstern
versehen, so dass in der Zeichenebene linear polarisier-
tes Licht ohne Reflexionsverluste zwischen S und S, hin
und her laufen kann. Der Laser ist so gebaut, dass nur
eine der longitudinalen Schwingungsmoden moglich ist.
Deren Wellenldnge kann mit Hilfe von piezoelektrischen
Stellelementen kontinuierlich verandert werden.

o

Das Absorptionsspektrum des I-Molekiils weist eine
grofle Zahl von Linien auf, deren durch Messung der
Lichtfrequenz genau bestimmte Wellenldngen katalogi-
siert sind. Sie kénnen als sekundérer Lingenstandard
benutzt werden. Einige Linien liegen im Spektralbereich
des He-Ne-Lasers. Der Dampfdruck in der I,-Zelle wird
so gewdhlt, dass der Laser auch noch funktioniert, wenn
die Wellenldnge auf eine der Absorptionslinien des I, ein-
gestellt ist. An die Stellelemente des Spiegels S; wird nun
eine variable Gleichspannung gelegt. Die Intensitét des
Laserlichts zeigt dann als Funktion der Spannung den in
Abb. 7.38b dargestellten Verlauf. Nun wird der Gleich-
spannung eine kleine Wechselspannung tiberlagert. In der
Position A fiihrt das zu einer Modulation der Laserleis-
tung mit der Frequenz der Wechselspannung; in der Posi-
tion B, genau im Maximum der Absorption, verschwindet
dagegen diese Modulation. Mit Hilfe eines Regelkreises
kann die Lange d auf diesen Wert eingestellt werden. Da
die Wellenldnge der Absorptionslinie genau bekannt ist
— sie hingt nur schwach und in bekannter Weise vom
Dampfdruck in der I,-Zelle ab — ist damit die Wellenldnge
des Laserlichts an den sekundédren Langenstandard ange-
schlossen.



Ubungsaufgaben

Ubungsaufgaben

7.1. Interferenzen gleicher Dicke. Um die Dicke einer
diinnen Folie zu bestimmen, wird eine ihrer Seiten zwi-
schen zwei rechteckige {ibereinander liegende ebene Glas-
platten gelegt, so dass ein Luftkeil entsteht (Abb. 7.12a).
Dieser wird senkrecht von oben mit Licht einer Natrium-
dampflampe der Wellenldnge A = 589 nm beleuchtet. Im
reflektierten Licht sieht man 16 dunkle Interferenzstreifen.
Wie dick ist die Folie?

7.2. Interferometrie mit zwei Lichtstrahlen. Ein par-
allel gebiindelter Lichtstrahl der Wellenldnge A = 589 nm
wird mittels eines Strahlteilers und zweier Spiegel aufge-
teilt in zwei parallele Lichtbiindel, die zwei Kuvetten pas-
sieren. Danach werden die Lichtbiindel in umgekehrter
Weise wieder zusammengefiihrt und mit einem Fernrohr
beobachtet. Man sieht das Streifenmuster einer Zwei-
strahlinterferenz. Die Kuvettenldnge betragt L = 1 m.

a) Anfangs seien beide Kuvetten mit Luft geftillt. Wird
eine evakuiert, verschieben sich die Streifen um 469 Strei-
fenabstande. Welchen Brechungsindex erhélt man fiir die
Luft?

Es wird die Temperatur T = 288 K gemessen, der Druck
ist gleich dem Normaldruck. Welchen Brechungsindex
hat die Luft unter Normalbedingungen?

b) Beide Kuvetten werden in gegenldufiger Richtung von
Wasser durchstromt. Kehrt man die Stromungsrichtung
um, verschieben sich die Streifen um 0,17 Streifenbrei-
ten. Das erkldrt man mit einer Mitbewegung des Lichts
durch die Wasserstromung, die zu einer Abweichung der
Lichtgeschwindigkeit von der Lichtgeschwindigkeit c¢/n
in ruhendem Wasser fiihrt. Wie grofs ist diese Differenz
(n =1,33)?

Die Stromungsgeschwindigkeit des Wassers ist vy =
10m/s. Die Geschwindigkeitsinderung ist proportional
zu vyy. Wie groB3 ist ihr Verhaltnis zu vy, genannt Mitfiih-
rungskoeffizient (vgl. Bd. I, Aufgabe 14.5)? Erwartet man,
dass das gleiche Experiment mit Luft von Erfolg gekront
sein wird?

7.3. Strahlungscharakteristik zweier Antennen. Zwei
parallel zueinander ausgerichtete Stabantennen befinden
sich im seitlichen Abstand d voneinander. Die Verbin-
dungslinie zwischen ihren Mittelpunkten steht senkrecht
auf der Stabrichtung. Beide Antennen emittieren mit glei-
cher Leistung elektrische Dipolstrahlung der Wellenldn-
ge A. Wie hdngt die Intensitédt der Strahlung, die senkrecht
zur Stabrichtung in grofier Entfernung beobachtet wird,
vom Emissionswinkel ¢ ab? Man betrachte folgende Spe-
zialfalle:

a)d = A/2, beide Antennen werden gleichphasig erregt,
b) d = A/4, beide Antennen werden gegenphasig erregt,

c) d = A/2, zwischen den Antennenstromen besteht eine
Phasendifferenz 7t/2.

(Die Verbindungslinie von Antennenmitte zu Antennen-
mitte definiere den Winkel ¢ = 0.)

7.4. Reflexionsminderung. Eine an Luft grenzende re-
flexvermindernde Schicht (Abb. 7.13) besitzt die Bre-
chungsindizes n; = 1,38 und n3 = 1,50. Rechnen Sie mit
(5.39) nach, dass der Reflexionskoeffizient der Schicht R ~
1% ist. Hinweis: Addieren Sie die von den beiden Grenz-
flachen reflektierten Amplituden.

71.5. Ein-Moden-Laser. Zwischen zwei Laserspiegel
wird zur Modenselektion, wie in Abschn. 7.4 beschrieben,
ein Pérot-Fabry-Etalon mit einem Aufldsungsvermogen
R gesetzt. Die Frequenzbreite des Interferenzfilters soll
kleiner sein als der Frequenzabstand zweier axialer La-
sermoden. Welche Forderung ergibt sich daraus fiir R,
wenn der Abstand d der Laserspiegel 50cm betragt
(A = 500nm)?

7.6. Lichtreflexion an einer diinnen Metallschicht.
a) Licht- oder Warmestrahlung falle senkrecht auf eine
sehr diinne Metallschicht. Die Rechnungen im Anschluss
an (7.48) lassen sich in gleicher Weise mit einem kom-
plexen Brechungsindex 71 = ng + iny durchfiihren, der in
(7.48) und (5.39) einzusetzen ist. Leiten Sie in Analogie zu
(7.51) die folgende Formel fiir die Amplitude der reflek-
tierten Welle fiir den Fall g = 0 her:

£, — E(p 1“;) Eop

1—eld

gk (7.66)

5 = k& = 2dkii — 27

Die Grofen ¢ und g’ sind die Reflexionskoeffizienten
fiir die Amplituden bei Reflexionen an der Vorder- und
Hinterseite der Schicht und ¥ und ¥’ sind die Trans-
missionskoeffizienten beim Eintritt der Strahlung in das
Material und beim Wiederaustritt.

b) Untersuchen Sie diesen in doppeltem Sinne komplexen
Ausdruck numerisch fiir die folgenden vier Beispiele:

(1) A =20 um, ng = n; = 200,d = 2,66 nm,3

(2) A =20 um, ng = ny = 200, d = 10 um,

(3) A =600nm, ng =~ 0, ng ~ 4, d =2,66nm (vgl. Aufga-
be 5.7) und

(4) A =600nm, ng =~ 0, ng ~4,d =10 um.

8 Selbstverstiandlich ist eine solche Schicht nicht freitragend, sondern
sie befindet sich auf einem Trager, z. B. einer Glasscheibe. Dann geht
ein weiteres Medium in die Rechnung ein, eine Komplikation, von
der wir aus Griinden der Vereinfachung absehen.
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In welchen Fillen ist das Intensititsverhaltnis |E,/Ey|?
fast eins, in welchem Fall klein? Warum funktioniert eine
Wairmeschutzverglasung?

7.7. FTIR-Spektrometer. Mit einem FTIR-Spektrome-
ter soll eine Materialprobe im reziproken Wellenbereich
bis hinauf zu 1/A < 4000cm~! mit einer Auflosung
A(1/A) = 4cm~! untersucht werden. Die Messzeit fiir
ein Spektrum sei t = 0,5s.

a) Um welche Strecke muss der bewegliche Spiegel ins-
gesamt verschoben werden, wie viele Scanschritte sind
notwendig und wie grof ist die Spiegelverschiebung pro
Scanschritt?

b) Welchen Radius darf die Blende zwischen Quelle und
Interferometer hochstens haben, wenn die Brennweite

7 Interferenz

des abbildenden Spiegels hinter der Blende f = 15cm
ist?

¢) Wie lange darf eine Messung pro Scanschritt hochstens
dauern und wie grof: ist die Spiegelgeschwindigkeit?

d) Welche Temperatur muss in der Quelle mindestens
herrschen, wenn das Maximum ihrer Emission in der Na-
he der kleinsten untersuchten Wellenldnge liegen soll (vgl.
Bd. II, Abb. 7.5)?

e) In einem FTIR-Spektrometer werde der Spiegel schritt-
weise um eine halbe Wellenldnge der roten 633 nm-Linie
des He/Ne-Lasers verschoben (von einer Intensitits-
Nullstelle bis zur nachsten), bis die Gesamtverschie-
bung L erreicht ist. Bis zu welcher minimalen Wellenlan-
ge Amin lassen sich IR-Spektren aufnehmen?
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Dass das Licht sich nicht unbedingt nach den Re-
geln der geometrischen Optik geradlinig ausbrei-
tet, wurde schon am Anfang von Kap. 6 bei der
Lochkamera erwdhnt. Wir wollen nun dieses Phano-
men systematisch und quantitativ untersuchen. Im
ersten Abschnitt wird diskutiert, wie die Beugung
tberhaupt zustande kommt, und worin der Un-
terschied zwischen der Nahfeld-(Fresnel-)Beugung
und der Fernfeld-(Fraunhofer-)Beugung besteht. Im
folgenden Abschnitt wird an einigen Beispielen die
Fraunhofer-Beugung berechnet; dabei wird auch das
Beugungsgitter, ein wichtiges optisches Bauelement,
ausfiihrlich diskutiert. Bei der Fresnelschen Beu-
gung (Abschn. 8.3) beschrianken wir uns auf die
Beschreibung der Fresnelschen Zonenkonstruktion
und zeigen, wie man damit das komplizierte Verhal-
ten der Fresnel-Beugung auf einfache Weise verste-
hen kann.

Am Schluss des Kapitels gehen wir noch auf zwei
Entwicklungen ein, die in den letzten Jahrzehnten in
der Optik grofie Bedeutung erlangt haben: auf die
Fourier-Optik und auf die Holografie. Beide Gebiete
stehen in engem Zusammenhang mit der Beugung.
Besonders interessant ist die Fourier-Optik. Sie eroff-
net ein ganz neues Verstdndnis der Bildentstehung.

8.1 Beugungsphinomene und

Beugungstheorien

Abweichungen von der geradlinigen Ausbreitung des
Lichts wurden zuerst von Grimaldi® beobachtet und wis-
senschaftlich beschrieben. Er bezeichnete das Phanomen
als , diffractio”, ein Ausdruck, der bis heute in den meis-
ten Sprachen verwendet wird (engl. , diffraction”). Das
im Deutschen als Beugung bezeichnete Phdnomen kann
auch mit Wasserwellen beobachtet werden; dartiber wun-
dert sich aber niemand. Offensichtlich wére eine Wellen-
ausbreitung, beschrankt auf den durch die gestrichelten
Linien in Abb. 8.1a begrenzten Bereich, mit dem Huy-
gensschen Prinzip nicht vereinbar. Abb. 8.1b zeigt, dass

! Francesco Maria Grimaldi (1618-1663), Jesuitenpater und Physik-
professor in Bologna, beobachtete nicht nur die Aufweitung des
Lichtstrahls durch Beugung, sondern auch Strukturen, die man heu-
te als Fresnel-Beugung bezeichnet. Auch die spektrale Zerlegung des
Weifslichts mit einem Prisma wurde von ihm beschrieben. Sein Werk
,Physico-mathesis de lumine, coloribus et iride” erschien erst nach
seinem Tode, im Jahr 1665.

8 Beugung
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Abbildung 8.1 Beugungserscheinungen im Wellentrog. a Spalt, Breite > A,
b Hindernis, 5mm @. A = 1,5cm

die Abmessungen des beugenden Objekts im Verhaltnis
zur Wellenldnge eine mafigebliche Rolle spielen: Hinder-
nisse, die kleiner als die Wellenlange sind, beeinflussen
das Wellenfeld fast iiberhaupt nicht. Die Ausbreitung von
Schallwellen (Wellenldnge A ~ 1 m) wird durch einen ein-
zelnen Baum nicht behindert, wihrend der Baum mit
Licht (A = 0,5 um) einen scharf begrenzten Schatten wirft.
Diese Schattenbildung war fiir Newton eines der Argu-
mente gegen die Wellentheorie des Lichts. In Wirklichkeit
treten gerade an der Grenze zwischen Licht und Schatten
markante Beugungsphdnomene auf. Bei ausgedehnten
Lichtquellen werden sie durch Halbschatten-Effekte ver-
wischt. Hat man jedoch eine helle Punktlichtquelle zur
Verftigung, springen sie sofort ins Auge (Abb. 8.2). Man
erkennt auch an diesem Bild, dass die Berechnung von
Beugungsphanomenen keine ganz einfache Sache sein
wird.

In einer strengen Theorie der Beugung miisste man die
Wellengleichung (1.35) unter den jeweils vorgegebenen
Randbedingungen lésen und dabei auch die Reaktion



8.1 Beugungsphdanomene und Beugungstheorien

Abbildung 8.2 Schatten eines Bleistifts, beleuchtet mit einer Xenon-
Hochdrucklampe

des beugenden Korpers beriicksichtigen. Bei der Beu-
gung elektromagnetischer Wellen an einer Blende miisste
z.B. berticksichtigt werden, dass dort Elektronen sitzen,
die durch die einfallende Welle zu Schwingungen ange-
regt werden. Sie strahlen ihrerseits Wellen ab, die zum
Strahlungsfeld einen Beitrag leisten. Eine solche Theorie
ist dulerst kompliziert und auch heute nur ansatzweise
vorhanden. Gliicklicherweise kann man jedoch in guter
Néherung die Beugung viel einfacher mit dem Huy-
gensschen Prinzip (Satz 5.1) behandeln. Allerdings muss
man das Prinzip in einem entscheidenden Punkt ergan-
zen, wie Fresnel? erkannte: Man muss die Interferenzen

2 Augustin Jean Fresnel (1788-1827), franzésischer Strafenbauinge-
nieur im Staatsdienst. Sein erster Groflauftrag war der Bau einer
Strafle von Nyons (Provence) zu dem nach Italien fithrenden Col
de la Genevre, der heutigen N94. Von dieser Tatigkeit fiihlte er sich
nicht ausgefiillt und er begann in seiner Freizeit mit Studien tiber
die Natur des Lichts. Dabei entdeckte er die nach ihm benannten
Beugungserscheinungen und schloss daraus, dass die Lichtausbrei-
tung ein Wellenphidnomen ist. Es gelang ihm, die Beugungsfigu-
ren mit selbstgebauten Apparaten genau zu vermessen und eine
Beugungstheorie zu entwickeln, die diese Phinomene quantita-
tiv beschreibt — ein messtechnisches Kunststiick erster Klasse und
ein mathematisch-physikalisches Meisterwerk. Seiner wissenschaft-
lichen Tatigkeit kam zugute, dass er als Gegner Napoleons inhaftiert
wurde, seine Arbeiten aber dank der Fiirsprache eines Vorgesetzten
fortfiihren konnte. Nach Napoleons Sturz gelang es ihm, Verbin-
dungen zu Wissenschaftlern in Paris aufzunehmen. Dort konnte er
seine Studien unter wesentlich besseren Bedingungen fortsetzen und
zum Abschluss bringen. 1818 konnte er die Pariser Gelehrtenwelt
von der Richtigkeit seiner Theorie iiberzeugen. Fortan war er als
Wissenschaftler hoch geachtet. Sein Geld verdiente er aber auch in
Paris als Stralenbauer: Er war fiir die Pflasterung der Hauptstadt
zustandig. Auflerdem war er der Sekretér der fiir die Leuchttiirme
an Frankreichs Kiisten zustiandigen Behdrde. Sein gewaltiges Werk
(Licht als transversale Welle, Erkldrung der Polarisation des Lichts,
Fresnelsche Formeln, Theorie der Doppelbrechung, Entdeckung der
zirkularen und der elliptischen Polarisation und anderes) entstand
also in seiner Freizeit, und in den wenigen Jahren, die er noch lebte.
Er starb an Tuberkulose.

der Huygensschen Elementarwellen mit einbeziehen. Das
Huygens-Fresnelsche Prinzip lautet:

Satz 8.1

Jeder Punkt einer Wellenfront kann als Ausgangs-
punkt einer Elementarwelle betrachtet werden. Die
Amplitude, die die Welle zu einem spéteren Zeit-
punkt an einem beliebigen Raumpunkt hat, erhalt
man durch Addition aller Elementarwellen unter
Beriicksichtigung der Phasen, mit der sie an dem be-
treffenden Punkt ankommen.

Wir stellen die Diskussion der in Abb. 8.2 gezeigten
Phinomene bis ans Ende von Abschn. 8.3 zuriick und
betrachten zundchst die Beugung von Wellen an einer
Offnung in einer undurchsichtigen, diinnen ebenen Plat-
te. Abbildung 8.3 zeigt die Ergebnisse eines Experiments,
bei dem eine kreisférmige Blende von 1,03 mm @ mit ei-
nem aufgeweiteten Laserstrahl (A = 632,8 nm) beleuchtet
wurde. Der Strahl fillt als ebene Welle senkrecht auf die
Blendenebene. Um das Wellenfeld hinter der Blende zu
untersuchen, wurde bei den Abb. 8.3a—f hinter der Blende
eine Digitalkamera mit herausgeschraubter Optik aufge-
stellt. Das Licht fiel direkt auf den CCD-Chip, der sich
im variablen Abstand R hinter der Blende befand. Bei
Abb. 8.3g, h und i wurde in den angegebenen Abstin-
den ein weifser Bildschirm aufgestellt und abfotografiert.
Die Abbildungen 8.3a—f sind alle im gleichen Mafsstab
gezeigt. Die Abb. 8.3g-i sind demgegeniiber stark verklei-
nert.

Unmittelbar hinter der Blende sieht man eine im wesent-
lichen gleichmiflig beleuchtete Kreisfliche von 1mm &,
begrenzt durch den geometrisch-optischen Schatten der
Blende. Bei Vergrofierung des Abstands zeigt sich dann
eine komplizierte Beugungsfigur, ein System von konzen-
trischen Ringen, dessen Struktur stark vom Abstand R
abhingig ist. Das Zentrum des Systems ist bald dun-
kel, bald hell. Bei Abb. 8.3e ist das Zentrum zum letzten
Mal dunkel, danach bleibt es hell. In Abb. 8.3f erreicht
die Helligkeit ein Maximum. Von einer gewissen Entfer-
nung an, R ~ 1,5m, stabilisiert sich die Beugungsfigur.
Im Zentrum liegt eine hell beleuchtete Flache. Sie ist um-
geben von lichtschwachen Ringen; das Ringsystem reicht
weit nach aufsen, wie Abb. 8.4 zeigt. Dieses Bild dndert
sich dann nicht mehr; die Radien der Kreisflache und
der Ringe nehmen jedoch proportional zum Abstand R
zu. In diesem Bereich spricht man von Fernfeld- oder
Fraunhofer-Beugung, wahrend man die bei kiirzeren Ab-
stdanden beobachteten variablen Phanomene als Nahfeld-
oder Fresnel-Beugung bezeichnet.
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8 Beugung
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Abbildung 8.3 Beugung an einer kreisférmigen Blende (1,03 mm &). Beleuchtung durch aufgeweiteten Laserstrahl. Der Abstand zwischen Blende und Beobach-

tungsebene ist jeweils angegeben. a—f Fresnel-Beugung, g—i Fraunhofer-Beugung

Abbildung 8.4 Fraunhofer-Beugung an einer Kreisblende, aufgenommen mit
langer Belichtungszeit. Die innersten dunklen Ringe sind durch die hohe Inten-
sitat im Zentrum teilweise iiberstrahlt

Wie der Unterschied zwischen den beiden Beugungsty-
pen zustande kommt, zeigt Abb. 8.5. In der Blendenoff-
nung wird ein Koordinatensystem (x,y) eingefiihrt. Die
x-Achse liegt senkrecht zur Zeichenebene, die einfallende
Welle lauft in z-Richtung. Gezeigt ist ein Schnitt entlang
der (y,z)-Ebene. Da in Abb. 8.5a die einlaufende ebene
Welle senkrecht auf die Blendenéffnung fillt, starten die
von den Punkten der Blendendffnung ausgehenden Ele-

mentarwellen alle mit der gleichen Phase. Die Phasen, mit
denen sie den Punkt P erreichen, sind durch die Langen
der Strecken r gegeben, von denen eine in Abb. 8.5a ein-
gezeichnet ist. Da es bei der Anwendung von Satz 8.1 nur
auf Phasendifferenzen ankommt, denken wir uns eine Ku-
gelflache vom Radius r; mit P als Zentrum. Sie soll gerade
durch den obersten Rand der Blendenoffnung fiihren. Die
Phasen, mit denen die Elementarwellen P erreichen, sind
dann allein durch die Langen der Strecken r, gegeben. Sie
héngen in einigermaflen komplizierter Weise von x und
y, vom Winkel ¢ und von der Kriimmung der Kugelfla-
che ab, also auch vom Abstand R. Das bewirkt, dass die
mit Satz 8.1 berechnete Feldstirke von ¢ und von R ab-
héngt, wie es bei der Fresnel-Beugung beobachtet wird
(Abb. 8.3af).

Eine zweite Konfiguration, in der Fresnel-Beugung auf-
tritt, ist in Abb. 8.5b gezeigt. Hier wird die Blende von
einer Punktlichtquelle beleuchtet, die so nahe an der Blen-
dendffnung steht, dass die Kriimmung der Wellenfron-
ten der einlaufenden Kugelwelle beriicksichtigt werden
muss. Das fiihrt zu den aus Abb. 8.5a bekannten Kompli-
kationen, selbst wenn der Punkt P so weit von der Blende
entfernt ist, dass die Kriimmung der in Abb. 8.5a einge-
fithrten Kugelflache vernachlédssigt werden kann.

Bei der Fraunhofer-Beugung wird die Blendendffnung
mit ebenen Wellen beleuchtet. Auch ist der Punkt P so
weit von der Blende entfernt, dass man die eben ge-
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a

Abbildung 8.5 a, b Fresnel-Beugung, ¢ Fraunhofer-Beugung

nannte Kugelfliche durch eine Ebene, den Kreisbogen
in Abb. 8.5a also durch eine Gerade ersetzen kann. Wie
Abb. 8.5¢ zeigt, ist nun die Berechnung der Phasendiffe-
renzen denkbar einfach. Die Lange der Strecke r; ist eine
lineare Funktion von x und y. Diese Funktion, deren Ko-
effizienten allein vom Winkel ¢ abhédngen, bestimmt die
Phasen, mit denen die Elementarwellen den Punkt P errei-
chen. Das Beugungsbild hat eine relativ einfache Struktur,
die nur von ¢ abhédngt. Offensichtlich ist die Fraunhofer-
sche Beugung mathematisch viel leichter zu behandeln
als die Fresnelsche. Wir wenden uns dieser Aufgabe zu.
Gliicklicherweise hat man es in Theorie und Praxis auch
meist mit Fraunhofer-Beugung zu tun.

8.2 Fraunhofer-Beugung

Von welchen Abstdnden an kann man bei einer Lochblen-
de mit Fraunhofer-Beugung® rechnen? Wir berechnen mit
Abb. 8.6a die Sagitta s der einlaufenden Wellenfront in der

B Joseph Fraunhofer (1787-1826) stammte aus drmlichen Verhéltnis-
sen. Als vierzehnjahriger Glaserlehrling iiberlebte er als einziger den
Einsturz des Hauses seines Lehrmeisters und geriet dadurch in die

o
Lichtquelle Ry

\

2ts

R,

I Bildebene -

Abbildung 8.6 Zur Ableitung von (8.1)

Blendenoffnung. Es ist

R2+D2—(R +5)2 ~ R2+2R;s  — s~D2
1y T ST T8R;

Wenn nun D?/Rq = A ist, ist s &~ A/8, und die Wellen-
front ist nahezu eben. Zu dem gleichen Ergebnis kommt
man, wenn man die Sagitta des in Abb. 8.6b eingezeich-
neten Kreisbogens berechnet. Ein einfaches Kriterium fiir
die Fraunhofer-Beugung ist also

D2

?<A, oder >

>0

8.1)

Ol'=

Hierbei ist D eine fiir die Blendendffnung charakteristi-
sche Lange und R der kleinere von den beiden Abstéan-
den R; und Ry. Der Vergleich mit Abb. 8.3 zeigt, dass das
Kriterium gut funktioniert. Wenn D = 1 mm ist, braucht
man bei A = 633nm R 2 1,5m, um das Kriterium zu er-
fiillen.

Bei grofieren Blenden wird die durch (8.1) gegebene Gren-
ze flir R rasch weitaus grofier als ein Labortisch. Man kann

Protektion des Kurfiirsten Maximilian von Bayern. Er konnte eine
Schule besuchen und kam als Techniker in einen Betrieb, der op-
tische Gerate herstellte. Dieses Unternehmen brachte er mit seinen
Erfindungen zu Weltruhm. Die Wissenschaft verdankt ihm die Ent-
deckung der Fraunhofer-Linien (Bd. V/1), das Beugungsgitter und
die Theorie der Fernfeld-Beugung. — Es ist bemerkenswert, dass die
Wellentheorie des Lichts nach den halbvergessenen ersten Ansétzen
von Huygens durch drei Aufienseiter wiederbelebt und ausgearbei-
tet wurde: Durch den Arzt Thomas Young, den StraSenbauingenieur
Fresnel und den Glaser und Techniker Fraunhofer.
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Blendenebene

Bildebene

Abbildung 8.7 Praktische Realisierung der Fraunhofer-Beugung. Eingezeich-
net ist der Strahlengang ohne die Blende B

dennoch auch bei kurzen Abstidnden zwischen Lichtquel-
le und Bildebene Fraunhofer-Beugung erhalten, indem
man Linsen in den Strahlengang einbaut, wie Abb. 8.7
zeigt. Mit Hilfe der Linsen kann man die Kriimmung der
Wellenfronten in der Blendenebene aufheben. In der Pra-
xis benutzt man gewohnlich diese Anordnung.

Fraunhofer-Beugung an einer beliebig geformten
ebenen Blende

In einer Ebene aus undurchsichtigem Material befinde
sich die in Abb. 8.8 gezeigte Offnung. Wir fiihren ein
Koordinatensystem (x,y,z) ein, dessen Nullpunkt an ei-
ner beliebigen Stelle innerhalb der Blendentffnung liegen
soll. Von links laufen in z-Richtung ebene Wellen ein.
Der Ubersichtlichkeit halber beschrianken wir uns auf den
Fall, dass die einlaufende Welle senkrecht auf die Blen-
denoffnung fallt. Rechts liegt parallel zur (x, y)-Ebene die
Beobachtungsebene. Ihr Abstand R von der Blendenebene
soll so grof sein, dass (8.1) erfiillt ist.

Die von den einzelnen Fldchenelementen dA = dx dy aus-
gehenden Elementarwellen setzen wir als Kugelwellen
an, wobei wir die komplexe Schreibweise (4.10) verwen-
den, denn das erweist sich hier als dufSerst vorteilhaft.
Dort, wo die z-Achse auf die Beobachtungsebene stof3t,
sind bei Fraunhofer-Beugung alle Elementarwellen in
Phase und man erhilt maximal konstruktive Interferenz.
Das Flachenelement dA in Abb. 8.8a leistet dort zur Feld-
starke den Beitrag

&o

dEy = fem*wﬂ dxdy . (8.2)

& ist ein konstanter Amplitudenfaktor. Die Feldstdrke im
Zentrum des Beugungsbilds erhdlt man durch Integration
iiber die Flache der Offnung;:

Eo(R,t) = / dEo(x,y) = &’TAeﬂkR—wf). (8.3)
A

Die Intensitét ist proportional zu |E|?, also ist I « 2 /R>.
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Abbildung 8.8 Fraunhofer-Beugung an einer beliebig geformten Blende, zur
Ableitung von (8.6). a k parallel zur z-Achse, b k zeigt auf einen weit entfernt
liegenden Punkt P, c die in b blau getdnte Flache in Draufsicht

Nun berechnen wir die Feldstirke an einem beliebigen
Punkt P in der Beobachtungsebene, auf den die Wellen-
vektoren k in Abb. 8.8b gerichtet sind. Der Beitrag des
Flachenelements dx dy ist

dE = S0tk gy dy .
r

(8.4)
Wie die Abb. 8.8b und c zeigen, hangt r von x und y ab,
und esistr(x,y) = rg + G(x,y), mitryg = R/ cos 9. Im Fak-
tor vor der Exponentialfunktion konnen wir die kleinen
Unterschiede zwischen r, rp und R vernachldssigen und
&o/r = &y/R setzen. Bei der Phase miissen wir jedoch den
Gangunterschied G(x,y) beriicksichtigen: Wir setzen al-
so kr = krp 4+ kG(x,y). Der von x und y abhingige zweite
Term ist nach Abb. 8.8c

kG(x,y) = ko(x,y) cosa = —kp cosy
= —k-p=—(kex +kyy) ,
denn es ist ¥ = 180° — a. Der Vektor p = (x,y,0) ist in
Abb. 8.8b definiert. Wir erhalten

dE(k,x,y,t) = %ei[km*wf*“ﬂ*kwﬂ dydy.  (85)



8.2 Fraunhofer-Beugung

Bei der Integration ziehen wir die von x und y unabhéan-
gigen Grofien vor das Integral, was dank der komplexen
Schreibweise ohne weiteres mdoglich ist:

E(k,t) = %eﬂ’%*wt) / / emitkarthy) dy dy | (8.6)
A

mit 79 = R/cos?®. Zur Berechnung der Fraunhofer-
Beugung geniigt es, das auf der rechten Seite stehende
Beugungsintegral zu 16sen.

Beugung am Spalt

Ein Spalt wird in der Anordnung von Abb. 8.7 mit ebenen
Wellen beleuchtet (Abb. 8.9a). Die Hohe des Spalts senk-
recht zur Zeichenebene (in y-Richtung) soll grofd gegen die
Spaltbreite D sein. Man erhélt dann das in Abb. 8.9b ge-
zeigte Beugungsbild. Unter dem Winkel ¢ = 0 beobachtet
man das Intensitdtsmaximum der maximal konstruktiven
Interferenz, das Beugungmaximum nullter Ordnung. Al-
le von der Spaltéffnung ausgehenden Elementarwellen
sind hier in Phase. Rechts und links daneben, also entlang
der x’-Achse in Abb. 8.9a, folgen noch weitere Maxima
mit abfallender Intensitat. Sie sind durch dunkle Streifen
voneinander getrennt. Wie kommt dieses Beugungsbild
zustande?

Es ist niitzlich, diese Frage zundchst qualitativ zu beant-
worten. Das Beugungsbild legt nahe, die Beugung nur
in der (x,z)-Ebene zu betrachten. Wir bezeichnen den in
dieser Ebene gemessenen Winkel zwischen der Ausbrei-
tungsrichtung der Welle und der z-Achse mit ¢. Abbil-
dung 8.9¢ zeigt den Fall, dass die von den Réndern des
Spalts herriihrenden Elementarwellen einen Gangunter-
schied G = A aufweisen. Die von der Mitte des Spalts
(Punkt B) ausgehenden Elementarwellen haben dann ge-
geniiber Punkt A den Gangunterschied G = A/2, sie 16-
schen sich mit den von A ausgehenden Wellen durch de-
struktive Interferenz vollstdndig aus. Wie man sieht, kann
man auf der gesamten Strecke zwischen A und C stets
zwei Punkte A’ und B’ finden, von denen in Richtung ¢
maximal destruktiv interferierende Elementarwellen aus-
gehen. Der erste dunkle Streifen im Beugungsbild des
Spalts liegt also dort, wo

G=Dsind=A, sinl?z% (8.7)

ist. Damit haben wir bereits das wichtigste Ergebnis: Das
Beugungsbild ist um so breiter, je schmaéler der Spalt ist.
Ein numerisches Beispiel: Beleuchtet man einen 0,1 mm

f— 5 —

Abbildung 8.9 Beugung am Spalt. a Versuchsanordnung, b Beugungsbild,
¢ Zur Ableitung von (8.7)

breiten Spalt mit Licht der Wellenldnge A = 500nm, so
ist sin® =~ ¢ = 5mrad. Ist in Abb. 8.7 f, = 1m, hat das
zentrale Maximum im Bild der linienférmigen Lichtquelle
eine Breite von 10 mm!

Die weitere Struktur des Beugungsbildes kann man auf
die gleiche Weise erklaren: Dunkle Streifen liegen dort, wo

A
sin® = % (m=1,2,3,...) 8.8)

ist. Die Maxima hoherer Ordnung liegen dazwischen,
also ungefahr bei sind = (m + 1/2)A/D. Auch ihre ab-
nehmende Intensitdt ist leicht zu erkldren: Beim ersten
Nebenmaximum beispielsweise 16schen sich 2/3 der Ele-
mentarwellen mit dem in Abb. 8.9c gezeigten Mechanis-
mus aus, und auch das restliche Drittel interferiert nicht
maximal konstruktiv. Die Amplitude sinkt schédtzungs-
weise auf 1/5, die Intensitat auf 1/25, also auf ca. 4 % des
Maximalwerts bei ¢ = 0.

Zur quantitativen Berechnung der Intensitdt: Die Glei-
chung (8.7) zeigt, dass man sich in der Tat bei der Be-
rechnung des Beugungsbildes auf die (x, z)-Ebene und in
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Abbildung 8.10 Intensitatsverteilungen bei der Fraunhofer-Beugung am
Spalt (ausgezogene Kurve) und an einer kreisférmigen Offnung (gestrichelt)

(8.6) auf die x-Koordinate beschrdanken kann. Wegen der
groflen Ausdehnung des Spalts in y-Richtung riicken die
Beugungsmaxima so dicht zusammen, dass sie nicht mehr
aufgelost werden konnen. Man kann bei der y-Koordinate
von der geometrisch-optischen Abbildung der Lichtquel-
le ausgehen. Mit —ikyx = 1 und der Euler-Formel erhalt
man

+D/2 ik,D/2
/ e k¥ gy = —% e du
_D/2 Y ikD/2 (8.9)
ekD/2 _o=ikD/2 5 D
= i % sin =5 -

Mit (8.6) und mit ky = ksin® = (271/A) sin 9 folgt

E(8,1) = S0P iloen) _Sizﬁ
kxD  mDsin®

mit > 1

(8.10)

Die Intensitit ist proportional zu |E|?. Durch Quadrieren
der schon in Abb. 4.14 gezeigten Funktion sin 3/ erhilt
man die in Abb. 8.10 gezeigte Intensitdtsverteilung (aus-
gezogene Kurve):

(8.11)

8 Beugung

A\

Abbildung 8.11 Beugung an einer rechteckigen Offnung

Ip ist die unter dem Winkel ¢ = 0 gemessene Intensitat im
Beugungsbild. Die Nullstellenliegenbei g = 7,27, 3, ...,
also bei

sind =m—,

5 (8.12)

wie in (8.8) aufgrund der qualitativen Betrachtung ange-
geben.

Wir berechnen noch die Halbwertsbreite des zentralen
Maximums. Die Funktion sin 8/ erreicht bei g = 1,39
den Wert 1/+/2. Die Intensitat I(¢) = Iy/2 erreicht man
also bei

sind = £+ 2% _ 4ot
D D
Y A (8.13)
(A8) yp = 0885 ~ 5 -

Beugung an einer rechteckigen Offnung. Fiir eine recht-
eckige Offnung mit der Breite b und der Héhe h miissen
wir (8.6) liber x und iiber y integrieren (Abb. 8.11a). Dieses
Integral zerfallt hier in das Produkt von zwei Integra-
len des Typs (8.9), und wir konnen das Ergebnis sofort
hinschreiben. Die Projektion des Winkels ¢ auf die (x, z)-
Ebene nennen wir ¢, und die auf die (y, z)-Ebene nennen
wir ¢y. Mit

kxb

f keb kyh  mthsind,
2

7th sin ¥y ,
_ ‘B = =,
2 A

)L 7
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erhilt man

- (25 (5

Das Beugungsbild ist in Abb. 8.11 gezeigt. Das zentrale
Maximum ist nahezu rechteckig. Es ist breit in der Rich-
tung, in der die Blendentffnung schmal ist, und schmal,
in der sie breit ist.

(8.14)

Beugung an einer kreisféormigen Offnung

Bei einer kreisformigen Blende mit dem Durchmesser D
fithrt man in der Blendenebene Polarkoordinaten (o, ¢)
ein. Nach entsprechender Umformung von (8.6) erhilt
man die Intensititsverteilung?

1(19)210<M)2, g Dsind g5

B A

¢ ist der in Abb. 8.8 definierte Winkel, und J;(B) ist die
Bessel-Funktion erster Ordnung, die uns schon in Bd. III,
Abb. 17.28 und (7.43) begegnet ist. Die gestrichelte Kur-
ve in Abb. 8.10 zeigt die Intensitdtsverteilung (siehe auch
Abb. 8.3 und Abb. 8.4). Das zentrale Maximum ist sehr
stark ausgepragt. Es enthilt 84 % des Strahlungsflusses.
Die erste Nullstelle der Bessel-Funktion J;(B) liegt bei
B = 3,83 = 1,227. Der erste dunkle Ring erscheint daher
unter dem Winkel

sin® = 1,22& .

i (8.16)

Auf dieser Formel beruhte (6.42) und die Berechnung
des Auflésungsvermdogens von optischen Instrumenten in
Kap. 6. Zur Begriindung: Wenn man in Abb. 8.7 die Linsen
dicht an die Blende schiebt, erhédlt man nach (6.36) eine
Linse mit der Brennweite f = fif2/(fi + f2) und eine in
der Linsenebene liegende Aperturblende mit dem Durch-
messer D. Diese Linse bildet einen im Abstand ¢ = f;
vor der Linse liegenden Punkt auf einen hinter der Lin-
se im Abstand b = f, liegenden Punkt ab. Dabei entsteht

4Zur Durchfilhrung der Rechnung siehe z.B. Eugene Hecht,
,Optics”, Addison-Wesley (2002). Eine deutsche Ubersetzung ist er-
schienen als De Gruyter-Studienbuch im Oldenbourg Verlag 2009.
Dort findet man auch Niheres zu den Besselfunktionen.
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Abbildung 8.12 Zum Rayleigh-Kriterium: Intensitatsverteilung in der Beob-
achtungsebene. a Bei gleicher Helligkeit der beiden Objekte, b bei unterschied-

licher Helligkeit /; /1, =3 : 1)

in der Bildebene ein Beugungsbild mit der durch (8.15)
gegebenen Intensitdtsverteilung. Der ,Radius des Beu-
gungsscheibchens” ist der Radius p des ersten dunklen
Rings. Mit sin¢ ~ ¢ ~ p/b folgt aus (8.16) die schon in
(6.42) angegebene Formel

Ab

p=12%. (8.17)

Nach dem von Lord Rayleigh aufgestellten Kriterium
betrachtet man zwei Punkte als auflosbar, wenn die Zen-
tren der Beugungsscheibchen voneinander mindestens
den Abstand p haben. Wie Abb. 8.12 zeigt, funktioniert
das Kriterium nur, wenn die Objekte ungefahr gleich hell
sind.

Beugung am Doppelspalt

Die Blende bestehe nun aus zwei parallelen Spalten
der Breite D, die voneinander den Abstand d haben
(Abb. 8.13a). Bei der Berechnung des Beugungsbilds be-
schrianken wir uns wieder auf die (x,z)-Ebene. Diesmal
muss liber beide Spalte integriert werden. Statt (8.9) erhalt
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Abbildung 8.13 Beugung am Doppelspalt
man mit § = k,D/2
+D/2 d+D/2
/ e ¥ gy 4 / e gy
—-D/2 d—D/2
_2 sin § — 1 (efikxdefiﬁ _ efikxdew)
x iky (8.18)
. E0D itkra—wi SINB i
E - Y~ 1(kr0 wt) 1 lkxd
(1) R € B +e
=2D sinp cos @e*ik’(”l/2 .
B 2
Die Intensitat berechnet man wie in (8.11):
Iwyﬂ‘sm52m§§ (8.19)
=10 ,B 2 7 .
mit __ kDsin®  nDsind
C onasme G0
0 =kdsin9 = —

¢ ist die Phasendifferenz, mit der die Elementarwellen,
die von den Zentren der beiden Spalte ausgehen, die
Beobachtungsebene erreichen. Also beobachtet man die
in Abb. 8.13b gezeigte Intensitdtsverteilung. Das Beu-
gungsbild des Einzelspalts ist moduliert mit der schon in
(7.13) berechneten Funktion, die die Interferenz der von

8 Beugung

zwei gleich starken Punktquellen ausgehenden Wellen
beschreibt. Die Maxima liegen dort, wo der Gangunter-
schied G = mA bzw. die Phasendifferenz 6 = 2m ist.
Dann ist sin ¢ = mA/d.

Das Beugungsgitter

Wir betrachten nun N Spalte der Breite D, die vonein-
ander den Abstand ¢ haben (Abb. 8.14a). Eine solche
Anordnung nennt man ein Beugungsgitter; ¢ ist die Git-
terkonstante. Jeder einzelne Spalt beugt das Licht gemaf3
(8.10). Wir betrachten die Elementarwellen, die bei mo-
nochromatischer Beleuchtung von den Zentren zweier
benachbarter Spalte ausgehen. Unter dem Winkel ¢ ent-
steht der Gangunterschied und die Phasendifferenz

G =gsint, 0=kgsind?. (8.21)
Konstruktive Interferenz erhdlt man, wenn
0 =2mm G—é— sind,, = mA
e, b= T gsmin = (8.22)

(m=0,41,£2,...)

‘P
-~ T -

¥y
m=1 m

m=0

Abbildung 8.14 Beugungsgitter. a Grundprinzip, b Intensitdtsverteilung nach
(8.23). Gestrichelt: (sin 8/ )2
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ist. Dann sind ndmlich die von entsprechenden Punkten
der N Spalte ausgehenden Elementarwellen sémtlich in
Phase. Da es sich um Vielstrahlinterferenzen handelt, soll-
ten die Maxima scharf sein. Das bestdtigt die folgende
Rechnung: Die elektrische Feldstdrke in der unter dem
Winkel ¢ laufenden Welle ergibt sich wie in (8.18):

E(t) = &)TD% [1 +e 0 p 20
+ e—i(N—1)5:| ei(kro—wt) ]

Wie man eine solche Reihe aufsummiert, haben wir in Ab-
schn. 4.3 gesehen. Man erhdlt analog zu (4.45)

B(r) = SoD SBSNNO/2) iy —wot—(N-1)6/2)
R B sn(6/2) :

und fiir die Intensitat

o (%) ()

it kD sin ¢

mit § = 5 .

In Abb. 8.14b ist die Intensitdt als Funktion von § =
2mgsind/ A gezeigt. Die Funktion sin? (N6/2)/ sin? (6/2)
entspricht dem Quadrat der Amplitudenfunktion a(t) in
(4.23) und Abb. 4.9. Sie ist hier multipliziert mit der Funk-
tion (sin 8/B)?, die vom Winkel ¢ und von der Spaltbreite
abhdngt. Die mit zunehmendem N immer schirfer wer-
denden Hauptmaxima liegen bei den in (8.22) angegebe-
nen Werten 8y,. Zwischen dem m-ten und dem (m + 1)-ten
Hauptmaximum liegen (N — 1) Nullstellen und (N — 2)
Nebenmaxima. Die Nullstellen liegen bei

o 1 2
gsind = (m+ ITI) A, <m+ ITI) AL

(m+ (N]\_Il))A.

Wenn die ebene Welle unter einem Winkel ¢y auf die Git-
terebene fallt (Abb. 8.15), ist (8.21) zu ersetzen durch

(8.23)

(8.24)

J =kg(sin® —sindy) ,
(8.25)

G =g(sin?® —sindy) ,

denn nun muss auch die Phasendifferenz berticksichtigt
werden, mit der die von der Gitterebene ausgehenden
Elementarwellen starten. Auch ist nun

kD(sin ¢ — sin ¢y)

ntD(sin® — sindy)
ﬁ = 2 =

(8.26)

Abbildung 8.15 Beugungsgit-
ter bei schragem Lichteinfall

G = gsindy
AN i

/ -
g N
|
Jo .
R i, G = gsind

Das Beugungsgitter ist neben Linse, Prisma und Spiegel
ein wichtiges Bauelement in der Optik. Man benutzt es in
erster Linie zur spektralen Zerlegung von Licht. Wir be-
rechnen das Aufldsungsvermogen. In der m-ten Ordnung
fallt das Hauptmaximum der Wellenldngen A, in das ers-
te Minimum neben dem zur Wellenlénge A1 gehorenden
Hauptmaximum, wenn

1 A
mhAy = (m + ]T]) AM = A=A = (A/\)min = N_Tln

ist. Das wie in (6.59) definierte Auflosungsvermogen ist
also

(8.27)

Es ist umso grofer, je grofer die Gesamtzahl der Spalte
ist, und je hoher die Ordnung, in der das Licht beobach-
tet wird. Die Gitterkonstanten spielen nur insofern eine
Rolle, als die Gesamtbreite des Gitters Ng ist, und natiir-
lich muss das Gitter vollstandig ausgeleuchtet sein, damit
(8.27) gilt. Fiir den freien Spektralbereich erhdlt man

(AN )psp < A . (8.28)
m

Das ist die gleiche Formel wie (7.59). Da aber das Beu-

gungsgitter stets in niedriger Ordnung betrieben wird

(m <'5), ist sein FSB weitaus grofer als der des Fabry-

Pérot-Interferometers.

Das Verhiltnis D/g ist dafiir mafigeblich, wie die ein-
fallende Strahlung nutzbar gemacht werden kann. Nur
der Bruchteil D/g wird vom Gitter durchgelassen. Aufier-
dem bestimmt das Verhéltnis D /g, wo die Nullstellen der
Funktion (sin 8/p)? relativ zu den Beugungsmaxima lie-
gen. In Abb. 8.14b ist das an zwei Beispielen gezeigt. Bei
D = g/2 (,Mdandergitter”) werden alle Maxima gerader
Ordnung ausgeloscht, und die Intensitdt in den Maxima
n > 3 ist sehr klein. Bei D = g/6 ist die Intensitat gleich-
mafliger auf die Maxima verteilt, es wird aber nur 1/6 der
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Strahlung durchgelassen. In jedem Fall sind bei dem in
Abb. 8.14 gezeigten Beugungsgitter die Maxima hoherer
Ordnung lichtschwach.

Das Beugungsgitter wurde um 1820 von Fraunhofer er-
funden. Seitdem wurde die Technik zu seiner Herstellung
standig verfeinert. Einen grofien Fortschritt erzielte der
amerikanische Physiker H. A. Rowland (1848-1901), der
ein Verfahren entwickelte, mit dem er sehr genau bis zu
8000 Furchen pro cm in eine Glasplatte einritzen konn-
te. In der dritten Ordnung erreicht man dann mit einem
10cm breiten Gitter ein Aufldsungsvermdgen R ~ 24 -
10°, was an den Bereich der Fabry-Pérot-Interferometrie
heranreicht.

Die Furchen kénnen auch in eine verspiegelte Platte ein-
geritzt werden. Man erhélt dann statt des Transmissions-
gitters, das wir bisher diskutierten, ein Reflexionsgitter
(Abb. 8.16a). Die Formeln (8.23) bis (8.28) bleiben giiltig,
jedoch ist in (8.25) #p nun der Reflexionswinkel, gemessen
gegen die Normale auf der Gitterebene. Fiir die Funkti-
on (sin B/ B)? ist die Breite D der einzelnen Spiegelflichen
mafsgeblich.

Die bisher betrachteten Gitter haben samtlich den grofien
Nachteil, dass der grofite Teil der Intensitédt in das Maxi-
mum nullter Ordnung fallt und damit fiir die Spektrome-
trie verloren geht (Abb. 8.16a). Bei einem Reflexionsgitter
kann man das vermeiden, indem man ein Stufengitter,
auch Echellette-Gitter genannt, verwendet. In Abb. 8.16b
ist ein solches Gitter gezeigt. 71 ist der Normalenvektor
auf der Gitterebene, #’ der auf der reflektierenden Fliche.
An den Phasendifferenzen nach (8.25) und an der Lage
der Beugungsmaxima beziiglich der Gitterebene dndert
sich nichts. Das Hauptmaximum der Funktion (sin 8/ ,8)2
liegt nun aber in der Richtung der Reflexion an den ein-
zelnen Streifen. Man kann den Winkel v so bemessen,
dass es ungefihr in die Richtung eines der Beugungs-
maxima m-ter Ordnung fillt. Man kann sich nun sogar
erlauben, D/g ~ 1 zu machen. Dann wird nahezu der ge-
samte einfallende Strahlungsfluss auf dieses Maximum
konzentriert und nutzbar gemacht. Wahlt man A ~ yg =
D, fallt der reflektierte Strahl in die Nahe des Beugungs-
maximums 2. Ordnung. Die iibrigen Beugungsmaxima
werden weitgehend ausgeldscht.

Auf diesem Prinzip beruht der in Abb. 8.17 gezeigte Git-
termonochromator. Die Funktion der beiden Linsen von
Abb. 8.7 wird hier von einem Hohlspiegel {ibernommen.
Dadurch und durch die Verwendung eines Reflexionsgit-
ters vermeidet man die Absorption des Lichts im Glas,
und der Monochromator kann auch im ultravioletten und
infraroten Spektralbereich eingesetzt werden. Die Wel-
lenlénge des selektierten Lichts kann durch Drehen des
Gitters verandert werden.

Beugungsgitter von der in Abb. 8.16b gezeigten Art kon-
nen in ausgezeichneter Qualitit mit einem Diamant-
Werkzeug auf einer dick mit Aluminium bedampften

8 Beugung
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Abbildung 8.17 Gittermonochromator

Glasplatte hergestellt werden. Abdrucke solcher Gitter
in Plastik-Material sind nicht ganz so gut, aber wesent-
lich billiger. Im Ubrigen kann man den Dispersioneffekt
von gitterartigen Strukturen auch an einer CD beobach-
ten, wenn man sie schrdg gegen das Licht halt. Auch die
Natur stellt Beugungsgitter her: Das Innere von manchen
Muschelschalen ist von feinen Furchen iiberzogen; das er-
zeugt den farbigen Schimmer des Perlmutt.

Die Beugungsbegrenzung von Strahlen

Wir kehren noch einmal zur Beugung am Spalt und an
der kreisformigen Offnung zuriick. In der geometrischen
Optik hatten wir ausdriicklich davon abgesehen, dass der
mit einer Lochblende oder einem Spalt erzeugte , Licht-
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il

Abbildung 8.18 Strahldivergenz hinter einer Blende, zu (8.29)

—

strahl” hinter der strahlbegrenzenden Offnung aufgrund
der Beugung etwas auseinander lauft (Abb. 6.3). Wir kon-
nen nun diese Strahldivergenz quantitativ angeben. Fiir
den Fall, dass in Abb. 8.18 die Blendendffnung D > A und
der Abstand von der Blende R >> D ist, folgt aus (8.13)
fiir die Winkeldivergenz des Strahls, gemessen durch die
Halbwertsbreite der Intensitatsverteilung (8.13)

A
AY =~ D (8.29)
Die Strahlbreite ist dementsprechend
A
W =A0R =~ RE . (8.30)

Dies setzt nattirlich Fraunhofer-Beugung voraus, d. h. es
muss nach (8.1) R/D > D/A sein. Diese Formeln gelten
nicht nur fiir den Fall der Strahlbegrenzung durch eine
Blende, sondern auch, wenn die seitlich begrenzten ebe-
nen Wellen auf andere Weise erzeugt wurden, z.B. mit
einem Spiegel (Abb. 8.19a), mit einer ebenen Senderfla-
che (Abb. 8.19b) oder mit einem punktférmigen Sender
im Brennpunkt eines Parabolspiegels (Abb. 8.19¢).

Aus diesen Gegebenheiten folgt, dass das Satelliten-
fernsehen nur mit Mikrowellen betrieben werden kann,

Abbildung 8.19 Beugungsbe- a
grenzte Strahlen

A
A
A1

j
| :

Abbildung 8.20 Konturen des vom Fernseh-Satelliten Astra 1G gesendeten
Strahls bis zur Bahnverlagerung des Satelliten im Jahre 2009. Kurvenparameter:
Erforderlicher Durchmesser der ,Schiissel” fiir den Empfang. Mit freundlicher
Genehmigung der SES-Global (Société Européen des Satellites

wie bei Tab. 2.3 erwdhnt wurde. Damit die erforder-
liche Sendeleistung nicht zu hoch wird und auch aus
rechtlichen Griinden muss die Ausstrahlung auf ein be-
stimmtes Empfangsgebiet beschrdnkt werden, z.B. auf
Europa (Abb. 8.20). Der Satellit befindet sich auf einer
geostationdren Umlaufbahn in 40 000 km Entfernung tiber
dem Aquator. Die Parabolspiegel der Sendeantennen ha-
ben Durchmesser von 1-2m. Das ergibt nach (8.30) mit
A =3cm auf der Erde beugungsbegrenzte Strahlen mit
der Breite W = 600-1200km, was ausreicht, um die in
Abb. 8.20 gezeigte mafigeschneiderte Kontur zu erzeugen.
Um das gleiche mit A = 30 cm zu erreichen, brauchte man
zehnmal grofiere Spiegel, was kaum praktikabel und je-
denfalls sehr teuer ware. Der Astra 1G-Satellit hat, zum
Transport zusammengeklappt, bereits die Abmessungen
3,3 x 3,3 x 5,5m? und eine Masse von 2300 kg. Man muss
also die bei A = 3 cm unvermeidlichen Empfangsstérun-
gen durch flatternde Blatter und dicke Wolken in Kauf
nehmen. Sie entstehen durch die Absorption der Mikro-
wellen in Wasser (Abb. 5.19).

