


Ralf und Elke Korn 

Optionsbewertung und Portfolio-Optimierung 



Stochastik fur Einsteiger 
von N. Henze 

Mathematik 

EinfUhrung in die Wahrscheinlichkeitstheorie und Statistik 
von U. Krengel 

Stochastik 
von G. Hubner 

Statistische Datenanalyse 
von W.A. Stahel 

Stochastik mit Mathematica 
von M. Overbeck-Larisch und W. Dolejsky 

EinfUhrung in die Finanzmathematik 
von 1. Tietze 

EinfUhrung in die angewandte Wirtschaftsmathematik 
von J. Tietze 

www.viewegteubner.de _____________ ----J 



Ralf und Elke Korn 

Optionsbewertung und 
Portfolio-Optimierung 
Moderne Methoden der Finanzmathematik 

2., verbesserte Auflage 

STUDIUM 

VI EWEG+ 
TEUBNER 



Bibliografische Information der Deutschen Nationalbibliothek 
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der 
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet iiber 
<http://dnb.d-nb.de> abrufbar. 

Prof. Dr. Ralf Korn 
Dipl.-Math. Elke Korn 
Fachbereich Mathematik 
Universitat Kaiserslautern 
67653 Kaiserslautern 

E-Mail (RalfKorn):korn@mathematik.uni-kl.de 

1. Auflage 1999 
2., verbesserte Auflage 2001 
Nachdruck 2009 

Aile Rechte vorbehalten 
© Vieweg+Teubner I GWV Fachverlage GmbH, Wiesbaden 2009 

Lektorat: Ulrike Schmickler-Hirzebruch I Nastassja Vanselow 

Vieweg+Teubner ist Teil der Fachverlagsgruppe Springer Science+Business Media. 
www.viewegteubner.de 

Das Werk einschlieBlich alier seiner Teile ist urheberrechtlich geschiitzt. Jede 
Verwertung auBerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne 
Zustimmung des Verlags unzulassig und strafbar. Das gilt insbesondere fUr 
Vervielfaltigungen, Obersetzungen, Mikroverfilmungen und die Einspeicherung 
und Verarbeitung in elektronischen Systemen. 

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem 
Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen 
im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten waren und 
daher von jedermann benutzt werden diirften. 

Umschlaggestaltung: KiinkelLopka Medienentwicklung, Heidelberg 
Gedruckt auf saurefreiem und chlorfrei gebleichtem Papier. 

ISBN-13: 978-3-528-16982-4 e-ISBN-13: 978-3-322-83210-8 
001: 10.1007/978-3-322-83210-8 



v 

Vorwort 

Es gibt wohl nur wenige Dinge im tiigIichen Leben, die in der landliiufigen Mei­
nung so als Synonym fUr Unsicherheit angesehen werden wie Aktienkurse. Nie­
mand ist in der Lage, ihren genauen zukiinftigen Wert vorherzusagen, da er von 
vielen Faktoren bestimmt wird, die auf nicht exakt vorhersehbaren Ereignissen 
(wie z.B. allgemeine Wirtschaftslage, poIitische Ereignisse, fmnenspezifische 
Einfliisse, Kiiufer-Nerkiiuferverhalten, ... ) basieren. Es ist daher naheliegend, 
Finanzmiirkte, in denen Aktien (und andere Wertpapiere) gehandelt werden, 
durch stochastische Modelle zu beschreiben. 

Die Geschichte dieser stochastische Modellierung hatte ihren Anfang in der Dis­
sertation von L. Bachelier (1900). Das wahrhaft bahnbrechende Ergebnis der 
modemen Finanzmathematik war bingegen die gut siebzig Jahre spiiter entwic­
kelte Black-Scholes-Formel zur Bewertung europiiischer Optionen (siehe Black 
und Scholes (1973». Sie brachte die Theorie der zeitstetigen Modelle fUr Fi­
nanzmiirkte urn einen wesentlichen Schritt weiter. Vor aHem hewahrte sich die 
Formel so gut in der Praxis, dass der Handel mit Optionen regelrecht autbliihte. 
Dieser groBe Erfolg in Theorie und Praxis wurde dokumentiert durch die 
Verleihung des Nobelpreises an Merton und Scholes 1997. In der Folge entstan­
den und entstehen an den Finanzmiirkten immer weitere, neue und zum Teil in 
der Vertragsausgestaltung komplexe Derivate. Fiir die quantitative Bewertung 
vieler solcher neuartiger Derivate ist eine fundierte Kenntnis des mathe­
matischen Modells und des mathematischen Handwerkszeugs, das der Black­
Scholes-Formel zugrunde liegt, insbesondere des Ito-Kalkiils, notig. Nur das 
verstarkte Vordringen des Ito-Kalkiils in die Finanzmathematik gegen Ende der 
siebziger Jahre hat iiberhaupt erst die groBe Entwicklung des organisierten 
Handels mit Derivaten ermogIicht und ibm viel an Risiko genommen. Dem wird 
auch von den Finanzhiiusem Rechnung getragen, indem verstiirkt Mathematiker, 
Physiker und Wirtschaftsmathematiker mit entsprechenden Kenntnissen ein­
gestellt und teils aus dem Ausland rekrutiert werden. 

Ein Ziel unseres Buches ist eine schnelle nnd grlindliche Einfiihrung·in den Ito­
Kalkiil, die genau auf die Anwendungen in der Finanzmathematik zugeschnitten 
ist und insbesondere auf fUr die Anwendung nicht benotigte Allgemeinheit ver­
zichtet. 
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Des weiteren wird in unserem Buch in die Methodik der Optionsbewertung nach 
dem Duplikationsansatz eingefiihrt. Dies ist der in Theorie und Praxis akzep­
tierte Ansatz, der auf dem Prinzip basiert, dass der Preis einer Option gerade 
dem Geldbetrag entspricht, der benotigt wird, um die sich aus dem Besitz einer 
Option ergebenden Zahlungen, durch Verfolgen einer Handelsstrategie in Aktien 
und Bargeld synthetisch erzeugen zu konnen. 

Gerade in den letzten Jahren tauchten am Markt immer wieder neue Optionsty­
pen, sogenannte "exotische Optionen" auf. Anhand zahlreicher Beispiele stellen 
wir verscbiedene Wege vor, Preise fUr solche Optionen zu fmden. Es wird 
gezeigt, wie man die Methoden aus den vorhergehenden Kapiteln anwenden 
kann, wie man mit Hilfe einfacher logischer Ubedegungen Preisgrenzen fest­
setzen kann und wie man mit Hilfe numerischer Methoden, naherungsweise 
Preise fUr Optionen bestimmen kann, fUr die keine Preisformel bekatmt ist. Dies 
gibt dem Financial Engineer in der Bank die Moglichkeit, Verfahren zu imple­
mentieren, mit deren Hilfe er auch neue, bisher nicht am Markt bekannte 
Produkte bewerten kann. 

SchlieBlich ist auch die Bestimmung optimaler Investmentstrategien eine zentra­
Ie Fragestellung in der modemen Finanzmathematik. Auf diesem Gebiet ist die 
Anwendung des Ito-Kalkiils bei weitem noch weht so weit in der Praxis ver­
breitet, wie bei der Optionsbewertung. Die Darstellung dieser modemen Port­
foliotheorie innerhalb unseres Buches kann eventuell eine Startfunktion fUr ihre 
Verbreitung in der Praxis haben. 

Aueh wenn die Basis unseres Buchs eindeutig in der Stoehastik liegt, so wollen 
wir doch ausdriicklich auf die mathematische Breite der ,,neuen" Finanzmathe­
matik hinweisen. Man wird beim Lesen des Buchs feststellen, dass sowohl 
Anwendungen aus dem Bereich der partiellen Differentialgleichungen, der Opti­
mierung, der Numerik und auch der Funktionalanalysis eine wichtige Rolle 
spielen. 

Benotigte Vorkenntnisse 

Zum Verstandnis des groBten Teils des Buchs genugt ein Grundkurs in Wahr­
scheinlichkeitstheorie, da fast alle daruber hinaus gehenden Hilfsmittel bier ent­
wickelt werden. Zwar sind Kenntnisse aus der Theorie stochastischer Prozesse 
wilnschenswert, unbedingt notwendig ist aber lediglich die Kenntnis des beding­
ten Erwartungswerts und seiner Haupteigenschaften. 

Nicht notig sind weitreichende Vorkenntnisse im Gebiet der Finanzwirtschaft. 
Die fUr das Verstandnis der mathematischen Modelle benotigten wirtschaftlichen 
Zusammenhange werden jeweils kurz erlautert. Weitere Hintergrfinde zum Han-
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del mit Optionen erflihrt man z.B. aus den Buchem von Hull (1993) oder Jarrow 
und Turnbull (1996). 

Inhalt und Konzept 

Bis auf eine kurze Einfiihrung in den Erwartungswert-Varianz-Ansatz nach Mar­
kowitz konzentrieren wir uns in diesem Buch auf die Darstellung sogenannter 
zeitstetiger Modelle. Da es unser Ziel ist, eine griindliche Einfiihrung in die 
mathematischen Methoden der zeitstetigen Finanzmathematik zu geoen, wollen 
wir auch die benijtigten mathematischen Hilfsmittel entwickeln und nicht nur 
bereit stellen. Hierbei besteht unser Konzept darin, diese Hilfsmittel (wie z.B. 
stochastische Integration, MaBwechsel, stochastische Steuerung, ... ) immer dort 
zu entwickeln, wo sie zum ersten Mal in der Finanzmathematik angewendet 
werden. Hierdurch soIl eine strikte Trennung von Anwendung und mathemati­
schem Hilfsmittel vermieden werden. Umgekehrt soIl das Buch aber keine blol3e 
Sammlung mathematischer Resultate beinhalten, die dann in der Finanzmathe­
matik angewendet werden. Deshalb werden die wesentlichen Hilfsmittel immer 
in eigenstiindigen Exkursen zusamengefasst. Des weiteren sind diese Exkurse 
kompakt gehalten und beinhalten meist nur die tatsachlich in der Anwendung 
benijtigten theoretischen Resultate. Dies hat den Vorteil, dass es mijglich ist, den 
Grol3teil des Stoffs innerhalb einer 4-srundigen Vorlesung zu prasentieren. Um 
diese Vorgabe zu verwirklichen haben wir uns an einigen wesentlichen Stellen 
beschriinkt. Wir verzichten auf die Darstellung der stochastischen Integration 
beziiglich einem beliebigen stetigen Semi-Martingal und schriinken uns statt 
dessen auf die Klasse der Ito-Prozesse als Integratoren ein. FUr die Anwendung 
stellt dies keine wesentliche Einschrankung dar, fUr die Theorie ermijglicht es 
aber die Darstellung des Stoffs ohne Verwendung der Doob-Meyer-Zerlegung. 
Ihre Darstellung hatte sowohl den Umfang als auch den Schwierigkeitsgrad des 
Buchs erheblich erhOht. 

Je nach Vorkenntnis und Interesse gibt es verschiedene sinnvolle Moglichkeiten, 
dieses Buch zu lesen. Die von uns empfohlene ist, der Reihenfolge des Buchs zu 
folgen. Allerdings ist es auch moglich, die Optionskapitel ill und IV zu 
uberspringen und nach Kapitel II sofort die Portfolio-Optimierung in Kapitel V 
zu lesen. Eine eher konventionelle Vorgehensweise besrunde in der ,,Abarbei­
tung" aller Exkurse und anschliel3endem Lesen der fmanzmathematischen An­
wendungen. 

Einzelne Rechnungen und Anwendungen wurden von uns nicht (irn Detail) 
durchgefiihrt und sind statt dessen als Ubungsaufgaben vorhanden. Wir empfeh­
len dem Leser unbedingt zumindest einige dieser Aufgaben zu losen. 
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Da ein Einfiihrungsbuch wie das hier vorliegende bei moderatem Seitenumfang 
lediglich einen ersten Eindruck eines Gebiets der Mathematik ve~tteln kann, 
wollen wir hier noch einige weiterfiihrende Quellen angeben. So sei flir weiter­
fiihrende Darstellungen der stochastischen Integration auf Karatzas und Shreve 
(1991), 0ksendal (1992), Revuz und Yor (1991), Rogers und Williams (1987) 
oder von Weizsiicker und Winkler (1990) verwiesen. Neuere Entwicklungen der 
Portfolio-Optimierung sind in Kom (1997) zu fmden, wabrend Karatzas und 
Shreve (1998) sowohl weiterfiihrende Aspekte zur Optionsbewertung als auch 
zur Portfolio-Optimierung und zu Marktgleichgewichten beinhaltet. 

Macht Mathematik reich? 

Diese Frage muB man sich als Autoren eines Buchs uber Optionsbewertung und 
Portfolio-Optimierung sicherlich gefallen lassen. So wie Geld allein nicht gluck­
lich macht, Macht auch Finanzmathematik allein nicht reich. Das beste mathe­
matische Modell ist nutzlos, wenn die von ihm benotigten Parameter nicht 
einigermaBen genau angegeben werden. Hier wird das Wissen der Handler und 
Okonomen urn inteme Sachverhalte nach wie vor eine groBe Rolle spielen. Auch 
nutzt ein gutes mathematisches Modell nichts, wenn es falsch angewendet wird. 
Unter diesem Gesichtspunkt muss man auch die neuerlichen Milliardenverluste 
mancher Anlagefonds sehen. Hier hat man fahrliissig stark ris~obehaftete 
Wertpapiere als sichere Anlage eingestuft und ist ein viel zu hohes Risiko 
eingegangen. Der Hauptnutzen der von uns vorgestellten mathematischen 
Werkzeuge besteht sicher in der korrekten Bewertung zuflilliger Zahlungen (wie 
z.B. Optionen) und der optimalen Kombination vorhandener Information (wie 
z.B. der Portfolio-Optimierung bei bekannten MarktkoefflZienten). Mathematik 
kann das Marktrisiko nicht vollstandig ausschalten, aber ein gutes Hilfsmittel 
sein, urn es zu beschriinken und zu beurteilen. 

Danke 

An dieser Stelle mochten wir allen, die an der Entstehung dieses Buchs beteiligt 
waren, ganz herzlich danken. Das Buch ist aus Vorlesungen des ersten Autors an 
den Fachbereichen fUr Mathematik der Johannes Gutenberg-Universitiit Mainz 
und der Technischen Universitiit Miinchen hervorgegangen. Insbesondere die in 
Miinchen gehaltene Vorlesung spiegelt sich im Inhalt des Buch in wesentlichen 
Zugen wieder. Professor Claudia Kluppelberg gebiihrt unser erster Dank fUr die 
Initiierung des gesamten Buchprojekts und ihre Unterstiitzung wabrend seiner 
Durchfiihrung. Nicht zuletzt haben wir ihr den Kontakt zum Vieweg Verlag zu 
verdanken. Wir mochten hier auch all unseren Lehrem fUr die gute Ausbildung 
danken, insbesondere den Professoren Wolfgang J. BUhler, Heinrich Miilthei, 
Claus Schneider und Hans-Jiirgen Schuh. Dr. Milan Borkovec hat durch viele 
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Diskussionen zum Stoff und die Betreuung der Ubungen zur in Miinchen 
gehaltenen Vorlesung einen wesentlichen Teil zu unserem Buch beigetragen. 
Frau Ulrike Schmickler-Hirzebruch und dem gesamten Vieweg Verlag danken 
wir fUr die angenehme Zusammenarbeit und das uns entgegengebrachte 
Vertrauen. Nicht zuletzt aber wollen wir uns bei unserem Sohn Uwe fUr sein 
gro.6es Verstlindnis bedanken, das er fUr unsere oft knapp bemessene Zeit 
wiihrend der Entstehung des Buchs aufbrachte. 

Hallgarten, im Januar 1999 Ralf Korn, Elke Korn 

Erganzung zur zweiten Auflage 

Wir haben uns sehr fiber das gro.6e Interesse an der ersten Auflage unseres 
Buchs gefreut. Insbesondere mochten wir uns ganz herzlich bei all denen 
bedanken, die uns auf Fehler aufmerksam gemacht haben, namentlich bei Dr. M. 
Borkovec, Dr. M. Helm, Dipl. Math. Dipl. Kfm. H. Kraft, Dipl. Math. M. 
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Abkfirzungs- und Symbolverzeichnis 

Abkiirzungen 

bzgl. beziiglich 

bzw. beziehungsweise 

d.h. das heillt 

i.i.d. unabhiingig und identisch verteilt 

oBdA ohne Beschriinkung der Annahme 

u.a. unter anderem 

usw. und so weiter 

vgl. vergleiche 

z.B. zum Beispiel 

min minimiere 

max maximiere 

in! Infimum 

sup Supremum 

NB unter der/den Nebenbedingunglen 

Symbole 

N natiirliche Zahlen 

Z ganze Zahlen 

R reene Zahlen 

0 leereMenge 

exp(x) =eX 

C([O, 1]) Raum der stetigen Funktionen auf [0,1] 

C1 Raum der einmal stetig differenzierbaren Funktionen 

C2 Raum der zweimal stetig differenzierbaren Funktionen 
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Cl ,2 Raum der stetigen Funktionen, die nach der ersten Komponente stetig 
differenzierbar sind und nach der zweiten Komponente zweimal stetig 
differenzierbar sind 

J,(t,x),fx(t,x) partielle Ableitungen 

a+ max{a,O} 

a- max{-a,O} 

x/\y min {x,y} 

B(U) Borel-u-Algebra fiber U (die kleinste o:-Algebra, die aIle offenen Teil-
mengen des topologischen Raums U umfasst) 

0( G) kleinste u-Algebra, die aIle Mengen des Mengensystems G umfasst 

0(X) kleinste u-Algebra, fUr die die ZufaIlsvariable X messbar ist 

00 Rand der Menge 0 

o Abschluss der Menge 0, d.h. 0 = 0 U 0 0 

N(O, 1) Standard-Normalverteilung 

N(p, 02) Normalverteilung mit Erwartungswert p und Varianz 02 
verteilt wie 

A := B A wird durch B definiert 

x I Transponierte des Vektors x 

1 =(1,1, ... ,1)' 

E(X) Erwartungswert der ZufaIlsvariable X 

Var(X) Varianz der ZufaIlsvariableX 

Cov(X) Kovarianz der ZufaIlsvariable X 

E(X IF) bedingter Erwartungswert der Zufallsvariable Xbzgl. der u-Algebra F 

(X) quadratische Variation des Ito-Prozesses X 

(X, 1') quadratische Kovariation der Ito-Prozesse X und Y 



Kapitel I: Der Erwartungswert­
Varianz-Ansatz im Ein-Perioden­
Modell 

1 

Bevor wir uns mit den zeitstetigen Marktmodellen beschiiftigen, wollen wir bier 
als Einfiihrung ein einfaches Ein-Perioden-Modell betrachten. Der mathema­
tische Startpunkt der Theorie der Portfolio-Optimierung war 1952 die Arbeit von 
H. Markowitz (1952) liber den Erwartungswert-Varianz-Ansatz zur Beurteilung 
von Investrnentstrategien an Wertpapiermarkten. Aufgrund seiner Einfachheit 
und Plausibilitiit wurde er schnell sehr popular in Theorie und PraxiJ) und wird 
auch heute noch hiiufig angewendet. VerdientermaJ3en erbielt Markowitz 1990 
zusammen mit zwei anderen Wissenschaftlem den Nobelpreis fUr Wirtschafts­
wissenschaften. AUerdings liegen in der Einfachheit des Erwartungswert­
Varianz-Ansatzes auch erhebliche Nachteile, was spiiter zwangsliiufig zur Be­
trachtung zeitstetiger Modelle fiihrte (siehe z.B. Merton (1969) ). Das zugrunde 
liegende Modell ist ein sogenanntes Ein-Perioden-Modell, d.h. es werden zu 
Beginn der Periode Entscheidungen liber Investrnentstrategien getroffen, die 
bieraus folgenden Konsequenzen werden dann am Ende der Periode beobachtet, 
und dazwischen fmdet kein Eingriff in den Markt start. Man nennt solche 
Modelle auch statische Modelle, weil nach dem Festlegen der Strategie nicht 
mehr gehandelt wird. 

Beschreibung des Ein-Perioden-Modells 

Am Markt werden d verscbiedene Wertpapiere mit Preisen PI' P2"'" Pd>O zum 
Anfangszeitpunkt t=O gehandelt. Die Wertpapierpreise PI (1), P2(T), .. ·,P JT) 
zum Endzeitpunkt t= T sind nicht vorhersehbar und werden deshalb als nicht­
negative Zufallsvariablen auf einem Wahrscheinlichkeitsraum (o.,F,P) model­
liert. 1m folgenden werden die sogenannten Renditen der Wertpapiere 

R(T) 
Rj{T):= -'-, 

pj 
i=I, ... , d, 

betrachtet, von denen wir annehmen, dass wir ihre Erwartungswerte, Varianzen 
und Kovarianzen 

fUr i=I, ... , d 
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fUr i,j=I, ... , d . 

kennen. Es sei jede beliebige Stiickelung der Wertpapiere zuliissig, man kann 
also fIJi E R Anteile vom i-ten Wertpapier erwerben. Negative Anteile ent­
sprechen sogenannten Wertpapierleerverkiiufen (siehe auch Abschnitt n.2), die 
wir aber im Folgenden ausschlieJ3en wollen, urn die Moglichkeit eines negativen 
Endvermogens zu vermeiden. Wir verlangen also flJi~O. AuJ3erdem gebe es auf 
diesem Markt keine Transaktionskosten, anders als in Wirklichkeit sollen beim 
Kauf oder Verkauf von Wertpapieren keine zusiitzlichen Kosten anfallen. 

Bemerkung 

Die Matrix O':=(O'ij)ije{t •...• d} ist als Varianz-Kovarianz-Matrix positiv semi­
defmit! 

Definition 1 

Ein Investor mit Anfangsvermogen x>O halte flJi~O Anteile yom i-ten Wert­
papier, i=I, ... , d, mit 

d 

L fIJi . Pi = x "Budgetgleichung". 
i=1 

Dann ist der Portfoliovektor H=(Ht, ... , Hd) defmiert durch 

fIJi . Pi 
Hi := 

x 
i=I, ... , d 

und 
d . 

Rtr := LPi . Ri(T) 
i=1 

heiJ3t die zugehOrige Portfolio-Rendite. 

Bemerkungen 

a) Die Komponenten des Portfoliovektors geben an, welche Anteile am Gesamt­
vermogen in die einzelnen Wertpapiere investiert werden. Insbesondere gilt 

±Hi = L~=1 fIJi 'Pi =~=1. 
;=1 x x 
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b) 1st X"(1) das zum Anfangsvermogen x und zum Portfoliovektor 1t gehOrende 
Endvermogen 

d 
xlr(r)= L 'Pi .p;(r), 

i=1 

so gilt 

was die Bezeichnung Portfolio-Rendite rechtfertigt. 

c) Der Erwartungswert und die Varianz der Portfolio-Rendite lauten 

d 

E(Rlr) = L1ti ',ui , 
i=1 

d d 
Var{R lr ) = LL1ti 'O'ij .1tj 

i=1 j=1 

Kriterien fur die Auswabl eines Portfolios 

Natiirlich besteht bei der Auswabl eines Portfolios der Wunsch, eine moglichst 
hohe Rendite zu erzielen. Nimmt man nun den Erwartungswert der Portfolio­
Rendite als Zielkriterium, so wird das in der Regel dazu fUhren, dass man das 
gesamte Vermogen in die Aktie mit der groBten erwarteten Rendite investiert. 
Dies kann aber gerade eine sehr risikoreiche Aktie sein und als Folge ist der Er­
trag sehr groBen Schwankungen unterworfen. Man fiihrt deshalb das Minimieren 
des Risikos als zweites Zielkriterium ein, wobei als MaB fUr das Risiko die Vari­
anz der Portfolio-Rendite gewiihlt wird. Die Idee von Markowitz basiert nun 
darauf, entweder eine untere Schranke fUr den Erwartungswert der Rendite 
(Minimal-Rendite) zu fordem und dann den Portfoliovektor mit minimaler Va­
rianz der Rendite auszuwablen oder aber eine obere Schranke flir die Varianz der 
Portfolio-Rendite vorzugeben und unter den verbleibenden Portfoliovektoren 
den mit dem maximalen Erwartungswert auszuwiihlen. Wir stellen diese beiden 
Varianten des Erwartungswert-Varianz-Ansatzes nun explizit vor. 

Problemstellungen im Erwartungswert-Varianz-Ansatz 

a) Man stellt sich die Aufgabe, den Erwartungswert der Portfolio-Rendite E(R1r) 
bei vorgebener oberer Schranke cI fUr die Varianz Var(R1r) zu maximieren. 
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max E(Rtr) 
treRd 

d 
NB 1r; ~ 0 fUr i=I, ... , d, L1r; = 1, var(Rtr) S Cl 

;=1 

(EVP) 

In Worten: Vnter allen moglichen Portfolios 1rE Rd betrachtet man nur die, die 
die Nebenbedingungen erfiillen (das ist der sogenannte ,,zulassige Bereich"), 
also insbesondere unter der vorgegebenen Schranke fUr die Varianz liegen, und 
sucht dann das Portfolio, das die groBte erwartete Rendite liefert. 

b) Die zweite mogliche Formulierung fiihrt zur Aufgabe, die Varianz der 
Portfolio-Rendite Var(Rfr) bei vorgebenen Mindesterwartungswert E(Rfr)~cz zu 
minimieren. 

min var(R tr) 
treRd 

d 

NB 1r; ~O fUr i=I, ... ,d, L1r; =1, E(Rtr)~C2 
;=1 

(VEP) 

In Worten: Vnter allen moglichen Portfolios 1rE Rd betrachtet man nur die, die 
die Nebenbedingungen erfiillen, also insbesondere im Mittel eine Mindestrendite 
liefem, und sucht dann das Portfolio, das die kleinste Varianz hat. 

Ltisungsmethoden 

a) (EVP) ist ein lineares Optimierungsproblem mit einer zusatzlichen quadra­
tischen Nebenbedingung. FUr solche Probleme gibt es keine speziellen Standard­
Algorithmen. Man kann die Aufgabe mit allgemeinen Methoden der nicht­
linearen Optimierung angehen, was allerdings oft zu aufwendigen Algorithmen 
fiihrt. 

b) (VEP) ist ein quadratisches Optimierungsproblem mit positiv semidefmiter 
Zielfunktionsmatrix., namlich a: Die Aufgabe lasst sich efftzient mit Standard­
Algorithmen der gewohnlichen Optimierung IOsen, z.B. Algorithmus von 
Goldfarb und Idnani (1983) oder Algorithmus von Gill und Murray (1978). Der 
zulassige Bereich des Optimierungsproblems ist genau dann nicht-Ieer, d.h. es 
gibt genau dann mindestens ein 1f, das die Nebenbedingungen erfiiIlt, wenn 

Cz S max f.J;. 
lSiSd 
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Falls die Matrix (J' sogar positiv definit und der zuliissige Bereich nicht-leer ist, 
besitzt das Problem eine eindeutige Losung. Dies gilt auch dann, wenn z.B. das 
erste Wertpapier risikolos ist (d.h. der Preis des ersten Wertpapiers Pl(1) ist 
nicht zufdllig) und die zu den restlichen Wertpapieren gehOrende Varianz-Ko­
varianz-Matrix positiv definit ist. 

Zwischen den beiden Problemen (EVP) und (VEP) besteht eine Aquivalenz im 
folgenden Sinne, die dureh Anwendung von Standard-Ergebnissen aus der Theo­
rie der nieht-linearen Optimierung gezeigt werden kann (siehe Kom (1997), S.8): 

Satzl 

Gegeben seien die Probleme (EVP) und (VEP). Die Matrix (J' sei positiv defmit. 
Die Konstanten Ct, c2 mogen die nachstehenden Bedingungen erfiillen: .. . 

c.:= mm Pj, C := max J.li, c. < C2 < c 
t~j:S;d ISjSd 

min (J'2(n);s; cl;S; max (J'2(n) mit.!:= (1, ... ,l)'ERd. 
1I'~O.1I"!=t 1I'~O.1I"!=1 

Dann gilt: 
d 

a) Lost n· das Problem (VEP) mit E{R1I'*) = L nt P; = C2 , 
;=1 

so lost n· aueh das Problem (EVP) mit c):= Var{R1I'·). 
d d 

b) Lost ir das Problem (EVP) mit Var(Ri) = L Lir; . irj' (J'ij = Ct, 
;=) j=) 

so lost ;. aueh das Problem (VEP) mit c2: = E( RH) . 

Bemerkung 

Aus dieser Aquivalenzbeziehung kann man nun ein Iterationsverfahren zur 
Losung von (EVP) konstruieren (siehe Kom (1997),8.8), auf das wir bier aber 
nieht naher eingehen wollen. 

Beispiel zum Diversifikationseffekt 

Um die varianzreduzierende Wirkung der Verteilung des Kapitals in versebie­
dene Aktien zu verdeutliehen, geben wir das folgende einfaehe Beispiel. Wir be­
traehten den 8pezialfall d=2, also nur zwei versebiedene Wertpapiere. Die Va-
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rianz der Rendite der beiden Aktien sei positiv (also 0"11' 0"22>0), d.h. insbeson­
dere, dass der Preis der Aktien zufallig schwankt. Die Preise dieser Wertpapiere 
sollen aber voneinander unabhiingig sein. Daraus folgt 0"12=0"21=0. Hier gilt fUr 
das Portfolio 1l'=(112,112): 

( 1r) (1. 1.) 0"11 0"22 Var R = Var 2 ·R1 + 2 ·R2 =4+7 

1m Fall 0"11=0"22 bedeutet dies, dass die Varianz des Portfolios (112,112) gerade 
gleich der Halfte der Varianz der Strategien (1,0) oder (0,1) ist. Diese Reduktion 
der Varianz nennt man Diversifikationseffekt. Allgemein wird deF Diversifi­
kationseffekt umso groBer, je groBer d, die Anzahl der Wertpapiere, ist. 

Ein einfaches Beispiel 

Wir werden im folgenden einfachen Beispiel zeigen, dass unter dem Erwar­
tungswert-Varianz-Kriterium auch die Investition in eine - vordergriindig -
schlechte Aktie optimal sein kann. Dazu betrachten wir ein Modell mit zwei 
Wertpapieren, deren Preise negativ korreliert sind, was in der Tendenz bedeutet, 
dass der eine Preis steigt, wenn der andere fallt. Wir veranschaulichen die La­
sung dieses Problems auch grapbisch. 

Die Parameter der Wertpapiere seien: 

PI = 1 0"11 = 0.1 

P2 = 0.9 0"22 = 0.15 

0"12 = 0"21 = -0.1 

Das Problem lautet somit: 

min Var{R1r} = min O.1.n-f +O.l5.1l'j -0.2·nl1l'2 1r 1r 
NB E( R1r) = l·1l'I + 0.9 ·1l'2 ~ 0.96 

1l'1 + 1l'2 = 1, 1l'j ~ 0 ,i=1,2 

Auf den ersten Blick wiirde man wohl nicht in das zweite Wertpapier 
investieren, seine erwartete Rendite ist schlechter als die des ersten Wertpapiers, 
und das Risiko von Kursschwankungen (gemessen in der Varianz der Rendite) 
ist hei diesem Wertpapier graDer. Allerdings fiihrt die Tatsache, dass die heiden 
Wertpapiere sich gegenseitig heeinflussen dazu, dass es sich tatsiichlich lohnen 
kann, auch in das zweite Wertpapier zu investieren. Wir vergleichen zuniichst 
die beiden Portfolios (1,0) und (112,112): 
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Var( R(I.O») = 0.1 

var( RH.t)) = 0.0125 

E( R{t·O) ) = 1 

E( RH.t)) = 0.95 

7 

Wir stellen fest, dass beim Portfolio (112,112) die Varianz deutlich geringer ist. 
Allerdings ist hier die Erwartungswert-Nebenbedingung verletzt. Wir suchen 
jetzt das Mimimum der Varianz unter allen zulassigen Portfolios ohne Beach­
tung der Erwartungswert-Nebenbedingung. Wegen R'1+1Zi=1 lasst sich dieses 
Problem umschreiben zu: 

min (0.1. R'r + 0.15.(1- R'd2 - 0.2· R'l (1- R'l)) , also 

min (0.15+0.45'R'[ -0.5·R'1) 

Wir erhalten in diesem Fall als minimales Portfolio 

mit Varianz und Erwartungswert 

Dies ist wieder nicht die Losung unserer Aufgabe, da die Erwartungswert-Ne­
benbedingung verletzt ist, aber wir haben ein noch besseres Portfolio als 
(112,112) gefunden. Wir betrachten nun die beiden folgenden Schaubilder. Ober­
halb der gestrichelten Lime in Bild I.1 liegen aile Paare (R'l' 1Z'z), die die Erwar­
tungswert-Nebenbedingung erfiillen. Der Schnitt dieses Bereichs mit der Gera­
den R'l + 1Z'z= 1 ergibt den zulassigen Bereich unseres Erwartungswert-Varianz­
Problems, den wir als dicke Lime dargestellt haben. Die Parabel in Bild 1.2 stellt 
die Varianz aller Paare, die R'1+1Z'z=1 erfiillen, als Funktion von R'l dar. Ihr 
Minimum im zulassigen Bereich fiir R'l' so dass die Erwartungswert-Neben­
bedingung erfiillt wird, niimlich [0.6,1], liegt offensichtlich in R'l= 0.6. Somit er­
gibt sich als optimale Losung das Portfolio, das die Erwartungswert-Nebenbe­
dingung genau erfiillt: 

(R'~ .R';) = (0.6,0.4) 

var( R1!'·) = 0.012, E(R1!'·) = 0.96 
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o 0.50.6 

Bild 1.1 Zulassige Paare 
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Var 

0.15 

0.1 

0.05 

o 0.5 0.6 

Bild 1.2 Varianz der Paare 

Bei diesem Portfolio hat man die Varianz (das "Schwankungs-Risiko") im 
Vergleich zum Portfolio (1,0) drastisch reduziert und erzielt trotzdem im Mittel 
eine zufriedenstellende Rendite. 

Ein erstes Preismodell 

Im bisher vorgestellten Ein-Perioden-ModelI war eine explizite Vet:teilungsan­
nahme fUr die Wertpapierrenditen bzw. fUr die Wertpapierpreise nicht notig, da 
zur Losung des Erwartungswert-Varianz-Problems nur die Erwartungswerte und 
Kovarianzen benotigt wurden. Man konnte deshalb jede Verteilung mit obigen 
Momenten fUr die Renditea wahlen, die gewissen Minimalanforderungen ge­
niigt. So sollte sie auf den nicht-negativen reellen Zahlen konzentriert sein, da 
Pj(1) als Preis nicht-negativ ist. In zeitdiskreten Marktmodellen (in~besondere 
auch in Mebrperioden-Modellen) weit verbreitet ist der sogenannte Binomial­
ansatz (auch Cox-Ross-Rubinstein-Modell genannt, siehe Cox, Ross, Rubinstein 
(1979)).Im Ein-Perioden-Fall hat er die folgende Gestalt, wenn wir der Ein­
fachheit halber nur das erste Wertpapier betrachten: 

Zurn Zeitpunkt t=0 hat das Wertpapier den Preis PI' mit Wahrscheinlichkeit q 
verandert sich der Preis zum Zeitpunkt T urn den Faktor u, mit Wahrschein­
lichkeit (l-q) urn den Faktor d, wobei d<u angenommen wird, d.h. es hat als 
mogliche Preise u'PI oder d'PI zum Endzeitpunkt. Damit gilt fUr den Erwar­
tungswert und die Varianz der Rendite: 
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( ) ( PI (T)) U· PI ( ) d· PI () E RI(T) =E -- =q.--+ l-q ·--=q·u+ l-q ·d 
PI PI PI 

Var{RI{T}) = va{ P~IT}) = q ·u2 +{1-q}.d2 -{q .u+{l-q} .d)2 

Man kann dieses Modell nun mit gleichen Parametem u, d, q liber mehrere Pe­
rioden fortsetzen und erhalt nach n Perioden einen Wertpapierpreis 

Pt(n.T)=Pl.UXn ·dn- Xn 

bei dem die Anzahl der Aufwartsbewegungen Xn binomial-verteHt ist mit Para­
metem n und q, also 

Xn -B(n,q), 

was die Bezeichnung Binomialmodell erklart. 

1m obigen Beispiel fiihrt die Annahme E(R1(1)=,ul=1, Var(R1(1)=0"11=0.1, bei 
Wahl von q~ 112 implizit zum Binomialansatz mit: 

u = l+.JOi, d = l-.JOi 

In diesem Buch wollen wir nur im Rahmen der nurnerischen Berechnung von 
Optionspreisen (siehe Abschnitt IV.3) ausfiihrlicher auf das Binomialmodell ein­
gehen. 

Beurteilung des Erwartungswert-Varianz-Ansatzes 

Der Erwartungswert-Varianz-Ansatz ist leicht zu verstehen und einfach imple­
mentierbar. Dies erkliirt seine groBe Beliebheit in der Praxis. Allerdings wird nur 
im Zeitpunkt T=O gehandelt, es ist kein Reagieren auf die aktuellen Kursbewe­
gungen moglich. Das Risiko einer Investition wird dabei nur liber die Varianz 
erfaBt. Generell wird der Aktienkurs stark vereinfacht modelliert, es handelt sich 
bier urn ein rein statisches Modell. Dieses Fehlen der zeitlichen Dynamik, 
sowohl in der Modellierung der Aktienkurse als auch in den vorgesehenen 
Handlungsmoglichkeiten, ist als der Hauptgrund fUr die Notwendigkeit der Ent­
wicklung zeitstetiger Modelle anzusehen, zumal auch die Komplexitat zeitdis­
kreter Mehrperiodenmodelle mit wachsender Periodenzahl schnell wachst und 
sich Optimierungsprobleme in ihnen auch mit schnellen Computem nicht mehr 
in angemessener Zeit losen lassen. 
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Kapitel II: Das zeitstetige Marktmodell 

11.1 Modellierung der Wertpapierpreise 

Bescbreibung des zeitstetigen Marktmodells 

Wir betrachten einen Marlct, auf dem d+ 1 Wertpapiere gehandelt werden. Darun­
ter befmden sich d Aktien mit Preisen P 1> P2' ... ' P d zur Zeit t= 0 und zuflilligen 
Preisen P1(t), ... , P I..t) zur Zeit t, sowie ein risikoloses Wertpapier, genannt 
,,Bond", mit Preis Po zur Zeit 1=0, und deterministischem Preis Po(/) sonst. Das 
risikolose Wertpapier wird in seiner Modellierung eher einem Sparguthaben als 
einem Bond entsprechen (siehe unten), es wird aus historischen Griinden weiter­
bin von uns als Bond bezeichnet. Wir betrachten den endlichen Handlungszeit­
raum [0, T]. In unserem Modell sei jede beliebige Stiickelung der Wertpapiere 
zulassig und es gebe keine Transaktionskosten bei Kauf bzw. Verkauf der Wert­
papiere. Anders als im Ein-Perioden-Modell sei es nun maglich, zu jedem belie­
bigen Zeitpunkt in [0, T] zu handeln. Da uns diesmal nicht nur der Anfangs- und 
Endpreis der Wertpapiere interessiert, mussen wir uns niiher init den Preis­
verlaufen beschaftigen, die wir im Folgenden moglichst realistisch modellieren 
wollen. 

Der Bondpreis 

Da wir den Preisverlauf des Bonds iihnlich dem eines typischen Sparguthaben 
modellieren wollen, betrachten wir uns zunachst die zeitliche Entwicklung einer 
Spareiolage genauer: 
Bei einem Sparguthaben werden ublicherweise nach einem Jahr die Zinsen dem 
Guthaben zugeschlagen und dann erst im weiteren Verlauf mit ibm zusammen 
verzinst. In seinem ersten Jahr wachst solch ein Guthaben also linear an. Sei nun 
r die Zinsrate pro Zeiteinheit fUr eine Spareiolage der GroBe K. Werden Zinsen 
nur im Zeitpunkt t=1 gezahlt, so wachst das Guthaben auf 

K + r . K = K . (1 + r) in 1= 1 
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an. Werden bereits in t= 112 die Zinsen in der Hohe rl2 dem Sparguthaben gut­
geschrieben, so verzinsen sich diese auch in der Zeitspanne [112, I]. Mit der 
nachsten Zinszahlung ergibt sich somit ein Guthaben von 

(K + t K) + (K + t K) . t = K . (1 + 1Y in t= 1. 

In der Zeitspanne [0,1/2] wachst das Kapitallinear mit der Steigung r·K, und in 
[112, I] wachst es linear mit der Steigung r·(K + ~·rK). Allgemein erhalt man so 
bei Zinszahlungen in den Zeitpunkten iln, i=I, ... , n, neN, ein Guthaben von 

K '(I+-;r in t=1. 

Indem man den Grenziibergang n-+co als Zinszahlungen in kontinuierlicher Zeit 
interpretiert, erha}t man in diesem Fall ein Endvermogen von 

K . er.\ in t= I 

und zwischenzeitlich das Kapital 

K·eN inte[O,l]. 

In der folgenden Graflk wird dargestellt, wie sich ein Spargutbaben der GroBe 
Kr=.l bei den oben beschriebenen verschiedenen Arten von Verzinsung im Laufe 
eines Jahres entwickelt. Hierbei stellt p\(t) die Entwicklung bei einrnaliger, 
P II2(t) bei zweimaliger und Pit) bei stetiger Verzinsung dar. 

p.{t) 

1,7 

1,6 

1,5 P s{t) 

1,4 
P 1I2{t) 

PI (t) 
1,3 

1,2 

1,1 

Bild n.l Entwicklung einer Spareinlage bei unterschiedlichen 
Verzinsungsarten 
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Offensichtlich ist die kontinuierliche Verzinsung bei gleichem ZinssatZ giinstiger 
fUr den Inhaber des Sparguthabens als die einmalige Verzinsung. Allerdings liisst 
sich ohne Probleme der Zinssatz r bestimmen, mit dem die Verzinsung in 
stetiger Zeit mit der uns so vertrauten Verzinsung in den Zeitpunkten t= 1,2,3, ... 
iibereinstimmt, namIich 

r=ln(l+r). 

Den Zinssatz r nennt man auch den effektiven Jahreszinssatz, r den stetigen 
oder nominellen Jahreszinssatz (fUr eine Einfiihrung in die Begriffe der Zins­
rechnung siehe Tietze (1996) ). 

1m Folgenden nehmen wir Verzinsung in stetiger Zeit mit konstanter Zinsrate r 
an und erhalten so ais Bondpreis 

po{t) = Po .[1 fUr t e[O,T] (1) 

Man kann dies verallgemeinem, indem man eine nicht-konstante, zeitabhangige, 
integrierbare Zinsrate r(t) annimmt und so 

als Bondpreis ansetzt. 

Fasst man die folgende DifferentiaIgIeichung 

dPo{t)=Po{t)r(t)dt , po(O)=Po, fUr te[O,T] 

als IntegraIgIeichung 
1 

po{t) = Po + JPo(s)r(s)ds fUr t e[O,T] 
o 

auf, so ist der obige Bondpreis Po(t) offenbar deren eindeutige Losung. 

Die Aktienkurse - Motivation 

(2) 

Wir stellen uns einen Aktienkurs ahnlich wie den Bondpreis vor, nur dass sich 
der Preis nicht deterministisch ergibt, sondem gema6 einer zufalligen Storung 
urn einen "Bondpreis" (mit einer anderen Zinsrate) schwankt (siehe Bild 11.2). 
Als Ausgieich fUr das Risiko, dass sich durch die zufalligen Schwankungen er-
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gibt, wird man fur die i-te Aktie eine hahere Zinsrate b; als die Zirisrate r des 
Bonds erwarten. 

P(t) 
1,6 

1,5 

1,4 

1,3 

1,2 

1,1 

1 

0,9 -t-----t---+---+----j-----j 

o 0,2 0,4 0,6 0,8 1 t 

Bild ll.2 Aktienkurs mit prognostizierter Entwicklung 

Da der Logarithmus des Bondpreises im Falle konstanter Verzinsung linear ist­
man sagt auch: der Bondpreis ist log-linear -, 

In(Po{t)) = In{po) + r· t , 

legt dies den folgenden sogenannten log-linearen Ansatz fur den Aktienkurs 
nahe: 

Fiir den ,,zufall" nehmen wir an, dass er 

• ohne Tendenz ist, d.h. E(,,zufall")=O 

• von der Zeit t abhangig ist 

• die Summe der Abweichungen von In(p;{t))von In{p;)+b;.t auf [O,T] 

darstellt 

Nimmt man sogar an, dass sich die Abweichungen von b; . t als Summe vieler 
gleichartiger, unabhiingiger Abweichungen ergeben, so legt der zentrale Grenz­
wertsatz den Ansatz 
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mit einem a> 0 nahe. Defmiert man die Abweichung zur Zeit t als 

In{p;{t}}-ln{pj }-bj .t=:Y{t} 

und wahlt 

danngilt 

• E(Y(t)) = 0 

• Y( t) ist offensichtlich von der Zeit t abbiingig 

Betrachtet man auBerdem 

Y(t)=Y(O)+(Y(t)-Y(O)) mit Be(O,t). 

so ware es eine sinnvolle Forderung, dass die Verteilung der Differenzen der Ab­
weichung (Y(t)-Y(b) nur von der Zeitliinge (t-B) abhiingt und unabhiingig von 
Y(s), s ~ 0, ist, d.h. insbesondere, dass (Y(t)-Y(b) gemii.6 N(O, o2(t-O» verteilt 
sein solI. 

Die Existenz und Eigenschaften einer solchen Familie von Zufallsvariablen 
{Y(t)}te[O,co) (man spricht auch von einem stochastischen Prozess) werden im 
folgenden Exkurs zur Brownschen Bewegung naher betrachtet. 

Exknrs 1: Brownsche Bewegnng nnd 
Martingale 

Allgemeine Voraussetzungen 

Gegeben sei der vollstiindige Wahrscheinlichkeitsraum (n,F,p) mit Ergeb­
nisraum n, a-Algebra Fund Wahrscheinlichkeitsmafl P. 
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Wir fiihren zunachst den Begriff der Filterung ein. Sie stellt die Fonnalisierung 
der Entwicklung einer Infonnationsstruktur in der Zeit dar. 

Definition 1 

{Ft}teI sei eine Familie von Sub-o:-Algebren von F, 1 sei eine geordnete Index­
menge, und es gelte Fsc Ft fUr s<t, s,te/. Eine solche Menge {Ft}tEI heIDt 
Filterung. 

Die Menge Ft,te I, modelliert in der Regel die bis zur Zeit t beobachtbaren Er­
eignisse. Wenn also eine Zufallsvariable ~ F,-messbar ist, so konnen wir auf­
grund der gegebenen Infonnation zum Zeitpunkt t bestimmen, welchen Wert sie 
annirnmt. 1m Folgenden werden wir den Begriff eines stochastischen Prozesses 
immer im Zusammenhang mit einer Filterung betrachten. 

Definition 2 

Eine Menge {(X"Ft)}teI bestehend aus einer Filterung {Ft}teI und einer Fa­
milie von Rn -wertigen Zufallsvariablen {~} tel' wobei Xt Ft-messbar ist, heIDt 
ein stoehastiseber Prozess mit Filterung {Ft}teI' 

Bemerkungen 

a) 1m Folgenden werden wir als Indexmenge meistens 1=[0,(0) oder 1=[0,11 
wlihlen. 

b) Reden wir kurz von einem Prozess {~}teI oder ~, so heIDt das in der 
Regel, dass wir 

Pi:= F/:=O'{xsls~t,se/} 
setzen. Diese Filterung heIDt die zu {Xt} tel gehorende kanonisebe oder natiir­
liebe Filterung. 

c) Statt {Xt}teI schreibt man oft auch {X(t)}teloder ganz kurz X. FUr festes 
(1) e Q kann man die Menge 

als Funktion der Zeit t interpretieren. Man nennt dies einen Pfad oder eine 
Realisierung des Prozesses. So gesehen ist ein stochastischer Proze~s lediglich 
eine funktionenwertige Zufallsvariable. 
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Wiehtig wird es fUr uns werden, zu entseheiden, ob zwei stoehastisehe Prozesse 
als "gleieh" anzusehen sind. Wir unterseheiden hierbei: 

Definition 3 

{(Xt,Ft)}te[O,co) und {(Yt, G t)}te[O,co) seien stoehastisehe Prozesse. Y hei6t dann 
eine Modifikation von X, falls 

Definition 4 

{(X" F t)} te [O,co) und {( Yt, G ,)} Ie [O,co) seien stoehastisehe Prozesse. X und Y 
hei6en dann ununterscheidbar, falls 

Falls X und Y ununterseheidbar sind, dann ist Yauch eine Modifikation von X. 
Die umgekehrte Riehtung gilt dagegen nieht, aueh wenn Y eine Modiftkation 
von X ist, konnen trotzdem beide Prozesse vollkommen untersehiedliehe Pfade 
haben. Es gilt aber (siehe Ubung 0.1): 

SatzS 

Sei Yeine Modiftkation von X. Besitzen aullerdem beide Prozesse P-fast sieher 
stetige Pfade, dann sind X und Y ununterseheidbar. 

Das fUr uns wiehtigste Beispiel eines stoehastisehen Prozesses ist: 

Die Brownsche Bewegung 

Der reellwertige Prozess {JJt} I ~o mit stetigen Pfaden und 

i) Wo = 0 P-fast sieher 

ii) JJt - Ws - N(O, t-s) fUr 0 S; s < t "stationiire Zuwiichse" 

iii) JJt - Ws unabhiingig von Wu - w,. fUr OS;rS;uS;s<t 
"unabhiingige Zuwiiehse" 

hei6t eindimensionale Brownsehe Bewegung. 
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Ais n-dimensionale Brownsche Bewegung bezeichnen wir den Rn -wertigen 
Prozess 

dessen Komponenten Wi unabhiingige eindimensionale Brownsehe Bewegungen 
sind. 

Brownsche Bewegung und Filterung 

Man kann die Brownsehe Bewegung mit der natiirliehen Filterung 

F,W:=u{Wslossst} , tE[O,OO) 

versehen. Aus teehnisehen Grunden arbeiten wir jedoeh hiiufig mit der 
P-Erweiterung der natiirlichen Filterung, 

und nennen diese Filterung die Brownsche Filterung. Dies hat den Vorteil, 
dass, wenn Y eine ModifJkation von X ist, aus der Ft-Messbarkeit von Xt aueh 
die von Yt folgt. Sie sind also dann bzgl. der gleiehen Filterung messbar. 

In der Literatur wird die Bedingung iii) fUr eine eindimensionale Brownsehe Be­
wegung {(Wt,Ft)}t~O mit gegebener Filterung {Ft}t~O oft so formuliert: 

iii)· ~ - ~ unabhiingig von Fs fUr 0 s s < t. 

Dies ist mit der natiirliehen Filterung oder mit der Brownsehen Filterung iiquiva­
lent mit der Bedingung iii), allerdings gilt dies nieht fUr alle Fi1terung~n! Ein tri­
viales Gegenbeispiel ware die Filterung 

G,:= u{wT,wslossst} fUreinT>O, 

bei der iii) aber nieht iii)· erfiillt ist, denn offensiehtlieh ist W T nieht von Go un­
abhiingig. 

Wenn wir nun in Zukunft Brownsehe Bewegungen {(Wt,F t)} t~O im Zusammen­
hang mit einer beliebigen Filterung betraehten, dann fordem wir damit implizit, 
dass fUr diese Filterung Bedingung iU)* erfiillt sein muss. 

Bemerkungen zur Existenz der Brownschen Bewegung 

Man muJ] natiirlieh noeh die Existenz der Brownsehen Bewegung als stoehas­
tiseher Prozess zeigen. Es gibt versehiedene Methoden, einen solchen Prozess zu 
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konstruieren, die Beweise sind durchweg lang und technisch. Nachzulesen ist 
eine solche Konstruktion z.B. in Billingsley (1968). Ein weiterer Ansatz besteht 
darin, fUr die endlich-dimensionalen Verteilungen (d.h. die gemeinsamen 

Verteilungen von (w,\ ' .... W,n)fUr beliebige n-Tupel (tl, ... ,tn ) ,n eN, t; *" t) 

zu fordem, dass sie unabhangige, stationiire und normalverteilte Zuwachse 
besitzen, und dann mit Hilfe des Satzes von Kolmogorov ein geeignetes 
WabrscheinlicbkeitsmaB auf einem geeigneten MeBraum zu konstruieren (siehe 
Karatzas/Shreve (1991), Abschnitt 2.2). Der erste, der die Existenz eines 
solchen MaBes zeigte, war Wiener in Wiener (1923) , nach ibm heiSt das MaB 
auch Wiener MaO, woraus sich auch unsere Abkiirzung Wergibt. 

In der Theorie der stochastischen Integration fordert man aus technischen GrUn­
den in der Regel, dass die zugrunde liegende Filtenmg rechtsstetig ist (siehe 
auch Obung V.4). 

Satz6 

Die Brownsche Filtenmg {Fe} t~O ist sowobl rechtsstetig als auch Iinksstetig, 

d.h. es gilt 

Beweis: siehe Karatzas/Shreve (1991), Abschnitt 2.7. 

Die Brownsche Filtenmg erfiiIlt somit die iiblichen Bedingungen im Sinne der 
folgenden . 

Definition 7 

Eine Filtenmg {Ft}t~O erfiiIlt die iiblichen Bedingungen ("usual conditions"), 
falls sie rechtsstetig ist und Fo bereits aIle P-Nullmengen aus F entblilt. 

Allgemeine Voraussetzung fiir diesen Abschnitt 

{Ft}t sei eine Filtenmg, die die iiblichen Bedingungen erfiiIlt. 
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Wir f'iihren nun noch eine fUr unsere Anwendungen in stochastischer Integration 
und Finanzmathematik fundamentale Prozessklasse ein. 

Definition 8 

Der reellwertige Prozess {(X" F t) } tel mit E I X, I <00 fUr aIle tel, wobei I geord­
nete Indexmenge ist, heIDt 

a) ein Super-Martingal, falls fUr alle s, tel mit s ~ t gilt: 

E(XtIFs)~xs P-fastsicher. 

b) ein Sub-Martingal, falls fUr alle s, tel mit s ~ t gilt: 

E( X, IFs) ~ X s P-fast sicher. 

c) ein Martingal, falls fUr alle s, tel mit s ~ t gilt: 

E(X,IFs)=Xs P-fastsicher. 

Bedeutung des Martingalbegriffs 

Martingale werden oft zur Modellierung von GUicksspielen verwendet. Stellt 
man sich unter der Folge Xn' n E N, das Vennogen eines Spielers nach der n-ten 
Teilnahme an einem Gldcksspiel vor, so sollte ein faires Spiel gerade die Mar­
tingal-Bedingung 

E( X n+ll Fn) = X n P-fast sicher 

erfiillen, d.h. im Mittel besitzt der Spieler nach dem Spiel genauso viel wie vor­
her. Ein fUr den Spieler gdnstiges Spiel entspricht einem Sub-Martingal. Ein Su­
per-Martingal ware fUr den Spieler ungdnstig. Ein typisches Beispiel flir ein 
Martingal ist das Werfen einer (fairen) Mdnze, bei dem der Spieler bei Auftreten 
von "Kopf" eine Geldeinheit erhalt und bei "Zabl" eine Geldeinheit zablen muss. 

Satz9 

Die eindimensionale Brownsche Bewegung Wt ist ein Martingal. 

Beweis: 

Da wir bier Brownsche Bewegungen immer im Zusammenbang mit einer 
Filterung betrachten, die Bedingung iii)· erfiiIlt, ist der Zuwachs Wt - Ws von 
Fs flir s~t unabhiingig. Es gilt daher 
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E( W, I Fs) = E( W, - Wa + Ws I Fs) 

= E(W, - WaIFs)+ Wa = E(W, - WaJ+Wa = Ws 

fUr s<t P-fast sicher. o 
Bemerkungen 

a) Allgemein gilt: Jeder Prozess mit unabhmgigen, zentrierten Zuwachsen ist ein 
Martingal bzgl. seiner natiirlichen Filterung. 

b) Die Brownsehe Bewegung mit Drift p und Voiatilitiit 0' 

Xt :=pt+O'Wt , pER, O'ER, t~O 

ist ein Martingal, falls p=O, ein Super-Martingal, falls p<O, ein Sub-Martingal, 
falls p> 0 . 

Satz 10 

a) {(Xr, F t) } tel sei ein Martingal und rp : R ~ Reine konvexe Funktion, so dass 
fUr alle tEl E Iq\Xr)I<oo gilt. Dann ist 

{(rp(Xt ),Ft )}tel ein Sub-Martingal. 

b) {(Xr, Ft)} tel sei ein Sub-Martingal und rp : R ~ Reine konvexe, nicht­
fallende Funktion, so dass fUr alle tEl EIq\Xt)1 < 00 gilt. Dann ist 

{( rp(Xt ),F, )LEl ein Sub-Martingal. 

Beweis: 

Aus der Jensenschen Ungleichung folgt fUr t>s: 

E{rp(Xt )IFs)~ rp{E{XtIFs)) {=rp(Xs ), falls Xs Martingal . 0 
~ rp(X s ) , falls X s Sub - Martingal 

Bemerkungen 

a) Typische Anwendungen des Ergebnisses dieses Satzes erhalt man z.B. fUr 

q\x)=x2 , q\x)=lxI-
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b) Der Satz gilt auch fUr d-dimensionale Vektoren 

X(t} = (Xl (I) .....• Xd(/») 

von Martingalen und konvexes rp: Rd ~ R . 

In der stochastischen Analysis spielt der Begriff des lokalen Martingals eine zen­
trale Rolle. Um diesen wichtigen Begriff einfiihren zu konnen, brauchen wir den 
Begriff der Stoppzeit. 

Definition 11 

Eine Stoppzeit beziiglich einer Filterung {Ft}te[O.co) bzw. {Fn}neN ist eine 
F-messbare Zufallsvariable 

't": O~[O,oo] bzw. T: O~Nu{oo} 

mit {ro eOI 'l{tv) ~ I} eFt fUr aIle Ie [0,(0) bzw. {ro eOI 'l{tv) ~~} eFn fi.ir 
aIle n eN. 

Satz 12 

Sind TI und 1'2 Stoppzeiten, dann ist auch TI A T2 := min {TI' 't"2} eine Stoppzeit. 
(Der einfache Beweis bleibt dem Leser als Ubung uberlassen.) 

Der gestoppte Prozess 

{(Xt,Ft)}tel sei ein stochastischer Prozess, I sei entweder N oder [0,(0), und 't" 

eine Stoppzeit. Man kann damit einen neuen Prozess, den gestoppten Prozess 
{XtM} tel ' defmieren als 

{
X, (tv). falls t ~ r(tv) 

X (tv)·= tM . Xr«(/)(tv), fallst>r(tv) . 

Die Stoppzeit gibt so den Moment an, zu dem wir den Prozess stoppen und in 
seinem gegenwamgen Zustand festhalten. Die Bedingung {ro eO I 'l{tv) ~ t} eFt 
an eine Stoppzeit besagt gerade, dass wir zum Zeitpunkt tinder Lage sein mus­
sen, zu entscheiden, ob wir jetzt stoppen oder nicht. 

Bemerkung 

Ein typisches Beispiel fUr einen gestoppten Prozess ist das Vermogen eines Spie­
lers, der solange an einem Glucksspiel teilnimmt, bis er entweder ein vorge-
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gebenes Vermogen erreieht hat oder bankrott ist. Keine Stoppzeit ist in diesem 
Fall, dann mit dem Spielen aufzuhoren, wenn er das in einem bestimmten Zeit­
raum maximale Vermogen erreieht hat, denn dies kann er erst nach Ablauf des 
Zeitraums entseheiden. (siehe aueh 'Obung 0.4) 

Die gestoppte Filterung 

Sei :- eine Stoppzeit bzgl. der Filterung {Ft}te[O,oo). Defmiere dann die u-Alge­
bra der Ereignisse bis zur Zeit :- dureh 

F1::= {A EFI Ard:-~t} EFt fiirallet E/}. 

dst dann F1:-messbar. Da zu :- aueh TAt eine Stoppzeit ist, ist somit aueh die 
gestoppte Filterung {F 1:l\t} tel definiert. Insbesondere gilt F 1:l\t eFt· 

Was passiert nun, wenn wir ein Sub-Martingal bzw. ein Martingal mit Hilfe 
einer Stoppzeit stoppen, Bleibt es ein Sub-Martingal bzw. ein Martingal ? Ant­
wort darauf gibt der folgende Satz: 

Satz 13 - "optional sampling" 

Sei {(X"Ft)}telO,oo) ein rechtsstetiges (d.h. alle Pfade von Xt sind rechtsstetig) 
Sub-Martingal(bzw. Martingal), seien T} und 1i Stoppzeiten mit T} ~ T2, dann 
gilt 

E( X tl\1:2 1 Ftl\1:J ~ X tl\1:1 (bzw. E( X tl\1:2 1 FtAt:J = X tl\1:1 ) 

P-fast sieher fiir alle tE [0,00). 

Beweis: siehe Karatzas/Shreve (1991), Satz 1.3.22. 

Korollar 14 

Sei Teine Stoppzeit und {(Xt,Ft)}te[O,oo) ein reehtsstetiges Sub-Martingal (bzw. 
Martingal). Dann ist der gestoppte Prozess {(XtAt:,Ft)}tE[O,OO) wieder ein Sub­
Martingal (bzw. Martingal). 

(Beweis: siehe 'Obung 0.2) 
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Mit Hilfe des Satzes fiber "optional sampling" erhalten wir eine sehr nfitzliche 
Charakterisierung eines Martingals: 

Satz 15 

Sei {(X"Ft)}te[O,«» ein rechtsstetiger Prozess. Dann ist Xt genau dann ein Mar­
tingal, wenn fiii aIle beschrlinkten Stoppzeiten 'r gilt 

EX-r =EXo· 

Beweis: 

Da 'r beschrlinkte Stoppzeit ist, gilt i( w) S T fUr ein T> 0 und aIle we n, also 
r:= 'rAT, damit konnen wir den Satz fiber optional sampling anwenden und erhal­
ten fUr ein Martingal 

EX-r =E(E(X-rI\TIFo)) =E(Xo). 

Urn die andere Richtung des Satzes zu zeigen, sei nun OSsSt und A.eFs' Dann 
ist 'r:= s·l O\A+ t·1 A Stoppzeit mit r:= 'rAt und es folgt 

EXo = EX-r ::::: E(Xs ·101A +Xt .1 A )::::: E(Xs .10IA )+E(Xt .1 A ). 

Aul3erdern ist r=s auch Stoppzeit mit 

EXo = EXs =E(Xs .10IA )+E(Xs .1 A ). 

Somit folgt filr alle A e Fs: 

E(Xt .1 A )=E(Xs ·IA ). 

Nach Defmition der bedingten Erwartung ist dann 

und SOlnit {(Xt,Ft)}te[O,«» em Martingal. [] 

Mit Hilfe von Stoppzeiten konnen wir nun den Begriffs des Martingals ab­
schwachen: 

Definition 16 

{(Xt,Ft)}tefo,oo) sei ein stochastischer Prozess mit Xo ::::: O. Existiert eine nicht­
fallende Fo ge {'rn} neN von Stoppzeiten mit 
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,./ lim f' n = (0) = 1 , 
r\n~co 

so dass 

ein Martingal fUr aUe neN ist, so heiJ3t X ein lokales Martingal. Die Folge 
{ f'n} neN heiJ3t eine zu X gehOrende lokalisierende Foige. 

Bemerkungen 

a) Jedes Martingal ist ein lokales Martingal. 

b) Falls X lokales Martingal ist und aUe Pfade von X stetig sind, dann neont man 
X ein stetiges lokales Martingal. 

c) Es gibt lokale Martingale, die keine Martingale sind (siehe z.B. Ka­
ratzas/Shreve (1991». Man beaehte hierzu aueh, dass fUr ein lokales Martingal 
der Erwartungswert E(Xt) Dieht existieren muss. Der Erwartungswert'muss aber 
entlang der lokalisierenden Folge t/\ f'n existieren. Insbesondere ist der Prozess X 
auf den zufaIligen IntervaUen [0, f'nl ein Martingal. 

Satz 17 

Ein Dieht-negatives lokales Martingal ist ein Super-Martingal. 

Beweis: 

Sei hierzu M ein Dieht-negatives lokales Martingal. Dann gibt es eine Folge 
{ f'n} neN von Stoppzeiten mit 

E( MtAt.JFS) = MSAf'n und f'n n~co) 00 P-fast sieher. 

Also gilt mit dem Lemma von Fatou 

Ms = lim in! MSMn = lim in! E(MtAtJFs) 
n~co n~co 

~ E(lim in! MtMn IFs) ;;:: E( Mt IFs) P-fast sieher. 0 
n~co 



II.I Fortsetzung: Modellierung der Wertpapierpreise 

Die folgenden Ungleichungen werden wir spiiter oft als Hilfsmittel brauchen: 

Satz 18 - Doob'sche Ungleichung 

Sei {Mt} t~O ein Martingal mit rechtsstetigen Pfaden und E( M;' ) < 00 fUr aIle 

T~O. Danngilt 

1(.~t":)MtU') <4.E{Mf). 

Satz 19 

25 

Sei {(Xt,Ft)}te[O,oo) ein nicht-negatives Super-Martingal mit rechtsstetigen Pfa­
den. Dann gilt fUr A. > 0 

A'P{t1J sup XS(t1J)~A}~E(XO). 
OSsSt 

Beweise der Siitze 18 "nd 19: siehe Karatzas/Shreve (1991), Satz I.3.S (ii) und 
(iv). Man beachte, dass {-Xt}t ein nicht-positives Sub-Martingal ist und 
{ I M t I } t~O ein nicht-negatives Sub-Martingal ist. 

