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Vorwort

Es gibt wohl nur wenige Dinge im téiglichen Leben, die in der landldufigen Mei-
nung so als Synonym fiir Unsicherheit angesehen werden wie Aktienkurse. Nie-
mand ist in der Lage, ihren genauen zukiinftigen Wert vorherzusagen, da er von
vielen Faktoren bestimmt wird, die auf nicht exakt vorhersehbaren Ereignissen
(wie z.B. allgemeine Wirtschaftslage, politische Ereignisse, firmenspezifische
Einfliisse, Kaufer-/Verkduferverhalten, ...) basieren. Es ist daher naheliegend,
Finanzmirkte, in denen Aktien (und andere Wertpapiere) gehandelt werden,
durch stochastische Modelle zu beschreiben.

Die Geschichte dieser stochastische Modellierung hatte ihren Anfang in der Dis-
sertation von L. Bachelier (1900). Das wahrhaft bahnbrechende Ergebnis der
modernen Finanzmathematik war hingegen die gut siebzig Jahre spiter entwic-
kelte Black-Scholes-Formel zur Bewertung européischer Optionen (siehe Black
und Scholes (1973)). Sie brachte die Theorie der zeitstetigen Modelle fiir Fi-
nanzmérkte um einen wesentlichen Schritt weiter. Vor allem bewihrte sich die
Formel so gut in der Praxis, dass der Handel mit Optionen regelrecht aufbliihte.
Dieser groBe Erfolg in Theorie und Praxis wurde dokumentiert durch die
Verleihung des Nobelpreises an Merton und Scholes 1997. In der Folge entstan-
den und entstehen an den Finanzmirkten immer weitere, neue und zum Teil in
der Vertragsausgestaltung komplexe Derivate. Fiir die quantitative Bewertung
vieler solcher neuartiger Derivate ist eine fundierte Kenntnis des mathe-
matischen Modells und des mathematischen Handwerkszeugs, das der Black-
Scholes-Formel zugrunde liegt, insbesondere des Itd-Kalkiils, nétig. Nur das
verstiirkte Vordringen des Itd-Kalkiils in die Finanzmathematik gegen Ende der
siebziger Jahre hat iiberhaupt erst die groBSe Entwicklung des organisierten
Handels mit Derivaten ermdglicht und ihm viel an Risiko genommen. Dem wird
auch von den Finanzhidusern Rechnung getragen, indem verstirkt Mathematiker,
Physiker und Wirtschaftsmathematiker mit entsprechenden Kenntnissen ein-
gestellt und teils aus dem Ausland rekrutiert werden.

Ein Ziel unseres Buches ist eine schnelle und griindliche Einfiihrung-in den It6-
Kalkiil, die genau auf die Anwendungen in der Finanzmathematik zugeschnitten
ist und insbesondere auf fiir die Anwendung nicht benétigte Allgemeinheit ver-
zichtet.



VI Vorwort

Des weiteren wird in unserem Buch in die Methodik der Optionsbewertung nach
dem Duplikationsansatz eingefiihrt. Dies ist der in Theorie und Praxis akzep-
tierte Ansatz, der auf dem Prinzip basiert, dass der Preis einer Option gerade
dem Geldbetrag entspricht, der bendtigt wird, um die sich aus dem Besitz einer
Option ergebenden Zahlungen, durch Verfolgen einer Handelsstrategie in Aktien
und Bargeld synthetisch erzeugen zu kénnen.

Gerade in den letzten Jahren tauchten am Markt immer wieder neue Optionsty-
pen, sogenannte "exotische Optionen" auf. Anhand zahlreicher Beispiele stellen
wir verschiedene Wege vor, Preise fiir solche Optionen zu finden. Es wird
gezeigt, wie man die Methoden aus den vorhergehenden Kapiteln anwenden
kann, wie man mit Hilfe einfacher logischer Uberlegungen Preisgrenzen fest-
setzen kann und wie man mit Hilfe numerischer Methoden, niherungsweise
Preise fiir Optionen bestimmen kann, fiir die keine Preisformel bekannt ist. Dies
gibt dem Financial Engineer in der Bank die Moglichkeit, Verfahren zu imple-
mentieren, mit deren Hilfe er auch neue, bisher nicht am Markt bekannte
Produkte bewerten kann,

SchlieBlich ist auch die Bestimmung optimaler Investmentstrategien eine zentra-
le Fragestellung in der modernen Finanzmathematik. Auf diesem Gebiet ist die
Anwendung des It6-Kalkiils bei weitem noch nicht so weit in der Praxis ver-
breitet, wie bei der Optionsbewertung. Die Darstellung dieser modernen Port-
foliotheorie innerhalb unseres Buches kann eventuell eine Startfunktion fiir ihre
Verbreitung in der Praxis haben.

Auch wenn die Basis unseres Buchs eindeutig in der Stochastik liegt, so wollen
wir doch ausdriicklich auf die mathematische Breite der ,,neuen“ Finanzmathe-
matik hinweisen. Man wird beim Lesen des Buchs feststellen, dass sowohl
Anwendungen aus dem Bereich der partiellen Differentialgleichungen, der Opti-
mierung, der Numerik und auch der Funktionalanalysis eine wichtige Rolle
spielen.

Bendtigte Vorkenntnisse

Zum Verstindnis des groBten Teils des Buchs geniigt ein Grundkurs in Wahr-
scheinlichkeitstheorie, da fast alle dariiber hinaus gehenden Hilfsmittel hier ent-
wickelt werden. Zwar sind Kenntnisse aus der Theorie stochastischer Prozesse
wiinschenswert, unbedingt notwendig ist aber lediglich die Kenntnis des beding-
ten Erwartungswerts und seiner Haupteigenschaften.

Nicht nétig sind weitreichende Vorkenntnisse im Gebiet der Finanzwirtschaft.
Die fiir das Verstindnis der mathematischen Modelle bendtigten wirtschaftlichen
Zusammenhiinge werden jeweils kurz erldutert. Weitere Hintergriinde zum Han-
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del mit Optionen erfihrt man z.B. aus den Biichern von Hull (1993) oder Jarrow
und Turnbull (1996).

Inhalt und Konzept

Bis auf eine kurze Einfiihrung in den Erwartungswert-Varianz-Ansatz nach Mar-
kowitz konzentrieren wir uns in diesem Buch auf die Darstellung sogenannter
zeitstetiger Modelle. Da es unser Ziel ist, eine griindliche Einfiihrung in die
mathematischen Methoden der zeitstetigen Finanzmathematik zu geben, wollen
wir auch die benétigten mathematischen Hilfsmittel entwickeln und nicht nur
bereit stellen. Hierbei besteht unser Konzept darin, diese Hilfsmittel (wie z.B.
stochastische Integration, Maflwechsel, stochastische Steuerung, ...) immer dort
zu entwickeln, wo sie zum ersten Mal in der Finanzmathematik angewendet
werden. Hierdurch soll eine strikte Trennung von Anwendung und mathemati-
schem Hilfsmittel vermieden werden. Umgekehrt soll das Buch aber keine blofie
Sammlung mathematischer Resultate beinhalten, die dann in der Finanzmathe-
matik angewendet werden. Deshalb werden die wesentlichen Hilfsmittel immer
in eigenstiindigen Exkursen zusamengefasst. Des weiteren sind diese Exkurse
kompakt gehalten und beinhalten meist nur die tatséichlich in der Anwendung
bendtigten theoretischen Resultate. Dies hat den Vorteil, dass es moglich ist, den
Grofiteil des Stoffs innerhalb einer 4-stiindigen Vorlesung zu prisentieren. Um
diese Vorgabe zu verwirklichen haben wir uns an einigen wesentlichen Stellen
beschriinkt. Wir verzichten auf die Darstellung der stochastischen Integration
beziiglich einem beliebigen stetigen Semi-Martingal und schriinken uns statt
dessen auf die Klasse der Itd-Prozesse als Integratoren ein. Fiir die Anwendung
stellt dies keine wesentliche Einschrinkung dar, fiir die Theorie erméglicht es
aber die Darstellung des Stoffs ohne Verwendung der Doob-Meyer-Zerlegung.
Ihre Darstellung hiitte sowoh! den Umfang als auch den Schwierigkeitsgrad des
Buchs erheblich erhiht.

Je nach Vorkenntnis und Interesse gibt es verschiedene sinnvolle Moglichkeiten,
dieses Buch zu lesen. Die von uns empfohlene ist, der Reihenfolge des Buchs zu
folgen. Allerdings ist es auch méglich, die Optionskapitel IIT und IV zu
iiberspringen und nach Kapitel II sofort die Portfolio-Optimierung in Kapitel V
zu lesen. Eine eher konventionelle Vorgehensweise bestiinde in der ,,Abarbei-
tung” aller Exkurse und anschlieBendem Lesen der finanzmathematischen An-
wendungen.

Einzelne Rechnungen und Anwendungen wurden von uns nicht (im Detail)
durchgefiihrt und sind statt dessen als Ubungsaufgaben vorhanden. Wir empfeh-
len dem Leser unbedingt zumindest einige dieser Aufgaben zu lésen.
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Da ein Einfiihrungsbuch wie das hier vorliegende bei moderatem Seitenumfang
lediglich einen ersten Eindruck eines Gebiets der Mathematik vermitteln kann,
wollen wir hier noch einige weiterfiihrende Quellen angeben. So sei fiir weiter-
fithrende Darstellungen der stochastischen Integration auf Karatzas und Shreve
(1991), Oksendal (1992), Revuz und Yor (1991), Rogers und Williams (1987)
oder von Weizsdcker und Winkler (1990) verwiesen. Neuere Entwicklungen der
Portfolio-Optimierung sind in Korn (1997) zu finden, wihrend Karatzas und
Shreve (1998) sowohl weiterfithrende Aspekte zur Optionsbewertung als auch
zur Portfolio-Optimierung und zu Marktgleichgewichten beinhaltet.

Macht Mathematik reich ?

Diese Frage muBl man sich als Autoren eines Buchs iiber Optionsbewertung und
Portfolio-Optimierung sicherlich gefallen lassen. So wie Geld allein nicht gliick-
lich macht, macht auch Finanzmathematik allein nicht reich. Das beste mathe-
matische Modell ist nutzlos, wenn die von ihm benétigten Parameter nicht
einigermafien genau angegeben werden. Hier wird das Wissen der Héndler und
Okonomen um interne Sachverhalte nach wie vor eine groBe Rolle spielen. Auch
nutzt ein gutes mathematisches Modell nichts, wenn es falsch angewendet wird.
Unter diesem Gesichtspunkt muss man auch die neuerlichen Milliardenverluste
mancher Anlagefonds sehen. Hier hat man fahrldssig stark risikobehaftete
Wertpapiere als sichere Anlage eingestuft und ist ein viel zu hohes Risiko
eingegangen. Der Hauptnutzen der von uns vorgestellten mathematischen
Werkzeuge besteht sicher in der korrekten Bewertung zufilliger Zahlungen (wie
z.B. Optionen) und der optimalen Kombination vorhandener Information (wie
z.B. der Portfolio-Optimierung bei bekannten Marktkoeffizienten). Mathematik
kann das Marktrisiko nicht vollstindig ausschalten, aber ein gutes Hilfsmittel
sein, um es zu beschrinken und zu beurteilen.

Danke

An dieser Stelle méchten wir allen, die an der Entstehung dieses Buchs beteiligt
waren, ganz herzlich danken. Das Buch ist aus Vorlesungen des ersten Autors an
den Fachbereichen fiir Mathematik der Johannes Gutenberg-Universitit Mainz
und der Technischen Universitit Miinchen hervorgegangen. Insbesondere die in
Miinchen gehaltene Vorlesung spiegelt sich im Inhalt des Buch in wesentlichen
Ziigen wieder. Professor Claudia Kliippelberg gebiihrt unser erster Dank fiir die
Initiierung des gesamten Buchprojekts und ihre Unterstiitzung wihrend seiner
Durchfiihrung. Nicht zuletzt haben wir ihr den Kontakt zum Vieweg Verlag zu
verdanken. Wir mochten hier auch all unseren Lehrern fiir die gute Ausbildung
danken, insbesondere den Professoren Wolfgang J. Biihler, Heinrich Miilthei,
Claus Schneider und Hans-Jiirgen Schuh. Dr. Milan Borkovec hat durch viele
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Diskussionen zum Stoff und die Betreuung der Ubungen zur in Miinchen
gehaltenen Vorlesung einen wesentlichen Teil zu unserem Buch beigetragen.
Frau Ulrike Schmickler-Hirzebruch und dem gesamten Vieweg Verlag danken
wir fiir die angenehme Zusammenarbeit und das uns entgegengebrachte
Vertrauen. Nicht zuletzt aber wollen wir uns bei unserem Sohn Uwe fiir sein
groBes Verstindnis bedanken, das er fiir unsere oft knapp bemessene Zeit
wihrend der Entstehung des Buchs aufbrachte.

Hallgarten, im Januar 1999 Ralf Korn, Elke Korn

Ergiinzung zur zweiten Auflage

Wir haben uns sehr iiber das groBe Interesse an der ersten Auflage unseres
Buchs gefreut. Insbesondere mochten wir uns ganz herzlich bei all denen
bedanken, die uns auf Fehler aufmerksam gemacht haben, namentlich bei Dr. M.
Borkovec, Dr. M. Helm, Dipl. Math. Dipl. Kfm. H. Kraft, Dipl. Math. M.
Krekel, Dr. O. Schein, Dr. G. Schliichtermann, Dipl. Math. J. Sutor, und Dipl.
Math. T. Volz.

Stelzenberg, im August 2001 Ralf Korn, Elke Korn
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Abkiirzungs- und Symbolverzeichnis

Abkiirzungen

bzgl.  beziiglich

bzw.  beziehungsweise
dh. das heifit

iid.  unabhéngig und identisch verteilt
oBdA ohne Beschrinkung der Annahme
ua. unter anderem

usw. und so weiter

vgl. vergleiche
z.B. zum Beispiel
min minimiere

max  maximiere

inf Infimum

sup Supremum

NB unter der/den Nebenbedingung/en

Symbole

N natiirliche Zahlen

A ganze Zahlen

R reelle Zahlen

1%} leere Menge

exp(x) =e*

C([0,1]) Raum der stetigen Funktionen auf [0,1]

ct Raum der einmal stetig differenzierbaren Funktionen
c? Raum der zweimal stetig differenzierbaren Funktionen



XV

Cl2

Raum der stetigen Funktionen, die nach der ersten Komponente stetig
differenzierbar sind und nach der zweiten Komponente zweimal stetig
differenzierbar sind

J{t.x), f(t,x) partielle Ableitungen

at max{a,0}

a max{—a,0}

xAy  min{x,y}

B(U) Borel-o-Algebra iiber U (die kleinste o-Algebra, die alle offenen Teil-
mengen des topologischen Raums U umfasst)

o(G) Kkleinste o~Algebra, die alle Mengen des Mengensystems G umfasst

o(X) kleinste o-Algebra, fiir die die Zufallsvariable X messbar ist

50 Rand der Menge O

) Abschluss der Menge O, dh. 0 =0US 0

N(0,1) Standard-Normalverteilung

M(u, 0*) Normalverteilung mit Erwartungswert # und Varianz o®

~ verteilt wie

A:=B A wird durch B definiert

x’ Transponierte des Vektors x

1 =(1,1,..,1)’

E(X) Erwartungswert der Zufallsvariable X

Var(X) Varianz der Zufallsvariable X
Cov(X) Kovarianz der Zufallsvariable X
E(X | F) bedingter Erwartungswert der Zufallsvariable X bzgl. der o-Algebra F

0.9}
&0

quadratische Variation des It6-Prozesses X
quadratische Kovariation der It6-Prozesse X und Y



Kapitel I: Der Erwartungswert-
Varianz-Ansatz im Ein-Perioden-
Modell

Bevor wir uns mit den zeitstetigen Marktmodellen beschiftigen, wollen wir hier
als Einfiilhrung ein einfaches Ein-Perioden-Modell betrachten. Der mathema-
tische Startpunkt der Theorie der Portfolio-Optimierung war 1952 die Arbeit von
H. Markowitz (1952) iiber den Erwartungswert-Varianz-Ansatz zur Beurteilung
von Investmentstrategien an Wertpapiermirkten. Aufgrund seiner Einfachheit
und Plausibilitit wurde er schnell sehr populédr in Theorie und Praxis und wird
auch heute noch hiufig angewendet. VerdientermaBen erhielt Markowitz 1990
zusammen mit zwei anderen Wissenschaftlern den Nobelpreis fiir Wirtschafts-
wissenschaften. Allerdings liegen in der Einfachheit des Erwartungswert-
Varianz-Ansatzes auch erhebliche Nachteile, was spéter zwangslidufig zur Be-
trachtung zeitstetiger Modelle fiihrte (siehe z.B. Merton (1969) ). Das zugrunde
liegende Modell ist ein sogenanntes Ein-Perioden-Modell, d.h. es werden zu
Beginn der Periode Entscheidungen iiber Investmentstrategien getroffen, die
hieraus folgenden Konsequenzen werden dann am Ende der Periode beobachtet,
und dazwischen findet kein Eingriff in den Markt statt. Man nennt solche
Modelle auch statische Modelle, weil nach dem Festlegen der Strategie nicht
mehr gehandelt wird.

Beschreibung des Ein-Perioden-Modells

Am Markt werden d verschiedene Wertpapiere mit Preisen p,, p,,..., p;>0 zum
Anfangszeitpunkt ¢=0 gehandelt. Die Wertpapierpreise P;(T), Py(T),...,PAT)
zum Endzeitpunkt ¢=T sind nicht vorhersehbar und werden deshalb als nicht-
negative Zufallsvariablen auf einem Wahrscheinlichkeitsraum (Q, F, P) model-
liert. Im folgenden werden die sogenannten Renditen der Wertpapiere
R(T) = Eﬂ, i=l,..., d,
pi

betrachtet, von denen wir annehmen, dass wir ihre Erwartungswerte, Varianzen
und Kovarianzen

E(R(T)) = m fiir i=1,..., d



2 Kapitel I: Der Erwartungswert-Varianz-Ansatz

Cov(R(T), R/(T)) = o fir i, j=1,.., d .

kennen. Es sei jede beliebige Stiickelung der Wertpapiere zulidssig, man kann
also ¢g;eR Anteile vom i-ten Wertpapier erwerben. Negative Anteile ent-
sprechen sogenannten Wertpapierleerverkdufen (siche auch Abschnitt I1.2), die
wir aber im Folgenden ausschlieien wollen, um die Méglichkeit eines negativen
Endvermdgens zu vermeiden. Wir verlangen also ¢;>0. AuBerdem gebe es auf
diesem Markt keine Transaktionskosten, anders als in Wirklichkeit sollen beim
Kauf oder Verkauf von Wertpapieren keine zus#tzlichen Kosten anfallen.

Bemerkung
Die Matrix 0: ()i je(1,...ay st als Varianz-Kovarianz-Matrix positiv semi-
definit !
Definition 1
Ein Investor mit Anfangsvermégen x>0 halte ¢;>0 Anteile vom i-ten Wert-
papier, i=1,..., d, mit
d
Z¢,~ ‘PP = X "Budgetgleichung".
i=1
Dann ist der Portfoliovektor 7=(7,..., z;) definiert durch

= w'—xpl-, i=1,..,d

und
d .
R™:= 3 p;-Ri(T)
i=1
heiBt die zugehorige Portfolio-Rendite.
Bemerkungen

a) Die Komponenten des Portfoliovektors geben an, welche Anteile am Gesamt-
vermogen in die einzelnen Wertpapiere investiert werden. Insbesondere gilt



Kapitel I: Der Erwartungswert-Varianz-Ansatz 3

b) Ist X{T) das zum Anfangsvermégen x und zum Portfoliovektor z gehdrende
Endvermigen

X*(1)=3 ;- B(1),

i=1

so gilt

r_e _d¢i'Pi_P:'(T)=X”(T)
R =) m;-Ri(T)=Y, P —

i=l1 i= i
was die Bezeichnung Portfolio-Rendite rechtfertigt.
¢) Der Erwartungswert und die Varianz der Portfolio-Rendite lauten

B(")- S

i=1
d d

Var(R”)=Zer,- O T

i=1 j=1

Kriterien fiir die Auswahl eines Portfolios

Natiirlich besteht bei der Auswahl eines Portfolios der Wunsch, eine moglichst
hohe Rendite zu erzielen. Nimmt man nun den Erwartungswert der Portfolio-
Rendite als Zielkriterium, so wird das in der Regel dazu fiihren, dass man das
gesamte Vermogen in die Aktie mit der groBten erwarteten Rendite investiert.
Dies kann aber gerade eine sehr risikoreiche Aktie sein und als Folge ist der Er-
trag sehr grofien Schwankungen unterworfen. Man fiihrt deshalb das Minimieren
des Risikos als zweites Zielkriterium ein, wobei als MaB fiir das Risiko die Vari-
anz der Portfolio-Rendite gewdhlt wird. Die Idee von Markowitz basiert nun
darauf, entweder eine untere Schranke fiir den Erwartungswert der Rendite
(Minimal-Rendite) zu fordern und dann den Portfoliovektor mit minimaler Va-
rianz der Rendite auszuwihlen oder aber eine obere Schranke fiir die Varianz der
Portfolio-Rendite vorzugeben und unter den verbleibenden Portfoliovektoren
den mit dem maximalen Erwartungswert auszuwihlen. Wir stellen diese beiden
Varianten des Erwartungswert-Varianz-Ansatzes nun explizit vor.

Problemstellungen im Erwartungswert-Varianz-Ansatz

a) Man stellt sich die Aufgabe, den Erwartungswert der Portfolio-Rendite E(R%)
bei vorgebener oberer Schranke c; fiir die Varianz Var(R™) zu maximieren.
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:1:{5 E(R”) (EVP)

d
NB 7,20 fir i=l,..d, .7 =1, Va R")Sq

i=1

In Worten: Unter allen moglichen Portfolios 7€ R? betrachtet man nur die, die
die Nebenbedingungen erfiillen (das ist der sogenannte ,zulissige Bereich“),
also insbesondere unter der vorgegebenen Schranke fiir die Varianz liegen, und
sucht dann das Portfolio, das die gréBte erwartete Rendite liefert.

b) Die zweite mogliche Formulierung fiihrt zur Aufgabe, die Varianz der
Portfolio-Rendite Var(R”) bei vorgebenen Mindesterwartungswert E(R")2c, zu
minimieren.

min, Va R") (VEP)
b4

d
NB 7;20 fir i=l,..d, ) 7 =1, E(R”)Zcz

i=1

In Worten: Unter allen méglichen Portfolios 7€ R4 betrachtet man nur die, die
die Nebenbedingungen erfiillen, also insbesondere im Mittel eine Mindestrendite
liefern, und sucht dann das Portfolio, das die kleinste Varianz hat.

Losungsmethoden

a) (EVP) ist ein lineares Optimierungsproblem mit einer zusitzlichen quadra-
tischen Nebenbedingung. Fiir solche Probleme gibt es keine speziellen Standard-
Algorithmen. Man kann die Aufgabe mit allgemeinen Methoden der nicht-
linearen Optimierung angehen, was allerdings oft zu aufwendigen Algorithmen
fiihrt.

b) (VEP) ist ein quadratisches Optimierungsproblem mit positiv semidefiniter
Zielfunktionsmatrix, nimlich o. Die Aufgabe lisst sich effizient mit Standard-
Algorithmen der gewdhnlichen Optimierung l6sen, z.B. Algorithmus von
Goldfarb und Idnani (1983) oder Algorithmus von Gill und Murray (1978). Der
zuliissige Bereich des Optimierungsproblems ist genau dann nicht-leer, d.h. es
gibt genau dann mindestens ein 7, das die Nebenbedingungen erfiillt, wenn

Cy S max u;.
ls'sdﬂ'
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Falls die Matrix o sogar positiv definit und der zuléssige Bereich nicht-leer ist,
besitzt das Problem eine eindeutige Losung. Dies gilt auch dann, wenn z.B. das
erste Wertpapier risikolos ist (d.h. der Preis des ersten Wertpapiers P(T) ist
nicht zufillig) und die zu den restlichen Wertpapieren gehdrende Varianz-Ko-
varianz-Matrix positiv definit ist.

Zwischen den beiden Problemen (EVP) und (VEP) besteht eine Aquivalenz im
folgenden Sinne, die durch Anwendung von Standard-Ergebnissen aus der Theo-
rie der nicht-linearen Optimierung gezeigt werden kann (sieche Korn (1997), S.8):

Satz 2

Gegeben seien die Probleme (EVP) und (VEP). Die Matrix o sei positiv definit.
Die Konstanten c;, ¢, mégen die nachstehenden Bedingungen erfiillen:

* *
Cei=min Yy, €= max l; , cx<cy <cC
1isd' '’ lsjsd”‘ ’ 2

min 0’2(71')501 < max o*(x) mit 1:=(1,..,1) <R
720,7'1=1 720,7'1=1 -

Dann gilt:
. d
a) Lost #* das Problem (VEP) mit E(R" ) = Z Tu=c,,
i=1
s0 16st #” auch das Problem (EVP) mit ¢;:=Var(R™").
d d
b) Lost 7 das Problem (EVP) mit Var(R?) =Y. D" %, -#, -0y =c;,
i=1 j=1
so 18st 7 auch das Problem (VEP) mit c,:= E(R"r ) .

Bemerkung

Aus dieser Aquivalenzbezichung kann man nun ein Iterationsverfahren zur
Lésung von (EVP) konstruieren (siehe Korn (1997), S.8), auf das wir hier aber
nicht néher eingehen wollen.

Beispiel zum Diversifikationseffekt

Um die varianzreduzierende Wirkung der Verteilung des Kapitals in verschie-
dene Aktien zu verdeutlichen, geben wir das folgende einfache Beispiel. Wir be-
trachten den Spezialfall d=2, also nur zwei verschiedene Wertpapiere. Die Va-



6 Kapitel I: Der Erwartungswert-Varianz-Ansatz

rianz der Rendite der beiden Aktien sei positiv (also oy, 05,>0), d.h. insbeson-
dere, dass der Preis der Aktien zufillig schwankt. Die Preise dieser Wertpapiere
sollen aber voneinander unabhingig sein. Daraus folgt o;,=05,=0. Hier gilt fiir
das Portfolio 7=(1/2,1/2):

=varld 1p).%1 %2
Var(R™) =Varl}- Ry +3- Ry) =21+ 72
Im Fall 0y,=0,, bedeutet dies, dass die Varianz des Portfolios (1/2,1/2) gerade
gleich der Hilfte der Varianz der Strategien (1,0) oder (0,1) ist. Diese Reduktion
der Varianz nennt man Diversifikationseffekt. Allgemein wird der Diversifi-
kationseffekt umso grofer, je groBer d, die Anzahl der Wertpapiere, ist.

Ein einfaches Beispiel

Wir werden im folgenden einfachen Beispiel zeigen, dass unter dem Erwar-
tungswert-Varianz-Kriterium auch die Investition in eine — vordergriindig —
schlechte Aktie optimal sein kann. Dazu betrachten wir ein Modell mit zwei
Wertpapieren, deren Preise negativ korreliert sind, was in der Tendenz bedeutet,
dass der eine Preis steigt, wenn der andere fillt. Wir veranschaulichen die Lo-
sung dieses Problems auch graphisch.

Die Parameter der Wertpapiere seien:
o =1 o =01
#y =09 oy, =015
g2 =031 =-01

Das Problem lautet somit:
min Var(R™)=min 01-7} +015-73 —02-mx3
b 4 7z

NB E(R"):l-zt|+0.9-7t2 > 096
T+ 7Ty =1, T; 20,i=1.2

Auf den ersten Blick wiirde man wohl nicht in das zweite Wertpapier
investieren, seine erwartete Rendite ist schlechter als die des ersten Wertpapiers,
und das Risiko von Kursschwankungen (gemessen in der Varianz der Rendite)
ist bei diesem Wertpapier groBer. Allerdings fiihrt die Tatsache, dass die beiden
Wertpapiere sich gegenseitig beeinflussen dazu, dass es sich tatséichlich lohnen
kann, auch in das zweite Wertpapier zu investieren. Wir vergleichen zunichst
die beiden Portfolios (1,0) und (1/2,1/2):
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var(R49) = 01 E(R(‘-")) =1
Var(R(%'%)) = 00125 E(R(%'%)) =095

Wir stellen fest, dass beim Portfolio (1/2,1/2) die Varianz deutlich geringer ist.
Allerdings ist hier die Erwartungswert-Nebenbedingung verletzt. Wir suchen
jetzt das Mimimum der Varianz unter allen zulissigen Portfolios ohne Beach-
tung der Erwartungswert-Nebenbedingung. Wegen 7;+my=1 ldsst sich dieses
Problem umschreiben zu:

min (0172 +015.(1-m;)? ~02.m(1- 7)) , also
min (015+045- 27 -05.7,)
Wir erhalten in diesem Fall als minimales Portfolio

(m.m) = (55'59‘)

mit Varianz und Erwartungswert
Var(R(%'%)) =001 E(R(%'%)) =095.

Dies ist wieder nicht die Lésung unserer Aufgabe, da die Erwartungswert-Ne-
benbedingung verletzt ist, aber wir haben ein noch besseres Portfolio als
(1/2,1/2) gefunden. Wir betrachten nun die beiden folgenden Schaubilder. Ober-
halb der gestrichelten Linie in Bild I.1 liegen alle Paare (7, ), die die Erwar-
tungswert-Nebenbedingung erfiillen. Der Schnitt dieses Bereichs mit der Gera-
den m+m,=1 ergibt den zuldssigen Bereich unseres Erwartungswert-Varianz-
Problems, den wir als dicke Linie dargestelit haben. Die Parabel in Bild 1.2 stellt
die Varianz aller Paare, die m+m=1 erfiillen, als Funktion von z; dar. Ihr
Minimum im zuldssigen Bereich fiir 7, so dass die Erwartungswert-Neben-
bedingung erfiillt wird, ndmlich [0.6,1], liegt offensichtlich in 7;= 0.6. Somit er-
gibt sich als optimale Losung das Portfolio, das die Erwartungswert-Nebenbe-
dingung genau erfiillt:

(=1.73)=(06,04)
Var(R ”‘) =0012, E(R”‘) =096
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? Var

0.1 ¢

—t - —+ ¢ -+
0 0.50.6 1 ¥4 0 0.5 0.6 1 1.5

Bild 1.1 Zulissige Paare Bild 1.2 Varianz der Paare

Bei diesem Portfolio hat man die Varianz (das "Schwankungs-Risiko") im
Vergleich zum Portfolio (1,0) drastisch reduziert und erzielt trotzdem im Mittel
eine zufriedenstellende Rendite.

Ein erstes Preismodell

Im bisher vorgestellten Ein-Perioden-Modell war eine explizite Verteilungsan-
nahme fiir die Wertpapierrenditen bzw. fiir die Wertpapierpreise nicht notig, da
zur Losung des Erwartungswert-Varianz-Problems nur die Erwartungswerte und
Kovarianzen benétigt wurden. Man kénnte deshalb jede Verteilung mit obigen
Momenten fiir die Renditen wihlen, die gewissen Minimalanforderungen ge-
niigt. So sollte sie auf den nicht-negativen reellen Zahlen konzentriert sein, da
P(T) als Preis nicht-negativ ist. In zeitdiskreten Marktmodellen (insbesondere
auch in Mehrperioden-Modellen) weit verbreitet ist der sogenannte Binomial-
ansatz (auch Cox-Ross-Rubinstein-Modell genannt, siehe Cox, Ross, Rubinstein
(1979)).Im Ein-Perioden-Fall hat er die folgende Gestalt, wenn wir der Ein-
fachheit halber nur das erste Wertpapier betrachten:

Zum Zeitpunkt /=0 hat das Wertpapier den Preis p;, mit Wahrscheinlichkeit g
verdndert sich der Preis zum Zeitpunkt 7 um den Faktor u, mit Wahrschein-
lichkeit (1-g) um den Faktor d, wobei d<u angenommen wird, d.h. es hat als
mogliche Preise u-p; oder d-p; zum Endzeitpunkt. Damit gilt fiir den Erwar-
tungswert und die Varianz der Rendite:
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E(RI(T))= E(PIP(IT)) =q- u;,fl +(l—q)-°d;—fl-= q-u+(l—q)-d

Var(Rl(T)) = Var(ﬁ;(lﬂ) =q-u2 +(1-—q)-d2 —(q-u+(1—q)-d)2

Man kann dieses Modell nun mit gleichen Parametern u, d, g iiber mehrere Pe-
rioden fortsetzen und erhilt nach n Perioden einen Wertpapierpreis

P(n-T)=p;-uXn.d"*n

bei dem die Anzahl der Aufwirtsbewegungen X, binomial-verteilt ist mit Para-
metern n und ¢, also

Xn ~ B(n ) q)a

was die Bezeichnung Binomialmodell erkldrt.

Im obigen Beispiel fiihrt die Annahme E(R(T))=4=1, Var(R,(T))=07,=0.1, bei
Wahl von ¢g=1/2 implizit zum Binomialansatz mit:

u=1+01, d=1-401

In diesem Buch wollen wir nur im Rahmen der numerischen Berechnung von
Optionspreisen (siche Abschnitt IV.3) ausfiihrlicher auf das Binomialmodell ein-
gehen.

Beurteilung des Erwartungswert-Varianz-Ansatzes

Der Erwartungswert-Varianz-Ansatz ist leicht zu verstehen und einfach imple-
mentierbar. Dies erklirt seine groe Beliebheit in der Praxis. Allerdings wird nur
im Zeitpunkt 7=0 gehandelt, es ist kein Reagieren auf die aktuellen Kursbewe-
gungen moglich. Das Risiko einer Investition wird dabei nur iiber die Varianz
erfaBt. Generell wird der Aktienkurs stark vereinfacht modelliert, es handelt sich
hier um ein rein statisches Modell. Dieses Fehlen der zeitlichen Dynamik,
sowohl in der Modellierung der Aktienkurse als auch in den vorgesehenen
Handlungsméglichkeiten, ist als der Hauptgrund fiir die Notwendigkeit der Ent-
wicklung zeitstetiger Modelle anzusehen, zumal auch die Komplexitit zeitdis-
kreter Mehrperiodenmodelle mit wachsender Periodenzahl schnell wichst und
sich Optimierungsprobleme in ihnen auch mit schnellen Computern nicht mehr
in angemessener Zeit 16sen lassen.
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Kapitel I1: Das zeitstetige Marktmodell

I1.1 Modellierung der Wertpapierpreise

Beschreibung des zeitstetigen Marktmodells

Wir betrachten einen Markt, auf dem d+1 Wertpapiere gehandelt werden. Darun-
ter befinden sich d Aktien mit Preisen p;, p,,..., py zur Zeit =0 und zufilligen
Preisen P(t),..., P{f) zur Zeit ¢, sowie ein risikoloses Wertpapier, genannt
~Bond“, mit Preis p, zur Zeit #=0, und deterministischem Preis P() sonst. Das
risikolose Wertpapier wird in seiner Modellierung eher einem Sparguthaben als
einem Bond entsprechen (siche unten), es wird aus historischen Griinden weiter-
hin von uns als Bond bezeichnet. Wir betrachten den endlichen Handlungszeit-
raum [0, 7T]. In unserem Modell sei jede beliebige Stiickelung der Wertpapiere
zulidssig und es gebe keine Transaktionskosten bei Kauf bzw. Verkauf der Wert-
papiere. Anders als im Ein-Perioden-Modell sei es nun méglich, zu jedem belie-
bigen Zeitpunkt in [0, 7] zu handeln. Da uns diesmal nicht nur der Anfangs- und
Endpreis der Wertpapiere interessiert, miissen wir uns niher mit den Preis-
verldufen beschiftigen, die wir im Folgenden méglichst realistisch modellieren
wollen.

Der Bondpreis

Da wir den Preisverlauf des Bonds dhnlich dem eines typischen Sparguthaben
modellieren wollen, betrachten wir uns zunichst die zeitliche Entwicklung einer
Spareinlage genauer:

Bei einem Sparguthaben werden iiblicherweise nach einem Jahr die Zinsen dem
Guthaben zugeschlagen und dann erst im weiteren Verlauf mit ihm zusammen
verzinst. In seinem ersten Jahr wiichst solch ein Guthaben also linear an. Sei nun
r die Zinsrate pro Zeiteinheit fiir eine Spareinlage der Gré8e K. Werden Zinsen
nur im Zeitpunkt #=1 gezahlt, so wichst das Guthaben auf

K+r-K=K-(1+r) in t=1
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an. Werden bereits in #=1/2 die Zinsen in der Héhe 7/2 dem Sparguthaben gut-
geschrieben, so verzinsen sich diese auch in der Zeitspanne [1/2,1]. Mit der
nichsten Zinszahlung ergibt sich somit ein Guthaben von
2
(K+%K)+(K+—;—K)-{l—= K-(1+£)" in r=1.

In der Zeitspanne [0,1/2] wichst das Kapital linear mit der Steigung K, und in

[1/2,1] wichst es linear mit der Steigung r-(K + %2-7K). Allgemein erhilt man so

bei Zinszahlungen in den Zeitpunkten i/n, i=1,..., n, neN, ein Guthaben von
K-(1+2)" in r=1.

Indem man den Grenziibergang n—o als Zinszahlungen in kontinuierlicher Zeit
interpretiert, erhdlt man in diesem Fall ein Endvermégen von

K-e"l int=1
und zwischenzeitlich das Kapital
K-e™' intef0,1].

In der folgenden Grafik wird dargestellt, wie sich ein Sparguthaben der GroBe
K=1 bei den oben beschriebenen verschiedenen Arten von Verzinsung im Laufe
eines Jahres entwickelt. Hierbei stellt P (f) die Entwicklung bei einmaliger,
P, 5(?) bei zweimaliger und P(7) bei stetiger Verzinsung dar.
P(@)

1.7 -

1,6 1

151 P;@)
12@)

Wy P,@)

131
1.2 1
114

1 } + ; y
(1] 0,25 0,5 0,75 1

Bild II.1  Entwicklung einer Spareinlage bei unterschiedlichen
Verzinsungsarten
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Offensichtlich ist die kontinuierliche Verzinsung bei gleichem Zinssatz giinstiger
fiir den Inhaber des Sparguthabens als die einmalige Verzinsung. Allerdings ldsst
sich ohne Probleme der Zinssatz 7 bestimmen, mit dem die Verzinsung in
stetiger Zeit mit der uns so vertrauten Verzinsung in den Zeitpunkten =1,2,3,...
ibereinstimmt, namlich

F=m(l+r).
Den Zinssatz r nennt man auch den effektiven Jahreszinssatz, 7 den stetigen

oder nominellen Jahreszinssatz (fiir eine Einfiihrung in die Begriffe der Zins-
rechnung siehe Tietze (1996) ).

Im Folgenden nehmen wir Verzinsung in stetiger Zeit mit konstanter Zinsrate r
an und erhalten so als Bondpreis

Ry(t)=po-e™* fir 1 [0,7] )

Man kann dies verallgemeinern, indem man eine nicht-konstante, zeitabhingige,
integrierbare Zinsrate r(f) annimmt und so

I;r(s)ds

Py()=pgy-e fir ¢¢[0,7] @)

als Bondpreis ansetzt.
Fasst man die folgende Differentialgleichung
dPRy(1) = Py(r)r(e)dt , PRy(0) = py, fiir ¢ €[0,7]
als Integralgleichung '
t
Po(t) = po + [Bo(s)r{s)ds fir ¢ €[0,7]
0
auf, so ist der obige Bondpreis Py(?) offenbar deren eindeutige Losung.

Die Aktienkurse - Motivation

Wir stellen uns einen Aktienkurs Zhnlich wie den Bondpreis vor, nur dass sich
der Preis nicht deterministisch ergibt, sondern gemiB einer zufilligen Storung
um einen "Bondpreis” (mit einer anderen Zinsrate) schwankt (siche Bild I1.2).
Als Ausgleich fiir das Risiko, dass sich durch die zufilligen Schwankungen er-
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gibt, wird man fir die i-te Aktie eine hohere Zinsrate 5; als die Zinsrate r des
Bonds erwarten.

P(t)
16 -
151
14 1
131
12|
111

1]
09 | ; - - '

T T T

0 02 04 06 08 1

t

BildII.2  Aktienkurs mit prognostizierter Entwicklung
Da der Logarithmus des Bondpreises im Falle konstanter Verzinsung linear ist —
man sagt auch: der Bondpreis ist log-linear —,

ln(Po(t)) = ln( po) +r-t,

legt dies den folgenden sogenannten log-linearen Ansatz fiir den Aktienkurs
nahe:

(B(®) = bn{p; )+ B; -t + " Zufall” .
Fiir den ,,Zufall “ nehmen wir an, dass er
o ohne Tendenz ist, d.h. E(,Zufall*)=0
e von der Zeit ¢ abhingig ist
o die Summe der Abweichungen von In(F())von In(p;)+b;-t auf [0,T]
darstelit

Nimmt man sogar an, dass sich die Abweichungen von l';; -t als Summe vieler
gleichartiger, unabhingiger Abweichungen ergeben, so legt der zentrale Grenz-
wertsatz den Ansatz

 Zufall“ ~ N(o, azt)
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mit einem o> 0 nahe. Definiert man die Abweichung zur Zeit ¢ als

in(Py (1))~ In(p;)~b; -1~ (¢)
und wihlt
Y ~ N(o, o? t) ,
dann gilt
o E(¥())=0
. Y(t) ist offensichtlich von der Zeit ¢ abhiingig
Betrachtet man auBlerdem

¥(t) = ¥(8) +(¥(r) - ¥(5)) mit 5(0, 9.

so wiire es eine sinnvolle Forderung, dass die Verteilung der Differenzen der Ab-
weichung (¥(#)-Y¥(J)) nur von der Zeitlinge (¢~3) abhingt und unabhingig von
Y(s), s < 6, ist, d.h. insbesondere, dass (¥(f)-Y(9)) gemiB N(0, 62(t-8)) verteilt
sein soll.

Die Existenz und Eigenschaften einer solchen Familie von Zufallsvariablen
{¥(0} te[0,@ (man spricht auch von einem stochastischen Prozess) werden im
folgenden Exkurs zur Brownschen Bewegung niher betrachtet.

Exkurs 1: Brownsche Bewegung und
Martingale

Allgemeine Voraussetzungen

Gegeben sei der vollstindige Wahrscheinlichkeitsraum (Q, F, P) mit Ergeb-
nisraum Q, o-Algebra F und WahrscheinlichkeitsmaB P.
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Wir fithren zunéichst den Begriff der Filterung ein. Sie stellt die Formalisierung
der Entwicklung einer Informationsstruktur in der Zeit dar.

Definition 1

{F},c; sei eine Familie von Sub-o-Algebren von F, I sei eine geordnete Index-
menge, und es gelte F,c F, fiir s<t, s,tel Eine solche Menge {F,},; heifit
Filterung.

Die Menge F,,t € I, modelliert in der Regel die bis zur Zeit ¢ beobachtbaren Er-
eignisse. Wenn also eine Zufallsvariable X, F,-messbar ist, so konnen wir auf-
grund der gegebenen Information zum Zeitpunkt ¢ bestimmen, welchen Wert sie
annimmt. Im Folgenden werden wir den Begriff eines stochastischen Prozesses
immer im Zusammenhang mit einer Filterung betrachten.

Definition 2

Eine Menge {(X;,F)},c; bestchend aus einer Filterung {F,},., und einer Fa-
milie von R"-wertigen Zufallsvariablen {X,}, » wobei X, Fmessbar ist, heilt
ein stochastischer Prozess mit Filterung {F},. .

Bemerkungen

a) Im Folgenden werden wir als Indexmenge meistens /=[0,c0) oder /=[0,T]
wihlen.

b) Reden wir kurz von einem Prozess {X,},; oder X, so heiBt das in der
Regel, dass wir
F, = F,X:=0{Xs|sSt,s eI}

setzen. Diese Filterung heiBt die zu {X,},.; gehdrende kanonische oder natiir-
liche Filterung.

c) Statt {X},.; schreibt man oft auch {X(#)},.; oder ganz kurz X. Fiir festes
® € kann man die Menge

X.() = {X,(m)} {X(’ “’)},E,

als Funktion der Zeit ¢ interpretieren. Man nennt dies einen Pfad oder eine
Realisierung des Prozesses. So gesehen ist ein stochastischer Prozess lediglich
eine funktionenwertige Zufallsvariable.
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Wichtig wird es fiir uns werden, zu entscheiden, ob zwei stochastische Prozesse
als ,,gleich“ anzusehen sind. Wir unterscheiden hierbei:

Definition 3
{(XF )} e 0,0) Und {(Y,,G,)},e[o,w) seien stochastische Prozesse. Y heifit dann
eine Modiﬁ&caﬁon von X, falls
P{ml X,(0)= Y,(m)} =1 firalle £> 0.
Definition 4

{(X;,F )} tefo,0) und {(YpG,)},e[o,w) seien stochastische Prozesse. X und Y
heiBien dann ununterscheidbar, falls

Plo| X,(0)=Y,(o) firallet [0,0)} =1.

Falls X und Y ununterscheidbar sind, dann ist ¥ auch eine Modifikation von X.
Die umgekehrte Richtung gilt dagegen nicht, auch wenn Y eine Modifikation
von X ist, konnen trotzdem beide Prozesse vollkommen unterschiedliche Pfade
haben. Es gilt aber (siehe Ubung U.1):

Satz 5

Sei Y eine Modifikation von X. Besitzen auBerdem beide Prozesse P-fast sicher
stetige Pfade, dann sind X und Y ununterscheidbar.

Das fiir uns wichtigste Beispiel eines stochastischen Prozesses ist:

Die Brownsche Bewegung

Der reellwertige Prozess { w; }12 0
i) W =0 P-fastsicher
if) W, -W;~ N0O,t-s)fir0<s<t wStationire Zuwichse®

iii) W, — W; unabhingig von W, — W, fir 0<r<u<s<t

wunabhingige Zuwichse®
heiBit eindimensionale Brownsche Bewegung.

mit stetigen Pfaden und
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Als n-dimensionale Brownsche Bewegung bezeichnen wir den R"-wertigen
Prozess

w() = (m©),....w, 1),
dessen Komponenten W; unabhingige eindimensionale Brownsche Bewegungen

sind.
Brownsche Bewegung und Filterung
Man kann die Brownsche Bewegung mit der natiirlichen Filterung

F,W:= o-{ﬂ{,l 0<s< t} , t e[O,oo)

versehen. Aus technischen Griinden arbeiten wir jedoch hiufig mit der
P-Erweiterung der natiirlichen Filterung,

Fi=o{F¥ UN|N eF.P(N)=0} , te[0)

und nennen diese Filterung die Brownsche Filterung. Dies hat den Vorteil,
dass, wenn Y eine Modifikation von X ist, aus der F,-Messbarkeit von X; auch
die von ¥ folgt. Sie sind also dann bzgl. der gleichen Filterung messbar.

In der Literatur wird die Bedingung iii) fiir eine eindimensionale Brownsche Be-
wegung {(Wy,F )},5o mit gegebener Filterung {F,} ., oft so formuliert:

iii)* W, — W, unabhingig von F, fir0< s<t.
Dies ist mit der natiirlichen Filterung oder mit der Brownschen Filterung dquiva-

lent mit der Bedingung iii), allerdings gilt dies nicht fiir alle Filterungen! Ein tri-
viales Gegenbeispiel wire die Filterung

G, := o{Wr.W,|0ss<t} fireinT>0,
bei der iii) aber nicht iii)* erfiillt ist, denn offensichtlich ist W nicht von G un-
abhingig.
Wenn wir nun in Zukunft Brownsche Bewegungen {(W;,F )} 5o im Zusammen-

hang mit einer beliebigen Filterung betrachten, dann fordern wir damit implizit,
dass fiir diese Filterung Bedingung iii)" erfiillt sein muss.

Bemerkungen zur Existenz der Brownschen Bewegung

Man muB natiirlich noch die Existenz der Brownschen Bewegung als stochas-
tischer Prozess zeigen. Es gibt verschiedene Methoden, einen solchen Prozess zu
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konstruieren, die Beweise sind durchweg lang und technisch. Nachzulesen ist
eine solche Konstruktion z.B. in Billingsley (1968). Ein weiterer Ansatz besteht
darin, fiir die endlich-dimensionalen Verteilungen (d.h. die gemeinsamen

Verteilungen von (W, ,..., W, |fiir beliebige n-Tupel (¢,,...,1,) ,n €N, t; # t.)
4 t, 1 n iTYy

zu fordern, dass sie unabhiingige, stationire und normalverteilte Zuwichse
besitzen, und dann mit Hilfe des Satzes von Kolmogorov ein geeignetes
WahrscheinlichkeitsmaB auf einem geeigneten MeBraum zu konstruieren (siche
Karatzas/Shreve (1991), Abschnitt 2.2). Der erste, der die Existenz eines
solchen MabBes zeigte, war Wiener in Wiener (1923) , nach ihm heiBit das MaB
auch Wiener Mafl, woraus sich auch unsere Abkiirzung ¥ ergibt.

In der Theoric der stochastischen Integration fordert man aus technischen Griin-
den in der Regel, dass die zugrunde liegende Filterung rechtsstetig ist (siche
auch Ubung U 4).

Satz 6
Die Brownsche Filterung {F,} (>0 ist sowohl rechtsstetig als auch linksstetig,
d.h. es gilt
F=Fy:= nFt+£ und F; = Fy_:= UFs] :
&>0 s<t

Beweis: siche Karatzas/Shreve (1991), Abschnitt 2.7.

Die Brownsche Filterung erfiillt somit die iiblichen Bedingungen im Sinne der
folgenden : ’
Definition 7

Eine Filterung {F}},,, erfiillt die iiblichen Bedingungen ("usual conditions"),
falls sie rechtsstetig ist und F,, bereits alle P-Nullmengen aus F enthilt.

Allgemeine Voraussetzung fiir diesen Abschnitt
{F,} sei eine Filterung, die die iiblichen Bedingungen erfiillt.
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Wir fiihren nun noch eine fiir unsere Anwendungen in stochastischer Integration
und Finanzmathematik fundamentale Prozessklasse ein.

Definition 8
Der reellwertige Prozess {(X,,F )}, mit E| X, | <oo fiir alle ¢ I, wobei I geord-
nete Indexmenge ist, heilt
a) ein Super-Martingal, falls fiir alle s, 7 € Imits < ¢ gilt :
E(X,|F,) < X, P-fastsicher.
b) ein Sub-Martingal, falls fiiralle s, t € Imits < £ gilt:
E(X,|F,)2 X, P-fastsicher.

c) ein Martingal, falls fir alle s, € I mits < ¢ gilt:
E(X,|F;) = X, P-fast sicher.

Bedeutung des Martingalbegriffs

Martingale werden oft zur Modellierung von Gliicksspielen verwendet. Stelit
man sich unter der Folge X, n€ N, das Vermdgen eines Spielers nach der n-ten
Teilnahme an einem Gliicksspiel vor, so sollte ein faires Spiel gerade die Mar-

tingal-Bedingung

E(Xp| F)= X,  P-fast sicher
erfiillen, d.h. im Mittel besitzt der Spieler nach dem Spiel genauso viel wie vor-
her. Ein fiir den Spieler giinstiges Spiel entspricht einem Sub-Martingal. Ein Su-
per-Martingal wire flir den Spieler ungiinstig. Ein typisches Beispiel fiir ein
Martingal ist das Werfen einer (fairen) Miinze, bei dem der Spieler bei Aufireten
von "Kopf" eine Geldeinheit erhilt und bei "Zahl" eine Geldeinheit zahlen muss.
Satz 9
Die eindimensionale Brownsche Bewegung W, ist ein Martingal.
Beweis:

Da wir hier Brownsche Bewegungen immer im Zusammenhang mit einer
Filterung betrachten, die Bedingung iii)* erfiillt, ist der Zuwachs Wy— Wg von
F, fiir s<t unabhingig. Es gilt daher
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E(W|F,)= E(W, - W, +W,| F,)
= E(W, ~W,|F;)+ W, = E(W, - W, )+ W, = W,
fiir s<¢ P-fast sicher. a

Bemerkungen

a) Allgemein gilt: Jeder Prozess mit unabhingigen, zentrierten Zuwachsen ist ein
Martingal bzgl. seiner natiirlichen Filterung.

b) Die Brownsche Bewegung mit Drift z und Volatilitit o
X,=ut+oW,, peR, oceR, 20

ist ein Martingal, falls #=0, ein Super-Martingal, falls <0, ein Sub-Martingal,
falls ©>0.

Satz 10

a) {(X;,F )}, sei ein Martingal und ¢ : R — R eine konvexe Funktion, so dass
firallet e I E|g(X,)|<o gilt. Dann ist

{lo(x,)F,)},; ein Sub-Martingal.
b) {(X;, F)}s sei ein Sub-Martingal und ¢ : R — R eine konvexe, nicht-
fallende Funktion, so dass fiiralle # € I E|@(X))| < o gilt. Dann ist

{(AXr):E)}tg ein Sub-Martingal.

Beweis:

Aus der Jensenschen Ungleichung folgt fiir £>+5:

=¢(X, ), falls X, Martingal
Hlo(xIF)zole(xi|r, ) {z fo:; falls X: Sub-l\iartingal f

Bemerkungen
a) Typische Anwendungen des Ergebnisses dieses Satzes erhilt man z.B. fiir
Px)=x? , Plx)=fl.
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b) Der Satz gilt auch fiir d-dimensionale Vektoren

X@) =(x,)....., x4 )
von Martingalen und konvexes ¢: RS R.

In der stochastischen Analysis spielt der Begriff des lokalen Martingals eine zen-
trale Rolle. Um diesen wichtigen Begriff einfiihren zu kénnen, brauchen wir den
Begriff der Stoppzeit.

Definition 11

Eine Stoppzeit beziiglich einer Filterung {F},c(0.0) b2W. {F,},cN ist eine
F-messbare Zufallsvariable

7: Q—[0,0] bzw. 7: Q>NU{x}
mit {0 €Q|Aa) < #} €F, fir alle te[0,0) bzw. {0 Q| (@) < n} eF, fur
alle neN.
Satz 12
Sind 7; und 7, Stoppzeiten, dann ist auch A7 = min {7}, 5} eine Stoppzeit.
(Der einfache Beweis bleibt dem Leser als Ubung iiberlassen.)
Der gestoppte Prozess

{(X;, F)} ey sei ein stochastischer Prozess, / sei entweder N oder [0,0), und =
eine Stoppzeit. Man kann damit einen neuen Prozess, den gestoppten Prozess
{Xll\f} tel > definieren als

X, ( ) X,(m), falls £ < (@)

AT @02 Xt(a))(w)' falls ¢ > ow) *
Die Stoppzeit gibt so den Moment an, zu dem wir den Prozess stoppen und in
seinem gegenwirtigen Zustand festhalten. Die Bedingung {® €Q | @) <t} €F,
an eine Stoppzeit besagt gerade, dass wir zum Zeitpunkt 7 in der Lage sein miis-
sen, zu entscheiden, ob wir jetzt stoppen oder nicht.

Bemerkung

Ein typisches Beispiel fiir einen gestoppten Prozess ist das Vermdgen eines Spie-
lers, der solange an einem Gliicksspiel teilnimmt, bis er entweder ein vorge-
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gebenes Vermdgen erreicht hat oder bankrott ist. Keine Stoppzeit ist in diesem
Fall, dann mit dem Spielen aufzuhéren, wenn er das in einem bestimmten Zeit-
raum maximale Vermdgen erreicht hat, denn dies kann er erst nach Ablauf des
Zeitraums entscheiden. (siehe auch Ubung U.4)

Die gestoppte Filterung

Sei 7 eine Stoppzeit bzgl. der Filterung {F,} te[0,w) Definiere dann die o-Alge-
bra der Ereignisse bis zur Zeit r durch

F, := {A eF’IAn{rSt} €F, furallet eI} .

7 ist dann F -messbar. Da zu 7 auch 7a¢ eine Stoppzeit ist, ist somit auch die
gestoppte Filterung {F_, },_; definiert. Insbesondere gilt F,,, c F,.

Was passiert nun, wenn wir ein Sub-Martingal bzw. ein Martingal mit Hilfe
einer Stoppzeit stoppen, Bleibt es ein Sub-Martingal bzw. ein Martingal ? Ant-
wort darauf gibt der folgende Satz:

Satz 13 - "optional sampling"

Sei {(X,,F)},c 0.) ©in rechtsstetiges (d.h. alle Pfade von X, sind rechtsstetig)
Sub-Martingal . Martingal), seien 7; und 7, Stoppzeiten mit 7; < 7,, dann
gilt

Ft/\t,) = Xt/\r, )

E(X IATy Ft/\tl) 2 X AT (bzw. E(X ATy

P-fast sicher fiir alle 7 € [0,%0).
Bewelis: siche Karatzas/Shreve (1991), Satz 1.3.22.

Korollar 14

Sei 7 eine Stoppzeit und {(X;, F)},e(0,.) ©in rechtsstetiges Sub-Martingal (bzw.
Martingal). Dann ist der gestoppte 88 {(Xine F D} ief0,0) wieder ein Sub-
Martingal (bzw. Martingal).

(Beweis: sieche Ubung U.2)
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Mit Hilfe des Satzes iiber ,,optional sampling* erhalten wir eine sehr niitzliche
Charakterisierung eines Martingals:
Satz 15

Sei {(X;, F)}1eqo,) €in rechtsstetiger Prozess. Dann ist X, genau dann ein Mar-
tingal, wenn fiir alle beschriinkten Stoppzeiten 7 gilt

EX, = EX,.
Beweis:
Da 7 beschrinkte Stoppzeit ist, gilt (@) <T fiir ein 7>0 und alle weQ, also
7=1AT, damit kénnen wir den Satz iiber optional sampling anwenden und erhal-
ten fiir ein Martingal

EX, = E(E(X,ATIFO)) = E(Xy).

Um die andere Richtung des Satzes zu zeigen, sei nun 0<s<¢ und 4€F,. Dann
ist 7:= 514+ #1 ; Stoppzeit mit 7= 7Az und es folgt

EXg=EX, = E(X, 1qq+X,1,)= E(X; 1g,4)+ E(X, 14).
Aullerdem ist 7=s auch Stoppzeit mit
EXo = EX, = E(X, -1g.4)+ E(X;14).
Somit folgt fiiralle A e F:
E(x,1,)=E(x,1,).
Nach Definition der bedingten Erwartung ist dann
{xl7)-x,
und somit {(X,, F)} se0,0 in Martingal. 0

Mit Hilfe von Stoppzeiten konnen wir nun den Begriffs des Martingals ab-
schwichen:

Definition 16

{(X;, F)}e[0,0), S€i €in stochastischer Prozess mit X, = 0. Existiert eine nicht-
fallende Fo{ge { T,}nen VoD Stoppzeiten mit
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lim 7, =oo) =1,
H—>0

so dass

{(th):'_‘ XtAr,,»Ft

)} tdo.)

ein Martingal fiir alle #eN ist, so heifit X ein lokales Martingal. Die Folge
{5} nen heiBt eine zu X gehorende lokalisierende Folge.

Bemerkungen
a) Jedes Martingal ist ein lokales Martingal.

b) Falls X lokales Martingal ist und alle Pfade von X stetig sind, dann nennt man
X ein stetiges lokales Martingal.

c) Es gibt lokale Martingale, die keine Martingale sind (siche z.B. Ka-
ratzas/Shreve (1991)). Man beachte hierzu auch, dass fiir ein lokales Martingal
der Erwartungswert E(X) nicht existieren muss. Der Erwartungswert muss aber
entlang der lokalisierenden Folge 7A7, existieren. Insbesondere ist der Prozess X
auf den zufilligen Intervallen [0, 7,] ein Martingal.

Satz 17

Ein nicht-negatives lokales Martingal ist ein Super-Martingal.

Beweis:

Sei hierzu M ein nicht-negatives lokales Martingal. Dann gibt es eine Folge
{7} nenN VoD Stoppzeiten mit

E(Mu\r,, |F:v) = M,,\,n und 7, —I2% _, 0 P-fast sicher.

Also gilt mit dem Lemma von Fatou
M, =lim inf M, =lim inf E(M,,\,. IF,)

n—yw n—»w
> E(lim inf Myng, lF;] = E(M,|F,) P-fast sicher. 0
n—o
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Die folgenden Ungleichungen werden wir spiter oft als Hilfsmittel brauchen:

Satz 18 - Doob'sche Ungleichung
Sei {M} 5, ein Martingal mit rechtsstetigen Pfaden und E( M %-) < oo fiir alle
T20. Dann gilt

E{(o;"fTIM‘l)z] <4-5(m}).

Satz 19

Sei {(X;,F)},e[0,) ©in nicht-negatives Super-Martingal mit rechtsstetigen Pfa-
den. Dann gilt ign- 73 >0

A- P{w

Beweise der Sdtze 18 und 19: siche Karatzas/Shreve (1991), Satz 1.3.8 (ii) und
(iv). Man beachte, dass {-X,}, ein nicht-positives Sub-Martingal ist und
{1 M, | } ;5 ein nicht-negatives Sub-Martingal ist.

sup X,(w)z,l}s E(Xo).
Oss<t

IL.1 Fortsetzung: Modellierung der
Wertpapierpreise -

Fortsetzung: Aktienkurse

Mit der Brownschen Bewegung {(W;,F)}o haben wir nun den geeigneten
Prozess gefunden, um den ,,Zufall”“ im log-linearen Ansatz fiir die Aktienkurse
zu modellieren. Im Fall 4 = 1 (also ein Marktmodell mit Bond und nur einer
Aktie) bietet sich der folgende Ansatz an, in dem wir fiir den ,.Zufall” die
Brownsche Bewegung mit Volatilitit o, wihlen,

ln(Pl(t)) = ln(p1)+51 T+ O'HW, 5
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R(@®)=p, .eslt+all"? .

Im allgemeinen Fall setzt man
(B @) = In(p; ) + B; -t+idij"'j(t), i=1,...d @
also =
R =p; -exp[l?,- -t+§‘;aﬁWj(t)J yi=l,...d @
=

wobei W(t)=(W(1),...,W,(t)) eine m-dimensionale Brownsche Bewegung ist. Fiir
den Logarithmus des Aktienpreises gilt dann

ln(P,-(t)) ~ N(ln(p,-)+5,- ‘1, i 0‘!-,2- 1) .
j=1

Daher sagt man auch: P{f) ist lognormal-verteilt. Weitere Eigenschaften des
Aktienkurses gemiB (4) ergeben sich aus:

Lemma 20

m
Sei b; := b; +3 2,02 und B(f) wie in (4), i=1,....d, #20. Dann gelten
j=l

a) E(P,-(t)) = p; et

b) Var(B () = p? -exp(2b,-t—)-(exp( 5. a,-}z) - 1] .