Beugung an Hindernissen

Bisher haben wir uns fast ausschliefilich mit der Beugung
des Lichts an Offnungen befasst. Wie steht es nun mit
der Beugung an Hindernissen, wie z. B. an einer undurch-
sichtigen Kreisscheibe? Zwischen der Beugung an einer
Lochblende und an einem Hindernis, das genau in die
Lochblende hineinpasst, muss ein Zusammenhang beste-
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Abbildung 8.21 Babinetsches Theorem. a Zum Prinzip, b Fraunhofer-
Beugung am Spalt (D = 0,3mm, oben) und an einem Draht (D = 0,3 mm,
unten)

hen. Die Feldstdrke E; am Punkt P in Abb. 8.21a ist gleich
der Feldstarke Ej der sich frei ausbreitenden Welle, ab-
ziiglich der von der Blende gestoppten Anteile. Das sind
aber gerade die Wellen, die tibrig bleiben, wenn man die
Blende durch das in die Offnung genau hineinpassende
,komplementdre” Hindernis ersetzt. Diese Wellen erzeu-
gen in P eine Feldstédrke E;, und es muss gelten:

E1+E,=E. (8.31)

Dies ist das Babinetsche Theorem. Es erweist sich als be-
sonders niitzlich bei der Fraunhofer-Beugung in der An-
ordnung von Abb. 8.7, also nach Einbau der in Abb. 8.21a
gestrichelt eingezeichneten Linse. Ohne Blende und ohne
Hindernis entsteht dort im Zentrum der Beobachtungs-
ebene nur das Bild der sehr weit entfernten Punktlicht-
quelle in Form eines kleinen Beugungsscheibchens. Au-
Berhalb dieses Bildes ist Eg = 0, und es folgt aus (8.31)
E, = —Eq und I, = I. Bis auf das Zentrum miissen die
Beugungsbilder eines Spalts und eines Drahtes genau
gleich aussehen, wenn der Drahtdurchmesser gleich der
Spaltbreite ist! Wie Abb. 8.21b zeigt, stimmt das tatsdch-
lich.

8.3 Fresnel-Beugung

Bevor wir die Fresnel-Beugung betrachten, miissen wir
das Huygens-Fresnelsche Prinzip (Satz 8.1) etwas genauer
untersuchen. Nehmen wir an, bei = 0 befande sich eine
Punktlichtquelle Q, die isotrop Licht nach allen Seiten ab-
strahlt (Abb. 8.22a). Die elektrische Feldstarke am Punkt P
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Abbildung 8.22 Fresnel-Zonen auf der Wellenfront einer Kugelwelle

ist dann

E(r,t) = ? cos(kr — wt), (8.32)
denn das ist die Losung der Wellengleichung fiir die freie
Ausbreitung einer Kugelwelle. &/ ist die Amplitude, &
ein von r unabhangiger Amplitudenfaktor, der durch die
Starke der Lichtemission bei Q gegeben ist. Zum Zeit-
punkt ¢ liege eine Wellenfront der von Q ausgehenden
Welle auf einer Kugel vom Radius R. Die Feldstarke ist
dort

E(Rt) = % cos(kR — wt') . (8.33)
Beim Huygens-Fresnelschen Prinzip stellt man sich vor,
dass von jedem Flachenelement dA der in Abb. 8.22b
perspektivisch gezeigten Kugelfldche , Elementarwellen”
ausgehen, und behauptet, dass deren Summe am Punkt
P die Feldstarke (8.32) ergibt. Wie miissen die Elementar-
wellen beschaffen sein, damit das stimmt? Fiir den Beitrag
der von dA ausgehenden Elementarwelle zu E(r,t) ma-
chen wir den Ansatz

EuK(®
dE = HT()COS [k(R+7") —wt+ ¢] dA .

(8.34)
En ist der Amplitudenfaktor der Huygensschen Elemen-
tarwelle, K(?) eine Funktion des in Abb. 8.22a definierten
Winkels ¢, und ¢ die Phase, mit der die Emission der Ele-
mentarwellen relativ zur Phase von (8.33) erfolgt.
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Um die Integration von (8.34) durchzufiihren, teilt man
die Kugelfliche in die sogenannten Fresnel-Zonen ein,
deren Rander von P jeweils den Abstand

r6+%,1’6+7\,"6+%7\, r6+¥/\ a2

haben (Abb. 8.22c). Man integriert zundchst {iber die ein-
zelnen Fresnel-Zonen, wobei innerhalb einer Zone K(9)
als konstant betrachtet wird. Das ergibt bei der i-ten Zone
den Beitrag E; zur Feldstdrke bei P. (Die Nummerierung
der Fresnel-Zonen ist in Abb. 8.22b angegeben). Wenn das
Huygens-Fresnelsche Prinzip richtig sein soll, muss die
Summe {iiber alle E; die Feldstérke (8.32) ergeben:

E;=E(rt) = % cos(kr — wt) . (8.36)

M=

1

Man erhélt das, wenn man fiir die in (8.34) noch unbe-
stimmten Groflen folgendes einsetzt:®

&

_ ~ 1+cos?
" RA a

En KB ===, 9= —g. (8.37)

Die hier verwendete Form der Richtungsfunktion K(¢)
(Abb. 8.23) stammt aus der Beugungstheorie, die Kirch-
hoff 1882 entwickelte und die von der Wellengleichung
(1.35) ausgeht. Durch diese Theorie wurde das bis dahin
nur auf Intuition beruhende Huygens-Fresnelsche Prinzip
in das wohlgeftigte Rahmenwerk der Theoretischen Phy-
sik eingebaut. Fresnel selbst hat — faute de mieux — die in
Abb. 8.23 gestrichelt eingezeichnete Funktion beniitzt:

K(8) =1 fﬁrogﬁgg, K(8) =0 ﬁiré‘>§.

Die Annahme, dass die Huygensschen Elementarwellen
nur ,nach vorn”, aber nicht ,,nach hinten” laufen, wurde
schon bei Satz 5.1 erwéhnt. Sie ist zwar physikalisch nicht
zu rechtfertigen, fithrt aber ebenfalls zum richtigen Ergeb-
nis.

Die Fresnelsche Zonenkonstruktion ist ganz allgemein bei
der Diskussion von Beugungsproblemen von Nutzen. Da-
bei ist wichtig, dass die Beitrdge von zwei benachbarten
Zonen stets entgegengesetzte Vorzeichen haben, aber dem
Betrage nach anndhernd gleich sind. Die Rechnung zeigt,
dass die Unterschiede im Wesentlichen auf der allméahlich
abnehmenden Richtungsfunktion K(¢) beruhen. Ferner

5 Zur Durchfithrung dieser Rechnung und zur Kirchhoffschen Beu-
gungstheorie siehe E. Hecht, ,Optics”, second Edition, Addison-
Wesley (1987), Kap. 10 und Anhang 2. — Dass £y eine andere
Dimension als & hat, ist in Ordnung, denn &, bezieht sich auf die
Ausstrahlung einer Punktquelle, £y auf ein Flachenelement.

Abbildung 8.23 Polardia-
gramm der Richtungsfunktion
K(8)

ergibt sich, dass der Beitrag der ersten Zone allein fast
genau doppelt so grof ist, wie die Feldstérke (8.32) insge-
samt. Das liegt daran, dass es innerhalb einer Zone keine
destruktiven Interferenzen gibt. Es ist also

(8.38)

Il
w
Il
'S

und so fort. Solange fiir die Zone 1, bei der die Summation
beginnt, cos ¥, ~ 1ist, solange also n < N ist, gilt in guter
Naherung

(8.39)

Auf diesen Formeln beruhen die im Folgenden beschrie-
benen Beispiele zur Anwendung der Fresnelschen Zonen-
konstruktion.

Beugung an einer kreisrunden bffnung. In Abb. 8.24 ist
eine Kreisblende gezeigt. Wie die Blende in Abb. 8.3 wird
sie mit senkrecht auffallenden ebenen Wellen beleuchtet,
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Abbildung 8.24 Fresnel-Beugung an einer kreisférmigen Offnung. a und
b Fresnel-Zonen fiir P; und P, im Schnitt, ¢ die Zonen in der Aufsicht, von P;,
P, Py und P;’ aus gesehen

d.h. die Punktlichtquelle Q liegt links im Unendlichen.
Die Fresnel-Zonen sind in diesem Falle Kreisringe auf
der ebenen Wellenfront. Bei P in Abb. 8.24a ist es ma-
ximal hell, denn dieser Punkt liegt so, dass das gesamte
Licht aus der ersten Fresnel-Zone nach P; gelangt, wah-
rend alle anderen Zonen durch die Blende verdeckt sind.
Wenn man die Blende wegnimmt, sinkt nach (8.38) bei
Py die Intensitdt auf ein Viertel! Von P, aus gesehen, tritt
auch das gesamte Licht von Zone 2 durch die Blende
(Abb. 8.24b). Da E, ~ —E; ist, ist bei P, die Lichtintensi-
tat sehr klein. Das ist auch in Abb. 8.24c ersichtlich. Bei P
und P} muss man die Zonenkonstruktion beziiglich der
in Abb. 8.24b gestrichelt eingezeichneten Achsen durch-
fihren. Wie Abb. 8.24c zeigt, ist von Pé aus gesehen Zone
2 teilweise abgedeckt, und ein Teil von Zone 3 wird sicht-
bar: Die Lichtintensitdt nimmt kréaftig zu. Bei P’Z’ hingegen
ist die 1. Zone schon teilweise verschwunden und die 4.
Zone zum Vorschein gekommen: Die Intensitdt hat wie-
der abgenommen.

Auf diese Weise kann man die eigenartige Struktur der
Beugungsbilder in Abb. 8.3 grundsitzlich erkldren. In
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a
b
R;
Q
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c

e

Abbildung 8.25 a Zonenplatte, geradzahlige Zonen abgedeckt, b zur Berech-
nung der Radien p,,, ¢ Zonenplatte bei parallelem Lichteinfall

Abb. 8.3d liegen gerade 10 Fresnelzonen innerhalb der
Blendenoéffnung, in Abb. 8.3c sind es 11 Zonen (Aufga-
be 8.4). Fiir eine quantitative Berechnung der Beugungs-
bilder muss man (8.34) tiber die Blendenéffnung inte-
grieren. Das fithrt auf die sogenannten Fresnel-Integrale.
Néheres dazu findet man in Lehrbiichern der Optik.

Die Zonenplatte. Wenn man zwischen Q und P in
Abb. 8.22 eine Blende stellt, die das Licht entweder in al-
len geradzahligen oder in allen ungeradzahligen Fresnel-
Zonen abdeckt, muss bei P eine wesentlich verstiarkte
Lichtintensitat auftreten, denn dann gelangen nur Beitré-
ge eines Vorzeichens zur Interferenz. Eine solche Zonen-
platte ist in Abb. 8.25a gezeigt. Mit Abb. 8.25b berechnen
wir die Radien p; der Zonenrdnder. Dabei wird ange-
nommen, dass p; klein gegen R; und r; ist. Fiir die i-te
Zonengrenze muss gelten

(Ri+1)— (Rg+19) = i% . (8.40)

Nunist R; = /R3 + p? ~ Ro(1 + p?/2R3) = Ry + p?/2Rq.
Ebenso ist r; ~ 1y + pi2 /2rg. In (8.40) eingesetzt, ergibt das

1 1 A A
Ro“ro o} o1

(8.41)
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denn (8.40) soll fiir alle i gelten, auch fiir i = 1. Glei-
chung (8.41) ist nichts anderes, als die Abbildungs-
gleichung fiir eine Linse mit der Brennweite f = p2/A.
Aufserdem zeigt unsere Rechnung, dass die Radien der Zo-
nengrenzen p; = \ﬁpl sein miissen. Wir fassen zusammen:

2
Zonenplatte: p; = Vipy, f= %1 5 (8.42)

Die Zonenplatte wirkt wie eine Sammellinse mit einem
gigantischen Farbfehler.® Sie hat aber noch andere Fi-
gentiimlichkeiten. Machen wir uns klar, dass aus jedem
einzelnen Spalt das Licht durch Beugung nach P gelangt.
Das Licht aus zwei benachbarten Spalten hat den Gang-
unterschied A, die Platte wirkt als Beugungsgitter und
das in P erzeugte Bild von Q ist ein Beugungsmaximum
1. Ordnung.” Auch nach auflen wird das Licht gebeugt.
Zu dem Maximum 1. Ordnung gehort dann ein virtuel-
les Bild von Q. Abbildung 8.25¢ zeigt das fiir den Fall
parallelen Lichteinfalls (Ry — o0), diesmal mit einer Zo-
nenplatte, bei der alle ungeradzahligen Zonen abgedeckt
sind. Die Zonenplatte wirkt gleichzeitig als Sammel- und
als Zerstreuungslinse mit der Brennweite [f| = p?/A!

Fresnel-Beugung an einer Kante. Lisst man einen auf-
geweiteten Laserstrahl auf die Kante einer undurchsich-
tigen Platte fallen, beobachtet man auf einem hinter der
Platte aufgestellten Bildschirm statt eines scharf begrenz-
ten Schattens helle und dunkle Streifen, die sich immer
mehr zusammendrdngen und gleichzeitig an Kontrast
verlieren (Abb. 8.26a). Das gleiche Phanomen hatte sich
schon, weniger deutlich, in Abb. 8.2 gezeigt. Man kann es
mit Hilfe der Fresnelschen Zonenkonstruktion erkldren.

Nehmen wir an, eine in z-Richtung laufende ebene Wel-
le fallt ungehemmt auf den Beobachtungspunkt P bei
r = (0,0,79) (Abb. 8.26b). Von P aus konstruieren wir die
Fresnel-Zonen auf einer Wellenfront in der (x,y)-Ebene.
Sie sind in Abb. 8.26b eingezeichnet. Die Radien der
Zonengrenzen erhdlt man mit (8.41) fiir Ry — oo: p =
VAry, p; = Vip1. Die Intensitit bei P sei I. Nun wird
in der (x,y)-Ebene der linke Halbraum (x < 0) mit einer
undurchsichtigen Platte abgedeckt. Die Feldstirke bei P
sinkt auf die Halfte, die Intensitat sinkt auf Iy /4.

6 Die Zonenplatte ist nicht zu verwechseln mit der Fresnel-Linse, je-
ner flach abgestuften Linse, die man mitunter an der Heckscheibe
von Kleinbussen sieht. Fresnel erfand sie in seiner Eigenschaft als
Sekretar der franzosischen Leuchtturm-Behorden. Auch die Zonen-
platte findet eine technische Anwendung als Linse fiir Réntgenstrah-
len im Bereich von A = 0,1 — 10nm. Solche Linsen haben den Bau
von Rontgenmikroskopen erméglicht (siehe G. Schmahl et al, ,Ront-
genlinsen”, Physikalische Blatter 57, Nr. 1, S. 43 (2001).

7 Weitere Brennpunkte entstehen durch die Beugungsmaxima hohe-
rer Ordnung. Sie sind in Abb. 8.25¢ nicht eingezeichnet.

025 085
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Abbildung 8.26 Zur Fresnel-Beugung an einer Kante

Nun wird der Punkt P in x-Richtung nach rechts ver-
schoben. Mit ihm verschiebt sich das Ringsystem der
Fresnel-Zonen nach rechts. Die bei P gemessene Intensitét
nimmt zu, vor allem dadurch, dass ein grofSerer Teil der
1. Zone sichtbar wird. Kurz bevor Zone 1 vollstindig frei-
gelegt ist, tiberwiegt jedoch die Zunahme gegenphasigen
Lichts aus Zone 2: Die Intensitét erreicht ein Maximum
und nimmt dann ab. Wenn Zone 2 nahezu freigelegt ist,
iiberwiegt wieder die Zunahme des mit Zone 1 gleichpha-
sigen Lichts aus Zone 3: Die Intensitdt nimmt wieder zu.
So geht es fort: Die Intensitédt des Lichts durchlduft Maxi-
ma und Minima, entsprechend der Freigabe der einzelnen
Fresnel-Zonen. Es kommt zu den in Abb. 8.26¢c gezeigten
Oszillationen bei x > 0. Wird P von x = 0 aus nach links
verschoben, nimmt die Intensitit monoton ab: Nach Uber-
schreiten von x = —p; ist Zone 1 génzlich ausgeschaltet,
und es macht keinen Unterschied, ob das nun zusitzlich
abgeschattete Licht gleichphasig oder gegenphasig zu Zo-
ne 1 ist.

Der mit den Fresnel-Integralen berechnete Verlauf der In-
tensitat I(x) ist in Abb. 8.26¢ gezeigt. Nun wissen wir, wo
in Abb. 8.2 die geometrisch-optische Schattengrenze zu
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Abbildung 8.27 Fresnel-Beugung an einer Kugel (D =3mm), mit dem
. Poissonschen Fleck”

finden ist, und wie die merkwiirdigen Strukturen an der
Grenze zwischen Licht und Schatten zustande kommen.

Beugung an Hindernissen. Bei der Fresnel-Beugung ist
das Babinetsche Theorem (8.31) nicht in gleicher Weise
niitzlich wie bei der Fraunhoferschen Beugung, weil nun
ohne Blende und ohne das komplementire Hindernis all-
gemein in der Beobachtungsebene Ey # 0 ist. Dann ist
nirgends E; = —Ej, und folglich sind die Intensitdten I;
und I; in den Beugungsbildern von einander verschieden.

Wir untersuchen mit Hilfe der Fresnel-Zonen die Beu-
gung an einem Hindernis mit kreisférmigem Querschnitt.
Weit hinter dem Hindernis muss es auf der optischen
Achse hell sein, denn bis auf einen Teil der 1. Zone
sind alle Fresnel-Zonen sichtbar. Daran dndert sich nichts,
wenn man die Beobachtungsebene niher an das Hinder-
nis heranschiebt — sehr im Gegensatz zu den Verhaltnis-
sen bei der Kreisblende (Abb. 8.3). Selbst wenn mehrere
Fresnel-Zonen durch das Hindernis abgedeckt sind, er-
gibt nach (8.39) die Summation iiber die iibrigen Zonen
noch anndhernd die Feldstdrke E der ungestorten Welle.
Abbildung 8.27 zeigt das Beugungsbild einer Kugella-
ger-Kugel, aufgeklebt auf einen Mikroskop-Objekttrager.
Man sieht deutlich den sogenannten Poissonschen Fleck
im Zentrum.® Erst dicht hinter dem Hindernis nimmt
die Richtungsfunktion K(9) fiir alle verbleibenden Zonen
drastisch ab, und die Intensitat sinkt auf Null.

8 Der Poissonsche Fleck spielte in der Geschichte der Physik eine be-
merkenswerte Rolle: Als Fresnel seine Wellentheorie der Beugung
der Pariser Akademie vorlegte, stief er zundchst auf Ablehnung.
Poisson erkldrte: Wenn das stimmen sollte, muss im Schatten ei-
nes kreisformigen Hindernisses immer ein heller Fleck sichtbar sein!
Dass der helle Fleck tatsdchlich existiert, konnte alsbald Fresnel mit
seinem Freund Arago experimentell nachweisen. Poissons Einwand,
gedacht als todlicher Schlag gegen die Wellentheorie, erwies sich als
schlagender Beweis fiir diese Theorie!
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8.4 Fourier-Optik und Holografie

Uber jedes der Themen: Fourieroptik, Bildentstehung
und -Bearbeitung, Holografie sind dicke Biicher geschrie-
ben worden. Wie schon im Uberblick zu diesem Kapitel
bemerkt, ermoglicht die Fourier-Optik ein tieferes Ver-
stindnis der Bildentstehung. Sie bildet die Grundlage
von heute verwendeten Methoden in der Bildanalyse und
Bildbearbeitung, und mit Hologrammen wird man fast
auf Schritt und Tritt konfrontiert. Wir versuchen, auf we-
nigen Seiten einen Einblick in diese Gebiete zu gewinnen.

Fourier-Darstellung von Bildinformation

In Abschn. 4.4 haben wir gesehen, dass man eine Funk-
tion des Orts, f(x), durch ein Fourier-Integral darstellen
kann, d. h. durch eine Uberlagerung von Sinus- und Cosi-
nusfunktionen mit der kontinuierlich variablen Periode L
und der Ortsfrequenz k = 271/L. Dabei erwies sich die
komplexe Schreibweise als vorteilhaft. In (4.54) hatten wir
erhalten:
1T
— 1KX
) = 5= / F(k)el dk,,

—0o0

- (8.43)
F(k) = / F(x)e *xdx .

Die Berechnung von F(k) aus f(x) wird als die Fourier-
Transformation der Funktion f(x) bezeichnet. Man kann
dieses Konzept auch bei Funktionen von zwei Variablen
(x,y) anwenden. Statt (8.43) erhélt man

1
(27)

+oo
floy) = / / F(ky, ky)el &) dic, dk, .

(8.44)

Das zweidimensionale Spektrum der Ortsfrequenzen er-
hélt man wieder durch die Fouriertransformation von

flxy):

—+o00
F(ky, ky) Z//f(x,y)e*i(kx”kyy) dxdy. (8.45)

Mit Funktionen f(x,y) haben wir es in der Optik hiu-
fig zu tun, zum Beispiel kann man auf diese Weise die
Verteilung der Hell- und Dunkelwerte in einer Bildebene
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a
fla,y) = sin(k,x + k)

i,

k=(k; k)

«

N N N
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Abbildung 8.28 Elemente eines zweidimensionalen Fourier-Integrals

darstellen. Mit (8.44) wird dann das Bild aus harmoni-
schen Funktionen cos(kyx + kyy) und sin(kyx + kyy) auf-
gebaut. In Abb. 8.28a ist ein Ausschnitt aus der Funktion
sin(kyx + kyy) perspektivisch gezeigt. Abb. 8.28b zeigt die
Linien in der (x,y)-Ebene, auf denen cos(kyx + kyy) = 1
ist, also die Linien

kxx + kyy = 27tm

_ 27mm — kyx (8.46)

y="—" m=012,...
ky

Wie diese Formel zeigt, sind die Achsenabschnitte Viel-
fache von Ly = 27t/ky und Ly = 271/ky. Aus L = Ly cosa
und L = Ly sina folgt

2 12 1
S+5=1 - L=—o (8.47)
Ly Ly J1/L2+1/12

L ist die Periodenldnge der Funktion cos(kyx + kyy). Die
Ortsfrequenzist27t /L = k = VK2 + kﬁ. Zur Verteilung der
Helligkeit in der Bildebene tragt die Funktion cos(kyx +
kyy) mit ihrer Amplitude A(kyk,) = $[F(ky,ky) +
F*(ky, ky)] bei, und die Funktion sin(kyx + kyy) mit der
Amplitude B(ky, ky) = 3[F(ks, ky) — F* (kx, ky)).

Insgesamt wird das Bild nach (8.44) aufgebaut durch
Uberlagerung vieler Cosinus- und Sinusfunktionen, mit
unterschiedlichen Periodenldangen L, unterschiedlichen
Amplituden und unterschiedlichen Richtungen des Vek-
tors k = (ky, k,). Enthélt das Bild sehr feine Strukturen

oder scharfe Kanten, haben die Fourier-Komponenten mit
hoher Ortsfrequenz hohe Amplituden; andernfalls spie-
len die hohen Ortsfrequenzen keine grofie Rolle. Wir
werden weiter unten dazu einige Beispiele betrachten.

Fraunhofer-Beugung und Fourier-Transformation:
Die Linse als Fourier-Transformator

In Abb. 8.8 sahen wir eine Blendené6ffnung, die von links
mit monochromatischen ebenen Wellen beleuchtet wird.
Befindet sich im grofien Abstand R in z-Richtung ein
Bildschirm, liegt dort Fraunhofer-Beugung vor. Die Feld-
stirke in einer Welle, die in Richtung des Wellenvektors
k = (kx, ky, k;) auf den Bildschirm zu lauft, hatten wir in
(8.6) berechnet:

E(k) _ %ei(krgfwt) //efi(kxxjtkyy) dx dy ,
A

wobei die Integration {iber die Flache der Blendenoffnung
zu erstrecken war.

Abbildung 8.29 zeigt eine etwas kompliziertere Situati-
on: In der Blendenéffnung befindet sich ein Objekt, z. B.
ein Diapositiv, dessen Eigenschaften mit dem Transmissi-
onskoeffizienten 7(x, y) beschrieben werden kénnen. Die
Feldstédrke in der Beobachtungsebene ist nun

E(k) _ %ei(kro—wi)//T(x/y)e—i(kxx+kyy) dxdy ) (848)
A

Den vor dem Integral stehenden Phasenfaktor schreiben
wir

ei(kR—wf)e—iA (849)
Abbildung 8.29 a Fraunhofer- a
Beugung an einem ebenen Objekt
(= Diapositiv). b Zur Definition
der GréBen R, ro und A /
To—"
A k
¢ s
R—
z
b Beobachtungsebene
Objektebene Alk -
To
k" R
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mit A = k(ro — R) (Abb. 8.29b). Auf der z-Achse sind A, ky
und k, Null. Dort ist also die Feldstarke

. 50ei(kR7wt)
=E(0,0,k) = ———— T(x,y)dxdy . (8.50)
R
/A/

Da es nur auf die Verteilung der Feldstarke in der Bilde-
bene ankommt, dividieren wir E(k) durch Ey:

_inJ S itk dedy 8.51)
E B ff y)dxdy ' '

Wir definieren die Transmissionsfunktion 7 (x,y) durch

T(xy) = (8.52)

T(x,y)
JJ

x,y) dx dy

und die normierte Feldstarke in der Beobachtungsebene

i

(k) eld (8.53)
0

En(ky ky) =

i<

En(ky, ky) gibt die Feldstdrke im Fraunhoferschen Beu-
gungsbild an, multipliziert mit dem Phasenfaktor /4 und

dividiert durch die Feldstirke, die im Beugungsbild auf
der z-Achse besteht. Damit wird aus (8.48)

+00
En(kx, ky) Z//T(x,y)e_i(k"”kyy) dxdy . (8.54)

Wir haben hier von —oo bis +co integriert. Da aufler-
halb der Blendenéffnung 7 (x,y) =0 ist, hat sich da-
durch nichts gedndert. Die Ahnlichkeit mit der Fourier-
Transformation in (8.45) fallt sofort ins Auge. Wir kénnen
ohne weiteres f (x,y) = T (x,y) setzen. Es stellt sich jedoch
die Frage, ob wir die Komponenten des Wellenvektors
k in (8.54) mit den Ortsfrequenzen des Objekts in (8.45)
identifizieren konnen. Das ist eine Frage des Wertevor-
rats. Die Ortsfrequenzen beginnen bei ky = k;, = 0. Diese
Werte sind im Beugungsbild vorhanden, denn das ent-
spricht genau der in z-Richtung laufenden ebenen Welle:
k = (0,0, k). Nach oben ist jedoch beim Wellenvektor der
Wertevorrat von ky und k, durch die Lichtwellenlédnge
begrenzt: ky, k, < 27r/A. Bei den Ortsfrequenzen im Fou-
rierspektrum des Objekts ist die mindestens erforderliche
Periodenldnge Liin gegeben durch die Feinheit der Struk-
turen im Objekt. Wenn A < Ly, ist, steht nichts im Wege,
kx und ky, in (8.54) mit den Ortsfrequenzen des Objekts zu

8 Beugung

f4>

Abbildung 8.30 Erzeugung des Fourier-Bildes in der Brennebene der Linse

identifizieren.” Man kann also (8.54) folgendermafien in-
terpretieren:

Satz 8.2

Die Feldverteilung im Fraunhoferschen Beugungs-
bild ist die Fourier-Transformierte der Transmissi-
onsfunktion des Objekts. Sie stellt also das Ortsfre-
quenzspektrum der Transmissionsfunktion dar.

Daraus folgt:

T(xy) =

—+o00
1 x i(kyx-+k
= [ Enlio kel i i

(8.55)

E(ky, ky) und T (x,y) bilden ein Fourier-Paar (vgl. (4.53)).

Wird wie in Abb. 8.30 eine Linse hinter das mit mono-
chromatischem Licht beleuchtete Objekt gestellt, entsteht
das Fraunhofersche Beugungsbild in der Brennebene der
Linse. Jedem Vektor k ist in eindeutiger Weise ein Punkt
in der Brennebene zugeordnet, an dem die Bestrahlungs-
stirke proportional zu |En (ky, ky)|? ist. Man kann dort eine
Fotoplatte aufstellen und erhélt in bildlicher Darstellung
das Ortsfrequenzspektrum des Objekts. Die Linse hat also
eine Fouriertransformation ausgefiihrt!

Wir betrachten zwei Beispiele. Bei einem Spalt der Brei-
te D ist der Transmissionskoeffizient

9 Man erkennt hier, dass es eine Frage der Lichtwellenlinge ist, bis
zu welcher Grenze man feine Strukturen im Objekt sehen kann.
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Die mit (8.52) berechnete Transmissionsfunktion ist

1 D D
== fir——<x<4=
T(x) 5 fiir 7 Sx<+o,
. D
T(x)=0 firl|x|>—=.

2

Damit erhalten wir

+00
Enlky) = / T(x)e * dx

+D/2 . +D/2
. l / e—ikxx dx = ﬂ
D ~ —ik.D
D)2 —-D/2
e kD/2 _kD/2 gin(k,D/2)
—ik;D  kD/2

Bei Berticksichtigung von (8.50) und (8.53) stimmt das mit
(8.10) uiberein. Kein Wunder, denn wir haben auch hier
nur die Integration (8.9) ausgefiihrt, wenn auch mit einer
anderen Begriindung. Interessanter ist das nun folgende
Beispiel.

Kann man ein Gitter konstruieren, bei dem es nur die Beu-
gungsmaxima nullter und erster Ordnung gibt, wahrend
die Intensitit in den Beugungsmaxima mit |m| > 2 Null
ist? Wie muss die Transmissionsfunktion eines solchen
Gitters aussehen? Wir untersuchen ein Transmissionsgit-
ter bei senkrechtem Lichteinfall. Nach (8.21) und (8.22)
liegen die Maxima der Beugungsfigur bei

ksin® =k, = 271_111
8

Das Ortsfrequenzspektrum soll also nur die Ortsfrequen-
zen ky = 0 und ky = £271/¢ enthalten. Diese Forderung
kann man mit Hilfe der Diracschen Deltafunktion §(x) er-
fiilllen. 6(x) ist tiberall Null, aufler bei x = 0. Dort wird sie
unendlich, und zwar in der Weise, dass

—+o0

/ S(x)dx =1

—00

(8.56)

ist.!? Das hat zur Folge, dass fiir beliebige (einigermafen

10Es gibt mehrere Moglichkeiten, die Diracsche J-Funktion durch
analytische Ausdriicke darzustellen. Zwei Beispiele:

5(x) = lim sinax )

a—oo  JTX

—x2/a?

6(x) = lim e

a—0 /710
Die erste Formel geht von der uns schon aus (4.45) und (8.23) be-
kannten Funktion sin(Nd/2)/ sin(6/2) aus, wobei ausgenutzt wird,

dass | f::(sm ax/x) dx = 7t ist. Die zweite Formel stellt eine unend-
lich hohe und unendlich schmale Gauf$funktion mit der Flache 1 dar.

T

Abbildung 8.31 a Ortsfrequenzspektrum und b Transmissionsfunktionbeim
Cosinusgitter

gutartige) Funktionen f(x) gilt:

400
[ £x)0(x = x0) dx = fxo) (857)

Die é-Funktion stanzt bei dieser Integration aus der Funk-
tion f(x) den Wert f(xg) heraus. Wir gehen also von dem
Ortsfrequenzspektrum

E(k) = 5 [5 (kx - %”) +6 (kx 4 %”)} +6(ky)

aus (Abb. 8.31a), und berechnen mit einer Fourier-Trans-
formation die zugehorige Transmissionsfunktion. Dabei
machen wir von (8.56) und (8.57) Gebrauch:

+00

1 .
T() = 5= / E(ky)e dky
1 el27x/g T e—127tx/g
T ( 2 -
1 2 1
= — (1 + cos —nx) = — cos? ™ . (8.58)
2n g 2n g

Ein sogenanntes Cosinusgitter (Abb. 8.31b) erfiillt die ge-
stellte Forderung. Wie man ein solches Gitter herstellt,
werden wir in Kiirze sehen.

Bildentstehung und Bildbearbeitung

Kohirente Beleuchtung des Objekts, Abbesche Theorie.
Wie wir gerade gesehen haben, entsteht in der Anord-
nung von Abb. 8.30 in der Brennebene der Linse das
Fraunhofersche Beugungsbild, das das Fourierspektrum
der Transmissionsfunktion des Objekts wiedergibt. Hin-
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8 Beugung

Objektebene

Abbildung 8.32 Zur Abbeschen Theorie der Bildentstehung

ter diesem Fourier-Bild des Objekts laufen natiirlich die
Wellen weiter. In einer Bildebene, deren Lage sich mit der
Abbildungsgleichung (6.21) aus der Gegenstandsweite er-
gibt, entsteht das aus der geometrischen Optik bekannte
Ortsbild des Objekts. Man kann dessen Zustandekom-
men auf Huygenssche Elementarwellen zuriickfiihren,
die von den Punkten der Fourier-Ebene ausgehen. Die
Linse bewirkt also eine Fourier-Analyse des Objekts, auf
die eine Fourier-Synthese des im Fourier-Bild enthaltenen
Ortsfrequenzspektrums folgt. Dies ist der Grundgedanke
der Abbeschen Theorie der Bildentstehung.

In Abb. 8.32 ist der Vorgang mit einem Beugungsgitter als
Objekt erldutert. Die Abmessungen von Gitter und Lin-
se sind so gewéhlt, dass nur die Beugungsmaxima 0. und
1.Ordnung von der Linse erfasst werden. In der Brenne-
bene der Linse, der Fourier-Ebene, gibt es drei scharfe
Maxima. (Wir nehmen an, dass das Gitter viele dicht
beieinander liegende Spalte enthélt.) Das Ortsbild ent-
steht durch die Uberlagerung der Kugelwellen, die von
den drei kohdrenten Punktquellen in der Fourier-Ebene
ausgehen. Man erhilt breite Interferenzstreifen, deren
Maxima genau am Ort des geometrisch-optischen Bildes
liegen. Wollte man eine scharfe Abbildung des Gitters
erreichen, miissten auch die Beugungsmaxima hoherer
Ordnung von der Linse erfasst werden: Scharfe Kontu-
ren entsprechen hohen Ortsfrequenzen. Wiirde die Linse
auch die Maxima erster Ordnung nicht erfassen, gébe es
auf der Bildebene nur die Kugelwelle vom Beugungsma-
ximum nullter Ordnung. Die Struktur des Gitters wire in
keiner Weise zu erkennen.

Ernst Abbe!! entwickelte diese Theorie im Zusammen-
hang mit seinen experimentellen Untersuchungen zum

1 Ernst Abbe (1840-1905), Physiker und Industrieller, brachte zu-
sammen mit Carl Zeiss (1816-1888) dessen optische Werkstétten
zu Weltruhm und griindete mit Otto Schott (1851-1935) die Jenaer
Glaswerke. Nach Carl Zeiss” Tod setzte er als alleiniger Firmenin-

Fourier-Ebene Bildebene

Auflésungsvermogen des Mikroskops. Er fand heraus,
dass fiir die Auflosung der Durchmesser der Objektiv-
linse auch dann eine Rolle spielt, wenn das von der
Beleuchtungseinrichtung gelieferte Licht die Linse gar
nicht ausleuchtet. Offenbar gibt es auch Licht, das sich
im , Dunkelraum” ausbreitet. Er erkannte, dass das am
Objekt gebeugte Licht fiir die Auflésung entscheidend
ist. Damit aufler dem Beugungmaximum nullter Ordnung
auch noch die Maxima 1. Ordnung in das Objektiv gelan-
gen, muss nach (8.22) in der Anordnung von Abb. 8.32 der
Offnungswinkel des Mikroskops die Bedingung d sinu >
A erfiillen. Es ist also
A

sinu ’

wenn sich Luft zwischen Objekt und Objektiv befindet.
Um das Auflésungsvermogen zu vergrofSern, setzte Ab-
be die schon bei Abb. 6.45 beschriebene Olimmersion
mit dem Brechungsindex n ein. Damit kann man ein-
mal groere Offnungswinkel erreichen und auerdem die

Wellenldnge auf A/n verkiirzen. Man erhalt fiir das Auf-
losungsvermogen

dmin =

A
nsinu

(8.59)

dmin =

Das ist etwas schlechter, als das in (6.53) fiir inkoharent
leuchtende Punktquellen angegebene Auflésungsvermo-
gen. An der Grenze des Auflésungsvermogens ist aber
beim Mikroskop die Kohdrenzbedingung (7.36) erfiillt.

haber umfangreiche Sozialreformen durch: 8 Stunden-Tag, bezahlter
Urlaub, Gewinnbeteiligung und Pensionsanspruch fiir die Arbeiter
— alles sensationelle Neuerungen zur damaligen Zeit. Er hatte nicht
vergessen, wie er als Kind seinem Vater mittags die diinne Suppe an
den Arbeitsplatz bringen musste, die der Vater dann, ohne die Arbeit
zu unterbrechen, im Stehen schliirfte.
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Abbildung 8.33 Anordnung
zur gleichzeitigen Projektion

von Fourier-Bild und Ortsbild.

0O: Objektebene, F: Fourier-Ebene,
T: Strahlteiler, S: Spiegel, Ly,

L,: Linsen

Ortsbild

Fourier-Bild

Man kann sich nun fragen, was der tiefere Grund da-
fiir ist, dass das konfokale Laser-Scan-Mikroskop laut
(6.54) ein noch besseres Auflosungsvermogen als (6.53)
besitzt. Fiir die Antwort benétigt man einen Vorgriff
auf die Quantenphysik. Es ist ein Paradoxon, dass das
Auflésungsvermdogen nach (6.53) oder (8.59) unabhéngig
von der Intensitdt der Lichtquelle ist, wenn man die Be-
lichtungszeit einer Photoaufnahme entsprechend anpasst.
Das gilt sogar dann, wenn die Lichtintensitét so klein ist,
dass sich fast nie mehr als ein Lichtquant im Mikroskop
befindet. Die Gleichungen (6.53) und (8.59) beschreiben
daher, obwohl aus der Wellentheorie hergeleitet, das Auf-
lésungsvermogen einer Abbildung durch voneinander
unabhingige einzelne Photonen. Im Gegensatz dazu ba-
siert (6.54) auf einer Abbildung durch zwei aufeinander
folgende Elementarprozesse im gleichen Molekiil: einer
Photonenabsorption und einer spontanen Emission.'?

Kehren wir zur Abbeschen Abbildungstheorie zuriick.
Man kann mit der in Abb. 8.33 gezeigten Anordnung das
Fourier-Bild und das Ortsbild gleichzeitig sichtbar ma-
chen. Die bildseitige Brennebene der Linse L; wird hier
iiber einen halbdurchldssigen und einen gewdhnlichen
Spiegel mit Hilfe der Linse L, neben dem Ortsbild ab-
gebildet: Es entsteht dort das Fourier-Bild des Objekts.
Ein Beispiel ist in Abb. 8.34 gezeigt. — Das Fourier-Bild
in der Brennebene der Linse L; ermoglicht eine einfache
und sehr effektive Bildbearbeitung. Durch Abdeckung
der entsprechenden Fourier-Komponenten kann man un-
erwiinschte Strukturen aus dem Bild entfernen; bei Ab-

12Eine Abbildung mit noch besserer Auflosung ermoglicht die
STED-Mikroskopie, die in Abschn. 9.3 besprochen wird. Im Bereich
um 100-200nm gibt es interessante Objekte fiir die biologische und
medizinische Forschung, wahrend man mit 7 sin u = 1,35 nach Abbe
Amin = 0,74\ erreicht.

Abbildung 8.34 Beispiel zum Fourier- und Ortsbild, aufgenommen mit der
Anordnung von Abb. 8.33. Links: Ortsbild, rechts: Fourier-Bild

deckung der hohen oder der tiefen Ortsfrequenzen kann
man die Konturen des Bildes abschwichen oder verstar-
ken. Abbildung 8.35 zeigt einige Beispiele dazu.

Inkohidrente Beleuchtung des Objekts, Helmholtz-
Rayleighsche Theorie. Mit dem Fotoapparat oder mit
dem Fernrohr werden gewohnlich inkohédrent beleuchte-
te Objekte abgebildet. In diesem Fall kann man das auf
Helmholtz und Lord Rayleigh zuriickgehende Modell der
Bildentstehung anwenden. Man geht davon aus, dass ei-
ne Punktquelle in der Objektebene zu einer bestimmten
Intensitdtsverteilung in der Bildebene fiihrt. Man nennt

Abbildung 8.35 Reproduktion eines Spaltbildes (vertikale Bénder) nach
Manipulation der Fourier-Transformierten (horizontale Strukturen). a Original,
b ohne Beugungsmaxima, ¢, d, e mit den Beugungsmaxima bis zur ersten, zwei-
ten und dritten Ordnung, f ohne Hauptmaximum
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Abbildung 8.36 Ideale
geometrisch-optische Abbildung
und Punktbildfunktion

I(x")

glx'—xp)

Zq z

diese Verteilung die Punktbildfunktion. Wenn bei ei-
ner idealen geometrisch-optischen Abbildung der Punkt
(x,y) der Objektebene auf den Punkt (x{, y;) in der Bilde-
bene abgebildet wird (Abb. 8.36), hat die Punktbildfunkti-
on die Form g(x" — x{,y" —y;). Sie soll auf 1 normiert sein,
d.h. es soll gelten

+o0
//g(X'—X&y’—yé)dX’dy’:l-

Ist f(x(,y,) die Intensitdtsverteilung im Bild eines Ob-
jekts bei der idealen, geometrisch-optischen Punkt zu
Punkt-Abbildung, dann ist die Intensitdtsverteilung bei
der realen Abbildung

+00
Foy) = [ [ FGb g = ¥y — o) vt

(8.60)

Diese Form der Integration iiber das Produkt zweier
Funktionen nennt man die Faltung der Funktionen f und
g- Das Faltungsintegral (8.60) kann man symbolisch auch
wie folgt schreiben:

F=f®g. (8.61)

Auch in diesem Fall erweisen sich Fourier-Transformatio-
nen als ein niitzliches Instrument. Wenn die Punktbild-
funktion auf der ganzen Bildflache die gleiche funktionale
Form hat, kann man die Faltung der Funktionen f und
g ersetzen durch die Multiplikation der Fouriertransfor-
mierten dieser Funktionen. Mit der in (4.53) eingefiihrten
symbolischen Schreibweise ist

F{F} =F{f} - F{g} . (8.62)

8 Beugung

Die gesuchte Funktion F(x,') erhdlt man daraus durch
die inverse Fourier-Transformation. — (8.62) ist das so-
genannte Faltungstheorem, mit dem wir uns bereits in
Aufgabe 4.3 beschiftigt hatten. Die Fourier-Transformier-
te der Punktbildfunktion nennt man auch die optische
Ubertragungsfunktion. Gleichung (8.62) besagt dann in
Worten:

Satz 8.3

Das Ortsfrequenzspektrum in der Bildebene ist
gleich dem Ortsfrequenzspektrum in der Objektebe-
ne, multipliziert mit der Ubertragungsfunktion.

Diese Aussage ist nicht nur vom Konzept her sehr in-
teressant, sie ist auch von grofler praktischer Bedeu-
tung, denn es gibt fiir die Durchfiihrung von Fourier-
Transformationen sehr effektive Algorithmen, wahrend
die Berechnung des Faltungsintegrals mithsam sein kann
und jedenfalls fiir jede neue Funktion f eine neue Integra-
tion erfordert. Die Methode lésst sich auch bei kohérenter
Beleuchtung des Objekts anwenden. Man muss nur mit
den Funktionen f und F die Amplituden und nicht die
Intensitaten beschreiben. Sie fithrt dann zum gleichen Er-
gebnis wie die Abbesche Theorie.

Phasenkontrastmikroskop. Als Anwendung diskutie-
ren wir das Phasenkontrastmikroskop, das im Jahr 1932
von F. Zernike erfunden wurde.!® Es ermoglicht die Be-
obachtung von Objekten, die die Lichtintensitdt gleich-
mafig durchlassen, aber wegen eines ortsabhédngigen Bre-
chungsindex oder ihrer Geometrie die Wellenfronten ver-
beulen, was in biologischen Systemen haufig vorkommt,
aber vom Auge nicht wahrgenommen werden kann. Um
das Prinzip zu erldutern, fithren wir in einer Dimensi-
on das ideale ,Phasenobjekt” ein, das eine Welle mit der

Amplitude « el?®) erzeugt, und vergleichen es mit ei-
nem ideal absorbierenden Objekt mit der Amplitude
e4™) ohne zusitzliche Phasenverschiebungen. Wir neh-

men A(x) und ¢ als kleine GréBen an und setzen aufler-

dem, tiber das Objekt gemittelt, A(x) =0 und ¢(x) = 0.
Die Fourier-Transformierten haben die Form

F(k) = / e keAX) gy o / e (14 A(x))dx und

F(k) = /e*ik’(“q”(x) dx ~ /e*ik" (14+ig(x))dx.

Die konstanten Anteile unter den Klammern liefern fiir
beide Objekte die gleichen Fourier-Transformierten: Sie

13 Frits Zernike (1888-1966) wirkte ab 1920 als Professor an der Uni-
versitit Groningen. Seine Erfindung stiefl paradoxerweise bei der
Firma Zeiss auf kein Interesse. Sie wurde erst im zweiten Weltkrieg
wihrend der Okkupation Hollands von der deutschen Wehrmacht
aufgegriffen, die alles einsammelte, was fiir den , Endsieg” wichtig
sein konnte. Im Jahr 1953 erhielt F. Zernike fiir die Entwicklung des
Phasenkontrastverfahrens den Nobelpreis.
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Abbildung 8.37 Strahlengang fir die Beleuchtung in einem Phasen-
kontrastmikroskop (schematisch). Q: Lichtquelle, KI: Kollektor, R: Ringblende,
Kd: Kondensor, G: Gegenstand, O: Objektiv, Ph: Phasenplatte, ZB: Zwischenbild
von G. Schattiert: Lichtbiindel von einem Punkt der Quelle bis zum Beugungs-
maximum nullter Ordnung und seine Verteilung auf dem Zwischenbild

O Ph ZB

sind schmale Nadelimpulse bei k ~ 0, wie in Abb. 8.10
dargestellt und mit (8.9) berechnet wurde. Den zusitzli-
chen, durch die Modulation entstehenden Termen sieht
man an, dass sie sich in der Phase um 90° unterschei-
den. Man kann daher das Beugungsbild eines Phasenob-
jektes in das eines amplitudenmodulierten verwandeln
und Phasenunterschiede sichtbar machen, indem man
die Phase der Fourier-Transformierten bei k = 0 um 90°
verschiebt. Das funktioniert natiirlich auch in zwei Di-
mensionen.

Obwohl ein Phasenkontrastmikroskop einem normalen
Mikroskop dhnlich sieht, unterscheidet es sich von die-
sem in seinem Aufbau (Abb. 8.37): Zur Beleuchtung des
Objektes wird eine ringférmige Lichtquelle eingesetzt, de-
ren Licht auf eine ringférmige Blende fokussiert wird.
Dahinter erzeugt ein Kondensor ein kegelformiges Licht-
biindel. An dessen kleinsten Querschnitt befindet sich das
Objekt. Der Objektivradius ist grofer als der Radius des
Lichtbiindels beim Eintritt in das Mikroskop. Das Objek-
tiv bildet die Ringblende in seiner Brennebene ab. Dieses
Bild entspricht dem Beugungsmaximum nullter Ordnung
und der Wellenzahl k = 0 der Fourier-Transformation. In
der Brennebene befindet sich eine Phasenplatte, die die
Phase des Lichts im Bereich des Ringbilds um 90° ver-

Abbildung 8.38 Aufnahme eines Speicheldriisenchromosoms mit einem Pha-
senkontrastmikroskop (b) und eine normale mikroskopische Hellfeld-Aufnah-
me (a). Quelle: www.spektrum.de/lexikon/biologie/phasenkonstrastmikroskopie/
50947, Fig. 1. Mit freundlicher Genehmigung des Springer-Verlags

schiebt. Aufierdem kann man durch Schwéichung der
Intensitat im Ringbereich den Bildkontrast vergrofiern.
Je nachdem, ob die Phasenplatte innerhalb des Ringbe-
reichs dicker oder diinner ist als aufierhalb, spricht man
von negativem oder positivem Phasenkontrast. Im ersten
Fall erhalten die Imaginérteile aller Fourier-Koeffizienten
das gleiche Vorzeichen und das Bild eines Phasenobjektes
erscheint hell auf dem Untergrund. Im Fall des positi-
ven Phasenkontrastes erscheint das Objekt dunkel auf
dem Untergrund. Bei Beleuchtung mit weiflem Licht gibt
es wegen der Dispersion zusitzlich Farbkontraste. Ab-
bildung 8.38 zeigt die Phasenkontrast-Aufnahme eines
Chromosoms im Vergleich zu einer normalen Aufnahme.

Holografie

Bei einer gewohnlichen Fotografie wird auf der Bildebene
der Kamera die Beleuchtungsstiarke fotochemisch festge-
halten. Das Ergebnis ist das zweidimensionale Bild eines
dreidimensionalen Objekts und wir haben gelernt, ein sol-
ches Bild zu erkennen und zu interpretieren. Dass der
Mensch — im Gegensatz zum Tier — damit kein Problem
hat, bewiesen schon vor 30000 Jahren die Cro-Magnon-
Leute mit ihren Hohlenmalereien. Das Bild unterscheidet
sich von dem optischen Feld, das in der Bildebene der Ka-
mera vorhanden war, nur in einem Punkt: Es wurde die
zum Quadrat der Amplitude proportionale Intensitat der
Lichtwelle registriert, nicht aber die Phase. Die Hologra-
fie bietet die Moglichkeit, auf einem zweidimensionalen
Film nicht nur die Intensitit, sondern auch die Phase der
Lichtwelle zu registrieren. Wie das funktioniert und wie
sich das auswirkt, werden wir nun untersuchen.

Ein Laserstrahl wird mit einem halbdurchlédssigen Spiegel
in zwei Teilstrahlen zerlegt (Abb. 8.39). Beide Teilstrahlen
werden mit Linsen aufgeweitet. Der eine wird als Refe-
renzwelle auf eine Fotoplatte gefiihrt, mit dem anderen
wird das Objekt beleuchtet. Das Licht, das von dem be-
leuchteten Objekt ausgeht, fallt dann als Objektwelle auf
die Fotoplatte. Die Objektwelle enthélt die gesamte op-
tisch zugéngliche Information iiber das Objekt und hat
dementsprechend eine komplizierte Struktur. Wir fiihren
ein Koordinatensystem ein, in dessen (x, y)-Ebene die Fo-
toplatte liegt. Die Feldstarke der Objektwelle ist dort

Eo(x,y,t) = Eoo(x,y) cos(wt +9(x,y)) . (8.63)

Sowohl die Amplitude als auch die Phase sind Funktio-
nen von x und y. Um die nachfolgenden Uberlegungen
zu vereinfachen, nehmen wir an, dass die Referenzwelle
senkrecht auf die Fotoplatte fallt. Sie hat in der (x,y)-
Ebene die Feldstérke

Er(x,y,t) = Erpcos wt . (8.64)
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Abbildung 8.39 Anordnung zur Aufnahme eines Hologramms (Prinzip).
T: Strahlteiler; Sq, S,: Spiegel; F: Fotoplatte. Die x-Achse steht senkrecht auf
der Zeichenebene. Von der Objektwelle ist nur der Ausschnitt gezeigt, der auf
die Fotoplatte fallt
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Abbildung 8.40 Rekonstruktion des holographischen Bildes

Hier ist Erg konstant. Durch Uberlagerung von Objekt-
und Referenzwelle entsteht in der (x,y)-Ebene das Feld
Eni(x,y,t) = Eo + ERr. Die Intensitét ist nach (7.4) und (7.5)

I(x,y) « E2, = E}y + Edg + 2EroEcpcos p . (8.65)

Die Fotoplatte wird am stdrksten belichtet, wo die bei-
den Wellen konstruktiv miteinander interferieren, und am
schwichsten, wo die Interferenz destruktiv ist. Man kann
den Entwicklungsprozess so fiihren, dass die Schwaér-
zung genau proportional zu I(x,y) ist. Dann entsteht
auf der Platte ein kompliziertes Interferenzmuster, das
Hologramm. Es enthilt die komplette Information iiber
die Amplituden und Phasen der Objektwelle. Um die-
se Information wieder heraus zu holen, beleuchtet man

8 Beugung

das Hologramm mit einer kohdrenten ebenen Welle, der
Rekonstruktionswelle, die die gleiche Wellenldnge und
Richtung hat wie die vorher verwendete Referenzwelle.
Es entsteht ein virtuelles Bild des Objekts genau an der
Stelle, an der sich das Objekt bei der Aufnahme befand
(Abb. 8.40).

Das sieht man folgendermafSen ein: Unmittelbar vor der
Ebene des Hologramms hat die Rekonstruktionswelle die
Feldstdrke

Er(x,y,t) = Erg cos wt . (8.66)
Da die Absorption der Welle im Hologramm proportional
zu I(x,y) ist, ist die Feldstiarke direkt hinter dem Holo-
gramm

E(x,y,t) < Er:(x,y,)I(x,y) .