11.1 Fortsetzung: Modellierung der 
Wertpapierpreise . 

Fortsetzung: Aktienkurse 

Mit der Brownschen Bewegung {(WI'Ft)}~O haben wir nun den geeigneten 
Prozess gefunden, urn den ,.zufall" im log-linearen Ansatz fUr die Aktienkurse 
zu modellieren. Im Fall d = I (also ein Marktmodell mit Bond und nur einer 
Aktie) bietet sich der folgende Ansatz an, in dem wir fUr den • .zufall" die 
Brownsche Bewegung mit Volatilitat O''t I wiihlen, 

In( E\ (t}) = In(Pl) +bt . t + 0'1lW" 

also 
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1\ (1) = PI . eb;t+ullw, . 

1m allgemeinen Fall setzt man 

also 

m 

In(p;(t)) = In(pi )+h; ·t + L uijW/t), i=l, ... ,d 
j=l 

p;(t) = Pi .exP(h; ,1+ tUijWj(t)) , i=l, ... ,d 
J=l 

(4) 

wobei W(I)=(W1(t), ... ,Wm(t» eine m-dimensionale Brownsche Bewegung ist. FUr 
den Logaritbmus des Aktienpreises gilt dann 

m 

In(p;(t))-N(ln(Pi)+bi .t,Lug ·t) . 
j=l 

Daher sagt man auch: P,{t) ist lognormal-verteilt. Weitere Eigenschaften des 
Aktienkurses gemiiJ3 (4) ergeben sich aus: 

Lemma 20 
m 

Sei bi := h; +t L uB und p;(t) wie in (4), i=l, ... ,d, t~O. Dann gelten 
j=l 

a) E{p;(t)) = Pi ·ebj/ • 

b) Var(p;(t») = Pf. exP(2bit).( exPC~1 ugt) -1). 
c) X, := a.expC~1 (CjWj(t)-tc;t)) mit a,cjER,j=l, ... ,m, ist ein Martiogal. 

Beweis: 

a) Wir betrachten nur den Fall m=1. Den allgemeinen Fall beweist man analog, 
wenn man beriicksichtigt, dass 

m m 
LUijWj(t) - N( 0, Lug t) 
j=l j=l 

gilt. Quadratische Ergiinzung im Exponenten Hefert 
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OOJ ( .. _at)2 
btl - b·t =p··e i. r,:;:::.e 21 dx=p··e I ·1 

, ,,2111 " 
-00 

wobei man fUr die letzte Gleichheit verwendet hat, dass der Integrand die Dichte 
einer N( at, t)-verteilten Zufallsvariablen ist. 

b) Dies beweist man wie in a), indem man analog zur Bestimmung von E( p/ (t)) 
vorgeht (siehe auch Obung 0.3). 

c) Wir zeigen wieder nur den Fall m=l: Sei t>s, dann gilt 

E(xtl Fs) = a 'ec,w,-fcts . E( ec,(w,-w,)-fct(t-s)I Fs) 

= a. ec,w,-fcrs . E( ec,(w,-w,)-tct(t-s)) 

= a . eC'w' -tcts . E( eC'w,-. -fcr(t-s)) = X a . 

Hierbei gilt die zweite Gleichheit wegen der Unabhangigkeit der Zuwachse von 

W(t). Da We-a: = W, - Wa Brownsche Bewegung ist, ist der letzte Erwartungs­
wert nach Teil a) gleich 1. [] 

Interpretation des Aktienpreises 

Mit Hilfe von Lemma 20 erhalten wir nun eine neue Interpretation des Aktien­
preises: 

t f( UijH'J{t)-fuJt) 
p;(t) = Pi ·eq ·eJ=1 

P,{O) = Pi' i=l, ... ,d 

Somit ist der Aktienpreis ein Produkt aus 

• dem mittleren Kurs Pi' ebjt und 

• einem Martingal mit Erwartungswert 1, namlich 

(5) 
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exP(t[CTijWj(t)-tCT~t]1 , 
J=I ~ 

das die zufallige Schwankung um den mittleren Kurs modelliert. 

DerVektor , 
b={bl •. ··.bd) 

wird als Vektor der mittleren Ertragsraten und die Matrix 

(
CT! I :.. CTlm] 

CT - . . -. . 
CTdl ... CTdm 

als Volatilititsmatrix bezeichnet. 

Ein stochastischer Prozess der Form P,{t) wird auch als geometrische Brown­
sche Bewegung mit Drift bi und Volatilitat OJ,=( Ojl, ... ,Ojm)· bezeichnet. 

Zusammenfassung Wertpapierpreise 

1m zeitstetigen Modell modellieren wir die Preisverliiufe der Aktien und des 
Bonds gemiil3 

Leider kann man dieses Modell noch nicht allgemeiner formulieren, indem man 
nicht-konstante, zeitabhiingige, integrierbare Zinsraten r(t), b,{t) und Volati­
litaten o(t) annimmt. Bei den Preisverliiufen der Aktien ergiibe sich niimlich fol­
gendes: 

p;(t) = Pi .exP(i(bi(s)-t t CT~(S)] dsJ ·exp(t i CTij(S)dWj(S)] 
o J=I J=lO 

Dabei tritt das bis jetzt noch unbekannte Integral 
t 

ICTij(S)dWj(S) = ? 
o 
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auf. Um mit diesem Modell reehnen zu konnen, und aueh urn Handelsstrategien 
im einfaeheren Modell zu besehreiben und zu bewerten, benotigen wir den Be­
griff des stoehastisehen Integrals (oder aueh Ita-Integral) und die dazugehOrigen 
Reehenregeln des Ito-KaIkii1s. 

Exkurs 2: Das Ito-Integral 

Motivation 

Gegeben sei nun der MeBraurn (R,B(R» der reellen Zahlen mit der Borelsehen 
a-Algebra. Wenn F eine differenzierbare Verteilungsfunktion und X eine mess­
bare, nieht-negative reellwertige Funktion auf (R,B(R» ist, dann konnen 

wir mit Hilfe der Diehte [(s) = dF(s) folgendes Integral bereehnen : 
ds 

t t 

J X(s) dF(s) = J X(s)[(s) ds fur 1 > o. 
o 0 

1st die Verteilungsfunktion F nieht differenzierbar, dann konnen wir dieses Inte­
gral im Lebesgue-Stieltjes-Sinn bereehnen, namlieh als 

Ix dF = lim tx((k -1)/) .(F(kt) _F((k-l)/)). 
o n-+co k=l n n n 

Man beaehte, dass sieh dann der Wert dieses Integrals nieht andert, wenn wir 
X«k-l)tln) dureh X(ktln) oder irgendeinen anderen Wert X(s) fUr se[(k-l)tln, 
ktln] ersetzen und dann zum Grenzwert iibergehen. Dies wird· spiiter fur 
stoehastisehe Integrale nieht der Fall sein (siehe 0ksendal (1992), Example 3.1). 
Trotzdem kann man das obige Vorgehen noeh verallgemeinem (siehe 
Karatzas/Shreve (1991), Absehnitt 1.4). Sei hierzu (n,F,p) ein vollstandiger 
Wahrseheinliehkeitsraurn und {At}te[O,co) ein waehsender Prozess (d.h. Ao(m)=O 
fur me n, der Pfad tH A!,.m) ist eine nieht-fallende, reehtsstetige Funktion und 
E(At)<oo fur aIle te [0,00». Sei nun {.K,}te[O,co) ein nieht-negativer Prozess, so 
dass die Pfade tH.K,(m) B([O,oo»-B(R)-messbar sind. Dann lasst sieh fur jedes 
feste me n folgendes Integral wie oben im Lebesgue-Stieltjes-Sinn bereehnen: 
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t 

It(aJ):= JXs(aJ)dAs(aJ) 
o 

Falls dann It(.) F-B(R)-messbar ist (dies Uisst sich durch geeignete Forderungen 
an X erreichen), erhalten wir fUr jedes tE [0,(0) eine neue Zufallsvariable, also 
insgesamt einen neuen stochastischen Prozess. Dieses Vorgehen lasst sich auch 
auf den Fall erweitem, dass At Pfade von endlicher Variation auf jedem end­
lichen Intervall [0, T] besitzt. 

Die Frage ist nun, ob sich dieses Vorgehen noch weiter verallgemeinem lasst, in­
dem man statt einem wachsenden Prozess eine eindimensionale Brownsche Be­
wegung {Wt } te[O,co) wahlt ? Kann man dann folgendes Integral 

t 

JXs(aJ) dWAaJ) , 
o 

das sogenannte stochastische Integral, sinnvoll aJ-weise defmieren? 

Ais erstes miissen wir feststellen, dass eine Imitation des Vorgehens bei Existenz 
einer Dichte nicht moglich ist. (einen Beweis des folgenden Satzes findet man 
z.B. in Schmitz (1996), Satz 10.28): 

Satz 21 

P-fast aIle Pfade der Brownschen Bewegung {Wt}t sind an keiner Stelle diffe­
renzierbar. 

Damit ist eine Defmition der Art 

t t dW:() 
JXs(aJ) dWs(aJ) = JXs(aJ) s aJ ds 

° ° m 
nicht moglich. Der nachste Satz zeigt uns, dass eine Defmition als Lebesgue­
Stieltjes-Integral ebenfalls nicht moglich ist (siehe z.B. Schmitz (1996), S.326): 

Satz 22 

Fiir die Brownsche Bewegung gilt mit der Defmition 
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dass 

Zn(m) n~r¥J) 00 P-fast sieher, 

d.h. die Pfade Wt<m) der Brownsehen Bewegung haben auf dem Intervall [0,1] 
P-fast sieher unendliche Variation. Weiter noch: die Pfade W,(m) der Brown­
sehen Bewegung haben auf jedem Intervall [sl,s2] c [0,(0) P-fast sicher unend­
liche Variation. 

Aufgrund der beiden vorausgegangenen Negativ-Resultate muss es sieh bei dem 
zu definierenden stoehastisehen Integral urn eine neue Art von Integralbegriff 
handeln. Wir werden nun im Folgenden das stochastisehe Integral Z1;lIliiehst fUr 
sogenannte einfache Prozesse Xt konstruieren und es dann mit Hilfe einer Iso­
metrie auf allgemeinere Integranden fortsetzen. 

Allgemeine Vorausset1.ungen flir diesen Abschnitt: 

Gegeben sei ein vollstiindiger Wahrscheinlichkeitsrawn (0, F, P), der mit 
einer Filterung {F,}, versehen sei, die die ublichen Bedingungen erfUllt. 
Weiter sei auf diesem Raum eine Brownsche Bewegung {(W,.FI)}/e[O.r¥J) 
bzgl. dieser Filterung definiert. 

Definition 23 

Ein stochastischer Prozess {Xt}te[O,TJ heillt einfaeher Prozess, falls reelle 
Zahlen ° =. 10 < II < ... < Ip ~ T, pEN, und beschriinkte Zufallsvariablen 
$i: n~R, 1=0, 1 ..... p. eXlstieren, so dass 

$0 Fo-messbar. $i. i=l, ... ,p, rti_1 -messbar 

sind undXt fUr alle mE n die folgende Darstellung besitzt: 

p 

X t (m) = X(t,m) = $o(m) ·1{0} (I) + ~ $;(m) .1(ti-Jotlt) . 

Bemerkungen 

a) Man beaehte: Xt ist rtH -messbar fUr t E(t;_I,t;]. 
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b) Der einfache Prozess Xt hat als Pfade X(., tV) linksstetige Treppenfunktionen 
derHohe cl>i(tV).l( ](t). 

tl_l.li 

x( .. tV) 

T t 

Bild n.3 Pfad eines einfachen Prozesses 

Definition 24 

FUr einen einfachen Prozess {Xt}tE[O,1] defJniert man das stocbastische Integral 
I.(X) fUr t E (tk' tlt+-I] gemii6 

I 

It (X) := fxs dWs:= r cl>i(W,i -W,i_J+cl>k+I(W, -w,J, 
o I~i:;;k . 

bzw. allgemeiner fUr t E [0, 11: 
t 

It (X) := JXs dWs:= r cl>;(W,iAI -W,/_IAI) , 
o l~i:;;p 

d.h. man multipliziert die Zuwiichse der Brownschen Bewegung auf einem Inter­
vall, auf dem X konstant ist, mit dem zugehOrigen Wert von Xt ' niimlich cl> i 
(man vergleiche dies mit dem Lebesgue-Stieltjes-Integral fUr einfache Funk­
tionen). 

Satz 2S - Eigenscbaften des stocbastiscben Integrals 

X:= {Xt} IE [0,1] sei ein einfacher Prozess. Dann gelten : 
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a){lt(X)}tE[O,11 ist ein stetiges Martingal bzgl. {Ft}tE[O,11" 

Insbesondere gilt E(lt(X» = 0 fUr aile t e [0 , 1']. 

bJE(!X' dW, r =~!Xi as) tlJrte[O,1]. 

C)E( sup JXs dWa n2 $4'E(IX; cis) . 
O~t~T 0 U 0 

Bemerkungen 

33 

a) Nach Satz 25 b) ist das stochastische Integral insbesondere quadrat-integrier­
bar. 

b) Fiir den einfachen Prozess XFl gilt 
t 

f1dWs:;OWi , 

° 
und somit auch 

Diese Beziehung wird oft mit 

dwt =Jdt 

(lie) 

beschrieben, was aber immer nur im Sinne von (lie) zu verstehen ist und nicht 
etwa als Gleichheit zweier Differentiale. 

Beweis von Satz 25: 
a) Da ell; Fii _1 -messbar und Wi" Ft-messbar fUr tk$t, ist It(X) f',-messbar. 

Offenbar ist 1,(X) stetig, wenn man beachtet, dass die Brownsche Bewegung ste­

tige Pfade hat. Es seien t e(tk_l,tk] , s e(tl-l ,td ' s < t . OBdA sei k> I. Da 

ell;, i=1, ... ,I, Fs-messbar und Wr Fs-messbar fUr r$s , gilt 
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E{I, (xl I F, ) = 1~ <I> I (w. -w,,_, ) + <I> I (w" - W, + W, - w,,_,) 

+ l <1>, (w" - w,,-J+ <I> k (w, -W,.JF, ) 
1-1 

= ~>lli( w,t - w,t-J + <I> l( Ws - w,,-J + E( <I> I( w" - JYs )IFs) 
,-I .. 
- =;A 

+{~, <I>,(w" -w,,_. )+<1>,( w, -W,.JF,) 
, ' 

=;B 

Fiir i ~ 1+ 1 und u ~ t;_1 gilt (beachte: dann ist tj _1 ~ s) 

E( Cl>;(wu -w,i-J)I Fs) = E( E( Cl>;(wu -w,i-\)I Fs)1 Fti-\) 

= E( E( Cl>;(Wu - w,t-JI Fi,_JI Fs) = E( <1>; .E(Wu - w,i-\)I Fs) = 0 

Da aufierdem <1>1 Fs-messbar und w" - Ws unabhiingig von Fs sind, sind die 

beiden Summanden A und Binder oberen Summe gleich Null, folglich ist 

E(It (x) I Fs) = Is (X) . Der Fall s=O folgt mit einer offensichtlichen Modiitka­

tion auf analoge Weise. 

b) Der Einfachheit halber sei t := tk+ l' Dann gilt 

E( I, (xl') = E(t,! <I> ,<I> A w,. - w,,_. ) ( W, J - w, J ): 
Fall i "# j : OBdA sei i > j : 

E( Cl>;Cl>Aw,t -W,HXW,j -w,j_I)) 

= E( E( <1>;<1> Aw" - w,i-\ )( w,j - w,j_l) I Fti-J)) 
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= E(I;I>J' '(WI -WI ) .l;I>j .E(WI -WI. I Ft. )J = 0 J J-I , I I-I I-I. 

';0 . 

Fall i = j: 

E( I;I>f{Wr; -Wr;_1 )2) = E( I;I>f 'E((Wr; -WrH Ylft;-J) = E(l;I>f .(ti -ti -l)) 

aufgrund der Eigenschaften der Brownschen Bewegung. Somit ist 

c) folgt aus a) und b) und der Doob'schen Ungleichung in Satz 18. o 

Bemerkungen 

a) Allgemeine Integralgrenzen lassen sich folgenderma6en einfiihren: 

T T t 

JXsdWs:= JXsdWs-JXsdWs fUrt~T. 
o 0 

Damit folgt fUr t~ T, A EFt : 

T T 

J1 A(m). Xs(m)'l[t,T](S) dWs = 1A (m)· JXs(m) dWs . 
o t 

b) Seien X, Y einfache Prozesse, a, b E R. Das stochastische Integral ist dann 
linear: 

Wie in der Motivation zu Begino des Exkurses schon angedeutet, mussen wir 
uns jetzt naher mit Messbarkeitsvoraussetzungen an den stochastischen Prozess 
X beschliftigen, urn das stochastische Integral fUr allgemeinere Integranden defi­
Dieren zu kannen. 
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Definition 26 

Gegeben sei ein stochastischer Prozess {(Xt' G t)} te [0,00)' Dann heiBt dies~r Pro­
zess messbar, falls die Abbildung 

[0,(0) x n ~ R n 

(s,cu) ~ Xs(cu) 

B([ 0,(0)) ® F - B( R n ) -messbar ist. 

Bemerkung 
Falls der Prozess X messbar ist, ist insbesondere X(., w) fiir festes wen B[O,oo)­
B(Rn)-messbar. Somit ist dann fiir aile t e[O,oo), i=l, ... ,n, das Integral 

J~ xl (s) ds defmiert. 

Definition 27 

Gegeben sei ein stochastischer Prozess {(X'"Gt)}te[o,oo}' Dann heiJ3t dieser Pro­
zess progressiv messbar, falls fiir jedes t;:: 0 die Abbildung 

[O,t]xn~Rn 

(s,w) ~ Xs(w) 

B([ 0, t]) ® G t - B( R n ) -messbar ist. 

Bemerkungen 

a) Falls {{X(t), Gt)} te[O,oo) progressiv messbar und beschriinkt ist, .ist fiir aIle 

t e [0,(0) das Integral J~ Xi (s) ds Gt-messbar. 

b) Offensichtlich ist jeder progressiv messbare Prozess messbar. 

c) Man kann zeigen, dass jeder messbare Prozess X eine progressiv messbare 
Modiftkation besitzt (Satz von Chung & Doob (1965». 

Satz 28 

Falls aIle Pfade des stochastischen Prozesses {(X,. Gt)}te[O,oo) rechtsstetig (links­
stetig) sind, ist der Prozess progressiv messbar. 
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Beweis: Wir zeigen nur den rechtsstetigen Fall, fUr linksstetiges X folgt die 
Behauptung analog. 

Sei 1>0, meN, k=O, 1, ... , 2m-I, 0 S, S S, t, defmiere dann 

X~m)(W):= Xo(w) 

(m) ._ . ~ (k+l) t 
X s (w). - X(k+l}t/ (w) fUr m < S S, m 

hm 2 2 
Die Abbildung 

[O,t]xO-+ R n 

(S,W)H X~m)(w) 

ist offensichtlich B([O, 1]) ® Gt - B(R n) -messbar. Da der Prozess X~ rechtsste­

tige Pfade hat, gilt auJ3erdem 

lim X~m)(w)=Xs(W) fiiralle (s,w)e[O,t]xO. 
m~oo 

Damit ist auch der P-fast sichere Grenzwert WH Xs( w) B([ 0, t]) ® Gt - B(R n ) -

messbar. 0 

Der folgende Satz Hefert uns eine wichtige Eigenschaft progressiv messbarer 
Prozesse, niimlich dass der gestoppte Prozess {XtA r} t bzgl. der ursprunglichen 
Filterung messbar ist: 

Satz 29 

Sei Teine Stoppzeit bzgl. einer Filterung {Gt}te[O,oo). 1st der stochastische Pro­
zess {(Xt,Gt)}te[O,oo) progressiv messbar, dann 1St auch der gestoppte Prozess 
{(XtAT' Gt)}te[O,oo) progressiv messbar. Insbesondere ist XtAT Gt-messbar und 
auJ3erdem GtAr-messbar. 

Beweis: 

Die Abbildung (s, w) H XSM( w) von [0, t]xO-+Rn ist zusammengesetzt aus den 
Abbildungen k(s, w) H «sI\7:)(w),w) undJ2: (s, w) H Xiw). fi ist B([O,t])-G,­
messbar, da SI\T GsAT-messbar und GSATe Gt> J2 ist offensichtlich B([O,t])-Gt-
messbar, da X nach Voraussetzung progressiv messbar ist, damit ist auch J2 0 fi 
B([O, t])-G,-messbar und somit ist der Prozess {(XiAT' Gt)} te[O,oo) progressiv 
messbar. 
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Um die GtAT-Messbarkeit von XtAT zu beweisen, miissen wir zeigen, dass fiir 
beliebiges A e B(Rn) gilt: 

X~T(A)(") {t A T S s} e Gs fiir alle s ~ 0. 

Falls>t : Es gilt {t ATS s} = Qund Xt;T(A) eGt c Gs> da {(X/AT,Gt)}'E[O,OO) 
progressiv messbar. 

Fall sSt: Es gilt X~T(A)(") {t A T S s} = X~SAT(A)(") {t A T S s} e Gs (") Gs ' da 

{(XS1W G s)} SE [0,00) progressiv messbar und tA T Stoppzeit. 0 

Fortsetzung des stocbastiscben Integrals auf L210,1']-Prozesse 

Um nun das stoehastisehen Integral sinnvoll auf allgemeinere Integranden fort­
zusetzen, fordert man aufgrund der vorangegangenen Diskussion, dass diese In­
tegranden in erster Linie progressiv messbar sein sollen. Um aul3erdem eine 
Norm auf den stoehastisehen Integralen defmieren zu konnen, betraehtet man 
den folgenden Vektorraurn: 

£2[0, T]:= £2([0, r],O,F, {Ft } te(o.rj' p) 

Dureh 

: = {{(x" F, )} J j reellwertiger stoehastischer Prozess I 
t"t0.T 

{X,}, progressiv messbar, e( I: xl dt) < ex>} 

IIXII~ := E( J: Xt2 dt) 
wird eine Norm auf L2[0, 1'] defmiert. Dahinter verbirgt sieh die bekannte 
L2-Norm auf dem Wahrseheinliebkeitsraurn ([0, l1xQ,B([O, l1)®F,..t®P). 
Genau genommen handelt sieh es bier nur urn eine Halbnorm, da aus 

IIX -YlI~ =0 
nieht unbedingt X = Y folgt, es gilt dann nur X = Y ..t®P-fast sieher, Man sagt 
dann, der Prozess X ist iquivalent zum Prozess Y . 
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Die Abbildung X~I.(X) induziert fUr einfache Prozesse X eine Norm fUr 
stochastische Integrale gemi8 

I!.(X)~~ ,- E(!X' dW, r _E(!X; m}UXII} 

Die Abbildung I.(X) ist somit linear und normerhaltend, also eine Isometrie, die 
sogenannte ,,1t6-lsometrie". 

Wir wollen nun das stochastische Integral I.(X) auf Prozesse X EL2[0, 7] fort­
setzen, indem wir zum einen verwenden, dass sich alle Prozesse X EL2[0, 7] 
gleichmillig durch eine Folge einfacher Prozesse }(!.n) approximieren lassen, und 
zum anderen, dass die zugehOrige Folge I.(}(!.n» stochastischer Integrale gemiill 
der Ito-Isometrie eine Cauchy-Folge bzgl. der LrNorm bildet. Es ist zu zeigen, 
dass die Cauchy-Folge konvergiert und der Grenzwert unabhiingig von der 
approximierenden Folge }(!.n) ist. Diesen Grenzwert werden wir dann mit 
I(X)=IxsdWs bezeichnen. Man kann sich nun die Fortsetzung des stochastischen 
Integrals auf L2[0, 7] mittels des folgenden Diagramms veranschaulichen (wobei 
M{ den Raum der stetigen, quadrat-integrierbaren Martingale darstellt) : 

X EL2[0,T] 
J(.) 

........................................................ ~ J(X)EM~ 

I~T 1 
x(n) 

11~L, 
1(.) ( ) 

---------... I(X n ) 

einfacher Prozess stochastisches Integral 
fUr einfache Prozesse 

BUd ll.4 Fortsetzung des stochastischen Integrals 

Man beachte, dass fUr einen einfachen Prozess }(!.n) gilt: 
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Satz30 

Ein beliebiges X e L2[0, 1'] lasst sich durch eine Folge von einfachen Prozessen 
x<n) approximieren, genauer: Es gibt eine Folge x<n) einfacher Prozesse mit 

T 2 

lim E I( X s - X!n») ds = 0 
n-)-co 0 

Beweis: 

a) X e L2[0. n stetig und beschriinkt: Wiihle 

2n-l 

X!n)(w) := Xo(w) 'l{o} (I) + LX k~ (w) .1(kT (k+J)T](t). 
k=O 2 2n' 2n 

Die gewiinschte Konvergenz folgt dann aus dem Satz iiber die dominierte Kon­
vergenz. 

b) X e L2[0, n beschriinkt: Sei G I (w ):= I~ X s (w) ds . Dann ist 

GI(w)- G( _J/)(w) 
-(m) ._ I 1m 
X I ·- Ym 

fUr meN, m geniigend gr06, so dass t-lIm~O, stetig, beschriinkt llD:d FI-mess­
bar. Nach dem Hauptsatz der Differential- und Integralrechnung gilt 

lim X!m)(w)= XI(w) 
m-)-co 

fUr A®P-fast aIle (t,w)e[O, 1']xn. Mit dem Satz iiber die dominierte Konvergenz 
folgt 

T 2 
E I( X!m) - XI) dt m-)-co) 0 . 

o 

80mit kann man nach a) eine Folge X{n) := X(m,,) einfacher Prozesse wiihlen 
mit 



Exkurs 2: Das Ito-Integral 

c) X E L2[O, 11 beliebig: Definiere 

X!m) «(l) := X t «(l)·1 {(/)lIx,«(/)ISm} «(l) 

Dieser Prozess ist dann beschriinkt und erfiiIlt 

T 

E Jlx!m) - X t 12 dt m~a:» 0 

° 
aufgrund des Satzes fiber die dominierte Konvergenz, da Ix!m) I ~ IXtl. 

41 

Nach a) und b) existiert eine geeignete ,,Diagonalfolge" X{n):= X(m,,) ein­
facher Prozesse mit 

[] 

Fiir den Beweis des wichtigen Satzes fiber die Konstruktion des Ito-Integrals be­
niitigen wir noch, dass man bestimmte Martingale auf NuUmengen so abandem 
kann, dass sie rechtsstetig werden und Martingal bleiben: 

Hilfssatz 31 

Sei {(Xt' Gt)} te[O,a:» ein Martingal, wobei die Filterung {Gt} te[O,a:» die fiblichen 
Bedingungen erfiiIle. Dann besitzt der Prozess X, eine rechtsstetige ModifIkation 
{(Yt , Gt)} te[O,a:» , so dass {(Yt, Gt)} te[O,a:» Martingal ist. 

Beweis: 

Dies folgt aus Satz 1.3.13 in Karatzas/Shreve (1991). Dieser Satz b~sagt, dass 
unter den obigen Voraussetzungen der Prozess Xt eine rechtsstetige ModifIkation 
{(Yt,Gt)}te[O,a:» besitzt, so dass {(Yt,Gt)}te[O,a:» Sub-Martingal ist, falls die 
Funktion tH EXt rechtsstetig ist. Da X Martingal ist, ist der Erwartungswert 
konstant und damit offensichtlich diese Bedingung erfiiIlt. Fiir die ModifIkation 
Y gilt dann EYt=Ex, fUr aIle t~O, dieser Prozess ist damit ein Sub-Martingal mit 
konstantem Erwartungswert und folglich ein Martingal. [] 
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Satz 32 - Konstruktion des Ito-Integrals ffir Prozesse aus L2(O, 1'] 

Es existiert eine eindeutige lineare Abbildung J von L2[0, 1] in den Raum der 
stetigen Martingale auf [0,1] bzgl. {Ft}te[O,TJ mit 

i) X = {Xt Le{O,T] einfacher Prozess ~ p( J t (X) = It (X) fUr aile t e{ 0, T]) = 1 

ii) E(Jt (X)2 )= E( J~ X; dS) ,,1to-Isometrie" 

Diese Abbildung ist im folgenden Sinne eindeutig: ErfiiIlen Abbildungen J,J' die 
Bedingungen i) und ii), so sind fUr aIle X eL2[0, 1] die Prozesse J'(X) und J(X) 
ununterscheidbar. 

Definition 33 

Ffir X eL2[0, 1] und J wie in Satz 32 setzen wir 

t 

JXs dWs := Jt(X) 
o 

und nennen dies das stochastische Integral bzw. das Ito-Integral von X 
bzgl. W. 

Beweis von Satz 32: 

a) Zuniichst approximieren wir den Prozess X mit Hilfe einfacher Prozesse und 
untersuchen dann die Konvergenz der zugehOrigen stochastischen Integrale: 
Nach Satz 30 existiert zu X eL2[0, 1] eine Folge einfacher Prozesse 
x<m) eL2[0, 1] mit 

T 

lim E J(xs _X~m) r ds = O. 
m-+co 0 

Diese Folge x<m) ist auch Cauchy-Folge bzgl. der T-Norm. Aufgrund der Li­
nearitiits-Eigenschaft des stochastischen Integrals fUr einfache Prozesse und nach 
Satz 25 b) gilt dann fUr t e[O, 1]: 
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Damit ist die Folge It(X<m» Cauchy-Folge in L2(Q,Ft,P) mit einem Ft-mess­
baren, quadrat-integrierbaren L2-Grenzwert, den wir It(X) nennen. Da aus der 
Konvergenz im quadratischen Mittel die P-stochastische Konvergenz folgt, gilt 
fUr jedes E >0: 

Mit einer Teilfolge X(mk) erhalten wir dann P- fast sichere Konvergenz gegen 
den Grenzwert ltC-X). 

Insgesamt erhalten wir so einen neuen stochastischen Prozess bzgl. {Ft} te[O,71 ' 
niimlich 1(X) := {It(X)he[O,1]' Ober diesen Grenzwert konnen wir bisher wemg 
sagen. So wissen wir insoesondere nicht, ob der Prozess 1(X) stetig ist. Auch ist 
der L2-Grenzwert It(X) nicht eindeutig, er ist nur P-fast sicher festgelegt und die 
Teilfolgen, die die fast sichere Konvergenz ergeben, sind unter Umstiinden fUr 
jedes t verschieden. 

b) Wir konnen aUerdings zeigen, dass der Prozess 1(X) als L2-Grenzwert ein 
Martingal ergibt: 

Seien t, s e[O, 1], t>s. Dann gilt, da das stochastische Integral fUr einfache Pro­
zesse ein Martingal ist: 

Nach Definition der bedingten Erwartung gilt dann 

J It (x(m») dP= fls( x(m») dP fUr aIle A eFs und aile meN. 
A A 

Aufgrund der L2-Konvergenz gelten aber auch 

f It (x(m) ) tIP 
A 

J ls( x(m») dP 
A 

Insgesamt foIgt also 
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Jlt(X)dP= JIs(X)dP fiiralleA eFs' 
A A 

Da IS(X) Fs-messbar ist, folgt daraus die Martingaleigenschaft 

E(It (X)IFs) = Is (X) P-fast sicher. 

c) Jetzt konstruieren wir die Abbildung J mit Hilfe des L2-Grenzwertes I t<X). 

Da die Filterung {Ft}t die iiblichen Bedingungen erfiillt und {It(X)}t Martingal 
ist, konnen wir nach Hilfssatz 31 fiir jedes t den Grenzwert It(X) auf einer P­
Nullmenge so abiindem, dass sich insgesamt ein rechtsstetiger Prozess 
{Jt(X), Ft}t ergibt, der Martingal ist. Insbesondere ist Jt(X) quadrat-integrierbar 
ist. 

d) Wir beweisen nun die Stetigkeit von J(X): 

Das so konstruierte rechtsstetige Martingal J(X) ist weiterhin L2-Grenzwert der 
Foige It(.x(m». Indem wir die Doob'sche Ungleichung in Satz 18 anwenden, 
ergibt sich 

{:,"fJ, (x(m) )- J, (x)~ 2 

S4.E(IT (X(m))-JT (X)Y m-+oo )0. 

Es gibt also eine Teilfoige X(mk) mit 

E(supllt(x(mk))_Jt(X)n2 S k 1 2' 
OStS~ U 2·k 

Insbesondere gilt dann mit der Chebyshev-Ungleichung 

p( sup IIt(X(mk))-Jt(X)I~f) Sk 2 .E( sup 1 ... ;1 2 s-i-. 
OStS~ OStST ~ 2 

Nach dem l.BoreI-Cantelli-Lemma konvergiert damit die Foige stetiger Prozesse 

{It( X(mk) )}tE[O,7] fiir k~oo gieichmiiBig P-fast sicher gegen einen rechtssteti­

gen Prozess J(X), der damit auch P-fast sicher stetige Pfade besitzt. Wir konnen 
deshalb oBdA annehmen, dass J(X) stetige Pfade besitzt. 



Exkurs 2: Das Ito-Integral 45 

e) Nun zeigen wir, dass Jp0 nicht von der approximierenden Folge ,X(m) ab­
hangt. 

Seien ,X(m)eL2[0, TJ, y(m)eL2[0, 1] approximierende Folgen von X eL2[0, 1] 
mit L2-Grenzwerten I(X') und l'(X'), dann ist auch 

{
x(m) ,m gerade 

Z(m) .= 
. y(m) , m ungerade 

approximierende Folge zu X und ItC.lf .. m» konvergiert sowohl gegen II,.X') als 
auch gegen l'iX') in L2. Daraus folgt dass fUr jedes t e[O, 1] It(X') und l't (X') 
P-fast sicher gleich sein mussen, also auch mit JI,.X') P-fast sicher uberein 
stimmen. 

f) Weiter gilt aufgrund der Konvergenz von It(,X(n» in L2 und mit Satz 25 b) : 

Die letzte Gleichheit folgt, weil X in ([0, 1]xO, B([O, 1])®F, A.®P) L2-Grenzwert 
von,X(n) ist. 

g) Die Linearitiits-Eigenschaft der Abbildung J ergibt sich ahnlich wie in Teil f) 
durch Grenziibergang zusammen mit der Linearitatseigenschaft des stochas­
tischen Integrals fUr einfache Prozesse. 

h) Eindeutigkeit der Abbildung J: 

Sei J' eine weitere lineare Abbildung mit den im Satz geforderten Eigenschaften. 
Dann folgt mit der Eigenschaft i) und aus der Stetigkeit linearer Abbildungen fUr 
alle te [0, 1] : 

J;(X) = J;( lim x(mt )) = lim J;(x(mt)) = lim It (x(mt)) = Jt(X) 
k~oo k~oo k~oo 

P-fast sicher. 

Da J I,.X') und J'I,.X') beides stetige Prozesse sind, folgt nach Satz 5 sogar ihre Un­
unterscheidbarkeit. [] 
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Satz 34 - Spezialfall der Doob'schen Ungleichung 

Sei X eL2[0, TJ, dann gilt: 

E( sup JXs dWs J2 S4'E(Ix: ds) 
OStsT 0 0 

Beweis: 
folgt aus der Doob'schen Ungleichung in Satz 18 und der Ito-Isometrie, da 

J~ X s dWs Martingal ist. 

Definition 35 - Mehrdimensionale Verallgemeinerung des stochastischen 
Integrals 

o 

Sei {(Wet). Ft)}t mit W(t)=(W1(t) •...• Wm(t» eine m-dimensionale Brownsche Be­
wegung und ((X(t), F t)}te[O,71 ein Rn.m-wertiger progressiv messbarer Prozess 
mitXij eL2[0, 1']. Dann defuiiert man das stochastische Integral Ix dWwie folgt: 

t 

J xes) dW(s):= 
o 

m t 
I J Xlj(s)dWj(s) 
j=lO 

m t 

I Ix'!i(s)dw/s) 
j=lO 

wobei die einzelnen Summanden eindimensionale Ito-Integrale sind. Man 
beachte, dass 

m t 

I fXij(s)dWAs) 
j=10 

wieder Martingale sind. 

Weitere Fortsetzung des stochastischen Integrals 

Zur Modellierung von Handelsstrategien benotigen wir eine Fortsetzung des 
stochastischen Integrals auf eine groJlere Klasse von Prozessen als L2[0, 1']. Wir 
werden hierzu den Vektorraum 
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H2[O, T1 := H2([O. r].n.F. {F,} l£{o.TI' p) 
: = {(x" F, ) , e{ 0.1'1 reellwertiger stoebastiseber Prozess I 

{X I }, progressiv mess bar • S: X,2 dt < 00 P - fast sieber} 

betraehten. Da Prozesse X e EP(O, 1] nieht unbedingt eine endliehe T-Norm be­
sitzen, konnen sie aueh nieht auf die gleiehe Weise dureh einfaehe Prozesse ap­
proximiert werden, wie dies im Beweis von Satz 30 fUr Prozesse aus L2[0, 1] 
durehgefUhrt wurde. Allerdings lasst sieh ein Prozess X e EP(O, 1] mit Hilfe von 
Stoppzeiten lokalisieren, genauer: 

Dureh die Folge von Stoppzeiten Tn' neN, mit 

r.(.,):- TAi.f{OSt~T !X;(")ds~.} 
(Tn ist tatsachlich Stoppzeit bzgl. {Ft}t, siehe Chung V.4) defmiert man die 
Foige gestoppter Prozesse x<n) tiber 

X!n)(lV):= Xt(lV).l{T.(Q)~t}' 

Hierdurch erreicht man, dass die Prozesse x<n) fUr alle neN in L2[0, 1] liegen. 
Folglich lasst sich fUr x<n) das stochastische Integral I(X<n» wie in Satz 32 
bestimmen. Man definiert dann auch das stochastisehe Integral I(X) tiber 

It(X):=It(X(n)) fUrO~t~Tn' 

I,(X) ist fUr X eEP(O, 1] wohldefmiert, da auch die Konsistenzeigenschaft 

It (X) = I t ( x(m)) fUr 0 ~ t~ Tn (~ Tm), m ~ n, 

gilt. AuBerdem gilt fUr X eEP(O, 1], dass die niehtfallende Folge von Stoppzeiten 

Tn n~ct)) +00 P-fast sieher 

erfiiIlt. Somit ist It(X) per Konstruktion ein lokales Martingal mit lokali­
sierender Folge Tn' Das SO defmierte stoehastisebe Integral ist weiterhin linear 
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und besitzt stetige Pfade. Allerdings gelten nun die Eigenschaften aus den Siitzen 
32 ii) (Ito-Isometrie) und 34 nicht mehr, da sie eventuell nicht-existierende Er­
wartungswerte beinhalten. 

Exkurs 3: Die Ito-Formel 

Das fundamentale Werkzeug zum Rechnen mit stochastischen Integralen ist die 
Ito-Formel. Wir werden sie bier nur fUr den Fall sogenannter Ito-Prozesse ein­
fiihren. 

AUgemeine VoraussettungenjiJr diesen Abschnitt: 

Gegeben sei ein vollstiindiger Wahrscheinlichkeitsraum (O,F,P), der mit 
einer Filterung {Ft} t versehen sei, die die ublichen Bedingungen erfiillt. 
Weiter sei auf diesem Raum eine BroWDSche Bewegung {(W"Ft)}te[Ooo) 
bzgl. dieser Filterung definiert. ' 

Definition 36 

((W(t), Ft)}tE[o,oo) sei eine m-dimensionale Brownsche Bewegung, meN. 

a) ((X (I), Ft)}tE[O,OO) heiBt reellwertiger Ito-Prozess, falls er fUr aIle t~O eine 
Darstellung _ 

t t 

X(t} = X(O) + IK(s)ds+ IH(s)dW(s) 

° 0 
t m t 

= X(O) + IK(s)ds+LIH/s)dWj(s) P-fastsicher, 
° j=lo 

besitzt, wobei Xo Fo-messbar ist und {K(/)}tE[O,OO)' {H(t)}tE[O,OO) progressiv 
messbare Prozesse sind mit 

t t 

IIK(s)1 tis < ex) und I Hl(s)ds < ex) P-fast sicher, fUr aIle t ~ 0, i=l, ... ,m. 
o 0 
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b) Ein n-dimensionaler Ita-Prozess X=(X<l), ... , X<n» besitzt als Komponenten 
reellwertige Ito-Prozesse. 

Bemerkungen 

a) Insbesondere gilt naeh den obigen Voraussetzungen ~e.H2[O, 11 fUr alle 
T>O, j=l, ... ,m. 

b) Die Darstellung eines Ito-Prozesses ist eindeutig bis aufUnunterseheidbarkeit 
der Prozesse Kt und Ht (siehe Ubung 0.5). 

e) Man verwendet fUr die Darstellung eines Ito-Prozesses oft aueh die symbo­
lisehe Differentialsehreibweise 

dXt = Kt dt + Ht d~ . 

Definition 37 

Sind X und Y reellwertige Ito-Prozesse mit den Darstellungen 

so heiBt 

X(t) = X(O) + J~K(s)ds+ J~H(s)dW(s) 

y(t) = y(o)+ J~ L(s) ds + J~ M(s )dW(s) 

m t 

(X'Y)t := L JHj(s). M;(s)ds 
;=10 

die quadratisehe Kovariation von X und Y. Insbesondere heiBt (X)t := (X, X)t 
quadratisehe Variation von X. 

Sehreibweise 

Sei X ein Ito-Prozess, Yein reellwertiger, progressiv messbarer Prozess. Setze 

t t t 

J r(s)dX(s):= J Y(s)·K(s)ds+ J Y(s)·H(s)dW(s) 
000 

falls die Integrale auf der reehten Seite defmiert sind. 
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Jetzt sind wir so weit, dass wir die eindimensionale Ito-Fonnel fonnulieren 
konnen: 

Satz 38 - Eindimensionale Ita-Formel 

Wt sei eine eindimensionale Brownsehe Bewegung, Xt sei ein reellwertiger Ito­
Prozess mit 

t t 

Xt = Xo + JKs ds+ JHs dWs , 
o 0 

f: R~R sei zweimal stetig differenzierbar. Dann gilt fUr aIle t ~ 0: 

t t 

f(Xt ) = f(Xo) + Jf'(Xs) dXs +t· Jf"(Xs)d(X)s 
o 0 
t 

=f(Xo)+ J(f'(Xs)·Ks +t·fll(Xs)·H;)ds 
o 
t 

+ Jf'(Xs)Hs dWs P-fast sieher. 
o 

Insbesondere sind aIle auftretenden Integrale defmiert. 

Bemerkung 

In der Kurzsehreibweise sieht man deutlieh, dass sieh die Ito-Fonnel vom Fun­
damentalsatz der Differential- und Integral-Reehnung um den weiteren Sum­
manden 

t 

t· Jfll(XS ) d(X)s 
o 

unterseheidet. (Beaehte: die quadratische Variation (X)t ist trivialerweise ein Ito­
Prozess.) 

Differentialscbreibweise 

Man verwendet fUr die Ito-Fonnel oft die symboliscbe Differentialschreibweise 
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Beweis der lto-Formel (Sat:; 38): 

1. Scbritt: Lokalisierung 

51 

Man stellt zunachst dUTch Lokalisierung sicher, dass aIle auftretenden Erwar­
tungswerte existieren und Grenzprozesse vertauscht werden diirfen. Definiere 
fUrt~O 

t t t 

Mt := JHsdWs , Bt := JKsds , Bt := JIKsids 
000 

lInd fUr neN die Stoppzeiten 

0, falls Ixol ~ n 

T.:~ il!+ ~ 11M,I ~ n oder a, ~ n oder ! HI ds ~ n }.fillls Ix 01 < n 

00, falls Ixol < n und { ... s.o .... } = 12' 

Dann gilt TlS;T2S ... ~00 P-fast sicher. Lasst sich die Ito-Formel fUr den gestopp­
ten Prozess 

zeigen, so erhalt man das allgemeine Ergebnis dUTch Grenziibergang n~oo (vgl. 
auch Obung 0.7). DUTch diese Lokalisierung kann man nun oBdA annehmen, 

dass Xo( m), Mt( m), Bt (m) und fH/ds aIle dUTch eine Konstante C auf [0,00 )xQ 

beschriinkt sind. Dann gilt auch 1 Xt( m) S 3C I. AuBerdem ist dann Ht e L2[0, 1] 
und das lokale Martingal M t ein Martingal. Die Werte vonfauBerhalb [-3C,3C] 
sind irrelevant, da Xt unter obigen Annahmen keine Werte auBerhalb dieses 
Intervalls annimmt. Wir konnen uns deshalb auf den Fall f zweimal stetig dif­
ferenzierbar mit kompakten Trager zuriickziehen. Somit sind auch f, f', f" 
beschriinkt. 

2. Scbritt: Taylor-Entwicklung 

Sei t>0 und 1t={to, t1, ... ,tm} mit to=O, tm=t eine Partition von [O,t]. Defmiere 
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Durch Taylor-Entwicklung jedes einzelnen Summanden in der folgenden Tele­
skopsumme gilt fUr festes €V (wobei wir der einfachen Notation wegen im Fol­
genden die Abhangigkeit von €V nicht explizit schreiben) : 

I(Xt )- I(xo) = f(/(Xtk )- I(Xtk_.)) 
k=l 

= ff'(Xtk_JXtk -Xtk_J+t ff"(11kX Xtk -Xtk_.)2 
k=l k=1 . (~ , .~-------(.~~~)------~' 

mit 11k (€V) = Xtk_1 (€V) + Ok (€V X Xtk (€V) - Xtk_1 (€V»). Ok (€V) E (0.1) . 

Wir zeigen nun, dass die Summen (*), (**) in dieser Darstellung gegen die zuge­
bOrigen Integrate in der Ito-Formel konvergieren. 

3. Schritt: Der lineare Term (*): 

Es gilt 

(*)= ff'(Xtk_JBtk -Btk_I)+ ff'(Xtk_JMtk -Mtk_I )· 

{c=1 , (c=1 , 
A1(n-) A2(n-) 

i) FUr linil ~ 0 konvergiert A I (1t) P-fast sieher und in LI gegen das Lebesgue­
Stieltjes-Integral 

t t 

Jf'(Xs)dBs = Jf'(Xs)Ksds 
o 0 

ii) Um die Konvergenz von A2(1t) zu untersuchen, approximieren wir !'(Xs) 

durch den einfachen Prozess 

m 

Ysn-(€V):= f'(Xo(€V»)' 1{0} (s) + ~f'(Xtk_I(€V»)'l(tk-Jotkl(S)' 

Mit der Ito-Isometrie folgt 

E(!(r(x,)-Y:)oH,dW,)' = ~!(r(x,)_y,.)2 oH;.u] 0 
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Aufgrund des Satzes fiber dominierte Konvergenz geht dieser Wert fiir lIall ~ 0 

gegen Null. Damit folgt nun 
t 

A2(a) = JYs1T ·HsdWs 
o 

t 

11+0 ) Jf'(Xs)Hs dJV.s in L2. 
o 

iii) Aus i) und ii) folgt : 
t I 

(*) ~+o) Jf'(Xs)Ks ds + Jf'(Xs)Hs dJV.s 
o 0 

4. Schritt: Der quadratische Term (**) 

Es gilt 

ff"(77k)(Xtk -Xlk_lt 
k=1 

= ff"(77kXBlk -Blk_1 t +2ff"(77k)(Blk -Bt"_1 )(MI"" - Mtk_.) 
(c=1 , ,k=l , 

Ill1T) Iz(1T) 

+ ff"(77k)(Mt" -MI"_lt· 
(c=1 , 

13 elf) 

m 

i) DaB, Mundf"bescbriinkt sind, aullerdem rlBtk - Btk_11 ~ Bt < Cgilt, folgt 
. k=l 

IIl(a)+I2(a)I~2C·llf"ll .( max IBt" -Be" 1+ max IMt -Mt I~· 
00 lskSm -I lSkSm" Ie-I U 

Da B und M stetig sind, konvergiert dieser Ausdruck fiir linil ~ 0 P-fast sieher 
und in L 1 gegen Null. 

ii) Betrachte nun 13(7t). Defmiere 

I;(a):= ff"( Xtk_.)( Mlk - Mlk_1 t ' 
k=l 
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Dann gilt 

IIin)- I;(n)1 s max 1f"(17k)- f"(Xtk_t )I·(i:( Mlk - Mtk_t Y) . 
l~k~m k=l 

Mit der Cauchy-Schwarzschen Ungleichung folgt: 

E(h (n)- I; (n)) 2 

~ {~J!"(qk)-d X,._, )~ 2 E(E( M,. -M,.J'r 

Die Konvergenz des ersten Faktors folgt aus der Stetigkeit vonf, die des zweiten 
Faktors folgt aus dem nachfolgenden Lemma 39, Teil a). Somit gilt 

E{I3(n)- I;(n))2 111rI~O) o. 

Aul3erdem besteht, wenn man beachtet, dass 
2 tk 

E(Mtk -Mtk_J =E fHitis 
tk-t 

gilt und die gemischten Tenne Erwartungswert Null haben (siehe Ubung 0.6), 
die Beziehung: 
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( m ( )4) IInl-~O 
E {; M,,, - M'k_1 --~) O. 

AuBerdem gilt mit dem Satz fiber dominierte Konvergenz: 

E[t(fH; dSJ2J ~ E (m::x 'jH; dSJ. fH; ds IlnJl-?o » 0 
k=l 0 '''_I 0 

'----v-----' '---.r--' 
~o /iir Ilnll~o <C 

Jnsgesamt konvergiert fUr linil ~ 0 also 1;( n-) gegen 14 (n-) in L2. Da weiter 

, , 
14(n-) ~nI~O) jf"(Xs)H;ds= jf"(Xs)d(X)s P-fastsicherundinLl 

o 0 

gilt, folgt 
t 

I;(n-) Ilnl~O) jf"(Xs)H; ds inLl. 
o 

Beachte hierzu: 

~ 1,( .. )-[r(x,)H} ds ) 

"111,(.-)-1;(")1+ 1;(.-)- [r(x,)HI ~ 
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t 

Somitkonvergiert 13(1l") gegen !f"(Xs)H; ds inLI flir IlnJl -+ O. 
o 

5. Schluss: 

FUr IlnJl -+ 0 konvergieren 
t t 

(*) gegen Jr(Xs)Ks ds + Jr(Xs)Hs dfYs und 
o 0 
t 

(**) gegen Jf"(Xs)H; ds inLI. 
o 

Insgesamt existieren so fiir den gestoppten Prozess Teilfolgen 1l"k von Partitionen 
von [O,t], so dass die jeweiligen Summen in 2., 3., 4., P-fast sicher gegen die 
richtigen Grenzwerte konvergieren, d. h. beide Seiten in der Ito-Foonel sind fiir 
festes t P-fast sicher gleich. Da aber beide Seiten stetig in t sind, sind sie deshalb 
sogar P-fast sicher gleich fiir aIle t, d.h. ununterscheidbar. 

Das allgemeine Ergebnis fiir den ungestoppten Prozess ergibt sich nun durch 
Grenziibergang n-+oo, indem man die Stetigkeit von!. f',f" beachtet. 0 

Lemma 39 

X sei ein Martingal mit E(Xs)2 < 00 und I Xs I ~ C flir aIle se [0, t] P-fast sicher. 
Sei 1t::::{to,tI , ... ,tm} mit to::::O, tm::::t eine Partition von [O,t]. Dann gelten 

a) E(~(Xt, -Xt.J2J' ~48·c' 
b) Falls X stetig ist, gilt: 

E(~( Xt, -xt,J) 1+° > 0 
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Beweis: 

a) Sei 0:5: /:5: m-l: Wegen der Martingaleigenschaft gilt: 

E(.f (Xli - Xlj_IYIFtl) = E((.f (Xtj -xtJ_J )2IFi/] 
}=I+l }=I+l 

=E((Xtm -XII)2IFtl) :5:4·C2 P-fastsicher. (I) 

Da I Xt I :5: C gilt, folgt 

E(t(Xlj -x,j_1r] :5:4·C2 'E(t(X1i -X,J_1r] :5:16·C4 . (2) 
}=1 }=1 

Aul3erdem 

E(~Jtl(x'j -x,J'(x" -x"J) =E{E( ... ~,)) 
= E('I:l(XII -X',_I Y E( f (Xlj -xIJ_tYIFi/)] 

1=1 j=l+l 

(3) 

Aus (2) und (3) folgt: 

E((t(X1J -Xli_tr]2J =E(t(XtJ -Xti_J 4
] +2'E(f f.:.] 

}=1 }=1 1=1 j=l+l 

:5: 16· C4 +2 ·16·C4 = 48. C4 . 

b) Beachte zuniichst: 

fxJ:5:( mf!X (Xj))2 . fx]. 
j=1 1~}~m j=1 

Wende dies auf Xj:= (Xti -Xtj_J an.Danngilt: 
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(0) 

SE(C~~JX'J -X,J)' '~(X'J -X,J'). 
Mit der Holderschen Ungleichung folgt: 

r-~--------------~ 

(®)S E(C~JX') -x,Jr). 1(t(X'J -x,J'J'J i.J->o .0. 

p-Is. ! IlnJj-+o 
o 

nach a) ~.J48.CZ 

Die Konvergenz gegen Null folgt mit der Stetigkeit von Xt und dem Satz liber 
dominierte Konvergenz. [] 

Anwendungsbeispiele der Ito-Formel 

a)Xt=t: 

Diesen ,'prozess" kann man wie folgt darstellen: 

X t = 0 + I~ 1 ds + I~ 0 dWs . 

Aus der Ito-Formel ergibt sich fUr zweimal stetig differenzierbaresf 

J(t} = J(O)+ I~J'(s) ds. 

Somit kann der Hauptsatz der Differential- und Integralrechnung als ein Spe­
zialfall der Ito-Formel angesehen werden. 

b)Xt=h(t) : 

Aus der Ito-Formel ergibt sich fUr ein differenzierbares h gerade die Substitu­
tionsregel: 
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c) Xt = Wt,.f(x) = x2 : 

Wegen 
t t 

Wi = 0+ JOds+ JldWs 
o 0 

ergibt sich 
t t t 

Wi2 = J2.~ d~ +!' J2 tis = 2· Jws d~ +t. 
o 0 0 

Man beachte den Zusatzterm "t", der im Vergleich zu den Regeln der gewohn­
lichen Analysis auftritt und seine Ursache in der Dicht verschwindenden quadra­
tischen Variation von Wt hat. 

Satz 40 - Mehrdimensionale Ito-Formel 

Sei X(t)=(Xl (t), .... Xn(t» ein n-dimensionaler lto-Prozess mit 

t m t 

Xj(t) = Xj(O) + IKj(s)ds+LjHij(s)dWj(s), i=l, ... ,n, 
o j=lO 

wobei W(t)=(W1(t), ... , Wm(t» eine m-dimensionale Brownsche Bewegung ist. Sei 
weiter f: [0, oo)xRn ~ Reine C1,2-Funktion, d.h.fist stetig, nach der ersten 
Komponente einmal stetig differenzierbar, nach den letzten n Komponenten 
zweimal stetig differenzierbar. Dann gilt: 

tnt 

+ Jft(s,X1(s), ... ,Xn (s»)ds+ L Jfx;(s,X1(s), ... ,Xn (s») dXj(s) 
o j=10 

1 n t 

+"2' L Jfx;x (s,X1(s),...,Xn (s»)d(Xj,Xj ) 
j.j=lO j s 

Beweis: Der Beweis der mehrdimensionalen Ito-Formel verUiuft analog zum ein­
dimensionalen Fall, in Schritt 2 betrachten wir jedoch (der Einfachheit halber sei 
n=l): 
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f(tk,X(tk))- f(tk-l,X(tk-l)) 

= [f(tk> X(tk ))- f(tk-l' X(tk ))]+(i(tk-l' X(tk ))- f(tk-l, X(tk-l))] 
= ft{"k ,X(tk )Xtk -tk-l)+ fx(tk-l.X(tk-l)XX(tk)-X(tk-l)) 

+t f n(tk-l, 17k )(X(tk)- X(tk-l)t 
mit 17k wie in Schritt 2, tk-l~'Optk. 

Aus der mehrdimensionalen Ito-Fonnel folgt sofort: 

KoroUar 41- Produktregel (oder PartieUe Integration) 

SeienXt und Yt eindimensionale Ito-Prozesse mit 

Xt =Xo + J~Ks ds+ J~Hs dWs 

Y, =Yo + J~,us ds+ J~us dWs · 

Danngilt: 
I I I 

X,·Y,==XO·Yo+ JXsdYs+ JYsdXs + Jd{X,y}s 
o 0 0 

I I 

=Xo·Yo+ J(Xs,us+YsKs+Hsus)ds+ J(Xsus+YsHs) dWs 
o 0 

Die Gleichung des Aktienpreises 

D 

In unserer Modellierung des zeitstetigen Marktmodells galt fUr den Preis P(t) der 
Aktie zur Zeit t im Fall d=m= 1 (d.h. also nur eine Aktie und eine eindimen­
sionale Brownscbe Bewegung) : 

p{t} = p.exP((b-!u2 ) t+UW/ ) 

Bei diesem speziellen Beispiel fUr die Anwendung der Ito-Fonnel wiiblen wir: 

t I 

X, =0+ J{b-t(2)ds+ JC7dWs • 
o 0 

f(x) = p·ex • 
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Mit Hilfe der Ito-Formel erhalten wir dann 
t t 

f(X t ) = P+ J[f(Xs)(b-t a2 )+t f(Xs)·a2 ]ds+ f f(Xs)·a dWs 
o 0 

also 

t t 

P(t} = P+ f p(s)·bds+ J P(s)·adWs 
o 0 

"Gleichung des Aktienpreises" (GdA) 

Die Oleichung des Aktienpreises gilt auch fiir zeitabhiingiges b und a; wenn man 
t t 

X t = J(b(s)-ta2(s»)ds+ fa(s)d~ 
o 0 

wlihlt. Man beachte dabei, dass b und a geeignete Voraussetzungen erfiillen 
mussen, damit Xt Ito-Prozess ist. In der symbolischen Differentialschreibweise 
lautet die Oleichung des Aktienpreises: 

dP(t) = P(t)(bdt+ad~) 
P(O) =p 

(GdA) 

Man sagt auch, dass P(t) eine Losung der stochastischen Differentialgleichung 
(OdA) ist. Wir werden unten Bedingungen fiir Existenz und Eindeutigkeit von 
Losungen stochastischer Differentialgleichungen von iihnlicher linearer Form 
kennenlemen. 

Hier liisst sich die Eindeutigkeit elementar zeigen: 

Sei Y(t) eine weitere Losung von (OdA). Dermiere fUr t ~ 0 

1 
Z(t):= p(t). 

Dann gilt mit Hilfe der Ito-Formel 

dZ(t) = Z(t)((a2 -b}dt - ad~). 

Mit der Regel der partiellen Integration folgt 
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d(Z{t). Y{t)) = 

Z{t)Y{t)(b-b + 0'2 )dt + Z{t)Y{t){O'- 0') dWe -Z{t)Y{t)0'2 dt = 0, 

also 

Y(t) = const· p(t). 

Damit ist die Losung von (GdA) durch die Anfangsbedingung Z(O)·Y(O) = 1 ein­
deutig bestimmt. 

Ais VeraIlgemeinerung gilt der folgende Satz 

Satz 42 - Variation der Konstanten 

Es sei ((Wet), Ft)}tE[O,CO) eine m-dimensionale Brownsche Bewegung. Sei x E R 
und A, a, Sj' OJ seien progressiv messbare reellwertige Prozesse mit . 

1 (lA{s)1 + la{s)l) ds <00 P-fast sicher, fUr aIle t~O und 

t(S} (s)+ a} (s») ds <!X) P-fast sicher, fUr alie t~O. 

Dann besitzt die stochastische Differentialgleichung 

m 

dX(t) = (A(t). X(t) + a(t») dt + L(Sj(t)X(t) + O'it») dWit) 
j=l 

X(O) = x (SDGL) 

die bzgl. A®P eindeutige Losung {X(t), Ft} tE[O,CO) mit 

( 
t 1 (m J m t 0' ·(u) ) 

X(t) = Z(t) x + J Z(u) a(u) - ~S j(u)O'j(u) du + ~ J ~(u) dWj(u) 
o J=l J=10 

(Ll) 

wobei 

die eindeutige Losung der homogenen Gleichung: 
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dZ(t) = Z(t)( A(t) dt + S(t)' dW(t)) 

Z(O) = 1 

(HDGL) 

ist. 

Bemerkung 

Der Prozess {X(t),Ft}te[O,oo) lOst die stochastische Differentialgleichung (SDGL) 
in dem Sinne, dassX(t) fUr aIle t~O 

t m t 

X(t) = x+ j(A(s). X(s) + a(s)) ds+ L J(Sj(s)X(s)+Uj(s)) dWj(s) 
o j=10 

P-fast sieher erfiillt. 

Beweis von SatT. 42: 

i) Analog zum Beispiel "Gleichung des Aktienpreises" lasst sich zeigen, dass 
Z(t) die homo gene Differentialgleichung (HDGL) lOst. Es gilt weiter: 
yet) = y·Z(t) lost die homogene Gleichung mit der Anfangsbedingung Y(O)=y. 
Genauso wie oben zeigt man, dass dies sogar die einzige Losung ist. 

ii) Wir zeigen nun, dass X(t) gemiiB (Ll) die inhomogene lineare stochastische 
Differentialgleichung (SDGL) lost. Es seien hierzu Z(t) wie oben und 

Anwendung der Produktregel ergibt: 

dX(t) = d(Z(t). Y(t)) = Z(t). dY(t) + Y(t). dZ(t) +d(Y,Z)t 

=Z(t{ ~t)(a(t)-~Sj(t).o/t»)dt+ ~t) ~O)t)dW/tl)+ 
( , ~ , 1 

Y(t)·z(t) A(t)dt+S(t) dW(t)) +S(t) .z(t)· z(t) o-(t)dt 

= (a(t) + A(t). X(t))dt + ( X(t). S(t)' + o-(t)') dW(t) . 

Foiglich lostX(t) die stochastische Differentialgleiehung (SDGL). 
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iii) Seien nun x(t) , X(t) zwei Losungen der stoehastisehen Differential­

gleiehung. Dann lost 

x(t) := X(t) - X(t) 

die folgende homogene Gleiehung 
m 

dX(t) = X(t)(A(t)dt+ L Sit} dWj(t}) , x(o) = o. 
j=1 

Naeh i) folgt dann X(t) = 0 P-fast sieher fUr aIle t~O. 0 

11.2 Handelsstrategie und Vermogensprozess 

Jetzt, naehdem der Ito-Kalkiil bekannt ist, konnen wir die Wertpapierpreise all­
gemeiner mit zeitabhiingigen Zinsraten und Volatilitaten modellieren. Dies wird 
nun Grundlage alIer folgenden zeitstetigen Marktmodelle sein. 

Allgemeine Voraussetzungen 

Gegeben sei ein vollstiindiger Wahrseheinliehkeitsraum (Q,F,P). Auf die­
sem Raum sei eine m-dimensionale Brownsehe Bewegung {W(t),Ft}te[O,ClO) 
defmiert, wobei {Ft} t die Brownsehe Filterung ist. Wir modellieren die Preis­
verliiufe der Aktien und des Bonds gemiiB 

po(t) = Po ·~I..(S)dr) "Bond" 

p;(t) = Pi .exP(i[bi(s)-t to"J(S)]dS+ t iO"ij(S)dWiS)] "Aktie" 
o )=1 )=10 

fUr te [0,1], T>O, i=l, ... ,d, wobei ret), b(t)=(b}(t), ... ,bit»" o(t)=(O"iP»ij aIle 
bzgl. {Ft}t progressiv messbare, (komponentenweise) gleiehmiiJ3ig in (t,w) 
besehriinkte Prozesse sind. Zusiitzlieh wird angenommen, dass o(t)o(t)' 
gleiehmiiJ3ig positiv defInit ist (d.h. es gibt ein K>O mit x'o(t)o(t)x ~ K xx 
fUr aIle xeRd und aIle te[O, 1'] P-fast sieher). 
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Diese Preise sind nach Satz 42 liber die Variation der Konstanten die eindeutigen 
Losungen der folgenden stochastischen Differentialgleichungen (hier sichem die 
obigen Beschriinktheitsannahmen die Anwendbarkeit von Satz 42): 

dPO{t) = po{t). r{t) dt 

po(O) = Po 

dp;(t) = P;(t)(b;(t}dt+ tUij(t)dW/t)] , i=l, ... ,d 
J=l 

P;(O)=Pi 

,,Bond" 

,Akti " , e 

Insbesondere kennen wir hiermit auch die Darstellung der Preise als Ito-Prozesse. 

Bemerkung 

In unseren allgemeinen Voraussetzungen haben wir nicht gefordert, dass der 
Zinssatz r(t) des Bonds deterministisch ist, r(t) darf somit auch eine Zufallsvaria­
ble sein. Damit ist der ,,Bond" nicht mehr ,,risikolos", allerdings ist durch die 
Forderung, dass r(t) gleichmlWig beschriinkt sein soIl, das Risiko im Vergleich 
zum Aktienpreis, der u.a. durch die Brownsche Bewegung bestimmt wird, stark 
eingeschriinkt. 

Mogliche Handlungen der Investoren 

Nach der Modellierung der Preise wollen wir nun die Handlungen der Marktteil­
nehmer modellieren. Hierbeinehmen wir an, dass der Investor die folgenden 
Handlungsmoglichkeiten besitzt: 

a) Er kann sein Vermogen umschichten, zum Beispiel manche Aktien verkaufen 
und den Erlos in andere Wertpapiere investieren. Dies wird durch den ,,Port-
folioprozess" oder die ,,Handelsstrategie" modelliert werden. . 

b) Er kann auch Teile seines Vermogens konsurnieren, was durch den ,,Konsum­
prozess" dargestellt wird. 

