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Abstract

With a long track record going back to the eighteenth century and no
single case of default until today, the German Pfandbrief has an undisputed
benchmark status in the covered bond market. It survived the recent financial
and sovereign crises comparably unharmed and has proved to be a reliable
and stable funding instrument also in times of market distress. Nevertheless,
as the past with several Pfandbrief bank bailouts has shown, Pfandbriefe
cannot be considered to be completely risk-free, despite their high level
of protection. To adequately model the risks arising from a Pfandbrief
investment, it is not sufficient to consider only the creditworthiness of the
issuer. Product-specific features and the quality of the cover pool also need
to be taken into account.

In this work we develop a multi-period simulation-based Pfandbrief model
which accounts for the product’s most important characteristics and ad-
equately reflects its main risks. The model distinguishes between bank
and cover pool default and considers two different default triggering events:
overindebtedness and illiquidity. Both default events are influenced by the
market environment, which is represented through the stochastic dynamics
of the short rate and the creditworthiness of the bank’s risky assets, and the
resulting liquidation payments take into account the Pfandbrief-specific pri-
ority of payments. The asset liability management in our model is dynamic
and considers funding and reinvestment strategies as well as the maintenance
of overcollateralization according to the legal requirements.

The model’s primary outputs are Pfandbrief default statistics. Simulation
results obtained from an exemplary Mortgage Pfandbrief calibration with
typical asset liability mismatches capture the main expected behaviour
patterns of Pfandbriefe. Due to its modular setup, our model provides a
flexible framework for structural analyses and can be easily extended for
tailor-made investigations. Potential areas of applications include but are not
limited to the comparison of different Pfandbrief risk profiles and studies in
the context of current policy debates such as the introduction of extendible
Pfandbrief maturities.



1 Introduction

A Pfandbrief is a covered bond issued under German Pfandbrief legislation.
The main feature of covered bonds is their dual protection mechanism with
full recourse to the issuer and, in case of issuer insolvency, a preferential claim
on a dedicated set of assets, the cover pool. Covered bonds provide the issuer
with cost-efficient long-term funding, mostly for mortgage and public-sector
loans. For the investor they offer an attractive investment opportunity with
high credit quality and privileged treatment in various areas of EU financial
market regulation.1 Covered bonds are primarily bought by institutional
investors such as banks, asset managers, insurers, pension and investment
funds and central banks. They play an important role in Europe’s capital
markets2 and in the context of financial stability. According to the European
Covered Bond Council (ECBC), the total outstanding covered bond volume
was EUR 2,498 bn at the end of 2015, with new issuances of EUR 540 bn
in that year (ECBC [62]).3 Active markets can be found in more than 20
European countries and there are also non-European countries with notable
covered bond issuance, including Australia, Canada, New Zealand, Singapore
and South Korea. The number of countries with a covered bond legislation
in place is expected to grow further as there are several countries which are
planning to update or adopt covered bond legislation. There is, however, no
common covered bond legislation in place. Instead, each jurisdiction relies
on its own regulation.

This work is dedicated to the German Pfandbrief which, based on 2015
ECBC data, has the highest share in today’s covered bond markets with an
outstanding volume of EUR 384 bn, followed by Denmark (EUR 383 bn),

1Covered bonds benefit from lower risk weights under the Capital Requirement Regula-
tion (CRR), lower spread-risk charges under Solvency II, the categorization as highly
liquid asset class under the Liquidity Coverage Ratio (LCR) and exemption from
bail-in under the Bank Recovery and Resolution Directive (BRRD).

2According to Grossmann and Stöcker [80], the covered bond market constitutes the
most important segment of privately issued bonds on European capital markets.

3At the time of writing, 2016 covered bond statistics had not yet been published by the
European Covered Bond Council (ECBC).
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2 1 Introduction

France (EUR 323 bn) and Spain (EUR 281 bn). Given its long track record
going back to the eighteenth century and no single case of default until today,
the Pfandbrief has an undisputed benchmark status. It survived the recent
financial and sovereign crises comparably unharmed and proved to be a
reliable and stable funding instrument also in times of market distress. This
is, amongst others, due to the strong legislative framework for Pfandbrief
issuance and the large systemic support for this product. Nevertheless,
despite the high level of protection, Pfandbriefe cannot be considered to be
risk-free, cf. Spangler and Werner [145]. As the past with several Pfandbrief
bank bailouts has shown, the risk of failing issuers cannot be neglected,
which means that structural Pfandbrief features and individual cover pool
characteristics also need to be considered. With the recent introduction of
bank resolution systems, government support for failing banks is likely to
decrease further and cannot be relied upon any more in future.

Notwithstanding their long history and high importance in European capital
markets, there is surprisingly little academic literature on the quantita-
tive risk modelling of Pfandbriefe. Notable exceptions are the one-period
Pfandbrief model introduced by Sünderhauf [148], a structural comparison of
Pfandbriefe, CDOs and MBS with focus on credit risk implications by Rudolf
and Saunders [139], an analysis of Pfandbrief spread time series and default
risk premia by Siewert and Vonhoff [144] and the one-period approach by
Tasche [149], which focuses on the impact of asset encumbrance (i.e. the
reservation of certain assets for specific creditors) by the cover pool. To
our best knowledge there is so far no multi-period Pfandbrief model which
allows for structural analyses in the context of product-specific features and
risk profiles.

The purpose of this work is to close this gap by developing a new Pfandbrief
model which accounts for the product’s most important characteristics and
adequately reflects its main risks. A multi-period simulation-based framework
is our method of choice. We use a discrete-time setup in which all terms can
be easily derived by recursive computation. Similar cash flow approaches are
commonly used by insurance companies, in the context of market-consistent
valuation of insurance liabilities, see DAV [110]. Our model, which is
inspired by Sünderhauf [148] and Liang et al [114], distinguishes between
bank and cover pool default and takes into consideration two different default
triggering events: overindebtedness and illiquidity. While overindebtedness
is caused by a deterioration of asset quality, illiquidity stems from the
inability to raise enough funding to fulfil payment obligations. Apart from
model calibration, our main challenge is to find a trade-off between realistic
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modelling assumptions and reasonable model complexity. To a certain degree,
our model can be considered to be a multi-period modified extension of
Sünderhauf’s one-period model. Our balance sheet is, however, more granular
and due to simpler stochastic processes we obtain analytical formulas for
asset pricing.

The model’s primary outputs are Pfandbrief default statistics. While exten-
sive analyses in the context of structural product features are out of scope
for this work, the model has a modular setup which allows for straightfor-
ward modifications and extensions to handle a broad range of tailor-made
investigations. Simulation results obtained from an exemplary Mortgage
Pfandbrief calibration with typical asset liability mismatches capture the
main expected behaviour patterns of Pfandbriefe.

The outline of this work is as follows. In Chapter 2 we start with an
introduction to the legal framework and the risks inherent in a Pfandbrief
from an investor’s point of view. We also identify the most important
product features which should be incorporated in a realistic Pfandbrief
model. Chapter 3 then gives an overview of the existing credit risk literature
with particular focus on Pfandbrief modelling. As it turns out that none
of the models found in the literature fulfils all our requirements, a new
Pfandbrief model is proposed in Chapter 4. The next chapter, Chapter 5, is
dedicated to an exemplary model calibration. In Chapter 6 we discuss the
simulation results obtained from this calibration and illustrate the influence
of important model parameters on liability default statistics by means of
sensitivity analyses. Finally, Chapter 7 concludes and gives an outlook on
potential model applications and possible areas of future research.



2 Pfandbrief Characteristics

In this chapter we start with an introduction to the main characteristics
of Pfandbriefe and discuss the risks associated with the product from an
investor’s point of view. Our focus is on the two most common Pfandbrief
types in Germany, the Mortgage Pfandbrief and the Public Pfandbrief.
In Section 2.3 we then derive implications for Pfandbrief modelling by
identifying the most important features which should be accounted for by a
realistic Pfandbrief model. For a structured in-depth analysis of the legal
framework and the risks inherent in a Pfandbrief, we refer to Spangler and
Werner [145] and the extensive collection of Pfandbrief-related literature
listed therein. Sections 2.1 and 2.2 are almost entirely (and to a large
extent literally) taken from this book. Where necessary, changes to the legal
framework as comprised in the most recent legislative materials, see vdp
[157], were incorporated.

2.1 Main Product Features

A Pfandbrief is a covered bond issued under German Pfandbrief legislation.
Depending on the collateral backing the issuance, different Pfandbrief types
are distinguished. Pfandbriefe can be secured by claims against public sector
debtors (Public Pfandbrief ) or by mortgages on real estate properties (Mort-
gage Pfandbrief ), ships (Ship Pfandbrief ) or aircraft (Aircraft Pfandbrief ).
A bank which holds a license for Pfandbrief issuance is called Pfandbrief
bank.

In Germany, Pfandbrief issuance is based on a legislative framework. The
Pfandbrief Act (PfandBG), which was introduced in 2005 and amended in
2009, 2010, 2013, 2014 and 2015, establishes the provisions governing the
issuance and collateralization of Pfandbriefe. It specifies the conditions under
which a bank is granted a Pfandbrief license and the safety standards which
must be fulfilled. It also sets out rules in the context of risk management,
supervision and transparency requirements. The PfandBG supersedes the
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general bankruptcy regulation and is supplemented by several statutory
orders which are published by the German Financial Supervisory Authority
(BaFin): the Net Present Value Regulation (PfandBarWertV), the Regulation
on the Determination of the Mortgage Lending Value (BelWertV), the
Regulation on the Determination of the Mortgage Lending Value of Ships
and Ships under Construction (SchiffsBelWertV), the Regulation on the
Determination of the Mortgage Lending Value of Aircraft (FlugBelWertV),
the Cover Register Statutory Order (DeckRegV) and the Funding Register
Statutory Order (RefiRegV). In the following, we do not explicitly deal with
the legislative materials but focus on the main product features arising from
these provisions as depicted in Figure 2.1.

Figure 2.1: Main features of the German Pfandbrief.

Dual nature of protection. The Pfandbrief’s most distinguishing feature
is its dual protection mechanism. In the first place, the Pfandbrief holder
has full recourse to the issuer, and in case of issuer insolvency he also has a
preferential claim on a dedicated set of assets, the cover pool. Cover pool
assets (which can be either claims against public sector debtors or mortgages
on real estate properties, ships or aircraft) remain on the issuer’s balance
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sheet and are registered in the cover register. For each Pfandbrief type there
is a separate cover register, and cover pool assets are made identifiable by
means of entry in the respective register. There is no cross-collateralization,
i.e. if the bank has issued more than one Pfandbrief type, the Pfandbrief
holder’s preferential claim only refers to one particular cover pool. Figure
2.2 illustrates the dual protection mechanism.

Figure 2.2: The Pfandbrief’s dual protection mechanism (Source: Spangler
and Werner [145], p. 2).

High quality cover pool. There are strict eligibility criteria for the inclusion
of assets in the cover pool. For ordinary cover assets these criteria primarily
depend on the Pfandbrief type. Mortgage Pfandbriefe must be backed by
loans which are secured by real estate liens (both commercial and residential
mortgages are allowed) and located in member states of the European Union
(EU), in the European Economic Area (EEA), in Switzerland, the United
States, Japan, Canada, Australia, New Zealand or Singapore.1 Each loan
can serve as cover up to 60% of its mortgage lending value.2 Public sector
cover pools, on the contrary, must consist of claims against public sector
debtors (central governments and sub-sovereigns) in EU and EEA member
states and, under certain additional rating restrictions, in Switzerland, the

1A limit of 10% applies for mortgage loans from outside the European Union.
2The mortgage lending value is defined in the BelWertV and reflects the long-term sus-

tainable value of the property. As opposed to the market value, it ignores speculative
aspects and does not depend on the business-cycle.
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United States, Japan or Canada.3 For a detailed list of the requirements
for ordinary cover assets, we refer to the legislative materials in vdp [157].
In order to increase the liquidity of the cover pool without changing its
basic characteristics, further cover assets can be added. For Mortgage and
Public Pfandbriefe, these include claims against suitable credit institutions,
which are eligible to up to 10% of outstanding Pfandbriefe with a limit of
2% for each single credit institution. In addition, mortgage cover pools can
also contain certain other liquid assets up to a total limit of 10% (including
claims against suitable credit institutions and certain public sector bonds).
The total amount of further cover assets in mortgage cover pools may,
however, not exceed 20% of the outstanding Mortgage Pfandbriefe. Cover
pool derivatives are also allowed up to a limit of 12% on a net present value
basis, given that they fulfil certain additional requirements. They have
to replicate risks which are inherent in eligible cover pool assets, which
implies that open short positions are explicitly forbidden, and must not
contain termination clauses which apply in case of bank default. Cover pool
derivatives also have to be registered in the cover register and the claims
of derivative counterparties rank pari passu with the claims of Pfandbrief
holders in case of issuer insolvency. In the following, we refer to registered
cover pool assets and derivatives as cover pool, and to Pfandbrief holders and
counterparties from cover pool derivatives as privileged creditors or preferred
creditors.

Cover requirements. The PfandBG specifies several cover requirements to
be maintained by the Pfandbrief bank at all times and separately for each
Pfandbrief type. First of all, the nominal of the cover pool must be equal to
or exceed the nominal of outstanding Pfandbriefe (nominal cover). Second,
the net present value of the cover pool has to exceed the net present value
of outstanding Pfandbriefe by at least 2% (excess cover). This excess cover
still needs to be given under specified interest rate and currency stresses
(excess cover under stress). Claims from cover pool derivatives must be
covered, too. According to the PfandBarWertV, the net present values have
to be calculated by discounting future cash flows with the currency-specific
swap curve and converting them into euros at the current exchange rate.
For derivatives, market prices have to be taken. With respect to the stress
scenarios, there are three potential methods which can be used: a static
approach, a dynamic approach and a method based on the bank’s internal

3As in the case of Mortgage Pfandbriefe, a limit of 10% applies for claims from outside
the European Union.
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risk model. Once the excess cover or the excess cover under stress is not
given any more, additional highly liquid assets need to be posted to the cover
pool. Forth, the maximum cumulative net cash outflow occurring within
the next 180 days must be covered by highly liquid assets (180-day liquidity
buffer), and the cumulative difference between cash inflows from the cover
pool and scheduled liability payments to preferred creditors needs to be
determined with daily granularity. To ensure that the cover requirements are
fulfilled, the Pfandbrief bank performs so-called matching cover calculations.
While the nominal cover, the excess cover and the 180-day liquidity buffer
have to be monitored on a daily basis, the excess cover under stress needs to
be checked on a weekly basis. Since the 2014 amendment of the PfandBG,
BaFin has the competence to increase the required overcollateralization
for individual Pfandbrief programmes if deemed necessary (cover add-on),
which facilitates a reaction to unfavourable issuer- or cover pool-specific
developments. This additional overcollateralization (OC) needs to be held
until the prerequisites which originally triggered the add-on are not fulfilled
anymore, but for at least three months. The safety buffer resulting from the
legal cover requirements is also referred to as mandatory overcollateralization.

Active cover pool management. Pfandbrief cover pools need active man-
agement. To ensure that cover requirements are fulfilled at all times, the
issuer may have to replace assets in case of asset repayments, defaults or
prepayments or to add liquid assets to the cover pool. It also might be
necessary to post additional assets before new Pfandbriefe can be issued,
or the bank may decide to replace non-performing assets in the cover pool
for reputational or marketing purposes. In practice, Pfandbrief banks tend
to maintain overcollateralization levels which exceed the legal requirements.
This voluntary overcollateralization is often driven by rating agency require-
ments and needed to obtain a certain target rating. It provides an additional
buffer for the Pfandbrief investor. To ensure transparency, Pfandbrief banks
are obliged to publish detailed information on their cover pools and their
outstanding Pfandbriefe on a quarterly basis (§28 PfandBG). In the following,
we refer to the associated reports as §28 Pfandbrief statistics.

Ring-fencing upon issuer insolvency. In case of issuer insolvency, cover
pools are exempt from the bank’s general insolvency proceedings. To ensure
the preferential claim of the privileged creditors, the cover pools are separated
from the general insolvency estate and managed by a cover pool administrator.
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The ring-fenced cover pool and the corresponding outstanding Pfandbriefe
continue as a Pfandbrief bank with limited business activity, the purpose
of which is the full and timely repayment of the privileged creditors. In
case the Pfandbrief bank has issued more than one Pfandbrief type, there
would be more than one Pfandbrief bank with limited business activity, each
having a separate fate. This separation principle, which is also referred to
as ring-fencing, is illustrated by Figure 2.3.

Figure 2.3: Ring-fencing upon issuer insolvency (Source: Spangler and Werner
[145], p. 17).

The cover pool administrator manages the cover pool and is responsible for
timely payments to privileged creditors. He can use cover pool payments
to service outstanding Pfandbriefe according to their contractual terms and
raise liquidity by refinancing activities such as central bank funding, take
up refinancing loans or issue new Pfandbriefe. Furthermore, he has the
possibility to raise funds by selling cover assets, which is facilitated by the
fact that he can use an existing or newly created refinancing register. The
cover pool administrator is, however, not forced to manage the cover pool on
his own. With the written consent of BaFin, he can transfer the whole cover
pool or parts of it as a package together with the outstanding Pfandbriefe
to another Pfandbrief bank. In case of a partial cover pool transfer, it needs
to be ensured that the remaining part of the cover pool still fulfils the cover
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requirements. The cover pool administrator can also hold the corresponding
(part of the) cover pool in a fiduciary capacity for the other Pfandbrief
bank. In any of these three cases scheduled payments to privileged creditors
continue, which implies that issuer default itself does not necessarily have
an impact on Pfandbrief payments. Once all preferred creditors have been
fully repaid, the remaining assets and derivatives in the cover pool must be
released to the issuer’s general insolvency estate.

Distinction of issuer and cover pool default. Upon issuer insolvency,
payments to privileged creditors are made out of the proceeds of the cover
pool. In case the cover pool itself becomes insolvent at the time of or after
issuer default, insolvency proceedings with respect to the cover pool are
initiated. The cover pool is then liquidated and its liquidation proceeds are
used to repay the preferred creditors. If these proceeds are not sufficient,
preferred creditors also have a claim against the issuer’s general insolvency
estate, which ranks pari passu with the bank’s other creditors. Figure 2.4
illustrates the situation post-issuer insolvency. As opposed to the event of
issuer default, cover pool default has an immediate impact on Pfandbrief
payments as it triggers an early repayment of the outstanding Pfandbriefe.
The PfandBG does not define specific criteria for the event of cover pool
default. It requires the cover pool administrator to monitor the intrinsic
value of the cover pool with respect to the cover requirements on a regular
basis, but it does not mention any particular consequences resulting from a
breach of these requirements. This is as opposed to some other covered bond
frameworks where cover pool default is explicitly defined. UK structured
covered bonds, for example, specify cover pool default by means of an
amortization test. This test is performed once a credit event with respect
to the covered bond issuer has occurred and verifies whether the cover
pool’s aggregate loan amount is at least as high as the nominal amount of
outstanding covered bonds. A failure to meet this requirement triggers cover
pool liquidation and the repayment of outstanding covered bonds. For more
details, see Koppmann [102], pp. 294–295.
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Figure 2.4: Situation post-issuer insolvency (Source: Spangler and Werner
[145], p. 19).

2.2 Risks from an Investor’s Perspective

From the investor’s point of view there are several types of risks arising
from a Pfandbrief investment. In the first place, the Pfandbrief holder
is exposed to all kinds of risk related to the issuer (issuer risks) as the
latter is responsible for making full and timely Pfandbrief payments. Upon
issuer insolvency, the situation changes and cover pool performance becomes
important as payments to the Pfandbrief holder are made out of the cover
pool (cover pool risks). There are also risks associated with the timing of
Pfandbrief repayments, structural and legal risks in the context of issuer and
cover pool insolvency and other risks that do not fit into the aforementioned
categories. While, for obvious reasons, issuer risks only matter pre-issuer
insolvency, the Pfandbrief holders become exposed to cover pool risks, the
risk of timely Pfandbrief repayment and structural and legal risks after issuer
insolvency only. Table 2.1 summarizes the relevance of the above discussed
risk types prior to and after issuer insolvency. In the following, we shortly
discuss the most important of these risks. For a detailed explanation and an
in-depth analysis, we refer to Spangler and Werner [145].
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Table 2.1: Relevance of Pfandbrief risks prior to and after issuer insolvency (cf.
Spangler and Werner [145], p. 30).

Type of risk Pre-issuer
insolvency

Post-issuer
insolvency

Issuer risks X -
Cover pool risks - X
Timely Pfandbrief repayment - X
Structural and legal risks - X
Other risks X X

Issuer risks. The Pfandbrief issuer is responsible to make full and timely
Pfandbrief payments. In addition, his activities in the context of cover pool
management and the maintenance of cover requirements contribute to the
overall quality of the cover pool, which constitutes the investor’s secondary
source of recourse. Issuer default risk and cover pool management risk
therefore play an important role for the Pfandbrief investor. The relevance
of issuer default risk has been underlined by several Pfandbrief bank bailouts
during the last 10 years. It is mainly influenced by the issuer’s business
model, his creditworthiness and his access to funding sources. While issuer
default itself does not necessarily mean that there are losses to the Pfandbrief
holder, it triggers the investor’s direct exposure to cover pool risk, the risk
of timely Pfandbrief repayment and structural and legal risks, which become
relevant upon issuer default, see Table 2.1 above. Cover pool management
risk, on the other hand, is related to uncertainties with respect to the cover
pool’s future quality and comprises substitution risk and risks in the context
of the maintenance of voluntary overcollateralization. Substitution risk arises
from the fact that, even though the PfandBG defines strict eligibility criteria
and cover requirements, the issuer still has some freedom to change the
composition of the cover pool and therefore its risk profile. As a consequence,
the cover pool’s quality cannot be assumed to be constant over time and it
is not independent from the issuer’s creditworthiness. The closer the bank
is to default, the more important substitution risk becomes. The issuer
may generally have less high-quality assets or be forced to use good quality
cover pool assets for other purposes and replace them by lower quality
assets. Furthermore, he might not be willing or able any more to replace bad
performing assets in the cover pool which still fulfil the eligibility criteria. In
the context of voluntary overcollateralization, the main issue is its voluntary
nature: there are almost no restrictions for the issuer to suddenly reduce it.
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This becomes especially relevant in a situation of financial distress, when the
bank might have no other choice but to reduce voluntary overcollateralization
to ease funding pressure. Voluntary overcollateralization in excess of legal
requirements can therefore not be relied upon. There are also risks associated
with the issuance of further Pfandbriefe (apart from aspects that are already
covered by substitution risk and the maintenance of overcollateralization)
and other issuer-related risks, which include operational risk, reputation risk
and strategic risk. These risks are, however, not Pfandbrief-specific or of
secondary importance only.

Cover pool risks. The quality of the cover pool also plays an important
role for the Pfandbrief investor as Pfandbrief payments are made out of
the proceeds of the cover pool once the bank has defaulted. The closer
the issuer is to insolvency, the more important become the cover pool and
the risks associated with it. Even though the PfandBG stipulates strict
quality criteria and cover requirements, there are still remaining cover pool
risks. The detailed regulations of the PfandBG can mitigate individual (i.e.
program-specific) cover pool risks to a considerable extent but, like other
covered bond laws, the PfandBG cannot rule out the impact of systemic risks
such as a collapse of the (local) financial system or a general deterioration
of cover pool asset quality. Under extreme market conditions, cover pool
risk can therefore become a big issue. Refinancing risk results from asset
liability maturity mismatches. Cover pool assets are typically longer dated
than outstanding Pfandbriefe, i.e. cash inflows from the natural amortization
of cover pool assets may not be sufficient to make scheduled Pfandbrief
payments, resulting in a need to raise additional funds. In a stressed market
environment such as in the immediate aftermath of an issuer default, it
might be difficult to raise funds and asset sales may only be possible at
large discounts (market value risk), especially when the market is aware of
the cover pool’s refinancing pressure. Not only interest rate and currency
risk (see below) but also credit spread risk play an important role in this
context. Aspects like asset downgrade risk and changes in credit spreads
due to changed risk aversion in the market which are not relevant from a
pure cash flows perspective may still have an impact on realisable sale prices.
Interest rate risk and currency risk refer to losses due to unfavourable market
movements and arise from interest rate and currency mismatches between the
cover pool and outstanding Pfandbriefe. They may lead to insufficient cover
pool cash flows or, in a forced-sale-situation, in mark-to-market losses. For
German Pfandbriefe, interest rate risk is more important than currency risk
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as outstanding Pfandbriefe are to a large extent denominated in euros and
cover pool assets typically show high concentrations to borrowers in Germany
and euro countries. Furthermore, asset default risk results from potential
losses caused by defaults of cover pool assets. In the case of Mortgage
Pfandbriefe, this also contains aspects of real estate risk as the recovery
value of a defaulted mortgage asset depends on the realizable sale price of
the charged property. Reinvestment risk, prepayment risk and counterparty
(credit) risk only play a secondary role for German Pfandbriefe.

Risk of timely Pfandbrief repayment. Investors are also exposed to the
risk that the Pfandbrief is repaid earlier or later than the contractual
maturity date. Under normal circumstances, early redemption and Pfandbrief
extension can only occur when both the issuer and the cover pool are insolvent.
This is, however, already the worst case scenario, where losses caused by
issuer and cover pool risks are likely to be more material than losses resulting
from lower earned or higher paid interest rates. These risks are therefore
not explicitly considered in the following.

Structural and legal risks. Structural and legal risks refer to uncertainties
in the context of cover pool segregation, the transition of tasks to the
cover pool administrator and the decision of cover pool liquidation. They
are intensified by the fact that until today the working of the Pfandbrief
mechanics has not yet been tested in practice. Even though the provisions
of the PfandBG provide a high level of comfort, there is still some remaining
uncertainty as the sole existence of a legal framework does not necessarily
mean that bankruptcy remoteness and cover pool continuation are also
feasible. The protection of voluntary overcollateralization in the context
of segregation risk and the timing of cover pool insolvency are especially
relevant in this context, as they can have a considerable impact on the
Pfandbrief’s recovery value. The cover pool itself is insolvency-remote
by law, but there is still some remaining uncertainty with respect to the
protection of voluntary overcollateralization, caused by a lack of explicit
legal provisions with respect to its bankruptcy-remoteness. If voluntary
overcollateralization (or parts of it) were released to unsecured creditors
before all outstanding Pfandbriefe had been repaid, Pfandbrief holders
could lose credit enhancement otherwise available to them. In addition,
the Pfandbrief holder is exposed to a considerable amount of uncertainty
in the context of cover pool liquidation. This is due to the fact that the
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PfandBG does not define specific criteria or trigger events regarding the
declaration of cover pool insolvency, which means that there is some freedom
regarding the decision when cover pool insolvency is to be declared (cover
pool insolvency timing). Furthermore, there are no restrictions regarding
the amount of assets that can be liquidated at once for the repayment of
a specific Pfandbrief maturity. This results in repayment risk from time
subordination for later maturing Pfandbriefe. The gap between an asset’s
market value and its intrinsic value is an important aspect to be considered
in this context. The decision whether to sell or retain a specific asset is not
always straightforward. While asset liquidation brings in cash and reduces
cover pool risks and operational complexities, it might lead to significant
discounts to the intrinsic value (market value risk) and eliminates any upside
potential due to favourable future market conditions. Asset retention, on
the other hand, does neither eliminate upside nor downside risk, i.e. the
final result may be superior or inferior to immediate liquidation, depending
on future market conditions. Segregation risks (apart from the protection
of voluntary overcollateralization) and risks in the context of transition to
alternative management are of secondary importance only.

Other risks. There are also other Pfandbrief-related risks the investor is
exposed to, which include country risk, operational risk4, settlement and
related risks, reputational risk and regulatory risk. With the exception of
sovereign risk which is part of country risk, these risks are not specific to
the Pfandbrief or of secondary importance only. In the case of German
Pfandbriefe, sovereign risk can currently be neglected.

Figure 2.5 summarizes the main Pfandbrief risks from an investor’s per-
spective as derived based on the findings in Spangler and Werner [145]. It
becomes apparent that bank solvency and cover pool performance as well
as well as the issuer’s activities in the context of cover pool management
play an important role. Certain structural and legal risks also need to be
considered.

4Note: Operational risk from Pfandbrief-related business activities (e.g. the cover pool
administrator’s activities) does not include issuer-related operational risk, which we
consider to be part of other issuer-related risks.
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Figure 2.5: Main Pfandbrief risks from an investor’s perspective.

2.3 Implications for Modelling

A realistic Pfandbrief model should account for the most important product
characteristics and be able to adequately reflect its main risks. In Section 2.1
we found the Pfandbrief’s main features to be its dual protection mechanism
with full recourse to the issuer and an additional priority claim on the high
quality cover pool, the mandatory overcollateralization arising from the
legal provisions, the active cover pool management under the issuer, the
ring-fencing and continuation of the cover pool upon issuer insolvency and
the distinction between the events of issuer and cover pool default. From
Section 2.2 we further know that the relevance of risks depends on the
occurrence of the event of bank default and that issuer solvency and cover
pool performance as well as the issuer’s activities in the context of cover pool
management are important in the context of risks. In addition, structural
and legal risks play a role.

For realistic Pfandbrief modelling we need to distinguish between the events
of issuer and cover pool default and consider the timing of these events.
Given the important role of the market environment, the model should be
able to relate the default events to the economy. More specifically, the impact
of stochastic risk drivers (e.g. interest rates and asset creditworthiness) on
asset present values and cash flows has to be modelled. Consequently, a
simplified version of the bank’s balance sheet is needed which accounts for the
bank’s risk profile (asset riskiness and sensitivity with respect to risk drivers,
different asset and liability maturities and resulting asset liability mismatches)
and to allow for an explicit distinction of the balance sheet positions which
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are related to the bank’s Pfandbrief business (i.e. the cover pool and the
outstanding Pfandbriefe). As default risk depends not only on the solvency
situation but also on funding access, illiquidity should be considered as
a second default reason in addition to overindebtedness. Furthermore,
the dynamic nature of the cover pool requires the specification of asset
liability management (ALM) related activities, such as the maintenance
of mandatory overcollateralization and potential funding and reinvestment
activities. Considering asset present values only is not sufficient for this
purpose. The prevalence of cover requirements and funding activities requires
the modelling of the bank’s cash flow profile. Pfandbrief payments under
different scenarios (i.e. pre and post-issuer insolvency, pre- and at cover
pool default) also need to be distinguished, taking into account the ring-
fencing and cover pool continuation upon issuer default and the Pfandbrief
acceleration in case of cover pool insolvency. Finally, the priority of paymens
in case of default, including the Pfandbrief holder’s priority claim on the
cover pool and his residual claim against the issuer’s general insolvency
estate, have to be adequately reflected. A one-period model is obviously
not able to capture all these aspects; a multi-period time setting is needed.
Table 2.2 summarizes our required modelling features. In the next chapter
we will review the existing credit risk literature with particular focus on
these requirements.

Table 2.2: Required features for Pfandbrief modelling.

Model component Feature

General Multi-period time setting
Default modelling Distinction of issuer and cover pool default

Distinction of overindebtedness and illiquidity
Link between default and market environment

Balance sheet Adequate representation of risk profile
Distinction of Pfandbrief business
Modelling of asset present values and cash flows

Market environment Stochastic risk drivers
Impact on asset present values and cash flows

ALM Active cover pool management
Funding and reinvestment activities

Pfandbrief mechanics Dual protection mechanism
Maintenance of legal cover requirements
Ring-fencing upon issuer default
Priority of payments in case of default



3 Credit Risk Models: A
Literature Review

This chapter is dedicated to the modelling of default events and gives an
overview of the existing credit risk literature with particular focus on bank
defaults and Pfandbrief modelling requirements. In Section 3.1 we introduce
the two main approaches to credit risk modelling, the structural and the
reduced form approach, and describe their areas of application. As the
structural approach turns out to be more suitable for our purpose, we have a
closer look at structural credit risk models in Section 3.2. Starting from the
seminal work of Merton, we explain the basic idea behind the approach and
discuss several model specifications and extensions which can be found in the
literature. We also investigate the empirical performance of structural credit
risk models in the context of credit spread and default risk estimation. In
the structural model setup, default is often interpreted as overindebtedness,
while liquidity does not play a role. Funding access and liquidity management
are, however, very important for banks. In Section 3.3 we therefore deal
with the application of structural credit risk models to banks and analyse
the implications of different funding assumptions. We also present examples
of structural credit risk models which are especially designed for banks.
The two most promising ones in the context of Pfandbrief modelling are
discussed in more detail. Section 3.4 summarizes the main findings of our
literature review. It turns out that none of the discussed models fulfils all
our requirements for Pfandbrief modelling.

For a general introduction to credit risk models, we refer to standard text-
books such as Bluhm et al [21], Arvanitis and Gregory [11], Duffie and
Singleton [52], Schönbucher [142], Lando [108] or Bielecki and Rutkowski
[18]. A comprehensive survey on structural and reduced-form models can be
found in Uhrig-Homburg [151], and a detailed overview of structural credit
risk models is given in Elizalde [56] and Laajimi [104]. Elizalde [55] covers
reduced-form models.
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3.1 Approaches to Credit Risk Modelling

The literature on credit risk modelling and default-claim pricing distinguishes
two main approaches: structural models and reduced-form models. Structural
models link the economic fundamentals of a company (i.e. its capital structure
and the value of its assets) and its creditworthiness in an explicit manner. An
exogenous firm value process is specified and default occurs once this process
hits a given barrier. In structural credit risk models, default probabilities
are determined endogenously through the evolution of the firm value process,
while recovery rates are either given exogenously or determined endogenously.
Prominent examples of structural credit risk models are Black and Cox [19],
Longstaff and Schwartz [116], Kim et al [100], Briys and De Varenne [25],
Ho and Singer [85], Leland [111], Leland and Toft [113] and Geske [76].

Reduced-form models, on the other hand, rely on an exogenous intensity
process to specify the default event. Default is typically triggered by the first
jump of this process. The parameters governing the process are calibrated to
market data (e.g. credit spreads), but the economics behind the process are
unknown. As a consequence, there is no explicit relationship between the
default event and the company’s economic conditions and default can occur
for arbitrary asset values, i.e. it is not predictable and comes as a surprise.
Examples of these kind of models are Jarrow and Turnbull [98], Jarrow et al
[96] and Duffie and Singleton [51]. Reduced-form models can be interpreted
to be a special case of structural models under incomplete information. For
more details see Elizalde [57].

The main difference between the structural and the reduced-form approach
is the way the default event is specified. For pricing purposes, especially in
the case of complex credit derivatives, reduced form models are often the
preferred choice as they are more flexible and easier to calibrate. For more
fundamental analyses, e.g. a quantification of the impact of economic risk
drivers on the company’s creditworthiness and resulting consequences for
debt holders of different seniority, some kind of structural model is needed.
Table 3.1 summarizes the main features of structural and reduced-form credit
risk models. Given our requirements for Pfandbrief modelling as derived in
Chapter 2, the structural approach is the natural choice. In the following,
we will therefore focus on structural credit risk models.
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Table 3.1: Features of structural and reduced-form credit risk models.

Feature Structural models Reduced-form models

Default specification Exogenous firm value pro-
cess hits a given boundary

First jump of an exogenous
intensity process

Default vs. economy Close link No explicit link
Preferred application Fundamental analyses Pricing (complex products)

3.2 Introduction to Structural Credit Risk
Models

Structural credit risk models are based on the seminal work of Merton
[124]. Most of these models assume that default occurs once a given state
variable representing the company’s economic or financial conditions falls
below a certain boundary. Structural credit risk models differ, among others,
with respect to the modelling of this state variable and the choice of the
default barrier. In Sections 3.2.1 and 3.2.2 we explain the basic idea behind
Merton’s model and discuss selected model extensions which can be found in
the literature. In Section 3.2.3 we look into the specification of the default
barrier, and Section 3.2.4 focuses on the role of liquidity in structural credit
risk models. The performance of structural credit risk models in the context
of credit spread and default estimation is discussed in Section 3.2.5.

3.2.1 The Merton Model

In his seminal work, Merton [124] assumes perfect, competitive and friction-
less markets1, continuous trading of assets and a constant risk-free interest
rate r. Under the real-world measure, the company’s asset value V follows a
lognormal diffusion process

dV (t) = (µV (t)− δ) dt+ σV (t)dW (t),

with µ being the instantaneous expected asset return per unit of time, δ the
firm’s total dollar payout per unit of time, σ the constant volatility of the
firm value return and (W (t))t≥0 a standard Brownian motion.

1This means that there are no transaction costs or taxes, assets are liquid, borrowing and
lending is always possible at the same rate, there are no problems with indivisibilities
of assets and restrictions with respect to short selling do not exist.
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Merton considers a company with a very simplistic debt structure, with two
classes of claims only: a single homogeneous class of debt, represented by a
risky zero coupon bond with face value F and maturity T , and equity (the
residual claim). The debt structure in his model is fixed, meaning that no
further debt can be issued. Merton also assumes that default can only occur
at the zero coupon bond’s maturity T . Whether or not the company defaults
at this time depends on the then-prevailing asset value V (T ). If it is sufficient
to repay the outstanding debt, V (T ) ≥ F , the company remains solvent,
the full face value F is repaid to bondholders and equity holders receive
a payment of V (T ) − F ≥ 0. If the value of the assets falls below F , the
company defaults. In this case, an amount of V (T ) is repaid to bondholders
and they experience a loss of F − V (T ) > 0, while equity holders receive
nothing. In Merton’s model, the time-T payoffs to debt (D) and equity (E)
are therefore given by

D(T, T ) = min (F ;V (T )) = F −max (0;F − V (T )) ,

E(T ) = max (0;V (T )− F ) ,

with D(T, T ) + E(T ) = V (T ). The time-T payoffs D(T, T ) and E(T ) can
be interpreted as contingent claims on the firm’s asset value V (T ). Holding
the risky zero coupon bond corresponds to having entered a long position
of an otherwise identical but default-free zero coupon bond with face value
F and maturity T , and a short position of a European put option on V
with expiry T and strike F . The equity holders’ position, on the other hand,
resembles a call option on the firm’s asset value with expiry T and strike F .
The time-t prices of debt and equity are then obtained by calculating the
risk-neutral expectation of the discounted final payoffs,

D(t, T ) = P (t, T ) · F − P (t, T ) · EQ
[
max (0;F − V (T ))

∣∣∣ Ft] ,
E(t) = P (t, T ) · EQ

[
max (0;V (T )− F )

∣∣∣ Ft] , (3.1)

with P (t, T ) := e−r·(T−t) and EQ [•|Ft] being the conditional expectation
under the risk-neutral measure Q given the information at time t. Using
results from option pricing theory, cf. Black and Scholes [20], the calculation
of the risk-neutral expectations in (3.1) is straightforward.



3.2 Introduction to Structural Credit Risk Models 23

3.2.2 Extensions of the Merton Model

As Merton’s model relies on quite restrictive assumptions, it has been
extended in many ways. These extensions concern, amongst others, Merton’s
assumptions regarding the company’s debt structure, the timing of default,
the firm’s asset value process, the modelling of interest rates and recovery
rates and the costs of default, see Figure 3.1.

Figure 3.1: Selected extensions of Merton’s model.

