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Vorwort

Über viele Jahrzehnte wurde im großen Hörsaal im Physikalischen Institut der Universität
Heidelberg, am Philosophenweg 12, eine große Physikvorlesung veranstaltet.

Haupt- und Nebenfach-Studenten hörten gemeinsam diese Vorlesung. In den 1970er Jahren
platzte dann jedoch der Hörsaal aus allen Nähten. Die Vorlesungen waren total überfüllt.
Herr Heintze erkannte, dass dies geändert werden muss. Als Dekan sorgte er für den Neu-
bau des neuen Hörsaalgebäudes INF 308. 1979 wurde hier schließlich die erste Vorlesung
gehalten.

Herrn Heintze war, wie man daran sehen kann, die Lehre sehr wichtig, besonders die Vorle-
sung. Bisher hatte ich ihn als Institutsdirektor oder großen Wissenschaftler erlebt. Von 1981
an lernte ich ihn auch als Vorlesungsdozent kennen.

Anders als manche anderen Dozenten hat Herr Heintze über die Zeit hinweg alle Kapitel der
Experimentalphysik behandelt, so dass ich das gesamte Programm der Vorlesung kennen
lernen durfte. Neue Methoden wurden geprüft, traditionelle Erkenntnisse erhalten, histo-
rische Experimente restauriert. Herr Heintze stellte sich mir dabei nicht nur als Professor
dar, sondern er war auch Ingenieur. So bauten wir gemeinsam über die Jahre hinweg vie-
le Experimente für unsere Studenten. Auch der berühmte Heidelberger Löwenschuss ist so
entstanden, mit dem die Superposition von Bewegungen veranschaulicht wird.

In dieser Vorlesungsphase habe ich viel gelernt und den Sinn und Lerneffekt der Experi-
mente verstanden. Für mich ist Herr Heintze der Vater dieser Vorlesung und ein väterlicher
Freund geworden.

Auch die Idee zu diesem Buch entstand hier in dieser Vorlesung. Ich erinnere mich, dass
Herr Heintze einmal am Dozentenschreibtisch saß, unweit meines Schreibtisches. Und er
nahm aus unserer kleinen Bibliothek ein Buch nach dem andern, fand aber nicht das, was er
suchte und war recht unzufrieden dabei. Nach einiger Zeit machte ich Herrn Heintze klar,
dass nur er in der Lage sei, dies zu ändern. Er hatte in genau dieser Vorlesung große Erfah-
rung und er kannte die Vorlesung von Otto Haxel, den er auch manchmal hatte vertreten
müssen. Zunächst stieß die Idee eines eigenen Buches nicht auf Zustimmung – Herr Heintze
verneinte, so einfach sei dies nicht und überhaupt . . . Kurze Zeit später jedoch stand er auf
und verließ das Gebäude, um nach 15 Minuten zurück zu kehren. Er sagte: „Ich habe mir
das überlegt, ich werde ein Buch schreiben.“

Auch nach seiner Emeritierung 1991 haben wir zusammen Experimente aufgebaut und
ausgewertet, um einiges näher zu untersuchen, was in vielen Physikbüchern nicht richtig
dargestellt ist. Bei der Weihnachtsfeier 2011 sagte er mir: „Wir müssen uns nochmal mit der
anomalen Dispersion beschäftigen.“ Leider kam es nicht mehr dazu.

30 Jahre hat es gedauert, bis die Physikbücher zur Experimentalphysik entstanden sind.
Herrn Heintze war es nicht mehr vergönnt sein Werk zu vollenden. So fühlen wir uns ver-
pflichtet, dies zu tun. Möge es dazu dienen unseren Studenten die Schönheit der Physik
aufzuzeigen, Zusammenhänge zu sehen, das Studium zu erleichtern und damit dieses Ver-
mächtnis zu erkennen und weiter zu tragen.

Hans-Georg Siebig, Vorlesungsassistent



Vorwort

Dies ist der vierte Band des Physikbuchs unseres Vaters. Er war Physiker mit Leib und Seele.
Gelang die Vorlesung oder das Experiment, kam er gut gelaunt nach Hause. Dahinter steckte
seine tiefe Liebe zur Physik und das Bedürfnis diese Erkenntnis zu verbreiten.

In der Forschung hatte er das Glück in einer überaus spannenden Zeit bei der Entwick-
lung der Elementarteilchenphysik durch „elegante“ Lösungen und „schöne“ Experimente
an CERN und DESY mitzuwirken. Dabei wurden nicht nur Erfolge gefeiert. Auch wenn es
mal nicht so recht voranging, setzte man sich mit den Kollegen erst mal bei gutem Essen
zusammen.

Nachdenken konnte unser Vater am besten bei körperlicher Arbeit und zwar an der fri-
schen Luft. Manche Steinplatte in unserem Garten lässt sich wohl so der Lösung eines
physikalischen Problems zuordnen. Detektoren aus Heidelberg wiederum hießen Tulpe und
Margerite.

Vielerlei Pläne für die Zeit nach seiner Emeritierung gab er auf, um dieses Buch zu schreiben.
Dies führte ihn zu einem immer tieferen Verständnis der klassischen Physik und zu intensi-
ver Auseinandersetzung mit der modernen Forschung. Sein Anspruch war es, vorgefertigte
Denkwege nur zu beschreiten, wenn sie auch seiner strengenÜberprüfung standhielten.War
das nicht der Fall, mussten neueWege gefunden werden, um Zusammenhänge darzustellen.

Prof. Dr. Peter Bock hat es übernommen, das Buch im Sinne unseres Vaters nach dessen Tod
zu vervollständigen. Ihm gilt unser besonderer Dank.

Geschwister Heintze



Vorwort

Das vorliegende Buch ist der vierte Band der Lehrbuchreihe von Joachim Heintze (1926–
2012), die im Zusammenhang mit seinen Vorlesungen über Experimentalphysik an der
Universität Heidelberg entstanden ist.

Es behandelt die Wellenerscheinungen in all ihren Formen, insbesondere die Optik. Wie die
vorangegangenen Bände enthält es neben Grundwissen etliche weitergehende Informatio-
nen, als Beispiele seien der FEL und die Korrelationsinterferometrie genannt. Ein weiteres
Kennzeichen des „Heintze” sind die historischen Anmerkungen und biographischen Noti-
zen in den Fußnoten.

An dem von J. Heintze verfassten Text wurden, von wenigen Ausnahmen abgesehen,
keine Veränderungen vorgenommen. Hinzugefügt wurden die meisten Übungsaufgaben.
Ergänzungen gab es in den Bereichen Spektroskopie und Mikroskopie. Weil das Buch Wel-
lenerscheinungen aus allen Gebieten der Physik enthält, wurde aus aktuellem Anlass ein
Abschnitt über Gravitationswellen angefügt. Dies ist insofern etwas heikel, als dieser Band
natürlich kein Lehrbuch über Allgemeine Relativitätstheorie sein kann, aber trotzdem etli-
che Sachverhalte daraus benötigt werden. Hier ließen sich Brücken schlagen zu Dingen, die
J. Heintze bereits an anderen Stellen behandelt hatte.

Bei der Bearbeitung des vorliegenden Bandes habe ich vielerlei Unterstützung erfahren. So
hat sich Herr M. Heintze um die Probleme des Copyrights bei den Abbildungen geküm-
mert. Herr R. Weis hat die Rechner-Infrastruktur bereitgestellt und alle software installiert
und gewartet, die zur Bearbeitung und Sicherung des Textes notwendig ist. Frühere LateX-
Versionen des Buches wurden von Herrn C. Werner erzeugt, dessen Daten ich übernehmen
konnte. Die Zeichnungen wurden von Herrn J. Pyrlik angefertigt, der auch alle anderen
Abbildungen für den Druck aufbereitet hat. Dieses Buch wäre nicht entstanden ohne die Un-
terstützung durch die Vorlesungstechniker, Herrn H.-G. Siebig und G. Jähnichen sowie die
fotografische Tätigkeit von Herrn R. Nonnenmacher. Viele experimentelle Aufbauten zur Fo-
tografie von Beugungsfiguren gehen auf Herrn J. Wagner zurück, dem ich dafür zu großem
Dank verpflichtet bin. Herr W. Trost hat einige Passagen dieses Bandes kritisch durchgese-
hen.

Mein besonderer Dank gilt Frau A. Pucci, Kirchhoff-Institut der Universität Heidelberg und
Herrn J. Engelhardt, Krebsforschungszentrum Heidelberg und BioQuant-Zentrum Heidel-
berg, die Abbildungen zur Fourierspektroskopie bzw. zur STED-Mikroskopie angefertigt
und zur Verfügung gestellt haben und mich auf Fehler oder Unklarheiten im Text hinge-
wiesen haben. Zu sehr großem Dank bin ich auch den Herren B. Willke, B. Knispel, S. Kaufer
und P. Oppermann vom Max Planck-Institut für Gravitationsphysik in Hannover verpflich-
tet, die mich über viele Details der Gravitationswellenexperimente aufgeklärt haben.

Die Entstehung des Gesamt-Werkes hat H.G. Siebig in seinem Vorwort eingehend geschil-
dert und seinen Schlusssätzen kann ich mich voll anschließen.

P. Bock



JoachimHeintze (1926–2012) studierte nach demEnde des ZweitenWeltkrieges in Berlin und
Göttingen Physik und wurde in Göttingen Schüler von Otto Haxel, dem er nach Heidelberg
folgte, wo er seine Promotion abschloss und sich auch habilitierte. Anschließend arbeitete er
mehrere Jahre am CERN in Genf. Von 1963 an bis zu seiner Emeritierung 1991 war er Ordi-
narius für Physik am I. Physikalischen Institut der Universität Heidelberg, wo er zeitweilig
auch als Dekan wirkte.

Als Forscher ist sein Name untrennbar mit der Entwicklung von Spurendetektoren für
hochenergetisch geladene Teilchen verbunden. Durch seine Arbeiten über schwache Wech-
selwirkung und Elektron-Positron-Vernichtung hat er die Teilchenphysik über viele Jahre
hinweg wesentlich mitgeprägt.

Für seine Arbeiten über seltene Pionen-Zerfälle erhielt er 1963 den Physikpreis der DPG;
1992 wurde ihm der Max Born-Preis verliehen. J. Heintze war auch ein engagierter Lehrer;
dieses Buch ist aus seinen Vorlesungen über Experimentalphysik für Studenten der ersten
Semester hervorgegangen.
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4 1 Grundbegriffe der Wellenphysik

Bisher haben wir uns bei der physikalischen Be-
schreibung der Natur zweier Grundkonzepte be-
dient: Teilchen und Felder. Wir haben die Bewegung
von Teilchen studiert und die räumliche und zeitli-
che Veränderung von Feldern. Wellen sind Naturer-
scheinungen, die prinzipiell als spezielle Bewegung
eines Teilchensystems oder durch raum-zeitlich ver-
änderliche Felder beschrieben werden können. Sie
zeigen aber ein so ausgeprägtes und eigenartiges
Verhalten und sind von so zentraler Bedeutung, dass
man sie als ein eigenständiges Grundkonzept der
Physik behandeln kann.

Wir wollen uns in diesem Kapitel zunächst anhand
von einfachen Beispielen mit den Grundbegriffen
der Wellenlehre vertraut machen; danach folgt eine
Einführung in die mathematische Beschreibung von
Wellen.

1.1 Typische Wellenformen

Beim Stichwort „Wellen“ denkt man zuerst an Wasser-
wellen. Diese sind jedoch ein ausgesprochen komplizier-
tes Phänomen, und wir werden uns schon aus diesem
Grund überwiegend an andere Wellenerscheinungen hal-
ten. Wellen sind nicht notwendigerweise mit einer peri-
odischen Bewegung verbunden; es gibt periodische und
aperiodische Wellenformen. Wir werden uns sogleich mit
beiden Erscheinungen befassen.

Wellenausbreitung auf einem elastischen Seil

Ein elastisches Seil sei an einem Ende fest eingespannt.
Das andere Ende halten wir in der Hand und ziehen
das Seil ein Stück in die Länge, so dass eine bestimmte
Seilspannung erzeugt wird1. Wird nun das Seil einmal
rasch und ruckartig nach oben und unten bewegt, so
entsteht eine Deformation des Seils, wie in Abb. 1.1 ge-
zeigt. Die Ausbauchung läuft als eine aperiodische Welle
mit einer bestimmten Geschwindigkeit v nach rechts. Wir
können auch eine periodische Welle erzeugen, indemwir
die Hand ein paar Mal periodisch auf- und abbewegen
(Abb. 1.2). Die Ausbreitungsgeschwindigkeit des Signals
ist in beiden Fällen die gleiche. Man kann sie beeinflussen,
indem man das Seil mehr oder weniger spannt.

Dieser einfache Grundversuch zeigt sehr deutlich, wie
zweckmäßig es ist, die Welle als eigenständiges Konzept

1 Für die im folgenden beschriebenen Versuche ist ein weicher Gum-
mischlauch besonders geeignet.

v

v

Abbildung 1.1 Aperiodische Welle auf einem Gummiseil

v

Abbildung 1.2 Periodische Welle

v

Abbildung 1.3 Unpolarisierte Welle

einzuführen. Es ist zwar sicherlich möglich, die Bewe-
gung eines jeden Seilstückchens für sich zu diskutieren;
das Phänomen, das beobachtet wird, sollte aber anders
und direkt erfasst werden, eben als Ausbreitung einer
Welle. Man bezeichnet den Vorgang manchmal auch als
Ausbreitung einer Störung, denn die am linken Ende
des Seils kurzzeitig erzeugte Störung der Gleichgewichts-
form verschwindet nicht etwa lokal, sondern wandert in
wunderbarer Weise das Seil entlang. Man kann auch von
Signalübertragung sprechen; das Gummiseil ist bei dem
Versuch nur der ziemlich uninteressante Träger der Er-
scheinung: Das Wesentliche ist die Welle.

Polarisation. Wenn die seitliche Auslenkung stets in ei-
ner bestimmten Richtung erfolgt, spricht man von einer
linear polarisierten Welle. In Abb. 1.1 und Abb. 1.2 ist
die Polarisationsrichtung vertikal. Man könnte auch eine
linear polarisierte Welle mit dazu senkrechter Schwin-
gungsrichtung erzeugen, indem man die Hand in ho-
rizontaler Richtung bewegt. Schwieriger ist die Erzeu-
gung einer unpolarisierten Welle; dazu muss man die
Hand zwar periodisch, aber mit ganz unregelmäßig
wechselnder Richtung bewegen (Abb. 1.3). Bewegt man
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Abbildung 1.4 Zirkular polarisierte Seilwellen

die Hand periodisch auf einer Kreisbahn, entsteht ei-
ne zirkular polarisierte Welle, und zwar je nach dem
Drehsinn eine links- oder rechtsdrehend zirkular po-
larisierte Welle (Abb. 1.4). Die zirkulare Polarisation
kann mathematisch auch dargestellt werden als Überla-
gerung von zwei linear polarisierten Wellen; wir wer-
den darauf in Kap. 9 zurückkommen. Ebensogut kann
man auch eine linear polarisierte Welle durch Überlage-
rung von zwei gegenläufig zirkular polarisierten Wellen
darstellen.

Transversale und longitudinale Wellen. Die in Abb. 1.1–
1.4 dargestellten Wellen sind sämtlich transversal, d. h.
die Auslenkung erfolgt quer zur Ausbreitungsrichtung.
Es gibt auch longitudinale Wellen, bei denen die Aus-
lenkung in Richtung der Ausbreitung erfolgt. Zu ihrer
Demonstration benutzt man am besten statt des Gum-
mischlauchs eine (auch „Slinky“ genannte) Spielzeug-
schraubenfeder (Abb. 1.5).

Wird bei dieser Feder an einem Ende ein Stoß in axialer
Richtung ausgeführt, so läuft die Störung als Verdichtung
die Schraubenfeder entlang. Die Ausbreitungsgeschwin-
digkeit der longitudinalen Welle ist im Allgemeinen eine
andere als die der transversalenWellen, die man natürlich
auch auf der Schraubenfeder erzeugen kann.

Reflexion. Wir kehren zu den Experimenten mit dem
Gummiseil zurück. Erreicht die aperiodische Störung
(Abb. 1.1) das fest eingespannte Ende des Seils, so erfolgt
eine Reflexion, das Signal läuft zurück, und zwar mit um-
gekehrtem Vorzeichen (Abb. 1.6). Das gleiche geschieht,
wenn ein periodisches Signal das Seilende erreicht. In
diesem Fall bezeichnet man die Vorzeichenumkehr als
Phasensprung um π, denn es ist cos(α + π) = − cos α.
Um die Vorgänge bei der Reflexion im einzelnen zu ver-
stehen, muss man sich über die Randbedingungen am

v

Abbildung 1.5 Longitudinale aperiodische Welle auf einer Schraubenfeder

v

v

x

y

xE

Abbildung 1.6 Reflexion einer Seilwelle

Seilende und über deren Auswirkung klar werden. Wir
wollen dies sogleich für zwei verschiedene Situationen
tun, beim fest eingespannten und beim lose eingespann-
ten Seil. Im zweiten Fall ist das Seil nicht direkt, son-
dern über einen langen dünnen Faden mit einer festen
Wand verbunden. Dadurch kann die Spannkraft über-
tragen werden, und das Seil ist dennoch vertikal frei
beweglich.

„Fest eingespannt“ heißt, dass am hinteren Ende die Ge-
schwindigkeit der Seilbewegung Null ist, d. h. dass keine
Auslenkung erfolgt. „Lose eingespannt“ heißt, dass am
hinteren Ende keine Kraft in vertikaler Richtung auf das
Seil einwirkt; dann muss am Ende das Seil stets eine hori-
zontale Tangente haben.

Wir wollen dies in Formeln fassen. Die Wellenfunkti-
on y(x, t) beschreibt die Auslenkung des Seils, xE sei die
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x-Koordinate am Seilende, Fy die in y-Richtung wirkende
Kraft. Dann sind die Randbedingungen:

„fest“: y(xE, t) = 0 bzw.
(

∂y
∂t

)
x=xE

= 0 , (1.1)

„lose“: Fy(xE, t) = 0 bzw.
(

∂y
∂x

)
x=xE

= 0 . (1.2)

Man kann die Randbedingungen statt durch Einspannen
auch durch Überlagerung mit einer gegenläufigen Welle
genau gleicher Form erfüllen:

„fest“: Die gegenläufige Welle hat umgekehrtes Vorzei-
chen.
„lose“: Die gegenläufige Welle hat gleiches Vorzeichen.

Mit Hilfe einer fiktiven gegenläufigen Welle kann man
leicht die Einzelheiten des Bewegungsablaufs bei der Re-
flexion konstruieren, wie in Abb. 1.6 für den Fall des fest
eingespannten Seils gezeigt ist.

Signalübertragung auf einem Koaxialkabel

Ebenso wie ein mechanisches Signal auf einem Seil kann
ein elektrisches Signal auf einem Kabel übertragen wer-
den. Im Labor benutzt man dazu meistens ein Koaxial-
kabel. Abbildung 1.7 zeigt ein solches und einige Bauele-
mente, wie man sie zur Herstellung von Verbindungen
benötigt. Auf den Innenleiter wird ein Spannungsim-
puls U(t) gegeben; der Außenleiter, bestehend aus einem
Drahtgeflecht, schließt den Stromkreis. Er ist meist geer-
det und sowohl am Impulsgenerator als auch am Emp-
fänger mit dem Gehäuse verbunden.

Abbildung 1.7 Koaxialkabel und -stecker. In der Mitte ein „50 Ω-Abschluss-
widerstand“

l
R

G

Abbildung 1.8 Versuchsanordnung zur Messung der Reflexion am Abschluss-
widerstand R

a

b

c

d

e

R= 0

R= ∞

R= 200

R= 2

R= 5

1
2

1 2

1 2

1
2

1 (2)

Abbildung 1.9 Messergebnisse mit der in Abb. 1.8 gezeigten Anordnung. 1 :
einlaufendes Signal, 2 : reflektiertes Signal

Um Bedingungen analog zum einseitig fest eingespann-
ten Seil herzustellen, versehen wir das Kabel am Ende
mit einem Kurzschlussstecker. Dadurch wird erzwungen,
dass dort stets die Spannung U = 0 herrscht. Das Hin-
und Zurücklaufen des elektrischen Signals kann nun mit
Hilfe eines Oszillographen in der in Abb. 1.8 gezeigten
Schaltung beobachtet werden.

Zunächst wird der Oszillographenstrahl vertikal abge-
lenkt, wenn das vom Impulsgenerator G erzeugte Signal
auf dem Hinweg anliegt; sodann sieht man mit der Ver-
zögerung, die der doppelten Laufzeit des Signals auf dem
Kabel entspricht, das am Kurzschluss reflektierte Signal
(Abb. 1.9a). Es hat gleiche Form, aber entgegengesetz-
tes Vorzeichen. Durch Veränderung der Kabellänge kann
man sich davon überzeugen, dass die Laufzeit proportio-
nal zur Kabellänge l ist und dass die Geschwindigkeit des
Signals auf dem Kabel etwa 20 cm/ns ist. Das entspricht
2/3 Lichtgeschwindigkeit.

Dem „lose“ eingespannten Seil entspricht ein Koaxialka-
bel, das am Ende offen gelassenwird: Wie Abb. 1.9b zeigt,
wird das Signal ohne Vorzeichenumkehr reflektiert. Wird
das Kabelmit einemOhmschenWiderstandR abgeschlos-
sen, beobachtet man eine Reflexion mit verminderter Am-
plitude (Abb. 1.9c und d). Bei einem bestimmtenWert von
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R tritt überhaupt keine Reflexion auf (Abb. 1.9e); man be-
zeichnet diesenWert von R als denWellenwiderstand des
Kabels. Das für unseren Versuch verwendete Kabel hat-
te einenWellenwiderstand von 50Ω. Solche „50Ω-Kabel“
werden häufig im Labor verwendet.

Wie der Wellenwiderstand zustande kommt, werden wir
später untersuchen (Kap. 3). Wir bemerken hier, dass der
Ausgangswiderstand des Impulsgenerators G in Abb. 1.8
gleich demWellenwiderstand des Kabels sein sollte, eben-
so der Eingangswiderstand des Geräts, in das das Signal
eingespeist wird. Auf diese Weise werden Reflexionen
und Mehrfachpulse vermieden. Der Eingangswiderstand
des Oszillographen in der Schaltung von Abb. 1.8 sollte
dagegen groß gegen den Wellenwiderstand sein.

Stehende Wellen

Die bisher besprochenen Erscheinungen werden unter
dem Sammelbegriff laufende Wellen zusammengefasst.
Es gibt noch ein anderesWellenphänomen: stehendeWel-
len. Man kann sie erzeugen, indem man das eine Ende
des Gummiseils gelinde, aber mit der richtigen Frequenz,
auf- und abbewegt. Abbildung 1.10 zeigt das Ergebnis:
Bei einer bestimmten Frequenz erzeugt man die Grund-
schwingung, bei der doppelten Frequenz die erste Ober-
schwingung und so fort. Die Stellen, wo das Seil stän-
dig in Ruhe bleibt, nennt man Schwingungsknoten, die
Stellen maximaler Auslenkung Schwingungsbäuche. Die
Nummerierung der Oberschwingungen entspricht also
der Zahl der Knoten. Ein Zusammenhang zwischen ste-
henden und laufenden Wellen ist vielleicht intuitiv klar;
er wird in Abschn. 1.5 mathematisch verdeutlicht wer-
den. Andererseits ist es offensichtlich, dass eine stehende
Welle nichts anderes ist als die harmonische Schwingung
eines ausgedehnten elastischen Mediums, in diesem Fall
des Gummiseils. Das zeigt, dass zwischen derWellenlehre
und der Physik der Schwingungen ein sehr enger Zusam-
menhang besteht.

Zweidimensionale Wellen

Seilwellen und Signale auf einer Koaxialleitung sind Bei-
spiele für dieWellenausbreitung in einem eindimensiona-
len System. Auf einer Flüssigkeitsoberfläche stehen zwei
Dimensionen für die Wellenausbreitung zur Verfügung,
man spricht von zweidimensionalenWellen. Wir können
sie mit Hilfe eines Wellentrogs studieren, einer flachen
Wanne, in der mit einer geeigneten Vorrichtung Oberflä-
chenwellen erzeugt werden können. Wird im Wellentrog
ein dünner Stift periodisch auf- und abbewegt, so entste-
hen Kreiswellen: Die Wellenfronten, d. h. die Linien, die

Abbildung 1.10 Stehende Wellen am Gummiseil

a

b

Abbildung 1.11 Wellen auf einer Oberfläche: Kreiswellen und gerade Wellen
im Wellentrog

durch die Wellenberge (bzw. durch die Wellentäler) gebil-
det werden, verlaufen kreisförmig (Abb. 1.11a). Wird als
Erreger eine gerade Schiene auf- und abbewegt, so sind
die Wellenfronten gerade Linien (Abb. 1.11b). Man kann
im Wellentrog auch stehende Wellen erzeugen, indem
man dem Erreger gegenüber eine feste Wand aufstellt,
an der die Wellen reflektiert werden. Es muss dann wie
in Abb. 1.10 eine ganze Zahl von Wellenbergen im Zwi-
schenraum zwischen Erreger und Wand Platz haben. Die
Einfachheit dieses Versuchs täuscht darüber hinweg, dass
in einem zweidimensionalen System eine ungeheure Viel-
falt von stehenden Wellen möglich ist. Befestigt man eine
dünne Metallplatte auf einem Stativ und streicht sie am
Rande mit einem Geigenbogen an, so kann man diese
Vielfalt erzeugen. Man kann sie sichtbar machen, indem
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a

a a aa a

a a ab

b b

b
b

b

b

b

Abbildung 1.12 Chladnische Klangfiguren. Die Platte wird bei b mit dem Bogen angestrichen, bei a ist ein Finger an den Rand gelegt. Einspannung am weißen
Punkt

man die Platte mit Sand bestreut: Die Körnchen sam-
meln sich auf denKnotenlinien der schwingenden Platte,
d. h. dort, wo die Platte ständig in Ruhe bleibt. Abbil-
dung 1.12 zeigt ein paar Beispiele für die „Chladnischen
Klangfiguren“.2 Je nach Plattenform, Einspannungsart
und Erregung entstehen die unterschiedlichsten Schwin-
gungsformen: Im 19. Jahrhundert ein Eldorado für die
mathematische Physik, heute ein Kreuz für manche Ge-
biete der Technik, wenn es darum geht, Vibrationen zu
vermeiden.

Dreidimensionale Wellen

Das Licht und die Schallwellen, mit deren Hilfe wir mit
der Umwelt kommunizieren, sind Wellen im dreidimen-
sionalen Raum, meist Wellenfelder recht komplizierter
Struktur. In der Physik versucht man, komplexe Wel-
lenstrukturen auf einfache Formen zurückzuführen. Be-
sonders wichtig sind ebene Wellen und Kugelwellen.
Abbildung 1.13a zeigt als Beispiel einen Ausschnitt aus ei-
ner ebenen Schallwelle. Die Wellenberge sind hier durch
einen erhöhten Druck bzw. durch erhöhte Molekülzahl-

2 Ernst Florens Friedrich Chladni (1756–1827) gilt mit Recht als
„Vater der Akustik“. Er lebte als Privatgelehrter allein von seinen
Einkünften aus Privatunterricht, Vorträgen und Buch-Publikationen.
Sein bedeutendster Schüler war Wilhelm Weber (Bd. III/11.4). Ein
Höhepunkt dürfte es für Chladni gewesen sein, als Napoleon ihm
in Anerkennung der französischen Übersetzung seines Werkes „Die
Akustik“ 6000 Goldfranken zukommen ließ. – Seine Werke hatten
großen Einfluss auf die weitere Entwicklung der Akustik und auf die
Theorie der Musikinstrumente. Weniger erfolgreich war er mit den
von ihm erfundenen Musikinstrumenten, dem „Euphonium“ und
dem „Klavizylinder“, mit denen er auch auf Konzertreisen ging. Er
war und blieb ihr einziger Virtuose.

Ausbreitungsrichtung

vv

x

y

z

v

v

a

b

Abbildung 1.13 Ausschnitte aus Wellen im Raum: a ebene Schallwelle,b Ku-
gelwelle

dichte gegeben. (Die Inhomogenität der Dichteverteilung
in Abb. 1.13a ist stark übertrieben.) In Abb. 1.13b ist ein
Ausschnitt aus einer Kugelwelle dargestellt. Bei einer aus-
laufenden Kugelwelle bewegen sich die Wellenfronten
unter ständiger Vergrößerung der Radien nach außen.
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1.2 Ebene harmonische Wellen

Die physikalische Größe, die in der Welle oszilliert, z. B.
die Auslenkung bei einer Seilwelle, die Höhe der Was-
seroberfläche bei einer Wasserwelle, den zeitlich und
räumlich veränderlichem Druck in einer Schallwelle, be-
schreibt man durch eine Wellenfunktion ψ(r, t). Wir
betrachten den einfachen Sonderfall einer ebenen harmo-
nischen Welle, die sich in x-Richtung ausbreitet. Für die
Wellenfunktion sind folgende Schreibweisen üblich:

ψ(x, t) = ψ0 cos
(
2π

λ
x± 2π

T
t
)

= ψ0 cos (2πν̃x± 2πνt)
= ψ0 cos (kx± ωt)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.3)

Wir bevorzugen der Kürze halber die Schreibweise (kx±
ωt). ψ0 ist die Amplitude der Welle, das Argument des
Cosinus (kx±ωt) nennt man die Phase derWelle. Die ver-
schiedenen Größen, die man zur Charakterisierung der
Welle benutzt, sind in Tab. 1.1 zusammengestellt. Die hier
als Symbole verwendeten Buchstaben sind international
üblich. In der Technik wird jedoch häufig die Frequenz
mit f statt mit ν bezeichnet.

Der Ausdruck (1.3) ist geeignet, sowohl eindimensionale
Wellen (z. B. Wellen auf einem in x-Richtung gespannten
Seil), als auch geradlinige zweidimensionale Wellen (z. B.
auf einer Wasseroberfläche) und ebene Wellen im dreidi-
mensionalen Raum darzustellen. Im letzten Falle sind die
Wellenfronten, allgemein definiert als Flächen gleicher
Phase, Ebenen senkrecht zur x-Achse (vgl. Abb. 1.13a).

Wir wollen das räumliche und zeitliche Verhalten der
Wellenfunktion (1.3) untersuchen. In Abb. 1.14 ist diese
Funktion dargestellt. Abbildung 1.14a zeigt die Funktion
ψ(x, 0). Zu einem späteren Zeitpunkt t verschiebt sich die

Tabelle 1.1 Physikalische Größen zur Beschreibung der harmonischen Wellen
ψ(x , t )

Periode T

Frequenz ν = 1/T

Kreisfrequenz1 ω = 2πν = 2π/T

Wellenlänge λ

Wellenzahl2 ν̃ = 1/λ

Kreiswellenzahl1 k = 2πν̃ = 2π/λ

Amplitude ψ0

Phase (kx− ωt)

1 Gewöhnlich sagt man „Frequenz ω“, „Wellenzahl k“.
2 Die Wellenzahl ν̃ (gesprochen: „ν Schlange“) ist in nur der Spektro-
skopie gebräuchlich.

x

t= 0

ψ= (x,t)

t= t1

t= t1

t=2t1

t=2t1

x

x

a

b

c

Abbildung 1.14 Grafische Darstellung derWellenfunktion (1.3): a ψ(x , 0) =
ψ0 cos kx, b ψ = ψ0 cos(kx − ωt ), c ψ = ψ0 cos(kx + ωt )

Verteilung, wie in Abb. 1.14b und c gezeigt, und zwar in
+x-Richtung, wenn die Wellenfunktion

ψ(x, t) = ψ0 cos(kx− ωt) (1.4)

lautet und in der entgegengesetzten Richtung für

ψ(x, t) = ψ0 cos(kx+ ωt) . (1.5)

Die Punkte gleicher Phase bewegen sich dabei mit einer
bestimmten Geschwindigkeit nach rechts oder nach links.
Um diese Geschwindigkeit zu ermitteln, betrachten wir
z. B. das Maximum der Wellenfunktion. Für dieses gilt
(kx± ωt) = 0, es ist also

x = ±ωt
k

,
dx
dt

= ±ω

k
. (1.6)

Den Betrag dieser Geschwindigkeit bezeichnet man als
die Phasengeschwindigkeit der Welle. Wir erhalten:

Phasengeschwindigkeit: vph =
ω

k
= λν . (1.7)

Die Phasengeschwindigkeit ist die Geschwindigkeit, mit
der bei einer unendlich ausgedehnten sinusförmigenWel-
le die Wellenberge vorwärts rücken; dass dies nicht unbe-
dingt mit der bei Abb. 1.9 eingeführten Signalgeschwin-
digkeit identisch ist, werden wir etwas später diskutieren.

Die große Bedeutung der harmonischen Wellen liegt ein-
mal darin, dass sie leicht zu erzeugen sind (nämlich
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mit Hilfe eines harmonischen Oszillators), und dass sie
sich im Allgemeinen durch einfaches Verhalten auszeich-
nen. Vor allem aber sind sie wichtig, weil mit Hilfe von
harmonischenWellen jede beliebige periodische oder ape-
riodischeWellenform dargestellt werden kann. Das ist der
Inhalt von Fouriers Theorem, das wir als nächstes bespre-
chen wollen.

1.3 Fourier-Analyse und -Synthese
von Funktionen

In diesem Abschnitt gibt es viele Formeln; es lohnt sich
aber, das Formelwerk sorgfältig anzuschauen. Wir be-
trachten eine periodische Funktion der Zeit, also eine
Funktion f (t), deren Verlauf sich jeweils nach einer gewis-
sen Zeit T exakt wiederholt:

f (t+ T) = f (t) . (1.8)

Das Fouriersche Theorem3 besagt für solche Funktionen,
die wir fT(t) nennen wollen: Eine periodische Funktion
fT(t) kann als Überlagerung einer Grundschwingung (Fre-
quenz ν1 = 1/T) mit harmonischen Oberschwingungen
der Frequenz nν1 durch folgenden Ausdruck dargestellt
werden:

fT(t) =
A0

2
+

∞

∑
n=1

(An cos nωt+ Bn sinnωt) ,

mit ω =
2π

T
.

(1.9)

Die Fourier-Koeffizienten An und Bn können nach einem
einfachen Rezept berechnet werden:

An =
2
T

T/2∫

−T/2

fT(t) cos nωtdt ,

Bn =
2
T

T/2∫

−T/2

fT(t) sinnωtdt .

(1.10)

3 Jean Baptiste de Fourier (1768–1830), französischer Mathematiker
und Physiker. Fourier entwickelte sein auch für die Mathematik fun-
damental wichtige Methode im Zusammenhang mit der von ihm
aufgestellten Wärmeleitungsgleichung Bd. II, Gl. (6.26). Die Anwen-
dung auf Probleme der Schwingungen und Wellen stammt von
Georg Simon Ohm. Von Ohm stammt auch die Erkenntnis, dass
der Klangcharakter der Musikinstrumente durch das Spektrum der
Oberschwingungen bestimmt wird.

Dies gilt auch für den konstanten Term A0: Man erkennt,
dass A0/2 nichts anderes als der zeitliche Mittelwert von
fT(t) ist. –Wenn die Funktion fT(t) „gerade“ ist, d. h. wenn
f (−t) = f (t) ist, genügt zur Darstellung der Funktion die
Cosinusreihe; ist fT(t) eine „ungerade“ Funktion (f (−t) =
−f (t)), genügt die Sinusreihe.

Die rechnerische Bestimmung der Fourier-Koeffizienten
nennt man Fourier-Analyse; die Erzeugung der Funktion
fT(t) durch Überlagerung von harmonischen Schwingun-
gen bei gegebenen Koeffizienten An und Bn nennt man
Fourier-Synthese. Wir betrachten einige Beispiele.

Ungerade symmetrische Rechteckfunktion:

fT(t) =
4a
π

(
sinωt+

1
3
sin 3ωt

+
1
5
sin 5ωt+ . . .

)
.

(1.11)

Ungerade Sägezahnfunktion:

fT(t) =
2a
π

(
sinωt+

1
2
sin 2ωt

+
1
3
sin 3ωt+ . . .

)
.

(1.12)

Ungerade Dreieckfunktion:

fT(t) =
8a
π2

(
sinωt− sin 3ωt

9

+
sin 5ωt

25
− . . .

)
.

(1.13)

Gerade asymmetrische Rechteckfunktion:

fT(t) =
4aτ

T

(1
2
+

sinωτ

ωτ
cosωt

+
sin 2ωτ

2ωτ
cos 2ωt+ . . .

)
.

(1.14)

In Abb. 1.15 sind die entsprechenden Funktionen darge-
stellt. Wie man sieht, sind die Funktionen in Abb. 1.15a–c
ungerade, in Abb. 1.15d gerade. Abbildung 1.16 zeigt am
Beispiel der ungeraden symmetrischen Rechteckfunktion
die Summation über die ersten Terme der Fourier-Reihe,
Abb. 1.17 das zugehörige Fourier-Spektrum.

Auf die gleiche Weise kann man auch räumlich periodi-
sche Funktionen mit der Periodizität λ darstellen, d. h.
solche Funktionen, für die gilt:

fλ(x+ λ) = fλ(x) . (1.15)
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T = ω
2π

T

T T

2τ

a
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a
a

Abbildung 1.15 Grafische Darstellungen zu (1.11)–(1.14)

t

f(t)

fT(t)

t

f3 = –––––
3

sin3ωt

f5 = –––––
5

sin5ωt

f1+f3+f5

f1= sinωt

Abbildung 1.16 Zur Fourier-Synthese der symmetrischen Rechteckfunktion

Man hat nur in (1.9)–(1.14) t durch x, T durch λ und ω
durch k zu ersetzen. Statt (1.9) erhält man dann

fλ(x) =
A0

2
+

∞

∑
n=1

(An cos nkx+ Bn sinnkx) ,

mit k =
2π

λ
.

(1.16)

Zur Darstellung einer in +x-Richtung laufenden Welle
durch harmonische Teilwellen müssen wir nach (1.4) das

n1 3 5 7 9 11 13

Bn

Abbildung 1.17 Fourier-Spektrum der symmetrischen Rechteckfunktion
(1.11)

Argument (kx−ωt) einführen. Wir ersetzen dazu in (1.16)
die Variable x durch

s =
(
x− ω

k
t
)
= (x− vpht) (1.17)

bzw. durch s = (x+ vpht), wenn wir die Darstellung einer
nach −x laufenden Welle wünschen.

Eine Fourier-Darstellung ist nicht nur bei periodischen
Funktionen möglich; aperiodische Funktionen lassen sich
darstellen durch ein Fourier-Integral:

f (t) =
1
π

∞∫
0

[A(ω) cosωt+ B(ω) sinωt]dω . (1.18)

Die Funktionen A(ω) und B(ω) erhält man folgenderma-
ßen:

A(ω) =

+∞∫
−∞

f (t) cosωtdt ,

B(ω) =

+∞∫
−∞

f (t) sinωtdt .

(1.19)

Die Darstellung einer aperiodischen Funktion der Koor-
dinate x erhält man wie in (1.18), indem man t durch x
und ω durch k ersetzt, und die Darstellung einer einzel-
nen Wellengruppe erreicht man mit (1.17):

f (s) =
1
π

∞∫
0

[A(k) cos ks+ B(k) sin ks]dk . (1.20)

Die Formeln (1.18) und (1.19) lassen sich durch einen
Grenzübergang aus (1.9) und (1.10) ableiten: Wir kön-
nen aus einer periodischen Funktion eine aperiodische
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Abbildung 1.18 Aperiodische
Rechteckfunktion

t−τ +τ

a

f(t)

machen, indemwir die periodischeWiederholung ins Un-
endliche verschieben, also die Grundfrequenz ν1 = 1/T
gegen Null streben lassen. Dadurch wird automatisch die
Folge der Oberschwingungsfrequenzen νn = n/T belie-
big dicht, und aus der Summation in der Fourier-Reihe
(1.9) wird eine Integration über eine kontinuierlich ver-
änderliche Frequenz. Man mache sich klar, dass in (1.9)
ω eine durch die Periode T gegebene konstante Größe ist
(die „Grundfrequenz“), während ω in (1.18) eine Variable
ist, hervorgegangen aus den Frequenzen nω in (1.9) und
(1.10).

Ein Anwendungsbeispiel: Eine aperiodische Rechteck-
funktion der in Abb. 1.18 gezeigten Form ist gegeben
durch

f (t) = a für |t| < τ , f (t) = 0 für |t| > τ . (1.21)

Mit (1.19) erhält man (s. Abb. 1.19)

A(ω) =

+∞∫
−∞

f (t) cos ωtdt

= a
+τ∫

−τ

cos ωtdt =
2a sinωτ

ω
.

(1.22)

Da f (t) eine gerade Funktion von t ist, ist B(ω) = 0. Wir
rechnen nach, dass (1.22), eingesetzt in (1.18), wieder die
Rechteckfunktion (1.21) ergibt:

f (t) =
2a
π

∞∫
0

sinωτ cosωt
ω

dω = ?

ωτπ0

A(ω)

2π 3π 4π 5π

Abbildung 1.19 Fourier-Spektrum der aperiodischen Rechteckfunktion

Mit der bekannten Formel für sin(α ± β) erhält man
sinωτ cosωt = 1

2 (sinω(τ + t) + sinω(τ − t)), und damit

f (t) =
a
π

⎛
⎝

∞∫
0

sinω(τ + t)
ω

dω +

∞∫
0

sinω(τ − t)
ω

dω

⎞
⎠

=
a
π
(I1 + I2) .

In einer Integraltafel findet man, dass

∞∫
0

sin αx
x

dx = +
π

2
für α > 0 ,

= −π

2
für α < 0

(1.23)

ist. Damit erhält man für die Integrale I1 und I2

I1 = +
π

2
für τ + t > 0 , also für t > −τ

= −π

2
für τ + t < 0 , also für t < −τ

I2 = +
π

2
für τ − t > 0 , also für t < τ

= −π

2
für τ − t < 0 , also für t > τ .

Damit erhält man

t < −τ : f (t) =
a
π

(
−π

2
+

π

2

)
= 0 ,

t > τ : f (t) =
a
π

(π

2
− π

2

)
= 0 ,

−τ < t < τ : f (t) =
a
π

(π

2
+

π

2

)
= a ,

in Übereinstimmung mit (1.21). Mit weiteren Beispielen
zu (1.18) und (1.20) werden wir uns in Abschn. 4.3 be-
fassen. Wir ziehen hier aus (1.9)–(1.20) den wichtigen
Schluss: Wenn für ein bestimmtes Wellenphänomen das
Verhalten der harmonischenWellen bekannt ist, lässt sich
die Ausbreitung jeder beliebigen periodischen oder aperi-
odischen Welle berechnen.

1.4 Dispersion von Wellen

Gruppengeschwindigkeit

Streng periodische Wellenzüge, wie wir sie in (1.3) und
(1.9) betrachtet haben, sind eine mathematische Fiktion.
Sie sind räumlich und zeitlich unendlich ausgedehnt und
können schon deshalb physikalisch nicht existieren. Phy-
sikalische Realität haben lediglich begrenzte Wellenzüge,
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Abbildung 1.20 Eine Wellengruppe. vg ist die Gruppengeschwindigkeit

z. B. eine Wellengruppe, wie sie in Abb. 1.20 dargestellt
ist. Sie bewegt sich mit der Gruppengeschwindigkeit
vg vorwärts. vg ist, wie wir gleich sehen werden, nicht
notwendig mit der in (1.7) definierten Phasengeschwin-
digkeit vph identisch.

Zur Darstellung einer solchen Wellengruppe durch ein
Fourier-Integral wird nur ein begrenzter Bereich vonWel-
lenzahlen in der Umgebung der mittleren Wellenzahl
k0 = 2π/λ0 benötigt. Wir werden dies in Abschn. 4.3
noch quantitativ untersuchen. vg ist nur dann gleich der
Phasengeschwindigkeit vph der Teilwellen, wenn die Wel-
lenberge der Teilwellen alle mit der gleichen Geschwin-
digkeit vorwärts marschieren, wenn also innerhalb des
betrachteten Wellenzahlbereichs vph nicht von k abhängt.
Ansonsten sind vg und vph voneinander verschieden. Eine
Formel von recht allgemeiner Gültigkeit4 ist:

Gruppengeschwindigkeit: vg =

(
dω

dk

)
k=k0

. (1.24)

Durch Differenzieren der Gleichung ω = vphk (1.7) erhält
man aus (1.24)

vg = vph(k0) + k0

(dvph
dk

)
k=k0

= vph(λ0)− λ0

(dvph
dλ

)
λ=λ0

.
(1.25)

Der zweite Ausdruck ergibt sich mit Hilfe der Beziehung
k = 2π/λ. Wenn die Phasengeschwindigkeit nicht von
der Wellenzahl abhängt, spricht man von dispersions-
freien Wellen (den Grund für diese Bezeichnung werden
wir in Kürze diskutieren). Wie oben schon festgestellt,
ist dann vg = vph; das folgt übrigens auch aus (1.25). In
diesem Fall ist es überflüssig, zwischen Gruppen- und
Phasengeschwindigkeit zu unterscheiden, man schreibt
dann:

Wellengeschwindigkeit für dispersionsfreie Wellen:

vg = vph = v =
ω

k
.

(1.26)

4 (1.24) gilt nicht bei stark gedämpften Wellen. Ein Beispiel folgt in
Abschn. 5.3 bei der Diskussion der anomalen Dispersion.

vg= Δω/Δk

Abbildung 1.21 Die Wellenfunktion (1.28)

Um (1.24) plausibel zu machen, betrachten wir die Über-
lagerung von zwei Wellen, die gleiche Amplitude haben
sollen, und die sich in Kreisfrequenz und Wellenzahl nur
wenig voneinander unterscheiden:

ψ(x, t) = ψ0
[
cos(kx− ωt) + cos(k′x− ω′t)

]
. (1.27)

Diesen Ausdruck formen wir mit cos α + cos β =
2 cos 1

2 (α + β) · cos 1
2 (α − β) um. Genauso sind wir schon

in Bd. I/12.4 bei der Behandlung der Schwebungen eines
Koppelpendels vorgegangen. Wir setzen

ω − ω′ = Δω , ω + ω′ ≈ 2ω ,

k− k′ = Δk , k+ k′ ≈ 2k ,

und erhalten

ψ(x, t) = 2ψ0 cos
Δkx− Δωt

2
cos(kx− ωt) . (1.28)

Die Überlagerung der beidenWellenzüge ergibt eine peri-
odische Folge von Wellengruppen (Abb. 1.21). Die einzel-
nen Gruppen bewegen sich, wie man mit einer Gleichung
analog zu (1.6) feststellt, mit der Geschwindigkeit

Δω

Δk
≈ dω

dk
, (1.29)

also mit der Gruppengeschwindigkeit (1.24). – Die hier
betrachtete Wellenfunktion (1.28) hat übrigens auch prak-
tische Bedeutung: Bei Schallwellen sind Schwebungen
häufig zu beobachten.

Gruppengeschwindigkeit, Phasengeschwindigkeit und
relativistische Grenzgeschwindigkeit. Nach der Rela-
tivitätstheorie stellt die Vakuum-Lichtgeschwindigkeit c
eine Grenzgeschwindigkeit dar (Bd. I/15.7). Kein Signal
und keineWirkung kannmit einer Geschwindigkeit v > c
übertragen werden. Wir werden im Folgenden bei elek-
tromagnetischen Wellen auf Situationen stoßen, in denen
vph > c ist. Ist das ein Widerspruch zur Relativitätstheo-
rie? Nein, denn von einer Signalgeschwindigkeit kann
man nur sprechen, wenn festgestellt werden kann, wann
das Signal ausgesandt und wann es empfangen wird. Als
Signal kann nicht eine räumlich und zeitlich unendlich
ausgedehnte Wellemit konstanter Amplitude dienen. Be-
sitzt ein Signal einen Anfangspunkt, pflanzt sich dieser
mit einer Geschwindigkeit v ≤ c fort.
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Die Dispersionsrelation

Wenn die Wellenzahl und die Frequenz nicht zueinander
proportional sind, ist nicht nur vg �= vph, es ergibt sich
noch ein zweiter Effekt: Im Zuge der Wellenausbreitung
ändert sich die Form der Wellengruppe, weil die einzel-
nen Partialwellen außer Takt geraten. Das führt im All-
gemeinen zu einer Verbreiterung, die Wellengruppe „zer-
fließt“. Man spricht davon, dassDispersion vorliegt5. Bei
konstanter Phasengeschwindigkeit sind die Wellen dage-
gen dispersionsfrei; wir haben diesen Ausdruck schon im
Zusammenhangmit (1.26) gebraucht.

Um das Dispersionsverhalten einer Welle zu charakte-
risieren gibt man gewöhnlich nicht vph, sondern ω als
Funktion von k an. Diese Beziehung wird „Dispersions-
relation“ genannt

Dispersionsrelation: ω = f (k) . (1.30)

Für dispersionsfreie Wellen lautet die Dispersionrelation

ω = vphk = vgk ∝ k . (1.31)

Bei jedem speziellen Wellenphänomen wird man die Fra-
ge nach der Dispersionsrelation stellen müssen.

Wie wir in Kap. 2 nachweisen werden, sind die Seilwel-
len und die elektrischen Wellen auf einem Koaxialkabel
in weiten Frequenz-Bereichen schwach gedämpft und
dann dispersionsfrei. Diesem Umstand verdanken wir,
dass die Signalübertragung auf Gummiseil und Koaxi-
alkabel funktioniert, wie in Abb. 1.1–1.9 gezeigt. Auch
Schallwellen und elektromagnetische Wellen im Vakuum
sind dispersionsfrei, Wasserwellen und elektromagneti-
sche Wellen in Materie sind dagegen im Allgemeinen
nicht dispersionsfrei, wenn auch in ganz unterschiedli-
chem Maße. Man kann das quantifizieren, indem man in
(1.25) auf der rechten Seite den ersten mit dem zweiten
Term vergleicht: Bei Wasserwellen können beide Terme
von gleicher Größenordnung sein, bei sichtbarem Licht
in Glas ist der zweite Term nur ca. 1% des ersten. Da-
her braucht man sich in der Optik nicht ständig um
Dispersionseffekte zu kümmern, während bei Wasserwel-
len solche Effekte häufig das Erscheinungsbild wesentlich
bestimmen.

5 Von (lateinisch) dispergere = zerstreuen, verteilen. Der Ausdruck
bezieht sich aber ursprünglich nicht auf das Zerfließen von Wellen-
gruppen, sondern auf die farbige Auffächerung eines weißen Licht-
strahls durch ein Prisma, die von Newton beobachtet und genau
untersucht wurde. Auch bei diesem Phänomen ist die Abhängigkeit
der Phasengeschwindigkeit von der Wellenlänge die Ursache.

1.5 Die klassische Wellengleichung

Laufende Wellen

Wir suchen eine Differentialgleichung, die die Ausbrei-
tung einer Störung in einer Dimension (entlang der x-
Achse) beschreibt. Die Ausbreitungsgeschwindigkeit sei
v, die Form der Störung soll sich im Laufe der Zeit nicht
ändern, es soll sich also um einen dispersionsfreien Aus-
breitungsprozess handeln. Der Vorgang ist in Abb. 1.22
dargestellt. Die Wellenfunktion

ψ+(x, t) = f (x− vt) (1.32)

beschreibt die Ausbreitungder Störung nach rechts, in der
+x-Richtung, die Wellenfunktion

ψ−(x, t) = f (x+ vt) (1.33)

würde die Ausbreitung nach links beschreiben. Wie sind
die örtlichen Veränderungen von ψ (zu einer bestimm-
ten Zeit) mit den zeitlichen Veränderungen (an einem
bestimmten Ort) miteinander verbunden? Um die par-
tiellen Ableitungen der Funktion ψ(x, t) zu bilden, set-
zen wir ψ(x, t) = f (s) mit s = x± vt. Mit df/ds = f ′ und
d2f/ds2 = f ′′ erhalten wir unter Anwendung der Ketten-
regel

∂ψ

∂x
= f ′ ,

∂ψ

∂t
= ±vf ′ ,

∂2ψ

∂x2
= f ′′ ,

∂2ψ

∂t2
= v2f ′′ .

Wir erhalten also folgende Differentialgleichung:

∂2ψ

∂t2
= v2

∂2ψ

∂x2
. (1.34)

Dies ist die sogenannte klassische Wellengleichung.
(1.34) gilt für dispersionsfreie Wellen in einer Dimension.
Die Gleichung kann auf drei Dimensionen verallgemei-
nert werden, indem man, wie schon früher in ähnlichen
Fällen, die Ableitung ∂2/∂x2 ersetzt durch den Laplace-
Operator:

∂2ψ

∂t2
= v2Δ�ψ = v2

(
∂2ψ

∂x2
+

∂2ψ

∂y2
+

∂2ψ

∂z2

)
. (1.35)

ψ±(x,0) ψ+(x,t)ψ−(x,t)

Abbildung 1.22 Ausbreitung einer Störung (dispersionsfrei)
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Bereits in einer Dimension enthält dieWellengleichung ei-
ne große Vielfalt von Lösungen, nämlich alle Funktionen
der Form

ψ(x, t) = f (x− vt) + g(x+ vt) , (1.36)

wobei f und g beliebige Funktionen sind. Sie müssen nur
differenzierbar sein. Konkrete Lösungen von (1.34) oder
(1.35) unter vorgegebenen Bedingungen zu finden, ist im
Allgemeinen eine Aufgabe für die mathematische Phy-
sik, und wir werden uns nur in Ausnahmefällen damit
befassen. Man kann jedoch auch ohne Rechnung aus der
Wellengleichung folgendes ablesen:

1. Die Gleichungen sind linear, d. h. man kann verschie-
dene Lösungen superponieren.

2. Sobald wir bei der Untersuchung eines physikalischen
Vorgangs auf eine Gleichung des Typs (1.34) oder (1.35)
stoßen, wissen wir, dass Wellen auftreten können und
wir können auch sogleich ihre Ausbreitungsgeschwin-
digkeit angeben. In Kap. 2werdenwir davonmehrfach
Gebrauch machen.

3. Die klassische Wellengleichung gilt auch für Sinus-
und Cosinuswellen mit Dispersion, wie man durch
Einsetzen feststellen kann. Die konstante Größe v ist
dann durch die von der Wellenlänge abhängige Größe
vph zu ersetzen.

Stehende Wellen

Sind auch stehende Wellen Lösungen der Wellenglei-
chung? Wir beschränken uns auf die Diskussion des ein-
dimensionalen Falles, weil da bereits das Wesentliche zu
erkennen ist. Eine stehende Welle ist gegeben durch fol-
genden Ausdruck:

ψ(x, t) = g(x)f (t) . (1.37)

Die Ortsfunktion g(x) oszilliert nach Maßgabe der Zeit-
funktion f (t), ohne sich dabei entlang der x-Achse zu
verschieben. Genau das war das Charakteristikum der
stehenden Wellen in Abb. 1.10. Wir setzen (1.37) in die
Wellengleichung (1.34) ein und erhalten:

g(x)
d2f
dt2

= v2f (t)
d2g
dx2

.

Dieser Ausdruck kann folgendermaßen geschrieben wer-
den:

1
f (t)

d2f (t)
dt2

=
v2

g(x)
d2g(x)
dx2

. (1.38)

Links steht eine Funktion von t, rechts eine Funktion von
x. Wenn beide Funktionen für alle Werte von x und t
gleich sein sollen, gibt es nur eineMöglichkeit: Siemüssen

konstant sein. Wir setzen diese Konstante gleich K und er-
halten zwei gewöhnliche Differentialgleichungen:

d2f
dt2

= K f (t) , (1.39)

d2g
dx2

=
K
v2

g(x) . (1.40)

Durch den Produktansatz (1.37) ist etwas höchst Beacht-
liches gelungen: Die partielle Differentialgleichung (1.34)
wurde in zwei gewöhnliche Differentialgleichungen zer-
legt! Das ist deshalb bemerkenswert, weil gewöhnliche
Differentialgleichungen viel leichter zu lösen sind als
partielle. Die KonstanteK nenntman die Separationskon-
stante. Sie kommt sowohl in der Differentialgleichung für
g(x) als auch in der für f (t) vor und ist von großer Bedeu-
tung für die Eigenschaften der Lösungsfunktionen.

Die allgemeine Lösung von (1.39) ist

f (t) = c1e
√
Kt + c2e−

√
Kt .

c1 und c2 sind Konstanten. Mit K > 0 divergiert der erste
Term für t → ∞ und der zweite für t → −∞. Wenn die Lö-
sung für alle Zeiten endlich sein soll, mussK < 0 sein. Wir
setzen K = −ω2 und erhalten damit eine wohlbekannte
Differentialgleichung:

d2f
dt2

+ ω2f = 0 . (1.41)

Das ist eine Schwingungsgleichung. Die Lösung ist

f (t) = f0 cos(ωt+ ϕt) .

Auch (1.40) erweist sich für K < 0 als eine Schwingungs-
gleichung. Die Lösung ist

g(x) = g0 cos
(ω

v
x+ ϕx

)
.

ϕx und ϕt legen nur den Nullpunkt der x-Achse und den
Zeitnullpunkt fest. Wir beschränken uns auf den Fall ϕx =
−π/2 und ϕt = 0 und setzen f0g0 = ψ0 und ω/v = k (vgl.
(1.26)). Damit erhalten wir:

ψ(x, t) = ψ0 sin kx cosωt . (1.42)

ω bzw. k = ω/v können in (1.42) zunächst noch beliebi-
ge Werte annehmen. Im konkreten Fall muss man jedoch
Randbedingungen beachten, durch die die Größen ω und
k festgelegt werden. Wie das geht, und was das für Konse-
quenzen hat, werden wir in Abschn. 2.1 am Beispiel einer
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an beiden Enden eingespannten schwingende Saite sehen.
Die Gleichungen (1.39) und (1.40) gehören zur Familie
der Eigenwertgleichungen: Eine lineare Operation, hier
der „Operator“ d2/dt2 bzw. d2/dx2, angewandt auf ei-
ne Funktion f (t) bzw. g(t), reproduziert diese Funktionen,
multipliziert mit einem konstanten Faktor. Eigenwertpro-
bleme wie das der schwingenden Saite werden uns vor
allem in der Quantenphysik noch öfter begegnen.

Man kann die Lösung (1.42) auch auf einem anderen
Wege erhalten. Wir gehen von der allgemeinen Lösung
der Wellengleichung, also von (1.36) aus und betrachten
die Überlagerung von zwei gegenläufigen harmonischen
Wellen gleicher Wellenzahl und gleicher Amplitude:

ψ(x, t) =
ψ0

2
sin k(x− vt) +

ψ0

2
sin k(x+ vt) . (1.43)

Mit kv = ω und sin(α ± β) = sin α cos β ± cos α sin β er-
hält man hieraus

ψ(x, t) = ψ0 sin kx cosωt ,

+

=

Abbildung 1.23 Eine stehendeWelle als Superposition zweier laufender Wel-
len

was mit (1.42) identisch ist. Eine stehende Welle kann al-
so aufgefasst werden als Superposition von zwei Wellen
gleicher Amplitude und Frequenz, die in entgegengesetz-
ter Richtung laufen (Abb. 1.23).
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1.1. Reflexion einer Seilwelle am losen Ende. Skizzie-
ren Sie in Analogie zu Abb. 1.6 den Ablauf der Reflexion
einer Seilwelle, wenn das Seilende lose eingespannt ist.
Unter welcher Bedingung erfüllen die ankommende und
die gegenläufige reflektierte Welle zusammen die Rand-
bedingung (1.2)?

1.2. Kabelclipping. Das in Abb. 1.8 skizzierte Experi-
ment werde in der folgenden Weise durchgeführt:

(1) Der Generator erzeugt statt eines rechteckigen einen
trapezförmigen Spannungsimpuls: Die Spannung
steigt innerhalb einer Zeit τ = 5 ns auf ihren Maximal-
wert an, bleibt für eine Zeit T = 50ns konstant und
fällt danach innerhalb der Zeit τ wieder auf null ab.

(2) Das am Oszillographen angeschlossene Kabel ist am
anderen Ende kurzgeschlossen (R = 0). Seine Län-
ge beträgt l = 20 cm, die Signalgeschwindigkeit ist
20 cm/ns.

(3) Der Ausgangswiderstand des Generators ist gleich der
Kabelimpedanz, der Eingangswiderstand des Oszillo-
graphen ist als unendlich groß anzusehen.

Wie sieht das beobachtete Signal aus? Wie groß sind die
Signalhöhe und die Anstiegszeit im Vergleich zum Signal,
das man erhält, wenn an den Oszillographen statt des re-
flektierenden Kabels ein Widerstand R gleich dem Kabel-
Wellenwiderstand angeschlossen ist?

1.3. Fourier-Reihe. In einer Spule mit Eisenkern fließe
ein periodischer Wechselstrom I = I0 sinωt. Der Magnet-
fluss Φ, aufaddiert über alle Spulenwindungen, hängt in
nichtlinearer Weise vom Strom ab und wir machen die
grobe Näherung Φ = LI− LI3/3I2S für I < IS, wobei IS die
magnetische Sättigung beschreiben soll.

a) Geben Sie die Fourier-Reihe der Spannung an der
Spule an,wenn I0 < IS ist. Zahlenbeispiel: I0 = IS/2. (Hin-
weis: Trigonometrische Funktionen mit höheren Frequen-
zen lassen sich mit Additionstheoremen auf Funktionen
mit niedrigeren Frequenzen zurückführen, z. B. cos 3ωt =
cos 2ωt · cosωt+ sin 2ωt · sinωt, . . . ).

b) Eine kleine, extern verursachte statische Vormagne-
tisierung erzeuge bei verschwindendem Strom I einen
endlichen Fluss Φext, der die Magnetisierungskurve ver-
schiebt:

Φ = L(I+ IM)− L(I+ IM)3/3I2S .

Es ist also Φext = LIM(1 − I2M/3I2S). Wie ändert sich die
Fourier-Reihe?

c) Man betrachte den Fall I0 > IS, aber ohne Vormagne-
tisierung (IM = 0). Ohne die Fourier-Reihe explizit anzu-
geben, kann man sagen, welche cos- oder sin-Terme bei
welchen Frequenzen auftreten.

d) Eine andere, realistischere Aufgabenstellung wäre die
Vorgabe einer sinusförmigen Spannung und die Frage
nach dem Strom. Besitzt die Fourier-Reihe für I0 < IS end-
lich viele oder unendlich viele Summanden?

1.4. Dispersionsrelation.

a) Die Dispersionsrelation für eine ebene Welle laute: ω =
ω0 · sin kL für 0 < kL < π/2. Wie verlaufen die Phasen-
und die Gruppengeschwindigkeit als Funktion von k?

b) Schallwellen in Festkörpern folgen qualitativ der-
artigen Dispersionsrelationen. Die kürzesten denkba-
ren Schallwellenlängen hätten die Größenordnung des
Atomabstandes und wir setzen als Richtwert L ≈ 1 nm
ein. Typische Schallgeschwindigkeiten in Festkörpern
sind vph = 5 · 103 m/s. Zeigen Sie, dass diese Dispersions-
relation für technisch übliche Frequenzen bis hinauf zu
Ultraschallwellen im GHz-Bereich eine konstante Schall-
geschwindigkeit vorhersagt.

1.5. Lösungen der klassischenWellengleichung. Wel-
che der folgenden eindimensionalen „Ausbreitungsvor-
gänge“ sind Lösungen der dispersionsfreien Wellenglei-
chung (1.34), lassen sich also in der Form (1.36) darstellen?
Alle Parameter außer x und t sind Konstanten, von deren
Werten die Antwort u.U. abhängt.

ψ(x, t) =
C
t
e−x2/(2Dt) (Bd. II, Gl. (6.10)) , (1.44)

ψ(x, t) =
C
σ
e−(kx−ωt)2/(2σ2) , (1.45)

ψ(x, t) = sin(k1x− ωt) + cos(k2x+ ωt) , (1.46)
ψ(x, t) = sin(k1x− ω1t) sin(k2x+ ω2t) , (1.47)

ψ(x, t) = sin(k2x2 − ω2t2) . (1.48)

1.6. Federkette. In einer linearen Kette gleicher Mas-
sen m sei jede Masse mit ihren Nachbarn über gleich
lange Federn mit der Federkonstanten α verbunden. Auf
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der Kette können sich longitudinale Wellen ausbreiten.
Man zeige: Solange die Wellenlänge groß gegen den Ab-
stand a der Massen ist, kann man zur Beschreibung des
Systems anstelle der Bewegungsgleichungen für die ein-
zelnen Massen die Wellengleichung (1.34) verwenden.
Hinweise: Die Federmasse sei zu vernachlässigen. In der
Nähe einer herausgegriffenen Masse am mittleren Ort xi
gilt für die gleichzeitige Auslenkung ψ(xk, t) einer nahe
gelegenen anderen Masse am mittleren Ort xk die Taylor-

Entwicklung

ψ(xk, t) ≈ ψ(xi, t) +
∂ψ

∂x

∣∣∣∣
xi

· (xk − xi)

+
1
2

∂2ψ

∂x2

∣∣∣∣
xi

· (xk − xi)
2 + . . .

Wie groß ist die Ausbreitungsgeschwindigkeit für m =
0,1 kg, a = 2 cm und α = 1Nm−1?
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Als erstes untersuchen wir quantitativ die Seilwel-
len, mit denen wir in Kap. 1 die Diskussion der
Wellenphysik begannen, sowie die Schwingungen
einer Saite als Musterbeispiel für stehende Wellen
und für ein sogenanntes „Eigenwertproblem“. So-
dann diskutieren wir Schallwellen in Gasen, in Flüs-
sigkeiten und in Festkörpern und geben einen Ein-
blick in die komplizierte Physik der Wasserwellen.
Im vierten Abschnitt behandeln wir elektromagneti-
sche Wellen im Vakuum, ihre Erzeugung mit einem
schwingenden Dipol und das Spektrum der elektro-
magnetischen Wellen. Dann werden in Abschn. 2.5
elektromagnetische Wellen in nicht leitender und
in leitender Materie diskutiert, sowie ihre Ausbrei-
tung auf Kabeln und auf speziellen Wellenleitern
für Mikrowellen, den sogenannten Hohlleitern. Am
Schluss geht es noch um Phänomene, die auftreten,
wenn sich der „Sender“ schneller als die Phasenge-
schwindigkeit der Wellen bewegt.

2.1 Wellen auf einem elastischen
Seil

Das elastische Seil, das wir hier betrachten, ist dadurch
definiert, dass es nur in seiner Längsrichtung Kräfte über-
tragen kann, das Seil soll also keine Biegesteifigkeit be-
sitzen. Auch soll bei Verformungen keine mechanische
Energie in Wärme verwandelt werden. Wir nehmen an,
dass an beiden Enden des Seils mit der Kraft S in hori-
zontaler Richtung gezogenwird. Dadurch entsteht im Seil
eine Spannung

σ =
S
A

, (2.1)

wenn A die Querschnittsfläche ist. Wird das Seil aus sei-
ner Ruhelage y = 0 ausgelenkt, bildet sich eine Seilwelle
der Form y = y(x, t), wie in Abb. 1.1 gezeigt wurde. Wir
wollen nun die Wellengeschwindigkeit v berechnen. Die
an den Enden des Seils angreifenden Kräfte ±S wol-
len das Seil wieder gerade ziehen; dadurch entsteht eine
rücktreibende Kraft, die wir als erstes berechnen müs-
sen. Infolge der Auslenkung wird das Seil etwas gedehnt.
Bei kleiner Auslenkung können wir die von der Aus-
lenkung abhängige zusätzliche Spannkraft gegenüber der
Vorspannung durch die Kraft S vernachlässigen. Auch
nehmen wir an, dass der in Abb. 2.1a definierte Winkel α
stets so klein ist, dass wir sin α = tan α = ∂y/∂x setzen
können.

Wir denken uns das Seil zur Zeit t an der Stelle x0 in
zwei Abschnitte geteilt. An den Enden dieser Abschnit-
te wirken in diesem Augenblick die in Abb. 2.1b und c

xx0

ya v

α

S−S

xx0

Fy
(b)

Fy
(c)

yb

S

− S

xx0

yc S

−S

{

}

α

α

Abbildung 2.1 Zur Berechnung der Geschwindigkeit von Seilwellen. a Die
Seilwelle, b und c die an der Stelle x zur Zeit t im Seil wirkenden Kräfte

eingezeichneten Kräfte. Die y-Komponenten dieser Kräf-
te sind

F(b)y (x0, t) = −S sin α = −S
∂y
∂x

∣∣∣∣
x0

,

F(c)y (x0, t) = −F(b)y (x0, t) .

(2.2)

Auf das Seilstück zwischen x0 und x0 + dxwirkt also in y-
Richtung die Kraft

F(b)y (x0, t) + F(c)y (x0 + dx, t)

= − S
∂y
∂x

∣∣∣∣
x0

+ S
∂y
∂x

∣∣∣∣
x0+dx

= S
∂2y
∂x2

dx .
(2.3)

Ist μ = m/l die Seilmasse pro Meter, dann hat das Seil-
stück zwischen x0 und x0 + dx die Masse μdx und die
Beschleunigung ist

∂2y
∂t2

=
S
μ

∂2y
∂x2

. (2.4)

Das ist eine eindimensionale Wellengleichung für disper-
sionsfreie Wellen. Auf dem elastischen Seil können sich
also Wellen dispersionsfrei ausbreiten, wie am Ende von
Abschn. 1.4 behauptet wurde. DieWellengeschwindigkeit
ist nach (1.34)

v =

√
S
μ
. (2.5)

Bei einem homogenen Seil (also nicht z. B. bei einer mit
Silber umwickelten Darmsaite) kann man mit (2.1) und
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mit μ = m/l hierfür auch v =
√

σ/ρ schreiben, wenn ρ
die Dichte des Materials ist. Die Dispersionsrelation (1.30)
des elastischen Seils lautet:

ω =

√
S
μ
k . (2.6)

Wir wollen uns noch Gleichungen beschaffen, in de-
nen nicht die Auslenkung y(x, t), sondern die Geschwin-
digkeit der transversalen Seilbewegung c̃ = ∂y/∂t vor-

kommt. Wir setzen Fy = F(b)y = −F(c)y . Auf das differenti-
elle Seilstück der Länge dx, also der Masse μdx, wirkt die
Kraft

Fy(x, t)− Fy(x+ dx, t) = − ∂Fy
∂x

dx ,

und die Newtonsche Bewegungsgleichung ergibt:

∂Fy
∂x

= −μ
∂c̃
∂t

. (2.7)

Wenn man (2.2) partiell nach der Zeit differenziert, erhält
man

∂Fy
∂t

= −S
∂2y
∂t∂x

→ ∂Fy
∂t

= −S
∂c̃
∂x

. (2.8)

(2.7) und (2.8) werden sich in Kap. 3 als nützlich erweisen.

Die schwingende Saite

Wir wollen nun Lösungen von (2.4) für den Fall von ste-
henden Wellen auf einem beidseitig eingespannten elasti-
schen Seil suchen. Wegen der Anwendung des Folgenden
in der Musik spricht man hier von den Schwingungen ei-
ner Saite. Durch die Randbedingungen

y(x, t) = 0 für x = 0
y(x, t) = 0 für x = L

}
für alle Zeiten t (2.9)

werden die möglichen Schwingungsformen in charakte-
ristischer Weise eingeschränkt. Die Betrachtung ist nicht
nur wichtig als physikalische Grundlage vieler Musikin-
strumente, sondern auch als erstes Beispiel eines Eigen-
wertproblems. Solche Probleme spielen in der Physik eine
große Rolle, besonders auch in der Quantenphysik (Bd. V,
Kap. 4–8).

Zur Lösung der Wellengleichung gehen wir wie in Ab-
schn. 1.5 vor. Der Produktansatz (1.37) führt auf die Ei-

x
L

L

L

y

x

y

x

y

n=1

n=2

n= 3

Abbildung 2.2 Eigenschwingungen einer Saite

genwertgleichungen (1.39) und (1.40) und auf die Lösung
(1.42):

y(x, t) = y0 sin kx cosωt . (2.10)

Durch diesen Ansatz wird die Randbedingung y(0, t) = 0
automatisch erfüllt. Damit auch y(L, t) = 0 ist, muss gel-
ten sin kL = 0 oder

kL = 0,π, 2π, 3π, . . .nπ , (2.11)

wobei n eine beliebige ganze Zahl ist. kL = 0 bedeutet
k = 0, also keine Anregung; das ist uninteressant. Für n =
1 erhält man die Grundschwingung, für n = 2 die erste
Oberschwingung, für n = 3 die zweite Oberschwingung,
usw.1 Man bezeichnet diese verschiedenen Schwingungs-
formen als Eigenschwingungen oder auch als Schwin-
gungsmoden; die zugehörigen Schwingungsformen sind
in Abb. 2.2 dargestellt. Die Stellen zwischen den Punk-
ten x = 0 und x = L, wo die Saite ständig in Ruhe bleibt,
bezeichnet man als Knoten, die Stellen maximaler Aus-
lenkung als Schwingungsbäuche. Durch die nach (2.11)
erlaubtenWellenzahlen sind folgendeWellenlängen gege-
ben:

λn =
2L
n

, n = 1, 2, 3, . . . (2.12)

1 Die erste Oberschwingung heißt auf englisch „second harmonic“,
die zweite „third harmonic“ usw. Die Grundschwingung nennt man
„fundamental mode“.
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Abbildung 2.3 Dispersionsre-
lation der realen und der idealen
Saite. Der Effekt der Biegesteifig-
keit ist stark übertrieben

k

ω

ωr
ωi ideal

real

Man nennt sie die Eigenwerte der Wellenlänge. Nur
für diese Wellenlängen bzw. für die Wellenzahlen kn =
2π/λn existieren Lösungen der Wellengleichung, die die
Randbedingungen (2.9) erfüllen. Die zugehörigen Eigen-
frequenzen sind gegeben durch ωn = vkn bzw. durch
νn = v/λn:

νn =
n
2L

√
S
μ
, ωn =

πn
L

√
S
μ
=

2π

λn

√
S
μ
. (2.13)

Die Eigenwerte der Wellenlängen (2.12) sind durch die
Geometrie der Anordnung festgelegt, die Eigenfrequen-
zen νn dagegen durch die Geometrie und durch die Di-
spersionsrelation.

In diesem Zusammenhang ist interessant, dass bei ei-
ner realen Saite die Biegesteifigkeit nicht vollkommen
vernachlässigbar ist, wie zu Anfang dieses Kapitels ange-
nommen wurde. Die Steifigkeit der Saite führt zu einer
zusätzlichen rücktreibenden Kraft und zu einer Dispersi-
onsrelation

ω2 =
S
μ
k2 + αk4 . (2.14)

Das wirkt sich besonders bei Oberschwingungen mit ho-
hem n aus: Wie man in Abb. 2.3 abliest, sind die Frequen-
zen νn etwas größer als die durch (2.13) gegebenen, sie
sind nicht exakt ein ganzzahliges Vielfaches der Grund-
frequenz ν1.

Natürlich kann eine Saite nicht nur „sinusförmig“
schwingen: Es sind auch Überlagerungen von Schwin-
gungsmoden möglich. Betrachten wir eine in der Mitte
angezupfte Saite. Die zeitliche Entwicklung der Wellen-
funktion y(x, t) erhält man am einfachsten, indem man
nach demMuster von Abb. 1.23 zwei gegenläufigeWellen
überlagert, deren Form der Dreiecksfunktion Abb. 1.15c
entspricht. Bei x = 0 und x = L bleibt die Saite ständig
in Ruhe. Im Gegensatz zu den stehenden Sinuswellen in
Abb. 1.23 ändert sich jedochwährend der Schwingung die
Form der ausgelenkten Saite ständig, wie Abb. 2.4 zeigt.
Dass eine Formänderung auftreten muss, erkennt man
auch, wenn man die Fourier-Komponenten betrachtet.
Die einzelnen Fourier-Komponenten haben ganz unter-
schiedliches Zeitverhalten.Wir ersetzen in (1.13) ωt durch

...

Abbildung 2.4 Schwingung einer in der Mitte angezupften Saite

Abbildung 2.5 Saitenschwin-
gung auf einem Streichinstrument
(„Helmholtz-Schwingung“)

BA

kx ± ωt mit k = π/L und ω = vk. Dann bilden wir die
Summe f (kx+ ωt) + f (kx− ωt):

y =
16a
π2

(
sin kx cosωt− 1

9
sin 3kx cos 3ωt

+
1
25

sin 5kx cos 5ωt−+ . . .
)
.

Die Schwingung einer an beiden Enden fest eingespann-
ten Saite wird durch Luftreibung und durch Dissipation
von Energie im Material der Saite gedämpft. Wenn die
Q-Werte2 für alle Eigenschwingungsmoden von gleicher
Größenordnung sind, klingen die hochfrequenten Ober-
schwingungen zuerst ab, und die in der Mitte angezupfte
Saite schwingt nach einiger Zeit nur noch sinusförmig in
der Grundschwingung.

Die schwingende Saite allein ergibt nur einen kaum ver-
nehmbaren Ton. Bei einemMusikinstrument sind die Sai-
ten über einen Steg gespannt, der die Schwingungen auf
einen Resonanzkörper überträgt. Der Klangcharakter des
Instruments (und was der Spieler daraus macht) hängt
vom Spektrum der Obertöne, von Einschwingvorgängen,
von der Dämpfung der einzelnen Schwingungsmoden
und insbesondere vom Zusammenwirken der Saite mit
dem Resonanzkörper des Instruments ab.

Abbildung 2.5 zeigt die Bewegung der Saite eines Streich-
instruments. Die Saite wird dicht vor dem Steg mit ei-

2 Nach seiner Definition in Bd. I, Gl. (12.18) ist der Q-Wert gleich 2π
mal der Zahl der Schwingungen, die ablaufen, bis die Schwingungs-
energie auf 1/e abgesunken ist.
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nem Bogen angestrichen. Wie Helmholtz mit einer raffi-
nierten stroboskopischen Messmethode herausgefunden
hat, läuft dann mit konstanter Geschwindigkeit zwischen
Steg B und Sattel A eine dreieckige Deformation der
Saite hin und her. Die einhüllende Kurve dieser Bewe-
gung ist die vom Auge wahrgenommene „sinusförmige“
Auslenkung, in Abb. 2.5 gestrichelt eingezeichnet. Es han-
delt sich aber um eine sehr obertonreiche Schwingung,
deren Spektrum auch die geraden Vielfachen der Grund-
frequenz enthält. Will man auf einem Streichinstrument
einen schönen Ton hervorbringen, ist das erste Erforder-
nis, dass man im richtigen Bereich streicht und dabei
Bogendruck und Bogengeschwindigkeit so dosiert, dass
eine saubere und stabile „Helmholtz-Schwingung“ ent-
steht.

2.2 Schallwellen

Schallwellen in Gasen

Schallwellen breiten sich in Gasen als longitudinale
Druckwellen aus. Wir beschränken uns auf den Fall einer
ebenen periodischen Welle (Abb. 2.6a). Druck und Dich-
te enthalten außer den konstanten Werten p0 und ρ0 noch
zeitlich veränderliche Anteile p̃ und ρ̃:

p(x, t) = p0 + p̃(x, t) , (2.15)
ρ(x, t) = ρ0 + ρ̃(x, t) , (2.16)

wobei gewöhnlich die Wechselgrößen p̃ und ρ̃ klein ge-
gen die statischen Größen p0 und ρ0 sind. Selbst in einer
lautstarkenDisco erreicht die Amplitude des Schallwech-
seldrucks p̃ nur etwa 0,1mbar, während p0 ≈ 1 bar ist.

Verbunden mit den Druck- und Dichteänderungen ent-
steht im Gas eine oszillierende Verschiebung der Gas-
teilchen und eine Strömungsgeschwindigkeit c̃(x, t), die
sogenannte Schallschnelle. Jede dieser Größen können
wirmit derWellenfunktion ψ(x, t) identifizieren.Wir kon-
zentrieren uns auf den Druck p(x, t).

Unter dem Einfluss der Druckkraft F = AΔp wird die in
dem VolumenelementAΔx (Abb. 2.6b) enthaltene Luft be-
schleunigt:

F = A [p(x)− p(x+ Δx)] = −A
∂p
∂x

Δx = Δm
∂c̃
∂t

.

Wir setzen Δm = ρ0AΔx und erhalten

∂p
∂x

= −ρ0
∂c̃
∂t

. (2.17)

Der räumlich veränderliche Druck hat also eine zeitliche
Änderung der Geschwindigkeit zur Folge. Die räumliche

a

b

Dichte-Maxima

x

A

Δx

p(x+Δx)p(x)

Abbildung 2.6 Zur Ableitung von (2.17)

Änderung der Geschwindigkeit bewirkt eine zeitliche Än-
derung der Dichte: Aus der Kontinuitätsgleichung Bd. II,
Gl. (3.33) folgt mit Bd. II, Gl. (3.27) (vgl. auch Bd. III,
Gln. (1.7) und (1.8))

∂ρ

∂t
= −ρ0

∂c̃
∂x

, (2.18)

wenn wir auf der rechten Seite den kleinen variablen An-
teil ρ̃(x, t) gegenüber ρ0 vernachlässigen.

Die Dichteänderung ist aufgrund des Zusammenhangs
zwischen Druck und Dichte mit einer Druckänderung
verbunden:

∂p
∂t

=
dp
dρ

∂ρ

∂t
.

Mit (2.18) erhalten wir

∂p
∂t

= −ρ0
dp
dρ

∂c̃
∂x

. (2.19)

Wir differenzieren (2.17) partiell nach x und (2.19) partiell
nach t:

∂2p
∂x2

= −ρ0
∂2c̃

∂x∂t
,

∂2p
∂t2

= −ρ0
dp
dρ

∂2c̃
∂t∂x

. (2.20)

Wegen ∂2c̃/∂x∂t = ∂2c̃/∂t∂x können wir aus diesen Glei-
chungen c̃(x, t) eliminieren und erhalten

∂2p
∂t2

=
dp
dρ

∂2p
∂x2

. (2.21)



24 2 Spezielle Wellenerscheinungen

Tabelle 2.1 Schallgeschwindigkeit in verschiedenen Stoffen (20 °C)

vs(m/s)

Gase:

Kohlendioxid 266

Luft (trocken) 343

Luft (NTP) 331

Wasserstoff 1309

Flüssigkeiten:

Glyzerin 1900

Quecksilber 1450

Wasser 1486

Seewasser 1520

Festkörper: v(l)s v(t)s v(d)s

Blei 2050 710 1200

Eisen 5950 3220 5180

Aluminium 6360 3130 5110

Beryllium 12 890 8880 12 870

Eis (−4 °C) 4000 2000 3300

Plexiglas 2700 1300 2200

Kronglas 5100 2800 4500

Basalt 5900 3100 5100

Beton 4000 2500 3900

Das ist eine Wellengleichung vom Typ (1.34). Die Wellen
sind also dispersionsfrei, und die Schallgeschwindigkeit
ist nach (2.21):

v = vs =

√
dp
dρ

. (2.22)

Zur Berechnung von dp/dρ müssen wir die Zustands-
änderung des Gases betrachten. Die Schallschwingungen
erfolgen so schnell, dass die Wärmeleitung im Gas ver-
nachlässigt werden kann, d. h. die Kompression erfolgt
adiabatisch und nach der Adiabatengleichung Bd. II,
Gl. (8.30) ist p = const ρκ . Damit erhalten wir

dp
dρ

= const κρκ−1 =
κp
ρ

. (2.23)

Mit der allgemeinen Zustandsgleichung der idealen Gase
Bd. II, Gl. (4.23) könnenwir auch p/ρ = RT/M setzen. Die
Schallgeschwindigkeit in Gasen ist also

vs =
√

κp
ρ

=

√
κRT
M

. (2.24)

Sie hängt von der Temperatur des Gases und dessen Mo-
lekulargewichtM sowie vomAdiabaten-Exponenten κ ab,
aber nicht vom Druck. Im oberen Teil von Tab. 2.1 findet
man einige Zahlenwerte für vs nach (2.24); sie stimmen
sehr gut mit den experimentell bestimmten Werten über-
ein.3

Stehende Schallwellen

Stehende Schallwellen kann man in einer beidseitig ab-
geschlossenen Röhre der Länge L erzeugen. Die Randbe-
dingungen lauten c̃(0, t) = c̃(L, t) = 0 und man bekommt
ähnliche Schwingungsmoden wie bei der schwingenden
Saite, es gilt λn = 2L/n.

Auch in einem einseitig offenen Rohr kann man stehende
Schallwellen erzeugen, z. B. in der in Abb. 2.7 gezeig-
ten Anordnung („Quinckesches Rohr“). Vor der Öffnung
befindet sich eine Stimmgabel. Wird die im Rohr be-
findliche Gassäule resonant angeregt, so bildet sich im
Rohr eine stehendeWelle aus. Die Randbedingungen sind
hier durchaus anders als bei der beidseitig eingespannten
schwingenden Saite. Es muss nämlich gelten

p(L, t) = p0
c̃(0, t) = 0

}
für alle Zeiten t. (2.25)

Am offenen Ende herrscht der konstante Druck p0, wäh-
rend die Geschwindigkeit c̃ beliebige Werte annehmen
kann; am geschlossenen Ende wird dem Druck keine Be-
dingung aufgezwungen, es muss aber c̃ = 0 sein. Diese

Abbildung 2.7 Anordnung
zur Erzeugung stehender Schall-
wellen („Quinckesches Rohr“).
Die Länge L der Gassäule kann
durch Heben und Senken des
Flüssigkeitsspiegels verändert
werden

L

3 Die Theorie der Schallwellen stammt bereits von Isaak Newton.
Newton wusste aber noch nichts von adiabatischen Zustandsände-
rungen; er benutzte die Boyle-Mariottesche Gleichung p/ρ = const.
Er erhielt so einen etwas zu kleinen Wert für die Schallgeschwindig-
keit in Luft, nämlich vs =

√
p/ρ = 290m/s statt 340m/s.
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c̃

p̃

x

x

t= T
4 t= T

2t=0

x=0 x=λ

Abbildung 2.8 Schallwechseldruck und Schallschnelle bei einer stehenden
Schallwelle im Quinckeschen Rohr

Bedingungen lassen sich erfüllen, wenn genau 1/4, 3/4,
5/4, . . . Wellenlängen in das Rohr passen. Resonanz tritt
ein, wenn

L = Ln =
2n+ 1

4
λ , n = 0, 1, 2, . . . (2.26)

Die Verhältnisse sind in Abb. 2.8 dargestellt. p̃(x, t) und
c̃(x, t) sind gegeneinander räumlich und zeitlich um
90° phasenverschoben: Die „Druckknoten“ und die „Ge-
schwindigkeitsbäuche“ fallen räumlich zusammen; die
Beschleunigung ist dort am größten, wo das maximale
Druckgefälle herrscht.

Wegen der Endeffekte an der Öffnung ist L etwas grö-
ßer als die geometrische Länge des Rohrs, gemessen über
dem Wasserspiegel. Man kann dennoch mit dem Quin-
ckeschen Rohr die Wellenlänge der Schallwellen messen,
indem man durch Heben und Senken des Wasserspie-
gels einige Längen Ln bestimmt und die Differenzen bil-
det: Ln+1 − Ln = λ/2. Da die Dämpfung gering ist, sind
die Resonanzen ziemlich scharf. Mit der Frequenz ν der
Stimmgabel erhält man dann die Schallgeschwindigkeit
vs = λν.

Die Phasenbeziehung zwischen p̃(x , t) und c̃(x , t)

Stehende Wellen. Man kann die in Abb. 2.8 dargestellte
Phasenbeziehung auch rechnerisch ermitteln. Setzen wir
für p̃(x, t) eine stehende Welle an:

p̃(x, t) = p̃0 cos kx cosωt , (2.27)

so erhalten wir mit (2.17), (2.19) und (2.22) die Beziehun-
gen

∂p̃
∂x

=− kp̃0 sin kx cosωt = −ρ0
∂c̃
∂t

(2.28)

∂p̃
∂t

=− ωp̃0 cos kx sinωt = −ρ0v2s
∂c̃
∂x

. (2.29)

Daraus folgt:

c̃(x, t) =
p̃0

ρ0vs
sin kx sinωt . (2.30)

In Übereinstimmungmit Abb. 2.8 sind bei stehendenWel-
len p̃(x, t) und c̃(x, t) sowohl räumlich als auch zeitlich um
90° gegeneinander phasenverschoben.

Laufende Wellen. Um zu ergründen, welche Phasenbe-
ziehungen in laufenden Schallwellen herrschen, machen
wir statt (2.27) den Ansatz

p̃(x, t) = p̃0 sin(kx− ωt) . (2.31)

Analog zu (2.28) und (2.29) erhalten wir:

∂p̃
∂x

= kp̃0 cos(kx− ωt) = −ρ0
∂c̃
∂t

,

∂p̃
∂t

= −ωp̃0 cos(kx− ωt) = −ρ0v2s
∂c̃
∂x

.

Daraus folgt

c̃(x, t) =
p̃0

ρ0vs
sin(kx− ωt) . (2.32)

(2.31) stellt eine in +x-Richtung laufende Welle dar. Für
eine in −x-Richtung laufende Welle

p̃(x, t) = p0 sin(kx+ ωt)

erhalten wir auf die gleiche Weise

c̃(x, t) = − p̃0
ρ0vs

sin(kx+ ωt) . (2.33)

Bei einer in x-Richtung laufenden Welle sind also p̃(x, t)
und c̃(x, t) in Phase, während sie bei einer in−x-Richtung
laufenden Welle um 180° phasenverschoben sind. Diese
Verhältnisse sind in Abb. 2.9 dargestellt. – Auf dieseWeise
entscheidet ganz allgemein die Phase bei Wellen aller Art
über die Wellenausbreitung.

Schallwellen in Flüssigkeiten und Festkörpern

Die Gleichung (2.22) gilt auch in Festkörpern und Flüssig-
keiten. Dort ist die Schallgeschwindigkeit imAllgemeinen



26 2 Spezielle Wellenerscheinungen

x

p̃(x,t)

c̃(x,t)

c̃(x,t) x

x

(a)

(b)

Abbildung 2.9 Druck- und Geschwindigkeitsverteilung in einer laufenden
Welle (Momentaufnahme). (a) in+x-Richtung laufend, (b) in−x-Richtung lau-
fend

vs

Abbildung 2.10 Kompressionswelle in einem Stab, schematisch. Querauslen-
kung stark übertrieben.

größer als in Gasen (vgl. Tab. 2.1); dies liegt an der sehr
geringen Kompressibilität kondensierter Materie. Für die
Schallgeschwindigkeit in Flüssigkeiten erhalten wir

vs =

√
dp
dρ

=

√
K
ρ
, (2.34)

wobei K der Kompressionsmodul der Flüssigkeit ist (vgl.
Bd. II, Gl. (1.7)). In einem dreidimensional ausgedehnten
Festkörper ist die Berechnung von dp/dρ für den Defor-
mationszustand einer longitudinalen Schallwelle weitaus
komplizierter. Man muss auch die Querkontraktion be-
rücksichtigen und erhält

v(l)s =

√
E
ρ

1− μ

(1+ μ)(1− 2μ)
=

√
3K
ρ

(1− μ)

(1+ μ)
. (2.35)

E ist der Elastizitätsmodul, μ ≤ 1
2 ist die Poissonsche Zahl,

die das Verhältnis Querkontraktion/Elongation bei der
Dehnung eines Stabes angibt (vgl. Bd. II, Gl. (1.5)). Bei
longitudinalen Schallwellen in einem langen dünnen Stab
(Abb. 2.10) ist das Ergebnis wieder einfacher, da sich das
Material seitlich ausdehnen kann:

v(d)s =

√
E
ρ
. (2.36)

Transversale Schallwellen. Die markanteste Besonder-
heit der Schallausbreitung in einem Festkörper ist, dass
aufgrund der Scherfestigkeit auch transversale Schallwel-
len möglich sind. Die Schallgeschwindigkeit für Transver-
salwellen ist vom Schubmodul G abhängig:

v(t)s =

√
G
ρ

. (2.37)

Da nach Bd. II, Gl. (1.14) G = E/2(1+ μ) ist, ist v(t)s deut-
lich kleiner als die Geschwindigkeit der longitudinalen
Wellen. Diese Tatsache hat zu der Erkenntnis geführt, dass
das Innere der Erde in einer ausgedehnten Zone flüssig
ist. Von Erdbebenzentren oder von unterirdischen Explo-
sionen gehen sowohl longitudinale als auch transversale
Wellen aus. Sie können aufgrund ihrer unterschiedlichen
Ausbreitungsgeschwindigkeiten identifiziert werden.
Man stellt fest, dass sich in einer Tiefe von 2900km eine
Diskontinuität befindet, bei der sich die Schallgeschwin-
digkeit sprunghaft ändert und unterhalb der sich nur
noch longitudinale Wellen durch den Erdkörper fort-
pflanzen können. Das bedeutet, dass unterhalb dieser
Diskontinuität das Erdinnere flüssig ist. In einer Tiefe von
5100km findet man nochmals eine sprunghafte Ände-
rung der Schallgeschwindigkeit. Dort beginnt der feste
innere Erdkern, der einen Radius von ca. 1250km hat
(Bd. III, Abb. 15.36).

2.3 Wasserwellen

Die Wellen, die man an der Oberfläche von Flüssigkei-
ten sieht, insbesondere Wasserwellen, sind zweifellos das
am längsten bekannteWellenphänomen, aber keineswegs
das einfachste. Zunächst ist die Bewegung der Flüssigkeit
eine komplizierte (Abb. 2.11a). Die einzelnen Flüssigkeits-
teilchen bewegen sich bei Wellen in tiefem Wasser auf
Kreisbahnen, deren Radien nach unten hin abnehmen. Im
Flachwasser werden aus den Kreisen langgestreckte El-
lipsen. Die Stromlinien führen dagegen in weiten Bögen
von der Oberfläche vor dem Wellenberg zur Oberfläche
hinter dem Wellenberg (Abb. 2.11b). Man muss ein Weil-
chen nachdenken, bis man den Zusammenhang zwischen
beiden Bildern durchschaut hat. Die Bewegung erfolgt al-
so sowohl transversal als auch longitudinal. Sodann gibt
es zwei verschiedene Mechanismen für die rücktreiben-
de Kraft: Die Oberflächenspannung und die Schwerkraft.
Die Oberflächenspannung dominiert bei sehr kurzenWel-
len, die Schwerkraft bei längeren. Man unterscheidet da-
her Kapillarwellen und Schwerewellen.

Interessant ist die Dispersionsrelation für Flüssigkeitswel-
len. Sie lautet:

ω2 =

(
σ

ρ
k3 + gk

)
F(kh) . (2.38)
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Abbildung 2.11 Bewegungen in einer Wasserwelle, sichtbar gemacht durch
Zusatz von Aluminiumflittern. a Bahnbewegung der Flüssigkeitsteilchen (län-
gere Belichtungszeit bei der fotografischen Aufnahme), b Stromlinien (kurze
Belichtungszeit). Aus A. Sommerfeld (1945)

Hierbei ist g die Fallbeschleunigung, σ die Oberflächen-
spannung, ρ die Dichte und h die Tiefe der Flüssigkeit.
Der erste Term beschreibt die Kapillarwellen, der zweite
die Schwerewellen. Die Funktion F(kh) ist gegeben durch

F(kh) =
1− e−2kh

1+ e−2kh . (2.39)

Tiefwasserwellen. Wir diskutieren zunächst den Fall
h > λ, also kh > 2π. In diesem Fall wird F(kh) ≈ 1. Mit
(2.38) erhält man dann für die Phasengeschwindigkeit

vph =
ω

k
=

√
g
k
+

σ

ρ
k =

√
g
2π

λ +
2πσ

ρ

1
λ

. (2.40)

Tiefwasserwellen sind also keineswegs dispersionsfrei. In
Abb. 2.12 ist die Phasengeschwindigkeit als Funktion der
Wellenlänge λ = 2π/k aufgetragen. Unterhalb des Mini-
mums bei λ = 1,7 cm laufen die Wellen umso schneller,
je kürzer die Wellenlänge ist: Die Rückstellkraft wird hier

λ(cm)
1,7 cm

1
vph(m/s)

0,5

0,23

10 155

Abbildung 2.12 Phasengeschwindigkeit von Tiefwasserwellen

von der Oberflächenspannung besorgt und ist umso grö-
ßer, je kleiner der Krümmungsradius der Wellenkuppen
ist. Oberhalb des Minimums, im Bereich der Schwere-
wellen, nimmt dagegen vph mit λ zu. Man kann dieses
Verhalten demonstrieren, indem man an einem Punkt
der Wasserfläche ein „Signal“ erzeugt, das im wesentli-
chen aus einem einzigen Wellenberg besteht. Ein solcher
Wellenberg enthält nach Fourier eine Vielzahl von har-
monischen Teilwellen. Ist deren Wellenlänge kleiner als
1,7 cm (man erreicht das, indemman einenWassertropfen
auf eine Wasseroberfläche fallen lässt), so sieht man, dass
die kurzen Wellen am schnellsten laufen. Ist dagegen die
Länge der Wellen größer als 1,7 cm (man erreicht das, in-
dem man einen Stein in einen Teich wirft), so sieht man
deutlich, dass die langen Wellen voranlaufen. Man kann
das leicht ausprobieren.

Flachwasserwellen. Dieser Fall ist besonders für Schwe-
rewellen interessant. Er ist realisiert, wenn kh < 1, also
h < λ/2π ist. Dann kann man F(kh) ≈ kh setzen und die
Dispersionsrelation (2.38) nimmt für Schwerewellen fol-
gende Form an:

ω2 = ghk2 . (2.41)

Die Wellen sind also dispersionsfrei und breiten sich mit
einer Geschwindigkeit aus, die nur von der Wassertiefe
abhängt:

vph =
√

gh . (2.42)

Je flacher das Wasser ist, desto langsamer laufen die Wel-
len. Das erklärt, warum bei flachen Sandstränden die
Wellen immer parallel zur Küstenlinie das Ufer erreichen.
Man versteht auch qualitativ, warum sich die Wellen im
Flachwasser brechen: Bei hohenWellen ist die Wassertiefe
für die Wellenberge erheblich größer als für die Wellentä-
ler; die Wellenberge laufen schneller und kippen über.

Die Dispersionsfreiheit der Flachwasserwellen kann auch
zu recht unangenehmen Naturerscheinungen führen. Im
Pazifischen Ozean beobachtet man mitunter sogenannte
„Tsunamis“, das sind sehr lange und sehr hohe Wel-
len, die sich infolge von Erdbeben ausbilden können. Bei
einer Wellenlänge von z. B. λ ≈ 50 km sind die Bedin-
gungen für Flachwasserwellen selbst in der Tiefsee (h ≈
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5 km) noch erfüllt. Ein solches Ungetüm rast dann nach
(2.42) mit einer Geschwindigkeit von fast 1000 km/h über
den Ozean und richtet auf Inseln und an Festlandküsten
verheerenden Schaden an. Ein ähnliches, aber glücklicher-
weise nicht so drastisches Phänomen ist amGenfer See be-
kannt. Es wird dort „seiches“ genannt (gesprochen ßäsch)
und kommt durch extreme Luftdruckschwankungen zu-
stande, die am östlichen Ende des Sees, am Talausgang
des Wallis, entstehen können. Die Bewegung des Wassers
bei den seiches entspricht dem Schwappen des Wassers
in der Badewanne. Das ist die Grundschwingung einer
stehenden Welle, die der Dispersionsrelation (2.42) folgt.
Gewöhnlich ist die Amplitude nur einige Dezimeter, aber
am 03. 10. 1841 stieg die Wasserhöhe in Genf innerhalb ei-
ner halben Stunde um 1,9m an!

2.4 Elektromagnetische Wellen
(Grundbegriffe)

Wie wir schon aus Bd. III/15.4 wissen, folgerte Maxwell
aus seinen Gleichungen, dass es elektromagnetische Wel-
len geben müsse. Qualitativ wurde das Zustandekommen
der Wellen mit Bd. III, Abb. 15.32 plausibel gemacht. Wir
wollen dies nun quantitativ untersuchen.

Elektromagnetische Wellen im Vakuum

Berechnung mit der Integralform der Maxwell-Glei-
chungen. Wie die Verkettung der zeitabhängigen elektri-
schen undmagnetischen Felder funktioniert, erkennt man
am besten, wenn man von der Integralform der Maxwell-
Gleichungen Bd. III, Gln. (15.51)–(15.54) ausgeht. Wir be-
trachten das Vakuum, in dem ρq = 0 und j = 0 ist, und
schreiben Bd. III, Gln. (15.52) und (15.54) in der Form

∮
C

E · ds = − ∂

∂t

∫
A

B · dA , (2.43)

∮
C

B · ds = ε0μ0
∂

∂t

∫
A

E · dA . (2.44)

Wir haben hier gegenüber Bd. III, Gl. (15.52) die Reihen-
folge von Integration und Differentiation vertauscht. Das
ist zulässig, wenn die Integration mit einer Kurve C aus-
geführt wird, die im Raum festliegt.

Wir betrachten in Abb. 2.13 ein Flächenelement in der
(x, y)-Ebene und berechnen auf der Randkurve dieses
Flächenelements das Linienintegral in (2.43) für ein elek-
trisches Feld, das in y-Richtung zeigt und nur von x und t

x
x

z

y

x+dx

}dy

dz

z

y

Abbildung 2.13 Zur Ableitung von (2.46) und (2.47)

abhängt:

E = (0,Ey(x, t), 0) , (2.45)∮
E · ds = Ey(x+ dx, t)dy− Ey(x, t)dy

=
∂Ey

∂x
dxdy .

Das Flächenintegral in (2.43) ergibt
∫
B · dA = Bz dxdy,

und wir erhalten mit (2.43)

∂Ey

∂x
= − ∂Bz

∂t
. (2.46)

In der (x, z)-Ebene ergibt die Integration um das Flächen-
element dxdz: ∮

E · ds = 0 .

Daraus folgt mit (2.43) ∂By/∂t = 0, By = const. Nun sind
wir an einem zeitlich konstanten Anteil des B-Feldes nicht
interessiert und setzen By = 0. Die z-Komponente des B-
Feldes ist nach (2.46) offenbar nicht Null zu setzen. Die
Integrale in (2.44) ergeben

∮
B · ds = Bz(x, t)dz− Bz(x+ dx, t)dz

= − ∂Bz

∂x
dxdz ,

∫
E · dA = Ey dxdz .

Daraus folgt mit (2.44)

∂Ey

∂t
= − 1

ε0μ0

∂Bz

∂x
. (2.47)

Wir differenzieren (2.46) und (2.47) nach x und nach t. Wie
beim Übergang von (2.17) und (2.19) nach (2.21) erhalten
wir die Wellengleichungen

∂2Ey

∂t2
=

1
ε0μ0

∂2Ey

∂x2
,

∂2Bz

∂t2
=

1
ε0μ0

∂2Bz

∂x2
. (2.48)
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Das zeitlich veränderliche E-Feld (2.45) ist also mit ei-
nem in z-Richtung weisenden B-Feld verknüpft, welches
ebenfalls zeitlich veränderlich ist. Das Zusammenwirken
beider Felder bildet eine sich in x-Richtung ausbreitende
elektromagnetische Welle.

Berechnung mit der differentiellen Form. Mathema-
tisch eleganter lassen sich die Wellengleichungen mit den
Maxwell-Gleichungen in differentieller Form ableiten. Für
ρq = 0 und j = 0 nehmen Bd. III, Gln. (15.55)–(15.58) fol-
gende Form an:

∇ · E = 0 , ∇× E = − ∂B
∂t

, (2.49)

∇ · B = 0 , ∇× B = ε0μ0
∂E
∂t

. (2.50)

Aus diesen Gleichungen folgt unmittelbar

∂2E
∂t2

=
1

ε0μ0

∂

∂t
(∇× B) =

1
ε0μ0

∇× ∂B
∂t

= − 1
ε0μ0

∇× (∇× E) .
(2.51)

Unter Beachtung der Vorschriften für die Anwendung des
∇-Operators wenden wir die Formel für das doppelte
Vektorprodukt an:

∇× (∇× E) = ∇(∇ · E)− (∇ ·∇)E . (2.52)

Da im Vakuum ∇ · E = 0 ist, ergibt das die Wellenglei-
chung

∂2E
∂t2

=
1

ε0μ0

(
∂2E
∂x2

+
∂2E
∂y2

+
∂2E
∂z2

)
. (2.53)

Auf die gleiche Weise erhält man für das B-Feld die Wel-
lengleichung

∂2B
∂t2

=
1

ε0μ0

(
∂2B
∂x2

+
∂2B
∂y2

+
∂2B
∂z2

)
. (2.54)

Was zu Maxwells Zeiten eine schwierige und unüber-
sichtliche Rechnung war, haben wir mit Hilfe des ∇-
Operators und der Vektorrechnung in wenigen Zeilen
geschafft. Allerdings bleibt hinter der mathematischen
Zauberei die Physik vollständig verborgen.

(2.53) und (2.54) sind Wellengleichungen vom Typ (1.35).
Es gibt also in der Maxwellschen Theorie elektromagne-
tische Wellen. Im Vakuum sind sie dispersionsfrei und
breiten sich mit der Geschwindigkeit

c =
1√

ε0μ0
(2.55)

Tabelle 2.2 Komponenten des Vektors∇× a

(∇× a)x
∂az
∂y

− ∂ay
∂z

(∇× a)y
∂ax
∂z

− ∂az
∂x

(∇× a)z
∂ay
∂x

− ∂ax
∂y

aus. Die Ausbreitungsgeschwindigkeit der Wellen kann
direkt gemessen werden. Das Produkt ε0μ0 kann aber
auch durch Messung der relativen Stärke elektrischer
und magnetischer Kräfte bestimmt werden (vgl. Bd. III,
Gln. (11.39)–(11.41)). Die gute Übereinstimmung der Re-
sultate ist ein wichtiger Konsistenztest für die Maxwell-
sche Theorie.

Die Struktur der elektromagnetischen Wellen. Wir
betrachten die allgemeinste Form einer ebenen Wel-
le, die sich in x-Richtung ausbreitet. Bei einer sol-
chen Welle hängen die Komponenten des E-Vektors nur
von x und t, nicht aber von y und z ab: E(x, t) =(
Ex(x, t),Ey(x, t),Ez(x, t)

)
. Daraus folgt ∇ · E = ∂Ex/∂x.

Diese Größe muss nach der ersten Gleichung in (2.49)
Null sein: Ex ist räumlich konstant und kann daher kei-
nen Beitrag zu der in x-Richtung laufenden Welle leisten.
Die gleiche Schlussfolgerung ergibt sich mit (2.50) auch
für das B-Feld. Es gibt also in der Maxwellschen Theorie
keine longitudinalen, sondern nur transversale elektro-
magnetische Wellen.

Um herauszufinden, wie bei einer solchen Welle das E-
Feld und das B-Feld miteinander verknüpft sind, machen
wir den Ansatz

E(x, t) =
(
0,Ey(x, t), 0

)
mit Ey(x, t) = E0 sin(kx− ωt) .

(2.56)

Dies bezeichnet man als eine in y-Richtung linear polari-
sierte Welle, d. h. wir definieren die Polarisationsrichtung
einer elektromagnetischen Welle als die Richtung des E-
Vektors. Damit man die nun folgende Rechnung besser
nachvollziehen kann, sind in Tab. 2.2 die Komponenten
des Vektors ∇× a angegeben. Aus (2.49) und (2.50) fol-
gen mit (2.56) wieder (2.46) und (2.47):

∂Ey

∂x
= − ∂Bz

∂t
, (2.57)

∂Bz

∂t
= −kE0 cos(kx− ωt) ,

1
c2

∂Ey

∂t
= − ∂Bz

∂x
, (2.58)

∂Bz

∂x
=

ω

c2
E0 cos(kx− ωt) .

Das sind zwei Differentialgleichungen für das B-Feld,
die simultan zu lösen sind. Wenn man bedenkt, dass
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Abbildung 2.14 Elektromagnetische Welle, nach rechts laufend

nach (1.7) c = ω/k ist, erkennt man die Lösung mit
bloßem Auge:

B(x, t) = (0, 0,Bz) mit Bz(x, t) =
E0

c
sin(kx− ωt) .

Unser Ergebnis ist in Abb. 2.14 gezeigt: Ey und Bz sind in
Phase, wenn die Welle in +x-Richtung läuft. Läuft sie in
−x-Richtung, ist Ey(x, t) = E0 sin(kx+ ωt). Man erhält in
der zweiten Gleichung auf der rechten Seite von (2.58) ein
Minuszeichen, und es folgt

Bz = −E0

c
sin(kx+ ωt) .

Bz ist gegen Ey um 180° phasenverschoben. Unser Ergeb-
nis ist also

Bz(x, t) = ±Ey(x, t)
c

, (2.59)

je nachdem, in welcher Richtung die Welle läuft. Die E-
Feldlinien in der (x, y)-Ebene sind in Abb. 2.15 gezeigt.
Für die Beträge der Feldgrößen haben wir erhalten:

B =
E
c
. (2.60)

Diese Formel sollte man sich merken. Zur Veranschau-
lichung dieses Größenverhältnisses betrachten wir ein
Elektron, dass sich mit der Geschwindigkeit v in einem
statischen E- und B-Feld senkrecht zu den Magnetfeld-
linien bewegt. Wenn B = E/c ist, dann ist die Lorentz-
kraft eBv = eEv/c, also für v 	 c gegen die elektrische
Kraft vernachlässigbar. Deshalb sind elektrische Wirkun-
gen von elektromagnetischenWellen viel leichter nachzu-
weisen als magnetische.

Abbildung 2.15 E-Feld in Abb. 2.14. Die Dichte der Feldlinien variiert sinus-
förmig

Erzeugung elektromagnetischer Wellen,
Dipolstrahlung

Eine ruhende elektrische Ladung erzeugt ein zeitlich kon-
stantes elektrisches Feld und ein konstanter elektrischer
Strom erzeugt ein zeitlich konstantes Magnetfeld. Eine
Ladung, die sich mit konstanter Geschwindigkeit be-
wegt, erzeugt zwar variable Felder, aber durch Wechsel
des Koordinatensystems kann man wieder zur ruhenden
Ladung zurückkehren. Zur Erzeugung elektromagneti-
scher Wellen, die abgestrahlt werden, muss man daher
beschleunigte Ladungen bzw. zeitlich veränderliche elek-
trische Ströme benutzen. Die Beschleunigung der Ladun-
gen kann longitudinal oder transversal relativ zu ihrer
Geschwindigkeit erfolgen. Wir betrachten vorerst das ein-
fachste System und stellen den allgemeinen Fall bis Kap. 3
zurück.

Der Prototyp einer Anordnung zur Erzeugung elektro-
magnetischer Wellen ist der schwingende Dipol, auch
Hertzscher Dipol genannt. Eine negative elektrische La-
dung −q befinde sich im Zentrum des Koordinatensys-
tems (Abb. 2.16), eine positive Ladung +q im Abstand
z(t) = z0 sinωt. Das zeitlich veränderliche Dipolmoment
p = qz ist gegeben durch

p(t) = p0 sinωt = qz0 sinωt . (2.61)

Da die Abstrahlung elektromagnetischer Wellen von der
Beschleunigung der Ladung abhängt, berechnen wir

d2p
dt2

= −ω2p0 sinωt . (2.62)

In der unmittelbaren Nähe des schwingenden Dipols ent-
steht eine komplizierte Verteilung zeitlich veränderlicher
elektrischer und magnetischer Felder, das sogenannte
Nahfeld. ImAbstand r 
 z0, d. h. in der Fernzone, besitzt
das elektromagnetische Feld dagegen eine sehr einfache
geometrische Struktur: Es läuft eine elektromagnetische
Kugelwelle im Raum nach außen. In Abb. 2.17 sind die

Abbildung 2.16 Schwingender
Dipol
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Abbildung 2.17 Dipolstrahlung. a E-Feldlinien, b die Richtungen von von E,
B und r

elektrischen Feldlinien sowie die Richtungen der E- und
B-Vektoren dargestellt. Die Welle ist in der (r, z)-Ebene li-
near polarisiert, das Verhältnis der E- und B-Feldstärken
entspricht dem in (2.59) berechnetenWert. Für den Betrag
der transversalen E-Feldstärke ergibt die Rechnung:

E⊥(r, ϑ, t) =
ω2p0 sin ϑ

4πε0c2r
sin(kr− ωt) . (2.63)

DieWellenzahl ist k = ω/c. Setzt man dies in (2.63) ein, so
erhält man:

sin(kr− ωt) = sinω
( r
c
− t

)
= − sinωt′ , (2.64)

wobei t′ = t− r/c die retardierte Zeit genannt wird. Die
Phase in (2.63) entspricht genau der Phase von d2p/dt2,
verzögert um die Laufzeit der Welle.

Wir wollen nun die einzelnen Faktoren in (2.63) disku-
tieren. Der Faktor ω2 im Zähler kommt daher, dass die
Feldstärke proportional zu d2p/dt2 ist. Man erkennt, dass
es für die Erzeugung elektromagnetischer Wellen vor al-
lem auf die Frequenz der Dipolschwingung ankommt:
Ein Faktor 100 in der Frequenz bringt einen Faktor 104

in der Feldstärke und sogar einen Faktor 108 in der ab-
gestrahlten Energie, denn diese ist, wie wir in Kap. 3
sehen werden, dem Quadrat der Feldstärke proportio-
nal. p0 sin ϑ ist die Projektion der Dipolamplitude auf eine
Ebene senkrecht zur Ausbreitungsrichtung. In Richtung
der z-Achse (sin ϑ = 0), also in der Schwingungsrichtung

Abbildung 2.18 Dipolantenne
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HF Oszillator

des Dipols, werden keine Wellen abgestrahlt; quer zur
Schwingungsrichtung ist die Abstrahlung am größten.
Bemerkenswert ist auch, dass die Feldstärke nur propor-
tional zu 1/r abfällt, also viel langsamer als das Feld einer
Punktladung (E ∝ 1/r2) oder eines statischen elektrischen
Dipols (E ∝ 1/r3). Wir werden auf diesen Umstand im
Zusammenhang mit dem Energietransport in der elek-
tromagnetischenWelle (Abschn. 3.3) zurückkommen. Das
E-Feld der Dipolstrahlung hat übrigens auch eine longitu-
dinale Komponente

E||(r, ϑ, t) =
ωp0 cos ϑ

2πε0cr2
cos(kr− ωt) . (2.65)

Da sie proportional zu 1/r2 abfällt, kann sie gewöhnlich
gegenüber E⊥ vernachlässigt werden. Sie muss jedoch
existieren, weil sonst die Feldlinien nicht in sich geschlos-
sen sein könnten (vgl. Abb. 2.17).

Zur technischen Realisierung eines schwingenden Dipols
schließt man an einen Hochfrequenzoszillator zwei Dräh-
te an, eine Dipolantenne, wie in Abb. 2.18 gezeigt. Die
Abstrahlung funktioniert am besten, wenn die Länge der
Antenne der halbenWellenlänge entspricht. Es bildet sich
dann auf dem Antennendraht eine stehende Welle aus,
wie in Abb. 2.18b gezeigt. Man kann sich die Anord-
nung auch als einen entarteten Schwingkreis vorstellen,
der durch den HF-Generator resonant erregt wird. Der
Antennendraht stellt die Induktivität L dar, die Drahten-
den die Kapazität C. Man mache sich klar, dass bei dem
in Abb. 2.19 gezeigten Übergang vom Schwingkreis zur

L

C

ba

dc

Abbildung 2.19 Übergang vom Schwingkreis zur Dipolantenne
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Dipolantenne nicht nur die Abstrahlung von Wellen geo-
metrisch begünstigt wird, sondern dass auch das Produkt
LC verringert und somit die Eigenfrequenz des Kreises er-
höht wird.

Stehende Wellen

Zur Erzeugung von stehenden elektromagnetischen Wel-
len stellt man in einigem Abstand vor einer leitenden
Platte einen Sender mit einer in y-Richtung zeigenden Di-
polantenne auf. Das Eindringen der elektromagnetischen
Welle in das leitende Material werden wir weiter unten
diskutieren. Nahe der Plattenoberfläche ist im wesent-
lichen Ey = 0. An der Plattenoberfläche fließen hochfre-
quente Ströme, die ihrerseits elektromagnetische Wellen
abstrahlen, was zu einer Reflexion der einfallenden Welle
führt (Abb. 2.20a). Abbildung 2.20b zeigt eine Moment-
aufnahme des E- und B-Feldes: In der stehenden Welle
sind E(x, t) und B(x, t) gegeneinander um 90° phasenver-
schoben, genau wie p̃(x, t) und c̃(x, t) in der stehenden
Schallwelle (Abb. 2.8). Zum Nachweis der Schwingungs-
bäuche des E- und B-Feldes kann man eine Dipolantenne
(für E) bzw. eine Induktionsschleife (für B) benutzen:Man
findet dann die nach Abb. 2.20 erwartete Feldverteilung.
Mit einer Versuchsanordnung dieser Art gelang Heinrich
Hertz der Nachweis der elektromagnetischenWellen. Die
von Hertz erfundene Sendeanlage ist in Abb. 2.21 ge-
zeigt4.

4 Heinrich Hertz (1857–1894) war Physikprofessor in Karlsruhe und
in Bonn. Er entdeckte die elektromagnetischen Wellen 1888 noch an
der Technischen Hochschule Karlsruhe. Zur Erzeugung des hoch-
frequenten Stroms in der Dipolantenne diente ihm eine von einem
Induktorium gespeiste Funkenstrecke (Abb. 2.21). Hertz hatte be-
merkt, dass beim Funkenüberschlag in dieser Anordnung nicht ein
Gleichstrom, sondern ein Wechselstrom fließen muss, gerade so wie
im Schwingkreis von Bd. III, Abb. 17.16, wenn der Schalter geschlos-
sen wird. Die Frequenz der Schwingung kann aus der Kapazität
und der Induktivität der Dipolantenne mit Bd. III, Gl. (17.58) be-
rechnet werden. Der Stromfluss im Funken hält typisch 10−4 s an;
die Schwingungsdauer liegt im Bereich von 10−7–10−8 s, so dass
viele Schwingungen erfolgen, bevor der Funken abreißt. Da die
Funken in rascher Folge entstehen, ergibt sich ein quasistationärer
Betrieb. Als Empfänger benutzte Hertz eine Leiterschleife oder einen
zweiten Dipol, angeschlossen an eine Funkenstreckemit einem Elek-
trodenabstand von einigen 10−2 mm. Zunächst bestimmte Hertz mit
stehenden Wellen bei einer Frequenz ν ≈ 30MHz die Wellenlänge
(λ ≈ 10m). Daraus folgerte er, dass elektromagnetische Wellen exis-
tieren, und dass sie sich mit derselben Geschwindigkeit ausbreiten,
wie das Licht (λν ≈ 3 · 108 m/s). Dann baute er eine Übertragungs-
anlage für Wellen von 500MHz (λ = 60 cm), bei der die Sende- und
Empfangsdipole in Parabolspiegel eingebaut waren. Damit demons-
trierte er die geradlinige Ausbreitung, die Polarisation, die Reflexion
und die Brechung von elektromagnetischen Wellen. Die Polarisation
untersuchte er mit einem „Hertzschen Gitter“ (Abb. 9.4), die Bre-
chung mit einem Prisma aus Pech. Heute lassen sich diese Versuche
leichtmit cm-Wellen imHörsaal nachstellen. – DasWort „Rundfunk“
erinnert noch an den Hertzschen Funkensender.

x

Bz

Ey

leitende Platte
E

B

b

a

leitende
Platte

Abbildung 2.20 Stehende elektromagnetische Welle. a Das E-Feld, b Pha-
senlage von E und B

a

b

Induktorium

ca. 3mm
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Abbildung 2.21 a Hertzscher Funkensender. Das „Induktorium“ ist ein Hoch-
spannungstransformator, dessen Primärwicklung über einen elektromechani-
schen Unterbrecher (Prinzip der Klingel) an galvanische Elemente angeschlossen
ist. b Hertzs Dipole für 30MHz und für 500MHz

Technische Anwendungen,
Spektrum der elektromagnetischen Wellen

ElektromagnetischeWellen sind heute über einen riesigen
Bereich von Wellenlängen bzw. Frequenzen bekannt. Ta-
belle 2.3 gibt eine Übersicht. Der Niederfrequenz (NF-)
Bereichwurde mit aufgenommen, weil der Transport nie-
derfrequenter Ströme auf Übertragungsleitungen auch als
elektromagnetisches Wellenphänomen aufgefasst werden
kann; für freie Wellen spielt dieser Bereich nur sehr gele-
gentlich eine Rolle.

Für die drahtlose Nachrichtentechnik ist vor allem der
Hochfrequenz (HF-)Bereich interessant: Die hochfre-
quente Welle kannmoduliertwerden. Im einfachsten Fall
geschieht das durch Zerhacken der Welle in kurze und
lange Wellenzüge zur Übertragung von Morsezeichen.
Zur Übermittlung komplexer Information kann man die
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Abbildung 2.22 Modulation einer Trägerwelle (ωT) mit einer Tonfrequenz
ωM. a f (t ) nach (2.66), b Frequenzspektrum

Amplitude derWelle modulieren. Soll z. B. ein Tonmit der
Frequenz ωM = 2πν übertragen werden, so wird die An-
tenne gespeist mit einem Signal proportional zu

f (t) = (1+ a cosωMt) sin ωTt , (2.66)

wie in Abb. 2.22a gezeigt. ωT ist die (hochfrequente) Trä-
gerfrequenz. Mit der Formel für sin(α ± β) können wir
diesen Ausdruck umformen:

f (t) = sinωTt

+
a
2
sin (ωT + ωM) t+

a
2
sin (ωT − ωM) t .

(2.67)

Im Frequenzspektrum der modulierten Welle erscheinen
also zwei Seitenbänder, wie in Abb. 2.22b gezeigt. Sollen
mehrere Tonfrequenzen übertragenwerden, z. B. ein Sym-
phoniekonzert, so wird dafür eine gewisse Bandbreite

Δν = 2νmax (2.68)

benötigt, wobei νmax die höchste Frequenz ist, die man
zur Wiedergabe des Klangcharakters braucht. Gewöhn-
lich begnügt man sich beim Rundfunk mit νmax ≈ 5 kHz,
also mit Δν ≈ 10 kHz.5

Der HF-Bereich wird unterteilt in die Bereiche der Lang-
wellen (LW), Mittelwellen (MW), Kurzwellen (KW) und
Ultrakurzwellen (UKW), wie in Tab. 2.3 gezeigt. Die ein-
zelnen Wellenlängenbereiche unterscheiden sich durch
ihre Ausbreitungseigenschaften. Langwellen können ein
Stück weit der Krümmung der Erdoberfläche folgen. Da-
bei wirkt sich aus, dass die topographischen Strukturen
der Erdoberfläche� λ sind, und dass die Leitfähigkeit des
Bodens die Ausbreitung der „Bodenwelle“ unterstützt.
Kurzwellen laufen weitgehend geradeaus, eignen sich

5 Zum Thema „Modulation von hochfrequenten Wellen“ lässt sich
noch sehr viel mehr sagen. So gibt es außer der hier kurz beschriebe-
nen Amplitudenmodulation (AM) auch Frequenzmodulation (FM)
und Phasenmodulation (PM). Näheres darüber bei F. S. Crawford,
Schwingungen und Wellen (Berkeley Physik Kurs Band 3), im Text zu
den Aufgaben 27–32, Kap. 6, und zu Aufgabe 58, Kap. 9. Man fin-
det dort auch viele interessante technische Einzelheiten zu diesem
Thema.

Tabelle 2.3 Das elektromagnetische Spektrum

Wellenlänge Frequenz ν

Niederfrequenz > 30 km < 10 kHz

Hochfrequenz:

Langwelle
Mittelwelle
Kurzwelle
Ultrakurzwelle

30 km–1 km
1km–100m
100m–10m
10m–1m

≈ 100 kHz
≈ 1MHz
≈ 10MHz
≈ 100MHz

Dezimeterwellen 1m–10 cm ≈ 1GHz

Mikrowellen 10 cm–1mm ≈ 30GHz

Infrarot 1mm–0,8µm ≈ 1013 s−1

Sichtbares Licht 0,8µm–0,4µm ≈ 1015 s−1

Ultraviolett 400 nm–10 nm ≈ 1016 s−1

Röntgen- u. γ-Strahlen � 10nm � 1017 s−1

aber dennoch zur weltweiten Nachrichtenübermittlung,
da die „Raumwelle“ an der Ionosphäre, einer elektrisch
leitenden Schicht in der oberen Atmosphäre, und am Erd-
boden reflektiert wird. Wir werden dies im nächsten Ab-
schnitt noch genauer diskutieren. Im UKW-Bereich wird
die Ionosphäre für elektromagnetische Wellen durchläs-
sig: Ultrakurzwellen eignen sich daher zum Nachrichten-
verkehr mit Satelliten. Außerdem zeichnet sich der UKW-
Bereich dadurch aus, dass in diesem Frequenzbereich bei
vorgegebener Bandbreite Δν eine große Zahl von Sendern
ohne Überlappung untergebracht werden kann. Bei ei-
ner Bandbreite von Δν = 10 kHz lassen sich im Bereich
von 3 × 107 − 3 × 108 Hz theoretisch sogar 104 Sender
unterbringen, imMW-Bereich (3× 105− 3× 106 Hz) dage-
gen nur etwa 100. Dies und die geringere Reichweite der
auf geradlinige Übertragung angewiesenen UKW-Sender
wirkt sich vorteilhaft auf die Reduzierung des „Wellen-
salats“ aus. Für das Fernsehen benötigt man zur Übertra-
gung der vielen Bildelemente weitaus höhere Bandbreiten
(≈ 10MHz). Es wird daher am unteren Ende des UKW-
Bereichs und bei den Dezimeterwellen untergebracht.

Der Dezimeter- und Mikrowellenbereich spielte zunächst
vor allem in der Radartechnik, für Richtfunkstrecken und
für die wissenschaftliche Forschung (z. B. in der Atom-
und Festkörperphysik) eine Rolle. Er wird seit Länge-
rem auch für die Kommunikations- undHaushaltstechnik
genutzt: Die Mobiltelefonnetze laufen mit Frequenzen
ν ≈ 1GHz, der Mikrowellenherd mit ν ≈ 2,4GHz und
das Satellitenfernsehen nutzt den Frequenzbereich von
10–12GHz (λ ≈ 3 cm).6 Unterhalb der Millimeterwellen

6 Die Mobiltelefonnetze funktionieren mit einer raffinierten Emp-
fangs- und Sendetechnik, die nur bei diesen Frequenzen auf engstem
Raum technisch realisiert werden kann. Ebenso wichtig ist die oben
erwähnte Relation zwischen Bandbreite und Trägerfrequenz. Beim
Mikrowellenherd wird die Absorption der Wellen in Wasser aus-
genutzt (Abschn. 5.3, Abb. 5.19), und das Satellitenfernsehen wäre
bei längeren Wellenlängen unbezahlbar. Wir werden darauf bei
Abb. 8.20 zurückkommen.
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endet die Möglichkeit, mit denMethoden der Elektrotech-
nik elektromagnetische Wellen herzustellen.

Im anschließenden Spektralbereich (Infrarot bis Ultra-
violett) liegt die thermische Strahlung heißer Körper
(Bd. II/7) und die Strahlung der Atome und Moleküle.
Für den Menschen und seine Technik besonders wichtig
ist klarerweise der für das menschliche Auge sichtbare
Spektralbereich. Dieser Bereich umfasst im elektromagne-
tischen Spektrum nur eine einzige „Oktave“ (λ ≈ 800 nm
bis λ ≈ 400 nm). Die Physik und Technik dieses Bereichs
bezeichnet man gemeinhin als Optik; sie wird in den fol-
genden Kapiteln der Wellenlehre im Vordergrund stehen.

Röntgenstrahlung und γ-Strahlung: Die Bezeichnung
der kürzesten elektromagnetischen Welle richtet sich
weniger nach der Wellenlänge als nach der Herkunft
der Strahlen. Röntgenstrahlung nennt man die elektro-
magnetische Strahlung, die man mit der Röntgenröhre
(Bd. V/1.3) herstellen kann oder die auf ähnliche Weise
erzeugt wurde; γ-Strahlung nennt man die elektromagne-
tische Strahlung von Atomkernen oder aus Elementar-
teilchen-Prozessen. Die technische Bedeutung dieses
Spektralbereichs beruht vor allem auf der großen Durch-
dringungsfähigkeit der Strahlung, kombiniert mit sehr
kurzer Wellenlänge. Sie wird in der medizinischen Dia-
gnostik, in der Strahlentherapie sowie für Material- und
Strukturuntersuchungen ausgenutzt. Näheres dazu folgt
in Bd. V, Bd. V, Abschn. 1.3 und 9.4.

2.5 Mehr über elektromagnetische
Wellen

Elektromagnetische Wellen in nichtleitender
Materie

Die Übertragung der bisherigen Ergebnisse auf die Aus-
breitung elektromagnetischer Wellen in Materie ist sehr
einfach, wenn die Materie nicht leitet und wenn folgende
Voraussetzungen erfüllt sind:

Satz 2.1

Die Materie soll homogen und isotrop sein, die Ab-
sorption elektromagnetischer Wellen soll vernach-
lässigbar sein und die E- und B-Felder in der Welle
sollen nicht zu groß sein, so dass die Polarisation P
und die MagnetisierungM der Materie proportional
zu E und B sind.7

7 Ist die zuletzt genannte Voraussetzung nicht erfüllt, kommt man
zur nichtlinearen Optik, einem interessanten Gebiet, das im Zusam-

Wie in Bd. III, Kap. 14 und 15 gezeigt wurde, lässt sich
dann der Einfluss der Materie mit Hilfe der Parameter ε
und μ erfassen und wir brauchen lediglich in den Max-
wellschen Gleichungen (2.49) und (2.50) und den daraus
abgeleiteten Formeln die Feldkonstanten ε0 und μ0 durch
εε0 und μμ0 zu ersetzen. Wir erhalten also statt (2.53) und
(2.54), wenn wir uns hier der Einfachheit halber wie bei
(2.48) auf eine Dimension beschränken:

∂2Ey

∂t2
=

1
εε0μμ0

∂2Ey

∂x2
,

∂2Bz

∂t2
=

1
εε0μμ0

∂2Bz

∂x2
.

(2.69)

Diese Gleichungen beschreiben ebene Wellen, die sich in
x-Richtung ausbreiten. Es zeigt sich, dass ε (und auch μ)
von der Frequenz der Welle abhängig sind. Die Wellen
sind daher nicht dispersionsfrei. Glücklicherweise ist die
Frequenzabhängigkeit von ε und μ über weite Bereiche
sehr schwach, so dass dort die typischen Dispersionser-
scheinungen wie das Zerfließen vonWellengruppen nicht
sehr ausgeprägt sind.

Die Phasengeschwindigkeit der Wellen im dielektrischen
Medium bezeichnen wir mit cmed:

vph = cmed =
1√

εε0μμ0
=

cvac√
εμ

, (2.70)

wobei wir hier zur Verdeutlichung die Vakuum-
Lichtgeschwindigkeit (2.55) mit einem Index gekenn-
zeichnet haben. Aus Gründen, die in Kap. 5 diskutiert
werden, bezeichnet man

√
εμ als den Brechungsindex n:

cmed =
c
n

mit n =
√

εμ . (2.71)

Für das Magnetfeld B erhält man analog zu (2.60)

B =
E

cmed
=

nE
c

. (2.72)

Da die Frequenz der Welle im Medium und im Vakuum
dieselbe sein muss, erhalten wir mit den bekannten Bezie-
hungen zwischen Frequenz, Wellenlänge und Wellenzahl
(Tab. 1.1) aus c = λν und (2.71):

λmed =
λvac

n
, kmed = nkvac . (2.73)

Normalerweise ist n > 1, es werden im Medium die Wel-
lenlängen verkürzt. Davon und von (2.71) macht man

menhangmit dem Laser zahlreiche technischeAnwendungen findet.
Wir kommen darauf am Ende von Kap. 9 zurück.
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bei Ferrit-Antennen Gebrauch. Dank der hohen Permea-
bilität μ von Ferriten (Bd. III, Tab. 14.5) kann man für
den UKW-Bereich sehr kurze Dipol-Antennen bauen, die
die Bedingung L ≈ λ/2 erfüllen. Gewöhnlich sind jedoch
Substanzen, die die in Satz 2.1 genannten Bedingungen er-
füllen, nicht magnetisch, so dass man μ = 1 setzen kann.
Man schreibt deshalb sehr häufig

n =
√

ε . (2.74)

Dies wird auch als die Maxwellsche Relation bezeichnet.

Wie kommt es zustande, dass die Lichtgeschwindigkeit
in einemMedium kleiner ist als im Vakuum? Die primäre
Welle erzeugt im Medium eine zeitlich veränderliche Po-
larisation. Das bedeutet, dass es imMedium schwingende
Ladungen gibt, und diese müssen elektromagnetische
Wellen abstrahlen. Die Überlagerung der primären Wel-
le mit den sekundär erzeugten ergibt eine in Vorwärts-
richtung laufende Welle mit einer um den Faktor 1/n
verkürzten Wellenlänge. Wir werden das in Bd. V/1.2
quantitativ untersuchen.

Elektromagnetische Wellen in leitender Materie

Wellen im Bereich der Ohmschen Leitfähigkeit. Wenn
man die Ausbreitung elektromagnetischer Wellen in ei-
nem leitenden Medium berechnen will, muss man bei
der Aufstellung der Wellengleichung in (2.49) und (2.50)
B durch μμ0H ersetzen und man darf die Stromdich-
te des Leitungsstroms in der Maxwell-Gleichung Bd. III,
Gl. (15.58) nicht gleich Null setzen. Wir behalten also die-
sen Term bei und setzen nach dem Ohmschen Gesetz
Bd. III, Gl. (6.11)

j = σelE .

Dann erhalten wir mit den Materialgleichungen Bd. III,
Gl. (15.59) in einem Rechnungsgang, der genauso verläuft
wie derjenige, der zu der Wellengleichung (2.53) führte:

∂2Ey

∂x2
= μμ0σel

∂Ey

∂t
+

1
c2med

∂2Ey

∂t2
. (2.75)

Wir suchen eine Lösung dieser Gleichung, die eine peri-
odische Funktion der Zeit ist, die also den Faktor sinωt
oder cosωt enthält. Die partielle Differentiation nach der
Zeit ergibt dann für den ersten Term auf der rechten Sei-
te den Vorfaktor μμ0σelω, für den zweiten den Vorfaktor
ω2/c2med. Wir können also den zweiten Term vernachläs-
sigen, wenn

ω2

c2med
	 μμ0σelω =

μωσel
ε0c2

gilt. Mit μ ≈ 1 und cmed ≈ c ist das der Fall für alle Fre-
quenzen

ω 	 ωV =
σel
ε0

. (2.76)

ωV ist diejenige Frequenz, bei der der „Verschiebungs-
strom“ einen dem Leitungsstrom vergleichbaren Beitrag
in (2.75) liefern würde. In Metallen ist das eine sehr hohe
Frequenz, z. B. berechnet man für Cu:

ωV = 6,5 · 1018 s−1 , νV = 1018 s−1 . (2.77)

Für so hohe Frequenzen ist das Ohmsche Gesetz längst
nicht mehr gültig. Es erfordert nämlich, dass sich ein
der momentanen elektrischen Feldstärke entsprechender
Strom einstellt. Das ist nur möglich, wenn die Periode T
der elektromagnetischen Welle deutlich größer ist als die
in Bd. III, Gl. (9.14) definierte Stoßzeit τ der Ladungs-
träger. Nach Bd. III, Gl. (9.16) ist τ = σelme/nee2. Daher
gelten unsere Überlegungen nur für den Frequenzbereich

ω 	 ωS =
2π

τ
=

2πnee2

meσel
. (2.78)

ωS wird auch die Stoßfrequenz der Ladungsträger ge-
nannt. Für Cu berechnet man

ωS ≈ 2,5 · 1014 s−1 , νS ≈ 4 · 1013 s−1 . (2.79)

Dieser Frequenz entspricht eine Wellenlänge von 7,5µm.
Sie liegt im infraroten Spektralbereich. Vom Niederfre-
quenzbereich bis zu den Mikrowellen und bis ins ferne
Infrarot (λ ≈ 30µm, ν ≈ 1013 s−1) sind bei Metallen (2.76)
und (2.78) erfüllt. Wir erhalten aus (2.75) die Wellenglei-
chung

∂2Ey

∂x2
= μμ0σel

∂Ey

∂t
. (2.80)

Durch den Ohmschen Leitungsstromwird JoulescheWär-
me erzeugt. Dadurch wird der Welle Energie entzogen,
die elektromagnetischeWelle wird gedämpft.Wir machen
deshalb den Ansatz:

Ey(x, t) = E0e−γx cos(kx− ωt) . (2.81)

Durch Einsetzen stellt man fest, dass dies eine Lösung von
(2.80) ist, wenn man für γ und k setzt:

γ = k =
√

μμ0σelω

2
=

√
μσelω

2ε0c2
. (2.82)

Die elektromagnetische Welle wird also im Leiter expo-
nentiell gedämpft mit einer Eindringtiefe

d =
1
γ
=

√
2ε0c2

μσelω
=

1√
πμμ0νσel

. (2.83)
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Tabelle 2.4 Eindringtiefe elektromagnetischer Wellen in Kupfer

Frequenz ν Eindringtiefe d

10GHz 0,67µm

100MHz 6,7µm

1MHz 67µm

10kHz 0,67mm

50Hz 1 cm

Für Kupfer ergibt diese Formel d = 6,7 cm/
√

ν(s−1). Eini-
ge Werte sind in Tab. 2.4 angegeben. Wie man sieht, kann
man Felder im Bereich des technischen Wechselstroms
mit Kupferblech praktisch nicht abschirmen. Man nimmt
dafür magnetisch weiches Eisenblech, um den großen
Faktor μ in (2.83) auszunutzen.