J=1
m
c) X, := a.ap( Xz (c ,-Wj(t)-%c}:)) mit a,c;eR, j=1,...,m, ist ein Martingal.
Jj=1

Beweis:

a) Wir betrachten nur den Fall m=1. Den allgemeinen Fall beweist man analog,
wenn man beriicksichtigt, dass

m m
Z%%®~MQZﬁ0
Jj=t j=l
gilt. Quadratische Ergénzung im Exponenten liefert
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@ ~ 2 @© Tl 2 (z-ar
E(P,-(t))=p,-- I_le=m b+ =3y = p. - IT—zl—;-eb"J'i‘” e dx
—~a0 -0

0
(x-a)?
= bt I——l '—ii‘)_ - bt
=p;-et - e dx=p;-e" -1
_w\lzm

wobei man fiir die letzte Gleichheit verwendet hat, dass der Integrand die Dichte
einer N(ot,f)-verteilten Zufallsvariablen ist.

b) Dies beweist man wie in a), indem man analog zur Bestimmung von E (}}2 (t))
vorgeht (siehe auch Ubung U.3).
c) Wir zeigen wieder nur den Fall m=1: Sei ¢>s, dann gilt

E(X tl F}) = a.eoMTels -E(e"l("?-‘Ws)“%cxz (1"-!)| F, )

g Pyl E(ecx(m—m)—%cf(t—s))

1.2 73 1
=q- eq”fr-'fq s, E( ec,W,_,-zc,z(t—s)) X, .

Hierbei gilt die zweite Gleichheit wegen der Unabhéngigkeit der Zuwichse von
W(). Da W,_; := W, - W, Brownsche Bewegung ist, ist der letzte Erwartungs-
wert nach Teil a) gleich 1. ]

Interpretation des Aktienpreises

Mit Hilfe von Lemma 20 erhalten wir nun eine neue Interpretation des Aktien-
preises:

i oW, (t)-Lokt
B'(t):Pi -ebf' .ej=l( vy 2% ) ’

P{0)=p;, i=l,...d (5)

Somit ist der Aktienpreis ein Produkt aus

e dem mittleren Kurs p; -¢%’ und

e cinem Martingal mit Erwartungswert 1, némlich
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oS-t

das die zufillige Schwankung um den mittleren Kurs modelliert.
Der Vektor

b=(b.by)
wird als Vektor der mittleren Ertragsraten und die Matrix

O] ... Oy

041 < Ogm

als Volatilitéitsmatrix bezeichnet.

Ein stochastischer Prozess der Form P(f) wird auch als geometrische Brown-
sche Bewegung mit Drift b; und Volatilitit 0;=(0;,,...,0;,,) " bezeichnet.

Zusammenfassung Wertpapierpreise

Im zeitstetigen Modell modellieren wir die Preisverldufe der Aktien und des
Bonds gemil .

Ry(f)=po-e” , Py0)=:p,,

Zl[ayW {0)-3 trzt]

PO =p; et e , P{0)=:p,, i=l,...d.

Leider kann man dieses Modell noch nicht allgemeiner formulieren, indem man
nicht-konstante, zeitabhingige, integrierbare Zinsraten r(#), b{f) und Volati-
lititen o(f) annimmt. Bei den Preisverlidufen der Aktien ergiébe sich nimlich fol-
gendes:

B =p;-exp ( j(b (-1 Z (s)] ]m[g:!a,-j(s)dwj(s)]

Dabei tritt das bis jetzt noch unbekannte Integral

!
[o;)am;(s) = 2
0
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auf. Um mit diesem Modell rechnen zu kénnen, und auch um Handelsstrategien
im einfacheren Modell zu beschreiben und zu bewerten, benétigen wir den Be-
griff des stochastischen Integrals (oder auch Itd-Integral) und die dazugehédrigen
Rechenregeln des It5-Kalkiils.

Exkurs 2: Das Ito-Integral

Motivation

Gegeben sei nun der Mefraum (R, B(R)) der reellen Zahlen mit der Borelschen
o-Algebra. Wenn F eine differenzierbare Verteilungsfunktion und X eine mess-
bare, nicht-negative reellwertige Funktion auf (R, B(R)) ist, dann kénnen

wir mit Hilfe der Dichte f (s) = d};Es) folgendes Integral berechnen :
t t
[x(s) @F(s) = [x(s)f(s)ds fiire>o0.
0 0

Ist die Verteilungsfunktion F nicht differenzierbar, dann kénnen wir dieses Inte-
gral im Lebesgue-Stieltjes-Sinn berechnen, niimlich als

Jxar - s S ((2) A1)

k=1

Man beachte, dass sich dann der Wert dieses Integrals nicht éndert, wenn wir
X((k-1)t/n) durch X(kt/n) oder irgendeinen anderen Wert X(s) fiir se[(k—1)t/n,
kt/n] ersetzen und dann zum Grenzwert iibergehen. Dies wird -spiter fiir
stochastische Integrale nicht der Fall sein (siche @ksendal (1992), Example 3.1).
Trotzdem kann man das obige Vorgehen noch verallgemeinern (siche
Karatzas/Shreve (1991), Abschnitt 1.4). Sei hierzu (Q,F,P) ein vollstindiger
Wahrscheinlichkeitsraum und {A,} te[0,m) ein wachsender Prozess (d.h. 44(@)=0
fiir we Q, der Pfad t+> 4 () ist eine nicht-fallende, rechtsstetige Funktion und
E(4 )< fiir alle € [0,0)). Sei nun {X, },E[o ) ein nicht-negativer Prozess, so
dass die Pfade 7+ X(@) B([0,%))-B(R)-messbar sind. Dann ldsst sich fiir jedes
feste we Q folgendes Integral wie oben im Lebesgue-Stieltjes-Sinn berechnen:
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L) = [X,(0)d4y()
0

Falls dann I(.) F-B(R)-messbar ist (dies ldsst sich durch geeignete Forderungen
an X erreichen), erhalten wir fiir jedes ¢ [0,:0) eine neue Zufallsvariable, also
insgesamt einen neuen stochastischen Prozess. Dieses Vorgehen lésst sich auch
auf den Fall erweitern, dass 4, Pfade von endlicher Variation auf jedem end-
lichen Intervall [0, T] besitzt.

Die Frage ist nun, ob sich dieses Vorgehen noch weiter verallgemeinern Eisst, in-
dem man statt einem wachsenden Prozess eine eindimensionale Brownsche Be-
wegung {W;},c0,) Wahlt ? Kann man dann folgendes Integral

(x,() d,(a)
0

das sogenannte stochastische Integral, sinnvoll @-weise definieren?

Als erstes miissen wir feststellen, dass eine Imitation des Vorgehens bei Existenz
einer Dichte nicht moglich ist. (einen Beweis des folgenden Satzes findet man
z.B. in Schmitz (1996), Satz 10.28):

Satz 21

P-fast alle Pfade der Brownschen Bewegung {W,}, sind an keiner Stelle diffe-
renzierbar.

Damit ist eine Definition der Art

IX (@) W () = IXs( o) — —

dw, (m)

nicht méglich. Der niichste Satz zeigt uns, dass eine Definition als Lebesgue-
Stieltjes-Integral ebenfalls nicht méglich ist (siehe z.B. Schmitz (1996), S.326):

Satz 22
Fiir die Brownsche Bewegung gilt mit der Definition

/2"(a>) W_%( 4 , neN, weQ,

2“

Z,,(w) = Z

i=1
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dass

Z, (w) —I2% y0 P-fastsicher,

d.h. die Pfade W{ @) der Brownschen Bewegung haben auf dem Intervall [0,1]
P-fast sicher unendliche Variation. Weiter noch: die Pfade W{a) der Brown-
schen Bewegung haben auf jedem Intervall [s;,s,] < [0,00) P-fast sicher unend-
liche Variation.

Aufgrund der beiden vorausgegangenen Negativ-Resultate muss es sich bei dem
zu definierenden stochastischen Integral um eine neue Art von Integralbegriff
handeln. Wir werden nun im Folgenden das stochastische Integral zunichst fiir
sogenannte einfache Prozesse X; konstruieren und es dann mit Hilfe einer Iso-
metrie auf allgemeinere Integranden fortsetzen.

Allgemeine Voraussetzungen fiir diesen Abschnitt:

Gegeben sei ein vollstindiger Wahrscheinlichkeitsraum (Q,F,P), der mit
einer Filterung {F,}, versehen sei, die die iiblichen Bedingungen erfiillt.
Weiter sei auf diesem Raum eine Brownsche Bewegung {(W,,F))} te[0,%0)
bzgl. dieser Filterung definiert.

Definition 23

Ein stochastischer Prozess {X},c(o7; heiBt einfacher Prozess, falls reelle
Zahlen 0 =5, < t) <.<t, =T, peN , und beschrinkte Zufallsvariablen
®;: Q-R,i=0,1,.., p, existieren, so dass

@, Fy-messbar, ®;, i=1,...p, F}.,_ . -messbar
sind und X, fiir alle we Q die folgende Darstellung besitzt:

X, (@) = X(t,0) = @g(a)- 15y (1) + }p:cp,- (@)1

i=1

](t) .

('i—l €&

Bemerkungen

a) Man beachte: X, ist F; -messbar fiir ¢ e(t,-_l,t,-] .
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b) Der einfache Prozess X, hat als Pfade X{(., @) linksstetige Treppenfunktlonen
der Hohe @; (a)) l( ](t)
L1

x(.o),
S |
—
=i
o
—t + t —>
0 4 ty £} T ¢

Bild II.3  Pfad eines einfachen Prozesses

Definition 24

Fiir einen einfachen Prozess {X, },6[0 71 definiert man das stochastische Integral
](X) fiirte (tk’ tk‘*‘]] gemaB

1,(x) = IX aw, = Y, <p( -W, l)+<I>,,+1(W W,,,),
1si<k _
bzw. allgemeiner fiir ¢ e[O 7).
1,(X) := IX dw; := Z q)(WtAt W, ,At) >
0 I<isp

d.h. man multipliziert die Zuwichse der Brownschen Bewegung auf einem Inter-
vall, auf dem X konstant ist, mit dem zugehérigen Wert von X, , nimlich ®;
(man vergleiche dies mit dem Lebesgue-Stieltjes-Integral fiir einfache Funk-
tionen).

Satz 25 - Eigenschaften des stochastischen Integrals
X={X} 0,77 S¢i ein einfacher Prozess. Dann gelten :



Exkurs 2: Das It5-Integral 33

a){I(X)} te[0,7] ist ein stetiges Martingal bzgl. {F} te[0,T]
Insbesondere gilt E((X)) = 0 fiir alle ¢ €[0, T].

b)E jx dW) E[Ides} fiir ¢ €[0, T1.
( j‘x am'[]2 54-E[:IX,2 dv] )

c) E| sup
\0<e<T [o

Bemerkungen

a) Nach Satz 25 b) ist das stochastische Integral insbesondere quadrat-integrier-
bar.

b) Fiir den einfachen Prozess X =1 gilt
t
[raw, =w,,
0
und somit auch
t 2 t
B| [am, | =E(w?)=1= s *)
0 0
Diese Beziehung wird oft mit
dw, =dt

beschrieben, was aber immer nur im Sinne von (*) zu verstehen ist und nicht
etwa als Gleichheit zweier Differentiale.

Beweis von Sat 25:
a) Da ®; F, -messbar und W; Fmessbar fiir 7;<¢, ist I(X) Fmessbar.

Offenbar ist I(X) stetig, wenn man beachtet, dass die Brownsche Bewegung ste-
tige Pfade hat . Es seien ¢ e(t,,__l,tk] , 8 e(t,_l,t,] ,5<t.OBdA sei k> 1. Da
@, i=1,..,], F-messbar und W, F-messbar fiir r<s, gilt
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-1

E(I,(X)IF) (Zd)( W:“)+‘P1(Wz, W +Ws Wrn)

k-1
o5 o w,-m, o, )Ir)

i=l+1

"Z‘D (Wt, W, |)+¢I(W ~W |)+E(¢’( W")IFS),

i=1 ~

+E(‘I§<I>,-(W,‘ ) (W W,“)IFl

_ Ni=l+l

v

=I(X)+4+B
Firi2Hlundu 2>t gilt (beachte: dannists; | 25)

E(d:,-(W,, -, )| F_,) = E(E(cp,-(w,, - W,H) F,H)

= E(E(d),-(n{, ‘"?;-.)l F;H)| F,) = E((I),- -E(W W, I)| F)

Da auBerdem ®; F-messbar und W,, —W; unabhingig von F; sind, sind die
beiden Summanden 4 und B in der oberen Summe gleich Null, folglich ist

E(I P (x )I F,) =1 (X) . Der Fall s=0 folgt mit einer offensichtlichen Modifika-
tion auf analoge Weise.

b) Der Einfachheit halber sei ¢ := #;,.,. Dann gilt

E(1,(x)?) = (Z Y o0 (W, W, , )(W,j —W,j_l) J..

._l_,-

Falli=j:OBdAseii>j:

2 (d)"(pf (”,ti -W, XW', - n,‘j—l ))
= E(E((Did)f(wti - W‘t—l )(W‘, - W‘j—l ) | £, ))
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=E|®; '(Wtj -W,H)-CD,- 'LE(W" —m“‘lﬁi"). =0

=0

Falli=j:
s{ot{w, -m,. ') = s{o7 (1, -m,. V. )) - slo7 (i -1)

aufgrund der Eigenschaften der Brownschen Bewegung. Somit ist

E(1,(x)?) = E(i @2 (6 -t )) = E(:_!Xf ds] :

i=1
c) folgt aus a) und b) und der Doob'schen Ungleichung in Satz 18. 0

Bemerkungen

a) Allgemeine Integralgrenzen lassen sich folgendermaBen einfiihren:

zjx, dw, := ?X, dw, -]X, dW, firt<T.
t 0 0

Damit folgt fiir 1<T,A4€F, :

T T
[14@) X,(0)- 1, 1) W, =14()- [X,(w) aW,
0 t

b) Seien X, Y einfache Prozesse, a, b€ R. Das stochastische Integral ist dann
linear:
I(aX +bY)=a-I,(X)+b-1,(Y)

Wie in der Motivation zu Beginn des Exkurses schon angedeutet, miissen wir
uns jetzt ndher mit Messbarkeitsvoraussetzungen an den stochastischen Prozess
X beschiftigen, um das stochastische Integral fiir allgemeinere Integranden defi-
nieren zu konnen.
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Definition 26

Gegeben sei ein stochastischer Prozess {(X;,G))} te[0,0) Dann heifit dieser Pro-
zess messbar, falls die Abbildung

[0.0)xQ > R"
(s.0) > X(o)
B([O, oo)) ®F - B(R" ) -messbar ist.

Bemerkung
Falls der Prozess X messbar ist, ist insbesondere X(., o) fiir festes @ € Q B[0,%0)-
B(R™)-messbar. Somit ist dann fiir alle ¢e€[0,0), i=l,..,n, das Integral

j(:x,? (s) ds definiert.

Definition 27

Gegeben sei ein stochastischer Prozess {(X;, G))},e[0,.0)- Dann heiBt dieser Pro-
zess progressiv messbar, falls fiir jedes ¢ > 0 die Ab&)il ung

[0.]]xQ>R"
(5,0) > X, (o)

B([O, t]) ®G, - B(R") -messbar ist.

Bemerkungen

a) Falls {(X(1),G)}c0) Progressiv messbar und beschrinkt ist, ist fiir alle
t € [0,0) das Integral I‘:X ((s) ds G,messbar.

b) Offensichtlich ist jeder progressiv messbare Prozess messbar.

c) Man kann zeigen, dass jeder messbare Prozess X eine progressiv messbare
Modifikation besitzt (Satz von Chung & Doob (1965) ).

Satz 28

Falls alle Pfade des stochastischen Prozesses {(X,,G)},. [0,0) rechtsstetig (links-
stetig) sind, ist der Prozess progressiv messbar.
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Beweis: Wir zeigen nur den rechtsstetigen Fall, fiir linksstetiges X folgt die
Behauptung analog.

Seit>0,meN, k=0, 1,..., 2™m-1, 0 < 5 < ¢, definiere dann

X (@) = xo(@)

(m) _ 3 (k+D¢
X = X fiir —<s<
s () (k+l%m () om <s qm
Die Abbildung

[0.:]xQ- R"

(@) x _s'”) (w)

ist offensichtlich B([O, t])@G, —B(R") -messbar. Da der Prozess X, rechtsste-
tige Pfade hat, gilt auBerdem

"{f‘;ansm)(a)) = X (o) fiir alle (s, w) €[0,£]xQ.

Damit ist auch der P-fast sichere Grenzwert o+ X (@) B([O t]) ®G, - B( ") -
messbar. 0

Der folgende Satz liefert uns eine wichtige Eigenschaft progressiv messbarer
Prozesse, nimlich dass der gestoppte Prozess {X,,,}, bzgl. der urspriinglichen
Filterung messbar ist:

Satz 29

Sei 7 eine Stoppzeit bzgl. einer Filterung {G,} te[0,) Ist der stochastische Pro-
zess {(X;,G)}reqo,) Progressiv messbar, dann ist auch der gestoppte Prozess
{(Xiars G} iefo,m) PTOgressiv messbar. Insbesondere ist X, G,-messbar und

auBerdem G, , .- messbar.

Beweis:

Die Abbildung (s, @) X;, (@) von [0,f]xQ—>R" ist zusammengesetzt aus den
Abbildungen fi:(s, ®) - ((sA?)(@),®) und f:(s,0) = X(a). f; ist B([0,£])-G,-
messbar, da sAt G, ,-messbar und G,, . C G,, f, ist offensichtlich B({0, #])-G,-
messbar, da X nach Voraussetzung progressiv messbar ist, damit ist auch f; o f}
B([0,1])-G,-messbar und somit ist der Prozess {(X,,,,G)} 1e[0,) progressiv
messbar.
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Um die G,, -Messbarkeit von X,, . zu beweisen, miissen wir zeigen, dass fiir
beliebiges 4 € B(R”) gilt : .

Xt (Anftar<s)eG, firalles>0.

Fall s> : Bs gilt {ra7<s}=Qund X;,,(4) €G, < Gy, da {(X,11» G} re[010)
progressiv messbar.

Fall s<¢ : Es giltX,_,\I,(A)n{tA T<s}= X,",\ISM(A)n{tA r<s}eG;NG,,da
{(X;nr» G} se[0,) PrOgressiv messbar und A7 Stoppzeit. 0

Fortsetzung des stochastischen Integrals auf L2[0, T]-Prozesse

Um nun das stochastischen Integral sinnvoll auf allgemeinere Integranden fort-
zusetzen, fordert man aufgrund der vorangegangenen Diskussion, dass diese In-
tegranden in erster Linie progressiv messbar sein sollen. Um auBerdem eine
Norm auf den stochastischen Integralen definieren zu konnen, betrachtet man
den folgenden Vektorraum:

?[o,1]:= 12 ([0, rlo.F.{F}, ot P)

= { {(X 0 )} «Jo] reellwertiger stochastischer Prozess |

. L
£ ]_, progressiv messbar, _"0 Xidt|<o

Durch
Il = £{ [y 2 o

wird eine Norm auf L2[0,7] definiert. Dahinter verbirgt sich die bekannte
L?-Norm auf dem Wahrscheinlichkeitsraum ([0, T]xQ,B([0, T])®F, AQP).
Genau genommen handelt sich es hier nur um eine Halbnorm, da aus

Jx - ¥z =0
nicht unbedingt X=Y folgt, es gilt dann nur X=Y A®P-fast sicher. Man sagt
dann, der Prozess X ist iquivalent zum Prozess Y.
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Die Abbildung X—I.(X) induziert fiir einfache Prozesse X eine Norm fiir
stochastische Integrale gemil

T 2 T
“I.(X)Hir = E( [x, dws) = E( I x? ds] =llxi
0

0

Die Abbildung /.(X) ist somit linear und normerhaltend, also eine Isometrie, die
sogenannte , It6-Isometrie®.

Wir wollen nun das stochastische Integral I.(X) auf Prozesse X L2[0,7] fort-
setzen, indem wir zum einen verwenden, dass sich alle Prozesse X eL2[0,T]
gleichmiBig durch eine Folge einfacher Prozesse X(*) approximieren lassen, und
zum anderen, dass die zugehérige Folge L(X(™) stochastischer Integrale gemi
der It6-Isometrie eine Cauchy-Folge bzgl. der L,-Norm bildet. Es ist zu zeigen,
dass die Cauchy-Folge konvergiert und der Grenzwert unabhiingig von der
approximierenden Folge X® ist. Diesen Grenzwert werden wir dann mit
IX)=Ix <@W, bezeichnen. Man kann sich nun die Fortsetzung des stochastischen
Integrals auf L2[0, T] mittels des folgenden Diagramms veranschaulichen (wobei
M,¢ den Raum der stetigen, quadrat-integrierbaren Martingale darstellt) :

X e[07] 0 > J(X) e M§
Hr M.,
I.)
X(") > J( X("))
einfacher Prozess stochastisches Integral
fur einfache Prozesse

Bild II.4  Fortsetzung des stochastischen Integrals
Man beachte, dass fiir einen einfachen Prozess X gilt:

),

X(”)
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Satz 30

Ein beliebiges X e L2[0, T] lisst sich durch eine Folge von einfachen Prozessen
X approximieren, genauer: Es gibt eine Folge X einfacher Prozesse mit

T )%
. n
lim EJ(XS—XS ) as=o0

Beweis:
a) X € L2[0.T] stetig und beschrinkt: Wihle
2"-1
X" (@) = X5(0) 1)+ X Xr @)1, 070 -
ar (aer]

Die gewiinschte Konvergenz folgt dann aus dem Satz iiber die dominierte Kon-
vergenz.

b) X € L2[0, T] beschrinkt: Sei G, ()= j(:xs () ds . Dann st

G, (w)- G(t_ %') (w)
o

fiir m €N, m geniigend groB, so dass +~1/m>0, stetig, beschrinkt und F,-mess-
bar. Nach dem Hauptsatz der Differential- und Integralrechnung gilt

X’,("') =

tlim ™(a) = X,(o)

fiir AQP-fast alle (1,0)€[0, T]xQ2. Mit dem Satz iiber die dominierte Konvergenz
folgt

T
Ef(%m - x,) a—"2250.
0

Somit kann man nach a) eine Folge X () =X () einfacher Prozesse wihlen
mit

E?(X,(") -x,) a2 50.
0
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¢) X € L?[0,T] beliebig: Definiere
X t(M) (w):= x, f ()1 {“’I IX: (m)ISm} ()

Dieser Prozess ist dann beschrinkt und erfiillt
2
E ﬂx‘"” x| 2250

aufgrund des Satzes iiber die dominierte Konvergenz, da Iz? ,(m)

<lx,|.

Nach a) und b) existiert eine geeignete ,,Diagonalfolge* X () =X () ein-
facher Prozesse mit

EZJ:IX,(") x| @220, 0
0

Fiir den Beweis des wichtigen Satzes iiber die Konstruktion des It5-Integrals be-
nétigen wir noch, dass man bestimmte Martingale auf Nullmengen so abindern
kann, dass sie rechtsstetig werden und Martingal bleiben:

Hilfssatz 31

Sei {(X,, G,)} te[0,m) ©in Martingal, wobei die Filterung {G,}, [0,0) die iiblichen
e. Dann besitzt der Prozess X; eine rechtsstetige Modifikation
{(Yp Gt)}te[o,m) » SO dass {(Yt’ G‘)}te[o,w) Mamngal ist.
Beweis:
Dies folgt aus Satz 1.3.13 in Karatzas/Shreve (1991). Dieser Satz besagt, dass
unter den obigen Voraussetzungen der Prozess X, eine rechtsstetige Modifikation
{(Y,, Gt)}te[o besitzt, so dass {(¥;,G)}epo,) Sub-Martingal ist, falls die
unktion 1> I%X rechtsstetig ist. Da X Martingal ist, ist der Erwartungswert
konstant und damlt offensichtlich diese Bedingung erfiillt. Fiir die Modifikation
Y gilt dann EY,=EX, fiir alle 120, dieser Prozess ist damit ein Sub-Martingal mit
konstantem Erwartungswert und folglich ein Martingal. 1]
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Satz 32 - Konstruktion des Ité-Integrals fiir Prozesse aus L2[0, 7]

Es existiert eine eindeutige lineare Abbildung J von L2[0,7] in den Raum der
stetigen Martingale auf [0, T] bzgl. {F,} tefo,7] Mt

i) x={x,}, o) cinfacher Prozess = P(J,(X) = I,(X) fur alle t €[0,T]) =1

i) E(7, (x)? )=EU:X,2 ds) Itb-Isometrie

Diese Abbildung ist im folgenden Sinne eindeutig: Erfiillen Abbildungen J,J' die
Bedingungen i) und ii), so sind fiir alle X €L2[0,T] die Prozesse J(X) und J(X)
ununterscheidbar.

Definition 33
Fiir X €L2[0, T] und J wie in Satz 32 setzen wir

t
T, am, = 1,(x)
0

und nennen dies das stochastische Integral bzw. das Ité-Integral von X
bzgl. W.

Beweis von Satz 32:

a) Zunidchst approximieren wir den Prozess X mit Hilfe einfacher Prozesse und
untersuchen dann die Konvergenz der zugehérigen stochastischen Integrale:
Nach Satz 30 existiert zu XeL?[0,7] eine Folge einfacher Prozesse
Xm) €[2[0, T] mit

lim E?(X, ~x™Fas o.
m—yoo 0

Diese Folge X(™) ist auch Cauchy-Folge bzgl. der T-Norm. Aufgrund der Li-
nearitits-Eigenschaft des stochastischen Integrals fiir einfache Prozesse und nach
Satz 25 b) gilt dann fiir 7 €[0, 77:

E(1(x®) - 1,(x))” - 5(1,(x - x))’
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t 2
= E[ I(X(") — X(m)) df} "—_)'mio
0

Damit ist die Folge (X)) Cauchy-Folge in L%(Q,F,,P) mit einem F,-mess-
baren, quadrat-integrierbaren L2-Grenzwert, den wir 7(X) nennen. Da aus der

Konvergenz im quadratischen Mittel die P-stochastische Konvergenz folgt, gilt
fiir jedes £>0:

P(II, (x®)-1,(x)

Mit einer Teilfolge X (m) erhalten wir dann P- fast sichere Konvergenz gegen
den Grenzwert I{X).

>s)—":)i—)0

Insgesamt erhalten wir so einen neuen stochastischen Prozess bzgl. {F,} te0,1] >
nimlich 1(X) == {{(X)};c[o,7- Uber diesen Grenzwert kénnen wir bisher wemg
sagen. So wissen wir insbesondere nicht, ob der Prozess I(X) stetig ist. Auch ist
der L2-Grenzwert I(X) nicht eindeutig, er ist nur P-fast sicher festgelegt und die
Teilfolgen, dic die fast sichere Konvergenz ergeben, sind unter Umstinden fiir
jedes ¢ verschieden.

b) Wir konnen allerdings zeigen, dass der Prozess I(X) als L2-Grenzwert ein
Martingal ergibt:
Seien ¢, s €[0, T}, t>s. Dann gilt, da das stochastische Integral fiir einfache Pro-

zesse ein Martingal ist:
E(I, (x| F,) = 1,(x™) furalle m eN.
Nach Definition der bedingten Erwartung gilt dann
[r,(x™)ap= [1,(x™)dp furalie 4 eF, undalle m eN.
Aufgnm?l der L2-Konverg:nz gelten aber auch

Jr,(x™)ap 22 [1,(x)dP und
A A

[r,(x) ap 122, (1 (x)ap.

A A

Insgesamt folgt also
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[1,0dP=[1,(X)dP firalle 4 <F,
A A

Da I(X) Fy-messbar ist, folgt daraus die Martingaleigenschaft
E(1,(0|F,)=1,(X) P-fast sicher.

c) Jetzt konstruieren wir die Abbildung J mit Hilfe des L2-Grenzwertes I(X).

Da die Filterung {F,}, die iiblichen Bedingungen erfiillt und {7,(X)} ; Martingal
ist, kénnen wir nach Hilfssatz 31 fiir jedes ¢ den Grenzwert I(X) auf einer P-
Nullmenge so abindern, dass sich insgesamt ein rechtsstetiger Prozess
{J{X), F;}, ergibt, der Martingal ist. Insbesondere ist J,(X) quadrat-integrierbar
ist.

d) Wir beweisen nun die Stetigkeit von J(X):

Das so konstruierte rechtsstetige Martingal J(X) ist weiterhin L2-Grenzwert der
Folge I(X™). Indem wir die Doob'sche Ungleichung in Satz 18 anwenden,

ergibt sich
2
E(OZZJI, (X"") ) -J, (X)D

<4 E(IT(X("') )- JT(X))2 LN

Es gibt also eine Teilfolge X (™) mit

o ()00 <

Ost<

Insbesondere gilt dann mit der Chebyshev-Ungleichung

f{ supJI,(X(m"))—J,(X) z%) <k? -E( sup |...|)2 sfk—.

0<t< 0<t<T

Nach dem 1.Borel-Cantelli-Lemma konvergiert damit die Folge stetiger Prozesse

{I(x (m ) )} tefo,r} fiir k- gleichmiBig P-fast sicher gegen einen rechtssteti-
gen Prozess J(X), der damit auch P-fast sicher stetige Pfade besitzt. Wir konnen
deshalb oBdA annehmen, dass J(X) stetige Pfade besitzt.



Exkurs 2: Das It6-Integral 45

¢) Nun zeigen wir, dass J(X) nicht von der approximierenden Folge X™) ab-
hangt. .

Seien X™eL2[0,T], Y™MeL2[0,T] approximierende Folgen von X eL2[0,T]
mit L2-Grenzwerten /(X) und I'(X), dann ist auch

(m)
2 . X\ m gerade
Y™ m ungerade

approximierende Folge zu X und I(Z(™)) konvergiert sowohl gegen I/{X) als
auch gegen I'(X) in L2. Daraus folgt dass fiir jedes ¢t €[0,7] I(X) und I', (X)

P-fast sicher gleich sein miissen, also auch mit J{X) P-fast sicher iiberein
stimmen.

f) Weiter gilt aufgrund der Konvergenz von /(X)) in L2 und mit Satz 25 b) :

E(J,(X)z) = lim E(I, ( x) 2) = im E(:!( Xgn))zdg] - E(:! x2 d,]

Die letzte Gleichheit folgt, weil X in ([0, T]xQ, B([0, T))®F , AQP) L2-Grenzwert
von X ist.

g) Die Linearitits-Eigenschaft der Abbildung J ergibt sich @hnlich wie in Teil f)
durch Grenziibergang zusammen mit der Linearititseigenschaft des stochas-
tischen Integrals fiir einfache Prozesse.

h) Eindeutigkeit der Abbildung J:

Sei J’ eine weitere lineare Abbildung mit den im Satz geforderten Eigenschaften.
Dann folgt mit der Eigenschaft i) und aus der Stetigkeit linearer Abbildungen fiir
alle [0, 7] :

X(mk)) = kl_,:;nm J;( X(m")) = kl-,::nw It( X(mk)) =J, ( X)
P-fast sicher.

Da J{X) und J'(X) beides stetige Prozesse sind, folgt nach Satz 5 sogar ihre Un-
unterscheidbarkeit. g

Ji(X)= J,’(

lim
k-—>o
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Satz 34 - Spezialfall der Doob'schen Ungleichung

Sei X eL2[0, T], dann gilt:
t 2 T
E[ sup | [x, aw, J 54-1-:[])(3 ds']
0<t<T| o 0
Beweis:

folgt aus der Doob'schen Ungleichung in Satz 18 und der It6-Isometrie, da
IOX, dW, Martingal ist. i

Definition 35 - Mehrdimensionale Verallgemeinerung des stochastischen
Integrals

Sei {(W(9), F))}, mit W(t)—(Wl(t), W, (?)) eine m-dimensionale Brownsche Be-
wegung und {(X(?), F)},e 0,7] ein R™™-wertiger progressiv messbarer Prozess
mit X;; €L2[0, 7). Dann definiert man das stochastlsche Integral [X dW wie folgt:

(
j Y [xy,(s)aw, (s)
t =10
[ x(s) amw(s) := T :
0
)3 j Xy (S)aw, (s)
\Jj=10

wobei die einzelnen Summanden eindimensionale Itd-Integrale sind. Man
beachte, dass

Z jx ) dw;(s)
Jj=10
wieder Martingale sind.

Weitere Fortsetzung des stochastischen Integrals

Zur Modellierung von Handelsstrategien bendtigen wir eine Fortsetzung des
stochastischen Integrals auf eine groBere Klasse von Prozessen als L2[0, T]. Wir
werden hierzu den Vektorraum



Exkurs 2: Das It3-Integral 47

H2[0,1] := HZ([O, 7)., F,{F,}IE[G_T],P)

1= {(X"F‘):E[O.T] reellwertiger stochastischer Prozess \

T
{x, }f progressiv messbar, -[0 X ,2 dt < oo P - fast sichcr}

betrachten. Da Prozesse X € H2[0, T] nicht unbedingt eine endliche 7-Norm be-
sitzen, kénnen sie auch nicht auf die gleiche Weise durch einfache Prozesse ap-
proximiert werden, wie dies im Beweis von Satz 30 fiir Prozesse aus L2[0,T)]
durchgefiihrt wurde. Allerdings lisst sich ein Prozess X € H2[0, 7] mit Hilfe von
Stoppzeiten lokalisieren, genauer:

Durch die Folge von Stoppzeiten 7, , neN, mit

]‘X_,z(m)ds > n}

t,,(a)) 1= TAinf{OStS T
0

(%, ist tatsichlich Stoppzeit bzgl. {F,}, sieche Ubung U.4) definiert man die
Folge gestoppter Prozesse X {iber

X,(”) (o) := X, (w)'l{f,,(w)Zt} .

Hierdurch erreicht man, dass die Prozesse X fiir alle neN in L2[0, T] liegen.
Folglich lasst sich fiir X") das stochastische Integral J(X®)) wie in Satz 32
bestimmen. Man definiert dann auch das stochastische Integral /(X) iiber

1,(x) = 1,(x®) frosess,.
I(X) ist fiir X e H2[0, T] wohldefiniert, da auch die Konsistenzeigenschaft
1,(x)=1,(x™) frosise (s, men,

gilt. AuBerdem gilt fiir Xe H2[0, T), dass die nichtfallende Folge von Stoppzeiten

T, —I222 5 +wo P-fast sicher

erfiillt. Somit ist I(X) per Konstruktion ein lokales Martingal mit lokali-
sierender Folge 7,. Das so definierte stochastische Integral ist weiterhin linear
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und besitzt stetige Pfade. Allerdings gelten nun die Eigenschaften aus den Sétzen
32 ii) (It6-Isometrie) und 34 nicht mehr, da sie eventuell nicht-existierende Er-
wartungswerte beinhalten.

Exkurs 3: Die Ito-Formel

Das fundamentale Werkzeug zum Rechnen mit stochastischen Integralen ist die
It6-Formel. Wir werden sie hier nur fiir den Fall sogenannter 1t6-Prozesse ein-
fithren.

Allgemeine Voraussetzungen fiir diesen Abschnitt:

Gegeben sei ein vollstandiger Wahrscheinlichkeitsraum (Q,F,P), der mit
einer Filterung {F,}, versehen sei, die die iiblichen Bedingungen erfiillt.
Weiter sei auf diesem Raum eine Brownsche Bewegung {(W,,F))},. [0,%0)
bzgl. dieser Filterung definiert.

Definition 36

{(WQ), F)} te[0,0) sei eine m-dimensionale Brownsche Bewegung, meN.
a) {(X(®), F)},c [00) heiBt reellwertiger Ité-Prozess, falls er fiir alle >0 eine
Darstellung

X() = X(©)+ [K()ds+ [ H(s) am(s)
0 0

t mt
= x(0)+ [K(ds+ Y. [H ()aw;(s) P-fastsicher, .
0 Jj=lo

besitzt, wobei X, Fj-messbar ist und {K(D)},cj0w)y {H(9)}1e0,00) PrOgITESSIV
messbare Prozesse sind mit

' '
ﬂK(s)l ds < und IH,Z (s)ds <o P-fast sicher, fiir alle 20, i=1,...,m.
0 0
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b) Ein n-dimensionaler Itd-Prozess X=(X(1),..., X(") besitzt als Komponenten
reellwertige Itd-Prozesse.

Bemerkungen

a) Insbesondere gilt nach den obigen Voraussetzungen HjeHz[O,T_I fiir alle
T>0, j=1,...,m.

b) Die Darstellung eines It6-Prozesses ist eindeutig bis auf Ununterscheidbarkeit
der Prozesse K; und H; (siche Ubung U.5).

c) Man verwendet fiir die Darstellung eines Itd-Prozesses oft auch die symbo-
lische Differentialschreibweise

dX, =K, dt + H,dW,.

Definition 37
Sind X und Y reellwertige It6-Prozesse mit den Darstellungen

x(t)=x(0)+ I‘:K(s)ds' + j; H(s)dw(s)
r(f)=r(0)+ j; L(s)ds+ I‘;M(s)dW(s)

so heifit

mt
(x.v), = Y [H,)- My(s)ds

i=1

die quadratische Kovariation von X und Y. Insbesondere heiBt (X), := (X, X),
quadratische Variation von X.

Schreibweise

Sei X ein It6-Prozess, Y ein reellwertiger, progressiv messbarer Prozess. Setze
t t t
[7e)ax() := [¥(9)-k(s)ds + [¥(s)- Hs) dw(s)
0 0 0

falls die Integrale auf der rechten Seite definiert sind.
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Jetzt sind wir so weit, dass wir die eindimensionale It6-Formel formulieren
konnen:

Satz 38 - Eindimensionale It6-Formel

W, sei eine eindimensionale Brownsche Bewegung, X, sei ein reellwertiger It6-
Prozess mit

t t
X, = Xo+ [K ds+ [Hy aw,,
0 0
f: R—R sei zweimal stetig differenzierbar. Dann gilt fiir alle ¢ > 0:

fx)= Xo)+jf X +%- gf" Xs)d(X),

= f(Xo)+ ](f'(X,)-K, +-§--f"(Xs)'Hs2\)ds

0
t
+ I f'(X;)Hs dW, P-fast sicher.
0
Insbesondere sind alle aufiretenden Integrale definiert.

Bemerkung

In der Kurzschreibweise sieht man deutlich, dass sich die It-Formel vom Fun-
damentalsatz der Differential- und Integral-Rechnung um den weiteren Sum-
manden

t
; fn d(X)
0

unterscheidet. (Beachte: die quadratische Variation (X), ist trivialerweise ein It5-
Prozess.)

Differentialschreibweise

Man verwendet fiir die It6-Formel oft die symbolische Differentialschreibweise
4 (X,) = f(X)aX, + 3 f(X,) d(X), -



Exkurs 3: Die Ito-Formel 51

Beweis der Ito-Formel (Satz 38):
1. Schritt: Lokalisierung
Man stellt zuniichst durch Lokalisierung sicher, dass alle auftretenden Erwar-
tungswerte existieren und Grenzprozesse vertauscht werden diirfen. Definiere
firz>0

t t t

M,:= [HdW, , B,:= [K.ds, B,:= [|K]ds

0 0 0
und fiir neN die Stoppzeiten
0, falls | Xo| 2 »

t
1, := <inf{t20l|M,|2noder§, 2 n oder IHfdsZn},fallleol<n
0

Loo, falls |X0|<nund {.50.}=0

Dann gilt 7| <T,<...—»0 P-fast sicher. Lisst sich die It-Formel fiir den gestopp-
ten Prozess

Xt(n) = XtAI,',

zeigen, so erhilt man das allgemeine Ergebnis durch Grenziibergang n— (vgl.
auch Ubung U.7). Durch diese Lokalisierung kann man nun oBdA annehmen,

dass Xy( @), M( o), ﬁ, (w) und stzds alle durch eine Konstante C auf [0,00)xQ

beschrinkt sind. Dann gilt auch | X(a@) < 3C|. AuBerdem ist dann H, e L2[0,T]
und das lokale Martingal M, ein Martingal. Die Werte von f auBerhalb [-3C,3C]
sind irrelevant, da X, unter obigen Annahmen keine Werte auBerhalb dieses
Intervalls annimmt. Wir konnen uns deshalb auf den Fall f zweimal stetig dif-
ferenzierbar mit kompakten Triger zuriickziehen. Somit sind auch f f', f''
beschrinkt.

2. Schritt: Taylor-Entwicklung
Sei >0 und n={t, ¢,,...,7,,,} mit 7,=0, ¢, =t eine Partition von [0,¢]. Definiere

Il := 1'5';?»: Itk -tk—ll
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Durch Taylor-Entwicklung jedes einzelnen Summanden in der folgenden Tele-
skopsumme gilt fiir festes @ (wobei wir der einfachen Notation wegen im Fol-
genden die Abhingigkeit von @ nicht explizit schreiben) :

f(Xt)_f(X0)= g(f(xtk)—f(xtk—l))
=§1f ’(X‘k—l XX‘k Xy l) %z':: " ”k)(x‘k X )2

) ™ )
mit 7 (@) = X fey (@) +6, (mXX 4 (0)- X, te (m)) , G l@) e (0,1) .

Wir zeigen nun, dass die Summen (*), (**) in dieser Darstellung gegen die zuge-
hérigen Integrale in der It6-Formel konvergieren.

3. Schritt: Der lineare Term (*) :

Es gilt

)= z_.:f’(X'k—l )(B'k - B, l) i (X‘k IXM": —My ')

k=1
A7) 4 (n)

i) Fiir ||7r|| — 0 konvergiert 4;(n) P-fast sicher und in L! gegen das Lebesgue-
Sticltjes-Integral

]‘f'(X:)st = ]‘f'(Xs)sts

ii) Um die Konvergenz von 4,(m) zu untersuchen, approximieren wir f(X;)
durch den einfachen Prozess

7@ = £1(x@) 19 + 25 (X @) 1,16,
=l k-lk

Mit der Itd-Isometrie folgt

i) om) - o{ () -s2]

0
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Aufgrund des Satzes iiber dominierte Konvergenz geht dieser Wert fiir ||z — 0
gegen Null. Damit folgt nun

Ay() = jy -H,aw, 20, jf \)H, dW, in I2,
iii) Aus i) und ii) folgt :
TGP i naN ] f'(Xs)Kods + }f’(Xs)Hdes inLl
0 0
4. Schritt: Der quadratische Term (**)
Es gilt
éf "(le)(Xt,, -Xi )2

m 2 m )
= Z_:If ”(”k)(B‘k -B ’k—l) +2}§1f "(”k)(Blk _B‘h-l )(Al’k —M‘k—l)

”

I\(ﬂ') Iz‘('ﬂ)
+ zlf"(,,k)(Mtk - M,"“l )2 .
) I;(’t) ’

m
i) Da B, M und f' beschrinkt sind, auBerdem ZIB,k -B, | < B, < Cgilt, folgt
- k=1

|B"‘ " ‘|+ SksmIM"‘ M. lD

In(=)+ () <2c-|r7] - (

Da B und M stetig sind, konvergiert dieser Ausdruck fiir ||7t|] — 0 P-fast sicher
und in L! gegen Null.

i) Betrachte nun /5(7). Definiere

I3(x) = ,gf"(xtk-n )(M’k M, )2 ’

Sks
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(@) = f: f"(x,k_‘) ‘iH,Z ds .

k=1 4Ly
Dann gilt

* 1" 1 2
ll3(7r)— I3 (ﬂ')l < I;n’:zsxmlf (r)k)—f (X,,‘_I )’LZ(M,,‘ -M,, ) J .
Mit der Cauchy-Schwarzschen Ungleichung folgt:

E(1;(0)-B@)

< JE(l's'iasxm |f “(m)- 1 "(X ey )Dz '\IE [i(M'* ~ My, )2]2

k=1

-

“ v

Ll <Jsec?

Die Konvergenz des ersten Faktors folgt aus der Stetigkeit von £, die des zweiten
Faktors folgt aus dem nachfolgenden Lemma 39, Teil a). Somit gilt

B - B() 2220,

AufBlerdem besteht, wenn man beachtet, dass

2 %
E(M,k —M,H) =E [H2ds
ey
gilt und die gemischten Terme Erwartungswert Null haben (siche Ubung U.6),
die Beziehung:

B(13(0)-1,(x))’

o 2
SII-fILzo'E Z (Mtk _Mtk_I) - IHszdS

2 (f 2 % ?
=||f".,°'E Z (Mt,,‘Mt,,-,) - IH_,ds
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Wegen (a—b)? < 2(a?+b2) folgt hieraus weiter

(13(;:) 1( ;:)) <27} £ (M,k -M,_ l)4+i[ [u? ] .

k=1\¢,_,
Nach Teil b) des nachfolgenden Lemmas 39 gilt:

E{i(Mu, -M,, )4J M 0
k=1

AuBerdem gilt mit dem Satz iiber dominierte Konvergenz:

E[Ez:luyf ds)z] <E [maxt!Hz ]-:!H,zds A0,

—
-0 fiir |zll-0 <

Insgesamt konvergiert fiir || — 0 also /3(7) gegen I,(7) in L2. Da weiter

L) I £ x, )2 ds= j £(x;)d(x), P-fast sicher und in L!

gilt, folgt

)t | I=l>0

5 jf" )H2 ds in L1,

Beachte hierzu:

1 |

L) - [£(x,)H? ds
0

SE [|13(n) ~13(a)|+

+13(2) - jf" X, )H? dsD
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- E(|I3(7r)—I;(7r)|)+E{I;(7t)— [r(x,)a? zﬁD
0

] — v

~0 ir |50 0 |0

Somit konvergiert /3(7) gegen I fu H2 ds in L! fiir [=] —>0.
0
5. Schluss:

Fiir ||7t|| -0 konvergleren

(*) gegen jf (Xo)K,ds + jf (X,)H, W, und

(**) gegen jf "(X,)H? ds inLL.

Insgesamt existieren so fiir den gestoppten Prozess Teilfolgen 7, von Partitionen
von [0,7], so dass die jeweiligen Summen in 2., 3., 4., P-fast sicher gegen die
richtigen Grenzwerte konvergieren, d. h. beide Selten in der It6-Formel sind fiir
festes ¢ P-fast sicher gleich. Da aber beide Seiten stetig in  sind, sind sie deshalb
sogar P-fast sicher gleich fiir alle ¢, d.h. ununterscheidbar.

Das allgemeine Ergebnis fiir den ungestoppten Prozess ergibt sich nun durch
Grenziibergang n—, indem man die Stetigkeit von £, f*,f'' beachtet. 1|

Lemma 39

X sei ein Martmgal mit E(X)? <  und lX | < C fiir alle se[0, ] P-fast sicher.
Sei n={ty,1),...,t,,} mit £,=0, ¢, =t eine Partltxon von [0,£]. Dann gelten

a) E{i(xlk X, )sz <48.c*

k=1

b) Falls X stetig ist, gilt:

E(i(X,k -X, )4) Ao,

k=1
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Beweis:
a) Sei 0< /< m—1: Wegen der Martingaleigenschaft gilt:

A5 (-5, ) -4 06,2, |

j=1+1

2

= E((X,_ -X,,) |F,,) <4.C? P-fastssicher. )

Da | Xx,| < Cgilt, folgt
('m . . . )
2

E| Z(X,j —X,j_l) ] <4.C -E[Z(X,j -X,H) ]516-C4. V)
\j=1 j=1
AuBlerdem

A3 S (x50, ) - J)

\ I=1j=I+1

Ao, -5, 5 (5,5,

I=1 j=1+1

-1
<4.c? -E(Z(x,, - X, )ZJ <16-C*. 3)
I=1
Aus (2) und (3) folgt:
2
m 2 m m
E [Z(X’i X‘j I) } —E(Z(X’j X‘ 1) ]+2'E[Z ZJ
Jj=1 Jj=1 I=1 j=l+1
<16-C*+2.16-C* =48.C*.
b) Beachte zunichst:
2 m
Jz:_lxl _(lrsnjasxm xj)) Ele .

Wende dies auf x; := (X, —X, ‘) an. Dann gilt:
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E[i(){']‘ _th—l)4}
« J=1 s
(®)
2 m

< E((l;ngm(x,j - X, )) -JZ:I(X,] - x,j_l)z] .

Mit der Holderschen Ungleichung folgt:

@15 (g~ 5,)) |- B, ) |

i—1

[ J - 7

P-fs. % ﬂﬂﬂ—)ﬂ nach a) ;1/4_8Cz

Die Konvergenz gegen Null folgt mit der Stetigkeit von X, und dem Satz iiber
dominierte Konvergenz . 0

Anwendungsbeispiele der Ité-Formel
a) X, =t
Diesen ,,Prozess* kann man wie folgt darstellen:

X, =0+ j;;l ds+ j;o aw, .

Aus der It6-Formel ergibt sicil fiir zweimal stetig differenzierbares f:
t
fO=r©)+ [ rs)ds.
Somit kann der Hauptsatz der Differential- und Integralrechnung als ein Spe-
zialfall der It-Formel angesehen werden.
b) X, =h(?):

Aus der It6-Formel ergibt sich fiir ein differenzierbares # gerade die Substitu-
tionsregel:

X, =h(0)+ I‘;h’(s)ds+ j;o aw,
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= (£oh)e)=(roh)0)+ [ F (W)} (s)ds

) X, =W, fix)=x:
Wegen
t t
W, =0+ [ods+ [1aW,

0 0
ergibt sich

= tjz-uqr dﬂ{,+—;—-]'2ds=2-]ﬂg dw, +t.
0 0

Man beachte den Zusatzterm ,,t“, der im Vergleich zu den Regeln der gewthn-
lichen Analysis auftritt und seine Ursache in der nicht verschwindenden quadra-
tischen Variation von W, hat.

Satz 40 - Mehrdimensionale 1t6-Formel
Sei X(£)=(X;(?),..., X,()) ein n-dimensionaler It5-Prozess mit

X,() = X(o)+jK(s)ds+ZjH &) dw(s) , i=1,..m,

J=to

wobei W(H)=(W(¢),..., W,,(f)) eine m-dimensionale Brownsche Bewegung ist. Sei
weiter f: [0, ©)xR" - R eine C!-2-Funktion, d.h. f ist stetig, nach der ersten
Komponente einmal stetig differenzierbar, nach den letzten » Komponenten
zweimal stetig differenzierbar. Dann gilt:

St X () Xn(1)) = 7(0,X1(0),-... X, (o))
+If¢(s XeOr X ) i+ 32 [ 1 (5.0 2, 6) a6

i=19

+._ Z Ifx‘xj 5, X1(5),..., X, (S)) ( )s

lj—

Beweis: Der Beweis der mehrdimensionalen It6-Formel verl4uft analog zum ein-
dimensionalen Fall, in Schritt 2 betrachten wir jedoch (der Einfachheit halber sei
n=1):
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f(tk»X(tk))_f(tk—-l-X(tk—l)) .
= [r(te ¥(ee))- 7 (‘k—x-X(‘k))]‘"[f ) (’k-l'X(’*-'))]
=fz(7k’X(tk)xtk —tk-—l)"'fx(tk-l'X(tk-l)xx(tk)_x(tk-'l»

+';-fxx(tk-—l Sk )(X (tk)" X (tk-l ))2
mit 7, wie in Schritt 2, #,_,<g<z,. 0
Aus der mehrdimensionalen It5-Formel folgt sofort:
Korollar 41 - Produktregel (oder Partielle Integration)
Seien X, und Y, eindimensionale It5-Prozesse mit

X, =Xo+j(:K, ds+ [ H, W,

Y, =Y0+I(:p, d.s+j';a, aw, .
Dann gilt :

t t !
X, Y= Xo Yo+ [X,d¥, + [Ydx, + [a(x,¥),
0 0 0

H t
= Xo- Yo+ [(Xo, + X,K, + Hyo,) ds+ [(X,0, + ¥,H,) aW,
0 0
Die Gleichung des Aktienpréises

In unserer Modellierung des zeitstetigen Marktmodells galt fiir den Preis P(#) der
Aktie zur Zeit ¢ im Fall d=m=1 (d.h. also nur eine Aktie und eine eindimen-
sionale Brownsche Bewegung) :

P(t)= p-exp((b—%az)t+aW,)
Bei diesem speziellen Beispiel fiir die Anwendung der Itd-Formel wihlen wir:
X, =0+ ]'(b-—%az)ds+ tja’ dw, ,
0 0

f(x)=p-e*.
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Mit Hilfe der It6-Formel erhalten wir dann

70)=p+ (6 Yo-to?)+41(x ]ds+If o W,
also ’

P(y) = p+ IP(s)-bds'+ IP(s)-o'dW,
0

»Gleichung des Aktienpreises” (GdA)

Die Gleichung des Aktienpreises gilt auch fiir zeitabhidngiges b und o; wenn man
t t
X, = I(b(s) ——;'az(s))ds + Io‘(s)dWs
0 0

wihlt. Man beachte dabei, dass b und o geeignete Voraussetzungen erfiillen
miissen, damit X, It6-Prozess ist. In der symbolischen Differentialschreibweise
lautet die Gleichung des Aktienpreises:

dP(f) = P(t)(bdt + o dWw,) (Gda)
PO)=p

Man sagt auch, dass P(f) eine Losung der stochastischen Differentialgleichung
(GdA) ist. Wir werden unten Bedingungen fiir Existenz und Eindeutigkeit von
Losungen stochastischer Differentialgleichungen von #hnlicher linearer Form
kennenlernen.

Hier lisst sich die Eindeutigkeit elementar zeigen:
Sei Y(¢) eine weitere Losung von (GdA). Definiere fiir £ >0

1
Z\t) = ——=.
( ) P(t)
Dann gilt mit Hilfe der It6-Formel

dz(e) = 2()(o? -b)dt - odW,).

Mit der Regel der partiellen Integration folgt
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d(z(2) - ¥(¢)) =

Z()¥()b-b+0? )ds + 2(1)¥(e)(o - o) aW, - Z(1)¥(e)o* e =0,

also
Y(f) = const - P(t).

Damit ist die Losung von (GdA) durch die Anfangsbedingung Z(0)-¥(0) = 1 ein-
deutig bestimmt.

Als Verallgemeinerung gilt der folgende Satz

Satz 42 - Variation der Konstanten

Essei {(M(2), F)} te[0,00) €INE m-dimensionale Brownsche Bewegung. Sei xe R
und 4, a, Sj, g; seien progressiv messbare reellwertige Prozesse mit

g(IA(s)I + |a(s)l) ds <o P-fast sicher, fiir alle £>0 und
_(:(Slz (s)+ 0'12- (s)) ds<w  P-fast sicher, fiir alle 7>0.

Dann besitzt die stochastische Differentialgleichung

dx() = (40 - x(2) + als)) dt + i(s (DX +0o; (t)) dw;(¢)
j=
X(0)=x (SDGL)

die bzgl. A®P eindeutige Losung {X(2), Fy} e 0,.c) Mit

T % 2o,

Xx() = Z(t)[x + {! ZG) [a(u) - JZ=1S I (wWo j (u)J du+ JZ:=16[ ZG) aw; (u)} (L1)

wobei .
t t

Z(1) = exp{ j (A(u) -1 ||S(u)"2) du + j S(u) dW(u)) (L2)
0

0

die eindeutige Losung der homogenen Gleichung:
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dz(t) = Z(t)(A(t) dt +5(t) dW(t)) (HDGL)
Z(0)=1 '

ist.

Bemerkung

Der Prozess {X(£),F},¢(0,.) 10st die stochastische Differentialgleichung (SDGL)
in dem Sinne, dass X(7) liu' alle 120

X(@)=x+ j (46X +al) ds+ 3. | (s/0x()+0,(9) am; (9
j=1
P-fast sicher erﬁxllt. o

Beweis von Satz 42:

i) Analog zum Beispiel ,,Gleichung des Aktienpreises* ldsst sich zeigen, dass
Z(f) die homogene Differentialgleichung (HDGL) 16st. Es gilt weiter:
Y(¢t) = y-Z(¢) lost die homogene Gleichung mit der Anfangsbedingung Y(0)=y.
Genauso wie oben zeigt man, dass dies sogar die einzige Losung ist.

ii) Wir zeigen nun, dass X{(?) gemiB (L1) die inhomogene lineare stochastische
Differentialgleichung (SDGL) lost. Es seien hierzu Z(#) wie oben und

¥() := x+jz( )[a(u) ZS (Wo; (u)) du+ZI Z( ) d W;(u).

_.1 0
Anwendung der Produktregel etgibt:

ax(t) = d(z(e) - ¥(2)) = 2(0)-dY(1)+ ¥(2) -d2(1) + (. 2),
z(t)[ = )(a(t) Zs ®)-0; (t)) dt+— z( 2 Za ()aw; (t)}
r()- 20 A e+ ) () +5(0) - 20) o)
= (a(0)+ 4()- x(0)de +( X()-5() +o{) ) am().

Folglich 16st X(#) die stochastische Differentialgleichung (SDGL).
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iii) Seien nun X (). X(f) zwei Losungen der stochastischen Differential-
gleichung. Dann 15st

X(2) := X(2)- x()
die folgende homogene Gleichung

d8()= ROAD de+ 28,0 aw, @), 7(0)=0.
j=l

Nach i) folgt dann X(f) = 0 P-fast sicher fiir alle £20. 0

I1.2 Handelsstrategie und Vermogensprozess

Jetzt, nachdem der It6-Kalkiil bekannt ist, kénnen wir die Wertpapierpreise all-
gemeiner mit zeitabhdngigen Zinsraten und Volatilititen modellieren. Dies wird
nun Grundlage aller folgenden zeitstetigen Marktmodelle sein.

Allgemeine Voraussetzungen

Gegeben sei ein vollstindiger Wahrscheinlichkeitsraum (Q, F,P). Auf die-
sem Raum sei eine m-dimensionale Brownsche Bewegung {#(1), F;};c[0,.x0)
definiert, wobei {F,}, die Brownsche Filterung ist. Wir modellieren die Preis-
verldufe der Aktien und des Bonds gemiB

Po(t) = po ex;{ ]r(s) ds) “Bond”

B@®)=p;- exp[ j[b,- (s)- % i a’,-lz- (s)] ds+ i Ia‘,-i (s aw; (s)] “Aktie”
0

J=l Jj=to

fiir 1€ [0,T], T>0, i=1,...,d, wobei r(f), b(£)=(b,(0),....b (1)), o(f)=(oy(1); alle
bzgl. {F,}, progressiv messbare, (komponentenweise) gleichmiBig in (¢, @)
beschrinkte Prozesse sind. Zusitzlich wird angenommen, dass o(f)o(?)'
gleichmiBig positiv definit ist (d.h. es gibt ein K>0 mit x'o(f)o()'x = K x'x
fiir alle xeR? und alle z€[0, T] P-fast sicher).

_
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Diese Preise sind nach Satz 42 iiber die Variation der Konstanten die eindeutigen
Lésungen der folgenden stochastischen Differentialgleichungen (hier sichern die
obigen Beschrinktheitsannahmen die Anwendbarkeit von Satz 42):

ary(i) = Po(e) 1) d

Py(0) = po ,Bond*

dP(0) = P,-(t)(b,-(t)dt+ 30, ) de(t)} iel,d

J=1
P (0) =p; »Aktie®
Insbesondere kennen wir hiermit auch die Darstellung der Preise als 1t3-Prozesse.

Bemerkung

In unseren allgemeinen Voraussetzungen haben wir nicht gefordert, dass der
Zinssatz r(f) des Bonds deterministisch ist, 7(f) darf somit auch eine Zufalisvaria-
ble sein. Damit ist der ,,Bond“ nicht mehr ,risikolos“, allerdings ist durch die
Forderung, dass #(f) gleichmiBig beschrinkt sein soll, das Risiko im Vergleich
zum Aktienpreis, der u.a. durch die Brownsche Bewegung bestimmt wird, stark
eingeschrinkt.

Magliche Handlungen der Investoren

Nach der Modellierung der Preise wollen wir nun die Handlungen der Marktteil-
nehmer modellieren. Hierbei nehmen wir an, dass der Investor die folgenden
Handlungsmdglichkeiten besitzt:

a) Er kann sein Verm&gen umschichten, zum Beispiel manche Aktien verkaufen
und den Erlos in andere Wertpapiere investieren. Dies wird durch den ,.Port-
folioprozess* oder die ,,Handelsstrategie* modelliert werden. '

b) Er kann auch Teile seines Vermgens konsumieren, was durch den ,.,Konsum-
prozess™ dargestellt wird.
Forderungen an das Marktmodell

Wir stellen nun einige Forderungen zusammen, denen ein realistisches Markt-
modell geniigen sollte:
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a) Der Investor darf keine Kenntnis der zukiinftigen Preise besitzen (er darf also
keine ,hellseherischen Fihigkeiten haben).

b) Die Handlungen des einzelnen Investors sollen keinen EinfluB auf die Wert-
papierpreise haben (Annahme des ,kleinen Investors®).

c) Jeder Investor sei zum Zeitpunkt /=0 mit einem festen Startkapital ausgestattet
(wobei jeder Investor ein anderes Startkapital besitzen kann).

d) Das nicht in Aktien angelegte Geld wird in Bonds angelegt.

¢) Die Investoren sollen sich selbst-finanzierend verhalten, d.h. jede Vermogens-
dnderung entsteht durch Gewinne oder Verluste aus Investment oder Konsum, es
kann kein Geld aus dem Nichts dazukommen oder im Nichts verschwinden.

Weiterhin machen wir noch folgende Annahmen, die sich fiir die Entwicklung
der Theorie als praktisch erweisen werden:

f) Die Wertpapiere sind beliebig teilbar.

g) Man kann auch eine negative Anzahl von Wertpapieren halten. Ist der Anteil
des festverzinslichen Wertpapiers negativ, so heifit das, dass man einen Kredit
aufgenommen hat, ein negativer Anteil an Aktien heiBt, dass man sogenannte
Aktienleerverkiufe getitigt hat (d.h. man hat Aktien verkauft, die man noch
nicht besitzt, man schuldet also anderen Investoren Aktien).

h) Am Markt entstehen durch Vermégensumschichtungen keine Transaktions-
kosten.

Negative Bondpositionen und Kreditzinsen

Ist r(¢) konstant, dann bedeutet die Moglichkeit, negative Anteile am Bond zu
halten, dass man zum gleichen Zinssatz Geld sowohl anlegen als auch leihen
kann. Fiir manche Institutionen ist diese Situation tatsichlich niherungsweise ge-
geben. Generell gilt, dass der Zinssatz in unserem Modell von der Marktlage,
also von (¢, w) € [0, T]x<, abhiingt und nicht davon, ob man einen positiven oder
negativen Anteil an Wertpapieren hilt.

Mathematische Umsetzung einiger Forderungen

Wir erinnern uns, am Markt werden d Aktien und ein risikoloses Wertpapier, ge-
nannt ,,Bond“, gehandelt. Das Startkapital des Investors, und damit sein Anfangs-
vermdgen, sei x>0 (Forderung c) ). Damit kann nun zur Zeit =0 eine Wertpa-
pierzusammenstellung ¢(0)=(¢,(0), ¢,(0),..., 90))' erworben werden, wobei
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©40) die Anzahl der vom i-ten Wertpapier gehaltenen Anteile ist. Analog geben
dann die Komponenten des Vektors ¢(8)=(g(2), 91(9),..., 9(?)' an, dass g(f)eR
Anteile vom i-ten Wertpapier zum Zeitpunkt ¢ gehalten werden. Den Vektor ¢(7)
nennt man eine Handelsstrategie. Aus der Forderung a) ergibt sich, dass die
Handelsstrategien progressiv messbar bzgl. {F,}, sein miissen, Kauf-oder
Verkaufsentscheidungen werden also immer bzgl. der im Zeitpunkt ¢ gegebenen
Informationen getitigt. Forderung e) fiihrt dazu, dass die Handelsstrategien
selbst-finanzierend sein miissen, was in den folgenden Definitionen prizisiert
wird.