Mit der Formel cosa cos = [cos(a — B) + cos(a + B)]
erhdlt man

E(x,y,t) « Erio(ERg + Ed) cos wt
+ EroEroEop cos|wt — p(x, y)]

+ EroEroEoo cos|wt + ¢(x,y)] . (8.67)

Wie weiter unten gezeigt wird, entsprechen den drei
Termen in dieser Gleichung die drei in Abb. 8.40 ein-
gezeichneten Wellenziige. Der erste Term enthdlt mit
geschwichter Amplitude die in der urspriinglichen Rich-
tung weiterlaufende Rekonstruktionswelle. Der zweite
Term ergibt das in Abb. 8.40 eingezeichnete reelle Bild
des Objekts. Wir wollen uns damit nicht weiter befas-
sen, denn es ist hier weniger von Interesse. Der dritte
Term enthélt das Entscheidende: Er ist bis auf einen kon-
stanten Faktor identisch mit der Objektwelle (8.63)! Wenn
man durch das von der Rekonstruktionswelle beleuchte-
te Hologramm hindurchschaut, sieht man das Objekt in
seiner urspriinglichen Position, gerade so, als ob es tat-
sdchlich dort stiinde. Je nachdem, aus welcher Richtung
man schaut, kann man in Abb. 8.40 das quaderformige
Objekt mehr von vorn oder etwas mehr seitlich betrach-
ten. Das mit der Rekonstruktionswelle beleuchtete Holo-
gramm wirkt wie ein Fenster, durch das hindurch man auf
das Objekt sieht. Fotografiert man es, so muss man den
Fotoapparat auf die Entfernung einstellen, in der sich das
Objekt urspriinglich befand. In Abb. 8.41a sieht man die
gewohnliche Fotografie eines Objekts, in Abb. 8.41b das
Hologramm und in Abb. 8.41c eine Fotografie des mit der
Rekonstruktionswelle beleuchteten Hologrammes.

Die drei voneinander getrennten Wellenziige in (8.67) und
in Abb. 8.40 kommen durch die Beugung der Rekon-
struktionswelle am Hologramm zustande: Es handelt sich
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Abbildung 8.42 Hologramm einer ebenen Objektwelle. a Punkte maximal
konstruktiver Interferenz, b das Hologramm (,, Cosinusgitter”), c Rekonstruktion
der Objektwelle durch Beugung am Gitter

um das Beugungsmaximum nullter Ordnung und um die
beiden Maxima erster Ordnung. Dies erkennt man mit
Abb. 8.42. Dort ist wie in Abb. 8.39 angenommen, dass
die Referenzwelle senkrecht auf die Fotoplatte fallt. Die
Objektwelle soll hier eine ebene Welle sein, die mit dem
k-Vektor in der (y,z)-Ebene unter dem Winkel ¢ einféllt.
Abbildung 8.42a zeigt das Wellenfeld zu einem Zeitpunkt,
in dem gerade ein Wellenberg der Referenzwelle die Plat-
te erreicht hat. Maximal konstruktive Interferenz besteht
an den durch Kreise gekennzeichneten Punkten. Sie ha-
ben voneinander den Abstand d = A/sind. Zu einem
spateren Zeitpunkt sind die Wellenfronten beider Wel-
len weiter vorgeriickt. An der Lage der Punkte gleicher
Phase, also der maximal konstruktiven Interferenz, andert
sich dadurch nichts. Die Phase ¢ in (8.63) hangt hier nur
von y ab, und es ist

) _y
Abbildung 8.41 a Fotografie des Objekts, b des Hologramms, ¢ des rekon- 27T d’
struierten Bildes. Der helle Fleck am oberen Bildrand ist das Beugungsmaximum

2
nullter Ordnung (aus Klein u. Furtak, 1988) P(y) = Tﬂy sind = (ksind)y .

(8.68)
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Die Intensitdtsverteilung in der Hologrammebene ist also

I(x,y) = Exo + Edp
(8.69)

27 sin®
+ 2ERpE0q cos ( Temn y) .

Es entsteht als Hologramm ein Cosinusgitter (Abb.
8.42b). Es hat die Eigenschaft, dass alle Beugungsmaxi-
ma mit m > 2 verschwinden (Abb. 8.31). In Abb. 8.42¢
fallt die Rekonstruktionswelle auf dieses Gitter. Das Ma-
ximum nullter Ordnung liegt bei ¢ = 0, in Richtung der
Rekonstruktionswelle. Die Beugungsmaxima 1. Ordnung
liegen nach (8.22) bei

A

gsind =+A — sind = i§ .

Das Maximum mit m = 41 liegt genau in der Richtung,
in der bei der Aufnahme des Hologramms die Objektwel-
le lief. Nun kann eine noch so komplizierte Objektwelle
durch ein Fourier-Integral als Uberlagerung von ebenen
Wellen dargestellt werden. Jede Teilwelle erzeugt entspre-
chend ihrer Ausbreitungsrichtung und ihrer Amplitude
durch Interferenz mit der Referenzwelle auf der Foto-
platte ein anderes Cosinusgitter, und durch Uberlagerung
aller dieser Gitter entsteht schliefslich ein Hologramm von
dem in Abb. 8.41 gezeigten Typ. Ein Hologramm ist also
nichts anderes als ein sehr kompliziertes Beugungsgitter.

Es gibt viele Variationen des in den Abb. 8.39 und 8.40 ge-
zeigten Grundprinzips. Man kann die Objektwelle senk-
recht und die Referenzwelle unter dem Winkel ¢ auf die
Fotoplatte fallen lassen, oder auch beide Wellen unter be-
liebigen Winkeln. Auch kann man statt der ebenen Wellen
sphérische Wellen verwenden. Aufler den hier diskutier-
ten Transmissionshologrammen gibt es Reflexionsholo-
gramme, und man kann die in der entwickelten fotografi-
schen Emulsion enthaltenen Silberkorner , rehalogenisie-
ren” und in transparente Kristdllchen verwandeln. Dann
erhdlt man statt eines Amplitudengitters mit dem Trans-
missionskoeffizienten 7(x,y) ein Phasengitter mit dem
Brechungsindex n(x, y). Das hat grofle Vorteile: Beim Am-
plitudenhologramm wird die Rekonstruktionswelle zum
grofiten Teil absorbiert, beim Phasenhologramm dagegen
nicht. Man erhilt also viel hellere Bilder. Solche Pha-
senhologramme kann man auch direkt durch Belichtung
gewisser Polymerstoffe erzeugen.

Man kann auf der Fotoplatte bzw. auf der Polymer-
schicht simultan mehrere Hologramme speichern, die zu
verschiedenen Objekten gehdren, indem man bei der Auf-
nahme verschiedene Wellenldngen und verschiedene Ein-
fallswinkel ¢ einsetzt. Wenn man das Objekt dicht vor

8 Beugung

Abbildung 8.43 Holographische Interferometrie: a Deformation eines Sturz-
helms, auf den mit einem Hammer geschlagen wird. Belichtung durch zwei
Laserpulse von 25 ns Dauer im Zeitabstand von At = 25 s, nach Gates et al
(1972). b Deformation eines Feinmessgerats bei Temperaturerhéhung um 10 °C,
At = 10 min, aus Haferkorn (1994)

die empfindliche Schicht stellt, kann man die Bilder auch
mit Weifllicht rekonstruieren. Sie erscheinen dann in den
Farben und unter den Winkeln, die bei der Aufnahme ver-
wendet wurden.

Anwendungen. Anwendungen der Holografie einfach
nur zur Erzeugung dreidimensionaler Bilder spielen kei-
ne grofie Rolle, und auch die schillernden Bildchen auf
Scheckkarten, Geldscheinen und Verpackungen rechtfer-
tigen wohl kaum eine Beschiftigung mit diesem Thema.
Man kann solche in Weifllicht erkennbaren Regenbogen-
hologramme mit Hilfe eines gewohnlichen Transmissi-
onshologramms herstellen, wobei von dem reellen Bild
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des Objekts (siehe Abb. 8.40) auf raffinierte Weise ein
zweites Hologramm gefertigt wird.!* Es gibt jedoch eine
Reihe von Anwendungen, die technisch von grofier Be-
deutung sind oder werden konnten.

Die holografische Interferometrie ist eine in industriel-
len Entwicklungslabors und in der Fertigungskontrolle
eingesetzte Methode, um minimale Deformationen auf-
zuzeichnen und auszumessen. Um festzustellen, ob sich
ein Werkstiick unter Last in der vorgesehenen Weise ver-
formt, wird zunéchst eine Fotoplatte mit dem Hologramm
des unbelasteten Werkstiicks belichtet und dann noch-
mals unter Last. Das doppelt belichtete Hologramm zeigt
nach der Entwicklung Interferenzstreifen, an denen sich
die Deformation genau ablesen ldsst (Abb. 8.43). Man
kann sich auch zunéchst ein Hologramm des Werkstiicks
im unbelasteten Zustand herstellen und die Fotoplatte
entwickeln, ohne sie aus dem Versuchsaufbau heraus-
zunehmen. Dann betrachtet man durch das Hologramm
hindurch das Werkstiick bei Belastung und eingeschalte-
ter Referenzwelle. Die Formédnderungen konnen nun in

14 Gjehe z.B. J. Walker, Scientific American September 1986, S. 110.

Echtzeit mit Hilfe der Interferenzstreifen verfolgt wer-
den.

Weitere Anwendungen findet die Holografie bei der In-
formationsspeicherung und bei der Bildverarbeitung.
Auf diesen Gebieten ist die Entwicklung noch sehr im
Fluss. Ndheres dazu und zu den vielféltigen Moglichkei-
ten der Holografie findet man in der Spezialliteratur!®.
Schliefllich ist noch die holografische Herstellung opti-
scher Bauelemente zu erwihnen. Durch Uberlagerung
von zwei ebenen Wellen kann man ein Cosinusgitter her-
stellen (Abb. 8.31), mit dem man ein Prisma ersetzen
kann. Eine Zonenplatte kann als Hologramm einer Punkt-
lichtquelle hergestellt und als Linse verwendet werden
(Abb. 8.25). Solche Bauelemente konnen als Massenpro-
dukt billig hergestellt werden, und sie nehmen wenig
Platz in Anspruch. Die starke Abhédngigkeit des Ablenk-
winkels bzw. der Brennweite von der Wellenldnge stort
nicht, da diese Bauelemente in Kombination mit einem
Laser verwendet werden. Sie kommen z. B. in den Lesege-
rdten an der Ladenkasse des Supermarktes zum Einsatz.

15H.J. Coufal, D. Psaltis und G. T. Sincerbox (Herausg.): , Hologra-
phic Data Storage”, Springer (2012), siehe auch den Abschnitt ,On
the horizon: Holographic Storage” in J. W. Toigo: , Avoiding a Data
Crunch”, Scientific American, Mai 2000, S. 40. W.T. Cathey: ,Op-
tical Information Processing and Holography”, John Wiley & Sons
(1989); P. Hariharan: ,Basics of Holography”, Cambridge Universi-
ty Press (2002); G. Saxby: ,Practical Holography”, 3. Auflage, CRC
Press (2003).
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8 Beugung

Ubungsaufgaben

8.1. Beugung am Gitter. a) In Kupferdampf erzeugtes
Licht trifft senkrecht auf ein Gitter. Man beobachtet das
Beugungsmaximum 1. Ordnung fiir die bekannte Wel-
lenldnge A = 515,3 nm beim Ablenkwinkel ¢ = 8,47°. Wie
grofs ist die Gitterkonstante g?

b) Geben Sie fiir folgende Stellen im Beugungsbild des
Gitters das Verhiltnis der Intensitdt zur Maximalintensitéat
an: (1) erstes Hauptmaximum neben dem Hauptmaxi-
mum nullter Ordnung, (2) erstes Nebenmaximum neben
dem Hauptmaximum nullter Ordnung (die Phasenver-
schiebung ¢ liegt ungefidhr in der Mitte zwischen den
Werten fiir das 1. und 2. Minimum), (3) Nebenmaximum
in der Mitte zwischen den Hauptmaxima nullter und
erster Ordnung. Das Verhiltnis von Spaltbreite zu Git-
terabstand ist in allen Féllen D/g = 1/5, die Anzahl der
Striche 10 000.

8.2. Rontgenbeugung am Reflexionsgitter. Die Wel-
lenldnge von Réntgenstrahlen wurde erstmals durch Beu-
gung an einem Reflexionsgitter bestimmt. Bei diesen Mes-
sungen muss man einen Einfallswinkel ¢ sehr nahe bei
90° wihlen, also streifenden Einfall auf das Gitter. Es
ist daher zweckmafig, statt des Einfallswinkels ¢ den
Winkel § = 71/2 — ¢ zwischen den Rontgenstrahlen und
der Gitterebene einzufiihren. Ein derartiges Experiment
wurde z. B. mit einer Réntgenlinie des Kupfer (K,-Linie)
durchgefiihrt. Auf einem Film in groflem Abstand seit-
lich neben dem Gitter registriert man: (1) den (abge-
schwichten) einfallenden Rontgenstrahl, der das Gitter
geradlinig durchdrungen hat, (2) den am Gitter reflek-
tierten Rontgenstrahl; er hat einen Winkelabstand 26y =
11,64 - 10~3rad von (1) und entspricht dem Beugungs-
maximum nullter Ordnung, (3) Beugungsmaxima in den
Winkelabstinden o = 6, — 6y = 4,83 - 10 3rad und ap =
8 — &y = 8,07-103rad von (2). Die Gitterkonstante g be-
stimmt man mit Licht bekannter Wellenldnge, siehe das
Resultat von Aufgabe 8.1a. Wie grof3 ist die Wellenldnge
der Rontgenlinie?

83. Ubergang von der Fresnel-Beugung zur
Fraunhofer-Beugung. Gleichung (8.1) ist die Bedingung
fiir das Vorliegen der Fraunhoferschen Beugung. Fiir die
Fresnel-Beugung liefert (8.41) die Radien der Fresnelzo-
nen. Zeigen Sie, dass mit geeigneten Kriterien fiir Ry und
die Zahl der Fresnelzonen (8.41) auf (8.1) fiihrt.

8.4. Fresnel-Beugung an einer kreisformigen Blende.
a) Berechnen Sie fiir einen parallel gebiindelten Laser-
strahl, der senkrecht auf eine kreisrunde Blende trifft, die

Abstdnde r, auf der optischen Achse hinter der Blen-
de, bei denen eine ganze Zahl von Fresnelschen Zonen
zur Intensitét beitragt. Geben Sie fiir die Versuchsanord-
nung von Abb. 8.3 die Radien r,, fiir n =1, 10, 11, 12 an
(A = 633 nm, Blendenradius p = 0,515mm). Bei welchen
der obigen n-Werte erwarten Sie auf der optischen Achse
Maxima, bei welchen Minima der Beugungsfigur? Ver-
gleichen Sie mit Abb. 8.3.

b) Bei welchem r,, erwarten Sie den Ubergang zur Fraun-
hoferschen Beugung?

¢) In Abb. 8.3a beobachtet man den Grenzfall der geo-
metrischen Optik. Wie grof8 ist hier die Zahl der Fresnel-
Zonen?

8.5. Camera obscura. Beschreiben Sie die Wirkungs-
weise einer Lochkamera als Abbildung durch eine Fres-
nelsche Zonenplatte nach Abb. 8.25 und geben Sie fiir eine
Gegenstands- und Bildweite von 30 cm einen geeigneten
Lochradius an.

8.6. Schattenwurf. Das in Abb. 8.2 gezeigte Schatten-
bild einer Kante hat den Mafistab 1,5 : 1. Schitzen Sie
mit Hilfe von Abb. 8.26 grob ab, in welchem Abstand z
hinter dem Bleistift der Schirm aufgestellt gewesen sein
muss, der fotografiert wurde. Die Lampe hat einen endli-
chen Durchmesser und besitzt, vom Bleistift aus gesehen,
einen endlichen Winkeldurchmesser 2¢. Hierdurch ent-
steht hinter dem Bleistift ein Halbschatten, der sich dem
Interferenzbild iiberlagert. Wie klein muss man « halten,
damit der Halbschatten das Interferenzbild nicht stort?
Kann man bei direkter Beleuchtung mit Sonnenlicht die
Fresnelsche Beugung an einer Kante beobachten (von der
Erde aus gesehen, besitzt die Sonne einen Winkeldurch-
messer 2x ~ 9mrad)?

8.7. Beleuchtungsspalt beim Gitterspektrometer.
a) Welche Bedingung muss die Gitterkonstante eines Git-
ters erfiillen, damit man bei einer Wellenldnge Amax die
m-ten Beugungsmaxima gerade noch beobachten kann?

b) Wie grofs ist die Differenz A% der Beugungswinkel
zwischen dem Hauptmaximum m-ter Ordnung und dem
ersten benachbarten Minimum bei einer Wellenldnge A <
)\max?

¢) Um wie viel verschiebt sich der Beugungswinkel des m-
ten Hauptmaximums, wenn man die Wellenldnge um AA
verschiebt?

d) Entnehmen Sie den Resultaten von b) und ¢) das Auf-
l6sungsvermogen (8.27).



Ubungsaufgaben

e) Das Gitter wird von fast parallelem Licht beleuchtet,
das dadurch erzeugt wird, dass das Licht einer Quelle
auf einen Beleuchtungsspalt der Breite b fokussiert wird,
der sich in der Brennebene einer hinter ihm stehenden
Linse mit der Brennweite f befindet. Wie groff ist die
Wellenldnge A4 des Lichts, bei der die Aufldsungsgren-

ze A¥ genau so grof$ ist wie die Winkeldivergenz b/f des
am Gitter ankommenden Lichts? Kann man mit fester
Beleuchtungsspaltbreite ein von A unabhingiges Auflo-
sungsvermogen erreichen ? (Hinweis: Man benétigt das
Resultat von a).)

191




Polarisiertes Licht

9.1 Polarisationszustande . . . ... .. ... ... ... .. .. ... 194

9.2  Polarisationseffekte bei der Emission, Absorption und Reflexion

vonlicht .. ... ... .. . . 197
9.3 Doppelbrechung . . ...... .. ... 200
9.4  Induzierte Doppelbrechung, nichtlineare Optik . . .. ... ... 215
Ubungsaufgaben . .. ........................ 223
© Springer-Verlag GmbH Deutschland 2017 193

J. Heintze / P. Bock (Hrsg.), Lehrbuch zur Experimentalphysik Band 4: Wellen und Optik, https:/ /doi.org/10.1007 /978-3-662-54492-1_9


https://doi.org/10.1007/978-3-662-54492-1_9

194

Transversale Wellen kénnen polarisiert sein, sie sind
sogar im Allgemeinen polarisiert. Das haben wir bei
den Versuchen mit dem Gummiseil schon zu Beginn
von Kap. 1 gesehen. Bisher haben wir die Polari-
sation des Lichts weitgehend ignoriert; wir wollen
nun die damit verbundenen Phdnomene genauer
untersuchen. Zunachst geht es um die Beschreibung
der verschiedenen Polarisationszustinde. Im zwei-
ten Abschnitt behandeln wir einige Methoden zur
Herstellung und zum Nachweis von linear pola-
risiertem Licht und im dritten die merkwiirdigen
Phanomene der Doppelbrechung und deren Anwen-
dungen. Dabei werden wir uns auch genauer mit
dem zirkular polarisierten Licht befassen. Als Bei-
spiel beschreiben wir, wie die Polarisation als Hilfs-
mittel in der hochauflésenden STED-Mikroskopie
eingesetzt wird.

Doppelbrechung kann auch durch elektrische oder
magnetische Felder hervorgerufen werden. Das
wird im letzten Abschnitt behandelt, zusammen mit
einigen Anwendungen: Mit Hilfe der induzierten
Doppelbrechung lassen sich , Einbahnstraflen” fiir
Licht und optische Schalter mit sehr kurzen Schalt-
zeiten realisieren. Weiterhin wird ein Einblick in
die nichtlineare Optik gegeben und als Beispiel die
fiir die Lasertechnik wichtige Frequenzverdopplung
von Licht behandelt. Auch hier spielen Polarisation
und Doppelbrechung eine entscheidende Rolle.

9.1 Polarisationszustande

Wir wissen bereits aus fritheren Kapiteln, dass bei line-
ar polarisierten elektromagnetischen Wellen die Schwin-
gungsrichtung des E-Vektors als Polarisationsrichtung
definiert wird.! Auflerdem wissen wir, dass bei Uber-
lagerung von zwei kohdrenten Wellen, die in der glei-
chen Richtung linear polarisiert sind, die gleichen Inter-
ferenzerscheinungen auftreten, wie bei skalaren Wellen,
und dass man keine Interferenzstreifen beobachtet, wenn
die Polarisationsrichtungen senkrecht aufeinander stehen
(Abschn. 7.1). Es geschieht aber etwas anderes: Wir wollen
dies nun untersuchen und betrachten den Fall, dass zwei
in der gleichen Richtung laufende und senkrecht zueinan-
der polarisierte kohdrente Wellen iiberlagert werden.

!In der élteren Literatur wird die Richtung von H als Polarisations-
richtung definiert. Also aufgepasst!

9 Polarisiertes Licht

Linear, zirkular und elliptisch polarisiertes Licht

Nehmen wir an, zwei ebene monochromatische Wellen
gleicher Frequenz liefen in z-Richtung. Die eine sei in x-
Richtung, die andere in y-Richtung linear polarisiert. Die
elektrische Feldstarke der resultierenden Welle ist dann

E(z,t) = Exo& cos(kz — wt) ©.1)
+ Eyofy cos(kz — wt +9) . '

Das Ergebnis dieser Uberlagerung ist in Abb. 9.1 gezeigt.
Es kommt entscheidend auf die Phasendifferenz ¢ zwi-
schen den beiden Wellen an, und auf das Verhéiltnis der
Amplituden. In Abb. 9.1a ist die Phasendifferenz § = 0:
Es entsteht eine linear polarisierte Welle, deren Schwin-
gungsrichtung mit der x-Achse den Winkel ¢ einschlieft:

Lineare Polarisation:
E(z,t) = Ey cos(kz — wt)

E
— /g2 2 _ =0
E() = Ex0+Ey0, tan@ = E—xo

In Abb. 9.1b und c ist die Phasendifferenz 6 = £% und
die Amplituden der Teilwellen sind gleich: Eyg = Eyo =

Ey/ v/2. Es entsteht eine rechtsdrehende bzw. eine links-
drehende zirkular polarisierte Welle (vgl. Abb. 1.4):

9.2)

Rechtszirkular:

ER _— % [&cos(kz — wt) + iy cos (kz — wt — %)}

= % [® cos(kz — wt) + §sin(kz — wt)].
(9.3)

Linkszirkular:
E 7T
(L) _ 0 A o ~ o
E 7 [xcos(kz wt) + i cos (kz wt + > )}

= E—Oz [& cos(kz — wt) — sin(kz — wt)].
9.4)

Der E-Vektor rotiert um die z-Achse. Sein Betrag bleibt da-
bei konstant: |E(z,t)| = Eg = Exp = E,o. Abbildung 9.2b
zeigt die Momentaufnahme einer rechtszirkular polari-
sierten Welle. Die Pfeilspitzen der E-Vektoren bilden eine
Rechtsschraube. Beim Fortschreiten der Welle verschiebt
sich dasin Abb. 9.2 gezeigte Bild in z-Richtung. Wenn man
bei z = z die zeitliche Anderung des E-Vektors verfolgt
und der Welle entgegenblickt, lauft bei einer rechtszirku-
lar polarisierten Welle der E-Vektor im Uhrzeigersinn, bei
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Abbildung 9.1 Polarisationszustande von elektromagnetischen Wellen. Aus-
breitung in z-Richtung, d. h. senkrecht zur Zeichenebene, und auf den Beobach-
terzu

einer linkszirkular polarisierten Welle entgegengesetzt.
Man kann auch die Chiralitit (Hindigkeit) der Wellen
definieren: Bildet der bei z = zg beobachtete Drehsinn des
E-Vektors mit der Fortpflanzungsrichtung der Welle ei-
ne Rechtsschraube, nennt man das rechtshéndig zirkulare
Polarisation; bilden sie eine Linksschraube, ist die Welle
linkshandig zirkular polarisiert (Abb. 9.2).

Ebenso wie man aus zwei in x- und y-Richtung linear
polarisierten Wellen zirkular polarisierte Wellen machen

Abbildung 9.2 Rechtszirkular polarisierte Welle. a Momentaufnahme. Beim
Fortschreiten der Welle verschiebt sich die hier gezeichnete Spirale in z-Richtung.
In der Ebene z = z; rotiert der E-Vektor, entgegengesetzt zur z-Richtung be-
trachtet, im Uhrzeigersinn. b Dieser Drehsinn und die Fortpflanzungsrichtung
ergeben eine Linksschraube. Die rechtszirkular polarisierte Welle ist
also linkshéndig zirkular polarisiert. In der Optik wird die Definition (a)
bevorzugt, in der Quantenphysik die Definition (b)

kann, kann man auch durch Uberlagerung von einer
links- und einer rechts-zirkular polarisierten Welle linear
polarisierte Wellen erzeugen. Die beiden zirkular pola-
risierten Wellen sollen die Amplituden Ep/2 und die
Phasen Jr und J;, haben:
® _ Eor,
EW = > [& cos (kz — wt + 6R)
+ sin (kz — wt + 0r)] ,
E
ED = 70 [& cos (kz — wt + 61)
—@sin (kz — wt+41)] .

Mit den Formeln fiir cos « + cos 8 und sina — sin  erhalt
man

E® + EL = E, [xcos or 5 %L | gsin M}
(9.5)
- COS (kz—wt+ 5R;5L) .

Das ist eine linear polarisierte Welle, deren Schwingungs-
richtung mit der x-Achse den Winkel

_oR—0L

> (9.6)

einschliefSt. Es ist Eyg = Egcos ¢ und E,g = Eq sin ¢.
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Wenn man bei einer zirkular polarisierten Welle die Be-
dingung Eyo = E, fallen ldsst, lauft der E-Vektor offen-
sichtlich nicht mehr auf einem Kreis, sondern auf einer
Ellipse um, deren Halbachsen durch E,y und E, gegeben
sind. Nimmt auch der in (9.1) eingefiihrte Phasenwinkel
6 beliebige Werte an, entsteht eine elliptische Polarisati-
on, bei der die Halbachsen der Ellipse gegen das (x,y)-
Koordinatensystem verdreht sind (Abb. 9.2d).

Die elliptische Polarisation ist der allgemeinste Polari-
sationszustand, der alle anderen als Spezialfélle enthilt.
Sie ist durch drei Parameter charakterisiert: Man kann
entweder die in Abb. 9.2d definierten geometrischen Pa-
rameter a, b und ¢ verwenden, oder die drei Parameter
von (9.1): Eyg, Eyp und J. Wie die beiden Parametersitze
miteinander zusammenhéngen, sieht man in den folgen-
den Gleichungen:

S1=Ef — Ej
Sy = 2EyE g cosd = (a® + b?) cos 25y sin2¢p ,

9.7)
9.8)
9.9)

= (a% 4 b*) cos 21 cos 2¢

S3 = 2EyE 0 siné = (a2 + b2) sin2y .

Hierbei ist tany = +b/a. Das Vorzeichen bestimmt den
Umlaufsinn des E-Vektors. Die Intensitat der Welle ist
proportional zu

So = E% +Ep (9.10)
Bei linearer Polarisation (6 = 0) ist S3 = 0. Lineare Pola-
risation in x-Richtung bedeutet S1/Sy = +1, Sy = 0; Po-
larisation in y-Richtung bedeutet S; /Sy = —1, S, = 0. Bei
zirkularer Polarisation ist S; = Sp = 0. Rechtszirkular be-
deutet S3/Sy = —1, linkszirkular bedeutet S3/Sy = +1.
Die Groflen Sy, S1, Sy, S3 sind die sogenannten Stokes-
Parameter. Man kann sie durch Intensititsmessungen
mit Polarisationsfiltern direkt bestimmen, wie wir weiter
unten sehen werden (Abschn. 9.3). Auflerdem sind sie be-
sonders gut dazu geeignet, in der theoretischen Physik die
Polarisationszustande von Licht zu charakterisieren.

Unpolarisiertes und teilweise polarisiertes Licht

Wir miissen uns nun fragen, wie das unpolarisierte Licht
zustande kommt. Das Licht, das ein einzelnes Atom aus-
sendet, ist vollstandig polarisiert. Darauf werden wir in
Bd. V/6 zuriickkommen. Im ,natiirlichen Licht” aus einer
Lichtquelle iiberlagern sich die Emissionsprozesse vieler
Atome. Das fithrt zu schnellen Schwankungen des re-
sultierenden Polarisationszustands, gerade so, wie diese
Uberlagerung auch zu Schwankungen der Phase fiihrt
(Abb. 7.18). Abbildung 9.3 zeigt das Ergebnis einer Rech-
nung, bei der wie in Abb. 7.18 exponentiell abklingende
Wellenziige iiberlagert wurden, diesmal jedoch mit statis-
tisch wechselnder Polarisationsrichtung. Man sieht: Wenn
die momentane lineare Polarisation hohe Werte erreicht,
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Abbildung 9.3 Stokes-Parameter S; und S3 von unpolarisiertem Licht, zum
Vergleich mit Abb. 7.18. S;/Sp = +1: lineare Polarisation in x-Richtung,
$1/Sy = —1in y-Richtung. S3/So = +1: linkszirkulare, S3/Sq = —1 rechts-
zirkulare Polarisation

ist die zirkulare klein, und umgekehrt. Die Schwankun-
gen erfolgen in dhnlicher Weise wie in Abb. 7.18 die
Schwankungen der Amplitude und der Phase. Mathema-
tisch kann man die Welle beschreiben, indem man zwei in
x- und in y-Richtung linear polarisierte Wellen von dem
in (7.31) angegebenen Typ iiberlagert:

E(z,t) = Exo()& cos (Ez —wt+ 5x(t))

~ (9.11)
+ Eyo(t)f cos (kz — Wt + @(t)) .

k und @ sind die zeitlichen Mittelwerte der Wellenzahl
und der Frequenz w. Die Phasen J; und 6y, sind nicht
miteinander korreliert, und die Amplituden sind im zeit-
lichen Mittel genau gleich:

E%O = E2 (9.12)
Die zeitlichen Schwankungen der Phasendifferenz

O(t) = 6y(t) — 0x(t) und des Amplitudenverhiltnisses
Eyo(t)/Exo(t) sorgen fiir den sténdigen Wechsel des Po-
larisationszustands. Dieser Wechsel geschieht so schnell,
dass die momentane Polarisationsrichtung nicht messbar
ist. Das natiirliche Licht wird deshalb meist als unpolari-
siert bezeichnet.

Obgleich beim natiirlichen Licht ein enger Zusammen-
hang zwischen den Schwankungen der Phase und den
Schwankungen des Polarisationszustands besteht, lassen
sich beide Grofien unabhingig voneinander manipulie-
ren: Mit einem Monochromator kann man die Bandbreite
des Lichts einengen, ohne etwas an der Polarisation zu
verdndern und ein Polarisationsfilter ldsst im wesentli-
chen nur eine Polarisationsrichtung hindurch, ohne die
Kohérenzlange zu beeinflussen.

Gewohnlich hat man es mit teilweise polarisiertem Licht
zu tun. Man kann es sich vorstellen als Uberlagerung von
vollstandig polarisiertem und von unpolarisiertem Licht.
Zur Beschreibung mit den Stokes-Parametern hat man die
in (9.7)—(9.10) als konstant angenommenen elektromagne-
tischen Grofien durch zeitliche Mittelwerte zu ersetzen,
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also durch EZO, EyO’

sieht sofort, dass bei unpolarisiertem Licht S; =S, =
S3 = 0 ist. Da andererseits bei vollstindiger Polarisation
S% + S% + S% = S% ist, kann man den Polarisationsgrad mit

\/S?+ 52452
p=Y1l 2 % 9.13)

So

ExEycosd und EyE,osind. Man

definieren. Nun erkennt man auch, weshalb man zur Cha-
rakterisierung von polarisiertem Licht vier und nicht nur
drei Parameter braucht.

9.2 Polarisationseffekte bei der
Emission, Absorption und
Reflexion von Licht

Bei der Wechselwirkung von Licht mit Materie hiangt die
Absorption, Reflexion, Lichtbrechung oder Streuung im
allgemeinen vom Polarisationszustand des Lichts ab. Das
hat zur Folge, dass unpolarisiertes Licht nach Wechselwir-
kung mit Materie gewohnlich teilweise polarisiert ist. Es
ist sogar ausgesprochen schwierig, vollkommen unpola-
risiertes Licht herzustellen oder Licht in diesem Zustand
zu erhalten. Wir untersuchen in diesem Abschnitt die
Absorption und Reflexion von polarisiertem Licht, die
Brechung im néchsten. Polarisationseffekte bei der Licht-
streuung werden in Bd. V/1 behandelt.

Dipolstrahlung und Polarisationsfilter

Bei der Erzeugung elektromagnetischer Wellen hat man
es fast immer mit Dipolstrahlung zu tun; dies gilt fiir
Hochfrequenzsender wie fiir Atome. Dass die Dipolstrah-
lung parallel zur Schwingungsrichtung des Dipols linear
polarisiert ist, ergibt sich ohne weiteres aus den Richtun-
gen der elektrischen und magnetischen Felder, die der
schwingende Dipol erzeugt (Abb. 2.17). Experimentell
kann man die Polarisation der Strahlung mit einem zwei-
ten Dipol nachweisen, der als Antenne eines Empfangers
dient: Der Empfang funktioniert optimal, wenn beide Di-
pole parallel ausgerichtet sind (Abb. 9.4a). Wenn sie senk-
recht zueinander stehen, wird kein Signal empfangen,
denn es gibt kein E-Feld, das den Empfiangerdipol anre-
gen konnte (Abb. 9.4b). Von dieser Tatsache ausgehend,
kann man Polarisationsfilter bauen. Im Idealfall lassen
sie eine Polarisationsrichtung hindurch und absorbieren
die dazu senkrecht polarisierte Strahlung vollstindig. Be-
sonders einfach ist es, ein solches Filter fiir Mikrowellen
herzustellen. In einen Rahmen werden Drihte gespannt.
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Abbildung 9.4 Dipolantennen und Hertzsches Gitter
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Der Abstand zwischen den Dréhten ist von der Grofien-
ordnung der Wellenlédnge oder kleiner. Dieses Filter wird
nun zwischen Sender und Empfanger gestellt. In der in
Abb. 9.4c gezeigten Stellung wird die Welle fast vollstan-
dig absorbiert: Sie regt in den Dréhten elektrische Strome
an, die einerseits Joulesche Warme erzeugen, anderer-
seits zur Abstrahlung elektromagnetischer Wellen fithren.
Diese Wellen sind gegen die einfallende Welle phasen-
verschoben, sodass sie hinter dem Gitter mit dem Rest
der primdren Welle destruktiv interferieren. In der in
Abb. 9.4d gezeigten Stellung lasst dagegen das Gitter die
Welle nahezu ungeschwicht hindurch: In y-Richtung kén-
nen keine Strome fliefen.

Dreht man nun das Gitter um einem Winkel « (Abb. 9.4e),
wird die Welle mit geschwéchter Intensitat durchgelas-
sen. Das wird wohl jeder erwarten; erstaunlich ist aber,
dass man nun auch ein Signal empfangt, wenn die
Empfangsantenne wie in Abb. 9.4b in x-Richtung zeigt
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Abbildung 9.5 Zu Abb. 9.4f. & Yy Y
ist der Winkel zwischen der Pola- I

risationsrichtung der einfallenden -
Welle und der Durchlassrichtung E ge]

des Filters
JFE cosarsina
‘,L,V

(Abb. 9.4f): Das Gitter hat die Polarisationsrichtung ge-
dreht! Wie das zustande kommt, zeigt Abb. 9.5. Wir
zerlegen den E-Vektor der einfallenden Welle in zwei
Komponenten E,s und E,/. Nur die y'-Komponente wird
vom Filter durchgelassen. Man erhilt eine unter dem Win-
kel « polarisierte Welle. Sie hat auch eine x-Komponente,
und diese wird in Abb. 9.4f vom Empfanger nachgewie-
sen. Ein solches Gitter benutzte schon Hertz bei seinen
Experimenten mit elektromagnetischen Wellen (, Hertz-
sches Gitter”). Auch fiir den sichtbaren Spektralbereich
kann man nach diesem Prinzip ein Polarisationsfilter bau-
en. Ein Polymer (PolyVinylalkoholz) wird zu einer Folie
verarbeitet und bei diesem Prozess im noch warmen Zu-
stand mechanisch gestreckt. Dadurch werden die langen
Molekiilketten des Polymers ausgerichtet. Dann lasst man
Jod in die Folie eindiffundieren. Es lagert sich so an das
Polymer an, dass sich langgestreckte I,-Ketten bilden.
Unterstiitzt durch die OH-Gruppe des Polyvinylalkohols
konnen sich entlang dieser Ketten Elektronen des Jod wie
in einem Leiter bewegen. Es entsteht ein Hertzsches Gitter
von molekularer Dimension. Diese Polaroid-Folien® sind
die heute gebrauchlichste Form eines Polarisationsfilters.

Wie wir weiter unten sehen werden, gibt es noch andere
Methoden, Filter fiir linear polarisiertes Licht zu bauen.
Die Eigenschaften eines solchen Filters kann man durch
drei Grofien charakterisieren: Die Durchlassrichtung des
Filters ist die Richtung, in der der E-Vektor von linear
polarisiertem Licht schwingen muss, damit die Transmis-
sion ihren Maximalwert Tra.x erreicht. Senkrecht dazu
wird die minimale Transmission Tpin gemessen. Bei ei-
nem idealen Polarisationsfilter wire Thax = 1 und Tppin =
0. Eine gute Polaroid-Folie hat die Transmissionen Tinax ~
70 — 80 %, Trmin < 1073,

Mit einem Polarisationsfilter kann man aus natiirlichem
Licht linear polarisiertes Licht herausfiltern: Dann dient
das Filter als Polarisator. Man kann damit aber auch die
lineare Polarisation von Licht messen: Dann dient das
Filter als Analysator. In der in Abb. 9.6a gezeigten An-
ordnung dient das Polarisationsfilter Py als Polarisator,

2 Ein Polymer dhnlich wie das bekannte Polyvinylchlorid (PVC). An
der Stelle des Cl-Ions sitzt jedoch eine OH-Gruppe.

3 S0 benannt von ihrem Erfinder, dem Amerikaner Edwin H. Land
(1909-1991). Die bekannte Polaroid-Sofortbild-Kamera hat mit der
Polarisationsfolie nur gemein, dass sie ebenfalls von Land erfunden
wurde und in der von Land gegriindeten Polaroid-Corporation herge-
stellt wird.

9 Polarisiertes Licht
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Abbildung 9.6 a Eine Polarisator-Analysator Anordnung. Die Pfeile auf den
Polarisatoren Py und P, zeigen in die Richtung des E-Vektors des durchgelasse-
nen Lichts. b Vom Detektor registrierte Intensitat

das Filter P, als Analysator. a ist der Winkel zwischen
den Durchlassrichtungen der beiden Filter. Sind P; und
P, ideale Polarisationsfilter und ist E1 die elektrische Feld-
starke des linear polarisierten Lichts hinter dem Filter
Py, dann ist nach Abb. 9.5 hinter P, die Feldstarke E, =
Ej cos . Die vom Detektor gemessene Intensitét ist also

I(w) = Iycos®> .  (Malussches Gesetz) . (9.14)

Bei , gekreuzten Filtern” (a« = 90°) ist sie beim idealen Fil-
ter Null (Abb. 9.5). Die Eigenschaften eines realen Filters
kann man in dieser Anordnung experimentell bestimmen.
Das geht sogar, wenn man kein bereits geeichtes Filter zur
Verfiigung hat, sofern man fiir P; und P, zwei baugleiche
Filter verwendet (Aufgabe 9.2). Abbildung 9.7 zeigt zwei
gekreuzte Polaroid-Folien vor einer Lampe. — Im unpola-
risierten Licht erscheint auch die beste Polarisationsfolie
grau: 50 % des Lichts werden wegen falscher Polarisation
absorbiert.

Dichroismus

Dichroitisch (gesprochen: dikrolitisch) nennt man einen
Kristall, in dem die Absorption des Lichts von der Polari-
sationsrichtung abhéngt. Ein solcher Kristall muss asym-
metrisch aufgebaut sein, d.h. er wird sicher nicht dem
kubischen Kristallsystem angehoren. Im einfachsten Fall
gibt es nur eine kristallographisch ausgezeichnete Achse;
das ist dann auch die optische Achse des Kristalls. Beim
dichroitischen Kristall hdngt die Absorption davon ab, ob
der E-Vektor senkrecht oder parallel zur optischen Ach-
se schwingt. Da die Absorption in den beiden Féllen bei
verschiedenen Wellenldngen erfolgt, zeigt der Kristall im
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Abbildung 9.7 Gekreuzte Polaroid-Folien. a Lampe ausgeschaltet, b Lampe
eingeschaltet

polarisierten Licht verschiedene Farben, je nachdem, wie
man ihn gegen das Licht halt. (Dichroitisch bedeutet zwei-
farbig).

Das bekannteste Beispiel dieser Stoffgruppe ist der Tur-
malin, ein in der Natur vorkommender Halbedelstein
(Abb. 9.8a). Legt man auf einen Projektor eine Polaroid-
Folie und darauf den in der Abbildung gezeigten Kristall,
erscheint er griin, wenn seine optische Achse parallel zur
Durchlassrichtung des Filters liegt, und rosa, wenn man
ihn um 90° dreht. Es gibt auch Turmaline, die in einer der
beiden Richtungen das gesamte sichtbare Licht stark ab-
sorbieren. Ein diinnes Plattchen, parallel zur Achse aus
einem solchen Kristall geschnitten, gibt ein gutes Polari-
sationsfilter (Abb. 9.8b). Ein interessantes Phanomen, auf
dessen physikalische Ursache wir im néchsten Abschnitt
niher eingehen werden. Heute sind solche Polarisations-
filter jedoch nicht mehr von praktischer Bedeutung.

Reflexion

Schon in Abschn. 5.4 hatten wir festgestellt dass die Refle-
xion an der Oberfldche eines Dielektrikums von der Po-
larisation des einfallenden Lichts abhéngt. Fiir die beiden

Richtung der
optischen Achse

Abbildung 9.8 Turmalin. a der Kristall, b Turmalin als Polarisationsfilter

Abbildung 9.9 Glasplattenstapel als Polarisator. Nur die Reflexionen des pri-
maren Strahls sind eingezeichnet. Punkte: E-Vektor schwingt senkrecht zur
Zeichenebene, Doppelpfeile: Polarisation in der Zeichenebene

Falle, dass der E-Vektor parallel oder senkrecht zur Ein-
fallsebene schwingt, wurde in Abb. 5.23 das Reflexions-
vermogen R einer Glasoberfliche (n = 1,5) als Funktion
des Einfallswinkels aufgetragen. Liegt die Schwingungs-
richtung des E-Vektors in der Einfallsebene, gibt es einen
Winkel, bei dem der Reflexionskoeffizient Null wird. Das
ist der Brewster-Winkel (5.45).

Féllt unpolarisiertes Licht unter diesem Winkel auf ei-
ne Glasplatte, ist das reflektierte Licht vollstandig linear
polarisiert: Der E-Vektor schwingt senkrecht zur Einfalls-
ebene. Das ist die bei weitem einfachste Moglichkeit,
linear polarisiertes Licht herzustellen. Zur Verstiarkung
der Ausbeute kann man mehrere Glasplatten hinterein-
ander stellen (Abb. 9.9). Man mache sich klar: Wenn das
Licht unter dem Brewster-Winkel auf eine planparalle-
le Platte fallt, dann trifft es auch auf der Riickseite beim
Ubergang Glas — Luft unter dem Brewster-Winkel auf
die Grenzflache.

Wie Abb. 5.23 zeigt, ist in einem weiten Bereich in der
Umgebung des Brewster-Winkels R < R, . Das reflek-
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tierte Licht ist also polarisiert, wenn das einfallende Licht
unpolarisiert war. Das findet auch praktische Anwendun-
gen, z.B. in der Fotografie: Mit einem Polarisationsfilter
kann man die L-Komponente eliminieren und damit un-
erwiinschte Reflexionen unterdriicken.

Auch bei Metallen hangt das Reflexionsvermdgen vom
Einfallswinkel und von der Polarisation ab (Abb. 5.27).
Da der Phasensprung bei der metallischen Reflexion zwi-
schen 0 und 7 liegt, entsteht bei der Reflexion von linear
polarisiertem Licht im Allgemeinen elliptisch polarisier-
tes Licht. Die Parameter dieser Ellipse kann man messen
und daraus die in (5.49) eingefiihrten optischen Konstan-
ten ng und n; des Metalls berechnen: ein einfaches und
elegantes Verfahren. Im Ubrigen zeigen diese Phénome-
ne, dass es schwierig ist, in einer mit Linsen, Prismen
oder Spiegeln ausgeriisteten Apparatur die Polarisation
von Licht wirklich genau zu bestimmen, weil an jeder
Grenzflache der Polarisationszustand des Lichts veradn-
dert wird.

9.3 Doppelbrechung

Doppelbrechung im Kalkspat: das Phanomen

Kalkspat, auch Calzit genannt, ist ein hdufiges Mineral. Es
besteht aus Kalziumkarbonat CaCQOj3. In mikrokristalliner
Form bildet es den gewdohnlichen Kalkstein und den Mar-
mor. An einigen Stellen der Erde, z. B. auf Island, findet
man jedoch auch grofie transparente Kalkspat-Kristalle,
die in Form eines schief gedriickten Quaders gewachsen
sind (Abb. 9.10). Bei diesen Kristallen liegen die dufle-
ren Flachen parallel zu den Flachen der rhomboedrischen
Gitterzellen, aus denen der Kristall aufgebaut ist. Wir
wollen uns ein wenig mit der Struktur dieser Kristalle be-
fassen. In Abb. 9.11 zeigt Abb. 9.11a die Gitterzelle. Die
kiirzeste Raumdiagonale ist strichpunktiert eingezeich-
net. Abbildung 9.11b zeigt eine Gitterzelle in Draufsicht

Abbildung 9.10 Islandischer Kalkspat

9 Polarisiertes Licht
Abbildung 9.11 a Die a
rhomboedrische Gitterzelle o /
des Kalkspats. b Ansicht der 7
Gitterzelle aus der in (a) einge-
zeichneten Richtung. Nur die aus
dieser Richtung sichtbaren Ca-
und C-Atome sind eingezeichnet,
die C-Atome als Punkte.
¢ CO5 " -lon

aus dieser Richtung. Wéaren die Winkel &« = = ¢ = 90°,
wiirde Abb. 9.11b ein flachenzentriertes Wiirfelgitter dar-
stellen. Beim Calzit sind jedoch die Winkel x = f =y =
101°55'. Der Rhomboeder sieht also aus wie ein Wiirfel,
der in Richtung einer der Raumdiagonalen etwas zu-
sammengedriickt ist. Die Ca™ -Ionen sind in Abb. 9.11b
als Kreise eingezeichnet, dazwischen ist die Lage der C-
Atome durch Punkte angedeutet. Die Sauerstoffatome
im CO; ~-Ion sitzen auf den Ecken eines gleichseitigen
Dreiecks, in dessen Zentrum sich das C-Atom befindet
(Abb. 9.11¢c). Die CO; ~-lonen bilden ebenfalls ein fla-
chenzentriertes Rhomboedergitter, das gegeniiber dem
Ca™"-Gitter um eine halbe Gitterkonstante verschoben
ist. Dabei liegen die ebenen CO; ~-lonen in der Zeichen-
ebene von Abb. 9.11b, also senkrecht zu der strichpunk-
tierten Linie in Abb. 9.11a. Sie sind so angeordnet, dass
sich eine dreizdhlige Symmetrie ergibt; d. h. bei einer 120°-
Drehung um eine Achse senkrecht zur Zeichenebene von
Abb. 9.11b andert sich die Struktur der Gitterzelle nicht.
Man mache sich klar, dass die Symmetrieachse nicht wie
die Achse eines Rades im Kiristall festliegt, sondern nur
eine Richtung im Kristall bezeichnet. Jede Gerade paral-
lel zur strichpunktierten Linie in Abb. 9.11a ist ebenso
eine Symmetrieachse. Wiren die CO; ~-lonen kugelsym-
metrisch, wiirde der Calzit kubische Kristalle bilden. Die
flachenhafte Struktur der Ionen bewirkt die Verzerrung
des kubischen Gitters zur rhomboedrischen Form. Das
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Abbildung 9.12 Doppelbrechung
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Abbildung 9.13 Der ordentliche und der auBerordentliche Strahl. Die Dop-
pelpfeile und die fetten Punkte geben die Schwingungsrichtung des E-Vektors
an

beeinflusst auch die Elektronenhiillen der Atome und es
ist nicht verwunderlich, dass die optischen Eigenschaften
des Kristalls davon abhangen, ob das Licht parallel oder
senkrecht zu der oben genannten Symmetrieachse pola-
risiert ist. Sie wird die optische Achse genannt. Weniger
klar ist, zu welchen Phanomenen dies fiihren wird.

Halt man den Kristall mit einer seiner Flachen dicht vor’s
Auge, so schaut man durch eine planparallele Platte auf
die Aulenwelt. Merkwiirdigerweise sieht man alles dop-
pelt. Legt man ihn auf ein beschriebenes Blatt Papier,
erscheint die Schrift doppelt (Abb. 9.12). Lasst man einen
unpolarisierten Lichtstrahl auf eine der Kristallflachen fal-
len, wird er in zwei Teilstrahlen aufgespalten. Der eine
Strahl, genannt der ordentliche oder o-Strahl, befolgt das
Snellius’sche Brechungsgesetz, der andere, genannt der
auflerordentliche oder ao-Strahl, dagegen nicht. Beson-
ders deutlich sieht man das bei senkrechtem Lichteinfall
(Abb. 9.13): Der o-Strahl lauft ungebrochen durch den
Kristall, wahrend der ao-Strahl den in Abb. 9.13a gezeig-
ten Verlauf nimmt. Es zeigt sich, dass er stets in der Ebene
liegt, die den o-Strahl und die optische Achse enthilt.
Dreht man den Kristall um den o-Strahl, bewegt sich der
ao-Strahl hinter der Platte auf einem Zylindermantel, im
Material auf einem Kegel um den o-Strahl herum. Bei-
de Teilstrahlen erweisen sich als linear polarisiert.* Beim
o-Strahl liegt die Polarisation senkrecht zu der Ebene,
die den Strahl und die optische Achse enthilt, beim ao-
Strahl in dieser Ebene (Abb. 9.13b). Ist das einfallende
Licht bereits in einer dieser Richtungen polarisiert, gibt
es im Kristall entweder nur den o-Strahl oder nur den ao-
Strahl(Abb. 9.13c und d). Nur wenn das Licht parallel zur
optischen Achse durch den Kristall 1auft, ist jede Polarisa-
tionsrichtung moglich, und es gibt keine Aufspaltung des
Strahls.

Diese Erscheinungen werden unter dem Begriff Doppel-
brechung zusammen gefasst. Die ndhere Untersuchung
zeigt, dass alle Kristalle aufser denen des kubischen Kris-
tallsystems doppelbrechend sind; die Doppelbrechung
ist beim Kalkspat nur besonders stark ausgepragt. Auch
zeigt sich, dass es Kristalle mit zwei optischen Achsen
gibt. Das sind die Kristalle des triklinen, des monokli-
nen und des orthorhombischen Kristallsystems (siehe
Bd. II/1.3). Optisch einachsig sind hexagonale, tetragona-
le und trigonale Kristalle; zu den zuletzt genannten gehort
der Kalkspat. Im kubischen System sind die Kristalle op-
tisch isotrop.

4 Diese Tatsache und die Polarisation des Lichts wurden von Etienne-
Louis Malus (1775-1812) entdeckt, einem franzosischen Militér-
Ingenieur, der sich in seinen Muflestunden mit optischen Studien be-
schiftigte. Eines Abends betrachtete er durch einen Kalkspat-Kristall
das seiner Wohnung gegeniiber liegende Palais du Luxembourg und
freute sich an dem vertrauten Doppelbild. Plotzlich merkte er, dass
bei gewissen Stellungen des Kristalls mal im einen, mal im anderen
Bild der Reflex der tiefstehenden Sonne an den Fenstern des Palais
verschwand. Noch in derselben Nacht hat er mit einer Kerze, einer
Glasscheibe und seinem islandischen Kristall die Polarisation des
Lichts, den Brewster-Winkel und das Malussche Gesetz (9.14) ent-
deckt. Das war 1808, sieben Jahre vor Brewster. Warum der Winkel
nicht Malus-Winkel heif3t, weif3 ich auch nicht.
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Wie kommt die Doppelbrechung zustande?

Die Doppelbrechung bei einachsigen Kristallen ist mit
dem Huygensschen Prinzip (Satz 5.1) verhdltnismafig
leicht zu erkliren:® Huygens nahm an, dass beim or-
dentlichen Strahl die Elementarwellen Kugelwellen sind
wie in isotropen Medien, wihrend sie im auflerordent-
lichen Strahl die Form eines Rotationsellipsoids haben
(Abb. 9.14). Die Rotationsachse ist identisch mit der op-
tischen Achse des Kristalls. In dieser Richtung sollen
sich die Elementarwellen mit der gleichen Geschwindig-
keit ausbreiten wie im ordentlichen Strahl. Unter einem
Winkel von 90° gegen die optische Achse entspricht die
Geschwindigkeit dem dquatorialen Radius des Rotations-
ellipsoids. Man bezeichnet diese beiden Hauptgeschwin-
digkeiten nach der Richtung der Polarisation beziiglich
der optischen Achse mit ¢; und ¢, wie Abb. 9.14 zeigt.
Im Falle des Calzit ist das Ellipsoid abgeplattet, denn es
ist ¢ > c . Beim kristallinen Quarz hingegen istc| <c,,
das Rotationsellipsoid ist langlich. Gewohnlich gibt man
nicht ¢ und ¢, an, sondern die sogenannten Hauptbre-
chungsindizes 11, und .. Es ist

c C
cpL =—, C”:— (915)
No Nao
a
& opt. Achse

opt. Achse

Abbildung 9.14 Wellenfronten der Huygensschen Elementarwellen im dop-
pelbrechenden Kristall zur Zeit T, a beim ordentlichen Strahl, b beim auBeror-
dentlichen Strahl

5Die nun folgende Erklarung fiir das Zustandekommen der Dop-
pelbrechung gab Huygens in seinem epochalen Werk , Traité de la
lumiere”, das 1690 mit dem Untertitel ,,ol1 sont expliquées les causes
de ce qui arrive dans la réflexion et dans la réfraction et particu-
lierement dans 1'étrange réfraction du cristal d’Islande” erschien.
Huygens hatte nicht die Vorstellung von transversalen Wellen und
wusste nichts von der Polarisation des Lichts. Umso mehr ist die Ge-
nialitdt von Huygens Hypothese zu bewundern.