(2.83) besagt, dass im tieferen Inneren eines metallischen
Leiters kein hochfrequentes elektrisches Feld bestehen
kann. Infolgedessen kann dort auch kein hochfrequen-
terWechselstromfließen. Qualitativ hatten wir das bereits
in Bd. III/15.3 bei der Diskussion der Wirbelströme fest-
gestellt. Ein hochfrequenter Strom fließt effektiv nur an
der Oberfläche des Leiters in einer Schicht, deren Dicke
durch (2.83) gegeben ist. Dieser Skin-Effekt bewirkt, dass
bei einem Draht, dessen Dicke D groß gegen die Skintie-
fe d ist, der ohmscheWiderstand imHochfrequenzbereich
drastisch zunimmt. Um den Widerstand einer Leitung
klein zu halten, verwendet man mitunter „HF-Litze“, ein
Bündel von dünnen, durch eine Lackschicht gegeneinan-
der isolierten Kupferdrähten. Es besitzt eine viel größere
Oberfläche als ein einzelner massiver Kupferdraht.

Frequenz der Wellen ω � ωS. In diesem Bereich kann
man bei der Maxwellgleichung nicht vom Ohmschen
Gesetz j < σelE ausgehen und es liegen komplizierte Ver-
hältnisse vor. Bei Metallen betrifft das, wie wir gesehen
haben, auch den sichtbaren Spektralbereich; darauf wer-
den wir in Abschn. 5.4 zurückkommen. Bei sehr hohen
Frequenzen spielt noch ein neuer Mechanismus der Wel-
lenausbreitung eine Rolle, sogenannte Plasmawellen, mit
denen wir uns nun befassen wollen.

Plasmawellen. Wie wir aus Bd. III/8 wissen, bezeichnet
man in der Physik als Plasma ein vollständig oder teil-
weise ionisiertes Gas, welches nach außen hin elektrisch
neutral ist. Es enthält freie Elektronen und positive Ionen.
Werden alle Elektronen gemeinsam gegen die positiven
Ionen verschoben und dann losgelassen, führen sie eine
Schwingung aus, deren Frequenz man unschwer berech-
nen kann.

Betrachten wir ein quaderförmiges, mit einem Plasma
gefülltes Volumen, welches pro Volumeneinheit ne freie
Elektronen enthält (Abb. 2.23). Werden die Elektronen um

Abbildung 2.23 Zur Ableitung
von (2.84)

A

+ + + + + + + + + +

− − − − − − − − − −

Δz
z

ein Stück Δz verschoben, entsteht ein elektrisches Feld,
das wir mit Bd. III, Gl. (2.16) berechnen können:

E =
|q|

ε0A
=

∣∣∣∣neqeAΔz
ε0A

∣∣∣∣ =
∣∣∣∣neqeε0

Δz
∣∣∣∣ .

Das E-Feld zeigt in Abb. 2.23 in z-Richtung. Für jedes
Elektron (Ladung qe = −e, Masseme) gilt die Bewegungs-
gleichung:

me
d2(Δz)
dt2

= −eE = −nee2

ε0
Δz .

Wir erhalten also eine Schwingungsgleichung:

d2(Δz)
dt2

+
nee2

meε0
Δz = 0 ,

d. h. die Elektronen oszillieren mit der Frequenz

ωp =

√
nee2

meε0
. (2.84)

Diese Frequenz wird Plasmafrequenz genannt. Die so-
eben berechnete Schwingung ist die Grundschwingung
der Elektronen in einem Plasma, die Schwingung mit der
niedrigsten Frequenz, vergleichbar mit dem Schwappen
des Wassers in der Badewanne. Es sind auch Plasma-
schwingungen höherer Frequenz möglich. Als Plasma-
wellen können elektromagnetische Wellen nahezu unge-
dämpft durch das leitende Medium laufen.

Plasmawellen und Plasmafrequenz spielen z. B. bei der
Ausbreitung von Radiowellen eine wichtige Rolle. Durch
die kurzwellige UV-Strahlung der Sonne wird die Luft
in den obersten Schichten der Atmosphäre ionisiert. Es
entsteht ein Plasma mit einer Elektronendichte ne ≈
1011–1012 m−3, die sogenannte Ionosphäre. Die Plasma-
frequenz liegt nach (2.84) wegen der geringen Elek-
tronendichte relativ niedrig, nämlich bei νp = ωp/2π ≈
3–10MHz; die zugehörigeWellenlänge ist λp ≈ 30–100m.
Unterhalb von λ ≈ 10m wird die Ionosphäre für Radio-
wellen durchlässig. Der Funkverkehr mit Satelliten ist
daher im UKW- und Dezimeterwellenbereich möglich.
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Radiowellen im Kurz-, Mittel- und Langwellenbereich
(λ > λp) werden dagegen an der Ionosphäre reflektiert;
durch mehrfache Reflexion an Ionosphäre und Erdober-
fläche wird in diesem Wellenlängenbereich weltweite
Übertragungmöglich, während die Reichweite der UKW-
und Fernsehsender auf Sichtweite eingeschränkt ist, so-
fern nicht ein Satellit oder eine Übertragungsleitung zu
Hilfe genommen wird.

Plasmawellen kann es auch in kondensierter Materie
geben: In einem Metall können die Leitungselektronen
kollektiv gegen die positiven Ionen schwingen. Die Plas-
mafrequenz liegt dabei nach (2.84) im Ultravioletten.
Oberhalb von ωp werdenMetalle transparent. Bei sehr ho-
her Frequenz beteiligen sich sogar alle Elektronen an der
Plasmaschwingung, dann spielt die Bindung der Elektro-
nen keine Rolle mehr. Deshalb sind alle Stoffe, Metalle
wie Isolatoren, für Röntgenstrahlen durchsichtig. Die Ab-
sorption der Strahlen erfolgt nur noch durch die schon
in Bd. I/17.3 genannten Quanteneffekte, auf die wir in
Bd. V/2 zurückkommen werden.

Elektromagnetische Wellen
auf einer Übertragungsleitung

Zur Übertragung von Gleichstrom und von technischem
Wechselstrom benutzt man gewöhnliche Drähte. Bei
Wechselströmen höherer Frequenz erweist sich dies als
unzweckmäßig: Durch induktive und kapazitive Kopp-
lung wird ein unerwünschtes Übersprechen von Stör-
signalen verursacht; bei hohen Frequenzen wirken die
Drähte als Antennen und es kommt zur Abstrahlung
von elektromagnetischen Wellen. Um diese Nachteile zu
vermeiden, verwendet man imHochfrequenzbereich spe-
zielle Übertragungsleitungen, z. B. Koaxialkabel, die be-
reits in Abschn. 1.1 besprochen wurden (Abb. 1.7 und
Abb. 1.8). Die Übertragung einer hochfrequenten Wech-
selspannung durch eine solche Leitung erfolgt als Aus-
breitung einer elektromagnetischen Welle auf der Lei-
tung. Bei der Koaxialleitung besteht der besondere Vor-
teil, dass die elektrischen und magnetischen Felder nicht
in den Außenraum außerhalb des Kabels eindringen, wie
in Abb. 2.24 gezeigt ist.

Wir wollen die Signalausbreitung auf dem Koaxialkabel
berechnen. Das Beispiel in Abb. 1.8 zeigt überdeutlich,
dass hier die in Bd. III/15.2 genannten Voraussetzun-
gen für die Anwendung der quasistationären Näherung
nicht gegeben zu sein scheinen. Das Koaxialkabel ist
nichts anderes als ein langer Zylinderkondensator, und
offensichtlich verteilt sich die Ladung auf diesem Kon-
densator nicht gleichmäßig wie im elektrostatischen Fall,
sondern Ladung und Spannung laufen als elektromagne-
tische Welle das Kabel entlang. Dennoch kann man das

E

B

2ri

ra

Abbildung 2.24 Elektromagnetische Welle auf einem Koax-Kabel

Abbildung 2.25 Ersatzschalt-
bild für die Koaxial-Leitung

ΔC

ΔL/2

ΔC

x+Δx

ΔC

ΔL/2 ΔL/2

x

Problem der Signalausbreitung auf dem Kabel mit ei-
nemAnsatz lösen, der auf der quasistationärenNäherung
aufbaut, nämlich auf den Formeln Q = CU und Uind =
−LdI/dt. Wir teilen das Kabel in kurze Teilstücke auf,
und machen uns klar, dass ein Stück Δx der Leitung ei-
ne gewisse Kapazität ΔC = C′Δx und eine Induktivität
ΔL = L′Δx besitzt, wobei C′ und L′ Kapazität und Induk-
tivität pro Meter sind. Wir stellen also die Leitung durch
das Ersatzschaltbild in Abb. 2.25 dar. Es gilt nun

U(x+ Δx) = U(x)− ΔL
∂I
∂t

,

I(x+ Δx) = I(x)− ΔC
∂U
∂t

.

Die erste Gleichung folgt aus dem Induktionsgesetz, die
zweite besagt, dass der Strom an der Stelle x+Δx vermin-
dert ist um den Strom, der in die Kapazität ΔC geflossen
ist. Wir schaffen U(x) und I(x) nach links und dividieren
durch Δx. Für Δx → 0 erhältman die Differentialgleichun-
gen

∂U
∂x

= −L′
∂I
∂t

,
∂I
∂x

= −C′ ∂U
∂t

. (2.85)

Diese Gleichungen (bzw. die etwas komplizierteren, die
man erhält, wenn man auch noch die elektrischen Wi-
derstände der Leitung berücksichtigt) werden auch die
Telegraphengleichungen genannt. Indem man die eine
Gleichung nach x, die andere nach t differenziert, erhält
man nach dem Muster von (2.20) und (2.21):

∂2U
∂t2

=
1

L′C′
∂2U
∂x2

,
∂2I
∂t2

=
1

L′C′
∂2I
∂x2

. (2.86)
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Abbildung 2.26 Lecher-
Leitung

D

2r

Das sind Wellengleichungen für dispersionsfreie Wellen,
falls L′ und C′ frequenzunabhängig sind. Solange diese
Voraussetzung erfüllt ist, können über ein Koaxialka-
bel Signale ohne Formänderung übertragen werden (vgl.
Abb. 1.8 und Abschn. 1.4).

Für das Koaxialkabel hatten wir L′ in Bd. III, Gl. (15.19)
angegeben und C′ in Bd. III, Gl. (3.28) berechnet:

L′ =
μ0

2π
ln

ra
ri

, C′ =
2πε0

ln(ra/ri)
. (2.87)

Für eine Anordnung von zwei parallelen Drähten
(Lecher-Leitung, Abb. 2.26) gilt

L′ =
μ0

π
ln

D− r
r

, C′ =
πε0

ln
(
(D− r)/r

) . (2.88)

In beiden Fällen ist die Ausbreitungsgeschwindigkeit der
Signale nach (2.86)

v =
1√
L′C′

=
1√

ε0μ0
= c . (2.89)

Ist der Raum zwischen den Leitern mit einem Dielek-
trikum gefüllt, so ist nach (2.70) v = c/

√
εμ. So erhält

man z. B. für das in Abb. 1.7 dargestellte mit Polyäthy-
len isolierte Kabel (

√
ε ≈ 1,5) eine Signalgeschwindigkeit

v ≈ 2
3 c, wie schon in Abschn. 1.1 experimentell festgestellt

wurde.

Man kann auch stehende Wellen auf einer Übertragungs-
leitung erzeugen, z. B. auf der in Abb. 2.27 gezeigten
Lecherleitung. Die Einkopplung der Hochfrequenz (ν =
100MHz) erfolgt induktiv am Ende A, dort entsteht al-
so ein Spannungsbauch. Um stehendeWellen zu erhalten,
wird die Leitung am Ende B in einem Spannungsknoten
kurzgeschlossen, also nach (2n+ 1)/4 Wellenlängen. Die
Lage der Spannungsbäuche bzw. Spannungsknoten kann
man mit dem hochohmigen Messkopf eines Oszillogra-
phen, bzw. zur Demonstration, mit einem aufgesetzten
Lämpchen sichtbar machen. Die Anordnung in Abb. 2.28
ist dazu geeignet nachzuprüfen, ob tatsächlich in einem
Dielektrikum die von der Maxwellschen Relation n =

√
ε

geforderte Verkürzung der Wellenlänge eintritt. Zu die-
sem Zweck kann man das letzte Stück der Leitung in

x

∼∼∼
E(x)

A B

Abbildung 2.27 Stehende Welle auf einer Lecher-Leitung. Bei dem Versuch
gibt es nur ein Lämpchen, das entlang der Leitung verschoben wird

x

∼∼∼
E(x)

H2O

Abbildung 2.28 Versuchsanordnung zur Messung der Wellenlänge in Wasser

Wasser führen. In der Luft (ε ≈ 1) erhält man λ ≈ λvac =
3m, was mit der Formel λ = c/ν übereinstimmt, im Was-
ser dagegen λ = 3,3 cm, d. h. wir erhalten bei 100MHz

nH2O = 9 . (2.90)

Das entspricht genau der Erwartung, wenn man von der
in Bd. III, Tab. 4.1 angegebenen Dielektrizitätskonstante
ε = 81 ausgeht.

Wellenleiter für Mikrowellen

Es ist ohne weiteres klar, dass eine Lecher-Leitung auch
funktioniert, wenn man statt der beiden Drähte zwei Plat-
ten der Breite a verwendet, die sich im Abstand b gegen-
über stehen. Ein Beispiel ist die Streifenleitung in Bd. III,
Abb. 15.11d. Erstaunlicherweise funktioniert ein Wellen-
leiter auch, wenn man die beiden Platten durch leitende
Seitenwände verbindet, wie Abb. 2.29 zeigt. Ein solcher
Hohlleiter hat interessante Eigenschaften, wie wir gleich
sehen werden. Auch ist er besonders gut zum verlustar-
men Transport von Mikrowellen im Bereich von λ ≈ 1 cm
bis λ ≈ 10 cm (ν ≈ 10GHz) geeignet.

Das elektrische Feld muss senkrecht auf den Leitero-
berflächen stehen. Diese Randbedingung erfüllt das in
Abb. 2.29 eingezeichnete Feld: Das E-Feld zeigt in y-Rich-
tung, und an den Seitenwänden, bei x = 0 und x = a, ist
Ey = 0. Wir machen den Ansatz E = (0,Ey, 0)mit

Ey(x, z, t) = E0 sin kxx cos(kzz− ωt)

mit kx =
π

a
.

(2.91)
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Abbildung 2.29 Elektrisches Feld in einem Hohlleiter mit rechteckigem Quer-
schnitt, zu (2.91)

Es erweist sich als zweckmäßig, Ey durch einen Imaginär-
teil i sin(kzz− ωt) zu ergänzen und von dem komplexen
Ansatz

Ěy(x, z, t) = E0 sin kxxei(kzz−ωt) (2.92)

auszugehen. Setzt man dies in die Wellengleichung (2.53)

∂2Ey

∂t2
= c2

(
∂2Ey

∂x2
+

∂2Ey

∂y2
+

∂2Ey

∂z2

)

ein, erhält man

−ω2Ěy = −c2k2xĚy − c2k2z Ěy

k2x + k2z =
ω2

c2
.

(2.93)

Unser Ansatz ist also eine Lösung der Wellengleichung,
wenn

kz = ±
√

ω2

c2
− π2

a2
(2.94)

ist. Je nach dem Vorzeichen von kz laufen die Wellen in
+z-Richtung oder in −z-Richtung, vorausgesetzt, dass kz
eine reelle Zahl ist. Die Frequenz ω muss also größer sein
als die Grenzfrequenz ωg:

ω > ωg =
cπ
a

. (2.95)

Der Grenzfrequenz ωg entspricht im Vakuum eineWellen-
länge

λg =
2π

ωg
c = 2a . (2.96)

Auf die Frage, wie man das Auftreten der Grenzfrequenz
physikalisch anschaulich verstehen kann, werden wir in
Abschn. 4.1 zurückkommen.

Abbildung 2.30 Eine höhere
Schwingungsmode (m = 2) im
rechteckigen Hohlleiter

x
a

Ey

Wenn ω > ωg ist, läuft dieWellemit der Phasengeschwin-
digkeit

vph =
ω

kz
=

c√
1− (ωg/ω)2

(2.97)

durch den Wellenleiter. Das ist offensichtlich stets größer
als c. Kein Malheur, wie wir am Ende von Abschn. 1.4 ge-
sehen haben. Die Gruppengeschwindigkeit ist nach (1.24)
und (2.94)

vg =
dω

dkz
=

1
dkz/dω

= c
√

1− (ωg/ω)2 . (2.98)

Wie es sein muss, ist vg < c.

Wenn ω < ωg ist, wird kz imaginär. Wir setzen kz = ik′z
und erhalten als Lösung der Wellengleichung

Ěy(x, z, t) = E0 sin kxxe−k′zze−iωt ,

Ey(x, z, t) = Re Ěy = E0 sin kxxe−k′zz cosωt . (2.99)

Die Amplitude der Welle nimmt exponentiell ab, sie kann
sich im Hohlleiter nicht ausbreiten.

Die in Abb. 2.29 gezeigte Feldverteilung ist nur die ein-
fachste Form des Feldes. Die Randbedingungen werden
auch erfüllt, wenn

kx =
mπ

a
=

π

a
,
2π

a
,
3π

a
, . . . (2.100)

ist (Abb. 2.30). Für die höheren Moden liegen die Grenz-
frequenzen bei

ω
(m)
g =

mcπ
a

= mωg . (2.101)

Wenn ω im Bereich von ωg bis ω
(2)
g liegt, wenn also die

Vakuum-Wellenlänge der Mikrowelle im Bereich

a < λ < 2a (2.102)

liegt, kann sich im Wellenleiter nur die Grundmode mit
kx = π/a ausbreiten. In der Praxis werden Hohlleiter
meist in dem durch (2.102) gegebenen Bereich betrieben.
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Abbildung 2.31 Elektrische und magnetische Feldlinien im Hohlleiter.
a Grundschwingung der TE-Mode, b Grundschwingung der TM-Mode

Wie sieht das zu (2.91) gehörende Magnetfeld aus? Die
B-Feldlinien umschlingen den Bereich, in dem sich das
E-Feld am raschesten ändert. Das ist bei der durch den
Hohlleiter laufenden Welle der Bereich zwischen Wellen-
berg und Wellental der E-Feldstärke. Es ergibt sich das
in Abb. 2.31a gezeigte Feldlinienbild. Im Gegensatz zur
elektromagnetischen Welle im Vakuum, im Koax-Kabel
und auf der Lecher-Leitung hat hier also das B-Feld auch
eine Komponente in der Ausbreitungsrichtung. Nur das
E-Feld ist rein transversal. Man nennt das eine TE-Welle
(transversal elektrisch). Es gibt im Hohlleiter auch TM-
Wellen, bei denen das Magnetfeld rein transversal ist,
während das E-Feld eine longitudinale Komponente hat.
Abb. 2.31b zeigt als Beispiel eine TM-Welle, hier in einem
Hohlleiter mit kreisförmigem Querschnitt.

Warum ist der Transport von Mikrowellen im Hohllei-
ter besonders verlustarm?Wie die Feldlinienbilder in den
Abb. 2.29 und 2.30 zeigen, entspringen und enden die E-
Feldlinien auf den Leiteroberflächen. Dort müssen Ladun-
gen sitzen und hochfrequente Ströme fließen, die Joule-
sche Wärme erzeugen. Infolge des Skineffektes fließen
diese Ströme nur in einer dünnen Oberflächenschicht; im
Hohlleiter kann man dank der großen Oberfläche trotz-
dem den Widerstand klein halten. Auch kann man den
Hohlleiter aus supraleitendem Material bauen. Dann ar-
beitet der Hohlleiter nahezu verlustfrei.

In der praktischen Verwirklichung sieht eine Mikrowel-
lenapparatur auswie eine besonders sorgfältig ausgeführ-
te Klempnerarbeit (Abb. 2.32). Hohlleiter für Dezimeter-

HR A

D

R

Abbildung 2.32 Mikrowellen-Apparatur für 8–12,4 GHz (Praktikumsversuch,
Univ. Heidelberg). HR : Auszumessender Hohlraum-Resonator, A : abstimmbarer
Resonator, D : Detektor-Diode, R : Richtkoppler (siehe auch Aufgabe 7.2)

wellen sehen aus wie eine Entlüftungsanlage. In beiden
Fällen enthält jedoch das Hohlleitersystem viele Raffines-
sen, besonders bei der Ein- und Auskopplung der Wellen,
bei Verzweigungen und dort, wo verschiedeneHohlleiter-
stücke zusammengesetzt werden8.

In einemHohlleiter können sich auch stehendeWellen ho-
her Amplitude ausbilden. Sie sind identischmit den Reso-
nanzen in einem Hohlraum-Resonator, die in Bd. III/17.3
besprochen wurden. Die Apparatur in Abb. 2.32 dient zur
experimentellen Bestimmung solcher Resonanzfrequen-
zen.

2.6 Bugwellen und Stoßwellen

Bisher wurde in diesem Kapitel angenommen, dass der
„Sender“, d. h. die Vorrichtung, von der die Wellen aus-
gehen, sich in Ruhe befindet. Den Doppler-Effekt, d. h.
die Phänomene, die man bei bewegtem Sender oder
Empfänger beobachtet, haben wir bereits in Bd. I/14.4
besprochen. Wir wollen nun ein spezielles Phänomen
untersuchen, das auftritt, wenn sich der Sender mit ei-
ner Geschwindigkeit bewegt, die oberhalb der Phasenge-
schwindigkeit der Welle liegt.

Nehmen wir an, der Sender bewegt sich mit der konstan-
ten Geschwindigkeit v geradlinig in einem Medium, in
demdie Phasengeschwindigkeit der ausgesandtenWellen
vph ist. Zur Zeit t = 0 befinde sich der Sender bei A. Wenn
v < vph ist, bilden die Wellenfronten zur Zeit t = AB/v
das in Abb. 2.33a gezeigte System von Kugelwellen. Der
Empfänger (1) registriert eine höhere Frequenz, der Emp-
fänger (2) eine niedrigere: Das ist das vertraute Phänomen
des Doppler-Effekts. Wenn jedoch v > vph ist, bildet sich

8 Siehe z. B. The Feynman Lectures on Physics, Band II, Abschnitt
24.6 (Addison-Wesley, 1964), G. Nimtz, Mikrowellen, Einführung in
Theorie und Anwendung (Hanser-Verlag, 1980).



2.6 Bugwellen und Stoßwellen 41

Te
il
I

A

2 1

B

a

b

v

vA

ϑ

P

B

Abbildung 2.33 Zur Ableitung von (2.103). Der größte Kreis stellt den Wel-
lenberg dar, der vom Sender in Punkt A erzeugt wurde. Der im Punkt B erzeugte
Wellenberg hat sich gerade noch nicht vom Sender gelöst. a v < vph, b v > vph

das in Abb. 2.33b gezeigte System von Kugelwellen. Es
entsteht eine kegelförmige Wellenfront, die unter dem
Winkel ϑ gegen die Richtung von v fortschreitet. Dabei ist

cos ϑ =
AP
AB

=
vpht
vt

=
vph
v

. (2.103)

Der interessante Punkt ist nun, dass zur Herstellung der
Wellenfront keineswegs ein Sender durch das Medium
bewegt werdenmuss, der periodischeWellen emittiert. Es
genügt ein mit der konstanten Geschwindigkeit v beweg-
tes Objekt, von dem eine Störung des Mediums ausgeht.

Der Čerenkov-Effekt

Wir betrachten ein geladenes Teilchen, das sich mit der
Geschwindigkeit v > vph in einem durchsichtigen Medi-
um mit dem Brechungsindex n bewegt. Die Phasenge-
schwindigkeit elektromagnetischer Wellen ist nach (2.71)
cmed = c/n. Das Vorhandensein der Ladung am Punkt A
in Abb. 2.33b kann von einem Beobachter am Ort P nicht
eher wahrgenommen werden als zur Zeit t = AP/cmed.
Es entsteht eine elektromagnetische Bugwelle mit der in
Abb. 2.33b eingezeichnetenWellenfront. Unter dem durch

(2.103) gegebenen Winkel wird Licht emittiert, überwie-
gend im ultravioletten und sichtbaren Spektralbereich.
Der physikalische Mechanismus, der zur Erzeugung des
Lichts führt, ist die auf dem Kegelmantel plötzlich ein-
setzende Polarisation des Mediums durch das elektrische
Feld der Ladung.

Der Effekt wird nach seinem Entdecker Čerenkov-Effekt
genannt. Der Čerenkov-Winkel ϑc ist gegeben durch

cos ϑc =
1

βn
, mit β =

v
c
. (2.104)

Čerenkov-Strahlung wird emittiert, sobald β > 1/n ist. In
Glas (n = 1,5) erzeugt ein Elektron mit Ekin > 0,17MeV
Čerenkov-Licht, in Luft (n = 1,00027) erst mit Ekin >
21MeV. Beim Proton sind die entsprechenden Zahlen
Ekin > 320MeV und Ekin > 39GeV. Da der Čerenkov-
Effekt nur von der Geschwindigkeit der Teilchen abhängt,
kann er in Kombination mit einer Impulsmessung zur
Teilchenidentifizierung benutzt werden.

Schiffswellen

Wohlbekannt ist die Bugwelle bei Wasserfahrzeugen. Sie
entsteht infolge der Wasserverdrängung. Das Phänomen
ist jedoch ungleich komplizierter als der Čerenkov-Ef-
fekt. Das liegt daran, dass die elektromagnetischenWellen
auch in einem Medium nahezu dispersionsfrei sind, was
für Wasserwellen absolut nicht zutrifft. Aufgrund der Di-
spersionsrelation (2.40) kann sich hinter dem Schiff eine
Heckwelle ausbilden, deren Wellenlänge so bemessen ist,
dass sie sich mit der gleichen Geschwindigkeit vorwärts
bewegt wie das Schiff. Das Interessante ist die Bugwelle.
Sie bildet sich bei einem mit konstanter Geschwindigkeit
im Tiefwasser fahrenden Schiff nur in einem Winkelbe-
reich ϑ ≤ ϑ0 aus, wobei ϑ0 = arctan(1/

√
8) = 19,5° ist

(Abb. 2.34). ϑ0 ist unabhängig von der Geschwindigkeit
des Schiffs. Dieses überaus seltsame Phänomen wurde
von Lord Kelvin erkannt und berechnet. Scotland rules
the waves!

v

19,5°

Abbildung 2.34 Bug- und Heckwelle eines mit konstanter Geschwindigkeit
fahrenden Schiffs
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Stoßwellen

Ein wichtiges und interessantes Phänomen entsteht bei
der Bugwelle eines Körpers, der mit Überschallgeschwin-
digkeit durch die Luft bewegt wird. Normalerweise sind
Schallwellen dispersionsfrei und die Bugwelle läuft in der
in (2.103) berechneten Richtung. Die starke adiabatische
Kompression der Luft in der Bugwelle führt aber dazu,
dass die Temperatur ansteigt. Infolgedessen wird nach
(2.24) die Ausbreitungsgeschwindigkeit der auf die Wel-
lenfront der Bugwelle folgenden Wellen erhöht, sie holen
die Bugwelle ein und es kommt zurAusbildung einer sehr
steilen Wellenfront, einer Stoßwelle. Diese Erscheinung
macht sich besonders unliebsam bemerkbar bei Flugzeu-
gen oder Geschossen, die mit Überschallgeschwindigkeit
fliegen. Abbildung 2.35 zeigt die Stoßwelle eines fliegen-
den Geschosses. Diese Phänomene wurden zuerst von
Ernst Mach studiert9. Man bezeichnet die kegelförmige
Stoßwelle auch als Machkegel, und als Machzahl das
Verhältnis von Fluggeschwindigkeit zu Schallgeschwin-
digkeit.

Stoßwellen entstehen nicht nur als Folge der schnellen Be-
wegung eines Körpers. Ein Beispiel dafür, wie eine Stoß-
welle scheinbar aus dem Nichts entstehen kann, liefert

9 Ernst Mach (1838–1916), österreichischer Physiker und Philosoph,
wirkte in Graz, Prag und Wien. Er schuf die Grundlagen zur expe-
rimentellen Untersuchung und zum Verständnis der Gasdynamik,
in diesem Zusammenhang auch Grundlagen der Kurzzeitfotogra-
fie. Noch bedeutender sind seine Beiträge zur Erkenntnistheorie
als prominenter Vertreter des sogenannten Positivismus. Danach
sollen nur Beobachtungen undmessbare Größen in die Naturwissen-
schaften Eingang finden. Seine Ansichten hatten positiven Einfluss
auf Einsteins Relativitätstheorie und Heisenbergs Quantenmecha-
nik. Allerdings führte seine Hypothesenfeindlichkeit auch dazu,
dass er rigoros die kinetische Gastheorie und den Atomismus ab-
lehnte.

Abbildung 2.35 Ein mit Überschallgeschwindigkeit fliegendes Geschoss

die Flutwelle, die man mitunter an ausgedehnten flachen
Wattenküsten bei Eintreten der Flut beobachtet: hinter der
Stoßfront ist die Wellengeschwindigkeit wegen des höhe-
ren Wasserstands höher als davor. Nach (2.42) kann eine
Flutwelle bei 40 cmHöhe eine Geschwindigkeit von 2m/s
entwickeln! Es empfiehlt sich, diesen Umstand bei Spa-
ziergängen auf dem Watt zu beachten, besonders an der
französischen Atlantikküste.
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2.1. Schallgeschwindigkeit in Gasen. Für Luft und
Kohlendioxid wurden bei der Temperatur T = 273K
die Schallgeschwindigkeiten vS = 331m/s und 259m/s
gemessen. Die Molmassen sind 0,029 kg/mol und
0,044 kg/mol. Wie groß sind nach der idealen Gasglei-
chung die Verhältnisse von Druck zu Dichte p0/ρ0 und
welche adiabatischen Exponenten κ erhält man aus den
Schallgeschwindigkeiten? Im CO2-Molekül sind die Ato-
me linear angeordnet. Welche Erklärung gibt es dafür,
dass die Koeffizienten κ für Luft und CO2 voneinander
abweichen?

2.2. Grundfrequenz einer Pfeife. Eine Pfeife erzeugt
in der Luftatmosphäre eine Schallfrequenz ν = 500Hz.
Wie groß wäre die Frequenz, wenn die Pfeife mit Helium
bei Atmosphärendruck betrieben würde?

2.3. Warum verläuft die Schallausbreitung in idea-
len Gasen adiabatisch? In Schallwellen existieren neben
Druck- und Dichteschwankungen auch periodische Tem-
peraturschwankungen T̃(x, t) = T̃0 sin(kx− ωt).

a) Betrachten Sie einen ebenen Schnitt durch das Gas
senkrecht zur Schallrichtung, der an der Stelle des größ-
ten Temperaturgradienten liegt und mit der Schallwelle
mitläuft. Wie viel Energie pro Fläche wird durch Wärme-
leitung (Wärmeleitfähigkeit = Λ) während einer Halbpe-
riode durch diese Grenzfläche transportiert?

b) Die innere Energie pro Gasmenge (in mol) oszilliert
ebenfalls. Wie groß ist die Amplitude Ũ0 als Funktion
von T̃0? Wie viel innere Energie steckt in der Schallwel-
le zwischen zwei solcher Grenzflächen, die um eine halbe
Wellenlänge auseinander liegen?

c) Warum beweisen die Resultate von Teil a) und b)
die adiabatische Natur der Schallwellen in idealen Ga-
sen? Zahlenbeispiel: Luft unter Normalbedingungen,
Schallfrequenz 1 kHz. Die Wärmeleitfähigkeit ist Λ =
0,024Wm−1 K−1.

d) Wie groß ist ist die Temperatur-Amplitude T̃0 in
Luft unter Normalbedingungen bei einer Druckamplitu-
de p̃0 = 1Pa?

2.4. Temperierte Stimmung. In der Musik wird das
Frequenzintervall von einer Oktave in 12 Halbtöne einge-
teilt, wobei die Oktave einer Frequenz-Verdopplung oder
Halbierung entspricht. Welche relative Genauigkeit bei

der Einschätzung der Frequenz erreicht ein Musiker min-
destens, wenn er über das absolute Gehör verfügt?

2.5. Eigenschwingungen einer Saite. In einem kleine-
ren Flügel sei die Saite für den tiefsten Ton A0, 4 Oktaven
unterhalb des Kammertons A4 mit der Frequenz 440Hz,
L = 1,36m lang. Sie besteht aus einem 1,2mm dicken spe-
ziellen Stahldraht, der mit zwei dicht liegenden Lagen
Kupferdraht umwickelt ist, die an den Enden nicht einge-
spannt sind. Der maximale Außendurchmesser der Kom-
bination ist 6mm, die Dichten sind ρDraht = 7,9 g cm−3

und ρCu = 8,9 g cm−3 und der Füllfaktor der Kupferwick-
lung beträgt η = 0,8.

a) Wie groß ist die Zugkraft an der Saite? Wie groß ist die
Zugspannung?

b) Wie lang müsste die Saite sein, wenn man bei gleicher
Zugkraft die Kupferummantelung weglassen würde?

c) In der Mittel- und Oberlage des Instruments besitzen
die Saiten keinen Kupfermantel. Wie lang wäre eine Saite
beim Kammerton A4, wenn Zugkraft und Drahtradius so
groß wären wie bei der tiefsten Frequenz? (In der Realität
sind die Drahtdurchmesser etwas kleiner).

d) Die Zahl der Saiten pro Ton variiert von einer (tiefster
Ton) bis drei (Mittel- und Oberlage). In welcher Größen-
ordnung wird die gesamte Zugkraft auf den Rahmen bei
einem Tonumfang von etwas über 7 Oktaven liegen?

2.6. Stehende Welle auf einem Fadenpendel. Schlägt
man seitlich an die Mitte eines ruhenden Fadenpendels,
kann man auf dem Faden eine näherungsweise harmoni-
sche stehendeWelle beobachten, bei der der Faden seitlich
schwingt, aber die Pendelmasse keine horizontalen Aus-
schläge macht. Das Pendel habe die Länge L. Es gebe nur
ein Schwingungsmaximum in unmittelbarerNähe zur Fa-
denmitte.

a) Wie groß ist die Wellenzahl k? Zahlenbeispiel: Pendel-
länge L = 1,8m. Es werde eine Schwingungsdauer T =
0,20 s gemessen. Wie groß ist die Ausbreitungsgeschwin-
digkeit einer Beule auf dem Faden?

b) Wie groß ist das Verhältnis zwischen der Fadenmas-
se mF und der angehängten Masse m? Ist die implizit ge-
machte Voraussetzung mF 	 m gerechtfertigt? Liegt das
Amplitudenmaximum etwas oberhalb oder etwas unter-
halb der Fadenmitte?



44 2 Spezielle Wellenerscheinungen

c) Ein idealisierter Grenzfall, der praktisch nie erreicht
werden kann, ist der Faden konstanter Länge, der bei
Verbiegungen Energie weder speichert noch in Wärme
verwandelt. Wie viel kinetische Energie steckt in der ste-
henden Welle zum Zeitpunkt des gestreckten Fadens,
wennmF, L, und T vorgegeben sind und der Maximalaus-
schlag x0 ist? Diese Energie muss zum Zeitpunkt der
Maximalauslenkung als potentielle Energie in der Anhe-
bung der Masse m durch die Fadenkrümmung stecken.
Rechnen Sie nach, dass diese Aussage konsistent mit (2.5)
ist.

2.7. Dispersion von Tiefwasserwellen. a) Wie groß ist
die Ausbreitungsgeschwindigkeit einer Wasserwelle mit
der Wellenlänge λ1 = 30 cm? Die Oberflächenspannung
beträgt σ = 0,072Nm−1.

b) Dieser Welle sei eine zweite überlagert. Bei welcher
Wellenlänge λ2 bewegt sich diese Welle nicht relativ zur
ersten?

c) Wie groß ist die Minimalgeschwindigkeit der Wasser-
wellen und bei welcher Wellenlänge tritt sie auf?
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In diesem Kapitel werden wir uns mit der energe-
tischen Seite der Wellenausbreitung befassen. Dabei
werden wir zu einer vertieften Anschauung des
Ausbreitungsvorgangs gelangen und noch einige
Größen und Begriffe einführen, die für die Physik
der Wellen wichtig sind. Auch werden wir einen
Einblick in die Begriffswelt der technischen Akus-
tik und der Photometrie gewinnen und uns kurz mit
den physikalischen Grundlagen des Gehörs und des
Sehvermögens befassen.

In Kap. 2 wurde darauf hingewiesen, dass elektro-
magnetische Wellen von beschleunigten Ladungen
abgestrahlt werden. Wir berechnen nun die Strah-
lungsleistung eines schwingenden Dipols und geben
eine allgemeine Formel für die Strahlung beschleu-
nigter Ladungen an. Im Anschluss daran wird das
interessante Phänomen der Synchrotronstrahlung
diskutiert.

Wellen transportieren nicht nur Energie, sondern
auch Impuls. Das führt im letzten Abschnitt zum
Phänomen des Strahlungsdrucks und schließlich so-
gar zu der wohl berühmtesten physikalischen For-
mel, Einsteins E = mc2.

3.1 Der Wellenwiderstand

Allgemeine Definition

Es ist intuitiv klar, dass zum Antreiben einer Welle Ener-
gie erforderlich ist. Für die zu leistende Arbeit ist der
Wellenwiderstand die maßgebliche Größe. Wir wollen
zunächst diesen Begriff möglichst allgemein definieren.
Damit sich in einem Medium Wellen ausbreiten können,
müssen die räumlichen und die zeitlichen Änderungen
von zwei physikalischen Größen ψ(x, t) und χ(x, t)wech-
selseitig miteinander verknüpft sein:

∂ψ

∂x
= −α

∂χ

∂t
,

∂ψ

∂t
= −β

∂χ

∂x
. (3.1)

Wir haben mehrere Beispiele für solche Gleichungen ken-
nen gelernt, die in Tab. 3.1 zusammengestellt sind. Die
Konstanten α und β entnimmt man den angegebenen
Gleichungen. Die unterste Zeile erhält man, indem man
in (2.46) und (2.47) Bz durch μ0Hz ersetzt. Durch partielle
Differentiation dieser Gleichungen nach t und nach x ent-
stehenWellengleichungen für ψ und χ (vgl. (2.21)), wobei
man für die Phasengeschwindigkeit erhält:

Tabelle 3.1 Beispiele zu (3.1)

Wellentyp ψ χ α β

Seilwelle
(2.7), (2.8)

Fy c̃ μ S

Schallwelle
(2.17), (2.19)

p c̃ ρ0 ρ0
dp
dρ

Ey Bz 1
1

ε0μ0
el.magn. Welle
(2.46), (2.47)

Ey Hz μ0 1/ε0

vph =
ω

k
=

√
β

α
. (3.2)

Wir nehmen nun eine in+x-Richtung laufende ebene har-
monische Welle an:

ψ(x, t) = ψ0 sin(kx− ωt)
χ(x, t) = χ0 sin(kx− ωt)

}
(3.3)

und stellen uns die Frage: In welchem Verhältnis müssen
die Amplituden der Wellenfunktionen ψ(x, t) und χ(x, t)
stehen, damit die Wellenausbreitung funktioniert? Indem
wir (3.3) in die erste Gleichung (3.1) einsetzen, erhalten
wir

ψ0k cos(kx− ωt) = αχ0ω cos(kx− ωt) .

Daraus folgt mit (3.2):

ψ0

χ0
= α

ω

k
=
√

αβ , (3.4)

ψ(x, t) =
√

αβχ(x, t) . (3.5)

Nun ist bei einem bestimmtenWellenphänomen die Wahl
der Größen ψ(x, t) und χ(x, t) keineswegs eindeutig fest-
gelegt, z. B. kann man bei Schallwellen zwischen Druck-
und Dichteänderung, Auslenkung und Geschwindigkeit
der Luftteilchen wählen. Es zeigt sich, dass von die-
ser Wahl zwar nicht das Verhältnis α/β, wohl aber das
Produkt αβ abhängt. Für energetische Betrachtungen ist
folgende Wahl zweckmäßig:

ψ = Rücktreibende Kraft (bzw. Druck)
χ = Geschwindigkeit .

}
(3.6)

Mit dieser Definition wird die Größe

√
αβ =

ψ(x, t)
χ(x, t)

=
ψ0

χ0
= Z (3.7)
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als Wellenwiderstand bezeichnet. Je nach der Festlegung
in (3.6) wird bei mechanischen Wellen der Wellenwider-
stand in N s/m = kg/s oder in N s/m3 = kg/m2 s ge-
messen. Bei elektrischen Wellen muss man die Größen ψ
und χ so wählen, dass sich derWellenwiderstand in Ohm
ergibt. Das bedeutet, dass man bei elektromagnetischen
Wellen für das Magnetfeld nicht B, sondern die in A/m
gemessene Größe H zu verwenden hat. Die entsprechen-
den Werte von α und β sind in der untersten Zeile von
Tab. 3.1 angegeben.

Der Wellenwiderstand ist eine Eigenschaft des Mediums,
in dem die Wellenausbreitung stattfindet. Wenn die Wel-
len in diesem Medium absorbiert werden, nimmt nicht
nur die Amplitude derWelle ab, es entsteht auch eine Pha-
senverschiebung zwischen ψ(x, t) und χ(x, t). Wie in der
Wechselstromtechnik kann man das durch einen komple-
xenWellenwiderstand ausdrücken. Von dieser Komplika-
tion sehen wir im Folgenden ab. Außerdem nehmen wir
an, dass die Dispersion der Welle klein ist, so dass man
nach (1.26) mit einer einheitlichenWellengeschwindigkeit
rechnen kann. Wir werden nun die physikalische Bedeu-
tung des Wellenwiderstands untersuchen.

Die Rolle des Wellenwiderstands
am Beispiel der Seilwellen

Bei der Wellenausbreitung auf einem elastischen Seil ist
nach Tab. 3.1 der Wellenwiderstand

Z =
√

Sμ . (3.8)

Nach (3.5) und (3.6) gilt also:

Fy(x, t) = Zc̃(x, t) . (3.9)

Belastung des „Senders“ bei einer Seilwelle. Nehmen
wir an, dass bei x = 0 an das Seil ein „Sender“ für harmo-
nische Seilwellen angeschlossen ist, z. B. die in Abb. 3.1
gezeigte Vorrichtung, enthaltend eine Feder mit der Fe-
derkonstanten κ und eine Masse m. Bei abgehängtem Seil

Abbildung 3.1 „Sender“ für
Seilwellen

m

Abbildung 3.2 Motor als
Sender für Seilwellen

ω0

lautet die Bewegungsgleichung des Senders

m
d2y
dt2

= −κy .

Der Sender kann also mit der Frequenz ω0 =
√

κ/m
schwingen. Mit angehängtem Seil wirkt auf den Sen-
der die Reaktionskraft −Fy(0, t); also nach (3.9) die Kraft
−Zc̃(0, t). Nun ist c̃(0, t) = dy/dt, die Geschwindigkeit
des Senders in senkrechter Richtung. Wir erhalten für den
belasteten Sender die Bewegungsgleichung

m
d2y
dt2

+ Z
dy
dt

+ κy = 0 . (3.10)

Der Sender führt eine gedämpfte Schwingung aus. Es
wird ihm durch die Anregung von Schwingungen auf
dem Seil ständig Energie entzogen. Den Dämpfungsterm
Zdy/dt nennt man auch die Strahlungsdämpfung des
Senders. Die pro Sekunde abgegebene Energie, die Strah-
lungsleistung, ist nach (3.9):

P(t) = Fy(0, t)c̃(0, t) = Zc̃2(0, t) . (3.11)

Soll die Schwingung des Senders nicht alsbald infolge
der Strahlungsdämpfung zum Stillstand kommen, muss
dem Sender ständig Energie zugeführt werden. Man kann
den Sender auch durch die in Abb. 3.2 gezeigte Vorrich-
tung ersetzen: EinMotor erzeugt über ein Kurbelgestänge
die auf- und abwärtsgehende Bewegung mit der Fre-
quenz ω0. Durch die Konstruktion ist die Amplitude y0
und die Geschwindigkeit c̃(0, t) = ω0y0 cosω0t vorgege-
ben. Damit das Ganze funktioniert, muss der Motor die
Leistung P(t) nach (3.11) aufbringen können, er muss leis-
tungsmäßig an denWellenwiderstand des Seils angepasst
sein.

„Terminierung“ der Seilwelle. Die vom Sender abgege-
bene Energie verschwindet keineswegs, indem sie etwa
sogleich in Wärme verwandelt wird; sie wandert mit der
Seilwelle nach rechts, also mit der Wellengeschwindig-
keit v. Dabei erfolgt die Bewegung des Seils (mit entspre-
chender Verzögerung) an jeder Stelle xwie die Bewegung
bei x = 0. Dem entspricht, dass an jeder Stelle des Seils
zwischen Fy(x, t) und c̃(x, t) das Verhältnis Z herrscht,
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Abbildung 3.3 „Abschlusswi-
derstand“ für Seilwellen

wie schon in (3.9) angegeben. An jeder Stelle ist der
momentane Energiefluss gleich der in (3.11) berechneten
Leistung

Energie
Zeiteinheit

= Fy(x, t)c̃(x, t) = Zc̃2(x, t) . (3.12)

Schneidet man nun irgendwo das Seil ab und befestigt es
an einer Vorrichtung wie in Abb. 3.3 gezeigt, so „bemerkt“
das Seil überhaupt nicht die Veränderung, sofern der Ra-
dius r der Kugel und die Viskosität η der Flüssigkeit so
aufeinander abgestimmt sind, dass Fy/c̃ = Z ist. Da nach
der Stokes’schen Formel Bd. II, Gl. (3.24) auf die Kugel die
Kraft Fy = 6πηrc̃ wirkt, muss folgende Bedingung erfüllt
sein:

6πηr = Z =
√

Sμ . (3.13)

In diesem Fall ist das Seil mit seinem Wellenwiderstand
terminiert, es tritt keine Reflexion auf, und es gelingt,
die gesamte Wellenenergie im „Abschlusswiderstand“ in
Wärme umzusetzen. Das gleiche Phänomen wurde schon
in Abb. 1.9 gezeigt.

Reflexion. Wird das Seil bei x = L an einer starren Wand
befestigt, ist c̃(L, t) ≡ 0 und die Welle wird mit umgekehr-
tem Vorzeichen reflektiert (Abb. 1.6). c̃(L, t) = 0 bedeutet
nach (3.7), dass der Wellenwiderstand der starren Wand
unendlich groß ist. Ganz allgemein ist die Reflexion an ei-
ner Diskontinuität abhängig vom Wellenwiderstand vor
und hinter der Diskontinuität. Wir werden das in Ab-
schn. 5.4 am Beispiel des Lichts quantitativ studieren.
Will man einen reflexionsfreien Übergang der Wellen
zwischen zwei Medien erreichen, müssen die Wellenwi-
derstände der beiden Medien gleich sein, oder durch eine
Vorrichtung aneinander angepasst werden. Bei mecha-
nischen Wellen muss aus einer großen Auslenkung bei
kleiner Kraft eine kleine Auslenkung bei großer Kraft
gemacht werden. Das ist mit einem Hebelmechanismus
im Prinzip möglich, in der Praxis aber nicht so einfach.
Wir fassen zusammen: Der Wellenwiderstand eines Me-
diums ist sowohl für die Strahlungsdämpfung des Sen-
ders als auch für die Reflexion an einer Diskontinuität
maßgeblich.

Energietransport in Wellen

Wie wir am Beispiel der Seilwelle gesehen haben, trans-
portiert eine Welle Energie, und zwar läuft auf dem Seil
pro Zeiteinheit die durch (3.12) gegebene Energie an einer
Stelle x vorbei. Wir betrachten nun den Energiefluss in ei-
ner Welle im dreidimensionalen Raum. Die Energie wird
in einer dispersionsfreien Welle mit der Wellengeschwin-
digkeit v transportiert. Bei der Strömung einer Flüssigkeit
ist die Stromdichte j das Produkt von Dichte ρ und Strö-
mungsgeschwindigkeit v (vgl. Bd. II, Gl. (3.27)). In der
Welle gibt es eine Energiedichte u(r, t). Man berechnet da-
mit die Energiestromdichte

jE = uv . (3.14)

Die Intensität einer periodischenWelle ist definiert als der
Betrag dieser Größe, gemittelt über eine Wellenperiode

I =
∣∣jE∣∣ = uv . (3.15)

I dA ist die Energie, die pro Zeiteinheit durch ein Flächen-
element dA strömt, das senkrecht zur Ausbreitungsrich-
tung aufgestellt ist.

Wie die im Folgenden behandelten Beispiele zeigen, ist
die Energiedichte in einer Welle proportional zum Qua-
drat der Wellenamplitude. Im Allgemeinen ist die Wel-
lengeschwindigkeit v unabhängig von der Amplitude. In
solchen Fällen gilt also:

Satz 3.1

Die Intensität der Welle ist proportional zum Qua-
drat der Wellenamplitude.

Dies gilt nach (3.12) auch für die Seilwelle, denn
aus y(x, t) = y0 sin(kx − ωt) folgt c̃(x, t) = ∂y/∂t =
−ωy0 cos(kx − ωt), und es ist c̃2 ∝ y20. Bei sinusförmi-
genWellen rechnet man meistens wie beimWechselstrom
mit den Effektivwerten Bd. III, Gl. (17.12). Dann ist z. B.

y2 =
1
2
y20 = y2eff .

3.2 Energietransport in Schallwellen

Bei der Berechnung der Energiedichte in einer Schall-
welle, auch Schalldichte genannt, machen wir es uns
leicht. Da die Materieteilchen eine harmonische Schwin-
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gung ausführen, ist der Mittelwert der potentiellen Ener-
gie gleich dem Mittelwert der kinetischen (vgl. Bd. I,
Gl. (12.8)). Die Gesamtenergie ist die Summe von beidem,
also ist ihre Dichte doppelt so groß wie die mittlere Dichte
der kinetischen Energie ukin = 1

2ρc̃2. Man erhält

u = ρc̃2 . (3.16)

Die Intensität der Schallwellen, auch Schallstärke ge-
nannt, ist demnach

I = ρvsc̃2 = ρvs
p̃2

Z2 . (3.17)

Der Wellenwiderstand für Schallwellen ist mit (3.7), (2.22)
und Tab. 3.1

Z =
p̃0
c̃0

=

√
ρ2

dp
dρ

= ρvs . (3.18)

In der Akustik rechnet man auch mit dem Verhältnis
der Druckamplitude zur Amplitude der Auslenkung x̃0
der Materieteilchen. Da c̃0 = ωx̃0 ist, folgt für diese, als
Schallhärte bezeichnete Größe

p̃0
x̃0

= ωZ . (3.19)

Aufgrund der viel höheren Dichte und der höhe-
ren Schallgeschwindigkeit ist der Wellenwiderstand von
Flüssigkeiten und Festkörpern sehr viel höher als der von
Gasen. Schallwellen werden daher an Flüssigkeitsoberflä-
chen und an festen Wänden fast vollständig reflektiert.
Will man das vermeiden, muss man die Wand mit ei-
nem Stoff geringer Dichte und hoher Schallabsorption
bedecken, also mit einem Stoff, in dem die oszillatorische
Bewegung der Schallwelle rasch inWärmebewegung um-
gesetzt wird. Faserstoffe und speziell geformte Schaum-
gummiteile sind hierfür geeignet.

Schallpegel und Lautstärke

Für den wissenschaftlichen Gebrauch genügt die Angabe
der Schallintensität I in W/m2. In der Technik wird statt
dessen häufig der sogenannte Schallpegel L, gemessen in
Dezibel, angegeben. Die Definition ist

L = 10 log
I
I0

Dezibel . (3.20)

Die Verwendung der Dezibel in der technischen Akus-
tik ist sinnvoll, weil die vom menschlichen Ohr subjektiv

empfundene Lautstärke proportional zum Schallpegel,
nicht etwa proportional zur Intensität in Watt/m2 ist:
Das Ohr hat eine angenähert logarithmische Empfindlich-
keitskurve („Weber-Fechnersches Gesetz“).

Das Dezibel (abgekürzt: dB) ist, wie z. B. auch dasWinkel-
maß Radian, eine dimensionslose Einheit. Die Bezugsin-
tensität I0 ist nach internationaler Vereinbarung festgelegt
auf

I0 = 10−12Watt/m2 . (3.21)

Der Logarithmus in (3.20) ist der dekadische Logarith-
mus. Ebensogut kann man den Schallpegel auch mit dem
Verhältnis der Amplituden des Schallwechseldrucks defi-
nieren. Da I ∝ p̃2 ist, ist

Lp = 20 log
p̃
p̃0

dB . (3.22)

Der Bezugswert p̃0 ist bei Luft (NTP) auf p̃eff = 20µPa
festgelegt. Damit stimmen die Schallpegelangaben in
(3.20) und (3.22) nahezu überein ((20µPa)2/ρvs = 0,94 ·
10−12 Watt).

Das Dezibel wird in der Technik generell als Maß für In-
tensitäts- oder Leistungsverhältnisse benutzt, vor allem
auch in der Elektronik. Ein Intensitätszuwachs um 20dB
(= 2 Bel) entspricht einem Intensitätsverhältnis I1/I2 =
100:

10 log
I1
I2

= 20 → log
I1
I2

= 2

I1
I2

= 102 = 100 .
(3.23)

Das Amplitudenverhältnis ist in diesem Falle ein Faktor
10. Ein Intensitätszuwachs um 3dB (= 0,3 Bel) entspricht
einem Intensitätsverhältnis von

I1/I2 = 100,3 = 1,99 ≈ 2 . (3.24)

Hier ist das Amplitudenverhältnis
√
2 = 1,414. Diese Be-

trachtungsweise sollte man sich merken, weil man bei der
elektronischen Verarbeitung von Analog-Signalen häufig
mit „Abschwächern“ konfrontiert wird, derenWert in De-
zibel angegeben ist. Auch Verstärkungsgrade werden oft
in dB angegeben.

Die Lautstärke-Empfindung ist nun frequenzabhängig.
Man hat deshalb eine in Phon gemessene Lautstärke Λ
dadurch definiert, dass man für die Referenzfrequenz
1000Hz setzt:

Λ (Phon) = L (Dezibel) (für ν = 1000Hz) . (3.25)
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Abbildung 3.4 Kurven gleicher LautstärkeΛ(ν) = const

Mit Hilfe einer Anzahl von Versuchspersonenwurden die
Kurven gleicher Lautstärke Λ(ν) = const ermittelt. Das
Ergebnis ist in Abb. 3.4 dargestellt; eingetragen ist auch
die Hörschwelle (gestrichelte Linie). Die Schmerzgrenze
liegt etwa bei 120 Phon. In Tab. 3.2 sind die Lautstärken
für einige typische Schallfelder angegeben. Man mache
sich klar, dass Phon ein logarithmisches Maß ist: Wenn
in einem geschlossenen Raum 1 Trompeter eine Lautstär-
ke von 90 Phon erzeugt, so erzeugen in demselben Raum
3 Trompeter eine Lautstärke von 94,7 Phon; 10 Trompeter
bringen es auf 100 Phon. Das ergibt die folgende Rech-
nung: Wenn Λ1 = 10 log (I1/I0) = 90 Phon ist, dann ist

Λ3 = 10 log
3I1
I0

= 10
(
log

I1
I0

+ log 3
)

= 94,771 Phon ,

Λ10 = 10 log
10I1
I0

= 10
(
log

I1
I0

+ log 10
)

= 100 Phon .

Noch ein Rechenexempel: Wenn man mit 10 Lautspre-
chern in einem Raum eine Lautstärke von 100 Phon
erzeugt, reduziert sich der Lärm bei Abschalten von 9

Tabelle 3.2 Lautstärke in verschiedenen Schallfeldern

Schallquelle Phon

leises Flüstern 10

ruhige Wohnung 20

normales Sprechen 50

starker Straßenverkehr 80

10 Watt-Lautsprecher 100

(3m Abstand)

Presslufthammer (1m) 120

(Schmerzgrenze)

Düsentriebwerk (50m) 130

Lautsprechern nur um 10%, da die Schallempfindung
proportional zu den Phon ist!

Anstelle des Phon wird heute gewöhnlich die Einheit
dB(A) benutzt. Man kann sie direkt an einem entspre-
chend eingerichteten Schallwechseldruck-Messgerät ab-
lesen. Das Gerät enthält ein Mikrophon und einen Ver-
stärker, dessen Verstärkungsgrad in bestimmter Weise
(entsprechend der international festgelegten „Bewer-
tungskurve A“) von der Frequenz abhängt, so dass die
Anzeige in grober Näherung den Phon entspricht.

Das Hören

Es ist interessant, die Amplituden x̃0 der Schallwellen aus-
zurechnen. Mit c̃2 = 1

2 c̃
2
0 und c̃0 = ωx̃0 folgt aus (3.17) :

x̃0 =

√
2I

ρvsω2 .

Bei ν = 1000Hz liegt die Hörschwelle etwa bei I = 2,5×
10−12W/m2. Die Amplitude der Schallwellen in Luft ist
dann x̃0 ≈ 0,2 × 10−10 m, das ist weniger als ein Atom-
durchmesser! An der Schmerzgrenze (120 Phon) beträgt
die Amplitude ca. 10µm. Diese Zahlen und die Ausmaße
des in Abb. 3.4 dargestelltem Hörbereichs machen deut-
lich, dass das menschliche Ohr ein echtes Wunderwerk
der Natur ist.

In Abb. 3.5 sieht man das Ende des Gehörgangs mit dem
Trommelfell. Die dahinter liegende Paukenhöhle ist mit
Luft gefüllt. Für den gelegentlichen Druckausgleich sorgt
die in den Rachenraum führende Eustachische Röhre. Die
eigentlichen Organe enthält das Innenohr. Es ist mit ei-
ner Flüssigkeit, einer Lymphe, gefüllt und steht mit der
Paukenhöhle nur über zwei mit Membranen verschlos-
sene Öffnungen in Verbindung. Man nennt sie das ovale

Hörnerv
Facialis-Nerv

Schnecke
Cochlea

rundes Fenster
ovales FensterBogengänge

Gehörgang

Hammer
Amboss

Steigbügel

Trommelfell Paukenhöhle
Eustachische Röhre

Abbildung 3.5 Das Ohr, nach H.-G. Bönninghaus u. Th. Lenarz (2001)
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Abbildung 3.6 Die Cochlea, abgerollt und grob schematisiert, im Längs- und
Querschnitt

und das runde Fenster. Die Bogengänge gehören zum
Gleichgewichtsorgan. Das für Schallwellen empfindliche
Organ, die Schnecke oder Cochlea, ist grob schematisch in
Abb. 3.6a dargestellt. Sie ist bis auf die genannten Fenster
und die Durchführungen für den Hörnerv fest von Kno-
chen eingeschlossen.

Das erste Problem ist, die Schallschwingungen der Luft
(Z = 415 kg/m2 s) auf die Lymphe (Z ≈ 1,5 · 106 kg/m2 s)
zu übertragen. Eine regelrechte Impedanzanpassung ist
dabei nicht erforderlich, da ja der Schall nicht in der
Flüssigkeit als Schallwelle weiterlaufen soll. Die Wellen-
bewegung wird in der Lymphe nur auf einen Bereich
übertragen, der sehr klein gegen die Schallwellenlänge
ist. Diese Aufgabe kann der aus dem Trommelfell und
den Gehörknöchelchen Hammer, Amboss und Steigbügel
bestehende Mechanismus erfüllen. Die „Fußplatte“ des
Steigbügels wirkt dabei direkt auf das ovale Fenster der
Cochlea.

Die Cochlea ist längs durch eine Scheidewand in zwei
Bereiche aufgeteilt, die in Abb. 3.5 wie zwei ineinander
geschachtelte Wendeltreppen in der knöchernen Schne-
cke stecken. Diese Scheidewand ist teilweise starr, zum
Teil aber durch die hochelastische Basilarmembran gebil-
det. Sie ist in Längsrichtung nur wenig, in Querrichtung
aber straff gespannt. Die durch das ovale Fenster auf die
nahezu inkompressible Flüssigkeit übertragenen Druck-
schwankungen müssen auf irgendeinem Wege an das
runde Fenster gelangen, da dieses neben dem ovalen
Fenster der einzige nachgiebige Teil der Cochlea-Wand
ist.

Messungen haben gezeigt, dass die Querspannung der
Basilarmembran von vorn nach hinten exponentiell ab-
nimmt. Das Verhältnis von Spannung zu Masse, also die
Frequenz der Eigenschwingungen der Membran, nimmt
dementsprechend von vorn nach hinten ab. Empfängt
das Ohr einen Ton mit der Frequenz ν, dann wird durch

die Druckschwankungen der Lymphe in der Vorhoftrep-
pe die Basilarmembran an einer ganz bestimmten Stelle
resonant zu Schwingungen angeregt, wie Abb. 3.6b zeigt.
Bei hohen Frequenzen liegt diese Stelle vorn, bei tiefen
am hinteren Ende der Cochlea. Die Basilarmembran ist
nun über die sogenannten Haarzellen an die Nerven-
fasern des Hörnervs gekoppelt. Die Schwingungen der
Membran werden durch die inneren Haarzellen über den
Hörnerv und eine neuronale Zwischenstation auf den Au-
diocortex, einen Teil des Gehirns, übertragen. Durch einen
Rückkopplungseffekt, bei dem von der Zwischenstation
aus über die äußerenHaarzellen die lokale Bewegung der
Basilarmembran verstärkt wird, wird eine Entdämpfung
der Schwingung und damit eine hohe Trennschärfe er-
reicht.

Mit diesem Mechanismus, dessen elektromechanische
und neuronale Funktionsweise noch keineswegs vollstän-
dig geklärt ist, wird uns und unsern vierbeinigen und
gefiederten Artgenossen die wunderbare Welt der Ge-
räusche und der Töne erschlossen, die uns entzücken oder
erschrecken können, die aber jedenfalls für eine differen-
zierte Kommunikation mit der Umwelt sorgen.

3.3 Energietransport in
elektromagnetischen Wellen

Der Wellenwiderstand

Bei einer elektrischen Übertragungsleitung ist derWellen-
widerstand das Verhältnis von Spannung U zu Strom I
in einer laufenden Welle. Es ist also ψ(x, t) = U(x, t) und
χ(x, t) = I(x, t). Aus (2.85) entnehmen wir α = L′, β =
1/C′. Also gilt für den Wellenwiderstand der Leitung:

Z =
√

αβ =

√
L′

C′ . (3.26)

L′ und C′ sind von der Geometrie der Leitung abhängig.
Zwei Beispiele wurden schon in (2.87) und (2.88) gegeben.
Da bei der laufenden Welle Strom und Spannung in Pha-
se sind, ist Z ein rein Ohmscher Widerstand. Wir hatten
bereits in Abb. 1.9 festgestellt, dass keine Reflexion auf-
tritt, wenn eine Übertragungsleitungmit demWiderstand
R = Z abgeschlossen wird.

Auch bei einer freien elektromagnetischen Welle kann
man einen Wellenwiderstand berechnen. Um ihn in Ohm
zu erhalten, muss man, wie schon bei Tab. 3.1 bemerkt,
neben der in V/m gemessenen elektrischen Feldstärke E
für das Magnetfeld die Feldgröße H = B/μμ0 einführen,
denn H wird in A/m gemessen. Mit (2.71) und (2.72) er-
halten wir

Z =
E
H

= μμ0
E
B
= μμ0

c
n
=

√
μμ0

εε0
. (3.27)
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Abbildung 3.7 a Kann man eine elektromagnetische Welle durch ein Tuch
mit dem Flächenwiderstand Zvac reflexionsfrei absorbieren? b Ersatzschaltbild
zu (a)

DerWellenwiderstand des Vakuums ist

Zvac =

√
μ0

ε0
= 377Ω . (3.28)

Man könnte auf den Gedanken kommen, dass man
freie elektromagnetische Wellen reflexionsfrei absorbie-
ren kann, wie Abb. 3.7a zeigt: Man spannt ein Tuch auf,
das einen Flächenwiderstand von 377Ω besitzt (der Flä-
chenwiderstand wurde in Bd. III, Gl. (6.6) definiert). Ein
solches Tuch lässt sich sehr einfach mit einer geeigne-
ten Widerstandspaste oder mit Graphit-Spray herstellen.
Die vollständige Absorption der Welle funktioniert aber
nicht: Hinter dem Tuch geht nämlich der Raum weiter,
und infolgedessen gibt es eine reflektierte und eine durch-
gelassene Welle; nur ein Teil der Energie wird im Tuch
absorbiert. Die vergleichbare Schaltung mit einem Koaxi-
alkabel ist in Abb. 3.7b gezeigt. Auch hier gibt es eine
Reflexion, denn das von links kommende Signal sieht
einen Abschlusswiderstand Z/2.

Noch stärker wird natürlich die Reflexion, wenn sich hin-
ter der 377Ω-Schicht eine Metallplatte befindet. Es ist also
nicht so einfach, ein Flugzeug oder ein Schiff für den Ra-
dar unsichtbar zu machen. Um die Reflexion klein zu
halten, braucht man ein absorbierendes Medium, dessen
Wellenwiderstand an der Oberfläche angepasst ist und
dessen Absorptionsvermögen allmählich, d. h. erst auf
Strecken von mehreren Wellenlängen zunimmt.

Energiedichte und Intensität
bei elektromagnetischen Wellen

Die Energiedichte u(r, t) in einer elektromagnetischen
Welle ist gegeben durch die Summe der elektrischen und
magnetischen Feldenergie. Wir benutzen die in Bd. III/16

abgeleitete Formel (16.35)

u(r, t) =
1
2
(E ·D+ B ·H) .

Bei nicht zu starken Feldern und in isotropen Medien
gelten die Materialgleichungen Bd. III, Gl. (15.59). Damit
erhält man

u =
1
2

(
εε0E2 +

1
μμ0

B2
)

.

Nach (2.72) ist B = E/cmed. Mit (2.70) folgt B2/μμ0 =
εε0E2 und schließlich

u(r, t) = εε0 (E(r, t))
2 . (3.29)

Die über eine Periode der Welle zeitlich gemittelte Ener-
giedichte ist bei sinusförmigen Wellen

ū =
εε0
2

E2
0 , (3.30)

wobei E0 die Amplitude der elektrischen Feldstärke in
der Welle ist. Für die Intensität der Welle erhalten wir mit
(3.15) und (2.70):

I = cmedū =
1
2

√
εε0
μμ0

E2
0 =

1
2
E2
0
Z

. (3.31)

Im Vakuum ist die Intensität der elektromagnetischen
Welle

I =
ε0c
2

E2
0 . (3.32)

Für eineWellenlängen-unabhängigeMessung der Intensi-
tät, insbesondere im Spektralbereich vom Infrarot bis zum
Ultraviolett, benutzt man ein Bolometer. Das ist ein ge-
schwärztes Widerstandsthermometer, das die auffallende
Strahlung fast vollständig absorbiert, und das gewöhnlich
in eine Wheatstonesche Brückenschaltung eingebaut ist.

Dipolstrahlung

Bei einem schwingenden Dipol erhalten wir für die Inten-
sität der auslaufenden Kugelwelle mit (2.63):

I(r, ϑ) =
ε0c
2

E2
0 =

p20ω4

32π2ε0c3
sin2 ϑ

r2
. (3.33)
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Abbildung 3.8 Intensität der Dipolstrahlung, Polardiagramm. Der Dipol
schwingt in Richtung ϑ = 0°. Die Länge der Strecke r(ϑ) ist proportional zur
Intensität, die unter dem Winkel ϑ emittiert wird. Die Intensitätsverteilung ist
rotationssymmetrisch um die z-Achse

Die in dieser Gleichung auftretenden Faktoren wurden
bereits bei (2.63) diskutiert; die Winkelabhängigkeit der
Intensitätsverteilung ist in Abb. 3.8 dargestellt.

Den gesamten Fluss Φe der Strahlungsenergie durch eine
Kugelfläche vom Radius r erhalten wir durch Integration
mit dem in Abb. 3.9 gezeigten Flächenelement1

Φe =

π∫

ϑ=0

2π∫
ϕ=0

I(r, ϑ)r2 sin ϑ dϑ dϕ =
p20ω4

12πε0c3
.

(3.34)

Diese Größe ist unabhängig vom Radius r der Kugelflä-
che, weil die Amplitude der Dipolstrahlung (2.63) propor-
tional zu 1/r abfällt: Das ist also der Kernpunkt bei der
Ausbreitung elektromagnetischerWellen. Die in (3.34) be-
rechnete Größe stellt zugleich die Strahlungsleistung P
des schwingenden Dipols dar.

Strahlung beschleunigter Ladungen

In Kap. 2 haben wir qualitativ begründet, warum elektro-
magnetische Wellen bei der Beschleunigung von Ladun-
gen entstehen. Eine allgemeine Formel, die dies quantita-
tiv beschreibt, wurde von dem irischen Physiker Joseph
Larmor abgeleitet. Vorausgesetzt, dass die Geschwindig-
keit der Ladung v 	 c ist, ist die Strahlungsleistung

P = Φe =
e2

6πε0c3

(
dv
dt

)2

=
e2

6πε0m2c3

(
dp
dt

)2

.

(3.35)

In dieser Formel ist p der Impuls des beschleunigten Teil-
chens. Man sieht sogleich, dass bei vorgegebener Impuls-

1 Das Integral
∫ π
0 sin3 ϑdϑ berechnet man mit der Substitution

cos ϑ = u.

Abbildung 3.9 Zur Ableitung
von (3.34)

z

rdϑ

r sinϑ dϕ

dA= r2 sinϑ dϑ dϕ

ϑ r

dϕ

änderung, also bei einer vorgegebenen, auf die Ladung
einwirkenden Kraft, die Strahlungsleistung P ∝ 1/m2 ist.
Ein Elektron strahlt unter diesen Umständen 4 · 106 mal
so viel Energie ab wie ein Proton.

Die Winkelverteilung der Strahlung bezüglich der Rich-
tung der Beschleunigung ist dΦe/dΩ ∝ sin2 ϑ, genau wie
bei der Dipolstrahlung. In Abb. 3.10a ist dies für longi-
tudinale Beschleunigung gezeigt, in Abb. 3.10b für trans-
versale Beschleunigung, also für die Bewegung auf einer
Kreisbahn.

(3.35) gilt nur für den Fall v 	 c. Ist diese Voraussetzung
nicht erfüllt, ändern sich die Verhältnisse drastisch. Wie
Abb. 3.11 zeigt, rutscht bereits bei v/c = 0,5 (Elektronen-
energie 80 keV) in der Winkelverteilung das Maximum
der Intensität nach vorn, und gleichzeitig nimmt die ins-
gesamt abgestrahlte Energie sehr beträchtlich zu. Man
kann diese erstaunliche Veränderung der Abstrahlung re-
lativ einfach qualitativ auf eine Lorentz-Transformation

â

v̂

ϑ

ϑ

b

a

âv̂,

∝ sin2ϑ

Kreisbahn

dΦe
dΩ

∝ sin2ϑ
dΦe
dΩ

Abbildung 3.10 Strahlungsleistung pro Raumwinkelelement bei v 	 c (γ =
1). a longitudinale, b transversale Beschleunigung. Die Polardiagramme sind
rotationssymmetrisch um die strich-punktierten Achsen
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Abbildung 3.11 Strahlungsleistung pro Raumwinkelelement bei v = 0,5c
(γ = 1,15). a longitudinale, b und c transversale Beschleunigung. Punktiert :
Diagramme aus Abb. 3.10 bei gleicher Beschleunigung

zurückführen, wenn man davon ausgeht, dass die Emis-
sion von elektromagnetischer Strahlung der Frequenz ν
der Emission von Photonen mit der Energie Eγ = hν und
dem Impuls pγ = Eγ/c gleichzusetzen ist (vgl. Bd. I/15.8).
Betrachten wir ein Koordinatensystem S′ mit den Ko-
ordinatenachsen x′, y′ und z′, das sich in Abb. 3.11b
und c parallel zur x-Achse mit der Geschwindigkeit v
bewegt. In diesem Koordinatensystem bewegt sich das
Elektron nicht in x′-Richtung. Es wird aber in (−z′)-
Richtung beschleunigt und emittiert Strahlung mit der
in den Abb. 3.11b und c gepunktet eingezeichneten Win-
kelverteilung. Sind p′γ und E′γ Impuls und Energie eines
Photons im System S′, dann erhält man im Laborsystem
(x, y, z) den Impuls pγ und die Energie Eγ mit der Lorentz-
Transformation (vgl. Bd. I/15.3):

pγx = γ
(
p′γx + vE′γ/c

2
)

, γ = 1/
√
1− v2/c2 ,

pγy = p′γy ,

pγz = p′γz ,

Eγ = γ
(
E′γ + vp′γ

)
.

Für ein Photon, das in x′-Richtung emittiert wird, ist p′γx =
|p′γ| = E′γ/c. Es erhält im Laborsystem die Energie

Eγ(0◦) = γ

(
E′γ +

vE′γ
c

)
= γE′γ

(
1+

v
c

)
.

Bei Emission in −x′-Richtung erhält man mit p′γx =
−|p′γ| = −E′γ/c

Eγ(180◦) = γE′γ
(
1− v

c

)
= E′γ

√
1− v/c
1+ v/c

.

Für ein Photon, das im System S′ in y′-Richtung aus-
gesandt wird, ist p′γ = (0,E′γ/c, 0). Es bewegt sich im
Laborsystem mit der Energie Eγ(90◦) = γE′γ und gegen
die x-Achse unter dem Winkel ϑx mit

tan ϑx =
pγy

pγx
=

E′γ/c
γvE′γ/c2

=
c

γv
.

Für v ≈ c erhält man

Eγ(0◦) ≈ 2γE′γ , Eγ(180◦) ≈ 0 ,

Eγ(90◦) = γE′γ .
(3.36)

Ist γ 
 1, nimmt die Energie der nach vorn emittierten
Photonen infolge des Lorentz-Schubs enorm zu, und fast
die gesamte Strahlungsleistung ist nach vorn auf den Be-
reich innerhalb des Winkels

ϑx ≈
1
γ

=

√
1− v2

c2
(3.37)

konzentriert. Bei einer Elektronenenergie von 5GeV ist
γ ≈ 104, also ist ϑx ≈ 0,1mrad. Es entsteht ein nadelschar-
fer Strahl energiereicher Photonen, emittiert in Richtung
der Teilchengeschwindigkeit v.

Synchrotronstrahlung

Bei einemLinearbeschleuniger (Bd. III,Abb. 5.14) ist dp/dt
durch die Feldstärke gegeben, mit der die Teilchen be-
schleunigt werden. Selbst bei den höchsten erreichbaren
Feldern ist die Strahlungsleistung vollständig vernachläs-
sigbar gegenüber der Hochfrequenzleistung, die zur Be-
schleunigung der Teilchen erforderlich ist. Nicht so beim
Synchrotron (Bd. III, Abb. 13.21): Auf einer Kreisbahn
ändert sich ständig die Impulsrichtung. Die Strahlungs-
leistung P kann man mit (3.35) berechnen, wenn das Teil-
chen zu einem bestimmten Zeitpunkt ruht, also in einem
Intertialsystem, das sich mit der Teilchengeschwindig-
keit v ≈ c tangential zur Kreisbahn bewegt. Nach Bd. III,
Gl. (12.15) erzeugt dort das Magnetfeld B eine elektrische
Kraft F = dp/dt ≈ eγcB. Man kann B durch den Bahnra-
dius ρ ersetzen: B = p/eρ ∝ E/ρ ∝ γ/ρ. Bei einer Lorentz-
Transformation in das Laborsystem bleibt P als Quotient
aus Energie und Zeit invariant. Es folgt, dass die Strah-
lungsleistung der Synchrotronstrahlung

P ∝
γ4

ρ2
=

(
E

mc2

)4 1
ρ2

(3.38)
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Abbildung 3.12 Normiertes Spektrum der Synchrotron-Strahlung

ist, also mit der vierten Potenz der Teilchenenergie E
anwächst. Die Notwendigkeit, diesen Energieverlust mit
Hilfe von Beschleunigungsstrecken zu kompensieren,
wird bei Elektronen zum begrenzenden Faktor für das
Synchrotronprinzip. Bei dem Elektron-Positron-Speicher-
ring LEP des CERN (E ≈ 100GeV, ρ ≈ 4 km) verloren die
Elektronen bei jedem Umlauf 3% ihrer Energie durch
Synchrotron-Strahlung. Das dürfte ungefähr die Grenze
des Vertretbaren sein. Als Alternative kann man Elektro-
nen und Positronen mit Linearbeschleunigern auf hohe
Energien bringen und zwei gegenläufige Strahlen aufein-
ander schießen. Ein solcher linear collider war bereits bei
≈ 100GeV in Betrieb (SLC) und es ist geplant, mit einer
neuen Anlage (ILC) weit höhere Energien zu erreichen.
Bei Synchrotrons und bei Speicherringen für Protonen
ist die Situation entschärft: Die Synchrotronstrahlung ist
nach (3.38) um einen Faktor (mp/me)4 ≈ 1013 reduziert.

Die Synchrotronstrahlung ist nicht nur ein ärgerliches
Problem beim Bau von Elektronensynchrotrons. Das
Spektrum ist kontinuierlich und es erstreckt sich bis in
den Bereich der kritischen Frequenz ωc (Abb. 3.12). ωc
ist durch die Elektronenenergie E und durch den Krüm-
mungsradius der Bahn gegeben:

ωc = 3
(

E
mc2

)3 c
ρ
= 3γ3 c

ρ
. (3.39)

Nach Bd. III, Gl. (13.44) ist ρ = p/eB. Bei relativistischen
Elektronen ist der Impuls p = E/c. Also ist

ωc = 3γ2 e
m
B .

Das entspricht einer Wellenlänge

λc =
2π

3
mc
e

1
γ2B

=
3,6 · 10−3 m · Tesla

γ2B
. (3.40)

Mit Elektronenenergien von einigen 100MeV erreicht
man den sonst schwer zugänglichen Bereich des kurzwel-
ligen Ultraviolett (λ = 10–100 nm), und mit einigen GeV
den Röntgenbereich (λ ≈ 0,1 nm). Man kann also die Syn-
chrotronstrahlung als intensive Quelle von UV- und Rönt-
genstrahlen für Naturwissenschaft und Technik nutzbar
machen (Spektroskopie, Strukturuntersuchungen, Litho-
graphie). Aus diesem Grund wurden in den letzten Jahr-

N

N

N

S

S

S

Abbildung 3.13 Prinzip des „Wigglers“

Abbildung 3.14 Strukturierung
der Strahlpakete beim FEL

λ λ λ λ

zehnten zahlreiche Elektronenspeicherringe eigens zur
Erzeugung von Synchrotronstrahlung gebaut.

Um die Intensität der Synchrotronstrahlung zu erhöhen,
baut man in den Speicherring gerade Strecken ein, in de-
nen man den Strahl zwischen den Polen von starken Per-
manentmagneten laufen lässt. Die Magnete lenken den
Strahl abwechselnd nach links und nach rechts ab, wie
Abb. 3.13 zeigt. Mit einem solchenWiggler verstärkt man
die Synchrotronstrahlung einer einzelnenAblenkungNm-
fach, wenn der Wiggler Nm Magnete enthält.

Die Elektronen laufen durch den Wiggler naturgemäß
langsamer als das Licht. Durch geeignete Wahl der Ab-
stände und der Feldstärke kann man erreichen, dass sie
bei einer bestimmten Wellenlänge zwischen zwei aufein-
anderfolgenden Magneten gerade um eine Wellenlänge
hinter den Wellenbergen der Synchrotronstrahlung zu-
rückbleiben. Dann ist die neu erzeugte Synchrotronstrah-
lung in Phase mit der bereits vorhandenen, die Strahlung
der einzelnen Wiggler-Elemente wird kohärent, d. h. es
addieren sich die Feldstärken, die Welle erreicht eine
Feldstärke E ∝ Nm und eine Intensität I ∝ N2

m: Aus dem
Wiggler wird einUndulator. Die Wellenlänge, bei der das
funktioniert, nennt man die Undulatorwellenlänge λU.

Wir erinnern uns, dass bei der Hochfrequenzbeschleuni-
gung die Teilchen immer als Strahlpakete („bunches“)
beschleunigt werden. Das gilt für Synchrotrons, Speicher-
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Abbildung 3.15 Der Krebsne-
bel, Aufnahme NASA Hubble
Space Telescope. Die Syn-
chrotronstrahlung wird dem
gleichmäßigen Leuchten im Inne-
ren des Nebels zugeordnet, das
hier leicht blau gefärbt wurde

ringe und Linearbeschleuniger. Mit Kunstgriffen kann
man nun erreichen, dass diese Strahlpakete beim Durch-
laufen des Undulators die in Abb. 3.14 gezeigte Struktur
erhalten. Im Idealfall ist nun im Bereich der Undulator-
Wellenlänge die von allen Elektronen erzeugte Synchro-
tronstrahlung kohärent. Die Intensität wächst proportio-
nal zuN2

e an, wobeiNe die Zahl der Elektronen im Strahl-
paket ist. Auch im Realfall kann man mit einem solchen
Freie-Elektronen-Laser (FEL) die Intensität der Synchro-
tronstrahlung um viele Größenordnungen erhöhen.2

Synchrotronstrahlung spielt auch in der Astronomie eine
große Rolle. Ein Beispiel ist der Krebsnebel (Abb. 3.15),
entstanden bei einer Supernova-Explosion, die im Jahre
1054 n. Chr. beobachtet wurde. Das Spektrum erstreckt
sich vom Radiowellenbereich bis ins kurzwellige UV.
Wie die genauere Analyse zeigt, bewegen sich Elektro-
nen mit einer Energie E ≈ 1012 eV in einem Magnetfeld
B ≈ 10−7 T.

Der Poynting-Vektor

Die in (3.14) eingeführte Energieflussdichte kann bei elek-
tromagnetischen Wellen mit Hilfe des Poynting-Vektors
S durch die Feldvektoren E und H ausgedrückt werden:

jE = S = E×H . (3.41)

2 Näheres dazu in den Artikeln von A. Richter, Physikalische Blätter
54, 31 (1998) und T. Tschentscher, A. Schwarz und D. Rathje, Physik
in unserer Zeit, 41, 64 (2010).

Das ist eine einfache Formel, die man sich leicht merken
kann. Ihre Begründung ist weniger einfach; wer sich die-
ser Mühsal entziehen will, möge hinter (3.43) weiterlesen.
Wir betrachten ein Volumen V, in dem elektrische Ladun-
gen und elektromagnetische Felder enthalten sind. Nur
die elektrischen Felder erzeugen Joulesche Wärme, und
zwar pro Zeiteinheit insgesamt die Wärme

∫
V

E · jL dV ,

wobei jL die Stromdichte des Leitungsstroms ist. DieMax-
well-Gleichung Bd. III, Gl. (15.58) lautet:

jL = ∇×H − ∂D
∂t

.

Nun ist E · (∇×H) = H · (∇× E)−∇ · (E×H).3 Nach
Bd. III, Gl. (15.56) ist ∇× E = −∂B/∂t. Wir können also
die erzeugte Joulesche Wärme wie folgt durch die elek-
tromagnetischen Feldgrößen ausdrücken:

∫
V

E · jL dV

= −
∫

V

[
∇ · (E×H) +H · ∂B

∂t
+ E · ∂D

∂t

]
dV .

(3.42)

3 Wie im mathematischen Anhang, Bd. I/M.7 ausgeführt wird, kann
man mit dem Operator ∇ rechnen, wie mit einem gewöhnlichen
Vektor, wenn man die für das Differenzieren gültigen Regeln beach-
tet. Mit Bd. I, Gln. (21.76), (21.131) und (21.127) erhält man

∇ · (E×H) = H · (∇× E)− E · (∇×H) .

Daraus folgt ohne weiteres die oben angegebene Beziehung.
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Abbildung 3.16 Poynting-
Vektoren: a Ebene Wellen nach
rechts laufend, b nach links
laufend. c Schnitt durch eine
Kugelwelle, abgestrahlt von
einem schwingenden Dipol
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Aus Bd. III, Gln. (16.30) und (16.31) folgt, dass rechts ne-
ben dem Term ∇ · (E × H) die zeitliche Änderung der
Energiedichte des elektromagnetischen Feldes steht:

∂u
∂t

= E · ∂D
∂t

+H · ∂B
∂t

.

E× H ist der in (3.41) definierte Poynting-Vektor S. Man
erkennt, dass (3.42) die korrekte Energiebilanz darstellt,
wennman Smit jE identifiziert. Gleichung (3.42) muss für
jedes Volumenelement gelten:

− ∂u
∂t

= E · jL + div S . (3.43)

Diese Gleichung besagt inWorten: Die Abnahme der elek-
tromagnetischen Feldenergie im Volumenelement dV ist
gleich der Summe von der dort erzeugten Jouleschen
Wärme und der nach außen abgestrahlten Energie. Glei-
chung (3.43) entspricht genau der Kontinuitätsgleichung
Bd. II, Gl. (3.36) der Strömungslehre:

− ∂ρ

∂t
= −μ̇ + div j .

ρ ist die Dichte der Flüssigkeit, j die Stromdichte und
μ̇dV die Masse der Flüssigkeit, die pro Sekunde im Vo-
lumenelement dV neu entsteht. Die unterschiedlichen
Vorzeichen von E · jL und μ̇ kommen daher, dass die Joule-
sche Wärme auf der Verlustseite, die Quelldnichte μ̇ auf
der Gewinnseite positiv gerechnet wird. In Abb. 3.16 sind
Poynting-Vektoren für ebene Wellen und für die Kugel-
wellen eines strahlenden Dipols angegeben.

Die Intensität wurde definiert als die Energieflussdichte
bezogen auf eine Fläche senkrecht zur Ausbreitungsrich-
tung der Welle. Mit Hilfe des Poynting-Vektors kann man
auch sehr einfach den Energiefluss durch ein schiefste-
hendes Flächenelement angeben (Abb. 3.17):

dΦe = S · dA = S · n̂dA = S cos ϑ dA , (3.44)

Abbildung 3.17 Energiefluss
durch das Flächenelement dA , zu
(3.44)

n̂ ϑ dA

S

wobei S den zeitlichen Mittelwert über eine Wellenpe-
riode bezeichnet. Da es uns im folgenden stets nur auf
diesen Mittelwert ankommt, werden wir künftig das Mit-
telwertszeichenweglassen und statt S einfach S schreiben.

Ausgedehnte Strahlungsquellen, Radiometrie

Zur Beschreibung des Energietransports bei ausgedehn-
ten Strahlungsquellen ist es notwendig, einige zusätzliche
Begriffe einzuführen. Man nennt sie die radiometrischen
Größen und versieht sie mit einem Index e, um klar-
zustellen, dass sie zur Kennzeichnung der Energie der
Strahlung dienen. Wir versuchen, das Thema kurz und
übersichtlich abzuhandeln.

Wir haben bereits in (3.34) mit dem Gesamtstrahlungs-
fluss eines schwingenden Dipols ein Beispiel für den
Strahlungsfluss Φe berechnet. Wenn es keine Absorpti-
on gibt, ist er identisch mit der Strahlungsleistung des
Dipols, gemessen in Watt. Man kann den Strahlungs-
fluss auch durch ein begrenztes Flächenstück berechnen
(Abb. 3.18a). Mit Hilfe von (3.44) erhalten wir, wenn
nur eine punktförmige Strahlungsquelle vorhanden ist

a

b

ϑ

dΩ

S

n̂

ϑn̂
dA

Abbildung 3.18 Zur Berechnung des Strahlungsflusses. a in (3.45), b in
(3.47)



58 3 Energie- und Impulstransport in Wellen

(z. B. ein sehr kleiner schwingender Dipol):

Φe =
∫
A

S · dA =
∫
A

S cos ϑdA . (3.45)

Bei Vorhandenseinmehrerer Strahlungsquellen, die unab-
hängig voneinander („inkohärent“) Strahlung emittieren,
ergibt sich4

Φe =
∫

A

(S1 + S2 + . . .)dA

=
∫

A

(S1 cos ϑ1 + S2 cos ϑ2 + . . .)dA
(3.46)

Sind die Strahlungsquellen kontinuierlich verteilt
(Abb. 3.18b), so erhält man

Φe =
∫ ∫

A,Ω

dS
dΩ

cos ϑ dΩdA , (3.47)

wobei die Integration über dΩ über den gesamten Raum-
winkelbereich zu erstrecken ist, in dem Strahlung einfällt.
Die hier auftretende Größe dS/dΩ heißt Strahldichte Le:

Le =
dS
dΩ

=
d2Φe

cos ϑ dΩdA
. (3.48)

Man kann Le sowohl für die auf eine Fläche einfallen-
de als auch für die von einer Fläche abgestrahlte Energie
berechnen. Die Einheit ist W/m2 sr. Hier ist „sr“ die Ab-
kürzung für die Raumwinkeleinheit Steradian (vgl. Bd. I,
Gl. (21.5)).

Häufig interessiert man sich für dΦe/dA, also für die
gesamte, über alle Strahlungsrichtungen integrierte Ener-
gieflussdichte. Je nachdem ob das Flächenelement dA
auf der Oberfläche des Strahlers oder auf der bestrahlten
Fläche liegt, nenntman diese Größe spezifische Ausstrah-
lung Me oder Bestrahlungsstärke Ee. Die Integration
über die Strahlungsrichtung wird gewöhnlich über den
halben Raumwinkel (Ω = 2π) erstreckt, die Einheit ist
W/m2:

dA liegt auf dem Strahler:

Me =
dΦe

dA
=
∫
2π

Le cos ϑ dΩ , (3.49)

dA liegt auf dem Empfänger:

Ee =
dΦe

dA
=
∫
2π

Le cos ϑ dΩ . (3.50)

4 Wenn zwischen der Strahlung der einzelnen Quellen eine Phasen-
beziehung besteht („kohärente Strahlung“), muss man die E- und
dieH-Vektoren addieren und erst dann den S-Vektor berechnen. Das
ergibt natürlich etwas anderes als die Summe Si in (3.46). Auf die et-
was komplizierte Frage der Kohärenz von Strahlung werden wir in
Kap. 7 eingehen.

ΔΩ A

r
ϑ

Abbildung 3.19 Strahlungsfluss durch eine von der Quelle weit entfernte Flä-
che, zu (3.52)

Dem bisher gebrauchten Begriff „Intensität einer Welle“
entspricht in der Radiometrie die Bestrahlungsstärke Ee⊥
auf einem Flächenelement, das senkrecht zum Poynting-
Vektor der einfallenden Welle aufgestellt ist.5

Der Strahlungsfluss pro Raumwinkelelement, dΦe/dΩ,
der von der gesamten Fläche eines Strahlers in einer be-
stimmten Richtung abgegeben wird, wird Strahlstärke Ie
genannt:

Ie =
dΦe

dΩ
=
∫
A

Le cos ϑ dA . (3.51)

Hier ist ϑ der Winkel zwischen der Richtung des Norma-
lenvektors n̂ auf dem Flächenelement dA des Strahlers
und der Beobachtungsrichtung. Die Integration erfolgt
über die Fläche des Strahlers, die Einheit ist W/sr. Diese
Größe spielt vor allem dann eine Rolle, wenn die Strah-
lenquelle, gemessen an ihrer Ausdehnung, weit entfernt
ist (Abb. 3.19).

Der Strahlungsfluss durch eine kleine Fläche A′ ist dann
gegeben durch

Φe = IeΔΩ = Ie
A′ cos ϑ′

r2
(3.52)

Der Fluss ist proportional zur Strahlstärke und nimmt
umgekehrt proportional zu r2 ab.

Im Allgemeinen sind Le und Ie Funktionen desWinkels ϑ.
Ein wichtiger Spezialfall ist der Lambert-Strahler, der da-
durch gekennzeichnet ist, dass die Strahldichte Le auf
seiner Oberfläche konstant ist und nicht von ϑ abhängt
(Abb. 3.20a). Für eine ebene Fläche gilt dann nach (3.51)
das Lambertsche Gesetz:

Ie = LeA cos ϑ , (3.53)

d. h. Ie ist zu cos ϑ proportional (Abb. 3.20b). A cos ϑ ist
die Projektion der Fläche A auf eine Ebene senkrecht zur
Beobachtungsrichtung. Richtet man einen Strahlungsde-
tektor, der nur ein kleines Stück der strahlenden Fläche

5 Wie man sieht, ist die Begriffsbildung, die im Zusammenhang
mit ausgedehnten Lichtquellen notwendig wird, etwas kompliziert.
Glücklicherweise sind seit einiger Zeit wenigstens die Bezeichnun-
gen und Formelzeichen genormt. Wir werden uns davon nicht
abhalten lassen, weiterhin den Begriff „Intensität“ und die Formel-
zeichen von (3.15) zu verwenden, zumal der Buchstabe E mit der
elektrischen Feldstärke und der Energie schon mehrfach belegt ist.
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Abbildung 3.20 a Strahldichte und b Strahlstärke eines Lambertstrahlers und
der Sonne als Funktion des Winkels ϑ. c Gerät zur Messung der Strahldichte Le.
Wenn die Fläche des Strahlers vollständig vom Akzeptanzbereich des Geräts er-
fasst wird, zeigt es die Strahlstärke Ie an. D ist der lichtempfindliche Detektor,
z. B. ein Bolometer

sieht, auf einen Lambert-Strahler (Abb. 3.20c), so ist die
Anzeige überall konstant und unabhängig vomWinkel ϑ.
Die Fläche eines Lambert-Strahlers erscheint also stets
gleichmäßig hell, auch wenn die Oberfläche nicht eben
ist. Eine leuchtende Kugel und eine leuchtende Kreis-
scheibe sehen bei einem Lambert-Strahler genau gleich
aus. Der Vollmond ist ein gutes Beispiel dazu. Die Sonne
zeigt dagegen deutliche Abweichungen vom Lambert-
schen Gesetz (Abb. 3.20). Sie wird zum Rand hin etwas
dunkler.

Das Lambertsche Gesetz gilt in guter Näherung für die
Strahlung einer rauen, diffus reflektierenden Fläche, z. B.
für eine frische Schneefläche. Das erschwert es ungemein,
bei Neuschnee die Neigung einer Fläche abzuschätzen.

In idealer Weise folgt die Strahlung eines schwarzen Kör-
pers (Bd. II/7) dem Lambertschen Gesetz, denn im Innern
des Hohlraums besteht ein homogenes Strahlungsfeldmit
der Energiedichte u, in dem keine Richtung ausgezeich-
net ist. Die Energiedichte der Strahlung, die innerhalb
des Hohlraums im Raumwinkelelement dΩ in Richtung
des Einheitsvektors ŝ läuft, ist udΩ/4π. Hat der Hohl-
raum eine kleine Öffnung (Abb. 3.21), so tritt durch das
Flächenelement dA der Öffnung in der Zeit dt in Rich-
tung ŝ die Strahlungsenergie, die in demVolumenelement
dV = cdt cos ϑ dA enthalten ist:

dΦe dt = dA cos ϑ u
dΩ

4π
cdt .

dV= cdt cosϑ dA

dA

cdt

ϑn̂
ŝ

Öffnung des
Hohlraumes

Abbildung 3.21 Lambertstrahlung des schwarzen Körpers: Zur Ableitung von
(3.54)

Es besteht dort also nach (3.48) die Strahldichte

Le =
uc
4π

, (3.54)

die nur von der Energiedichte der Strahlung im Hohl-
raum abhängt. Wegen der Konstanz von Le lässt sich die
spezifische Ausstrahlung Me leicht berechnen: Mit dΩ =
2π sinϑ dϑ erhält man

Me = 2πLe

π/2∫
0

cos ϑ sin ϑ dϑ = πLe =
uc
4

. (3.55)

Diese Formel wird im Zusammenhang mit dem Stefan-
Boltzmannschen Gesetz in Bd. V/2.1 benötigt.

Spektrale Größen. Wenn sich die Strahlung über einen
ausgedehnten Wellenlängenbereich erstreckt, ist es
zweckmäßig, radiometrische Größen einzuführen, die
sich auf einen bestimmten Wellenlängenbereich dλ be-
ziehen, sogenannte Spektrale Größen. Sie werden durch
einen Index λ gekennzeichnet. So wird z. B. der Spektrale
Strahlungsfluss Φe,λ definiert:

Φe,λ(λ) =
dΦe

dλ
. (3.56)

Den Gesamt-Strahlungsfluss (3.56) erhält man durch Inte-
gration:

Φe =

∞∫
0

Φe,λ dλ . (3.57)

Entsprechendes gilt für die anderen spektralen Größen
Le,λ, Me,λ, Ee,λ und Ie,λ. Man kann die spektralen Größen
natürlich auch auf die Frequenz beziehen. Dann ist z. B.

Φe,ν dν = −Φe,λ dλ . (3.58)

Daraus folgt mit ν = c/λ

Φe,λ = − dν

dλ
Φe,ν =

c
λ2 Φe,ν . (3.59)
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Photometrie

Wenn die Strahlung im sichtbaren Spektralbereich liegt,
kommt es in der Technik wie im täglichen Leben ge-
wöhnlich nicht auf die Strahlungsenergie, sondern auf
die vom Auge wahrgenommene Helligkeit, also auf den
visuellen Eindruck an. Aus diesem Grund werden ne-
ben den radiometrischen Größen noch photometrische
Größen definiert. Die Empfindlichkeit des Auges hängt
von der Wellenlänge ab, wie Abb. 3.22 zeigt. In die-
sem Diagramm gibt es zwei Kurven, entsprechend den
zwei lichtempfindlichen Elementen auf der Netzhaut des
menschlichenAuges: den Zäpfchen, mit Farbempfindung
ausgestattet und für das Tagessehen verantwortlich, und
den Stäbchen, für das Nachtsehen, ohne Farbdiskrimi-
nierung, aber lichtempfindlicher als die Zäpfchen. Im
hellen Licht lässt die Empfindlichkeit der Stäbchen sehr
stark nach. Wenn man ins Dunkle kommt, dauert es ei-
nige Zeit, bis sie ihre Empfindlichkeit wiedergewinnen
(Adaption). Man kann diesen Effekt beim Autofahren
ausnutzen: Wenn man vom hellen Sonnenlicht in einen
dunklen Tunnel fahrenmuss, empfiehlt es sich, einige Zeit
vor der Einfahrt ein Auge zu schließen und erst im Tunnel
wieder zu öffnen. – Die Sehschwelle ist definiert als der
Strahlungsfluss, der aus einer punktförmigen Weißlicht-
quelle ins dunkel-adaptierte Auge fällt und gerade noch
wahrgenommenwird. Sie liegt bei ca. 10−17 Watt. Das ent-
spricht einem Fluss von 20–30 Photonen pro Sekunde!

Dem Licht einer bestimmten Wellenlänge wird bei der
Wahrnehmung des optischen Reizes eine bestimmte Far-
be zugeordnet, wie Tab. 3.3 zeigt. Für das Farbsehen
sind die Zäpfchenmit drei verschiedenen Rezeptoren aus-
gestattet. Die Empfindlichkeit dieser Rezeptoren ist als
Funktion der Wellenlänge in Abb. 3.23 aufgetragen. Die
unterschiedliche Reizung der Rezeptoren bestimmt den
Farbeindruck. Das jedenfalls ist die Aussage der Drei-
komponententheorie, die 1802 von Th. Young aufgestellt
und gegen Ende des 19. Jahrhunderts durch Helmholtz
auf der Grundlage von präzisen Experimenten detail-

Abbildung 3.22 Relative
Empfindlichkeit des menschlichen
Auges. V (λ): Zäpfchen, V ′(λ):
Stäbchen
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Tabelle 3.3 Wellenlängen der Spektralfarben

Farbe λ (nm)

violett 400–440

blau 440–495

grün 495–580

gelb 580–620

orange 620–640

rot 640–750

λ (nm)
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Abbildung 3.23 Spektrale Empfindlichkeit der Farbrezeptoren beim Men-
schen. b : „blaue“ Rezeptoren, g: „grüne“ Rezeptoren, r : „rote“ Rezeptoren

liert ausgearbeitet wurde. Sie erklärt weitgehend die bei
der Wahrnehmung von Farben beobachteten Phänomene,
wie z. B. dass der gleiche Farbeindruck mit ganz unter-
schiedlichen optischen Spektren hervorgerufen werden
kann. Ursprünglich beruhte die Dreikomponententheorie
ausschließlich auf der Untersuchung der verschiedenen
Arten von Farbenblindheit. In der zweiten Hälfte des
20. Jahrhunderts konnte die Theorie mit den Methoden
derMikrospektrometrie und derMikroelektrophysiologie
durch die direkte Reizung der einzelnen Rezeptoren un-
termauert werden. Es zeigt sich, dass auch die Stäbchen
bei der Farbempfindung einWörtchen mitzureden haben.

In der Photometrie geht man von der Empfindlichkeits-
kurve V(λ) in Abb. 3.22 aus. Man definiert den Licht-
strom, indemman den Strahlungsfluss Φe,λ mit der Emp-
findlichkeitskurve V(λ) wichtet:

Φv = Km

∞∫
0

V(λ)Φe,λ dλ . (3.60)

Der Index v steht für visuell. Durch Festlegung eines Zah-
lenwerts von Km wird als SI-Einheit für den Lichtstrom
das Lumen (abgekürzt lm) definiert:

Km = 683 lm/W . (3.61)

Der Zahlenfaktor ist so gewählt, dass der Anschluss an
früher übliche Einheiten gewährleistet ist.
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Tabelle 3.4 Lichtstrom verschiedener Lichtquellen

Lichtquelle Lumen

Leuchtdiode 10−2

Glühlampe, 60W 730

Leuchtstoffröhre, 40W 2300

Hg-Dampflampe, 100W 5000

Xe-Hochdrucklampe, 500W 50 000

Zur Charakterisierung der Strahlungsleistung von Licht-
quellen wird der totale Lichtstrom in Lumen angegeben,
d. h. die Integration in (3.47) wird über eine geschlossene
Fläche erstreckt, die die Lichtquelle umschließt. Tabel-
le 3.4 gibt einige Beispiele.

Auch die übrigen radiometrischen Größen können analog
zu (3.60) in photometrische Größen umgerechnet werden.
Tabelle 3.5 gibt eine Übersicht. Es entstehen dabei abgelei-
tete Einheiten, von denen einige mit neuen Namen belegt
werden. Besonders hervorzuheben ist die Einheit candela
(lat. für Kerze) für die Lichtstärke Iv

1 cd = 1 lm/sr , (3.62)

weil diese Einheit im SI-System aus historischen und
messtechnischen Gründen als Basiseinheit geführt wird.
Eine gewöhnliche Kerze hat eine Lichtstärke von etwa
0,5 cd. Für die Beleuchtungstechnik wichtig sind die Be-
leuchtungsstärken, die von natürlichen Lichtquellen er-
zeugt werden, und die, die für bestimmte Tätigkeiten als
erforderlich gelten. Tabelle 3.6 gibt einen Überblick und
zeigt, dass das menschliche Auge über einen enormen dy-
namischen Bereich verfügt.

Tabelle 3.5 Radiometrische und photometrische Größen und Einheiten

Radiometrie Photometrie

Φe Strahlungsfluss [Watt (W)]
(radiant flux)

Φv Lichtstrom [Lumen (lm)]
(luminous flux)

Qe Strahlungsenergie [W s]
(radiant energy)

Qv Lichtmenge [lm s]
(quantity of light)

Ie Strahlstärke [W/sr]
(radiant intensity)

Iv Lichtstärke [lm/sr = Candela (cd)]
(luminous intensity)

Le Strahldichte [W/m2 sr]
(radiance)

Lv Leuchtdichte [lm/m2 sr = cd/m2]
(luminance)

Me Spez. Ausstrahlung [W/m2]
(radiant exitance)

Mv Spez. Lichtausstrahlung [lm/m2]
(luminous exitance)

Ee Bestrahlungsstärke1 [W/m2]
(irradiance)

Ev Beleuchtungsstärke [lm/m2 = Lux (lx)]
(illumination)

1 Diese Größe, angegeben für ein Flächenelement, das senkrecht zum Poyntingvektor S steht, ist identisch mit der bei (3.15) definierten
Intensität.

Tabelle 3.6 Beleuchtungsstärken

Natürliche Lichtquellen:

Mittagssonne:

Sommer 70 000 lx

Winter 6000 lx

mondhelle Nacht 0,2 lx

sternklare Nacht
(Neumond)

3 · 10−4 lx

Für Tätigkeiten empfohlen:

Lesen 100 lx

Handarbeit 500 lx

Präzisionsarbeit 1000 lx

3.4 Impulstransport in Wellen,
Strahlungsdruck

Eine Welle transportiert nicht nur Energie, sondern auch
Impuls. Wenn die Energie absorbiert wird, wird auch Im-
puls auf den Absorber übertragen. Dadurch entsteht ein
Druck, der sogenannte Strahlungsdruck. Wie kommt das
zustande?

Elektromagnetische Wellen

Betrachten wir eine ebene elektromagnetische Welle, die
in x-Richtung läuft und senkrecht auf einenAbsorber fällt.
Die Feldvektoren sind E(x, t) = (0,Ey, 0) und B(x, t) =
(0, 0,Bz). Die Absorption der Welle erfolgt dadurch, dass
das elektrische Feld durch die Kraft Fe = qE im Absorber
Ladungen in Bewegung setzt und dass die auf die Ladun-
gen übertragene Energie im Absorber dissipiert und in



62 3 Energie- und Impulstransport in Wellen

BA

EmpfängerSender

Abbildung 3.24 Gedankenexperiment zum Impulstransport durch eine Welle

Wärme umgewandelt wird. Gemittelt über eine Periode
der Welle ist die übertragene Leistung

dW
dt

= v · Fe = qvyEy . (3.63)

Auf die bewegten Ladungen wirkt auch die Lorentz-
Kraft Fm = q(v× B), erzeugt durch das B-Feld der Welle.
Da v und qE im zeitlichen Mittel die gleiche Richtung
haben, haben auch qv und E die gleiche Richtung. Die
Lorentz-Kraft zeigt also in die Richtung des Poynting-
Vektors S = (E×H), also in die Ausbreitungsrichtungder
Welle. Im Zeitintervall dt wird auf die Ladung q der Im-
puls

dp = Fm dt = qvyBz =
qvyEy

c
=

dW
c

(3.64)

übertragen, denn nach (2.59) ist Bz = Ey/c. Die Summe
dieser Impulsüberträge, berechnet pro Zeit- und Flächen-
einheit, ergibt den Strahlungsdruck.

Wir stellen uns nun vor, dass in einem Wagen, der rei-
bungslos auf Schienen laufen kann, vom Ende A her
mit einer Richtantenne elektromagnetische Wellen ausge-
sandt werden (Abb. 3.24). Sie sollen am anderen Ende B
reflexionsfrei absorbiert werden. Wenn es nur den bei B
ausgeübten Strahlungsdruck gäbe, müsste sich der Wa-
gen aufgrund des Strahlungsdrucks, also ohne Einwir-
kung von außen, in Bewegung setzen. Das ist zweifellos
Unsinn. Der Sender bei Amuss bei der Emission der Wel-
len einen Rückstoß erhalten, der entgegengesetzt gleich
der vom Strahlungsdruck ausgeübten Kraft ist. Wenn bei
Emission und Absorption der Welle Energie und Impuls
erhalten bleiben sollen, muss die Welle selbst Energie und
Impuls enthalten.

Die Energiedichte u wurde in (3.30) angegeben. Die Im-
pulsdichte der Welle, gewöhnlich mit g bezeichnet, ver-
hält sich zur Energiedichte u wie der in (3.64) berechnete
Impulsübertrag dp zum Energieübertrag dW. Es ist also

g =
u
c
ŝ . (3.65)

ŝ ist ein Einheitsvektor in Ausbreitungsrichtung.

Nun können wir den Strahlungsdruck berechnen. In ei-
nem reflexionsfrei absorbierenden Medium wird in der

Zeit dt auf der Fläche A die Energie ucAdt absorbiert, pro
Zeit- und Flächeneinheit also die Energie uc (vgl. (3.15)).
Ebenso ist der Impulsübertrag pro Zeit- und Flächenein-
heit gegeben durch gc:

gc =
u
c
cŝ = uŝ . (3.66)

Der Betrag dieser vektoriellen Größe ist der Strahlungs-
druck bei vollständiger Absorption der Welle:

prad = u . (3.67)

Wird die Welle vollständig reflektiert, wird die Impuls-
dichte der Welle von +g in −g umgewandelt. Der Strah-
lungsdruck ist

prad = 2u . (3.68)

Von einer besonderen physikalischen Bedeutung ist der
Strahlungsdruck, der sich im thermischen Gleichgewicht
in einem Hohlraum einstellt. Mit seiner Hilfe kann
man das Stefan-Boltzmannsche Gesetz auf die klassi-
sche Elektrodynamik und den II. Hauptsatz zurückführen
(Bd. II/9.4). Wir bringen nun die Ableitung der dort
verwendeten Gleichung Bd. II, Gl. (9.30), p = u/3: Die
Strahlung im Hohlraum kann man als Überlagerung von
ebenenWellen beschreiben, deren Richtungen isotrop ver-
teilt sind. Da im thermischen Gleichgewicht von jedem
Flächenelement der Hohlraumwand ebenso viel Energie
abgestrahlt wie absorbiert wird, gehen wir von (3.68) aus.
Die Mittlung über die Raumrichtungen führen wir mit
dem in der kinetischen Gastheorie erprobten Schnellver-
fahren durch (siehe Bd. II, Gl. (5.7)): Im Endeffekt fällt
1/6 der Strahlung senkrecht auf das Flächenelement. Der
Strahlungsdruck ist also, wie behauptet,

prad =
2u
6

=
u
3
. (3.69)

Unter gewöhnlichen Umständen bewirkt der Strahlungs-
druck nur winzige Effekte. Es war deshalb sehr schwierig,
diesen schon von Maxwell postulierten Effekt im Labor
nachzuweisen, besonders weil thermische Effekte infol-
ge der Absorption von Strahlung die wirklichen Effekte
des Drucks überdecken können. Erst nach jahrelangen
Vorarbeiten gelang es 1901 dem russischen Physiker Le-
bedev, den Strahlungsdruck des Lichts nachzuweisen. In
der Astronomie spielt er dagegen eine durchaus hand-
feste Rolle: Er bewirkt, dass der aus Staubteilchen ge-
bildete, hell leuchtende Kometenschweif stets von der
Sonne weg weist (Abb. 3.25). Auch muss er bei der Be-
rechnung des hydrostatischen Gleichgewichts im Innern
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Abbildung 3.25 Richtung des Kometenschweifs

heißer Sterne neben dem Gasdruck berücksichtigt wer-
den. In der Kosmologie des frühen Universums spielte
der Strahlungsdruck sogar eine dominierende Rolle (siehe
Bd. II/7.4).

Strahlungsdruck und Lichtquanten. Eine sehr einfache
Erklärung für den Strahlungsdruck erhält man, wenn
man davon ausgeht, dass eine ebene elektromagnetische
Welle der Frequenz ν als ein Strom von Lichtquanten
der Energie hν betrachtet werden kann (Bd. I/15.8). Ent-
hält die Welle pro Volumeneinheit n Lichtquanten, ist die
Energiedichte u = nhν. Jedes Lichtquant hat nach Bd. I,
Gl. (15.58) den Impuls hν/c. Im Zeitintervall Δt treffen
nAcΔt Quanten auf die Wandfläche A. Sie bewirken einen
Kraftstoß

FΔt = nAcΔt
hν

c
.

Also ist der Strahlungsdruck

prad =
F
A

= nhν = u . (3.70)

Diese Überlegung zeigt nicht etwa, dass der Strahlungs-
druck ein Quantenphänomen ist, sondern nur, dass in
diesem Punkt die Beschreibungen mit Lichtquanten und
mit der Maxwellschen Theorie konsistent sind. Wie man
darüber hinaus die Lichtquanten mit den klassischen
elektromagnetischen Wellen vereinbaren kann, werden
wir in Bd. V/3.6 diskutieren.

Schallwellen

Auch bei Schallwellen gibt es einen Strahlungsdruck. Das
bedeutet, dass der mittlere Druck in einer ebenen Schall-
welle höher ist, als der Umgebungsdruck p0. Das ist

Scheibe

GSp

Torsionsdraht

Abbildung 3.26 Schallradiometer. Der Durchmesser der Scheibe muss d > λ
sein. Sp: Spiegel zur Ablesung mit Lichtzeiger. G: Gegengewicht

seltsam, denn der zeitliche Mittelwert des Schallwechsel-
drucks p̃ in (2.15) ist Null. Des Rätsels Lösung: Wir hatten
in (2.17) und (2.18) für die Dichte den konstanten Wert
ρ0 eingesetzt: Setzt man statt dessen ρ = ρ(x, t) aus (2.16)
ein, erhält man eine weitaus kompliziertere Differential-
gleichung. Ihre Lösung kann angenähert werden durch

p(x, t) = p0 + p̃0 cos(kx− ωt)

+ 2u cos2(kx− ωt) .
(3.71)

Der zeitliche Mittelwert ist

p = p0 + u → prad = u . (3.72)

Der Strahlungsdruck des Schalls ist winzig. Selbst bei ei-
nem Schallpegel von 100 dB erhält man nur

u =
I
cs

=
10−2W
330m/s

= 3 · 10−5 Pa = 3 · 10−10 bar .

Der Schallwechseldruck ist unter diesen Umständen nach
Abb. 3.4 und (3.22) 2 Pa! Der Schallstrahlungsdruck kann
dennoch mit dem in Abb. 3.26 gezeigten Schallradiometer
gemessen werden.

Strahlungsdruck und Äquivalenz von Masse und
Energie

Bei näherer Betrachtung gibt es in dem bei Abb. 3.24
beschriebenen Gedankenexperiment doch noch ein Pro-
blem. Nachdem der Sender eingeschaltet wurde, wirkt
auf den Wagen zunächst nur der Rückstoß der emit-
tierten Wellen, der Wagen setzt sich in beschleunigte
Bewegung. Erst wenn auf der Empfängerseite der Strah-
lungsdruck wirksam wird, wird die Beschleunigung des
Wagens durch das Kräftegleichgewicht gestoppt. Der Wa-
gen rollt aber mit konstanter Geschwindigkeit weiter.
Anscheinend hat sich der Schwerpunkt der Anordnung
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Abbildung 3.27 Einsteins Gedankenexperiment zur Äquivalenz von Masse
und Energie

in Bewegung gesetzt, obgleich keine Einwirkung von au-
ßen stattgefunden hat.

Auf dieses Problem wurde Einstein aufmerksam. Er lös-
te es, indem er die in der relativistischen Mechanik
(Bd. I/15.4) entwickelte Formel E = mc2 auf die elektro-
magnetischeWelle anwandte, bei der eine Ruhemasse gar
nicht vorhanden ist. Er behauptete, dass der Transport der
elektromagnetischen Feldenergie E dem Transport einer
Masse m = E/c2 entspricht, der bei der Berechnung des
Schwerpunkts mit zu berücksichtigen ist. Der Einfachheit
halber nehmen wir an, dass der Sender nur einen kurzen
Lichtblitz der Dauer τ 	 L/c emittiert. Der Wagen rollt
dann eine Strecke δ und bleibt stehen, wenn das Licht den
Empfänger erreicht hat. Im Lichtblitz steckt die Energie
E = uAcτ. Das Massenäquivalent ist also nach Einstein

m =
E
c2

=
uAτ

c
. (3.73)

Vor der Emission des Lichts liegt in Abb. 3.27a der
Schwerpunkt des Systems bei

x(1)s =
M(L/2) +m · 0

M+m
=

L
2

M
M+m

,

wenn M die Masse des Wagens ist. Nach Ankunft des
Lichts beim Empfänger liegt er, wie Abb. 3.27b zeigt, bei

x(2)s =

[
M
(
L
2
− δ

)
+m (L− δ)

]
1

M+m

=

[
L
2
− δ +

m
M

(L− δ)

]
M

m+M
.

(3.74)

Die Strecke δ können wir mit (3.67) berechnen. DerWagen
hat bei der Emission den Impuls

|p| = Fτ = pradAτ = uAτ

erhalten. Er rollt mit der Geschwindigkeit V = |p|/M
während der Zeit t = (L − δ)/c. Die zurückgelegte Stre-
cke ist

δ = Vt =
uAτ

M
L− δ

c
=

m
M

(L− δ)

An dieser Stelle wurde von Einsteins Formel (3.73) Ge-
brauch gemacht. Setzt man dies in (3.74) ein, erhält man

x(1)s = x(2)s : Der Schwerpunkt bleibt in Ruhe, auch wenn
sich der Wagen bewegt, sofern die Strahlungsenergie ein
Äquivalent vonMasse ist und sofern für diese Äquivalenz
die Formel m = E/c2 gilt.

Einsteins Behandlung des Strahlungsdruck-Problems
blieb noch jahrzehntelang der einzige Hinweis darauf,
dass die Äquivalenz von Masse und Energie tatsächlich
besteht. Positronen und Mesonen wurden erst viel später
entdeckt, und auch die Massenspektrometrie und die Un-
tersuchung der Radioaktivität erreichten erst viel später
die Genauigkeit, die man für einen Vergleich der Diffe-
renzen von Atommassen mit den Energieumsätzen beim
radioaktiven Zerfall braucht.
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3.1. Schallstärke und Schallwechseldruck. Wie groß
ist ist die Druckamplitude p̃ einer Schallwelle in Luft
unter Normalbedingungen bei einem Schallpegel Lp =
50dB?

3.2. Reflexionsfreie Aufspaltung eines Signals. Ein
hochfrequentes Signal, das von einem Koaxialkabel mit
der Impedanz Z transportiert wird, soll in zwei Signale
mit gleichen Amplituden aufgespalten werden. Zu die-
sem Zweck werden an das Kabelende zwei andere gleich-
artige Kabel in der folgenden Weise angeschlossen: Die
Kabelmäntel werden direkt miteinander verbunden. Die
drei Innenleiter werden unter Zwischenschaltung dreier
gleicher Ohmscher Widerstände R miteinander verbun-
den (Sternschaltung). Wie groß muss R sein, damit an
der Verbindungsstelle keine Signalreflexionen auftreten?
Wie groß sind die Ausgangssignale, die an den beiden
Ausgängen abgegriffen werden im Vergleich zum ur-
sprünglich eingespeisten Signal? Wie viel % der Leistung
des Generators gehen in dem Widerstandsnetzwerk ver-
loren?

3.3. Wellenwiderstand eines Koaxialkabels und ei-
ner Streifenleitung. a) Geben Sie den Wellenwiderstand
(3.26) eines Koaxialkabels als Funktion des Innenradius ri
und des Außenradius ra an. Die Dielektrizitätskonstan-
te des Materials im Zwischenraum sei ε = 2,2. Wie groß
muss ri sein, wenn ra = 0,15 cm gewählt wird und der
Wellenwiderstand Z = 50Ω sein soll? Wie groß sind die
Kapazität und die Induktivität pro m Kabellänge?

b) Die Gleichungen (2.87) setzen voraus, dass der Strom
in den Leitern in einer dünnen Schicht nahe der Oberflä-
che fließt. Ab welcher Frequenz beträgt die Eindringtiefe
in einen Kupferleiter weniger als 10% des inneren Leiter-
radius ri?

c) Eine Streifenleitung bestehe aus zwei langen parallelen
Metallbändern im Abstand d mit der Breite b. Wie groß
muss das Verhältnis d/b sein, wenn derWellenwiderstand
50Ω sein soll (ε = 1)?

3.4. Feldstärken in einem Laserstrahl. a) Wie groß
sind die Amplituden der elektrischen und der magne-
tische Feldstärke in einem kontinuierlichen Laserstrahl
mit der Leistung P = 1mW und dem Radius σr = 1mm?
Rechnen Sie zunächst mit einem konstanten und dann,
realistischer, mit einem Gaußschen Strahlprofil für die In-
tensität: I(r) = I0 · exp(−r2/σ2

r ).

b) Wie groß sind die Amplituden der elektrischen und der
magnetischen Feldstärke in einem gepulsten Strahl glei-
chen Durchmessers mit der Energie 1mJ pro Puls und
einer Pulsdauer t = 10ns?

3.5. Kometenschweif. a) Kometen besitzen schmale
Typ I- und diffuse Typ II-Schweife, wobei letztere aus
Staubteilchen bestehen. Ein kleines Teilchen im Staub-
schweif eines Kometen unterliegt dem von der Sonne
ausgehenden Strahlungsdruck und der Schwerkraft der
Sonne. Wie groß ist deren Verhältnis für ein Teilchen mit
dem Radius r = 1µm und der Dichte ρ = 2 g cm−3? Die
Leuchtkraft der Sonne ist P = 3,8 · 1026 W. Das Produkt
aus der Sonnenmasse und der Gravitationskonstanten er-
hält man aus dem Keplerschen Gesetz für die Erdbahn,
der mittlere Abstand der Sonne von der Erde ist RErde =
1,5 · 108 km.

b) Den Einfluss der Schwerkraft desKometenkerns auf ein
Staubteilchen braucht man schon in unmittelbarer Nähe
zum Kern nicht zu berücksichtigen. Der Komet lege am
sonnennächsten Punkt seiner Bahn eine Strecke s zurück,
deren Verhältnis zu seinem Abstand R von der Sonne
s/R = 0,1 beträgt. Umwelchen Abstand ΔR im Verhältnis
zur Laufstrecke s wird sich das Staubteilchen im gleichen
Zeitraum von der Bahn des Kometenkerns entfernen?
Hinweis: Bei kleinen ΔR ist für die Radialbewegung des
Staubteilchens relativ zur Bahn des Kometenkerns nur
der Strahlungsdruck verantwortlich. Warum? Aus wel-
chen Gründen ist der Staubschweif diffus und gebogen?

3.6. Magnetischer und elektrischer Dipol. a) Aus der
Elektrizitätslehre ist bekannt, dass ein von einem Strom I
durchflossener kreisförmiger Drahtring mit dem Radius r
ein magnetisches Dipolmoment πr2I besitzt. Ist der Strom
ein Wechselstrom, emittiert der Drahtring elektromagne-
tische Wellen wie ein elektrischer Dipol; nur sind in der
Fernzone die elektrische und die magnetische Feldstär-
ke miteinander vertauscht. Schließen Sie aus (3.34) auf
die Gleichung für die Leistung des magnetischen Dipols,
indem Sie die elektrischen durch entsprechende magneti-
sche Größen ersetzen und eine Dimensionsanalyse durch-
führen. Zahlenbeispiel: r = 5 cm, Frequenz ν = 5,5MHz,
Stromamplitude I0 = 10mA. Wie hängt die Leistung von
ν ab?

b) ZumVergleich betrachten wir einen elektrischen Dipol,
bei dem ein gleich großer Strom während der Zeit 1/ν
über eine Strecke 2r hin- und herfließt, genauer gesagt,
wir wählen als Amplitude des elektrischen Dipolmo-
ments pe = 2rI0/ν. Wie groß ist die abgestrahlte Leistung?
Wie ändert sich die Leistung des elektrischen Dipols mit
der Frequenz, wenn man die Länge r und die Stromstärke
I0 konstant hält?

c) Ein Mobiltelefon besitze bei einer Frequenz ν =
1,8GHz eine Sendeleistung von 1W. Wie groß ist pe?
Man vergleichemit dem extrapoliertenDipolmoment von
Teil b) für das Zahlenbeispiel von Teil a).
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3.7. Abstrahlung eines geladenen Teilchens. a) Ein
Elektron befinde sich in einem elektrischen Wechselfeld
mit der Amplitude E0. Es führt darin periodische Schwin-
gungen aus, die wir zunächst als ungedämpft annehmen.
Wie groß ist die die Schwingungsamplitude und wel-
che Amplituden des elektrischen Dipolmoments und des
Elektronen-Impulses ergeben sich daraus? Das beschleu-
nigte Elektron stahlt elektromagnetische Wellen ab. Veri-
fizieren Sie, dass (3.34) und (3.35) äquivalent sind.

b) Die Abstrahlung führt zu einer Dämpfung der Elektro-
nenschwingung. Die obige Rechnung setzt voraus, dass
die Energieabstrahlung pro Schwingungsperiode klein im
Vergleich zur durchschnittlichen kinetischen Energie des
Elektrons ist. Was folgt aus dieser Bedingung für die Fre-
quenz der Schwingung?

3.8. Poynting-Vektor. Eine Gleichspannungsquelle ist
über ein Koaxialkabel mit einem Ohmschen Verbraucher
verbunden. Wie groß sind die elektrische Feldstärke, die
magnetische Feldstärke und der Poynting-Vektor, wenn
die SpannungU, der Strom I und der Innen- und der Au-
ßenradius bekannt sind? Man zeige: Die vom Poynting-
Vektor transportierte Leistung ist P = IU.

3.9. Energiefluss im Kondensator. Ein Plattenkonden-
sator mit einem Dielektrikum besitze kreisförmige Plat-
ten, deren Abstand d viel kleiner als der Kondensa-
torradius ist. Während einer Aufladung entsteht ein
zeitabhängiges elektrisches Feld E(t). Die Aufladung er-
folge so langsam, dass E(t) im Kondensatorinneren mit
Ausnahme des Randbereichs überall gleich groß ist.

a) Zwischen den Kondensatorplatten entsteht wegen
(2.44) ein magnetisches RingfeldH. Wie groß istH(r, t) als
Funktion des Abstands r zur Symmetrieachse?

b) Wie groß ist der Poynting-Vektor und wie ist er bei der
Kondensatoraufladung gerichtet?

c) Wie groß ist der Energiefluss durch eine konzentrisch
zur Symmetrieachse liegende Zylinderfläche mit dem Ra-
dius r innerhalb des Kondensators? Rechnen Sie nach:
Dieser Energiefluss ist gleich der zeitlichen Änderung
der elektrischen Feldenergie innerhalb des Zylindervolu-
mens.

d) Beschreiben Sie, wie elektrische Energie von einer Bat-
terie in einen Kondensator transportiert wird.
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In den vorangegangenen Kapiteln sind wir zwar
mit der mathematischen Beschreibung von Wellen-
erscheinungen schon ziemlich weit gediehen; es
lohnt sich aber, die mathematische Darstellung von
Wellen noch etwas weiter zu treiben. Das wird sich
bei der Behandlung optischer Probleme bewähren;
auch wird sich zeigen, dass die hier eingeführten
Begriffe undMethoden in der Quantenmechanik un-
entbehrlich sind.Wir führen denWellenvektor k und
die Darstellung von Wellenfunktionen mit komple-
xen Zahlen ein. Als Beispiel behandeln wir das Ver-
halten einer linearen Kette von Massenpunkten, die
durch Federn miteinander verbunden sind. Dann
diskutieren wir die mathematische Beschreibung
von Wellenzügen endlicher Länge und von soge-
nannten Wellenpaketen. Das führt auf eine wichtige
Beziehung zwischen zeitlicher Dauer und Bandbrei-
te desWellenzugs, auf die klassische Unschärferela-
tion. Am Schluss des Kapitels wird ausgehend von
dem in Abschn. 1.3 eingeführten Fourier-Integral die
Fourier-Transformation behandelt, die besonders in
der Optik eine große Rolle spielt.

4.1 Der Wellenvektor

Ebene Wellen im Raum

Wir haben bisher den Fall betrachtet, dass sich die ebene
Welle entlang der x-Achse eines kartesischen Koordi-
natensystems fortpflanzt. Um die Ausbreitung in einer
beliebigen Richtung zu beschreiben, führen wir den Wel-
lenvektor

k = kn̂ = (kx, ky, kz) (4.1)

ein. n̂ ist der Einheitsvektor in Ausbreitungsrichtung, er
steht senkrecht auf den Flächen gleicher Phase. |k| ist
gleich der Wellenzahl. Es gilt also

|k| = k =
√

k2x + k2y + k2z =
2π

λ
. (4.2)

Die Wellenfunktion ebener Wellen schreibt man:

ψ(r, t) = ψ0 cos(k · r− ωt) . (4.3)

Abbildung 4.1 zeigt einen Ausschnitt aus den Wellen-
fronten. Für die in x-Richtung laufende ebene Welle gilt
k = (kx, 0, 0), womit (4.3) in (1.3) übergeht.

k

λ= 2π
k

x

z

y

Abbildung 4.1 Wellenfronten (Ausschnitte) und Wellenvektor einer ebenen
Welle

Gekrümmte Wellenfronten

Da die Richtung des k-Vektors durch die Flächennormale
n̂ der Wellenfronten gegeben ist, ist das eben eingeführ-
te Konzept auch für gekrümmteWellenfronten brauchbar.
Besonders einfach wird das bei der in Abb. 4.2 gezeigten
Kugelwelle. Legt man den Ursprung des Koordinatensys-
tems in das Zentrum der Kugelwelle, so ist die Wellen-
funktion

ψ(r, t) =
A
r
cos(k · r− ωt) =

A
r
cos(kr− ωt) , (4.4)

denn in diesem Falle sind k und r gleichgerichtet. Die
Amplitude der Welle ist ψ0(r) = A/r. Der Amplituden-
faktor A hängt bei vernachlässigbarer Absorption nicht
von r ab, kann aber winkelabhängig sein, wie z. B. bei der

x

z

y

k

k

k

k

a

b

r

Abbildung 4.2 Wellenfronten und Wellenvektoren einer Kugelwelle.a Räum-
liche Darstellung, b Zentralschnitt, zu vergleichen mit der Darstellung der
Poynting-Vektoren in Abb. 3.16c
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Dipolstrahlung (2.63). Die Unterscheidung von „Amplitu-
de“ und „Amplitudenfaktor“ ist wichtig, da beide Größen
verschiedene Dimensionen haben.

Die 1/r-Abhängigkeit der Amplitude bewirkt nach
Satz 3.1, dass die Intensität mit 1/r2 abfällt, also dass
der Strahlungsfluss durch eine Fläche, die die Quelle um-
schließt, unabhängig von der Größe der Fläche ist (vgl.
(3.34)). Dementsprechend ist bei Kreiswellen, z. B. bei den
in Abb. 1.11 gezeigten Kreiswellen auf einer Wasserober-
fläche, die Amplitude proportional zu 1/

√
r:

ψ(r, t) =
A√
r
cos(kr− ωt) . (4.5)

Wellenausbreitung in einem Hohlleiter

In Abschn. 2.5 hatten wir die Eigenschaften eines Hohl-
leiters für Mikrowellen diskutiert und festgestellt, dass
sich im Hohlleiter die in den Abb. 2.29 und 2.30 gezeigte
Welle nur ausbreiten kann, wenn die Frequenz der Welle
ω > ωg = cπ/a ist. Diese auf den ersten Blick erstaunli-
che Tatsache kann man leicht verstehen, wenn man sich
klarmacht, dass die Welle (2.91)

Ey(x, z, t) = E0 sin kxx cos(kzz− ωt) , kx =
π

a

erzeugt werden kann durch die Überlagerung von zwei
ebenen Wellen mit der Frequenz ω und den Wellenvekto-
ren

k1 = (kx, 0, kz) , k2 = (−kx, 0, kz) . (4.6)

Es ist nämlich, wie wir gleich nachrechnen werden,

sin(k1 · r− ωt)− sin(k2 · r− ωt)
= 2 sin kxx cos(kzz− ωt) .

(4.7)

Wie Abb. 4.3 zeigt, sind die beiden Wellen bei x = 0
und bei x = a um 180° phasenverschoben, bei x = a/2
aber stets in Phase. Dadurch entsteht die in z-Richtung
durch den Hohlleiter laufende Welle. Die Beträge der
Wellenvektoren sind gleich: k1 = k2 =

√
k2x + k2z . Die Wel-

lenausbreitung in z-Richtung funktioniert offensichtlich
nur, wenn die Vektoren k1 und k2 eine z-Komponente ha-
ben, wenn also k1 = k2 > kx ist. Daraus folgt, dass

ω = ck1 = ck2 > ckx =
cπ
a

sein muss, wie in (2.95) angegeben. – Zur Begründung
von (4.7): Mit kxx = α und kzz − ωt = β sowie mit (4.6)
erhält man

sin(k1 · r− ωt)− sin(k2 · r− ωt)
= sin(α + β)− sin(−α + β)

= sin(α + β) + sin(α − β)

= 2 sin α cos β = 2 sin kxx cos(kzz− ωt) ,

was mit (4.7) identisch ist.

k1 k2

x

z WellentälerWellenberge

Abbildung 4.3 Wellenausbreitung in einem Hohlleiter, dargestellt als Über-
lagerung von zwei ebenen Wellen. Man sieht aus der y-Richtung auf den in
Abb. 2.29 und Abb. 2.31a gezeigten Hohlleiter

4.2 Komplexe Darstellung
von Wellen

Wie bei Schwingungen und wie beim Wechselstrom er-
weist sich auch bei den Wellen die Darstellung durch
komplexe Zahlen mitunter als zweckmäßig, denn mit
Exponentialfunktionen ist leichter zu rechnen als mit
Cosinus- und Sinusfunktionen. Ähnlich wie bei den me-
chanischen Schwingungen (Bd. I/12.5) wird ausgehend
von eiϕ = cos ϕ + i sin ϕ den reellen Wellenfunktionen ein
Imaginärteil hinzugefügt. Man schreibt bei ebenen har-
monischen Wellen statt (1.3) und (4.3):

ψ̌(x, t) = ψ0ei(kx±ωt) , (4.8)

ψ̌(r, t) = ψ0ei(k·r−ωt) (4.9)

und für Kugelwellen statt (4.4):

ψ̌(r, t) = Aei(kr−ωt)

r
. (4.10)

Diese Darstellung ist besonders praktisch, wenn die Am-
plituden von mehreren Wellen gleicher Frequenz, aber
verschiedener Phase zu addieren sind. In diesem Zu-
sammenhang kann man auch die komplexe Amplitude
ψ̌0 einführen, wie schon beim Wechselstrom in Bd. III,
Gl. (17.4). Man schreibt z. B. für eine um den Winkel ϕ
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phasenverschobeneWelle

ψ̌(x, t) = ψ0ei(kx−ωt+ϕ)

= ψ0eiϕei(kx−ωt)b = ψ̌0ei(kx−ωt) .
(4.11)

In der komplexen Amplitude steckt also auch der Phasen-
winkel

ψ̌0 = ψ0eiϕ . (4.12)

Da man den Imaginärteil in (4.8)–(4.11) aus rechentechni-
schen Gründen hinzugefügt hat, muss man ihn vor einer
Anwendung des Rechenergebnisses in der Physik wieder
entfernen, d. h. zum Realteil der Wellenfunktion überge-
hen. Diese Aussage bezieht sich aber zunächst nur auf
Ausdrücke, die linear in der Wellenfunktion sind; bei
quadratischen Ausdrücken, z. B. bei der Berechnung von
Energiedichten, ist Vorsicht geboten. Gehen wir von einer
reellen Wellenfunktion ψ = ψ0 cos(kx− ωt) aus, so ist

ψ2 = ψ2
0 cos

2(kx− ωt) . (4.13)

Das Quadrat der zugehörigen komplexenWellenfunktion
(4.8) ergibt:

ψ̌2 = ψ2
0e

i2(kx−ωt) . (4.14)

Der Realteil ist Re(ψ̌2) = ψ2
0 cos 2(kx−ωt), was von (4.13)

vollkommen verschieden ist. Der zeitliche Mittelwert die-
ser Größe, den man z. B. zur Berechnung der Intensität
braucht, ist Null.Manmuss deshalb anders vorgehen: Um
dasQuadrat der Amplitude der reellenWellenfunktion zu
erhalten, berechnet man das Betragsquadrat von ψ̌, denn
es gilt

∣∣ψ̌∣∣2 = ψ2
0 . (4.15)

Die Intensität einer elektromagnetischen Welle ist dann
nach (3.32)

I =
cε0
2

E2
0 =

cε0
2

∣∣Ě∣∣2 , (4.16)

wobei E0 die Amplitude der gewöhnlichen harmonischen
Welle ist, und Ě die komplexe Wellenfunktion.