Ein diskretes Beispiel zum Begriff ,,selbst-finanzierende Handelsstrategien®

Wir werden im zeitstetigen Modell den Begriff einer selbst-finanzierenden Han-
delsstrategie durch eine Forderung definieren, die auf den ersten Blick nicht
ganz natiirlich erscheint. Am folgenden zeitdiskreten Beispiel soll diese For-
derung motiviert werden.

Dazu betrachten wir einen Markt, der aus einer Aktie und einem festverzins-
lichen Wertpapier besteht. Es gebe drei Handlungszeitpunkte, nimlich £ = 0,1,2.
Der Vektor (¢y(?), @(())' stellt die Anzahl der Anteile, die man an Bonds bzw.
an Aktien hilt, dar. Da wir beliebig teilbare Wertpapiere annehmen und zusitz-
lich Aktienleerverkiufe und Kredite erlauben, kann gy(7) bzw ¢,(?) jede belie-
bige reelle Zahl annehmen. C(¢) sei der Konsum zur Zeit ¢ mit C(0) = 0. X(?) sei
das aktuelle Vermégen des Investors zur Zeit ¢ mit dem Startkapital X(0)=x.
Py(?) bzw. Py(?) seien die Preise des festverzinslichen Wertpapiers bzw. der Ak-
tie zum Zeitpunkt z.

Der Investor legt nun sein Anfangsvermdgen x in Aktien und Bonds an, d.h. es
gilt:

X(0) = x = 95(0)- Ao(0) + ¢1(0) - AA(0)..

Zum Zeitpunkt =1 haben sich die Preise der Wertpapiere geindert, aulerdem
konsumiert er einen Teil des Vermdgens. Sein aktuelles Vermogen betriigt dann:

X(1) = 00(0)- Po(1) + 4 (0)- A (1) - (1),
Insgesamt ergibt sich somit:
X(1) = x+90(0)-( B (1) - By () + ¢, (0)-(R()- B (0)- ),

d.h. sein Vermogen zum Zeitpunkt #=1 ist gleich dem Anfangsvermdgen plus Ge-
winn/Verlust aus den Preiséinderungen des Bonds und der Aktie vermindert um
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den getitigten Konsum. Zu diesem Zeitpunkt hat er auch die Gelegenheit, das
iibriggebliebene Vermogen umzuschichten, wobei

X(1) = o(1)- (1) +@1(1) - A (1)

gelten muss, da er sein Kapital nach Konsum wieder vollstindig am Markt in-
vestiert. Im Zeitpunkt =2 gilt analog:

X(2) = 0(2)- Fo(2) +:(2)- (). *)
AuBlerdem

, _
X(2)=x+2[¢0(i-—1)-(Po(i)—Po(i—-l))+¢1(i—l)-(1’1(i)—Pl(i-l))]

i=1

2
-3, **)
i=1
Im zeitdiskreten Modell kann man die Bedingung ,,selbst-finanzierende Handels-
strategie™ als ,,Vermégen vor der Umschichtung minus Konsum ist gleich dem
Vermégen nach der Umschichtung® formulieren, also als

2o(i)- Po(i) + @1(i)- R (i) = @o(i - 1)- P () + o1 (i - 1)- B (1) - C(d) -

Eine solche Formulierung ergibt beim zeitstetigen Modell keinen Sinn, da dort in
jedem Zeitpunkt gehandelt werden kann. Wir werden statt dessen nun X(f) durch
die Gleichung (*) als Vermdgensprozess des Investors zur Strategie ¢(¢) de-
finieren (,,Vermogen=Gesamtwert der gehaltenen Wertpapiere®). Die Gleichung
(**) werden wir als Definition fiir eine selbst-finanzierende Handels- und
Konsumstrategie verwenden, wobei die aufiretenden Summen durch ent-
sprechende Integrale ersetzt werden. Das legt folgende Forderung nahe:

t t t
X@)=x+ Iq)o(s)dﬂ,(s) +I¢1 (s)aR(s) —jc(s)ds .
0 0 0

Man beachte, dass die Preisverldufe It6-Prozesse sind, woraus sich an die ¢(s)
natiirliche Forderungen fiir die Existenz der auftretenden Integrale ergeben
(siehe Definition 43).

Unsere bisherigen Uberlegungen werden nun in mathematischer Hinsicht prizi-

siert:
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Definition 43

a) Eine Handelsstrategie ¢ ist ein R¥+1-wertiger, bzgl. {Fy} te[0,T] progressiv
messbarer Prozess

o® == (oo er().....04(0)

mit
IOT |po(¢) dt <o P-fast sicher, )
d
2 IOT (0:()-B.() dt <o P-fast sicher, fiir i=1,....d. @
j=1

d
Der Wert x:= 2, ¢;(0)- p; heiBt Anfangswert von ¢.
i=0

b) Sei ¢ eine Handelsstrategie mit Anfangswert x > 0. Der Prozess

d
X(@) := Z PROIA0)

i=0
heifit Vermogensprozess bzgl. ¢ mit Startvermagen x.

c) Ein nicht-negativer, bzgl. {F,}, o 7; progressiv messbarer, reellwertiger Pro-
zess c(%), te[0, T], mit

T
Ic(t) dt < P-fast sicher 3)
0 .

heifit ein Konsumratenprozess, kurz Konsumprozess.

Definition 44

Ein Paar (¢,c) aus einer Handelsstrategie @ und einem Konsumratenprozess ¢
heiit selbst-finanzierend, falls fiir den zugehdrigen Vermogensprozess X(7),
te[0,T], gilt:

dt t
X@)=x+ Z _[(p,- (s)apr(s) - Ic(s)ds' P-fast sicher . 4)
i=00 0

waktuelles Vermogen“ =, Startvermégen” + ,,Gewinne/Verluste” — ,,Konsum*
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Bemerkung
Es gelten
t t
I 20(5) dPy(s) = [ 9o ) By (s)rls) dis
0
I () dp(s) = j o BEb () ds+ S j,,,, DBGoy6) ()

J=10

Die Bedingungen (1), (2), (3) in den Deﬁnitionen und die Beschrinktheitsan-
nahmen an 7, b und o sichern also, dass die Integrale auf der rechten Seite in (4)
existieren.

Definition 45
(@,c) sei ein selbst-finanzierendes Paar aus einer Handelsstrategje und einem

Konsumprozess mit X(7)>0 P-fast sicher fiir alle € [0, T]. Der Rd-wertige Pro-
zess

”(t) = (ﬂ'l(t),...,ﬂ'd(t))' s t€ [0, I], mit ”i(t) - ﬁii._)‘;..(.glgi).

heiBt selbst-finanzierender Portfolioprozess zum Paar (@, c).

Bemerkungen

a) Der Portfolioprozess gibt den in die i-te Aktie investierten Anteil vom Ge-
samtvermdgen an. Daher ergibt sich der Anteil des in den Bond investierten Ver-
mogens als

( n(t)) %—(t)mg(—t)-,wobeilF (1..1) eR?.

b) Bei Kenntnis des Vermdgensstandes X(¢) und der Preise P({) ist es 4quivalent,
seine Aktivititen durch ein selbst-finanzierendes Paar (o, c) oder ein Paar (r,c)
zu beschreiben, d.h. Handelsstrategie und Portfolioprozess sind #quivalente
Beschreibungen des gleichen Sachverhaltes.

Die Vermogensgleichung

Durch Beschreibung der Handelsaktivitiiten mittels eines Portfolioprozesses lisst
sich eine einfache stochastische Differentialgleichung fiir den Vermégensprozess
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herleiten. Sei hierzu zunichst (@,c) ein selbst-finanzierendes Paar aus einer
Handelsstrategie und einem Konsumprozess. Dann gilt unter zusitzlicher
Beriicksichtigung von Definition 45:

d
dx() = Y. ¢,(1)dR (1) - D)t
i=0

d m )
= o (VP () r()d + Y 0, () P; (t)[b,- (dr+), o) aw; (t)} —c()ar .
i=1

=

1l

d m
(1-20)" )xOrD dr + Y x0)m, (t{b,- @dt+ Yoy aw, (t)] oy

i=1 j=1

(1 —a(t) ;) X(8)r(¢)de + x(2)(e) b(z) dt + X(2)n{t) o{t) dW(2) - cle) dt

Somit erhalten wir die ,,Vermdgensgleichung”

dx(t) =[r(e) X(e) - (¢ dt + X(2)(z) ' ((6(e)- (1) )t + o{r) am(2))
X(0)=x (VG)

Diese stochastische Differentialgleichung hat nach Satz 42 iiber die Variation der
Konstanten eine eindeutige Losung, wenn man an n(f) geeignete Integrierbar-
keitsbedingungen stellt. Da b, r, o gleichmiBig beschrinkt sind und der Kon-
sumprozess ¢ die Bedingung (3) erfiillt, reicht nach Satz 42

fﬂiz (¢) dt <o P-fast sicher 0)

fiir i=1,...,d, als Bedingung fiir die eindeutige Losbarkeit der stochastischen Dif-
ferentialgleichung (VG).

Man kann nun alternativ auch einen Portfolioprozess direkt als den Prozess der
Anteile des in die einzelnen Aktien investierten Vermdgens einfiihren, ohne den
Umweg iiber die Handelsstrategie zu nehmen.
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Definition 46

Der progressiv messbare, R?-wertige Prozess 7(f) heiBt selbst-finanzierender
Portfolioprozess zum Konsumprozess c(f), falls die zugehérige Vermogensglei-
chung (VG) eine eindeutige Losung X(£)=X"¢(¢) besitzt mit

¢ 2

[(x@)- 7,0)) de < 0 P-fast sicher fir i=1,...d. ©)

0

Bemerkung

Die Bedingung (5) an Portfolio- und Vermdgensprozess entspricht genau der In-
tegrierbarkeitsbedingung (2) an Handelsstrategie und Preisprozess. Erfiillt der
Portfolioprozess die Bedingung (4), so folgt aus der Stetigkeit des zugehérigen
Vermégensprozesses, dass auch Bedingung (5) erfiillt ist. Insbesondere ist somit
die Forderung (5) schwicher als Forderung (4). Wahrend aus Bedingung (4) so-
fort folgt, dass der Vermdgensprozess strikt positiv ist (folgt aus der expliziten
Form der Lésung von (VG) unter Annahme (4)), erlaubt Bedingung (5) auch
Portfolioprozesse, die zum Bankrott des Investors (d.h. X(#)=0 fiir ein &[0, T])
oder sogar zu negativen Vermogen fiihren kénnen.

Definition 47

Ein selbst-finanzierendes Paar (¢,c) (bzw. (7,c) ) bestehend aus einer Handels-
strategie @ (bzw. Portfolioprozess 7 ) und einem Konsumprozess ¢ heiit zu-
lissig fiir das Startvermégen x>0, wenn fiir alle ¢ € [0, T] der zugehdrige Ver-
mobgensprozess

X(£)20 P-fastsicher
erfiillt. Die Menge aller zuliissigen Paare (7, ¢) fiir x wird mit A(x) bezeichnet.
Ein Beispiel

Nach den vielen theoretischen Definitionen betrachten wir nun ein scheinbar ein-
faches Beispiel mit konstantem Portfolioprozess und vermégensabhingiger Kon-
sumrate. Seiy > 0, wihle

(t)=x eR¥ konstant, d)=r-x(9),

wobei X(f) der zu (7, ¢) gehorige Vermogensprozess ist. Der Investor schichtet
sein Vermogen also so um, dass die Anteile des in die einzelnen Aktien und des
in den Bond angelegten Vermdgens iiber die Zeit konstant bleiben. Weiter ist die



113 Eigenschaften des zeitstetigen Marktmodells 73

Geschwindigkeit des Konsumzuwachses (die ,,Konsumrate*) immer proportional
zum gegenwirtigen Vermogen des Investors. Man beachte, dass, obwohl sich 7
wihrend des Zeitablaufs nicht dndert, man andauernd handeln muss, da sich die
Wertpapierpreise stindig und verschiedenartig &ndern. Die Vermogensgleichung
lautet hier:

ax(t) = (r() - 7) X (2) de + X ()7 ((b(e) - () 1) de + ofz) (1)) ,
X(0)=x.
Nach Satz 42 —Variation der Konstanten— ergibt sich fiir den Vermdgensprozess:

X()=x exp[ tj[r(s)— 7 +7'(b(s)-r(s)-1 --,_let'a(s]lz ]ds + iffr'a(s)dW(s)] .
0 0

Insbesondere ist damit X(#) strikt positiv und (7, c) € A(x). Unter dem Gesichts-
punkt, dass der Investor garantiert keinen Bankrott erleidet, ist eine solche Stra-
tegie empfehlenswert. Sie wird sich auch unter anderen Gesichtspunkten noch
als optimal erweisen (siche Kapitel V).

I1.3 Eigenschaften des zeitstetigen
Marktmodells

In diesem Abschnitt werden wir den Markt fiir den Spezialfall d = m betrachten.
Die Dimension der Brownschen Bewegung entspricht also der Anzahl der Ak-
tien. Insbesondere interessiert uns die Menge der mit einem Anfangskapital x er-
zielbaren Endvermégen X(7). Das erstaunliche Ergebnis wird sein, dass bei ge-
eignetem Anfangsvermdgen x jedes Endvermogen X(7) erzielbar sein wird.

Generelle Voraussetzung fiir diesen Abschnitt

d=m

Zunichst bendtigen wir noch einige Bezeichnungen:
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Bezeichnungen

7(?) := exp[—- ]r(s)ds]
0

o) := o7 (£)(b(e) - (1) 1)

Z(z) := exp[— }ds)' dW(s)——;— ]"9(5-)"2 ds]
0 0

H(1) := (1) 2(2)

Man beachte, dass aus der gleichmiBigen Beschrinktheit von b, r und der
gleichmiBigen Positiv-Definitheit von oo’ die gleichméfige Beschrinktheit von
l&DI2 folgt. Wihrend man &{) als eine Art (relative) Risikoprimie fiir das In-
vestieren in Aktien ansehen kann, wird der Prozess H(7) in Zusammenhang mit
dem Bewerten von Optionen eine entscheidende Rolle spielen. Man beachte,
dass H(?) positiv, stetig und progressiv messbar bzgl. {F,}ist. AuBerdem ist H()
eindeutige Losung der stochastischen Differentialgleichung

aH(t) = (1) (e) de + 6) aW()) o®
HO0)=1
ist. Hiermit erhalten wir auch die Darstellung von H(¢) als It6-Prozess.

Der nachfolgende Satz kann als das zentrale Ergebnis des gesamten Buches an-
gesehen werden und beinhaltet die entscheidende Eigenschaft des Marktmodelis
fiir den Falld = m.

Satz 48 - Vollstindigkeit des Marktes

a) Das selbst-finanzierende Paar (,c) bestechend aus einem Portfolioprozess 7
und einem Konsumprozess c¢ sei zuldssig fiir das Startvermogen x>0, also
(7,c) € A(x), dann gilt fiir den zugehdrigen Vermdgensprozess X(7):

E[H(t)X(t) + ]‘H(s)c(s) ds') <x fiiralle te[0,T].
0
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b) Es seien B > 0 eine F-messbare Zufallsvariable und c(f), t€[0,T], ein Kon-
sumprozess mit

T
x:= E[H(T)B+ IH(s)c(s)ds) <o,
0
Dann existiert ein Portfolioprozess 7(?), t€[0,T] mit (7,c) € A(x), so dass der
zugehorige Vermogensprozess X(7)
X(T)=B P-fastsicher

erfiillt.

Bedeutung des Satzes iiber die Vollstiindigkeit des Marktes

Man kann nun mittels Teil a) H(¢) als den geeigneten Diskontierungsprozess in-
terpretieren, der das in ¢ = 0 benétigte Mindestvermdgen

E[ [ (s) <(s) ds) +E(H(T)- B)

angibt, um Ziele, die in der Zukunft liegen (z.B. leben gemiB einem vorgegebe-
nen Konsumprozess c, erreichen eines Vermogenstands B zur Zeit =T ) zu er-
reichen. Teil a) setzt somit dem Wunschdenken bei gegebenem Anfangsvermd-
gen x>0 Grenzen.

Teil b) zeigt, dass die nach a) zulissigen Ziele auch tatsichlich realisierbar sind.
Teil b) besagt also, dass man jeden gewiinschten Vermégenszustand in =T
durch Handeln gemif eines geeigneten selbst-finanzierenden Paares (i,c) er-
reichen kann, falls man ein hinreichendes Anfangsvermdgen besitzt. Diese Ei-
genschaft bezeichnet man als die Vollstiindigkeit des Marktes.

Beweis von Satz 48:

a) Es sei (,¢) € A(x). Anwendung der Produktregel aus Korollar 41 auf H(1)X(?)
liefert (man beachte die Vermégensgleichung (VG) fiir X(¢) und die stochas-
tische Differentialgleichung (H) fiir H(?) ):
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t

H(t) - X (t) + I H(s)c(s) ds

0

—x+ :!H(S) dx,+ :!x(s) dH(s) + (X, H), + ;[H(s)c(s)ds'
—x+ ;[H(S)X(s Hs) + 7(s)' (8()~r(5)1) - H9) - () o)) s

: :gn(s)x(s)[n(s)’ ofe)- o) | awts)
=x+:!H(s))r(s)[rr(s)'cr(s)-6’(s)']d"’(s)- 6))

Da wegen (r, ¢) € A(x) die linke Seite der Gleichung nicht-negativ ist, ist das lo-
kale Martingal auf der rechten Seite nach Satz 17 sogar ein Supermartingal, also

E(H(:)X(t) + ]H(s)c(s) ds)
0

- E[x ¥ ]H(s)x(s)(n(s)' ofs)-4(s)’) dW(s)) <x.
b) Definiere 4
x(1) := ﬁg[ [H(s)e{s) ds + H(T)-B| F,} .

Dann ist X(?) F, t—messbar, X(T)=B P-fast sicher und X(£)20. Da {F}, die Brown-
sche Filterung ist, ist der Erwartungswert jeder Zufallsvariablen bedingt mit F,
P-fast sicher konstant, also gleich dem unbedingten Erwartungswert. Somlt folgt
X(0)=x P-fast sicher. Definiere nun

M(¢) := X(¢)-H(z) + IH(s)c(s) ds = E{ IH(s)c(s) ds+ H(T)B| F,]
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Dies ist ein {F,},-Martingal mit M(0)=x P-fast sicher. Nach dem im folgenden
Exkurs behandelten Korollar 53 zum Martingaldarsteilungssatz kann M als It5-
Integral mit einem {F,} -progressiv messbaren, R?-wertigen Prozess ‘¥(f) mit

J’OT @) dt <o P-fast sicher
dargestellt werden:

t
M (t) =x+ I‘I’(s) dW(s) P-fast sicher fiir alle € [0, T].
0
Man hat also insgesamt

X(e)H(t) + ]H(s)c(s)ds —x+ ]‘P(s)' dW(s) Pfastsicher  (2)

0
Man kann insbesondere X(f) so wihlen, dass X(f) stetige Pfade besitzt (man
beachte, dass H(f), [H(s)c(s)ds und das stochastische Integral stetig sind und H(7)
positiv ist). Mit den anschlieBenden Lemmas 49 und 50 folgt dann aus dem Ver-
gleich der Darstellungen (1) und (2), dass der oben definierte Prozess X(#) der
Vermdgensprozess zum Paar (7, c) € A(x) mit

o{e) = (a(t)-l ) ( H(‘f;()? A + 0(;)) , falls X(£) >0

0 , sonst
ist. 1}

Lemma 49
X(?) und ~(f) aus dem Beweisteil b) des Satz 48 erfiillen
T
jo (=; (t)){(t))2 dt <o P-fastsicher, i=1,...,d.

Beweis:
Es gilt

<eto) (et aaxt
<oty 20 lka(t)—l):ﬂ(t)X(t)u.
alt) B)
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(i) Zunichst gilt, da o(?)o(t) ' gleichmiBig positiv definit ist,

o? 1 II‘P(t)lI’
O % |

Da H(¥) auf [0, T] stetig und positiv ist, gilt fiir P-fast alle we Q:
H(| 2> min_H(s)=Hs") >0,
) sgo,r] H( )

" T
wobei s"=s"(@). Wenn man beachtet, dass das Integral Io "‘I‘(t]lz dt fiir P-fast
alle we Q endlich ist, folgt dann fiir P-fast alle we Q:

0

T ) 1
[a (t)dtsKI —ds <
0 ( 3171 H(S))

(ii) Fir Ao gilt: '

£(0) = X200 -r(01) (o7 @) (o7 o™ ())(bl6) (1)
Da o(?)o(t) " gleichmiBig posiu'v definit ist, gilt
F = x0)— -1

Da b und r gleichmiBig beschriinkt sind und X(¢) stetig auf [0, T] ist, gilt fiir P-
fast alle we Q

T T
[ 520 ar < K—lz [x2 @) -1 ar
0

! (max X (t)) ﬂlb(t) r(t)- _H dt <.

T 3
iii) Fiir P-fast alle e Q gilt nun wegen i), ii) und (a2+52)/2 2 2ab:

.Tﬂl”(’)X (t)"z dt< Zﬁaz (e)dt + j () dtJ <.
0 0 0

o}
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Lemma 50

Es seien 7(f), X(?), c(f) wie im Beweisteil b) von Satz 48. Lost X(#) die stochas-
tische Differentialgleichung

(B x(1) = )X () () - &) ) ()~ H(() it
X(0)=x,
dann ist X(#) Vermogensprozess zu (7,c) mit X(0) =x .
Beweis:
Setze X(t) := X(¢)H(t) . Sei zuniichst X(f)>0 fiir alle t&[0,7] P-fast sicher.
Dann gilt nach Voraussetzung

() = 5 X0 o) - o)) aw(9) -l |
= H(t )[:8 dw(t) - c(t) dt]
= ‘I’(t) dw(t) - H(t)c(t)dr .

Anwendung der It6-Formel liefert

d(gt;)—) - ?1'%:7 :(r(t) +loe)f) ae+ o) dW(t)],
und mit der Produktregel folgt dann
X))

w= d(H(t)J ~(t)d(ﬁ§)+Hz)dX()+d( &),
{H( )( r(t) + &) ) oft) + ‘9(’21 : )(t)J

NECPR
[H(t)a() H()JdW()
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["’"’(’("*”“) [ s )J) “("J g

o+ o
. (X(t)[r(t) +(e) (b(e)~r(t)- 1)] ~dy)
+ X()lt) oft) am(s),

also erfiillt X(#) die Gleichung des zu (7,c) gehérenden Vermogensprozesses.
Wegen X(£) 20 und Lemma 49 gilt dann auch (7, ¢) € A(x).

Nimmt X(?) fiir ein (¢5,a)<[0,T]xQ den Wert Null an, so muss wegen H(#)>0
fiir alle £ [0, 71, ¢(£)=0 fiir alle ¢ [0, T}, B20, auch

c(t,mp)=0 fiirallez>1,
B(wo)=0

gel'ten, und X{(#,ay) bleibt somit identisch Null auf [£), 7]. Hieraus folgt dann
weiter

¥(t,00) =0, #lt,0)=0 fir alle re[ty, T].
In diesem Fall gilt dann dX{(#)=0 fiir alle 7>¢,, was wegen X(£)=0, (2)=0, c(£)=0
auch mit der rechten Seite der Vermdgensgleichung iibereinstimmt. |
Bemerkungen ‘
a) 1/H(?) ist der Vermégensprozess zum Paar

(), c() = (o~ (D' &1), 0)

mit Anfangsvermégen x := 1/H(0)=1 und Endvermégen B = 1/H(T) (siche
Ubung U.10).

ii) Es kann weiter gezeigt werden, dass der in Satz 48, Beweisteil b) konstruierte
Portfolio-Prozess # der bis auf P®A-Aquivalenz, also Ununterscheidbarkeit,
eindeutige Portfolio-Prozess ist mit (7, c) € A(x) und X(T)=B P-fast sicher (vgl.
hierzu auch die Bemerkung nach dem Beweis von Satz 52).
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Exkurs 4: Der Martingaldarstellungssatz

Allgemeine Voraussetzungen fiir diesen Abschnitt

Gegeben sei ein vollstindiger Wahrscheinlichkeitsraum (€, F, P). Auf die-
sem Raum sei eine m-dimensionale Brownsche Bewegung {(#,,F )}, de-
finiert, {F,}, sei dabei die Brownsche Filterung. :

Definition 51

Ein reellwertlges Martingal {(M,,F ,)},E[On bzgl. der Brownschen Filterung
{F}, heiBt ein Brownsches Martingal.

Satz 52 - It's Martingaldarstellungssatz
{(M,,F )}sc[0,7y sei ein Brownsches Martingal mit

EM? <o fiiralle te [0, 7],

d.h. ein quadrat-integrierbares Brownsches Martingal. Dann existiert ein pro-
gressiv messbarer R™-wertiger Prozess ‘¥(?), t€ [0, 7] mit

T
E[ ﬂl‘P(t)“zdtJ <o
0
und
t ’ !
M, = My + j‘l’(s) dW(s) P-fastsicher.
0
Beweis:

Da M, Fy-messbar ist, folgt, dass M, P-fast sicher konstant sein muss. Daher
konnen wir 0BdA M, = 0 voraussetzen. Da M, Martingal ist, gilt dann auch
E(M)=0 fiir alle [0, T]. M, ist als Martingal abgeschlossen, d.h. es hat die
Form

M, = E(My|F,) fast sicher. %)

Zur Brownschen Filterung betrachten wir nun den Vektorraum L2™[0, T], wobei
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L2m[0, T] := {(X(0), F)teqo,n R™-wertiger progressiv messbarer
Prozess | X,eL?[0, T}, i=1,.., m}.

Dann ist L2[0, T] ein Hilbert-Raum mit dem inneren Produkt
T
(H,f[) =E IH(S) H(s)ds|.
0

L29(Q, Fy, P) sei nun der Raum aller quadrat-integrierbaren, F-messbaren Zu-
fallsvariablen Z mit E(Z)=0. L>%(Q, Fy, P) sei versehen mit dem allgemein iib-
lichen inneren Produkt

(£.7):= (1 7).
Die Abbildung
I: L0, 1] > L*°(Q, Fy, P)

T
X Ir(X):= [ x() am(s)
0

ist eine Isometrie. Folglich ist

V= {IT(X)iX e 12™[o, T]}
ein vollstindiger Unterraum von L29(Q, Fy, P). Wenn wir nun zeigen kénnen,
dass V=L?%Q, Fy, P) gilt, dann lisst sich jede quadrat-integrierbare Zufallsvari-

able mit Erwartungswert Null als stochastisches Integral mit WeL2"[0, T] dar-
stellen, insbesondere gilt dies fiir die Zufallsvariable M, also

Mp= J“P(s)dW(s).

Aus der Darstellung (1) und der Martingaleigenschaft stochastischer Integrale
fiir Integranden aus L2[0, T] folgt dann die Behauptung des Satzes

M, = Eﬁw(s)dw(s)m] = ].‘-I’(s)dW(s) .
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Ziel: Zeige, dass ¥ mit L20(Q, Fy, P) iibereinstimmt.

Sei ZeL2%(Q, F, PNV, d.h. es gilt E(Z-N)=0 fiir alle Ne V. Die Behauptung
V=L29(Q, Fy, P) ist dann dquivalent dazu, dass Z=0 P-fast sicher gilt.
i) Fiir # & [0, T] wird durch

Z(r) := E(Z|F,)
¢in Martingal mit Z(0)= E(Z) =0 P-fast sicher definiert. Da die Filtering {F},
die iiblichen Bedingungen erfiillt, kénnen wir nach Hilfssatz 31 annehmen, dass
dieses Martingal rechtsstetig ist. Setze fiir He L2™[0,T]

N(@) = 1), NG := E(ND|F,)=1,(8)

Da N(¢) ein stetiges Martingal ist, gilt mit Satz 13 (,,optional sampling®) fiir alle
Stoppzeiten 7 < T, dass

T
N(z)= E(N(T)| F,) = 1.(8) = [H()- I )dsev
und damit auch ’
0=E(z-N()) = E(E(z N()F, )) = E(N(r)E(ZIF, )) =E(z(z)N(2)) .

Somit ist nach der Martingalcharakterisierung, Satz 15, Z(f)-N(#) ebenfalls ein
Martingal.

ii) Fiir @ eR" beliebig, aber fest, seien
f(x) = expliow+L]e)
= Sxp(%“dlz t) . co:(H’x) +i- [axp(%“ﬂ“z t) . sin(ﬂ’x)] s

ﬁ(;’) fz(x-t)
MO(e) = f(W(e).1),

fiir £ € [0, 7). Es gilt dann

|m®(9)| = exp{ 116l ).
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Durch Anwendung der mehrdimensionalen It6-Formel, Satz 40, auf Real- und
Imaginérteil von f erhilt man:

MO(s) = f,(w(2), t)+i- £(7(2).2)
142 je £ (#(s),5) awy(s)

Jj=1
+f [—%Ileﬂz —%Zo})f(w(s).s) ds
4] Jj=1

13 jo MO(s) aw;(s)
j=1

Da | M9#)| fiir festes & eR™ auf [0, 7] beschrinkt ist, sind die stochastischen
Integrale nach dem letzten Gleichheitszeichen Martingale. Insbesondere ist also
M%) ein Brownsches Martingal.

iii) Nach den Beweisteilen i) und ii) ist Z(f)- M(¢) ein Martingal, also folgt

B(2(e) MO()|F,) = 2(s)- MO(s) = 2(s)- expioW(s) + $16 s)-
Somit gilt
E(20)- explio 1) - WES))|F, ) = 2(9)- exp - Lol e - )
fiir 0< s< < T. Mit O0=ty<t<...<t,<T, Ag = W(t)-W(t_y), 6 €R™, j = 1,...m,

folgt :
E( 2. m[,-é 0, A"H = E[E[Z(T). i,-é G}Aj)l P':..-.J]

- exo(~ 4160l ta - 101) [ t)-e] 30 )]

Jj=1

- el 13l 1)) -0

wegen Z(0)=0 fast sicher, d.h. wir haben
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n

Z(1) L exp(iz 6;A ,-] fir alle § eR™ ,j=1,....n.

J=l

Da Z(T)=Z Fp-messbar ist, definieren wir nun auf Frdas folgende MaB P iiber
dP=Z-dP

Nach iii) gilt fiir beliebiges §; eR™

Wegen der Eindeutigkeit der Fourier-Transformierten folgt hieraus:

F‘U(W(tl)""w(tn))=

Da die o-Algebra F von den endlich-dimensionalen Vektoren (W(#),...,#(t,))
erzeugt wird, gilt sogar

=0,
Fr

woraus Z=0 P-fast sicher folgt. 0

Bemerkung

Der Integrand ¥ aus dem Martingaldarstellungssatz ist P®A-eindeutig. Damit
folgt auch die Eindeutigkeit des in Satz 48 konstruierten Portfolio-Prozesses 7.
Zur Eindeutigkeit beachte:

M(T) = M(0)+ jw(s)'dw(s) =M(0) + j\i’(s)' aw(s)

0

=0= [(¥(s)-¥(s)) am(s)

0= E{ (%) - %)) dW(s)] - E( fle(s) -2 dv]

= P®i-Eindeutigkeit.
Mittels geeignetem Lokalisieren folgt aus Satz 52 (siche Ubung U.12)
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Korollar 53

{(M,,F )} te[0,T] sei ein lokales Martingal bzgl. der Brownschen Filterung {F},.
Dann existiert ein progressiv messbarer R™-wertiger Prozess ¥(¢), t € [0, T] mit

T
m‘l’(t)"2dt <™
0
und
! 1
M, = My + [®(s) dW(s) P-fast sicher.
0
Bemerkung

Nach Korollar 53 ist jedes lokale Martingal bzgl. der Brownschen Filterung -
und somit auch jedes Brownsche Martingal - als It6-Prozess darstellbar. Insbe-
sondere ist damit fiir solche Prozesse die quadratische Variation bzw. die qua-
dratische Kovariation definiert !

Ubungsaufgaben

U.1  Zeige: Ist Y eine Modifikation des stochastischen Prozesses X und be-
sitzen X und Y stetige Pfade, so sind X und Y ununterscheidbar.

U2 Sei reine Stoppzeit und {(X,,F )} o ein rechtsstetiges (Sub-) Martingal.
Man zeige, dass dann der gestoppte Prozess {(X,,,,F )} Wieder ein (Sub-)
Martingal ist.
U3 Der Prozess {P(f)} 5 sei definiert durch

P(t) - p.e(b—%oz)H’O'W(t) ,
wobei W(f) eindimensionale Brownsche Bewegung ist, p, b, o€ R- mit =0.
Zeige:
a) Var(P(t)) = pzeZb’(e"J' —l) .
w P-fast sicher, falls b>1 o2

b) P()—22> )
) 0 P-fastsicher, fa11sb<-;-02
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¢) Vergleiche das Ergebnis aus b) mit dem Grenzverhalten von E(P(?)), Var(P(?))
fiir o0,

U4 Sei {(X(?),F)}p €in stochastischer Prozess, wobei die Filterung {F,},
die iiblichen Bedingungen erfiille.

Zeige: Fiir alle neN ist {w) = inf{£20 | X(¢, ®)=n} eine Stoppzeit.

U5 Sei {(X0), F)} ;50 cin eindimensionaler It6-Prozess. Man zeige; dass seine
Darstellung

X()= x(0)+ [K()ds + [Hs)aw(s)
(4] (4]
eindeutig bestimmt ist. Genauer: Ist
X()=Y(0)s [uls)ds + [ols)aw(s)
0 0

eine weitere Darstellung, so folgen

o X(0)=Y(0) P-fast sicher

e K(s) und /As) bzw. H(s) und o(s) sind dquivalent bzgl. AQP.
Anleitung: 1. Zeige, dass fiir ein stetiges Martingal {(M(?), F))},c [,y der Form

M()= [} ols)as mit [} |ols)ds sC <o gilt

i {308 2) )

n—>w0 i=l1

E(Zn} (m()- M(%)) 2} = E(M(1)? - M(0)?)

Insbesondere folgt aus diesen beiden Beziehungen wegen M{(0)=0 auch M(¥)=0
P-fast sicher fiir alle te[0, T].

2. Zeige durch geeignetes Stoppen (und Grenziibergang n—), dass die Aussage
T
aus 1. auch unter der Annahme L |p(s)ds < oo P-fast sicher gilt.
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3. Wende die Aussage aus 2. auf das (lokale) stetige Martingal
M():= [ (H(s)-0(s)) W (s) = [ (uls)-K(s) ds an.

U.6 Man zeige, dass fiir die im Beweis der It6-Formel auftretenden Prozesse
M, und H, unter den dortigen Annahmen gilt:

{8 i)

L
m 4L 2
=EY (M,k -M,H) [H? ds
= Ly

U.7  Sei {(X(¢), F)}»o It6-Prozess und 7 eine Stoppzeit. Man zeige, dass fiir
geeignetes f gilt:

[rxtan) daxtean)= [£(x()dxe).
0 0

0.8 Man beweise die Produktregel, Korollar I1.41.

U9 Essei {(WQ), F, )} >0 cine eindimensionale Brownsche Bewegung. Zeige,
dass folgende Prozesse Martingale bzgl. {F,}, sind:

a) X(¢)= exp(%)-cos(W(t)) .
B) X(7) = exp(£)-sin((2)) .
©) X(1) = ((e)+1)-exp(- (1) - %) .

Hinweis: It6-Formel
U.10 Es sei H(?) definiert wie in Abschnitt I1.3, Seite 74.

a) Zeige, dass 1/H(f) der Vermdgensprozess zum Paar

(2(2).c(0) = (o7 () o™ (O(e() ~+(9)-1)0)

mit Startvermogen x=1/H(0)=1 ist.
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b) Es sei (7, ¢)€A(1) mit ¢=0, so dass

Eﬁa(t)' o(f) dW(t)) =0, :j||”(t)zﬂ dt<w,
0

gelten. Zeige: Existiert fiir den zu (7 0) gehérenden Vermogensprozess X(¢) der
Erwartungswert E(In(X(1)), so gilt

E(in(x(1))) < E(In(;—{-(l—ﬁ)) .

(Bemerkung: Der zu 1/H(f) gehorende Portfolioprozess heiit deshalb auch
wachstumsoptimales Portfolio.)

U.11 Sei B>-K eine F-messbare Zufallsvariable mit K>0, >0 fest. Zeige,
dass es dann unter bestimmten Voraussetzungen ein Startvermégen x>-K und
eine Handelsstrategie ¢ gibt, so dass fiir den zugehérigen Vermogensprozess
X(2) gilt:

X(t)2-K firalleze[0,7]

X(T) =B P-fast sicher.

U.12 Man beweise Korollar 53, indem man die Aussage durch geeignetes Lo-
kalisieren auf den Martingaldarstellungssatz zuriickfiihrt.



90

Kapitel III: Optionsbewertung

II1.1 Einleitung

Die wichtigste Anwendung des It6-Kalkiils in der Finanzmathematik ist die der
Optionsbewertung. Dabei ist das bekannteste Ergebnis die Black-Scholes-Formel
fiir die Bewertung europdischer Call- und Put-Optionen. Dies wurde auch durch
die Verleihung des Nobelpreises fiir Wirtschaftswissenschaften an Robert
Merton und Myron Scholes im Jahr 1997 fiir ihre Arbeiten zur Black-Scholes-
Formel gewiirdigt. Fischer Black lebte zu diesem Zeitpunkt bereits nicht mehr.

Optionen sind sogenannte derivative Wertpapiere, d.h. aus zugrunde liegenden
Giitern abgeleitete Wertpapiere, die schon seit Jahrhunderten in verschiedenen
Formen gehandelt werden, aber erst ab Anfang der 70er Jahre unseres Jahrhun-
derts groBe wirtschaftliche Bedeutung erlangten.

Allgemein versteht man unter einer Kaufoption bzw. einem Call einen Vertrag,
der seinem Kiufer das Recht (nicht die Pflicht !) einrdumt, eine festgelegte
Menge eines bestimmten Gutes wihrend der Vertragsdauer (bei einer sogenann-
ten amerikanischen Option), oder nur zum Ende der Laufzeit (bei einer euro-
pilische Option) zum vorher festgelegten Preis, dem Ausiibungspreis, vom
Verkiufer der Option zu kaufen. Genau das Gegenteil ist die Verkaufsoption
bzw. der Put. Damit erhalt der Kaufer der Option das Recht, die bestimmte
Menge des Gutes zum vorher festgelegten Preis an den Verkiufer der Option zu
verkaufen (dabei ist der Verkidufer des Puts verpflichtet, die Ware, z. B die Ak-
e, dann auch abzunehmen).

Es werden heute Optionen auf Aktien, Schatzbriefe, Rohstoffe, Optionen, Ver-
trige, Fremdwihrungen und vieles mehr gehandelt. Auch die Ausgestaltung der
Optionsvertrige ist dabei sehr verschieden. Wir werden in Kapitel IV einige die-
ser sogenannten exotischen Optionen vorstellen.

Beispiel: Europiischer Call

Ein europiischer Call auf eine Aktie gibt dem Kéufer der Option das Recht, im
Zeitpunkt ¢=T, eine bestimmte Aktie zum im Zeitpunkt ¢=0 festgelegten Preis
K>0 zu kaufen. Ist der Aktienkurs P;(f) in r=T hoher als K, so kann der
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Besitzer der Option die Aktie zum Preis K erwerben und sofort zum héheren
Preis P;(T) am Markt verkaufen. Er macht dann einen Gewinn in der Héhe von
(P1(1)-K) (unter der Vernachldssigung von Transaktionskosten).

Ist P;(T)<K, so lisst der Besitzer der Option sein Recht verfallen, selbst wenn er
Interesse am Kauf dieser bestimmten Aktie hitte. Es ist nimlich dann fiir ihn
giinstiger, die Aktie am Markt zum Preis P;(T) zu erwerben. In diesem Fall ist
der Gewinn durch die Option gleich Null.

Zusammengefasst ergibt sich fiir den Kiufer der Option eine Zahlung der Hohe
(R(T)-K)" int=T.

Beispiel: Europiéischer Put

Ein europiischer Put auf eine Aktie gibt dem Kiufer der Option das Recht, im
Zeitpunkt ¢=T eine bestimmte Aktie zum Preis K>0 zu verkaufen. Damit ergibt
sich fiir ihn ein Gewinn der Héhe

(K- R(1)" ine=T.

Payoff-Diagramme

In der Praxis werden Optionen bzw. ihre zugehorigen Endzahlungen in ¢=T
graphisch durch sogenannte Payoff-Diagramme beschrieben, d.h. es wird der
Graph der Endzahlung als Funktion vom Aktienkurs in =T, P;(7), angegeben
(was natiirlich nur méglich ist, falls sich die Endzahlung als Funktion von P;(T)
darstellen ldsst !). Fiir den europidischen Call und den europiischen Put erhalten
wir so die Payoff-Diagramme:

(a(n)-x) 1

>
0 K A(7)

Bild III.1  Payoff-Diagramm eines Calls
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(x-R(1)"

¥ >
0 K R(T)
Bild 1.2 Payoff-Diagramm eines Puts

Das Erzeugen anderer Auszahlungen durch Kombination dieser beiden Payoff-
Diagramme (was einem Halten einer Zusammenstellung von Puts und Calls ent-
spricht), ist in der Praxis sehr populiir. Man vergleiche hierzu Ubung U.1.

Kurze Geschichte des Optionshandels

Der erste grofiere Gebrauch von Optionen fand zu Beginn des 17.Jahrhunderts in
Holland statt, als sich Tulpenziichter zur Zeit der aufkommenden Tulpenmanie
gegen schwankende Preise absichern wollten und Vertriige erwarben, die ihnen
das Recht zusicherten, ihre Ernte an Tulpenzwiebeln gegen einen vorgebenen
Mindestpreis an die Verkiufer dieser Vertrige zu veriduBern, wenn der Markt-
preis unter den Mindestpreis fallen wiirde (es handelte sich hier um eine Art von
Verkaufsoption). Die Verkiufer der Vertriige hofften auf weiteren Preisanstieg,
so dass die Tulpenziichter die Vertriige nicht in Anspruch nehmen wiirden und
sie die Kaufprimie der Vertrige als Gewinn verbuchen konnten. Allerdings
brach dann 1637 der hollindische Tulpenmarkt zusammen, und die Op-
tionsverkaufer erwiesen sich nicht in der Lage, ihre Kaufverpflichtungen einzu-
halten. Die Folge dieses Zusammenbruchs war eine ernste Wirtschaftskrise in
Holland, und Optionen (bzw. optionséhnliche Vertréige) bekamen in Europa fiir
lange Zeit einen schlechten Ruf.

Der organisierte Handel von Optionen begann im 18.Jahrhundert in London, wo-
bei mangels gesetzlicher Vorschriften (wie z.B. iiber die Zahlungsfihigkeit des
Verkiufers von Verkaufsoptionen, Lieferfihigkeit des Verkdufers von Kaufop-
tionen) oftmals UnregelmiBigkeiten auftraten, die erst abgestellt werden konn-
ten, als 1930 ein gesetzlicher Rahmen fiir den Optionshandel erstellt wurde.
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Aber erst zu Beginn der 70er Jahre des 20.Jahrhunderts erlangte der Handel von
Optionspapieren die Bedeutung, die er heute besitzt, als 1973 in Chicago die
Chicago Board Options Exchange erdffnet wurde. Seit dieser Zeit weitete sich
der organisierte Optionshandel schnell aus. In diesem Zusammenhang ist auch
die Er6ffnung der Deutschen Terminbérse in Frankfurt 1990 zu nennen.

Warum werden iiberhaupt Optionen gehandelt ?

Der Hauptgrund fiir den Handel mit Optionen besteht in der Absicherungsfunk-
tion von Optionen gegen Preisschwankungen des ihnen zugrundeliegenden Gu-
tes (vgl. hierzu auch die Absicht der Tulpenziichter beim Erwerb der Verkaufs-
optionen im obigen Beispiel). Hierbei hiingt es vom Typ der Option ab, gegen
welche Art der Preisschwankungen (Preissteigerung, -verfall,...) man sich durch
ihren Erwerb absichert. Man kann mit Hilfe von Optionskontrakten Risiken zu-
kiinftiger Zahlungsstréme eliminieren oder begrenzen. Eine typische Anwen-
dung ist die Moglichkeit einer weltweit titigen Firma, durch Erwerb von Devi-
sen-Optionen Wechselkursrisiken zu verringern. So kénnte z.B. ein Unterneh-
men, das im Friihjahr nichsten Jahres eine Zahlung in Héhe von 10 Mio. Dollar
zu leisten hat, eine Kaufoption auf diesen Betrag zum festen Wechselkurs von
DM 1,70 pro Dollar erwerben. Es hat sich so gegen einen Anstieg des Dollarkur-
ses iiber DM 1,70 abgesichert, sich aber gleichzeitig die Méglichkeit offen ge-
halten, bei Fall des Dollarkurses unter DM 1,70 die Devisen zum giinstigeren
Kurs am Markt zu erwerben.

Natiirlich werden Optionen auch von Spekulanten erworben, die auf eine gegen-
iiber dem Aktienkurs {iberproportionale Wertsteigerung der Option hoffen. So
steigt z.B. der Preis einer Call-Option bei einem Anstieg des zugrunde liegenden
Aktienkurses um eine Geldeinheit in der Regel um weniger als eine Geldeinheit
an. Der prozentuale Wertzuwachs der Call-Option liegt dann aber iiber dem der
Aktie. Man spricht hierbei von einem ,Hebeleffekt“ (engl. leverage-effect)
(siche auch Ubung U.14). Interessant sind Optionen fiir Spekulanten auch des-
halb, weil sie im Vergleich zum zugrundeliegenden Gut oft viel weniger kosten
und mit geringem Kapitaleinsatz manchmal relativ groBe Gewinne (aber auch
grofe Verluste) erzielt werden kénnen.

Kurze Geschichte der Theorie der Optionsbewertung

Die Theorie der Optionsbewertung in ihrer heutigen Form hat ihren Ursprung in
der Dissertation ,,Théorie de la Spéculation“ von L.Bachelier aus dem Jahre
1900 (siche Bachelier (1900)). In dieser Arbeit findet man die erste mathema-
tische Beschreibung der Brownschen Bewegung als stochastischen Prozess
(wenn auch nicht unter diesem Namen). Bacheliers Ziel war es, durch Modellie-
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rung von Giiterpreisen mittels einer Brownschen Bewegung theoretische Werte
fiir verschiedene Typen von Optionen auf bestimmte Giiter abzuleiten und diese
Preise mit den tatsdchlichen Marktpreisen zu vergleichen. Als Optionspreise
schlug er den Erwartungswert der aus der Option hervorgehenden Zahlung vor.
Entscheidendes Manko in Bacheliers Modellierung war, dass die Giiterpreise in
seinem Modell negativ werden konnten.

Bacheliers Arbeit geriet fiir lange Zeit in Vergessenheit, und erst nach Einfiih-
rung der geometrischen Brownschen Bewegung als Preismodell in den 60’er
Jahren gelang Fischer Black und Myron Scholes im Jahr 1973 der entscheidende
Durchbruch (siehe Black und Scholes (1973)). Die Vorgehensweise von Black
und Scholes bei der Herleitung der Black-Scholes-Formel wird in Abschnitt I11.3
beschrieben. Wir werden zunéchst in II1.2 den modernen Ansatz der Optionsbe-
wertung nach dem Duplikationsprinzip vorstellen, der eine natiirliche An-
wendung der Martingaltheorie und insbesondere des Martingaldarstellungssatzes
ist. Als Ausgangspunkt dieser Richtung kann die Arbeit von J.M. Harrison und
S.R. Pliska (1981) angesehen werden.

I11.2 Optionsbewertung nach dem
Duplikationsprinzip

Das Problem ist nun, einen sinnvollen Preis p fiir eine Option, z.B. den euro-
piischen Call, zu finden. Eine feste Zahlung B in der Zukunft T hat heute in 1=0
bei konstanter Bondverzinsung r den Wert

e-—rT . B

Man nennt dies auch den abgezinsten oder diskontierten Wert des Betrags B.
Es ist genau die Summe, die man in #=0 im Bond anlegen muss, um in T den
Betrag B zu erhalten (mehr zum Thema Diskontieren findet man z.B. in Tietze
(1996)). Bei zufallsabhingiger und zeitabhingiger Verzinsung (f) des Bonds
betrachtet man den Erwartungswert

E(e’lor r(s)ds -B) .

Dies ist der Betrag, den man in t=0 im Bond anlegen muss, um in 7 im Mittel
den Betrag B zu erhalten. Es ist nun naheliegend als Optionspreis den Erwar-
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tungswert der mit dem Bondpreis auf =0 abgezinsten Endzahlung der Option in
T anzusetzen, also z.B. fiir einen europiischen Call:

p= E(e“I:r(s)ds -(P] (T)-—K)+) ‘

Wir werden im Folgenden zeigen, dass dies im Allgemeinen ein falscher Preis
ist! Man beachte hierzu auch, dass die Abzinsung mit dem Bond willkiirlich ge-
wihlt wurde und nicht die Mdglichkeit beriicksichtigt, dass man Geld auch in
Aktien anlegen kann. ’

Ein diskretes Beispiel zum Preis einer Option

Zur Motivation des Duplikationsprinzips wollen wir zun#chst ein einfaches Bei-
spiel betrachten. Am Markt gebe es ein festverzinsliches Wertpapier mit Preis
Py(?) und eine Aktie mit Preis P;(f). Vereinfachend legen wir fest, dass fiir den
Zinssatz r=0 gelte, der Ausiibungspreis sei auf K=1 festgelegt. Die Wertpapier-
preise seien durch folgendes Diagramm gegeben:

t=0 t=T

By 1 ————> 1

3 ae(0])

mit Wahr-
A(®) 1 scheinlichkeit

}é l1-a

Bild III.3  Preisdiagramm

Somit ist
(A(D-K))=6-1-a+0-1-a)=2-a.

Dieser Preis wiire von der persdnlichen Einschidtzung der Erfolgswahrscheinlich-
keit a abhingig (man beachte: a ist unbekannt). Es wird sich spiter zeigen, dass
dieser kritische Parameter in den ,,wahren“ Optionspreis nicht eingehen wird.
Der Grund hierfiir liegt darin, dass die Option ein redundantes Wertpapier ist,
d.h. man kann die durch sie erhaltene Endzahlung auch durch Verfolgen einer
selbst-finanzierenden Handelsstrategie in Aktie und Bond erhalten. Dies nennt
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man das Duplikationsprinzip. Wir miissen dazu (¢,(0), ¢,(0)) so bestimmen,
dass gerade

X(1) = o R(T) + 9 (O A(T) = (R(D)- k)" ™*
gilt. Wir setzen dann als Preis

P =00(0)By(0) + ¢, (0) A (0),

d.h. der Optionspreis ist gleich dem in =0 benétigtem Kapital, um die Duplika-
tionsstrategie (¢y(0), ¢;(0)) zu kaufen. Dies wird sich als der einzig sinnvolle
Preis fiir die Option erweisen, denn fiir eine andere Wahl des Preises besteht die
Maglichkeit eines risikolosen Gewinns ohne eigenen Kapitaleinsatz, eine soge-
nannte Arbitrage-Méglichkeit.

Wiire der Preis der Option p kleiner als p, so erwirbt man sie (zuniéichst auf
Kredit, man beachte, dass wir hier annehmen, dass die Kreditzinsen den Zinsen
fiir Guthaben entsprechen) und hilt gleichzeitig die Position (—g(0),—¢,(0)),
was p einbringt. Zum Zeitpunkt #= T neutralisieren sich die Zahlungen aus den
beiden Positionen. Man hat dann schlieBlich durch dieses Geschiift den Gewinn
(ﬁ—ﬁ) in =0 erzielt, und das ohne Einsatz eigenen Kapitals. Da’ Arbitrage-
Méglichkeiten am Markt dazu fiihren, dass jeder bestrebt ist, sie auszunutzen,
halten sich solche Moglichkeiten am Markt, wenn iiberhaupt, nur sehr kurz. Wir
kénnen in unseren Modell daher voraussetzen, dass es keine Arbitrage-
Maoglichkeiten gibt.

Wire der Marktpreis des Calls p gréBer als p, dann verkauft man den Call und
hilt die Position (¢y(0), ¢;(0)), die nur p kostet. Analog zu oben erwirtschaftet

man dann ohne eigenen Kapitaleinsatz den risikolosen Gewinn (3 — p) in #=0.
Die Forderung (*) fiihrt in unserem Beispiel auf das Gleichungssystem
#0(0)-1+0,(0)-3=2
2o(0)-1+23(0)- 1 =0
mit eindeutiger Losung
(¢0(0).01)=(-%.4).
Damit ergibt sich als einzig sinnvoller Preis fiir die Option

h=-2.1+44.1=2
P=-% 1+s 1—5.
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Dieser Preis ist nun unabhiingig von der unbekannten Wahrscheinlichkeit 2. Da
diese Losung eindeutig ist, besteht dann auf diesem Markt mit Aktie, Bond und
Call keine Arbitrage-Mdglichkeit. Man beachte weiter, dass der oben berechnete
Optionspreis genau dann mit der abgezinsten Endzahlung des Calls iiber-
einstimmt, wenn a=1/5 gilt. In diesem Fall ist P;(#) sogar ein Martingal. Dies ist
kein Zufall, sondern wird uns spéter noch &fter begegnen.

Allgemeine Voraussetzungen fiir dieses Kapitel

Wir iibernehmen hier die Voraussetzungen von Kapitel II, Abschnitt I1.2,
S. 64, und die Bezeichnungen aus Abschnitt I1.3, S.74. Insbesondere gelte
d=m.

AuBerdem gelte: das selbst-finanzierende Paar (7,c) bestehend aus einem
Portfolioprozess 7 und einem Konsumprozess c sei zulissig fiir das Startver-
mdgen x>0, also (7, c) € A(x). Damit sind insbesondere die Voraussetzungen
zu Satz I1.48 iiber die Vollstindigkeit des Marktes erfiillt.

Wir prizisieren zuerst den Begriff einer Arbitrage-Moglichkeit:
Definition 1

Ein selbst-finanzierendes und zulissiges Paar (¢, c), bestehend aus einer Han-
delsstrategie ¢ und einem Konsumprozess c, heilit eine Arbitrage-Maoglichkeit,
falls fiir den zugehorigen Vermogensprozess gleichzeitig gelten:

X(0) =0 P-fastsicher, X (7) 20 P-fast sicher,
T

P(x(T)>0)>0 oder P[j'c(t)dt >o) >0.
0

Korollar 2

Im betrachteten Modell des vollstindigen Marktes gibt es keine Arbitrage-Mog-
lichkeiten.

Beweis:

Dies ist eine direkte Folgerung aus Satz I1.48. Denn sei (@,c) eine Arbitrage-
Maglichkeit, dann gilt, da H(¢) strikt positiv ist:
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E[H(T)X(T) + [H(s)e(s) ds] >0=X(0)=x.
0

Das ist aber ein Widerspruch zu Satz I1.48 a). Also gibt es keine Arbitrage-
Maoglichkeit. 1]

Um spiter in der Lage zu sein, die unterschiedlichsten Optionen zu bewerten,
verallgemeinern wir nun die Idee, die hinter einer Kauf- bzw. Verkaufsoption
steht:

Definition 3

Ein bedingter Anspruch (g, B), oder auch Contingent Claim, besteht aus ei-
nem bzgl. {F,}, progressiv messbaren Auszahlungsratenprozess g(?), t<[0,T],
g(#)20, und einer F-messbaren Endzahlung B>0 zum Zeitpunkt =7 mit

E[U:g(t)dtw)”)«o fiir ein g> 1. )

Bemerkungen

a) Den Begriff Option werden wir im Folgenden oft auch als Synonym fiir Con-
tingent Claim benutzen.

b) Mit der obigen Definition umfassen wir allerdings nur Optionen vom euro-
paischen Typ, bei denen der Zeitpunkt der Endauszahlung festliegt und nicht frei
gewihlt werden kann (amerikanische Optionen siche Abschnitt IT1.5).

Beispiele fiir Contingent Claims

a) Buropiischer Call: g=0, B = (R(T)-K)"
b) Buropaischer Put: g=0, B = (K - A(T))"

In Analogie zum diskreten Beispiel wird der faire Preis des bedingten Anspruchs
(g,B) als das minimale Vermégen, das zum Verfolgen einer Duplikations-
strategie fiir (g, B) benotigt wird, definiert.
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Definition 4

i) (7, ¢) € A(x) heiBt eine Duplikationsstrategie fiir den Contingent Claim (g, B),
falls

g(t) =c(r) P-fastsicher fiiralle € [0,7],
X(T)=B P- fastsicher,

gelten, wobei X(¢) der zu (7, c) gehorige Vermogensprozess ist.
ii) Die Menge der Duplikationsstrategien zum Preis x ist dic Menge
D(x) == D(x:(g. B)):= {(7: e A(x)l (7,c) Duplikationsstrategie fiir (g, B)}
iii) Der faire Preis von (g, B) ist definiert als
pi= inf{p| D(p) ;ez} )

Bemerkung

Aus der gleichmiBigen Beschriinktheit von r(#), b(f), o(f), der gleichmifligen Po-
sitiv-Definitheit von o(f)o(f)', der Voraussetzung (1) und der Hoélderschen Un-
gleichung folgt:

%= E[H(T)B + [H()elr) dt) <o,

Nach Satz I1.48 iiber die Vollstindigkeit des Marktes existiert nun zu B und g ein

Portfolioprozess 7, so dass (7,g)eA(X ) auch in D(X) liegt. Insbesondere gilt
also:

p<X.
Wir zeigen, dass sogar die Gleichheit gilt:
Satz 5 - Fairer Preis einer Option

Der faire Preis des Contingent Claims (g, B) ist gegeben durch

p= E[H(T)B + ?H(t)g(t) dt] <o,
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und es existiert eine bzgl. P®A -eindeutige Duplikationsstrategie ( 7,¢)eD(p ).
Fiir deren zugehtrigen Vermogensprozess X (t) , auch Bewertungsprozess ge-
nannt, gilt:

()= ﬁE[H(T)m [H(s)e(s) dle,] .

Bemerkung

Nach Satz 5 ergibt sich auch der Preis des Contingent Claims (g, B) zur Zeit ¢,
denn dieser Preis i)(t) muB mit X (l) iibereinstimmen, sonst ergiben sich Arbi-
trage-Moglichkeiten im Markt mit Aktie, Option und Bond.

Beweis von Satz 5:

Nach der dem Satz vorausgehenden Bemerkung wissen wir schon, dass fiir den
fairen Preis p <X gilt (¥ wie oben). Nun brauchen wir nur noch p =% zeigen.
Sei hierzu (7,c)eD(x) eine Duplikationsstrategie fiir (g,B) mit Vermdgens-
prozess X(f) zum Preis x=X(0). Dann gilt nach Satz I1.48:

x2 E[H(T)X(T) + ?H(s)c(s) ds)

= E[H(T)B + [H(s)e(s) ds] =%.
-0
Hieraus folgt
ﬁ=inf{x!D(x)¢®} =x.

Alle anderen Behauptungen des Satzes ergeben sich aus dem Beweis von Satz
11.48. a

Bedeutung des Prozesses H(?)
Sei g=0. Die Gleichheit

p=E(H(D)B) = [H(T,0)B(@) Pldo)
Q
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zeigt, dass man als Preis fiir die Option tatséchlich den Erwartungswert der ,,ab-
gezinsten* Zahlung in #=T wihit, aber mit einem besonderen Abzinsfaktor, ndm-
lich H(T). H(T) gibt den heutigen Wert einer zur Zeit T im Zustand we Q ge-
zahlten Geldeinheit an. Man kann H(7) somit als zustandsabhingigen Abzins-
faktor ansehen. H(7T) beriicksichtigt insbesondere alle am Markt vorhandenen
Anlageformen.

Als erste Anwendung von Satz IIL.S erhalten wir die berilhmte Black-Scholes-
Formel fiir den europiischen Call und Put:

Korollar 6 - Black-Scholes-Formel

Gegeben sei ein Marktmodell mit einer Aktie und einem Bond und konstanten
Marktkoeffizienten, also

d=m=1,
r(t)sr , b(t)"='b ) 0'({)50'>0
firallete[0,7), T>0,r, b, ceR.

a) Fiir den Preis X(¢) zur Zeit t€[0,T] einer europdischen Call-Option mit
Ausiibungspreis K>0 und Ausiibungszeitpunkt T gilt:

xc() = B()-0(d,©) - k-e T (1))

In(_i.j;({l)-) + (r + %0'2 )(T -1)

dl(t)‘: O"‘JT—t 'ssca““
R(9) 1 2
Il Y= 1+lr-50*KT-0
dy(e) = ( a ) 6( T: )( =dy(f)-oVT-1

wobei @ die Verteilungsfunktion der Standard-Normalverteilung ist.

b) Fiir den Preis Xp(f) zur Zeit t€[0,T] einer europdischen Put-Option mit
Ausiibungspreis K>0 und Ausiibungszeitpunkt T gilt:
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Xp(®) = k- T .- d,(9) - RO(- () Put*

wobei d(f) wie in Teil a) definiert ist.
Beweis:
a) nur fiir #=0: Nach Satz 5 gilt
xc© = E( B R(D) - K))

= E(exp(~— [r+16?]r- 0-W(T))-(p1 -exp([b-%azlﬂa w(T. ))‘K)+)’

wobei 6= (b-r)/o. Hierbei ist der Positivteil strikt positiv genau dann, wenn

1 K X
vt ol ) -p-7)] -
o P
gilt. Da W(T) normalverteilt ist mit Erwartungswert 0 und Varianz T, folgt

F —(r+l02)T—-0x (b-—-‘-a'z)T+0'x 1
XC(°)=je : (”"e ’ _K)' 27T

=pp- I znp(b—za' -r—% 02)T+(0' ﬂ)x—-—z?]

1 2
-K- wqp(—-rT)-——exp(-%GzT—ar—--ff dx
forom

£
e Zde

Geeignetes Zusammenfassen in den Exponenten liefert:

L) —(o- 2
0) = py I lezrr'exp{(x (2T8)T) )d"

~K-expl-rT)- IJZ::T p[(x;‘;T) ]dx
#)

=Pl-(l~¢(ﬁ%—,ﬂn—x » (
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In(%)+(r+%0'2)1' r In(-B'K—)+(r—%0'2)T

— . — . = -

=P T e ™o

b) analog zu a) 0
Bemerkungen

a) Die Black-Scholes-Formeln fiir den européischen Call bzw. Put hingen nicht
vom Drift-Koeffizienten b des Aktienpreises (der ,mittleren Ertragsrate) ab.
Dieses hachst erstaunliche Ergebnis ist wohl der Hauptgrund fiir die breite Ak-
zeptanz der Formel in der Praxis, da ja der Parameter b derjenige ist, der wohl
am ehesten von der persénlichen Einschétzung des Aktienkurses abhingt. Da er
nicht in die Black-Scholes-Formel eingeht, spricht man auch von einer ,,prife-
renzfreien Bewertung®.

b) Durch entsprechendes Differenzieren lisst sich zeigen: X{(7) fillt in 7 und
wiichst in 7, P;(f) und o (fiir 0>0 ). Um dies zu zeigen sind folgende Identititen

niitzlich:
dy(t) = dy(t) - oNT -1,
R©o(d,(0) = ke Tg(d (1)),

wobei ¢(.) die Dichtefunktion der Standard-Normalverteilung ist (siche Ubung
0.2).