Debt structure. Merton assumes a very simplistic debt structure with
only one class of debt, represented by a risky zero coupon bond of finite
maturity. In practice debt structures are much more complex and payoffs in
case of default may be specified by contractual provisions. Black and Cox
[19] handle subordination within the option pricing framework by adjusting
payment formulas accordingly, but they only allow for one common maturity
date. Geske [76] accounts for a more complex capital structure: his model
works for multiple debt issues with different maturities and coupons. In the
context of Pfandbrief modelling, flexibility with respect to the debt structure
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is needed, to allow for an adequate representation of the Pfandbrief bank’s
risk profile and a distinction between Pfandbriefe and other liabilities.

Default timing. In Merton’s model, default can only occur at a fixed debt
maturity which is not realistic. So-called first-passage-time models, pioneered
by Black and Cox [19], have relaxed this assumption. These models assume
that default occurs once a given state variable representing the company’s
economic and financial conditions, typically represented by the value of the
firm’s assets, falls below a given default barrier. The choice of this barrier is
discussed in more detail in Section 3.2.3.

Asset value process. Due to its analytical tractability, many structural
credit risk models, including Merton [124], rely on the assumption that the
firm’s asset value follows a lognormal diffusion process with constant volatil-
ity. This implies that credit spreads for short maturities converge to zero (cf.
Lando [108], Chapter 2.2.2), which contradicts empirical observations of pos-
itive market spreads for short-term debt and has motivated the introduction
of jumps in the firm’s asset value process. Under a jump diffusion process,
default occurs either expectedly (if the default barrier is hit as a consequence
of steady declines during times of normal fluctuations) or as a surprise (if
a jump causes the firm value to suddenly fall below the critical barrier).
Positive spreads can be obtained for very short maturities and even for
firms with high credit quality. In addition to that, the endogenously created
recovery rates are random and depend on the firm’s asset value at the time of
default. A disadvantage of the introduction of jumps is that it comes at the
expense of analytical tractability and complicates calculations considerably.
Examples of structural credit risk models with jumps in the asset value
process are Schönbucher [141], Zhou [169], and Mason and Bhattacharya
[117]. In the context of Pfandbrief modelling, flexibility with respect to the
choice of the asset value process is needed, to account for the fact that the
assets on a bank’s balance sheet typically consist to a large part of risky
bonds and loans for which a lognormal diffusion process is not suitable (see
discussions in Sünderhauf [148], p. 81).

Interest rates. Several models such as Kim et al [100], Longstaff and
Schwartz [116], Briys and de Varenne [25] and Hsu et al [87] relax Mer-
ton’s constant interest rate assumption by introducing stochastic interest
rates. Such approaches are more realistic and allow for the modelling of
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dependencies between the company’s asset value and the risk-free interest
rate. As in the case of jumps in the firm’s asset value, the introduction
of stochastic interest rates reduces analytical tractability and complicates
modelling. Nevertheless, stochastic interest rates are necessary for realistic
Pfandbrief modelling.

Recovery rates. Merton’s model implicitly assumes that the recovery pay-
ment, which equals V (T ) < F , is determined endogenously and depends
on the company’s remaining asset value at time T . A similar assumption
is also made by Black and Cox [19], Geske [76] and Vasicek [155]. In their
models, the recovery payment equals V (τ), i.e. the remaining asset value
at the default time τ . Other models, such as Kim et al [100] and Longstaff
and Schwartz [116], assume an exogenously given recovery rate (typically
a percentage fraction of outstanding debt) which implies that the payment
in case of default is independent from the then-prevailing asset value. As
opposed to exogenous recovery rates, endogenous recovery rates allow for an
explicit modelling of dependencies between default probabilities and recovery
rates.

Costs of default. Merton assumes that the full asset value is available to
repay bondholders in case of default. This assumption is not realistic due
to bankruptcy and asset liquidation costs which occur in practice.2 Such
costs can be incorporated into structural credit risk models by assuming
that only a fraction α ∈ [0, 1] of the asset value is left upon default, while
a fraction (1− α) is lost. Models accounting for costs of default are, for
example, Leland [111], Uhrig-Homburg [150] and François and Morellec [72].

Further model extensions. In the literature, there are many other exten-
sions of the Merton [124] model. Among them one finds models with dynamic
capital structures (as in Collin-Dufresne and Goldstein [30], Fischer et al
[71], Goldstein et al [79] and Ju et al [99]), models accounting for strategic
default and out-of-court renegotiations (see Anderson and Sundaresan [9],
Anderson et al [10], Fan and Sundaresan [70], Mella-Barral and Perraudin

2Forced asset liquidation may result in high liquidation costs, depending on the market
environment and asset liquidity. In this context, the so-called liquidity premium in
credit spreads plays an important role. In times of crises when liquidity in financial
markets decreases, financial institution may also be confronted with unexpectedly
high bid-ask spreads when forced to sell or liquidate positions.
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[123] and Mella-Barral [122]), and liquidation process models3 (e.g. Moraux
[126], Galai et al [74], Paseka [134] and Broadie et al [26]). In the following,
we do not further consider these kind of model extensions as they are of low
relevance for Pfandbrief modelling.

3.2.3 Specification of the Default Barrier

The majority of structural credit risk models assume that default occurs once
the firm’s asset value falls below a given barrier. In the credit risk literature,
two different types of default barriers are distinguished: endogenous and
exogenous ones. Models with endogenous default barriers as for example
Leland [111], Leland and Toft [113] and Geske [76] assume that equity
holders choose the timing of default such that the value of their claim is
maximized. At each point in time they decide whether or not it is worth
to make scheduled debt payments by comparing the benefits of keeping the
company alive to the costs of making these payments. By doing so, they
deduct their default barrier endogenously and stop making payments once
the asset value falls below this threshold. This implies that debt service
payments may continue to be made even though the value of the company’s
assets is below the principal of debt or there are not sufficient cash inflows.
Endogenous default models look at certain aspects of the bankruptcy process
in more detail and allow for what Laajimi [104] calls “a richer modeling of
the default decision”. Depending on the model setup it might, however, be
quite complex to derive the endogenous default barrier as an optimization
problem needs to be solved at each point in time. The more complicated the
asset value process and the debt structure are chosen, the more difficult this
task becomes. As Pfandbrief modelling requires non-standard assumptions
regarding the bank’s debt structure and asset value process, we do not
consider endogenous default barriers in the following. Instead, we focus on
the more intuitive exogenous default barriers.

As suggested by their name, exogenous default barriers are given exogenously,
and they are typically somehow related to the face value of debt. The barrier
itself can be constant as in Longstaff and Schwartz [116] or Kim et al
[100], time-dependent as in Black and Cox [19], or stochastic as in Briys
and de Varenne [25] and Hsu et al [87]. It is often interpreted as a safety
covenant that protects bondholders from losses when the firm’s asset value

3Liquidation process models account for the fact that default results not necessarily in
immediate liquidation but can be the outcome of a long lasting process.
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decreases too much. As opposed to endogenous default barriers, exogenous
default barriers are comparably easy to determine and more in line with the
interpretation of overindebtedness. In the following, we consider a simplified
debt structure with only one class of debt, represented by a risky zero coupon
bond with face value F and maturity T . The most simplistic choice is to
set the default barrier equal to the face value of debt as in the Merton
model, V CB := F . A more sophisticated alternative is the time-dependent,
potentially stochastic, version which can be found in Black and Cox [19] and
Briys and de Varenne [25]:

V αB (t) := α · F · P (t, T ), 0 ≤ α ≤ 1. (3.2)

Here, P (t, T ) is the time-t value of a default-free zero coupon bond maturing
in T , and α is an exogenously given constant fraction. The closer α is to
one, the more protective this barrier is. The default barrier V αB (t) decreases
for increasing maturities T as P (t, T ) becomes smaller. In case of stochastic
interest rates, P (t, T ) also becomes stochastic, meaning that it is not known
at times s < t. One problem associated with this default barrier is that for
α < 1 it can happen that V αB (T ) < V (T ) < F , meaning that the asset value
at maturity is above the barrier V αB (T ) = α · F and below the face value
of debt. This implies that the company does not default, but the value of
its assets is not sufficient to repay the maturing debt. To avoid unwanted
implications, liability payoffs have to be defined such that this is taken into
consideration, see Briys and de Varenne [25]. Another alternative is the
default barrier used by Moody’s KMV:4

V KMV
B (t) := FSTD(t) + 0.5 · FLTD(t), (3.3)

with FSTD(t) being the face value of the company’s outstanding short-term
debt and FLT (t) the face value of its outstanding long-term debt, both as seen
from time t. This barrier accounts for the fact that short-term debt has to be
repaid soon, while long-term debt does not require nominal repayments to be
made in the near future. According to Leland [112], KMV considers “short-
term” to be the time horizon for which the default probability is calculated.
The longer this time horizon, the higher the fraction of short-term debt and
therefore the default barrier.

4For more details on the KMV model, see Crosbie and Bohn [35].
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The specification of the default barrier is not straightforward5 and can have
a large impact on model results. Empirical evidence suggests that the actual
asset value at which the firm defaults is lower than the face value of debt and
lies somewhere in between short-term debt and total liabilities, cf. Crosbie
and Bohn [35]. This supports the choice of a default barrier as defined
in Equation (3.3). Davydenko [36], who uses market values of defaulting
companies, finds mean (median) default barrier estimates of 66% (62%) of
the face value of outstanding debt. This is roughly in line with Huang and
Huang [88], who assume a default boundary of around 60%. Results obtained
by Fabozzi et al [69] suggest that the timing of debt payments should also
be accounted for when specifying an exogenous default boundary. They
compare six different structural credit risk models including Merton [124],
Black and Cox [19], Longstaff and Schwartz [116] and a flat barrier model
and find that an exponentially decaying barrier as in Black and Cox [19]
clearly dominates a flat barrier. According to them, the Black and Cox model
is in general the most dominant model out of the six ones considered, which
suggests a default barrier as in Equation (3.2). For Pfandbrief modelling we
will rely on a modified mixture of the default barriers in (3.2) and (3.3). For
more details we refer to Section 4.5 below.

3.2.4 The Role of Liquidity

As structural credit risk models assume that default occurs once the firm’s
asset value falls below a given threshold, default can be interpreted as
some kind of overindebtedness. However, empirical findings indicate that in
practice overindebtedness is not the only default reason and that financing
frictions also play an important role in the context of default. For more
details, see Davydenko [36] and Dionne and Laajimi [49]. Realistic mod-
elling should, therefore, not only account for overindebtedness but also for
illiquidity.

Structural credit risk models mostly ignore the role of liquidity. Notable
exceptions are so-called cash based models such as Kim et al [100], Anderson
and Sundaresan [9] and Anderson et al [10]. These models assume that
default occurs once an exogenously given cash flow falls below current debt
service payments, which implies that default may occur even though the

5As pointed out by Dionne and Laajimi [49], neither the dynamics nor the location of
the default barrier are visible, meaning that it has to be specified based on indirect
information.
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company is not overindebted. This way of modelling cash shortages is not
very convincing as it completely rules out the possibility to raise new funding,
i.e. the costs of new issuances are assumed to be infinitely high. In addition
to that, the resulting analytics are often equivalent to value-based models
when the firm’s asset value is modelled as a fixed multiple of the firm’s cash
flow, cf. Leland [112].

A second type of structural models which implictely accounts for liquidity
are endogenous models with frictionless markets, including those by Leland
[111] and Leland and Toft [113], which do not distinguish between cash
shortage and overindebtedness. They assume that there are no market
frictions, meaning that the company can always raise additional equity to
overcome liquidity problems, at least as long as enough value remains to
motivate the issuance of new equity. Such costless equity issuance implies
that liquidity has no value, which is not in line with empirical evidence,
cf. Asvanunt et al [12]. The truth probably lies somewhere in between the
two extreme modelling assumptions of cash based models and models with
frictionless markets. Cash shortages do not always lead to an immediate
default nor can they always be overcome with certainty.

Only few structural models incorporate both overindebtedness and illiquidity
as default reason. This is due to the fact that modelling both types of
default events simultaneously is challenging and results in increased model
complexity (Davydenko [36]). Two models which account for both default
events are the ones by Liang et al [114] and Uhrig-Homburg [150], which
will be discussed in more detail in Section 3.3. As banks typically heavily
rely on external funding and liquidity management, modelling default due
to illiquidity is very important in the context of Pfandbrief modelling.

3.2.5 Empirical Findings on Model Performance

Various empirical studies focus on the ability of structural credit risk models
to predict credit spreads and default probabilities. Although most of these
works exclude financial institutions, see Imerman [93], p. 9, they still provide
valuable insights into model behaviour and the quality of predictions. In the
following, we give a short overview of the main findings in this context. For
a more comprehensive review of empirical findings with respect to credit
spread prediction and an in-depth discussion of the suitability of structural
credit risk models for default risk assessment, see Sünderhauf [148], pp.
67–77.
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One common finding with respect to credit spread prediction is that structural
models do not perform well and tend to underestimate observed credit
spreads, especially for short maturities. This poor performance is often
explained by empirical evidence that default risk is not the sole driver of
credit spreads. Eom et al [59] observe that credit spreads from the Merton
model are too low as compared to empirical spreads and the studies by Elton
et al [58], Huang and Huang [88], Ericsson and Reneby [60], Perraudin and
Taylor [135] and Collin-Dufresne et al [31] suggest that a large proportion of
credit spreads is driven by other factors than default risk, namely liquidity,
risk premia and tax effects. Based on these findings, Sünderhauf [148] argues
that structural credit risk models cannot be expected to explain the full
credit spread observed in the market but only the default risk part of it.

In the context of default prediction, structural credit risk models seem to
perform better.6 Sünderhauf [148] refers to several studies which provide
evidence that the default risk itself is acceptably explained by structural
credit risk models. Fabozzi et al [69], who study six structural credit risk
models (Merton [124], Black and Cox [19], Leland and Toft [113], Longstaff
and Schwartz [116], Geske [76] and a flat barrier model), find that these
models are quite robust against sample selection and conclude that structural
models are suitable for default prediction. Leland [112], who compares the
Longstaff and Schwartz [116] and the Leland and Toft [113] model, finds
that long-term default probabilities are predicted quite accurately, while
short-term default probabilities tend to be underestimated. He draws the
conclusion that a jump component should be included in the asset value
process. All in all, the structural approach to credit risk modelling seems
appropriate for our purpose, as our focus is on default modelling and not on
the replication of market spreads or prices.

3.3 Bank Default Modelling

Even though there is a vast amount of literature on structural credit risk
models, only few of these works deal with their application to banks. As
pointed out by Chen et al [28], many structural credit risk models cannot
capture the refinancing strategies such as short-term debt roll-over, the
complex liability structure and the high leverage which are typical for banks.

6As opposed to credit spreads, default probabilities are not considered to be impacted
by additional factors such as liquidity, risk premia and tax effects (Leland [112]).
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Nevertheless, in the context of Pfandbrief modelling we have to deal with
the application of structural credit risk models to banks. In Section 3.3.1
we therefore analyse potential bank funding and liquidity management
strategies. In Section 3.3.2 we then present examples of existing structural
models which are particularly designed for banks. The two most promising
ones, Sünderhauf [148] and Liang et al [114], are discussed in more detail.

3.3.1 Funding and Liquidity Management

In practice, bank survival strongly depends on the bank’s refinancing strategy
and its ability to obtain funding when needed, which is not just a matter
of costs. Depending on the market environment and the issuer’s specific
situation, access to funding sources might be restricted or not possible at all.
This is why banks try to reduce their liquidity risk exposure by diversifying
funding sources. In the following, we discuss several bank funding and
liquidity management options as shown in Figure 3.2, focusing on their
relevance in practice, their presence in structural credit risk models and
potential modelling implications.7

Unsecured funding. Liquidity needs can be met by engaging in unsecured
funding activities such as overnight borrowings and the issuance of certificates
of deposit or commercial papers. Under normal conditions, the availability of
unsecured funding may be a viable assumption, but in case of a bank-specific
acute funding need or a market-wide funding crisis, unsecured funding cannot
be relied upon any more. As pointed out by Matz [119], “prudent bankers
assume that unsecured funding sources are only available under almost
benign conditions”. Structural credit risk models which assume that the
debt structure is static cannot account for the issuance of new debt at all.
The model by Leland [111] and its extensions incorporate the issuance of new
debt to fund contractual payments by assuming that debt is continuously
rolled over and replaced by new debt, meaning that the company’s leverage
remains constant over time. This implies that rollover risk is completely
ignored as there are no market frictions and unsecured funding is always
available.

7We do not explicitly consider securitization as the discussion would be similar to secured
funding (in case of synthetic deals) or asset sales (in case of true sale deals).



32 3 Credit Risk Models: A Literature Review

Figure 3.2: Bank funding and liquidity management options.

Secured funding. Secured funding, which includes repurchase agreements
and collateralized central bank open market operations, requires assets to
be posted as collateral in exchange for cash. These assets typically have to
fulfil certain eligibility criteria and are pledged at a haircut to their present
value, reflecting the uncertainty regarding the future realisable sale price
due to price volatility and potential liquidation discounts. As pointed out
by Matz and Neu [120], secured funding has several advantages. First of
all, due to the collateralization it is considered to be more reliable than
unsecured borrowings, meaning that lenders can be expected to be less likely
to withdraw their funds in case the bank gets into troubles. In addition
to that, secured funding may be the preferred alternative to asset sales
when realisable prices or accounting-related reasons make it less desirable to
sell certain assets. Finally, even less liquid assets can potentially be used
to provide liquidity. As long as there are sufficient unencumbered assets
available which can be posted as collateral, secured funding can therefore be
considered to be a comparably reliable funding option. Still, it cannot be
assumed to be available without limitation, see Matz and Neu [120]: “There
have been situations where funds providers were unwilling to provide repo
funding to banks experiencing funding crisis, even though the banks were
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willing to pledge high-quality securities as collateral.” According to the
Basel Committee on Banking Supervision [14], even secured funding with
overnight maturity should not be assumed to be rolled over automatically.
Structural credit risk models typically do not incorporate secured funding
options. One notable exception is the bank-run model by Liang et al [114],
which will be discussed in more detail in Section 3.3.2.2 below.

Committed liquidity lines. Committed liquidity lines from other banks
can be a flexible way to deal with short-term funding needs. Again, the
main problem with this liquidity source is that it cannot be relied upon
in a bank-specific crisis, even in the absence of so-called ‘material adverse
change clauses’8, as the commitment might be withdrawn.9 The Basel III
calculation rules for the liquidity coverage ratio require that committed
credit or liquidity facilities are not considered in a stress scenario (Basel
Committee on Banking Supervision [13], p. 36). Committed liquidity lines
are rarely found in the credit risk literature. Two notable exceptions are
Asvanunt et al [12] and Escobar et al [61]. Both of them do not require the
liquidity line to be backed by assets.

Equity issuance. Another funding option is the issuance of additional
equity capital. According to Matz and Neu [120] this does, however, not
seem to be a notable source of liquidity for banks. Imerman [93], on the
contrary, argues that the issuance of additional capital becomes more relevant
in times of financial distress when financial institutions have restricted access
to debt markets, decide to deleverage or are forced to raise capital by
regulators. Structural credit risk models (e.g. Geske [76]) often assume
that outstanding debt is repaid by raising new equity capital, which implies
continuous deleveraging over time. As banks often rely on debt rollover, this
may lead to an underestimation of default risk.

Liquidity reserves. Liquidity reserves are considered to be a very reliable
source of cash and can provide a certain buffer for times of funding distress.

8Material adverse change clauses allow for a withdrawal of the commitment when the
borrower’s financial condition deteriorates.

9See, for example, Matz [119]: “In some previous situations, capital markets’ counter-
parties have even reneged on contractual obligations in the apparent belief that the
risk of being sued by the bank if it survives is less than the risk of losing their money”.
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Basel III requires banks to hold sufficient unencumbered10 high quality
liquid assets, i.e. cash or assets that can be readily converted into cash,
to survive at least 30 days in a liquidity stress scenario. Excess cash is
typically not hold, cf. Matz and Neu [120]: “Well-managed banks rarely
hold much more cash than they require for ongoing operations. Therefore,
for a bank that continues in business, cash is a fixed asset.” Due to the
cost of holding liquidity, liquidity reserves are not the most desirable option.
Some structural credit risk models such as Asvanunt et al [12] and Anderson
and Carverhill [8] account for liquidity reserves, but they typically consider
cash holdings only. In structural credit risk models with perfect frictionless
markets, cash holdings do not make much sense as new funding can be raised
without costs at any time. The incentive to hold cash only arises from the
prevalence of financing constraints.

Asset sales. Another funding alternative available to banks is to sell assets.
However, illiquid assets such as loans might be hard to sell, even under
normal market conditions. If assets, particularly less liquid ones, need to be
sold on short-notice this may not be possible at, or at least close to, their
fair value, especially in times of market distress. During a flight to quality
it might even not be possible to sell certain previously liquid assets at all.
Except for assets belonging to the bank’s liquidity reserves, asset sales may
therefore not be the most realistic funding option. Structural credit risk
models typically do not allow for asset sales.11 One reason for this may be
the increased mathematical complexity under this option, see Lando [108],
p. 29. Allowing for asset sales also has implications on the modelled term
structure of default probabilities and leads to a redistribution of wealth. A
higher priority is assigned to short-term debt at the cost of long-term debt
and the value of equity is increased at the cost of debt holders, see Ho and
Singer [85] and Morellec [127].

The above discussions reveal that not all assumptions made in the context of
funding availability are realistic and that some of them have unwanted impli-
cations for modelling. Most structural credit risk models which incorporate
funding options either assume the rollover of unsecured debt or the issuance

10Here, unencumbered means “free of legal, regulatory, contractual or other restrictions
on the ability of the bank to liquidate, sell, transfer, or assign the asset” (Bank of
International Settlement [13], p. 9).

11As an example, take Kim et al [100] who assume that there are bond indentures that
prevent the sale of assets.
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of additional equity. While the availability of unsecured funding cannot be
relied upon, assuming the issuance of new equity leads to an artificial drop of
leverage and, as banks typically rely on debt rollover, in an underestimation
of default risk. All in all, we consider a collateralized bank liquidity line
to be the most adequate assumption for our purpose. This combines the
characteristics of secured funding (a reliable funding source) with the ones
of a liquidity line (cash can be raised at fixed conditions). To account for
the fact that liquidity lines may be withdrawn when conditions deteriorate,
we further assume that the provider of the liquidity line has the option to
decide whether or not to prolong the granted funding at each point in time.
For more details on the explicit setup, see Section 4.4 below.

3.3.2 Structural Credit Risk Models for Bank Default

As already mentioned before, there are only very few structural credit risk
models in the literature which are especially designed for banks. In the
following, we shortly present four exceptions, the approaches by Imerman
[93], Uhrig-Homburg [150], Sünderhauf [148] and Liang et al [114].

Imerman [93] incorporates features from the compound option approach,
cf. Geske [76], [75], Geske and Johnson [77], and from Leland-type models
as in Leland [111], Leland and Toft [113]. He allows for complex liability
structures and permits two different funding options to refinance maturing
debt: debt rollover and the issuance of new equity. Imerman does, however,
not account for market frictions and limited access to external financing,
i.e. he completely ignores potential defaults due to liquidity reasons. In
addition to that, the default barrier in his model is chosen endogenously.
His approach is therefore not considered further in the following.

Uhrig-Homburg [150] extends the model by Leland [111] and introduces
liquidity constraints by assuming non-zero but finite costs of equity issuance
for firms close to distress. She explicitly distinguishes between the two default
reasons overindebtedness and illiquidity, but debt payments are financed by
the issuance of new equity, which implies an artificial deleveraging over time.
As the default barrier in her model is also chosen endogenously, her model
is not considered further in the following.

The models by Sünderhauf [148] and Liang et al [114], on the other hand, both
use exogenous barriers to model default due to overindebtedness and exhibit
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further very interesting features in the context of Pfandbrief modelling. Both
models are now discussed in more detail.

3.3.2.1 Sünderhauf’s Mortgage Bank Model

The mortgage bank model introduced by Sünderhauf [148] is a one-period
model for Pfandbrief default risk pricing.12 It considers the specific structure
of a Pfandbrief bank’s balance sheet and accounts for the issuer’s obligation to
maintain cover requirements and the specific priority of Pfandbrief payments
in case of default. The model is based on standard assumptions in the
context of structural credit risk models such as perfect capital markets, no
arbitrage, rational market participants, the existence of a risk-free investment
opportunity and strict absolute priority.

The bank’s balance sheet. Sünderhauf considers a simplified version of
a typical mortgage bank’s balance sheet as shown in Figure 3.3. On the
asset side, there is a mortgage cover pool (HDS), a public sector cover
pool (KDS) and a position called other assets (SA), while the liability
side comprises Mortgage Pfandbriefe (HPF ), Public Pfandbriefe (ÖPF ), a
position called other liabilities (SV ) and equity (EK).

Figure 3.3: Sünderhauf’s simplified balance sheet.

12By mortgage bank, Sünderhauf refers to the time prior to the PfandBG when only
specialised mortgage banks were allowed to issue Pfandbriefe under the ‘Hypotheken-
bankgesetz’, one of the predecessors of the PfandBG.
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Sünderhauf assumes that all liabilities mature at the same time T , and
that all assets mature at the same time S ≥ T .13 In his model, the bank’s
balance sheet is static until time T , meaning that no further debt is issued
and no assets are purchased or sold. He also assumes that no cash flows
occur prior to time T and that cover requirements are only reestablished
at the liabilities’ maturity T . Under these assumptions, the time-t balance
sheet equation in terms of present value is given by

V HDS(t) + V KDS(t) + V SA(t) = V HPF (t) + V ÖPF (t) + V SV (t) + V EK(t),

for 0 ≤ t ≤ T ≤ S, with V x(t), x ∈ {HDS,KDS, SA,HPF, ÖPF, SV,EK},
being the time-t present value of the corresponding balance sheet position.

For the ease of presentation we concentrate on a special case of Sünderhauf’s
model in the following; the case of only one Pfandbrief type.14 In this
special case, the asset side of the bank’s balance sheet simplifies to one cover
pool (DS) and one position called other assets (SA), while the liability side
consists of Pfandbriefe (PF ), other liabilities (SV ) and equity (EK). The
bank’s balance sheet equation at time t then becomes

V DS(t) + V SA(t) = V PF (t) + V SV (t) + V EK(t),

for 0 ≤ t ≤ T ≤ S.

Risk drivers. Sünderhauf considers several stochastic risk drivers which
have an impact on the value of the bank’s assets: the risk-free interest rate,
state variables for the creditworthiness of the cover pool and the other assets
and the volatilities of these state variable processes. Correlations between
the corresponding processes are also taken into account.

• Risk-free interest rate: The risk-free short rate under the risk-neutral
measure Q is modelled by an extended Vasicek model as in Hull and
White [92]:

dr(t) = (θr(t)− κrr(t)) dt+ σrdWr(t), (3.4)

13He argues that term transformation with liabilities maturing later than assets is of low
relevance to mortgage banks, cf. Sünderhauf [148], pp. 81f.

14For the setup of the full model, see Sünderhauf [148], Chapter 5.1.
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with a standard Brownian motion (Wr(t))t≥0 and positive constants
κr and σr. θr(t) is chosen to exactly fit the interest rate term structure
observed in the market,

θr(t) :=
∂fM (0, t)

∂t
+ κrf

M (0, t) +
σ2
r

2κr

(
1− e−2κrt

)
,

with fM (0, t) := −∂ lnPM (0,t)
∂t being the market instantaneous forward

rate prevailing at time 0 for the maturity t and PM (0, t) the time-0
market price of a risk-free zero coupon bond with maturity t. The
dynamics in Equation (3.4) imply mean reversion to a long- term,
time-depending level θr(t) with speed κr. For more details regarding
the Hull-White extended Vasicek model, see Brigo and Mercurio [24],
Chapter 3.3.

• State variables for asset creditworthiness: The risk-neutral dynamics
of the state variable processes which drive the bank’s asset credit risk
are given by jump diffusion processes,

dṼ x(t)

Ṽ x(t)
= (r(t)− λxṽx) dt+ σx(t)dWx(t) + (Jx(t)− 1) dΠx(t), (3.5)

for x ∈ {DS,SA}, with (Wx(t))t≥0 being a standard Brownian motion
under Q and (Πx(t))t≥0 a Poisson process with intensity λx. The jump
size of the Poisson process is Jx(t) > 0 and EQ [Jx(t)] = ṽx + 1. Jump
sizes are assumed to be i.i.d. lognormal with ln Jx(t) ∼ N

(
µJx , σ

2
Jx

)
,

implying ṽx = EQ [Jx(t)− 1] = exp{µJx + 0.5 · σ2
Jx
}− 1. Furthermore,

λx, µJx , and σ2
Jx

are constants with λx, σ
2
Jx
≥ 0, and σx(t) is stochastic,

see specification below. The jump diffusion process in Equation (3.5) is
a combination of a geometric Brownian motion and a jump process. As
long as no jump occurs, the process evolves according to a geometric
Brownian motion. Discrete jumps of random size, drawn from a
lognormal distribution, occur with intensity λx. To compensate for
the influence of these jumps, the drift of the geometric Brownian
motion is adjusted by λxṽx.

• Volatilities of state variable processes: The volatilities of the state
variable processes are assumed to be stochastic. Under the risk-neutral
measure Q they follow the dynamics proposed by Hull and White [91],

dσ2
x(t) = κσx

(
θσx − σ2

x(t)
)
dt+ σσx

√
σ2
x(t)dWσx(t), (3.6)
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for x ∈ {DS, SA}, with (Wσx(t))t≥0 being a standard Brownian
motion under Q, and positive constants κσx , θσx and σσx . As in
the interest rate case, the dynamics in Equation (3.6) imply mean
reversion to a long-term level. Here, the long-term level is given by
θσx and the mean reversion speed is κσx .

• Correlations: In Sünderhauf’s model, the stochastic processes for the
state variables and the corresponding stochastic volatility processes
are assumed to be correlated according to

dWx(t)dWσx(t) = ρx,σxdt,

for x ∈ {DS, SA}. The stochastic processes of different state variables
as well as the stochastic processes of different volatility processes are
also assumed to be correlated, with

dWx(t)dWy(t) = ρx,ydt, dWσx(t)dWσy (t) = ρσx,σydt,

for x, y ∈ {DS, SA}, x 6= y. In addition to that, the risk-free interest
rate process is assumed to be correlated to the state variable processes
and the processes of the stochastic volatilities,

dWr(t)dWx(t) = ρr,xdt, dWr(t)dWσx(t) = ρr,σxdt,

with x ∈ {DS, SA}. The processes Πx and Jx, on the contrary, are
assumed to be uncorrelated to all processes and variables.

For a more detailed discussion of the risk factor modelling assumptions and
their implications, see Sünderhauf [148], Chapter 4.1.4.

Asset modelling. Sünderhauf distinguishes three types of asset positions.
In the special case of only one Pfandbrief type this reduces to two positions:
a cover pool (DS) and other assets (SA). In Sünderhauf’s model, the
cover pool is modelled as a risky zero coupon bond with nominal NDS and
maturity S. Following an idea by Andersen and Cakici [7], he assumes that
the cover pool defaults at time S if the value of the state variable associated
with the cover pool is below the cover pool’s nominal, Ṽ DS(S) < NDS ,
and its recovery value is then given by Ṽ DS(S). Otherwise, the cover pool
survives and the nominal is repaid in full. The time-S cash flow of the cover



40 3 Credit Risk Models: A Literature Review

pool is therefore given by

V DS(S) := min
(
NDS ; Ṽ DS(S)

)
.

Sünderhauf argues that modelling the risky cover pool cash flow as in the
above equation is more appropriate than just setting V DS(S) = Ṽ DS(S) as
it accounts for the typical credit portfolio characteristics of the cover pool.15

The time-T cover pool value is obtained by calculating the risk-neutral
expectation of the discounted time-S cash flow,

V DS(T ) = EQ
[
e−
∫ S
T
r(s)ds · V DS(S)

∣∣∣ FT ] , T ≤ S. (3.7)

The determination of the time-T value of the other assets is much simpler,

V SA(T ) := Ṽ SA(T ).

Here, Sünderhauf [148] argues that a jump-diffusion process is more appro-
priate since the majority of other assets of a mortgage bank does not have a
loan-like payment profile.

Liability modelling. Sünderhauf distinguishes four different liability posi-
tions, which in the special case of only one Pfandbrief type simplifies to three
positions: a Pfandbrief (PF ), other liabilities (SV ) and equity (EK). In his
model, each liability type x ∈ {PF, SV } is modelled as a risky zero coupon
bond with maturity T and nominal Nx. Whether or not the debtors’ claims
Nx are repaid in full at maturity depends on the then-prevailing value of
the bank’s assets, with time-T liability cash flows being given by16

V PF (T ) := min
(
NPF ;V DS(T ) + V SA(T )

)
,

V SV (T ) := min
(
NSV ; max

(
0;V SA(T )−GDS(T )

)
+ EDS(T )

)
,

V EK(T ) := max
(
0;V DS(T ) + V SA(T )−NPF −NSV

)
,

(3.8)

15By typical credit portfolio characteristics he means a high percentage of loans and
bonds with fixed maturity and the maximum payment being capped at the scheduled
time-S cash flow, which comprises nominal repayments and interest payments.

16For the corresponding formulas in the full model with two Pfandbrief types, see Sünder-
hauf [148], Chapter 5.1.2.
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with

EDS(T ) := max(0;V DS(T )−NPF ),

GDS(T ) := max(0;NPF − V DS(T )).

The maximum claim of Pfandbrief holders and creditors of other liabilities
is given by NPF and NSV respectively. The equations in (3.8) account for
the priority claim of Pfandbrief holders on the cover pool and the fact that
equity is subordinate, meaning that equity holders only receive payments in
cases where both Pfandbrief holders and creditors from other liabilities have
been fully repaid. Note that, according to the above equations, Pfandbrief
holders also have a priority claim on the other assets, while creditors of
other liabilities only receive money once Pfandbrief holders have been fully
repaid. This is not in line with practice where remaining claims of Pfandbrief
holders, which could not be satisfied by the cover pool, rank pari passu
with the claims of other liabilities on the general insolvency estate. In
Sünderhauf’s one-period model this approximation is necessary because
dynamic cover pool management is not possible and the cover requirements
can only be reestablished at time T . More specifically, the priority claim
of Pfandbrief holders on the other assets approximates the maintenance of
cover requirements by the issuer who is required to maintain a certain level
of overcollateralization at all times. Under the assumptions made, the time-t
value of liability x ∈ {PF, SV,EK} is determined by

V x(t) = EQ
[
e−
∫ T
t
r(s)ds · V x(T )

∣∣∣ Ft] , t ≤ T. (3.9)

Default specification. In Sünderhauf’s model, liabilities can only default at
maturity and do so if the time-T value of the bank’s assets is not sufficient to
repay the outstanding liabilities, V DS(T ) + V SA(T ) < NPF (T ) +NSV (T ).
In this case, other liabilities experience a loss and there are no payments
to equity. Pfandbrief holders, on the contrary, may still be repaid in full.
Whether or not there is a loss to Pfandbrief holders depends on the total value
of the bank’s assets as compared to the nominal of outstanding Pfandbriefe.
Pfandbrief holders are repaid in full as long as V DS(T )+V SA(T ) ≥ NPF (T ),
otherwise they experience a loss. Figure 3.4 illustrates the time-T liability
cash flows arising under the different scenarios.
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Figure 3.4: Liability cash flows in Sünderhauf’s model
(V x := V x(T ), for x ∈ {DS, SA, PF, SV,EQ}).

Implementation. Due to the complex model setup with two nested struc-
tural credit risk models (one for the bank and one for the cover pool), the
choice of the stochastic processes for the risk drivers, the integration of term
transformation with S > T and the specific liability payment profile there
is no analytical solution to Equation (3.9). As pointed out by Sünderhauf
[148], pp. 96 and 141, analytical solutions only exist for sub-parts and
special cases of his model. This is why he uses Monte Carlo simulation
to approximate the present values of liabilities in Equation (3.9), which
requires the time-T values of the cover pool and the other assets to be
determined in each simulation step, cf. Equation (3.8). For V DS(T ) this
means that the expectation in Equation (3.7) has to be calculated. Instead
of determining this expectation in each simulation path by an additional
Monte Carlo simulation, Sünderhauf uses the Least Square Monte Carlo
approach by Longstaff and Schwartz (2001) to approximate V DS(T ). In
his setup, the time-T values of the cover pool’s state variable and the short
rate are used as explanatory variables and the basis functions are simple
polynomials,

V DS(T ) ≈ β0 + β1Ṽ
DS(T ) + β2(Ṽ DS(T ))2 + β3r(T ) + β4 (r(T ))

2
. (3.10)



3.3 Bank Default Modelling 43

For a more detailed description of the simulation setup, see Sünderhauf
[148], Chapters 4.2 and 5.2. According to Hughes and Werner [90], the
performance of the regression equation (3.10) as specified by Sünderhauf is
rather weak. The authors show that allowing for slightly more complex basis
functions (Laguerre polynomials) and including σx(T ), the time-T value of
the stochastic volatility of the interest rate process, as explanatory variable
yields considerably better results.

Remark. Sünderhauf calls his model a model for default risk pricing which
is misleading to a certain degree. He does not calibrate the model to interest
rates and spreads observed in the market and mainly uses it for scenario
analyses to determine the impact of certain model parameters, risk drivers
and the bank’s capital and risk structure on the value of assets and liabilities.
The credit spread he calculates for the liabilities is used for the comparison
of results, but it is not compared to observed market prices. He even states
that, in general, he does not claim to explain the full credit spread observed
in the market, but only the default risk part of it, see Sünderhauf [148], p.
77.17

3.3.2.2 A Multi-Period Bank Run Model for Liquidity Risk

The dynamic bank run model by Liang et al [114] is a multi-period structural
credit risk model for default probability estimation. It explicitly accounts for
external funding options and the fact that banks typically finance their assets
by a mixture of short-term and long-term debt. The model incorporates
multiple rollover dates for short-term debt and distinguishes two different
default reasons: overindebtedness and illiquidity. While default due to
overindebtedness is caused by a deterioration of asset quality and can occur
continuously in time, default due to illiquidity can only occur at a finite
number of rollover dates and is triggered by a bank run by short-term
creditors in conjunction with not enough funding being available to pay
them off.

The bank’s balance sheet. Liang et al assume that the asset side of the
bank’s initial balance sheet consists of risky assets (V ) and cash (M). On

17As discussed in Section 3.2.5, credit spreads are not only driven by default risk but may
also be influenced by other factors including liquidity, risk premia and tax effects.
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the liability side, there is long-term debt (L) maturing at some time T > t0,
and short-term debt (S) which the bank tries to roll over until time T , at
discrete rollover dates to be specified in the following. Figure 3.5 shows
the bank’s initial balance sheet as proposed by Liang et al. Note that the
authors do not explicitly mention an equity position on the liability side. For
their analyses, this is not necessary as they focus on bank default probability
estimation.

Figure 3.5: Liang et al’s initial balance sheet.

Under the real-world measure P, the bank’s risky assets follow a geometric
Brownian motion

dV (t) = µV (t)dt+ σV (t)dW (t),

with drift µ > 0, volatility σ > 0 and a standard Brownian motion (W (t))t≥0.