Die lineare Kette

Als Beispiel, das zeigt, wie vorteilhaft die komplexe
Schreibweise sein kann, berechnen wir die Wellenausbrei-
tung auf einer linearen Kette von Massenpunkten, die
durch Federn miteinander verbunden sind (Abb. 4.4). Die
Massen m und die Federn sollen alle gleich sein (Länge a,
Federkonstante α). Auf dieser Kette können longitudinale
Wellen laufen wie in dem dünnen Stab in Abb. 2.10. Sie
haben jedoch ganz andere Eigenschaften.

xn−1 xn xn+1

ξn−1 ξn ξn+1

x

m m

a

Federkonstante α

Abbildung 4.4 Longitudinale Welle auf einer linearen Kette. xn = na ist die
Ruhelage, ξn die Auslenkung der n-ten Masse. Gesamtlänge der Kette Na 
 a

ω

k

A A

B B

π
a

− π
a

Abbildung 4.5 Dispersionsrelation der Wellen auf einer linearen Kette. Für
k 	 kmax, d. h. für λ 
 a ist ω ∝ k ; die Wellen sind dann dispersionsfrei

Mit den in Abb. 4.4 angegebenen Bezeichnungen ist die
Bewegungsgleichung der n-ten Masse

m
d2ξn
dt2

= −α(ξn+1 − ξn) + α(ξn − ξn−1)

= −α(2ξn − ξn+1 − ξn−1) .
(4.17)

Der Ansatz ξ̌(x, t) = Aei(kx−ωt) beschreibt eine in x-
Richtung laufende Welle, bei der sich die Massenpunkte
mit der Amplitude A und der Frequenz ω um ihre Ruhe-
lage bewegen.Wir setzen dies mit x = xn = na und ξ = ξn
in (4.17) ein und erhalten

−mω2ei[kxn−ωt] = −α
(
2ei[kxn−ωt] − ei[k(xn+a)−ωt]

− ei[k(xn−a)−ωt]
)

= −αei[kxn−ωt]
(
2− eika − e−ika

)
.

Mit der Euler-Formel eiϕ + e−iϕ = 2 cos ϕ wird daraus

ω2 =
2α

m
(1− cos ka) =

4α

m
sin2

ka
2

, (4.18)

ω(k) =

√
4α

m

∣∣∣∣sin ka
2

∣∣∣∣ . (4.19)

Wir legen den Nullpunkt der x-Achse nach xn und erhal-
ten

ξ(x, t) = Re ξ̌(x, t) = A cos (kx− ω(k)t) .

Während bei den Wellen in Abschn. 2.1 ω ∝ k und somit
die Phasengeschwindigkeit vph = ω/k konstant ist, ist bei
der linearen Kette ω eine nichtlineare Funktion von k: Die
Wellen sind nicht dispersionsfrei. Überdies ist ω eine peri-
odische Funktion von k (Abb. 4.5). Deshalb genügt es, das
Intervall von k = −π/a bis k = kmax = π/a zu betrachten.
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a
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T
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Abbildung 4.6 Auslenkung ξn der Massenpunkte bei longitudinalen Wellen
auf einer linearen Kette. Zur Zeit t = 0: •, zur Zeit t = T/4: ◦. T ist die Periode
der Wellen in (b)–(d)

Die Wellen mit den Wellenzahlen k und k+ 2kmax haben
die gleiche Frequenz ω, siehe die Punkte A und A′ bzw.
B und B′ in Abb. 4.5. Sie führen auch zu den gleichen
Schwingungsformen der linearen Kette.

Tabelle 4.1 Zu Abb. 4.6: Wellenzahlen k , Frequenzen ω und Phasengeschwin-
digkeiten in Abb. 4.6a–d

k ω vph
π

a

√
4α

m
a
π

√
4α

m

π

2a

√
2α

m
a
π

√
8α

m
5π

2a

√
2α

m
a
5π

√
8α

m

3π

2a

√
2α

m
a
3π

√
8α

m

Wie das zustande kommt, zeigt Abb. 4.6. Dort ist zunächst
in Abb. 4.6a die Welle mit kmax undmit der kürzest mögli-
chen Wellenlänge λmin = 2a gezeigt, sodann in Abb. 4.6b
eineWelle mit k = π/2a, λ = 4a. Die Abb. 4.6c und d zeigt
zwei Fälle von k > kmax. Die Auslenkung der Massen-
punkte ist in beiden Fällen die gleiche wie in Abb. 4.6b,
und zwar nicht nur zur Zeit t = 0, sondern auch zu ei-
nem späteren Zeitpunkt. Höchst bemerkenswert ist dabei,
dass die nach +x laufende Welle mit k = 3π/2a äquiva-
lent zu einer nach −x laufenden Welle mit k = π/2a ist.
Das kann man mit Abb. 4.6 im einzelnen verfolgen, wenn
man die in Tab. 4.1 angegebenen Phasengeschwindigkei-
ten berücksichtigt. Die Untersuchung der linearen Kette
ist eine notwendige Vorübung für die Gitterschwingun-
gen in einem Kristall. Wir werden darauf am Ende von
Bd. V/2.2 zurückkommen.

4.3 Wellengruppen und
Wellenpakete

In diesem Abschnitt geht es um die Frage, wie man
mathematisch von unendlich ausgedehnten Wellen zu
Wellenzügen endlicher Länge und zu sehr kurzen Wel-
lengruppen, d. h. zu sogenannten Wellenpaketen kom-
men kann. Wir werden sehen, dass dies gelingt, wenn
man unendlich lange Wellenzüge unterschiedlicher Fre-
quenz einander überlagert. Dabei zeigt sich, dass man zur
Darstellung eines Wellenzugs der Länge Δx Wellen mit
Wellenzahlen in einem Bereich Δk benötigt, und zur Dar-
stellung eines Wellenzugs der zeitlichen Dauer Δt braucht
man Wellen aus einem Frequenzintervall mit der Band-
breite Δω. Zwischen Δx und Δk sowie zwischen Δt und
Δω besteht eine einfache Beziehung, die wir als die klas-
sische Unschärferelation bezeichnen werden.

Zeitabhängige Signale

Wir beginnen mit der Diskussion von Funktionen f (t),
d. h. von Signalen, wie sie von einem irgendwo aufgestell-
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Abbildung 4.7 Eine feste
Frequenz

f(t)

ω0 ω

t

A(ω)

ten Empfangsgerät für Wellen registriert werden können.
Im folgenden ist an einigen Beispielen der Zusammen-
hang zwischen Frequenzspektrum und Signalform darge-
stellt.

Festfrequenz. Das Frequenzspektrum enthält eine einzi-
ge Linie bei der Frequenz ω0 (Abb. 4.7), das „Signal“ ist

f (t) = cosω0t . (4.20)

Schwebungssignal. Das Frequenzspektrum enthält zwei
Linien ω1 und ω2 im Abstand Δω (Abb. 4.8). Das Signal
oszilliert mit der Frequenz ω0 = (ω1 + ω2)/2 und zeigt
das schon von früher bekannte Phänomen der Schwebun-
gen:

f (t) = cosω1t+ cosω2t = 2 cos
Δω

2
t cos ω0t . (4.21)

Die Nullstellen der Einhüllenden haben voneinander den
Abstand

Δt = 2π/Δω .

N Frequenzen im Intervall Δω. Jetzt füllen wir das In-
tervall zwischen ω1 und ω2 mit N − 2 Frequenzen im
konstanten Frequenzabstand δω (Abb. 4.9). Insgesamt ha-
ben wir dann N Frequenzen im Intervall Δω und es gilt:

(N− 1)δω = Δω . (4.22)

Wiewir später beweisenwerden, ergibt die Superposition:

f (t) =
1
N

N−1

∑
n=0

cos(ω1 + nδω)t

=
1
N

sin
(
1
2Nδωt

)

sin
(
1
2 δωt

) cos ω0t = a(t) cosω0t ,

(4.23)

mit ω0 = (ω1+ω2)/2. Die Amplitudenfunktion a(t) ist in
Abb. 4.9 gestrichelt eingezeichnet. Sie enthält einen rasch
oszillierenden Anteil im Zähler und einen langsam oszil-
lierenden im Nenner. Der Nenner wird Null für

1
2

δωt = mπ , m = 0, 1, 2, . . .

t = m
2π

δω
.

(4.24)

A(ω)

f(t)

ω1 ω

t

ω2

Δω

Δt

Abbildung 4.8 Zwei Frequenzen ω1 ≈ ω2:Schwebungssignal

A(ω)

f(t)
ω1 ω

t

ω2

Δω

Δt

ΔT

Abbildung 4.9 N Frequenzen im Intervall Δω

Der Zähler wird Null für

1
2
Nδωt = m′π , m′ = 0, 1, 2, . . .

t = m′ 2π

Nδω
.

(4.25)

Der Betrag der Amplitudenfunktion erreicht seinen Ma-
ximalwert, wenn der Nenner Null wird, also wenn (4.24)
erfüllt ist. Dann istm′ = 0,N, 2N, . . . Wieman durch Diffe-
renzieren von Zähler und Nenner ausrechnen kann (vgl.
Bd. I, Gl. (21.86)), ist bei den Maxima |a| = 1. Zwischen
diesenHauptmaxima liegenN− 1 Nullstellen des Zählers
undN− 2 Nebenmaxima. Die Höhe dieser Nebenmaxima
ist klein verglichen mit der Höhe des Hauptmaximums.
Wennwir sie vernachlässigen, erhalten wir eine Folge von
relativ kurzen Signalen im Zeitabstand

ΔT = 2π/δω ≈ 2πN/Δω (4.26)

mit der Zeitdauer

Δt = 4π/Nδω ≈ 4π/Δω , (4.27)

wobei die Näherungen für N 
 1 gelten.

Kontinuierliches Spektrum im Frequenzbereich Δω. Es
ist nun klar, wie man zu einem einzelnen Signal bzw.
zu einem Wellenpaket kommt (Abb. 4.10): Man muss bei
konstanter Bandbreite Δω die Zahl N der Frequenzen
immer mehr vergrößern, d. h. zu einem kontinuierlichen
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Abbildung 4.10 Konti-
nuierliches Spektrum mit
konstanter Amplitude im Bereich
ω1 ≤ ω ≤ ω2

A(ω)

f(t)

ω1 ω0 ω

t

ω2

Δω

Δt

π
Δω

Abbildung 4.11 Zeitlich be-
grenzter Wellenzug, Δt = 2τ

A(ω)

f(t)

ω0 ω

τ−τ t

Δω

Δt

1/τ

Spektrum und von der Summe (4.23) zu einem Fourier-
Integral übergehen. Da wir uns hier auf gerade Funktio-
nen der Zeit (f (−t) = f (t)) beschränkt haben, brauchen
wir vom Fourier-Integral (1.18) nur den Cosinusterm:

f (t) =
1
π

∞∫
0

A(ω) cosωtdω . (4.28)

Mit dem Frequenzspektrum in Abb. 4.10 erhalten wir

f (t) =
1
π

∞∫
0

A(ω) cosωtdω =
1

Δω

ω2∫
ω1

cosωtdω

=
1

Δωt
(sinω2t− sinω1t) .

(4.29)

Man kann das Ergebnis mit der Formel Bd. I, Gl. (21.63)
für sin α − sin β und mit ω0 = (ω1 + ω2)/2 in folgender
Form schreiben:

f (t) =
sin

(
1
2Δωt

)
1
2Δωt

cosω0t . (4.30)

Die in Abb. 4.10 definierte Dauer des Signals ist

Δt = 4π/Δω . (4.31)

Zeitlich begrenzter Wellenzug konstanter Amplitude.
Wie wir soeben gesehen haben, gehört zu einem rechte-
ckigen Frequenzspektrum, zentriert um die Frequenz ω0,
ein Wellenpaket, dessen Einhüllende durch die Funktion
sin x/x (mit x = 1

2Δωt) gegeben ist. Umgekehrt gehört zu

einem rechteckigenWellenpaket der Frequenz ω0 ein Fre-
quenzspektrum der Form sin x/x, das um ω0 zentriert ist
(Abb. 4.11):

A(ω) =
sin [(ω − ω0)Δt/2]

(ω − ω0)Δt/2
. (4.32)

Man berechnet A(ω) mit (1.19), indem man f (t) =
(1/τ) cosω0t setzt und von −τ bis +τ integriert.1 Auch
hier kommt man auf die Beziehung (4.31).

Gaußsche Signalform. Der Vergleich von Abb. 4.10 und
Abb. 4.11 legt die Vermutung nahe, dass es zwischen bei-
den Fällen ein Zwischending geben sollte: ein Frequenz-
spektrum in Form einer Glockenkurve ohne oszillierende
Ausläufer (Abb. 4.12), welches ein Signal derselben Form
ergibt. In der Tat hat die Gaußkurve diese Eigenschaft.
Setzt man in (4.28)

A(ω) = e−(ω−ω0)
2/2σ2

ω , (4.33)

so erhält man mit einer etwas längeren Rechnung2

f (t) =
1√
2πσ2

t

e−t2/2σ2
t cosω0t . (4.34)

1 Bei der Berechnung ergibt sich noch ein zweiter Term mit ω + ω0
statt ω − ω0. Da jedoch die Funktion sin x/x für große Werte von x
praktisch Null ist, kann dieser Term gewöhnlich vernachlässigt wer-
den.
2 Zur Berechnung des Integrals (4.28) setzen wir cosωt = 1

2 (e
iωt +

e−iωt) und erhalten mit (4.33)

f (t) =
1
2π

⎡
⎣

∞∫
0

e−[(ω−ω0)
2−i2σ2ωωt]/2σ2ω dω

+

∞∫
0

e−[(ω−ω0)
2+i2σ2ω ωt]/2σ2ω dω

⎤
⎦ .

Den Exponenten im ersten Integral schreiben wir −(ω2 − 2(ω0 +
iσ2

ωt)ω + ω2
0)/2σ2

ω. Wir addieren und subtrahieren im Zähler (ω0 +

iσ2
ωt)

2 und erhalten

− (ω − ω0 − iσ2
ωt)

2 + ω2
0 − ω2

0 − 2iω0σ2
ωt+ σ4

ωt
2

2σ2
ω

.

Mit (ω − ω0 − iσ2
ωt)/

√
2σω = u und dω =

√
2σω du ergibt dann das

erste Integral

∞∫
0

e−(...) dω = eiω0te−
σ2ωt2
2

∞∫
0

e−u2 du .

In einer Integraltafel findet man
∫ ∞
0 e−u2 du =

√
π/2. Das zweite In-

tegral führt auf das gleiche Ergebnis, jedoch mit dem Faktor e−iω0t.
Wenn man σω = 1/σt setzt, erhält man (4.34).
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Abbildung 4.12 Zu (4.33) und
(4.34): Gaußsches Signal

A(ω)

f(t)
ω0 ω

σt

σω

t

Die Rechnung führt auf die folgende Relation zwischen σt
und σω :

σt = 1/σω . (4.35)

Das Produkt aus Bandbreite und Signaldauer ist also wie
in (4.27) konstant.

Wellenpakete im Raum

Die bisher betrachteten Signale f (t) können in einem
Empfänger registriert werden, wenn ein Wellenzug be-
grenzter Länge, ein Wellenpaket, vom Sender zum Emp-
fänger läuft. Wir betrachten die räumliche Struktur von
Wellenpaketen nur in einer Dimension, der Ausbreitungs-
richtung (= x-Richtung). Unsere Wellenpakete sind also
ebeneWellen in Form einer flachen Scheibe, deren Ampli-
tude nur in einem engen Raumbereich Δx wesentlich von
Null verschieden ist. Man kann auch Wellenpakete kon-
struieren, die in allen drei Raumrichtungen eingeschränkt
sind; das Wesentliche lässt sich jedoch im eindimensiona-
len Fall erkennen.

Um die mathematische Darstellung für eine Momentauf-
nahme eines eindimensionalen Wellenzugs oder Wellen-
pakets zu erhalten, brauchen wir bloß in (4.20)–(4.35) die
Frequenz ω durch die Wellenzahl k und die Zeit t durch
die Koordinate x zu ersetzen. Für ein gaußförmiges Signal
zur Zeit t = 0 erhalten wir beispielsweise

A(k) ∝ e−(k−k0)2/2σ2
k (Wellenzahlspektrum) (4.36)

f (x) ∝ e−x2/2σ2
x cos k0x (Signalform) (4.37)

Auch hier gilt σkσx = 1: Je breiter das Wellenzahlspek-
trum, desto schmaler das Signal. Soll das Signal nicht bei
x = 0 zentriert sein, sondern bei der Koordinate x0, ersetzt
man einfach x durch x− x0:

f (x) ∝ e−(x−x0)2/2σ2
x cos

(
k0(x− x0)

)
. (4.38)

Entsprechend kannman dieWellengruppe (4.23) oder das
Wellenpaket (4.30) räumlich darstellen; in diesen Fällen

gilt analog zu (4.27) und (4.31)

ΔkΔx = 4π . (4.39)

Die Darstellung eines raum-zeitlich laufenden Wellen-
pakets bereitet keine Schwierigkeiten, jedenfalls solange
die Wellen dispersionsfrei sind. Wir ersetzen nunmehr x
durch x − vt, wobei v = ω/k die Wellengeschwindigkeit
ist. Für ein Gaußsches Wellenpaket, kurz Gauß-Paket
genannt, erhalten wir

f (x, t) =
1
π

∞∫
0

A(k) cos k(x− vt)dk

= e−(x−vt)2/2σ2
x cos k0(x− vt) ,

mit A(k) = e−(k−k0)2/2σ2
k , σx = 1/σk . (4.40)

Die Funktion f (x, t) ist in Abb. 4.13 dargestellt. Sind die
Wellen nicht dispersionsfrei, d. h. pflanzen sich die einzel-
nen Teilwellen mit etwas unterschiedlicher Geschwindig-
keit fort, so geraten die Phasen alsbald auseinander, das
Wellenpaket verbreitert sich und „zerfließt“, wie schon in
Abschn. 1.4 angesprochen. Dann wird alles komplizierter.
Wir werden das später genauer studieren (Bd. V/3.7).

Die klassische Unschärferelation

Ein hervorstechendes Merkmal aller Wellengruppen und
Wellenpakete ist der Zusammenhang zwischen der spek-
tralen Breite und der zeitlichen oder räumlichen Breite
des Signals, den wir u. a. schon bei (4.27), (4.31), (4.35)
und (4.39) diskutiert haben: Das Produkt aus Bandbrei-
te und Signalbreite ist konstant. Der genaue Wert dieser
Konstanten hängt von der Form des Signals und der
Definition der „Breite“ ab. Häufig verwendet man die
Halbwertsbreiten statt der in Abb. 4.9 und Abb. 4.10
eingezeichneten Basisbreiten. Mit Δt (Basis) ≈ 2Δt (Halb-
wert) und Δω (Basis) = Δω (Halbwert) erhält man statt
(4.31) und (4.39) mit ν = ω/2π

ΔωΔt ≈ 2π , ΔνΔt ≈ 1 , ΔkΔx ≈ 2π . (4.41)

Diese wichtigen Beziehungen werden als die klassische
Unschärferelation bezeichnet.

Abbildung 4.13 Gaußsches
Wellenpaket nach (4.40)

f(x,t) v

x



4.4 Die Fourier-Transformation 75

Te
il
I

Wenn die Signalform festliegt und die „Breite“ genau defi-
niert ist, erhält man natürlich statt der Näherungsformeln
(4.41) exakte Gleichungen. Zum Beispiel gilt bei gaußför-
migen Signalen nach (4.35) und (4.40)

ΔωΔt = 1 , ΔkΔx = 1 , (4.42)

wenn man als Breiten die Standardabweichungen σ der
Gauß-Funktionen definiert. Die Halbwertsbreite einer
Gaußkurve ist 2,36 mal größer als die Standardabwei-
chung σ, und es ist 2,362 = 5,6 ≈ 2π; also ist (4.42) mit
(4.41) verträglich.

Zu (4.23)

Wir wollen hier die Berechnung von (4.23) nachtragen,
denn diese Formel spielt bei verschiedenen Problemen
derWellenausbreitung eine Rolle. Zunächst gehenwir zur
komplexen Schreibweise über und erhalten damit an Stel-
le der Summe in (4.23)

f̌ (t) =
1
N

N−1

∑
n=0

ei(ω1+nδω)t = eiω1t
N−1

∑
n=0

einδωt . (4.43)

Der Faktor eiω1t kann ausgeklammert werden. Die ver-
bleibende Summe ist eine endliche geometrische Reihe
der Form

N−1

∑
n=0

einϕ = 1+ eiϕ +
(
eiϕ
)2

+ . . .+
(
eiϕ
)N−1

. (4.44)

Sie kann ohne weiteres aufsummiert werden (siehe Bd. I,
Gl. (21.64)). Das Ergebnis ist

N−1

∑
n=0

einϕ =
1− eiNϕ

1− eiϕ
.

Nun wenden wir einen Trick an und schreiben:

1− eiNϕ

1− eiϕ
=

eiNϕ/2

eiϕ/2
e−iNϕ/2 − eiNϕ/2

e−iϕ/2 − eiϕ/2

= ei(N−1)ϕ/2 sin(Nϕ/2)
sin(ϕ/2)

.
(4.45)

Setzen wir dies mit ϕ = δωt in (4.43) ein, so ergibt sich

f̌ (t) =
1
N
ei(ω1t+(N−1)δωt/2)

sin
(
1
2Nδωt

)

sin
(
1
2 δωt

) . (4.46)

Nun ist nach (4.22) (N − 1)δω = Δω, also ist der Expo-
nent i(ω1 + Δω/2)t = iω0t. Wir bilden den Realteil und

sin x/x

x

π

1,0

0,5

−0,217

0,128

10−10 −5−15 0 5 15

2π
3π

4π

−0,091

0,071

Abbildung 4.14 Die Funktion sin x/x

erhalten schließlich in Übereinstimmungmit (4.23):

f (t) = Re
(
f̌ (t)

)
=

1
N

cosω0t
sin

(
1
2Nδωt

)

sin
(
1
2 δωt

) . (4.47)

Damit ist mathematisch das Zustandekommen der in
Abb. 4.9 gezeigten Funktion f (t) geklärt.

Man kann übrigens einen Grenzübergang durchführen,
mit dem man direkt von (4.23) nach (4.30) gelangt. Für
N → ∞, δω → 0 mit der Nebenbedingung Nδω = Δω =
const erhalten wir

1
N

sin
(
1
2Nδωt

)
sin 1

2 δωt
→

sin
(
1
2Δωt

)
1
2Δωt

, (4.48)

denn es ist sin x ≈ x für kleine Werte von x. Die hier auf-
tretende Funktion sin x/x ist in Abb. 4.14 maßstäblich
dargestellt. Den Verlauf dieser Kurve sollte man sich mer-
ken. Sie wird uns in der Physik der Wellen noch häufig
begegnen.

4.4 Die Fourier-Transformation

Die Verknüpfungen zwischen der Funktion f (t) und den
Funktionen A(ω) und B(ω) in (1.19) bezeichnet man
auch als Fourier-Transformationen. Man nennt die Be-
rechnung von A(ω) aus f (t) eine Fourier-Cosinustrans-
formation, und die entsprechende Formel mit B(ω) und
sinωt eine Fourier-Sinustransformation. Gewöhnlich be-
zeichnet man jedoch als Fourier-Transformation die Glei-
chung, die entsteht, wennman von vornherein cosωt und
sinωt zu eiωt zusammenfasst. Mit der Definition

F(ω) = A(ω) + iB(ω) (4.49)



76 4 Weiteres zur mathematischen Darstellung von Wellen

Abbildung 4.15 a Exponen-
tiell gedämpfte Schwingung,
b Lorentz-Kurve

f(t)

Re F(ω)

ω0 ω

t

a

b

und mit (1.19) erhält man dann

F(ω) =

+∞∫
−∞

f (t)eiωt dt . (4.50)

Wie berechnet man nun f (t) aus F(ω)? Es ist A(ω) = (F+
F∗)/2 und B(ω) = (F− F∗)/2i. Setzen wir dies in (1.18)
ein, erhalten wir

f (t) =
1
2π

[ ∞∫

0

(F+ F∗) cosωtdω

− i
∞∫
0

(F− F∗) sinωtdω

]
,

f (t) =
1
2π

[ ∞∫
0

F(ω)e−iωt dω

+

∞∫
0

F∗(ω)eiωt dω

]
.

(4.51)

Nun ist F∗(ω) = A(ω) − iB(ω) = A(−ω) + iB(−ω) =
F(−ω), denn A ist eine gerade Funktion von ω, und B
eine ungerade. Macht man also im zweiten Integral die
Substitution u = −ω, so erhält man

∞∫

0

F∗(ω)eiωt dω = −
−∞∫

0

F(u)e−iut du

=

0∫
−∞

(
F(u)e−iut

)
du .

Auf die Bezeichnung der Integrationsvariablen kommt es
nicht an. Wir setzen ω statt u und erhalten schließlich

f (t) =
1
2π

+∞∫
−∞

F(ω)e−iωtdω . (4.52)

Die Funktionen f (t) und F(ω) können durch Fourier-
Transformationen ineinander übergeführt werden, sie bil-
den ein Fourier-Paar. Gewöhnlich bezeichnet man (4.50)
als Fourier-Transformation und (4.52) als die inverse
Fourier-Transformation. Die Gleichungen sind fast, aber
nicht ganz symmetrisch.3 In symbolischer Form schreibt
man auch

F(ω) = F
{
f (t)

}
, f (t) = F−1{F(ω)

}
. (4.53)

Man kann die Fourier-Transformation ebenso bei Funktio-
nen der Ortskoordinate x anwenden. x tritt an die Stelle
der Zeit t, und die Frequenz ω = 2π/T wird durch die
Wellenzahl k = 2π/L ersetzt. L ist die räumliche Periode
der betreffenden Sinus- und Cosinusfunktionen. Man be-
zeichnet k in diesem Zusammenhang auch als die Raum-
frequenz oder Ortsfrequenz. Da das Argument bei einer
in x-Richtung fortschreitenden Welle (kx − ωt) ist, ist es
zweckmäßig, bei der Darstellung von Ortsfunktionen in
den Exponenten von (4.52) und (4.50) die Vorzeichen zu
vertauschen:

f (x) =
1
2π

+∞∫
−∞

F(k)eikx dk ,

F(k) =
+∞∫

−∞

f (x)e−ikx dx .

(4.54)

Ein Beispiel. Als Beispiel zu (4.50) berechnen wir die
Fourier-Transformierte der in Abb. 4.15a gezeigten Funk-
tion

f (t) = f0e−Γ/2t cosω0t für t > 0 ,
f (t) = 0 für t < 0 .

(4.55)

Mit cos ϕ = 1
2 (e

iϕ + e−iϕ) und mit (4.50) erhält man

F(ω) =
f0
2

∞∫
0

[
e(−Γ/2+iω0+iω)t + e(−Γ/2−iω0+iω)t

]
dt

=
f0
2

∞∫
0

e−[Γ/2−i(ω+ω0)]t dt+
f0
2

∞∫
0

e−[Γ/2−i(ω−ω0)]t dt

=
f0
2

[
1

Γ/2− i(ω + ω0)
+

1
Γ/2− i(ω − ω0)

]
.

(4.56)

3 Man findet in der Literatur verschiedene Schreibweisen für (4.50)
und (4.52). Man kann z. B. den Faktor 1/2π in die Definition von
F(ω) aufnehmen: F′(ω) = F(ω)/2π. Dann verschwindet er in (4.52),
taucht aber in (4.50) wieder auf. Man kann ihn auch symmetrisch
auf die beiden Gleichungen verteilen: Dannmuss man zweimal

√
2π

statt einmal 2π schreiben. Auch die Vorzeichen im Exponenten sind
Definitionssache: Schreibt man in (4.49) Minus statt Plus, werden sie
in (4.50) und (4.52) vertauscht. Auf jeden Fall sind die Vorzeichen der
Exponenten in diesen beiden Gleichungen verschieden.
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Für schwache Dämpfung (Γ 	 ω0) hat diese Funktion
zwei weit auseinander liegende, schmale Maxima, ei-
nes bei ω < 0 und eines bei ω > 0. Wir untersuchen das
Frequenzspektrum für ω ≈ ω0. Dort ist der erste Term
vernachlässigbar. Es folgt:

F(ω) =
f0
2

1
Γ/2− i(ω − ω0)

=
f0
2

Γ/2+ i(ω − ω0)

Γ2/4+ (ω − ω0)2
.

Um die reelle Funktion f (x) zurückzuerhalten, benötigt
man in (4.54) sowohl den Realteil als auch den Imaginär-
teil von F(ω):

f (x) =
1
2π

+∞∫
−∞

(ReF(ω) cos kx− ImF(ω) sin kx)dk .

Das Frequenzspektrum des Signals (4.55) ist also gegeben
durch die zwei Funktionen

ReF(ω) =
f0
Γ

Γ2/4
(ω − ω0)2 + Γ2/4

,

ImF(ω) =
f0
2

ω − ω0

(ω − ω0)2 + Γ2/4
,

(4.57)

wobei man den ersten Term den absorptiven und den
zweiten Term den dispersiven Anteil von F nennt. Mit
(4.16) kann man auch ausrechnen, wie sich die Energie
auf die verschiedenen Frequenzen verteilt. Das Leistungs-
spektrum des exponentiell abklingenden Signals ist gege-
ben durch

∣∣F(ω)
∣∣2 = f 20

4
Γ2/4+ (ω − ω0)

2

(Γ2/4+ (ω − ω0)2)
2

=
f 20
Γ2

γ2

(ω0 − ω)2 + γ2 ,

(4.58)

wobei γ = Γ/2 ist. Wir finden eine Lorentz-Kurve
(Abb. 4.15b). In diese Form geht bei der erzwunge-
nen Schwingung die Resonanzkurve im Fall schwa-
cher Dämpfung Γ 	 ω0 über, wie in Bd. I/12.3 vor-
gerechnet ist. Gleichung (4.58) ist ein bemerkenswertes
Resultat, das uns im Zusammenhang mit der Licht-
emission durch Atome noch mehrfach beschäftigen
wird.

Zur Formulierung der Unschärferelation geht man hier
von der Halbwertsbreite der Lorentz-Kurve aus. Es ist
|F(ω)|2 = |F(ω0)|2/2 für |ω −ω0| = Γ/2. Die Halbwerts-
breite ist also

(Δω)HWB = Γ =
1
τE

. (4.59)

τE ist die Abklingzeitkonstante der Energie, denn letztere
ist proportional zu e−Γt. Für die Frequenz ν gilt also

(Δν)HWB =
1

2πτE
. (4.60)

Auch diese Gleichungen gelten exakt, wie (4.42).

Fourier-Transformationen sind in weiten Bereichen der
mathematischen Physik, der Naturwissenschaft und
Technik sehr wichtig, besonders in der Optik und in
der Bildverarbeitung. So beruht die „Computertomo-
graphie“ in der medizinischen Diagnostik auf einer
raffinierten Anwendung von Fourier-Transformationen.
Wir werden in diesem Buch in Kap. 7 und 8 weite-
ren Gebrauch von Fourier-Transformationen machen. Wir
werden auch zu der Erkenntnis vordringen, dass eine
gewöhnliche Linse als „Fourier-Transformator“ benutzt
werden kann, d. h. als ein Gerät zur Ausführung von
Fourier-Transformationen.
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Übungsaufgaben

Abbildung 4.16 Parallelschal-
tung aus einem Widerstand und
einer Kapazität

R U(t)

I(t)

C

4.1. Wellenzahl-Vektor. Eine Welle mit der Wellenlän-
ge λ = 3m und der Frequenz ν = 108 Hz bewegt sich
unter einem Winkel von 30 Grad relativ zur x-Achse und
60 Grad relativ zur y-Achse eines Kartesischen Koordina-
tensystems. Welchen Wert hat der Wellenzahl-Vektor k?

4.2. Phase eines Wellenfeldes. Zeigen Sie, dass in ei-
nem beliebigen Wellenfeld, in dem der Wellenzahl-Vek-
tor ortsabhängig ist, die Phasendifferenz zwischen den
Raumpunkten r1 und r2 zu einem festen Zeitpunkt gege-
ben ist durch

ϕ2 − ϕ1 =

r2∫
r1

k(r) · dr . (4.61)

Dieses Integral ist unabhängig vom Integrationsweg.

4.3. Fourier-Transformation von Funktionen nach Re-
chenoperationen. Es sei für eine beliebige Funktion f (t)
die komplexe Fourier-Transformierte F(ω) bekannt.

a) Wie ändert sich F(ω), wenn die Funktion zeitlich ver-
schoben wird: f (t+ τ)?

b) Welche Fourier-Transformierte hat die zeitliche Ablei-
tung df (t)/dt einer Funktion? (Machen Sie sich wegen
der Konvergenz des Fourier-Integrals keine Sorge. Die
Mathematik lehrt: Solange die Ableitung mit Ausnahme
einer begrenzten Zahl von Sprüngen stetig und in ihrer
Größe beschränkt ist, gibt es keine Probleme).

c) Es seien für zwei beliebige Funktionen f1(t) und
f2(t) die komplexen Fourier-Transformierten F1(ω) und
F2(ω) bekannt. Die Fourier-Transformierte der „gefalte-
ten“ Funktion

∫ ∞
−∞ f1(t− t′)f2(t′)dt′ ist F1(ω)F2(ω). Wie

kann man sich das durch Einsetzen eines der Fourier-In-
tegrale in dieses Integral plausibel machen?

d) Als Beispiel zu Teil c) studiere man ein RC-Glied
(Abb. 4.16) mit einem komplexen Widerstand (siehe
Bd. III/17.1), in das eine Stromquelle mit großem Innen-
widerstand einen Strom I(t) einspeist. Drücken Sie den

t+τ−τ

a

b

c

d

t−τ

−τ

t

+τ

t

Abbildung 4.17 Einige Funktionen mit Singularitäten

Spannungsabfall durch ein Faltungsintegral aus. Was hat
das Ohmsche Gesetz für Wechselstrom mit den Fourier-
Transformierten des Stroms, des Spannungsabfalls und
der Antwort-Funktion des RC-Glieds auf einen Stromim-
puls zu tun?

4.4. Fourier-Transformierte von Funktionen mit
Sprüngen und Knicken. a) Ermitteln Sie Schritt für
Schritt die komplexen Fourier-Transformierten folgen-
der Funktionen und verwenden Sie dabei für die Fälle (2)
bis (5) die Rechenregeln der vorigen Aufgabe:

(1) abgeschrägte Stufenfunktion der Abb. 4.17a (der kon-
stante Wert für t > 0 ist der Grenzfall der Funktion
e−γt für γ → 0, die Stammfunktion der Funktion xex

ist xex − ex),
(2) Rechteckfunktion zwischen den Zeiten −τ und 0,

(Abb. 4.17b),
(3) Rechteckfunktion zwischen den Zeiten −τ und +τ

(vgl. mit Abb. 1.18 und (1.22)),
(4) abgeschrägte Stufe abwärts (Abb. 4.17c),
(5) symmetrische Dreieckfunktion (Abb. 4.17d).

b) Wie verhalten sich die Fourier-Transformierten von
(1) bis (5) im Grenzfall ω → ∞? Welche Regeln über das
Verhalten der Fourier-Transformierten von Funktionen
mit Sprüngen oder Knicken kann man für den Grenzfall
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ω → ∞ aus obigen Beispielen und denen im Buchtext ab-
lesen?

c) Als weiteres Beispiel ersetze man in Abb. 4.15a die Co-
sinus- durch die Sinus-Funktion und vergleichemit (4.56).
Eine gleichartige Situation hat man in Abb. 4.11.

4.5. Korrespondenz zwischen Fourierpaaren. Da
Fourier-Transformationen umkehrbar sind, muss jede
Information über Strukturen in einer Funktion in irgend
einer Weise in ihrer Fourier-Transformierten wiederzufin-
den sein. Geben Sie die korrespondierenden Parameter

zwischen folgenden Funktionen und ihren Fourier-Trans-
formierten an:

(1) Nadelimpuls zur Zeit t0 (Abb. 4.7),
(2) zwei Nadelimpulse zu den Zeiten −Δτ/2 und Δτ/2

(Abb. 4.8),
(3) Rechteckimpuls der Dauer Δτ, zentriert um die Zeit t0

(Abb. 4.10),
(4) N Nadelimpulse zu den Zeiten t0 − Δτ/2N bis t0 +

Δτ/2N (Abb. 4.9),
(5) Gaußsches Signal mit der Varianz σt, zentriert um die

Zeit t0 (Abb. 4.12).
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Bisher haben wir untersucht, wie die Wellenaus-
breitung in einem Medium einheitlicher Beschaffen-
heit funktioniert. Dabei kam es uns vor allem auf
die physikalische Natur der verschiedenen Wellen-
phänomene an. Wir wollen nun die Ausbreitung
von Wellen unter komplizierteren Bedingungen stu-
dieren. Wir werden auf eine Reihe von neuen Er-
scheinungen stoßen: Brechung, Reflexion, Interfe-
renz und Beugung von Wellen. Diese Phänomene
wurden beim Studium der Lichtausbreitung ent-
deckt, und sie sind auch vor allem im Zusammen-
hang mit sichtbarem Licht von technischer Bedeu-
tung. Man bezeichnet daher das in den folgenden
Kapiteln behandelte Gebiet meist als „Optik“, ob-
gleich die gleichen Phänomene bei Wellen aller Art
auftreten.

Wir beginnen mit Brechung und Reflexion von Licht
an einer ebenen Grenzfläche, die zwei unterschiedli-
che Medien voneinander trennt, und mit dem Huy-
gensschen Prinzip, mit dem man auf einfache Weise
das Verhalten von Wellen beschreiben kann. Dabei
wird der Brechungsindex als die hier maßgebliche
Größe eingeführt. Sodann befassen wir uns mit dem
interessanten Phänomen der Totalreflexion und sei-
nen Anwendungen. Im dritten Abschnitt wird die
Abhängigkeit des Brechungsindex von der Licht-
wellenlänge studiert, die Dispersion des Lichts (vgl.
Abschn. 1.4). Es zeigt sich, dass sie physikalisch eng
verknüpft ist mit der Absorption des Lichts. Mit
einem einfachen Modell können wir die Frequenz-
abhängigkeit des Brechungsindex und des Absorp-
tionskoeffizienten berechnen. Dabei wird ein kom-
plexer Brechungsindex eingeführt, der beide Größen
verbindet. Im letzten Abschnitt untersuchen wir die
Reflexion des Lichts an transparenten Stoffen und an
Metallen. Auch hier leistet der komplexe Brechungs-
index gute Dienste.

5.1 Experimentelle Grundlagen und
Huygenssches Prinzip

Reflexionsgesetz und Brechungsgesetz

Zur Demonstration und zur quantitativen Untersuchung
der Brechung und Reflexion von Licht an einer ebenen
Grenzfläche eignet sich die in Abb. 5.1 gezeigte Anord-
nung. Wir lassen von einer weit entfernten Lichtquelle
durch einen schmalen Spalt Licht auf eine dicke halbkreis-
förmige Glasplatte fallen. Die Platte ist auf ihrem Umfang

βe= β1

90°

90°

60°
60°

30°

30°

0

0

60
°

60
°

30
°

30
°

Medium 1

Medium 1

Medium 2

Medium 2

βr

βr

β2

β1
βe= β2

a

b

Abbildung 5.1 Apparat zur Untersuchung von Brechung und Reflexion
(„Snelliussches Rad“)

allseitig poliert und auf einer Winkelskala montiert. Man
beobachtet, dass der Lichtstrahl an der Grenzfläche so-
wohl reflektiert als auch gebrochen wird. Der einfallende
Strahl und das Lot auf der Grenzfläche definieren die
Einfallsebene. Diese Ebene enthält auch den reflektier-
ten und den gebrochenen Strahl. Durch Verdrehen der
halbkreisförmigen Scheibe kann man als Funktion des
Einfallswinkels βe = β1 den Reflexionswinkel βr und den
Austrittswinkel des gebrochenen Strahls β2 messen.

Für den reflektierten Strahl gilt die einfache Gesetzmäßig-
keit

βr = βe . (5.1)

Das Reflexionsgesetz war schon den alten Griechen be-
kannt; das Brechungsgesetz, das den Winkel β2 angibt,
richtig zu formulieren, gelang erst ca. 1610 dem hollän-
dischen Physiker Willebrord Snel. Auf experimentellem
Wege fand er heraus, dass zwischen β1 und β2 folgender
Zusammenhang besteht:

n1 sin β1 = n2 sin β2 . (5.2)

Wir schreiben hier β1 statt βe, denn das Snelliussche Bre-
chungsgesetz (5.2) gilt in der gleichen Form auch bei
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umgekehrtem Strahlengang, wenn also das Licht vom
Medium 2 in das Medium 1 eintritt (Abb. 5.1b). n1 und n2
sind die Brechungsindizes, Materialkonstanten, die für
die beiden Medien 1 und 2 charakteristisch sind. Für das
Vakuumwird n = 1 durch Definition festgelegt. Gewöhn-
lich ist n > 1; ist n2 > n1, so nennt man den Stoff 2 das
„optisch dichtere Medium“ und den Stoff 1 das „optisch
dünnere Medium“. Wie (5.2) und Abb. 5.1 zeigen, wird
der Lichtstrahl beimÜbergang in das optisch dichtereMe-
dium zum Lot auf der Grenzfläche hin abgelenkt, beim
Übergang ins optisch dünnere Medium dagegen vom Lot
weg gebrochen.

Tabelle 5.1 gibt einige Zahlenwerte für den Brechungs-
index. Er hängt von der chemischen Beschaffenheit und
von der Dichte der Stoffe ab. Für eine bestimmte Substanz
nimmt er mit der Dichte zu; bei Gasen weicht er ge-
wöhnlich nur sehr wenig vom Vakuumwert n = 1 ab, und
(n− 1) ist der Gasdichte proportional. Gewöhnlich wird
der Unterschied zwischen dem „Brechungsindex gegen
Luft“ und dem Brechungsindex n „gegen das Vakuum“
vernachlässigt. Im Übrigen ist der Brechungsindex auch
von der Wellenlänge des Lichts abhängig. Dies werden
wir in Abschn. 5.3 noch genauer diskutieren. Dort wird
auch die in Tab. 5.1 angegebene Größe VD erklärt.

Das Huygenssche Prinzip

Der Gedanke, dass das Licht ein Wellenphänomen sein
könnte, wurde von Francesco Grimaldi in Bologna und
von Robert Hooke in London Mitte des 17. Jahrhun-
derts aufgebracht. Eine Methode, mit dieser Vorstellung
die Ausbreitung des Lichts und insbesondere die Bre-
chung und Reflexion von Licht zu beschreiben, entwi-
ckelte Christiaan Huygens1. Er ging dabei von einem
Prinzip aus, das ganz allgemein ermöglicht, die Ausbrei-
tung von Wellen zu diskutieren und zu berechnen, wenn
die Ausbreitungsgeschwindigkeit der Wellen und zu ir-
gendeinem Zeitpunkt die Form einerWellenfront bekannt
sind. Das Huygenssche Prinzip lautet:

1 Christiaan Huygens (1629–1695) ist uns schon als einer der großen
Pioniere der Mechanik bekannt (Bd. I, Kap. 3 und 4). Er begründe-
te mit seinem „Traité de la lumière“ von 1690 die Wellentheorie des
Lichts. Sie wurde zunächst wenig beachtet. Im 18. Jahrhundert stand
vielmehr Newtons Korpuskulartheorie des Lichts im Vordergrund,
veröffentlicht in Newtons „Opticks“ (1704). Der Grund: Niemand
konnte eine Antwort auf die Frage geben, wie sich die Wellen im
Weltraum ausbreiten sollen, undwie die enorm hohe Lichtgeschwin-
digkeit zustande kommt. Nach (2.36) müsste das Vakuum einen fast
masselosen Stoff mit einem Elastizitätsmodul weit höher als dem
von Stahl enthalten, der überdies weder die Planetenbewegung noch
sonst einen Bewegungsablauf beeinflusst! Da schienen die Lichtteil-
chen schon eher plausibel zu sein, obgleich mit ihnen Brechung und
Dispersion nur mit höchst künstlichen Annahmen erklärt werden
können.

Tabelle 5.1 Brechungsindex und Dispersionsindex verschiedener Stoffe (λ =
589 nm, 20 °C)

Substanz n VD

Luft (NTP) 1,00027 100

Wasser 1,3330 56,4

Benzol 1,5013 29,3

Schwefelkohlenstoff CS2 1,6319 18,4

Borkronglas BK1 1,5100 62,9

Schwerflintglas SF6 1,8065 25,4

Diamant 2,417

Abbildung 5.2 Huygenssche Konstruktion von Wellenfronten

Satz 5.1

Jeder Punkt der Wellenfront kann als Ausgangs-
punkt einer Kugelwelle, auch Elementarwelle ge-
nannt, betrachtet werden. Den Verlauf der Wellen-
front zu einem späteren Zeitpunkt erhält man als
Einhüllende der einzelnen Elementarwellen.

Das Huygenssche Prinzip ermöglicht auch die graphische
Konstruktion der Wellenausbreitung. Abbildung 5.2 zeigt
ein Beispiel. Bei der „Huygensschen Konstruktion“ wer-
den nur die nach vorn (in Ausbreitungsrichtung) laufen-
den halbkugelförmigen Elementarwellen berücksichtigt.
Eine Begründung für diese recht künstliche Annahme
gibt es nicht; wir werden darauf in Abschn. 8.3 zurück-
kommen. Die Elementarwellen breiten sich mit der Wel-
lengeschwindigkeit des betreffenden Mediums aus, was
bei der Konstruktion durch die Radien der Elementarwel-
len berücksichtigt werden kann. Um das Brechungsgesetz
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Abbildung 5.3 Zur Ableitung des Brechungsgesetzes

abzuleiten, ging Huygens von Fermats2 Hypothese aus,
dass die Lichtgeschwindigkeit in einem dichten Medium
um den Faktor 1/n kleiner ist als im Vakuum:

cmed =
c
n
. (5.3)

Das Brechungsgesetz erhielt Huygens mit der in Abb. 5.3
gezeigten Konstruktion. Zum Zeitpunkt t = 0 soll eine
Wellenfront der einfallendenWelle im Punkt A die Grenz-
fläche zwischen den Medien 1 und 2 erreicht haben, und
es beginnt nun von A aus die Emission einer Elementar-
welle in das Medium 2 hinein. Zum Zeitpunkt t = τ hat
dieseWelle den Radius c2τ = cτ/n2. Zu diesemZeitpunkt
hat die Wellenfront im Medium 1 die Strecke c1τ = cτ/n1
zurückgelegt und die Grenzfläche in Punkt B erreicht,
und es beginnt die Emission einer Elementarwelle von B
aus. Während der Zeit τ sind auf der Strecke AB zahl-
reiche Elementarwellen gestartet; die zum Zeitpunkt τ/2
emittierte ist als Beispiel eingezeichnet. Die Einhüllende
dieser Elementarwellen ist durch die Gerade BC gegeben.
In Abb. 5.3 liest man ab:

sin β1 =
c1τ

AB
, sin β2 =

c2τ

AB
. (5.4)

Daraus folgt mit (5.3) das Brechungsgesetz:

sin β1

sin β2
=

c1
c2

=
n2
n1

. (5.5)

2 Auf Fermat und auf die interessante Geschichte des Brechungsge-
setzes kommen wir in Kap. 6 zurück.

βrβe

A Bβrβe

c1τ
c1τ

Abbildung 5.4 Zur Ableitung des Reflexionsgesetzes

In ähnlicher Weise kann man das Reflexionsgesetz (5.1)
ableiten, wie Abb. 5.4 zeigt. Dass überhaupt eine reflek-
tierte Welle entsteht, lässt sich allerdings nicht aus dem
Huygensschen Prinzip folgern, ebensowenig, wie die In-
tensitäten des reflektierten und des gebrochenen Strahls.
Wir werden darauf in Abschn. 5.4 zurückkommen.

Anwendungen

Wir wollen sogleich zwei einfache Anwendungen be-
trachten, bei denen die Brechung von Licht an einer
ebenen Grenzfläche ausgenutzt wird. Abbildung 5.5 zeigt
den Lichtdurchgang durch eine Glasplatte, deren Vorder-
und Rückseite durch parallele Ebenen gebildet werden,
eine sogenannte planparallele Platte. Wenn sich vor und
hinter der Platte das gleiche Medium befindet, ist der
Austrittswinkel gleich dem Einfallswinkel, d. h. der Licht-
strahl wird parallel versetzt. Mit Hilfe des Brechungsge-
setzes berechnet man:

Δ = d sin α

(
1− cos α√

n2 − sin2 α

)
. (5.6)

Wie man der Formel ansieht, ist die Versetzung Δ für klei-
ne Winkel α sehr klein und angenähert proportional zu
α. Diesen Umstand kann man sich zunutze machen, um
durch Verdrehen der Platte eine sehr feine Justierung der
Strahllage zu erreichen.

α

α
Δ

d

Abbildung 5.5 Planparallele Platte
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Abbildung 5.6 a Prisma, symmetrischer Strahlendurchgang; b zur Ableitung
von (5.7)

Als Prisma bezeichnet man in der Optik einen Glaskör-
per, der zwei ebene, polierte und unter einem bestimmten
Winkel α gegeneinander geneigte Flächen enthält. Durch
ein Prisma wird ein Lichtstrahl um einen bestimmten
Winkel γ abgelenkt, den man (mit einiger Mühe) als
Funktion des Einfallswinkel β1 berechnen kann.3 Sehr
einfach ist die Berechnung des Ablenkwinkels bei sym-
metrischem Durchgang des Lichtstrahls, der sich übri-
gens auch als Winkel der minimalen Ablenkung erweist
(Abb. 5.6). In diesem Fall gilt

β2 =
α

2
,

denn der Winkel δ ergänzt sowohl β2 als auch α/2 zu 90°.
Daraus folgt mit dem Brechungsgesetz (5.2) und mit β1 =
γ/2+ β2

sin
γ + α

2
= n sin

α

2
,

γ = 2 arcsin
(
n sin

α

2

)
− α .

(5.7)

Hier ist n der Brechungsindex des Prismas. Für kleine
Winkel α und damit kleine Winkel γ gilt die Näherung:

γ ≈ (n− 1)α . (5.8)

Da der Brechungsindex für verschiedene Lichtwellenlän-
gen etwas unterschiedlich ist, kannmanmit einem Prisma

3 Das Ergebnis ist

γ = β1+ arcsin
[
sin α

√
n2 − sin2 β1 − cos α sin β1

]
− α.

die Zerlegung des Lichts nach Wellenlängen bewirken.
Wir werden darauf in Abschn. 5.3 und in Abschn. 6.4 zu-
rückkommen.

5.2 Totalreflexion

Findet der Übergang des Lichts vom optisch dünneren
ins optisch dichtere Medium statt, so lässt sich für jeden
Einfallswinkel β1 das Brechungsgesetz erfüllen. Wegen
n1/n2 < 1 gibt es immer einen Winkel β2, der die Glei-
chung

sin β2 =
n1
n2

sin β1

befriedigt. Das ist nicht so, wenn der Übergang vom op-
tisch dichteren ins optisch dünnere Medium erfolgt. Da
sin β2 ≤ 1 sein muss, gibt es keinen gebrochenen Strahl
mehr, sobald n1 sin β1/n2 > 1 wird, d. h. wenn

sin β1 >
n2
n1

(5.9)

ist. In diesem Falle wird das einfallende Licht vollständig
reflektiert, es tritt Totalreflexion ein (Abb. 5.7). Grenzt ein
Medium mit dem Brechungsindex n ans Vakuum, so lau-
tet die Bedingung für Totalreflexion

sin β1 > sin βT = 1/n . (5.10)

βT heißt der Totalreflexionswinkel des Mediums. Beim
Übergang Wasser–Luft (n1 = 1,33 und n2 ≈ 1) erfolgt To-
talreflexion bei β1 > 48,7°. Es ist reizvoll, sich mit einer
Tauchermaske bei sehr ruhigem Wasser auf den Grund
eines Schwimmbeckens zu setzen und seine Umwelt zu
betrachten. Man kann dann testen, ob man sich richtig
überlegt hat, wie die Welt aus dieser Froschperspektive
aussieht.

Auch bei Totalreflexion hört die Welle nicht abrupt an
der Grenzfläche auf: Sie dringt noch mit einer Eindring-
tiefe von der Größenordnung einer Wellenlänge in das

n2

n1

n2
n1

Medium 1

Medium 2

β1

βT = arc sin

Abbildung 5.7 Totalreflexion (n1 > n2)
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Abbildung 5.8 Eindringtiefe bei der Totalreflexion von Mikrowellen

SS
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Abbildung 5.9 Wellenfronten der einfallenden, der reflektierten und der eva-
neszenten Welle. Die Strichdicke deutet die Amplitude der Welle an

nach dem Brechungsgesetz „verbotene“ Medium ein.
Man kann das leicht an einem gebündelten Strahl von
Mikrowellen (λ ≈ 2 cm) mit Hilfe von zwei 90°-Prismen
aus Paraffin nachweisen (Abb. 5.8). Der Brechungsindex
ist n = 1,46, so dass bei einem Einfallswinkel von 45°
an der Grenzfläche Paraffin–Luft Totalreflexion vorliegt.
Dementsprechend weist in der Konfiguration (a) der De-
tektor I die volle Intensität nach, während der Detektor II
die Intensität 0 anzeigt.Wird dagegen das zweite Paraffin-
Prisma mit einem Abstand d 	 λ hinter das erste gestellt,
so zeigt Detektor I nichts mehr an, während Detektor II
die volle Intensität nachweist. Durch Veränderung der
Spaltbreite d kann man einen kontinuierlichen Übergang
zwischen (a) und (b) erreichen.

Die bei der Totalreflexion in den „verbotenen“ Bereich
eindringende Welle nennt man auch die evaneszente
Welle (Abb. 5.9). Ihre Amplitude nimmt exponentiell mit
dem Abstand von der Grenzfläche ab; der Energiefluss ist
parallel zur Grenzfläche. ZweiMedien, z. B. zwei Glaskör-
per oder ein Glaskörper und eine Plastikfolie, sind nur
dann in „optischem Kontakt“, wenn der Spalt zwischen
den beiden Medien klein gegen die Lichtwellenlänge ist.

Nur bei aufgedampften Schichten und beim Übergang
Festkörper–Flüssigkeit ist der optische Kontakt automa-
tisch gewährleistet.

Anwendungen der Totalreflexion

Reflektierende Prismen. Es gibt eine Vielzahl von An-
wendungen, in denen die Totalreflexion in einem Prisma
zur Ablenkung eines Lichtstrahls um einen bestimmten
Winkel oder zur Bildumkehr verwendet wird. Wir be-
gnügen uns mit zwei Beispielen. Abbildung 5.10 zeigt
als Beispiel einen sogenannten Tripelspiegel. Er entsteht
im Prinzip dadurch, dass man von einem Würfel die
Ecke abschneidet (Abb. 5.10). Er hat die Eigenschaft, dass
er einen durch die Schnittfläche eintretenden Lichtstrahl
nach dreimaliger Totalreflexion in seine Ausgangsrich-
tung zurückwirft. Die in der Verkehrstechnik eingesetzten
Rückstrahler basieren auf diesem Prinzip. Ein weiteres
Beispiel aus der Wunderwelt der reflektierenden Prismen
ist in Abb. 5.11 gezeigt. Blickt man durch ein Dove-
Prisma, so sieht man infolge der Spiegelung an der Ba-
sisfläche die Welt auf dem Kopfe stehend, aber nicht
seitenverkehrt. Drehtman das Prisma um seine Längsach-
se, so rotiert das Koordinatensystem (x′, y′) doppelt so
schnell wie das Prisma!

Lichtleiter und Fiberoptik. Man kann aufgrund der To-
talreflexion auf komplizierten Wegen Licht durch einen
gekrümmten, allseitig polierten Plexiglasstab leiten. Von
solchen Lichtleitern wird z. B. in der Teilchenphysik Ge-
brauch gemacht, um das Licht von einem Szintillator auf
den Photomultiplier zu bringen (Abb. 5.12). Im Prinzip

Abbildung 5.10 Tripelspiegel

x
90°

y

y
x

Abbildung 5.11 Dove-Prisma
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Abbildung 5.12 Szintillations-
zähler mit Lichtleiter
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material

Photo-
multiplier

ließe sich Licht auf diese Weise über große Entfernungen
transportieren; auch könnte man aus dünnen Glasfasern
flexible Lichtleiter aufbauen, denn die Totalreflexion er-
folgt verlustfrei. In der Praxis erwies es sich jedoch als
sehr schwierig, Oberflächen hinreichend sauber herzu-
stellen und zu erhalten. Der Durchbruch gelang erst mit
der Entwicklung ummantelter optischer Fasern, bei de-
nen die totalreflektierende Oberfläche im Innern des Ma-
terials liegt (Abb. 5.13). Die gebräuchlichste Art ist der
Typ (a), ein sogenannter Multimoden-Lichtwellenleiter,
so genannt, weil das Licht auf vielen verschiedenen We-
gen durch den Kern des Lichtleiters gelangen kann. Zwei
mögliche Wege sind in Abb. 5.13 eingezeichnet. Im Kern
der Faser kann Licht durch Totalreflexion transportiert
werden, solange

sin β ≥ nM/nK (5.11)

ist. nM ist der Brechungsindex des Mantels, nK der des
Kerns. Für den maximalen Einfallswinkel αmax gilt nach
(5.2) und (5.9):

n0 sin αmax = nK
√

1− sin2 βmin =
√

n2K − n2M ,

denn es ist sin α′ = cos β. Mit nK = 1,6, nM = 1,5 und n0 ≈
1 (Luft) erreicht man z. B. αmax = 34°.

Indem man einige 1000 Fasern dieser Art sorgfältig auf-
einanderschichtet und an beiden Enden des Bündels eine
Linse aufklebt, kann man einen flexiblen Lichtleiter kon-
struieren, in dem mit guter Auflösung Bilder übertragen
werden können. Man kann mit einem solchen Endoskop
in unzugängliche Hohlräume hineinschauen, wovon heu-
te in der Technik und in der Medizin ausgiebig Gebrauch
gemacht wird. Vielleicht noch wichtiger sind die Anwen-
dungen der Fiberoptik in der Nachrichtentechnik. Man

nM

ca. 5µm

ca. 50µm

ca. 100µm

a

b

c

α

α

β = π − α2

nK

Abbildung 5.13 Lichtwellenleiter für „Fiber-Optik“:aMultimoden-Fiber,b Fi-
ber mit in radialer Richtung abnehmendem nK, c Ein-Moden-Fiber

kann im Prinzip mit der hohen Frequenz der Lichtwelle
sehr große Datenflüsse übertragen. Signalraten im Be-
reich von 109 bit/s sind möglich. (Zum Vergleich: auf
einer normalen Telefonleitung können 3× 104 bit/s über-
tragenwerden). Bei fiberoptischenKabeln, die für größere
Entfernungen tauglich sein sollen, sind jedoch zwei Pro-
bleme zu lösen: Erstens muss die Lichtabsorption genü-
gend klein sein. Hier erreicht man heute mit Quarzfasern
höchster Reinheit Dämpfungen von ca. 0,2 dB/km bei der
Wellenlänge λ = 1,59µm. Damit sind nach 50km noch
10% der Leistung vorhanden. Zweitens müssen die Lauf-
zeitdifferenzen aufgrund verschiedener Lichtwege klein
sein, damit aufeinanderfolgende Signale am Ende noch
getrennt registriert werden. In einem Kabel vom Typ (a)
betragen die Laufzeitdifferenzen zwischen den verschie-
denen Lichtwegen

ΔT
L

=
nK
c

(
nK
nM

− 1
)
,

wie man mit (5.11) ausrechnen kann. Man kommt leicht
in den Bereich von ΔT/L ≈ 100 ns/km. Damit ist die
Übertragungsrate bei einer Kabellänge L ≈ 1 km auf ca.
106 bit/s begrenzt. Wesentlich günstiger ist der Typ (b) in
Abb. 5.13. Durch den nach außen hin kontinuierlich ab-
nehmenden Brechungsindex kann man ΔT/L auf einige
ns/km reduzieren. Am günstigsten (und am teuersten) ist
der Typ (c), der sogenannte Ein-Moden-Lichtwellenleiter.
Bei sehr kleinen Kerndurchmessern spielt die Wellenlän-
ge des Lichts eine Rolle. Wie beim Hohlleiter kann sich
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bei richtiger Dimensionierung der Faser nur noch die
Grundwelle ausbreiten. Es gibt dann keine Laufzeitdiffe-
renzen mehr, vorausgesetzt, es wird monochromatisches
Licht verwendet. Das ist aber in der Praxis der Fall: Man
verwendet zur Datenübertragung als Lichtquelle Halblei-
terlaser (Bd. V, Abb. 2.28), derenWellenlänge genau in das
Minimum der Absorption des Quarzes bei 1,59µm fällt.

5.3 Dispersion und Absorption

Mit der Dispersion von Wellen hatten wir uns schon in
Abschn. 1.4 befasst. In Kap. 2 haben wir die Dispersion
von Wasserwellen besprochen; nun wollen wir die Di-
spersion von elektromagnetischenWellen untersuchen.

Fällt ein weißer Lichtstrahl auf ein Prisma, so wird er in
Farben zerlegt, wie in Abb. 5.14 gezeigt ist (vgl. Tab. 3.3).
Das beruht darauf, dass sich Weißlicht, z. B. das Sonnen-
licht, als Überlagerung von Licht verschiedener Wellen-
längen erweist, und dass im Material des Prismas die
Phasengeschwindigkeit der Lichtwellen und damit auch
der Brechungsindex von der Wellenlänge abhängt. Ro-
tes Licht (λ ≈ 700 nm) wird am schwächsten, violettes
(λ ≈ 420 nm) am stärksten gebrochen, der Brechungsin-
dex nimmt also mit abnehmender Wellenlänge zu. Dieser
Verlauf wird in der Optik als normale Dispersion be-
zeichnet.

Die Abhängigkeit des Brechungsindex von derWellenlän-
ge ist im sichtbaren Spektralbereich gewöhnlich klein, wie
Tab. 5.2 an einigen Beispielen zeigt. Als Maß für die Di-
spersion eines Materials gibt man den Dispersionsindex,

rot
orange
gelb
grün
blau
violett

weiß

Abbildung 5.14 Spektrale Zerlegung des weißen Lichts in einem Prisma
(schematisch)

Tabelle 5.2 Brechungsindex von Wasser und von optischen Gläsern im sicht-
baren Spektralbereich

λ
(nm)

Wasser
H2O

Kronglas
K3

Schwerflintglas
SF4

706,5 1,3300 1,5140 1,7430

643,8 1,3314 1,5160 1,7485

589,3 1,3330 1,5182 1,7550

480,0 1,3374 1,5249 1,7764

404,7 1,3427 1,5331 1,8059

Tabelle 5.3 Statische Dielektrizitätskonstante ε und Brechungsindex (λ =
589 nm, 20 °C)

Substanz ε n2

Polare Moleküle

H2O (flüssig) 80,3 1,77

NH3 (flüssig) 17,4 1,76

Ionenbindung

KCl 4,94 2,20

Glas (BK 1) 6,2 2,28

homöopolare Bindung

Benzol 2,28 2,25

CS2 2,64 2,66

auch Abbe-Zahl genannt, an:

VD =
nD − 1
nF − nC

. (5.12)

Mit D bezeichnet man die gelbe Linie des Natrium (λD =
589,3 nm), mit F und C zwei Linien im Wasserstoffspek-
trum (λF = 486,1 nm, λC = 656,3 nm). VD gibt nach (5.8)
im wesentlichen das Verhältnis der Ablenkung zur Auf-
fächerung des Lichts in Abb. 5.14 an. Zahlenwerte für
VD wurden bereits in Tab. 5.1 angegeben. Je kleiner VD,
desto größer ist die Dispersion. Etwas anschaulichere
Zahlen lassen sich in Tab. 5.2 ablesen: Über den ganzen
sichtbaren Spektralbereich hinweg ändert sich der Bre-
chungsindex beimWasser und beimKronglas nur um 1%,
beim Schwerflint nur um 3,5%.

Wir wollen nun untersuchen, wie die Dispersion zustande
kommt. In (2.74) wurde behauptet, dass bei nichtmagneti-
schen Stoffen n =

√
ε sein soll („Maxwellsche Relation“).

Wie Tab. 5.3 zeigt, ist das nur bei manchen Stoffen der Fall.
Besonders große Abweichungen findet man beimWasser.
Wir hatten jedoch gerade beimWasser experimentell fest-
gestellt, dass noch imRadiowellenbereich n2 = ε2 = 81 ist
(Gl. (2.90)). Es zeigt sich, dass der Brechungsindex in
gewissen Spektralbereichen ganz erheblich von der Fre-
quenz der elektromagnetischen Strahlung abhängt, und
zwar bei den in der Tabelle genannten Stoffgruppen in
ganz unterschiedlicher Weise. In Abb. 5.15a ist das sche-
matisch dargestellt. Bei Substanzen mit polaren Mole-
külen gibt es drei Regionen starker Variation: Im Mi-
krowellenbereich, im Infrarot und im Ultraviolett. Bei
nichtpolaren Stoffen mit Ionenbindung entfällt die Varia-
tion von n im Mikrowellenbereich, und bei Stoffen mit
homöopolarer Bindung sowie bei Edelgasen gibt es nur
noch die Variation im Ultravioletten. Deshalb stimmt bei
diesen Stoffen bis hin zum sichtbaren Spektralbereich n2

mit der statischenDielektrizitätskonstante überein. Da die
Maxwellsche Relation allgemeine Gültigkeit beansprucht,
muss ε von der Frequenz abhängen („Dielektrische Funk-
tion“). Wir werden nun zeigen, dass eine solche Abhän-
gigkeit in der Tat zu erwarten ist, und dass damit der
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Abbildung 5.15 Frequenzabhängigkeit des Brechungsindex n(ω) und des
Absorptionskoeffizienten μ(ω), schematisch

Verlauf der Kurven in Abb. 5.15a qualitativ erklärt wer-
den kann. Auch wird sich herausstellen, dass ein enger
Zusammenhang zwischenDispersion undAbsorption be-
steht. Dort, wo sich der Brechungsindex drastisch ändert,
wird die Strahlung auch stark absorbiert, wie Abb. 5.15b
zeigt.

Dispersion und molekulare Polarisierbarkeit

Wie in Bd. III/4 diskutiert wurde, ist die Dielektrizitäts-
konstante ε durch die molekulare Polarisierbarkeit α ge-
geben. Das gilt nicht nur im statischen Fall, sondern auch
bei hohen Frequenzen. Kombiniert man Bd. III, Gl. (4.21)
mit (2.74), erhält man für verdünnte Medien

ε = 1+
Nα

ε0
= n2 , (5.13)

wobei N die Zahl der Moleküle pro Volumeneinheit ist.4

Für dichte Medien muss berücksichtigt werden, dass das
am Ort des Moleküls wirksame Feld von dem äußeren
Feld E abweicht. Nach Bd. III, Gl. (4.24) gilt dann

ε = 1+
Nα/ε0

1−Nα/3ε0
= n2 . (5.14)

Die molekulare Polarisierbarkeit α hat nach Bd. III,
Gl. (4.33) drei Anteile:

α = αe + αi + αd . (5.15)

4 Gewöhnlich wird in diesem Buch die Teilchenzahldichte mit n
bezeichnet. Um eine Verwechslung mit dem Brechungsindex n zu
vermeiden, nennen wir sie in der Optik N.

αe berücksichtigt die Verschiebung der Elektronen im
Atom, αi die Verschiebung von positiven und negativen
Ionen gegeneinander und αd die Ausrichtung permanen-
ter Dipolmomente, sofern solche vorhanden sind. Alle
drei Anteile sind frequenzabhängig. Wie Abb. 5.15 zeigt,
verschwindet mit zunehmender Frequenz zunächst der
Beitrag von αd, dann (nach starker Variation im Infraro-
ten) verschwindet der Beitrag von αi und schließlich wird
oberhalb des Ultravioletten auch der Beitrag von αe zu
Null, der Brechungsindex wird dann n = 1. Was sind die
physikalischen Ursachen dieser Phänomene?

Dipol-Polarisierbarkeit. Die Dipol-Polarisierbarkeit αd
kommt durch das Wechselspiel zwischen der Richtwir-
kung des äußeren Feldes und der thermischen Bewegung
zustande. Die Einstellung des Gleichgewichtszustands er-
folgt nicht momentan; sie beansprucht im Mittel eine
Zeit τ, die Relaxationszeit. Für ω 	 2π/τ können die
Dipolmomente denmomentanenWerten der Elektrischen
Feldstärke folgen, α(ω) bleibt konstant gleich dem sta-
tischen Wert α(0). Für ω 
 2π/τ kann die Einstellung
der Dipolmomente dem Wechselfeld nicht mehr folgen,
es wird αd(ω) = 0. Der Übergang erfolgt bei

ω ≈ ωd = 2π/τ . (5.16)

Bei Wasser, einer typischen Flüssigkeit mit polaren Mo-
lekülen, ist τ ≈ 10−10 s, ωd liegt also im Mikrowellenbe-
reich bei ν ≈ 10GHz. Dadurch wird erklärlich, dass bei
100MHz noch n =

√
81 gemessen wird (vgl. Abb. 2.28

und (2.90)), während im optischen Bereich n bedeutend
kleiner ist. Mit der Bewegung der H2O-Dipolmoleküle ist
infolge der Flüssigkeitsreibung die in Abb. 5.15b gezeig-
te Absorption von Energie verbunden. Die dabei erzeugte
Wärme ist die physikalische Grundlage des Mikrowellen-
herdes.

Ionische Polarisierbarkeit. Die Ionen sind in einem Fest-
körper oder im Molekülverband elastisch an eine Ru-
helage gebunden. Das elektrische Feld E(t) = E0 cosωt
erzwingt eine Schwingung der Ionen mit der Frequenz ω;
z. B. schwingen im NaCl-Kristall die Na+-Ionen und die
Cl−-Ionen gegeneinander. Die Eigenfrequenz ω0 dieser
Gitterschwingung liegt im Infrarot. Der Kurvenverlauf in
Abb. 5.15 passt gut zu dieser Vorstellung. n(ω) verhält
sich wie die dispersive Amplitude einer erzwungenen
Schwingung, μ(ω) wie der absorptive Anteil. Diese Be-
griffe wurden in Bd. I/12.3 eingeführt. Wir wiederholen
dasWichtigste in Kürze. Dabei gehenwirwie in Bd. I/12.5
von der Behandlung der erzwungenen Schwingung mit
komplexen Größen aus. Die auf die Ladungen einwirken-
de elektrische Feldstärke ist dann Ě(t) = E0eiωt, und die
Schwingungsgleichung lautet

d2x̌
dt2

+ Γ
dx̌
dt

+ ω2
0x̌ =

qE0

m
eiωt . (5.17)
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Γ ist die Dämpfungskonstante, ω0 die Eigenfrequenz der
Ionenschwingung; q und m sind die Ladung und die re-
duzierteMasse der Ionen. Durch den Ansatz x̌(t) = x̌0eiωt

mit x̌0 = x0eiδ wird diese Gleichung gelöst. Man erhält

x̌(t) =
1

ω2
0 − ω2 + iωΓ

qE0

m
eiωt . (5.18)

Durch die Verschiebung der Ladungen entsteht ein Dipol-
moment. Analog zu Bd. III, Gl. (4.17) setzen wir

p̌(t) = qx̌(t) = α̌(ω)Ě(t) . (5.19)

α̌(ω) ist die komplexe Polarisierbarkeit:

α̌(ω) =
q2/m

ω2
0 − ω2 + iωΓ

. (5.20)

Sie ist zur (komplexen) Amplitude der erzwungenen
Schwingung proportional. Den Realteil von α̌(ω) nennt
man auch den dispersiven, den Imaginärteil den absorpti-
ven Teil der Polarisierbarkeit. Wir multiplizieren in (5.20)
Zähler und Nenner mit ω2

0 − ω2 − iωΓ und erhalten:

Re α̌(ω) = αdisp(ω) =
q2

m
ω2
0 − ω2

(
ω2
0 − ω2

)2
+ Γ2ω2

, (5.21)

Im α̌(ω) = αabs(ω) =
q2

m
Γω(

ω2
0 − ω2

)2
+ Γ2ω2

. (5.22)

In Abb. 5.16a und b sind die Amplitude |x̌0| und die Phase
ϕ der Schwingung als Funktion von ω aufgetragen. Uns
interessieren αdisp und αabs. Der Vergleich mit Abb. 5.15
zeigt, dass αdisp mit n(ω) und αabs mit μ(ω) eng zusam-
menhängen.

Für Frequenzen ω, die nicht nahe bei der Resonanzfre-
quenz ω0 liegen, ist (ω2

0 −ω2) 
 Γω. Dann ist αabs gegen
αdisp vernachlässigbar und man kann nach (5.21) für die
Polarisierbarkeit α schreiben:

α(ω) =
q2/m

ω2
0 − ω2

. (5.23)

Außerhalb der Resonanzstelle wird gewöhnlich dieser
Ausdruck verwendet.

Elektronische Polarisierbarkeit. In Abb. 5.15 wird der
Kurvenverlauf im Ultraviolett auf die elektronische Pola-
risierbarkeit zurückgeführt. Offensichtlich verhalten sich
n(ω) und μ(ω) im UV ganz ähnlich wie im IR. Das ist
überraschend, denn sicher sind die einzelnen Elektronen
im Atom nicht durch elastische Kräfte an eine Ruhela-
ge gebunden; die Elektronenbewegung ist ganz anderer
Art. Angesichts der genannten Ähnlichkeit legen wir den-
noch im Folgenden das von H.A. Lorentz vorgeschlagene

x0(ω)

ωω0

a

ϕ(ω)

ω

b

αdisp(ω)

ω

c

αabs(ω)

ω

d

schwache
Dämpfung

starke
Dämpfung

ω0/Γ =2000 ω0/Γ = 4

Abbildung 5.16 a Amplitude und b Phase der Ionenschwingung; Polarisier-
barkeit: c dispersiver und d absorptiver Teil

Modell elastisch gebundener Elektronen5 zugrunde, das
wir vorerst nur durch seinen Erfolg rechtfertigen können.

Im Allgemeinen gibt es sowohl bei ionischen als auch bei
der elektronischen Polarisierbarkeit mehrere Resonanz-
stellen, deren Beiträge sich addieren. Das ist besonders
bei αe der Fall. Im sichtbaren Spektralbereich, in einiger
Entfernung von den Resonanzstellen, kann man die Po-
larisierbarkeit αe(ω) darstellen durch eine Superposition
von mehreren Termen des Typs (5.23):

αe(ω) =
e2

me
∑
k

fk
ω2
k − ω2

. (5.24)

5 Diese Modellvorstellung entwickelte Hendrik Antoon Lorentz
(1853–1928) im Rahmen seiner „Elektronentheorie“, eines epochalen
Werkes, das er 1892, fünf Jahre vor der Entdeckung des Elektrons
veröffentlichte. Er stützte sich dabei auf Helmholtz’ Idee, zur Er-
klärung der Faradayschen Gesetze der Elektrolyse eine atomistische
Struktur der Elektrizität anzunehmen.
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Die Größen fk werden die Oszillatorenstärken genannt.
Sie geben an, mit welchem Gewicht die Resonanz mit der
Frequenz ωk in der Summe zu versehen ist, damit der
experimentell bestimmte Verlauf von αe richtig wiederge-
geben wird.

Das Oszillatormodell des Atoms wird sich im Folgen-
den als sehr erfolgreich erweisen. Eine Begründung dafür
kann erst in Bd. V/6.4 gegeben werden. Auch die quan-
tenmechanische Beschreibung des Atoms führt zu (5.21)–
(5.24). Dabei werden die hier eingeführten Größen ωk, Γk
und fk im Sinne der Quantenmechanik präzise definiert.6

Brechungsindex und Absorptionskoeffizient

Unser Ziel ist es nun, Brechungsindex und Absorpti-
onskoeffizient mit der molekularen Polarisierbarkeit des
Mediums (5.20) zu berechnen. Da α̌(ω) eine komplexe
Größe ist, hat auch die mit (5.13) und (5.14) zu berech-
nende Dielektrizitätskonstante einen Realteil und einen
Imaginärteil:

ε̌(ω) = εR + iεI . (5.25)

Die erste Wellengleichung in (2.69) nimmt dann folgende
Form an:

∂2Ěy

∂x2
=

ε̌(ω)

c2
∂2Ěy

∂t2
. (5.26)

Hierbei haben wir die Permeabilität μ = 1 gesetzt.Wir su-
chen eine Lösung der Form

Ěy(x, t) = E0ei(kx−ωt) . (5.27)

Durch Einsetzen in (5.26) erhält man

ǩ2 =
ε̌(ω)

c2
ω2 = ε̌k20 mit k0 =

ω

c
=

2π

λvac
.

Da ε̌ komplex ist, wird auch die Wellenzahl komplex. Wir
haben erhalten:

ǩ =
√

ε̌k0 = ňk0 , (5.28)

wobei ň der komplexe Brechungsindex

ň = nR + inI (5.29)

ist. Was das alles zu bedeuten hat, werden wir sofort se-
hen. Wir setzen (5.28) in (5.27) ein:

Ěy(x, t) = E0e−nIk0xei(nRk0x−ωt) .

6 ωk sind die Frequenzen, bei denen Übergänge vom Grundzustand
des Atoms in angeregte Zustände durch Absorption von Lichtquan-
ten verursacht werden können, 1/Γk ist die mittlere Lebensdauer
dieser Zustände, und fk ist proportional zur Übergangswahrschein-
lichkeit vom Grundzustand des Atoms in den angeregten Zustand.
Im Prinzip können diese Größen quantenmechanisch berechnet wer-
den.

n

1

ω

sichtbar
a

b

c

d

Abbildung 5.17 Brechungsindex im Sichtbaren und bei kürzeren Wellen
a . . . b , c . . . d : Gebiete anomaler Dispersion

Der Realteil von Ěy(x, t) ist die elektrische Feldstärke in
der Welle:

Ey(x, t) = E0e−nIk0x cos(kx− ωt) , (5.30)

mit k = nRk0 = 2π/λmed. Wie man sieht, bestimmt der
Imaginärteil von ň die Absorption der Welle, und der Re-
alteil von ň ist mit dem gewöhnlichen Brechungsindex
identisch. nIk0 ist der Absorptionskoeffizient μ(ω).

Wir können also n(ω) und μ(ω) mit dem dispersiven
und absorptiven Anteil der molekularen Polarisierbarkeit
berechnen. Bei verdünnten Medien, bei denen (5.13) an-
gewendet werden kann, ist das ganz einfach. In dieser
Gleichung ist Nα/ε0 eine kleine Größe. Dann ist

ň(ω) =
√

ε̌ =

√
1+

Nα̌(ω)

ε0
≈ 1+

Nα̌(ω)

2ε0
,

und es folgt

n(ω) = nR = 1+
Nαdisp(ω)

2ε0
, (5.31)

μ(ω) = k0nI = k0

(
1+

Nαabs(ω)

2ε0

)
. (5.32)

Es ist uns damit gelungen, den komplizierten Verlauf von
n(ω) und μ(ω) in Abb. 5.15 im Bereich der ionischen
und der elektronischen Polarisierbarkeit auf das Verhalten
eines Oszillators zurückzuführen. Da die elektronischen
Resonanzen gewöhnlich im Ultraviolett, die ionischen im
Infrarot liegen, ist im sichtbaren Spektralbereich (5.24)
gültig. Es dominiert der Beitrag von αe(ω) in der Form
(5.24):

n = 1+
Nq2e
2meε0

∑
k

fk
ω2
k − ω2

. (5.33)

Dazu kommt noch ein kleiner Beitrag, der die Ausläu-
fer von αi(ω) enthält. Beide Beiträge bewirken, dass n
mit zunehmender Lichtfrequenz wächst (Abb. 5.17). Man
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spricht von normaler Dispersion, wie schon im Zusam-
menhang mit Abb. 5.14 bemerkt. An den Resonanzstellen
gibt es dagegen Gebiete anomaler Dispersion, in denen
n mit wachsendem ω abnimmt, z. B. in Abb. 5.17 zwi-
schen a und b sowie zwischen c und d. Wie man sieht,
wird spätestens oberhalb der letzten Resonanzstelle der
Brechungsindex n < 1, also ist cmed > c. Das ist nichts
ungewöhnliches, siehe (2.97). Aber auch die mit (1.25) be-
rechnete Gruppengeschwindigkeit wird hier größer als
c, denn im Gebiet anomaler Dispersion ist dvph/dλ < 0.
Dennoch besteht hier kein Widerspruch zur Relativitäts-
theorie, denn (1.24) und (1.25) gelten nicht bei starker
Dämpfung. Wenn man die Dämpfung berücksichtigt, er-
hält man das Resultat, dass sich eine Wellenfront nur mit
der Geschwindigkeit c ausbreitet. Das liegt daran, dass
das Signal infolge der Dämpfung deformiert wird.

Brechungsindex von Gasen. Bei Gasen geringer Dichte
beeinflussen sich die Atome gegenseitig nur wenig, und
man kann (5.31) und (5.32) direkt experimentell überprü-
fen. Besonders eindrucksvoll gelingt dies mit Natrium-
Dampf, denn das Na-Atom hat im gelben Spektralbereich
eine elektronische Resonanzstellemit großer Oszillatoren-
stärke. Man kann die anomale Dispersion sogar in einem
Vorlesungsversuch vorführen. Zwischen einer Bogenlam-
pe und einem Spektralapparat wird ein Rohr aufgestellt,
das an beiden Enden mit Glasfenstern verschlossen, aber
nicht vollständig evakuiert ist. Auf einem hinter dem
Spektralapparat aufgestellten Schirm sieht man das Licht
der Bogenlampe in horizontaler Richtung spektral zerlegt.
In der Mitte des Rohrs befinden sich einige Stückchen
Natrium. Wird an dieser Stelle das Rohr erhitzt, wie in
Abb. 5.18a gezeigt, verdampft etwas Natrium und man
beobachtet im Gelben eine scharf ausgeprägte Absorption
bei der Wellenlänge λ = 589 nm. Das ist die Wellenlän-
ge der bekannten Natrium D-Linien. Wird nun das Rohr
auf der Unterseite stärker erhitzt und auf der Obersei-
te gekühlt, verdampft unten das Natrium, während es
oben kondensiert. Von unten nach oben gelangen die
Na-Atome wegen der im Rohr befindlichen Luft durch
Diffusion. Das erfordert, dass die Konzentration N der
Na-Atome nach oben hin (in z-Richtung) kontinuierlich
abnimmt, denn die Diffusionsstromdichte ist nach Bd. II,
Gl. (6.4) jD(z, t) ∝ −∂N/∂z. Der Na-Dampf wirkt dann
wie ein Prisma, das das Licht in vertikaler Richtung spek-
tral zerlegt. Obgleich die Dampfdichte natürlich immer
noch klein ist, wird das Licht in der Nähe der Resonanz-
stelle nach oben und nach unten abgelenkt, wie Abb. 5.18b
zeigt. Abbildung 5.18c zeigt das Zustandekommen der
Ablenkungen noch einmal schematisch. Abbildung 5.18b
beweist, dass unmittelbar vor der Resonanzstelle αdisp
große positive Werte, unmittelbar dahinter große negati-
ve Werte annimmt, gerade so, wie in Abb. 5.16c für den
Fall schwacher Dämpfung gezeigt ist. Zwischen den bei-
den Spitzen in Abb. 5.18b liegt das Gebiet der anomalen
Dispersion.

(λ<λD)

(λ>λD)

a

c Wasserkühlung

Flamme

b

n>1

n<1

Abbildung 5.18 Vorlesungsversuch zur anomalen Dispersion im Natrium-
dampf

Brechungsindex von kondensierter Materie. Bei kon-
densierter Materie treten gegenüber der verdünnten, d. h.
gasförmigen Materie zwei Komplikationen auf: Erstens
muss ň =

√
ε̌ mit der komplizierten Formel (5.14) berech-

net werden, vor allem aber werden die Absorptionslinien
durch die Wechselwirkung zwischen den Atomen erheb-
lich verbreitert. Dadurch werden an den Resonanzstellen
auch die Spitzen der Dispersionskurve abgeflacht und
verbreitert. Als ein Beispiel sind in Abb. 5.19 n(ω) und
μ(ω) für flüssiges Wasser gezeigt. Der Übergang von der
Dipol- zur ionischen Polarisierbarkeit ist deutlich zu se-
hen. Auch im Ganzen ist der in Abb. 5.15 idealisierte und
schematisierte Verlauf der Funktionen n(ω) und μ(ω)
noch zu erkennen. – Man beachte den logarithmischen
Maßstab und die enorme Variation des Absorptionsko-
effizienten um 8–10 Größenordnungen an den Grenzen
des sichtbaren Spektralbereichs. Man kann darüber spe-
kulieren, wie gut es sich trifft, dass das Maximum der
Sonnenstrahlung gerade in das Minimum der Wasserab-
sorption fällt, und dass diesesMinimum so ausgeprägt ist.
Sonstwürde es wohl kaum einen „sichtbaren“ Spektralbe-
reich geben, weil es niemanden gäbe, der Augen imKopfe
hat.

Brechungsindex für Röntgenstrahlen. Im Röntgenbe-
reich ist ω groß gegen alle ωk. Dann geht (5.24) über in
α(ω) = −(q2e/me)∑ fk/ω2. Sowohl in der Lorentzschen
Elektronentheorie als auch in der Quantenmechanik ist
∑ fk = Z, der Anzahl der Elektronen im Atom. Die Polari-
sierbarkeit α ist so klein, dass (5.13) auch in kondensierter
Materie angewandtwerden kann. Der Brechungsindex im
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Abbildung 5.19 Brechungsindex und Absorptionskoeffizient von Wasser als
Funktion der Frequenz

Röntgenbereich ist also

n(ω) = 1+
NZe2

2ε0me

(
1

−ω2

)
= 1−

ω2
p

2ω2 . (5.34)

ωp ist die Plasmafrequenz (2.84), berechnetmit allen Elek-
tronen des Atoms. Auch hier ist n < 1 und vph > c. Die
Gruppengeschwindigkeit ist jedoch vg < c, wie man mit
(1.24) nachrechnen kann.

5.4 Reflexion und Transmission

Wirwollen nun untersuchen, welcher Bruchteil einerWel-
le an der Grenzfläche zwischen zwei Medien reflektiert
undwelcher durchgelassenwird. Diese Frage blieb in Ab-
schn. 5.1 unbeantwortet. Wir gehen dabei von elektroma-
gnetischenWellen aus; die wesentlichen Ergebnisse lassen
sich auch auf andere Wellenerscheinungen übertragen.

Reflexion von Licht an transparenten Dielektrika

Senkrechter Lichteinfall. Wir betrachten eine ebeneWel-
le, die senkrecht auf ein nicht absorbierendes Dielektri-

Abbildung 5.20 Zu (5.35):
Orientierung der Feldvektoren
beim Übergang der Welle vom
Medium 1 ins Medium 2 (n1 <
n2)

n1 Ed

Bd

n2

Ee

Be

Br
Er

kum einfällt, z. B. den Einfall von sichtbarem Licht auf
Glas. Abbildung 5.20 zeigt die E- und B-Vektoren der
einfallenden, der durchgelassenen und der reflektierten
Welle. Die Vektoren sind jeweils entsprechend der Aus-
breitungsrichtung orientiert (vgl. (2.59)). Es ist in der
Abbildung angenommen, dass die Welle in ein dichteres
Medium läuft (n1 < n2), und dass daher bei der Reflexion
wie in Abb. 1.6 ein „Phasensprung um π“ erfolgt.

An der Grenzfläche müssen nach Bd. III, Gln. (4.42) und
(14.14) die Tangentialkomponenten von E und H stetig
sein. Unter Bezugnahme auf Abb. 5.20 erhalten wir:

Ee − Er = Ed , Be + Br = Bd . (5.35)

Wir setzen B = μ0H und eliminieren aus (5.35)Hmit Hilfe
des Wellenwiderstands Z = E/H:

Ee

Z1
+

Er

Z1
=

Ed

Z2
→ Ee + Er =

Z1

Z2
Ed . (5.36)

Z1 und Z2 sind die Wellenwiderstände der beiden Medi-
en. Aus (5.35) und (5.36) folgt:

ρ :=
Er

Ee
=

Z1 − Z2

Z1 + Z2
, τ :=

Ed

Ee
=

2Z2

Z1 + Z2
. (5.37)

ρ und τ sind die Reflexions- bzw. Transmissionskoeffi-
zienten. Für das Verhältnis der Intensitäten erhält man
unter Beachtung von (3.31):

R :=
Ir
Ie

=
E2
r

E2
e
=

(
Z1 − Z2

Z1 + Z2

)2

T :=
Id
Ie

=
E2
d

E2
e

Z1

Z2
=

4Z1Z2

(Z1 + Z2)
2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.38)

R ist das Reflexionsvermögen, auch Reflektivität ge-
nannt; T ist die Transmission. Man sieht, dass für Z1 

Z2 und für Z1 	 Z2 praktisch die gesamte Strahlung re-
flektiert wird, während bei Z1 ≈ Z2 die Welle nahezu
ungeschwächt durch die Grenzfläche tritt. Die in Abb.5.20
eingezeichneten Pfeilrichtungen entsprechen positiven
Feldstärken. Für Z1 > Z2 ist ρ > 0 und bei bei der Reflexi-
on erleidet der E-Vektor einen „Phasensprung um π“, für
Z1 < Z2 ist ρ < 0 und die Reflexion erfolgt gleichphasig.
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Abbildung 5.21 Vorzeichenkonvention in (5.42) und (5.43): Definition der
positiven Feldrichtungen und der Winkel.�: Der Vektor zeigt auf den Betrachter

Das entspricht genau dem schon in Abschn. 1.1 diskutier-
ten Verhalten von Wellen bei der Reflexion (vgl. Abb. 1.6
und Abb. 1.9).

Wir haben (5.37) und (5.38) mit dem Wellenwiderstand Z
geschrieben, denn dann gelten sie für Wellen aller Art,
also z. B. auch für Schallwellen. Bei elektromagnetischen
Wellen ist nach (3.27) Z =

√
μμ0/εε0. In der Optik ist es

gewöhnlich zulässig, μ1 = μ2 = 1 zu setzen. In diesem
Fall nimmt (5.36) die Form

Ee + Er =
n2
n1

Ed

an, und man erhält für senkrechten Lichteinfall die Glei-
chungen

ρ =
n2 − n1
n2 + n1

, τ =
2n1

n2 + n1
, (5.39)

R =

(
n2 − n1
n2 + n1

)2

, T =
4n1n2

(n2 + n1)
2 . (5.40)

Mit Befriedigung stellt man fest, dass diese Rechnungen
mit dem Energiesatz in Einklang sind: Es folgt aus (5.40)
wie aus (5.38):

R+ T = 1 . (5.41)

Schräger Lichteinfall. Um Reflexion und Transmission
bei schräg einfallendem Licht zu berechnen, muss man
zusätzlich die Stetigkeitsbedingungen für die Normal-
komponenten der Felder berücksichtigen. Es zeigt sich
dabei, dass die in (5.37) definierten Reflexions- und Trans-
missionskoeffizienten davon abhängen, ob das Licht par-
allel (‖) oder senkrecht (⊥) zur Einfallsebene polarisiert
ist. Die Richtungen, in denen E als positiv gerechnet wer-
den soll, legen wir mit Abb. 5.21 fest. Mit Hilfe der Gln.

β1

ρ

−1,0

−0,5

0

0,5

1,0

90°60°

41,8°

56,3°

33,7°

30°0°

ρ⊥

ρ⊥

ρ

ρ

Glas → Luft

Luft → Glas

Abbildung 5.22 Reflexionskoeffizienten von linear polarisiertem Licht an der
Grenzfläche Luft/Glas (n = 1,5), nach (5.42)

Bd. III, (4.42) und Bd. III, (14.14) erhält man dann nach
längerer Rechnung die Fresnelschen Formeln7:

ρ⊥ = − sin(β1 − β2)

sin(β1 + β2)
,

ρ‖ =
tan(β1 − β2)

tan(β1 + β2)
,

(5.42)

τ⊥ =
2 sin β2 cos β1

sin(β1 + β2)
,

τ‖ =
2 sin β2 cos β1

sin(β1 + β2) cos(β1 − β2)
.

(5.43)

Sie gelten für den Übergang des Lichts von (1) nach (2).
β1 und β2 sind die in Abb. 5.21 definierten Winkel. Die
Brechungsindizes n1 und n2 treten bei dieser Formulie-
rung der Fresnelschen Formeln nicht in Erscheinung; sie
stecken in der Relation n1 sin β1 = n2 sin β2 und daher
bei vorgegebenem β1 in dem hier einzusetzenden Wert
von β2.

Das negative Vorzeichen von ρ⊥ zeigt an, dass Er die
entgegengesetzte Richtung hat, wie in Abb. 5.21 ange-
nommen: Wenn β1 > β2 (d. h. n2 > n1), findet bei der
Reflexion ein Phasensprung um π statt. In Abb. 5.20 wur-
de das von vornherein unterstellt: Daher tritt in (5.39)
kein negatives Vorzeichen auf. Im Übrigen lassen sich die
Formeln (5.39) für β1 → 0 aus (5.42) und (5.43) herleiten
(Aufgabe 5.4).

Abbildung 5.22 zeigt die Reflexionskoeffizienten ρ⊥ und
ρ‖ für die Reflexion an einer Grenzfläche zwischen Glas
(n = 1,5) und Luft (n = 1). In Abb. 5.23 sind die entspre-

7 Fresnel leitete die Formeln aus seiner Lichttheorie ab, 40 Jahre vor
Maxwell. Er behandelte dabei das Licht als Transversalwellen in ei-
nem elastischen Medium. Mit der gleichen Theorie konnte er auch
die komplizierten Phänomene der Doppelbrechung (Abschn. 9.3)
quantitativ erklären.
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Abbildung 5.23 Reflexionsvermögen von Glas (n = 1,5) als Funktion des
Einfallswinkels β1

chenden Kurven für das Reflexionsvermögen R aufgetra-
gen. Bei kleinenWinkeln β1, d. h. bei nahezu senkrechtem
Lichteinfall, ist R ≈ 4%.

R⊥ nimmt mit wachsendem Einfallswinkel monoton zu,
während R‖ zunächst abnimmt und bei einem bestimm-
ten Winkel, dem Brewster-Winkel, sogar Null wird. Wir
werden auf dieses Verhalten sogleich zurückkommen. In
der Nähe von β1 = 90° (bei n1 < n2) bzw. bei n1 > n2 in
der Nähe von β1 = βT, dem Totalreflexionswinkel (5.10),
erreichtR in jedem Falle sehr großeWerte. Qualitativ kann
man dieses Verhalten ohneweiteres am Snelliusschen Rad
(Abb. 5.1) oder auch in der Natur an einer glatten Wasser-
fläche beobachten.

Der Brewster-Winkel. Wie die Nullstellen von ρ‖ und R‖
zustandekommen, ist in (5.42) leicht abzulesen: Wenn

β1 + β2 =
π

2
(5.44)

ist, wird der Tangens im Nenner unendlich und es folgt
ρ‖ = 0. Mit dem Brechungsgesetz und (5.44) erhält man
für β1 = βB:

n1 sin βB = n2 sin
(π

2
− βB

)
= n2 cos βB

tan βB =
n2
n1

. (5.45)

Beim Übergang Luft → Glas (n2 > n1) ist βB > 45°, beim
Übergang Glas → Luft (n1 > n2) dagegen βB < 45°.

Gleichung (5.44) besagt, dass die Reflexion verschwindet,
wenn der reflektierte Strahl senkrecht auf dem gebroche-
nen stehen würde, denn nach dem Reflexionsgesetz ist

R⊥

R

a

b

Abbildung 5.24 Brewster-Winkel und Dipolstrahlung

βr = β1. Man kann dies auch ohne Bezug auf die Fres-
nelschen Formeln begründen, wenn man davon ausgeht,
dass das einfallende Licht im Dielektrikum Elektronen zu
Schwingungen anregt. Die Elektronen bilden zusammen
mit den Atomkernen schwingende Dipole, deren Aus-
strahlung die reflektierte Welle erzeugt. Nun strahlt ein
Dipol nicht in seiner Achsenrichtung (Abb. 3.8). Im Di-
elektrikum schwingen die Dipole senkrecht zur Fortpflan-
zungsrichtung der gebrochenen Welle. Wie Abb. 5.24a
zeigt, verschwindet ρ‖, wenn der reflektierte Strahl senk-
recht auf dem gebrochenen stehen würde, wenn also
(5.44) erfüllt ist. Der senkrecht zur Einfallsebene polari-
sierte Strahl wird dagegen unter allen Winkeln reflektiert
(Abb. 5.24b).

Man sollte den physikalischen Gehalt dieser Betrachtung
nicht überschätzen; z. B. wird es schwierig, auf diese Wei-
se zu erklären, warum es auch beim Übergang Glas →
Vakuum einen Brewster-Winkel gibt. Sie ist aber eine gu-
te Gedächtnisstütze: Beim Brewster-Winkel ist βB + β2 =
90◦.

Verhalten der Phase bei der Reflexion. Außer den Kur-
ven in Abb. 5.23 wird uns im Folgenden immer wieder
der Phasensprung bei der Reflexion an einer Grenzflä-
che beschäftigen. Im Bereich der gewöhnlichen Reflexion
kann man ihn ohne weiteres an den Vorzeichen von ρ in
Abb. 5.22 ablesen. Dabei ist natürlich die Vorzeichenkon-
vention von Abb. 5.21 zu beachten. Das Ergebnis ist, dass
bei der Reflexion am optisch dichteren Medium stets ein
Phasensprung um π stattfindet, während die Welle am
optisch dünneren Medium ohne Phasensprung reflektiert
wird. Das entspricht dem in Abschn. 1.1 beschriebenen
Verhalten von Seilwellen. Im Bereich der Totalreflexion
zeigt die Phase der reflektierten Welle das in Abb. 5.25
dargestellte sonderbare Verhalten. Auch das folgt aus den
Fresnelschen Formeln und dem Brechungsgesetz; um das
nachzuvollziehen, muss man allerdings das Verhalten der
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Abbildung 5.25 Phasensprung an der Grenzfläche Luft/Glas (n = 1,5) bei
Totalreflexion

der Sinus- und Tangensfunktion in der komplexen Zah-
lenebene studieren, was wir erst später tun wollen. Für
die Praxis bedeuten die Kurven, dass man mittels To-
talreflexion die Phase von elektromagnetischen Wellen
manipulieren kann.

Reflexion an Metallen

Wegen ihrer fast alltäglichen Bedeutung lassen wir uns
noch auf eine Diskussion der metallischen Reflexion von
Licht ein, obgleich dies ein kompliziertes Thema ist. Die
im Bereich der Ohmschen Leitfähigkeit anzusetzende
Wellengleichung (2.80) haben wir bereits in Abschn. 2.5
gelöst. Wir wiederholen die Rechnung noch einmal mit
komplexen Größen: Die Wellengleichung

∂2Ě
∂x2

= μμ0σel
∂Ě
∂t

ergibt mit Ě(x, t) = E0ei(ǩx−ωt) die Beziehung

ǩ2 = iωμμ0σel = ωμμ0σeleiπ/2 ,

ǩ =
√

ωμμ0σel
2

(1+ i) =
√

μσelω

2ε0c2
(1+ i) , (5.46)

denn es ist eiπ/4 = cos 45◦ + i sin 45◦ = (1+ i)/
√
2. Setzt

man (5.46) in Ě(x, t) ein, erhält man unsere früheren Er-
gebnisse (2.81) und (2.82).

Wir setzen nun ǩ = ňk0 = (nR + inI)k0 und definieren da-
mit wie in (5.29) einen komplexen Brechungsindex ň. Im
Bereich der Ohmschen Leitfähigkeit erhält man mit (5.46)
und mit k0 = ω/c

nR = nI = n =
c
ω

√
μσelω

2ε0c2
=

√
μσel
2ε0ω

. (5.47)

Tabelle 5.4 Reflexionsvermögen von Metallen bei λ = 25,5µm

1− R (%)

gemessen berechnet

Ag 1,13 1,15

Cu 1,17 1,27

Al 1,97 1,60

Ni 3,20 3,16

Hg 7,66 7,55

Konstantan 5,20 5,05

Für Kupfer ist bei ν ≈ 3 · 1012 s−1 (λ ≈ 0,1mm) nR = nI =
420. Metalle haben also im Ohmschen Bereich sehr ho-
he Brechungsindizes. Eine elektromagnetische Welle, die
unter irgendeinem Winkel auf die Metalloberfläche fällt,
läuft fast senkrecht zur Oberfläche in das Metall hinein
und wird auf einer Strecke absorbiert, die sehr kurz ver-
glichen mit der Vakuum-Wellenlänge ist. Das hat ein sehr
hohes Reflexionsvermögen zur Folge. Wir können bei der
Berechnung von R (5.40) anwenden, indem wir n1 = 1
und n2 = ň setzen und (4.16) berücksichtigen:

R =
Ir
Ie

=
|Ěr|2
|Ěe|2

=
|ň− 1|2
|ň+ 1|2 =

|n− 1+ in|2
|n+ 1+ in|2

=
(n− 1)2 + n2

(n+ 1)2 + n2
=

2n2 − 2n+ 1
2n2 + 2n+ 1

=
1− 1/n+ 1/2n2

1+ 1/n+ 1/2n2
≈ 1− 1/n

1+ 1/n
≈ 1− 2

n
. (5.48)

Für n ≈ 1000 liegt das in der Tat sehr nahe bei R = 1. Man
kann durchMessung von R experimentell nachprüfen, bis
zu welchen Frequenzen (5.47) gilt, und ob man bei ν ≈
1013 Hz noch mit der Ohmschen Leitfähigkeit rechnen
kann, wie bei (2.79) behauptet wurde. Solche Messungen
wurden von Hagen und Rubens durchgeführt (Tab. 5.4).
Die Übereinstimmung der gemessenen mit den berechne-
ten Werten ist erstaunlich gut.

Die Verhältnisse müssen sich ändern, wenn sich das
Gleichgewicht zwischen der Elektronenbewegung und
dem elektrischen Feld der Welle nicht mehr einstellen
kann, wenn also ω größer als die in (2.78) definierte
Stoßfrequenz ωS wird. In Abb. 5.26 ist als Funktion der
Wellenlänge das Reflexionsvermögen einiger Metalle im
Bereich von λ = 100–1000 nm aufgetragen. Man sieht so-
fort, dass hier komplizierte Verhältnisse vorliegen, wie
es nach den Ausführungen in Abschn. 2.5 auch zu er-
warten war. Die hohe Reflektivität der Metalle findet
bei einer mehr oder weniger scharf definierten kritischen
Wellenlänge λc ein Ende. Silber reflektiert noch im gan-
zen sichtbaren Spektralbereich gut, Aluminium sogar bis
λ ≈ 80 nm. Die Brechungsindizes nR und nI nehmen je-
doch schon im nahen Infrarot stark ab, und in dünner
Schicht werden die Metalle durchsichtig.
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Abbildung 5.27 Reflexion von linear polarisiertem Licht im sichtbaren Spek-
tralbereich an einer Metalloberfläche als Funktion des Einfallswinkels, schema-
tisch

Abbildung 5.26 gilt für senkrechten Lichteinfall. In
Abb. 5.27 ist schematisch gezeigt, wie das Reflexions-
vermögen bei Metallen vom Einfallswinkel und von der
Polarisation des Lichts abhängt. Man kann diese Kurven
mit Abb. 5.23 vergleichen. Der Winkel, bei dem R‖ einMi-
nimum hat, entspricht dem Brewster-Winkel.

Es ist bemerkenswert, dass alle diese Kurvenmit Hilfe des
komplexen Brechungsindex

ň(ω) = nR(ω) + inI(ω) (5.49)

berechnet werden können, alsomit Hilfe von nur zwei Pa-
rametern.8 nR und nI sind als Funktion von ω für jedes
Metall experimentell zu bestimmen, z. B. durch Messung
des Reflexionsvermögens unter bestimmten Winkeln. In
Abb. 5.28 sind als Beispiel die Indizes von Silber gezeigt.
Die kritische Wellenlänge liegt bei λc = 330 nm. Bis dahin
ist der Brechungsindex nahezu rein imaginär. Erst weit
hinter dem rechten Bildrand wächst nR auf den durch
(5.47) gegebenen Wert. Die Welle wird auch im Sichtba-
ren stark absorbiert und daher reflektiert. Erst unterhalb
von λc gewinnt nR die Oberhand.

8 Die dazu erforderlichen Formeln findet man z. B. bei J.H. Weaver,
C. Krafka, D.W. Lynch und E.E. Koch, Optical Properties of Me-
tals, Fachinformationszentrum Energie-Physik-Mathematik, Karls-
ruhe (1981). Das Werk enthält auch umfangreiche Tabellen für nR
und nI.
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Abbildung 5.28 nR und nI für Silber. a Messungen (nach J. H. Weaver et al.),
b mit (5.52) berechnet

Wir versuchen, dieses Verhalten mit dem Modell des frei-
en Elektronengases (Bd. III/9.1) zu erklären. Dabei gehen
wir von (5.20) aus. Die Eigenfrequenz der Elektronen ist
ω0 = 0, denn die freien Elektronen sind an keine Ruhela-
ge gebunden. Die Dämpfungskonstante Γ ist ein Maß da-
für, wie schnell die Schwingungsenergie dissipiert wird.
Beim Elektronengas geschieht dies durch Stöße, und wir
setzten deshalb Γ = 1/τ, wobei τ die Stoßzeit in Bd. III,
Gl. (9.14) ist. Die komplexe Polarisierbarkeit des Elektro-
nengases ist demnach

α̌(ω) =
e2/me

−ω2 + iω/τ
. (5.50)

Die dielektrische Funktion ε̌(ω) berechnet man mit (5.13),
obgleich ein Metall kein „verdünntes Medium“ ist: Das
ist berechtigt, denn die Elektronen bewegen sich frei im
Metall und spüren deshalb das mittlere Feld, und nicht
das lokale Feld Bd. III, Gl. (4.23). Wir erhalten

ε̌(ω) = 1− Ne2

ε0me

1
ω2 − iω/τ

= 1−
ω2
p/ω2

1− i/ωτ
. (5.51)

ωp ist die mit (2.84) berechnete Plasmafrequenz des freien
Elektronengases.

Im Bereich von Abb. 5.28 ist ω 
 1/τ, also ωτ 
 1.
Damit wird ε̌(ω) die rein reelle Funktion ε(ω) = 1 −
(ωp/ω)2 und wir erhalten für den Brechungsindex

ň(ω) =
√

ε(ω) =
√

1− ω2
p/ω2 . (5.52)

Man erkennt klar zwei Bereiche:

ω < ωp : nR = 0 , nI =
√

ω2
p/ω2 − 1 ,

ω > ωp : nI = 0 , nR =
√

1− ω2
p/ω2 .
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Diese Funktionen sind in Abb. 5.28b aufgetragen, wo-
bei ωp = 2πc/λc gesetzt wurde. Die wesentlichen Eigen-
schaften von Abb. 5.28a sind qualitativ wiedergegeben.
Die Abweichungen sind darauf zurückzuführen, dass Ag
zu den Übergangsmetallen zu rechnen ist, bei denen die
äußeren Elektronenschalen der Ionen nicht abgeschlossen
sind. Bei den „einfachen“Metallen, zu denen die Erdalka-
lien und auch das dreiwertige Aluminium gehören, haben
die Ionen im Metallgitter abgeschlossene Elektronenscha-
len. In diesen Fällen ist die Übereinstimmung mit (5.52)
besser. Insbesondere stimmt bei einfachen Metallen die
kritischeWellenlänge λc mit dem für das freie Elektronen-
gas berechneten Wert

λ
(ber)
c = 2πc

√
ε0me

Nee2
(5.53)

recht gut überein.

Körperfarben

Als weißes Licht bezeichnet man eine Strahlung, die al-
le Wellenlängen des sichtbaren Spektralbereichs mit un-
gefähr gleicher Intensität enthält. Wie kommt nun die
weiße Farbe einer Substanz zustande? Die verblüffende
Antwort lautet: Durch wiederholte Brechung und Refle-
xion des Lichts an den Oberflächen eines feinverteilten,
transparenten und vollkommen farblosen Mediums. Ty-
pische Beispiele sind Streuzucker, Streusalz, Schnee und
Eierschnee, oder auch Wolken. Auch ein großer Hau-
fen farbloser Plastikfolie erscheint weiß. Das Licht wird
solange an den inneren Grenzflächen gebrochen und re-
flektiert, bis es wieder herauskommt. Der Vorgang führt
zu einer diffusen Reflexion des einfallenden Lichts, die
über 90% betragen kann. Weiße Malerfarbe besteht aus
feinverteilten farblosen Kriställchen (z. B. TiO2, PbO) in
farblosen transparenten Bindemittelnwie z. B. Leinöl oder
synthetischen Harzen. Ist in den Partikeln eine schwache

Absorption ohne Bevorzugung bestimmter Wellenlängen
gegeben, so erscheint die Oberfläche grau und mit zuneh-
mender Absorption schließlich schwarz.9 Schwarze Farbe
lässt sich keinesfalls dadurch erreichen, dass nach Auf-
treffen auf eine glatte Oberfläche alles Licht innerhalb von
wenigen Wellenlängen absorbiert wird; dann ergibt sich
nämlich metallische Reflexion.

Die buntenMalerfarben entstehen, wenn die in das Medi-
um eingebetteten Partikel, das Pigment, selektiv gewisse
Wellenlängenbereiche im sichtbaren Spektrum absorbie-
ren. Wird z. B. das Licht im roten, gelben und grünen
Spektralbereich absorbiert, so entsteht blaue Farbe. Es ist
verständlich, dass je nach dem spektralen Verlauf der
Absorption eine unendliche Vielfalt von Farben erreicht
werden kann.

Nicht alle Oberflächenfarben kommen auf die genannte
Weise zustande. An der glatten Oberfläche eines stark ab-
sorbierenden Mediums kann ein Farbeindruck dadurch
entstehen, dass ein bestimmter Wellenlängenbereich we-
niger stark absorbiert und daher auch weniger stark
reflektiert wird. So kommt z. B. die Farbe des Goldes zu-
stande. Wie Abb. 5.26 zeigt, sinkt die Reflektivität des
Goldes bei λ � 550 nm ab. Das reflektierte Licht ist da-
her rötlich–gelb, während eine dünne Goldschicht von
einigen µm Dicke in der Durchsicht blaugrün erscheint.
Wiederum ganz anders ist das Verhalten von gefärbtem
Glas. Hier ist die Konzentration der absorbierendenMole-
küle so klein, dass nI 	 nR ist. Somit erfolgt die Reflexion
unselektiv nach (5.40). Dass das farbige Glas auch in der
Draufsicht farbig erscheint, liegt an der Reflexion auf der
Rückseite. Auch dabei kommt die selektive Absorption
innerhalb des Farbglases zum Tragen. Wird die Rücksei-
te mit schwarzer Farbe in optischen Kontakt gebracht,
so verschwindet der Farbeindruck. – Mit diesem kurzen
Einblick in die Physik der Farben wollen wir es vorerst
bewenden lassen. In Kap. 7 und 9 kommen wir noch auf
einen anderen Mechanismus der Farbentstehung zu spre-
chen (Stichwort: Interferenzfarben).

9 Die graue Farbe an der Unterseite dicker Wolken erklärt sich da-
durch, dass dort infolge der Lichtstreuung in den darüberliegenden
Wolkenschichten nur noch wenig Licht ankommt.
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Abbildung 5.29 Strahlengang
bei 90° Lichtablenkung in einem
Pellin-Broca-Prisma α

α

γ

90°
β

β

5.1. Umlenkprisma. Ein unverspiegeltes Umlenkpris-
ma soll Licht mit geringsten Verlusten parallel versetzt in
die rückwärtige Richtung reflektieren. Wie groß muss der
Brechungsindex des Glases sein und wie groß ist das Ver-
hältnis der reflektierten zur ankommenden Intensität?

5.2. Lichtablenkung im Pellin-Broca-Prisma. Abbil-
dung 5.29 zeigt den Strahlengang in einem „Pellin-Broca-
Prisma“. Einer der Prismenwinkel ist 90°, der Nach-
barwinkel ist γ = 75◦. Ein Lichtstrahl wird aus seiner
ursprünglichen Richtung um 90° abgelenkt. Der Einfalls-
winkel des Lichtstrahls auf das Prisma sei α, wegen des
90°-Prismenwinkels ist der Ausfallswinkel dann ebenfalls
α. An der rückwärtigen Prismenseite findet Totalreflexion
statt.

a) Welchen Winkel bilden der an der Prismenrückseite
einfallende und der totalreflektierte Lichtstrahl miteinan-
der und wie groß ist der Einfallswinkel an der Rückseite?
Wie groß muss der Brechungsindex des Glases mindes-
tens sein, damit das Prisma wie beschrieben funktioniert?

b) Bei einem fest eingestellten Ablenkwinkel 90° hän-
gen der Einfallswinkel und der Brechungsindex eindeutig
miteinander zusammen. Bis zu welchem maximalen Bre-
chungsindex funktioniert das Prisma?

c) Zwischen welchen Werten variiert α als Funktion der
Wellenlänge für die beiden in Tab. 5.2 aufgeführten Glas-
sorten?

d) Welchen Vorteil gegenüber einem gleichschenkligen
Prisma hat die Anordnung, wenn man sie als Monochro-
mator verwendet?

5.3. Brechung im Medium mit variablem Brechungs-
index. Über einer ebenen Oberfläche befinde sich ein op-
tisches Medium mit einem höhenabhängigen Brechungs-
index, der von einem unteren Anfangswert n1 nach oben
kontinuierlich abnimmt, bis er einen Grenzwert n0 er-

reicht (z. B. Luft über der Erdoberfläche oder eine Salzlö-
sung in einem Glasgefäß). Ein schräg von oben kommen-
der Lichtstrahl wird abgelenkt und sein Neigungswinkel
relativ zur Vertikalen ändert sich von α0 auf α1. Wie ist
der Zusammenhang zwischen α0 und α1? (Hinweis: Be-
trachten Sie die sukzessive Brechung an infinitesimalen
Schichten und stellen Sie eine Differentialgleichung zwi-
schen dem Ablenkwinkel und dem Brechungsindex auf.)

Was passiert, wenn man ein Lichtsignal fast parallel zum
Boden von unten nach oben schickt? Zahlenbeispiel: n1 =
1,400, n0 = 1,333.

5.4. Lichttransmission und Reflexion an einer Grenz-
fläche bei fast senkrechtem Lichteinfall. Ein Lichtstrahl
falle unter kleinem Winkel β1 zur Normalen auf die ebe-
ne Grenzfläche zwischen zwei durchsichtigenMedien mit
den Brechungsindizes n2 und n1. Berechnen Sie aus (5.42)
und (5.43) die Amplituden und Intensitäten des durchge-
lassenen und reflektierten Lichts im Grenzfall β1 → 0 und
zeigen Sie: Die Korrekturen zu (5.39) sind proportional zu
β2
1. (Hinweis: Benutzen Sie die Taylorentwicklungen der

sin- und der cos-Funktion).

5.5. Normale Dispersion. Versuchen Sie, die Wellen-
längenabhängigkeit der Brechungsindizes für die beiden
Glassorten in Tab. 5.2 mit (5.33) zu beschreiben, wobei
jeweils nur eine einzige Resonanzfrequenz bzw. Reso-
nanzwellenlänge verwendet werden soll. Man beachte:
Die Wellenlänge in Tab. 5.2 ist die Vakuum-Wellenlänge,
nicht die im Medium. Welche Resonanzwellenlängen er-
geben sich? Hinweis: Suchen Sie nach einem linearen
Zusammenhang zwischen einer geeigneten Funktion des
Brechungsindex und dem Quadrat der Frequenz, oder al-
ternativ nach einem linearen Zusammenhang zwischen
einer Funktion, gebildet aus demBrechungsindex und der
Wellenlänge, und dem Quadrat der Wellenlänge. Geben
die Messwerte in Tab. 5.2 irgendwelche Hinweise auf die
Existenz weiterer Resonanzfrequenzen?

5.6. Optik der Röntgenstrahlen. Im Röntgenbereich
ist der Brechungsindex eines Materials durch (5.34) gege-
ben.

a) Wie groß ist der Brechungsindex n für Röntgenstrah-
lung derWellenlänge λ = 0,2 nm in Silizium (Z = 14,A =
28 g/mol, ρ = 2,33 g/cm3)?

b) Bei welchen Einfallswinkeln wird Röntgenstrahlung
dieser Wellenlänge, aus Luft kommend, an einer ebenen
Siliziumoberfläche totalreflektiert?



100 5 Brechung und Reflexion

c) Umwie viel weicht die Phasengeschwindigkeit von der
Lichtgeschwindigkeit c ab? Um wie viel weicht die Grup-
pengeschwindigkeit von c ab?

5.7. Transmission und Reflexion von Metallen. In
Wärmeschutzverglasungen werden die Glasscheiben mit
einer dünnen Metallschicht versehen, die man mit dem
Auge nicht wahrnimmt. Ermitteln Sie aus Abb. 5.28
und (5.47) die Brechungsindizes nR und nI von Sil-
ber für die beiden Wellenlängen λ = 600 nm und 20µm

(warum diese typischen Wellenlängen?). Wie groß sind
die Absorptionskoeffizienten? Nach welcher Strecke x
hat sich die Intensität der sichtbaren Strahlung bei
einem Durchgang durch eine Schicht um 20% redu-
ziert? Wie stark wird die Infrarotstrahlung bei einmali-
gem Durchgang durch eine solche Schicht geschwächt?
Warum darf man zur Berechnung des Reflexionsvermö-
gens einer solchen Schicht (5.48) nicht verwenden (hierzu
mehr in Aufgabe 7.6)? (Leitfähigkeit von Silber: σel =
6,7 · 107 Ω−1 m−1).
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In der geometrischen Optik wird die Ausbreitung
des Lichts mit Hilfe von Lichtstrahlen beschrieben.
Das ist eine Näherung, bei der die Wellennatur des
Lichts außer Acht gelassen wird. Sie dient in erster
Linie dazu, den Weg des Lichts durch ein optisches
Instrument auf einfache Weise zu berechnen. Man
geht dabei von den Gesetzen der Reflexion und
der Lichtbrechung aus, sowie von der geradlinigen
Ausbreitung des Lichts im Vakuum und in homo-
genen Medien. Diese drei Gesetze lassen sich auf ein
gemeinsames Prinzip zurückführen, auf das Fermat-
sche Prinzip, mit dem wir uns im ersten Abschnitt
befassen werden. Es ermöglicht einerseits manche
Probleme auf sehr einfache Art zu lösen, anderer-
seits ist es auch als Prinzip höchst interessant.

Der zweite Abschnitt ist das Kernstück des Kapitels.
Es wird untersucht, wie die optische Abbildung ei-
nes Gegenstandes zustande kommt, und wie man
bei Linsen und bei Linsensystemen Ort und Grö-
ße des Bildes berechnen oder grafisch konstruieren
kann. In ähnlicher Weise lässt sich dann auch die
Abbildung durch Spiegel behandeln (Abschn. 6.3).
Im letzten Abschnitt geht es um die praktische An-
wendung: Wir untersuchen, wie der Strahlengang in
optischen Instrumenten durch Blenden beeinflusst
wird. Sodannwerden dasmenschliche Auge und die
Funktionsweise von einigen optischen Instrumenten
diskutiert: Fotoapparat, Lupe, Mikroskop, Fernrohr,
Prismenspektrometer und Diaprojektor.

6.1 Lichtstrahlen und Fermatsches
Prinzip

Unter einem Lichtstrahl versteht man gewöhnlich ein eng
begrenztes Lichtbündel: den Lichtstrahl, der durch eine
kleine Öffnung in einen dunklen Raum fällt, die durch die
Wolken brechenden Sonnenstrahlen, den Strahl des Laser-
Lichtzeigers. Man könnte hier von „physischen“ Licht-
strahlen sprechen.

In der geometrischen Optik ist der Lichtstrahl eher ein
mathematischesKonzept. Er ist definiert als die Linie, ent-
lang der sich das Licht im Raum ausbreitet. Dabei wird
angenommen, dass der Strahl im Vakuum und in homo-
genen Medien geradlinig verläuft. Das ist in Wirklichkeit
nicht immer so einfach. Die Grenzen der geometrischen
Optik erkennt man deutlich am Beispiel der Lochkamera

Abbildung 6.1 Prinzip der Lochkamera

(Abb. 6.1), von Alters her als „camera obscura“ bekannt,
dem Urtyp eines bilderzeugenden Geräts.1

In die Vorderwand eines Kastens wird eine Lochblende
angebracht, auf der Rückwand wird ein Film angebracht
oder eine Mattscheibe eingebaut. Dort erzeugen die ein-
fallenden Lichtstrahlen ein auf dem Kopf stehendes Bild
der Außenwelt. Die Bildschärfe hängt vom Lochdurch-
messer ab, wie Abb. 6.2 zeigt. Bei einer großen Öff-
nung muss das Bild offensichtlich sehr verwaschen sein;
bei hinreichend kleiner Öffnung wird das Bild ziemlich
scharf. Verkleinert man die Öffnung noch weiter, wird es

Abbildung 6.2 Lochkamera: Bilder mit verschiedenen Lochdurchmessern.
a 1,5mm, b 0,7 mm, c 0,4mm, d 0,2mm. Die Abstände des Gegenstands und
der Mattscheibe vom Loch betrugen jeweils 35 cm

1 Die Lochkamera war schon den alten Griechen bekannt. Den ersten
wissenschaftlichen Gebrauch davon machte der arabische Physiker
Abu Ali al Hasan ibn al Haitham (965–1038), im Westen Alhazen
genannt. Er benutzte sie zur Beobachtung einer Sonnenfinsternis. –
Im Gegensatz zu den alten Griechen, die die Lichtausbreitung für
einen Vorgang hielten, der keine Zeit beansprucht, war er der Mei-
nung, dass sich das Licht mit endlicher Geschwindigkeit ausbreitet.
Auch nahm er an, dass die Lichtgeschwindigkeit in dichteren Me-
dien kleiner sei als in der Luft. Er beschrieb als erster korrekt die
Funktionsweise der Linse und das menschliche Auge. Seine Werke
wurden ins Lateinische übersetzt und hatten großen Einfluss auf die
Entwicklung der abendländischen Wissenschaft.



6.1 Lichtstrahlen und Fermatsches Prinzip 103

Te
il
I

Abbildung 6.3 Wellenfronten einer ebenen Welle hinter einer Lochblende

wieder unscharf. Die Ursache ist die Beugung des Lichts
an der Eintrittsöffnung, bei der sich die Wellennatur des
Lichts zeigt. Wellen können hinter dem Loch nicht gerad-
linig als scharf begrenzte Strahlenweiterlaufen (Huygens-
sches Prinzip!). Abbildung 6.3 zeigt schematisch das Wel-
lenfeld hinter einer Lochblende. Die dort eingezeichneten
Wellenfronten enden nicht abrupt, sondern die Amplitu-
de nimmt nach außen hin allmählich ab. Wir werden das
in Kap. 8 quantitativ untersuchen. In der geometrischen
Optik wird angenommen, dass sich das Licht innerhalb
der gestrichelten Linien ausbreitet, mit Lichtstrahlen, die
innerhalb der Blendenöffnung und parallel zu den ge-
strichelten Linien verlaufen. Die Beugungserscheinungen
außerhalb dieser Linien werden vernachlässigt bzw. nach-
träglich in pauschaler Weise berücksichtigt.

Unser Ziel ist es also, mit Hilfe von Lichtstrahlen denWeg
des Lichts durch ein optisches System zu verfolgen, in
dem es reflektierende und lichtbrechende Flächen gibt.
Ausgerüstet mit den bereits gewonnenen Erkenntnissen:
geradlinige Ausbreitung des Lichts, Reflexionsgesetz (5.1)
und Brechungsgesetz (5.2), könnten wir unmittelbar ans
Werk gehen. Bevor wir darauf eingehen, fragen wir: Gibt
es einen Zusammenhang zwischen den drei, hier bezie-
hungslos nebeneinander stehenden Gesetzen? Gibt es ein
übergeordnetes Prinzip, aus dem sich die drei Gesetze
ableiten lassen? Das gibt es in der Tat. Das Fermatsche
Prinzip geht davon aus, dass sich das Licht in einem ho-
mogenen Medium mit der konstanten Geschwindigkeit v
ausbreitet und besagt:

Satz 6.1

Das Licht läuft von einem Punkt A zum Punkt B auf
demWege, den es in der kürzesten Zeit zurücklegen
kann.

Eine verblüffende Behauptung: Wie schafft es das Licht,
diesen Weg ausfindig zu machen? Bevor wir darauf ein-
gehen, untersuchen wir zunächst, wie sich die gerad-
linige Lichtausbreitung, das Reflexionsgesetz und das
Brechungsgesetz aus dem Fermatschen Prinzip ableiten
lassen.

a

b

c
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A
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Abbildung 6.4 Fermatsches Prinzip: a zur geradlinigen Lichtausbreitung,
b zum Reflexionsgesetz, c zum Brechungsgesetz. Ausgezogene Linien: der wirk-
liche Strahlengang. Gestrichelt : alternative Wege

In Abb. 6.4a ist dasMedium homogen, daher ist die Licht-
geschwindigkeit v konstant und der kürzesten Laufzeit
entspricht die kürzesteWegstrecke. Das ist die GeradeAB.
Zur Reflexion: Das Licht soll auf dem Umweg über die
Spiegeloberfläche von A nach B gelangen. Dass die Stre-
cke ACB in Abb. 6.4b kürzer ist als z. B. die Strecken AC′B
oder AC′′B, sieht man, wenn man die Dreiecke ACP, AC′P
und AC′′P nach unten klappt: Die Linie A′CBmit β1 = β2
ist eine Gerade und somit kürzer als die Linien über C′

oder C′′. Der Reflexionswinkel muss also gleich dem Ein-
fallswinkel sein.

Um das Brechungsgesetz abzuleiten, stellte Fermat die
Hypothese auf, dass die Lichtgeschwindigkeit in durch-
sichtigen Medien um einen Faktor 1/n kleiner als im
Vakuum ist:

v =
c
n
. (6.1)

n soll eine Materialkonstante sein. Die Laufzeit des Lichts
auf demWeg ACB in Abb. 6.4c ist dann

t12 =
l1
v1

+
l2
v2

=
1
c
(n1l1 + n2l2) .
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Fermat definierte die optische Weglängemit

lopt = n1l1 + n2l2 (6.2)

und fragte sich: Für welchen Wert von x in Abb. 6.4c
ist lopt ein Minimum? Die Antwort zu finden, war für
Fermat nicht einfach, denn damals (1664) war die Diffe-
rentialrechnung noch nicht bekannt. Für uns ist das kein
Problem: Das Minimum liegt dort, wo dlopt/dx = 0 ist;
die entsprechende Koordinate sei x = x0.

lopt = n1
√

a2 + x2 + n2
√

b2 + (d− x)2 , (6.3)(
dlopt
dx

)
x=x0

= n1
2x0

2
√

a2 + x20
− n2

2(d− x0)

2
√

b2 + (d− x0)
2

= n1
x0

l1(x0)
− n2

d− x0
l2(x0)

= 0 .

Wir sparen uns dieMühe, die zweite Ableitung zu berech-
nen, und tragen die Funktion lopt(x) in Abb. 6.5 auf. Bei x0
liegt ein Minimum.Wieman in Abb. 6.4c ablesen kann, ist
x0/l1(x0) = sin β1 und (d − x0)/l2(x0) = sin β2. Es muss
also gelten:

n1 sin β1 = n2 sin β2 .

Wir haben das Snelliussche Brechungsgesetz (5.2) erhal-
ten. Fermat ist mit seinem Prinzip zum Brechungsgesetz
gelangt, und zwar mit der richtigen physikalischen Be-
gründung (6.1).2 Der experimentelle Beweis für Fermats
Hypothese wurde allerdings erst 200 Jahre später von
Foucault geliefert, dem es gelang, die Lichtgeschwindig-
keit in Wasser zu messen (vgl. Bd. I/1.4). Die Frage,
warum das Licht im optisch dichterenMedium langsamer
als im Vakuum läuft, wurde erst im 20. Jahrhundert beant-
wortet. Wir werden darauf in Bd. V/1.2 zurückkommen.
In Abb. 6.5 erkennt man, dass sich die optische Weglänge
in der Umgebung von x0 bei einer infinitesimalen Ver-
schiebung des Weges nicht ändert; genau das ist ja auch

2 Zur Vorgeschichte des Fermatschen Prinzips und des Brechungsge-
setzes: Die geradlinige Ausbreitung des Lichts und das Reflexions-
gesetz waren schon Bestandteil der Optik des Euklid (280 v.Chr.).
Heron von Alexandria (1. Jahrh. n.Chr.), vor allem bekannt gewor-
den als erfindungsreicher Ingenieur, stellte die These auf, dass das
Licht zwischen zwei Punkten auf dem kürzestenWeg läuft. Er brach-
te damit die geradlinige Ausbreitung und das Reflexionsgesetz in
einen ursächlichen Zusammenhang, übrigens mit der in Abb. 6.4b
gezeigten Überlegung. Das Brechungsgesetz, in der Antike nur in
der Näherung für kleine Winkel bekannt, wurde von Willebrord
Snel (1591–1626), Professor an der Universität Leiden, auf experi-
mentellem Wege ermittelt. René Descartes leitete es (ohne Snel zu
erwähnen) in seinem 1637 erschienenen Werk „La Dioptrique“ aus
den von ihm aufgestellten allgemeinen Naturprinzipien ab. Danach
soll das Licht an der Oberfläche des Mediums einen Stoß erfah-
ren, der die Brechung des Lichtstrahls bewirkt. Fermat schienen (mit
Recht) Descartes Überlegungen inkonsistent zu sein. Er stellte die
Hypothese (6.1) auf und anknüpfend an Heron erhielt er dann das
Brechungsgesetz, nun mit der richtigen Begründung.

Abbildung 6.5 Optische Weg-
länge als Funktion von x in (6.3)

x0

lopt(x)

xd0

die Aussage der Extremalbedingung
(
dlopt
dx

)
x=x0

= 0 . (6.4)

Zum gleichen Befund kommt man in Abb. 6.4a und b,
wenn man die optische Weglänge als Funktion von x be-
rechnet. Damit begründen wir eine zweite Formulierung
des Fermatschen Prinzips:

Satz 6.2

Ein Lichtstrahl läuft von Punkt A nach Punkt B auf
einemWege, dessen optischeWeglänge sich bei einer
kleinen Verschiebung des Weges nicht ändert.

Wir bringen diese Aussage auf eine mathematische Form,
die bei allen optischen Systemen und auch bei kontinu-
ierlich veränderlichen Brechungsindizes gültig bleibt. Die
optischeWeglänge ist dann gegeben durch ein Linieninte-
gral, berechnet auf dem geometrischenWeg von A nach B

lopt =
B∫

A

n(x, y, z)ds . (6.5)

Das Fermatsche Prinzip (Formulierung II) besagt

δ

⎛
⎝

B∫
A

n(x, y, z)ds

⎞
⎠ = 0 , (6.6)

wobei sich das Symbol δ auf eine kleine Variation des In-
tegrationsweges bezieht.

Die Formulierung des Fermatschen Prinzips mit Satz 6.2
erweist sich im Gegensatz zu Satz 6.1 als allgemeingültig.
Um zu zeigen, dass die in Satz 6.1 gegebene Formulierung
unzureichend ist, betrachten wir ein Rotationsellipsoid,
das auf der Innenseite verspiegelt ist. Ein Schnitt durch
das Ellipsoid entlang der Rotationsachse ist in Abb. 6.6a
gezeigt. A und B sind die Brennpunkte, die Bogenlänge s
ist eine entlang der Schnittlinie gemessene Koordinate.
Ein Lichtstrahl, der von A auf den Punkt C bei der Bogen-
länge s0 gerichtet ist, wird nach B reflektiert. Das könnte
man mit einiger Mühe beweisen, indem man geometrisch
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C

Abbildung 6.6 Schnitt durch ein verspiegeltes Rotationsellipsoid: a Strahlen-
gang bei Reflexion des Lichts im Punkt C , b Reflexion an einer innerhalb des
Ellipsoids verlaufenden Fläche, die das Ellipsoid im Punkt C berührt

Abbildung 6.7 Lichtstrahl
durch eine planparallele Platte

A

B

zeigt, dass β1 = β2 ist. Viel einfacher ist der Beweis mit
dem Fermatschen Prinzip. Da bei der Ellipse l1 + l2 kon-
stant ist, gilt für den Strahl ACB

(
dlopt
ds

)
s=s0

= 0 .

Der Strahl kann nach Satz 6.2 auf diesemWege vonA nach
B laufen. Das gilt aber für jeden beliebigen Punkt auf der
Oberfläche des Ellipsoids, z. B. auch für den PunktC′: Alle
Strahlen vom BrennpunktA laufen zum Brennpunkt B. Es
gibt hier kein Minimum der Laufzeit, Satz 6.1 wäre nicht
anwendbar.

Nun betrachten wir Abb. 6.6b. Die reflektierende Flä-
che berührt die Ellipse im Punkt C und verläuft ganz
innerhalb des Ellipsoids. Auch in diesem Fall ist die Refle-
xionsbedingung bei C erfüllt. Diesmal wäre aber der Weg
über C′ kürzer: Das Licht läuft hier auf einem Wege, auf
dem lopt ein Maximum hat. Satz 6.2 ist erfüllt, Satz 6.1 da-
gegen nicht.

Obgleich die prägnante Formulierung mit der kürzesten
Zeit unvollständig ist, leistet sie doch oft gute Dienste.
So sieht man in Abb. 6.7 sofort ein, weshalb das Licht
durch die planparallele Platte nicht auf der geometrisch
kürzesten Linie von A nach B läuft, sondern einen etwas
längeren Luftweg in Kauf nimmt, um den Weg im Glas
(v = c/n) zu verkürzen.

Einige Anwendungen des Fermatschen Prinzips

Umkehrbarkeit des Strahlengangs. Wir haben bisher
den Weg untersucht, auf dem das Licht „von A nach B“
läuft. Da die Lichtgeschwindigkeit nicht davon abhängt,
in welcher Richtung dieser Weg durchlaufen wird, würde
das Licht „von B nach A“ die gleiche Zeit brauchen, also
würde es auch auf exakt dem gleichen Wege laufen. Das
ist das Prinzip von der Umkehrbarkeit des Strahlengangs,
das sich oft als nützlich erweist.

Optische Abbildung. Wir stellen uns die Aufgabe, ein
„optisches System“ zu konstruieren, mit Hilfe dessen alle
Strahlen, die von P ausgehen und in das System eintre-
ten, in P′ wieder zusammengeführt werden (Abb. 6.8).
Das Fermatsche Prinzip lehrt, wie das System gebaut sein
muss, das eine solche optische Abbildung bewerkstel-
ligt: Alle Strahlen müssen, unabhängig vom Winkel α in
Abb. 6.8, auf dem Weg von Punkt P nach P′ die glei-
che optische Weglänge durchlaufen. Man sieht sogleich,
dass man das auf einfache Weise mit einem linsenförmi-
gen Glaskörper erreichen kann. Aufgrund der kleineren
Lichtgeschwindigkeit im Glas können die Unterschiede
der geometrischen Weglänge kompensiert werden. Wie
„einfach“ das in Wirklichkeit ist, werden wir im nächsten
Abschnitt sehen.