¢) Will man den Beweis der Black-Scholes-Formel fiir allgemeines ¢ € [0, 7] statt
fiir r=0 durchfiihren, so ist zu beachten, dass

P(D)= 1=’1(t)-exp((b—%cr2 )(T—t)+cr(W(T)—W(t)))

gilt und der Zuwachs W(T)-W(#) der Brownschen Bewegung unabhingig von
F,, s<tund N(0, T-f)-verteilt ist. Es gilt deshalb

Xc(t)= (H(( )) (A(1)-k )*IF,)

_E(IZI((T)) (r()-k)* IW(t))

Da sich aber aus W(¢) eindeutig der Wert von P,(#) ergibt und umgekehrt, schrei-
ben wir auch
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xe®= 5210 2D ) _ )

(11{1((? (R(D-k)" IPl(t))

Diese Abhingigkeit der zukiinftigen Preisentwicklung der Option und des Ak-
tienkurses lediglich vom gegenwirtigen nicht aber vom vergangenen Aktienpreis
wird als Markov-Eigenschaft bezeichnet. Solange der Aktienpreisprozess durch
eine geometrische Brownsche Bewegung gegeben ist, folgt die Markov-Ei-
genschaft direkt aus der Unabhiingigkeit der Zuwichse der Brownschen Bewe-
gung. Fiir allgemeinere Aktienpreisprozesse folgt sie aus der Markov-Eigen-
schaft der Losungen stochastischer Differentialgleichungen. Dies wird im nichs-
ten Abschnitt iiber den Zusammenhang zwischen Optionspreisen und partiellen
Differentialgleichungen eine entscheidende Rolle spielen und auch dort ndher
betrachtet werden.

Bezeichnungen

In der Praxis werden einige der Ableitungen des Optionspreises X(#) nach ver-
schiedenen Parametern zur Beurteilung der Sensitivitit des Optionspreises in Be-
zug auf Schwankungen dieser Parameter berechnet. Ihre Wichtigkeit wird durch
die Tatsache verdeutlicht, dass diese Ableitungen sogar Namen besitzen. So
heiBen

J

E X (t) ] ,»Theta*

a - (13
3131—(}')— X (t) A ,Delta
-——o:'—zz-—X (9 r ,,Gamma*
IR’ (1)

a (13
25X (0 #Vega
2 x(9) P ,Rho*

der Option. Hierbei kann X{(#) auch der Preis eines Portfolios von Optionen sein.
Weitverbreitet sind in der Praxis verschiedene Hedging-Methoden (d.h. Ab-
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sicherungs-Methoden) um Portfolios aus Optionen jeweils neutral gegen An-
derungen der einzelnen Parameter zu machen (siehe Ubung U.13).

Handelsstrategie zur Black-Scholes-Formel

Aus der Black-Scholes-Formel fiir den européischen Call lisst sich auch leicht
die zur Duplikationsstrategie (7, 0) gehdrende Handelsstrategie @ erraten, nim-
lich

oo(t) = -Ke"TCD(dz (t)) ,
o1(t) = o(d (1))

(OBdA sei Py(0)=1). Es ist lediglich noch nachzupriifen, dass diese Strategie
auch selbst-finanzierend ist, was durch (langwieriges) Verifizieren der
Gleichung

dX c(t) = o(2)dPo(r) + @1 (1) @R ()

mittels Ito-Formel geschehen kann. Wir werden dies spéter mittels einer ein-
facheren Methode tiberpriifen (siche Proposition 12). Insbesondere gilt

0<g(f) <1 fiir alle 1€ [0, 7],
~KeT<py(t) <0 fiir alle t€ [0, 7],
d.h. die Aktienposition ist immer (!) teilweise durch einen Kredit finanziert. Die

Aktienposition selber ist immer positiv, nach oben durch das Halten einer Aktie
beschrinkt.

Black-Scholes-Formel und Maflwechsel

Mit der Bezeichnung

wo(e) .= w(t)+6-1
gilt
p=Xc(0)

_ E(axp(— (r +io? )T— 0W(T))( 7 exp[(b -1a? )T+ aW(T)] - K) +)

E(exp(— (o1 exp[(r—-;-a'z )r+ aWQ(T)]—K)+

-exp(—--;-BZT—BW(T)))
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= £ (A(M-)")

wobei E,(.) den Erwartungswert bzgl. dem Mafl Q, das durch die Radon-Niko-
dym-Ableitung

Z—g—=exp(--;-ozr—ow(r))

gegeben ist, bezeichnet. Kann man nun zeigen

Q ist ein zu P dquivalentes WahrscheinlichkeitsmaB auf F *)
und {(W2(y), F)} teqo,ry ist eine Brownsche Bewegung bzgl. O,

so gelten:

a) Der diskontierte Aktienkurs
A p
il LAY 4 W o(n_Ll_2
YO (o 2()-L o)

ist ein Q-Martingal (Q heiBt deshalb ein zu P #quivalentes Martingalmaf), und
es gilt

P () = B()rdt+oaw2(?).

b) Der Optionspreis ist gerade gleich dem Erwartungswert bzgl. E,, der auf den
heutigen Tag abgezinsten Zahlung aus der Option, d.h er ist geicgdem natiir-
lichen Wert“ im risiko-neutralen Markt, in dem alle Wertpapierpreise gleichen
Erwartungswert haben. Man spricht deshalb auch von risiko-neutraler Bewer-
tung

Der Beweis von (*) ist Gegenstand des nun folgenden Exkurses.

Exkurs 5: Der Satz von Girsanov

Allgemeine Voraussetzungen fiir diesen Abschnitt:

{(X(0), F))} 20 sei ein m-dimensionaler progressiv messbarer stochastischer
Prozess, wobei {F,}, die Brownsche Filterung ist, mit
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t
IX,?' (s) ds < © P-fast sicher fiir alle ¢ 2 0, i=1,...,m,.

Z(z,x) := { > [x:() aw(s) -3 [Ix ()P as) .
0

0

-
—

Da in Z(t,X) das Argument ein It6-Prozess ist, folgt mit der It6-Formel, Satz
1L35:

e x)=1-3 jz(s.x)x,.(s) aw(s).
i=l¢o

Damit ist Z(¢, X) ein stetiges, lokales Martingal mit Z(0,X) = 1. Da Z(¢, X) positiv
ist, ist es insbesondere nach Satz II.15 ein Super-Martingal. Falls Z(¢,X) sogar
Martingal ist, so gilt E(Z(z,X))=1 fiir alle £>0. Fiir alle T>0 lisst sich dann ein
Wahrscheinlichkeitsma O auf F;- durch

or(4) := E(1,-2(T, X)) fir AeFy @

definieren. Z(T,X) ist also die Dichte von Qr bzgl. P. Das so definierte Wahr-
scheinlichkeitsma8 besitzt die folgende Konsistenzeigenschaft

or(4)=0,(4)
fiir alle A€ F,, t [0, T], denn es gilt
or(4)=E(1,-2(T, X)) = E(E(l 4-2AT.%) F,))
= E(l 4-E(2(r. X)|F, )) =B(1,-2(t. X)) = 0,(4).

Insbesondere gilt fiir Stoppzeiten 0< 7< T und 4€F,_ mit dem Satz 11.13 (,,0p-
tional sampling*)

0r(4)=E(1,-2(T, X)) = E(E(l 421, x)| F,))
= E(1-E(2(r. X)| F,)) = E(14-2(s. )) = 0, (4).

Der folgende Satz zeigt nun, wie man bei einem MaBwechsel von P nach O aus
der P-Brownschen Bewegung (f) eine O-Brownsche Bewegung W2(f) erhilt.
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Satz 7 - Der Satz von Girsanov
Der Prozess Z(t,X) sei ein Martingal und der Prozess {(W2(?), F)} o sei defi-
niert als
t
wE@ = W@+ [X,()ds , 1sism, 120
0

Dann ist fiir jedes feste Te[0,c0) der Prozess {(W2(f), F))},e[o,ry cine m-dimen-
sionale Brownsche Bewegung auf (Q,Fr,Q 1), wobei das Wahrscheinlichkeits-
maB QO wie in (2) definiert sei.

Beweis :

i) Wir zeigen zunichst folgende Identitit
Epr(Y] Fs)=-z—(§1—)(—)-E(Y-Z(R, x)|F,) @)

fiir alle Stoppzeiten S, R mit 0<S<R<T und Fy-messbares ¥ mit Eg 7(| Y| )<co.
Dabei sei Eg der Erwartungswert bzgl. 0,, t€[0,7].

Sei AeFg, dann gilt aufgrund der Konsistenzeigenschaft

EQ'T(I 4 -E(—-Sl’}-(TE(Y-Z(R, X)| F, ))

=EQ-S(14 -Zﬁfﬂ'E(Y -2(R,x) F’))

= E(l - E(r-Z(R 0| F,)) = E(1-¥-2(R, X))
=Egg(1a-1)=Egr(is-Y),

woraus nach Definition des bedingten Erwartungswertes (3) folgt (beachte: die
rechte Seite von (3) ist Fg-messbar).

i) Definiere fiir fcR™ beliebig, aber fest (vergleiche mit dem Beweis des Mar-
tingaldarstellungssatzes, Satz 11.52) auf R”x[0,00):

flxi) = exiow+ Hdle),
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M) = f(WQ(t),t) = exp(iO'WQ ) +3la? t)

= zr;{ia{W(t) + tjx(s) ds] +Lla? t] :

Durch Anwendung der mehrdimensionalen It6-Formel, Satz I1.40, auf Real- und
Imaginirteil von f erhilt man:

MO =1+3 j £, (P2(),5)am 2 (5) + j £(w2(s),5)ds

Jj=10

+3 Z Ifxxk(W (s), s) (WQ W,,Q> X

Jk=19
Man beachte, dass (WJQ WkQ) =Jj -5 gilt und somit

MO() = l+21 IB fWQ(s) [dW (s)+x; (s)ds]

Jj=1 0

+ I (% et "%i H ]f (WQ(s). s) ds
0 j=

eI jo S(w(s),s) aw; (s)+z, j X, £ (W2(s),5)ds

Jj=1
Hiermit haben wir nun die Darstellung von M"(t) als Itd-Prozess.

iii) Berechne Z(t, X)-M¥(#):
Mit der Produktregel, Korollar I1.41, folgt

Z(t, x)- MO(e) =1+ ]z(s, X)dM®(s) + tjM”(s) dZ(s, X) + ]d(Mﬂ;z(.,x))s
0 0 0
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m [t
=1+ Zi[ [2(s, x) 6; - £(W2(s),5) am;(s)
0

J=1

+[2(s, x)-6; - 7(W2(),.5)x ,(5) d.s]
0

_ i j f(WQ(s),s)-Z(s, X)- X () aw;(s)
Jj=10
m

—-Zi- Iﬂj -f(WQ(s),s)-Z(s,X)-Xj(s)ds

J=1 0
m t
=1+ Zi- IZ(S, X)- Ma(s)-(aj +i-Xj(s))de(s) .
F=i
Somit ist Z(t, X)-M¥{) ein P-lokales Martingal.
iv) Zeige, dass {M4#)} (o, QrMartingal ist:

Sei 7, eine geeignete Stoppzeit fiir das lokale Martingal Z{(#, X)M&{), so dass
der gestoppte Prozess Martingal ist. Dann gilt mit (3) fiir 0<s<¢<T:

EQ,T(M (tA zll)iJ S/\‘l,,) 1
=E Z‘l Tn X)M Z\s Tns-

- Z X
= Mo(SA r,,)-——(-'-yi\—ﬂ'——-—)= Mo(SA r,,) .

Z(s ATy X )
Folglich ist M¥{) ein lokales O;-Martingal. Da | M&#)| auf [0, T] beschrankt ist,
ist MX#) sogar O;-Martingal. (Dies erhilt man durch Anwendung des Satzes
tiber dominierte Konvergenz und Grenziibergang n—> in obiger Beziehung fiir

M)
v) Zeige, dass W2(f) eine Brownsche Bewegung ist:
Da M%#) Q-Martingal ist, folgt
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M)
‘=EQ-’(M0(:)|F‘]
- Egr{enlie (w20 -w()+ 1ol ¢-9)| )

fiir 0 <s <t <T.. Dies gilt genau dann, wenn
Egrlewli-0 (w20 -w0())| F, ) = expl- 116k c -5).

Da dies gerade die Fourier-Transformierte einer N(0, (#—s)-I)-verteilten Zufalls-
variablen ist (wobei I die Einheitsmatrix ist), und die Fourier-Transformierte ein-
deutig ist, folgt, dass die Zuwichse (W2(f)-W<(s)) unter QOr gemiB
N(0,(¢-s)-]) verteilt sind. Aulerdem sind wegen der obigen Gleichheit die Zu-
wiichse (W2(f)-W<(s)) unter Or unabhiingig von F;. Da weiter WO(t) stetige
Pfade besitzt, ist WO(f) somit eine Brownsche Bewegung bzgl. Or 1]
Die Novikov-Bedingung

Um den Satz von Girsanov anwenden zu konnen, benétigen wir ein Kriterium,

um festzustellen, ob Z(z,X) ein Martingal ist. Eine hinreichende Bedmgung dafiir
ist die sogenannte Novikov-Bedingung:

(el [l a)) <=

Ein Beweis hierfiir steht z.B. in Karatzas/Shreve (1991), Abschnitt 3.5 D. Wir
zeigen lediglich eine abgeschwichte Variante (vgl. Korollar 37.11 in Rogers/
Williams (1987)), die fiir unsere Anwendungen ausreicht:

Proposition 8
Gilt _[:“X (s]l2 ds < K mit einer Konstanten K>0, so ist Z(¢, X) Martingal.

Beweis: (nur fiir m=1, der Fall m>1 ist analog)
i) Es sei

t
M, = - [x(s) aw(s)
0

Dann gilt fiir y>0



112 Kapitel III: Optionsbewertung

y2
P(orgg M2 y) < exz’[-—z-k-) @
denn:

Da Z(¢,X) ein nicht-negatives, stetiges Super-Martingal mit Z(0,X)=1 ist, gilt
fiir y>0, 6>0, mit Lemma I1.19, angewendet auf Z(z, 8X).

A grex M, 2) |
P(ogs, exp(ﬂ M, -1 EXz(u) du) Zexp(@—-%azK))
<ep(-8+167K).

Die Wahl 8:= y/K liefert die Behauptung (4).

ii) Sei &¢) := max M(s) und F¥ die Verteilungsfunktion von &) unter P. Dann
s<t

folgt mittels partieller Integration und (4) fiir>0:

E(ea'dt)) = ‘]‘e@'dF f(y)

=1+8- Ie@P(é(t)zy) dy
0
o 2
<1+0 Ie@e—%/ZKdy<w o ®
0

iii) Da Z(¢, X) ein lokales Martingal ist, existiert eine lokalisierende Folge

n—w
Ty ————>®

E(Z(t Ay, X)| F) = Z(s Ay, X) ©)
Da Z(tat,,X) und Z(snt,,X) jeweils von exp(&(#)) dominiert werden und (5)
gilt, liefert der Grenziibergang n—w in (6) die Martingal-Eigenschaft von
Z(t, X). 1]
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I11.2 Fortsetzung: Optionsbewertung nach dem
Duplikationsprinzip

Der Satz von Girsanov und die Optionsbewertung
Mit der Wahl

X0 =&y
ist die Voraussetzung der Proposition 8 wegen der gleichmiigen Beschriinktheit
von r, b und der gleichmiBigen Positiv-Definitheit von oo’ erfiillt. Z(z, &) ent-
spricht dann Z(¢) aus den Bezeichnungen auf Seite 74. Anwendung des Satzes
von Girsanov, Satz 7, liefert dann, dass W2(f) mit .

t
w2 = w)+ [6,()ds , te[0, T), i=1,...d
0
eine O7-Brownsche Bewegung bzgl. {F,} te[0,7] ist, wobei Q- durch

or(4) = E(14-2(D)), AeF;
definiert ist. Also gilt fiir die Radon-Nikodym-Ableitung

aQr
7P~=Z(T.0).

Insbesondere ist Z(T,6) strikt positiv, woraus folgt, dass P und Q; 4quivalente
WahrscheinlichkeitsmaBe sind, d.h. sie besitzen die gleichen Nullmengen. Des-
weiteren gilt fiir die abgezinsten Preisprozesse P;(#), d.h. die mit Py(z) diskontier-
ten Preisprozesse

10
P 0

dass sie Martingale bzgl. Oy sind. Deshalb bezeichnet man Qy auch als ein
dquivalentes Martingalmafl. Wir werden im Folgenden zeigen, dass das so de-
finierte WahrscheinlichkeitsmaB Qy das einzige iquivalente MartingalmaB in
unserem Marktmodell ist. Hierzu benétigen wir noch ein Lemma iiber die Ge-
stalt von zu P auf F, dquivalenten WahrscheinlichkeitsmaBen.
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Lemma9

Es sei Q ein zu P auf Fridquivalentes WahrscheinlichkeitsmaB. Dann gilt fiir den
durch

D, := %%lp‘ ,t€[0,7]

definierten Dichteprozess {D;},[0,7)

{(D¢,F )} se(0, 1) ist ein positives Brownsches Martingal bzgl. P mit
D, =1+ tj\v(s)' daw(s)

fiir einen progressiv mezsbnren d-dimensionalen Prozess ¥ mit
?“‘P(s)"z ds < o P-fast sicher.
0

Beweis:

Da Q zu P auf Fy dquivalent ist, ist Q auch zu P eingeschrinkt auf F, 1€ [0,7]
dquivalent. Mit der Definition der bedingten Erwartung folgt dann fiir alle A€ F,

IDTdP= j%%
A A

rdP = [\ dP= [Dap,
A A4

also

D, = E(D|F,),
woraus sich sofort die Martingal-Eigenschaft ergibt. Da Q und P beides dquiva-
lente MaBe sind, mu D, P-fast sicher strikt positiv sein. Da D, Brownsches Mar-

tingal ist, folgen die Aussagen iiber die Gestalt der Darstellung von D, durch
¥(s), s €[0,T] aus dem Korollar 53 zum Martingaldarstellungssatz. ]

Nun sind wir in der Lage, den angekiindigten Satz iiber die Eindeutigkeit des
dquivalenten MartingalmafBes zu zeigen:
Satz 10 - Eindeutigkeit des &quivalenten MartingalmaBes

Im vollstindigen Marktmodell ist O das eindeutige 4quivalente Martingalmall
auf {F}c(o,n fiir die Preisprozesse Pi(#), i=0,1,...,d.
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Beweis:
Definiere

() = —% i=l,...d
Dann gilt

d
dy,(e) = Y,-(t)[(b,- O -r)dt+ Y0y (t)dW,-(t)]
Jj=1

Jj=1

= Y(t)[z oy (06;()dt + Za'y ())aw; (t)}

- y,.(,)z o (aw? (@)

=i

Y{#) ist dann nach Proposition 8 Q;-Martingal, da die o; gleichmiflig be-
schrinkt sind (beachte hierzu auch die explizite Form der ﬂosung der obigen
Gleichung fiir ¥(#)!). Sei nun Q ein weiteres zu P dquivalentes MartingalmaB mit
Dichte {D},c(0,r; Wie in Lemma 9. Dann gilt mit der Produktregel I1.41 und
Lemma 9

t t
D, -Y(t)= p; + [D, d¥;(s)+ IYi(S) dD; +(D.Y;), ™
0

=pi+ [[D Fils) Zay(s)a ()+¥; (s)Z‘P (s)-0(s)| a5

+Z _‘-[DsY:(s)ay(s)"'Yx(s)‘Pj(S)] de(s)
J=to

Damit Y(¢) ein Q-Martingal sein kann, muss notwendigerweise D, Y{?) ein P-
Martingal sein. Insbesondere muss dafiir der Driftterm auf der rechten Seite von
(7) verschwinden, woraus dann (bis auf P®A -Aquivalenz)

¥(s)=~D; -&s)
folgt. Fiir D, gilt dann die Darstellung

t
D, =1- [D,-6(9) aw(s)
0
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Diese stochastische Differentialgleichung hat aber den zu Q gehorenden Dich-
teprozess Z(f) als eindeutige Losung. Also stimmt Q mit Q auf Fiiberein. 1}
Bemerkung

Im Abschnitt III.6 zeigen wir allgemeiner, dass aus der Existenz eines dquivalen-
ten MartingalmaBes die Arbitragefreiheit des Marktes folgt. Umgekehrt folgt un-
ter einigen technischen Bedingungen aus der Arbitragefreiheit auch die Existenz
eines dquivalenten MartingalmaBes (siehe II1L.6).

Korollar 11 - Optionsbewertung mit dem #quivalenten Martingalmafl

Es sei (g,B) ecin Contingent Claim, so dass g(s) gleichmiBig auf [0,T] be-
schrinkt ist. Dann gilt fiir seinen Preisprozess X(f)

T T s
fr(:)=zsg(m(- jr(s)de}m jap[- Ir(u)du]-g(s)dsll?,)

Beweis:

Man beachte
t

H(t)= exp(— Ir(s) ds] -Z(e) = y(2)-2(¢) .
0
AuBerdem erfiillt Z(7) die stochastische Differentialgleichung

dZ(f) = -6z)- 2(¢) dw(t) .

Sei t€ [0, 7] fest. Dann folgt mit der Produktregel, Korollar 11.41,

21) ")
0 e

Z(s) (s) s (u)
-[Z(t) 7(t) +!(!—%t—)-g(u)du)-2%tjdz(3)
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I (46 ) eas | ( J22. ) du] (- 8(s))- §8 ).

705

Da g(s) gleichmiiBig auf [0, 7] beschrénkt ist und die Voraussetzungen in Propo-
sition 8 fiir &s) erfiillt sind, ist fiir >0 der Prozess

[ 76)aw(s)

ein P-Martingal mit Erwartungswert Null. Hieraus folgt dann insbesondere

5[?f (s) am(s)| F,} = Eﬁ £(s) awls)- tj’ FGs)awis) | p,} =0

Dann folgt mit Satz 5 und der Identitiit (3) aus dem Beweis von Satz 7

X(0)- E( jH()g(s)ds,p,}
(2‘5’[ o) e o - - iz

= EQ(exp{—- Ir(s) ds} B+ Iexp[— Ir(u) duJ -g(s)dvl F,} 0

Unabhingigkeit des Optionspreises von b
Aus Korollar 11 folgt insbesondere, dass im Fall g=0

p=Eg (axp{— :jr(s) ds'} -B]

gilt, d.h. p ist gleich dem ,natiirlichen Preis“ bzgl. eines neuen Wahrschein-
lichkeitsmaBes Q. Dieses MaB ist allerdings nicht wihlbar, sondern eindeutig
festgelegt. Interpretiert man die Wahl von b(7) als Wahl des Wahrscheinlich-
keitsmaBes P, so wird klar, warum man P als das subjektive MaB und Q als das
objektive MaB bezeichnet. Weiter gilt in (Q, Fp, Q)
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d
dr () = P,-(t)-[r(t) dt+ Y. oy (aw? (t)) , i=0,1,....d,
Jj=1
d.h. alle Wertpapiere, auch der Bond, haben gleiche mittlere Ertragsrate r(?),
weshalb man auch von einem risiko-neutralem Markt spricht und O=Qy als
risiko-neutrales MaBl bezeichnet. Da b(f) im risiko-neutralen Markt gerade
r(f)-1 entspricht, geht b(7) sehr wohl in p ein, allerdings in Gestalt von r(#)-1 ,
was die Herkunft als Aktiendrift nicht erkennen lisst. Insbesondere lisst es sich

in der Black-Scholes-Formel nicht vom risikolosen Zinssatz unterscheiden.

Praktische Berechnung des Optionspreises

Der Optionspreis lisst sich oft mit Korollar 11 leichter berechnen als mit Satz 5.
Zur Ubung empfehlen wir die Herleitung der Black-Scholes-Formel mit Hilfe
von Korollar 11. Wir verdeutlichen diese Methode auch am folgenden Beispiel:

Beispiel: Europiischer Digital-Call

Der auf den ersten Blick seltsam erscheinende europdische Digital-Call ist in der
Praxis sogar recht hiufig. Hier wird, wenn der Aktlenprels Pi(f) in t=T eine be-
stimmte Grenze K iibersteigt, ein bestimmter Betrag B*, hier gleich 1, ausge-
zahlt, ansonsten erhilt man nichts (deshalb auch die enghsche Bezeichnung
cash-or-nothing-call*). Die Auszahlung betrigt also:

B=Ypmex}-

Im Black-Scholes-Modell, dh d=m=1, b, r, o konstant, 0>0, gilt nach Ko-
rollar 11

X0=E, (e-r(T—l) RGNS | F‘)
=m0 . o(R(D = k| RO).
Sei ¢ fest. Dann gilt P{(T)2K genau dann, wenn

w(1)-w2(1) > — ( ( (t)) (r-%az)(r-t)) =R

Da WO(T)-W2(f) normalverteilt ist mit Erwartungswert 0 und Varianz (7-%),
folgt
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son _)m 1 _ x2 )
X(t)—-e T‘I!Jz”(T—t)gq{ Z(T—t) dx

A1) In(—ﬂ-,(;)-) + (r - %0'2)(T- 1)
€ oNT-t ’

I11.3 Optionsbewertung mit Hilfe partieller
Differentialgleichungen

In jhrer berithmten Arbeit von 1973 verwenden Black und Scholes nicht die Du-
plikationsmethode zur Bewertung von Optionen. Die von ihnen entwickelte Me-
thode basiert auf der Transformation des Optionsbewertungsproblems in die
Aufgabe, eine parabolische partielle Differentialgleichung mit Endbedingung zu
losen. Der Zusammenhang zwischen dieser Aufgabe — einem sogenannten
Cauchy-Problem — und der Berechnung eines Erwartungswerts eines Funktio-
nals einer Losung einer stochastischen Differentialgleichung wird durch den im
Exkurs 6 behandelten Darstellungssatz von Feynman und Kac gegeben. Da die
Berechnung von Optionspreisen mittels Duplikationsmethode nach Satz 5 aber
lediglich die Berechnung des Erwartungswerts eines Funktionals der zugrunde
liegenden Aktienpreise ist, ist somit die Bezichung zwischen den Methoden der
Optionsbewertung nach dem Duplikationsprinzip und dem Ansatz mittels par-
tieller Differentialgleichungen hergestellt.

Neben der Verwendung partieller Differentialgleichungen als hauptsichliches
technisches Hilfsmittel ist die Konstruktion eines risikolosen Portfolios aus
Bond, Aktie und Option die maBgebliche konzeptionelle Idee von Black und
Scholes.

Allgemeine Voraussetzungen fiir diesen Abschnitt

Wir betrachten ein Black-Scholes-Modell, d.h. d=m=1, b, r, & konstant,
o >0.
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Konstruktion eines risikolosen Portfolios und ein Cauchy—Problen;

Black und Scholes betrachten in ihrer Arbeit ein Portfolio, das aus Bond, Aktie
und genau einer verkauften Option besteht. Der Einfachheit halber beschrinken
wir uns im Moment auf einen européischen Call mit Ausiibungspreis K. Black
und Scholes nehmen an, dass sich der Callpreis zur Zeit ¢ als eine Funktion C(,
Py(#) der Zeit ¢ und des Aktienpreises P(f) darstellen Iisst. Hat man nun den
Call verkauft, so entspricht dies einer Position von —C(t, P;(f)) an Vermégen,
denn mit dem Verkauf des Calls geht man die Verpflichtung ein, im Zeitpunkt T’
die Summe (P(7)-K)* auszuzahlen. Im Zeitpunkt # ist C(t, P,(f)) sozusagen die
Summe, die man zahlen muss, um sich dieser Verpflichtung wieder zu entle-
digen. Der Preis der Option ist im Zeitpunkt T somit auf

AT A(D)=(8(1)-&)"

festgelegt. Die Idee von Black und Scholes besteht nun darin, eine selbst-finan-
zierende Handelsstrategie (¢,(?), @(#)) in Aktie und Bond zu verfolgen, so dass
der Vermdgensprozess unter Einschluss der verkauften Option,

OEPNOTXGEPAO) O (F:10)R

keinen zufilligen Schwankungen mehr unterworfen ist. Man spricht dann von ei-
nem risikolosen Portfolio. Falls der Preis der Option C(t, P,(f)) die Voraus-
setzungen der mehrdimensionalen It6-Formel, Satz I1.40, erfiillt, also hinrei-
chend glatt ist, dann gilt (beachte, dass (@y(?), ¢;(?)) als selbst-finanzierend an-
genommen wurde !)

dY(t) = po(¢) dPo(t) + (1) dR (1) - dCle, Ai(1))
= ['Po(‘) -Py(t)-r+o(r)- R(7)-b
—(C, +C,-A()-b+3Cpy -Plz(t)-az)]dt
(01 RO-o-C,-RO-0)am()

Damit Y(f) der Vermogensprozess eines risikolosen Portfolios ist, muss der Dif-
fusionskoeffizient verschwinden. Es muss also gelten

o) = C, (1. B0).

Aus Arbitragegriinden muss sich der zum risikolosen Portfolio gehérende Ver-
mogensprozess Y(7) wie der Bond entwickeln, man verlangt also
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dY(t)=r-¥(t) dr.

Setzt man nun Cp(t, P(9) fiir ¢,(¢) ein, dann liefert diese Forderung fiir den
Driftkoeffizienten

r-Y(t)ir-¢o(t)-Po(t)+b-Cp -P(2)
(6 +c,-RO-b+1C,, - P20)-0?)
= .(¢0(t). R +e®)-RO-d1 A (t)))+ r-c(t, B()
+(-r)-c, -Pl(t)—(C, +b-C,-P(8)+5Cpp-0? -Plz(t))
=r-Y(t)+(r-C—r-Cp-ﬂ(t)-—C,——;—Cpp-az- ().

!
=0

Zusammen mit der Endbedingung in #=T erhalten wir also, dass der Callpreis
C(t, Py(9) unter geeigneten Glattheitsannahmen Losung des folgenden Cauchy-
Problems ist:

%azpchp +r-p-Cp +C —-r-C=0, (t,p) E[O,T) x(O,oo)
Adr.p)=(p-K)*, pe(0,0) (CP)

mit C e ([0, 7] x(0,%0)) ~ C*2([0,T) x (0,)).

Da aus Arbitragegriinden fiir den Preis des Calls weiter gilt

0sC(tA(M)< A,

ist der Callpreis eindeutig durch (CP) charakterisiert, wenn (CP) eine eindeutige
Losung besitzt, die hochstens polynomial in pe(0,0) wichst und eine zu ¥(¥)
gehorende selbst-finanzierende Handelsstrategie (@y(?), ¢;(¢)) mit den zur Her-
leitung von (CP) geforderten Eigenschaften existiert.

Somit kénnen wir die folgende Proposition formulieren:

Proposition 12

a) Das Cauchy-Problem (CP) besitzt eine eindeutige Losung C(¢, p), die hochs-
tens polynomial wichst. Sie ist durch
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ot () = BO®(d,()) - ke T (a, (1)
mit d,(7) und d,(#) wie in Korollar 6 (,,Black-Scholes-Formel“) gegeben.
b) Durch (g(®), ¢,(9)) mit

0. deA0)-c,(A0)- A0)
= Ry(5) .

o=, (1. RW),

ist eine selbst-finanzierende Handelsstrategie mit Vermdgensprozess C(f, Py(®)
gegeben. Insbesondere ist (@y(7), ¢;(?)) eine Duplikationsstrategie fiir den euro-
pédischen Call und C(¢, P,(?)) ist der Preis des europiischen Calls zur Zeit .

Beweis:

a) Aus dem Satz von Feynman und Kac, der im folgenden Exkurs behandelt
wird, folgt die Eindeutigkeit einer Lésung des Cauchy-Problems, die hichstens
polynomial wichst. Es lisst sich (langwierig!) verifizieren, dass der Black-
Scholes-Preis eine Losung des Cauchy-Problems ist. Offenbar wichst er nur
polynomial in p und ist somit gleich der gesuchten Losung.

b) Da C(t, P(t)) das Cauchy-Problem (CP) 16st, sind die Voraussetzungen zur
Anwendung der It6-Formel erfiillt, und es gilt unter Verwendung von a):

dc(t, B (1))
=(C, (. RO)+C, (1. AO)- ARG -b+1C,p (6 BG)- BR ()0 )dt
+ Cp (. A 0)- A ()-0 am )
=(C, (e RO)- RO-b+r [l B0)-C, (1 AO)- B O]
+Cy(t, AW)- AW - aw(y).

Andererseits erfiillt eine selbst-finanzierende Handelsstrategie (¢, @) mit Ver-
mbgensprozess C(z, P(?)) die Gleichung

dc{t, Pi()) = [ 0o (1) Py (@) -r+ 0, (1)- R (1)-b] it

+ou(t)-R()-o am().
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Vergleich der beiden Darstellungen von dC(¢, Py(T)) fiihrt auf die in b) angege-
bene Form. Hieraus folgt zum einen

(t. A(0)) = 2o(e)- Po(e) + 21 (5)- A1 (1)

(dh. C(t, Py(D)) ist tatsichlich der zu (¢, ;) gehdrende Vermgensprozess),
zum anderen folgen die Teile der Aussage b), die (@, @,) betreffen. Insbesonde-
re erfiillt (¢, @) alle Anforderungen einer Handelsstrategie.

Desweiteren kann sofort verifiziert werden, dass sich die zur Herleitung von
(CP) bendtigte selbst-finanzierende Strategie (@, @) zu Y(¥) als

po(t) := @p(8)+y mit y = ¥(0)

20 := 0, ()
ergibt, woraus folgt, dass C(z, P,(?)) tatséchlich dem Callpreis entspric.ht. 0
Bemerkungen

a) Die Handelsstrategie ¢,(#) ist nach Proposition 12 durch das ,Delta“ des Op-
tionspreises gegeben.

b) Die Konvexitit von (p—K)*, der Endzahlung, iibertriigt sich auf C(t, p) fiir
te[0, 7). Daher wird gy(#) in Teil b) der Proposition 12 negativ. (beachte: f kon-
vex, fl0)=0 =Ax)-f"(x)-x<0).

¢) Zur Existenz der Handelsstrategie wurde bei dieser Methode der Martingal-

darstellungssatz nicht ben6tigt. Mehr noch: statt lediglich einer Existenzaussage
iiber die Handelstrategie, gibt die Proposition die explizite Form an.

Bemerkung: ,Lisung der Black-Scholes-Gleichung (CP)*

Natiirlich haben Black und Scholes das Cauchy-Problem (CP) nicht durch Erra-
ten und anschlieBendes Verifizieren geldst. Ihr Vorgehen bestand darin, (CP) auf
die Gestalt der in der Physik wohlbekannten Wirmeleitungsgleichung zu trans-
formieren und dann diese zu l8sen. Wir skizzieren dieses Vorgehen in Anleh-
nung an Abschnitt 5.4 in Wilmott et al. (1995):

Durch die Substitutionen

x=In(%(), 7=}§62(T—t)
cer)=kfzx) . p=2/,

erhalten wir aus (CP) das dquivalente Problem
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Ur =y +{p-1)v, - pv, >0, x€R, . (TCP)
o{0,x)=(e* -1)", xer.
Mit dem Ansatz

(7, x) = e®+Pr u(z,x)

fiir geeignete reelle Konstanten o, B erhilt man die partielle Differentialglei-
chung
Pu+u, = azzu+20a¢x +Uy, +(p-—l)(au+ux)—pu s
die durch die Wahl
= -1 2
a=-1(p-1), f=-%(p+])

in die Gestalt
u, =uy, ,>0,xeR, 1)
mit Anfangsbedingung
+
{0,x) = g(x) := (e%(”“ ) _ Jle- ‘)") ,xeR, . 1))

iibergeht. Aus der Theorie der Wirmeleitungsgleichung ist es nun wohlbekannt,
dass (1), (2) durch

u(z,x) =;l; T g(x)-ap(-&—;gl—) dy

gelost wird (vgl. auch Ubung U.4). Die Berechnung dieses Integrals vollzieht
sich nun analog zu den Rechnungen im Beweis von Korollar 6. Ihre explizite
Durchfilhrung sowie die Riicksubstitution bis zur vollstindigen Gestalt der
Black-Scholes-Formel bleiben daher dem Leser iiberlassen.

Wir betrachten nun ein d-dimensionales Black-Scholes-Modell mit d Aktien.
Unter gewissen Voraussetzungen an die Endauszahlung lisst sich das Vorgehen
in Proposition 12 verallgemeinern:

Proposition 13
Es existiere eine polynomial beschrinkte Losung f: [0, T]x(0,%0)9—R, also

[max (e, p)l <M (1 + "p"k) fiir ein festes M>0, keN, pe(0,)¢,
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des Cauchy—Problems

f’ 2 Z aljplp_]fp,pj +Z'P,fp 'f 0 auf [0, I)XRd

i,j=1 i=1
(T,pl,...,pd) = g(pl,...,pd) fiir peRY,
mit f'stetig, feC1-2([0, T)x(0,%0)?) und a=cc’. Weiter gelte

Eg(e(A@)..... (D)) <.

Dabei sei E r definiert wie in Exkurs 5. Dann ist der Preis X3(f) des Con-
tingent Claims %—g(Pl(I), PLT)) im d-dimensionalen Black-Scholes-Modell
durch

Xp(6) = £(t. A ) ()
gegeben. Weiter stellt
¥ () = £, (. AW).... By () , i=1

d
f(t,Pl(t),...,Pd(t))-Z“P,'(t)' P,(t)

‘Po(t) = R) ( t) =l

eine Duplikationsstrategie fiir B dar.
Beweis:

Aufgrund der speziellen Form der Endzahlung B und der Unabhingigkeit der
Zuwichse der Komponenten der d-dimensionalen Brownschen Bewegung W(¢)
und nach Korollar 11 gilt

x50 = E(e T g(R(D),..., B, (D)| F,)
= A0 R0) (e—r(T—t) g( AD...., Pd(T)))

(zur letzten Schreibweise vgl. Bemerkung nach Korollar 6) Unter den obigen
Existenzannahmen fiir die L6sung des Cauchy-Problems gilt nach dem Satz von
Feynman und Kac gerade

SR (e).—. Pa(1) = X (1)

Imitation des entsprechenden Teils des Beweises von Proposition 12 liefert die
Aussage iiber die Duplikationsstrategie W(£)=(¥(?),..., ¥ £1). 0
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Zusammenfassung: Herleitung der Black-Scholes-Formel

Der Preis C(t, P{(T)) eines Europiischen Calls war zum einen gegeben als be-
dingter Erwartungswert

ot 7 0) = £ (7 (R(D)-x)")

und
apr(s)= Pl(s)(rds+ adWQ(s)) ,8€(t,T]
und zum anderen als Lésung des Cauchy-Problems

G +50°p*Cpp+7-p-Cp=r-C=0 ,(1,p) €[0, D) x (0,)
AT.p)=(p-K)" , p c(0)

Im folgenden Exkurs wird gezeigt werden, dass dies kein Zufall ist, sondern ein
Spezialfall eines Zusammenhangs zwischen Losungen stochastischer Differen-
tialgleichungen und partieller Differentialgleichungen.

Exkurs 6: Die Feynman-Kac-Darstellung

Allgemeine Voraussetzungen fiir diesen Abschnitt

Weil_erhin ﬂbemehmen wir hier die Voraussetzungen aus Kapitel II, Ab-
schnitt II:Z, Seite 64. Allerdings muss jetzt nicht unbedingt m=d gelten (be-
achte: m ist die Dimension der Brownschen Bewegung).

Definition 14
Existiert auf (Q2, F, P) ein d-dimensionaler stetiger Prozess {(X(?), F))}»g mit
X(O) =x ,xeRY fest,
t m 1
X,‘(t) =Xx; + Ib,'(s. X(S))df + Z IO'g'(S, X(s))dWJ(s)
0 =00
P-fast sicher, fiir alle 20, ie {1,...,d}, so dass
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‘I(lb,-(s. x(s))|+ i o3(s, X(s))J ds<w

0 Jj=1
P-fast sicher, fiir alle >0, ie {1,...,d}, gilt, so heiBt X(¢) eine starke Lisung der
stochastischen Differentialgleichung
dx(t) = b(t, X(2)) dt + o1, X(¢)) dw(z) (SDE)
X(0)=x

wobei
b : [0,0)x R%— R4, o [0,0)x R9— Rém

gegebene Funktionen sind.

Bemerkung

a) Nach dem Satz I1.42, ,Variation der Konstanten®“, wissen wir bereits, dass die
stochastische Differentialgleichung der Gestalt

dx(t) = (b(¢) - X(2) + a(e)) dt +(o(e) - X(2) + (t)) aw(z)

unter bestimmten Voraussetzungen an b, a, o und v eine eindeutige, explizite
starke Losung besitzt.

b) Auf den Begriff einer schwachen Lsung wollen wir nicht eingehen. Wir ver-
weisen auf Kapitel 5.3 in Karatzas/Shreve (1991).

Der folgende Satz gibt ein Analogon zum Existenz- und Eindeutigkeitsresultat
von Picard-Lindel6f im deterministischen Fall an:

Satz 15 — ,,Existenz und Eindeutigkeit fiir stochastische Differential-
gleichungen“

Sind die Koeffizienten b(z,x), o(t,x) der stochastischen Differentialgleichung
(SDE) stetige Funktionen mit

loe.x) - (e 9)]+ o, %) - oft.5)| < Kl - 5] @®
(e +lote o < &2t sl?) w)
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fiir alle £>0, x, yeR? und eine Konstante K>0, wobei ||.|| die Euklidische Norm
geeigneter Dimension ist. Dann existiert eine stetige starke Losung {(X(?), F))} >
von (SDE) mit

E(x(f) < C-(1+||x||2)-eC'T fiir alle ¢ [0, 7]. ®)
fiir eine Konstante C=C(K, T) und T>0. Weiter ist X(¢) bis auf Ununterscheidbar-
keit eindeutig.

Beweis:

1.Schritt: Eindeutigkeit

Angenommen X und X seien zwei Losungen von (SDE). Wir definieren fiir
neN die Stoppzeiten

Ty = inf{t b3 OI lx@]= n} Ty = itgf{t 2 0| nz?(t)HZn} s Spi=Tp ATy,

Aus der Stetigkeit von X, X folgt

lim s, = +oo P-fast sicher.
n—»w

Wegen [y +.+v, > <n2([p | +... 4y fir vieRY, i=,...n, neN, der Hol-
derschen Ungleichung, der Itd-Isometrie und (L) gilt:

e{l(ns)-Fons )

0

rAbe(u, XG)—blu, X)) du+u;ﬁa(u, X)) - o, 7)) dW(u)»z]
s4:-1={w J ot x0) -8 R du]

+4-E[ [ Yot x@) ol )?(u)))"zdu]
<a(T+1)-K?- (jﬂ(x“s uAs,))H’du)
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=4(T+1)-K2-:‘!‘E(IKX(uAs,,)—Y(uAs,,)lz)du ¢))

Anwendung der Grenwallschen Ungleichung auf die stetige Funktion

g = E(“X(t As,,)—)?(t/\s,,)“z)

liefert wegen (1) g()=0. Also sind damit {X(tns,)} . {X’(_t/\s,,)}tzo
Modifikationen voneinander und, da beide stetige Pfade haben, ununterscheid-
bar. Grenziibergang n—w liefert diesselbe Aussage fiir X, X .

2.Schritt: Existenz — einige Abschitzungen

Wie im deterministischen Fall geschieht der Existenzbeweis iiber die Konstruk-
tion einer Iterationsfolge:

x9¢)=x @

xU() = x4 ]lb(s, X (5)) ds + ]a{s, x®(5)) am(s)
0 0

fiir e [0, 7], k=0,1,2,... X®)(¢) ist offenbar F-messbar und besitzt stetige Pfade.
Weiter existiert fiir alle 7>0 wegen (W) und einer zu (1) im ersten Schritt analo-
gen Abschitzung die Ungleichung

(O ) <ot w00 [ (OO )) s
. 0 :

fiir alle £« [0, T}, wobei die Existenz des Erwartungswertes auf der rechten Seite
induktiv aus der Anfangsbedingung X(O)=x und somit aus

‘ 2
E(“X(l) @) llz) <E “.+ ]b(s x) ds+ Io(s, x) dW(s)“
0 0

folgt. Aus (3) und (W) folgt insbesondere
2

sup E(lIX(k)(t) || ) <o,

0<t<T

und somit, dass die auf der rechten Seite von (2) aufiretenden Integrale exis-
tieren. Mit
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C:= C(T,K) := 9(T+1)K?
folgt aus (3) die Ungleichung

(O F) s oebt?) [ OO ) .
0

Induktive Anwendung dieser Ungleichung auf den Integranden der rechten Seite
liefert schliefilich

2 2 k+1
(e O ) « fusbel?) 1+ cr 4 2.4 1)
sc(1+||x||2)e0. @)
3.Schritt: Existenz — Konvergenz der Iteration .
Wegen (W) und (4) ist der Prozess

M) = ](o(s, x0(9)- ofs, x4 9))) am(s)
0

ein d-dimensionales, quadrat-integrierbares Martingal. Komponentenweise An-
wendung der Doobschen Ungleichung liefert daher wegen (W)

o ) =85l 190 -ofs X0V
0

0<s<t
<4.K? -Etj||x(") (s)- x WD (s)||2¢s. )
Wegen (W) gilt fiir ’
B() := ](b(s, X0 () -b{s, x ¥ ())) s
die Bezichung ’
E(IBO)* <k?-1- }E(“X(k) (s)- x %D (s)||2) ds, 6)
0

und somit folgt aus (5) und (6) wegen X**D(£)-X®)($)=B(5)+M(?):
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X(k"'l)(s)—X(k)(s)IIz)

E( sup
0<s<t

<K?-(4+T)- ]'E(“X(k) - x* D) as )
0

Iterative Anwendung von (7) auf den Integranden der rechten Seite dieser Un-
gleichung liefert mit den Bezeichnungen

D:= K*(4+7),D":= sup E(||X“’(t)-—x||2)
0<t<T

die Abschitzung

. (Dn)F
) '!) ®

o I x06f ) 2

Man beachte, dass D* wegen (4) endlich ist. Wir zeigen nun shnlich wie im Be-
weis des Fortsetzungssatzes fiir stochastische Integrale, Satz I1.32, dass die Folge
stetiger Prozesse X*)(¢) gleichmiBig konvergiert: Wegen (8) und der Cheby-
shev-Ungleichung folgt

. (4D7)*
P(@?:HX“H)(’)"X ) (‘)nz'z%ﬁ') <4D L",‘,.)— ©)
Wihlt man nun .
+ 1
4y = {o'gnglX(k D) - x B> e }

so liefert die Anwendung des Borel-Cantelli-Lemmas auf die Folge der 4, keN,
wegen (9) die gleichmiBige Konvergenz der Folge der Pfade von X)), keN.
Folglich existiert ein stetiger Prozess X(¢) mit

xX@)= lim X (1) Pfast sicher, fiir alle re [0, ]
>0

Da T aber beliebig war, gilt diese Konvergenz auf [0,:0). Weiter folgt damit auch
aus (4) und dem Lemma von Fatou die Abschitzung (E).
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4.Schritt: Losungseigenschaft

Damit X(¢) tatsdchlich Losung der stochastischen Differentialgleichung ist, muss
noch die Konvergenz der Integrale auf der rechten Seite von (2) gezeigt werden.
Aus der gleichmiBigen Konvergenz von X*)X(7) gegen X(f) auf [0, 7] folgt

or;t‘aéjl){(t, @) - XxP(t,0)|<27* furalle k2Mw) (10)

fiiir ein geeignetes M(w)eN. Also folgt mit (L) und (10):

t t 2
Ib(s, Xx(s)) ds—- Ib(s, x® (s)) ds|
0 0

<K? -T-?“X(s)—X(k) @ ds —£2=0. (1)
0

Fiir die Konvergenz der stochastischen Integrale beachte man, dass fiir festes
te[0, 7] die Folge {X®)(#)} eN ¢ine Cauchy-Folge in L2(Q, F, P) bildet (wegen
(8)) und wegen

x®) (6 —~22 , x(r) P-fast sicher
dann auch

E(“X(") (1)- X(t)||2) LI

folgt. Also gilt mit der It5-Isometrie (wegen (E) und (L))
t
(ol x®9) - o5, x(s) am(s)
0

=E ]'Ilo(s x'® (s)) -ofs, x (s))H2 ds
0

2

E (12)

<K?. tjE("X(") - X(t)"z) ds—22% 50 faralle re [0, ],
1]

wobei der Satz iiber dominierte Konvergenz wegen der gleichmiiBigen Konver-
genz von X)) gegen X(f) auf [0,7] anwendbar ist. Aus (11) und (12) folgt die
gewiinschte Konvergenz der Integrale auf der rechten Seite von (2) fiir festes
te [0, T]. Fiir die fast sichere Konvergenz des stochastischen Integrals kann man
hierbei zu einer geeigneten Teilfolge iibergehen. Aus der Stetigkeit von rechter
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und linker Seite der stochastischen Differentialgleichung folgt mit dem iiblichen
Schluss auch deren Giiltigkeit fiir beliebige £>0. 0

Die Anwendung der Beziehung
lxl lp +.. .+|x,, lp < n(lxl |+. . .+|x,, I)p <nP* (lxl !p +.. .+lx,, Ip)
fiir beliebiges xeR”, p> 1, sowie analoge Abschitzungen wie in den ersten drei

Schritten des vorangegangenen Beweises (vgl. Karatzas/Shreve (1991), S.303,
389) liefern das niitzliche

Lemma 16

Unter den Voraussetzungen von Satz 15 gilt fiir die Lésung X der stochastischen
Differentialgleichung fiir m>1 sowie T>0 fest

max x| | < C( +(xl )e
fiir alle z € [0, 7] und eine geeignete Konstante C=C(T,K,m,d).

Schreibweise

Die Losung der stochastischen Differentialgleichung (SDE) mit der Anfangsbe-
dingung X(#) =x kennzeichnen wir nun besonders durch die Schreibweise

X*5(s).

Der Einfachheit halber lassen wir im Folgenden hiufig die oberen Indices weg,
kennzeichnen dafiir aber die Erwartungswerte mit einem oberen Index

E(.. X*(s)..) = E**(. X(s)-.).

Bemerkungen

a) Die vorangegangenen Ergebnisse kénnen auch auf den Fall einer zufilligen
Anfangsbedingung

X(0)=z
verallgemeinert werden, wenn Z eine quadrat-integrierbare Zufallsvariable ist

(bzw. in Lemma 16 die Bedingung E(||Z]j?")<w erfiillt) und unabhingig von der
Brownschen Filterung {F,} - ist. X(?) ist dann an die P-Erweiterung {G,},5 von
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G; = a'(Z,W(s); 0<s< T)
adaptiert (d.h. X(¢) ist G,-messbar).

b) Es kann gezeigt werden, dass die Losung {X(7),F,}, von (SDE) ein Markov-
Prozess ist, d.h. fiir alle Borel-messbaren, beschrinkten Funktionen f gilt

E(r(x)| £, )= E(f(x())] X)) = g(x(0)) *

fiir festes 7<s (siche z.B. Rogers/Williams (1987), Abschnitt V.4) mit g(x) :=
E(flX**(s))). In diesem Sinn werden wir die obige Notation E**(f{X(s))) verwen-
den. Da in unseren Anwendungen die Markov-Eigenschaft (*) oft direkt aus der
Unabhingigkeit der Zuwiéchse der Brownschen Bewegung folgt, verzichten wir
auf die Darstellung eines Beweises der Markov-Eigenschaft von X.

Definition 17

Sei X(¢) die eindeutige Losung der stochastischen Differentialgleichung (SDE)
unter den Bedingungen (L) und (W). Fir f:R9— R, fe C2(RY), heiBt der
Operator 4,, definiert durch

d d 52
(Atf)(x) = ;Zzalktx Ix a

i=1 k=1

a,k t x) ZO'y t x) a,y(t x)
Jj=1
der charakteristische Operator zu X(7).

Beispiele

1. X(©)=W(¢) lost die stochastische Differentialgleichung dX(f) = dW(¢), X(0)=0.
Also ist

d 2
1p-1%97
2 2 2

i=l a"‘i

der charakteristische Operator der d-dimensionalen Brownschen Bewegung.
2. Der Aktienpreisprozess
X@)=x- e(b_%crz Jo+o(e)

16st die stochastische Differentialgleichung
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dx(t) = x(t)(bdt + odw(t)),
X(0)=x

und hat damit den charakteristischen Operator 4, definiert durch
(A,f)(x) = %o-zxzf"(x) +b-x-f'(x) .

Beschreibung des zu 4, gehérigen Cauchy-Problems

Sei T'>0 fest. Wir betrachten nun zum Operator 4, das folgende Cauchy-Pro-
blem: ’

Suche eine Funktion u(¢, x) : [0, 7] x R? -»R mit
-v, +kv = 4,v+g auf [0,T) x R4 (©)
U(T,x) =f(x) fiir xeR4
wobei

f:R9R, g:[0,T]x R95R, k:[0,T] xR¥—[0,0)

Zur Sicherung der Eindeutigkeit einer Losung von (C) verlangt man zusitzlich,
dass v einer polynomialen Wachstumsbedingung geniigt:

otzgjv(t,x)l < M{1+[?#) mitM>0, p>1 ®W)

Ublicherweise setzt man voraus, dass fiir die Funktionen f, g, k mit geeigneten
Konstanten L, A gelte: ’

1, g, k stetig mit
(s L1+]f), £>0,221 oder f(3)20 v1)

lee. %)< L(1+|;x||2"), L>0,421 oder g(t,x)20 v2)
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Satz 18 - Die Feynman-Kac-Darstellung

Unter den Voraussetzungen (V1) und (V2) existiere eine Losung u(t, x):
[0, TIxR?—>R des Cauchy-Problems (C), die stetig ist und in C1:2([0, T)xR%)
liegt. Der Operator 4, in (C) sei der charakteristische Operator zu X(f), der ein-
deutigen Losung einer stochastischen Differentialgleichung (SDE), deren Koef-
fizienten b, o mit

bi(t.%), oy(1,%) : [0,0) xR? SR fiiri=l,..d, j=1,...m,

die Bedingungen (L) erfiillen und stetig sind.
Geniigt dann u(t,x) der polynomialen Wachstumsbedingung (PW), so gilt:

)= 50 - 0
+ ,}g(s, X(s))- ﬂ,{_ :[k(ﬂ, x(6)) do) ds] :

Insbesondere ist somit v(¢,x) die eindeutige Lésung von (C), die (PW) erfiillt.

Bemerkung

Kann man also zeigen, dass (C) eine eindeutige Losung besitzt, die (PW) erfiillt,
so ist diese durch obigen Erwartungswert als Funktion der Anfangsparameter
(¢,x) von (SDE) gegeben. Es gilt aber im allgemeinen nicht der Umkehrschluss,
d.h. der Erwartungswert ist nicht notwendigerweise eine Losung von (C). Kann
man aber den Erwartungswert berechnen und verifizieren, dass er das Cauchy-
Problem 16st, so ist er die eindeutige Losung, die (PW) erfiillt.

Beispiel

Lose folgendes Cauchy-Problem
Lo, =-u,
D(T, x) = x2 ,

Hier sind also &, g = 0 und f{x) = x2. 1/2-u,, ist der charakteristische Operator
der Brownschen Bewegung (siche Beispiel oben). Als Kandidat fiir die Losung
bietet sich nach Satz 18 und der anschlieBenden Bemerkung an:
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B(r,x) = E** (W2 (1)) = 2% +(T-1).
Man rechnet leicht nach, dass U das gegebene Cauchy-Problem 16st. Damit ist
0(¢,x) dann auch einzige Losung von (C), die (PW) erfiillt.
Beweis von Satz 18 :

Der Einfachheit halber sei m=d=1 und (8, X(&)=k. Der Beweis fiir den allge-
meinen Fall verlduft analog.

Sei 0<¢#<s<T. Dann liefern die mehrdimensionale It5-Formel, Satz I1.40, und
Korollar I1.41,

v( s, X(s)) e~ Hs=1)

=u(t,x)-1+ ]e‘k("“') d(u, x@)) + }u(u X(u) d(e—k(u-z))

s

=oft,x)+ je"k(“")(v, + 0, -bu, X)) + Lo, - o (u, X (W) - k- v) du
t

. ]‘e—k(u-t)(vx - o{u, X())) dW ()

Da 40 =30, -02(t, X()) + v, -b{t, X(2)) und da u(t, x) (C) Iost, f(;lgt weiter
s, X(5))-e~Hs-1) , (13)

=oft,x)- ]‘e'k(""') - glu, X)) du + ]‘e“k(“") (ux -olu, X (u)))dW(u) .
Definiere die Stop;)zeit t
ryi= inf {s21: | X(s)] 2 n}
Wir setzen dann s=TAz, in (13) und bilden den Erwartungswert. Da der Inte-

grand des stochastischen Integrals beschrinkt ist (beachte die Stoppzeit !), ist der
Erwartungswert dieses Integrals Null und wir erhalten
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oft,x) = fs‘"‘(v(tn,X (fn))' &), Y., ST}),
" F‘*‘(f(X(T)) &K -1{,,>r})

v

D

TAz,
+E""{ fe . g(u,X(u))du} :
t

7

G
Es gelten nun:

i) Mit dem Satz iiber die dominierte (bzw. monotone) Konvergenz folgt aus (V2)
und der Abschétzung

E'* (Kas x(a)||2’) A1+1d?r)- e (14)

fiir alle >1 und ein C = (K, T,d)>0 (siche Lemma 16), die Konvergenz

T
G___'_’__“)l__) El,x[j‘e"k(u—') -g(u, X(u)) duJ .

t

ii) Aus der polynomialen Wachstumsbedingung (PW) folgt:

E"‘(u(tn,X(tn)l-l{rnsr}) < M-(14n%#). P*¥(z, < T).

Weiter liefern die Chebyshev-Ungleichung und (14) die Abschitzung "

P (1, <T)= P‘J(tTMﬂX (6)2 n)

-2 2r -2 2 CcT
< w72 " max X ) w7 {1+ e

Wihlt man dann r> g, so folgt

B-12% 50.

iii) Mit (V1) kann man den Satz iiber die dominierte (bzw. monotone) Konver-
genz anwenden, dies liefert
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D22, g (x(1))- KT

Insgesamt folgt mit i) - iii) die gewiinschte Darstellung von (2, x) . 0

II1.4 Arbitragegrenzen fiir amerikanische und
europiische Optionen

Innerhalb dieses Abschnitts sollen keine exakten Preisformeln fiir Optionen, son-
dern lediglich obere und untere Schranken fiir ihre Preise bestimmt werden. Die-
se Schranken werden aber unabhiingig von der Modellierung der zugrunde lie-
genden Aktienpreise nur mit Hilfe von Arbitrageargumenten hergeleitet. Das
heiBt, dass das einzige verwendete Hilfsmittel der Grundsatz sein wird, dass kein
Optionspreis festgesetzt werden darf, der Arbitragemoglichkeiten zuldisst. Wir
sprechen deshalb von Arbitragegrenzen. Die Rechtfertigung dieser Grenzen
besteht darin, dass bei vorhandener Méglichkeit, ohne Kapitaleinsatz Gewinn zu
erzielen, diese von allen Markteilnehmern sofort wahrgenommen werden wiirde,
worauf dann der Markt mit sofortiger Preiséinderung reagieren wiirde, bis keine
Arbitrageméglichkeit mehr vorhanden wire. Insbesondere wollen wir daher im
Folgenden annehmen, dass die Aktienpreise keine solche Méglichkeit zulassen.
Fiir die Giiltigkeit der im Folgenden hergeleiteten Arbitragegrenzen ist daher im
jeweiligen Marktmodell nur dessen Arbitragefreiheit zu iiberpriifen.

Im Gegensatz zur exakten Preisfestsetzung im Black-Scholes-Fall ist bei ameri-
kanischen Optionen die Bestimmung von Arbitragegrenzen sogar wesentlich
einfacher als bei Optionen europdischen Typs (zur Bewertung amerikanischer
Optionen im Black-Scholes-Fall vergleiche Abschnitt I11.5). Das Beweisprinzip
fiir alle im Folgenden angegebenen Schranken wird meist darauf beruhen, fiir
Preisfestsetzungen oberhalb der oberen oder unterhalb der unteren Schranke eine
Arbitragestrategie zu konstruieren.

Offensichtliche Schranken fiir Preise amerikanischer und europiischer Puts und
Calls sind

Celt, (1)) 20, Pglt, Py()) 20, Cy(t, Py(9) 20, P,(t, Py(9) 20,

wobei Cp, C4 jeweils Preise europiischer und amerikanischer Calls und P, P,
Preise europdischer und amerikanischer Puts sind. P;(?) ist dabei der aktuelle



140 Kapitel III: Optionsbewertung

Preis der zugrunde liegenden Aktie. Zum ,Beweis* obiger Relationen beachte
man, dass im Fall negativer Preise sogar die Strategie

e Kaufe die jeweilige Option und lasse sie ohne Ausiibung verfallen*

eine Arbitragestrategie ist, da der Investor in /=0 einen Geldbetrag erhilt (nim-
lich den negativen ,,Optionspreis*“!) und spiter keine Zahlung aus dieser Strate-
gie heraus zu leisten hat.

Allgemeine Voraussetzungen fiir diesen Abschnitt

Zum Beweis der nachfolgenden Schranken nehmen wir an, dass es zu jedem
Zeitpunkt # moglich ist, Geld zum risikolosen Zinssatz r anlegen oder leihen zu
kénnen. Ansonsten bendtigen wir in diesem Abschnitt keine bestimmten Voraus-
setzungen an das Marktmodell oder an die Preisverldufe der Wertpapiere.