Cash accrues at the constant risk-free rate r, i.e. M(t) = M(0) · er·t. Fur-
thermore, the bank’s long-term debt which matures at time T accrues at a
constant annual rate rL. Unless there is a default, the amount to be repaid at
maturity is therefore given by L(T ) = L(0) · erL·T . Liang et al’s assumptions
with respect to the bank’s short-term debt are as follows. There are n− 1
rollover dates t1, ..., tn−1 at which short-term creditors decide whether to
renew their funding or not, with t0 := 0 and tn := T . For simplicity, it
is assumed that the rollover dates are equidistant with ∆t := T

n . Under
the assumption that short-term debt has been rolled over at all previous
roll-over dates and that it accrues at a constant annual rate rS , the face
value of outstanding short-term debt in ti+1 is given by

S(ti+1) = S(ti) · erS ·∆t = S(0) · erS ·(i+1)·∆t. (3.11)

Typically, one would expect r < rS < rL.
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The rollover decision. Regarding the rollover of short-term debt, Liang et
al make the following assumptions:

1. Rollover decisions are solely made at rollover dates, and the rollover
decision made in ti only concerns the time period until ti+1.

2. To make the rollover decision, short-term creditors rely on the so-called
bank run survival probability λi, which represents their subjective
beliefs with respect to the behaviour of other short-term creditors,

λi := min

(
1;

Ψi · V (ti) +M(ti)

S(ti)

)
,

where Ψi ∈ [0, 1] is the time-ti percentage at which cash can be raised
by selling risky assets or by posting these assets as collateral.18 The
total amount of cash available to the bank at that time is given by

F (ti) := Ψi · V (ti) +M(ti).

3. The rate rS at which short-term debt accrues is higher than the
corresponding rate r∗ in the outside market. In their simulations,
the authors set r∗ equal to the risk-free rate, i.e. rS > r∗ := r. This
prevents short-term creditors from investing in the outside market
due to better conditions.

4. Once a short-term creditor has decided to withdraw his money at some
time ti where no bank run occurs, he cannot reverse his withdrawal
decision and return as a potential lender to the bank at a later time.
This is to prevent short-term investors to switch to the outside market
and back as they like, which would result in decisions always being
made for the next time period only.

5. As long as not too many short-term creditors withdraw their funding,
the bank is always able to replace short-term creditors who decide
not to roll over by new short-term creditors that can be found in
the market. This assumption is needed to ensure that S(ti) can be
calculated as in Equation (3.11).

18Liang et al motivate the definition of λi using standard arguments from game theory.
For more details, see their paper.
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Collateralized funding. In case a bank run occurs at time tR ∈ {t1, ..., tn−1},
the bank has to pay off its short-term creditors. Liang et al assume that this
can be done by using cash or by pledging risky assets to obtain collateralized
funding until time T , at a constant rate rC > rL.19 The maximum amount
of cash that can be raised at time tR is given by F (tR) as defined above.
Under the assumption that M(tR) ≤ S(tR), two different cases can occur:

• F (tR) ≥ S(tR): The bank uses all its cash M(tR) to repay short-term

creditors and pledges a fraction θR := S(tR)−M(tR)
ΨR·V (tR) ≤ 1 of its risky

assets at the rate ΨR. The total amount of cash available is then

θR ·ΨR · V (tR) +M(tR) = S(tR),

which means that short-term debt can be fully repaid. After a bank
run has occurred, there is no more cash left on the bank’s balance sheet
and the amount of risky assets is reduced to Ṽ (tR) := (1− θR) ·V (tR).
Long-term debt remains unchanged and a new position appears on the
balance sheet: collateralized debt with maturity T and corresponding
time-T payment given by

W (T ) := θR ·ΨR · V (tR) · erC ·(T−tR) = (S(tR)−M(tR)) · erC ·(T−tR).

If the bank is not able to make this payment at time T , the lender keeps
the collateral which then has a value of θR · V (T ). The counterpart of
the collateralized funding transaction is therefore exposed to market
risk. He has provided a cash amount of θR · V (tR) ·ΨR to the bank
and expects a repayment of W (T ) at time T . Should the bank
default at that time and the asset value has deteriorated such that
θR · V (T ) < W (T ), he does not get the full expected payment.20

• F (tR) < S(tR): The bank is not able to raise sufficient cash to repay
S(tR) and defaults. In this case Liang et al assume that neither short-
term nor long-term creditors receive any payments (zero recovery).21

19The rate at which the collateralized funding can be obtained reflects the return required
by market participants to lend money to a bank which is already in troubles. As both
types of debt mature at time T , it can be reasonably assumed that rC > rL.

20This is why in practice secured funding transactions often require the borrower to post
additional collateral once the value of the collateral deteriorates.

21As the authors’ main interest is estimating default probabilities, recovery does not play
a role for them.
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Depending on the bank’s ability to raise collateralized funding, a bank run
does not necessarily result in a default. Figure 3.6 shows the bank’s balance
sheet after a bank run in case it survives.

In the following, we denote by tR ∈ {t1, ..., tn−1,∞} the first time of a bank
run. As Liang et al assume that a bank run can only occur once during the
bank’s lifetime, it is also the only time of a bank run, and tR =∞ is to be
interpreted as no bank run occurring at the specified rollover dates.

Figure 3.6: The bank’s balance after a bank run in case it survives.

Specification of the insolvency barrier. Liang et al use an exogenous time-
dependent insolvency barrier similar to the one in Black and Cox [19], see
Equation (3.2). As such a barrier depends on the structure of the bank’s
balance sheet, two cases are distinguished:

• Until a bank run has occurred, t0 ≤ t ≤ tR, the bank has short-term
and long-term debt outstanding, and the bank’s assets consist of cash
and risky assets. The corresponding insolvency barrier is defined by

V SB (t) := α · P (t, T ) ·
[
S(0) · erS ·T + L(0) · erL·T −M(0) · er·T

]
,

with α ∈ [0, 1] being a safety covenant that specifies how much asset
value must at least be available for the compensation of creditors upon
default and P (t, T ) := e−r·(T−t).

• Once a bank run has occurred, tR < t ≤ T , the situation is different
as there is no more short-term debt outstanding. Instead, there is
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now collateralized debt. As the bank’s risky assets have been reduced,
the resulting insolvency barrier is given by

Ṽ SB (t) :=α · P (t, T )

·
[(
S(tR)−M(0) · er·tR

)
· erC ·(T−tR) + L(0) · erL·T

]
.

Specification of the bank run barrier. At each rollover date, short-term
creditors decide whether to roll over their debt or to run on the bank.
They make their decision based on the expected return resulting from these
two options. The bank run barrier V RB (ti) is derived as the critical asset
value at which short-term creditors decide not to roll over any more. It is
determined endogenously, by backward induction. This is necessary as the
bank’s likelihood to default at a later stage has an impact on the rollover
decision being made at earlier rollover dates.

At time tn−1, the short-term creditors’ considerations are as follows:

• The expected return from running the bank in tn−1 and investing the
money in the outside market until time tn is obtained from

eR
∗
n−1·∆t = er

∗·∆t · λn−1, (3.12)

with r∗ being the rate at which the investment accrues in the outside
market. Equation (3.12) reflects the fact that short-term investors
only get their money back if the bank survives the run, which is
expected to occur with probability λn−1. Otherwise they get nothing
(zero recovery). A short-term creditor who runs at time tn−1 is not
affected by a potential future bank insolvency at times s > tn−1.

• The expected return from rolling over from time tn−1 to tn is derived
from

eR
S
n−1·∆t = erS ·∆t · qn−1,n · λn−1, (3.13)

with qn−1,n being the conditional survival probability from insolvency
within the time period ( tn−1, tn] given V (tn−1),

qn−1,n := P
[

inf
tn−1<s≤tn

(
V (s)− V SB (s)

)
≥ 0
∣∣∣V (tn−1)

]
.

Equation (3.13) reflects the fact that short-term creditors only get
their money back in tn if the bank does not default due to insolvency
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in (ti−1, ti ] or due to a bank run in tn−1. If the bank defaults for one
of these two reasons, short-term creditors get nothing (zero recovery).

• If the bank defaults due to insolvency at time tn−1, there is no rollover
decision to be made, which is why Equations (3.12) and (3.13) are not
multiplied by the corresponding survival probability from insolvency
at time tn−1.

• RSn−1 and R∗n−1 can be backed out from Equations (3.12) and (3.13).
As it is assumed that short-term creditors maximize their expected
return over [0, T ], they run on the bank if RSn−1 is below R∗n−1. The
bank run barrier V RB (tn−1) is therefore determined by setting the right
hand side of Equation (3.12) equal to the right hand side of Equation
(3.13) and solving for the critical asset value V (tn−1), which appears
in the definition of qn−1,n,

er
∗·∆t · λn−1

!
= erS ·∆t · qn−1,n · λn−1.

By doing so, λn−1 cancels out, i.e. the bank run barrier at time tn−1

is not impacted by the survival probability λn−1.

• The maximum rate short-term creditors can earn from time tn−1 to
time tn is given by max

(
R∗n−1;RSn−1

)
.

Proceeding backward in time, short-term creditors compare their return over
the period from time ti to tn for making their decision in ti, for i = n−2, ..., 1.

• The expected return from running the bank in ti and investing the
money in the outside market until time tn is given by

eR
∗
i ·(n−i)·∆t = er

∗·(n−i)·∆t · λi. (3.14)

Again, short-term debt is only paid back if the bank survives the bank
run, which is expected to occur with probability λi.

• The expected return from rolling over at time ti is given by

eR
S
i ·(n−i)·∆t = ki · erS ·∆t · qi,i+1 · λi, (3.15)



50 3 Credit Risk Models: A Literature Review

with qi,i+1 being the conditional survival probability from insolvency
within the time period ( ti, ti+1] given V (ti),

qi,i+1 := P
[

inf
ti<s≤ti+1

(
V (s)− V SB (s)

)
≥ 0

∣∣∣ V (ti)

]
,

and ki being the expected return from future periods conditional on
V (ti),

ki := E
[
emax(R∗

i+1;RSi+1)·(n−i−1)·∆t
∣∣∣ V (ti)

]
.

Note that ki depends on the survival probabilities λi+1, ..., λn−1 from
potential future bank runs. This implies that short-term creditors
which roll over their debt do not only have to worry about bank runs
at time ti but also about bank runs at future rollover dates.

• RSi and R∗i can now be backed out from Equations (3.14) and (3.15).
Again, the bank run barrier V RB (ti) is determined by setting the right
hand side of (3.14) equal to the right hand side of Equation (3.15)
and solving for the critical asset value V (ti).

• The maximum rate the short-term creditor can earn from time ti to
time tn is now given by max

(
R∗i ;R

S
i

)
.

Liang et al prove that, given their assumptions, the bank run barrier can be
determined recursively and that it corresponds to the unique solution βi of

er
∗·(n−i)·∆t !

=E
[
emax(R∗

i+1;RSi+1)·(n−i−1)·∆t
∣∣∣ V (ti) = βi

]
· erS ·∆t · P

[
inf

ti<s≤ti+1

(
V (s)− V SB (s)

)
≥ 0

∣∣∣ V (ti) = βi

]
for each rollover date ti ∈ {t1, ..., tn−1}. They also show that V RB (ti) ≥ V SB (ti)
for fixed ti.

Specification of the illiquidity barrier. In Liang et al’s model, the bank
defaults due to illiquidity if there is a bank run and the bank is not able to
raise enough funds to pay off the short-term creditors. As F (ti) < S(ti) is

equivalent to V (ti) <
S(ti)−M(ti)

Ψi
, the illiquidity barrier V LB (ti) is given by

V LB (ti) := min

(
V RB (ti);

S(ti)−M(ti)

Ψi

)
≤ V RB (ti).
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This threshold is only specified for the given rollover dates, meaning that
default due to illiquidity can only occur at a finite number of dates. Once a
bank run has occurred, the illiquidity barrier becomes irrelevant. Figure 2
in Liang et al [114] illustrates the event of default due to illiquidity in Liang
et al’s model.

Potential scenarios at time t. For a specific rollover date ti and under the
assumption that no bank run has occurred prior to that date, Liang et al
distinguish the following four scenarios:

• Case i: If V (ti) ≤ V SB (ti), the bank defaults due to insolvency.

• Case ii: If V SB (ti) < V (ti) < V LB (ti) ≤ V RB (ti), the bank is solvent,
but there is a bank run and the bank is not able to raise sufficient
cash to pay off short-term creditors. This results in default due to
illiquidity.22

• Case iii: If V LB (ti) ≤ V (ti) ≤ V RB (ti), there is a bank run but the
bank is able to pay off short-term creditors. Here, two sub cases are
distinguished:

– Case iiia: In case V (t) ≤ Ṽ SB (t) for some t ∈ ( ti, T ] , the
bank defaults. Liang et all refer to this event as default due to
illiquidity and motivate it by arguing that it was actually caused
by the bank run at time ti.

23

– Case iiib: In case V (t) > Ṽ SB (t) for all t ∈ ( ti, T ] , the bank
remains solvent until time T .

In the following, we provide a more general description of the potential
scenarios for an arbitrary time t, under the assumption that no default has
occurred prior to that time. We do so by slightly adjusting the definition of
illiquidity, which is due to the aforementioned peculiarity. This generalized
scenario specification will be used as a reference later on. All in all, we
distinguish eight scenarios. If no bank run has occurred prior to time t < tR

22Note that this is a slightly adjusted version of the specification given by Liang et al. The
authors assume that default due to illiquidity occurs once V SB (ti) < V (ti) ≤ V LB (ti),

which includes the case were V SB (ti) < V (ti) = V LB (ti), implying F (ti) = S(ti), i.e.
short-term creditors could actually still be repaid. Our modification also concerns
Case iii below which now includes V LB (ti) = V (ti).

23An alternative point of view could be to interpret this as a default due to overindebted-
ness, triggered by the bank’s asset value falling below the solvency boundary Ṽ SB (t).
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and t is not a rollover date, a bank run is not possible per definition and
two different situations need to be distinguished:

• Case 1: If V (t) ≤ V SB (t), the bank defaults due to insolvency.

• Case 2: If V (t) > V SB (t), the bank survives.

If there was no bank run prior to time t and t is a rollover date, what
happens depends on whether or not a bank run occurs. In case there is no
bank run, there is only one possible scenario:

• Case 3: As V (t) > V RB (t) implies V (t) > V SB (t) and V (t) > V LB (t),
the bank survives.

In case of a bank run, V (t) ≤ V RB (t), three sub-scenarios need to be distin-
guished:

• Case 4: If the bank is still solvent, V (t) > V SB (t), and able to raise
enough cash to pay off short-term creditors, V (t) ≥ V LB (t), it survives.

• Case 5: If the bank is solvent but illiquid, implying that V (t) > V SB (t)
and V (t) < V LB (t) ≤ V RB (t), the bank does not survive the bank run
as it is not able to raise enough cash to pay off short-term creditors.

• Case 6: Once the insolvency barrier is hit, V (t) ≤ V SB (t) ≤ V RB (t),
the bank defaults due to insolvency.

Finally, if a bank run has occurred already prior to time t, bank default
solely depends on whether the solvency barrier Ṽ SB (t) – which is now different
from the one in the previous cases – is hit or not and there are two potential
scenarios to be distinguished:

• Case 7 If V (t) ≤ Ṽ SB (t), the bank defaults.

• Case 8 If V (t) > Ṽ SB (t), the bank survives.

Figure 3.7 summarizes the discussed scenarios. It can be easily seen that,
apart from the above discussed adjustments, the distinction of these eight
scenarios is a generalization of the distinction made by Liang et al. As the
authors only consider the case of a bank run at a rollover date ti, Cases 1 to
3 do not occur in their distinction. Furthermore, their Case i corresponds to
our Case 6, and their Case ii corresponds to our Case 5. At the exact time
of the bank run, their Cases iiia and iiib both result in our case 4. After the
bank run, our Cases 7 and 8 describe the fate of the bank, which corresponds
to their Cases iiia and iiib, respectively.
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Figure 3.7: Generalized version of potential scenarios in Liang et al’s model.

Implementation. Liang et al implement their model in a binomial tree
setting and solve it numerically. Taking into account additional stochastic risk
drivers such as several processes for the creditworthiness of risky assets would
therefore result in a multi-dimensional binomial tree setup and complicate
the modelling considerably.

3.4 Summary and Conclusion

In this chapter we gave an overview of the existing credit risk literature with
particular focus on bank defaults and Pfandbrief modelling requirements.
Out of the two main credit risk approaches, the structural approach turned
out to be the natural choice as it allows for a link between the market
environment and potential default events. The Merton model which forms
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the basis for structural credit risk models is based on quite restrictive
assumptions and therefore not suitable for our purpose. This is why several
features and model extensions as found in the literature were discussed.
With respect to the specification of the default barrier, we found exogenous
barriers to be preferable as they are more intuitive and easier to derive.
In this setup, default can be interpreted as some kind of overindebtedness.
As banks typically rely on debt-rollover and illiquidity may be a potential
default reason, we reviewed different funding assumptions and their practical
relevance as well as related model implications. We also discussed the
application of structural credit risk models to bank default modelling in
general and found that there are only few models which are particularly
designed for banks. Even though we could not find any structural credit
risk model which entirely fits our purpose, there were two models which
caught our attention as they exhibit interesting features in the context of
Pfandbrief modelling.

Sünderhauf’s mortgage bank model takes into account the specific structure
of a Pfandbrief bank’s balance sheet and distinguishes between cover pool
assets and other assets as well as between Pfandbriefe and other liabilities.
Due to his one-period setup, cash flows are also implicitly modelled. He
further distinguishes between issuer and cover pool default and establishes a
link between the market environment and the corresponding default events.
Default is specified with the help of exogenous default barriers while recovery
rates are determined endogenously. In his model, Sünderhauf allows for
stochastic interest rates, incorporates jumps in the asset value process and
considers the impact of these risk drivers on the bank’s and the cover
pool’s creditworthiness. The Pfandbrief’s dual protection mechanism, the
legal cover requirements and the Pfandbrief-specific priority of payments
in case of default are also accounted for. As the model is a one-period
model only, dynamic cover pool management and funding and reinvestment
activities cannot be modelled. This essentially ignores all aspects related
to bank liquidity, debt rollover, access to external financing and default
due to illiquidity. In addition, the balance sheet structure in his model is
too simplistic to allow for realistic Pfandbrief modelling. Bankruptcy and
liquidation costs are also not considered.

The multi-period bank run model by Liang et al incorporates both default
due to overindebtedness and default to illiquidity. To specify the default
events, the model relies on three different kinds of thresholds: an insolvency
barrier, a bank run barrier and an illiquidity barrier. Default due to illiquidity
is triggered by a bank run in conjunction with not enough funding being



3.4 Summary and Conclusion 55

available to pay off short-term creditors. The model explicitly accounts for
debt rollover, external funding options and the inability to obtain funding
under certain conditions. It also establishes a link between the market
environment and bank performance. The model does, however, not account
for any Pfandbrief-specific features which include the Pfandbrief mechanics
(i.e. the dual protection mechanism, the legal cover requirements, the ring-
fencing upon issuer default and the priority of payments in case of default),
dynamic cover pool management and a distinction of the events of issuer and
cover pool default. Moreover, it relies on a very simplistic debt structure
with only one type of long-term debt and one type of short-term debt and
makes further simplifying assumptions such as constant interest rates and
risky assets following a lognormal diffusion process. The recovery rate is
exogenously given and set to 0, which implies bankruptcy costs of 100%.

Table 3.2 shows our required modelling features as derived in Section 2.3
and relates them to the two above discussed models. All in all, we conclude
that we need to develop a new Pfandbrief model to incorporate all these
features. As we will see in the next chapter, our model is strongly inspired
by Sünderhauf and Liang et al.

Table 3.2: Required features for Pfandbrief modelling in the models by Sünder-
hauf (SH) and Liang et al (LI).

Model component Feature SH LI

General Multi-period time setting - X
Default modelling Distinction of issuer and cover pool default X -

Distinction of overindebtedness and illiquidity - X
Link between market environment and default X X

Balance sheet Adequate representation of risk profile - -
Distinction of Pfandbrief business X -
Modelling of asset present values and cash flows X X

Market environment Stochastic risk drivers X X
Impact on asset present values and cash flows X X

ALM Active cover pool management - -
Funding and reinvestment activities - X

Pfandbrief mechanics Dual protection mechanism X -
Maintenance of legal cover requirements X -
Ring-fencing upon issuer default X -
Priority of payments in case of default X -



4 The Pfandbrief Model

In this chapter we develop a multi-period Pfandbrief model which incorpo-
rates the required modelling features as derived in Section 2.3. Due to the
complexity of the modelling, a stochastic simulation-based framework is our
method of choice. The simulation starts in t0 := 0 and the time setting is
discrete and finite,

Td := {t0, ..., tS} , S ∈ N,

where ti+1 := ti + ∆ for i = 0, ..., S − 1, with ∆ := 0.5
k and k ∈ N.1

Throughout this work we assume that we are dealing with a frictionless
financial market. The uncertainty in this market is modelled by a filtered
probability space (Ω,F ,P) with Ω being the set of possible states of nature,
F := (Ft)t∈Td the natural filtration and P the real-world probability measure.
We further assume that the underlying financial market is arbitrage-free
and Q denotes some equivalent martingale measure. All relevant events
happen at the discrete time steps t ∈ Td which are further divided into three
sub-time steps, see Table 4.1. At the beginning of the period (bop), the
impact of market movements on the bank’s balance sheet is determined.
This is done by simulating the time-t values of the stochastic risk drivers
and repricing all relevant asset positions. If necessary, liability positions are
also adjusted. Mid of period (mop), asset cash inflows are collected and
the current funding need is determined, which involves the identification of
due liability payments and the performance of matching cover calculations.
Then, it is checked whether an event of bank or cover pool default occurs.
At the end of the period (eop), asset liability management activities take
place. This includes funding and reinvestment decisions, the maintenance
of overcollateralization, potential asset liquidations and liability payments.
Finally, the balance sheet is updated accordingly.

Our simulation model distinguishes nine Pfandbrief scenarios which trigger
different liability cash flows and asset liability management related activities.

1A simulation time step size ∆ ≤ 0.5 is necessary for a meaningful modelling of the
180-day liquidity buffer.
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Table 4.1: The three simulation sub-time steps.

Sub-time step Description

bop Impact of market movements on the balance sheet
- Simulation of stochastic risk drivers
- Update of asset present values
- Adjustment of liability positions

mop Liquidity situation and potential default events
- Collection of asset cash inflows
- Determination of funding need
- Check for default events

eop Asset liability management
- Funding and reinvestment activities
- Maintenance of overcollateralization
- Potential asset liquidations
- Liability payments
- Balance sheet update

As this distinction forms the basis of our modelling approach, Section 4.1
starts with a description of these scenarios. In Section 4.2 we define the
bank’s balance sheet, which can be considered to be a modified extension of
the balance sheet used by Sünderhauf [148]. It consists of several classes of
assets and liabilities with different nominals, maturities and riskiness and
therefore allows for an explicit distinction of the balance sheet positions
which are related to the bank’s Pfandbrief business, i.e. the cover pool and
the outstanding Pfandbriefe. The asset performance depends on stochastic
risk drivers: the risk-free interest rate and state variables for the assets’
creditworthiness. Section 4.3 is dedicated to the market environment. The
dynamics of the stochastic risk drivers are specified and their impact on
asset present values and cash flows is determined. Section 4.4 addresses the
liquidity situation of the bank and the cover pool and specifies the conditions
under which funding is available in our model. In Section 4.5 we then define
the events of bank and cover pool default and the priority of payments in
case of a liquidation event. Motivated by Liang et al [114] we distinguish two
different default triggering events: overindebtedness and illiquidity. Section
4.6 deals with the asset liability management strategies of the bank and the
cover pool administrator, which include funding and reinvestment strategies,
the maintenance of overcollateralization and liability payments. Having
specified all model components, we derive the liabilities’ default parameters
in Section 4.7.
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4.1 Distinction of Nine Pfandbrief Scenarios

Depending on the occurrence of the events of bank and cover pool default
and the simulation time t, we distinguish nine Pfandbrief scenarios as shown
in Figure 4.1. To illustrate the broad idea of our modelling approach, we
shortly describe these scenarios and their implications for liability cash flows
and asset liability management in the following. All related definitions
and assumptions are specified in detail in the subsequent sections. With
Tmax ∈ Td denoting the maturity of the longest Pfandbrief outstanding at
time t0, our distinction of the nine scenarios is as follows.

Scenario S1: “Business as usual”. As long as the bank has not defaulted and
t < Tmax, the Pfandbrief holders and the creditors of other liabilities receive
scheduled payments.2 The bank also performs asset liability management
activities, which include the maintenance of overcollateralization. In this
scenario, there is no distinction between cash inflows from the cover pool and
the bank’s other assets. All cash inflows are equally used to fulfil payment
obligations and to reestablish cover requirements, i.e. there is no dedicated
one-to-one relationship between the cover pool and outstanding Pfandbriefe.

Scenario S2: “Creation of a standalone cover pool”. If the bank defaults
at time t < Tmax but the cover pool does not, one needs to distinguish
between the fate of Pfandbriefe and the fate of other liabilities. The bank’s
non-cover pool assets, which belong to the bank’s general insolvency estate,
are liquidated and the proceeds are used to repay the creditors of other
liabilities. If these proceeds are sufficient to satisfy the liquidation claims
of all outstanding other liabilities, shareholders receive the remainder. The
cover pool is segregated and survives the event of bank default. The cover
pool administrator, who is appointed to take care of the cover pool, uses
the cover pool’s cash inflows to continue scheduled payments to Pfandbrief
holders. He still performs certain asset liability management actions, but
the cover requirements are not maintained any more.

Scenario S3: “Cover pool liquidation at bank default”. In case of a simulta-
neous bank and cover pool default at time t < Tmax, all assets are liquidated.
Pfandbrief holders have a priority claim on the proceeds from cover pool
liquidation and rank pari passu with the creditors of other liabilities with
respect to the bank’s general insolvency estate. If the liquidation value
of the cover pool exceeds the value of the liquidation claims of Pfandbrief

2By assumption, there are no dividend payments to shareholders in our setup.
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(a) Pfandbrief scenarios in t < Tmax.

(b) Pfandbrief scenarios in t = Tmax.

Figure 4.1: Definition of the nine Pfandbrief scenarios.
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holders, the remainder can be used to repay the creditors of other liabilities.
Shareholders only receive payments after all liabilities have been fully repaid.

Scenario S4: “Standalone cover pool continues to be served”. If the stand-
alone cover pool does not default at time t < Tmax, the cover pool admin-
istrator continues managing the cover pool and Pfandbrief holders receive
scheduled payments. Cover requirements are not maintained any more. As
the bank has already defaulted at some previous time, there are no more
payments to the creditors of other liabilities or to shareholders.

Scenario S5: “Cover pool liquidation after bank default”. In case the stand-
alone cover pool defaults at time t < Tmax, the cover pool is liquidated
and the liquidation proceeds are used to repay Pfandbrief holders. If the
liquidation proceeds exceed the liquidation claims of Pfandbrief holders, they
are used to reduce the losses incurred by the creditors of other liabilities
at the (previous) time of bank default. Again, shareholders only receive
payments after all liabilities have been fully repaid. In our model, Pfandbrief
holders do not have a claim on the general insolvency estate in this scenario.

Scenario S6: “Nothing left in t < Tmax”. If both the bank and the cover pool
have already defaulted prior to time t < Tmax, no more business activities
take place.

Scenario S7: “Bank liquidation in Tmax”. In case the bank has not defaulted
prior to time Tmax, all assets on the bank’s balance sheet are liquidated in
Tmax and the proceeds are used to repay the Pfandbrief holders and the
creditors of other liabilities. If the liquidation proceeds are sufficient to
satisfy all these claims, shareholders receive the remainder. The priority of
payments is the same as in scenario S3, but in our model liquidation in Tmax

occurs regardless of a bank default event.

Scenario S8: “Cover pool liquidation in Tmax”. If the bank has already
defaulted prior to time Tmax but the cover pool has not, the cover pool is
liquidated and liquidation proceeds are used to repay Pfandbrief holders. If
the liquidation proceeds exceed these liquidation claims, they are used to
reduce losses incurred by the creditors of other liabilities at the (previous)
time of bank default. Shareholders only receive payments after all Pfandbriefe
and other liabilities have been fully repaid. The priority of payments is the
same as in scenario S5, but liquidation in Tmax occurs regardless of a cover
pool default event.

Scenario S9: “Nothing left in Tmax”. In case both the bank and the cover
pool have already defaulted prior to time Tmax, no more business activities
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take place. Scenario S9 is basically the same as scenario S6. The distinction
between t = Tmax and t < Tmax is only needed for technical purposes.

The scenarios S1 to S9 approximate the Pfandbrief mechanics as described
in Chapter 2 with a reasonable degree of accuracy. As long as the issuer has
not defaulted, cover requirements are maintained and scheduled payments
to liabilities are made. Upon bank default, all outstanding other liabilities
become due and payable immediately and their claims are satisfied as far as
possible with the liquidation proceeds of the bank’s non-cover pool assets,
which form the general insolvency estate. The cover pool, on the contrary, is
segregated and Pfandbrief holders continue to receive scheduled payments as
long as the cover pool remains solvent. Pfandbriefe become due and payable
only upon cover pool default and are repaid out of the liquidation proceeds
of the cover pool. If these are not sufficient, Pfandbrief holders also have a
claim on the bank’s general insolvency estate. In our model, this claim is
only enforceable in case of a simultaneous default of the bank and the cover
pool (S3), but not if the cover pool defaults at some later time (S5). Cover
pool liquidation proceeds which are not needed to repay Pfandbrief holders
are released to the bank’s general insolvency estate. Table 4.2 summarizes
the main characteristics of the nine scenarios. By defining these scenarios,
we set the foundation for our model to be able to incorporate the required
features for Pfandbrief modelling as found in Section 2.3.

Table 4.2: Summary of the nine Pfandbrief scenarios.

S1 S2 S3 S4 S5 S6 S7 S8 S9

Asset liability management
- Cover requirements X - - - - - - - -
- Other ALM activities X X - X - - - - -

Pfandbrief payments
- Scheduled payments X X - X - - - - -
- Liquidation payments - - X - X - X X -

Payments to other liabilities
- Scheduled payments X - - - - - - - -
- Liquidation payments - X X - (X) - X (X) -

Balance sheet liquidation
- Non-cover pool assets - X X - - - X - -
- Cover pool - - X - X - X X -
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4.2 The Bank’s Balance Sheet

In the following, we specify the Pfandbrief bank’s balance sheet. We do so
by distinguishing three kinds of assets, strategic cover pool assets (CPS),
liquid cover pool assets (CPL) and other assets (OA), and two kinds of
liabilities, Pfandbriefe (PB) and other liabilities (OL). Strategic cover
pool assets represent the bank’s Pfandbrief business and are the basis for
matching cover calculations while liquid cover pool assets, modelled as a
risk-free cash account, are solely needed for liquidity steering in the context of
cover requirements.3 Except for liquid cover pool assets, all above positions
are split into several sub-positions, with different nominals, maturities and
riskiness. Figure 4.2 illustrates the basic structure of our balance sheet,
excluding the above mentioned sub-positions but including the residual
equity position (EQ).

Figure 4.2: The bank’s initial balance sheet.

Before we define the bank’s initial balance sheet in full detail, we introduce
some notation.

Risk-free zero coupon bond. A risk-free zero coupon bond with matu-
rity T ∈ Td is a contract which guarantees a payoff of one unit of
currency at time T with no intermediate payments. The present value
of this contract at time t ≤ T , t ∈ Td, is denoted by P (t, T ), with
P (t, T ) > 0 and P (T, T ) = 1.

Risk-free spot rate. The risk-free spot rate prevailing at time t ∈ Td for
the maturity T ∈ Td is defined by

r(t, T ) := − 1

T − t
lnP (t, T ), t < T. (4.1)

3For more details, see Sections 4.4.1 and 4.6.3 below.
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Risky zero coupon bond. A risky zero coupon bond with maturity
T ∈ Td is a contract which pays one unit of currency at time T
if the reference name has not defaulted until then and a random
recovery value δ ∈ [0, 1] otherwise. The present value of this contract
at time t ≤ T , t ∈ Td, is denoted by P̃ (t, T ), with P̃ (t, T ) ≥ 0 and
P̃ (T, T ) = I{τR>T} · 1 + I{τR≤T} · δ, where τR is the default time of
the reference name. The bond’s lifetime default probability is

π(T ) := P [τR ≤ T ] ,

and the associated expected lifetime loss given default is

L(T ) :=

{
1− EP[P̃ (T, T )

∣∣τR ≤ T ] = 1− EP[δ
∣∣τR ≤ T ], if π(T ) > 0,

0, otherwise.

Spread. At time t ∈ Td, the spread of a risky zero coupon bond with
maturity T ∈ Td and present value P̃ (t, T ) > 0 is defined by

s(t, T ) := − 1

T − t
(ln P̃ (t, T ) + r(t, T ) · (T − t)), t < T.

As er(t,T )·(T−t) ·P (t, T ) = 1, the risk-free spot rate r(t, T ) is the constant rate
at which an amount P (t, T ), invested at time t, accrues until time T to yield
a payoff of 1. Similarly, e(r(t,T )+s(t,T ))·(T−t) · P̃ (t, T ) = 1, i.e. the spread can
be interpreted as an additional premium above the risk-free spot rate which
is required for a risky investment. The lifetime default probability π(T )
reflects the likelihood that the risky zero coupon bond is not fully repaid
at maturity and the expected lifetime loss given default L(T ) quantifies the
expected severity of the associated loss.

With respect to the bank’s initial balance sheet, we now make the following
assumption:

Assumption 1 (Initial balance sheet)
At time t0, the asset side of the bank’s balance sheet consists of

• nCPS ∈ N+ strategic cover pool assets with nominals NCPS
i (t0) ∈ R+,

i = 1, ..., nCPS, and maturities TCPSi ∈ Td, where
t0 < TCPS1 ≤ ... ≤ TCPSnCPS , modelled as positions in risky zero coupon

bonds P̃CPSi (t, TCPSi ) which can only default at maturity and do so
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with a probability of πCPSi ∈ (0, 1) and an expected loss given default
of LCPSi ∈ (0, 1),

• nOA ∈ N+ other assets with nominals NOA
j (t0) ∈ R+, j = 1, ..., nOA,

and maturities TOAj ∈ Td, where t0 < TOA1 ≤ ... ≤ TOAnOA , modelled

as positions in risky zero coupon bonds P̃OAj (t, TOAj ) which can only

default at maturity and do so with a probability of πOAj ∈ (0, 1) and

an expected loss given default of LOAj ∈ (0, 1), and

• a risk-free cash account with nominal NCPL(t0) ∈ R+
0 , which accrues

at the risk-free spot rate until the next time step,

and the bank’s liabilities are given by

• nPB ∈ N+ Pfandbriefe with nominals NPB
k (t0) ∈ R+, k = 1, ..., nPB,

and maturities TPBk ∈ Td, where t0 < TPB1 ≤ ... ≤ TPBnPB , modelled as

positions in risky zero coupon bonds P̃PBk (t, TPBk ),

• nOL ∈ N+ other liabilities with nominals NOL
l (t0) ∈ R+, l = 1, ..., nOL,

and maturities TOLl ∈ Td, where t0 < TOL1 ≤ ... ≤ TOLnOL , modelled as

positions in risky zero coupon bonds P̃OLl (t, TOLl ), and

• the residual equity position with a euro nominal of NEQ(t0) ∈ R+
0 ,

which does not receive any dividend payments.

There is only one type of Pfandbriefe outstanding and, consequently, only one
type of cover pool. Furthermore, all assets and liabilities are denominated in
euros.

According to the above assumption, the bank has issued only one type of
Pfandbriefe, the Pfandbrief type under consideration. In practice, Pfandbrief
banks often have different types of Pfandbriefe outstanding. To avoid further
model complexity, we account for such additional Pfandbrief business by
adjusting funding and liquidation haircuts in a suitable manner, see Section
5.1.3 below. As long as the size of the additional Pfandbrief business is small,
this is a viable assumption. For banks with considerable volumes of other
Pfandbrief types, an explicit modelling of these positions might be necessary.
A relaxation of this assumption is, however, beyond the scope of this work
and left for future research. The bank’s risky assets and its liabilities are
modelled as positions in risky zero coupon bonds, an assumption which is not
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necessarily in line with payment profiles observed in practice.4 Nevertheless,
the zero coupon bond assumption is often made for modelling purposes,
see for example Merton [124], Sünderhauf [148] or Liang et al [114], and
avoids additional complexities arising from coupon payments. While for
risky zero coupon bonds the assumption that default can only occur at
maturity is still a reasonable approximation, it is less realistic in the case
of risky coupon bonds where default may also be triggered by the inability
to make coupon payments. Allowing for defaults prior to maturity would
therefore result in increased model complexity with detailed information on
the timing and size of coupon payments, especially for the bank’s assets,
often not being available in practice. The zero coupon bond assumption is
therefore a reasonable approximation for our purpose. As the bank’s assets
and liabilities are all denominated in euros, Assumption 1 also implies that
there is no currency risk. This assumption is made to avoid unnecessary
additional model complexity5 and is defensible as currency risk in German
Pfandbrief programs is limited to a considerable extent, see Spangler and
Werner [145], p. 42. For reasons of simplicity it is also assumed that there
are no dividend payments to shareholders, but our model could be easily
extended accordingly, under additional assumptions regarding the timing
and size of these cash flows.

All in all, our balance sheet is a modified generalization of the balance sheet
in Sünderhauf’s [148] setup with only one Pfandbrief type, cf. Section 3.3.2.1.
It allows for a sufficiently adequate representation of a Pfandbrief bank’s
typical risk profile and considers not only the assets’ present values but
also their cash flows, which correspond to the nominal repayments/recovery
payments at maturity. It therefore fulfils all modelling requirements in Table
2.2.

To allow for a meaningful specification of our model, we need to make
additional assumptions regarding the maturities of the bank’s assets and
liabilities.

4Jumbo Pfandbriefe typically have annual fix rate coupons paid in arrears and hard
bullet redemptions and the vast majority of outstanding Pfandbriefe has either fixed
or variable coupons, cf. vdp [163]. Furthermore, German mortgage assets often pay
fixed coupons with fixed interest rate periods of 10 years, see Rudolf and Saunders
[139], and may exhibit features such as amortizing nominals.

5A relaxation of the assumption would, amongst others, require an extension of the mar-
ket environment in Section 4.3 to include foreign exchange rates and foreign currency
interest rates.
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Assumption 2 (Maturities of assets and liabilities)
For the bank’s assets and liabilities it holds that

(i) TPBnPB ≤ T
CPS
nCPS , (ii) TOLnOL ≤ T

OA
nOA , (iii) TPBnPB = TOLnOL .

As that the bank’s risky assets can only default at maturity, Assumption
2 guarantees that, at any time t ∈ Td, t < TPBnPB = TOLnOL , there is always
at least one strategic cover pool asset and one other asset outstanding. It
also prevents situations where Pfandbriefe are outstanding after all other
liabilities have matured.

In the following, we assume that the simulation stops once the last Pfandbrief
is due. As our focus is on Pfandbrief modelling, there is no need to consider
time horizons beyond the maturity of the longest Pfandbrief.

Assumption 3 (Planned balance sheet liquidation)
The simulation stops at time Tmax := TPBnPB and all remaining assets on the
balance sheet are liquidated to repay the remaining debt, i.e. our simulation
horizon is given by

T := {t0, ..., Tmax} . (4.2)

Asset liquidations in Tmax (planned asset liquidations), which take place ir-
respective of whether or not an event of default occurs at that time, are to be
distinguished from asset liquidations which are triggered by an event of bank
or cover pool default at some time prior to Tmax (forced asset liquidations).
For more details, see Section 4.5 below.