In P′ entsteht ein reelles Bild von P, so benannt im Ge-
gensatz zu einem virtuellen Bild. Was ein virtuelles Bild
ist, konnte man schon in Abb. 6.4b erkennen. Die Strah-
len, die man bei B sieht, scheinen von A′ her zu kommen
(Abb. 6.9). Ein Beobachter bei B hat tatsächlich den Ein-
druck, dass sich die Lichtquelle A bei A′ befindet. A′ ist
das virtuelle Bild von A. Wie handfest ein virtuelles Bild
ist, zeigt ein Blick in den Spiegel. – Wir fassen zusammen:

Satz 6.3

Reelles Bild: Im Bildpunkt P′ laufen die von P aus-
gehenden Strahlen zusammen. Die Strahlen konver-
gieren in P′.

P

α2
α1

P

opt. System

Abbildung 6.8 Optisches System mit abbildenden Eigenschaften
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P

P

Auge

Abbildung 6.9 Zur Entstehung eines virtuellen Bildes

a

b

35 1

2

Abbildung 6.10 Sonnenuntergang und Wetterleuchten

Satz 6.4

Virtuelles Bild: Im Bildpunkt P′ laufen die rück-
wärtigen Verlängerungen der Strahlen zusammen,
die den Beobachter erreichen. Die Strahlen scheinen
von P′ her zu divergieren.

Man kann das reelle Bild auf einem diffus reflektierenden
Bildschirm auffangen und sichtbar machen, das virtuelle
nicht. Wir werden im folgenden häufig mit reellen und
virtuellen Bildern zu tun haben.

Sonnenuntergang, Wetterleuchten und Gradientenlin-
sen. Wenn man am Meeresstrand steht und fasziniert
den Sonnenuntergang betrachtet, befindet sich die Son-
ne schon unter dem Horizont, in Abb. 6.10a in Position 2.
Als die Sonne den Horizont erreichte (Position 1), sahen
wir sie noch unter einem Winkel von ϑ = 35′ am Abend-
himmel. Das Phänomen erklärt sichmit dem Fermatschen
Prinzip: In den oberen Luftschichten sind Dichte und
Brechungsindex kleiner als in den unteren, die Lichtge-
schwindigkeit v = c/n also größer. Die Lichtstrahlen der
untergehenden Sonnemachen daher einen geometrischen

A B

Abbildung 6.11 Lichtstrahl in einem Medium mit variablem Brechungsindex:
Kochsalzlösung, in der Konzentration und Brechungsindex von unten nach oben
hin abnehmen

P P

Abbildung 6.12 Gradientenlinse. Die Abnahme des Brechungsindex ist durch
die Schattierung dargestellt

Umweg durch die obere Atmosphäre, um die kürzeste
Laufzeit zu erreichen.

Ähnliche Effekte führen zu den als Fata Morgana bekann-
ten Phänomen3 und zu den im Sommer häufig auf sonne-
nerhitzten Landstraßen beobachteten Luftspiegelungen.
Weniger bekannt ist, dass der gleiche Effekt bei Schallwel-
len dazu führt, dass man bei weit entfernten Gewittern
keinen Donner hört. Man sieht nur noch das Wetter-
leuchten – sehr eindrucksvoll bei starken Gewittern. Die
Schallstrahlen nehmen den in Abb. 6.10b gezeigten Ver-
lauf, denn die Schallgeschwindigkeit in der Luft ist nach
(2.24) vs =

√
κRT/M. Sie nimmt in der Atmosphäre nach

unten hin zu, da die Temperatur nach oben abnimmt.

Die Krümmung von Lichtstrahlen in einem Medium mit
variablem Brechungsindex lässt sich auch im Hörsaal
demonstrieren. In einem Glastrog werden Salzlösungen
abnehmender Konzentration übereinander geschichtet.
Durch Diffusion stellt sich nach einiger Zeit ein annä-
hernd konstanter Gradient dn/dz ein. In Abb. 6.11 ist
der Verlauf des Lichtstrahls von A nach B zu sehen. Der
Effekt lässt sich auch technisch ausnutzen. Wenn man
eine durchsichtige Platte in der Weise präpariert, dass
von einer Achse senkrecht zur Plattenebene aus gerech-
net, der Brechungsindex in radialer Richtung abnimmt,
entsteht eine Anordnung mit abbildenden Eigenschaften
(Abb. 6.12). SolcheGradientenlinsen spielen in der Laser-
physik eine Rolle (Stichwort: Selbstfokussierung, (9.46))
und sogar im menschlichen Auge (Abb. 6.38).

3 Siehe z. B. A. B. Fraser u. W.H. Mach, Scientific American 234, Jan.
1976, S. 102–111.
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Abschließende Bemerkungen

Wie schafft es nun das Licht, den vom Fermatschen Prin-
zip vorgeschriebenen Weg zu finden? Die Antwort steckt
in der Verbindung zur Wellenoptik: Die Lichtstrahlen
stehen senkrecht auf den Wellenfronten. Genau in die-
ser Richtung breitet sich die Welle aus, weil genau in
dieser Richtung die Huygensschen Elementarwellen mit-
einander maximal konstruktiv interferieren. In anderen
Richtungen löschen sie sich durch destruktive Interferenz
weitgehend aus. Der Lichtstrahl „findet“ also in gewisser
Weise tatsächlich den richtigen Weg, indem das Licht an-
dere Wege abtastet und verwirft.

Verglichen mit den expliziten Berechnungen von Wellen-
fronten ist das Operieren mit Lichtstrahlen und mit dem
Fermatschen Prinzip eine enorme Vereinfachung. Dar-
über hinaus hatte aber das Fermatsche Prinzip großen
Einfluss auf die Entwicklung der theoretischen Physik. Es
führte im 19. Jahrhundert zu dem von Lagrange und von
Hamilton formulierten „Prinzip der kleinsten Wirkung“,
das später bei der Entwicklung der Quantenmechanik ei-
ne große Rolle spielte.

Wir können auch eine Frage von praktischer Bedeutung
stellen: Wie genau müssen in Abb. 6.8 die optischen Weg-
längen der einzelnen Strahlen übereinstimmen, damit
eine scharfe Abbildung zustande kommt? Die Antwort
ergibt sich aus dem Zusammenhang mit der Wellenaus-
breitung: Damit sich die Strahlen in P′ phasenrichtig
überlagern, muss gelten

Δlopt 	 λ . (6.7)

Da die Wellenlänge des sichtbaren Lichts λ ≈ 500nm ist,
stellt dies sehr hohe Anforderungen an die Maßhaltigkeit
und an die optische Homogenität der verwendeten Bau-
elemente.

6.2 Abbildung mit Linsen

Abbildung durch Asphärische und durch Sphärische
Flächen

Wir untersuchen zunächst die optische Abbildung durch
eine einzelne gekrümmte Fläche. Ein Gegenstands-
punkt G soll auf einen Bildpunkt B abgebildet werden.
G liegt in einem Medium mit dem Brechungsindex n1,
B liegt in einem Medium mit dem Brechungsindex n2.
Wie muss die Grenzfläche zwischen den beiden Medien

A

BG S

l1

n1

l2

g b

n2

Abbildung 6.13 Schnitt durch eine kartesische Fläche

aussehen? Zunächst muss die Fläche offensichtlich ro-
tationssymmetrisch um die Achse GB sein. Nach dem
Fermatschen Prinzip muss weiterhin in Abb. 6.13 gelten

n1l1 + n2l2 = n1g+ n2b , (6.8)

und zwar für alle von den Lichtstrahlen erreichbaren
Punkte A auf der Fläche. S ist der Scheitelpunkt der Flä-
che, g die Gegenstandsweite, b die Bildweite. Mit (6.8)
ist es einfach, die Kurve in Abb. 6.13 punktweise zu
konstruieren (Aufgabe 6.1). Eine analytische Formel für
eine solche kartesische Fläche4 zu finden, ist dagegen im
Allgemeinen schwierig. Nur in Sonderfällen erhält man
einfache Flächen, wie z. B. eine Kugelfläche oder ein Rota-
tionshyperboloid.

Obgleich die kartesische Fläche die exakte Abbildung
von G auf B ermöglicht, ist ihr praktischer Nutzen recht
begrenzt. Die Abbildung ist eben nur für die beiden
Punkte G und B exakt, und das auch nur für monochro-
matisches Licht, wegen der optischen Dispersion. Unser
Ziel ist aber, mit Tages- oder Lampenlicht beleuchtete,
räumlich ausgedehnte Gegenstände optisch abzubilden.
Im Übrigen ist es schwierig und aufwendig, kartesische
Flächen mit der durch (6.7) geforderten Genauigkeit her-
zustellen.5 Relativ einfach ist es hingegen, diese Genauig-
keit bei sphärischen Flächen durch Schleifen zu erreichen.
Die Kugelfläche hat nämlich die Eigenschaft, dass zwei
Flächen, eine konvex und eine konkav, in beliebiger Stel-
lung genau zusammenpassen. Das Schleifwerkzeug aus
Stahl und das Rohmaterial aus Glas, beide annähernd
sphärisch, werden mit einem Schleifmittel versehen und
möglichst unregelmäßig gegeneinander bewegt. Diese
Prozedur wird mit einem immer feiner gekörnten Schleif-
mittel solange wiederholt, bis alle Abweichungen von der
Kugelfläche abgetragen sind und eine optische Politur er-
reicht ist.

4 So benannt nach Descartes, der dieses Problem in seinem Buch La
Dioptrique untersuchte.
5 Erst in neuerer Zeit sind Verfahren entwickelt worden, mit denen
man asphärische Linsen mit der erforderlichen Präzision kosten-
günstig herstellen kann. Ein Kunststoff hoher optischerHomogenität
wird in eine polierte Form gegossen. Asphärische Linsen befinden
sich seitdem im Vormarsch, besonders beim Bau von Kamera-Objek-
tiven.
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Abbildung 6.14 Abbildung durch eine sphärische Fläche

Wir betrachten also eine Kugelfläche vom Radius R, die
sich im Scheitelpunkt S möglichst gut an eine kartesische
Fläche anschmiegt. Der entsprechende Krümmungskreis
ist in Abb. 6.13 gestrichelt eingezeichnet. Eine gute Abbil-
dung von G auf B kann man nur für paraxiale Strahlen
erwarten. Das sind solche Strahlen, die nahe der Achse
GB verlaufen. Wir berechnen mit den in Abb. 6.14 defi-
nierten Größen den Zusammenhang zwischen g, b und
R. Dabei gehen wir nicht vom Fermatschen Prinzip aus,
sondern vom Brechungsgesetz, weil dann die Näherun-
gen, die hier gemacht werden, besser zu erkennen sind.
In Abb. 6.14 liest man ab:

tan α =
h

g+Δ
, tanγ =

h
b−Δ

, sin β =
h
R

. (6.9)

Nun ist ϑ1 = α + β, denn ϑ1 und (α + β) ergänzen den-
selben Winkel zu 180°. Ebenso ist β = ϑ2 + γ. Das Bre-
chungsgesetz n1 sin ϑ1 = n2 sin ϑ2 ergibt also

n1 sin(α + β) = n2 sin(β − γ) . (6.10)

Für paraxiale Strahlen istΔgegenüber g und b zu vernach-
lässigen. Außerdem sind α, β und γ kleine Winkel, und
man kann Sinus und Tangens durch die Winkel ersetzen.
Aus (6.10) und (6.9) folgt dann

n1(α + β) = n2(β − γ)

n1

(
h
g
+

h
R

)
= n2

(
h
R
− h

b

)
,

n1
g

+
n2
b

=
n2 − n1

R
. (6.11)

Die Winkel α, β, γ treten in dieser Formel nicht mehr auf:
Sie gilt also für alle achsennahen Punkte P. Der Punkt G
wird in paraxialer Näherung korrekt auf B abgebildet.
Außerdem sehen wir, dass die Lage des Punkts G auf der
durch S undM führenden Geraden beliebig gewählt wer-
den kann. Ein und dieselbe Kugelfläche bildet also mit
paraxialen Strahlen alle links von S liegenden Punkte G
auf Punkte rechts von S ab, wobei die Lage des Bildpunkts
mit (6.11) berechnet werden kann. Wegen der Umkehr-
barkeit des Strahlengangs würde auch B auf G abgebildet
werden. Man nennt deshalb B und G zueinander konju-
gierte Punkte.

R

M

S

fg

Fg

Fb

R

M
n1 n2

fb

a

b

n1 n2

Abbildung 6.15 Bildseitiger und gegenstandsseitiger Brennpunkt. Maßstäb-
lich für n1 = 1, n2 = 1,5

Brennpunkte und Brennweiten. Wo liegt das Bild, wenn
der Gegenstand nach links ins Unendliche verschoben
wird (Abb. 6.15a)?

n1
∞

+
n2
b

=
n2 − n1

R
→ b =

n2
n2 − n1

R =: fb . (6.12)

Man nennt fb die bildseitige Brennweite und Fb den bild-
seitigen Brennpunkt. Wo muss der Gegenstandspunkt
liegen, damit sich das Bild nach rechts ins Unendliche ver-
schiebt (Abb. 6.15b)?

n1
g

+
n2
∞

=
n2 − n1

R
→ g =

n1
n2 − n1

R =: fg . (6.13)

Man nennt fg die gegenstandsseitige Brennweite und
Fg den gegenstandsseitigen Brennpunkt. Mit (6.13) und
(6.12) kann man (6.11) auf folgende Formen bringen:

b =
n2
n1

g · fg
g− fg

, g =
n1
n2

b · fb
b− fb

. (6.14)

Die Vorzeichenkonvention. Die Formel (6.11) erweist
sich als ein äußerst leistungsfähiges Instrument, wenn
man mit der in Tab. 6.1 gegebenen Vorzeichenkonvention
auch negative Werte von g, b und R zulässt. Die Vorzei-
chen von fg und fb ergeben sich aus (6.12) und (6.13). Auf
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Tabelle 6.1 Vorzeichenkonvention in (6.11)–(6.13). „Vor S“ und „hinter S“:
gesehen in Strahlrichtung

Punkt vor S hinter S

G g > 0 g < 0

B b < 0 b > 0

M R < 0 R > 0

Fg fg > 0 fg < 0

Fb fb < 0 fb > 0

den ersten Blick scheinen die Festlegungen etwas verwir-
rend zu sein. Man kann sie sich aber ganz leicht merken:
Man braucht sich nur Abb. 6.14 einzuprägen, also die
Konfiguration, von der wir ausgegangen sind: In dieser
Anordnung sind alle Größen positiv. Wir betrachten eini-
ge Beispiele zu negativen Werten von g, b und R. Wenn
sich in Abb. 6.14 der Punkt G von links kommend dem
Brennpunkt Fg nähert, strebt nach (6.14) b → +∞, solan-
ge g > fg ist. Die Bildweite b springt aber zu negativen
Werten, sowie g < fg ist. Das Bild entsteht nun links vom
Scheitel S. Der zugehörige Strahlengang ist in Abb. 6.16a
gezeigt: Die rückwärtigen Verlängerungen der auslaufen-
den Strahlen schneiden sich in B, es handelt sich also nach
Satz 6.4 um ein virtuelles Bild des Punktes G.

Auch g kann in (6.14) negative Werte annehmen, z. B.
dann, wenn b > 0, aber b < fb ist. Diese Situation tritt ein,
wenn von links ein konvergentes Strahlenbündel einfällt.

G

G

b

B

B

R> 0
g> 0
b< 0

R> 0
g< 0
b> 0

Fb

g

a

b

Fg

G B

R< 0
g< 0
b> 0

c
Fg

GB

R< 0
g< 0
b< 0

d
Fg

Abbildung 6.16 Beispiele zur Vorzeichenkonvention

Die Verlängerungen dieser Strahlen schneiden sich im vir-
tuellen Gegenstandspunkt G (Abb. 6.16b).

Andere Möglichkeiten, einen virtuellen Gegenstand-
spunkt (g < 0) abzubilden, erhält man für R < 0
(Abb. 6.16c und d). Hier sind nach (6.12) und (6.13) fg
und fb negativ. Ist nun |g| < |fg|, entsteht ein reelles Bild
bei b > 0; ist dagegen |g| > |fb|, erhält man ein virtuelles
Bild des virtuellen Gegenstandes.

Man kann sich merken: Im virtuellen Bild treffen sich die
rückwärtigen Verlängerungen der auslaufenden Strahlen,
es liegt vor dem Scheitel S (b < 0). Im virtuellen Ge-
genstand treffen sich die in Strahlrichtung verlängerten
einlaufenden Strahlen, er liegt hinter dem Scheitel S (g <
0). Das virtuelle Bild entsteht bei divergent auslaufenden
Strahlen, der virtuelle Gegenstand entspricht konvergent
einlaufenden Strahlen.

Sphärische Linsen

Wie schon erwähnt, ist die Abbildungsgleichung (6.11)
eine äußerst nützliche Formel. Man kann mit ihr die pa-
raxialen Strahlen durch ein optisches System verfolgen,
das aus einer beliebigen Anzahl sphärischer Flächen und
entsprechend vielen Bereichen mit unterschiedlichen Bre-
chungsindizes besteht (Abb. 6.17). Die einzige Bedingung
ist, dass die Mittelpunkte der sphärischen Flächen auf
einer geraden Linie liegen. Man nennt sie die optische
Achse des Systems. Man beginnt mit einem Punkt G1,
der auf der optischen Achse im Abstand g1 vom Schei-
telpunkt S1 der ersten Fläche liegt, und berechnet mit
(6.11) die Bildweite b1 unter der Annahme, dass im ge-
samten Raum hinter der Fläche (1) der Brechungsindex
n = n2 ist, d. h. die Flächen (2)–(N) werden zunächst igno-
riert. Der Bildpunkt B1 wird dann identifiziert mit dem
Gegenstandspunkt G2, den man mit der Fläche (2) auf
den Bildpunkt B2 abbildet. Dabeiwird angenommen, dass
der Brechungsindex im gesamten Raum vor dieser Fläche
n = n2, hinter der Fläche n = n3 ist. In vielen Fällen wird
G2 ein virtueller Gegenstand sein (g2 < 0); wie wir gese-
hen haben, beeinträchtigt das die Anwendung von (6.11)
in keiner Weise. Das Verfahren wird fortgesetzt bis man
hinter der N-ten Fläche den endgültigen Bildpunkt B be-
rechnet hat.

n2

n3=n1n1

n4…

Fläche(1) (2) (3) (4)…

Abbildung 6.17 Ein optisches System. Als Beispiel ist ein Fotoobjektiv
„Tessar“ gezeigt
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Abbildung 6.18 Abbildung durch eine Linse: zur Ableitung von (6.18)
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Abbildung 6.19 Zur Bestimmung des optischen Zentrums einer Linse

Wir wenden dieses Verfahren auf die in Abb. 6.18 ge-
zeigte Linse an. Der Gegenstandspunkt G1 befinde sich
zwischen S1 und Fg1 . Es entsteht wie in Abb. 6.16a ein vir-
tuelles Bild B1 im Abstand b1 < 0 vom Scheitelpunkt S1.
Nach (6.11) ist

n1
g1

+
n2
b1

=
n2 − n1

R1
. (6.15)

Die Gegenstandsweite für die Abbildung durch die Flä-
che (2) ist positiv. Da b1 < 0 ist, müssen wir setzen

g2 = −b1 + d , (6.16)

denn g2 muss von S2 aus gemessen werden. Die Abbil-
dungsgleichung lautet nun

n2
−b1 + d

+
n1
b2

=
n1 − n2

R2
, (6.17)

denn an der Fläche (2) laufen die Strahlen in der Richtung
n2 → n1. Wir addieren (6.15) und (6.17) und erhalten

n1
g1

+
n1
b2

= (n2 − n1)
(

1
R1

− 1
R2

)
+

n2d
b1(b1 − d)

. (6.18)

Hätten wir mit einer Gegenstandsweite g1 > fg1 begon-
nen, so hätten wir ein reelles Bild G1 mit b1 > 0 erhalten,
das rechts von S2 liegt. In diesem Fall ist g2 < 0, und wir
würden g2 = −(b1 − d) setzen. Auch in diesem Falle gilt
also (6.16) und damit (6.18).

Optisches Zentrum. Das optische Zentrum einer Linse
ist ein Punkt auf der optische Achse mit der Eigenschaft,

dass jeder Lichtstrahl, der durch diesen Punkt hindurch-
geht, vor und hinter der Linse exakt die gleiche Rich-
tung hat. Dass ein solcher Punkt existiert, zeigen wir in
Abb. 6.19.Wir nehmen auf der Kugelfläche (1) einen belie-
bigen Punkt A an und zeichnen die Gerade AM1. Parallel
dazu zeichnen wir eine Gerade durch M2. Sie schneidet
die Kugelfläche (2) in B. Nun betrachten wir einen Licht-
strahl, der innerhalb der Linse auf der Geraden AB läuft.
Er muss nach dem Brechungsgesetz hinter der Linse ge-
nau die gleiche Richtung haben, wie vor der Linse. Das
folgt daraus, dass die in Abb. 6.19 eingezeichneten Radi-
en R1 und R2 senkrecht auf den Flächen (1) und (2) stehen,
und dass die bei A und B gekennzeichnetenWinkel gleich
sind. Nun sind die Dreiecke M2CB und M1CA einander
im geometrischen Sinne ähnlich. Daher stehen die Seiten
der beiden Dreiecke in einem festen Verhältnis und es gilt
die ProportionM2C/M1C = R2/R1. Die Lage des Punktes
C hängt also nicht von der Lage des PunktesA auf der Flä-
che (1) ab: Alle Lichtstrahlen, die bei C die optische Achse
schneiden, müssen hinter der Linse die gleiche Richtung
haben, wie vor der Linse: C ist das „optische Zentrum“
der Linse. Seine Lage auf der optischen Achse kann man
in Abb. 6.19 ablesen: Es ist

R1/R2 = AC/BC = S1C/S2C , (6.19)

denn die Konstruktion gilt auch für PunkteA, die beliebig
dicht bei S1 liegen.

In den Punkten A und B sind nicht nur die Flächennor-
malen, sondern auch die Tangentialebenen zueinander
parallel. Ein Lichtstrahl durch das optische Zentrum wird
daher wie beim Durchgang durch eine planparallele Plat-
te seitlich versetzt (Abb. 6.7). Bei einer dünnen Linse ist
für paraxiale Strahlen diese Verschiebung vollständig ver-
nachlässigbar. Der durch das optische Zentrum führende
Strahl läuft in diesem Fall geradlinig durch die Linse hin-
durch.

Linsenformen. Die Linsen in Abb. 6.18 und Abb. 6.19
nennt man bikonvexe Linsen. Man kann mit den gleichen
Radien Linsen sehr unterschiedlicher Form herstellen.
Abbildung 6.20 gibt eine Übersicht. Die Lage des opti-
schen Zentrums ist jeweils eingezeichnet. Wie man sieht,
gibt es zwei Arten von Linsen: Solche, die in der Mitte di-
cker sind als am Rand, und solche, die in der Mitte dünner
als am Rand sind. Wenn n2 > n1 ist, wirkt die in der Mitte
dickere Linse als Sammellinse, die in der Mitte dünnere
als Zerstreuungslinse. Diese beiden Linsentypen werden
in Zeichnungen manchmal auch durch die in Abb. 6.21
gezeigten Symbole dargestellt.

Dünne Linsen

Bei einer dünnen Linse kann man den zweiten Term auf
der rechten Seite von (6.18) gegenüber dem ersten ver-
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bikonvex

plankonvex

meniscus-konvex

bikonkav

plankonkav

meniscus-konkav

Abbildung 6.20 Verschiedene Linsenformen. Punkte: Optische Zentren, je-
weils konstruiert wie in Abb. 6.19. Striche: Hauptebenen, berechnet mit (6.35)

Abbildung 6.21 a Sammel-
linse, b Zerstreuungslinse in
symbolischer Darstellung

a b

nachlässigen. Außerdem kann man statt mit den Größen
g1, b1 und g2, b2 mit einer Bildweite b und einer Gegen-
standsweite g rechnen, die beide vom optischen Zentrum
aus gemessen werden. Die Brennweite der Linse erhält
man, indem man die Grenzfälle b → ∞ und g → ∞ be-
trachtet. Gleichung (6.18) ergibt dann für die dünne Linse

fg = fb =
n1

n2 − n1

R1R2

R2 − R1
= f . (6.20)

f ist die Brennweite der Linse. Da die Linse gewöhnlich in
Luft betrieben wird, setzen wir im folgenden n1 = 1 und
n2 = n. Aus (6.18) erhält man dann die Gleichungen

1
g
+

1
b
=

1
f
, (6.21)

(n− 1)
(

1
R1

− 1
R2

)
=

1
f
≡ P . (6.22)

B

G

Gegenstands-
ebene

Linsen-
ebene

Bild-
ebene

g

b

Abbildung 6.22 Abbildung von Punkten, die nicht auf der optischen Achse
liegen

Die erste Gleichung wird die Gaußsche Abbildungsglei-
chung genannt, die zweite die Linsenmacherformel. P
ist die Brechkraft der Linse. Sie wird gemessen in Diop-
trien, definiert als Kehrwert der in Metern gemessenen
Brennweite. Als Zahlenbeispiel berechnenwir Brennweite
und Brechkraft für eine bikonvexe Linse mit R1 = 50 cm,
R2 = −30 cm, n = 1,5:

1
f
= 0,5

(
1
50

+
1
30

)
=

80
3000

cm−1 ,

f = 37,5 cm , P = 2,66 Dioptrien .

Für die bikonkave Linse mit R1 = −50 cm, R2 = 30 cm,
n = 1,5 erhalten wir

1
f
= 0,5

(
− 1
50

− 1
30

)
= − 40

1500
cm−1 ,

f = −37,5 cm , P = −2,66 Dioptrien .

Die Brennweite ist bei allen Sammellinsen positiv, bei
allen Zerstreuungslinsen negativ. Wie sich das auf die Ab-
bildung und auf die Bildkonstruktion auswirkt, werden
wir gleich sehen.

Abbildung eines flächenhaft ausgedehnten Gegen-
stands. Die Abbildungsgleichung (6.21) gilt nicht nur für
Punkte auf der optischen Achse, sie gilt näherungsweise
auch für Punkte in der in Abb. 6.22 dargestellten Ge-
genstandsebene, sofern die Strahlen, die vom Punkt G
aus durch die Linse laufen als paraxial betrachtet wer-
den können. Die Lage des Bildpunktes B in der Bildebene
ist durch den Strahl gegeben, der geradlinig durch das
optische ZentrumC der Linse läuft. Für die Abstände zwi-
schen den Ebenen gilt (6.21):

1
g
+

1
b
=

1
f
.
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Abbildung 6.23 Geometrische Bildkonstruktion nach Satz 6.5
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Abbildung 6.24 Erzeugung virtueller Bilder mit einer Sammellinse und mit
einer Zerstreuungslinse

Sehr bequem lässt sich die Lage der Bildpunkte mit der in
Abb. 6.23 gezeigten Konstruktion ermitteln.6 Die Linse ist
durch eine Ebene senkrecht zur optischen Achse ersetzt,
die die Achse in C schneidet. Dann gilt folgendes:

Satz 6.5

1. Der Parallelstrahlwird an der Linsenebene so ge-
brochen, dass er durch den Brennpunkt Fb führt.

2. Der Brennstrahl (d. h. der durch den Brenn-
punkt Fg führende Strahl) verläuft hinter der
Linse parallel zur optischen Achse.

3. DerMittelpunktsstrahl läuft ungebrochen durch
den Punkt C.

Offensichtlich genügen bereits zwei dieser Strahlen, um
die Lage von B zu konstruieren. Dabei spielt es keine Rol-
le, ob die Strahlen (1) und (2) tatsächlich die Linse treffen,
denn diese Strahlen sind hier nur Konstruktionshilfen.

6 Diese Konstruktion ist in der Praxis gut zu gebrauchen, wenn man
schnell die ungefähre Lage des Bildpunkts ermitteln will. Wenn es
auf einige Genauigkeit ankommt, sollte man unbedingt mit der Ab-
bildungsgleichung und dem Taschenrechner arbeiten. Dasselbe gilt
auch für die Bildkonstruktion mit Hilfe der Hauptebenen, die man
bei dicken Linsen und bei Linsensystemen anwenden kann (siehe
weiter unten).

Tabelle 6.2 Eigenschaften der optischen Abbildung mit Linsen

Gegenstandsweite Bild

Sammellinse:

g > f
f < g < 2f
g = 2f
g > 2f

reell, umgekehrt
vergrößert
gleich groß
verkleinert

0 < g < f virtuell, aufrecht
vergrößert

Zerstreuungslinse:

g > 0 virtuell, aufrecht
verkleinert

C B

G

Fg

xg

yg

yb

Fb

g b
f

y

x

f xb

G

B

Abbildung 6.25 Zur Ableitung von (6.24)–(6.26)

Sofern der Gegenstand außerhalb der Brennweite liegt,
entsteht ein reelles umgekehrtes Bild. Im Bereich g > 2f
ist das Bild verkleinert, bei g = 2f sind Bild und Gegen-
stand gleich groß, und im Bereich f < g < 2f ist das Bild
vergrößert. Ist g < f , entsteht ein aufrecht stehendes vir-
tuelles Bild (Abb. 6.24a).

Die gleiche Bildkonstruktion funktioniert auch bei Zer-
streuungslinsen. Man muss nur berücksichtigen, dass
nach (6.20) die Brennweite einer Zerstreuungslinse nega-
tiv ist. Fb liegt vor der Linse und Fg dahinter. Man muss
also die entsprechenden Strahlverlängerungen betrach-
ten (Abb. 6.24b). Bei jeder Lage des Gegenstands entsteht
ein verkleinertes, aufrechtes virtuelles Bild, sofern g > 0
ist (reeller Gegenstand). – Es lohnt sich, den Inhalt von
Tab. 6.2 im Kopf zu haben.

Transversaler und longitudinaler Abbildungsmaßstab.
In Abb. 6.23 kann man auch den Abbildungsmaßstab ab-
lesen. Dazu wird eine y-Achse eingeführt, wie Abb. 6.25
zeigt. Außerdem definiert man die Abstände xg und xb als
Abstände der Punkte G bzw. B von den Brennpunkten Fg
bzw. Fb . xg ist positiv links von Fg und negativ, wenn G
rechts von Fg liegt. Bei xb ist es umgekehrt. In Abb. 6.25
sind xg, xb und yg positiv, yb ist negativ. Haben yb und yg
entgegengesetzte Vorzeichen, entspricht das einem umge-
kehrten Bild. Bei gleichemVorzeichen ist das Bild aufrecht
stehend.
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Der transversale Abbildungsmaßstab MT ist definiert
durch

MT :=
yb
yg

. (6.23)

Aus der Ähnlichkeit der in Abb. 6.25 schattiertenDreiecke
folgt

|yb|
yg

=
f
xg

=
xb
f

. (6.24)

Ebenso folgt mit den Dreiecken CGG′ und CBB′

|yb|
yg

=
b
g
. (6.25)

Damit erhalten wir

MT = − b
g
= − f

xg
= −xb

f
. (6.26)

Das Minuszeichen zeigt an, dass ein umgekehrtes Bild
entsteht, wenn g, b, f , xg und xb positiv sind.

Der longitudinale Abbildungsmaßstab ML gibt an, wie
sich die Bildweite bei Änderung der Gegenstandsweite
verhält. Man definiert also

ML :=
dxb
dxg

. (6.27)

Zur Berechnung dieser Größe braucht man eine Bezie-
hung zwischen xg und xb. Man erhält sie mit (6.24)

xgxb = f 2 . (6.28)

Das ist dieNewtonsche Abbildungsgleichung. Wir diffe-
renzieren die Gleichung xb = f 2/xg:

ML = − f 2

x2g
= −M2

T . (6.29)

Der longitudinale Abbildungsmaßstab ist also vom trans-
versalen verschieden. Wenn MT 	 1 ist, ist ML winzig.
Darauf beruht, dass wir mit unserem Auge ein schar-
fes Bild von einem dreidimensionalen Gegenstand sehen,
und dass man mit einer Kamera eine Landschaft foto-
grafieren kann, so dass Vorder- und Hintergrund scharf
abgebildet werden.

Abbildungsfehler

Die einfachen Formeln für die optische Abbildung, die
wir bisher abgeleitet haben, gelten nur für paraxiale Strah-
len und auch dann nur für monochromatisches Licht.
In Wirklichkeit weicht der Strahlengang durch eine Lin-
se häufig von dieser einfachen Theorie ab. Diese Ab-
weichungen bezeichnet man als Abbildungsfehler oder
Aberration. Es ist üblich, die Abbildungsfehler nach be-
stimmten Typen zu klassifizieren. Das macht die Diskus-
sion übersichtlicher und ist auch insofern sinnvoll, als
die Korrekturmöglichkeiten für die einzelnen Fehlertypen
verschieden sind.

Befassen wir uns zunächst mit der chromatischen Aber-
ration, auch Farbfehler genannt. Sie kommt ganz einfach
dadurch zustande, dass der Brechungsindex von der Wel-
lenlänge abhängt (Abschn. 5.3). Bei normaler Dispersion
nimmt der Brechungsindex mit abnehmender Wellenlän-
ge zu, blaues Licht wird stärker gebrochen als rotes. Man
erhält daher bei der Abbildung eines Punkts, von dem
weißes Licht ausgeht, den in Abb. 6.26 gezeigten Strah-
lengang. Wo auch immer man die Bildebene definiert, der
„Bildpunkt“ hat immer farbige Ränder. Es gibt jedoch eine
engste kreisförmige Einschnürung des Strahlenbündels,
eine „Strahltaille“, und dort sind auch die Farbeffekte am
wenigsten ausgeprägt.Man kann den Farbfehler beträcht-
lich vermindern, indem man die Sammellinse mit einer
Zerstreuungslinse geringerer Brechkraft, aber stärkerer
Dispersion zusammenklebt. Eine solche Linsenkombina-
tion bezeichnet man als Achromat.

Als sphärische Aberration oderÖffnungsfehler bezeich-
net man die Fehler, die bei der Abbildung eines auf der
optischen Achse liegenden Punktes entstehen, weil die
sphärisch geschliffene Linse eben nicht die zur Abbildung
von G auf B gehörende kartesische Fläche ist. Strahlen,
die weiter außen auf die Linse treffen, schneiden sich
nicht im paraxialen Bildpunkt: Sie werden zu stark ge-
brochen. In Abb. 6.27a ist das bei einer plankonvexen
Linse für parallelen Lichteinfall gezeigt. Der Punkt G liegt
in großer Entfernung auf der optischen Achse. Das Aus-
maß der sphärischen Aberration hängt bei vorgegebener
Brennweite stark von der Form der Linse ab. Schon wenn
man die plankonvexe Linse in Abb. 6.27a umdreht, wird
die sphärische Aberration stark reduziert (Abb. 6.27b). In

bviol.
brot

g

Abbildung 6.26 Chromatische Aberration. Der Effekt ist in der Zeichnung
stark übertrieben
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jedem Fall erhält man statt des Bildpunkts einen kreis-
runden Fleck, dessen Durchmesser nicht am paraxialen
Brennpunkt, sondern kurz davor am kleinsten ist. Auch
die sphärische Aberration lässt sich durch Kombination
der Sammellinse mit einer Zerstreuungslinse korrigieren,
wenn man die richtigen Linsenformen wählt.

Weitere Abbildungsfehler treten auf, wenn der Punkt G
nicht auf der optischen Achse liegt, wenn also der Mit-
telpunktsstrahl mit der optischen Achse einen Winkel α
einschließt. Schon bei relativ kleinen Winkeln zeigt sich
ein Abbildungsfehler, der die Koma genannt wird. Der
Bildpunkt erhält einen kometenartigen Schweif. Die Ursa-
che ist der asymmetrische Durchgang der Strahlen durch
die Linse. Abbildung 6.27c zeigt das an Strahlen in der
Meridionalebene, der Ebene, die den Mittelpunktstrahl
und die optische Achse enthält. Man sieht sofort, dass
das nicht gut gehen kann. Die Berechnung der Koma ist
kompliziert. Sehr einfach ist dagegen die Demonstration:
Man erzeugt mit einer Sammellinse im Sonnenlicht den
bekannten Brennfleck. Wenn man nun die Linse ein we-
nig schief hält, entsteht sofort das charakteristische Bild
der Koma. Probieren Sie es aus!

Beschränkt man sich auf ein schmales Strahlenbündel,
das den Mittelpunktsstrahl enthält, tritt bei schrägem
Lichteinfall immer noch ein Abbildungsfehler auf, der so-
genannteAstigmatismus. (Nicht zu verwechselnmit dem
Astigmatismus des Auges, der durch eine Deformation
der Hornhaut verursacht wird.) Er besteht darin, dass die
Brennweite der Linse in der eben definierten Meridional-
ebene kürzer ist als die Brennweite für Strahlen in der
Sagittalebene. Diese Ebene steht senkrecht auf der Meri-
dionalebene und enthält ebenfalls denMittelpunktsstrahl.
Der Effekt ist in Abb. 6.27d gezeigt: Das hinter der Linse
noch kreisrunde Strahlenbündel schnürt sich immeridio-
nalen Fokus zu einer Linie zusammen, die senkrecht auf
der Meridionalebene steht. Im sagittalen Fokus entsteht,
senkrecht zur Sagittalebene, ebenfalls ein linienhaftes Bild
des Gegenstandpunkts. Dazwischen liegt eine kreisför-
mige Strahltaille. Dort erhält man die beste Bildqualität.
Auch dies kann man im Sonnenlicht mit einer Lupe stu-
dieren, wenn man eine Lochblende (ca. 5mm ∅) vor die
Lupe hält.

Wenn alle bisher diskutierten Abbildungsfehler korrigiert
wären, würde eine saubere Punkt-zu-Punkt Abbildung
erfolgen. Selbst dann gibt es noch weitere Abbildungs-
fehler: Die Bildfeldwölbung ist leicht zu verstehen: Bei
Abwesenheit aller anderen Abbildungsfehler werden in
Abb. 6.27e die Punkte G, G′, G′′,. . . exakt auf die Bild-
punkte B, B′, B′′, . . . abgebildet. Rückt man nun die Punk-
te G, G′, G′′, . . . auf die Gegenstandsebene, so verschie-
ben sich die Bildpunkte nach der Abbildungsgleichung
1/g + 1/b = 1/f nach vorn. Die Bildfläche ist zwangs-
läufig gewölbt, und zwar bei einer Sammellinse so, wie
Abb. 6.27e zeigt. Bei einer Zerstreuungslinse wölbt sich
das Bildfeld in entgegengesetzter Richtung. Daher kann
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Abbildung 6.27 Monochromatische Abbildungsfehler: a und b sphärische
Aberration an einer plankonvexen Linse, c zur Koma, d Astigmatismus, e Bild-
feldwölbung, f tonnenförmige und kissenförmige Verzeichnung. Gestrichelt :
Bild ohne Verzeichnung

man durch eine Kombination von Sammel- und Zerstreu-
ungslinsen ein ebenes Bildfeld erreichen. Es muss die
Petzval-Bedingung

n1f1 + n2f2 = 0 (6.30)

erfüllt sein. Die Verzeichnung, der letzte der klassischen
Abbildungsfehler, beruht darauf, dass der Abbildungs-
maßstabMT = yb/yg, unter Umständen vomAbsolutwert
von yb abhängt. Nimmt MT mit wachsendem yb ab, wird
ein Quadrat in der Gegenstandsebene in eine tonnenar-
tige Figur abgebildet. Nimmt MT mit yb zu, entsteht eine
kissenartige Verzeichnung (Abb. 6.27f). Schautman durch
eine große bikonvexe Lupe auf ein Stück Millimeterpa-
pier, wird die kissenförmige Verzeichnung sofort sichtbar.
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Das alles hört sich ziemlich frustrierend an, aber letzten
Endes kann man mit dem entsprechenden Aufwand alle
Fehlertypen unter vorgegebenen Grenzen halten, indem
man statt einer einzelnen Linse ein Linsensystem verwen-
det.

Dicke Linsen und Linsensysteme

Wenn man eine Linse mit kurzer Brennweite braucht,
muss man zu einer dicken Linse greifen. Wie kann man
dann die Lage des Bildes ermitteln? Eine zweite Fra-
ge: Jeder weiß, was passiert, wenn man zwei elektrische
Widerstände hintereinander schaltet. Was passiert aber,
wenn man zwei Linsen hintereinander stellt? Diesen Fra-
gen wollen wir nun nachgehen.

Eine für dicke Linsen gültige Abbildungsgleichung ken-
nen wir schon (Gl. (6.18)). Man sieht schnell, dass es müh-
sam wird, mit dieser Gleichung direkt etwas anzufangen.
Daher konstruieren wir bei einer dicken Linse mit dem im
Text zu Abb. 6.18 angegebenen Verfahren die paraxialen
Strahlengänge für g1 → ∞ und für b2 → ∞. Die Ergeb-
nisse sind in Abb. 6.28a und b gezeigt. Man erhält den
bildseitigen und den gegenstandsseitigen Brennpunkt.
Verlängert man nun die Strahlen gradlinig von außen
ins Innere der Linse, erhält man die gestrichelten Linien.

M2

B
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b

c
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Abbildung 6.28 Zur Definition der sogenannten Kardinalelemente einer di-
cken Linse: a bildseitige Hauptebene H ′, b gegenstandsseitige Hauptebene H ,
c Knotenpunkte
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Abbildung 6.29 Bildkonstruktion bei einer dicken Linse

Die Schnittpunkte dieser Linien definieren zwei Flächen,
die im paraxialen Gebiet Ebenen sind. Man nennt sie die
gegenstandsseitige und die bildseitige Hauptebene. Sie
schneiden die optische Achse in den Hauptpunkten. So-
wohl die Ebenen als auch die Punkte werden mit H bzw.
H′ bezeichnet. In Abb. 6.28c sindwie in Abb. 6.19 Strahlen
konstruiert, die ihre Richtung beim Durchgang durch die
Linse nicht ändern. Ihre Verlängerungen schneiden die
optische Achse in den Knotenpunkten K und K′. Wenn
sich vor und hinter der Linse das gleiche Medium befin-
det, fallen K und K′ mit den Hauptpunkten zusammen.
Dies wird im Folgenden angenommen.

Damit haben wir alle Ingredienzien beieinander, um die
einfache Bildkonstruktion nach Satz 6.5 auch bei dicken
Linsen anwenden zu können (Abb. 6.29). Die Konstruk-
tion von Brennstrahl und Parallelstrahl ist klar. Der
Mittelpunktsstrahl ist auf der Gegenstandsseite auf den
Punkt H gerichtet; er verlässt die Linse, parallel verscho-
ben, scheinbar vom Punkt H′ ausgehend. Gegenstands-,
Bild- und Brennweite werden von den Hauptebenen H
bzw.H′ aus gemessen. Für den Abbildungsmaßstab erhält
man aus der Ähnlichkeit von Dreiecken wie bei der dün-
nen Linse in Abb. 6.25:

MT ≡ yb
yg

= − b
g
= − f

xg
= −xb

f
. (6.31)

Daraus folgt wieder die Newtonsche Abbildungsglei-
chung

xgxb = f 2 , (6.32)

und mit xg = g − f , xb = b − f erhält man die Gaußsche
Abbildungsgleichung

gb− fg− fb = 0 → 1
g
+

1
b
=

1
f
. (6.33)

Die nun folgenden Formeln sind nicht so leicht abzulei-
ten, es ist aber einfach, sie anzuwenden. Sie ermöglichen,
in paraxialerNäherungmehr als nur die Abbildung durch
eine einzelne dünne Linse zu berechnen. Man erhält aus
(6.15)–(6.18) für die Brennweite der dicken Linse und für
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die Abstände der Hauptebenen von den Linsenscheiteln:

1
f
= (n− 1)

(
1
R1

− 1
R2

+
(n− 1)d
nR1R2

)
, (6.34)

h = S1H = −n− 1
n

fd
R2

,

h′ = S2H′ = −n− 1
n

fd
R1

.
(6.35)

Hierbei ist die Vorzeichenkonvention: Wenn h bzw. h′ po-
sitiv sind, liegen die Hauptebenen rechts von S1 bzw. von
S2 (Lichteinfall von links).

Linsensysteme. Auch bei einem Linsensystem, das aus
mehreren dicken oder dünnen Linsen besteht, kann
man das Bild eines Gegenstandes mit Hilfe von zwei
Hauptebenen konstruieren. Besteht das System aus zwei
Linsen, erhält man für die Brennweite des Systems und
für die Lage der Hauptebenen die folgenden einfachen
Formeln:

1
f
=

1
f1

+
1
f2

− d
f1f2

, (6.36)

h = H1H =
fd
f2

, h′ = H′
2H

′ = − fd
f1

. (6.37)

Hierin bezeichnet H1 die gegenstandsseitige Hauptebene
von Linse 1, H′

2 die bildseitige Hauptebene von Linse 2,
die Strahlrichtung verläuft von 1 nach 2. h und h′ sind po-
sitiv, wenn die HauptebenenH undH′ des Systems rechts
von H1 bzw. von H2 liegen. Es ist d = H′

1H2. Bei dünnen
Linsen ist d einfach der Abstand zwischen den Linsenebe-
nen. Für d = 0 erhält man aus (6.36)

1
f
=

1
f1

+
1
f2

→ P = P1 +P2 , (6.38)

die Brechkräfte der beiden Linsen addieren sich.

Für d �= 0 wird es komplizierter, aber es zeigt sich, dass
solche einfachen Systeme interessante Eigenschaften ha-
ben können.Wir betrachten dazu ein Beispiel: In Abb. 6.30
seien L1 und L2 dünne Linsen mit den Brennweiten f1 =
+30 cm, f2 = −30 cm, und es sei d = 20 cm. Dann ist nach
(6.36) f = 45 cm. Aus (6.37) folgt

h =
900
−30

= −30 cm , h′ = −900
30

= −30 cm .

Die HauptebenenH undH′ und die von dort gemessenen
Brennpunkte Fg und Fb sind in Abb. 6.30 eingezeichnet.
Die Bildkonstruktion ist wie in Abb. 6.29 denkbar einfach.
Die Zeichnung ist maßstäblich. Wie in der geometrischen
Optik üblich, sind jedoch die Maßstäbe in Richtung der
optischenAchse und senkrecht dazu sehr unterschiedlich.

Fg

Fb

L1 L2

d

f f

HH

0 20 40 60 80 100cm

1

2

3cm

Abbildung 6.30 Beispiel zur Bildkonstruktion bei einem Linsensystem

Unser Beispiel zeigt, dass die Hauptebenen auch weit au-
ßerhalb des Linsensystems liegen können. Dies ist z. B.
für den Bau von Teleobjektiven von Vorteil: Man kann
eine große Brennweite erzielen, ohne dass die Objektiv-
linse einen ebenso großen Abstand von der Filmebene
haben muss. Das Linsensystem in Abb. 6.30 hat noch eine
weitere interessante Eigenschaft: Wenn n1 = n2 ist, ist die
Petzval-Bedingung (6.30) erfüllt, es gibt also keine Bild-
feldwölbung. Auch erkennt man, dass die Kombination
einer Sammellinse mit einer Zerstreuungslinse gleicher
Stärke als Sammellinse wirkt, wenn d �= 0 ist. Die physi-
kalische Ursache dafür hatten wir schon bei der magneti-
schen Quadrupollinse in Bd. III, Abb. 13.18 angesprochen.

Gewöhnlich besteht ein Linsensystem ausmehreren sphä-
risch geschliffenen Linsen, die sich in der Form und
häufig auch im Brechungsindex voneinander unterschei-
den. Erstaunlicherweise kann man mit solchen Linsen-
systemen erreichen, dass für jeden in der Praxis vor-
kommenden Zweck die Abbildungsfehler unter das ge-
wünschte Maß gedrückt werden. Das „gewünschte Maß“
wird dabei durch den Verwendungszweck und durch
den Kostenfaktor definiert. Eine vollständige Beseitigung
der Abbildungsfehler ist weder möglich noch sinnvoll,
denn durch Beugungsphänomene ist der Schärfe der op-
tischen Abbildung eine Grenze gesetzt. Mit einem guten
Linsensystem kann man aber auch bei riesigen Öffnungs-
winkeln, bei schräg einfallenden und bei achsenfernen
Strahlen in die heile Welt der paraxialen Näherung zu-
rückkehren – eine bewundernswerte Leistung der profes-
sionellen Optiker.7

7 Bei der Optimierung eines Linsensystems ist das „ray tracing“, bei
dem der Strahlverlauf mit dem Brechungsgesetz für viele Einzel-
strahlen durchgerechnet wird, eine unschätzbare Hilfe. Auf diese
Weise wird ein Linsensystemmit demComputer demVerwendungs-
zweck entsprechend optimiert. Die Ausgangsbasis, d. h. die Grund-
konfiguration, von der man am besten ausgeht, verrät der Computer
jedoch nicht. Hier sind gute theoretische Kenntnisse, Erfahrung und
Intuition gefragt. Meist wird von altbewährten Konstruktionen aus-
gegangen, bei Kamera-Objektiven z. B. von Tessar, Sonnar oder einer
Handvoll anderer Objektive. Nur selten wird ein neues erfolgreiches
Grundkonzept erfunden.
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6.3 Abbildung mit Spiegeln

Die Abbildung eines Punktes mit einem ebenen Spiegel
hatten wir schon bei Abb. 6.9 diskutiert. Auch die Abbil-
dung eines räumlich ausgedehnten Gegenstands ist uns
vertraut: Wann immer wir in den Spiegel blicken, sehen
wir hinter dem Spiegel unser Bild, ein virtuelles Bild wie
bei der Punktabbildung. Die Abbildungsmaßstäbe sind
MT = ML = +1. Zwischen diesem Bild und den Bildern,
die manmit einer Linse erzeugen kann, besteht ein grund-
sätzlicher Unterschied: Dort ist das Bild eines rechtshän-
digen Koordinatensystems stets wieder rechtshändig, ob
es sich um ein umgekehrtes reelles oder um ein aufrecht
stehendes virtuelles Bild handelt. Wenn man eine Buch-
seite abbildet, erhält man mit der Linse stets die Schrift
und nicht Spiegelschrift. Bei der Abbildung durch einen
ebenen Spiegel entsteht jedoch aus einem rechtshändigen
Koordinatensystem ein linkshändiges: Der Spiegel führt
die als Inversion bezeichnete Koordinatentransformation
r′ = −r durch (vgl. Bd. I, Abb. 8.13). Erst nach einer gera-
den Zahl von Spiegelungen erhält man als Bild wieder ein
rechtshändiges Koordinatensystem.

Durch Reflexion an einer gekrümmten Fläche kann man
wie bei der Lichtbrechung an einer kartesischen Fläche
erreichen, dass ein Gegenstandspunkt G exakt auf einen
Bildpunkt B abgebildet wird. Das ist besonders dann von
praktischem Interesse, wenn die Lage eines der konju-
gierten Punkte festliegt, wenn z. B. die Gegenstandsweite
g = ∞ ist. Von Alters her ist bekannt, dass man in diesem
Fall einen Parabolspiegel einsetzen kann: Alle Strahlen,
die parallel zur Achse eines Rotationsparaboloids einfal-
len, werden im Brennpunkt vereinigt (Abb. 6.31a). Dass
das stimmt, beweisen wir mit dem Fermatschen Prinzip.

Abbildung 6.31 Zur Ableitung
von (6.39)

a

b
P

FS

x f

y
l1

l2

Da es sich bei der gesuchten Fläche jedenfalls um eine
Rotationsfläche handeln muss, können wir unsere Unter-
suchung auf die (x, y)-Ebene in Abb. 6.31 beschränken. S
ist der Scheitelpunkt der spiegelnden Fläche, der Brenn-
punkt F liege bei x = f . Welche Form hat der Spiegel?
Nach dem Fermatschen Prinzip Satz 6.2 läuft das parallel
zur x-Achse aus dem Unendlichen einfallende Licht auf
dem Weg über den Punkt P(x, y) nach F, wenn für alle
Punkte auf der in Abb. 6.31b gezeichnetenKurve die Sum-
me der Strecken l1 + l2 = 2f ist, denn das ist die optische
Weglänge für einen auf der x-Achse laufenden Strahl. Es
muss also gelten

l2 = 2f − l1 = 2f − (f − x) = f + x .

Nach dem Satz des Pythagoras ist andererseits l22 = y2 +
(f − x)2. Wir erhalten also f 2 + 2fx+ x2 = y2 + f 2 − 2fx+
x2, und daraus folgt:

x(y) =
y2

4f
. (6.39)

Das ist die Gleichung einer in x-Richtung geöffneten Para-
bel; der Parabolspiegel entsteht durch die Rotation dieser
Kurve um die x-Achse.

Sphärische Spiegel

Aus den gleichen Gründen, aus denen man vorzugswei-
se sphärische Linsen anfertigt, stellt man auch sphäri-
sche Spiegel her. Wir untersuchen zunächst die Lage des
Brennpunkts. In Abb. 6.32 ist der Zentralschnitt durch
eine Kugelfläche gezeigt. Die Gleichung des Kreises ist
(x− R)2 + y2 = R2. Daraus folgt

x(y) = R±
√

R2 − y2 = R
(
1±

√
1− y2/R2

)
.

Für den sphärischen Spiegel interessiert uns nur die Flä-
che in der Nähe von x = 0. Dort gilt das Minuszeichen,

Abbildung 6.32 Zur Ableitung
von (6.40)

R x

y
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und wir können
√

1− y2/R2 in eine Taylor-Reihe entwi-
ckeln. Für y 	 R erhält man

√
1− y2/R2 = 1− y2

2R2 − y4

8R4 − . . . ,

x(y) =
y2

2R
+

y4

8R3 + . . .

Der Vergleich mit (6.39) zeigt, dass die Brennweite des
sphärischen Spiegels

f =
R
2

(6.40)

ist. Die Abweichung der Kugelfläche vom Paraboloid ist
für y 	 R ziemlich klein. Bei y = 0,1R ist x(y)− y2/2R ≈
10−5R.

Wie mit der sphärischen Linse kann man auch mit dem
sphärischen Spiegel einen räumlich ausgedehnten Ge-
genstand in guter Qualität abbilden, wenn man sich auf
paraxiale Strahlen beschränkt. Für die Bildkonstruktion
kann man das einfache Verfahren nach Satz 6.5 anwen-
den, wobei der Spiegel durch eine ebene Fläche ersetzt
wird. Sie entspricht der Linsenebene in Abb. 6.24. „Brenn-
strahl“ und „Parallelstrahl“ behalten ihre Bedeutung, der
„Mittelpunktsstrahl“ ist hier durch einen Strahl durch das
Kugelzentrum zu ersetzen. Abbildung 6.33a zeigt ein Bei-
spiel.

Auch die Abbildungsgleichungen der dünnen Linse gel-
ten beim sphärischen Spiegel unverändert. Man muss
nur bei der Vorzeichenkonvention eine Änderung vor-
nehmen: Die Bildweite b ist positiv zu rechnen, wenn
das Bild B, von der Richtung des einfallenden Lichts aus
gesehen, vor S liegt. In Abb. 6.33b liest man an den schraf-
fierten Dreiecken ab:

yg
|yb|

=
g− f
f

=
f

b− f
→ (g− f )(b− f ) = f 2 .

(6.41)

Rechts steht die Newtonsche Abbildungsgleichung (6.28).
Wennman die Klammern ausmultipliziert, erhält man die
Gaußsche Abbildungsgleichung (6.21).

Liegt der Gegenstand innerhalb der Brennweite, ist g < f
und bwird negativ. Es entsteht ein vergrößertes virtuelles
Bild, das hinter dem Spiegel liegt (Abb. 6.33c). – So viel
zur Theorie des Hohlspiegels. Es ist reizvoll, in der Praxis
auszuprobieren, was man in einem Hohlspiegel hinrei-
chend kurzer Brennweite sieht, von sich selbst und von
einem vor den Spiegel gehaltenen Bleistift. Notfalls kann
man auch einen blanken Löffel nehmen.

b < 0

f
b

g

a

b
yg

yb

G

G

B

B

c

d

FM S

FM

S

G
B

F MS

Abbildung 6.33 Abbildung mit sphärischen Spiegeln: a Bildkonstruktion,
b zur Ableitung von (6.41). In a erhält man ein reelles Bild, in c und d virtuelle
Bilder

Bei einem konvexen sphärischen Spiegel ist die Brenn-
weite negativ. Daher ist für g > 0 stets b < 0 und |b| < f :
Es entsteht ein verkleinertes virtuelles Bild (Abb. 6.33d).
Auch das kann man mit dem blanken Löffel ausprobie-
ren.

6.4 Anwendungen

Strahlengang in einem optischen System, Apertur-
und Feldblende

In den vorigen Abschnitten haben wir „Konstruktions-
strahlen“ betrachtet, mit deren Hilfe man das Bild eines
Gegenstands bei der optischen Abbildung konstruieren
kann. Wir wollen nun den tatsächlichen Strahlengang
durch optische Systeme untersuchen. Außer den abbil-
denden Elementen spielen dabei auch zwei Blenden eine
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Abbildung 6.34 Optisches System mit Aperturblende (AB), Eintrittspupil-
le (EP) und Austrittspupille (AP). Die eingezeichneten Linsen stehen symbolisch
für die optischen Elemente vor und hinter der Blende

wichtige Rolle. DieAperturblende begrenzt das Strahlen-
bündel, das von einem auf der optischen Achse liegenden
Punkt G ausgeht und bei B die Bildebene erreicht. Die
Aperturblende bestimmt also den Strahlungsfluss durch
das optische System und damit die Bildhelligkeit.

Die zweite Blende ist die Feldblende, auchGesichtsfeld-
blende genannt. Sie bestimmt,welcher Ausschnitt aus der
Gegenstandsebene bzw. aus dem Gegenstandsraum auf
der Bildebene abgebildet wird. Bei einem Fotoapparat ist
die Lage und die Funktionsweise beider Blenden offen-
sichtlich: Die Aperturblende ist die verstellbare Blende,
die man von vorn in das Objektiv hinein schauend sehen
kann, die Gesichtsfeldblende ist der direkt vor der Filme-
bene angebrachte Metallrahmen. Sind in einem optischen
System solche mechanischen Blenden nicht eingebaut,
gibt es trotzdem eine Apertur- und eine Feldblende: Dann
übernimmt jeweils eine der Linsenfassungen diese Rol-
le. Wir betrachten nun die Wirkungsweise dieser Blenden
genauer. Dabei nehmen wir an, dass die Blenden kreisför-
mig sind.

Aperturblende, Eintritts- und Austrittspupille. Das
Strahlenbündel, das durch die Aperturblende begrenzt
wird, verläuft vor dem optischen System innerhalb ei-
nes kegelförmigen Bereichs. Wir nennen den halben Öff-
nungswinkel des Kegels u, und die auf dem Kegelman-
tel verlaufenden Strahlen die Randstrahlen (Abb. 6.34).
Die Randstrahlen streifen definitionsgemäß den Rand der
Aperturblende, nachdem sie die vor der Blende liegenden
Linsen durchlaufen haben. Betrachtet man die Apertur-
blende als Gegenstand, kann man das Bild konstruieren,
das diese Linsen von der Aperturblende entwerfen. Man
erhält eine kreisförmige Öffnung, die direkt auf dem ein-
laufenden Strahlenkegel liegt (Umkehrbarkeit des Strah-
lengangs!). Man nennt dieses Bild der Aperturblende die
Eintrittspupille (EP). Bei manchen optischen Geräten,
z. B. bei Fernrohren, bildet die Fassung der vordersten
Linse die Aperturblende. Dann ist sie auch gleichzeitig
die EP. Sonstmussman Lage undDurchmesser der EPmit
der Abbildungsgleichung berechnen, um den Öffnungs-
winkel des akzeptierten Strahlenkegels zu ermitteln.

Ebenso erhält man den Strahlenkegel mit dem halben Öff-
nungswinkel u′, der hinter dem optischen System zum

L1

G

G

B

B

L2

0 20 40 60 80 x(cm)

y(cm)

2

4

AB EPAP
a

b
L1 L2

AB EPAP

c

1

2

Abbildung 6.35 a Strahlengang im optischen System von Abb. 6.30, mit ein-
gebauter Aperturblende AB, b Details zum Strahlengang von G nach B , c Details
zum Strahlengang von G ′ nach B ′

Bildpunkt B läuft. Die Austrittspupille (AP) ist das Bild
der Aperturblende, das die hinter der Blende liegenden
Linsen entwerfen. Bei einem für visuelle Beobachtungen
bestimmten Gerät (z. B. beim Fernrohr oder beim Mikro-
skop) sollte die AP ca. 15mmhinter demGerät liegen und
etwa den Durchmesser der Pupille des Auges haben.

In Abb. 6.34 sind die Pupillen eingezeichnet. Es ist hier
angenommen, dass bei der Abbildung der Aperturblende
reelle Bilder entstehen. Häufig sind die Bilder der Blende
jedoch virtuell. Wie sich das auswirkt, diskutieren wir am
Beispiel des optischen Systems von Abb. 6.30. Wir neh-
men an, dass auf der Mitte zwischen den beiden Linsen
eine Aperturblende AB mit 2 cm Durchmesser eingebaut
ist. Die Durchmesser der Linsen seien 4 cm (Abb. 6.35a).
Für die Abbildung der Blende durch L1 ist g = +10 cm zu
setzen, die Abbildung erfolgt nach links. Mit f = +30 cm
folgt

1
b
=

(
1
30

− 1
10

)
cm−1 = − 20

300
cm−1 ,

b = −15 cm , MT = − b
g
=

15
10

= 1,5 .

Das Bild EP der Aperturblende ist virtuell und liegt 15 cm
rechts von L1, der Durchmesser ist 1,5 · 2 cm = 3 cm. Auf
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diese Eintrittspupille sind vor der Linse L1 die Rand-
strahlen des von G ausgehenden Strahlenkegels gerichtet.
Auch die Austrittspupille AP entsteht hier als virtuelles
Bild der Blende: Mit g = 10 cm, f = −30 cm erhält man

1
b
=

(
− 1
30

− 1
10

)
cm−1 = − 40

300
cm−1 ,

b = −7,5 cm , MT = − b
g
=

7,5
10

= 0,75 .

Die Austrittspupille liegt 7,5 cm links von L2; ihr Durch-
messer ist 1,5 cm. Der Rand der AP liegt auf der Verlänge-
rung der Randstrahlen des Strahlenbündels zwischen L2
und B. Damit ist der Strahlengang für den auf der opti-
schen Achse liegenden Punkt G festgelegt. Zwischen den
Linsen L1 und L2 verlaufen die Strahlen geradlinig. Sie be-
rühren dabei zwangsläufig den Rand der Aperturblende.
Da in Abb. 6.35a der Strahlenverlauf zwischen den Linsen
nicht gut zu erkennen ist, ist dieser Bereich in Abb. 6.35b
noch einmal vergrößert dargestellt.

Für die Konstruktion des Strahlengangs, der von einem
nicht auf der optischen Achse liegenden Punkt G′ zum
Bildpunkt B′ führt, zeichnet man zunächst den Haupt-
strahl. Das ist der Strahl, der von G′ aus auf den Mittel-
punkt der EP gerichtet ist (Strahl (1) in Abb. 6.35c). Er
muss innerhalb des optischen Systems durch das Zen-
trum der Aperturblende laufen, denn das Zentrum der EP
ist ja das von L1 entworfene virtuelle Bild dieses Punkts.
Ganz entsprechend scheint hinter dem Linsensystem der
Hauptstrahl, von B′ aus gesehen, vom Zentrum der AP
herzukommen (Strahl (2) in Abb. 6.35c). Auf die gleiche
Weise kann man auch die Randstrahlen des von G′ nach
B′ führenden Strahlenbündels konstruieren. Nun muss
man prüfen, ob diese Randstrahlen auch durch alle Lin-
sen des Systems hindurchkommen. In Abb. 6.35 ist das
der Fall. Wäre jedoch der Durchmesser von L1 3 cm statt
4 cm, würde das Strahlenbündel beschnitten werden. Die-
serAbschattung oderVignetierung genannte Effekt führt
zu einer Abnahme der Helligkeit am Bildrand.

Manchmal ist nicht offensichtlich, welches Bauelement in
einem optischen System die Aperturblende bildet. Dann
muss man rechnerisch ausprobieren, welches Bauelement
die stärkste Einschränkung für den Öffnungswinkel u lie-
fert: Das ist dann die Aperturblende.Wie das funktioniert,
zeigt Abb. 6.36. Die mechanische Blende von Abb. 6.35 ist
herausgenommen. Als Aperturblende kommen jetzt nur
die Fassungen von L1 und L2 in Betracht. Wäre die Fas-
sung von L1 die Blende, so wäre sie auch zugleich die EP.
Wäre die Fassung von L2 die Blende, dann wäre die EP
das von L1 entworfene Bild von L2. Es ist in Abb. 6.36a
eingezeichnet (g = 20 cm, b = −60 cm, gemessen ab L1,
MT = 3). Wie man sieht, ist für die von G ausgehenden
Strahlen die Fassung von L1 die Aperturblende und zu-
gleich die EP. Die in Abb. 6.36 ebenfalls eingezeichnete AP
ist das von L2 entworfene Bild der Fassung von L1. – Läge
allerdings die Gegenstandsebene rechts des Punktes x0 in

a

b
L1 L2

c

G

G

B

B

L1

x0

L2

AB,EP AP

AP

Bild der Fassung von L2,
entworfen von L1

AB,EP

Abbildung 6.36 a Strahlengang im optischen System von Abb. 6.30, ohne
Einbau einer Blende. b Details zum Strahlengang von G nach B , c Details zum
Strahlengang von G ′ nach B ′

Abb. 6.36a, würde die Fassung von L2 die Rolle der Aper-
turblende übernehmen.

Die Aperturblende hat noch eine zweite wichtige Funk-
tion. Sie stellt die Öffnung dar, an der die Beugung des
Lichts erfolgt, durch die letztlich die Schärfe der Ab-
bildung begrenzt wird. Wie wir in Abschn. 8.2 sehen
werden, entsteht bei der Abbildung eines Punktes mit ei-
ner Linse in der Bildebene nicht ein Punkt, sondern ein
Beugungsscheibchen. Sein Radius ist

ρ = 1,22
bλ

D
, (6.42)

b ist die Bildweite8, D der Durchmesser der Aperturblen-
de und λ dieWellenlänge des Lichts; der Faktor 1,22 ergibt
sich aus der Lage der ersten Nullstelle der Besselfunktion
J1. Wie sich das auf die Eigenschaften der optischen In-
strumente auswirkt, werdenwir weiter unten besprechen.

8 Bei Linsensystemen ist b gleich dem Abstand zwischen der Aus-
trittspupille und der Bildebene zu setzen.
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Die Feldblende. Sie begrenzt das Bündel der Haupt-
strahlen, die von achsenfernen Punkten ausgehend zur
Abbildung gelangen. Wenn keine besondere Feldblende
im optischen System eingebaut ist, übernimmt eine der
Linsenfassungen diese Rolle. Man begrenzt das Gesichts-
feld nicht nur, um uninteressante Objekte von der Ab-
bildung auszuschließen, sondern auch, um Strahlen mit
übermäßigen Abbildungsfehlern zu unterdrücken und
um die Vignetierung in Grenzen zu halten.

Soll das Gesichtsfeld scharf begrenzt erscheinen, muss
die Feldblende in der Bildebene liegen, wie z. B. beim
Fotoapparat, oder auf diese Ebene scharf abgebildet wer-
den. Die Feldblende definiert im Gegenstandsraum einen
Kegel mit dem Öffnungswinkel 2w, genannt Gesichts-
feldwinkel. Man ermittelt ihn, indem man das Bild der
Feldblende berechnet, das die gegenstandsseitig vor der
Feldblende liegenden Linsen von der Feldblende entwer-
fen. Dieses Bild nennt man auch Eintrittsluke. Damit
haben wir alles beisammen, was für den Strahlengang in
einem optischen Instrument wichtig ist.

Das Auge

In Abb. 6.37 ist das menschliche Auge im Schnitt sche-
matisch dargestellt. Das optische System des Auges er-
zeugt ein umgekehrtes, reelles Bild der Außenwelt auf
der Netzhaut, auf der sich die lichtempfindlichen Zäpf-
chen und Stäbchen befinden, die schon bei Abb. 3.22
erwähnt wurden. Hinter der Netzhaut liegt die Aderhaut
(Choroid), die die Zäpfchen und Stäbchen mit Blut ver-
sorgt. Sie enthält ein dunkles Pigment, das das von der
Netzhaut durchgelassene Licht absorbiert, vergleichbar
mit der schwarzen Farbe im Inneren eines Fotoapparats.9

Die Lichtbrechung findet hauptsächlich an der Grenz-
fläche Luft–Hornhaut statt, denn die Brechungsindizes
der übrigen Komponenten des Auges unterscheiden sich
nur wenig voneinander. Die Hauptebenen des optischen
Systems liegen kurz hinter dem Scheitelpunkt der Horn-
haut. Sie haben voneinander nur einen Abstand von ca.
0,25mm. Man kann daher die abbildenden Elemente des
Auges näherungsweise als eine dünne Linse betrachten,
deren optisches Zentrum dicht hinter dem Scheitelpunkt
der Hornhaut liegt. Da sich vor und hinter der Hornhaut
nicht das gleiche Medium befindet, sind die gegenstands-
und die bildseitige Brennweite voneinander verschieden:

Es ist f (A)g = 16mm, f (A)b = 24mm. Das Auge ist drehbar
um einen Punkt, der 13,5mm hinter dem Hornhautschei-
tel liegt.

9 Bei Tieren, die auf nächtlichen Beutefang angewiesen sind, sind in
dieser Schicht statt des dunklen Pigments reflektierende zinkhaltige
Kriställchen eingelagert, so dass das Licht zweimal durch die Netz-
haut läuft. Dadurch wird die Empfindlichkeit des Auges erhöht. Das
dann noch übrigbleibende Licht verursacht die gelb-grüne Reflexion
des Scheinwerferlichts aus den Augen der Katze am Straßenrand.
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Abbildung 6.37 Das Auge. L: Augenlinse, H: Hornhaut, K: Kammerwasser,
I: Iris, C: Ciliarmuskel, G: Glaskörper (eine gallertartige Masse), LH: Lederhaut,
A: Aderhaut, N: Netzhaut (Retina), S: Sehnerv
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Abbildung 6.38 Struktur der Augenlinse

Wenn der ringförmige Ciliarmuskel entspannt ist, wird
die Augenlinse in radialer Richtung gestreckt und flach
gezogen, wie in der Abbildung gezeigt ist. Beim ent-
spanntem, „normalsichtigen“Augewird dann ein unend-
lich ferner Gegenstand (g > 5m) auf die Netzhaut scharf
abgebildet. Wenn sich der Ciliarmuskel kontrahiert, kann
sich die Augenlinse aufgrund ihrer Elastizität zusammen-
ziehen. Durch diesen Akkomodation genannten Vorgang
verringert sich die Brennweite des optischen Systems. Bei
der maximalen Kontraktion ist fb ≈ 20mm; damit kann
ein Gegenstand, der sich imNahpunkt ca. 10 cm vor dem
Auge befindet, noch scharf auf die Netzhaut abgebildet
werden. Das erfordert jedoch beträchtliche Anstrengung.
Ohne Ermüdung kann man auf g0 = 25 cm akkommodie-
ren. Dieser Abstand wird in der Optik als die deutliche
Sehweite bezeichnet. Vor der Augenlinse befindet sich die
Iris. Sie bildet die Aperturblende des Auges und enthält
eine ringförmige und eine radialwirkende Muskulatur.
Dadurch kann die Öffnung von 2mm Durchmesser bei
großer Helligkeit bis auf 8mm bei Dunkelheit variiert
werden.

Bei der Akkomodation wird die sehr spezielle Konstruk-
tion der Augenlinse ausgenutzt (Abb. 6.38). Durch die
zwiebelartige Struktur der Linse entsteht die Kombina-
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tion einer Bikonvexlinse mit einer Gradientenlinse (vgl.
Abb. 6.12). Erst dadurch erhält die Augenlinse die erfor-
derliche Brechkraft. ImÜbrigen ist dasAuge, als optisches
Instrument betrachtet, relativ einfach konstruiert. Das
sehr gute Bild von der Außenwelt, das wir wahrnehmen,
entsteht erst durch einen komplexen Bildverarbeitungs-
prozess, der bereits in der Netzhaut mit Kontrastverstär-
kung und Bewegungsmeldung auf neuronaler Grundlage
beginnt und der im Sehzentrum des Gehirns seinen Ab-
schluss findet. Insbesondere ist das räumliche Bild der
Außenwelt ein Produkt dieser zerebralen Bildverarbei-
tung. Das beidäugige Sehen spielt dabei nur bis ca. 50m
eine Rolle.10

Ist die Abbildung im Auge beugungsbegrenzt? Ja und
Nein. Bei Leuten mit sehr guten Augen sind die Abbil-
dungsfehler so klein, dass das Bild einer Punktquelle auf
der Netzhaut durch das Beugungsscheibchen dominiert
wird. Es hat bei einer Pupille von 3mm ∅ nach (6.42)
einen Radius ρ ≈ 3µm.Wo die optische Achse des Auges
auf die Netzhaut trifft, befindet sich eine Region mit be-
sonders hoher Zäpfchendichte, die „fovea centralis“. Die
Zäpfchen haben dort voneinander einen Abstand von ca.
3µm! Es ist erstaunlich, dass die Evolution eine so gute
Anpassung an das optimale Auge zustande gebracht hat.
Möglicherweisewar damals infolge des Evolutionsdrucks
die Fehlsichtigkeit noch nicht so verbreitet wie heutzuta-
ge.

Kurzsichtigkeit. Beim kurzsichtigen Auge wird ein weit
entfernter Punkt nicht auf, sondern vor der Netzhaut
scharf abgebildet (Abb. 6.39a). Das kann daran liegen,
dass der Augapfel zu lang ist, oder dass die Krüm-
mung der Hornhaut nicht stimmt. Bei entspanntemAuge
erreicht das Bild die Netzhaut erst mit der Gegenstands-
weite g1 (Abb. 6.39b). Zur Korrektur setzt man im Ab-
stand d vor das Auge eine Zerstreuungslinse mit der
Brennweite f (L) = −(g1− d) (Abb. 6.39c). Sie erzeugt vom
unendlich fernen Gegenstand ein virtuelles Bild, das das
kurzsichtige Auge nun scharf sehen kann.

Weitsichtigkeit. Hier liegt bei entspanntem Auge das
Bild des unendlich fernen Punkts hinter der Netzhaut.
Dieses Manko kann eventuell noch durch Akkomodati-
on ausgeglichen werden. Wenn sich aber der Gegenstand

10 Man erkennt das, indem man über einen markanten Gegenstand
in der Entfernung L einen sehr weit entfernten Gegenstand anvi-
siert, und mal das rechte, mal das linke Auge abdeckt. Solange
L � 50m ist, sieht man zwei unterschiedliche Bilder. Die zerebra-
le Bildverarbeitung macht aus dieser Information ein Bild und eine
Entfernungsschätzung. Bei größeren Entfernungen beruht die Ent-
fernungsschätzung allein auf der zerebralen Mustererkennung und
darauf, dass man weiß (oder zu wissen glaubt), wie groß die Ge-
genstände sind. Dabei wird der Winkel, unter dem der Gegenstand
erscheint, ausgewertet. Dieses Verfahren wird schon im Nahbereich
eingesetzt und mit dem beidäugigen Sehen kombiniert.
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Abbildung 6.39 Zur Fehlsichtigkeit und zu ihrer Korrektur. a–c: Kurzsichtig-
keit, d–f: Weitsichtigkeit

in der deutlichen Sehweite g0 = 25 cm befindet, gelingt
dies auch bei starker Kontraktion des Ciliarmuskels nicht
mehr (Abb. 6.39d). Die Augenlinse kann erst einenGegen-
stand im Abstand g2 scharf abbilden (Abb. 6.39e). Abhilfe
schafft eine Sammellinse, die von dem Objekt bei g0 ein
virtuelles Bild im Abstand g2 erzeugt (Abb. 6.39f). Die
Brennweite dieser Linse erhält man mit (6.21):

1
g0 − d

− 1
g2 − d

=
1

f (L)
→ f (L) =

(g2 − d)(g0 − d)
g2 − g0

.

Mit zunehmendem Alter nimmt die Elastizität der Au-
genlinse und damit die Akkommodationsfähigkeit ab.
Dann braucht auch der Normalsichtige eine Lesebrille.
Der Kurzsichtige kann sich gewöhnlich mit dem Abneh-
men der Brille behelfen.

Astigmatismus. Diese Form der Fehlsichtigkeit liegt vor,
wenn die Hornhaut des Auges nicht rotationssymme-
trisch ist. In vielen Fällen kann man hier mit einer zylin-
drisch geschliffenen Brille Abhilfe schaffen.
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Abbildung 6.40 Korrekte Position der Brille

Brillen und Kontaktlinsen. Die Aufgabe der Brille ist
es, das Bild der Außenwelt auf die Netzhaut zu bringen,
ohne die Brennweite des visuellen Systems zu verän-
dern. Sonst würde sich nach (6.26) auch der Abbildungs-
maßstab ändern, und das sollte man nach Möglichkeit
vermeiden, besonders bei Personen mit ungleichen Au-
gen. Deshalb wird das Brillenglas möglichst im gegen-

standsseitigen Brennpunkt F(A)g vor das Auge gesetzt (d ≈
16mm): Nach (6.36) ist dann die Brennweite des aus zwei
Linsen bestehenden Systems

1
f
=

1
f (A)

+
1

f (L)
− d

f (A)f (L)
=

1
f (A)

, (6.43)

wenn d = f (A) ist. Dass sich dann die Größe des Bildes auf
der Netzhaut nicht ändert, sieht man mit Abb. 6.40 auch
direkt ein: Sie ist durch den dort gezeichneten Strahl gege-
ben. Dieser Strahl wird durch eine vor das Auge gesetzte
Linse nicht beeinflusst, wenn deren optisches Zentrum

in F(A)g liegt. Bei Kontaktlinsen ist das natürlich anders:
Hier ist d = 0 und die resultierende Brechkraft ist P =
P (A) +P (L). Brennweite und Abbildungsmaßstab ändern
sich dementsprechend. Besonders bei Personen mit un-
gleichen Augen kann das zu Problemen führen, weil sich
dann die zerebrale Bildverarbeitung umstellen muss. Das
ist mit einer gewissen Eingewöhnungszeit und oft auch
mit Kopfschmerzen verbunden.

Optische Instrumente

Fotoapparat. Die große Erfindung bei der Fotografie war
nicht der Fotoapparat, sondern die Fotoplatte, mit der
aufgrund einer photochemischen Reaktion ein Bild dau-
erhaft festgehalten werden kann. Ein guter Fotoapparat
ist dennoch ein technischesMeisterwerk: ein Objektiv, das
für beträchtliche Gesichtsfeldwinkel und auch für achsen-
ferne Strahlen ein sauber korrigiertes Bild erzeugt, und
eine Mechanik, die die Blende und die Belichtungszei-
ten mit hoher Präzision einzustellen bzw. elektronisch
zu steuern gestattet. Ein Beispiel für ein leistungsfähiges
Kamera-Objektiv wurde schon in Abb. 6.17 gezeigt. Das
Prinzip des Fotoapparats ist denkbar einfach (Abb. 6.41):
Mit einer Objektivlinse wird der Gegenstand auf die Fil-
mebene abgebildet.

Abbildung 6.41 Prinzip des
Fotoapparats. a Abbildung ei-
nes unendlich weit entfernten
Punktes, b Gesichtsfeldwinkel

Fb
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Feldblende

Feldblende

w
2w a
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Beim Fotoapparat kommt es offensichtlich auf die Be-
strahlungsstärke in der Bildebene an, gemessen in
W/cm2. Wie hängt diese Größe von den Eigenschaften
der Kamera ab? Nehmen wir an, der Gegenstand sei eine
leuchtende Fläche, die sich im Abstand g vor der Ka-
mera befindet. Der Strahlungsfluss dΦe, der von einem
Flächenelement dAg ausgehend durch die Aperturblen-
de der Kamera tritt, ist proportional zu (D2/g2)dAg ≈
(D2/x2g)dAg, wennD der Durchmesser der Eintrittspupil-
le ist. Im zugehörigen Flächenelement dAb der Bildebene
ist dann die Beleuchtungsstärke

Ee =
dΦe

dAb
∝

D2

x2g

dAg

dAb
=

D2

x2gM2
T
=

D2

x2g

x2g
f 2

=
D2

f 2
.

Dabei wurde von (6.26) Gebrauch gemacht. Man definiert
das

Öffnungsverhältnis = D/f . (6.44)

Diese Größe ist beim Fotoapparat und bei allen anderen
Flächen abbildenden optischen Instrumenten maßgeblich
für die Bildhelligkeit.11 Oft benutzt man auch den Kehr-
wert, die

Blendenzahl = f/D . (6.45)

Bei einem Fotoapparat mit einer von Hand verstellba-
ren Aperturblende findet man auf dem Blendenring die

11 Nicht so beim Fernrohr, wenn dieses einen Punkt, z. B. einen Fix-
stern abbildet! (Aufgabe 6.11b).
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Abbildung 6.42 Die Lupe. a Sehwinkel ohne Lupe. b Strahlengang durch die
Lupe. Gestrichelt : Extrapolierte Strahlen zum virtuellen Bild

Blendenzahlen angegeben: 1, 1.4, 2, 2.8, 4, 5.6, 8, . . . Sie
sind abgestuft im Verhältnis 1 :

√
2. Wenn man von ei-

ner Blendenzahl zur nächst höheren gehen und dabei die
Belichtung konstant halten will, muss man die Belich-
tungszeit verdoppeln. Eine Veränderung der Blendenzahl
kann für die Praxis durchaus von Interesse sein, denn
auch die Schärfentiefe, d. h. der Entfernungsbereich, in
dem die Gegenstände noch ausreichend scharf auf die
Filmebene abgebildet werden, hängt vom Öffnungsver-
hältnis ab: große Blendenzahl – große Schärfentiefe. Bei
der Kamera in Abb. 6.41 ist f/D = 4, sie ist eingestellt auf
„Blende 4“.

Den Gesichtsfeldwinkel der Kamera ermittelt man folgen-
dermaßen: Feldblende ist der Metallrahmen unmittelbar
vor dem Film. Bei auf unendlich eingestellter Kamera liegt
der Film in der Brennebene des Objektivs. Also liegt die
Eintrittsluke im Unendlichen. Wie Abb. 6.41b zeigt, er-
scheint sie unter demWinkel 2wmit

tanw = tanw′ = a/2f ; (6.46)

a ist die Diagonale der Feldblende. Beim Kleinbildformat
ist a = 43mm; das Normalobjektiv hat eine Brennweite
f ≈ 50mm. Also ist der Öffnungswinkel 2w ≈ 46°. Bei ei-
nemWeitwinkelobjektiv mit f = 36mm ist 2w = 62°, und
bei einem Teleobjektiv mit f > 80mmwird 2w < 30°. Das
„Kochtopfgewehr“, mit dem der Tierfotograf auf die Jagd
geht, hat ein Teleobjektiv mit f ≈ 1m. Dann ist der Ge-
sichtsfeldwinkel nur noch 2w ≈ 2,5°. Um ein brauchbares
Öffnungsverhältnis zu erhalten, benötigt man nun ein Ob-
jektiv mit den Abmessungen eines Kochtopfs – ein teurer
Spaß.

Lupe. Wie groß ein Gegenstand auf der Netzhaut abge-
bildet wird, hängt von dem Winkel ab, unter dem wir
ihn sehen. Man kann diesen Winkel vergrößern, indem

man den Gegenstand näher ans Auge bringt. Dem sind
jedoch natürliche Grenzen gesetzt, wie wir gerade gese-
hen haben. Auf die Dauer kann man einen Gegenstand
nur in der deutlichen Sehweite betrachten (Abb. 6.42a).
Abhilfe schafft eine Lupe, eine Sammellinse, die vor das
Auge gebracht wird. Hält man den Gegenstand so, dass
er innerhalb der Brennweite der Lupe liegt, sieht man ein
vergrößertes virtuelles Bild, das in einen angenehmenAb-
stand gebracht werden kann (Abb. 6.42b). Man definiert
die Vergrößerung als das Verhältnis der Sehwinkel mit
und ohne Instrument:

Γ =
αm

αo
, (6.47)

wobei αo stets auf die deutliche Sehweite g0 = 25 cm be-
zogen wird. (Der Begriff „Vergrößerung“ ist nicht mit
dem in (6.23) definierten Begriff „Abbildungsmaßstab“ zu
verwechseln!). Ist yg die Größe des Gegenstands, yb die
Bildgröße, erhält man mit Abb. 6.42 und (6.26) in Klein-
winkelnäherung

Γ =
yb

a+ |b|

/
yg
g0

=
g0

a+ |b|MT =
g0
f
f + |b|
a+ |b| , (6.48)

denn es ist MT = −xb/f und xb ≡ b− f = −(|b|+ f ). Ge-
wöhnlich hält man die Lupe so, dass der Gegenstand in
der Brennebene liegt. Dann kann man mit entspanntem
Auge durch die Lupe sehen. Es strebt |b| → ∞ und wir
erhalten

Γ =
g0
f

. (6.49)

Nun ist die Vergrößerung unabhängig vomAbstand a. Va-
riiert man a, ändert sich lediglich das Gesichtsfeld, aber
der Winkel αm bleibt konstant, ein verblüffender Effekt!

Mikroskop. Eine stärkere Vergrößerung als mit der Lu-
pe erreicht man mit dem Mikroskop. Das Prinzip ist in
Abb. 6.43 gezeigt. Das Objektiv erzeugt ein vergrößer-
tes, reelles Bild des Gegenstands, der sich dicht vor dem
gegenstandsseitigen Brennpunkt des Objektivs befindet.
Dieses Zwischenbild wird dann durch eine Lupe betrach-
tet. Man erkennt sogleich ein Problem: Der Durchmesser
der Lupe sollte der Größe des Auges angepasst sein, da-
mit man das Auge dicht an das Mikroskop heranbringen
kann. Die Strahlen, die in Abb. 6.43 zur Pfeilspitze des
Zwischenbildes führen, treffen nicht mehr die Lupe. Ab-
hilfe schafft eine zusätzliche Linse, die gestrichelt einge-
zeichnete Feldlinse. Sie bildet das Objektiv auf die Lupe
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Abbildung 6.43 Prinzip des Mikroskops. Ausgezogene Linie : Strahlengang
ohne Feldlinse, gestrichelt : mit Feldlinse

ab. Alle Strahlen, die vom Objektiv kommend das Zwi-
schenbild erreichen, treffen nun auch die Lupe. Aufgrund
ihrer Lage in der Ebene des Zwischenbildes beeinflusst
die Feldlinse im Übrigen nicht den Strahlengang der opti-
schen Abbildung.

Die Lupe, hier auch die Augenlinse genannt, und die
Feldlinse bilden zusammen das Okular des Mikroskops.
In der Praxis ist es unzweckmäßig, die Feldlinse in der
Ebene des Zwischenbildes anzubringen: Dann wird jeder
Kratzer und jedes Stäubchen auf der Feldlinse scharf ge-
sehen. Vor allem möchte man dort auch die Feldblende
und ein Okularmikrometer oder ein Fadenkreuz anbrin-
gen können. Außerdem hat das Okular in Abb. 6.43 den
Nachteil, dass die Austrittspupille in der Ebene der Lupe
liegt. Man möchte sie aber an eine für die visuelle Be-
obachtung günstige Stelle bringen, nämlich in die Nähe
des Augen-Drehpunkts. Dann kann man ohne Kopfbe-
wegung das Gesichtsfeld durchmustern und die jeweils
interessante Struktur auf die fovea centralis abbilden. Es
gibt für die Konstruktion des Okulars eine Vielzahl von

L1 L2

APFeldblende

d

Abbildung 6.44 Ramsden-Okular. Gewöhnlich ist f1 = f2 und d = 2f1/3

Möglichkeiten; eine einfache Version ist das in Abb. 6.44
gezeigte Ramsden-Okular. Es besteht aus zwei Plankon-
vexlinsen gleicher Brennweite (f1 = f2).

Objektiv und Okular sind durch ein Rohr, den Tubus,
starr miteinander verbunden. Als Tubuslänge L bezeich-
net man den Abstand zwischen der bildseitigen Brenn-
ebene des Objektivs und der gegenstandsseitigen Brenn-
ebene des Okulars. Sie beträgt gewöhnlich L = 160mm.
ZumMikroskopieren verschiebt man den Tubus mit einer
Rändelschraube solange, bis man mit entspanntem Auge
ein scharfes Bild sieht. Ist MT1 der Abbildungsmaßstab
des Objektivs, Γ2 die Vergrößerung des Okulars, ist die
Gesamtvergrößerung des Mikroskops

Γ = |MT1| · Γ2 ≈
L
f1

g0
f2

=
160 · 250

f1f2
, (6.50)

wobei f1 die Brennweite des Objektivs, f2 die des Okulars
ist, hier beide gemessen in Millimetern.

Besondere Kunst erfordert die Konstruktion des Objek-
tivs. Hier kommt es darauf an, bei minimalen Abbil-
dungsfehlern einenmöglichst großen Öffnungswinkel auf
der Gegenstandsseite zu erreichen. Dieser Winkel ist für
die Helligkeit des Bildes und vor allem für das Auf-
lösungsvermögen des Mikroskops maßgeblich. Wie wir
gleich sehen werden, kommt es hier auf eine möglichst
große numerische Apertur n sinu an. n ist der Brechungs-
index des Mediums vor der Objektivlinse, u der Öff-
nungswinkel des Strahlenkegels, der durch die Eintritts-
pupille begrenzt wird.Will man einemöglichst starke Ver-
größerung erreichen (was keineswegs immer der Fall ist),
verwendet man ein Immersionsobjektiv. Zwischen das
Deckglas, mit dem das Objekt (z. B. ein Gewebeschnitt)
abgedeckt ist, und das Objektiv wird ein Tropfen Immer-
sionsöl gebracht, das den gleichen Brechungsindex hat
wie Deckglas und Objektivlinse. Dadurch vermeidet man
Reflexionsverluste und erhält einen Öffnungswinkel, der
nicht durch Totalreflexion begrenzt ist (Abb. 6.45). Außer-
dem kommt der Brechungsindex des Öls der numerischen
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Abbildung 6.45 Immersions-
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Apertur zugute.12 Zur Berechnung des Auflösungsver-
mögens nehmen wir an, vor dem Mikroskop befänden
sich zwei leuchtende Punkte, einer auf der optischen Ach-
se, einer im Abstand y daneben. Sie werden nach (6.42)
als Beugungsscheibchenmit dem Radius ρ = 1,22λb/D in
der Zwischenbildebene abgebildet. Die Mittelpunkte der
Scheibchen haben voneinander den Abstand y′. Dass es
sich um zwei Objektpunkte handelt, kann man erkennen,
solange

y′ ≥ y′min = ρ = 1,22
bλ

D
(6.51)

ist („Rayleighsches Kriterium“). Ein gutes Objektiv erfüllt
die sogenannte Sinusbedingung.13 Mit den Bezeichnun-
gen von Abb. 6.43 erhält man

ny sinu = n′y′ sinu′ ≈ y′u′ = y′
D
2b

. (6.52)

n und n′ sind die Brechungsindizes vor und hinter dem
Objektiv. Hier ist also n′ = 1 zu setzen. Für das Auf-
lösungsvermögen erhalten wir mit der Sinusbedingung
und dem Rayleigh-Kriterium

ymin =
y′min
n sinu

· D
2b

= 0,61
λ

n sinu
. (6.53)

12 Das in Abb. 6.45 gezeigte Immersionsobjektiv enthält noch eine
besondere Raffinesse: Wie schon Huygens herausgefunden hat, ist
die Kugel eine kartesische Fläche für die Abbildung des Punkts P
auf den virtuellen Bildpunkt P′, wennMP = R/n undMP′ = nR ist.
Dieser Umstand wird in L1 und L2 gleich zweimal ausgenutzt. Da-
durch wird der Öffnungswinkel ohne sphärische Aberration soweit
reduziert, dass die weitere Korrektur kein Problem mehr ist.
13 Wenn bei einem optischen System die sphärische Aberration kor-
rigiert ist, werden die auf der optischen Achse liegenden Punkte
exakt auf den paraxialen Bildpunkt abgebildet, wie groß auch im-
mer der Öffnungswinkel u sein mag. Abbe und unabhängig von ihm
Helmholtz haben gezeigt, dass dies auch für achsennahe Punkte gilt,
wenn zusätzlich die Sinusbedingung ny sin u = n′y′ sin u′ erfüllt ist.
Insbesondere wird dadurch die sonst sehr lästige Koma eliminiert.
Näheres dazu z. B. bei Max Born, Optik, § 28, Springer-Verlag (1932
und 1986).

Mit einem Immersionsobjektiv kann man n sinu = 1,35
erreichen. Man sollte also nach dieser, auf Helmholtz
zurückgehenden Überlegung mit dem Mikroskop noch
Strukturen bis zu ymin ≈ 0,4λ erkennen können. Wir wer-
den auf diese Frage in Abschn. 8.4 und Abschn. 9.3 noch
einmal zurückkommen.

Konfokales Laser-Mikroskop. Die eben besprochene
klassischeMikroskopie bildet nur eine Objektebene scharf
ab, Gebiete davor und dahinter überlappen und erschei-
nen verschwommen. Für die Untersuchung biologischer
Objekte müssen deshalb meist dünne Schnitte angefertigt
werden. Mit einem konfokalen Laser-Scan-Mikroskop
(CLSM, „Confocal Laser Scanning Microscope“) lassen
sich heutzutage drei-dimensionale Bilder gewinnen. Das
Verfahren unterscheidet sich wesentlich von der klassi-
schen Mikroskopie:

1. Im Objekt wird kurzzeitig immer nur ein kleines Vo-
lumen von der Größe der Auflösung beleuchtet, und
dieses wird auch nur beobachtet.

2. Das Anregungsvolumen im Objekt wird, im Allgemei-
nen mit Hilfe von Spiegeln, sukzessive in allen drei
Raumrichtungen verschoben („Scanning“), was hinter-
her eine 3-dimensionale Bildrekonstruktion und das
Anfertigen beliebiger Bildschnitte mit einem Compu-
ter erlaubt.

3. Meist werden in das Objekt, gezielt an bestimmten
Stellen, fluoreszierende Farbstoffe eingebracht. Diese
markieren die Struktur des Objektes. Die Farbstoff-
moleküle werden angeregt und emittieren Fluores-
zenzlicht, aus dem das Bild rekonstruiert wird. Das
Fluoreszenzlicht ist langwelliger als das zur Anregung
benutzte, sodass man es zur Beobachtung mit Filtern
abtrennen kann.

4. Um für jeden Rasterpunkt eine ausreichende Lichtin-
tensität zu erreichen, wird zur Beleuchtung ein Laser
eingesetzt („Laser Scanning“).

5. Die Beleuchtung des Objekts und die Sammlung des
Fluoreszenzlichts erfolgen durch das gleiche Objektiv.

6. Zur Eingrenzung des beleuchteten Volumenelements
gibt es im Beleuchtungsstrahlengang eine kleine
Blende („Beleuchtungsblende“, englische Bezeichnung
„pinhole“), auf die das Laserlicht fokussiert wird. Die-
se Blende wird durch optische Komponenten des Sys-
tems in das Objekt abgebildet. Der minimal mögliche
Radius des Blendenbildes entspricht der oben erwähn-
ten Auflösung.

7. Dieses Blendenbild im Objekt wird durch das Objektiv
und weitere Linsen in einer Zwischenbildebene abge-
bildet, in der sich wiederum eine Blende befindet, die
das Fluoreszenzlicht auf seinem Weg zum Detektor
passieren muss, die „Detektionsblende“. Die Detek-
tionsblende und die Beleuchtungsblende liegen also
konfokal zueinander („Confocal Laser Scanning Mi-
croscope“).

Der Aufbau eines CLSM ist in Abb. 6.46 schematisch
dargestellt. Zur Vereinfachung ist nur ein Scan-Spiegel
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Abbildung 6.46 Aufbau eines konfokalen Laser-Scan-Mikroskops. Bl: Be-
leuchtungsblende (oder Ende einer Lichtleiterfaser), Sd: dichroitischer Spiegel,
Sc: Scanspiegel, D: Detektionsblende, T: telemetrisches Linsensystem, O: Objek-
tiv, P: Objekt. Gestrichelt : Strahlengang für gedrehte Position des Scanspiegels

eingezeichnet. Der dichroitische Spiegel, ausgestattet mit
einer Spezialbeschichtung, reflektiert das Laserlicht zum
Scan-Spiegel, während er das Fluoreszenzlicht durch-
lässt. Wie man sieht, befinden sich zwischen Objektiv
und Zwischenbildebene mehrere Linsen. Die ersten bei-
den hinter dem Objektiv stellen ein telemetrisches Sys-
tem dar. Parallel gebündeltes Licht, das in dieses System
eintritt, tritt parallel gebündelt wieder aus. Das Linsen-
paar bildet einen Scan-Spiegel auf die Eintrittspupille des
Objektivs ab. Deshalb muss ein Lichtbündel, das von ei-
nem beliebigen Punkt des Objekts startet, nach seiner
Begrenzung durch die Eintrittspupille immer vollstän-
dig auf dem Scan-Spiegel landen (gestrichelte Linien in
Abb. 6.46). Man mache sich klar, dass eine Verdrehung
des Scan-Spiegels, obwohl sie den Lichtweg vom Spiegel
bis zum Objekt und zurück verändert, auf dem Lichtweg
zur Detektionsblende allenfalls kleine Parallelverschie-
bungen von Lichtstrahlen hervorruft. Der Fokus an der
Detektionsblende wird daher beim Scannen nicht seitlich
verschoben.

Wegen der Divergenz des Lichts im Anregungsvolumen
werden Partien davor und dahinter schwächer beleuch-
tet. Das von diesen Stellen ausgesandte Fluoreszenzlicht
ist außerdem in der Zwischenbildebene wegen der un-
schärferen optischen Abbildung über eine größere Fläche
verteilt als dasjenige aus dem Anregungsvolumen. Die
Detektionsblende unterdrückt daher Fluoreszenzlicht aus
den unerwünschten Zonen des Objekts, was die Raste-
rung in axialer Richtung und somit die drei-dimensionale
Darstellung ermöglicht.

Um Rauschen im Bild zu minimieren, sind eine unter-
grundfreie Umsetzung des detektierten Lichts in elektri-
sche Signale und deren rauscharme Verstärkung erforder-
lich. Hierzu dienen Photomultiplier (Bd. III, Abb. 9.21)
oder Avalanche-Photodioden. Letztere unterscheiden sich
von normalen Photodioden (Bd. III, Abb. 10.23) dadurch,
dass sich an die intrinsische lichtsensitive Zone nicht eine
n-dotierte Schicht, sondern eine pn+-Zonemit hoher elek-
trischer Feldstärke anschließt, in der eine Ladungsträger-

Vervielfachung um bis zu drei Größenordnungen durch
Stöße stattfindet.

Das mit dem CLSM erreichbare laterale Auflösungsver-
mögen14 ist durch das Beugungsscheibchen begrenzt, das
bei der Beleuchtung des Objekts auftritt. Es ist aber nicht
gleich dem Auflösungsvermögen eines normalen Mikro-
skops mit gleicher numerischer Apertur, sondern kann
um einen Faktor bis zu

√
2 besser sein. Das hat folgen-

den Grund: Die Intensität des Fluoreszenzlichtes am Ent-
stehungsort ist entsprechend dem Beugungsscheibchen
verteilt. Jeder leuchtende Punkt des Objekts erzeugt aber
wiederum ein Beugungsscheibchen, und beide Effekte
überlagern sich beim Lichtnachweis. Hat nun die De-
tektionsblende in der Zwischenbildebene einen deutlich
kleineren Radius als das dort befindliche Bild der Be-
leuchtungsblende, muss sozusagen die Beugungsablen-
kung bei der Beleuchtung des Objekts durch die Beu-
gungsablenkung des Fluoreszenzlichts rückgängig ge-
macht werden. Die Wahrscheinlichkeiten für die beiden
Ablenkungen sind zu multiplizieren. Das führt insgesamt
zu einer Verschmälerung der Intensitätsverteilung, die
man beim Scannen über einen „Farbstoffklecks“ hinweg
findet. In der Praxis ist es üblich, als Auflösungsvermö-
gen die volle Halbwertsbreite dieser Intensitätsverteilung
anzugeben, was sich per definitionem etwas von (6.53)
unterscheidet. Die axiale Auflösung ist um so besser, je
größer der Winkel u, also je divergenter das Licht ist,
was eine kleine Objektivbrennweite bedeutet. Das Ver-
hältnis des axialen zum lateralen Auflösungsvermögen
hängt vom genauen 3-dimensionalen Strahlprofil in der
Umgebung des Anregungsvolumens ab und wird vom
Winkel u bestimmt.Mit obiger Definition des Auflösungs-
vermögens und kleiner Detektionsblende gelten die theo-
retischen Näherungsformeln

yHWB ≈ 0,4λ

n sinu
(lateral) , (6.54)

yHWB ≈ 0,45λ

n(1− cos u)
(axial) , (6.55)

was mit Hochleistungsobjektiven fast erreicht wird.

Die Scanzeiten liegen im Bereich von Zehntel Sekunden.
Um die Zeit für die Rasterung eines kompletten Bildes
zu verkürzen, gibt es Tricks: Statt kreisförmiger Blenden
werden Spalte verwendet, die verschoben und gedreht
werden (Linienscanner) oder die Beleuchtung des Objekts
erfolgt durch eine rotierende Scheibe mit spiralförmig an-
geordneten Öffnungen („Nipkov-Scheibe“). Man benötigt
dann eine parallele Lichtdetektion in vielen Kanälen, z. B.
mit einer CCD-Kamera.

Für biologische und medizinische Anwendungen gibt es
eine ganze Reihe von Farbstoffen. Eine Methode, sie in
Zellen zu implantieren, ist die Immunfluoreszenz, bei der
Farbstoffe an Antikörper gebunden werden, die in der

14 Auflösungsvermögen in der Ebene senkrecht zur optischen Achse.
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Zelle an Antigene andocken. Es wurden auch fluoreszie-
rende Proteine entdeckt und isoliert (GFP = „green fluo-
rescent protein“), deren Gene in Zellen die Bildung fluo-
reszierender Proteine auslösen, die ihrerseits mit anderen
Proteinen Bindungen eingehen, ohne deren Funktionen
zu zerstören. Das macht Untersuchungen an lebenden
Zellen möglich.

Die konfokale Lasermikroskopie kann auch ohne Fluo-
reszenz als Reflexionsmikroskopie genutzt werden, z. B.
beim Abtasten von Materialoberflächen.

Als Weiterentwicklung des CLSM ist die konfokale 4π-
Lasermikroskopie zu nennen. Hierbei wird ein Objekt
aus zwei diametral entgegengesetzten Richtungen durch
zwei Objektive mit Laserlicht beleuchtet. Die Struktur des
Lichtfelds in axialer Richtung ist eine andere: Man erhält
im Anregungsvolumen eine stehende Lichtwelle mit ei-
nem starken Intensitätsmaximum in der Mitte und zwei
schwächeren davor und dahinter. Weil sich die Messwer-
te entfalten lassen, erreicht man mit der konfokalen 4π-
Lasermikroskopie in axialer Richtung eine etwas bessere
Auflösung als in der lateralen. Einen Qualitätssprung der
lateralen Auflösung ermöglichte die STED-Mikroskopie,
deren Besprechung wir bis Abschn. 9.3 zurückstellen.15

Fernrohr. Das Grundprinzip des Fernrohrs ähnelt dem
des Mikroskops. Man verwendet jedoch ein Objektiv mit
großer Brennweite. Da der Gegenstand weit entfernt ist,
entsteht das Zwischenbild in oder nahe der bildseitigen
Brennebene des Objektivs (Abb. 6.47). Es wird wie beim
Mikroskop durch ein Okular betrachtet, das hier als ein-
fache Sammellinse dargestellt ist. Die Scharfeinstellung
erfolgt durch Verschieben desOkulars. Bei Einstellung auf
∞ fällt der bildseitige Brennpunkt des Objektivs mit dem
gegenstandsseitigen Brennpunkt des Okulars zusammen.
Ein paralleles, unter dem Einfallswinkel αo einfallendes
Strahlenbündel verlässt das Fernrohr als paralleles Strah-
lenbündel unter demWinkel αm. Die Vergrößerung ist

Γ =
αm

αo
=

f1
f2

, (6.56)

wobei f1 die Brennweite des Objektivs, f2 die des Okulars
ist. Als optisches System betrachtet, ist die Brennweite des
Fernrohrs f = ∞, denn in (6.36) ist nun d = f1+ f2 und dar-
aus folgt 1/f = 0. Man nennt ein solches System afokal
oder teleskopisch.

Wie beim Mikroskop ist beim Fernrohr das Auflösungs-
vermögen letztlich durch die Größe des Beugungsscheib-
chens begrenzt, das auch hier durch Beugung an der
Fassung der Objektivlinse entsteht. Die von zwei weit
entfernten Punkten in das Fernrohr einfallenden Strahlen

15 Eine umfassende Darstellung findet man in dem Buch: J. B. Paw-
ley (ed.), „Handbook of Biological Confocal Microscopy“, Third
Edition, Springer, 2006
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Abbildung 6.47 Prinzip des Fernrohrs („astronomisches Fernrohr“). L1: Ob-
jektiv, L2: Okular (symbolisch). PS ist der „Parallelstrahl“. Vor L1 läuft er durch
F (1)g , hinter L2 durch F

(2)
b

L2
Umkehrlinse
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Abbildung 6.48 „Terrestrische Fernrohre“: a Bildumkehr mit Linse, b und
c mit Prismen. FB: Feldblende

schließen einen kleinen Winkel ϕ ein. Man kann sie noch
als zwei Punkte erkennen, wenn ϕ ≥ ϕmin ist. Mit (6.42)
erhält man

ϕmin =
ρ

f1
= 1,22

λ

D
, (6.57)

denn hier ist b = f1. Ein großer Durchmesser der Fernrohr-
öffnung fördert also nicht nur die Bildhelligkeit, sondern
auch das Auflösungsvermögen.

Den in Abb. 6.47 gezeigten Typ nennt man astronomi-
sches oder Keplersches Fernrohr. Das Bild, das man
sieht, ist umgekehrt. In der Astronomie stört das wenig,
um so mehr aber bei Beobachtungen auf der Erdober-
fläche. Man muss also noch eine Bildumkehr einbauen.
Dafür gibt es zwei Möglichkeiten. Man kann zwischen
dem Zwischenbild und dem Okular noch eine Sammel-
linse einbauen, wie Abb. 6.48a zeigt. Das ohnehin schon
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Abbildung 6.49 Holländisches Fernrohr. Bezeichnungen wie in Abb. 6.47

lange Gerät wird noch länger und erinnert dann stark an
Lord Nelsons Zeiten. Wesentlich eleganter ist die Bildum-
kehr mit Prismen (Abb. 6.48b und c). Das ist die heute
gebräuchliche Form des terrestrischen Fernrohrs. Wie bei
der mehrfachen Reflexion in den Prismen die korrekte
Bildumkehr zustande kommt, ist eine verzwickte Ange-
legenheit. In Abb. 6.48b und c sind nur die Projektionen
der Strahlengänge auf die Zeichenebene gezeigt. Jeden-
falls erkennt man, dass die Bildumkehr mit Prismen zu
kurzen und handlichen Fernrohren führt. Man beachte
die aufwendige Konstruktion des Okulars, mit der man
ein großes Gesichtsfeld bei sehr kleinen Abbildungsfeh-
lern erreicht, sowie das achromatische Objektiv.

Die älteste Form ist das holländische oder, Galileische
Fernrohr16 (Abb. 6.49). Hier besteht das Okular aus einer
Zerstreuungslinse. Auch hier ist f1 + f2 = d (mit f2 < 0)
und (6.56) bleibt abgesehen vom Vorzeichen gültig. Das
holländische Fernrohr zeichnet sich durch eine relativ
kurze Baulänge aus: l = f1− |f2|. Sein Nachteil ist, dass bei
stärkerer Vergrößerung das Gesichtsfeld sehr klein ist. Mit
schwacher Vergrößerung führt das holländische Fernrohr
heute noch als Opernglas ein Schattendasein. Neuerdings
hat es in der Laserphysik eine Renaissance erlebt: Man be-
nutzt es in umgekehrter Richtung als Strahlaufweiter für
Laser mit hoher Leistung. Beim holländischen Fernrohr
gibt es nämlich kein reelles Zwischenbild, wo es infolge
extrem hoher Strahldichte zur Ionisation der Luft kom-
men könnte.

16 Das Fernrohr wurde zu Anfang des 17. Jahrhunderts in Hol-
land erfunden, angeblich von einem Brillenmacher-Lehrling, der in
der Mittagspause mit Linsen spielte. Meister Lippershey versuch-
te, es zum Patent anzumelden, was ihm aber nicht gelang, denn
die Erfindung wurde von der Regierung beschlagnahmt, wegen ih-
rer offensichtlichen Bedeutung für das Militärwesen. Galilei hatte
jedoch davon gehört und binnen kurzem ein sehr leistungsfähiges
Instrument hergestellt, und zwar mit selbst geschliffenen Linsen.
Wie hoch die Qualität von Galileis Linsen war, erkennt man an den
bahnbrechenden Entdeckungen, die er alsbald machte: Jupitermon-
de, Saturnring, . . . Sein erstes Fernrohr hatte 3-fache Vergrößerung,
sein letztes vergrößerte 32-fach. Galilei ist derjenige, der erkannte,
dass es in der Optik auf höchste Präzision ankommt. – Kepler hat
das Keplersche Fernrohr selber nie gebaut oder benutzt, es aber in
seinem 1611 erschienenen Optik-Buch „Dioptrice“ beschrieben. Das
Buch enthält auch eine genaue Theorie der Linsen (in Kleinwinkelnä-
herung), die Entdeckung der Totalreflexion und anderes.

P

N

P

C

Abbildung 6.50 Spiegelteleskop. P : Primärfokus, N : Newton-Fokus,
C : Cassegrain-Fokus

Spiegelteleskope. In der Astronomie wird das „astrono-
mische Fernrohr“ nur noch für Sonderzwecke verwendet.
Im Allgemeinen möchte man ein Teleskop mit möglichst
großer Öffnung haben, um auch lichtschwache Objekte
beobachten zu können und um ein gutes Auflösungsver-
mögen zu erreichen. Das lässt sich mit Spiegelteleskopen
sehr viel einfacher realisieren als mit Linsen, zumal Spie-
gel von vornherein frei von chromatischer Aberration
sind. Das Prinzip ist in Abb. 6.50 gezeigt. Um das im pri-
mären Fokus erzeugte Bild beobachten und ausmessen zu
können, wird der Strahlengang mit Hilfe von Hilfsspie-
geln nach außen umgelenkt. Newton, der das Spiegeltele-
skop erfand und als erster verwendete, benutzte hierfür
einen unter 45° aufgestellten ebenen Spiegel (Newton-
Fokus). Man kann auch das Licht mit einem konvexen
Spiegel durch eine Bohrung im Hauptspiegel nach außen
führen (Cassegrain-Fokus). Damit kann man gleichzeitig
die Brennweite f1 vergrößern und Abbildungsfehler ver-
ringern.

Die Spiegel selbst wurden bis vor einigen Jahren form-
stabil aus einer dicken sphärisch geschliffenen Platte her-
gestellt. Das Material war eine spezielle Glaskeramik mit
extrem kleinem Ausdehnungskoeffizienten. Das bekann-
teste Instrument dieser Art ist das Spiegelteleskopmit 5m
Durchmesser auf demMount Palomar in Kalifornien. Seit
einiger Zeit werden Großteleskope aus relativ leichten
Einzelspiegeln aufgebaut, die als Teilflächen eines großen
Paraboloids geschliffen und poliert sind. Sie können rech-
nergesteuert individuell justiert werden. Damit kannman
Spiegelbewegungen, die aufgrund der Leichtbauweise
entstehen, ständig kompensieren. Durch rasches Verstel-
len der Einzelspiegel optimiert man das Bild eines hellen
Sternes im Vordergrund des Gesichtsfelds: Damit wird
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Abbildung 6.51 100m-Radioteleskop in Effelsberg bei Bonn

die Spiegelstellung auch für die anderen Objekte im Ge-
sichtsfeld optimiert. Bei kleineren Spiegeln kann man auf
dieseWeise sogar das Funkeln der Sterne, das sogenannte
„seeing“ ausgleichen. Dieses für die Astronomie äußerst
lästige Phänomen wird durch Turbulenzen in der At-
mosphäre verursacht, die zu lokalen Schwankungen des
Brechungsindex führen. Hier sind jedoch Bewegungen im
Millisekundenbereich erforderlich. Die Einzelspiegel der
Großteleskope sind dafür zwar zu schwer, nicht aber die
Hilfsspiegel, mit denen man den Primärfokus zugänglich
macht. Auch gibt es auf der Erde Orte mit extrem kleiner
Luftunruhe. So wird mit den 8m-Teleskopen der Euro-
päischen Südsternwarte auf einem Berg in Chile die beu-
gungsbegrenzte Auflösung nahezu erreicht. Sie beträgt
nach (6.57) ϕmin = 8 · 10−8 rad ≈ 2 · 10−2 Bogensekunden.

In der Radioastronomie sind große Parabolspiegel als An-
tennen schon lange im Gebrauch. Abbildung 6.51 zeigt
als Beispiel ein Radioteleskop mit 100m Durchmesser. Es
ist ausgelegt für den Wellenlängenbereich 50 cm− 6mm
(ν = 0,6 − 50GHz). Trotz des riesigen Durchmessers ist
die Winkelauflösung eines solchen Radioteleskopes recht
bescheiden, wie man mit (6.57) nachrechnen kann. Dem
kann man abhelfen, indem man mehrere Radiotelesko-
pe in großen Abständen voneinander aufstellt und die
Signale phasenrichtig zusammenführt (long baseline ra-
dioastronomy). In (6.57) entspricht dann D dem Durch-
messer der Anlage.

Um ein Teleskop für den Röntgenbereich zu konstruie-
ren, muss man andere Wege beschreiten. Man nutzt aus,
dass Röntgenstrahlen von einer Oberfläche bei streifen-
dem Einfall totalreflektiert werden, da n < 1 ist. Mit den
inAbb. 6.52 gezeigten Flächen kannman das Röntgenlicht

Rotations-
Paraboloid

Rotations-
Hyperboloid

Detektor

Abbildung 6.52 Röntgenteleskop

einer entfernten Punktquelle auf einen Punkt abbilden.17

Unser heutiges Wissen auf den Gebieten der Astrophy-
sik und der Kosmologie beruht zum guten Teil darauf,
dass teleskopische Beobachtungen fast im gesamten Be-
reich des elektromagnetischen Spektrums möglich sind.
Im Röntgenbereich findet man sowohl thermische Quel-
len, darunter Objekte, deren Temperatur so hoch ist, dass
sie im sichtbaren Spektralbereich nicht beobachtet wur-
den, als auch nicht-thermische. Hier wird die Röntgen-
strahlung z. B. als Synchrotronstrahlung erzeugt.

Prismenspektrometer, Monochromator. Das Prinzip ist
in Abb. 6.53 gezeigt. Mit der Lichtquelle, deren Spektrum
ausgemessen werden soll, wird ein Spalt beleuchtet. Die-
ser Spalt wird mit Hilfe von Linsen auf eine Bildebene
abgebildet. Dabei wird das Licht durch ein Prisma ge-
leitet. Der Winkel, um den die Lichtstrahlen im Prisma
abgelenkt werden, hängt von der Wellenlänge des Lichts
und vom Einfallswinkel ab. Deshalb muss das Licht als
paralleles Strahlenbündel durch das Prisma geführt wer-
den. In der Bildebene entsteht dann das Spektrum, und
zwar erhält man je nach Art der Lichtquelle ein Linien-
spektrum (z. B. bei einer Gasentladungslampe) oder ein
kontinuierliches Spektrum (z. B. bei einer glühenden Me-
talloberfläche). Die einzelnen Spektrallinien, die man im
ersten Falle beobachtet, sind also Bilder des Eintritts-
spalts. Man kann das Spektrum durch ein Okular betrach-
ten, auf einer Skala ausmessen oder fotografieren; man
kann aber auch in der Bildebene nochmals einen Spalt an-
bringen und dahinter ein Messinstrument aufstellen, das
die Lichtintensität als Funktion des Ablenkungswinkels γ
misst. Für solche Messungen muss das Spektrometer so
eingerichtet sein, dass man den Ablenkwinkel γ konti-
nuierlich verstellen kann. Das Prisma wird dabei so mit-
bewegt, dass der Strahlengang stets symmetrisch bleibt.

17 Zur Funktionsweise: Das Rotations-Paraboloid allein würde zu ei-
ner unhandlichen Baulänge führen und außerdem für nicht exakt
achsenparallele Strahlen zu einer gigantischen Koma. Beide Pro-
bleme behebt das nachgeschaltete Rotations-Hyperboloid, erfunden
von H.Wolters (1951). Die Apertur ist nur ein schmaler Kreisring.
Zur Vergrößerung der Lichtsammelfläche werden mehrere Instru-
mente ineinander geschachtelt. Beobachtungen sind natürlich nur im
Weltraum möglich, da die Atmosphäre die Röntgenstrahlung absor-
biert.



6.4 Anwendungen 131

Te
il
I

Abbildung 6.53 Prismenspek-
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Dann befindet sich der Ablenkwinkel in einem Extremum
(vgl. Text zu Abb. 5.6), und γ ist von kleinen Justier-
fehlern unabhängig. Auch ist dann das durch Beugung
begrenzte Auflösungsvermögen des Prismenspektrome-
ters maximal. Die Aperturblende wird hier durch das
Prisma definiert, die Breite des Lichtbündels direkt hinter
dem Prisma sei d. Wenn man den Eintrittsspalt hinrei-
chend schmal macht, entsteht in der Bildebene eine Linie
mit der Breite

Δymin =
fλ
d

, (6.58)

denn diese Form nimmt (6.42) bei einer rechteckigen Öff-
nung der Breite d an. Zwei Linien mit den Wellenlängen
λ1 und λ2 erscheinen in der Bildebene bei y1 und y2. Ihr
Abstand ist proportional zu λ2 − λ1 und hängt vom Pris-
menwinkel α, dem Brechungsindex n und der Dispersion
dn/dλ ab. Die Auflösung des Spektrometers wird auch
hiermit demRayleighschenKriterium bestimmt: DieWel-
lenlängendifferenz λ2 − λ1 = Δλ gilt als auflösbar, wenn
y2 − y1 ≥ Δymin ist. Dem Gleichheitszeichen entspricht
die Wellenlängendifferenz Δλmin. Man definiert das Auf-
lösungsvermögen von Spektrometern generell mit R =
λ/Δλmin, damit ein gutes Auflösungsvermögen auch ei-
ner großen ZahlR entspricht. Zur Berechnung von y2− y1
bilden wir das Differential von (5.7) und beachten, dass n
von λ abhängt:

Δγ

2
cos

γ + α

2
=

dn
dλ

Δλmin sin
α

2
.

Der Winkel Δγ führt zu der gesuchten seitlichen Verschie-
bung: y2− y1 = fΔγ. Wir erhalten an der Auflösungsgren-
ze mit (6.58)

fΔγ = 2f
dn
dλ

Δλmins sin
α

2
1

s cos(γ/2+ α/2)

= Δymin = f
λ

d
,

wobei mit der Kantenlänge s des Prismas erweitert wur-
de. Nun liest man aus Abb. 6.53 ab: B = 2s sin α/2 und
d = s cos(γ/2 + α/2), sodass sich das sehr einfache Re-
sultat

R =
λ

Δλmin
= B

dn
dλ

(6.59)

ergibt. B ist die Basisbreite des Prismas.18 Ein Zah-
lenbeispiel: Schwerflintglas hat bei der Wellenlänge der
Natrium-D-Linien (λ ≈ 589,3 nm) n = 1,63 und dn/dλ =
750/cm. Ein Prisma mit der Basisbreite 5 cm hat also eine
Auflösung λ/Δλmin = 3750. Es folgt

Δλmin =
589,3 nm
3750

= 0,16 nm .

Das reicht aus, um die beiden Na-D-Linien (Δλ = 0,6 nm)
deutlich zu trennen.

Die in Abb. 6.53 gezeigte Apparatur kann nicht nur zum
Ausmessen von Spektren verwendet werden, sondern
auch als Monochromator: Wenn man in der Bildebene
einen Spalt einbaut, kann man je nach Spaltbreite einen
schmalen Bereich aus dem Spektrum einer Lichtquelle
ausblenden und für andere Experimente nutzen.

Diaprojektor. Das Diapositiv wird mit einer Objektivlin-
se auf die Projektionsfläche abgebildet. Das Wesentliche
ist nun, das Diapositiv richtig zu beleuchten. Dazu dient
eine Lichtquelle und eine Sammellinse, genannt Konden-
sor (Abb. 6.54). Der Kondensor bildet die Lichtquelle in
das Objektiv ab. Dadurch wird sichergestellt, dass alle
Strahlen, die durch das Diapositiv laufen, auch zur Bil-
derzeugung auf der Projektionswand beitragen. Der Ab-
bildungsstrahlengang (Diapositiv–Objektiv–Projektions-
wand) und der Beleuchtungsstrahlengang (Lichtquelle–
Kondensor–Objektiv–Projektionswand) sind in Abb. 6.54
eingezeichnet. Der Rahmen des Diapositivs wirkt als Ge-
sichtsfeldblende beim Abbildungsstrahlengang und als

18 Die Basisbreite ist immer wie in Abb. 6.53 zu ermitteln. Wird das
Prisma nicht voll ausgeleuchtet, muss man es sich entsprechend
abgeschnitten denken. Die Herleitung von (6.59) setzt einen symme-
trischen Strahlengang voraus, also ein Verschieben von Quelle und
Bildpunkt. Da man sich im Minimum des Ablenkwinkels befindet,
kommt aber für eine feststehende Quelle fast dasselbe heraus.
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Diapositiv Objektiv

Projektionswand

Kondensor

a

b

Abbildung 6.54 Diaprojektor, a Abbildungs- und b Beleuchtungsstrahlengang

Aperturblende beim Beleuchtungsstrahlengang. Damit
die Projektion des Dias gut funktioniert, müssen beide
Strahlengänge richtig aufgebaut sein. Auch beim Mikro-

skop spielt die Beleuchtung des Objekts eine große Rol-
le, und zur Optimierung des Beleuchtungsstrahlengangs
wird mitunter ein beträchtlicher Aufwand getrieben.
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6.1. Fermatsches Prinzip. Ein aus dem Unendlichen
kommendes Bündel paralleler Lichtstrahlen werde wie in
Abb. 6.14 an der Grenzfläche zweier Medien gebrochen
und auf einen Punkt B fokussiert. Bestimmen Sie bei vor-
gegebener Bildweite b die Form der brechenden Fläche als
Funktion Δ(h) mit Hilfe des Fermatschen Prinzips in der
Form (6.8). Zeigen Sie, dass ein Rotationsellipsoid heraus-
kommt und dass sich für kleine Werte von h (6.12) ergibt.
Hinweise: (1) Weil der Winkel α verschwindet, genügt es,
wenn man in Abb. 6.14 die Längen l1 ab der Tangential-
fläche durch den Scheitelpunkt S zählt. (2) Für eine Kugel
gilt bei kleinen h: Δ(h) = h2/2R.

6.2. Linse in einem Medium. Eine Linse, bestehend
aus Glas mit einem Brechungsindex n = 1,5, besitzt in
Luft eine Brennweite f = 5 cm. Wie groß ist die Brennwei-
te unter Wasser (n = 1,33)?

6.3. Abbildung durch eine ebene brechende Fläche.
Ein unter Wasser liegender Gegenstand scheint, wenn
man senkrecht von oben auf ihn herabschaut, angeho-
ben zu sein. Berechnen Sie die Position seines Bildes,
wenn er sich um g = 20 cm unterhalb der Wasseroberflä-
che befindet. Wie groß ist der Abbildungsmaßstab? Um
welchen Faktor ändert sich der Sehwinkel bei der Ab-
bildung, wenn die Augen des Betrachters einen Abstand
h = 50 cm von der Wasseroberfläche haben?

6.4. Bestimmung der Brennweite einer dünnen Lin-
se nach Bessel. Ein Gegenstand wird mit einer Linse
auf einen im Abstand D = 80 cm stehenden Schirm ab-
gebildet. Man findet bei Verschiebung der Linse zwei
Positionen, bei denen ein scharfes Bild entsteht, die um
d = 25 cm auseinander liegen.Wie groß ist die Brennweite
der Linse? (Anmerkung: Die „dünne Linse“ charakteri-
siert man dadurch, dass man den Abstand zwischen den
Hauptebenen null setzt).

6.5. Brennweite und Hauptebenen einer plankonve-
xen Linse. Die Linse in Abb. 6.29 werde durch eine eine
plankonvexe Linse ersetzt, deren hinterer Krümmungsra-
diusR2 = ∞ ist. Leiten Sie für diesen Spezialfall (6.34) und
(6.35) her. Hinweis: Verfolgen Sie denWeg von Lichtstrah-
len durch das System, die parallel zur optischen Achse
von rechts oder links kommen und bestimmen Sie die
Positionen der Brennpunkte und danach die Lagen der
Hauptebenen. Es werde h 	 d < f vorausgesetzt.

6.6. Zwei dünne Linsen. a) Zwei dünne Sammellinsen
mit gleichen Brennweiten f1 = f2 werden im Abstand d =
3f1 voneinander aufgestellt. Ermitteln Sie für paraxiale

Strahlen, die von links oder rechts aus dem Unendlichen
kommen, deren Verlauf durch das Systemund bestimmen
Sie die Lage der Brennpunkte und der Hauptebenen.Man
vergleiche mit (6.34) und (6.35).

b) Wohin und mit welchem Abbildungsmaßstab wird ein
Gegenstand abgebildet, der sich auf einer Hauptebene be-
findet?

c) In Luft werden eine Sammellinse mit der Brennwei-
te f1 und eine Zerstreuungslinse mit der Brennweite f2
im Abstand d voneinander aufgestellt. Unter welchen Be-
dingungen für f1, f2 und d verhält sich das kombinierte
System wie eine Sammellinse?

6.7. Beugungsunschärfe und chromatische Aberrati-
on. Eine Linse mit der Brennweite f = 5 cm bilde einen
sehr weit entfernten leuchtenden Punkt als Beugungs-
scheibchen in der Brennebene ab. Wie groß ist der Radi-
us des ersten Beugungs-Minimums für die Wellenlänge
589nm bei einem ObjektivdurchmesserD = 1 cm?

Das Glas des Linse besitzt für die Lichtwellenlänge λ =
589nm einen Brechungsindex n = 1,5100, aber für die
Wellenlänge λ = 486nm den Brechungsindex n = 1,5157.
Bei Scharfeinstellung auf die erste Wellenlänge ist für
die zweite Wellenlänge das geometrisch-optische Bild des
Gegenstandspunkts eine Scheibe. Man vergleiche deren
Radius mit dem Radius des Beugungsminimums.

6.8. Korrektur des chromatischen Linsenfehlers. Ei-
ne Kombination aus einer plankonkaven Zerstreuungs-
linse und einer Sammellinse, wie sie im rechten Teil von
Abb. 6.17 gezeigt ist, soll auf chromatische Aberration
korrigiert werden, indem zwei verschiedenen Glassor-
ten verwendet werden. Die Kompensation erfolgt bei den
Fraunhoferschen Linien C und F. Als Material werden
ein Kronglas mit dem Brechungsindex n(D) = 1,5100 und
der Abbe-Zahl VD = 62,9 und ein Flintglas mit n(D) =
1,755 und VD = 26,8 benutzt. Die Linsen sollen als dünn
angenommen werden. Die Gesamtbrennweite bei der
Fraunhofer-Linie D sei f = 10 cm. Wie groß müssen die
Krümmungsradien der Linsen sein? Hinweis: Rechnen
Sie zunächst mit den Brechungsindizes für die Linien C
und F und führen Sie erst in der Endformel die Abbe-Zahl
und den Brechungsindex n(D) ein.

6.9. Sphärische Aberration. Eine Linse mit einer
Brennweite f = 5 cm und dem Brechungsindex n = 1,5
bilde einen sehr weit entfernten, auf der optischen Achse
liegenden Punkt ab. Die Linse ist plankonvex, die ebene
Seite ist dem Gegenstand zugewandt.
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a) Wie groß ist der Krümmungsradius R der Linse?

b) Der Durchmesser der Blendenöffnung sei D = 1 cm.
Ein Lichtstrahl parallel zur optischen Achse, der am Blen-
denrand durch die Linse tritt, schneidet die optische
Achse nicht mehr im Brennpunkt, sondern in einem Ab-
stand sa von ihm. Daher ist das Bild des Blendenrandes in
der Brennebene ein Kreis. Wie groß ist dessen Radius ra?
Vergleichen Sie diesen Abbildungsfehler mit den Resulta-
ten der Aufgabe 6.7.

Hinweise für die Herleitung einer Formel: Ersetzen Sie
in der Rechnung die Brennweite durch den Krümmungs-
radius und den Blendendurchmesser D durch den Ein-
fallswinkel α des Strahls an der hinteren Linsenoberflä-
che: D = 2R · sin α. Die bei der Rechnung auftretenden
Cosinus- und Sinusfunktionen von α und β (β ist der
Ausfallswinkel an der hinteren Linsenoberfläche) sind nä-
herungsweise durch Reihenentwicklungen bis zur Potenz
α2 zu ersetzen.

6.10. Prismenfernrohr. Wenn man auf einem Prismen-
fernrohr z. B. die Bezeichnung 7× 50 sieht, bedeutet dies,
dass das Fernrohr 7-fach vergrößert und der Durchmes-
ser des Objektivs 50mm beträgt. Abbildung 6.48b ist
maßstäblich, der Abstand zwischen den Außenseiten von
Objektiv und Okular ist 15 cm. Das Objektiv betrachten
wir als dünne Linse, das Okular nicht. Die Ablenkprismen
erzeugen im Maßstab 1 : 1 ein virtuelles Bild des Objek-
tivs, das auf der Okular-Achse im Abstand s = 15 cm vor
der Feldblende FB, also knapp 5 cm vor dem Fernrohr
liegt. Für uns ist dieses Bild „das Objektiv“. Die Pupille ei-
nes Beobachters befinde sich in einemAbstand d = 1,5 cm
vom Okular.

a) Wo liegen in Abb. 6.48b der bildseitige Brennpunkt
des Objektivs und der gegenstandsseitige Brennpunkt des
Okulars und wie groß sind die Brennweiten f1 des Objek-
tivs und f2 des Okulars?

b) Wo liegt die gegenstandsseitige Hauptebene des Oku-
lars?

c) Die Optimierung des Strahlengangs erfordert es, dass
das Objektiv vom Okular auf die Augenpupille abgebil-
det wird, wodurch das Objektiv und die Augenpupille als
Ein- und Austrittspupille des Systems fixiert werden. Wie
groß ist die Bildweite dieser Abbildung und wo liegt die
bildseitige Hauptebene des Okulars?

d) Gilt für das Auflösungsvermögen eines 7 × 50-Fern-
rohrs bei hellem Licht (6.57) oder ist die Winkelauflösung
durch das Auge des Betrachters begrenzt?

e) In Abb. 6.48b fällt auf, dass das Objektiv relativ einfach
strukturiert ist, während das Okular sehr kompliziert auf-
gebaut ist. Warum ist das so (vgl. Aufgaben 6.7 und 6.9)?

f) Kneift man beim Blick durch ein Prismenfernrohr ein
Auge zu und blickt mit dem anderen aus großemAbstand
durch eine Fernrohrhälfte, sieht man von weit entfernten
Gegenständen ein scharfes Bild, aber der beobachtbare
Bildausschnitt ist winzig. Was definiert hier die Aus-
trittspupille, wo liegt die Eintrittspupille, wo liegt die
Austrittsluke und und welchem Element des Fernrohrs
entspricht hier die Eintrittsluke?

6.11. Beleuchtungsstärke einer Fotoaufnahme. a) Eine
kreisrunde leuchtende Fläche mit dem Radius re besit-
ze senkrecht zu ihrer Oberfläche eine Strahldichte Le
(Einheit: W/(m2 sr)). Sie wird von einem in großem
Abstand g befindlichen Fotoapparat abgebildet, der die
Brennweite f 	 g und den Blendendurchmesser D 	 f
besitzt.

Wie groß ist der in den Fotoapparat eintretende Strah-
lungsfluss (Einheit: W)?

Wie groß ist das Bild und wie groß ist die Bestrahlungs-
stärke Ee (Einheit: W/m2) im Bild? (Zahlenbeispiel: Le =
10W/(m2 sr), Blendenzahl f/D = 4).

Kann man ein Objektiv erfinden, mit dem man eine Be-
strahlungsstärke Ee im Bild erreicht, die größer als das
2π-fache der Strahldichte Le der Quelle ist?

b) Ein leuchtender Punkt besitze eine Strahlstärke Ie. Er
wird mit dem gleichen Fotoapparat im gleichen Abstand
abgebildet. Wie groß ist der in den Fotoapparat eintreten-
de Strahlungsfluss?

Der Punkt erzeugt eine Beugungsfigur. Wie groß ist der
Radius des ersten Beugungsminimums? Als Maß für die
Bestrahlungsstärke nehmen wir das Verhältnis des Strah-
lungsflusses zur Fläche, die von dem berechneten Radius
eingeschlossen wird. Wie hängt dieser Ee-Mittelwert von
f , D, g und der Wellenlänge λ ab? Warum strebt man
bei astronomischen Fernrohren einen großen Durchmes-
ser D an?
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Interferenz entsteht bei der Überlagerung von zwei
oder mehreren Wellen, die untereinander eine feste
Phasenbeziehung haben. Man nennt solche Wellen
kohärent. Wir befassen uns zunächstmit der Interfe-
renz von zweiWellen gleicher Frequenz. Dabei kann
man am besten das Grundsätzliche diskutieren: die
Erzeugung kohärenter Wellen und das Zustande-
kommen des Interferenzterms, der die Intensität
des Wellenfeldes maßgeblich beeinflusst. Die Dis-
kussion in Abschn. 7.1 erstreckt sich aber auch auf
Phänomene wie die schillernden Farben eines Öl-
flecks auf dem nassen Asphalt, auf die optische
Vergütung von Oberflächen und auf interferome-
trische Messmethoden. Im zweiten Abschnitt geht
es um die Kohärenz: Wovon hängt die feste Pha-
senbeziehung zwischen den interferierenden Wellen
ab? Die hier gewonnenen Erkenntnisse finden ei-
ne interessante Anwendung in der Astronomie: Mit
interferometrischen Methoden kann man die Durch-
messer von Sternen bestimmen, obgleich diese im
Teleskop nur als punktförmige Objekte erscheinen!
Im dritten Abschnitt behandeln wir Vielstrahlinter-
ferenzen und deren Anwendungen, u. a. auch die
erstaunlichen Eigenschaften einer beidseitig etwas
durchscheinend verspiegelten Platte. Sie bilden die
Grundlage für das Fabry-Pérot-Interferometer, für
Interferenzfilter, und vor allem für den Laser-Reso-
nator, den wir am Schluss des Kapitels besprechen.

7.1 Interferenz von zwei
Wellenzügen

Grundlagen: Interferenzterm, Phasendifferenz und
Gangunterschied

Wir beginnen mit einer Vorübung, in der wir einige Be-
griffe einführen und Formeln ableiten, die wir im Fol-
genden immer wieder brauchen werden. Abbildung 7.1a
zeigt den schon aus Abb. 1.11 bekannten Wellentrog,
in dem diesmal zwei Stifte periodisch auf- und abbe-
wegt werden. Von jeder der beiden Punktquellen Q1 und
Q2 gehen Kreiswellen aus, die sich überlagern. Da die
Bewegung der Stifte durch einen gemeinsamen Antrieb
bewirkt wird, ist die relative Phase der beiden Kreiswel-
len fest vorgegeben, sie sind kohärent. WoWellenberg auf
Wellenberg oderWellental aufWellental treffen, entstehen
doppelt so hohe Wellenberge bzw. doppelt so tiefe Wel-
lentäler. Man nennt dies konstruktive Interferenz. Dort,
wo Wellenberg und Wellental zusammentreffen, bleibt

a

b

Q2

Q1

Abbildung 7.1 Interferenz von zweiWellenzügen.aGrundversuch imWellen-
trog, b schematische Darstellung: • Wellenberge, ◦ Wellentäler bei konstrukti-
ver Interferenz,× destruktive Interferenz

Q1

Q2

P

r2

r1

r

d

Abbildung 7.2 Definition der Vektoren in (7.1)

die Oberfläche ruhig, dort ist die Interferenz destruktiv.
Die gesamte Wasseroberfläche vor Q1 und Q2 ist in Zo-
nen konstruktiver und destruktiver Interferenz aufgeteilt.
Abbildung 7.1b zeigt dies schematisch. Wir wollen nun
dieses Wellenfeld berechnen. In Abb. 7.2 sind die hier ver-
wendeten Vektoren definiert. Es ist

r1 = r− d/2 , r2 = r+ d/2 . (7.1)

A1(r1, t) und A2(r2, t) seien die Höhen der von Q1 und
Q2 ausgehenden Kreiswellen, A10 und A20 deren Am-
plituden, k1 und k2 die Wellenvektoren. Ihr Betrag ist
k = 2π/λ. Da es sich nur um Kreiswellen handelt, ist
k · ri = kri. Es ist also

A1(r1, t) = A10(r1) cos(kr1 − ωt− ϕ1) ,
A2(r2, t) = A20(r2) cos(kr2 − ωt− ϕ2) .