Proposition 19

a) Fiir den Preis C/(t, P;(¢)) eines amerikanischen Calls mit Ausiibungspreis
K=>0gilt

(PiO-K)" cCyt, Py(®) < Py(D) )}

l;leur den Preis P (¢, P,(7)) eines amerikanischen Puts mit Ausiibungspreis K=0
t

(K- Py)" P P(®)< K @
Beweis:
a) Gilt (Py(f) - K)* > C(t, P()), so ist die Strategie
¢ ,Kaufe die Option und iibe sie sofort aus*
eine Arbitragestrategie. Sie liefert nimlich in 7 die Zahlung

P -K - Cy(t, Pi(£) >0

und danach keine weitere Zahlung mehr. Es entstiinde somit ein risikoloser Ge-
winn ohne Kapitaleinsatz. Gilt hingegen P;(#) < C,(z, P;(#)), so ist die folgende
Strategie eine Arbitragstrategie

e ,Verkaufe den Call fiir C (¢, P{(f)), kaufe die Aktie fiir Py(¢) und lege den
positiven Rest C (¢, Py(t)) — P;(?) zum risikolosen Zinssatz r an*
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Ubt dann der Kaufer irgendwann die Option aus, so erhilt er die Aktie und zahlt
an den Verkdufer der Option K Geldeinheiten. Ubt er hingegen die Option nie
aus, so behilt der Verkidufer die Aktie. In jedem der beiden Fille hat man zum
Verfolgen der obigen Strategie kein Anfangskapital bendtigt, aber ein strikt
positives Endvermégen von mindestens

(Ct, Py(1) - Py () 779

erzielt, was zeigt, dass die beschriebene Strategie eine Arbitragestrategie ist. Ins-
gesamt haben wir somit die Ungleichung (1) gezeigt.

b) Der analoge Beweis wird dem Leser als Ubung iiberlassen. 0

Da man bei amerikanischen Optionen die freie Wahl des Ausiibungszeitpunkts
hat, bei europiischen Optionen aber nur am Ende der Laufzeit ausiiben darf, gel-
ten fiir amerikanische und europiische Optionen mit gleicher Laufzeit und glei-
chem Ausiibungspreis offenbar die Bezichungen

C6, P(0) 2 CHt, Py®), P4, Py(8) 2 Pe(t, Py(0)) . 6)
Diese Beziechungen werden fiir den Beweis der folgenden Proposition benétigt:

Proposition 20

a) Fiir den Preis Cg(t, P((?)) eines europdischen Calls mit Ausiibungépreis K>0
und Laufzeit T gilt

(P,(t) —e (T “’)K)+ < Calt, (1) < Py(), )

falls wihrend der Laufzeit des Calls keine Dividende auf die Aktie gezahlt wird.

b) Fiir den Preis Pg(t, P,(?)) eines europiischen Puts mit Ausiibungspreis K>0
und Laufzeit T gilt

(e"(T“’)K - P,(t))+ <Pyt P()) < K, ©)
falls wihrend der Laufzeit des Puts keine Dividende auf die Aktie gezahlt wird.
Beweis:

a) Wegen den Ungleichungen (1) und (3) gilt offenbar Cg(z, P;(£))<P;(?). Wir
nehmen nun an, dass

Cxt, 1r»1(t))<(1r>,(t)—e"’(T-‘)K)+ *)



142 Kapitel III: Optionsbewertung

gilt, wobei wegen der Nicht-Negativitit des Call-Preises automatisch der Positiv-
teil der rechten Seite von (*) strikt positiv sein muB. Dann ist die folgende Stra-
tegie eine Arbitragestrategie:

e ,Kaufe den Call fiir Cg(t, P,(f), fiihre einen Leerverkauf einer Aktie zum
Preis P((f) durch (d.h. verkaufe die Aktie ohne sie zu besitzen und liefere sie
zu einem spéteren Zeitpunkt) und lege den positiven Rest P;(¢) — Cg(t, P;(?))
zum risikolosen Zinssatz r an“.

Mit (*) besitzt man so im Zeitpunkt #=T das verzinste Kapital
(AW -cele. AG))-1™ > k.

In ¢=T ergeben sich dann die beiden folgenden Méglichkeiten:

LP(D>K
Man iibt den Call am Laufzeitende aus, kauft die Aktie zum Preis K, gleicht da-
durch den in ¢ getiitigten Leerverkauf aus und hat dann insgesamt in 7 den Ge-
winn

(RO-cp(tAW))-e" T k>0
realisiert.

2. P(N<K
Man lisst die Option verfallen, kauft die Aktie am Markt zum giinstigeren Preis
P;(7)=K und gleicht damit den Leerverkauf aus. Man erhilt hier als Gewinn

(RO-ce(e. AO))- T2 - R(D>k-K =0.

In beiden Fillen erhilt man also ohne Einsatz von Anfangskapital ein strikt posi-
tives Endvermdgen, womit die Arbitrageigenschaft der Strategie gezeigt ist.

b) Der analoge Beweis bleibt dem Leser iiberlassen. 1]
Bemerkung
Es folgt, dass wegen (1) und (3) die Ungleichungen (4)

(P - TIK)" <c e Pya) < Py,

auch fiir amerikanische Calls gilt.

Weitere Beispiele fiir Arbitragegrenzen fiir Optionen mit anderen Auszahlungs-
profilen als denen der Standardputs und -calls lassen sich leicht konstruieren. Es
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ist wichtig zu bemerken, dass man bei einem Portfolio von Optionen oft bessere
Arbitrageschranken erhilt, als die, die sich durch Addition der Einzelschranken
der beteiligten Optionen ergeben wiirden. Es ist unter Umsténden sogar moglich,
den Preis des Portfolios aus reinen Arbitrageiiberlegungen unabhdngig vom
Aktienpreismodell zu bestimmen. Das mit Abstand bekannteste Beispiel hierzu
ist:

Satz 21 ,,Put-Call-Paritit fiir européische Optionen*

Fiir die Preise Pg(t, P,(?)), Cg(t, P1(1)) von europdischen Put- und Call-Optionen
mit gleicher Laufzeit T und gleichem Ausiibungspreis K gilt

Ct, Py(9) + Ke " T = P(s, Py(0) + P (0) (PCP)
(falls die zugehérige Aktie wihrend der Laufzeit keine Dividende zahlt!).

Beweis:

Die linke Seite von (PCP) entspricht der Strategie, einen Call zu kaufen und
K e T~ Geldeinheiten im Bond anzulegen. Sie fiihrt zum Endvermogen

XdD=(P(D)-K)" +K=K- l{ﬁm«} +B(T)- 1{}“”2‘(} . *)

Die Strategie auf der rechten Seite von (PCP), je einen Put und eine Aktie zu
kaufen, fiihrt zum Endvermogen

XD = (K= PAD)" +P(D) = K-Yyp o A+ R Yg pogd - )

Da beide Strategien zum gleichen Endvermégen fiihren (und zwischendurch kei-
ne weiteren Zahlungen liefern), muss auch ihr Wert im Zeitpunkt # {ibereinstim-
men, woraus die Giiltigkeit von (PCP) in ¢=T folgt. Wiirde sie nun in einem
Zeitpunkt #<T verletzt sein, so bestiinde eine Arbitragemoglichkeit darin, die
teurere der beiden zugehodrigen Strategien zu ,,verkaufen“ (d.h. die entsprechen-
den negativen Positionen zu halten) und die billigere zu ,kaufen”. Dies wiirde in
t zu einer positiven Zahlung fiihren, die risikolos angelegt werden konnte. Da
sich wegen (*) und (**) die Endzahlungen der beiden Strategien neutralisieren,
hiitten wir wieder ohne Anfangsvermogen ein strikt positives Endvermégen
erzielt. Folglich muf} (PCP) fiir alle 7 € [0, 7] gelten. i

Bemerkungen

a) Formt man die Put-Call-Paritit (PCP) um in
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Cilt, Py(1) - P(t, Py(0) =P (1) - Ke "I, ~(PCP¥)

so ist diese Gleichheit in #=T sogar trivial wegen

CHT, Py(T)) - PLT, Py(D)) = (P(T) - K)" - (K - P(T))"
=P(D-K.

b) Einen weiteren einfachen Beweis von (PCP) mittels der Darstellung (PCP*)
erhilt man graphisch durch Subtraktion der Payoff-Diagramme von Call (siche
Bild IIL1) und Put (siehe Bild I11.2), was offensichtlich das Payoff-Diagramm
von P(T) - K ergibt:

A(n-x4
<t
0 >
K A(7)
-K:

Bild II1.4 Payoff-Diagramm der kombinierten Option ,,Call-Put“

c) Die Put-Call-Paritiit liefert uns auch eine einfache Beweisméoglichkeit der
Black-Scholes-Formel fiir einen europdischen Put, wenn der Preis fiir den Call
schon bekannt ist (siche Korollar 6): .

Pe(t.R1(1) = Ce (1. A (1) - () - ke (™)

= A()-0{d; (1) - ke T 0(d, (1)) - A, (1) - ke (T
=R 0)-(1- () 0)))+ ke (1- {2, )

= -RO-({-4,0))) + ke T (- 4, ).
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Im Fall amerikanischer Optionen gilt die Put-Call-Paritit im Allgemeinen nicht.
Die vorgestellten Beweise von (PCP) benétigten alle, dass Put und Call den glei-
chen Ausiibungszeitpunkt besaBen, was aber bei amerikanischen Puts und Calls
nicht der Fall sein muss. Mehr noch, es kann sogar bei gleichem Ausiibungspreis
nie gleichzeitig vorteilhaft sein, einen Put und einen Call auszuiiben. Bevor wir
auf die zu (PCP) analoge Beziehung im Fall amerikanischer Optionen eingehen,
zeigen wir noch ein auf den ersten Blick sehr iiberraschendes Resultat:

Proposition 22

Werden wihrend der Laufzeit T eines européischen und eines amerikanischen
Calls mit gleichem Ausiibungspreis K keine Dividenden auf die zugehorige
Aktie gezahlt und ist der risikolose Zinsssatz r positiv, so gilt fiir die Preise der
beiden Optionen

Ct, Pi() = Cgt, P () fiirallete[0,7], (6)
und es ist nie vorteilhaft, den amerikanischen Call vorzeitig auszuiiben.
Beweis:
Wegen (3) und (4) gilt:
+
Calt, Py(8) 2 Cott, i) 2 (Py() - " IK) ™

Offenbar kann es nur vorteilhaft sein, einen amerikanischen Call auszuiiben,
wenn P(f) > K gilt. In diesem Fall hat man aber wegen »>0 und (7)

C,t, P(0) 2 (Pl(t) - e-'(T-t)K)+> (Pit)-K)* =P()-K, (8

d.h. der Wert eines amerikanischen Calls ist vor dem Laufzeitende 7T immer
strikt groBer als sein innerer Wert P,(f) — K, der Ertrag, den man bei sofortiger
Ausiibung des Calls erzielen wiirde. Folglich kann Ausiiben des amerikanischen
Calls nur im Zeitpunkt T vorteilbaft sein. Somit sind die Zahlungen, die sich aus
dem Besitz eines amerikanischen und dem eines europiischen Calls ergeben,
gleich, woraus wegen der Voraussetzung der Arbitragefreiheit dann die behaup-
tete Gleichung (6) folgt. 0

Bemerkung

a) Natiirlich hat der Besitzer einer amerikanischen Option, die tief im Geld ist
(d.h. bei der der zugehorige Aktienkurs weit iiber dem Ausiibungspreis liegt),
das Bediirfnis, diese fiir ihn giinstige Situation auszunutzen. Da das vorzeitige
Ausiiben des Calls nach Proposition 22 unvorteilhaft ist, bleibt ihm hierzu nur
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noch die Méglichkeit, die Option zu verkaufen. Dies bringt ihm aufgrund von
Ungleichung (8) einen héheren Erls als das Ausiiben der Option.

b) Auch unter dem Gesichtspunkt, die Option nur zu halten, um sich ein Kauf-
recht auf die Aktie zu sichem, ist es nicht vorteilhaft, den amerikanischen Call
vorzeitig auszuiiben. Der vereinbarte Kaufpreis der Aktie wird auch bei einem
weiteren Kursanstieg nicht grofier als K. Im Gegenteil, iibt der Call-Besitzer
friihzeitig aus und fillt der Aktienkurs dann wihrend der verbliebenen Zeit, so
dass er in =T unterhalb von X liegt, so wire die Aktie beim spiten Ausiiben der
Option in 7=T billiger zu erwerben gewesen. Solange der gewillte Aktienkdufer
die Option noch nicht ausgeiibt hat ist er gegen Kursschwankungen der Aktie
abgesichert. Schlimmstenfalls 148t er in =T die Option wertlos verfallen, kann
sich aber dann mit einem billigeren Kaufpreis der Aktie am Markt trosten.
AuBerdem wiirde er bei einem vorzeitigen Ausiiben die Zinsen des zum Aktien-
erwerb bereitgehaltenen Geldes verlieren, die sich bei risikoloser Anlage bis r=T
ergeben.

Die letzte von uns hier angegebene Arbitragebezichung ist das Analogon zu
(PCP) fiir amerikanische Puts und Calls.

Satz 23 ,,Put-Call-Beziehung fiir amerikanische Optionen*

Unter den Voraussetzungen von Proposition 22 gilt:

Pi() - K< Cy(t, P() - Py(t, P,(9) <P, () -Ke T, (PCB)
Beweis:

i) Die rechte Ungleichung in (PCB) folgt aus der Put-Call-Paritiit fiir europédische
Optionen und den Beziehungen

Cut, Py(0) = Cg(t, Py(9)) ,  P4(t, P\(9)) 2 Pglt, P1(9)) .

il) Zum Beweis der linken Ungleichung in (PCB) nehmen wir an, dass in einem
Zustand (¢, P,(?)) die umgekehrte Beziehung gilt. Dann ist die Strategie

o ,Kaufe den Call, verkaufe den Put, verkaufe eine Aktie fiir P;(7) leer, lege K
Geldeinheiten zum risikolosen Zinssatz r an“

eine Arbitragstrategie, denn es gilt:

~ die Kosten dieser Strategic betragen C,(f, Pi(£))-P4(t, P,(0)+Pi()-K<0
nach obiger Annahme. Man hat also im Zeitpunkt ¢ einen Gewinn gemacht.
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— Wird der Put vor T ausgeiibt, so mul der Halter obiger Strategie die Aktie
zum Preis K erwerben. Er verwendet sie sofort zum Ausgleich des anfangs
getitigten Aktienleerverkaufs. Danach besitzt er noch den Call sowie den
nicht zum Aktienkauf benétigten Teil des risikolos angelegten Gelds. AuBer-
dem darf man nicht vergessen, dass er schon im Zeitpunkt ¢ einen positiven
Gewinn erzielt hat.

—  Wird der Put nicht vor T ausgeiibt, gibt es die folgenden beiden Fille:

P(T) 2 K: Der Halter obiger Strategie kauft mit Hilfe des Calls die Aktie
zum Preis K und gleicht mit ihr den Leerverkauf aus. Zusitzlich zum An-
fangsgewinn hat er noch den nicht zum Aktienkauf benotigten Teil des risi-
kolos angelegten Gelds.

P(T) < K: In diesem Fall wird der Put ausgelibt werden. Zihneknirschend
kauft er dann die Aktie zum Preis K und gleicht mit ihr den Leerverkauf aus.
Zusitzlich zum Anfangsgewinn hat er weiterhin noch den nicht zum Aktien-
kauf benétigten Teil des risikolos angelegten Gelds.

I1L.5 Bewertung amerikanischer Optionen

Das iiberraschende Ergebnis des vorangegangenen Abschnifts bestand darin,
dass allein anhand von Arbitrageiiberlegungen gezeigt werden konnte, dass ame-
rikanische und europiische Calls denselben Preis besitzen. Uberraschend war
das Ergebnis nicht zuletzt deshalb, weil somit die den amerikanischen Call cha-
rakterisierende Wahlmoglichkeit des Ausiibungszeitpunktes quasi keinerlei Wert
besitzt. Da dies fiir allgemeine amerikanische Optionen allerdings nicht der Falt
ist, ist die explizite Bestimmung des fairen Preises einer amerikanischen Option
um einiges schwieriger als im europiischen Fall.

Allgemeine Voraussetzungen fiir diesen Abschnitt

Wir betrachten ein Black-Scholes-Modell, d.h. d=m=1, b, r, o konstant,
o >0.

Wir wollen zunichst einen amerikanischen Contingent Claim definieren und
dabei der Einfachheit halber auf die Modellierung eines Auszahlungsratenpro-
zesses verzichten.
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Definition 24

Ein amerikanischer Contingent Claim besteht aus einem progressiv messba-
rem stochastischen Prozess B={(B(f), F,)} tefo,7) Mit B(1)20 und einer Endzah-
lung B(7) zur vom Halter des Contingent &lms gewihlten Ausiibungszeit
7€ [0, 7] mit

e 7 ist Stoppzeit,

° ol [oe) i *
E( o.zsugs)r(B(s)) ) < oo fiir ein p>1, ™)
. {(B(t). F, )}z do] besitzt stetige Pfade.

Beispiele

Paradebeispiele amerikanischer Contingent Claims sind der amerikanische Call
auf eine Aktie mit Ausiibungspreis X, d.h.

B(t)=(R()-K)"

bzw. der entsprechende amerikanische Put

B@)=(k-R0)".

Hierbei konnen die Ausiibungspreise K auch als stetige Funktionen gewihlt wer-
den.

Definition 25

a) Ein zulédssiges Paar (7,c)eA(x) aus einem Portfolioprozess und einem Kon-
sumprozess mit Vermogensprozess X{f)2B(f) fiir alle t[0,7] heift eine
Hedging-Strategie zum amerikanischen Contingent Claim B mit Preis x>0.

b) H(x) sei die Menge der zum amerikanischen Contingent Claim B gehdrigen
Hedging-Strategien.

c) p=inf { x>0 | H(x)#D } heiBt fairer Preis des amerikanischen Contingent
Claims B.



II1.5 Bewertung amerikanischer Optionen 149

Bemerkungen

a) Es mag auf den ersten Blick iiberraschend sein, dass in a) nicht X#)=B(f) fiir
alle te[0, T] gefordert wird. Diese Forderung ist aber nur in entarteten Fillen er-
fiillbar. Mehr noch, die Existenz einer solchen Strategie (7; c¢) wiirde oft eine Ar-
bitragestrategie darstellen. So miisste z.B. fiir einen Call, bei dem anfangs
P;(0)<K gelten wiirde (also B(f)=0), X{0)=0 sein, aber zur Zeit der Ausiibung
7 nicht-negativ und mit positiver Wahrscheinlichkeit sogar strikt positiv sein
(dann n#mlich, wenn P,(7)>K gilt). Dagegen ist die Forderung
XA)2(P(1)-K)" (zumindest im Fall r20) erfiillbar, z.B. durch die Black-
Scholes-Strategie fiir den Call (folgt aus der Identitit der Preise eines amerika-
nischen und europiischen Calls).

b) Die fiir das Hauptergebnis der Optionsbewertung nach dem Duplikationsprin-
zip, Satz 5, entscheidenden Aussagen aus dem Satz iiber die Vollstindigkeit des
Marktes, Satz I1.48, gelten aufgrund von (*) und des Satzes iiber ,,optional
sampling*, Satz I1.13, auch dann, wenn man die Zeitpunkte T bzw. ¢ durch eine
Stoppzeit 7 mit Werten in [0, 7] ersetzt. Wire also die Stoppzeit 7 bei einem
amerikanischen Contingent Claim fest gewi#hit (oder vorgeschrieben), so erhielte
man den Preis eines amerikanischen Contingent Claims als Korollar aus Satz 5
und Korollar 11 als

E(H(:)B(z)) = Eg (?1(1:)— B(T)) ,

wobei Q das eindeutige dquivalente MartingalmaBB im Markt ist. Da nun der
Kéufer der Option bestrebt sein wird, eine optimale Strategie auszuwihlen, ist es

plausibel
p= swp E(H()B(2))
T€Xor

als Preis eines amerikanischen Contingent Claims B zu vermuten, wobei Z,, - die
Menge aller Stoppzeiten bzgl. {F,}, mit Werten in [0, 7] bezeichnet. Tatsichlich
gilt sogar der folgende Satz

Satz 26
Fiir den fairen Preis p eines amerikanischen Contingent Claims B gilt
p= sup E(H(DBG) = sup Eg (e""B(r)) ,
€01 relor

und es existieren eine Stoppzeit 7* und eine zugehérige Hedging-Strategie (#*,0)
fiir die das Supremum angenommen wird.
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Bemerkungen zum Beweis:

Der Beweis folgt z.B. aus Satz 2.5.3 in Karatzas/Shreve (1998). Er erfordert al-
lerdings technische Hilfsmittel wie z.B. die Snell-Einhiillende oder die Doob-
Meyer-Zerlegung, die im Rahmen dieses Buches nicht bereit gestellt werden
sollen. Die Hauptarbeit des Beweises steckt im Nachweis, dass

X(2) = ess sup EQ(e"' (T")B(r)l F,)
€T

ein Vermogensprozess zu cinem geeigneten Portfolio-Prozess ist, wobei ess sup
das wesentliche Supremum bezeichnet. X(f) wird dann wieder als Bewertungs-
prozess von B bezeichnet. Da im Fall amerikanischer Optionen die Wahlmég-
lichkeit des Ausilibungszeitpunktes besteht, liegt hier eine Asymmetrie zwischen
Kaufer und Verkiufer der Option vor. Wir zeigen aber mit einfachen Arbi-
trageargumenten, dass der obige Preis tatsichlich der einzige Preis von B ist, der
keine Arbitrageméglichkeit gestattet.
Satz 27
Der faire Preis p des amerikanischen Contingent Claims B mit

p= sup E(H()B()

€01

ist der einzige Preis x, der keine Arbitrageméoglichkeiten zuliisst.
Beweis:
i) Wir zeigen zunichst p > x:
Wiirde der Preis x von B in #=0 die Ungleichung

p<x
erfiillen, so wire folgende Strategie eine Arbitrageméglichkeit:
verkaufe den Contingent Claim fiir x,

o verfolge im Zeitintervall [0,p]c[0,7] die Hedging-Strategie (7",0) aus
Satz 26 mit dem Startkapital p < x . Dabei sei p eine beliebige vom Kiufer
des Contingent Claims zu wihlende Stoppzeit,

o lege das iibrige Geld x— p im Bond an,
o leiste zur Zeit p die Zahlung B(p) an den Kiufer des Contingent Claims,
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e investiere ab #=p das restliche Vermégen in den Bond.

Man beachte, dass zum Verfolgen dieser Strategie in 7=0 kein Kapital notig ist.
Zum Zeitpunkt p erfiillt das Gesamtvermdgen X{p), das zur optimalen Hedging-
Strategie gehort, aufgrund der Hedging-Eigenschaft

x()25().

Da zusitzlich noch die Differenz x— p mittlerweile auf (x— p )e’? angewachsen
(bzw. geschrumpft, falls r<0) ist, erhiit man aus dem Verfolgen obiger Strategie
ein positives Endvermogen und hat somit einen Arbitragegewinn erzielt.

ii) Wir zeigen p<x:
Wiirde die Ungleichung

p>x
gelten, so folgt sofort, dass der Kauf des Contingent Claims B zum Preis x< p
und das Halten der negativen Position aus der optimalen Hedging-Strategie aus
Satz 26, was p einbringt, eine Arbitragestrategie ergibt. Durch Ausiiben der Op-

tion im optimalen Zeitpunkt 7* erhiilt man gerade die Zahlung, die man braucht,
um seine negative Position auszugleichen. Auflerdem besitzt man noch die

Differenz (- x)e """ die man zu Beginn risikolos angelegt hatte. 0

Aufgrund der beiden vorangegangen Sitze ist es nun auch klar, wie die optimale
Ausiibungszeit auszusehen hat:

Korollar 28
Es sei
X()=esssup E Q(e"("")B(r)l F, ) .

TeX, o
Dann ist
= inf{s > tl X(s)= B(s)}
eine optimale Ausiibungszeit.
Bemerkung

Dieses Korollar besagt nichts anderes, als dass der innere Wert der Option, also
den Wert, den man bei Ausiibung der Option erzielen wiirde, im optimalen
Ausiibungszeitpunkt mit dem Optionspreis iibereinstimmt.
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Das Hauptproblem bei der Bewertung amerikanischer Contingent Claims besteht
nun darin, dass in der Regel weder fiir X(#) noch fiir 7* explizite Darstellungen
existieren. Selbst im einfachsten Fall des amerikanischen Puts ist man auf
numerische Methoden angewiesen. Fiir weitere Resultate verweisen wir auf
Myneni (1992).

Die Berechnung des fairen Preises p besteht nach Satz 26 aus der Lésung eines
optimalen Stoppproblems. Fiir den Verlauf der optimalen erwarteten Zahlung ei-
nes solchen Problems als Funktion der Anfangsparameter (z, P,(#)) existiert im
Black-Scholes-Modell ein zur Charakterisierung des Preises europdischer Op-
tionen als Losung eines Cauchy-Problems analoges Ergebnis. Wir méchten es
hier nur fiir den Spezialfall des amerikanischen Puts angeben und fiir weitere
Hintergriinde auf die Arbeit von Jaillet, Lamberton und Lapeyre (1990) verwei-
sen.

Satz 29
Die folgende Variationsungleichung

g (6 2)+ 202 g (6 5)+ L 02 g (6 5)- e, x) < 0
ut,x)2(k-e*)"
(ulex) = (k=) et )+ 0P (05) + (-~ % 02 Y e.0) - rufe, ) = 0
u(T,x) = (K—e")+

fiir xeR, (¢,x) € [0, T]xR,

besitzt eine eindeutige stetige Losung u(?, x), so dass ihre Ableitungen u,, u,, Uy
(die im Sinne von Distributionen existieren) lokal beschrinkt sind. Fiir diese Lo-
sung gilt

u(t, ln(x)) =
ess sup Eéx (e"("') (K —x- exp((r -—%0'2 )(r—- T)+ o‘(W(t)—W(t)))) +)

TE, 0. T

d.h. sie stimmt mit dem Preis eines amerikanischen Puts mit Laufzeit 7 und Aus-
iibungspreis K iiberein.
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IIL.6 Arbitrage, iquivalente Martingalmafie
und Optionsbewertung

In den vorangegangenen Abschnitten war die Vollstindigkeit des Marktmodells
die wesentliche Eigenschaft, die zusammen mit Arbitrageargumenten die
Optionsbewertung nach dem Duplikationsprinzip rechtfertigte. Viele explizite
Rechnungen waren nur durch die spezielle Form der Wertpapierpreise moglich.
Wir wollen in diesem Abschnitt einige allgemeine Aussagen iiber den Zusam-
menhang zwischen Arbitrage, 4quivalenten MartingalmaBen, volistindigen
Mirkten und Optionsbewertung in unvollstindigen Mirkten machen. Hierbei
sind die Ausfiihrungen oft auch fiir viel allgemeinere Wertpapierpreismodelle
richtig als fiir die von uns im Folgenden angenommenen.

Allgemeine Voraussetzungen fiir diesen Abschnitt

Wir betrachten einen Markt, auf dem d+1 Wertpapiere mit strikt positiven
Preisen P(t),..., P(f) gehandelt werden. Hierbei seien die Preise It6-Prozesse
beziiglich einer m-dimensionalen Brownschen Bewegung {(W,,F )} c(0, )
mit m2d auf (Q,F, P), wobei {F},. [0,0) die Brownsche Filterung ist.

Um nun das Optionsbewertungsproblem in unserem verallgemeinerten Markt
bearbeiten zu konnen, miissen noch einige Definitionen (wie z.B. die der Han-
delsstrategien) den neuen Bedingungen angepasst werden.

Bezeichnungen

Unter einer Handelsstrategie ¢{(6)=(@y(?),-..,@ «(£))', £20, wollen wir einen (d+1)-
dimensionalen progressiv messbaren Prozess verstehen, fiir den die stochasti-
schen Integrale

T T

[0:(9dR (), [i(s)dBi(s) , i=0,...d
0 0

fiir alle 7>0 existieren, wobei

B = 10

R()
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die (mit Py(z)) diskontierten Preisprozesse bezeichnen. P;(¢) ist wegen der mehr-
dimensionalen It6-Formel I1.40 insbesondere wieder ein It6-Prozess. Der Ver-
mégensprozess X(f) zur Handelsstrategie ¢(7) und die Bedingung, dass der Ver-
mogensprozess selbst-finanzierend sein soll, seien wie gewohnt durch die Glei-
chung

d dt
X = Z o;i(OP()=x+ Z Lp,- (s)dP; (s) P-fast sicher, fiir alle 120,
i=0 i=0¢

definiert, wobei wir in diesem Abschnitt der Einfachheit halber auf die Méglich-
keit eines Konsumprozesses verzichten. Eine selbst-finanzierende Strategie soll
wiederum zuldssig heiien, wenn der zugehérige Vermégensprozess nicht-ne-
gativ ist. Der Diskontierungsprozess Py(f) wird in der Literatur oft als
Numeraire bezeichnet. Es kann sich nun bei ihm um einen Bondpreis, einen
Aktienpreis oder sogar den Wert eines Portfolios aus Wertpapieren handeln, so-
lange er nur auf dem betrachteten Zeitraum strikt positiv ist.

Arbitrage und iquivalente Martingalmalle

Wir wollen nun zuerst den Zusammenhang zwischen der Existenz eines dquiva-
lenten MartingalmaBles und der Nichtexistenz einer Arbitrageméglichkeit in un-
serem betrachteten Markt genauer beschreiben. Wihrend die Definition einer
Arbitragemoglichkeit der aus Abschnitt ITI.1 entspricht und deshalb hier nicht
wiederholt wird, geben wir explizit die Definition eines #quivalenten Martingal-
mafes an:

Definition 30

Ein auf (Q,Fy) definiertes und zu P #quivalentes Wahrscheinlichkeitsmai QO
(d.b. P und Q besitzen die gleichen Nulimengen) heifit ein iquivalentes Martin-
galmaB fiir Py(#),..., P(?), falls die diskontierten Preise

~.. BR@
'Pi(t) = Po(t) 1= lr--,d’ te [0’ ]]
Martingale beziiglich Q sind.

Proposition 31

Alle zu P #quivalenten Martingalmalle Q fiir Py(¢),..., P(?) erhdlt man aus P
durch eine Girsanov-Transformation mit einem m-dimensionalen progressiv
messbaren stochastischen Prozess {(&(), F,)} >, wobei fiir alle £20
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6,2(s) ds <o P-fast sicher , fiir i=1,..,m,

O ey ™

gilt und Z(¢, §) - definiert wie in Exkurs 5 — Martingal bzgl. P ist. Insbesondere
ergibt sich O als

O(4) := 0r(4) := E(14-2(T.6)) firalle deFp,
Beweis: mit Hilfe einer geeigneten Variante von Lemma 9 und einer Modifika-
tion des Beweises von Satz 10 (siche Ubung U.7). ) i
Die Existenz eines dquivalenten MartingalmaBes ist nun hinreichend dafiir, dass
im Markt keine Arbitragemdglichkeit existiert:
Satz 32 — ,MartingalmaBl = Arbitragefreiheit“
Falls ein dquivalentes Martingalmaf existiert, gibt es in dem durch die Preispro-
zesse P(?),..., P (f) beschricbenen Markt keine Arbitrageméglichkeit.
Beweis:
i) Es sei

5 x(¢)

X)) = —7x

( ) B (t)

der zu einer Handelsstrategie ¢(f) gehorende diskontierte Vermdgensprozess.
Durch Anwendung der It6-Formel auf obigen Quotienten Lifit sich zeigen (vgl.

Ubung U.8):
@(2) ist selbst-finanzierend

d ¢
A x A
)= —=+ Y. [:()dB(s) P-fast sicher, fir alle t< [0, 7] .
0 =19
x:= X(O), po = PO(O)
Man beachte hierzu insbesondere, dass ein zu P fquivalentes Martingalmall O
existiert, das nach Proposition 31 durch eine Girsanov-Transformation darstell-
bar ist. Damit kénnen alle 5(f) nach dem Korollar 11.53 zum Martingaldarstel-
lungssatz als It6-Integrale bzgl. WO(f), der Q-Brownschen Bewegung, dargestellt
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werden. Ist ¢(7) sogar zulissig, also X(#)20, so ist X () ein nicht-negatives loka-
les Martingal bzgl. O, und somit nach Satz I1.17 ein Q-Super-Martingal.

ii) Sei nun ¢f) zulissig und stelle eine Arbitragestrategie mit zugehorigem Ver-
mogensprozess X(f) dar. Wegen i) gilt dann .

0=%(0) 2 Eo(X(D), )
wobei E den Erwartungswert beziiglich Q bezeichnet. Da ¢(f) als Arbitragestra-

tegie eine zulissige Handelsstrategie ist, ist also auch X (t) nicht-negativ, was
zusammen mit der Beziehung (1) zu

o(x(1)>0)=0
fiihrt, woraus wegen der Aquivalenz von P und Q dann auch

P()‘((T) > o) =0
folgt, was einen Widerspruch zur Annahme der Existenz einer Arbitragestrategie
darstellt. 1]

Die Gegenrichtung zum obigen Satz, ,Nichtexistenz von Arbitrageméglichkeiten
impliziert die Existenz eines dquivalenten MartingalmaBes" gilt nur unter zusitz-
lichen Bedingungen an die Handelsstrategien. Der Beweis dieser Richtung geht
iiber den hier behandelten Stoff hinaus. Wir verweisen deshalb auf Delbaen und
Schachermayer (1994) und die dort zitierten Referenzen. Die in diesem Artikel
bewiesene Aquivalenzbeziehung zwischen der Existenz eines #quivalenten Mar-
tingalmaBes und der Nichtexistenz von Arbitrageméglichkeiten (eines gewissen
Typs) wird als ,,Fundamental Theorem of Asset Pricing® bezeichnet.

Aquivalente MartingalmaBe und Vollstindigkeit des Marktes

In dem in den vorangegangenen Abschnitten betrachteten vollstindigen Markt-
modell existierte genau ein #quivalentes Martingalma8. Dies war kein Zufall
sondern ein Spezialfall eines tieferen Zusammenhangs. Um im Folgenden die
Bewertung von Contingent Claims untersuchen zu kénnen, benétigen wir etwas
stirkere Integrierbarkeitsvoraussetzungen als im vollstindigen Marktmodell der
vorangegangenen Abschnitte.
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Definition 33

a) Ein Contingent Claim B ist eine nicht-negative F-messbare Zufallsvariable
mit

1
fiir alle zu P dquivalenten MartingalmaBe Q.
b) Der Contingent Claim B heiBt erreichbar, falls eine zulissige Handelsstrate-
gie ¢(f) existiert mit zugehdrigem Vermdgensprozess X(7) und
B =X(T) P-fastsicher,

so dass X(t)= X(t)/Py(t) ein Martingal beziiglich einem dquivalenten Martin-
galmaB Q ist.

Man beachte, dass in Teil b) bereits implizit die Existenz eines #quivalenten
MartingalmaBes Q gefordert wird. Der Beweis des folgenden Satzes benotigt
eine Vielzahl von Hilfsmitteln, die wir in diesem Buch nicht bereitstellen kon-
nen. Er ist z.B. in Harrison und Pliska (1981,1983) zu finden.

Satz 34

Der betrachtete Finanzmarkt ist genau dann vollstindig (d.h. jeder Contingent
Claim ist erreichbar), wenn in ihm genau ein dquivalentes MartingalmaBl Q exis-
tiert.

Optionsbewertung in unvollstindigen Mirkten

Ein Markt, in dem nicht jeder Contingent Claim erreichbar ist, heilt unvollstin-
dig. Ursachen fiir Unvollstindigkeit eines Marktes kénnen z.B. sein

o Handelsbeschrinkungen wie das Verbot, in eine bestimmte Aktie zu in-
vestieren,

e zusdtzliche Zufallsschwankungen in den Marktkoeffizienten wie z.B.
stochastische Volatilitit (d.h. die Volatilitit o(r) ist z.B. ebenfalls ein It3-Pro-
zess, der allerdings nicht beziiglich der von den Wertpapierpreisen erzeugten
Filterung progressiv messbar ist).

Typischerweise ist in einem unvollstindigen Fall die o-Algebra F grofer als die
von den durch zulissige Handelsstrategien erzielbaren Endvermégen
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dT
XD=x+ Y. [@(s)dP,(s)
=00

erzeugte o-Algebra. In einem solchen unvollstindigen Markt hat das Duplika-
tionsargument aus Abschnitt II1.2 nur noch begrenzte Reichweite.

Satz 35 — ,,Preise erreichbarer Contingent Claims“

Der eindeutige Preisprozess X'(¢) eines erreichbaren Contingent Claims B ist
durch

_ o(t)

X'()=Eg [P D B|F,] fiir £ [0, 7]

gegeben, wobei O ein dquivalentes MartingalmaB wie in Definition 33 b) ist.
Beweis:

Es sei ¢(f) eine Duplikationsstrategie zu B. Dann gilt fiir den zugehorigen Ver-
mogensprozess X(7):

X(T) =B P-fastsicher. 2)
Da wegen Satz 32 unser Markt arbitragefrei ist, muB deshalb auch
X*(?) = X(f) P-fast sicher, fiir alle z€ [0, T] 3)

gelten. Nach Definition der Erreichbarkeit von B ist X (¢) ein Q-Martingal. Also
folgt mit (2) und (3):

X' =X0)=Py0) X(?)
=Py Eg(X(D)| F,) = EQ[P(T)BIF,]. i

Fiir nicht-erreichbare Contingent Claims ist der vorausgegangene Satz bedeu-
tungslos. Wir wollen hierzu ein einfaches Beispiel flir einen nicht-erreichbaren
Contingent Claim in einem unvollstindigen Markt betrachten.

Beispiel: Ein nicht-erreichbarer Contingent Claim

Wir betrachten den Black-Scholes-Markt mit konstanten Koeffizienten und
d=m=2. Unserem Investor sei es nicht erlaubt, die zweite Aktie zu halten. Dies
kann auch dahingehend interpretiert werden, dass die zweite Aktie ein nicht-han-
delbares Gut ist wie z.B. ein Marktindex. Fiir unseren Investor liegt somit ein
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Black-Scholes-Markt mit =1 und m=2 vor. Er sei aber in der Lage, bestimmte
Optionen auf das nicht-handelbare Wertpapier zu handeln. Speziell betrachten
wir die folgende Option mit Endzahlung

B= U nmpenm)

Man berechnet nun leicht mit Hilfe von Korollar 11 und Proposition 13 (vgl.
Ubung U.9), dass im (fiir unseren Investor fiktiven) vollstindigen Markt mit
d=m=2 der eindeutige Preis Xp(f) und die zugehodrige Duplikationsstrategie

(20(®), @1 (), @y(1)) durch

X()= e T 0(d(r)),

~r(T-t) 1

= eld),
J((o’l 1—0'21)2 +(0'12 ey )2)(1'_,) P ()

p()=e

)=— -r(T-t) 1 1 d(t ,
%( ) J((o’u-a'zl)z +(0'12—0'22)2)( T—1) P2 ¢( ))
2= (Xp(t)-@,(OP (1) ~(0P(1)) | P(d),

mit
(ﬂ(ﬁﬁ( )) ("ll +"'12 0'%1 0’22)(1‘—1)

J((a" _"21) _ +(‘12 ’"022)2)(7'—0

gegeben sind (wobei ¢(x) die Dichte der Standard-Normalverteilung bezeichnet).
Insbesondere benétigt man also das zweite, nicht-handelbare Wertpapier zur
Duplikation von B. Da die Duplikationsstrategie aber eindeutig ist (siche Satz
11.48), ist somit B fiir unseren Investor nicht erreichbar. Fiir ihn liegt deshalb ein
unvollstindiger Markt vor.

d@) =

Im Folgenden werden wir zeigen, dass man mit Hilfe #quivalenter Martingal-
maBe auch in solch unvollstindigen Mérkten arbitragefreie Preise fiir Optionen
festsetzen kann. Allerdings ist aufgrund der fehlenden Duplikationsméglichkeit
bei nicht-erreichbaren Optionen keine Eindeutigkeit des Preises gegeben.
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Satz 36 ,,Optionspreis und fiquivalente Martingalmafie®

Es seien Q ein dquivalentes MartingalmaBl zu P und B ein (beliebiger, nicht not-
wendig erreichbarer) Contingent Claim. Setzt man

Py(t
x§0)= £o( 2L 5 ;)

als Preis des Contingent Claim fest, so existiert im Wertpapiermarkt, der aus den
d+1 urspriinglichen Wertpapieren und dem Contingent Claim gebildet wird,
keine Arbitragemdglichkeit.

Beweis:
Da man nach Proposition 31 alle fquivalenten MartingalmaBe Q aus P durch
eine Girsanov-Transformation erhilt, ist

0
X350
Yo(h) = P;’ D

insbesondere ein Brownsches Martingal bzgl. 0. Aus Korollar 53 zum Martin-
galdarstellungssatz folgt insbesondere, dass Y (¢) ein Itd-Prozess bzgl. Q ist. In-
version der Girsanov-Transformation zeigt, damit Y(#) auch ein It6-Pro-
zess beziiglich P ist. Der obige Markt in der Behauptung des Satzes hat somit die
Form unseres allgemeinen Marktmodells, in dem wir den Contingent Claim als
(d+1).Aktie auffassen. Da Q dann auch #quivalentes MartingalmaB in diesem
Markt ist (beachte, dass der Preis des Contingent Claims gerade so definiert
wurde!), folgt aus Satz 32 die Arbitragefreiheit des Marktes. 0

Beispiel: Ein nicht-erreichbarer Contingent Claim (Fortsetzung)

Fiir unseren Investor im obigen Black-Scholes-Markt mit d=1, m=2 gibt es nun
eine ganze Familie dquivalenter MartingalmaBe. Offenbar lisst sich

Y(t) __.fl(.tl

Ry(2)
=£i%_'exp( A +0122))’ +onti(D+o1 (t)) @

mittels Einfiihrung der Prozesse

b;_' t, WE(t)=Wy)+ -2,
1

W) =W, +a
o12
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auf die Gestalt

)= %%-exp(—%(d’lzl +0'122)t+0'u"’la(t)+ 0'12W2a(t)) )

bringen. {(W/(?), F)}, i=1,2, sind offensichtlich wieder Brownsche Bewegun-
gen. Hierbei nehmen wir oBdA ,#0+#0;, an (Wire z.B 0y,= 0, so wire durch
a=1 und eine beliebige Girsanov-Transformation beziiglich W,(?) ein dquivalen-
tes MartingalmaB bestimmt). Wir nehmen auBerdem Py(0)=1an.

Das iiber den Satz von Girsanov zu den oben eingefiihrten neuen Brownschen
Bewegungen gehorende WahrscheinlichkeitsmaB Q2 ist offenbar ein zu P idqui-
valentes MartingalmaB fiir P(?), P,(f) fiir beliebiges reelles a. Anwendung der
It6-Formel auf das Produkt Z(#)- ¥(f), wobei Z(f) Dichteprozess eines beliebigen
zu P dquivalenten WahrscheinlichkeitsmaBes ist, zeigt (analog zum Beweis von
Lemma 9, vgl. auch Proposition 31), dass alle zu P fiir Py(?), P;(¢) dquivalente
MartingalmaBe die Gestalt Q2 fiir ein reelles a besitzen miissen. Nach Satz 36 er-
halten wir somit einen arbitragefreien Optionspreis durch die Festsetzung

X50)= Ey (-P—OITT—)NFO) = e"T(D(d“(O))

mit
d?(0) ==

I"(%z)*('—bz —(a%f:—+(l~a)%; bl")"%(a',zl +o), —af, —0-%2))T
\l(”'u _"'21)2 +(°'12 “”n)z)T

fiir ein beliebiges, aber dann fest gewihltes reelles a, p;=P;(0), p,=P,(0). Wir
nehmen weiter b;>r an. Wegen 0;;#0#07, und Det(o)# 0 sieht man aus obiger
Darstellung des Preises sofort, dass gilt:

20°R520L >0 = lim X5(0)=0 und lim X§(0)=e""",
11012 a-—>wo a-»—o

2192929 < = lim X3(0)=e”'7 und lim X§(0)=0.
911912 a—>o a—>—o

Es wird also insbesondere der gesamte Preisbereich (0, €7 ), den man aus ein-

fachen Arbitrageiiberlegungen (beachte hierzu: 0<B<1) erhiilt, tatséchlich durch

alle MartingalmaBe bzw. ihre zugehorigen Optionspreise ausgeschopft.
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Die Situation des obigen Beispiels ist typisch fiir unvollstindige Mirkte. Zwar
148t sich der Bereich arbitragefreier Preise durch Arbitrageiiberlegungen einkrei-
sen, doch bleibt in der Regel ein Intervall mit nicht-leerem Inneren als Menge
moglicher Preise als Verhandlungsspielraum zwischen Kiufer und Verkiufer der
Option. Ubersichten iiber Kriterien zur Auswahl eines bestimmten dquivalenten
MartingalmaBles (womit dann auch der Optionspreis eindeutig festgelegt wire !)-
wie z.B. des minimalen Martingalmafes, des Esscher MaBes oder des varianz-
optimalen MartingalmaBes findet man z.B. in Bingham und Kiesel (1998) oder
Griinewald (1998).

Eine Sonderstellung unter den #quivalenten MartingalmaBen nimmt das soge-
nannte minimale MartingalmaB ein. Es wurde von Féllmer und Schweizer in
Follmer und Schweizer (1991) eingefiihrt und seither intensiv in verschiedenen
Anwendungen im Bereich der Optionsbewertung untersucht. Wir werden des-
halb auch in diesem Abschnitt noch niher auf dieses MaB eingehen. Im hier
betrachteten Markt ist es identisch mit dem sogenannten werterhaltenden Mal}
(sieche Korn (1998)). Fiir eine Einfilhrung in die Theorie der werterhaltenden
Portfolio-Optimierung sei auf Hellwig (1993), Wiesemann (1995) oder Kom
(1997) verwiesen.

Hedging von Optionen in unvollstiindigen Mirkten

Da man in unvollstindigen Mirkten nicht-erreichbare Contigent Claims per De-
finition nicht duplizieren kann, will man sich zumindest méglichst gut gegen das
Risiko, das aus ihrem Kauf/Verkauf entsteht, absichern. Man bezeichnet diese
Absicherungstitigkeit als ,,Hedging“ und die zugehorige Handelsstrategie als
»Hedging-Strategie" oder auch kurz als ,Hedge“. Da bei Existenz einer Dupli-
kationsstrategie das durch den Kauf/Verkauf einer Option entstandene Risiko
vollstindig durch Verfolgen der Duplikationsstrategie eliminiert werden kann,
bezeichnet man diese auch als einen ,,perfekten Hedge*.

Wie bereits erwihnt liegt der Grund fiir die Unvollstindigkeit in unserem Markt
meist darin, dass die Dimension der Brownschen Bewegung groBer als d ist. Es
liegt eine @hnliche Situation wie bei der linearen Regression vor. Der Raum der
Fr-messbaren, nicht-negativen, quadrat-integrierbaren Zufallsvariablen ist von
groBerer Dimension als der Raum der durch zulissige Handelsstrategien erzeug-
baren Endvermdgen. Ahnlich dem Vorgehen bei der linearen Regression (,,Me-
thode der kleinsten Quadrate”) kann man einen nicht-erreichbaren Contingent
Claim auf den Raum der erreichbaren Contingent Claims projizieren. Dies wird
in Schweizer (1992) (und vielen weiteren Arbeiten des gleichen Autors) mit
Hilfe von Hilbertraum-Projektionstechniken und unter Verwendung der Follmer-
Schweizer-Zerlegung und des minimalen MartingalmaBes durchgefiihrt. Eine
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weitere Alternative ist der von Follmer und Sondermann (1986) begriindete
Ansatz der Risiko-Minimierung. Bei ihm werden — unter der Annahme, dass die
Wertpapierpreise bereits Martingale sind - nicht-selbst-finanzierende
Duplikationsstrategien betrachtet. Genauer: die Differenz

d d !
C,(0):= Zy),-(t)l’,-(t)—(x-i-z j¢,-(s)dp,-(s)]

i=0 i=00
sei ein Martingal mit E(C(£))=0, und es gelte die Duplikations-Eigenschaft

d
B= ¢/(D)- (D). o ®
i=0

Wihrend es im vollstiéindigen Markt mdglich ist, mit einer Duplikationsstrategie
einen ,,Kostenprozess“ von C (£)=0 zu erzielen, ist dies bei einem nicht-erreich-
baren Contingent Claim bei gleichzeitiger Forderung von (6) nicht mdglich.
Folimer und Sondermann minimieren statt dessen den Prozess des ,,verbliebenen
Risikos*

R (1) := E((C,,(T)— c,,(t))zl F,)

zukiinftiger Kosten fiir alle [0, 7]. Eine zugehorige minimierende Strategie
wird als risikominimierend bezeichnet. Fiir den Fall, dass die Wertpapierpreise
keine Martingale sind, mussten Follmer und Schweizer (1991) den Begriff risi-
kominimierend geeignet modifizieren. Es existiert im Allgemeinen nimlich nur
noch eine sogenannte ,lokal risikominimierende“ Strategie. Auch bei der Lo-
sung dieses Problems sind die Follmer-Schweizer-Zerlegung und das minimale
MartingalmaB die entscheidenden theoretischen Hilfsmittel.

I11.7 Marktnumeraire und Numeraire-
Invarianz

In Abschnitt IT1.2 wurde gezeigt, dass sich der Wert einer Option im vollstindi-
gen Markt immer als der mit Py(f) diskontierte Erwartungswert der Endzahlung
B unter dem eindeutigen dquivalenten Martingalmafl Q berechnen lidsst (wir wol-
len hier auf die Beriicksichtigung des Auszahlungsprozesses g(#) verzichten). In
Satz 36 konnte gezeigt werden, dass die Berechnung dieses abgezinsten Erwar-
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tungswerts unter einem beliebigen dquivalenten MartingalmaB auf einen — wenn
auch nicht eindeutigen — arbitragefreien Preis fiir die Option fiihrt. Zwar er-
scheint dem in sicheren Werten denkenden Menschen ein Vergleich einer siche-
ren Zahlung (also einer, die sich aus dem Besitz des Bonds ergibt) mit einer
unsicheren in Bezug auf die Bewertung eben dieser durchaus sinnvoll, aber an-
dererseits ist dieser Vergleich doch recht willkiirlich. Als weitere vergleichbare
Investitionen bieten sich nidmlich auch noch die Aktie(n) sowie alle zulidssigen
Kombinationen aus Bond und Aktie(n) an, deren zugehoriger Vermdgensprozess
strikt positiv ist. Allgemeiner kann man als Diskontierungsprozess einen strikt
positiven It3-Prozess {!(f), Fy},c[o,7y Wihlen. Wir bezeichnen einen solchen
Prozess auch als Numeraire. Es stellen sich in diesem Zusammenhang dann die
Fragen:

¢ Wirkt sich ein Numerairewechsel (d.h. die Wahl eines anderen Numeraire als
Py(?)) auf den Optionspreis sowie seine Berechnung aus ?

o Existiert ein Numeraire, so dass sich der/ein fairer Preis einer Option bereits
als mit diesem Numeraire diskontierter Erwartungswert der Endzahlung B
beziiglich dem ,,OriginalmaB“ P ergibt ?

Wir werden diese Fragen im Wesentlichen im vollstindigen Modell der Ab-
schnitte ITI.2-5 beantworten.

Allgemeine Voraussetzungen fiir diesen Abschnitt

Wir betrachten das vollstindige Marktmodell aus Abschnitt I1.3 mit d=m.

Aufgrund unserer Vorgehensweise, die Optionsbewertung nach dem Duplika-
tionsprinzip zunichst ohne Verwendung des Begriffs MartingalmaB einzufiihren,
ergibt sich als Kandidat fiir die zweite Problemstellung wegen Satz 5 sofort der
Prozess

t t
ﬁ = exp[ I(r(s) + }é HB(S)"Z )ds + Ia(s)' d W(s)) .
0 0

Mit Hilfe der Produktregel, Korollar I1.41, und der stochastischen Differential-
gleichungen der Wertpapierpreise rechnet man sofort nach, dass H(#)-P(¢) fir i=
0,..,d Martingale beziiglich P sind. Mehr noch, 1/H(¢) ist der Vermogensprozess
zum zuldssigen Paar (7,¢) = (o(f)"1(b(t)-r(£)-1),0) € A(1) (siche Ubungsaufgabe
I11.U.10). D.h. dieser Numeraire ist durch geeigneten Handel am Markt darstell-
bar. Man spricht daher auch von einem Marktnumeraire oder einem Nu-
meraireportfolio (vgl. Long (1990)). Zusammenfassend erhalten wir:
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Satz 37

Im vollstindigen Marktmodell aus Abschnitt I1.3 ist 1/H(f) der eindeutige Nume-
raire, so dass die mit ihm diskontierten Preisprozesse H(f)-P{?) fiir i=0,..,d Mar-
tingale beztiglich P sind.

Beweis:

Nach den Vorbemerkungen ist lediglich die Eindeutigkeitsaussage zu zeigen. Da
ein Numeraire ein strikt positiver It5-Prozess beziiglich {F,}, ist, kann er gemiB

ax(e) = (e r(t) de+ oy () aw(s))

dargestellt werden, wobei u1y(f) ein reellwertiger und o(#) ein R%-wertiger Pro-
zess (mit geeigneten Integrierbarkeitsbedingungen) ist. Anwendung der Produkt-
regel I1.41 liefert:

Y(1)
A2 - B (60 1y O+ 4 0D, Doy ) a o

+(or -0y )aw () , 1=1

wobei o;(f) die i. Zeile der Volatilititsmatrix o(f) bezeichnet. Damit die Quo-
tienten P(¢)/Y(f) P-Martingale sind, miissen notwendigerweise alle oben auftre-
tenden Driftterme verschwinden. Aus (1) folgt dann

pr(®) =r(t) + oy (1) o) 3

Setzt man dies in die Driftterme aus (2) fiir i=1,...,d ein, so erhilt man das Glei-
chungssystem

b(e)~r(e) = ooy (9)
woraus sich

oy (8) = o(e) ™ (6(e) - (1)) = 1)

und
py @) =r()+6) &)

ergeben. Damit geniigt aber ¥(¢) derselben linearen stochastischen Differential-
gleichung wie 1/H(f), und die Eindeutigkeitsaussage folgt aus dem’ Satz 11.42
iiber die Variation der Konstanten. 1]
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Bemerkung

Allgemein versteht man unter einem Numeraire-Portfolio einen selbst-finanzie-
renden Portfolioprozess mit zugehorigem strikt positiven Vermogensprozess X(7)
(mit X(0)=1), so dass die mit X(#) diskontierten Wertpapierpreise P{(#)/X(¢) (lo-
kale) Martingale bzgl. dem urspriinglichen MaB P sind. Man kann auch in all-
gemeinen Marktmodellen zeigen, dass ein Numeraireportfolio, falls es existiert,
eindeutig ist (siche z.B. Becherer (1998)).

Um die erste Frage zu prizisieren, wollen wir zunichst noch einmal darauf hin-
weisen, dass unser im vollstindigen Markt berechneter Optionspreis E(H(T)B)
eigentlich zuniéchst iiberhaupt nichts mit der Frage nach einem Numeraire zu tun
hatte. Der Numeraire Py(f) kam erst ,kiinstlich durch Einfiihrung des Martin-
galmaBes Q ins Spiel, um den berechneten Optionspreis zu interpretieren. Man
kann deshalb auch die erste Frage im vollstindigen Marktmodell wie folgt um-
formulieren:

e Existiert im vollstindigen Marktmodell zu einem gegebenen Numeraire ¥(¢)
ein zu P dquivalentes MartingalmaBl Q) mit

sa5e717) - 73 217

fiir alle Contingent Claims B, t€[0,7] ?

Die Antwort ergibt sich eigentlich direkt aus der Gleichheit der obigen Erwar-
tungswerte. Gibe es nun ein solches dquivalentes MartingalmaB Qy, dann miisste
fiir die strikt positive Radon-Nikodym-Ableitung von Oy nach P,

d .
Zy(7) = dQPy

wegen (4) und der Aquivalenz von Qyund P auf F, auch

Zy(?) = H(t)-Y(t) P-fastsicher, fiiralle te[0,7] - ®
gelten. Da Y(7) ein strikt positiver Itd-Prozess ist, kann man ihn folgendermafen
darstellen

a(t) =Y my (0 de + o (t) aw(s))

Mit der Produktregel I1.41 angewendet auf (5) ergibt sich, dass der Prozess Z(#)
der stochastischen Differentialgleichung
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dzy©) = 2y [y D10 - 60 0y 1) e+ (0 ) -0 ) WD) ()
geniigen muss.

Nach Proposition 31 sind alle zu P dquivalenten MartigalmaBe durch eine Girsa-
nov-Transformation darstellbar mit einem Dichteprozess Z(f), der bzgl. P Mar-
tingal ist. Notwendige (aber nicht hinreichende) Bedingung fiir die P-Martingal-
eigenschaft unserer obigen Dichte Z\() ist das Verschwinden des Driftterms in
Gleichung (6), also die Giiltigkeit von

pr()-r(d) = 8e) oy (s). @

Ist Y(f) ein Vermdgensprozess zu einem zuldssigen Paar (7,c) e A(y) fiir ein
y>0, so folgt aus der expliziten Form der Vermogensgleichung (VG) (siche Ab-
schnitt I1.2), dass die Gleichheit in (7) gilt. Fiir ein solches Y(f)=Y™(f) mit zuge-
hérigem Portfolioprozess 7(f) gilt dann

pr(® =D+ b0 -r()-1),
ar(®) = (1) o),
a2y () = 2,2’ o0~ (b)) ()’ ) ()

= 0:(!)'
= Zy(09,() aw(y).

Ist nun  Z\(#) tatsichlich ein P-Martingal, was z.B. fiir beschrinkte Prozesse
6,(?) erfuillt ist, so ist nach dem Satz von Girsanov der Prozess

Wy (o) := WD)~ [6,(s)ds
0

eine Brownsche Bewegung beziiglich Q). Anwendung der Itd-Formel auf die
Quotienten P(t)/Y(?) ergibt wegen dieser Definition und der speziellen Form von
s(D), oy(?) und 6,(7):

R __hE) _
d(_YW) = __I;(tTdY(t) dwy(t),
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d(%(%)) = "g(.'g:T)(a'i. (t)- Gy(t)’ ) awy (1),

d.h. sie sind Qy-lokale Martingale, wobei z.B. fiir konstante Marktkoeffizienten
und einen konstanten Portfolio-Prozess aus der Novikov-Bedingung bzw. Propo-
sition 8 sogar ihre Qy-Martingalitit folgt. Natiirlich gibt es eine weit groBere
Klasse von Portfolio-Prozessen und schwiichere Bedingungen an die Marktkoef-
fizienten, so dass der Prozess Z,(f) ein P-Martingal ist und die Quotienten
P{1)/Y(¥) Qy-Martingale sind. Wir wollen aber das Aufstellen allgemeinerer, hin-
reichender Bedingungen dem Leser iiberlassen und formulieren statt dessen den
folgenden Satz, der sich aus unserer vorangegangenen Diskussion ergibt:

Satz 38 ,Numeraire-Invarianz im volistindigen Markt«

Wir betrachten das vollstindige Marktmodell aus Abschnitt II.3 mit konstanten
Marktkoeffizienten, #(f)=r, b(¢)=b, o(f)= 0>0. Dann gelten:

a) Fiir alle konstanten Portfolio-Prozesse n(f)= zist der Prozess Zi(7)
Zy()) = H()- Y™ ()

ein P-Martingal, wobei Y*(?) der zu x gehorige Vermogensprozess ist. Das zuge-
hérende Wahrscheinlichkeitsma8 Oy mit

d
ZY(T)=';QPL

ist eindeutiges dquivalentes Martingalma@ fiir die mit Y”¢) abgezinsten Preispro-
zesse.
b) Fiir den fairen Preis p eines Contingent Claims B mit E(B# )< fiir ein g>1
gilt:
p=E(H(T)B)=E (—1—— B)
o\y, (")
falls Y¢) der Numeraire aus a) ist.

Bemerkungen

a) Wie nach den eingangs gemachten AuBerungen zu erwarten war, dndert sich
der Preis eines Contingent Claims unter einem (hinreichend gutartigen) Nume-
rairewechsel nicht, sondern erhilt lediglich eine andere Darstellung.. Allerdings
bringt ein Numerairewechsel bei der tatséichlichen Berechnung bestimmter Op-
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tionspreise oft rechentechnische Vorteile. Ein konkretes Beispiel ste.llt die Be-
rechnung des Preises einer indizierten Option im néchsten Kapitel dar.

b) In aligemeinen unvollstindigen Mirkten gestaltet sich die Situation etwas
vielschichtiger als im oben behandelten volistindigen Modell. Da dort der Preis
bei nicht-erreichbaren Contingent Claims nicht eindeutig bestimmt ist, existiert
zu einem Numeraire eine ganze Familie von dquivalenten Wahrscheinlichkeits-
maBen. Einen Uberblick iiber die in dieser Situation vorhandenen Resultate fin-
det man z.B. in Musiela/Rutkowski (1997).

Ubungsaufgaben

U1 Man bestimme unter der Annahme des Black-Scholes-Modells jeweils die
fairen Preise fiir die im Folgenden durch ihre Payoff-Diagramme gegebenen Op-
tionen. (Hinweis: Man interpretiere die Payoff-Profile als Linearkombination ge-
eigneter Puts und Calls.)

a) Butterfly-Spread mit mittlerem Basispreis 2K

BA

0 K 2K 3K R(T)

Bild ITL.5S  Butterfly-Spread



170 Kapitel III: Optionsbewertung

b) Straddle mit Basispreis K
BA
K
>
0 K A(7)

Bild IIL.6 Straddle
c) Strangle mit Basispreisen K;<K,

BA

K

y >
0 K K A(7)
Bild II1.7 Strangle

d) Bull-Spread mit Basispreisen K; <K,

A
B

KZ_KI__ /—
4 >

0 K K A(7)
Bild III.8 Bull-Spread
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U2 Man zeige, dass die folgenden Bezichungen fiir den Preis XA(#) einer
europidischen Call-Option gelten:

a) XAt filltin ¢

b) X(t) wichstin r

¢) XA#) wichst in P,(?)

d) X(?) wichst in o fiir 0>0

U.3  Man berechne den Wert einer europiischen Call-Option mit Hilfe des
dquivalenten Martingalmafies und zwar im

a) Black-Scholes-Modell

b) Marktmodell mit d=2, a=(:“ Z‘z) , wobei der Call nur fiir die erste
21 22

Aktie gelte, dh. die Endzahlung betrigt B = (P (T)-K)" .
U4  Essei

¢(t , x) = 1 exp| — .ii.
2m 2t
a) Man zeige, dass ¢(t, x) eine Losung der partiellen Differentialgleichung
u, = "'21' u xx
ist.
b) Man zeige, dass das Problem
u, (t, x) = Uy (t, x) (t, x)e[0,0)xR
1(0,x) = g(x) xeR

fiir beschrinktes g durch
u(t,x) = E(g(\/Z—t Y+ x))
mit ¥Y~N(0,1) geldst wird.

U.5 Man beweise Proposition 19 b).
U.6 Man beweise Proposition 20 b).
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U.7 Man beweise Proposition 31.
U.8 Man zeige: Mit den Bezeichnungen und Annahmen aus Abschnitt IIL.6
gilt fiir eine Handelsstrategie ¢(f):

dt
(1) ist selbst-finanzierend <> X(¢) = pi +Y [91(s) dB(s) P-fast sicher,
0 =19
fiir alle te[0, T].
(vgl. Beweis von Satz 32)

U9 Man berechne im zweidimensionalen Black-Scholes-Modell den fairen
Preis des Contingent Claims mit der Auszahlung

B= l{l’l(T)aPz(T)} :

U.10 ,Black-Scholes-Formel mit Dividendenrate®

Falls eine Aktie eine Dividendenrate 6P ((?) fiir ein 6>0 pro Zeiteinheit auszahlt,
so modelliert man ihren Preis im Black-Scholes-Modell als Lésung von

dRy(t) = B(e)((5-9) dt + o dW(z)),
A(0)=p.