Forderungen an das Marktmodell 

Wir stellen nun einige Forderungen zusammen, denen ein realistisches Markt­
modell genligen sollte: 
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a) Der Investor darfkeine Kenntnis der zukiinftigen Preise besitzen (er darf also 
keine ,,hellseherischen" Fahigkeiten haben). 

b) Die Handlungen des einzelnen Investors sollen keinen EinfluB auf die Wert­
papierpreise haben (Annahme des ,,kleinen Investors"). 

c) Jeder Investor sei zum Zeitpunkt t-=O mit einem festen Startkapital ausgestattet 
(wobeijeder Investor ein anderes Startkapital besitzen kann). 

d) Das nicht in Aktien angelegte Geld witd in Bonds angelegt. 

e) Die Investoren sollen sich selbst-fmanzierend verhalten, d.h. jede Vermogens­
anderung entsteht durch Gewinne oder Verluste aus Investment oder Konsum, es 
kann kein Geld aus dem Nichts dazukommen oder im Nichts verschwinden. 

Weiterhin machen wit noch folgende Annahmen, die sich fUr die Entwicklung 
der Theorie als praktisch erweisen werden: 

t) Die Wertpapiere sind beliebig teilbar. 

g) Man kann auch eine negative Anzahl von Wertpapieren halten. 1st der Anteil 
des festverzinslichen Wertpapiers negativ, so heiBt das, dass man einen Kredit 
aufgenommen hat, ein negativer Anteil an Aktien heiBt, dass man sogenannte 
Aktienleerverkaufe getatigt hat (d.h. man hat Aktien verkauft, die man noch 
nicht besitzt, man schuldet also anderen Investoren Aktien). 

h) Am Markt entstehen durch Vermogensurnschichtungen keine Transaktions­
kosten. 

Negative Bondpositionen und Kreditzinsen 

1st r(t) konstant, dann bedeutet die Moglichkeit, negative Anteile am Bond zu 
halten, dass man zum gleichen Zinssatz Geld sowohl anlegen als auch leihen 
kann. FUr manche Institutionen ist diese Situation tatsachlich niiherungsweise ge­
geben. Generell gilt, dass der Zinssatz in unserem Modell von der Marktlage, 
also von (t, m) E [0, 1]xQ, abhiingt und nicht davon, ob man einen positiven oder 
negativen Anteil an Wertpapieren halt. 

Mathematische Umsetzung einiger Forderungen 

Wit erinnem UDS, am Markt werden d Aktien und ein risikoloses Wertpapier, ge­
nannt ,,Bond", gehandelt. Das Startkapital des Investors, und damit sein Anfangs­
vermogen, sei x>O (Forderung c) ). Damit kann nun zur Zeit t=O eine Wertpa­
pierzusammenstellung ~O)=(~(O), qJl(O), ... , qJJ..O»' erworben werden, wobei 



11.2 Handelsstrategie und Vermogensprozess 67 

IP,{O) die Anzahl der vom i-ten Wertpapier gehaltenen Anteile ist. Analog geben 
dann die Komponenten des Vektors q.(t)=(IPo(t), lPt(t), ... , IPl..t»' an, dass IP/{t)eR 
Anteile vom i-ten Wertpapier zum Zeitpunkt t gehalten werden. Den Vektor q.(t) 
nennt man eine Handelsstrategie. Aus der Forderung a) ergibt sich, dass die 
Handelsstrategien progressiv messbar bzgl. {Ft}t sein miissen, Kauf-oder 
Verkaufsentscheidungen werden also immer bzgl. der im Zeitpunkt t gegebenen 
Informationen getlltigt. Forderung e) fiihrt dazu, dass die Handelsstrategien 
selbst-f'manzierend sein miissen, was in den folgenden Def'mitionen priizisiert 
wird. 

Ein diskretes Beispiel zum Begriff "selbst-finanzierende Handelsstrategien" 

Wir werden im zeitstetigen Modell den Begriff einer selbst-f'manzierenden Han­
delsstrategie durch eine Forderung def'mieren, die auf den ersten Blick nicht 
ganz natiirlich erscheint. Am folgenden zeitdiskreten Beispiel soIl diese For­
derung motiviert werden. 

Dazu betrachten wir einen Markt, der aus einer Aktie und einem festverzins­
lichen Wertpapier besteht. Es gebe drei Handlungszeitpunkte, n8mlich t = 0,1,2. 
Der Vektor (lPo(t), IPt(t»' stellt die Anzahl der Anteile, die man an Bonds bzw. 
an Aktien halt, dar. Da wir beliebig teilbare Wertpapiere annehmen und zusatz­
lich Aktienleerverkaufe und Kredite erlauben, kann lPo(t) bzw IP. (t) jede belie­
bige reelle Zahl annehmen. C(t) sei der Konsurn zur Zeit t mit C(O) =: O. X(t) sei 
das aktuelle Vermogen des Investors zur Zeit t mit dem Startkapital X(O)=x. 
poet) bzw. p.(t) seien die Preise des festverzinslichen Wertpapiers bzw. der Ak­
tie zum Zeitpunkt t. 

Der Investor legt nun sein Anfangsvermogen x in Aktien und Bonds an, d.h. es 
gilt: 

X(O) = x = IPo(O)· po(O) +IP.(O). 1\(0). 

Zurn Zeitpunkt t= 1 haben sich die Preise der Wertpapiere geiindert, auJ3erdem 
konsumiert er einen Teil des Vermogens. Sein aktuelles Vermogen betragt dann: 

X{l) = IPo{O).Po{l)+IP.{O).P.{l)-C{l). 

Insgesamt ergibt sich somit: 

d.h. sein Vermogen zum Zeitpunkt t=1 ist gleich dem Anfangsvermogen plus Ge­
winnN erlust aus den Preisanderungen des Bonds und der Aktie vermindert urn 
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den getatigten Konsum. Zu diesem Zeitpunkt hat er auch die Gelegenheit, das 
ubriggebliebene Vermogen umzuschichten, wobei 

X(I) = IPo(I). Po(l) + IPI (1). f\ (1) 

gelten muss, da er sein Kapital nach Konsum wieder vollstandig am Marlct in­
vestiert. 1m Zeitpunkt t=2 gilt analog: 

X(2) = IPo(2). Po (2) + IPI (2). f\ (2). (*) 

AuBerdem 
2 

X(2) = x + L[IPo(i -1).(Po(i)- Po(i -1»)+ IPI (i -1)'(f\ (i)- f\ (i -1»)] 
;=1 

2 

- LC(i). (**) 
;=1 

1m zeitdiskreten Modell kann man die Bedingung "selbst-fmanzierende Handels­
strategie" als "Vermogen vor der Umschichtung minus Konsum ist gleich dem 
Vermogen nach der Umschichtung" formulieren, also als 

Eine solche Formulierung ergibt beim zeitstetigen Modell keinen Sinn, da dort in 
jedem Zeitpunkt gehandelt werden kann. Wir werden statt dessen nun X(t) durch 
die Gleichung (*) als Vermogensprozess des Investors zur Strategie tp(t) de­
fmieren ("Vermogen=Gesamtwert der gehaltenen Wertpapiere"). Die Gleichung 
(**) werden wir als Defmition fUr eine selbst-fmanzierende Handels- und 
Konsumstrategie verwenden, wobei die auftretenden Summen durch ent­
sprechende Integrale ersetzt werden. Das legt folgende Forderung nahe: 

t t t 

X(t) = x + fIPo(s)dPo(s) + fIPI (s)df\ (s) - fc(s)ds. 
o 0 0 

Man beachte, dass die Preisverlaufe Ito-Prozesse sind, woraus sich an die IP;(s) 
natfuliche Forderungen fUr die Existenz der auftretenden Integrale ergeben 
(siehe Defmition 43). 

Unsere bisherigen Uberlegungen werden nun in mathematischer Hinsicht priizi­
siert: 
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Definition 43 

a) Eine Handelsstrategie rp ist ein Rd+l-wertiger, bzgl. {Ft}te[O.l1 progressiv 
messbarer Prozess 

rp(t}:= (rpO(t),rpl (t), ... , rpd (t»)' 
mit 

J;lrpo(t~ dt<oo P-fastsicher, (I) 

d T 
L 1 (rp;{t).p;{t))2 dt<oo P-fastsicher, fUri=I, ... ,d. (2) 
. 1 0 J= 

d 

Der Wert x:= L rpi (0) . Pi hellit Anfangswert von rp. 
;=0 

b) Sei rp eine Handelsstrategie mit Anfangswert x > 0. Der Prozess 

d 

X(t) : = L rp; (t)p; (t) 
;=0 

hellit Vermogensprozess bzgl. rpmit Startvermogen x. 

c) Ein nicht-negativer, bzgl. {Ft}te[O.l1 progressiv messbarer, reellwertiger Pro­
zess e(t). te [0, 1'], mit 

T 

Je(t)dt < 00 P-fast sieher 
o 

hellit ein Konsumratenprozess, kurz Konsumprozess. 

Definition 44 

(3) 

Ein Paar (rp,e) aus einer Handelsstrategie rp und einem Konsumratenprozess e 
hellit selbst-finanzierend, falls fUr den zugehOrigen Vermogensprpzess X(t), 
te [0, 1'], gilt: 

d t t 

X(t)=x+Lfrpi(S)d~(s)- fe(s)ds P-fastsicher. (4) 
;=00 0 

"aktuelles Vermogen" = "Startvermogen" + "GewinneNerluste" - ,,Konsum" 
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Bemerkung 

Es gelten 

t t 

J 'Po(S) dPo(s) = J 'Po (s)po(s)r(s) ds 
o 0 

t t m t 

J 'Pj(s) dp;(s) = J 'P;(s)p;(s)b;(s) ds+ L J 'P;(s)p;(s)O"ij(s) dWj(s) , i=I, ... , d. 
o 0 j=lO 

Die Bedingungen (1), (2), (3) in den Defmitionen und die Bescbriinktheitsan­
nahmen an r, b und O"sichem also, dass die Integrale auf der rechten Seite in (4) 
existieren. 

Definition 4S 

('P, c) sei ein selbst-finanzierendes Paar aus einer Handelsstrategie und einem 
Konsumprozess mit X(t) >0 P-fast sicher fUr aIle te [0,1]. Der RQ-wertige Pro-
zess 

._ ( )' . _ 'P;(t)· p;(t) 
1Z'(t).- 1Z'l(t),...,1Z'd(t) , te [O,TJ, nut 1Z'j(t) - () 

X t . 

hellit selbst-finanzierender Portfolioprozess zum Paar ('P, c). 

Bemerkungen 

a) Der Portfolioprozess gibt den in die i-te Aktie investierten Anteil yom Ge­
samtvermogen an. Daher ergibt sich der Anteil des in den Bond investierten Ver­
mogens als 

( ') 'Po(t). po(t). ' d 
1- tr(t) ! = X(t) , wobel !:= (1, ... ,1) eR . 

b) Bei Kenntnis des Vermogensstandes X( t) und der Preise P,{ t) ist es aquivalent, 
seine Aktivitaten durch ein selbst-fmanzierendes Paar ('P,e) oder ein Paar (1Z',e) 
zu bescbreiben, d.h. Handelsstrategie und Portfolioprozess sind aquivalente 
Bescbreibungen des gleichen Sachverhaltes. 

Die Vermogensgleichung 

Durch Bescbreibung der Handelsaktivitaten mittels eines Portfolioprozesses lasst 
sich eine einfache stochastische Differentialgleichung fUr den Vermogensprozess 
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herleiten. Sei hierzu zuniichst (91,c) ein selbst-fmanzierendes Paar aus einer 
Handelsstrategie und einem Konsumprozess. Dann gilt unter zusiitzlicher 
Berucksichtigung von Defmition 45: 

d 

dX(t) = L91j(t)dp;(t) - c(t)dt 
j=O 

d ( m ~. 
= 910 (t) Po (t) r(t )dt + t 91j (t) P; (t) bj (t) dt + ~ (T ii (t) dW/d) - c(t} dt . 

+ -.M l)x(t),.(th/t + ~ x(tl",!t {hi (tl dt + E. <7 if (t) dWJ ttl) -c(t hit 

= (1- n{t)' l)X(t)r(t) dt + X(t)n{t)' b(t) dt+ X(t)n{t)' u(t) dW(t) -c(t) dt 

Somit erhalten wir die "Vermogensgleichung" 

dX(t) = [r(t)X(t) - c(t) ]dt + X(t)1r(t)' ((b(t) -r(t) l)dt + u(t) dW(t)) 

X(O) =X (VG) 

Diese stochastische Differentialgleichung hat nach Satz 42 fiber die Variation der 
Konstanten eine eindeutige Losung, wenn man an n(t) geeignete II1tegrierbar­
keitsbedingungen stellt. Da b, r, (T gleichmiiBig beschriinkt sind und der Kon­
sumprozess c die Bedingung (3) erfiillt, reicht nach Satz 42 

f 1r[ (t) dt < 00 P-fast sicher (4) 

fiir i=I, ... ,d, als Bedingung fiir die eindeutige Losbarkeit der stochastischen Dif­
ferentialgleichung (VO). 

Man kann nun altemativ auch einen Portfolioprozess direkt als den Prozess der 
Anteile des in die einzelnen Aktien investierten Vermogens einfiihren, ohne den 
Umweg fiber die Handelsstrategie zu nehmen. 



72 Kapitel II: Das zeitstetige Marktmodell 

Definition 46 

Der progressiv messbare, Rd-wertige Prozess 7I(t) heiBt selbst-finanzierender 
Portfolioprozess zum Konsumprozess c(t), falls die zugehOrige Vermogensglei­
chung (VO) eine eindeutige Losung X(t)=.xn;C(t) besitzt mit 

Bemerkung 

T 

J(X(t) '1Z'i(t»)2 dt < 00 P-fast sicher fUr i=l, ... ,d. 
o 

(5) 

Die Bedingung (5) an Portfolio- und Vermogensprozess entspricht genau der In­
tegrierbarkeitsbedingung (2) an Handeisstrategie und Preisprozess. ErfiiIlt der 
Portfolioprozess die Bedingung (4), so foIgt aus der Stetigkeit des zugehOrigen 
Vermogensprozesses, dass auch Bedingung (5) erfiillt ist. Insbesondere ist somit 
die Forderung (5) schwiicher ais Forderung (4). Wiihrend aus Bedingung (4) so­
fort foIgt, dass der Vermogensprozess strikt positiv ist (folgt aus der expliziten 
Form der Losung von (VO) unter Annahme (4», erlaubt Bedingung (5) auch 
Portfolioprozesse, die zum Bankrott des Investors (d.h. X(t)=O fUr ein t E [0, 7]) 
oder sogar zu negativen Vermogen fUhren konnen. 

Definition 47 

Ein selbst-fmanzierendes Paar (tp,c) (bzw. (1Z',c) ) bestehend aus einer Handels­
strategie tp (bzw. Portfolioprozess 1Z') und einem Konsurnprozess c heiBt zu­
lissig fiir das Startvermiigen x>O, wenn fUr alle te [0,7] der zugehOrige Ver­
mogensprozess 

X(t) ~ 0 P-fast sicher 

erfiiIlt. Die Menge aller zuliissigen Paare (1Z',c) fUr x wird mit A(x) bezeichnet. 

Ein Beispiel 

Nach den vielen theoretischen Defmitionen betrachten wir nun ein sclieinbar ein­
faches Beispiel mit konstantem Portfolioprozess und vermogensabhiingiger Kon­
sumrate. Sei y > 0 , wiihle 

tr(t) == 1Z' e R d konstant, c{t) = r' X{t) , 

wobei X(t) der zu (n; c) gehOrige Vermogensprozess ist. Der Investor schichtet 
sein Vermogen also so urn, dass die Anteile des in die einzelnen Aktien und des 
in den Bond angelegten Vermogens fiber die Zeit konstant bleiben. Weiter ist die 
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Gesehwindigkeit des Konsumzuwaehses (die ,,Konsumrate") immer proportional 
zwn gegenwartigen Vennogen des Investors. Man beaehte, dass, obwohl sieh ;r 

wiihrend des Zeitablaufs nieht andert, man andauemd handeln muss, da sich die 
Wertpapierpreise stiindig und verschiedenartig andem. Die Vennogensgleiehung 
lautet hier: 

dX(t) = (r(t) - r)X{t) dt + X(t);r'((b{t) -r(t) 1) dt + cr(t) dW(t)) , 

X(O)=x. 

Nach Satz 42 -Variation der Konstanten- ergibt sich fiir den Vennogensprozess: 

x{t) = x e%p( ~r(' )- r +0"'(1)(,)-r(' ). !)-t !-"U(, 11' ].t. + ! fT' U(, }dw(, »). 

Insbesondere ist damitX(t) strikt positiv und (;r,c)eA(x). Unter dem Gesichts­
punkt, dass der Investor garantiert keinen Bankrott erleidet, ist eine solche Stra­
tegie empfehlenswert. Sie wird sieh aueh unter anderen Gesichtspunkten noch 
als optimal erweisen (siehe Kapitel V). 

11.3 Eigenschaften des zeitstetigen 
Marktmodells 

In diesem Absehnitt werden wir den Markt fUr den Spezialfall d = m betraehten. 
Die Dimension der Brownsehen Bewegung entspricht also der Anzahl der Ak­
tien. Insbesondere interessiert uns die Menge der mit einem Anfangskapital x er­
zielbaren Endvennogen X(1). Das erstaunliehe Ergebnis wird sein, dass bei ge­
eignetem Anfangsvennogen x jedes Endvennogen X(1) erzielbar sein wird. 

Generelle Voraussettung flJr diesen Abschnitt 

d=m 

Zuniichst benotigen wir noch einige Bezeichnungen: 
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Be1.eichllullgell 

r(I)~ e{ I'(')ds) 
o(t):= 0' - 1 (t)(b(t) -r(t)!) 

Z(,) , ~ ex.( -111(,)' dW(,) - t 11111(')112 ds ) 
H(t) := y(t). z(t) 

Man beachte, dass aus der gleichmiiJ3igen Beschriinktheit von b, r und der 
gleichmiiJ3igen Positiv-Defmitheit von 0'0' die gleichmiiJ3ige Beschriinktheit von 
lI~t)1I2 folgt. Wahrend man ~t) als eine Art (relative) Risikoprlimie fUr das In­
vestieren in Aktien ansehen kann, wird der Prozess H( t) in Zusammenhang mit 
dem Bewerten von Optionen eine entscheidende Rolle spielen. Man beachte, 
dass H(t) positiv, stetig und progressiv messbar bzgl. {Ft}t ist. AuBerdem ist H(t) 
eindeutige Losung der stochastischen Differentialgleichung 

dH(t) = -H(t)(r(t) dt + o(t)' dW(t)) 

H(O) = 1 

ist. Hiermit erhalten wir auch die Darstellung von H(t) als Ito-Prozess. 

(H) 

Der nachfolgende Satz kann als das zentrale Ergebnis des gesamten Buches an­
gesehen werden und beinhaltet die entscheidende Eigenschaft des Marktmodells 
fUr den Fall d = m. 

Satz 48 - VoUstandigkeit des Marktes 

a) Das selbst-fmanzierende Paar (1Z',c) bestehend aus einem Portfolioprozess 1Z' 
und einem Konsumprozess c sei zulassig fUr das Startvermogen x>O, also 
(1Z',c) eA(x), dann gilt fUr den zugehOrigen VermogensprozessX(t): 

E( H(I)X(I) + 1H(,)c(,) ds ) ~ x flk aile Ie [0, T). 
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b) Es seien B ~ 0 eine F rmessbare ZufaUsvariable und c(t), t e [0,1], ein Kon­
surnprozess mit 

Dann existiert ein Portfolioprozess n(t), te [0,1'] mit (n-,c) eA(x), so dass der 
zugehOrige Vermogensprozess X(t) 

X(1) = B P-fast sicher 

erfiiUt. 

Bedeutung des Satzes tiber die Vollstiindigkeit des Marktes 

Man kann nun mittels Teil a) H(t) als den geeigneten Diskontierungsprozess in­
terpretieren, der das in t = 0 benotigte Mindestvermogen 

angibt, urn Ziele, die in der Zukunft liegen (z.B. leben gemall einem vorgegebe­
nen Konsurnprozess c, erreichen eines Vermogenstands B zur Zeit t=T) zu er­
reichen. Teil a) setzt somit dem Wunschdenken bei gegebenem Anfangsvermo­
gen x > 0 Orenzen. 

Teil b) zeigt, dass die nach a) zulassigen Ziele auch tatsachlich realisierbar sind. 
Teil b) besagt also, dass man jeden gewiinschten Vermogenszustand in t=T 
durch Handeln gemall eines geeigneten selbst-fmanzierenden Paares (n-,c) er­
reichen kann, falls man ein hinreichendes Anfangsvermogen besitzt. Diese Ei-
genschaft bezeichnet man als die Vollstiindigkeit des Marktes. . 

Beweis von Satz 48: 

a) Es sei (n-,c) eA(x). Anwendung der Produktregel aus Korollar 41 auf H(t)X(t) 
liefert (man beachte die Vermogensgleichung (VO) fUr X(t) und die stochas­
tische Differentialgleichung (H) fUr H(t) ): 
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t 

H(t)· X(t) + J H(s)c(s) ds 
o 
I' t 

=x+ JH(s)dXs+ JX(s)dH(s) + {X,H}I + JH(s)c(s)ds 
o 0 0 , 

= x + J H(s)X(s>[r(s) + n{s)' (b(s) - r(s)!) - r(s) - n{s)' a(s)o(s)] ds 
o , 

+ JH(S)X(S)[ n(s)' a(s) - 8(s)'] dW(s) 
o , 

= x + J H(S)X(S)[ n-(s)' a(s) - 8(s)'] dW(s) . (1) 
o 

Da wegen (n,c) eA(x) die linke Seite der Gleiehung nieht~negativ ist, ist das 10· 
kale Martingal auf der reehten Seite naeh Satz 17 sogar ein Supermartingal, also 

E( H(t)X(t) + I li(s)c(s)ds ] 

-+ + ! Ii( s)X(s)( n( s)' a( s) - 8{s) ') dW(S)] < x . 

b) Deftniere 

Dann istX(t) F/~messbar,X(1)=B P-fast sieher undX{t)~O. Da {F/}' die Brown­
sehe Filterung ist, ist der Erwartungswert jeder Zufallsvariablen bedingt mit Fo 
P-fast sieher konstant, also gleieh dem unbedingten Erwartungswert. Somit foIgt 
X(O)=x P-fast sieher. Deftniere nun 
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Dies ist ein {Ft}t-Martingal mit M(O)=x P-fast sieber. Naeb dem im folgenden 
Exkurs bebandelten Korollar 53 zum Martingaldarstellungssatz kann M als Ito­
Integral mit einem {Ft}t-progressiv messbaren, Rd-wertigen Prozess ,¥(t) mit 

J; 11'¥{t ~12 dt < 00 P-fast sieber 

dargestellt werden: 
t , 

M(t)=x+ J'¥(s) dW(s) P-fastsieberfiirallete[O,1]. 
o 

Man bat also insgesamt 
t t 

X(t)H(t) + J H(s)c(s) ds = x + J '¥(s)' dW(s) P-fast sieber (2) 
o 0 

Man kann insbesondere X(t) so wiiblen, dass X(t) stetige Pfade besitzt (man 
beaebte, dass H(t), fH(s)c(s)ds und das stocbastisebe Integral stetig sind und H(t) 
positiv ist). Mit den anseblie.Benden Lemmas 49 und 50 folgt dann aus dem Ver­
gleieb der Darstellungen (1) und (2), dass der oben defmierte Prozess X(t) der 
Vermogensprozess zumPaar (?r,c) eA(x) mit 

?r(t) = {( a(t(l)' (H~~(t) + o(t)) , falls X(t) > 0 

o ,sonst 

ist. 

Lemma 49 

X(t) und 11(t) aus dem Beweisteil b) des Satz 48 erfiillen 

Beweis: 

Es gilt 

J; (1l";{t)x{t))2 dt < 00 P-fast sieber, i=l, ... ,d. 

IHt}X(t}1I ~ II( a(tr1)' ~~:~ + (a(tr1)' o(t}X(t}11 

~ I(o{t)-l)' ~II+ I(o{t)-l)' 6{t)X(t)l· 

a(t} p(t) 

D 



78 Kapitel II: Das zeitstetige Marktmodell 

(i) Zunachst gilt, da o(t)a( t) , gleichmiiJ3ig positiv defmit ist, 

2 ( ) 1 11'¥(t)112 
a t S K'IH(t)12 ' 

Da H(t) auf [0,1] stetig und positiv ist, gilt fUr P-fast alle WE n: 

IH(t)1 ~ "lin H(s) = H(/) > 0, 
sEt°,T] 

wobei s*=s*(w). Wenn man beachtet, dass das Integral J:II'¥~~12 dt. fUr P-fast 

alle WE n endlich ist, foIgt dann fUr P-fast alle WE n: 

(ii) FUr f3(t) gilt: , 
p2 (t) = X2 (t)(b(t) - r(t)..!)' (0'-1 (t)' 0'-1 (t)) (0'-1 (t)' 0'-1 (t)) (b(t) - r(t)..!) , 

Da o(t)O'( t) , gleichmiiJ3ig positiv defmit ist, gilt 

Da b und r gieichma6ig beschriinkt sind und X(t) stetig auf [0, 1] ist, gilt fUr P­
fast alle WE n 

TIT J p2(t) dt S -2 J X2(t)I~(t)-r(t). 1112 dt 

° K ° 
1 ( )2 T 

S -2 max X(t) 'JI~(t) - r(t)· 1112 dt < ex> • 
K te{O,T] ° 

iii) FUr P-fast alle WE n gilt nun wegen i), ii) und (a2+b2)/2 ~ 2ab: 

IJ 



n.3 Eigenschaften des zeitstetigen Marktmodells 79 

Lemma SO 

Es seien n(t), X(t), c(t) wie im Beweisteil b) von Satz 48. Lost X(t) die stoehas­
tisehe Differentialgleichung 

d(H(t)X(t}) = H(t)X(t)( tr(t)' u(t) - B(t)') dW(t) - H(t)c(t) dt , 

X(O)=x, 
dann istX(t) Vermogensprozess zu (tr,c) mitX(O) =x. 
Beweis: 

SetzeX(t):= X(t)H(t}. Sei zunaehst X(t»O fUr aile te[O,1] P-fast sieher. 

Dann gilt nach Voraussetzung 

tiX(t) = H(t)[ X(t)( tr(t)' o{t) - B(t)') dW(t) - c(t) dt] . 

= H{t{ ~l:r dw(t) - <{t) til) 
, 

= \I1(t) dW(t) - H(t)c(t)dt. 

Anwendung der Ito-Formelliefert 

und mit der Produktregel folgt dann 

dX(t) = d(!~:D = X(t) d(H(t)) + H(t) di(t) +d(X, 1 )t 

= (X(t) (r(t) + IIB(t)112) _ c(t) + o(t)' \I1(t)) dt 
H(t) H(t) 

+ (X(t) B(t)' + \I1(t)') dW(t) 
H(t) H(t) 
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, 

+ X(t{ B(t) + H(~~(t)) dW(t) 

= ( X(t)[r(t) + n(t)' (b(t) - r(t). 1)] - e(t)) dt 

+ X(t)n(t)' a(t) dW{t) , 

also erfiiIlt X(t) die Gleichung des zu (H,e) gehOrenden Vermogensprozesses. 
WegenX(t)~O und Lemma 49 gilt dann auch (H,e) eA(x). 

NimmtX(t) fUr ein (to,lib)e[O,T]xQ den Wert Null an, so muss wegen H(t»O 
fUr aBe t e [0, 1'], c(t)~O fUr aBe t e [0,1'], B ~ 0, auch 

c(t,aJo)=O fiirallet~to 

B(aJO) = 0 

gelten, und X(t,lib) bleibt somit identisch Null auf [to, 1']. Hieraus .folgt dann 
weiter 

'1'( t, aJo) = 0, n{t, aJo ) = 0 fUr aIle te [to, 1']. 

In diesem Fall gilt dann dX(t)=O fUr aIle t~to, was wegen X(t):::;O, JZ(t)=O, c(t)=O 
auch mit der rechten Seite der Vermogensgleichung ubereinstimmt. 0 

Bemerkungen 

a) lIH(t) ist der Vermogensprozess zum Paar 

(JZ(t), e(t» = ( IT- 1(t)'6{t), 0) 

mit Anfangsvermogen x := 1IH(0)=1 und Endvermogen B := lIH(1) (siehe 
lJbung -0.10). 

ii) Es kann weiter gezeigt werden, dass der in Satz 48, Beweisteil b) konstruierte 
Portfolio-Prozess H der bis auf P®,A.-Aquivalenz, also Ununterscheidbarkeit, 
eindeutige Portfolio-Prozess ist mit (H,C) eA(x) und X(1)=B P-fast sieher (vgl. 
hierzu auch die Bemerkung naeh dem Beweis von Satz 52). 
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Exkurs 4: Der Martingaldarstellungssatz 

AUgemeine Voraussetzungen jilr diesen Abschnilt 

Gegeben sei ein vollstiindiger Wahrseheinliehkeitsraum (n,F,p). Auf die­
sem Raum sei eine m-dimensionale Brownsehe Bewegung {(W,.F,)}, de­
finiert, {F,}, sei dabei die Brownsehe Filterung. 

Definition 51 

Ein reeHwertiges Martingal {(Mt,Ft)}te[O,l1 bzgl. der Brownsehen Filterung 
{Ft} t heillt ein Brownsches Martingal. 

Satz 52 - Ita's Martingaldarstellungssatz 
{(Mt ,Ft)}te[O,l1 sei ein Brownsehes Martingal mit 

EMf < 00 fiir aIle 1 E [0,1], 

d.h. ein quadrat-integrierbares Brownsches Martingal. Dann existiert ein pro­
gressiv messbarer Rm-wertiger Prozess '1'(/), t E [0, 1] mit 

und 

Beweis: 

t , 

Mt = Mo + J'I'(s) dW(s) P-fast sieher. 
o 

Da MO Fo-messbar ist, foIgt, dass MO P-fast sicher konstant sein muss. Daher 
konnen wir oBdA Mo = 0 voraussetzen. Da Mt Martingal ist, gilt dann auch 
E(Mt}=O fiir aHe t E [0, 1]. Mt ist ais Martingal abgesehlossen, d.h. es hat die 
Form 

Mt = E( M TI Ft ) fast sieher. (1) 

Zur Brownsehen Filterung betrachten wir nun den Vektorraum L2,m[0, 1], wobei 
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L2,m[O,1] := {(X(t), F t)tE[O,1] Rm-wertiger progressiv messbarer 

Prozess I X;EL2[O, 1], i=I, .. , m}. 

Dann ist L2.m[O, 1] ein Hilbert-Raum mit dem inneren Produkt 

(n. ii),~ E(! ma)· H(.,) dr) . 
L2,0(0, F'['> P) sei nun der Raum aller quadrat-integrierbaren, Fr-messbaren Zu­
fallsvariablen Z mit E(Z)=O. L2,0(0, F'['> P) sei versehen mit dem allgemein ub­
lichen inneren Produkt 

(1,7) : = E( 1.7) . 
Die Abbildung 

I: L2.m [O, T] ~ L2.O(n,FT, p) 

T 

X H I T(X) : = I x(s) dW(s) 

° 
ist eine Isometrie. Foiglich ist 

ein vollstandiger Unterraum von L2,0(0, F'['> P). Wenn wir nun zeigen kannen, 
dass V=L2,0(0, F'['> P) gilt, ~ lasst sichjede quadrat-integrierbare Zufallsvari­
able mit Erwartungswert Null als stochastisches Integral mit '¥EL2,m[O,1] dar­
stellen, insbesondere gilt dies fUr die Zufallsvariable M'['> also 

T 

MT = J'¥(s)dW(s). 

° 
Aus der Darstellung (I) und der Martingaleigenschaft stochastischer Integrale 
fUr Integranden aus L2,m[o, 1] folgt dann die Behauptung des Satzes 

M, = ~l'l'(a)dW(s)'F, ) = !'I'(S)dW(S)' 
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Ziel: Zeige, dass V mit L2,O(Q, F 1'> P) iibereinstimmt. 

Sei ZeL2,O(Q, F 1'> P)n V 1. , d.h. es gilt E(Z·N)=O fUr alle NeV. Die Behauptung 

V=L2,O(Q, F 1'> P) ist dann aquivalent dazu, dass ZsO P-fast sicher gilt. 

i) Fiir t e [0, 1] wird durch 

Z{t) := E(ZIFt) 

ein Martingal mit Z(O)= E(Z) =0 P-fast sicher defmiert. Da die Filterung {Ftlt 
die iiblichen Bedingungen erfiillt, konnen wir nach Hilfssatz 31 annehmen, dass 
dieses Martingal rechtsstetig ist. Setze fUr H eL2,m[0, 1] 

N(T):= IT (H) , N(t):= E(N(T)IFt) = It (H) 

Da N(t) ein stetiges Martingal ist, gilt mit Satz 13 ("optional sampling") fUr alle 
Stoppzeiten 1: :s;; T, dass 

T 

N(1:) = E(N(T)IFT)::: I T(H) = J H(s).I[o;r](s)ds eV . 

° und damit auch 

Somit ist nach der Martingalcharakterisierung, Satz 15, Z(t)-N(t) ebenfalls ein 
Martingal. 

ii) Fiir () eRm beliebig, aber fest, seien 

f{x.t):= exp(iB'x+rIIBlI 2 t) 
= exp(t IIBlI2 t) . cos( ()' x) + i· exp( t IIBlI2 t) . sin( ()' x) , 

, fl(~.t) , f2(X,t) 

M8(t) := f(W(t).t) , 

fUr t e [0,1]. Es gilt dann 
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Durch Anwendung der mehrdimensionalen Ito-Formel, Satz 40, auf Real- und 
Imaginarteil vonl erhiilt man: 

M8(t) = II (W(t),t) + i· h(W(t),t) 
m t 

= 1+ ~:>. JBj . I(w(s),s) dWj(s) 
j=1 0 

+ J(tII~12 -t tBJJ/(W(S),S) ds 
o J=1 

m t 

= 1+ ~:>. JBj M8(s)dW./s) 
j=1 0 

Da I M8(t) I fUr festes BeRm auf [0,1] beschriinkt ist, sind die stochastischen 
Integrale nach dem letzten Gleichheitszeichen Martingale. Insbesondere ist also 
M8(t) ein Brownsehes Martingal. 

iii) Nach den Beweisteilen i) und ii) ist Z(t)· M8(t) ein Martingal, also folgt 

E(Z(t). M8(t)IFs) = Z(s). M8(s) = Z(s} .exP(iB'W(s} +tll~12 s). 

Somitgilt 

E(Z(t) .exp(iB'[ W(t) - W(s)])IFs) = Z(s)· exp( - tll~12(t - s») 

fUr OS sS t::s; T. Mit 0=to<t1< ... <tnST, 11k := W(t,J-W(tk_l)' '1 eRm, j = 1, ... ,n, 
folgt , 

+<T). erp~ ~ ajA J J) = +( z(T). 4; ~ ajA J )I Fi._.) 1 

= erp( - tI[B.112 (" -,.-1)) . E( z(,~tl.~; ~ njA j J) 

= ... = exp(-t tllBjl12(t j -t j-l )I.E(Z(O») = 0 
J=1 ~ 

wegen Z(O)=O fast sieher, d.h. wir haben 
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Z(T).L exp(itejAj) fiiralle ~ eRm ,j=l, ... ,n. 
J=l 

Da Z(1) = Z F rmessbar ist, defmieren wir nun auf F T das folgende Mall l' iiber 

dP=Z·dP 

Naeb iii) gilt fiir beliebiges ~ eRm 

Wegen der Eindeutigkeit der Fourier-Transformierten folgt hieraus: 

Da die u-Algebra FTvon den endlieb-dimensionalen Vektoren (W(tl), ... ,W(tn» 
erzeugt wird, gilt sogar 

1'1 == 0, 
FT 

woraus Z=O P-fast sieber folgt. D 

Bemerkung 

Der Integrand 'I' aus dem Martingaldarstellungssatz ist P®A.-eindeutig. Damit 
folgt aueb die Eindeutigkeit des in Satz 48 konstruierten Portfolio-Prozesses 1!. 

Zur Eindeutigkeit beaebte: 
T T 

M(T) = M(O) + ['P(s)' dW(s) =M(O) + ['i'(s)' dW(s) 
o 0 

T , 
=> 0 = J('P(s) - \f1(s)) dW(s) 

o 

=> 0 ~ ED( '1'(,) - '¥(,)j' dW(,)r ~ 1~(') -'¥(')i' dr) 
=> P®A-Eindeutigkeit. 

Mittels geeignetem Lokalisieren folgt aus Satz 52 (siebe Obung U.12) 
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Korollar 53 

{(Mt,Ft)}te[O,TJ. sei ein lokales Martingal bzgl. der Brownsehen Filterung {Ft}t. 
Dann existiert em progressiv messbarer Rm-wertiger Prozess 'I'(t), t E [0, 1] mit 

und 

Bemerkung 

T 

JII'I'(tt dt < 00 

o 

t 

Mt = Mo + J'I'(S)' dW(s) P-fast sieher. 
o 

Naeh Korollar 53 ist jedes lokale Martingal bzgl. der Brownsehen Filterung -
und somit aueh jedes Brownsehe Martingal - als Ito-Prozess darstellJ>ar. Insbe­
sondere ist damit fUr solehe Prozesse die quadratisehe Variation bzw. die qua­
dratisehe Kovariation defmiert ! 

Ubungsaufgaben 

V.1 Zeige: 1st Y eine Modiftkation des stoehastisehen Prozesses X und be­
sitzen X und Y stetige Pfade, so sind X und Y ununterseheidbar. 

V.2 Sei aine Stoppzeit und {(~,Ft)}~o ein reehtsstetiges (Sub-) Martingal. 
Man zeige, dass dann der gestoppte Prozess {(Xtl\T,Ft)}p-o wieder ein (Sub-) 
Martingal ist. 

V.3 Der Prozess {P(t)}t~O sei defmiert dureh 

p(t) = p.e(b-~a1)t+oW(t}, 

wobei W(t) eindimensionale Brownsehe Bewegung ist, p, b, o-E R mit (T:;I!:O. 
Zeige: 

a) Var(P(t») = p2e2bt(e~t -1). 
t-+oo {oo P - fast sieher, falls b > t 0-2 

b) p{t) ) 
o P - fast sieher, falls b < t 0-2 
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c) Vergleiche das Ergebnis aus b) mit dem Grenzverhalten vonE(P(t», Var(P(t» 
fUr t~oo. 

'0.4 Sei {(X(t),Ft)}~O ein stochastischer Prozess, wobei die Filterung {Ft}t 
die iiblichen Bedingungen erfiiIle. 

Zeige: Fiir aIle neN ist l(w) := inf{P-O I X(t, w)~n} eine Stoppzeit. 

U.S Sei ((X(t), Ft)} t~O ein eindimensionaler Ito-Prozess. Man zeige; dass seine 
Darstellung 

, t 

X(t)=X(O)+ IK(s)ds+ IH(s)dW(s) 
o 0 

eindeutig bestimmt ist. Genauer: 1st 

, , 
Xv)= y(O)+ J.u(s)ds + Ju(s) dW(s) 

o 0 

eine weitere Darstellung, so folgen 

• X(O) = y(O) P-fast sieher 

• K(s) und li..s) bzw. H(s) und o(s) sind aquivalent bzgl. ).®P. 

Anleitung: 1. Zeige, dass fUr ein stetiges Martingal {(M(t), F,)}te[O.1l der Form 

M(t) = I~ v(s)as mit I: Iv(s ~ds ~ C < 00 gilt: 

!!'oo ~~(At{/;)_At{(i-~IT))') =0 

E(~ ( At{ I;) - At{ (i-~IT)) ') = E( M(T) , - M( 0)') 

Insbesondere folgt aus diesen beiden Beziehungen wegen M(O)=O aueh M(t)=O 
P-fast sieher fUr aIle te[O, 11-
2. Zeige durch geeignetes Stoppen (und Grenziibergang n~oo), dass die Aussage 

aus 1. auch unter der Annahme I: Iv(s ~ds < 00 P-fast sieher gilt. 
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3. Wende die Aussage aus 2. auf das (lokale) stetige Martingal 

M(t ):= f~ (H(s)- O"(s» dW(s) = f~ (.u(s)- K(s» ds an. 

'0.6 Man zeige, dass fUr die im Beweis der Ito-Formel auftretenden Prozesse 
MI und HI unter den dortigen Annabmen gilt: 

E(~((Mtk -Mtk-1t -1H; dsJ)2 
k-l Ik_1 

=E[~((Mlk -Mlk_lt -1H; dSJ2]. 
k-l tk_1 

U.7 Sei {(X(t), FtH/<!o Ito-Prozess und reine Stoppzeit. Man zeige, dass fUr 
geeignetes f gilt: 

S M~ 

f f(X(t t\ r») dX(t t\ r) = f f(X(t}) dX(t) . 
o 0 

U.8 Man beweise die Produktregel, Korollar 11.41. 

'0.9 Es sei ((Wet), FI)}t<!O eine eindimensionale Brownsche Bewegung. Zeige, 
dass folgende Prozesse Martingale bzgl. {Ft} t sind: 

a) X(t) = exp(t)·cos(W(t)). 

b) X(t) = exP(t)·sin(W(t)). 

c) X(t) = (w(t)+t).exp(-W(t)-t) . 
Hinweis: Ito-Formel 

U.10 Es sei H(t) defmiert wie in Abschnitt 11.3, Seite 74. 

a) Zeige, dass lIH(t) der Vermogensprozess zum Paar 

mit Startvermogenx=lIH(O)=1 ist. 



Ubungsaufgaben 89 

b) Es sei (n; c)eA(l) mit CEO, so dass 

gelten. Zeige: Existiert fUr den zu (n; 0) gehOrenden Vermogensprozess X(t) der 
Erwartungswert E(ln(X(1), so gilt 

(Bemerkung: Der zu lIH(t) gehOrende Portfolioprozess heiSt deshalb auch 
wachstumsoptimales Portfolio.) 

'0.11 Sei B~-K eine Frmessbare ZufaIlsvariable mit K>O, T>O fest. Zeige, 
dass es dann unter bestimmten Voraussetzungen ein Startvermogen x~-K und 
eine Handelsstrategie 'P gibt, so dass fUr den zugehOrigen Vermogensprozess 
X(t) gilt: 

X(t);:: -K fUr aIle te [0,1] 

X( T) = B P-fast sieher. 

'0.12 Man beweise Korollar 53, indem man die Aussage dureh geeignetes Lo­
kalisieren auf den Martingaidarstellungssatz zuriiekfiihrt. 
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Kapitel III: Optionsbewertong 

111.1 Einleitung 

Die wichtigste Anwendung des Ito-Kalkiils in der Finanzmathematik ist die der 
Optionsbewertung. Dabei ist das bekannteste Ergebnis die Black-Sch~les-Formel 
fUr die Bewertung europaischer Call- und Put-Optionen. Dies wurde auch durch 
die Verleihung des Nobelpreises fUr Wirtschaftswissenschaften an Robert 
Merton und Myron Scholes im Jahr 1997 fUr ihre Arbeiten zur Black-Scholes­
Formel gewfirdigt. Fischer Black lebte zu diesem Zeitpunkt bereits nicht mehr. 

Optionen sind sogenannte derivative Wertpapiere, d.h. aus zugrunde liegenden 
Giitem abgeleitete Wertpapiere, die schon seit Jahrhunderten in verschiedenen 
Formen gehandelt werden, aber erst ab Anfang der 70er Jahre unseres Jahrhun­
derts groBe wirtschaftliche Bedeutung erlangten. 

Allgemein versteht man unter einer Kaufoption bzw. einem Call einen Vertrag, 
der seinem Kaufer das Recht (nicht die Pflicht !) einraumt, eine festgelegte 
Menge eines bestimmten Gutes wiihrend der Vertragsdauer (bei einer sogenann­
ten amerikanischen Option), oder nur zum Ende der Laufzeit (bei einer euro­
piische Option) zum vorher festgelegten Preis, dem Ausilbungspreis, yom 
Verkaufer der Option zu kaufen. Genau das Gegenteil ist die Verkaufsoption 
bzw. der Put. Damit erhalt der Kaufer der Option das Recht, die bestimmte 
Menge des Gutes zum vorher festgelegten Preis an den Verkaufer der Option zu 
verkaufen (dabei ist der Verkaufer des Puts verpflichtet, die Ware, z.B. die Ak­
tie, dann auch abzunebmen). 

Es werden heute Optionen auf Aktien, Schatzbriefe, Rohstoffe, Optionen, Ver­
trage, Fremdwihrungen und vieles mehr gehandelt. Auch die Ausgestaltung der 
Optionsvertrage ist dabei sehr verschieden. Wir werden in Kapitel IV einige die­
ser sogenannten exotischen Optionen vorstellen. 

Beispiel: Europiischer Call 

Ein europaischer Call auf eine Aktie gibt dem Kaufer der Option das Recht, im 
Zeitpunkt t= T, eine bestimmte Aktie zum im Zeitpunkt t=O festgelegten Preis 
K~O zu kaufen. 1st der Aktienkurs Pt(t) in t=T hOher als K, so kann der 
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Besitzer der Option die Aktie zum Preis K erwerben und sofort zum hOheren 
Preis Pl(1) am Markt verkaufen. Er macht dann einen Gewinn in der Hohe von 
(P1(1)-K) (unter der Vemachlassigung von Transaktionskosten). 

IstP1(1)<K, so lasst der Besitzer der Option sein Recht verfallen, selbst wenn er 
Interesse am Kauf dieser bestimmten Aktie hatte. Es ist namlich dann fUr ihn 
gUnstiger, die Aktie am Markt zum Preis P1(1) zu erwerben. In diesem Fall ist 
der Gewinn durch die Option gleich Null. 

Zusammengefasst ergibt sich fUr den Kaufer der Option eine Zahlung der Hohe 

(l\(T)-Kr in t=T. 

Beispiel: Europaiseher Put 

Ein europaischer Put auf eine Aldie gibt dem Kaufer der Option das Recht, im 
Zeitpunkt t= T eine bestimmte Aktie zum Preis K>O zu verkaufen. Damit ergibt 
sich fUr ihn ein Gewinn der Hohe 

(K -l\(T)r in t=T. 

Payoff-Diagramme 

In der Praxis werden Optionen bzw. ihre zugehOrigen Endzahlungen in t= T 
graphisch durch sogenannte Payoff-Diagramme beschrieben, d.h. es wird der 
Graph der Endzahlung als Funktion vom Aktienkurs in t=T, P1(1), angegeben 
(was natiirlich nur moglich ist, falls sich die Endzahlung als Funktion von P1(1) 
darstellen lasst I). FUr den europiiischen Call und den europiiischen Put erhalten 
wir so die Payoff-Diagramme: 

o K l'J (T) 

Bild m.l Payoff-Diagramm eines Calls 
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o K 1\(T) 

BUd m.2 Payoff-Diagramm eines Puts 

Das Erzeugen anderer Auszahlungen durch Kombination dieser beiden Payoff­
Diagramme (was einem Halten einer Zusammenstellung von Puts und Calls ent­
spricht), ist in der Praxis sehr populiir. Man vergleiche hierzu Ubung U.l. 

Kurze Gescbicbte des Optionsbandels 

Der erste groJ3ere Gebrauch von Optionen fand zu Beginn des 17.Jahrhunderts in 
Holland statt, als sich TulpenzUchter zur Zeit der aufkommenden Tulpenmanie 
gegen schwankende Preise absichern wollten und Vertrage erwarben, die ihnen 
das Recht zusicherten, ihre Ernte an Tulpenzwiebeln gegen einen vorgebenen 
Mindestpreis an die Verldiufer dieser Vertrage zu verauJ3ern, wenn der Markt­
preis unter den Mindestpreis fallen wiirde (es handelte sich bier urn eine Art von 
Verkaufsoption). Die Verkaufer der Vertrage hofften auf weiteren Preisanstieg, 
so dass die TulpenzUchter die Vertrage nicht in Anspruch nehmen wiirden und 
sie die Kaufpriirnie der Vertriige als Gewinn verbuchen konnten. Allerdings 
brach dann 1637 der hollandische Tulpenmarkt zusammen, und die Op­
tionsverkaufer erwiesen sich nicht in der Lage, ihre Kaufverpflichtungen einzu­
halten. Die Folge dieses Zusammenbruchs war eine ernste Wirtschaftskrlse in 
Holland, und Optionen (bzw. optionsiihnliche Vertrage) bekamen in Europa fUr 
lange Zeit einen schlechten Ruf. 

Der organisierte Handel von Optionen begann im 18.Jahrhundert in London, wo­
bei mangels gesetzlicher Vorschriften (wie z.B. fiber die Zahlungsfahigkeit des 
Verkaufers von Verkaufsoptionen, Lieferfabigkeit des Verkiiufers von Kaufop­
tionen) oftmals Unregelmii13igkeiten auftraten, die erst abgestellt werden konn­
ten, als 1930 ein gesetzlicher Rahmen fUr den Optionshandel erstellt wurde. 
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Aber erst zu Beginn der 70er Jahre des 20.Jahrhunderts erlangte der Handel von 
Optionspapieren die Bedeutung, die er heute besitzt, als 1973 in Chicago die 
Chicago Board Options Exchange eroffnet wurde. Seit dieser Zeit weitete sich 
der organisierte Optionshandel schnell aus. In diesem Zusammenhang ist auch 
die Eroffnung der Deutschen Terminborse in Frankfurt 1990 zu nennen. 

Warum werden Uberhaupt Optionen gehandelt ? 

Der Hauptgrund fUr den Handel mit Optionen besteht in der Absicherungsfunk­
tion von Optionen gegen Preisschwankungen des ihnen zugrundeliegenden Gu­
tes (vgl. hierzu auch die Absicht der Tulpenziichter beim Erwerb der Verkaufs­
optionen im obigen Beispiel). Hierbei hiingt es vom Typ der Option ab, gegen 
weIche Art der Preisschwankungen (Preissteigerung, -verfall, ... ) man sich durch 
ihren Erwerb absichert. Man kann mit Hilfe von Optionskontrakten Risiken zu­
kiinftiger Zahlungsstrome eliminieren oder begrenzen. Eine typische Anwen­
dung ist die Moglichkeit einer weltweit tiitigen Finna, durch Erwerb von Devi­
sen-Optionen Wechse1kursrisiken zu verringem. So konnte z.B. ein Untemeh­
men, das im Friihjahr nachsten Jahres eine Zahlung in Hohe von 10 Mio. Dollar 
zu leisten hat, eine Kaufoption auf diesen Betrag zum festen Wechse1kurs von 
DM 1,70 pro Dollar erwerben. Es hat sich so gegen einen Anstieg des Dollarkur­
ses tiber DM 1,70 abgesichert, sich aber gleichzeitig die Moglichkeit offen ge­
halten, bei Fall des Dollarkurses unter OM 1,70 die Devisen zum giinstigeren 
Kurs am Markt zu erwerben. 

Natiirlich werden Optionen auch von Spekulanten erworben, die auf eine gegen­
tiber dem Aktienkurs tiberproportionale Wertsteigerung der Option hoffen. So 
steigt z.B. der Preis einer Call-Option bei einem Anstieg des zugrunde liegenden 
Aktienkurses urn eine Geldeinheit in der Regel urn weniger als eine Geldeinheit 
an. Der prozentuale WertzuwacDs der Call-Option liegt dann aber fiber dem der 
Aktie. Man spricht hierbei von einem ,,Hebeleffekt" (engl. leverage-effect) 
(siehe auch Ohung 0.14). Interessant sind Optionen fUr Spekulanten auch des­
halb, wei! sie im Vergleich zum zugrundeliegenden Gut oft viel weniger kosten 
und mit gering em Kapitaleinsatz manchmal relativ groBe Gewinne (aber auch 
groBe Verluste) erzielt werden konnen. 

Kurze Geschichte der Theorie der Optionsbewertung 

Die Theorie der Optionsbewertung in ihrer heutigen Form hat ihren Ursprung in 
der Dissertation "Theorie de la Speculation" von L.Bachelier aus dem Jahre 
1900 (siehe Bachelier (1900». In dieser Arbeit findet man die erste. mathema­
tische Beschreibung der Brownschen Bewegung als stochastischen Prozess 
(wenn auch nicht unter diesem Namen). Bacheliers Ziel war es, durch Modellie-
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rung von Guterpreisen mittels einer Brownschen Bewegung theoretische Werte 
fUr verschiedene Typen von Optionen auf bestimmte Guter abzuleiten und diese 
Preise mit den tatsiichlichen Marktpreisen zu vergleichen. Als Optionspreise 
schlug er den Erwartungswert der aus der Option hervorgehenden Zahlung vor. 
Entscheidendes Manko in Bacheliers Modellierung war, dass die Giiterpreise in 
seinem Modell negativ werden konnten. 

Bacheliers Arbeit geriet fUr lange Zeit in Vergessenheit, und erst nach Einfiih­
rung der geometrischen Brownschen Bewegung als Preismodell in den 60'er 
Jahren gelang Fischer Black und Myron Scholes im Jahr 1973 der entscheidende 
Durchbruch (siehe Black und Scholes (1973». Die Vorgehensweise von Black 
und Scholes bei der Herleitung der Black-Scholes-Formel wird in Abschnitt III.3 
beschrieben. Wir werden zuniichst in m.2 den modemen Ansatz der Optionsbe­
wertung nach dem Duplikationsprinzip vorstellen, der eine natiirliche An­
wendung der Martingaltheorie und insbesondere des Martingaldarstellungssatzes 
ist. Als Ausgangspunkt dieser Richtung kann die Arbeit von J.M. Harrison und 
S.R. Pliska (1981) angesehen werden. 

111.2 Optionsbewertung nach dem 
Duplikationsprinzip 

Das Problem ist nun, einen sinnvollen Preis p fUr eine Option, z.B. den euro­
piiischen Call, zu fmden. Eine feste Zahlung Binder Zukunft That heute in t=O 
bei konstanter Bondverzinsung r den Wert 

e-rT ·B 

Man nennt dies auch den abgezinsten oder diskontierten Wert des Betrags B. 
Es ist genau die Summe, die man in 1=0 im Bond anlegen muss, urn in T den 
Betrag B zu erhalten (mehr zum Thema Diskontieren findet man z.B. in Tietze 
(1996». Bei zufallsabhiingiger und zeitabhangiger Verzinsung ret) des Bonds 
betrachtet man den Erwartungswert 

E( e -J: r(s)ds . B) . 

Dies ist der Betrag, den man in t= 0 im Bond anlegen muss, urn in T im Mittel 
den Betrag B zu erhalten. Es ist nun naheliegend als Optionspreis den Erwar-
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tungswert der mit dem Bondpreis auf t=O abgezinsten Endzahlung der Option in 
T anzusetzen, also z.B. fUr einen europiiischen Call: 

Wir werden im Foigenden zeigen, dass dies im Allgemeinen ein falscher Preis 
ist! Man beachte hierzu auch, dass die Abzinsung mit dem Bond willkiirlich ge­
wahlt wurde und nicht die Moglichkeit beriicksichtigt, dass man Geld auch in 
Aktien anIegen kann. . 

Ein diskretes Beispiel zum Preis einer Option 

Zur Motivation des Duplikationsprinzips wollen wir zunachst ein einfaches Bei­
spiel betrachten. Am Marlet gebe es ein festverzinsliches Wertpapier mit Preis 
Po(t) und eine Aktie mit Preis Pt(t). Vereinfachend legen wir fest, dass fUr den 
Zinssatz r=0 gelte, der Ausiibungspreis sei auf K=l festgelegt. Die Wertpapier­
preise seien durch folgendes Diagramm gegeben: 

t=O 

po(t) 1 

/1(t) 1 

Bild m.3 Preisdiagramm 

Somitist 

t= T 

a e(O,l) 
mit Wahr­

scheinlichkeit 

I-a 

Dieser Preis ware von der person1ichen Einschatzung der Erfolgswahrscheinlich­
keit a abhangig (man beachte: a ist unbekannt). Es wird sich spater zeigen, dass 
dieser kritische Parameter in den "wahren" Optionspreis nicht eingehen wird. 
Der Grund hierfiir liegt darin, dass die Option ein redundantes Wertpapier ist, 
d.h. man kann die durch sie erhaltene Endzahlung auch durch Verfolgen einer 
selbst-fmanzierenden Handelsstrategie in Aktie und Bond erhalten. Dies nennt 
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man das Duplikationsprinzip. Wir miissen dazu (QJo(O), 911 (0» so bestimmen, 
dass gerade 

X(T) = 91o(O)Po(T) + 911(0)1\ (T) = (1\ (T) - Kt 
gilt. Wir setzen dann als Preis 

P = 910 (0) Po (0) + 911 (0)1\ (0), 

(*) 

d.h. der Optionspreis ist gleich dem in 1=0 benotigtem Kapital, om die Duplika­
tionsstrategie (QJo(O), 911(0» zu kaufen. Dies wird sich als der einzig sinnvolle 
Preis fUr die Option erweisen, denn fUr eine andere Wahl des Preises besteht die 
Moglichkeit eines risikolosen Gewinns ohne eigenen Kapitaleinsatz, eine soge­
nannte Arbitrage-Moglichkeit. 

Ware der Preis der Option p kleiner als p, so erwirbt man sie (zuoachst auf 
Kredit, man beachte, dass wir bier annehmen, dass die Kreditzinsen den Zinsen 
fUr Guthaben entsprechen) und halt gleichzeitig die Position (-QJo(O),-91l(O», 

was ft einbringt. Zom Zeitpunkt 1= T neutralisieren sich die Zahlungen aus den 
beiden Positionen. Man hat dann schlieJUich durch dieses Geschiift den Gewinn 

(ft - p) in t=O erzielt, und das ohne Einsatz eigenen Kapitals. Da" Arbitrage­

Moglichkeiten am Markt dazu fiihren, dass jeder bestrebt ist, sie auszunutzen, 
halten sich solche Moglichkeiten am Markt, wenn iiberhaupt, nur sehr kurz. Wir 
konnen in unseren Modell daher voraussetzen, dass es keine Arbitrage­
Moglichkeiten gibt. 

Ware der Marktpreis des Calls p groaer als p, dann verkauft man den Call und 

halt die Position (QJo(O), 9'}(0», die nur p kostet. Analog zu oben erwirtschaftet 

man dann ohne eigenen Kapitaleinsatz den risikolosen Gewinn (p - ft) in 1=0. 

Die Forderung (*) fiihrt in unserem Beispiel auf das Gleichungssystem 

910(0).1 + 912(0).3 = 2 

910(0).1 + 912(0)'J = 0 

mit eindeutiger Losung 

(91o(O),91l(O»)=(-i,t) . 

Damit ergibt sich als einzig sinnvoller Preis fUr die Option 

P=-i· 1+l 1=i· 
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Dieser Preis ist nun unabhiingig von der unbekannten Wahrseheinliehkeit a. Da 
diese Losung eindeutig ist, besteht dann auf diesem Markt mit Aktie, Bond und 
Call keine Arbitrage-Mogliehkeit. Man beachte weiter, dass der oben bereehnete 
Optionspreis genau dann mit der abgezinsten Endzahlung des Calls iiber­
einstimmt, wenn a=1I5 gilt. In diesem Fall ist P1(t) sogar ein Martingal. Dies ist 
kein Zufall, sondem wird uns spiiter noeh ofter begegnen. 

AHgemeine Voraussmungenf/lr dieses Kapitel 

WiI iibemehmen bier die Voraussetzungen von Kapitel II, Absehnitt II.2, 
S.64, und die Bezeichnungen aus Abscbnitt II.3, S.74. Insbesondere geJte 
d=m. 
AuBerdem gelte: das selbst-fmanzierende Paar (n,c) bestehend aus einem 
Portfolioprozess nund einem Konsumprozess c sei zulassig filr das Startver­
mogenx>O, also (n,c) E A(x). Damit sind insbesondere die Voraussetzungen 
zu Satz II.48 tiber die Vollstandigkeit des Marktes erfUllt. 

WiI priizisieren zuerst den Begriff einer Arbitrage-Moglichkeit: 

Definition 1 

Ein selbst-fmanzierendes und zuliissiges Paar (tp,c), bestehend aus einer Han­
delsstrategie tp und einem Konsumprozess c, heIDt eine Arbitrage-Moglichkeit, 
falls fUr den zugehOrigen Vermogensprozess gleichzeitig gelten: 

X( 0) = 0 P-fasf sieher, X( T) ~ 0 P-fast sieher, 

P(X(T) >0»0 oder {jc(t)dt >+ 0, 
Korollar 2 

1m betraehteten Modell des vollstandigen Marktes gibt es keine Arbitrage-Mog­
liehkeiten. 

Beweis: 

Dies ist eine diIekte Folgerung aus Satz II.48. Denn sei (tp,c) eine Arbitrage­
Mogliehkeit, dann gilt, da R(t) strikt positiv ist: 
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Das ist aber ein Widerspruch zu Satz 11.48 a). Also gibt es keine Arbitrage­
Moglichkeit. [] 

Um spiiter in der Lage zu sein, die unterschiedlichsten Optionen zu bewerten, 
verallgemeinem wir nun die Idee, die hinter einer Kauf- bzw. Verkaufsoption 
steht: 

Definition 3 

Ein bedingter Anspruch (g, B), oder auch Contingent Claim, besteht aus ei­
nem bzgl. {Ft} t progressiv messbaren Auszahlungsratenprozess g(t), t E [0, T], 
g(t)~O,undeinerFrmessbarenEndzahlung B~O zumZeitpunkt t=T mit 

{( f g(t)dt+B n<'" t1lreinll>l. (1) 

Bemerkungen 

a) Den Begriff Option werden wir im Folgenden oft auch als Synonym fiir Con­
tingent Claim benutzen. 

b) Mit der obigen Deftnition umfassen wir allerdings nur Optionen yom euro­
piiischen Typ, bei denen der Zeitpunkt der Endauszahlung festliegt und nieht frei 
gewiihlt werden kann (amerikanisehe Optionen siehe Abschnitt 111.5). 

Beispiele fur Contingent Claims 

a) Europiiiseher Call: g=0, B = (1\ (T) - Kr 

b) Europiiiseher Put: g=0, B = (K -1\ (T) r 
In Analogie zum diskreten Beispiel wird der faire Preis des bedingten Anspruchs 
(g ,B) als das minimale Vermogen, das zum Verfolgen einer Duplikations­
strategie fiir (g, B) benotigt wird, defmiert. 
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Definition 4 

i) (n,e) eA(x) hei6t eine Duplikationsstrategie fUr den Contingent Claim (g ,B), 
falls 

g(t)=e(t) P-fastsicher fUrallete[O,n 

X( T) = B P- fast sicher, 

gelten, wobeiX(t) der zu (n,e) gehOrige Vermogensprozess ist. 

ii) Die Menge der Duplikationsstrategien zum Preis x ist die Menge 

D(x) := .o(x;(g, B)) : = {( n,e) e A(x) I (n,e) Duplikationsstrategie fUr (g, B)} 

iii) Der faire Preis von (g, B) ist definiert als 

Bemerkung 

Aus der gleichmliBigen Beschriinktheit von r(t), b(t), o(t), der gleichmiifligen Po­
sitiv-Defmitheit von o(t)o(t)', der Voraussetzung (1) und der Holderschen Un­
gleichung folgt: 

i> E( H(ryB+ IH(t)g(')dt) <"'. 

N ach Satz n.48 tiber die V ollstandigkeit des Marktes existiert nun zu B und g ein 
Portfolioprozess 1Z", so dass (n,g)eA(x) auch in D(x) liegt. Insbesondere gilt 
also: 

p~x . 

Wir zeigen, dass sogar die Gleichheit gilt: 

Satz 5 - Fairer Preis einer Option 

Der faire Preis des Contingent Claims (g, B) ist gegeben durch 

P = E( H(T)B + !H(t)g(,) dt) < "', 
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und es existiert eine bzgl. P®A. -eindeutige Duplikationsstrategie (fr, c )eD( p). 
FUr deren zugehorigen Vermogensprozess i{ t) , auch Bewertungsprozess ge­

nannt, gilt: 

Bemerkung 

Nach Satz 5 ergibt sich auch der Preis des Contingent Claims (g ,B) zur Zeit t, 

denn dieser Preis p{t) muB mit i(t) iibereinstimmen, sonst ergiiben sich Arbi­

trage-Moglichkeiten im Marlct mit Aktie, Option und Bond. 

Beweis von Satz 5: 

Nach der dem Satz vorausgehenden Bemerkung wissen wir schon, dass fUr den 
fairen Preis p ~ x gilt (x wie oben). Nun brauchen wir nur noch p ~ x zeigen. 

Sei hierzu (H,c)eD(x) eine Duplikationsstrategie fUr (g,B) mit Vermogens­
prozess X(t) zum Preis x=X(O). Dann gilt nach Satz 11.48: 

Hieraus folgt 

x ~ E( H( T)X( 1') + ! H(s)qs)<t. 1 

=E( H(1')B+ IH(S)g(S)dS) =x 
. 0 

p=inf{xID{x}-:I;0} ~x. 

AIle anderen Behauptungen des Satzes ergeben sich aus dem Beweis von Satz 
11.48. [] 

Bedeutung des Prozesses H(t) 

Sei g=O. Die Gleichheit 

p = E{H(r)B) = JH{r,m)B(m) P(dm) 
n 
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zeigt, dass man als Preis fUr die Option tatsiichlich den Erwartungswert der "ab­
gezinsten" Zahlung in t= T wiihlt, aber mit einem besonderen Abzinsfaktor, niim­
lich H(1). H(1) gibt den heutigen Wert einer zur Zeit Tim Zustand WE n ge­
zahlten Geldeinheit an. Man kann H(1) somit als zustandsabhiingigen Abzins­
faktor ansehen. H(1) beriicksichtigt insbesondere alle am Markt vorhandenen 
Anlageformen. 