(7.2)



7.1 Interferenz von zwei Wellenzügen 137

Te
il
I

ϕ1 und ϕ2 sind die Phasen der beiden Sender Q1 und
Q2. In Abb. 7.1 ist ϕ1 = ϕ2 und A10(0) = A20(0). Wir blei-
ben jedoch zunächst bei dem allgemeineren Ausdruck
(7.2). Die Intensitäten der Wellen sind proportional zum
Quadrat der Wellenfunktion, gemittelt über die Zeit. Den
Proportionalitätsfaktor nennen wir K. Wenn jeweils nur
eine der beiden Punktquellen eingeschaltet wäre, wür-
de man bei P in Abb. 7.2 die Intensitäten I1 = KA2

1 bzw

I2 = KA2
2 messen. In demWellenfeld, das durch die Über-

lagerung der beiden Teilwellen entsteht, muss man bei
der Berechnung der Intensität zunächst die Wellenfunk-
tion des resultierenden Feldes berechnen, erst dann wird
quadriert und zeitlich gemittelt. Für das Quadrat der Wel-
lenfunktion und für die Intensität erhalten wir

A2(r, t) =
(
A1(r, t) +A2(r, t)

)2
= A2

1 +A2
2 + 2A1A2 ,

(7.3)

I(r) = K
(
A1(r, t) +A2(r, t)

)2
= I1 + I2 + 2K(A1A2) .

(7.4)

Die Intensität I(r) ist also verschieden von der Summe
der Intensitäten der Teilwellen: Das ist das wesentliche
Kennzeichen der Interferenz. Die Ursache ist das Auftre-
ten des Interferenzterms 2KA1A2. Wir berechnen diesen
Term. Mit kri − ϕi = αi folgt aus (7.2)

A1A2 = A10A20(cos α1 cosωt+ sin α1 sinωt)
· (cos α2 cosωt+ sin α2 sinωt)

= A10A20[cos α1 cos α2 cos2 ωt

+ sin α1 sin α2 sin2 ωt+ (. . .) cos ωt sinωt] .

Nun ist cos2 ωt = sin2 ωt = 1
2 und cosωt sinωt = 0. Wir

erhalten deshalb für den Interferenzterm

2KA1A2 = KA10A20 cos(α1 − α2) . (7.5)

Mit I1 = KA2
10/2 und I2 = KA2

20/2 folgt schließlich

I(r) = I1 + I2 + 2
√

I1I2 cos δ , (7.6)
δ = k(r1 − r2) + (ϕ1 − ϕ2) . (7.7)

Maximal konstruktive Interferenz besteht, wenn I = I1 +
I2 + 2

√
I1I2 ist, wenn also die Phasendifferenz

δ = 2πm , m = 0,±1,±2, . . . (7.8)

Abbildung 7.3 Zu (7.14)

Q1

Q2 G= d sinϑ

r2

r1

r

d
ϑ

ist. Maximal destruktive Interferenz erhält man für I =
I1 + I2 − 2

√
I1I2. Dann ist

δ = m′π , m′ = 2m+ 1 = ±1,±3,±5, . . . (7.9)

Statt durch die Phasendifferenz kann man die Interferenz
auch durch den Gangunterschied G = r1 − r2 charakteri-
sieren. Wenn die Sender Q1 und Q2 gleichphasig schwin-
gen (ϕ1 = ϕ2), entspricht der Phasendifferenz δ = 2π der
Gangunterschied λ. Allgemein gilt für

ϕ1 = ϕ2 : G = λ
δ

2π
, δ =

2π

λ
G = kG . (7.10)

Maximal konstruktive Interferenz:
G = mλ ,

(7.11)

maximal destruktive Interferenz:

G = (2m+ 1)
λ

2
.

(7.12)

Nach (4.4) und (4.5) sind die Amplituden bei Kugelwellen
proportional zu 1/ri und bei Kreiswellen proportional zu
1/

√
ri. In großem Abstand von den Punktquellen (r 
 d)

kann man bei der Berechnung der Amplituden A1 und
A2 die Unterschiede zwischen r1, r2 und r vernachlässi-
gen. Dann ist bei gleicher Erregung an den Punktquellen
I2(r) = I1(r). Wir erhalten mit (7.6)

I(r) = 2I1(1+ cos δ) = 4I1 cos2
δ

2
. (7.13)

Bei maximal destruktiver Interferenz geht in diesem Fal-
le die Intensität bis auf Null zurück, wie schon Abb. 7.1
zeigte.

Wenn r 
 d ist, zeigen die Vektoren r1, r2 und r annä-
hernd in die gleiche Richtung, und nach Abb. 7.3 ist der
Gangunterschied

G = d sinϑ . (7.14)
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Q1

Q2

m
=

−3

m= −2

m= −1

m= 0

m
=

3

m
=2

m=1

Abbildung 7.4 Linien gleichen Gangunterschieds (gestrichelt ) und deren
Asymptoten (ausgezogen)

m= 0

m= −1

m= −2

m=1

m=2

Abbildung 7.5 Interferenzstreifen auf einer Ebene, die entlang der punktier-
ten Linie senkrecht auf der Zeichenebene von Abb. 7.4 steht

Für den Winkel ϑ in Abb. 7.3 gilt bei maximal konstrukti-
ver bzw. bei maximal destruktiver Interferenz:

konstruktiv: sin ϑ = m
λ

d
,

destruktiv: sin ϑ = (2m+ 1)
λ

2d
.

(7.15)

Im Wellentrog haben wir es mit der Wellenausbreitung
auf einer ebenen Fläche zu tun. Auf dieser Fläche gibt
es Linien gleichen Gangunterschieds G = r1 − r2 = const.
Aufgrund dieser Bedingung erhält man Hyperbeln, in de-
ren Brennpunkten die Quellen Q1 und Q2 liegen (vgl.
auch Bd. I/21.1). Man kann sie in Abb. 7.1 erkennen.
Die durch (7.15) gegebenen Geraden sind die Asymptoten
dieser Hyperbeln (Abb. 7.4). Bei der Wellenausbreitung
im dreidimensionalen Raum werden durch die Bedin-
gungG = r1− r2 = const hyperbolische Flächen definiert,
rotationssymmetrisch um die durch Q1 und Q2 führen-

de Gerade. Abbildung 7.4 kann auch als ein Schnitt
durch diese Flächen aufgefasst werden. Wenn man senk-
recht zur Zeichenebene entlang der punktierten Linie eine
Ebene aufstellt und auf dieser Ebene die Intensität re-
gistriert, erhält man durch konstruktive und destruktive
Interferenz ein Streifenmuster (Abb. 7.5). Die „Interfe-
renzstreifen“ entstehen als Schnittlinien der Ebene mit
den Hyperboloiden. Bei m = 0 liegt der Streifen „nullter
Ordnung“; bei m = ±1 liegen die Streifen „erster Ord-
nung“ und so fort.

Interferenzen mit elektromagnetischen Wellen

Wir sind in (7.2) davon ausgegangen, dass die Wellen-
funktion eine skalare Größe ist. Wie geht man nun bei
elektromagnetischen Wellen vor, bei denen die Wellen-
funktion E(r, t) ein Vektor ist? Es zeigt sich, dass man
in fast allen in der Praxis vorkommenden Fällen mit der
eben entwickelten skalaren Beschreibung der Interferenz-
phänomene auskommt. Anstelle von (7.3) erhält man

E2(r, t) =
(
E1(r, t) + E2(r, t)

)2
= E2

1 + E2
2 + 2E1 · E2 .

(7.16)

Wenn die Vektoren E1 und E2 in die gleiche Richtung
zeigen, ist E1 ·E2 = E1E2, und es ändert sich nichts gegen-
über (7.3). Dieser Fall liegt vor, wenn zwei kohärente, in
der gleichen Richtung linear polarisierte Wellen überla-
gert werden, aber auch bei zwei kohärenten unpolarisier-
ten Wellen. Hier sorgt nämlich die Kohärenz der Wellen
dafür, dass E1 ‖ E2 ist. Man beobachtet also auch mit „na-
türlichem Licht“, wie es von Temperaturstrahlern (Sonne,
Bogenlampe, Glühbirne) emittiert wird, die durch (7.6)–
(7.15) beschriebenen Interferenzerscheinungen, wenn es
gelingt, zwei kohärente Wellen herzustellen.

Stehen die Vektoren E1 und E2 senkrecht aufeinander,
ist in (7.16) E1 · E2 = 0, es gibt keine Interferenzstrei-
fen. Die Überlagerung von zwei kohärenten, senkrecht
zueinander linear polarisierten Wellen führt zwar zu in-
teressanten Phänomenen, die wir in Kap. 9 besprechen
werden; die Interferenzerscheinungen, auf die es uns hier
in diesem Kapitel ankommt, gibt es aber nicht.

Die Vektornatur des elektrischen Feldes bereitet uns also
keine besonderen Probleme. Eine ganz andere Frage ist,
wie man kohärente elektromagnetische Wellen erzeugt.
Im technischen Hochfrequenzbereich ist das verhältnis-
mäßig einfach: Man speist zwei parallel zueinander ste-
hende Dipolantennen aus dem gleichen HF-Generator.
Das geht aber nicht bei sichtbarem Licht. Der erste Nach-
weis von Interferenzen mit Licht gelang um 1800 dem
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Abbildung 7.6 Youngsches Experiment. a Prinzip, b realistischere Darstel-
lung, c das in der Bildebene beobachtete Interferenzbild. Die beiden Beugungs-
scheibchen sind gestrichelt eingezeichnet

englischenArzt Thomas Young1 mit einer Versuchsanord-
nung, deren Prinzip bis heute als exemplarisch gilt. Es ist
in Abb. 7.6a gezeigt. Licht fällt von links auf die feine Öff-
nungQ0. Im Idealfall einer sehr kleinen Öffnung geht von
Q0 eine Kugelwelle aus. Sie trifft auf die kleinen, nahe

1 Thomas Young (1773–1829), ein echtes Wunderkind, hatte mit zwei
Jahren Lesen gelernt, mit vier die Bibel bereits zweimal durchgele-
sen und noch als Jugendlicher alle klassischen und noch ein halbes
Dutzend orientalische Sprachen gelernt. Auf Betreiben seines ver-
mögenden Großonkels, eines Londoner Augenarztes, studierte er
Medizin, u. a. in Göttingen, wo er Lichtenbergs großartige Physik-
vorlesung hörte. Nach seiner Promotion übernahm er die Praxis
seines Großonkels, interessierte sich aber mehr für das Auge und
das Licht als für seine Patienten. Er entdeckte, wie die Adaption
des Auges funktioniert, erkannte, was Astigmatismus ist und schuf
die Grundlage der Theorie des Farbensehens, die dann 50 Jahre
später von Helmholz vervollkommnet wurde (Abschn. 3.3). Er tat
auch den ersten Schritt zur Entzifferung der Hieroglyphen: Er kam
auf die Idee, dass auf dem Stein von Rosette die besonders einge-
rahmten Zeichengruppen Königsnamen sind. Da dieser Stein den
gleichen Text auch in griechischer Schrift enthält, konnte er durch
Vergleich der Texte die ersten ägyptischen Schriftzeichen entziffern.
–Mit seinerWellentheorie erklärte Young eine ganze Reihe von Inter-
ferenzphänomenen, die wir im Folgenden besprechen werden, z. B.
die Farben dünner Blättchen und die Newtonschen Ringe. Mit diesen
bestimmte er auch als erster die Wellenlänge des Lichts und deren
Abhängigkeit von der Farbe.

beieinander liegenden Öffnungen Q1 und Q2. Wenn die
Strecken Q0Q1 und Q0Q2 gleich lang sind, sind die Wel-
len, die nun von Q1 und Q2 ausgehen, phasengleich, und
erzeugen auf der Bildebene B Interferenzstreifen. Die Ma-
xima liegen nach (7.15) unter dem Winkel ϑ mit

sin ϑ = m
λ

d
. (7.17)

Youngs Versuchsanordnung ist in Abb. 7.6b gezeigt. Die
Durchmesser D der Öffnungen Q0, Q1 und Q2 betrugen
einige zehntel mm. Sie waren somit groß gegen die Licht-
wellenlänge. Infolgedessen gingen von diesen Öffnungen
keine Kugelwellen aus, sondern zwei durch Beugung an
den Öffnungen aufgeweitete Strahlenkegel. Nach (6.42)
sieht man in der Bildebene zwei Beugungsscheibchen mit
dem Radius ρ = 1,22(λL2/D), deren Zentren voneinan-
der den Abstand (1+ L2/L1)d haben. Mit L1 = L2 = 2m,
λ = 500 nm, D = 0,2mm, d = 1mm ist ρ = 6,1mm und
man erhält das in Abb. 7.6c gezeigte Bild. In der Über-
lappungszone treten Interferenzstreifen auf. Young beob-
achtete, dass sich bei einer Veränderung des Abstands d
der Streifenabstand verändert, wie von (7.17) vorherge-
sagt, und dass die Streifen verschwinden, wenn eine der
Öffnungen zugehalten wird. Damit bewies Young die
Wellennatur des Lichts. Newtons damals allgemein aner-
kannte Korpuskulartheorie des Lichts war widerlegt.

Das Experiment ist leichter durchzuführen, wenn man
statt der kreisrunden Öffnungen schmale Spalte benutzt.
Man spricht daher meist vom Doppelspalt-Experiment.
Es spielt bis heute in der Physik eine bedeutende Rolle.
Wir werden darauf in Kap. 8 und später im Zusammen-
hang mit der Quantenmechanik zurückkommen.

Young gelang es zunächst nicht, die Fachwelt von der
Wellentheorie zu überzeugen. Der Einwand war, dass die
Interferenzstreifen von Young mit „gebeugtem“ Licht be-
obachtet wurden, über dessen Natur man keine klare
Vorstellung hatte. Den Ausschlag zugunsten der Wel-
lentheorie gaben erst 15 Jahre später die Experimen-
te von Fresnel2. Sie sind in Abb. 7.7 gezeigt. Bei dem
Doppelspiegel-Experiment (Abb. 7.7a) dienen die Spie-
gelbilder der punktförmigen Lichtquelle Q0 als kohä-
rent strahlende Punktquellen. Die interferierendenWellen
werden hier nicht durch Beugung, sondern durch Refle-
xion erzeugt. Beim Fresnelschen Biprisma (Abb. 7.7b)
entstehen sie durch Brechung an zwei sehr schmalen Pris-
men. Damit war das Interferenzphänomen unabhängig
von Beugungserscheinungen nachgewiesen.

2 Auguste Fresnel (1788–1827) war im Gegensatz zu Young durchaus
kein Wunderkind. Höchstens wäre zu berichten, dass er nach sorgfäl-
tigen technologischen Studien für sich und seine Freunde Pfeile, Bögen
und Blasrohre baute, die sich als gefährliche Schusswaffen erwiesen
undmit denen er die gesamte Dorfbevölkerung gegen sich aufbrach-
te. Als Schüler und Student war er eher unauffällig. Im nächsten
Kapitel findet man mehr über Fresnels interessanten Lebenslauf.
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Abbildung 7.7 Fresnels Interferenzversuche.a Doppelspiegel, b Biprisma. Q1
und Q2 sind virtuelle Bilder der Punktlichtquelle Q0. A konstruktive, B destruk-
tive Interferenz

Die kohärenten Wellenzüge werden bei den bisher be-
schriebenen Versuchen erzeugt durch Teilung der Wellen-
front, die von einer Punktquelle ausgeht. Man kann auch
auf andere Weise aus einer Welle zwei interferenzfähige
Wellen machen: durch Aufteilung der Wellenamplitude.
Nehmen wir an, eine ebene Welle fällt unter dem Win-
kel β auf eine planparallele Platte aus durchsichtigem
Material. Dann wird sie sowohl an der Vorderseite als
auch an der Rückseite teilweise reflektiert und teilweise
durchgelassen. Für die Lichtstrahlen, d. h. für die auf den
Wellenfronten senkrecht stehenden geraden Linien, ergibt
sich der in Abb. 7.8 gezeigte Verlauf. Da für β < 60° nur
ein kleiner Teil der Welle reflektiert wird (vgl. Abb. 5.23),
kann man in diesem Winkelbereich weitere Reflexionen
in der Platte vernachlässigen, man hat es auch hier mit
Zweistrahlinterferenzen zu tun. Die Wellenfelder vor und
hinter der Platte enthalten jeweils zwei Anteile, die mit-
einander interferieren.

Wir berechnen die Differenz der optischen Weglängen
der beiden reflektierten Wellen. Mit Hilfe der beiden in
Abb. 7.8 eingezeichneten rechtwinkligen Dreiecke und

Abbildung 7.8 Reflexion und
Transmission einer ebenen Welle
an einer planparallelen Platte

A

n

β

β

B

C

d

D

mit dem Brechungsgesetz erhält man

Δlopt = n
(
AB+ BC

)
−AD =

2nd
cos β′ − 2d tan β′ sin β

=
2nd
cos β′

(
1− sin2 β′

)
= 2dn cos β′

= 2d
√
n2 − sin2 β , (7.18)

wobei n der Brechungsindex und d die Dicke der Platte
ist. Wie man in Abb. 7.8 erkennt, erfolgt die Reflexion der
einen Teilwelle am optisch dichteren Medium, die der an-
deren am optisch dünneren. Es tritt also ein zusätzlicher
Phasensprung um π auf, und die Phasendifferenz zwi-
schen den beiden reflektierten Wellen ist

δ = kG =
4πd

λ

√
n2 − sin2 β + π . (7.19)

Bei der durchgelassenenWelle gilt ebenfalls (7.18), es gibt
aber keinen Phasensprung. Man erhält

δ =
4πd

λ

√
n2 − sin2 β . (7.20)

Mit diesen Formeln kann man eine Fülle von Interferen-
zerscheinungen quantitativ behandeln.

Interferenzen gleicher Neigung. Sind d, n und λ vorge-
geben, hängt die Phasendifferenz zwischen den beiden
interferierenden Wellen nur noch vom Einfallswinkel β
ab. Das führt dazu, dass man mit einer ausgedehnten
monochromatischen Lichtquelle Interferenzstreifen beob-
achten kann. Die in Abb. 7.9 gezeigte Linse fokussiert
Wellen, die unter einem bestimmten Winkel β einfallen,
in der Brennebene. Daher entstehen dort je nach demNei-
gungswinkel β helle oder dunkle Interferenzstreifen.Man
nennt sie Streifen gleicher Neigung. Die Linse in Abb. 7.9
kann natürlich auch die Augenlinse sein. Damit man die
Streifen sieht, muss man das Auge auf unendlich einstel-
len, denn es interferieren hier parallele Wellenzüge. Man
nennt solche Streifen auch virtuelle Interferenzstreifen.



7.1 Interferenz von zwei Wellenzügen 141

Te
il
I

Lich
tqu

elle

Abbildung 7.9 Interferenzen gleicher Neigung
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Abbildung 7.10 Erzeugung von reellen Interferenzstreifen mit einer dünnen
planparallelen Platte

Es gibt noch eine andere Möglichkeit, mit einer plan-
parallelen Platte eine Welle in zwei kohärente Teilwellen
aufzuspalten. Der Strahlengang ist in Abb. 7.10a gezeigt.
Q ist eine monochromatische Punktquelle. Die beiden bei
P interferierendenWellen mit den Einfallswinkeln β1 und
β2 werden an der Vorder- und Rückseite der Platte reflek-
tiert. Wenn a 
 d ist, ist β1 ≈ β2 und die Phasendifferenz
ist in guter Näherung durch (7.19) gegeben. Wie die zu
P′ und P′′ führenden Linien zeigen, gilt dies unabhän-
gig davon, wie weit der Punkt P von der Platte entfernt

P

Δβ

β β

Abbildung 7.11 Zur Entstehung der Farben dünner Blättchen

ist. Sofern der Abstand a der Quelle von der Platte groß
gegen die Plattendicke d ist, ist in P′ die Phasendifferenz
genauso groß wie in P′′. Der gesamte Raum vor der Platte
ist von reellen Interferenzstreifen durchzogen, die über-
all aufgefangen werden können. Dies zeigt eindrücklich
der von R.W. Pohl eingeführte Demonstrationsversuch,
bei dem eine Glimmerplatte und eine Hg-Spektrallampe
verwendet werden (Abb. 7.10b). Die Lampe beleuchtet ei-
ne Lochblende. Wird die Lochblende entfernt, d. h. wird
hier die Punktquelle durch eine ausgedehnte Lichtquel-
le ersetzt, verschwinden die Interferenzstreifen, weil sich
nun in P destruktive und konstruktive Interferenzen über-
lagern. Man kann dann nur noch mit Hilfe einer Linse die
virtuellen Interferenzstreifen gleicher Neigung beobach-
ten.

Interferenzen gleicher Dicke. Dieser Typ von Interfe-
renzerscheinungen entsteht, wenn der Einfallswinkel β
durch die Versuchsanordnung fest vorgegeben und die
Dicke variabel ist. Man kann dann im monochromati-
schen Licht ähnlich wie in Abb. 7.9 virtuelle Interferenz-
streifen beobachten, die diesmal die Konturen gleicher
Dicke nachzeichnen. In manchen Fällen entstehen auch
reelle Interferenzstreifen. Zum Beispiel zeigt sich, dass In-
terferenzen von dem in Abb. 7.10 gezeigten Typ sogar
mit einer ausgedehnten Weißlichtquelle beobachtet wer-
den, wenn die Platte sehr dünn ist und man sein Auge
auf die Oberfläche der Platte akkommodiert (Abb. 7.11).
Dann sieht man von jeder Stelle der Oberfläche nur Strah-
len aus einem eng begrenzten Einfallswinkelbereich Δβ.
Je nach Schichtdicke und Wellenlänge ist die Interferenz
konstruktiv oder destruktiv. Bei Beleuchtung mit Weiß-
licht bewirkt das die Verstärkung oder Unterdrückung
gewisser Wellenlängenbereiche. Das führt zu den schil-
lernden Farben dünner Schichten, deren Dicke von Ort zu
Ort etwas schwankt. Die Seifenblase und der Ölfleck auf
dem Wasser oder auf dem nassen Asphalt sind Beispiele
dazu. Die Farben dünner Blättchen sind also Interferen-
zen gleicher Dicke.

Da der Gangunterschied der interferierenden Strahlen
proportional zur Schichtdicke ist, tritt das Phänomen nur
bei sehr dünnen Schichten auf. Bei dicken Schichten (d 

λ) sind keine Farben mehr sichtbar, weil sich dann beim
Punkt P in Abb. 7.11 auch in dem kleinen, vom Auge
erfassten Winkelbereich konstruktive und destruktive In-
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Abbildung 7.12 Zwei Anordnungen zur Erzeugung von Interferenzen gleicher
Dicke. a Fizeaustreifen, b Newtonsche Ringe

terferenzen überlagern. Dennoch kann man Interferenzen
gleicher Dicke auch bei größeren Schichtdicken beobach-
ten, wenn das Licht senkrecht oder fast senkrecht zur
Oberfläche einfällt. Dann ist in (7.18) sin2 β gegenüber n2

vollständig vernachlässigbar, und die Interferenz hängt
nur noch von d und λ ab. Zwei klassische Beispiele sind
in Abb. 7.12 gezeigt.

In Abb. 7.12a sind zwei planparallele Platten aufeinan-
der gelegt und an einem Ende mit einem Abstandsstück
auseinandergehalten. Es entsteht ein Luftkeil, an dessen
Oberfläche man bei monochromatischer Beleuchtung die
sogenannten Fizeaustreifen beobachten kann. Das Licht
soll nahezu senkrecht einfallen. Wir betrachten die Re-
flexion an der Unterseite der oberen Platte und an der
Oberseite der unteren. Die Differenz der optischen Weg-
längen ist Δlopt = 2d(x) = 2αx. Bei der Reflexion an der
unteren Platte entsteht ein Phasensprung um π. Man er-
hält deshalb destruktive Interferenz, wenn 2αx = mλ ist.
Der Abstand zwischen zwei dunklen Streifen ist

Δx =
mλ − (m− 1)λ

2α
=

λ

2α
. (7.21)

Er hängt nur von λ und vom Winkel α ab.

In Abb. 7.12b ist die Entstehung der Newtonschen Ringe
gezeigt, eines bekannten Phänomens, das sich manchmal
auch bei zwischen Glasplatten gerahmten Dias unlieb-
sam bemerkbar macht. Auf eine optisch plane Glasplatte
ist eine plankonvexe Linse mit dem Krümmungsradius R
gelegt. Bei Beleuchtung mit Weißlicht sieht man in Re-
flexion und in Transmission nahe der Mitte einige bunte
Ringe. Bei monochromatischem Licht reicht das Ringsys-
tem bis weit nach außen. Die Ringe sind genau kreisrund,
vorausgesetzt, dass Linse und Platte hinreichend präzise
geschliffen und poliert sind. Der Radius der dunklen In-

terferenzringe ist

r =
√
2Rh =

√
RΔlopt =

√
mλR , (7.22)

denn auch hier gibt es den Phasensprung um π. Diese
Beziehung erhält man aus r2 ≈ (R+ h)2 − R2. Beide Ver-
fahren zur Erzeugung von Interferenzen gleicher Dicke
werden in der optischen Industrie zur Qualitätskontrolle
bei Linsen und bei Platten eingesetzt.

Anwendungen

Interferenzen von zwei Lichtwellen finden in der Tech-
nologie („optische Vergütung von Oberflächen“) und in
der Messtechnik („Interferometrie“) zahlreiche Anwen-
dungen. Wir beschränken uns auf wenige Beispiele.

Reflexvermindernde Schichten. An der Grenzfläche
zwischen zwei durchsichtigen Medien mit verschiedenen
Brechungsindizes, z. B. an der Grenzfläche zwischen Luft
und Glas, wird ein Teil des einfallenden Lichts reflek-
tiert. Dieser Effekt ist besonders bei Linsensystemen sehr
störend, denn diese enthalten gewöhnlich viele solche
Grenzflächen. Man kann die Reflexion weitgehend unter-
drücken, indem man auf das Glas eine sogenannte λ/4-
Schicht aufdampft (optische Vergütung). Wie Abb. 7.13
zeigt, wird das Licht an der Vorder- und an der Rückseite
dieser Schicht reflektiert. Dabei entsteht bei senkrechtem
Lichteinfall ein Gangunterschied G = λ/2, vorausgesetzt
die Reflexion findet beide Male am optisch dichteren
oder beide Male am optisch dünneren Medium statt.
Die reflektierte Welle kann für eine bestimmte Wellenlän-
ge durch destruktive Interferenz vollständig ausgelöscht
werden, wenn man den Brechungsindex der Schicht ge-
eignet wählt. Wir berechnen n2 mit (5.39):

n2 − n1
n2 + n1

=
n3 − n2
n3 + n2

→ n2 =
√
n1n3 . (7.23)

Die Formel zeigt, dass die gleiche Schicht bei den Über-
gängen Glas–Luft und Luft–Glas wirksam ist.

n2 n3n1

λ/4

Abbildung 7.13 Reflexvermindernde Schicht
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Abbildung 7.14 Michelson-Interferometer

In der Praxis wählt man die Schichtdicke so, dass die de-
struktive Interferenz für gelb-grünes Licht (λ ≈ 560nm)
maximal wird. (Daher kommt der purpurne Schimmer
optisch vergüteter Linsen). Als Aufdampfmaterial mit
niedrigem Brechungsindex kommt vor allem Magnesi-
umfluorid MgF2 in Frage. Dann ist n2 = 1,38, und um
(7.23) streng zu erfüllen, müsste n3 = 1,9 sein. Das ist
ein sehr hoher Wert. Man kann aber mit einer MgF2-Ver-
gütung auch bei n3 ≈ 1,5 die Reflexion reduzieren, und
zwar vonR = 4% (unvergütet) aufR ≈ 1% (Aufgabe 7.4).
Das ist für die meisten Zwecke ausreichend. Will man ein
besseres Resultat erzielen, muss man zu 2- oder 3-facher
Beschichtung greifen, und das ist natürlich aufwändiger.

DasMichelson-Interferometer. Das Experiment vonMi-
chelson und Morley, in dem die Konstanz der Lichtge-
schwindigkeit nachgewiesen wurde, haben wir schon in
Bd. I/13 besprochen. Wir wollen nun das Michelson-
Interferometer genauer betrachten. Der Aufbau des In-
terferometers ist in Abb. 7.14 gezeigt. Es hat auch heute
noch große Bedeutung, z. B. in der Spektroskopie und
als Instrument für hochpräzise Längenmessungen. Das
von links einfallende Licht wird an einem halbdurch-
lässigen Spiegel, dem Strahlteiler T, in zwei Teilwellen
zerlegt. Nach Reflexion an den Spiegeln S1 bzw. S2 lau-
fen die Teilwellen nochmals über den halbdurchlässigen
Spiegel und gelangen dann zum Detektor. In dem zu S2
führenden Arm ist eine Kompensationsplatte eingebaut,
die abgesehen von der Verspiegelung baugleich mit dem
Strahlteiler ist. Sie bewirkt, dass die optischen Weglän-
gen in beiden Armen gleich sind, wenn die geometrischen
Längen übereinstimmen. Dies gilt dann unabhängig von
der Lichtwellenlänge und der Dispersion im Strahlteiler.
Der Spiegel S1 kann mit Hilfe einer Mikrometerschraube

in Richtung des Arms verschoben werden. Vom Detektor
aus gesehen ist S′1 das im Strahlteiler erzeugte Spiegelbild
von S1. Mit Hilfe von Stellschrauben können die Spiegel
so justiert werden, dass S′1 und S2 miteinander einen klei-
nenWinkel α einschließen. Von der Position des Detektors
aus sieht man dann Interferenzstreifen gleicher Dicke.
Man kann sie mit dem Auge betrachten, oder auch, wie
in Abb. 7.14 gezeigt, auf eine Blendenöffnung abbilden,
hinter der sich ein Photomultiplier oder eine Photodiode
befindet. Sie haben wie die Fizeau-Streifen voneinander
einen konstantenAbstand, der außer von derWellenlänge
nur vom Winkel α abhängt. Nach (7.21) liegt bei sicht-
barem Licht der Streifenabstand für z. B. α = 10−4 rad
im Bereich von Millimetern. Da beide Teilwellen je ein-
mal am Strahlteiler reflektiert und einmal durchgelassen
werden, ist unabhängig vom Reflexionsgrad des Strahl-
teilers I1 ≈ I2. Man erhält daher ein sehr kontrastreiches
Interferenzbild. Wird nun S1 um die Strecke λ/2 parallel
verschoben, verschiebt sich das Streifenmuster genau um
den Streifenabstand Δx. Verschiebt man S1 um die Strecke
Δd, wandern an der Blendenöffnung N Streifen vorbei,
und es ist

Δd = N
λ

2
.

Es ist kein Problem, die an der Blende im Detektor vor-
beilaufenden Streifen elektronisch zu zählen. Auch kann
man mit einigen Tricks elektronisch den Abstand zwi-
schen zwei Streifen mit einer Genauigkeit von 1/1000
des Streifenabstands messen. Daher kann man mit dem
Michelson-Interferometer Längenmessungen mit einer
Genauigkeit im Nanometerbereich durchführen, voraus-
gesetzt, man hat eine Lichtquelle mit genau bekannter
Wellenlänge. Diese Voraussetzung erfüllt z. B. der Jod-
stabilisierte Helium-Neon-Laser. Wie diese Stabilisierung
funktioniert, wird am Ende des Kapitels erklärt.3

Das FTIR-Spektrometer. Sein Name ist die Abkür-
zung für „Fourier-Transformations-Infrarot-Spektrome-
ter“. Ziel ist es, die Wellenlängenabhängigkeit der Ab-
sorption oder Reflexion von Proben für infrarotes Licht
zu untersuchen. Zur Beleuchtung wird eine thermische
Quelle mit einem kontinuierlichen Spektrum, aus Si-C
bestehend und Globar genannt, verwendet. Die Probe

3 Die erste und historisch gesehen wichtigste Längenmessung mit
einem Michelson-Interferometer war die Vermessung des Pariser
Urmeters durch Michelson und Benoit. Das Ergebnis war 1m =
(1 553 163,5 ± 0,1) mal die Wellenlänge der roten Linie im Cadmi-
um-Spektrum. Damals (1895) gab es weder elektronische Zählung
noch eine Lichtquelle, mit der ein 1m langer kohärenter Wellenzug
erzeugt werden konnte. Wie die damit verbundenen messtechni-
schen Probleme gemeistert wurden, findet man z. B. bei Max Born,
„Optik“, S. 129 (Springer-Verlag, 1985). Auf dieser Messung und auf
ihren späteren Wiederholungen beruhten die genauen Angaben von
Lichtwellenlängen in Einheiten des metrischen Systems, die in der
Folgezeit bei der Aufklärung der Atomstruktur eine entscheidende
Rolle spielten.
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befindet sich hinter einem Interferometer, das die Wellen-
längenselektion ermöglicht.

Dies ist ein Michelson-Interferometer, von dem ein Spie-
gel mit einer Präzisionsmechanik um insgesamt eine Stre-
cke L verschoben werden kann. Die Spiegel sind hier so
orientiert, dass man statt des oben erwähnten Strichmus-
ters ein System konzentrischer Ringe beobachtet, deren
Radien wellenlängenabhängig sind. Für monochromati-
sche Strahlung lässt sich die Intensität im Zentralbereich
mit (7.13) und (7.10) für eine Zweistrahlinterferenz be-
rechnen, wobei hier δ durch die Weglängendifferenz x
zwischen den Interferometerarmen entsteht:

dI(x) =
dIk(k)
dk

(1+ cos δ)dk mit δ = 2x
2π

λ
= 2xk .

(7.24)
Die Wahl des x-Nullpunkts sorgt dafür, dass in (7.24)
nur cos-Terme vorkommen. Gleichung (7.24) wurde in
differentieller Form geschrieben. Von der Quelle werden
simultan viele Frequenzen emittiert. Da die Wellenpha-
sen völlig unkorreliert sind, addieren sich die Intensitäten
und nicht die Amplituden der Teilwellen:

I(x) =
∞∫

0

dIk(k)
dk

(
1+ cos(2xk)

)
dk . (7.25)

Abgesehen von dem konstanten Term, der lediglich zu
einer rechnerischen Komplikation führt, ist die Intensi-
tät I(x) die Fourier-Transformierte des Wellenzahl-Spek-
trums dIk(k)/dk. Gleichung (7.25) lässt sich daher mit
Hilfe eines Computers numerisch umkehren: Man führt
N+ 1 Intensitätsmessungen bei den Spiegelstellungen

x0 = 0, x1 = Δx =
L
N
, . . . xN = NΔx = L

durch, diskretisiert das Inversionsproblem und erhält im
Idealfall

dIk(k)
dk

∝ F(k) = const+ Δx
N

∑
i=0

I(xi) cos(2xik) . (7.26)

Die rekonstruierte Funktion F(k) ist eine periodische
Funktion von k. Die Periodizität k0 ergibt sich aus der
Bedingung 2x1k0 = 2Δxk0 = 2π zu k0 = π/Δx = Nπ/L.
Für alle xi sind dann die Phasen 2xik0 in (7.26) ganzzah-
lige Vielfache von 2π, und für die Wellenzahl kmax = k0/2
sind sie ganzzahlige Vielfache von π. Deshalb ist die
Funktion F(k) um die Stelle k = kmax symmetrisch: Zu
jeder Wellenzahl k unterhalb von kmax gibt es eine ande-
re oberhalb von kmax mit dem gleichen Funktionswert F.
Es ist nicht möglich, gleichzeitig das Spektrum unterhalb
und oberhalb von kmax zu rekonstruieren, man beschränkt
sich auf die Wellenzahlen k < kmax. Die kleinste Periodizi-
tät Δk in der Summe (7.26) weist der Term proportional
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Abbildung 7.15 Strahlengang in einem FTIR-Spektrometer. Q: Lichtquelle,
Sph: sphärische Spiegel, B: Aperturblende, SA und SB : fester und bewegli-
cher Interferometer-Spiegel, S′B : Spiegelbild von SB , ST: Strahlteiler, P: Probe,
D: Detektor. 1,1′ und 2,2′: Paare von Lichtwegen mit unterschiedlichem Gang-
unterschied. Der Lichtweg 3, vom gleichen Punkt der Quelle kommend wie 1,
verläuft im Interferometer parallel zu 1 und trifft wieder auf 1 in der Probe

zu cos(2NΔxk) = cos(2Lk) auf, es ist Δk = π/L. Feine-
re Details, also kleinere Wellenzahldifferenzen und die
entsprechenden Frequenzdifferenzen Δν = cΔk/2π las-
sen sich nicht auflösen. Das Spektrum ist also im Bereich

0 < k < kmax = Nπ/2L (7.27)

mit der Auflösung
Δk = π/L (7.28)

rekonstruierbar. Die spektrale Auflösung ist durch den
Hubweg L begrenzt. Die Tatsache, dass kmax nicht gleich
NΔk ist, sondern nur halb so groß, wird in der Nach-
richtentechnik als das Nyquistsche Abtasttheorem be-
zeichnet. Wird die Folge der Messungen (der „Scan“)
nicht ab x = 0, sondern ab x = Lmin in N Schritten mit
dem Gesamthub L durchgeführt, lässt sich ein Spek-
trum im Bereich kmin = π/Lmin < k < kmax = π/Lmin +
Nπ/2L ermitteln. In der Praxis müssen an die Resultate
Phasenkorrekturen angebracht werden, weshalb zu (7.26)
Sinuskomponenten hinzugefügt werden müssen.

In einem FTIR-Spektrometer werden für optische Abbil-
dungen Spiegel verwendet (Abb. 7.15). Die Strahlung der
Quelle Q wird zunächst auf eine Aperturblende B fokus-
siert und, bevor sie in das Interferometer eintritt, parallel
gebündelt. Der Strahlteiler ST muss infrarotdurchlässig
sein, verwendet wird z. B. KBr. Nach Verlassen des Inter-
ferometers wird der IR-Strahl auf die Probe P fokussiert
und gelangt zuletzt zu einem IR-Detektor D, der ein
Halbleiterdetektor oder ein pyroelektrischer Detektor sein
kann. Als Hilfsmittel zur Kalibration derWellenlänge und
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Abbildung 7.16 Transmission von Infrarotstrahlung durch eine 70 nm dicke
organische Halbleiterschicht (CBP) auf einem Silizium-Wafer bei senkrechtem
Lichteinfall. Das Spektrum wurde normiert auf die Absorption eines reinen Sili-
zium-Wafers, andernfalls wäre die Absorption durch den organischen Halbleiter
nicht zu erkennen. Man sieht am Maßstab, dass diese Analyse eine hohe Genau-
igkeit der Intensitätsmessung voraussetzt. Aufnahme: A. Pucci, Kirchhoff-Institut
der Universität Heidelberg

zur Steuerung dient ein Laserstrahl bekannter Frequenz,
z. B. der eines He/Ne-Lasers, der zusätzlich eingekoppelt
und detektiert wird. Damit Licht mit den unrekonstruier-
baren Wellenzahlen nicht in den Detektor gelangt, muss
es mit einem geeigneten Fenster unterdrückt werden. Als
Beispiel zeigt Abb. 7.16 das Absorptionsspektrum eines
organischen Halbleiters. Ein Zahlenbeispiel findet man in
Aufg. 7.7.

FTIR-Spektrometer haben heute die „dispersiven“ Instru-
mente verdrängt, die auf einem Reflexionsgitter (Ab-
schn. 8.2) basieren. Letztere selektieren nacheinander N
Frequenzen, bei denen die Intensität gemessen wird. Da
bei N Scans in einem FTIR-Spektrometer jeweils die In-
tensität des gesamten Spektrums registriert wird, erhält
man eine N-fache Erhöhung der Intensität gegenüber ei-
nem dispersiven Instrument. Wenn der statistische Fehler
der Messung vom Rauschen dominiert wird, steigt der
Rauschpegel gegenüber einem dispersiven Instrument
nur um einen Faktor

√
N an. Es lässt sich zeigen, dass

die Fourier-Transformation (7.26) diesem Sachverhalt kei-
nen Abbruch tut. Das Signal-zu-Rauschverhältnis eines
FTIR-Spektrometers ist also um einen Faktor proportional
zu

√
N besser, was erheblich kürzere Messzeiten ermög-

licht.

Ein zusätzlicher Vorteil des FTIR-Spektrometers gegen-
über dem Gitterspektrometer ist sein höherer Lichtdurch-
satz. Darunter versteht man den Bruchteil der Leistung
der Lichtquelle, der in den Detektor gelangt. Detektiert
wird nicht nur das Lichtbündel, das senkrecht auf die
Interferometerspiegel trifft, sondern auch jedes, das um
einen nicht zu großenNeigungswinkel β dagegen gekippt
ist (Abb. 7.15 und 7.17). Von β hängt der Gangunterschied
zwischen zwei Lichtstrahlen ab, die an den beiden In-
terferometerspiegeln reflektiert werden. Man findet ihn
für den maximalen Spiegelabstandmit (7.18), indem man

Abbildung 7.17 Detailan-
sicht des Gangunterschieds
zwischen den Strahlen 2 und 2′

aus Abb. 7.15. Die Buchstaben A
bis D entsprechen Abb. 7.8
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dort n = 1 und d = L setzt: 2L cos β ≈ 2L− Lβ2. Die die-
sem Gangunterschied entsprechende Phase 4πL cos β/λ
darf sich von der größten in (7.26) auftretenden Pha-
se 2Lk um nicht mehr als 2π unterscheiden, woraus
folgt:

2πLβ2
max

λ
= 2π → βmax =

√
λ

L
.

Der Radius der Aperturblende ist dann βmaxf , wenn f die
Brennweite des abbildenden Spiegels ist (Abb. 7.15), und
die Blende hat die Fläche πf 2λ/L. Hierin lässt sich λ/L
durch das maximale AuflösungsvermögenR des Interfe-
rometers ausdrücken, das bei der minimalen Wellenlänge
λmin vorliegt:

R =
kmax

Δk
=

2π

λminΔk
=

2πL
λminπ

→ λmin

L
=

2
R .

Im Gegensatz zum FTIR-Spektrometer erfolgt bei einem
dispersiven Instrument die Wellenlängenselektion durch
eine Lichtablenkung senkrecht zur mittleren Strahlrich-
tung, wie wir am Beispiel des Prismenspektrometers ge-
sehen haben. Am Spektrometereingang befindet sich eine
spaltförmige Blende der Breite βmaxf , wobei der Strahl-
Öffnungswinkel βmax durch das Auflösungsvermögen R
des Spektrometers begrenzt ist. Wie man aus den Resul-
taten des nächsten Kapitels ablesen kann, ergibt sich für
das Gitter βmax ≈ 1/R. Mit der vertikalen Höhe h des
Beleuchtungsspalts erhält man als Fläche der Apertur-
blende βmaxfh = fh/R. Als Verhältnis der Blendenflächen
zwischen den beiden Spektrometertypen erhält man bei
gleicher Auflösung den von der Wellenlänge unabhängi-
gen Wert 2πf 2/fh = 2πf/h. Aus konstruktiven Gründen
ist die Spalthöhe immer deutlich kleiner als die Brennwei-
te, sodass das FTIR-Spektrometer um rund zwei Größen-
ordnungen im Vorteil ist. Wie man in Abb. 7.15 erkennt,
bedingt die Begrenzung des Öffnungswinkels durch die
Aperturblende automatisch auch eine Begrenzung des
nutzbaren Lichtquellendurchmessers.

Die obigen Überlegungen sind nicht spezifisch für In-
frarotstrahlung. In der Tat werden Instrumente, die auf
diesem Prinzip basieren, auch im Bereich des sichtbaren
Lichts und im nahen Ultraviolett eingesetzt.
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7.2 Kohärenz

Bei den bisherigen Betrachtungen sind wir häufig von
einer monochromatischen Punktlichtquelle ausgegangen.
Das war eine Idealisierung, die unsere Überlegungen er-
heblich erleichterte. Reale Lichtquellen sind aber weder
streng monochromatisch noch punktförmig. Wir wollen
nun untersuchen, wie sich das auf die Kohärenz des
Strahlungsfeldes auswirkt. Zunächst bleiben wir jedoch
bei der Punktlichtquelle.

Quasimonochromatische Punktquelle, zeitliche und
räumliche Kohärenz

In Abschn. 4.3 wurde gezeigt, dass ein zeitlich begrenz-
ter Wellenzug mit der Frequenz ν0 und der Dauer Δt
ein Frequenzspektrummit der Bandbreite Δν ≈ 1/Δt ent-
hält (Gl. (4.41)). Auch das Umgekehrte gilt: In einem
Wellenzug, der aus einer Lichtquelle mit der Bandbrei-
te Δν stammt, ist die Phase nur eine Zeit Δt ≈ 1/Δν
stabil. Alle Lichtquellen haben eine endliche Bandbrei-
te. Kommt das Licht aus einem Monochromator, ist die
Bandbreite durch die Einstellung des Geräts gegeben, bei
einer Spektrallampe durch die Lichtemission der Ato-
me, durch deren thermische Bewegung und durch den
Gasdruck – wir werden darauf in Bd. V/1.1 eingehen.
Auch ein Laserstrahl hat eine endliche Bandbreite: Wir
werden das in Abschn. 7.4 diskutieren. Eine feste Phasen-
beziehung besteht in einer Lichtwelle nur während der

t

a

b

c

d

e

t

Abbildung 7.18 Amplitude und Phase einer quasimonochromatischen Welle. a Einzelner Wellenzug, b Amplitude und c Phase (in Radian) bei Überlagerung von
100 Wellenzügen pro Zeitintervall τ, d und e bei 104 Wellenzügen /τ. Auf der Zeitachse ist die Zahl der Schwingungen aufgetragen

Kohärenzzeit

Δtc ≈
1

Δν
. (7.29)

Eine Lichtwelle mit relativ schmaler Bandbreite nennt
man quasimonochromatisch. Wie man sich eine solche
Welle vorzustellen hat, und wie sie z. B. bei der Lichtemis-
sion durch Atome zustande kommt, zeigt die Rechnersi-
mulation in Abb. 7.18. Es wurde angenommen, dass die
Atome unabhängig voneinander, also zu statistisch ver-
teilten Zeitpunkten, Wellenzüge mit der Feldstärke

E(t) = E0e−t/τ cosω0t (7.30)

emittieren (Abb. 7.18a). Abbildung 7.18b zeigt die Überla-
gerung solcherWellenzüge bei imMittel 100 Emissionsak-
ten im Zeitintervall τ. Die Phasenlage der resultierenden
Welle bezüglich einer Referenzwelle mit der festen Fre-
quenz ω0 ist in Abb. 7.18c gezeigt. Man sieht, dass die
Phase nur für gewisse Zeitabschnitte (Δtc)i einigermaßen
stabil bleibt. Danach verschiebt sich die Phase der Welle
in einer nicht vorhersagbaren Weise. In den Zonen zwi-
schen den einzelnen Abschnitten interferieren die Wellen
destruktiv. Daher sind die kohärenten Abschnitte durch
Bereiche reduzierter Amplitude voneinander getrennt.
Innerhalb der Abschnitte bleibt die Amplitude einiger-
maßen konstant. Sie schwankt jedoch von Abschnitt zu
Abschnitt beträchtlich um den Langzeit-Mittelwert. Dass
die Struktur der Welle nicht von der begrenzten Statis-
tik herrührt, sondern ein Kohärenzphänomen ist, zeigen
Abb. 7.18d und e, bei denen die Welle mit 104 Emissions-
akten pro Zeitintervall τ berechnet wurde. Eine einfache
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Abbildung 7.19 Messung der Kohärenzlänge mit dem Michelson-Interfero-
meter (Praktikumsversuch, Universität Heidelberg). Das Wellenlängenintervall
Δλ wird am Austrittsspalt des Monochromators eingestellt. Ausgezogen: Theo-
retische Kurve (λ0 = 546 nm)

Formel zur Beschreibung einer quasimonochromatischen
Welle ist

E(t) = E0(t) cos
(
k0x− ω0t+ δ(t)

)
. (7.31)

Wir wollen nun die Kohärenzzeit Δtc mit (7.29) abschät-
zen. In Abschn. 4.4 haben wir mit Hilfe der Fourier-
Transformation das Frequenzspektrum eines exponen-
tiell abklingenden Signals berechnet. Wir erhielten die
Lorentz-Kurve (4.57) mit der Halbwertsbreite (4.60):

(Δν)HWB = 1/2πτE = 1/πτ .

Die Abklingzeit der Amplitude τ in Abb. 7.18a entspricht
15 Schwingungen. Man erwartet also mit (7.29)

Δtc ≈ πτ =̂ 45 Schwingungen . (7.32)

Das stimmt mit Abb. 7.18c und e qualitativ überein.4

Der Kohärenzzeit Δtc entspricht bei der fortlaufenden
Welle die Kohärenzlänge

Δxc = cΔtc . (7.33)

Man kann sie verhältnismäßig leicht mit einem Michel-
son-Interferometer bestimmen. Wenn die Arme des Inter-
ferometers auf genau gleiche Länge eingestellt sind, sieht

4 Zur quantitativen Definition der zeitlichen Kohärenz einer quasi-
monochromatischen Welle berechnet man die normierte Autokorre-
lationsfunktion

C(t′) =
E(t)E∗(t+ t′)

E(t)E∗(t)
.

E(t) ist die komplexe Amplitude der Welle. Die zeitliche Mittelung
erfolgt über eine lange Zeit T 
 Δtc. Offenbar ist C(0) = 1. Δtc ist
die Zeit, in der |C(t)| auf 1/e abgefallen ist. Es zeigt sich, dass |C|
identisch ist mit der Größe V, die wir in (7.35) definieren werden.

Tabelle 7.1 Typische Werte für die Kohärenzlänge von Lichtquellen

Lichtquelle Δxc
Weißlicht einige µm

Hg-Bogenlampe einige mm

Spektrallampe einige cm

Laser einige 100m

man die Interferenzstreifen optimal, weil bei der Überla-
gerung der beiden Teilwellen stets Bereiche gleicher Phase
zusammentreffen. Die Interferenzstreifen verschwinden,
wenn man in Abb. 7.14 den Spiegel S1 um ±Δxc ver-
schiebt. Messergebnisse sind in Abb. 7.19 gezeigt. In
Tab. 7.1 findet man typische Werte für die Kohärenzlän-
gen einiger Lichtquellen. Auch das weiße Licht hat noch
eine Kohärenzlänge. Definiert man hier die Bandbreite
durch den Bereich, in dem die Empfindlichkeit des Au-
ges V(λ) ≥ 5% vom Maximalwert ist, erhält man mit
Abb. 3.22, (7.33) und (7.29)

Δν

ν0
=

Δλ

λ0
≈ 200 nm

600 nm
=

1
3

Δxc =
c

Δν
≈ 3c

ν0
= 3λ0 .

(7.34)

ν0 und λ0 sind mittlere Werte der Frequenz bzw.
der Wellenlänge. Man kann also mit dem Michelson-
Interferometer oder mit anderen interferometrischen Vor-
richtungen auch „Weißlicht-Interferenzen“ beobachten,
eine gute Methode, die Lichtwege auf gleiche Länge ein-
zustellen.

Δxc gibt direkt die longitudinale Kohärenz desWellenfel-
des an. Die transversale Kohärenz der Wellen bedeutet,
wie weit zwei quer zur Ausbreitungsrichtung liegende
Punkte noch auf der gleichen Wellenfront liegen können.
Auch diese Größe ist durch Δtc und Δxc gegeben: Wenn
beim Youngschen Experiment (Abb. 7.6) der Gangun-
terschied zwischen den interferierenden Wellen G ≥ Δxc
wird, verschwinden die Interferenzstreifen. Die Breite des
Bereichs in der Beobachtungsebene, in demman die Strei-
fen sieht, entspricht der transversalen Kohärenz.

Diese longitudinale und transversale Kohärenz des Wel-
lenfeldes kann man wunderschön beobachten, wenn man
auf ruhigemWasser mit einem Boot in eine Zone mit vom
Wind erregten Kapillarwellen gerät. Man sieht deutlich,
über welche Strecke die Phase der Wellen in Ausbrei-
tungsrichtung erhalten bleibt und wie weit quer zu dieser
Richtung die Wellenfronten reichen.

Teilweise Kohärenz, Visibilität. Es ist klar, dass beim
Überschreiten des Kohärenzbereichs die Interferenzstrei-
fen nicht plötzlich verschwinden: Der Kontrast zwi-
schen maximaler und minimaler Intensität, Imax und Imin,
nimmt allmählich ab. AlsMaß für die Qualität der Streifen
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Abbildung 7.20 Messung
der räumlichen Kohärenz mit
dem „Optischen Stethoskop“
(Gedankenexperiment) Q1

P1

P2

Q2

Bildschirm

definiert man die Sichtbarkeit, auch Visibilität genannt,
folgendermaßen:

V =
Imax − Imin

Imax + Imin
. (7.35)

Imax und Imin sind die Intensitäten in zwei nebeneinander
liegenden hellen und dunklen Interferenzstreifen. V = 1
bedeutet Imin = 0, V = 0 bedeutet Imin = Imax, also kei-
nerlei Interferenzstreifen.

Wir können damit eine quantitative Definition der Ko-
härenz vornehmen. Wir machen uns zunächst klar, dass
Kohärenz eine Eigenschaft des Strahlungsfeldes ist, und
eine Frage der Korrelationen innerhalb dieses Feldes. Ist
die Phase am Punkt r zur Zeit t bekannt, kann man ver-
suchen, die Phase am Ort r′ zur Zeit t′ vorherzusagen.
Trifft diese Vorhersage genau zu, ist dasWellenfeld an den
beiden Raum-Zeitpunkten vollständig kohärent. Trifft sie
mit gleicher Wahrscheinlichkeit das falsche wie das rich-
tige Vorzeichen der Phase, ist es inkohärent. Dazwischen
liegt das Gebiet der teilweisen Kohärenz. Eine praktische
Methode, die Kohärenz des Wellenfeldes zu messen, ist
die Beobachtung von Interferenzstreifen. Zumindest im
Gedankenexperiment kann man die räumliche Kohärenz
eines beliebigen Wellenfeldes mit dem in Abb. 7.20 ge-
zeigten Optischen Stethoskop5 messen: Es besteht aus

l1
l2

b d

b
2–

d
2–

γ
A

C

DB

l

−

Abbildung 7.21 Zur Ableitung der Kohärenzbedingung (7.36)

5 Nach S.G. Lipson, H. S. Lipson und D. S. Tannhauser, „Optik“,
Springer-Verlag (1997).

zwei Ein-Moden-Lichtwellenleitern gleicher Länge. Die
beiden zusammengeführten Enden dienen als Punktquel-
len in einem Youngschen Interferenz-Experiment. Bei
vollständiger Kohärenz ist V = 1 und bei Inkohärenz ist
V = 0. Bei teilweiser Kohärenz kann man die Visibilität
der Streifen als quantitatives Maß für den Kohärenzgrad
verwenden.

Ausgedehnte Lichtquellen, Kohärenzbedingung

Jede Lichtquelle hat eine räumliche Ausdehnung, und
gewöhnlich emittieren die Atome in der Lichtquelle ihr
Licht ganz unabhängig voneinander. Man nennt eine
solche Lichtquelle inkohärent, denn es gibt keine Pha-
senbeziehung zwischen den von verschiedenen Punkten
der Quelle abgestrahlten Wellen. Wie wir gleich sehen
werden, ist dennoch das Strahlungsfeld der Lichtquelle
in einem begrenzten Winkelbereich kohärent. Qualitativ
kann man sich das mit Abb. 7.21 klarmachen. Das von A
ausgehende Licht der Wellenlänge λ ist an den Punkten
C und D zweifellos kohärent und gleichphasig, denn die
Strecken AC und AD sind gleich lang. Die Lichtwege von
B nach C und D seien l1 und l2. Wir berechnen die Diffe-
renz l1 − l2.

l21 = l2 +
(
b+ d
2

)2

, l22 = l2 +
(
b− d
2

)2

,

l21 − l22 = 4
bd
4

→ (l1 + l2)(l1 − l2) = bd .

Nun ist l1 + l2 ≈ 2l, wenn l groß gegen b und d ist. Es
folgt l1 − l2 = bd/2l. Auch das von B nach C undD laufen-
de Licht ist noch annähernd gleichphasig, falls (l1 − l2) <
λ/2 ist. Jeder Punkt zwischen C und D wird von jedem
Punkt der Quelle mit annähernd gleichphasigen Wellen
erreicht,wenn

l1 − l2 =
bd
2l

<
λ

2
→ b <

lλ
d

ist. Manchmal ist es praktisch, von dem in Abb. 7.21
eingezeichneten Winkel γ ≈ d/l auszugehen. Die Kohä-
renzbedingung ist also

b <
lλ
d

oder γ <
λ

b
. (7.36)

Obgleich die Lichtemission von A und B und von den an-
deren Quellpunkten nicht korreliert ist, entsteht zwischen
C und D ein kohärentes Strahlungsfeld. Gleichung (7.36)
ist ein leicht anwendbares Kriterium dafür, ob eine aus-
gedehnte Lichtquelle näherungsweise als Punktquelle be-
trachtet werden kann oder nicht.
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Abbildung 7.22 Interferenzversuch mit ausgedehnter Lichtquelle. In a und b
sind die Längen l und l ′ stark verkleinert dargestellt

Wir untersuchen nun den Vorgang quantitativ. Das wird
etwas mühsam, lohnt sich aber, schon wegen der An-
wendungen in der Astronomie, die wir anschließend be-
sprechen. In Abb. 7.22a ist nochmals der Versuchsaufbau
des Youngschen Experiments (Abb. 7.6) gezeigt, anstelle
der Punktlichtquelle Q0 diesmal mit einer flächenhaften
Lichtquelle. Außerdem ist hinter der Blende mit den bei-
den kleinen Öffnungen eine Linse angebracht. Sie bildet
die Lichtquelle auf die Bildebene ab wie Abb. 7.22b zeigt,
und bewirkt, dass die Beugungsscheibchen, die sich in

Abb. 7.6c nur teilweise überlappen, genau zur Deckung
kommen.

Zur Vereinfachung nehmen wir zunächst an, die Öff-
nungen seien sehr klein und die Lichtquelle sei mono-
chromatisch. Dann erzeugt der Punkt A der Quelle in
der Bildebene ein Interferenzbild, dessen Intensitätsver-
teilung nach (7.13), (7.10) und (7.14) durch

I(z′) = 2I1(1+ cos δ)

mit δ =
2π

λ
G =

2π

λ
d sin ϑ ≈ 2πd

λl′
z′

(7.37)

gegeben ist. (Wir verwenden hier und im Folgenden die
Bezeichnungen von Abb. 7.22.) Diese Intensitätsvertei-
lung ist in Abb. 7.22c als ausgezogene Linie dargestellt.
Die Interferenzstreifen sind um das bei z′ = 0 liegen-
de Maximum nullter Ordnung symmetrisch angeordnet.
Das gleiche Streifenmuster entsteht durch Wellen, die
von den über oder unter A liegenden Punkten ausgehen.
Das von dem Punkt (z1, 0) ausgehende Licht erzeugt die
in Abb. 7.22c gestrichelt eingezeichnete Intensitätsvertei-
lung. Sie ist um das bei z′1 liegende Bild des Punkts (z1, 0)
zentriert, denn dort liegt das Maximum nullter Ordnung:
Infolge der optischen Abbildung sind die optischen Weg-
längen z1Q1z′1 und z1Q2z′1 gleich. Entsprechend liegen die
Interferenzstreifen, die von anderen Punkten erzeugt wer-
den. So gehört die gepunktete Linie in Abb. 7.22c zu dem
von z2 = −z1 ausgehenden Licht. Die resultierende Inten-
sitätsverteilung ist nach (7.37) gegeben durch

I(z′) = K
+b′/2∫

−b′/2

[
1+ cos

2πd
λl′

(
z′ − z′1

)]
dz′1 . (7.38)

K ist eine Konstante. Die Integration ergibt

I(z′) = Kb′ + K
λl′

πd
sin

πb′d
λl′

cos
2πd
λl′

z′ . (7.39)

Die Intensität oszilliert um den Mittelwert I = Kb′. Wir
schreiben (7.39)

I(z′) = I
(
1+

sin β

β
cos δ

)
,

mit β =
πd
λl′

b′ =
πd
λl

b .

(7.40)

β ist also proportional zur Breite b der Lichtquelle, und
die Funktion sin β/β (ausgezogene Kurve in Abb. 7.23a,
vgl. auch Abb. 4.14) bestimmt die Kontraste im Interfe-
renzbild. Die Maxima und die Minima der Intensität sind

Imax = I
(
1+

∣∣∣∣ sin β

β

∣∣∣∣
)
, Imin = I

(
1−

∣∣∣∣ sin β

β

∣∣∣∣
)
.
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Abbildung 7.23 a Die Funktionen sin β/β (ausgezogen) und2J1(β)/β (ge-
strichelt ), b Visibilität derInterferenzstreifen, nach (7.41) und (7.43)
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Abbildung 7.24 Intensität in der Bildebene in Abb. 7.22bei verschiedenen
Werten von β, monochromatisches Licht und sehr kleine Blendenöffnungen vor-
ausgesetzt

Daraus folgt für die in (7.35) definierte Visibilität

V =

∣∣∣∣ sin β

β

∣∣∣∣ mit β =
πbd
lλ

. (7.41)

Diese Funktion ist in Abb. 7.23b durch die ausgezogene
Kurve dargestellt. In Abb. 7.24 sieht man I(z′) für einige
Werte von β. Die Interferenzstreifen verschwinden zum

a

b

λ

d
–l

z

z

β = 2 , b = 2d  
 

π lλ

β = π, b =  d  
 

lλ

Abbildung 7.25 Zur Entstehung der Interferenzbilder mit V = 0,64 und V =
0 in Abb. 7.24

ersten Mal für β = π, also wenn

b =
lλ
d

(7.42)

ist, erscheinen dann aber wieder, wobei im Bereich
β = π . . . 2π Vorzeichenumkehr erfolgt: Bei z′ = 0 liegt
nun ein Minimum der Intensität. Wie dieses Verhal-
ten zustandekommt, kann man sich mit Abb. 7.25 klar-
machen. Abbildung 7.25a zeigt die (1 + cos δ)-Kurven,
die bei Abb. 7.24b zum Interferenzbild beitragen (vgl.
Abb. 7.22c). Das Maximum der Intensität liegt bei z′ = 0,
das Minimum bei δ = π, also bei z′ = λl′/2d. Die Visi-
bilität V = 0 wird bei β = ±π erreicht, weil dann das
Interferenzmaximum nullter Ordnung vom einen Rand
der Quelle mit dem Interferenzmaximum erster Ord-
nung vom anderen Rand zusammenfällt. Dann ist, wie
Abb. 7.25b zeigt, die z′-Achse gleichmäßigmit (1+ cos δ)-
Kurven belegt, und die Summation ergibt einen konstan-
ten Wert. Wird nun die Lichtquelle nochmals verbreitert,
bevölkern die neu hinzugekommenen Kurven das Gebiet
um z′ = λl′/2d, d. h. es entsteht nun dort das Interferenz-
Maximum, und das Minimum liegt bei z′ = 0.

(7.42) zeigt, dass die „Kohärenzbedingung“ (7.36) angibt,
wie weit die Lichtquelle verbreitert werden kann, bis die
Streifen zum ersten Mal verschwinden. Die Nebenmaxi-
ma der Visibilitätskurve werden nicht berücksichtigt.

Wir hatten vorausgesetzt, dass die Öffnungen Q1 und
Q2 sehr klein seien, so dass man hinter der Blende von
zwei Kugelwellen ausgehen kann. Bei größeren Öffnun-
gen mit dem Durchmesser D erhält man in der Bildebene
zwei Beugungsscheibchen, deren Radius nach (6.42) ρ =
1,22λl/D ist. Sie liegen Dank der Linse genau aufeinan-
der. Die mittlere Intensität I entspricht dann der Intensi-
tätsverteilung in einem Beugungsscheibchen, auf die wir
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in Kap. 8 zurückkommen werden. Sie ist in Abb. 7.26 als
gestrichelte Linie angegeben. Abbildung 7.26a zeigt die
Interferenzstreifen nach (7.40), wobei V = 0,5 angenom-
men wurde. Wird außerdem die Bandbreite des Lichts
vergrößert, fällt die Visibilität der Streifen entsprechend
der abnehmenden transversalen Kohärenz mit zuneh-
mender Ordnung der Interferenzstreifen ab (Abb. 7.26b).
In jedem Fall gilt: Je größer der Abstand zwischen den
Öffnungen, desto mehr rücken die Streifen zusammen;
je größer der Durchmesser der Öffnungen, desto kleiner
wird der Radius des Beugungsscheibchens.

In der Praxis hat man es oft mit kreisförmigen Licht-
quellen zu tun. Dann wird die Berechnung der Visibilität
etwas schwieriger, das Ergebnis ist aber sehr ähnlich. Statt
(7.41) erhält man

V(β) =

∣∣∣∣2J1(β)

β

∣∣∣∣ mit β =
2πRd
lλ

. (7.43)

J1(β) ist die Besselfunktion erster Ordnung, auf die wir
bereits in Bd. III/17 bei der Berechnung des Magnetfelds
in einem zylindrischen Hohlraum-Resonator gestoßen
sind (Bd. III, Abb. 17.28). R ist der Radius der Lichtquel-
le. Die Funktionen 2J1(β)/β und V(β) sind in Abb. 7.23
gestrichelt eingetragen. Die erste Nullstelle der Bessel-
funktion J1(β) liegt bei β = 3,83 = 1,22π, also bei

2Rd
lλ

= 1,22 . (7.44)

Bei kreisförmigen Lichtquellen lautet demnach die Kohä-
renzbedingung (7.36)

R < 0,61
λl
d

oder γ < 0,61
λ

R
. (7.45)

Interferometrische Methoden in der Astronomie

Bekanntlich erscheinen Fixsterne auch im Teleskop als
punktförmige Objekte, d. h. sie werden in der Brenne-
bene des Teleskopobjektivs als ein Beugungsscheibchen
abgebildet, dessen Radius vom Durchmesser des Ob-
jektivs abhängt. Der Winkeldurchmesser des Sterns, ϑ =
2R/l (Abb. 7.27a), ist viel kleiner als das durch (6.57) ge-
gebene Auflösungsvermögen des Teleskops. Im Prinzip
könnte man trotzdem, gestützt auf (7.44), Sterndurchmes-
ser interferometrisch bestimmen, indem man vor einem
Teleskop im variablen Abstand d zwei Öffnungen an-
bringt. Das Bild des Sterns in der Brennebene ist dann
ein Beugungsscheibchen mit größerem Radius, entspre-
chend dem kleineren Durchmesser der Öffnungen Q1

a

b

I(z )

I(z )
z

z

Abbildung 7.26 Intensitäten bei größeren Blendenöffnungen, a mit mono-
chromatischem Licht, b mit quasimonochromatischem Licht
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Abbildung 7.27 Stellar-Interferometrie. a Zur Definition des Winkeldurch-
messers, bMichelsons Stellar-Interferometer. Die Pfeile hinter Q1 und Q2 zeigen
die Aufweitung des Strahls infolge der Beugung an den Öffnungen. Alle Winkel
sind in den Zeichnungen maßlos übertrieben

und Q2. Auf dem Scheibchen erscheinen Interferenzstrei-
fen, undman kann die Visibilität der Streifen als Funktion
von dmessen (Gl. (7.43)). Die Streifen verschwinden nach
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(7.44) bei

d = 1,22
λl
2R

= 1,22
λ

ϑ
. (7.46)

Auf diese Weise kann man den Winkeldurchmesser des
Sterns bestimmen. Kennt man die Entfernung l, ist R in
Metern angebbar.

Bei näherer Betrachtung scheint das jedoch kaum prakti-
kabel: Die nächsten Fixsterne liegen in einer Entfernung
von ca. 10 Lj ≈ 1017 m. Hätten sie einen Durchmesser wie
die Sonne (2R ≈ 109 m), müsste bei λ ≈ 0,5µm

d = 1,22
lλ
2R

= 0,6
1017 · 10−6

109
m = 60m

sein. So große Fernrohre sind nicht realisierbar.Außerdem
würden die Interferenzstreifen soweit zusammenrücken,
dass sie nicht mehr auflösbar wären. Dennoch gelingt es,
Sterndurchmesser interferometrisch zu bestimmen. Vor
dem Instrument in Abb. 7.27a werden, wie in Abb. 7.27b
gezeigt, vier Spiegel angebracht. S1 und S2 sind verschieb-
bar, d. h. der Abstand d ist veränderlich. Das auf S1 und S2
fallende Licht wird über S3 bzw. S4 in das Fernrohr gelei-
tet. Die Strecken S1S3A′ und S2S4A′ müssen genau gleich
lang sein. Der große Trick: Für die Visibilität ist d maß-
geblich, für den Streifenabstand jedoch d′, der Abstand
zwischen S3 und S4. Dies werden wir sogleich beweisen.

Um die Zeichnung in Abb. 7.27b zu vereinfachen, neh-
men wir an, dass der in Abb. 7.27a von A kommende
Strahl parallel zur optischenAchse verläuft. Dann erzeugt
das von A kommende Licht ein System von Interferenz-
streifen, bei dem der Streifen nullter Ordnung bei A′ auf
der optischen Achse liegt (ϑ′

0(A) = 0); der Interferenz-
streifen 1. Ordnung entsteht nach (7.15) unter demWinkel
ϑ′
1(A) = λ/d′. Für das unter dem Winkel ϑ einfallende

Licht von B liegt der Interferenzstreifen nullter Ordnung
unter demWinkel ϑ′

0(B) bei B
′. Dieser Winkel ist dadurch

gegeben, dass die über das Spiegelsystem führenden op-
tischen Weglängen von B nach B′ genau gleich lang sind.
Es muss also in Abb. 7.27b G−G′ = 0 sein: ϑd = ϑ′

0(B)d
′.

Daraus folgt

ϑ′
0(B) =

d
d′

ϑ .

Bei einem rechteckigen Stern würde das erste Minimum
der Visibilität entstehen, wenn ϑ′

0(B) = ϑ′
1(A) ist (vgl. den

Kommentar zu Abb. 7.22c):

d
d′

ϑ =
λ

d′
→ d =

λ

ϑ
. (7.47)

Da die Sterne rund sind, ist diese Gleichung durch (7.46)
zu ersetzen. Jedenfalls ist die Einstellung des Instruments
für V = 0 unabhängig von d′. Man kann also d′ so klein
machen, dass die Interferenzstreifen weit genug ausein-
ander liegen, und d so groß, wie es die mechanische

Stabilität des Aufbaus erlaubt. Dem sind allerdings Gren-
zen gesetzt: Die „genaue“ Gleichheit von S1S3A′ und
S2S4A′ erfordert, dass die Spiegelpositionen innerhalb
eines kleinen Bruchteils einerWellenlänge konstant gehal-
ten werden können; sonst werden die Interferenzstreifen
verwischt. Auch werden die Messungen leicht durch Tur-
bulenzen in der Atmosphäre gestört, die die Laufzeiten
des Lichts von A und B nach S1 und S2 beeinflussen.

Das Prinzip der Stellar-Interferometrie wurde schon
von Fizeau vorgeschlagen. Die erste Bestimmung eines
Fixstern-Durchmessers gelang Michelson 1920 mit einem
Instrument, bei dem d bis auf 6m gebracht werden konn-
te, und an einem Objekt, bei dem man aufgrund von
Helligkeit und Farbe einen großen Durchmesser erwar-
tete. Das war die Beteigeuze, ein sehr heller, rötlicher
Stern im Orion, im Hertzsprung-Russel-Diagramm (Bd. I,
Abb. 1.4) als Riesenstern eingestuft. Die Interferenzstrei-
fen verschwanden bei d = 301 cm. Daraus ergab sich mit
(7.46) ein Winkeldurchmesser von ϑ = 0,23µrad = 0,05
Bogensekunden. Die parallaktisch bestimmte Entfernung
der Beteigeuze ist l = 1,7 · 1018 m. Daraus ergibt sich ein
Durchmesser von 3,9 · 1011 m, 280 mal größer als der
Durchmesser der Sonne.

Damit war erwiesen, wie groß Riesensterne tatsächlich
sind. Bei anderen Sterntypen versagt die Methode, denn d
lässt sich nicht mehr wesentlich vergrößern. Dennoch hat
sie in der Astronomie guteDienste geleistet, besonders bei
der Auffindung und Vermessung von Doppelsternsyste-
men, die mit dem Teleskop allein nicht aufgelöst werden
konnten.

Korrelations-Interferometrie. Machen wir uns klar, dass
mit dem optischen Stellar-Interferometer im Prinzip nur
die Korrelation der Phasen der auf S1 und S2 fallenden
Wellen gemessen wird. Nun haben wir schon in Abb. 7.18
gesehen, dass in einem quasimonochromatischenWellen-
zug die Amplitude annähernd konstant ist, solange die
Phase der Welle annähernd stabil bleibt. Phase und Am-
plitude zeigen in Abb. 7.18 dieselbe Korrelation. Man
kann vermuten, dass dies generell gilt. Dann könnte man
die schwierige Messung der Phasen in Michelsons Stellar-
Interferometer durch Intensitätsmessungen ersetzen.

Diese Vermutung wird durch die (keineswegs einfache)
Theorie bestätigt: Misst man an zwei Punkten, die von-
einander den Abstand d haben, die Intensitäten, so sind
deren Schwankungen um ihre Mittelwerte in der gleichen
Weise miteinander korreliert, wie die Phasen des Sternen-
lichts.

Auf diesem Grundgedanken basiert die von R.Hanbury-
Brown (1916–2002) und R.Q. Twiss (1920–2005) entwi-
ckelte Korrelations-Interferometrie. Die Anlage ist sche-
matisch inAbb. 7.28 gezeigt. Das Licht des Sterns wirdmit
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Abbildung 7.28 Korrelations-Interferometrie nach Hanbury-Brown und Twiss

zwei Parabolspiegeln auf die Photomultiplier PM1 und
PM2 fokussiert. Die Spiegel sind auf Schienen montiert.
Sie können zur Variation von d gegeneinander verscho-
ben werden. Die Verzögerungsleitung, ein Koaxialkabel
geeigneter Länge, kompensiert die Laufzeit des Lichts
auf der Strecke a. Im Korrelator werden die Abweichun-
gen ΔI1 und ΔI2 von den Mittelwerten I1 und I2 heraus-
gefiltert, miteinander multipliziert und zeitlich gemittelt.
Haben ΔI1 und ΔI2 überwiegend gleiche Vorzeichen, er-
hält man am Ausgang ein Gleichstromsignal. Die funk-
tionale Abhängigkeit des Signals von d und ϑ = 2R/l ist
wie bei der optischen Interferometrie durch (7.43) gege-
ben. Die Genauigkeit, mit der die Längen der Leitungen
von PM1 und PM2 zum Korrelator mit den Sollwerten
übereinstimmen müssen, ist nun nicht mehr durch die
Lichtwellenlängen, sondern nur durch die Kohärenzzeit
gegeben, in der Praxis sogar nur durch die Zeitkonstanten
der Signalverarbeitung.Daher kannman ohne Probleme d
bis auf einige hundert Meter vergrößern; auch stören nun
atmosphärische Turbulenzen nicht mehr die Messung.
Man kannWinkeldurchmesser bis 0,0005 Bogensekunden
messen und gewinnt einen Faktor 100 gegenüber Michel-
sons Stellar-Interferometer!

7.3 Vielstrahlinterferenz

Im ersten Abschnitt haben wir die Interferenz von zwei
kohärenten Wellenzügen betrachtet. Es gibt aber auch
Situationen, bei denen sich viele kohärente Wellen über-
lagern. Schon bei den im ersten Abschnitt behandelten
Interferenzerscheinungen an planparallelen Platten hat

man es eigentlich mit Vielstrahlinterferenz zu tun; nur im
Fall geringer Reflektivität der Oberflächen kann man die
Mehrfachreflexionen vernachlässigen, wie wir es getan
hatten. Bei der nun folgenden Diskussion der Vielstrahl-
Interferenz beschränken wir uns auf einige Beispiele,
die physikalisch besonders interessant und technisch von
großer Bedeutung sind.

Dielektrische Spiegel

Abbildung 7.29 zeigt eine Glasplatte, auf der viele λ/4-
Schichten aus transparenten Dielektrika aufgedampft
sind. Dabei wurde abwechselnd ein Material mit relativ
hohen und ein Material mit niedrigen Brechungsindex
verwendet. Das einfallende Licht trifft zuerst auf eine
Schicht mit hohem Brechungsindex. Das hat zur Folge,
dass nur an der Fläche (1) ein Phasensprung um π statt-
findet, nicht aber an der Fläche (2), denn dort erfolgt die
Reflexion am optisch dünneren Medium. Die an (1) und
(2) reflektierten Wellen löschen sich daher nicht gegen-
seitig aus, wie bei der reflexvermindernden Schicht in
Abb. 7.13. Beide Wellen sind gegenüber dem einfallen-
den Licht um π phasenverschoben, und sie interferieren
miteinander konstruktiv. Das an den Schichten (3) und
(4) reflektierte Licht verlässt die Beschichtung mit der
Phasenverschiebung π + 2π, und so geht es fort: Alle
Teilwellen des reflektierten Lichts sind in Phase, sie ver-
stärken sich. Da die Absorption in den sehr dünnen trans-
parenten Schichten vernachlässigbar ist, kann man mit
entsprechend vielen Schichten ein sehr hohes Reflexions-
vermögen erreichen, bis zu R ≈ 0,999. Das funktioniert
natürlich nur in dem Wellenlängenbereich, auf den die
λ/4-Schichten abgestimmt sind, und nur bei senkrech-
tem Lichteinfall. Man kann auch dielektrische Spiegel für
einen vorgegebenen Einfallswinkel β herstellen, indem
man die Schichtdicken entsprechend wählt. Mit einem
sorgfältig hergestellten Silberspiegel erreicht man „nur“
R ≈ 0,98, das allerdings fast im ganzen sichtbaren und
infraroten Spektralbereich und weitgehend unabhängig
vom Einfallswinkel (Abb. 5.26).

Abbildung 7.29 Dielektrischer
Spiegel

TiO2 (n=2,2)
SiO2 (n=1,45)

(1)
(2)
(3)
(4)
(5)...
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Das Etalon: Eigenschaften und Anwendungen

Wir untersuchen die optischen Eigenschaften einer auf
beiden Seiten verspiegelten planparallelenGlasplatte. Die
Spiegel sollen eine hohe Reflektivität besitzen, aber noch
etwas transparent sein. Im Sprachgebrauch der Optik
nennt man eine solche Platte ein Etalon. Monochromati-
sches Licht mit derWellenlänge λ soll unter demWinkel β
auf die Platte fallen. Niemand wird sich wundern, dass
das Licht fast vollständig reflektiert wird. Dennoch: Bei
einer bestimmten Plattendicke wird alles Licht durchge-
lassen! Wie das zustande kommt, zeigt Abb. 7.30. Bei der
ersten Reflexion an der Oberseite der Platte ist die Am-
plitude der reflektierten Welle ρE0; nur ein kleiner Teil
der Welle wird mit der Amplitude τE0 durchgelassen.
ρ =

√
R und τ =

√
T sind die Reflexions -und Transmissi-

onskoeffizienten der Spiegel. An der Unterseite der Platte
wird von der Amplitude der Welle wiederum der Bruch-
teil ρ reflektiert und der Bruchteil τ durchgelassen. Also
tritt die Welle im ersten Durchgang an der Unterseite mit
der Amplitude τ2E0 = TE0 aus. Der größte Teil der Welle
wird reflektiert und zwar wird das Licht wegen der ho-
hen Reflektivität der Spiegel in der Platte noch sehr oft
hin und her reflektiert. Im zweiten Durchgang ist die Am-
plitude der durchgelassenen Welle E0τρ2τ = E0TR, beim
dritten E0TR2 und so fort. Der Gangunterschied, der sich
ergibt, wenn das Licht einmal im Etalon hin und her läuft,
ist nach (7.18)

G = 2dn cos β′ = 2d
√
n2 − sin2 β . (7.48)

Die entsprechende Phasendifferenz ist

δ = kG =
2πG

λ
=

G
c

ω , (7.49)

denn die Phasensprünge bei der Reflexion am optisch
dünneren Medium sind Null.6 Wenn nun die Bedingung

G = mλ bzw. δ = 2mπ (m = 1, 2, 3, . . .) (7.50)

Abbildung 7.30 Zur Wirkungs-
weise des Etalons

β

β
d

6 Die Formeln gelten auch, wenn die beiden Reflexionen am optisch
dichterenMedium stattfinden. Dann addieren sich die Phasensprün-
ge zu 2π. Bei metallischer Verspiegelung sind die Phasensprünge bei
der Reflexion nicht einfach 0 oder π. Das bewirkt, dass (7.48) und
(7.49) entsprechend modifiziert werden müssen. Das hat aber keine
tiefgreifenden Folgen.

erfüllt ist, interferieren alle Teilwellen konstruktiv, die
Amplitude der durchgelassenenWelle ist

Ed = E0T(1+ R+ R2 + . . .) = E0
T

1− R
.

Das bedeutet 100% Transmission, falls die Absorption
in den Spiegeln vernachlässigbar ist, denn dann ist (1 −
R) = T. Die reflektierte Welle wird durch Interferenz aus-
gelöscht: Die erste Teilwelle macht bei der Reflexion am
optisch dichteren Medium einen Phasensprung um π,
während alle anderen Teilwellen die Platte ohne Phasen-
sprung verlassen.

Für den Fall, dass G �= mλ bzw. δ �= 2mπ ist, kann man
die Intensität der durchgelassenenWelle leicht berechnen,
wenn man die komplexe Schreibweise verwendet. Die
elektrischen Feldstärken der durchgelassenen Teilwellen
sind

Ě(1)d = E0Teiωt , Ě(2)d = E0TRei(ωt+δ) ,

Ě(3)d = E0TR2ei(ωt+2δ) , . . .

Man erhält auch hier eine geometrische Reihe, die auf-
summiert werden kann:

Ěd(t) =
E0eiωtT
1− Reiδ

. (7.51)

Die Intensitäten der durchgelassenen und der einfallen-
den Welle, Id und I0, sind nach (4.16) proportional zu |Ě|2:

Id =
I0T2∣∣1− Reiδ

∣∣2 =
I0T2

1+ R2 − 2R cos δ
.

Man schreibt dies gewöhnlich mit cos δ = 1− 2 sin2 δ/2 in
folgender Form:

T(P) =
Id
I0

=
T2

(1− R)2 + 4R sin2(δ/2)

=
T2/(1− R)2

1+ F sin2(δ/2)
(7.52)

mit F =
4R

(1− R)2
. (7.53)

T(P) ist die Transmission der Platte, F der Kontrastfaktor.
Im Zähler von (7.52) steht der für δ = 2mπ erreichte Ma-
ximalwert von T(P):

T(P)
max =

T2

(1− R)2
. (7.54)

Wenn die Absorption des Lichts in den Spiegeln klein
ist, ist T ≈ (1 − R) und T(P)

max ≈ 1. Für diesen Fall ist in
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Abbildung 7.31 Transmission des Lichts durch das Etalon als Funktion der
Phasendifferenz δ (Airy-Funktion)

Abbildung 7.32 Die stehende Welle im Etalon

Abb. 7.31 T(P) als Funktion von δ aufgetragen. Bei hoher
Reflektivität der Spiegel ist nach (7.53) F groß, und die Be-
reiche, in denen Licht durchgelassen wird, sind schmal.
Ihre Halbwertsbreite ist gegeben durch 1+ F sin2(δ/2) =
2, also durch sin2(δ/2) = 1/F. Nun ist in der Nähe der
Maxima δ = 2mπ + ε und

sin2
δ

2
= sin2

2mπ + ε

2
= sin2

ε

2
≈ ε2

4
. (7.55)

Die Halbwertsbreite der Durchlassbereiche ist (Δδ)HWB =
2ε mit ε2/4 = 1/F. Damit erhält man

(Δδ)HWB =
4√
F
.

Das ist bei R ≈ 1 sehr klein gegen den Abstand zwischen
zwei benachbarten Maxima der Transmission. Dieser Ab-
stand ist nach (7.50) 2π, und es folgt

(Δδ)HWB

2π
=

2

π
√
F
=

1− R

π
√
R

≈ 1− R
π

. (7.56)

Bei einer dielektrischen Verspiegelung mit R = 0,99 er-
reicht man z. B. (Δδ)HWB/2π ≈ 1/300.

Mathematisch ist damit wohl alles geklärt; aber habenwir
auch physikalisch verstanden, wie trotz des hohen Refle-
xionsvermögens der Spiegel die Transmission der Platte
T(P) ≈ 1 sein kann? Machen wir uns klar, dass die Ampli-
tuden der in der Platte reflektierten Teilwellen immer um

βm

d

βm+1

Detektor

a

b

c

f

Abbildung 7.33 Fabry-Pérot-Interferometer. a Strahlengang, b und c Einsatz
des Instruments in der Spektrometrie. In b und c ist das Interferometer nur durch
zwei senkrechte Striche angedeutet

den Faktor ρ/τ größer sind als die der austretenden Wel-
len. Wenn G = mλ ist, entsteht durch die Überlagerung
der hin- und her reflektiertenWellen in der Platte eine ste-
hende Welle hoher Amplitude (Abb. 7.32). Die Amplitude
wächst so lange, bis die durch Einstrahlung zugeführte
Energie wieder herauskommt, und sei die Reflektivität
der Spiegel auch noch so hoch. Die beidseitig verspiegelte
planparallele Platte ist nichts anderes als ein Hohlraum-
Resonator für optische Frequenzen, der in einer sehr ho-
hen Oberschwingung angeregt wird!

Das Fabry-Pérot-Interferometer. Das von Charles Fa-
bry (1867–1945) und Alfred Pérot (1863–1925) erfundene
Interferometer besteht aus zwei einseitig verspiegelten
Glasplatten, die so montiert sind, dass sich die verspie-
gelten Flächen gegenüber stehen (Abb. 7.33a). Die Platten
sind etwas keilförmig geschliffen, damit die Reflexion an
den Außenseiten keine störenden Effekte verursacht. Die
Luftschicht zwischen den Spiegeln bildet ein Etalon, des-
sen Dicke beliebig gewählt werden kann. Auch ist Fein-
justierung möglich: Man kann den Gangunterschied G
durch Verschieben der Spiegelmit piezoelektrischen Stell-
elementen oder durch Veränderung der Luftdichte genau
kontrolliert kontinuierlich verändern. In Abb. 7.33b misst
der Detektor als Funktion von G die Transmission des
Interferometers mit Licht aus einer Punktquelle, die z. B.
durch die Ausgangsblende eines Monochromators reali-
siert sein kann. In Abb. 7.33c kann die Lichtquelle auch
ausgedehnt sein, z. B. eine Spektrallampe. Bei einer mo-
nochromatischen Lichtquelle wird das Licht nur durchge-
lassen und in der Brennebene der Linse fokussiert, wenn
es unter dem Winkel βm auf das Interferometer fällt, für
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G2 = mλ2

G1 = mλ1

G2 = (m+1)λ2

G1 = (m+1)λ1
G

G2 = mλ2

G1 = mλ1

G2 = (m−1)λ2

G1 = (m+1)λ1
G

a

b

Abbildung 7.34 Hinter dem Fabry-Pérot-Interferometer gemessene Intensität
als Funktion des Gangunterschieds G a für zwei nahe benachbarte Wellenlän-
gen, b für zwei Wellenlängen am Rande des freien Spektralbereichs

den G = 2d
√

n2 − sin2 βm = mλ ist. Es entsteht ein Ring-
systemmit den Radien Rm = f tan βm.

Die erste Anwendung fand das Instrument in der hoch-
auflösenden Spektrometrie. Wird ein Fabry-Pérot-Interfe-
rometer als zusätzliches Element in einen Spektralapparat
eingebaut, kann man erkennen, ob eine Spektrallinie aus
mehreren dicht beieinander liegenden Komponenten be-
steht und die Struktur der Spektrallinie ausmessen. In
Abb. 7.34a ist für zwei nahe benachbarte Wellenlängen λ1
und λ2 die hinter dem Interferometer gemessene Inten-
sität als Funktion von G aufgetragen. Die Maxima der
Transmission liegen bei G1 und G2. Die Halbwertsbreite
der Linien ist (ΔG)HWB = λ(2/π

√
F), denn nach (7.49) ist

dG = (λ/2π)dδ, und (Δδ)HWB ist durch (7.56) gegeben.
Die Linien gelten als auflösbar, wennG2 −G1 > (ΔG)HWB
ist. Nun ist G2 −G1 = m(λ2 − λ1) = mΔλ; es muss also

Δλ > (Δλ)min = (Δλ)HWB =
(ΔG)HWB

m

=
λ

m
2

π
√
F
≈ λ

m
(1− R)

π

(7.57)

sein. Das Auflösungsvermögen R definiert man wie in
(6.59):

R =
λ

(Δλ)min
= m

π
√
F

2
≈ m

π

(1− R)
. (7.58)

Bei etwas durchscheinend versilberten Platten ist R ≈
0,95 und π

√
F/2 ≈ 60. Mit d im Bereich von einigen cm

erreicht man große Werte von m und ein Auflösungsver-
mögen R = 106 − 107. Das reicht aus, um die Hyperfein-
struktur7 von Spektrallinien genau zu vermessen. Allein
schon damit hat das „Fabry-Pérot“ in der ersten Hälfte
des 20. Jahrhunderts einen wichtigen Beitrag zur Atom-
und Kernphysik geleistet.

Der freie Spektralbereich. Wie Abb. 7.34b zeigt, be-
steht noch ein zweites Problem bei der hochauflösenden
Spektroskopie: Wenn G2 und G′

1 zusammenfallen, gibt es
Konfusion. Damit die Wellenlängen eindeutig bestimmt
werden können, muss G2 < G′

1 sein, also

m(λ + Δλ) < (m+ 1)λ ,

Δλ <
λ

m
. (7.59)

Die konfusionsfreie Zone wird der freie Spektralbereich
(FSB) genannt. Der für die Messung von Wellenlängen-
differenzen nutzbare Bereich ist also

λ

m
2

π
√
F
< Δλ <

λ

m
. (7.60)

Der freie Spektralbereich ist auch unter anderen Gesichts-
punkten interessant: Bei einem vorgegebenen Wert von G
lässt ein Etalon nur Licht mit ganz bestimmten Wellen-
längen hindurch treten. Sie sind jeweils durch den FSB
voneinander getrennt. Auf der Wellenlängenskala muss

λ = G,
G
2
,
G
3
, . . .

G
m
, . . . (7.61)

sein (Abb. 7.35). Auf der Frequenzskala sind die Durch-
lassbereiche äquidistant verteilt:

ν =
c
λ
=

c
G
, 2

c
G
, 3

c
G
, . . .m

c
G
, . . . (7.62)

7 Die Hyperfeinstruktur (HFS) einer Spektrallinie entsteht, wenn
der Atomkern ein magnetisches Dipolmoment oder ein elektrisches
Quadrupolmoment besitzt, d. h. wenn der Kern magnetisch oder
nicht kugelrund ist. Außerdem muss der Atomkern einen Drehim-
puls (Kernspin) haben. DurchMessung derHFS konnten diese Kern-
momente quantitativ bestimmt werden. Große Meister auf diesem
Gebiet waren Hans Kopfermann (1895–1963), damals TH Berlin-
Charlottenburg, und Hermann Schüler (1894–1964), am Astrophysi-
kalischen Observatorium in Potsdam tätig. Bei der Interpretation der
HFS-Spektren tat sich Schülers Assistent Theodor Schmidt (1908–
1986) besonders hervor: Entdeckung des Kern-Quadrupolmoments,
Entdeckung der „Schmidt-Linien“ in der Systematik der magne-
tischen Kernmomente. Nach dem Krieg wirkte Kopfermann als
Physik-Professor in Göttingen und Heidelberg; er trug viel zumWie-
deraufbau der Physik in Deutschland bei. Schüler war ab 1950 Leiter
der Forschungsstelle für Spektroskopie der Max-Planck-Gesellschaft
in Hechingen. Schmidt wurde von den Russen mit einem Raketen-
Experten gleichenNamens verwechselt und in die Sowjet-Union ver-
schleppt. Nach seiner Rückkehr (1953) erhielt er eine Anstellung,
später eine ordentliche Professur an der Universität Freiburg/Breis-
gau.
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Abbildung 7.35 Durchlassbereiche des Etalon bei G = const als Funktion der
Wellenlänge und der Frequenz

Es gilt also für den freien Spektralbereich

(Δν)FSB =
c
G

. (7.63)

G/c ist die Zeit, die das Licht braucht, um einmal zwi-
schen den Spiegeln hin und her zu laufen. Wir berechnen
noch die Halbwertsbreite der Durchlassbereiche. Nach
(7.49) ist ν = cδ/2πG. Dann folgt mit (7.56)

(Δν)HWB ≈ c(1− R)
Gπ

. (7.64)

Das Verhältnis F = (Δν)FSB/(Δν)HWB = π
√
R/(1 − R)

wird als Finesse bezeichnet.

Interferenzfilter. Nach (7.61) liegen auf der Wellenlän-
genskala bei kleinen Werten von m die Durchlassbereiche
so weit auseinander, dass man mit gewöhnlichen Farbfil-
tern einen der Bereiche isolieren kann: Die Kombination
ergibt dann einen Wellenlängenfilter außerordentlicher
Trennschärfe.

Zur Herstellung eines solchen Interferenzfilters wird auf
eine Glasplatte als Träger ein dielektrischer Spiegel aufge-
dampft. Darauf kommt eine Schicht der Dicke λ/2 oder
mλ/2, wobei m eine kleine Zahl ist, und darauf nochmals
ein dielektrischer Spiegel. Die mittlere Schicht bildet das
Etalon. Mit der Dicke dieser Schicht und der Reflektivität
der Spiegel kann man die Halbwertsbreite des Durchlass-
bereichs einstellen. Sie ist in (7.57) angegeben. Die Form
der Durchlasskurve ist zunächst durch (7.52) gegeben;
durch eine raffiniertere Beschichtung kann man jedoch
erreichen, dass der Durchlassbereich annähernd rechte-
ckiges Profil hat.

7.4 Laser I: Der Laser-Resonator

Das Fabry-Pérot-Etalon hat noch einen weiteren und
sehr wesentlichen Beitrag zur Physik geleistet: Als Hohl-
raum-Resonator für optische Frequenzen ermöglicht es
das Funktionieren des Lasers. Zwischen die Spiegel des
Etalons wird ein aktives Material gebracht (Abb. 7.36).
Das ist ein Stoff, der in einem bestimmten Wellenlängen-
bereich Licht nicht absorbiert, sondern verstärkt. Jeder
Verstärker kann durch Rückkopplung in einen Oszilla-
tor verwandelt werden. Diese Rückkopplung besorgt der
durch die beiden Spiegel in Abb. 7.36 gebildete Laser-
Resonator. Ist in dieser Anordnung einmal eine auf der
Achse laufende Welle vorhanden, so wird sie verstärkt
und es entsteht zwischen den Spiegeln aufgrund des ho-
hen Q-Wertes des optischen Resonators eine stehende
Welle sehr hoher Amplitude. Nur einer der Spiegel muss
ein wenig transparent sein: Durch diesen tritt dann der
Laserstrahl als hochgradig kohärente Welle nach außen.

Wie das „aktive Material“ funktioniert, wird in Bd. V/2.4
erklärt werden. Gewöhnlich wirkt es nur in einem schma-
len Frequenzbereich verstärkend, im Bereich einer Spek-
trallinie. Dort ist die Verstärkung dann annähernd pro-
portional zur Intensität im Linienprofil (Abb. 7.37a). Da-
mit der Resonator anschwingt, muss die Verstärkung des
Lichts beim einmaligen Hin- und Herlaufen größer sein,
als die Verluste, d. h. die Intensität des Lichts muss ober-
halb der Laserschwelle liegen. In diesem Bereich können
mehrere Schwingungsmoden des Laser-Resonators lie-
gen, wie Abb. 7.37a zeigt. Ihr Abstand ist durch (7.63)
gegeben. Das abgestrahlte Laserlicht besteht aus meh-
reren, nahe beieinander liegenden Linien (Abb. 7.37b).
Will man eine einzelne Schwingungsmode isolieren, baut
man zwischen die Laserspiegel noch ein beidseitig ver-
spiegeltes Etalon als Interferenzfilter ein. Es bewirkt, dass
die Verstärkung des aktiven Mediums nur bei der durch
das Filter ausgewählten Frequenz zum tragen kommt

d

d

aktives Material

a

b

Abbildung 7.36 Zum Prinzip des Lasers. a Laserresonator mit ebenen Spie-
geln, b konfokale Anordnung mit Hohlspiegeln
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Abbildung 7.37 a Longitudinale Schwingungsmoden des Laserresonators
und Profil der Spektrallinie, b Intensitätsverteilung des Laserlichts

(Aufgabe 7.5). Einfacher ist es, den freien Spektralbereich
so groß zu machen, dass in dem verstärkten Frequenzbe-
reich nur eine Schwingungsmode liegt. Dazu muss man
nach (7.63) den Abstand zwischen den Spiegeln hinrei-
chend klein machen; das geht natürlich nach (7.64) auf
Kosten der Bandbreite und der Kohärenzlänge.

Die Bandbreite des Laserlichts ist nicht ohne weiteres
durch (7.64) gegeben. Diese Formel gilt nur bei vernach-
lässigbarer Absorption und für unendlich ausgedehnte
Spiegel. In der Anordnung vonAbb. 7.36a treten beträcht-
liche Verluste durch Beugung (Kap. 8) von Licht auf:
Bei jedem Durchgang schwappt ein Teil der Lichtwelle
über den Rand der Spiegel hinaus. Wesentlich günsti-
ger ist die in Abb. 7.36b gezeigte konfokale Anordnung,
in der zwei Hohlspiegel den Laserresonator bilden. Der
Krümmungsradius der Spiegel ist d, die Brennpunkte
beider Spiegel liegen also genau in der Mitte des Resona-
tors. Dann kann man (7.64) näherungsweise anwenden.
Ein Beispiel: Ein Helium-Neon-Laser (λ = 0,6328µm, ν ≈
0,5 · 1015 s−1)mit d = 1mundR = 0,98 hat eine Frequenz-
breite

Δν ≈ c(1− R)
π · 2d =

3 · 108
2π

· 0,02 ≈ 106 Hz . (7.65)

Die relative Frequenzbreite ist Δν/ν ≈ 2 · 10−9, die Kohä-
renzlänge ist Δxc = c/Δν ≈ 300m.

Anwendungsbeispiel: Anschluss des Laserlichts an
einen sekundären Längenstandard. Wie wir gesehen
haben, hängt der genaue Wert der Wellenlänge beim La-
ser vom Abstand d zwischen den Spiegeln ab. Für die
oben erwähnten präzisen Längenmessungenmit demMi-
chelson-Interferometer muss man aber die Wellenlänge
des Laserlichts genau kennen. Wie man das erreichen
kann, zeigt Abb. 7.38 am Beispiel eines Iod-stabilisierten
Helium-Neon-Lasers. Zwischen den Spiegeln S1 und S2
befindet sich eine Zelle, die das aktive Material enthält,

Abbildung 7.38 Iod-
stabilisierter He-Ne-Laser.
a Aufbau, b Intensität des La-
serlichts als Funktion von d

d

Stellelemente

a

b

S2

I2

S1

He/Ne

T

d

A

B

I

hier ein Gemisch von He und Ne, und eine zweite Zelle
mit Ioddampf. Durch Kühlen mit einem Peltier-Element
kann der Dampfdruck des Iods eingestellt werden. Bei-
de Zellen sind unter dem Brewsterwinkel mit Fenstern
versehen, so dass in der Zeichenebene linear polarisier-
tes Licht ohne Reflexionsverluste zwischen S1 und S2 hin
und her laufen kann. Der Laser ist so gebaut, dass nur
eine der longitudinalen Schwingungsmoden möglich ist.
Deren Wellenlänge kann mit Hilfe von piezoelektrischen
Stellelementen kontinuierlich verändert werden.

Das Absorptionsspektrum des I2-Moleküls weist eine
große Zahl von Linien auf, deren durch Messung der
Lichtfrequenz genau bestimmte Wellenlängen katalogi-
siert sind. Sie können als sekundärer Längenstandard
benutzt werden. Einige Linien liegen im Spektralbereich
des He-Ne-Lasers. Der Dampfdruck in der I2-Zelle wird
so gewählt, dass der Laser auch noch funktioniert, wenn
die Wellenlänge auf eine der Absorptionslinien des I2 ein-
gestellt ist. An die Stellelemente des Spiegels S1 wird nun
eine variable Gleichspannung gelegt. Die Intensität des
Laserlichts zeigt dann als Funktion der Spannung den in
Abb. 7.38b dargestellten Verlauf. Nun wird der Gleich-
spannung eine kleineWechselspannung überlagert. In der
Position A führt das zu einer Modulation der Laserleis-
tung mit der Frequenz der Wechselspannung; in der Posi-
tion B, genau imMaximumder Absorption, verschwindet
dagegen diese Modulation. Mit Hilfe eines Regelkreises
kann die Länge d auf diesen Wert eingestellt werden. Da
die Wellenlänge der Absorptionslinie genau bekannt ist
– sie hängt nur schwach und in bekannter Weise vom
Dampfdruck in der I2-Zelle ab – ist damit die Wellenlänge
des Laserlichts an den sekundären Längenstandard ange-
schlossen.
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7.1. Interferenzen gleicher Dicke. Um die Dicke einer
dünnen Folie zu bestimmen, wird eine ihrer Seiten zwi-
schen zwei rechteckige übereinander liegende ebeneGlas-
platten gelegt, so dass ein Luftkeil entsteht (Abb. 7.12a).
Dieser wird senkrecht von oben mit Licht einer Natrium-
dampflampe der Wellenlänge λ = 589nm beleuchtet. Im
reflektierten Licht siehtman 16 dunkle Interferenzstreifen.
Wie dick ist die Folie?

7.2. Interferometrie mit zwei Lichtstrahlen. Ein par-
allel gebündelter Lichtstrahl der Wellenlänge λ = 589nm
wird mittels eines Strahlteilers und zweier Spiegel aufge-
teilt in zwei parallele Lichtbündel, die zwei Kuvetten pas-
sieren. Danach werden die Lichtbündel in umgekehrter
Weise wieder zusammengeführt und mit einem Fernrohr
beobachtet. Man sieht das Streifenmuster einer Zwei-
strahlinterferenz. Die Kuvettenlänge beträgt L = 1m.

a) Anfangs seien beide Kuvetten mit Luft gefüllt. Wird
eine evakuiert, verschieben sich die Streifen um 469 Strei-
fenabstände. Welchen Brechungsindex erhält man für die
Luft?

Es wird die Temperatur T = 288K gemessen, der Druck
ist gleich dem Normaldruck. Welchen Brechungsindex
hat die Luft unter Normalbedingungen?

b) Beide Kuvetten werden in gegenläufiger Richtung von
Wasser durchströmt. Kehrt man die Strömungsrichtung
um, verschieben sich die Streifen um 0,17 Streifenbrei-
ten. Das erklärt man mit einer Mitbewegung des Lichts
durch die Wasserströmung, die zu einer Abweichung der
Lichtgeschwindigkeit von der Lichtgeschwindigkeit c/n
in ruhendem Wasser führt. Wie groß ist diese Differenz
(n = 1,33)?

Die Strömungsgeschwindigkeit des Wassers ist vW =
10m/s. Die Geschwindigkeitsänderung ist proportional
zu vW . Wie groß ist ihr Verhältnis zu vW, genannt Mitfüh-
rungskoeffizient (vgl. Bd. I, Aufgabe 14.5)? Erwartet man,
dass das gleiche Experiment mit Luft von Erfolg gekrönt
sein wird?

7.3. Strahlungscharakteristik zweier Antennen. Zwei
parallel zueinander ausgerichtete Stabantennen befinden
sich im seitlichen Abstand d voneinander. Die Verbin-
dungslinie zwischen ihren Mittelpunkten steht senkrecht
auf der Stabrichtung. Beide Antennen emittieren mit glei-
cher Leistung elektrische Dipolstrahlung der Wellenlän-
ge λ. Wie hängt die Intensität der Strahlung, die senkrecht
zur Stabrichtung in großer Entfernung beobachtet wird,
vom Emissionswinkel ϑ ab? Man betrachte folgende Spe-
zialfälle:

a) d = λ/2, beide Antennen werden gleichphasig erregt,

b) d = λ/4, beide Antennen werden gegenphasig erregt,

c) d = λ/2, zwischen den Antennenströmen besteht eine
Phasendifferenz π/2.

(Die Verbindungslinie von Antennenmitte zu Antennen-
mitte definiere den Winkel ϑ = 0.)

7.4. Reflexionsminderung. Eine an Luft grenzende re-
flexvermindernde Schicht (Abb. 7.13) besitzt die Bre-
chungsindizes n2 = 1,38 und n3 = 1,50. Rechnen Sie mit
(5.39) nach, dass der Reflexionskoeffizient der Schicht R ≈
1% ist. Hinweis: Addieren Sie die von den beiden Grenz-
flächen reflektierten Amplituden.

7.5. Ein-Moden-Laser. Zwischen zwei Laserspiegel
wird zurModenselektion, wie in Abschn. 7.4 beschrieben,
ein Pérot-Fabry-Etalon mit einem Auflösungsvermögen
R gesetzt. Die Frequenzbreite des Interferenzfilters soll
kleiner sein als der Frequenzabstand zweier axialer La-
sermoden. Welche Forderung ergibt sich daraus für R,
wenn der Abstand d der Laserspiegel 50 cm beträgt
(λ = 500nm)?

7.6. Lichtreflexion an einer dünnen Metallschicht.
a) Licht- oder Wärmestrahlung falle senkrecht auf eine
sehr dünne Metallschicht. Die Rechnungen im Anschluss
an (7.48) lassen sich in gleicher Weise mit einem kom-
plexen Brechungsindex ň = nR + inI durchführen, der in
(7.48) und (5.39) einzusetzen ist. Leiten Sie in Analogie zu
(7.51) die folgende Formel für die Amplitude der reflek-
tierten Welle für den Fall β = 0 her:

Ěr = Ě0

(
ρ̌ +

ρ̌′τ̌τ̌′eiδ

1− ρ̌2eiδ

)
= Ě0 ρ̌

1− eiδ

1− ρ̌2eiδ
, (7.66)

mit
δ = kǦ = 2dkň =

4πdň
λ

.

Die Größen ρ̌ und ρ̌′ sind die Reflexionskoeffizienten
für die Amplituden bei Reflexionen an der Vorder- und
Hinterseite der Schicht und τ̌ und τ̌′ sind die Trans-
missionskoeffizienten beim Eintritt der Strahlung in das
Material und beimWiederaustritt.

b) Untersuchen Sie diesen in doppeltem Sinne komplexen
Ausdruck numerisch für die folgenden vier Beispiele:

(1) λ = 20µm, nR = nI = 200, d = 2,66 nm,8

(2) λ = 20µm, nR = nI = 200, d = 10µm,
(3) λ = 600nm, nR ≈ 0, nR ≈ 4, d = 2,66nm (vgl. Aufga-

be 5.7) und
(4) λ = 600nm, nR ≈ 0, nR ≈ 4, d = 10µm.

8 Selbstverständlich ist eine solche Schicht nicht freitragend, sondern
sie befindet sich auf einem Träger, z. B. einer Glasscheibe. Dann geht
ein weiteres Medium in die Rechnung ein, eine Komplikation, von
der wir aus Gründen der Vereinfachung absehen.
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In welchen Fällen ist das Intensitätsverhältnis |Ěr/Ě0|2
fast eins, in welchem Fall klein? Warum funktioniert eine
Wärmeschutzverglasung?

7.7. FTIR-Spektrometer. Mit einem FTIR-Spektrome-
ter soll eine Materialprobe im reziproken Wellenbereich
bis hinauf zu 1/λ < 4000 cm−1 mit einer Auflösung
Δ(1/λ) = 4 cm−1 untersucht werden. Die Messzeit für
ein Spektrum sei t = 0,5 s.

a) Um welche Strecke muss der bewegliche Spiegel ins-
gesamt verschoben werden, wie viele Scanschritte sind
notwendig und wie groß ist die Spiegelverschiebung pro
Scanschritt?

b) Welchen Radius darf die Blende zwischen Quelle und
Interferometer höchstens haben, wenn die Brennweite

des abbildenden Spiegels hinter der Blende f = 15 cm
ist?

c) Wie lange darf eine Messung pro Scanschritt höchstens
dauern und wie groß ist die Spiegelgeschwindigkeit?

d) Welche Temperatur muss in der Quelle mindestens
herrschen, wenn das Maximum ihrer Emission in der Nä-
he der kleinsten untersuchtenWellenlänge liegen soll (vgl.
Bd. II, Abb. 7.5)?

e) In einem FTIR-Spektrometer werde der Spiegel schritt-
weise um eine halbe Wellenlänge der roten 633nm-Linie
des He/Ne-Lasers verschoben (von einer Intensitäts-
Nullstelle bis zur nächsten), bis die Gesamtverschie-
bung L erreicht ist. Bis zu welcher minimalen Wellenlän-
ge λmin lassen sich IR-Spektren aufnehmen?
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Dass das Licht sich nicht unbedingt nach den Re-
geln der geometrischen Optik geradlinig ausbrei-
tet, wurde schon am Anfang von Kap. 6 bei der
Lochkamera erwähnt. Wir wollen nun dieses Phäno-
men systematisch und quantitativ untersuchen. Im
ersten Abschnitt wird diskutiert, wie die Beugung
überhaupt zustande kommt, und worin der Un-
terschied zwischen der Nahfeld-(Fresnel-)Beugung
und der Fernfeld-(Fraunhofer-)Beugung besteht. Im
folgenden Abschnitt wird an einigen Beispielen die
Fraunhofer-Beugung berechnet; dabei wird auch das
Beugungsgitter, ein wichtiges optisches Bauelement,
ausführlich diskutiert. Bei der Fresnelschen Beu-
gung (Abschn. 8.3) beschränken wir uns auf die
Beschreibung der Fresnelschen Zonenkonstruktion
und zeigen, wie man damit das komplizierte Verhal-
ten der Fresnel-Beugung auf einfache Weise verste-
hen kann.

Am Schluss des Kapitels gehen wir noch auf zwei
Entwicklungen ein, die in den letzten Jahrzehnten in
der Optik große Bedeutung erlangt haben: auf die
Fourier-Optik und auf die Holografie. Beide Gebiete
stehen in engem Zusammenhang mit der Beugung.
Besonders interessant ist die Fourier-Optik. Sie eröff-
net ein ganz neues Verständnis der Bildentstehung.

8.1 Beugungsphänomene und
Beugungstheorien

Abweichungen von der geradlinigen Ausbreitung des
Lichts wurden zuerst von Grimaldi1 beobachtet und wis-
senschaftlich beschrieben. Er bezeichnete das Phänomen
als „diffractio“, ein Ausdruck, der bis heute in den meis-
ten Sprachen verwendet wird (engl. „diffraction“). Das
im Deutschen als Beugung bezeichnete Phänomen kann
auch mit Wasserwellen beobachtet werden; darüber wun-
dert sich aber niemand. Offensichtlich wäre eine Wellen-
ausbreitung, beschränkt auf den durch die gestrichelten
Linien in Abb. 8.1a begrenzten Bereich, mit dem Huy-
gensschen Prinzip nicht vereinbar. Abb. 8.1b zeigt, dass

1 Francesco Maria Grimaldi (1618–1663), Jesuitenpater und Physik-
professor in Bologna, beobachtete nicht nur die Aufweitung des
Lichtstrahls durch Beugung, sondern auch Strukturen, die man heu-
te als Fresnel-Beugung bezeichnet. Auch die spektrale Zerlegung des
Weißlichts mit einem Prisma wurde von ihm beschrieben. Sein Werk
„Physico-mathesis de lumine, coloribus et iride“ erschien erst nach
seinem Tode, im Jahr 1665.

a

b

Abbildung 8.1 Beugungserscheinungen im Wellentrog. a Spalt, Breite 
 λ,
b Hindernis, 5 mm Ø. λ = 1,5 cm

die Abmessungen des beugenden Objekts im Verhältnis
zur Wellenlänge eine maßgebliche Rolle spielen: Hinder-
nisse, die kleiner als die Wellenlänge sind, beeinflussen
das Wellenfeld fast überhaupt nicht. Die Ausbreitung von
Schallwellen (Wellenlänge λ ≈ 1m)wird durch einen ein-
zelnen Baum nicht behindert, während der Baum mit
Licht (λ ≈ 0,5µm) einen scharf begrenzten Schatten wirft.
Diese Schattenbildung war für Newton eines der Argu-
mente gegen die Wellentheorie des Lichts. In Wirklichkeit
treten gerade an der Grenze zwischen Licht und Schatten
markante Beugungsphänomene auf. Bei ausgedehnten
Lichtquellen werden sie durch Halbschatten-Effekte ver-
wischt. Hat man jedoch eine helle Punktlichtquelle zur
Verfügung, springen sie sofort ins Auge (Abb. 8.2). Man
erkennt auch an diesem Bild, dass die Berechnung von
Beugungsphänomenen keine ganz einfache Sache sein
wird.

In einer strengen Theorie der Beugung müsste man die
Wellengleichung (1.35) unter den jeweils vorgegebenen
Randbedingungen lösen und dabei auch die Reaktion
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Abbildung 8.2 Schatten eines Bleistifts, beleuchtet mit einer Xenon-
Hochdrucklampe

des beugenden Körpers berücksichtigen. Bei der Beu-
gung elektromagnetischer Wellen an einer Blende müsste
z. B. berücksichtigt werden, dass dort Elektronen sitzen,
die durch die einfallende Welle zu Schwingungen ange-
regt werden. Sie strahlen ihrerseits Wellen ab, die zum
Strahlungsfeld einen Beitrag leisten. Eine solche Theorie
ist äußerst kompliziert und auch heute nur ansatzweise
vorhanden. Glücklicherweise kann man jedoch in guter
Näherung die Beugung viel einfacher mit dem Huy-
gensschen Prinzip (Satz 5.1) behandeln. Allerdings muss
man das Prinzip in einem entscheidenden Punkt ergän-
zen, wie Fresnel2 erkannte: Man muss die Interferenzen

2 Augustin Jean Fresnel (1788–1827), französischer Straßenbauinge-
nieur im Staatsdienst. Sein erster Großauftrag war der Bau einer
Straße von Nyons (Provence) zu dem nach Italien führenden Col
de la Genèvre, der heutigen N94. Von dieser Tätigkeit fühlte er sich
nicht ausgefüllt und er begann in seiner Freizeit mit Studien über
die Natur des Lichts. Dabei entdeckte er die nach ihm benannten
Beugungserscheinungen und schloss daraus, dass die Lichtausbrei-
tung ein Wellenphänomen ist. Es gelang ihm, die Beugungsfigu-
ren mit selbstgebauten Apparaten genau zu vermessen und eine
Beugungstheorie zu entwickeln, die diese Phänomene quantita-
tiv beschreibt – ein messtechnisches Kunststück erster Klasse und
ein mathematisch-physikalisches Meisterwerk. Seiner wissenschaft-
lichen Tätigkeit kam zugute, dass er als Gegner Napoleons inhaftiert
wurde, seine Arbeiten aber dank der Fürsprache eines Vorgesetzten
fortführen konnte. Nach Napoleons Sturz gelang es ihm, Verbin-
dungen zu Wissenschaftlern in Paris aufzunehmen. Dort konnte er
seine Studien unter wesentlich besseren Bedingungen fortsetzen und
zum Abschluss bringen. 1818 konnte er die Pariser Gelehrtenwelt
von der Richtigkeit seiner Theorie überzeugen. Fortan war er als
Wissenschaftler hoch geachtet. Sein Geld verdiente er aber auch in
Paris als Straßenbauer: Er war für die Pflasterung der Hauptstadt
zuständig. Außerdem war er der Sekretär der für die Leuchttürme
an Frankreichs Küsten zuständigen Behörde. Sein gewaltiges Werk
(Licht als transversale Welle, Erklärung der Polarisation des Lichts,
Fresnelsche Formeln, Theorie der Doppelbrechung, Entdeckung der
zirkularen und der elliptischen Polarisation und anderes) entstand
also in seiner Freizeit, und in den wenigen Jahren, die er noch lebte.
Er starb an Tuberkulose.

der Huygensschen Elementarwellen mit einbeziehen. Das
Huygens-Fresnelsche Prinzip lautet:

Satz 8.1

Jeder Punkt einer Wellenfront kann als Ausgangs-
punkt einer Elementarwelle betrachtet werden. Die
Amplitude, die die Welle zu einem späteren Zeit-
punkt an einem beliebigen Raumpunkt hat, erhält
man durch Addition aller Elementarwellen unter
Berücksichtigung der Phasen, mit der sie an dem be-
treffenden Punkt ankommen.

Wir stellen die Diskussion der in Abb. 8.2 gezeigten
Phänomene bis ans Ende von Abschn. 8.3 zurück und
betrachten zunächst die Beugung von Wellen an einer
Öffnung in einer undurchsichtigen, dünnen ebenen Plat-
te. Abbildung 8.3 zeigt die Ergebnisse eines Experiments,
bei dem eine kreisförmige Blende von 1,03mm ∅ mit ei-
nem aufgeweiteten Laserstrahl (λ = 632,8 nm) beleuchtet
wurde. Der Strahl fällt als ebene Welle senkrecht auf die
Blendenebene. Um das Wellenfeld hinter der Blende zu
untersuchen, wurde bei den Abb. 8.3a–f hinter der Blende
eine Digitalkamera mit herausgeschraubter Optik aufge-
stellt. Das Licht fiel direkt auf den CCD-Chip, der sich
im variablen Abstand R hinter der Blende befand. Bei
Abb. 8.3g, h und i wurde in den angegebenen Abstän-
den ein weißer Bildschirm aufgestellt und abfotografiert.
Die Abbildungen 8.3a–f sind alle im gleichen Maßstab
gezeigt. Die Abb. 8.3g–i sind demgegenüber stark verklei-
nert.

Unmittelbar hinter der Blende sieht man eine im wesent-
lichen gleichmäßig beleuchtete Kreisfläche von 1mm ∅,
begrenzt durch den geometrisch-optischen Schatten der
Blende. Bei Vergrößerung des Abstands zeigt sich dann
eine komplizierte Beugungsfigur, ein System von konzen-
trischen Ringen, dessen Struktur stark vom Abstand R
abhängig ist. Das Zentrum des Systems ist bald dun-
kel, bald hell. Bei Abb. 8.3e ist das Zentrum zum letzten
Mal dunkel, danach bleibt es hell. In Abb. 8.3f erreicht
die Helligkeit ein Maximum. Von einer gewissen Entfer-
nung an, R ≈ 1,5m, stabilisiert sich die Beugungsfigur.
Im Zentrum liegt eine hell beleuchtete Fläche. Sie ist um-
geben von lichtschwachen Ringen; das Ringsystem reicht
weit nach außen, wie Abb. 8.4 zeigt. Dieses Bild ändert
sich dann nicht mehr; die Radien der Kreisfläche und
der Ringe nehmen jedoch proportional zum Abstand R
zu. In diesem Bereich spricht man von Fernfeld- oder
Fraunhofer-Beugung, währendman die bei kürzeren Ab-
ständen beobachteten variablen Phänomene als Nahfeld-
oder Fresnel-Beugung bezeichnet.
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Abbildung 8.3 Beugung an einer kreisförmigen Blende (1,03mm∅). Beleuchtung durch aufgeweiteten Laserstrahl. Der Abstand zwischen Blende und Beobach-
tungsebene ist jeweils angegeben. a–f Fresnel-Beugung, g–i Fraunhofer-Beugung

Abbildung 8.4 Fraunhofer-Beugung an einer Kreisblende, aufgenommen mit
langer Belichtungszeit. Die innersten dunklen Ringe sind durch die hohe Inten-
sität im Zentrum teilweise überstrahlt

Wie der Unterschied zwischen den beiden Beugungsty-
pen zustande kommt, zeigt Abb. 8.5. In der Blendenöff-
nung wird ein Koordinatensystem (x, y) eingeführt. Die
x-Achse liegt senkrecht zur Zeichenebene, die einfallende
Welle läuft in z-Richtung. Gezeigt ist ein Schnitt entlang
der (y, z)-Ebene. Da in Abb. 8.5a die einlaufende ebene
Welle senkrecht auf die Blendenöffnung fällt, starten die
von den Punkten der Blendenöffnung ausgehenden Ele-

mentarwellen alle mit der gleichen Phase. Die Phasen, mit
denen sie den Punkt P erreichen, sind durch die Längen
der Strecken r gegeben, von denen eine in Abb. 8.5a ein-
gezeichnet ist. Da es bei der Anwendung von Satz 8.1 nur
auf Phasendifferenzen ankommt, denken wir uns eine Ku-
gelfläche vomRadius r1 mit P als Zentrum. Sie soll gerade
durch den obersten Rand der Blendenöffnung führen. Die
Phasen, mit denen die Elementarwellen P erreichen, sind
dann allein durch die Längen der Strecken r2 gegeben. Sie
hängen in einigermaßen komplizierter Weise von x und
y, vom Winkel ϑ und von der Krümmung der Kugelflä-
che ab, also auch vom Abstand R. Das bewirkt, dass die
mit Satz 8.1 berechnete Feldstärke von ϑ und von R ab-
hängt, wie es bei der Fresnel-Beugung beobachtet wird
(Abb. 8.3a–f).

Eine zweite Konfiguration, in der Fresnel-Beugung auf-
tritt, ist in Abb. 8.5b gezeigt. Hier wird die Blende von
einer Punktlichtquelle beleuchtet, die so nahe an der Blen-
denöffnung steht, dass die Krümmung der Wellenfron-
ten der einlaufenden Kugelwelle berücksichtigt werden
muss. Das führt zu den aus Abb. 8.5a bekannten Kompli-
kationen, selbst wenn der Punkt P so weit von der Blende
entfernt ist, dass die Krümmung der in Abb. 8.5a einge-
führten Kugelfläche vernachlässigt werden kann.

Bei der Fraunhofer-Beugung wird die Blendenöffnung
mit ebenen Wellen beleuchtet. Auch ist der Punkt P so
weit von der Blende entfernt, dass man die eben ge-
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Abbildung 8.5 a, b Fresnel-Beugung, c Fraunhofer-Beugung

nannte Kugelfläche durch eine Ebene, den Kreisbogen
in Abb. 8.5a also durch eine Gerade ersetzen kann. Wie
Abb. 8.5c zeigt, ist nun die Berechnung der Phasendiffe-
renzen denkbar einfach. Die Länge der Strecke r2 ist eine
lineare Funktion von x und y. Diese Funktion, deren Ko-
effizienten allein vom Winkel ϑ abhängen, bestimmt die
Phasen,mit denen die Elementarwellen den Punkt P errei-
chen. Das Beugungsbild hat eine relativ einfache Struktur,
die nur von ϑ abhängt. Offensichtlich ist die Fraunhofer-
sche Beugung mathematisch viel leichter zu behandeln
als die Fresnelsche. Wir wenden uns dieser Aufgabe zu.
Glücklicherweise hat man es in Theorie und Praxis auch
meist mit Fraunhofer-Beugung zu tun.

8.2 Fraunhofer-Beugung

Von welchen Abständen an kann man bei einer Lochblen-
de mit Fraunhofer-Beugung3 rechnen? Wir berechnen mit
Abb. 8.6a die Sagitta s der einlaufendenWellenfront in der

3 Joseph Fraunhofer (1787–1826) stammte aus ärmlichen Verhältnis-
sen. Als vierzehnjähriger Glaserlehrling überlebte er als einziger den
Einsturz des Hauses seines Lehrmeisters und geriet dadurch in die

a

b

R1

Ds

R1 + s
Lichtquelle

R2

s

R
2 + s

Bildebene

Abbildung 8.6 Zur Ableitung von (8.1)

Blendenöffnung. Es ist

R2
1 +

D2

4
= (R1 + s)2 ≈ R2

1 + 2R1s → s ≈ D2

8R1
.

Wenn nun D2/R1 = λ ist, ist s ≈ λ/8, und die Wellen-
front ist nahezu eben. Zu dem gleichen Ergebnis kommt
man, wenn man die Sagitta des in Abb. 8.6b eingezeich-
neten Kreisbogens berechnet. Ein einfaches Kriterium für
die Fraunhofer-Beugung ist also

D2

R
< λ , oder

R
D

>
D
λ

. (8.1)

Hierbei ist D eine für die Blendenöffnung charakteristi-
sche Länge und R der kleinere von den beiden Abstän-
den R1 und R2. Der Vergleich mit Abb. 8.3 zeigt, dass das
Kriterium gut funktioniert. Wenn D = 1mm ist, braucht
man bei λ = 633 nm R � 1,5m, um das Kriterium zu er-
füllen.

Bei größeren Blenden wird die durch (8.1) gegebene Gren-
ze fürR raschweitaus größer als ein Labortisch.Man kann

Protektion des Kurfürsten Maximilian von Bayern. Er konnte eine
Schule besuchen und kam als Techniker in einen Betrieb, der op-
tische Geräte herstellte. Dieses Unternehmen brachte er mit seinen
Erfindungen zu Weltruhm. Die Wissenschaft verdankt ihm die Ent-
deckung der Fraunhofer-Linien (Bd. V/1), das Beugungsgitter und
die Theorie der Fernfeld-Beugung. – Es ist bemerkenswert, dass die
Wellentheorie des Lichts nach den halbvergessenen ersten Ansätzen
von Huygens durch drei Außenseiter wiederbelebt und ausgearbei-
tet wurde: Durch den Arzt Thomas Young, den Straßenbauingenieur
Fresnel und den Glaser und Techniker Fraunhofer.
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Abbildung 8.7 Praktische Realisierung der Fraunhofer-Beugung. Eingezeich-
net ist der Strahlengang ohne die Blende B

dennoch auch bei kurzen Abständen zwischen Lichtquel-
le und Bildebene Fraunhofer-Beugung erhalten, indem
man Linsen in den Strahlengang einbaut, wie Abb. 8.7
zeigt. Mit Hilfe der Linsen kann man die Krümmung der
Wellenfronten in der Blendenebene aufheben. In der Pra-
xis benutzt man gewöhnlich diese Anordnung.

Fraunhofer-Beugung an einer beliebig geformten
ebenen Blende

In einer Ebene aus undurchsichtigem Material befinde
sich die in Abb. 8.8 gezeigte Öffnung. Wir führen ein
Koordinatensystem (x, y, z) ein, dessen Nullpunkt an ei-
ner beliebigen Stelle innerhalb der Blendenöffnung liegen
soll. Von links laufen in z-Richtung ebene Wellen ein.
Der Übersichtlichkeit halber beschränken wir uns auf den
Fall, dass die einlaufende Welle senkrecht auf die Blen-
denöffnung fällt. Rechts liegt parallel zur (x, y)-Ebene die
Beobachtungsebene. Ihr AbstandR von der Blendenebene
soll so groß sein, dass (8.1) erfüllt ist.

Die von den einzelnen Flächenelementen dA = dxdy aus-
gehenden Elementarwellen setzen wir als Kugelwellen
an, wobei wir die komplexe Schreibweise (4.10) verwen-
den, denn das erweist sich hier als äußerst vorteilhaft.
Dort, wo die z-Achse auf die Beobachtungsebene stößt,
sind bei Fraunhofer-Beugung alle Elementarwellen in
Phase und man erhält maximal konstruktive Interferenz.
Das Flächenelement dA in Abb. 8.8a leistet dort zur Feld-
stärke den Beitrag

dĚ0 =
E0
R
ei(kR−ωt) dxdy . (8.2)

E0 ist ein konstanter Amplitudenfaktor. Die Feldstärke im
Zentrum des Beugungsbilds erhält man durch Integration
über die Fläche der Öffnung:

Ě0(R, t) =
∫
A

dĚ0(x, y) =
E0A
R

ei(kR−ωt) . (8.3)

Die Intensität ist proportional zu |Ě|2, also ist I0 ∝ E2
0 /R

2.
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Abbildung 8.8 Fraunhofer-Beugung an einer beliebig geformten Blende, zur
Ableitung von (8.6). a k parallel zur z-Achse, b k zeigt auf einen weit entfernt
liegenden Punkt P , c die in b blau getönte Fläche in Draufsicht

Nun berechnen wir die Feldstärke an einem beliebigen
Punkt P in der Beobachtungsebene, auf den die Wellen-
vektoren k in Abb. 8.8b gerichtet sind. Der Beitrag des
Flächenelements dxdy ist

dĚ =
E0
r
ei(kr−ωt) dxdy . (8.4)

Wie die Abb. 8.8b und c zeigen, hängt r von x und y ab,
und es ist r(x, y) = r0 +G(x, y), mit r0 = R/ cos ϑ. Im Fak-
tor vor der Exponentialfunktion können wir die kleinen
Unterschiede zwischen r, r0 und R vernachlässigen und
E0/r = E0/R setzen. Bei der Phasemüssenwir jedoch den
Gangunterschied G(x, y) berücksichtigen: Wir setzen al-
so kr = kr0 + kG(x, y). Der von x und y abhängige zweite
Term ist nach Abb. 8.8c

kG(x, y) = kρ(x, y) cos α = −kρ cos γ

= −k · ρ = −(kxx+ kyy) ,

denn es ist γ = 180◦ − α. Der Vektor ρ = (x, y, 0) ist in
Abb. 8.8b definiert. Wir erhalten

dĚ(k, x, y, t) =
E0
R
ei[kr0−ωt−(kxx+kyy)] dxdy . (8.5)
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Bei der Integration ziehen wir die von x und y unabhän-
gigen Größen vor das Integral, was dank der komplexen
Schreibweise ohne weiteres möglich ist:

Ě(k, t) =
E0
R
ei(kr0−ωt)

∫ ∫
A

e−i(kxx+kyy) dxdy , (8.6)

mit r0 = R/ cos ϑ. Zur Berechnung der Fraunhofer-
Beugung genügt es, das auf der rechten Seite stehende
Beugungsintegral zu lösen.

Beugung am Spalt

Ein Spalt wird in der Anordnung von Abb. 8.7 mit ebenen
Wellen beleuchtet (Abb. 8.9a). Die Höhe des Spalts senk-
recht zur Zeichenebene (in y-Richtung) soll groß gegen die
Spaltbreite D sein. Man erhält dann das in Abb. 8.9b ge-
zeigte Beugungsbild. Unter demWinkel ϑ = 0 beobachtet
man das Intensitätsmaximumder maximal konstruktiven
Interferenz, das Beugungmaximum nullter Ordnung. Al-
le von der Spaltöffnung ausgehenden Elementarwellen
sind hier in Phase. Rechts und links daneben, also entlang
der x′-Achse in Abb. 8.9a, folgen noch weitere Maxima
mit abfallender Intensität. Sie sind durch dunkle Streifen
voneinander getrennt. Wie kommt dieses Beugungsbild
zustande?

Es ist nützlich, diese Frage zunächst qualitativ zu beant-
worten. Das Beugungsbild legt nahe, die Beugung nur
in der (x, z)-Ebene zu betrachten. Wir bezeichnen den in
dieser Ebene gemessenen Winkel zwischen der Ausbrei-
tungsrichtung der Welle und der z-Achse mit ϑ. Abbil-
dung 8.9c zeigt den Fall, dass die von den Rändern des
Spalts herrührenden Elementarwellen einen Gangunter-
schied G = λ aufweisen. Die von der Mitte des Spalts
(Punkt B) ausgehenden Elementarwellen haben dann ge-
genüber Punkt A den Gangunterschied G = λ/2, sie lö-
schen sich mit den von A ausgehenden Wellen durch de-
struktive Interferenz vollständig aus.Wie man sieht, kann
man auf der gesamten Strecke zwischen A und C stets
zwei Punkte A′ und B′ finden, von denen in Richtung ϑ
maximal destruktiv interferierende Elementarwellen aus-
gehen. Der erste dunkle Streifen im Beugungsbild des
Spalts liegt also dort, wo

G = D sinϑ = λ , sin ϑ =
λ

D
(8.7)

ist. Damit haben wir bereits das wichtigste Ergebnis: Das
Beugungsbild ist um so breiter, je schmäler der Spalt ist.
Ein numerisches Beispiel: Beleuchtet man einen 0,1mm

a

b

c

x

z

G = Dsinϑ = λ

f

D

x

x

z

ϑ

ϑ

D

C

B

A

B

A

Abbildung 8.9 Beugung am Spalt. a Versuchsanordnung, b Beugungsbild,
c Zur Ableitung von (8.7)

breiten Spalt mit Licht der Wellenlänge λ = 500 nm, so
ist sinϑ ≈ ϑ = 5mrad. Ist in Abb. 8.7 f2 = 1m, hat das
zentraleMaximum imBild der linienförmigen Lichtquelle
eine Breite von 10mm!

Die weitere Struktur des Beugungsbildes kann man auf
die gleicheWeise erklären: Dunkle Streifen liegen dort, wo

sin ϑ =
mλ

D
(m = 1, 2, 3, . . .) (8.8)

ist. Die Maxima höherer Ordnung liegen dazwischen,
also ungefähr bei sinϑ = (m + 1/2)λ/D. Auch ihre ab-
nehmende Intensität ist leicht zu erklären: Beim ersten
Nebenmaximum beispielsweise löschen sich 2/3 der Ele-
mentarwellen mit dem in Abb. 8.9c gezeigten Mechanis-
mus aus, und auch das restliche Drittel interferiert nicht
maximal konstruktiv. Die Amplitude sinkt schätzungs-
weise auf 1/5, die Intensität auf 1/25, also auf ca. 4% des
Maximalwerts bei ϑ = 0.

Zur quantitativen Berechnung der Intensität: Die Glei-
chung (8.7) zeigt, dass man sich in der Tat bei der Be-
rechnung des Beugungsbildes auf die (x, z)-Ebene und in
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(2J1(x)/x)2
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Abbildung 8.10 Intensitätsverteilungen bei der Fraunhofer-Beugung am
Spalt (ausgezogene Kurve) und an einer kreisförmigen Öffnung (gestrichelt )

(8.6) auf die x-Koordinate beschränken kann. Wegen der
großen Ausdehnung des Spalts in y-Richtung rücken die
Beugungsmaxima so dicht zusammen, dass sie nichtmehr
aufgelöst werden können. Man kann bei der y-Koordinate
von der geometrisch-optischen Abbildung der Lichtquel-
le ausgehen. Mit −ikxx = u und der Euler-Formel erhält
man

+D/2∫

−D/2

e−ikxx dx = − 1
ikx

−ikxD/2∫

ikxD/2

eu du

=
eikxD/2 − e−ikxD/2

ikx
=

2
kx

sin
kxD
2

.

(8.9)

Mit (8.6) und mit kx = k sin ϑ = (2π/λ) sinϑ folgt

Ě(ϑ, t) =
E0D
R

ei(kr0−ωt) sin β

β

mit β =
kxD
2

=
πD sinϑ

λ
.

(8.10)

Die Intensität ist proportional zu |Ě|2. Durch Quadrieren
der schon in Abb. 4.14 gezeigten Funktion sin β/β erhält
man die in Abb. 8.10 gezeigte Intensitätsverteilung (aus-
gezogene Kurve):

I(ϑ) = I0

(
sin β

β

)2

. (8.11)

a

b

y

x

z

ϑ ϑy

ϑx

Abbildung 8.11 Beugung an einer rechteckigen Öffnung

I0 ist die unter demWinkel ϑ = 0 gemessene Intensität im
Beugungsbild.DieNullstellen liegenbei β = π, 2π, 3π, . . . ,
also bei

sin ϑ = m
λ

D
, (8.12)

wie in (8.8) aufgrund der qualitativen Betrachtung ange-
geben.