9 Polarisiertes Licht

Tabelle 9.1 Hauptbrechungsindizes bei optisch einachsigen Kristallen, A =
589,3nm

Mo k) An
Calzit (Kalkspat) 1,658 1,486 —0,172
Quarz 1,544 1,553 +0,009
Eis 1,309 1,313 +0,004
Turmalin 1,64 1,67 +0,03
Rutil (TiO,) 2,616 2,903 40,287
NaNO; 1,587 1,336 —0,251
KH,PO, (KDP)! 1,51 1,47 —0,04

I bei A = 550nm

Tabelle 9.1 gibt einige Zahlenwerte. Je nach dem Vorzei-
chen von An = n,, — 1, nennt man den Kristall positiv
oder negativ doppelbrechend. In Abb. 9.15 ist die Huy-
genssche Konstruktion fiir den ordentlichen und den au-
Berordentlichen Strahl gezeigt. Abbildung 9.15a gilt fiir
Lichteinfall senkrecht auf die Kristalloberflache. Die Ein-
hullenden der Elementarwellen, also die Wellenfronten,
sind beim aufierordentlichen Strahl wie beim ordentli-
chen parallel zur Grenzfliche. Wahrend aber beim or-
dentlichen Strahl die Wellen von A nach A’ und von B
nach B’ laufen, haben die Elementarwellen des ao-Strahls
die Punkte A” und B” erreicht. Der Energiefluss erfolgt
hier nicht senkrecht zu den Wellenfronten: Der ao-Strahl
lauft in Richtung des Vektors 8, der sogenannten Strahl-
richtung, unter dem Winkel B,, # 0 durch den Kristall
(vgl. Abb. 9.13). Das steht im krassen Widerspruch zum
Brechungsgesetz, das fiir 1 = 0 zwingend vorschreibt,
dass der Strahl unter dem Winkel B, = 0 weiterlauft. Die
Richtung des Wellenvektors ko, der senkrecht auf den
Wellenfronten steht, erfiillt dagegen das Brechungsgesetz.

Abbildung 9.15b zeigt die Huygenssche Konstruktion fiir
schriagen Lichteinfall. Der Einfachheit halber betrachten
wir nur den Fall, dass die optische Achse in der Einfalls-
ebene liegt. Selbst dann ist die Zeichnung noch ziemlich
kompliziert. Fiir den o-Strahl entspricht die Zeichnung
genau der Konstruktion in Abb. 5.3. Man erhélt das Bre-
chungsgesetz. Der ao-Strahl dagegen verhilt sich anders:
Die Elementarwellen laufen in der Zeit T von A nach
A". Da a kein rechter Winkel ist, ist sin B0 # AA” /AC,
und die zweite Gleichung in (5.4) ist hinfillig. Fiir den
Wellenvektor k,, ldsst sich hingegen wie in (5.5) ein
Brechungsindex definieren, denn das Dreieck CAA"" ist
rechtwinklig. Dieser Brechungsindex ist jedoch eine Funk-
tion des Winkels B,. Natiirlich hingt das Verhiltnis
sin B1/ sin B, auch von der Lage der optischen Achse ab.
Wie bei Abb. 9.19 gezeigt werden wird, ist n eine Funktion
des in Abb. 9.15b eingezeichneten Winkels ¢ = & + f.,.

Bei der Lichtausbreitung im auflerordentlichen Strahl
kann man zwei Geschwindigkeiten unterscheiden: Die
Strahlgeschwindigkeit cs, mit der die Welle in der Rich-
tung 8 von A nach A” und von B nach B” lauft, und die
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Abbildung 9.15 Huygenssche a
Konstruktion fiir die Brechung des

ordentlichen und des auBeror-

dentlichen Strahls

| |

‘ Wellenfront ‘

B A Vakuum
N CaCOy
= /_optische
B Al . Achse

A" ' N

>
<
/

lk’ao \ ko

ﬂao“

/ B
</ C B Vakuum

Phasengeschwindigkeit w/k, mit der die Wellenfronten
vorriicken. Sie wird hier Normalengeschwindigkeit c,
genannt, weil definitionsgeméaf k,, senkrecht auf den
Wellenfronten steht. Der Zusammenhang zwischen c,
und ¢ ist nach Abb. 9.15

Cn = — = CsCOS Y . (9.16)

Der Winkel « ist der Winkel zwischen dem Wellenvektor
kao und dem Einheitsvektor §, der die Strahlrichtung an-
gibt. Beide Geschwindigkeiten, ¢, und cs, hdngen von der
Ausbreitungsrichtung der Welle im Kristall ab. ¢, lasst
sich auch durch den oben erwdhnten winkelabhidngigen
Brechungsindex ausdriicken: Es ist

cn(9) = ﬁ

Zwischen den in (9.15) und (9.16) definierten Geschwin-
digkeiten besteht ein einfacher Zusammenhang, wenn
8 = 0°oder & = 90°ist: c; = cn(0°), ¢ = cn(90°). In die-
sen Fallen ist y = 0, also ¢, = ¢s.

9.17)

A
- / 1’9\ CaCO3
B / . .
LA : ‘opt1sche
7 > Achse
// \\.
3 a/ )/ N
s A / ‘\\\
A AH N
7 5&0
’Yk Bl ﬂo"}\
a0 k:()

Physikalische Begriindung. In einem anisotropen Kris-
tallgitter sind auch die Elektronenhiillen der Atome ani-
sotrop. Das betrifft besonders die Valenzelektronen. Die
Folge ist, dass sich fiir senkrecht und fiir parallel zur
optischen Achse polarisiertes Licht die elektronischen
Polarisierbarkeiten und damit die Dielektrizitatskonstan-
ten und die Brechungsindizes n = /¢ unterscheiden. Be-
trachten wir noch einmal Abb. 9.11, so ist klar, dass wegen
der Anordnung der COj; ~-lonen in einer Ebene senk-
recht zur optischen Achse die Polarisierbarkeiten « | und
o, also auch n, und n,, sehr unterschiedlich sind: Es
ist durchaus verstandlich, dass Kalkspat stark doppelbre-
chend ist.

Ausgehend von dem Modell der elastisch gebundenen
Elektronen (Abschn. 5.3) kommt man zu dem Schluss,
dass die Resonanzfrequenzen w, und w) fiir senkrecht
bzw. parallel zur optischen Achse schwingende Elek-
tronen sowie die zugehorigen Oszillatorenstdrken unter-
schiedlich sind. Das wirkt sich auf den Brechungsindex
und auf den Absorptionskoeffizienten aus, wie Abb. 9.16
zeigt (vgl. auch Abb. 5.15 und 5.17). Bei farblosen Kristal-
len liegen w, und w)| im Ultravioletten. Da w | #* w) ist,
sind auch die Hauptbrechungsindizes im Sichtbaren, 7,
und 7, unterschiedlich. Liegen die Resonanzfrequenzen
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Abbildung 9.16 Hauptbrechungsindizes und Absorptionskoeffizienten fiir
den o-Strahl und fiir den ao-Strahl als Funktion der Lichtfrequenz w. (Schema-
tisch; Lage von w | und w) wie beim Kalkspat)

so, dass auch im sichtbaren Bereich Licht absorbiert wird,
ist der Kristall dichroitisch.

Doppelbrechung und Maxwellsche Gleichungen

Man kann sich mit den bisher gegebenen Erklarungen be-
gniigen. Man kann sich aber auch dafiir interessieren, was
die Maxwellsche Theorie zu diesem eigenartigen Phiano-
men zu sagen hat.® Dann lernt man auch, wie sich optisch
zweiachsige Kristalle verhalten. Das nun Folgende ist in-
teressant, aber kompliziert. Wer sich der Strapaze entzie-
hen will, kann ohne grof3eren Schaden fiir das Verstandnis
des Weiteren bei ,Anwendungen der Doppelbrechung”
fortfahren.

Man geht von den Maxwellschen Gleichungen Bd. III,
GIn. (15.55)—(15.58) aus. Im Dielektrikum ist p; = 0 und
jL = 0. Damit erhalten wir

V-D=0, V-B=0

JoB oD
VXE——E, VXH—y.

(9.18)

Um diese Gleichungen losen zu koénnen, braucht man
die , Materialgleichungen”. Bei anisotropen nichtmagne-
tischen Medien lauten sie, wenn zwischen D und E ein

6 Es ist bemerkenswert, dass die nun folgende Theorie im wesentli-
chen bereits von Fresnel stammt. Fresnel behandelte dabei das Licht
als elastische Welle im , Ather”. Die Uberarbeitung von Fresnels
Theorie mit der Maxwellschen Elektrodynamik ist der Inhalt der
Doktorarbeit von H. A. Lorentz (1875). Erst durch diese Arbeit wurde
die Optik ein Bestandteil der Elektrodynamik.

9 Polarisiertes Licht

linearer Zusammenhang besteht,

D=¢eegE, H= iB ,
Mo
€xx €Exy €Exz (9.19)
E= |6 €y €yz
€zx  €zy €zz

Die Anisotropie des Kristalls bewirkt, dass die Dielektrizi-
tatskonstante ein Tensor ist: D = ¢yE + P und E sind dem
Betrage nach zueinander proportional, sie haben aber ver-
schiedene Richtungen. Die Ursache ist die Anisotropie der
elektrischen Polarisierbarkeit, die bewirkt, dass der Vek-
tor P im Allgemeinen nicht in die Richtung von E zeigt.
Das hingt direkt mit dem in Bd. I gegebenen Beispiel
(21.142) fur eine lineare Vektorfunktion zusammen: Ein an
drei ungleichen Federn aufgehédngter Korper verschiebt
sich im Allgemeinen nicht in Richtung der von aufSen ein-
wirkenden Kraft, sondern in einer Richtung, die man mit
Hilfe des Tensorellipsoids konstruieren kann. Das gilt in
einem anisotropen Medium auch fiir die Verschiebung
elektrischer Ladungen unter dem Einfluss eines elektri-
schen Feldes. Wie der Tensor in Bd. I, Gl. (2.139) ist € ein
symmetrischer Tensor. Man kann ihn geometrisch durch
ein Ellipsoid darstellen. Es wird das Fresnel-Ellipsoid ge-
nannt. In einem Koordinatensystem (x1, xp, x3), das nach
den Hauptachsen dieses Ellipsoids ausgerichtet ist, gilt
fiir die Komponenten von D und E

D1 = €160E1, Dy = e260E;,

9.20
D3 = €3€0E3 o ( )

Die Gleichung der Tensorfldche ist nach Bd. I, GL. (21.144)

epc% + ezx% + e3x§ =1. (9.21)
Fiir die Diskussion der Doppelbrechung betrachten wir
das Tensorellipsoid der reziproken Gleichung eyE = #D.
Seine Hauptachsen fallen automatisch mit denen des e-
Ellipsoids zusammen, und es ist 7; = 1/€; = 1/n?. Die
Gleichung der in Abb. 9.17a gezeigten Tensorflache, die
gewohnlich Indexellipsoid genannt wird, ist also

(9.22)

Die Hauptachsen sind durch die Hauptbrechungsindizes
n1, np und n3 gegeben. Man nummeriert sie bei optisch
zweiachsigen Kristallen so, dass n; < np < n3 ist. Zu-
néchst kénnen wir mit dem Indexellipsoid bei einem op-
tisch zweiachsigem Kristall die Lage der optischen Ach-
sen bestimmen: In jedem dreiachsigen Ellipsoid gibt es
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ny=mny<ng

Abbildung 9.17 Indexellipsoid. a Optisch zweiachsiger Kristall, b Bestim-
mung der optischen Achsen im zweiachsigen Kristall. ¢ optisch einachsiger
Kristall (An > 0)

namlich zwei durch das Zentrum fiihrende Ebenen, deren
Schnittflaiche mit dem Ellipsoid Kreise sind. Die optischen
Achsen des Kristalls stehen senkrecht auf diesen Ebe-
nen. Mit etwas Vorstellungsvermodgen erkennt man, dass
sich die beiden Ebenen entlang der x;-Achse schneiden,
so dass die optischen Achsen notwendig in der (x1,x3)-
Ebene liegen. Es ist ein Leichtes, die Schnittlinien der
beiden Kreise mit der (x1,x3)-Ebene zu konstruieren: Es
sind die Strecken AB und DC in Abb. 9.17b. Die optischen
Achsen stehen senkrecht auf diesen Geraden. Die dop-
pelbrechenden Eigenschaften eines zweiachsigen Kristalls
sind durch die n; vollstandig festgelegt. Tabelle 9.2 gibt ei-
nige Beispiele. Man sieht, dass die Unterschiede zwischen

Tabelle 9.2 Hauptbrechungsindizes einiger optischzweiachsiger Kristalle

ny L) ns3
Gips 1,520 1,523 1,530
Feldspat 1,522 1,526 1,530
Glimmer 1,552 1,582 1,588
Topas 1,619 1,620 1,627

den n; gewohnlich klein sind. Das bei den Abbildun-
gen der Indexellipsoide verwendete Achsenverhiltnis
ny :np:ng =2 :3:4ist also ganz unrealistisch.

Bei optisch einachsigen Kristallen legt man das Koordi-
natensystem so, dass 11 = 1, # n3 ist. Die optische Achse
ist dann identisch mit der x3-Achse. Abbildung 9.17c zeigt
ein Beispiel.

Wir miissen nun eine Antwort auf die Frage finden: Unter
welchen Umstidnden konnen sich ebene elektromagneti-
sche Wellen in einem anisotropen dielektrischen Kristall
ausbreiten? Zunéchst stellt man fest, dass man in anisotro-
pen Stoffen nicht ohne weiteres auf eine Wellengleichung
vom Typ (1.35) kommt. Wie in (2.51) kommt man von
(9.18) schnell zu der Gleichung

2
9D 1V><(V><1:"),

= = 9.2
= 9.23)

aber dann geht es nicht weiter. Da namlich nach (9.18)

oE oE
2 e 3):0

Eq
V-D—E()( a_+ zaxz aJC3

ist, kann nicht gleichzeitig V - E = dE;/0x1 + 0E/9dxp +
0E3/0dx3 = 0 sein, es sei denn, es wire €1 = €, = €3, d. h.
das Medium wiére isotrop. Eine Vereinfachung der Wel-
lengleichung mit (2.52) ist also nicht moglich, man muss
mit der komplizierteren Gleichung (9.23) arbeiten.

Wir untersuchen die Feldvektoren einer ebenen, mono-
chromatischen und linear polarisierten Welle, deren Wel-
lenfronten in Richtung des Wellenvektors k laufen:

E(r,t) = Egelk =« |
(9.24)
D(T, l’) Dge i(ker—awt) mit DQ ZQGQEQ ’
B(r,t) = Bpellkr—wt) |
1 9.25
H(r,t) = Hpe ikr—wt)  mit Hy = ?4 —By . 6-2)
0

Als erstes miissen wir die Geometrie dieser Welle un-
tersuchen. Der Energiefluss erfolgt in der Richtung des
Poynting-Vektors S = E x H. Demgemaf steht S senk-
recht auf E. Der Wellenvektor k steht dagegen senkrecht
auf D. Um das einzusehen, berechnen wir V - D:

) i(k-r—wt)
V-D %(k1D01 + kDo + k3Do3)e (9.26)
=ik -D.
Aus der ersten Gleichung (9.18) folgt k- D = 0, alsoistk L
D. Man definiert deshalb in doppelbrechenden Medien als
Polarisationsrichtung die Richtung von D.

Es zeigt sich nun, dass die vier Vektoren E, D, k und S
senkrecht auf B stehen. Fiir S ergibt sich das mit B = poH
unmittelbar aus S = E x H. Fiir k folgt das mit einer Rech-
nung wie in (9.26) aus der zweiten Gleichung (9.18), und
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Abbildung 9.18 a Schnitt
durch das Indexellipsoid, Schnit-
tebene senkrecht zu B. b Lage
der Vektoren k, D, E und S in der
Schnittebene. W-W: Wellenfront

fiir D und E aus der dritten und vierten Gleichung (9.18).
Es ist ndmlich

B

FT —iwB, = —iwD . (9.27)

0
Jat
Die Vektoren E, D, k und S liegen also in einer Ebene
senkrecht zu B. Um den Winkel zwischen E und D zu er-
mitteln, nehmen wir irgend eine Richtung von B an und
legen senkrecht zu B durch das Zentrum des Indexel-
lipsoids eine Ebene (Abb. 9.18a). In Abb. 9.18b schauen
wir aus der B-Richtung senkrecht auf die Schnittfldche.
In dieser Ebene nehmen wir willkiirlich eine Richtung
fur D an. Die Richtung von E erhalten wir mit der in
Abb. 9.18b erklarten Konstruktion, die auch schonin Bd. I,
Abb. 21.43 angewendet wurde. Wie oben gezeigt wur-
de, steht k senkrecht auf D und S senkrecht auf E. In
die Richtung von S zeigt der schon in Abb. 9.15 definier-
te Einheitsvektor 8. Die Gerade W-W ist die Schnittlinie
einer Wellenfront mit der Zeichenebene. Die Wellenfront
steht senkrecht auf k, und daher auch senkrecht auf der
Zeichenebene. Man erkennt, dass zwischen der Phasen-
geschwindigkeit ¢, und der Strahlgeschwindigkeit cs der
uns schon bekannte Zusammenhang ¢, = cs cos *y besteht.
Diesmal haben wir jedoch diese Beziehung mit dem An-
satz (9.24) und den Maxwellschen Gleichungen erhalten,
mit einer Betrachtung, die auch bei optisch zweiachsigen
Kristallen gilt.

Die Frage ist nun, unter welchen Bedingungen (9.24) eine
Losung der Wellengleichung (9.23) ist. Um das heraus-
zufinden setzt man (9.24) in (9.23) ein. Nach einer lan-
geren Rechnung, die betrachtliches Geschick erfordert’,
kommt man zu dem Ergebnis, dass sich im anisotropen

7 Diese Rechnung wird Schritt fiir Schritt vorgefiihrt in A. Sommer-
feld, ,Vorlesungen tiber theoretische Physik”, Band IV (Optik), § 24—
§28 (Dietrische Verlagsbuchhandlung (1950) und Harri Deutsch-
Verlag (1988 u. 2001)); siehe auch Max Born, ,Optik”, §58-§62
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Abbildung 9.19 Zur Ermittlung a
der erlaubten Polarisations-
richtungen bei vorgegebener
k-Richtung. a optisch zweiachsi-

ger Kristall, b optisch einachsiger
Kristall

Kristall in der Tat linear polarisierte ebene Wellen in je-
der beliebig vorgegebenen k-Richtung ausbreiten konnen.
Sie miissen jedoch in ganz bestimmten, durch die Kris-
tallstruktur und den k-Vektor festgelegten Richtungen
polarisiert sein: Wenn k in Richtung einer optischen Ach-
se zeigt, ist jede Polarisationsrichtung moglich. In jeder
anderen k-Richtung gibt es nur zwei mogliche Schwin-
gungsrichtungen fiir den D-Vektor. Sie stehen senkrecht
aufeinander.

Um die erlaubten D-Richtungen zu konstruieren, zeich-
net man durch das Zentrum des Indexellipsoids eine
Ebene senkrecht zu k (Abb. 9.19). Die Schnittlinie ist
eine Ellipse mit den Hauptachsen a4 und b. Linear po-
larisierte Wellen konnen sich im Kristall nur ausbrei-
ten, wenn der D-Vektor in Richtung einer dieser Ach-
sen schwingt. Die Langen der Halbachsen 2 und b sind
gleich den Brechungsindizes 1, und nj,: Die Phasenge-
schwindigkeit einer Welle, die sich in k-Richtung aus-
breitet, ist entweder ¢, = ¢/n,, wenn der D-Vektor in
a-Richtung schwingt, oder ¢, = ¢/n;,, wenn der D-Vektor
in b-Richtung schwingt. Nun sieht man auch, weshalb
man die optischen Achsen mit der in Abb. 9.17b gezeigten
Konstruktion erhilt: Wenn die Ellipse zum Kreis wird, ist
jede Polarisationsrichtung moglich, und es gibt nur eine
Normalengeschwindigkeit cp,.

Bei einem optisch einachsigen Kristall ist das Indexellip-
soid rotationssymmetrisch, und die optische Achse fallt
mit der Achse des Ellipsoids zusammen. Dann liegen die
erlaubten D-Richtungen so, wie Abb. 9.19b zeigt: Erstens
kann der D-Vektor in Richtung der Schnittlinie der Ellipse
mit der Mittelebene des Indexellipsoids schwingen. Dann

(Springer-Verlag, 1932 u. 1986), S.L. Chin, ,Fundamentals of Laser
Optoelectronics”, Kap. VI (World Scientific, 1989) sowie A. Yariv
u. P. Yeh, , Optical Waves in Crystals”, Kap. 4 (J. Wiley & Sons, 1984).
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Abbildung 9.20 Sonderfall:
Lichtausbreitung in Richtung
der x3-Achse. a Die erlaubten
D- und E-Richtungen, b Schnitt
durch das Indexellipsoid in der
(%1, X2)-Ebene

ist die Welle senkrecht zur optischen Achse polarisiert
und unabhéngig von der k-Richtung ist n; = ny; = n,. In
diesem Fall gehort der k-Vektor zu einem o-Strahl. Im
zweiten Fall gehort er zu einem ao-Strahl: Der D-Vektor
schwingt in der Ebene, die den k-Vektor und die optische
Achse enthilt. Zwischen dem k-Vektor und der optischen
Achse liegt der Winkel ¢. Die grofse Halbachse der El-
lipse in Abb. 9.19 entspricht dem in (9.17) definierten
Brechungsindex n(9).

Wir betrachten einen wichtigen Sonderfall der Lichtaus-
breitung in einem zweiachsigen Kristall: Wie Abb. 9.20
zeigt, kann linear polarisiertes Licht in x3-Richtung nur
laufen, wenn es entweder in x;- oder in x,-Richtung pola-
risiert ist. Die zugehorigen Normalengeschwindigkeiten
sind ¢, = c¢/n; und c, = ¢/ny. Entsprechendes gilt fiir
den Fall, dass der k-Vektor in die x1- oder x-Richtung
zeigt. In allen drei Féllen ist E || D, also cosy =1 und
¢s = cn. Man definiert deshalb die Hauptgeschwindig-
keiten

@ @ c
aq=—, 0=—, 3= —.

9.2
ny np n3 ©.28)

Man beachte: ¢; ist die Geschwindigkeit, mit der in i-
Richtung polarisiertes Licht durch den Kristall lauft,
wenn der k-Vektor in die Richtung einer der beiden an-
deren Hauptachsen zeigt (i = 1,2, 3).

Wie man fiir einen beliebig vorgegebenen k-Vektor die er-
laubten Polarisationsrichtungen, die Normalengeschwin-
digkeiten ¢, und die Strahlrichtungen § ermittelt, wurde
in Abb. 9.19 und 9.18 gezeigt. Die Strahlgeschwindig-
keit cs kann man mit (9.16) berechnen. Um das Ergebnis
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Abbildung 9.21 Schnitt durch die rotationssymmetrische Strahlenflache eines
optisch einachsigen Kristalls, a negativ, b positiv doppelbrechend

Nao > N

S2

zu veranschaulichen, zeichnet man vom Nullpunkt des
Koordinatensystems (x1,x»,x3) aus in alle Richtungen &
Radiusvektoren mit der Linge cs(8). Man erhilt die so
genannte Strahlenflache. Sie ist zweischalig, denn im All-
gemeinen gibt es in jeder §-Richtung zwei Werte fiir die
Strahlgeschwindigkeit cs, entsprechend den beiden mog-
lichen Polarisationsrichtungen. Bei optisch zweiachsigen
Kristallen entsteht eine ziemlich komplizierte Flache vier-
ten Grades, mit der wir uns nicht weiter befassen miissen.
Interessant ist jedoch das nun Folgende.

Bei einachsigen Kristallen erhélt man als Strahlenfldche
eine zweischalige Fldche zweiten Grades, bestehend aus
einer Kugel und einem Rotationsellipsoid, die sich an
den Durchstoffpunkten der optischen Achse beriihren
(Abb. 9.21). Wenn man sich Abb. 9.15 noch einmal an-
schaut, erkennt man: Die Wellenfronten der von Huygens
angenommenen ,Elementarwellen” in Abb. 9.13 sind
identisch mit der Strahlenfldche eines einachsig doppel-
brechenden Kristalls. Huygens” Konstruktion wird also
durch die elektromagnetische Theorie der Doppelbre-
chung in vollem Umfang gerechtfertigt.

Einige Anwendungen der Doppelbrechung

Polarisierende Prismen. Man kann aus doppelbrechen-
dem Material Prismen herstellen, die das einfallende
nattirliche Licht in zwei linear polarisierte Teilstrahlen
aufspalten, und nur einen dieser Strahlen wieder nach au-
Ben lassen. Ein solches Prisma wirkt dann als Polarisator.

Von alters her bekannt ist das Nicolsche Prisma. Ein lang-
licher Kalkspat-Kristall wird an den Stirnflichen unter
einem bestimmten Winkel geschliffen und aufgeschnit-
ten. Die Trennflichen und die Stirnseiten werden po-
liert. Dann werden beide Teile in der urspriinglichen
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Abbildung 9.23 Glan-Prisma

Position mit Kanada-Balsam wieder zusammengekittet
(Abb. 9.22). Der Brechungsindex des Klebstoffs n = 1,542
liegt zwischen den Brechungsindizes 1, und n,, des Kalk-
spats, so dass der o-Strahl an der Klebstelle auf das
optisch diinnere, der ao-Strahl auf das optisch dichte-
re Medium trifft. Die Winkel, unter denen der Kristall
geschliffen wurde, sind so berechnet, dass der aufer-
ordentliche Strahl durchlduft, wiahrend der ordentliche
Strahl an der Trennfldche totalreflektiert wird. Er wird
dann an der geschwarzten Seitenfliche absorbiert. Man
erhilt so ein Polarisationsfilter hoher Transparenz, das
die unerwiinschte Polarisationsrichtung im Prinzip voll-
standig unterdriickt. Das Nicolsche Prisma macht sehr
sparsam Gebrauch von dem kostbaren Ausgangsmate-
rial. Es hat aber den Nachteil, dass es den durchgelas-
senen Strahl parallel verschiebt. Das ist besonders dann
lastig, wenn man durch Drehen des Prismas die selek-
tierte Polarisationsrichtung verandern will. Auch ist von
Nachteil, dass der Klebstoff ultraviolettes und infrarotes
Licht vollstandig absorbiert. Diese Nachteile vermeidet
das Glan-Prisma. Hier ist der Kalkspat so geschnitten,
dass die optische Achse parallel zur Eintrittsfliche und
parallel zur Zeichenebene in Abb. 9.23 liegt. Die beiden
Kalkspatstiicke sind durch einen Luftspalt getrennt. Das
Glan-Prisma ist im Bereich von 5000 nm — 230 nm einsetz-
bar. — Das sind nur zwei Beispiele zu diesem Thema.

Doppelbrechende Platten als Phasenschieber. Wir un-
tersuchen die Eigenschaften einer planparallelen Platte
aus doppelbrechendem Material, bei der die optische
Achse in der Plattenebene liegt (Abb. 9.24). Bei senk-
rechtem Lichteinfall sind E und D parallel, und der
auBlerordentliche Strahl lduft genau wie der ordentli-
che ungebrochen durch die Platte hindurch. Dabei sind
die Phasengeschwindigkeiten c; = ¢/n, und = ¢/ Nao
unterschiedlich. Wie Abb. 9.24b zeigt, eilt der ordent-
liche Strahl dem aufSerordentlichen voraus, wenn n, <
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Abbildung 9.24 Phasenplatte. In a zeigen die Piinktchen an der Stirnseite
wie in Abb. 9.23 die DurchstoBpunkte der optischen Achse an. b Elementar-

wellen und Wellenfronten in der Phasenplatte bei positiver Doppelbrechung
(An =ng —ny >0),cAn <0

Nao ist (An >0 in Tab. 9.1). Andernfalls ist es umge-
kehrt. Bei unpolarisiertem Licht schwankt der E-Vektor
stdndig zwischen den Richtungen senkrecht und paral-
lel zur optischen Achse hin und her. Daran &ndert sich
nichts, wenn o-Strahl und ao-Strahl mit unterschiedlicher
Geschwindigkeit durch die Platte laufen: Unpolarisiertes
Licht bleibt unpolarisiert. Stellt man jedoch vor die Platte
einen Polarisator, dessen Durchlassrichtung mit der opti-
schen Achse den Winkel ¢ einschliefit, dann stehen nach
(9.2) vor der Platte die Amplituden der Komponenten
parallel und senkrecht zur optischen Achse in einem fes-
ten, nur von ¢ abhdngigen Verhéltnis. Beide Teilwellen
sind in Phase. In der Platte entsteht nun zwischen dem
o-Strahl und dem ao-Strahl eine Phasenverschiebung, es
dndert sich der Polarisationszustand. Um das genauer zu
untersuchen, legen wir die x-Richtung in die Richtung der
optischen Achse. Die Feldstédrke vor der Platte ist

E(z,t) = Eg[& cos ¢ cos(kz — wt) ©.29)
+ sin ¢ cos(kz — wt)] . .

Hinter der Platte ist die Feldstarke

E = Eg[&cos ¢ cos (kz — wt + k(na0 — 1)d)
+ sin @ cos (kz — wt + k(n, —1)d)] .

Der o-Strahl hat gegeniiber dem ao-Strahl den Gangun-
terschied und die Phase

G = Alopt = (no — nao)d ’

6= 2%(710 — Nao)d = —kAnd .

(9.30)
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A ist die Wellenlédnge des Lichts im Vakuum. Damit ist die
Feldstdrke hinter der Platte
E(z,t) = Eg[& cos ¢ cos(kz — wt)

! (9.31)
+ fsin ¢ cos(kz — wt +9)] .

Das Licht ist also im Allgemeinen elliptisch polarisiert. In-
teressant sind die Sonderfélle, dass der Gangunterschied
G = A/2 oder G = A/4 ist. Beim A/2-Pliittchen ist § = T,
und die Feldstédrke hinter dem Pléttchen ist
E(z,t) = Eg[& cos ¢ cos(kz — wt)

! (9.32)
— sin ¢ cos(kz — wt)] .

Der Vergleich mit (9.29) zeigt: Die lineare Polarisation
wird im A /2-Plattchen um den Winkel 2¢ im Uhrzeiger-
sinn gedreht. Bemerkenswert sind zwei Eigenschaften des
A /2-Plattchens:

Satz 9.1

Ist ¢ = 45°, wird die Polarisationsrichtung im A/2-
Plattchen um 90° gedreht.

Satz 9.2

Rechtszirkulare Polarisation wird im A /2-Plattchen
in linkszirkulare Polarisation verwandelt, und um-
gekehrt.

Satz 9.1 folgt ohne weiteres aus (9.32), und Satz 9.2 ist aus
(9.3) und (9.4) ersichtlich.

Beim A /4-Plittchen ist 6 = /2, je nach dem Vorzeichen
von An = 1, — 1p. Wenn @ = +45° ist (Abb. 9.25), erhalt
man aus (9.31).

Eo .
E = — |&cos(kz — wt) Fsin(kz — wt)| ,
V2 [ ( ) F ) sin( )]
je nach dem Vorzeichen von An. Der Vergleich mit (9.3)
und (9.4) zeigt:

Satz 9.3

Das A /4-Plattchen wandelt Licht, welches unter 45°
gegen die optische Achse linear polarisiert ist, in zir-
kular polarisiertes Licht um.

Wenn ¢ und An gleiche Vorzeichen haben, entsteht rechts-
zirkular polarisiertes Licht (R-Licht); bei entgegengesetz-
ten Vorzeichen erhélt man linkszirkular polarisiertes Licht
(L-Licht). Die in Abb. 9.25 gezeigte Anordnung bildet
also einen Zirkularpolarisator. Sie kann auch als Analy-
sator fiir zirkular polarisiertes Licht benutzt werden. Man

\7
’ Polarisationsfilter
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Abbildung 9.25 Erzeugung zirkular polarisierten Lichts mit einem A/4-
Plattchen. nyo > no, angenommen, entsteht in a rechtszirkular, in b linkszirkular
polarisiertes Licht

Abbildung 9.26 Ein Analysator fiir zirkular polarisiertes Licht

dreht die Anordnung um eine vertikale Achse um 180°
und lédsst das Licht zuerst auf das A/4-Plattchen fallen
(Abb. 9.26). Wird das zirkularpolarisierte Licht mit einem
der in Abb. 9.25 gezeigten Zirkularpolarisatoren erzeugt,
sieht man sofort: Die A /4-Plédttchen des Polarisators und
des Analysators bilden zusammen ein A /2-Plattchen. Das
mit dem Polarisator in Abb. 9.25a erzeugte R-Licht kann
nach Satz 9.1 den Analysator in Abb. 9.26 passieren, wih-
rend das L-Licht des Polarisators in Abb. 9.25b abgeblockt
wird.

Zur Herstellung von A/4-Plittchen: Damit das Platt-
chen nicht zu diinn wird, sollte |An| = |nao — 10| klein
sein, denn die geometrische Dicke des Pléttchens ist d =
A/4|An|. Kristalliner Quarz ist ein geeignetes Material
(An = 0,01). Es gibt auch anisotrope Plastikfolien, aus de-
nen man sehr viel billiger A /4-Pléttchen herstellen kann.
Im Ubrigen kann man das Plattchen auch um ein ganz-
zahliges Vielfaches von A/ |1, — 1| dicker machen.

Auch aus optisch zweiachsigem Material kann man
Phasenschieberplatten herstellen. Besonders geeignet ist
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Abbildung 9.27 Babinet-
Soleil-Kompensator

4
dy

e

Glimmer (Muscovit), ein leicht in diinne Blédttchen spalt-
bares Mineral. Die Spaltebenen liegen parallel zur (x1, x7)-
Ebene des Index-Ellipsoids. Das Licht wird wie in
Abb. 9.20 in x3-Richtung eingestrahlt. Ist es unter 45°
gegen die x1-Achse linear polarisiert, dann wird es in
zwei senkrecht zueinander linear polarisierte Wellen glei-
cher Amplitude zerlegt, die mit den unterschiedlichen
Geschwindigkeiten c; und ¢, in x3-Richtung durch das
Plattchen laufen (vgl. Abb. 9.20).

A/2-und A/4-Pléttchen sind jeweils nur in einem schma-
len Wellenldngenbereich einsetzbar. Man hat deshalb kon-
tinuierlich verstellbare Phasenschieber konstruiert, z.B.
den Babinet-Soleil-Kompensator (Abb. 9.27). Er besteht
aus zwei Platten, von denen die eine in zwei keilfor-
mige Stiicke aufgeteilt ist. Die optischen Achsen liegen
parallel zu den Oberflachen, einmal in x-Richtung und
einmal in y-Richtung. Daher haben die Phasenschiibe auf
den Strecken di und d, entgegengesetztes Vorzeichen.
Die resultierende Phasenverschiebung ist proportional zu
dy — dp. Sie kann durch Verschieben des Keils beliebig
eingestellt werden. Heute wird als verdnderlicher Phasen-
schieber auch die Pockels-Zelle eingesetzt (Abschn. 9.4).

Interferenzfarben. Wenn linear polarisiertes Licht durch
eine planparallele doppelbrechende Platte lauft, entsteht
ganz allgemein elliptisch polarisiertes Licht. Wir be-
schrianken uns auf den eben behandelten Fall, dass die
Platte parallel zur optischen Achse aus einachsigem Ma-
terial herausgeschnitten wurde. Der Polarisator P schlief3e
wie in Abb. 9.25a mit dieser Achse den Winkel ¢ = 45°
ein. Die Feldstdrke hinter der doppelbrechenden Platte
ist durch (9.31) gegeben, mit cos ¢ = sin¢ = 1/1/2. Das
Licht ist elliptisch polarisiert. Wir stellen nun hinter die
Platte ein zweites Polarisationsfilter, den Analysator A,
und zwar so, dass A senkrecht zu P steht. Die Feldstarke
hinter dem Analysator lasst sich leicht berechnen (Aufga-
be 9.4). Fiir die Intensitét erhdlt man

5 7T(No — Nap )d

T (9.33)

I :Iosin2 g = [p sin
Der Faktor sin?(§/2) fithrt zu einer starken A-Abhéan-
gigkeit der Transmission. Sie ist maximal, wenn § =
7T, 37,57, ... ist, und verschwindet bei § = 27,471,671, . ..
Bei Beleuchtung mit Weifslicht erscheint das Gesichtsfeld
ohne das doppelbrechende Plattchen wegen der gekreuz-
ten Polarisatoren dunkel. Mit dem Plattchen erscheint es
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Abbildung 9.28 Spektren von Interferenzfarben. 1) An d = 97 nm, Komple-
mentarfarbe: gelblich weiB. 2) 281 nm, Kompl.: tiefviolett. 3) 551 nm, Kom-
pl.: gelblich griin. 4) 589 nm, Kompl.: goldgelb. 5) 664 nm, Kompl.: orange.
6) 948 nm, Kompl.: dunkelblau. 7) 1334 nm, Kompl.: braunrot. Die Spektren der
Komplementarfarben erhalt man, wenn man die Abbildung auf den Kopf stellt

hell, und zwar je nach dem Gangunterschied G = (150 —
7o)d in den wunderbarsten Farben, die man sich vorstel-
len kann: Indigo, Strohgelb, Himmelblau, Tiefrot, Eisen-
grau, ... Die spektrale Zusammensetzung dieser Farben
ist in Abb. 9.28 an Beispielen gezeigt. Stellt man die Po-
larisationsfilter parallel, ist die Transmission maximal bei
6 =2m,4m,67,...und Null bei 6 = 71,371,571, ... Man er-
hélt die Komplementarfarben

.20
I” =1y (1 — sin? E) .

Wenn man den Analysator aus der 90°-Stellung in die
Parallelstellung dreht, erhélt man einen kontinuierlichen
Ubergang von Farbe zu Komplementirfarbe. Das Gan-
ze ist ein verbliiffender Effekt, zumal das Plattchen ohne
die Polarisatoren farblos erscheint. Die Farberscheinun-
gen beruhen auf der Interferenz von Komponenten des
ordentlichen und des auflerordentlichen Strahls. Sie wer-
den deshalb Interferenzfarben genannt.?

(9.34)

Spannungsdoppelbrechung. Isotrope transparente Stof-
fe werden im Allgemeinen doppelbrechend, wenn sie

8 Eine praktische Anwendung finden diese Farben z.B. in der Mi-
neralogie bei der Untersuchung von Diinnschliffen aus polykris-
tallinem Material (Polarisationsmikroskopie). Die fantasievollen
Farbbezeichnungen stammen von G. Quincke (1834-1924), der das
Phénomen griindlich untersuchte (Poggendorfs Annalen 129, 180
(1869)).
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Abbildung 9.29 Zur Spannungsdoppelbrechung. Die horizontalen Schenkel
der Winkel sind in gleicher Weise durch ein Gewicht belastet

mechanischen Spannungen ausgesetzt sind: Durch die
Dehnung des Materials wird die Isotropie aufgehoben.
In Abb. 9.29a ist ein Winkel aus einem transparenten
Kunststoff gezeigt, bei dem dieser Effekt besonders aus-
gepragt ist. Das Material befindet sich zwischen zwei
parallelen Polarisationsfiltern. Bei Belastung zeigen sich
farbige Streifen, die sich an der Ecke des Winkels zu-
sammendrédngen. Es handelt sich um Interferenzfarben,
und die Streifen entsprechen den Linien An = const, al-
so Linien konstanter Deformation. Wo sich die Streifen
zusammendrangen, bestehen hohe Spannungsgradienten
und hohe mechanische Spannungen. Wie man sieht, be-
steht die Gefahr, dass das Material von der Ecke her ein-
reifit und der Winkel infolgedessen zerbricht. Dem kann
man vorbeugen. Abbildung 9.29b zeigt, wie man durch
eine einfache Mafinahme die Spannungen im kritischen
Bereich abbauen kann. Im Maschinenbau wird natiirlich
die scharfkantige Ecke nicht ausgebohrt, sondern von
vornherein abgerundet. Man nennt das ,, Vermeidung der
Kerbwirkung”.

Experimentelle Bestimmung der Stokes-Parameter.
Wie wir in Abschn. 9.1 gesehen haben, kann der Polari-
sationszustand von Licht mit Hilfe der Stokes-Parameter
eindeutig festgelegt werden. Um diese Grofsen experi-
mentell zu bestimmen, braucht man ein Filter fiir lineare
Polarisation, ein A/4-Plittchen und ein Messgerat fiir

Tabelle 9.3 Experimentelle Bestimmung der Stokes-Parameter
1(0°) +1(90°)

I(0°) — 1(90°)
1(45°) —1(135°)

Sy = 2EyoE, 0 cosé

53 = ZEonyO sin o IR — IL
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die Lichtintensitat, dessen Anzeige unabhingig von der
Polarisation des Lichts ist. Man misst zunachst die Inten-
sitdten hinter dem Linearpolarisationsfilter, wenn dessen
Durchlassrichtung mit der x-Achse einen Winkel von
¢ = 0°,45°,90° und 135° einschliefst. Dann setzt man das
A /4-Plattchen vor das Polarisationsfilter, wie in Abb. 9.26
gezeigt, und misst hinter diesen Filtern fiir zirkulare Po-
larisation die Intensitaten Iz und I . Die Stokes-Parameter
ergeben sich dann mit den in Tab. 9.3 angegebenen For-
meln.

Die STED-Mikroskopie

In jiingerer Zeit ist es gelungen, mit Lichtmikroskopen
Auflésungsvermogen zu erreichen, die wesentlich un-
terhalb der Abbeschen Auflosung liegen. Beim STED-
Verfahren (Abkiirzung fiir ,stimulated emission on de-
pletion”) verwendet man Fluoreszenzmikroskopie mit
punktweiser Abtastung eines Objekts, wie in Abschn. 6.4
beschrieben und in Abb. 6.46 skizziert wurde.” Wegen der
hohen Punktdichte wird zur Zeit nur eine Ebene abgebil-
det.

Die fluoreszierenden Molekiile miissen mindestens drei
Zustande aufweisen, die sie fiir diese Mikroskopie ge-
eignet machen (Abb. 9.30): Zunédchst werden sie mittels
Laserstrahlung elektronisch angeregt, wobei sie gleichzei-
tig in einen Schwingungszustand iibergehen. Die Schwin-
gungsenergie der Molekiile wird innerhalb einer Zeit in
der GréSenordnung von 10712 s an die Umgebung abge-
geben, danach wird ein ldngerlebiger Zustand erreicht.

9 Das STED-Verfahren wurde von Stefan Hell entwickelt, der dafiir
im Jahre 2014, zusammen mit Eric Betzig und William Moerner, den
Nobelpreis fiir Chemie(!) erhielt.
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Abbildung 9.31 Zur Formierung des Donut-Strahls mit Hilfe einer Phasenplatte

Nunmehr werden die Molekiile mit Hilfe eines zweiten,
langerwelligen Laserstrahls (STED-Strahl) resonant wie-
der abgeregt. Dieser zweite Laserstrahl hat einen etwas
groleren Durchmesser. In seiner Mitte besitzt er ein In-
tensitdtsloch, weshalb er in Anlehnung an das bekannte
Gebackstiick der ,,Donut-Strahl” genannt wird. In der N&-
he seines Zentrums verbleiben Molekiile im angeregten
Zustand, bei geniigend hoher Intensitét in einigem Ab-
stand davon nicht. Auf der ausschlieSlichen Beobachtung
des Fluoreszenzlichts vom Rest der angeregten Molekiile
beruht die Verbesserung der Auflosung. Die Lebensdauer
des fluoreszierenden Zustands liegt in der Groflenord-
nung von 107 s. Die Anregung des Anfangszustands und
die Abregung des Zwischenzustands miissen in einer we-
sentlich kiirzeren Zeit erfolgen, die Laserstrahlen miissen
also intensiv genug sein.

Die beiden Laserstrahlen miissen relativ zueinander gut
justiert sein. Das ldsst sich am einfachsten erreichen,
wenn beide in ein und dieselbe Monomode-Glasfaser
(Abb. 5.13c) eingekoppelt werden, durch die das Licht
zum Objektiv gelangt.

Bei der Erzeugung des Donut-Strahls bedient man sich
eines Tricks, der auf der Polarisation basiert. Der STED-
Laser liefert zunéchst linear polarisiertes Licht. Die linea-
re Polarisation wird in eine zirkulare konvertiert. Nach
Verlassen der Glasfaser wird der Strahl aufgeweitet. Er
durchlduft danach eine vierfach unterteilte Phasenplat-
te!¥, die doppelbrechend ist (Abb. 9.31). Zwischen be-
nachbarten Sektoren sind die optischen Achsen jeweils
um 45° gegeneinander verdreht. Beim Durchlaufen eines
Sektors entsteht zwischen linear polarisierten Wellen mit
der Frequenz des Donut-Strahls, die parallel bzw. senk-
recht zur optischen Achse polarisiert sind, ein Gangunter-
schied von 7r. In Abb. 9.31 sind fiir zwei Sektoren einige
Feldstérkerichtungen der zirkular polarisierten Welle vor
und hinter der Phasenplatte eingetragen. Man erkennt,
dass die Phasenplatte die Drehrichtung der zirkularen
Welle umkehrt, und dass alle Feldstarken hinter der Platte

10 Dje ersten Mikroskope dieser Art verwendeten lineare Polarisa-
tion in Verbindung mit ,Phasenschnecken”, die die Ebene einer
linearen Polarisation, abhidngig von der Position eines Lichtstrahls
parallel zur Achse der Schnecke, von 0° bis 360° drehten.
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fiir diametral gegeniiberliegende Sektoren das umgekehr-
te Vorzeichen haben. Nachdem der Strahl hinter der Platte
das Objektiv durchlaufen hat, interferieren sich in der
Mitte des Fokus die Amplituden des Donut-Strahls weg
und man erhdlt eine Intensitits-Nullstelle. Die Phasen-
platte wird allerdings von beiden Laserstrahlen durchlau-
fen. Sie ist so bemessen, dass die beschriebene Vorzeichen-
differenz der Feldstdrken in gegentiberliegenden Sektoren
beim Anregungsstrahl wegen der Wellenldngenabhangig-
keit der Brechungsindizes nicht auftritt.

Um das Auflésungsvermogen zu verstehen, nehmen wir
an, dass wihrend eines gepulsten Betriebes die Anregung
des Objekts, die Abregung und die Detektion des Fluo-
reszenzlichts zeitlich nacheinander erfolgen und dass der
Anregungsstrahl ein Gaufisches Profil mit der Breite dpin
(Gl. (8.59)) besitzt. Die Zahl der angeregten Molekiile ist

proportional zu e~"/%in, Der Donut-Strahl besitzt in der
Nihe seines Zentrums eine Intensitit Ipr? /242, wobei a
die Dimension einer Linge hat und ansonsten willkiir-
lich gewihlt werden kann, weil nur das Verhltnis Ip /a?
eingeht. Da bei grofien r ohnehin alle Molekiile wieder ab-
geregt werden, behalten wir diesen Ansatz fiir alle r bei.
Dann ist die Wahrscheinlichkeit dafiir, dass ein Molekiil
angeregt bleibt, e~Ipt? /20 yobei op der Wirkungs-
querschnitt fiir die Abregung und ¢ die Pulsdauer sind.
Die Zahl der beobachteten Fluoreszenzphotonen ist pro-
12/2d% . —oplIptr? /242

min

portional zu e™ . Man erhélt wieder ein
Gaufisches Strahlprofil, fiir dessen Breite gilt

1 - 1 O'DIDt_ 1 1
a2 2

min

2
oplp tdmm )

7 T & 2
dsrep Amin a

dmin

dsrep = ——__ |
STED = T Ip /T,

wobei alle Konstanten in einem einzigen Intensitatsfaktor
I; zusammengefasst wurden. Weil alle vom STED-Strahl
ausgelosten Reaktionen voneinander statistisch unabhén-
gig sind, steht die Intensitit Ip in (9.35) unter der Qua-
dratwurzel.

(9.35)

Mit dem STED-Verfahren werden Auflésungen unterhalb
von 10nm und routinemiflig von 20nm erreicht. Abbil-
dung 9.32b demonstriert dies an fluoreszierenden Kii-
gelchen mit 20nm Durchmesser. Abbildung 9.32a wurde
ohne STED-Stahl aufgenommen, sodass ein CLSM-Bild
mit einer beugungsbegrenzten Auflosung nach (6.54) ent-
stand. Abbildung 9.33 zeigt eine Aufnahme von Peroxiso-
men, membranumschlossenen Organellen, die im Inneren
von Zellen mit Zellkernen vorhanden sind.

Die einzige prinzipielle Begrenzung der Auflésung be-
steht in der Grofie der markierten Molekiile, eine prakti-
sche in der Begrenzung der Intensitidt des STED-Lasers,
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Abbildung 9.32 STED-Aufnahme fluoreszierender Crimson Beads (20 nm).
a Ohne STED-Strahl, b mit STED-Strahl. Aufnahme: J. Engelhardt, Krebsfor-
schungszentrum Heidelberg

Abbildung 9.33 STED-Aufnahme von Peroxisomen, mit STAR635P gefarbt.
Oberhalb der Bildmitte wurde wahrend des Scans der STED-Strahl kurz ab-
geschaltet, sodass ein Streifen mit beugungshegrenzter Aufldsung entstand.
Aufnahme: J. Engelhardt, Krebsforschungszentrum Heidelberg

um Schédden in Proben zu vermeiden. Der Vorteil der
STED-Mikroskopie ist, dass man mit ihr hochaufgeldst
dynamische Prozesse in lebenden Zellen verfolgen kann,
was mit der Elektronenmikroskopie nicht méglich ist.

Optische Aktivitat, zirkulare Doppelbrechung

Wenn linear polarisiertes Licht in einem einachsigen Kris-
tall in Richtung der optischen Achse lduft, sollte es als
ordentlicher Strahl den Kristall ohne Aufspaltung in einen
ordentlichen und einen aufierordentlichen Strahl durch-
setzen. Das tut es auch, aber bei manchen Kristallen
andert sich dabei die Polarisationsrichtung. Dieses Phiano-
men nennt man optische Aktivitit. Es wurde am kristal-
linen Quarz entdeckt (Abb. 9.34). Man findet Quarzkris-
talle, die die Polarisation nach links, und solche, die die
Polarisation nach rechts drehen. Der Drehwinkel ist pro-
portional zu Dicke der durchstrahlten Schicht und nimmt
mit zunehmender Wellenldange des Lichts ab (Abb. 9.34b).
Dem Betrage nach sind die Winkel bei links- und rechts-
drehendem Quarz genau gleich. Bei genauerer Betrach-
tung stellt man fest, dass sich die beiden Quarzsorten
auch &duflerlich unterscheiden: In gewissen Merkmalen
der Kristallflichen verhalten sie sich wie Bild und Spie-
gelbild.

Wie dieses merkwiirdige Phdanomen zu erklédren ist, fand
Fresnel heraus: Es handelt sich um zirkulare Doppelbre-
chung. Nach (9.5) kann man eine linear polarisierte Welle
als Uberlagerung von zwei zirkular polarisierten Wellen
darstellen. Wenn nun die Phasengeschwindigkeiten die-

a
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|
\
b «
50°4 Quarz
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Abbildung 9.34 Optische Aktivitat. a Das Phanomen, b Beispiel Quarz: Dreh-
winkel « als Funktion der Wellenlange. d = 1 mm
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Abbildung 9.35 Kristallgitter des Quarz (Si0,), aufgebaut aus tetraedrischen
Si04-Gruppen. Jedes O-Atom gehdrt zu zwei Tetraedern. Dargestellt sind je 4 Te-
traeder einer unteren, einer mittleren und einer oberen Schicht. Die Punkte, an
denen sich die hier eingezeichneten Tetraeder berihren, sind gekennzeichnet.
Wenn man die Struktur im Uhrzeigersinn um 120° dreht, gehen die dunklen
Tetraeder in die hellen Giber und die anderen nehmen die nachst dunklere Far-
bung an; sonst bleibt die Struktur unverandert. Das heiBt, sie hat sich um eine
Tetraederschicht zum Beobachter hin verschoben. Die senkrecht auf der Zeichen-
ebene stehende Achse A bildet also eine ,dreizéhlige Schraubenachse”. Nach
Landolt-Bornstein (1955)

ser beiden Wellen unterschiedlich sind,

c c
cL=—#C®R=—,
nr, nR

entsteht beim Durchgang des Lichts durch das optisch
aktive Medium eine Phasenverschiebung zwischen der
rechts- und der linkspolarisierten Welle, die proportio-
nal zur durchlaufenen Schichtdicke d anwéchst. Das fiihrt
nach (9.6) zu einer Drehung der Polarisation um den Win-
kel

_R—=OL _ ﬂ(”R—TlL)d

5 T (9.36)

Eine physikalische Erkldrung fiir den Unterschied der
Brechungsindizes ng und #ny, findet man in der Struktur
der Kristalle. Beim Quarz ist das Gitter schraubenartig
aufgebaut (Abb. 9.35). Deshalb reagieren die Elektronen-
hiillen der Atome auf in Achsenrichtung laufende zirku-
lar polarisierte Wellen unterschiedlich, je nachdem, ob der
Schraubensinn des Gitters und der Drehsinn der Polari-
sation iibereinstimmen oder nicht. Die Untersuchung der
optischen Aktivitat ist ein wichtiges Hilfsmittel der Kris-
tallographie. Nur Kristalle mit ganz bestimmten Symme-

9 Polarisiertes Licht

Tabelle 9.4 Drehung der Polarisationsebene in optisch aktiven Stoffen (20 °C,
A = 589,3 nm). +: rechtsdrehend; —: linksdrehend

d %
Quarz-Kristall 1mm +21,7°
Terpentingl! 10cm —36,6°
Rohrzuckerlésung Im —+6,6°
(10g/1H0)

1 als Naturprodukt

trieeigenschaften konnen dieses Phanomen zeigen. Ob ein
linksdrehender oder ein rechtsdrehender Kristall entsteht,
héngt davon ab, wie sich die ersten Molekiile zusammen-
lagern. Aus einem linksdrehendem Kristallkeim entsteht
ein linksdrehender Kristall, aus einem rechtsdrehendem
Keim ein rechtsdrehender.