Als erste Anwendung von Satz ill.S erhalten wir die beriihmte Black-Scholes­
Formel fUr den europiiischen Call und Put: 

Korollar 6 - Black-Scholes-Formel 

Gegeben sei ein Marktmodell mit einer Aktie und einem Bond und konstanten 
MarktkoeffIzienten, also 

d=m= 1, 

r(t) == r , b(t) == b , o{t) == 0" > 0 

fUr aIle t E [0, 11. T> 0, r, b, O"E R . 

a) Fili den Preis XrJt) zur Zeit tE[O, T] einer europiiischen Call-Option mit 
Ausubungspreis K>O und Ausubungszeitpunkt T gilt: 

. "Call" 

wobei <ll die Verteilungsfunktion der Standard-Norma1verteilung ist. 

b) Fili den Preis X ~t) zur Zeit tE [0, T] einer europiiischen Put-Option mit 
Ausubungspreis K> 0 und Ausubungszeitpunkt T gilt: 
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wobei d,{t) wie in Teil a) defmiert ist. 

Beweis: 

a) nur fUr t=0: Nach Satz 5 gilt 

Xc<O) = E( H(T)(l\(T)- Kt) 

"Put" 

= E( exp(- [r+t{P ]T- (J. W(T»)·(PI .exP([b-tCT2]T + CTW(T»)- Kr), 
wobei (J= (b-r)/CT. Hierbei ist der Positivteil strikt positiv genau dann, wenn 

W(T) > !(In(;)-(b-tCT2)T) =: K 

gilt. Da W(T) normalverteilt ist mit Erwartungswert 0 und Varianz T, folgt 

X do) = j e -(r+tiP)r -ox (PI. e(b-tul)r +ux - K) . .J21nT . e - ~~ dx 

K 

= PI ·1.J2InT . exP((b - tCT2 - r - t02)T + (CT - O)x - ~~) dx 
K 

00 

-K· Jexp(-rT). ~exp( _t02T-llt- ;~) dx 
k . ,,2nT 

Geeignetes Zusammenfassen in den Exponenten Hefert: 

OOf 1 [(X-(CT-0)T)2) 
Xc(O) =PIk.J2trT·exp 2T dx 

oof 1 ((x + OT)2] -K·exp(-rT)· ~·exp dx • ,,2nT 2T 
K 

( ( K-(CT-(J)T)) -rT ( (K+(JTJ) = PI· l-ct> .JT -K·e· l-ct> .JT 
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b) analog zu a) o 

Bemerkungen 

a) Die Black-Scholes-Formeln fUr den europaischen Call bzw. Put hangen nicht 
vom Drift-KoefflZienten b des Aktienpreises (der ,,mittleren Ertragsrate") abo 
Dieses hachst erstaunliche Ergebnis ist wohl der Hauptgrund fUr die breite Ak­
zeptanz der Formel in der Praxis, da ja der Parameter b derjenige ist, der wohl 
am ehesten von der personlichen Einschatzung des Aktienkurses abhiingt. Da er 
nicht in die Black-Scholes-Formel eingeht, spricht man auch von einer "prife­
renzfreien Bewertung". 

b) Durch entsprechendes Differenzieren lasst sich zeigen: XJt) fallt in t und 
wachst in r, Pl(t) und cr (fUr <7>0). Um dies zu zeigen sind folgende Identitiiten 
niitzlich: 

d2(t) =d1(t)-cr.JT-t, 

F\(t)~dl(t») = Ke-r(T-tltp(d2(t») , 

wobei q;(.) die Dichtefunktion der Standard-Normalverteilung ist (siehe Ubung 
0.2). 

c) Will man den Beweis der Black-Scholes-Formel fUr allgemeines t E [0, 1] statt 
fUr t=O durchfiihren, so ist zu beachten, dass 

gilt und der Zuwachs W(1)-W(t) der Brownschen Bewegung unabhiingig von 
Fs ' sSt und N(O, T -t)-verteilt ist. Es gilt deshalb 

Da sich aber aus W(t) eindeutig der Wert von P1(t) ergibt und umgekebrt, schrei­
ben wirauch 
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Xc(t) = Et.~(t{ ~i~? (Pl(T)-Kr) 

:= E( ~~? (Pt(T)-Krl Pt(t»). 

Diese Abhiingigkeit der zukiinftigen Preisentwicklung der Option wid des Ak­
tienkurses lediglich yom gegenwartigen nicht aber yom vergangenen Aktienpreis 
wird als Markov-Eigenschaft bezeichnet. Solange der Aktienpreisprozess durch 
eine geometrische Brownsche Bewegung gegeben ist, folgt die Markov-Ei­
genschaft direkt aus der Unabhiingigkeit der Zuwiichse der Brownschen Bewe­
gung. FUr allgemeinere Aktienpreisprozesse folgt sie aus der Markov-Eigen­
schaft der Losungen stochastischer Differentialgleichungen. Dies wird im nachs­
ten Abschnitt fiber den Zusammenhang zwischen Optionspreisen und partiellen 
Differentialgleichungen eine entscheidende Rolle spielen und auch dort niiher 
betrachtet werden. 

Bezeichnungen 

In der Praxis werden einige der Ableitungen des Optionspreises X(t) nach ver­
schiedenen Parametem zur Beurteilung der Sensitivitiit des Optionspreises in Be­
zug auf Schwankungen dieser Parameter berechnet. Ihre Wichtigkeit wird durch 
die Tatsache verdeutlicht, dass diese Ableitungen sogar Namen besitzen. So 
heiBen 

o -X(t) 
ot 

o --X(t) 
oPt(t) 

ifl X(t) 
oPt2 (t) 
o -X(t) 

00-

o -X(t) 
Or 

"Theta" 

,,Delta" 

r "Gamma" 

"Vega" 

P ,,Rho" 

der Option. Hierbei kann X(t) auch der Preis eines Portfolios von Optionen sein. 
Weitverbreitet sind in der Praxis verschiedene Hedging-Metboden (d.h. Ab-
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sicherungs-Methoden) urn Portfolios aus Optionen jeweils neutral gegen An­
derungen der einzelnen Parameter zu machen (siehe Ubung 0.13 ). 

Handelsstrategie zur Black-Scholes-Formel 

Aus der Black-Scholes-Formel fUr den europiiischen Call lasst sich auch leicht 
die zur Duplikationsstrategie (tr,O) gehOrende Handelsstrategie 'P erraten, niim­
lich 

'Po(t) = _Ke-rT W(d2(t») , 

'Pl{t) = W(d1{t)). 

(OBdA sei Po(O)=I). Es ist lediglich noch nachzupriifen, dass diese Strategie 
auch selbst-fmanzierend ist, was durch (langwieriges) VerifIzieren der 
Gleichung 

mittels Ito-Formel geschehen kann. Wir werden dies spater mittels einer ein­
facheren Methode iiberpriifen (siehe Proposition 12). Insbesondere gilt 

OS'Pl{t)S;l 

- Ke-rT S; 'Po(t) S; 0 

fUr alle tE [0,1] , 

fUr alle tE [0, 1] , 

d.h. die Aktienposition ist immer (!) teilweise durch einen Kredit fmanziert. Die 
Aktienposition seIber ist immer positiv, nach oben durch das Halten einer Aktie 
beschriinkt. 

Black-Scholes-Formel und MaOwechsel 

Mit der Bezeichnung 

gilt 

p=Xc(O) 

WQ(t):= W(t)+O·t 

= E( exp(-(r+t02 )T-OW(T»)(PI exP[(b-tCT2 )T+ CTW(T)]-K) +) 
= E( exp(-rT)·(Pl exp[(r-tCT2 )T+oWQ(T)]- K)+ 

. exp( - t 02 T - 0 W{ T) )) 
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wobei EQ(.) den Erwartungswert bzgl. dem MaB Q, das durch die Radon-Niko­
dym-Abreitung 

~'}, = exp( -t ,p r - ow(r») 

gegeben ist, bezeichnet. Kann man nun zeigen 

Q ist ein zu P aquivalentes WahrscheinlichkeitsmaB auf F T (*) 
und ((wQ(/), Ft)}tE[O,TJ ist eine Brownsche Bewegung bzgl. Q, 

so gelten: 

a) Der diskontierte Aktienkurs 

PI (I) PI ( Q () I 2) 
D () =-·exp O'W 1 -'20' 1 
'0 1 Po 

ist ein Q-Martingal (Q heiBt deshalb ein zu P aquivalentes MartingalmaB), und 
es gilt 

b) Der Optionspreis ist gerade gleich dem Erwartungswert bzgl. EQ, der auf den 
heutigen Tag abgezinsten Zahlung aus der Option, d.h er ist gleicli dem ,,natiir­
lichen Wert" im risiko-neutralen Markt, in dem aIle Wertpapierpreise gleichen 
Erwartungswert haben. Man spricht deshalb auch von risiko-neutraler Bewer­
tung 

Der Beweis von (*) ist Gegenstand des nun folgenden Exkurses. 

Exkurs 5: Der Satz von Girsanov 

AUgemeine Voraussettungen far diesen Abschnitt: 

{(X(/) , Ft)}~o sei ein m-dimensionaler progressiv messbarer stochastischer 
Prozess, wobei {F,}, die Brownsche Filterung ist, mit 
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Seidann 

t 

J xl (s) cis < 00 P-fast sieber fiir alle t ~ 0, i= 1 , ... ,m,. 
o 

107 

Da in Z(t,X) das Argument ein Ito-Prozess ist, folgt mit der Ito-Fonnel, Satz 
IT.3S: 

m t 

Z(t,X) = 1-L JZ(s,x)X;(s)dW;(s). 
;=10 

Damit ist Z(t,X) ein stetiges, lokales Martingal mit Z(O,X) = 1. Da Z(t,X) positiv 
ist, ist es insbesondere nach Satz IT.IS ein Super-Martingal. Falls Z(t,X) sogar 
Martingal ist, so gilt E(Z(t,X»=l fiir aile t~O. FUr aIle T~O Hisst sich dann ein 
Wahrscheinlichkeitsma6 QT auf F T durcb 

(2) 

defmieren. Z(T,X) ist also die Dicbte von QT bzgl. P. Das so defmierte Wahr­
scheinlichkeitsmafl besitzt die folgende Konsistenzeigenschaft 

fiir aIle A eFt, t e [0, 1], denn es gilt 

QT(A) = E(IA 'Z(T,X)) = E(E(IA ,z(T,X)1 Ft )) 

= E(I.o4 .E(Z(T,X)I Ft ))= E(IA .Z(t, X)) = Q/A). 

Insbesondere gilt fiir Stoppzeiten OS z- S T und A eFT mit dem Satz 11.13 ("op­
tional sampling") 

QT(A) = E(IA 'Z(T,X)) = E(E(IA 'Z(T,x)1 FT )) 

= E(I.o4 .E(Z(T,X)I FT ))= E(IA 'Z(z-,X)) = QT(A). 

Der folgende Satz zeigt nun, wie man bei einem Maflwecbsel von P nach QT aus 
der P-Brownschen Bewegung W(t) eine QrBrownscbe Bewegung wQ(t) erhalt. 
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Satz 7 - Der Satz von Girsanov 

Der Prozess Z(t,X) sei ein Martingal und der Prozess ((wQ(t), Ft)}p-o sei defi­
niert als 

t 

W;Q(t):= W;(t}+ IXj(s)dY, l:S;;;:S;;m, t~O 
o 

Dann ist fUr jedes feste Te[O,oo) der Prozess {(wQ(t), Ft)}te[O,1] eine m-dimen­
sionale Brownsche Bewegung auf (0, F T' Q T)' wobei das Wabischeinlichkeits­
ma.B QTwie in (2) defmiert sei. 

Beweis: 

i) Wir zeigen zuniichst folgende Identimt 

(3) 

fUr alle Stoppzeiten S, R mit O:s;;S:s;;R:S;;T undFR-messbares YmitEQ,-Z< \ Y\ )<00. 
Dabei sei EQ,t der Erwartungswert bzgl. Qt' t e [0, 11-
Sei A eF s ' dann gilt aufgrund der Konsistenzeigenschaft 

EQ,T(lA' Z(;X) .E(Y'Z(R,X)IFs)) 

= EQ,s(lA' Z(S~X) ,E(Y'Z(R,X)I Fs)) 

= E(lA .E(Y.Z(R,X)I Fs)) = E(lA . Y.Z(R,X)) 

=EQ,R(lA .Y)=EQ,T(lA .y), 
woraus nach Definition des bedingten Erwartungswertes (3) folgt (beachte: die 
rechte Seite von (3) ist F s-messbar). 

ii) Defmiere fUr BeRm beliebig, aber fest (vergleiche mit dem Beweis des Mar­
tingaldarstellungssatzes, Satz 11.52) aufRmx[O,oo): 

J(x,t):= exp(iBx+tI16l12t), 
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MO (t) : = I( WQ (t), t) : = exp(iOfWQ (t) + t 110112 t) 

=ex{ilr( w(t)+ IX(S)d}tM't). 
Durch Anwendung der mehrdimensionalen Ito-Formel, Satz II.40, auf Real- und 
Imaginiirteil von I erhiilt man: 

m t t 

MO(t) = 1+ I Jlx- (WQ(s),s)dW}(s) + Jlt (wQ(s), s)ds 
j=10 J 0 

m t 

+t I JIX-Xl (wQ(s),s)d(wF,wP) . 
j,k=10 J s 

Man beachte, dass (wF, wP) s = 0jk . s gilt und somit 

m t 

MO(t);:: 1+ ~i' JOj '/(wQ(s),s)[dW/s)+X/s)ds] 
J=l 0 

m t m t 

= 1+ Ii. JOjl(WQ(s>.s) dWj(s) + Ii. JOjXj (s)/(WQ (s),s) ds . 
j=l 0 j=l 0 

Hiermit haben wir nun die Darstellung von M"{t) als Ito-Prozess. 

iii) Berechne Z(t, X)·MO(t): 

Mit der Produktregel, Korollar II.41, folgt 

t t t 
Z(t.X). MO(t);:: 1 + JZ(s,X)dMO(s) + J MO(s) dZ(s, X) + Jd(MO;Z(., X)) s 

o 0 0 
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= 1 + ~ {! Z{s. X) -IIJ -t{ WQ (.,). s) dWj (.,) 

+ Iz(s,X),oJ' t(WQ(s),S)XJ(.,)ds] 

m t 

- L If(wQ(s),s).z(s,x).x/s)dw/s) 
j=lO 
m t 

- Li. JOj ·f(wQ(s),s).Z(s, X). X/s)ds 
j=l 0 
m t 

= 1+ Li. Iz(s,x).M 9(S).(Oj +i.X/s»)dW/s). 
j=l 0 

Somit ist Z(t, X}MB(t) ein P-Iokales Martingal. 

iv) Zeige, dass {M9(t)}te[O,1] QrMartingal ist: 

Sei Tn eine geeignete Stoppzeit fUr das lokale Martingal Z(t, X)·M9(t), so dass 
der gestoppte Prozess Martingal ist. Dann gilt mit (3) fUr 05,s<t5,T: 

EQ,r(M9 (t /\ Tn)1 FSMJ 

= E(Z(t/\ Tn ,X)M9(t/\Tn )\ FSMJ· ( 1 ) 
Z S/\Tn,X 

9( )- Z(s /\ Tn'X) 9( ) =M S/\Tn ' ( )=M S/\Tn . 
Z s/\ Tn,X 

Foiglich ist M9(t) ein lokales QrMartingal. Da I M9(t) I auf [0, 1] beschrankt ist, 
ist M9(t) sogar QrMartingal. (Dies erbalt man durch Anwendung des Satzes 
fiber dominierte Konvergenz und Grenziibergang n~c;() in obiger Beziehung fUr 
M9(t).) 

v) Zeige, dass wQ(t) eine Brownsche Bewegung ist: 

Da M9(t) QrMartingal ist, folgt 
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fUr ° Ss $t $T. Dies gilt genau dann, wenn 

Da dies gerade die Fourier-Transfonnierte einer N(O ,(t-s)-l)-verteilten Zufalls­
variab1en ist (wobei I die Einheitsmatrix ist), und die Fourier-Transfonnierte ein­
deutig ist, fo1gt, dass die Zuwiichse (wQ(t)-wQ(s» unter QT gemiiB 
N(O,(t-s)·l) verteilt sind. AuBerdem sind wegen der obigen G1eichheit die Zu­
wiichse (wQ(t)-wQ(s» unter QT unabhiingig von Fs. Da weiter wQ(t) stetige 
Pfade besitzt, ist wQ(t) somit eine Brownsche Bewegung bzgl. Qr- 0 

Die Novikov-Bedingung 

Um den Satz von Girsanov anwenden zu kannen, benatigen wir ein Kriteriurn, 
urn festzustellen, ob Z(t,X) ein Martinga1 ist. Eine hinreichende Bedingung dafiir 
ist die sogenannte Novikov-Bedingung: 

Ein Beweis hierfiir steht z.B. in Karatzas!Shreve (1991), Abschnitt 3.5 D. Wir 
zeigen 1ediglich eine abgeschwiichte Variante (vgl. Korollar 37.11 in Rogers! 
Williams (1987», die fUr unsere Anwendungen ausreicht: 

Proposition 8 

Gilt J: IIX(s ~12 ds < K mit einer Konstanten K>O, so ist Z(t ,x) Martingal. 

Beweis: (nur fUr m=l, der Fall m>1 ist analog) 

i) Es sei 
t 

M t := - J X(s) dW(s) 
o 

Dann gilt fUr y>O 
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.,f max M s ~ y) So exp(_.c) , (4) 
r\ossSt 2K 

denn: 
Da Z(t,X) ein nicht-negatives, stetiges Super-Martingal mit Z(O,X)=l ist, gilt 
fUr y>O, 0>0, mit Lemma 11.19, angewendet auf Z(t, OX). 

rf max Ms ~y) 
r\ossSt 

So ~~~t exp(O'Ms _t02 tX2 (u) dU) ~ exp(~_t02 K)) 
So exp(- ~+t02 K). 

Die Wahl 0:= y/Kliefert die Behauptung (4). 

ii) Sei ~t} := max M{s}und F~ die Verteilungsfunktion von S(t) unter P. Dann 
OssSt 

folgt mittels partieller Integration und (4) fUro>O: 

co 

E(/'·~t») = Je~dF~(y) 
o 

co 

= 1+0· Ie~ p(~t)~y)dy 
o 

CD y2 I 
So 1 + 0 Ie By e -. 12K dy < 00 

o 

iii) Da Z(t, X) ein lokales Martingal ist, existiert eine lokalisierende Folge 

mit 

(5) 

(6) 

Da Z(tMon'X) und Z(SMon,X) jeweils von exp(S(t» dominiert werden und (5) 
gilt, liefert der Grenziibergang n-+oo in (6) die Martingal-Eigenschaft von 
Z(t,X). [] 
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111.2 Fortsetzung: Optionsbewertung nach dem 
Duplikationsprinzip 

Der Satz von Girsanov und die Optionsbewertung 

MitderWahl 

X(t):= 6{t) 

ist die Voraussetzung der Proposition 8 wegen der gleichmiiBigen Beschdinktheit 
von r, b und der gleichmiiBigen Positiv-Defmitheit von (Fa' eOOllt. Z(t, 0) ent­
spricht dann Z(t) aus den Bezeichnungen auf Seite 74. Anwendung des Satzes 
von Girsanov, Satz 7, liefert dann, dass wQ(t) mit , 

Wp(t);= w(th JO;(s)ds, te[O, TJ, i=l, ... ,d 
o 

eine QrBrownsche Bewegung bzgl. {F,},e[O,7J ist. wobei QTdurch 

QT(A) = E(lA .Z(T»). AeFT 

defmiert ist. Also gilt fUr die Radon-Nikodym-Ableitung 

dQT ( ~ 
dP =Z T,O,. 

Insbesondere ist Z(T,O) strikt positiv. woraus folgt, dass P und QT iiquivalente 
WahrscheinlicbkeitsmaBe sind. d.h. sie besitzen die gleichen Nullmengen. Des­
weiteren gilt fUr die abgezinsten Preisprozesse Pj(t), d.h. die mit Po(t) diskontier­
ten Preisprozesse 

p;{t} . 
po{t) , l=O, ... ,d, 

dass sie Martingale bzgl. QT sind. Deshalb bezeichnet man QT auch als ein 
aquivalentes MartingalmaB. Wir werden im Folgenden zeigen, dass das so de­
fmierte WahrscheinlicbkeitsmaB QT das einzige aquivalente Martingalma/3 in 
unserem Marktmodell ist. Hierzu benotigen wir noch ein Lemma fiber die Ge­
stalt von zu P auf F, aquivalenten Wahrscheinlicbkeitsmal3en. 
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Lemma 9 

Es sei Q ein zu P auf F T aquivalentes WahrseheinliebkeitsmaB. Dann gilt fUr den 
dureh 

dQI D,:= dP F, • te [0.71 

defmierten Diehteprozess {D'}'e[O,l1 : 

({D,.F,)} te[O,l1 ist ein positives Brownsehes Martingal bzgl. P mit 

t , 

Dt = 1+ J\!'(s) dW(s) 
o 

fUr einen progressiv messbaren d-dimensionalen Prozess \!' mit 
T 

Beweis: 

JII\!'(s)112 ds < 00 P-fast sieher. 
o 

Da Q zu P auf F T aquivalent ist. ist Q aueh zu P eingesehriinkt auf Ft. t e [0, 71 
iiquivalent. Mit der Defmition der bedingten Erwartung folgt dann fUr aIle A eFt 

JDTdP= J~~IFTdP '" J~~IF,dP= JDtdP, 
A A A A 

also 

woraus sieh sofort die Martingal-Eigensehaft ergibt. Da Q und P beides aquiva­
lente Ma.6e sind, moB Dt P-fast sieher strikt positiv sein. Da Dt Brownsehes Mar­
tiogal ist, folgen die Aussagen fiber die Gestalt der Darstellung von Dt dureh 
\!'(s), s e [0,71 aus dem Korollar 53 zum Martingaldarstellungssatz. [] 

Nun sind wir in der Lage, den angekiindigten Satz fiber die Eindeutigkeit des 
aquivalenten Martingalma6es zu zeigen: 

Satz 10 - Eindeutigkeit des iiquivalenten MartingalmaOes 

1m vollstiindigen Marktmodell ist QT das eindeutige iiquivalente Martingalma.6 
auf {Ft }te[O,l1 fUr die Preisprozesse Pi(t), i",O,l, ... ,d. 
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Beweis: 

Defmiere 

Dann gilt 

R(t) 
Ji{t):= ~(t) , i=I, ... ,d. 

dJi(t) = Ji(t)[(b;(t) - r(t»)dt + tCTij(t)dWj(t)] 
J=l 

= If(t{~uy(t)Oit)dt + ~ Uy(t)dWit) ] 

d 

= Ji(t)LCTij(t)dWjQ(t) 
j=l 

Y,{t) ist dann nach Proposition 8 QrMartingal, da die CTy gleichmii.6ig be­
schriinkt sind (beachte hierzu auch die explizite Form der Losung der obigen 
Gleichung fUr Y(t)!). Sei nun Q ein weiteres zu P iiquivalentes MartingalmaB mit 
Dichte {Dt}te[O,TJ wie in Lemma 9. Dann gilt mit der Produktregel 11.41 und 
Lemma 9 

t t 

Dt .Y;{t)= p; + JDs dY;(s)+ JY;(s)dDs +(D'Y;)t (7) 

° 0 

= P, + XD, 'If(S)'~Uij(S)'Oj(S)+YI(s)'~'PAs)'Uij(S)] tis 
d t 

+ L J[Ds Y; (s}uij (s)+ Y;(sf¥j(s)] dWj(s) 
j=lO 

Damit Y,{t) ein Q-Martingal sein kann, muss notwendigerweise D{Y;(t) ein P­
Martingal sein. Insbesondere muss dafUr der Driftterm auf der rechten Seite von 
(7) verschwinden, woraus dann (bis auf P®..t -Aquivalenz) 

'P(s) = -Ds ·o(s) 

foigt. Fiir D s gilt dann die Darstellung 
t 

Dt =1- JDs·o(s)'dw(s) 

° 
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Diese stochastische Differentialgleichung hat aber den zu QT gehOrenden Dich­
teprozess Z(t) als eindeutige Losung. Also stimmt Q mit QT auf F T iiberein. [] 

Bemerkung 

1m Abschnitt ill.6 zeigen wir a1lgemeiner, dass aus der Existenz eines iiquivalen­
ten MartingalmaBes die Arbitragefreiheit des Marktes folgt. Umgekehrt folgt un­
ter einigen technischen Bedingungen aos der Arbitragefreiheit auch die Existenz 
eines iiquivalenten MartingalmaBes (siehe m.6). 

KoroUar 11 - Optionsbewertung mit dem iiquivalenten MartingalmaO 

Es sei (g,B) ein Contingent Claim. so dass g(s) gleichmiiBig auf [0,1] be­

schriinkt ist. Dann gilt fUr seinen Preisprozess X( t) 

fUrOStST mitEQ=EQ.1' 

Beweis: 

Man beachte 

H(t) = exp( -[r(.)dr }Z(t) = r(t)·Z(t) 

Au.8erdem erfiillt Z(t) die stochastische Differentialgleichung 

dZ(t) = -o(t) :Z(t)dW(t). 

Sei t E [0, 1] fest. Dann folgt mit der Produktregel, Korollar 11.41, 

Z(T). TJy(s) . g(s)ds 
Z(t) t y(t) 

TJZ(s) y(s) TJ(SJY(U) ) 1 
= t Z(t) . y(t} . g(s)ds + t t y(t) . g(u)du . Z(t) dZ(s) 
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T1H(s) T1(SIY(U) J ( ) Z(s) 
= H(t) g(s)ds+ y(t) . g{u) du . -B(s) . Z(t} dW(s).. 

t t t 
'~------~f(~~------~' 

Da g(s) gleiehmii6ig auf [0, 1] besehrankt ist und die Voraussetzungen in Propo­
sition 8 fUr ~s) erfiillt sind, ist fUr u ~O der Prozess 

I; f{s ) dW(s) 

ein P-Martingal mit Erwartungswert Null. Hieraus folgt dann insbesondere 

Dann folgt mit Satz 5 und der Identitii.t (3) aus dem Beweis von Satz 7 

X(I)=E( ~~ 'B+!~;~ g(S)dsIF,) 

= E[ ~\~? -[ ex{ -fr(S)ds) . B + f..{ - jr(u)tIu)- g(s) + ff(s)dw(S)1 F, J 

=EQ[ ~-!r(s)dslB+!~ - jr(u)tlulg(S)dsl F,) D 

Unabhangigkeit des Optionspreises von b 

Aus Korollar 11 folgt insbesondere, dass im Fall g=O 

gilt, d.h. P ist gleieh dem "natiirlichen Preis" bzgl. eines neuen Wahrsehein­
Iiehkeitsmal3es Q. Dieses MaO ist allerdings Dieht wiihlbar, sondem eindeutig 
festgelegt. Interpretiert man die Wahl von b(t) als Wahl des Wahr.seheinlich­
keitsma.Bes P, so wird klar, warum man Pals das subjektive MaO und Q als das 
objektive MaO bezeiehnet. Weiter gilt in (n, F 1'> Q) 
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dp;(t) = p;(t).(r(t)dt+ tCTij(t)dWjQ(t)1 , i=O,I, ... ,d, 
1=1 ) 

d.h. aIle Wertpapiere, auch der Bond, haben gleiche mittlere Ertragsrate r(t), 
weshalb man auch von einem risiko-neutralem Markt spricht und Q=QT als 

risiko-neutrales MaO bezeichnet. Da bet) im risiko-neutralen Markt gerade 
r(t)·! entspricht, geht b(t) sehr wohl in p ein, allerdings in Gestalt von r(t)·! ' 
was die Herkunft als Aktiendrift nicht erkennen liisst. Insbesondere liisst es sich 
in der Black-Scholes-Formel nicht vom risikolosen Zinssatz unterscheiden. 

Praktische Berechnung des Optionspreises 

Der Optionspreis lasst sich oft mit Korollar 11 leichter berechnen als mit Satz 5. 
Zur Uhung empfehlen wir die Herleitung der Black-Scholes-Formel mit Hilfe 
von Korollar 11. Wir verdeutlichen diese Methode auch am folgenden Beispiel: 

Beispiel: Europiiiscber Digital-Call 

Der auf den ersten Blick seltsam erscheinende europaische Digital-Call ist in der 
Praxis sogar recht haufig. Hier wird, wenn der Aktienpreis Pl(t) in t=T eine be­
stimmte Grenze K iibersteigt, ein bestimmter Betrag B·, bier gleich 1, ausge­
zahlt, ansonsten erhalt man nichts (deshalb auch die englische Bezeichnung 
"cash-or-nothing-call"). Die Auszahlung betragt also: 

1m Black-Scholes-Modell, d.h. d=m= 1, b, r, CT konstant, 0">0, gilt nach Ko­
rollar II 

X(t)=EQ(e-r(T-tl .1{l\(T)~K}1 Pt) 

=e-r(T-t) .Q(l1(T)~KI P1(t»). 
Sei t fest. Dann gilt PI (1) ~K genau dann, wenn 

WQ(T)-WQ(t)~ ~(ln(p~t»)-(r-tCT2)(T-t») =: K 

Da »12(1)-»12(t) normalverteilt ist mit Erwartungswert 0 und Varianz (T-t), 
folgt 
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A -r(T-t} 1 x 00 ~ 2) 
X(t) = e 1~2n(T-t) ex - 2(T-t) dx 

111.3 Optionsbewertung mit Hilfe partieller 
Differentialgleichungen 

In ihrer beriihmten Arbeit von 1973 verwenden Black und Scholes nicht die Du­
plikationsmethode zur Bewertung von Optionen. Die von ihnen entwickelte Me­
thode basiert auf der Transformation des Optionsbewertungsproblems in die 
Aufgabe, eine parabolische partielle Differentialgleichung mit Endbedingung zu 
losen. Der Zusammenhang zwischen dieser Aufgabe - einem sogenannten 
Cauchy-Problem - und der Berechnung eines Erwartungswerts eines Funktio­
nals einer Losung einer stochastischen Differentialgleichung wird durch den im 
Exkurs 6 behandelten Darstellungssatz von Feynman und Kac gegeben. Da die 
Berechnung von Optionspreisen mittels Duplikationsmethode nach Satz 5 aber 
lediglich die Berechnung des Erwartungswerts eines Funktionals der zugrunde 
liegenden Aktienpreise ist, ist ~omit die Beziehung zwischen den Methoden der 
Optionsbewertung nach dem Duplikationsprinzip und dem Ansatz mittels par­
tieller Differentialgleichungen hergestellt. 

Neben der Verwendung partieller Differentialgleichungen als hauptsachliches 
technisches Hilfsmittel ist die Konstruktion eines risikolosen Portfolios aus 
Bond, Aktie und Option die ma6gebliche konzeptionelle Idee von Black und 
Scholes. 

Allgemeine Voraussettungen far diesen Abschnitt 

Wir betrachten ein Black-Scholes-Modell, d.h. d=m=l , b, r, u konstant, 
u >0. 



120 Kapitel ill: Optionsbewertung 

Konstruktion eines risikolosen Portfolios und ein Cauchy-Problem 

Black und Scholes betrachten in ihrer Arbeit ein Portfolio, das aus Bond, Aktie 
und genau einer verkauften Option besteht. Der Einfachheit halber beschriinken 
wir uns im Moment auf einen europaischen Call mit Ausubungspreis K. Black 
und Scholes nehmen an, dass sich der Callpreis zur Zeit t als eine Funktion C(t, 
Pt(t» der Zeit t und des Aktienpreises P1(t) darstellen lasst. Hat man nun den 
Call verkauft, so entspricht dies einer Position von -C(t, Pl(t» an Vermogen, 
denn mit dem Verkauf des Calls geht man die Verpflichtung ein, im Zeitpunkt T 
die Summe (Pl(1)-K)+ auszuzahien. 1m Zeitpunkt t ist C(t, PI(t» sozusagen die 
Summe, die man zahlen muss, urn sich dieser Verpflichtung wieder zu entle­
digen. Der Preis der Option ist im Zeitpunkt T somit auf 

C( T,fi (T)) = (fi (T) - K)+ 

festgelegt. Die Idee von Black und Scholes besteht nun darin, eine selbst-finan­
zierende Handelsstrategie (lPo(t), fJI(t» in Aktie und Bond zu verfolgen, so dass 
der Vermogensprozess unter Einschluss der verkauften Option, 

keinen zufalligen Schwankungen mehr unterworfen ist. Man spricht dann von ei­
nem risikolosen Portfolio. Falls der Preis der Option C(t, P1(t» die Voraus­
setzungen der mehrdimensionalen Ito-Formel, Satz n.40, erfiiIlt, also hinrei­
chend glatt ist, dann gilt (beachte, dass (1Po{t), 9'1 (t» als selbst-fmanzierend an­
genommen wurde !) 

dY(t) = 9'o(t) dPo(t) + 9'1 (t)dfi (t) - dC(t, fi (t)) 

= [9'o{t). po{t). r + 9'1{t). fi{t)·b 

-(Ct +Cp .P1(t).b+tCpp ·pl(t)'(1'2 )Jdt 

+( 9'1 (t)· fi (t)· (1'- Cp . fi(t). (1')dW(t) 

Damit Y(t) der Vermogensprozess eines risikolosen Portfolios ist, muss der Dif­
fusionskoefflZient verschwinden. Es muss also gelten 

Aus Arbitragegrfinden muss sich der zum risikolosen Portfolio gehOrende Ver­
mogensprozess Y(t) wie der Bond entwickeln, man verlangt also 
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dY(t) = r -Y(t) dt _ 

Setzt man nun Cp(t, Pt(t)) fUr qJI(t) ein, dann liefert diese Forderung fUr den 
DriftkoefflZienten 

! 
r -Y(t)=r- qJo(t)- Po(t)+b- Cp -PI (t) 

-( Ct + Cp -1'1 (t)-b+tCpp -p?(t}-0"2) 

= r -( qJo(t)- po(t) + qJt (t)- Pt (t) - c(t, 1'1 (t»)) + r -c(t, 1'1 (t») 
+(b-r)-Cp -Pt(t)-(Ct +b-Cp -pt(t)+t c pp _0"2 -p?(t») 

= r- Y{t)+~r-c-r-cp -I\{t)-Ct -tcpp _0"2 -1\2(t))_ 
I' 

=0 

Zusammen mit der Endbedingung in t= T erhalten wir also, dass der Callpreis 
C(t, PI(t» unter geeigneten Glattheitsannahmen Losung des folgenden Cauchy­
Problems ist: 

C{T,p) =(p-Kt, pe(O,oo) (CP) 

mit C e CaO,T] x (O,oo)) (') C1.2([O, T) x (O,oo))_ 

Da aus Arbitragegrtinden fUr deb. Preis des Calls weiter gilt 

O~ C(t,1'1(t))~ 1'1(t) , 

ist der Callpreis eindeutig durch (CP) charakterisiert, wenn (CP) eine eindeutige 
Losung besitzt, die hOchstens polynomial in pe(O,oo) wachst und eine zu yet) 
gehorende selbst-fmanzierende Handelsstrategie (lPo{t), qJI(t» mit den zur Her­
leitung von (CP) geforderten Eigenschaften existiert_ 

Somit konnen wir die folgende Proposition formulieren: 

Proposition 12 

a) Das Cauchy-Problem (CP) besitzt eine eindeutige Losung C(t, p), die hOchs­
tens polynomial wachst. Sie ist durch 
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mit d l (t) und d2(t) wie in Korollar 6 (,,Black-Scholes-Formel") gegeben. 

b) Durch (lPo(t), 9'I(t» mit 

(c{t,1~ (t») - CAt.Pt (d)· Pt (t») 
9'0(t) = poet} , 

9'I(d = cAt. Pt(t»), 

ist eine selbst-fmanzierende Handelsstrategie mit Vermogensprozess C(t, p\(t» 
gegeben. Insbesondere ist (lPo(t), 9'I(t» eine Duplikationsstrategie fUr den euro­
paischen Call und C(t, PI(t» ist der Preis des europaischen Calls zur Zeit t. 

Beweis: 

a) Aus dem Satz von Feynman und Kac, der im folgenden Exkurs behandelt 
wird, folgt die Eindeutigkeit einer Losung des Cauchy-Problems, die hOchstens 
polynomial wachst. Es liisst sich (langwierig!) verifizieren, dass der Black­
Scholes-Preis eine Losung des Cauchy-Problems ist. Offenbar wachst er nur 
polynomial in p und ist somit gleich der gesuchten Losung. 

b) Da C(t, PI(t» das Cauchy-Problem (CP) lost, sind die Voraussetzungen zur 
Anwendung der Ito-Formel erfiillt, und es gilt unter Verwendung von a): 

dC(t. Pt (t)) 

=( Ct {t. Pt (t») + CAt. Pt (t»). Pt (t).b+!CpAt. Pt (t»). p? (t)·a 2 )dt 

+ cp{t. PI (t»). PI (d'a dw(t) 

=( Cp{t. PI (t»). PI (t)·b+ r . [c{t. Pt (t»)- C p{t. PI (t»). PI (t)Ddt 

+ Cp{t. Pt (t»). Pt (t)· a dW(t). 

Andererseits erfiillt eine selbst-fmanzierende Handelsstrategie (1Po, 9'1) mit Ver­
mogensprozess C(t, PI(t» die Gleichung 

dc{t. PI (t}) = [9'o(t). po(t)· r + 9'1 (t)· Pt (t) .b] dt 

+9'1 (t)· PI (t)· a dW(t) . 
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Vergleich der beiden Darstellungen von dC(t, PI(1) fiihrt auf die in b) angege­
bene Fonn. Hieraus folgt zorn einen 

c(t, PI (t)) = 9'o(t). po(t) + 9'1 (t). PI (t) 

(d.h. C(t,PI(1) ist tatsiichlich der zu (9'0,9'1) gehOrende Vennogensprozess), 
zorn anderen folgen die Teile der Aussage b), die (9'0,9'1) betreffen. Insbesonde­
re erfiillt (9'0, 9'1) aIle Anforderungen einer Handelsstrategie. 

Desweiteren kann sofort veriflZiert werden, dass sich die zur Herleitung von 
(CP) benotigte selbst-finanzierende Strategie (9'Q.' 9'!) zu Y(t) als 

9'g(t}:= 9'o(t) + Y mit y:= Y(O) 

9'1(t):= 9'1(t) 

ergibt, woraus folgt, dass C(t, P1(t» tatsiichlieh dem Callpreis entspricht. 0 

Bemerkungen 

a) Die Handelsstrategie 9'1(t) ist nach Proposition 12 durch das ,,Delta" des Op­
tionspreises gegeben. 

b) Die Konvexitiit von (P-K)+, der Endzahlung, fibertriigt sieh auf C(t,p) fUr 
te[O, 1). Daher wird 9'o(t) in Teil b) der Proposition 12 negativ. (beachte:f kon­
vex,.f{O)=O =>.f{x)-f'(x)·x<O). 

c) Zur Existenz der Handelsstrategie wurde bei dieser Methode der Martingal­
darstellungssatz Dicht benotigt. Mehr noch: statt lediglich einer Existenzaussage 
fiber die Handelstrategie, gibt die Proposition die explizite Fonn an. 

Bemerkung: "Losung der Black-Scholes-Gleichung (CP)" 

Natiirlich haben Black und Scholes das Cauchy-Problem (CP) Dieht durch Erra­
ten und anschlieBendes VeriflZieren gelost. Ihr Vorgehen bestand darin, (CP) auf 
die Gestalt der in der Physik wohlbekannten Wiinneleitungsgleichung zu trans­
formieren und dann diese zu losen. Wir skizzieren dieses Vorgeheri in Anleh­
nung an Abschnitt 5.4 in Wilmott et al. (1995): 

Durch die Substitutionen 

x=ln(~) , 
c(t,p) = Ku( t",x) , p= 2%.2 

erhalten wir aus (CP) das iiquivalente Problem 
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Vr = Vxx +(p-l)vx - pv, pO, xeR, (TCP) 

v(O,x) = (ex -It, xeR. 

Mit dem Ansatz 

V( .,x) = eax+pr u( .,x) 

fUr geeignete reelle Konstanten a, p erhiilt man die partielle Differentialglei­
chung 

fJu+U r = a 2u+2aux +uxx +(p-lXau+ux)-pu, 

die durch die Wahl 

a=-t(p-l), p=-t(p+l)2 

in die Gestalt 
Ur =uxx ,pO,xeR, 

mit Aulfangsbedingung 

u( 0, x) = g(x) : = (e~(P+l)X - e~(P-l)X ) + ,xeR, 

(I) 

(2) 

ubergeht. Aus der Theorie der Warmeleitungsgleichung ist es nun wohlbekannt, 
dass (l), (2) durch 

U(., x) =_1 oof g(x).exp(- (x- y)2J dy 
21t' 4. 

-00 

gelost wird (vgl. auch Ubung '0.4). Die Berechnung dieses Integrals vollzieht 
sich nun analog zu den Rechnungen im Beweis von Korollar 6. Ihre explizite 
Durchfiihrung sowie die Rucksubstitution bis zur vollstandigen Gestalt der 
Black-Scholes-Formel bleiben daher dem Leser uberlassen. 

Wir betrachten nun ein d-dimensionales Black-Scholes-Modell mit d Aktien. 
Unter gewissen Voraussetzungen an die Endauszahlung liisst sich das Vorgehen 
in Proposition 12 verallgemeinem: 

Proposition 13 

Es existiere eine polynomial beschriinkte Losung f: [0, 11x(O,oo)d~R. also 

max If(t,p)1 ~ M(I+llpllk) fUrein festesM>O, keN,pe(O,oo)d, 
O:>;t:>;T 
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des Cauchy-Problems 
d d 

ft+t L aijP;Pjfp/p . +Lrp;/Pi -rf=O auf[O,1)xRd 
;,j=1 J ;=1 

f(T,pt--oo,Pd) = g(Pl,oo"Pd) fUrpeRd, 

mitfstetig,feCl.2([O, 1)x(O,<Xl)1i) und a=crcr'. Weiter gelte 

EQ(g(P1(T), ... , Pd(T»)) < <Xl. 

Dabei sei EfTEQ,T definiert wie in Exkurs 5. Dann ist der Preis XB(t) des Con­
tingent Clauns B=g(P1(1), ... P i1) im d-dimensionalen Black-Scholes-Modell 
durch 

gegeben. Weiter stellt 

'P;(t) = fp/(t,l\(t),oo.,Pd(t») , i=I, ... ,d 

d 

f(t,l\ (t)"",Pd(t») - L 'P;(t)· p;(/) 

'Po(t) = po(t) ;=1 

eine Duplikationsstrategie fUr B dar. 

Beweis: 

Aufgrund der speziellen Form der Endzahlung B und der Vnabhiingigkeit der 
Zuwiichse der Komponenten der d-dimensionalen Brownschen Bewegung W(t) 
und nach Korollar 11 gilt 

X B(t) = E(e-r(T-t) g(P1 (T), ... , Pd(T»)1 Ft ) 

= E t ,1\(t),oo.,Pd(t) (e-r(T-t) g(l\ (T), ... , Pd(T»)) 

(zur letzten Schreibweise vgl. Bemerkung nach Korollar 6) Vnter den obigen 
Existenzannahmen fUr die Losung des Cauchy-Problems gilt nach dem Satz von 
Feynman und Kac gerade 

f(t,l\(t), ... ,Pd(t)) = X B(t) 

Imitation des entsprechenden Teils des Beweises von Proposition 12 liefert die 
Aussage iiber die Duplikationsstrategie 'P(t)=('Po(t), ... ,'P it». [] 
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Zusammenfassung: Herleitung der Black-Scholes-Formel 

Der Preis qt, P I (1) eines Europiiischen Calls war zum einen gegeben als be­
dingter Erwartungswert 

c(t, Ii (t») = E~Pt(t} (e-r(T-t) (PI (T)- Kt) 

und 

dPI (S) = PI (s>(r ds + a dWQ (s») , s e [t, 1] 

und zum anderen als Losung des Cauchy-Problems 

Ct +1a2 p 2Cpp +r· p. Cp -r· C = 0 ,(t,p) e[O, 1) x (0,00) 

C(T,p) = (p - Kt ' P e(O,oo) 

1m folgenden Exkurs wird gezeigt werden, dass dies kein Zufall ist, sondem ein 
Spezialfall eines Zusammenhangs zwischen Losungen stochastischer Differen­
tialgleichungen und partieller Differentialgleichungen. 

Exkurs 6: Die Feynman-Kac-Darstellung 

Allgemeine VoraussetzungenfiJr diesen Abschnitt 

Weit~rhin \ibe~ehmen wir bier die Voraussetzungen aus Kapitei n, Ab­
schnitt 0:2. ~e1te .64 . A.llerdings muss jetzt nicht unbedingt m=d gelten (be­
achte: m 1St die Dunenslon der Brownschen Bewegung). 

Definition 14 

Existiert auf (O,F,P) ein d-dimensionaler stetiger Prozess ((X(t), Ft)}t~O mit 

X(O) = x , x eRd fest, 

t m t 

Xj(t)=Xj + Jbj(s,X(s»)ds+ L Jaij(s,X(s»)dWj(s) 
o j=O 0 

P-fast sicher, fur aile t~O, ie {l, ... ,d}, so dass 
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i(lbi(S, X(S») I + ~O"J(s, xes»)] ds < 00 

o J=1 

P-fast sicher, fUr aIle t~O, ie {l, ... ,d}, gilt, so hefit X(t) eine starke Losung der 
stoehastisehen Differentialgleiehung 

dX(t) = b(t,X{t)) dt + a(t,X(t)) dW(t) 
X(O) =x 

(SDE) 

wobei 
b: [O,oo)x Rd~ Rd, 0": [O,oo)x Rd~ Rd,m 

gegebene Funktionen sind. 

Bemerkung 

a) Nach dem Satz ll.42, "Variation der Konstanten", wissen wir bereits, dass die 
stochastische Differentialgleichung der Gestalt 

dX{t) = (b{t). X{t) + a{t))dt + (u(t) . X(t) + I-{t))dW{t) 

unter bestimmten Voraussetzungen an b, a, 0" und veine eindeutige, explizite 
starke Losung besitzt. 

b) Auf den Begriff einer schwachen Losung wollen wir nicht eingehen. Wir ver­
weisen auf Kapitel5.3 in Karatzas/Shreve (1991). 

Der folgende Satz gibt ein Analogon zorn. Existenz- und Eindeutigkeitsresultat 
von Picard-LindelOfim deterministischen Fall an: 

Satz 15 - "Existenz und Eindeutigkeit fur stoehastisehe Differential­
gleiehungen" 

Sind die Koefftzienten b(t,x), o(t,x) der stochastischen Differentialgleichung 
(SDE) stetige Funktionen mit 

I~{t,x) -b(t,y)II+IIu(t,x) - u(t,y)lI;s; Kllx- YII 

IIb(t,x)1I2 +1Iu(t,x)1I2 ;S;K2(1+llxf} 
(L) 

(W) 
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fUr alle t~O, x, yeRd und eine Konstante K>O, wobei 11.11 die Euklidisehe Norm 
geeigneter Dimension ist. Dann existiert eine stetige starke Losung {(X( t), F,)} ~O 
von (SDE) mit 

EOIX(t)112) :s; C.( 1 + IlxIl2). eC-T fUr alle te [0, 1']. (E) 

fUr eine Konstante C=C(K,1) und T>O. Weiter istX(t) bis aufUnunterseheidbar­
keit eindeutig. 

Beweis: 

l.8ehritt: Eindeutigkeit 

Angenommen X und X seien zwei Losungen von (SDE). Wir definieren flir 
neN die Stoppzeiten 

Aus der Stetigkeit von X, X folgt 

lim sn = +00 P-fast sieher. 
n~cx> 

Wegen IlvI + ... +vnIl2 :s; n20lvl1l2 + ... +lIvnIl2) fUr vjeRd, i=l, ... ,n, neN, der Hol­

dersehen Ungleiehung, der Ito-Isometrie und (L) gilt: 

EOIx(t ASn )- x(t Asn )11 2) 

= E[ '~b(u, X(u») - b(., X(.»)) d. + 'Ii 0(., X(u») - 0(., X(.»)) dW(.) ') 

~ 4,· {T OCb(·, X(.») - l>{., 1'(u) )~' do ) 

+ 4· {T k 0(., X(u») - 0(., X(u) )~I' do ) 

~ 4(T + j). K' . E(~ x(u AS,)- X(u AS,)f do) 
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=4(T+I).K2 • fE(I/(X(UASn)-X(UASn)f) du (1) 

° Anwendung der Groowallschen Ungleichung auf die stetige Funktion 

liefert wegen (I) g(t)=O. Also sind damit {X(tASn)}t~O' {X(tASn)L~o 
Modifikationen voneinander und, da beide stetige Pfade haben, ununterscheid­

bar. Grenziibergang n-+oo Hefert diesselbe Aussage fUr X, X . 
2.Schritt: Existenz - einige Abschiitzungen 

Wie im deterministischen Fall geschieht der Existenzbeweis tiber die Konstruk­
tion einer Iterationsfolge: 

(2) 
t t 

X(k+l) (t) : = x + J b( s, X(k) (S») ds + J 0{ s, X(k) (S») dW(s) 

° ° 
fUr te [0,1], k=0,1,2, ... X<k)(t) ist offenbar F,-messbar und besitzt stetige Pfade. 
Weiter existiert fUr aIle T>O wegen (W) und einer zu (1) im ersten Schritt analo­
gen Abschiitzung die Ungleichung 

EO!X(k+l)(t) 112) ~911x112 +9(t+l)K2 f(I+EOlx(k)(s) 112)) ds (3) 

° . 
fUr aIle t e [0, Tj, wobei die Existenz des Erwartungswertes auf der rechten Seite 
induktiv aus der Anfangsbedingung X(0)=x und somit aus 

1i{lx(t) (t) i') ,,{ x+ [b{s. xl <is + [a{s. xl dw(s) 'J 
folgt. Aus (3) und (W) foIgt insbesondere 

und somit, dass die auf der rechten Seite von (2) auftretenden Integrale exis­
tieren. Mit 
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C:= C{T,K):= 9{T+l)K2 

folgt aus (3) die Ungleichung 

EOIx(k+I) (I) 112) ::; q 1 + Ilx112) + C f E(llx(k) (s) 112) ds. 
o 

Induktive Anwendung dieser Ungleichung auf den Integranden der rechten Seite 
liefert schlie6lich 

(II (k+l) 112) rI 2)( (Ct)2 (Ct)k+l) E X (t) ::; l,.,\l+llxll 1+Ct+-2-+···+ (k+I)! 

::; C(1+lIxI12)eCt . (4) 

3.Schrltt: Existenz - Konvergenz der Iteration 

Wegen (W) und (4) ist der Prozess 
t 

M(I):= J(o{s,x(k)(s»)_o{s,X(k-I)(s»))dW(s) 
o 

ein d-dimensionales, quadrat-integrierbares Martingal. Komponentenweise An­
wendung der Doobschen Ungleichung liefert daher wegen (W) 

t 2 
::; 4· K2 . E Jllx(k) (s) - X(k-I) (s)11 tis. (5) 

o 
Wegen (W) gilt fUr 

t 

B(t):= J(b(s,X(k)(s»)-b(S,X(k-I)(s»))ds 
o 

die Beziehung 

E(lIB(t)11)2 ::;K2 ·t· fE(llx(k)(s)-x(k-I)(s)112) ds, (6) 
o 

und somit folgt aus (5) und (6) wegenX<k+I)(t)-X<k)(t)=B(t)+M(t): 
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SK2 ·(4+T)· JE(llx(k)(S)_X(k-l)(s)112 ) cis 
o 
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(7) 

Iterative Anwendung von (7) auf den Integranden der rechten Seite dieser Un­
gleichung liefert mit den Bezeichnungen 

die Abschatzung 

E(SUP IIX(k+1)(s)_X(k)(s)1I2) SD* (Dt~k . 
O~$~t k. 

(8) 

Man beachte, dass D* wegen (4) endlich ist. Wir zeigen nun ahnlich wie im Be­
weis des Fortsetzungssatzes fUr stochastische Integrale, Satz n.32, dass die Folge 
stetiger Prozesse X<k}(t) gleichmiiBig konvergiert: Wegen (8) und der Cheby-
shev-Ungleichung folgt . 

p(maxllx(k+I)(t)_x(k)(t)II~_I_) S4D* (4DT)k (9) 
O~t~~ 2k+1 k! 

Wahlt man nun 

Ak : = {max IIX(k+ I) (I) _ X(k) (t)11 ~ _1_} , 
O~t~t 2k+1 

so liefert die Anwendung des Borel-Cantelli-Lemmas auf die Folge der A/v keN, 
wegen (9) die gleichmiiBige Konvergenz der Folge der Pfade von X<k}(t), keN. 
Foiglich existiert ein stetiger Prozess X(t) mit 

x(t) = lim X(k) (d P-fast sicher, fUr aIle t e [0,1] 
k~CIJ 

Da Taber beliebig war, gilt diese Konvergenz auf [0,(0). Weiter folgt damit auch 
aus (4) und dem Lemma von Fatou die Abschatzung (E). 
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4.Schritt: Losungseigenschaft 