Wir berechnen noch die Halbwertsbreite des zentralen
Maximums. Die Funktion sin β/β erreicht bei β = 1,39
den Wert 1/

√
2. Die Intensität I(ϑ) = I0/2 erreicht man

also bei

sin ϑ = ±1,39λ

πD
= ±0,44

λ

D(
Δϑ
)
HWB = 0,88

λ

D
≈ λ

D
.

(8.13)

Beugung an einer rechteckigen Öffnung. Für eine recht-
eckige Öffnung mit der Breite b und der Höhe h müssen
wir (8.6) über x und über y integrieren (Abb. 8.11a). Dieses
Integral zerfällt hier in das Produkt von zwei Integra-
len des Typs (8.9), und wir können das Ergebnis sofort
hinschreiben. Die Projektion des Winkels ϑ auf die (x, z)-
Ebene nennen wir ϑx, und die auf die (y, z)-Ebene nennen
wir ϑy. Mit

β =
kxb
2

=
πb sinϑx

λ
, β′ =

kyh
2

=
πh sinϑy

λ
,
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erhält man

I(ϑx, ϑy) = I0

(
sin β

β

)2 ( sin β′

β′

)2

. (8.14)

Das Beugungsbild ist in Abb. 8.11 gezeigt. Das zentrale
Maximum ist nahezu rechteckig. Es ist breit in der Rich-
tung, in der die Blendenöffnung schmal ist, und schmal,
in der sie breit ist.

Beugung an einer kreisförmigen Öffnung

Bei einer kreisförmigen Blende mit dem Durchmesser D
führt man in der Blendenebene Polarkoordinaten (ρ, ϕ)
ein. Nach entsprechender Umformung von (8.6) erhält
man die Intensitätsverteilung4

I(ϑ) = I0

(
2J1(β)

β

)2

, β =
πD sinϑ

λ
. (8.15)

ϑ ist der in Abb. 8.8 definierte Winkel, und J1(β) ist die
Bessel-Funktion erster Ordnung, die uns schon in Bd. III,
Abb. 17.28 und (7.43) begegnet ist. Die gestrichelte Kur-
ve in Abb. 8.10 zeigt die Intensitätsverteilung (siehe auch
Abb. 8.3 und Abb. 8.4). Das zentrale Maximum ist sehr
stark ausgeprägt. Es enthält 84% des Strahlungsflusses.
Die erste Nullstelle der Bessel-Funktion J1(β) liegt bei
β = 3,83 = 1,22π. Der erste dunkle Ring erscheint daher
unter dem Winkel

sin ϑ = 1,22
λ

D
. (8.16)

Auf dieser Formel beruhte (6.42) und die Berechnung
des Auflösungsvermögens von optischen Instrumenten in
Kap. 6. Zur Begründung:Wennman in Abb. 8.7 die Linsen
dicht an die Blende schiebt, erhält man nach (6.36) eine
Linse mit der Brennweite f = f1f2/(f1 + f2) und eine in
der Linsenebene liegende Aperturblende mit dem Durch-
messer D. Diese Linse bildet einen im Abstand g = f1
vor der Linse liegenden Punkt auf einen hinter der Lin-
se im Abstand b = f2 liegenden Punkt ab. Dabei entsteht

4 Zur Durchführung der Rechnung siehe z. B. Eugene Hecht,
„Optics“, Addison-Wesley (2002). Eine deutsche Übersetzung ist er-
schienen als De Gruyter-Studienbuch im Oldenbourg Verlag 2009.
Dort findet man auch Näheres zu den Besselfunktionen.

ρ

a

ρ

b

Abbildung 8.12 Zum Rayleigh-Kriterium: Intensitätsverteilung in der Beob-
achtungsebene. a Bei gleicher Helligkeit der beiden Objekte, b bei unterschied-
licher Helligkeit I1/I2 = 3 : 1)

in der Bildebene ein Beugungsbild mit der durch (8.15)
gegebenen Intensitätsverteilung. Der „Radius des Beu-
gungsscheibchens“ ist der Radius ρ des ersten dunklen
Rings. Mit sin ϑ ≈ ϑ ≈ ρ/b folgt aus (8.16) die schon in
(6.42) angegebene Formel

ρ = 1,22
λb
D

. (8.17)

Nach dem von Lord Rayleigh aufgestellten Kriterium
betrachtet man zwei Punkte als auflösbar, wenn die Zen-
tren der Beugungsscheibchen voneinander mindestens
den Abstand ρ haben. Wie Abb. 8.12 zeigt, funktioniert
das Kriterium nur, wenn die Objekte ungefähr gleich hell
sind.

Beugung am Doppelspalt

Die Blende bestehe nun aus zwei parallelen Spalten
der Breite D, die voneinander den Abstand d haben
(Abb. 8.13a). Bei der Berechnung des Beugungsbilds be-
schränken wir uns wieder auf die (x, z)-Ebene. Diesmal
muss über beide Spalte integriert werden. Statt (8.9) erhält
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sinβ  2
β( )

sinϑ

Abbildung 8.13 Beugung am Doppelspalt

man mit β = kxD/2

+D/2∫

−D/2

e−ikxx dx+
d+D/2∫

d−D/2

e−ikxx dx

=
2
kx

sin β − 1
ikx

(
e−ikxde−iβ − e−ikxdeiβ

)

Ě(t) =
E0D
R

ei(kr0−ωt) sin β

β

(
1+ e−ikxd

)

= 2D
sin β

β
cos

kxd
2

e−ikxd/2 .

(8.18)

Die Intensität berechnet man wie in (8.11):

I(ϑ) = I0

(
sin β

β

)2

cos2
δ

2
, (8.19)

mit β =
kD sin ϑ

2
=

πD sinϑ

λ
,

δ = kd sin ϑ =
2πd sinϑ

λ
.

(8.20)

δ ist die Phasendifferenz, mit der die Elementarwellen,
die von den Zentren der beiden Spalte ausgehen, die
Beobachtungsebene erreichen. Also beobachtet man die
in Abb. 8.13b gezeigte Intensitätsverteilung. Das Beu-
gungsbild des Einzelspalts ist moduliert mit der schon in
(7.13) berechneten Funktion, die die Interferenz der von

zwei gleich starken Punktquellen ausgehenden Wellen
beschreibt. Die Maxima liegen dort, wo der Gangunter-
schied G = mλ bzw. die Phasendifferenz δ = 2mπ ist.
Dann ist sin ϑ = mλ/d.

Das Beugungsgitter

Wir betrachten nun N Spalte der Breite D, die vonein-
ander den Abstand g haben (Abb. 8.14a). Eine solche
Anordnung nennt man ein Beugungsgitter; g ist die Git-
terkonstante. Jeder einzelne Spalt beugt das Licht gemäß
(8.10). Wir betrachten die Elementarwellen, die bei mo-
nochromatischer Beleuchtung von den Zentren zweier
benachbarter Spalte ausgehen. Unter dem Winkel ϑ ent-
steht der Gangunterschied und die Phasendifferenz

G = g sinϑ , δ = kg sin ϑ . (8.21)

Konstruktive Interferenz erhält man, wenn

δ = 2πm , G =
δ

k
= g sinϑm = mλ

(m = 0,±1,±2, . . .)
(8.22)

a

b

G= gsinϑ

D=g/6

D=g/2

g

D

ϑ

I/I(0)

δ

g

g

g

m=1
2π 

m=2
4π

m=3
6π

m=0
0

Abbildung 8.14 Beugungsgitter.aGrundprinzip,b Intensitätsverteilung nach
(8.23). Gestrichelt : (sin β/β)2
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ist. Dann sind nämlich die von entsprechenden Punkten
der N Spalte ausgehenden Elementarwellen sämtlich in
Phase. Da es sich um Vielstrahlinterferenzen handelt, soll-
ten die Maxima scharf sein. Das bestätigt die folgende
Rechnung: Die elektrische Feldstärke in der unter dem
Winkel ϑ laufenden Welle ergibt sich wie in (8.18):

Ě(t) =
E0D
R

sin β

β

[
1+ e−iδ + e−i2δ + . . .

+ e−i(N−1)δ
]
ei(kr0−ωt) .

Wie man eine solche Reihe aufsummiert, habenwir in Ab-
schn. 4.3 gesehen. Man erhält analog zu (4.45)

Ě(t) =
E0D
R

sin β

β

sin(Nδ/2)
sin(δ/2)

ei(kr0−ωt−(N−1)δ/2) ,

und für die Intensität

I(ϑ) = I0

(
sin β

β

)2 ( sin(Nδ/2)
sin δ/2

)2

,

mit β =
kD sinϑ

2
.

(8.23)

In Abb. 8.14b ist die Intensität als Funktion von δ =
2πg sinϑ/λ gezeigt. Die Funktion sin2(Nδ/2)/ sin2(δ/2)
entspricht dem Quadrat der Amplitudenfunktion a(t) in
(4.23) und Abb. 4.9. Sie ist hier multipliziert mit der Funk-
tion (sin β/β)2, die vomWinkel ϑ und von der Spaltbreite
abhängt. Die mit zunehmendem N immer schärfer wer-
denden Hauptmaxima liegen bei den in (8.22) angegebe-
nenWerten ϑm. Zwischen demm-ten und dem (m+ 1)-ten
Hauptmaximum liegen (N − 1) Nullstellen und (N − 2)
Nebenmaxima. Die Nullstellen liegen bei

g sinϑ =

(
m+

1
N

)
λ,
(
m+

2
N

)
λ, . . .

(
m+

(N− 1)
N

)
λ .

(8.24)

Wenn die ebene Welle unter einem Winkel ϑ0 auf die Git-
terebene fällt (Abb. 8.15), ist (8.21) zu ersetzen durch

G = g(sinϑ − sin ϑ0) , δ = kg(sinϑ − sin ϑ0) ,
(8.25)

denn nun muss auch die Phasendifferenz berücksichtigt
werden, mit der die von der Gitterebene ausgehenden
Elementarwellen starten. Auch ist nun

β =
kD(sin ϑ − sin ϑ0)

2
=

πD(sinϑ − sinϑ0)

λ
.

(8.26)

Abbildung 8.15 Beugungsgit-
ter bei schrägem Lichteinfall

G = g sinϑ

g
ϑ

ϑ

ϑ0

ϑ0

G = g sinϑ0

Das Beugungsgitter ist neben Linse, Prisma und Spiegel
ein wichtiges Bauelement in der Optik. Man benutzt es in
erster Linie zur spektralen Zerlegung von Licht. Wir be-
rechnen das Auflösungsvermögen. In der m-ten Ordnung
fällt das Hauptmaximum der Wellenlängen λ2 in das ers-
te Minimum neben dem zur Wellenlänge λ1 gehörenden
Hauptmaximum, wenn

mλ2 =

(
m+

1
N

)
λ1 → λ2 − λ1 = (Δλ)min =

λ1

Nm

ist. Das wie in (6.59) definierte Auflösungsvermögen ist
also

R =
λ

(Δλ)min
= mN . (8.27)

Es ist umso größer, je größer die Gesamtzahl der Spalte
ist, und je höher die Ordnung, in der das Licht beobach-
tet wird. Die Gitterkonstanten spielen nur insofern eine
Rolle, als die Gesamtbreite des Gitters Ng ist, und natür-
lich muss das Gitter vollständig ausgeleuchtet sein, damit
(8.27) gilt. Für den freien Spektralbereich erhält man

(Δλ)FSB <
λ

m
. (8.28)

Das ist die gleiche Formel wie (7.59). Da aber das Beu-
gungsgitter stets in niedriger Ordnung betrieben wird
(m ≤ 5), ist sein FSB weitaus größer als der des Fabry-
Pérot-Interferometers.

Das Verhältnis D/g ist dafür maßgeblich, wie die ein-
fallende Strahlung nutzbar gemacht werden kann. Nur
der BruchteilD/gwird vomGitter durchgelassen. Außer-
dem bestimmt das Verhältnis D/g, wo die Nullstellen der
Funktion (sin β/β)2 relativ zu den Beugungsmaxima lie-
gen. In Abb. 8.14b ist das an zwei Beispielen gezeigt. Bei
D = g/2 („Mäandergitter“) werden alle Maxima gerader
Ordnung ausgelöscht, und die Intensität in den Maxima
n ≥ 3 ist sehr klein. Bei D = g/6 ist die Intensität gleich-
mäßiger auf die Maxima verteilt, es wird aber nur 1/6 der
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Strahlung durchgelassen. In jedem Fall sind bei dem in
Abb. 8.14 gezeigten Beugungsgitter die Maxima höherer
Ordnung lichtschwach.

Das Beugungsgitter wurde um 1820 von Fraunhofer er-
funden. Seitdemwurde die Technik zu seiner Herstellung
ständig verfeinert. Einen großen Fortschritt erzielte der
amerikanische Physiker H.A. Rowland (1848–1901), der
ein Verfahren entwickelte, mit dem er sehr genau bis zu
8000 Furchen pro cm in eine Glasplatte einritzen konn-
te. In der dritten Ordnung erreicht man dann mit einem
10 cm breiten Gitter ein Auflösungsvermögen R ≈ 2,4 ·
105, was an den Bereich der Fabry-Pérot-Interferometrie
heranreicht.

Die Furchen können auch in eine verspiegelte Platte ein-
geritzt werden. Man erhält dann statt des Transmissions-
gitters, das wir bisher diskutierten, ein Reflexionsgitter
(Abb. 8.16a). Die Formeln (8.23) bis (8.28) bleiben gültig,
jedoch ist in (8.25) ϑ0 nun der Reflexionswinkel, gemessen
gegen die Normale auf der Gitterebene. Für die Funkti-
on (sin β/β)2 ist die BreiteD der einzelnen Spiegelflächen
maßgeblich.

Die bisher betrachteten Gitter haben sämtlich den großen
Nachteil, dass der größte Teil der Intensität in das Maxi-
mum nullter Ordnung fällt und damit für die Spektrome-
trie verloren geht (Abb. 8.16a). Bei einem Reflexionsgitter
kann man das vermeiden, indem man ein Stufengitter,
auch Echellette-Gitter genannt, verwendet. In Abb. 8.16b
ist ein solches Gitter gezeigt. n̂ ist der Normalenvektor
auf der Gitterebene, n̂′ der auf der reflektierenden Fläche.
An den Phasendifferenzen nach (8.25) und an der Lage
der Beugungsmaxima bezüglich der Gitterebene ändert
sich nichts. Das Hauptmaximum der Funktion (sin β/β)2

liegt nun aber in der Richtung der Reflexion an den ein-
zelnen Streifen. Man kann den Winkel γ so bemessen,
dass es ungefähr in die Richtung eines der Beugungs-
maxima m-ter Ordnung fällt. Man kann sich nun sogar
erlauben,D/g ≈ 1 zu machen. Dann wird nahezu der ge-
samte einfallende Strahlungsfluss auf dieses Maximum
konzentriert und nutzbar gemacht. Wählt man λ ≈ γg =
γD, fällt der reflektierte Strahl in die Nähe des Beugungs-
maximums 2. Ordnung. Die übrigen Beugungsmaxima
werden weitgehend ausgelöscht.

Auf diesem Prinzip beruht der in Abb. 8.17 gezeigte Git-
termonochromator. Die Funktion der beiden Linsen von
Abb. 8.7 wird hier von einem Hohlspiegel übernommen.
Dadurch und durch die Verwendung eines Reflexionsgit-
ters vermeidet man die Absorption des Lichts im Glas,
und der Monochromator kann auch im ultravioletten und
infraroten Spektralbereich eingesetzt werden. Die Wel-
lenlänge des selektierten Lichts kann durch Drehen des
Gitters verändert werden.

Beugungsgitter von der in Abb. 8.16b gezeigten Art kön-
nen in ausgezeichneter Qualität mit einem Diamant-
Werkzeug auf einer dick mit Aluminium bedampften

a

b

ϑ0

ϑ0

γ

γ

m=0

m=1

m
=

−1m
=
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=1m
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0
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ϑ0ϑ0
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Abbildung 8.16 Reflexionsgitter. a Einfaches Reflexionsgitter, b Stufengitter

Drehachse

Abbildung 8.17 Gittermonochromator

Glasplatte hergestellt werden. Abdrucke solcher Gitter
in Plastik-Material sind nicht ganz so gut, aber wesent-
lich billiger. Im Übrigen kann man den Dispersioneffekt
von gitterartigen Strukturen auch an einer CD beobach-
ten, wenn man sie schräg gegen das Licht hält. Auch die
Natur stellt Beugungsgitter her: Das Innere von manchen
Muschelschalen ist von feinen Furchen überzogen; das er-
zeugt den farbigen Schimmer des Perlmutt.

Die Beugungsbegrenzung von Strahlen

Wir kehren noch einmal zur Beugung am Spalt und an
der kreisförmigen Öffnung zurück. In der geometrischen
Optik hatten wir ausdrücklich davon abgesehen, dass der
mit einer Lochblende oder einem Spalt erzeugte „Licht-
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D Δϑ

Abbildung 8.18 Strahldivergenz hinter einer Blende, zu (8.29)

strahl“ hinter der strahlbegrenzenden Öffnung aufgrund
der Beugung etwas auseinander läuft (Abb. 6.3). Wir kön-
nen nun diese Strahldivergenz quantitativ angeben. Für
den Fall, dass in Abb. 8.18 die BlendenöffnungD 
 λ und
der Abstand von der Blende R 
 D ist, folgt aus (8.13)
für die Winkeldivergenz des Strahls, gemessen durch die
Halbwertsbreite der Intensitätsverteilung (8.13)

Δϑ ≈ λ

D
. (8.29)

Die Strahlbreite ist dementsprechend

W = ΔϑR ≈ R
λ

D
. (8.30)

Dies setzt natürlich Fraunhofer-Beugung voraus, d. h. es
muss nach (8.1) R/D > D/λ sein. Diese Formeln gelten
nicht nur für den Fall der Strahlbegrenzung durch eine
Blende, sondern auch, wenn die seitlich begrenzten ebe-
nen Wellen auf andere Weise erzeugt wurden, z. B. mit
einem Spiegel (Abb. 8.19a), mit einer ebenen Senderflä-
che (Abb. 8.19b) oder mit einem punktförmigen Sender
im Brennpunkt eines Parabolspiegels (Abb. 8.19c).

Aus diesen Gegebenheiten folgt, dass das Satelliten-
fernsehen nur mit Mikrowellen betrieben werden kann,

Abbildung 8.19 Beugungsbe-
grenzte Strahlen

a

c

b

50 cm
60 cm
75 cm
90 cm

120 cm

100 cm

Abbildung 8.20 Konturen des vom Fernseh-Satelliten Astra 1G gesendeten
Strahls bis zur Bahnverlagerung des Satelliten im Jahre 2009. Kurvenparameter:
Erforderlicher Durchmesser der „Schüssel“ für den Empfang. Mit freundlicher
Genehmigung der SES-Global (Société Européen des Satellites

wie bei Tab. 2.3 erwähnt wurde. Damit die erforder-
liche Sendeleistung nicht zu hoch wird und auch aus
rechtlichen Gründen muss die Ausstrahlung auf ein be-
stimmtes Empfangsgebiet beschränkt werden, z. B. auf
Europa (Abb. 8.20). Der Satellit befindet sich auf einer
geostationärenUmlaufbahn in 40 000 kmEntfernung über
dem Äquator. Die Parabolspiegel der Sendeantennen ha-
ben Durchmesser von 1–2m. Das ergibt nach (8.30) mit
λ = 3 cm auf der Erde beugungsbegrenzte Strahlen mit
der Breite W = 600–1200 km, was ausreicht, um die in
Abb. 8.20 gezeigtemaßgeschneiderte Kontur zu erzeugen.
Um das gleiche mit λ = 30 cm zu erreichen, brauchte man
zehnmal größere Spiegel, was kaum praktikabel und je-
denfalls sehr teuer wäre. Der Astra 1G-Satellit hat, zum
Transport zusammengeklappt, bereits die Abmessungen
3,3× 3,3× 5,5m3 und eine Masse von 2300 kg. Man muss
also die bei λ = 3 cm unvermeidlichen Empfangsstörun-
gen durch flatternde Blätter und dicke Wolken in Kauf
nehmen. Sie entstehen durch die Absorption der Mikro-
wellen in Wasser (Abb. 5.19).

Beugung an Hindernissen

Bisher haben wir uns fast ausschließlich mit der Beugung
des Lichts an Öffnungen befasst. Wie steht es nun mit
der Beugung an Hindernissen, wie z. B. an einer undurch-
sichtigen Kreisscheibe? Zwischen der Beugung an einer
Lochblende und an einem Hindernis, das genau in die
Lochblende hineinpasst, muss ein Zusammenhang beste-
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a P

f

b

Abbildung 8.21 Babinetsches Theorem. a Zum Prinzip, b Fraunhofer-
Beugung am Spalt (D = 0,3mm, oben) und an einem Draht (D = 0,3mm,
unten)

hen. Die Feldstärke E1 am Punkt P in Abb. 8.21a ist gleich
der Feldstärke E0 der sich frei ausbreitenden Welle, ab-
züglich der von der Blende gestoppten Anteile. Das sind
aber gerade die Wellen, die übrig bleiben, wenn man die
Blende durch das in die Öffnung genau hineinpassende
„komplementäre“ Hindernis ersetzt. Diese Wellen erzeu-
gen in P eine Feldstärke E2, und es muss gelten:

E1 + E2 = E0 . (8.31)

Dies ist das Babinetsche Theorem. Es erweist sich als be-
sonders nützlich bei der Fraunhofer-Beugung in der An-
ordnung von Abb. 8.7, also nach Einbau der in Abb. 8.21a
gestrichelt eingezeichneten Linse. Ohne Blende und ohne
Hindernis entsteht dort im Zentrum der Beobachtungs-
ebene nur das Bild der sehr weit entfernten Punktlicht-
quelle in Form eines kleinen Beugungsscheibchens. Au-
ßerhalb dieses Bildes ist E0 = 0, und es folgt aus (8.31)
E2 = −E1 und I2 = I1. Bis auf das Zentrum müssen die
Beugungsbilder eines Spalts und eines Drahtes genau
gleich aussehen, wenn der Drahtdurchmesser gleich der
Spaltbreite ist! Wie Abb. 8.21b zeigt, stimmt das tatsäch-
lich.

8.3 Fresnel-Beugung

Bevor wir die Fresnel-Beugung betrachten, müssen wir
dasHuygens-Fresnelsche Prinzip (Satz 8.1) etwas genauer
untersuchen. Nehmen wir an, bei r = 0 befände sich eine
PunktlichtquelleQ, die isotrop Licht nach allen Seiten ab-
strahlt (Abb. 8.22a). Die elektrische Feldstärke am Punkt P

a

b

c

r0

r0

r

r0 +λ/2

r0 +2λ

r0+
9λ/2

ϑ
r

r

R

Q P

dA

P

P

123456...

dA

Abbildung 8.22 Fresnel-Zonen auf der Wellenfront einer Kugelwelle

ist dann

E(r, t) =
E0
r
cos(kr− ωt) , (8.32)

denn das ist die Lösung der Wellengleichung für die freie
Ausbreitung einer Kugelwelle. E0/r ist die Amplitude, E0
ein von r unabhängiger Amplitudenfaktor, der durch die
Stärke der Lichtemission bei Q gegeben ist. Zum Zeit-
punkt t′ liege eine Wellenfront der von Q ausgehenden
Welle auf einer Kugel vom Radius R. Die Feldstärke ist
dort

E(R, t′) =
E0
R

cos(kR− ωt′) . (8.33)

Beim Huygens-Fresnelschen Prinzip stellt man sich vor,
dass von jedem Flächenelement dA der in Abb. 8.22b
perspektivisch gezeigten Kugelfläche „Elementarwellen“
ausgehen, und behauptet, dass deren Summe am Punkt
P die Feldstärke (8.32) ergibt. Wie müssen die Elementar-
wellen beschaffen sein, damit das stimmt? Für den Beitrag
der von dA ausgehenden Elementarwelle zu E(r, t) ma-
chen wir den Ansatz

dE =
EHK(ϑ)

r′
cos

[
k(R+ r′)− ωt+ ϕ

]
dA . (8.34)

EH ist der Amplitudenfaktor der Huygensschen Elemen-
tarwelle, K(ϑ) eine Funktion des in Abb. 8.22a definierten
Winkels ϑ, und ϕ die Phase, mit der die Emission der Ele-
mentarwellen relativ zur Phase von (8.33) erfolgt.
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Um die Integration von (8.34) durchzuführen, teilt man
die Kugelfläche in die sogenannten Fresnel-Zonen ein,
deren Ränder von P jeweils den Abstand

r′0 +
λ

2
, r′0 + λ , r′0 +

3
2

λ, . . . r′0 +
N− 1

2
λ (8.35)

haben (Abb. 8.22c). Man integriert zunächst über die ein-
zelnen Fresnel-Zonen, wobei innerhalb einer Zone K(ϑ)
als konstant betrachtet wird. Das ergibt bei der i-ten Zone
den Beitrag Ei zur Feldstärke bei P. (Die Nummerierung
der Fresnel-Zonen ist in Abb. 8.22b angegeben). Wenn das
Huygens-Fresnelsche Prinzip richtig sein soll, muss die
Summe über alle Ei die Feldstärke (8.32) ergeben:

N

∑
i=1

Ei = E(r, t) =
E0
r
cos(kr− ωt) . (8.36)

Man erhält das, wenn man für die in (8.34) noch unbe-
stimmten Größen folgendes einsetzt:5

EH =
E0
Rλ

, K(ϑ) =
1+ cos ϑ

2
, ϕ = −π

2
. (8.37)

Die hier verwendete Form der Richtungsfunktion K(ϑ)
(Abb. 8.23) stammt aus der Beugungstheorie, die Kirch-
hoff 1882 entwickelte und die von der Wellengleichung
(1.35) ausgeht. Durch diese Theorie wurde das bis dahin
nur auf Intuition beruhendeHuygens-Fresnelsche Prinzip
in das wohlgefügte Rahmenwerk der Theoretischen Phy-
sik eingebaut. Fresnel selbst hat – faute de mieux – die in
Abb. 8.23 gestrichelt eingezeichnete Funktion benützt:

K(ϑ) = 1 für 0 ≤ ϑ ≤ π

2
, K(ϑ) = 0 für ϑ >

π

2
.

Die Annahme, dass die Huygensschen Elementarwellen
nur „nach vorn“, aber nicht „nach hinten“ laufen, wurde
schon bei Satz 5.1 erwähnt. Sie ist zwar physikalisch nicht
zu rechtfertigen, führt aber ebenfalls zum richtigen Ergeb-
nis.

Die Fresnelsche Zonenkonstruktion ist ganz allgemein bei
der Diskussion von Beugungsproblemen vonNutzen. Da-
bei ist wichtig, dass die Beiträge von zwei benachbarten
Zonen stets entgegengesetzte Vorzeichen haben, aber dem
Betrage nach annähernd gleich sind. Die Rechnung zeigt,
dass die Unterschiede imWesentlichen auf der allmählich
abnehmenden Richtungsfunktion K(ϑ) beruhen. Ferner

5 Zur Durchführung dieser Rechnung und zur Kirchhoffschen Beu-
gungstheorie siehe E. Hecht, „Optics“, second Edition, Addison-
Wesley (1987), Kap. 10 und Anhang 2. – Dass EH eine andere
Dimension als E0 hat, ist in Ordnung, denn E0 bezieht sich auf die
Ausstrahlung einer Punktquelle, EH auf ein Flächenelement.

Abbildung 8.23 Polardia-
gramm der Richtungsfunktion
K (ϑ)

K(ϑ)

ϑ

ergibt sich, dass der Beitrag der ersten Zone allein fast
genau doppelt so groß ist, wie die Feldstärke (8.32) insge-
samt. Das liegt daran, dass es innerhalb einer Zone keine
destruktiven Interferenzen gibt. Es ist also

Ei ≈ −Ei−1 , E1 ≈ 2E . (8.38)

Das hat merkwürdige Konsequenzen. Es ist nach (8.36)

E =
N

∑
i=1

Ei = E1 +
N

∑
i=2

Ei .

Daraus folgt mit E1 ≈ 2E

−E ≈
N

∑
i=2

Ei = E2 +
N

∑
i=3

Ei .

Nun ist E2 ≈ −E1 ≈ −2E. Also erhält man

E ≈
N

∑
i=3

Ei = E3 +
N

∑
i=4

Ei

und so fort. Solange für die Zone n, bei der die Summation
beginnt, cos ϑn ≈ 1 ist, solange also n 	 N ist, gilt in guter
Näherung

∣∣∣∣∣
N

∑
i=n

Ei

∣∣∣∣∣ = E . (8.39)

Auf diesen Formeln beruhen die im Folgenden beschrie-
benen Beispiele zur Anwendung der Fresnelschen Zonen-
konstruktion.

Beugung an einer kreisrunden Öffnung. In Abb. 8.24 ist
eine Kreisblende gezeigt. Wie die Blende in Abb. 8.3 wird
sie mit senkrecht auffallenden ebenen Wellen beleuchtet,
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Abbildung 8.24 Fresnel-Beugung an einer kreisförmigen Öffnung. a und
b Fresnel-Zonen für P1 und P2 im Schnitt, c die Zonen in der Aufsicht, von P1,
P2, P ′

2 und P
′′
2 aus gesehen

d. h. die Punktlichtquelle Q liegt links im Unendlichen.
Die Fresnel-Zonen sind in diesem Falle Kreisringe auf
der ebenen Wellenfront. Bei P1 in Abb. 8.24a ist es ma-
ximal hell, denn dieser Punkt liegt so, dass das gesamte
Licht aus der ersten Fresnel-Zone nach P1 gelangt, wäh-
rend alle anderen Zonen durch die Blende verdeckt sind.
Wenn man die Blende wegnimmt, sinkt nach (8.38) bei
P1 die Intensität auf ein Viertel! Von P2 aus gesehen, tritt
auch das gesamte Licht von Zone 2 durch die Blende
(Abb. 8.24b). Da E2 ≈ −E1 ist, ist bei P2 die Lichtintensi-
tät sehr klein. Das ist auch in Abb. 8.24c ersichtlich. Bei P′2
und P′′2 muss man die Zonenkonstruktion bezüglich der
in Abb. 8.24b gestrichelt eingezeichneten Achsen durch-
führen. Wie Abb. 8.24c zeigt, ist von P′2 aus gesehen Zone
2 teilweise abgedeckt, und ein Teil von Zone 3 wird sicht-
bar: Die Lichtintensität nimmt kräftig zu. Bei P′′2 hingegen
ist die 1. Zone schon teilweise verschwunden und die 4.
Zone zum Vorschein gekommen: Die Intensität hat wie-
der abgenommen.

Auf diese Weise kann man die eigenartige Struktur der
Beugungsbilder in Abb. 8.3 grundsätzlich erklären. In

a

b

c

Q P

R0

f

Ri riρi

r0

f

Abbildung 8.25 a Zonenplatte, geradzahlige Zonen abgedeckt, b zur Berech-
nung der Radien ρn , c Zonenplatte bei parallelem Lichteinfall

Abb. 8.3d liegen gerade 10 Fresnelzonen innerhalb der
Blendenöffnung, in Abb. 8.3c sind es 11 Zonen (Aufga-
be 8.4). Für eine quantitative Berechnung der Beugungs-
bilder muss man (8.34) über die Blendenöffnung inte-
grieren. Das führt auf die sogenannten Fresnel-Integrale.
Näheres dazu findet man in Lehrbüchern der Optik.

Die Zonenplatte. Wenn man zwischen Q und P in
Abb. 8.22 eine Blende stellt, die das Licht entweder in al-
len geradzahligen oder in allen ungeradzahligen Fresnel-
Zonen abdeckt, muss bei P eine wesentlich verstärkte
Lichtintensität auftreten, denn dann gelangen nur Beiträ-
ge eines Vorzeichens zur Interferenz. Eine solche Zonen-
platte ist in Abb. 8.25a gezeigt. Mit Abb. 8.25b berechnen
wir die Radien ρi der Zonenränder. Dabei wird ange-
nommen, dass ρi klein gegen Ri und ri ist. Für die i-te
Zonengrenze muss gelten

(Ri + ri)− (R0 + r0) = i
λ

2
. (8.40)

Nun ist Ri =
√

R2
0 + ρ2i ≈ R0(1+ ρ2i /2R

2
0) = R0+ ρ2i /2R0.

Ebenso ist ri ≈ r0 + ρ2i /2r0. In (8.40) eingesetzt, ergibt das

1
R0

+
1
r0

=
iλ
ρ2i

=
λ

ρ21
, (8.41)
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denn (8.40) soll für alle i gelten, auch für i = 1. Glei-
chung (8.41) ist nichts anderes, als die Abbildungs-
gleichung für eine Linse mit der Brennweite f = ρ21/λ.
Außerdemzeigt unsereRechnung, dassdieRadienderZo-
nengrenzen ρi =

√
iρ1 seinmüssen.Wir fassen zusammen:

Zonenplatte: ρi =
√
iρ1 , f =

ρ21
λ

. (8.42)

Die Zonenplatte wirkt wie eine Sammellinse mit einem
gigantischen Farbfehler.6 Sie hat aber noch andere Ei-
gentümlichkeiten. Machen wir uns klar, dass aus jedem
einzelnen Spalt das Licht durch Beugung nach P gelangt.
Das Licht aus zwei benachbarten Spalten hat den Gang-
unterschied λ, die Platte wirkt als Beugungsgitter und
das in P erzeugte Bild von Q ist ein Beugungsmaximum
1. Ordnung.7 Auch nach außen wird das Licht gebeugt.
Zu dem Maximum 1. Ordnung gehört dann ein virtuel-
les Bild von Q. Abbildung 8.25c zeigt das für den Fall
parallelen Lichteinfalls (R0 → ∞), diesmal mit einer Zo-
nenplatte, bei der alle ungeradzahligen Zonen abgedeckt
sind. Die Zonenplatte wirkt gleichzeitig als Sammel- und
als Zerstreuungslinse mit der Brennweite |f | = ρ21/λ!

Fresnel-Beugung an einer Kante. Lässt man einen auf-
geweiteten Laserstrahl auf die Kante einer undurchsich-
tigen Platte fallen, beobachtet man auf einem hinter der
Platte aufgestellten Bildschirm statt eines scharf begrenz-
ten Schattens helle und dunkle Streifen, die sich immer
mehr zusammendrängen und gleichzeitig an Kontrast
verlieren (Abb. 8.26a). Das gleiche Phänomen hatte sich
schon, weniger deutlich, in Abb. 8.2 gezeigt. Man kann es
mit Hilfe der Fresnelschen Zonenkonstruktion erklären.

Nehmen wir an, eine in z-Richtung laufende ebene Wel-
le fällt ungehemmt auf den Beobachtungspunkt P bei
r = (0, 0, r0) (Abb. 8.26b). Von P aus konstruieren wir die
Fresnel-Zonen auf einer Wellenfront in der (x, y)-Ebene.
Sie sind in Abb. 8.26b eingezeichnet. Die Radien der
Zonengrenzen erhält man mit (8.41) für R0 → ∞: ρ1 =√

λr0, ρi =
√
iρ1. Die Intensität bei P sei I0. Nun wird

in der (x, y)-Ebene der linke Halbraum (x ≤ 0) mit einer
undurchsichtigen Platte abgedeckt. Die Feldstärke bei P
sinkt auf die Hälfte, die Intensität sinkt auf I0/4.

6 Die Zonenplatte ist nicht zu verwechseln mit der Fresnel-Linse, je-
ner flach abgestuften Linse, die man mitunter an der Heckscheibe
von Kleinbussen sieht. Fresnel erfand sie in seiner Eigenschaft als
Sekretär der französischen Leuchtturm-Behörden. Auch die Zonen-
platte findet eine technische Anwendung als Linse für Röntgenstrah-
len im Bereich von λ = 0,1 − 10nm. Solche Linsen haben den Bau
von Röntgenmikroskopen ermöglicht (siehe G. Schmahl et al, „Rönt-
genlinsen“, Physikalische Blätter 57, Nr. 1, S. 43 (2001).
7 Weitere Brennpunkte entstehen durch die Beugungsmaxima höhe-
rer Ordnung. Sie sind in Abb. 8.25c nicht eingezeichnet.
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Abbildung 8.26 Zur Fresnel-Beugung an einer Kante

Nun wird der Punkt P in x-Richtung nach rechts ver-
schoben. Mit ihm verschiebt sich das Ringsystem der
Fresnel-Zonen nach rechts. Die bei P gemessene Intensität
nimmt zu, vor allem dadurch, dass ein größerer Teil der
1. Zone sichtbar wird. Kurz bevor Zone 1 vollständig frei-
gelegt ist, überwiegt jedoch die Zunahme gegenphasigen
Lichts aus Zone 2: Die Intensität erreicht ein Maximum
und nimmt dann ab. Wenn Zone 2 nahezu freigelegt ist,
überwiegt wieder die Zunahme des mit Zone 1 gleichpha-
sigen Lichts aus Zone 3: Die Intensität nimmt wieder zu.
So geht es fort: Die Intensität des Lichts durchläuft Maxi-
ma undMinima, entsprechend der Freigabe der einzelnen
Fresnel-Zonen. Es kommt zu den in Abb. 8.26c gezeigten
Oszillationen bei x > 0. Wird P von x = 0 aus nach links
verschoben, nimmt die Intensitätmonoton ab: NachÜber-
schreiten von x = −ρ1 ist Zone 1 gänzlich ausgeschaltet,
und es macht keinen Unterschied, ob das nun zusätzlich
abgeschattete Licht gleichphasig oder gegenphasig zu Zo-
ne 1 ist.

Der mit den Fresnel-Integralen berechnete Verlauf der In-
tensität I(x) ist in Abb. 8.26c gezeigt. Nun wissen wir, wo
in Abb. 8.2 die geometrisch-optische Schattengrenze zu
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Abbildung 8.27 Fresnel-Beugung an einer Kugel (D = 3mm), mit dem
„Poissonschen Fleck“

finden ist, und wie die merkwürdigen Strukturen an der
Grenze zwischen Licht und Schatten zustande kommen.

Beugung an Hindernissen. Bei der Fresnel-Beugung ist
das Babinetsche Theorem (8.31) nicht in gleicher Weise
nützlich wie bei der Fraunhoferschen Beugung, weil nun
ohne Blende und ohne das komplementäre Hindernis all-
gemein in der Beobachtungsebene E0 �= 0 ist. Dann ist
nirgends E1 = −E2, und folglich sind die Intensitäten I1
und I2 in den Beugungsbildern von einander verschieden.

Wir untersuchen mit Hilfe der Fresnel-Zonen die Beu-
gung an einemHindernis mit kreisförmigemQuerschnitt.
Weit hinter dem Hindernis muss es auf der optischen
Achse hell sein, denn bis auf einen Teil der 1. Zone
sind alle Fresnel-Zonen sichtbar. Daran ändert sich nichts,
wenn man die Beobachtungsebene näher an das Hinder-
nis heranschiebt – sehr im Gegensatz zu den Verhältnis-
sen bei der Kreisblende (Abb. 8.3). Selbst wenn mehrere
Fresnel-Zonen durch das Hindernis abgedeckt sind, er-
gibt nach (8.39) die Summation über die übrigen Zonen
noch annähernd die Feldstärke E der ungestörten Welle.
Abbildung 8.27 zeigt das Beugungsbild einer Kugella-
ger-Kugel, aufgeklebt auf einen Mikroskop-Objektträger.
Man sieht deutlich den sogenannten Poissonschen Fleck
im Zentrum.8 Erst dicht hinter dem Hindernis nimmt
die Richtungsfunktion K(ϑ) für alle verbleibenden Zonen
drastisch ab, und die Intensität sinkt auf Null.

8 Der Poissonsche Fleck spielte in der Geschichte der Physik eine be-
merkenswerte Rolle: Als Fresnel seine Wellentheorie der Beugung
der Pariser Akademie vorlegte, stieß er zunächst auf Ablehnung.
Poisson erklärte: Wenn das stimmen sollte, muss im Schatten ei-
nes kreisförmigen Hindernisses immer ein heller Fleck sichtbar sein!
Dass der helle Fleck tatsächlich existiert, konnte alsbald Fresnel mit
seinem Freund Arago experimentell nachweisen. Poissons Einwand,
gedacht als tödlicher Schlag gegen die Wellentheorie, erwies sich als
schlagender Beweis für diese Theorie!

8.4 Fourier-Optik und Holografie

Über jedes der Themen: Fourieroptik, Bildentstehung
und -Bearbeitung, Holografie sind dicke Bücher geschrie-
ben worden. Wie schon im Überblick zu diesem Kapitel
bemerkt, ermöglicht die Fourier-Optik ein tieferes Ver-
ständnis der Bildentstehung. Sie bildet die Grundlage
von heute verwendetenMethoden in der Bildanalyse und
Bildbearbeitung, und mit Hologrammen wird man fast
auf Schritt und Tritt konfrontiert. Wir versuchen, auf we-
nigen Seiten einen Einblick in diese Gebiete zu gewinnen.

Fourier-Darstellung von Bildinformation

In Abschn. 4.4 haben wir gesehen, dass man eine Funk-
tion des Orts, f (x), durch ein Fourier-Integral darstellen
kann, d. h. durch eine Überlagerung von Sinus- und Cosi-
nusfunktionen mit der kontinuierlich variablen Periode L
und der Ortsfrequenz k = 2π/L. Dabei erwies sich die
komplexe Schreibweise als vorteilhaft. In (4.54) hatten wir
erhalten:

f (x) =
1
2π

+∞∫
−∞

F(k)eikx dk ,

F(k) =
+∞∫

−∞

f (x)e−ikx dx .

(8.43)

Die Berechnung von F(k) aus f (x) wird als die Fourier-
Transformation der Funktion f (x) bezeichnet. Man kann
dieses Konzept auch bei Funktionen von zwei Variablen
(x, y) anwenden. Statt (8.43) erhält man

f (x, y) =
1

(2π)2

∫ +∞∫
−∞

F(kx, ky)ei(kxx+kyy) dkx dky .

(8.44)

Das zweidimensionale Spektrum der Ortsfrequenzen er-
hält man wieder durch die Fouriertransformation von
f (x, y):

F(kx, ky) =
∫ +∞∫

−∞

f (x, y)e−i(kxx+kyy) dxdy . (8.45)

Mit Funktionen f (x, y) haben wir es in der Optik häu-
fig zu tun, zum Beispiel kann man auf diese Weise die
Verteilung der Hell- und Dunkelwerte in einer Bildebene
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Abbildung 8.28 Elemente eines zweidimensionalen Fourier-Integrals

darstellen. Mit (8.44) wird dann das Bild aus harmoni-
schen Funktionen cos(kxx+ kyy) und sin(kxx+ kyy) auf-
gebaut. In Abb. 8.28a ist ein Ausschnitt aus der Funktion
sin(kxx+ kyy) perspektivisch gezeigt. Abb. 8.28b zeigt die
Linien in der (x, y)-Ebene, auf denen cos(kxx + kyy) = 1
ist, also die Linien

kxx+ kyy = 2πm

y =
2πm− kxx

ky
, m = 0, 1, 2, . . .

(8.46)

Wie diese Formel zeigt, sind die Achsenabschnitte Viel-
fache von Lx = 2π/kx und Ly = 2π/ky. Aus L = Lx cos α
und L = Ly sin α folgt

L2

L2x
+

L2

L2y
= 1 → L =

1√
1/L2x + 1/L2y

. (8.47)

L ist die Periodenlänge der Funktion cos(kxx+ kyy). Die
Ortsfrequenz ist 2π/L = k =

√
k2x + k2y. Zur Verteilung der

Helligkeit in der Bildebene trägt die Funktion cos(kxx +
kyy) mit ihrer Amplitude A(kx, ky) = 1

2 [F(kx, ky) +
F∗(kx, ky)] bei, und die Funktion sin(kxx + kyy) mit der
Amplitude B(kx, ky) = 1

2 [F(kx, ky)− F∗(kx, ky)].

Insgesamt wird das Bild nach (8.44) aufgebaut durch
Überlagerung vieler Cosinus- und Sinusfunktionen, mit
unterschiedlichen Periodenlängen L, unterschiedlichen
Amplituden und unterschiedlichen Richtungen des Vek-
tors k = (kx, ky). Enthält das Bild sehr feine Strukturen

oder scharfe Kanten, haben die Fourier-Komponentenmit
hoher Ortsfrequenz hohe Amplituden; andernfalls spie-
len die hohen Ortsfrequenzen keine große Rolle. Wir
werden weiter unten dazu einige Beispiele betrachten.

Fraunhofer-Beugung und Fourier-Transformation:
Die Linse als Fourier-Transformator

In Abb. 8.8 sahen wir eine Blendenöffnung, die von links
mit monochromatischen ebenen Wellen beleuchtet wird.
Befindet sich im großen Abstand R in z-Richtung ein
Bildschirm, liegt dort Fraunhofer-Beugung vor. Die Feld-
stärke in einer Welle, die in Richtung des Wellenvektors
k = (kx, ky, kz) auf den Bildschirm zu läuft, hatten wir in
(8.6) berechnet:

Ě(k) =
E0
R
ei(kr0−ωt)

∫ ∫
A

e−i(kxx+kyy) dxdy ,

wobei die Integration über die Fläche der Blendenöffnung
zu erstrecken war.

Abbildung 8.29 zeigt eine etwas kompliziertere Situati-
on: In der Blendenöffnung befindet sich ein Objekt, z. B.
ein Diapositiv, dessen Eigenschaften mit dem Transmissi-
onskoeffizienten τ(x, y) beschrieben werden können. Die
Feldstärke in der Beobachtungsebene ist nun

Ě(k) =
E0
R
ei(kr0−ωt)

∫ ∫

A

τ(x, y)e−i(kxx+kyy) dxdy . (8.48)

Den vor dem Integral stehenden Phasenfaktor schreiben
wir

ei(kR−ωt)e−iΔ (8.49)

Abbildung 8.29 a Fraunhofer-
Beugung an einem ebenen Objekt
(= Diapositiv). b Zur Definition
der Größen R , r0 und Δ

a

b
Objektebene

Beobachtungsebene

ϑ

ϑ

y

x

R

R

Δ/k

z

k

k

r0

r0
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mit Δ = k(r0 −R) (Abb. 8.29b). Auf der z-Achse sind Δ, kx
und ky Null. Dort ist also die Feldstärke

Ě0 = Ě(0, 0, k) =
E0ei(kR−ωt)

R

∫ ∫
A

τ(x, y)dxdy . (8.50)

Da es nur auf die Verteilung der Feldstärke in der Bilde-
bene ankommt, dividieren wir Ě(k) durch Ě0:

Ě(k)
Ě0

= e−iΔ
∫ ∫

τ(x, y)e−i(kxx+kyy) dxdy∫ ∫
τ(x, y)dxdy

. (8.51)

Wir definieren die Transmissionsfunktion T (x, y) durch

T (x, y) =
τ(x, y)∫ ∫

τ(x, y)dxdy
(8.52)

und die normierte Feldstärke in der Beobachtungsebene

Ěn(kx, ky) =
Ě(k)
Ě0

eiΔ . (8.53)

Ěn(kx, ky) gibt die Feldstärke im Fraunhoferschen Beu-
gungsbild an, multipliziert mit dem Phasenfaktor eiΔ und
dividiert durch die Feldstärke, die im Beugungsbild auf
der z-Achse besteht. Damit wird aus (8.48)

Ěn(kx, ky) =
∫ +∞∫

−∞

T (x, y)e−i(kxx+kyy) dxdy . (8.54)

Wir haben hier von −∞ bis +∞ integriert. Da außer-
halb der Blendenöffnung T (x, y) = 0 ist, hat sich da-
durch nichts geändert. Die Ähnlichkeit mit der Fourier-
Transformation in (8.45) fällt sofort ins Auge. Wir können
ohneweiteres f (x, y) = T (x, y) setzen. Es stellt sich jedoch
die Frage, ob wir die Komponenten des Wellenvektors
k in (8.54) mit den Ortsfrequenzen des Objekts in (8.45)
identifizieren können. Das ist eine Frage des Wertevor-
rats. Die Ortsfrequenzen beginnen bei kx = ky = 0. Diese
Werte sind im Beugungsbild vorhanden, denn das ent-
spricht genau der in z-Richtung laufenden ebenen Welle:
k = (0, 0, k). Nach oben ist jedoch beim Wellenvektor der
Wertevorrat von kx und ky durch die Lichtwellenlänge
begrenzt: kx, ky < 2π/λ. Bei den Ortsfrequenzen im Fou-
rierspektrum des Objekts ist die mindestens erforderliche
Periodenlänge Lmin gegeben durch die Feinheit der Struk-
turen im Objekt. Wenn λ < Lmin ist, steht nichts imWege,
kx und ky in (8.54) mit den Ortsfrequenzen des Objekts zu

f

Abbildung 8.30 Erzeugung des Fourier-Bildes in der Brennebene der Linse

identifizieren.9 Man kann also (8.54) folgendermaßen in-
terpretieren:

Satz 8.2

Die Feldverteilung im Fraunhoferschen Beugungs-
bild ist die Fourier-Transformierte der Transmissi-
onsfunktion des Objekts. Sie stellt also das Ortsfre-
quenzspektrum der Transmissionsfunktion dar.

Daraus folgt:

T (x, y) =
1

(2π)2

∫ +∞∫
−∞

Ěn(kx, ky)ei(kxx+kyy) dkx dky .

(8.55)

E(kx, ky) und T (x, y) bilden ein Fourier-Paar (vgl. (4.53)).

Wird wie in Abb. 8.30 eine Linse hinter das mit mono-
chromatischem Licht beleuchtete Objekt gestellt, entsteht
das Fraunhofersche Beugungsbild in der Brennebene der
Linse. Jedem Vektor k ist in eindeutiger Weise ein Punkt
in der Brennebene zugeordnet, an dem die Bestrahlungs-
stärke proportional zu |Ěn(kx, ky)|2 ist.Man kann dort eine
Fotoplatte aufstellen und erhält in bildlicher Darstellung
das Ortsfrequenzspektrumdes Objekts. Die Linse hat also
eine Fouriertransformation ausgeführt!

Wir betrachten zwei Beispiele. Bei einem Spalt der Brei-
te D ist der Transmissionskoeffizient

τ(x, y) = τ(x) = 1 für − D
2

≤ x ≤ +
D
2

,

τ(x) = 0 für |x| > D
2

.

9 Man erkennt hier, dass es eine Frage der Lichtwellenlänge ist, bis
zu welcher Grenze man feine Strukturen im Objekt sehen kann.
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Die mit (8.52) berechnete Transmissionsfunktion ist

T (x) =
1
D

für − D
2

≤ x ≤ +
D
2

,

T (x) = 0 für |x| > D
2

.

Damit erhalten wir

Ěn(kx) =
+∞∫

−∞

T (x)e−ikxx dx

=
1
D

+D/2∫

−D/2

e−ikxx dx =
e−ikxx

−ikxD

∣∣∣∣∣
+D/2

−D/2

=
e−ikxD/2 − eikxD/2

−ikxD
=

sin(kxD/2)
kxD/2

.

Bei Berücksichtigung von (8.50) und (8.53) stimmt das mit
(8.10) überein. Kein Wunder, denn wir haben auch hier
nur die Integration (8.9) ausgeführt, wenn auch mit einer
anderen Begründung. Interessanter ist das nun folgende
Beispiel.

Kannman ein Gitter konstruieren, bei dem es nur die Beu-
gungsmaxima nullter und erster Ordnung gibt, während
die Intensität in den Beugungsmaxima mit |m| ≥ 2 Null
ist? Wie muss die Transmissionsfunktion eines solchen
Gitters aussehen? Wir untersuchen ein Transmissionsgit-
ter bei senkrechtem Lichteinfall. Nach (8.21) und (8.22)
liegen die Maxima der Beugungsfigur bei

k sin ϑ = kx =
2πm
g

.

Das Ortsfrequenzspektrum soll also nur die Ortsfrequen-
zen kx = 0 und kx = ±2π/g enthalten. Diese Forderung
kann manmit Hilfe der Diracschen Deltafunktion δ(x) er-
füllen. δ(x) ist überall Null, außer bei x = 0. Dort wird sie
unendlich, und zwar in der Weise, dass

+∞∫
−∞

δ(x)dx = 1 (8.56)

ist.10 Das hat zur Folge, dass für beliebige (einigermaßen

10 Es gibt mehrere Möglichkeiten, die Diracsche δ-Funktion durch
analytische Ausdrücke darzustellen. Zwei Beispiele:

δ(x) = lim
a→∞

sin ax
πx

, δ(x) = lim
a→0

1√
πa

e−x2/a2 .

Die erste Formel geht von der uns schon aus (4.45) und (8.23) be-
kannten Funktion sin(Nδ/2)/ sin(δ/2) aus, wobei ausgenutzt wird,
dass

∫ +∞
−∞ (sin ax/x)dx = π ist. Die zweite Formel stellt eine unend-

lich hohe und unendlich schmale Gaußfunktion mit der Fläche 1 dar.

E(kx)

T(x)

kx

x

2π

g g

g
2π0
g

−

a

b

Abbildung 8.31 a Ortsfrequenzspektrum und b Transmissionsfunktionbeim
Cosinusgitter

gutartige) Funktionen f (x) gilt:

+∞∫
−∞

f (x)δ(x− x0)dx = f (x0) . (8.57)

Die δ-Funktion stanzt bei dieser Integration aus der Funk-
tion f (x) den Wert f (x0) heraus. Wir gehen also von dem
Ortsfrequenzspektrum

E(kx) =
1
2

[
δ

(
kx −

2π

g

)
+ δ

(
kx +

2π

g

)]
+ δ(kx)

aus (Abb. 8.31a), und berechnen mit einer Fourier-Trans-
formation die zugehörige Transmissionsfunktion. Dabei
machen wir von (8.56) und (8.57) Gebrauch:

T (x) =
1
2π

+∞∫
−∞

E(kx)eikxx dkx

=
1
2π

(
ei2πx/g + e−i2πx/g

2
+ 1

)

=
1
2π

(
1+ cos

2π

g
x
)
=

1
2π

cos2
πx
g

. (8.58)

Ein sogenanntes Cosinusgitter (Abb. 8.31b) erfüllt die ge-
stellte Forderung. Wie man ein solches Gitter herstellt,
werden wir in Kürze sehen.

Bildentstehung und Bildbearbeitung

Kohärente Beleuchtung des Objekts, Abbesche Theorie.
Wie wir gerade gesehen haben, entsteht in der Anord-
nung von Abb. 8.30 in der Brennebene der Linse das
Fraunhofersche Beugungsbild, das das Fourierspektrum
der Transmissionsfunktion des Objekts wiedergibt. Hin-
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m=0

m=+1

m=−1

m=−2

m=+2 xx

z
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Objektebene BildebeneFourier-Ebene
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d

d

Abbildung 8.32 Zur Abbeschen Theorie der Bildentstehung

ter diesem Fourier-Bild des Objekts laufen natürlich die
Wellen weiter. In einer Bildebene, deren Lage sich mit der
Abbildungsgleichung (6.21) aus der Gegenstandsweite er-
gibt, entsteht das aus der geometrischen Optik bekannte
Ortsbild des Objekts. Man kann dessen Zustandekom-
men auf Huygenssche Elementarwellen zurückführen,
die von den Punkten der Fourier-Ebene ausgehen. Die
Linse bewirkt also eine Fourier-Analyse des Objekts, auf
die eine Fourier-Synthese des im Fourier-Bild enthaltenen
Ortsfrequenzspektrums folgt. Dies ist der Grundgedanke
der Abbeschen Theorie der Bildentstehung.

In Abb. 8.32 ist der Vorgang mit einem Beugungsgitter als
Objekt erläutert. Die Abmessungen von Gitter und Lin-
se sind so gewählt, dass nur die Beugungsmaxima 0. und
1.Ordnung von der Linse erfasst werden. In der Brenne-
bene der Linse, der Fourier-Ebene, gibt es drei scharfe
Maxima. (Wir nehmen an, dass das Gitter viele dicht
beieinander liegende Spalte enthält.) Das Ortsbild ent-
steht durch die Überlagerung der Kugelwellen, die von
den drei kohärenten Punktquellen in der Fourier-Ebene
ausgehen. Man erhält breite Interferenzstreifen, deren
Maxima genau am Ort des geometrisch-optischen Bildes
liegen. Wollte man eine scharfe Abbildung des Gitters
erreichen, müssten auch die Beugungsmaxima höherer
Ordnung von der Linse erfasst werden: Scharfe Kontu-
ren entsprechen hohen Ortsfrequenzen. Würde die Linse
auch die Maxima erster Ordnung nicht erfassen, gäbe es
auf der Bildebene nur die Kugelwelle vom Beugungsma-
ximum nullter Ordnung. Die Struktur des Gitters wäre in
keiner Weise zu erkennen.

Ernst Abbe11 entwickelte diese Theorie im Zusammen-
hang mit seinen experimentellen Untersuchungen zum

11 Ernst Abbe (1840–1905), Physiker und Industrieller, brachte zu-
sammen mit Carl Zeiss (1816–1888) dessen optische Werkstätten
zu Weltruhm und gründete mit Otto Schott (1851–1935) die Jenaer
Glaswerke. Nach Carl Zeiss’ Tod setzte er als alleiniger Firmenin-

Auflösungsvermögen des Mikroskops. Er fand heraus,
dass für die Auflösung der Durchmesser der Objektiv-
linse auch dann eine Rolle spielt, wenn das von der
Beleuchtungseinrichtung gelieferte Licht die Linse gar
nicht ausleuchtet. Offenbar gibt es auch Licht, das sich
im „Dunkelraum“ ausbreitet. Er erkannte, dass das am
Objekt gebeugte Licht für die Auflösung entscheidend
ist. Damit außer dem Beugungmaximumnullter Ordnung
auch noch die Maxima 1. Ordnung in das Objektiv gelan-
gen, muss nach (8.22) in der Anordnung vonAbb. 8.32 der
Öffnungswinkel des Mikroskops die Bedingung d sinu ≥
λ erfüllen. Es ist also

dmin =
λ

sinu
,

wenn sich Luft zwischen Objekt und Objektiv befindet.
Um das Auflösungsvermögen zu vergrößern, setzte Ab-
be die schon bei Abb. 6.45 beschriebene Ölimmersion
mit dem Brechungsindex n ein. Damit kann man ein-
mal größere Öffnungswinkel erreichen und außerdem die
Wellenlänge auf λ/n verkürzen. Man erhält für das Auf-
lösungsvermögen

dmin =
λ

n sinu
. (8.59)

Das ist etwas schlechter, als das in (6.53) für inkohärent
leuchtende Punktquellen angegebene Auflösungsvermö-
gen. An der Grenze des Auflösungsvermögens ist aber
beim Mikroskop die Kohärenzbedingung (7.36) erfüllt.

haber umfangreiche Sozialreformen durch: 8 Stunden-Tag, bezahlter
Urlaub, Gewinnbeteiligung und Pensionsanspruch für die Arbeiter
– alles sensationelle Neuerungen zur damaligen Zeit. Er hatte nicht
vergessen, wie er als Kind seinem Vater mittags die dünne Suppe an
denArbeitsplatz bringenmusste, die der Vater dann, ohne die Arbeit
zu unterbrechen, im Stehen schlürfte.
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Abbildung 8.33 Anordnung
zur gleichzeitigen Projektion
von Fourier-Bild und Ortsbild.
O : Objektebene, F : Fourier-Ebene,
T: Strahlteiler, S: Spiegel, L1,
L2: Linsen

Ortsbild Fourier-Bild

S

F

O

T
L2

L1

Man kann sich nun fragen, was der tiefere Grund da-
für ist, dass das konfokale Laser-Scan-Mikroskop laut
(6.54) ein noch besseres Auflösungsvermögen als (6.53)
besitzt. Für die Antwort benötigt man einen Vorgriff
auf die Quantenphysik. Es ist ein Paradoxon, dass das
Auflösungsvermögen nach (6.53) oder (8.59) unabhängig
von der Intensität der Lichtquelle ist, wenn man die Be-
lichtungszeit einer Photoaufnahme entsprechend anpasst.
Das gilt sogar dann, wenn die Lichtintensität so klein ist,
dass sich fast nie mehr als ein Lichtquant im Mikroskop
befindet. Die Gleichungen (6.53) und (8.59) beschreiben
daher, obwohl aus der Wellentheorie hergeleitet, das Auf-
lösungsvermögen einer Abbildung durch voneinander
unabhängige einzelne Photonen. Im Gegensatz dazu ba-
siert (6.54) auf einer Abbildung durch zwei aufeinander
folgende Elementarprozesse im gleichen Molekül: einer
Photonenabsorption und einer spontanen Emission.12

Kehren wir zur Abbeschen Abbildungstheorie zurück.
Man kann mit der in Abb. 8.33 gezeigten Anordnung das
Fourier-Bild und das Ortsbild gleichzeitig sichtbar ma-
chen. Die bildseitige Brennebene der Linse L1 wird hier
über einen halbdurchlässigen und einen gewöhnlichen
Spiegel mit Hilfe der Linse L2 neben dem Ortsbild ab-
gebildet: Es entsteht dort das Fourier-Bild des Objekts.
Ein Beispiel ist in Abb. 8.34 gezeigt. – Das Fourier-Bild
in der Brennebene der Linse L1 ermöglicht eine einfache
und sehr effektive Bildbearbeitung. Durch Abdeckung
der entsprechenden Fourier-Komponenten kann man un-
erwünschte Strukturen aus dem Bild entfernen; bei Ab-

12 Eine Abbildung mit noch besserer Auflösung ermöglicht die
STED-Mikroskopie, die in Abschn. 9.3 besprochen wird. Im Bereich
um 100–200nm gibt es interessante Objekte für die biologische und
medizinische Forschung, währendmanmit n sin u = 1,35 nach Abbe
dmin = 0,74λ erreicht.

Abbildung 8.34 Beispiel zum Fourier- und Ortsbild, aufgenommen mit der
Anordnung von Abb. 8.33. Links : Ortsbild, rechts : Fourier-Bild

deckung der hohen oder der tiefen Ortsfrequenzen kann
man die Konturen des Bildes abschwächen oder verstär-
ken. Abbildung 8.35 zeigt einige Beispiele dazu.

Inkohärente Beleuchtung des Objekts, Helmholtz-
Rayleighsche Theorie. Mit dem Fotoapparat oder mit
dem Fernrohr werden gewöhnlich inkohärent beleuchte-
te Objekte abgebildet. In diesem Fall kann man das auf
Helmholtz und Lord Rayleigh zurückgehendeModell der
Bildentstehung anwenden. Man geht davon aus, dass ei-
ne Punktquelle in der Objektebene zu einer bestimmten
Intensitätsverteilung in der Bildebene führt. Man nennt

Abbildung 8.35 Reproduktion eines Spaltbildes (vertikale Bänder) nach
Manipulation der Fourier-Transformierten (horizontale Strukturen). a Original,
b ohne Beugungsmaxima, c, d, emit den Beugungsmaxima bis zur ersten, zwei-
ten und dritten Ordnung, f ohne Hauptmaximum
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Abbildung 8.36 Ideale
geometrisch-optische Abbildung
und Punktbildfunktion

I(x )

g(x −x0)

x

x

x0

x0

diese Verteilung die Punktbildfunktion. Wenn bei ei-
ner idealen geometrisch-optischen Abbildung der Punkt
(x, y) der Objektebene auf den Punkt (x′0, y

′
0) in der Bilde-

bene abgebildet wird (Abb. 8.36), hat die Punktbildfunkti-
on die Form g(x′ − x′0, y

′ − y′0). Sie soll auf 1 normiert sein,
d. h. es soll gelten

∫ +∞∫
−∞

g(x′ − x′0, y
′ − y′0)dx

′ dy′ = 1 .

Ist f (x′0, y
′
0) die Intensitätsverteilung im Bild eines Ob-

jekts bei der idealen, geometrisch-optischen Punkt zu
Punkt-Abbildung, dann ist die Intensitätsverteilung bei
der realen Abbildung

F(x′, y′) =
∫ +∞∫

−∞

f (x′0, y
′
0)g(x

′ − x′0, y
′ − y′0)dx

′
0 dy

′
0 .

(8.60)

Diese Form der Integration über das Produkt zweier
Funktionen nennt man die Faltung der Funktionen f und
g. Das Faltungsintegral (8.60) kann man symbolisch auch
wie folgt schreiben:

F = f � g . (8.61)

Auch in diesem Fall erweisen sich Fourier-Transformatio-
nen als ein nützliches Instrument. Wenn die Punktbild-
funktion auf der ganzen Bildfläche die gleiche funktionale
Form hat, kann man die Faltung der Funktionen f und
g ersetzen durch die Multiplikation der Fouriertransfor-
mierten dieser Funktionen. Mit der in (4.53) eingeführten
symbolischen Schreibweise ist

F{F} = F{f} · F{g} . (8.62)

Die gesuchte Funktion F(x′, y′) erhält man daraus durch
die inverse Fourier-Transformation. – (8.62) ist das so-
genannte Faltungstheorem, mit dem wir uns bereits in
Aufgabe 4.3 beschäftigt hatten. Die Fourier-Transformier-
te der Punktbildfunktion nennt man auch die optische
Übertragungsfunktion. Gleichung (8.62) besagt dann in
Worten:

Satz 8.3

Das Ortsfrequenzspektrum in der Bildebene ist
gleich dem Ortsfrequenzspektrum in der Objektebe-
ne, multipliziert mit der Übertragungsfunktion.

Diese Aussage ist nicht nur vom Konzept her sehr in-
teressant, sie ist auch von großer praktischer Bedeu-
tung, denn es gibt für die Durchführung von Fourier-
Transformationen sehr effektive Algorithmen, während
die Berechnung des Faltungsintegrals mühsam sein kann
und jedenfalls für jede neue Funktion f eine neue Integra-
tion erfordert. Die Methode lässt sich auch bei kohärenter
Beleuchtung des Objekts anwenden. Man muss nur mit
den Funktionen f und F die Amplituden und nicht die
Intensitäten beschreiben. Sie führt dann zum gleichen Er-
gebnis wie die Abbesche Theorie.

Phasenkontrastmikroskop. Als Anwendung diskutie-
ren wir das Phasenkontrastmikroskop, das im Jahr 1932
von F. Zernike erfunden wurde.13 Es ermöglicht die Be-
obachtung von Objekten, die die Lichtintensität gleich-
mäßig durchlassen, aberwegen eines ortsabhängigen Bre-
chungsindex oder ihrer Geometrie die Wellenfronten ver-
beulen, was in biologischen Systemen häufig vorkommt,
aber vom Auge nicht wahrgenommen werden kann. Um
das Prinzip zu erläutern, führen wir in einer Dimensi-
on das ideale „Phasenobjekt“ ein, das eine Welle mit der
Amplitude ∝ eiϕ(x) erzeugt, und vergleichen es mit ei-
nem ideal absorbierenden Objekt mit der Amplitude ∝
eA(x) ohne zusätzliche Phasenverschiebungen. Wir neh-
men A(x) und ϕ als kleine Größen an und setzen außer-
dem, über das Objekt gemittelt, A(x) = 0 und ϕ(x) = 0.
Die Fourier-Transformierten haben die Form

F(k) =
∫

e−ikxeA(x) dx ≈
∫

e−ikx (1+A(x))dx und

F(k) =
∫

e−ikx+iϕ(x) dx ≈
∫

e−ikx (1+ iϕ(x))dx .

Die konstanten Anteile unter den Klammern liefern für
beide Objekte die gleichen Fourier-Transformierten: Sie

13 Frits Zernike (1888–1966) wirkte ab 1920 als Professor an der Uni-
versität Groningen. Seine Erfindung stieß paradoxerweise bei der
Firma Zeiss auf kein Interesse. Sie wurde erst im zweiten Weltkrieg
während der Okkupation Hollands von der deutschen Wehrmacht
aufgegriffen, die alles einsammelte, was für den „Endsieg“ wichtig
sein könnte. Im Jahr 1953 erhielt F. Zernike für die Entwicklung des
Phasenkontrastverfahrens den Nobelpreis.
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Abbildung 8.37 Strahlengang für die Beleuchtung in einem Phasen-
kontrastmikroskop (schematisch). Q: Lichtquelle, Kl: Kollektor, R: Ringblende,
Kd: Kondensor, G: Gegenstand, O: Objektiv, Ph: Phasenplatte, ZB: Zwischenbild
von G. Schattiert : Lichtbündel von einem Punkt der Quelle bis zum Beugungs-
maximum nullter Ordnung und seine Verteilung auf dem Zwischenbild

sind schmale Nadelimpulse bei k ≈ 0, wie in Abb. 8.10
dargestellt und mit (8.9) berechnet wurde. Den zusätzli-
chen, durch die Modulation entstehenden Termen sieht
man an, dass sie sich in der Phase um 90° unterschei-
den. Man kann daher das Beugungsbild eines Phasenob-
jektes in das eines amplitudenmodulierten verwandeln
und Phasenunterschiede sichtbar machen, indem man
die Phase der Fourier-Transformierten bei k = 0 um 90°
verschiebt. Das funktioniert natürlich auch in zwei Di-
mensionen.

Obwohl ein Phasenkontrastmikroskop einem normalen
Mikroskop ähnlich sieht, unterscheidet es sich von die-
sem in seinem Aufbau (Abb. 8.37): Zur Beleuchtung des
Objekteswird eine ringförmige Lichtquelle eingesetzt, de-
ren Licht auf eine ringförmige Blende fokussiert wird.
Dahinter erzeugt ein Kondensor ein kegelförmiges Licht-
bündel. An dessen kleinsten Querschnitt befindet sich das
Objekt. Der Objektivradius ist größer als der Radius des
Lichtbündels beim Eintritt in das Mikroskop. Das Objek-
tiv bildet die Ringblende in seiner Brennebene ab. Dieses
Bild entspricht dem Beugungsmaximumnullter Ordnung
und der Wellenzahl k = 0 der Fourier-Transformation. In
der Brennebene befindet sich eine Phasenplatte, die die
Phase des Lichts im Bereich des Ringbilds um 90° ver-

Abbildung 8.38 Aufnahme eines Speicheldrüsenchromosoms mit einem Pha-
senkontrastmikroskop (b) und eine normale mikroskopische Hellfeld-Aufnah-
me (a). Quelle:www.spektrum.de/lexikon/biologie/phasenkonstrastmikroskopie/
50947, Fig. 1. Mit freundlicher Genehmigung des Springer-Verlags

schiebt. Außerdem kann man durch Schwächung der
Intensität im Ringbereich den Bildkontrast vergrößern.
Je nachdem, ob die Phasenplatte innerhalb des Ringbe-
reichs dicker oder dünner ist als außerhalb, spricht man
von negativem oder positivem Phasenkontrast. Im ersten
Fall erhalten die Imaginärteile aller Fourier-Koeffizienten
das gleiche Vorzeichen und das Bild eines Phasenobjektes
erscheint hell auf dem Untergrund. Im Fall des positi-
ven Phasenkontrastes erscheint das Objekt dunkel auf
dem Untergrund. Bei Beleuchtung mit weißem Licht gibt
es wegen der Dispersion zusätzlich Farbkontraste. Ab-
bildung 8.38 zeigt die Phasenkontrast-Aufnahme eines
Chromosoms im Vergleich zu einer normalen Aufnahme.

Holografie

Bei einer gewöhnlichen Fotografie wird auf der Bildebene
der Kamera die Beleuchtungsstärke fotochemisch festge-
halten. Das Ergebnis ist das zweidimensionale Bild eines
dreidimensionalen Objekts undwir haben gelernt, ein sol-
ches Bild zu erkennen und zu interpretieren. Dass der
Mensch – im Gegensatz zum Tier – damit kein Problem
hat, bewiesen schon vor 30 000 Jahren die Cro-Magnon-
Leute mit ihren Höhlenmalereien. Das Bild unterscheidet
sich von dem optischen Feld, das in der Bildebene der Ka-
mera vorhanden war, nur in einem Punkt: Es wurde die
zum Quadrat der Amplitude proportionale Intensität der
Lichtwelle registriert, nicht aber die Phase. Die Hologra-
fie bietet die Möglichkeit, auf einem zweidimensionalen
Film nicht nur die Intensität, sondern auch die Phase der
Lichtwelle zu registrieren. Wie das funktioniert und wie
sich das auswirkt, werden wir nun untersuchen.

Ein Laserstrahl wird mit einem halbdurchlässigen Spiegel
in zwei Teilstrahlen zerlegt (Abb. 8.39). Beide Teilstrahlen
werden mit Linsen aufgeweitet. Der eine wird als Refe-
renzwelle auf eine Fotoplatte geführt, mit dem anderen
wird das Objekt beleuchtet. Das Licht, das von dem be-
leuchteten Objekt ausgeht, fällt dann als Objektwelle auf
die Fotoplatte. Die Objektwelle enthält die gesamte op-
tisch zugängliche Information über das Objekt und hat
dementsprechend eine komplizierte Struktur. Wir führen
ein Koordinatensystem ein, in dessen (x, y)-Ebene die Fo-
toplatte liegt. Die Feldstärke der Objektwelle ist dort

EO(x, y, t) = EO0(x, y) cos
(
ωt+ ψ(x, y)

)
. (8.63)

Sowohl die Amplitude als auch die Phase sind Funktio-
nen von x und y. Um die nachfolgenden Überlegungen
zu vereinfachen, nehmen wir an, dass die Referenzwelle
senkrecht auf die Fotoplatte fällt. Sie hat in der (x, y)-
Ebene die Feldstärke

ER(x, y, t) = ER0 cosωt . (8.64)

www.spektrum.de/lexikon/biologie/phasenkonstrastmikroskopie/50947
www.spektrum.de/lexikon/biologie/phasenkonstrastmikroskopie/50947
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Abbildung 8.39 Anordnung zur Aufnahme eines Hologramms (Prinzip).
T: Strahlteiler; S1, S2: Spiegel; F: Fotoplatte. Die x-Achse steht senkrecht auf
der Zeichenebene. Von der Objektwelle ist nur der Ausschnitt gezeigt, der auf
die Fotoplatte fällt
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Abbildung 8.40 Rekonstruktion des holographischen Bildes

Hier ist ER0 konstant. Durch Überlagerung von Objekt-
und Referenzwelle entsteht in der (x, y)-Ebene das Feld
EH(x, y, t) = EO+ER. Die Intensität ist nach (7.4) und (7.5)

I(x, y) ∝ E2
H = E2

R0 + E2
O0 + 2ER0EO0 cosψ . (8.65)

Die Fotoplatte wird am stärksten belichtet, wo die bei-
denWellen konstruktivmiteinander interferieren, und am
schwächsten, wo die Interferenz destruktiv ist. Man kann
den Entwicklungsprozess so führen, dass die Schwär-
zung genau proportional zu I(x, y) ist. Dann entsteht
auf der Platte ein kompliziertes Interferenzmuster, das
Hologramm. Es enthält die komplette Information über
die Amplituden und Phasen der Objektwelle. Um die-
se Information wieder heraus zu holen, beleuchtet man

das Hologramm mit einer kohärenten ebenen Welle, der
Rekonstruktionswelle, die die gleiche Wellenlänge und
Richtung hat wie die vorher verwendete Referenzwelle.
Es entsteht ein virtuelles Bild des Objekts genau an der
Stelle, an der sich das Objekt bei der Aufnahme befand
(Abb. 8.40).

Das sieht man folgendermaßen ein: Unmittelbar vor der
Ebene des Hologramms hat die Rekonstruktionswelle die
Feldstärke

ER’(x, y, t) = ER’0 cosωt . (8.66)

Da die Absorption der Welle imHologramm proportional
zu I(x, y) ist, ist die Feldstärke direkt hinter dem Holo-
gramm

E(x, y, t) ∝ ER’(x, y, t)I(x, y) .

Mit der Formel cos α cos β = 1
2 [cos(α − β) + cos(α + β)]

erhält man

E(x, y, t) ∝ ER’0(E2
R0 + E2

O0) cosωt
+ ER’0ER0EO0 cos[ωt− ψ(x, y)]
+ ER’0ER0EO0 cos[ωt+ ψ(x, y)] . (8.67)

Wie weiter unten gezeigt wird, entsprechen den drei
Termen in dieser Gleichung die drei in Abb. 8.40 ein-
gezeichneten Wellenzüge. Der erste Term enthält mit
geschwächter Amplitude die in der ursprünglichen Rich-
tung weiterlaufende Rekonstruktionswelle. Der zweite
Term ergibt das in Abb. 8.40 eingezeichnete reelle Bild
des Objekts. Wir wollen uns damit nicht weiter befas-
sen, denn es ist hier weniger von Interesse. Der dritte
Term enthält das Entscheidende: Er ist bis auf einen kon-
stanten Faktor identisch mit der Objektwelle (8.63)! Wenn
man durch das von der Rekonstruktionswelle beleuchte-
te Hologramm hindurchschaut, sieht man das Objekt in
seiner ursprünglichen Position, gerade so, als ob es tat-
sächlich dort stünde. Je nachdem, aus welcher Richtung
man schaut, kann man in Abb. 8.40 das quaderförmige
Objekt mehr von vorn oder etwas mehr seitlich betrach-
ten. Das mit der Rekonstruktionswelle beleuchtete Holo-
grammwirkt wie ein Fenster, durch das hindurchman auf
das Objekt sieht. Fotografiert man es, so muss man den
Fotoapparat auf die Entfernung einstellen, in der sich das
Objekt ursprünglich befand. In Abb. 8.41a sieht man die
gewöhnliche Fotografie eines Objekts, in Abb. 8.41b das
Hologramm und in Abb. 8.41c eine Fotografie des mit der
Rekonstruktionswelle beleuchteten Hologramms.

Die drei voneinander getrenntenWellenzüge in (8.67) und
in Abb. 8.40 kommen durch die Beugung der Rekon-
struktionswelle amHologramm zustande: Es handelt sich
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Abbildung 8.41 a Fotografie des Objekts, b des Hologramms, c des rekon-
struierten Bildes. Der helle Fleck am oberen Bildrand ist das Beugungsmaximum
nullter Ordnung (aus Klein u. Furtak, 1988)

a

b

c

d = λ/sinϑ

y

z

λ

ϑ

ϑ

y

d

Referenzwelle

Schwärzung

m=0

m=+1

m=−1

Objektwelle

Rekonstruktions-
welle

Abbildung 8.42 Hologramm einer ebenen Objektwelle. a Punkte maximal
konstruktiver Interferenz, b das Hologramm („Cosinusgitter“), c Rekonstruktion
der Objektwelle durch Beugung am Gitter

um das Beugungsmaximum nullter Ordnung und um die
beiden Maxima erster Ordnung. Dies erkennt man mit
Abb. 8.42. Dort ist wie in Abb. 8.39 angenommen, dass
die Referenzwelle senkrecht auf die Fotoplatte fällt. Die
Objektwelle soll hier eine ebene Welle sein, die mit dem
k-Vektor in der (y, z)-Ebene unter dem Winkel ϑ einfällt.
Abbildung 8.42a zeigt dasWellenfeld zu einem Zeitpunkt,
in dem gerade ein Wellenberg der Referenzwelle die Plat-
te erreicht hat. Maximal konstruktive Interferenz besteht
an den durch Kreise gekennzeichneten Punkten. Sie ha-
ben voneinander den Abstand d = λ/ sin ϑ. Zu einem
späteren Zeitpunkt sind die Wellenfronten beider Wel-
len weiter vorgerückt. An der Lage der Punkte gleicher
Phase, also dermaximal konstruktiven Interferenz, ändert
sich dadurch nichts. Die Phase ψ in (8.63) hängt hier nur
von y ab, und es ist

ψ(y)
2π

=
y
d
,

ψ(y) =
2π

λ
y sinϑ = (k sin ϑ)y .

(8.68)
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Die Intensitätsverteilung in der Hologrammebene ist also

I(x, y) = E2
R0 + E2

O0

+ 2ER0EO0 cos
(
2π sin ϑ

λ
y
)
.

(8.69)

Es entsteht als Hologramm ein Cosinusgitter (Abb.
8.42b). Es hat die Eigenschaft, dass alle Beugungsmaxi-
ma mit m ≥ 2 verschwinden (Abb. 8.31). In Abb. 8.42c
fällt die Rekonstruktionswelle auf dieses Gitter. Das Ma-
ximum nullter Ordnung liegt bei ϑ = 0, in Richtung der
Rekonstruktionswelle. Die Beugungsmaxima 1. Ordnung
liegen nach (8.22) bei

g sinϑ = ±λ → sin ϑ = ±λ

g
.

Das Maximum mit m = +1 liegt genau in der Richtung,
in der bei der Aufnahme des Hologramms die Objektwel-
le lief. Nun kann eine noch so komplizierte Objektwelle
durch ein Fourier-Integral als Überlagerung von ebenen
Wellen dargestellt werden. Jede Teilwelle erzeugt entspre-
chend ihrer Ausbreitungsrichtung und ihrer Amplitude
durch Interferenz mit der Referenzwelle auf der Foto-
platte ein anderes Cosinusgitter, und durch Überlagerung
aller dieser Gitter entsteht schließlich ein Hologramm von
dem in Abb. 8.41 gezeigten Typ. Ein Hologramm ist also
nichts anderes als ein sehr kompliziertes Beugungsgitter.

Es gibt viele Variationen des in den Abb. 8.39 und 8.40 ge-
zeigten Grundprinzips. Man kann die Objektwelle senk-
recht und die Referenzwelle unter dem Winkel ϑ auf die
Fotoplatte fallen lassen, oder auch beide Wellen unter be-
liebigenWinkeln. Auch kannman statt der ebenenWellen
sphärische Wellen verwenden. Außer den hier diskutier-
ten Transmissionshologrammen gibt es Reflexionsholo-
gramme, und man kann die in der entwickelten fotografi-
schen Emulsion enthaltenen Silberkörner „rehalogenisie-
ren“ und in transparente Kriställchen verwandeln. Dann
erhält man statt eines Amplitudengitters mit dem Trans-
missionskoeffizienten τ(x, y) ein Phasengitter mit dem
Brechungsindex n(x, y). Das hat große Vorteile: BeimAm-
plitudenhologramm wird die Rekonstruktionswelle zum
größten Teil absorbiert, beim Phasenhologramm dagegen
nicht. Man erhält also viel hellere Bilder. Solche Pha-
senhologramme kann man auch direkt durch Belichtung
gewisser Polymerstoffe erzeugen.

Man kann auf der Fotoplatte bzw. auf der Polymer-
schicht simultan mehrere Hologramme speichern, die zu
verschiedenen Objekten gehören, indemman bei der Auf-
nahme verschiedeneWellenlängen und verschiedene Ein-
fallswinkel ϑ einsetzt. Wenn man das Objekt dicht vor

a

b

Abbildung 8.43 Holographische Interferometrie: a Deformation eines Sturz-
helms, auf den mit einem Hammer geschlagen wird. Belichtung durch zwei
Laserpulse von 25 ns Dauer im Zeitabstand von Δt = 25µs, nach Gates et al
(1972). b Deformation eines Feinmessgeräts bei Temperaturerhöhung um 10 °C,
Δt = 10min, aus Haferkorn (1994)

die empfindliche Schicht stellt, kann man die Bilder auch
mit Weißlicht rekonstruieren. Sie erscheinen dann in den
Farben und unter denWinkeln, die bei der Aufnahme ver-
wendet wurden.

Anwendungen. Anwendungen der Holografie einfach
nur zur Erzeugung dreidimensionaler Bilder spielen kei-
ne große Rolle, und auch die schillernden Bildchen auf
Scheckkarten, Geldscheinen und Verpackungen rechtfer-
tigen wohl kaum eine Beschäftigung mit diesem Thema.
Man kann solche in Weißlicht erkennbaren Regenbogen-
hologramme mit Hilfe eines gewöhnlichen Transmissi-
onshologramms herstellen, wobei von dem reellen Bild
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des Objekts (siehe Abb. 8.40) auf raffinierte Weise ein
zweites Hologramm gefertigt wird.14 Es gibt jedoch eine
Reihe von Anwendungen, die technisch von großer Be-
deutung sind oder werden könnten.

Die holografische Interferometrie ist eine in industriel-
len Entwicklungslabors und in der Fertigungskontrolle
eingesetzte Methode, um minimale Deformationen auf-
zuzeichnen und auszumessen. Um festzustellen, ob sich
ein Werkstück unter Last in der vorgesehenen Weise ver-
formt, wird zunächst eine Fotoplattemit demHologramm
des unbelasteten Werkstücks belichtet und dann noch-
mals unter Last. Das doppelt belichtete Hologramm zeigt
nach der Entwicklung Interferenzstreifen, an denen sich
die Deformation genau ablesen lässt (Abb. 8.43). Man
kann sich auch zunächst ein Hologramm des Werkstücks
im unbelasteten Zustand herstellen und die Fotoplatte
entwickeln, ohne sie aus dem Versuchsaufbau heraus-
zunehmen. Dann betrachtet man durch das Hologramm
hindurch das Werkstück bei Belastung und eingeschalte-
ter Referenzwelle. Die Formänderungen können nun in

14 Siehe z. B. J. Walker, Scientific American September 1986, S. 110.

Echtzeit mit Hilfe der Interferenzstreifen verfolgt wer-
den.

Weitere Anwendungen findet die Holografie bei der In-
formationsspeicherung und bei der Bildverarbeitung.
Auf diesen Gebieten ist die Entwicklung noch sehr im
Fluss. Näheres dazu und zu den vielfältigen Möglichkei-
ten der Holografie findet man in der Spezialliteratur15.
Schließlich ist noch die holografische Herstellung opti-
scher Bauelemente zu erwähnen. Durch Überlagerung
von zwei ebenen Wellen kann man ein Cosinusgitter her-
stellen (Abb. 8.31), mit dem man ein Prisma ersetzen
kann. Eine Zonenplatte kann als Hologramm einer Punkt-
lichtquelle hergestellt und als Linse verwendet werden
(Abb. 8.25). Solche Bauelemente können als Massenpro-
dukt billig hergestellt werden, und sie nehmen wenig
Platz in Anspruch. Die starke Abhängigkeit des Ablenk-
winkels bzw. der Brennweite von der Wellenlänge stört
nicht, da diese Bauelemente in Kombination mit einem
Laser verwendet werden. Sie kommen z. B. in den Lesege-
räten an der Ladenkasse des Supermarktes zum Einsatz.

15 H. J. Coufal, D. Psaltis und G.T. Sincerbox (Herausg.): „Hologra-
phic Data Storage“, Springer (2012), siehe auch den Abschnitt „On
the horizon: Holographic Storage“ in J.W. Toigo: „Avoiding a Data
Crunch“, Scientific American, Mai 2000, S. 40. W.T. Cathey: „Op-
tical Information Processing and Holography“, John Wiley & Sons
(1989); P. Hariharan: „Basics of Holography“, Cambridge Universi-
ty Press (2002); G. Saxby: „Practical Holography“, 3. Auflage, CRC
Press (2003).
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Übungsaufgaben

8.1. Beugung am Gitter. a) In Kupferdampf erzeugtes
Licht trifft senkrecht auf ein Gitter. Man beobachtet das
Beugungsmaximum 1. Ordnung für die bekannte Wel-
lenlänge λ = 515,3 nm beim Ablenkwinkel ϑ = 8,47°. Wie
groß ist die Gitterkonstante g?

b) Geben Sie für folgende Stellen im Beugungsbild des
Gitters das Verhältnis der Intensität zurMaximalintensität
an: (1) erstes Hauptmaximum neben dem Hauptmaxi-
mum nullter Ordnung, (2) erstes Nebenmaximum neben
dem Hauptmaximum nullter Ordnung (die Phasenver-
schiebung δ liegt ungefähr in der Mitte zwischen den
Werten für das 1. und 2. Minimum), (3) Nebenmaximum
in der Mitte zwischen den Hauptmaxima nullter und
erster Ordnung. Das Verhältnis von Spaltbreite zu Git-
terabstand ist in allen Fällen D/g = 1/5, die Anzahl der
Striche 10 000.

8.2. Röntgenbeugung am Reflexionsgitter. Die Wel-
lenlänge von Röntgenstrahlen wurde erstmals durch Beu-
gung an einem Reflexionsgitter bestimmt. Bei diesenMes-
sungen muss man einen Einfallswinkel ϑ sehr nahe bei
90° wählen, also streifenden Einfall auf das Gitter. Es
ist daher zweckmäßig, statt des Einfallswinkels ϑ den
Winkel δ = π/2− ϑ zwischen den Röntgenstrahlen und
der Gitterebene einzuführen. Ein derartiges Experiment
wurde z. B. mit einer Röntgenlinie des Kupfer (Kα-Linie)
durchgeführt. Auf einem Film in großem Abstand seit-
lich neben dem Gitter registriert man: (1) den (abge-
schwächten) einfallenden Röntgenstrahl, der das Gitter
geradlinig durchdrungen hat, (2) den am Gitter reflek-
tierten Röntgenstrahl; er hat einen Winkelabstand 2δ0 =
11,64 · 10−3 rad von (1) und entspricht dem Beugungs-
maximum nullter Ordnung, (3) Beugungsmaxima in den
Winkelabständen α1 = δ1 − δ0 = 4,83 · 10−3 rad und α2 =
δ2 − δ0 = 8,07 · 10−3 rad von (2). Die Gitterkonstante g be-
stimmt man mit Licht bekannter Wellenlänge, siehe das
Resultat von Aufgabe 8.1a. Wie groß ist die Wellenlänge
der Röntgenlinie?

8.3. Übergang von der Fresnel-Beugung zur
Fraunhofer-Beugung. Gleichung (8.1) ist die Bedingung
für das Vorliegen der Fraunhoferschen Beugung. Für die
Fresnel-Beugung liefert (8.41) die Radien der Fresnelzo-
nen. Zeigen Sie, dass mit geeigneten Kriterien für R0 und
die Zahl der Fresnelzonen (8.41) auf (8.1) führt.

8.4. Fresnel-Beugung an einer kreisförmigen Blende.
a) Berechnen Sie für einen parallel gebündelten Laser-
strahl, der senkrecht auf eine kreisrunde Blende trifft, die

Abstände rn auf der optischen Achse hinter der Blen-
de, bei denen eine ganze Zahl von Fresnelschen Zonen
zur Intensität beiträgt. Geben Sie für die Versuchsanord-
nung von Abb. 8.3 die Radien rn für n = 1, 10, 11, 12 an
(λ = 633nm, Blendenradius ρ = 0,515mm). Bei welchen
der obigen n-Werte erwarten Sie auf der optischen Achse
Maxima, bei welchen Minima der Beugungsfigur? Ver-
gleichen Sie mit Abb. 8.3.

b) Bei welchem rn erwarten Sie den Übergang zur Fraun-
hoferschen Beugung?

c) In Abb. 8.3a beobachtet man den Grenzfall der geo-
metrischen Optik. Wie groß ist hier die Zahl der Fresnel-
Zonen?

8.5. Camera obscura. Beschreiben Sie die Wirkungs-
weise einer Lochkamera als Abbildung durch eine Fres-
nelsche Zonenplatte nach Abb. 8.25 und geben Sie für eine
Gegenstands- und Bildweite von 30 cm einen geeigneten
Lochradius an.

8.6. Schattenwurf. Das in Abb. 8.2 gezeigte Schatten-
bild einer Kante hat den Maßstab 1,5 : 1. Schätzen Sie
mit Hilfe von Abb. 8.26 grob ab, in welchem Abstand z
hinter dem Bleistift der Schirm aufgestellt gewesen sein
muss, der fotografiert wurde. Die Lampe hat einen endli-
chen Durchmesser und besitzt, vom Bleistift aus gesehen,
einen endlichen Winkeldurchmesser 2α. Hierdurch ent-
steht hinter dem Bleistift ein Halbschatten, der sich dem
Interferenzbild überlagert. Wie klein muss man α halten,
damit der Halbschatten das Interferenzbild nicht stört?
Kann man bei direkter Beleuchtung mit Sonnenlicht die
Fresnelsche Beugung an einer Kante beobachten (von der
Erde aus gesehen, besitzt die Sonne einen Winkeldurch-
messer 2α ≈ 9mrad)?

8.7. Beleuchtungsspalt beim Gitterspektrometer.
a) Welche Bedingung muss die Gitterkonstante eines Git-
ters erfüllen, damit man bei einer Wellenlänge λmax die
m-ten Beugungsmaxima gerade noch beobachten kann?

b) Wie groß ist die Differenz Δϑ der Beugungswinkel
zwischen dem Hauptmaximum m-ter Ordnung und dem
ersten benachbarten Minimum bei einer Wellenlänge λ <
λmax?

c) Umwie viel verschiebt sich der Beugungswinkel desm-
ten Hauptmaximums, wenn man die Wellenlänge um Δλ
verschiebt?

d) Entnehmen Sie den Resultaten von b) und c) das Auf-
lösungsvermögen (8.27).
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e) Das Gitter wird von fast parallelem Licht beleuchtet,
das dadurch erzeugt wird, dass das Licht einer Quelle
auf einen Beleuchtungsspalt der Breite b fokussiert wird,
der sich in der Brennebene einer hinter ihm stehenden
Linse mit der Brennweite f befindet. Wie groß ist die
Wellenlänge λA des Lichts, bei der die Auflösungsgren-

ze Δϑ genau so groß ist wie die Winkeldivergenz b/f des
am Gitter ankommenden Lichts? Kann man mit fester
Beleuchtungsspaltbreite ein von λ unabhängiges Auflö-
sungsvermögen erreichen ? (Hinweis: Man benötigt das
Resultat von a).)
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Transversale Wellen können polarisiert sein, sie sind
sogar im Allgemeinen polarisiert. Das haben wir bei
den Versuchen mit dem Gummiseil schon zu Beginn
von Kap. 1 gesehen. Bisher haben wir die Polari-
sation des Lichts weitgehend ignoriert; wir wollen
nun die damit verbundenen Phänomene genauer
untersuchen. Zunächst geht es um die Beschreibung
der verschiedenen Polarisationszustände. Im zwei-
ten Abschnitt behandeln wir einige Methoden zur
Herstellung und zum Nachweis von linear pola-
risiertem Licht und im dritten die merkwürdigen
Phänomene der Doppelbrechung und derenAnwen-
dungen. Dabei werden wir uns auch genauer mit
dem zirkular polarisierten Licht befassen. Als Bei-
spiel beschreiben wir, wie die Polarisation als Hilfs-
mittel in der hochauflösenden STED-Mikroskopie
eingesetzt wird.

Doppelbrechung kann auch durch elektrische oder
magnetische Felder hervorgerufen werden. Das
wird im letzten Abschnitt behandelt, zusammenmit
einigen Anwendungen: Mit Hilfe der induzierten
Doppelbrechung lassen sich „Einbahnstraßen“ für
Licht und optische Schalter mit sehr kurzen Schalt-
zeiten realisieren. Weiterhin wird ein Einblick in
die nichtlineare Optik gegeben und als Beispiel die
für die Lasertechnik wichtige Frequenzverdopplung
von Licht behandelt. Auch hier spielen Polarisation
und Doppelbrechung eine entscheidende Rolle.

9.1 Polarisationszustände

Wir wissen bereits aus früheren Kapiteln, dass bei line-
ar polarisierten elektromagnetischen Wellen die Schwin-
gungsrichtung des E-Vektors als Polarisationsrichtung
definiert wird.1 Außerdem wissen wir, dass bei Über-
lagerung von zwei kohärenten Wellen, die in der glei-
chen Richtung linear polarisiert sind, die gleichen Inter-
ferenzerscheinungen auftreten, wie bei skalaren Wellen,
und dass man keine Interferenzstreifen beobachtet, wenn
die Polarisationsrichtungen senkrecht aufeinander stehen
(Abschn. 7.1). Es geschieht aber etwas anderes:Wirwollen
dies nun untersuchen und betrachten den Fall, dass zwei
in der gleichen Richtung laufende und senkrecht zueinan-
der polarisierte kohärente Wellen überlagert werden.

1 In der älteren Literatur wird die Richtung von H als Polarisations-
richtung definiert. Also aufgepasst!

Linear, zirkular und elliptisch polarisiertes Licht

Nehmen wir an, zwei ebene monochromatische Wellen
gleicher Frequenz liefen in z-Richtung. Die eine sei in x-
Richtung, die andere in y-Richtung linear polarisiert. Die
elektrische Feldstärke der resultierendenWelle ist dann

E(z, t) = Ex0x̂ cos(kz− ωt)
+ Ey0ŷ cos(kz− ωt+ δ) .

(9.1)

Das Ergebnis dieser Überlagerung ist in Abb. 9.1 gezeigt.
Es kommt entscheidend auf die Phasendifferenz δ zwi-
schen den beiden Wellen an, und auf das Verhältnis der
Amplituden. In Abb. 9.1a ist die Phasendifferenz δ = 0:
Es entsteht eine linear polarisierte Welle, deren Schwin-
gungsrichtung mit der x-Achse den Winkel ϕ einschließt:

Lineare Polarisation:
E(z, t) = E0 cos(kz− ωt)

E0 =
√

E2
x0 + E2

y0 , tan ϕ =
Ey0

Ex0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(9.2)

In Abb. 9.1b und c ist die Phasendifferenz δ = ±π
2 und

die Amplituden der Teilwellen sind gleich: Ex0 = Ey0 =

E0/
√
2. Es entsteht eine rechtsdrehende bzw. eine links-

drehende zirkular polarisierte Welle (vgl. Abb. 1.4):

Rechtszirkular:

E(R) =
E0√
2

[
x̂ cos(kz− ωt) + ŷ cos

(
kz− ωt− π

2

)]

=
E0√
2
[x̂ cos(kz− ωt) + ŷ sin(kz− ωt)] .

(9.3)

Linkszirkular:

E(L) =
E0√
2

[
x̂ cos(kz− ωt) + ŷ cos

(
kz− ωt+

π

2

)]

=
E0√
2
[x̂ cos(kz− ωt)− ŷ sin(kz− ωt)] .

(9.4)

Der E-Vektor rotiert um die z-Achse. Sein Betrag bleibt da-
bei konstant: |E(z, t)| = E0 = Ex0 = Ey0. Abbildung 9.2b
zeigt die Momentaufnahme einer rechtszirkular polari-
sierten Welle. Die Pfeilspitzen der E-Vektoren bilden eine
Rechtsschraube. Beim Fortschreiten der Welle verschiebt
sich das inAbb. 9.2 gezeigte Bild in z-Richtung.Wennman
bei z = z0 die zeitliche Änderung des E-Vektors verfolgt
und der Welle entgegenblickt, läuft bei einer rechtszirku-
lar polarisierten Welle der E-Vektor im Uhrzeigersinn, bei
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δ = − π
2
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δ = + π
2
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Abbildung 9.1 Polarisationszustände von elektromagnetischen Wellen. Aus-
breitung in z-Richtung, d. h. senkrecht zur Zeichenebene, und auf den Beobach-
ter zu

einer linkszirkular polarisierten Welle entgegengesetzt.
Man kann auch die Chiralität (Händigkeit) der Wellen
definieren: Bildet der bei z = z0 beobachtete Drehsinn des
E-Vektors mit der Fortpflanzungsrichtung der Welle ei-
ne Rechtsschraube, nennt man das rechtshändig zirkulare
Polarisation; bilden sie eine Linksschraube, ist die Welle
linkshändig zirkular polarisiert (Abb. 9.2).

Ebenso wie man aus zwei in x- und y-Richtung linear
polarisierten Wellen zirkular polarisierte Wellen machen

z

z0

Ex

Eya

b

Abbildung 9.2 Rechtszirkular polarisierte Welle. a Momentaufnahme. Beim
Fortschreiten der Welle verschiebt sich die hier gezeichnete Spirale in z-Richtung.
In der Ebene z = z0 rotiert der E-Vektor, entgegengesetzt zur z-Richtung be-
trachtet, im Uhrzeigersinn. b Dieser Drehsinn und die Fortpflanzungsrichtung
ergeben eine Linksschraube. Die rechtszirkular polarisierte Welle ist
also linkshändig zirkular polarisiert. In der Optik wird die Definition (a)
bevorzugt, in der Quantenphysik die Definition (b)

kann, kann man auch durch Überlagerung von einer
links- und einer rechts-zirkular polarisierten Welle linear
polarisierte Wellen erzeugen. Die beiden zirkular pola-
risierten Wellen sollen die Amplituden E0/2 und die
Phasen δR und δL haben:

E(R) =
E0

2
[
x̂ cos (kz− ωt+ δR)

+ ŷ sin (kz− ωt+ δR)
]
,

E(L) =
E0

2
[
x̂ cos (kz− ωt+ δL)

− ŷ sin (kz− ωt+ δL)
]
.

Mit den Formeln für cos α + cos β und sin α − sin β erhält
man

E(R) + E(L) = E0

[
x̂ cos

δR − δL
2

+ ŷ sin
δR − δL

2

]

· cos
(
kz− ωt+

δR + δL
2

)
.

(9.5)

Das ist eine linear polarisierte Welle, deren Schwingungs-
richtung mit der x-Achse den Winkel

ϕ =
δR − δL

2
(9.6)

einschließt. Es ist Ex0 = E0 cos ϕ und Ey0 = E0 sin ϕ.
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Wenn man bei einer zirkular polarisierten Welle die Be-
dingung Ex0 = Ey0 fallen lässt, läuft der E-Vektor offen-
sichtlich nicht mehr auf einem Kreis, sondern auf einer
Ellipse um, deren Halbachsen durch Ex0 und Ey0 gegeben
sind. Nimmt auch der in (9.1) eingeführte Phasenwinkel
δ beliebige Werte an, entsteht eine elliptische Polarisati-
on, bei der die Halbachsen der Ellipse gegen das (x, y)-
Koordinatensystem verdreht sind (Abb. 9.2d).

Die elliptische Polarisation ist der allgemeinste Polari-
sationszustand, der alle anderen als Spezialfälle enthält.
Sie ist durch drei Parameter charakterisiert: Man kann
entweder die in Abb. 9.2d definierten geometrischen Pa-
rameter a, b und ϕ verwenden, oder die drei Parameter
von (9.1): Ex0, Ey0 und δ. Wie die beiden Parametersätze
miteinander zusammenhängen, sieht man in den folgen-
den Gleichungen:

S1 = E2
x0 − E2

y0 = (a2 + b2) cos 2η cos 2ϕ , (9.7)

S2 = 2Ex0Ey0 cos δ = (a2 + b2) cos 2η sin 2ϕ , (9.8)

S3 = 2Ex0Ey0 sin δ = (a2 + b2) sin 2η . (9.9)

Hierbei ist tan η = ±b/a. Das Vorzeichen bestimmt den
Umlaufsinn des E-Vektors. Die Intensität der Welle ist
proportional zu

S0 = E2
x0 + E2

y0 . (9.10)

Bei linearer Polarisation (δ = 0) ist S3 = 0. Lineare Pola-
risation in x-Richtung bedeutet S1/S0 = +1, S2 = 0; Po-
larisation in y-Richtung bedeutet S1/S0 = −1, S2 = 0. Bei
zirkularer Polarisation ist S1 = S2 = 0. Rechtszirkular be-
deutet S3/S0 = −1, linkszirkular bedeutet S3/S0 = +1.
Die Größen S0, S1, S2, S3 sind die sogenannten Stokes-
Parameter. Man kann sie durch Intensitätsmessungen
mit Polarisationsfiltern direkt bestimmen, wie wir weiter
unten sehen werden (Abschn. 9.3). Außerdem sind sie be-
sonders gut dazu geeignet, in der theoretischen Physik die
Polarisationszustände von Licht zu charakterisieren.

Unpolarisiertes und teilweise polarisiertes Licht

Wir müssen uns nun fragen, wie das unpolarisierte Licht
zustande kommt. Das Licht, das ein einzelnes Atom aus-
sendet, ist vollständig polarisiert. Darauf werden wir in
Bd. V/6 zurückkommen. Im „natürlichen Licht“ aus einer
Lichtquelle überlagern sich die Emissionsprozesse vieler
Atome. Das führt zu schnellen Schwankungen des re-
sultierenden Polarisationszustands, gerade so, wie diese
Überlagerung auch zu Schwankungen der Phase führt
(Abb. 7.18). Abbildung 9.3 zeigt das Ergebnis einer Rech-
nung, bei der wie in Abb. 7.18 exponentiell abklingende
Wellenzüge überlagert wurden, diesmal jedoch mit statis-
tischwechselnder Polarisationsrichtung.Man sieht: Wenn
die momentane lineare Polarisation hohe Werte erreicht,

Zeit

S1/S0

S3/S0

Abbildung 9.3 Stokes-Parameter S1 und S3 von unpolarisiertem Licht, zum
Vergleich mit Abb. 7.18. S1/S0 = +1: lineare Polarisation in x-Richtung,
S1/S0 = −1 in y-Richtung. S3/S0 = +1: linkszirkulare, S3/S0 = −1 rechts-
zirkulare Polarisation

ist die zirkulare klein, und umgekehrt. Die Schwankun-
gen erfolgen in ähnlicher Weise wie in Abb. 7.18 die
Schwankungen der Amplitude und der Phase. Mathema-
tisch kann man die Welle beschreiben, indemman zwei in
x- und in y-Richtung linear polarisierte Wellen von dem
in (7.31) angegebenen Typ überlagert:

E(z, t) = Ex0(t)x̂ cos
(
kz− ωt+ δx(t)

)

+ Ey0(t)ŷ cos
(
kz− ωt+ δy(t)

)
.

(9.11)

k und ω sind die zeitlichen Mittelwerte der Wellenzahl
und der Frequenz ω. Die Phasen δx und δy sind nicht
miteinander korreliert, und die Amplituden sind im zeit-
lichen Mittel genau gleich:

E2
x0 = E2

y0 . (9.12)

Die zeitlichen Schwankungen der Phasendifferenz
δ(t) = δy(t) − δx(t) und des Amplitudenverhältnisses
Ey0(t)/Ex0(t) sorgen für den ständigen Wechsel des Po-
larisationszustands. Dieser Wechsel geschieht so schnell,
dass die momentane Polarisationsrichtung nicht messbar
ist. Das natürliche Licht wird deshalb meist als unpolari-
siert bezeichnet.

Obgleich beim natürlichen Licht ein enger Zusammen-
hang zwischen den Schwankungen der Phase und den
Schwankungen des Polarisationszustands besteht, lassen
sich beide Größen unabhängig voneinander manipulie-
ren: Mit einem Monochromator kann man die Bandbreite
des Lichts einengen, ohne etwas an der Polarisation zu
verändern und ein Polarisationsfilter lässt im wesentli-
chen nur eine Polarisationsrichtung hindurch, ohne die
Kohärenzlänge zu beeinflussen.

Gewöhnlich hat man es mit teilweise polarisiertem Licht
zu tun. Man kann es sich vorstellen als Überlagerung von
vollständig polarisiertem und von unpolarisiertem Licht.
Zur Beschreibungmit den Stokes-Parametern hat man die
in (9.7)–(9.10) als konstant angenommenen elektromagne-
tischen Größen durch zeitliche Mittelwerte zu ersetzen,



9.2 Polarisationseffekte bei der Emission, Absorption und Reflexion von Licht 197

Te
il
I

also durch E2
x0, E2

y0, Ex0Ey0 cos δ und Ex0Ey0 sin δ. Man
sieht sofort, dass bei unpolarisiertem Licht S1 = S2 =
S3 = 0 ist. Da andererseits bei vollständiger Polarisation
S21+S22+S23 = S20 ist, kannmanden Polarisationsgradmit

P =

√
S21 + S22 + S23

S0
(9.13)

definieren. Nun erkennt man auch, weshalbman zur Cha-
rakterisierung von polarisiertem Licht vier und nicht nur
drei Parameter braucht.

9.2 Polarisationseffekte bei der
Emission, Absorption und
Reflexion von Licht

Bei der Wechselwirkung von Licht mit Materie hängt die
Absorption, Reflexion, Lichtbrechung oder Streuung im
allgemeinen vom Polarisationszustand des Lichts ab. Das
hat zur Folge, dass unpolarisiertes Licht nachWechselwir-
kung mit Materie gewöhnlich teilweise polarisiert ist. Es
ist sogar ausgesprochen schwierig, vollkommen unpola-
risiertes Licht herzustellen oder Licht in diesem Zustand
zu erhalten. Wir untersuchen in diesem Abschnitt die
Absorption und Reflexion von polarisiertem Licht, die
Brechung im nächsten. Polarisationseffekte bei der Licht-
streuung werden in Bd. V/1 behandelt.

Dipolstrahlung und Polarisationsfilter

Bei der Erzeugung elektromagnetischer Wellen hat man
es fast immer mit Dipolstrahlung zu tun; dies gilt für
Hochfrequenzsender wie für Atome. Dass die Dipolstrah-
lung parallel zur Schwingungsrichtung des Dipols linear
polarisiert ist, ergibt sich ohne weiteres aus den Richtun-
gen der elektrischen und magnetischen Felder, die der
schwingende Dipol erzeugt (Abb. 2.17). Experimentell
kann man die Polarisation der Strahlung mit einem zwei-
ten Dipol nachweisen, der als Antenne eines Empfängers
dient: Der Empfang funktioniert optimal, wenn beide Di-
pole parallel ausgerichtet sind (Abb. 9.4a). Wenn sie senk-
recht zueinander stehen, wird kein Signal empfangen,
denn es gibt kein E-Feld, das den Empfängerdipol anre-
gen könnte (Abb. 9.4b). Von dieser Tatsache ausgehend,
kann man Polarisationsfilter bauen. Im Idealfall lassen
sie eine Polarisationsrichtung hindurch und absorbieren
die dazu senkrecht polarisierte Strahlung vollständig. Be-
sonders einfach ist es, ein solches Filter für Mikrowellen
herzustellen. In einen Rahmen werden Drähte gespannt.

a

b

c

z

Sender
Empfänger

d

e

f

y

x

α

Abbildung 9.4 Dipolantennen und Hertzsches Gitter

Der Abstand zwischen den Drähten ist von der Größen-
ordnung der Wellenlänge oder kleiner. Dieses Filter wird
nun zwischen Sender und Empfänger gestellt. In der in
Abb. 9.4c gezeigten Stellung wird die Welle fast vollstän-
dig absorbiert: Sie regt in den Drähten elektrische Ströme
an, die einerseits Joulesche Wärme erzeugen, anderer-
seits zur Abstrahlung elektromagnetischerWellen führen.
Diese Wellen sind gegen die einfallende Welle phasen-
verschoben, sodass sie hinter dem Gitter mit dem Rest
der primären Welle destruktiv interferieren. In der in
Abb. 9.4d gezeigten Stellung lässt dagegen das Gitter die
Welle nahezu ungeschwächt hindurch: In y-Richtung kön-
nen keine Ströme fließen.

Dreht man nun das Gitter um einemWinkel α (Abb. 9.4e),
wird die Welle mit geschwächter Intensität durchgelas-
sen. Das wird wohl jeder erwarten; erstaunlich ist aber,
dass man nun auch ein Signal empfängt, wenn die
Empfangsantenne wie in Abb. 9.4b in x-Richtung zeigt
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Abbildung 9.5 Zu Abb. 9.4f. α
ist der Winkel zwischen der Pola-
risationsrichtung der einfallenden
Welle und der Durchlassrichtung
des Filters

y

x

α

α

y

x

E

E
co

sα

E cosα sinα

(Abb. 9.4f): Das Gitter hat die Polarisationsrichtung ge-
dreht! Wie das zustande kommt, zeigt Abb. 9.5. Wir
zerlegen den E-Vektor der einfallenden Welle in zwei
Komponenten Ex′ und Ey′ . Nur die y′-Komponente wird
vomFilter durchgelassen.Man erhält eine unter demWin-
kel α polarisierte Welle. Sie hat auch eine x-Komponente,
und diese wird in Abb. 9.4f vom Empfänger nachgewie-
sen. Ein solches Gitter benutzte schon Hertz bei seinen
Experimenten mit elektromagnetischen Wellen („Hertz-
sches Gitter“). Auch für den sichtbaren Spektralbereich
kannman nach diesem Prinzip ein Polarisationsfilter bau-
en. Ein Polymer (Polyvinylalkohol2) wird zu einer Folie
verarbeitet und bei diesem Prozess im noch warmen Zu-
stand mechanisch gestreckt. Dadurch werden die langen
Molekülketten des Polymers ausgerichtet. Dann lässtman
Jod in die Folie eindiffundieren. Es lagert sich so an das
Polymer an, dass sich langgestreckte I2-Ketten bilden.
Unterstützt durch die OH-Gruppe des Polyvinylalkohols
können sich entlang dieser Ketten Elektronen des Jod wie
in einemLeiter bewegen. Es entsteht ein HertzschesGitter
von molekularer Dimension. Diese Polaroid-Folien3 sind
die heute gebräuchlichste Form eines Polarisationsfilters.

Wie wir weiter unten sehen werden, gibt es noch andere
Methoden, Filter für linear polarisiertes Licht zu bauen.
Die Eigenschaften eines solchen Filters kann man durch
drei Größen charakterisieren: Die Durchlassrichtung des
Filters ist die Richtung, in der der E-Vektor von linear
polarisiertem Licht schwingen muss, damit die Transmis-
sion ihren Maximalwert Tmax erreicht. Senkrecht dazu
wird die minimale Transmission Tmin gemessen. Bei ei-
nem idealen Polarisationsfilter wäre Tmax = 1 und Tmin =
0. Eine gute Polaroid-Folie hat die Transmissionen Tmax ≈
70− 80%, Tmin � 10−3.

Mit einem Polarisationsfilter kann man aus natürlichem
Licht linear polarisiertes Licht herausfiltern: Dann dient
das Filter als Polarisator. Man kann damit aber auch die
lineare Polarisation von Licht messen: Dann dient das
Filter als Analysator. In der in Abb. 9.6a gezeigten An-
ordnung dient das Polarisationsfilter P1 als Polarisator,

2 Ein Polymer ähnlich wie das bekannte Polyvinylchlorid (PVC). An
der Stelle des Cl-Ions sitzt jedoch eine OH-Gruppe.
3 So benannt von ihrem Erfinder, dem Amerikaner Edwin H. Land
(1909–1991). Die bekannte Polaroid-Sofortbild-Kamera hat mit der
Polarisationsfolie nur gemein, dass sie ebenfalls von Land erfunden
wurde und in der von Land gegründeten Polaroid-Corporation herge-
stellt wird.

a

b

α

Detektor

Licht

I(α)

P1

P2

α90°0° 180°

Abbildung 9.6 a Eine Polarisator-Analysator Anordnung. Die Pfeile auf den
Polarisatoren P1 und P2 zeigen in die Richtung des E-Vektors des durchgelasse-
nen Lichts. b Vom Detektor registrierte Intensität

das Filter P2 als Analysator. α ist der Winkel zwischen
den Durchlassrichtungen der beiden Filter. Sind P1 und
P2 ideale Polarisationsfilter und ist E1 die elektrische Feld-
stärke des linear polarisierten Lichts hinter dem Filter
P1, dann ist nach Abb. 9.5 hinter P2 die Feldstärke E2 =
E1 cos α. Die vom Detektor gemessene Intensität ist also

I(α) = I0 cos2 α (Malussches Gesetz) . (9.14)

Bei „gekreuzten Filtern“ (α = 90°) ist sie beim idealen Fil-
ter Null (Abb. 9.5). Die Eigenschaften eines realen Filters
kannman in dieser Anordnung experimentell bestimmen.
Das geht sogar, wenn man kein bereits geeichtes Filter zur
Verfügung hat, sofern man für P1 und P2 zwei baugleiche
Filter verwendet (Aufgabe 9.2). Abbildung 9.7 zeigt zwei
gekreuzte Polaroid-Folien vor einer Lampe. – Im unpola-
risierten Licht erscheint auch die beste Polarisationsfolie
grau: 50% des Lichts werden wegen falscher Polarisation
absorbiert.

Dichroismus

Dichroitisch (gesprochen: dikro|itisch) nennt man einen
Kristall, in dem die Absorption des Lichts von der Polari-
sationsrichtung abhängt. Ein solcher Kristall muss asym-
metrisch aufgebaut sein, d. h. er wird sicher nicht dem
kubischen Kristallsystem angehören. Im einfachsten Fall
gibt es nur eine kristallographisch ausgezeichnete Achse;
das ist dann auch die optische Achse des Kristalls. Beim
dichroitischen Kristall hängt die Absorption davon ab, ob
der E-Vektor senkrecht oder parallel zur optischen Ach-
se schwingt. Da die Absorption in den beiden Fällen bei
verschiedenen Wellenlängen erfolgt, zeigt der Kristall im
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a
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Abbildung 9.7 Gekreuzte Polaroid-Folien. a Lampe ausgeschaltet, b Lampe
eingeschaltet

polarisierten Licht verschiedene Farben, je nachdem, wie
man ihn gegen das Licht hält. (Dichroitisch bedeutet zwei-
farbig).

Das bekannteste Beispiel dieser Stoffgruppe ist der Tur-
malin, ein in der Natur vorkommender Halbedelstein
(Abb. 9.8a). Legt man auf einen Projektor eine Polaroid-
Folie und darauf den in der Abbildung gezeigten Kristall,
erscheint er grün, wenn seine optische Achse parallel zur
Durchlassrichtung des Filters liegt, und rosa, wenn man
ihn um 90° dreht. Es gibt auch Turmaline, die in einer der
beiden Richtungen das gesamte sichtbare Licht stark ab-
sorbieren. Ein dünnes Plättchen, parallel zur Achse aus
einem solchen Kristall geschnitten, gibt ein gutes Polari-
sationsfilter (Abb. 9.8b). Ein interessantes Phänomen, auf
dessen physikalische Ursache wir im nächsten Abschnitt
näher eingehen werden. Heute sind solche Polarisations-
filter jedoch nicht mehr von praktischer Bedeutung.

Reflexion

Schon in Abschn. 5.4 hatten wir festgestellt dass die Refle-
xion an der Oberfläche eines Dielektrikums von der Po-
larisation des einfallenden Lichts abhängt. Für die beiden

a

b unpol.
Licht

Richtung der 
optischen Achse

Abbildung 9.8 Turmalin. a der Kristall, b Turmalin als Polarisationsfilter

56,3°

56,3°

Abbildung 9.9 Glasplattenstapel als Polarisator. Nur die Reflexionen des pri-
mären Strahls sind eingezeichnet. Punkte: E-Vektor schwingt senkrecht zur
Zeichenebene, Doppelpfeile : Polarisation in der Zeichenebene

Fälle, dass der E-Vektor parallel oder senkrecht zur Ein-
fallsebene schwingt, wurde in Abb. 5.23 das Reflexions-
vermögen R einer Glasoberfläche (n = 1,5) als Funktion
des Einfallswinkels aufgetragen. Liegt die Schwingungs-
richtung des E-Vektors in der Einfallsebene, gibt es einen
Winkel, bei dem der Reflexionskoeffizient Null wird. Das
ist der Brewster-Winkel (5.45).

Fällt unpolarisiertes Licht unter diesem Winkel auf ei-
ne Glasplatte, ist das reflektierte Licht vollständig linear
polarisiert: Der E-Vektor schwingt senkrecht zur Einfalls-
ebene. Das ist die bei weitem einfachste Möglichkeit,
linear polarisiertes Licht herzustellen. Zur Verstärkung
der Ausbeute kann man mehrere Glasplatten hinterein-
ander stellen (Abb. 9.9). Man mache sich klar: Wenn das
Licht unter dem Brewster-Winkel auf eine planparalle-
le Platte fällt, dann trifft es auch auf der Rückseite beim
Übergang Glas → Luft unter dem Brewster-Winkel auf
die Grenzfläche.

Wie Abb. 5.23 zeigt, ist in einem weiten Bereich in der
Umgebung des Brewster-Winkels R‖ 	 R⊥. Das reflek-
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tierte Licht ist also polarisiert, wenn das einfallende Licht
unpolarisiert war. Das findet auch praktische Anwendun-
gen, z. B. in der Fotografie: Mit einem Polarisationsfilter
kann man die ⊥-Komponente eliminieren und damit un-
erwünschte Reflexionen unterdrücken.

Auch bei Metallen hängt das Reflexionsvermögen vom
Einfallswinkel und von der Polarisation ab (Abb. 5.27).
Da der Phasensprung bei der metallischen Reflexion zwi-
schen 0 und π liegt, entsteht bei der Reflexion von linear
polarisiertem Licht im Allgemeinen elliptisch polarisier-
tes Licht. Die Parameter dieser Ellipse kann man messen
und daraus die in (5.49) eingeführten optischen Konstan-
ten nR und nI des Metalls berechnen: ein einfaches und
elegantes Verfahren. Im Übrigen zeigen diese Phänome-
ne, dass es schwierig ist, in einer mit Linsen, Prismen
oder Spiegeln ausgerüsteten Apparatur die Polarisation
von Licht wirklich genau zu bestimmen, weil an jeder
Grenzfläche der Polarisationszustand des Lichts verän-
dert wird.

9.3 Doppelbrechung

Doppelbrechung im Kalkspat: das Phänomen

Kalkspat, auch Calzit genannt, ist ein häufigesMineral. Es
besteht aus Kalziumkarbonat CaCO3. In mikrokristalliner
Form bildet es den gewöhnlichen Kalkstein und den Mar-
mor. An einigen Stellen der Erde, z. B. auf Island, findet
man jedoch auch große transparente Kalkspat-Kristalle,
die in Form eines schief gedrückten Quaders gewachsen
sind (Abb. 9.10). Bei diesen Kristallen liegen die äuße-
ren Flächen parallel zu den Flächen der rhomboedrischen
Gitterzellen, aus denen der Kristall aufgebaut ist. Wir
wollen uns ein wenig mit der Struktur dieser Kristalle be-
fassen. In Abb. 9.11 zeigt Abb. 9.11a die Gitterzelle. Die
kürzeste Raumdiagonale ist strichpunktiert eingezeich-
net. Abbildung 9.11b zeigt eine Gitterzelle in Draufsicht

Abbildung 9.10 Isländischer Kalkspat

Abbildung 9.11 a Die
rhomboedrische Gitterzelle
des Kalkspats. b Ansicht der
Gitterzelle aus der in (a) einge-
zeichneten Richtung. Nur die aus
dieser Richtung sichtbaren Ca-
und C-Atome sind eingezeichnet,
die C-Atome als Punkte.
c CO−−

3 -Ion

a

b

c

α = β = γ = 101°55'
y

β γ
α

z

x

78°5'
101°55'

α

βγ

aus dieser Richtung. Wären die Winkel α = β = γ = 90°,
würde Abb. 9.11b ein flächenzentriertes Würfelgitter dar-
stellen. Beim Calzit sind jedoch die Winkel α = β = γ =
101° 55′. Der Rhomboeder sieht also aus wie ein Würfel,
der in Richtung einer der Raumdiagonalen etwas zu-
sammengedrückt ist. Die Ca++-Ionen sind in Abb. 9.11b
als Kreise eingezeichnet, dazwischen ist die Lage der C-
Atome durch Punkte angedeutet. Die Sauerstoffatome
im CO−−

3 -Ion sitzen auf den Ecken eines gleichseitigen
Dreiecks, in dessen Zentrum sich das C-Atom befindet
(Abb. 9.11c). Die CO−−

3 -Ionen bilden ebenfalls ein flä-
chenzentriertes Rhomboedergitter, das gegenüber dem
Ca++-Gitter um eine halbe Gitterkonstante verschoben
ist. Dabei liegen die ebenen CO−−

3 -Ionen in der Zeichen-
ebene von Abb. 9.11b, also senkrecht zu der strichpunk-
tierten Linie in Abb. 9.11a. Sie sind so angeordnet, dass
sich eine dreizählige Symmetrie ergibt; d. h. bei einer 120°-
Drehung um eine Achse senkrecht zur Zeichenebene von
Abb. 9.11b ändert sich die Struktur der Gitterzelle nicht.
Man mache sich klar, dass die Symmetrieachse nicht wie
die Achse eines Rades im Kristall festliegt, sondern nur
eine Richtung im Kristall bezeichnet. Jede Gerade paral-
lel zur strichpunktierten Linie in Abb. 9.11a ist ebenso
eine Symmetrieachse. Wären die CO−−

3 -Ionen kugelsym-
metrisch, würde der Calzit kubische Kristalle bilden. Die
flächenhafte Struktur der Ionen bewirkt die Verzerrung
des kubischen Gitters zur rhomboedrischen Form. Das
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Abbildung 9.12 Doppelbrechung

a

b

c

d

optische Achse

unpol. Licht

ao-Strahl

o-Strahl

Abbildung 9.13 Der ordentliche und der außerordentliche Strahl. Die Dop-
pelpfeile und die fetten Punkte geben die Schwingungsrichtung des E-Vektors
an

beeinflusst auch die Elektronenhüllen der Atome und es
ist nicht verwunderlich, dass die optischen Eigenschaften
des Kristalls davon abhängen, ob das Licht parallel oder
senkrecht zu der oben genannten Symmetrieachse pola-
risiert ist. Sie wird die optische Achse genannt. Weniger
klar ist, zu welchen Phänomenen dies führen wird.

Hält man den Kristall mit einer seiner Flächen dicht vor’s
Auge, so schaut man durch eine planparallele Platte auf
die Außenwelt. Merkwürdigerweise sieht man alles dop-
pelt. Legt man ihn auf ein beschriebenes Blatt Papier,
erscheint die Schrift doppelt (Abb. 9.12). Lässt man einen
unpolarisierten Lichtstrahl auf eine der Kristallflächen fal-
len, wird er in zwei Teilstrahlen aufgespalten. Der eine
Strahl, genannt der ordentliche oder o-Strahl, befolgt das
Snellius’sche Brechungsgesetz, der andere, genannt der
außerordentliche oder ao-Strahl, dagegen nicht. Beson-
ders deutlich sieht man das bei senkrechtem Lichteinfall
(Abb. 9.13): Der o-Strahl läuft ungebrochen durch den
Kristall, während der ao-Strahl den in Abb. 9.13a gezeig-
ten Verlauf nimmt. Es zeigt sich, dass er stets in der Ebene
liegt, die den o-Strahl und die optische Achse enthält.
Dreht man den Kristall um den o-Strahl, bewegt sich der
ao-Strahl hinter der Platte auf einem Zylindermantel, im
Material auf einem Kegel um den o-Strahl herum. Bei-
de Teilstrahlen erweisen sich als linear polarisiert.4 Beim
o-Strahl liegt die Polarisation senkrecht zu der Ebene,
die den Strahl und die optische Achse enthält, beim ao-
Strahl in dieser Ebene (Abb. 9.13b). Ist das einfallende
Licht bereits in einer dieser Richtungen polarisiert, gibt
es im Kristall entweder nur den o-Strahl oder nur den ao-
Strahl(Abb. 9.13c und d). Nur wenn das Licht parallel zur
optischen Achse durch den Kristall läuft, ist jede Polarisa-
tionsrichtung möglich, und es gibt keine Aufspaltung des
Strahls.

Diese Erscheinungen werden unter dem Begriff Doppel-
brechung zusammen gefasst. Die nähere Untersuchung
zeigt, dass alle Kristalle außer denen des kubischen Kris-
tallsystems doppelbrechend sind; die Doppelbrechung
ist beim Kalkspat nur besonders stark ausgeprägt. Auch
zeigt sich, dass es Kristalle mit zwei optischen Achsen
gibt. Das sind die Kristalle des triklinen, des monokli-
nen und des orthorhombischen Kristallsystems (siehe
Bd. II/1.3). Optisch einachsig sind hexagonale, tetragona-
le und trigonale Kristalle; zu den zuletzt genannten gehört
der Kalkspat. Im kubischen System sind die Kristalle op-
tisch isotrop.

4 Diese Tatsache und die Polarisation des Lichts wurden von Etienne-
Louis Malus (1775–1812) entdeckt, einem französischen Militär-
Ingenieur, der sich in seinen Mußestundenmit optischen Studien be-
schäftigte. Eines Abends betrachtete er durch einen Kalkspat-Kristall
das seiner Wohnung gegenüber liegende Palais du Luxembourg und
freute sich an dem vertrauten Doppelbild. Plötzlich merkte er, dass
bei gewissen Stellungen des Kristalls mal im einen, mal im anderen
Bild der Reflex der tiefstehenden Sonne an den Fenstern des Palais
verschwand. Noch in derselben Nacht hat er mit einer Kerze, einer
Glasscheibe und seinem isländischen Kristall die Polarisation des
Lichts, den Brewster-Winkel und das Malussche Gesetz (9.14) ent-
deckt. Das war 1808, sieben Jahre vor Brewster. Warum der Winkel
nicht Malus-Winkel heißt, weiß ich auch nicht.
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Wie kommt die Doppelbrechung zustande?

Die Doppelbrechung bei einachsigen Kristallen ist mit
dem Huygensschen Prinzip (Satz 5.1) verhältnismäßig
leicht zu erklären:5 Huygens nahm an, dass beim or-
dentlichen Strahl die Elementarwellen Kugelwellen sind
wie in isotropen Medien, während sie im außerordent-
lichen Strahl die Form eines Rotationsellipsoids haben
(Abb. 9.14). Die Rotationsachse ist identisch mit der op-
tischen Achse des Kristalls. In dieser Richtung sollen
sich die Elementarwellen mit der gleichen Geschwindig-
keit ausbreiten wie im ordentlichen Strahl. Unter einem
Winkel von 90° gegen die optische Achse entspricht die
Geschwindigkeit dem äquatorialen Radius des Rotations-
ellipsoids. Man bezeichnet diese beiden Hauptgeschwin-
digkeiten nach der Richtung der Polarisation bezüglich
der optischen Achse mit c⊥ und c‖, wie Abb. 9.14 zeigt.
Im Falle des Calzit ist das Ellipsoid abgeplattet, denn es
ist c‖ > c⊥. Beim kristallinen Quarz hingegen ist c‖ < c⊥,
das Rotationsellipsoid ist länglich. Gewöhnlich gibt man
nicht c‖ und c⊥ an, sondern die sogenannten Hauptbre-
chungsindizes no und nao. Es ist

c⊥ =
c
no

, c‖ =
c

nao
. (9.15)

a

b

opt. Achse

c⊥τ

c⊥τ

opt. Achse

c τ

Abbildung 9.14 Wellenfronten der Huygensschen Elementarwellen im dop-
pelbrechenden Kristall zur Zeit τ, a beim ordentlichen Strahl, b beim außeror-
dentlichen Strahl

5 Die nun folgende Erklärung für das Zustandekommen der Dop-
pelbrechung gab Huygens in seinem epochalen Werk „Traité de la
lumière“, das 1690 mit dem Untertitel „où sont expliquées les causes
de ce qui arrive dans la réflexion et dans la réfraction et particu-
lièrement dans l’étrange réfraction du cristal d’Islande“ erschien.
Huygens hatte nicht die Vorstellung von transversalen Wellen und
wusste nichts von der Polarisation des Lichts. Umso mehr ist die Ge-
nialität von Huygens Hypothese zu bewundern.

Tabelle 9.1 Hauptbrechungsindizes bei optisch einachsigen Kristallen, λ =
589,3 nm

no nao Δn

Calzit (Kalkspat) 1,658 1,486 −0,172

Quarz 1,544 1,553 +0,009

Eis 1,309 1,313 +0,004

Turmalin 1,64 1,67 +0,03

Rutil (TiO2) 2,616 2,903 +0,287

NaNO3 1,587 1,336 −0,251

KH2PO4 (KDP)1 1,51 1,47 −0,04

1 bei λ = 550nm

Tabelle 9.1 gibt einige Zahlenwerte. Je nach dem Vorzei-
chen von Δn = nao − no nennt man den Kristall positiv
oder negativ doppelbrechend. In Abb. 9.15 ist die Huy-
genssche Konstruktion für den ordentlichen und den au-
ßerordentlichen Strahl gezeigt. Abbildung 9.15a gilt für
Lichteinfall senkrecht auf die Kristalloberfläche. Die Ein-
hüllenden der Elementarwellen, also die Wellenfronten,
sind beim außerordentlichen Strahl wie beim ordentli-
chen parallel zur Grenzfläche. Während aber beim or-
dentlichen Strahl die Wellen von A nach A′ und von B
nach B′ laufen, haben die Elementarwellen des ao-Strahls
die Punkte A′′ und B′′ erreicht. Der Energiefluss erfolgt
hier nicht senkrecht zu den Wellenfronten: Der ao-Strahl
läuft in Richtung des Vektors ŝ, der sogenannten Strahl-
richtung, unter dem Winkel βao �= 0 durch den Kristall
(vgl. Abb. 9.13). Das steht im krassen Widerspruch zum
Brechungsgesetz, das für β1 = 0 zwingend vorschreibt,
dass der Strahl unter dem Winkel β2 = 0 weiterläuft. Die
Richtung des Wellenvektors kao, der senkrecht auf den
Wellenfronten steht, erfüllt dagegen das Brechungsgesetz.

Abbildung 9.15b zeigt die Huygenssche Konstruktion für
schrägen Lichteinfall. Der Einfachheit halber betrachten
wir nur den Fall, dass die optische Achse in der Einfalls-
ebene liegt. Selbst dann ist die Zeichnung noch ziemlich
kompliziert. Für den o-Strahl entspricht die Zeichnung
genau der Konstruktion in Abb. 5.3. Man erhält das Bre-
chungsgesetz. Der ao-Strahl dagegen verhält sich anders:
Die Elementarwellen laufen in der Zeit τ von A nach
A′′. Da α kein rechter Winkel ist, ist sin βao �= AA′′/AC,
und die zweite Gleichung in (5.4) ist hinfällig. Für den
Wellenvektor kao lässt sich hingegen wie in (5.5) ein
Brechungsindex definieren, denn das Dreieck CAA′′′ ist
rechtwinklig. Dieser Brechungsindex ist jedoch eine Funk-
tion des Winkels β′

ao. Natürlich hängt das Verhältnis
sin β1/ sin β′

ao auch von der Lage der optischen Achse ab.
Wie bei Abb. 9.19 gezeigt werdenwird, ist n eine Funktion
des in Abb. 9.15b eingezeichneten Winkels ϑ = δ + β′

ao.

Bei der Lichtausbreitung im außerordentlichen Strahl
kann man zwei Geschwindigkeiten unterscheiden: Die
Strahlgeschwindigkeit cs, mit der die Welle in der Rich-
tung ŝ von A nach A′′ und von B nach B′′ läuft, und die
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Abbildung 9.15 Huygenssche
Konstruktion für die Brechung des
ordentlichen und des außeror-
dentlichen Strahls
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Phasengeschwindigkeit ω/k, mit der die Wellenfronten
vorrücken. Sie wird hier Normalengeschwindigkeit cn
genannt, weil definitionsgemäß kao senkrecht auf den
Wellenfronten steht. Der Zusammenhang zwischen cn
und cs ist nach Abb. 9.15

cn =
ω

k
= cs cosγ . (9.16)

Der Winkel γ ist der Winkel zwischen dem Wellenvektor
kao und dem Einheitsvektor ŝ, der die Strahlrichtung an-
gibt. Beide Geschwindigkeiten, cn und cs, hängen von der
Ausbreitungsrichtung der Welle im Kristall ab. cn lässt
sich auch durch den oben erwähnten winkelabhängigen
Brechungsindex ausdrücken: Es ist

cn(ϑ) =
c

n(ϑ)
. (9.17)

Zwischen den in (9.15) und (9.16) definierten Geschwin-
digkeiten besteht ein einfacher Zusammenhang, wenn
ϑ = 0° oder ϑ = 90° ist: c⊥ = cn(0◦), c‖ = cn(90◦). In die-
sen Fällen ist γ = 0, also cn = cs.

Physikalische Begründung. In einem anisotropen Kris-
tallgitter sind auch die Elektronenhüllen der Atome ani-
sotrop. Das betrifft besonders die Valenzelektronen. Die
Folge ist, dass sich für senkrecht und für parallel zur
optischen Achse polarisiertes Licht die elektronischen
Polarisierbarkeiten und damit die Dielektrizitätskonstan-
ten und die Brechungsindizes n =

√
ε unterscheiden. Be-

trachtenwir noch einmal Abb. 9.11, so ist klar, dass wegen
der Anordnung der CO−−

3 -Ionen in einer Ebene senk-
recht zur optischen Achse die Polarisierbarkeiten α⊥ und
α‖, also auch no und nao sehr unterschiedlich sind: Es
ist durchaus verständlich, dass Kalkspat stark doppelbre-
chend ist.