Man zeige, dass dann fiir den Preis C(¢, P;(?)) eines europiischen Call mit Aus-
iibungspreis K auf die Aktie gilt:

dt. () = e B ()05, () - T k(s (t)),

In A () r-5+1g? T-1)
Jl(t)=( 4)+( i , 8(t)=6,(1)-oVT-1.

ovT—t

wobei

Hinweis: Man imitiere entweder die Vorgehensweise im Abschnitt IT1.2 und be-
achte, dass das Verfolgen der Strategie ¢,(f) zu einer erhaltenen Dividendenzah-
lung auf [0, T] von

T

j’sPl (¢) at

0
fiihrt, oder man imitiere die Vorgehensweise in Abschnitt IT1.3, leite das Cauchy-
Problem
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¢ +10?p?Cpp+(r-8)pC, -rC=0

At.p)=(p-K)"
her und verifiziere, dass C(¢, p) wie oben dieses Problem 16st.
U.11 ,,Garman-Kohlhagen-Modell fiir Devisenoptionen®

Im Garman-Kohlhagen-Modell wird der Wechselkurs S(f) zwischen der inlén-
dischen und einer auslindischen Wihrung (z.B. Dollar/DM) in Einheiten der in-
lindischen Wihrung als Lésung von

dS(t) = pdt +o dw(t), S(0)=s

fiir 44,0€ R modelliert. Die risikolose Zinsrate im Inland betrage r;, die im Land
der Fremdwihrung betrage rp. Man zeige, dass unter diesen Annahmen ein
europdischer Call mit Restlaufzeit 7 und Ausiibungspreis K den Preis

clt, () = expl~ (T - 0)s@0(y 1)) - K expl-r, (T - D)), ()

mit
ln(S(%) + (r, ~rr+ % a? )(T -1)
7= , 72O =r)-0T-1.
oVyT—-t
in Einheiten der Inlandswihrung besitzt.
Hinweis: Interpretiere die Preisentwicklung einer Einheit der Fremdwihrung ge-
messen in inlindischer Wiahrung als die einer Aktie mit Dividendenrate und
wende Aufgabe 9 an.

U.12 Man berechne den Preis der Option ,,Aktie oder nichts“, die durch die
Endzahlung

2= A0 Ypmax)
gegeben ist, im eindimensionalen Black-Scholes-Modell.

U.13 a) Man berechne im eindimensionalen Black-Scholes-Modell sowohl das
Delta als auch das Gamma eines europiischen Calls und eines européischen Puts
mit Laufzeit 7 und Ausiibungspreis K auf eine Aktie.

b) Ein Investor halte im eindimensionalen Black-Scholes-Modell einen euro-
pdischen Call mit Laufzeit 7| und Ausiibungspreis K;. Ihm stehen desweiteren
europdische Puts mit Laufzeiten T, bzw. T; und Ausiibungspreisen von jeweils
K, bzw. K, zur Verfiigung.
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Man bestimme die zu haltenden Anzahlen @,(f), @,(f) der beiden verschiedenen
Puts zur Zeit ¢, so dass das Portfolio — bestehend aus dem einen Call sowie den
Anteilen der beiden Puts — sowohl deltaneutral als auch gammaneutral ist.

U.14 Man zeige im Black-Scholes-Modell, dass die absolute Preisinderung
einer europiischen Call-Option in Abhéngigkeit vom Preis der zugrunde liegen-
den Aktie betragsmiBig geringer ist als die der Aktie selbst. Die zugehorige rela-
tive Preiséinderung der Option ist hingegen groBer als die der Aktie.

Hinweis: Betrachte C, und den Quotienten p-C,/C, wobei C den Callpreis und
C,, seine partielle Ableitung nach p bezeichnet.
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Kapitel IV: Bewertung exotischer
Optionen und numerische Verfahren

Innerhalb dieses Kapitels wollen wir einige Typen von Optionen vorstellen, die
sich von einfachen Puts und Calls unterscheiden. Wir fassen sie unter dem Ober-
begriff ,.exotische Optionen“ zusammen, den wir im Folgenden noch weiter
unterteilen werden. Oft kénnen wir bei diesen Optionen den Bewertungsprozess
weder durch explizite Bestimmung des allgemeinen Erwartungswertes in Satz
H1.5 berechnen noch durch Losen des zugehdrigen Cauchy-Problems in analy-
tisch geschlossener Form darstellen. Zur Berechnung der Preise solcher Op-
tionen muss man dann effiziente numerische Verfahren entwickeln. Wir unter-
teilen dieses Kapitel deshalb in die Behandlung exotischer Optionen mit ge-
schlossener Darstellung des Optionspreises und in die Prisentation einiger popu-
ldrer numerischer Verfahren fiir exotische Optionen, bei denen keine geschlos-
sene Darstellung des Optionspreises bekannt ist. Zum Nachweis der Konvergenz
dieser Verfahren benétigen wir einige Grundlagen der Theorie der schwachen
Konvergenz stochastischer Prozesse, die wir innerhalb dieses Kapitels als Exkurs
bereitstellen werden.

Allgemeine Voraussetzungen fiir dieses Kapitel

Soweit nichts anderes explizit angenommen wird, betrachten wir hier ein
Black-Scholes-Modell mit d=m (in der Regel d=1) und konstanten Koeffi-
zienten b, r, o, 0>0 bzw. regulidr. Wir iibernehmen dann die Voraussetzun-
gen von Kapitel II, Abschnitt I1.2, Seite 64.

Alle auftretenden Optionen seien vom européischen Typ.

Beispiele exotischer Optionen

Dieser kurze Uberblick soll weder volistindig noch systematisch sein, er soll le-
diglich einen ersten Eindruck der Vielfalt der Optionstypen vermitteln. So gibt
es beispielsweise Optionen auf Minimum oder Maximum des Aktienkurses wie
z.B. den ,europdischen Call auf das Maximum einer Aktie“, der durch die End-
zahlung

B=(0%Pl(t)—K)+
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gegeben ist. In vielen Varianten treten sogenannte Barriere-Optionen am Markt
auf. Solche Optionen verfallen bei Erreichen einer Barriere wertlos oder aber ha-
ben nur dann einen Wert, wenn die Barriere vor dem Endzeitpunkt T erreicht
wird. Es gibt z.B. folgende Méglichkeiten:

+ 3
=(R(M-x)" 1 {,,gig,l’-(tb’fz} »Down-and-Out-Call
+ 13
B=(R(1)-kK) -1{0?‘%1’1(‘)“2} wa-and-In-Call
=(R(D-K)" 1 Double-Barriere-Call*

{ o'?.?r”‘usz max. P,(t)<K3}
mit K< K;< K;. Bei Average-Optionen ist der Ausiibungspreis entweder ein

geometrisches oder ein arithmetisches Mittel oder der zugrunde liegende Preis-
prozess ist ein Durchschnittspreis. Typische Beispiele hierfiir sind:

T +
=[P1(T)—% j Pl(s)ds] LAsiatische Option“
0

_(%
;,( (rR(D-k&) )

Verwendung des fiquivalenten Martingalmafies

Da im Black-Scholes-Modell fiir den Preis einer europdischen Option mit End-
zahlung B aufgrund von Korollar III.11 immer

p=Eg(e""B)

gilt, wobei Q das zu P iquivalente Martingalma ist und E, den Erwartungswert
bzgl. O darstellt, kénnen wir bei unseren folgenden Berecﬁmngen immer oBdA
annehmen, dass das subjektive MaBl P gleich dem Martingalma8 ist. Damit
nehmen wir an, dass die Gleichungen der Aktienpreise wie folgt lauten:

+
A (s)ds - K] »Fixed-Strike-Average”

S ey ™ O ™
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d
dP(¢) = P,-(t)(' dt+Za§,- de(t)) ,i=l,..d. )

i=1

Dies gestattet uns, im Folgenden alle Optionspreise bzgl. P und der durch (1) ge-
gebenen Form der Aktienpreise zu berechnen.

IV.1 Exotische Optionen mit expliziten
Preisformeln

Wir stellen in diesem Abschnitt einige exotische Optionen vor, deren Preise sich
explizit berechnen lassen. Fiir weitere exotische Optionen und deren Preise ver-
weisen wir auf Zhang (1997).

a) Pfadunabhiingige Optionen auf eine Aktie

Digital- oder Biniiroptionen

Die Endzahlungen von Binircall bzw. Bindrput in #=T mit Schranke X sind ge-
geben durch

Call __

By = l{Pl(T)>K} ?

~Hrn<x -
d.h. ist der Endpreis P,(T) der Aktie groBer — ,,Call“ — (bzw. kleiner — ,.Put* —)
als die Schranke X ist, erhilt der Halter der Option im Fall des Digitalcalls (bzw.

des Digitalputs) eine Geldeinheit in #=T7. Als Preise dieser Optionen erhilt man
(siehe Kapitel I11.2, S.118):

X5 (@) = e T (d, () , Digital-Call*
xP“@=eT0(-d,()),  ,Digital-Put*

zn(”‘é’)) (--1o2)(r-9)

dy(f) = :
2(1) "

mit
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wobei @ Verteilungsfunktion der Standard-Normalverteilung. Allgemein ver-
steht man unter Digitaloptionen Optionen mit nicht-stetigen Endzahlungen. So
gesehen gehdren auch einige im Folgenden vorgestellte Optionstypen zur Klasse
der Digitaloptionen.

Gap-Optionen
Die Endzahlungen einer Gap-Option sind durch

BG =(PI(T)“G)'1{1>,(T)2K} ’
BEY =(G—P1(T))-1{PI(T)$K}

gegeben, wobei im Allgemeinen G#K mit G, K>0 gilt. So wird also z.B. beim
Gap-Call die Differenz zwischen P;(7) und G gezahlt, wenn P|(T) den Wert K
iiberschreitet. Man beachte, dass die Auszahlung beim Call nur fiir GXK fast
sicher nicht-negativ ist. Es kann hier tatséchlich die Situation eintreten, dass der
Inhaber der Option sowohl beim Kauf als auch beim Verfall der Option etwas
zahlen muss. Dieser Contingent Claim kann also, anders als in der Definition
II1.3, auch zu einer negativen Endzahlung fiihren. Da sie nach unten beschrinkt
ist, sind alle Sitze zur Optionsbewertung weiterhin anwendbar. Zur Illustration
der Endzahlung geben wir noch folgende Payoff-Diagramme fiir den Gap-Call.
Wir unterscheiden die Fille G2K und G<K:

A
Call
BGap

h Y
7

>
G A(7)

Bild IV.1 Payoff-Diagramm eines Gap-Call mit G2K
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Call b
BGap

= >
0 Gk A(T)
Bild IV.2 Payoff-Diagramm eines Gap-Call mit G<K

Beachtet man, dass man die Endzahlungen der Gap-Option zerlegen kann in
BEY - Bl _(G-K)-BS™" mit B =(R(1)-K)",
BEY = BP“ _(K-G)-B[* mit BP* =(k-R(D)",

wobei die aufiretenden Calls, Puts und Digitals jeweils zum Ausiibungspreis

(bzw. zur Schranke) K gehoren. Unter Verwendung der Preisformeln fiir die
Calls, Puts und Digitals (siehe Korollar IT1.6) erhalten wir:

XGap (1) = X (1)~ (G- K)- X5 (1)
= R(o(d0)- G- o(a, (1),
x&p@®) = xP4(0)-(K-G)- X ()

=R 1))+ G- T a(- dy(¢),

ln( Pllg)] + (r + % o? )(T -1

di(0) = gy , dy(t)=dy(t)-oT-t.
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Paylater-Optionen )
Paylater-Optionen sind eng verwandt mit Gap-Optionen. Thre Endzahlungen sind
gegeben durch
Call _ Call
BS" =(R(@-(k+D )).1{1,1(”21(},

BRH =((K—DP“‘)_Pl(T))-1{Pl(T)5K} s

wobei DCall, DPut jeweils so zu bestimmen sind, dass die Werte der Paylater-Op-
tionen in #=0 gleich Null sind. Fasst man DCall, DPut gl Pramie fiir die Option
auf, so ist diese erst am Laufzeitende zu zahlen (deshalb ,,Paylater“-Option) und
auch nur dann, wenn der zugehorige Call bzw. Put den Wert K erreicht. Die
Endzahlungen kann man nun analog zu den Gap-Optionen zerlegen in

BSgH = gCall _ pCall _ pCall @

BP# = pPut _pPut . phut 3)
Damit erhilt man mit den bereits bekannten Preisen und den Forderungen
xgilo)=0, xp(0)=0
die Werte fiir DCall, pPut 3]s
X Ca"(o) pu_ X"(0)
Sy " x4

Einsetzen dieser Werte in (2) und (3) ergibt die Preise fiir die Paylater-Calls und
Puts

X(6) = A (0)-0{dy (9) - %{Mg‘)’ﬂm(dz(t»-e",

d,(0

- 4,(0))
xB() =~ P ()-0(- 4, (1)) + POL 4 dy(t
PL() 1()¢( 1())+W¢( ())e
Man beachte, dass Paylater-Optionen zwar in =0 kostenlos sind, aber keine Ar-
bitragemdglichkeit darstellen, da auch negative Endzahlungen méglich sind.
Deshalb kénnen die Preise der Paylater-Option wihrend ihrer Laufzelt auch ne-
gativ werden.
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Zusammengesetzte Optionen (,,Compound Options*)

Mit dem Kauf einer zusammengesetzten Option erwirbt man das Recht, in =T
eine andere Option mit Ausiibungszeitpunkt 7;>T zum Ausiibungspreis K zu
kaufen bzw. zu verkaufen. Man unterscheidet die folgenden vier Flle:

BSG =(xC(1)-K)", ,Callauf Call®
cP Put + ‘

BEh =(xP“(1)-k)", ,Call aufPur

BEC (k- x%(D)*, PutaufCall*

BEE —(k-xP“(1))", ,PutaufPut*

wobei die auftretenden Calls und Puts jeweils einen Ausiibungspreis K besitzen,
der im Aligemeinen von K verschieden ist. Wir konzentrieren uns hier nur auf
die Bestimmung des Preises eines Calls auf einen Call. Die restlichen Fille kon-
nen analog behandelt werden. Wir zeigen zunichst die folgende Proposition

Proposition 1

a) Zu K>0 und zur Laufzeit T; des Calls mit Ausiibungspreis K;, 7|27, existiert
ein eindeutig bestimmtes p*>0, p*:=P,(7), mit

XCGH(T) - XCﬂI’(T’pt) -K.
b) Mit den Bezeichnungen

ln( P;’(:)) +(r +-;—a'2 )(T-t)
&)= s 8z(t)=gl(t)—0‘\/-TTt,

ovT~t

ln(P;(—(lt)) Hr+tot)ni-)
oI -1

gilt fiir den Preis eines Calls auf einen Call

()=

@O =n@)-on -1,



182 Kapitel IV: Bewertung exotischer Optionen und numerische Verfahren

x5 = RO (g, (0,1 0) - K1 0P (g, (0,1, ()
—Ke {71 d’(gg (t)) ,

fiir ze[0, T], wobei ®)(x, y) die Verteilungsfunktion einer bivariaten Standard-
Normalverteilung mit Korrelationskoeffizient p ist und

| nm [ an (3)-H(, %)

a) Aus der expliziten Form der Black-Scholes-Formel ergeben sich:

. CaII - 4
plim X (r.A(D)=0, “
. Call - s
plim X (1. A1) =+ ©)

fiir 7<T). Der erste Grenzwert folgt hierbei aus den trivialen Schranken 0 und
P(T) fiir XCal(T, P, (T)). Die zweite Grenzwertaussage gilt, da

X, p) = o{ay(1)

nicht nur positiv ist, sondern sogar in p wichst. Aus (4) und (5) folgt mit dem
Zwischenwertsatz die Existenz eines p* aus Behauptung a).

b) Fiir ¢<T gilt
x5, ()= EHRW (-0 CC)

«© xz
- ”(1“) J‘ e AT-1) . o—r(T-1) ( XCaII(T, A( t)e(r-}éaz)(r-:)wx) _ K) de
v w

mit

o34 -4

Mit Hilfe der expliziten Form von XC2/(T, p) erhilt man
xSC(=1-1,-14
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mit
@ Xz 1
=P(e) I e 2(T—t)e""“‘é"”z (-0 o(a) .,
w ")
© 2
1 —
I = ¢ 20 5 g a(p)
2 F! 2T —1) '
0 l x2
I= e AT Tk gy
’ ;‘! 27(T-1)
wobei
ox+In( ) r+20'2)(T1——t (r 20'2)(T 1)
a= >
o, -T
ax+ln( ) r—2a'2)(T1—t
b= .

oyTioT

Analog zur Berechnung der Black-Scholes-Formel folgt sofort

P (LA T B T )
e

Fiir die Berechnung von /; und J, ist Lemma 2 sehr niitzlich. Mit seiner Hilfe er-
hilt man

1, = ROol?) (g0, 1 ).
Ausklammern von K. le—'(ﬂ_t) aus I, und Anwendung von Lemma 2 liefert

1, = ke 15 .0 (g, (0,1, ().

Die vielen, aber recht einfachen Zwischenrechnungen iiberlassen wir dem Leser
(siche Ubung U.1). 0
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Lemma 2
Sind X und Y unabhéngige Zufallsvariablen mit

X~N(ua?), ¥~ N(o])
so gilt fiir ¥, @, # €R, a>0:

I¢”'az(x)-¢(ax+ﬂ)dx =P(X2%Y<aX+p) =P(X2%Z<p),

w2 ) 5 25

Dabei ist PR die Dichte der Normalverteilung mit Erwartungswert x# und Va-
rianz o-.

wobei

Bemerkung
a) Analog erhilt man fiir den Wert eines Puts auf einen Call:

XS () = -AolP) (g (), ) + Kie B 0lP) (- g, (0,1,()

+ Ke T 0{_g,0)
fiir te[0, 7], mit -
T-1

2 =

b) Ist fiir einen Put mit Ausiibungspreis K; und Ausiibungszeitpunkt 7; der Wert
*
p durch

X Put (T, pt) =K
fiir ein festes K>0 gegeben, so erhilt man analog die Preisformeln fiir einen

Call auf diesen Put bzw. den Put auf diesen Put, jeweils mit Ausiibungspreis K
und Ausiibungszeitpunkt T<T}, te[0,T]:

X2 (0) =R 0P ( g0~ () + KreE 0P (- g, (-1 ()
—Ke(T-1) d)(— P (t)) ,
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X220 = B0 (g, (- () + Ky 0l22) (g (1)1, ()
ke T0(g, (7).

Wahl-Optionen (,,Chooser Options®)

Bei dieser Art von Optionen kann man zur Ausiibungszeit T wihlen, ob man ei-
nen europiischen Call auf die Aktie mit Ausiibungszeitpunkt 7,>7 und Aus-
iibungspreis K20 oder einen europdischen Put auf die Aktie mit Ausiibungs-
zeitpunkt 7,>T und Ausiibungspreis K, >0 erhalten will. Da man den Wert der
beiden europdischen Optionen als Funktion von (7, Py(7)) aus der Black-
Scholes-Formel kennt, ergibt sich die Endzahlung der Wahl-Option als

By =max{ x§% (A (7). 1) X 2% (R(D).7)),

wobei die unteren Indices jeweils die Laufzeiten und Ausiibungspreise der euro-
piischen Optionen sind. Da der Preis des Calls im Zeitpunkt T streng monoton
wachsend in P(T) ist, (4) und (5) erfiillt, und der Preis des Puts im Zeitpunkt T
streng in P () fillt, existiert genau ein p *>0 mit
Call
xf (1.p") = x£% (1.0°).

Fiir groBere Werte von P;(T) wird das Maximum in By, vom Call-Preis, fiir klei-
nere Werte vom Put-Preis angenommen. Man erhilt folgende Darstellung fiir
B w

= xGall Ay
BW = XIirKl (T)-I{R(T)ZP.} +XErKZ (T).l{Pl(T)<p.} ’

Mit Hilfe dieser Zerlegung lisst sich der Preis der Wahloption analog zum Preis
der zusammengesetzten Option berechnen und man erhalt fiir 1< T:

X5 @ = RO 01 (g, 1, 0) - Ky T 0P (g, ), 1, )
~ A0 (- g0k (0) + Kye B0l M) (g, (1), (),

wobei die Bezeichnungen @), g, g5, h,, hy, p; wie in Proposition 1 definiert
sind. Neu sind nun

ln(I;l{(t))+(r+%02XT2 —t)
hy(t) = ——2 e , by =hy () -T2,
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T-t
-t

/11 =

b) Optionen mit mehreren zugrunde liegenden Aktien

Indizierte Optionen

Wir betrachten hier ein zweidimensionales Black-Scholes-Modell mit den Ak-
tienkursen

dP](t) = P](t)(bl dt+0'“ d"’l(t)+0'|2 d"’z(t)) s PI(O) =Py,

dP2(t) = Pz(t)'(bz dt+ 0y, d“’](t)+0'22 sz(t)) R PZ(O) =p;.

Es seien a;, a,€(0,0). Eine indizierte Option mit Parametern a;, a, ist dann
durch die Endzahlung

B4 =(0|P1(T)—02P2(T))+ (6)

gegeben. Der Name ,indizierte Option® riihrt daher, dass man oft (verein-
fachend) annimmt, dass P,(f) den Verlauf eines Marktindices (wie z.B. den
DAX) beschreibt. Wihlt man zusétzlich

1 1

ay ="Pl(0) > a3 =‘P"2(0) ’

so erhilt man als Endzahlung einer indizierten Option gerade die Differenz zwi-
schen der relativen Preissteigerung der ersten Aktie und des relativen Wertzu-
wachses der zweiten ,,Aktie* (im Allgemeinen ein Marktindex), falls diese Dif-
ferenz positiv ist. Die Preisentwicklung der Aktie wird also mit der Entwicklung
des Indices verglichen (,,indiziert*). Wir setzen

1T a1°p1s 82T a2 P

und fiihren die folgende Bezeichnung ein:
{ 2, A(7) }
=10 1r.

2
as P2 (T)
Zur Berechnung des fairen Preises der indizierten Option werden wir die in Ab-
schnitt III.7 vorgestellte Technik des Numeraire-Wechsels verwenden. Seien
hierzu Q, Q,, O, die jeweiligen dquivalenten MartingalmaBe in unserem Markt-
modell, wenn wir jeweils den Numeraire Py(T), P;(T) und P,(T) wihlen. Nach

)
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Korollar I11.11 und Satz I11.38 gilt dann mit (7) fiir den fairen Preis X, (0) des
indizierten Calls
Xina @ = Eg(e (a A(D) - a3 (D))"

=a1-Egle™TR(1)-14)-ay - Eg(e T Py(1)-1,)

- r-Bg B AT} - B, )1
=s51-Qi(4)~52-0y(4). ®)

Man muss jetzt nur noch die Wahrscheinlichkeiten von A4 unter den beiden Ma-
Sen Q,, Q, berechnen. Hierbei beachte man, dass sich die Brownschen Bewe-
gungen W(i)(t), W2)(f) bzgl. 0y, O, (siehe Ubung U.4) als

((bl —roy = (b, ~roy —o )-T
011022 — 012021 . L i=1.2
((bz -1y =B~ r)o 612)

011022 — 012021

wO ()= w(e)+

ergeben. Daraus ergibt sich dann

PA(D) ,- ,-
P;(T) ;; ap((a“ - "21)W1( )(T)"'(alz -0y )Wz( (1)

...(-l)i ';'((O'u —0'21)2 +(0'12 —0'22)2)T) ,i= 1,2,

und somit
Qi (A) = Q,‘(EXP((O'H - a2l)n,l(i) (T) +(0'12 -0 )WZ(‘) ) >

i_?“‘!’((-‘l)‘ %[ I —021)2 +{onz '”22)2]°T))

’"(S%) +(-1f '%[(011 -021)2 +(oz —022)2]7'
‘l[(an -021)2 +(¢712 "022)2]7'
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I"(%) +-p™ '%[(011 ~on) +(o —022)2]T

=@ = s (9)
_(011 -021)2 +(012 —0'22)2 ]T

wobei Z standard-normalverteilt ist. Mit den Bezeichnungen

~2 . 2 2 ~2 _ 2 2
oy 1= 0111013 , 03 1= 031 +0) (10)

(1)

_ %1921 +01202;

515y

erhilt man dann aus (8) und (9) die Formel

n(‘y) o-l +a'2 2pa,a'2)T

\/(0'1 + az - 2palo-2) T

zn(% )—%(512 +82-2p5,6,)T

&2 +52 - 20515, )T

X1na(0)=5,-

~55-®@

Optionen auf Minimum/Maximum zweier Aktien

Wir betrachten nun Optionen auf das Minimum bzw. Maximum zweier Aktien,
die durch die folgenden Endzahlungen gegeben sind

B = (min(Py (1), (1))~ k)" ,Call auf Minimun*
BS — (max(A(7), ,(1))-K)" ,Call auf Maximun
BRY = (K-min(R (D), Py(D))"  ,Put auf Minimum
Bl = (K-ma{ B (D), A(D))"  ,Put auf Maximum

Wir legen hier ein zweidimensionales Black-Scholes-Modell zugrunde mit den
zu Beginn in (1) beschriebenen Preisverldufen. Wir berechnen zunichst

X»C";;Il 0= E(e" T (min(P1 (1), Py(T. ))"' K)+)
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_ T -rT .
‘E(e ' P‘(T)'l{xsamsam})* E(" "R I{Kﬂ’z(”sﬁ(”})

- ke - (min{ B(T), (7)) 2 k).

Setze
Yi= ou(10)+ 002y (T) . Z:= oW (1) +0, W2 (1),

~ ~

—, Z:= ==,
a'lﬁ Uzﬁ

OBdA seien 0; >0, i=1,2, g;, p wiein(10), (11). Dann gilt

B-QG 7))

Damit hat (Y, Z) die gemeinsame Dichte

) A,

Y:=

Nun gilt
o= i T - i~2 ~ .
A:= E(e T PI(T)'I{KSP,(T)SPZ(T)}) = IJpl exp(—2 1T+alﬁy)
a

1

27r1p

2(1 )(y2—2pyz+zz)}dzdy

mit

K
In(—) (r -3 0'12 )T ln(!-,-!-) ’;—(a'l -0% )T +0, JT Ty
a:= 4 b= D2
. 31 ﬁ 3 8‘-2 ﬁ .

Ausintegrieren von z in 4 (man fiihre eine geeignete quadratische Erginzung

durch) liefert:
0 = ﬁ 2
A=p;- I—J-r;—;exp(—'b—a;—)]-(b(d+k-y)dy
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mit

I %)+%(3,2-522)T’ e
EZJ(I—pZ)T 52"(1—/72) .

Mit Lemma 2 folgt dann;

d:=

A=p P(Zl 2a,Z, Sd) =D P(Z] 55,22 .<_5)

G- &)

= ,_ 2 -
Z:=6,T-2,, 2, := o2y1-p (ZZ"'ko'lﬁ)

o. 3

mit

ot := 5% +6} -2p5,5, ,

P 1~2 P2| 1 2
In(?)+(r—-2-crl)T _ In(pl)_zaT

(12)

51\/7 ’ o O'ﬁ

~ = 0 (1 p e
Da(Zl,Zz) nach Lemma 2 gemifl N| oz 1 -verteilt ist mit

~ PGy ~0] = PO =0y
pi= ___.Z._l,p:= e (13)
o (o4
gilt mit den weiteren Bezeichnungen:

In(p—lé) + (r + % &2 )T ln(P_z) + (r + % &7 )T

1= s 14
5’11/—7-: ’d2 ~ﬁ' ( )

dli

_ L & LA 15
ds - , dy: odT , (15)
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—rT _ P
A=E("’ ' ”(T)'l{xsp.(r)sa(r)}) = pi-0P)(4,.45).

Durch Vertauschen von P;(7) und P,(7) folgt

-rT =D - (5)
E(e Pz(T)'l{Ksa(r)sﬂ(T)}) =10 dy.dy).
Analoge Rechnung liefert aulerdem

Pmin( B (7), (1)) 2 K )= ol (@, -5, dy - 5,4T),
womit dann der Preis des Minimum-Calls berechnet ist. Verwenden wir nun die
iiblichen Zusammenh#nge zwischen Put und Call, sowie die zwischen Minimum
und Maximum, so erhalten wir (siche Ubung U.5):

Proposition 3

Fiir die Preise der Minimum/Maximum-Optionen gilt mit den Bezeichnungen
aus (10)-(15):

X (0) = py "D(ﬁ)(dl:43)+P2‘I’(z)(dz,d4)
Ke”er)(p)(dl —a'lﬁ,dz —32ﬁ),
X;{::‘nt (0) Xca”(o)'l'Ke—rT —pl(p(d3) pz‘b(d4) N

XSE(0)= X EeM(0)+ X EM(0) - xS1(0),

X ©) = X @+ x5 ) - X741 0),

wobei X, Call, X Put die Preise der gewShnlichen europgischen Calls bzw. Puts
mit Ausu ungsprels K auf die i.-te Aktie sind, i=1,2.

¢) Pfadabhiingige Optionen

Einseitige Barriere-Optionen

Bei einseitigen Barriere-Optionen erhiit der Besitzer die Auszahlung aus einem
Call bzw. aus einem Put, fails der Aktienkurs vor dem Ausiibungszeitpunkt T — je



192 Kapitel IV: Bewertung exotischer Optionen und numerische Verfahren

nach Art der Option — eine vorgegebene Barriere nicht erreicht, unter- oder
iiberschreitet. Wir betrachten im Einzelnen:

BG" =(R(D-K)"- Y B(9>b furatte 1 do.7]) »Down-and-Out-Call"*
o =(k-A(D)" - Y B ()>5 fur e 1 o7} »Down-and-Out-Put*
BG =(R(D-K)" 1 {01 e o] ,Up-and-Out-Call*
BP = (k- A (1)’ Y e ot 7] ,Up-and-Out-Put*
AuBerdem betrachten wir
8" =(R(D-K)" s givteinso,7] mit R()sp) »DOWB-and-In-Call“
B =(k-R(D)" Ues givtein r 0,1 mit ()} »DOWP-and-In-Put”
B (P (D)~ )+ 'I{Es gibt ein ¢J0,7] mit A (¢)25} »Up-and-In-Call®
B =(k-A(D)"- e givtein 0.1 mit R)2p)  »UP-and-In-Put”

Kennt man nun die Preise fiir die ,,out“-Optionen, so erhilt man auch sofort die
fiir die ,,in“-Optionen, da die folgenden Bezichungen gelten (,,In-Out-Parit4t*):

X gall (0) X Call (0) 6% Call (0) ,
x50 =x()-xP0)),
X gall (0) =X Call (0) -X g’aII (0) ,
xF0)=xP*0)-x5*(0).
Die dritte Beziehung ergibt sich z.B. aus der Zerlegung
(r(D-k)" =(R(1)-k)*

Y R (9> fur ate 1071}

+
+(Pl (T)'K) 'I{Es gibt ein ¢ 0,7] mit A(1)<p} -
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Wir beschriinken uns hier auf die Berechnung des Preises des Down-and-Out-
Calls. Hierzu benétigen wir das folgende Lemma iiber die gemeinsame Vertei-
lung des Endwerts und des laufenden Maximums einer eindimensionalen
Brownschen Bewegung (mit Drift):

Lemma 4
Es sei M(t) i= Osm:lxsr W(s) das laufende Maximum der eindimensionalen

Brownschen Bewegung #(T). Dann gelten fiir x>0, x2w:

a) P(W(f)<w, M(t)<x)=d>( J?) 1+ q{z’iﬁw).

b) Fiir yeR seien W(t) := W(t)+p-t, M(t) := orzgﬁ'(s).Danngilt
) =)

Aussage a) ist eine Konsequenz aus Proposition 2.8.1 in Karatzas/Shreve (1991),
die wiederum eine Konsequenz des Spiegelungsprinzips von D. André ist (siche
z.B. Abschnitt 2.6.A in Karatzas/Shreve). Teil b) ergibt sich aus a) mit Hilfe des
Satzes von Girsanov (siche Ubung U.12).

P < w, i) < x)= ID(

Zur Berechnung des Preises des Down-and-Out-Calls nehmen wir zunéchst an,
dass fiir Anfangswert p,=P,;(0), Barriere b und Ausiibungspreis K die Bezie-
hungen

b<p;und K<b

gelten, d.h. falls der Down-and-Out-Call nicht vor T verfillt, ist er automatisch
im Geld. Mit Hilfe der Wahl
1.2
r-so
H= 2 s
o
der Beziehung min{-(W(t) +u t)} =— max{W(t) + - t} und expliziter Rech-

nung, wobei sich aus Lemma 4 die Dichte fiir

(W(T) +u-T, ozlligT(W(t) + ;t-t))
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ergibt, erhilt man
x5 (0) = pltb(dl ) - be"T(b(dl - aﬁ)

2-541
+eT(b- K)0(d; ~o4T)- ,,l( ':T ) " ofa,)

251
+e T —31-) < lb(dz ——aﬁ)

ln(%) +(r + %az )T In(%) +(r + % o? )T
dy= o , dy = AT .

Man erhilt eine hnliche Formel fiir den Fall <K, nimlich
CaII(O) plq)(d:;) Ke er)(d:; G"\/-_)

2;2—+l 2'07—1 i
-n (;Izl‘) <I>(d4) + e—’TK(-}%') <I)(d4 -0 T) ,

wobei sich d; und d, aus d, bzw. d, ergeben, indem man b durch X ersetzt. Ana-
loge Resultate erhilt man fiir die anderen Typen von Barriere-Optionen, auf die
wir hier aber nicht eingehen wollen.

Optionen auf Minimum/Maximum des Aktienkurses (,,Lookback-
Optionen*)

Eine Lookback-Option ist typischerweise durch eine Endzahlung gegeben in der
das Minimum oder Maximum des Aktienpreises auf [0, 7] auftritt, und ist damit
wiederum eine pfadabhingige Option. Typische Formen sind z.B.

+
Brtlip = (g[mx]ﬁ(t)—K) ,K2p=P\(0),

CaIl [ P (n- Z{m P (t))

Man kann auch hier wieder Lemma 4 anwenden und erhilt
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x5 0)=p, -(CD(dl)—e"T c1>(d1 -0 T))

s P o’ (q:(- dy + 2§ﬁ ) e T —o(- dl))’

2r

xCall 2 (0)= p,@(d,)- Ke "TdJ(dz-awﬁ'_)

.t [q,(d) e’T( )/’cp(dz ')JTJ;

mit

(r+lo.2)T ) In(-%l-)+(r+%az)T
s 43 = .

d, =
1 0'\/_

Exkurs 7: Schwache Konvergenz stochastischer
Prozesse

In all den Beispielen exotischer Optionen, bei denen sich keine explizite Preis-
formel bestimmen ldsst, muss-man zur Preisbestimmung ein numerisches Ver-
fahren einsetzen, um den Preis der Option zumindest ndherungsweise bestimmen
zu kénnen. Fiir die Entwicklung effizienter numerischer Verfahren ist oft die
Diskretisierung des Aktienpreisprozesses die Grundlage des Vorgehens. Im dis-
kretisierten Mcdell ldsst sich dann meist einfach die erwartete abgezinste End-
zahlung der Option berechnen. Damit dieser Wert als sinnnvolle Approximation
an den tatsdchlichen (aber in der Regel unbekannten) Optionspreis im Black-
Scholes-Modell angesehen werden kann, ist nachzuweisen, dass die Folge der im
diskretisierten Modell berechneten Erwartungswerte mit wachsender Feinheit
gegen den Black-Scholes-Wert konvergiert. Das geeignete stochastische
Konzept zum Nachweis dieser Konvergenz ist die schwache Konvergenz
stochastischer Prozesse. Wir widmen uns nun einigen Grundlagen. Fiir unsere
Zwecke geniigt es, wenn wir uns auf stochastische Prozesse {X(t)},E[O 1] it ste-
tigen Pfaden auf [0,1] beschriinken:



196 Kapitel IV: Bewertung exotischer Optionen und numerische Verfahren

Allgemeine Voraussetzungen fiir diesen Abschnitt
Wir betrachten hier den speziellen Wahrscheinlichkeitsraum

(@ F,P)=(c[01].8(c{01]). P),

d.h. den Raum der auf [0,1] stetigen reellwertigen Funktionen, versehen mit
der Borel-o-Algebra und einem Wahrscheinlichkeitsmal} P.

Damit definiert die funktionenwertige Zufallsvariable X auf (Q,F,P) mit
Xo) =w, 0eC]0,1] )
einen reellwertigen stochastischen Prozess mit Verteilung P. Man erhilt den
Wert dieses Prozesses an der Stelle ¢ € [0,1] durch Projektion auf die ,,z. Koordi-
nate* von o,
X(tw) = m, 0 X(@) = oft).

Man konnte nun die Konvergenz stochastischer Prozesse X, iiber die {ibliche
schwache Konvergenz von Zufallsvariablen

X,(f)—== X(¢) in Verteilung fiir alle r<[0,1]

erkliren. Allerdings ist dies ein zu schwacher Konvergenzbegriff. Wir betrachten
statt dessen die schwache Konvergenz von Wahrscheinlichkeitsmafien auf me-
trischen Ridumen (siehe Billingsley (1968)):

Definition 5

Sei (S, B(S)) ein metrischer Raum mit Metrik p, B(S) sei die Borel-o-Algebra fiir
S. Weiter seien P,, neN, P WahrscheinlichkeitsmaBe auf (S, B(S)). Dann kon-
vergiert die Folge P, schwach gegen P (oder: in Verteilung), wenn fiir jede be-
schrinkte, stetige, reellwertige Funktion fauf S gilt:

[7 e === |1 ap.
Daraus ergibt sich als Spezialfall die schwache Konvergenz fiir stochastische

Prozesse mit stetigen Pfaden, wenn man beachtet, dass(C[0,1],B(C[0,1])) ein
metrischer Raum mit folgender Metrik ist:

p(x y)= susz y(t
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Definition 6

Die Folge stetiger stochastischer Prozesse {X()};c[0,1] konvergiert schwach
(oder: in Verteilung ) gegen X, wenn fiir alle fe C(C[0,1],R) gilt:

Ef(X,) —=>Ef(X). @

Hierbei ist C(C[0,1],R) der Raum der gleichmiiBig stetigen und beschrinkten
Funktionale auf C[0,1].

Die Konvergenz in (2) ist dabei folgendermaBien zu verstehen: der stochastische
Prozess X, ist auf dem Wahrscheinlichkeitsraum (C10,1],B8(C[0,1]),P,) gemi8
(1) definiert, der Prozess X auf (C[0,1],B(C[0,1]),P), wobei P,,P jeweils
WahrscheinlichkeitsmaBie auf dem Raum (C[0,1], B(C[0,1])) sind. Mittels (1)
Iésst sich (2) schreiben als

Ef(x,)= [r(x,)ap= [rap,
222, [fdP= [f(X)dP=Ef(X).
Damit stellt die schwache Konvergenz stochastischer Prozesse die schwache
Konvergenz von WahrscheinlichkeitsmaBen P,—P dar. Die schwache Kon-

vergenz bleibt unter stetigen Abbildungen erhalten, denn es gilt der folgende
Satz (dies ist ein Spezialfall von Satz 5.1 aus Billingsley (1968)):

Satz 7

Seien P,,neN, P Wahrscheinlichkeitsmaie auf dem metrischen Raum (S, B(S))
mit Metrik p. Weiter sei h: S—S’ eine messbare Abbildung in einen weiteren
metrischen Raum S mit Metrik o’ und Borel-o-Algebra B(S"). Gilt fiir die Menge
Dy, der Unstetigkeitsstellen von 4
P(Dp) =0,
so folgt:
n—>w C-]

B, —== P in Verteilung = P, -h"! —22= 5 p. 4! in Verteilung.

Da auch (R¥, B(R¥)) ein metrischer Raum ist, folgt so aus Satz 7:
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Korollar 8

Konvergiert die Folge X, stetiger stochastischer Prozesse schwach gegen den
stetigen stochastischen Prozess X, so konvergieren fiir jedes feste re [0 1] die Zu-
fallsvariablen X, (7) in Verteilung gegen X(¢).

Es gilt sogar mehr als im Korollar angegeben. Seien hierzu die Projektionen
o doi]->R*

.....

Ty (m)=(m(z1).---.w(tk))

fiir feste 0<#,<...<# <1. Dann folgt aus Satz 7 auch die Implikation

definiert als

X, 2225 X in Verteilung

= (X (1) X (1) —225(x(ey )., Xt )) in Verteitung,

Das bedeutet, dass aus der schwachen Konvergenz der Prozesse auch die Kon-
vergenz der endlich-dimensionalen Verteilungen folgt. Die Umkehrung ist im
Aligemeinen falsch ! Aus der Konvergenz der endlich-dimensionalen Vertei-
lungen

folgt im Allgemeinen nicht die der Verteilungen P, bzw. der zugehérigen Pro-
zesse.

Ist hingegen die Folge der P, relativ kompakt (d.h. jede Teilfolge enthilt eine
schwach konvergente Teilfolge), so kann man sich leicht iiberlegen, dass aus der
Konvergenz der endlich-dimensionalen Teilfolgen die Konvergenz von P, folgt.

Wollen wir nun die eindimensionale Brownsche Bewegung W(?), =0 auf [0,1]
durch einen einfachen Prozess approximieren (im Sinne schwacher Konver-
genz), so legen obige Uberlegungen und der zentrale Grenzwertsatz (fiir Sum-
men gewdhnlicher Zufallsvariablen) folgendes Vorgehen nahe:

1. Wihle eine Folge {&},.n einfacher iid. Zufallsvariablen mit E()=0,
Var(£)=02<wo, und setze

Sp:= 0, s,,=Z§,- )

i=1
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Zum Beispiel kann man £=Y;~¢ mit Y~B(1,q) wihlen.
2. Definiere hieraus mittels linearer Interpolation einen stochastischen Prozess
X,(7) mit stetigen Pfaden gemﬁB
X, (t m) = \/_ S[m](m) +(nt [nt]) \/_ Gnel (@), 3)

fiir 1[0,1], neN, dh. es gilt X, (£,a) =—1=5(0), und fir ¢ (%, £21)
erhilt man X, (¢) durch lineare Interpolation. -

3. Die endlich-dimensionalen Verteilungen von X, konvergieren in Verteilung
gegen die der Brownschen Bewegung. Beachte hierzu:

e Aus [—lﬂ)s und dem zentralen Grenzwertsatz folgt
A S{as) ———>W(s) in Verteilung. )

o Aus der Chebyshev Ungleichung folgt

x,,(s)~;37s[,,s,| gL
und somit folgt aus (4) auch
X, (s) =222 W(s) in Verteilung. (5)
e Wegen der Unabhangigkeit der &; folgt aus (4) und dem Satz von Slutsky

(S St 3 St = Spu)) —=20 9 - )
fiir s<¢. Hieraus folgt dann dhnlich wie in (5) auch

(X (), Xn () - Xp(5)—="5(,. W, - W,) in Verteilung,
und mit dem Satz von Slutsky folgt

(Xn(s), Xn(£)) ——==(;.,) in Verteilung.

Analog zeigt man diese Konvergenz fiir endliche Tupel aus X, (¢;)-Kompo-
nenten.
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4. Zeige, dass die Folge der zu den X, gehdrenden Verteilungen P, auf
(C10,11,B(CT0,11)) relativ kompakt ist.

Bei gegebener Wahl der &; hat man also nur noch die relative Kompaktheit der
Folge der zu X, gehdrenden Verteilungen zu zeigen. Dies ist die Hauptarbeit im
Beweis des folgenden Satzes (siehe Billingsley (1968)):

Satz 9 - Satz von Donsker

Sei £, eine iid. Folge mit E(£)=0, 0<Var(£)=o0?<. Dann konvergiert die
Folge X,, der gemiB (3) definierten stochastischen Prozesse schwach gegen die
eindimensionale Brownsche Bewegung #(¢), t € [0,1].

Bemerkung

Die Konvergenzaussage und die Grenzverteilung im Satz 9 sind unabhiingig von
der tatsdchlichen Wahl der &, weshalb man auch vom Invarianzprinzip von
Donsker spricht. Der Satz kann als ,Prozessversion” des zentralen Grenzwert-
satzes angesehen werden. Er kann oBdA auch als fiir beliebige Intervalle [0, 7]
giiltig angenommen werden.

Fiir die praktische Anwendung in den folgenden Abschnitten ist die folgende
Variante des Satzes von Donker sehr niitzlich (siehe Billingsley (1968), S.77 ):

Satz 10 - Satz von Donsker fiir Dreiecksschemata
Die Zufallsvariablen !,’,,l ,...,f,ik , neN, k€N, seien i.i.d. mit

E(§n|)=0, 0<Va fn.)=°'3, <c,

wobei ¢>0 eine geeignete Konstante sei. Setze
Sp, 1= G+ ¥Gy, SIS i<k,

2 2 2 2

Spi= O+ A0, =i-0p
2.2 _ 2
Sui=Sp, =ky-oy .
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Definiere den Prozess X, (?), ¢ €[0,1] durch
X,(0:=0

X,,(s%) = S'Vs,, i=1,...k,

und linear interpolierend auf den Intervallen [ / Sy .5, / s,f] .

Falls nun k,~» und s,—»o fiir n—o0, dann konvergiert X, schwach gegen die
Brownsche Bewegung W.

Mit den bisher gezeigten Ergebnissen folgt zwar
B{H(6,)) 22> 5(1(x)

fiir stetige und beschriinkte Funktionale 4 :C[0,T]>R, aber dies reicht fiir die
Anwendung in der Regel nicht aus. Insbesondere wenn wir die Brownsche Be-
wegung W im Black-Scholes-Modell durch einen Prozess der Art X, annahern,
wiirde aus dem Satz von Donsker nicht dirckt

E(ewm-x,,(r)) B E( eb-na-w(r))

folgen, da das Exponentialfunktional nicht beschrinkt ist. Hierzu benétigen wir
noch die gleichmiBige Integrierbarkeit der Folge exp(aX,(7)), denn es gilt der
folgende bekannte Satz:

Satz 11

Die Folge der Zufallsvariablen {X,}, N sei gleichmiBig integrierbar, und es
gelte

X, 225 X in Verteilung.

Dann gilt auch
E(X,) -2 E(X).
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IV.2 Monte-Carlo-Simulation

Beschreibung der Grundidee

Die Basis der Monte-Carlo-Simulation ist das starke Gesetz der groBien Zahl, das
besagt, dass das arithmetische Mittel von unabhingigen, gleichverteilten Zu-
fallsvariablen fast sicher gegen den Erwartungswert konvergiert. Da aber die Be-
stimmung des Optionspreises fiir die durch die Auszahlung B gegebene Option
nach Korollar I11.11 lediglich die Berechnung des abgezinsten Erwartungswertes
von B bzgl. des dquivalenten MartingalmaBes beinhaltet, legt dies folgende Vor-
gehensweise nahe:

Algorithmus: Bestimmung des Preises einer Option durch Monte-Carlo-Simu-
lation
1. Simuliere » unabhingige Realisierungen B; der Auszahlung B.

n
2. Wihle [lz B,-J e als Approximation fiir den Optionspreis E (e" TB) .
n

i=1

Das im zweiten Schritt berechnete arithmetische Mittel stellt dabei einen erwar-
tungstreuen und (wegen des starken Gesetzes der groBen Zahlen) stark konsis-
tenten Schiitzer fiir den Optionspreis dar. Wihrend der zweite Schritt keinerlei
Probleme bereitet, lisst sich der erste Schritt, die Erzeugung der Realisierungen
von B, nur niherungsweise durchfiihren.

Simulation der Auszahlung B

Wir gehen davon aus, dass die Auszahlung B=B(P(#), t€ [0, T]) ein Funktional
des Preisprozesses Py(f), t[0,7], ist. Um B zu simulieren, simuliert man zu-
nichst einen Pfad P,(7) des Preisprozesses bzgl. des dquivalenten Martingal-
maBes Q. Da ein solcher Pfad durch iiberabzihlbar viele Werte gegeben ist, kann
man ihn nur approximativ simulieren. Hierzu geht man folgendermaflen vor:

1. Teile das Intervall [0,7]in N >> 1 dquidistante Teilintervalle.
2. Erzeuge N N(0,1)-verteilte, unabhingige Zufallszahlen Y.

3. Simuliere hieraus mittels Interpolation einen (approximativen) Pfad W(t) der
Brownschen Bewegung auf [0, T]:
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w(0)=0,

W(...;)=W((,...I,%)+ng,,-r.,,...,N,
W) =w{(i-9F)+(-U-0F)-[i-F)-mU-)F)|

fir £ e[(j-1) 5. %]
4. Erzeuge damit einen (approximativen) Pfad von P,(#):
1
P)=p -e(r—zaz)' o) , te[0,T],

5. Berechne mit diesem simulierten Pfad des Preisprozesses die Naherung fiir die
Auszahlung B, z.B. im Fall europiischer Call: '

=(A(1)-K)".
Bemerkung

Fiir die praktische Durchfiihrung der Berechnung von B; im 5.Schritt erweist es
sich oft als giinstiger, statt im 3.Schritt erst im 4.Schritt eine Interpolation durch-
zufiibren:

A(0)=py,

1T T, -
Pl(j'%}) =P1((j—1)-%)-e( "zaz)W-e J;Y],j=l,...,N

B®=A(-)F)+(-0-0F) % [a0-F)-A-)F)
ﬁirte[(_]— W,j—lz\;—].

Fiir groBes N sind die Unterschiede zwischen beiden Vorgehensweisen vernach-
lissigbar.

Konvergenz der Methode

Es sei PI(N)(t), te[0,T], der wie oben erzeugte approximative Preisprozess. Ist
nun B ein auf C([0,T]) stetiges und beschrinktes Funktional, so konvergiert
nach dem Satz von Donsker und Satz 7 auch



204 Kapitel IV: Bewertung exotischer Optionen und numerische Verfahren

Eo( (AN 0.1 efo.11) 2= £, (B(R(2). <[0.7])

nach Definition der schwachen Konvergenz. Ist B ein stetiges Funktional auf
C([0, 1)), so folgt die Konvergenz gegen den Optionspreis aus der gleichmiBi-
gen Integrierbarkeit der Familie

{B(H(N)(t).: e[o,T])l N EN} .

Der Nachweis dieser gleichmiBigen Integrierbarkeit kann im Einzelfall recht
aufwendig sein. Den Erwartungswert

EQ(B(PI(N) ).t €lo, T]))

fiir gegebenes N approximiert man geméB dem starken Gesetz der groBSen Zahl
durch das arithmetische Mittel

15 {AN O, eelor)

i=1

wobei PI(JN) (t) , t€[0,T], i=1,..., n, verschiedene gem#B obiger Vorschrift er-
zeugte Pfade sind.

Vorteile

Die Monte-Carlo-Methode zur Schitzung eines Optionspreises ist leicht imple-
mentierbar. Heutzutage sind auch vemniinftige Zufallszahlen leicht zuginglich,
denn nahezu jede Programmiersprache stellt eine recht gute Routine zur Erzeu-
gung von Pseudo-Zufallszahlen bereit. AuBerdem kann durch Monte-Carlo-Si-
mulation jede beliebige exotische Option approximiert werden.

Es gibt auch Verfeinerungen des obigen, einfachen Simulations-Algorithmus,
um schnellere Konvergenz zu erzielen (siehe z.B. Rubinstein (1981)).

Nachteile

Diese Methode ist auch in Zeiten schneller Computer recht langsam, denn » und
N miissen sehr groB sein, um verniinftige Schitzwerte fiir den Optionspreis zu
erhalten. Diese Werte » und N miissen zum Teil so gro werden, dass der Vorrat
an Pseudo-Zufallszahlen ausgeschpft wird und auf eine bereits benutzte Folge
an Pseudozufallszahlen zuriickgegriffen werden muss. Damit wird dann die
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Voraussetzung der Unabhingigkeit der verschiedenen Simulationen in Frage
gestellt, und die Methode hingt somit stark von der Qualitit der Zufallszahlen
ab.

IV.3 Approximation durch Binomialbiume

Beschreibung der Grundidee

Wihrend die Monte-Carlo-Simulation zur Optionsbewertung auf dem starken
Gesetz der groBen Zahl basiert, ldsst sich die Approximationsmethode mittels
Binomialbdumen durch den zentralen Grenzwertsatz motivieren.

Wir betrachten hierzu als Beispiel den zeitdiskreten Aktienpreisprozéss P; (i),
i=0,1,..., n, dessen mégliche Pfade durch den folgenden Binomialbaum gegeben
sind:

t=0 1.T/n 2.T/n T WZeit™

u? P
< N
Udp e
\dp
d? P ud" ! D
d"p ,Preise®

Bild IV.3 Binomialbaum

Dieser Binomialbaum steht fiir einen Preisprozess, der zur Zeit =0 in p startet.
In jedem Knoten des Baumes besteht fiir den Preis P,®)(i) die Moglichkeit, dass
er in der nichsten Periode mit der Wahrscheinlichkeit g um den Faktor u steigt
und mit der Wahrscheinlichkeit (1—¢) um den Faktor d ,steigt“ (d<u). Ein sol-
ches Wertpapierpreismodell wird auch als Cox-Ross-Rubinstein-Modell bezeich-
net (siche Cox/Ross/Rubinstein (1979)). Man beachte, dass die Wahrschein-
lichkeit, dass der Preis um den Faktor u steigt, und die moglichen Werte der
relativen Preisinderung
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Pl(n) G
A" G-1)
in jedem Knoten gleich sein sollen. Aus Arbitragegriinden muss fiir die Faktoren
u, d gelten:

d<e™ <y mit At:=

n

Ansonsten bestiinde die Moglichkeit eines risikolosen Gewinns, indem man das
Aktieninvestment durch Kredite (im Fall d>e™) oder das Bondinvestment
durch Aktienleerverkiufe (im Fall u<e™) finanziert. Ist nun X, die Anzahl der
»Aufwirtsbewegungen“ von P,*)(n), so gelten:

Xn" B (n’ q) »
Pl(")(n) = p- wXn . gn=Xa _ p-ex" -In(%)+n-ln(d) .
Speziell gilt fiir g=1/2, b €R, und die Wahl

u= ebAt+a-1/At , d= ebAt—a,[At

mit den Beziehungen
~ 1 In(u)+In(d) , In() - In(d)
b = , O=
2 A 2 Jar
die Konvergenz

~ 2X,~
Pl(n) (n) = pelp(b -T+ 0'\/_7-'( In n))
—ﬂ)p-exp(l;'-T+a'-W(T)) = P,(T) in Verteilung
aufgrund des zentralen Grenzwertsatzes, wenn man beriicksichtigt, dass

(2X,, —n)
e

Erwartungswert Null und Varianz Eins hat, auerdem 2X, Summe von 7 unab-
hingigen doppelten Bernoullivariablen ist. Eine Verallgemeinerung dieser Kon-
vergenzbeziehung (genauer: die Konvergenz des diskreten gegen den kontinuier-
lichen Preisprozess) bildet einen Baustein des Binomialansatzes. Der andere Teil
der Methode basiert darauf, dass sich der Erwartungswert der abgezinsten End-
zahlung aus der Option im diskreten Modell problemlos berechnen lisst. Fiir eine
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wachsende Feinheit der Zeitdiskretisierung konvergiert dann die erwartete abge-
zinste Endzahlung im zeitdiskreten Modell gegen die im zeitstetigen Modell,
falls die Familie der

B, = B(Pl(”)(i),i = 0,1,...,n)

gleichmiBig integrierbar ist. Dieser Nachweis kann wieder im Einzelfall sehr
aufwendig sein. Aus den gemachten Bemerkungen ergibt sich der folgende Al-
gorithmus:

Algorithmus: Approximation durch Binomialbdume

1. Zu n>>1 erstelle einen geeigneten Binomialbaum fiir den zeitdiskreten Preis-
prozess P;®)(i).

2. Berechne die erwartete abgezinste Endzahlung E*)(e~7B,) im zeitdiskreten
Modell als Naherung fiir Eg(e77B).

Natiirlich ist die Wahl von », d.h. die Feinheit der (Raum- und) Zeitdiskretisie-
rung, ein ganz wesentlicher Faktor fiir die Genauigkeit der im 2.Schritt berech-
neten Niherung fiir den Optionspreis und auch fiir den Rechenaufwand. Man
wird daher den Algorithmus in der Regel iterativ fiir verschiedene n durchfiihren
und dann abbrechen, wenn sich Konvergenz eingestellt.

Wahl der Parameter im Binomialbaum
Da die Zuwichse

Pl(n) y
P G-1)

im Binomialbaum alle unabhiingig und gleich verteilt sind, ergibt sich nach dem
Satz von Donsker fiir Dreiecksschemata und Satz 7 die schwache Konvergenz
von { P,(")i), i=0,1,..., n} gegen {P,(#), t[0, T]}, wenn die beiden ersten Mo-
mente des Logarithmus der Zuwichse

PG ) (Pn(i-',,r“) )
ln( 1 A")(i—l) und In Pl((i—l)-%)

von diskretem und stetigem Preisprozess in den Zeiten i-T/n iibereinstimmen.
Genauer: Definiert man einen stetigen Prozess P,:#)(f) indem man zwischen
In(P,")(i-1)) und In(P,®)(3)) linear interpoliert, also
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(A7) = HPG-0)+(1-6-DT) 4 A0) (7 s-)
fir ¢ ef(i-1) £, 2],
so konvergiert dieser schwach gegen den Aktienpreisprozess P;(f), wenn die

obigen Momentenbedingungen erfiillt sind.

Da man wegen Korollar IIT.11 den Preisprozess bzgl. dem #quivalenten Martin-
galmaB Q betrachtet, kann man oBdA annehmen, dass

A()
Py(t)
Martingal ist. O sei nun das BinomialmaB8 bzgl. der Zeitdiskretisierung n, E®
sei der Erwartungswert bzgl. dieses MaBes, {F(™};. () sei die durch den
Preisprozess {P;™)(i)};c(0,1,.,n) ©rzeugte Filterung. Die obigen Momentenbe-
dingungen schreiben sich nun als ’

P (At) " P(n) ()
(r-30?)ar=£g ("{ 11>1(o) B o )[I"[ P:"" (O)B

= In(u) -q +In(d) -(1 —q) s (1)
2 2 ala))*] o (A”0)
(r—%a-l) (At) +azAt=EQ ln[ }’1(0)] =g In[;l!(;)—('(')')‘

= In(u)2 -q +ln(d)2 -(l—q) , 2)

wobei man sich wegen der Annahme an die Verteilung der Zuwichse auf den
ersten Zuwachs beschriinken kann. Man beachte nun, dass man in den Gleichun-
gen (1) und (2) drei unbekannte Parameter, nimlich

u,d »vermehrungsfaktoren®,
q »Wahrscheinlichkeit fiir eine Aufwirtsbewegung®
hat. Die beiden Forderungen (1), (2) lassen somit die freie Wahl eines dieser Pa-

rameter zu, wenn man beachtet, dass u, d > 0 und ¢ €(0,1) sein miissen. In der
Praxis populdr sind z.B.:

1
=—, d<l oder =
u=- q

N|v-
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Wir konzentrieren uns nun auf den durch g=1/2 gegebenen Fall (fiir das Vorge-
hen bei der Wahl u=1/d und insbesondere bei der Wahl von «, d nach Cox-Ross-
Rubinstein vergleiche Ubung U.13). Aus (1), (2) ergeben sich dann die Glei-
chungen

in(u-d) = 2{r-Lo?)at, )
nW)? +1n(d)? =2{r-10?) (a1)’ +202ar, ' “
die offenbar symmetrisch in # und d sind. Wir machen daher den Ansatz
u=e?C | d=eFC, ©)
woraus sich mit (3) und (4)
B=(r-1o?)ar , cC=lol-yar
ergeben. Mit (5) erhilt man dann
woolr- Yo )aelalVB (Yo )arolBr ©

Damit sind die beiden Momentenbedingungen erfiillt, und es gilt fiir »>0 offen-
bar auch

O<d<u und d<e™*.

Um auch die aus Arbitragegriinden geforderte Beziehung e<u zu erfiillen,

muss
|a|-‘/A—t-%crzAt>0 )

gelten. Hieraus ergibt sich die Forderung, dass die Zeitdiskretisierung hinrei-

chend fein sein muss, d.h.

vt
ek

n>

®

Der Optionspreis im Binomialmodell

Es kann leicht gezeigt werden, dass das durch den Binomialbaum gegebene Ak-
tienpreismodell zusammen mit der Moglichkeit des Bondinvestments zu den
Zeiten i-T/n (mit Bondpreis Py(f)=¢") einen vollstindigen Markt bildet und sich
dort der Preis einer Option als abgezinster Erwartungswert der Endzahlung B in
t=Tbzgl. dem eindeutigen dquivalenten MartingalmaB Q, ergibt (siche Ubungs-
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aufgabe U.8). 0, ist wiederum durch die ,Erfolgswahrscheinlichkeit“ g=g,
gegeben. Zu gegebenem u und d mit

O<d<e™ <y

erhilt man ¢ aus der Martingalbedingung

Pl(n) @ Pl(n) (i-1)

*=Fo R0 Re-0D)
(n) (.
__}:1__(_':&_ ‘u —-q)- "'.Z."._ . *
“ (e ((q +(1-g)-d)e 1) Q)
als
er'%—d
LA

Dieses q ist z.B. bei unserer vorangegangenen Wahl von «, d nach (6) i.A. von
1/2 verschieden, woraus somit auch folgt, dass der von uns berechnete Wert
E()(e~TB,) als Naherung fiir den Optionspreis Ep(e~7B) im stetigen Modell
i.A. nie mit dem Optionspreis Eg,(e7B,) im Binomialmodell iibereinstimmt.
Dies verlangt natiirlich nach einem Kommentar.

Die Verwendung des Binomialbaumes ist fiir uns lediglich ein Verfahren zur nu-
merischen Approximation des Erwartungswertes E,(e™ TB). Dass dieser Erwar-
tungswert einen Optionspreis darstellt, ist fiir unser numerisches Verfahren ohne
Bedeutung.

Eine andere Art der Approximation von E(e~"7B) besteht darin, g, u, d iiber die
Gleichheit der Zuwichse der ersten beiden Momente von diskretem und stetigem
Preisprozess zu bestimmen. Aus der Gleichheit des ersten Momentes der Zu-
wichse sowie der Unabhingigkeit und gleicher Verteilung der einzelnen Zu-
wiichse im Binomialmodell folgt dann auch, dass die Martingalbedingung (*) er-
fiillt ist. Man berechnet hier also immer bei dem durch #, g, u, d gegebenen Mo-
dell den Optionspreis im Binomialmodell als Niherung fiir den Optionspreis im
stetigem Modell ! Zwar erscheint diese Art der Approximation (,.ersetze Op-
tionspreis im zeitstetigen Modell durch den Optionspreis im zeitdiskreten Mo-
dell“) konzeptionell einleuchtend, sie kann aber nicht durch die Theorie der
schwachen Konvergenz gerechtfertigt werden.
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Berechnung der erwarteten abgezinsten Endzahlung im Binomialbaum

Die Moglichkeit der effizienten Berechnung des Erwartungswertes E(e~7B,)
hingt ganz wesentlich vom Typ des Funktionals B (bzw. der diskretisierten Ver-
sion B,) ab. Wir illustrieren dies anhand zweier Beispiele fiir den Fall =2, nim-
lich am Beispiel einer europiischen Option und einem Double-Barrier-Knockout.

Wir wihlen g=1/2. Fiir die Marktparameter r=0, 0=0.5, T=2, p=1 ergibt sich
dann der folgende Binomialbaum fiir P,®)(7)

t=0 1 2 nZeit”

.535

»Preis®
0.287

Bild IV.4 Binomialbaum
Um eine europiische Option mit einer Endzahlung der Gestalt

B=f(R(T))

im Binomialmodell approximativ zu bewerten, betrachtet man die diskretisierte
Variante

1= /(5000

Thr Wert lisst sich auf einfache Weise per Riickwirtsinduktion berechilen gemiB
ED(B,) = 1(1[r@117)+ £0779)])+ £ (21 (0779)+ £ (0287)]) .

Man berechnet also zunichst die erwarteten Endzahlungen in den beiden Zustiin-

den P;(®)(1)=1.455 und P,®(1)=0.535 zur Zeit =1 und dann den Erwartungs-

wert im Startzeitpunkt.