The composition of the bank’s balance sheet changes over time due to asset
and liability maturities, stochastic market movements, asset liability manage-
ment and potential default events. As a consequence, the time-t nominals,
t > t0, are all stochastic.

Time-t nominals. The stochastic time-t nominals, t ∈ T , t > t0, of
the bank’s assets and liabilities, which comprise the nominal repay-
ments due at time t, are denoted by NCPS

i (t), NCPL(t), NOA
j (t),

NPB
k (t) and NOL

l (t) for i = 1, ..., nCPS , j = 1, ..., nOA, k = 1, ..., nPB
and l = 1, ..., nOL. For x ∈ {CPS,OA,PB,OL}, we further set
Nx(t) :=

∑nx
i=1N

x
i (t). The time-t nominals are all Ft−∆-measurable.
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For modelling purposes, we make an additional assumption which affects
the bank’s balance sheet over time.

Assumption 4 (Run-off/no new business)
The bank does not engage in new business activities and only takes actions
which are necessary in the context of maintenance of cover requirements,
debt repayments and the reinvestment of excess cash inflows. In particular,
no new Pfandbriefe or other liabilities are issued at any time t ∈ T , assets
are only purchased in the context of maintenance of overcollateralization
and when excess cash inflows are reinvested, and asset sales only take place
in case of a bank or cover pool default event or a planned balance sheet
liquidation in Tmax. Apart from these cases, no assets are purchased or sold.

Allowing for new business would require additional assumptions regarding the
nature of this business (e.g. volume and type) and its funding, which in turn
has an impact on the bank’s future balance sheet composition and therefore
on model results. Depending on the related assumptions, the modelling of
new business might also successively increase the simulation horizon as it
involves the purchase of new assets and the issuance of additional liabilities.
Therefore, we deem it more appropriate to consider a run-off situation
which leaves the bank’s risk profile “as it is”, without a new business bias.
Given the run-off assumption, the issuance of additional debt only makes
sense in case of temporary liquidity shortages and the need to finance debt
payments or to reestablish cover requirements. As we will see in Section 4.4
below, in our model such funding activities do not involve the issuance of
additional Pfandbriefe or other liabilities. A collateralized liquidity line is
drawn instead.

For the sake of simplicity, costs and taxes are ignored in the following. This
assumption could, however, be easily relaxed by including the corresponding
positions in our model, under additional assumptions regarding their timing
and size.

Assumption 5 (No costs and taxes)
There are no taxes, issuer operating and cover pool administration costs.
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4.3 Market Environment

In this section we specify the market environment through the stochastic dy-
namics of the risk-free interest rates (Section 4.3.1) and the creditworthiness
of risky assets (Section 4.3.2) and derive the impact of these risk drivers on
the present values and cash flows of the bank’s risky assets (Section 4.3.3).
We do so by ensuring that the required modelling features for the market
environment as specified in Table 2.2 are fulfilled. While all relevant events
in our simulation model happen at the discrete time steps in T as defined in
Equation (4.2), our market environment is specified in a continuous time
setting

Tc :=
[
t0, T

A
max

]
, T ⊂ Tc,

with TAmax := max(TCPSnCPS , T
OA
nOA), which comprises the maturities of the

bank’s risky assets.

4.3.1 Risk-Free Interest Rates

In order to describe the evolution of the risk-free spot rate r(t, T ) over
time, an interest rate model has to be chosen. The literature distinguishes
short rate models such as the Vasicek model, the Hull-White model, the
Black-Karasinksi model or the CIR model, from market models like the
LIBOR market model and the swap market model. In the case of short rate
models, the evolution of the whole yield curve solely depends on the short
rate which is modelled by a one- or a multi-dimensional diffusion process.
Market models, on the other hand, directly model rates observable in the
market (LIBOR or swap rates). Market models are the natural choice for
the pricing and hedging of complex interest rate derivatives. Nevertheless,
short rate models are still used for many applications. For more details
regarding interest rate models and their properties, we refer to Brigo and
Mercurio [24] and Zagst [168].

In the end, the choice of the most suitable interest rate model depends on the
intended purpose of use. In the following, we focus on the well-known short
rate approach by Vasicek [154], which is very popular due to its analytical
tractability and the availability of analytical valuation formulas for many
instruments. Even though this model is not able to exactly reproduce a
given initial term structure and cannot be fitted well to option prices, it
remains our method of choice due to its analytical tractability. As our focus
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is not on pricing complex interest rate sensitive products but on Pfandbrief
modelling, which involves the quantification of risks arising from asset lia-
bility mismatches (modelled as zero coupon bonds) under different interest
rate scenarios, the Vasicek model is clearly sufficient. We therefore introduce
the following notation.

Short rate. The short rate r(t) at time t is the constant interest rate earned
over an infinitesimally small period of time,

r(t) := − lim
∆t→0

lnP (t, t+ ∆t)

∆t
= − ∂

∂T
lnP (t, T )

∣∣
T=t

, ∀t ∈ Tc,

given that all derivatives exist.

Vasicek model. In the Vasicek model, the short rate r(t) evolves as an
Ornstein-Uhlenbeck process with constant coefficients under the real-
world measure P:

dr(t) = κr (θr − r(t)) dt+ σrdWr(t), r(t0) = r0, ∀t ∈ Tc, (4.3)

where κr, θr and σr are positive constants, r0 ∈ R and (Wr(t))t∈Tc a
standard Brownian motion under P.

The process in Equation (4.3) exhibits a positive drift for r(t) < θr and a
negative drift for r(t) > θr. This pushes r(t) back to the level θr, which can
be interpreted as the long term average of the short rate. The parameter κr
measures the speed at which the process reverts to its long term average: the
higher κr, the faster the mean reversion. By assuming that κr, θr and σr
are positive constants, any potential time dependence or stochastic nature
of these parameters is neglected.

In the Vasicek model, the future distribution of the short rate is known and
its mean and variance can be determined analytically.

Proposition 4.1 (Short rate distribution in the Vasicek model)
From the short rate dynamics in Equation (4.3) it follows that, for all
s, t ∈ Tc, s ≤ t,

r(t) = r(s)e−κr(t−s) + θr

(
1− e−κr(t−s)

)
+ σr

∫ t

s

e−κr(t−u)dW (u),
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and r(t) conditional on Fs is normally distributed

r(t)|Fs ∼ N
(
µr(t)|Fs , σ

2
r(t)|Fs

)
,

with

µr(t)|Fs := r(s)e−κr(t−s) + θr

(
1− e−κr(t−s)

)
,

σ2
r(t)|Fs :=

σ2
r

2κr

(
1− e−2κr(t−s)

)
.

Proof. See Brigo and Mercurio [24], pp. 58ff.

Even though we are working in a finite time setting note that, for t→∞,
we get limt→∞ µr(t)|Fs = θr. This is why θr is referred to as the long

term average. Similarly, the long term volatility is limt→∞ σ2
r(t)|Fs =

σ2
r

2κr
.

Proposition 4.1 also implies that there is a positive probability of negative
interest rates, the magnitude of which depends on the actual choice of the
parameters r0, κr, θr and σr. The occurrence of negative interest rates often
used to be argued to be the major drawback of the Vasicek model. Given
recent market developments, this view has changed and negative interest
rates are not considered as unrealistic any more.

Assumption 6 (Risk-free short rate dynamics under P)
Under the real-world measure P, the tradeable risk-free short rate evolves
according to the Vasicek dynamics, i.e.

dr(t) = κPr
(
θPr − r(t)

)
dt+ σrdW

P
r (t), r(t0) = r0, ∀t ∈ Tc, (4.4)

with κPr , θPr and σr being positive constants, r0 ∈ R and
(
WP
r (t)

)
t∈Tc

a
standard Brownian motion under P. Furthermore, the Radon-Nikodym
derivative of the risk-neutral measure Q with respect to P, restricted to Ft,
is given by

dQ
dP

∣∣∣∣
Ft

= exp

(
−1

2

∫ t

0

γ2
r (s)ds−

∫ t

0

γr(s)dW
P
r (s)

)
,
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where γr(t) := λ1r(t) + λ2 with

λ1 :=
κQr − κPr

σr
, λ2 :=

κPr θ
P
r − κQr θQr
σr

,

and κQr and θQr being positive constants.

It can be shown, see Proposition 4.2 below, that under the above assumptions
the resulting dynamics under Q are the same as under P, the only difference
being the parameters θr and κr. For λ1 = λ2 = 0 the dynamics coincide.

Proposition 4.2 (Risk-free short rate dynamics under Q)
Given Assumption 6, the dynamics of the risk-free short rate under the
risk-neutral measure Q are given by

dr(t) = κQr
(
θQr − r(t)

)
dt+ σrdW

Q
r (t), r(t0) = r0, ∀t ∈ Tc, (4.5)

with r0, σr, κ
Q
r and θQr as in Assumption 6 and

(
WQ
r (t)

)
t∈Tc

being a standard
Brownian motion under Q. Furthermore, it holds that

κQr = λ1σr + κPr and θQr =
κPr θ

P
r − σrλ2

κQr
.

Proof. From Assumption 6 and Girsanov’s theorem, cf. Zagst [168], pp.
33–35, it follows that the stochastic process

dWQ
r (t) = γr(t)dt+ dWP

r (t)

is a standard Brownian motion under Q. Substituting dWP
r (t) in Equation

(4.4) we get

dr(t) = κPr
(
θPr − r(t)

)
dt+ σr

(
dWQ

r (t)− γr(t)dt
)

= κPr θ
P
r dt− κPr r(t)dt+

(
κPr − κQr

)
r(t)dt+

(
κQr θ

Q
r − κPr θPr

)
dt

+ σrdW
Q
r (t)

= κQr
(
θQr − r(t)

)
dt+ σrdW

Q
r (t).

Solving λ1 :=
κQr −κ

P
r

σr
for κQr yields κQr = λ1σr + κPr and from

λ2 :=
κPr θ

P
r −κ

Q
r θ

Q
r

σr
it follows that θQr =

κPr θ
P
r −σrλ2

κQr
.
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The present values of risk-free zero coupon bonds can be calculated analyti-
cally in the Vasicek model.

Proposition 4.3 (Risk-free zero coupon bond price)
In the Vasicek model, the time-t present value of a risk-free zero coupon bond
with maturity T is given by

P (t, T ) = A(t, T )e−B(t,T )·r(t), t, T ∈ Tc, t ≤ T, (4.6)

with

A(t, T ) := exp

{(
θQr −

σ2
r

2(κQr )2

)
(B(t, T )− T + t)− σ2

r

4κQr
B(t, T )2

}
,

B(t, T ) :=
1

κQr

(
1− e−κ

Q
r (T−t)

)
.

Proof. See Brigo and Mercurio [24], p. 59.

Proposition 4.3 implies that the time-t present value of a risk-free zero
coupon bond with maturity T only depends on the then-prevailing short rate
level r(t), the bond’s remaining time to maturity T − t and the risk-neutral
short rate parameters κQr , θQr and σr. While the risk-neutral short rate
parameters are constants and the bond’s remaining time to maturity T − t
changes deterministically over time, the short rate level r(t) is stochastic
and follows the real-world dynamics as specified by Equation (4.4).

It can be shown, see Corollary 4.4 below, that the Vasicek model is a special
case of the Hull-White extended Vasicek model as in Brigo and Mercurio
[24], p. 73. This relationship will be needed later on.

Hull-White extended Vasicek model. In the Hull-White extended
Vasicek model, the Q-dynamics of the short rate r(t) are given by

dr(t) =
(
θHr (t)− aHr r(t)

)
dt+ σHr dW

Q
r (t), ∀t ∈ Tc, (4.7)

with r(0) := rH0 and aHr , σ
H
r being positive constants. The function

θHr (t) is chosen to exactly fit the term structure of interest rates being
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observed in the market,

θHr (t) :=
∂fM (0, t)

∂t
+ aHr f

M (0, t) +

(
σHr
)2

2aHr

(
1− e−2aHr t

)
,

where fM (0, t) := −∂ lnPM (0,t)
∂t is the market instantaneous forward

rate at time 0 for maturity t and PM (0, t) the market discount factor
for maturity t.

With respect to the Hull-White extended Vasicek model, the following
corollary holds.

Corollary 4.4 (Hull-White extended Vasicek model)
If, under the risk-neutral measure Q, the risk-free short rate evolves according
to the Hull-White extended Vasicek dynamics in Equation (4.7) and the
market discount factors PM (0, t) can be written as

PM (0, T ) := A(0, T )e−B(0,T )r0 , ∀t ∈ Tc, (4.8)

with B(0, T ) and A(0, T ) as in Proposition 4.3, choosing aHr := κQr , σHr := σr
and rH0 := r0 yields the Vasicek dynamics as in Equation (4.5).

Proof. From Equation (4.8) it follows that

B(0, T ) =
1

κQr

[
1− e−κ

Q
r T
]
,

lnA(0, T ) =

(
θQr −

σ2
r

2(κQr )2

)
(B(0, T )− T )− σ2

r

4κQr
B(0, T )2

=
θQr

κQr
− θQr

κQr
e−κ

Q
r T − θQr T −

σ2
r

2(κQr )3
+

σ2
r

2(κQr )3
e−κ

Q
r T

+
σ2
r

2(κQr )2
T − σ2

r

4(κQr )3
+

σ2
r

2(κQr )3
e−κ

Q
r T − σ2

r

4(κQr )3
e−2κQr T ,

∂B(0, T )

∂T
= e−κ

Q
r T ,

∂ lnA(0, T )

∂T
= θQr e

−κQr T − θQr −
σ2
r

(κQr )2
e−κ

Q
r T +

σ2
r

2(κQr )2
+

σ2
r

2(κQr )2
e−2κQr T .
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We therefore get

fM (0, T ) = −∂ lnA(0, T )

∂T
+
∂B(0, T )

∂T
r0

= −θQr e−κ
Q
r T + θQr +

σ2
r

(κQr )2
e−κ

Q
r T − σ2

r

2(κQr )2
− σ2

r

2(κQr )2
e−2κQr T

+ r0e
−κQr T ,

∂fM (0, T )

∂T
= θQr κ

Q
r e
−κQr T − σ2

r

κQr
e−κ

Q
r T +

σ2
r

κQr
e−2κQr T − r0κ

Q
r e
−κQr T .

Setting aHr = κQr and σHr = σr, the function θHr (t) reduces to

θHr (t) =
∂fM (0, t)

∂t
+ κQr f

M (0, t) +
σ2
r

2κQr

(
1− e−2κQr t

)
=θQr κ

Q
r e
−κQr T − σ2

r

κQr
e−κ

Q
r T +

σ2
r

κQr
e−2κQr T − r0κ

Q
r e
−κQr T − κQr θQr e−κ

Q
r T

+ κQr θ
Q
r +

σ2
r

κQr
e−κ

Q
r T − σ2

r

2κQr
− σ2

r

2κQr
e−2κQr T + r0κ

Q
r e
−κQr T +

σ2
r

2κQr

− σ2
r

2κQr
e−2κQr t

=κQr θ
Q
r ,

and with rH0 = r0, the dynamics in Equation (4.7) read

dr(t) = κQr
(
θQr − r(t)

)
dt+ σrdW

Q
r (t), r(0) = r0, ∀t ∈ Tc,

i.e. they are equal to the Vasicek dynamics in Equation (4.5).

The Vasicek model is an endogenous term structure model, which means
that the interest rate term structure is a model output rather than a model
input.6 The analytical expression for the model-implied term structure can
be easily derived as follows.

6This is as opposed to other interest rate models (such as the Libor Market Model or
the Hull-White extended Vasicek model) which are able to reproduce a given initial
yield curve exactly.
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Remark 4.5 (Risk-free spot rate)
In the Vasicek model, the risk-free spot rate prevailing at time t for the
maturity T is given by

r(t, T ) = − lnP (t, T )

T − t
= − lnA(t, T )

T − t
+
B(t, T )

T − t
r(t), t, T ∈ Tc, t < T.

(4.9)

Under the assumptions made so far, the risk-free zero coupon bond price
P (t, T ) is lognormally distributed with mean and variance depending both
on the risk-neutral and the real-world Vasicek parameters.

Proposition 4.6 (Distribution of the risk-free zero coupon bond
price)
Given Assumption 6, the time-t present value of a risk-free zero coupon bond
with maturity T , conditional on Fs, is lognormally distributed

lnP (t, T )|Fs ∼ N
(
µ̃P (t,T )|Fs , σ̃

2
P (t,T )|Fs

)
,

for s, t, T ∈ Tc, s ≤ t ≤ T , with

µ̃P (t,T )|Fs := lnA(t, T )−B(t, T )µr(t)|Fs ,

σ̃2
P (t,T )|Fs := σ2

r(t)|FsB(t, T )2,
(4.10)

and the mean and the variance of P (t, T ) are given by

µP (t,T )|Fs := exp

(
µ̃P (t,T )|Fs +

1

2
σ̃2
P (t,T )|Fs

)
,

σ2
P (t,T )|Fs := exp

(
2µ̃P (t,T )|Fs + σ̃2

P (t,T )|Fs

)
·
(

exp
(
σ̃2
P (t,T )|Fs

)
− 1
)
.

(4.11)

Proof. According to Assumption 6, the real-world dynamics of the short rate
are given by Equation (4.4) and from Proposition 4.1 and 4.3 we know that

r(t)|Fs ∼ N
(
µr(t)|F0

, σ2
r(t)|Fs

)
and lnP (t, T ) = lnA(t, T ) − B(t, T ) · r(t).

For X ∼ N (µ, σ), the transformed random variable Y := aX + b with a 6= 0
and b ∈ R is also normally distributed with Y ∼ N

(
aµ+ b, a2σ2

)
and it

follows that lnP (t, T )|Fs ∼ N
(
µ̃P (t,T )|Fs , σ̃

2
P (t,T )|Fs

)
with µ̃P (t,T )|Fs and
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σ̃2
P (t,T )|Fs as in (4.10). For a lognormal random variable X, lnX ∼ N

(
µ, σ2

)
,

it holds that E [X] = eµ+σ2

2 and V [X] = e2µ+σ2

(eσ
2 − 1). The mean and

the variance of P (t, T ) are therefore given by µP (t,T )|Fs and σ̃2
P (t,T )|Fs as in

(4.11).

The implications of Proposition 4.6 for the risk-free spot rate are straightfor-
ward.

Remark 4.7 (Distribution of the risk-free spot rate)
Given Assumption 6, the risk-free spot rate prevailing at time t for the
maturity T , conditional on Fs, is normally distributed

r(t, T )|Fs ∼ N
(
µ̃r(t,T )|Fs , σ̃

2
r(t,T )|Fs

)
,

for s, t, T ∈ Tc, s ≤ t ≤ T , with

µ̃r(t,T )|Fs := − 1

T − t
µ̃P (t,T )|Fs ,

σ̃2
r(t,T )|Fs :=

1

(T − t)2
σ̃2
P (t,T )|Fs .

Proof. The statement follows directly from r(t, T ) = − 1
T−t lnP (t, T ).

In the Vasicek model, the parameters are specified to be positive constants.
Allowing for σr = 0 corresponds to the special case of deterministic short
rate dynamics with deterministic zero coupon bond prices and spot rates.
The additional requirement θPr = θQr = r0 results in constant interest rates.

Remark 4.8 (Special cases of the Vasicek model)
Setting σr = 0 in Equation (4.4), the real-world short rate dynamics become
deterministic, i.e. for s, t ∈ Tc, s ≤ t,

r(t) = r(s)e−κ
P
r (t−s) + θPr (1− e−κ

P
r (t−s)),

and with κPr = κQr and θPr = θQr the zero coupon bond price and the risk-free
spot rate simplify to
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P (t, T ) = EQ
[
e−
∫ T
t
r(τ)dτ

∣∣Ft]
= exp

{
−r(t)

∫ T
t
e−κ

P
r (τ−t)dτ − θPr

∫ T
t

(1− e−κPr (τ−t))dτ
}

= exp
{
− r(t)
κPr

(
1− e−κPr (T−t)

)
− θPr (T − t) +

θPr
κPr

(
1− e−κPr (T−t)

)}
= exp

{
−B(t, T ) · r(t) + θQr (B(t, T )− T + t)

}
,

r(t, T ) = − lnP (t,T )
T−t = − 1

T−t
(
−B(t, T ) · r(t) + θQr (B(t, T )− T + t)

)
.

The additional requirement θPr = θQr = r0 results in a constant short rate
r(t) = r0, P (t, T ) = e−r0·(T−t) and r(t, T ) = r0.

4.3.2 Asset Creditworthiness

To model the creditworthiness of the bank’s risky assets, an asset credit risk
model has to be chosen. Potential alternatives include the model by Jarrow
et al [96], which takes into account credit migrations with deterministic credit
spreads, or the one by Dubrana [50], which includes credit migrations with
stochastic credit spreads. In our Pfandbrief model, we follow Sünderhauf
[148] and assume that the creditworthiness of a risky zero coupon bond is
driven by a state variable process, but we ignore the jump component and
the stochastic volatility used in his model and restrict ourselves to geometric
Brownian motions. As a consequence, we obtain analytical solutions for
asset present values under stochastic interest rates and creditworthiness
and do not require additional Monte Carlo simulations for pricing purposes.
We also avoid additional uncertainties arising from parameter estimation in
jump processes and obtain explicit formulas for asset default probabilities
and losses given default, which facilitates the calibration of the state variable
process to given default parameters.

Assumption 7 (Creditworthiness of a risky zero coupon bond)
For a risky zero coupon bond, the following holds:

(a) The payoff of the risky zero coupon bond at its maturity T ∈ Tc is
given by P̃ (T, T ) := min (1;Z(T )), where Z(T ) is the time-T -value of
an associated tradeable state variable, i.e. some firm or real estate value.
The risky zero coupon bond cannot default prior to maturity and at time
T it defaults if and only if Z(T ) < 1.
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(b) Under the real-world measure P, the dynamics of the state variable
process are given by

dZ(t) = µZZ(t)dt+ σZZ(t)dWP
Z (t), Z(0) = Z0, ∀t ∈ Tc,

with Z0 and σZ being positive constants, µZ ∈ R and
(
WP
Z (t)

)
t∈Tc

a
standard Brownian motion under P.

(c) The P-dynamics of the state variable Z and the risk-free short rate r
are correlated according to dWP

r (t)dWP
Z (t) = ρdt with ρ ∈ (−1, 1).

As the state variable follows a geometric Brownian motion, its distribution
at the zero coupon bond’s maturity is known.

Remark 4.9 (Distribution of the state variable)
At the risky zero coupon bond’s maturity T ∈ Tc, the value of the state
variable Z is lognormally distributed

lnZ(T )
∣∣F0 ∼ N

(
µ̃Z(T ), σ̃

2
Z(T )

)
,

with

µ̃Z(T ) := lnZ0 +
(
µZ − 0.5 · σ2

Z

)
T,

σ̃2
Z(T ) := σ2

ZT,

and the mean and the variance of Z(T ) are given by7

µZ(T ) := exp
(
µ̃Z(t) + 0.5 · σ̃2

Z(T )

)
,

σ2
Z(T ) := exp

(
2µ̃Z(T ) + σ̃2

Z(T )

)
·
(

exp
(
σ̃2
Z(T )

)
− 1
)
.

The zero coupon bond’s default parameters which are the basis for the
calibration of the state variable processes, cf. Section 5.2.2 below, can now
be determined.

7This follows from the fact that, for a lognormal random variable X, lnX ∼ N
(
µ, σ2

)
,

it holds that E [X] = eµ+σ2

2 and V [X] = e2µ+σ2
(eσ

2 − 1).
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Lemma 4.10 (Default parameters of a risky zero coupon bond)
The lifetime default probability and the lifetime loss given default of a risky
zero coupon bond with maturity T ∈ Tc and associated state variable Z are
given by

π(T ) = Φ

(
−
µ̃Z(T )

σ̃Z(T )

)
,

L(T ) = 1−
µZ(T )

π(T )
· Φ(Φ−1(π(T ))− σ̃Z(T )),

if T > t0, with Φ being the cumulative distribution function of the standard
normal distribution. In the special case where T = t0 it holds that

π(T ) =

{
1, if Z0e

µZT < 1,

0, otherwise.

L(T ) =

{
1− Z0e

µZT , if Z0e
µZT < 1,

0, otherwise.

Proof. The risky zero coupon bond defaults if and only if Z(T ) < 1, i.e. its
default probability and loss given default are given by

π(T ) = P [Z(T ) < 1] and L(T ) = 1− EP [Z(T )
∣∣Z(T ) < 1

]
.

For T > t0 it follows from Remark 4.9 that

π(T ) = P [lnZ(T ) < 0] = Φ

(
−
µ̃Z(T )

σ̃Z(T )

)
,

and it holds that

L(T ) = 1−
EP [Z(T ) · I{Z(T )<1}

]
P [Z(T ) < 1]

= 1− EP [Z(T )]

π(T )
+

EP [Z(T ) · I{Z(T )≥1}
]

π(T )
,

with EP [Z(T )] = µZ(T ). Using Φ(x) = 1− Φ(−x) ∀x ∈ R we get
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EP [Z(T ) · I{Z(T )≥1}
]

= EP
[
(Z(T )− 1)

+
+ 1 · I{Z(t)≥1}

]
= EP

[
(Z(T )− 1)

+
]

+ P [Z(T ) ≥ 1]

= EP
[
(Z(T )− 1)

+
]

+ Φ

(
µ̃Z(T )

σ̃Z(T )

)
,

where X+ := I{X≥0} ·X. As Z(T )|F0 is lognormally distributed, it follows
that8

EP [Z(T ) · I{Z(T )≥1}
]

= eµ̃Z(T )+
1
2 σ̃

2
Z(T ) · Φ

(
µ̃Z(T )

σ̃Z(T )
+ σ̃Z(T )

)
= µZ(T ) · Φ

(
−Φ−1(π(T )) + σ̃Z(T )

)
.

All in all, we have

L(T ) = 1−
µZ(T )

π(T )
·
(
1− Φ

(
−Φ−1(π(T )) + σ̃Z(T )

))
and, again with Φ(−x) = 1− Φ(x) ∀x ∈ R, this results in

L(T ) = 1−
µZ(T )

π(T )
· Φ(Φ−1(π(T ))− σ̃Z(T )).

In the special cases where T = t0 we obtain lnZ(T )|F0 ∼ N
(
µ̃Z(T ), 0

)
, i.e.

Z(T ) is deterministic and Z(T ) = EP [Z(T )] = Z0e
µZT =: µdZ(T ). Then, by

definition, π(T ) = 1 if µdZ(T ) < 1 and π(T ) = 0 otherwise. In the former

case, L(T ) = 1− µdZ(T ) and in the latter case L(T ) = 0.

We are not only interested in the final payoff of the bank’s risky zero coupon
bond at its maturity T but also in its present value prior to maturity.
Therefore, we make the following assumption:

8For a lognormally distributed random variable X and some constant K̃ > 0, it holds
that

E
[(
X − K̃

)+
]

= em+ 1
2
v2

Φ

(
m− ln(K̃) + v2

v

)
− K̃φ

(
m− ln K̃

v

)
,

with m := E [lnX] and v := V [lnX] being the expectation and the variance of lnX,
cf. Brigo and Mercurio [24], p. 919 f.
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Assumption 8 (Joint dynamics of the risk drivers under P)
Under the real-world measure P, the joint dynamics of the short rate r and
the state variable Z are given by

dY (t) = µPY (t)dt+ ΣY (t)dWP
Y (t), ∀t ∈ Tc, (4.12)

where Y (t) := (r(t), Z(t))
>

, r(0) := r0, Z(0) := Z0 and

µPY (t) :=

(
κPr
(
θPr − r(t)

)
µZZ(t)

)
,

ΣY (t) :=

(
σr 0

σZρZ(t) σZ
√

1− ρ2Z(t)

)
,

with r0, κPr , θPr , σr as in Assumption 6, Z0, σZ , µZ , ρ as in Assumption
7, and

(
WP
Y (t)

)
t∈Tc

a two-dimensional standard Brownian motion under P.
The Radon-Nikodym derivative of the risk-neutral measure Q with respect to
P, restricted to Ft, is given by

dQ
dP

∣∣∣∣
Ft

= exp

(
−1

2

∫ t

0

‖γY (s)‖2ds−
∫ t

0

γ>Y (s)dWP
Y (s)

)
,

where γY (s) := (γr(s), γZ(s))
>

with γr(s) as in Assumption 6 and

γZ(s) :=
µZ − r(s)− σZργr(s)

σZ
√

1− ρ2
.

Remark 4.11 (Joint dynamics of the risk drivers under P)
Under the real-world measure P, the joint dynamics of the short rate r and
the state variable Z in (4.12) can be rewritten as

dr(t) = κPr
(
θPr − r(t)

)
dt+ σrdW

P
r (t),

dZ(t) = µZZ(t)dt+ σZρZ(t)dWP
r (t) + σZ

√
1− ρ2Z(t)dWP

⊥ (t)

= µZZ(t)dt+ σZZ(t)dWP
Z (t),

with dWP
r (t) and dWP

⊥ (t) being two independent standard Brownian motions

under P and dWP
Z (t) := ρdWP

r (t) +
√

1− ρ2dWP
⊥ . Assumption 8a therefore

subsumes the corresponding assumptions on the dynamics of r(t) and Z(t)
as made in Assumptions 6 and 7.
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The resulting Q-dynamics can be easily derived. The correlation between
the processes r and Z is not affected by the change of measure.

Proposition 4.12 (Joint dynamics of the risk drivers under Q)
The joint dynamics of the short rate r and the state variable Z under the
risk-neutral measure Q are given by

dY (t) = µQY (t)dt+ ΣY (t)dWQ
Y (t), ∀t ∈ Tc, (4.13)

with Y (t), ΣY (t) as in Assumption 8, µQY (t) :=
(
κQr
(
θQr − r(t)

)
, r(t)Z(t)

)>
,

κQr , θQr as in Assumption 6 and
(
WQ
Y (t)

)
t∈Tc

a two-dimensional standard

Brownian motion under Q.

Proof. Given Assumption 8, it follows from Girsanov’s theorem (cf. Zagst
[168], pp. 33–35) that the stochastic process

dWQ
Y (t) = γY (t)dt+ dWP

Y (t)

is a two-dimensional standard Brownian motion under Q. Substituting
dWP

Y (t) in Equation (4.12) we get

dY (t) = µPY (t)dt− ΣY (t)γY (t)dt+ ΣY (t)dWQ
Y (t)

and therefore

µPY (t)− ΣY (t)γY (t) =

(
κPr
(
θPr − r(t)

)
− σrγr(t)

µZZ(t)− σZρZ(t)γr(t)− σZ
√

1− ρ2Z(t)γZ(t)

)
=

(
κQr
(
θQr − r(t)

)
r(t)Z(t).

)
= µQY (t).

The present value of risky zero coupon bonds can now be determined as
follows.
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Lemma 4.13 (Risky zero coupon bond price)
At time t < T , t, T ∈ Tc, the present value of a risky zero coupon bond with
maturity T and associated state variable Z is given by

P̃ (t, T ) = P (t, T )− V Put(t, T, 1, Z(t), σZ , r(t), θ
Q
r , κ

Q
r , σr, ρ), (4.14)

with

V Put(t, T,K,Z, σZ , r, θ
Q
r , κ

Q
r , σr, ρ) :=

K · P (t, T ) · Φ(−d2)− Z · Φ(−d1), (4.15)

and

d1 :=
1

ṽ(t, T )

(
ln

(
Z

K · P (t, T )

)
+

1

2
· ṽ2(t, T )

)
,

d2 := d1 − ṽ(t, T ),

ṽ2(t, T ) := σ2
Z (T − t) + 2w(t, T ) + V (t, T ),

w(t, T ) := ρ
σrσZ

κQr

[
T − t− 1

κQr

(
1− e−κ

Q
r (T−t)

)]
,

V (t, T ) :=
σ2
r

(κQr )2

[
T − t+

2

κQr
· e−κ

Q
r (T−t) − 1

2κQr
e−2κQr (T−t) − 3

2κQr

]
.

(4.16)

Proof. Starting from P̃ (T, T ) = min (1, Z(T )) = 1 − (K − Z(T ))
+

with
K := 1, the present value of the risky zero coupon bond can be written as

P̃ (t, T ) = EQ
[
P̃ (T, T ) · e−

∫ T
t
r(s)ds

∣∣∣∣Ft]
= EQ

[
e−
∫ T
t
r(s)ds

∣∣∣∣Ft]− EQ
[
(K − Z(T ))

+ · e−
∫ T
t
r(s)ds

∣∣∣∣Ft]
= P (t, T )− U(t, T ),

where P (t, T ) is as in Equation (4.6) and

U(t, T ) := EQ
[
(K − Z(T ))

+ · e−
∫ T
t
r(s)ds

∣∣∣∣Ft] .
As (K − Z(T ))

+
is the payoff of a European put option on Z(T ) with strike



4.3 Market Environment 85

K, U(t, T ) corresponds to the option’s present value. This means that it

has to be shown that U(t, T )
!
= K · P (t, T ) · Φ(−d2)− Z(t) · Φ(−d1), with

d1 and d2 as in (4.16). We do so in four steps:

Step 1: Changing from the risk-neutral measure Q to the forward measure

QT we get, cf. Brigo and Mercurio [24], p. 30,

U(t, T ) = P (t, T ) · EQT
[
(K − Z(T ))

+

∣∣∣∣Ft]
= Z(t) · EQT

[(
P (t, T ) ·K

Z(t)
− P (t, T ) · Z(T )

Z(t)

)+ ∣∣∣∣Ft
]

= Z(t) · EQT
[(
K̃(t, T )−X(t, T )

)+
∣∣∣∣Ft] ,

with K̃(t, T ) := P (t,T )·K
Z(t) and X(t, T ) := P (t,T )·Z(T )

Z(t) .

Step 2: As the risk-neutral Vasicek dynamics in Equation (4.5) are a special
case of the ones in the Hull-White extended Vasicek model, see Corollary 4.4,
we can use the results obtained by Brigo and Mercurio [24], pp. 886–887,
which state that the following holds under the measure QT :

ln

(
Z(T )

Z(t)

)
=

1− e−aHr (T−t)

aHr
x(t) +

σHr
aHr

∫ T

t

(
1− e−a

H
r (T−u)

)
dW̃T (u)︸ ︷︷ ︸

(∗)

− (σHr )2

aHr

∫ T

t

∫ u

t

e−a
H
r (u−s)

(
1− e−a

H
r (T−s)

)
ds du

+

∫ T

t

fM (0, u)du+
(σHr )2

2(aHr )2

∫ T

t

(
1− e−a

H
r u
)2

du

− ρσ
H
r σZ
aHr

∫ T

t

(
1− e−a

H
r (T−u)

)
du− 1

2
σ2
Z(T − t)

+ σZ
√

1− ρ2
(
Z̃T (T )− Z̃T (t)

)
︸ ︷︷ ︸

(∗∗)

+ σZρ
(
W̃T (T )− W̃T (t)

)
︸ ︷︷ ︸

(∗∗∗)

, ∀t < T,
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with (W̃T (t))t∈Tc and (Z̃T (t))t∈Tc being two independent Brownian motions
under QT and x(t) being Ft-measurable. From the properties of Brownian
motions it follows that, given Ft, the expressions in (*), (**) and (***) are
normally distributed and we get

ln

(
Z(T )

Z(t)

) ∣∣∣∣Ft ∼ N (µ̄, σ̄) ,

for some µ̄, σ̄ ∈ R. With

lnX(t, T ) = ln

(
Z(T )

Z(t)

)
+ lnP (t, T )

we conclude that X(t, T )|Ft is lognormally distributed under QT .

Step 3: As X(t, T )|Ft is lognormally distributed under QT , it follows that9

EQT
[(
K̃(t, T )−X(t, T )

)+
∣∣∣∣Ft]

= −ec(t,T )Φ

(
−f(t, T )

b(t, T )

)
+ K̃(t, T )Φ

(
−e(t, T )

b(t, T )

)
,

with

c(t, T ) := a(t, T ) +
1

2
b(t, T )2,

e(t, T ) := a(t, T )− ln K̃(t, T ),

f(t, T ) := a(t, T )− ln K̃(t, T ) + b(t, T )2 = e(t, T ) + b(t, T )2,

a(t, T ) := EQ
T

[lnX(t, T )] ,

b(t, T )2 := VQ
T

[lnX(t, T )] .

Step 4: Using again the fact that the risk-neutral Vasicek dynamics in
Equation (4.5) are a special case of the ones in the Hull-White extended
Vasicek model, we can refer to the formulas for the conditional expectation

9Again, we use the fact that, for a lognormally distributed random variable X and some
constant K̃ > 0, it holds that

E
[(
K̃ −X

)+
]

= −em+ 1
2
v2

Φ

(
−
M − ln(K̃) + v2

v

)
+ K̃Φ

(
−
M − ln K̃

v

)
,

with m := E [lnX] and v := V [lnX], cf. Brigo and Mercurio [24], pp. 919 f.
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and variance of ln Z(T )
Z(t) as obtained by Brigo and Mercurio [24], pp. 886–889,

i.e.

EQT
[
ln
Z(T )

Z(t)

∣∣∣∣Ft] = − lnP (t, T )− 1

2
ṽ(t, T )2,

VQT
[
ln
Z(T )

Z(t)

∣∣∣∣Ft] = ṽ(t, T )2,

with ṽ(t, T ), V (t, T ), w(t, T ) as in (4.16). All in all this results in

a(t, T ) = EQ
T

[
ln
Z(T )

Z(t)

∣∣∣∣Ft]+ lnP (t, T ) = −1

2
ṽ(t, T )2,

b(t, T )2 = VQ
T

[
ln
Z(T )

Z(t)

∣∣∣∣Ft] = ṽ(t, T )2,

c(t, T ) = 0,

e(t, T ) = −1

2
ṽ(t, T )2 − ln K̃(t, T ) = ln

Z(t)

P (t, T ) ·K
− 1

2
ṽ(t, T )2,

f(t, T ) = e(t, T ) + ṽ(t, T )2,

and it follows that

U(t, T ) = −Z(t)ec(t,T )Φ

(
−f(t, T )

b(t, T )

)
+ Z(t)K̃(t, T )Φ

(
−e(t, T )

b(t, T )

)
= −Z(t) · Φ (−d1) + P (t, T ) ·K · Φ (−d2)

with d1 and in d2 as in (4.16).

The volatility ṽ(t, T ), which is used to calculate the European put option
price, depends on the interest rate volatility σr, the state variable volatility
σZ and the correlation ρ between the state variable process and the short
rate process. As shown in the proof of Corollary 4.14 below, in the special
case of constant interest rates where ṽ(t, T ) equals σz

√
T − t, the formula

for the European put option in Equation (4.15) reduces to the standard
formula by Black and Scholes [20].
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Corollary 4.14 (Special case: constant interest rates)
In the special case where σr = 0, κPr = κQr and θPr = θQr = r0, the present
value in Equation (4.14) simplifies to

P̃ (t, T ) = e−r0·(T−t) − BSPut(t, T, 1, Z(t), σZ , r0), t ≤ T,

with

BSPut(t, T,K,Z, σZ , r0) := K · e−r0(T−t) · Φ(−d̃2)− Z · Φ(−d̃1) (4.17)

being the standard Black-Scholes formula for European put options and

d̃1 :=
1

σZ
√
T − t

(
ln

(
Z

K

)
+

(
r0 +

σ2
Z

2

)
· (T − t)

)
,

d̃2 := d̃1 − σZ
√
T − t.