Optische Aktivitat wird auch in einer ganz anderen Stoff-
klasse beobachtet, ndmlich bei organischen Fliissigkeiten
und bei Losungen organischer Substanzen, z.B. bei Ter-
pentindl und bei Zuckerlosungen. Wie Tab. 9.4 zeigt,
ist das Drehvermogen dieser Stoffe viel kleiner als das
von Kristallen. Es ist aber ein Leichtes, ein meterlanges
Rohr mit Zuckerldsung zu fiillen. Da in diesen Fliissig-
keiten keine Ordnung besteht, muss der Schraubensinn,
der die Drehung verursacht schon im einzelnen Molekiil
eingebaut sein. Die Stereochemie, die sich mit der geo-
metrischen Struktur der Molekiile befasst, hat dafiir auch
ohne Weiteres eine detaillierte Erklarung und kann genau
angeben, wie ein bestimmtes rechts- oder linksdrehen-
des Molekiil aufgebaut ist. Die Molekiile gleichen jeweils
einander wie Bild und Spiegelbild (,,Enantiomorphie®).
Das Merkwiirdige ist aber, dass optische Aktivitdt dieser
Art nur bei biogenen Substanzen auftritt. Wird die glei-
che Substanz im Reagenzglas hergestellt, ist sie optisch
inaktiv.

Was unterscheidet das Naturprodukt vom synthetischen?
Die synthetisch hergestellte Substanz enthalt stets gleich
viel rechts- und linksdrehende Molekiile.!! Das liegt dar-
an, dass die chemischen Eigenschaften der rechts- und
linksdrehenden Molekiile genau gleich sind. Die ele-
mentaren Wechselwirkungen zwischen den Atomen, die

I Diese fundamentale Entdeckung machte Louis Pasteur (1822-
1895) wiahrend seiner Doktorarbeit. Er hatte aus einer Losung einer
synthetisch hergestellten, daher nicht aktiven organischen Substanz
Kristallchen ausgefallt und bemerkt, dass es im Niederschlag zwei
geringfiigig verschiedene Kristallformen gab, die sich zueinander
wie Bild und Spiegelbild verhielten. In miihsamer Kleinarbeit trenn-
te er unter dem Mikroskop die beiden Sorten, 16ste sie getrennt
wieder auf, und siehe da: Die eine Sorte war linksdrehend, die
andere rechtsdrehend optisch aktiv. Dies erschien damals als so sen-
sationell, dass Pasteur sein Experiment vor den Augen des Akademie-
Prasidenten Biot wiederholen musste. Man war wohl der Meinung,
dass die optische Aktivitdt der biogenen Substanzen etwas mit dem
,Leben” zu tun hitte und daher nicht ,kiinstlich” erzeugt werden
konnte.



9.4 Induzierte Doppelbrechung, nichtlineare Optik

bei chemischen Reaktionen wirksam werden, bevorzugen
keinen Schraubensinn.

Wie bringt es die Natur dann fertig, optisch aktive Sub-
stanzen herzustellen? Das war lange Zeit ein Rétsel. Heu-
te kann man darauf die folgende Antwort geben: Zur
Herstellung dieser Substanzen laufen im lebendem Orga-
nismus Reaktionen ab, die von Enzymen katalysiert wer-
den. Enzyme bestehen aber aus Aminosduren, und alle
biogenen Aminosduren sind linksdrehend, weil sie gene-
tisch als Kopie einer Vorlage hergestellt wurden und nicht
durch chemische Reaktionen, wie sie im Reagenzglas ab-
laufen. Wenn der Katalysator nicht spiegelsymmetrisch
ist, muss es auch das Produkt nicht sein.

Es bleibt noch die Frage: Warum sind alle in der Natur
vorkommenden Aminosduren linksdrehend, gleichgiiltig,
ob sie aus einer Braunalge oder aus einem Elefanten stam-
men? Es ist heute kein Grund bekannt, warum Leben
nicht auch mit rechtsdrehenden Aminosduren moglich
wire. Vielleicht gibt es anderswo solche Organismen, bei
uns auf der Erde aber offenbar nicht. Das konnte ein Hin-
weis darauf sein, dass auf der Erde das Leben mit einem
einzigen reproduktionsfdhigen Molekiil begonnen hat.

9.4 Induzierte Doppelbrechung,

nichtlineare Optik

In Substanzen, die weder doppelbrechend noch optisch
aktiv sind, kann man durch Einwirkung elektrischer oder
magnetischer Felder Doppelbrechung hervorrufen. Man
nennt das induzierte Doppelbrechung. Diese Effekte
sind schon fiir sich genommen physikalisch interessant;
noch interessanter sind die Anwendungen, die sie 100 Jah-
re nach ihrer Entdeckung in Wissenschaft und Technik ge-
funden haben. — Schon Faraday vermutete, dass Licht und
Elektromagnetismus in einem engen Zusammenhang ste-
hen. Deshalb suchte er systematisch nach Effekten, die
dies bestatigen konnten. Er entdeckte dabei den magne-
tooptischen Effekt, den wir als erstes betrachten.

Der Faraday-Effekt

Wenn man eine durchsichtige isotrope Substanz in ein
Magnetfeld steckt, wird sie optische aktiv: Die Schwin-
gungsebene von linear polarisiertem Licht wird gedreht,
wenn das Licht parallel zum Magnetfeld durch das Mate-
rial lduft. Mit den Bezeichnungen von Abb. 9.36a ist der
Drehwinkel

a = VBI. (9.37)

Materialprobe

N S

Elektro-
magnet

Abbildung 9.36 Faraday-Effekt. a Prinzip, b Anordnung zur Messung der
Verdet-Konstante. Py, P,: Polarisatoren. N, S: Pole eines starken Elektromagne-
ten

Licht

V ist eine fiir den Stoff charakteristische Grofse, die soge-
nannte Verdet-,Konstante”. Sie hdngt in betrachtlichem
Mafie von der Wellenldnge ab. Die atomphysikalische
Deutung des Effekts schliefst sich eng an die Erklarung
des Diamagnetismus an (vgl. Bd. I11/14.3). Wie wir dort
gesehen haben, bewirkt das Magnetfeld in den Atomen
zusdtzliche Kreisstrome und damit eine Asymmetrie, die
unterschiedliche Brechungsindizes fiir rechts- und links-
zirkular polarisiertes Licht zur Folge hat. Wie Tab. 9.5
zeigt, ist der Effekt gewohnlich nicht groff. Man hatjedoch
fiir technische Anwendungen Materialien mit grofier
Verdet-Konstante entwickelt (Hoya-Glas, TGG und ande-
re). Die grofien negativen Werte von V erreicht man mit
paramagnetischen Stoffen.

Die Richtung der Faraday-Drehung hiangt davon ab, ob
das Licht in Richtung von B oder entgegengesetzt dazu

Tabelle 9.5 Verdet-Konstante verschiedener Materialien

A %
(nm) ( Grad )
T-cm

NaCl 644 5,20

480 9,47

260 48,6
H,O 589 2,18
CS, 589 7,00
Benzol 589 5,03
Glas SF6 (Schott) 589 13,5
Glas FR6 (Hoya) 633 —41,8
TGG! 830 41

! Terbium-Gallium-Granat, fiir Infrarot besonders geeignet.
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Abbildung 9.37 Faraday-Isolator. a Prinzip, b praktische Ausfiihrung: Perma-
nentmagnet zur Felderzeugung und Glan-Prismen als Polarisatoren

durch die Probe lduft. Das unterscheidet den Faraday-
Effekt grundsétzlich von der gewdhnlichen optischen Ak-
tivitdt. Dort wird die Polarisationebene stets in einem
bestimmten Sinn gedreht, z.B. nach rechts, gleichgiiltig
in welcher Richtung das Licht durch das Material lauft.!?
Stellt man hinter die Materialprobe einen Spiegel, so wird
beim Riicklauf die im ersten Durchgang erfolgte Drehung
wieder riickgéngig gemacht. Bei der Faraday-Drehung
wiirde dagegen beim Riicklauf in Abb. 9.36 die Polarisati-
onsebene nach links gedreht, so dass sich die Drehwinkel
zu 2¢ addieren.

Diesen Umstand kann man ausnutzen, um eine , Einbahn-
strafle” fiir Licht zu bauen. In der Fachsprache wird sie
Faraday-Isolator genannt. In Abb. 9.37 ist das Prinzip ge-
zeigt: Hinter dem Polarisationsfilter P; erzeugt man eine
Faraday-Drehung um 45°. Dann kann in Abb. 9.37a die
Strahlung ungehindert das Polarisationsfilter P, durch-
laufen. In Abb. 9.37b bewirkt dagegen die Faraday-
Drehung, dass von rechts einfallendes Licht am Filter P;
gestoppt wird. Die Anordnung wird z. B. eingesetzt, wenn
ein Laserstrahl in eine Versuchsanordnung eingespeist
wird, und verhindert werden muss, dass reflektiertes
Licht in den Laser zuriicklauft. Das ist besonders wichtig
bei Laserstrahlen hoher Leistungsdichte.

Eine Anwendung ganz anderer Art findet der Faraday-
Effekt in der Astronomie. In unserer Galaxie gibt es zahl-
reiche Radioquellen, deren Strahlung in geringem Mafle

12 7um Vergleich: Eine Schraube sieht, von jedem Ende aus betrach-
tet, gleich aus, Rechtsgewinde bleibt Rechtsgewinde. Das ist die
Situation bei der gewohnlichen optischen Aktivitit. Die Zeiger ei-
ner Uhr dagegen bewegen sich von vorn betrachtet rechts herum,
von hinten betrachtet aber links herum. Das ist die Situation beim
Faraday-Effekt.

9 Polarisiertes Licht

linear polarisiert ist. Man hat nun beobachtet, dass die
Polarisationsrichtung der bei uns ankommenden Strah-
lung von der Wellenldnge abhédngt. Das kann man auf die
Wellenldngenabhéngigkeit der Faraday-Drehung zuriick-
fithren und zur Messung des interstellaren Magnetfel-
des benutzen. Das interstellare Gas ist teilweise ionisiert.
Die freien Elektronen des Plasmas laufen im Magnetfeld
auf Kreisbahnen. Dadurch erzeugen sie eine Faraday-
Drehung, die im Radiowellenbereich proportional zum
Quadrat der Wellenldnge ist. Die Elektronendichte und
die Entfernung der Quellen sind hinreichend genau be-
kannt, so dass ein Schluss auf das Magnetfeld moglich ist.
Seine mittlere Stirke ist in unserer Galaxie B ~ 10710 T.
Diese Information ist wichtig, z. B. um die Herkunft und
Ausbreitung der kosmischen Strahlung (Bd. 1/19.5) dis-
kutieren zu kénnen.

Elektrooptische Effekte

Wenn man an ein isotropes Dielektrikum ein elektrisches
Feld anlegt, wird die Isotropie aufgehoben. Im Dielek-
trikum entsteht durch die elektrische Polarisation P eine
Vorzugsrichtung, und man konnte erwarten, dass sich die
Brechungsindizes fiir Licht, das parallel oder senkrecht
zu dieser Richtung polarisiert ist, voneinander unterschei-
den. Da die Ladungsverschiebungen, die diese Aniso-
tropie verursachen, proportional zu E sind, kénnte man
vermuten, dass auch die durch das Feld induzierte Dop-
pelbrechung proportional zur Feldstérke ist:

An = nao —no = xE . (9.38)
Bei isotropen Medien ist das jedoch aus Symmetriegriin-
den nicht moglich. Dreht man die Richtung des elektri-
schen Feldes um (E — —E), dann dreht sich auch die
Polarisation P um. Sie bleibt dabei dem Betrage nach
gleich:

(9.39)

Die durch die elektrische Polarisation hervorgerufene
Anisotropie des Mediums (in Feldrichtung quer zur Feld-
richtung) bleibt dabei die gleiche. Es ist also in (9.38)

An = xE = —«E,

und das bedeutet ¥ = 0. Moglich ist dagegen eine zu E?
proportionale induzierte Doppelbrechung (Kerr-Effekt).
Nur bei Kristallen, die wie die piezoelektrischen Kristal-
le (Bd. I1I/4.3) keine Inversionssymmetrie besitzen, wird
(9.39) aufler Kraft gesetzt, und es gibt einen linearen elek-
trooptischen Effekt (Pockels-Effekt). Beide Effekte finden
interessante Anwendungen.
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Tabelle 9.6 Kerrkonstanten einiger Fliissigkeiten in 10~ mV—2, bei 20°C,
A =589nm

K
Wasser (H,O) 51
Benzol (CgHg) 0,45
Schwefelkohlenstoff (CS,) 3,6
Nitrotoluol (C;H7NO,) 137
Nitrobenzol (C¢H5NO;) 245

Abbildung 9.38 Kerr-Zelle

Der Kerr-Effekt. Der erste elektrooptische Effekt wurde
1875 von dem schottischen Physiker John Kerr entdeckt.
Bringt man eine transparente isotrope Substanz in ein
homogenes elektrisches Feld, wird sie einachsig dop-
pelbrechend. Die optische Achse zeigt in Richtung der
Feldlinien, und die Differenz An = n,, — 1, ist proportio-
nal zum Quadrat der Feldstarke:

An = KAE? . (9.40)

A ist die Vakuum-Wellenldnge des Lichts, K die Kerr-
Konstante. Sie hangt von A und von der Temperatur ab.
Der Effekt ist winzig, wie Tab. 9.6 zeigt. Ein Zahlenbei-
spiel: Fiir E = 10°V/m, A = 500nm und K = 10~ ¥ m/V?
erhilt man An = 5- 1078

Der Kerr-Effekt tritt auf bei Fliissigkeiten, bei Glasern und
bei Kristallen. Besonders ausgepragt ist er bei Fliissig-
keiten, deren Molekiile eine anisotrope Polarisierbarkeit
aufweisen. In diesen Fillen ist die elektrische Suszeptibi-
litdt ein Tensor, und die zu E proportionalen induzierten
Dipolmomente p zeigen gewdhnlich nicht in Feldrich-
tung. Diese Molekiile werden nun im E-Feld ausgerichtet.
Der Ausrichtungsgrad ist nach Bd. III, Gl. (4.29) propor-
tional zu |p| - |E|, also proportional zu E2.

Die Ausrichtung der Molekiile gegen den Einfluss der
thermischen Bewegung erfolgt sehr schnell. Die Relaxati-
onszeit betragt beim Nitrobenzol T ~ 4 - 10~ s, beim CS,
sogar nur T ~ 3 - 10~'?s. Man kann daher mit Hilfe des
Kerr-Effekts sehr schnell wirkende optische Schalter bau-
en. Abbildung 9.38 zeigt eine Kerr-Zelle. Zwischen zwei
gekreuzten Polarisatoren befindet sich ein Glasgefat}, das
z.B. mit Nitrobenzol gefiillt wird. In der Fliissigkeit kann

zwischen den Elektroden ein elektrisches Feld erzeugt
werden. Die Polarisatoren stehen unter +45° gegen die
Feldrichtung. Bei E = 0 ist der Lichtweg durch die ge-
kreuzten Polarisatoren gesperrt. Wird eine Spannung U
angelegt, entsteht zwischen dem ordentlichen und dem
auflerordentlichen Strahl eine Phasendifferenz

27

0= —-Anl = 2KIU? /d? . (9.41)

Fiir 6 = 7 wirkt die Zelle als A/2-Platte, der Verschluss
ist nach Satz 9.1 vollstindig geoffnet. Dazu muss man die
Halbwellenspannung anlegen:

d
Uy jp = — .
M2 AR

Wie man leicht ausrechnen kann, benétigt man selbst mit
Nitrobenzol Spannungen im Bereich von einigen 10% Volt.
Es ist nicht einfach, einen kurzen Spannungspuls mit die-
ser Amplitude herzustellen.

(9.42)

Man kann die Kerrzelle auch dazu verwenden, die Inten-
sitdt eines Lichtstrahls mit einem elektrischen Signal u(t)
zu modulieren. Dazu legt man an die Zelle die Spannung
U = Uy + u(t), wobei Uj eine Gleichspannung ist. Hinter
der Kerr-Zelle ist nach (9.33) die Intensitat

5 1
I = Isin? 5= 50(1 —cosd) . (9.43)

Mit Uy = U, /»/+/2 und u(t) < Uy erhalt man aus (9.41)

PRI
2 Uy
(9.44)
) ML ) T2 U )

Die Modulation ist proportional zu u(t).

In der Friihzeit der Tonfilmtechnik verwendete man die
Kerrzelle dazu, mit dem verstarkten Ausgangssignal des
Mikrophons einen Lichtstrahl zu modulieren und da-
mit auf dem Film neben der Bilderfolge einen schmalen
Streifen zu belichten. Der so aufgezeichnete Ton konnte
dann beim Abspielen des Films iiber Fotozelle, Verstarker
und Lautsprecher wiedergegeben werden. Heute dient
die Kerrzelle als Modulator fiir hochste Frequenzen, bis
in den Bereich von 100 GHz, und als optischer Verschluss
mit extrem kurzer Schaltzeit (10~ — 10~12s). Ein Hoch-
spannungspuls so kurzer Zeit ist elektronisch langst nicht
mebhr realisierbar. Er wird durch einen kurzen, linear pola-
risierten Laserpuls ersetzt: Da der Kerreffekt proportional
zu E? ist, kann man die Zelle auch mit dem Wechselfeld
der Lichtwelle schalten. Die erforderliche Feldstarke ldsst
sich mit einem Hochleistungslaser erreichen.

Von dieser Tatsache macht man bei einer weiteren An-
wendung des Kerr-Effekts Gebrauch: Schiefst man einen

217




Abbildung 9.39 Selbstfokussierungin einer mit Nitrobenzol gefiillten Kerrzel-
le und die Folgen (nach W. Busch (1865))

intensiven, linear polarisierten Laserstrahl mit gaufs-
schem Strahlprofil durch eine transparente Platte, so ent-
steht aufgrund des Kerr-Effekts auf der Strahlachse ein
erhoéhter Brechungsindex

Nao = Mo + KAE?2 = ny + 9I , (9.45)

€oC

wenn [ die Intensitdt des Laserstrahls ist. Da die durch
den Kerr-Effekt erzeugte optische Achse parallel zu E
entsteht, lauft der Laserstrahl als ao-Strahl durch das Me-
dium. Der mafigebliche Brechungsindex ist durch (9.45)
gegeben. n, ist gleich 1y, dem gewdhnlichen Brechungs-
index des Materials. Mit KA /epc = n; erhidlt man

(9.46)

Da die Intensitdt von der Strahlachse aus nach aufsen hin
abfallt, entsteht eine Gradientenlinse (Abb. 6.12), deren
Brennweite umso kiirzer wird, je hoher die Laserintensi-
tdt ist. Man bezeichnet das als Selbstfokussierung. Eine
solche Kerr-Linse spielt bei Lasern, die sehr kurze Licht-
pulse hoher Leistung erzeugen sollen, eine wichtige Rolle.
Die Selbstfokussierung kann auch gefahrlich werden und
zur Zerstorung optischer Bauelemente fithren, wenn der
Fokus innerhalb des Materials zu liegen kommt. Insbe-
sondere sollte man vermeiden, dass sich in einer mit Ni-
trobenzol oder Nitrotoluol gefiillten Kerr-Zelle ein Fokus
bildet, denn diese Substanzen sind explosiv (Abb. 9.39).

n=mng+nyl.

Der Pockels-Effekt. Wie wir bereits festgestellt hatten,
kann bei Kristallen, die kein Inversionszentrum besit-
zen, ein linearer elektrooptischer Effekt auftreten. Man
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Abbildung 9.40 Pockels-Zelle. a
a Die tetragonale Gitterzelle des
KDP. b longitudinale Pockels-Zelle

erwartet sogar einen solchen Effekt, denn solche Kristalle
sind gewohnlich piezoelektrisch. Dann fiihrt ein elektri-
sches Feld zu einer Deformation des Kristallgitters, die
sich mit der Richtung des E-Feldes umkehrt, und damit
auch zu einer Anisotropie des Brechungsindex propor-
tional zu E. Qualitativ wurde ein solcher Effekt zuerst
von Réntgen am kristallinen Quarz nachgewiesen. Eine
sehr sorgfiltig von Pockels'® durchgefiihrte experimen-
telle und theoretische Untersuchung zeigte jedoch, dass
die Piezoelektrizitat des Quarzes nicht ausreicht, den be-
obachteten Effekt zu erkldren. Es handelt sich um einen
Effekt der nichtlinearen Optik, auf die wir weiter unten
noch eingehen werden.

Technische Bedeutung erlangte der Pockels-Effekt erst,
nachdem Materialien entwickelt worden waren, bei de-
nen der Effekt viel starker ist, als beim Quarz. Die be-
kanntesten Beispiele sind der KDP-Kristall (Kaliumdihy-
drogenphosphat KH;PO4) und das noch empfindlichere
KD*P (KD,POy). KDP bildet tetragonale Kristalle. Die
Gitterzelle hat die Seiten a, b und ¢, die senkrecht auf-
einander stehen, und es ist a = b # ¢ (Abb. 9.40a). Die
Achsen des Koordinatensystems x, y, z liegen parallel zu
diesen Seiten. Der Kristall ist optisch einachsig; die op-
tische Achse liegt in z-Richtung. Abbildung 9.40b zeigt
einen KDP-Kristall, der so geschnitten ist, dass seine Kan-
ten parallel zu den kristallographischen Achsen liegen.
Der auf die (x,y)-Fliche gezeichnete gestrichelte Kreis
soll die Schnittlinie des Indexellipsoids mit der (x,y)-
Ebene darstellen. Wird nun parallel zur optischen Achse

13 Friedrich Pockels (1865-1913) war an der Universitit Heidelberg
tatig, und zwar als ,planméfiiger aufSerordentlicher Professor fiir
Theoretische Physik”, d.h. er bekam ein geringeres Gehalt als der
ordentliche Professor fiir Physik und hatte kein eigenes Labor. Der-
artige Stellen wurden damals auch an anderen Universitdten einge-
richtet. Der Begriff ,Theoretische Physik” und die Einrichtung von
Professuren fiir dieses Fach entstanden also aus fiskalischer Spar-
samkeit. — Von Pockels stammt auch ein Lehrbuch der Kristalloptik,
das jahrzehntelang ein Standardwerk auf diesem Gebiet war.
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ein E-Feld angelegt, wird der Kristall infolge der elektri-
schen Polarisation optisch zweiachsig. Das Indexellipsoid
wird dreiachsig und der Kreis deformiert sich zu der in
Abb. 9.40b eingezeichneten Ellipse. Die Halbachsen lie-
gen in der x’- und y’-Richtung, um 45° gegen die x- und
y-Richtung verdreht. Das ergibt sich aus der Lage der
Atomgruppen in der tetragonalen Gitterzelle. Die Diffe-
renz der Hauptindizes n, — n,, ist

An = n3rgE . (9.47)
no, = 1,51 ist der Brechungsindex des ordentlichen Strahls
bei E =0, 76 = 10,6 -10"2m/V ein elektrooptischer Ko-
effizient. An ist also fiir alle erreichbaren Feldstdrken sehr
klein; das Achsenverhéltnis der Ellipse in Abb. 9.40b ist
maflos tibertrieben. Wie Abb. 9.17b zeigt, schlieflen dann
die optischen Achsen mit der z-Achse einen sehr kleinen
Winkel ein. Fiir in z-Richtung eingestrahltes Licht, das in
y-Richtung linear polarisiert ist, bildet der Kristall eine
Phasenplatte, bei der die Phasenverschiebung mit Hilfe
der angelegten Spannung eingestellt werden kann: Der
E-Vektor kann in eine x’- und eine y’-Komponente zer-
legt werden. Wie bei Abb. 9.20 gezeigt wurde, entstehen
zwei Wellen, die mit unterschiedlichen Geschwindigkei-
ten durch den Kristall laufen. Damit das Licht paral-
lel zur Richtung des E-Feldes eingestrahlt werden kann
(longitudinale Pockels-Zelle), miissen die felderzeugen-
den Elektroden durchsichtig sein, also z.B. aus aufge-
dampften SnO-Schichten bestehen.

Zwischen zwei gekreuzten Polarisatoren kann die
Pockels-Zelle als optischer Schalter oder als optischer
Modulator dienen. Wir berechnen die Halbwellenspan-
nung. Mit E = U/I erhédlt man

A = Anl

E — u/\/z = (9.48)

2n3res

U, /, ist unabhdngig von der Lange des Kristalls und be-
tragt fiir A = 546 nm beim KDP 7,6 kV, beim KD*P 3,4 kV.
Damit kommt man in den Bereich, in dem elektronisch
Schaltzeiten von Nanosekunden erreicht werden konnen.

Es gibt noch eine Vielzahl von mehr oder weniger exoti-
schen Kristallen, die fiir Pockels-Zellen entwickelt wur-
den, die sich in den Eigenschaften und im Preis unter-
scheiden. Ein Beispiel ist das Lithiumniobat LiNbO3, mit
dem man auf einfache Weise eine transversale Pockels-
Zelle bauen kann, bei der das Licht in Richtung der
optischen Achse und senkrecht zur Feldrichtung einge-
strahlt wird (Abb. 9.41). Die Halbwellenspannung ist mit
E=U/d

(9.49)

Man gewinnt gegentiber (9.48) den Faktor [/d; ry; ist der
beim LiNbOs-Kristall mafigebliche elektrooptische Koef-

Abbildung 9.41 Transversale
Pockels-Zelle mit LiNbO3

A

fizient. Auch mit KDP kann man transversale Pockels-
Zellen bauen, indem man in geeigneter Weise zwei stib-
chenformige Stiicke aus dem Kristall schneidet und hin-
tereinander setzt. Eine transversale Pockels-Zelle lasst
sich bei entsprechender Wahl von d /I bereits mit einigen
100V schalten.

Nichtlineare Optik

Bisher sind wir immer davon ausgegangen, dass die Po-
larisation eines Mediums proportional zur elektrischen
Feldstarke ist. In Bd. III, Gl. (4.11) definierten wir die
elektrische Suszeptibilitdit mit P = y.€oE. Dabei wurde
ein lineares Kraftgesetz zugrunde gelegt. Bei hohen Feld-
starken sind Abweichungen zu erwarten. Am einfachsten
driickt man das durch eine Reihenentwicklung aus. Bei
isotropen Substanzen erhélt man

P = xeeoE + xheoE? + x"eoE® + . .. (9.50)
Die Groflenordnungen sind bei Kristallen
2
_ppm _pom
Xeml, xem107M'G, xdm10705:. 951)

Bei anisotropen Stoffen sieht die entsprechende Formel
weitaus komplizierter aus: An die Stelle von ). tritt, wie
schon in Bd. III/4 erwahnt wurde, der Tensor X, an die

Stelle von x'E? tritt eine lineare Funktion aller moglichen
Produkte ExE;, und so fort. Fiir jede Komponente des Vek-
tor P erhilt man einen Ausdruck der Form

Pi =Y xik€oEx + Y Xiu€oEkE:
¢ o (9.52)

+ Y Xim€0EKEiEm + ...
k,1m

Jeder der Indizes i, k, | und m kann die Werte x, y und z
annehmen. Die xj sind die Elemente eines Tensors zwei-
ter Stufe (vgl. Bd. I, Gl. (21.134)), die x; und Xix, sind
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die Elemente von Tensoren dritter und vierter Stufe. In
der Praxis sind die Ausdriicke nicht so kompliziert, wie
es zundchst aussieht, denn aufgrund der Kristallsymme-
trien gibt es jeweils nur wenige Tensorelemente, die nicht
Null sind.

Wenn das Kristallgitter inversionssymmetrisch ist, kehrt
sich bei Umkehr des E-Feldes auch das Vorzeichen der
Polarisation um, es gilt (9.39). Dann mdiissen in (9.52) al-
le Glieder mit geraden Potenzen von E verschwinden,
d. h. alle Elemente des x’-Tensors sind Null. Bei Kristallen
ohne Inversionssymmetrie bleiben diese Glieder jedoch
stehen. Das ermoglicht interessante Anwendungen, z. B.
beim Pockels-Effekt, bei dem das E-Feld in (9.52) durch
Uberlagerung des Lichtfelds mit einem statischen Feld
entsteht: E = E(@) 4 Est, Wir betrachten ein anderes Bei-
spiel, bei dem nur das Lichtfeld eine Rolle spielt.

Frequenzverdoppelung von Laserlicht. Ein Laserstrahl
mit der Frequenz w falle auf einen KDP-Kristall. Die E-
Feldstédrke in der Welle soll so grof sein, dass die Pola-
risation des Kristalls nichtlinear wird. Wie wirkt sich das
aus? Zunidchst gehen wir von der einfachen Formel (9.50)
aus und setzen dort E = Ep cos wt. Bei Vernachldssigung
der kubischen Glieder erhalten wir

P(E) = xe€oEo cos wt + xLegEj cos® wt
1, (9.53)
= Xe€0Eq cos wt + EXeGOEO(l + cos2wt) .

Im Kristall entsteht eine Polarisation, die einen Anteil mit
der doppelten Frequenz enthilt. Die zeitlich verdnderli-
che Polarisation fithrt zur Abstrahlung von elektroma-
gnetischen Wellen in Vorwdértsrichtung; auf diese Weise
entsteht ja der Brechungsindex, wie schon im Anschluss
an (2.74) angemerkt wurde. Dabei entstehen auch Wellen
mit der Frequenz 2w. Nach Durchgang durch den Kris-
tall enthalt die Welle einen frequenzverdoppelten Anteil:
Man erzeugt bei nichtlinearer Polarisation des Dielektri-
kums mit Hilfe der Grundwelle die erste Oberwelle (eng]l.:
,second harmonic generation”, SHG).

Das Problem ist, dass die Oberwellen im Kristall raum-
lich verteilt langs des Strahls entstehen. Ihre Phasenlage
bei der Entstehung ist jeweils durch die Phase der Grund-
welle gegeben. Diese Phase lduft mit der Geschwindig-
keit cn, = ¢/n(w) durch den Kristall, wihrend die fre-
quenzverdoppelte Welle die Phasengeschwindigkeit ¢, =
c¢/n(2w) hat. Wegen der Dispersion ist n(2w) # n(w):
Die neu erzeugten Oberwellen sind nur iiber eine kurze
Strecke in Phase. Sie 16schen sich durch destruktive Inter-
ferenz weitgehend aus.

Hier kommt nun die natiirliche Doppelbrechung des
KDP-Kristalls zu Hilfe. Wir betrachten die in Abb. 9.42

9 Polarisiertes Licht

T
!! .\*\ opt. Achse

Abbildung 9.42 Frequenzverdopplung mit einem KDP-Kristall. Die optische
Achse des Kristalls verlauft unter dem Winkel ¢ = 52° gegen die Strahlrichtung
geneigt in der graugeténten Mittelebene des quaderférmigen Stabchens

gezeigte Anordnung. Wenn man das Problem mit (9.52)
behandelt und die Kristallsymmetrie des KDP bertick-
sichtigt, stellt man fest: Schwingt der E-Vektor der ein-
laufenden Welle senkrecht zur optischen Achse, dann
schwingt der E-Vektor der Oberwelle in der Ebene par-
allel zur optischen Achse.'* In Abb. 9.42 erzeugt der
ordentlicher Strahl der Frequenz w einen aufSerordent-
lichen Strahl der Frequenz 2w. Nun wissen wir, dass
beim ao-Strahl der Brechungsindex 7, von dem Win-
kel © zwischen dem k-Vektor und der optischen Achse
abhéngt und haben in Abb. 9.19 gesehen, wie man bei
vorgegebener k-Richtung die Brechungsindizes mit Hilfe
des Indexellipsoids ermitteln kann. Bei der Frequenzver-
dopplung kommt es auf die Brechungsindizes n,(w) und
a0 (8,2w) an. Ebenso, wie man bei einem optisch ein-
achsigen Kristall die Strahlenfldche in Abb. 9.21 zeichnet,
kann man auch eine zweischalige Indexflache konstruie-
ren, bei der in jeder k-Richtung die Brechungsindizes n,
und 1,0 (8) abgetragen werden. Die n,-Flache ist eine Ku-
gel, die n,0-Flache das Rotationsellipsoid von Abb. 9.19b.
Abbildung 9.43a zeigt diese Flachen fiir die Lichtfrequen-
zen w und 2w im Schnitt. Im Bereich normaler Dispersion
nehmen die Brechungsindizes mit steigender Lichtfre-
quenz zu. Beim KDP ist n, > 1,,. Daher gibt es einen

14 Es ist nicht schwer, dies einzusehen. Beim KDP sind aufgrund
der Kristallsymmetrie alle x7,, = 0, auer x%,. = Xizy = d14, Xyjuz =
Xyzx = dos und XLy, = X%y = dse. (Es ist tiblich, die xj,; wie hier an-
gegeben zu bezeichnen.) Fiir den zu cos 2wt proportionalen Anteil
der Polarisation erhélt man dann mit (9.52)
Py =2d4E;Ey, Py =2dysE;Ex, P, =2dsEEy.

Wenn der E-Vektor der einlaufenden Welle senkrecht zur optischen
Achse schwingt, ist die Komponente E; =0 und Ey = —Ey, # 0.
Dann bleibt nur noch P, {ibrig: In der frequenzverdoppelten Welle
schwingen die Vektoren E und D in einer Ebene, die die optische
Achse enthilt, sie bildet also einen ao-Strahl (vgl. Abb. 9.15a). Eine
Erklarung der Notation und ausfiihrliche Tabellen der elektroopti-
schen Koeffizienten findet man z.B. bei A. Yarif u. P. Yeh, ,Optical
Waves in Crystals”, Kap. 12, J. Wiley & Sons (1984).
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Abbildung 9.43 a Die In- a
dexflachen des KDP fir die
Lichtfrequenzen w und 2w. b In-
tensitat der frequenzverdoppelten
Welle als Funktion des Winkels ¢
(nach Maker et al. (1962))

opt. Achse

12w)

o e .
Winkel ¢, bei dem die Bedingung
Mo (W) = Ma0(8,2w) (9.54)

exakt erfiillt ist. Wird dieser Winkel genau eingehalten,
werden die Oberwellen im ganzen Kristall kohdrent er-
zeugt, und man erhélt einen hohen Wirkungsgrad bei der
Frequenzverdopplung (Abb. 9.43b). Mit diesem Verfahren
kann man bei der Frequenzverdopplung Wirkungsgrade
von 65 % und mehr erreichen. Das ist von grofier Bedeu-
tung, denn Laser, insbesondere solche mit hoher Leistung,
lassen sich vor allem im langwelligen Spektralbereich rea-
lisieren. Durch Frequenzverdopplung kann man dann mit
geringem Aufwand Laserstrahlen bis hinein in den UV-
Bereich erzeugen.

Doppelbrechung in kristallinen Fliissigkeiten und
Flachbildschirme

Kristalline Fliissigkeiten nehmen eine Zwischenstellung
zwischen Kristallen und gewohnlichen Fliissigkeiten ein.
Man findet sie als eine besondere thermodynamische Pha-
se bei gewissen organischen Substanzen, die stabférmige
Molekiile bilden. Im festen kristallinen Zustand besteht
bei diesen Substanzen sowohl in der Lage als auch in
der Ausrichtung der Molekiile eine Fernordnung. Beim
Schmelzen des Kristalls geht zundchst nur die Fernord-
nung der Lage verloren, wahrend die Ausrichtung be-
stehen bleibt. Man spricht dann von einer kristallinen
Fliissigkeit. Wie in einer gewohnlichen Fliissigkeit sind

Abbildung 9.44 Kristalline Fliissigkeit, nematische Phase

die Molekiile nicht an feste Plitze gebunden, aber es gibt
eine Fernordnung der Molekiilachsen. Sie geht erst bei
einer hoheren Temperatur mit einem weiteren Phasen-
iibergang verloren.

Es gibt kristalline Fliissigkeiten mit Strukturen verschie-
denen Typs. Uns interessieren hier Fliissigkeiten, die eine
nematische Phase bilden (Abb. 9.44). Solche Fliissigkei-
ten sind einachsig doppelbrechend. Die optische Achse
liegt in der Richtung, nach der sich die Langsachsen
der Molekiile ausgerichtet haben. Da die Polarisierbar-
keit der Molekiile in Langsrichtung grofer ist als quer
zur Stdbchenachse, sind nematische Fliissigkeiten positiv
doppelbrechend (1150 > 1,).

Die technische Bedeutung dieser Fliissigkeiten beruht
darauf, dass sich die Richtung der optischen Achse leicht
manipulieren ldsst. In eine Flasche gefiillt, sieht die kris-
talline Fliissigkeit milchig triib aus: Es bilden sich Doma-
nen unterschiedlicher Orientierung. An den Grenzflachen
der Doménen wird das Licht infolge der unterschiedli-
chen Brechungsindizes reflektiert und gebrochen. Bringt
man die Fliissigkeit jedoch in diinner Schicht zwischen
zwei Glasplatten, an deren Oberfliche man durch Rei-
ben mit einem weichen Tuch eine Vorzugsrichtung er-
zeugt hat, ordnen sich die molekularen Stdbchen, von den
Grenzflachen ausgehend, in dieser Vorzugsrichtung und
die Fliissigkeit wird transparent.

Wenn die auf den Glasflichen erzeugten Vorzugsrichtun-
gen um einen Winkel von 90° gegeneinander verdreht
sind, bildet sich in der kristallinen Fliissigkeit eine um 90°
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Abbildung 9.45 Zur Wirkungsweise eines Flachbildschirms

gewendelte Struktur. Sie bewirkt, dass die Polarisations-
ebene von Licht, das parallel zur optischen Achse der an
der Oberflache befindlichen Molekiile polarisiert ist, beim
Durchlaufen der Schicht um 90° gedreht wird.!> Wird
nun zwischen den Platten ein elektrisches Feld erzeugt,
stellen sich die Molekiile parallel zu den Feldlinien: Die
von den Oberflichen ausgehende Ausrichtung der Mole-
kiile kann durch ein elektrisches Feld leicht aufgehoben
werden.

Mit Hilfe dieser Phdnomene kann man Flachbildschirme
bauen. Auf den Auflenseiten der in Abb. 9.45 gezeigten
Glasplatten werden Polarisationsfolien angebracht, de-
ren Durchlassrichtungen um 90° gegeneinander verdreht
sind. Innen werden sie mit einer transparenten leitenden
Schicht versehen. Darauf wird eine SiO;-Schicht aufge-
dampft, auf der dann durch Wischen die Vorzugsrichtung
erzeugt wird, und zwar parallel zu den Durchlassrichtun-
gen der Polarisatoren. Die kristalline Fliissigkeit befindet
sich zwischen den Platten. Auf der einen Platte ist die lei-
tende Schicht in Bildelemente (Pixels) aufgeteilt, und an
jedes Pixel kann eine Spannung angelegt werden. Auf der
anderen Platte ist die leitende Schicht geerdet.

15 Zur Erklirung dieses Phénomens denken wir uns die Fliissig-
keit zwischen den Glasplatten in diinne Schichten unterteilt, z. B.
in 90 Schichten, deren optische Achsen jeweils um 1° gegeniiber
der vorhergehenden Schicht verdreht sind. Wie Abb. 9.5 zeigte, ist
die Komponente des E-Vektors parallel zur optischen Achse hin-
ter der ersten um 1° verdrehten Schicht El(ll) = E‘(‘0>

der zweiten E ‘(‘D =E flo)(cos 1°)? und hinter der 90. Schicht E

cos 1°, hinter
(90) _
[

E |(|0) (cos1°)% = 0,986E ‘(‘0). Damit das so funktioniert, muss der Ab-

stand zwischen den Glasplatten d > A/ (1120 — 11, sein.
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Source 1 Source 2 Source 3
Gate 1
o By
Gate 2
o By B
Gate 3

Abbildung 9.46 Schaltschema eines AMLCD (Active Matrix Liquid Crystal Dis-
play)

Liegt keine Spannung an, ist das Pixel lichtdurchldssig,
und von hinten beleuchtet erscheint es hell (Abb. 9.45a).
Wird eine Spannung angelegt, stellen sich die Molekii-
le senkrecht zu den Glasplatten, die Polarisationsebene
des Lichts wird nicht mehr gedreht, das Pixel wird dun-
kel (Abb. 9.45b). Natiirlich ist es schwierig, bei einem
Bildschirm mit z.B. 640 x 480 oder gar 1920 x 1350 Pi-
xels die Spannungen individuell zuzufithren. Man hat
daher Strukturen entwickelt, bei denen in jedes Pixel ein
in Diinnschichttechnik hergestellter FET in die leitende
Schicht integriert ist. Das Pixel kann dann tiber Source-
und Gate-Leitungen aktiviert werden (Abb. 9.46).

Sehr einfach ist die Ansteuerung bei der Fliissigkristall-
anzeige in einem Taschenrechner oder bei der Digitaluhr.
Hier werden die Ziffern und Buchstaben durch wenige
grof8e Felder dargestellt, die ohne weiteres von hinten an-
gesteuert werden konnen. Die riickwértige Beleuchtung
wird eingespart und durch einen diffus reflektierenden
Spiegel ersetzt. Das Prinzip bleibt im Ubrigen das Gleiche.
Dass hier polarisiertes Licht im Spiel ist, merkt man erst,
wenn man den Taschenrechner durch eine Polaroid-Folie
betrachtet.
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Ubungsaufgaben

9.1. Polarisation und Brechungsgesetz. Ein unpolari-
sierter Lichtstrahl trifft unter dem Brewster-Winkel auf
eine ebene Glasoberfliache. Wie grofs ist der Polarisations-
grad des Lichtstrahls im Glas?

9.2. Bestimmung der Analysierstirke einer Polarisa-
tionsfolie. Ein Polarisationsfilter besitze fiir vollstindig
linear polarisiertes Licht einen Transmissionsfaktor T =
To(1 + Acos(2a)), wobei a der Winkel zwischen der Po-
larisationsebene des Lichts und der Filterstellung ist. Die
Parameter Ty und A seien zunéchst unbekannt. Stellt man
zwei dieser Filter hintereinander hinter einer Lichtquel-
le auf, die unpolarisierte Strahlung emittiert und misst
die durchgelassene Intensitit als Funktion der Winkeldif-
ferenz ¢ zwischen den beiden Filterstellungen, beobach-
tet man die Abhangigkeit T = Ty2(1 4+ A1 cos(2¢)). Wie
grofs sind Ty und A?

Hinweis: Unpolarisiertes Licht entspricht einer inkoha-
renten Uberlagerung von zwei Lichtkomponenten glei-
cher Intensitédt, die lineare Polarisationen parallel und
senkrecht zur Stellung des ersten Filters besitzen.

9.3. Glan-Prisma. Der Winkel, unter dem die beiden
Teile eines Glan-Prismas geschliffen sind, ist in Abb. 9.23
mit 38,5° angegeben. Wie grofs muss er nach den Daten in
Tab. 9.1 mindestens sein, damit das Prisma funktioniert?
Um wie viel ist die Lichtintensitdt hinter dem Prisma
kleiner als die Intensitdtskomponente mit der gleichen
Polarisation vor dem Prisma? Warum sollte man den Pris-
menwinkel nicht viel grofser wihlen als unbedingt nétig?

Im Prinzip kann man den Kalkspat auch so schneiden,
dass die optische Achse des Kristalls im Vergleich zu
Abb. 9.23 um 90° gedreht ist, sodass am Ausgang der ao-
Strahl und der o-Strahl vertauscht werden. Dann klebt
man die beiden Teilprismen mit einem Ol zusammen.
Welchen Brechungsindex muss das Ol haben und wie
grofl muss man jetzt den Prismenwinkel wahlen?

9.4. Zur Entstehung der Interferenzfarben. Unpolari-
siertes Licht tritt nacheinander senkrecht durch eine Pola-
risationsfolie, eine doppelbrechende planparallele Platte
mit der optischen Achse parallel zur Oberflache und eine
als Analysator dienende zweite Polarisationsfolie. Die Fil-
terstellungen relativ zur optischen Achse der Platte sind
+45° und —45°. Als x-Richtung nehme man die optische
Achse der Platte. Zeigen Sie mit (9.31), dass die Ampli-
tude des Lichts hinter der zweiten Folie A = Eg sin(kz —
wt+6/2)sin(6/2) ist und sich (9.34) ergibt.

Abbildung 9.47 Fresnelscher
Rhomboeder

’V

9.5. Stokes-Parameter. a) Wie sind S=

\/S% + S% + S% und S/Sp nach (9.7)—(9.10) fiir vollstan-
dig polarisierte Strahlung?

grof3

b) Fiir vollstandig polarisiertes Licht sei S = S3 = 0. Wie
grof3 sind die Winkel # und ¢, und wie ist die Polarisation
in Abb. 9.1 darzustellen?

¢) Ist Licht unpolarisiert, ist im zeitlichen Mittel S; =
Sy = S3 = 0, aber zu jedem Zeitpunkt ist S/ Sy = 1. Falltin
Abb. 9.3 eine ungewohnliche statistische Fluktuation auf?
Suchen Sie in Abb. 9.3 Stellen heraus, an denen S; nahe
bei null oder nahe bei eins liegt.

9.6. Fresnelscher Rhomboeder. a) Die Fresnelschen
Formeln (5.42) und (5.43) sind, wenn man mit komple-
xen Zahlen rechnet, zur Beschreibung der Totalreflexi-
on geeignet. An der Grenzflache zwischen einem Medi-
um und dem Vakuum gilt fiir den Ausfallswinkel for-

mal sin By = nsin B > 1, und cos By = \/1—1’[28in2[31 =

iy/n2?sin? B; — 1 wird rein imaginar. Die Additionstheo-
reme fiir trigonometrische Funktionen behalten ihre Giil-
tigkeit. Zeigen Sie, dass nach (5.42) und (5.43) die Am-
plituden der reflektierten und der einfallenden Welle den
gleichen Betrag haben. Wie grof ist die Phasendifferenz
zwischen der reflektierten Welle p; und der einfallenden
Welle? Um welche Phasendifferenz unterscheiden sich die
reflektierten Wellen fiir die beiden linearen Polarisatio-
nen? Zahlenbeispiel: n = 1,51, B1 = 49°. Wie groff werden
die Phasenverschiebungen am Grenzwinkel zur Totalre-
flexion?

b) In einem Fresnelschen Rhomboeder (Abb. 9.47) wird
Licht zweimal totalreflektiert, der auslaufende Strahl ver-
lauft parallel zum einlaufenden. Wegen der unterschied-
lichen Phasenverschiebungen zweier Wellen mit zueinan-
der senkrechten linearen Polarisationen bei Reflexionen
kann man aus linear polarisiertem Licht zirkular polari-
siertes erzeugen. Wie grofl muss dazu der Prismenwin-
kel « gewdhlt werden? Zahlenbeispiel: n = 1,51.
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Eine grofie Resonanz in den Medien fand im Jahre
2016 der Nachweis der Gravitationswellen. Dieses
Phanomen ist so fundamental, dass man sich mit
ihm etwas beschéftigen sollte, zumal die Detektoren
auf optischen Interferenzmethoden basieren, die in
diesem Band besprochen wurden. Wir beginnen mit
Bemerkungen tiber das Raum-Zeit-Kontinuum in
der Allgemeinen Relativitdtstheorie und die Eigen-
schaften und die Erzeugung der Gravitationswellen.
Es folgt die Darstellung der wichtigsten experimen-
tellen Aspekte: Wie ist ein interferometrischer De-
tektor aufgebaut? Welche Empfindlichkeit wird fiir
den Nachweis von Gravitationswellen erreicht und
durch welche physikalischen Effekte wird sie be-
grenzt?

10.1 Das Raum-Zeit-Kontinuum

in der Allgemeinen
Relativitatstheorie

Die Allgemeine Relativititstheorie (ART) , geometri-
siert” die Bewegungen von Koérpern, die dem Einfluss
der Gravitation unterliegen. Geometrisierung bedeutet,
dass sich die Kérper in einem gekriimmten vierdimensio-
nalen Raum-Zeit-Kontinuum bewegen, das die Bahnen
der Korper beeinflusst. Die Raum-Zeit-Kriitmmung wird
ihrerseits erzeugt durch die sich im Raum bewegenden
Massen, sodass eine in sich geschlossene Beschreibung
entsteht.!

Der metrische Tensor

Zur Erlauterung zundchst eine Anmerkung zu gekriimm-
ten Flachen: Flachen auf einer Kugel wie der Erdkugel
kann man durchaus auf einer Ebene wie einer Landkar-
te abbilden und man kann dort, ausgehend von einem
Nullpunkt, ein Kartesisches Koordinatensystem einfiih-
ren. Weit entfernte Gegenden werden dann stark verzerrt
dargestellt. Ist die Mathematik der Darstellung bekannt,
kann man auf die Hintergrundinformation, dass es sich
um eine Flache auf einer Kugel handelt, verzichten. Sie
spielt keine Rolle mehr. Die Geometrie der Fliche ist

! Ausfiihrliche mathematische Details findet man in entsprechen-
den Lehrbiichern wie: H. Stephani, , Allgemeine Relativitatstheorie”,
4. Auflage, Dt. Verlag der Wissenschaften, Berlin, 1991; T. FlieSbach,
,Allgemeine Relativitatstheorie”, 7. Auflage, Springer Verlag, Berlin,
Heidelberg, 2016.
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nicht-Euklidisch: In einem Dreieck ist weder die Win-
kelsumme gleich 180° noch gilt der Satz des Pythagoras.
Auch ist der Umfang eines Kreises nicht gleich dem 27-
fachen des Radius. Dass man die Euklidische Geometrie
mit Hilfe von Langen- und Winkelmessungen einer expe-
rimentellen Priifung unterziehen muss, wurde bereits in
Bd. I/1.1 besprochen.

Das invariante Abstandsquadrat. Die nicht-Euklidische
Geometrie der Flache wird durch Hinzunahme der dritten
Raum-Dimension und der Zeit auf ein vier-dimensionales
Raum-Zeit-Kontinuum erweitert. Um dessen Geometrie
zu beschreiben, fithrt man das invariante infinitesimale
Abstandsquadrat zwischen zwei Raum-Zeit-Punkten ein:

ds? = Y., ) gir(x") da dx* .
i=1,4 k=1,4

(10.1)

Diese Definition ist eine Verallgemeinerung des 4-dimen-
sionalen Skalarproduktes Bd. I, Gl. (15.17) der Speziellen
Relativitdtstheorie. Die Koordinaten x* beschreiben die
Lage eines Punkts im Raum-Zeit-Kontinuum, der Hoch-
Index kennzeichnet die Koordinaten-Komponente. Die
dx’ sind die von einem Beobachter gemessenen Abstan-
de zu einem Nachbarpunkt. Die Summen erstrecken sich
iiber die drei Raumdimensionen und die Zeit. Die von
den Raum-Zeit-Variablen abhédngigen Faktoren g (x/)
bilden den so genannten metrischen Tensor. In unse-
rem obigen zwei-dimensionalen Beispiel dienen sie der
Umrechnung von Distanzen auf der Landkarte in rea-
le Abstinde, die entlang gekriimmter Linien gemessen
werden. Die Ortskoordinaten kénnen vollig willkiirlich
gewdhlt werden, also auch nicht-Kartesische sein, und ei-
ne Uhr kann beliebig in der Zeit fortschreiten. Es muss nur
eine eindeutige Kennzeichnung der Raum-Zeit-Punkte
garantiert sein und die gj sind dem Koordinatensystem
anzupassen. Im Beispiel der Landkarte bedeutet das, dass
verschiedene Projektionsverfahren fiir ihre Herstellung
verwendet werden kénnen. Die Groflen auf der rechten
Seite von (10.1) sind also vom Koordinatensystem abhén-
gig, die linke Seite ist es nicht. Ein Beobachter aus Fleisch
und Blut kann immer Raum und Zeit entkoppeln und
wird in der Umgebung eines Nullpunkts bevorzugt ein
lokales Inertialsystem der Speziellen Relativitatstheorie
mit Kartesischen Koordinaten einfithren (x' = x, x> =y,
x® = zund x* = ct mit der Lichtgeschwindigkeit ¢ im Va-
kuum):

d52 =911 dx2 +89» dy2 + 933 de + g4402 dt2 ,

. (10.2)
Q=0 fur i1#k.
Am Koordinatennullpunkt ist
811 =82 =83=8u=1. (10.3)

Ein Inertialsystem der Speziellen Relativitdtstheorie zeich-
net sich dadurch aus, dass (10.2) mit (10.3) fiir alle Raum-
Zeit-Punkte gilt. In diesem Grenzfall bezeichnen wir den
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durch (10.3) gegebenen Tensor mit ;. Setzt man in (10.2)
ds? = 0, bedeutet dies /(dx2 + dy? + dz2)/d2 = ¢, d.h.
die Geschwindigkeit ist die Lichtgeschwindigkeit. Jeder
Lichtstrahl erfiillt also die Bedingung ds®> = 0. Das gilt
auch, wenn gj; # 1 ist, also ganz allgemein.