Ausgehend von dem Modell der elastisch gebundenen
Elektronen (Abschn. 5.3) kommt man zu dem Schluss,
dass die Resonanzfrequenzen ω⊥ und ω‖ für senkrecht
bzw. parallel zur optischen Achse schwingende Elek-
tronen sowie die zugehörigen Oszillatorenstärken unter-
schiedlich sind. Das wirkt sich auf den Brechungsindex
und auf den Absorptionskoeffizienten aus, wie Abb. 9.16
zeigt (vgl. auch Abb. 5.15 und 5.17). Bei farblosen Kristal-
len liegen ω⊥ und ω‖ im Ultravioletten. Da ω⊥ �= ω‖ ist,
sind auch die Hauptbrechungsindizes im Sichtbaren, no
und nao, unterschiedlich. Liegen die Resonanzfrequenzen
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Abbildung 9.16 Hauptbrechungsindizes und Absorptionskoeffizienten für
den o-Strahl und für den ao-Strahl als Funktion der Lichtfrequenz ω. (Schema-
tisch; Lage von ω⊥ und ω‖ wie beim Kalkspat)

so, dass auch im sichtbaren Bereich Licht absorbiert wird,
ist der Kristall dichroitisch.

Doppelbrechung und Maxwellsche Gleichungen

Man kann sich mit den bisher gegebenen Erklärungen be-
gnügen. Man kann sich aber auch dafür interessieren,was
die Maxwellsche Theorie zu diesem eigenartigen Phäno-
men zu sagen hat.6 Dann lernt man auch, wie sich optisch
zweiachsige Kristalle verhalten. Das nun Folgende ist in-
teressant, aber kompliziert. Wer sich der Strapaze entzie-
henwill, kann ohne größeren Schaden für das Verständnis
des Weiteren bei „Anwendungen der Doppelbrechung“
fortfahren.

Man geht von den Maxwellschen Gleichungen Bd. III,
Gln. (15.55)–(15.58) aus. Im Dielektrikum ist ρq = 0 und
jL = 0. Damit erhalten wir

∇ ·D = 0 , ∇ · B = 0

∇× E = − ∂B
∂t

, ∇×H =
∂D
∂t

.
(9.18)

Um diese Gleichungen lösen zu können, braucht man
die „Materialgleichungen“. Bei anisotropen nichtmagne-
tischen Medien lauten sie, wenn zwischen D und E ein

6 Es ist bemerkenswert, dass die nun folgende Theorie im wesentli-
chen bereits von Fresnel stammt. Fresnel behandelte dabei das Licht
als elastische Welle im „Äther“. Die Überarbeitung von Fresnels
Theorie mit der Maxwellschen Elektrodynamik ist der Inhalt der
Doktorarbeit vonH.A. Lorentz (1875). Erst durch diese Arbeit wurde
die Optik ein Bestandteil der Elektrodynamik.

linearer Zusammenhang besteht,

D = εε0E , H =
1

μ0
B ,

ε =

⎛
⎜⎝

εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

⎞
⎟⎠ .

(9.19)

Die Anisotropie des Kristalls bewirkt, dass die Dielektrizi-
tätskonstante ein Tensor ist: D = ε0E+ P und E sind dem
Betrage nach zueinander proportional, sie haben aber ver-
schiedene Richtungen. Die Ursache ist die Anisotropie der
elektrischen Polarisierbarkeit, die bewirkt, dass der Vek-
tor P im Allgemeinen nicht in die Richtung von E zeigt.
Das hängt direkt mit dem in Bd. I gegebenen Beispiel
(21.142) für eine lineare Vektorfunktion zusammen: Ein an
drei ungleichen Federn aufgehängter Körper verschiebt
sich im Allgemeinen nicht in Richtung der von außen ein-
wirkenden Kraft, sondern in einer Richtung, die man mit
Hilfe des Tensorellipsoids konstruieren kann. Das gilt in
einem anisotropen Medium auch für die Verschiebung
elektrischer Ladungen unter dem Einfluss eines elektri-
schen Feldes. Wie der Tensor in Bd. I, Gl. (2.139) ist ε ein
symmetrischer Tensor. Man kann ihn geometrisch durch
ein Ellipsoid darstellen. Es wird das Fresnel-Ellipsoid ge-
nannt. In einem Koordinatensystem (x1, x2, x3), das nach
den Hauptachsen dieses Ellipsoids ausgerichtet ist, gilt
für die Komponenten von D und E

D1 = ε1ε0E1 , D2 = ε2ε0E2 ,
D3 = ε3ε0E3 .

(9.20)

Die Gleichung der Tensorfläche ist nach Bd. I, Gl. (21.144)

ε1x21 + ε2x22 + ε3x23 = 1 . (9.21)

Für die Diskussion der Doppelbrechung betrachten wir
das Tensorellipsoid der reziproken Gleichung ε0E = ηD.
Seine Hauptachsen fallen automatisch mit denen des ε-
Ellipsoids zusammen, und es ist ηi = 1/εi = 1/n2i . Die
Gleichung der in Abb. 9.17a gezeigten Tensorfläche, die
gewöhnlich Indexellipsoid genannt wird, ist also

x21
n21

+
x22
n22

+
x23
n23

= 1 . (9.22)

Die Hauptachsen sind durch dieHauptbrechungsindizes
n1, n2 und n3 gegeben. Man nummeriert sie bei optisch
zweiachsigen Kristallen so, dass n1 < n2 < n3 ist. Zu-
nächst können wir mit dem Indexellipsoid bei einem op-
tisch zweiachsigem Kristall die Lage der optischen Ach-
sen bestimmen: In jedem dreiachsigen Ellipsoid gibt es
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Abbildung 9.17 Indexellipsoid. a Optisch zweiachsiger Kristall, b Bestim-
mung der optischen Achsen im zweiachsigen Kristall. c optisch einachsiger
Kristall (Δn > 0)

nämlich zwei durch das Zentrum führende Ebenen, deren
Schnittflächemit dem Ellipsoid Kreise sind. Die optischen
Achsen des Kristalls stehen senkrecht auf diesen Ebe-
nen. Mit etwas Vorstellungsvermögen erkennt man, dass
sich die beiden Ebenen entlang der x2-Achse schneiden,
so dass die optischen Achsen notwendig in der (x1, x3)-
Ebene liegen. Es ist ein Leichtes, die Schnittlinien der
beiden Kreise mit der (x1, x3)-Ebene zu konstruieren: Es
sind die StreckenAB undDC in Abb. 9.17b. Die optischen
Achsen stehen senkrecht auf diesen Geraden. Die dop-
pelbrechenden Eigenschaften eines zweiachsigenKristalls
sind durch die ni vollständig festgelegt. Tabelle 9.2 gibt ei-
nige Beispiele. Man sieht, dass die Unterschiede zwischen

Tabelle 9.2 Hauptbrechungsindizes einiger optischzweiachsiger Kristalle

n1 n2 n3
Gips 1,520 1,523 1,530

Feldspat 1,522 1,526 1,530

Glimmer 1,552 1,582 1,588

Topas 1,619 1,620 1,627

den ni gewöhnlich klein sind. Das bei den Abbildun-
gen der Indexellipsoide verwendete Achsenverhältnis
n1 : n2 : n3 = 2 : 3 : 4 ist also ganz unrealistisch.

Bei optisch einachsigen Kristallen legt man das Koordi-
natensystem so, dass n1 = n2 �= n3 ist. Die optische Achse
ist dann identisch mit der x3-Achse. Abbildung 9.17c zeigt
ein Beispiel.

Wir müssen nun eine Antwort auf die Frage finden: Unter
welchen Umständen können sich ebene elektromagneti-
sche Wellen in einem anisotropen dielektrischen Kristall
ausbreiten? Zunächst stelltman fest, dassman in anisotro-
pen Stoffen nicht ohne weiteres auf eine Wellengleichung
vom Typ (1.35) kommt. Wie in (2.51) kommt man von
(9.18) schnell zu der Gleichung

∂2D
∂t2

= − 1
μ0

∇× (∇× E) , (9.23)

aber dann geht es nicht weiter. Da nämlich nach (9.18)

∇ ·D = ε0

(
ε1

∂E1

∂x1
+ ε2

∂E2

∂x2
+ ε3

∂E3

∂x3

)
= 0

ist, kann nicht gleichzeitig ∇ · E = ∂E1/∂x1 + ∂E2/∂x2 +
∂E3/∂x3 = 0 sein, es sei denn, es wäre ε1 = ε2 = ε3, d. h.
das Medium wäre isotrop. Eine Vereinfachung der Wel-
lengleichung mit (2.52) ist also nicht möglich, man muss
mit der komplizierteren Gleichung (9.23) arbeiten.

Wir untersuchen die Feldvektoren einer ebenen, mono-
chromatischen und linear polarisierten Welle, deren Wel-
lenfronten in Richtung des Wellenvektors k laufen:

E(r, t) = E0ei(k·r−ωt) ,

D(r, t) = D0ei(k·r−ωt) mit D0 = εε0E0 ,
(9.24)

B(r, t) = B0ei(k·r−ωt) ,

H(r, t) = H0ei(k·r−ωt) mit H0 =
1

μ0
B0 .

(9.25)

Als erstes müssen wir die Geometrie dieser Welle un-
tersuchen. Der Energiefluss erfolgt in der Richtung des
Poynting-Vektors S = E × H. Demgemäß steht S senk-
recht auf E. Der Wellenvektor k steht dagegen senkrecht
auf D. Um das einzusehen, berechnen wir ∇ ·D:

∇ ·D = i(k1D01 + k2D02 + k3D03)ei(k·r−ωt)

= ik ·D .
(9.26)

Aus der erstenGleichung (9.18) folgt k ·D = 0, also ist k ⊥
D. Mandefiniert deshalb in doppelbrechendenMedien als
Polarisationsrichtung die Richtung von D.

Es zeigt sich nun, dass die vier Vektoren E, D, k und S
senkrecht auf B stehen. Für S ergibt sich das mit B = μ0H
unmittelbar aus S = E×H. Für k folgt das mit einer Rech-
nung wie in (9.26) aus der zweiten Gleichung (9.18), und
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Abbildung 9.18 a Schnitt
durch das Indexellipsoid, Schnit-
tebene senkrecht zu B. b Lage
der Vektoren k, D, E und S in der
Schnittebene. W–W: Wellenfront

a

b

B

s

γ

W

W

D

E

k

S

für D und E aus der dritten und vierten Gleichung (9.18).
Es ist nämlich

∂B
∂t

= −iωB ,
∂D
∂t

= −iωD . (9.27)

Die Vektoren E, D, k und S liegen also in einer Ebene
senkrecht zu B. Um den Winkel zwischen E und D zu er-
mitteln, nehmen wir irgend eine Richtung von B an und
legen senkrecht zu B durch das Zentrum des Indexel-
lipsoids eine Ebene (Abb. 9.18a). In Abb. 9.18b schauen
wir aus der B-Richtung senkrecht auf die Schnittfläche.
In dieser Ebene nehmen wir willkürlich eine Richtung
für D an. Die Richtung von E erhalten wir mit der in
Abb. 9.18b erklärten Konstruktion, die auch schon in Bd. I,
Abb. 21.43 angewendet wurde. Wie oben gezeigt wur-
de, steht k senkrecht auf D und S senkrecht auf E. In
die Richtung von S zeigt der schon in Abb. 9.15 definier-
te Einheitsvektor ŝ. Die Gerade W–W ist die Schnittlinie
einer Wellenfront mit der Zeichenebene. Die Wellenfront
steht senkrecht auf k, und daher auch senkrecht auf der
Zeichenebene. Man erkennt, dass zwischen der Phasen-
geschwindigkeit cn und der Strahlgeschwindigkeit cs der
uns schon bekannte Zusammenhang cn = cs cos γ besteht.
Diesmal haben wir jedoch diese Beziehung mit dem An-
satz (9.24) und den Maxwellschen Gleichungen erhalten,
mit einer Betrachtung, die auch bei optisch zweiachsigen
Kristallen gilt.

Die Frage ist nun, unter welchen Bedingungen (9.24) eine
Lösung der Wellengleichung (9.23) ist. Um das heraus-
zufinden setzt man (9.24) in (9.23) ein. Nach einer län-
geren Rechnung, die beträchtliches Geschick erfordert7,
kommt man zu dem Ergebnis, dass sich im anisotropen

7 Diese Rechnung wird Schritt für Schritt vorgeführt in A. Sommer-
feld, „Vorlesungen über theoretische Physik“, Band IV (Optik), § 24–
§ 28 (Dietrische Verlagsbuchhandlung (1950) und Harri Deutsch-
Verlag (1988 u. 2001)); siehe auch Max Born, „Optik“, § 58–§ 62

Abbildung 9.19 Zur Ermittlung
der erlaubten Polarisations-
richtungen bei vorgegebener
k-Richtung. a optisch zweiachsi-
ger Kristall, b optisch einachsiger
Kristall

a

b

x3

x1

x1

x3

x2

x2
k

k

a

b

ϑ
no

n(ϑ)

Kristall in der Tat linear polarisierte ebene Wellen in je-
der beliebig vorgegebenen k-Richtung ausbreiten können.
Sie müssen jedoch in ganz bestimmten, durch die Kris-
tallstruktur und den k-Vektor festgelegten Richtungen
polarisiert sein: Wenn k in Richtung einer optischen Ach-
se zeigt, ist jede Polarisationsrichtung möglich. In jeder
anderen k-Richtung gibt es nur zwei mögliche Schwin-
gungsrichtungen für den D-Vektor. Sie stehen senkrecht
aufeinander.

Um die erlaubten D-Richtungen zu konstruieren, zeich-
net man durch das Zentrum des Indexellipsoids eine
Ebene senkrecht zu k (Abb. 9.19). Die Schnittlinie ist
eine Ellipse mit den Hauptachsen a und b. Linear po-
larisierte Wellen können sich im Kristall nur ausbrei-
ten, wenn der D-Vektor in Richtung einer dieser Ach-
sen schwingt. Die Längen der Halbachsen a und b sind
gleich den Brechungsindizes na und nb: Die Phasenge-
schwindigkeit einer Welle, die sich in k-Richtung aus-
breitet, ist entweder cn = c/na, wenn der D-Vektor in
a-Richtung schwingt, oder cn = c/nb, wenn der D-Vektor
in b-Richtung schwingt. Nun sieht man auch, weshalb
man die optischen Achsenmit der in Abb. 9.17b gezeigten
Konstruktion erhält: Wenn die Ellipse zum Kreis wird, ist
jede Polarisationsrichtung möglich, und es gibt nur eine
Normalengeschwindigkeit cn.

Bei einem optisch einachsigen Kristall ist das Indexellip-
soid rotationssymmetrisch, und die optische Achse fällt
mit der Achse des Ellipsoids zusammen. Dann liegen die
erlaubten D-Richtungen so, wie Abb. 9.19b zeigt: Erstens
kann derD-Vektor in Richtung der Schnittlinie der Ellipse
mit der Mittelebene des Indexellipsoids schwingen. Dann

(Springer-Verlag, 1932 u. 1986), S. L. Chin, „Fundamentals of Laser
Optoelectronics“, Kap. VI (World Scientific, 1989) sowie A. Yariv
u. P. Yeh, „Optical Waves in Crystals“, Kap. 4 (J. Wiley & Sons, 1984).
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Abbildung 9.20 Sonderfall:
Lichtausbreitung in Richtung
der x3-Achse. a Die erlaubten
D- und E-Richtungen, b Schnitt
durch das Indexellipsoid in der
(x1, x2)-Ebene

a

b

x3

x1

x1

n1

n2

x2

x2

D1

D1

D2

D2

E1

E1

E2

E2

ist die Welle senkrecht zur optischen Achse polarisiert
und unabhängig von der k-Richtung ist n1 = n2 = no. In
diesem Fall gehört der k-Vektor zu einem o-Strahl. Im
zweiten Fall gehört er zu einem ao-Strahl: Der D-Vektor
schwingt in der Ebene, die den k-Vektor und die optische
Achse enthält. Zwischen dem k-Vektor und der optischen
Achse liegt der Winkel ϑ. Die große Halbachse der El-
lipse in Abb. 9.19 entspricht dem in (9.17) definierten
Brechungsindex n(ϑ).

Wir betrachten einen wichtigen Sonderfall der Lichtaus-
breitung in einem zweiachsigen Kristall: Wie Abb. 9.20
zeigt, kann linear polarisiertes Licht in x3-Richtung nur
laufen, wenn es entweder in x1- oder in x2-Richtung pola-
risiert ist. Die zugehörigen Normalengeschwindigkeiten
sind cn = c/n1 und cn = c/n2. Entsprechendes gilt für
den Fall, dass der k-Vektor in die x1- oder x2-Richtung
zeigt. In allen drei Fällen ist E ‖ D, also cosγ = 1 und
cs = cn. Man definiert deshalb die Hauptgeschwindig-
keiten

c1 =
c
n1

, c2 =
c
n2

, c3 =
c
n3

. (9.28)

Man beachte: ci ist die Geschwindigkeit, mit der in i-
Richtung polarisiertes Licht durch den Kristall läuft,
wenn der k-Vektor in die Richtung einer der beiden an-
deren Hauptachsen zeigt (i = 1, 2, 3).

Wie man für einen beliebig vorgegebenen k-Vektor die er-
laubten Polarisationsrichtungen, die Normalengeschwin-
digkeiten cn und die Strahlrichtungen ŝ ermittelt, wurde
in Abb. 9.19 und 9.18 gezeigt. Die Strahlgeschwindig-
keit cs kann man mit (9.16) berechnen. Um das Ergebnis

a

b

nao < no

nao > no

s3

s2

s3

s2

Abbildung 9.21 Schnitt durch die rotationssymmetrische Strahlenfläche eines
optisch einachsigen Kristalls, a negativ, b positiv doppelbrechend

zu veranschaulichen, zeichnet man vom Nullpunkt des
Koordinatensystems (x1, x2, x3) aus in alle Richtungen ŝ
Radiusvektoren mit der Länge cs(ŝ). Man erhält die so
genannte Strahlenfläche. Sie ist zweischalig, denn im All-
gemeinen gibt es in jeder ŝ-Richtung zwei Werte für die
Strahlgeschwindigkeit cs, entsprechend den beiden mög-
lichen Polarisationsrichtungen. Bei optisch zweiachsigen
Kristallen entsteht eine ziemlich komplizierte Fläche vier-
ten Grades, mit der wir uns nicht weiter befassen müssen.
Interessant ist jedoch das nun Folgende.

Bei einachsigen Kristallen erhält man als Strahlenfläche
eine zweischalige Fläche zweiten Grades, bestehend aus
einer Kugel und einem Rotationsellipsoid, die sich an
den Durchstoßpunkten der optischen Achse berühren
(Abb. 9.21). Wenn man sich Abb. 9.15 noch einmal an-
schaut, erkennt man: Die Wellenfronten der von Huygens
angenommenen „Elementarwellen“ in Abb. 9.13 sind
identisch mit der Strahlenfläche eines einachsig doppel-
brechenden Kristalls. Huygens’ Konstruktion wird also
durch die elektromagnetische Theorie der Doppelbre-
chung in vollem Umfang gerechtfertigt.

Einige Anwendungen der Doppelbrechung

Polarisierende Prismen. Man kann aus doppelbrechen-
dem Material Prismen herstellen, die das einfallende
natürliche Licht in zwei linear polarisierte Teilstrahlen
aufspalten, und nur einen dieser Strahlenwieder nach au-
ßen lassen. Ein solches Prisma wirkt dann als Polarisator.

Von alters her bekannt ist dasNicolsche Prisma. Ein läng-
licher Kalkspat-Kristall wird an den Stirnflächen unter
einem bestimmten Winkel geschliffen und aufgeschnit-
ten. Die Trennflächen und die Stirnseiten werden po-
liert. Dann werden beide Teile in der ursprünglichen
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optische Achse

o-Strahl

ao-Strahl

Abbildung 9.22 Nicolsches Prisma

38,5°

o-Strahl

ao-Strahl

Abbildung 9.23 Glan-Prisma

Position mit Kanada-Balsam wieder zusammengekittet
(Abb. 9.22). Der Brechungsindex des Klebstoffs n = 1,542
liegt zwischen den Brechungsindizes no und nao des Kalk-
spats, so dass der o-Strahl an der Klebstelle auf das
optisch dünnere, der ao-Strahl auf das optisch dichte-
re Medium trifft. Die Winkel, unter denen der Kristall
geschliffen wurde, sind so berechnet, dass der außer-
ordentliche Strahl durchläuft, während der ordentliche
Strahl an der Trennfläche totalreflektiert wird. Er wird
dann an der geschwärzten Seitenfläche absorbiert. Man
erhält so ein Polarisationsfilter hoher Transparenz, das
die unerwünschte Polarisationsrichtung im Prinzip voll-
ständig unterdrückt. Das Nicolsche Prisma macht sehr
sparsam Gebrauch von dem kostbaren Ausgangsmate-
rial. Es hat aber den Nachteil, dass es den durchgelas-
senen Strahl parallel verschiebt. Das ist besonders dann
lästig, wenn man durch Drehen des Prismas die selek-
tierte Polarisationsrichtung verändern will. Auch ist von
Nachteil, dass der Klebstoff ultraviolettes und infrarotes
Licht vollständig absorbiert. Diese Nachteile vermeidet
das Glan-Prisma. Hier ist der Kalkspat so geschnitten,
dass die optische Achse parallel zur Eintrittsfläche und
parallel zur Zeichenebene in Abb. 9.23 liegt. Die beiden
Kalkspatstücke sind durch einen Luftspalt getrennt. Das
Glan-Prisma ist im Bereich von 5000nm – 230nm einsetz-
bar. – Das sind nur zwei Beispiele zu diesem Thema.

Doppelbrechende Platten als Phasenschieber. Wir un-
tersuchen die Eigenschaften einer planparallelen Platte
aus doppelbrechendem Material, bei der die optische
Achse in der Plattenebene liegt (Abb. 9.24). Bei senk-
rechtem Lichteinfall sind E und D parallel, und der
außerordentliche Strahl läuft genau wie der ordentli-
che ungebrochen durch die Platte hindurch. Dabei sind
die Phasengeschwindigkeiten c⊥ = c/no und c‖ = c/nao
unterschiedlich. Wie Abb. 9.24b zeigt, eilt der ordent-
liche Strahl dem außerordentlichen voraus, wenn no <

a

b

c

Licht
d

d
ao
o

d
ao
o

Abbildung 9.24 Phasenplatte. In a zeigen die Pünktchen an der Stirnseite
wie in Abb. 9.23 die Durchstoßpunkte der optischen Achse an. b Elementar-
wellen und Wellenfronten in der Phasenplatte bei positiver Doppelbrechung
(Δn = nao − no > 0), c Δn < 0

nao ist (Δn > 0 in Tab. 9.1). Andernfalls ist es umge-
kehrt. Bei unpolarisiertem Licht schwankt der E-Vektor
ständig zwischen den Richtungen senkrecht und paral-
lel zur optischen Achse hin und her. Daran ändert sich
nichts, wenn o-Strahl und ao-Strahl mit unterschiedlicher
Geschwindigkeit durch die Platte laufen: Unpolarisiertes
Licht bleibt unpolarisiert. Stellt man jedoch vor die Platte
einen Polarisator, dessen Durchlassrichtung mit der opti-
schen Achse den Winkel ϕ einschließt, dann stehen nach
(9.2) vor der Platte die Amplituden der Komponenten
parallel und senkrecht zur optischen Achse in einem fes-
ten, nur von ϕ abhängigen Verhältnis. Beide Teilwellen
sind in Phase. In der Platte entsteht nun zwischen dem
o-Strahl und dem ao-Strahl eine Phasenverschiebung, es
ändert sich der Polarisationszustand. Um das genauer zu
untersuchen, legen wir die x-Richtung in die Richtung der
optischen Achse. Die Feldstärke vor der Platte ist

E(z, t) = E0
[
x̂ cos ϕ cos(kz− ωt)

+ ŷ sin ϕ cos(kz− ωt)
]
.

(9.29)

Hinter der Platte ist die Feldstärke

E = E0
[
x̂ cos ϕ cos

(
kz− ωt+ k(nao − 1)d

)
+ ŷ sin ϕ cos

(
kz− ωt+ k(no − 1)d

)]
.

Der o-Strahl hat gegenüber dem ao-Strahl den Gangun-
terschied und die Phase

G = Δlopt = (no − nao)d ,

δ =
2π

λ
(no − nao)d = −kΔnd .

(9.30)
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λ ist die Wellenlänge des Lichts im Vakuum. Damit ist die
Feldstärke hinter der Platte

E(z, t) = E0
[
x̂ cos ϕ cos(kz− ωt)

+ ŷ sin ϕ cos(kz− ωt+ δ)
]
.

(9.31)

Das Licht ist also im Allgemeinen elliptisch polarisiert. In-
teressant sind die Sonderfälle, dass der Gangunterschied
G = λ/2 oder G = λ/4 ist. Beim λ/2-Plättchen ist δ = π,
und die Feldstärke hinter dem Plättchen ist

E(z, t) = E0
[
x̂ cos ϕ cos(kz− ωt)

− ŷ sin ϕ cos(kz− ωt)
]
.

(9.32)

Der Vergleich mit (9.29) zeigt: Die lineare Polarisation
wird im λ/2-Plättchen um den Winkel 2ϕ im Uhrzeiger-
sinn gedreht. Bemerkenswert sind zwei Eigenschaften des
λ/2-Plättchens:

Satz 9.1

Ist ϕ = 45◦, wird die Polarisationsrichtung im λ/2-
Plättchen um 90° gedreht.

Satz 9.2

Rechtszirkulare Polarisation wird im λ/2-Plättchen
in linkszirkulare Polarisation verwandelt, und um-
gekehrt.

Satz 9.1 folgt ohne weiteres aus (9.32), und Satz 9.2 ist aus
(9.3) und (9.4) ersichtlich.

Beim λ/4-Plättchen ist δ = ±π/2, je nach dem Vorzeichen
von Δn = nao − no. Wenn ϕ = +45° ist (Abb. 9.25), erhält
man aus (9.31).

E =
E0√
2

[
x̂ cos(kz− ωt)∓ ŷ sin(kz− ωt)

]
,

je nach dem Vorzeichen von Δn. Der Vergleich mit (9.3)
und (9.4) zeigt:

Satz 9.3

Das λ/4-Plättchen wandelt Licht, welches unter 45°
gegen die optische Achse linear polarisiert ist, in zir-
kular polarisiertes Licht um.

Wenn ϕ und Δn gleiche Vorzeichen haben, entsteht rechts-
zirkular polarisiertes Licht (R-Licht); bei entgegengesetz-
ten Vorzeichen erhält man linkszirkular polarisiertes Licht
(L-Licht). Die in Abb. 9.25 gezeigte Anordnung bildet
also einen Zirkularpolarisator. Sie kann auch als Analy-
sator für zirkular polarisiertes Licht benutzt werden. Man

a

b

λ/4 -Platte

y

x

+45°

y

x

−45°

Abbildung 9.25 Erzeugung zirkular polarisierten Lichts mit einem λ/4-
Plättchen. nao > no angenommen, entsteht in a rechtszirkular, in b linkszirkular
polarisiertes Licht

λ/4 -Platte

Licht

Abbildung 9.26 Ein Analysator für zirkular polarisiertes Licht

dreht die Anordnung um eine vertikale Achse um 180°
und lässt das Licht zuerst auf das λ/4-Plättchen fallen
(Abb. 9.26). Wird das zirkularpolarisierte Licht mit einem
der in Abb. 9.25 gezeigten Zirkularpolarisatoren erzeugt,
sieht man sofort: Die λ/4-Plättchen des Polarisators und
des Analysators bilden zusammen ein λ/2-Plättchen. Das
mit dem Polarisator in Abb. 9.25a erzeugte R-Licht kann
nach Satz 9.1 den Analysator in Abb. 9.26 passieren, wäh-
rend das L-Licht des Polarisators in Abb. 9.25b abgeblockt
wird.

Zur Herstellung von λ/4-Plättchen: Damit das Plätt-
chen nicht zu dünn wird, sollte |Δn| = |nao − no| klein
sein, denn die geometrische Dicke des Plättchens ist d =
λ/4|Δn|. Kristalliner Quarz ist ein geeignetes Material
(Δn ≈ 0,01). Es gibt auch anisotrope Plastikfolien, aus de-
nen man sehr viel billiger λ/4-Plättchen herstellen kann.
Im Übrigen kann man das Plättchen auch um ein ganz-
zahliges Vielfaches von λ/|nao − no| dicker machen.

Auch aus optisch zweiachsigem Material kann man
Phasenschieberplatten herstellen. Besonders geeignet ist
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Abbildung 9.27 Babinet-
Soleil-Kompensator

d2

d1

Glimmer (Muscovit), ein leicht in dünne Blättchen spalt-
baresMineral. Die Spaltebenen liegen parallel zur (x1, x2)-
Ebene des Index-Ellipsoids. Das Licht wird wie in
Abb. 9.20 in x3-Richtung eingestrahlt. Ist es unter 45°
gegen die x1-Achse linear polarisiert, dann wird es in
zwei senkrecht zueinander linear polarisierte Wellen glei-
cher Amplitude zerlegt, die mit den unterschiedlichen
Geschwindigkeiten c1 und c2 in x3-Richtung durch das
Plättchen laufen (vgl. Abb. 9.20).

λ/2- und λ/4-Plättchen sind jeweils nur in einem schma-
lenWellenlängenbereich einsetzbar.Man hat deshalb kon-
tinuierlich verstellbare Phasenschieber konstruiert, z. B.
den Babinet-Soleil-Kompensator (Abb. 9.27). Er besteht
aus zwei Platten, von denen die eine in zwei keilför-
mige Stücke aufgeteilt ist. Die optischen Achsen liegen
parallel zu den Oberflächen, einmal in x-Richtung und
einmal in y-Richtung. Daher haben die Phasenschübe auf
den Strecken d1 und d2 entgegengesetztes Vorzeichen.
Die resultierende Phasenverschiebung ist proportional zu
d1 − d2. Sie kann durch Verschieben des Keils beliebig
eingestellt werden. Heutewird als veränderlicher Phasen-
schieber auch die Pockels-Zelle eingesetzt (Abschn. 9.4).

Interferenzfarben. Wenn linear polarisiertes Licht durch
eine planparallele doppelbrechende Platte läuft, entsteht
ganz allgemein elliptisch polarisiertes Licht. Wir be-
schränken uns auf den eben behandelten Fall, dass die
Platte parallel zur optischen Achse aus einachsigem Ma-
terial herausgeschnittenwurde. Der Polarisator P schließe
wie in Abb. 9.25a mit dieser Achse den Winkel ϕ = 45°
ein. Die Feldstärke hinter der doppelbrechenden Platte
ist durch (9.31) gegeben, mit cos ϕ = sin ϕ = 1/

√
2. Das

Licht ist elliptisch polarisiert. Wir stellen nun hinter die
Platte ein zweites Polarisationsfilter, den Analysator A,
und zwar so, dass A senkrecht zu P steht. Die Feldstärke
hinter dem Analysator lässt sich leicht berechnen (Aufga-
be 9.4). Für die Intensität erhält man

I⊥ = I0 sin2
δ

2
= I0 sin2

π(no − nao)d
λ

. (9.33)

Der Faktor sin2(δ/2) führt zu einer starken λ-Abhän-
gigkeit der Transmission. Sie ist maximal, wenn δ =
π, 3π, 5π, . . . ist, und verschwindet bei δ = 2π, 4π, 6π, . . .
Bei Beleuchtung mit Weißlicht erscheint das Gesichtsfeld
ohne das doppelbrechende Plättchen wegen der gekreuz-
ten Polarisatoren dunkel. Mit dem Plättchen erscheint es
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Abbildung 9.28 Spektren von Interferenzfarben. 1 ) Δn d = 97 nm, Komple-
mentärfarbe: gelblich weiß. 2 ) 281 nm, Kompl.: tiefviolett. 3 ) 551 nm, Kom-
pl.: gelblich grün. 4 ) 589 nm, Kompl.: goldgelb. 5 ) 664 nm, Kompl.: orange.
6 ) 948 nm, Kompl.: dunkelblau. 7 ) 1334 nm, Kompl.: braunrot. Die Spektren der
Komplementärfarben erhält man, wenn man die Abbildung auf den Kopf stellt

hell, und zwar je nach dem Gangunterschied G = (nao −
no)d in den wunderbarsten Farben, die man sich vorstel-
len kann: Indigo, Strohgelb, Himmelblau, Tiefrot, Eisen-
grau, . . . Die spektrale Zusammensetzung dieser Farben
ist in Abb. 9.28 an Beispielen gezeigt. Stellt man die Po-
larisationsfilter parallel, ist die Transmission maximal bei
δ = 2π, 4π, 6π, . . . und Null bei δ = π, 3π, 5π, . . . Man er-
hält die Komplementärfarben

I‖ = I0

(
1− sin2

δ

2

)
. (9.34)

Wenn man den Analysator aus der 90°-Stellung in die
Parallelstellung dreht, erhält man einen kontinuierlichen
Übergang von Farbe zu Komplementärfarbe. Das Gan-
ze ist ein verblüffender Effekt, zumal das Plättchen ohne
die Polarisatoren farblos erscheint. Die Farberscheinun-
gen beruhen auf der Interferenz von Komponenten des
ordentlichen und des außerordentlichen Strahls. Sie wer-
den deshalb Interferenzfarben genannt.8

Spannungsdoppelbrechung. Isotrope transparente Stof-
fe werden im Allgemeinen doppelbrechend, wenn sie

8 Eine praktische Anwendung finden diese Farben z. B. in der Mi-
neralogie bei der Untersuchung von Dünnschliffen aus polykris-
tallinem Material (Polarisationsmikroskopie). Die fantasievollen
Farbbezeichnungen stammen von G. Quincke (1834–1924), der das
Phänomen gründlich untersuchte (Poggendorfs Annalen 129, 180
(1869)).
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Abbildung 9.29 Zur Spannungsdoppelbrechung. Die horizontalen Schenkel
der Winkel sind in gleicher Weise durch ein Gewicht belastet

mechanischen Spannungen ausgesetzt sind: Durch die
Dehnung des Materials wird die Isotropie aufgehoben.
In Abb. 9.29a ist ein Winkel aus einem transparenten
Kunststoff gezeigt, bei dem dieser Effekt besonders aus-
geprägt ist. Das Material befindet sich zwischen zwei
parallelen Polarisationsfiltern. Bei Belastung zeigen sich
farbige Streifen, die sich an der Ecke des Winkels zu-
sammendrängen. Es handelt sich um Interferenzfarben,
und die Streifen entsprechen den Linien Δn = const, al-
so Linien konstanter Deformation. Wo sich die Streifen
zusammendrängen, bestehen hohe Spannungsgradienten
und hohe mechanische Spannungen. Wie man sieht, be-
steht die Gefahr, dass das Material von der Ecke her ein-
reißt und der Winkel infolgedessen zerbricht. Dem kann
man vorbeugen. Abbildung 9.29b zeigt, wie man durch
eine einfache Maßnahme die Spannungen im kritischen
Bereich abbauen kann. Im Maschinenbau wird natürlich
die scharfkantige Ecke nicht ausgebohrt, sondern von
vornherein abgerundet. Man nennt das „Vermeidung der
Kerbwirkung“.

Experimentelle Bestimmung der Stokes-Parameter.
Wie wir in Abschn. 9.1 gesehen haben, kann der Polari-
sationszustand von Licht mit Hilfe der Stokes-Parameter
eindeutig festgelegt werden. Um diese Größen experi-
mentell zu bestimmen, braucht man ein Filter für lineare
Polarisation, ein λ/4-Plättchen und ein Messgerät für

Tabelle 9.3 Experimentelle Bestimmung der Stokes-Parameter

S0 = E2
x0 + E2

y0 I(0◦) + I(90◦)

S1 = E2
x0 − E2

y0 I(0◦)− I(90◦)

S2 = 2Ex0Ey0 cos δ I(45◦)− I(135◦)

S3 = 2Ex0Ey0 sin δ IR − IL

Abbildung 9.30 Termschema
eines Farbstoffmoleküls und die
Übergänge bei der Anregung,
resonanten Abregung und spon-
tanen Emission

E

τ =10−12s

τ =10−9s

gnugern
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die Lichtintensität, dessen Anzeige unabhängig von der
Polarisation des Lichts ist. Man misst zunächst die Inten-
sitäten hinter dem Linearpolarisationsfilter, wenn dessen
Durchlassrichtung mit der x-Achse einen Winkel von
ϕ = 0°, 45°, 90° und 135° einschließt. Dann setzt man das
λ/4-Plättchen vor das Polarisationsfilter, wie in Abb. 9.26
gezeigt, und misst hinter diesen Filtern für zirkulare Po-
larisation die Intensitäten IR und IL. Die Stokes-Parameter
ergeben sich dann mit den in Tab. 9.3 angegebenen For-
meln.

Die STED-Mikroskopie

In jüngerer Zeit ist es gelungen, mit Lichtmikroskopen
Auflösungsvermögen zu erreichen, die wesentlich un-
terhalb der Abbeschen Auflösung liegen. Beim STED-
Verfahren (Abkürzung für „stimulated emission on de-
pletion“) verwendet man Fluoreszenzmikroskopie mit
punktweiser Abtastung eines Objekts, wie in Abschn. 6.4
beschrieben und in Abb. 6.46 skizziert wurde.9 Wegen der
hohen Punktdichte wird zur Zeit nur eine Ebene abgebil-
det.

Die fluoreszierenden Moleküle müssen mindestens drei
Zustände aufweisen, die sie für diese Mikroskopie ge-
eignet machen (Abb. 9.30): Zunächst werden sie mittels
Laserstrahlung elektronisch angeregt, wobei sie gleichzei-
tig in einen Schwingungszustand übergehen. Die Schwin-
gungsenergie der Moleküle wird innerhalb einer Zeit in
der Größenordnung von 10−12 s an die Umgebung abge-
geben, danach wird ein längerlebiger Zustand erreicht.

9 Das STED-Verfahren wurde von Stefan Hell entwickelt, der dafür
im Jahre 2014, zusammen mit Eric Betzig und William Moerner, den
Nobelpreis für Chemie(!) erhielt.
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Abbildung 9.31 Zur FormierungdesDonut-Strahlsmit Hilfe einerPhasenplatte

Nunmehr werden die Moleküle mit Hilfe eines zweiten,
längerwelligen Laserstrahls (STED-Strahl) resonant wie-
der abgeregt. Dieser zweite Laserstrahl hat einen etwas
größeren Durchmesser. In seiner Mitte besitzt er ein In-
tensitätsloch, weshalb er in Anlehnung an das bekannte
Gebäckstück der „Donut-Strahl“ genannt wird. In der Nä-
he seines Zentrums verbleiben Moleküle im angeregten
Zustand, bei genügend hoher Intensität in einigem Ab-
stand davon nicht. Auf der ausschließlichen Beobachtung
des Fluoreszenzlichts vom Rest der angeregten Moleküle
beruht die Verbesserung der Auflösung. Die Lebensdauer
des fluoreszierenden Zustands liegt in der Größenord-
nung von 10−9 s. Die Anregung des Anfangszustandsund
die Abregung des Zwischenzustands müssen in einer we-
sentlich kürzeren Zeit erfolgen, die Laserstrahlen müssen
also intensiv genug sein.

Die beiden Laserstrahlen müssen relativ zueinander gut
justiert sein. Das lässt sich am einfachsten erreichen,
wenn beide in ein und dieselbe Monomode-Glasfaser
(Abb. 5.13c) eingekoppelt werden, durch die das Licht
zum Objektiv gelangt.

Bei der Erzeugung des Donut-Strahls bedient man sich
eines Tricks, der auf der Polarisation basiert. Der STED-
Laser liefert zunächst linear polarisiertes Licht. Die linea-
re Polarisation wird in eine zirkulare konvertiert. Nach
Verlassen der Glasfaser wird der Strahl aufgeweitet. Er
durchläuft danach eine vierfach unterteilte Phasenplat-
te10, die doppelbrechend ist (Abb. 9.31). Zwischen be-
nachbarten Sektoren sind die optischen Achsen jeweils
um 45◦ gegeneinander verdreht. Beim Durchlaufen eines
Sektors entsteht zwischen linear polarisierten Wellen mit
der Frequenz des Donut-Strahls, die parallel bzw. senk-
recht zur optischen Achse polarisiert sind, ein Gangunter-
schied von π. In Abb. 9.31 sind für zwei Sektoren einige
Feldstärkerichtungen der zirkular polarisierten Welle vor
und hinter der Phasenplatte eingetragen. Man erkennt,
dass die Phasenplatte die Drehrichtung der zirkularen
Welle umkehrt, und dass alle Feldstärken hinter der Platte

10 Die ersten Mikroskope dieser Art verwendeten lineare Polarisa-
tion in Verbindung mit „Phasenschnecken“, die die Ebene einer
linearen Polarisation, abhängig von der Position eines Lichtstrahls
parallel zur Achse der Schnecke, von 0° bis 360° drehten.

für diametral gegenüberliegende Sektoren das umgekehr-
te Vorzeichen haben. Nachdem der Strahl hinter der Platte
das Objektiv durchlaufen hat, interferieren sich in der
Mitte des Fokus die Amplituden des Donut-Strahls weg
und man erhält eine Intensitäts-Nullstelle. Die Phasen-
platte wird allerdings von beiden Laserstrahlen durchlau-
fen. Sie ist so bemessen, dass die beschriebeneVorzeichen-
differenz der Feldstärken in gegenüberliegenden Sektoren
beimAnregungsstrahlwegen derWellenlängenabhängig-
keit der Brechungsindizes nicht auftritt.

Um das Auflösungsvermögen zu verstehen, nehmen wir
an, dass während eines gepulsten Betriebes die Anregung
des Objekts, die Abregung und die Detektion des Fluo-
reszenzlichts zeitlich nacheinander erfolgen und dass der
Anregungsstrahl ein Gaußsches Profil mit der Breite dmin
(Gl. (8.59)) besitzt. Die Zahl der angeregten Moleküle ist
proportional zu e−r2/2d2min . Der Donut-Strahl besitzt in der
Nähe seines Zentrums eine Intensität IDr2/2a2, wobei a
die Dimension einer Länge hat und ansonsten willkür-
lich gewählt werden kann, weil nur das Verhältnis ID/a2

eingeht. Da bei großen r ohnehin alleMoleküle wieder ab-
geregt werden, behalten wir diesen Ansatz für alle r bei.
Dann ist die Wahrscheinlichkeit dafür, dass ein Molekül
angeregt bleibt, e−σDIDtr2/2a2 , wobei σD der Wirkungs-
querschnitt für die Abregung und t die Pulsdauer sind.
Die Zahl der beobachteten Fluoreszenzphotonen ist pro-
portional zu e−r2/2d2min−σDIDtr2/2a2 . Man erhält wieder ein
Gaußsches Strahlprofil, für dessen Breite gilt

1
d2STED

=
1

d2min
+

σDIDt
a2

=
1

d2min

(
1+

σDIDtd2min
a2

)
,

dSTED =
dmin√

1+ ID/Is
, (9.35)

wobei alle Konstanten in einem einzigen Intensitätsfaktor
Is zusammengefasst wurden. Weil alle vom STED-Strahl
ausgelösten Reaktionen voneinander statistisch unabhän-
gig sind, steht die Intensität ID in (9.35) unter der Qua-
dratwurzel.

Mit dem STED-Verfahren werden Auflösungen unterhalb
von 10 nm und routinemäßig von 20 nm erreicht. Abbil-
dung 9.32b demonstriert dies an fluoreszierenden Kü-
gelchen mit 20nm Durchmesser. Abbildung 9.32a wurde
ohne STED-Stahl aufgenommen, sodass ein CLSM-Bild
mit einer beugungsbegrenzten Auflösung nach (6.54) ent-
stand. Abbildung 9.33 zeigt eine Aufnahme von Peroxiso-
men, membranumschlossenenOrganellen, die im Inneren
von Zellen mit Zellkernen vorhanden sind.

Die einzige prinzipielle Begrenzung der Auflösung be-
steht in der Größe der markierten Moleküle, eine prakti-
sche in der Begrenzung der Intensität des STED-Lasers,
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Abbildung 9.32 STED-Aufnahme fluoreszierender Crimson Beads (20 nm).
a Ohne STED-Strahl, b mit STED-Strahl. Aufnahme: J. Engelhardt, Krebsfor-
schungszentrum Heidelberg

1 μm

Abbildung 9.33 STED-Aufnahme von Peroxisomen, mit STAR635P gefärbt.
Oberhalb der Bildmitte wurde während des Scans der STED-Strahl kurz ab-
geschaltet, sodass ein Streifen mit beugungsbegrenzter Auflösung entstand.
Aufnahme: J. Engelhardt, Krebsforschungszentrum Heidelberg

um Schäden in Proben zu vermeiden. Der Vorteil der
STED-Mikroskopie ist, dass man mit ihr hochaufgelöst
dynamische Prozesse in lebenden Zellen verfolgen kann,
was mit der Elektronenmikroskopie nicht möglich ist.

Optische Aktivität, zirkulare Doppelbrechung

Wenn linear polarisiertes Licht in einem einachsigen Kris-
tall in Richtung der optischen Achse läuft, sollte es als
ordentlicher Strahl den Kristall ohneAufspaltung in einen
ordentlichen und einen außerordentlichen Strahl durch-
setzen. Das tut es auch, aber bei manchen Kristallen
ändert sich dabei die Polarisationsrichtung. Dieses Phäno-
men nennt man optische Aktivität. Es wurde am kristal-
linen Quarz entdeckt (Abb. 9.34). Man findet Quarzkris-
talle, die die Polarisation nach links, und solche, die die
Polarisation nach rechts drehen. Der Drehwinkel ist pro-
portional zu Dicke der durchstrahlten Schicht und nimmt
mit zunehmender Wellenlänge des Lichts ab (Abb. 9.34b).
Dem Betrage nach sind die Winkel bei links- und rechts-
drehendem Quarz genau gleich. Bei genauerer Betrach-
tung stellt man fest, dass sich die beiden Quarzsorten
auch äußerlich unterscheiden: In gewissen Merkmalen
der Kristallflächen verhalten sie sich wie Bild und Spie-
gelbild.

Wie dieses merkwürdige Phänomen zu erklären ist, fand
Fresnel heraus: Es handelt sich um zirkulare Doppelbre-
chung. Nach (9.5) kann man eine linear polarisierte Welle
als Überlagerung von zwei zirkular polarisierten Wellen
darstellen. Wenn nun die Phasengeschwindigkeiten die-

λ(nm)500400 600

α

50°

0°

40°

30°

20°

10°

α

a

b
Quarz

Abbildung 9.34 Optische Aktivität. a Das Phänomen, b Beispiel Quarz: Dreh-
winkel α als Funktion der Wellenlänge. d = 1mm
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Abbildung 9.35 Kristallgitter des Quarz (SiO2), aufgebaut aus tetraedrischen
SiO4-Gruppen. Jedes O-Atom gehört zu zwei Tetraedern. Dargestellt sind je 4 Te-
traeder einer unteren, einer mittleren und einer oberen Schicht. Die Punkte, an
denen sich die hier eingezeichneten Tetraeder berühren, sind gekennzeichnet.
Wenn man die Struktur im Uhrzeigersinn um 120° dreht, gehen die dunklen
Tetraeder in die hellen über und die anderen nehmen die nächst dunklere Fär-
bung an; sonst bleibt die Struktur unverändert. Das heißt, sie hat sich um eine
Tetraederschicht zum Beobachter hin verschoben. Die senkrecht auf der Zeichen-
ebene stehende Achse A bildet also eine „dreizählige Schraubenachse“. Nach
Landolt-Börnstein (1955)

ser beiden Wellen unterschiedlich sind,

cL =
c
nL

�= cR =
c
nR

,

entsteht beim Durchgang des Lichts durch das optisch
aktive Medium eine Phasenverschiebung zwischen der
rechts- und der linkspolarisierten Welle, die proportio-
nal zur durchlaufenen Schichtdicke d anwächst. Das führt
nach (9.6) zu einer Drehung der Polarisation um denWin-
kel

α =
δR − δL

2
=

π(nR − nL)
λ

d . (9.36)

Eine physikalische Erklärung für den Unterschied der
Brechungsindizes nR und nL findet man in der Struktur
der Kristalle. Beim Quarz ist das Gitter schraubenartig
aufgebaut (Abb. 9.35). Deshalb reagieren die Elektronen-
hüllen der Atome auf in Achsenrichtung laufende zirku-
lar polarisierteWellen unterschiedlich, je nachdem, ob der
Schraubensinn des Gitters und der Drehsinn der Polari-
sation übereinstimmen oder nicht. Die Untersuchung der
optischen Aktivität ist ein wichtiges Hilfsmittel der Kris-
tallographie. Nur Kristalle mit ganz bestimmten Symme-

Tabelle 9.4 Drehung der Polarisationsebene in optisch aktiven Stoffen (20 °C,
λ = 589,3 nm).+: rechtsdrehend;−: linksdrehend

d α

Quarz-Kristall 1mm ±21,7°

Terpentinöl1 10 cm −36,6°

Rohrzuckerlösung
(10 g/l H2O)

1m +6,6°

1 als Naturprodukt

trieeigenschaften können dieses Phänomen zeigen. Ob ein
linksdrehender oder ein rechtsdrehender Kristall entsteht,
hängt davon ab, wie sich die ersten Moleküle zusammen-
lagern. Aus einem linksdrehendem Kristallkeim entsteht
ein linksdrehender Kristall, aus einem rechtsdrehendem
Keim ein rechtsdrehender.

Optische Aktivität wird auch in einer ganz anderen Stoff-
klasse beobachtet, nämlich bei organischen Flüssigkeiten
und bei Lösungen organischer Substanzen, z. B. bei Ter-
pentinöl und bei Zuckerlösungen. Wie Tab. 9.4 zeigt,
ist das Drehvermögen dieser Stoffe viel kleiner als das
von Kristallen. Es ist aber ein Leichtes, ein meterlanges
Rohr mit Zuckerlösung zu füllen. Da in diesen Flüssig-
keiten keine Ordnung besteht, muss der Schraubensinn,
der die Drehung verursacht schon im einzelnen Molekül
eingebaut sein. Die Stereochemie, die sich mit der geo-
metrischen Struktur der Moleküle befasst, hat dafür auch
ohneWeiteres eine detaillierte Erklärung und kann genau
angeben, wie ein bestimmtes rechts- oder linksdrehen-
des Molekül aufgebaut ist. Die Moleküle gleichen jeweils
einander wie Bild und Spiegelbild („Enantiomorphie“).
Das Merkwürdige ist aber, dass optische Aktivität dieser
Art nur bei biogenen Substanzen auftritt. Wird die glei-
che Substanz im Reagenzglas hergestellt, ist sie optisch
inaktiv.

Was unterscheidet das Naturprodukt vom synthetischen?
Die synthetisch hergestellte Substanz enthält stets gleich
viel rechts- und linksdrehende Moleküle.11 Das liegt dar-
an, dass die chemischen Eigenschaften der rechts- und
linksdrehenden Moleküle genau gleich sind. Die ele-
mentaren Wechselwirkungen zwischen den Atomen, die

11 Diese fundamentale Entdeckung machte Louis Pasteur (1822–
1895) während seiner Doktorarbeit. Er hatte aus einer Lösung einer
synthetisch hergestellten, daher nicht aktiven organischen Substanz
Kriställchen ausgefällt und bemerkt, dass es im Niederschlag zwei
geringfügig verschiedene Kristallformen gab, die sich zueinander
wie Bild und Spiegelbild verhielten. In mühsamer Kleinarbeit trenn-
te er unter dem Mikroskop die beiden Sorten, löste sie getrennt
wieder auf, und siehe da: Die eine Sorte war linksdrehend, die
andere rechtsdrehend optisch aktiv. Dies erschien damals als so sen-
sationell, dass Pasteur sein Experiment vor den Augen des Akademie-
Präsidenten Biot wiederholen musste. Man war wohl der Meinung,
dass die optische Aktivität der biogenen Substanzen etwas mit dem
„Leben“ zu tun hätte und daher nicht „künstlich“ erzeugt werden
könnte.



9.4 Induzierte Doppelbrechung, nichtlineare Optik 215

Te
il
I

bei chemischen Reaktionen wirksamwerden, bevorzugen
keinen Schraubensinn.

Wie bringt es die Natur dann fertig, optisch aktive Sub-
stanzen herzustellen? Das war lange Zeit ein Rätsel. Heu-
te kann man darauf die folgende Antwort geben: Zur
Herstellung dieser Substanzen laufen im lebendem Orga-
nismus Reaktionen ab, die von Enzymen katalysiert wer-
den. Enzyme bestehen aber aus Aminosäuren, und alle
biogenen Aminosäuren sind linksdrehend, weil sie gene-
tisch als Kopie einer Vorlage hergestellt wurden und nicht
durch chemische Reaktionen, wie sie im Reagenzglas ab-
laufen. Wenn der Katalysator nicht spiegelsymmetrisch
ist, muss es auch das Produkt nicht sein.

Es bleibt noch die Frage: Warum sind alle in der Natur
vorkommenden Aminosäuren linksdrehend, gleichgültig,
ob sie aus einer Braunalge oder aus einem Elefanten stam-
men? Es ist heute kein Grund bekannt, warum Leben
nicht auch mit rechtsdrehenden Aminosäuren möglich
wäre. Vielleicht gibt es anderswo solche Organismen, bei
uns auf der Erde aber offenbar nicht. Das könnte ein Hin-
weis darauf sein, dass auf der Erde das Leben mit einem
einzigen reproduktionsfähigen Molekül begonnen hat.

9.4 Induzierte Doppelbrechung,
nichtlineare Optik

In Substanzen, die weder doppelbrechend noch optisch
aktiv sind, kann man durch Einwirkung elektrischer oder
magnetischer Felder Doppelbrechung hervorrufen. Man
nennt das induzierte Doppelbrechung. Diese Effekte
sind schon für sich genommen physikalisch interessant;
noch interessanter sind die Anwendungen, die sie 100 Jah-
re nach ihrer Entdeckung inWissenschaft und Technik ge-
funden haben. – Schon Faraday vermutete, dass Licht und
Elektromagnetismus in einem engen Zusammenhang ste-
hen. Deshalb suchte er systematisch nach Effekten, die
dies bestätigen könnten. Er entdeckte dabei den magne-
tooptischen Effekt, den wir als erstes betrachten.

Der Faraday-Effekt

Wenn man eine durchsichtige isotrope Substanz in ein
Magnetfeld steckt, wird sie optische aktiv: Die Schwin-
gungsebene von linear polarisiertem Licht wird gedreht,
wenn das Licht parallel zumMagnetfeld durch das Mate-
rial läuft. Mit den Bezeichnungen von Abb. 9.36a ist der
Drehwinkel

α = VBl . (9.37)

a

b

I

α
l
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P1

N S

P2

Licht
B

Materialprobe

Elektro-
magnet
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Abbildung 9.36 Faraday-Effekt. a Prinzip, b Anordnung zur Messung der
Verdet-Konstante. P1, P2: Polarisatoren. N , S : Pole eines starken Elektromagne-
ten

V ist eine für den Stoff charakteristische Größe, die soge-
nannte Verdet-„Konstante“. Sie hängt in beträchtlichem
Maße von der Wellenlänge ab. Die atomphysikalische
Deutung des Effekts schließt sich eng an die Erklärung
des Diamagnetismus an (vgl. Bd. III/14.3). Wie wir dort
gesehen haben, bewirkt das Magnetfeld in den Atomen
zusätzliche Kreisströme und damit eine Asymmetrie, die
unterschiedliche Brechungsindizes für rechts- und links-
zirkular polarisiertes Licht zur Folge hat. Wie Tab. 9.5
zeigt, ist der Effekt gewöhnlich nicht groß.Man hat jedoch
für technische Anwendungen Materialien mit großer
Verdet-Konstante entwickelt (Hoya-Glas, TGG und ande-
re). Die großen negativen Werte von V erreicht man mit
paramagnetischen Stoffen.

Die Richtung der Faraday-Drehung hängt davon ab, ob
das Licht in Richtung von B oder entgegengesetzt dazu

Tabelle 9.5 Verdet-Konstante verschiedener Materialien

λ
(nm)

V(
Grad
T · cm

)

644 5,20

480 9,47

NaCl

260 48,6

H2O 589 2,18

CS2 589 7,00

Benzol 589 5,03

Glas SF6 (Schott) 589 13,5

Glas FR6 (Hoya) 633 −41,8

TGG1 830 41

1 Terbium-Gallium-Granat, für Infrarot besonders geeignet.
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Abbildung 9.37 Faraday-Isolator. a Prinzip, b praktische Ausführung: Perma-
nentmagnet zur Felderzeugung und Glan-Prismen als Polarisatoren

durch die Probe läuft. Das unterscheidet den Faraday-
Effekt grundsätzlich von der gewöhnlichen optischen Ak-
tivität. Dort wird die Polarisationebene stets in einem
bestimmten Sinn gedreht, z. B. nach rechts, gleichgültig
in welcher Richtung das Licht durch das Material läuft.12

Stellt man hinter die Materialprobe einen Spiegel, so wird
beim Rücklauf die im ersten Durchgang erfolgte Drehung
wieder rückgängig gemacht. Bei der Faraday-Drehung
würde dagegen beim Rücklauf in Abb. 9.36 die Polarisati-
onsebene nach links gedreht, so dass sich die Drehwinkel
zu 2α addieren.

DiesenUmstand kannman ausnutzen, um eine „Einbahn-
straße“ für Licht zu bauen. In der Fachsprache wird sie
Faraday-Isolator genannt. In Abb. 9.37 ist das Prinzip ge-
zeigt: Hinter dem Polarisationsfilter P1 erzeugt man eine
Faraday-Drehung um 45°. Dann kann in Abb. 9.37a die
Strahlung ungehindert das Polarisationsfilter P2 durch-
laufen. In Abb. 9.37b bewirkt dagegen die Faraday-
Drehung, dass von rechts einfallendes Licht am Filter P1
gestopptwird. Die Anordnungwird z. B. eingesetzt,wenn
ein Laserstrahl in eine Versuchsanordnung eingespeist
wird, und verhindert werden muss, dass reflektiertes
Licht in den Laser zurückläuft. Das ist besonders wichtig
bei Laserstrahlen hoher Leistungsdichte.

Eine Anwendung ganz anderer Art findet der Faraday-
Effekt in der Astronomie. In unserer Galaxie gibt es zahl-
reiche Radioquellen, deren Strahlung in geringem Maße

12 Zum Vergleich: Eine Schraube sieht, von jedem Ende aus betrach-
tet, gleich aus, Rechtsgewinde bleibt Rechtsgewinde. Das ist die
Situation bei der gewöhnlichen optischen Aktivität. Die Zeiger ei-
ner Uhr dagegen bewegen sich von vorn betrachtet rechts herum,
von hinten betrachtet aber links herum. Das ist die Situation beim
Faraday-Effekt.

linear polarisiert ist. Man hat nun beobachtet, dass die
Polarisationsrichtung der bei uns ankommenden Strah-
lung von der Wellenlänge abhängt. Das kann man auf die
Wellenlängenabhängigkeit der Faraday-Drehung zurück-
führen und zur Messung des interstellaren Magnetfel-
des benutzen. Das interstellare Gas ist teilweise ionisiert.
Die freien Elektronen des Plasmas laufen im Magnetfeld
auf Kreisbahnen. Dadurch erzeugen sie eine Faraday-
Drehung, die im Radiowellenbereich proportional zum
Quadrat der Wellenlänge ist. Die Elektronendichte und
die Entfernung der Quellen sind hinreichend genau be-
kannt, so dass ein Schluss auf das Magnetfeld möglich ist.
Seine mittlere Stärke ist in unserer Galaxie B ≈ 10−10 T.
Diese Information ist wichtig, z. B. um die Herkunft und
Ausbreitung der kosmischen Strahlung (Bd. I/19.5) dis-
kutieren zu können.

Elektrooptische Effekte

Wenn man an ein isotropes Dielektrikum ein elektrisches
Feld anlegt, wird die Isotropie aufgehoben. Im Dielek-
trikum entsteht durch die elektrische Polarisation P eine
Vorzugsrichtung, und man könnte erwarten, dass sich die
Brechungsindizes für Licht, das parallel oder senkrecht
zu dieser Richtung polarisiert ist, voneinander unterschei-
den. Da die Ladungsverschiebungen, die diese Aniso-
tropie verursachen, proportional zu E sind, könnte man
vermuten, dass auch die durch das Feld induzierte Dop-
pelbrechung proportional zur Feldstärke ist:

Δn = nao − no = κE . (9.38)

Bei isotropen Medien ist das jedoch aus Symmetriegrün-
den nicht möglich. Dreht man die Richtung des elektri-
schen Feldes um (E → −E), dann dreht sich auch die
Polarisation P um. Sie bleibt dabei dem Betrage nach
gleich:

P(−E) = −P(E) . (9.39)

Die durch die elektrische Polarisation hervorgerufene
Anisotropie des Mediums (in Feldrichtung quer zur Feld-
richtung) bleibt dabei die gleiche. Es ist also in (9.38)

Δn = κE = −κE ,

und das bedeutet κ = 0. Möglich ist dagegen eine zu E2

proportionale induzierte Doppelbrechung (Kerr-Effekt).
Nur bei Kristallen, die wie die piezoelektrischen Kristal-
le (Bd. III/4.3) keine Inversionssymmetrie besitzen, wird
(9.39) außer Kraft gesetzt, und es gibt einen linearen elek-
trooptischen Effekt (Pockels-Effekt). Beide Effekte finden
interessante Anwendungen.
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Tabelle 9.6 Kerrkonstanten einiger Flüssigkeiten in 10−14 mV−2, bei 20 °C,
λ = 589 nm

K

Wasser (H2O) 5,1

Benzol (C6H6) 0,45

Schwefelkohlenstoff (CS2) 3,6

Nitrotoluol (C7H7NO2) 137

Nitrobenzol (C6H5NO2) 245

Abbildung 9.38 Kerr-Zelle U

45°
45°

ld

Der Kerr-Effekt. Der erste elektrooptische Effekt wurde
1875 von dem schottischen Physiker John Kerr entdeckt.
Bringt man eine transparente isotrope Substanz in ein
homogenes elektrisches Feld, wird sie einachsig dop-
pelbrechend. Die optische Achse zeigt in Richtung der
Feldlinien, und die Differenz Δn = nao − no ist proportio-
nal zumQuadrat der Feldstärke:

Δn = KλE2 . (9.40)

λ ist die Vakuum-Wellenlänge des Lichts, K die Kerr-
Konstante. Sie hängt von λ und von der Temperatur ab.
Der Effekt ist winzig, wie Tab. 9.6 zeigt. Ein Zahlenbei-
spiel: Für E = 106 V/m, λ = 500 nm und K = 10−13 m/V2

erhält man Δn = 5 · 10−8.

Der Kerr-Effekt tritt auf bei Flüssigkeiten, bei Gläsern und
bei Kristallen. Besonders ausgeprägt ist er bei Flüssig-
keiten, deren Moleküle eine anisotrope Polarisierbarkeit
aufweisen. In diesen Fällen ist die elektrische Suszeptibi-
lität ein Tensor, und die zu E proportionalen induzierten
Dipolmomente p zeigen gewöhnlich nicht in Feldrich-
tung. Diese Moleküle werden nun im E-Feld ausgerichtet.
Der Ausrichtungsgrad ist nach Bd. III, Gl. (4.29) propor-
tional zu |p| · |E|, also proportional zu E2.

Die Ausrichtung der Moleküle gegen den Einfluss der
thermischen Bewegung erfolgt sehr schnell. Die Relaxati-
onszeit beträgt beimNitrobenzol τ ≈ 4 · 10−11 s, beim CS2
sogar nur τ ≈ 3 · 10−12 s. Man kann daher mit Hilfe des
Kerr-Effekts sehr schnell wirkende optische Schalter bau-
en. Abbildung 9.38 zeigt eine Kerr-Zelle. Zwischen zwei
gekreuzten Polarisatoren befindet sich ein Glasgefäß, das
z. B. mit Nitrobenzol gefüllt wird. In der Flüssigkeit kann

zwischen den Elektroden ein elektrisches Feld erzeugt
werden. Die Polarisatoren stehen unter ±45° gegen die
Feldrichtung. Bei E = 0 ist der Lichtweg durch die ge-
kreuzten Polarisatoren gesperrt. Wird eine Spannung U
angelegt, entsteht zwischen dem ordentlichen und dem
außerordentlichen Strahl eine Phasendifferenz

δ =
2π

λ
Δnl = 2πKlU2/d2 . (9.41)

Für δ = π wirkt die Zelle als λ/2-Platte, der Verschluss
ist nach Satz 9.1 vollständig geöffnet. Dazu muss man die
Halbwellenspannung anlegen:

Uλ/2 =
d√
2Kl

. (9.42)

Wie man leicht ausrechnen kann, benötigt man selbst mit
Nitrobenzol Spannungen im Bereich von einigen 104 Volt.
Es ist nicht einfach, einen kurzen Spannungspuls mit die-
ser Amplitude herzustellen.

Man kann die Kerrzelle auch dazu verwenden, die Inten-
sität eines Lichtstrahls mit einem elektrischen Signal u(t)
zu modulieren. Dazu legt man an die Zelle die Spannung
U = U0 + u(t), wobei U0 eine Gleichspannung ist. Hinter
der Kerr-Zelle ist nach (9.33) die Intensität

I = I0 sin2
δ

2
=

I0
2
(1− cos δ) . (9.43)

Mit U0 = Uλ/2/
√
2 und u(t) 	 U0 erhält man aus (9.41)

δ ≈ π

2
+ π

u(t)
U0

,

I =
I0
2

(
1+ sinπ

u(t)
U0

)
≈ I0

2

(
1+ π

u(t)
U0

)
.

(9.44)

Die Modulation ist proportional zu u(t).

In der Frühzeit der Tonfilmtechnik verwendete man die
Kerrzelle dazu, mit dem verstärkten Ausgangssignal des
Mikrophons einen Lichtstrahl zu modulieren und da-
mit auf dem Film neben der Bilderfolge einen schmalen
Streifen zu belichten. Der so aufgezeichnete Ton konnte
dann beim Abspielen des Films über Fotozelle, Verstärker
und Lautsprecher wiedergegeben werden. Heute dient
die Kerrzelle als Modulator für höchste Frequenzen, bis
in den Bereich von 100GHz, und als optischer Verschluss
mit extrem kurzer Schaltzeit (10−11 − 10−12 s). Ein Hoch-
spannungspuls so kurzer Zeit ist elektronisch längst nicht
mehr realisierbar. Er wird durch einen kurzen, linear pola-
risierten Laserpuls ersetzt: Da der Kerreffekt proportional
zu E2 ist, kann man die Zelle auch mit dem Wechselfeld
der Lichtwelle schalten. Die erforderliche Feldstärke lässt
sich mit einem Hochleistungslaser erreichen.

Von dieser Tatsache macht man bei einer weiteren An-
wendung des Kerr-Effekts Gebrauch: Schießt man einen
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Abbildung 9.39 Selbstfokussierung in einer mit Nitrobenzol gefüllten Kerrzel-
le und die Folgen (nach W. Busch (1865))

intensiven, linear polarisierten Laserstrahl mit gauß-
schem Strahlprofil durch eine transparente Platte, so ent-
steht aufgrund des Kerr-Effekts auf der Strahlachse ein
erhöhter Brechungsindex

nao = no + KλE2 = no +
Kλ

ε0c
I , (9.45)

wenn I die Intensität des Laserstrahls ist. Da die durch
den Kerr-Effekt erzeugte optische Achse parallel zu E
entsteht, läuft der Laserstrahl als ao-Strahl durch das Me-
dium. Der maßgebliche Brechungsindex ist durch (9.45)
gegeben. no ist gleich n0, dem gewöhnlichen Brechungs-
index des Materials. Mit Kλ/ε0c = n2 erhält man

n = n0 + n2I . (9.46)

Da die Intensität von der Strahlachse aus nach außen hin
abfällt, entsteht eine Gradientenlinse (Abb. 6.12), deren
Brennweite umso kürzer wird, je höher die Laserintensi-
tät ist. Man bezeichnet das als Selbstfokussierung. Eine
solche Kerr-Linse spielt bei Lasern, die sehr kurze Licht-
pulse hoher Leistung erzeugen sollen, eine wichtige Rolle.
Die Selbstfokussierung kann auch gefährlich werden und
zur Zerstörung optischer Bauelemente führen, wenn der
Fokus innerhalb des Materials zu liegen kommt. Insbe-
sondere sollte man vermeiden, dass sich in einer mit Ni-
trobenzol oder Nitrotoluol gefüllten Kerr-Zelle ein Fokus
bildet, denn diese Substanzen sind explosiv (Abb. 9.39).

Der Pockels-Effekt. Wie wir bereits festgestellt hatten,
kann bei Kristallen, die kein Inversionszentrum besit-
zen, ein linearer elektrooptischer Effekt auftreten. Man

Abbildung 9.40 Pockels-Zelle.
a Die tetragonale Gitterzelle des
KDP. b longitudinale Pockels-Zelle
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erwartet sogar einen solchen Effekt, denn solche Kristalle
sind gewöhnlich piezoelektrisch. Dann führt ein elektri-
sches Feld zu einer Deformation des Kristallgitters, die
sich mit der Richtung des E-Feldes umkehrt, und damit
auch zu einer Anisotropie des Brechungsindex propor-
tional zu E. Qualitativ wurde ein solcher Effekt zuerst
von Röntgen am kristallinen Quarz nachgewiesen. Eine
sehr sorgfältig von Pockels13 durchgeführte experimen-
telle und theoretische Untersuchung zeigte jedoch, dass
die Piezoelektrizität des Quarzes nicht ausreicht, den be-
obachteten Effekt zu erklären. Es handelt sich um einen
Effekt der nichtlinearen Optik, auf die wir weiter unten
noch eingehen werden.

Technische Bedeutung erlangte der Pockels-Effekt erst,
nachdem Materialien entwickelt worden waren, bei de-
nen der Effekt viel stärker ist, als beim Quarz. Die be-
kanntesten Beispiele sind der KDP-Kristall (Kaliumdihy-
drogenphosphat KH2PO4) und das noch empfindlichere
KD∗P (KD2PO4). KDP bildet tetragonale Kristalle. Die
Gitterzelle hat die Seiten a, b und c, die senkrecht auf-
einander stehen, und es ist a = b �= c (Abb. 9.40a). Die
Achsen des Koordinatensystems x, y, z liegen parallel zu
diesen Seiten. Der Kristall ist optisch einachsig; die op-
tische Achse liegt in z-Richtung. Abbildung 9.40b zeigt
einen KDP-Kristall, der so geschnitten ist, dass seine Kan-
ten parallel zu den kristallographischen Achsen liegen.
Der auf die (x, y)-Fläche gezeichnete gestrichelte Kreis
soll die Schnittlinie des Indexellipsoids mit der (x, y)-
Ebene darstellen. Wird nun parallel zur optischen Achse

13 Friedrich Pockels (1865–1913) war an der Universität Heidelberg
tätig, und zwar als „planmäßiger außerordentlicher Professor für
Theoretische Physik“, d. h. er bekam ein geringeres Gehalt als der
ordentliche Professor für Physik und hatte kein eigenes Labor. Der-
artige Stellen wurden damals auch an anderen Universitäten einge-
richtet. Der Begriff „Theoretische Physik“ und die Einrichtung von
Professuren für dieses Fach entstanden also aus fiskalischer Spar-
samkeit. – Von Pockels stammt auch ein Lehrbuch der Kristalloptik,
das jahrzehntelang ein Standardwerk auf diesem Gebiet war.
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ein E-Feld angelegt, wird der Kristall infolge der elektri-
schen Polarisation optisch zweiachsig. Das Indexellipsoid
wird dreiachsig und der Kreis deformiert sich zu der in
Abb. 9.40b eingezeichneten Ellipse. Die Halbachsen lie-
gen in der x′- und y′-Richtung, um 45° gegen die x- und
y-Richtung verdreht. Das ergibt sich aus der Lage der
Atomgruppen in der tetragonalen Gitterzelle. Die Diffe-
renz der Hauptindizes nx′ − ny′ ist

Δn = n3or63E . (9.47)

no = 1,51 ist der Brechungsindex des ordentlichen Strahls
bei E = 0, r63 = 10,6 · 10−12 m/V ein elektrooptischer Ko-
effizient. Δn ist also für alle erreichbaren Feldstärken sehr
klein; das Achsenverhältnis der Ellipse in Abb. 9.40b ist
maßlos übertrieben. Wie Abb. 9.17b zeigt, schließen dann
die optischen Achsen mit der z-Achse einen sehr kleinen
Winkel ein. Für in z-Richtung eingestrahltes Licht, das in
y-Richtung linear polarisiert ist, bildet der Kristall eine
Phasenplatte, bei der die Phasenverschiebung mit Hilfe
der angelegten Spannung eingestellt werden kann: Der
E-Vektor kann in eine x′- und eine y′-Komponente zer-
legt werden. Wie bei Abb. 9.20 gezeigt wurde, entstehen
zwei Wellen, die mit unterschiedlichen Geschwindigkei-
ten durch den Kristall laufen. Damit das Licht paral-
lel zur Richtung des E-Feldes eingestrahlt werden kann
(longitudinale Pockels-Zelle), müssen die felderzeugen-
den Elektroden durchsichtig sein, also z. B. aus aufge-
dampften SnO-Schichten bestehen.

Zwischen zwei gekreuzten Polarisatoren kann die
Pockels-Zelle als optischer Schalter oder als optischer
Modulator dienen. Wir berechnen die Halbwellenspan-
nung. Mit E = U/l erhält man

λ

2
= Δnl → Uλ/2 =

λ

2n3or63
. (9.48)

Uλ/2 ist unabhängig von der Länge des Kristalls und be-
trägt für λ = 546 nm beim KDP 7,6 kV, beim KD∗P 3,4 kV.
Damit kommt man in den Bereich, in dem elektronisch
Schaltzeiten von Nanosekunden erreicht werden können.

Es gibt noch eine Vielzahl von mehr oder weniger exoti-
schen Kristallen, die für Pockels-Zellen entwickelt wur-
den, die sich in den Eigenschaften und im Preis unter-
scheiden. Ein Beispiel ist das Lithiumniobat LiNbO3, mit
dem man auf einfache Weise eine transversale Pockels-
Zelle bauen kann, bei der das Licht in Richtung der
optischen Achse und senkrecht zur Feldrichtung einge-
strahlt wird (Abb. 9.41). Die Halbwellenspannung ist mit
E = U/d

Uλ/2 =
λ

2n3or22

d
l
. (9.49)

Man gewinnt gegenüber (9.48) den Faktor l/d; r22 ist der
beim LiNbO3-Kristall maßgebliche elektrooptische Koef-

Abbildung 9.41 Transversale
Pockels-Zelle mit LiNbO3
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fizient. Auch mit KDP kann man transversale Pockels-
Zellen bauen, indem man in geeigneter Weise zwei stäb-
chenförmige Stücke aus dem Kristall schneidet und hin-
tereinander setzt. Eine transversale Pockels-Zelle lässt
sich bei entsprechender Wahl von d/l bereits mit einigen
100V schalten.

Nichtlineare Optik

Bisher sind wir immer davon ausgegangen, dass die Po-
larisation eines Mediums proportional zur elektrischen
Feldstärke ist. In Bd. III, Gl. (4.11) definierten wir die
elektrische Suszeptibilität mit P = χeε0E. Dabei wurde
ein lineares Kraftgesetz zugrunde gelegt. Bei hohen Feld-
stärken sind Abweichungen zu erwarten. Am einfachsten
drückt man das durch eine Reihenentwicklung aus. Bei
isotropen Substanzen erhält man

P = χeε0E+ χ′
eε0E2 + χ′′

e ε0E3 + . . . (9.50)

Die Größenordnungen sind bei Kristallen

χe ≈ 1 , χ′
e ≈ 10−11m

V
, χ′′

e ≈ 10−20m
2

V2 . (9.51)

Bei anisotropen Stoffen sieht die entsprechende Formel
weitaus komplizierter aus: An die Stelle von χe tritt, wie
schon in Bd. III/4 erwähnt wurde, der Tensor χ

e
, an die

Stelle von χ′E2 tritt eine lineare Funktion aller möglichen
Produkte EkEl, und so fort. Für jede Komponente des Vek-
tor P erhält man einen Ausdruck der Form

Pi = ∑
k

χikε0Ek +∑
k,l

χ′
iklε0EkEl

+ ∑
k,l,m

χ′′
iklmε0EkElEm + . . .

(9.52)

Jeder der Indizes i, k, l und m kann die Werte x, y und z
annehmen. Die χik sind die Elemente eines Tensors zwei-
ter Stufe (vgl. Bd. I, Gl. (21.134)), die χikl und χiklm sind
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die Elemente von Tensoren dritter und vierter Stufe. In
der Praxis sind die Ausdrücke nicht so kompliziert, wie
es zunächst aussieht, denn aufgrund der Kristallsymme-
trien gibt es jeweils nur wenige Tensorelemente, die nicht
Null sind.

Wenn das Kristallgitter inversionssymmetrisch ist, kehrt
sich bei Umkehr des E-Feldes auch das Vorzeichen der
Polarisation um, es gilt (9.39). Dann müssen in (9.52) al-
le Glieder mit geraden Potenzen von E verschwinden,
d. h. alle Elemente des χ′-Tensors sind Null. Bei Kristallen
ohne Inversionssymmetrie bleiben diese Glieder jedoch
stehen. Das ermöglicht interessante Anwendungen, z. B.
beim Pockels-Effekt, bei dem das E-Feld in (9.52) durch
Überlagerung des Lichtfelds mit einem statischen Feld
entsteht: E = E(ω) + Estat. Wir betrachten ein anderes Bei-
spiel, bei dem nur das Lichtfeld eine Rolle spielt.

Frequenzverdoppelung von Laserlicht. Ein Laserstrahl
mit der Frequenz ω falle auf einen KDP-Kristall. Die E-
Feldstärke in der Welle soll so groß sein, dass die Pola-
risation des Kristalls nichtlinear wird. Wie wirkt sich das
aus? Zunächst gehen wir von der einfachen Formel (9.50)
aus und setzen dort E = E0 cosωt. Bei Vernachlässigung
der kubischen Glieder erhalten wir

P(E) = χeε0E0 cosωt+ χ′
eε0E2

0 cos
2 ωt

= χeε0E0 cosωt+
1
2

χ′
eε0E2

0(1+ cos 2ωt) .
(9.53)

Im Kristall entsteht eine Polarisation, die einen Anteil mit
der doppelten Frequenz enthält. Die zeitlich veränderli-
che Polarisation führt zur Abstrahlung von elektroma-
gnetischen Wellen in Vorwärtsrichtung; auf diese Weise
entsteht ja der Brechungsindex, wie schon im Anschluss
an (2.74) angemerkt wurde. Dabei entstehen auch Wellen
mit der Frequenz 2ω. Nach Durchgang durch den Kris-
tall enthält die Welle einen frequenzverdoppelten Anteil:
Man erzeugt bei nichtlinearer Polarisation des Dielektri-
kumsmit Hilfe der Grundwelle die erste Oberwelle (engl.:
„second harmonic generation“, SHG).

Das Problem ist, dass die Oberwellen im Kristall räum-
lich verteilt längs des Strahls entstehen. Ihre Phasenlage
bei der Entstehung ist jeweils durch die Phase der Grund-
welle gegeben. Diese Phase läuft mit der Geschwindig-
keit cn = c/n(ω) durch den Kristall, während die fre-
quenzverdoppelte Welle die Phasengeschwindigkeit cn =
c/n(2ω) hat. Wegen der Dispersion ist n(2ω) �= n(ω):
Die neu erzeugten Oberwellen sind nur über eine kurze
Strecke in Phase. Sie löschen sich durch destruktive Inter-
ferenz weitgehend aus.

Hier kommt nun die natürliche Doppelbrechung des
KDP-Kristalls zu Hilfe. Wir betrachten die in Abb. 9.42

ω

z

y
x

ωϑ

2ω

opt. Achse

Abbildung 9.42 Frequenzverdopplung mit einem KDP-Kristall. Die optische
Achse des Kristalls verläuft unter dem Winkel ϑ = 52° gegen die Strahlrichtung
geneigt in der graugetönten Mittelebene des quaderförmigen Stäbchens

gezeigte Anordnung. Wenn man das Problem mit (9.52)
behandelt und die Kristallsymmetrie des KDP berück-
sichtigt, stellt man fest: Schwingt der E-Vektor der ein-
laufenden Welle senkrecht zur optischen Achse, dann
schwingt der E-Vektor der Oberwelle in der Ebene par-
allel zur optischen Achse.14 In Abb. 9.42 erzeugt der
ordentlicher Strahl der Frequenz ω einen außerordent-
lichen Strahl der Frequenz 2ω. Nun wissen wir, dass
beim ao-Strahl der Brechungsindex nao von dem Win-
kel ϑ zwischen dem k-Vektor und der optischen Achse
abhängt und haben in Abb. 9.19 gesehen, wie man bei
vorgegebener k-Richtung die Brechungsindizes mit Hilfe
des Indexellipsoids ermitteln kann. Bei der Frequenzver-
dopplung kommt es auf die Brechungsindizes no(ω) und
nao(ϑ, 2ω) an. Ebenso, wie man bei einem optisch ein-
achsigen Kristall die Strahlenfläche in Abb. 9.21 zeichnet,
kann man auch eine zweischalige Indexfläche konstruie-
ren, bei der in jeder k-Richtung die Brechungsindizes no
und nao(ϑ) abgetragen werden. Die no-Fläche ist eine Ku-
gel, die nao-Fläche das Rotationsellipsoid von Abb. 9.19b.
Abbildung 9.43a zeigt diese Flächen für die Lichtfrequen-
zen ω und 2ω im Schnitt. Im Bereich normaler Dispersion
nehmen die Brechungsindizes mit steigender Lichtfre-
quenz zu. Beim KDP ist no > nao. Daher gibt es einen

14 Es ist nicht schwer, dies einzusehen. Beim KDP sind aufgrund
der Kristallsymmetrie alle χ′

ikl = 0, außer χ′
xyz = χ′

xzy = d14, χ′
yxz =

χ′
yzx = d25 und χ′

zxy = χ′
zyx = d36. (Es ist üblich, die χ′

ikl wie hier an-
gegeben zu bezeichnen.) Für den zu cos 2ωt proportionalen Anteil
der Polarisation erhält man dann mit (9.52)

Px = 2d14EzEy , Py = 2d25EzEx , Pz = 2d36ExEy .

Wenn der E-Vektor der einlaufenden Welle senkrecht zur optischen
Achse schwingt, ist die Komponente Ez = 0 und Ex = −Ey �= 0.
Dann bleibt nur noch Pz übrig: In der frequenzverdoppelten Welle
schwingen die Vektoren E und D in einer Ebene, die die optische
Achse enthält, sie bildet also einen ao-Strahl (vgl. Abb. 9.15a). Eine
Erklärung der Notation und ausführliche Tabellen der elektroopti-
schen Koeffizienten findet man z. B. bei A. Yarif u. P. Yeh, „Optical
Waves in Crystals“, Kap. 12, J. Wiley & Sons (1984).
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Abbildung 9.43 a Die In-
dexflächen des KDP für die
Lichtfrequenzen ω und 2ω. b In-
tensität der frequenzverdoppelten
Welle als Funktion des Winkels ϑ
(nach Maker et al. (1962))

a

b

opt. Achse nao(2ω)
no(ω)

k

ϑm

ϑmI(2ω)

ϑ60°50°40°

Winkel ϑm, bei dem die Bedingung

no(ω) = nao(ϑ, 2ω) (9.54)

exakt erfüllt ist. Wird dieser Winkel genau eingehalten,
werden die Oberwellen im ganzen Kristall kohärent er-
zeugt, und man erhält einen hohen Wirkungsgrad bei der
Frequenzverdopplung (Abb. 9.43b).Mit diesemVerfahren
kann man bei der Frequenzverdopplung Wirkungsgrade
von 65% und mehr erreichen. Das ist von großer Bedeu-
tung, denn Laser, insbesondere solchemit hoher Leistung,
lassen sich vor allem im langwelligen Spektralbereich rea-
lisieren. Durch Frequenzverdopplung kannman dannmit
geringem Aufwand Laserstrahlen bis hinein in den UV-
Bereich erzeugen.

Doppelbrechung in kristallinen Flüssigkeiten und
Flachbildschirme

Kristalline Flüssigkeiten nehmen eine Zwischenstellung
zwischen Kristallen und gewöhnlichen Flüssigkeiten ein.
Man findet sie als eine besondere thermodynamische Pha-
se bei gewissen organischen Substanzen, die stabförmige
Moleküle bilden. Im festen kristallinen Zustand besteht
bei diesen Substanzen sowohl in der Lage als auch in
der Ausrichtung der Moleküle eine Fernordnung. Beim
Schmelzen des Kristalls geht zunächst nur die Fernord-
nung der Lage verloren, während die Ausrichtung be-
stehen bleibt. Man spricht dann von einer kristallinen
Flüssigkeit. Wie in einer gewöhnlichen Flüssigkeit sind

Abbildung 9.44 Kristalline Flüssigkeit, nematische Phase

die Moleküle nicht an feste Plätze gebunden, aber es gibt
eine Fernordnung der Molekülachsen. Sie geht erst bei
einer höheren Temperatur mit einem weiteren Phasen-
übergang verloren.

Es gibt kristalline Flüssigkeiten mit Strukturen verschie-
denen Typs. Uns interessieren hier Flüssigkeiten, die eine
nematische Phase bilden (Abb. 9.44). Solche Flüssigkei-
ten sind einachsig doppelbrechend. Die optische Achse
liegt in der Richtung, nach der sich die Längsachsen
der Moleküle ausgerichtet haben. Da die Polarisierbar-
keit der Moleküle in Längsrichtung größer ist als quer
zur Stäbchenachse, sind nematische Flüssigkeiten positiv
doppelbrechend (nao > no).

Die technische Bedeutung dieser Flüssigkeiten beruht
darauf, dass sich die Richtung der optischen Achse leicht
manipulieren lässt. In eine Flasche gefüllt, sieht die kris-
talline Flüssigkeit milchig trüb aus: Es bilden sich Domä-
nen unterschiedlicher Orientierung. An den Grenzflächen
der Domänen wird das Licht infolge der unterschiedli-
chen Brechungsindizes reflektiert und gebrochen. Bringt
man die Flüssigkeit jedoch in dünner Schicht zwischen
zwei Glasplatten, an deren Oberfläche man durch Rei-
ben mit einem weichen Tuch eine Vorzugsrichtung er-
zeugt hat, ordnen sich die molekularen Stäbchen, von den
Grenzflächen ausgehend, in dieser Vorzugsrichtung und
die Flüssigkeit wird transparent.

Wenn die auf den Glasflächen erzeugten Vorzugsrichtun-
gen um einen Winkel von 90° gegeneinander verdreht
sind, bildet sich in der kristallinen Flüssigkeit eine um 90°
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a

b

P1

P2

Pixel-Elektrode

Abbildung 9.45 Zur Wirkungsweise eines Flachbildschirms

gewendelte Struktur. Sie bewirkt, dass die Polarisations-
ebene von Licht, das parallel zur optischen Achse der an
der Oberfläche befindlichen Moleküle polarisiert ist, beim
Durchlaufen der Schicht um 90° gedreht wird.15 Wird
nun zwischen den Platten ein elektrisches Feld erzeugt,
stellen sich die Moleküle parallel zu den Feldlinien: Die
von den Oberflächen ausgehende Ausrichtung der Mole-
küle kann durch ein elektrisches Feld leicht aufgehoben
werden.

Mit Hilfe dieser Phänomene kann man Flachbildschirme
bauen. Auf den Außenseiten der in Abb. 9.45 gezeigten
Glasplatten werden Polarisationsfolien angebracht, de-
ren Durchlassrichtungen um 90° gegeneinander verdreht
sind. Innen werden sie mit einer transparenten leitenden
Schicht versehen. Darauf wird eine SiO2-Schicht aufge-
dampft, auf der dann durchWischen die Vorzugsrichtung
erzeugt wird, und zwar parallel zu den Durchlassrichtun-
gen der Polarisatoren. Die kristalline Flüssigkeit befindet
sich zwischen den Platten. Auf der einen Platte ist die lei-
tende Schicht in Bildelemente (Pixels) aufgeteilt, und an
jedes Pixel kann eine Spannung angelegt werden. Auf der
anderen Platte ist die leitende Schicht geerdet.

15 Zur Erklärung dieses Phänomens denken wir uns die Flüssig-
keit zwischen den Glasplatten in dünne Schichten unterteilt, z. B.
in 90 Schichten, deren optische Achsen jeweils um 1° gegenüber
der vorhergehenden Schicht verdreht sind. Wie Abb. 9.5 zeigte, ist
die Komponente des E-Vektors parallel zur optischen Achse hin-

ter der ersten um 1° verdrehten Schicht E(1)
‖ = E(0)

‖ cos 1◦ , hinter

der zweiten E(2)
‖ = E(0)

‖ (cos 1◦)2 und hinter der 90. Schicht E(90)
‖ =

E(0)
‖ (cos 1◦)90 = 0,986E(0)

‖ . Damit das so funktioniert, muss der Ab-
stand zwischen den Glasplatten d 
 λ/(nao − no) sein.

Source 1 Source 2 Source 3
Gate 1

Gate 2

Gate 3

Abbildung 9.46 Schaltschema eines AMLCD (Active Matrix Liquid Crystal Dis-
play)

Liegt keine Spannung an, ist das Pixel lichtdurchlässig,
und von hinten beleuchtet erscheint es hell (Abb. 9.45a).
Wird eine Spannung angelegt, stellen sich die Molekü-
le senkrecht zu den Glasplatten, die Polarisationsebene
des Lichts wird nicht mehr gedreht, das Pixel wird dun-
kel (Abb. 9.45b). Natürlich ist es schwierig, bei einem
Bildschirm mit z. B. 640 × 480 oder gar 1920 × 1350 Pi-
xels die Spannungen individuell zuzuführen. Man hat
daher Strukturen entwickelt, bei denen in jedes Pixel ein
in Dünnschichttechnik hergestellter FET in die leitende
Schicht integriert ist. Das Pixel kann dann über Source-
und Gate-Leitungen aktiviert werden (Abb. 9.46).

Sehr einfach ist die Ansteuerung bei der Flüssigkristall-
anzeige in einem Taschenrechner oder bei der Digitaluhr.
Hier werden die Ziffern und Buchstaben durch wenige
große Felder dargestellt, die ohne weiteres von hinten an-
gesteuert werden können. Die rückwärtige Beleuchtung
wird eingespart und durch einen diffus reflektierenden
Spiegel ersetzt. Das Prinzip bleibt imÜbrigen das Gleiche.
Dass hier polarisiertes Licht im Spiel ist, merkt man erst,
wenn man den Taschenrechner durch eine Polaroid-Folie
betrachtet.
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9.1. Polarisation und Brechungsgesetz. Ein unpolari-
sierter Lichtstrahl trifft unter dem Brewster-Winkel auf
eine ebene Glasoberfläche. Wie groß ist der Polarisations-
grad des Lichtstrahls im Glas?

9.2. Bestimmung der Analysierstärke einer Polarisa-
tionsfolie. Ein Polarisationsfilter besitze für vollständig
linear polarisiertes Licht einen Transmissionsfaktor T =
T0(1+ A cos(2α)), wobei α der Winkel zwischen der Po-
larisationsebene des Lichts und der Filterstellung ist. Die
Parameter T0 und A seien zunächst unbekannt. Stellt man
zwei dieser Filter hintereinander hinter einer Lichtquel-
le auf, die unpolarisierte Strahlung emittiert und misst
die durchgelassene Intensität als Funktion der Winkeldif-
ferenz ϕ zwischen den beiden Filterstellungen, beobach-
tet man die Abhängigkeit T = T12(1 + A12 cos(2ϕ)). Wie
groß sind T0 und A?

Hinweis: Unpolarisiertes Licht entspricht einer inkohä-
renten Überlagerung von zwei Lichtkomponenten glei-
cher Intensität, die lineare Polarisationen parallel und
senkrecht zur Stellung des ersten Filters besitzen.

9.3. Glan-Prisma. Der Winkel, unter dem die beiden
Teile eines Glan-Prismas geschliffen sind, ist in Abb. 9.23
mit 38,5◦ angegeben. Wie groß muss er nach den Daten in
Tab. 9.1 mindestens sein, damit das Prisma funktioniert?
Um wie viel ist die Lichtintensität hinter dem Prisma
kleiner als die Intensitätskomponente mit der gleichen
Polarisation vor dem Prisma?Warum sollte man den Pris-
menwinkel nicht viel größer wählen als unbedingt nötig?

Im Prinzip kann man den Kalkspat auch so schneiden,
dass die optische Achse des Kristalls im Vergleich zu
Abb. 9.23 um 90° gedreht ist, sodass am Ausgang der ao-
Strahl und der o-Strahl vertauscht werden. Dann klebt
man die beiden Teilprismen mit einem Öl zusammen.
Welchen Brechungsindex muss das Öl haben und wie
groß muss man jetzt den Prismenwinkel wählen?

9.4. Zur Entstehung der Interferenzfarben. Unpolari-
siertes Licht tritt nacheinander senkrecht durch eine Pola-
risationsfolie, eine doppelbrechende planparallele Platte
mit der optischen Achse parallel zur Oberfläche und eine
als Analysator dienende zweite Polarisationsfolie. Die Fil-
terstellungen relativ zur optischen Achse der Platte sind
+45° und −45°. Als x-Richtung nehme man die optische
Achse der Platte. Zeigen Sie mit (9.31), dass die Ampli-
tude des Lichts hinter der zweiten Folie A = E0 sin(kz −
ωt+ δ/2) sin(δ/2) ist und sich (9.34) ergibt.

Abbildung 9.47 Fresnelscher
Rhomboeder

α

9.5. Stokes-Parameter. a) Wie groß sind S =√
S21 + S22 + S23 und S/S0 nach (9.7)–(9.10) für vollstän-

dig polarisierte Strahlung?

b) Für vollständig polarisiertes Licht sei S1 = S3 = 0. Wie
groß sind die Winkel η und ϕ, und wie ist die Polarisation
in Abb. 9.1 darzustellen?

c) Ist Licht unpolarisiert, ist im zeitlichen Mittel S1 =
S2 = S3 = 0, aber zu jedem Zeitpunkt ist S/S0 = 1. Fällt in
Abb. 9.3 eine ungewöhnliche statistische Fluktuation auf?
Suchen Sie in Abb. 9.3 Stellen heraus, an denen S2 nahe
bei null oder nahe bei eins liegt.

9.6. Fresnelscher Rhomboeder. a) Die Fresnelschen
Formeln (5.42) und (5.43) sind, wenn man mit komple-
xen Zahlen rechnet, zur Beschreibung der Totalreflexi-
on geeignet. An der Grenzfläche zwischen einem Medi-
um und dem Vakuum gilt für den Ausfallswinkel for-

mal sin β2 = n sin β1 > 1, und cos β2 =
√

1− n2 sin2 β1 =

i
√

n2 sin2 β1 − 1 wird rein imaginär. Die Additionstheo-
reme für trigonometrische Funktionen behalten ihre Gül-
tigkeit. Zeigen Sie, dass nach (5.42) und (5.43) die Am-
plituden der reflektierten und der einfallenden Welle den
gleichen Betrag haben. Wie groß ist die Phasendifferenz
zwischen der reflektierten Welle ρ⊥ und der einfallenden
Welle? Umwelche Phasendifferenz unterscheiden sich die
reflektierten Wellen für die beiden linearen Polarisatio-
nen? Zahlenbeispiel: n = 1,51, β1 = 49°. Wie groß werden
die Phasenverschiebungen am Grenzwinkel zur Totalre-
flexion?

b) In einem Fresnelschen Rhomboeder (Abb. 9.47) wird
Licht zweimal totalreflektiert, der auslaufende Strahl ver-
läuft parallel zum einlaufenden. Wegen der unterschied-
lichen Phasenverschiebungen zweier Wellen mit zueinan-
der senkrechten linearen Polarisationen bei Reflexionen
kann man aus linear polarisiertem Licht zirkular polari-
siertes erzeugen. Wie groß muss dazu der Prismenwin-
kel α gewählt werden? Zahlenbeispiel: n = 1,51.
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Eine große Resonanz in den Medien fand im Jahre
2016 der Nachweis der Gravitationswellen. Dieses
Phänomen ist so fundamental, dass man sich mit
ihm etwas beschäftigen sollte, zumal die Detektoren
auf optischen Interferenzmethoden basieren, die in
diesem Band besprochen wurden. Wir beginnen mit
Bemerkungen über das Raum-Zeit-Kontinuum in
der Allgemeinen Relativitätstheorie und die Eigen-
schaften und die Erzeugung der Gravitationswellen.
Es folgt die Darstellung der wichtigsten experimen-
tellen Aspekte: Wie ist ein interferometrischer De-
tektor aufgebaut? Welche Empfindlichkeit wird für
den Nachweis von Gravitationswellen erreicht und
durch welche physikalischen Effekte wird sie be-
grenzt?

10.1 Das Raum-Zeit-Kontinuum
in der Allgemeinen
Relativitätstheorie

Die Allgemeine Relativitätstheorie (ART) „geometri-
siert“ die Bewegungen von Körpern, die dem Einfluss
der Gravitation unterliegen. Geometrisierung bedeutet,
dass sich die Körper in einem gekrümmten vierdimensio-
nalen Raum-Zeit-Kontinuum bewegen, das die Bahnen
der Körper beeinflusst. Die Raum-Zeit-Krümmung wird
ihrerseits erzeugt durch die sich im Raum bewegenden
Massen, sodass eine in sich geschlossene Beschreibung
entsteht.1

Der metrische Tensor

Zur Erläuterung zunächst eine Anmerkung zu gekrümm-
ten Flächen: Flächen auf einer Kugel wie der Erdkugel
kann man durchaus auf einer Ebene wie einer Landkar-
te abbilden und man kann dort, ausgehend von einem
Nullpunkt, ein Kartesisches Koordinatensystem einfüh-
ren. Weit entfernte Gegenden werden dann stark verzerrt
dargestellt. Ist die Mathematik der Darstellung bekannt,
kann man auf die Hintergrundinformation, dass es sich
um eine Fläche auf einer Kugel handelt, verzichten. Sie
spielt keine Rolle mehr. Die Geometrie der Fläche ist

1 Ausführliche mathematische Details findet man in entsprechen-
den Lehrbüchernwie: H. Stephani, „Allgemeine Relativitätstheorie“,
4. Auflage, Dt. Verlag der Wissenschaften, Berlin, 1991; T. Fließbach,
„Allgemeine Relativitätstheorie“, 7. Auflage, Springer Verlag, Berlin,
Heidelberg, 2016.

nicht-Euklidisch: In einem Dreieck ist weder die Win-
kelsumme gleich 180◦ noch gilt der Satz des Pythagoras.
Auch ist der Umfang eines Kreises nicht gleich dem 2π-
fachen des Radius. Dass man die Euklidische Geometrie
mit Hilfe von Längen- und Winkelmessungen einer expe-
rimentellen Prüfung unterziehen muss, wurde bereits in
Bd. I/1.1 besprochen.

Das invariante Abstandsquadrat. Die nicht-Euklidische
Geometrie der Flächewird durchHinzunahmeder dritten
Raum-Dimension und der Zeit auf ein vier-dimensionales
Raum-Zeit-Kontinuum erweitert. Um dessen Geometrie
zu beschreiben, führt man das invariante infinitesimale
Abstandsquadrat zwischen zwei Raum-Zeit-Punkten ein:

ds2 = ∑
i=1, 4

∑
k=1, 4

gik(x
μ)dxi dxk . (10.1)

Diese Definition ist eine Verallgemeinerung des 4-dimen-
sionalen Skalarproduktes Bd. I, Gl. (15.17) der Speziellen
Relativitätstheorie. Die Koordinaten xμ beschreiben die
Lage eines Punkts im Raum-Zeit-Kontinuum, der Hoch-
Index kennzeichnet die Koordinaten-Komponente. Die
dxi sind die von einem Beobachter gemessenen Abstän-
de zu einem Nachbarpunkt. Die Summen erstrecken sich
über die drei Raumdimensionen und die Zeit. Die von
den Raum-Zeit-Variablen abhängigen Faktoren gik(xμ)
bilden den so genannten metrischen Tensor. In unse-
rem obigen zwei-dimensionalen Beispiel dienen sie der
Umrechnung von Distanzen auf der Landkarte in rea-
le Abstände, die entlang gekrümmter Linien gemessen
werden. Die Ortskoordinaten können völlig willkürlich
gewählt werden, also auch nicht-Kartesische sein, und ei-
ne Uhr kann beliebig in der Zeit fortschreiten. Es muss nur
eine eindeutige Kennzeichnung der Raum-Zeit-Punkte
garantiert sein und die gik sind dem Koordinatensystem
anzupassen. Im Beispiel der Landkarte bedeutet das, dass
verschiedene Projektionsverfahren für ihre Herstellung
verwendet werden können. Die Größen auf der rechten
Seite von (10.1) sind also vom Koordinatensystem abhän-
gig, die linke Seite ist es nicht. Ein Beobachter aus Fleisch
und Blut kann immer Raum und Zeit entkoppeln und
wird in der Umgebung eines Nullpunkts bevorzugt ein
lokales Inertialsystem der Speziellen Relativitätstheorie
mit Kartesischen Koordinaten einführen (x1 = x, x2 = y,
x3 = z und x4 = ct mit der Lichtgeschwindigkeit c im Va-
kuum):

ds2 = g11 dx2 + g22 dy2 + g33 dz2 + g44c2 dt2 ,
gik = 0 für i �= k .

(10.2)

Am Koordinatennullpunkt ist

g11 = g22 = g33 = −g44 = 1 . (10.3)

Ein Inertialsystemder SpeziellenRelativitätstheorie zeich-
net sich dadurch aus, dass (10.2) mit (10.3) für alle Raum-
Zeit-Punkte gilt. In diesem Grenzfall bezeichnen wir den
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durch (10.3) gegebenen Tensor mit ηik. Setzt man in (10.2)
ds2 = 0, bedeutet dies

√
(dx2 + dy2 + dz2)/dt2 = c, d. h.

die Geschwindigkeit ist die Lichtgeschwindigkeit. Jeder
Lichtstrahl erfüllt also die Bedingung ds2 = 0. Das gilt
auch, wenn gik �= ηik ist, also ganz allgemein.

Die Eigenzeit. Gleichung (10.1) gibt das Abstandsqua-
drat zweier beliebiger Raum-Zeitpunkte wieder. Betrach-
tet man nur den Zeitablauf am gleichen Ort, definiert
man einerseits mit der allgemeinen Gleichung (10.1)
und andererseits mit dem speziellen Koordinatensys-
tem (10.3) ds2 = g44c2 dt2 = −c2 dτ2. Das Zeitintegral τ =∫
dτ nennt man die Eigenzeit eines Beobachters, der sich

an diesem Ort befindet. Als Beispiel betrachten wir zwei
baugleiche Uhren, die sich an festen Orten in einem Gra-
vitationspotential φ(r) befinden. φ ist dadurch definiert,
dass die potentielle Energie einer Testmasse mφ ist. Wir
beschränken uns zunächst auf den Newtonschen Grenz-
fall, für den die ART aussagt, dass man g11 = g22 = g33 ≈
1 wählen kann und nur der Betrag von

g44 = −
(
1+

2φ(r)
c2

)
(10.4)

von eins abweicht. Ein Beobachter mit der „Koordinaten-
zeit“ t ruhe relativ zu den Orten 1 und 2. Nach (10.2)
ist die Eigenzeit der Uhr 1 mit der Koordinatenzeit des
Beobachters über die Beziehung dt = dτ1/

√
−g44(1) =

dτ1/
√

1+ 2φ(r1)/c2 verknüpft. Die Eigenzeit der Uhr 2
ermittelt der Beobachter mit (10.2): dτ2 =

√
−g44(2)dt1.

Daraus folgt mit (10.4) unter der Annahme einer kleinen
potentiellen Energie (|φ| 	 c2):

dτ2 = dτ1

√
1+ 2φ(r2)/c2√
1+ 2φ(r1)/c2

,

dτ2 ≈ dτ1

(
1+

φ(r2)
c2

− φ(r1)
c2

)
.

(10.5)

Für φ(r2) > φ(r1) ist dτ2 > dτ1. Der Beobachter stellt fest:
Die Zeitperiode einer Uhr am Ort 1 ist kleiner als die
Zeitperiode einer gleichartigen Uhr am Ort 2 und die
Frequenz eines Oszillators ist am Ort 1 größer. Das hat-
ten wir bereits in Gestalt des Pound-Repka-Experiments
(Energie-, also Frequenzabnahme von Gammastrah-
lung mit der Höhe über dem Erdboden, Bd. I/15.8)
und des Hafele-Keating-Experiments (Gangdifferenz zwi-
schen Atomuhren in einem Flugzeug und auf dem Erdbo-
den, Bd. I/14.5) kennengelernt (hierzu Aufgabe 10.1).

Raumkrümmung und Massen

Wenn gik �= ηik ist, kann dies entweder daher rühren, dass
ein nichtlineares oder gegen ein Inertialsystem der Spezi-

ellen Relativitätstheorie beschleunigtes Koordinatensys-
tem eingeführt wurde, oder daher, dass eine Krümmung
des Raum-Zeit-Kontinuums vorliegt wie im zweidimen-
sionalen Beispiel der Landkarte. Diese Krümmung wird
durch den symmetrischen 4× 4-dimensionalen Einstein-
Tensor Gik(xμ) beschrieben.2 Wie der metrische Tensor
hängt er von allen Raum-Zeit-Koordinaten ab. Wie man
ihn aus den gik berechnet, findet man in den Lehrbüchern
über Allgemeine Relativitätstheorie. Nach dem, was wir
in der Elastizitätslehre bei der Berechnung der Krüm-
mung eines Stabes (Bd. II/1.1) gelernt haben, erwartet
man, dass er von den zweiten Ableitungen ∂2gik/∂xμ∂xν

des metrischen Tensors und von Produkten der erstenAb-
leitungen abhängt, deshalb hat er die Dimension m−2. In
diesem Kapitel wird nur das Element G44 benötigt. Im
Newtonschen Grenzfall ist nach (10.4) nur g44 von null
verschieden, und es ist zeitunabhängig. Das Resultat der
ART ist

G44(xμ) = −
(

∂2g44(xμ)

∂x2
+

∂2g44(xμ)

∂y2
+

∂2g44(xμ)

∂z2

)
.

(10.6)

Die Ursache der Raum-Zeit-Krümmung sind die sich im
Raum bewegenden Massen, für die die Energie-Masse-
Äquivalenz gilt. In der Relativitätstheorie wird einer Mas-
senverteilung ein symmetrischer Energie-Impuls-Tensor
Tik(xμ) zugeordnet. Seine rein zeitliche Komponente T44
ist die Energiedichte, die gemischten Raum-Zeit-Kompo-
nenten Ti4 bilden analog zum Poynting-Vektor der Elek-
trizitätslehre die Energiestromdichte. Wegen ihrer Sym-
metrie besitzen die Tensoren Tik und Gik vier diagonale
und (16− 4)/2 = 6 nichtdiagonale, also insgesamt zehn
Elemente. Den Zusammenhang zwischen dem Energie-
Impuls-Tensor und der Metrik liefern die zehn nichtlinea-
ren Einsteinschen Feldgleichungen

Gik(x
μ) =

8πγ

c4
Tik(x

μ) . (10.7)

Darin ist γ die Gravitationskonstante.Diese zunächst sehr
abstrakt aussehende Formel kann man am einfachen Bei-
spiel einer statischen Massenverteilung im Newtonschen
Grenzfall erläutern. Die Energiedichte ist hier die Dich-
te der Ruheenergie, die sich aus der Dichte ρ(r) nach
der Speziellen Relativitätstheorie zu T44(r) = ρ(r)c2 er-
gibt. Setzt man (10.4) in (10.6) und (10.6) in (10.7) ein,

2 Genauer gesagt, muss man zwischen demEinstein-Tensor und dem
Krümmungstensor unterscheiden. Letzterer wird aus den ersten und
zweiten Ableitungen der gik nach den Koordinaten gebildet und
besitzt 44 = 256 Komponenten. Der Einstein-Tensor entsteht durch
Reduktion auf einen 4× 4-dimensionalen Tensor. Zusätzlich enthält
er eine Krümmung des ganzen Kosmos, die auch ohne Quelle vor-
handen ist (kosmologische Konstante). Diese spielt hier keine Rolle.
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erhält man als (4, 4)-te Feldgleichung

G44(r) =
2
c2
�φ(r) ,

�φ(r) =
4πγ

c2
T44(r) = 4πγρ(r) . (10.8)

Das sieht genau so aus wie die Poisson-Gleichung Bd. III,
Gl. (1.51) der Elektrostatik, mit der man ein elektrisches
Potential φ aus einer Ladungsverteilung ρel berechnet:

�φ(r) = − ρel(r)
ε0

.

Das Gravitationspotential Bd. I, Gl. (5.43) erhält man aus
dem Coulomb-Potential Bd. III, Gl. (1.38) durch das Erset-
zen von −ρel/(4πε0) durch γρ, wodurch man zu (10.8)
gelangt. Die Feldgleichung (10.7) beschreibt also hier die
Erzeugung des Gravitationspotentials aus einer statischen
Massenverteilung.

10.2 Schwarze Löcher und
Gravitationswellen

Schwarze Löcher

Wie bereits 1916 von K. Schwarzschild gezeigt wurde, gilt
(10.4) auch in starken statischen Gravitationsfeldern im
Außenraum einer kugelsymmetrischenMassenverteilung,
wobei nach wie vor die klassische Formel φ(r) = −γM/r
mit der Gesamtmasse M zu verwenden ist.3 Dann ist am
Schwarzschild-Radius

rS =
2γM
c2

(10.9)

g44 = 0. In (10.5) legen wir Punkt 1 auf den Schwarz-
schild-Radius und ordnen Punkt 2 einem externen Beob-
achter zu. Ein Lichtsignal, das am Schwarzschild-Radius
emittiert wird, benötigt eine unendlich lange Zeit, um
den außen stehenden Beobachter zu erreichen, es kommt
nie an. Die Gravitation ist so stark, dass die Frequenz ei-
ner elektromagnetischenWelle auf null schrumpft. Es gibt
einen Ereignishorizont. Umgekehrt gilt: Materie, die zum
Horizont fliegt, benötigt bis zu seinem Erreichen, von au-
ßen betrachtet, eine unendlich lange Zeit. Je näher sie dem
Horizont kommt, um so „röter“ werden zurückgeschick-
te Lichtsignale, bis sie schließlich nicht mehr detektierbar
sind. Paradoxerweise ist nach (10.5) die Eigenzeit eines
Mitreisenden bis zum Erreichen des Horizonts endlich.
Ein logischerWiderspruch tritt nur deshalb nicht auf, weil
der Reisende niemals in das Gebiet außerhalb des Hori-
zonts zurückkehren kann und auch kein Signal von einer

3 In starken Feldern gibt es zusätzlich eine radiale Krümmung Grr �=
0. Sie führt dazu, dass die Ablenkung eines Lichtstrahls in einem
Gravitationsfeld doppelt so groß ist, wie man aus der Schwerkraft-
wirkung auf ein Photon errechnet.

Stelle innerhalb des Horizonts nach außen schicken kann.
Man spricht von einem schwarzen Loch. Supermassive
schwarze Löcher mit millionenfacher Sonnenmasse befin-
den sich in Zentren von Galaxien, auch in unserer eigenen
Milchstraße (siehe Bd. I/3.4). Schwarze Löcher mit übli-
chen Sternmassen werden uns als effiziente Quellen für
Gravitationswellen sogleich wiederbegegnen.

Nach (10.9) ist jedem Körper ein Schwarzschild-Radius
zugeordnet. Für die Sonne mit der Masse 2 · 1030 kg be-
trägt er 3 km. Das ist viel kleiner als der Sonnenradius und
(10.9) ist ohne Belang, weil vorausgesetzt war, dass Punk-
te mit r > rS außerhalb der Massenverteilung liegen.

Obwohl man nicht hinter den Ereignishorizont sehen
kann, macht die ART eine Aussage über das Innere eines
schwarzen Lochs: Normalerweise erzeugen Anziehungs-
kräfte in einem Körper einen Gegendruck, der zu einem
Kräftegleichgewicht führt. Ein schwarzes Loch kann sich
aus einer Ansammlung von Materie bilden, wenn die
Gravitationskraft alle abstoßenden Kräfte überwiegt. Die
Materie kollabiert und ist im Endzustand auf einen sin-
gulären Punkt geschrumpft. Diese Situation kann am Le-
bensende eines Sterns nach Aufbrauchen aller Resourcen
für Kernreaktionen eintreten, wenn auch nicht zwangs-
läufig. In jedem Fall findet ein Kollaps mit Materieausstoß
statt. Bleibt eine Restmasse unterhalb von 1,4 Sonnen-
massen übrig, erzeugen die Elektronen im Stern einen
Fermi-Druck (Abschn. Bd. II/12.3 und Aufg. Bd. II/12.4),
der die Materie stabilisiert und es entsteht ein „weißer
Zwerg“. Bei größerer Restmasse wird die Materie wei-
ter komprimiert. Elektronen fusionierenmit Protonen, die
Dichte erreicht Werte wie in Atomkernen und es bilden
sich komplex aufgebaute „Neutronensterne“, in denen
der Fermidruck der Neutronen die Materie stabilisiert.
Die emprische Massenobergrenze für Neutronensterne
liegt bei zwei Sonnenmassen, bei größeren Restmassen ab
ca. 2,5 Sonnenmassen beginnt der Bereich der schwarzen
Löcher.

Materie, aus der sich ein schwarzes Loch bildet, besitzt
im Allgemeinen einen Bahndrehimpuls. Deshalb besit-
zen schwarze Löcher ebenfalls einen Drehimpuls, was
zur Modifikation der gik und zu einer Redefinition des
Schwarzschildradius führt. Als weitere globale Eigen-
schaft besitzen schwarze Löcher eine Entropie.

Gravitationswellen

Bald nach der Aufstellung der Einsteinschen Feldglei-
chungen wurde klar, dass sie als zeitabhängige Lösungen
Gravitationswellen vorhersagen, die von zeitlich verän-
derlichen Massenverteilungen erzeugt werden und sich
als Verzerrungen der Metrik in der Raum-Zeit ausbrei-
ten. In großem räumlichen Abstand von der Quelle kann
man sie in einem Kontrollvolumen durch ebene Wel-
len annähern. Innerhalb dieses Volumens können durch
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Superposition Wellenpakete beliebiger Form entstehen.4

Die ebene Gravitationswelle lässt sich durch eine kleine
Korrektur zummetrischen Tensor der Speziellen Relativi-
tätstheorie beschreiben:

gik = ηik + fik . (10.10)

Die Amplituden fik nehmen wie die Feldstärken elektro-
magnetischer Wellen umgekehrt proportional zum Ab-
stand r des Kontrollvolumens von der Quelle ab. Es
gibt eine weitere Parallele zu elektromagnetischen Wel-
len: Gravitationswellen sind transversal polarisiert. Dies
äußert sich so, dass zwei frei bewegliche Massen senk-
recht zur Ausbreitungsrichtung der Welle gegeneinander
beschleunigt werden. In einer monochromatischen Wel-
le führen sie gegeneinander harmonische Schwingungen
aus, was zurückgeführt wird auf einen metrischen Tensor

g11 = 1+ 2h11 cos(kz− ωgravt+ ϕ) ,

g22 = 1− 2h11 cos(kz− ωgravt+ ϕ) ,

gik = ηik sonst .

(10.11)

Dabei wurde eine Wellenausbreitung in z-Richtung ange-
nommen. Der Abstand x zweier Punkte auf der x-Achse
zu einem bestimmten Zeitpunkt wird in einem Koordi-
natensystemmit konstanter Lichtgeschwindigkeit gemes-
sen, denn die Funktion g11 in (10.11) ist in einem solchen
System definiert. Weil g11 nicht von x abhängt, kann man
das Differential in (10.1) weglassen und erhält für einen
mittleren Punktabstand L0 	 r wegen h11 	 1

x2 = L20
(
1+ 2h11 cos(kz− ωgravt+ ϕ)

)
,

x = L0
(
1+ h11 cos(kz− ωgravt+ ϕ)

)
(10.12)

und analog

y = L0
(
1− h11 cos(kz− ωgravt+ ϕ)

)
. (10.13)

Die Wirkung der Gravitationswelle besteht in einer kor-
relierten periodischen Dehnung und Kontraktion aller
Abstände in der x- und der y-Richtung. Frei bewegliche
Testmassen werden von dieser Raumverzerrung „mit-
genommen“. Das Verhalten einiger Testmassen in einer
solchen Welle ist in Abb. 10.1 skizziert, in der per defini-
tionem eine Masse am Koordinatenursprung ruht.

Zusätzlich zu der Konfiguration in Abb. 10.1 gibt es
einen zweiten Polarisationszustand, der sich durch ei-
ne Drehung um 45◦ um die z-Richtung senkrecht zur
Zeichenebene ergibt; er wird durch einen Parameter h12
beschrieben.5

Weil Gravitationswellen transversal polarisiert sind, kön-
nen sie aus Symmetrie-Gründen nicht von pulsierenden

4 Wegen der Nichtlinearität der Einsteinschen Feldgleichungen sind
solche Wellen an der Quelle keine linearen Superpositionen.
5 Die Gründe dafür, warum sich aus 10 Feldgleichungen nur zwei
Polarisationszustände ergeben, findet man in der Literatur über All-
gemeine Relativitätstheorie: Die Feldgleichungen sind nicht vonein-
ander unabhängig und invariant gegenüber Eichtransformationen.

T/40 T/2 T3/4T

y

x

Zeit

Abbildung 10.1 Verschiebungen von frei beweglichen Testmassen (volle
Kästchen) in einer Gravitationswelle, die sich senkrecht zur Zeichenebene
ausbreitet. Die Massen am Koordinatenursprung und die hohl gezeichneten Test-
massen ruhen

kugelsymmetrischen Massenverteilungen abgestrahlt
werden. Das ist analog zu den elektromagnetischen Wel-
len, die nicht von zeitlich variablen kugelsymmetrischen
Ladungsverteilungen emittiert werden können. Hinge-
gen erzeugen zeitabhängige elektrische Dipolmomente
elektromagnetische Wellen. Wie wir aus Bd. III/2.3 wis-
sen, kann ein Körper, der nur elektrische Raumladungen
mit ein und demselben Vorzeichen enthält, durchaus
ein elektrisches Dipolmoment besitzen. Zu dessen Defi-
nition benötigt man allerdings den Massenmittelpunkt
als Referenzpunkt. Der Massenmittelpunkt einer Mas-
senverteilung ist aber gerade dadurch definiert, dass
das Massendipolmoment verschwindet. Eine Quelle
für Gravitationswellen muss also zumindest ein zeit-
lich variables Massenquadrupolmoment besitzen. Ein
derartiges Quadrupolmoment ist bereits in einem Sys-
tem zweier einander umkreisender Massen vorhanden.
Das ergibt sich aus der Korrespondenz zum elektrischen
Quadrupolmoment zweier Punktladungen gleichen La-
dungsvorzeichens (siehe Bd. III, Gl. (2.34) und Bd. III,
Aufgabe 2.3). Wenn ein System von Massen rotiert, hat
nach einem halben Bahnumlauf jede Komponente des
Quadrupolmoments, weil die Koordinaten der Massen
bezüglich des Schwerpunkts das Vorzeichen gewechselt
haben, denselben Wert wie vorher. Deshalb ist die Fre-
quenz der Gravitationswelle doppelt so groß wie die
Frequenz des Bahnumlaufs. Die abgestrahlte Leistung ist
proportional zum Quadrat der dritten zeitlichen Ablei-
tung des Quadrupolmoments. Für ein binäres Systemmit
den Massen m1 und m2, der reduzierten Masse μred und
einem Komponentenabstand rB ist sie proportional zu
μ2
redr

4
B und der sechsten Potenz der Kreisfrequenz ωgrav

der Welle:

Pgrav =
γω6

grav

10 c5
μ2
redr

4
B , μred =

m1m2

m1 +m2
. (10.14)

Zwischen den Massen, ihrem Abstand und der Frequenz
der Welle ergibt sich aus dem klassischen Kräftegleichge-
wicht ein Zusammenhang:

γm1m2

r2B
= μred

ω2
grav

4
rB ,

ωgrav =

√
4γ(m1 +m2)

r3B
. (10.15)
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Diese Gleichungen setzen voraus, dass die Geschwindig-
keiten deutlich unterhalb der Lichtgeschwindigkeit lie-
gen und die räumlichen Verzerrungen noch klein sind.
Abschätzungen hiermit zeigen, dass die emittierten Leis-
tungen von Doppelsternsystemen wegen der niedrigen
Umlauffrequenzen viel kleiner sind als die Emissionen
kompakter massereicher Objekte (Aufgabe 10.2).

Gravitationswellen mit hoher Intensität entstehen, wenn
große Massen nach kosmischen Maßstäben schnell be-
schleunigt werden. Das geschieht beim Urknall, der Rota-
tion leicht exzentrischer Neutronensterne, dem Sternkol-
laps vor einer Supernova-Explosion, der Fusion zweier
Neutronensterne, der Fusion eines Neutronensterns mit
einem schwarzen Loch oder der Fusion zweier schwarzer
Löcher.

Wir wollen die Größe der Raumverzerrung abschät-
zen, die durch zwei fusionierende schwarze Löcher ent-
steht. Dabei orientieren wir uns am ersten, von der
LIGO-Kollaboration beobachteten Ereignis dieser Art,6 in
dem zwei schwarze Löcher mit 30 bzw. 34 Sonnenmas-
sen im Abstand r = 1,3Ly von der Erde innerhalb ei-
nes Sekunden-Bruchteils miteinander verschmolzen sind,
wobei das Energieäquivalent von ca. 3 Sonnenmassen
in Form von Gravitationswellen abgestrahlt wurde. Eine
entsprechende Energie Pgrav/(4πr2) pro Zeit und Fläche
strömt mit Lichtgeschwindigkeit durch das Kontrollvolu-
men eines Beobachters. Die mittlere Energiedichte ist7

T(Q)
44 =

Pgrav

4πr2c
.

Durch die ebene Welle (10.11) entsteht eine Krümmung
der Raum-Zeit. Krümmungen proportional zu den zwei-
ten Ableitungen der gik nach der Zeit analog zu (10.6),
die proportional zu den hik wären, treten nicht auf. Man
muss nämlich die von g11 und g22 herrührenden Beiträ-
ge zu G44 addieren und die Summe verschwindet. Der
Grund dafür ist in der weggelassenen Herleitung von
(10.11) verborgen und hängt damit zusammen, dass die
ebene Gravitationswelle eine Lösung der quellenfreien

Wellengleichung (1.34) ist. Übrig bleibt ein Anteil G(W)
44

des Einstein-Tensors, der proportional zu den h2ik ist. Er
kann nur von Quadraten der Ableitungen ∂g11/∂t und
∂g22/∂t abhängen. Experimentelle Größen, die zu den
h2ik proportional sind, sind die Geschwindigkeitsquadra-
te schwingender Testmassen, in x-Richtung nach (10.12)

v2

c2
= L20

ω2
grav

c2
h211 sin

2(kz− ωgravt+ ϕ) . (10.16)

6 B. P. Abbott et al., LIGO Collaboration, „Observation of Gravitatio-
nal Waves from a Binary Black Hole Merger“, Phys. Rev. Lett. 116
(2016) 061102.
7 Weil sich Quelle und Beobachter relativ zueinander bewegen, ist
am Ort des Beobachters an der Energie noch ein von der Rotver-
schiebung Z der Quelle abhängiger Korrekturfaktor anzubringen.
Bei dem beobachteten Ereignis macht das rund 10% aus.

Die Strecke L0 ist eine apparativeGröße und keineWellen-
eigenschaft. Das legt den Verdacht nahe, dass der übrig
bleibende Faktor proportional zu ω2

gravh
2
11/c

2 gerade die

relevante Komponente G(W)
44 ist, denn er hat die Dimen-

sion m−2. Die Rechnung im Rahmen der ART bestätigt
diese Vermutung:

G(W)
44 =

ω2
grav

c2

(
h211 sin

2(kz− ωgravt+ ϕ)

+ h212 sin
2(kz− ωgravt+ ψ)

)
.

(10.17)

Hier wurde noch der Beitrag des zweiten Polarisationszu-
standes addiert, der in der Phase verschoben sein kann.

T(Q)
44 und G(W)

44 sind über (10.7) miteinander verknüpft,
wobei an die Stelle der Energiedichte der Materie hier die
Energiedichte der Gravitationswelle tritt. Wir erhalten im
zeitlichen Mittel

1
2

ω2
grav

c2

(
h211 + h212

)
=

8πγ

c4
Pgrav ·

1
4πr2c√

h211 + h212 =

√
16πγ

ω2
gravc3

Pgrav

4πr2
.

Mit Pgrav = ṁc2, ṁ = 3 Sonnenmassen pro 0,1 s, der Son-
nenmasse m0 = 2 · 1030 kg, r = 1,3 · 109 Ly und νgrav =

ωgrav/2π = 50Hz ergibt sich
√

h211 + h212 = 2 · 10−21. Ein
Nachweis des Effektes scheint auf den ersten Blick un-
möglich zu sein. Dennoch ist er gelungen!

Die Frequenz νgrav der Gravitationswelle ist während
des Fusionsprozesses nicht konstant. Bei einem Abstand
rB von 5 Schwarzschild-Radien zwischen den schwarzen
Löchern beträgt sie νgrav = ωgrav/2π = 5Hz, wie man
aus (10.15) mit rS = 180km errechnet. Bedingt durch die
Energieabstrahlung nimmt rB ab und νgrav und die Um-
laufgeschwindigkeit ωgravrB nehmen zu. Weil die Licht-
geschwindigkeit nicht überschrittenwerden kann, schätzt
man eine Frequenzobergrenze νgrav ≈ c/πrS ≈ 1000Hz
ab. Die Frequenz 50Hz tritt gegen Ende des Verschmel-
zungsprozesses auf.

Im Newtonschen Fernbereich lässt sich ein analytischer
Zusammenhang zwischen der Frequenz der Gravita-
tionswelle und deren Zeitabhängigkeit angeben. Die
abgestrahlte Leistung (10.14) entspricht der Abnahme
der Gesamtenergie der zwei Körper: P = dEtot/dt =
−d(γm1m2/2r)/dt. Unter Verwendung von (10.15) und
deren zeitlicher Ableitung gelangt man zu

ω̇3
grav = 16

(
6
5

)3 ω11
grav

c15
γ5(m1 +m2)

2μ3
red (10.18)

(Aufgabe 10.3). Aus der Frequenzzunahme der Gravi-
tationswelle einer Sternfusion lässt sich also die Mas-
senkombination (m1m2)

3/5/(m1 +m2)
1/5 bestimmen, die
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den Namen „Chirp-Masse“ trägt. Der zeitliche Ablauf der
Fusion kann heute mit Hilfe subtiler Näherungsverfahren
aus den Einsteinschen Feldgleichungen berechnet wer-
den. Dies erlaubt es, beide Massen und den Drehimpuls
aus den Messdaten zu extrahieren.

10.3 Nachweis der
Gravitationswellen

Ein indirekter Beweis für die Existenz von Gravitations-
wellen ergab sich aus der Untersuchung eines Doppel-
sternsystem namens PSR B1913+16. Dieses besteht aus
einem Neutronenstern und einem unsichtbaren Begleiter.
Der sichtbare Stern ist eine extremgenau gehende Uhr, die
periodisch Lichtimpulse emittiert. Der Zeitabstand der
Impulse weist eine Modulation auf, die durch Doppler-
effekt entsteht und vom Umlauf der Sterne umeinander
herrührt. Die Umlaufzeit beträgt T = 7,75 Stunden. Sie
wurde über Jahre hinweg verfolgt und es zeigte sich, dass
sie sich mit einer zeitlichen Steigung dT/dt = 2,4 · 10−12

verringert. Dieser Effekt konnte mit einer Genauigkeit
von 0,2% der Emission von Gravitationswellen zuge-
schrieben werden.8

Versuche, einen direkten Nachweis von Gravitationswel-
lenmit Hilfe massiver Zylinder zu erbringen, die resonant
zu mechanischen Schwingungen angeregt werden, führ-
ten letztlich zu keinen signifikanten Ergebnissen.

Gravitationswellen-Interferometer

Zweistrahlinterferenz. Die in Abb. 10.1 gezeigte Struk-
tur der Welle legt es nahe, die auftretenden räumli-
chen Dehnungen und Stauchungen mit einem Michel-
son-Interferometer zu messen. Die Endspiegel dienen als
Testmassen, sie müssen daher frei beweglich sein. Wir
untersuchen zunächst, ob man mit einem üblichen Mi-
chelson-Interferometer eine Gravitationswelle der oben
angegebenen Stärke nachweisen kann. Die Versuchsan-
ordnung entspricht derjenigen in Abb. 10.2, aber ohne
die dort eingezeichneten zusätzlichen Spiegel SI, SP und
SS. Es wird sich herausstellen, dass der Nachweis oh-
ne derartige apparative Verbesserungen nicht möglich ist.
Nach jahrzehntelangen Entwicklungsarbeiten in etlichen
Ländern haben heute nach dem Prinzip von Abb. 10.2
arbeitende Detektoren eine Empfindlichkeit erreicht, die
für den Nachweis einzelner spektakulärer Ereignisse aus-
reicht.

8 Für die Entdeckung und die Analyse dieses Doppelsternsystems
erhielten R.A. Hulse und J.H. Taylor im Jahre 1993 den Nobelpreis.
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Abbildung 10.2 Prinzipieller Aufbau eines interferometrischenDetektors zum
Nachweis von Gravitationswellen (advanced LIGO-Detektor, siehe Bildnach-
weis zu Abb. 10.3). MR: Modenreiniger („mode cleaner“), SP: Spiegel zur
Rückführung von Laserleistung in das Interferometer („power recycling“), SI,
SE: Eingangs- und Endspiegel für die Fabry-Pérot-Resonatoren, ST: Strahlteiler,
SS: Spiegel für das „Signal recycling“, D: Detektor

Durch die Verlängerung und Verkürzung der Interfero-
meterarme entsteht zwischen dem Lichteintritt und dem
Wiederaustritt aus einem Arm eine Phasenverschiebung

Δϕ =
4πL0

λ
h11(t) , (10.19)

wobei L0 die mittlere Armlänge ist. Als Lichtquelle dient
ein kontinuierlich laufender Laser. Analog zu elektro-
magnetischen Wellen in einem Hohlraumresonator (Ab-
schn. 2.5) besitzt auch Licht aus einem Laser eine Serie
transversaler Moden. Damit man eine gleichmäßige In-
tensitätsverteilung über den Laserstrahl und eine mög-
lichst einheitliche Frequenz erhält, werden alle höheren
Moden von einem sogenannten Modenreiniger unter-
drückt, der ein optischer Resonator ist.

In (7.13) zur Berechnung der Zweistrahlinterferenz kann
man die im Michelson-Interferometer zirkulierenden
Leistungen als Integrale der Intensitäten über den Strahl-
querschnitt einsetzen. Besitzen die Arme etwas unter-
schiedliche Längen L1, L2 und unterscheiden sich auch die
Leistungen P1 und P2, erhält man als Ausgangsleistung
am Detektor

P = P1 + P2 + 2
√

P1P2 cos δ mit

δ =
4π

λ
(L1 − L2) + 2Δϕ .

(10.20)

Gravitationswellen weist man durch die Modulation der
detektierten Lichtleistung nach, die durch die Phasendif-
ferenz Δϕ entsteht. Als Detektoren werden Photodioden
verwendet. Das Detektor-Signal ist eine lineare und zeit-
lich variable Funktion der Lichtleistung; über die schnel-
len Oszillationen mit der doppelten Lichtfrequenz wird
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natürlich automatisch gemittelt. Dies wird als homodyne
Detektion bezeichnet. Um eine große Modulation zu er-
zielen, muss man wegen (10.19) die Strecke L0 möglichst
groß wählen, was auf kilometerlange Interferometerar-
me hinausläuft. Dies zeigt Tab. 10.1, die eine Übersicht
über im Betrieb und im Bau befindliche Anlagen gibt.
Außerdem müssen die Lichtleistungen in den Interfero-
meterarmen so groß wie möglich sein. Andererseits darf
die am Detektor ankommende mittlere Leistung im Ver-
gleich zur Leistung durch die Gravitationswelle nicht so
groß sein, dass der verfügbare dynamische Bereich des
Detektors überschritten wird. Deshalbwerden die von Δϕ
unabhängigen Leistungsanteile in (10.20) gegenüber dem
Δϕ-abhängigen Term um etliche Zehnerpotenzen unter-
drückt. Dies geschieht dadurch, dass das Interferometer
fast auf Dunkelheit eingestellt wird, also der Phasenwin-
kel δ nahe einem ungeradzahligen Vielfachen von π ist.
Dann unterscheidet sich die Differenz L1 − L2 von ei-
nem ungeraden Vielfachen der viertel Wellenlänge λ/4
nur um einen kleinen Betrag ΔL. Die Leistungen P1 und
P2 werden niemals völlig gleich sein. Es folgt aus (10.19)
mit der mittleren Leistung P0 = (P1 + P2)/2 und P1,2 =
P0 ± (P1 − P2)/2

cos δ ≈ −1+
1
2

(
4π

λ
ΔL+ 2Δϕ

)2

,

√
P1P2 ≈ P0 −

(P1 − P2)
2

8P0
,

und man erhält mit (10.20) und (10.19)

P ≈ (P1 − P2)
2

4P0
+ P0

(
4π

λ
ΔL
)2

+ 4P0

(
4π

λ

)2

ΔLL0h11(t) .

(10.21)

Wie man sieht, erzeugt eine Ungleichheit der Leistungen
in den Interferometerarmen nur einen nicht interferenzfä-
higen Untergrund. Ein solcher Untergrund entsteht auch,
wenn sich die aus den Interferometerarmen zurückkeh-
renden Lichtbündel nicht perfekt überlappen. Wird dies
vermieden und kann man den Term ∝ (P1 − P2)

2 weglas-
sen, besteht die Leistung aus einem Anteil proportional
zu ΔL2P0 und einem Beitrag der Gravitationswelle, des-
sen Amplitude um einen Faktor 4h11L0/ΔL kleiner ist.
Soll dieses Verhältnis beispielsweise für h11 ≈ 10−21 und
L0 = 4 km in der Größenordnung 10−6 liegen, ergibt sich
eine Verstimmung des Interferometers um die winzige
Strecke ΔL ≈ 20 · 10−12m.

Die Gleichungen (10.19) und (10.21) basieren auf der An-
nahme, dass sich h11(t) während der Laufzeit des Lichts
durch einen Interferometerarm nicht wesentlich ändert.
Das bedeutet νgrav 	 c/2L0, also für ein Interferometer

Tabelle 10.1 Interferometer zur Suche nach Gravitationswellen

Name Standort Länge (km)

KAGRA (im Bau) Hida/Japan 3,0

GEO600 Ruthe (Hannover)/D 0,6

VIRGO Pisa/Italien 3,0

adv. LIGO Livingston/USA
Hanford/USA
Hanford/USA

4,0
4,0
2,0

von 4 km Länge νgrav 	 38kHz. Die Wellenlänge λgrav =
c/νgrav der Gravitationswelle muss groß gegen 2L0 sein.
Ist sie gleich 2L0, mittelt sich der Einfluss der Gravitati-
onswelle auf die Phasendifferenz des Lichts weg und das
Interferometer wird unempfindlich.

Empfindlichkeit und Rauschen. Die Leistungsfähigkeit
eines Interferometers kann man durch zwei Parameter
charakterisieren. Eine Dehnung h11 führt zu einer Ände-
rung der Lichtleistung Pg amDetektor. Die Eichkonstante
C = Pg/h11 ergibt sich aus (10.21). Man kann ΔL durch die
mittlere Intensität PV = P0(4πΔL/λ)2 vor dem Detektor
ausdrücken und erhält

C = 4η

(
4π

λ

)2

ΔLL0P0 = 4ηL0
4π

λ

√
PVP0 . (10.22)

Der Faktor η berücksichtigt, dass die Effizienz des Detek-
tors für den Lichtnachweis etwas kleiner als 100% ist. Als
Lichtquelle werden Nd:YAG-Laser mit einer Wellenlän-
ge λ = 1µm im Leistungsbereich von 100W eingesetzt.
Für das Zahlenbeispiel ΔL = 20pm und h11 = 10−21 wür-
den sich mit η = 1 die Leistungen PV = 3 · 10−6W und
Pg = 2,5 · 10−12W ergeben.