Proof. From Remark 4.8 we know that σr = 0, κPr = κQr and θPr = θQr = r0

implies r(t) = r0 and P (t, T ) = e−r0·(T−t). With V (t, T ) = w(t, T ) = 0 and
ṽ2(t, T ) = σ2

Z (T − t), the price of the put option in Equation (4.15) reduces
to BSPut(t, T,K,Z, σZ , r0) as in Equation (4.17).

In our model, the price and the spread of a risky zero coupon bond are
strictly positive.

Remark 4.15 (Risky zero coupon bond price and spread)
At time t ≤ T , t, T ∈ Tc, the present value and the spread of a risky zero
coupon bond with maturity T are strictly positive, i.e. P̃ (t, T ) > 0 and
s(t, T ) > 0.

Proof. For t < T it follows with Φ(x) = 1− Φ(−x) ∀x that

P̃ (t, T ) = P (t, T )− V Put(t, T, 1, Z(t), σZ , r(t), θ
Q
r , κ

Q
r , σr, ρ)

= P (t, T )− P (t, T ) · Φ(−d2) + Z · Φ(−d1)

= P (t, T ) · Φ(d2) + Z(t) · Φ(−d1),

where d1 and d2 as in (4.16) and Φ(d2),Φ(−d1) ∈ [0, 1]. It further holds that

P (t, T ) = e− lnA(t,T ) · e−B(t,T )·r(t) > 0,
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with A(t, T ), B(t, T ) as in Proposition 4.3. From the lognormal distribution
of Z(t) it follows that Z(t) > 0. As Φ(d2) and Φ(−d1) cannot be zero at the
same time, we get P̃ (t, T ) > 0. For t = T we have

P̃ (T, T ) = min (1, Z(T )) ,

and the statement regarding the zero coupon bond’s present value follows
with Z(T ) > 0.

Furthermore, as V Put(t, T,K,Z, σZ , r, θ
Q
r , κ

Q
r , σr, ρ) = U(t, T ) > 0 for t < T

due to the geometric Brownian motion assumption, we have P̃ (t, T ) < P (t, T )
and therefore s(t, T ) > 0.

4.3.3 Performance of the Bank’s Risky Assets

Having determined the dynamics of the risk-free short rate and the state
variables associated with the risky zero coupon bonds, we now specify the
joint performance of the bank’s risky assets as defined in Assumption 1. In
line with our above discussions we make the following assumption:

Assumption 9 (Creditworthiness of the bank’s risky assets)
For the bank’s risky assets, the following holds:

(a) The payoff of the bank’s i-th risky asset of type x at its maturity T xi ∈ Tc,
i = 1, ..., nx, x ∈ {CPS,OA}, is P̃ xi (T xi , T

x
i ) := min (1;Zxi (T xi )), where

Zxi (T xi ) is the time-T xi -value of the asset’s associated tradeable state
variable. The risky asset cannot default prior to maturity and at time
T xi it defaults if and only if Zxi (T xi ) < 1.

(b) Under the real-world measure P, the dynamics of the state variable
processes Zxi are given by

dZxi (t) = µxi Z
x
i (t)dt+ σxi Z

x
i (t)dW x

i (t), ∀t ∈ Tc, (4.18)

for Zxi (0) := Zx,0i and i = 1, ..., nx, x ∈ {CPS,OA}, with Zx,0i , σxi ∈ R+

being positive constants, µxi ∈ R and (W x
i (t))t∈Tc a standard Brownian

motion under P.
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(c) The P-dynamics of the state variable processes and the short rate are
correlated according to

dWCPS
i (t)dWCPS

k (t) = ρCPS,CPSi,k dt,

dWOA
j (t)dWOA

l (t) = ρOA,OAj,l dt,

dWCPS
i (t)dWOA

j (t) = ρCPS,OAi,j dt,

dWCPS
i (t)dWP

r (t) = ρCPS,ri dt

dWOA
j (t)dWP

r (t) = ρOA,rj dt,

with ρCPS,CPSi,i = ρOA,OAj,j = 1 and ρCPS,CPSi,k , ρOA,OAj,l , ρCPS,OAi,j ∈ (−1, 1)
for i 6= k, j 6= l, i, k ∈ {1, ..., nCPS}, j, l ∈ {1, ..., nOA}. Furthermore,

ρCPS,ri , ρOA,rj ∈ (−1, 1) for i ∈ {1, ..., nCPS}, j = {1, ..., nOA} and
ρr,r = 1. The correlation parameters are chosen such that the matrix

M :=



ρr,r ρCPS,r1 · · · ρCPS,rnCPS ρOA,r1 · · · ρOA,rnOA

ρCPS,r1 ρCPS,CPS1,1 · · · ρCPS,CPS1,nCPS
ρCPS,OA1,1 · · · ρCPS,OA1,nOA

...
...

...
...

...
...

...

ρCPS,rnCPS ρCPS,CPSnCPS ,1
· · · ρCPS,CPSnCPS ,nCPS ρCPS,OAnCPS ,1

· · · ρCPS,OAnCPS ,nOA

ρOA,r1 ρCPS,OA1,1 · · · ρCPS,OAnCPS ,1
ρOA,OA1,1 · · · ρOA,OA1,nOA

...
...

...
...

...
...

...

ρOA,rnOA ρCPS,OA1,nOA
· · · ρCPS,OAnCPS ,nOA ρOA,OAnOA,1

· · · ρOA,OAnOA,nOA


is positive definite.

With the help of the Cholesky decomposition, the joint dynamics of the
short rate and the state variable processes can be expressed in terms of
independent Brownian motions.

Remark 4.16 (Joint P-dynamics of the bank’s risk drivers)
Under the real-world measure P, the joint dynamics of the short rate r and the
state variables Zxi of the bank’s risky assets, i = 1, ..., nx, x ∈ {CPS,OA},
can be written as

dỸ (t) = µP
Ỹ

(t)dt+ ΣỸ (t)dWP
Ỹ

(t), ∀t ∈ Tc, (4.19)



4.3 Market Environment 91

where

Ỹ (t) :=
(
r(t), ZCPS1 (t), ..., ZCPSnCPS (t), ZOA1 (t), ..., ZOAnOA(t)

)> ∈ Rñ,

µP
Ỹ

(t) :=
(
µPr (t), µCPS1 (t), ..., µCPSnCPS (t), µOA1 (t), ..., µOAnOA(t)

)> ∈ Rñ,

with ñ := nCPS + nOA + 1, r(0) := r0, Zxi (0) := Zx,0i and

µPr (t) := κPr
(
θPr − r(t)

)
, µxi (t) := µxi Z

x
i (t).

Furthermore, ΣỸ (t) ∈ Rñ×ñ is the lower triangular matrix from the Cholesky
decomposition of the variance-covariance matrix ΣV C

Ỹ
(t) := ΣM (t) ·M ·ΣM (t)

with the diagonal matrix ΣM (t) being defined by

ΣM (t) := diag(σr, σ̃
CPS
1 (t), ..., σ̃CPSnCPS (t), σ̃OA1 (t), ..., σ̃OAnOA(t)) ∈ Rñ×ñ

and σ̃xi (t) := σxi Z
x
i (t), i.e. ΣỸ (t) · ΣỸ (t)> = ΣV C

Ỹ
(t). The parameters r0,

κPr , θPr , σr are as in Assumption 6, Zx,0i , σxi , µxi , M as in Assumption 9
and (WP

Ỹ
(t))t∈Tc is a ñ-dimensional standard Brownian motion under P.

With respect to the joint dynamics of the bank’s risk drivers under Q, we
make the following assumption:

Assumption 10 (Joint Q-dynamics of the bank’s risk drivers)
The Radon-Nikodym derivative of the risk-neutral measure Q with respect to
P, restricted to Ft, is given by

dQ
dP

∣∣∣∣
Ft

= exp

(
−1

2

∫ t

0

‖γỸ (s)‖2ds−
∫ t

0

γ>
Ỹ

(s)dWP
Ỹ

(s)

)
,

where
γỸ (s) := (ΣỸ (t))

−1 ·
(
µP
Ỹ

(t)− µQ
Ỹ

(t)
)
∈ Rñ, (4.20)

and

µQ
Ỹ

(t) :=
(
µQr (t), µ̃CPS1 (t), ..., µ̃CPSnCPS (t), µ̃OA1 (t), ..., µ̃OAnOA(t)

)> ∈ Rñ.

Furthermore, µQr (t) := κQr
(
θQr − r(t)

)
and µ̃xi (t) := r(t)Zxi (t) for

i = 1, ..., nx and x ∈ {CPS,OA}.
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Given Assumptions 9 and 10, the resulting Q-dynamics can be easily derived.

Proposition 4.17 (Joint Q-dynamics of the bank’s risk drivers)
Under the risk-neutral measure Q, the joint dynamics of the short rate r and
the state variables Zxi , i = 1, ..., nx, x ∈ {CPS,OA}, are given by

dỸ (t) = µQ
Ỹ

(t)dt+ ΣỸ (t)dWQ

Ỹ
(t), ∀t ∈ Tc,

where Ỹ (t), σỸ (t) are as in Remark 4.16, µQ
Ỹ

(t) is as in Assumption 10 and

(WQ

Ỹ
(t))t∈Tc is a ñ-dimensional standard Brownian motion under Q.

Proof. From Assumptions 9, 10 and Remark 4.16 it follows with Girsanov’s
theorem, cf. Zagst [168], pp. 33–35, that the stochastic process

dWQ

Ỹ
(t) = γỸ (t)dt+ dWP

Ỹ
(t)

is a ñ-dimensional standard Brownian motion under Q. Substituting dWP
Ỹ

(t)
in Equation (4.19) and setting γỸ (s) as in Equation (4.20) we get

dỸ (t) = µP
Ỹ

(t)dt− ΣỸ (t)γỸ (t)dt+ ΣỸ (t)dWQ

Ỹ
(t)

= µP
Ỹ

(t)dt− ΣỸ (t) (ΣỸ (t))
−1 ·

(
µP
Ỹ

(t)− µQ
Ỹ

(t)
)
dt+ ΣỸ (t)dWQ

Ỹ
(t)

= µQ
Ỹ

(t)dt+ ΣỸ (t)dWQ

Ỹ
.

We conclude this section by introducing some additional notation which will
be needed later on.

Realized cash flow per unit of risky asset. At time t ∈ Tc, the real-
ized cash flow from one unit of the risky asset i ∈ {1, ..., nx} of type
x ∈ {CPS,OA} is denoted by

F̃ xi,U (t) :=

{
min (1;Zxi (T xi )) , if t = T xi ,

0, otherwise.
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Realized present value per unit of risky asset. At time t ∈ Tc, the
present value of one unit of the risky asset i ∈ {1, ..., nx} of type
x ∈ {CPS,OA}, is denoted by

V xi,U (t) :=

{
P̃ (t, T xi ), if t ≤ T xi ,
0, otherwise,

Due to the zero coupon bond assumption, there is no distinction between
cash flows from nominal repayments and interest rate payments.

4.4 Funding and Liquidity

Bank survival strongly depends on the bank’s ability to obtain funding when
needed. In the following, we specify the bank’s and the cover pool’s liquidity
situation and the conditions under which funding is available in our model
(Sections 4.4.2 and 4.4.3). As the maintenance of the legal cover requirements
plays an important role in this context, we start with the definition of the
bank’s matching cover calculations (Section 4.4.1).

4.4.1 Matching Cover Calculations

One of the key features of the Pfandbrief is its mandatory overcollateraliza-
tion. There are four cover requirements which have to be maintained by the
bank at all times, cf. Section 2.1: the nominal cover, the excess cover, the ex-
cess cover under stress and the 180-day liquidity buffer. To ensure that that
the necessary cover is given, the Pfandbrief bank performs regular matching
cover calculations. As cover requirements are not actively maintained any
more by the cover pool administrator, matching cover calculations only take
place until the time of bank default.

Assumption 11 (The bank’s matching cover calculations)
Matching cover calculations are performed according to the following rules:

(a) The nominal cover, the excess cover, the excess cover under stress and
the 180-day liquidity buffer are in scope.
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(b) Cover requirements refer to strategic cover pool assets. Cover pool cash
inflows and Pfandbrief payments due at the time of calculation are not
taken into consideration.

(c) The risk-free interest rate curve is used for discounting when calculating
the excess cover.

(d) The excess cover under stress is determined by shifting the risk-free
curve by 250 bp up and down and setting resulting negative interest rates
to zero.

The PfandBG requires the excess cover under stress to be reviewed once a
week, while all other cover requirements have to be checked on a daily basis.
Assuming that all four cover requirements are in scope of each matching cover
calculation is therefore a reasonable approximation of the legal provisions,
especially for simulation time steps larger than one week. The second
assumption, which states that cover requirements refer to strategic cover
pool assets, is motivated by the fact that in our model strategic cover pool
assets represent the bank’s Pfandbrief business while liquid cover pool assets
are only used for liquidity steering.10 As there is no dedicated one-to-one
relationship between cover pool cash inflows and Pfandbrief payments, cash
flows due at the time of matching cover calculations are not considered in the
calculations. The second assumption also implies that all strategic cover pool
assets are eligible as cover. In the case of Public Pfandbriefe where rating
restrictions apply in some cases, cf. Section 2.1, this is an approximation to
avoid additional asset liability management related assumptions in the case
of rating deteriorations which result in single assets becoming ineligible for
the cover pool. For Mortgage Pfandbriefe, on which we concentrate in the
following, this implication is of lower relevance as there are no explicit rating
restrictions. Assuming that the risk-free curve is used for discounting is a
viable approximation of the legal provisions which require the corresponding
present values to be calculated by discounting expected future cash flows
with the currency-specific swap curve. Currency stresses are not relevant
in our setup as all assets are denoted in euros. The assumption regarding
the shocks to be applied when calculating the excess cover under stress is
in line with the legal provisions according to which the bank can choose
between a static approach, a dynamic approach and a method based on the
bank’s internal risk model.11 Under the static approach, which is the least

10For more details, see also Section 4.6 below.
11More details can be found in the PfandBarwertV, see vdp [157].
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complex one, present values are calculated by shifting the reference curve by
250 basis points up and down and setting resulting negative interest rates to
zero.

Having specified the principles according to which matching cover calculations
are performed, we now translate the legal cover requirements into formulas.
The nominal cover requirement states that the nominal of the cover pool,
i.e. the strategic cover pool assets in our case, must be equal to or exceed
the nominal of outstanding Pfandbriefe.

Observation 4.18 (Nominal cover)
At time t ∈ T , the nominal cover requirement is given by

ÑCPS(t) ≥ ÑPB(t), (C1)

with Ñx(t) :=
∑
i∈Nx,Txi >t

Nx
i (t) and Nx := {1, ..., nx} for x ∈ {CPS, PB}.

Note that, in line with Assumption 11, the nominals Ñx(t) do not account
for time-t cash inflows and payments.

The provisions regarding the excess cover and the excess cover under stress
require the net present value of cover pool assets to exceed the net present
value of outstanding Pfandbriefe by at least 2% and this must still hold
under the above defined interest rate stresses.

Observation 4.19 (Excess cover and excess cover under stress)
At time t ∈ T , the excess cover and the excess cover under stress requirements
are given by

Ṽ CPS∗y (t) ≥ 1.02 · Ṽ PB∗y (t), y ∈ {b, u, d} , (C2)

with Ṽ x∗y(t) :=
∑
s∈Tx,s>t F

x
t (s) · d∗y(t, s) and F xt (s) :=

∑
i∈Nx,Txi =sN

x
i (t),

where d∗y(t, s) := e−max(0;r(t,s)+∆y)·(s−t) and y ∈ {b, u, d}, x ∈ {CPS, PB}.
Furthermore, Tx :=

{
T x1 , ..., T

x
nx

}
, ∆b := 0, ∆u := 0.025 and ∆d := −0.025.

Here, y = b corresponds to the excess cover requirement, while y ∈ {u, d}
represents the corresponding up and down shocks of the excess cover under
stress requirement. By construction, the net present values Ṽ x∗y(t) do not
consider time-t cash inflows and payments. Negative interest rates resulting
from the shocks are floored at zero before used for discounting. Note that
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F xt (s) and Ṽ x∗y(t) account for our special zero coupon bonds setting, where
cash flows solely arise at maturity.

Finally, the 180-day liquidity buffer states that the maximum cumulative net
cash outflow occurring within the next 180 days must be covered by highly
liquid assets and that the cumulative difference between cash inflows from
the cover pool and scheduled Pfandbrief payments needs to be determined
with daily granularity.

Observation 4.20 (180-day liquidity buffer)
At time t ∈ T , the 180-day liquidity buffer requirement is given by

FCPScum (t, s) ≥ FPBcum(t, s), ∀s ∈ T PBCPS , t < s ≤ t+ 0.5, (C3)

with F xcum(t, s) :=
∑
i∈Nx,t<Txi ≤s

Nx
i (t) for x ∈ {CPS, PB}. Furthermore,

T PBCPS := TCPS ∪ TPB.

In the following, we require that all cover requirements are fulfilled at time
t0.

Assumption 12 (Cover requirements in t0)
The legal cover requirements (C1)–(C3) are fulfilled in t0.

As soon as one of the legal cover requirements (C1)–(C3) is breached, the
bank has to take action. Its strategies in this context are specified in Section
4.6 below.

4.4.2 Bank Funding

Under the run-off assumption, which implies that no new business is made,
bank funding is mainly needed to overcome temporary cash shortages re-
sulting from asset liability mismatches and the need to maintain cover
requirements.
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Definition 4.21 (Bank funding need)
The bank’s funding need at time t ∈ T is given by

GCB(t) :=

{
max(0;FLB (t) + CR(t)− F̃AB (t)), if t < Tmax, t ≤ τ,
0, otherwise.

with CR(t) being the amount of cash needed to reestablish the legal cover
requirements as specified in Proposition 4.41 below and

FLB (t) := FPB(t) + FOL(t) +NLL
B (t),

F̃AB (t) := F̃CPS(t) + F̃OA(t) +NCPL(t),

F x(t) :=
∑

i∈Nx,Txi =t

Nx
i (t0),

F̃ y(t) :=

ny∑
i=1

Ny
i (t) · F̃ yi,U (t),

for x ∈ {PB,OL} and y ∈ {CPS,OA}.

According to the above definition, a bank funding need arises when the
time-t asset cash inflows are not sufficient to fulfil payment obligations and
to maintain cover requirements. As the simulation stops at time Tmax and
the balance sheet is liquidated, funding aspects are not relevant any more at
that time and GCB(Tmax) = 0.

As already discussed in Section 3.3.1, access to funding highly depends on
the market environment and the bank’s specific situation. The availability of
funding through a collateralized liquidity line was found to be a reasonable
assumption as it combines the characteristics of secured funding as a reliable
funding source with the ones of a liquidity line where cash can be raised at
predefined conditions, avoiding the need for an explicit modelling of funding
costs. To account for the fact that liquidity lines may be withdrawn when
conditions deteriorate, we stipulate that the provider of the liquidity line
has the option to decide whether or not to prolong the granted funding at
each point in time. Alternatively, one could assume that further Pfandbriefe
(another form of secured funding) are issued to overcome temporary funding
needs. This would, however, raise non-trivial questions regarding the fair
coupon and the maturity of such instruments and might not be a realistic
option in case of a funding need caused by a breach of cover requirements.
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Assumption 13 (The bank’s liquidity line)
At time t ∈ T , t ≤ τ , the bank can obtain funding from a collateralized
liquidity line according to the following conditions:

(a) The bank has to pledge assets as collateral. It can use other assets for
this purpose and, if cover requirements are still fulfilled for the remaining
part of the cover pool, strategic cover pool assets. The maturity of pledged
assets must be later than time t.

(b) Assets are pledged at a haircut to their present value. For other assets,
this haircut is hOAPL ∈ [0, 1] and for strategic cover pool assets it is
hCPSPL ∈ [0, 1].

(c) The funding has to be paid back in t+ ∆ ∈ T and the amount to be paid
is given by

NLL
B (t+ ∆) := x · P (t, t+ ∆)−1,

with x > 0 being the amount borrowed at time t.

(d) Pledged assets remain on the bank’s balance sheet but are marked as
pledged until the funding has been paid back in t+ ∆. Pledged strategic
cover pool assets must be temporarily removed (deregistered) from the
cover pool but can be registered again once the funding has been paid
back.

(e) In case of a bank default, the provider of the liquidity line has a priority
claim on the pledged assets, including the cash inflows arising from these
assets at the time of default. In addition, he also has an unsecured claim
against the bank’s general insolvency estate.

(f) No funding is granted in Tmax.

The liquidity line as specified by Assumption 13 is similar to the funding
option in Liang et al [114], who assume that the bank can under certain
conditions overcome liquidity needs by entering into collateralized funding
activities with risky assets being pledged at a haircut to their present
value. This haircut is in line with secured funding practice and protects
the counterpart of the funding transaction from potential losses due to
uncertainties regarding the future realisable sale price of pledged assets
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caused by price volatility and potential liquidation discounts.12 As opposed
to Liang et al who define one fixed repayment date in the (potentially far)
future, namely the maturity of the bank’s long term debt, the funding in our
model is only granted for a short time period of length ∆. By assuming that
funding needs to be renewed in t+ ∆, we account for potential deteriorations
of collateral quality which may result in the necessity to post additional
collateral over time, and we also take into consideration the possibility of
liquidity line withdrawals.13 In addition, a periodic renewal of funding as in
our model leaves the bank with the flexibility to repay the borrowed amounts
once they are not needed any more. Following Liang et al [114] we further
assume that the provider of the collateralized funding has a priority claim on
the pledged assets. In our setup, this implies that, as long as the funding has
not been paid back, pledged strategic cover pool assets have to be removed
from the cover pool. This can be interpreted as a temporary reduction of
voluntary overcollateralization to ease funding pressure. In addition to the
priority claim on pledged assets, our liquidity provider also has an unsecured
claim against the general insolvency estate. In Liang et al’s paper this claim
is of zero value due to their zero recovery assumption. As the simulation
stops in Tmax, no more funding is available at that time.

Figure 4.3 illustrates how funding activities change the composition of the
bank’s balance sheet. For risky assets, funding activities result in a distinction
of pledged and unpledged assets. On the liabilitiy side, an additional position
appears: the bank’s liquidity line.

In the context of asset pledging we introduce some more notation.

Time-t nominal of pledged and non-pledged assets The nominals of
pledged assets at time t, t ∈ T , which stem from collateralized funding
activities at time t−∆, are denoted by

NCPS
i,PL (t), NOA

j,PL(t),

12The realisable sale price becomes important once the bank is not able any more to repay
the borrowed amount, leaving the funding provider with the liquidation proceeds of
the pledged assets.

13If the bank’s economic situation (represented by the present value of assets available
for pledging in this case) deteriorates, the provider of the liquidity line might not be
willing any more to prolong the funding.
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Figure 4.3: Balance sheet before and after bank funding activities.

for i = 1, ..., nCPS and j = 1, ..., nOA, and the corresponding nominals
of non-pledged assets are given by

NCPS
i,NPL(t), NOA

j,NPL(t),

with Nx
k,PL(t)+Nx

k,NPL(t) = Nx
k (t), x ∈ {CPS,OA} and k = 1, ..., nx.

Furthermore, we set

Nx
y (t) :=

nx∑
i=1

Nx
i,y(t), y ∈ {PL,NPL} .

For t ∈ T , t > t0, all these nominals are Ft−∆-measurable.

In the following, we assume that the bank’s liquidity line has not been drawn
prior to time t0.

Assumption 14 (The bank’s liquidity line in t0)
At time t0, it holds that

NLL
B (t0) = NCPS

i,PL (t0) = NOA
j,PL(t0) = NCPS

PL (t0) = NOA
PL (t0) = 0.
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Furthermore, Nx
i,NPL(t0) = Nx

i (t0) and Nx
NPL(t0) = Nx(t0) for i = 1, ..., nx

and x ∈ {CPS,OA}.

The higher the asset present values and the lower the haircuts, the more
funding can be raised. In the special case of strategic cover pool assets,
the maximum amount of funding obtainable also depends on the extent to
which cover requirements are fulfilled. If one of the cover requirements is
already breached when funding needs to be raised, no funding from pledging
strategic cover pool assets is available at all.

Observation 4.22 (Maximum bank funding)
Under the assumption that asset pledging within each of the two asset classes
is done pro rata, the maximum amount of funding available to the bank at
time t ∈ T is given by

Lmax
B (t) := Lmax

OA (t) + Lmax
CPS(t) · zCPSB (t),

with

Lmax
x (t) :=

{
(1− hxPL) · Ṽ x(t), if t < Tmax, t ≤ τ,
0, otherwise,

and
Ṽ x(t) :=

∑
i∈Nx,Txi >t

Nx
i (t) · V xi,U (t),

for x ∈ {CPS,OA}. Furthermore, the fraction zCPSB (t) is defined by

zCPSB (t) := sup {z ∈ [0, 1] | (4.21)− (4.23) hold}

where sup ∅ := 0 and

ÑCPS(t) · (1− z) ≥ ÑPB(t), (4.21)

Ṽ CPS∗y (t) · (1− z) ≥ 1.02 · Ṽ PB∗y (t), y ∈ {b, u, d} , (4.22)

FCPScum (t, s) · (1− z) ≥ FPBcum(t, s), ∀s ∈ T PBCPS , t < s ≤ t+ 0.5. (4.23)

By definition, Lmax
OA (t) corresponds to the maximum amount of funding which

can be raised by pledging other assets at a haircut hOAPL to their present
value. Under the assumption that strategic cover pool assets can be pledged
without restrictions, Lmax

CPS(t) is the maximum amount of funding obtainable
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by pledging these assets at a haircut hCPSPL . As the cover requirements
(C1)–(C3) also need to be fulfilled after strategic cover pool assets have been
pledged and (4.21)–(4.23) represent the corresponding cover requirements
post asset pledging, zCPSB (t) is per definition the maximum fraction of
strategic cover pool assets which can be removed from the cover pool without
breaching one of the cover requirements. In line with Assumptions 11 and
13, cash flows realized at time t are not considered in the calculations.

4.4.3 Cover Pool Funding

Once the bank has defaulted, the cover pool administrator becomes respon-
sible for making contractual payments to Pfandbrief holders. Under this
scenario, a cover pool funding need arises when cover pool cash inflows are
not sufficient to make contractual payments.

Definition 4.23 (Cover pool funding need)
The cover pool’s funding need at time t ∈ T is given by

GCP (t) :=

{
max(0;FLP (t)− F̃AP (t)), if t < Tmax, τ ≤ t ≤ τ∗,
0, otherwise,

with

FLP (t) := FPB(t) +NLL
P (t),

F̃AP (t) := F̃CPSNPL(t) +NCPL(t),

FPB(t) :=
∑

k∈NPB ,TPBk =t

NPB
k (t),

F̃CPSNPL(t) :=

nCPS∑
i=1

NCPS
i,NPL(t) · F̃CPSi,U (t).

According to the above definition, only non-pledged strategic cover pool
assets are considered when determining the cover pool’s cash inflows F̃AP (t).
This accounts for the fact that, at the time τ of bank default, pledged strategic
cover pool assets cannot be separated at the benefit of the Pfandbrief holder,
cf. Assumption 13. At later times t > τ , there are no more pledged assets,
i.e. F̃CPSNPL(t) = F̃CPS(t). As in the bank’s case, we set GCP (Tmax) = 0.
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The cover pool administrator has several options to raise funding when
needed, cf. Section 2.1. He can enter into refinancing activities or sell cover
pool assets for this purpose. In the following, we assume that there is a
liquidity line as in the bank’s case, but the conditions under which the
funding is granted are different.

Assumption 15 (The cover pool’s liquidity line)
At time t ∈ T , τ ≤ t ≤ τ∗, the cover pool administrator can obtain funding
from a liquidity line under the following conditions:

• Funding is only granted if the nominal cover, the excess cover and the
excess cover under stress are still fulfilled after the additional liability
from the liquidity line is added to the balance sheet.

• The funding has to be paid back in t+ ∆ ∈ T and the amount to be
repaid is given by

NLL
P (t+ ∆) := x · P (t, t+ ∆)−1,

with x > 0 being the amount borrowed at time t.

• In case of a of cover pool default, the liquidity line provider’s claim
on the cover pool ranks pari passu with the one of Pfandbrief holders.

• No funding is granted in Tmax.

As opposed to the bank’s case, there is no asset pledging now. The only
assets available to the cover pool administrator are cover pool assets and
using these assets as collateral would explicitly shift the priority claim from
the Pfandbrief holders to the provider of the liquidity line, which is against
the legal provisions. Instead, we assume that funding can be obtained as long
as the legal cover requirements (C1) and (C2) are fulfilled after the claim
of the liquidity line has been added to the liability side. The assumption
that the cover pool’s liquidity line ranks pari passu with the creditors of
outstanding Pfandbriefe is motivated by the argument that it would be
rather unlikely to find someone willing to lend money to a cover pool under
funding pressure if the associated claim was subordinate.

Figure 4.4 illustrates how cover pool funding activities change the composi-
tion of the balance sheet. While the asset side remains unchanged, a new
position appears on the liability side: the cover pool’s liquidity line.
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Figure 4.4: Balance sheet before and after cover pool funding activities.

In the following, we assume that no funding has been raised by the cover
pool administrator prior to the time of bank default.

Assumption 16 (Cover pool liquidity line prior to bank default)
At time t ∈ T , t ≤ τ , it holds that NLL

P (t) = 0.

The maximum amount of funding available to the cover pool administrator
depends on the extent to which the cover requirements (C1) and (C2) are
fulfilled. If one of these requirements is already breached when the funding
need arises, no funding can be obtained.

Observation 4.24 (Maximum cover pool funding)
The maximum amount of funding available to the cover pool administrator
at time t ∈ T is given by

Lmax
P (t) :=

{
sup

{
z ∈ R+

0 | (4.24)&(4.25) hold
}
, if t < Tmax, τ ≤ t ≤ τ∗,

0, otherwise,

where sup ∅ := 0 and

ÑCPS
NPL(t) ≥ ÑPB(t) +NLL

z (t), (4.24)

Ṽ CPS∗y,NPL(t) ≥ 1.02 · Ṽ x∗y(t), y ∈ {b, u, d} , (4.25)
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with

NLL
z (t) := z · P (t, t+ ∆)−1,

ÑCPS
NPL(t) :=

∑
i∈NCPS ,TCPSi >t

NCPS
i,NPL(t),

Ṽ CPS∗y,NPL(t) :=
∑

s∈TCPS ,s>t
FCPSt,NPL(s) · d∗y(t, s),

FCPSt,NPL(s) :=
∑

i∈NCPS ,TCPSi =s

NCPS
i,NPL(t),

Ṽ x∗y(t) := Ṽ PB∗y (t) +NLL
z (t) · d∗y (t, t+ ∆) .

As the cover requirements (C1) and (C2) still need to be fulfilled post
funding and (4.24) and (4.25) represent the corresponding cover requirements
when the additional claim from the liquidity line is added, Lmax

P (t) is per
definition the maximum amount of funding which can be raised. In line
with Assumption 11, cash flows realized at time t are not accounted for. As
compared to the bank’s case, we now only consider non-pledged strategic
cover pool assets when calculating the cover requirements post funding.

4.5 Specification of Default Events and
Liquidation Payments

In this section we specify the events of bank and cover pool default (Sections
4.5.1 and 4.5.2) and derive the associated liquidation payments (Section
4.5.3). We do so by distinguishing two different default triggering events:
overindebtedness and illiquidity. While overindebtedness is caused by a
deterioration of asset quality, illiquidity stems from the inability to raise
enough funding to fulfil payment obligations. Both default events are
influenced by the market environment and our liquidation payments take
into consideration the Pfandbrief-specific priority of payments. The default
modelling requirements from Table 2.2 are therefore fulfilled.
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4.5.1 Bank Default

As outlined in Section 3.2, the majority of structural credit risk models
assume that default is triggered once the bank’s asset value falls below a
given barrier, which can be interpreted as some kind of overindebtedness.
Based on our previous discussions we define bank overindebtedness as follows.

Definition 4.25 (Bank overindebtedness)
The bank is said to be overindebted at time t ∈ T , t ≤ τ , if

V OB (t) < BOB (t), (OB)

with

V OB (t) := V CPS(t) + V OA(t) +NCPL(t),

BOB (t) := BOPB(t) +BOOL(t) +NLL
B (t),

V x(t) :=

nx∑
i=1

Nx
i (t) · V xi,U (t), x ∈ {CPS,OA} ,

BOy (t) :=

ny∑
i=1

Ny
i (t) · fO(t, T yi ) · d(t, T yi ), y ∈ {PB,OL} ,

and

fO(t, s) :=


MST , if t ≤ s ≤ t+ TST ,

MLT , if s ≥ t+ TLT ,

MST + (s− t− TST ) · MLT−MST

TLT−TST , if t+ TST < s < t+ TLT ,

0, otherwise,

d(t, T yi ) :=

{
P (t, T yi ), if t ≤ T yi ,
0, otherwise,

where 0 ≤MLT ≤MST ≤ 1 and 0 ≤ TST < TLT .

The barrier BOB (t) accounts for the bank’s outstanding debt at time t and
includes debt repayments due at that time. As in the barrier in Equation
(3.2), future debt repayments are discounted back to time t. In addition,
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the contribution of future payments further depends on their actual timing,
which is inspired by the default barrier used in Moody’s KMV, see Equation
(3.3). While we account for short term payments in the next TST years with
a factor MST , long-term payments due in TLT years or later are multiplied
by a factor MLT ≤MST . To avoid artificial jumps in the barrier, we use a
linear interpolation for mid-term payments between TST and TLT years.

The choice of the barrier BOB (t) is a very central assumption. Its specification
is not straightforward and can have a large impact on model results. As we
will see in Section 6.3 below, simulation results obtained from an exemplary
model calibration indicate that the risk of an underestimation of bank default
probabilities due to a wrong barrier specification is mitigated when illiquidity
is also considered as default reason.

Assumption 17 (Bank overindebtedness in t0)
The bank is not overindebted at time t0.

Following Liang et al [114], we also consider illiquidity to be a potential
default reason, in addition to overindebtedness.

Definition 4.26 (Bank illiquidity)
The bank is said to be illiquid at time t ∈ T , t ≤ τ , if

V OB (t) ≥ BOB (t) and GCB(t) > Lmax
B (t). (IB)

According to the above definition, the bank is illiquid if it is not overindebted
but its funding need GCB(t) is bigger than the maximum amount of funding
LmaxB (t) obtainable. As GCB(Tmax) = 0 by definition, the bank cannot be
illiquid in Tmax. Due to Assumptions 1, 12 and 14, it is also not illiquid in t0
as GCB(t0) = max(0;FLB (t0) + CR(t0)− F̃AB (t0)) = max(0;−NCPL(t0)) = 0.

In the following, we assume that bank default occurs once the exogenously
given solvency barrier is hit or the current liquidity need cannot be overcome
by raising additional funding.
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Assumption 18 (Bank default)
The time τ of bank default is given by

τ := inf {t ∈ T | (OB) or (IB) holds} ,

with inf ∅ := ∞ and τ =∞ being interpreted as no bank default occurring
until time Tmax.

As (OB) and (IB) cannot hold at the same time, there is always a well-defined
reason for bank default, see Figure 4.5 below. Note that our distinction of
bank default scenarios corresponds to the one in Liang et al’s special case
where t is a rollover date and equals the first time of a bank run (cases 4, 5
and 6 in Figure 3.7).14

Figure 4.5: Bank default reasons at time t ≤ τ .

Regarding the consequences of bank default, we make the following assump-
tion:

14In the description of the model by Liang et al, ‘solvent’ corresponds to what we refer
to as ‘not overindebted’.
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Assumption 19 (Consequences of bank default)
The consequences of a bank default at time τ ∈ T are as follows:

(a) The fate of the cover pool and outstanding Pfandbriefe depends on
whether or not the cover pool survives the event of bank default. In
case it survives, a standalone cover pool under the administration of
a cover pool administrator is created and outstanding Pfandbriefe are
serviced according to their contractual terms. Otherwise, Assumption 21
(consequences of cover pool default) below applies.

(b) All outstanding other liabilities and the bank’s liquidity line (if applicable)
become due and payable immediately.

(c) The bank’s other assets and pledged strategic cover pool assets are liqui-
dated.

(d) The priority of payments is as follows:

• The creditors of other liabilities only have a claim against the
general insolvency estate, which primarily consists of the liquidation
proceeds of non-pledged other assets.

• The bank’s liquidity line has a priority claim on the liquidation
proceeds of pledged strategic cover pool assets and pledged other
assets and, if not sufficient, it also has a claim against the general
insolvency estate. Liquidation proceeds of pledged assets which are
not needed to repay the bank’s liquidity line are released to the
general insolvency estate.

• All claims against the general insolvency estate rank pari passu.

• Shareholders do not have a specific claim, they get whatever is left
after all other claims have been fully satisfied.

According to Assumption 19, a standalone cover pool under the administra-
tion of a cover pool administrator is created if the cover pool survives the
event of bank default. This is one out of three potential options allowed for
by the PfandBG, cf. Section 2.1, the other two being a cover pool transfer
to another Pfandbrief bank and the administration of the cover pool by a
cover pool administrator in a fiduciary capacity for another Pfandbrief bank.
In all three cases, outstanding Pfandbriefe are serviced according to their
contractual terms. As pointed out by Deutscher Bundestag [47], the most
reasonable choice in practice would probably be to transfer the whole cover
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pool to another Pfandbrief bank. For modelling purposes this assumption is,
however, not practicable as it needs strong additional assumptions regarding
the composition of the resulting merged cover pool. In the following, we
therefore assume that a standalone cover pool is created. The assumptions
in (b)–(d) are also a reasonable approximation of the consequences of a bank
default in practice: According to Koppmann, pp. 319–330, bank default
triggers the bank’s non-cover pool assets to be liquidated and the bank’s debt
(except for Pfandbriefe) to become due and payable immediately, irrespective
of their contractual maturities. In our setup, the non-cover pool assets to be
liquidated correspond to the bank’s other assets and the pledged strategic
cover pool assets. The priority of payments as specified by Assumption 19 is
as in Merton [124], except for the ranking of the bank’s liquidity line which is
a consequence of our specific assumptions in the context of funding. It differs
from the assumption made by Sünderhauf [148] who assumes that Pfandbrief
holders also have a priority claim on the bank’s other assets, while creditors
of other liabilities only receive money once Pfandbrief holders have been
fully repaid. As discussed in Section 3.3.2.1, Sünderhauf’s approximation is
not fully in line with the true Pfandbrief mechanics, but it is necessary as a
dynamic reestablishment of cover requirements cannot be modelled in his
one-period setup.

Figure 4.6 shows how the balance sheet changes upon bank default in case
of a cover pool survival. Other assets and pledged strategic cover pool assets
are liquidated and disappear, but non-pledged cover pool assets remain on
the balance sheet. Other liabilities, the bank’s liquidity line (if relevant)
and the bank’s equity also disappear as they are repaid as far as possible.
Instead, new balance sheet positions are created: a cover pool liquidity line
(if relevant) and subordinate residual claims. The latter can be raised again
once all outstanding Pfandbriefe and the cover pool’s liquidity line have
been fully repaid.