Fiir eine europiische Call-Option mit Ausiibungspreis K=0.5 ergébe sich ein
Wert von
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E@(B,)=1.1617+1-0279 = 054375.
(man vergleiche dies mit dem Black-Scholes-Wert von 0.5416)

Das Prinzip der Riickwirtsinduktion ist allgemein giiltig fiir Optionen mit einer
Endzahlung der Form

B=f(A(T).

Seien hierzu B, =AP;")(n)) und
y) (i-%, A (i)) AL (e"(”'%) ‘B,

die erwartete Endzahlung in #=T auf ¢=i-T/n abgezinst, wenn der Aktienkurs im
Binomialmodell zur Zeit i-7/n den Wert P,()(j) annimmt. Man kann dann die
erwartete abgezinste Endzahlung der Option im Binomialmodell gemi8 der fol-
genden Rekursion berechnen:

V(”) (T, pl(") (n)) = f( Pl(") (n)) ,
y( (1{— pl(") (,')) =
-;—[V(") (6+9 2.4 @) 47+ Z,ap (i))].e"%

fir i=n-1,...,0,

A (l.))

EW)(e78,) =¥ (0 p).

In der tatséichlichen Implementation dieses Verfahrens wird man nicht in jedem
Iterationsschritt mit e”7/" abzinsen, sondern, um Rechenzeit zu sparen, lediglich
im letzten Schritt mit e77 multiplizieren. Der groBe Vorteil der Berechnung des
Erwartungswertes geméB dieser Rekursion besteht darin, dass man lediglich in
jedem Knoten des Binomialbaums ein arithmetisches Mittel aus zwei Zahlen zu
berechnen hat. Genauer: es sind nur n-(n—1)/2 dieser arithmetischen Mittel zu
berechnen, obwohl der Aktienpreis im Binomialbaum 2” verschiedene Pfade
durchlaufen kann. Die Griinde hierfiir sind zum einen, dass der Binomialbaum
ein sogenannter rekombinierender Baum ist (d.h. benachbarte Pfade kdnnen
sich zur nichsten Zeitperiode wieder treffen, insbesondere filhren Pfade mit
gleicher Anzahl von Auf- und Abwirtsbewegungen zum gleichen Knoten im Bi-
nomialbaum und somit zur gleichen Endzahlung) und zum anderen, dass die
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Endzahlung der Option B nur vom Endwert der Aktie nicht aber exphz1t vom
(gesamten) Pfad des Aktienpreises abhingt.

Im Fall pfadabhiingiger Optionen muss die einfache Riickwirtsinduktion geeig-
net modifiziert werden, um der Pfadabhiingigkeit der Endzahlung Rechnung zu
tragen. So ergibt sich fiir einen Double-Barrier-Knockout-Call mit Endauszah-

lung

BSY = ( RB(1)- 05) 1{ P9 f0.4,14] fur alle 10,7}
die diskretisierte Variante
( Bgf?”)z - ( Pl(z) ) - 05) 1 { Fi(z)(,-)e[o_4,1.4],i=o.1.2}

=0279-1 { A2(2)=0779, FA(1)=0 535} )

Als zeitdiskrete Approximation des Optionspreises erhélt man
EY(B,)=1-0279 = 006975

Im Gegensatz zur durch j(Pl(T)) gegebenen Option ergeben sich beim obigen
Double-Barrier-Knockout-Call in 7=2 im Zustand P,®)(2)=0.779 zwei mégliche
Werte fiir (BpzCa¥),. Dies ist typisch fiir das Verhalten pfadabhiingiger Optio-
nen. Man erhilt pfadabhingige Endzahlungen, was im Extremfall dazu fiilhren
kann, dass jeder Pfad des Aktienpreises im Binomialmodell zu einer anderen
Endzahlung fiihrt. Die Maximalzahl von verschiedenen Werten fiir die Endzah-
lungen ist somit 2", was fiir groBe n sehr schnell zu sehr groem Rechen- und
Speicheraufwand fiihren kann.

=0 1 2 Zeit
9{2.1 17
1.45 4
4 0.779
2 ¥ 0779
0.53
0287 T

Bild IV.5 nicht-rekombinierender Binomialbaum
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Der fiir die Berechnung des Preises des Double-Barrier-Knockouts relevante
Baum besitzt zwar formal die iibliche rekombinierende Form des Binomial-
baums, jedoch sind die Optionspreise in den einzelnen Knoten nicht eindeutig.
Genauer: der Optionspreis wird vom Pfad bis zum Erreichen dieses Knotens mit-
bestimmt. Es liegt somit eigentlich ein nicht-rekombinierender Baum vor, was
durch Bild IV.5 veranschaulicht wird. Das Prinzip der Riickwirtsinduktion fiir
die Berechnung des Erwartungswerts der Endzahlung bleibt weiterhin bestehen.
Allerdings hat man nun im Allgemeinen im Zeitpunkt i jeweils 27! Erwar-
tungswerte zu berechnen, wihrend man im pfadunabhiingigen Fall zum Zeit-
punkt i nur i+1 Erwartungswerte berechnen musste. Im Fall einer Option vom
Knockout-Typ kann man eine gewisse Effizienzsteigerung erzielen, indem man
die Riickwirtsinduktion wie bisher durchfiihrt, aber die jeweiligen Approxi-
mationen an den Optionspreis in allen Knoten auf Null setzt, in denen die
Knockout-Bedingung erfiillt ist. Die Komplexitit der Berechnung des Options-
preises ist dann wieder mit der Berechnung im européischen, pfadunabhiingigen
Fall vergleichbar. Betrachtet man hingegen eine Average-Option mit Endzah-
lung

T +
w#-{4fo0a-1
0
bzw. ihre diskrete Variante
n +
(8S:"), = (;-‘rlZ AM()- K)
i=0
so muss man in der Regel den kompletten, nicht-rekombinierenden Baum zur
Optionspreisberechnung verwenden.

Konvergenz des Verfahrens

Nach dem Satz von Donsker und Satz 7 konvergiert der durch Interpolation aus
P,™)(i) erhaltene stetige Prozess P,(")(i) schwach gegen P,(z), falls die
Momentenbedingungen (1), (2) erfiillt sind. Ist also die Familie der

B, = B(ﬁ("") ), t €lo, T])

der auf P,()(f) definierten Funktionale gleichméBig integrierbar, so erhilt man
auch Konvergenz fiir

E™(c8,,) —222 Eo(c7B) ©)
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wobei O® auf den Pfaden von P,&")(t) durch Identifikation mit den zugehéri-
gen Pfaden von P,()(i) definiert ist. Aus (9) folgt z.B. dann die gewiinschte
Konvergenz

E0(eB,) 2225 £o(e77B),
wenn

tim E® (e (B,,, - B, ))=0

gilt. Diese Konvergenz ist wiederum explizit fiir die jeweiligen Optionstypen
nachzuweisen. Sie gilt immer dann, wenn die Differenz B ,—B, gleichmiifiig ge-
gen Null geht. Dies ist z.B. im Fall von europiischen Lookbacks, Barriere und
Double-Barrier-Optionen sowie asiatischen Optionen erfiillt.

Vorteile des Verfahrens

Approximationsverfahren, die auf Binomialbdumen basieren, sind leicht imple-
mentierbar. Allerdings hiingt ihre Effizienz in Bezug auf Rechengeschwindigkeit
und Speicherplatz stark vom verwendeten Optionstyp ab. In der Regel konver-
gieren Binomialverfahren schneller als Monte-Carlo-Simulationen. Fiir sehr gro-
Be nicht-rekombinierende Biume besteht desweiteren die Moglichkeit, ein Hy-
brid-Verfahren durch Kombination von Binomialmethode und Monte-Carlo-Si-
mulation zu verwenden: es wird eine hinreichend groBe Zahl von Aktienpfaden
im Binomialmodell simuliert und das arithmetische Mittel iiber die zugehorigen
B,, als Niherung fiir den Optionspreis verwendet.

Nachteile des Verfahrens

Insbesondere bei Double-Barrier-Optionen stellt sich oft ein langsames und un-
regelmiBiges Konvergenzverhalten ein. So muss die Genauigkeit der Approxi-
mation nicht unbedingt mit » wachsen, im Gegenteil, man stellt oft einen soge-
nannten Sigezahneffekt fest (d.h. mit wachsendem # scheint sich der approxima-
tive Optionspreis dem wahren Wert zu ndhern, entfernt sich pl6tzlich sprunghaft,
nihert sich dann wieder langsam dem wahren Wert, usw).
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IV.4 Trinomialbiume und explizite Finite-
Differenzen-Verfahren

Wir haben im Abschnitt ITI.3 bereits gesehen, dass man Optionspreise (unter ge-
wissen Voraussetzungen) auch als Losung eines zugehdrigen Cauchy-Problems
erhalten kann. Dies ist z.B. fiir Endzahlungen der Form

B=f(R(7)

mit geeignetem f (siche Proposition I11.13) der Fall. Existiert fiir das jeweilige
Cauchy-Problem keine geschlossene analytische Losung (oder ist man nicht in
der Lage, sie zu bestimmen), so bietet es sich an, das Cauchy-Problem mit {ibli-
chen Methoden zur numerischen Behandlung partieller Differentialgleichungen
iterativ zu 16sen. Eine Darstellung der méglichen numerischen Losungsmetho-
den fiir das betreffende Cauchy-Problem iibersteigt den Rahmen dieses Buchs
(wir verweisen hierfiir z.B. auf Wilmott, Dewynne & Howison (1993)). Wir
wollen statt dessen zeigen, dass auch bei numerischen Methoden ein Zusammen-
hang zwischen stochastischen Methoden und Methoden der partiellen Diffe-
rentialgleichungen existiert, der dem Satz von Feynman und Kac dhnelt. Wir be-
trachten hierzu zunichst die Approximation des Black-Scholes-Modells durch
cinen rekombinierenden Trinomialbaum.

t=0 1.T/n 2-T/n T w2eit
= g
- wp W
up up —_up

Bild IV.6 Trinomialbaum
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Speziell wihlen wir hierzu den zeitdiskreten Aktienpreisprozess P;((i),
i=0,1,...,n mit méglichen Pfaden im Trinomialbaum (siehe Bild IV.6), wobei aus
Arbitragegriinden fiir >0 gelten muss

%<er'% <u. )

Weiter seien die Wahrscheinlichkeiten fiir eine Aufwirtsbewegung in jedem
Knoten des Baumes gleich g, die fiir eine Abwirtsbewegung sei g,, somit ist die
Wahrscheinlichkeit fiir ein Gleichbleiben des Aktienkurses gleich ¢;=
1-(g;+q,). Es gelte

0<qy,92 <1, q1+q; =1 2

Da man im Fall g,+g,=1 wieder ein Binomialmodell erhalten wiirde, nehmen
wir ¢;+¢,<1 an. Aus dem Satz von Donsker fiir Dreiecksschemata erhalten wir
schwache Konvergenz von P, ()(i), i=0,1,...,n gegen den Aktienpreisprozess (im
risiko-neutralen Markt)

A= p-exp((r—%az)HoW(t)) ,

falls die beiden ersten Momente der Zuwichse von In(P,(f)) zwischen k-T/n und

(k+1)-Tin
L)

mit denen der entsprechenden Zuwichse von In(P;")(7)) iibereinstimmen. Dies
fiihrt auf die Gleichungen:

(r —%02 )A t= In(u) g1 +In(-'-ll-) gy, 3)

(r ~%02)2(At)2 + a’zAt = In(u)2 “q1 +ln('l'1;)2-q2 , “4)

Zu gegebenem u>0 kann man hier wie beim Binomialmodell ¢,, g, durch Lsen
des obigen linearen Systems bestimmen. Wir wollen dies nicht tun, sondem statt
dessen auf das in der Praxis weit verbreitete Vorgehen nach Cox-Ross-Rubin-
stein eingehen. Von ihnen wird vorgeschlagen,

u= e'w‘/E = gh% ®)
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fiir ein A €[1,) zu wihlen und in Gleichung (4) Terme von héherer Ordnung
als At zu vernachlissigen, was fiir kleine Az keinen allzu groSen Fehler darstellt.
Man erhilt dann aus (3), (4), (5) die Gleichungen

AanS_t(ql —qz) (r—- 20 )At (6)
2,20'2At(q1 +q2) =g? At @)

und hieraus

ql—;((" 20'2) \/_‘_“""") ®
q2=2(l‘2 ~(r- 202)1‘;—,/&). ©)

Fiir hinreichend kleines At, also hinreichend groBes », liegen dann g, ¢5, ¢, alle
in (0,1). Insbesondere wiirde die Wahl A=1 ein Binomialmodell liefern.

Wie im Binomialmodell erhalten wir folgenden Algorithmus (wobei zu festem n
das WahrscheinlichkeitsmaB Q) durch g, ¢,, 43=1-(¢,+q,) gemi8 (8), (9) ge-
geben ist, B, wie in Abschnitt V.3):

Algorithmus: Approximation durch Trinomialb4dume

1. Zu n>>1 erstelle einen geeigneten Trinomialbaum fiir den zeitdiskreten Preis-
prozess P,(")(i) (siehe hierzu (5),(8),(9)).

2. Berechne die erwartete abgezinste Endzahlung E®)(e~'TB,) im zeitdiskreten
Modell als Nzherung fiir Eg(e”7B).

Berechnung von E®)(e'TB,)

Wir berechnen E®")(e"7B,,) im Trinomialmodell wieder per Riickwirtsinduktion.
Es seien hierzu

x7@) .= In(Pl(")(i)) , i=0,...n.
V(")(i-At, X,(")(i)) = EW (e"(T )

Berechne dann rekursiv in Analogie zum Binomialmodell:

A" (i)) s



IV.4 Trinomialbdume und explizite Finite-Differenzen-Verfahren 219

A CEROCELO)
y (i At x™ (i))
- [qlV(") ((i +1a8 XM (3)+ Ax) +qyr ((i +1)ar, x (i))
+q2V(")((i+1)At,Xl(")(i)-Ax)]e“"“, 1,0 (10)

EW)(eTB,)=r(0.p).

Konvergenz des Verfahrens folgt wie im Binomialmodell aus dem Satz von
Donsker und der gleichgradigen Integrierbarkeit der B, die im Einzelfall nach-
zupriifen ist (vgl. auch Cox-Ross-Rubinstein(1979)).

Der Optionspreis im Trinomialmodell

Im Allgemeinen kann die Endzahlung eines europdischen Calls im Trinomial-
modell nicht durch eine Handelstrategie in Bond und Aktie dupliziert werden
(siche Ubung U.9). Auch existiert hier eine ganze Familie Zquivalenter Martin-
galmaBe, so dass sich die im Binomialansatz angedeutete Alternative ,,Berechne
den Optionspreis in einem approximierenden Trinomialmodell” nicht mehr ohne
weitere Modifikationen durchfiihren lisst. Mehr noch: wir haben bis jetzt noch
iiberhaupt keine Methode zur Berechnung eines Optionspreises in unvollstin-
digen Mirkten entwickelt !

Beziehung zwischen Trinomialbiiumen und expliziten Finite-Differenzen-
Verfahren

Nach Proposition IT1.13 16st der Optionspreis (unter geeigneten Voraussetzun-
gen) das folgende Cauchy-Problem

V; +%a’2p2Vpp +rpVp, -1V =0, (£ p)e[0, T]x(0,»), (CP)
¥(T.p)=1(p) , p>o0.

Mit der Substitution x=I/n(p) und der Bezeichnung
7(t,x) := ¥(t,p)

geht (CP) in das Problem
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7y +30% 7 +(r-L0? . -7 =0, (t,x)€[0, TR,  (TCP)

V(T,x)=f(e ) , x€R,

iiber. Ein populédres numerisches Losungsverfahren fiir (TCP) ist das sogenannte
explizite Finite-Differenzen-Verfahren. Es basiert darauf, dass in (TCP) zu ge-
gebener Zeitdiskretisierung 0, A¢, 2Af,..,T und Raumdiskretisierung In(p,),
In(py)£Ax, In(p;)£2Ax,.... die auftretenden partiellen Ableitungen durch die fol-
genden Differenzenquotienten ersetzt werden:

PO (e 4 a1,2) -7 )1, )

A,V(")(t,x) =

At
AFTO(12) = PO (e + A, x+Ax;A:(")(t+At x- Ax)
a7 (o) 7O (4 At 3+ Ax) - 27t + A2, %) + 7O (£ 4 AL, x - A%) ’

(a2

Mit den Bezeichnungen
t,' = i-At N i=0,1,...,n,

X(j) = ln(p1)+j-Ax, JEZ,
ergibt Einsetzen dieser ,,finiten Differenzen® anstelle der Differentialquotienten
(=partielle Ableitungen) in (TCP) sowie Auflésen nach 7" (r;, X(j)):

7 () (,i, X( ])) -
1 At 2) At~ ’
14+ rAs {(% o’ (Ax)z + —;—(r - 12-) Xx_}, ) (t" +At, X(J ) + Ax)
+[l—a’2 = 2]17("’ (1 + a2, x(5))

(r—g;-)——-]V(")(t +at, x(j)- Ax)} an
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Da man zur Zeit T bereits alle Werte von V(")(T, x) kennt, kann man aus der
obigen expliziten Darstellung fiir f"(") (T-At,X(j)) dessen Werte berechnen. Per
Riickwirtsinduktion mit Schrittlinge Az gelangt man so nach » Schritten zur Zeit
#=0 und erhalt insbesondere 7 (")(0,x) als Naherung fiir den Optionspreis
V(O, x) .

Der Vergleich von (5), (8), (9) mit der Rekursion (11) zeigt sofort, dass die Re-

kursion (10) im Trinomialbaum als ein spezielles Finite-Differenzen-Verfahren
aufgefasst werden kann (wenn man den Unterschied der beiden Abzinsfaktoren

e und (1+rAf)~! vernachlissigt). Man erhilt Konvergenz von 7(")(0, x)
gegen V(O, x) genau dann, wenn die Stabilititsbedingung

At 1
0< S

(as) "o

erfiillt ist (vgl. Abschnitt 8.4 in Wilmott, Dewynne & Howison (1995)). Den
Beweis dieser Aussage und die Darstellung weiterer Diskretisierungsverfahren
zur Lésung der partiellen Differentialgleichung (TCP) findet man in Wilmott,
Dewynne & Howison (1993).

IV.5 Der pfadweise Binomialansatz nach
Rogers und Stapleton

Beschreibung der Grundidee

Wihrend man bei der iiblichen Binomialmethode — wie in Abschnitt IV.3 — le-
diglich die Verteilung von P;(#) durch eine einfachere, diskrete Verteilung ap-
proximiert, wird bei der Methode nach Rogers und Stapleton jeder einzelne Pfad
von Py(#) durch eine Treppenfunktion angenihert. Hierbei darf die approxi-
mierende Treppenfunktion nur Werte in einer vorgegebenen diskreten Menge
annehmen und héchstens um einen vorgegebenen Wert £ vom jeweiligen Pfad
von P,(f) abweichen. Die entscheidende Idee von Rogers und Stapleton besteht
nun darin, die Menge der méglichen Werteverldufe einer solchen Treppenfunk-
tion als unendlichen Binomialbaum aufzufassen. Es wird dann ein Algorithmus
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angegeben, wie man in einem solchen unendlichen Baum die erwartete abge-
zinste Endzahlung aus der Option als Niherung fiir den Optionspreis im Black-
Scholes-Modell bestimmt.

Algorithmus: Pfadweiser Binomialansatz nach Rogers und Stapleton

1. Erstelle zu vorgegebener Genauigkeit Ay und Startpunkt y:=in(p,) einen un-
endlichen Binomialbaum.

2. Berechne die erwartete abgezinste Endzahlung aus der Option E&)(e~7B,)
im unendlichen Binomialmodell als Nherung fiir £ (e "7B).

Erstellung des unendlichen Binomialbaums
i) Approximation
Wir betrachten den Logarithmus ¥(f) des Aktienpreises

¥()) = (R () = l:t_(ﬂ)+a’-W(t)+(r—'%—a'2)-t
=y

und definieren zu gegebener ,,Genauigkeit“ Ay>0 fiir jedes we Q und ¢€ [0, 7]
eine approximierende Treppenfunktion Z(7) iiber

ro(0) := 0,

(@) = infle e[0.1]]1> s @) He.0) - Y5y (@) 0) > Ay} w12,
&(@) ==y,

&(@) = ¥(z,,0),

Aeo)= S, 0.

Das bedeutet: Sobald sich ¥(f) vom aktuellen Wert der Treppenfunktion Z(f) um
Ay entfernt, wird die Treppenfunktion auf diesen Wert von ¥(f) gesetzt. Per
Konstruktion von Z(7) gilt dann:

sup [¥(£)-Z(1)| < Ay.
0<t<T

Man beachte, dass Z(#) bei vorgegebenen y und Ay nur Werte in der Menge
{y+i-Ay | ieN}annehmen kann. Weiter kann Z(f) nur in die benachbarten Zu-
stinde Z(¢)+ Ay springen, und fiir festes @ kann Z(#, @) nur endlich viele Werte
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auf [0, 7] annehmen. Allerdings gibt es keine obere Schranke fiir die Anzahl der
von Z(t, ») auf [0, T] angenommenen Werte.

Y(),2() 4

y+2Ay
y+Ayt

y-Ayt
y-20yT
1:1 1!2 73 T4

Bild IV.7 Approximation durch eine Treppenfunktion

Man kann sich daher den Werteverlauf von Z(z, @) auf [0, 7] auch als endlichen
Pfad im unendlichen Binomialbaum vorstellen, siehe Bild IV.8.

y+3Ay

y+Ay y+Ay

y Ay y- Ay
y—2Ay

y-3Ay
Bild IV.8 Binomialbaum

ii) Berechnung der Ubergangswahrscheinlichkeiten

Wir wollen die weiteren Grundlagen des Algorithmus am Beispiel eines Double-
Barrier-Knockout-Calls fiir ¥(#)=In(P;(7)) demonstrieren. Die Endzahlung B sei
also gegeben durch

=(AD-k)"1

{ln(P.( 0))e{bs.5+) fur atie 1 0.7 ]} '

Hierbei ist K>0 der Ausiibungspreis. Die reellen Zahlen b.<y<b* definieren das
Intervall, in dem sich Y(f) bewegen muss, damit der Call in #=T noch ausgeiibt
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werden darf. Verlisst ¥(#) das Intervall (b«,b"), so verfillt die Option wertlos.
Nach Korollar II1.11 gilt fiir den Preis dieses Calls:

{1,,( Pl(’)) e(b. ,b") fur alle te[O T]}J

Wir werden diesen Preis nun approximativ mit Hilfe des unendlichen Binomial-
baums berechnen. Hierbei lisst sich der unendliche Baum in endliche Teilbdume
zerlegen, in dem man fiir festes 7 € N die moglichen Pfade aller Treppenfunktio-
nen Z(f) mit genau n Spriingen auf {0, 7] mit einem n-Perioden-Binomialbaum
identifiziert. In diesem Baum kann man dann die zugehérige erwartete Endzah-
lung der Option berechnen, wenn man die Ubergangswahrscheinlichkeiten von
einem Knoten zum andern kennt. Da aber sowohl in 7,_; als auch in 7, die Wer-
te von Y(f) und Z(f) iibereinstimmen, stimmen die ﬁbergangswahrschemhch—
keiten im Baum mit denen von ¥(f) nach ¥(f)zAy iiberein. Diese lassen sich
aber mit Satz 12 berechnen.

P =EQ[ D(R(D)-k)"

Satz 12

Zu vorgegebenem Ay>0 betrigt die Wahrscheinlichkeit fiir eine Aufwirtsbewe-
gung von Z(f) in 7,, neN,

S{0)-s(-4y)

{889

_ 3o’
a2

Die Wahrscheinlichkeit fiir eine Abwartsbewegung von Z(¢) in z,,n €N, betrigt
1-g.
Beweis:

mit

und s(x) := —e2ex

Da sich die Zuwichse W(f)-W(s) einer Brownschen Bewegung wieder wie eine
Brownsche Bewegung #*(t-s) verhalten, haben alle Uberginge von Z(f) zu den
Sprungzeiten z,,neN, die gleiche Verteilung, unabhiingig vom tatséchlichen
Wert von Y(7). Es reicht deshalb, die Behauptung fiir den Ubergang von Z(7)
nach Z(7;) zu zeigen. Nach der Bemerkung vor dem Satz muss man nun nur
noch dic Wahrscheinlichkeitsverteilung von ¥(¢) in 7; berechnen, da diese mit
der von Z(7) iibereinstimmt, falls 7 <7 gilt.
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Es sei 7;(":= 5;An. Dann liefert die It6-Formel fiir zweimal stetig differenzier-
bares f:
(n)

AA)) = A f (Y(s))#+2f"(Y(s))02)dS+ jf Vo dn ()

mit

w=r-to.
Da nach Definition von 7
Y(s) e[y-Ay.y+Ay] firallese[0,7™]
gilt, ist f'(¥(s)) auf [0, 7; ()] beschrinkt und somit

1{")
E[ If '(Y(s))dW(s)] =0

folglich
(n)
(f (Y( (")))) [ (r (v + 3 r7(1()o?)ds ey

Um nun g zu bestimmen, suchen wir ein fe C2 mit:
-;—f"(x)cr2 +f'(x)p=0 firalle x e(y—Ay,y+Ay)
fly-ay)=0 . )
f(y+Ay)=l

Aus (1) und (2) folgt dann wegen

sim 5(7({) = 5{(v(e)

und nach Definition von 7; (beachte, dass P(7;<w)=1)

E(f(He)) = - £ly+ay)+(1-9)- £(y- a5)

die Beziehung
9-1=f(y).
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Explizites Losen des Randwertproblems (2) durch einmaliges Integrieren, Losen
der dann entstandenen linearen Differentialgleichung 1.0rdnung mit Variation
der Konstanten und anschliefendes Bestimmen der Integrationskonstanten mit
Hilfe der Randbedingungen ergibt:

_ ( £Ay)- exp( 2 (x-5))
T )

Einsetzen von y in f{x) liefert die Behauptung. ) ]

Fortsetzung: Double-Barrier-Knockout-Call

Fiir die konkrete Anwendung auf den Double-Barrier-Knockout-Call sind nun
alle Pfade im Baum wertlos, die die Werte b, unter- bzw. b* iiberschreiten.

bt / b. o
Bild IV.9 Binomialbaum Bild IV.10 modifizierter Binomialbaum

Ist der Prozess Z(f) nun um weniger als Ay von b* oder b, entfernt, so modifizie-
ren wir unsere Definition von Z(¢). Wiirde némlich Z(¢) beim néchsten Sprung
aus dem Intervall [b.,b*] springen, so wire die Option bereits wertlos, bevor
der zugehorige Knoten im Binomialbaum erreicht wire (eventuell wiirde er so-
gar nie erreicht !). Man wihlt deshalb den niichsten Knotenpunkt, so dass er ge-
nau auf der Hohe b* bzw. b. liegt. Dies entspricht dann einem Sprung der Trep-
penfunktion schon beim Erreichen von b* bzw. b und nicht erst bei Z(f)-Ay
bzw. Z(f)+Ay.
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Diese Modifikation von Z(#) hat mehrere wichtige Konsequenzen. So nimmt Z(f)
pur Werte im modifizierten Binomialbaum an. Die Endzahlung des Double-
Barrier-Knockout-Call im modifizierten Binomialbaum B, ist nun durch

_{,2Z(7) *
Bpy _(ez g "K) 'l{z(,)e(b.,b*)ﬁnaue: O.T]}

gegeben. Eine weitere wichtige Konsequenz der obigen Modifikation von Z(¢) ist
die, dass Z(f) genau dann eine der Barrieren erreicht, wenn auch ¥(?) dieselbe
Barriere erreicht, also

l{z(t)e(b..b*) fur alle :40,1']} - 1{Y(:)e(b..b*) fur alle te[O,T]}

und die Option verfillt genau dann vor T wertlos im Originalmodell, wenn sie
auch im modifizierten Binomialmodell wertlos vor T verfillt. Fiir die Bewertung
des Double-Barrier-Knockout-Calls ist es unerheblich, ob man Z(#) nach dem
Ermreichen von b.,b* konstant hilt oder wie urspriinglich definiert fortsetzt.
Wichtig fiir die Bewertung des Double-Barrier-Knockout-Calls ist es aber, dass
sich fiir Z(f)e(b*-Ay, b*) oder Z(f)e(bs, b ++Ay) auch die Ubergangswahrschein-
lichkeiten im modifizierten Baum 4dndern.

Satz 13
a) Gilt ¥(z,)=y" mit y*e(b"-Ay, b"), so gilt

o= el =" -asller) =) -.S(;(;i{(;.‘fly)-

Mit Wahrscheinlichkeit 1-¢* erreicht Z(7,,,) den Wert 4*, und die Option ver-
fillt wertlos.

b) Im Fall Y(Tn)=yt mity.e(b.,b.+Ay) gilt
_ - _) o se)-s(ee)
gs = P(Z(t,,_,,l) =ys +Ay| Z(‘r,,) —y.) = s(y. +Ay)—-s(b.) .
Mit Wahrscheinlichkeit 1-g. gilt Z(7,,{)=bs, und die Option verfilit wertlos.

Beweis:

Analoges Vorgehen zum Beweis von Satz 12. Lediglich die Randbedingungen
sind jetzt in y*-Ay und b* (bzw. b4 und y.+Ay) zu stellen. 0
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Fligt man die beiden letzten Sitze zusammen, so erhilt man eine Rekursion zur
Berechnung des Erwartungswertes der Endzahlung bei gegebener Anzahl der
Auf- und Abwiirtsbewegungen von Z(?).

Proposition 14

Die erwartete Endzahlung W(k, y) der Option im Binomialmodell bei gegebener
Anzahl keNU{0} der Aufwirts- und Abwirtsbewegungen von Z(7) auf [0,7]
und gegebenen Anfangswert Z(0)=y € (b«,b") lisst sich induktiv gemiB

¥(0)=(e” -,
‘~I’(n+ l,y) = q(y)-‘l’(n,y+Ay) +g(y) -‘I’(n,y—Ay) ,n=0,1,2,..,

berechnen. Hierbei sind die Wahrscheinlichkeiten q(y) fiir ye(bs+Ay, b*-Ay)
durch g aus Satz 12 gegeben. Fiir die gleichen y gilt g(y)=1-¢(y). Fiir
y€(bs, batAy) gilt g(y)=0 und ¢(y) ist durch g. aus Satz 13 b) gegeben. Fiir
ye(b*-Ay, b°) ist g(y)=0 und g(y) durch ¢* durch aus Satz 13 a) gegeben.

Beweis:

Beachtet man, dass das jeweilige Nullsetzen von g(y) an der oberen bzw. g(y) an
der unteren Grenze des Baums bewirkt, dass Pfade, bei denen die Option wertlos
verfillt, nicht in den Optionspreis eingehen, so folgt die restliche Behauptung
aus den beiden vorausgegangenen Sitzen. |

Zur Berechnung der abgezinsten erwarteten Endzahlung der Option im modifi-
zierten Binomialmodell,

£(8Y) (e"TBAy') = i Plo=n)-¥(n,y)-e7,

n=0

fehlt nur noch die Verteilung der Anzahl v der Auf-und Abwirtshewegungen im
Binomialmodell. Wegen der Beziehung

{a)lu(w) _>.n} = {mlr,,(w) < T}
Idsst sie sich aus der Verteilung der 7, bestimmen:

Plo=n)=Plo<n)-Plosn-1)=P(r, 2T)- Pt,, 2 T).

Hierzu beachte man den folgenden Satz:
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Satz 15

a) Die Zufallsvariablen {z,,1-7,},cnuqo) sind unabhiingig und identisch verteilt
mit Laplace-Transformierter

_ fomam) Moy
ol3)= Ble™*7)- cosh{y Ay)
mit y:= r——%a'z, yi= ——————W,A>0.
g

Ay

b) E(rl)=7 tanh(LZ-Ay) fiir 0.

g
2 2
E(?) =2{E(n))" + aﬂé\y -tanh(diz) A y-(—%—') fiir 410,

€) 7,417, ist unabhingig von £ ..

Beweis:

a) Analog zum Beweis von Satz 12 erhilt man ¢(4) als explizite Losung des
Randwertproblems

—;-azg"(z) - ug'(z)- 2g(2) =0 furalle ze(y-Ay,y+Ay)
glr-ay)=1, gly+ay)=1 )
Hierfiir ist lediglich f(¥(r,)) durch g(¥{r,))-e™" zu ersetzen.

b) Differenzieren von ¢(4) liefert die explizite Form von E(7), E(7 2) (siehe
auch Ubung U.14).
¢) Wie im Beweis von Satz 12 kann man sich auf den Fall n=0 zuriickziehen. Es
gilt:

E(e*) =g-B(e"*]4 = y+ Ay)+(1-9)- B[] = y - 2y)

Analog zum Beweis von a) (bzw. von Satz 12) erhdlt man

gly)=q-E(c g =y +4y)
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durch Losen des Randwertproblems (3) in a), wobei man aber nun die Randbe-
dingungen
g(y-—Ay) =0 , g(y+Ay) =1
wihlt. Aus der expliziten Form von g(y), ¢(4), und q erhilt man dann
E(e";'") = E(e"’”‘ |&=y+A y) .
Analog zeigt man
Ee*7) = E(e'h' l6=y- Ay).

d.h. bedingte und unbedingte Laplace-Transformierte stimmen iiberein, woraus
die behauptete Unabhingigkeit folgt. ]

Da 7, = Z;':l(r,- - 1',-_1) gilt und die Summanden unabhingig und gleich ver-
teilt sind, folgt aus dem zentralen Grenzwertsatz

Tn ""'E(Tl) n—w
Jn~Var(rl)
woraus sich fiir groBe n die Verteilung der 7, approximativ bestimmen lie8e.

Diese Niherung ist aber fiir kleine n zu ungenau' Statt dessen verwenden Rogers
und Stapleton das folgende Resultat aus Petrov (1995), das wir hier nur angeben:

»N(0,]) in Verteilung,

Satz 16
Es gilt
—-n- E(Tl) ]= (I)(x) 1 -X )e o( )
1’n Var 1'1 727m
mit
3
o gl 2w
> Var(rl) ,

wobei @ die Verteilungsfunktion der Standard-Normalverteilung bezeichnet.
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Mit Hilfe der Laplace-Transformierten ¢(4) aus Satz 15 lisst sich (fiir z=0) a3
berechnen als:
Ay-(4+B- c)

(,,2) “(s(ay)-1
A=12L Ay(s(28) + s(Ay)),
B=8.(4)" (4 (s(45) -(287).
C=3-(1+5(Ay)-5(24y) - 5(34y)).

Fassen wir das gesamte Vorgehen zusammen, so erhalten wir

Algorithmus: Verfahren nach Rogers und Stapleton

1. Zu gegebenem Startwert y=In(P,(0)) und gegebener Genauigkeit Ay berechne
»alle* Werte

Wk, y) , ke NO{0}
_gemﬁB Proposition 14.

2. Berechne P(v=n)=P(z,>T)-P(z,_,2T) approximativ aus der Vertellung von
{,}, mit Hilfe von Satz 16 (unter Vemachlassngung der o(n~1/2) -Terme).

3. Bestimme

E(Ay) (e_rTBAy) = i Plo=n)- ‘I’(n,y) rat

n=0
als Naherung fiir Ejy(e™ TB).

Statt ,,00* oder ,,alle” ist in allen drei Schritten ein hinreichend grofies N >>1 zu
wihlen.

Konvergenz des Verfahrens

Da fiir festes Ay >0

o.;ugrll’(t) - Z(t)l <Ay
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gilt, folgt die gleichmiBige Konvergenz von Z(¢) gegen Y(¢). Mit Hilfe dieser
Abschitzung lisst sich je nach Typ der Option sogar eine Fehlerabschitzung an-
geben. So gilt im Fall des Double-Barrier-Knockout-Calls, wobei wir der
Einfachheit halber 5*>/n(K)>b. annehmen, die Fehlerabschiitzung

lngll "BAyl - (eY(T) -K)+ _(ez(r) -K)"

’ l{Y(t)e(bu.,b‘) fiir alle te[O,T]}

e - (e

vt
Sm{y(r) .f["zf.'(xxw)l(e“n k) (2D &)

nr)%n(K)J(eY(T) - K) - (eZ(T) - K) '

2

}

< max{(eb' —et*-ay ) K-e® -k }

= max{e?(1-¢787) k(e -1)}

woraus sofort die Konvergenz des Verfahrens fiir Ay—0 folgt.

Vorteile des Verfahrens

Ein konzeptioneller Vorteil des Verfahrens ist darin zu sehen, dass die Pfade des
approximierenden Prozesses Z(f), 1€ [0, 7], gleichmiBig gegen die Pfade Y(?),
te[0,7], des Logarithmus des Preisprozesses konvergieren. Die entscheidende
Konsequenz hieraus ist die explizite Fehlerabschitzung. Ein weiterer Vorteil des
Verfahrens ist seine Flexibilitit. So lassen sich die Knoten im Binomialbaum so
wihlen, dass im Fall des Double-Barrier-Knockout-Calls die Option genau dann
wertlos im modifizierten Binomialbaum verfillt, wenn sic auch im Black-
Scholes-Modell verfillt. Dies lisst sich im Binomialmodell nicht ohne weiteres
durchfiihren, da ja die Momentenbedingungen erfiillt werden miissen. Ins-
besondere wird durch die Anpassung des Binomialbaums im Verfahren von
Rogers und Stapleton der ,,Ségezahneffekt“ bei der Konvergenz fiir wachsende
Feinheit Ay—0 vermieden. Numerische Beispiele fiir das Verhalten des Algo-
rithmus und seine Anpassung auf andere Optionstypen sind in Rogers und
Stapleton (1998) beschrieben.
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Nachteile des Verfahrens

Das Verfahren ist konzeptionell recht aufwendig und insbesondere schwerer ver-
standlich als das einfache Binomialmodell. Es ist auch rechenintensiver als das
einfache Binomialmodell, kann aber in Bezug auf Effizienz mit diesem vergli-
chen werden, da es in der Regel genauere Ergebnisse liefert.

Ubungsaufgaben

U.1  Man zeige, dass mit den Bezeichnungen aus dem Beweis von Proposition
1 gelten:

IL1=hR (t)q)(pl) (g 1.1y (t))
I, =K -0 g(e1) (22005, ()

U.2 Man beweise Lemma 2.

U.3  Man fiihre die Berechnung des Preises der Wahl-Option mit Laufzeit T
und Endzahlung

By = mas{ x5 (D7), X £ (R, 7))
explizit durch.

U4 Im zweidimensionalen Black-Scholes-Modell sei O, das eindeutige Mar-
tingalmaB fiir Py(#), P;(#), Py(f), wenn P(¢) als Numeraire verwendet wird.

a) Bestimme die Radon-Nikodym-Dichte von Q; bzgl. P.
b) Zeige, dass

((bl ~r)oyn —(b2-r)o, i )t
1
011922 —012021
((bz -r)oi - (6 -r)on o )t
12

011022 — 012021

W(l)(t) =w(t)+

eine Q,-Brownsche Bewegung ist.
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U.5 Mit den Bezeichnungen aus Proposition 3 zeige man die folgenden
Gleichheiten

2) X24(0) = XS (0) + Ke™'T — p@(d3(0)) - p,®(d4(0))

XCaII (0) CaII(O) +X Call _ XCaII

{0 @
o) X u(0)=x(" O+ x5 - x5
Hinweise: zu a) Zerlege die Endzahlung des Put in

(min((7), (1)) - K) " + K — min(B(D), P5(T))

und verwende die bereits bewiesene Formel fiir einen Call auf das Minimum mit
Ausiibungspreis 0. Zu b), c) Verwende die bekannten Bezichungen zwischen
dem Minimum und Maximum reeller Zahlen.

U.6 Fiihre die expliziten Rechnungen zur Bestimmung des Preises X, C2/(0)
des europiischen Down-and-Out-Calls durch.

U.7 Berechne den Preis X;,P#/(0) eines europdischen Down-and-Out-Puts.
U.8 a) Zeige, dass das Binomialmodell bestehend aus einer Aktie und dem
Bond vollstindig ist, und berechne das zugehérige Martingalma8 Q,,.

b) Zeige, dass sich der Preis einer Option B im Binomialmodell als EQn(e“' B)
ergibt.

U.9 Zeige durch ein Beispiel, dass ein europdischer Call im Trinomialmodell
im allgemeinen nicht durch eine Handelsstrategie in Bond und Aktien dupliziert
werden kann.

U.10 Man gebe im Ein-Perioden-Modell zwei verschiedene 4quivalente Mar-
tingalmaBe an.

U.11 Fiihre die Beweise der Aussagen a) und b) von Satz 15.

U.12 Leite Teil b) von Lemma 4 unter Verwendung des Satzes von Girsanov
aus Teil a) von Lemma 4 her.

Hinweis: Beachte, dass ﬁ’( ) QO-Brownsche Bewegung ist, betrachte dann
O(W(t)<w, M(t)<x) und rechne diesen Wert mit Hilfe der Dichte von Q bzgl. P
explizit aus.
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U.13 a) Bestimme im Binomialmodell die Parameter u, d, g, wenn man zusitz-
lich zu den Momentenbedingungen IV.3 (1) und (2) die Beziehung u=1/d for-
dert. ;

b) Cox, Ross und Rubinstein (1979) schlagen vor,
u=ea‘IK; , d=e_°"[A—‘

zu wihlen. Zeige, dass bei dieser Wahl zwar die Forderung IV.3 (1) aber nicht
IV.3 (2) erfiillt ist. Wie ist die linke Seite von IV.3 (2) zu wihlen, damit bei obi-
ger Wahl von u, d auch IV.3 (2) erfiillt ist? Wie ist diese linke Seite zu interpre-
tieren ?

U.14 Sei 7, definiert wie in Abschnitt IV.5, siche auch Satz 15. Berechne E(7;)
und E(7;2).
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Kapitel V: Optimale Portfolios

V.1 Einleitung und Aufgabenstellung

Bisher haben wir im zeitstetigen Marktmodell Portfolios zusammengestellt, um
ein gegebenes Auszahlungsprofil zu erzeugen (duplizieren) oder eine Mindest-
auszahlung bereitzustellen (Hedging-Strategie). Die Kosten der Duplikation
bzw. der Hedging-Strategie bestimmten dann den Preis dieses Auszahlungspro-
fils. Nun aber wollen wir umgekehrt vorgehen und zu einem gegebenen festen
Anfangskapital ein zulidssiges, selbst-finanzierendes Paar aus Portfolio- und
Konsumprozess suchen, das uns einen méglichst vorteithaften Zahlungsstrom
liefert. Eine dhnliche Aufgabe hatten wir uns schon ganz zu Beginn des Buches
gestellt, nmlich im Ein-Perioden-Modell. Dort suchten wir unter anderem eine
Portfoliozusammenstellung, die uns eine moglichst groBe Rendite des Portfolios
liefert, deren Varianz aber unter einer bestimmten Schranke liegt. Diesmal wol-
len wir das Problem allgemeiner angehen und betrachten dazu das sogenannte
Portfolioproblem.

Allgemeine Formulierung des Portfolioproblems

Das Portfolioproblem eines Investors in einem Finanzmarkt besteht darin, zu
gegebenem Startkapital x>0 eine optimale Investment- und Konsumstrategie zu
bestimmen. Das heiBt, er muss festlegen (in Abhingigkeit von den Preisverliu-
fen der Wertpapiere), wie viele Anteile er von welchem Wertpapier wann halten
muss und wie viel Vermégen er wann konsumieren darf, um seinen Nutzen aus
Konsum im Zeitraum {0, 7] und/oder Endvermégen im Zeithorizont =T zu
maximieren. Das Portfolioproblem setzt sich also aus einem Auswahlproblem
(,,welche” Wertpapiere), einem Mengenproblem (,,wie viele“ Anteile, ,,wie viel“
Vermogen) und einer zeitlich dynamischen Komponente (,,wann“) zusammen.
Wir wollen hierbei erlauben, dass der Investor in jedem Zeitpunkt z e [0, 7] iiber
seine Handlungen entscheiden darf. Thm sollen als Informationen im wesent-
lichen die Kenntnis der Aktienpreise der Vergangenheit zur Verfiigung stehen.
Er besitze keinerlei Kenntnis zukiinftiger Preise oder Insiderinformationen.
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Allgemeine Voraussetzungen fiir dieses Kapitel

Wir iibernehmen hier die Voraussetzungen von Kapitel II, Abschnitt II.2,
Seite 64.

AuBerdem gelte: das selbst-finanzierende Paar (7,c) bestehend aus einem
Portfolio-Prozess 7und einem Konsumprozess ¢ sei zuldssig fiir das Startver-
mogen x>0, also (7, c) € A(x) (siehe Definition 11.47).

Lisungsansiitze im zeitstetigen Marktmodell

Man unterscheidet im wesentlichen zwei Anséitze zur Lésung des Portfoliopro-
blems im zeitstetigen Marktmodell aus Kapitel II. Der in zeitlicher Abfolge erste
Losungsansatz ist die Methode der stochastischen Steuerung und geht auf Robert
Merton (1969,1990) zuriick. Die Hauptidee Mertons besteht in der Interpretation
des Portfolioproblems als ein stochastisches Steuerungsproblem, auf das sich
dann anschlieBend Standardmethoden der zeitstetigen stochastischen Steuerung
anwenden lassen. Wir werden diese Methode in Abschnitt V.4 — nach einem
vorausgehenden Exkurs zur stochastischen Steuerung — vorstellen. Aus der Me-
thode der stochastischen Steuerung heraus wurden in den letzten Jahren auch
Methoden zur Behandlung des Portfolioproblems unter Transaktionskosten ent-
wickelt (siehe z.B. Komn (1997)), worauf wir in diesem Buch aber nicht mehr
eingehen werden.

Die sogenannte Martingalmethode stellt den zweiten Hauptansatz zur Losung
des zeitstetigen Portfolioproblems dar. Sie wurde in den 80’er Jahren von Cox
und Huang (1989), Karatzas, Leboczky und Shreve (1987) und Pliska (1986) in
verschiedenen Varianten eingefiihrt. Gemeinsamer Bestandteil dieser Varianten
ist die Zerlegung des Portfolioproblems in die Berechnung der optimalen Aus-
zahlungen (Konsum und/oder Endvermégen) mit Methoden der konvexen Ana-
lysis und der anschlieBenden Bestimmung eines zugehéorigen Portfolioprozesses.
Die Existenz dieses Portfolioprozesses ist im vollstindigen Marktmodell aus Ab-
schnitt II.3 durch Satz 11.48 sichergestellt. Wir werden die Martingalmethode im
Abschnitt V.2 vorstellen und im Abschnitt V.3 eine Anwendung auf das Portfo-
lioproblem geben, wenn statt Aktien Optionen gehandelt werden.

Aufgabenstellung

Um einen Zahlungsstrom objektiv beurteilen zu konnen, fiihren wir ein Funk-
tional J ein, das den Nutzen aus dem Zahlungsstrom misst. Ein ,,moglichst vor-
teilhafter Zahlungsstrom® ist dann einer, bei dem das Funktional einen méglichst
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groBen Wert annimmt. Man sucht also nun zu einem vorgebenen Anfangs-
vermbgen x>0 einen selbst-finanzierenden Portfolioprozess (r,c) e A(x), der
den erwarteten Nutzen aus Konsum und/oder Endvermogen

J(x;:r,c) = E[?Ul (t.c(t))dt +U, (X(T))]

maximiert, wobei X(7) der zu x und (7, c) gehérende Vermdgensprozess ist, und
U;, U, Nutzenfunktionen gemiB der nachfolgenden Definition sind.

Definition 1
a) Die Funktion U:(0,20)—R sei strikt konkav, stetig differenzierbar und es gelte
U'(0) := IiIgU'(x) =+w, U'() := lim U'(x)=0.
X x>0
Dann heifit U eine Nutzenfunktion.

b) Die Funktion U: [0, T]x(0,:0)—>R sei stetig, so dass fiir alle te[0, 7] die Funk-
tion U(t,.) Nutzenfunktion im Sinne von a) ist. Wir nennen dann U ebenfalls
eine Nutzenfunktion.

Beispiele fiir Nutzenfunktionen
a) U(x) = in(x)

b) U(x)=+x

¢) U(x)=x* fiir O<a<1

d) U(t,x)=e” .U;(x) , p>0 , U; Nutzenfunktion wie z.B. in a), b).

Bemerkungen zur Gestalt der Nutzenfunktion

a) Nach der Definition oben ist die Nutzenfunktion U streng monoton wachsend.
Somit fiihrt jede zusiitzliche Einheit an Vermégen auch zu mehr Nutzen. Zusitz-
lich verlangen wir von einer Nutzenfunktion, dass sie strikt konkav ist, was ins-
besondere bedeutet, dass U'(x) streng monoton fillt. Damit liegt ein abnehmen-
der Grenznutzen vor, d.h. der Nutzenzuwachs aus einer zusitzlichen Geldeinheit
nimmt mit wachsendem x ab. Der Grenznutzen in x=0 ist unendlich, nach dem
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Motto ,,wenig ist sehr viel besser als gar nichts®, und verschwindet in x=o0, was
man als ,,Sittingungseffekt* bezeichnen kann.

b) Man kann die im folgenden vorgestellten Methoden zur Portfolio-Optimie-
rung auch auf eine groBere Klasse von Nutzenfunktionen als die in Definition 1
eingefiihrte anwenden. Diese Klasse wiirde z.B. auch die populire, aber theore-
tisch stark kritisierte quadratische Nutzenfunktion

U(x)= -—(x -a)’

beinhalten. Allerdings wiirde die benétigte Notation viel komplizierter. Eine um-
fassende Behandlung solcher Nutzenfunktionen findet man z.B. in Korn (1997).

Damit der Erwartungswert in J(x; 7, c) existiert, kénnte man fordern, nur solche
Portfolioprozesse (r,c) zu betrachten, bei denen er endlich ist. Allerdings wire
ein unendlicher Nutzen das Ziel jeden Investors, falls er ihn erreichen kénnte.
Wir fordern daher von einer zuldssigen Strategie (,c) nur eine schwiichere
Integrierbarkeitsbedingung

Definition 2
Das Problem

(It' c)eA'(x) J(x’ w C)
mit (P)

T
A'(x) =4(7.c) e Alx E( j'U, (t.c0) dr + UZ(X(T))'] <o
0

heiBt das (zeitstetige) Portfolioproblem.

Bemerkungen
i) Mit der Einschrinkung auf die Menge A(x) ist das Integral immer definiert
und der Erwartungswert existiert, kann aber auch unendlich werden.

ii) Im Fall positiver Nutzenfunktionen, U;(z,.)>0 und U,(.)>0, gilt trivialer-
weise A(x)=A4"(x).
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Es werden im folgenden zwei Methoden zur Losung des Portfolioproblems vor-
gestellt. Hierbei basiert die erste Methode, die Martingalmethode, ganz wesent-
lich auf der Volistindigkeit des Marktes, wihrend die zweite Methode, die Me-
thode der stochastischen Steuerung, eine Anwendung von Standardmethoden aus
der Theorie der stochastischen Steuerung auf das Portfolioproblem (P) ist.

V.2 Die Martingalmethode

Allgemeine Voraussetzungen fiir diesen Abschnitt

‘| Wir iibernehmen zusitzlich hier die Bezeichnungen aus Abschnitt I1.3, Seite
74. Insbesondere gelte d=m. Damit sind die Voraussetzungen zu Satz 11.48
iiber die Vollstindigkeit des Marktes erfiillt.

Die Idee

Die Martingalmethode basiert im wesentlichen auf einer Zerlegung des zeitlich
dynamischen Problems (P) in ein statisches Optimierungsproblem (,,Bestim-
mung des optimalen Auszahlungsprofils*) und in ein Darstellungsproblem (,,Be-
rechne den zum optimalen Auszahlungsprofil gehdrenden Portfolioprozess®).

Motivation

Zunichst betrachten wir ein Portfolioproblem ohne Konsum, also ¢=0 und
U;=0. Das selbst-finanzierende Paar (7 0) mit dem Portfolio-Prozess 7 sei zu-
ldssig fiir das Startvermdgen x>0. Mit Satz I1.48 iiber die Vollstindigkeit des
Marktes gilt dann fiir den zugehérigen Vermdgensprozess X7 (7):

E(H(1)x™(1)) < x fir 720,
Die Endzahlung B>0 sei Fp-meSbar mit E(H(T)B)=x. Solch eine Zufallsva-
riable gibt es immer, dazu wihlt man z.B.

X

E(H(T))”

Nach Satz I1.48 existiert dann ein Portfolioprozess (7, 0)eA(x) mit B=X%T)
P-fast sicher. Definiere nun

=
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B(x) := {B > o| B Fr —meBbar, E(H(T)B) < x, E(U2 (B)') < oo}

Offensichtlich stellt B(x) die Menge aller mit Anfangsvermégen aus (0, x] erziel-
barer Endvermégen dar, fiir die E(U,(B)~)< gilt. Um also das optimale End-
vermébgen X”{T) fiir unser Portfolioproblem

(s Der () {va(x7 (@) . ®

zu bestimmen, reicht es, iiber alle Be B(x) zu optimieren, d.h. das Problem

o E(v,(B)) ©)

zu losen. Man beachte, dass in (O) nur noch iiber eine Menge von Zufallsva-
riablen zu optimieren ist. Die zeitliche Dimension von (P) (es wurde ja iiber Pro-
zesse (7, 0)eAd ’(x) maximiert) ist verschwunden, weshalb wir (O) als ein sta-
tisches Optimierungsproblem bezeichnen. Ist nun B* ein optimales Endverms-
gen fiir (O), so muss zur vollstindigen Losung des Portfolioproblems nun noch
das Darstellungsproblem

o Finde ein (7, 0) € 4'(x) mit X(T)=B" P- fast sicher (D)
gelost werden.

Um die Losung des Problems (O) zu motivieren, wiederholen wir kurz die ge-
wohnliche Lagrange-Methode der Optimierung aus der Analysis:

Lésen von Optimierungsproblemen mit Hilfe der Lagrange-Methode

Die Funktion f:R”—R sei strikt konkav und g:R”—)R" konvex, f,geC!. Dann
gilt:
X lost das Optimierungsproblem
max f{x
xeR" f( )
NB g(x)=0

< Esgibtein A eRF, so dass fiir (fi) eR™F gilt

2 -3 L =0 | ity
5x,- j=1 J 5x,- ’ i
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g,-(x) =0 , i=1,..,k

In Worten: (J'c‘, i) eR"™* ist die Nullstelle der Ableitung der Lagrange-Funktion
L(x, Z.) =f (x) - Z,'g(x) .

Die Lagrange-Methode im Portfolioproblem - Motivation

Wir definieren nun fiir das Optimierungsproblem (O) das Analogon zur La-
grange-Funktion als

L(B,y) := E(Uy(B)-y-(H(T)B-x))

mit y>0. Formales Differenzieren von L nach B und y auf der linken Seite und
Differentiation auf der rechten Seite liefert die Gleichungen

0=Lg(B,y)= E(UQ(B) - yH(T )):
0=L,(B.y) = x- E(H(T)B).

Wir wollen diese Vorgehensweise nicht rechtfertigen, sondern sie nur verwenden,
um die Form des optimalen Endvermégens heuristisch herzuleiten. Ein B mit

Uj(B)-yH(T) =0 P-fast sicher

wiirde die erste Gleichung lésen. Da U, ’(.) nach Annahme ganz R* als Bild be-
sitzt und streng monoton fallend ist, ist U, (.) auf R* invertierbar und wir er-
halten

B=(v3)" (D). )

Nun setzen wir dies in die zweite Gleichung ein:
0=x- £ H@D-(3) (v HD)) .

= 2{y)

Kann man nun diese Gleichung eindeutig nach y auflésen, so hat man iiber (1)
einen moglichen Kandidaten fiir das optimale Endvermogen gefunden. Wir defi-
nieren deshalb

Y(u):= z7'(u) , I, :=( Ué)-l

und erhalten als méglichen Kandidaten fiir das optimale Endvermdgen
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B™ = I,(¥(x)- H(T)) >0.

Unser Ziel wird es nun sein, zu beweisen, dass B” tatsdchlich optimal ist.

Bezeichnungen
Wir definieren analog zu oben :
L) = (v;)" () fiir ye(0,%),
L (t, y) = (U{)-I(t, y) fiir ye(0,0) , ¢ fest,

T
2y) = E( [HOL(e,y- HO)dt + HOI(y- H(T))]
0

wobei U, (.,.) die partielle Ableitung von U} nach x, also nach der zweiten Kom-
ponente, bezeichnet. ’

Die Eigenschaften von y(y) werden im folgenden Lemma zusammengefaBt:

Lemma 3
Es gelte y(y)< fiir alle y>0. Dann ist y auf (0,%0) stetig, streng monoton fal-

lend mit
HO)= pab) == . 2(s)= Im 20)=0.

Beweis:

i) Stetigkeit von y folgt aus der Stetigkeit von H, I, I, und dem Satz von der do-
minierten Konvergenz.

ii) 13(¢,.), I5(.) sind streng monoton fallend auf (0,%). Da H(#)>0 fiir alle &[0, 7]
gilt, ist somit auch y(y) streng monoton fallend in y.

iii) Wegen
limI)(t,y) = lim I,(y) =+ und lim I (t,y) = lim I;(y)=0
yio yio e y—>oo :

und der Monotonie von /;, I, folgen die Aussagen iiber (0) und y() aus dem
Satz iiber die monotone Konvergenz. ]
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Bemerkung
Aus Lemma 3 folgt insbesondere, dass
Yo) = 77\(x)
auf (0,%0) existiert mit
¥(0) := )I‘%Y(x) =+ und ¥():= lim ¥(x)=0.

X—w
Das folgende einfache Lemma wird ein wichtiges Werkzeug fiir den Beweis des

Hauptsatzes der Martingalmethode sein:

Lemma 4
U sei eine Nutzenfunktion mit /:=(U°)~!. Dann gilt
(1) U(e) (1)) o<y x<o

Beweis:
Da U konkav ist, gilt

U(I(y)) > U(x) + U’(I(y))(l(y) —x) = U(x) +y(I(y) —-x) |

Jetzt sind wir soweit, das Portfolioproblem zu 18sen:

Satz 5 - Optimaler Konsum und optimales Endvermégen

Gegeben sei das Portfolioproblem (P). Es sei x>0 und y(y) < fiir alle y>0.
Setze ¥(x) := 7~ 1(x). Dann existiert zu

B":= Iz(Y(x)-H(T)) ,  yoptimales Endvermogen*
c"(f) = I(.¥(x)-H(t)), optimaler Konsum“

ein selbst-finanzierender Portfolioprozess 7' (f), t€[0, T], so dass
(z*.c")ea'x) , X*™*(1)=B" P-fastsicher

gelten und (z*,c*) das Portfolioproblem (P) lost. Dabei sei X%#"¢*(¢) der zu
(#*,c*) mit Anfangsvermdgen x gehdrende Vermogensprozess.
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Beweis:

i) Per Definition von B*, c*(#) gilt

EﬁH(t)c'(t) dt + H(T)B'] =x
0

Man beachte, dass ¥(x)-H(#)>0 gilt und wegen I;, I,>0 auch B* und c* positiv
sind. Die Existenz eines Portfolioprozesses #* zum Auszahlungsprofil (c*(z), B*)
mit (7z*, c*)e4(x) folgt aus dem Satz I1.48 iiber die Volistindigkeit des Marktes.

ii) Als néchstes zeigen wir, dass fiir den bis auf Ununterscheidbarkeit eindeuti-
gen Portfolioprozess #* auch (#*, c*)eA (x) gilt. Nach Lemma 4 gelten

Uy(1.c”(0) 2 Uy (e) + 1) E(e)- (<) - 1),
Uy(B") 2 U5(1) + ¥(z)- H(7)(B" -1).

Daraus folgt mit der Beziehung
azb=a <b < Ibl

und der Tatsache, dass ¥(x)-H(f), B* und c* positiv sind, die Ungleichungskette
T

E| [u(e.c" @) ar+U,(B")
0

< Eﬁ(lul (2] + ¥G)- HOe* () +1))

0

+|u @+ YG)- H@)(B" +1))
T T
=|v2 )]+ fla(e1)|ae + Y(x)(x +E(H(T))+ jE(H(t))dt) <o

0

Fiir die letzte Abschitzung beachte man, dass U, (#,x) stetig und der Erwartungs-
wert E(H(#)) auf [0, T] beschriinkt ist.

iii) SchlieBlich zeigen wir die Optimalitit von (#*, c*). Gegeben sei nun ein be-
liebiger Portfolioprozess (7, c)e4 ’(x) mit Vermdgensprozess X%, Aus

Uy(1.¢ (1)) 2 Uy (.9 + ¥(x)- H(e)(c () - (1))
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Ua(B")2 Uy(a*7(1)) + ¥(x) - H(1)(B" - x*7(1))

folgt

EC[UI (e (9)ar + v, (B‘)J

> J(x; z, c) + Y(x)-(E[?H(t)c‘(t) dt+ H(T)B']
- E[ [H(e)el) e+ H(T)X""'"(T)D

T
= J(x; x, c) +Y(x) {x - E( IH(t)c(t) dt + H(D) X *™<(T )D
0

"

20
> J(x; zr,c) .

Fiir die letzte Abschéitzung beachte man den Satz I1.48 iiber die Vollstindigkeit
des Marktes. 0

Beispiel ,,Logarithmischer Nutzen“

Wir wihlen nun speziell den Logarithmus als Nutzenfunktion. Man beachte hier,
dass Werte kleiner 1 negativen Nutzen haben ! Es gilt nun:

U (t,%) = Uy (%) = In{x)
= 1(15)=10)=

= 2(y) = (IH dt+H(T) "_(_TTJ =%(T+1)

= Y(x) = ;("(x) = —;(T+ 1)

Hiermit und mit Satz 5 ergeben sich der optimale Konsum und das optimale
Endvermogen wie folgt:
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¢'(1)= 1(e ¥(x)- H(?) = Til O

B = IL(¥(x)- H(1)) = T+1 H(IT)

Wir kénnen in diesem speziellen Beispicl den Portfolioprozess explizit berech-
nen, denn nach Beweisteil b) von Satz 11.48 gilt:

. ¥ T
H(f)- X*7 < (t)=E[ IH(s)c*(s)ds+H(T)B'|1§J ' @

t

_ . I-t+1

- T+1

Daraus folgt
_ .T—t+l t x,m%c*
x=x 711 +x- T+l (t) X (t)+(‘!H (s)ds

Die It6-Formel, angewendet auf das Produkt H(?)-X*7"<*(f) auf der rechten Seite
der Gleichung, liefert nun (siche Beweisteil a) von Satz 11.45)

x= x+IH(s) X5 ()N (s) ols)-6(s) )dW(S)
=1(s)

Also muss
f(s)=0 P- fast sicher fiir alle s € [0, 7]

gelten. Da H(s)-X*7".¢*(s) positiv ist, ergibt sich somit
N1
#(0)=(o)’) Ay frallere(o,m.