Damit X(t) tatsachlich Losung der stochastischen Differentialgleichung ist, muss 
noch die Konvergenz der Integrale auf der rechten Seite von (2) gezeigt werden. 
Aus der gleiehmii6igen Konvergenz von .JW(t) gegen X(t) auf [0,1] folgt 

~~~IX(t'lD) - X(k) (t,lD)11 s 2-k fUr aIle k~N(lD) (10) 

fUr ein geeignetes N{lD) eN. Also folgt mit (L) und (10): 
t t 2 

Jb(s, X(s») ds- Jb(s, X(k)(s») cis 
o 0 

T 2 
S K2 . T· JIIX(s) - X(k) (s)11 ds k-+oo) 0 . (11) 

o 

FUr die Konvergenz der stoehastisehen Integrale beaehte man, dass fUr festes 
te [0,1] die Folge {x(k)(t)}keN eine Cauehy-Folge in L2(0',F,P) bildet (wegen 
(8» und wegen 

X(k) {t} k-+oo) X(t) P-fast sieher 

dannaueh 

E(IIX(k)(t)-X(tf) k-+oo) 0 

folgt. Also gilt mit der Ito-Isometrie (wegen (E) und (L» 

t 2 

E J( o{s,X(k)(s)) -o{s,X(s))) dW(s) (12) 
o 

= EJIla(s,X(k) (s»)- a{s, X(s)f ds 
o 

s K2 . J EOlx(k) (t) - X(t)11 2) cis k-+oo) 0 fUr aIle t e [0, n 
o 

wobei der Satz fiber dominierte Konvergenz wegen der gleichmaBigen Konver­
genz von.x(k)(t) gegenX(t) auf[O,1] anwendbar ist. Aus (11) und (12) folgt die 
gewiinsehte Konvergenz der Integrale auf der reehten Seite von (2) fUr festes 
t e [0, 1]. FUr die fast siehere Konvergenz des stoehastisehen Integrals kann man 
hierbei zu einer geeigneten Teilfolge fibergehen. Aus der Stetigkeit von reehter 
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und linker Seite der stochastischen Differentialgleichung folgt mit dem ublichen 
Schluss auch deren Giiltigkeit fUr beliebige to!:O. (] 

Die Anwendung der Beziehung 

IXIIP + .. ·+Ixn IP s; n(lxll+ ... +Ixn It S; n p+l OXIIP + .. ·+Ixn IP) 
fUr beliebiges xERn, p> I, sowie analoge Abschiitzungen wie in den ersten drei 
Schritten des vorangegangenen Beweises (vgl. Karatzas/Shreve (1991), S.303, 
389) liefem das nutzliche 

Lemma 16 

Unter den Voraussetzungen von Satz 15 gilt fUr die Losung X der stochastischen 
Differentialgleichung fUr m O!: 1 sowie T> 0 fest 

fUr alle tE [O,1J und eine geeignete Konstante C=C(T,K,m,d). 

Sehreibweise 

Die Losung der stochastischen Differentialgleichung (SDE) mit der Anfangsbe­
dingung X(t) =x kennzeichnen wir nun besonders durch die Schreibweise 

Der Einfachheit halber lassen wir im Folgenden hiiufig die oberen Indices weg, 
kennzeichnen dafUr aber die Erwartungswerte mit einem oberen Index 

E( ... Xt.X(S) ... ) = Et.X( ... X{s) ... ). 

Bemerkungen 

a) Die vorangegangenen Ergebnisse konnen auch auf den Fall einer zufalligen 
Anfangsbedingung 

X(O)=Z 
verallgemeinert werden, wenn Z eine quadrat-integrierbare Zufallsvariable ist 
(bzw. in Lemma 16 die Bedingung E(IIZ112m)<oo erfiillt) und unabhiingig von der 
Brownschen Filterung {Ft } ~o ist. X(t) ist dann an die P-Erweiterung {Gt } to!O von 
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G;:= o{Z,W(s); O:$;s:$;T) 

adaptiert (d.h. X(t) ist Gt-messbar). 

b) Es kann gezeigt werden, dass die Losung {X(t),Ft}t von (SDE) ein Markov­
Prozess ist, d.h. fUr aIle Borel-messbaren, beschriinkten Funktionenfgilt 

(*) 

fUr festes t:$;s (siehe z.B. RogerslWilliams (1987), Abschnitt VA) mit g(x) := 
E(f{X'·X(s))). In diesem Sinn werden wir die obige Notation EJ·x(f{X(s») verwen­
den. Da in unseren Anwendungen die Markov-Eigenschaft (*) oft direkt aus der 
Unabhiingigkeit der Zuwiichse der Brownschen Bewegung foIgt, verzichten wir 
auf die Darstellung eines Beweises der Markov-Eigenschaft von X. 

Definition 17 

Sei X(t) die eindeutige Losung der stochastischen Differentialgleichung (SDE) 
unter den Bedingungen (L) und (W). Fiir f:Rd~ R ,fE C2(Rfi), heIDt der 
Operator At, defmiert durch 

d d ;jl f d of 
(Atf)(x):= t ~?;aik(t,x). OXioXk (x) + ~bi(t,X)' oXi (x) 

mit 
m 

aik (I,X) := L O'ij(t,x). O'kj(t,X) 
j=1 

der charakteristische Operator zuX(t). 

Beispiele 

1. X(t)=W(t) lost die stochastische Differentialgleichung dX(t) = dW(t), X(O)=O. 
Also ist 

d 2 
.1 Ll =.1 '" _a_ 
2 2.L.. 2 

i=1 aXi 

der charakteristische Operator der d-dimensionalen Brownschen Bewegung. 

2. Der Aktienpreisprozess 

X(t) = x. e(b-!0'2 )t+oW(t} 

lost die stochastische Differentialgleichung 
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dX(t) = X(t)(bdt + o-dW(t)), 
X(O) =x 

und hat damit den charakteristischen Operator At definiert durch 

(Atf){x) = to-2x2 f"{x) +b·x· f'(x). 

Beschreibung des zu At gehorigen Cauchy-Problems 

135 

Sei T>O fest. Wir betrachten nun zum Operator At das folgende Cauchy-Pro-
blem: . 

Suche eine Funktion qt, x) : [0,1] x Rd -.R mit 

-vt + kv = At v + g auf [0, 1) x Rd 

v(T,x) = f(x) fUr xeRd 

wobei 
f:Rd-.R, g:[O,1]xRd-.R, k:[O,1] xRd-.[O,oo) 

(C) 

Zur Sicherung der Eindeutigkeit einer Losung von (C) verlangt man zusatzlich, 
dass v einer polynomialen Wachstumsbedingung geniigt: 

Oblicherweise setzt man voraus, class fUr die Funktionen f, g, k mit geeigneten 
Konstanten L, A. gelte: . 

f, g, k stetig mit 

If(x)I~L(l+llxIIH), L>O,A.~l oder f(x)~O 

Ig(t,x)I~L(l+llxfAl L>O,A.~l oder g(t,x)~O 

(VI) 

(V2) 
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Satz 18 - Die Feyomao-Kac-Darstelluog 

Voter den Voraussetzungen (VI) und (V2) existiere eine Losung ~t, x): 
[0, 1]xRd~R des Cauchy-Problems (C), die stetig ist und in C1•2([0, 1)xRd) 
liegt. Der Operator At in (C) sei der charakteristische Operator zu X(t), der ein­
deutigen Losung einer stochastischen Differentialgleichung (SDE), deren Koef­
flZienten b, (j mit 

bj(t,x), (jij(t,x) : [0,00) x R d ~ R fUr i=l, .. ,d , j=l, ... ,m, 

die Bedingungen (L) erfiillen und stetig sind. 

Geniigt dann ~t ,x) der polynomialen Wachstumsbedingung (PW), so gilt: 

v{t.x) = E'~(f(X(T))'1- !k(O.X(O))dO) 

+ !g(s.X(s))·1- !k(O.X(O))dO) as). 

Insbesondere ist somit ~t ,x) die eindeutige Losung von (C), die (PW) erfiillt. 

Bemerkung 

Kann man also zeigen, dass (C) eine eindeutige Losung besitzt, die (PW) erfiiIlt, 
so ist diese durch obigen Erwartungswert als Funktion der Anfangsparameter 
(t ,x) von (SDE) gegeben. Es gilt aber im aIlgemeinen nicht der Vmkehrschluss, 
d.h. der Erwartungswert ist nicht notwendigerweise eine Losung von (C). Kann 
man aber den Erwartungswert berechnen und veriflZieren, dass er das Cauchy­
Problem lost, so ist er die eindeutige Losung, die (PW) erfiillt. 

Beispiel 

Lose folgendes Cauchy-Problem 

.Lv --v 2 xx- t, 

v(T,x) = x2 , 

Hier sind also k, g == 0 undj(x) = x2. 1I2,v;a ist der charakteristische Operator 
der Brownschen Bewegung (siehe Beispiel oben). Als Kandidat fUr die Losung 
bietet sich nach Satz 18 und der anschlieBenden Bemerkung an: 
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Man rechnet leicht nach, dass V das gegebene Cauchy-Problem lost. Damit ist 

v(t,x) dann auch einzige Losung von (C), die (PW) erfiillt. 

Beweis von SalT. 18 : 

Der Einfachheit halber sei m=d= 1 und k«(},X(fJ))=k. Der Beweis fUr den allge­
meinen Fall verliiuft analog. 

Sei Os;,ts;,ss;,T. Dann Hefem die mehrdimensionale Ito-Formel, Satz 11.40, und 
Korollar 11.41, 

v{s, X(s»)· e-k(s-t) 
s s 

= v(t,x).1 + fe-k(u-t) d( ~u,X(u»)) + f v{u,X(u»)d(e-k(u-d) 
t t 

s 

= v(t,x) + fe-k(u-t) ( vt + Vx .b(u,X(u») +tv,u . u 2(u,X(u») - k· v)du 
t 

s 

+ Je-k(u-d(vx .u(u,X(u»))dW(u) 
t 

(13) 
s s 

= v{t,x)- Je-k(u-t) .g(u, X(u») du + Je-k(u-t)(vx .u(u,X(u»))dW(u). 
t 

Defmiere die Stoppzeit 

rn:= in! {s ~ t: IIX(s)11 ~ n} 

Wir setzen dann s=TArn in (13) und bilden den Erwartungswert. Da der Inte­
grand des stochastischen Integrals beschriinkt ist (beachte die Stoppzeit !), ist der 
Erwartungswert dieses Integrals Null und wir erhalten 
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Es gelten nun: 
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v(t,x) = ~t,x( v( Tn'X( Tn})· e -k( t"n -t) .1{t"n ~T}) 
B 

+ Et,x(f(X(T)) .e-k(T-t) .1{T
n
>T}) 

, ' 

b 

(
TAt"n I 

+ Et,x !e-k(u-t) . g{U,X(U»)dUj 

G 

i) Mit dem Satz liber die dominierte (bzw. monotone) Konvergenz folgt aus (V2) 
und der Abschatzung 

Et'X(max Ilx(oWr) S; c(1+llxI12r)./~'(s-e) (14) 
t-5.f)S,s 

fUr aIle r~ 1 und ein C:= C(K,r,T,d»O (siehe Lemma 16), die Konvergenz 

ii) Aus der poIynomiaien Wachsturnsbedingung (PW) folgt: 

Weiter liefem die Chebyshev-Ungleichung und (14) die Abschatzung' 

Wahlt man dann r> p , so folgt 
B n--+«» 0 . 

iii) Mit (VI) kann man den Satz liber die dominierte (hzw. monotone) Konver­
genz anwenden, dies liefert 
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Insgesamt folgt mit i) - iii) die gewiinschte Darstellung von v(t, x) . 

111.4 Arbitragegrenzen fur amerikanische nnd 
enropaische Optionen 

o 

Innerhalb dieses Abschnitts sollen keine exakten Preisformeln fUr Optionen, son­
dem lediglich obere und untere Schranken fUr ihre Preise bestimmt werden. Die­
se Schranken werden aber unabhiingig von der Modellierung der zugrunde lie­
genden Aktienpreise nur mit Hilfe von Arbitrageargumenten hergeleitet. Das 
hei.6t, dass das einzige verwendete Hilfsmittel der Grundsatz sein wird, dass kein 
Optionspreis festgesetzt werden darf, der Arbitragemoglichkeiten zuliisst. Wir 
sprechen deshalb von Arbitragegrenzen. Die Rechtfertigung dieser Grenzen 
besteht darin, dass bei vorhandener Moglichkeit, ohne Kapitaleinsatz Gewinn zu 
erzielen, diese von allen Markteilnehmem sofort wahrgenommen werden wiirde, 
worauf dann der Markt mit sofortiger Preisiinderung reagieren wiirde, bis keine 
Arbitragemoglichkeit mehr vorhanden ware. Insbesondere wollen wir daher im 
Folgenden annehmen, dass die Aktienpreise keine solche Moglichkeit zulassen. 
FUr die Giiltigkeit der im Folgenden hergeleiteten Arbitragegrenzen ist daher im 
jeweiligen Marktmodell nur dessen Arbitragefreiheit zu iiberpriifen. 

1m Gegensatz zur exakten Preisfestsetzung im Black-Scholes-Fall ist bei ameri­
kanischen Optionen die Bestimmung von Arbitragegrenzen sogar wesentlich 
einfacher als bei Optionen europiiischen Typs (zur Bewertung amerikanischer 
Optionen im Black-Scholes-Fall vergleiche Abschnitt rn.5). Das Beweisprinzip 
fUr alle im Folgenden angegebenen Schranken wird meist darauf beruhen, fUr 
Preisfestsetzungen oberhalb der oberen oder unterhalb der unteren Schranke eine 
Arbitragestrategie zu konstruieren. 

Offensichtliche Schranken fUr Preise amerikanischer und europiiischer Puts und 
Calls sind 

Cit, P1(t» ~ 0, Pit, Pt(t)) ~ 0, CA(t, Pt(t)) ~ 0, PA(t, P1(t)) ~ 0, 

wobei CE, CA jeweils Preise europiiischer und amerikanischer Calls und PE' PA 
Preise europiiischer und amerikanischer Puts sind. P1(t) ist dabei der aktuelle 
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Preis der zugrunde liegenden Aktie. Zum ,,Beweis" obiger Relationen beachte 
man, dass im Fall negativer Preise sogar die Strategie 

• ,,Kaufe die jeweilige Option und lasse sie ohne Ausiibung verfallen" 

eine Arbitragestrategie ist, da der Investor in t=O einen Geldbetrag erhalt (nam­
lich den negativen "Optionspreis"!) und spater keine Zahlung aus dieser Strate­
gie heraus zu leisten hat. 

Allgemeine Voraussetzungen flir diesen Abschnitt 

Zum Beweis der nachfolgenden Schranken nehmen wir an, dass es zu jedem 
Zeitpunkt t moglich ist, Geld zum risikolosen Zinssatz r anlegen oder leihen zu 
konnen. Ansonsten benotigen wir in diesem Abschnitt keine bestimmten Voraus­
setzungen an das Marktmodell oder an die Preisverlaufe der Wertpapiere. 

Proposition 19 

a) FUr den Preis Cit, Pt(t» eines amerikanischen Calls mit Ausiibungspreis 
K~O gilt 

(1) 

b) FUr den Preis P A(I, PI (t» eines amerikanischen Puts mit Ausiibungspreis K~ 0 
gilt 

Beweis: 

a) Gilt (PI(t) - Kt > CA(I, Pt(t», so ist die Strategie 

• ,,Kaufe die Option und iibe sie sofort aus" 

eine Arbitragestrategie. Sie liefert namHch in t die Zahlung 

PI (t) - K - CA(t, PI (I» > 0 

(2) 

und danach keine weitere Zahlung mehr. Es entstiinde somit ein risikoloser Ge­
winn ohne Kapitaleinsatz. Gilt hingegen PI(t) < CA(t, PI(t», so ist die folgende 
Strategie eine Arbitragstrategie 

• "Verkaufe den Call fiir CA(I, PI(t», kaufe die Aktie fiir PI(I) und lege den 
positiven Rest CA(t, PI(t» - PI(t) zum risikolosen Zinssatz r an" 
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Obt dann der Kaufer irgendwann die Option aus, so erMlt er die Aktie und zahlt 
an den Verkaufer der Option K Geldeinheiten. Obt er bingegen die Option nie 
aus, so behalt der Verkaufer die Aktie. In jedem der beiden FiilIe hat man zum 
Verfolgen der obigen Strategie kein Anfangskapital benotigt, aber- ein strikt 
positives Endvermtigen von mindestens 

erzielt, was zeigt, dass die beschriebene Strategie eine Arbitragestrategie ist. Ins­
gesamt haben wir somit die Ungleichung (1) gezeigt. 

b) Der analoge Beweis wird dem Leser als Obung iiberlassen. o 

Da man bei amerikanischen Optionen die freie Wahl des Ausiibungszeitpunkts 
hat, bei europaischen Optionen aber nur am Ende der Laufzeit ausiiben darf, gel­
ten fUr amerikanische und europaische Optionen mit gleicher Laufzeit und glei­
chem Ausiibungspreis offenbar die Beziehungen 

CA(t, P1(t)) ~ CEf.t, P1(t)), PA(t, P1(t» ~ PEf.t, P1(t» . (3) 

Diese Beziehungen werden fUr den Beweis der folgenden Proposition benotigt: 

Proposition 20 

a) Fiir den Preis Cit, P1(t» eines europaischen Calls mit Ausiibungspreis K~O 
und Laufzeit T gilt 

(P 1(t) - e-r(T-/) Kf ~ Cit, P1(t» ~ PI (t), (4) 

falls wiihrend der Laufzeit des Calls keine Dividende auf die Aktie gezahlt wird. 

b) Fiir den Preis Pit, P1(t» eines europaischen Puts mit Ausiibungspreis K~O 
und Laufzeit T gilt 

(e-r(T-/)K-PI(t)f ~Pit,PI(t))~ K, (5) 

falls wahrend der Laufzeit des Puts keine Dividende auf die Aktie gezahlt wird. 

Beweis: 

a) Wegen den Ungleichungen (1) und (3) gilt Offenbar Cit, PI(t»~PI(t). Wir 
nehmen nun an, dass 

Cit, PI(t» « PI(t) - e-r(T-/) Kf (*) 
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gilt, wobei wegen der Nicht-Negativitit des Call-Preises automatisch der Positiv­
teil der rechten Seite von (*) strikt positiv sein mull. Dann ist die folgende Stra­
tegie eine Arbitragestrategie: 

• ,,Kaufe den Call fUr Ctf,.t, Pt(t», fiihre einen Leerverkauf einer Aktie zum 
Preis PI(t) durch (d.h. verkaufe die Aktie ohne sie zu besitzen und lief ere sie 
zu einem spateren Zeitpunkt) und lege den positiven Rest PI(t) - Ctf,.t,PI(t» 
zum risikolosen Zinssatz ran". 

Mit (*) besitzt man so im Zeitpunkt t= T das verzinste Kapital 

In t= T ergeben sich dann die beiden folgenden Moglichkeiten: 

1. P I.0..?:.K 
Man ubt den Call am Laufzeitende aus, kauft die Aktie zum Preis K, gleicht da­
durch den in t getitigten Leerverkauf aus und hat dann insgesamt in T den Ge­
winn 

realisiert. 

2.pt<n~K 

Man lasst die Option verfallen, kauft die Aktie am Markt zum gUnstigeren Preis 

P t (1)g und gleicht damit den Leerverkauf aus. Man erhalt bier als Gewinn 

In beiden Fallen erhalt man also ohne Einsatz von Anfangskapital ein strikt posi­
tives Endvermogen, womit die Arbitrageigenschaft der Strategie gezeigt ist. 

b) Der analoge Beweis bleibt dem Leser uberlassen. (] 

Bemerkung 

Es folgt, dass wegen (1) und (3) die Ungleichungen (4) 

(Pt(t)-e-r(T-t)Kf ~CA(t,Pt(t»~ Pt(t), 

auch fUr amerikanische Calls gilt. 

Weitere Beispiele fUr Arbitragegrenzen fUr Optionen mit anderen Auszahlungs­
profilen als denen der Standardputs und -calls lassen sich leicht konstruieren. Es 
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ist wichtig zu bemerken, dass man bei einem Portfolio von Optionen oft bessere 
Arbitrageschranken erhalt, als die, die sich durch Addition der Einzelschranken 
der beteiligten Optionen ergeben warden. Es ist unter Umstiinden sogar moglich, 
den Preis des Portfolios aus reinen Arbitrageuberlegungen unabhangig vom 
Aktienpreismodell zu bestirnmen. Das mit Abstand bekannteste Beispiel hierzu 
ist: 

Satz 21 "Put-Call-Paritiit fur europiiiscbe Optionen" 

Filr die Preise Pdt, PI(t», Cdt, PI(t» von europaischen Put- und Call-Optionen 
mit gleicher Laufzeit T und gleichem Ausubungspreis K gilt 

(falls die zugehOrige Aktie wahrend der Laufzeit keine Dividende zahlt!). 

Beweis: 

(PCP) 

Die linke Seite von (PCP) entspricht der Strategie, einen Call zu kaufen und 
K e-r(T-t) Geldeinheiten im Bond anzulegen. Sie fiihrt zum Endvermogen 

Die Strategie auf der rechten Seite von (PCP), je einen Put und eine Aktie zu 
kaufen, fiihrt zum Endvermogen 

Xp(T) = (K - PI(T)t + PI(T) = K .1{l\(T)<K} + /f(T) .1{l\(T)<=:K}· (**) 

Da beide Strategien zum gleichen Endvermogen fiihren (und zwischendurch kei­
ne weiteren Zahlungen Hefem), muss auch ihr Wert im Zeitpunkt t ubereinstim­
men, woraus die Giiltigkeit von (PCP) in t= T folgt. Wilrde sie nun in einem 
Zeitpunkt t < T verletzt sein, so bestilnde eine Arbitragemoglichkeit darin, die 
teurere der beiden zugehorigen Strategien zu "verkaufen" (d.h. die entsprechen­
den negativen Positionen zu halten) und die billigere zu ,,kaufen". Dies warde in 
t zu einer positiven Zahlung fiihren, die risikolos angelegt werden konnte. Da 
sich wegen (*) und (**) die Endzahlungen der heiden Strategien neutralisieren, 
hatten wir wieder ohne Anfangsvermogen ein strikt positives Endvermogen 
erzielt. FolgHch muB (PCP) fUr alle t E [0, 1] gelten. (] 

Bemerkungen 

a) Formt man die Put-Call-Paritat (PCP) urn in 
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(PCP*) 

so ist diese Gleicbheit in t= T sogar trivial wegen 

CdT, PIC/) - PdT, PI(1) = (P I(1) - Kt -(K - PI(T}t 

=PI(1)-K. 

b) Einen weiteren einfachen Beweis von (PCP) mittels der Darstellung (pCP*) 
erhalt man graphisch durch Subtraktion der Payoff-Diagramme von Call (siehe 
Bild m.I) und Put (siehe Bild m.2), was offensichtlich das Payoff-Diagramm 
von PI (1) - K ergibt: 

l\(T)-K 

K 

o I----#----------.,~ 

-K 

Bild ID.4 Payoff-Diagramm der kombinierten Option "Call-Put" 

c) Die Put-Call-Paritat liefert uns auch eine einfache Beweismoglichkeit der 
Black-Scholes-Formel fUr einen europaischen Put, wenn der Preis fUr den Call 
schon bekannt ist (siehe Korollar 6): 

PE(t, PI (t)) = CE (t, 1\ (t)) -1\ (t) - Ke -r(T-t) 

= 1\ (t)· fl>(dl (t») - Ke -r(T-t) fl>(d2 (t») - PI (t) - Ke-r(T-t} 

= -PI (t)· (1- fl>(dl (t) ))+ Ke -r(T-1) (1- fl>(d2 (t»)) 

= -1\ (t).( fl>( - dl (t) ))+ Ke -r(T-t) (fl>( - d2 (t»)). 



rn.4 Arbitragegrenzen fUr amerikanische und europiiische Optionen 145 

1m Fall amerikanischer Optionen gilt die Put-Call-Paritat im Allgemeinen nicht. 
Die vorgestellten Beweise von (PCP) benotigten alle, dass Put und Call den glei­
chen Ausiibungszeitpunkt besaBen, was aber bei amerikanischen Puts und Calls 
nicht der Fall sein muss. Mehr noch, es kann sogar bei gleichem Ausiibungspreis 
nie gleichzeitig vorteilhaft sein, einen Put und einen Call auszuiiben. Bevor wir 
auf die zu (PCP) analoge Beziehung im Fall amerikanischer Optionen eingehen, 
zeigen wir noch ein auf den ersten Blick sehr iiberraschendes Resultat; 

Proposition 22 

Werden wiihrend der Laufzeit T eines europiiischen und eines amerikanischen 
Calls mit gleichem Ausiibungspreis K keine Dividenden auf die zugehOrige 
Aktie gezahlt und ist der risikolose Zinsssatz r positiv, so gilt fUr die Preise der 
beiden Optionen 

und es ist nie vorteilhaft, den amerikanischen Call vorzeitig auszuiiben. 

Beweis: 

Wegen (3) und (4) gilt: 

CA(t, PI{t» ~ Cdt, PI(t) ~ (PI(t) - e-r(T-t) Kf. 

(6) 

(7) 

Offenbar kann es nur vorteilhaft sein, einen amerikanischen Call auszuiiben, 
wenn PI (t) > K gilt. In diesem Fall hat man aber wegen r> 0 und (7) 

CA(t,PI(t»~ (PI(t)-e-r(T-t)Kf > (PI(t)-Kt =PI(t)-K, (8) 

d.h. der Wert eines amerikanischen Calls ist vor dem Laufzeitende Timmer 
strikt gro.6er als sein innerer Wert PI(t) - K, der Ertrag, den man bei sofortiger 
Ausiibung des Calls erzielen wiirde. Folglich kann Ausiiben des amerikanischen 
Calls nur im Zeitpunkt T vorteilhaft sein. Somit sind die Zahlungen, die sich aus 
dem Besitz eines amerikanischen und dem eines europiiischen Calls ergeben, 
gleich, woraus wegen der Voraussetzung der Arbitragefreiheit dann die behaup­
tete Gleichung (6) folgt. D 

Bemerkung 

a) Natiirlich hat der Besitzer einer amerikanischen Option, die tief im Geld ist 
(d.h. bei der der zugehOrige Aktienkurs weit iiber dem Ausiibungspreis liegt), 
das Bediirfnis, diese fUr ibn giinstige Situation ausZUDutzen. Da das vorzeitige 
Ausiiben des Calls nach Proposition 22 unvorteilhaft ist, bleibt ibm hierzu nur 
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noch die Moglichkeit, die Option zu verkaufen. Dies bringt ibm aufgrund von 
Ungleichung (8) einen hoheren ErIos als das Ausiiben der Option. 

b) Auch unter dem Gesichtspunkt, die Option nur zu halten, um sich ein Kauf­
recht auf die Aktie zu sichem, ist es nicht vorteilhaft, den amerikanischen Call 
vorzeitig auszuiiben. Der vereinbarte Kaufpreis der Aktie wird auch bei einem 
weiteren Kursanstieg nicht groBer als K. Im Gegenteil, iibt der Call-Besitzer 
friihzeitig aus und fallt der Aktienkurs dann wiihrend der verbliebenen Zeit, so 
dass er in t= T unterhalb von K liegt, so ware die Aktie beim spaten Ausiiben der 
Option in t= T billiger zu erwerben gewesen. Solange der gewillte Aktienkaufer 
die Option noch nicht ausgeiibt hat ist er gegen Kursschwankungen der Aktie 
abgesichert. Schlimmstenfalls laBt er in t= T die Option wertlos verfallen, kann 
sich aber dann mit einem billigeren Kaufpreis der Aktie am MarIct trosten. 
AuBerdem wiirde er bei einem vorzeitigen Ausiiben die Zinsen des zum Aktien­
erwerb bereitgehaltenen Geldes verlieren, die sich bei risikoloser Anlage bis t= T 
ergeben. 

Die letzte von uns bier angegebene Arbitragebeziehung ist das Analogon zu 
(PCP) fUr amerikanische Puts und Calls. 

Satz 23 "Put-Call-Beziehung ffir amerikanische Optionen" 

Unter den Voraussetzungen von Proposition 22 gilt: 

Pl(t) - K S CA(t, PI(t» - PA(t, PI(t» S Pl(t) - Ke-r(T-t) . 

Beweis: 

(PCB) 

i) Die reehte Ungleiehung in (PCB) foIgt aus der Put-Call-Paritat fUr europaisehe 
Optionen und den Beziehungen 

CA(t, PI(t» = Cit, PI (f» , PA(f, PI(t» ~ Pit, Pl(t» . 

ii) Zum Beweis der linken Ungleiehung in (PCB) nehmen wir an, dass in einem 
Zustand (f, PI(t» die umgekehrte Beziehung gilt. Dann ist die Strategie 

• ,,Kaufe den Call, verkaufe den Put, verkaufe eine Aktie fUr PI(t) leer, lege K 
Geideinheiten zum risikolosen Zinssatz ran" 

eine Arbitragstrategie, denn es gilt: 

- die Kosten dieser Strategie betragen CA(t, PI (t»-PA(t, Pt(t»+PI(t)-K<O 
nach obiger Annahme. Man hat also im Zeitpunkt f einen Gewinn gemacht. 
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- Wird der Put vor T ausgeiibt, so muJ3 der Halter obiger Strategie die Aktie 
zum Preis K erwerben. Er verwendet sie sofort zum Ausgleich des anfangs 
getatigten Aktienleerverkaufs. Danach besitzt er noch den Call sowie den 
nicht zum Aktienkaufbenotigten Tell des risikolos angelegten Gelds. AuJ3er­
dem darf man nicht vergessen, dass er schon im Zeitpunkt t einen positiven 
Gewinn erzielt hat 

- Wird der Put nicht vor T ausgeiibt, gibt es die folgenden beiden Faile: 
Pl(1) ~ K: Der Halter obiger Strategie kauft mit Hilfe des Calls die Aktie 
zum Preis K und gleicht mit ihr den Leerverkauf aus. Zusiitzlich zum An­
fangsgewinn hat er noch den nicht zum Aktienkauf benotigten Teil des risi­
kolos angelegten Gelds. 
P1(1) < K: In diesem Fall wird der Put ausgeiibt werden. Ziihneknirschend 
kauft er dann die Aktie zum Preis K und gleicht mit ihr den Leerverkauf aus. 
Zusiitzlich zum Anfangsgewinn hat er weiterhin noch den nicht zum Aktien­
kaufbenotigten Tell des risikolos angelegten Gelds. 

III.S Bewertung amerikanischer Optionen 

Das iiberraschende Ergebnis des vorangegangenen Abschnitts bestand darin, 
dass allein anhand von Arbitrageiiberlegungen gezeigt werden konnte, dass ame­
rikanische und europiiische Calls denselben Preis besitzen. Uberraschend war 
das Ergebnis nicht zuletzt deshalb, wei! somit die den amerikanischen Call cha­
rakterisierende Wahlmoglichkeit des Ausiibungszeitpunktes quasi keinerlei Wert 
besitzt. Da dies fUr allgemeine amerikanische Optionen allerdings nicht der Fall 
ist, ist die explizite Bestimmung des fairen Preises einer amerikanischen Option 
urn einiges schwieriger als im europiiischen Fall. 

Allgemeine Voraussetzungen far diesen Abschnitt 

Wir betrachten eOO Black-Scholes-Modell, d.h. d=m= 1, b, r, u konstant, 
(j >0. 

Wir wollen zuniichst einen amerikanischen Contingent Claim defmieren und 
dabei der Einfacbbeit halber auf die Modellierung eines Auszahlungsratenpro­
zesses verzichten. 
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Definition 24 

Ein amerikanischer Contingent Claim besteht aus einem progressiv messba­
rem stochastischen Prozess B={(B(t), Ft)}te[O,1J mit B(t)~O und einer Endzah­
lung B( z) zur vom Halter des Contingent Claims gewiihlten Ausubungszeit 
Te [0,1'] mit 

• T ist Stoppzeit, 

• E( sup (B(S)t) < CIO fUr ein It> 1, 
O;!;sST 

• {(B(t), Ft )} e[ ]besitzt stetige Pfade. 
t O.T 

Beispiele 

(*) 

Paradebeispiele amerikanischer Contingent Claims sind der amerikanische Call 
auf eine Aktie mit Ausubungspreis K, d.h. 

bzw. der entsprechende amerikanische Put 

Hierbei konnen die Ausubungspreise K auch ais stetige Funktionen gewiihlt wer­
den. 

Definition 2S 

a) Ein zuUissiges Paar (tr,c)eA(x) aus einem Portfolioprozess und einem Kon­
sumprozess mit Vermogensprozess X"{t) ~B(t) fUr aile te [0,1] heil3t eine 
Hedging-Strategie zum amerikanischen Contingent CiaimB mit Preisx>O. 

b) H(x) sei die Menge der zum amerikanischen Contingent Claim B gehOrigen 
Hedging-Strategien. 

c) p =inJ { x>O I H(x):#2J } heil3t fairer Preis des amerikanischen Contingent 
ClaimsB. 
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Bemerkungen 

a) Es mag auf den ersten Blick uberraschend sein, dass in a) nichtX1l(t)=B(t) fUr 
alle te[O, 1] gefordert wird. Diese Forderung ist aber nor in entarteten Fiillen er­
fiillbar. Mehr noch, die Existenz einer solchen Strategie (n; c) w1irde oft eine Ar­
bitragestrategie darstellen. So musste z.B. fUr einen Call, bei dem anfangs 
P1(0)<K gelten w1irde (also B(t)=O), X"{O)=O sein, aber zur Zeit der Ausubung 
r nicht-negativ und mit positiver Wahrscheinlichkeit sogar strikt positiv sein 
(dann niimlich, wenn P1(i»K gilt). Dagegen ist die Forderung 
X"{t);::(P1(t)-K)+ (zumindest im Fall r;::O) erfiillbar, z.B. durch die Black­
Scholes-Strategie fUr den Call (folgt aus der Identitiit der Preise eines amerika­
nischen und europiiischen Calls). 

b) Die fUr das Hauptergebnis der Optionsbewertung nach dem Duplikationsprin­
zip, Satz 5, entscheidenden Aussagen aus dem Satz uber die Vollstiindigkeit des 
Marktes, Satz n.48, gelten aufgrund von (*) und des Satzes uber "optional 
sampling", Satz n.13, auch dann, wenn man die Zeitpunkte Tbzw. t durch eine 
Stoppzeit r mit Werten in [0, 1] ersetzt. Ware also die Stoppzeit r bei einem 
amerikanischen Contingent Claim fest gewiihlt (oder vorgeschrieben), so erhie1te 
man den Preis eines amerikanischen Contingent Claims als Korollar aus Satz 5 
und Korollar 11 als 

E(H(r)B(t») = EQ(po
1(r) B(r») , 

wobei Q das eindeutige iiquivalente MartingalmaJ3 im Markt ist. Da nun der 
Kaufer der Option bestrebt sein wird, eine optimale Strategie auszuwahlen, ist es 
plausibe1 

p = sup E(H(r)B(r») 
rELO.T 

als Preis eines amerikanischen Contingent Claims B zu vermuten, wobei ~O.T die 
Menge aller Stoppzeiten bzgl. {Ft} t mit Werten in [0, 1] bezeichnet. Tatsiichlich 
gilt sogar der folgende Satz 

Satz 26 

FUr den fairen Preis p eines amerikanischen Contingent Claims B gilt 

P = sup E(H(r)B(r») = sup EQ{e-rr B(r») , 
rELo.T rELO.T 

und es existieren eine Stoppzeit lund eine zugehOrige Hedging-Strategie (7l'*,O) 
fUr die das Supremum angenommen wird. 
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Bemerkungen zum Beweis: 

Der Beweis folgt z.B. aus Satz 2.5.3 in Karatzas/Shreve (1998). Er erfordert al­
lerdings technische Hilfsmittel wie z.B. die SnelI-Einhiillende oder die Doob­
Meyer-Zerlegung, die im Rahmen dieses Buches nicht bereit gestellt werden 
sollen. Die Hauptarbeit des Beweises steckt im Nachweis, dass 

X(t) = esssup EQ(e-r(T-T) B(T) I Fi) 
TELt.r 

ein Vermogensprozess zu einem geeigneten Portfolio-Prozess ist, wobei ess sup 
das wesentliche Supremum bezeichnet. X(t) wird dann wieder als Bewertungs­
prozess von B bezeichnet. Da im Fall amerikanischer Optionen die Wahlmog­
lichkeit des Ausfibungszeitpunktes besteht, liegt hier eine Asymmetrie zwischen 
Kaufer und Verkaufer der Option vor. Wir zeigen aber mit einfachen Arbi­
trageargumenten, dass der obige Preis tatsachlich der einzige Preis von B ist, der 
keine Arbitragemoglichkeit gestattet. 

Satz 27 

Der faire Preis p des amerikanischen Contingent Claims B mit 

P = sup E(H(T)B(T») 
TeLo.r 

ist der einzige Preis x, der keine Arbitragemoglichkeiten zulasst. 

Beweis: 

i) Wir zeigen zunachst p ~ x: 

Wfirde der Preis x von B in t=O die Ungleichung 

p<x 

erfiillen, so ware folgende Strategie eine Arbitragemoglichkeit: 

• verkaufe den Contingent Claim fUr x, 

• verfolge im Zeitintervall [0,p]c[0,11 die Hedging-Strategie (1l'*,0) aus 
Satz 26 mit dem Startkapital p < x . Dabei sei peine beliebige vom Kaufer 
des Contingent Claims zu wiihlende Stoppzeit, 

• lege das fibrige Geld x-p im Bond an, 

• leiste zur Zeit p die Zahlung B(P) an den Kaufer des Contingent Claims, 



m.s Bewertung amerikanischer Optionen 151 

• investiere ab t= p das restliche Vennogen in den Bond. 

Man beachte, dass zum Verfolgen dieser Strategie in t=O kein Kapital notig ist. 
Zum Zeitpunkt p erfiillt das Gesamtvennogen X(P), das zur optimalen Hedging­
Strategie gehOrt, aufgrund der Hedging-Eigenschaft 

X(p)~B(p). 

Da zusiitzlich noch die Differenz x-p mittlerweile auf (x- p )e"P angewachsen 
(bzw. gescbrumpft, falls r<O) ist, erhiilt man aus dem Verfolgen obiger Strategie 
ein positives Endvennogen und hat somit einen Arbitragegewinn erzielt. 

ii) Wir zeigen p ~ x: 

Wiirde die Ungleichung 

p>x 
gelten, so folgt sofort, dass der Kauf des Contingent Claims B zum Preis x< p 
und das Halten der negativen Position aus der optimalen Hedging-Strategie aus 

Satz 26, was p einbringt, eine Arbitragestrategie ergibt. Durch Ausiiben der Op­

tion im optimalen Zeitpunkt l erhiilt man gerade die Zahlung, die man braucht, 
urn seine negative Position auszugleichen. AuBerdem besitzt man noch die 

Differenz (jJ - x)e-n·• die man zu Beginn risikolos angelegt hatte. \J 

Aufgrund der beiden vorangegangen Siitze ist es nun auch klar, wie die optimale 
Ausiibungszeit auszusehen hat: 

Korollar 28 

Es sei 

Dann ist 

r· = inf{s 2 II X(s) = B(s)} 

eine optimale Ausiibungszeit. 

Bemerkung 

Dieses Korollar besagt nichts anderes, als dass der innere Wert der Option, also 
den Wert, den man bei Ausiibung der Option erzielen wiirde, im optimalen 
Ausiibungszeitpunkt mit dem Optionspreis iibereinstimmt. 
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Das Hauptproblem bei der Bewertung amerikanischer Contingent Claims besteht 
nun darin, dass in der Regel weder fUr X(t) noch fUr .. explizite Darstellungen 
existieren. Selbst im einfachsten Fall des amerikanischen Puts ist man auf 
numerische Methoden angewiesen. FUr weitere Resultate verweisen wir auf 
Myneni (1992). 

Die Berechnung des fairen Preises p besteht nach Satz 26 aus der Losung eines 
optimalen Stoppproblems. FUr den Verlauf der optimalen erwarteten Zahlung ei­
nes solchen Problems als Funktion der Anfangsparameter (t, P1(t» existiert im 
Black-Scholes-Modell ein zur Charakterisierung des Preises europaischer Op­
tionen als Losung eines Cauchy-Problems analoges Ergebnis. Wir mochten es 
hier nur fUr den Spezialfall des amerikanischen Puts angeben und fUr weitere 
Hintergriinde auf die Arbeit von Jaillet, Lamberton und Lapeyre (1990) verwei­
sen. 

Satz 29 

Die folgende Variationsungleichung 

Ut (t,x)+tcr2 'Uxx(t,x)+~ -tcr2 )uAt,x)-ru(t,x)~ 0 

u(t,x) ~(K -exf 

(u(t,x) -(K - eX )+ )(u1 (t,x) +tcr2uxx (t,x) +(r-tcr2 )ux(t,x) - ru(t, x) ) = 0 

u(T,x) =(K _ex f 
fUr xeR, (t,x) e [O.1JxR, 

besitzt eine eindeutige stetige Losung u(t, x), so dass ihre Ableitungen ux' ut' Uxx 
(die im Sinne von Distributionen existieren) lokal beschrankt sind. FUr diese Lo­
sung gilt 

u(t,ln(x)) = 

esssup E~X( e-r(T-t} ( K -x.exp((r-tcr2 )(T- T)+cr{W(T)-"W(t}))) + ) 

TELt.T 

d.h. sie stimmt mit dem Preis eines amerikanischen Puts mit Laufzeit Tund Aus­
iibungspreis K iiberein. 
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111.6 Arbitrage, aquivalente Martingalma8e 
und Optionsbewertung 

In den vorangegangenen Abschnitten war die Vollstlindigkeit des Marktrnodells 
die wesentliche Eigenschaft, die zusammen mit Arbitrageargumenten die 
Optionsbewertung nach dem Duplikationsprinzip rechtfertigte. Viele explizite 
Rechnungen waren nur durch die spezielle Form der Wertpapierpreise moglich. 
Wir wollen in diesem Abschnitt einige allgemeine Aussagen uber den Zusam­
menhang zwischen Arbitrage, aquivalenten MartingalmaBen, vollstlindigen 
Mlirkten und Optionsbewertung in unvollstlindigen Mlirkten machen. Hierbei 
sind die Ausfiihrungen oft auch fUr viel allgemeinere Wertpapierpreismodelle 
richtig als fUr die von uns im Folgenden angenommenen. 

Allgemeine Voraussetzungen Iii,. diesen Abschnitt 

Wir betrachten einen Markt, auf dem d+l Wertpapiere mit strikt positiven 
Preis en Po(t) •...• P /.../) gehandelt werden. Hierbei seien die Preise Ito-Prozesse 
beziiglich einer m-dimensionalen Brownschen Bewegung {(W"Fi)}'E[O"CO) 
mit m?d auf (Q,F,P), wobei {F'}/E[O,CO) die Brownsche Filterung ist. 

Um nun das Optionsbewertungsproblem in unserem veraUgemeinerten Markt 
bearbeiten zu konnen, mussen noch einige Defmitionen (wie z.B. die der Han­
delsstrategien) den neuen Bedingungen angepasst werden. 

Bezeichnungen 

Unter einer Handelsstrategie q(t)=(lPQ(t), ... ,q1 /...t»" t~O, wollen wir einen (d+l)­
dimensionalen progressiv messbaren Prozess verstehen, fUr den die stochasti­
schen Integrale 

T T 

J q1j (s)dP; (s), J q1j (s)dP; (s) , i=O, ... ,d 
o 0 

fUr aUe T~ 0 existieren, wobei 

A ( )._ p;{t) 
p; t .- po{t) 
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die (mit Po(t» diskontierten Preisprozesse bezeichnen. P; (t) ist wegen der mehr­
dimensionalen Ito-Formel ll.40 insbesondere wieder ein Ito-Prozess. Der Ver­
mogensprozess X(t) zur Handelsstrategie rAt) und die Bedingung, dass der Ver­
mogensprozess selbst-fmanzierend sein soIl, seien wie gewohnt durch die Glei­
chung 

d d , 

X(t) = L 'Pi (t)P; (t) = x + L I 'Pi (s)dP; (s) P-fast sicher, fUr alle t~O, 
i=O i=OO 

defIniert, wobei wir in diesem Abschnitt der Einfachheit halber auf die Moglich­
keit eines Konsurnprozesses verzichten. Eine selbst-fmanzierende Strategie soIl 
wiederum zulassig heIDen, wenn der zugehOrige Vermogensprozess nicht-ne­
gativ ist. Der Diskontierungsprozess Po(t) wird in der Literatur oft als 
Numeraire bezeichnet. Es kann sich nun bei ibm urn einen Bondpreis, einen 
Aktienpreis oder sogar den Wert eines Portfolios aus Wertpapieren handeln, so­
lange er nur auf dem betrachteten Zeitraurn strikt positiv ist. 

Arbitrage und aquivalente MartingalmaDe 

Wir wollen nun zuerst den Zusammenhang zwischen der Existenz eines aquiva­
lenten Martingalma8es und der Nichtexistenz einer Arbitragemoglichkeit in un­
serem betrachteten Markt genauer beschreiben. Wlihrend die DefInition einer 
Arbitragemoglichkeit der aus Abschnitt m.l entspricht und deshalb bier nicht 
wiederholt wird, geben wir explizit die DefInition eines aquivalenten Martingal­
maBes an: 

Definition 30 

Ein auf (!l,FT) defIniertes qnd zu P aquivalentes WahrscheinlichkeitsmaB Q 
(d.h. P und Q besitzen die gleichen Nullmengen) heIDt ein liquivalentes Martin­
galmaO fUr Po(t), ... , P Jt), falls die diskontierten Preise 

A p;(t}. 
p;(t} = po(t) , I = l, ... ,d, tE [0, 1] 

Martingale beziiglich Q sind. 

Proposition 31 

Alle zu P liquivalenten MartingalmaBe Q fUr Po(t), ... , P Jt) erhlilt man aus P 
durch eine Girsanov-Transformation mit einem m-dimensionalen progressiv 
messbaren stochastischen Prozess {( ~ t), F,)},~ wobei fUr alle t ~ 0 
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t J el(s) ds < ex> P-fast sieher, fiir i=I, .. ,m, 
o 

gilt und Z(t, 0) - defmiert wie in Exkurs 5 - Martingal bzgl. P ist. Insbesondere 
ergibt sieh Q als 

Q(A):= QT(A):= E(IA .Z(T,e)) fiiralleAeFl' 

Beweis: mit Hilfe einer geeigneten Variante von Lemma 9 und einer Modiftka­
tion des Beweises von Satz 10 (siehe Ubung 0.7). D 

Die Existenz eines liquivalenten Martinga1maBes ist nun hinreiehend dafiir, dass 
im Markt keine Arbitragemogliehkeit existiert: 

Satz 32 - "MartingalmaO :::) Arbitragefreiheit" 

Falls ein liquivalentes Martinga1ma6 existiert, gibt es in dem dureh die Preispro­
zesse Po(t), ... , P J..t) besehriebenen Markt keine Arbitragemogliehkeit. 

Beweis: 

i) Es sei 

der zu einer Handelsstrategie q;(t) gehOrende diskontierte Vermogensprozess. 
Dureh Anwendung der Ito-Formel auf obigen Quotienten lliBt sieh zeigen (vgl. 
UbungO.8): 

q;(t) ist selbst-fmanzierend 

d t 

%(t) = ~+ L J 'P;(s)dp;(s) P-fast sieher, fiir alle te [0,1] . 
Po ;=10 

x:= X(O), Po:= po{O) 

Man beaehte hierzu insbesondere, dass ein zu P liquivalentes Martinga1maB Q 
existiert, das naeh Proposition 31 dureh eine Girsanov-Transformation darstell-

bar ist. Darnit konnen alle p;(t) naeh dem Korollar II.53 zum Martingaldarstel­

lungssatz als Ito-Integrale bzgl. wQ(t), der Q-Brownsehen Bewegung, dargestellt 
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werden. Ist ""t) sogar zuliissig, also X(t)~O, so ist X(t) ein nicht-negatives loka­
les Martingal bzgl. Q, und somit nach Satz IT.17 ein Q-Super-Martingal. 

ii) Sei nun ""t) zuliissig und stelle eine Arbitragestrategie mit zugehOrigem Ver­
mogensprozess X(t) dar. Wegen i) gilt dann 

(1) 

wobei EQ den Erwartungswert beziiglich Q bezeichnet. Da ""t) als Arbitragestra­

tegie eine zuliissige Handelsstrategie ist, ist also auch X(t) nicht-negativ, was 

zusammen mit der Beziehung (1) zu 

fiihrt, woraus wegen der Aquivalenz von P und Q dann auch 

folgt, was einen Widerspruch zur Annahme der Existenz einer Arbitragestrategie 
darstellt. 0 

Die Gegenrichtung zum obigen Satz, .,Nichtexistenz von Arbitragemoglichkeiten 
impliziert die Existenz eines iiquivalenten MartingalmaBes" gilt nur witer zusiitz­
lichen Bedingungen an die Handelsstrategien. Der Beweis dieser Richtung geht 
fiber den bier behandelten Stoff hinaus. Wir verweisen deshalb auf Delbaen und 
Schachermayer (1994) und die dort zitierten Referenzen. Die in diesem Artikel 
bewiesene Aquivalenzbeziehung zwischen der Existenz eines iiquivalenten Mar­
tingalmaBes und der Nichtexistenz von Arbitragemoglichkeiten (eines gewissen 
Typs) wird als ,,Fundamental Theorem of Asset Pricing" bezeichnet. 

Aquivalente Martingalma8e und Vollstllndigkeit des Marktes 

In dem in den vorangegangenen Abschnitten betrachteten vollstiindigen Markt­
modell existierte genau ein iiquivalentes MartingalmaB. Dies war kein Zufall 
sondem ein Spezialfall eines tieferen Zusammenhangs. Um im Folgenden die 
Bewertung von Contingent Claims untersuchen zu konnen, benotigen wir etwas 
stiirkere Integrierbarkeitsvoraussetzungen als im vollstiindigen Marktmodell der 
vorangegangenen Abschnitte. 
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Definition 33 

a) Ein Contingent Claim B ist eine nieht-negative F rmessbare Zufallsvariable 
mit 

fUr alle zu P iiquivalenten Martinga1maJ3e Q. 

b) Der Contingent Claim B heiSt erreichbar, falls eine zuliissige Handelsstrate­
gie tAt) existiert mit zugehorigem Vermogensprozess X( t) und 

B = X(1) P-fast sieher, 

so dass X (t ) = x( t) / Po (t) ein Martingal beziiglieh einem aquivalenten Martin­
galmaB Q ist. 

Man beaehte, dass in Teil b) bereits implizit die Existenz eines aquivalenten 
MartingalmaBes Q gefordert wird. Der Beweis des folgenden Satzes benotigt 
eine Vielzahl von Hilfsmitteln, die wir in diesem Bueh nieht bereitstellen kon­
nen. Er ist z.B. in Harrison und Pliska (1981,1983) zu fmden. 

Satz34 

Der betraehtete Finanzmarkt ist genau dann vollstiindig (d.h. jeder Contingent 
Claim ist erreiehbar), wenn in ibm genau ein aquivalentes Martinga1maJ3 Q exis­
tiert. 

Optionsbewertung in unvollstandigen Miirkten 

Ein Markt, in dem nieht jeder Contingent Claim erreiehbar ist, heiBt unvollstan­
dig. Ursaehen fUr Unvollstiindigkeit eines Matktes konnen z.B. sein . 

• Handelsbesehriinkungen wie das Verbot, in eine bestimmte Aktie zu in­
vestieren, 

• zusiitzliehe Zufallssehwankungen in den Marktkoefftzienten wie z.B. 
stoehastisehe Volatilitiit (d.h. die Volatilitiit o(t) ist z.B. ebenfalls ein Ito-Pro­
zess, der allerdings nieht beziiglieh der von den Wertpapierpreisen erzeugten 
Filterung progressiv messbar ist). 

Typiseherweise ist in einem unvollstiindigen Fall die CT-Algebra F T groBer als die 
von den dureh zulassige Handelsstrategien erzielbaren Endvermogen 
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d T 

X(1)=X+ L fqJ;(s)dP;(s) 
;=00 

erzeugte u-Algebra. In einem solchen unvollstiindigen Markt hat das Duplika­
tionsargument aus Abschnitt III.2 nur noch begrenzte Reichweite. 

Satz 35 - "Preise erreichbarer Contingent Claims" 

Der eindeutige Preisprozess X'(t) eines erreichbaren Contingent Claims B ist 
durch 

( Po(t) I ) . X'(t) = EQ poe]) B F, fUr tE [0,1] 

gegeben, wobei Q ein aquivalentes Martingalma.6 wie in Definition 33 b) ist. 

Beweis: 

Es sei rAt) eine Duplikationsstrategie zu B. Dann gilt fUr den zugehOrigen Ver­
mogensprozess X(t): 

X(1) = B P-fast sicher. (2) 

Da wegen Satz 32 unser Markt arbitragefrei ist, muB deshalb auch 

X'(t) = X(t) P-fast sicher, fUr aIle t E [0,1] (3) 

gelten. Nach Defmition der Erreichbarkeit von B ist X(t) ein Q-Martingal. Also 
folgt mit (2) und (3): 

X'(t) = X(t) = Po(t) X(t) 

( A) ( Po(t) I ) =Po(t)EQ X(T)I F, =EQ poe]) B F, . o 

Fiir nicht-erreichbare Contingent Claims ist der vorausgegangene Satz bedeu­
tungslos. Wir wollen hierzu ein einfaches Beispiel fUr einen nicht-erreichbaren 
Contingent Claim in einem unvollstiindigen Markt betrachten. 

Beispiel: Ein nicht-erreichbarer Contingent Claim 

Wir betrachten den Black-Scholes-Markt mit konstanten KoeffIzienten und 
d=m=2. Unserem Investor sei es nicht erlaubt, die zweite Aktie zu halten. Dies 
kann auch dahingehend interpretiert werden, dass die zweite Aktie ein nicht-han­
delbares Gut ist wie z.B. em Marktindex. Fur unseren Investor liegt somit em 
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Black-Scholes-Markt mit d= 1 und m=2 vor. Er sei aber in der Lage, bestimmte 
Optionen auf das nicht-handelbare Wertpapier zu handeln. Speziell betrachten 
wir die folgende Option mit Endzahlung 

B = 1{1\(T)~~(T)} 

Man berechnet nun leicht mit Hilfe von Korollar 11 und Proposition 13 (vgl. 
Ubung '0.9), dass im (fUr unseren Investor ftktiven) vollstandigen Markt mit 
d=m=2 der eindeutige Preis XB(t) und die zugehOrige Duplikationsstrategie 
( 1J1Q( t), 9'1 (t), 1P2( t» durch 

Xit)= e -r(T-t)cl>(d(t») , 

9'1(t)=e-r(T-t) 2 1 2 R~t)9'(d(t»), 
((0"11-0"21) +(0"12-0"22) )(T-t) 1 

mit 

d(t) : 
( 1\(t)/ ) 1I( 2 2 2 2)( ) In /~(t) -72 0"11 +0"\2 -0"21 -0"22 T-t 

((0"11 -0"21)2 +(0"\2 -0"22)2)(T-t) 

gegeben sind (wobei q:(x) die Dichte der Standard-Normalverteilung bezeichnet). 
Insbesondere benotigt man also das zweite, nicht-handelbare Wertpapier zur 
Duplikation von B. Da die Duplikationsstrategie aber eindeutig ist (siehe Satz 
11.48), ist somit B fUr unseren Investor nicht erreichbar. FUr ibn liegt deshalb ein 
unvollstiindiger Markt vor. 

1m Folgenden werden wir zeigen, dass man mit Hilfe iiquivalenter Martingal­
maJ3e auch in solch unvollsmndigen Miirkten arbitragefreie Preise fUr Optionen 
festsetzen kann. Allerdings ist aufgrund der fehlenden Duplikationsmoglichkeit 
bei nicht-erreichbaren Optionen keine Eindeutigkeit des Preises gegeben. 
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Satz 36 "Optionspreis und iiquivalente MartingalmaOe" 

Es seien Q ein aquivalentes MartingalmaB zu P und B ein (beliebiger, nicht not-
wendig erreichbarer) Contingent Claim. Setzt man . 

Q .- ( Po(t) I ) 
X B (t) .- EQ Po(T) B FI 

als Preis des Contingent Claim fest, so existiert im Wertpapiermarlct, der aus den 
d+ 1 urspriinglichen Wertpapieren und dem Contingent Claim gebildet wird, 
keine Arbitragemoglichkeit. 

Beweis: 

Da man nach Proposition 31 alle aquivalenten MartingalmaBe Q aus P durch 
eine Girsanov-Transformation erbalt, ist 

X~(t) 
YQ(t):= Po(t) 

insbesondere ein Brownsches Martingal bzgl. Q. Aus Korollar 53 zum Martin· 
galdarstellungssatz folgt insbesondere, dass Y Q(t) ein Ito-Prozess bzgl. Q ist. In­
version der Girsanov-Transformation zeigt, dass damit Y Q( t) auch ein Ito-Pro­
zess bezfiglich P ist. Der obige Marlct in der Behauptung des Satzes hat somit die 
Fonn unseres allgemeinen Marktmodells, in dem wir den Contingent Claim als 
(d+l).Aktie auffassen. Da Q dann auch aquivalentes Martinga1ma8 in diesem 
Markt ist (beachte, dass der Preis des Contingent Claims gerade so defmiert 
wurde!), folgt aus Satz 32 die Arbitragefreiheit des Marlctes. 0 

Beispiel: Ein nicht-erreichb~rer Contingent Claim (Fortsetzung) 

Fiir unseren Investor im obigen Black-Scholes-Marlct mit d= 1, m=2 gibt es nun 
eine gauze Familie aquivalenter MartingalmaBe. Offenbar lasst sich 

mittels Einfiihrung der Prozesse 

bl-r bl-r 
WJ.D(t):=WI(t)+ a--t, Wf(t):=W2(t)+ (l-a)--.t, 

CTII CTl2 
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auf die Gestalt 

Pt(O) (1/( 2 2) a() a(») 
Y(t) = po(O) ·exp -72 0"11 +0"12 t+0"11W1 t +0"12W2 t (5) 

bringen. {(wia(t), Ft)}t, i=I,2, sind offensichtlich wieder Brownsche Bewegun­
gen. Hierbei nehmen wir oBdA 0"11*0*0"12 an (Ware z.B 0"12= 0, so ware durch 
a= 1 und eine beliebige Girsanov-Transformation beziiglich W2(t) ein aquivalen-
tes MartingalmaB bestimmt). Wir nehmen au.6erdem Po(O) = 1 an. . 
Das uber den Satz von Girsanov zu den oben eingefiihrten neuen Brownschen 
Bewegungen gehOrende WahrscheinlicbkeitsmaB QO ist offenbar ein zu P aqui­
valentes MartingalmaB fUr Po(t), P1(t) fUr beliebiges reelles a. Anwendung der 
Ito-Formel auf das Produkt Z(t)· Y(t), wobei Z(t) Dichteprozess eines beliebigen 
zu P aquivalenten WahrscheinlicbkeitsmaBes ist, zeigt (analog zum Beweis von 
Lemma 9, vgl. auch Proposition 31), dass aIle zu P fUr Po(t), P1(t) aquivalente 
MartingalmaBe die Gestalt QO fUr ein reelles a besitzen mussen. Nach Satz 36 er­
halten wir somit einen arbitragefreien Optionspreis durch die Festsetzung 

mit 

da(O) := 

In(%J+(r-b2 -(a~+(l-a)~)(q-r)- Y;(CT~ +CT~2 -CT;I-CT~2))r 
~((CTII -CT21 'f + (CT12 -CT22 )2 )r 

fUr ein beliebiges, aber dann fest gewiihltes reelles a, Pl=P1(0), P2';P2(0). Wir 
nehmen weiter b1>r an. Wegen 0"11*0:¢:0"12 und Det( cry* ° sieht man aus obiger 
Darstellung des Preises sofort, dass gilt: 

CT21CTI2-CT22CTll > ° => lim xZ (0) = 0 und lim xZ (0) = e -rT , 
CTIICTI2 a-+co a-+-oo 

lim XZ(O) = e-rT und lim xZ(O) = o. 
a-+co a-+-oo 

Es wird also insbesondere der gesamte Preisbereich (0, e-rT ), den man aus eirl­

fachen Arbitrageuberlegungen (beachte hierzu: O~B ~ 1) erhiilt, tatsachlich durch 
aIle MartingalmaBe bzw. ihre zugehOrigen Optionspreise ausgeschOpft. 
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Die Situation des obigen Beispiels ist typisch fUr unvollstlindige Mlirkte. Zwar 
llillt sich der Bereich arbitragefreier Preise durch Arbitragetiberlegungen einkrei­
sen, doch bleibt in der Regel ein Intervall mit nicht-leerern Inneren als Menge 
moglicher Preise als Verhandlungsspielraum zwischen Kaufer und Verkliufer der 
Option. Ubersichten tiber Kriterien zur Auswabl eines bestimmten liquivalenten 
MartingalmaJ3es (womit dann auch der Optionspreis eindeutig festgelegt ware !). 
wie z.B. des minimalen MartingalmaBes, des Esscher MaBes oder des varianz­
optimalen MartingalmaJ3es fmdet man z.B. in Bingham und Kiesel (1998) oder 
Grunewald (1998). 

Eine Sonderstellung unter den aquivalenten MartingalmaJ3en nimmt das soge­
nannte minimale MartingalmaJ3 ein. Es wurde von Follmer und Schweizer in 
Follmer und Schweizer (1991) eingefiihrt und seither intensiv in verscbiedenen 
Anwendungen im Bereich der Optionsbewertung untersucht. Wir ~erden des­
halb auch in diesem Abschnitt noch nliher auf dieses Mall eingehen. 1m bier 
betrachteten Markt ist es identisch mit dem sogenannten werterhaltenden MaB 
(siehe Kom (1998». Fiir eine Einfiihrung in die Theorie der werterhaltenden 
Portfolio-Optimierung sei auf Hellwig (1993), Wiesemann (1995) oder Kom 
(1997) verwiesen. 

Hedging von Optionen in unvollstindigen Mirkten 

Da man in unvollstiindigen Markten nicht-erreichbare Contigent Claims per De­
fmition nicht duplizieren kann, will man sich zumindest moglicbst gut gegen das 
Risiko, das aus ihrem KaufIV erkauf entsteht, absichem. Man bezeichnet diese 
Absicherungstiitigkeit als ,,Hedging" und die zugehOrige Handelsstrategie als 
,,Hedging-Strategie" oder auch kurz als ,,Hedge". Da bei Existenz einer Dupli­
kationsstrategie das durch den KaufIV erkauf einer Option entstandene Risiko 
vollstlindig durch Verfolgen der Duplikationsstrategie eliminiert werden kann, 
bezeichnet man diese auch als einen "perfekten Hedge". 

Wie bereits erwlihnt liegt der Grund fUr die Unvollstlindigkeit in unserem Markt 
meist darin, dass die Dimension der Brownschen Bewegung groller als d ist. Es 
liegt eine lihnliche Situation wie bei der linearen Regression vor. Dei Raum der 
F r- messbaren, nicht-negativen, quadrat-integrierbaren Zufallsvariablen ist von 
groBerer Dimension als der Raum der durch zulassige Handelsstrategien erzeug­
baren Endvermogen. Ahnlich dem Vorgehen bei der linearen Regression (,,Me­
thode der kleinsten Quadrate") kann man einen nicht-erreichbaren Contingent 
Claim auf den Raum der erreichbaren Contingent Claims projizieren. Dies wird 
in Schweizer (1992) (und vielen weiteren Arbeiten des gleichen Autors) mit 
HiIfe von Hilbertraum-Projektionstecbniken und unter Verwendung der Follmer­
Schweizer-Zerlegung und des minimalen MartingalmaBes durchgefiibrt. Eine 
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weitere Alternative ist der von Follmer und Sondermann (1986) begriindete 
Ansatz der Risiko-Minimierung. Bei ibm werden - unter der Annahme, dass die 
Wertpapierpreise bereits Martingale sind nicht-selbst-fmanzierende 
Duplikationsstrategien betrachtet. Genauer: die Differenz 

sei ein Martingal mit E( C ~t»=O, und es gelte die Duplikations-Eigenschaft 

d 

B= LIP;(T).p;(T). 
;=0 

(6) 

Wiihrend es im vollstiindigen Markt moglich ist, mit einer Duplikationsstrategie 
einen ,,Kostenprozess" von C~t)=O zu erzielen, ist dies bei einem nicht-erreich­
baren Contingent Claim bei gleichzeitiger Forderung von (6) nicht moglich. 
FOllmer und Sondermann minimieren statt dessen den Prozess des "verbliebenen 
Risikos" 

zukiinftiger Kosten fUr aIle tE [0 ,1]. Eine zugehOrige minimierende Strategie 
wird als risikominimierend bezeichnet. Fiir den Fall, dass die Wertpapierpreise 
keine Martingale sind, mussten Follmer und Schweizer (1991) den Begriff risi­
kominimierend geeignet modiflZieren. Es existiert im Allgemeinen niimlich nur 
noch eine sogenannte "lokal risikominimierende" Strategie. Auch bei der Lo­
sung dieses Problems sind die Follmer-Schweizer-Zerlegung und das minimale 
MartingalmaB die entscheidenden theoretischen Hilfsmittel. 

111.7 Marktnnmeraire nnd N nmeraire­
Invarianz 

In Abschnitt m.2 wurde gezeigt, dass sich der Wert einer Option im vollstiindi­
gen Markt immer als der mit Po(t) diskontierte Erwartungswert der Endzahlung 
Bunter dem eindeutigen aquivalenten MartingalmaB Q berechnen lasst (wir wol­
len hier auf die Beriicksichtigung des Auszahlungsprozesses g(t) verzichten). In 
Satz 36 konnte gezeigt werden, dass die Berechnung dieses abgezinsten Erwar-
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tungswerts unter einem beliebigen iiquivalenten MartingalmaB auf einen - wenn 
auch nicht eindeutigen - arbitragefreien Preis fUr die Option fiihrt. Zwar er­
scheint dem in sicheren Werten denkenden Menschen ein Vergleich einer siche­
ren Zahlung (also einer, die sich aus dem Besitz des Bonds ergibt) mit einer 
unsicheren in Bezug auf die Bewertung eben dieser durchaus sinnvoll, aber an­
dererseits ist dieser Vergleich doch recht willkiirlich. Als weitere vergleichbare 
Investitionen bieten sich niimlich auch noch die Aktie(n) sowie aIle zuliissigen 
Kombinationen aus Bond und Aktie(n) an, deren zugehoriger Vermogensprozess 
strikt positiv ist. Allgemeiner kann man als Diskontierungsprozess einen strikt 
positiven Ito-Prozess {yet), F t}te[O,l1 wlihlen. Wir bezeichnen einen solchen 
Prozess auch als Numeraire. Es stellen sich in diesem Zusammenhang dann die 
Fragen: 

• Wirkt sich ein Numerairewechsel (d.h. die Wahl eines anderen Numeraire als 
poet»~ auf den Optionspreis sowie seine Berechnung aus ? 