4.5.2 Cover Pool Default

The bank is responsible for maintaining cover requirements and making
contractual payments as long as it has not defaulted. Cover pool default
therefore only becomes relevant upon bank default. As opposed to other
covered bond frameworks, the PfandBG does not specify concrete default
triggering events for the cover pool, cf. Section 2.1. This is why, in the
following, we define cover pool default in a similar way to bank default.
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Figure 4.6: Balance sheet changes upon bank default in case the cover pool
survives.

Definition 4.27 (Cover pool overindebtedness)
The cover pool is said to be overindebted at time t ∈ T , τ ≤ t ≤ τ∗, if

V OP (t) < BOP (t), (OP)

with

V OP (t) := V CPSNPL (t) +NCPL(t),

BOP (t) := BOPB(t) +NLL
P (t),

V CPSNPL (t) :=

nCPS∑
i=1

NCPS
i,NPL(t) · V CPSi,U (t),

and BOPB(t) as in Definition 4.25.

The criterion for cover pool overindebtedness as defined in (OP) compares
the value V OP (t) of non-pledged cover pool assets to the exogenously given
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solvency barrier BOP (t), which accounts for outstanding Pfandbrief nominals
at time t and includes Pfandbrief repayments due at that time. Liquidity
line repayments NLL

P (t) are also considered. Again, future repayments are
discounted back to time t and the contribution of future payments further
depends on their actual timing through TST , TLT , MST and MLT . When
comparing the criteria for bank and cover pool overindebtedness in (OB) and
(OP), one finds that bank overindebtedness does not necessarily trigger cover
pool overindebtedness or the other way round. While bank overindebtedness
could be caused by a sole decline in the value of the bank’s other assets,
cover pool overindebtedness does not necessarily imply that the bank is also
overindebted as the present value of its other assets may still be sufficiently
high.

As in the bank’s case, the cover pool is considered to be illiquid if it is not
overindebted and its funding need is bigger than the maximum amount of
funding which can be obtained.

Definition 4.28 (Cover pool illiquidity)
The cover pool is said to be illiquid at time t ∈ T , τ ≤ t ≤ τ∗, if

V OP (t) ≥ BOP (t) and GCP (t) > Lmax
P (t). (IP)

The specification of the event of cover pool default is now straightforward.

Assumption 20 (Cover pool default)
The time τ∗ of cover pool default is given by

τ∗ := inf {t ∈ T , t ≥ τ | (OP) or (IP) holds} ,

with inf ∅ := ∞ and τ∗ = ∞ being interpreted as no cover pool default
occurring until time Tmax.

As (OP) and (IP) cannot hold at the same time, there is always a well-defined
reason for cover pool default, see Figure 4.7.
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Figure 4.7: Cover pool default reasons at time t ≤ τ∗.

Regarding the consequences of cover pool default, we make the following
assumption:

Assumption 21 (Consequences of cover pool default)
The consequences of cover pool default at time τ∗ ∈ T are as follows:

(a) All outstanding Pfandbriefe and the cover pool’s liquidity line (if appli-
cable) become due and payable immediately.

(b) All non-pledged cover pool assets are liquidated.

(c) The priority of payments is as follows:

• Pfandbrief holders and the cover pool’s liquidity line have a priority
claim on the liquidation proceeds of non-pledged cover pool assets.
Their claims all rank pari passu. If the liquidation proceeds of
non-pledged cover pool assets are not sufficient, these creditors also
have a claim against the general insolvency estate but only in case
of a simultaneous bank default. Liquidation proceeds of non-pledged
cover pool assets which are not needed to repay these creditors are
released to the general insolvency estate.
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• In case the bank had already defaulted at some previous time τ < τ∗,
the residual claims of other liabilities and the bank’s liquidity line
which could not be satisfied during the insolvency proceedings at
time τ can be raised again but only against the general insolvency
estate.

• All claims against the general insolvency estate rank pari passu.

• Shareholders do not have a specific claim, they get whatever is left
after all other claims (including residual claims) have been fully
satisfied.

Assumption 21 is a reasonable approximation of what could happen in
practice in case of a cover pool default. According to Koppmann [102], pp.
350–360, cover pool default triggers the cover pool to be liquidated and all
outstanding Pfandbriefe to become due and payable immediately, irrespective
of their contractual maturities. In our setup, the assets which remain in the
cover pool at the time of cover pool default correspond to the non-pledged
cover pool assets. The assumption that liquidation proceeds which are not
needed to satisfy the priority claim of Pfandbrief holders are released to
the bank’s general insolvency estate is derived from the PfandBG.15 The
priority of payments as specified by Assumption 21 reflects the Pfandbrief’s
dual nature of protection, i.e. the priority claim on cover pool liquidation
proceeds and the additional unsecured claim against the general insolvency
estate. According to Assumption 21, this unsecured claim can only be raised
if the bank and the cover pool default at the same time. This is motivated
by the argument that in practice it might be hard to enforce such a claim if
bank and cover pool insolvency proceedings take place at different points
in time.16 The ranking of the cover pool’s liquidity line is a consequence of
Assumption 15.

Before we start with the specification of the liquidation payments, we in-
troduce some more notation which will be needed to distinguish the nine
Pfandbrief scenarios as described in Section 4.1 above. With the help of
these scenarios, we are able to incorporate all required modelling features

15The PfandBG [157], § 30, par. 4, sent. 2, states that “[a]ssets remaining after the
Pfandbrief creditors are satisfied [...] must be surrendered to the insolvent estate”.

16In their recovery analysis, Fitch completely ignores the Pfandbrief holder’s recourse to
the general insolvency estate by referring to the potential impracticality to enforce
such a claim if the bank and the cover pool insolvency proceeding do not start at the
same time, cf. Muños and Mezza [129].
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as found in Section 2.3 into our model, especially the Pfandbrief mechanics
and potential asset liability management activities.

Pfandbrief scenario at time t The Pfandbrief scenario at time t is de-
noted by

S(t) :=



1, if t < τ ≤ τ∗ and t < Tmax,

2, if t = τ < τ∗ and t < Tmax,

3, if t = τ = τ∗ and t < Tmax,

4, if τ < t < τ∗ and t < Tmax,

5, if τ < t = τ∗ and t < Tmax,

6, if τ ≤ τ∗ < t and t < Tmax,

7, if t ≤ τ ≤ τ∗ and t = Tmax,

8, if τ < t ≤ τ∗ and t = Tmax,

9, if τ ≤ τ∗ < t and t = Tmax.

Obviously, ∪i=1,...,9 {S(t) = i} = Ω and {S(t) = i} ∩ {S(t) = j} = ∅ for
i 6= j, i, j = 1, ..., 9.

4.5.3 Liquidation Payments

Having defined the events of bank and cover pool default, we now specify the
liquidation payments made to creditors at time t ∈ {τ, τ∗, Tmax}, τ, τ∗ ∈ T .
These payments depend on the realized liquidation proceeds, the creditors’
claims and the priority of payments. We distinguish forced asset liquidations
triggered by an event of default at some time prior to Tmax from planned
asset liquidations in Tmax, which arise irrespective of an event of default.
Regarding the prices at which assets can be liquidated, we make the following
assumption:

Assumption 22 (Liquidation haircuts)
With respect to asset liquidations, the following holds:

(a) In case of a forced asset liquidation due to an event of bank or cover
pool default at time t ∈ T , t < Tmax, risky assets can only be liquidated
at a haircut to their present value. This haircut is hOALI ∈ [0, 1] for other
assets and hCPSLI ∈ [0, 1] for strategic cover pool assets. No liquidation
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haircut applies for liquid cover pool assets and realized time-t asset cash
inflows.

(b) In case of a planned asset liquidation in Tmax, all asset can be sold at
their full present value.

The assumption that asset sales which are triggered by an event of bank or
cover pool default at some time prior to Tmax are only possible at a haircut
to the assets’ present value is in line with our previous discussions in Section
3.3.1. If assets need to be sold on short notice this may not be possible at or
close to their present value, especially in times of market distress. As liquid
cover pool assets and realized time-t asset cash inflows already constitute
risk-free cash positions, no liquidation haircuts apply in their case. Assuming
a liquidation haircut of zero in Tmax is motivated by the argument that
planned asset liquidations do not come as a surprise, meaning that there is
sufficient time for the bank or the cover pool administrator to prepare these
asset sales.

Observation 4.29 (Asset liquidation proceeds)
At time t ∈ T , the proceeds from asset liquidation are given by

LV OAPL (t) :=


(
1− hOALI

)
· Ṽ OAPL (t) + F̃OAPL (t), if S(t) ∈ {2, 3} ,

V OAPL (t), if S(t) = 7,

0, otherwise,

LV OANPL(t) :=


(
1− hOALI

)
· Ṽ OANPL(t) + F̃OANPL(t), if S(t) ∈ {2, 3} ,

V OANPL(t), if S(t) = 7,

0, otherwise,

LV CPPL (t) :=


(
1− hCPSLI

)
· Ṽ CPSPL (t) + F̃CPSPL (t), if S(t) ∈ {2, 3} ,

V CPSPL (t), if S(t) = 7,

0, otherwise,

LV CPNPL(t) :=


(
1− hCPSLI

)
· Ṽ CPSNPL (t)

+F̃CPSNPL(t) +NCPL(t), if S(t) ∈ {3, 5} ,
V CPSNPL (t) +NCPL(t), if S(t) ∈ {7, 8} ,
0, otherwise,
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with Ṽ xy (t) :=
∑
i∈Nx,Txi >t

Nx
i,y(t) ·V xi,u(t) and F̃ xy (t) :=

∑nx
i=1N

x
i,y(t) · F̃ xi,u(t)

for x ∈ {CPS,OA} and y ∈ {PL,NPL}. The bank’s total liquidation
proceeds are given by

LV (t) := LV OA(t) + LV CP (t),

where LV z(t) := LV zPL(t) + LV zNPL(t), z ∈ {OA,CP}.

Proof. The statement is a consequence of Assumptions 3, 19, 21 and 22 and
takes into consideration that positions in pledged assets are 0 in t > τ , cf.
Assumptions 13, 15 and 19.

The literature distinguishes three different ways of measuring recovery pay-
ments in case of default, see Lando [108], pp. 120–122: recovery of face value,
recovery of treasury value and recovery of market value. The recovery of face
value assumes that debt of the same priority is assigned a fractional recovery
based on the outstanding nominal, ignoring different maturities and coupons.
According to Lando, this is the closest to legal practice out of the three
measures, and it is the measure typically used by rating agencies. Under
the recovery of treasury value assumption, the defaulted bond is replaced
by a risk-free bond with the same maturity but with a reduced nominal,
which is better in line with the economic perspective that nominals of bonds
with longer maturities should be discounted more than those of bonds with
shorter maturities. The recovery of market value measures the change in
market value at the time of default, i.e. the market value loss associated with
the default event, which has an economic meaning. For zero coupon bonds
which can only default at maturity (i.e. the risky assets in our model) all
concepts coincide. Pfandbriefe and other liabilities, on the other hand, can
also default prior to maturity in our model. In the following, we consider
nominal repayments to these liabilities to be due at maturity rather than at
the time of default (similar to the recovery of treasury value assumption) and
calculate the corresponding claims by discounting the outstanding nominals
back to the time of default. For the liquidity lines, there is no need for
discounting as the corresponding payments are due at the time of default.
In case of planned asset liquidations in Tmax, the same concept as for forced
asset liquidation applies.
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Assumption 23 (Liquidation claims)
At time t ∈ T , the creditors’ liquidation claims are given by

CPBk (t) :=

{
NPB
k (t) · d(t, TPBk ), if S(t) ∈ {3, 5, 7, 8} ,

0, otherwise,

COLl (t) :=


NOL
l (t) · d(t, TOLl ), if S(t) ∈ {2, 3, 7} ,

RCOLl (τ), if S(t) ∈ {5, 8} ,
0, otherwise,

CLLB (t) :=


NLL
B (t), if S(t) ∈ {2, 3, 7} ,

RCLLB (τ), if S(t) ∈ {5, 8} ,
0, otherwise,

CLLP (t) :=

{
NLL
P (t), if S(t) ∈ {5, 8} ,

0, otherwise,

for k = 1, ..., nPB and l = 1, ..., nOL, where d(t, T ) is as in Definition 4.25.
For S(t) ∈ {5, 8}, the residual claims from an earlier bank default at time
τ < min(τ∗, Tmax) are

RCOLl (τ) := max(0;COLl (τ)− F̂OLl (τ)),

RCLLB (τ) := max(0;CLLB (τ)− F̂LLB (τ)),

with F̂OLl (τ) and F̂LLB (τ) being the realized liquidation payments from the
time τ < min(τ∗, Tmax) of bank default as in Observation 4.30 below. The
total claims of Pfandbrief holders and creditors of other liabilities are given
by

CPB(t) :=

nPB∑
k=1

CPBk (t) and COL(t) :=

nOL∑
l=1

COLl (t).

Equity does not have a specific claim but gets the remainder after all other
liabilities have been repaid.

Regarding the priority of payments in Tmax, we make the following assump-
tion:
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Assumption 24 (Priority of payments in Tmax)
At time Tmax, the priority of payments is as follows:

• If the bank has not defaulted prior to time Tmax, the creditors of other
liabilities have a claim against the general liquidation estate, which
primarily consists of the liquidation proceeds of non-pledged other
assets. Furthermore, the bank’s liquidity line has a priority claim on
the liquidation proceeds of pledged assets and, if not sufficient, it also
has a claim against the general liquidation estate. Liquidation proceeds
of pledged assets which are not needed to repay the bank’s liquidity line
are released to the general liquidation estate.

• If the cover pool has not defaulted prior to time Tmax, Pfandbrief
holders and the cover pool’s liquidity line have a priority claim on
the liquidation proceeds of non-pledged cover pool assets, and their
claims all rank pari passu. If the liquidation proceeds of non-pledged
cover pool assets are not sufficient to satisfy these claims, Pfandbrief
holders and the cover pool’s liquidity line also have a claim against the
general liquidation estate. Liquidation proceeds of non-pledged cover
pool assets which are not needed to repay these creditors are released
to the general liquidation estate.

• If the bank has already defaulted at some time τ < Tmax but the cover
pool has not, the residual claims of other liabilities and the bank’s
liquidity line which could not be satisfied during the bank’s insolvency
proceedings can be raised again but only against the general liquidation
estate.

• All claims against the general liquidation estate rank pari passu.

• Shareholders do not have a specific claim, they get whatever is left
after all other claims (including residual claims from an earlier time
τ < Tmax of bank default) have been fully satisfied.

In case the bank has not defaulted prior to Tmax, the priority of payments
as specified above corresponds to the one in case of a simultaneous bank and
cover pool default, cf. Assumptions 19 and 21. Similarly, if the bank has
defaulted prior to Tmax but the cover pool has not, the priority of payments
is the same as in the case of a standalone cover pool default at some time
t > τ .
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Having specified the realized liquidation proceeds, the creditors’ claims
and the priority of payments in case of a liquidation event, the liquidation
payments to creditors can now be derived as follows.

Observation 4.30 (Liquidation payments)
At time t ∈ T , the liquidation payments to creditors are given by

F̂PB(t) := min
(
CPB(t); kCPPB(t) · LV CPNPL(t) + kGPB(t) · LV IE(t)

)
,

F̂OL(t) := min
(
COL(t); kGOL(t) · LV IE(t)

)
,

F̂LLB (t) := min
(
CLLB (t); kPALB (t) · LV APL(t) + kGLB(t) · LV IE(t)

)
,

F̂LLP (t) := min
(
CLLP (t); kCPLP (t) · LV CPNPL(t) + kGLP (t) · LV IE(t)

)
,

F̂EQ(t) := max
(
0;LV (t)− CPB(t)− COL(t)− CLLB (t)− CLLP (t)

)
,

with LV APL(t) := LV OAPL (t) + LV CPPL (t) and

kCPPB(t) :=

{
CPB(t)

CPB(t)+CLLP (t)
, if CPB(t) + CLLP (t) > 0,

0, otherwise,

kCPLP (t) :=

{
CLLP (t)

CPB(t)+CLLP (t)
, if CPB(t) + CLLP (t) > 0,

0, otherwise,

kPALB (t) :=

{
1, if CLLB (t) > 0,

0, otherwise,

kGPB(t) :=

{
GPB(t)
CIE(t)

, if CIE(t) > 0,

0, otherwise,

kGOL(t) :=

{
COL(t)
CIE(t)

, if CIE(t) > 0,

0, otherwise,

kGLB(t) :=

{
GLLB (t)
CIE(t)

, if CIE(t) > 0,

0, otherwise,

kGLP (t) :=

{
GLLP (t)
CIE(t)

, if CIE(t) > 0,

0, otherwise,
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where

LV IE(t) := LV OANPL(t) + EPA(t) + ECP (t),

EPA(t) := max
(
0;LV OAPL (t) + LV CPPL (t)− CLLB (t)

)
,

ECP (t) := max
(
0;LV CPNPL(t)− CPB(t)− CLLP (t)

)
,

CIE(t) := COL(t) +GPB(t) +GLLB (t) +GLLP (t),

GLLB (t) := max
(
0;CLLB (t)− kPALB (t) · LV APL(t)

)
,

GPB(t) := max
(
0;CPB(t)− kCPPB(t) · LV CPNPL(t)

)
,

GLLP (t) := max
(
0;CLLP (t)− kCPLP (t) · LV CPNPL(t)

)
.

For single Pfandbriefe and other liabilities, the liquidation payments are
given by

F̂PBk (t) :=

{
F̂PB(t)
CPB(t)

· CPBk (t), if CPB(t) > 0,

0, otherwise,

F̂OLl (t) :=

{
F̂OL(t)
COL(t)

· COLl (t), if COL(t) > 0,

0, otherwise,

for k = 1, ..., nPB and l = 1, ..., nOL.

Proof. According to the above definitions of F̂PB(t), F̂OL(t), F̂LLB (t), F̂LLP (t)

and F̂EQ(t), non-zero liquidation payments only arise in case of non-zero
claims, i.e. for S(t) ∈ {2, 3, 5, 7, 8}. The statement then follows from the
priority of payments a specified by Assumptions 19, 21 and 24: Pfandbrief
holders and the cover pool’s liquidity line have a priority claim on the
liquidation proceeds of non-pledged cover pool assets LV CPSNPL (t) and the
bank’s liquidity line has a priority claim on the liquidation proceeds of pledged
assets LV CPSPL (t) and LV OAPL (t). Liquidation proceeds of non-pledged other
assets LV OANPL(t) and liquidation proceeds which are not needed to satisfy
the priority claims, i.e. ECP (t) and EPA(t), belong to the general insolvency
estate LV IE(t). Furthermore, the fractions kCPPB(t) and kCPLP (t) represent
the priority claim of Pfandbrief holders and the cover pool’s liquidity line on
the cover pool and kPALB (t) reflects the priority claim of the bank’s liquidity
line on the pledged assets. The fractions kGPB(t), kGOL(t), kGLB(t) and kGLP (t),
on the other hand, represent the unsecured claims of Pfandbrief holders, the
creditors of other liabilities, the bank’s liquidity line and the cover pool’s
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liquidity line against LV IE(t). The formulas for single Pfandbriefe and other
liabilities follow from the fact that, within each of the two liability classes,
claims rank pari passu.

Remark 4.31 (Liquidation payment to the cover pool’s liquidity
line)
At time t ∈ T , the liquidation payment to the cover pool’s liquidity line can
be written as

F̂LLP (t) = min
(
CLLP (t); kCPLP (t) · LV CPNPL(t)

)
.

Proof. It is sufficient to show that kGLP (t) · LV IE(t) is always 0. In the case
where S(t) /∈ {5, 8} we have CLLP (t) = 0 and therefore kGLP (t) = 0. For
S(t) ∈ {5, 8} we distinguish two sub cases: GLLP (t) = 0 and GLLP (t) > 0. If
GLLP (t) = 0 we get kGLP (t) = 0. For GLLP (t) > 0 we have

CLLP (t) > kCPLP (t) · LV CPNPL(t) =
CLLP (t)

CPB(t) + CLLP (t)
· LV CPNPL(t),

which implies
CPB(t) + CLLP (t) > LV CPNPL(t),

and with LV OA(t) = EPA(t) = 0 it follows that

LV IE(t) = ECP (t) = max
(
0;LV CPNPL(t)− CPB(t)− CLLP (t)

)
= 0.

The liquidation payments in Observation 4.30 always add up to the total
liquidation proceeds, i.e. the latter are well-specified:

Proposition 4.32 (Liquidation payments)
At time t ∈ T , it holds that

F̂PB(t) + F̂OL(t) + F̂LLB (t) + F̂LLP (t) + F̂EQ(t) = LV (t). (4.26)
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Proof. To prove the statement, we distinguish four cases:

Case 1: ECP (t) > 0 and EPA(t) > 0. In this case we have

GPB(t) = GLLP (t) = GLLB (t) = 0,

and with kGOL(t) = 1 and kGPB(t) = kGLB(t) = kGLP (t) = 0 we get

F̂PB(t) = min
(
CPB(t); kCPPB(t) · LV CPNPL(t)

)
= CPB(t),

F̂LLP (t) = min
(
CLPP (t); kCPLP (t) · LV CPNPL(t)

)
= CLLP (t),

F̂LLB (t) = min
(
CLLB (t); kPALB (t) ·

(
LV OAPL (t) + LV CPPL (t)

))
= CLLB (t).

Furthermore, it holds that

LV IE(t) = LV (t)− CPB(t)− CLLB (t)− CLLP (t),

and therefore

F̂OL(t) = min
(
COL(t);LV (t)− CPB(t)− CLLB (t)− CLLP (t)

)
,

F̂EQ(t) = max
(
0;LV (t)− CPB(t)− COL(t)− CLLB (t)− CLLP (t)

)
.

Summation yields (4.26).

Case 2: ECP (t) > 0 and EPA(t) = 0. Here, we have

GPB(t) = GLLP (t) = 0,

and with kGPB(t) = kGLB(t) = 0 it follows that

F̂PB(t) = min
(
CPB(t); kCPPB(t) · LV CPNPL(t)

)
= CPB(t),

F̂LLP (t) = min
(
CLLP (t); kCPLP (t) · LV CPNPL(t)

)
= CLLP (t).

It also holds that

LV IE(t) = LV OANPL(t) + LV CPNPL(t)− CPB(t)− CLLP (t),

CIE(t) = COL(t) +GLLB (t).

We now distinguish two sub cases: For LV IE(t) < CIE(t), we get

F̂OL(t) = kGOL(t) · LV IE(t),
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F̂LLB (t) = kPALB (t) ·
(
LV OAPL (t) + LV CPPL (t)

)
+ kGLB(t) · LV IE(t),

F̂EQ(t) = 0,

and, with kGOL(t) + kGLB(t) = 1,

F̂OL(t) + F̂LLB (t) = LV IE(t) + kPALB (t) ·
(
LV OAPL (t) + LV CPPL (t)

)
,

= LV IE(t) + LV OAPL (t) + LV CPPL (t),

= LV (t)− CPB(t)− CLLP (t).

Note that the second equality holds because of kPALB (t) ∈ {0, 1}. For
kPALB (t) = 1 the statement is obvious and kPALB (t) = 0 implies CLLB (t) = 0,
which together with EPA(t) = 0 means that LV OAPL (t) = LV CPPL (t) = 0.

On the other hand, if LV IE(t) ≥ CIE(t) it follows that

F̂OL(t) = COL(t),

F̂LLB (t) = CLLB (t),

F̂EQ(t) = LV (t)− CPB(t)− COL(t)− CLLB (t)− CLLP (t).

In both cases summation yields (4.26).

Case 3: ECP (t) = 0 and EPA(t) > 0. In this case we have GLLB (t) = 0
and, with kGLB(t) = 0,

F̂LLB (t) = min
(
CLLB (t); kPALB (t) ·

(
LV OAPL (t) + LV CPPL (t)

))
= CLLB (t).

In addition,

LV IE(t) = LV OA(t) + LV CPPL (t)− CLLB (t),

CIE(t) = COL(t) +GPB(t) +GLLP (t).

For LV IE(t) < CIE(t) this results in

F̂PB(t) = kCPPB(t) · LV CPNPL(t) + kGPB(t) · LV IE(t),

F̂OL(t) = kGOL(t) · LV IE(t),

F̂LLP (t) = kCPLP (t) · LV CPNPL(t) + kGLP (t) · LV IE(t),

F̂EQ(t) = 0,
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and with kCPPB(t) + kCPLP (t) = 1 and kGPB(t) + kGOL(t) + kGLP (t) = 1 we get

F̂PB(t) + F̂OL(t) + F̂LLP (t) = LV CPNPL(t) + LV IE(t) = LV (t)− CLLB (t).

For LV IE(t) ≥ CIE(t), we have

F̂PB(t) = CPB(t),

F̂OL(t) = COL(t),

F̂LLP (t) = CLLP (t),

F̂EQ(t) = LV (t)− CPB(t)− COL(t)− CLLB (t)− CLLP (t).

Again, in both cases summation yields (4.26).

Case 4: ECP (t) = 0 and EPA(t) = 0. It then holds that

LV IE(t) = LV OANPL(t),

CIE(t) = COL(t) +GPB(t) +GLLB (t) +GLLP (t).

For LV IE(t) < CIE(t) it follows that

F̂PB(t) = kCPPB(t) · LV CPNPL(t) + kGPB(t) · LV IE(t),

F̂OL(t) = kGOL(t) · LV IE(t),

F̂LLB (t) = kPALB (t) ·
(
LV OAPL (t) + LV CPPL (t)

)
+ kGLB(t) · LV IE(t),

F̂LLP (t) = kCPLP (t) · LV CPNPL(t) + kGLP (t) · LV IE(t),

F̂EQ(t) = 0,

and with kCPPB(t) + kCPLL (t) = 1 and kGPB(t) + kGOL(t) + kGLB(t) + kGLP (t) = 1
this results in

F̂PB(t) + F̂OL(t) + F̂LLB (t) + F̂LLP (t)

= LV CPNPL(t) + LV IE(t) + kPALB (t) ·
(
LV OAPL (t) + LV CPPL (t)

)
= LV CPNPL(t) + LV IE(t) + LV OAPL (t) + LV CPPL (t)

= LV (t).

Again, the second equality holds because of kPALB (t) ∈ {0, 1}.
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On the other hand, if LV IE(t) ≥ CIE(t) we have

F̂PB(t) = CPB(t),

F̂OL(t) = COL(t),

F̂LLB (t) = CLLB (t),

F̂LLP (t) = CLLP (t),

F̂EQ(t) = LV (t)− CPB(t)− COL(t)− CLLB (t)− CLLP (t).

Summation then yields (4.26).

In case of overindebtedness, there is always a loss for the affected creditors.

Observation 4.33 (Default due to overindebtedness)
The followings holds in case of a default due to overindebtedness:

(a) If the bank is overindebted at time τ ∈ T , τ < τ∗, outstanding other
liabilities and the bank’s liquidity line (if drawn) incur a loss, i.e.

F̂OLl (τ) < COLl (τ) if COLl (τ) > 0, l = 1, ..., nOL,

F̂LLB (t) < CLLB (t) if CLLB (t) > 0.

(b) If the cover pool is overindebted at time τ∗ ∈ T , τ∗ > τ , outstanding
Pfandbriefe and the cover pool’s liquidity line (if drawn) incur a loss,
i.e.

F̂PBk (τ∗) < CPBk (τ∗) if CPBk (τ∗) > 0, k = 1, ..., nPB ,

F̂LLP (τ∗) < CLLP (τ∗) if CLLP (τ∗) > 0.

(c) If both the bank and the cover pool are overindebted at time τ̂ ∈ T with
τ̂ = τ = τ∗, outstanding Pfandbriefe and other liabilities as well as the
bank’s liquidity line (if drawn) incur a loss, i.e.

F̂PBk (τ̂) < CPBk (τ̂) if CPBk (τ̂) > 0, k = 1, ..., nPB ,

F̂OLl (τ̂) < COLl (τ̂) if COLl (τ̂) > 0, l = 1, ..., nOL,

F̂LLB (τ̂) < CLLB (τ̂) if CLLB (τ̂) > 0.
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The reverse statements are not true, i.e. it cannot be concluded that non-
overindebtedness implies that there are no losses to the corresponding
creditors. In case of a default due to illiquidity, liquidation proceeds might
still not be sufficient to repay the corresponding creditors if the liquidation
haircuts hOALI and hCPSLI are positive. In addition, the default barriers BOB (τ)
and BOP (τ∗) do not fully account for long term debt if MLT < 1.

Proof. (a) If the bank defaults due to overindebtedness at time τ ∈ T ,
τ < τ∗, it holds that

V CPSPL (τ) +V OA(τ) +V CPSNPL (τ) +NCPL(τ) < BOPB(τ) +BOOL(τ) +NLL
B (τ),

and as the cover pool does not default at the same time, we have

V CPSNPL (τ) +NCPL(τ) ≥ BOPB(τ).

It follows that

V CPSPL (τ) + V OA(τ) < BOOL(τ) +NLL
B (τ) +BOPB(τ)− V CPSNPL (τ)−NCPL(τ)︸ ︷︷ ︸

≤0

< BOOL(τ) +NLL
B (τ),

and, because of hCPSLI , hOALI ∈ [0, 1] and fO(t, s) ≤ 1 ∀s ≥ t, we get

LV CPPL (τ) + LV OA(τ) ≤ V CPSPL (τ) + V OA(τ)

< BOOL(τ) +NLL
B (τ)

≤ COL(τ) + CLLB (τ).

Furthermore, with

LV IE(τ) = LV OANPL(τ) + EPA(τ),

CIE(τ) = COL(τ) +GLLB (τ),

and

EPA(τ)−GLLB (τ) = LV OAPL (τ) + LV CPPL (τ)− CLLB (τ) (4.27)

it follows that

LV IE(τ)− CIE(τ) = LV OA(τ) + LV CPPL (τ)− COL(τ)− CLLB (τ) < 0.
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Note that (4.27) holds as kPALB (τ) ∈ {0, 1}. For kPALB (τ) = 1, the statement is
obvious. On the other hand, kPALB (τ) = 0 implies CLLB (τ) = GLLB (τ) = 0 and
therefore EPA(τ) = LV OAPL (τ) + LV CPPL (τ). As COL(τ) > 0, the liquidation
payments to creditors of other liabilities are given by

F̂OL(τ) = kGOL(τ) · LV IE(τ) < COL(τ),

and for CLLB (τ) > 0 we get

F̂LLB (τ) = LV OAPL (τ) + LV CPPL (τ) + kGLB(τ) · LV IE(τ) < CLLB (τ).

The statement with respect to single other liabilities follows from the defini-
tion of F̂OLl (t) for l = 1, ..., nOL.

(b) If the cover pool defaults due to overindebtedness at time τ∗ ∈ T ,
τ∗ > τ , it holds that

LV CPNPL(τ∗) ≤ V CPSNPL (τ∗) +NCPL(τ∗)

< BOPB(τ∗) +NLL
P (τ∗)

≤ CPB(τ∗) + CLLP (τ∗)

as hCPSLI ∈ [0, 1] and fO(t, s) ≤ 1 ∀s ≥ t. With CPB(τ∗) > 0, the liquidation
payments to Pfandbrief holders are given by

F̂PB(τ∗) = kCPPB(τ∗) · LV CPNPL(τ∗) < CPB(τ∗),

and for CLLP (τ∗) > 0 we get

F̂LLP (τ∗) = kCPLP (τ∗) · LV CPNPL(τ∗) < CLLP (τ∗).

The statement with respect to single Pfandbriefe follows from the definition
of F̂PBk (t) for k = 1, ..., nOL.

(c) If both the bank and the cover pool default due to overindebtedness at
time τ̂ ∈ T , τ̂ = τ = τ∗, it holds that

LV (τ̂) ≤ V CPS(τ̂) + V OA(τ̂) +NCPL(τ̂)

< BOPB(τ̂) +BOOL(τ̂) +NLL
B (τ̂)

≤ CPB(τ̂) + COL(τ̂) + CLLB (τ̂)
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and
LV CPNPL(τ̂) ≤ V CPSNPL (τ̂) +NCPL(τ̂) < BOPB(τ̂) ≤ CPB(τ̂)

as hOALI , h
CPS
LI ∈ [0, 1] and fO(t, s) ≤ 1 ∀s ≥ t. Furthermore, with

LV IE(τ̂) = LV OANPL(τ̂) + EPA(τ̂),

CIE(τ̂) = COL(τ̂) + CPB(τ̂)− LV CPNPL(τ̂)︸ ︷︷ ︸
GCP (τ̂)

+GLLB (τ̂),

and

EPA(τ̂)−GLLB (τ̂) = LV OAPL (τ̂) + LV CPPL (τ̂)− CLLB (τ̂) (4.28)

it follows that

LV IE(τ̂)− CIE(τ̂) = LV (τ̂)− CPB(τ̂)− COL(τ̂)− CLLB (τ̂) < 0.

Again, (4.28) holds because of kPALB (τ̂) ∈ {0, 1}. With CPB(τ̂) > 0 and
COL(τ̂) > 0, the liquidation payments to Pfandbrief holders and creditors
of other liabilities are given by

F̂PB(τ̂) = LV CPNPL(τ̂) + kGPB(τ̂) · LV IE(τ̂) < CPB(τ̂),

F̂OL(τ̂) = kGOL(τ̂) · LV IE(τ̂) < COL(τ̂),

and for CLLB (τ̂) > 0 we get

F̂LLB (τ̂) = LV OAPL (τ̂) + LV CPPL (τ̂) + kGLB(τ̂) · LV IE(τ̂) < CLLB (τ̂).

The statement with respect to single Pfandbriefe and other liabilities fol-
lows from the definitions of F̂PBk (t) and F̂OLl (t) for k = 1, ..., nPB and
l = 1, ..., nOL.

In the special case where t = Tmax, there is a close link between overindebt-
edness and the ability to fulfil payment obligations.

Remark 4.34 (Overindebtedness in Tmax)
At time t = Tmax, the following statements are true:

(a) (OB) holds ⇔ LV (Tmax) < FLB (Tmax).

(b) (OP) holds ⇔ LV CPNPL(Tmax) < FLP (Tmax).
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Proof. The first statement follows from TPBk , TOLl ≤ Tmax for k = 1, ..., nPB
and l = 1, ..., nOL in conjunction with the zero coupon bond assumption and
the fact that no liquidation haircuts apply in Tmax:

BOB (Tmax) = NPB(Tmax) +NOL(Tmax) +NLL
B (Tmax) = FLB (Tmax),

LV (Tmax) = V CPS(Tmax) + V OA(Tmax) +NCPL(Tmax) = V OB (Tmax).

Similarly, the second statement follows with

BOP (Tmax) = NPB(Tmax) +NLL
P (Tmax) = FLP (Tmax),

LV CPNPL(Tmax) = V CPSNPL (Tmax) +NCPL(Tmax) = V OP (Tmax).

4.6 Asset Liability Management

In the following, we specify the last component of the Pfandbrief model:
the bank’s and the cover pool administrator’s asset liability management
strategies in the context of funding, reinvestments, the maintenance of
overcollateralization and liability payments (Sections 4.6.1–4.6.4). We do so
by considering the required asset liability management features in Table 2.2.
The updated balance sheet for the next simulation time step, which takes
into account all these activities, is derived in Section 4.6.5.

4.6.1 Funding Strategies

Given our run-off assumption, which implies that no new business is made,
funding is mainly needed to overcome temporary cash shortages. With
respect to the bank’s funding strategy, we therefore make the following
assumption:

Assumption 25 (The bank’s funding strategy)
At time t ∈ T , t ≤ τ , the bank’s funding strategy is as follows:

(a) The bank raises as much funding as necessary to fulfil its payment
obligations and to maintain cover requirements but not more than that.
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(b) As far as possible, the bank pledges other assets as collateral. Strategic
cover pool assets are only pledged if there are not sufficient other assets
available. Within each of these two asset classes, asset pledging is done
pro rata.

(c) No funding is raised at time t ∈ {τ, Tmax}.

The assumption that the bank pledges other assets with a higher priority
than strategic cover pool assets is to be interpreted as the bank maintaining
voluntary overcollateralization as long as possible. In a situation of funding
pressure with no more other assets being available for pledging, the bank
has no other choice but to reduce strategic cover pool assets in order to raise
funding. Our assumptions regarding the cover pool administrator’s funding
strategy are similar but take into consideration that cover requirements are
not actively maintained any more.

Assumption 26 (The cover pool administrator’s funding strategy)
At time t ∈ T , τ ≤ t ≤ τ∗, the cover pool administrator’s funding strategy is
as follows:

(a) The cover pool administrator raises as much funding as necessary to
fulfil payment obligations but not more than that.

(b) No funding is raised at time t ∈ {τ∗, Tmax}.

Given the above assumptions, the amount of funding raised and the fraction
of pledged assets at a certain time t are fully specified.

Observation 4.35 (Funding activities)
At time t ∈ T , the total amount of funding raised is

FR(t) :=


GCB(t), if S(t) = 1,

GCP (t), if S(t) ∈ {2, 4} ,
0, otherwise,

and the fractions of pledged assets are

kOAPL (t) :=

{
min(GCB(t);Lmax

OA (t))
Lmax
OA (t) , if S(t) = 1, Lmax

OA (t) 6= 0,

0, otherwise,
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and

kCPSPL (t) :=


min(max(0;GRB(t));LmaxCPS(t)·zCPSB (t))

Lmax
CPS(t) , if S(t) = 1, Lmax

CPS(t) 6= 0,

0, otherwise,

with GRB(t) := GCB(t)− Lmax
OA (t).

Proof. The statement regarding FR(t) follows straight from Assumptions 25
and 26 in conjunction with the definition of S(t). As asset pledging is only
relevant in the context of bank funding activities, cf. Assumptions 13 and
15, the fraction of pledged assets is non-zero only for S(t) = 1. Furthermore,
according to Observation 4.22, the maximum amount of funding obtainable
from pledging risky assets pro rata is given by Lmax

OA (t) and LmaxCPS · zCPSB (t)
respectively. As other assets are pledged with a higher priority, their total
pledged amount is min(GCB(t);Lmax

OA (t)), while the total amount of pledged
strategic cover pool assets is min

(
max(0;GCB(t)− Lmax

OA (t));LmaxCPS · zCPSB (t)
)
.

The statements regarding kOAPL (t) and kCPSPL (t) then follow from the fact that
within each of the two asset classes asset pledging is done pro rata.

Remark 4.36 (Funding activities in t0)
At time t0, it holds that FR(t0) = kOAPL (t0) = kCPSPL (t0) = 0.

Proof. According to Assumption 17, the bank is not overindebted in t0 and
because of Assumptions 1, 12 and 14 it is also not illiquid:

GCB(t0) = max(0;FLB (t0) + CR(t0)− F̃AB (t0)) = max(0;−NCPL(t0)) = 0.

It follows that S(t0) = 1 and FR(t0) = GCB(t0) = 0. The statement regarding
kOAPL (t0) and kCPSPL (t0) is then straightforward.

4.6.2 Reinvestment Strategies

Given our run-off assumption, asset purchases only take place under certain
circumstances, cf. Assumption 4. The reinvestment of excess cash inflows is
one of these exceptions.



4.6 Asset Liability Management 133

Definition 4.37 (Excess cash inflow of the bank)
The bank’s excess cash inflow at time t ∈ T is given by

ECB (t) :=

{
max(0; F̃AB (t)− FLB (t)− CR(t)), if t < Tmax, t ≤ τ,
0, otherwise,

with F̃AB (t), FLB (t) and CR(t) as in Definition 4.21.