Im Spezialfall d=1 und r, b, & konstant erhalten wir:

zt*(t) = b -2r »ielative lokale Risikopramie®.
o

Es ist an dieser Stelle wichtig, darauf hinzuweisen, dass die Einfachheit der
Form von 7#'(f) etwas Triigerisches hat, denn ein konstanter Portfolioprozess
7'(f) bedeutet, dass man dauernd handeln muss, da sich Aktienpreis und Bond-
preis verschieden entwickeln. Das konstante Verhéltnis (1-7)/ 7 von Bond- zu
Aktienvermégen wiire bei Verzicht auf Handlungen des Investors augenblicklich
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nicht mehr gegeben ! Aus (2) erhalten wir eine weitere Darstellung fiir die Kon-
sumrate:

*oN 1 X
e =g X0

Damit ist die Konsumrate proportional zum gegenwiirtigen Vermégens des In-
vestors und umgekehrt proportional zur Restzeit (7-7) .

Das Vorgehen im obigen Beispiel zur Berechnung von 7 lsst sich verallgemei-
nern. Es gilt nimlich:

Satz 6 - Lisung des Darstellungsproblems (D)

Gegeben sei das Portfolioproblem (P). Es seien x>0 und y(y) < fiir alle y>0,
c* und B* wie in Satz 5. AuBerdem gelte fiir ein fe CL2([0, T]xR%) mit
f0,0,...,0)=x die Bezichung

T -
—I;(I—J.E[,"H(s)c'(s)dHH(T)B*IE) =f(t,W1(t)....,Wd(t))
Dann folgt fiir € [0, T):

. 1 _
z (t)=ma l(t)V,‘f(t‘,Wl(t),...Wd(t)),

wobei V. fden Gradienten von f{¢, x;,...,x;) bzgl. der x-Koordinaten bezeichnet.
Beweis:

Mit der mehrdimensionalen It6-Formel I1.40 gilt

T .
7{(‘7). E( [H(s)e" (s)ds + H(T)B® F,J = (e mO,... )
t

0 i=1

t d
=f(0,...,0)+ J.[_ﬂ(s,Wl(s),...,Wd(s))+—;'foixl(s,Wl(s),...,Wd(s))ds}

dt
+ 2 [ £ (s ), Wy () i (s)

i=l g

Wie im Beweis des Satzes I1.48 iiber die Vollstindigkeit des Marktes gilt aber
auch
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71(%)_' E(?H(S)c'(s)df +H(T)B"|F, ] = XETC(y)
t
=x+ I (("(S) + 7;‘ (S)' (b(s) - r(s) . l)) Xx.ﬂ",c‘ (S) _ C(S)) ds
0

+ [x*7()a" (5) ols)am(s)
0

Fiir die letzte Gleichung beachte man, dass (7*, c*) selbst-finanzierend ist und
daher die Vermogensgleichung (VG), siche Abschnitt I1.2, gilt. Man vergleicht
nun die beiden Darstellungen bzgl. der dW-Koeffizienten. Aus der Eindeutigkeit
der Darstellung eines It6-Prozesses folgt die Behauptung. o

Mit Hilfe des Beweises von Satz 5 lassen sich auch die Losung des réinen Kon-
sumproblems sowie des reinen Endvermégenproblems angeben.

Korollar 7
a) Das optimale Endvermégen B* im Problem

(s D) (v (x=)) ®
ist durch '
B":= I,(¥(x)- H(T))

gegeben, wobei in der Definition von y(y) dann I;(#, y)=0 zu setzen ist.
b) Der optimale Konsumprozess c*(f) im Problem

T
3% E(éful (t.c2) dt] X)

c"(t) == n(e.¥(x)- H(r))

gegeben, wobei in der Definition von #(y) dann I,(y)=0 zu setzen ist.

ist durch
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V.3 Optimale Portfolios aus Optionen

Als eine Anwendung der im vorausgegangenen Abschnitt vorgestellten Martin-
galmethode der Portfolio-Optimierung im vollstindigen Markt, wollen wir nun
ein Portfolio-Problem betrachten, in dem statt Aktien Optionen auf diese Aktien
gehandelt werden (siehe auch Korn und Trautmann (1998)).

Allgemeine Voraussetzungen fiir diesen Abschnitt

Wir iibernehmen hier die Bezeichnungen aus Abschnitt I1.3, Seite 74. Insbe-
sondere gelte d=m. Damit sind die Voraussetzungen zu Satz I1.48 iiber die
Vollstidndigkeit des Marktes erfiillt.

Weiter beschridnken wir uns auf konstante Marktkoeffizienten , b, o

Beschreibung des Marktmodells

Wir betrachten nun einen Markt, an dem als Wertpapiere ein Bond, d Aktien und
d Optionen auf diese Aktien gehandelt werden. Doch diesmal wollen wir unser
Portfolio nur aus Bond und Optionen zusammenstellen. Der Preisverlauf der
Optionen habe die Form

fOMRO,...50) i=1..d, fec?, )
wobei die jeweiligen Optionspreise die Bedingungen und Aussage von Proposi-

tion II.13 erfiillen (z.B. fiir europdische Puts und Calls im Black-Scholes-Mo-
dell erfiillt). Sei

olt) = (vo(e). 21(e).- a(r))

eine zulidssige Handelsstrategie in Bond und Optionen, d.h. die Integrale

t
I% (S) dPo (S)
0

t
[oi(s) (s, B(5)..... B, )
0
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seien definiert und ¢(7) sei F-progressiv messbar. Der zugehdrige Vermdgens-
prozess X(7) wird nun beschrieben durch

d
x0) = 0RO+ X oD, BO)..... B, ().

i=1

U sei eine Nutzenfunktion. Wir betrachten nun das Problem

mng(U(X(T))) (OP)

Motivation

Zur Motivation der Losung des Problems (OP) betrachten wir die folgenden
Schemata zur Darstellung der Losung des Portfolio- und des Optionsbewertungs-
problems

Schema 1 zur Optionsbewertung:

Optionspreis ¢————————— Endauszahlung
Egle"T3) 1
x*(0) ") X" (1)
Kosten derg il Duplikations-
Duplikation strategie

Ausgehend von der Endauszahlung B einer Option suchen wir den Preis der Op-
tion. Dazu duplizieren wir die Endauszahlung mit einer geeigneten Portfolio-
strategie, so dass deren Endvermogen genau der Endauszahlung entspricht. Die
Kosten der preiswertesten Duplikationsstrategie ergeben den Preis der Option.
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Schema 2 zur Portfolio-Optimierung mit Aktien :

?
Anfangsvermégen ——————— Optimales Endvermégen

x X7 (1)
B z (t)
Optimale > Duplikations-
Endauszahlung strategie

Gegeben ist ein Anfangsvermogen x mit dem wir (im einfachsten Fall) mit einer
geeigneten Portfoliostrategie ein optimales Endvermégen erzielen wollen, das
uns mdglichst grofen Nutzen verspricht. Zunichst bestimmen wir eine nutzen-
optimale Endauszahlung B* und suchen dazu die Duplikationsstrategie, die uns
das optimale Endvermogen liefert.

Schema 3 zur Portfolio-Optimierung mit Optionen :

?
Anfangsvermégen ~————————— Optimales Endvermégen

x x'(1)
l : qu = (eo(0).5())
B F=vl¢
Optimale Inversion der
Endauszahlung Duplikationsstrategie
\4 20 = (5. &(0) /
Duplikationsstrategie

in Bond und Aktien
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Wie oben suchen wir hier zu einem gegebenen Anfangsvermégen x ein nutzen-
optimales Endvermdgen. Wiederum bestimmen wir eine optimale Endauszah-
lung B*, zu der wir zunichst die Duplikationsstrategic mit Bond und Aktien
&O=(&(D;..., £f)) bestimmen. Da Aktien nun nicht in unserem Portfolio gehal-
ten werden sollen, wird die Aktienposition durch Bond und Optionen dupliziert.
Die so entstandene Bond-Optionsstrategie liefert das optimale Endvermégen
X*(T). Dies wird durch folgenden Satz formalisiert:

Satz 8
Die Delta-Matrix Y(@O=(Y (), 8 Jj=1,..., d mit
¥, o= fg)(t,ﬂ(t),...,Pd(t))
sei fiir alle ¢te[0, 7) reguliir. Dann besitzt das Options-Portfolioproblem (OP) die
folgende explizite Losung

a) Das optimale Endvermdgen B* stimmt mit dem optimalen Endvermégen im
zugehorigen Aktien-Portfolioproblem (P) iiberein.

b) Sei {#)=(&(D),....&A1) die optimale Handelsstrategie des zugehorigen Ak-
tien-Portfolioproblems (P). Dann ist die optimale Handelsstrategie ¢(f):=
(20(),2,(D),....,¢L1)) gegeben durch

#0)=(#)) " -0,

d
(X(:)—Zqo,-(t)f"" (t.Pl(t)....,Pd(t)))

=1

%(f) = R ( t) s
mit p(t) = (m(t),...,q)d(t)) und £(¢) := (g,(t),...,g,,(t)).
Beweis:

i) Nach Proposition II1.13 gilt

d
FERO.... s 0) = X #y@- P, i=1,..0d,
j=0

wobei



254 Kapitel V: Optimale Portfolios

d
FNe RG).... B 0) - D ¥ (P, (o)

Jj=1
FX0)

Da die Handelsstrategie (‘¥;o(f),'¥;;(?),...,¥;(?)) selbst-finanzierend ist, gilt au-
Berdem

Fio =

d
(e, 56, 0) = ¥;(0) aP; (o) .
Jj=0

Sei nun @ eine zuldssige und selbst-finanzierende Handelsstrategie in Bond und
Optionen. Dann gilt fiir den zugehdrigen Vermégensprozess

()= 000)- dR )+ 3 00 O AE)... P2 ).

i=1

Mit der obigen Darstellung der Optionspreise erhalten wir

dX(t)=[¢o(t)+i¢i(f)‘f’io(t))d1’o(‘)+i(i: ¢,-(:)v.-,-(t)JdP,-(t)

i=1 J=1\i=1

—Lol)dry )+ 3¢, )Py ),

J=l

also ist auch die Handelstrategie ¢ in Bond und Aktien selbst-finanzierend. Die
Zulassigkeit von ¢ im Aktien-Portfolioproblem ergibt sich dann aus der von ¢
fiir das Options-Portfolioproblem (und der Tatsache, dass ¥ Duplikationsstrate-
gie ist). "

ii) Sei &(¢) die optimale Handelsstrategie des zugehérigen Aktien-Portfolio-Pro-
blems mit Vermdgensprozess X(f), dann erhalten wir

X(T)= B P-fast sicher,
d

dx(t) = &) dry () + D, £ aP. (o) .
i=1

Um nun eine Handelsstrategie in Bond und Optionen zu erhalten, die den glei-
chen Vermégensprozess X{(f) besitzt, machen wir den Ansatz
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i=1

und erhalten mit Beweisteil i)

d d(ad
dx(e) = [(oo(t) +2.0, (0¥ jo(t)] dPy(e) +, (Z o; (0¥ (t)} dp(s).

j: i=1 j=l

Vergleich der Koeffizienten der dP-Terme beider Darstellungen von X(#) ergibt
die gewiinschte Form der letzten d Komponenten von ¢(f). Vergleich der d-Ko-
effizienten beider Darstellungen von dX(¢) liefert

20 = 20o(1)+ 30, %0(0).

Jj=1
Wegen
d df d
X0)-Y. £0R) X(f)-_f;[zle(t)‘l'ﬁ(t)]l’,-(t)
i=1 =L\J=
W)= - X0
gilt nun auch

d d
X(t) - Z Z ¢](t)‘l’ﬂ(t)ﬂ(t)

i=0 j=1
Py(e)

d d
xX0-Y. o j O (PR ()

= 7 ico
Po (t )

oo(8) =

d
X=X 0;01(t, RG)..... Py @)

J=1

Py (t) ’

woraus auch folgt, dass (¢y(9),9,(2),...,¢,(?)) selbst-finanzierend ist. Um zu zei-
gen, dass ¢(f) zulissig ist, reicht es, zu zeigen, dass die stochastischen Integrale
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dt

Y [odar (s, AG..... B4 (s)

=g

definiert sind. Wihlt man die Darstellung fiir die df-Terme, die explizite Form
fiir ¢(f) und die Zuldssigkeit der Strategie &) im Aktien-Portfolio-Problem,
dann erhalten wir die Zuldssigkeit im Options-Portfolio-Problem.

iii) Wir haben nun in ii) gezeigt, dass man mit Hilfe der Bond-Options-Strategie
@(f) den gleichen Nutzen wie im Aktien-Portfolio-Problem erzielen kann. Es
kann aber im Options- Portfolioproblem auch kein hoherer Nutzen erzielt wer-
den, da dann die zur optimalen Strategie gehdrende Bond-Aktien-Strategie ¢
(wie in i) ) auch im Aktien-Portfolio einen héheren Nutzen als £ erzielen wiirde,
was aber einen Widerspruch darstellt. |

Bemerkungen

a) Das optimale Endvermdgen hiingt unter den gegebenen Vorausseizungen nur
von der Nutzenfunktion ab, nicht aber von der Wahl der handelbaren Wertpapie-
re.

b) Die optimale Strategie hiingt sehr stark von den verwendeten Optionen ab,
nimlich iiber die Delta-Matrix (genauer: iiber die Duplikationsstrategie der Op-
tionen).
Beispiel ,,Logarithmischer Nutzen“
Als Nutzenfunktion wihlen wir

U (x) = ln(x) .

Wir betrachten hier speziell das Black-Scholes-Modell mit =1. Aus dem Bei-
spiel ,Jogarithmischer Nutzen“ im vorigen Abschnitt wissen wir, dass fiir dic
Aktienposition der optimalen Handelsstrategie gilt:
=()-X(1) b-r X()

A(2) o’ Al)
Somit ergibt sich fiir die optimale Handelsstrategie in Bond und Option in Ab-
hingigkeit von der Delta-Matrix die Strategie
b-r X (t)
o? W()-Al)’

a()=

oi(r) =
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Fiihrt man jetzt noch den Portfolioprozess in Optionen ein, so erhilt man noch
einige bemerkenswerte Konsequenzen:

a0 R0 p-r x@)-rO(R0)
X() T2 x@0)-w0-R0

Topt @ :=

_ b _ r f(l) (t P](t)) e f(l) (l B (t))
C o fLR0)-RO T (L RG) A6

wobei 7,(7) der optimale Portfolioprozess aus dem zugehérigen Aktien-Portfo-
lioproblem (P) ist. Der optimale Portfolioprozess in (OP) unterscheidet sich also
von dem in (P) nur um den Faktor

P (3:10)
e R0) RO
Insbesondere gilt:

@

Proposition 9
Im Black-Scholes-Modell mit d=1 gilt mit der Wahl U(x) = In(x) :
a) 7op(t) = 7 g1 () fiiralle 2 [0,7]
& fO(,B(:)=k-A(r) mit ciner Konstanten k< R\{0}.
b) Im Fall einer europiischen Call-Option gilt
Tope(f) < 7 44 (2) fiir alle 2 [0, T].
Beweis:
a) folgt direkt aus obiger Beziehung (2) zwischen Tope und 7y,
b) Es gilt
. R0) = (4 () RO - (25 () 7T .k
<o(d,)- RO = 1(1, BG)- B
Hieraus folgt mit (2) die Behauptung, da
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£9(, R )
) <1
700 R)-RG)

gilt. i

Bemerkung

Teil a) der Proposition 9 besagt, dass 7g,() im Black-Scholes-Modell nur im
entarteten Fall, dass der Contingent Clalm als Endzahlung gerade ein Vielfaches
des Aktienpreises ist, konstant ist. Teil b) besagt, dass fiir die Wahl einer euro-
piischen Call-Option das ins riskante Gut investierte Kapital im Options-Port-
folioproblem immer kleiner als im Aktien-Portfolio-Problem ist.

Beispiel

Wir betrachten jetzt einen europiischen Call mit den Marktkoeffizienten

r=0, 5=005, 0=025 T=1, K=100, Ry(0)=1.

™

[0
06 {
04 |

021

0

50 150 250 350 450 P1(0)

Bild V.1  Portfolio mit Optionen

Das Schaubild zeigt den Anteil des Portfolios, der in Aktien bzw. in Optionen,
{0) (dicke Linie) bzw. 7,;,(0) (gestrichelte Linie), investiert wird in Ab-
3e1t des Preises der Aktie P;(0) an. Wir beobachten :

¢ Je tiefer die Option im Geld ist (d.h. P;(0)>K ), desto stirker nahert sich
n'op,(O) dem optimalen Aktien-Portfolio 7,;,(0) an.
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e Je weiter die Option aus dem Geld ist (d.h. P;(0)<K ), desto kleiner wird

Exkurs 8: Stochastische Steuerung

Allgemeine Voraussetzung fiir diesen Abschnitt

X(#) sei ein n-dimensionaler It6-Prozess.

Eine stochastische Differentialgleichung der Form

dx(t) = u(t, X(¢),u(t))dt + o{t, X(¢), u(z))aw(z) (GSD)

wobei W(f) m-dimensionale Brownsche Bewegung und u(7) ein d-dimensionaler
stochastischer Prozess ist, der von uns gewihlt werden kann — die sogenannte
»Steuerung“ — heiit eine gesteuerte stochastische Differentialgleichung. Auf-
gabenstellung in der stochastischen Steuerung ist es, eine bzgl. einem Kosten-
funktional optimale Steuerung u(f) zu bestimmen. Bevor wir den Begriff der
Steuerung prazisieren und geeignete Bedingungen an die Koeffizientenfunktio-
nen der stochastischen Differentialgleichung formulieren, wollen wir zur Veran-
schaulichung ein simples Beispiel betrachten:

Beispiel - Maximieren des Erwartungswertes bei quadratischen
Steuerungskosten

Unser zu steuernder Prozess X(#) habe die Form

X(t) =x+ W(t) + ]u(s)ds

wobei W(?) eine eindimensionale Brownsche Bewegung ist. Als mégliche Steue-
rungshandlung konnen wir in jedem Zeitpunkt 7€ [0, T] die Intensitit u(¢) eines
HDriftprozesses”, d.h.

s
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wihlen. Wir nehmen an, dass durch die Wahl von u(?) Kosten der Form a-u?(f)
entstehen. Unser Ziel ist es, durch Steuerung einen moglichst hohen Wert von
X(T) fiir ein festes T>0 zu erhalten, wobei allerdings die Steuerungskosten ange-
messen zu beriicksichtigen sind. Wir betrachten deshalb das Problem, die Diffe-
renz

E[?a-uz(t)dt—b-X(TJ

0

mit a, b>0, durch optimale Wahl der Steuerung u#(f) zu minimieren. Wie man
sich leicht iiberlegen kann, gilt unter geeigneten Voraussetzungen an u(f)

E(X(T))=x+ E[?u(s) dsJ .

0

Man kénnte also die obige Differenz umschreiben in

E[Tj(a . uz(t) -b- u(t))dt ~b- x] .

0
Minimieren in u(f) unter dem Integranden liefert dann die optimale Wahl

* b
u (t) =25
Wir werden trotzdem im Folgenden dieses Beispiel zu Demonstrationszwecken
noch mal mit den hierfiir etwas iiberdimensioniert erscheinenden Methoden der
stochastischen Steuerung 16sen. Weitere Anwendungsbeispiele werden dann im
Abschnitt iiber ,,Portfolio-Optimierung mittels stochastischer Steuerung® gege-
ben.

Allgemeine Voraussetzungen fiir diesen Abschnitt :
Gegeben seien mit n,d e N
Qp := [to.1) xR" mit 0< £p< 1 <0
Qp := [to.n]xR"
UcR? abgeschlossen.
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Weiterhin seien die Koeffizientenfunktionen in (GSD)
u: Qg xU > R"
o: Qg xU —»R"™™

stetig und 44.,.,4) , o(.,.,u) seien in Cl(@]) fiiruel.
Zusiitzlich gelte mit einer Konstanten C> 0
|| +|s| < €, ou|+|o| < €
|,u(t.x,u)f + 'o{r,x, u)l < C-(i +|x] + |u|)

wobei || jeweils geeignete Normen sind (genauer: Euklidische bzw. Spektral-
norm).

Beispiele fiir Koeffizientenfunktionen, die diese Voraussetzungen erfiillen, sind
im Fall n=1 durch

,a(t,x,u) =ax+bu , a'(t,x,u) =cix+cu,
oder bei beschrinktem U durch

p(t,x,u) =a-x-u, a(t,x,u) =c-x-u
gegeben.

Schreibweise

Falls der Prozess X(s) die gesteuerte stochastische Differentialgleichung (GSD)
mit Anfangswert x im Startzeitpunkt ¢ 13st, dann schreibt man fiir dessen Erwar-
tungswert

E'*(x(s)).

Eine analoge Schreibweise verwendet man auch fiir Funktionen von X(s) (vgl.
auch S.136).

Definition 10

Sei (Q, F, {Fy}seft,n]» P) ein mit einer Filterung versehener Wahrscheinlichkeits-
raum. Ein U-wertiger, progressiv messbarer Prozess u(f), te[ty,¢,], heiflt eine
zuliissige Steuerung, falls fiir alle Werte x € R” die stochastische Differential-
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gleichung (GSD) mit der Anfangsbedingung X(f;)=x eine eindeutige Losung
{X(0} sefto,n), besitzt und

E[thu(s)lkds-] <o M
firallekeN sow;oe

E#(|xOf) = E“{ sup IX(s)!"J <w @
fiir alle ke N gelten. -

Bemerkung

a) Die obige Definition schrinkt die Menge zuléssiger Steuerungen stirker ein
als die iiblicherweise in der Theorie der stochastischen Steuerung gegebene De-
finition (vgl. z.B. Fleming/Rishel (1975) oder Fleming/Soner (1993)). Der
Hauptgrund hierfiir liegt in der Ursache, dass man fiir Existenzaussagen fiir eine
Ldsung der gesteuerten stochastischen Differentialgleichung bei Verwendung
der iiblichen Definition einer stochastischen Steuerung den Begriff der
schwachen Ldsung einer stochastischen Differentialgleichung benétigt. Wir
wollen sowohl diesen Begriff als auch die iibliche Definition einer zulissigen
Steuerung hier nicht angeben, da wir sie fiir unsere Anwendungen nicht benéti-
gen werden.

b) Beispiele zulissiger stochastischer Steuerungen im Sinne der Definition 10
sind alle beschrinkten, progressiv messbaren Prozesse mit stetigen Pfaden in U.
Hierbei folgt die Existenz- und Eindeutigkeit der Losung der zugehdrigen ge-
steuerten stochastischen Differentialgleichung aus Satz I11.15. Die iibrigen For-
derungen an eine zuldssige Steuerung sind aufgrund der Beschriinktheit der Pro-
zesse trivialerweise erfiillt. Die Klasse zuldssiger Steuerungen ist hingegen weit
groBer. Allerdings bendtigt man fiir explizite Beispiele weiterer Klassen zu-
lassiger Steuerungen allgemeinere Existenz- und Eindeutigkeitsaussagen fiir sto-
chastische Differentialgleichungen mit messbaren Koeffizientenfunktionen
Mtx,u), o(txu) oder aber explizite Annahmen iiber die Gestalt von /4.,.,.),
o(..,.) (siche z.B. Abschnitt 2.6 in Krylov (1980) oder Abschnitt 5.4 in
Fleming/Rishel (1975)). Mit Hilfe solch allgemeinerer Existenz- und Eindeutig-
keitsaussagen kann gezeigt werden, dass Forderung (1) zusammen mit den allge-
meinen Voraussetzungen Forderung (2) impliziert (siche z.B. Krylov (1980)).
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Aufgabenstellung und Begriffe

Wir wollen nun ein etwas allgemeineres Problem betrachten, in dem nur so lange
gesteuert wird, wie sich X(f) innerhalb einer vorgegeben offenen Teilmenge O
von R” bewegt. Hierzu sei entweder O=R” oder eine offene Menge, so dass der
Rand 80 eine kompakte, (n—1)-dimensionale C3-Mannigfaltigkeit ist.

(Beachte: O = OU J0). Setze

Q:= [to,tl)xa
0:= [to.41]x0
7= inf{t 2 tol(t,X(t)) EQ}

Wir betrachten das Kostenfunktional
J(tx;u) = E¥ ( _"L(s, X(s),uls)) ds + (7, X (r))]
t

mit den stetigen Funktionen L, ¥ als Kostenfunktionen, die den polynomialen
Wachstumsbedingungen

(e, x)) < [+ + ),
(e )] < 1+ 1)
mit einem ke N auf O xU bzw. auf O geniigen. Hierbei nennt man
L(s, X(s),u(s))
laufende Kosten (engl. ,,running cost) und
¥(z, X(7))
Endkosten (engl. ,terminal cost®).

Unser Ziel ist es dann, zu gegebenen Startwerten (¢, x)€Q durch Wahl einer zu-
lissigen Steuerung u(.) das Kostenfunktional zu minimieren:
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min )J(to,x; u) (SSP)

u eA(to X
wobei

J(to,x; u) = E"* [ IL(S, X(s), u(s)) ds+ ‘I-’(z', X (r)))
fo

und A(f),x) die Menge aller zulissigen Steuerungen u(.) mit Start in
(#9,x)€Q sei (d.h. der zu steuernde Prozess besitzt in 7, den Wert X(¢;)=x).

Die Funktion

V(t,x) = inf J(t,x;u) , (t,x)eQ
ued(t.x)

nennt man auch Wertfunktion des Minimierungsproblems. Sie gibt den Verlauf
der minimalen Kosten in (SSP) als Funktion der Anfangsparameter (¢,x), Start-
zeit und Startwert des zu steuernden Prozesses, an.

Heuristische Herleitung der HIB-Gleichung

Das klassische Hilfsmittel zur Losung des stochastischen Steuerungsproblems
(SSP) ist die sogenannte Hamilton-Jacobi-Bellman-Gleichung (kurz HJB-
Gleichung). Sie soll hier zun#chst heuristisch hergeleitet werden. Ein formaler
Beweis der Beziehung zwischen der Wertfunktion von (SSP) und der HIB-Glei-
chung folgt spiter.

Wir nehmen der Einfachheit halber O=R?” an. Betrachte hierzu die folgende Be-
zichung, das sogenannte Bellman-Prinzip:

v(t,x)= inf ){E"[?L(S,X(s).u(s))ds+V(0,X(0)))J,

ueA(t,x t
V(tl,x) = ‘P(tl,x) fiir alle x eR”,

fiir te[ty, 1], Oelt, 1;]. Das Bellman-Prinzip besagt, dass sich die minimalen
Kosten ¥(t,x) auch dadurch ergeben, das Infimum {iber die zusammengesetzten
Strategien ,,Wihle die Steuerung u(.) auf (¢, 6] — hierdurch entstehen dann die
Kosten
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E M[ IL(s, X (s), u(s)) ds)

und ,,verhalte dich auf [, #,] ausgehend von X(6) optimal“ — was zu Kosten von
(6, X(0) fiihrt - zu bilden. Spiter werden wir das Bellman-Prinzip beweisen.
Wir nehmen hier an, dass es giiltig ist und alle im Folgenden durchgefiihrten
Operationen (wie z.B. Vertauschungen von Grenzprozessen) erlaubt sind und
aufiretende stochastische Integrale Erwartungswert Null besitzen. Anwendung
der mehrdimensionalen It6-Formel I1.40 auf ¥( 6, X(6)) liefert somit:

e
V(t,x) = inf E** [ IL(s, X(s),u(s))ds +¥{z,x)

ucdlt x t

8
+ I[V, (s, V(s)) +V, (s, V(s))p(s, X(s), u(s))
- spur{ s, X, D)o, X0, 5) Vs, X)) | &).

Mit der Bezeichnung a:=o0c”, Subtraktion von F{¢, x), Division durch (8 -¢) und
Grenziibergang @4 ¢ erhalten wir dann formal

0= ) ezl:z_(c‘x) EY¥ [lo}in?_t I[L(s X(s), u(s))+ V,(s X (s))
+3-Spur{als, X, )V (5, X(5)) +7, (5, X() - s, X (), (s) )

= inf EY[L(e X(0).u(e)+7i (e X(2)

ueA(t,x) _
+3- Spurlale, X(2), u(®)) V. (¢, X))+ 7, (£, X(0)) - e, X (2), u(t))] ,

falls ¥ eine Cl:2-Funktion ist. Da zur Zeit ¢ sowohl der Wert von X(¢) als auch
der von u(f) bekannt ist, kann man in der letzten Gleichung den Erwartungswert
weglassen und erhilt

0= :‘tg'] (L(t, x, u) +V; (t, x) + % . Spur(a(t, x, u) Vix (t, x)) +V (t, x) . ,u(t, x, u)) ,



266 Kapitel V: Optimale Portfolios

die sogenannte HIB-Gleichung fiir (SSP). Beachte, dass als Konsequenz dieser
formalen Umformung hier nun kein zufilliger Ausdruck mehr auftritt! Es ist
auch nur noch das Infimum iiber alle moglichen Startwerte ue U von zulidssigen
Steuerungen zu bilden, da nur diese in der partiellen Differentialgleichung auf-
treten. Man kann nun die Wertfunktion /(¢,x) bestimmen, indem man zunichst
die Minimierung in der HIB-Gleichung (in Abhiingigkeit von dem unbekannten
Funktionen ¥, , V, , ¥, ) durchfithrt, dann das so erhaltene Minimum u* ein-
setzt, den Infimumoperator weglisst und die so entstandene partielle Differen-
tialgleichung mit Randbedingung

V(T,x)="¥(x) firalle xeR”

16st. Man erhilt dann eine optimale Strategie u*(.), falls das Infimum angenom-
men wird, indem man u*(¢) als ein Argument des Infimums fiir (¢, x)=(¢, X(?))
wihlt, so dass u"(f) progressiv messbar ist (falls moglich).

Wir geben nun auch einen formalen Beweis fiir den Zusammenhang zwischen
der Wertfunktion V{(z,x) und der HIB-Gleichung, einen sogenannten Verifika-
tionssatz.

Bezeichnungen

a)Zu G eC'?(Q),(t.x) €Q, a:=00',ueU sei

n n
A*G(t,x) := G,(1,%) +*;- Z a,-j(t,x,u) Gy, + Zy,-(t,x,u) -Gy, (t.%).
ij=1 i=1

b) 50:= ([t9.1)x 50) ({1} x0)

Satz 11 - Verifikationssatz fiir Losungen der HJB-Gleichung

Sei GeC?(Q)nC(Q) mit |G(z,x)|< K(l + |x|") fiir geeignete Konstanten
K>0und keN eine Losung der Hamilton-Jacobi-Bellman-Gleichung:

inf (4%Gle, %)+ Lt x.u)) =0, @veQ, (HIB1)
uelU
G(t.x) =¥(t.x) , (t,x)ed*0. (HIB2)
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Dann gelten -
a) G(t,x)<J(t, x; u) fiir alle (¢,x) € Q und u(.) € A(¢,x).
b) Existiert fiir alle (¢,x) € Q ein u*(.) € A(¢,x) mit

u (s) carg Ln;l'}(A “ G(s, x* (s)) + L(s, x* (s), u))

fiir alle s €[t, 7], wobei X*(s) der gemiB (GSD) zu u*(.), gehorende Prozess ist,
so gilt
G(t,x) = V(t,x) = J(t,x,u') .

Bemerkung

a) Beachte, dass der Wert X"(s) nicht von u"(s) wohl aber von u*(r), r€[1,,5),
abhingt. Es handelt sich deshalb in b) nicht um eine implizite, sondern um eine
explizite Definition von u*(s).

b) Da die Wertfunktion ¥z, x) eines stochastischen Steuerungsproblems eindeu-
tig ist (die minimalen Kosten sind eindeutig, nicht notwendigerweise die mini-
mierende Strategie), kann es auch nur eine Losung der HIB-Gleichung von poly-
nomialen Wachstum geben.

Beweis des Satzes 11:

a) Sei (¢,x) € Q. Wir zeigen, dass fiir jede Stoppzeit mit #< < r und jede zu-
ldssige Steuerung u gilt:

G(t,x) < EM{ j L(s,X(s),u(s))ds'+G(0,X(0))J. ?3)

Wegen G(s,y)=¥(s,y) fiir (s,y)e a*Q folgt hieraus fiir #= 7 die Behauptung.
Sei zunéchst O beschrinkt:
Da G Losung der HIB-Gleichung ist, gilt

0< A*9G(s, X(5)) + L5, X(5). u(5)) “

fiir jede zuldssige Steuerung u(.), t<s<z. Anwendung der mehrdimensionalen
It6-Formel 11.40 auf G(8,X(8)) ergibt .
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e
6(6, X(9) - 6(t,%) ~ [4“V6(s, x(s))as

)
= IGx (s, X (s))a(s, X(s), u(s)) awl(s)

Wegen der Beschriinktheit von O verschwindet der Erwartungswert des stochas-
tischen Integrals, da G, auf O beschrinkt ist und wegen den allgemeinen Vor-
aussetzungen an of(s,x,u) und Forderung (1) auch

E!* [!]'Ia(s. X(),u(9) ds] <D. E‘-‘U(l + |u(s)|2)dsJ <w®

mit einer geeigneten Konstante D>0 gilt. Erwartungswertbildung in der letzten
Gleichung und Anwendung von Ungleichung (4) liefert dann die zu zeigende
Ungleichung (3).

Betrachte nun ein allgemeines O:

Wir zeigen (3), indem wir O durch beschrinkte Mengen O, approximieren.
Genauer:

Op :
= 1 1
Qp = [tO'tl —-;)Xop , O<;‘<t|—to.

7, die Austrittszeit von (s, X(s)) aus Qp, so gilt (beachte, dass o, beschrinkt

G(t,x) < Et,x[ j:L(s, Xx(s), u(s))ds'+G(0 ,X(ﬂp))] | 5)
= mm(a )

Wegen 6,—6 fiir p—>oo P-fast sicher folgt aus der Annahme, dass die Kosten-
funktion L einer polynomialen Wachstumsbedingung geniigt und aus den Bedin-
gungen (1) und (2) in Definition 10 mittels dominierter Konvergenz

On{x eR"|lxl < p, dist(x,ﬂO)>~};}

1]

mit
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Gp 8
lim E'* [ [ 25, x9), u(s))ds] =EY [IL(S, X(s),uls)) ds) .
P t t

Wegen der Stetigkeit von G folgt weiter

,,’_':','; G(o .X(o,,)) =G(6,x(0)) P-fast sicher.
IG(o,,,X(a,,))I < K(l+|X(0p)lk) <k(1+]xQ[")

EY (||x(.)||j ) <w firallejeN,
fiir jede zulissige Steuerung u(.) gelten, folgt mit j>k, dass

R

fiir @=j/k und p>1/(t;~1;) beschriinkt ist. Also ist die Familie {G(6,,X(§,))},
gleichmiBig integrierbar, und wir erhalten

Da auflerdem

und

Jim E""(G(B ,x(o ))) E**(6(6,x(0) ,

also insgesamt die Konvergenz von (5) gegen die von (3), was die Aussage zeigt.
b) Fiir »*(.) wie in Behauptung b) erhalten wir Gleichheit in (3), was dann Be-
hauptung b) impliziert. g
Bemerkung

Im Beweis von Satz 11 wurde unter anderem gezeigt, dass unter der Annahme
der Existenz einer C1-2-Losung der HIB-Gleichung (und einer optimalen Steue-
rung u"(.)) das folgende Bellman-Prinzip gilt:

Fiir alle Stoppzeiten Omit 1< < 7 folgt

V{t,x)= inf E"’[ j L(s, x(s),u(s)) ds +V(6, X(f)))}
u()ed(t,x) t
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Satz 11 rechtfertigt den folgenden Algorithmus zur L3sung des Steuerungspro-
blems (SSP):

Algorithmus: Losung des Steuerungsproblems
1. Schritt:

Ldse die Minimierungsaufgabe (HJB1) in der HIB-Gleichung in Abhin-
gigkeit von der unbekannten Funktion G (und ihren partiellen Ableitungen). *

2. Schritt:
Es sei
u‘(s) = u‘(s, x, G(s, x), G, (s, x), G, (s, x), Gy (s, x))
eine Losung der Minimierungsaufgabe. Lose dann die partielle Differential-
gleichung
A"'(')G(t,x) + L(t,x,u'(t)) =0, (,x)eQ,
G(t,x) = ‘-I’(t,x) , (t,x)e 6*Q ,
3. Schritt:
Uberpriife die bendtigten Voraussetzungen.

Bemerkung zur Existenz einer Lésung

Die Existenz einer ,klassischen“ C!-2-Losung der HIB-Gleichung in Satz 11 ist
im Allgemeinen nicht gesichert. Typische Existenzaussagen bendtigen sehr star-
ke Voraussetzungen an die Koeffizientenfunktionen z, o, an die Kostenfunk-
tionen L, ¥, und an O. Um Resultate aus der Theorie der parabolischen par-
tiellen Differentialgleichungen verwenden zu kénnen, fordert man die gleich-
miBige Parabolizitit, d.h. dass fiir alle (¢, x, ¥) € QyxU die Matrizen a(t, x, u)
gleichmifig positiv definit sind, genauer: es existiert ein ¢>0 mit

§Ta(t,x,u)¢ > c|§|2 fiir alle (¢, x, u) € QyxU, & eR. 6)

Wir zitieren ein solches Existenzresultat, benétigen es aber nicht fiir unsere wei-
teren Anwendungen:
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Satz 12 - Krylov (1980)

Es gelte (6) und weiter

a) U ist kompakt,

b) O ist beschriinkt (und 50 C3-Mannigfaltigkeit),

c) Die Funktionen a, 4, L, und ihre partiellen Ableitungen nach ¢ sowie nach x;,
xx; sind stetig auf O x U,

d) ¥ eC*(Qy)-

Dann besitzt die HIB-Gleichung genau eine Losung in Cy( 0)NCL2(Q), wobei

C,(Q) die Menge der stetigen Funktionen auf Q von héchstens polynomialen
Wachstum bezeichnet.

Ist O unbeschrinkt, so gelten analoge Existenzaussagen, wenn a, x4, L, ‘¥ be-
schrinkt sind (siehe z.B. Fleming/Soner (1993), IV.4). Des weiteren konnen die
Bedingungen an a, 4, L, ¥ abgeschwiicht werden, wenn man eine einfachere
Struktur fiir a, # annimmt (z.B.: 4, o'linear in x und in u).

Fortsetzung des Beispiels

Wir wollen das soeben gelernte Vorgehen nun am -eigentlich schon geldsten -
Beispicl vom Beginn dieses Abschnitts demonstrieren. Die zum Prozess

X(t)=x+w(t)+ }u(s)ds
0

und zum Kostenfunktional

| J(x,t;u) = E"’{}a -uz(s)dv ~b- X(T))

t
gehdrende HIB-Gleichung hat fiir 0={0, T)xR, U=R, die Form
. 11
;nezg{icn +u-G+ G, +au’} =0, (6,1 €0,
G(T,x)=—bx , XeR.

Wir gehen nun gemiB dem Algorithmus vor:
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1. Schritt:
Formales Minimieren liefert als Kandidat fiir die optimale Steuerung

u'(f) =-5-G.(e. X(1)).
2. Schritt:
Einsetzen von u” (t) = — 14, G,(t,x) in die HIB-Gleichung liefert die (nicht-li-
neare) partielle Differentialgleichung
16 -LGl+G, =0,(tneQ,
G(T,x) =-bx ,xeR.
Zu ihrer Lésung machen wir nun den Ansatz
G(t,x) =-bx+ h(t) .

Hieraus erhilt man als neue Formulierung unserer partieller Differentialglei-
chung die gewdhnliche Differentialgleichung

eindeutig gelost wird. Wir erhalten somit
2
6(t,) = —-bx+i—--ba—(t— 7),
* b
u (t) = -2—; .
3. Schritt:

Ein Bestandteil, der unbedingt zur vollstindigen Losung eines stochastischen
Steuerungsproblems mit Hilfe der HIB-Gleichung gehért, ist die Uberpriifung
aller zur Anwendung der Theorie benétigten Voraussetzungen. Dies wird bei
vielen Anwendungen oft vergessen und kann im Einzelfall recht kompliziert
sein. In unserem simplen Beispiel bereitet es allerdings keine Probleme.
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® X(?) l6st als Brownsche Bewegung mit Drift b/2a die zu u"*(f) gehorende sto-
chastische Differentialgleichung eindeutig.

o u'(f)=b/2a etfiillt offenbar die Momentenbedingung in Definition 10 und ist
als Konstante progressiv messbar. Bedingung (2) folgt aus Lemma IIL.16.

e G(t,x) liegt in C!2 und erfiillt offenbar die Bedingungen polynomialen
Wachstums, stimmt also mit ¥{z,x) iiberein.

Wir wollen nun noch ohne Beweis einige Erweiterungen der bisher entwickelten
Theorie fiir zwei weitere Formulierungen des stochastischen Steuerungspro-
blems geben (fiir Beweise sei auf die Kapitel III und IV in Fleming/Soner (1993)
verwiesen).

Bemerkungen

a) Hat das Kostenfunktional J(¢,x; #) die Form

J(t, x; u) = X (]l"(s) L(s, X (s) u(s)) ds+ I‘( r)‘I’(z’, X ( r)))

) =ex]J 01k

fiir eine beschrinkte, stetige Funktion g(s,x,u), so gilt ein zu Satz 11 analoges Er-
gebnis, falls man statt (HIB1) die Gleichung

inf (A“G(t,x) + L(t,x,u) +q(t,x,u)G(z, x)) =0 (HIB1*)

uel

betrachtet. Dieser Fall beinhaltet den der diskontierten Kosten, d.h. der Wahl
l"(s) = exp(— ﬂ(s - t))

fiir ein >0 .

b) Im Fall eines unendlichen Horizonts, d.h. einer gesteuerten stochastischen

Differentialgleichung auf [0,0), nehmen wir an, dass die Koeffizientenfunktio-

nen x#und o autonom sind (also unabhingig von 7), aber weiterhin den fiir die-

sen Abschnitt allgemeinen Voraussetzungen geniigen. Die analoge Annahme
gelte fiir die Kostenfunktionen L(x,#) und ¥(x). Bezeichnet nun 7 die erste Aus-
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trittszeit von X(s) aus O, so wollen wir das folgende Kostenfunktional minimie-
ren

Hx,u) = E"[I e P L(X(s),uls)) ds + e'”"v(x(r))lgm})
(1]

wobei f>0 ein Abzinsfaktor ist und r=co gilt, falls X(s) niemals O verlisst, was
z.B. bei O=R" der Fall ist. Unter einer zulissigen Steuerung wollen wir nun ei-
nen progressiv messbaren U-wertigen Prozess u(.) verstehen, der mit #,=0 die
Bedingung (1) in Definition 10 fiir jedes endliche ¢, erfiillt. In Analogie zu Satz
11 gilt dann:

Satz 13 - Verifikationssatz fiir Lésungen der HIB-Gleichung bei
unendlichem Horizont

Sei >0 und sei G € C2(0) C( 0 )| mit G(x)| <K(1+}x[*) fiir geeignete Konstan-
ten K>0 und k€ N eine Losung der HIB-Gleichung

inf (—;-Spur(a(x, u)G,“ (x)) +G, (x)p(x,u) + L(x, u) -p G(x)) =0, x €0,
uelU
G(x) = ‘I’(x) , x€d 0.
Dann gelten
a) G(x)<J(x, u) fiir alle xe O und alle zulidssigen Steuerungen u.
b) Existiert fiir alle xe O eine zuldssige Steuerung »* mit

u*s) earg minl4 spur{a(x* 9,6 (X" )+ G, (4" Dl x* 9).)
+ L[ X°(s).u)- pG(X'(s))]
fiir alle s€[0, 7], wobei X*(s) der zu u*(.) gehorende Prozess ist, so gilt
G{x) =¥(x) = S(x.u")

c) Im Fall #=0 gelten die Aussagen aus a) und b), falls O beschrinkt ist und fiir
alle zuldssigen Steuerungen u die erste Austrittszeit = fast sicher endlich ist.
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V.4 Portfolio-Optimierung mittels
stochastischer Steuerung

Der Ansatz der stochastischen Steuerung in der zeitstetigen Portfolio-Optimie-
rung wurde von Robert Merton in den spiten sechziger Jahren eingefiihrt (siche
z.B. Merton (1969), Merton (1971)) Sein Kernpunkt besteht im wesentlichen da-
rin, die im vorausgegangenen Exkurs entwickelten Methoden auf das Portfolio-
problem anzuwenden.

Allgemeine Voraussetzungen fiir diesen Abschnitt

Wir beschrinken uns hier auf einen Markt mit konstanten Marktkoeffizienten
r, b, o. Es gelte m>d und die Matrix o'e R%™ habe maximalen Rang.

Es kann also auch der Fall eines unvollstindigen Marktes behandelt werden, was
nicht weiter {iberraschend ist, da die Eigenschaft der Vollstindigkeit auch im
Exkurs zur stochastischen Steuerung keine Rolle spielte.

Grundlegende Idee:

Die Vermégensgleichung eines Investors mit Strategie (,c) wird als gesteuerte
stochastische Differentialgleichung der Form

ax*(t) = e, X*(8)u(e)dt + oz, X" (1) (1))
aufgefasst, wobei 4, o, u die folgende Gestalt haben
w=(u.) = (9
p(t,x,u) =(r+ui(b—r-1))x—u2 )
oft,xu)=xmo

Entsprechend der verschiedenen Varianten von Verifikationssitzen aus Exkurs 8
werden wir verschiedene Varianten des Portfolioproblems betrachten. Wir be-
ginnen mit dem gewohnten Problem (P):
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Optimaler Konsum und optimales Endvermégen bei endlichem Horizont

Unser Ziel ist es also, das Nutzenfunktional
T
It x;u) = E”‘[IUI (t, uy (t))dt+ U, (X“(T))J
t

durch Wahl von u=(r, c) zu maximieren. Sei hierzu

V(t,x) = ) e.:u(fx) J(t, x;u)

die Wertfunktion des Portfolioproblems. Die zugehorige HIB-Gleichung hat
dann die Form

) S
max {7ula'a' ux“V. (t,x)
w G[al-az]d-“z o.) =

+((r+ui(b—r-l))x—u2)Vx(t,x)+U1(t,u2)+Vt(t,x)} =0 ()
M(T.9)=Ua(9)

fiir gegebenes —0 < o< o, <+,

Bemerkungen

a) Zwar wurde in der Definition einer zuldssigen Steuerung die eindeutige Los-
barkeit der gesteuerten stochastischen Differentialgleichung gefordert, aber
nicht, dass diese Losung X%(f) nicht-negativ sein sollte, wie dies z. B, in unserer
Definition einer zuldssigen Strategie (7,c)eA(x) gemacht wird. Es konnte des-
halb auch sein, dass eine optimale Steuerung zu einem negativen Vermégen fiih-
ren wiirde. Wir werden allerdings in unseren Beispielen sehen, dass dort die op-
timale Steuerung zu einem strikt positiven Vermégensprozess fiihrt. Eine Vor-
zeichenbedingung an den Vermdgensprozess lieBe sich dort also nachtriglich
fordern, ohne die optimale L6sung zu verindern !

b) Wihrend die Form der HIB-Gleichung (2) eine direkte Anwendung des Veri-
fikationssatzes 11 ist (mit der Wahl Q=[0, T)xR und dem Ersetzen von ,,inf*
durch ,.sup®), bendtigt die Bedingung

) =y () oy, y]” )
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einer kurzen Erlduterung. Der Grund fiir diese zusitzliche Forderung liegt in der
Anwendbarkeit des Verifikationssatzes. Die dortigen generellen Forderungen
lp,|+|px| <C |0',|+|a'x| <C

Ht,x,u)l + lo-(t,x,u)| <C- (l +fx+ lul)

sind bei den Koeffizienten der Form (1) fiir unbeschrinkten Wertebereich fiir x
nur dann zu erfiillen, wenn dic Wertemenge der zulédssigen u,(f) beschrinkt ist.
Wir werden allerdings in den nachfolgenden Beispielen zeigen, dass die Forde-
rung (3) (zumindest dort) keine echte Forderung ist, wenn man das Intervall
[al,wz]d geschickt wihit,

Lésung der zugehdrigen HIB-Gleichung

Wir wollen nun das Portfolio-Problem (P) fiir die spezielle Wahl
1
Uit =y e, U(s) = L7 @

mit £>0, ye(0,1) 15sen.

1. Schritt: Lose das (formale) Maximierungsproblem.
Unter der Annahme, dass V{(¢,x) strikt konkav in x ist und der Vermégensprozess

X(¢) strikt positiv ist (muss beides spiter noch iiberpriift werden !), fiihrt die
Maximierung in der HIB-Gleichung (2) zu den Kandidaten

Veltx
() = ~(oo) M (6-r-1) ;'f/f—(t—)ﬁ ®

uy (1) = (e#* -Vx(t,x))%'l , (6

wobei wir zusitzlich annehmen, dass immer (u;, #;)€[a;,2,]9%[0,) gilt. Be-
achte auch, dass es fiir die Maximalitit von u,, u, gemiB (5), (6) unter den obi-
gen Annahmen bereits hinreichend war, dass sie die eindeutigen Nullstellen der
jeweiligen partiellen Ableitungen der in (2) zu maximierenden Funktion waren.

2. Schritt: Lése die partielle Differentialgleichung

Setzt man u,, u, der Form (5) in (2) ein, so erhiilt man die folgende partielle Dif-
ferentialgleichung fiir V(z, x)
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0=-4(b-r-1) (o) (5- rl)

) +r-x-Vx(t,x)
xr Lo
w7 (S anfen). o
Zur Losung von (7) legt die Endbedingung ¥(T,x) =%x7 den Separations-
ansatz
V(e.x)=f()-Lx" , AD=1 ®)

nahe. Bildet man hiervon alle in (7) vorkommenden partiellen Ableitungen und
setzt deren Form in (7) ein, so erhélt man nach Division durch den in allen Ter-
men vorkommenden Ausdruck x? die gewdhnliche Differentialgleichung

0= [—-%(b—r-l)'(aa’)'l(b—r-_l)- p 1_1 +r]-f(t)
bt r
—Fer )" L. )

Beachte, dass es hierfiir wesentlich ist, dass der Quotient ¥, 2(¢,x)/V,,(¢,x) durch
den Ansatz (8) eine sehr einfache Form erhilt. Mit den Abkiirzungen

a,:= _-%-(b—r-l)'(o-a')"l(b—r-l 7'_1-T+r’

bt

ay (1) := 1;/-e_7_1
erhilt (9) die Form

FO)=-a110)-a0)r6)" (10)
mit Randbedingung f{7)=1. Die Substitution

olt) = 1)) an
ergibt

g'()= £ 177 . (12)

1
Einsetzen von (11) in (10) fithrt nach Division durch (1-7)- f(f)™” und Ver-
wenden von (11) auf die folgende lineare Differentialgleichung fiir g(7)
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g)=-12 ) -2, g1 (13
Explizites Losen von (13) mittels Variation der Konstanten ergibt
Sy o, BBy atb) Ay,
glt)= el7 + 7(; fﬂ) [e I-y  _el-r t el”7 s (14)

woraus sich dann die entsprechende Form von f{7) iiber (11) und die Form von
VAt, x) iiber (8) ergibt. Zwar ldsst sich die rechte Seite von (14) noch vereinfa-
chen, aber die angegebene Form hat den Vorteil, dass aus ihr direkt ersichtlich
wird, dass g(?) strikt positiv ist. Beachte hierzu insbesondere, dass @, § beide
positiv sind und dass das Vorzeichen des Ausdrucks in Klammern gleich dem
seines Vorfaktors ist. Eine weitere Konsequenz der Existenz einer Losung der
HIB-Gleichung der Form (8) ist die Form von (7, ¢) als

) =y (1, X)) =15

o)) = uye X 0) = (P - £ )T - X0,
3. Schritt: Uberpriifung der gemachten Annahmen

i) V¢, x) der Form (8) mit dem berechneten f{7) ist offenbar strikt konkav, da f{f)
strikt positiv ist. Weiter ist V{¢,x) eine klassische C1-2-Lésung der HIB-Glei-
chung, die den geforderten polynomialen Wachstumsbedingungen geniigt.

(oo’ )—l(b -r- 1) = , (15)

ii) Der Vermdgensprozess X%(f) zum optimalen u(z) geniigt wegen (15) der sto-
chastischen Differentialgleichiing
ax* (@)= X* O+ 7+ (b-r-1)- (e f(t)) Ydt4av o awlo)]
X*(0)=x
Insbesondere hat diese Gleichung eine eindeutige Lésung, die sogar strikt positiv

ist und wegen Lemma IIL.16 auch die geforderte Momentenbedingung (2) aus
Exkurs 8 erfiillt.

iii) Wegen der Positivitit von X*(f) und f?) ist c(f) gemiB (15) auch positiv. 7"
ist sogar konstant. Wir wihlen nun @;, @, mit ;<0 <a,, so dass

d
* a; ap
r e[2'2]
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gilt, also die Bedingung (3) im optimalen 7" erfiillt und nicht aktiv ist. Folglich
kann Bedingung (3) fiir groBe Werte von ¢, @, auch weggelassen werden, ohne
dass sich die optimale Strategie dndert. Da kieine Werte von ¢; aber im un-
beschrinkten Problem (P) keine Rolle spielen, haben wir nicht nur das zu (2) ge-
horende beschrinkte stochastische Steuerungsproblem, sondern sogar das Port-
folioproblem (P) gelost, also gilt:

Proposition 14
Das Portfolioproblem
{T
max E| |eP' L) de+ L x(1) 16
(;r.C)eA(x) ('!. r r (16)

wird durch die Strategie (7, ¢) gemil
()= (o0) (b-r-1),

¢ () =(e? r) 7 x(),
gelost, wobei f{f) durch (14) und (11) gegeben ist.

Bemerkung

a) Im Allgemeinen ist es duflerst schwierig, Aussagen iiber eine reguléire Losung
von (2) zu machen.

b) Ahnlich wie beim partiellen Differentialgleichungs-Ansatz der Optionsbewer-
tung ist auch beim Ansatz der stochastischen Steuerung die optimale Strategie
ein Abfallprodukt der Bestimmung des optimalen Nutzens. Allerdings erhilt
man dieses ,,Abfallprodukt* auch nur dann explizit, wenn man die partielle Dif-
ferentialgleichung explizit 16sen kann.

c) Es ist bemerkenswert, dass die Form des optimalen Portfolioprozesses unab-
hiingig von der Zeit ist. Die Form des optimalen Konsumprozesses kann so inter-
pretiert werden, dass die Konsumgeschwindigkeit (oder Konsumrate) proportio-
nal zum gegenwirtigen Vermdgen X(?) ist, wobei der Proportionalititsfaktor al-
lerdings von der Zeit abhidngt.
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Optimaler Konsum bei unendlichem Horizont

Wir wollen nun ein sogenanntes Lebenszeit-Konsum-Problem 16sen; genauer be-
trachten wir das Problem

x| ) =Bt L ()7
(= sg(x) E [(!e Y 0] dt} (LK)
mit >0, ye(0,1), x>0.

Um dies nun in ein #quivalentes stochastisches Steuerungsproblem umzuformen,
miissen wir beachten, dass die Forderung

X(t)20 fiir alle £20,

die ja in (7, ¢) € A(x) enthalten ist, besagt, dass der Investor alle Wertpapiere so-
fort verkaufen muss, wenn zum erstenmal X(#)=0 gilt. Sei deshalb

7= inf{t >0|X(t) =0}
Wir betrachten dann in Analogie zum Konsum/Vermdgensbeispiel das stochas-
tische Steuerungsproblem mit Wertfunktion
T
V(x)= sup E* Ie—ﬂ ! %c(t)y dt|, a7
uel(x) 0

wobei U(x), die Menge zuldssiger Steuerungen bei Start in x, durch die Forde-
rungen

d
u(0) e[a.ay|, up(1) 20 firalle 20 mit u(t) = (1 (1) ua (1))~ (18)
charakterisiert ist (natiirlich sollen auch die sonstigen Anforderungen an eine zu-
lissige Steuerung erfiillt sein !). Wie im Fall des unbeschrénkten, zufilligen Ho-
rizonts im Exkurs 8 stellen wir die zugehorige HIB-Gleichung auf als

max ‘l-u'aa'u sz"(x)
(ul,u2)4a‘,a2]dx[0,oo){2 ! !

+((r+ul'(b-r-l))x-uz)V'(x)-ﬂV(x)+—;-u{} =0. (19)

Es ergeben sich wieder die folgenden Schritte:
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1. Maximierung

Die iibliche Annahme ,,Ve(C? strikt konkav und streng monoton wachsend* lie-
fert als Kandidaten fiir die optimalen Steuerungen

() = ~oo") (b -r- 1);1,,—;(,%7

uy(8) =V ()7,

wobei wir welter annehmen, dass (1, ,uz') den Forderungen (18) geniigen. Ein-
setzen von u;", u," in (19) fiihrt zur Differentialgleichung

! L{ 2
—-;:(b—r-l) (w')_l(b—r-l)%+r-x-w(x)

AR () e

2. Losen der Differentialgleichung

Die Forderung einer polynomial beschrinkten Losung von (20) im Verifika-
tionssatz legt den Ansatz

V(x)=— Axr

mit einem A >0 nahe. Verwendung des Ansatzes und der entsprechenden Ablei-
tungen von ¥(x) liefert nach Einsetzen in (20) und Division durch den allen Ter-
men gemeinsamen Faktor Ax? die folgende Gleichung fiir 4

1

=7 .

4
Diese Gleichung hat genau dann eine positive Losung 4, wenn gilt

(b r_)(a'a) (b r1)7!—+r B 1,2

@1

p>r=5b-roo)b-r1)-L5,

d.h. falls der Abzinsfaktor B hinreichend gro8 gewibhit ist. In diesem Fall gilt

Az[ﬁ[ﬁg‘("z(f-l)(”-'-9'<w'>~*(b-r.;)]
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3. Uberpriifen der Annahmen

i) Unter (21) ist ¥(x)= x?-A/y offenbar eine C2-Losung von (20) bzw von (19),
die den genannten Bedingungen geniigt.

ii) Weiter sind, bei geeigneter Wahl von o), a,, dann ul'(t), uz'(t) zuldssige
(und somit optimale!) Steuerungen, da sie die explizite Form

ul.(t) = -l_l—r(a'a’)‘l(b—r.l)
1
us(f) = 4771 X(2)

haben. Der zugehérige Vermgensprozess X (?) hat dann die Form

X'(t)=x-exp([nl—_‘,—(b-r-;)'(aa')"(b—r-g)—Aﬁ) t
--;-(—1—_1—,-)2||(b-r.g'(aa')-'a[|2t +i6-r) o) o),

ist also strikt positiv.

Insgesamt erhalten wir also mit Hilfe des Verifikationssatzes fiir den Fall des un-
beschrinkten Horizonts:

Propostion 15

Unter der Voraussetzung (21) wird das Lebenszeit-Konsum-Problem (LK) durch
das Paar (7', ¢*) mit

”*(t)=-1—:‘-7-(w')—'(b_,. ),
1
c(f)=47"1-x(2)
gelost.
Bemerkungen

a) Der durch den unendlichen Horizont verursachte Unterschied zum vorherge-
henden Problem spiegelt sich in dem zeitunabhiéngigen Proportionalititsfaktor
AV(1) des optimalen Konsums wider.
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b) Eine solch einfache Form der optimalen Strategien (7", ¢*) ist im allgemeinen
Fall nicht zu erwarten. Mehr noch, es gilt sogar die Beziehung:

n'*(t) = const, c*(t) =5X(t) 16sen das Problem

(rejed )Ex[j e HUle) dt}

0
< U(c)=ac” +d fiir geeignetes y €(0,1), o, d >0.

(siehe z.B. Prop. 3.39 auf S.54 in Korn (1997)).

c) Ist die Wachstumsbedingung (21) nicht erfiillt, so kann die Endlichkeit der
Wertfunktion nicht sichergestellt werden.

Ubungsaufgaben

U.1  Lose mit Hilfe der Martingalmethode das Portfolioproblem (P) im Fall
konstanter Marktkoeffizienten, wenn als Nutzenfunktionen

Uy(t,x) =Uy(x) =—}l:-x7 , 7€(0,1) fest,

gewihlt werden.

a) Bestimme zunichst den optimalen Konsum c*(f) und das optimale Endvermo-
gen B*. ’

b) Bestimme den optimalen Portfolioprozess 7"(f).

U.2 Lése mit Hilfe der Martingalmethode das Konsumproblem (K) (siche
Korollar 7) fiir die Wahl der Nutzenfunktion

1
Uy (t,x) = 7e_ﬁ'x7 , 7€(0,1), B>0 fest.
Wie hingen die optimalen Strategien (z*,c") von B ab?

U.3 Man betrachte im Beispiel ,,Logarithmischer Nutzen aus Abschnitt V.3
die Option mit Endzahlung
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B=|R(1)-K|.
a) Bestimme den Preis von B sowie die zugehorende duplizierende Handelsstra-
tegie ¥()=(¥o(), ¥1(9)-
b) Man zeige, dass fiir obige Option Satz 8 richtig bleibt, wenn man mit den dor-
tigen Bezeichnungen
()
o():= 1% ()’

0 , sonst

falls ¥ () = 0

setzt.

c) Betrachte fiir festes 1[0, 7] den optimalen Optionsportfolioprozess 7, (1)
als Funktion von P;(f). Was passiert im Wert von P;(#), fiir den ‘Pl(t) ver-
schwindet.

U4  Lose fiir ein T>0 das folgende stochastische Steuerungsproblem

T
m(ig;E"-’{j(M-X(s)z +N-u(s)2)ds+D-X(T)2)
u\. 0
mit
dX(s)=(A-X(s)+B-u(s))ds+adW(s),
X(0)=xeR,
wobei M, N, D>0, A, B, ce R und U=R sind.

Hinweis: Wihle zum Losen der HIB-Gleichung den Ansatz u(t,x) —j(t)x2+g(t)
im 2. Schritt des Losungsalgorithmus.

U5 Lose fiir ein 7>0 das stochastische Steuerungsproblem
y
gy )
mit
dX(2) = au(t) dt +u(t) dw(t),
X(0)=x>0,
wobei x>0, aeR, 0<y<1, U=R, O=(0,0) und r=inf{t € [0, T] | X(£)=0}AT.

Zeige insbesondere, dass die optimale Strategie u*(f) und die Wertfunktion
V(t,x) die Formen
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u'(t) = l—f;X(t) ,

V(t,x)= a2 I T—t)-x’,

(05)= el a? 570

besitzen.

U.6  Man zeige, dass das Konsumproblem mit unendlichen Horizont

®
o] ax | E"[ J e P'u() dt] , B>0
im Markt mit konstanten Koeffizienten genau dann das optimale Lésungspaar
z'(t) =reR? s
=5 -x0),
fiir geeignete Konstanten 7€ R, 5> 0 besitzt, wenn
U(e)=a-’ +d
fiir geeignete y€ (0,1), @, d>0 gilt.

U.7 Lése das Vermdgensmaximierungsproblem (E) (siehe Korollar 7) im Fall
konstanter Koeffizienten mit d=m=1,

Uz(x) =%x7 s

wenn an Stelle des Bonds eine Aktie mit Preis

Po(t) =po- W«bot —'%O'g )t + O'oW(i))
vorhanden ist, mit Hilfe stochastischer Steuerung.

U.8 Man zeige, dass das Marktmodell aus Aufgabe 7 vollstindig ist. Verwen-
de hierbei nicht Satz I11.34.

Hinweis: Man iiberlege zunichst, wie sich durch Kombination der beiden Aktien
ein risikoloses Portfolio erzeugen lisst.
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