Die Eigenzeit. Gleichung (10.1) gibt das Abstandsqua-
drat zweier beliebiger Raum-Zeitpunkte wieder. Betrach-
tet man nur den Zeitablauf am gleichen Ort, definiert
man einerseits mit der allgemeinen Gleichung (10.1)
und andererseits mit dem speziellen Koordinatensys-
tem (10.3) ds? = gy4c® dt? = —c? d72. Das Zeitintegral T =
J dt nennt man die Eigenzeit eines Beobachters, der sich
an diesem Ort befindet. Als Beispiel betrachten wir zwei
baugleiche Uhren, die sich an festen Orten in einem Gra-
vitationspotential ¢ () befinden. ¢ ist dadurch definiert,
dass die potentielle Energie einer Testmasse m¢ ist. Wir
beschranken uns zunichst auf den Newtonschen Grenz-
fall, fir den die ART aussagt, dass man g1 = g = ¢33 &=
1 wiéhlen kann und nur der Betrag von

2¢(r) )

c2

844 = — (1 + (10.4)

von eins abweicht. Ein Beobachter mit der , Koordinaten-
zeit” t ruhe relativ zu den Orten 1 und 2. Nach (10.2)
ist die Eigenzeit der Uhr 1 mit der Koordinatenzeit des

Beobachters tiber die Beziehung dt = dt/+/—gua(1) =
dti /+/1+2¢(r1)/c? verkniipft. Die Eigenzeit der Uhr 2

ermittelt der Beobachter mit (10.2): dm = /—g44(2) dty.
Daraus folgt mit (10.4) unter der Annahme einer kleinen
potentiellen Energie (|¢| < c?):

1+2¢(r) /2’
dn ~dn (1 + @ _ 47(7'1)) )

c2

dn =dn
(10.5)

Fur ¢(rp) > ¢(r1) ist drp > d1y. Der Beobachter stellt fest:
Die Zeitperiode einer Uhr am Ort 1 ist kleiner als die
Zeitperiode einer gleichartigen Uhr am Ort 2 und die
Frequenz eines Oszillators ist am Ort 1 grofler. Das hat-
ten wir bereits in Gestalt des Pound-Repka-Experiments
(Energie-, also Frequenzabnahme von Gammastrah-
lung mit der Hohe tiber dem Erdboden, Bd. 1/15.8)
und des Hafele-Keating-Experiments (Gangdifferenz zwi-
schen Atomuhren in einem Flugzeug und auf dem Erdbo-
den, Bd. I/14.5) kennengelernt (hierzu Aufgabe 10.1).

Raumkriimmung und Massen

Wenn gjx # 1 ist, kann dies entweder daher rithren, dass
ein nichtlineares oder gegen ein Inertialsystem der Spezi-
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ellen Relativitdtstheorie beschleunigtes Koordinatensys-
tem eingefiihrt wurde, oder daher, dass eine Krimmung
des Raum-Zeit-Kontinuums vorliegt wie im zweidimen-
sionalen Beispiel der Landkarte. Diese Kriimmung wird
durch den symmetrischen 4 x 4-dimensionalen Einstein-
Tensor G;(x") beschrieben.? Wie der metrische Tensor
hédngt er von allen Raum-Zeit-Koordinaten ab. Wie man
ihn aus den gj; berechnet, findet man in den Lehrbiichern
iiber Allgemeine Relativitdtstheorie. Nach dem, was wir
in der Elastizitdtslehre bei der Berechnung der Kriim-
mung eines Stabes (Bd. II/1.1) gelernt haben, erwartet
man, dass er von den zweiten Ableitungen 9%g;; /9x*dx"
des metrischen Tensors und von Produkten der ersten Ab-
leitungen abhéngt, deshalb hat er die Dimension m~2. In
diesem Kapitel wird nur das Element G4 benétigt. Im
Newtonschen Grenzfall ist nach (10.4) nur g4 von null
verschieden, und es ist zeitunabhéngig. Das Resultat der
ART ist

0%gua(xt)
ay?

0%gua (x#)
ox?

2 H
G44(x”)=—< —l—aggiéx ))
(10.6)

Die Ursache der Raum-Zeit-Kriimmung sind die sich im
Raum bewegenden Massen, fiir die die Energie-Masse-
Aquivalenz gilt. In der Relativitdtstheorie wird einer Mas-
senverteilung ein symmetrischer Energie-Impuls-Tensor
Tix(x#) zugeordnet. Seine rein zeitliche Komponente Ty
ist die Energiedichte, die gemischten Raum-Zeit-Kompo-
nenten T, bilden analog zum Poynting-Vektor der Elek-
trizitdtslehre die Energiestromdichte. Wegen ihrer Sym-
metrie besitzen die Tensoren Tj und Gy, vier diagonale
und (16 — 4)/2 = 6 nichtdiagonale, also insgesamt zehn
Elemente. Den Zusammenhang zwischen dem Energie-
Impuls-Tensor und der Metrik liefern die zehn nichtlinea-
ren Einsteinschen Feldgleichungen

Gi(a?) = N Ti(xt) (107)
Darin ist 7y die Gravitationskonstante. Diese zunéchst sehr
abstrakt aussehende Formel kann man am einfachen Bei-
spiel einer statischen Massenverteilung im Newtonschen
Grenzfall erlautern. Die Energiedichte ist hier die Dich-
te der Ruheenergie, die sich aus der Dichte p(r) nach

der Speziellen Relativititstheorie zu Ty (r) = p(r)c® er-
gibt. Setzt man (10.4) in (10.6) und (10.6) in (10.7) ein,

2 Genauer gesagt, muss man zwischen dem Einstein-Tensor und dem
Kriimmungstensor unterscheiden. Letzterer wird aus den ersten und
zweiten Ableitungen der gj nach den Koordinaten gebildet und
besitzt 4* = 256 Komponenten. Der Einstein-Tensor entsteht durch
Reduktion auf einen 4 x 4-dimensionalen Tensor. Zusétzlich enthalt
er eine Kriimmung des ganzen Kosmos, die auch ohne Quelle vor-
handen ist (kosmologische Konstante). Diese spielt hier keine Rolle.
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erhdlt man als (4, 4)-te Feldgleichung

Gas(r) = 20900,
2p(r) = TV Tas(r) = arrp(r)

Das sieht genau so aus wie die Poisson-Gleichung Bd. I1I,
GL. (1.51) der Elektrostatik, mit der man ein elektrisches
Potential ¢ aus einer Ladungsverteilung p. berechnet:

(10.8)

A¢(r) = _Peé(r) )
0

Das Gravitationspotential Bd. I, Gl. (5.43) erhdlt man aus
dem Coulomb-Potential Bd. III, Gl. (1.38) durch das Erset-
zen von —pe/ (471teg) durch yp, wodurch man zu (10.8)
gelangt. Die Feldgleichung (10.7) beschreibt also hier die
Erzeugung des Gravitationspotentials aus einer statischen
Massenverteilung.

10.2 Schwarze Locher und
Gravitationswellen

Schwarze Locher

Wie bereits 1916 von K. Schwarzschild gezeigt wurde, gilt
(10.4) auch in starken statischen Gravitationsfeldern im
AufSenraum einer kugelsymmetrischen Massenverteilung,
wobei nach wie vor die klassische Formel ¢(r) = —yM/r
mit der Gesamtmasse M zu verwenden ist.> Dann ist am
Schwarzschild-Radius

_2vM

Qa4 = 0. In (10.5) legen wir Punkt 1 auf den Schwarz-
schild-Radius und ordnen Punkt 2 einem externen Beob-
achter zu. Ein Lichtsignal, das am Schwarzschild-Radius
emittiert wird, bendtigt eine unendlich lange Zeit, um
den aufsen stehenden Beobachter zu erreichen, es kommt
nie an. Die Gravitation ist so stark, dass die Frequenz ei-
ner elektromagnetischen Welle auf null schrumpft. Es gibt
einen Ereignishorizont. Umgekehrt gilt: Materie, die zum
Horizont fliegt, benétigt bis zu seinem Erreichen, von au-
Ben betrachtet, eine unendlich lange Zeit. Je ndher sie dem
Horizont kommt, um so ,roter” werden zurtickgeschick-
te Lichtsignale, bis sie schlief3lich nicht mehr detektierbar
sind. Paradoxerweise ist nach (10.5) die Eigenzeit eines
Mitreisenden bis zum Erreichen des Horizonts endlich.
Ein logischer Widerspruch tritt nur deshalb nicht auf, weil
der Reisende niemals in das Gebiet aufierhalb des Hori-
zonts zuriickkehren kann und auch kein Signal von einer

3 In starken Feldern gibt es zusétzlich eine radiale Kriimmung G, #
0. Sie fithrt dazu, dass die Ablenkung eines Lichtstrahls in einem
Gravitationsfeld doppelt so grof ist, wie man aus der Schwerkraft-
wirkung auf ein Photon errechnet.

10 Gravitationswellen

Stelle innerhalb des Horizonts nach aufien schicken kann.
Man spricht von einem schwarzen Loch. Supermassive
schwarze Locher mit millionenfacher Sonnenmasse befin-
den sich in Zentren von Galaxien, auch in unserer eigenen
Milchstrafle (siehe Bd. 1/3.4). Schwarze Locher mit tibli-
chen Sternmassen werden uns als effiziente Quellen fiir
Gravitationswellen sogleich wiederbegegnen.

Nach (10.9) ist jedem Korper ein Schwarzschild-Radius
zugeordnet. Fiir die Sonne mit der Masse 2 - 103 kg be-
tragt er 3 km. Das ist viel kleiner als der Sonnenradius und
(10.9) ist ohne Belang, weil vorausgesetzt war, dass Punk-
te mit r > rg aulerhalb der Massenverteilung liegen.

Obwohl man nicht hinter den Ereignishorizont sehen
kann, macht die ART eine Aussage iiber das Innere eines
schwarzen Lochs: Normalerweise erzeugen Anziehungs-
kréfte in einem Korper einen Gegendruck, der zu einem
Kriftegleichgewicht fiihrt. Ein schwarzes Loch kann sich
aus einer Ansammlung von Materie bilden, wenn die
Gravitationskraft alle abstofSenden Kréfte tiberwiegt. Die
Materie kollabiert und ist im Endzustand auf einen sin-
guldren Punkt geschrumpft. Diese Situation kann am Le-
bensende eines Sterns nach Aufbrauchen aller Resourcen
fur Kernreaktionen eintreten, wenn auch nicht zwangs-
laufig. In jedem Fall findet ein Kollaps mit Materieausstof3
statt. Bleibt eine Restmasse unterhalb von 1,4 Sonnen-
massen iibrig, erzeugen die Elektronen im Stern einen
Fermi-Druck (Abschn. Bd. 11/12.3 und Aufg. Bd. 11/12.4),
der die Materie stabilisiert und es entsteht ein , weifder
Zwerg”. Bei groflerer Restmasse wird die Materie wei-
ter komprimiert. Elektronen fusionieren mit Protonen, die
Dichte erreicht Werte wie in Atomkernen und es bilden
sich komplex aufgebaute ,Neutronensterne”, in denen
der Fermidruck der Neutronen die Materie stabilisiert.
Die emprische Massenobergrenze fiir Neutronensterne
liegt bei zwei Sonnenmassen, bei grofieren Restmassen ab
ca. 2,5 Sonnenmassen beginnt der Bereich der schwarzen
Locher.

Materie, aus der sich ein schwarzes Loch bildet, besitzt
im Allgemeinen einen Bahndrehimpuls. Deshalb besit-
zen schwarze Locher ebenfalls einen Drehimpuls, was
zur Modifikation der gj und zu einer Redefinition des
Schwarzschildradius fiihrt. Als weitere globale Eigen-
schaft besitzen schwarze Locher eine Entropie.

Gravitationswellen

Bald nach der Aufstellung der Einsteinschen Feldglei-
chungen wurde klar, dass sie als zeitabhédngige Losungen
Gravitationswellen vorhersagen, die von zeitlich verédn-
derlichen Massenverteilungen erzeugt werden und sich
als Verzerrungen der Metrik in der Raum-Zeit ausbrei-
ten. In groffem raumlichen Abstand von der Quelle kann
man sie in einem Kontrollvolumen durch ebene Wel-
len anndhern. Innerhalb dieses Volumens kénnen durch
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Superposition Wellenpakete beliebiger Form entstehen.*
Die ebene Gravitationswelle ldsst sich durch eine kleine
Korrektur zum metrischen Tensor der Speziellen Relativi-
tatstheorie beschreiben:

ik = Nik + fik - (10.10)

Die Amplituden fj nehmen wie die Feldstdrken elektro-
magnetischer Wellen umgekehrt proportional zum Ab-
stand r des Kontrollvolumens von der Quelle ab. Es
gibt eine weitere Parallele zu elektromagnetischen Wel-
len: Gravitationswellen sind transversal polarisiert. Dies
dufert sich so, dass zwei frei bewegliche Massen senk-
recht zur Ausbreitungsrichtung der Welle gegeneinander
beschleunigt werden. In einer monochromatischen Wel-
le fiihren sie gegeneinander harmonische Schwingungen
aus, was zuriickgefiihrt wird auf einen metrischen Tensor

g1 = 1+ 2h; COS(kZ — wgravt + (P) ’

822 = 1 —2hyq cos(kz — wgravt + @) , (10.11)

8ik = ik
Dabei wurde eine Wellenausbreitung in z-Richtung ange-
nommen. Der Abstand x zweier Punkte auf der x-Achse
zu einem bestimmten Zeitpunkt wird in einem Koordi-
natensystem mit konstanter Lichtgeschwindigkeit gemes-
sen, denn die Funktion g7 in (10.11) ist in einem solchen
System definiert. Weil g11 nicht von x abhangt, kann man
das Differential in (10.1) weglassen und erhélt fiir einen
mittleren Punktabstand Ly < r wegen hj; < 1

sonst .

2= L(z)(] + 2h11 COS(kZ - (Ugravt + (P)) ’

x = Lo (1 + M1 cos(kz — wgravt + @)) (10.12)

und analog

y = Lo(1 = h11 cos(kz — wgravt + ¢)) (10.13)

Die Wirkung der Gravitationswelle besteht in einer kor-
relierten periodischen Dehnung und Kontraktion aller
Abstande in der x- und der y-Richtung. Frei bewegliche
Testmassen werden von dieser Raumverzerrung ,mit-
genommen”. Das Verhalten einiger Testmassen in einer
solchen Welle ist in Abb. 10.1 skizziert, in der per defini-
tionem eine Masse am Koordinatenursprung ruht.

Zusétzlich zu der Konfiguration in Abb. 10.1 gibt es
einen zweiten Polarisationszustand, der sich durch ei-
ne Drehung um 45° um die z-Richtung senkrecht zur
Zeichenebene ergibt; er wird durch einen Parameter 5
beschrieben.’

Weil Gravitationswellen transversal polarisiert sind, kon-
nen sie aus Symmetrie-Griinden nicht von pulsierenden

* Wegen der Nichtlinearitit der Einsteinschen Feldgleichungen sind
solche Wellen an der Quelle keine linearen Superpositionen.

5 Die Griinde dafiir, warum sich aus 10 Feldgleichungen nur zwei
Polarisationszustiande ergeben, findet man in der Literatur iiber All-
gemeine Relativitatstheorie: Die Feldgleichungen sind nicht vonein-
ander unabhingig und invariant gegeniiber Eichtransformationen.
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Abbildung 10.1 Verschiebungen von frei beweglichen Testmassen (volle
Késtchen) in einer Gravitationswelle, die sich senkrecht zur Zeichenebene
ausbreitet. Die Massen am Koordinatenursprung und die hohl gezeichneten Test-
massen ruhen

kugelsymmetrischen Massenverteilungen abgestrahlt
werden. Das ist analog zu den elektromagnetischen Wel-
len, die nicht von zeitlich variablen kugelsymmetrischen
Ladungsverteilungen emittiert werden konnen. Hinge-
gen erzeugen zeitabhdngige elektrische Dipolmomente
elektromagnetische Wellen. Wie wir aus Bd. III/2.3 wis-
sen, kann ein Koérper, der nur elektrische Raumladungen
mit ein und demselben Vorzeichen enthilt, durchaus
ein elektrisches Dipolmoment besitzen. Zu dessen Defi-
nition benétigt man allerdings den Massenmittelpunkt
als Referenzpunkt. Der Massenmittelpunkt einer Mas-
senverteilung ist aber gerade dadurch definiert, dass
das Massendipolmoment verschwindet. Eine Quelle
fiir Gravitationswellen muss also zumindest ein zeit-
lich variables Massenquadrupolmoment besitzen. Ein
derartiges Quadrupolmoment ist bereits in einem Sys-
tem zweier einander umkreisender Massen vorhanden.
Das ergibt sich aus der Korrespondenz zum elektrischen
Quadrupolmoment zweier Punktladungen gleichen La-
dungsvorzeichens (siehe Bd. III, Gl. (2.34) und Bd. III,
Aufgabe 2.3). Wenn ein System von Massen rotiert, hat
nach einem halben Bahnumlauf jede Komponente des
Quadrupolmoments, weil die Koordinaten der Massen
beziiglich des Schwerpunkts das Vorzeichen gewechselt
haben, denselben Wert wie vorher. Deshalb ist die Fre-
quenz der Gravitationswelle doppelt so groff wie die
Frequenz des Bahnumlaufs. Die abgestrahlte Leistung ist
proportional zum Quadrat der dritten zeitlichen Ablei-
tung des Quadrupolmoments. Fiir ein bindres System mit
den Massen my und mjy, der reduzierten Masse pioq und
einem Komponentenabstand rp ist sie proportional zu
yfedr‘é und der sechsten Potenz der Kreisfrequenz wgrav
der Welle:

6
VYWerav -

4 myma
10C5 HredB /

M g1
mq + mp

p grav — Hred =

Zwischen den Massen, ihrem Abstand und der Frequenz
der Welle ergibt sich aus dem klassischen Kréftegleichge-
wicht ein Zusammenhang:

2

ymimy _ wgravr
7123 red 4 B s
4y(my+m
Werav = —7( :’3 2) . (1015)
B

229




230

Diese Gleichungen setzen voraus, dass die Geschwindig-
keiten deutlich unterhalb der Lichtgeschwindigkeit lie-
gen und die rdumlichen Verzerrungen noch klein sind.
Abschédtzungen hiermit zeigen, dass die emittierten Leis-
tungen von Doppelsternsystemen wegen der niedrigen
Umlauffrequenzen viel kleiner sind als die Emissionen
kompakter massereicher Objekte (Aufgabe 10.2).

Gravitationswellen mit hoher Intensitit entstehen, wenn
grofse Massen nach kosmischen Mafistadben schnell be-
schleunigt werden. Das geschieht beim Urknall, der Rota-
tion leicht exzentrischer Neutronensterne, dem Sternkol-
laps vor einer Supernova-Explosion, der Fusion zweier
Neutronensterne, der Fusion eines Neutronensterns mit
einem schwarzen Loch oder der Fusion zweier schwarzer
Locher.

Wir wollen die Grofle der Raumverzerrung abschét-
zen, die durch zwei fusionierende schwarze Locher ent-
steht. Dabei orientieren wir uns am ersten, von der
LIGO-Kollaboration beobachteten Ereignis dieser Art, in
dem zwei schwarze Locher mit 30 bzw. 34 Sonnenmas-
sen im Abstand r = 1,3Ly von der Erde innerhalb ei-
nes Sekunden-Bruchteils miteinander verschmolzen sind,
wobei das Energiedquivalent von ca. 3 Sonnenmassen
in Form von Gravitationswellen abgestrahlt wurde. Eine
entsprechende Energie Pgray / (4712) pro Zeit und Fliche
stromt mit Lichtgeschwindigkeit durch das Kontrollvolu-
men eines Beobachters. Die mittlere Energiedichte ist”

7(Q _ Perav
a2

Durch die ebene Welle (10.11) entsteht eine Kriimmung
der Raum-Zeit. Kriimmungen proportional zu den zwei-
ten Ableitungen der gj nach der Zeit analog zu (10.6),
die proportional zu den h; wéren, treten nicht auf. Man
muss ndmlich die von g1 und g2, herrithrenden Beitra-
ge zu Gy4 addieren und die Summe verschwindet. Der
Grund dafiir ist in der weggelassenen Herleitung von
(10.11) verborgen und hédngt damit zusammen, dass die

ebene Gravitationswelle eine Losung der quellenfreien

Wellengleichung (1.34) ist. Ubrig bleibt ein Anteil GE}ZW

des Einstein-Tensors, der proportional zu den hl.zk ist. Er
kann nur von Quadraten der Ableitungen 0g11/9t und
0920/ 0t abhdngen. Experimentelle Grofien, die zu den
h% proportional sind, sind die Geschwindigkeitsquadra-
te schwingender Testmassen, in x-Richtung nach (10.12)

2 2
v w .
7= L3 f;av hiy sin? (kz — wgravt + @) . (10.16)

6 B.P. Abbott et al., LIGO Collaboration, ,,Observation of Gravitatio-
nal Waves from a Binary Black Hole Merger”, Phys. Rev. Lett. 116
(2016) 061102.

7 Weil sich Quelle und Beobachter relativ zueinander bewegen, ist
am Ort des Beobachters an der Energie noch ein von der Rotver-
schiebung Z der Quelle abhéngiger Korrekturfaktor anzubringen.
Bei dem beobachteten Ereignis macht das rund 10 % aus.
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Die Strecke L ist eine apparative Grofie und keine Wellen-
eigenschaft. Das legt den Verdacht nahe, dass der {ibrig
bleibende Faktor proportional zu w?2,,,h?,/c* gerade die

grav
relevante Komponente GA(IZV) ist, denn er hat die Dimen-

sion m~2. Die Rechnung im Rahmen der ART besttigt
diese Vermutung;:

2
w
(W) _ e (1 sin? (kz — wgravt + )

G44

(10.17)
+ 2, sin® (kz — Weravt + l[))) .

Hier wurde noch der Beitrag des zweiten Polarisationszu-
standes addiert, der in der Phase verschoben sein kann.

TL?) und va) sind iiber (10.7) miteinander verkniipft,

wobei an die Stelle der Energiedichte der Materie hier die
Energiedichte der Gravitationswelle tritt. Wir erhalten im
zeitlichen Mittel

>
1Werav 115 1o
27 2 (hn +hu) =4 Pgray - I

/ l6my Pgrav
2 2 _ 8
iy + Iy = w23 4mr?

Mit Pgray = 1c2, 1 = 3 Sonnenmassen pro 0,1s, der Son-

nenmasse my = 2 - 1030 kg, r=13" 10° Ly und Vgray =
Weray /27 = 50 Hz ergibt sich \/h3, + h3, = 210721 Ein

Nachweis des Effektes scheint auf den ersten Blick un-
moglich zu sein. Dennoch ist er gelungen!

Die Frequenz vgry der Gravitationswelle ist wihrend
des Fusionsprozesses nicht konstant. Bei einem Abstand
rg von 5 Schwarzschild-Radien zwischen den schwarzen
Lochern betrégt sie Vgray = wgrav/27 = 5Hz, wie man
aus (10.15) mit rg = 180 km errechnet. Bedingt durch die
Energieabstrahlung nimmt rg ab und vgray und die Um-
laufgeschwindigkeit wgrayrp nehmen zu. Weil die Licht-
geschwindigkeit nicht tiberschritten werden kann, schatzt
man eine Frequenzobergrenze vVgray ~ ¢/ 7rs ~ 1000 Hz
ab. Die Frequenz 50 Hz tritt gegen Ende des Verschmel-
zungsprozesses auf.

Im Newtonschen Fernbereich ldsst sich ein analytischer
Zusammenhang zwischen der Frequenz der Gravita-
tionswelle und deren Zeitabhidngigkeit angeben. Die
abgestrahlte Leistung (10.14) entspricht der Abnahme
der Gesamtenergie der zwei Korper: P = dEi/dt =
—d(ymymy/2r)/dt. Unter Verwendung von (10.15) und
deren zeitlicher Ableitung gelangt man zu

Weray = 16 (g) 15 v (my +my) Hred (10.18)
(Aufgabe 10.3). Aus der Frequenzzunahme der Gravi-
tationswelle einer Sternfusion ldsst sich also die Mas-

senkombination (m1m5)3/5 / (my + m,)'/? bestimmen, die
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den Namen ,Chirp-Masse” tragt. Der zeitliche Ablauf der
Fusion kann heute mit Hilfe subtiler Naherungsverfahren
aus den Einsteinschen Feldgleichungen berechnet wer-
den. Dies erlaubt es, beide Massen und den Drehimpuls
aus den Messdaten zu extrahieren.

10.3 Nachweis der
Gravitationswellen

Ein indirekter Beweis fiir die Existenz von Gravitations-
wellen ergab sich aus der Untersuchung eines Doppel-
sternsystem namens PSR B1913+16. Dieses besteht aus
einem Neutronenstern und einem unsichtbaren Begleiter.
Der sichtbare Stern ist eine extrem genau gehende Uhr, die
periodisch Lichtimpulse emittiert. Der Zeitabstand der
Impulse weist eine Modulation auf, die durch Doppler-
effekt entsteht und vom Umlauf der Sterne umeinander
herrithrt. Die Umlaufzeit betrdgt T = 7,75 Stunden. Sie
wurde tiber Jahre hinweg verfolgt und es zeigte sich, dass
sie sich mit einer zeitlichen Steigung dT/dt = 2,4 - 10712
verringert. Dieser Effekt konnte mit einer Genauigkeit
von 0,2% der Emission von Gravitationswellen zuge-
schrieben werden.?

Versuche, einen direkten Nachweis von Gravitationswel-
len mit Hilfe massiver Zylinder zu erbringen, die resonant
zu mechanischen Schwingungen angeregt werden, fiihr-
ten letztlich zu keinen signifikanten Ergebnissen.

Gravitationswellen-Interferometer

Zweistrahlinterferenz. Die in Abb. 10.1 gezeigte Struk-
tur der Welle legt es nahe, die auftretenden rdumli-
chen Dehnungen und Stauchungen mit einem Michel-
son-Interferometer zu messen. Die Endspiegel dienen als
Testmassen, sie miissen daher frei beweglich sein. Wir
untersuchen zunichst, ob man mit einem tblichen Mi-
chelson-Interferometer eine Gravitationswelle der oben
angegebenen Stirke nachweisen kann. Die Versuchsan-
ordnung entspricht derjenigen in Abb. 10.2, aber ohne
die dort eingezeichneten zusétzlichen Spiegel SI, SP und
SS. Es wird sich herausstellen, dass der Nachweis oh-
ne derartige apparative Verbesserungen nicht moglich ist.
Nach jahrzehntelangen Entwicklungsarbeiten in etlichen
Landern haben heute nach dem Prinzip von Abb. 10.2
arbeitende Detektoren eine Empfindlichkeit erreicht, die
fiir den Nachweis einzelner spektakuldrer Ereignisse aus-
reicht.

8 Fiir die Entdeckung und die Analyse dieses Doppelsternsystems
erhielten R. A. Hulse und J. H. Taylor im Jahre 1993 den Nobelpreis.

——=SE

4km

Interferometer

MR SPH =51 4km
Laser Teil —»D 22W BSUUW o 100KW
85mW
gt Ol SE
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D

Abbildung 10.2 Prinzipieller Aufbau eines interferometrischen Detektors zum
Nachweis von Gravitationswellen (advanced LIGO-Detektor, siehe Bildnach-
weis zu Abb. 10.3). MR: Modenreiniger (,mode cleaner”), SP: Spiegel zur
Riickfiihrung von Laserleistung in das Interferometer (,power recycling”), SI,
SE: Eingangs- und Endspiegel fir die Fabry-Pérot-Resonatoren, ST: Strahlteiler,
SS: Spiegel fiir das ,Signal recycling”, D: Detektor

Durch die Verldngerung und Verkiirzung der Interfero-
meterarme entsteht zwischen dem Lichteintritt und dem
Wiederaustritt aus einem Arm eine Phasenverschiebung

47TLQ
Ap = 1

wobei Ly die mittlere Armldnge ist. Als Lichtquelle dient
ein kontinuierlich laufender Laser. Analog zu elektro-
magnetischen Wellen in einem Hohlraumresonator (Ab-
schn. 2.5) besitzt auch Licht aus einem Laser eine Serie
transversaler Moden. Damit man eine gleichmafiige In-
tensitdtsverteilung tiber den Laserstrahl und eine mog-
lichst einheitliche Frequenz erhilt, werden alle hoheren
Moden von einem sogenannten Modenreiniger unter-
driickt, der ein optischer Resonator ist.

hii(t), (10.19)

In (7.13) zur Berechnung der Zweistrahlinterferenz kann
man die im Michelson-Interferometer zirkulierenden
Leistungen als Integrale der Intensitaten {iber den Strahl-
querschnitt einsetzen. Besitzen die Arme etwas unter-
schiedliche Langen L1, L, und unterscheiden sich auch die
Leistungen P; und P;, erhdlt man als Ausgangsleistung
am Detektor

P=Py+Py+2yP1Pycosd mit
_A4r
A

Gravitationswellen weist man durch die Modulation der
detektierten Lichtleistung nach, die durch die Phasendif-
ferenz Ag entsteht. Als Detektoren werden Photodioden
verwendet. Das Detektor-Signal ist eine lineare und zeit-
lich variable Funktion der Lichtleistung; tiber die schnel-
len Oszillationen mit der doppelten Lichtfrequenz wird

(10.20)

) (L1 —Ly) +2A¢ .
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nattirlich automatisch gemittelt. Dies wird als homodyne
Detektion bezeichnet. Um eine grofie Modulation zu er-
zielen, muss man wegen (10.19) die Strecke Ly moglichst
grofl wahlen, was auf kilometerlange Interferometerar-
me hinauslduft. Dies zeigt Tab. 10.1, die eine Ubersicht
iiber im Betrieb und im Bau befindliche Anlagen gibt.
Aufierdem miissen die Lichtleistungen in den Interfero-
meterarmen so grofs wie moglich sein. Andererseits darf
die am Detektor ankommende mittlere Leistung im Ver-
gleich zur Leistung durch die Gravitationswelle nicht so
grof8 sein, dass der verfiigbare dynamische Bereich des
Detektors iberschritten wird. Deshalb werden die von A¢
unabhéngigen Leistungsanteile in (10.20) gegeniiber dem
Ag-abhédngigen Term um etliche Zehnerpotenzen unter-
driickt. Dies geschieht dadurch, dass das Interferometer
fast auf Dunkelheit eingestellt wird, also der Phasenwin-
kel 6 nahe einem ungeradzahligen Vielfachen von 7 ist.
Dann unterscheidet sich die Differenz L — L, von ei-
nem ungeraden Vielfachen der viertel Wellenldnge A /4
nur um einen kleinen Betrag AL. Die Leistungen P; und
P, werden niemals vollig gleich sein. Es folgt aus (10.19)
mit der mittleren Leistung Py = (P; + P2)/2 und P, =
Pg £ (P1 —P2)/2

1 (4r 2
C055~—1+§<7AL+2A§0) ,

Py — P,)?
/P1P2%PO_(18T2)'

und man erhalt mit (10.20) und (10.19)

Ry 2
(P1 = Po)” + P, (4—7TAL>

T A

(10.21)
47\ ?

Wie man sieht, erzeugt eine Ungleichheit der Leistungen
in den Interferometerarmen nur einen nicht interferenzfa-
higen Untergrund. Ein solcher Untergrund entsteht auch,
wenn sich die aus den Interferometerarmen zuriickkeh-
renden Lichtbiindel nicht perfekt tiberlappen. Wird dies
vermieden und kann man den Term « (P; — P,)? weglas-
sen, besteht die Leistung aus einem Anteil proportional
zu ALZPO und einem Beitrag der Gravitationswelle, des-
sen Amplitude um einen Faktor 4h111Lo/AL kleiner ist.
Soll dieses Verhiltnis beispielsweise fiir hi1; ~ 10~2! und
Ly = 4km in der Groflenordnung 10~° liegen, ergibt sich
eine Verstimmung des Interferometers um die winzige
Strecke AL =~ 20 - 10~ 2 m.

Die Gleichungen (10.19) und (10.21) basieren auf der An-
nahme, dass sich hy1(t) wahrend der Laufzeit des Lichts
durch einen Interferometerarm nicht wesentlich dndert.
Das bedeutet vgray < ¢/2Ly, also fiir ein Interferometer
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Tabelle 10.1 Interferometer zur Suche nach Gravitationswellen

Name Standort Lange (km)

KAGRA (im Bau) Hida/Japan 3,0

GEO600 Ruthe (Hannover)/D 0,6

VIRGO Pisa/Italien 3,0

adv. LIGO Livingston/USA 4,0
Hanford /USA 4,0
Hanford /USA 2,0

von 4km Lange vgray < 38 kHz. Die Wellenldnge Agray =
¢/Vgray der Gravitationswelle muss grof8 gegen 2L, sein.
Ist sie gleich 2L, mittelt sich der Einfluss der Gravitati-
onswelle auf die Phasendifferenz des Lichts weg und das
Interferometer wird unempfindlich.

Empfindlichkeit und Rauschen. Die Leistungsfahigkeit
eines Interferometers kann man durch zwei Parameter
charakterisieren. Eine Dehnung hy; fiihrt zu einer Ande-
rung der Lichtleistung Py am Detektor. Die Eichkonstante
C = Pg/h1; ergibtsich aus (10.21). Man kann AL durch die
mittlere Intensitét Py = Py(47wAL/A)? vor dem Detektor
ausdriicken und erhalt

4\ ? 4
C=4y e ALLyPy = 417L07\/PVP0 . (10.22)

Der Faktor 7 berticksichtigt, dass die Effizienz des Detek-
tors fiir den Lichtnachweis etwas kleiner als 100 % ist. Als
Lichtquelle werden Nd:YAG-Laser mit einer Wellenldn-
ge A = 1pum im Leistungsbereich von 100W eingesetzt.
Fiir das Zahlenbeispiel AL = 20 pm und h1; = 1072 wiir-
den sich mit # = 1 die Leistungen Py =3 -10"°*W und
Py =2,5-10712W ergeben.

Im Detektor treten wegen etlicher noch anzugebender
Rauschquellen zeitliche Fluktuationen der nachgewiese-
nen Leistung Pp = 1Py auf, die die Messgenauigkeit fiir
h11 begrenzen. In der Fourier-Zerlegung Fp(vp) der Leis-
tung, also dem beobachteten Leistungsspektrum, treten
als Funktion der Frequenz vp statistische Fluktuationen
auf. Wiirde man die Messung vielfach wiederholen, wiir-
de man bei jeder Frequenz eine statistische Verteilung der
Fp(vp)-Werte erhalten. Die Leistung in einem endlichen
Frequenzbereich Avp = v — v schwankt mit einer Vari-
anz

1% 2
A /FP(UD)dUD = A(Pcum(v2) _Pcum(Vl))z .
V1

(10.23)
Hier wurde das kumulierte Frequenzspektrum Peym(vp)
eingefiihrt, das das Integral des Leistungsspektrums bis

zueiner Frequenzgrenzeist: Poym (vp) = f0+VD Fp(vp) dvy,.
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Es hat die Einheit Watt, und es ist Poym(c0) = Pp. Zwi-
schen verschiedenen Frequenzen sind die Schwankungen
von Fp(vp) im Allgemeinen unkorreliert. In diesem Fall
ist das Fehlerquadrat (10.23) der Intervallbreite Avp pro-
portional. An Stelle der Varianz (10.23) fithrt man zweck-
mafigerweise ihr Verhiltnis zur Breite Avp ein, weil die-
ser Quotient fiir Avp — 0 einen Grenzwert besitzt. Als
Fehler wird tiblicherweise die Wurzel daraus angegeben:

(10.24)

Der Mittelungsstrich deutet an, dass hier tiber das Qua-
drat des Differentials gemittelt wird. Will man eine Gravi-
tationswelle als Wellenpaket in einem Frequenzintervall
dvgray nachweisen, wird vp als Frequenz vg,y der Gravi-
tationswelle interpretiert und man rechnet (10.24) mit der
Konstanten C aus (10.22) in einen Fehler von /11 um:

dh?, (Vgrav) 1
dvgrav C

Die Fehler (10.24) und (10.25) haben die Einheiten
W/+/Hz und 1/+/Hz. Der Sinn dieser Grofen erschlieft
sich aus einer Betrachtung der Frequenzbandbreite nach-
zuweisender Wellen. Fiir fast monochromatische Wellen
steht nach der Unschirferelation eine nahezu unendli-
che Messzeit zur Verfiigung, sodass sich das Rauschen
wegmittelt und der Messfehler klein wird. Dementspre-
chend ist (10.25) mit der Wurzel aus einer sehr kleinen
Bandbreite zu multiplizieren. Im Gegensatz dazu ist die
Frequenzbandbreite eines sehr kurzen Wellenpakets grof3,
was die Messgenauigkeit verschlechtert.

dp%um (VD)
d]/D

) . (10.25)

Quantenrauschen. Ein wichtiges Beispiel hierzu ist das
Schrotrauschen. Der Name impliziert, dass der Nach-
weis einer Lichtwelle durch Photonen erfolgt, die in un-
regelmafliigen Zeitabstinden wie Schrotkugeln auf den
Detektor prasseln und Stromimpulse mit einer kurzen
Dauer 7 erzeugen. Die Ladung eines Impulses ist der
Quantenenergie hv proportional, der mittlere Strom der
Leistung Pp. Wie aus Abb. 4.12 und Aufg. 4.3a ersichtlich
ist, besitzen die Fouriertransformierten aller Stromimpul-
se die gleiche Einhiillende, deren Ausdehnung durch 1/t
gegeben ist. Hinzu treten statistisch fluktuierende Phasen-
faktoren. Solange vp klein gegen 1/ 7 ist, was hier der Fall
ist (Vgrao S 10*Hz, 1/t 2 10° Hz), wiirde man mit vielen
hypothetischen W1ederholungen der Messung einen fre-
quenzunabhingigen Mittelwert des Leistungsspektrums
und frequenzunabhéngige Schwankungen darum erhal-
ten. Dies wird als weifles Rauschen bezeichnet. Die Vari-
anz des Leistungsspektrums wird der Photonenzahl pro

Zeit Pp/hv und dem Quadrat der Photonenenergie pro-
portional sein. Die genaue Rechnung ergibt’

dpcum VD
d]/D

_ /2Py

Angewandt auf die Gravitationswelle erhdlt man mit
(10.22) und (10.25)

(10.26)

dh% (Vgrav) .
dVgrav

v/ 2nPyhv 2hv

47'[//\ 2ALLQP0 PO 167TLO
U

Bemerkenswert ist, dass sich die Verstimmung AL
in dieser Gleichung herauskiirzt! Fiir das obige Bei-
spiel mit 100W Eingangsleistung und Ly = 4 km kommt

(dh%1 / dvgrav)l/ 2 ~3.10~22/\/Hz heraus. Fiir den Nach-

weis einer Gravitationswelle mit der Dehnung 1021
reicht das nicht aus, wenn eine Bandbreite von einigen
100 Hz zu berticksichtigen ist.

Ein weiteres Quantenrauschen entsteht dadurch, dass in
den Interferometerarmen Feldstdrkefluktuationen existie-
ren. Die Schwankungen AP der zirkulierenden Leistun-
gen werden ebenfalls von (10.26) beschrieben. Es resul-
tieren fluktuierende Kréfte AF = +2AP/c auf die Spiegel,
die unregelméafiige Bewegungen um ihre Mittellagen aus-
fithren. Nach Aufg. 3.7 erzeugt eine periodische Kraft an
einem Spiegel der Masse m eine Oszillationsamplitude
|Ax| = AF/(47t%v2,,,m). Es entsteht ein Messfehler

grav/!

dAR3, (Vgrav)
dVgraV

2+/2hvPy

4712mcLov?

grav

Er steigt mit der Wurzel aus der Leistung im Interfe-
rometerarm an und folgt bei kleinen Frequenzen einem
1/ vgrav -Gesetz. Mit einer gentigend grofien Spiegelmasse
lasst er sich klein genug halten.

Resonante Leistungserhohung im Interferometer. Ge-
staltet man die Interferometerarme durch den Einbau von
Spiegeln hinter dem Strahlteiler (Spiegel SI in Abb. 10.2)
als Fabry-Pérot-Resonatoren, kann man die Lichtleistung
in den Interferometerarmen resonant um mehr als zwei
Groflenordnungen anheben. Das Prinzip ldsst sich an
dem idealisierten Fall erldutern, in dem der Endspiegel
fast den Reflexionskoeffizienten —1 hat. Des Weiteren

9In der etwas aufwandigen Rechnung wird (10.23) mittels Fourier-
Transformationen und Variablen-Transformationen auf das Zeit-
spektrum der Photonen zuriickgefiihrt, das mit Hilfe der Poisson-
Statistik analysiert wird. Eine dquivalente, bereits im Jahre 1918 von
W. Schottky angegebene Formel gibt es fiir das Rauschen eines durch
einen Leiter flieBenden Gleichstroms, das von der Quantelung der

elektrischen Ladung herriihrt: A2 = 2¢lAv.
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betrachten wir hier zunéchst Gravitationswellen mit Fre-
quenzen Vgray, die so klein sind, dass sich h1; wihrend
der Lichtspeicherzeit im Resonator nur wenig &dndert.
Die Oberflache des Eintrittsspiegels SI besitze fiir die
Vorwiérts- und Riickwértsrichtung die Reflexionskoeffizi-
enten p = —p’ und die Transmissionskoeffizienten T und
7’. Man kann analog zu (7.51) und (7.66) und zu Aufg. 7.6
die von einem Resonator reflektierte Wellenamplitude E,
aus der auf SI auftreffenden Amplitude Ej ermitteln:

E, =E (p —tré’ y (—p’)"em) (10.27)
n=0

. ,m./eiﬁ
=R P e )

Mit 77/ =1 — p? erhélt man nach einer Zwischenrech-
nung

< . p—e
E, = E 1" i (10.28)
Beide Fabry-Pérot-Resonatoren werden bis auf Verstim-
mungen AL; und AL, auf maximale Intensitat eingestellt.
Dann sind die Phasen §;, abziiglich eines wegzulassenden
Vielfachen von 277, (10.20) zu entnehmen: §; = 4tAL; /A £
A¢. Die AL; sind so klein, dass §; < |1 — p| ist. Man kann
die reflektierte Amplitude nach Potenzen von J; entwi-
ckeln und erhalt aus (10.28)

p—l—i(S,»

~ ~ o
T1-p—i&

T-p

—1-2i . (10.29)

g-j<| E|-j<

In den beiden Fabry-Pérot-Resonatoren werden verschie-
dene Vorzeichen von AL; gewéhlt. Weil die Vorzeichen
der Dehnungen hj; von Natur aus verschieden sind,
sind auch die Vorzeichen der ¢; verschieden. Das aus
den Eintrittsspiegeln und dem Strahlteiler der Anord-
nung in Abb. 10.2 bestehende Michelson-Interferometer
wird auf Dunkelheit eingestellt. Die beiden reflektier-
ten Amplituden sind zu subtrahieren und der konstante
Term —1 in (10.29) hebt sich im Idealfall heraus. Fiir
die Ausgangsleistung des Interferometers gilt mit nur ei-
nem Unterschied wieder (10.21): Die beiden relevanten
Leistungsanteile sind um einen Faktor G, = 4/[1 — p|?
verstarkt. Der Fehler durch das Schrotrauschen wird um
einen Faktor 1/+/G, verkleinert.

Einfluss der Lichtlaufzeit im Interferometer. Die bis-
herige Darstellung ist in zweierlei Hinsicht unvollstan-
dig: Energieverluste in den Fabry-Pérot-Resonatoren sind
nicht berticksichtigt, sie reduzieren den Faktor G,. Die
Amplitude der Gravitationswelle dndert sich wéhrend
der Lichtlaufzeit im Interferometer. Als Speicherzeit 7; de-
finiert man die Zeit, in der die Amplitude einer Lichtwelle
im Resonator ohne Energiezufuhr auf 1/e-tel abklingt. Bei
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einer Speicherung iiber Ni; = 200 Lichtumldufe und ei-
ner Armldnge Ly = 4 km bedeutet das beispielsweise 7; =
2LgNy/c ~ 5ms, und die modifizierte Gl. (10.21) ist be-
reits bei einer Frequenz Vgray = 1 /Ts = 200Hz nicht mehr
richtig.

Weil (10.12) auf einem Koordinatensystem basiert, in dem
die Lichtgeschwindigkeit konstant ist und der Uhrtakt
durch den Laser gegeben ist, entsteht bei der Lichtaus-
breitung in x-Richtung pro Streckenintervall dxy = cdt
durch die Raumdehnung eine Phasendifferenz 27t/ -
hi11(t) dxo. Zu einem bestimmten Messzeitpunkt ¢y kann
man diese Phasenverschiebung fiir n vergangene Hin-
und Riickwege des Lichts zwischen den Resonatorspie-
geln aufsummieren. Man erhélt fiir eine harmonische

Gravitationswelle /111 (t) = hge'@sravt

to

2 i
Ag, = ¢ / hgelwsavt dt
t07211L0/C
A(Pn R 27t hoeiwgravtg (1 _ e72inwgra\,Lo/c) )

Werav

In (10.27) enthilt der Term €™ einen Faktor e"2?, der
durch den Ausdruck

e ~ 1 +iAg,

~14 27c

hoeiwgravto (1 _ e_zmwgravLO/C>

(10.30)
zu ersetzen ist. Man erkennt, dass das Resultat (10.27)
in zwei Summanden aufspaltet, von denen einer von
der Gravitationswelle nicht beeinflusst wird, wahrend
der zweite zu hy proportional ist. In (10.27) wurde der
Phasenfaktor e“f0 der Lichtamplitude weggelassen, der
hinzuzufiigen ist. Es folgt, dass das Licht in den Resonato-
ren aus drei Komponenten besteht: einer Tragerwelle mit
der Laserfrequenz w und zwei zu hy proportionalen Sei-
tenbandern mit den Frequenzen w =+ wgray.

Werav

Die Empfindlichkeit C erhélt man aus der Analyse von
(10.27) mit dem von hy abhédngigen Teil von (10.30). Man
findet mit einigen Rechentricks, dass sie bei niedrigen Fre-
quenzen proportional zu

1

CxK=,|———
1+Tszwérav

(10.31)

ist mit 7, = 2Ly/ (1 — p)c. Die Speicherzeit resultiert hier
wegen der gemachten Vereinfachungen nur aus der Licht-
durchlédssigkeit der Spiegel SI in Abb. 10.2.

Leistungsriickfithrung. Das bisher beschriebene Interfe-
rometer hat die Eigenschaft, dass fast die gesamte aus
den Armen zuriickkehrende Lichtleistung zur Lichtquel-
le reflektiert wird. Dies ldsst sich durch den Einbau eines
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Abbildung 10.3 Vergleich des experimentell beobachteten Rauschens in ei-
nem der LIGO-Detektoren mit dem berechneten Quanten-Rauschen und dem
apparativ bedingten Rauschen. Aufgetragen ist AhyqLy. LIGO Scientific Collabo-
ration and Virgo Collaboration, 2016

teildurchldssigen Spiegels zwischen Lichtquelle und In-
terferometer vermeiden (,, Power Recycling”). Dieser Spie-
gel bildet zusammen mit den Eintrittsspiegeln der Fabry-
Pérot-Resonatoren einen weiteren optischen Resonator.
Mit geeigneter Justierung tritt vor den Fabry-Pérot-Re-
sonatoren eine zusatzliche Leistungserhthung um einen
Faktor Gy, ein, die deutlich mehr als eine Gré8enordnung
ausmacht. Um den gleichen Faktor vergréfiern sich die
Leistungen in den Armen und am Detektor, und der Ein-
fluss des Schrotrauschens wird um den Faktor 1/,/G,
reduziert.

Wie man in Abb. 10.2 sieht, gibt es vor dem Detektor
einen weiteren teildurchldssigen , Signal-Recycling“-Spie-
gel, dessen Funktion sich nicht mit wenigen Worten er-
lautern ldsst. Das Licht ist allseitig fast eingesperrt und es
entsteht ein System gekoppelter Resonatoren, das durch
den zusétzlichen Spiegel mit dessen Reflektivitdt und Po-
sition zwei zusétzliche Freiheitsgrade erhélt. Lichtwellen
mit der Tragerfrequenz und den Seitenbandfrequenzen
verhalten sich unterschiedlich. Durch Anhebung einer
Seitenbandintensitat lasst sich der Einfluss des Schrotrau-
schens weiter reduzieren, auch lassen sich die mittlere
Frequenz und die Bandbreite fiir den Gravitationswellen-
nachweis variieren.

Als Beispiel sind fiir einen run des adv. LIGO-Experi-
ments einige Zahlen in Abb. 10.2 angegeben. Die Laser-
Leistung in den Armen wird resonant um einen Faktor
10* vergrofert. Am Detektor sind die mittlere Leistung
und die Leistungsanderung durch die Gravitationswelle
bei der gewdhlten Verstimmung um rund einen Faktor
5.10* grofler als im Fall des ,normalen” Michelson-
Interferometers bei gleicher Laserleistung (siehe die Ab-
schatzung im Anschluss an (10.22)). Das Quantenrau-
schen ist in Abb. 10.3 eingetragen. Der Fehler durch
das Schrotrauschen wurde gegeniiber dem ,normalen”

Michelson-Interferometer um rund zwei Grofsenordnun-
gen reduziert. Man erkennt, dass die Nachweisschwelle
bei hohen Frequenzen wegen (10.31) proportional zu vgray
ansteigt und vollstindig vom Schrotrauschen bestimmt
wird. Bei niedrigen Frequenzen sieht man den zu 1/ wérav
proportionalen Anstieg durch Feldfluktuationen in den
Interferometerarmen, der allerdings keine Rolle spielt.

Technische Herausforderungen. Beim Bau von Anla-
gen, wie sie in Tab. 10.1 aufgefiihrt sind, treten zahlreiche
physikalische und technische Probleme auf, von denen
hier nur einige erwéhnt seien.

Luft im Interferometer wiirde den Nachweis von Gravita-
tionswellen unmoglich machen. In den Interferometerar-
men entsteht wahrend eines Lichtumlaufs durch den Bre-
chungsindex eine Verschiebung des optischen Lichtwegs
um 2(n — 1)Ly. Die Differenz (n — 1) ist der Dichte der
Molekiile proportional, die statistischen Schwankungen
unterworfen ist. Es entsteht zwischen den Interferometer-
armen eine fluktuierende Differenz An des Brechungsin-
dex, die die Messung der Raumdehnung um Ahj; = An
verfalscht. Um diesen Effekt zu vermeiden, muss man ein
Interferometer mit Kilometern Linge und einem Licht-
strahldurchmesser im cm-Bereich in einem Ultrahochva-
kuum bei einem Druck unterhalb von 10~° Pa betreiben.
Dann vermeidet man gleichzeitig Einfliisse des Restgas-
drucks auf die Spiegelpositionen.

Die freie Beweglichkeit der Spiegel wird dadurch gewéhr-
leistet, dass sie an Quarzglas-Faden oder Stahldrdhten
aufgehdngt werden. Um die Wirkung von seismischen
Storungen, Erschiitterungen und Schwerkraftwirkungen
durch bewegte Massen in der Umgebung zu dampfen,
gibt es mehrere iibereinander angeordnete Pendelsyste-
me. Die oberste Pendelaufhangung ist auf einer Plattform
montiert, die keinen direkten Kontakt zum Boden hat, un-
ter ihr befinden sich weitere gegeneinander schwingungs-
gedampfte Plattformen. Im Falle des LIGO-Experiments
wurden damit Erschiitterungen oberhalb von 10 Hz um
insgesamt 10 Zehnerpotenzen unterdriickt. Bei niedrige-
ren Frequenzen ldsst die Dampfungswirkung sehr schnell
nach.

Alle im System enthaltenen Spiegel und der Strahltei-
ler miissen auf kleine Bruchteile der Lichtwellenlédnge
genau positioniert werden, und auch die Winkelstel-
lungen miissen kontrolliert werden. Daher besitzen die
optischen Komponenten mehrere magnetische oder elek-
trostatische Antriebe, mit deren Hilfe sie verschoben und
gedreht werden kénnen. Bei der Regelung der Spiegel-
positionen bedient man sich folgenden Tricks: Der La-
serstrahl mit der Tragerfrequenz durchlduft einen elek-
trooptischen Modulator, der der Lichtphase eine genau
bekannte Modulationsfrequenz im 10 MHz-Bereich auf-
pragt. Hierdurch entstehen Frequenz-Seitenbdnder des
Laserstrahls. An einem Resonator soll Licht mit einer
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der Frequenzen im Resonanzfall nicht reflektiert werden,
wéhrend Licht mit der zweiten Frequenz reflektiert wird.
Bei verstimmtem Resonator wird Licht mit beiden Fre-
quenzen reflektiert. Betrachtet man die Fourierzerlegung
der reflektierten Leistung, erkennt man, dass sie eine aus
Tragerfrequenz und Seitenband entstehende Misch-Kom-
ponente enthélt, die ausschliefSlich mit der Modulations-
frequenz oszilliert. Durch Multiplikation mit einem Signal
mit der Modulationsfrequenz wird in einem Mischer ein
Signal erzeugt, das nach Glattung ein Mafs fiir die Spie-
gelstellung ist. Damit das vom Interferometer reflektierte
Licht aus dem ankommenden Laserstrahl herausgelenkt
wird und zum Mischer gelangen kann, durchlduft der
Laserstrahl vor dem Interferometer einen in Abb. 10.2
nicht eingezeichneten Faraday-Isolator, der den riickldau-
figen Strahl reflektiert, wie dies Abb. 9.37b zeigt. Werden
ungleiche Armldngen in den Interferometern und meh-
rere Seitenbandfrequenzen gewdihlt, lassen sich gezielt
Spiegelkombinationen ansteuern. Fiir die Winkelstabili-
sierung gibt es ein eigenes Regelungssystem mit speziel-
len Wellenfronten-Sensoren. Die Differenz der Armléangen
wird durch eine gegenldufige Steuerung der Endspiegel
SE in Abb. 10.2 kontrolliert.

Alle Spiegel fithren wegen der Regelungsprozedur fluktu-
ierende Bewegungen aus, die einen Messfehler zur Folge
haben. Als Beispiel ist er fiir einen run des adv. Ligo-Expe-
riments als Kurve ,Other DOF” in Abb. 10.3 aufgetragen.
Der Effekt begrenzt den Nachweis von Gravitationswel-
len mit niedriger Frequenz.