Excess cash inflows arise when the bank’s realized time-t cash inflows exceed
the amount of cash needed to fulfil payment obligations and to maintain
cover requirements. As the simulation stops at time Tmax and the balance
sheet is liquidated, aspects in the context of reinvestments are not relevant
any more at that time and we set ECB (Tmax) = 0.

With respect to the bank’s reinvestment strategy, we make the following
assumption:

Assumption 27 (Reinvestment strategy of the bank)
At time t ∈ T , t ≤ τ , the bank’s reinvestment strategy is as follows:

(a) The bank reinvests its excess cash inflow in other assets by increasing
existing positions pro rata.

(b) No reinvestment activities take place at time t ∈ {τ, Tmax}.

(c) At time t0, excess cash inflows are kept as liquid cover pool assets.

Assuming that excess cash inflows are reinvested in other assets accounts
for the fact that under the run-off assumption the incentive to hold or even
increase voluntary overcollateralization might be rather low as reputational
aspects, target ratings and program support lose relevance, cf. Langer and
Schadow [109]. Our assumption is therefore conservative and reflects the
voluntary nature of overcollateralization in excess of legal requirements.
The pro rata increase of existing other asset positions ensures that the
reinvestment strategy does not have a biasing impact on asset credit risk
and asset liability mismatches.

In the cover pool’s case, excess cash inflows arise when time-t cover pool
cash inflows exceed the amount of cash needed to fulfil payment obligations;
cover requirements are not taken into consideration any more.
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Definition 4.38 (Excess cash inflow of the cover pool)
The cover pool’s excess cash inflow at time t ∈ T is given by

ECP (t) :=

{
max(0; F̃AP (t)− FLP (t)), if t < Tmax, τ ≤ t ≤ τ∗,
0, otherwise,

with FAP (t) := F̃CPSNPL(t) + NCPL(t) and FLP (t) = FPB(t) + NLL
P (t), where

F̃CPSNPL(t) as in Definition 4.23.

The reinvestment strategy of the cover pool administrator is assumed to
be different from the bank’s one. For an operating bank, the accumulation
of large amounts of cash is not very efficient, but in the special case of a
standalone (potentially illiquid) cover pool17 it can be argued that the cover
pool administrator acts prudently and tries to avoid future cash shortages by
all means. As cover requirements, especially the 180-day liquidity rule, are
not maintained any more, the accumulation of cash positions is therefore a
reasonable assumption. Alternatively, one could specify more sophisticated
reinvestment strategies which aim at minimizing cash holdings while still
ensuring a reasonable cash buffer at all times. The definition of such strategies
is, however, beyond the scope of this work.

Assumption 28 (Reinvestment strategy of the cover pool)
At time t ∈ T , τ ≤ t ≤ τ∗, the cover pool administrator’s reinvestment
strategy is as follows:

(a) He reinvests the cover pool’s excess cash inflow in liquid cover pool assets
by increasing the corresponding position accordingly.

(b) No reinvestment takes place at time t ∈ {τ∗, Tmax}.

The reinvestment activities of the bank and the cover pool administrator
are summarized by Observation 4.39 below.

Observation 4.39 (Reinvestment activities)
At time t ∈ T , the fraction by which other assets are increased due to

17As already mentioned before, we concentrate on Mortgage Pfandbrief modelling.
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reinvestment activities is

kOAinc (t) :=

{
ECB (t)

Ṽ OA(t)
, if S(t) = 1, t > t0,

0, otherwise,

and the amount by which liquid cover pool assets are increased is

mCPL
inc (t) :=


ECB (t), if S(t) = 1, t = t0,

ECP (t), if S(t) ∈ {2, 4} ,
0, otherwise.

Strategic cover pool assets are not increased due to reinvestment activities.

Proof. The statement regarding mCPL
inc (t) follows straight from Assumptions

27 and 28. Other assets are only increased if S(t) = 1 and t > t0, and in
this case they are increased by an amount of ECB (t). As the reinvestment is
done pro rata, the corresponding fraction by which other assets need to be
increased is given by kOAinc (t). It remains to show that kOAinc (t) is well-defined,
meaning that Ṽ OA(t) 6= 0 for t0 < t < min(τ, Tmax). Due to Assumptions 1
and 2, it holds that NOA

nOA(t0) > 0 and TOAnOA ≥ Tmax. In our model, assets
cannot default prior to maturity and the nominal of the nOA-th other asset
cannot be reduced to zero through asset sales as long as t < min(τ, Tmax),
cf. Assumption 4. We therefore get ÑOA

nOA(t) > 0. In addition to that, our

asset model ensures that Ṽ OAnOA,U
(t) > 0 for t < Tmax ≤ TOAnOA , cf. Remark

4.15. All in all, Ṽ OA(t) > 0 for t < min (τ, Tmax).

As the proof of Observation 4.39 reveals, a relaxation of Assumption 1 with
asset defaults being possible prior to maturity would result in a need for
more sophisticated reinvestment strategies as for t0 < t < min(τ, Tmax) it
could not be guaranteed any more that there are always non-defaulted other
assets available for pro rata reinvestments.

Remark 4.40 (Reinvestment activities in t0)
At time t0, it holds that kOAinc (t0) = 0 and mCPL

inc (t0) = NCPL(t0).

Proof. From the proof of Remark 4.36 we know that S(t0) = 1. From
Observation 4.39 we have kOAinc (t) = 0, and from Assumptions 1, 12, 14 we get
mCPL
inc (t0) = ECB (t0) = max(0; F̃AB (t0)− CR(t0)− FLB (t0)) = NCPL(t0).
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4.6.3 Maintenance of Overcollateralization

Apart from the reinvestment of excess cash inflows, there is only one other
situation under which asset purchases take place given our run-off assumption.
The legal cover requirements (C1)–(C3) have to be maintained by the bank at
all times and immediate action has to be taken whenever the matching cover
calculations reveal gaps. In this context, we make the following assumption:

Assumption 29 (Reestablishment of legal cover requirements)
At time t ∈ T , t ≤ τ , the bank’s strategy to reestablish the legal cover
requirements is as follows:

(a) The bank first makes sure that the nominal cover requirement (C1) is
fulfilled, if necessary by increasing strategic cover pool assets pro rata by
an amount of

GCPSCR (t) := kCPSinc (t) · Ṽ CPS(t)

through asset purchases, where k̃CPSinc (t) := max(0;ÑPB(t)−ÑCPS(t))

ÑCPS(t)
.

(b) Having reestablished the nominal cover requirement, the bank takes care
of the cover requirements (C2) and (C3) by adding liquid cover pool
assets of an amount

GCPLCR (t) := max(GC2
CR(t);GC3

CR(t)),

with

GC2
CR(t) := max(GC2,b

CR (t);GC2,d
CR (t);GC2,u

CR (t)),

GC3
CR(t) := max

s∈TCPS∪TPB , t<s≤t+0.5
Fnetcum(t, s),

GC2,y
CR (t) := max(0; 1.02 · Ṽ PB∗y (t)− (1 + kCPSinc (t)) · Ṽ CPS∗y (t)),

Fnetcum(t, s) := max(0;FPBcum(t, s)− (1 + kCPSinc (t)) · FCPScum (t, s)),

for y ∈ {b, u, d}.

(c) No cover requirements are reestablished in t ∈ {τ, Tmax}.

According to the above assumption, additional strategic cover pool assets
are added when the nominal cover requirement is breached. This is in line
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with the PfandBG, which requires additional eligible assets to be posted
in this case. Liquid cover pool assets could also be used for this purpose
(as further cover assets) but only within certain restrictions. Allowing for
additional liquid cover pool assets would require a distinction of different
asset liability management strategies based on the current composition
of the cover pool to ensure that the restrictions regarding the amount
of further cover pool assets are not violated when the nominal cover is
reestablished. The posting of additional liquid cover pool assets to cure a
breach of the nominal cover requirement is, however, not likely to be the
bank’s preferred choice as holding more cash than needed and legally required
is not profitable. The assumption that new strategic cover pool assets are
bought instead of transferring existing other assets to the cover pool avoids
further model complexity arising from the need to distinguish additional
asset subcategories (cover pool eligible other assets vs. non-eligible other
assets) and related asset liability management strategies. A pro-rata increase
of strategic cover pool assets ensures that the cover pool’s composition and
default risk characteristics remain unchanged.18 The fraction k̃CPSinc (t) = 0
is well-defined for t < Tmax and t ≤ τ . This is due to the facts that
NCPS
nCPS (t0) > 0, defaults are not possible prior to maturity, TCPSnCPS ≥ Tmax

and asset sales cannot occur prior to time t < Tmax as long as t ≤ τ (cf.
Assumptions 1, 2, 4), which implies ÑCPS(t) > 0. Furthermore, Assumption
29 states that additional liquid cover pool assets are posted if one of the
cover requirements in (C2) and (C3) is violated. This is in line with the
PfandBG which stipulates that highly liquid assets need to be added in this
case. Our assumption that the reestablishment of cover requirements is done
in two steps ensures an unambiguous specification of formulas according to
which the corresponding positions are determined. At time τ (when the
bank defaults) and in Tmax (when the simulation stops and the balance sheet
is liquidated), cover requirements are not maintained any more.

Note that Assumption 29 does not make any statement with respect to
BaFin’s competence to increase the required overcollateralization for indi-
vidual Pfandbrief programmes if deemed necessary (cover add-on). Due
to the fact that such a decision would be completely at the discretion of
BaFin, with timing and size being difficult to anticipate, this additional
buffer is currently ignored in our model. It could, however, be incorporated
by extending asset liability management strategies accordingly, which in
turn requires additional (strong) assumptions to be made.

18The assumption that reinvestment activities concentrate on assets with similar credit
characteristics is also made by DBRS [37].
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Observation 4.41 (Reestablishment of legal cover requirements)
At time t ∈ T , t ≤ τ , the amount of cash needed to reestablish the cover
requirements is given by

CR(t) :=

{
GCPSCR (t) +GCPLCR (t), if t < Tmax,

0, otherwise.

Proof. The statement follows from the two-step strategy in Assumption
29.

In practice, Pfandbrief banks tend to maintain voluntary overcollateraliza-
tion, but as already discussed before the incentive to hold such voluntary
overcollateralization can be expected to be rather low under our run-off
assumption.

Assumption 30 (Maintenance of overcollateralization by the bank)
At time t ∈ T , t ≤ τ , the bank’s strategy to maintain overcollateralization is
as follows:

(a) The bank never adds more assets to the cover pool than needed to
reestablish the legal cover requirements (C1)–(C3).

(b) Strategic cover pool assets in excess of the nominal cover requirement
(C1) remain in the cover pool as long as not needed for funding purposes.

(c) Liquid cover pool assets are withdrawn immediately once not needed any
more to cure a breach of the cover requirements (C2) and (C3).

(d) No overcollateralization is maintained at time t ∈ {τ, Tmax}.

According to the above assumption, the bank ensures that the legal cover
requirements are fulfilled at all times, but voluntary overcollateralization is
not actively maintained. There may be voluntary overcollateralization in
terms of (C1), but once the issuer needs additional funding these strategic
cover pool assets can be pledged as collateral, implying that voluntary
overcollateralization is (temporary) reduced up to the legal minimum. With
respect to (C2) and (C3), no voluntary overcollateralization is held at all,
i.e. liquid cover pool assets are only used for liquidity steering if one of these
two cover requirements is breached. No overcollateralization is maintained



4.6 Asset Liability Management 139

at time τ (when the bank defaults) and in Tmax (when the simulation stops
and the balance sheet is liquidated).

The cover pool administrator has no strategy regarding the maintenance of
overcollateralization as he only administers the cover pool.19

Assumption 31 (Maintenance of overcollateralization by the cover
pool administrator)
At time t ∈ T , τ ≤ t ≤ τ∗, the cover pool administrator does not actively
maintain overcollateralization.

The activities in the context of maintenance of overcollateralization can be
summarized as follows.

Observation 4.42 (Maintenance of overcollateralization)
The present value of assets which are added to the cover pool at time t ∈ T
to maintain overcollateralization is

AA(t) :=

{
CR(t), if S(t) = 1,

0, otherwise,

and the amount by which strategic cover pool assets are increased through
asset purchases is

kCPSinc (t) :=

{
k̃CPSinc (t), if S(t) = 1,

0, otherwise.

Proof. The statement follows from Assumptions 29, 30, 31 and Observation
4.41.

19Even though the PfandBG stipulates that the cover pool administrator has to check
the cover requirements on a regular basis, cf. PfandBG § 31 par. 5, he does not have
access to additional assets which he could post to the cover pool once one of the cover
requirements is breached.
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4.6.4 Liability Payments

Liability payments depend on the occurrence of the events of bank and cover
pool default and the simulation time t. In line with our previous discussions
which are summarized by Table 4.2, we make the following assumption:

Assumption 32 (Liability payments)
At time t ∈ T , liability payments take place according to the following
principles:

(a) As long as no event of bank default occurs and t < Tmax, the creditors of
other liabilities and the bank’s liquidity line receive scheduled payments.

(b) Pfandbrief holders and the cover pool’s liquidity line receive scheduled
payments as long as no event of cover pool default occurs and t < Tmax.

(c) In Tmax, liquidation payments are made according to Observation 4.30.

(d) Apart from the cases as specified by (a)–(c), no liability payments take
place.

Given the above assumption, the determination of realized liability payments,
which do not necessarily equal contractually scheduled ones, is straightfor-
ward.

Observation 4.43 (Realized liability payments)
At time t ∈ T , realized liability payments are given by

F̃PBk (t) :=


NPB
k (t0), if S(t) ∈ {1, 2, 4} and t = TPBk ,

F̂PBk (t), if S(t) ∈ {3, 5, 7, 8} ,
0, otherwise,

F̃OLl (t) :=


NOL
l (t0), if S(t) = 1 and t = TOLl ,

F̂OLl (t), if S(t) ∈ {2, 3, 5, 7, 8} ,
0, otherwise,

F̃LLB (t) :=


max

(
0;NLL

B (t)−GCB(t)
)
, if S(t) = 1,

F̂LLB (t), if S(t) ∈ {2, 3, 5, 7, 8} ,
0, otherwise,
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F̃LLP (t) :=


max

(
0;NLL

P (t)−GCP (t)
)
, if S(t) = 4,

F̂LLP (t), if S(t) ∈ {5, 8} ,
0, otherwise,

F̃EQ(t) :=

{
F̂EQ(t), if S(t) ∈ {2, 3, 5, 7, 8}
0, otherwise,

for k = 1, ..., nPB and l = 1, ..., nOL. The total payments to Pfandbrief
holders and creditors of other liabilities are given by

F̃PB(t) :=

nPB∑
k=1

F̃PBk (t) and F̃OL(t) :=

nOL∑
l=1

F̃OLl (t).

Proof. As Pfandbriefe and other liabilities are modelled as zero coupon bonds,
scheduled payments to the corresponding creditors are given by NPB

k (t0)
in TPBk and by NOL

l (t0) in TOLl , with k = 1, ..., nPB and l = 1, ..., nOL.
The scheduled payments to the liquidity lines correspond to the net cash
outflows max

(
0;NLL

x (t)−GCx (t)
)
, x ∈ {B,P} and take into account the

payment NLL
x (t) which is due at time t as well as potential new funding

GCx (t) raised at that time. Equity holders, on the other hand, do not receive
any scheduled dividend payments, cf. Assumption 1. The scenarios S(t)
under which scheduled payments take place follow straight from Assumption
32. Liquidation payments only occur for S(t) ∈ {2, 3, 5, 7, 8} and the affected
liabilities are those for which the liquidation claims according to Assumption
23 are bigger than zero. The liquidation payments are then given by F̂PBk (t),

F̂OLl (t), F̂LLB (t) and F̂LLP (t) as in Observation 4.30.

Remark 4.44 (Realized liability payments in t0)
There are no realized liability payments in t0:

F̃PBk (t0) = F̃OLl (t0) = F̃LLB (t0) = F̃LLP (t0) = F̃EQ(t0) = 0,

for k = 1, ..., nCPS and l = 1, ..., nOA.

Proof. From the proof of Remark 4.36 we know that S(t0) = 1 and according
to Assumptions 1,14 and 16 there are no scheduled liability payments in
t0.
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4.6.5 Balance Sheet Update

Due to market movements, dynamic asset liability management and potential
default events as specified in the previous sections, the balance sheet changes
stochastically over time. The associated balance sheet update from time t
to time t+ ∆ is reflected in the following formulas:

Observation 4.45 (Updated balance sheet)
Given the balance sheet at time t ∈ T , t < Tmax, the updated asset nominals
at time t+ ∆ after all asset liability management activities are

NCPS
i (t+ ∆) :=


NCPS
i (t) ·

(
1 + kCPSinc (t)

)
, if S(t) = 1 and t < TCPSi ,

NCPS
i,NPL(t), if S(t) = 2 and t < TCPSi ,

NCPS
i (t), if S(t) = 4 and t < TCPSi ,

0, otherwise,

NCPL(t+ ∆) :=


GCPLCR (t)+mCPLinc (t)

P (t,t+∆) , if S(t) = 1,
mCPLinc (t)
P (t,t+∆) , if S(t) ∈ {2, 4} ,
0, otherwise,

NOA
j (t+ ∆) :=

{
NOA
j (t) ·

(
1 + kOAinc (t)

)
, if S(t) = 1 and t < TOAj ,

0, otherwise,

for i = 1, ..., nCPS and j = 1, ..., nOA, with kCPSinc (t) and mCPL
inc (t) as in

Observation 4.39. For pledged assets it holds that

NCPS
i,PL (t+ ∆) :=

{
kCPSPL (t) ·NCPS

i (t), if S(t) = 1 and t < TPBi ,

0, otherwise,

NOA
j,PL(t+ ∆) :=

{
kOAPL (t) ·NOA

j (t), if S(t) = 1 and t < TOLj ,

0, otherwise,

with kCPSPL (t) and kOAPL (t) as in Observation 4.35.

Furthermore, the updated liability nominals are

NPB
k (t+ ∆) :=

{
NPB
k (t), if S(t) ∈ {1, 2, 4} and t < TPBk ,

0, otherwise,
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NOL
l (t+ ∆) :=

{
NOL
l (t) if S(t) = 1 and t < TOLl ,

0, otherwise,

NLL
B (t+ ∆) :=

{
GCB(t) · P (t, t+ ∆)−1, if S(t) = 1,

0, otherwise,

NLL
P (t+ ∆) :=

{
GCP (t) · P (t, t+ ∆)−1, if S(t) ∈ {2, 4} ,
0, otherwise,

for k = 1, ..., nPB and l = 1, ..., nOL

Proof. The statement follows from Assumption 1 and the asset liability
management strategies as specified in Sections 4.6.1–4.6.4.

4.7 Default Parameters

Having specified all components of our Pfandbrief model in the previous
sections of this chapter, we now derive the liabilities’ default parameters.
According to Assumption 19, a bank default at time τ triggers the accel-
eration of the bank’s outstanding other liabilities which become due and
payable immediately. The creditor of the l-th other liability, l = 1, ..., nOL,
is affected by this event if τ ≤ TOLl . Similarly, the fate of the bank’s out-
standing Pfandbriefe depends on the occurrence of an event of cover pool
default, cf. Assumption 21, and the k-th Pfandbrief holder, k = 1, ..., nPB ,
is affected by this event if τ∗ ≤ TPBk . The derivation of default probabilities
is straightforward:

Observation 4.46 (Default probabilities)
At time t ∈ T , the probability of a bank default is πBt := P (τ = t) and the
probability of a cover pool default is πPt := P (τ∗ = t). The corresponding cu-
mulative default probabilities are πBt,cum := P (τ ≤ t) and πPt,cum := P (τ∗ ≤ t).

Proof. The above statements follow from Assumptions 18 and 20.

Under the recovery of treasury assumption, which stipulates that a defaulted
bond is replaced by a risk-free bond with the same maturity but with a
reduced nominal, the associated losses given default can be derived as follows.
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Observation 4.47 (Losses given default)
In case the cover pool defaults at time t ∈ T , the loss given default of
outstanding Pfandbriefe is

LPBt := 1− EP

[
F̂PB(τ∗)

CPB(τ∗)

∣∣∣∣τ∗ = t

]
.

Similarly, if the bank defaults at time t ∈ T , the loss given default of
outstanding other liabilities is

LOLt := 1− EP

[
F̂OL(τ) + PVτ

[
F̄OL(τ̂)

]
COL(τ)

∣∣∣∣τ = t

]
.

Here, τ̂ = min (τ∗, Tmax) and

F̄OL(τ̂) :=

{
F̂OL(τ̂), if τ̂ > τ,

0, otherwise,

with

PVτ [Z(τ̂)] := EQ
[
e−
∫ τ̂
τ
r(s)ds · Z(τ̂)

∣∣∣∣Fτ] , (4.29)

for Z ∈ L1(Ω,F ,P).

Proof. According to Assumption 23, Pfandbrief holders can raise a claim
of CPB(τ∗) at the time τ∗ ∈ T of cover pool default and the received
liquidation payment is given by F̂PB(τ∗), see Observation 4.30. Apart from
the cash flows at time τ∗, no recovery payments take place. To derive
the associated loss given default, the time-τ∗ present value of the received
liquidation payment, which is equal to the cash flow itself, has to be set in
relation to the original claim. Conditional on τ∗ = t, the stochastic claim
CPB(τ∗) is bigger than zero, i.e. LPt is well defined.

In the case of the bank’s other liabilities, the situation is a bit more com-
plicated. At the time τ ∈ T of bank default, the corresponding creditors
can raise a claim of COL(τ) and, if τ < τ̂ with τ̂ := min(τ∗, Tmax), they can
also raise a claim of COL(τ̂) at time τ̂ , cf. Assumption 23. The received
liquidation payments are given by F̂OL(τ) and F̄OL(τ̂), see Observation
4.30. To derive the associated loss given default, the time-τ present values
of the received liquidation payments have to be set in relation to the original
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claim. In the case of F̂OL(τ), the time-τ present value of the cash flow is
equal to the cash flow itself, but for the cash flow F̄OL(τ̂) the present value
PVτ

[
F̄OL(τ̂)

]
has to be taken. Again, LBt is well defined as, conditional on

τ = t, the stochastic claim COL(τ) is bigger than zero.

The loss given default of Pfandbriefe as defined in Observation 4.47 correctly
reflects the priority of payments from the Pfandbrief holder’s perspective.
In the case of other liabilities, the loss given default should be interpreted
with care as there is no distinction between different levels of seniority
(e.g. senior unsecured debt, subordinated debt) as typically observed in
practice. We therefore consider the model’s primary output to be Pfandbrief
default statistics. The default statistics of other liabilities are only used for
comparison.

The calculation of LOLt requires the evaluation of the risk neutral expectation
in Equation (4.29). As there is no analytical expression for PVτ

[
F̄OL(τ̂)

]
,

additional risk neutral simulations are needed to price this cash flow in case
of a bank default at time τ < τ̂ . To avoid additional model complexity, we
make a simplifying assumption:

Assumption 33 (Approximation of loss given default (part I))

The Radon-Nikodym derivative
dQti
dP of the forward measure Qti , i = 1, ..., S,

with respect to the real-world measure P is independent of I{τ̂=ti} · F̄OLl (ti)
and Fτ for l = 1, ..., nOL.

It can be shown, cf. Proposition 4.48 below, that under the above assumption
it is sufficient to simulate additional real-world scenarios in case of a bank
default at time τ < τ̂ , i.e. no risk neutral simulations are needed.

Proposition 4.48 (Calculation of losses given default)
Under Assumption 33, the time-τ present value PVτ

[
F̄OLl (τ̂)

]
is given by

PVτ
[
F̄OL(τ̂)

]
= P (τ, τ̂) · EP [F̄OL(τ̂)

∣∣Fτ ] , l = 1, ..., nOL.

Proof. The time-τ present value PVτ
[
F̄OLl (τ̂)

]
can be rewritten as

PVτ
[
F̄OLl (τ̂)

]
=

S∑
i=1

EQ
[
I{τ̂=ti} · e

−
∫ ti
τ
r(s)ds · F̄OLl (ti)

∣∣∣∣Fτ] ,
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and switching to the ti-forward measures Qti yields

PVτ
[
F̄OLl (τ̂)

]
=

S∑
i=1

P (τ, ti) · EQti

[
I{τ̂=ti} · F̄

OL
l (ti)

∣∣∣∣Fτ]

=

S∑
i=1

P (τ, ti) · EP
[
dQti
dP
· I{τ̂=ti} · F̄

OL
l (ti)

∣∣∣∣Fτ] .
Under the assumption that

dQti
dP is independent of Fτ and I{τ̂=ti} · F̄OLl (ti),

it follows from the product rule for conditional expectation that

PVτ
[
F̄OLl (τ̂)

]
=

S∑
i=1

P (τ, ti) · EP
[
dQti
dP

]
· EP [I{τ̂=ti} · F̄

OL
l (ti)

∣∣Fτ ] ,
and with EP[

dQti
dP ] = 1 we get

PVτ
[
F̄OLl (τ̂)

]
= P (τ, τ̂) · EP [F̄OLl (τ̂)

∣∣Fτ ]
for l = 1, ..., nOL. It follows that

PVτ
[
F̄OL(τ̂)

]
= PVτ

[
nOL∑
l=1

F̄OLl (τ̂)

]
=

nOL∑
l=1

PVτ
[
F̄OLl (τ̂)

]
=

nOL∑
l=1

P (τ, τ̂) · EP [F̄OLl (τ̂)
∣∣Fτ ] = P (τ, τ̂) · EP [F̄OL(τ̂)

∣∣Fτ ] .

As our focus is on Pfandbrief modelling, i.e. on the determination of Pfand-
brief default parameters (and not on those of other liabilities), it is acceptable
to assume that the change of measure from Qti to P is independent of Fτ ,
I{τ̂=ti} · F̄OLl (ti). To avoid additional simulations, we use a one-path real-

world simulation to approximate EP [F̄OL(τ̂)
∣∣Fτ ] =

∑n
l=1 EP [F̄OLl (τ̂)

∣∣Fτ ].
This is expected to only have a minor impact on the loss given default of the
other liabilities as the second liquidation cash flow should be comparably
small.20 More specifically, we make the following assumption:

20Indeed, in Section 6.2 we will find that simulation results obtained from an exemplary
model calibration indicate that the value of the subordinated claim of other liabilities
on the cover pool is rather small.
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Assumption 34 (Approximation of loss given default (part II))
The real-world expectations EP [F̄OLl (τ̂)

∣∣Fτ ] can be approximated by a one-
path simulation under the real-world measure:

EP [F̄OLl (τ̂)
∣∣Fτ ] ≈ F̄OLl (τ̂), l = 1, ..., nOL.

Having specified the default probabilities and the losses given default, ex-
pected losses can be easily derived.

Definition 4.49 (Expected losses)
In case of a cover pool default at time t ∈ T , the expected loss of out-
standing Pfandbriefe is ELPBt := πPt · LPBt . Similarly, in case of a bank
default at time t ∈ T , the expected loss of outstanding other liabilities is
ELOLt := πBt · LOLt . The corresponding cumulative expected losses are given
by ELPBt,cum :=

∑
s∈Mt

πPs · LPBs and ELOLt,cum :=
∑
s∈Mt

πBs · LOLs with
Mt := {s ∈ T , s ≤ t}.

With the help of the above default parameters, we define average losses given
default for the bank’s Pfandbriefe and other liabilities.

Definition 4.50 (Average losses given default)
The average loss given default of the bank’s Pfandbriefe is defined by

LPBavg :=
ELPBS,cum
πPS,cum

,

and the average loss given default of the bank’s other liabilities is defined by

LOLavg :=
ELOLS,cum
πBS,cum

,

with S = Tmax being the maturity of the longest Pfandbrief and the longest
other liability.

All in all, we have now fully specified our Pfandbrief model which fulfils all
modelling requirements in Table 2.2. To obtain meaningful default parameter
estimates, the model needs to be adequately calibrated.



5 Model Calibration and Scenario
Generation

This chapter is focused on an exemplary model calibration for Mortgage
Pfandbriefe. In Section 5.1 we describe how the bank’s balance sheet profile
can be derived based on publicly available data and on expert opinion.
Section 5.2 then addresses the calibration of the market environment, i.e.
the determination of the parameters of the risk-free interest rate dynamics
and the state variable processes of the bank’s risky assets. In Section 5.3 the
generation of the stochastic scenarios of the market environment is specified.

5.1 An Exemplary Balance Sheet Profile

The determination of the balance sheet parameters in Assumption 1 is not
straightforward due to the lack of publicly available information. While
data on nominals and maturities is available on an aggregated level in §28
Pfandbrief statistics and in the bank’s annual reports, no issuer-specific data
on asset default parameters (PDs, LGDs and correlations) and asset present
values is typically published. For the subsequent analyses we derive an
exemplary balance sheet by using published data from a large active issuer of
Mortgage Pfandbriefe to approximate typical asset liability mismatches and
choose average representative values for asset default parameters. To obtain
realistic bank-specific results, more granular information on the balance sheet
composition (as for example available to the issuing bank, rating agencies or
sophisticated investors) is needed and should be used instead. For practical
applications the adequate choice of asset default parameters and present
values is of high importance. Due to our expert judgements regarding these
parameters, the results of our analyses are exemplary only and cannot be
linked to the bank from which the balance sheet data was taken.
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5.1.1 Nominals and Maturities

Given the finite time setting Td := {t0, ..., tS} with S ∈ N, t0 = 0,
ti+1 := ti + ∆ for i = 0, ..., S − 1 and ∆ := 0.5

k , k ∈ N, cf. Section 4,
we set the time horizon to tS := Tmax, i.e. to the maturity of the longest
Pfandbrief outstanding at time t0, which implies S = tS

∆ = k·Tmax

0.5 . We fur-
ther assume that the risk profile of the bank’s risky assets and outstanding
liabilities is fully described by 4 · S risky zero coupon bonds with nominals
Nx
i and maturities T xi = ti, where i = 1, ..., S and x ∈ {CPS,OA,PB,OL},

i.e. it holds that nx = S. The risk-free cash account with nominal NCPL,
which is immediately due and accrues at the risk-free rate, is assigned to the
maturity bucket t0, TCPL = 0. Table 5.1 summarizes the above assumptions
regarding the bank’s maturity profile.

Table 5.1: The bank’s maturity profile.

Type t0 t1 t2 ... tS−1 tS

CPS — NCPS
1 NCPS

2 ... NCPS
S−1 NCPS

S

CPL NCPL — — ... — —

OA — NOA
1 NOA

2 ... NOA
S−1 NOA

S

PB — NPB
1 NPB

2 ... NPB
S−1 NPB

S

OL — NOL
1 NOL

2 ... NOL
S−1 NOL

S

In the following, we describe how the nominals NCPL and Nx
i for i = 1, ..., S

and x ∈ {CPS,OA,PB,OL} can be derived.

Pfandbrief and cover pool nominals. In the bank’s §28 Pfandbrief sta-
tistics, the maturity structure of outstanding Pfandbriefe (PB) and the
cover pool (CP) is reported in nine maturity buckets b̃1, ..., b̃9 with nominals
Ñy

1 , ..., Ñ
y
9 for y ∈ {PB,CP}, cf. Table 5.2.



5.1 An Exemplary Balance Sheet Profile 151

Table 5.2: Maturity structure of the bank’s outstanding Pfandbriefe (PB) and
the cover pool (CP ) as published in the §28 Pfandbrief statistics,
y ∈ {PB,CP}.

Bucket Nominal Maturity T (in years)

b̃1 Ñy
1 0 ≤ T ≤ 0.5

b̃2 Ñy
2 0.5 < T ≤ 1

b̃3 Ñy
3 1 < T ≤ 1.5

b̃4 Ñy
4 1.5 < T ≤ 2

b̃5 Ñy
5 2 < T ≤ 3

b̃6 Ñy
6 3 < T ≤ 4

b̃7 Ñy
7 4 < T ≤ 5

b̃8 Ñy
8 5 < T ≤ 10

b̃9 Ñy
9 10 < T ≤ ∞

In a first step, the published nominals Ñy
1 , ..., Ñ

y
9 are redistributed to the

simulation time buckets ti with nominals

N̂y
i :=



Ñy1
|{tj |0≤tj≤0.5}| , if 0 ≤ ti ≤ 0.5,

Ñy2
|{tj |0.5<tj≤1}| , if 0.5 < ti ≤ 1,

Ñy3
|{tj |1<tj≤1.5}| , if 1 < ti ≤ 1.5,

Ñy4
|{tj |1.5<tj≤2}| , if 1.5 < ti ≤ 2,

Ñy5
|{tj |2<tj≤3}| , if 2 < ti ≤ 3,

Ñy6
|{tj |3<tj≤4}| , if 3 < ti ≤ 4,

Ñy7
|{tj |4<tj≤5}| , if 4 < ti ≤ 5,

Ñy8
|{tj |5<tj≤10}| , if 5 < ti ≤ 10,

Ñy9
|{tj |tj>10}| , if ti > 10,

for y ∈ {PB,CP} and i, j = 1, ..., S. The nominals N̂y
i are then adjusted

for coupons by compounding the associated coupon payments to time ti and
adding these positions to the original nominals,

Ny
i := N̂y

i + cy ∆ N̂y
i ·

i∑
j=1

d∗b(0, tj)

d∗b(0, ti)
,
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for y ∈ {PB,CP} and i = 1, ..., S, with the discount factor d∗b(0, t) as
defined in Observation 4.19. The coupon cPB is the same for each Pfandbrief
and represents on average the bank’s outstanding Pfandbriefe. Similarly,
cCP can be interpreted as average cover pool coupon. Both coupons are
determined such that the net present values Ṽ PB∗b and Ṽ CP∗b of outstanding
Pfandbriefe and the cover pool as published in the bank’s §28 Pfandbrief
statistics are matched,

S∑
i=1

N̂y
i ·

cy∆

i∑
j=1

d∗b(0, tj) + d∗b(0, ti)

 !
= Ṽ y∗b,

for y ∈ {PB,CP}, which implies

cy
!
=

Ṽ y∗b −
∑S
i=1 N̂

y
i · d∗b(0, ti)

∆
∑S
i=1 N̂

y
i

∑i
j=1 d∗b(0, tj)

and guarantees
∑S
i=1N

y
i · d∗b(0, ti) = Ṽ y∗b. To ensure that the 180-day

liquidity buffer is not breached, we add an amount NCPL,

NCPL := max
j, tj≤0.5

{
max

(
0;

j∑
i=1

NPB
i −

j∑
i=1

NCP
i

)}
,

for j = 1, ..., S, to the cash account and reduce the cover pool positions
which are not relevant for the calculation of the 180-day liquidity buffer pro
rata,

NCPS
i :=

N
CP
i , if 0 ≤ ti ≤ 0.5,

NCP
i ·

(
1− NCPL∑

k, tk>0.5 N
CP
k ·d∗b(0,tk)

)
, if ti > 0.5,

for i, k = 1, ..., S, which requires
∑
k, tk>0.5N

CP
k · d∗b(0, tk) > NCPL.1 It

then holds that

S∑
i=1

NCPS
i · d∗b(0, ti) +NCPL = Ṽ CP∗b .

1The information regarding further cover assets as published in the bank’s §28 Pfand-
brief statistics is not used for the determination of our 180-day liquidity buffer as this
position does not have a one-to-one correspondence in our model.
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We have now determined all Pfandbrief and cover pool nominals in Table
5.1.

Setting Tmax := 12.5 and k := 1, which implies ∆ = 0.5 and S = 25,
and applying the above described calibration procedure to all Pfandbrief
banks which have published their Q4 2014 §28 Pfandbrief statistics on the
vdp’s website2 reveals that in all 33 cases the resulting Pfandbrief and
cover pool profiles fulfil the nominal cover requirement and the excess cover
requirements.

Nominal of other assets and other liabilities. In the bank’s annual reports,
the maturity structure of assets (A) and liabilities (L) is typically reported
in four maturity buckets b̄1, ..., b̄4 with nominals Ñy

1 , ..., Ñ
y
4 , y ∈ {A,L},

cf. Table 5.3.3 As maturity information is not always published for all
balance sheet positions, we define a fifth maturity bucket b̄5 for the posi-
tions for which no maturity is available and set the associated nominals to
ÑA

5 := ÑA −
∑4
i=1 Ñ

A
i and ÑL

5 := ÑA −
∑4
i=1 Ñ

L
i − ÑE , with ÑA being

the total asset nominal and ÑE the equity capital, both of which are also
published in the bank’s annual report.

In the following, we assume that the assets in the bucket b̄5 have the same
maturity profile as the remaining assets and redistribute the nominal ÑA

5

pro rata to the buckets b̄1, ..., b̄4. For the bank’s liabilities, we make a similar

2See Aareal Bank AG [1], Bayerische Landesbank [16], Berlin-Hannoversche Hy-
pothekenbank AG [17], Bremer Landesbank [22], Commerzbank AG [32], CO-
REALCREDIT BANK AG [34], DekaBank Deutsche Girozentrale [38], Deutsche
Apotheker- und Aerztebank eG [39], Deutsche Genossenschafts-Hypothekenbank AG
[42], Deutsche Hypothekenbank (Actien-Gesellschaft) [43], Deutsche Kreditbank AG
[44], Deutsche Pfandbriefbank AG [45], Deutsche Postbank AG [46], Dexia Kommu-
nalbank Deutschland AG [48], Duesseldorfer Hypothekenbank AG [53], DVB Bank
SE [54], Hamburger Sparkasse AG [83], HSH Nordbank AG [86], ING-DiBa AG
[94], Kreissparkasse Koeln [103], Landesbank Baden-Wuerttemberg [105], Landesbank
Berlin [106], Landesbank Hessen-Thueringen [107], Muenchener Hypothekenbank eG
[131], M.M.Warburg & CO Hypothekenbank AG [125], Natixis Pfandbriefbank AG
[132], NordLB Norddeutsche Landesbank Girozentrale [133], Saar LB [140], SEB AG
[143], Sparkasse KoelnBonn [146], UniCredit Bank AG [152], VALOVIS BANK AG
[153], Westdeutsche ImmobilienBank AG [165], WL BANK AG Westfaelische Land-
schaft Bodenkreditbank [166], Wuestenrot Bank AG [167].

3See, for example, Sünderhauf [148], p. 150.
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Table 5.3: Maturity structure of the bank’s assets (A) and liabilities (L) as
published in the bank’s annual reports, y ∈ {A,L}.

Bucket Nominal Maturity T (in years)

b̄1 Ñy
1 T ≤ 0.25

b̄2 Ñy
2 0.25 < T ≤ 1

b̄3 Ñy
3 1 < T ≤ 5

b̄4 Ñy
4 T > 5

assumption. By doing so, we obtain

N̄A
i := ÑA

i ·
ÑA∑4
j=1 Ñ

A
j

and N̄L
i := ÑL

i ·
ÑA − ÑE∑4

j=1 N̄
L
j

for i = 1, ..., 4, with
∑4
i=1 N̄

A
i = ÑA and

∑4
i=1 N̄

L
i + ÑE = ÑA. In a next

step, we map the originally reported Pfandbrief and cover pool nominals
Ñz

1 , ..., Ñ
z
9 , z ∈ {PB,CP}, from Table 5.2 to the buckets b̄1, ..., b̄4 to obtain

N̄z
1 :=

1

2
Ñz

1 ,

N̄z
2 :=

1

2
Ñz

1 + Ñz
2 ,

N̄z
3 := Ñz

3 + Ñz
4 + Ñz

5 + Ñz
6 + Ñz

7 ,

N̄z
4 := Ñz

8 + Ñz
9 .