• Existiert ein Numeraire, so dass sich der/ein fairer Preis einer Option bereits 
als mit diesem Numeraire diskontierter Erwartungswert der Endzahlung B 
beziiglich dem "Originalma13" P ergibt ? 

Wir werden diese Fragen im Wesentlichen im vollstiindigen Modell der Ab­
schnitte Ill.2-S beantworten. 

Allgemeine VorQussetzungen/ar diesen Abschnitt 

Wir betrachten das vollstandige Marktmodell aus Abschnitt II .3 mit d=m. 

Aufgrund unserer Vorgehensweise, die Optionsbewertung nach dem Duplika­
tionsprinzip zuniichst ohne Verwendung des Begriffs MartingalmaB einzufiihren, 
ergibt sich als Kandidat fi1r die zweite Problemstellung wegen Satz 5 sofort der 
Prozess 

Mit Hilfe der Produktregel, Korollar 11.41, und der stochastischen Differential­
gleichungen der Wertpapierpreise rechnet man sofort nach, dass H(t)-Pi(t) fUr i= 
O, .. ,d Martingale beziiglich P sind. Mehr noch, lIH(t) ist der Vermogensprozess 
zum zuliissigen Paar (!r,c) = (o(t)-l(b(t)-r(t)-!),O) eA(l) (siehe Ubungsaufgabe 
II.U.10). D.h. dieser Numeraire ist durch geeigneten Handel am Markt darstell­
bar. Man spricht daher auch von einem Marktnumeraire oder einem Nu­
meraireportfolio (vgl. Long (1990». Zusammenfassend erhalten wir: 
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Satz37 

1m vollstiindigen Marktmodell aus Abscbnitt n.3 ist lIH(t) der eindeutige Nume­
raire, so dass die mit ibm diskontierten Preisprozesse H(t)·P,{t) fUr i=O, .. ,d Mar­
tingale beziiglich P sind. 

Beweis: 

Nach den Vorbemerkungen ist lediglich die Eindeutigkeitsaussage zu zeigen. Da 
ein Numeraire ein strikt positiver Ito-Prozess beziiglich {Ft} t ist, kann er gemiiJ3 

dY(t) = Y(t)(,uy(t) dt + uy(t)' dW(t)) 

dargestellt werden, wobei p..J..t) ein reellwertiger und u.J..t) ein Rd-wertiger Pro­
zess (mit geeigneten Integrierbarkeitsbedingungen) ist. Anwendung der Produkt­
regel n.41 liefert: 

(1) 

(2) 

wobei Of.(t) die i. Zeile der Volatilimtsmatrix o(t) bezeichnet. Damit die Quo­
tienten P,{t)IY(t) P-Martingale sind, mussen notwendigerweise alle oben auftre­
tenden Driftterme verschwinden. Aus (1) folgt dann , 

,uy(t) = r(t) + Uy(t) Uy(t) (3) 

Setzt man dies in die Driftterme aus (2) fUr i=I .... ,d ein, so erhalt man das Glei­
chungssystem 

b(t) - r(t) = u(t)O'y(t) 
woraus sich 

und 

ergeben. Damit genfigt aber Y(t) derselben linearen stochastischen Differential­
gleichung wie lIH(t). und die Eindeutigkeitsaussage folgt aus demo Satz 11.42 
fiber die Variation der Konstanten. [) 
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Bemerkuog 

A11gemein versteht man unter einem Numeraire-Portfolio eineo selbst-fmanzie­
renden Portfolioprozess mit zugehorigem strikt positiveo Vermogensprozess X(t) 
(mit X(O)=I), so dass die mit X(t) diskootierten Wertpapierpreise P;(t)/X(t) (10-
kale) Martingale bzgl. dem urspriinglichen Ma.6 P sind. Man kann auch in a11-
gemeinen Marktmodellen zeigen, dass ein Numeraireportfolio, falls es existiert, 
eindeutig ist (siehe z.B. Becherer (1998». 

Um die erste Frage zu priizisieren, wollen wir zunachst noch einmal darauf hin­
weisen, dass unser im vollstandigen Markt berechneter Optionspreis E(H(1)B) 
eigentlich zuniichst iiberhaupt nichts mit der Frage nach einem Numeraire zu tun 
hatte. Der Numeraire Po{t) kam erst ,,kiinstlich" durch Einfiihrung des Martin­
galma.6es Q ins Spiel, um den berechneten Optionspreis zu interpretieren. Man 
kann deshalb auch die erste Frage im vollstiindigen Marktmodel1 wie folgt um­
formulieren: 

• Existiert im vollstiindigeo Marktmodell zu einem gegebenen Numeraire Y(t) 
ein zu P iiquivalentes Martingalma.6 Qy mit 

( Y(t) I ) (H(T) I ) 
EQr Y(T) B Ft = E H(t) B Ft (4) 

fiir aIle Contingent Claims B, t E [0,1] ? 

Die Antwort ergibt sich eigentlich direkt aus der Gleichheit der obigen Erwar­
tungswerte. Giibe es nun ein solches iiquivalentes MartingalmaB Qy, dann miisste 
fiir die strikt positive Radon-Nikodym-Ableitung voo Qynach P, 

Z (T) = dQy 
y dP , 

wegen (4) und der Aquivalenz von Qy und P auf Ft auch 

Zy(t) = H(t)· Y(t) P-fast sicher, fiir aIle tE [0,1] (5) 

gelten. Da Y(t) ein strikt positiver Ito-Prozess ist, kann man ibn folgenderma.6en 
darstellen 

dY(t) = Y(t)(.uy(t) dt HTy(t)' dW(t)) . 

Mit der Produktregel II.41 angewendet auf (5) ergibt sich, dass der Prozess Zy(t) 
der stochastischen Differentialgleichung 
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dZy(t) = Zy(t)((.uy(t}-r(t)- o(t)' O"y(t») dt +( O"y(t)' - o(t}') dW(t)) (6) 

geniigen muss. 

Nach Proposition 31 sind alle zu P iiquivalenten MartigalmaBe durch eine Girsa­
nov-Transformation darstellbar mit einem Dichteprozess Z(t), der bzgl. P Mar­
tingal ist. Notwendige (aber nicht hinreichende) Bedingung fUr die P-Martingal­
eigenschaft unserer obigen Dichte Zy(t) ist das Verschwinden des Driftterms in 
Gleichung (6), also die Giiltigkeit von 

, 
.uy(t)-r(t) = o(t) O"y(t). (7) 

1st Y(t) ein Vermogensprozess zu einem zuliissigen Paar (?r,c) eA(y) fUr ein 
y>o, so folgt aus der expliziten Form der Vermogensgleichung (VG) (siehe Ab­
schnitt II.2), dass die Gleichheit in (7) gilt. FUr ein solches Y(t)= Y"(t) mit zuge­
hDrigem Portfolioprozess 1I(t) gilt dann 

.uy(t) = r(t) + ?r'(I)(b(l) - r(t)· 1) , 
, , 

O"y(t) = ?r(t) cr(t), 

dZy(t) = Zy (t)( ?r(1)' cr(1) -(b(I) - r(t»)O"-l (I)') dW(t) 
" -I ., , 

=: 8,,(1) 

= Zy(t)01r(t)' dW(t). 

1st nun Zy(t) tatsiichlich ein P-Martingal, was z.B. fUr beschriinkte Prozesse 
OJt) erfiillt ist, so ist nach dent Satz von Girsanov der Prozess 

1 

Wy(t):= W(t}- J01r(s)ds 
o 

eine Brownsche Bewegung beziiglich Qy. Anwendung der Ito-Formel auf die 
Quotienten P,{I)IY(I) ergibt wegen dieser Definition und der spezieUen Form von 
.uy(t), O"y(t) und OJt): 

( Po (t)) po(t) , 
d Y(t) = - Y{t) O"y{t) dWy{t) , 
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d.h. sie sind Qrlokale Martingale, wobei z.B. fUr konstante Marktkoeffizienten 
und einen konstanten Portfolio-Prozess aus der Novikov-Bedingung bzw. Propo­
sition 8 sogar ihre QrMartingalitlit folgt. Natiirlieh gibt es eine weit groBere 
Klasse von Portfolio-Prozessen und sehwaehere Bedingungen an die Marktkoef­
fizienten, so dass der Prozess Zy(t) ein P-Martingal ist und die Quotienten 
P,{t)/Y(t) QrMartingale sind. Wir wollen aber das Aufstellen allgemeinerer, hin­
reiehender Bedingungen dem Leser iiberlassen und formulieren statt dessen den 
folgenden Satz, der sieh aus unserer vorangegangenen Diskussion ergibt: 

Satz 38 "Numeraire-Invarianz im vollstiindigen Markt" 

Wir betraehten das vollstlindige Marktmodell aus Absehnitt 11.3 mit konstanten 
MarktkoefflZienten, r(t)=r, b(t)=b, o(t)=a>O. Dann gelten: 

a) FUr alle konstanten Portfolio-Prozesse n(t)= trist der Prozess Zy(t) 

Zy(t) = H(t). y 1r(t) 

ein P-Martingal, wobei Y1I(t) der zu trgehOrige Vermogensprozess ist: Das zuge­
hOrende WahrseheinlichkeitsmaB Qy mit 

Zy(T) = dQy 
dP 

ist eindeutiges aquivalentes MartingalmaB fUr die mit Y1I(t) abgezinsten Preispro­
zesse. 

b) FUr den fairen Preis p eines Contingent Claims B mit E(Bf.l ) < co fUr ein p> 1 
gilt: 

falls Y1I(t) der Numeraire aus a) ist. 

Bemerkungen 

a) Wie naeh den eingangs gemaehten AuBerungen zu erwarten war, andert sich 
der Preis eines Contingent Claims unter einem (hinreiehend gutartigen) Nume­
raireweehsel nieht, sondem erhalt lediglieh eine andere Darstellung .. Allerdings 
bringt ein Numeraireweehsel bei der tatsaehlichen Bereehnung bestimmter Op-
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tionspreise oft reehenteehnisehe Vorteile. Ein konkretes Beispiel stellt die Be­
reehnung des Preises einer indizierten Option im naehsten Kapitel dar. 

b) In allgemeinen unvollstandigen Miirkten gestaltet sieh die Situation etwas 
vielsehiehtiger als im oben behandelten vollstiindigen Modell. Da dort der Preis 
bei nieht-erreiehbaren Contingent Claims nieht eindeutig bestimmt i$t, existiert 
zu einem Numeraire eine ganze Familie von aquivalenten WabrseheinIiehkeits­
maBen. Einen Uberbliek fiber die in dieser Situation vorhandenen Resultate fm­
det man z.B. in MusielaIRutkowski (1997). 

Ubungsaufgaben 

ii.1 Man bestimme unter der Annahme des Black-Seholes-Modells jeweils die 
fairen Preise fUr die im Folgenden dureh ihre Payoff-Diagramme gegebenen Op­
tionen. (Hinweis: Man interpretiere die Payoff-Profile als Linearkombination ge­
eigneter Puts und Calls.) 

a) Butterfly-Spread mit mittlerem Basispreis 2K 

B 

K 

o 2K 3K l\(T) 

Bild m.s Butterfly-Spread 
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b) Straddle mit Basispreis K 

B 

K 

o K l\(T) 

Bild m.6 Straddle 

c) Strangle mit Basispreisen Kl <1(2 

B 

K 

Strangle 

d) Bull-Spread mit Basispreisen Kl <1(2 

Bild m.s Bull-Spread 
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U.2 Man zeige, dass die folgenden Beziehungen fiir den Preis Xd.t) einer 
europaischen Call-Option gelten: 

a) Xd.t) fallt in t 

b) Xd.t) wachst in r 

c) Xd.t) wachst in P1(t) 

d) Xd.t) wachst in 0" fiir 0>0 

U.3 Man berechne den Wert einer europaischen Call-Option mit Hilfe des 
iiquivalenten Martingalma.6es und zwar im 

a) Black-Scholes-Modell 

b) Marktmodell mit d=2, 0" = (0"11 0"12), wobei der Call nur fiir die erste 
0"21 0"22 

Aktie gelte, d.h. die Endzahlung betriigt B = (PI (T) - K) + . 

U.4 Es sei 

1 (x2) 9'(t,x) = -exp --
.J2m 2t 

a) Man zeige, dass rAt, x) eine Losung der partiellen Differentialgleichung 

Ut = tuxx 
ist. 

b) Man zeige, dass das Problem 

Ut{t,x) = Uxx {t,x) (t,x)e[O,oo)xR 

u{o, x) = g{x) xeR 

fiir beschranktes g durch 

U{t,x) = E(g(.J2t. Y + x)) 

mit Y-N(O,I) gelostwird. 

U.S Man beweise Proposition 19 b). 

U.6 Man beweise Proposition 20 b). 
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'0.7 Man beweise Proposition 31. 

'0.8 Man zeige: Mit den Bezeichnungen und Annabmen aus Abschnitt m.6 
gilt fUr eine Handelsstrategie q;(t): 

d t 

q;(t) ist selbst-fmanzierend <::> X(t) = ~+ ~ I 1p;(S) dp;(s) P-fast sieher, 
Po ;=10 

fUr aIle tE [0, 1]. 
(vgl. Beweis von Satz 32) 

'0.9 Man berechne im zweidimensionalen Black-Scholes-Modell den fairen 
Preis des Contingent Claims mit der Auszahlung 

B=I{Pt(T)~~(T)} . 

'0.10 ,,Black-Scholes-Fonnel mit Dividendenrate" 

Falls eine Aktie eine Dividendenrate oP 1 (t) fUr ein 0> 0 pro Zeiteinheit auszahlt, 
so modelliert man ihren Preis im Black-Scholes-Modell als Losung von 

d1\ (t) = 1\ (t)({b - 0) dt + CT dW{t)) , 
P1(0) = p. 

Man zeige, dass dann fUr den Preis qt, P1(t)) eines europiiischen Call mit Aus­
iibungspreis K auf die Aktie gilt: 

c(t. 1\ (t») = e -o(T-1) PI (t)<II(OI (t») - e -r(T-t) K<II(02 (t»), 

wobei 

Hinweis: Man imitiere entweder die Vorgehensweise im Absehnitt m.2 und be­
aehte, dass das Verfolgen der Strategie Ip.(t) zu einer erhaltenen Dividendenzah­
lung auf [0, 1] von 

T 

I01\(t) dt 
o 

fiihrt, oder man imitiere die Vorgehensweise in Abschnitt m.3, leite das Cauchy­
Problem 
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Ct +to'2 p 2 Cpp +(r-o)pCp -rC= 0 

C(t,p) =(p-Kt 

her und veriflZiere, dass C(t, p) wie oben dieses Problem lost. 

'0.11 "Garman-Kohlhagen-Modell fUr Devisenoptionen" 
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1m Garman-Kohlhagen-Modell wird der Wechselkurs S(t) zwischen der inliin­
dischen und einer ausliindischen Wiihrung (z.B. DollarlDM) in Einheiten der in­
liindischen Wiihrung als Losung von 

dS(t) = pdt+O'dW(t) , S(O)=s 

fUr IJ,O'E R modelliert. Die risikolose Zinsrate im Inland betrage rJo die im Land 
der Fremdwiihrung betrage rF. Man zeige, dass unter diesen Annahmen ein 
europiiischer Call mit Restlaufzeit T -t und Ausubungspreis K den Preis 

c(t, S(t») = exp( - rF(T - t»S(t)ClI(ri (t»)- K exp(- r[ (T - t) )ClI(r2 (t») 
mit 

In( S(t){) +h -rF +to'2 ~T-t) 
r} (t) = JT-t ' r2 (t) = rl (I) - O'.JT - t . 

0' T-t 

in Einheiten der Inlandswiihrung besitzt. 
Hinweis: Interpretiere die Preisentwicklung einer Einheit der Fremdwiihrung ge­
messen in inliindischer Wiihrung als die einer Aktie mit Dividendenrate und 
wende Aufgabe 9 an. 

'0.12 Man berechne den Preis der Option ,,Aktie oder nichts", die durch die 
Endzahlung 

B = PI (T)·1 {ll(T)~K} 
gegeben ist, im eindimensionalen Black-Scholes-Modell. 

'0.13 a) Man berechne im eindimensionalen Black-Scholes-Modell sowohl das 
Delta als auch das Gamma eines europiiischen Calls und eines europiiischen Puts 
mit Laufzeit T und Ausubungspreis K auf eine Aktie. 

b) Ein Investor halte im eindimensionalen Black-Scholes-Modell einen euro­
piiischen Call mit Laufzeit T} und Ausubungspreis K I . Ihm stehen desweiteren 
europiiische Puts mit Laufzeiten T2 bzw. T3 und Ausubungspreisen von jeweils 
K} bzw. K2 zur Verfiigung. 
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Man bestimme die zu haltenden Anzahlen 'Pl(t), 'P].(t) der beiden verschiedenen 
Puts zur Zeit t, so dass das Portfolio - bestehend aus dem einen Call sowie den 
Anteilen der beiden Puts - sowohl deltaneutral als auch gammaneutral ist. 

0.14 Man zeige im Black-Scholes-Modell, dass die absolute Preisiinderung 
einer europiiischen Call-Option in Abhiingigkeit vom Preis der zu~de liegen­
den Aktie betragsmiiJ3ig geringer ist als die der Aktie selbst. Die zugehOrige rela­
tive Preisiinderung der Option ist bingegen groBer als die der Aktie. 

Hinweis: Betrachte Cp und den Quotienten p.C/C, wobei C den Callpreis und 
Cp seine partie lIe Ableitung nach p bezeichnet. 
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Innerhalb dieses Kapitels wollen wir einige Typen von Optionen vorstellen, die 
sich von einfachen Puts und Calls unterscheiden. Wir fassen sie unter dem Ober­
begriff "exotische Optionen" zusammen, den wir im Folgenden noch weiter 
unterteilen werden. Oft konnen wir bei diesen Optionen den Bewertungsprozess 
weder durch explizite Bestimmung des allgemeinen Erwartungswertes in Satz 
III.5 berechnen noch durch Losen des zugehOrigen Cauchy-Problems in analy­
tisch geschlossener Form darstellen. Zur Berechnung der Preise solcher Op­
tionen muss man dann effiziente numerische Verfahren entwickeln. Wir unter­
teilen dieses Kapitel deshalb in die Behandlung exotischer Optionen mit ge­
schlossener Darstellung des Optionspreises und in die Priisentation einiger popu­
liirer numerischer Verfahren fiir exotische Optionen, bei denen keine geschlos­
sene Darstellung des Optionspreises bekannt ist. Zum Nachweis der Konvergenz 
dieser Verfahren benotigen wir einige Grundlagen der Theorie der schwachen 
Konvergenz stochastischer Prozesse. die wir innerhalb dieses Kapitels als Exkurs 
bereitstellen werden. 

AUgemeille Voraussetzullgelljilr dieses Kapitel 

Soweit Dichts anderes explizit angenornmen wird, betrachten wir bier ein 
Black-Scholes-Modell mit d=m (in der Regel d= 1) und konstanten Koeffi­
zienten b, r, 0", 0>0 bzw. regular. Wir iibemehmen dann die Voraussetzun­
gen von Kapitel II, Abschnitt n .2, Seite 64. 

Aile auf'tretenden Optionen seien vom europliischen Typ. 

Beispiele exotischer Optionen 

Dieser kurze Oberblick solI weder vollstiindig noch systematisch sein, er so111e­
diglich einen ersten Eindruck der Vielfalt der Optionstypen vermitteln. So gibt 
es beispielsweise Optionen auf Minimum oder Maximum des Aktienkurses wie 
z.B. den "europaischen Call auf das Maximum einer Alctie", der durch die End­
zahlung 

B=(max !'t(t)-K)+ 
OS;tS;T 
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gegeben ist. In vielen Varianten treten sogenannte Barriere-Optionen am Markt 
auf. Solche Optionen verfallen bei Erreichen einer Barriere wertlos oder aber ha­
ben nur dann einen Wert, wenn die Barriere vor dem Endzeitpunkt T erreicht 
wird. Es gibt z.B. folgende Moglichkeiten: 

,,Down-and-Out-Call" 

,,Down-and-In-Call" 

,,Double-Barriere-Call" 

mit K2< K}< K3. Bei Average-Optionen ist der Ausiibungspreis entweder ein 
geometrisches oder ein arithmetisches Mittel oder der zugrunde liegende Preis­
prozess ist ein Durchschnittspreis. Typische Beispiele hierfiir sind: 

B=( l\(rl- ~Il\(sld.r ,,Asiatische Option" 

B =( ~!l\(slds-Kr ,,Fixed-Strike-Average" 

B= ~O(l\(rl-Kr dt) 

Verwendung des iquivalenten MartingalmaOes 

Da im Black-Scholes-Modell fUr den Preis einer europaischen Option mit End­
zahlung B aufgrund von Korollar III. 1 1 immer 

p = EQ(e-rT B) 

gilt, wobei Q das zu P aquivalente MartingalmaB ist und EQ den Erwartungswert 
bzgl. Q darstelIt, konnen wir bei unseren folgenden Bereclinungen immer oBdA 
annehmen, dass das subjektive MaS P gleich dem MartingalmaS ist. Damit 
nehmen wir an, dass die Gleichungen der Aktienpreise wie folgt lauten: 
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dp;(t) = p;(t>(r dt + ~ O'ij dWit>1 , i=l, ... ,d. 
1=1 ) 

(1) 

Dies gestattet uns, im Folgenden alle Optionspreise bzgl. P und der durch (1) ge­
gebenen Form der Aktienpreise zu berechnen. 

IV.1 Exotische Optionen mit expliziten 
Preisformeln 

Wir stellen in diesem Abschnitt einige exotische Optionen vor, deren Preise sich 
explizit berechnen lassen. Fiir weitere exotische Optionen und deren Preise ver­
weisen wir auf Zhang (1997). 

a) Pfadunabhiingige Optionen auf eine Aktie 

Digital- oder Biniiroptionen 

Die Endzahlungen von Biniircall bzw. Binarput in t= T mit Schranke K sind ge­
gebendurch 

B CDII 1 d = {~(T»K) , 

B Put 1 d = {~(TkK} • 

d.h. ist der Endpreis P1(1) der Aktie gro6er - "Call" - (bzw. kleiner - ,,Put" -) 
als die Schranke Kist, erhalt der Halter der Option im Fall des Digita~cans (bzw. 
des Digitalputs) eine Geldeinheit in t= T. Als Preise dieser Optionen erhiiIt man 
(siehe Kapitel III.2, S.118): 

XJDII (t) = e -r(T-t} <I>(d2 (t}) , ,,Digital-Call" 

xlut (t) = e -r(T-t) <1>(- d2 (t»), ,,Digital-Put" 

mit 
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wobei ~ Verteilungsfunktion der Standard-Normalverteilung. Allgemein ver­
steht man unter Digitaloptionen Optionen mit nicht-stetigen Endzahlungen. So 
gesehen gehoren auch einige im Folgenden vorgestellte Optionstypen zur Klasse 
der Digitaloptionen. 

Gap-Optionen 

Die Endzahlungen einer Gap-Option sind durch 

B~: =(Pl(T)-G).1{Il(T)~K} , 

BG;~ = (G- Pl(T»).1{Il(T)SK} 

gegeben, wobei im Allgemeinen G¢K mit G, K~O gilt. So wird also z.B. beim 
Gap-Call die Differenz zwischen P t(1) und G gezahlt, wenn P t(1) den Wert K 
iiberschreitet. Man beachte, dass die Auszahlung beim Call nur fUr GSK fast 
sicher nicht-negativ ist. Es kann hier tatsiichlich die Situation eintreten, dass der 
Inhaber der Option sowohl beim Kauf als auch beim Verfall der Option etwas 
zahlen muss. Dieser Contingent Claim kann also, anders als in der Defmition 
III.3, auch zu einer negativen Endzahlung fUhren. Da sie nach unten beschriinkt 
ist, sind aIle Siitze zur Optionsbewertung weiterhin anwendbar. Zur Illustration 
der Endzahlung geben wir noch folgende Payoff-Diagramme fUr den Gap-Call. 
Wir unterscheiden die Faile G~K und G<K: 

BCall 
Gap 

K 

o~ ____ ~~ ____________________ -. 
l\(r) 

Bild IV.I Payoff-Diagramm eines Gap-Call mit G~K 
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BCall 
Gap 

K 

o GK ~(T) 

BUd IV.Z Payoff-Diagramm cines Gap-Call mit G<K 

Beachtet man, dass man die Endzahlungen der Gap-Option zerlegen kann in 

B&:: = B Call -(G-K).BSall mit BCall = (P1(T)-Kr ' 

BG;~ =:BPut -(K-G).B!"t mit B Put = (K-l1(T)r ' 
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wobei die auftretenden Calls, Puts und Digitals jeweils zum Ausiibungspreis 
(bzw. zur Schranke) K gehOren. Unter Verwendung der Preisformeln fUr die 
Calls, Puts und Digitals (siehe Korollar m.6) erhalten wir: 

X&::(t) = XCall(t)_(G_K).XSall(t) 

=: II (t )Cl>(d1 (t ))- G· e -r(T -t )<1>(d2 (t)) , 

xG;~(t} =: XPut(t)_(K - G).X!"t(t) 

=: -ll (t )<1>(- d1 (t ))+ G· e-r(T-t)<1>(_ d2(t )), 

mit 
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Paylater-Optionen 

Paylater-Optionen sind eng verwandt mit Gap-Optionen. Ihre Endzahl.ungen sind 
gegeben durch 

BCfifl1 = (PI (T)-(K + DCall))'I{~(T)~K} , 

B:t = ((K _D Put )_ 1\ (T»)'I{~(T)SK}' 

wobei DCall, nPut jeweils so zu bestimmen sind, dass die Werte der Paylater-Op­
tionen in t=O gleich Null sind. Fasst man DCall, IJPut als Prlimie fUr die Option 
auf, so ist diese erst am Laufzeitende zu zahlen (deshalb ,,Paylater"-Option) und 
auch nur dann, wenn der zugehOrige Call bzw. Put den Wert K erreicht. Die 
Endzahlungen kann man nun analog zu den Gap-Optionen zerlegen in 

B Call B Call D Call B Call PL= - 'd, 

B Put _ B Put DPut B Put PL - - . d • 

Damit erhiilt man mit den bereits bekannten Preisen und den Forderungen 

xCfif/l(o) =0 , x:ft(O)=O 

die Werte fUr DCall, nPut als 

DCall = X Call (0) DPut X Put (0) 
xjall(O) , = Xj"t(O)· 

(2) 

(3) 

Einsetzen dieser Werte in (2) und (3) ergibt die Preise fUr die Paylater-Calls und 
Puts 

xCfitl(t) = 1\(t).<Il(dI (t)) - p~~~(~~)))<Il(d2{t)).ert, 

x:ft (t) = -PI (t) . <Il(-di (t») + PI . r{- (l~))) <Il{-d2{t)). ert . 
<Il-d2 0 

Man beachte, dass Paylater-Optionen zwar in t=O kostenlos sind, aber keine Ar­
bitragemoglichkeit darstellen, da auch negative Endzahlungen moglich sind. 
Deshalb konnen die Preise der Paylater-Option wamend ihrer Laufzeit auch ne­
gativ werden. 
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Zusammengesetzte Optionen ("Compound Options") 

Mit dem Kauf einer zusammengesetzten Option erwirbt man das Recht, in t= T 
eine andere Option mit Ausiibungszeitpunkt TI ':?T zum Ausiibungspreis K zu 
kaufen bzw. zu verkaufen. Man unterscheidet die folgenden vier Fiille: 

B£~ = (XCall(T)-Kf, "Call auf Call" 

B;:'" = (X Put (T) - Kr ' "Call auf Put" 

B:;~ = (K - X Call (T)r ' ,,Put auf Call" 

B!':'" = (K - X Put (T)r ' ,,Put auf Put" 

wobei die auftretenden Calls und Puts jeweils einen Ausiibungspreis KI besitzen, 
der im Allgemeinen von K verschieden ist. Wir konzentrieren uns hier nur auf 
die Bestimmung des Preises eines Calls auf einen Call. Die restlichen Fiille kon­
nen analog behandelt werden. Wir zeigen zuniichst die folgende Proposition 

Proposition 1 

a) Zu K>O und zur Laufzeit TI des Calls mit Ausubungspreis K1, T1?,T, existiert 
ein eindeutig bestimmtes p*>O, p*:=P1(1), mit 

XCall(T} = X Call ( T,p *) = K. 

b) Mit den Bezeichnungen 

gilt fUr den Preis eines Calls auf einen Call 
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x~~(t} = 1\ (t}q,(PJ) (gl (t},hl (t)) - KI e -r(7i-t)q,(PJ) (g2 (t},h2 (t») 

-Ke-r(T-t)q,(g2(t») , 

fUr tE [0,1], wobei q,(P)(x, y) die Verteilungsfunktion einer bivariaten Standard­
Normalverteilung mit KorrelationskoefflZient P ist und 

PI := ~ ~~: ' d.h. (;J -N((~J.(~ '{ J). 
Beweis: 

a) Aus der expliziten Fonn der Black-Scholes-Fonnel ergeben sich: 

lim X Call (T,1\(T»)=O, 
Il(T),!,o 

lim X Call (T, PI (T») = +00 
Il(T)t+ao 

(4) 

(5) 

fUr T5. TI • Der erste Grenzwert folgt hierbei aus den trivialen Schranken 0 und 
PI (1) fUr XCall( T,P I (1). Die zweite Grenzwertaussage gilt, da 

.!!.... XCall(T,p) = q,(d l (T)) 
dp 

nicht nur positiv ist, sondem sogar in p wachst. Aus (4) und (5) folgt mit dem 
Zwischenwertsafz die Existenz eines p* aus Behauptung a). 

b) FUr t5.T gilt 

X~~(t) = Et,ll(d(e-r(T-tl B£~) 
2 

= ~ ~Je -2(;-d 'e-r(T-t> (x CaIl (T 1\(t)e(r-~a2)(T-t}+UX) -K) dx 
2n(T-t) _ ' 

w 

mit 

Mit Hilfe der expliziten Fonn von XCall(T,p ) erhalt man 

X~~(t) = II -12 -13 
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mit 
x2 

It = p} (t)j 1 e -2(T-t) eax- ~ol(T-t) cl>(a) dx , 
w~2n(T-t} 

00 x2 

I2=J 1 e-2(T-t)e-r(1i-t)Klcl>(b)dx, 
w~2n(T-t) 

wobei 

OX+ln( ~)+(r+tCT2)(1i -t)+(r-tCT2~T-t) 
a= CT~1i-T 

OX + In( P~t») +(r-tCT2 X1i -t) 
b- --_I--====~------

- CT~1i-T 

Analog zur Berechnung der Black-Scholes-Formel folgt sofort 

Fiir die Berechnung von I} und 12 ist Lemma 2 sehr niitzlich. Mit sein~r Hilfe er­
hiiltman 

II = PI (t)cl>(A)(gt (t),h I (t»). 

Ausklammem von K Ie -r( 1i -t) aus 12 und Anwendung von Lemma 2 Hefert 

Die vielen, aber recht einfachen Zwischenrechnungen iiberlassen wir dem Leser 
(siehe Ubung '0.1). 0 
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Lemma 2 

Sind X und Y unabhangige Zufallsvariablen mit 

X - N(P' 0-2 ) , Y- N( 0,1) 

so gilt fUr x, a, P eR, a>O: 

a) 

J9' c?(x).<I>(aK+p)th = P(X~x,Y~a« +p) = P(X~x,Z~p), _ P. 
x 

wobei 

Dabei ist 9'fJ,~ die Dichte der Normalverteilung mit Erwartungswert P und Va­
rianz 02. 

Bemerkung 

a) Analog erhiilt man fUr den Wert eines Puts auf einen Call: 

X!o~(1) = -Pt (t)<I>(P2) (- gI (t), hI (1))+ Kle -r( 7j-t) <1>(1'2) (- g2 (t), h2 (t») 

+ Ke -r(T-t) <1>(- g2 (t») 

fUr te [0, 1], mit 

P2:= _~ T-t . 
Ii --t 

b) 1st fUr einen Put mit Ausiibungspreis KI und Ausiibungszeitpunkt T} der Wert 
p* durch 

XPut(T'P*)=K 

fUr ein festes K> 0 gegeben, so erhiilt man analog die Preisformeln fUr einen 
Call auf diesen Put bzw. den Put auf diesen Put, jeweils mit Ausiibungspreis K 
undAusiibungszeitpunkt T~TI' te[O,1J: 

X;!m (I) = -Pt (t)<I>(A) (- gI (t),-hl (t») + KI e -r(7j-t) <I>(A) (- g2 (t),-h2 (I)) 

- Ke-r(T-tl<l>(_ g2 (t»), 
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X!:"'(t) = PI (t)cI»(Pl) (gi (t),-hi (t») + KI e -r(1i-t)cI»(Pl) (g2 (t),-h2 (t)) 

+ Ke-r(T-t)cI»(g2(t}) . 

Wahl-Optionen ("Chooser Options") 

185 

Bei dieser Art von Optionen kaun man zur Ausiibungszeit T wiihlen, ob man ei­
nen europaischen Call auf die Aktie mit Ausiibungszeitpunkt TI ~ T und Aus­
iibungspreis KI ~O oder einen europaischen Put auf die Aktie mit Ausiibungs­
zeitpunkt T2 ~ T und Ausiibungspreis K2 ~ 0 erhalten will. Da man den Wert der 
beiden europaischen Optionen als Funktion von (T, PI (1) aus der Black­
Scholes-Formel keunt, ergibt sich die Endzahlung der Wahl-Option al~ 

Bw = max( X ~'il (1\ (T), T), X t':k2 (PI (T), T)) , 

wobei die unteren Indices jeweils die Laufzeiten und Ausiibungspreise der euro­
paischen Optionen sind. Da der Preis des Calls im Zeitpunkt T streng monoton 
wachs end in PI(1) ist, (4) und (5) erfiillt, und der Preis des Puts im Zeitpunkt T 
streng in PI (1) fallt, existiert genau ein p.~ 0 mit 

Call ( .) Put ( .) X T. K T, P = X 1', K T, P . 
I- 1 2- 2 

FUr groJ3ere Werte von PI (1) wird das Maximum in B w vom Call-Preis, fUr klei­
nere Werte vom Put-Preis angenommen. Man erhalt folgende Darstellung fUr 
Bw: 

Mit Hilfe dieser Zerlegung lasst sich der Preis der Wahloption analog zum Preis 
der zusammengesetzten Option berechnen und man erhalt fUr t< T: 

X w(t) = 1\ (t)· cI»(A) (gl (I), hi (t»)- K} e -r(T-t) cI»(A) (g2 (t),h2 (t») 

- PI (t).cI»(~)(- gl (t),-h3(t») + K2e -r(72-t)cI»(~)(_ g2(t},-h4 (I»), 
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b) Optionen mit mebreren zugrunde Iiegenden Aktien 

Indizierte Optionen 

Wir betrachten bier ein zweidimensionales Black-Scholes-Modell mit den Ak­
tienkursen 

d1\ (t) = PI (t).(bl dt +O"ll dJf} (t)+ 0"12 dW2(t») , 1\ (0) = PI> 

dP2 (t) = P2 (t}.(b2 dt+ 0"21 dJf} (t)+ 0"22 dW2 (t»), P2(0) = P2. 

Es seien aI' a2E(0,oo). Eine indizierte Option mit Parametem aI' a2 ist dann 
durch die Endzahlung 

Bind = (at 1\ (T)-a2 P2(T)r (6) 

gegeben. Der Name "indizierte Option" rlihrt daher, dass man oft (verein­
fachend) annimmt, dass P2(t) den Verlauf eines Marktindices (wi~ z.B. den 
DAX) beschreibt. Wiihlt man zusiitzlich 

1 1 
at = 1\(0) , a2 = P2(0) , 

so erhalt man als Endzahlung einer indizierten Option gerade die Differenz zwi­
schen der relativen Preissteigerung der ersten Aktie und des relativen Wertzu­
wachses der zweiten ,,Aktie" (im Allgemeinen ein Marktindex), falls diese Dif­
ferenz positiv ist. Die Preisentwicklung der Aktie wird also mit der Entwicklung 
des Indices verglichen ("indiziert"). Wir setzen 

81:= al·pt ,82:= a2 ·P2 

und fiihren die folgende Bezeichnung ein: 

(7) 

Zur Berechnung des fairen Preises der indizierten Option werden wir die in Ab­
schnitt III.7 vorgestellte Technik des Numeraire-Wechsels verwenden. Seien 
bierzu Q, Qt' Q2 die jeweiligen aquivalenten Martinga1ma6e in unseiem Markt­
modell, wenn wir jeweils den Numeraire Po(T), PI(T) und Pz{T) wiihlen. Nach 
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Korollar m.11 und Satz m.38 gilt dann mit (7) fUr den fairen Preis lCinJO) des 
indizierten Calls 

Xind(O) = EQ(e-rT(al1\(T)-a2 P2(T)r) 

= al .EQ(e-rT 1\(T).I A)-a2 .EQ(e-rT P2(T).I A) 

=al 'EQt(~~)~(T)'IA )-a2 'EQ2(~~)P2(T)'IA ) 
=sl .Q.(A)-S2 ·Q2(A). (8) 

Man muss jetzt nur noch die Wahrscheinlichkeiten von A unter den beiden Ma­
Ben QI' Q.z berechnen. Hierbei beachte man, dass sich die Brownschen Bewe­
gungen JiJ''I.I)(t), w(2)(t) bzgl. QI' Q2 (siehe Obung 0.4) als 

[( (ht -r}cr22 -(~ -r}cr12 -O'"l).T] 
W(i)(t) = W(t) + 0'110'22-0'120'21 I i=12 

( (b2 -r}crll -(ht -r}cr21 ) T' • -O'i2 . 
0'110'22 - 0'120'21 . 

ergeben. Daraus ergibt sich dann 

PI (T) PI (( ) (;) ( ) (i) 
P2 (T) = P2 exp 0'11 - 0'21 Wi (T) + 0'12 - 0'22 W2 (T) 

_(_I)i t((O'l1 -0'21)2 +(0'12 -0'22)2)T), i=I,2, 

undsomit 

Q;(A) = Qi( exp((O'Il - 0'21)Wi(i) (T)+(0'12 - 0'22 )WJi)) ~ 

:~ exP(_I)i ·t[(0'11-0'21)2 +(0'12 -0'22)2}T)) 
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wobei Z standard-nonnalverteilt ist. Mit den Bezeichnungen 

;;:2 ._ ,..2 +,..2 ;;:2._,..2 +,..2 
vI .- '"'11 '"'12, '"'2 .- v2I "22 

U11 U2I + U12 u22 
p:= 

erhiilt man dann aus (8) und (9) die Formel 

Optionen auf MinimumlMaximum zweier Aktien 

(10) 

(11) 

Wir betrachten nun Optionen auf das Minimum bzw. Maximum zweier Aktien, 
die durch die folgenden Endzahlungen gegeben sind 

B~:::l = (min(PI(T), P2 (T»)- Kr "Call auf Minimun" 

B~:: = (max( PI (T), P2 (T») - K r "Call auf Maximum" 

B!r,: = (K -min(l-\ (T), P2 (T»)r "Put auf Minimum" 

B!:i = (K -max(l-\ (T), P2 (T»)r ,,Put auf Maximum" 

Wir legen bier ein zweidimensionales Black-Scholes-Modell zugrunde mit den 
zu Beginn in (1) beschriebenen Preisverliiufen. Wir berechnen zuniichst 
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= E(e-rT PI (T).l{KS~(T)SPz(T)}) + E( e-rT P2 (T).l{KSPz(T)S~(T)}) 
- Ke-rT . p{min(PI(T), P2(T») ~ K). 

Setze 

Y:= Ul1Wt(T)+U12W2(T) , Z:= U21Wt(T)+U22W2(T), 

y Z 
Y:= uI.fi ' Z:= u2.fi. 

OBdA seien Uj > 0, i= 1,2, Uj, p wie in (10), (11). Dann gilt 

Damit hat (Y,Z) die gemeinsame Dichte 

~ 2 2) 
( ) 1 - 2 Y -2p,yz+z 

rp P (y,z) = e I-p . 

21Z'~1- p2 
Nun gilt 

A:= E(e-rTpI(T).l{KS~(T)SPz(T)}) = IIPI exP(-tu[T+UI.fiY) 
ab 

. pexp( (1 2) (y2 -2p'vz+z2)1 dz* 
21Z' 1- p2 2 1-P ) 

mit 

a:= 

189 

Ausintegrieren von z in A (man fiihre eine geeignete quadratische Ergiinzung 
durch) Hefert: 

ooJ 1 ((y - Ul .fi)2 J ( ) 
A=PI·a&exP - 2 ·c'J.>d+k·y dy 
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mit 

, k:= PCT2 -CTt 

a2~(I-p2) , 
Mit Lenuna 2 folgt dann: 

A=pt,P(Zt ~a,Z2 ~d) =Pt,P(Zt ~a,Z2 ~b) 
mit 

(12) 

a:= 

pa2 - ai :::: PCTt - CT2 
p:= ,p:= 

CT CT 
(13) 

gilt mit den weiteren Bezeichnungen: 

In( %) +(r+tai)T 
a2JT (14) 

In(~) -tCT2T 
CTJT 

(15) 
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Durch Vertauschen von PI (1) undPi1) folgt 

E(e-rT P2(T).I{K~~(T)~~(T)}) = PI .<Il(.~)(d2,d4). 
Analoge Rechnung liefert auBerdem 

p{min(Pt (T), P2(T») ~ K) = <Il(p)(d1 -~I.fi,d2 -~2 rr), 
womit dann der Preis des Minimum-Calls berechnet ist. Verwenden wir nun die 
iiblichen Zusammenhiinge zwischen Put und Call, sowie die zwischen Minimum 
und Maximum, so erhalten wir (siehe Obung '0.5): 

Proposition 3 

Fiir die Preise der MinimumlMaximum-Optionen gilt mit den Bezeichnungen 
aus (10)-(15): 

X~gfl (0) = PI . <Il(p)(di ,d3) + P2<1l(~) (d2, d4) 

- Ke-rT <Il(p)(d1 - ~1.fi,d2 - ~2.fi), 

XCa//(o) = XCal/(O\ + XCal/(O) _ XC~l/(O) 
max (1)1 (2) min' 

X~(O)= X{;t(O)+X(Wt(O)-X:~(O), 

wobeiX(i)Cal/, X(I{ut die Preise der gewohnlichen europaischen Calls bzw. Puts 
mit Ausiibungspreis K auf die i.-te Aktie sind, i=I,2. 

c) Pfadabhiingige Optionen 

Einseitige Barriere-Optionen 

Bei einseitigen Barriere-Optionen erhalt der Besitzer die Auszahlung aus einem 
Call bzw. aus einem Put, falls der Aktienkurs vor dem Ausiibungszeitpunkt T - je 
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nach Art der Option - eine vorgegebene Barriere nicht erreicht, unter- oder 
iiberschreitet. Wir betrachten im Einzelnen: 

B[j:1l = (PI (T) - Kr ·1 {f\(t»b ruT allete(O,TJ} 

Bj:t = (K - PI (T)r ·1 {f\(t»b ruT alle te(O,Tn 

B;:1l = (PI (T) - Kt ·1 {ll(t)<b ruT aUete(o,T]} 

Bt:t ={K-PI(T)r .1{1l(t}<bruTallete(o,TJ} 

AuBerdem betrachten wir 

"Down-and-Out-Call" 

,,Down-and-Out-Put" 

"Up-and-Out-Call" 

"Up-and-Out-Put" 

B{i;all = (PI (T) - Kr ·1 {Es gibt ein te(O,T] mit ll(t)S:b} ,,Down-and-In-Call" 

BJ;ut = (K - PI (T)r 'l{Es gibt ein te(O,T] mitll(t)S:b} ,,Down-and-In-Put" 

Call ( () )+ 
BUi = PI T -K 'I{ESgibteinte(o,T]mitll(t)~b} "Up-and-In-Call" 

Bt;ut = (K-PI(T)r .1{Esgibteinte(o,T]mitll(t)~} "Up-and-In-Put" 

Kennt man nun die Preise fUr die "out"-Optionen, so erhalt man auch sofort die 
fUr die "in"-Optionen, da die folgenden Beziehungen gelten ("In-Out-Paritat"): 

X;;all (0) = XCal/(O) - X;:l1 (0) , 

xt;ut (0) = X Put (0)- X::t (0), 

x{i;all (0) = X Call (0) - X£all (0) , 

XJ;ut(O) = X Put (O)-X!out(O) . 

Die dritte Beziehung ergibt sich z.B. aus der Zerlegung 

(PI (T) - Kr = (PI (T) - Kr ·1 {ll(t»b ruT alle te(O,Tn 

+ (PI (T) - Kr ·1 {Es gibtein te(O,T] mitll(t)~} . 
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Wir beschriinken uns bier auf die Berechnung des Preises des Down-and-Out­
Calls. Hierzu benotigen wir das folgende Lemma liber die gemeinsame Vertei­
lung des Endwerts und des laufenden Maximums einer eindimensionalen 
Brownschen Bewegung (mit Drift): 

Lemma 4 

Es sei M( t) : = max W{s) das laufende Maximum der eindimensionalen 
OSsSt 

Brownschen Bewegung W(1). Dann gelten fUr x~o, x~w: 

a) p(W(t) ~ w,M(t) <x) = <1>(;) -l+<I>( 2XJiW). 

b) Fiir,ueRseienW(t):= W(t)+,u·t,M(t):= maxW(s).Danngilt 
OSsSt 

P(W(t) ~ w, M(t) < x)= <1>( w;) _e2JJt<l>( w-~- pi). 

Aussage a) ist eine Konsequenz aus Proposition 2.8.1 in Karatzas/Shreve (1991), 
die wiederum eine Konsequenz des Spiegelungsprinzips von D. Andre ist (siehe 
z.B. Abschnitt 2.6.A in Karatzas/Shreve). Teil b) ergibt sich aus a) mit Hilfe des 
Satzes von Girsanov (siehe Obung 0.12). 

Zur Berechnung des Preises des Down-and-Out-Calls nehmen wir zunachst an, 
dass fUr Anfangswert Pl=P1(O), Barriere b und Auslibungspreis K die Bezie­
hungen 

b<Pl und K<b 

gelten, d.h. falls der Down-and-Out-Call nicht vor T verfallt, ist er automatisch 
im Geld. Mit Hilfe der Wahl 

r- l u 2 
,u= 2 

u 
der Beziehung min{-(W(t)+,u.t)} =-max{W(t)+,u.t} und expliziter Rech­

nung, wobei sich aus Lemma 4 die Dichte fUr 

(W(T)+.u-T, min {W{t)+,u.t)1 
OStST ~ 
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ergibt, erhiilt man 

mit 

In( It) +(r+tu2)T In(-}.) +(r+tu2 )T 
d1 = r;;; , d2 = r;;; 

uvT uvT 

Man erhiilt eine iihnliche Formel fUr den Fall b::S;K, niimlich 

X£all(O) = Plq,(d3}-Ke-rT q,(d3 -uJT} 

( b)2;2+1 .Jb)2;Z-1 . 
- PI P; q,(d4) +e-rT AlP; q,(d4 -u.JT} , 

wobei sich d3 und d4 aus d1 bzw. d2 ergeben, indem man b durch K ersetzt. Ana­
loge Resultate erhalt man fUr die anderen Typen von Barriere-Optionen, auf die 
wir mer aber nicht eingehen wollen. 

Optionen auf MinimumIMaximum des Aktienkurses ("Lookback­
Optionen") 

Eine Lookback-Option ist typischerweise durch eine Endzahlung gegeben in der 
das Minimum oder Maximum des Aktienpreises auf [0, 1'] auftritt, und ist damit 
wiederum eine pfadabbiingige Option. Typische Formen sind z.B. 

B~::LB =( max P1(t)-K)+ ,K~Pl=Pl(O), 
te{O,T] 

Bfall = (1\ (T)- 11)in 1\(t)l. 
tEt°,T] ) 

Man kann auch mer wieder Lemma 4 anwenden und erhalt 
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xf;ll(o) = PI· (<I>(dl)-e-rT <I>(dl -O"~)) 

+ PI~;2 (<I>(-dl +2 ~ ~).e-rT -<I>(-dl »), 

X~~LB(O)= PI<I>(d2)-Ke-rT <I>(d2 -0"5) 

+ PI .0"2 (<I>(d2)-e-rT(.l£.)21u2 <I>(d2 _ 2L)5): 
2r PI U 

mit 

Exkurs 7: Schwache Konvergenz stochastischer 
Prozesse 

In all den Beispielen exotischer Optionen, bei denen sich keine explizite Preis­
fonnel bestimmen lasst, muss-man zur Preisbestimmung ein nurnerisches Ver­
fahren einsetzen, urn den Preis der Option zumindest niiherungsweise bestimmen 
zu konnen. Fiir die Entwicklung efflZienter nurnerischer Verfahren ist oft die 
Diskretisierung des Aktienpreisprozesses die Grundlage des Vorgehens. 1m dis­
kretisierten Modell lasst sich dann meist einfach die erwartete abgezinste End­
zahlung der Option berechnen. Damit dieser Wert als sinnnvolle Approximation 
an den tatsachlichen (aber in der Regel unbekannten) Optionspreis im Black­
Scholes-Modell angesehen werden kann, ist nachzuweisen, dass die Folge der im 
diskretisierten Modell berechneten Erwartungswerte mit wachsender Feinheit 
gegen den Black-Scholes-Wert konvergiert. Das geeignete stochastische 
Konzept zum Nachweis dieser Konvergenz ist die schwache Konvergenz 
stochastischer Prozesse. Wir widmen uns nun einigen Grundlagen. Fur unsere 
Zwecke genugt es, wenn wir uns auf stochastische Prozesse {X(t)} te[O,I] mit ste­
tigen Pfaden auf [0,1] beschriinken: 
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AUgemeine Vo,aussetzungen Iii' diesen Abschnitt 

WiI betrachten bier den speziellen Wahrscheinlichkeitsraum 

(O,F,P) = (qO,l],B(qO,lI),p) , 

d.h. den Raum der auf [0,1] stetigen reellwertigen Funktionen, versehen mit 
der Borel-a-Algebra und emem WahrscheinlichkeitsmaO P. 

Damit defmiert die funktionenwertige Zufallsvariable X auf (O,F ,P) mit 

X(w):= w, weqO,I] (1) 

einen reellwertigen stochastischen Prozess mit Verteilung P. Man erhiilt den 
Wert dieses Prozesses an der Stelle t e [0,1] durch Projektion auf die ~,t. Koordi-
nate" von w, 

X(t,w) := frt 0 X(w) := w(t). 

Man konnte nun die Konvergenz stochastischer Prozesse Xn fiber die fibliche 
schwache Konvergenz von ZufaUsvariablen 

Xn(t) n~ct») X(t) in Verteilung fUr aUe te[O,I] 

erkIiiren. AUerdings ist dies ein zu schwacher Konvergenzbegriff. WiI betrachten 
statt dessen die schwache Konvergenz von WahrscheinlichkeitsmaBen auf me­
trischen Riiumen (siehe Billingsley (1968»: 

Definition S 

Sei (S ,B (S» ein metrischer Raum mit Metrik p, B(S) sei die Borel-u-Algebra fUr 
S. Weiter seien Pn , neN, P WahrscheinlichkeitsmaBe auf (S,B(S». Dann kon­
vergiert die Folge P n schwach gegen P (oder: in Verteilung), wenn fUr jede be­
schriinkte, stetige, reellwertige Funktion/auf S gilt: 

) Jf dP. 
s 

Daraus ergibt sich als Spezialfall die schwache Konvergenz fUr stochastische 
Prozesse mit stetigen Pfaden, wenn man beachtet, dass(qO,I],B(qO,I])) ein 
metrischer Raum mit folgender Metrik ist: 

p{x,y) = sup Ix(t) - y(t)1 . 
(k;,t~T 
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Definition 6 

Die Folge stetiger stochastischer Prozesse {X(t)}te[O,l] konvergiert schwach 
(oder: in Verteilung) gegenX, wenn fUr allefeC(qO,I], R) gilt: 

(2) 

Hierbei ist C( qo, 1] , R) der Raum der gleichmiiBig stetigen und beschrlinkten 
Funktionale auf qo, 1]. 

Die Konvergenz in (2) ist dabei folgendermal3en zu verstehen: der stochastische 
Prozess Xn ist auf dem Wahrscheinlicbkeitsraum (qO,I],B(qO,I]),Pn) gemaB 
(1) defmiert, der Prozess X auf (qO,I],B(qO,I]),P), wobei Pn,P jeweils 
WahrscheinlicbkeitsmaBe auf dem Raum (qO,I],B(qO,I])) sind. Mittels (1) 
liisst sich (2) schreiben als 

Ef(Xn) = If(Xn)dP= If dPn 

n~aJ ) If dP= If(X)dP = Ef(X). 

Damit stellt die schwache Konvergenz stochastischer Prozesse die schwache 
Konvergenz von Wahrscheinlicbkeitsmallen Pn-+P dar. Die schwache Kon­
vergenz bleibt unter stetigen Abbildungen erhalten, denn es gilt der folgende 
Satz (dies ist ein Spezialfall von Satz 5.1 aus Billingsley (1968»: 

Satz7 

Seien Pn,neN, P WahrscheinlicbkeitsmaBe auf dem metrischen Raum (S ,B(S» 
mit Metrik p. Weiter sei h: S~S' eine messbare Abbildung in einen weiteren 
metrischen Raum S mit Metrik p' und Borel-u-Algebra B(Sl Gilt fUr die Menge 
Dh der Unstetigkeitsstellen von h 

so folgt: 

Pn n~aJ) P in Verteilung ~ Pn .h-1 n~C1j) P.h-1 in Verteilung. 

Da auch (Rk ,B(R"» ein metrischer Raum ist, folgt so aus Satz 7: 
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Korollar8 

Konvergiert die Folge Xn stetiger stochastischer Prozesse schwach gegen den 
stetigen stochastischen Prozess X, so konvergieren fUr jedes feste tE [0, 1] die Zu­
fallsvariablenXn(t) in Verteilung gegenX(t). 

Es gilt sogar mehr als im Korollar angegeben. Seien hierzu die Projektionen 

Kt\-".,tk: c{0,l] ~ R k 

defmiert als 

fUr feste 0 S; t 1 < ... <tk S; 1. Dann folgt aus Satz 7 auch die Implikation 

) X in Verteilung 

Das bedeutet, dass aus der schwachen Konvergenz der Prozesse auch die Kon­
vergenz der endlich-dimensionalen Verteilungen folgt. Die Umkehrung ist im 
Allgemeinen falsch ! Aus der Konvergenz der endlich-dimensionalen Vertei­
Iungen 

P. -1 
n . K tt •···•tk 

folgt im Allgemeinen nicht die der Verteilungen Pn bzw. der zugehOrigen Pro­
zesse. 

1st hingegen die Folge der P n relativ kompakt (d.h. jede Teilfolge enthiilt eine 
schwach konvergente TeilfoIge), so kann man sich Ieicht iibedegen, dass aus der 
Konvergenz der endlich-dimensionalen Teilfolgen die Konvergenz von P n foigt. 

Wollen wir nun die eindimensionale Brownsche Bewegung W(t), t~O auf [0,1] 
durch einen einfachen Prozess approximieren (im Sinne schwacher Konver­
genz), so Iegen obige Ubedegungen und der zentrale Grenzwertsatz (fUr Sum­
men gewohnlicher Zufallsvariablen) foigendes Vorgehen nahe: 

1. Wiihle eine Foige {qn} neN einfacher i.i.d. Zufallsvariablen mit E( qi)=O, 
Var( qi) = 0'2 < ao, und setze 

n 

So:=O,Sn=L~ 
i=1 
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Zum Beispiel kann man ~/=Yj-q mit Y rB(l ,q) wiihlen. 

2. Defmiere hieraus mittels linearer Interpolation einen stochastischen Prozess 
Xn(t) mit stetigen Pfaden gemii6 

I I 
Xn{t,m) = rS[nt](m)+(nt-[nt]) rqnt]+l(m), (3) 

O''l/n O''l/n 

fUr te[O,I], neN, d.h. es gilt xnt*·,m) = /::r;Sk(m), und fUr t e(!,!f) 

erhiilt manXn(t) durch lineare Interpolation. 

3. Die endlich-dimensionalen Verteilungen von Xn konvergieren in Verteilung 
gegen die der Brownschen Bewegung. Beachte hierzu: 

• Aus ¥ n~lX) S und dem zentralen Grenzwertsatz folgt 

1 S urn [ns] n~1X) ) W(s) in Verteilung. 

• Aus der Chebyshev Ungleichung folgt 

und somit folgt aus (4) auch 

X n (s) n~lX)) W( s) in Verteilung. 

• Wegen der Unabhangigkeit der ~j folgt aus (4) und dem Satz von Slutsky 

(u},; S[ns] , urn (S[nt1 - S[ns])) n~lX) (J¥s, Wi - J¥s) 

fUr s < t . Hieraus folgt dann ahnlich wie in (5) auch 

(Xn (s),Xn (t) - Xn(s)) n~1X) )(Ws'Wi - J¥s) in Verteilung, 

und mit dem Satz von Slutsky folgt 

(4) 

(5) 

Analog zeigt man diese Konvergenz fUr endliche Tupel aus Xn(tj)-Kompo­
nenten. 
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4. Zeige, dass die Folge der zu den Xn geMrenden Verteilungen Pn auf 
(qO,l] ,B(qO,l])) relativ kompakt ist. 

Bei gegebener Wahl der ~j hat man also nur noch die relative Kompaktheit der 
Folge der zu Xn geMrenden Verteilungen zu zeigen. Dies ist die Hauptarbeit im 
Beweis des folgenden Satzes (siehe Billingsley (1968»: 

Satz 9 - Satz von Donsker 

Sei ~n eine i.i.d. Folge mit E(~j)=O, O<Var(~j)=02<oo. Dann konvergiert die 
Folge Xn der gemi.8 (3) definierten stochastischen Prozesse schwach gegen die 
eindimensionale Brownsche Bewegung W(t), t e [0,1]. 

Bemerkung 

Die Konvergenzaussage und die Grenzverteilung im Satz 9 sind unabhangig von 
der tatsachlichen Wahl der ~j, weshalb man auch vom Invarianzprinzip von 
Donsker spricht. Der Satz kann als ,,Prozessversion" des zentralen Grenzwert· 
satzes angesehen werden. Er kann oBdA auch als fUr beliebige Intervalle [0, 1] 
giiltig angenommen werden. 

FUr die praktische Anwendung in den folgenden Abschnitten ist die folgende 
Variante des Satzes von Donker sehr niitzlich (siehe Billingsley (1968), S.77 ): 

Satz 10 - Satz von Donsker fur Dreiecksschemata 

Die Zufallsvariablen ~n ' ... '~n , neN, kneN, seien i.i.d. mit 
\ kn 

E( ~n\ ) = 0, 0 < var( ~nJ = a;\ ~ c , 

wobei c>O eine geeignete Konstante sei. Setze 

Snl:= ~n\ +···+~nl ,l~ i~kn' 

S2·=S2 k ..... 2 
n· n = n·vn\· kn 
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Defmiere den Prozess Xn(t), t e[O,l] durch 

Xn(O) := 0 

( s;; II Snj / ._ 
Xn /s;):= ISn l-l, ... ,kn 

und linear interpolierend auf den Intervallen [S~_l Is; ,s~ Is; ] . 
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Falls nun kn-+oo und sn-+oo fUr n-+oo, dann konvergiert Xn schwach gegen die 
Brownsche Bewegung W. 

Mit den bisher gezeigten Ergebnissen folgt zwar 

fUr stetige und beschriinkte Funktionale h: qo, 1J-+R, aber dies reicht fUr die 
Anwendung in der Regel nicht aus. Insbesondere wenn wir die Brownsche Be­
wegung W im Black-Scholes-Modell durch einen Prozess der Art Xn anniihem, 
wiirde aus dem Satz von Donsker nicht direkt 

E(eb.T+U,Xn(T)) n~oo) E(eb.T+U.W(T)) 

folgen, da das Exponentialfunktional nicht beschriinkt ist. Hierzu benotigen wir 
noch die gleichmii6ige Integrierbarkeit der Folge exp( aXn(1), denn es gilt der 
folgende bekannte Satz: 

Satz 11 

Die Folge der Zufallsvariablen {Xn} neN sei gleichmii6ig integrierbar, und es 
gelte 

X n~oo X' V il n ) m erte ung. 

Dann gilt auch 

E(Xn) n~oo) E(X). 
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IV.2 Monte-Carlo-Simulation 

Beschreibung der Grundidee 

Die Basis der Monte-Carlo-Simulation ist das starke Gesetz der groBen Zahl, das 
besagt, dass das arithmetische Mittel von unabhangigen, gleichverteilten Zu­
fallsvariablen fast sicher gegen den Erwartungswert konvergiert. Da aber die Be­
stimmung des Optionspreises fUr die durch die Auszahlung B gegebene Option 
nach Korollar III. I I lediglich die Berechnung des abgezinsten Erwartungswertes 
von B bzgl. des liquivalenten MartingaImaBes beinhaltet, legt dies folgende Vor­
gehensweise nahe: 

A1gorithmus: Bestimmung des Preises einer Option durch Monte-Carlo-Simu­
lation 

1. Simuliere n unabhlingige Realisierungen Bi der Auszahlung B. 

2. Wahle (J.. ± Bi) . e -rT als Approximation fUr den Optionspreis E Q (e -rT B) . 
n i=1 

Das im zweiten Schritt berechnete arithmetische Mittel stellt dabei einen erwar­
tungstreuen und (wegen des starken Gesetzes der groBen Zahlen) stark konsis­
tenten Schatzer fUr den Optionspreis dar. Wiihrend der zweite Schritt keinerlei 
Probleme bereitet, lasst sich der erste Schritt, die Erzeugung der Realisierungen 
von B, nur niiherungsweise durchf'iihren. 

Simulation der Auszahlung B 

Wir gehen davon aus, dass die Auszahlung B=B(Pl(t), tE [0,1]) ein Funktional 
des Preisprozesses PI (t), t E [0,1], ist. Um B zu simulieren, simuliert man zu­
nachst einen Pfad P1(t) des Preisprozesses bzgl. des aquivalenten Martingal­
maBes Q. Da ein solcher Pfad durch uberabziihlbar viele Werte gegeben ist, kann 
man ihn nur approximativ simulieren. Hierzu geht man folgendermaBen vor: 

1. Teile das Intervall [0, 1] in N» 1 liquidistante Teilintervalle. 

2. Erzeuge N N(O,I)-verteilte, unabhangige Zufallszahlen Yi • 

3. Simuliere hieraus mittels Interpolation einen (approximativen) Pfad W(t) der 
Brownschen Bewegung auf [0,1]: 
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w(O) = 0, 

w(j. ~) =n{Y-l). ~)+&.1j , j=I, ... ,N, 

W(t)=w(U-l) ~)+(t-U-l) ~).~.[w(j. ~)-w((j-l) ~)] 
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fUr t e[U -1) ~ ,j ~]. 

4. Erzeuge damit einen (approximativen) Pfad von PI (t): 

PI (t) = PI .e{r-tc?}t .eu.w(t} , te [0, T], 

5. Berecbne mit diesem simulierten Pfad des Preisprozesses die Naherung fUr die 
Auszahlung B, z.B. im Fall europaischer Call: . 

Bj =(~(T)-Kr· 

Bemerkung 

FUr die praktische Durchfiihrung der Berecbnung von Bj im 5.schritt erweist es 
sich oft als giinstiger, statt im 3.Schritt erst im 4.Schritt eine Interpolation durch­
zufUhren: 

~(t)= P1((j-l) ~)+(t-(j-l) ~).~ .[~(j. ~)-PI((j-l) ~)] 
fUr t e[U-l) ~,j ~]. 

FUr groBes N sind die Unterschiede zwischen beiden Vorgehensweisen vemach­
lassigbar. 

Konvergenz der Methode 

Es sei P1(N)(t), te[O,1], der wie oben erzeugte approximative Preisprozess. 1st 
nun B ein auf C([O, TJ) stetiges und beschranktes Funktional, so konvergiert 
nach dem Satz von Donsker und Satz 7 auch 
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nach DefInition der schwachen Konvergenz. 1st B ein stetiges Funktional auf 
C([O, 1]), so folgt die Konvergenz gegen den Optionspreis aus der gleichmaJ3i­
gen Integrierbarkeit der Familie 

Der Nachweis dieser gleichmaJ3igen Integrierbarkeit kann im Einzelfall recht 
aufwendig sein. Den Erwartungswert 

fUr gegebenes N approximiert man gemii.B dem starken Gesetz der groBen Zahl 
durch das arithmetische Mittel 

1 n ( - LB plf)(t), t e[o,T)) 
n 1=1 

wobei pl~)(t), te[O,T], i:::l, ... , n, verschiedene gemii.B obiger Vorschrift er­

zeugte Pfade sind. 

Vorteile 

Die Monte-Carlo-Methode zur Schiitzung eines Optionspreises ist leicht imple­
mentierbar. Heutzutage sind auch vemiinftige Zufallszahlen leicht zugiinglich, 
denn nahezu jede Progrannn.tersprache stellt eine recht gute Routine zur Erzeu­
gung von Pseudo-Zufallszahlen bereit. AuBerdem kann durch Monte-Carlo-Si­
mulation jede beliebige exotische Option approximiert werden. 

Es gibt auch Verfeinerungen des obigen, einfachen Simulations-Algorithmus, 
um schnellere Konvergenz zu erzielen (siehe z.B. Rubinstein (1981». 

Nachteile 

Diese Methode ist auch in Zeiten schneller Computer recht langsam, denn n und 
N miissen sehr groB sein, um vemiinftige Schiitzwerte fUr den Optionspreis zu 
erhalten. Diese Werte n und N miissen zum Teil so groB werden, dass der Vorrat 
an Pseudo-Zufallszahlen ausgeschOpft wird und auf eine bereits benutzte Folge 
an Pseudozufallszahlen zuriickgegriffen werden muss. Damit wird dann die 
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Voraussetzung der Unabhangigkeit der verschiedenen Simulationen in Frage 
gestellt, und die Methode hangt somit stark von der Qualitat der Zufallszahlen 
abo 

IV.3 Approximation durch Binomialbaume 

Beschreibung der Grundidee 

Wahrend die Monte-Carlo-Simulation zur Optionsbewertung auf dem starken 
Gesetz der groBen Zahl basiert, lasst sich die Approximationsmethode mittels 
Binomialbaumen durch den zentralen Grenzwertsatz motivieren. 

Wir betrachten hierzu als Beispiel den zeitdiskreten Aktienpreisprozess Pl(n)(i), 
i=O,l, ... , n, dessen mogliche Pfade durch den folgenden Binomialbaum gegeben 
sind: 

t:O I·Tln 2· Tin .,zeit" 

"Preise" 

Bild IV.3 Binomialbaum 

Dieser Binomialbaum steht fUr einen Preisprozess, der zur Zeit t=O in P startet. 
Injedem Knoten des Baumes besteht fUr den Preis pt(n)(i) die Moglichkeit, dass 
er in der nachsten Periode mit der Wahrscheinlichkeit q um den Faktor u steigt 
und mit der Wahrscheinlichkeit (I-q) um den Faktor d "steigt" (d<u). Ein sol­
ches Wertpapierpreismodell wird auch als Cox-Ross-Rubinstein-Modell bezeich­
net (siehe CoxIRosslRubinstein (1979». Man beachte, dass die Wahrschein­
lichkeit, dass der Preis um den Faktor u steigt, und die moglichen Werte der 
relativen Preisanderung 
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Pt(n) (i)/ 
/ Pt(n) (i - 1) 

in jedem Knoten gleich sein sollen. Aus Arbitragegriinden muss fUr die Faktoren 
u, d gelten: 

d < erAt < u mit At: = T. 
n 

Ansonsten bestiinde die Moglichkeit eines risikolosen Gewinns, indem man das 
Aktieninvestment durch Kredite (im Fall d~e~1) oder das Bondinvestment 
durch Aktienleerverkiiufe (im Fall uSer~1) fmanziert. 1st nun Xn die Anzahl der 
,,Aufwiirtsbewegungen" von PI (n)(n), so gelten: 

Xn-B(n,q), 

p,(n) ( ) x dn- x x n ./n(%)+n./n(d) 
1 n = p'u n. n = p·e . 

Speziell gilt fUr q=1I2, h eR, und die Wahl 

b~t+q..p;:.i d b~t-q..p;:.i u=e ,=e 

mit den Beziehungen 

h =l.ln(u)+ln(d) 1 In(u)-ln(d) 
2 At ,a=2"..p;:i 

die Konvergenz 

Pt(n) (n) = p' exp( h . T + a.JT( 21in ) ) 

n-4OO ) p. exp(h . T + a· W( T)) = PI (T) in Verteilung 

aufgrund des zentralen Grenzwertsatzes, wenn man berucksichtigt, dass 

Erwartungswert Null und Varianz Eins hat, auBerdem 2Xn Summe von n unab­
hiingigen doppelten Bemoullivariablen ist. Eine Verallgemeinerung dieser Kon­
vergenzbeziehung (genauer: die Konvergenz des diskreten gegen den kontinuier­
lichen Preisprozess) bildet einen Baustein des Binomialansatzes. Der andere Teil 
der Methode basiert darauf, dass sich der Erwartungswert der abgezinsten End­
zablung aus der Option im diskreten Modell problemios berechnen lasst. FUr eine 
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wachsende Feinheit der Zeitdiskretisierung konvergiert dann die erwartete abge­
zinste Endzahlung im zeitdiskreten Modell gegen die im zeitstetigen Modell, 
falls die Familie der 

Bn:= B(Pt(n)(i),i=O,l, ... ,n) 

gleichmiiBig integrierbar ist. Dieser Nachweis kann wieder im Einzelfall sehr 
aufwendig sein. Aus den gemachten Bemerkungen ergibt sieh der folgende AI­
goritbmus: 

A1gorithmus: Approximation dureh Binomialbiiume 

1. Zu n» 1 erstelle einen geeigneten Binomialbaum fUr den zeitdiskreten Preis­