Unterschiedliche Armléngen in einem Interferometer ha-
ben zur Folge, dass bei fluktuierender Laserfrequenz
keine konstante Phasendifferenz zwischen den interfe-
rierenden Strahlen mehr besteht. Deshalb gibt es eine
hohe Anforderung an die Stabilitét der Laserfrequenz, die
bei einem Wert von v =3 - 10 Hz um nicht mehr als
10~°Hz/+/Hz schwanken soll. Es gibt keinen Laser, der
diese Bedingung erfiillt. Die Laserfrequenz wird daher
mit einer Regelung an die mittlere Armlénge der Fabry-
Pérot-Resonatoren angepasst.

Eine thermische Belastung der Spiegel durch Laserstrah-
lung fithrt zur Anderung von deren optischen Eigen-
schaften, was durch geeignete elektrische und Laser-
Heizungen ausgeglichen wird. Ein anderer thermischer
Effekt sind Warmebewegungen und Schwingungen der
Bauteile. Sie erzeugen Fehler, die in Abb. 10.3 bei nied-
rigen Frequenzen liegen. Es ist kaum zu vermeiden,
dass mechanische Resonanzen wie Spiegelschwingungen
oder Langsschwingungen der Aufhéngefdden im Bereich
der zu detektierenden Frequenzen liegen, wie man in
Abb. 10.3 erkennt. Bei der Datenanalyse hilft hier die in
Abschn. 8.4 erwédhnte Signal-Bearbeitung: Storende Re-
sonanzen lassen sich rechnerisch durch Herausschneiden
von Frequenzbédndern aus den Fourier-Transformierten
von hj; beseitigen. Dies gelingt um so besser, je schmaé-
ler stérende Resonanzen sind, weshalb Spiegel und Faden

10 Gravitationswellen

aus Materialien mit geringer mechanischer Dampfung
hergestellt werden miissen.

Zusammenfassung: Um eine hohe Empfindlichkeit fiir
ein Gravitationswellen-Interferometer zu erhalten, wird
die Lichtleistung in den Interferometerarmen resonant
um mehr als vier Grolenordnungen erhoht und das In-
terferometer wird nahe einer Intensitdtsnullstelle betrie-
ben. Die Empfindlichkeit wird bei niedrigen Frequenzen
von mechanischen Erschiitterungen, apparativen Rausch-
quellen und thermischen Effekten begrenzt, bei hohen
Frequenzen vom Schrotrauschen. Der sensitivste Bereich
liegt zwischen Frequenzen von 30 und 1000 Hz, dort wer-
den, wie Abb. 10.3 zeigt, Empfindlichkeiten fiir Dehnun-
gen bis unter 1023 /+/Hz erreicht. Die Empfindlichkeit
lasst sich durch eine hohere Laserleistung verbessern.

Beobachtung und Ausblick

Das oben erwéhnte erste von der LIGO-Kollaboration ge-
fundene Gravitationswellensignal zeigt Abb. 10.4.1° Das
Bild ist bearbeitet: Aus der Fourier-Transformierten wur-
den kleine und grofie Frequenzen entfernt und die in
Abb. 10.3 sichtbaren Resonanzen sind herausgefiltert.
Man erkennt die am Ende von Abschn. 10.2 und in
Aufg. 10.3 diskutierte Frequenzzunahme der Gravitati-
onswelle vor der Herausbildung eines neuen stabilen
Ereignis-Horizonts. Im unteren Teil von Abb. 10.4 ist zu
sehen, dass die rauschbedingten Fluktuationen der ge-
messenen Dehnungen, nachdem die theoretischen Signale
abgezogen wurden, innerhalb und aufierhalb des Signal-
bereichs die gleiche Struktur aufweisen, aber fiir beide
Interferometer verschieden sind.

Durch eine weitere Verbesserung der existierenden und
durch den Aufbau weiterer Detektoren (Japan, Indien)
sowie deren weltweiter Vernetzung wird die Empfind-
lichkeit insgesamt erhoht. Weil die Amplituden von
Gravitationswellen umgekehrt proportional zum Ab-
stand von der Quelle sind, entspricht einer Verdopplung
der Empfindlichkeit eine Verachtfachung des Volumens
im Weltall, aus dem Signale beobachtet werden kénnen.
Sind drei Detektoren gleichzeitig aktiv, ist es auch mog-
lich, Quellen am Himmel zu lokalisieren. Die Richtung
der Welle ermittelt man aus der Zeitdifferenz der eintref-
fenden Signale. Ferner kann man mit den Signalen dreier
Detektoren die oben beschriebenen tensoriellen
Polarisations-Eigenschaften einer Gravitationswelle iiber-
priifen.

Eine solche Messung gelang zum ersten Mal beim Nach-
weis der Fusion zweier schwarzer Locher mit den bei-
den 4km-LIGO-Detektoren und dem Virgo-Detektor im

0 Fyr die Entdeckung der Gravitationswellen erhielten im Jahr 2017
R. Weiss, B. Barish und K. Thorne den Nobelpreis fiir Physik.
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Abbildung 10.4 Von der LIGO-Kollaboration beobachtetes Ereignis, das von der Fusion zweier schwarzer Locher herriihrt. Oben links: Signal im ersten In-
terferometer. Oben rechts: Signal im zweiten Interferometer, zusammen mit dem zeitlich verschobenen und gespiegelten Signal des ersten Interferometers.
Mitte: Reproduktion der Gravitationswelle durch die ART mit zwei verschiedenen Rechenverfahren. Unten: Signale nach Abzug der angepassten Gravitationswelle.

LIGO Scientific Collaboration and Virgo Collaboration, 2016

August 2017; die Massen waren mit rund 30 und 25 Son-
nenmassen dhnlich denen des Ereignisses in Abb. 10.4.!!

Noch im gleichen Monat wurde ein weiteres Gravitations-
wellensignal mit v6llig anderen Eigenschaften gefunden:
Es war {iber eine wesentlich ldngere Zeit hinweg beob-
achtbar und die Chirpmasse betrug nur 1,2 Sonnenmas-
sen. 1,7 s nach der Fusion entstand ein Gammastrahlungs-
Blitz, der aus der gleichen Himmelsregion kam und
von zwei Experimenten (Fermi-Teleskop der NASA und
INTEGRAL-Teleskop der ESA) detektiert wurde. Dies
spricht dafiir, dass eine Fusion zweier Neutronensterne
stattgefunden hat'?. Lauft eine Fusion in dieser Weise

11 LIGO Scientific Collaboration and Virgo Collaboration, , A Three-
Detector Observation of Gravitational Waves from a Binary Black
Hole Coalescence”, Phys. Rev. Lett. 119 (2017) 141101.

12 LIGO Scientific Collaboration and Virgo Collaboration, ,,Observa-
tion of Gravitational Waves from a Binary Neutron Star Inspiral”,
Phys. Rev. Lett. 119 (2017) 161101.

ab, wird eine so genannte Kilonova-Explosion erwartet.
Dann findet wéihrend Tagen oder Wochen im sichtba-
ren und infraroten Spektralbereich eine Lichtemission
statt, die letzlich die Folge einer Aufheizung der Materie
durch radioaktive Zerfélle ist. Diese Lichtemission wurde
von von vielen Teleskopen nachgewiesen und erlaub-
te die Zuordnung des Ereignisses zu einer bestimmten
Galaxie.

Will man zu kleineren Frequenzen im Bereich 0,1-
100mHz vorstofien und neue Quellen erschliefien, muss
man die seismischen and anderen terrestrischen Storun-
gen beseitigen und die Armldnge um mehrere Groflen-
ordnungen anheben. Dies ist nur moglich mit einem
Interferometer im Weltraum. Dieses soll aus drei Satel-
liten in ca. 10° km Abstand bestehen. Zum Studium der
Experimentiertechnik wurde bereits ein Satellit (,,LISA
pathfinder”) in Betrieb genommen. Eine neue wissen-
schaftliche Disziplin ist im Entstehen: die Astrophysik mit
Gravitationswellen.
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Ubungsaufgaben

10.1. Prizisions-Zeitmessung in einem Flugzeug. Ein
Flugzeug fliege mit konstanter Geschwindigkeit v in
konstanter Hohe & entlang des Aquators. Verallgemei-
nern Sie die Herleitung von (10.5) aus (10.2) und (10.4)
auf die Differenz der Eigenzeiten zwischen dem Flug-
zeug und der Bodenstation und zeigen Sie, dass sich die
Einfliisse der Gravitation und der Zeitdilatation addie-
ren. Mehr hierzu (Hafele-Keating-Experiment) findet man
in Bd. 1/14.5. Wie unterscheiden sich die Zeitanzeigen
der Uhren in folgendem Beispiel: Flughthe i = 10000 m,
Fluggeschwindigkeit v = 200m/s, eine Erdumrundung
in West-Richtung und eine in Ost-Richtung. Der Erdra-
dius ist g = 6370km. Man vergleiche die Resultate mit
Bd. I, Tab. 14.1.

10.2. Gravitationswellen bindrer Systeme. a) Wie grof3
ist die Leistung der vom System Erde-Sonne abgestrahl-
ten Gravitationswellen? Daten: Radius der Erdbahn rp =
1,5 - 10" m, Masse der Erde mp = 6 - 10%* kg.

b) Wie grofs ist die Leistung der Gravitationswellen ei-
nes Doppelsternsystems mit folgenden Daten: Massen =
1 Sonnenmasse = 2 - 103 kg, Umlaufperiode = 6h? Wie
viele Sonnenmassen werden pro Jahr abgestrahlt?

10.3. Frequenzinderung der Gravitationswelle eines
bindren Systems. Beweisen Sie (10.18) mit (10.14) und
(10.15) im nichtrelativistischen Grenzfall, in dem die Mas-
sen konstant sind und die Leistung der Gravitationswelle
aus einer langsamen Abnahme der Gesamtenergie des
Zweikorper-Systems stammt. Zahlenbeispiel: m = mp =
30 Sonnenmassen, Werav = 27 - 50 Hz. Wie grof ist a')grav?

Um wie viel unterscheiden sich die Periodendauern zwei-
er aufeinander folgender Oszillationen?

10.4. Gravitationswellen: Unschirferelation und Inter-
ferometrie. Nach der Unscharferelation Ax;Apy > hi ver-
ursacht die Positionsmessung eines frei beweglichen
Interferometerspiegels mit der Genauigkeit Ax; eine
Impulsunschérfe und damit eine Geschwindigkeitsun-
schérfe des Spiegels, was eine Positionsunschirfe Ax; in
der Zukunft bedeutet. Die nachste Positionsmessung fin-
de nach der Zeit 7 statt, die Spiegelmasse sei m. Welche

Genauigkeit Ax = y/Ax? + Ax3 lasst sich fiir die Spiegel-
verschiebung erreichen? Die Amplitude einer Gravita-
tionswelle d@ndere sich in der Zeit T um Ahy,. Wie hangt
die Nachweisgrenze fiir Ahyy, die man mit Interferome-
terarmen der Lange L erhélt, von T ab? Zahlenbeispiel:

Ly =4km, m = 40kg, T = 0,005s.

Die Zeit T identifiziere man mit der Abklingzeitkonstan-
ten eines Lichtstrahls in einem Interferometerarm. Wie oft
muss das Licht im Arm durchschnittlich hin und her lau-
fen, damit T den oben angegebenen Wert hat?

10.5. Storung eines Gravitationswellen-Detektors
durch externe Massen. Eine Masse M, die sich im
Abstand s vom Endspiegel eines Gravitationswelleninter-
ferometers auf der Armachse befinde, schwinge mit einer
Amplitude As und einer Frequenz v, in Armrichtung. Die
Eigenfrequenz der Spiegelschwingung sei klein gegen
ve, sodass der Spiegel als frei beweglich betrachtet wer-
den kann. Mit welcher Amplitude schwingt der Spiegel
und welcher Dehnung entspricht das bei einer Armlén-
ge Lg? Zahlenbeispiel: Ly =4km, s =20m, M = 1kg,
ve = 10Hz, As = 10 cm.
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1.1 Reflexion einer Seilwelle am losen Ende.

In Abb. 1.6 sind die Vorzeichen der gestrichelt einge-
zeichneten, riicklaufigen Wellen umzudrehen: Der an-
kommenden Welle wird eine reflektierte Welle gleichen
Vorzeichens iiberlagert. Damit die Randbedingung (1.2)
erfiillt ist, muss deren Amplitude mit der Amplitude der
ankommenden Welle iibereinstimmen. Dann ist der Aus-
schlag des losen Seilendes zu jedem Zeitpunkt doppelt so
grofs wie die ankommende Amplitude. Dass die Randbe-
dingung erfiillt ist, kann man folgendermaflen einsehen:
Hat die ankommende Welle die momentane Zeitabhén-
gigkeit dy/dt, besitzt sie zu diesem Zeitpunkt am Seilende
die rdumliche Steigung —1/v - dy/dt, wenn v die Ausbrei-
tungsgeschwindigkeit ist. Die Amplitude der reflektierten
Welle ist gleich grof3, aber die rdumliche Steigung hat
wegen der umgekehrten Laufrichtung das umgekehrte
Vorzeichen. Daher entsteht am losen Seilende insgesamt
die rdumliche Steigung dy/dx = 0.

1.2 Kabelclipping.

Das reflektierte Signal trifft nach der doppelten Kabellauf-
zeit 2ns am Oszillographen ein und es hat das umgekehr-
te Vorzeichen wie das eingespeiste Signal. Daher steigt die
beobachtete Spannung wéhrend der ersten 2ns an und
bleibt danach fiir 3ns konstant. Dann beginnt der kon-
stante Teil des Primédrsignals, aber das reflektierte Signal
wichst noch und die Spannungssumme des Primaérsi-
gnals und seiner Reflexion féllt ab, bis sie nach weiteren
2ns, also insgesamt nach 7 ns den Wert null erreicht. 55 ns
nach Beginn des Vorgangs fallt das Primérsignal ab und
die Spannungssumme wird negativ, sodass ein zweiter
7ns langer, aber negativer Impuls entsteht (Abb. 11.1).
Diese Impulse haben eine Anstiegszeit von 2ns, errei-
chen aber nur 40% der Hohe des Originalsignals: Um
den Preis einer Verkleinerung wird das Signal verkiirzt!
Dieses , Kabelclipping” ldsst sich daher zur Erzeugung
kurzer Impulse verwenden.

1.3 Fourier-Reihe.

a) Die Spannung ist gegeben durch

do Ip
U=— =wLly | coswt — 2 sin*wtcoswt | . (11.1)
dt I
u(t)
ohne
Reflexion

mit

Kabel-Laufzeit

Abbildung 11.1 Verkiirzung eines Spannungsimpulses durch Uberlagerung
eines Signals mit seiner Reflexion

11 Lésungen der Ubungsaufgaben
Mit trigonometrischen Relationen erhélt man

cos 3wt = cos 2wt cos wt — sin 2wt sin wt

= cos? wt cos wt — sin® wt cos wt — 2 sin® wt cos wt ,

1
sin? wt - cos wt = 7 (cos wt — cos 3wt)

und somit

3 I
U=wLly | |1--% | coswt+ —5cos3wt |. (112)
AL AL

Die Reihe bricht also nach dem 3w-Term ab. Fur Iy/Is =
1/2 ist die Amplitude des 3w-Terms um einen Faktor 15
kleiner als die Amplitude der Grundschwingung.

b) Mit der Vormagnetisierung ist die Induktionsspannung

2
u= d—CD = wLlIjy cos wt (1 — M)

2
dt Ig
B I2
= wLlycoswt| 1 — —AZA — Vsin? wt
I 12
S S
Iml
— 2% sin a)t> ,
I3
B ?
U=wL| [1--L - M) coswt+ —L cos 3wt
412 2 472
S S S (11.3)
Il
— % sin2a)t> .
I3

Es tritt ein zusétzlicher Summand mit der Frequenz 2w
auf, der zu Iy proportional ist. Fiir I = 0 gilt bei klei-
nem Iy fiir den Fluss @ey¢ &~ LIy, sodass der Zusatzterm
dem externen magnetischen Feld proportional ist. Da man
die Frequenz 2w herausfiltern kann, wurden nach diesem
Prinzip Magnetfelder gemessen.

¢) Solange Pex¢ = 0 ist, also auch, wenn Iy > g ist, ist die
Induktionsspannung eine um den Zeit-Nullpunkt sym-
metrische Funktion. Die Fourier-Reihe kann deshalb nur
cos-Terme, aber keine sin-Terme enthalten. Der Strom und
die Spannung besitzen eine weitere Symmetrie: Nach ei-
ner Halbperiode haben sie den gleichen Betrag, aber das
umgekehrte Vorzeichen: U(t + T/2) = —U(t). Fir eine
geradzahlige Oberwelle mit der Frequenz nw (n gerade)
gilt aber

cos(nwt + nwT/2) = cos(nwt + nm) = + cos nwt .

Die Fourier-Reihe kann deshalb nur ungerade Vielfache
der Grundfrequenz w enthalten:

U = Uy coswt + Uz cos3wt + ...
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Ist Iy > Is, verschwindet im Modell die Induktionsspan-
nung, wenn |I(t)| den Wert Is iiberschreitet. Die Zeiten,
zu denen dies eintritt, erhdlt man aus der Bedingung
sinwty = £lg/Iy. Eine der Losungen liegt im Bereich 0 <
to < T/4. Diesich aus (11.2) ergebenden Fourier-Integrale
der Form

/ cos wt cosnwtdt,

/ cos 3wt cosnwtdt (n ungerade)

sind zu erstrecken tiber die Zeitintervalle t = —fy ... + fg,
t=-T/2...—T/24+tyund t=T/2 — ty...T/2. Weil
to < T/4 ist, gibt es im Integrationsintervall Liicken und
alle Integrale verschwinden nicht. Die Fourier-Reihe ent-
hélt also unendlich viele Summanden, deren Berechnung
aber ziemlich miihselig ist.

d) Wird eine Cosinus-Spannung vorgegeben, muss der
Strom eine Oberwelle der Frequenz 3w enthalten, um
den Spannungsanteil dieser Frequenz in (11.2) zu kom-
pensieren. Das Induktionsgesetz fithrt dann aber wegen
des I*-Terms zu Spannungsoszillationen mit noch gréfe-
ren Frequenzen. Damit sich diese herausheben, muss der
Strom weitere Oberwellen aufweisen: Man erhilt eine un-
endliche Fourier-Reihe.

1.4 Dispersionsrelation.

a) Die Phasen- und die Gruppengeschwindigkeit sind

=% sin(kL) ,

Uph = vg = woL cos(kL) .

Fiir kleine k ist
Uph & Vg ~ wolL .

b) Die Reihenentwicklung der Phasengeschwindigkeit ist

. w0k2L3 . K212
Z)ph—a)()L— 6 —a)()L 1—T .

Mit den angegebenen Zahlen ist im Frequenzbereich
von 1GHz die Wellenldnge A = 5um und es wird kL =
0,0012 <« 1.

1.5 Losungen der klassischen Wellengleichung.

a) Gleichung (1.44) héngt von x2/t, aber nicht von x + vt
ab. Die Formel beschreibt eine eindimensionale Diffusi-
on (siehe Bd. II, Gln. (6.10) und (6.11)). Die Amplitude
fliefst” im Laufe der Zeit ,,auseinander”, was keine Wel-
lenausbreitung ist.

b) Gleichung (1.45) beschreibt eine Gaufsfunktion, die sich
mit der konstanten Geschwindigkeit v = w/k vorwérts
bewegt. ¢ ist daher eine Losung der dispersionsfreien
Wellengleichung.

¢) Gleichung (1.46) beschreibt die Superposition zwei-
er gegenldufiger Wellen. Der Vorgang ist dispersionsfrei,
wenn ki = k ist. Andernfalls hiatte man die kuriose Situa-
tion, dass die Ausbreitungsgeschwindigkeit einer harmo-
nischen Welle von ihrer Laufrichtung abhéngt.

d) Die Funktion ¥ in (1.47) ist ein Produkt von Funk-
tionen, die jeweils Wellenausbreitungen beschreiben. Die
haben im Allgemeinen verschiedene Ausbreitungsge-
schwindigkeiten. Es handelt sich um ein Schwebungspha-
nomen wie in (1.28). Das gehorcht einer Wellengleichung
mit einer frequenzabhéngigen Ausbreitungsgeschwindig-
keit, die Wellen sind also im Allgemeinen nicht dispersi-
onsfrei. Die Dispersionsfreiheit ist aber in (1.47) als Son-
derfall enthalten. Wegen der trigonometrischen Relation
2sinasin B = cos(a — B) — cos(a + B) beschreibt (1.46) die
Superposition zweier Wellen mit den Wellenzahlen k; — k»
und k; + ko und den Frequenzen w; + wy und wy — w».
Die Gleichheit ihrer Geschwindigkeiten erfordert

Wy — w1
ki +ky N

wy + w1
ko —kq

Diese beiden Gleichungen haben die Loésungen:
(1) wi/ky = —wy/ky, d.h. Gleichheit der Phasenge-
schwindigkeiten (die k; konnen auch negativ sein),
(2) kf =0 und wy =0 oder k, =0 und w; = 0. Dann
héngt in (1.47) einer der Faktoren nur von x, der andere
nur von f ab. Das sind die stehenden Wellen, hier noch
ohne Randbedingungen.

e) In (1.48) hingt ¢ von einem Produkt aus x 4 vt und
x — vt ab und kann daher keine Losung der dispersi-
onsfreien Wellengleichung sein. Die Formel ergibt keinen
physikalischen Sinn.

1.6 Federkette.

Die i-te Masse mit der momentanen Koordinate x; wird
von den Federkraften der nachsten Nachbarn an den Po-
sitionen x;11 beschleunigt:

dzx,»

m
dr?

=a(xip1 —x) o (X1 —x;)

= (Xi+1 + X1 — in) .

Fiir die Auslenkung der Massen aus den Ruhelagen
wird die Funktion ¢ eingefiihrt mit ¢(x;, f) = x; — X; und

l[)(fiil, l’) = Xj4+1 — Xj+1, worin X; und X;;1 die mittleren
Positionen sind. Mit der Taylorentwicklung

oY _ _. 1%y _ _
Xit1 = X + a—lf; (Xi1 — X;) + Ea—xlf (Xja1 — xi)2
und X; 11 — X; = +a erhélt man
Py 0% Py _a Py
o T M o2 T wm”

woraus sich die Ausbreitungsgeschwindigkeit v =
ay/a/m ergibt. Zahlenbeispiel: v = 6,3cms L.
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2.1 Schallgeschwindigkeit in Gasen.

Die Gasdichte ist p = Mp/(RT), wobei M die Molmasse
ist. Mit der Formel fiir die Schallgeschwindigkeit erhalt
man

kRT _ v2M

M~~~ RT’

Fir Luft ist x = 1,40 = 7/5, aber fiir CO, ergibt sich ¥ =
1,30 < 1,40. Die Interpretation: Das CO,-Molekiil kann
Knickschwingungen ausfiihren, die bei niedrigerer Tem-
peratur angeregt werden als die Schwingungen der Luft-
molekiile, die bei Zimmertemperatur noch nicht auftre-
ten.

Vs =

2.2 Eigenfrequenzen einer Pfeife.

Bei konstanter Wellenldnge sind die Eigenfrequenzen pro-
portional zur Schallgeschwindigkeit, also zu v/x/M: Fir
Helium mit M = 4g/mol und x = 5/3 erhélt man v; =
972m/s, v = 1468 Hz. Das kann man ohne Gefahr fiir
Leib und Leben demonstrieren, indem man einmal kurz
Helium einatmet und etwas spricht.

2.3 Warum sind Schallwellen in idealen Gasen adiaba-
tisch?

a) Die Warmestromdichte ist

j= —Ad—T = —ATok - cos(kx — wt) .

= (11.4)

Die pro Halbperiode (T ,, = 7/w) und Querschnittsfla-
che A der Welle transportierte Warme ist

Q a7
A_AkTOw'

b) Eine Schicht mit der Querschnittsflache A, die eine hal-
be Wellenlange dick ist, enthalt eine Gasmenge

- po)LA
" 2RTy

VG

Die Abweichung der inneren Energie vom Mittelwert in
einer solchen Schicht, die mit der Welle mitlauft, ist maxi-
mal

_ 2 & _ 2pA
u= HCVVGTO = kRTO cy

To -

Der vorderste Faktor 2/ 7t rithrt von der raumlichen Mit-
telung der Temperatur her, denn der Mittelwert einer

sin-Funktion iiber eine Halbwelle ist 1/7t fon sinpdg =
2/ 7. Ferner wurde A durch 27t/k ersetzt.

¢) Das Verhiltnis der beiden Energien ist

Q  7mARTK®  mART, (k )2w _ TART
U 2wpeey  2cypy \w  2cypovi
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Hier kann man cy/R = 5/2 und die iibrigen Daten ein-
setzen und erhilt bei 1000Hz Q/U = 2 - 10~°. Die ther-
mischen Oszillationen kdnnen sich in der Welle nicht ab-
bauen. Selbst Ultraschallwellen mit 10’ Hz werden nicht
innerhalb weniger Perioden geddmpft: Die Schallausbrei-
tung ist ein adiabatischer Prozess. Deshalb kann man die
Temperaturamplitude aus der Druckamplitude mit der
Adiabatengleichung ausrechnen:

pl T = const —  (1—x)=

To_ _x=1p
To K po

2.4 Temperierte Stimmung.

Ein Halbtonschritt entspricht einer Anderung der Fre-

quenz um einen Faktor 2!/12 = 1,059. Ein Horer bengtigt
eine relative Genauigkeit von etwas weniger als der Half-
te dieses Wertes, um Tone nicht zu verwechseln: Av/v ~
2,5%.

2.5 Eigenschwingungen einer Saite.

a) Man benoétigt das Masse-zu-Lange-Verhiltnis der Sai-
te (r = Drahtradius, rcy, = Auflenradius der Kupferwick-
lung):

j = T PDrant + (18 — 1)PCul]
=8,9-103kg/m +0,193kg/m = 0,202kg/m .

Die Zugkraft erhdlt man aus der Wellengeschwindigkeit
auf der Saite, die sich aus der Frequenz v = 440/16Hz
und der Wellenlange A = L/2 ergibt:

v:\/E:Av:lLv — s:1L2u2y:71N.
U 2 4

(11.5)
Die Zugspannung ist

S
r=—5=63-10"Pa.
TTr

Das liegt fiir Stahle noch im Proportionalbereich.

b) Wenn die Kraft und die Frequenz konstant sind, ist
die Saitenlédnge nach (11.5) proportional zu 1/, /. Fiir ei-

ne Saite ohne Kupfermantel kime L = /0,202/8,9 - 10-3 -
1,36 m = 6,5m heraus, recht unhandlich!

¢) Bei konstanter Kraft und konstantem y ist die Saiten-
lange umgekehrt proportional zur Frequenz, und man
kann das Resultat von b) skalieren: L' = Lv/v' = L/16 =
40 cm.

d) Die Gesamtzahl der Saiten schatzt man auf 220 ab und
erhalt Stot ~ 15kN.
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2.6 Stehende Welle auf einem Fadenpendel.

a) Es wurde die Grundschwingung vorausgesetzt
und nach (2.11) ist kL = 7t. Zahlenbeispiel: k = /L =
1,75m™!. Die Kreisfrequenz ergibt sich aus der Schwin-
gungsdauer: w = 271/T = 31,45~ 1. Die Ausbreitungsge-
schwindigkeit einer Stérung auf dem Faden ist

_w 2L 1
U= T 18ms™ " .
b) Die Masse des Fadens ist mr = uL, es ist mg = S und
mit (2.5) folgt
mE _ pLE _ B8

m S uo?’
2

mp  gT

— =°—=0,054.

m 4L

Die Voraussetzung der Rechnung (mp < m) ist also ei-
nigermaflen gut erfiillt. Die Fadenspannung nimmt nach
oben hin etwas zu und damit auch die Ausbreitungs-
geschwindigkeit. Da die Frequenz {iiberall dieselbe ist,
nimmt die Wellenlinge nach oben ebenfalls zu: Das
Schwingungsmaximum liegt etwas unterhalb der Faden-
mitte.

c) Die Lange des maximal durchgebogenen Fadens erhilt
man aus der Transversalauslenkung y = xq sin kx als Kur-
venintegral:

1 1
~L + Ekzxé/cos2 kxdx =L+ Zkzx%L ,
0

letzteres, weil der Mittelwert der cos?-Funktion gleich1/2
ist. Somit ist die Anhebung der Masse L — L' = k*>x3L /4.
Die kinetische Energie des gestreckten Fadens ist

L L

1 1

Ey/vz(x) dx = nyéaﬂ/sinz kx dx
0 0

1
= Zyx%aﬁL .

Wenn dies gleich mg(L — L') sein soll, folgt mgk? = pw?,
alsow/k = \/mg/u, und das ist gerade die Formel fiir die
Ausbreitungsgeschwindigkeit.

Ist eine schwingende Saite fest eingespannt, fithrt deren
Elongation L' — L gegen die Zugkraft S zu einer gespei-
cherten potentiellen Energie S(L' — L) und es kommt (2.5)
heraus.

2.7 Dispersion von Tiefwasserwellen.

Die Phasengeschwindigkeit fiir die Wellenldnge A; er-
rechnet man mit (2.40) zu v, = 0,685m/s. Die zweite
Welle muss nach Voraussetzung die gleiche Phasenge-
schwindigkeit haben. Gleichung (2.40) ldsst sich um-
schreiben:

2
/\Z_z_nv%h/\:_47'f0’,
8P
2 2
A—Evlzghzlz 71204}1_471(7/
g g P 8P
T 409
A=Ay —2=,[vh — 22,
g\ P o

Numerisch erhdlt man Ay = 1,0 mm. Da der Ausdruck un-
ter der Wurzel nie negativ werden darf, ist die minimale
Phasengeschwindigkeit

1/4
Oph = (4%) —0,23m/s.

An der Stelle der minimalen Phasengeschwindigkeit fal-
len die Losungen A und A, zusammen und es ist

T o o
A=—0v5 =2, /— =1,7cm..
g " V gp

3.1 Schallstirke und Schallwechseldruck.
Bei einem Schallpegel [, = 50 dB ist der Schalldruck nach
(3.22)

p = po - 10%/20 = 20uPa - 10>° = 0,0063 Pa .

3.2 Reflexionsfreie Aufspaltung eines Signals.

Das erste Kabel wird zuniachst durch den Widerstand R
abgeschlossen. Diesem in Reihe geschaltet ist eine Paral-
lelschaltung der zwei anderen Kabel mit ihren Vorwider-
stainden R. Die Reflexionsfreiheit erfordert

1 3.1
Z=R+3(R+2Z)=3R+Z
z
R=%2=1670Q
3 = 1o

Am Ende des ersten Kabels erscheint das Signal noch in
urspriinglicher Hohe. Am Sternpunkt ist es um den Fak-

tor
(R+2)/2 2

(R+Z2)/2+R 3

kleiner geworden. Am Eingang der Folgekabel ist die
Signalhohe um einen weiteren Faktor Z/(Z + R) = 3/4
reduziert worden. Wenn die beiden Kabelausgénge hinter
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der Verzweigung mit dem Widerstand Z abgeschlossen
werden, dndert sich nichts mehr und die Signalhohe ist
insgesamt um einen Faktor zwei kleiner als am Anfang.
Den beiden Kabelausgiangen wird zusammen die Halfte
der urspriinglich eingespeisten Leistung entnommen, die
andere Halfte wird in den drei Widerstanden R in Warme
verwandelt.

3.3 Wellenwiderstand eines Koaxialkabels und einer
Streifenleitung.
a) Mit (3.26) und (2.87) erhilt man
L' Ho 2 (T
A 1 A
C' 4m2ege n (ri

n — o 27Z €€/ Mo )

Ta
Numerisch ergibt sich r; =044mm, L' = 0,25uH/m,
C' = 99 pF/m. Das entspricht dem handelstiblichen RG-
58-Kabel mit BNC-Steckern.
b) Die Gleichheit der Eindringtiefe mit dem Bruchteil ¢
des Radius r; besagt wegen (2.83):

1

&ri 2 ———,

VvV TTHOO eV
1
v> ———— =22MHz.
nﬂOUelg F

) C' erhdlt man als Kapazitit eines Plattenkondensators:
C' = gob/d. L’ erhélt man aus dem magnetischen Fluss @’
pro Leiterlinge, der von einem Strom I erzeugt wird.

Nach dem Ampereschen Gesetz ist Hb = I, somit ¢’ =
uoHd = uold/b und L' = pod/b. Aus (3.26) folgt

L/ ]/ld d | €

3.4 Feldstiarken in einem Laserstrahl.

a) Bei konstanter Energiedichte wire die Intensitit I =
P/(ro?). Fiir ein GauBsches Strahlprofil mit der zentra-
len Intensitéat Iy erhdlt man

o0
= 71(7,210 ,

p= / 2relpe ¢/ A = —moPlpe ¢/
0
0

die Formel fiir die Intensitat im Strahlzentrum ist also die-
selbe wie vorher.

In der folgenden Feldstdrkeberechnung sind E und B die
Effektivwerte:

P B 1
I=—=EH=E— =E—,
Oy 0 CHo
P
E=, [P —346V/m,
Oy
B= E_ 1,15-107°T.
C
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b) Wéhrend der Dauer eines Pulses ist die Leistung
1073J/108s = 10°W, also um einen Faktor 108 grofer
als vorher. Entsprechend sind die Feldstarken um einen
Faktor 10 groer: E = 346 MV /m, B = 0,0115T.

3.5 Kometenschweif.

a) Die Kraft durch den Strahlungsdruck sei F,,q, die Gra-
vitationskraft F grav-

2

Ttr

Frag = PSomem ,
47 pr®GMsonne
F grav. = 37 p2
2r
_ 2 3 . — —

GMsonne = WgrdeRErde Mit  WErde = 1Jahr ’

F rad __ 3P Sonne
- 2 3
Fgrav 167—L—(‘)ErdeRErdep re

=0,28.

b) Die transversale Beschleunigung durch den Strah-
lungsdruck ist

Frad _ 3PSonne
(47t/3)pr3  167mpR2rc

Legt der Komet eine kurze Strecke s auf seiner Bahn zu-
riick, bendtigt er dazu die Zeit t = s/v. Die Bewegung
eines Teilchens relativ zur Kometenbahn studiert man am
besten in einem rotierenden Koordinatensystem, das sich
mit dem Kometenkern mitbewegt. Dann wird die An-
ziehungskraft der Sonne durch eine Scheinkraft kompen-
siert. Bei minimalem Abstand zur Sonne, d. h. verschwin-
dender Radialgeschwindigkeit, entsteht eine Transversal-
ablenkung

1, as?

Es ist mv? /R = Fgray und wegen a = Fyoq/m ist

AR:Fraidsz o AR _ Frag s

2FgravR s FPgay 2R’

Zahlenbeispiel: AR/s = 0,014. Der Schweif ist diffus, weil
in der Beschleunigung a der nicht einheitliche Teilchenra-
dius im Nenner steht. Eine Kriimmung entsteht, weil AR
nichtlinear von s abhdngt.

3.6 Magnetischer und elektrischer Dipol.

a) Man kann (3.34) abschreiben, wobei man das elektri-
sche Dipolmoment durch das magnetische Dipolmoment
Pm = 71.'7’210 und die elektrische Feldkonstante €; durch die
magnetische ersetzt:

P — pow* A2
" 127
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Die Dimensionsbetrachtung zeigt, dass der willkiirliche
mafBisystembedingte Faktor pg im Zihler und nicht im
Nenner zu stehen hat:

3
_ —4 4,28

Zahlenbeispiel: P, = 1,1 - 101w

b) Die Amplitude des elektrischen Dipolmoments ist pe =
1,8-1071° A sm und die Leistung ist

47213 - AP w?
=—2 —— =5.10°W.

¢ 12703
Eine genauere Inspektion der Formeln zeigt, dass die viel
kleinere Leistung des magnetischen Dipols daher riihrt,
dass das Verhiltnis Py, / P. dem Quadrat des Verhaltnisses
der Dipolausdehnung zur Wellenldnge proportional ist:
Pn 1 r2w? _ mr?

Pe 2 16  4A2°

Bei konstanter Dipollange und konstanter Stromstarke ist
die Leistung des elektrischen Dipols dem Quadrat der
Frequenz proportional. Das gilt, solange die Wellenldnge
grofs gegen die Dipolabmessung ist.

c) Fiir die Abstrahlung von 1 W muss p, = 7,4 - 107 Asm
sein. Extrapoliert man das Dipolmoment aus Teil b) zur
Frequenz 1,8 GHz, erhdlt man p, = 5,5 - 10713 Asm. Weil
dies etwas kleiner ist und wegen der kleineren Abmes-
sungen des Telefons muss der Strom entsprechend grofler
sein. Aufierdem ist die Wellenlange nicht mehr grof$ ge-
gen die Abmessungen des Telefons.

3.7 Abstrahlung eines geladenen Teilchens.

a) Die Schwingungsamplitude und das Dipolmoment er-
geben sich aus der Newtonschen Bewegungsgleichung;:

dzx 2
m—s = —mw-x(t) =eE(t),
= (t) = eE(t)
eEy e2Ey
Xo=——5, = —.
0 me2’ P07 man

Der Impuls besitzt die Amplitude mwxp und die Ampli-
tude seiner zeitlichen Ableitung ist

dp\ _ o
<E>O—mw xo = —eEy .

In (3.34) und (3.35) eingesetzt, ergibt sich in beiden Fallen

42
__E
. =
127regm?2c3 ’

wobei im Falle von (3.35) ein Faktor 1/2 hinzugefiigt wur-
de, weil der Effektivwert von (dp/dt)? eingeht.

b) Die durchschnittliche kinetische Energie des Elektrons
ist

¢’E3

dmw?

= 1
Exin = mezx% =

Das Verhiltnis der abgestrahlten Energie pro Periode und
der mittleren kinetischen Energie ist

271 e 2

w Ekin 3€0ﬂ1C3 '

2we

Wenn dies klein gegen Eins sein soll, folgt

3 3
w < M 102 Hy .
2¢2

Die Frequenz auf der rechten Seite ist riesig: Sie ent-
spricht der Zeit, die Licht benétigt, um eine Strecke von
der Groflenordnung des klassischen Elektronenradius zu-
riickzulegen. Fiir derartige Frequenzen ist (3.35) gar nicht
mehr giiltig. Solange man klassisch rechnen darf, hat die
Strahlungsdampfung auf die Schwingung eines einzelnen
isolierten Elektrons fast keine Auswirkung.

3.8 Poynting-Vektor.
Die elektrische Feldstarke innerhalb des Kabels ist

u
E(r) = rin(rq/7;)

mit den Bezeichnungen wie in (2.87). Die magnetische
Feldstarke ist H = I/ (27tr). Der Poynting-Vektor E x H ist
parallel oder antiparallel zum Strom orientiert. In jedem
Falle zeigt er von der Batterie zum Verbraucher, gleich-
giiltig, an welchem Kabelende und mit welcher Polaritit
die Batterie angeschlossen wird (4 Félle). Die transportier-
te Leistung ist

27ty In(r, /1) dr=1IU.

i

a 7,
pP= /Zm’E(r)H(r) dr= 27U
i

3.9 Energiefluss im Kondensator.

a) Nach der Maxwellschen Gleichung (2.44) gilt auf einer
geschlossenen kreisformigen Feldlinie

dE
27trH = mtrege—
TUY. TTr~€g€ dt

b) Das Vektorprodukt E x H ist bei Aufladung des Kon-
densators nach innen zur Kondensatorachse hin gerichtet.
Es ist
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¢) Ein Zylinder mit dem Radius r besitzt die Oberflache
A = 27trd und der Poynting-Vektor ist mit der Leistung

dE
P = tr’dege—E
TTr-aepe dl’

verkniipft. Der Faktor 7172 ist das Volumen innerhalb der
Zylinderflache und der zweite Faktor ist die zeitliche Ab-
leitung der elektrischen Energiedichte epeE? /2.

d) Die Zufiihrungsdrihte zum Kondensator besitzen eine
Kapazitat relativ zum Rest der experimentellen Anord-
nung. Sie tragen daher Ladungen, verbunden mit radialen
elektrischen Feldern. Fliefit ein Strom, ist der Poynting-
Vektor parallel zum Draht gerichtet. Somit stromt die
Energie bei der Aufladung eines Kondensators aus der
Stromquelle heraus, lauft aufSen an den Zufiithrungsdréh-
ten entlang, umgeht die Kondensatorplatten und strémt
dann von aufien durch den Spalt zwischen den Platten in
den Kondensator hinein.

4.1 Wellenzahl-Vektor.

Der Winkel zur z-Achse ist 90°. Die Richtungs-Cosinusse
relativ zur x- und y-Achse sind V/3/2 und 1/2. Der Wel-
lenzahl-Vektor ist k = (7t/ V3,71/3, 0)m~!

4.2 Phase eines Wellenfeldes.

Man zerlegt ein Wegelement im Integral in Komponenten
dr| und dr parallel und senkrecht zum Wellenzahl-Vek-
tor. Senkrecht zum Wellenzahl-Vektor ist die Phase der
Welle konstant, daher ist

]Zk-dr:/k(r)dr :/%dr“,

und dies ist die Zahl der Wellenlingen zwischen den
Endpunkten, multipliziert mit 27r. Dabei spielt es keine
Rolle, ob man bei der Integration Umwege macht; zwi-
schendurch diirfen sogar Vorzeichenwechsel des Weges
dr| auftreten.

4.3 Fouriertransformation von Funktionen nach Re-
chenoperationen.

a) Die Fourier-Transformierte F einer zeitlich verschobe-
nen Funktion ist nach (4.50)

F(w) _ /f(t)eiwt+iwrdt _ eiWTF(a)) ,

d. h. die Fourier-Transformierte wird mit einem von w ab-
hédngigen Phasenfaktor vom Betrag eins multipliziert, der
um so schneller oszilliert, je grofler die Zeitverschiebung
ist.
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b) Man differenziert das Fourier-Integral (4.52) nach der
Zeit und liest als Fourier-Transformierte der Ableitung ab:

F(w) = —iwF(w) .
¢) Indie Gleichung f(t) = [*_fi(t—t') fo(t') dt’ setzt man
die Fourier-Entwicklung der Funktion f; ein:

_L]"
_2

Hierin vertauscht man die Integrationsvariablen und
stellt die Reihenfolge einiger Terme um:

f(t)ZZT[/ /f2

Diese Gleichung entspricht der Fourier-Entwicklung
(4.52). Der Ausdruck zwischen den grofien Klammern
muss daher die Fourier-Transformierte von f(t) sein, die
aus F1(w) und der Fourier-Transformierten von f; (¢), also
F>(w) besteht.

d) Das RC-Glied, das von einem variablen Strom aufge-
laden wird, ist ein sehr einfaches Beispiel: Eine kleine
Ladungsmenge dQ = I(t) dt fithrt am Ausgang zu einer
zeitabhingigen Spannung dU = dQ/Ce~*/RC. Integriert
iiber die Vergangenheit bis zu einem Zeitpunkt ¢ gilt:

71wteiwt' dwfz(t/) 4

8\8

, .
1wt dt/ e 1wtdw .

t
/ %I(t/)e(ftjtt/)/RC 4t ,

—00

u(t) =

d.h. man kann die Funktion I(¢) mit f, und die Expo-
nentialfunktion mit Cf; identifizieren. Bei der Fourier-
Transformation von f; ist die Integration iiber die Zeit
beidseitig bis ins Unendliche auszufiithren. Dem wird
dadurch Rechnung getragen, dass man die Exponenti-
alfunktion abschneidet, also gleich null setzt fir ¢ > t.
Physikalisch bedeutet das, dass eine auf den Kondensator
flieBende Ladung nicht die Spannung in der Vergangen-
heit beeinflussen kann. Die Fourier-Transformierte dieser
so ergdnzten Exponentialfunktion ist

—+00
1 : R
F1(w) — E / eft/RC+1wtdt —

1 —iwRC
B 1
- 1/R—iwC’
In Bd. III/17.1 hatten wir den komplexen Widerstand ken-

nengelernt. Ein periodischer Strom erzeugt am RC-Glied
einen periodischen Spannungsabfall

1
1/R +iwC "’

V.

=1
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Die Strom-Amplitude [ identifiziert man mit der Fourier-
Transformierten von f, = I(t), die Spannungsamplitude
U mit der Fourier-Transformierten der Spannung. Der
komplexe Widerstand entspricht dann gerade der Fouri-
er-Transformierten der Exponentialfunktion. Dass fiir den
komplexen Widerstand das konjugiert Komplexe im Ver-
gleich zu Bd. Il herauskommt, liegt an den verschiedenen
Phasenkonventionen fiir Strom und Spannung in Bd. III,
Gl. (17.38) und in (4.52).

4.4 Fourier-Transformierte von Funktionen mit Spriin-
gen und Knicken.

a) (1) Es ist F(w) = Fy(w) + F2(w) mit

[e]

(o) .
Fi(w) = /ewtﬂwtdt = Lwdt _1
—y +iw iw’
0
0 T,
F(w) = / —H_Tei“’t dt = /t—eiwt/e_i‘”dt/
T T ’
-7
Die Stammfunktion des Integranden in Fp(w) ist
oo o
_ewt e WwT 4 iwt e lwT
iwt w?t !
woraus folgt
1 : 1
F — (1 _ —1w‘r) —,
2(w) w2t € - iw
1 .
Flw) = —— (1 - *Wf) . 116
(@)= (1-e a1

Mit dem Erreichen dieses relativ einfachen Resultats ist
das Schlimmste geschafft.

(2) Die Rechteckfunktion ist die Ableitung der Dreieck-
funktion, die Fourier-Transformierte erhdlt man durch
Multiplikation von (11.6) mit —icw:

Flw) = L (1 - e*i‘”) .

= 11.7
iwT (11.7)
Hieraus ergibt sich fiir einen um die Zeit T verschobenen

Rechteckimpuls

Flw) = —— (e““” - 1) . 11.8)

iwt

(3) Der Rechteckimpuls zwischen den Zeiten —7 und 471
ist die Summe der beiden halb so langen Rechteckimpul-
se und seine Fourier-Transformierte ist die Summe von

(11.7) und (11.8):

1 . .
- (e+1w‘r —e 1w‘r) _
1wT

2sinwT

Flw) = wT

Das ist identisch mit (1.22), wenn man a = 1/7 setzt.

(4) Die abgeschrégte Stufe abwaérts entsteht aus der Funk-
tion (11.6) durch Vorzeichenwechsel und Zeitverschie-
bung um 7. Dies ergibt

_ 28InWT e

F(w) = % (—e*i‘“ + 1) e

w-T

(5) Die symmetrische Dreieckfunktion entsteht als Summe
von (1) und (4):
1

. . 2
Flw) = s (2 —e Wt efl‘”) = E(l — COSWT) .

b) Unstetigkeiten der Funktionswerte gibt es in den Fal-
len (2) und (3). Abgesehen von Oszillationen, ist |F(w)| «
1/w bei grofien w. Knicke, aber keine Spriinge gibt es
in den Fallen (1), (4) und (5). Es ist |F(w)| o< 1/w? bei
grolen w. Dieses Verhalten gilt allgemein, auch wenn
mehrere Spriinge oder Knicke auftreten. Was sich dann
andert, sind die oszillierenden Faktoren, sie enthalten die
Information iiber die Positionen und Starken der Singula-
ritaten.

¢) Die Funktion in Abb. 4.15a hat einen Sprung bei t =0
und nach (4.56) ist |F(w)| «1/w bei groflen w. Ersetzt
man die cos- durch eine sin-Funktion, ist nur noch ein
Knick vorhanden. Man erkennt, dass in (4.56) durch diese
Ersetzung der zweite Faktor das Vorzeichen wechselt, so-
dass der Funktionsanteil |F(w)| « 1/w verschwindet und
bei groflen w die Abhingigkeit |F(w)| o 1/w? entsteht.
Die in Abb. 4.11 gezeigte Funktion besitzt keine Unste-
tigkeit. Dass die Funktion A(w) in (4.32) bei groflen w
proportional zu 1/ w ist, liegt daran, dass der in der Fufs-
note erwdhnte zweite Teil analog zu (4.56) vernachléssigt
wurde.

4.5 Strukturen in Funktionen und ihren Fourier-

Transformierten.

(1) Mit komplexer Ergdnzung ist die Fourier-
Transformierte eines Nadelimpulses zur Zeit ¢y proportio-
nal zu %!, Dieser Phasenfaktor oszilliert um so schneller,
je grofier die Zeitverschiebung tg ist: Aw = 27t /ty.

(2) Die Fourier-Transformierte F(w) « 2cos(wAT/2) ist
periodisch mit einem Frequenzabstand Aw, der durch
den zeitlichen Abstand der Nadelimpulse gegeben ist:
Aw = 47t/At. Einen zusitzlichen Phasenfaktor gibt es
hier nicht, weil die Impulse als symmetrisch zur Zeitt = 0
angenommen wurden.

(3) Im Fall des Rechtecksignals gilt analog zu (4.30)

1 t0+AT/2
F(w) o« — et dt
(w) o =
to—AT/z
1
sin EwATeiwto
%CUAT
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Die Amplitude des entstehenden Wellenzugs ist modu-
liert mit einem Frequenzabstand Aw = 47/At. Dieser
oszillierenden Funktion sind Phasenoszillationen im Fre-
quenzabstand 271/t liberlagert. In der Phasenoszillaton
findet man ty wieder. Die Oszillation erfolgt schnell bei
grofier Zeitverschiebung, der Effekt verschwindet bei ei-
nem zeitzentrierten Signal (fp = 0).

(4) Aus (4.22) und (4.23) liest man die Fourier-Transfor-
mierte

AT
N-1

o 1 sin(Nwdt/2)
N sin(wdt/2)

iw tU

mit 6T =

F(w)

ab. F(w) hat hohe, spitze Maxima im Frequenzabstand
27 /7. Dazwischen liegen niedrige Maxima mit dem viel
kleineren Frequenzabstand 27t/ (NJT).

(5) Die Fourier-Transformierte einer zentrierten Gaufs-
funktion ist nach (4.34) und (4.35) eine Gaufsfunktion mit
der Breite 0, = 1/0;. Dieser ist wegen der Zeitverschie-
bung ein Phasenfaktor tiberlagert, der sich aus Aufga-
be 4.3a ergibt:

1
V270,

efwz/Zaf, elfow

Flw) «

5.1 Umlenkprisma.

An der Prismenrtiickseite muss Totalreflexion vorliegen
und der Lichteinfall muss unter dem Einfallswinkel 45°
erfolgen: nsin45° > 1,d.h. n > V2 = 1,414. Einen Inten-
sitdtsverlust gibt es beim zweimaligen senkrechten Licht-
durchtritt durch die Frontseite des Prismas:

nowr= (-G53 = ()

Mit n =2 ergibt sich der Bruchteil der reflektierten
Intensitédt zu 94 %. Er nimmt mit wachsendem Brechungs-
index ab.

5.2 Lichtablenkung im Pellin-Broca-Prisma.

a) Wie man in Abb. 5.29 erkennt, weichen die Richtun-
gen des eintretenden und des austretenden Lichtstrahls
im Prisma von den Senkrechten auf den Oberflichen um
jeweils gleiche Winkel § ab. Innerhalb des Prismas stehen
der eingetretene und der reflektierte Strahl senkrecht auf-
einander. Bei der Totalreflexion an der Prismen-Riickseite
ist der Einfallswinkel deshalb 45°. Totalreflexion tritt auf,
wennn > 1/sin(rr/4) = 1414 ist.

b) Ferner liest man aus dem oberen Dreieck in Abb. 5.29
ab: (90° — B) +45° + v = 180°. Es ist also

T . .
[3:7—2, sina = nsinf,
sina sin«

= =2sina .
sinf  sin(y — /4) sma
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Das Prisma mit ¢ = 75° funktioniert also zwischen den
Brechungsindizes 1,414 und 2.

¢) Weil & = arcsin(n/2) ist, liegt & immer zwischen 45°
und 90°. Fir die beiden Glassorten in Tab. 5.2 variiert a
zwischen 49,2° und 50,0° (K3) und zwischen 60,6° und
64,5° (SFy).

d) Wird das Prisma als Monochromator verwendet, muss
man beim Wechsel der Wellenldnge lediglich das Prisma
drehen, aber nicht die Apparatur dahinter, denn die 90°-
Ablenkung bleibt erhalten.

5.3 Brechung im Medium mit variablem Brechungsin-
dex.

Innerhalb einer infinitesimalen Schicht der Dicke Ak wird
ein Lichtstrahl gebogen, sodass er hinter der Schicht eine
Winkelablenkung Awx erfahren hat. Nach dem Brechungs-
gesetz ist

sin(a +Ax)  n(h)
sina n(h+Ah)’
cos i 1 dn Ah
1+sintan_1+g_Z% dhn(h)’
d 1 dn 1
dh tan dh n(h)”’
dlnsina _ dlnn(h)
dh dh
Es folgt
sinay  n(ho)
sinag  n(hy)

Wird ag = 90°, ist sinay = n(hg)/n(h1). Zahlenbeispiel
mit n(hy) = 1,333, n(h;) = 1,400: a3 = 72,2°. Startet un-
ten ein Lichtstrahl unter einem Winkel von weniger als
(90 — 72,2)° = 17,8° gegen die Horizontale, wird er total-
reflektiert, also nach unten zurtickgebogen.

5.4 Lichttransmission und Reflexion an einer Grenzfla-
che bei fast senkrechtem Lichteinfall.

Bei kleinem Winkel 1 istsin 1 ~ B1 — ‘B% /6und cos B =

\/1—sin? By ~ 1 — 1/2 - sin® B;. Nach dem Brechungs-

gesetz ist sin B, = n1/n; - sin B1. In niedrigster Ordnung
setzt man die Cosinusse der Winkel 1 und B, gleich
1 und aus (5.42) und (5.43) entsteht mit den Additions-
theoremen der trigonometrischen Funktionen und der
Vorzeichen-Konvention von Abb. 5.20:

_sinfy —ny/ny-sinfy  nmp—m
L sinfy +ny/ny-sinfy  ny+n’
2n1/n2-sinﬁ1 21’11
T =~ 5 . = .
ny/ny-sinfq+sinfy ny+np
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Abbildung 11.2 Analyse der normalen Dispersion fiir zwei Glaser

Fiir die Koeffizienten p| und 7 kommt nach Entwicklung
der Tangens-Funktionen dasselbe heraus. Wegen der Ro-
tationssymmetrie um die Normale zur Grenzfldche miis-
sen die reflektierte und die durchgelassene Intensitit bei
senkrechtem Lichteinfall einen Extremwert haben, d.h.
die Abweichungen von den angegebenen Formeln sind
proportional zu 3. Die Korrekturen sind fiir die beiden
Polarisationsrichtungen verschieden (siehe Abb. 5.22).