Im Detektor treten wegen etlicher noch anzugebender
Rauschquellen zeitliche Fluktuationen der nachgewiese-
nen Leistung PD = ηPV auf, die die Messgenauigkeit für
h11 begrenzen. In der Fourier-Zerlegung FP(νD) der Leis-
tung, also dem beobachteten Leistungsspektrum, treten
als Funktion der Frequenz νD statistische Fluktuationen
auf. Würde man die Messung vielfach wiederholen, wür-
de man bei jeder Frequenz eine statistische Verteilung der
FP(νD)-Werte erhalten. Die Leistung in einem endlichen
Frequenzbereich ΔνD = ν2 − ν1 schwankt mit einer Vari-
anz

Δ

⎛
⎝

ν2∫
ν1

FP(νD)dνD

⎞
⎠

2

= Δ(Pcum(ν2)− Pcum(ν1))2 .

(10.23)
Hier wurde das kumulierte Frequenzspektrum Pcum(νD)
eingeführt, das das Integral des Leistungsspektrums bis
zueinerFrequenzgrenze ist:Pcum(νD) =

∫ +νD
0 FP(ν′D)dν′D.
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Es hat die Einheit Watt, und es ist Pcum(∞) = PD. Zwi-
schen verschiedenen Frequenzen sind die Schwankungen
von FP(νD) im Allgemeinen unkorreliert. In diesem Fall
ist das Fehlerquadrat (10.23) der Intervallbreite ΔνD pro-
portional. An Stelle der Varianz (10.23) führt man zweck-
mäßigerweise ihr Verhältnis zur Breite ΔνD ein, weil die-
ser Quotient für ΔνD → 0 einen Grenzwert besitzt. Als
Fehler wird üblicherweise die Wurzel daraus angegeben:

√√√√
(
dP2

cum(νD)

dνD

)
. (10.24)

Der Mittelungsstrich deutet an, dass hier über das Qua-
drat des Differentials gemittelt wird. Will man eine Gravi-
tationswelle als Wellenpaket in einem Frequenzintervall
dνgrav nachweisen, wird νD als Frequenz νgrav der Gravi-
tationswelle interpretiert und man rechnet (10.24) mit der
Konstanten C aus (10.22) in einen Fehler von h11 um:

√√√√
(
dh211(νgrav)

dνgrav

)
=

1
C

√√√√
(
dP2

cum(νD)

dνD

)
. (10.25)

Die Fehler (10.24) und (10.25) haben die Einheiten
W/

√
Hz und 1/

√
Hz. Der Sinn dieser Größen erschließt

sich aus einer Betrachtung der Frequenzbandbreite nach-
zuweisender Wellen. Für fast monochromatische Wellen
steht nach der Unschärferelation eine nahezu unendli-
che Messzeit zur Verfügung, sodass sich das Rauschen
wegmittelt und der Messfehler klein wird. Dementspre-
chend ist (10.25) mit der Wurzel aus einer sehr kleinen
Bandbreite zu multiplizieren. Im Gegensatz dazu ist die
Frequenzbandbreite eines sehr kurzenWellenpakets groß,
was die Messgenauigkeit verschlechtert.

Quantenrauschen. Ein wichtiges Beispiel hierzu ist das
Schrotrauschen. Der Name impliziert, dass der Nach-
weis einer Lichtwelle durch Photonen erfolgt, die in un-
regelmäßigen Zeitabständen wie Schrotkugeln auf den
Detektor prasseln und Stromimpulse mit einer kurzen
Dauer τ erzeugen. Die Ladung eines Impulses ist der
Quantenenergie hν proportional, der mittlere Strom der
Leistung PD. Wie aus Abb. 4.12 und Aufg. 4.3a ersichtlich
ist, besitzen die Fouriertransformierten aller Stromimpul-
se die gleiche Einhüllende, deren Ausdehnung durch 1/τ
gegeben ist. Hinzu treten statistischfluktuierende Phasen-
faktoren. Solange νD klein gegen 1/τ ist, was hier der Fall
ist (νgrav � 104 Hz, 1/τ � 106 Hz), würde man mit vielen
hypothetischen Wiederholungen der Messung einen fre-
quenzunabhängigen Mittelwert des Leistungsspektrums
und frequenzunabhängige Schwankungen darum erhal-
ten. Dies wird als weißes Rauschen bezeichnet. Die Vari-
anz des Leistungsspektrums wird der Photonenzahl pro

Zeit PD/hν und dem Quadrat der Photonenenergie pro-
portional sein. Die genaue Rechnung ergibt9

√
dP2

cum(νD)

dνD
=
√

2PDhν . (10.26)

Angewandt auf die Gravitationswelle erhält man mit
(10.22) und (10.25)
√√√√dh211(νgrav)

dνgrav
=

√
2ηPVhν

4η(4π/λ)2ΔLL0P0
=

√
2hν

ηP0

λ

16πL0
.

Bemerkenswert ist, dass sich die Verstimmung ΔL
in dieser Gleichung herauskürzt! Für das obige Bei-
spiel mit 100W Eingangsleistung und L0 = 4 km kommt
(dh211/dνgrav)1/2 ≈ 3 · 10−22/

√
Hz heraus. Für den Nach-

weis einer Gravitationswelle mit der Dehnung 10−21

reicht das nicht aus, wenn eine Bandbreite von einigen
100Hz zu berücksichtigen ist.

Ein weiteres Quantenrauschen entsteht dadurch, dass in
den Interferometerarmen Feldstärkefluktuationen existie-
ren. Die Schwankungen ΔP der zirkulierenden Leistun-
gen werden ebenfalls von (10.26) beschrieben. Es resul-
tieren fluktuierende Kräfte ΔF = ±2ΔP/c auf die Spiegel,
die unregelmäßige Bewegungen um ihre Mittellagen aus-
führen. Nach Aufg. 3.7 erzeugt eine periodische Kraft an
einem Spiegel der Masse m eine Oszillationsamplitude
|Δx| = ΔF/(4π2ν2gravm). Es entsteht ein Messfehler

√√√√dΔh211(νgrav)
dνgrav

∼ 2
√
2hνP0

4π2mcL0ν2grav
.

Er steigt mit der Wurzel aus der Leistung im Interfe-
rometerarm an und folgt bei kleinen Frequenzen einem
1/ν2grav-Gesetz. Mit einer genügend großen Spiegelmasse
lässt er sich klein genug halten.

Resonante Leistungserhöhung im Interferometer. Ge-
staltet man die Interferometerarme durch den Einbau von
Spiegeln hinter dem Strahlteiler (Spiegel SI in Abb. 10.2)
als Fabry-Pérot-Resonatoren, kann man die Lichtleistung
in den Interferometerarmen resonant um mehr als zwei
Größenordnungen anheben. Das Prinzip lässt sich an
dem idealisierten Fall erläutern, in dem der Endspiegel
fast den Reflexionskoeffizienten −1 hat. Des Weiteren

9 In der etwas aufwändigen Rechnung wird (10.23) mittels Fourier-
Transformationen und Variablen-Transformationen auf das Zeit-
spektrum der Photonen zurückgeführt, das mit Hilfe der Poisson-
Statistik analysiert wird. Eine äquivalente, bereits im Jahre 1918 von
W. Schottky angegebene Formel gibt es für das Rauschen eines durch
einen Leiter fließenden Gleichstroms, das von der Quantelung der
elektrischen Ladung herrührt: ΔI2 = 2eIΔν.
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betrachten wir hier zunächst Gravitationswellen mit Fre-
quenzen νgrav, die so klein sind, dass sich h11 während
der Lichtspeicherzeit im Resonator nur wenig ändert.
Die Oberfläche des Eintrittsspiegels SI besitze für die
Vorwärts- und Rückwärtsrichtung die Reflexionskoeffizi-
enten ρ = −ρ′ und die Transmissionskoeffizienten τ und
τ′. Man kann analog zu (7.51) und (7.66) und zu Aufg. 7.6
die von einem Resonator reflektierte Wellenamplitude Er
aus der auf SI auftreffenden Amplitude E0 ermitteln:

Ěr = Ě0

(
ρ − ττ′eiδ

∞

∑
n=0

(−ρ′)neinδ

)
(10.27)

= Ě0

(
ρ − ττ′eiδ

1+ ρ′eiδ

)
.

Mit ττ′ = 1 − ρ2 erhält man nach einer Zwischenrech-
nung

Ěr = Ě0
ρ − eiδ

1− ρeiδ
. (10.28)

Beide Fabry-Pérot-Resonatoren werden bis auf Verstim-
mungen ΔL1 und ΔL2 auf maximale Intensität eingestellt.
Dann sind die Phasen δi, abzüglich eines wegzulassenden
Vielfachen von 2π, (10.20) zu entnehmen: δi = 4πΔLi/λ±
Δϕ. Die ΔLi sind so klein, dass δi 	 |1− ρ| ist. Man kann
die reflektierte Amplitude nach Potenzen von δi entwi-
ckeln und erhält aus (10.28)

Ěr

Ě0
≈ ρ − 1− iδi

1− ρ − iδi
≈ −1− 2i

δi
1− ρ

. (10.29)

In den beiden Fabry-Pérot-Resonatoren werden verschie-
dene Vorzeichen von ΔLi gewählt. Weil die Vorzeichen
der Dehnungen h11 von Natur aus verschieden sind,
sind auch die Vorzeichen der δi verschieden. Das aus
den Eintrittsspiegeln und dem Strahlteiler der Anord-
nung in Abb. 10.2 bestehende Michelson-Interferometer
wird auf Dunkelheit eingestellt. Die beiden reflektier-
ten Amplituden sind zu subtrahieren und der konstante
Term −1 in (10.29) hebt sich im Idealfall heraus. Für
die Ausgangsleistung des Interferometers gilt mit nur ei-
nem Unterschied wieder (10.21): Die beiden relevanten
Leistungsanteile sind um einen Faktor Ga = 4/|1 − ρ|2
verstärkt. Der Fehler durch das Schrotrauschen wird um
einen Faktor 1/

√
Ga verkleinert.

Einfluss der Lichtlaufzeit im Interferometer. Die bis-
herige Darstellung ist in zweierlei Hinsicht unvollstän-
dig: Energieverluste in den Fabry-Pérot-Resonatoren sind
nicht berücksichtigt, sie reduzieren den Faktor Ga. Die
Amplitude der Gravitationswelle ändert sich während
der Lichtlaufzeit im Interferometer. Als Speicherzeit τs de-
finiert man die Zeit, in der die Amplitude einer Lichtwelle
imResonator ohne Energiezufuhr auf 1/e-tel abklingt. Bei

einer Speicherung über NU = 200 Lichtumläufe und ei-
ner Armlänge L0 = 4 km bedeutet das beispielsweise τs =
2L0NU/c ∼ 5ms, und die modifizierte Gl. (10.21) ist be-
reits bei einer Frequenz νgrav = 1/τs = 200Hz nicht mehr
richtig.

Weil (10.12) auf einem Koordinatensystem basiert, in dem
die Lichtgeschwindigkeit konstant ist und der Uhrtakt
durch den Laser gegeben ist, entsteht bei der Lichtaus-
breitung in x-Richtung pro Streckenintervall dx0 = cdt
durch die Raumdehnung eine Phasendifferenz 2π/λ ·
h11(t)dx0. Zu einem bestimmten Messzeitpunkt t0 kann
man diese Phasenverschiebung für n vergangene Hin-
und Rückwege des Lichts zwischen den Resonatorspie-
geln aufsummieren. Man erhält für eine harmonische
Gravitationswelle h11(t) = h0eiωgravt

Δϕn =
2π

λ
c

t0∫

t0−2nL0/c

h0eiωgravt dt ,

Δϕn = −i
2πc

λωgrav
h0eiωgravt0

(
1− e−2inωgravL0/c

)
.

In (10.27) enthält der Term einδ einen Faktor einΔϕ, der
durch den Ausdruck

eiΔϕn ≈ 1+ iΔϕn

≈ 1+
2πc

λωgrav
h0eiωgravt0

(
1− e−2inωgravL0/c

)
(10.30)

zu ersetzen ist. Man erkennt, dass das Resultat (10.27)
in zwei Summanden aufspaltet, von denen einer von
der Gravitationswelle nicht beeinflusst wird, während
der zweite zu h0 proportional ist. In (10.27) wurde der
Phasenfaktor eiωt0 der Lichtamplitude weggelassen, der
hinzuzufügen ist. Es folgt, dass das Licht in den Resonato-
ren aus drei Komponenten besteht: einer Trägerwelle mit
der Laserfrequenz ω und zwei zu h0 proportionalen Sei-
tenbändern mit den Frequenzen ω ± ωgrav.

Die Empfindlichkeit C erhält man aus der Analyse von
(10.27) mit dem von h0 abhängigen Teil von (10.30). Man
findet mit einigen Rechentricks, dass sie bei niedrigen Fre-
quenzen proportional zu

C ∝ K =

√
1

1+ τ2
s ω2

grav
(10.31)

ist mit τs = 2L0/(1− ρ)c. Die Speicherzeit resultiert hier
wegen der gemachten Vereinfachungen nur aus der Licht-
durchlässigkeit der Spiegel SI in Abb. 10.2.

Leistungsrückführung. Das bisher beschriebene Interfe-
rometer hat die Eigenschaft, dass fast die gesamte aus
den Armen zurückkehrende Lichtleistung zur Lichtquel-
le reflektiert wird. Dies lässt sich durch den Einbau eines
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Abbildung 10.3 Vergleich des experimentell beobachteten Rauschens in ei-
nem der LIGO-Detektoren mit dem berechneten Quanten-Rauschen und dem
apparativ bedingten Rauschen. Aufgetragen ist Δh11L0. LIGO Scientific Collabo-
ration and Virgo Collaboration, 2016

teildurchlässigen Spiegels zwischen Lichtquelle und In-
terferometer vermeiden („Power Recycling“). Dieser Spie-
gel bildet zusammen mit den Eintrittsspiegeln der Fabry-
Pérot-Resonatoren einen weiteren optischen Resonator.
Mit geeigneter Justierung tritt vor den Fabry-Pérot-Re-
sonatoren eine zusätzliche Leistungserhöhung um einen
Faktor Gp ein, die deutlich mehr als eine Größenordnung
ausmacht. Um den gleichen Faktor vergrößern sich die
Leistungen in den Armen und am Detektor, und der Ein-
fluss des Schrotrauschens wird um den Faktor 1/

√
Gp

reduziert.

Wie man in Abb. 10.2 sieht, gibt es vor dem Detektor
einenweiteren teildurchlässigen „Signal-Recycling“-Spie-
gel, dessen Funktion sich nicht mit wenigen Worten er-
läutern lässt. Das Licht ist allseitig fast eingesperrt und es
entsteht ein System gekoppelter Resonatoren, das durch
den zusätzlichen Spiegel mit dessen Reflektivität und Po-
sition zwei zusätzliche Freiheitsgrade erhält. Lichtwellen
mit der Trägerfrequenz und den Seitenbandfrequenzen
verhalten sich unterschiedlich. Durch Anhebung einer
Seitenbandintensität lässt sich der Einfluss des Schrotrau-
schens weiter reduzieren, auch lassen sich die mittlere
Frequenz und die Bandbreite für den Gravitationswellen-
nachweis variieren.

Als Beispiel sind für einen run des adv. LIGO-Experi-
ments einige Zahlen in Abb. 10.2 angegeben. Die Laser-
Leistung in den Armen wird resonant um einen Faktor
104 vergrößert. Am Detektor sind die mittlere Leistung
und die Leistungsänderung durch die Gravitationswelle
bei der gewählten Verstimmung um rund einen Faktor
5 · 104 größer als im Fall des „normalen“ Michelson-
Interferometers bei gleicher Laserleistung (siehe die Ab-
schätzung im Anschluss an (10.22)). Das Quantenrau-
schen ist in Abb. 10.3 eingetragen. Der Fehler durch
das Schrotrauschen wurde gegenüber dem „normalen“

Michelson-Interferometer um rund zwei Größenordnun-
gen reduziert. Man erkennt, dass die Nachweisschwelle
bei hohen Frequenzenwegen (10.31) proportional zu νgrav
ansteigt und vollständig vom Schrotrauschen bestimmt
wird. Bei niedrigen Frequenzen sieht man den zu 1/ω2

grav
proportionalen Anstieg durch Feldfluktuationen in den
Interferometerarmen, der allerdings keine Rolle spielt.

Technische Herausforderungen. Beim Bau von Anla-
gen, wie sie in Tab. 10.1 aufgeführt sind, treten zahlreiche
physikalische und technische Probleme auf, von denen
hier nur einige erwähnt seien.

Luft im Interferometer würde den Nachweis von Gravita-
tionswellen unmöglich machen. In den Interferometerar-
men entsteht während eines Lichtumlaufs durch den Bre-
chungsindex eine Verschiebung des optischen Lichtwegs
um 2(n − 1)L0. Die Differenz (n − 1) ist der Dichte der
Moleküle proportional, die statistischen Schwankungen
unterworfen ist. Es entsteht zwischen den Interferometer-
armen eine fluktuierende Differenz Δn des Brechungsin-
dex, die die Messung der Raumdehnung um Δh11 = Δn
verfälscht. Um diesen Effekt zu vermeiden, muss man ein
Interferometer mit Kilometern Länge und einem Licht-
strahldurchmesser im cm-Bereich in einem Ultrahochva-
kuum bei einem Druck unterhalb von 10−5 Pa betreiben.
Dann vermeidet man gleichzeitig Einflüsse des Restgas-
drucks auf die Spiegelpositionen.

Die freie Beweglichkeit der Spiegel wird dadurch gewähr-
leistet, dass sie an Quarzglas-Fäden oder Stahldrähten
aufgehängt werden. Um die Wirkung von seismischen
Störungen, Erschütterungen und Schwerkraftwirkungen
durch bewegte Massen in der Umgebung zu dämpfen,
gibt es mehrere übereinander angeordnete Pendelsyste-
me. Die oberste Pendelaufhängung ist auf einer Plattform
montiert, die keinen direkten Kontakt zum Boden hat, un-
ter ihr befinden sich weitere gegeneinander schwingungs-
gedämpfte Plattformen. Im Falle des LIGO-Experiments
wurden damit Erschütterungen oberhalb von 10Hz um
insgesamt 10 Zehnerpotenzen unterdrückt. Bei niedrige-
ren Frequenzen lässt die Dämpfungswirkung sehr schnell
nach.

Alle im System enthaltenen Spiegel und der Strahltei-
ler müssen auf kleine Bruchteile der Lichtwellenlänge
genau positioniert werden, und auch die Winkelstel-
lungen müssen kontrolliert werden. Daher besitzen die
optischen Komponenten mehrere magnetische oder elek-
trostatische Antriebe, mit deren Hilfe sie verschoben und
gedreht werden können. Bei der Regelung der Spiegel-
positionen bedient man sich folgenden Tricks: Der La-
serstrahl mit der Trägerfrequenz durchläuft einen elek-
trooptischen Modulator, der der Lichtphase eine genau
bekannte Modulationsfrequenz im 10MHz-Bereich auf-
prägt. Hierdurch entstehen Frequenz-Seitenbänder des
Laserstrahls. An einem Resonator soll Licht mit einer



236 10 Gravitationswellen

der Frequenzen im Resonanzfall nicht reflektiert werden,
während Licht mit der zweiten Frequenz reflektiert wird.
Bei verstimmtem Resonator wird Licht mit beiden Fre-
quenzen reflektiert. Betrachtet man die Fourierzerlegung
der reflektierten Leistung, erkennt man, dass sie eine aus
Trägerfrequenz und Seitenband entstehende Misch-Kom-
ponente enthält, die ausschließlich mit der Modulations-
frequenz oszilliert. DurchMultiplikationmit einem Signal
mit der Modulationsfrequenz wird in einem Mischer ein
Signal erzeugt, das nach Glättung ein Maß für die Spie-
gelstellung ist. Damit das vom Interferometer reflektierte
Licht aus dem ankommenden Laserstrahl herausgelenkt
wird und zum Mischer gelangen kann, durchläuft der
Laserstrahl vor dem Interferometer einen in Abb. 10.2
nicht eingezeichneten Faraday-Isolator, der den rückläu-
figen Strahl reflektiert, wie dies Abb. 9.37b zeigt. Werden
ungleiche Armlängen in den Interferometern und meh-
rere Seitenbandfrequenzen gewählt, lassen sich gezielt
Spiegelkombinationen ansteuern. Für die Winkelstabili-
sierung gibt es ein eigenes Regelungssystem mit speziel-
lenWellenfronten-Sensoren. Die Differenz der Armlängen
wird durch eine gegenläufige Steuerung der Endspiegel
SE in Abb. 10.2 kontrolliert.

Alle Spiegel führenwegen der Regelungsprozedur fluktu-
ierende Bewegungen aus, die einen Messfehler zur Folge
haben. Als Beispiel ist er für einen run des adv. Ligo-Expe-
riments als Kurve „Other DOF“ in Abb. 10.3 aufgetragen.
Der Effekt begrenzt den Nachweis von Gravitationswel-
len mit niedriger Frequenz.

Unterschiedliche Armlängen in einem Interferometer ha-
ben zur Folge, dass bei fluktuierender Laserfrequenz
keine konstante Phasendifferenz zwischen den interfe-
rierenden Strahlen mehr besteht. Deshalb gibt es eine
hohe Anforderung an die Stabilität der Laserfrequenz, die
bei einem Wert von ν = 3 · 1014 Hz um nicht mehr als
10−5 Hz/

√
Hz schwanken soll. Es gibt keinen Laser, der

diese Bedingung erfüllt. Die Laserfrequenz wird daher
mit einer Regelung an die mittlere Armlänge der Fabry-
Pérot-Resonatoren angepasst.

Eine thermische Belastung der Spiegel durch Laserstrah-
lung führt zur Änderung von deren optischen Eigen-
schaften, was durch geeignete elektrische und Laser-
Heizungen ausgeglichen wird. Ein anderer thermischer
Effekt sind Wärmebewegungen und Schwingungen der
Bauteile. Sie erzeugen Fehler, die in Abb. 10.3 bei nied-
rigen Frequenzen liegen. Es ist kaum zu vermeiden,
dass mechanische Resonanzen wie Spiegelschwingungen
oder Längsschwingungen der Aufhängefäden im Bereich
der zu detektierenden Frequenzen liegen, wie man in
Abb. 10.3 erkennt. Bei der Datenanalyse hilft hier die in
Abschn. 8.4 erwähnte Signal-Bearbeitung: Störende Re-
sonanzen lassen sich rechnerisch durch Herausschneiden
von Frequenzbändern aus den Fourier-Transformierten
von h11 beseitigen. Dies gelingt um so besser, je schmä-
ler störende Resonanzen sind, weshalb Spiegel und Fäden

aus Materialien mit geringer mechanischer Dämpfung
hergestellt werden müssen.

Zusammenfassung: Um eine hohe Empfindlichkeit für
ein Gravitationswellen-Interferometer zu erhalten, wird
die Lichtleistung in den Interferometerarmen resonant
um mehr als vier Größenordnungen erhöht und das In-
terferometer wird nahe einer Intensitätsnullstelle betrie-
ben. Die Empfindlichkeit wird bei niedrigen Frequenzen
vonmechanischen Erschütterungen, apparativen Rausch-
quellen und thermischen Effekten begrenzt, bei hohen
Frequenzen vom Schrotrauschen. Der sensitivste Bereich
liegt zwischen Frequenzen von 30 und 1000Hz, dort wer-
den, wie Abb. 10.3 zeigt, Empfindlichkeiten für Dehnun-
gen bis unter 10−23/

√
Hz erreicht. Die Empfindlichkeit

lässt sich durch eine höhere Laserleistung verbessern.

Beobachtung und Ausblick

Das oben erwähnte erste von der LIGO-Kollaboration ge-
fundene Gravitationswellensignal zeigt Abb. 10.4.10 Das
Bild ist bearbeitet: Aus der Fourier-Transformierten wur-
den kleine und große Frequenzen entfernt und die in
Abb. 10.3 sichtbaren Resonanzen sind herausgefiltert.
Man erkennt die am Ende von Abschn. 10.2 und in
Aufg. 10.3 diskutierte Frequenzzunahme der Gravitati-
onswelle vor der Herausbildung eines neuen stabilen
Ereignis-Horizonts. Im unteren Teil von Abb. 10.4 ist zu
sehen, dass die rauschbedingten Fluktuationen der ge-
messenenDehnungen, nachdem die theoretischen Signale
abgezogen wurden, innerhalb und außerhalb des Signal-
bereichs die gleiche Struktur aufweisen, aber für beide
Interferometer verschieden sind.

Durch eine weitere Verbesserung der existierenden und
durch den Aufbau weiterer Detektoren (Japan, Indien)
sowie deren weltweiter Vernetzung wird die Empfind-
lichkeit insgesamt erhöht. Weil die Amplituden von
Gravitationswellen umgekehrt proportional zum Ab-
stand von der Quelle sind, entspricht einer Verdopplung
der Empfindlichkeit eine Verachtfachung des Volumens
im Weltall, aus dem Signale beobachtet werden können.
Sind drei Detektoren gleichzeitig aktiv, ist es auch mög-
lich, Quellen am Himmel zu lokalisieren. Die Richtung
der Welle ermittelt man aus der Zeitdifferenz der eintref-
fenden Signale. Ferner kann man mit den Signalen dreier
Detektoren die oben beschriebenen tensoriellen
Polarisations-Eigenschaften einer Gravitationswelle über-
prüfen.

Eine solche Messung gelang zum ersten Mal beim Nach-
weis der Fusion zweier schwarzer Löcher mit den bei-
den 4km-LIGO-Detektoren und dem Virgo-Detektor im

10 Für die Entdeckung der Gravitationswellen erhielten im Jahr 2017
R. Weiss, B. Barish und K. Thorne den Nobelpreis für Physik.
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Abbildung 10.4 Von der LIGO-Kollaboration beobachtetes Ereignis, das von der Fusion zweier schwarzer Löcher herrührt. Oben links: Signal im ersten In-
terferometer. Oben rechts : Signal im zweiten Interferometer, zusammen mit dem zeitlich verschobenen und gespiegelten Signal des ersten Interferometers.
Mitte : Reproduktion der Gravitationswelle durch die ART mit zwei verschiedenen Rechenverfahren. Unten: Signale nach Abzug der angepassten Gravitationswelle.
LIGO Scientific Collaboration and Virgo Collaboration, 2016

August 2017; die Massen waren mit rund 30 und 25 Son-
nenmassen ähnlich denen des Ereignisses in Abb. 10.4.11

Noch im gleichenMonat wurde ein weiteres Gravitations-
wellensignal mit völlig anderen Eigenschaften gefunden:
Es war über eine wesentlich längere Zeit hinweg beob-
achtbar und die Chirpmasse betrug nur 1,2 Sonnenmas-
sen. 1,7 s nach der Fusion entstand ein Gammastrahlungs-
Blitz, der aus der gleichen Himmelsregion kam und
von zwei Experimenten (Fermi-Teleskop der NASA und
INTEGRAL-Teleskop der ESA) detektiert wurde. Dies
spricht dafür, dass eine Fusion zweier Neutronensterne
stattgefunden hat12. Läuft eine Fusion in dieser Weise

11 LIGO Scientific Collaboration and Virgo Collaboration, „A Three-
Detector Observation of Gravitational Waves from a Binary Black
Hole Coalescence“, Phys. Rev. Lett. 119 (2017) 141101.
12 LIGO Scientific Collaboration and Virgo Collaboration, „Observa-
tion of Gravitational Waves from a Binary Neutron Star Inspiral“,
Phys. Rev. Lett. 119 (2017) 161101.

ab, wird eine so genannte Kilonova-Explosion erwartet.
Dann findet während Tagen oder Wochen im sichtba-
ren und infraroten Spektralbereich eine Lichtemission
statt, die letzlich die Folge einer Aufheizung der Materie
durch radioaktive Zerfälle ist. Diese Lichtemission wurde
von von vielen Teleskopen nachgewiesen und erlaub-
te die Zuordnung des Ereignisses zu einer bestimmten
Galaxie.

Will man zu kleineren Frequenzen im Bereich 0,1–
100mHz vorstoßen und neue Quellen erschließen, muss
man die seismischen and anderen terrestrischen Störun-
gen beseitigen und die Armlänge um mehrere Größen-
ordnungen anheben. Dies ist nur möglich mit einem
Interferometer im Weltraum. Dieses soll aus drei Satel-
liten in ca. 106 km Abstand bestehen. Zum Studium der
Experimentiertechnik wurde bereits ein Satellit („LISA
pathfinder“) in Betrieb genommen. Eine neue wissen-
schaftliche Disziplin ist im Entstehen: die Astrophysikmit
Gravitationswellen.
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Übungsaufgaben

10.1. Präzisions-Zeitmessung in einem Flugzeug. Ein
Flugzeug fliege mit konstanter Geschwindigkeit v in
konstanter Höhe h entlang des Äquators. Verallgemei-
nern Sie die Herleitung von (10.5) aus (10.2) und (10.4)
auf die Differenz der Eigenzeiten zwischen dem Flug-
zeug und der Bodenstation und zeigen Sie, dass sich die
Einflüsse der Gravitation und der Zeitdilatation addie-
ren.Mehr hierzu (Hafele-Keating-Experiment) findet man
in Bd. I/14.5. Wie unterscheiden sich die Zeitanzeigen
der Uhren in folgendem Beispiel: Flughöhe h = 10 000m,
Fluggeschwindigkeit v = 200m/s, eine Erdumrundung
in West-Richtung und eine in Ost-Richtung. Der Erdra-
dius ist rE = 6370km. Man vergleiche die Resultate mit
Bd. I, Tab. 14.1.

10.2. Gravitationswellen binärer Systeme. a) Wie groß
ist die Leistung der vom System Erde–Sonne abgestrahl-
ten Gravitationswellen? Daten: Radius der Erdbahn rE =
1,5 · 1011 m, Masse der Erde mE = 6 · 1024 kg.

b) Wie groß ist die Leistung der Gravitationswellen ei-
nes Doppelsternsystems mit folgenden Daten: Massen =
1 Sonnenmasse = 2 · 1030 kg, Umlaufperiode = 6h? Wie
viele Sonnenmassen werden pro Jahr abgestrahlt?

10.3. Frequenzänderung der Gravitationswelle eines
binären Systems. Beweisen Sie (10.18) mit (10.14) und
(10.15) im nichtrelativistischen Grenzfall, in dem die Mas-
sen konstant sind und die Leistung der Gravitationswelle
aus einer langsamen Abnahme der Gesamtenergie des
Zweikörper-Systems stammt. Zahlenbeispiel: m1 = m2 =
30 Sonnenmassen, ωgrav = 2π · 50Hz. Wie groß ist ω̇grav?

Umwie viel unterscheiden sich die Periodendauern zwei-
er aufeinander folgender Oszillationen?

10.4. Gravitationswellen: Unschärferelation und Inter-
ferometrie. Nach der Unschärferelation Δx1Δpx > h̄ ver-
ursacht die Positionsmessung eines frei beweglichen
Interferometerspiegels mit der Genauigkeit Δx1 eine
Impulsunschärfe und damit eine Geschwindigkeitsun-
schärfe des Spiegels, was eine Positionsunschärfe Δx2 in
der Zukunft bedeutet. Die nächste Positionsmessung fin-
de nach der Zeit τ statt, die Spiegelmasse sei m. Welche

Genauigkeit Δx =
√

Δx21 + Δx22 lässt sich für die Spiegel-
verschiebung erreichen? Die Amplitude einer Gravita-
tionswelle ändere sich in der Zeit τ um Δhxx. Wie hängt
die Nachweisgrenze für Δhxx, die man mit Interferome-
terarmen der Länge L0 erhält, von τ ab? Zahlenbeispiel:
L0 = 4 km, m = 40kg, τ = 0,005 s.

Die Zeit τ identifiziere man mit der Abklingzeitkonstan-
ten eines Lichtstrahls in einem Interferometerarm.Wie oft
muss das Licht im Arm durchschnittlich hin und her lau-
fen, damit τ den oben angegebenen Wert hat?

10.5. Störung eines Gravitationswellen-Detektors
durch externe Massen. Eine Masse M, die sich im
Abstand s vom Endspiegel eines Gravitationswelleninter-
ferometers auf der Armachse befinde, schwinge mit einer
Amplitude Δs und einer Frequenz νe in Armrichtung. Die
Eigenfrequenz der Spiegelschwingung sei klein gegen
νe, sodass der Spiegel als frei beweglich betrachtet wer-
den kann. Mit welcher Amplitude schwingt der Spiegel
und welcher Dehnung entspricht das bei einer Armlän-
ge L0? Zahlenbeispiel: L0 = 4 km, s = 20m, M = 1 kg,
νe = 10Hz, Δs = 10 cm.
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1.1 Reflexion einer Seilwelle am losen Ende.

In Abb. 1.6 sind die Vorzeichen der gestrichelt einge-
zeichneten, rückläufigen Wellen umzudrehen: Der an-
kommenden Welle wird eine reflektierte Welle gleichen
Vorzeichens überlagert. Damit die Randbedingung (1.2)
erfüllt ist, muss deren Amplitude mit der Amplitude der
ankommenden Welle übereinstimmen. Dann ist der Aus-
schlag des losen Seilendes zu jedem Zeitpunkt doppelt so
groß wie die ankommende Amplitude. Dass die Randbe-
dingung erfüllt ist, kann man folgendermaßen einsehen:
Hat die ankommende Welle die momentane Zeitabhän-
gigkeit ∂y/∂t, besitzt sie zu diesem Zeitpunkt am Seilende
die räumliche Steigung−1/v · ∂y/∂t, wenn v die Ausbrei-
tungsgeschwindigkeit ist. Die Amplitude der reflektierten
Welle ist gleich groß, aber die räumliche Steigung hat
wegen der umgekehrten Laufrichtung das umgekehrte
Vorzeichen. Daher entsteht am losen Seilende insgesamt
die räumliche Steigung ∂y/∂x = 0.

1.2 Kabelclipping.

Das reflektierte Signal trifft nach der doppelten Kabellauf-
zeit 2 ns am Oszillographen ein und es hat das umgekehr-
te Vorzeichenwie das eingespeiste Signal. Daher steigt die
beobachtete Spannung während der ersten 2 ns an und
bleibt danach für 3ns konstant. Dann beginnt der kon-
stante Teil des Primärsignals, aber das reflektierte Signal
wächst noch und die Spannungssumme des Primärsi-
gnals und seiner Reflexion fällt ab, bis sie nach weiteren
2ns, also insgesamt nach 7 ns den Wert null erreicht. 55 ns
nach Beginn des Vorgangs fällt das Primärsignal ab und
die Spannungssumme wird negativ, sodass ein zweiter
7 ns langer, aber negativer Impuls entsteht (Abb. 11.1).
Diese Impulse haben eine Anstiegszeit von 2 ns, errei-
chen aber nur 40% der Höhe des Originalsignals: Um
den Preis einer Verkleinerung wird das Signal verkürzt!
Dieses „Kabelclipping“ lässt sich daher zur Erzeugung
kurzer Impulse verwenden.

1.3 Fourier-Reihe.

a) Die Spannung ist gegeben durch

U =
dΦ

dt
= ωLI0

(
cosωt− I20

I2S
sin2 ωt cosωt

)
. (11.1)

t

U(t)

Reflexion

Kabel-Laufzeit

ohne

mit

Abbildung 11.1 Verkürzung eines Spannungsimpulses durch Überlagerung
eines Signals mit seiner Reflexion

Mit trigonometrischen Relationen erhält man

cos 3ωt = cos 2ωt cosωt− sin 2ωt sinωt

= cos2 ωt cosωt− sin2 ωt cosωt− 2 sin2 ωt cosωt ,

sin2 ωt · cosωt =
1
4
(cosωt− cos 3ωt)

und somit

U = ωLI0

((
1− I20

4I2S

)
cosωt+

I20
4I2S

cos 3ωt

)
. (11.2)

Die Reihe bricht also nach dem 3ω-Term ab. Für I0/IS =
1/2 ist die Amplitude des 3ω-Terms um einen Faktor 15
kleiner als die Amplitude der Grundschwingung.

b)Mit der Vormagnetisierung ist die Induktionsspannung

U =
dΦ

dt
= ωLI0 cosωt

(
1− (I+ IM)2

I2S

)

= ωLI0 cos ωt

(
1− I2M

I2S
− I20

I2S
sin2 ωt

− 2
IMI0
I2S

sinωt

)
,

U = ωLI0

((
1− I20

4I2S
− I2M

I2S

)
cosωt+

I20
4I2S

cos 3ωt

− IMI0
I2S

sin 2ωt

)
.

(11.3)

Es tritt ein zusätzlicher Summand mit der Frequenz 2ω
auf, der zu IM proportional ist. Für I = 0 gilt bei klei-
nem IM für den Fluss Φext ≈ LIM, sodass der Zusatzterm
dem externenmagnetischen Feld proportional ist. Daman
die Frequenz 2ω herausfiltern kann, wurden nach diesem
Prinzip Magnetfelder gemessen.

c) Solange Φext = 0 ist, also auch, wenn I0 > IS ist, ist die
Induktionsspannung eine um den Zeit-Nullpunkt sym-
metrische Funktion. Die Fourier-Reihe kann deshalb nur
cos-Terme, aber keine sin-Terme enthalten. Der Strom und
die Spannung besitzen eine weitere Symmetrie: Nach ei-
ner Halbperiode haben sie den gleichen Betrag, aber das
umgekehrte Vorzeichen: U(t + T/2) = −U(t). Für eine
geradzahlige Oberwelle mit der Frequenz nω (n gerade)
gilt aber

cos(nωt+ nωT/2) = cos(nωt+ nπ) = + cos nωt .

Die Fourier-Reihe kann deshalb nur ungerade Vielfache
der Grundfrequenz ω enthalten:

U = U0 cosωt+U3 cos 3ωt+ . . .
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Ist I0 > IS, verschwindet im Modell die Induktionsspan-
nung, wenn |I(t)| den Wert IS überschreitet. Die Zeiten,
zu denen dies eintritt, erhält man aus der Bedingung
sinωt0 = ±IS/I0. Eine der Lösungen liegt im Bereich 0 <
t0 < T/4. Die sich aus (11.2) ergebenden Fourier-Integrale
der Form

∫
cosωt cos nωtdt ,

∫
cos 3ωt cosnωtdt (n ungerade)

sind zu erstrecken über die Zeitintervalle t = −t0 . . .+ t0,
t = −T/2 . . . − T/2 + t0 und t = T/2 − t0 . . .T/2. Weil
t0 < T/4 ist, gibt es im Integrationsintervall Lücken und
alle Integrale verschwinden nicht. Die Fourier-Reihe ent-
hält also unendlich viele Summanden, deren Berechnung
aber ziemlich mühselig ist.

d) Wird eine Cosinus-Spannung vorgegeben, muss der
Strom eine Oberwelle der Frequenz 3ω enthalten, um
den Spannungsanteil dieser Frequenz in (11.2) zu kom-
pensieren. Das Induktionsgesetz führt dann aber wegen
des I3-Terms zu Spannungsoszillationen mit noch größe-
ren Frequenzen. Damit sich diese herausheben, muss der
Stromweitere Oberwellen aufweisen: Man erhält eine un-
endliche Fourier-Reihe.

1.4 Dispersionsrelation.

a) Die Phasen- und die Gruppengeschwindigkeit sind

vph =
ω0

k
sin(kL) , vg = ω0L cos(kL) .

Für kleine k ist
vph ≈ vg ≈ ω0L .

b) Die Reihenentwicklung der Phasengeschwindigkeit ist

vph = ω0L−
ω0k2L3

6
= ω0L

(
1− k2L2

6

)
.

Mit den angegebenen Zahlen ist im Frequenzbereich
von 1GHz die Wellenlänge λ = 5µm und es wird kL =
0,0012 	 1.

1.5 Lösungen der klassischen Wellengleichung.

a) Gleichung (1.44) hängt von x2/t, aber nicht von x± vt
ab. Die Formel beschreibt eine eindimensionale Diffusi-
on (siehe Bd. II, Gln. (6.10) und (6.11)). Die Amplitude ψ
„fließt“ im Laufe der Zeit „auseinander“, was keine Wel-
lenausbreitung ist.

b) Gleichung (1.45) beschreibt eine Gaußfunktion, die sich
mit der konstanten Geschwindigkeit v = ω/k vorwärts
bewegt. ψ ist daher eine Lösung der dispersionsfreien
Wellengleichung.

c) Gleichung (1.46) beschreibt die Superposition zwei-
er gegenläufiger Wellen. Der Vorgang ist dispersionsfrei,
wenn k1 = k2 ist. Andernfalls hätte man die kuriose Situa-
tion, dass die Ausbreitungsgeschwindigkeit einer harmo-
nischen Welle von ihrer Laufrichtung abhängt.

d) Die Funktion ψ in (1.47) ist ein Produkt von Funk-
tionen, die jeweils Wellenausbreitungen beschreiben. Die
haben im Allgemeinen verschiedene Ausbreitungsge-
schwindigkeiten. Es handelt sich um ein Schwebungsphä-
nomen wie in (1.28). Das gehorcht einer Wellengleichung
mit einer frequenzabhängigenAusbreitungsgeschwindig-
keit, die Wellen sind also im Allgemeinen nicht dispersi-
onsfrei. Die Dispersionsfreiheit ist aber in (1.47) als Son-
derfall enthalten. Wegen der trigonometrischen Relation
2 sin α sin β = cos(α− β)− cos(α+ β) beschreibt (1.46) die
Superposition zweierWellenmit denWellenzahlen k1− k2
und k1 + k2 und den Frequenzen ω1 + ω2 und ω1 − ω2.
Die Gleichheit ihrer Geschwindigkeiten erfordert

ω2 − ω1

k1 + k2
= ±ω2 + ω1

k2 − k1
.

Diese beiden Gleichungen haben die Lösungen:
(1) ω1/k1 = −ω2/k2, d. h. Gleichheit der Phasenge-
schwindigkeiten (die ki können auch negativ sein),
(2) k1 = 0 und ω2 = 0 oder k2 = 0 und ω1 = 0. Dann
hängt in (1.47) einer der Faktoren nur von x, der andere
nur von t ab. Das sind die stehenden Wellen, hier noch
ohne Randbedingungen.

e) In (1.48) hängt ψ von einem Produkt aus x + vt und
x − vt ab und kann daher keine Lösung der dispersi-
onsfreien Wellengleichung sein. Die Formel ergibt keinen
physikalischen Sinn.

1.6 Federkette.

Die i-te Masse mit der momentanen Koordinate xi wird
von den Federkräften der nächsten Nachbarn an den Po-
sitionen xi±1 beschleunigt:

m
d2xi
dt2

= α (xi+1 − xi) + α (xi−1 − xi)

= α (xi+1 + xi−1 − 2xi) .

Für die Auslenkung der Massen aus den Ruhelagen
wird die Funktion ψ eingeführt mit ψ(xi, t) = xi − xi und
ψ(xi±1, t) = xi±1 − xi±1, worin xi und xi±1 die mittleren
Positionen sind. Mit der Taylorentwicklung

xi±1 = xi +
∂ψ

∂x
(xi±1 − xi) +

1
2

∂2ψ

∂x2
(xi±1 − xi)

2

und xi±1 − xi = ±a erhält man

m
∂2ψ

∂t2
= αa2

∂2ψ

∂x2
→ ∂2ψ

∂t2
=

α

m
a2

∂2ψ

∂x2
,

woraus sich die Ausbreitungsgeschwindigkeit v =
a
√

α/m ergibt. Zahlenbeispiel: v = 6,3 cm s−1.
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2.1 Schallgeschwindigkeit in Gasen.

Die Gasdichte ist ρ = Mp/(RT), wobei M die Molmasse
ist. Mit der Formel für die Schallgeschwindigkeit erhält
man

vs =

√
κRT
M

, κ =
v2sM
RT

.

Für Luft ist κ = 1,40 = 7/5, aber für CO2 ergibt sich κ =
1,30 < 1,40. Die Interpretation: Das CO2-Molekül kann
Knickschwingungen ausführen, die bei niedrigerer Tem-
peratur angeregt werden als die Schwingungen der Luft-
moleküle, die bei Zimmertemperatur noch nicht auftre-
ten.

2.2 Eigenfrequenzen einer Pfeife.

Bei konstanterWellenlänge sind die Eigenfrequenzen pro-
portional zur Schallgeschwindigkeit, also zu

√
κ/M: Für

Helium mit M = 4 g/mol und κ = 5/3 erhält man vs =
972m/s, ν = 1468Hz. Das kann man ohne Gefahr für
Leib und Leben demonstrieren, indem man einmal kurz
Helium einatmet und etwas spricht.

2.3 Warum sind Schallwellen in idealen Gasen adiaba-
tisch?

a) Die Wärmestromdichte ist

j = −Λ
dT
dx

= −ΛT̃0k · cos(kx− ωt) . (11.4)

Die pro Halbperiode (T1/2 = π/ω) und Querschnittsflä-
che A der Welle transportierte Wärme ist

Q
A

= ΛkT̃0
π

ω
.

b) Eine Schicht mit der Querschnittsfläche A, die eine hal-
be Wellenlänge dick ist, enthält eine Gasmenge

νG =
p0λA
2RT0

.

Die Abweichung der inneren Energie vom Mittelwert in
einer solchen Schicht, die mit der Welle mitläuft, ist maxi-
mal

U =
2
π
cVνGT̃0 =

2p0A
kRT0

cVT̃0 .

Der vorderste Faktor 2/π rührt von der räumlichen Mit-
telung der Temperatur her, denn der Mittelwert einer
sin-Funktion über eine Halbwelle ist 1/π

∫ π
0 sin ϕdϕ =

2/π. Ferner wurde λ durch 2π/k ersetzt.

c) Das Verhältnis der beiden Energien ist

Q
U

=
πΛRT0k2

2ωp0cV
=

πΛRT0

2cVp0

(
k
ω

)2

ω =
πΛRT0

2cVp0v2S
ω .

Hier kann man cV/R = 5/2 und die übrigen Daten ein-
setzen und erhält bei 1000Hz Q/U = 2 · 10−6. Die ther-
mischen Oszillationen können sich in der Welle nicht ab-
bauen. Selbst Ultraschallwellen mit 107 Hz werden nicht
innerhalb weniger Perioden gedämpft: Die Schallausbrei-
tung ist ein adiabatischer Prozess. Deshalb kann man die
Temperaturamplitude aus der Druckamplitude mit der
Adiabatengleichung ausrechnen:

p1−κTκ = const → (1− κ)
p̃0
p0

+ κ
T̃0

T0
= 0 ,

T̃0

T0
= −κ − 1

κ

p̃0
p0

→ T̃0 = 2,8 · 10−6 K .

2.4 Temperierte Stimmung.

Ein Halbtonschritt entspricht einer Änderung der Fre-
quenz um einen Faktor 21/12 = 1,059. Ein Hörer benötigt
eine relative Genauigkeit von etwas weniger als der Hälf-
te dieses Wertes, um Töne nicht zu verwechseln: Δν/ν ≈
2,5%.

2.5 Eigenschwingungen einer Saite.

a) Man benötigt das Masse-zu-Länge-Verhältnis der Sai-
te (r = Drahtradius, rCu = Außenradius der Kupferwick-
lung):

μ = πr2ρDraht + π(r2Cu − r2)ρCuη

= 8,9 · 10−3 kg/m+ 0,193 kg/m = 0,202 kg/m .

Die Zugkraft erhält man aus der Wellengeschwindigkeit
auf der Saite, die sich aus der Frequenz ν = 440/16Hz
und der Wellenlänge λ = L/2 ergibt:

v =

√
S
μ
= λν =

1
2
Lν → S =

1
4
L2ν2μ = 71N .

(11.5)
Die Zugspannung ist

σ =
S

πr2
= 6,3 · 107 Pa .

Das liegt für Stähle noch im Proportionalbereich.

b) Wenn die Kraft und die Frequenz konstant sind, ist
die Saitenlänge nach (11.5) proportional zu 1/

√
μ. Für ei-

ne Saite ohne Kupfermantel käme L =
√

0,202/8,9 · 10−3 ·
1,36m = 6,5m heraus, recht unhandlich!

c) Bei konstanter Kraft und konstantem μ ist die Saiten-
länge umgekehrt proportional zur Frequenz, und man
kann das Resultat von b) skalieren: L′ = Lν/ν′ = L/16 =
40 cm.

d) Die Gesamtzahl der Saiten schätzt man auf 220 ab und
erhält Stot ≈ 15kN.
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2.6 Stehende Welle auf einem Fadenpendel.

a) Es wurde die Grundschwingung vorausgesetzt
und nach (2.11) ist kL = π. Zahlenbeispiel: k = π/L =
1,75m−1. Die Kreisfrequenz ergibt sich aus der Schwin-
gungsdauer: ω = 2π/T = 31,4 s−1. Die Ausbreitungsge-
schwindigkeit einer Störung auf dem Faden ist

v =
ω

k
=

2L
T

= 18ms−1 .

b) Die Masse des Fadens ist mF = μL, es ist mg = S und
mit (2.5) folgt

mF

m
=

μLg
S

=
μLg
μv2

,

mF

m
=

gT2

4L
= 0,054 .

Die Voraussetzung der Rechnung (mF 	 m) ist also ei-
nigermaßen gut erfüllt. Die Fadenspannung nimmt nach
oben hin etwas zu und damit auch die Ausbreitungs-
geschwindigkeit. Da die Frequenz überall dieselbe ist,
nimmt die Wellenlänge nach oben ebenfalls zu: Das
Schwingungsmaximum liegt etwas unterhalb der Faden-
mitte.

c) Die Länge des maximal durchgebogenen Fadens erhält
man aus der Transversalauslenkung y = x0 sin kx als Kur-
venintegral:

L =

L′∫
0

√
1+

(
dy
dx

)2

dx

≈
L′∫

0

(
1+

1
2

(
dy
dx

)2
)
dx

≈ L′ +
1
2
k2x20

L∫

0

cos2 kxdx = L′ +
1
4
k2x20L ,

letzteres, weil der Mittelwert der cos2-Funktion gleich 1/2
ist. Somit ist die Anhebung der Masse L− L′ = k2x20L/4.
Die kinetische Energie des gestreckten Fadens ist

1
2

μ

L∫
0

v2(x)dx =
1
2

μx20ω2
L∫
0

sin2 kxdx

=
1
4

μx20ω2L .

Wenn dies gleich mg(L− L′) sein soll, folgt mgk2 = μω2,
also ω/k =

√
mg/μ, und das ist gerade die Formel für die

Ausbreitungsgeschwindigkeit.

Ist eine schwingende Saite fest eingespannt, führt deren
Elongation L′ − L gegen die Zugkraft S zu einer gespei-
cherten potentiellen Energie S(L′ − L) und es kommt (2.5)
heraus.

2.7 Dispersion von Tiefwasserwellen.

Die Phasengeschwindigkeit für die Wellenlänge λ1 er-
rechnet man mit (2.40) zu vph = 0,685m/s. Die zweite
Welle muss nach Voraussetzung die gleiche Phasenge-
schwindigkeit haben. Gleichung (2.40) lässt sich um-
schreiben:

λ2 − 2π

g
v2phλ = −4π2σ

gρ
,

λ =
π

g
v2ph ±

√
π2

g2
v4ph −

4π2σ

gρ
,

λ2 = λ1 − 2
π

g

√
v4ph −

4σg
ρ

.

Numerisch erhältman λ2 = 1,0mm.Da der Ausdruck un-
ter der Wurzel nie negativ werden darf, ist die minimale
Phasengeschwindigkeit

vph =

(
4σg

ρ

)1/4

= 0,23m/s .

An der Stelle der minimalen Phasengeschwindigkeit fal-
len die Lösungen λ1 und λ2 zusammen und es ist

λ =
π

g
v2ph = 2π

√
σ

gρ
= 1,7 cm .

3.1 Schallstärke und Schallwechseldruck.

Bei einem Schallpegel Lp = 50dB ist der Schalldruck nach
(3.22)

p̃ = p̃0 · 10Lp/20 = 20µPa · 102,5 = 0,0063 Pa .

3.2 Reflexionsfreie Aufspaltung eines Signals.

Das erste Kabel wird zunächst durch den Widerstand R
abgeschlossen. Diesem in Reihe geschaltet ist eine Paral-
lelschaltung der zwei anderen Kabel mit ihren Vorwider-
ständen R. Die Reflexionsfreiheit erfordert

Z = R+
1
2
(R+ Z) =

3
2
R+

1
2
Z

R =
Z
3
= 16,7Ω .

Am Ende des ersten Kabels erscheint das Signal noch in
ursprünglicher Höhe. Am Sternpunkt ist es um den Fak-
tor

(R+ Z)/2
(R+ Z)/2+ R

=
2
3

kleiner geworden. Am Eingang der Folgekabel ist die
Signalhöhe um einen weiteren Faktor Z/(Z + R) = 3/4
reduziert worden. Wenn die beiden Kabelausgänge hinter
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der Verzweigung mit dem Widerstand Z abgeschlossen
werden, ändert sich nichts mehr und die Signalhöhe ist
insgesamt um einen Faktor zwei kleiner als am Anfang.
Den beiden Kabelausgängen wird zusammen die Hälfte
der ursprünglich eingespeisten Leistung entnommen, die
andere Hälfte wird in den drei Widerständen R in Wärme
verwandelt.

3.3 Wellenwiderstand eines Koaxialkabels und einer
Streifenleitung.

a) Mit (3.26) und (2.87) erhält man

Z2 =
L′

C′ =
μ0

4π2ε0ε
· ln2

(
ra
ri

)

ri
ra

= e−2πZ
√

ε0ε/μ0 .

Numerisch ergibt sich ri = 0,44mm, L′ = 0,25µH/m,
C′ = 99 pF/m. Das entspricht dem handelsüblichen RG-
58-Kabel mit BNC-Steckern.

b) Die Gleichheit der Eindringtiefe mit dem Bruchteil ξ
des Radius ri besagt wegen (2.83):

ξri ≥
1√

πμ0σelν
,

ν ≥ 1
πμ0σelξ2r2i

= 2,2MHz .

c) C′ erhält man als Kapazität eines Plattenkondensators:
C′ = ε0b/d. L′ erhält man aus dem magnetischen Fluss Φ′

pro Leiterlänge, der von einem Strom I erzeugt wird.
Nach dem Ampèreschen Gesetz ist Hb = I, somit Φ′ =
μ0Hd = μ0Id/b und L′ = μ0d/b. Aus (3.26) folgt

Z2 =
L′

C′ =
μ0d2

ε0b2
→ d

b
=

√
ε0
μ0

Z = 0,133 .

3.4 Feldstärken in einem Laserstrahl.

a) Bei konstanter Energiedichte wäre die Intensität I =
P/(πσ2

r ). Für ein Gaußsches Strahlprofil mit der zentra-
len Intensität I0 erhält man

P =

∞∫
0

2πξI0e−ξ2/σ2
r dξ = −πσ2

r I0e
−ξ2/σ2

r

∣∣∣∣
∞

0
= πσ2

r I0 ,

die Formel für die Intensität im Strahlzentrum ist also die-
selbe wie vorher.

In der folgenden Feldstärkeberechnung sind E und B die
Effektivwerte:

I =
P

πσ2
r
= EH = E

B
μ0

= E2 1
cμ0

,

E =

√
cμ0P
πσ2

r
= 346V/m ,

B =
E
c
= 1,15 · 10−6 T .

b) Während der Dauer eines Pulses ist die Leistung
10−3 J/10−8 s = 105W, also um einen Faktor 108 größer
als vorher. Entsprechend sind die Feldstärken um einen
Faktor 104 größer: E = 3,46MV/m, B = 0,0115 T.

3.5 Kometenschweif.

a) Die Kraft durch den Strahlungsdruck sei Frad, die Gra-
vitationskraft Fgrav.

Frad = PSonne
πr2

4πR2c
,

Fgrav =
4π

3
ρr3GMSonne

R2 ,

GMSonne = ω2
ErdeR

3
Erde mit ωErde =

2π

1 Jahr
,

Frad
Fgrav

=
3PSonne

16πω2
ErdeR

3
Erdeρ rc

= 0,28 .

b) Die transversale Beschleunigung durch den Strah-
lungsdruck ist

a =
Frad

(4π/3)ρr3
=

3PSonne

16πρR2rc
.

Legt der Komet eine kurze Strecke s auf seiner Bahn zu-
rück, benötigt er dazu die Zeit t = s/v. Die Bewegung
eines Teilchens relativ zur Kometenbahn studiert man am
besten in einem rotierenden Koordinatensystem, das sich
mit dem Kometenkern mitbewegt. Dann wird die An-
ziehungskraft der Sonne durch eine Scheinkraft kompen-
siert. Bei minimalem Abstand zur Sonne, d. h. verschwin-
dender Radialgeschwindigkeit, entsteht eine Transversal-
ablenkung

ΔR =
1
2
at2 =

as2

2v2
.

Es ist mv2/R = Fgrav und wegen a = Frad/m ist

ΔR =
Frads2

2FgravR
→ ΔR

s
=

Frad
Fgrav

s
2R

.

Zahlenbeispiel: ΔR/s = 0,014. Der Schweif ist diffus, weil
in der Beschleunigung a der nicht einheitliche Teilchenra-
dius im Nenner steht. Eine Krümmung entsteht, weil ΔR
nichtlinear von s abhängt.

3.6 Magnetischer und elektrischer Dipol.

a) Man kann (3.34) abschreiben, wobei man das elektri-
sche Dipolmoment durch das magnetische Dipolmoment
pm = πr2I0 und die elektrische Feldkonstante ε0 durch die
magnetische ersetzt:

Pm =
μ0ω4π2r4I20

12πc3
.
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Die Dimensionsbetrachtung zeigt, dass der willkürliche
maßsystembedingte Faktor μ0 im Zähler und nicht im
Nenner zu stehen hat:

W =
Vs
Am

s−4 m4 A2 s3

m3 = VA .

Zahlenbeispiel: Pm = 1,1 · 10−11W.

b) Die Amplitude des elektrischen Dipolmoments ist pe =
1,8 · 10−10 A sm und die Leistung ist

Pe =
4r2I20 · 4π2ω2

12πε0c3
= 5 · 10−6W .

Eine genauere Inspektion der Formeln zeigt, dass die viel
kleinere Leistung des magnetischen Dipols daher rührt,
dass das Verhältnis Pm/Pe demQuadrat des Verhältnisses
der Dipolausdehnung zur Wellenlänge proportional ist:

Pm

Pe
=

1
c2

r2ω2

16
=

π2r2

4λ2 .

Bei konstanter Dipollänge und konstanter Stromstärke ist
die Leistung des elektrischen Dipols dem Quadrat der
Frequenz proportional. Das gilt, solange die Wellenlänge
groß gegen die Dipolabmessung ist.

c) Für die Abstrahlung von 1Wmuss pe = 7,4 · 10−13 Asm
sein. Extrapoliert man das Dipolmoment aus Teil b) zur
Frequenz 1,8GHz, erhält man pe = 5,5 · 10−13 Asm. Weil
dies etwas kleiner ist und wegen der kleineren Abmes-
sungen des Telefons muss der Strom entsprechend größer
sein. Außerdem ist die Wellenlänge nicht mehr groß ge-
gen die Abmessungen des Telefons.

3.7 Abstrahlung eines geladenen Teilchens.

a) Die Schwingungsamplitude und das Dipolmoment er-
geben sich aus der Newtonschen Bewegungsgleichung:

m
d2x
dt2

= −mω2x(t) = eE(t) ,

x0 = − eE0

mω2 , p0 =
e2E0

mω2 .

Der Impuls besitzt die Amplitude mωx0 und die Ampli-
tude seiner zeitlichen Ableitung ist

(
dp
dt

)
0
= mω2x0 = −eE0 .

In (3.34) und (3.35) eingesetzt, ergibt sich in beiden Fällen

Φe =
e4E2

0
12πε0m2c3

,

wobei im Falle von (3.35) ein Faktor 1/2 hinzugefügt wur-
de, weil der Effektivwert von (dp/dt)2 eingeht.

b) Die durchschnittliche kinetische Energie des Elektrons
ist

Ekin =
1
4
mω2x20 =

e2E2
0

4mω2 .

Das Verhältnis der abgestrahlten Energie pro Periode und
der mittleren kinetischen Energie ist

2π

ω

Φe

Ekin
=

2ωe2

3ε0mc3
.

Wenn dies klein gegen Eins sein soll, folgt

ω 	 3ε0mc3

2e2
≈ 1022 Hz .

Die Frequenz auf der rechten Seite ist riesig: Sie ent-
spricht der Zeit, die Licht benötigt, um eine Strecke von
der Größenordnung des klassischen Elektronenradius zu-
rückzulegen. Für derartige Frequenzen ist (3.35) gar nicht
mehr gültig. Solange man klassisch rechnen darf, hat die
Strahlungsdämpfung auf die Schwingung eines einzelnen
isolierten Elektrons fast keine Auswirkung.

3.8 Poynting-Vektor.

Die elektrische Feldstärke innerhalb des Kabels ist

E(r) =
U

r ln(ra/ri)

mit den Bezeichnungen wie in (2.87). Die magnetische
Feldstärke istH = I/(2πr). Der Poynting-Vektor E×H ist
parallel oder antiparallel zum Strom orientiert. In jedem
Falle zeigt er von der Batterie zum Verbraucher, gleich-
gültig, an welchem Kabelende und mit welcher Polarität
die Batterie angeschlossenwird (4 Fälle). Die transportier-
te Leistung ist

P =

ra∫
ri

2πrE(r)H(r)dr =
ra∫
ri

2πIU
2πr ln(ra/ri)

dr = IU .

3.9 Energiefluss im Kondensator.

a) Nach der Maxwellschen Gleichung (2.44) gilt auf einer
geschlossenen kreisförmigen Feldlinie

2πrH = πr2ε0ε
dE
dt

→ H = ε0ε
r
2
dE
dt

.

b) Das Vektorprodukt E× H ist bei Aufladung des Kon-
densators nach innen zur Kondensatorachse hin gerichtet.
Es ist

|E×H| = r
2

ε0ε
dE
dt

E .
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c) Ein Zylinder mit dem Radius r besitzt die Oberfläche
A = 2πrd und der Poynting-Vektor ist mit der Leistung

P = πr2dε0ε
dE
dt

E

verknüpft. Der Faktor πr2d ist das Volumen innerhalb der
Zylinderfläche und der zweite Faktor ist die zeitliche Ab-
leitung der elektrischen Energiedichte ε0εE2/2.

d) Die Zuführungsdrähte zum Kondensator besitzen eine
Kapazität relativ zum Rest der experimentellen Anord-
nung. Sie tragen daher Ladungen, verbundenmit radialen
elektrischen Feldern. Fließt ein Strom, ist der Poynting-
Vektor parallel zum Draht gerichtet. Somit strömt die
Energie bei der Aufladung eines Kondensators aus der
Stromquelle heraus, läuft außen an den Zuführungsdräh-
ten entlang, umgeht die Kondensatorplatten und strömt
dann von außen durch den Spalt zwischen den Platten in
den Kondensator hinein.

4.1 Wellenzahl-Vektor.

Der Winkel zur z-Achse ist 90°. Die Richtungs-Cosinusse
relativ zur x- und y-Achse sind

√
3/2 und 1/2. Der Wel-

lenzahl-Vektor ist k = (π/
√
3,π/3, 0)m−1.

4.2 Phase eines Wellenfeldes.

Man zerlegt ein Wegelement im Integral in Komponenten
dr‖ und dr⊥ parallel und senkrecht zum Wellenzahl-Vek-
tor. Senkrecht zum Wellenzahl-Vektor ist die Phase der
Welle konstant, daher ist

r2∫
r1

k · dr =
∫

k(r)dr‖ =
∫ 2π

λ(r)
dr‖ ,

und dies ist die Zahl der Wellenlängen zwischen den
Endpunkten, multipliziert mit 2π. Dabei spielt es keine
Rolle, ob man bei der Integration Umwege macht; zwi-
schendurch dürfen sogar Vorzeichenwechsel des Weges
dr‖ auftreten.

4.3 Fouriertransformation von Funktionen nach Re-
chenoperationen.

a) Die Fourier-Transformierte F̃ einer zeitlich verschobe-
nen Funktion ist nach (4.50)

F̃(ω) =

∞∫
−∞

f (t)eiωt+iωτ dt = eiωτF(ω) ,

d. h. die Fourier-Transformierte wird mit einem von ω ab-
hängigen Phasenfaktor vom Betrag eins multipliziert, der
um so schneller oszilliert, je größer die Zeitverschiebung
ist.

b) Man differenziert das Fourier-Integral (4.52) nach der
Zeit und liest als Fourier-Transformierte der Ableitung ab:

F̃(ω) = −iωF(ω) .

c) In die Gleichung f (t) =
∫ ∞
−∞ f1(t− t′) f2(t′)dt′ setzt man

die Fourier-Entwicklung der Funktion f1 ein:

f (t) =
1
2π

∞∫
−∞

∞∫
−∞

F1(ω)e−iωteiωt′ dω f2(t′)dt′ .

Hierin vertauscht man die Integrationsvariablen und
stellt die Reihenfolge einiger Terme um:

f (t) =
1
2π

∞∫
−∞

⎛
⎝F1(ω)

∞∫
−∞

f2(t′)eiωt′ dt′

⎞
⎠ e−iωt dω .

Diese Gleichung entspricht der Fourier-Entwicklung
(4.52). Der Ausdruck zwischen den großen Klammern
muss daher die Fourier-Transformierte von f (t) sein, die
aus F1(ω) und der Fourier-Transformierten von f2(t), also
F2(ω) besteht.

d) Das RC-Glied, das von einem variablen Strom aufge-
laden wird, ist ein sehr einfaches Beispiel: Eine kleine
Ladungsmenge dQ = I(t)dt führt am Ausgang zu einer
zeitabhängigen Spannung dU = dQ/Ce−t/RC. Integriert
über die Vergangenheit bis zu einem Zeitpunkt t gilt:

U(t) =
t∫

−∞

1
C
I(t′)e(−t+t′)/RC dt′ ,

d. h. man kann die Funktion I(t) mit f2 und die Expo-
nentialfunktion mit Cf1 identifizieren. Bei der Fourier-
Transformation von f1 ist die Integration über die Zeit
beidseitig bis ins Unendliche auszuführen. Dem wird
dadurch Rechnung getragen, dass man die Exponenti-
alfunktion abschneidet, also gleich null setzt für t′ > t.
Physikalisch bedeutet das, dass eine auf den Kondensator
fließende Ladung nicht die Spannung in der Vergangen-
heit beeinflussen kann. Die Fourier-Transformierte dieser
so ergänzten Exponentialfunktion ist

F1(ω) =
1
C

+∞∫
0

e−t/RC+iωt dt =
R

1− iωRC

=
1

1/R− iωC
.

In Bd. III/17.1 hattenwir den komplexenWiderstand ken-
nengelernt. Ein periodischer Strom erzeugt am RC-Glied
einen periodischen Spannungsabfall

Ǔ = Ǐ
1

1/R+ iωC
.
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Die Strom-Amplitude Ǐ identifiziert man mit der Fourier-
Transformierten von f2 = I(t), die Spannungsamplitude
Ǔ mit der Fourier-Transformierten der Spannung. Der
komplexe Widerstand entspricht dann gerade der Fouri-
er-Transformierten der Exponentialfunktion. Dass für den
komplexen Widerstand das konjugiert Komplexe im Ver-
gleich zu Bd. III herauskommt, liegt an den verschiedenen
Phasenkonventionen für Strom und Spannung in Bd. III,
Gl. (17.38) und in (4.52).

4.4 Fourier-Transformierte von Funktionen mit Sprün-
gen und Knicken.

a) (1) Es ist F(ω) = F1(ω) + F2(ω)mit

F1(ω) =

∞∫
0

e−γt+iωtdt =
e−γt+iωtdt
−γ + iω

∣∣∣∣∣
∞

0

→ − 1
iω

,

F2(ω) =

0∫
−τ

t+ τ

τ
eiωt dt =

τ∫
0

t′

τ
eiωt′e−iωτ dt′ .

Die Stammfunktion des Integranden in F2(ω) ist

t′

iωτ
eiωt′e−iωτ +

1
ω2τ

eiωt′e−iωτ ,

woraus folgt

F2(ω) =
1

ω2τ

(
1− e−iωτ

)
+

1
iω

,

F(ω) =
1

ω2τ

(
1− e−iωτ

)
. (11.6)

Mit dem Erreichen dieses relativ einfachen Resultats ist
das Schlimmste geschafft.

(2) Die Rechteckfunktion ist die Ableitung der Dreieck-
funktion, die Fourier-Transformierte erhält man durch
Multiplikation von (11.6) mit −iω:

F(ω) =
1

iωτ

(
1− e−iωτ

)
. (11.7)

Hieraus ergibt sich für einen um die Zeit τ verschobenen
Rechteckimpuls

F(ω) =
1

iωτ

(
e+iωτ − 1

)
. (11.8)

(3) Der Rechteckimpuls zwischen den Zeiten −τ und +τ
ist die Summe der beiden halb so langen Rechteckimpul-
se und seine Fourier-Transformierte ist die Summe von
(11.7) und (11.8):

F(ω) =
1

iωτ

(
e+iωτ − e−iωτ

)
=

2 sinωτ

ωτ
.

Das ist identisch mit (1.22), wenn man a = 1/τ setzt.

(4) Die abgeschrägte Stufe abwärts entsteht aus der Funk-
tion (11.6) durch Vorzeichenwechsel und Zeitverschie-
bung um τ. Dies ergibt

F(ω) =
1

ω2τ

(
−e+iωτ + 1

)
=

2 sinωτ

iω2τ
e+iωτ/2 .

(5) Die symmetrische Dreieckfunktion entsteht als Summe
von (1) und (4):

F(ω) =
1

ω2τ

(
2− e+iωτ − e−iωτ

)
=

2
ω2τ

(1− cosωτ) .

b) Unstetigkeiten der Funktionswerte gibt es in den Fäl-
len (2) und (3). Abgesehen von Oszillationen, ist |F(ω)| ∝
1/ω bei großen ω. Knicke, aber keine Sprünge gibt es
in den Fällen (1), (4) und (5). Es ist |F(ω)| ∝ 1/ω2 bei
großen ω. Dieses Verhalten gilt allgemein, auch wenn
mehrere Sprünge oder Knicke auftreten. Was sich dann
ändert, sind die oszillierenden Faktoren, sie enthalten die
Information über die Positionen und Stärken der Singula-
ritäten.

c) Die Funktion in Abb. 4.15a hat einen Sprung bei t = 0
und nach (4.56) ist |F(ω)| ∝ 1/ω bei großen ω. Ersetzt
man die cos- durch eine sin-Funktion, ist nur noch ein
Knick vorhanden. Man erkennt, dass in (4.56) durch diese
Ersetzung der zweite Faktor das Vorzeichen wechselt, so-
dass der Funktionsanteil |F(ω)| ∝ 1/ω verschwindet und
bei großen ω die Abhängigkeit |F(ω)| ∝ 1/ω2 entsteht.
Die in Abb. 4.11 gezeigte Funktion besitzt keine Unste-
tigkeit. Dass die Funktion A(ω) in (4.32) bei großen ω
proportional zu 1/ω ist, liegt daran, dass der in der Fuß-
note erwähnte zweite Teil analog zu (4.56) vernachlässigt
wurde.

4.5 Strukturen in Funktionen und ihren Fourier-
Transformierten.

(1) Mit komplexer Ergänzung ist die Fourier-
Transformierte eines Nadelimpulses zur Zeit t0 proportio-
nal zu eiωt0. Dieser Phasenfaktor oszilliert um so schneller,
je größer die Zeitverschiebung t0 ist: Δω = 2π/t0.

(2) Die Fourier-Transformierte F(ω) ∝ 2 cos(ωΔτ/2) ist
periodisch mit einem Frequenzabstand Δω, der durch
den zeitlichen Abstand der Nadelimpulse gegeben ist:
Δω = 4π/Δτ. Einen zusätzlichen Phasenfaktor gibt es
hier nicht, weil die Impulse als symmetrisch zur Zeit t = 0
angenommen wurden.

(3) Im Fall des Rechtecksignals gilt analog zu (4.30)

F(ω) ∝
1

Δτ

t0+Δτ/2∫

t0−Δτ/2

eiωt dt

∝
sin 1

2ωΔτ
1
2ωΔτ

eiωt0 .
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Die Amplitude des entstehenden Wellenzugs ist modu-
liert mit einem Frequenzabstand Δω = 4π/Δτ. Dieser
oszillierenden Funktion sind Phasenoszillationen im Fre-
quenzabstand 2π/t0 überlagert. In der Phasenoszillaton
findet man t0 wieder. Die Oszillation erfolgt schnell bei
großer Zeitverschiebung, der Effekt verschwindet bei ei-
nem zeitzentrierten Signal (t0 = 0).

(4) Aus (4.22) und (4.23) liest man die Fourier-Transfor-
mierte

F(ω) ∝
1
N

sin(Nωδτ/2)
sin(ωδτ/2)

eiωt0 mit δτ =
Δτ

N− 1

ab. F(ω) hat hohe, spitze Maxima im Frequenzabstand
2π/δτ. Dazwischen liegen niedrige Maxima mit dem viel
kleineren Frequenzabstand 2π/(Nδτ).

(5) Die Fourier-Transformierte einer zentrierten Gauß-
funktion ist nach (4.34) und (4.35) eine Gaußfunktion mit
der Breite σω = 1/σt. Dieser ist wegen der Zeitverschie-
bung ein Phasenfaktor überlagert, der sich aus Aufga-
be 4.3a ergibt:

F(ω) ∝
1√

2πσω

e−ω2/2σ2
ωeit0ω .

5.1 Umlenkprisma.

An der Prismenrückseite muss Totalreflexion vorliegen
und der Lichteinfall muss unter dem Einfallswinkel 45°
erfolgen: n sin 45◦ ≥ 1, d. h. n ≥

√
2 = 1,414. Einen Inten-

sitätsverlust gibt es beim zweimaligen senkrechten Licht-
durchtritt durch die Frontseite des Prismas:

(1− R)2 =
(
1− (n− 1)2

(n+ 1)2

)2

=

(
4n

(n+ 1)2

)2

.

Mit n =
√
2 ergibt sich der Bruchteil der reflektierten

Intensität zu 94%. Er nimmt mit wachsendem Brechungs-
index ab.

5.2 Lichtablenkung im Pellin-Broca-Prisma.

a) Wie man in Abb. 5.29 erkennt, weichen die Richtun-
gen des eintretenden und des austretenden Lichtstrahls
im Prisma von den Senkrechten auf den Oberflächen um
jeweils gleiche Winkel β ab. Innerhalb des Prismas stehen
der eingetretene und der reflektierte Strahl senkrecht auf-
einander. Bei der Totalreflexion an der Prismen-Rückseite
ist der Einfallswinkel deshalb 45°. Totalreflexion tritt auf,
wenn n > 1/ sin(π/4) = 1,414 ist.

b) Ferner liest man aus dem oberen Dreieck in Abb. 5.29
ab: (90◦ − β) + 45◦ + γ = 180◦. Es ist also

β = γ − π

4
, sin α = n sin β ,

n =
sin α

sin β
=

sin α

sin(γ − π/4)
= 2 sin α .

Das Prisma mit γ = 75° funktioniert also zwischen den
Brechungsindizes 1,414 und 2.

c) Weil α = arcsin(n/2) ist, liegt α immer zwischen 45°
und 90°. Für die beiden Glassorten in Tab. 5.2 variiert α
zwischen 49,2° und 50,0° (K3) und zwischen 60,6° und
64,5° (SF4).

d) Wird das Prisma als Monochromator verwendet, muss
man beim Wechsel der Wellenlänge lediglich das Prisma
drehen, aber nicht die Apparatur dahinter, denn die 90°-
Ablenkung bleibt erhalten.

5.3 Brechung im Medium mit variablem Brechungsin-
dex.

Innerhalb einer infinitesimalen Schicht der Dicke Δh wird
ein Lichtstrahl gebogen, sodass er hinter der Schicht eine
Winkelablenkung Δα erfahren hat. Nach dem Brechungs-
gesetz ist

sin(α + Δα)

sin α
=

n(h)
n(h+ Δh)

,

1+
cos α

sin α
Δα =

1

1+ dn
dh

Δh
n(h)

≈ 1− dn
dh

Δh
n(h)

,

dα

dh
1

tan α
= −dn

dh
· 1
n(h)

,

d ln sin α

dh
= −d ln n(h)

dh
.

Es folgt
sin α1

sin α0
=

n(h0)
n(h1)

.

Wird α0 = 90◦, ist sin α1 = n(h0)/n(h1). Zahlenbeispiel
mit n(h0) = 1,333, n(h1) = 1,400: α1 = 72,2◦. Startet un-
ten ein Lichtstrahl unter einem Winkel von weniger als
(90− 72,2)◦ = 17,8◦ gegen die Horizontale, wird er total-
reflektiert, also nach unten zurückgebogen.

5.4 Lichttransmission und Reflexion an einer Grenzflä-
che bei fast senkrechtem Lichteinfall.

Bei kleinemWinkel β1 ist sin β1 ≈ β1− β3
1/6 und cos β2 =√

1− sin2 β2 ≈ 1 − 1/2 · sin2 β2. Nach dem Brechungs-
gesetz ist sin β2 = n1/n2 · sin β1. In niedrigster Ordnung
setzt man die Cosinusse der Winkel β1 und β2 gleich
1 und aus (5.42) und (5.43) entsteht mit den Additions-
theoremen der trigonometrischen Funktionen und der
Vorzeichen-Konvention von Abb. 5.20:

ρ⊥ ≈ sin β1 − n1/n2 · sin β1

sin β1 + n1/n2 · sin β1
=

n2 − n1
n2 + n1

,

τ⊥ ≈ 2n1/n2 · sin β1

n1/n2 · sin β1 + sin β1
=

2n1
n1 + n2

.
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Abbildung 11.2 Analyse der normalen Dispersion für zwei Gläser

Für die Koeffizienten ρ‖ und τ‖ kommt nach Entwicklung
der Tangens-Funktionen dasselbe heraus. Wegen der Ro-
tationssymmetrie um die Normale zur Grenzfläche müs-
sen die reflektierte und die durchgelassene Intensität bei
senkrechtem Lichteinfall einen Extremwert haben, d. h.
die Abweichungen von den angegebenen Formeln sind
proportional zu β2

1. Die Korrekturen sind für die beiden
Polarisationsrichtungen verschieden (siehe Abb. 5.22).

5.5 Normale Dispersion.

Mit nur einer einzigen Resonanzfrequenz lautet (5.33)

n− 1 =
Nq2e
2meε0

f
ω2
0 − ω2

,

was sich mit ω = 2πc/λ in der Form

n− 1 = κ
λ2

λ2 − λ2
0
,

λ2

n− 1
=

1
κ
(λ2 − λ2

0)

schreiben lässt, worin alle Konstanten zu einem einzigen
Parameter κ zusammengefasst sind. Trägt man λ2/(n− 1)
als Funktion von λ2 auf, erhält man eine Gerade, wie
Abb. 11.2 zeigt. In Tab. 11.1 wurden aus zwei Wertepaa-

Tabelle 11.1 Analyse der normalen Dispersion für zwei Gläser

λ
(nm)

λ2

(105nm2)
λ2/(n− 1)
(105nm2)

κ λ0
(nm)

Kronglas

706,5 4,991 9,710

643,8 4,145 8,033 0,5045 96

589,3 3,473 6,702 0,5047 95

480,0 2,304 4,389 0,5050 94

404,7 1,638 3,073 0,5052 92

Schwerflintglas

706,5 4,991 6,717

643,8 4,145 5,538 0,7176 131

589,3 3,473 4,600 0,7171 132

480,0 2,304 2,968 0,7167 133

404,7 1,638 2,033 0,7158 135

ren für λ und n jeweils die Parameter κ und λ0 berechnet:

κ =
λ2
i − λ2

1

λ2
i /(ni − 1)− λ2

1/(n1 − 1)
, λ2

0 = λ2
i − κ

λ2
i

ni − 1
.

Es ergibt sich λ0 ≈ 95nm für Kronglas und λ0 ≈ 132nm
für Schwerflintglas. Die Differenzen (n− 1) werden, wie
man leicht nachprüfen kann, von einer einzigen Reso-
nanz mit einer Genauigkeit von ca. 0,4% reproduziert.
Über den Ursprung der Abweichungen, die im Übrigen
für die beiden Gläser einen unterschiedlichen Wellenlän-
genverlauf haben, lässt sich aus Messungen im sichtbaren
Spektralbereich nichts aussagen.

5.6 Optik der Röntgenstrahlen.

a) Der Brechungsindex ist nach (5.34) und (2.84)

n(ω) = 1− ω2
P

2ω2 mit

ω =
2πc

λ
= 9,4 · 1018 s−1 ,

ω2
P =

nee2

meε0
=

ZρNA

A
e2

meε0
,

ωP =

√
14 · 2330 · 6 · 1023 · 1,6 · 10−19√
0,028 · 9,1 · 10−31 · 8,8 · 10−12

s−1 ,

ωP = 4,73 · 1016 s−1 ,

n− 1 = − ω2
P

2ω2 = −1,3 · 10−5 .

b) Die Röntgenstrahlung muss streifend auf die Oberflä-
che treffen. Mit β = π/2− α ergibt sich der Grenzwinkel
für die Totalreflexion wie folgt:

sin α = sin(π/2− β) = cos β ≈ 1− 1
2

β2 = n ,

β =
√

2(1− n) = 0,005 rad ≈ 17′ .

c) Die Wellenlängen im Vakuum (λ) und im Medium
(λ/n) sind fast gleich groß. Dann folgt für die Phasenge-
schwindigkeit

vPh =
c
n
≈ c+ c

ω2
P

2ω2 ≈ c+
ω2
Pλ2

8π2c
> c .

Sie ist um den kleinen Bruchteil 1− n = 1,3 · 10−5 größer
als die Lichtgeschwindigkeit im Vakuum. Die Gruppen-
geschwindigkeit ist nach (1.25)

vg = vPh − λ
dvPh
dλ

= vPh −
ω2
Pλ2

4π2c
= c− ω2

Pλ2

8π2c
< c .

Sie ist um soviel kleiner als die Lichtgeschwindigkeit im
Vakuum wie die Phasengeschwindigkeit größer ist.
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5.7 Transmission und Reflexion von Metallen.

Für die Lichtwellenlänge λ = 600nm liest man aus
Abb. 5.28 ab: nR ≈ 0 und nI ≈ 4. Nach dem Wienschen
Verschiebungsgesetz hat das Wellenlängenspektrum der
Wärmestrahlung ein Maximum bei (3mmK)/T ≈ 10µm
bei Zimmertemperatur, d. h. die zweite Wellenlänge liegt
im langwelligen Ausläufer eines solchen Spektrums. Aus
(5.47) folgt

nI = nR =

√
σelλ

4πε0c
≈ 200 .

Die Amplitude einer Welle mit der Vakuum-Wellenlänge
λ ändert sich beimDurchlaufen einesMediumsmit einem
komplexen Brechungsindex gemäß

A ∝ eiǩx = e2πiňx/λ = e−2πnIx/λ e2πinRx/λ .

Die Intensität ist proportional zu A2, der Absorptionsko-
effizient ist daher 4πnI/λ. Die Schichtdicke, nach der die
Intensität um einen Bruchteil ε abgenommen hat, ist

ln(1− ε) = −4πnIx
λ

→ x = λ
ln (1/(1− ε))

4πnI
.

Das ergibt für das rote Licht x = 2,66 nm. Das ist viel klei-
ner als die Wellenlänge, aber immer noch größer als der
Gitterabstand. „Wellen“werden schon auf Strecken absor-
biert, die klein gegen die Wellenlänge sind. Beim Durch-
laufen einer Silberschicht dieser Dicke wird die Intensität
der Infrarotstrahlung um einen Faktor 0,72 abgeschwächt.
Gleichung (5.48) zur Berechnung des Reflexionsvermö-
gens setzt voraus, dass die Dicke einer Schicht groß im
Vergleich zur Eindringtiefe einer Welle ist. Diese Voraus-
setzung ist hier nicht erfüllt.

6.1 Fermatsches Prinzip.

Es genügt, die Längen aller zu vergleichenden Lichtstrah-
len ab der Tangentialebene durch den Scheitelpunkt S zu
messen, weil vorher keine Wegdifferenzen auftreten. Da-
her ist l1 = Δ(h). Nach (6.8) ist

n1Δ(h) + n2
√

h2 + (b−Δ(h))2 = n2b ,

(n22 − n21)Δ(h)
2 − 2Δ(h)bn2(n2 − n1) + n22h

2 = 0 .

Diese quadratische Beziehung zwischen h und Δ(h) de-
finiert ein Rotationsellipsoid. Für kleine h ist der Term
proportional zu Δ(h)2 zu vernachlässigen und man erhält

Δ(h) ≈ n2h2

2b(n2 − n1)
=

h2

2R
,

n2
b

=
n2 − n1

R
,

in Übereinstimmung mit (6.12).

d

α

y

β
F

H

F0

H

F

h

Abbildung 11.3 Brennpunkte und Hauptebenen einer plankonvexen Linse

6.2 Linse in einemMedium.

Die Brennweite ist nach (6.20) proportional zu n1/(n2 −
n1). Das Verhältnis ist 2 für Luft und 7,82 für Wasser; da-
her ist f = 19,6 cm.

6.3 Abbildung durch eine ebene brechende Fläche.

Am einfachsten ist es, in der Abbildungsgleichung zu ei-
nem unendlich großen Krümmungsradius überzugehen.
Die Brechkraft ist null und es ist n/g+ 1/b = 0, es entsteht
ein virtuelles Bild bei b = −g/n = −15 cm: Gegenstän-
de unter Wasser scheinen angehoben zu sein. Verschiebt
man den Gegenstandspunkt parallel zur Wasseroberflä-
che, verschiebt sich der Bildpunkt in gleicherWeise, daher
ist der transversale Abbildungsmaßstab eins. Befindet
sich das Auge in der Höhe h über der Wasseroberfläche,
ändert sich der Sehwinkel, solange er klein genug ist, um
den Faktor (h+ g)/(h+ |b|) = 1,077.

6.4 Bestimmung der Brennweite einer dünnen Linse
nach Bessel.

Wegen der Annahme einer dünnen Linse ist die Summe
aus Gegenstands- und Bildweite D = g+ b. Aus der Ab-
bildungsgleichung folgt

1
g
+

1
D− g

=
1
f
,

f (D− g) + fg = g(D− g) → g2 −Dg = −fD ,

g =
D
2
±
√

D2

4
− fD .

Der Abstand zwischen den beiden Lösungen ist d:

d2 = 4
(
D2

4
− fD

)
→ f =

D2 − d2

4D
= 18 cm .

6.5 Brennweite und Hauptebenen einer plankonvexen
Linse.

Die dicke plankonvexe Linse zerlegt man zweckmäßiger-
weise in eine dünne plankonvexe Linse, an die sich eine
dicke ebene Glasplatte anschließt (Abb. 11.3). Ein von
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Abbildung 11.4 Brennpunkte und Hauptebenen eines Systems aus zwei dün-
nen Linsen

rechts kommender Lichtstrahl parallel zu optischen Ach-
se durchläuft die Platte geradlinig, wird an der Linsen-
vorderseite gebrochen und gelangt zum davor liegenden
Brennpunkt, die Brennweite ist laut (6.13) f = R/(n− 1).
Die Hauptebene fällt ungefähr mit der Position der Lin-
senvorderseite zusammen. Ohne die Glasplatte läge der
zweite Brennpunkt als Punkt F′0 im Abstand f hinter der
vorderen Hauptebene. Die Glasplatte verschiebt aber alle
Lichtstrahlen parallel, sodass der hintere Brennpunkt an
die Stelle F′ nach hinten wandert. Aus Abb. 11.3 liest man
ab:

y ≈ dβ = h′α → |h′| = dβ

α
=

d
n
.

Dasselbe ergibt sich aus (6.34) und (6.35): Im Grenz-
fall R2 → ∞ ist die Brennweite f = R1/(n − 1), und die
Abstände zwischen den Hauptebenen und den Linsen-
oberflächen sind h = 0 und

h′ = − (n− 1)fd
nR1

= − d
n
.

h′ ist negativ: Die Hauptebene liegt vor der Linsenrück-
seite.

6.6 Zwei dünne Linsen.

a) Ein von links kommendes Lichtbündel parallel zur op-
tischenAchsewird zunächst von der ersten Linse in deren
Brennpunkt fokussiert und danach von der zweiten Linse
mit der Gegenstandsweite g = 2f1 und der Bildweite b =
2f1 in einen Brennpunkt des Gesamtsystems abgebildet.
Die Verlängerung eines ankommenden seitlich versetz-
ten Lichtstrahls schneidet seine Fortsetzung hinter der
zweiten Linse per definitionem in der Hauptebene (siehe
Abb. 11.4). Diese Hauptebene ist im vorliegenden Bei-
spiel gegenüber dem Brennpunkt um die Strecke f1 nach
rechts versetzt. Die Gesamtbrennweite ist also negativ:
f = −f1. Der Abstand zwischen den Hauptebenen ist we-
gen der Symmetrie des Systems gleich dem doppelten
Abstand der Hauptebenen von der Mitte (9f1). Dies wird
auch durch (6.36) und (6.37) wiedergegeben. Der Linsen-
abstand ist d = 3f1 und die Gesamtbrennweite ergibt sich
nach (6.36):

1
f
=

1
f1
+

1
f1
− 3f1

f 21
= − 1

f1
→ f = −f1 .

Weiterhin ergibt sich aus (6.37) h = fd/f2 = −3f1 (vor Lin-
se 1) und h′ = −fd/f1 = +3f1 (hinter Linse 2).

b) Ein Gegenstand am Ort der ersten Hauptebene wird
durch das Linsensystem in die zweite Hauptebene abge-
bildet; zunächst von Linse 1 mit der Gegenstandsweite 3f1
und der Bildweite 3/2f1 mitten zwischen die Linsen, so-
dass dort ein reelles Zwischenbild entsteht. Letzteres wird
von der zweiten Linse in umgekehrterWeise in die zweite
Hauptebene abgebildet. Der Abbildungsmaßstab ist ins-
gesamt eins, das reelle Bild in der zweiten Hauptebene
entspricht hier dem Original.

c) Es sei f1 > 0 und f2 < 0. Eine positive Gesamtbrennwei-
te entsteht, wenn gilt:

1
f1

− 1
|f2|

+
d

f1|f2|
> 0 ,

d > f1|f2|
(

1
|f2|

− 1
f1

)
= f1 − |f2| .

6.7 Beugungsunschärfe und chromatische Aberration.

Der Beugungswinkel ist α = 1,21λ/D = 7,2 · 10−5. Der
Radius des ersten Beugungsmaximums in der Brennebe-
ne ist somit αf = 3,6µm.

Beim Übergang von einer Wellenlänge auf die andere än-
dert sich die Brennweite wegen f ∝ 1/(n− 1) um

Δf =
Δn

n1 − 1
f =

n2 − n1
n1 − 1

f = 560µm .

Vom Brennpunkt aus gesehen, befindet sich der Blenden-
rand unter einem Winkel β ≈ D/2f = 0,1 zur optischen
Achse. Das Licht der zweitenWellenlänge erscheint daher
in der Brennebene für die erste Wellenlänge als Kreis-
scheibe mit dem Radius βΔf = 56µm. Der chromatische
Fehler überwiegt also bei Weitem.

6.8 Korrektur auf chromatische Aberration.

Es seien n1 der Brechungsindex des Glases der plankonka-
ven Linse, n2 der Brechungsindex der Konvexlinse, r12 der
gemeinsameKrümmungsradius und r2 der zweite Radius
der Konvexlinse. Die gesamte Brechkraft beider Linsen ist

1
f
=

1
f1

+
1
f2

=
1− n1
r12

+
n2 − 1
r12

+
1− n2
r2

. (11.9)

Die Brechungsindizes für verschiedene Spektrallinien
werden im Folgenden mit Argumenten gekennzeichnet.



254 11 Lösungen der Übungsaufgaben

α

α

α

R

D/2

β
β−α

b sa

F

f

Abbildung 11.5 Zur Berechnung der sphärischen Aberration

f muss für beide Fraunhoferschen Linien gleich sein:

−n1(C) + n2(C)
r12

+
1− n2(C)

r2

=
−n1(F) + n2(F)

r12
+

1− n2(F)
r2

,

1
r12

(
n1(F)− n2(F) + n2(C)− n1(C)

)

=
1
r2

(
n2(C)− n2(F)

)
,

r12
r2

=
n1(F)− n2(F) + n2(C)− n1(C)

n2(C)− n2(F)

r12
r2

= 1−
(
n1(D)− 1

)
V2(

n2(D)− 1
)
V1

= −2,47 .

Hierbei ist Medium 1 Flintglas. Mit vertauschten Glas-
sorten käme r12/r2 = +0,71 heraus; in diesem Falle wäre
entgegen der Voraussetzung die erste Linse konvex. Mit
dem Resultat kann man in (11.9) r12 durch r2 ersetzen
und mit den Brechungsindizes der D-Linie erhält man
r2 = −8,2 cm, r12 = +21,1 cm.

6.9 Sphärische Aberration.

a) Der Krümmungsradius der Linsenrückseite ist R =
f (n− 1) = 10 cm.

b) Abbildung 11.5 illustriert die sphärische Aberration in
dem gewählten Beispiel. Es sind α und β der Einfalls- und
der Ausfallswinkel für einen von links aus dem Unend-
lichen kommenden achsenparallelen Randstrahl an der
sphärischen Linsenoberfläche. Zwischen α und der Blen-
denöffnung besteht der Zusammenhang R sin α = D/2.
Der gebrochene Randstrahl schneidet die optische Achse
im Abstand

b′ =
D

2 tan(β − α)
=

R sin α cos(β − α)

sin(β − α)

= R sin α
cos α cos β + sin α sin β

sin β cos α − cos β sin α

von der Linsenvorderseite. Mit sin β = n sin α und den
Kleinwinkel-Näherungen sin α ≈ α, cos α ≈ 1− α2/2 und

cos β ≈ 1− n2α2/2 erhält man

b′ ≈ R
(1− α2/2)(1− n2α2/2) + nα2

n(1− α2/2)− 1+ n2α2/2

≈ R
1+ (n− 1)

(
α2/2− nα2/2)

)
(n− 1) (1+ nα2/2)

≈ R
1

n− 1
− R

1
n− 1

n
α2

2
− Rn

α2

2
+ R

α2

2
.

Zur Ermittlung des Brennpunkts für achsennahe Strah-
len zieht man (6.15) heran, worin R1 = −R, n1 = 1, n2 = n
und g1 = ∞ zu setzen sind. bwird ab dem hinteren Schei-
telpunkt gemessen: b = R/(n− 1). Die Dicke der Linse ist
d = R(1− cos α) ≈ Rα2/2. Der Abstand des Brennpunkts
von der Linsenvorderseite ist

b+ d =
R

n− 1
+ R

α2

2
.

Die Schnittpunkte der beiden Strahlen mit der optischen
Achse haben den Abstand

sa = b+ d− b′ = Rn
α

2

(
1+

1
n− 1

)
= R

α2n2

2(n− 1)
.

Da der Neigungswinkel des Randstrahls β − α ≈ (n− 1)α
ist, erzeugen die Randstrahlen in der Brennebene einen
Kreis mit dem Radius

ra = (n− 1)αsa =
1
2
Rn2α3 =

D3n2

16R2 .

Zahlenbeispiel: sa = 560µm, ra = 14µm. Durch Kombi-
nation einer Sammellinse (R > 0) mit einer Zerstreuungs-
linse (R < 0) kann man den zu α3 proportionalen Term
zum Verschwinden bringen, also die sphärische Aberra-
tion korrigieren.

6.10 Prismenfernrohr.

a) Die Gesichtsfeldblende liegt in der Ebene des reellen
Zwischenbildes, wegen der unendlichen Entfernung des
Gegenstandes also in der Brennebene des Objektivs. Des-
halb ist f1 = s = 15 cm.

Die Brennweite des Okulars ist f2 = f1/V = 2,14 cm. Weil
das Fernrohr ein teleskopisches System ist, fallen ein
Objektiv-Brennpunkt und ein Okular-Brennpunkt zusam-
men.

b) Die gegenstandsseitige Hauptebene des Okulars liegt
im Abstand f2 von der Feldblende entfernt in Richtung
zum Okular.

c) Die Gegenstandsweite für die Abbildung des Objektivs
durch das Okular ist g2 = f1 + f2. Dann ist die Bildweite

b2 =
g2f2

g2 − f2
= f2 +

f 22
f1

≈ 2,4 cm .
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Die bildseitige Hauptebene des Okulars liegt um die Stre-
cke b2 vor dem Auge, also 0,9 cm innerhalb des Okulars.
Die Distanz zwischen Feldblende und Okular (außen)
schätzt man aus der Abb. zu rund 5 cm ab, die ande-
re Hauptebene hat einen Abstand von 5 cm−f2 = 2,9 cm
von der Okular-Außenseite.

d) Das vom Okular am Auge erzeugte Bild des Objektivs
hat den Durchmesser B = Gb2/g2 = 7,1mm. Bei heller
Beleuchtung ist dies größer als der Pupillendurchmesser
des Auges. Die Auflösungsgrenze ist daher hier durch die
Sehschärfe des Auges gegeben und nicht durch (6.57).

e) Die geometrisch-optischen Abbildungsfehler steigen
mit dem Öffnungswinkel des abbildenden Strahlenbün-
dels an. Wegen der Winkelvergrößerung des Fernrohrs
spielen sie nur beim Okular eine Rolle. Der chromatische
Abbildungsfehler hängt im Gegensatz dazu nicht vom
Öffnungswinkel ab, daher wird das Objektiv darauf kor-
rigiert.

f) Blickt man von Weitem mit einem Auge auf eine Fern-
rohrhälfte, sieht man eine schwarze Fläche mit einem
Loch. Das Loch ist das vom Okular erzeugte Bild des
Objektivs. Es befindet sich in der Nähe des Okulars. Ad-
aptiert man das Auge auf große Entfernung, sieht man im
Loch einen kleinen Bildausschnitt und der der Lochrand
wirkt unscharf. Die Austrittspupille ist hier die Augenpu-
pille. Ihr vom Okular erzeugtes reelles Bild liegt in der
Nähe der gemeinsamen Brennebene von Objektiv und
Okular. Es ist verkleinert und hat einen viel kleineren
Radius als die in der Nähe liegende eingebaute Feldblen-
de, die ihre Funktion verliert. Das Objektiv erzeugt vom
reellen Bild der Augenpupille ein virtuelles Bild, das in
großem Abstand vom Fernrohr auf der Beobachterseite
liegt. Das ist die Eintrittspupille. Licht, das vom Objekt
in Richtung der Eintrittspupille läuft, trifft auf die Ob-
jektivfassung als Hindernis. Das ist jetzt die Eintrittsluke,
die das Gesichtsfeld begrenzt. Die Austrittsluke ist das
vom Okular erzeugte Bild davon. Weil beide Luken nicht
in der Zwischenbildebene liegen, erscheint der Bildrand
unscharf. Man erkennt: Wo vorher die Eintritts- und die
Austrittspupille lagen, liegen jetzt die Eintritts- und die
Austrittsluke.

6.11 Beleuchtungsstärke einer Fotoaufnahme.

a) Der Strahlungsfluss an der Blende ist

Φe = Leπr2e
πD2

4
1
g2

= Leπ2r2e
D2

4g2
.

Die Bildgröße ist rb = ref/g, denn es ist b ≈ f . Die Bestrah-
lungsstärke im Bild ist

Ee =
Φe

πr2b
=

Φeg2

πr2e f 2
= Leπ

D2

4f 2
.

Dieses Resultat hängt weder von g noch von re ab. Wird g
größer und die ankommende Intensität kleiner, wird das

Bild kleiner. Wird re größer, wird auch das Bild größer.
In beiden Fällen ändert sich die Bestrahlungsstärke nicht.
Für das Zahlenbeispiel erhält man Ee = 0,49W/m2.

Der Raumwinkel, unter dem das Objektiv vom Bild aus
gesehen erscheint, ist Ω = πD2/(4f 2). Das Verhältnis aus
der Bestrahlungsstärke und dem Raumwinkel ist

Ee

Ω
= Le .

Da Licht nur aus einem Halbraum auf den Film treffen
kann, ist Ω kleiner als 2π und es ist Ee < 2πLe. Ein geo-
metrisch-optisches Bild der Sonne erscheint nie heller als
die Sonne.

b) Der Strahlungsfluss an der Blende ist jetzt Φe =
IeπD2/(4g2), weil der Faktor πr2e entfällt. An der Objek-
tivfassung tritt Beugung auf mit dem Beugungswinkel
α = 1,22 · λ/D am ersten Intensitätsminimum. Der Radi-
us der umschlossenen Scheibe im Bild ist rb = αf = 1,22 ·
λf/D. Als Maß für die Bestrahlungstärke wählen wir das
Verhältnis aus dem Strahlungsfluss und der Scheibenflä-
che:

Ee =
Φe

πr2b
= Ie

D4

5,95 · f 2g2λ2 .

Wächst D, erscheint eine Quelle auf der Aufnahme heller,
so lange ihre Größe auf dem Bild durch Beugung begrenzt
ist. Das ist wegen der gleichzeitigen Verkleinerung des
Beugungsradius auch noch mit einer besserenWinkelauf-
lösung für die Trennung zweier Quellen verbunden.

7.1 Interferenzen gleicher Dicke.

Das Auge muss man auf den Luftkeil adaptieren. An den
Interferenzminima entspricht der Gangunterschied 2d
zwischenWellen, die an der Ober- und der Unterseite des
Luftkeils reflektiert werden, einem ungeradzahligen Viel-
fachen der halben Wellenlänge. Die Schichtdicke ändert
sich zwischen benachbarten Interferenzstreifen um λ/2,
sodass die Foliendicke 4,7µm beträgt.

7.2 Interferometrie mit zwei Lichtstrahlen.

a) Die optischen Weglängen in den Kuvetten, wenn eine
evakuiert ist, sind l1 = L und l2 = nL. Die Zahl der durch
eine Marke gewanderten Interferenzstreifen ist

m =
l2 − l1

λ
=

(n− 1)L
λ

→ n = 1+
mλ

L
= 1,000276 .

Die Differenz n− 1 sollte in einem Gas proportional zur
Moleküldichte sein, die bei konstantem Druck umgekehrt
proportional zu Temperatur ist:

n0 = 1+
(n− 1)T

T0
= 1,000291 .
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a b c

Abbildung 11.6 Zur Strahlungscharakteristik eines Antennenpaares. a d =
λ, ϕ = 0, b d = λ/2, ϕ = π, c d = λ, ϕ = π/2

b) Die Lichtgeschwindigkeiten in den Kuvetten seien
c/n± vmit v 	 c. Die optischen Weglängen sind

cL
c/n± v

=
nL

1± nv/c
≈ nL∓ n2v

c
L .

Bei Umkehrung der Strömungsgeschwindigkeit ent-
spricht die Zahl der wandernden Interferenzstreifen dem
Doppelten der Differenz:

m =
4n2vL

λc
→ v =

mλc
4n2L

= 4,2m/s .

Das Verhältnis von v zur Strömungsgeschwindigkeit vW
des Wassers ist 0,42 (theoretische Vorhersage 1− 1/n2 =
0,43).

In einem Gas ist die Molekülzahldichte um 3 Größen-
ordnungen kleiner als in Flüssigkeiten und da der Effekt
proportional zu n− 1 sein sollte, erwartet man Verschie-
bungen um 10−4 Streifenbreiten.

7.3 Strahlungscharakteristik zweier Antennen.

Der Gangunterschied zwischen den beiden von den
Antennen emittierten Wellen ist d cos ϑ, der Phasen-
unterschied bei gleichphasiger Erregung somit δ =
2πd cos ϑ/λ. Für die Amplitude der Welle gilt

A(ϑ) ∝ 1+ e2πid cos ϑ/λ+iϕ ,

wobei ϕ die Phasendifferenz bei der Erregung der Anten-
nen ist. Für die Intensität gilt

I(ϑ) ∝ |A(ϑ)|2 ∝
(
1+ cos

(
2π

λ
d cos ϑ + ϕ

))2

+ sin2
(
2π

λ
d cos ϑ + ϕ

)
,

I(ϑ) ∝ 1+ cos
(
2π

λ
d cos ϑ + ϕ

)
.

In den Spezialfällen ist

a) I(ϑ) ∝ 1+ cos(π cos ϑ),
b) I(ϑ) ∝ 1− cos(π/2 cos ϑ),
c) I(ϑ) ∝ 1− sin(π cos ϑ).

Die Resultate findet man in Abb. 11.6.

7.4 Reflexionsminderung.

Die Amplitude der von der ersten Schicht reflektierten
Welle ist A1 = A0(n2 − n1)/(n2 + n1). Zusätzlich entsteht
an der Rückseite der Schicht eine reflektierte Welle, deren
Amplitude wegen der Schichtdicke λ/4 um 2 · 90°= 180°
phasenverschoben ist:

A2 = −A0
n3 − n2
n3 + n2

4n1n2
(n1 + n2)2

(1+ . . .) .

Hierin ist der erste Faktor der Reflexionskoeffizient an
der Grenzfläche 2–3 und der zweite Faktor beschreibt
die zweimalige Transmission durch die Vorderseite der
Schicht. Er ergibt sich zu 0,97 und kann gleich eins ge-
setzt werden. Die Punkte stehen für die weggelassenen
Mehrfachreflexionen innerhalb der Schicht. Weil die Re-
flexionskoeffizienten im%-Bereich liegen undmindestens
zwei zusätzliche Reflexionen stattfinden, kann ihr Beitrag
vernachlässigt werden. Als Reflexionsfaktor erhält man

R =
(A1 +A2)

2

A2
0

≈
(
n2 − n1
n2 + n1

− n3 − n2
n3 + n2

)2

= 0,013

statt 0,04 ohne die Vergütung.

7.5 Ein-Moden-Laser.

Je größer der Abstand der Laserspiegel ist, um so klei-
ner ist der Frequenzabstand c/2d der axialen Moden. Die
Frequenz-Auflösung des Etalons muss kleiner als der Mo-
denabstand sein:

Δν =
ν

R =
c

λR <
c
2d

R >
2d
λ

= 2 · 106 .

7.6 Lichtreflexion an einer dünnen Metallschicht.

a) Analog zum Beweis von (7.51) summiert man eine un-
endliche Reihe von reflektierten Amplituden auf:

Ěr

Ě0
= ρ̌ + τ̌eiδρ̌′τ̌′

(
1+ ρ̌′2eiδ + . . .

)

= ρ̌ +
ρ̌′τ̌τ̌′eiδ

1− ρ̌′2eiδ
.

Nun ist nach den Fresnelschen Formeln (5.52) und (5.53)
ρ̌′ = −ρ̌ und es gilt für die komplexen Reflexions- und
Transmissionskoeffizienten

ρ̌2 + τ̌τ̌′ =
(ň− 1)2

(ň+ 1)2
+

2 · 2ň
(ň+ 1)2

=
ň2 − 2ň+ 1+ 4ň

(ň+ 1)2
= 1 .



11 Lösungen der Übungsaufgaben 257

Te
il
II

Bringt man das oben angegebene Amplitudenverhältnis
auf denHauptnenner und setzt diese Beziehungen ein, er-
hält man

Ěr

Ě0
= ρ̌

1− ρ̌2eiδ − τ̌τ̌′eiδ

1− ρ̌2eiδ
= ρ̌

1− eiδ

1− ρ̌2eiδ
, (11.10)

was zu zeigen war.

b) Der Reflexionskoeffizient einer Grenzfläche ist

ρ̌ =
ň− 1
ň+ 1

=
nR + inI − 1
nR + inI + 1

=
(nR + inI − 1)(nR − inI + 1)
(nR + inI + 1)(nR − inI + 1)

=
n2R + n2I − 1+ 2inI
n2R + n2I + 1+ 2nR

.

Für die Infrarotstrahlung mit nR ≈ nI 
 1 ergibt sich

ρ̌ ≈ 1− 1
nR

+
i
nI

≈ 1 , ρ̌2 ≈ 1− 2
nR

+
2i
nI

≈ 1 ,

und für das rote Licht mit nR ≈ 0 und nI = 4 ist

ρ̌ =
n2I − 1+ 2inI

n2I + 1
=

15+ 8i
17

, ρ̌2 = 0,557+ 0,83i .

Dass im letzten Fall |ρ̌| und |ρ̌|2 genau den Wert eins
besitzen, rührt von der nicht ganz richtigen Näherungs-
annahme nR = 0 her.

Des Weiteren benötigt man in (11.10) den Faktor

eiδ = e−4πnId/λ
(
cos(4πnRd/λ) + i sin(4πnRd/λ)

)
.

Im Fall der großen Schichtdicke d = 10µm ist der expo-
nentielle Faktor für beide Wellenlängen so winzig, dass
er null gesetzt werden kann. Dann folgt aus (11.10) R =
|ρ̌|2 ≈ 1, also fast vollständige Reflexion.

Für die dünne Schicht ergeben sich von null verschiedene
Werte:

eiδ = e−0,334 (cos 19,15◦ + i sin 19,15◦) = 0,676+ 0,235i
(infrarot) ,

eiδ = e−0,223 = 0,8 (rot) .

Im Falle der Infrarotstrahlung weicht ρ̌2 vom Wert eins
nur um rund 1% ab. Daher kürzt sich im Endergebnis
(11.10) der Zähler des Bruches gegen den Nenner weg
und man erhält wiederum R ≈ |ρ̌|2 ≈ 1.

Das einzige nichttriviale Resultat kommt für das sichtbare
Licht heraus:

Ěr

Ě0
= ρ̌

0,2
1− 0,8 · (0,557+ 0,83i)

= ρ̌
0,2

0,554− 0,664i
.

Der Betrag von Ěr/Ě0 ergibt sich zu 0,231 und das Re-
flexionsvermögen ist R = 0,2312 = 5,3%: Sichtbares Licht
durchdringt die dünne Schicht, Infrarotstrahlung, z. B.
aus einem geheizten Raum, wird reflektiert. Daran ändert
auch ein schiefer Lichteinfall auf die Schicht wenig. Das
Phänomen rührt daher, dass der Reflexionsfaktor ρ̌ für In-
frarotstrahlung ziemlich genau denWert eins hat und fast
reell ist, während er für sichtbares Licht zwar den Betrag
eins hat, aber einen endlichen Phasenwinkel aufweist.

7.7 FTIR-Spektrometer.

a) Der gesamte Spiegelhub ist L = π/Δk =
1/(2Δ(1/λ)) = 1,25mm und die Zahl der Scanpunkte
ist N = 2kmax/Δk = 2 · 4000/4 = 2000. Pro Scanschritt
wird ein Spiegel um ΔL = L/N = π/(2kmax) = 625nm
verschoben.

b) Das verlangte Auflösungsvermögen ist R = 4000/4 =
1000, der maximale Öffnungswinkel ist βmax =

√
2/R =

0,045 und somit der Blendenradius f βmax = 0,7 cm.

c) Die Spiegelgeschwindigkeit ist v = L/t =
(0,125/0,5) cm/s = 0,25 cm/s. Für einen Scanpunkt steht
die Zeit 0,5/2000 s = 0,25ms zur Verfügung.

d) Das Wiensche Verschiebungsgesetz (Bd. II, Gl. (7.18))
lautet λmaxT = 0,3 cmK. Für eine reziproke Wellenlän-
ge 4000 cm−1 ergibt sich T ≈ 1200K. Ein größerer Wert
führt zu einer raschen Verbesserung der Intensität, dabei
verschiebt sich die Emission zunehmend in den nichtre-
konstruierbaren Teil des Spektrums.

e) Die Zahl der Scanschritte ist N = 2L/λHe. Dann ist

kmax =
Nπ

2L
=

π

λHe
=

2π

λmin

λmin = 2λHe .

8.1 Beugung am Gitter.

a) Die gesuchte Gitterkonstante ist g = λ/ sin ϑ1 =
3,5µm.

b) Die Intensitäten ergeben sich aus (8.23). An den Haupt-
maxima ist die halbe Phasendifferenz δ/2 ein ein ganz-
zahliges Vielfaches von π und der zweite Faktor in
(8.23) nimmt die Form 02/02 an. Man kann ihn nach der
d’Hospitalschen Regel Bd. I, Gl. (M.86) als Verhältnis der
Ableitungen berechnen und erhält N2. Am Hauptmaxi-
mum nullter Ordnung ist I(0) = N2I0.

(1) Am Hauptmaximum erster Ordnung ist sin ϑ = λ/g,
und in (8.23) ist β = πD sinϑ/λ = πD/g = π/5 einzuset-
zen: I(ϑ1) = 0,875 ·N2I0.

(2) Am den ersten beiden Minima sind die Gangunter-
schiede δ = 2π/N und δ = 4π/N, am ersten Nebenma-
ximum ist daher δ ≈ 3π/N. Es ist β 	 1, sin β/β ≈ 1 und

I(ϑ) =
4I0
δ2

=
4N2

9π2 I0 =
4

9π2 I(0) = 0,045 · I(0) .
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Die relative Intensität des ersten Nebenmaximums ist un-
abhängig von der Zahl der Gitterstriche, mit wachsender
Strichzahl rückt das Nebenmaximum aber immer näher
an das Hauptmaximum heran.

(3) In derMitte zwischen denHauptmaxima ist δ = π und
es gilt nach (8.22) sin ϑ = δ/kg = λ/2g und nach (8.23)

β =
2π

λ

D
2

λ

2π
=

πD
2g

=
π

10
.

Dann ergibt sich

I(ϑ1/2) = I0

(
sinπ/10

π/10

)2

= 0,97 · I0 .

Die Intensität ist um einen FaktorN2 = 108 kleiner als die
Intensität I(0).

8.2 Röntgen-Beugung am Reflexionsgitter.

Bei der Reflexion eines Röntgenstrahls an einem Gitter
entsteht keine Phasendifferenz zwischen Elementarwel-
len verschiedener Gitterstriche, wenn der Ausfallswinkel
gleich dem Einfallswinkel ist. Alle Elementarwellen in-
terferieren dann konstruktiv. Sind der Einfalls- und der
Ausfallswinkel verschieden, besitzen die von benachbar-
ten Gitterstrichen ausgehenden Elementarwellen einen
Gangunterschied, den man aus (8.25) und Abb. 8.15 ab-
lesen kann, denn es spielt keine Rolle, von welcher Seite
aus der einfallende Strahl auf das Gitter trifft: g(cos δ0 −
cos(δ0 + α)). An einem Beugungsmaximum ist dies ein
ganzzahliges Vielfaches der Wellenlänge:

g(cos δ0 − cos(δ0 + α)) = nλ .

Hierin kann man die Näherung cos δ0 ≈ 1− δ20/2 für klei-
ne Winkel benutzen; entsprechendes gilt für cos(δ0 + α).
Dann erhält man

g

(
1− δ20

2
− 1+

1
2

(
δ20 + 2δ0α + α2

))
= nλ ,

λ =
g
n

(
δ0α +

1
2

α2
)
.

Mit g = 3,5µm ergibt sich aus beiden Beugungswinkeln
λ = 1,39 · 10−10m.

8.3 Übergang von der Fresnel-Beugung zur Fraunhofer-
Beugung.

Bei der Fraunhoferschen Beugung hat die Quelle einen
sehr großen Abstand vom beugendenObjekt, sodassR0 ≈
∞ zu setzen ist. Am Ort des Beugungsbildes, insbesonde-
re auf der optischen Achse, sollen alle Elementarwellen
in Phase sein. Das bedeutet, dass nur eine Fresnel-Zone
zum Beugungsbild beitragen darf, und zur Vermeidung

von Phasendifferenzen muss die Zahl der Fresnel-Zonen
formal deutlich kleiner als Eins sein. Dann besagt (8.41)

1
r0

	 4λ

D2 → D2

r0
	 4λ ;

was mit der Faustformel (8.1) identisch ist.

8.4 Fresnel-Beugung an einer kreisförmigen Blende.

a) Nach Abb. 8.24 ist

r2n + ρ2 =

(
rn + n

λ

2

)2

,

ρ2 = nrnλ + n2
λ2

4
,

rn =
ρ2

nλ
− nλ

4
, (11.11)

n =
2(
√

r2n + ρ2 − rn)

λ
. (11.12)

Mit (11.11) erhält man r1 = 42 cm, r10 = 4,2 cm, r11 =
3,8 cm und r12 = 3,5 cm. Beugungsminima auf der opti-
schen Achse erwartet man für n = 10 und 12, Beugungs-
maxima für n = 1 und 11, alles in Übereinstimmung mit
Abb. 8.3.

b) Der Übergang zur Fraunhofer’schen Beugung findet
bei n = 1 bzw. r = 0,4m statt.

c) Da rn nicht negativ werden kann, ist die maximale
Zahl der Fresnelzonen nach (11.11) n = 2ρ/λ ≈ 1600, und
für rn = 0,3mm ergibt (11.12) n = 940, d. h. das Kriterium
n 
 1 für die Anwendbarkeit der geometrischen Optik ist
erfüllt.

8.5 Camera obscura.

Die Abbildung entsteht durch Fresnel-Beugung an einem
kreisförmigen Loch. Man kann das Loch als Fresnelsche
Zonenplatte mit nur einer Fresnelschen Zone auffassen.
Dann ist (8.41) die Abbildungsgleichung und man erhält
mit R0 = r0 und λ = 500nm

ρ21 =
1
2

λr0 → ρ1 =

√
1
2

λr0 = 0,28mm .

8.6 Schattenwurf.

Aus Abb. 8.2 entnimmt man, dass der helle Ring am Blei-
stiftrand bis zum ersten dunklen Interferenzstreifen eine
Breite Δx ≈ 1mmhat. NachAbb. 8.26 ist Δx ≈ ρ1. In (8.41)
ist R0 = ∞ und r0 = z zu setzen: Δx ≈

√
zλ. Es folgt mit

λ ≈ 400nm

z ≈ Δx2

λ
≈ 2,5m .

Die Breite des Halbschattens, der durch den Lam-
pendurchmesser entsteht, ist Δx = 2αz. Es muss α 	
Δx/2z = 0,2mrad sein. Diese Bedingung wird von der
Sonnenstrahlung nicht erfüllt.
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8.7 Beleuchtungsspalt beim Gitterspektrometer.

a) Beim Ablenkwinkel 90◦ muss der Gangunterschied
zwischen benachbarten Gitterstrichen mλmax betragen:
g = mλmax.

b) Aus (8.24) folgt mit (8.22)

g cos ϑmΔϑ =
λ

N
→ Δϑ =

λ

Ng cos ϑm
.

c) Aus (8.22) folgt

Δϑ =
m

g cos ϑm
Δλ . (11.13)

d) Aus der Gleichheit der Winkel b) und c) ergibt sich

λ

Ng
=

mΔλ

g
→ R =

λ

Δλ
= mN .

e) Nun kann man die halbe Winkelbreite eines Hauptma-
ximums an der Auflösungsgrenze ablesen:

Δϑ =
λ

Ng cos θm
=

λ

Nmλmax cos θm
=

1
R

λ

λmax cos ϑm
.

Es ist also, wie am Ende von Abschn. 7.1 behauptet, Δϑ ∼
1/R. Bei einer bestimmten Wellenlänge λA ist der Beu-
gungswinkel Δϑ gleich der Winkeldivergenz des Lichts:
b/f = λA/(Rλmax cos ϑm). Ist λ deutlich kleiner als λA,
folgt mit (11.13)

Δλ ≈ b
f
g cos ϑm

m
=

λAg
mRλmax

=
λA

R ,

λ

Δλ
=

λ

λA
R .

Wenn die Spaltbreite fest vorgegeben ist, kann man
es nicht vermeiden, dass sich das Auflösungsvermö-
gen bei kleinen Wellenlängen verschlechtert. Beim FTIR-
Spektrometer wird das größte Auflösungsvermögen
ebenfalls nur bei der größten Wellenlänge erreicht.

9.1 Polarisation und Brechungsgesetz.

Für die in das Glas eintretende Welle greift man auf die
Fresnelschen Formeln zurück. Nach (5.43) ist

τ⊥ = τ‖ cos(β1 − β2)) = τ‖(cos β1 cos β2 + sin β1 sin β2) .

Aus dem Brechungsgesetz und der Brewster-Bedingung
folgt

sin β1

sin β2
= n = tan β1 =

sin β1

cos β1
= n ,

sin β1 =
n√

1+ n2
, cos β1 =

1√
1+ n2

,

sin β2 =
1√

1+ n2
, cos β2 =

n√
1+ n2

τ⊥ = τ‖
2n

1+ n2
.

Der Polarisationsgrad ist

P =
τ2
‖ − τ2

⊥
τ2
‖ + τ2

⊥
=

1− τ2
⊥/τ2

‖
1+ τ2

⊥/τ2
‖
=

1+ 2n2 + n4 − 4n2

1+ 2n2 + n4 + 4n2
,

P =
(n2 − 1)2

1+ 6n2 + n4
=

1,5625
19,56

= 0,08

für n = 1,5.

9.2 Bestimmung der Analysierstärke einer Polarisati-
onsfolie.

Es sei I0 die anfängliche Lichtintensität. Hinter dem
ersten Filter gibt es eine parallel zur Filterstellung
polarisierte Komponente der Intensität 1/2 · I0(1 + A)
und eine senkrecht dazu polarisierte Komponente mit
der Intensität 1/2 · I0(1− A). Die Transmissionsfaktoren
des zweiten Filters für die beiden Komponenten sind
T0(1 + A cos(2ϕ)) und T0(1 + A cos(2ϕ + π)) = T0(1 −
A cos(2ϕ)). Die gesamte Intensität ergibt sich zu

1
2
I0T2

0
[
(1+A) (1+A cos(2ϕ))

+ (1−A) (1−A cos(2ϕ))
]

= I0T2
0

(
1+A2 cos(2ϕ)

)
.

Somit ist T0 =
√
T12 und A =

√
A12.

9.3 Glan-Prisma.

Bei der Totalreflexion des o-Strahls an der Grenzfläche
innerhalb des Prismas ist der Einfallswinkel β1 gleich
dem Schnittwinkel des Kristalls. Die Bedingung für To-
talreflexion ist sin β1 = 1/no = 1/1,658, β1 ≥ 37,1◦. Die
Intensität des ao-Strahls, der das Prisma durchläuft, erhält
man mit den Fresnelschen Formeln. Mit β1 = 38,5◦ ergibt
sich der Ausfallswinkel im Luftspalt: sin β2 = nao sin β1,
β2 = 67,7◦. Die Polarisation des ao-Strahls ist parallel zur
Zeichenebene in Abb. 9.23 gerichtet. Dann ist nach (5.42)

ρ‖ =
tan(β1 − β2)

tan(β1 + β2)
=

tan 29,2◦

tan 106,2◦
= −0,162.

Der Intensitätsverlust durch Reflexion an der Luftschicht
ist ungefähr 2 · 0,162 = 5,2%, hinzu kommen die Verluste
von ungefähr 2(nao − 1)2/(nao + 1)2 = 7,6% an den Au-
ßenseiten.

Vergrößert man β1 und β2, wird der der Betrag des Fak-
tors tan(β1 + β2) kleiner, die Reflexionsverluste nehmen
zu.

Bei dem alternativen Schnitt des Kalkspats werden die
Polarisationen vertauscht. Damit der ordentliche Strahl
die Grenzfläche zwischen den Teilprismen ohne Verluste
durchläuft, muss das verbindende Öl den Brechungsin-
dex des ordentlichen Strahls besitzen. Der ao-Strahl muss
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an der Schicht zwischen den Teilprismen totalreflektiert
werden. Das führt auf einen anderen Prismenwinkel:
sin β1 = no/nao = 1,486/1,658, β1 = 63,7°.

9.4 Interferenzfarben.

In (9.31) hat man cos ϕ = sin ϕ = 1/
√
2 zu setzen. Die

Stellung des Analysators ist gegeben durch den Vektor
1/

√
2 · (x̂− ŷ). Die Amplitude ist gegeben durch die Pro-

jektion des Vektors (9.31) auf diese Richtung:

A =
1
2
E0

(
cos

(
kz− ωt+

δ

2
− δ

2

)

− cos
(
kz− ωt+

δ

2
+

δ

2

))
,

A =
1
2
E0

(
cos

(
kz− ωt+

δ

2

)
cos

δ

2

+ sin
(
kz− ωt+

δ

2

)
sin

δ

2

− cos
(
kz− ωt+

δ

2

)
cos

δ

2

+ sin
(
kz− ωt+

δ

2

)
sin

δ

2

)
,

A = E0 sin
(
kz− ωt+

δ

2

)
sin

δ

2
.

Mit (9.30) erhält man (9.33).

9.5 Stokes-Parameter.

a) Aus den linken Teilen von (9.7)–(9.9) folgt mit (9.10)

S2 = S21 + S22 + S23
= E4

x0 + E4
y0 − 2E2

x0E
2
y0 + 4E2

x0E
2
y0(cos

2 δ + sin2 δ)

= (E2
x0 + E2

y0)
2 = S20 ,

somit ist S/S0 = 1. Auf die gleiche Weise erhält man das
Resultat S = (a2 + b2).

b) Aus (9.9) folgt, wenn S3 = 0 ist, zwingend sin 2η = 0
und cos 2η = ±1. Da tan η = ±b/a ist, ist dann b = 0. Aus
(9.7) ergibt sich mit S1 = 0 auf die gleiche Weise cos 2ϕ =
0 und sin 2ϕ = ±1. Das bedeutet, dass ϕ = 45° modulo
90° ist. Wegen S1 = 0 ist laut (9.7) Ex0 = Ey0. Wie man
sieht, entartet die Ellipse in Abb. 9.1d zu einer Geraden:
Wenn S2 = ±1 ist, ist die Strahlung linear polarisiert und
die Polarisation bildet mit den Koordinatenachsen einen
Winkel von ±45°.

c) Im statistischen Mittel muss S3 genau so häufig positiv
wie negativ sein, was in dem in Abb. 9.3 gezeigten Bild-
ausschnitt nicht der Fall ist. Ohne detaillierte statistische
Analyse kann man nach einem Blick auf Abb. 7.18 le-
diglich sagen, dass in dem gezeigten Bildausschnitt rund
ein halbes Dutzend Vorzeichenwechsel hätten stattfinden

müssen und die Wahrscheinlichkeit für ihr Ausbleiben
kleiner als (1/2)6 = 1/64 sein sollte.

Kleine Werte für S2 erhält man dort, wo eine der an-
deren Polarisationen oder ihre Quadratsumme nahe bei
eins liegen, also bei t = 7 ± 1, t = 35 ± 2 und t = 57 ± 3
Zeiteinheiten. S2 liegt nahe bei eins, wenn beide anderen
Polarisationen klein sind: t = 27 oder T = 63 Zeiteinhei-
ten.

9.6 Fresnelscher Rhomboeder.

a) Es ist

ρ⊥ =
sin(β1 − β2)

sin(β1 + β2)
= − cos β1 sin β2 − sin β1 cos β2

cos β1 sin β2 + sin β1 cos β2
.

Da sin β1, cos β1 und sin β2 reell sind und cos β2 rein ima-
ginär ist, ist der Nenner das konjugiert Komplexe des
Zählers und es ist |ρ⊥| = 1. Für die Phasenverschiebung
folgt

tan
ϕ⊥
2

= − sin β1| cos β2|
cos β1 sin β2

= −

√
n2 sin2 β1 − 1

n cos β1
.

Ferner ist

ρ‖ =
tan(β1 − β2)

tan(β1 + β2)
= ρ⊥

cos(β1 + β2)

cos(β1 − β2)
,

ρ‖ = ρ⊥
cos β1 cos β2 + sin β1 sin β2

cos β1 cos β2 − sin β1 sin β2
.

In dem hinzugetretenen Faktor sind wieder Zähler und
Nenner konjugiert komplex zueinander, sodass |ρ‖| = 1
ist. Die Phasendifferenz zwischen ρ⊥ und ρ‖ ergibt sich
aus der Phasendifferenz des zusätzlichen Faktors:

tan
Δϕ

2
=

cos β1 cos β2

sin β1 sin β2
=

cos β1

√
n2 sin2 β1 − 1

n sin2 β1
.

b) Der Fresnelsche Rhomboeder muss die Phasen der
beiden linear polarisierten Wellen um insgesamt 90° ge-
geneinander verschieben, also um 45° pro Totalreflexion:
Δϕ = π/4. Daher ist

cos β1

√
n2 sin2 β1 − 1

n sin2 β1
= tan

π

8
=

√
2− 1 = 0,414 .

Es entsteht eine quadratische Gleichung, aus der sich
sin2 β1 berechnen lässt:

n2
(
1+ tan2

π

8

)
sin4 β1 −

(
n2 + 1

)
sin2 β1 = −1 ,

sin2 β1 =
n2 + 1

2n2(1+ tan2 π/8)

±
√

(n2 + 1)2

4n4(1+ tan2 π/8)2
− 1

1+ tan2 π/8
.
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Te
il
II

Numerisch erhält man die Lösungen sin2 β1 = 0,5629 und
0,6649, β1 = 48,6° oder 54,6°. Der Winkel β1 ist identisch
mit dem Prismenwinkel.

10.1 Präzisions-Zeitmessung in einem Flugzeug.

Man schreibt (10.2) mit (10.4) in der Form

c2 dτ2 = c2 dt2
(
−v2x
c2

+ 1+
2gh
c2

)
.

Von einem Inertialsystem außerhalb der Erde betrachtet,
ist die Geschwindigkeit vx der Erdoberfläche nicht null,
weil die Erde mit einer Kreisfrequenz ωE = 2π/Tag ro-
tiert. Deshalb ist

c2 dτ2
1 = c2 dt2

(
1− ω2

Er
2
E

c2

)
.

Im Flugzeug ist

c2 dτ2
2 = c2 dt2

(
1− (ωErE ± vF)2

c2
+

2gh
c2

)
.

Eigentlich müsste man in der letzten Gleichung zum Erd-
radius rE noch die Höhe h addieren, aber das macht sehr
wenig aus. Aus den beiden Gleichungen kann man die
Koordinatenzeit t des externen Beobachters eliminieren
und erhält

τ2
2

τ2
1
=

1− (ωErE ± vF)2/c2 + 2gh/c2

1− ω2
Er

2
E/c

2
,

τ2
τ1

≈
(
1+

gh
c2

∓ vFωErE
c2

− v2F
2c2

)
.

Eine Erdumrundung dauert τ1 = 40 000 km/(0,2 km/s) =
2 · 105 s. Bedingt durch die Gravitation, zeigt eine Uhr
im Flugzeug eine um ΔτG = τ1gh/c2 = 218ns größere
Zeit an („Höhenangst macht alt“). Der Term proportio-
nal zu v2F ist die relativistische Zeitdilatation auf Grund
der Relativgeschwindigkeit zwischen Flugzeug und Erd-
boden: ΔτR = −τ1v2F/2c

2 = −44ns. Die Zeitanzeige der
Uhr im Flugzeug ist gegenüber derjenigen am Boden ver-
ringert (Zwillingsparadoxon, „Reisen erhält jung“). Der
zweite Term resultiert ebenfalls aus der Zeitdilatation,
stammt aber daher, dass die Erde kein Inertialsystem ist:
ΔτE = ∓τ1rEωEvF/c2 = ∓206ns. Als Summe erhält man
−32ns für den Flug in Ostrichtung, +380ns für den Flug
in Westrichtung. Die Ergebnisse dieses Gedankenexperi-
ments sind den experimentellen Daten aus Bd. I, Tab. 14.1
einigermaßen ähnlich.

10.2 Gravitationswellen binärer Systeme.

a)Weil die Masse der Erde viel kleiner als die Sonnenmas-
se ist, ist die reduzierte Masse die Erdmasse. Dann erhält

man aus (10.14)

P =
6,7 · 10−11 · (2π)6 · 64
10 · (1 Jahr)6 · (3 · 108)5

· (6 · 1024)2 · (1,5 · 1011)4 W .

Der Faktor 64 rührt daher, dass die Periodendauer der
Gravitationswelle ein halbes Jahr ist. Beim Ausrechnen ist
es nützlich, die Zehnerpotenzen als Faktoren herauszu-
ziehen. Das Ergebnis ist P = 200W.

b) Man benötigt den Abstand der Sterne, den man aus
(10.15) erhält:

r3B =
4γ(m1 +m2)

ω2
grav

.

Das Resultat ist rB = 1,47 · 109 m. Hiermit erhält man die
Leistung wieder aus (10.14): P = 5 · 1023 W. Akkumuliert
über ein Jahr ist die Energie 1,6 · 1031 J, was rund 10−16

Sonnenruheenergien entspricht.

10.3 Frequenzänderung der Gravitationswelle eines bi-
nären Systems.

Die Leistung der Gravitationswelle soll der Energieab-
nahme des Zwei-Körpersystems entsprechen:

γω6
gravμ2

redr
4

10c5
=

d
dt

(
γμred(m1 +m2)

2r

)
,

ω6
gravμred

10c5
= −m1 +m2

2r6
ṙ . (11.14)

Aus (10.15) folgt

r3 =
4γ(m1 +m2)

ω2
grav

, 3
ṙ
r
= −2

ω̇grav

ωgrav
.

Eliminiert manmit Hilfe dieser Gleichungen die Größen r
und ṙ aus (11.14), erhält man

ω̇3 = 16
(
6
5

)3

γ5(m1 +m2)
2μ3

red

ω11
grav

c15
.

Zahlenbeispiel: ω̇ = 1430Hz/s, ν̇ = 230Hz/s. Beginnt
man mit der Periodendauer 1/50 s = 20ms, hat sich die
50Hz-Frequenz nach einer Periode um 230 · 0,02Hz =
4,6Hz verschoben und die nächste Periodendauer ist
18ms.

10.4 Gravitationswellen: Unschärferelation und Inter-
ferometrie.

Bei der Messung der x-Koordinate senkrecht zur Oberflä-
che eines Spiegels mit der Präzision Δx1 erhält man aus
der Impulsunschärfe eine Geschwindigkeitsunschärfe

Δv =
h̄

mΔx1
.
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Nach einer Zeit τ entsteht hieraus die Ortsunschärfe

Δx2 =
h̄τ

mΔx1
,

zu der der Fehler einer Abstandsmessung hinzutritt. Das
Optimum erhält man durch Minimierung des gesamten
Fehlerquadrats

Δx2 = Δx21 + Δx22 = Δx21 +
h̄2τ2

m2Δx21
.

Das Resultat ist

Δx1 =

√
h̄τ

m
, Δx =

√
2h̄τ

m
. (11.15)

Insgesamt gehen vier Spiegel ein. In einem Interferometer
sind die Messungen an ihnen allerdings nicht vonein-
ander unabhängig. Fasst man 2 Spiegel zu einem Paar
zusammen, besitzt dieses eine mittlere Position und einen
Abstand, wobei in die Dynamik der Abstandsänderung
die reduzierte Masse m/2 eingeht. Deshalb ist (11.15) mit√
2 zu multiplizieren. Behandelt man die Positionsmes-

sungen beider Spiegel als unabhängig, kommt dasselbe

heraus. Das verallgemeinert man auf das zweite Spiegel-
paar. Als Nachweisgrenze für Δh11 schätzt man deshalb
ab:

Δh11 =
2
L0

√
2h̄τ

m
= 8 · 10−23 .

Als mittlere Zahl der Lichtreflexionen erhält man n =
τc/2L0 = 187.

10.5 Störung eines Gravitationswellendetektors durch
externe Massen.

Der Spiegel folgt mit 180◦ Phasenverschiebung der
Schwingung der Masse. Die Newtonsche Bewegungsglei-
chung für den Spiegel lautet

m
d2x
dt2

= −4π2ν2e mx0 cos(2πνet) = −2
ΔsmMγ

s3
cos(2πνet) ,

x0 = 2
Δs
s3

γM
4π2ν2e

.

Zahlenbeispiel: x0 = 1,7 · 10−18 m, x0/L0 = 4 · 10−22. Die
Position des zweiten Spiegels wird durch die Verschie-
bung der externen Masse wegen des großen Abstands
nicht beeinflusst. Deshalb ist die Auswirkung der Bewe-
gung auf die Messung der Raumdehnung h11 halb so
groß.
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