prozess Pl(n)(i). 

2. Berechne die erwartete abgezinste Endzahlung E<n)(e-rTBn) im zeitdiskreten 
Modell als Niiherung fUr EQ(e-rTB). 

Natiirlich ist die Wahl von n, d.h. die Feinheit der (Raum- und) Zeitdiskretisie­
rung, ein ganz wesentlicher Faktor fUr die Genauigkeit der im 2.Schritt berech­
neten Niiherung fUr den Optionspreis und aueh fUr den Rechenaufwand. Man 
wird daher den Algorithmus in der Regel iterativ fUr verschiedene n durehfiihren 
und dann abbreehen, wenn sieh Konvergenz eingestellt. 

Wahl der Parameter im Binomialbaum 

Da die Zuwiiehse 

Pt(n)wj 

/ Pt(n) (i -1) 

im Binomialbaum alle unabhiingig und gleieh verteilt sind, ergibt sien naeh dem 
Satz von Donsker fUr Dreiecksschemata und Satz 7 die schwache Konvergenz 
von { Pl(n)(i), i=O,I, ... , n} gegen {P1(t), te[O, TJ}, wenn die beiden ersten Mo­
mente des Logaritbmus der Zuwiichse 

von diskretem und stetigem Preisprozess in den Zeiten i· TIn fibereinstimmen. 
Genauer: Defmiert man einen stetigen Prozess Pl(s,n)(t) indem man zwischen 
In(PI (n)(i-l» und In(PI (n)(i» linear interpoliert, also 
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In( Pt(s,n) (t») = In( P1(n) (i -l»)+(t -(i -l)f)·t{ln( Pt(s,n) w) -In( Pt(n) (i -1»)] 
fUr t e[(i-l)f,if], 

so konvergiert dieser schwach gegen den Aktienpreisprozess PI (t), wenn die 
obigen Momentenbedingungen erfiiIlt sind. 

Da man wegen Korollar III. I 1 den Preisprozess bzgl. dem iiquivalenten Martin­
galmaB Q betrachtet, kann man oBdA annehmen, dass 

Martingal ist. g..n) sei nun das BinomialmaB bzgl. der Zeitdiskretisierung n, £(n) 

sei der Erwartungswert bzgl. dieses MaBes, {F/n)};e{O,l, ... ,n} sei die durch den 
Preisprozess {P1(n)(i)};e{O,1, ... ,n} erzeugte Filterung. Die obigen Momentenbe-
dingungen schreiben sich nun als . 

( 1 2) [ [Pt (oM ))J (n) [ [Pt(n) (1))J r-'2 CT t1t=EQ In Pt(O) =E In P1(n)(0) 

= In(u).q +In(d) .(l-q) , (1) 

(r -t ,,')' (M)' + ,,' M = EQH ~(to¥ n = E('{ ~ ~:: :~n 
= In(u) 2 .q+ln(d)2 .(l-q), (2) 

wobei man sich wegen der Annahme an die Verteilung der Zuwiichse auf den 
ersten Zuwachs beschriinken kann. Man beachte nun, dass man in den Gleichun­
gen (1) und (2) drei unbekannte Parameter, niimlich 

u,d "Vermehrungsfaktoren" , 

q "Wahrscheinlichkeit fUr eine Aufwartsbe'Yegung" 

hat. Die beiden Forderungen (1), (2) lassen somit die freie Wahl eines dieser Pa­
rameter zu, wenn man beachtet, dass u, d> 0 und q e(O,I) sein miissen. In der 
Praxis popular sind z.B.: 

1 
u=d' d<1 oder q =l. 2 . 
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Wir konzentrieren uns nun auf den durch q=1I2 gegebenen Fall (fUr das Vorge­
hen bei der Wahl u=lId und insbesondere bei der Wahl von u, d nach Cox-Ross­
Rubinstein vergleiche Ubung '0.13). Aus (1), (2) ergeben sich dann die Glei­
chungen 

In(u·d) = 2(r-t0'2)M, 

In(u)2 + In(d) 2 =2(r-t0'2y(M)2 +20'2M, 

die offenbar symmetrisch in u und d sind. Wir machen daher den Ansatz 

u = eB+C , d = eB- C , 

woraus sich mit (3) und (4) 

B=(r-t0'2)M, c=luI·v'M 
ergeben. Mit (5) erhalt man dann 

u = e(r-~~)At+la\jtit , d = e(r-~~)At-loijtit . 

(3) 

(4) 

(5) 

(6) 

Damit sind die beiden Momentenbedingungen erfUllt, und es gilt fUr r>O offen­
barauch 

o < d < u und d < erAt . 

Um auch die aus Arbitragegriinden geforderte Beziehung erAt<u zu erfiillen, 
muss 

(7) 

gelten. Hieraus ergibt sich die Forderung, dass die Zeitdiskretisierung hinrei­
chend fein sein muss, d.h. 

T·0'2 
n>--. 

4 

Der Optionspreis im Binomialmodell 

(8) 

Es kann leicht gezeigt werden, dass das durch den Binomialbaum gegebene Ak­
tienpreismodell zusammen mit der Moglichkeit des Bondinvestments zu den 
Zeiten i·Tln (mit Bondpreis Po(t)=erf) einen vollstiindigen Markt bildet und sich 
dort der Preis einer Option als abgezinster Erwartungswert der Endzahlung B in 
t= Tbzgl. dem eindeutigen aquivalenten MartingalmaB Qn ergibt (siehe Ubungs-
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aufgabe U.8). Qn ist wiederum durch die ,,Erfolgswahrscheinliehkeit" q=qn 
gegeben. Zu gegebenem u und d mit 

O<d <erllt <u 

erhillt man q aus der Martingalbedingung 

( 
p,(n) (i) p,(n) (i -1) I ) 

0= E 1 1 F..(n) 
Qn (T) ( ) T) 1-1 Po i' n Po i-l'n 

(*) 

als 
r.T/ 

e I'n_d 
q=---

u-d 

Dieses q ist z.B. bei unserer vorangegangenen Wahl von u, d nach (6) i.A. von 
112 verschieden, woraus somit auch fo1gt, dass der von uns bereehnete Wert 
E<n)(e-rTBn) als Niiherung fUr den Optionspreis EQ(e-rTB) im stetigen Modell 
i.A. Die mit dem Optionspreis EQn(e-rTBn) im Binomialmodell fibereinstimmt. 
Dies verlangt natiirlich nach einem Kommentar. 

Die Verwendung des Binomialbaumes ist fUr uns lediglich ein Verfahren zur nu­
merischen Approximation des Erwartungswertes EQ<e-rTB). Dass dieser Erwar­
tungswert einen Optionspreis darstellt, ist fUr unser numerisches Verfahren ohne 
Bedeutung. 

Eine andere Art der Approximation von EQ(e-rTB) besteht darin, q, u, d fiber die 
Gleichheit der Zuwiichse der ersten beidenMomente von diskretem und stetigem 
Preisprozess zu bestimmen. Aus der Gleichheit des ersten Momentes der Zu­
wiichse sowie der Unabhiingigkeit und gleicher Verteilung der einzelnen Zu­
wiichse im Binomialmodell folgt dann auch, dass die Martingalbedingung (*) er­
fiillt ist. Man berechnet hier also immer bei dem durch n, q, u, d gegebenen Mo­
dell den Optionspreis im Binomialmodell als Niiherung fUr den Optionspreis im 
stetigem Modell ! Zwar erscheint diese Art der Approximation ("ersetze Op­
tionspreis im zeitstetigen Modell durch den Optionspreis im zeitdiskreten Mo­
dell") konzeptionell einleuchtend, sie kann aber nieht durch die Theorie der 
schwachen Konvergenz gerechtfertigt werden. 
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Berechnung der erwarteten abgezinsten Endzahlung im Binomialbaum 

Die Moglichkeit der effizienten Berechnung des Erwartungswertes E<n)(e-rTBn) 
hangt ganz wesentlich vom Typ des Funktionals B (bzw. der diskretisierten Ver­
sion Bn) abo Wir illustrieren dies anhand zweier Beispiele fUr den Fall n=2, niim­
lich am Beispiel einer europiiischen Option und einem Double-Barrier-Knockout. 

Wir wiihlen q= 112. FUr die Marktparameter r=O, 0'=0.5, T=2, p= 1 ergibt sich 
dann der folgende Binomialbaum fUr PI (2)(i) -

t=O 1 2 ,,zeit" 

yl.455 

l~ 
0.535 

"Preis" 

Bild IV.4 Binomialbaum 

Um eine europiiische Option mit einer Endzahlung der Gestalt 

im Binomialmodell approximativ zu bewerten, betrachtet man die diskretisierte 
Variante 

Ibr Wert liisst sich auf einfache Weise per Riickwiirtsinduktion berechnen gemiil3 

Man berechnet also zuniichst die erwarteten Endzahlungen in den beiden Zustan­
den p}(2)(1)= 1.455 und p}(2)(1)=0.535 zur Zeit t= 1 und dann den Erwartungs­
wert im Startzeitpunkt. 

FUr eine europiiische Call-Option mit Ausubungspreis K=O.S ergiibe sich ein 
Wert von 
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E(2) (B2 ) = t·1.6l7 +t·0.279 = 0.54375. 

(man vergleiche dies mit dem Black-Scholes-Wert von 0.5416) 

Das Prinzip der Riickwiirtsinduktion ist allgemein giiltig fUr Optionen mit einer 
Endzahlung der Form 

B = f( f\ (T)) . 

Seien hierzu Bn=f{PI (n)(n» und 

V(n) (i·f, f\(n) W) := E(n) (e -r(T-i.Yn) . Bn I PI(n) (0) 
die erwartete Endzahlung in t= T auf t= i· Tin abgezinst, wenn der Aktienkurs im 
Binomialmodell zur Zeit i·Tln den Wert P1(n)(i) annimmt. Man kann dann die 
erwartete abgezinste Endzahlung der Option im Binomialmodell gemii.6 der fol­
genden Rekursion berechnen: 

V(n)(T,PI(n)(n));:; f(PI(n) (n)) , 

V(n) (i. f ' Pl(n) (i») = 

t[v(n)((i + I)f, uPI(n) (i)) + V(n)((i + I) f , dPI(n) (i)) Je -r~ 
fUr i;:;n-l, ... ,O, 

In der tatsiichlichen Implementation dieses Verfahrens wird man nicht in jedem 
Iterationsschritt mit e-rT1n abzinsen, sondem, um Rechenzeit zu sparen, lediglich 
im letzten Schritt mit e-rT multiplizieren. Der groBe Vorteil der Berechnung des 
Erwartungswertes gemii.6 dieser Rekursion besteht darin, dass man lediglich in 
jedem Knoten des Binomialbaums ein arithmetisches Mittel aus zwei Zahlen zu 
berechnen hat. Genauer: es sind nur n·(n-l)/2 dieser arithmetischen Mittel zu 
berechnen, obwohl der Aktienpreis im Binomialbaum 2n verschiedene Pfade 
durchlaufen kann. Die Griinde hierfiir sind zum einen, dass der Binomialbaum 
ein sogenannter rekombinierender Baum ist (d.h. benachbarte Pf~de konnen 
sich zur niichsten Zeitperiode wieder treffen, insbesondere fiibren Pfade mit 
gleicher Anzahl von Auf- und Abwiirtsbewegungen zum gleichen Knoten im Bi­
nomialbaum und somit zur gleichen Endzahlung) und zum anderen, dass die 



N.3 Approximation dureh Binomialbaurne 213 

Endzahlung der Option B nur vom Endwert der Aktie nieht aber explizit vom 
(gesamten) Pfad des Aktienpreises abhangt. 

1m Fall pfadabbingiger Optionen muss die einfaehe Riickwiirtsinduktion geeig­
net modiflZiert werden, urn der Pfadabbingigkeit der Endzahlung Reehnung zu 
tragen. So ergibt sieh fUr einen Double-Barrier-Knoekout-Call mit Endauszah­
lung 

B£fjl = (1\(T)-05t '1{~(t)e[o.4,1.41 jUr alle te[O,T]) 

die diskretisierte Variante 

( Call) (2)() )+ 
BDB 2 = 1\ 2 -0.5 . 1 {1\(2)(;)e{0.4,1.4],;=0,l,2} 

= 0.279·1 {1\(2)(2)=0.779 A2)(I)=0.53S} . 

Als zeitdiskrete Approximation des Optionspreises erhalt man 

E(2) (B2 ) = t. 0.279 = 0.06975 

1m Gegensatz zur durehj(P1(1) gegebenen Option ergeben sieh beim obigen 
Double-Barrier-Knoekout-Call in T=2 im Zustand P1(2)(2)=0.779 zwei mogliehe 
Werte fUr (BDBCallh. Dies ist typiseh fUr das Verhalten pfadabbingiger Optio­
nen. Man erbalt pfadabhangige Endzablungen, was im Extremfall dazu ruhren 
kann, dass jeder Pfad des Aktienpreises im Binomialmodell zu einer anderen 
Endzahlung fiihrt. Die Maximalzahl von versehiedenen Werten fUr die Endzah­
lungen ist somit 2ft, was fUr groBe n sehr schnell zu sehr groBem Rechen- und 
Speieheraufwand fiihren kann. 

t=O 1 2 ,,zeit" 

sdt2.117 

~
1 1.45 2 
72 0.779 

1 1 

2 ~0.779 
0.53~ 

0.287 
,,Preise" 

Bild IV.S nicht-rekombinierender Binomialbaum 
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Der fUr die Berechnung des Preises des Double-Barrier-Knockouts relevante 
Baum besitzt zwar fonnal die iibliche rekombinierende Form des Binomial­
baums, jedoch sind die Optionspreise in den einzelnen Knoten nicht eindeutig. 
Genauer: der Optionspreis wird vom Pfad bis zum Erreichen dieses Knotens mit­
bestimmt. Es liegt somit eigentlich ein nicht-rekombinierender Baum vor, was 
durch BUd N.5 veranschaulicht wird. Das Prinzip der Riickwlirtsinduktion fUr 
die Berechnung des Erwartungswerts der Endzahlung bleibt weiterhin bestehen. 
Allerdings hat man nun im Allgemeinen im Zeitpunkt i jeweils 2;-1 Erwar­
tungswerte zu berechnen, wiihrend man im pfadunabhiingigen Fall zum Zeit­
punkt i nur i+ 1 Erwartungswerte berechnen musste. 1m Fall einer Option vom 
Knockout-Typ kann man eine gewisse Effizienzsteigerung erzielen, indem man 
die Riickwlirtsinduktion wie bisher durchfiihrt, aber die jeweiligen Approxi­
mationen an den Optionspreis in allen Knoten auf Null setzt, in denen die 
Knockout-Bedingung erflillt ist. Die Komplexitlit der Berechnung des Options­
preises ist dann wieder mit der Berechnung im europiiischen, pfadunabhiingigen 
Fall vergleichbar. Betrachtet man bingegen eine Average-Option mit Endzah­
lung 

bzw. ihre diskrete Variante 

(BJ~II)n = (nh to Pt(n)w- K) + 

so muss man in der Regel den kompletten, nicht-rekombinierenden Baum zur 
Optionspreisberechnung verwenden. 

Konvergenz des Verfahrens 

Nach dem Satz von Donsker und Satz 7 konvergiert der durch Interpolation aus 
PI(n)(i) erhaltene stetige Prozess PI(s,n)(i) schwach gegen PI (t), falls die 
Momentenbedingungen (1), (2) erflillt sind. 1st also die Familie der 

Bs.n := B( PI(s.n) (t), t e[o,T]) 

der auf PI (s,n)(t) defmierten Funktionale gleichmiiJ3ig integrierbar, so erbalt man 
auch Konvergenz fUr 

(9) 
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wobei (fn) auf den Pfaden von Pt(s,n)(t) durch Identiftkation mit den zugehOri­
gen Pfaden von pt(n)(i) defmiert ist. Aus (9) folgt z.B. dann die gewiinschte 
Konvergenz 

wenn 

limE(n) (e-rt (Bs.n - Bn)) = 0 

gilt. Diese Konvergenz ist wiederum explizit fiir die jeweiligen Optionstypen 
nachzuweisen. Sie gilt immer dann, wenn die Differenz Bs n-Bn gleichmiiBig ge­
gen Null geht. Dies ist z.B. im Fall von europiiischen Lookbacks, B!Uriere und 
Double-Barrier-Optionen sowie asiatischen Optionen erfiillt. 

Vorteile des Verfahrens 

Approximationsverfahren, die auf Binomialbiiumen basieren, sind leicht imple­
mentierbar. Allerdings hlingt ihre EfflZienz in Bezug aufRechengeschwindigkeit 
und Speicherplatz stark vom verwendeten Optionstyp abo In der Regel konver­
gieren Binomialverfahren schneller als Monte-Carlo-Simulationen. Fiir sehr gro­
Be nicht-rekombinierende Biiume besteht desweiteren die Moglichkeit, ein Hy­
brid-Verfahren durch Kombination von Binomialmethode und Monte-Carlo-Si­
mulation zu verwenden: es wird eine hinreichend groBe Zahl von Aktienpfaden 
im Binomialmodell simuliert und das arithmetische Mittel tiber die zugehOrigen 
B n als Niiherung fiir den Optionspreis verwendet. 

Nachteile des Verfahrens 

Insbesondere bei Double-Barrier-Optionen stellt sich oft ein langsames und un­
regelmiiJ3iges Konvergenzverhalten ein. So muss die Genauigkeit der Approxi­
mation nicht unbedingt mit n wachsen, im Gegenteil, man stellt oft einen soge­
nannten Siigezahneffekt fest (d.h. mit wachsendem n scheint sich der approxima­
tive Optionspreis dem wahren Wert zu niihem, entfemt sich plotzlich sprunghaft, 
niihert sich dann wieder langsam dem wahren Wert, usw). 
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IV.4 Trinomialbiume und explizite Finite­
Differenzen-Verfahren 

Wir haben im Abschnitt ill.3 bereits gesehen, dass man Optionspreise (unter ge­
wissen Voraussetzungen) auch als Losung eines zugehOrigen Cauchy-Problems 
erhalten kann. Dies ist z.B. fUr Endzahlungen der Form 

B =f(l1(T)) 

mit geeignetemf(siehe Proposition ill.13) der Fall. Existiert fUr das jeweilige 
Cauchy-Problem keine geschlossene analytische Losung (oder ist man nicht in 
der Lage, sie zu bestimmen), so bietet es sich an, das Cauchy-ProbleUl mit tibli­
chen Methoden zur numerischen Behandlung partieller Differentialgleichungen 
iterativ zu losen. Eine Darstellung der moglichen numerischen Losungsmetho­
den fUr das betreffende Cauchy-Problem tibersteigt den Rahmen dieses Buchs 
(wir verweisen hierfiir z.B. auf Wilmott, Dewynne & Howison (1993». Wir 
wollen statt dessen zeigen, dass auch bei numerischen Methoden ein Zusammen­
hang zwischen stochastischen Methoden und Methoden der partiellen Diffe­
rentialgleichungen existiert, der dem Satz von Feynman und Kac ahnelt. Wir be­
trachten hierzu zunachst die Approximation des Black-Scholes-Modells durch 
einen rekombinierenden Trinomialbaum. 

1=0 I·Tln 2· TIn 
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Speziell wiihlen wir bierzu den zeitdiskreten Aktienpreisprozess P1(n)(o, 
i=O,l, ... ,n mit moglichen Pfaden im Trinomialhaum (siehe Bild IV.6), wobei aus 
Arbitragegriinden fUr u > 0 gelten muss 

1 r.T/ 
-<e In <u. 
u 

(I) 

Weiter seien die Wahrscheinlichkeiten fUr eine Aufwiirtsbewegung in jedem 
Knoten des Baumes gleich qt' die fUr eine Abwiirtsbewegung sei q2' somit ist die 
Wahrscheinlichkeit fUr ein Gleichbleiben des Aktienkurses gleich q3= 
1-(ql+q2)' Es gelte 

(2) 

Da man im Fall qt+q2=1 wieder ein Binomialmodell erhalten wfude, nehmen 
wir q1+q2< 1 an. Aus dem Satz von Donsker fUr Dreiecksschemata erhalten wir 
schwache Konvergenz von P1(n)(i), i=O.l, ...• n gegen den Aktienpreisprozess (im 
risiko-neutralen Markt) 

Fi (t) = p.e,xp((r -to-2)t + uW(t»). 

falls die beiden ersten Momente der Zuwachse von In(P1(t)) zwischen k·Tln und 
(k+l)·Tln 

mit denen der entsprechenden Zuwiichse von In(p}(n)(i)) iibereinstimmen. Dies 
fiihrt auf die Gleichungen: 

(r-t0"2)~t =In{u).q} +In(~}q2' (3) 

(r-t0"2t{~t)2 +0"2~t = In(u) 2 'q} +In(;f·q2, (4) 

Zu gegebenem u>O kann man bier wie beim Binomialmodell qt' q2 dUTCh Losen 
des obigen linearen Systems bestimmen. Wir wollen dies nicht tun, sondem statt 
dessen auf das in der Praxis weit verbreitete Vorgehen nach Cox-R.oss-Rubin­
stein eingehen. Von ihnen wird vorgeschlagen, 

u = eA.u..[i:i := el!.x (5) 
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fiir ein A. E [1,00) zu wahlen und in Gleichung (4) Terme von hOherer Ordnung 
als M zu vemachliissigen, was fiir kleine I1t keinen allzu groBen Fehler darstellt. 
Man erhiilt dann aus (3), (4), (5) die Gleichungen 

A(1'.JAi(ql -q2) = (r _t(1'2)M , (6) 

A2 (1'2 M( ql + q2) = (1'2 £\t , (7) 

undhieraus 

ql =t((r-t(1'2)A~..fAt+ A~)' 

q2 = t(A~ -(r-t(1'2) A~ ..fAt). 

(8) 

(9) 

Fiir hinreichend kleines £\t, also hinreichend groBes n, liegen dann ql' q2' q3 aIle 
in (0,1). Insbesondere wiirde die Wahl A= 1 ein Binomialmodellliefem. 

Wie im Binomialmodell erhalten wir folgenden Algorithmus (wobei zu festern n 
das WahrscheinlichkeitsmaB (fn) durch qt, q2' q3=1-(qt+q2) gemii.6 (8), (9) ge­
geben ist, Bn wie in Abschnitt V.3): 

A1gorithmus: Approximation durch Trinomialbaume 

1. Zu n» 1 erstelle einen geeigneten Trinomialbaum fiir den zeitdiskreten Preis­
prozess pt(n)(i) (siehe hierzu (5),(8),(9». 

2. Berechne die erwartete abgezinste Endzahlung E<n)(e-rTBn) im zeitdiskreten 
Modell als Naherung fiir EQ(e--rTB). 

Berechnung von E<n)(e-rTBn) 

Wir berechnen E<n)(e-rTBn) im Trinomialmodell wieder per Ruckwiirtsinduktion. 
Es seien hierzu 

X~n)(i):= In(pl(n)w) , i=O, ... ,n. 

V(n)(i ·M, x[n) (i)) := E(n) (e -r(T-i.M) Bn I f\(n) (i») . 

Berechne dann rekursiv in Analogie zum Binomialmodell: 
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V(n) ( T, xfn)(n)) = f( exp( xfn) (n)) ) , 

V(n) (i ·M, X[n) (i») 

= [ql V(n) ((i + I)M, x!n) (i) +LlX) + q3V(n)((i + I)M, X!n) (i)) 

+Q2V(n)((i + I)M,X!n)(i)_LlX)}-r6t , i=n-l, ... ,O (10) 

E(n) (e-rT Bn) = V(n) (0, p). 

Konvergenz des Verfahrens folgt wie im Binomialmodell aus dem Satz von 
Donsker und der gleichgradigen Integrierbarkeit der Bn, die im Einzelfall nach­
zupriifen ist (vgl. auch Cox-Ross-Rubinstein(1979». 

Der Optionspreis im Trinomialmodell 

1m Allgemeinen kann die Endzahlung eines europiiischen Calls im Trinomial­
modell nicht durch eine Handelstrategie in Bond und Aktie dupliziert werden 
(siehe Ubung V.9). Auch existiert bier eine ganze Familie aquivalenter Martin­
galmaBe, so dass sich die im Binomialansatz angedeutete Alternative ,,Berechne 
den Optionspreis in einem approximierenden Trinomialmodell" nicht mehr ohne 
weitere ModifIkationen durchfiihren lasst. Mehr noch: wir haben bis jetzt noch 
iiberhaupt keine Methode zur Berechnung eines Optionspreises in unvollstiin­
digen Miirkten entwickelt ! 

Beziehung zwischen Trinomialbaumen und expliziten Finite-Differenzen­
Verfahren 

Nach Proposition m.13 lost der Optionspreis (unter geeigneten Voraussetzun­
gen) das folgende Cauchy-Problem 

Vt +to"2 p2Vpp +rpVp -rV = 0, (t,p)e[O, Tjx(O,oo), (CP) 

V(T,p) = f(p) , p>O. 

Mit der Substitution X= In(p) und der Bezeichnung 

V(t,x):= V(t,p) 

geht (CP) in das Problem 
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- 1 2- ( 1 2)- -Vt +2'CT Vxx + r-2'CT Vx-rV=O, (t,x)e[O,1]xR, (TCP) 

Y(T,x) = t{ex ) , xeR, 

fiber. Ein populiires numerisches Losungsverfahren fiir (TCP) ist das sogenannte 
explizite Finite-Differenzen-Verfahren. Es basiert darauf, dass in (TCP) zu ge­
gebener Zeitdiskretisierung 0, ll.t, 2ilt, ... ,T und Raumdiskretisierung In(Pl)' 
In(Pl)±Ax, In(pl)±2Ax •.... die auftretenden partiellen Ableitungen durch die fol­
genden Differenzenquotienten ersetzt werden: 

-(n)( } -(n)( ) -(n)( )._ V t+llt,x -V t,x 
iltV t,X.- • 

ilt 

-(n) ._ y(n)(t+ilt,x+ilx)-y(n)(t+llt,x-ilx) 
ilxV (t,x).- • 

2ilx 

-(n)( )._ y(n)(t+Ilt,X+ilx)-2y(n)(t+llt,x) +y(n)(t+ Ilt,x-ilx) 
ilxxV t,X.- 2 • 

(ilx) 
Mit den Bezeichnungen 

tj:= i·ilt , i=O,l, ... ,n, 

ergibt Einsetzen dieser ,,fmiten Differenzen" anstelle der Differentialquotienten 

(=partielle Ableitungen) in (TCP) sowie Auflosen nach y(n)(t j , X(J)): 
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Da man zur Zeit Tbereits aIle Werte von V(n)(T,x) kennt, kann man aus der 

obigen expliziten Darstellung fUr V(n) (T-IlJ,XU» dessen Werte berechnen. Per 

Riickwiirtsinduktion mit SchrittUinge IlJ gelangt man so nach n Schritten zur Zeit 

t=O und erhalt insbesondere v(n)(O,x) als Naherung fUr den Optionspreis 

v(O, x) . 
Der Vergleich von (5), (8), (9) mit der Rekursion (11) zeigt sofort, dass die Re­
kursion (10) im Trinomialbaum als ein spezielles Finite-Differenzen-Verfabren 
aufgefasst werden kann (wenn man den Unterschied der beiden Abzinsfaktoren 

e-rll1 und (1+rllJ)-l vemachlassigt). Man erha}t Konvergenz von v(n)(o,x) 

gegen V (0, x) genau dann, wenn die Stabilitatsbedingung 

At 1 
0<-( )2 ~-2 ax a 

erfiiIlt ist (vgl. Abschnitt 8.4 in Wilmott, Dewynne & Howison (1995». Den 
Beweis dieser Aussage und die Darstellung weiterer Diskretisierungsverfahren 
zur Losung der partiellen Differentialgleichung (TCP) fmdet man in Wilmott, 
Dewynne & Howison (1993). 

IV.5 Der pfadweise Binomialansatz nach 
Rogers nnd Stapleton 

Beschreibung der Grundidee 

Wahrend man bei der iiblichen Binomialmethode - wie in Abschnitt IV.3 - le­
diglich die Verteilung von P1(t) durch eine einfachere, diskrete Verteilung ap­
proximiert, wird bei der Methode nach Rogers und Stapleton jeder einzelne Pfad 
von Pt(t) durch eine Treppenfunktion angenahert. Hierbei darf die approxi­
mierende Treppenfunktion nur Werte in einer vorgegebenen diskreten Menge 
annehmen und hochstens um einen vorgegebenen Wert & vom jeweiligen Pfad 
von Pt{t) abweichen. Die entscheidende Idee von Rogers und Stapleton besteht 
nun darin, die Menge der moglichen Werteverlaufe einer solchen Treppenfunk­
tion als unendlichen Binomialbaum aufzufassen. Es wird dann ein Algorithmus 
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angegeben, wie man in einem solchen unendlichen Baum die erwartete abge­
zinste Endzahlung aus der Option als Naherung fUr den Optionspreis im Black­
Scholes-Modell bestimmt. 

Algorithmus: Pfadweiser Binomialansatz nach Rogers und Stapleton 

1. Erstelle zu vorgegebener Genauigkeit Ay und Startpunkt y:=ln(Pl) einen un­
endlichen Binomialbaum. 

2. Berechne die erwartete abgezinste Endzahlung aus der Option E<AY)(e-rTBAy) 
im unendlichen Binomialmodell als Naherung fUr Er:f...e-rTB). 

Erstellung des unendIichen Binomialbaums 

i) Approximation 

Wir betrachten den Logarithmus yet) des Aktienpreises 

y(r) = In(Pt (t») = In(Pl) + u· W(t) +(r -t(2). t 
~ 

=:y 

und defmieren zu gegebener .. Genauigkeit" Ay>O fUr jedes me n und te [0.1] 
eine approximierende Treppenfunktion Z(t) liber 

To(m) := O. 

Tn(m):= inf { t e[o,T]1 t > Tn-l (m),Iy(t,m) - r( Tn-l (m),m)1 > AY} , n=1,2, ... , 

~(m):= y, 

qn(m):= Y( Tn,m), 
co 

Z(t, m) = L qn (m).l[ ) (t) . 
n=O T",T,,+I 

Das bedeutet: Sobald sich Y(t) vom aktuellen Wert der Treppenfunktion Z(t) um 
Ay entfemt, wird die Treppenfunktion auf diesen Wert von Y(t) gesetzt. Per 
Konstruktion von Z(t) gilt dann: 

sup IY{t) - Z{t)1 :s; Ay. 
OstsT 

Man beachte, dass Z(t) bei vorgegebenen y und Ay nur Werte in der Menge 
{y±i·Ay I ieN}annebmen kann. Weiter kann Z(t) nur in die benachbarten Zu­
smnde Z( t) ± Ay springen, und fUr festes m kann Z( t, m) nur endlich viele Werte 
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auf [0, 1] annebmen. Allerdings gibt es keine obere Schranke fUr die Anzahl der 
von Z(t, tV) auf [0, 1] angenommenen Werte. 

Y(t),Z(t) 

y+2tl 

y+tl 

y-tl 

y-2tl 

Bild IV. 7 Approximation durch eine Treppenfunktion 

Man kann sich daher den Werteverlaufvon Z(/, tV) auf [0,1] auch a1s endlichen 
Pfad im unendlichen Binomialbaum vorstellen, siehe Bild N.S. 

y+3Ay 

~
+2AY < Y+AY 

Y Y 
y-Ay 

y-2Ay 

y+Ay 

y-Ay 

Bild IV.S Binomialbaum 

ti) Berechnung der Ubergangswahrscheinlichkeiten 

Wir wollen die weiteren Grundlagen des Algoritbmus am Beispiel eines Double­
Barrier-Knockout-Calls fUr Y(/)=ln(Pl(t» demonstrieren. Die Enclzahlung B sei 
also gegeben durch 

B = (11 (T) - Kt ·1 {In(I't(t})~b..b.) flIr aile te{O.T]} . 

Hierbei ist K> 0 der Ausubungspreis. Die reellen Zahlen b. <y < b· defmieren das 
Intervall, in dem sich Y(t) bewegen muss, damit der Call in t= T noch ausgeubt 



224 Kapitel IV: Bewertung exotischer Optionen und numerische Verfabren 

werden darf. Verlasst yet) das Intervall (b.,b·), so verfallt die Option wertlos. 
Nach Korollar m.ll gilt fUr den Preis dieses Calls: 

Wir werden diesen Preis nun approximativ mit Hilfe des unendlicheri Binomial­
baums berechnen. Hierbei lasst sich der unendliche Baum in endliche Teilbaume 
zerlegen, in dem man fUr festes n eN die moglichen Pfade aller Treppenfunktio­
nen Z(t) mit genau n Sprungen auf [0,1] mit einem n-Perioden-Binomialbaum 
identiflZiert. In diesem Baum kann man dann die zugehOrige erwartete Endzah­
lung der Option berechnen, wenn man die Obergangswabrscheinlichkeiten von 
einem Knoten zum andem kennt. Da aber sowohl in Tn-l als auch in Tn die Wer­
te von yet) und Z(t) ubereinstimmen, stimmen die Obergangswahrscheinlich­
keiten im Baum mit denen von yet) nach Y(t)±ay iiberein. Diese lassen sich 
aber mit Satz 12 berechnen. 

Satz 12 

Zu vorgegebenem ay>O betragt die Wabrscheinlichkeit fUr eine Aufwiirtsbewe­
gung von Z(t) in Tn' n e N, 

mit 

s(o)-s(-ay) 
q= 

s(ay)-s(-ay) 

r-'!(T2 
c:= _2-2 - und s(x):= _e-2cx . 

(T 

Die Wahrscheinlichkeit fUr eine Abwartsbewegung von Z(t) in Tn' n EN, betragt 
l-q. 

Beweis: 

Da sich die Zuwachse W(t)-W(s) einer Brownschen Bewegung wieder wie eine 
Brownsche Bewegung w*{t-s) verhalten, haben alle Obergiinge von Z(t) zu den 
Sprungzeiten Tn' n EN, die gleiche Verteilung, unabhiingig vom tatsachlichen 
Wert von Yet). Es reicht deshalb, die Behauptung fUr den Obergang von Z( TO) 

nach Z( TI) zu zeigen. Nach der Bemerkung vor dem Satz muss man nun nur 
noch die Wabrscheinlichkeitsverteilung von yet) in Tt berechnen, da diese mit 
der von Z( Tt) iibereinstimmt, falls TI < T gilt. 
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Es sei T}(n):= T}An. Dann liefert die Ito-Formel fUr zweimal stetig differenzier­
bares! 

rfn> rfn) 
f( ~ T~n»)) = f(y) + J(f'(Y(s»),u+t f"(Y(s»)q2)ds + Jf'(Y(s»)qdW(s) 

o 0 
mit 

,u:= r-tq2 

Da nach Defmition von T} 

Y(s) e[y-~y,y+~y] fUrallese[O,T}(n)] 

gilt, istf'(Y(s» auf [0, T}(n)] beschriinktund somit 

Urn nun q zu bestimmen, suchen wir einfe cJ. mit: 

t f"(x)q2 + f'(x),u = 0 fUr aIle x e(y - ~y,y + ~y) 

(1) 

f(Y-~Y) = 0 (2) 

f(Y+~Y) = 1 

Aus (1) und (2) folgt dann wegen 

!~ E(f(~T~n»))) = E(J(r(T}))) 

und nach Defmition von T} (beachte, dass P( t'} <00)= 1) 

die Beziehung 

q.l=f(Y) . 
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Explizites Losen des Randwertproblems (2) durch einmaliges Integrieren, Losen 
der dann entstandenen linearen Differentialgleichung l.Ordnung mit Variation 
der Konstanten und anschlie.6endes Bestimmen der Integrationskonstanten mit 
Hilfe der Randbedingungen ergibt: 

Einsetzen vony infix) liefert die Behauptung. o 

Fortsetzung: Double-Barrier-Knockout-Call 

Pili die konkrete Anwendung auf den Double-Barrier-Knockout-Call sind nun 
alle Pfade itn Baum wertlos, die die Werte b* unter- bzw. b* iiberschreiten. 

* • b ................................................................. b ................................................ .. 

b. .............................................. : .................. b. ................................................ . 

BUd IV.9 Binomialbaum BUd IV.tO modifizierter Binomialbaum 

1st der Prozess Z(t) nun um weniger als Liy von b* oder b* entfemt, sO'modiflZie­
ren wir unsere DefInition von Z(t). Wilide niimlich Z(t) beitn nachsten Sprung 
aus dem Intervall [b*, b *] springen, so ware die Option bereits wertlos, bevor 
der zugehOrige Knoten itn Binomialbaum erreicht ware (eventuell wiirde er so­
gar nie erreicht !). Man wahlt deshalb den nachsten Knotenpunkt, so dass er ge­
nau auf der Hohe b* bzw. b* liegt. Dies entspricht dann einem Sprung der Trep­
penfunktion schon beitn Erreichen von b* bzw. b* und nicht erst bei Z(t)-Liy 
bzw. Z(t)+Liy. 
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Diese Modiftkation von Z(t) hat mehrere wichtige Konsequenzen. So nimmt Z(t) 
nur Werte im modiflZierten Binomialbaum an. Die Endzahlung des Double­
Barrier-Knockout-Call im modifizierten Binomialbaum B l!..y ist nun d1l!ch 

B - (eZ( T) - K)+ .1 
l!..y - {Z(t)~h.,b.) fUr alle te{O,T]} 

gegeben. Eine weitere wichtige Konsequenz der obigen Modiftkation von Z(t) ist 
die, dass Z(t) genau dann eine der Barrieren erreicht, wenn auch Y(t) dieselbe 
Barriere erreicht, also 

und die Option verfallt genau dann vor T wertlos im Originalmodell, wenn sie 
auch im modifizierten Binomialmodell wertlos vor T verfallt. FUr die Bewertung 
des Double-Barrier-Knockout-Calls ist es unerheblich, ob man Z(t) nach dem 
Erreichen von b., b· konstant halt oder wie ursprunglich definiert fortsetzt. 
Wichtig fUr die Bewertung des Double-Barrier-Knockout-Calls ist es aber, dass 
sich fUr Z(t)e(b· -Ay, b·) oder Z(t)e(b.,b.+Ay) auch die Ubergangswahrschein­
lichkeiten im modiflZierten Baum l:indem. 

Satz 13 

a) Gilt Y( 'n)::::Y· mity· E(b· -Ay, b·), so gilt 

• ,J ( ) • I () • ) s( b·) -s(/ ) 
q ::::r\Z'n+l::::y -AyZ'n::::y :::: (.) (. ). 

s b -s Y -Ay 

Mit Wahrscheinlichkeit l-q· erreicht Z('n+l) den Wert b·, und die Option ver­
fallt wertlos. 

b) ImFall Y('n)=Y. mity.e(b.,b.+Ay) gilt 

,J () I () ) s(Y. ) - s( b. ) 
q. ::::r\Z 'n+l =y.+Ay Z 'n ::::y. = ( ) ( ). s y. +Ay -s b. 

Mit Wahrscheinlichkeit l-q. gilt Z( 'n+l)=b., und die Option verfallt wertlos. 

Beweis: 

Analoges Vorgehen zum Beweis von Satz 12. Lediglich die Randbedingungen 
sindjetzt iny· -Ay und b· (bzw. b. undy.+Ay) zu stellen. [] 



228 Kapitel IV: Bewertung exotischer Optionen und numerische Verfahren 

Fiigt man die beiden letzten Satze zusammen, so erhalt man eine Rekursion zur 
Berechnung des Erwartungswertes der Endzahlung bei gegebener Anzahl der 
Auf- und Abwiirtsbewegungen von Z(t). 

Proposition 14 

Die erwartete Endzahlung 'I'(k, y) der Option im Binomialmodell bei gegebener 
Anzahl keNu{O} der Aufwiirts- und Abwiirtsbewegungen von Z(t) auf [0,1] 
und gegebenen Anfangswert Z(O) = Y e (b*, b *) lasst sich induktiv gemii6 

'I'(O,y) =(eY -Kf, 

'I'(n+ l,y) = q(y). 'I'(n,y + Ay) +~(y). 'I'(n,y- Ay) , n=0,1,2, ... , 

berechnen. Hierbei sind die Wahrscheinlicbkeiten q(y) fUr ye(b*+Ay, b* -Ay) 
durch q aus Satz 12 gegeben. FUr die gleichen y gilt !l(y)=I-q(y). FUr 
ye(b., b.+Ay) gilt !l(Y)=0 und q(y) ist durch q* aus Satz 13 b) gegeben. FUr 
ye(b* -Ay, b*) ist q(y)=O und q{y) durch q* durch aus Satz 13 a) gegeben. 

Beweis: 

Beachtet man, dass das jeweilige Nullsetzen von q(y) an der oberen bzw. !l(Y) an 
der unteren Grenze des Baums bewirkt, dass Pfade, bei denen die Option wertlos 
verfallt, nicht in den Optionspreis eingehen, so foIgt die restliche Behauptung 
aus den beiden vorausgegangenen Satzen. 0 

Zur Berechnung der abgezinsten erwarteten Endzahlung der Option im modifi­
zierten Binomialmodell, 

E(.~Y)( e-rT BLly ) = i: P(v = n)· 'I'(n,y).e-rT , 
n=O 

fehIt nur noch die Verteilung der Anzahl v der Auf-und Abwiirtsbewegungen im 
Binomialmodell. Wegen der Beziehung 

lasst sie sich aus der Verteilung der Tn bestimmen: 

p(v = n) = P(v~n) - p(v ~n-l) = P(Tn ~ T) - P(Tn-l ~ T). 

Hierzu beachte man den folgenden Satz: 
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Satz 15 

a) Die Zufallsvariablen {1"n+C1"n}neNu{O} sind unabhangig und identisch verteilt 
mit Laplace-Transformierter 

b) E{ 1"t} = L\; .tanh(; .L\y) fUr .u*O. 

E(1"f) = 2(E(1"I)Y + u:~y .tanh(;)L\y-( L\;y flrr.u*O. 

c) Tn+ 1-1"n ist unabhangig von C;n+ I' 
Beweis: 

a) Analog zum Beweis von Satz 12 erhiilt man q.(..t) als explizite Losung des 
Randwertproblems 

tu2 g"{z) - .ug'{z) - Ag{Z) = ° fUr alle Z E (y - L\y.y + L\y) 
g{y-L\y) = 1 , g(Y+L\Y) = 1 (3) 

Hierfiiristlediglich f(Y{TI)) durch g(y(1"I))·e-M1 zuersetzen. 

b) Differenzieren von q.( A) Hefert die explizite Form von E( T1), E( 1"1 2) (siehe 
auch Ubung 0.14). 

c) Wie im Beweis von Satz 12 kann man sich auf den Fall n=O zurUckziehen. Es 
gilt: 

E(e-lf'l) = q. E(e-lf'IIC;1 = y + L\Y)+ (1- q). E(e-lf'IIC;1 = y -"L\y) 

Analog zum Beweis von a) (bzw. von Satz 12) erhalt man 
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durch Losen des Randwertproblems (3) in a), wobei man aber nun die Randbe­
dingungen 

g(y - Lly) = 0 , g(y + Lly) = 1 

wahlt. Aus der expliziten Form von g(y), q;(..t), und q erhalt man dann 

E(e-A:rl) = E(e-AT11;t = y+ LlY). 

Analog zeigt man 

E(e-,tt·l ) = E(e-AT11;1 = y-LlY), 

d.h. bedingte und unbedingte Laplace-Transformierte stimmen uberein, woraus 
die behauptete Unabhangigkeit folgt. [] 

Da Tn = L;=l(Tj -Ti-t) gilt und die Summanden unabhiingig und gleich ver­

teilt sind, folgt aus dem zentralen Grenzwertsatz 

Tn -n.E(Tl) 

~n. Var( TI) 
n~r>:> ) N(O,l) in Verteilung, 

woraus sich flir groBe n die Verteilung der Tn approximativ bestimmen HeBe. 
Diese Niiherung ist aber fUr kleine n zu ungenau! Statt dessen verwenden Rogers 
und Stapleton das folgende Resultat aus Petrov (1995), das wir bier nur angeben: 

Satz 16 

Es gilt 

mit 

wobei <II die Verteilungsfunktion der Standard-Normalverteilung bezeichnet. 
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Mit Hilfe der Laplace-Transformierten qJ(l) aus Satz 15 Uisst sich (fUr Jl:#O) lZJ 
berechnen als: 

Lly·(A+B-C) 
a3 = 5 ' 

(;) o-6(S{LlY)-lf 

A = 12 ; Lly{s(2LlY) + s(LlY)) , 

B = 8.C,~)2 (Lly)2{s(Lly)-s{2LlY)), 

C= 3.(I+s{Lly)-s{2Lly)-s{3LlY)). 

Fassen wir das gesamte Vorgehen zusammen, so erhalten wir 

A1gorithmus: Verfabren nach Rogers und Stapleton 

1. Zu gegebenem Startwerty=ln(Pt(O» und gegebener Genauigkeit Lly berechne 
"aIle" Werte 

'P(k,y) , keNv{O} 

gemill Proposition 14. 

2. Berechne P( U= n )=P( Tn ~ 1)-P( Tn-l ~ 1) approximativ aus der Verteilung von 
{Tn}n mit Hilfe von Satz 16 (unter Vemachlassigung der o(n-1/2) -Tenne). 

3. Bestimme 

E(Ay) (e-rT BAY) = i: p(u = n).'P{n,y).e-rT 

n=O 

Statt ,,00" oder "aile" ist in allen drei Schritten ein hinreichend groBes N »1 zu 
wahlen. 

Konvergenz des Verfahrens 

Da fUr festes Lly > 0 

sup IY{t)-Z{t)I<Lly 
O~t~T 



232 Kapitel IV: Bewertung exotischer Optionen und numerische Verfahren 

gilt, folgt die gleichma8ige Konvergenz von Z(t) gegen Y(t). Mit Hilfe dieser 
Abschlitzung lasst sich je nach Typ der Option sogar eine Fehlerabschatzung an­
geben. So gilt im Fall des Double-Barrier-Knockout-Calls, wobei wir der 
Einfachheit halber b*>ln(K»b* annehmen, die Fehlerabschlitzung 

s;max{{eb* _eb*-8Y),K.e8Y -K} 

=max{eb*{I-e-8y),K{e8Y -I)} , 
woraus sofort die Konvergenz des Verfahrens fUr Ay~O folgt. 

Vorteile des Verfahrens 

Ein konzeptioneller Vorteil des Verfahrens ist darin zu sehen, dass die Pfade des 
approximierenden Prozesses Z(t), t E [0,1], gleichma8ig gegen die ~fade Y(t), 
t E [0, 1], des Logarithmus des Preisprozesses konvergieren. Die entscheidende 
Konsequenz hieraus ist die explizite Fehlerabschlitzung. Ein weiterer Vorteil des 
Verfahrens ist seine Flexibilitat. So lassen sich die Knoten im Binomialbaum so 
wahlen, dass im Fall des Double-Barrier-Knockout-Calls die Option genau dann 
wertlos im modiflZierten Binomialbaum verfallt, wenn sie auch im Black­
Scholes-Modell verfallt. Dies lasst sich im Binomialmodell nicht ohne weiteres 
durchfiihren, da ja die Momentenbedingungen erfiillt werden miissen. Ins­
besondere wird durch die Anpassung des Binomialbaums im Verfahren von 
Rogers und Stapleton der "Sagezahneffekt" bei der Konvergenz fUr wachsende 
Feinheit Ay~O vermieden. Numerische Beispiele fUr das Verhalten des AIgo­
rithmus und seine Anpassung auf andere Optionstypen sind in Rogers und 
Stapleton (1998) beschrieben. 
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Nachteile des Verfahrens 

Das Verfahren ist konzeptionell recht aufwendig und insbesondere schwerer ver­
stiindlich als das einfache Binomialmodell. Es ist auch rechenintensiver als das 
einfache Binomialmodell, kann aber in Bezug auf EfflZienz mit diesem vergli­
chen werden, da es in der Regel genauere Ergebnisse liefert. 

Ubungsaufgaben 

it1 Man zeige, dass mit den Bezeichnungen aus dem Beweis von Proposition 
1 gelten: 

II = Pl(t)~(Pi)(gl(t),hl(t») 
12 = Kl e-r(T-t} ~(Pi) (g2 (t),h2 (t») 

U.2 Man beweise Lemma 2. 

U.3 Man fiihre die Berechnung des Preises der Wahl-Option mit Laufzeit T 
und Endzahlung 

Bw = max(x~~fl (Pl(T),T),X~~iJpl(T), T)) 

explizit durch. 

U.4 Im zweidimensionalen Black-Scholes-Modell sei Ql das eindeutige Mar­
tingalmaB fUr P o(t), PI (t), P 2( t), wenn PI (t) als Numeraire verwendet wird. 

a) Bestimme die Radon-Nikodym-Dichte von Ql bzgl. P. 

b) Zeige, dass 

eine QI-Brownsche Bewegung ist. 
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u.s Mit den Bezeichnungen aus Proposition 3 zeige man die folgenden 
Gleichheiten 

a) X:::,t(O) = X~::fl(O>+ Ke-rT - PI <Il(d3(0»)- P2<1l(d4 (0») 
b) X Call (0' - X Call (0) + X Call _ XC,!II 

max J - (I) (2) mm 

c) X!:!(0)=X{3't(0)+X(~t -X:J:: 

Hinweise: zu a) Zerlege die Endzahlung des Put in 

und verwende die bereits bewiesene Formel fUr einen Call auf das Minimum mit 
Ausubungspreis O. Zu b), c) Verwende die bekannten Beziehungen zwischen 
dem Minimum und Maximum reeller Zahlen. 

'0.6 Fiihre die expliziten Rechnungen zur Bestimmung des Preises Xdo Call(o) 
des europliischen Down-and-Out-Calls durch. 

'0.7 Berechne den Preis Xd/ut(O) eines europaischen Down-and-Olit-Puts. 

'0.8 a) Zeige, dass das Binomialmodell bestehend aus einer Aktie und dem 
Bond vollstandig ist, und berechne das zugehOrige MartingalmaB Qn' 

b) Zeige, dass sich der Preis einer Option B im Binomialmodell als EQn(e-rTB) 
ergibt. 

'0.9 Zeige durch ein Beispiel, dass ein europaischer Call im Trinomialmodell 
im allgemeinen nicht durch eine Handelsstrategie in Bond und Aktien dupliziert 
werden kann. 

'0.10 Man gebe im Ein-Perioden-Modell zwei verschiedene aquivalente Mar­
tingalmaBe an. 

U.11 Fiihre die Beweise der Aussagen a) und b) von Satz 15. 

'0.12 Leite Teil b) von Lemma 4 unter Verwendung des Satzes von Girsanov 
aus Teil a) von Lemma 4 her. 

Hinweis: Beachte, dass W(t) Q-Brownsche Bewegung ist, betrachte dann 
Q(W(t):s;w,M(t)<x) und rechne diesen Wert mit HiIfe der Dichte von Q bzgl. P 
explizit aus. 
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it.13 a) Bestimme im Binomialmodell die Parameter u, d, q, wenn man zusatz­
lich zu den Momentenbedingungen IV.3 (1) und (2) die Beziehung u=lId for­
dert. 

b) Cox, Ross und Rubinstein (1979) schlagen Yor, 

u rt;i d -u rt;i u = e vU
', = e vU

' 

zu wiihlen. Zeige, dass bei dieser Wahl zwar die Forderung IV.3 (1) aber nicht 
IV.3 (2) erfiillt ist. Wie ist die linke Seite yon IV.3 (2) zu wahlen, damit bei obi­
ger Wahl yon u, d auch IV.3 (2) erfiiUt ist? Wie ist diese linke Seite zu interpre­
tieren? 

it.14 Sei'l"l defmiert wie in Abschnitt IV.5, siehe auch Satz 15. Berechne E( 'l"1) 
undE('l"12). 
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Kapitel V: Optimale Portfolios 

V.I Einleitung und Aufgabenstellung 

Bisher haben wir im zeitstetigen Marktmodell Portfolios zusammengestellt, um 
ein gegebenes AuszahlungsprofIl zu erzeugen (duplizieren) oder eine Mindest­
auszahlung bereitzustellen (Hedging-Strategie). Die Kosten der Duplikation 
bzw. der Hedging-Strategie bestimmten dann den Preis dieses Auszahlungspro­
fIls. Nun aber wollen wir umgekehrt vorgehen und zu einem gegebenen festen 
Anfangskapital ein zuliissiges, selbst-fmanzierendes Paar aus Portfolio- und 
Konsumprozess suchen, das uns einen moglichst vorteilhaften Zahlungsstrom 
liefert. Eine iihnliche Aufgabe hatten wir uns schon ganz zu Beginn des Buches 
gestellt, niimlich im Ein~Perioden~Modell. Dort suchten wir unter anderem eine 
Portfoliozusammenstellung, die uns eine moglichst groBe Rendite des Portfolios 
liefert, deren Varianz aber unter einer bestimmten Schranke liegt. Diesmal wol­
len wir das Problem allgemeiner angehen und betrachten dazu das sogenannte 
Portfolioproblem. 

Allgemeine Formulierung des Portfolioproblems 

Das Portfolioproblem eines Investors in einem Finanzmarkt besteht darin, zu 
gegebenem Startkapital x>O eine optimale Investment~ und Konsumstrategie zu 
bestimmen. Das heiSt, er muss festlegen (in Abhiingigkeit von den Preisverlau­
fen der Wertpapiere), wie viele Anteile er von welchem Wertpapier wann halten 
muss und wie viet Vermogen er wann konsumieren darf, um seinen Nutzen aus 
Konsum im Zeitraum [0,1'] undloder Endvermogen im Zeithorizont t= T zu 
maximieren. 'Das Portfolioproblem setzt sich also aus einem Auswahlproblem 
("welche" Wertpapiere), einem Mengenproblem ("wie viele" Anteile, "wie viel" 
Vermogen) und einer zeitlich dynamischen Komponente ("wann") zusammen. 
Wir wollen hierbei erlauben, dass der Investor in jedem Zeitpunkt t E [0, 1'] liber 
seine Handlungen entscheiden darf. Ibm sollen als Informationen im wesent­
lichen die Kenntnis der Aktienpreise der Vergangenheit zur Verfiigung stehen. 
Er besitze keinerlei Kenntnis zulciinftiger Preise oder Insiderinformationen. 
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Allgemeine Voraussetzungen far dieses Kapitel 

WiI ubemehmen bier die Voraussetzungen von Kapitel n, Abschnitt n.2, 
Seite 64. 

AuBerdem gelte: das selbst-finanzierende Paar (n-,c) bestehend aus einem 
Portfolio-Prozess n-und einem Konsumprozess c sei zulassig fur das, Startver­
mogenx>O, also (n-,c) eA(x) (siehe Defmition n.47). 

Losungsanslitze im zeitstetigen Marktmodell 

Man unterscheidet im wesentlichen zwei Ansiitze zur Losung des Portfoliopro­
blems im zeitstetigen Marktmodell aus Kapitel II. Der in zeitlicher Abfolge erste 
Losungsansatz ist die Methode der stochastischen Steuerung und geht auf Robert 
Merton (1969,1990) zuriick. Die Hauptidee Mertons besteht in der Interpretation 
des Portfolioproblems als ein stoehastisehes Steuerungsproblem, auf das sich 
dann anschlieBend Standardmethoden der zeitstetigen stochastischen Steuerung 
anwenden lassen. Wir werden diese Methode in Abschnitt V.4 - Bach einem 
vorausgehenden Exkurs zur stochastischen Steuerung - vorstellen. Aus der Me­
thode der stochastisehen Steuerung heraus wurden in den letzten Jahren auch 
Methoden zur Behandlung des Portfolioproblems unter Transaktionskosten ent­
wickelt (siehe z.B. Korn (1997», worauf wiI in diesem Buch aber Dieht mehr 
eingehen werden. 

Die sogenannte Martingalmethode stellt den zweiten Hauptansatz zur Losung 
des zeitstetigen Portfolioproblems dar. Sie wurde in den 80'er Jahren von Cox 
und Huang (1989), Karatzas, Leboczky und Shreve (1987) und Pliska (1986) in 
verschiedenen Varianten eingefiihrt. Gemeinsamer Bestandteil dieser Varianten 
ist die Zerlegung des Portfolioproblems in die Berechnung der optimalen Aus­
zahlungen (Konsum undloder Endvermogen) mit Methoden der konvexen Ana­
lysis und der ansehlieBenden Bestimmung eines zugehorigen Portfolioprozesses. 
Die Existenz dieses Portfolioprozesses ist im vollstandigen Marktmodell aus Ab­
schnitt II.3 durch Satz 11.48 sichergestellt. Wir werden die Martingalmethode im 
Abschnitt V.2 vorstellen und im Abschnitt V.3 eine Anwendung auf das Portfo­
lioproblern geben, wenn statt Aktien Optionen gehandelt werden. 

Aufgabenstellung 

Urn einen Zahlungsstrorn objektiv beurteilen zu konnen, fUhren wir ein Funk­
tional J ein, das den Nutzen aus dem Zahlungsstrorn misst. Ein ,,moglichst vor­
teilhafter Zahlungsstrorn" ist dann einer, bei dern das Funktional einen moglichst 
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groBen Wert annimmt. Man sucht also nun zu einem vorgebenen Anfangs­
vermogen x>O einen selbst-finanzierenden Portfolioprozess (Jr,c) eA(x), der 
den erwarteten Nutzen aus Konsum undloder Endvermogen 

maximiert, wobei X('!) der zu x und (n; c) gehorende Vermogensprozess ist, und 
Ut , U2 Nutzenfunktionen gemaB der nachfolgenden Defmition sind. 

Definition 1 

a) Die Funktion U: (O,oo)-+-R sei strikt konkav, stetig differenzierbar und es gelte 

U,{O):= lirnU'{x) =+00, U'{oo):= lim U'{x) =0. 
x,j,O X-4CO 

Dann heillt U eine Nutzenfunktion. 

b) Die Funktion U: [0, 1']x(O,oo)-+-R sei stetig, so dass fUr aUe te[O, 1'] die Funk­
tion U(t,.) Nutzenfunktion im Sinne von a) ist. Wir Dennen dann U ebenfalls 
eine Nutzenfunktion. 

Beispiele fur Nutzenfunktionen 

a) U{x) = In{x) 

b) U{x) =.Ix 

c) U{x) = x a fUr O<a<1 

d) U{t,x) = e-pt . U1 (x) , p> 0 , U1 Nutzenfunktion wie z.B. in a), b). 

Bemerkungen zur Gestalt der Nutzenfunktion 

a) Nach der Defmition oben ist die Nutzenfunktion U streng monoton wachsend. 
Somit fiihrt jede zusatzliche Einheit an Vermogen auch zu mehr Nutzen. Zusatz­
lich verlangen wir von einer Nutzenfunktion, dass sie strikt konkav ist, was ins­
besondere bedeutet, dass U'(x) streng monoton fallt. Damit liegt ein abnehmen­
der Grenznutzen vor, d.h. der Nutzenzuwachs aus einer zusatzlichen Geldeinheit 
nimmt mit wachsendem x abo Der Grenznutzen in x=o ist unendlich, nach dem 
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Motto "wenig ist sehr viel besser als gar nichts", und verschwindet in x=oo, was 
man als "Sattingungseffekt" bezeichnen kann. 

b) Man kann die Un folgenden vorgestellten Methoden zur Portfolio-Optimie­
rung auch auf eine gro6ere Klasse von Nutzenfunktionen als die in Defmition I 
eingefiihrte anwenden. Diese Klasse wiirde z.B. auch die populiire, aber theore­
tisch stark kritisierte quadratische Nutzenfunktion 

u(x) = _'!'(x_a)2 
2 

beinhalten. Allerdings wiirde die benotigte Notation viel komplizierter. Eine um­
fassende Behandlung solcher Nutzenfunktionen fmdet man z.B. in Kom (1997). 

Damit der Erwartungswert in J(x; 1r, c) existiert, konnte man fordero, nur solche 
Portfolioprozesse (n,c) zu betrachten, bei denen er endlich ist. Allerdings ware 
ein unendlicher Nutzen das Ziel jeden Investors, falls er ibn erreichen konnte. 
Wir fordem daher von einer zulassigen Strategie (n,c) nur eine schwachere 
Integrierbarkeitsbedingung 

Definition 2 

Das Problem 

mit 

max J(x;n,c) 
(n.c)eA'(x) 

heillt das (zeitstetige) Portfolioproblem. 

Bemerkungen 

(P) 

i) Mit der Einschriinkung auf die Menge A '(x) ist das Integral immer defmiert 
und der Erwartungswert existiert, kann aber auch unendlich werden. 

ii) 1m Fall positiver Nutzenfunktionen, U1(t,.»O und U2(.»O, gilt trivialer­
weiseA(x)=A'(x). 
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Es werden im folgenden zwei Methoden zur Losung des Portfolioproblems vor­
gestellt. Hierbei basiert die erste Methode, die Martingalmethode, ganz wesent­
lich auf der Vollstandigkeit des Marktes, wllhrend die zweite Methode, die Me­
thode der stochastischen Steuerung, eine Anwendung von Standardmethoden aus 
der Theorie der stochastischen Steuerung auf das Portfolioproblem (P) ist. 

V.2 Die Martingalmethode 

AUgemeine VoraussetzungenJar diesen Abschnitt 

Wir ubemehmen zusiilzlich wer die Bezeichnungen aus Abschnitt IIJ, Seite 
74. Insbesondere gelte d=m. Damit sind die Voraussetzungen zu Satz 11.48 
tiber die Vollstandigkeit des Marktes erfiillt. 

Die Idee 

Die Martingalmethode basiert im wesentlichen auf einer Zedegung des zeitlich 
dynamischen Problems (P) in ein statisches Optimierungsproblem (,,Bestim­
mung des optimalen Auszablungsprofils") und in ein Darstellungsproblem (,,Be­
reehne den zum optimalen Auszahlungsprofil gehorenden Portfolioprozess"). 

Motivation 

Zunachst betrachten wir ein Portfolioproblem ohne Konsum, also c=O und 
U1 =0. Das selbst-finanzierende Paar (n; 0) mit dem Portfolio-Prozess 1! sei zu­
lassig fUr das Startvermogen x>O. Mit Satz 11.48 fiber die Vollstandigkeit des 
Marktes gilt dann fUr den zugehOrigen Vermogensprozess X1r(1): 

E(H(T)Xtr(T))~X fUr T~O. 

Die Endzahlung B~O sei Frme8bar mit E(H(1)B)=x. Soleh eine Zufallsva­
riable gibt es immer, dazu wiihlt man z.B. 

x 
B:= E(H(T))' 

Naeh Satz II.48 existiert dann ein Portfolioprozess (n; O)eA(x) mit B=X1r(1) 
P-fast sieher. Defmiere nun 
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B(x):= {B;:: olB FT -m~bar, E(H(T)B) ~ x, E(U2 (B)-) < oo} 

Offensichtlich stellt B(x) die Menge aller mit Anfangsvennogen aus (0, x] erziel­
barer Endvennogen dar, fUr die E(U2(B)-)<oo gilt. Um also das optimale End­
vennogen X1I(T) fUr unser Portfolioproblem 

(P) 

zu bestimmen, reicht es, fiber aIle BeB(x) zu optimieren, d.h. das Problem 

max E(U2(B») 
BeB(x) 

(0) 

zu IOsen. Man beachte, dass in (0) nur noch fiber eine Menge von Zufallsva­
riablen zu optimieren ist. Die zeitliche Dimension von (P) (es wurde ja fiber Pro­
zesse (n; O)eA '(x) maximiert) ist verschwunden, weshalb wir (0) als ein sta­
tisches Optimierungsproblem bezeichnen. 1st nun B· ein optimales Endvermo­
gen fUr (0), so muss zur vollstiindigen Losung des Portfolioproblems nun noch 
das Darstellungsproblem 

• Finde ein (n; 0) eA'(x) mit X1I(1)=B· P- fast sicher (D) 

gelost werden. 

Um die Losung des Problems (0) zu motivieren, wiederholen wir kurz die ge­
wohnliche Lagrange-Methode der Optimierung aus der Analysis: 

Liisen von Optimierungsproblemen mit Ritfe der Lagrange-Methode 

Die Funktion/:Rn~R sei strikt konkav und g:Rn~Rk konvex, I,geel . Dann 
gilt: 

X lost das Optimierungsproblem 

max f(x) 
X eRR 

NB g(x) =0 

<=> Es gibt ein i e R k , so dass fUr (x, i) e R n+k gilt 

8 k 8 
-;-:- f(x) - L Aj -;-:- g(x) = 0 , i=l, ... ,n 
C/x, j=l c/x, 
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gi{X) = 0 , i=l, ... ,k 

In Worten: (x,i) E R n+k ist die Nullstelle der Ableitung der Lagrange-Funktion 

L(x,A.) = f(x) - A.'g(x) . 

Die Lagrange-Methode im Portfolioproblem - Motivation 

Wir defmieren nun fUr das Optimierungsproblem (0) das Analogon zur La­
grange-Funktion als 

L(B,y):= E(U2(B)-y.(H(T)B-X)) 

mit y>O. Fonnales Differenzieren von L naeh B und y auf der linken Seite und 
Differentiation auf der reehten Seite liefert die Gleiehungen 

0= LB(B,y) = E(U~(B)-YH(T)) , 

0= Ly{B,y) = x - E(H{T)B). 

Wir wollen diese Vorgehensweise nieht reehtfertigen, sondem sie nur verwenden, 
urn die Form des optimalen Endvermogens heuristiseh herzuleiten. Ein B mit 

Ui(B) - YH(T) = 0 P-fast sieher 

wiirde die erste Gleiehung losen. Da U2 '(.) naeh Annahme ganz R+ als Bild be­
sitzt und streng monoton fallend ist, ist U2 '(.) auf R+ invertierbar und wir er­
halten 

Nun setzen wir dies in die zweite Gleiehung ein: 

0= X-E( H(T).(u~rl(Y·H(T»)) 
=:;(y) 

(1) 

Kann man nun diese Gleichung eindeutig naehy auflosen, so hat man tiber (1) 
einen mogliehen Kandidaten fUr das optimale Endvermogen gefunden. Wir defi­
nieren deshalb 

( , )-1 Y(u) := X-I{u) , 12 := U2 

und erhalten als mogliehen Kandidaten fUr das optimale Endvermogen 
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Unser Ziel wird es nun sein, zu beweisen, dass B* tatsachlich optimal ist. 

Bezeichnungen 

Wir defmieren analog zu oben : 

h(Y):= (U;tI(y) fUrye(O,oo), 

II(t,y):= (UitI(t,y) fUr ye (0,00) , tfest, 

z(y) :~ E(f H(')h (, ,Y' H&) )d' + H(r)I2 (y. H(r»)J 

wobei UI '(.,.) die partielle Ableitung von UI nachx, also nach der zweiten Kom-
ponente, bezeichnet. . 

Die Eigenschaften von,rty) werden im folgenden Lemma zusammengefafit: 

Lemma 3 

Es gelte ,rty) <00 fUr alle y>O. Dann ist % auf (0,00) stetig, streng monoton fal­
lend mit 

%(0):= lim %(y) = 00, z( 00):= lim %(y) = 0 . 
y.1.o y~ct) 

Beweis: 

i) Stetigkeit von % folgt aus der Stetigkeit von H, II' 12 und dem Satz von der do­
minierten Konvergenz. 

ii) II(t,.), 12(,) sind streng monoton fallend auf (0,00). Da H(t) >0 fUr alle te[O, 1'] 
gilt, ist somit auch,rty) streng monoton fallend iny. 

iii) Wegen 

lim!t(t,Y)=limI2(Y)=-roo und lim !t(t,y) = lim I2(Y) =0 
y.1.o y.1.o y~ct) y~ct) . 

und der Monotonie von 11,12 folgen die Aussagen iiber ,rtO) und ,rtoo) aus dem 
Satz iiber die monotone Konvergenz. 0 
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Bemerkung 

Aus Lemma 3 folgt insbesondere, dass 

Y(x) := X-I(x) 

auf (0,00) existiert mit 

Y( 0):= lim Y(x) = +00 und Y( (0):= lim Y(x) = 0 . 
x,J..o x-+oo 

Das folgende einfache Lemma wird ein wichtiges Werkzeug fUr den Beweis des 
Hauptsatzes der Martingalmethode sein: 

Lemma 4 

U sei eine Nutzenfunktion mit 1:=( U,)-l. Dann gilt 

U(/(Y)) ~ U(x) + Y(/(Y) -x) fUr O<y, x<oo. 

Beweis: 

Da U konkav ist, gilt 

U(I(Y)) ~ U(x) + U'(I(Y))(I(Y) - x) = U(x) + Y(I(Y) -x) 0 

Jetzt sind wir soweit, das Portfolioproblem zu losen: 

Satz 5 - Optimaler Konsum und optimales Endvermtigen 

Gegeben sei das Portfolioproblem (P). Es sei x>O und ID)<oo fUr alle y>O. 
Setze Y(x) := %-1 (x). Dann existiert zu 

B· := h(Y(x), H(T)) , "optimales Endvermtigen" 