5.5 Normale Dispersion.
Mit nur einer einzigen Resonanzfrequenz lautet (5.33)

- N f

n— — - J
21Me€ w(z] —w?’

was sich mit w = 27t¢/A in der Form

A2 A2 1,
1= —Z(A2-A
n K)\Z—)\%, Tl—l K( 0)

schreiben ldsst, worin alle Konstanten zu einem einzigen
Parameter k zusammengefasstsind. Tragt man A2/ (n — 1)
als Funktion von A2 auf, erhilt man eine Gerade, wie
Abb. 11.2 zeigt. In Tab. 11.1 wurden aus zwei Wertepaa-

Tabelle 11.1 Analyse der normalen Dispersion fiir zwei Glaser

A A2 A/(n—1) « Ao

(nm) (10°nm?) (10°nm?) (nm)
Kronglas

706,5 4,991 9,710

643,8 4,145 8,033 0,5045 96

589,3 3473 6,702 0,5047 95

480,0 2,304 4,389 0,5050 94

404,7 1,638 3,073 0,5052 92
Schwerflintglas

706,5 4,991 6,717

643,8 4,145 5,538 0,7176 131

589,3 3473 4,600 0,7171 132

480,0 2,304 2,968 0,7167 133

404,7 1,638 2,033 0,7158 135

ren fiir A und n jeweils die Parameter x und Ag berechnet:

A2 — A2 A?

= , AG=AF L
A2/(n;—1) — A3/ (ny — 1) 0=

K .
1’[1'—1

Es ergibt sich Ay ~ 95nm fiir Kronglas und Ag ~ 132nm
fiir Schwerflintglas. Die Differenzen (n — 1) werden, wie
man leicht nachpriifen kann, von einer einzigen Reso-
nanz mit einer Genauigkeit von ca. 0,4 % reproduziert.
Uber den Ursprung der Abweichungen, die im Ubrigen
fiir die beiden Gléaser einen unterschiedlichen Wellenldn-
genverlauf haben, ldsst sich aus Messungen im sichtbaren
Spektralbereich nichts aussagen.

5.6 Optik der Rontgenstrahlen.
a) Der Brechungsindex ist nach (5.34) und (2.84)

2
n(w)=1- 26071)2 mit
27tc 18 .1
=—=94-10
3 s
W = ne¢> _ ZpNa &
P meey A meey’

V14:.2330-6-108-1,6-1071°
wp = S
v/0,028-9,1-10-31.8,8-10-12
wp =4,73-10" s,
2

w
—1=-——2 =-13.1072.
" 2w?

b) Die Rontgenstrahlung muss streifend auf die Oberfla-
che treffen. Mit B = 71/2 — a ergibt sich der Grenzwinkel
fiir die Totalreflexion wie folgt:

1
sinae =sin(n1/2— ) =cospr1— 5,82 =n,
B=4/2(1—n)=0,005rad ~ 17’ .
c) Die Wellenldngen im Vakuum (A) und im Medium

(A/n) sind fast gleich grof8. Dann folgt fiir die Phasenge-
schwindigkeit

c n wl% n w%)\z -
Upp=— R CH+c—= ¢ c
Ph =4 2w? 8m2c

Sie ist um den kleinen Bruchteil 1 —n = 1,3 - 107> grofer
als die Lichtgeschwindigkeit im Vakuum. Die Gruppen-
geschwindigkeit ist nach (1.25)

d 272 272
ﬂ:vph—wp—:c—wP <c.
dA 4mt2c 87m2c

‘Ug:UPh—/\

Sie ist um soviel kleiner als die Lichtgeschwindigkeit im
Vakuum wie die Phasengeschwindigkeit grofier ist.

251




5.7 Transmission und Reflexion von Metallen.

Fir die Lichtwellenlinge A = 600nm liest man aus
Abb. 5.28 ab: ng ~ 0 und n; =~ 4. Nach dem Wienschen
Verschiebungsgesetz hat das Wellenldngenspektrum der
Wérmestrahlung ein Maximum bei (3mmXK)/T ~ 10 um
bei Zimmertemperatur, d. h. die zweite Wellenldnge liegt
im langwelligen Ausldufer eines solchen Spektrums. Aus

(5.47) folgt
- - (Tel)\ N
=R = \/ 47T€e(C ~ 200

Die Amplitude einer Welle mit der Vakuum-Wellenlédnge
A andert sich beim Durchlaufen eines Mediums mit einem
komplexen Brechungsindex geméfs

A eilvcx _ e27‘fihx/)\ _ e72rm1x/)\ e27‘[inRx//\ )

Die Intensitit ist proportional zu A%, der Absorptionsko-

effizient ist daher 47tn;/ A. Die Schichtdicke, nach der die

Intensitat um einen Bruchteil € abgenommen hat, ist
4tnix

o . In(1/(1—¢€))

Das ergibt fiir das rote Licht x = 2,66 nm. Das ist viel klei-
ner als die Wellenlédnge, aber immer noch grofer als der
Gitterabstand. ,, Wellen” werden schon auf Strecken absor-
biert, die klein gegen die Wellenldnge sind. Beim Durch-
laufen einer Silberschicht dieser Dicke wird die Intensitat
der Infrarotstrahlung um einen Faktor 0,72 abgeschwacht.
Gleichung (5.48) zur Berechnung des Reflexionsvermo-
gens setzt voraus, dass die Dicke einer Schicht groff im
Vergleich zur Eindringtiefe einer Welle ist. Diese Voraus-
setzung ist hier nicht erfiillt.

6.1 Fermatsches Prinzip.

Es geniigt, die Langen aller zu vergleichenden Lichtstrah-
len ab der Tangentialebene durch den Scheitelpunkt S zu
messen, weil vorher keine Wegdifferenzen auftreten. Da-
her istl; = A(h). Nach (6.8) ist

TllA(h) +ny h? + (b - A(h))2 = nzb ,
(15 — n2)A(h)? — 2A(h)bny(ny — ny) +n3h? =0.

Diese quadratische Beziehung zwischen i und A(h) de-
finiert ein Rotationsellipsoid. Fiir kleine /1 ist der Term
proportional zu A(h)? zu vernachldssigen und man erhalt

2 2

A(h)%L:h_’

217(1’12—1’11) 2R
Q_le—ru
b R

in Ubereinstimmung mit (6.12).
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Abbildung 11.3 Brennpunkte und Hauptebenen einer plankonvexen Linse

6.2 Linse in einem Medium.

Die Brennweite ist nach (6.20) proportional zu nq/(ny —
n1). Das Verhiltnis ist 2 fiir Luft und 7,82 fiir Wasser; da-
heristf = 19,6 cm.

6.3 Abbildung durch eine ebene brechende Fliche.

Am einfachsten ist es, in der Abbildungsgleichung zu ei-
nem unendlich grofien Kriimmungsradius tiberzugehen.
Die Brechkraftistnull und esistn/g+1/b = 0, es entsteht
ein virtuelles Bild bei b = —g/n = —15cm: Gegenstan-
de unter Wasser scheinen angehoben zu sein. Verschiebt
man den Gegenstandspunkt parallel zur Wasseroberfla-
che, verschiebt sich der Bildpunkt in gleicher Weise, daher
ist der transversale Abbildungsmafistab eins. Befindet
sich das Auge in der Hohe h tiber der Wasseroberfléche,
dndert sich der Sehwinkel, solange er klein genug ist, um
den Faktor (h+g)/(h+ |b]) = 1,077.

6.4 Bestimmung der Brennweite einer diinnen Linse
nach Bessel.

Wegen der Annahme einer diinnen Linse ist die Summe
aus Gegenstands- und Bildweite D = g + b. Aus der Ab-
bildungsgleichung folgt

1, 1 _1

§ D-g f’

f(D-g)+fg=g(D-g) — g —-Dg=-fD,
D [D?

§=5*\ D

Der Abstand zwischen den beiden Losungen ist d:

DZ_dZ

) =18cm.

d2:4<%2—ﬂ)) - f=

6.5 Brennweite und Hauptebenen einer plankonvexen
Linse.

Die dicke plankonvexe Linse zerlegt man zweckmaBiger-
weise in eine diinne plankonvexe Linse, an die sich eine
dicke ebene Glasplatte anschliefit (Abb. 11.3). Ein von
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Abbildung 11.4 Brennpunkte und Hauptebenen eines Systems aus zwei diin-
nen Linsen

rechts kommender Lichtstrahl parallel zu optischen Ach-
se durchlduft die Platte geradlinig, wird an der Linsen-
vorderseite gebrochen und gelangt zum davor liegenden
Brennpunkt, die Brennweite ist laut (6.13) f = R/(n — 1).
Die Hauptebene fallt ungefahr mit der Position der Lin-
senvorderseite zusammen. Ohne die Glasplatte lage der
zweite Brennpunkt als Punkt Fj im Abstand f hinter der
vorderen Hauptebene. Die Glasplatte verschiebt aber alle
Lichtstrahlen parallel, sodass der hintere Brennpunkt an
die Stelle F' nach hinten wandert. Aus Abb. 11.3 liest man
ab:
d

ap
~dB =N n= 9P _
yrdp=ha — |h|_“ .

Dasselbe ergibt sich aus (6.34) und (6.35): Im Grenz-
fall Ry — oo ist die Brennweite f = Ry/(n — 1), und die
Abstidnde zwischen den Hauptebenen und den Linsen-
oberflachen sind & = 0 und

(n—1)fd d

W= =
nRq n

}' ist negativ: Die Hauptebene liegt vor der Linsenrtick-
seite.

6.6 Zwei diinne Linsen.

a) Ein von links kommendes Lichtbiindel parallel zur op-
tischen Achse wird zunéchst von der ersten Linse in deren
Brennpunkt fokussiert und danach von der zweiten Linse
mit der Gegenstandsweite ¢ = 2f; und der Bildweite b =
2f1 in einen Brennpunkt des Gesamtsystems abgebildet.
Die Verldangerung eines ankommenden seitlich versetz-
ten Lichtstrahls schneidet seine Fortsetzung hinter der
zweiten Linse per definitionem in der Hauptebene (siehe
Abb. 11.4). Diese Hauptebene ist im vorliegenden Bei-
spiel gegeniiber dem Brennpunkt um die Strecke f; nach
rechts versetzt. Die Gesamtbrennweite ist also negativ:
f = —f1. Der Abstand zwischen den Hauptebenen ist we-
gen der Symmetrie des Systems gleich dem doppelten
Abstand der Hauptebenen von der Mitte (9f1). Dies wird
auch durch (6.36) und (6.37) wiedergegeben. Der Linsen-
abstand ist 4 = 3f; und die Gesamtbrennweite ergibt sich
nach (6.36):

1 3,1 1

1 1
FTRTR TR TR I

Weiterhin ergibt sich aus (6.37) h = fd/f, = —3f; (vor Lin-
se ) und i/ = —fd/f; = +3f; (hinter Linse 2).

b) Ein Gegenstand am Ort der ersten Hauptebene wird
durch das Linsensystem in die zweite Hauptebene abge-
bildet; zunédchst von Linse 1 mit der Gegenstandsweite 3f;
und der Bildweite 3/2f; mitten zwischen die Linsen, so-
dass dort ein reelles Zwischenbild entsteht. Letzteres wird
von der zweiten Linse in umgekehrter Weise in die zweite
Hauptebene abgebildet. Der Abbildungsmafsstab ist ins-
gesamt eins, das reelle Bild in der zweiten Hauptebene
entspricht hier dem Original.

c)Esseif] > 0und f, < 0. Eine positive Gesamtbrennwei-
te entsteht, wenn gilt:

l_i+i>0
Akl AR
d > filfa <ﬁ —fl—l) =f—Ifl.

6.7 Beugungsunschirfe und chromatische Aberration.

Der Beugungswinkel ist &« = 1,21A/D = 7,2 - 107°. Der
Radius des ersten Beugungsmaximums in der Brennebe-
ne ist somit af = 3,6 um.

Beim Ubergang von einer Wellenlédnge auf die andere &n-
dert sich die Brennweite wegen f «1/(n — 1) um

Af = An f:n2

T —1 n

__”11f — 560 im .

Vom Brennpunkt aus gesehen, befindet sich der Blenden-
rand unter einem Winkel g ~ D/2f = 0,1 zur optischen
Achse. Das Licht der zweiten Wellenldnge erscheint daher
in der Brennebene fiir die erste Wellenldnge als Kreis-
scheibe mit dem Radius BAf = 56 um. Der chromatische
Fehler tiberwiegt also bei Weitem.

6.8 Korrektur auf chromatische Aberration.

Es seien 111 der Brechungsindex des Glases der plankonka-
ven Linse, 11 der Brechungsindex der Konvexlinse, r1, der
gemeinsame Kriimmungsradius und r, der zweite Radius
der Konvexlinse. Die gesamte Brechkraft beider Linsen ist

1_1+1_1—1’ll n2—1+1—n2
f h h 12 12 r

(11.9)

Die Brechungsindizes fiir verschiedene Spektrallinien
werden im Folgenden mit Argumenten gekennzeichnet.
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Abbildung 11.5 Zur Berechnung der sphérischen Aberration

f muss fiir beide Fraunhoferschen Linien gleich sein:

—n1(C) +n2(C) +1 —m(C)
12 rn
_—mB)+mE)  1-m(F) /
12 )
- (m(E) ~ ma(F) + ma(C) ~ m (C))
12
— () - ma(F)),
r2 _ m(F) —m(F) +n(C) —ni(C)
r n2(C) — np(F)
2. (m(D)—1)Vy B
n o)

Hierbei ist Medium 1 Flintglas. Mit vertauschten Glas-
sorten kdme r15/r, = +0,71 heraus; in diesem Falle ware
entgegen der Voraussetzung die erste Linse konvex. Mit
dem Resultat kann man in (11.9) ry» durch r, ersetzen
und mit den Brechungsindizes der D-Linie erhdlt man
rp = —8,2cm, r;p = +21,1 cm.

6.9 Sphirische Aberration.

a) Der Kriimmungsradius der Linsenriickseite ist R =
f(n—1) =10cm.

b) Abbildung 11.5 illustriert die sphérische Aberration in
dem gewéhlten Beispiel. Es sind « und p der Einfalls- und
der Ausfallswinkel fiir einen von links aus dem Unend-
lichen kommenden achsenparallelen Randstrahl an der
sphérischen Linsenoberfldche. Zwischen « und der Blen-
denoffnung besteht der Zusammenhang Rsinx = D/2.
Der gebrochene Randstrahl schneidet die optische Achse
im Abstand

;o D ~ Rsinacos(p —«)
- 2tan(B—a)  sin(B—«)

cos & cos B + sina sin

sin B cosa — cos Bsina

= Rsinua

von der Linsenvorderseite. Mit sin § = nsina und den
Kleinwinkel-Néherungen sina = a, cosa ~ 1 —a?/2 und
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cos B ~ 1 — na?/2 erhélt man

(1—a?/2)(1 — n?a?/2) + na?
n(l—a2/2) —1+n2a2/2
1+ (n—1) (a?/2 — na?/2))
(n—1) (1+na®/2)
1 1 a? a? 2

o

b ~R

~

~ R

Zur Ermittlung des Brennpunkts fiir achsennahe Strah-
len zieht man (6.15) heran, worinR; = —R,ny = 1,np, =n
und g1 = oo zu setzen sind. b wird ab dem hinteren Schei-
telpunkt gemessen: b = R/(n — 1). Die Dicke der Linse ist
d = R(1 — cosa) =~ Ra?/2. Der Abstand des Brennpunkts
von der Linsenvorderseite ist

R o?
= —+R—.
btd= L +RY

Die Schnittpunkte der beiden Strahlen mit der optischen
Achse haben den Abstand

_ T 1 o an?
sp=b+d b—Rn2<1+—n_1)—R72(n_1).

Da der Neigungswinkel des Randstrahls § —a ~ (n — 1)«
ist, erzeugen die Randstrahlen in der Brennebene einen
Kreis mit dem Radius

23 D3n2

1
ra=(n—1)as, = ERn =T

Zahlenbeispiel: s, = 560 pm, 7, = 14 pm. Durch Kombi-
nation einer Sammellinse (R > 0) mit einer Zerstreuungs-
linse (R < 0) kann man den zu &> proportionalen Term
zum Verschwinden bringen, also die sphérische Aberra-
tion korrigieren.

6.10 Prismenfernrohr.

a) Die Gesichtsfeldblende liegt in der Ebene des reellen
Zwischenbildes, wegen der unendlichen Entfernung des
Gegenstandes also in der Brennebene des Objektivs. Des-
halbistf; =s = 15cm.

Die Brennweite des Okulars ist f, = f1/V = 2,14 cm. Weil
das Fernrohr ein teleskopisches System ist, fallen ein
Objektiv-Brennpunkt und ein Okular-Brennpunkt zusam-
men.

b) Die gegenstandsseitige Hauptebene des Okulars liegt
im Abstand f, von der Feldblende entfernt in Richtung
zum Okular.

¢) Die Gegenstandsweite fiir die Abbildung des Objektivs
durch das Okular ist g = f1 + f. Dann ist die Bildweite

2
bQZ&:fQ—&—flzZAcm.

§2—f f
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Die bildseitige Hauptebene des Okulars liegt um die Stre-
cke by vor dem Auge, also 0,9 cm innerhalb des Okulars.
Die Distanz zwischen Feldblende und Okular (aufSen)
schatzt man aus der Abb. zu rund 5cm ab, die ande-
re Hauptebene hat einen Abstand von 5cm —f, =2,9cm
von der Okular-Aufienseite.

d) Das vom Okular am Auge erzeugte Bild des Objektivs
hat den Durchmesser B = Gb,/g> = 7,1 mm. Bei heller
Beleuchtung ist dies grofier als der Pupillendurchmesser
des Auges. Die Aufldsungsgrenze ist daher hier durch die
Sehschérfe des Auges gegeben und nicht durch (6.57).

e) Die geometrisch-optischen Abbildungsfehler steigen
mit dem Offnungswinkel des abbildenden Strahlenbiin-
dels an. Wegen der Winkelvergroflerung des Fernrohrs
spielen sie nur beim Okular eine Rolle. Der chromatische
Abbildungsfehler hangt im Gegensatz dazu nicht vom
Offnungswinkel ab, daher wird das Objektiv darauf kor-
rigiert.

f) Blickt man von Weitem mit einem Auge auf eine Fern-
rohrhilfte, sieht man eine schwarze Flache mit einem
Loch. Das Loch ist das vom Okular erzeugte Bild des
Objektivs. Es befindet sich in der Nédhe des Okulars. Ad-
aptiert man das Auge auf grofie Entfernung, sieht man im
Loch einen kleinen Bildausschnitt und der der Lochrand
wirkt unscharf. Die Austrittspupille ist hier die Augenpu-
pille. Thr vom Okular erzeugtes reelles Bild liegt in der
Néhe der gemeinsamen Brennebene von Objektiv und
Okular. Es ist verkleinert und hat einen viel kleineren
Radius als die in der Néhe liegende eingebaute Feldblen-
de, die ihre Funktion verliert. Das Objektiv erzeugt vom
reellen Bild der Augenpupille ein virtuelles Bild, das in
groflem Abstand vom Fernrohr auf der Beobachterseite
liegt. Das ist die Eintrittspupille. Licht, das vom Objekt
in Richtung der Eintrittspupille lauft, trifft auf die Ob-
jektivfassung als Hindernis. Das ist jetzt die Eintrittsluke,
die das Gesichtsfeld begrenzt. Die Austrittsluke ist das
vom Okular erzeugte Bild davon. Weil beide Luken nicht
in der Zwischenbildebene liegen, erscheint der Bildrand
unscharf. Man erkennt: Wo vorher die Eintritts- und die
Austrittspupille lagen, liegen jetzt die Eintritts- und die
Austrittsluke.

6.11 Beleuchtungsstirke einer Fotoaufnahme.

a) Der Strahlungsfluss an der Blende ist
2 2
_ »mDe 1 55D
®g = LgT[r Tg—2 = LgT[ 1’8@ .

Die Bildgrofe ist 1, = r.f /g, denn esist b ~ f. Die Bestrah-
lungsstédrke im Bild ist

LR
ot o2 A

Dieses Resultat hangt weder von g noch von 7, ab. Wird g
grofler und die ankommende Intensitét kleiner, wird das

Bild kleiner. Wird r, grofler, wird auch das Bild grofer.
In beiden Fallen dndert sich die Bestrahlungsstarke nicht.
Fiir das Zahlenbeispiel erhdlt man E, = 0,49 W/ m2.

Der Raumwinkel, unter dem das Objektiv vom Bild aus
gesehen erscheint, ist Q = 7tD?/(4f?). Das Verhaltnis aus
der Bestrahlungsstarke und dem Raumwinkel ist

Da Licht nur aus einem Halbraum auf den Film treffen
kann, ist (2 kleiner als 27t und es ist E, < 27tL,. Ein geo-
metrisch-optisches Bild der Sonne erscheint nie heller als
die Sonne.

b) Der Strahlungsfluss an der Blende ist jetzt &, =
I,tD?/ (4¢%), weil der Faktor 772 entfallt. An der Objek-
tivfassung tritt Beugung auf mit dem Beugungswinkel
a = 1,22 - A/D am ersten Intensitatsminimum. Der Radi-
us der umschlossenen Scheibe im Bild ist 1, = af = 1,22
Af/D. Als MaS fiir die Bestrahlungstérke wéhlen wir das
Verhéltnis aus dem Strahlungsfluss und der Scheibenfla-
che:

=P, DY
ol 595 f2g2A%

Waéchst D, erscheint eine Quelle auf der Aufnahme heller,
so lange ihre Grofle auf dem Bild durch Beugung begrenzt
ist. Das ist wegen der gleichzeitigen Verkleinerung des
Beugungsradius auch noch mit einer besseren Winkelauf-
16sung fiir die Trennung zweier Quellen verbunden.

7.1 Interferenzen gleicher Dicke.

Das Auge muss man auf den Luftkeil adaptieren. An den
Interferenzminima entspricht der Gangunterschied 2d
zwischen Wellen, die an der Ober- und der Unterseite des
Luftkeils reflektiert werden, einem ungeradzahligen Viel-
fachen der halben Wellenldnge. Die Schichtdicke dndert
sich zwischen benachbarten Interferenzstreifen um A/2,
sodass die Foliendicke 4,7 pm betragt.

7.2 Interferometrie mit zwei Lichtstrahlen.

a) Die optischen Wegldngen in den Kuvetten, wenn eine
evakuiert ist, sind ; = L und I, = nL. Die Zahl der durch
eine Marke gewanderten Interferenzstreifen ist

_12—11 o (Tl—l)L
m = 1 = 1 —

A
n=1+ mT — 1,000276 .

Die Differenz n — 1 sollte in einem Gas proportional zur
Molekiildichte sein, die bei konstantem Druck umgekehrt
proportional zu Temperatur ist:

(-1

ng=1+ Ty

= 1,000291 .
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a b c
Abbildung 11.6 Zur Strahlungscharakteristik eines Antennenpaares. a d =
Me=0bd=A/2,p=mcd=A¢=m/2

b) Die Lichtgeschwindigkeiten in den Kuvetten seien
c¢/n+vmitov < c. Die optischen Wegldngen sind

o« _ om0 @L
c/ntov  1+nv/c T c

Bei Umkehrung der Stromungsgeschwindigkeit ent-
spricht die Zahl der wandernden Interferenzstreifen dem
Doppelten der Differenz:

_ 4noL Lo mAc
T Ac T 4n2L
Das Verhiltnis von v zur Stromungsgeschwindigkeit vy

des Wassers ist 0,42 (theoretische Vorhersage 1 — 1/ n? =
0,43).

=42m/s.

In einem Gas ist die Molekiilzahldichte um 3 Groflen-
ordnungen kleiner als in Fliissigkeiten und da der Effekt
proportional zu n — 1 sein sollte, erwartet man Verschie-
bungen um 10~ * Streifenbreiten.

7.3 Strahlungscharakteristik zweier Antennen.

Der Gangunterschied zwischen den beiden von den
Antennen emittierten Wellen ist dcos®d, der Phasen-
unterschied bei gleichphasiger Erregung somit 6 =
27d cos ¢/ A. Fiir die Amplitude der Welle gilt

A(l9) «1 +e27ridcos ¢/ A+ig

wobei ¢ die Phasendifferenz bei der Erregung der Anten-
nen ist. Fiir die Intensitat gilt

21 2
1(9) o |A(9)]? (1 + cos (Tdcosﬁ—i- (p))
.o (27
+ sin Tdcosﬂ—i-q) ,
2r
I(l?)ocl—l—cos(Tdcosﬁ—&—(p).

In den Spezialfallen ist

a) I(0) &1+ cos(rrcosd),
b) I(8) o<1 — cos(7t/2cosd),
) I(¥) x 1 —sin(rrcosd).

Die Resultate findet man in Abb. 11.6.
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7.4 Reflexionsminderung.

Die Amplitude der von der ersten Schicht reflektierten
Welle ist A1 = Ag(ny — n1)/(np + n1). Zusitzlich entsteht
an der Riickseite der Schicht eine reflektierte Welle, deren
Amplitude wegen der Schichtdicke A/4 um 2 - 90°= 180°
phasenverschoben ist:

ng —ny 4niny

A, = —A
2 On3 + 1y (nq +np)?

(1+...).

Hierin ist der erste Faktor der Reflexionskoeffizient an
der Grenzfliche 2-3 und der zweite Faktor beschreibt
die zweimalige Transmission durch die Vorderseite der
Schicht. Er ergibt sich zu 0,97 und kann gleich eins ge-
setzt werden. Die Punkte stehen fiir die weggelassenen
Mehrfachreflexionen innerhalb der Schicht. Weil die Re-
flexionskoeffizienten im %-Bereich liegen und mindestens
zwei zusitzliche Reflexionen stattfinden, kann ihr Beitrag
vernachlédssigt werden. Als Reflexionsfaktor erhdlt man

nz —np
n3 + 1y

R =

(A1 + A2 (”2-”1 B

2
= 0,013
A(Z) 1y + 1y )

statt 0,04 ohne die Vergiitung.
1.5 Ein-Moden-Laser.

Je grofler der Abstand der Laserspiegel ist, um so klei-
ner ist der Frequenzabstand c/2d der axialen Moden. Die
Frequenz-Auflésung des Etalons muss kleiner als der Mo-
denabstand sein:

oV € ¢
VERTAR S 2
24

—_— =2 6
R>)\ 2-10°.

7.6 Lichtreflexion an einer diinnen Metallschicht.

a) Analog zum Beweis von (7.51) summiert man eine un-
endliche Reihe von reflektierten Amplituden auf:

=g el (14 % )
0
MERTIRT)
., p'ttle
=p+ 1— ﬁ/2e1o

Nun ist nach den Fresnelschen Formeln (5.52) und (5.53)
0’ = —p und es gilt fiir die komplexen Reflexions- und

Transmissionskoeffizienten

ﬁ2+ﬁ’:(v_1)2+ 2. 20
(m+1)2  (n+1)2
n? — 2+ 1+4n
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Bringt man das oben angegebene Amplitudenverhaltnis
auf den Hauptnenner und setzt diese Beziehungen ein, er-
hélt man

Er 1— ﬁZeié _ ’E"Z"ei& 1— ei&
— = - =0 — 11.10
Eo P 1— p2e15 Pl _ p2e15 ( )

was zu zeigen war.

b) Der Reflexionskoeffizient einer Grenzflache ist
. =1 nr+in—1
0= n+1 ng+in+1
_ (nr4iny —1)(ng —ing +1)
(nR +ing + 1) (ng — in +1)
_ ngtnf—142in
n%{ + nlz + 14 2ng

Fiir die Infrarotstrahlung mit ng ~ n; > 1 ergibt sich

1 i 2 2
pzl—n——&—izl, Pral-—t+2x1,
R ny NnR ng

und fir das rote Licht mit ng ~ 0 und n; = 4 ist

n? —1+42in; 15+ 8i

<2 .
— 0,557+ 0,83i .
241 i7 o F '

FV):

Dass im letzten Fall |[§| und |§|> genau den Wert eins
besitzen, riihrt von der nicht ganz richtigen Naherungs-
annahme ng = 0 her.

Des Weiteren benétigt man in (11.10) den Faktor
el = e 4/ (cos(drnrd /M) + isin(4rtngrd/A))

Im Fall der grofsen Schichtdicke 4 = 10 um ist der expo-
nentielle Faktor fiir beide Wellenldngen so winzig, dass
er null gesetzt werden kann. Dann folgt aus (11.10) R =
|92 ~ 1, also fast vollstandige Reflexion.

Fiir die diinne Schicht ergeben sich von null verschiedene
Werte:

el = 7033 (c0519,15° +isin19,15°) = 0,676 + 0,235i
(infrarot) ,

¥ =e 0B =08 (rot).

Im Falle der Infrarotstrahlung weicht ¢> vom Wert eins
nur um rund 1% ab. Daher kiirzt sich im Endergebnis
(11.10) der Zahler des Bruches gegen den Nenner weg
und man erhilt wiederum R ~ [§]? ~ 1.

Das einzige nichttriviale Resultat kommt fiir das sichtbare
Licht heraus:

. 0,2 02
“P1708- (0557 +0,831) 0,554 — 0,664

T

g1(| m(

Der Betrag von E./ EQ ergibt sich zu 0,231 und das Re-
flexionsvermogen ist R = 0,2312 = 5,3 %: Sichtbares Licht
durchdringt die diinne Schicht, Infrarotstrahlung, z.B.
aus einem geheizten Raum, wird reflektiert. Daran dndert
auch ein schiefer Lichteinfall auf die Schicht wenig. Das
Phéanomen riihrt daher, dass der Reflexionsfaktor g fiir In-
frarotstrahlung ziemlich genau den Wert eins hat und fast
reell ist, wahrend er fiir sichtbares Licht zwar den Betrag
eins hat, aber einen endlichen Phasenwinkel aufweist.

7.7 FTIR-Spektrometer.

a) Der gesamte Spiegelhub ist L= m/Ak=
1/(2A(1/A)) = 1,25mm und die Zahl der Scanpunkte
ist N = 2kmax/Ak =2 - 4000/4 = 2000. Pro Scanschritt
wird ein Spiegel um AL = L/N = 71/ (2kmax) = 625nm
verschoben.

b) Das verlangte Auflosungsvermogen ist R = 4000/4 =

1000, der maximale C)ffnungswinkel ist Bmax = V2/R =
0,045 und somit der Blendenradius f Bmax = 0,7 cm.

c) Die Spiegelgeschwindigkeit ist v=L/t=
(0,125/0,5) cm/s = 0,25 cm/s. Fiir einen Scanpunkt steht
die Zeit 0,5/2000s = 0,25ms zur Verfiigung.

d) Das Wiensche Verschiebungsgesetz (Bd. II, Gl. (7.18))
lautet AmaxT = 0,3cmK. Fiir eine reziproke Wellenldn-
ge 4000cm ! ergibt sich T ~ 1200K. Ein groSerer Wert
flihrt zu einer raschen Verbesserung der Intensitit, dabei
verschiebt sich die Emission zunehmend in den nichtre-
konstruierbaren Teil des Spektrums.

e) Die Zahl der Scanschritte ist N = 2L/ Afge. Dann ist

K _M_ T 21
XL T Ae . Amin
/\minZZ)\He~

8.1 Beugung am Gitter.

a) Die gesuchte Gitterkonstante ist ¢ =A/sinth =
3,5 um.

b) Die Intensitdaten ergeben sich aus (8.23). An den Haupt-
maxima ist die halbe Phasendifferenz /2 ein ein ganz-
zahliges Vielfaches von 7 und der zweite Faktor in
(8.23) nimmt die Form 02/0? an. Man kann ihn nach der
d’Hospitalschen Regel Bd. I, Gl. (M.86) als Verhéltnis der
Ableitungen berechnen und erhilt N>. Am Hauptmaxi-
mum nullter Ordnung ist I(0) = N?I.

(1) Am Hauptmaximum erster Ordnung ist sin® = A/g,
und in (8.23)ist p = mDsin¢/A = nD/g = m/5 einzuset-
zen: [(%) = 0,875 - N2I,.

(2) Am den ersten beiden Minima sind die Gangunter-

schiede é = 27t/N und 6 = 47t/N, am ersten Nebenma-
ximum ist daher § ~ 371/N.Esist < 1,sinf/p ~ 1und

_4ly  AN? 4

10)=% = gah =52

1(0) = 0,045 - 1(0) .
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Die relative Intensitit des ersten Nebenmaximums ist un-
abhédngig von der Zahl der Gitterstriche, mit wachsender
Strichzahl riickt das Nebenmaximum aber immer ndher
an das Hauptmaximum heran.

(3) In der Mitte zwischen den Hauptmaximaist § = 7w und
es gilt nach (8.22) sin ¢ = 6/kg = A/2g und nach (8.23)

_2mDA _aD_m
p= A22n 2¢ 107
Dann ergibt sich
181 9) = Io  S27/10 C 0971
1/2) =40 /10 =Y 0-

Die Intensitit ist um einen Faktor N2 = 108 kleiner als die
Intensitat 1(0).

8.2 Rontgen-Beugung am Reflexionsgitter.

Bei der Reflexion eines Rontgenstrahls an einem Gitter
entsteht keine Phasendifferenz zwischen Elementarwel-
len verschiedener Gitterstriche, wenn der Ausfallswinkel
gleich dem Einfallswinkel ist. Alle Elementarwellen in-
terferieren dann konstruktiv. Sind der Einfalls- und der
Ausfallswinkel verschieden, besitzen die von benachbar-
ten Gitterstrichen ausgehenden Elementarwellen einen
Gangunterschied, den man aus (8.25) und Abb. 8.15 ab-
lesen kann, denn es spielt keine Rolle, von welcher Seite
aus der einfallende Strahl auf das Gitter trifft: ¢(cos dy —
cos(dp + «)). An einem Beugungsmaximum ist dies ein
ganzzahliges Vielfaches der Wellenldnge:

g(coséy —cos(dg +a)) = nA .

Hierin kann man die Ndherung coséy ~ 1 — 5% /2 fiir klei-
ne Winkel benutzen; entsprechendes gilt fiir cos(dy + a).
Dann erhélt man

5(2) 1 2 2
g<1—7—1+5(50+250a+a) —nA,

A= g ((Sotx—i- 1042) .
n 2

Mit ¢ = 3,5 um ergibt sich aus beiden Beugungswinkeln
A=139-10""m.

8.3 Ubergang von der Fresnel-Beugung zur Fraunhofer-
Beugung.

Bei der Fraunhoferschen Beugung hat die Quelle einen
sehr grofien Abstand vom beugenden Objekt, sodass Ry ~
oo zu setzen ist. Am Ort des Beugungsbildes, insbesonde-
re auf der optischen Achse, sollen alle Elementarwellen
in Phase sein. Das bedeutet, dass nur eine Fresnel-Zone
zum Beugungsbild beitragen darf, und zur Vermeidung
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von Phasendifferenzen muss die Zahl der Fresnel-Zonen
formal deutlich kleiner als Eins sein. Dann besagt (8.41)

1 4A D?
— — o — <K 4A
) < D2 70 <

was mit der Faustformel (8.1) identisch ist.

8.4 Fresnel-Beugung an einer kreisférmigen Blende.

a) Nach Abb. 8.24 ist

A 2
r%z+P2: (rn +7’l§) ’

2
0? :nrn)x—i-nz%,
2
0 nA
== - — 11.11

rn n)L 4 s ( )

2(4 /13 +p2 —1y)
"= #. (11.12)

Mit (11.11) erhdlt man ry =42cm, ri9p =4,2cm, r1 =
3,8cm und rip = 3,5cm. Beugungsminima auf der opti-
schen Achse erwartet man fiir n = 10 und 12, Beugungs-
maxima fiir n = 1 und 11, alles in Ubereinstimmung mit

Abb. 8.3.

b) Der Ubergang zur Fraunhofer’schen Beugung findet
bein = 1bzw. r = 0,4m statt.

¢) Da r, nicht negativ werden kann, ist die maximale
Zahl der Fresnelzonennach (11.11) n = 2p/A =~ 1600, und
fur r, = 0,3mm ergibt (11.12) n = 940, d. h. das Kriterium
n > 1 fiir die Anwendbarkeit der geometrischen Optik ist
erfillt.

8.5 Camera obscura.

Die Abbildung entsteht durch Fresnel-Beugung an einem
kreisférmigen Loch. Man kann das Loch als Fresnelsche
Zonenplatte mit nur einer Fresnelschen Zone auffassen.
Dann ist (8.41) die Abbildungsgleichung und man erhalt
mit Ry = rg und A = 500nm

1 1
P% = E)Lro = 01 =1/ E/\ro =0,28mm .

8.6 Schattenwurf.

Aus Abb. 8.2 entnimmt man, dass der helle Ring am Blei-
stiftrand bis zum ersten dunklen Interferenzstreifen eine
Breite Ax ~ 1 mm hat. Nach Abb. 8.26 ist Ax ~ p;.In (8.41)
ist Ry = oo und 7y = z zu setzen: Ax =~ VzA. Es folgt mit
A =~ 400nm

Die Breite des Halbschattens, der durch den Lam-
pendurchmesser entsteht, ist Ax =2az. Es muss a <
Ax/2z = 0,2mrad sein. Diese Bedingung wird von der
Sonnenstrahlung nicht erfiillt.
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8.7 Beleuchtungsspalt beim Gitterspektrometer.

a) Beim Ablenkwinkel 90° muss der Gangunterschied
zwischen benachbarten Gitterstrichen mAmax betragen:
g = MAmax.

b) Aus (8.24) folgt mit (8.22)
A A
g cos &y, A N — 4 Ngcos 0y,
c) Aus (8.22) folgt
m
9=———-AA. .
Zcos O (11.13)

d) Aus der Gleichheit der Winkel b) und c) ergibt sich

A mAA A
—~ 7 R=x;=

= = mN .

Ng g
e) Nun kann man die halbe Winkelbreite eines Hauptma-
ximums an der Auflésungsgrenze ablesen:

A A 1A
© Ngcosfy  NmAmaxcosfy R Amaxcos Oy

Es ist also, wie am Ende von Abschn. 7.1 behauptet, A% ~
1/R. Bei einer bestimmten Wellenldnge A4 ist der Beu-
gungswinkel A¢ gleich der Winkeldivergenz des Lichts:
b/f = Aa/(RAmax cos Oy). Ist A deutlich kleiner als Ag,
folgt mit (11.13)

AY

A)\Négcosﬁm_ Aag M
“Ff m mRAmax R’
A A
M—ER.

Wenn die Spaltbreite fest vorgegeben ist, kann man
es nicht vermeiden, dass sich das Auflésungsvermo-
gen bei kleinen Wellenldngen verschlechtert. Beim FTIR-
Spektrometer wird das grofite Aufldsungsvermogen
ebenfalls nur bei der grofiten Wellenldnge erreicht.

9.1 Polarisation und Brechungsgesetz.

Fiir die in das Glas eintretende Welle greift man auf die
Fresnelschen Formeln zurtick. Nach (5.43) ist

T, = 7| cos(B1 — B2)) = T (cos By cos B2 + sin By sin ) .

Aus dem Brechungsgesetz und der Brewster-Bedingung
folgt

sin B cos fB1
. n 1
sim ,31 = g nZ , COSs ﬁ] ﬁ ’
. 1 n
W= P T e
2n

T :T“—1+n2 .

Der Polarisationsgrad ist

22 2 /2
I e ey

N Tﬁ—l—Ti n 1+Ti/Tﬁ 1 42m2 4t FdAn2

2 1\2
_ (n*—1) _ 1,5625 0,08
1+6n24+nt 19,56
firn =1,5.

9.2 Bestimmung der Analysierstirke einer Polarisati-
onsfolie.

Es sei Iy die anfdngliche Lichtintensitdt. Hinter dem
ersten Filter gibt es eine parallel zur Filterstellung
polarisierte Komponente der Intensitat 1/2 - Ip(1 + A)
und eine senkrecht dazu polarisierte Komponente mit
der Intensitdt 1/2 - Iy(1 — A). Die Transmissionsfaktoren
des zweiten Filters fiir die beiden Komponenten sind
To(1 4+ Acos(2¢)) und To(1 + Acos(2¢ + 7)) = To(1 —
Acos(2¢)). Die gesamte Intensitét ergibt sich zu

%IOT% [(1+A) (1+ Acos(29))
+(1—A) (1 - Acos(29))]
= 10T} (1+ A% cos(29) ) .

Somitist Top = /T1p und A = \/Aqp.
9.3 Glan-Prisma.

Bei der Totalreflexion des o-Strahls an der Grenzflache
innerhalb des Prismas ist der Einfallswinkel B; gleich
dem Schnittwinkel des Kristalls. Die Bedingung fiir To-
talreflexion ist sinfq =1/n, =1/1,658, B1 > 37,1°. Die
Intensitat des ao-Strahls, der das Prisma durchlauft, erhalt
man mit den Fresnelschen Formeln. Mit 1 = 38,5° ergibt
sich der Ausfallswinkel im Luftspalt: sin Sy = 1,0 sin 1,
B2 = 67,7°. Die Polarisation des ao-Strahls ist parallel zur
Zeichenebene in Abb. 9.23 gerichtet. Dann ist nach (5.42)

_tan(B; — B2) _ tan29,2°
P~ tan(py + o) ~ tan106,2°

= —0,162.

Der Intensitatsverlust durch Reflexion an der Luftschicht
ist ungefdhr 2 - 0,162 = 5,2 %, hinzu kommen die Verluste
von ungefahr 2(na0 — 1)?/ (1120 +1)?> = 7,6 % an den Au-
Benseiten.

Vergroflert man 1 und fB,, wird der der Betrag des Fak-
tors tan(B1 + B2) kleiner, die Reflexionsverluste nehmen
zu.

Bei dem alternativen Schnitt des Kalkspats werden die
Polarisationen vertauscht. Damit der ordentliche Strahl
die Grenzflache zwischen den Teilprismen ohne Verluste
durchlduft, muss das verbindende Ol den Brechungsin-
dex des ordentlichen Strahls besitzen. Der ao-Strahl muss
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an der Schicht zwischen den Teilprismen totalreflektiert
werden. Das fithrt auf einen anderen Prismenwinkel:
sin 1 = 1o /Mao = 1,486/1,658, B1 = 63,7°.

9.4 Interferenzfarben.

In (9.31) hat man cos ¢ =sing = 1/v/2 zu setzen. Die
Stellung des Analysators ist gegeben durch den Vektor

1/v/2- (% — #). Die Amplitude ist gegeben durch die Pro-
jektion des Vektors (9.31) auf diese Richtung:

1 6
A—EEO(cos(kz—wt—l-E—E)

— kz—wt—&-é-i-é
cos > t5))

1 ) )
A= §E0<cos <kz—wt+ E) cos 5

+ sin (kz—wt—l— 5) smé
2 2

— cos <kz—wt+ 5) cosé
2 2

+ sin (kz—wt—i— é) sm§>
2 2

) )
A:Egsin<kz—wt+§) SinE'

Mit (9.30) erhalt man (9.33).
9.5 Stokes-Parameter.
a) Aus den linken Teilen von (9.7)-(9.9) folgt mit (9.10)

2 =51 +85+53
= Eyo + Ejo — 2E3(Eqg + 4E3E g (cos” 6 + sin® §)
2 2 2
= (Exo+ EyO) =50,

somit ist S/Sp = 1. Auf die gleiche Weise erhélt man das
Resultat S = (a% + b?).

b) Aus (9.9) folgt, wenn Sz = 0 ist, zwingend sin2y =0
und cos2y = £1. Datany = £b/aist,istdann b = 0. Aus
(9.7) ergibt sich mit S; = 0 auf die gleiche Weise cos2¢ =
0 und sin2¢ = £1. Das bedeutet, dass ¢ = 45° modulo
90° ist. Wegen S1 = 0 ist laut (9.7) Eyp = E,9. Wie man
sieht, entartet die Ellipse in Abb. 9.1d zu einer Geraden:
Wenn S, = £1 ist, ist die Strahlung linear polarisiert und
die Polarisation bildet mit den Koordinatenachsen einen
Winkel von +45°.

¢) Im statistischen Mittel muss S3 genau so hdufig positiv
wie negativ sein, was in dem in Abb. 9.3 gezeigten Bild-
ausschnitt nicht der Fall ist. Ohne detaillierte statistische
Analyse kann man nach einem Blick auf Abb. 7.18 le-
diglich sagen, dass in dem gezeigten Bildausschnitt rund
ein halbes Dutzend Vorzeichenwechsel hitten stattfinden
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miussen und die Wahrscheinlichkeit fiir ihr Ausbleiben
kleiner als (1/2)® = 1/64 sein sollte.

Kleine Werte fiir Sy erhdlt man dort, wo eine der an-
deren Polarisationen oder ihre Quadratsumme nahe bei
eins liegen, also bei t =7 +1,t=35+2und t =57 £ 3
Zeiteinheiten. S, liegt nahe bei eins, wenn beide anderen
Polarisationen klein sind: t = 27 oder T = 63 Zeiteinhei-
ten.

9.6 Fresnelscher Rhomboeder.
a) Es ist

- sin(B1 — fa) _
© 7 sin(Bi+p2)
Da sin 1, cos B1 und sin 3, reell sind und cos B, rein ima-

gindr ist, ist der Nenner das konjugiert Komplexe des
Zéhlers und es ist |p | = 1. Fiir die Phasenverschiebung

cos B1 sin By — sin B1 cos B2
cos B sin By + sin B cos By

folgt
tan L — _sin By cos By _ \/m
2 cos 1 sin iy ncospy
Ferner ist
o = tan(B1 —fa) _ 0 cos(B1 + B2)
I~ tan(Br +B2) " cos(Br—p2)

cos 31 cos B2 + sin B sin B
cos B1 cos Br —sin By sin By

P =pPL

In dem hinzugetretenen Faktor sind wieder Zdhler und
Nenner konjugiert komplex zueinander, sodass | p||| =1
ist. Die Phasendifferenz zwischen p, und p| ergibt sich
aus der Phasendifferenz des zusatzlichen Faktors:

Ap  cosBicosf,  €OS B1y/ n?sin® By — 1

tan — = — :
2 sin 81 sin B nsin? B1

b) Der Fresnelsche Rhomboeder muss die Phasen der
beiden linear polarisierten Wellen um insgesamt 90° ge-
geneinander verschieben, also um 45° pro Totalreflexion:
Ag = 7/4. Daher ist

cos B1y/n2sin? By — 1

— =V2-1=0414.
nsin” B1

tan —
8

Es entsteht eine quadratische Gleichung, aus der sich
sin? B1 berechnen lasst:

n? (1 + tan® g) sin* By — (n2 + 1) sin? p1=—
n?+1
2n2(1 + tan® 71/8)

Sil‘l2 51 =

(n2+1) B 1
4n*(1+tan®71/8)2 1+tan?7/8
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Numerisch erhélt man die Lésungen sin” 8; = 0,5629 und
0,6649, B1 = 48,6° oder 54,6°. Der Winkel p; ist identisch
mit dem Prismenwinkel.

10.1 Prazisions-Zeitmessung in einem Flugzeug.

Man schreibt (10.2) mit (10.4) in der Form

2
?d7? = c?df? (—v—;‘ +1+ @) .
c c
Von einem Inertialsystem aufierhalb der Erde betrachtet,
ist die Geschwindigkeit v, der Erdoberflache nicht null,
weil die Erde mit einer Kreisfrequenz wg = 27t/ Tag ro-
tiert. Deshalb ist

2,2
WEr
Zdr? =c2adr (1— %)
c

Im Flugzeug ist

(wprg £op)?  2gh
e ).

Eigentlich miisste man in der letzten Gleichung zum Erd-
radius rg noch die Hohe &k addieren, aber das macht sehr
wenig aus. Aus den beiden Gleichungen kann man die
Koordinatenzeit t des externen Beobachters eliminieren
und erhalt

2dt? = c2dr? <1 —

77 1— (wgpre £vg)%/c® +2gh/c?

2 — 22,2 ’
T 1 —wgrg/c

% (14 gh - VFWETE 02

T c2 c2 2¢2 |-

Eine Erdumrundung dauert 77 = 40000km/ (0,2km/s) =
2-10%s. Bedingt durch die Gravitation, zeigt eine Uhr
im Flugzeug eine um Atg = T1gh/c®> = 218ns groBere
Zeit an (,Hohenangst macht alt”“). Der Term proportio-
nal zu v? ist die relativistische Zeitdilatation auf Grund
der Relativgeschwindigkeit zwischen Flugzeug und Erd-
boden: Atg = —7v%/2c* = —44ns. Die Zeitanzeige der
Uhr im Flugzeug ist gegeniiber derjenigen am Boden ver-
ringert (Zwillingsparadoxon, ,Reisen erhdlt jung”). Der
zweite Term resultiert ebenfalls aus der Zeitdilatation,
stammt aber daher, dass die Erde kein Inertialsystem ist:
ATe = Frrewpvp/c® = F206ns. Als Summe erhilt man
—32ns fiir den Flug in Ostrichtung, +380ns fiir den Flug
in Westrichtung. Die Ergebnisse dieses Gedankenexperi-
ments sind den experimentellen Daten aus Bd. I, Tab. 14.1
einigermaflen dhnlich.

10.2 Gravitationswellen bindrer Systeme.

a) Weil die Masse der Erde viel kleiner als die Sonnenmas-
se ist, ist die reduzierte Masse die Erdmasse. Dann erhalt

man aus (10.14)
6710711 (21)° - 64
10 (1Jahr)6 - (3-108)5
(6-10*%)% . (1,5-10"1)* w .

Der Faktor 64 riihrt daher, dass die Periodendauer der
Gravitationswelle ein halbes Jahr ist. Beim Ausrechnen ist
es niitzlich, die Zehnerpotenzen als Faktoren herauszu-
ziehen. Das Ergebnis ist P = 200 W.

b) Man benétigt den Abstand der Sterne, den man aus
(10.15) erhalt:
A _ 4y (my +my)
B — wz .
grav

Das Resultat ist r5 = 1,47 - 10° m. Hiermit erhilt man die
Leistung wieder aus (10.14): P = 5 - 10> W. Akkumuliert
iiber ein Jahr ist die Energie 1,6 - 10%1J, was rund 1016
Sonnenruheenergien entspricht.

10.3 Frequenzinderung der Gravitationswelle eines bi-
ndren Systems.

Die Leistung der Gravitationswelle soll der Energieab-
nahme des Zwei-Korpersystems entsprechen:

’)/wgravlusedr‘l _ i (’Y,ured (my +my) >

10c> C o dt 2r
6
w d
e (11.14)

Aus (10.15) folgt

g dalmtm) i Ograv

r Werav

2
Warav

Eliminiert man mit Hilfe dieser Gleichungen die Groéfen r
und 7 aus (11.14), erhdlt man

11
Worav

. 6\°
o3 =16 (5) 75(1111 + m2)2yfed 15

Zahlenbeispiel: w = 1430Hz/s, v =230Hz/s. Beginnt
man mit der Periodendauer 1/50s = 20ms, hat sich die
50Hz-Frequenz nach einer Periode um 230 - 0,02Hz =
4,6Hz verschoben und die nidchste Periodendauer ist
18 ms.

10.4 Gravitationswellen: Unschiarferelation und Inter-
ferometrie.

Bei der Messung der x-Koordinate senkrecht zur Oberfla-
che eines Spiegels mit der Prédzision Ax; erhdlt man aus
der Impulsunschirfe eine Geschwindigkeitsunschérfe

h
Av = .
v mAxq
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Nach einer Zeit T entsteht hieraus die Ortsunschérfe

Axy =

mAxy

zu der der Fehler einer Abstandsmessung hinzutritt. Das
Optimum erhdlt man durch Minimierung des gesamten
Fehlerquadrats

2
Ax* = AX} + Ax3 = Ax3 + i .
m2Ax2

Das Resultat ist

AX1:Hh—T, Ax:\(ZFl—T.
m m

Insgesamt gehen vier Spiegel ein. In einem Interferometer
sind die Messungen an ihnen allerdings nicht vonein-
ander unabhéngig. Fasst man 2 Spiegel zu einem Paar
zusammen, besitzt dieses eine mittlere Position und einen
Abstand, wobei in die Dynamik der Abstandsdnderung
die reduzierte Masse m /2 eingeht. Deshalb ist (11.15) mit
V2 zu multiplizieren. Behandelt man die Positionsmes-
sungen beider Spiegel als unabhédngig, kommt dasselbe

(11.15)
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heraus. Das verallgemeinert man auf das zweite Spiegel-
paar. Als Nachweisgrenze fiir Ahj; schétzt man deshalb

ab:
2 /2
Ahy = — Mg 105
Lo m

Als mittlere Zahl der Lichtreflexionen erhilt man n =
Tc/2Ly = 187.

10.5 Storung eines Gravitationswellendetektors durch
externe Massen.

Der Spiegel folgt mit 180° Phasenverschiebung der
Schwingung der Masse. Die Newtonsche Bewegungsglei-
chung fiir den Spiegel lautet

d? AsmM
md—t;c = — 471202 mxg cos(27Tvet) = —2 871:3 i cos(27tv,t)
25 M
07 S a2

Zahlenbeispiel: xg = 1,7 - 107¥m, xo/Lg = 4 - 10~%2. Die
Position des zweiten Spiegels wird durch die Verschie-
bung der externen Masse wegen des grofsen Abstands
nicht beeinflusst. Deshalb ist die Auswirkung der Bewe-
gung auf die Messung der Raumdehnung /1 halb so
grofs.
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