/ (t) := It (t, Y(x). H(t)) , "optimaler Konsum" 

ein selbst-fmanzierender Portfolioprozess tr· (t), tE [0 , 1], so dass 

(tr·,e·) E A'(x) , XX,lI'·,c·(T) = B· P-fast sicher 

gelten und (1( ,e·) das Portfolioproblem (P) lost. Dabei sei XX,~,c·(t) der zu 
(tr· ,e·) mit Anfangsvermogen x gehOrende Vermogensprozess. 



V.2 Die Martingalmethode 245 

Beweis: 

i) Per DefInition von D·, c·(t) gilt 

1[II(I)C(I)tft + II( T)B') =. 
Man beachte, dass Y(x)·H(t»O gilt und wegen 11,12>0 auch B· und c· positiv 
sind. Die Existenz eines Portfolioprozesses 1t" zum Auszahlungsproftl (c·(t), B·) 
mit (1(, c·)eA(x) folgt aus dem Satz ll.48 fiber die Vollstandigkeit des Marktes. 

ii) Ais nachstes zeigen wir, dass fUr den bis auf Ununterscheidbarkeit eindeuti­
gen Portfolioprozess 1( auch (1r., c·)eA '(x) gilt. Nach Lemma 4 gelten 

UI(t,C* (t)) ~ U1 (t,1) + Y(x). H(t) .(c* (t) -1), 
U2{B·) ~ U2(1) + Y(x). H(r) .(B· -1). 

Daraus folgt mit der Beziehung 

a~b=>a- "5.b- "5.lbl 

und der Tatsache, dass Y(x)-H(t), B· und c· positiv sind, die Ungleichungskette 

E[!U1 (,.e '(Ilt dl + U2(B 'f ) 

~ E(!(lu, (1.1)1 + y(.). H(I~e 'w + l))tft 

+ lu2 (t)1 + Y(x)· H(r)(B· + 1)) 

= r2(1~ + ~'(I.l)ltft + 1'(+ + E(II( 1')) + lE(H(I))tft) < '" 

FUr die letzte Abschatzung beachte man, dass Ut(t,x) stetig und der Erwartungs­
wert E(H(t» auf [0,1] beschriinkt ist. 

iii) SchHeBlich zeigen wir die Optimalitat von (1r., c·). Gegeben sei nun ein be­
liebiger Portfolioprozess (n; c)eA '(x) mit Vermogensprozess Xt,n;c. Aus 
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folgt 

1H'.c '(,))dt+ U2(B')] 

~ J(X; >r.C) + I'(X).( ~I H(,le' (,)d, + H(T)B') 

- E(I II( t)c(t) dt + II( T)X x.'~ (1')) J 

= J(x; >r.c)+ I'(X).( x - EO H(t)c(t)dt + H(T)XX,<., (T)) J 
. , 

;;0 
~ J(x;1r,c) . 

FUr die letzte Abschatzung beachte man den Satz 11.48 fiber die V ollstandigkeit 
des Marktes. 0 

Beispiel "Logarithmischer Nutzen" 

Wir wiihlen nun speziell den Logarithmus als Nutzenfunktion. Man beachte bier, 
dass Werte kleiner 1 negativen Nutzen haben ! Es gilt nun: 

Hiermit und mit Satz 5 ergeben sich der optimale Konsum und das optimale 
Endvermogen wie folgt: 
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c *(t) = ft{t,Y(x).H(t)} =_x_.~( ) , 
T+l H t 

B* = 12 {Y(x).H(T)} = T:l' H(T)' 

Wir konnen in diesem speziellen Beispiel den Portfolioprozess explizit berech­
nen, denn nach Beweisteil b) von Satz n.48 gilt: 

H{t).X'· .. ·, It) =1!H(9)C'{9)ds+H(1jB'1 F,) (2) 

T-t+l 
=x·---

T+l 
Daraus folgt 

t 

x = x. T -t + 1 +x ._t_ = H(t).Xx,n*.c*(t) + J H(s)c *(s)ds. 
T+l T+l 0 

Die Ito-Formel, angewendet auf das Produkt H(t)·,XX,'If".c*(t) auf der rechten Seite 
der Gleichung, liefert nun (siehe Beweisteil a) von Satz 11.45) 

x = x + J H(s)· X x.n*.c*(s)( 1r *(s)' u(s)- o(s)') dW(s) 
o· , 

=:j(s) 

Also muss 
f(s) = 0 P- fast sicher fUr aIle s E [0,11 

gelten. Da H(s)·'xx.'If".c*{s) positiv ist, ergibt sich somit 

1r * (t) = ( o{t)') -1 B(t) fUr aIle t E [0,1]. 

1m Spezialfall d= 1 und r, b, cr konstant erhalten wir: 

*() b - r 1r t =--
(J'2 

"relative lokale Risikopriimie". 

Es ist an dieser Stelle wichtig, darauf hinzuweisen, dass die Einfachheit der 
Form von 1r*(t) etwas Triigerisches hat, denn ein konstanter Portfolioprozess 
1r*(t) bedeutet, dass man dauemd handeln muss, da sich Aktienpreis und Bond­
preis verschieden entwickeln. Das konstante Verhiiltnis (1-n)/1r von Bond- zu 
Aktienvermogen ware bei Verzicht auf Handlungen des Investors augenblicklich 
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nicht mehr gegeben ! Aus (2) erhalten wir eine weitere Darstellung fUr die Kon­
sumrate: 

Damit ist die Konsumrate proportional zum gegenwiirtigen Vermogens des In­
vestors und umgekehrt proportional zur Restzeit (T -t) . 

Das Vorgehen im obigen Beispiel zur Berechnung von 1!* lasst sich verallgemei­
nem. Es gilt niimlich: 

Satz 6 - Losung des Darstellungsproblems (D) 

Gegeben sei das Portfolioproblem (P). Es seien x>O und ,rty)<oo fUr aIle y>O, 
c· und B· wie in Satz 5. AuBerdem gelte fUr ein leC1,2([O,1]xRd) mit 
}{O,O, ... ,O)=x die Beziehung 

~tl'1! H(s)c '(s)ds+ n(T)B'1 FI) = I(t.", (t) ..... Wd (t») 

Dann folgt fUr t e [0, 1]: 

1!. (I) = If! • () u-1 (t)v xl(t, W. (t), ... Wd (t»), Xx, ,c t 

wobei V J'den Gradienten von}{t, xl, .. ,,xd) bzgl. der x-Koordinaten bezeichnet. 

Beweis: 

Mit der mehrdimensionalen Ito-Formel 11.40 gilt 

~t) '1! H(s)c '(s)ds + n(T)B'IF, J = I(t. "'(tl ..... Wd (t») 

= 1(0, ... ,0) + I(lt(s,w.(s), ... ,Wd(s»)+t ~fx;xl (s,w.(s), ... ,Wd(s») ds) 
o 1=1 

d t 

+ L Jfx/(s,w.(s), ... ,Wd(s»)dW;(s) 
;=10 

Wie im Beweis des Satzes 11.48 fiber die Vollstlindigkeit des Marktes gilt aber 
auch . 
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t 

= X + J((r(s) + 1/ (s)' (b(s) - r(s)' 1) )X'~'1f*'c* (s) - c(s») ds 
o 
t 

+ J X X,1f*,c*(s)n-*(s>' a(s)dW(s) 
o 

249 

FOr die letzte Gleichung beachte man, dass (n-*, c*) selbst-fmanzierend ist und 
daher die Vermogensgleichung (VG), siehe Abschnitt n.2, gilt. Man vergleicht 
nun die beiden Darstellungen bzgl. der dW-KoeffJzienten. Aus der Eindeutigkeit 
der Darstellung eines Ito-Prozesses folgt die Behauptung. [] 

Mit Hilfe des Beweises von Satz 5 lassen sich auch die Losung des reinen Kon­
sum problems sowie des reinen Endvermogenproblems angeben. 

Korollar7 

a) Das optimale Endvermogen B* im Problem 

ist durch 

gegeben, wobei in der Definition von;:(y) dann I} (t, y)=O zu setzen ist. 

b) Der optimale Konsumprozess c*(t) im Problem 

istdurch 

/(t):= h{t,Y{x).H{t)) 

gegeben, wobei in der Defmition von;:(y) dann I2(y)=O zu setzen ist. 

(E) 

(K) 
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V.3 Optimale Portfolios aus Optionen 

Als eine Anwendung der im vorausgegangenen Abschnitt vorgestellten Martin­
gabnethode der Portfolio-Optimierung im vollsmndigen Markt, wollen wir nun 
ein Portfolio-Problem betrachten, in dem statt Aktien Optionen auf diese Aktien 
gehandelt werden (siehe auch Korn und Trautmann (1998». 

Allgemeine Voraussetzungen flJr diesen Abschnitt 

Wir tibemehmen bier die Bezeichnungen aus Abschnitt n.3, Seite 74. Insbe­
sondere gelte d=m. Damit sind die Voraussetzungen zu Satz nA8 ilber die 
Vollstandigkeit des Marletes erfiillt. 

We iter beschrltnken wir uns auf konstante Marktkoefflzienten r, b, u. 

Beschreibung des Marktmodells 

Wir betrachten nun einen Marlet, an dem als Wertpapiere ein Bond, d Aktien und 
d Optionen auf diese Aktien gehandelt werden. Doch diesmal wollen wir unser 
Portfolio nur aus Bond und Optionen zusammenstellen. Der Preisverlauf der 
Optionen habe die Form 

(1) 

wobei die jeweiligen Optionspreise die Bedingungen und Aussage von Proposi­
tion m.13 erfiillen (z.B. fUr europaische Puts und Calls im Black-Scholes-Mo­
dell erfiiIlt). Sei 

tp{t) = (qJo(t),1Pt (t), ... ,qJd(t)) 

eine zulassige Handelsstrategie in Bond und Optionen, d.h. die Integrale 

t 

IqJo(s) dPo(s) 
o 
t 

I qJj(S) df(;} (s, l't (s), ... , Pd(s») 
o 
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seien deftniert und tAt) sei Ft-progressiv messbar. Der zugehOrige Vermogens­
prozess X(t) wird nun beschrieben durch 

d 

X(t) = 97o(t)Po(t) + L97i(t)/i)(t,l\(t), ... , Pd(t)). 
i=1 

U sei eine Nutzenfunktion. Wir betrachten nun das Problem 

max E( U( X( T))) 
rp 

(OP) 

Motivation 

Zur Motivation der Losung des Problems (OP) betrachten wir die folgenden 
Schemata zur Darstellung der Losung des Portfolio- und des Optionsbewertungs­
problems 

Schema 1 zur Optionsbewertung; 

Optionspreis ..... t-_-'1 __ _ 

EQ(e-rTB) 

~l 
X*(O) 1l'*(t) 

Kosten der ..... t-____ _ 
Duplikation 

Endauszahlung 

B 

l~ 
• 

X ff (T) 
Duplikations­

strategie 

Ausgehend von der Endauszahlung B einer Option suchen wir den Preis der Op­
tion. Dazu duplizieren wir die Endauszahlung mit einer geeigneten Portfolio­
strategie, so dass deren Endvermogen genau der Endauszahlung entspricht. Die 
Kosten der preiswertesten Duplikationsstrategie ergeben den Preis der Option. 
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Schema 2 zur Portjolio-Optimierung mit Aktien : 

? 
Anfangsvennogen 

x 

! 
B* 

Optimale 
Endauszahlung 

-----..-,.~ Optimales Endvennogen 
• 

XX,IT (T) 

1 
tr*(t) 

Duplikations­
strategie 

Gegeben ist ein Anfangsvermogen x mit dem wir (im einfachsten Fall) mit einer 
geeigneten Portfoliostrategie ein optimales Endvennogen erzielen wollen, das 
uns moglichst groBen Nutzen verspricht Zuniichst bestimmen wir eine nutzen­
optimale Endauszahlung B* und suchen dazu die Duplikationsstrategie, die uns 
das optimale Endvennogen liefert. 

Schema 3 zur Portjolio-Optimierung mit Optionen : 

Anfangsvennogen 

x 

! 
? 

-----... Optimales Endvennogen 

X*(T) 

l'" = (""It). fi{t)) 

{iJ= 'P-l~ 

Optimale Inversion der 
Endauszahlung Duplikationsstrategie 

~ <Ct) = (Q,(t) •...• <t(/»)/ 
Duplikationsstrategie 
in Bond und Aktien 
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Wie oben suchen wir bier zu einem gegebenen Anfangsvermogen x ein nutzen­
optimales Endvermogen. Wiederum bestimmen wir eine optimale Endauszah­
lung B*, zu der wir zunachst die Duplikationsstrategie mit Bond und Aktien 
~t)=(~(t), ... , qj..t» bestimmen. Da Aktien nun nicht in unserem Portfolio gehal­
ten werden sollen, wird die Aktienposition durch Bond und Optionen dupliziert. 
Die so entstandene Bond-Optionsstrategie liefert das optimale Endvermogen 
X(1). Dies wird durch folgenden Satz formalisiert: 

Satz8 

Die Delta-Matrix 'P(t)={'¥ y{t»ij' i,j = 1, ... , d mit 

'Pij := f~l(t,!i(t), ... ,Pd(t}) 

sei fUr aIle te[O, 1) regular. Dann besitzt das Options-Portfolioproblem (OP) die 
folgende explizite Losung 

a) Das optimale Endvermogen B* stimmt mit dem optimalen Endvermogen im 
zugehOrigen Aktien-Portfolioproblem (P) iiberein. 

b) Sei ~t)=(~(t), ... ,qj..t» die optimale Handelsstrategie des zugehorigen Ak­
tien-Portfolioproblems (P). Dann ist die optimale Handelsstrategie q-\t):= 
(fPQ(t),tpl (t), ...• tpj..t» gegeben durch 

qi(t) = ( 'P(t)') -I . ~(t) • 

( x{t) -t 9',V) /i) (,.1\ (,) ..... pi') l) 
~W= ~w · 

mit qi(t}:= (tpl(t), ... ,tpd(t») und ~(t) := (~l(t), ... ,qd(t}). 

Beweis: 

i) Nach Proposition m.13 gilt 

wobei 

d 

j(i)(t,!i(t), ... ,Pd(t») = L'Pij(t}·pit) ,i=l •...• d. 
j=O 
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'PiO := 

Da die Handelsstrategie ('PiO(t),'Pil(t), ... ,'Pilt» selbst-finanzierend ist, gilt au­
Berdem 

d 

W( ») _ " df t,lj(t), ... ,Pd(t - L... 'Pij(t)dPj(t). 
j=o 

Sei nun 'P eine zuliissige und selbst-imanzierende Handelsstrategie in Bond und 
Optionen. Dann gilt fUr den zugehOrigen Vermogensprozess 

d 
dX(t) = 'Po (t). dPo (t) + ~ 'Pi (t)df(i)(t.PI (t), ...• Pd (t)). 

i=1 

Mit der obigen Darstellung der Optionspreise erhalten wir 

dX{1 )=( 9'0 (I)+ t. f',{Il'P .. (I ))dPo{l) + t(t. f',{Il'P if~ )) dPj {I ) 

d 

=:so(t)dPo(t)+ ~Sj(t)dPj(t), 
j=1 

also ist auch die Handelstrategie S in Bond und Aktien selbst-imanzierend. Die 
Zulassigkeit von , im Aktien-Portfolioproblem ergibt sich dann aus der von 'P 
fUr das Options-Portfolioproblem (und der Tatsache, dass 'P Duplikationsstrate-
gie ist). -

ii) Sei ~t) die optimale Handelsstrategie des zugehOrigen Aktien-Portfolio-Pro­
blems mit Vermogensprozess X(t), dann erhalten wir 

X(T) = B* P-fastsicher, 

d 

dX(t) = qo(t)dPo(t)+ ~q;(t)dp;(t}. 
;=1 

Um nun eine Handelsstrategie in Bond und Optionen zu erhalten, die den glei­
chen Vermogensprozess X(t) besitzt, roachen wir den Ansatz 
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d 

dX(t) = 9'o(t} dPo(t} + L9'i(t) df(;)(t,~ (t), ... ,pit» 
i=1 

und erhalten mit Beweisteil i) 

dXV) = ( ",,(tl + ~I"i')'¥}o('») dPo(') + ~ ~ q>i')'¥j' ('») dIl(') . 

Vergleich der KoeffIzienten der dPjTerme beider Darstellungen von X(t) ergibt 
die gewiinschte Form der letzten d Komponenten von rAt). Vergleich der dt-Ko­
effizienten beider Darstellungen von dX(t) liefert 

d 

c:o{t) = 9'o{t) + L 9'j{t). 'Pjo{t). 
j=l 

Wegen 

d 

X(t}- L§(t}j}(t) 

c:o(t> = ~;(t) 
gilt nun auch 

d d 

X(t)- LL9'it)'Pji(t)j}(t) 

9'o(t} = i=Oj=~O(t} 

d d 

X(t)- L9'/t}L 'Pjj(t}p;(t) 
j=1 i=O 

=----~--~~------po(t} 

woraus auch folgt, dass (9'o(t),9'I(t), ... ,9'lt» selbst-fInanzierend ist. Urn zu zei­
gen, dass rAt) zulassig ist, reicht es, zu zeigen, dass die stochastischen Integrale 
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d t 

L J91;(s)d/;)(s,Pt(S), ... ,Pd (S») 
;=10 

defmiert sind. Wiihlt man die Darstellung fUr die dj-Terme, die explizite Form 
fUr rAt) und die Zulassigkeit der Strategie ~t) im Aktien-Portfolio-Problem, 
dann erhalten wir die Zulassigkeit im Options-Portfolio-Problem. 

iii) Wir haben nun in ii) gezeigt, dass man mit Hilfe der Bond-Options-Strategie 
rAt) den gleichen Nutzen wie im Aktien-Portfolio-Problem erzielen kann. Es 
kann aber im Options- Portfolioproblem auch kein hOherer Nutzen erzielt wer­
den, da dann die zur optimalen Strategie gehorende Bond-Aktien-Strategie , 
(wie in i) ) auch im Aktien-Portfolio einen hOheren Nutzen als q erzielen wiirde, 
was aber einen Widerspruch darstellt. 0 

Bemerkungen 

a) Das optimale Endvermogen hangt unter den gegebenen Voraussetzungen nur 
von der Nutzenfunktion ab, nicht aber von der Wahl der handelbaren Wertpapie­
reo 

b) Die optimaJe Strategie hangt sehr stark von den verwendeten Optionen ab, 
namlich fiber die Delta-Matrix (genauer: fiber die Duplikationsstrategie der Op­
tionen). 

Beispiel "Logarithmischer Nutzen" 

Als Nutzenfunktion wiihlen wir 

U(x) = In(x) . 

Wir betrachten bier speziell das Black-Scholes-Modell mit d= 1. Aus dem Bei­
spiel "Iogarithmischer Nutzen" im vorigen Abschnitt wissen wir, dass fUr die 
Aktienposition der optimalen Handelsstrategie gilt: 

() ;r*(t). X(t) 
qIt= () Ptt 

b-r x(t) 
7· Pt(t)· 

Somit ergibt sich fUr die optimale Handelsstrategie in Bond und Option in Ab­
hangigkeit von der Delta-Matrix die Strategie 

b-r X(t) 
911 (t) = (J"2 • 'PI (t). PI (t) . 
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Fiibrt man jetzt noch den Portfolioprozess in Optionen ein, so erhiilt man noch 
einige bemerkenswerte Konsequenzen: 

(2) 

wobei frAkt(t) der optimale Portfolioprozess aus dem zugehorigen Aktien-Portfo­
lioproblem (P) ist. Der optimale Portfolioprozess in (OP) unterscheidet sich also 
von dem in (P) nur urn den Faktor 

Insbesondere gilt: 

Proposition 9 

1m Black-Scholes-Modell mit d::;: 1 gilt mit der Wahl U(x) :::; In(x) : 

a) frOpt(t)::;:frAkt(t) fUrallete[O,1] 

¢:) 1(1) (t,1\ (t)) = k .1\(t) mit einer Konstanten ke R\{O}. 

b) 1m Fall einer europiiischen Call-Option gilt 

frOpt{t) < frAkt{t) fUr alle te [0,1]. 

Beweis: 

a) folgt direkt aus obiger Beziehung (2) zwischen fropt und frAkt. 

b) Es gilt 

/1) (t, 1\ (t») = <I>(d1 (t}).1\ (t) - <I>(d2 (t»). e-r(T-t) . K 

< <I>(d1(t»).1\(t) = 1;:)(t,1\(t}).1\(t). 

Hieraus folgt mit (2) die Behauptung, da 
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gilt. [] 

Bemerkung 

Teil a) der Proposition 9 besagt, dass 1rOp,(t) im Black-Scholes-Modell nur im 
entarteten Fall, dass der Contingent Claim als Endzahlung gerade ein Vielfaches 
des Aktienpreises ist, konstant ist. Teil b) besagt, dass fUr die Wahl einer euro­
paischen Call-Option das ins riskante Gut investierte Kapital im Options-Port­
folioproblem immer kleiner als im Aktien-Portfolio-Problem ist. 

Beispiel 

Wir betrachten jetzt einen europiiischen Call mit den Marktkoefftzienten 
r=O, b=0.05, 0'=0.25, T=l, K=100, Po (0) =1. 

0,8 ....••.......•..•. _ ... _ ...•.•. _ .. 

0,6 

0,4 

0,2 

Of---.---t---+---+---+--
50 150 250 350 450 PI (0) 

Bild V.I Portfolio mit Optionen 

Das Schaubild zeigt den Anteil des Portfolios, der in Aktien bzw. in Optionen, 
also 1royt(O) (dicke Linie) bzw. 1rAkt(O) (gestrichelte Linie), investiert wird in Ab­
hangigkeit des Preises der Aktie PI (0) an. Wir beobachten : 

• Je tiefer die Option im Geld ist (d.h. Pl(O»K ), desto starker nahert sich 
1rOpt(O) dem optimalen Aktien-Portfolio 1rAkt(O) an. 
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• Je weiter die Option aus dem Geld ist (d.h. P}(O)<K), desto kleiner wird 

1rOpt(O). 

Exkurs 8: Stochastische Steuerung 

Allgemeine Voraussetzung flJr diesen Abschnitt 

X(t) sei ein n-dimensionaler Ito-Prozess. 

Eine stochastische Differentialgleichung der Form 

dX{t) = ,u{t,X{t),u{t))dt + o{t.X{t).u{t))dW{t) (GSD) 

wobei W(t) m-dimensionale Brownsche Bewegung und u(t) ein d-dimensionaler 
stochastischer Prozess ist, der von uns gewiihlt werden kann - die sogenannte 
"Steuerung" - heIDt eine gesteuerte stochastische Differentialgleichung. Auf­
gabenstellung in der stochastischen Steuerung ist es, eine bzgl. einem Kosten­
funktional optimale Steuerung u(t) zu bestimmen. Bevor wir den Begriff der 
Steuerung priizisieren und geeignete Bedingungen an die Koeffizientenfunktio­
nen der stochastischen Differentialgleichung formulieren, wollen wir zur Veran­
schaulichung ein simples Beispiel betrachten: 

Beispiel - Maximieren des Erwartungswertes bei quadratischen 
Steuerungskosten 

Unser zu steuemder Prozess X(t) habe die Form 

t 

X(t) = x+ W(t) + Ju(s)ds 
o 

wobei W(t) eine eindimensionale Brownsche Bewegung ist. Ais mogliche Steue­
rungshandlung konnen wir in jedem Zeitpunkt t E [0,1'] die Intensitiit u(t) eines 
,,Driftprozesses", d.h. 

t 

Ju(s}ds , 
o 
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wiihlen. Wir nehmen an, dass durch die Wahl von u(t) Kosten der Form a·u2(t) 
entstehen. Unser Ziel ist es, durch Steuerung einen moglichst hohen Wert von 
X(1) fUr ein festes T>O zu erhalten, wobei allerdings die Steuerungskosten ange­
messen zu beriicksichtigen sind. Wir betrachten deshalb das Problem, die Diffe­
renz 

mit a, b>O, durch optimale Wahl der Steuerung u(t) zu minimieren. Wie man 
sich leicht Uberlegen kann, gilt unter geeigneten Voraussetzungen an u(t) 

Man konnte also die obige Differenz umschreiben in 

Minimieren in u(t) unter dem Integranden liefert dann die optimale Wahl 

u ·(t) = fa. 
Wir werden trotzdem im Folgenden dieses Beispiel zu Demonstrationszwecken 
noch mal mit den hierf'iir etwas Uberdimensioniert erscheinenden Methoden der 
stochastischen Steuerung losen. Weitere Anwendungsbeispiele werden dann im 
Abschnitt Uber ,,Portfolio-Optimierung mittels stochastischer Steuerung" gege­
ben. 

Allgemeine Voraussetzungen fllr diesen Abschnitt : 

Gegeben seien mit n, dEN 

Qo := [to,ll) x R" mit Os 10< 11 <00 

QO:= [Io .td x R II 

U c: R d abgeschlossen. 
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Weiterhin seien die KoeffIzientenfunktionen in (GSD) 

JJ: Qo x U -. R n 

u: Qo x U -. R n,m 

stetig und "".,.,u). o{ .•.• u) seien in c1(Qo) fUr ueU. 
Zusatzlich gelte mit einer Konstanten C> 0 

IJJ,I+IPxl ~ c. lu,I+luxl ~ C 

IJJ(t,x,u)1 + la{t,x,u)1 S C '(I + Ixl + luI) 
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wobei 1.1 jeweils geeignete Normen sind (genauer: Euklidiscbe bzw. Spektral­
norm). 

Beispiele fUr Koeffizientenfunktionen. die diese Voraussetzungen erftillen. sind 
im Fall n= 1 durch 

,u(t,x,u)=ax+bu. a{t,x,u)=CtX+C2U. 
oder bei beschranktem U durch 

,u(t,x,u) = a·x·u. o{t,x,u) = c·x·u 
gegeben. 

Schreibweise 

Falls der Prozess Xes) die gesteuerte stochastische Differentialgleichung (GSD) 
mit Anfangswert x im Startzeitpunkt t lost. dana schreibt man fUr dessen Erwar­
tungswert 

Eine analoge Schreibweise verwendet man auch fUr Funktionen von Xes) (vgt. 
auch S.136). 

Definition 10 

Sei (n,F, {F,}'E['o,'Il' P) ein mit einer Filterung versehener Wahrscheinlichkeits­
raum. Ein U-wertiger, progressiv messbarer Prozess u(t), tE[to,td; heil3t eine 
zuUissige Steuerung, falls fUr aIle Werte x E Rn die stochastische Differential-



262 Kapitel V: Optimale Portfolios 

gleiehung (GSD) mit der Anfangsbedingung X(to)=x eine eindeutige Losung 
{X(t) he [to,tll, besitzt und 

fUr alle kEN sowie 

Et.x(lIx(.)lIk ):= Et.x( sup IX(s)lk ] < 00 

s~t.tl] 
fUr alle kEN gelten. 

Bemerkung 

(1) 

(2) 

a) Die obige DefInition sehriinkt die Menge zuliissiger Steuerungen stiirker ein 
als die iiblieherweise in der Theorie der stochastischen Steuerung gegebene De­
fInition (vgl. z.B. Fleming/Rishel (1975) oder Fleming/Soner (1993». Der 
Hauptgrund bierfilr liegt in der Ursaehe, dass man fUr Existenzaussagen fUr eine 
Losung der gesteuerten stoehastisehen Differentialgleiehung bei Verwendung 
der iibliehen DefInition einer stoehastisehen Steuerung den ~egriff der 
schwachen L6sung einer stochastischen Differentialgleichung benotigt. Wir 
wollen sowohl diesen Begriff als auch die iibliehe Defmition einer zulassigen 
Steuerung bier nieht angeben, da wir sie fUr unsere Anwendungen nieht benoti­
gen werden. 

b) Beispiele zuliissiger stochastischer Steuerungen im Sinne der Defmition 10 
sind alle besehriinkten, progressiv messbaren Prozesse mit stetigen Pfaden in U. 
Hierbei folgt die Existenz- und Eindeutigkeit der Losung der zugehOrigen ge­
steuerten stoehastisehen Differentialgleichung aus Satz m.ls. Die iibrigen For­
derungen an eine zuliissige Steuerung sind aufgrund der Beschriinktheit der Pro­
zesse trivialerweise erfiillt. Die Klasse zuUissiger Steuerungen ist hingegen weit 
groBer. Allerdings benotigt man fUr explizite Beispiele weiterer Klassen zu­
liissiger Steuerungen allgemeinere Existenz- und Eindeutigkeitsaussagen fUr sto­
chastische Differentialgleiehungen mit messbaren KoefflZientenfunktionen 
J.(t,x,u), o(t,x,u) oder aber explizite Annahmen iiber die Gestalt von J.(.,.,.), 
0(.,.,.) (siehe z.B. Absehnitt 2.6 in Krylov (1980) oder Absehnitt 5.4 in 
FleminglRishel (1975». Mit Hilfe soleh allgemeinerer Existenz- und Eindeutig­
keitsaussagen kann gezeigt werden, dass Forderung (1) zusammen mit den allge­
Meinen Voraussetzungen Forderung (2) impliziert (siehe z.B. Krylov (1980». 
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Aufgabenstellung ond Begriffe 

Wir wollen nun ein etwas allgemeineres Problem betrachten, in dem nur so lange 
gesteuert wird, wie sich X(t) innerhalb einer vorgegeben offenen Teilmenge 0 
von Rn bewegt. Hierzu sei entweder O=Rn oder eine offene Menge, so dass der 
Rand ao eine kompakte, (n-l )-dimensionale C3-Mannigfaltigkeit ist. 
(Beachte: 0 = 0 u 80). Setze 

Q:= [to,td x 0 

Q := [to,td x 0 

T:= inf{t ~ tol(t,x(t») ~ Q} 

Wir betrachten das Kostenfunktional 

mit den stetigen Funktionen L, 'I' als Kostenfunktionen, die den polynomialen 
Wachstumsbedingungen 

IL(t,x,u)1 S; ~ 1 + Ixlk +Iulk), 

1'I'(t,x)1 S; ~ 1 + Ixlk) , 
mit einem keN auf Q xU bzw. auf Q geniigen. Hierbei nennt man 

L(s, X(s), u(s)) 

laufende Kosten (engl. ,,running cost") und 

'1'( T,X( T)) 

Endkosten (engl. "terminal cost"). 

Unser Ziel ist es dann, zu gegebenen Startwerten (to,x)eQ durch Wahl einer zu­
lassigen Steuerung u(.) das Kostenfunktional zu minimieren: 
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(SSP) 

wobei 

und A(to,x) die Menge alIer zulassigen Steuerungen u(.) mit Start in 

(to,x)eQ sei (d.h. der zu steuemde Prozess besitzt in to den Wert X(to) =x). 

Die Funktion 

V(t,x):= inf J(t,x;u) , (t,x)eQ 
ueA(t,x) 

nennt man auch Wertfunktion des Minimierungsproblems. Sie gibt den Verlauf 
der minimalen Kosten in (SSP) als Funktion der Anfangsparameter (t ,x), Start­
zeit und Startwert des zu steuemden Prozesses, an. 

Heuristische Herleitung der HJB-Gleichung 

Das klassische Hilfsmittel zur Losung des stochastischen Steuerungsproblems 
(SSP) ist die sogenannte Hamilton-Jacobi-Bellman-Gleichung (kurz HJB­
Gleichung). Sie sol1 bier zunachst heuristisch hergeleitet werden. Ein formaler 
Beweis der Beziehung zwischen der Wertfunktion von (SSP) und der HJB-Glei­
chung folgt spater. 

Wir nehmen der Einfachheit halber O=Rn an. Betrachte bierzu die folgende Be­
ziehung, das sogenannte Bellman-Prinzip: 

V(t,x) = in! (Et.x(jL(S'X(S)'U(S»)ds+V({}'X({}»))) ' 
ueA(t,x) t 

V(tl'X) = '¥(tl'X) fUr a11ex eRn, 

fUr te [to, tIl, (}e [t, tIl. Das Bellman-Prinzip besagt, dass sich die minimalen 
Kosten V(t ,x) auch dadurch ergeben, das Inftmum fiber die zusammengesetzten 
Strategien "Wahle die Steuerung u(.) auf [t, OJ" - bierdurch entstehen dann die 
Kosten 
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und "verhalte dich auf [e, ttl ausgehend von X( 9) optimal" - was zu Kosten von 
V(B, X(9) fiibrt - zu bilden. Spater werden wir das Bellman-Prinzip beweisen. 
Wir nehmen bier an, dass es giiltig ist und aIle im Folgenden durchgefiibrten 
Operationen (wie z.B. Vertauschungen von Grenzprozessen) erlaubt sind und 
aufll'etende stochastische Integrale Erwartungswert Null besitzen. Anwendung 
der mehrdimensionalen Ito-Formel 11.40 auf V( B, X( 9) Hefert somit: 

V(t,x) = inf Et.x(jL(S,X(S),U(S»)ds + V(t,x) 
ueA(t.x) t 

IJ 

+ J[vt(s,v(s)) + VAs,v(s)),u(s,x(s),u(s)) 
t 

+t·Spur( o{s,X(s),u(s»)o{s,X(s),u(s»)' V.u(s,X(s»)) JdS). 

Mit der Bezeichnung a:=O"O"', Subtraktion von V(t, x), Division durch (e -t) und 
Grenziibergang e J, t erhalten wir dann formal 

0= in! Et.X(lim-l- j[ L(s, X(s),u(s)} + Vt (s, Xes)} 
ueA(t.x) lJ,j.t u - t t 

+t· Spur(a(s,X(s),u(s)}~V .u(s,X(s)}) + vAs, X(s)} . ,u(s,X(s),u(s»)] tis) 

= in! Et.x[L(t,X(t),u(t))+Vt(t,X(t)) 
ueA(t.x) 

+!-Spur(a(t, X(t), u(t») V .u(t, X(t)}) + VAt, X(t»). ,u(t, X(t),u(t»)], 

falls V eine C1,2-Funktion ist. Da zur Zeit t sowohl der Wert von X(t) als auch 
der von u(t) bekannt ist, kann man in der letzten Gleichung den Erwartungswert 
weglassen und erhalt 

0= inf( L(t,x,u) + Vt(t,x) + t· Spur(a(t,x,u) V.u{t,x))+vAt,x). ,u(t,x, u) ), 
ufElJ 
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die sogenannte HJB-Gleichung fUr (SSP). Beachte, dass als Konsequenz dieser 
formalen Umformung hier nun kein zufaIliger Ausdruck mehr auftritt! Es ist 
auch nur noch das InfImum fiber alle moglichen Startwerte ue U von zulassigen 
Steuerungen zu bilden, da nur diese in der partiellen Differentialgleichung auf­
treten. Man kann nun die Wertfunktion V(t,x) bestimmen, indem man zunachst 
die Minimierung in der HJB-Gleichung (in Abhiingigkeit von dem unbekannten 
Funktionen Vt ' Vx ' V xx ) durchfiihrt, dann das so erhaltene Minimum u· ein­
setzt, den Infunumoperator wegliisst und die so entstandene partielle Differen­
tialgleichung mit Randbedingung 

V(T,x)='¥(x) fUrallexeRn 

lost. Man erhalt dann eine optimale Strategie u·(.), falls das Infunum angenom­
men wird, indem man u·(t) als ein Argument des InfImums fUr (t,x)=(t,X(t» 
wiihlt, so dass u·(t) progressiv messbar ist (falls moglich). 

Wir geben nun auch einen formalen Beweis fUr den Zusammenhang zwischen 
der Wertfunktion V(t,x) und der HJB-Gleichung, einen sogenannten VerifIka­
tionssatz. 

Bezeiehnungen 

a) Zu G e d·2 (Q) , (t,x) e Q, a := CTCT' , u e U sei 

n n 

A"G(t,x):= Gt(t,x) +t L aij(t,x,u). GX;Xj + L'ui(t,x,U) ·Gx; (t,x). 
iJ=1 i=1 

b) ,lQ:= ([toA}xoO)u({t.}xo). 

Satz 11 - Verifikationssatz ffir Losungen der HJB-Gleiehung 

Sei G ed·2(Q)flC(Q) mit IG(t,x)lsK(l+lxlk) fUr geeignete Konstanten 

K>O und keN eine Losung der Hamilton-lacobi-Bellman-Gleichung: 

inf(A"G(t,x) + L(t,x,u)} = 0, (t,x)eQ, (HJBl) 
"elf 

G(t,x) = '¥(t,x) , * (t,x)eo Q. .(HJB2) 
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Danngelten 

a) G(t ,x) ~J(t, x; u) fUr aIle (t ,x) e Q und u(.) e A(t ,x). 

b) Existiert fUr aIle (t ,x) e Q ein u·(.) e A(t ,x) mit 

u ·(s) earg :,;:( AUO(S, x·(s))+ L(S, x·(s),u)) 

fUr aIle s e [t, or], wobei x*(s) der gemii6 (GSD) zu u·(.), gehOrende Prozess ist, 
so gilt 

O(t,x) = V(t,x) = J(t,x,u·). 

Bemerkung 

a) Beaehte, dass der Wert x*(s) Dieht von u·(s) wohl aber von u·(r), re [to,s), 
abhangt. Es handelt sieh deshalb in b) Dieht um eine implizite, sondem um eine 
explizite Definition von u·(s). 

b) Da die Wertfunktion Vet, x) eines stoehastisehen Steuerungsproblems eindeu­
tig ist (die minimalen Kosten sind eindeutig, Dieht notwendigerweis~ die mini­
mierende Strategie), kann es aueh nur eine Losung der Hm-Gleiehung von poIy­
nomialen Waehstum geben. 

Beweis des Satzes 11: 

a) Sei (t ,x) e Q. Wir zeigen, dass fUr jede Stoppzeit Omit t~ O~ or und jede zu­
liissige Steuerung u gilt: 

G(t.x) ~ E'.xO L(s.X(s).u{s)),u + G(O.X( 0))) . (3) 

Wegen G(s ,y)='P(s ,y) fUr (s ,y) e 0* Q foIgt hieraus fUr 0;;::: or die Behauptung. 

Sei zuniiehst 0 besehriinkt: 

Da 0 Losung der Hm-Gleiehung ist, gilt 

o ~ AU(s)O(s,X(s)) + L(s,X(s),u(s)) (4) 

fUr jede zuliissige Steuerung u(.), t~s~ ~ Anwendung der mehrdimensionalen 
Ito-Formel ll.40 auf G(O,X(O» ergibt 
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() 

O(O,X(O)) - O(t, x) - JAu(s)O(s,X(s))ds 

() 

= JoAs,x(s»)o(s,x(s),u(s»)dw(s) 

Wegen der Beschrlinktheit von 0 verschwindet der Erwartungswert des stochas­
tischen Integrals, da Ox auf 0 beschriinkt ist und wegen den allgemeinen Vor­
aussetzungen an o(s,x,u) und Forderung (1) auch 

mit einer geeigneten Konstante D>O gilt. Erwartungswertbildung in der letzten 
Gleichung und Anwendung von Ungleichung (4) Hefert dann die zu zeigende 
Ungleichung (3). 

Betrachte nun ein allgemeines 0: 

Wir zeigen (3), indem wir 0 durch beschriinkte Mengen Op approximieren. 
Genauer: 

Op := 0("\ {x ERnllxl < p. dist{x.80) >-}} 
Qp := [toA-~)xOp, O<~<tl-tO' 

1st t"p die Austrittszeit von (s, X(s» aus Qp, so gilt (beachte, dass Op beschriinkt 
ist !J: 

ai"x) ~ E1 .. f! L("X(,),u(,)}dr+ a( op,X(Op))) (5) 

mit 

op:= min(O,t"p). 

Wegen 01'~O fUr p~oo P-fast sicher folgt aus der Annahme, dass die Kosten­
funktion Leiner polynomialen Wachsturnsbedingung geniigt und aus den Bedin­
gungen (1) und (2) in Defmition 10 mittels dominierter Konvergenz 
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Wegen der Stetigkeit von G foIgt weiter 

lim G(Op,x(Op)) = G(O,X(O)) P-fastsicher. 
i ~CJ:J 

Da auBerdem 

IG(Op,X(Op))1 s 11+lx(op )Ik) s K(l+llx(·)llk) 
und 

Et,XOlX(.W) < 00 fUr allej EN, 

fUr jede zuIl1ssige Steuerung u(.) gelten, foIgt mit j> k, dass 

fUr a=jlk undp>l/(t1-tO) beschrl1nkt ist. Also ist die Familie {G(Op'X(Op»}p 
gieichmliBig integrierbar, und wir erhalten 

also insgesamt die Konvergenz von (5) gegen die von (3), was die Aussage zeigt. 

b) Fili u*(.) wie in Behauptung b) erhalten wir Gleichheit in (3), was dann Be­
hauptung b) impliziert. [] 

Bemerkung 

1m Beweis von Satz 11 wurde unter anderem gezeigt, dass unter der Annahme 
der Existenz einer C1,2_Losung der Hffi-Gleichung (und einer optimalen Steue­
rung u*(.» das foigende Bellman-Prinzip gilt: 

Fiir alle Stoppzeiten Omit tS Os T foIgt 

V(t,x) = in! Et'X(jL(S'X(S)'U(S»)ds + V(O,X(O))) . 
u(.)eA(t.x) t 
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Satz 11 reehtfertigt den folgenden Algorithmus zur LOsung des Steuerungspro­
blems (SSP): 

Algorithmus: Losung des Steuerungsproblems 

1. Sehritt: 

Lose die Minimierungsaufgabe (HJB 1) in der HJB-Gleiehung in Abhan­
gigkeit von der unbekannten Funktion G (und ihren partiellen Ableifungen). f 

2. Sehritt: 

Es sei 

u *(s) := u *(s, x, G(s,x), Gt (s,x),Gx(s,x), Gxx(s,x)) 

erne Losung der Minimierungsaufgabe. Lose dann die partielle Differential­
gleiehung 

Au*<t) G(t,x) + L(t,x, u *(1») = 0, (t,x) E Q, 

G(t,x) = 'I'(t,x) , (t,x) E flQ, 

3. Sehritt: 

llberpriife die benotigten Voraussetzungen. 

Bemerkung zur Existenz einer Losung 

Die Existenz einer .,klassisehen" C1,2_Losung der HJB-Gleichung in 'Satz II ist 
im Allgerneinen nieht gesiehert. Typisehe Existenzaussagen benotigen sehr star­
ke Voraussetzungen an die KoeffIzientenfunktionen f.I, 0; an die Kostenfunk­
tionen L, '1', und an o. Urn Resultate aus der Theorie der parabolisehen par­
tieHen Differentialgleiehungen verwenden zu konnen, fordert man die gleieh­
maJlige Parabolizitiit, d.h. dass fUr aHe (t, x, u) E QoxU die Matrizen a(t, x, u) 
gleiehmliflig positiv defmit sind, genauer: es existiert ein c > 0 mit 

~T a(t,x,u)~ ~ cl~2 fUr aIle (t, x, u) E QoxU, ~ E R. (6) 

Wir zitieren ein solehes Existenzresultat, benotigen es aber nieht flir unsere wei­
teren Anwendungen: 
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Satz 12 - Krylov (1980) 

Es gelte (6) und weiter 

a) U ist kompakt, 

b) 0 ist beschriinkt (und ao C3-Mannigfaltigkeit), 
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c) Die Funktionen a, p, L, und ihre partiellen Ableitungen nach t sowie nach xi' 

X;Xj sind stetig auf Q xU, 

d) 'P e C3 (Qo ) . 

Dann besitzt die Hffi-Gleichung genau eine Losung in Ci Q ) n Cl,2(Q), wobei 

Ci Q ) die Menge der stetigen Funktionen auf Q von hochstens polynomialen 

Wachstum bezeichnet. 

1st 0 unbeschriinkt, so gelten analoge Existenzaussagen, wenn a, p, L, 'P be­
schriinkt sind (siehe z.B. Fleming/Soner (1993), IV.4). Des weiteren konnen die 
Bedingungen an a, p, L, 'P abgeschwacht werden, wenn man eine einfachere 
Struktur fUr a, p annimmt (z.B.: p, ulinear inx und in u). 

Fortsetzung des Beispiels 

Wir wollen das soeben gelemte Vorgehen nun am -eigentlich schon gelosten -
Beispiel vom Beginn dieses Abschnitts demonstrieren. Die zum Prozess 

t 

X{t}=x+W{t}+ Ju{s}ds 
o 

und zum Kostenfunktional 

. J(x.t;u) ~ E1.{!a .u'(s),u -6· X( T)) 

gehOrende Hffi-Gleichung hat fUr Q=[O,1)xR, U=R, die Form 

min{tGxx +u·Gx +Gt +au2 } =O,(t,x)eQ, 
ueR 

G{T,x} = -bx , xeR. 

Wir gehen nun gemiiB dem Algorithmus vor: 
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1. Schritt: 

Formales Minimieren liefert als Kandidat fUr die optimale Steuerung 

u *(t) = - 2~ Gx{t,X(t)). 

2. Schritt: 

Einsetzen von u *(t) = - ~a Gx(t,x) in die HJB-Gleichung liefert die (nicht-li­

neare) partielle Differentialgleichung 

tGxx - 4~ d; + Gt = 0, (t,x)eQ, 
G(T,x) = -bx ,xeR. 

Zu ihrer Losung machen wir nun den Ansatz 

G(t,x) = -bx + h(t) . 

Hieraus erhiilt man als neue Formulierung unserer partieller Differentialglei­
chung die gewohnliche Differentialgleichung 

_LlC+h'(t) = 0 
4 a ' 

h(T) =0, 

flir h(t), die offenbar durch 

1 b2 
h(t) = "4.-;-(t - T) 

eindeutig gelost wird. Wir erhalten somit 

1 b2 
G(t,x) = -bx +"4.-;-(1 - T), 

u*(t) =~. 
2a 

3. Schritt: 

Ein Bestandteil, der unbedingt zur vollstandigen Losung eines stochastischen 
Steuerungsproblems mit Hilfe der HJB-Gleichung gehOrt, ist die Uberprufung 
aller zur Anwendung der Theorie benotigten Voraussetzungen. Dies wird bei 
vielen Anwendungen oft vergessen und kann im Einzeifall recht kompliziert 
sein. In unserem simplen Beispiel bereitet es allerdings keine Probleme. 
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• X(t) lost als Brownsche Bewegung mit Drift bl2a die zu u*(t) gehOrende sto­
chastische Differentialgleichung eindeutig. 

• u*(t)=bI2a erfiillt offenbar die Momentenbedingung in Deftnition 10 und ist 
als Konstante progressiv messbar. Bedingung (2) folgt aus Lemma Ill. 16. 

• G(t,x) liegt in C1,2 und erfiillt offenbar die Bedingungen polynomialen 
Wachstums, stimmt also mit V(t ,x) iiberein. 

Wir wollen nun noch ohne Beweis einige Erweiterungen der bisher entwickelten 
Theorie fUr zwei weitere Fonnulierungen des stochastischen Steuerungspro­
blems geben (fUr Beweise sei auf die Kapitel III und N in Fleming/Soner (1993) 
verwiesen). 

Bemerkungen 

a) Hat das Kostenfunktional J(t ,x; u) die Fonn 

J(t, x; u) = E''% (f r(s) L( s, x( s), u( s)) do + r( r)'P( r, X( r))) 

mit 

fUr eine beschriinkte, stetige Funktion q(s,x,u), so gilt ein zu Satz 11 analoges Er­
gebnis, falls man statt (Hill l) _die Gleichung 

inf( AUG(t,x) + L(t,x,u) + q(t,x, u) O(t, x) ) = 0 (Hilll *) 
uelf 

betrachtet. Dieser Fall beinhaltet den der diskontierten Kosten, d.h. der Wahl 

r(s) = exp(- p(s - t)) 

fUr ein P>O . 

b) 1m Fall eines unendlichen Horizonts, d.h. einer gesteuerten stochastischen 
Differentialgleichung auf [0,00), nehmen wir an, dass die KoefflZientenfunktio­
nen Ii und u autonom sind (also unabhangig von t), aber weiterhin den fUr die­
sen Abschnitt allgemeinen Voraussetzungen geniigen. Die analoge Annahme 
geJte fUr die Kostenfunktionen L(x, u) und ,¥(x). Bezeichnet nun .. die erste Aus-
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trittszeit von X(s) aus 0, so wollen wir das folgende Kostenfunktional minimie-
ren 

wobei P>O ein Abzinsfaktor ist und r-=oo gilt, falls X(s) niemals 0 verliisst, was 
z.B. bei O=RR der Fall ist. Unter einer zulassigen Steuerung wollen wir nun ei­
nen progressiv messbaren U-wertigen Prozess u(.) verstehen, der mit to=O die 
Bedingung (1) in Defmition 10 fUr jedes endliche tl erfiillt. In Analogie zu Satz 
11 gilt dann: 

Satz 13 - Verifikationssatz ffir Losungen der HJB-Gleicbung bei . 
unendlicbem Horlzont 

Sei P>O und sei Ge C2(O)nC( 0)1 mit G(x)I:S:K(l+IxIk) fUr geeignete Konstan­
ten K> 0 und keN eine Losung der Hffi-Gleichung 

inf (tSpur(a(x, u)Gn (x») + Gx (x).u(x, u) + L{x,u) - PG(x») = 0, x eO, 
uelf 

G(x) = 'I'(x) , x ellO. 

Danngelten 

a) G(x):S:J(x, u) fUr aIle xeO und aIle zuliissigen Steuerungen u. 
b) Existiert fUr aile x e 0 eine zuliissige Steuerung u· mit 

u * (s) e arg ~[t spur( a( X* (s), u)G n (x* (s»)) + G x (x* (s»).u( X* (s), u) 

+ L(X*(s),u)- PG(X*(s))] 

fUr aIle se[O, r], wobeix*(s) der zu u*(.) gehOrende Prozess ist, so gilt 

G(x) = V(x) = J(x,u*) 

c) 1m Fall P=O gelten die Aussagen aus a) und b), falls 0 besehriinkt ist und flir 
alle zuliissigen Steuerungen u die erste Austrittszeit r fast sieher endlich ist. 
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Der Ansatz der stocbastiscben Steuerung in der zeitstetigen Portfolio-Optimie­
rung wurde von Robert Merton in den spilten seehziger Jabren eingefiihrt (siebe 
z.B. Merton (1969), Merton (1971» Sein Kempunkt bestebt im wesentlieben da­
rin, die im vorausgegangenen Exkurs entwiekelten Methoden auf das Portfolio­
problem anzuwenden. 

Allgemeine VOTllussetzungenflJT diesen Abschnitt 

Wir beschriinken uns bier auf einen Markt mit konstanten Marktkoeffizienten 
r, b, 0: Es gelte m ~d und die Matrix UE Rd.m babe maximalen Rang. 

Es kann also aueb der Fall eines unvollstiindigen Marktes behandelt werden, was 
nieht weiter uberrasehend ist, da die Eigensehaft der Vollstiindigkeit auch im 
Exkurs zur stochastischen Steuerung keine Rolle spielte. 

Grundlegende Idee: 

Die Vermogensgleichung eines Investors mit Strategie (n,c) wird als gesteuerte 
stoehastisehe Differentialgleiehung der Form 

dXU(t) = P(t. XU(t). u(t) )dt + u(t. XU (t).u(t) )dW(t) 

aufgefasst, wobei p, 0; U die folgende Gestalt haben 

U=(Ul.U2):= (n.c) 

,u{t.x.u} = (r + u~ (b - r· !))x - u2 

u(t.x.u) = x u;u 

(1) 

Entspreehend der versehiedenen Varianten von Veriftkationssiltzen aus Exkurs 8 
werden wir verschiedene Varianten des Portfolioproblems betracbten. Wir be­
ginnen mit dem gewohnten Problem (P): 
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Optimaler Konsum und optimales Endvermijgen bei endlichem Horizont 

Unser Ziel ist es also, das Nutzenfunktional 

durch Wahl von u=(n,c) zu maximieren. Sei hierzu 

V(t,x) = sup J(t,x;u) 
ueA{t.x) 

die Wertf'unktion des Portfolioproblems. Die zugehOrige HlB-Gleichung hat 
dann die Form 

{I' , 2 ( ) max 2u10'0' U1X VXX' t,x 
ul ~al.a2rU:2 e{o.oo) 

+((r +uab - r· !))x- U2) VAt,x)+ U1 (t,U2)+ Vt (t,x)} = 0 (2) 

V(T, x) = U2{X) 

Bemerkungen 

a) Zwar wurde in der Defmition einer zulassigen Steuerung die eindeutige Los­
barkeit der gesteuerten stochastischen Differentialgleichung gefordert, aber 
nicht, dass diese Losung XU(t} nicht-negativ sein sollte, wie dies z. B .. in unserer 
Defmition einer zulassigen Strategie (n,c)eA(x) gemacht wird. Es konnte des­
halb auch sein, dass eine optimale Steuerung zu einem negativen Vermogen fiih­
ren wiirde. Wir werden allerdings in unseren Beispielen sehen, dass dort die op­
timale Steuerung zu einem strikt positiven Vermogensprozess fiihrt. Eine Vor­
zeichenbedingung an den Vermogensprozess lieBe sich dort also nachtrliglich 
fordem, ohne die optimale Losung zu verlindem ! 

b) Wlihrend die Form der HJB-Gleichung (2) eine direkte Anwendung des Veri­
ftkationssatzes 11 ist (mit der Wahl Q=[O,1)xR und dem Ersetzen von "inf' 
durch ,,sup"), benotigt die Bedingung 

(3) 
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einer kurzen Erlauterung. Der Grund fUr diese zusatzliche Forderung liegt in der 
Anwendbarkeit des Verifikationssatzes. Die dortigen generellen Forderungen 

l.utl+l.uxl~c 100tl+IO"xl~C 
1.u(t,x,u)1 + lu(t,x,u)1 ~ C· (1 + Ixl + luI) 

sind bei den Koefflzienten der Form (1) fUr unbeschriinkten Wertebereich fUr x 
nur dann zu erfiillen, wenn die Wertemenge der zulassigen u 1 (t) beschrankt ist. 
Wir werden allerdings in den nachfolgenden Beispielen zeigen, dass die Forde­
rung (3) (zumindest dort) keine echte Forderung ist, wenn man das Intervall 
[ at, ~]d geschickt wiihlt. 

Liisung der zugehiirigen HJB-Gleichung 

Wir wollen nun das Portfolio-Problem (P) fUr die spezielle Wahl 

Ut(t,c)=.!.e-PtcY , U2(x)=.!.xY 
y y 

(4) 

mitP>O, ye(O,I) losen. 

1. Schritt: Lose das (formale) Maximierungsproblem. 

Unter der Annahme, dass V(t,x) strikt konkav in x ist und der Vermogensprozess 
X(t) strikt positiv ist (muss beides spater noch iiberpriift werden !), fiihrt die 
Maximierung in der Hm-Gleichung (2) zu den Kandidaten 

(5) 

(6) 

wobei wir zusatzlich annehmen, dass immer (ul' u2)e[al,~]dx[O,oo) gilt. Be­
achte auch, dass es fUr die Maximalitat von ul' u2 gemii8 (5), (6) unter den obi­
gen Annahmen bereits hinreichend war, dass sie die eindeutigen Nullstellen der 
jeweiligen partiellen Ableitungen der in (2) zu maximierenden Funktion waren. 

2. Schritt: Lose die partielle Differentialgleichung 

Setzt man Ut, u2 der Form (5) in (2) ein, so erMlt man die folgende partielle Dif­
ferentialgleichung fUr V(t, x) 
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1 ( )'( ,)-1( ) V;(t,X) () 0= -2" b-r·! uu b-r·! () +r·x·Vx t,x 
V xx t,x 

y pt - - (l-r) + V 1-1 (t,x) ·e y-1 . -r- + vt (t,x) . (7) 

Zur Losung von (7) legt die Endbedingung V(T,x) = ;xY den Separations­

ansatz 

V(t,x) = /(t). ;xY ,A1)=1 (8) 

nahe. Bildet man hiervon aIle in (7) vorkommenden partiellen Ableitungen und 
setzt deren Form in (7) ein, so erhalt man nach Division durch den in allen Ter­
men vorkommenden Ausdruck xY die gewohnliche Differentialgleichung 

0= [ -t(b -r.!)' (uu,)-I(b -r· !). r ~ 1 +r l /(t) 
pt ..L 

+ 1-; ey-t /(t) r-I + /,(t) . (9) 

Beachte, dass es hierfiir wesentlich ist, dass der Quotient Vx2(t ,x)/V xx(t ,x) durch 
den Ansatz (8) eine sehr einfache Form erhalt. Mit den Abkiirzungen 

at:= -t(b-r.!)' (uu,)-I(b-r.!) Y~1 +r, 

PI 
a2(t):= I;Y eY-l 

erhalt (9) die Form 

mit Randbedingung A 1) = 1. Die Substitution 

1 
g(t) = /(t) I-r 

ergibt 

(10) 

(11) 

(12) 

1 

Einsetzen von (11) in (10) fiihrt nach Division durch (1- r)· /(t) I-r und Ver-

wenden von (11) auf die folgende lineare Differentialgleichung fUr g(t) 
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g'{t) = -~g(t) - a2{t) , g(1)= 1. 
l-r l-r 

(13) 

Explizites Losen von (13) mittels Variation der Konstanten ergibt 

al ( al-/J al-/J J al ) ~(T-t) l-r ~T ~t ~(T-t 
g(t) = e r + ( ) e r - ere r , 

r al-/J 
(14) 

woraus sich dann die entsprechende Form von/(t) uber (11) und die Form von 
Vet, x) uber (8) ergibt. Zwar liisst sich die rechte Seite von (14) noch vereinfa­
chen, aber die angegebene Form hat den Vorteil, dass aus ihr direkt ersichtlich 
wird, dass g(t) strikt positiv ist. Beachte hierzu insbesondere, dass at, P beide 
positiv sind und dass das Vorzeichen des Ausdrucks in Klammem gleich dem 
seines Vorfaktors ist. Eine weitere Konsequenz der Existenz einer Losung der 
HJB-Gleichung der Form (8) ist die Form von (n; e) als 

tr{t) = Ut (t. X" (t») = t~r (aa,)-l(b -r.!) =: tr" , (15) 

I 

c(t) = U2{t.X"(t)) = (e/Jt • /(t))r- I • X"(t). 

3. Schritt: Oberpriifung der gemachten Annahmen 

i) Vet, x) der Form (8) mit dem berechneten.f(t) ist offenbar strikt konkav, da.f(t) 
strikt positiv ist. Weiter ist V(t,x) eine klassische C1.2-Losung der HJB-Glei­
chung, die den geforderten polynomialen Wachstumsbedingungen genugt. 

ii) Der Vermogensprozess XU(t) zum optimalen u(t) genugt wegen (15) der sto­
chastischen Differentialgleichling 

1 
r-I 

dX"(t) = X"(t)[(r + tr'" (b-r.!)-(e/Jt ./(t») )dt+tr.,.' adW(t)] 

X"{O) = x 

Insbesondere hat diese Gleichung eine eindeutige Losung, die sogar strikt positiv 
ist und wegen Lemma II1.16 auch die geforderte Momentenbedingung (2) aus 
Exkurs 8 erfiiUt. 

iii) Wegen der Positivitiit von XU(t) undj{t) ist e(t) gemiiB (15) auch positiv. tr" 
ist sogar konstant. Wir wiihlen nun at, az mit at< 0 <az, so dass 
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gilt, also die Bedingung (3) im optimalen 1!. erfiillt und nicht aktiv ist. Foiglich 
kann Bedingung (3) fUr gr06e Werte von aI' a:z auch weggelassen werden, ohne 
dass sich die optimale Strategie lindert. Da kleine Werte von a; aber im un­
beschriinkten Problem (P) keine Rolle spielen, haben wir nicht nur das zu (2) ge­
hOrende beschriinkte stoehastisehe Steuerungsproblem, sondem sogar das Port­
folioproblem (P) gelast, also gilt: 

Proposition 14 

Das Portfolioproblem 

max E(Je-P1lc(t)Y dt+lX(T)Y) 
(1r,c)eA(x) 0 r r 

(16) 

wird durch die Strategie (n; c) gemiiB 

1! .(1) = I~r (o-o-,)-I(b - r· 1) , 
I 

c ·(t) = {eP1/(t»),-1 x(t}, 

gelost, wobei.f(t) durch (14) und (11) gegeben ist. 

Bemerkung 

a) 1m Allgemeinen ist es au6erst schwierig, Aussagen tiber eine regulare Losung 
von (2) zu machen. 

b) Ahnlich wie beim partiellen Differentialgleichungs-Ansatz der Optionsbewer­
tung ist auch beim Ansatz der stochastischen Steuerung die optimale Strategie 
ein Abfallprodukt der Bestimmung des optimalen Nutzens. Allerdings erhiilt 
man dieses ,,Abfallprodukt" auch nur dann explizit, wenn man die partielle Dif­
ferentialgleichung explizit losen kann. 

e) Es ist bemerkenswert, dass die Form des optimalen Portfolioprozesses unab­
hlingig von der Zeit ist. Die Form des optimalen Konsumprozesses kann so inter­
pretiert werden, dass die Konsumgeschwindigkeit (oder Konsumrate) proportio­
nal zum gegenwartigen Vermogen X(t) ist, wobei der Proportionalitatsfaktor al­
lerdings von der Zeit abhlingt. 
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Optimaler Konsum bei unendlicbem Horizont 

Wir wollen nun ein sogenanntes Lebenszeit-Konsum-Problem losen; genauer be­
trachten wir das Problem 

(LK) 

mit P>O, ye (0,1), X>o. 

Um dies nun in ein aquivalentes stochastisches Steuerungsproblem umzuformen, 
mtissen wir beaehten, dass die Forderung 

X(t)~O fUr aIle t~O, 

die ja in (n', c) e A(x) enthalten ist, besagt, dass der Investor aIle Wertpapiere so­
fort verkaufen muss, wenn zum erstenmal X(t) = 0 gilt. Sei deshalb 

r:= inf{t > 01 X(t):: O} 

Wir betraehten dann in Analogie zum KonsumNermogensbeispiel das stochas­
tisehe Steuerungsproblem mit Wertfunktion 

V(x) = sup EX(Se-Pt 7c(t)Y dt] , 
ueU(x) ° 

(17) 

wobei U(x), die Menge zulassiger Steuerungen bei Start in x, durch die Forde­
rung en 

charakterisiert ist (namrlich sollen auch die sonstigen Anforderungen an eine zu­
lassige Steuerung erfiiIlt sein I). Wie im Fall des unbeschrlinkten, zufalligen Ho­
rizonts im Exkurs 8 stellen wir die zugehOrige Hffi-Gleichung auf als 

) .Jmax]d {tU~0"0"'Ulx2V"(x) 
(UI,U2 9.al,a2 x[o,co) 

+((r+u{(b-r. 1))x-u2 )V1(x)- PV(x)+7uI} = O. (19) 

Es ergeben sich wieder die folgenden Sehritte: 
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1. Maximierung 

Die ubliche Annabme "V E C2 strikt konkav und streng monoton wachs end" lie­
fert als Kandidaten fUr die optimalen Steuerungen 

.( ) (,)-l( ) V'(x) 
ul t = - 0'0' b-r·! x.V"(x) ' 

u;(t) = V'(x)r~1 , 

wobei wir weiter annehmen, dass (uI·,u2·) den Forderungen (18) genugen. Ein­
setzen von UI·' u2· in (19) fiihrt zur Differentialgleichung 

I' V'(x)2 
O=--(b-r.l) (uu,)-l(b-r.l) () +r·x·V'(x) 

2 - - V" x 

) ( r~1 (I-r) -p.V(x +V' x) . r (20) 

2. Losen der Differentialgleichung 

Die Forderung einer polynomial beschriinkten Losung von (20) im Veriflka­
tionssatz legt den Ansatz 

V(x) =.!.Axr 
y 

mit einem A> 0 nahe. Verwendung des Ansatzes und der entsprechenden Ablei­
tungen von V(x) Hefert nach Einsetzen in (20) und Division durch den allen Ter­
men gemeinsamen Faktor Axr die folgende Gleichung fUr A 

1 

1 ( )' ( 1 ( ) 1 1 1-Y -1 0=-2 b-r·! uu't b-r·!· y-l +r-p·Y+-y-Ar- . 

Diese Gleichung hat genau dann eine positive Losung A, wenn gilt 

(21) 

d.h. falls der Abzinsfaktor p hinreichend groB gewiihlt ist. In diesem Fall gilt 

A =(-y [p.-(r- (1 ) (b-r.ll' (<7U'l-l(b_r lll]r-
1 

I-r y 2y-l 'j 
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3. UberpIiifen der Annabmen 

i) Unter (21) ist V(x)= xY.Alroffenbar eine c2-Losung von (20) bzw von (19), 
die den genannten Bedingungen geniigt. 

ii) Weiter sind, bei geeigneter Wahl von at, ~, dann Ut*(t), u2 *(t) zulassige 
(und somit optimale!) Steuenmgen, da sie die explizite Form 

U~(t)= l~r (uu,)-t(b-r·1) 

1 

U;(t) = Ar-l .X(t) 

haben. Der zugehOrige Vermogensprozess X" (t) hat dann die Form 

X*(t} = x.exp([r + I~r (b-r. 1)' (uu'tI(b-r. 1)-A r~l) t 

-t(·2;YII(b-r.1)' (uu,)-Iur t + I2r (b-r·1)' (uu,)-luW(t)]. 

ist also strikt positiv. 

Insgesamt erhalten wir also mit Hilfe des Veriftkationssatzes fUr den Fall des un­
beschriinkten Horlzonts: 

Propostion 15 

Unter der Voraussetzung (21) wird das Lebenszeit-Konsum-Problem (LK) durch 
das Paar (1r*, c *) mit 

gelost. 

1/(t) = 1 ~ r (uu'tI(b - r· 1), 
1 

/(t) = A r-I . X(t) 

Bemerkungen 

a) Der durch den unendlichen Horizont verursachte Unterschied zum vorherge­
henden Problem spiegelt sich in dem zeitunabhiingigen Proportionalitatsfaktor 
AII(y-I) des optimalen Konsums wider. 
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b) Eine solch einfache Form der optimalen 8trategien (tr*, c*) ist im allgemeinen 
Fall nicht zu erwarten. Mehr noch, es gilt sogar die Beziehung: 

tr*(t}=const, c*{t}=8X{t} losendasProblem 

<=:> U{c} = acY +d fUr geeignetes ye(O,I), a, d>O. 

(siehe z.B. Prop. 3.39 auf 8.54 in Kom (1997». 

c) 1st die Wachstumsbedingung (21) nicht erfiiIlt, so kann die Endlichkeit der 
Wertfunktion nicht sichergestellt werden. 

Ubungsaufgaben 

iT. 1 Lose mit Hilfe der Martingalmethode das Portfolioproblem (P) im Fall 
konstanter Marktkoefftzienten, wenn als Nutzenfunktionen 

1 
U1{t,x) = U2{x) =-xY , ye(O,I) fest, 

y 

gewiihlt werden. 

a) Bestimme zunachst den optimalen Konsum c*(t) und das optimale Endvermo-
genB*. . 

b) Bestimme den optimalen Portfolioprozess tr*(t). 

iT.2 Lose mit Hilfe der Martingalmethode das Konsumproblem (K) (siehe 
Korollar 7) fUr die Wahl der Nutzenfunktion 

1 
U1{t,x)=-e-ptxY , ye(O,l),p>Ofest. 

y 

Wie hlingen die optimalen 8trategien (1( , c *) von p ab? 

iT.3 Man betrachte im Beispiel "Logarithmischer Nutzen" aus Abschnitt V.3 
die Option mit Endzahlung 
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B = I PI (T) - KI· 
a) Bestimme den Preis von B sowie die zugehOrende duplizierende Handelsstra­
tegie 'P(t)=('P o(t), 'PI (t». 

b) Man zeige, dass fUr obige Option Satz 8 richtig bleibt, wenn man mit den dor­
tigen Bezeichnungen 

setzt. 

{ 
q}(t) 

( )._ -()' falls 'PI (t) ¢ 0 
9'1 t.- 'PI t 

o , sonst 

c) Betrachte fUr festes t E [0, 1] den optimalen Optionsportfolioprozess 1rop,( t) 
als Funktion von PI (t). Was passiert im Wert von P1(t), fUr den 'P1(t) ver­
schwindet. 

U.4 Lose fUr ein T>O das folgende stochastische Steuerungsproblem 

mit 

min EO.x (J( M· X(s)2 + N . u(S) 2 ) ds + D· X(T)2] 
u(.) ° 
dX(s) = (A.X(s) +B.u(s)) ds+O' dW(s) , 

X{O) =x ER, 

wobei M, N, D>O, A, B, O'E R und U=R sind. 

Hinweis: Wahle zum Losen der Hffi-Gleichung den Ansatz v(t,x)=j{t)x2+g(t) 
im 2. Schritt des Losungsalgorithmus. 

u.s Lose fUr ein T>O das stochastische Steuerungsproblem 

mit 

max E(X( TV) 
u(.) 

dX(t) = au{t) dt +u{t) dW(t) , 

X{O) =x>O, 

wobeix>O, aER, O<y<1, U=R, 0=(0,00) und r=inf{tE [0, 1] I X(t)=O}I\T. 

Zeige insbesondere, dass die optimale Strategie u·(t) und die Wertfunktion 
V(t ,x) die Formen 
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u*(t) =_a_x(t) , 
1-y 
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V(t,x) = exp( a2 • 2(L y) (T-t)) ·xY , 

besitzen. 

'0.6 Man zeige, dass das Konsumproblem mit unendlichen Horizont 

im Marlct mit konstanten KoefflZienten genau dann das optimale Losungspaar 

l/(t)=HERd, 

c *(t) = o· X(t) , 

fUr geeignete Konstanten HE R, 0>0 besitzt, wenn 

u(c) = a·cY +d 

fUr geeignete yE (0,1), a, d>O gilt. 

'0.7 Lose das Vermogensmaximierungsproblem (E) (siehe Korollar 7) im Fall 
konstanter KoefflZienten mit d=m= 1, 

wenn an Stelle des Bonds eine Aktie mit Preis 

vorhanden ist, mit Hilfe stochastischer Steuerung. 

'0.8 Man zeige, dass das Marktmodell aus Aufgabe 7 vollsmndig ist. Verwen­
de hierbei nicht Satz III.34. 
Hinweis: Man uberlege zunachst, wie sich durch Kombination der beiden Aktien 
ein risikoloses Portfolio erzeugen lasst. 
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