The corresponding nominals N̄OA
i and N̄OL

i of the bank’s other assets and
other liabilities can now be calculated by

N̄OA
i := N̄A

i − N̄CP
i and N̄OL

i := N̄L
i − N̄PB

i

for i = 1, ..., 4. These nominals are redistributed to the simulation time
buckets ti, i = 1, ..., S. For ∆ = 0.5 this is done by

N̂x
i :=


N̄x

1 + 1
3N̄

x
2 , if 0 ≤ ti ≤ 0.5,

2
3N̄

x
2 , if 0.5 < ti ≤ 1,
N̄x3

|{tj |1<tj≤5}| , if 1 < ti ≤ 5,
N̄x4

|{tj |tj>5}| , if ti > 5,
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for j = 1, ..., S and x ∈ {OA,OL}, while for ∆ < 0.5 we define

N̂x
i :=



N̄x1
|{tj |0≤tj≤0.25}| , if 0 ≤ ti ≤ 0.25,

N̄x2
|{tj |0.25<tj≤1}| , if 0.25 < ti ≤ 1,

N̄x3
|{tj |1<tj≤5}| , if 1 < ti ≤ 5,

N̄x4
|{tj |tj>5}| , if ti > 5.

As no information is available on the net present value of the bank’s other
assets and its other liabilities, we assume that the scaling factors are the
same as for the cover pool (in the case of other assets) and outstanding
Pfandbriefe (in the case of other liabilities), i.e.

NOA
i := sCP · N̂OA

i and NOL
i := sPB · N̂OL

i

for i = 1, ..., S, with sz := (
∑S
i=1N

z
i )/(

∑S
i=1 N̂

z
i ) for z ∈ {PB,CP}. This

fully specifies all nominals of the bank’s other assets and other liabilities as
given in Table 5.1.

Equity. The residual equity position is determined such that the balance
sheet equation

NCPS +NCPL +NOA = NPB +NOL +NEQ (BSE)

holds, with NCPS :=
∑S
i=1N

CPS
i , NOA :=

∑S
i=1N

OA
i , NPB :=

∑S
i=1N

PB
i

and NOL :=
∑S
i=1N

OL
i , i.e. we obtain

NEQ := NCPS +NCPL +NOA −NPB −NOL.

Example. Setting tS to Tmax := 12.5 and k := 1 which implies ∆ = 0.5
and S = 25 and applying the above described calibration procedure to
Münchener Hypothekenbank’s balance sheet and §28 Pfandbrief statistics
from Q4 2014, cf. Münchener Hypothekenbank [130], [131], results in the
exemplary bank balance sheet as illustrated in Figure 5.1 if a Vasicek interest
rate environment with parameters r0 = 0.0017, σr = 0.0035, θQr = 0.9897
and κQr = 0.0013 is assumed.4 Liquid cover pool assets need to be held as
the net cumulative cover pool cash inflows during the next 180 days are

4For exact figures, see Table A.1 in the appendix.
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not sufficient to cover cashflows from outstanding Pfandbriefe. The bank’s
initial balance sheet and its implications will be discussed in more detail in
Chapter 6.

(a) Cover pool and outstanding Pfandbriefe.

(b) Other assets and other liabilities.

(c) Total assets and total liabilities.

Figure 5.1: Exemplary bank balance sheet.
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5.1.2 Asset Default Parameters and Present Values

In our model, the credit performance of the bank’s risky assets is driven by the
assets’ default parameters, their initial present values and the correlations to
which the state variable processes are calibrated. For the subsequent analyses
we have to set these values based on expert judgement as issuer-specific data
is not publicly available. Our parameter settings are exemplary only; in
practice issuer-specific data is essential and should be used instead. To get
a feeling of the impact of the different parameter assumptions, sensitivity
analyses will be performed in Section 6.6 below.

Default probabilities. In principle each of the modelled risky assets could
be assigned its own default probability, but as information is scarce we
deem it more appropriate to assign average portfolio ratings, distinguishing
only between strategic cover pool assets and other assets. In the following,
we assume that the bank’s strategic cover pool assets all have the same
rating qCPS and that all other assets have the same rating qOA, which
is not necessarily equal to qCPS . Given these ratings, the assets’ lifetime
default probabilities can be easily calculated from a rating migration matrix
as published by rating agencies, see for example Hughes and Werner [89].
The exemplary lifetime default probabilities which are used in the following
can be found in Table A.2 in the appendix. As illustrated by Figure 5.2,
within a certain rating class the lifetime default probabilities are higher for
longer maturities and given a fixed asset maturity they are lower for higher
ratings. For a 1-year AAA bond, for example, the default probability is
πAAA(1) = 0.01%, while for a 13-year AAA bond it is πAAA(13) = 0.42%.
For a BB+ bond, on the other hand, we have πBB+(1) = 0.59% and
πBB+(13) = 16.33%.

Based on discussions with credit risk experts in the industry, we think that it
is not unreasonable to assume qCPS to lie somewhere in the BBB/BB range,
depending on the actual portfolio composition and the fraction of commercial
real estate assets in the cover pool. For the subsequent analyses we assume
that the average cover pool rating is qCPS = BB+. In the case of the bank’s
other assets, which comprise assets from non-mortgage cover pools (mostly
public-sector cover pools), we also set qOA = BB+. Figure 5.3 illustrates the
resulting lifetime default probabilities of the bank’s assets, with πBB+(0) = 0
and linear interpolation in between integer maturity buckets. The shortest
assets are assigned a lifetime default probability of πBB+(0.5) = 0.30%, while
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Figure 5.2: Lifetime default probabilities of selected rating classes.

the longest assets have a lifetime default probability of πBB+(12.5) = 15.56%.
As already mentioned before, our choice of default parameters is exemplary
only; bank-specific information is essential and should be used whenever
available.

Figure 5.3: Lifetime default probabilities of the bank’s risky assets.

Losses given default. With respect to the losses given default, we assume
that all strategic cover pool assets have the same loss given default LCPS

and all other assets have the same loss given default LOA, irrespective of
rating or maturity. For mortgage loans, loss rates are typically lower than
for other types of loans (Hagen and Holter [82]) and in the QIS 5 study the
average LGD of German group 2 banks in the mortgage portfolio was found
to be 27% (Deutsche Bundesbank [41]). Losses to the cover pool part of a
mortgage asset do, however, only arise if foreclosure proceeds are less than
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60% of the property’s mortgage lending value, i.e. the loss given default of
the cover pool part should be much lower than the one of the mortgage asset
itself. According to Pollmann [136], the LGD of mortgage cover pool assets
is considerably below 10% and Deutsche Bank [40] indicates that the LGD of
first-ranking mortgage loans with loan-to-value ratios of up to 60% is about
6.3%. We therefore set LCPS = 7%. For the bank’s other assets we assume
LOA = 40%, which is broadly in line with average LGDs of German group
2 banks as found in the QIS 5 study.5 Figure 5.4 illustrates the resulting
expected lifetime losses of the bank’s risky assets, i.e. the product of lifetime
default probabilities and losses given default. For strategic cover pool assets,
we get expected lifetime losses from 0.02% to 1.09% across the different asset
maturities. For one year, the expected lifetime loss is 0.04%. Note that this
is in line with results from a 1996 study of the institute empirica, which
found loss rates for mortgage loans with loan-to value ratios of up to 60% to
lie between 0.03% and 0.04%, depending on the property type (see Hagen
and Holter [82]). Even though this study is clearly outdated it can still be
seen as an indication that the combined choice of qCPS and LCPS as in our
setup is not completely unrealistic. For the bank’s other assets, expected
lifetime losses are much higher and range from 0.12% to 6.22%.

Figure 5.4: Expected lifetime losses of the bank’s risky assets.

5In the QIS 5 study, average portfolio LGDs were found to be 27% in the mortgage port-
folio, 37% in the corporate portfolio, 42% in the bank portfolio, 42% in the sovereign
portfolio, 25% in the SME corporate portfolio, 45% in the SME retail portfolio, 51%
in the other retail portfolio and 63% in the retail QRE portfolio, see Deutsche Bun-
desbank [41].
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Asset present values. The initial spreads sxi (0, T xi ) of the bank’s risky
assets are approximated by the inherent spreads

s̃xi (0, T xi ) :=
π̃xi · L̃xi
T xi

for i = 1, ..., nx and x ∈ {CPS,OA}, where π̃xi := πqx(T xi ) is the i-th

asset’s lifetime default probability, L̃xi = Lx its loss given default and T xi its
maturity. This is of course a very rough approximation as no market risk
premium is taken into account, but given the scarcity of available information
and the fact that especially for illiquid mortgage assets no market prices or
spread quotes exist, an approximation like this is necessary and acceptable
for our purpose. Figure 5.5 shows the inherent spreads of the bank’s risky
assets which range from 4.1 to 8.7 bp for the bank’s strategic cover pool
assets and from 23.6 to 49.8 bp for the bank’s other assets.

Figure 5.5: Inherent spreads of the bank’s risky assets.

The assets’ initial present values P̃ xi (0, T xi ) can now be approximated by the
corresponding inherent values

Ĩxi (0, T xi ) := e−(r(0,Txi )+s̃xi (0,Txi ))·Txi = e−(r(0,Txi )·Txi +π̃xi ·L̃
x
i ),

which are lower for longer maturities, higher PDs and higher LGDs. From a
pricing perspective, these are desirable features.

Correlations. The correlation matrix M of the state variable processes as
specified by Assumption 9 is set based on expert judgement. Correlations
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between assets of the same type are assumed to be comparably high and
set to ρCPS,CPS := ρOA,OA := 0.8, i.e. ρCPS,CPSi,k = ρOA,OAj,l = 0.8 for
i 6= k, j 6= l, with i, k = 1, ..., nCPS and j, l = 1, ..., nOA, while correlations
between strategic cover pool assets and other assets are assumed to be
slightly lower at ρCPS,OA := 0.7 due to increased diversification benefits,
i.e. ρCPS,OAi,j = 0.7. Furthermore, correlations between the state variable

processes and the short rate are set to ρCPS,ri = ρCPS,r := −0.25 and

ρOA,rj = ρOA,r := −0.25, to reflect a weak negative correlation between
interest rates and real estate markets. It can be easily checked that the
resulting correlation matrix M is positive definite.

Table 5.4 summarizes our parameter settings for the bank’s risky assets.
The associated correlation parameters can be found in Table 5.5. These
parameters will be used for the calibration of the state variable processes, cf.
Section 5.2.2 below.

Table 5.4: Parameter settings for the bank’s risky assets, i = 1, ..., nCPS and
j = 1, ..., nOA.

Parameter Setting Value/range

π̃CPSi πBB+(TCPSi ) [0.03%; 15.56%]

L̃CPSi LCPS 7%

s̃CPSi (0, TCPSi ) 1
TCPSi

· π̃CPSi · L̃CPSi [4.1bp; 8.7bp]

π̃OAj πBB+(TOAj ) [0.03%; 15.56%]

L̃OAj LOA 40%

s̃OAj (0, TOAj ) 1
TOAj

· π̃OAj · L̃OAj [23.6bp; 49.8bp]

Table 5.5: Correlation settings, i, k = 1, ..., nCPS and j, l = 1, ..., nOA .

Correlation Value

ρCPS,CPSi,k , i 6= k 0.8

ρOA,OAj,l , j 6= l 0.8

ρCPS,OAi,j 0.7

ρCPS,ri −0.25

ρOA,rj −0.25
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5.1.3 Further Model Parameters

Apart from asset nominals, maturities, default parameters and present values
which have been defined above, several other model parameters need to be
set. These include the funding and liquidation haircuts and the parameters
specifying the default barrier.

Funding haircuts. Funding haircuts protect the counterpart of a funding
transaction from potential losses due to uncertainties regarding the future
realisable sale price of pledged assets. In practice, the haircuts at which
assets are pledged depend on the market environment and on asset-specific
characteristics.6 Given the lack of publicly available bank-specific asset
information, we assume in the following that the funding haircuts hOAPL
and hCPSPL represent the average haircut applicable to the respective asset
category. For the Pfandbrief bank’s other assets, which typically comprise
unsecured claims against governments, credit institutions and corporates as
well as secured assets like covered bonds, an average haircut of h̃OAPL = 0.10
seems plausible and is broadly in line with typical ECB haircuts.7 As already
mentioned before, the majority of Mortgage Pfandbrief issuers also have
other Pfandbrief types outstanding which are not explicitly modelled in our
setup. A certain fraction of other assets is therefore needed as mandatory
overcollateralization for outstanding non-mortgage Pfandbriefe and reduces
the amount of other assets effectively available as collateral for funding
activities. In line with Assumption 30b, which states that assets in excess of
the nominal cover requirement only remain in the mortgage cover pool as long
as they are not needed for funding purposes, we assume that under funding
pressure only the minimum required overcollateralization is maintained for
non-mortgage cover pools. In the following, the fraction of other assets
needed as mandatory overcollateralization for the bank’s outstanding non-

mortgage Pfandbriefe is therefore approximated by pe := NNM

NOA
, where NOA

is the total nominal of the bank’s other assets and NNM the nominal of the

6In Eurosystem monetary policy operations valuation, haircuts are assigned based on
asset credit quality, liquidity category, residual maturity and coupon type, see King
and Will [101]. As a rule of thumb, the lower the liquidity or the credit quality and
the longer the residual maturity, the higher is this haircut.

7According to King and Will [101], the average haircut for coupon bonds in the liquidity
categories I to IV with credit quality step 1/2 and 3 and residual maturities of up to
10 years is 0.11.
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bank’s outstanding non-mortgage Pfandbriefe. Effectively, a haircut of hOAPL
has to be applied to the bank’s other assets such that

(1− hOAPL)
!
= (1− h̃OAPL) · (1− pe).

Solving for hOAPL yields

hOAPL := 1− (1− pe) · (1− h̃OAPL). (5.1)

The above approximation implicitly assumes that the relative size of non-
mortgage Pfandbriefe to the bank’s other assets remains constant over time
which is not necessarily fulfilled in practice. For banks with considerable
amounts of non-mortgage Pfandbriefe, an explicit modelling of these positions
might be considered. Related model extensions are, however, beyond the
scope of this work. Applying the formula in Equation (5.1) to Münchener
Hypothekenbank’s balance sheet and its §28 Pfandbrief statistics as of Q4
2014, cf. Münchener Hypothekenbank [130], [131], we get pe = 33.6% and
with h̃OAPL = 0.10 it follows that hOAPL = 40.2%. For strategic cover pool
assets, we set hCPSPL = 0.25 in the following, to account for the fact that
mortgage cover pools typically contain rather illiquid assets.

Liquidation haircuts. Similar to funding haircuts, liquidation haircuts
refer to a stressed market environment and represent some kind of downturn
expectation. We thus set hOALI = hOAPL =: hOA and hCPSLI = hCPSPL =: hCPS .

Default barrier. The parameters MST and MLT , which define the contribu-
tion of future debt payments to the solvency barriers BOB (t) and BOP (t), are
set to MST = 1 and MLT = 0.5, i.e. short term debt is fully accounted for,
while long term debt is included with a factor of 0.5 only. In the following,
we consider a time period of up to 0.5 years as short term (TST = 0.5)
and payments beyond two and a half years are considered to be long term
(TLT = 2.5). As we will see in Section 6.3, the exact choice of these pa-
rameters is less crucial in our setting as there is a second default reason
(illiquidity) which mitigates the risk of underestimating default probabilities.

Table 5.6 summarizes our parameter settings for further model parameters.
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Table 5.6: Further model parameter settings.

Parameter hCPSPL hOAPL hCPSLI hOALI MST MLT TST TLT

Value 0.25 0.402 0.25 0.402 1 0.5 0.5 2.5

5.2 Calibration of the Market Environment

5.2.1 Risk-Free Interest Rates

In the following, we describe how the parameters of the Vasicek dynamics
in Equations (4.4) and (4.5) are determined. As the application of our
simulation model is mainly real-world8, we start with the calibration of the
real-world parameters κPr , θPr , σr and r0; the risk-neutral parameters κQr
and θQr are derived in a second step.

P-dynamics. For the calibration of the parameters κPr , θPr , σr and r0

we need historical observations r(t0), ..., r(tN ) of the short rate. As the
short rate itself is not observable in the market, we use weekly Wednesday
observations of the six-month Euribor9 from 07/01/2004 to 31/12/2014 as a
proxy and consider the historical observations r̃(ti)|r̃(ti−1), i = 1, ..., N , with
ti − ti−1 = 7

365 =: ∆r and N = 573 to be independent realizations of the
short rate r(ti)|r(ti−1). Since the as of date of our simulation is 31/12/2014,
the estimate for the short rate in t0 is set to r̂0 := r̃(tN ) = 0.0017.

The parameters κPr , θPr and σr are estimated by the maximum likelihood
method, where the optimization problem

arg max
κPr ,θ

P
r ,σr>0

LL3(κPr , θ
P
r , σr) (5.2)

is solved, with LL3(κPr , θ
P
r , σr) being the associated log-likelihood function

which is derived as follows. According to Proposition 4.1, the short rate is

8Our main goal is to determine (real-world) default parameters for Pfandbriefe.
9Bloomberg Ticker: EUR006M Index.
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Figure 5.6: Weekly observations of the six-month Euribor from 07/01/2004 to
31/12/2014.

normally distributed and the density of r̃(ti)|r̃(ti−1) is given by

fr̃(ti)|r̃(ti−1)(x;κPr , θ
P
r , σr,∆r) :=

1

σ̂∆r

√
2π
· e−

1
2

(
x−µ̂∆r,i
σ̂∆r

)2

, i = 1, ..., N,

with

µ̂∆r,i := r̃(ti−1)e−κ
P
r ∆r + θPr (1− e−κ

P
r ∆r ),

σ̂∆r
:=

√
σ2
r

2κPr
(1− e−2κPr ∆r ),

for positive parameters κPr , θPr and σr. Since the realizations r̃(ti)|r̃(ti−1)
are independent we get

LL3(κPr , θ
P
r , σr) = ln

(
N∏
i=1

fr̃(ti)|r̃(ti−1)

(
r̃(ti)|r̃(ti−1);κPr , θ

P
r , σr,∆r

))

=

N∑
i=1

ln
(
fr̃(ti)|r̃(ti−1)(r̃(ti)|r̃(ti−1);κPr , θ

P
r , σr,∆r)

)
=− N

2
ln(2π)− N

2
ln

(
σ2
r

2κPr

(
1− e−2κPr ∆r

))
− κPr w

σ2
r(1− e−2κPr ∆r )

,

where w :=
∑N
i=1 v

2
i and vi := r̃(ti)− r̃(ti−1)e−κ

P
r ∆r − θPr (1− e−κPr ∆r) for
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i = 1, ..., N . For σr, the first-order necessary condition of the optimization
problem in (5.2) results in

∂LL3(κPr , θ
P
r , σr)

∂σr
= −N

σr
+

2κPr w

σ3
r(1− e−2κPr ∆r )

!
= 0.

Given that κPr , ∆r and N are strictly positive, solving for positive σr yields

σr =

√
2κPr w

N
(
1− e−2κPr ∆r

) (5.3)

if w > 0. Otherwise, there is no σr which fulfils the first-order necessary
condition and LL3 does not have a stationary point at all. In the case where
w > 0, Equation (5.3) implies that σr is a function of the parameters κPr
and θPr , and the three-dimensional optimization problem in (5.2) simplifies
to

arg max
κPr ,θ

P
r >0

LL2(κPr , θ
P
r ), (5.4)

with

LL2(κPr , θ
P
r ) := −N

2
ln(2π)− N

2
ln
(w
N

)
− N

2
.

The first-order necessary conditions of the optimization problem in (5.4)
then result in

∂LL2(κPr , θ
P
r )

∂κPr
= −N

w
∆r e

−κPr ∆r

N∑
i=1

vi
(
r̃(ti−1)− θPr

)
= −N

w
∆r e

−κPr ∆r

N∑
i=1

zi
!
= 0,

∂LL2(κPr , θ
P
r )

∂θPr
=
N

w
(1− e−κ

P
r ∆r )

N∑
i=1

vi
!
= 0,

with zi := (r̃(ti) − θPr ) · (r̃(ti−1) − θPr ) − e−κPr ∆r(r̃(ti−1) − θPr )2 and vi as
before. Solving the first of the two above equations for κPr and the second
one for θPr yields

κPr = − 1

∆r
ln

(∑N
i=1

(
r̃(ti)− θPr

)
·
(
r̃(ti−1)− θPr

)∑N
i=1(r̃(ti−1)− θPr )2

)
, (5.5)
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θPr =

∑N
i=1

(
r̃(ti)− r̃(ti−1)e−κ

P
r ∆r

)
N
(
1− e−κPr ∆r

) . (5.6)

From Equation (5.5) it then follows that

e−κ
P
r ∆r =

r̃xy − θPr r̃x − θPr r̃y +N(θPr )2

r̃xx − 2θPr r̃x +N(θPr )2
, (5.7)

with r̃y, r̃x, r̃xy and r̃xx being defined by r̃y :=
∑N
i=1 r̃(ti), r̃x :=

∑N
i=1 r̃(ti−1),

r̃xy :=
∑N
i=1 r̃(ti)r̃(ti−1) and r̃xx :=

∑N
i=1 r̃(ti−1)2. Substituting (5.7) in

(5.6) yields

NθPr =
r̃y − r̃x · r̃xy−θ

P
r r̃x−θ

P
r r̃y+N(θPr )2

r̃xx−2θPr r̃x+N(θPr )2

1− r̃xy−θPr r̃x−θPr r̃y+N(θPr )2

r̃xx−2θPr r̃x+N(θPr )2

=
r̃y
(
r̃xx − 2θPr r̃x +N(θPr )2

)
− r̃x

(
r̃xy − θPr r̃x − θPr r̃y +N(θPr )2

)
(r̃xx − 2θPr r̃x +N(θPr )2)− (r̃xy − θPr r̃x − θPr r̃y +N(θPr )2)

=
(r̃y r̃xx − r̃xr̃xy) +

(
r̃2
x − r̃y r̃x

)
θPr + (r̃y − r̃x)N(θPr )2

(r̃xx − r̃xy) + (r̃y − r̃x) θPr
,

and moving all expressions containing θPr to the left results in

NθPr (r̃xx − r̃xy)−
(
r̃2
x − r̃y r̃x

)
θPr = (r̃y r̃xx − r̃xr̃xy) .

The maximum likelihood estimate for the parameter θPr is then obtained by
solving for θPr :

θ̂Pr :=
r̃y r̃xx − r̃xr̃xy

N (r̃xx − r̃xy)− (r̃2
x − r̃xr̃y)

.

The estimates for the other two parameters follow from Equations (5.3) and
(5.5),

κ̂Pr := − 1

∆r
ln

(
r̃xy − r̃y θ̂Pr − r̃xθ̂Pr +N(θ̂Pr )2

r̃xx − 2r̃xθ̂Pr +N(θ̂Pr )2

)
,

σ̂2
r :=

2κ̂Pr
N (1− b2)

(
r̃yy − 2br̃xy + b2r̃xx − dxy +N(θ̂Pr )2(1− b)2

)
,

with r̃yy :=
∑N
i=1 r̃(ti)

2, b := e−κ̂
P
r ∆r and dxy := 2(1− b)(r̃y − br̃x)θ̂Pr .
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Applying the above formulas to the weekly observations of the six-month
Euribor, we obtain θ̂Pr = 0.0606 =: θ̂Pr,1 and κ̂Pr = −0.0432 =: κ̂Pr,1, which is

not a feasible solution of the optimization problem in (5.4) as κ̂Pr,1 is negative.
Since the function LL2 is well-defined and differentiable on R+ ×R+, it can
be concluded that there is no (local) maximum on R+ × R+.

Running the optimization problem in (5.4) in Matlab10 with starting val-
ues θPr,start = κPr,start = 1 while requiring that θPr , κ

P
r ≥ 10−10, we get

θ̂Pr,2 = 10−10 and κ̂Pr,2 = 0.0433 as optimal values, i.e. the maximum is

obtained for θPr on the boundary.11 As θPr represents the long term av-
erage of the short rate, setting it to almost zero seems counterintuitive
as the average level of short rates in our data set is considerably higher,
r̄ := 1

N+1

∑N
i=0 r̃(ti) = 0.0199. In our case, expert judgement which does

not only account for historical observations but also takes into consideration
expectations about future developments seems to be more appropriate when
determining the long term mean of the short rate. This is why we set
θ̂Pr := r̄ = 0.0199 in the following.

Having fixed the parameter estimate for θPr , the optimization problem in
(5.4) simplifies to

arg max
κPr >0

LL1(κPr ), (5.8)

with LL1(κPr ) := LL2(κPr , r̄). The first-order necessary condition for κPr is
then obtained from (5.5) with θPr = r̄ and results in an optimal value of
κ̂Pr,3 = −0.0429, which again is not a feasible solution of the optimization
problem in Equation (5.8) as it is negative. Since the function LL1 is
well-defined and differentiable on R+, it can be concluded that there is no
(local) maximum on R+. Running the optimization problem in (5.8) in
Matlab12 with starting value κPr,start = 1 while requiring κPr ≥ 10−10, we

get κ̂Pr,4 = 10−10. As this estimate for κPr is almost zero, the drift term

κPr
(
θPr − r(t)

)
dt which pushes r(t) back to its long term mean vanishes,

i.e. the mean reversion feature is lost. As can be seen from Figure 5.7, the
function LL1 is very flat on the interval [0, 0.1], i.e. whether the parameter
estimate for κPr is set to κ̂Pr,4 or to a higher value as for example 0.01 or 0.05

10The Matlab function fmincon, which finds the minimum of constrained nonlinear mul-
tivariable functions, is applied to the negative of the function LL2.

11When running the optimization problem in Matlab with the same starting values but
requiring θPr , κ

P
r ≥ 0 instead and allowing the parameters to assume a value of zero,

we get θ̂Pr,2 = 0 and κ̂Pr,2 = 0.0433, i.e. the parameter estimate for θPr converges to 0.
12As before, the Matlab function fmincon is applied to the negative of the function which

is to be maximized.
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does not have much impact on the resulting value of the function LL1. To
guarantee a certain minimum level of mean reversion in our model, we claim
κ̂Pr := κ̂Pr,5 := 0.01, which implies that the short rate needs approximately

1/κ̂Pr = 100 years to return to its long term mean.

Figure 5.7: Values of the function LL1 for κPr ∈ [0, 0.1].

Table 5.7 shows the feasible parameter estimates κ̂Pr,i and θ̂Pr,i, i = 2, 4, 5, as
derived above and compares the resulting estimates σ̂r,i and the associated

function values LL2(κ̂Pr,i, θ̂
P
r,i). It turns out that the impact of the choice

of the parameter set i = 2, 4, 5 on the value of the function LL2 and the
resulting estimate for σr is negligible.

Table 5.7: The feasible parameter estimates κ̂Pr,i, θ̂
P
r,i and σ̂r,i, i = 2, 4, 5.

i θ̂Pr,i κ̂Pr,i σ̂r,i LL2

2 10−10 0.0433 0.0035 3556.9

4 0.0199 10−10 0.0035 3556.4

5 0.0199 0.0100 0.0035 3556.3

Figure 5.8 visualizes the two-dimensional function LL2 for the three para-
meter pairs Pi := (θ̂Pr,i, κ̂

P
r,i), i = 2, 4, 5.

To get a feeling how well the three feasible parameter sets fit the historical
observations of the six-month Euribor, we start from r̃(t0) = 0.0210 (the
observation on 07/01/2004) and simulate 1, 000 paths of weekly observations
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Figure 5.8: Visualization of the two-dimensional function LL2.

for each of the tree parameter sets.13 The simulation results and the
historical time series of the six-month Euribor are shown in Figure 5.9. Since
r̃(t0) > θ̂Pr,i for i = 2, 4, 5, the simulated paths are on average downward

sloping, but for θ̂Pr,2 the effect is more pronounced than for θ̂Pr,4 and θ̂Pr,5
where it is barely visible. On the other hand, the differences in the mean
reversion speed which are expected to result in a lower variation of the
simulated paths for higher levels of κPr do not seem to be very strong. For
i = 4 and i = 5 the paths appear to fit the historical observations during
the financial crisis slightly better than for i = 2.

To further verify the adequateness of the feasible parameter sets κ̂Pr,i, θ̂
P
r,i,

σ̂r,i for i = 1, 4, 5, we perform a Kolmogorov-Smirnov test for goodness of
fit, cf. Massey [118], which is based on the maximum difference between
the empirical and the hypothetical cumulative distribution function of a set
of observations. More specifically, for each of the feasible parameter sets

i = 2, 4, 5, the observed cumulative step-function SiN (x) = ki

N , where ki is

13The paths are simulated by using the exact solution of the differential equation in the
Vasicek model,

r(tj+1) = r(tj) · e−κ
P
r ∆r + θPr (1− e−κ

P
r ∆r ) + εj+1

√
σ2
r

2κPr

(
1− e−2κPr ∆r

)
,

with ∆r = 7/365 and εj+1 ∼ iid N (0, 1) for j = 0, ..., N − 1 .
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(a) Simulated paths for κ̂Pr,2, θ̂Pr,2 and σ̂Pr,2.

(b) Simulated paths for κ̂Pr,4, θ̂Pr,4 and σ̂Pr,4.

(c) Simulated paths for κ̂Pr,5, θ̂Pr,5 and σ̂Pr,5.

Figure 5.9: Simulated paths (in grey), average simulated short rate level
(dashed black line) and historical observations of the six-month
Euribor (solid black line).
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the number of observations yij ,

yij :=
r̃(tj)− r̃(tj−1)e−κ̂

P
r,i∆r − θ̂Pr,i(1− e−κ̂

P
r,i∆r )√

(σ̂r,i)2

2κ̂Pr,i
(1− e−2κ̂Pr,i∆r )

, j = 1, ..., N,

which are below or equal to x, is compared to the standard normal distri-
bution function Φ(x). Under the assumptions of the Vasicek model, the

observed cumulative step-function SiN (x) = ki

N is expected to be close to
Φ(x). If this is not the case there is empirical evidence that the Vasicek

model with parameters κ̂Pr,i, θ̂
P
r,i and σ̂r,i is not the correct model. The

associated test statistics are given by di := maxy∈Ỹ |Φ(y) − SiN (y)| with

Ỹ :=
{
yi1, ..., y

i
N

}
. For our sample size N = 573, the critical values dα for

the significance levels α = 0.05 and α = 0.01 are 1.36√
N

and 1.63√
N

respectively.

If di > dα, the hypothesis that the true distribution of SiN (x) is Φ(x) is
rejected at the significance level α. Table 5.8 shows the test results for
the three parameter sets and the two confidence levels. As di > dα for
i = 2, 4, 5 and both α values, the hypothesis that the empirical observations
yij , j = 1, ..., N , are in line with the theoretical distribution Φ(x) is rejected
in all cases. This indicates that the historical time series of the six-month
Euribor does not reflect the behaviour of a mean-reversion process as as-
sumed by the Vasicek model, which makes calibration difficult in general.
An investigation regarding more suitable models in this context is, however,
beyond the scope of this work and left for future research. For a discussion
on the pros and cons of the Vasicek model, see Section 4.3.1.

Table 5.8: Results of the Kolmogorov-Smirnov test.

i α di dα reject?

2 0.01 0.1704 0.0681 yes
4 0.01 0.1630 0.0681 yes
5 0.01 0.1625 0.0681 yes
2 0.05 0.1704 0.0568 yes
4 0.05 0.1630 0.0568 yes
5 0.05 0.1625 0.0568 yes

As the Kolmogorov-Smirnov test does not give any indication that one of
the two parameter sets 2 or 4 is more suitable than the parameter set 5 (d5
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is even smaller than d2 and d4), we set the real-world Vasicek parameters to
the expert judgements in parameter set 5 and obtain

θ̂Pr = 0.0199, κ̂Pr = 0.01, σ̂r = 0.0035, r̂0 = 0.0017. (RW)

Figure 5.10 compares the historical volatility of the weekly absolute short
rate changes over a 1-year moving time window with the obtained model

volatility σ̂M :=
√

σ̂2
r

2κ̂Pr

(
1− e−2κPr ∆r

)
which results from the parameter

estimates in (RW). The fit is quite good on average.

Figure 5.10: Comparison of moving window volatility and model volatility σ̂M .

Q-dynamics. The risk-neutral short rate parameters κQr and θQr are cali-
brated to the yield curve observed in the market on 31/12/2014 as shown
in Figure 5.11.14 More specifically, the parameters κQr and θQr are deter-
mined by using the method of least squares, which minimizes the sum of the
squared differences of observed (target) and modelled spot rates for a set of

14Bloomberg Tickers: EUR006M Index, EUFR0AG CMPN Curncy, EUFR0BH CMPN
Curncy, EUFR0CI CMPN Curncy, EUFR0DJ CMPN Curncy, EUFR0EK CMPN
Curncy, EUFR0F1 CMPN Curncy, EUFR0G1A CMPN Curncy, EUFR0H1B CMPN
Curncy, EUFR0I1C CMPN Curncy, EUFR0J1D CMPN Curncy, EUFR0K1E CMPN
Curncy, EUFR011F CMPN Curncy, EUSA2 BGN Curncy, EUSA3 BGN Curncy,
EUSA4 BGN Curncy, EUSA5 BGN Curncy, EUSA6 BGN Curncy, EUSA7 BGN
Curncy, EUSA8 BGN Curncy, EUSA9 BGN Curncy, EUSA10 BGN Curncy, EUSA11
BGN Curncy, EUSA12 BGN Curncy and EUSA15 BGN Curncy.
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Figure 5.11: Initial yield curve as of 31/12/2014.

pre-defined yield curve buckets M. The associated optimization problem is
given by

arg min
κQr ,θ

Q
r >0

{∑
T∈M

(r̃(tN , tN + T )− r(tN , tN + T ))
2

}
, (5.9)

where r̃(tN , tN + T ) is the spot rate for a T -year investment observed in
the market at time tN and r(tN , tN + T ) is the modelled spot rate as in
Equation (4.9), which is a function of the risk neutral parameters κQr and θQr
and the already determined volatility σr. To ensure a reasonable yield curve
fit, swaption volatilities are ignored. As there are no complex interest rate
products to be priced in our model but only plain vanilla zero coupon bonds,
a fit to swaption volatilities is of secondary importance. Furthermore, the
calibration of the parameter σr to swaption volatilities instead of historical
Euribor data would imply that long-term real-world movements of the short
rate are driven by current swaption volatilities in the first place, and therefore
by market risk premia, which is not desirable for our purpose.

In the following, we set M := {0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15} and
run the minimization problem in (5.9) in Matlab.15 Since the minimization
problem is non-linear and may have several local optima, the solution of the
optimization procedure is likely to depend on the chosen pair of starting
values (κQr,start, θ

Q
r,start). We therefore run the optimization routine 10201

times with starting values on the grid{
10−10, 0.01, 0.02, ..., 0.99, 1

}
×
{

10−10, 0.01, 0.02, ..., 0.99, 1
}

15Again, the Matlab function fmincon is used.
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while requiring κQr , θ
Q
r ≥ 10−15. Out of the obtained 10201 solutions, we

choose the pair (κ̂Qr , θ̂
Q
r ) which results in the lowest sum of squared differences.

By doing so we obtain

θ̂Qr = 0.9897, κ̂Qr = 0.0013. (RN)

Figure 5.12 shows the resulting yield curve fit. As of 31/12/2014, the
maximum observed difference between r̃(tN , tN + T ) and r(tN , tN + T ) is

14.1 bp for T ∈M. One might argue that κ̂Qr and θ̂Qr do not seem realistic
in terms of interpretation16, but we deem these parameter estimates to be
acceptable as the main purpose of the risk-neutral calibration is to get the
risk-free market rates right. On the other hand, the extreme realisations of
κ̂Qr and θ̂Qr in conjunction with our findings from the real-world calibration
can be interpreted as an indication for the Vasicek model not being the most
appropriate interest rate model for our purpose, especially as σ̂r is fixed
during the real-world calibration. An investigation regarding more suitable
interest rate models with more degrees of freedom is, however, beyond the
scope of this work and left for future research.

Figure 5.12: Initial yield curve fit for κ̂Qr and θ̂Qr .

Table 5.9 summarizes the calibrated Vasicek parameters from (RW) and
(RN).

16A mean-reversion level of 99% which is reached after 1/κ̂Qr = 786 years is not intuitive
from a real-world perspective.
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Table 5.9: Vasicek parameter settings.

Parameter r̂0 σ̂r θ̂Pr κ̂Pr κ̂
Q
r θ̂

Q
r

Value 0.0017 0.0035 0.0199 0.01 0.0013 0.9897

5.2.2 Asset Creditworthiness

The parameters of the state variable processes in Equation (4.18) are cali-
brated to the assets’ lifetime default probabilities, their expected losses given
default and their inherent spreads as specified in Section 5.1.2. In our model,
the lifetime default probabilities and the losses given default of the bank’s
risky assets are calculated by

πxi := πxi (T xi ) = Φ

(
−

lnZx,0i +
(
µxi − 1

2 (σxi )2
)
T xi

σxi
√
T xi

)
, (5.10)

Lxi := Lxi (T xi ) = 1− Zx,0i eµ
x
i T

x
i

πxi
· Φ
(

Φ−1(πxi )− σxi
√
T xi

)
, (5.11)

for i = 1, ..., nx and x ∈ {CPS,OA}, see Lemma 4.10. Furthermore, the
spreads of the risky assets are given by

sxi (0, T xi ) = − 1

T xi

(
ln P̃ xi (0, T xi ) + r(0, T xi )T xi

)
, (5.12)

with r(0, T xi ) and P̃ xi (0, T xi ) as in Equations (4.9) and (4.14).

The parameters Zx,0i , µxi and σxi of the state variable processes are then
calibrated by minimizing the sum of the squared differences of the calibration
targets π̃xi , L̃xi and s̃xi (0, T xi ) from Table 5.4 and the corresponding model
values πxi , Lxi and sxi (0, T xi ) as in Equations (5.10)–(5.12) above. The
associated optimization problem is given by

arg min
Zx,0i ,σxi >0, µxi ∈R

{
LSi,x1 (Zx,0i , σxi , µ

x
i )
}
, (5.13)

where

LSi,x1 (Zx,0i , σxi , µ
x
i ) :=(πxi − π̃xi )2 + (Lxi − L̃xi )2 + (sxi (0, T xi )− s̃xi (0, T xi ))2.
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Solving πxi
!
= π̃xi for µxi yields

µxi =
−Φ−1(π̃xi )σxi

√
T xi − lnZx,0i + 1

2 (σxi )2 T xi
T xi

, (5.14)

i.e. for fix T xi , µxi is a function of Zx,0i and σxi . The optimization problem
in Equation (5.13) therefore simplifies to

arg min
Zx,0i ,σxi >0

{
LSi,x2 (Zx,0i , σxi )

}
, (5.15)

where

LSi,x2 (Zx,0i , σxi ) := (L̂xi − L̃xi )2 + (ŝxi (0, T xi )− s̃xi (0, T xi ))2.

The adjusted model values L̂xi and ŝxi (0, T xi ) account for the choice of µxi as
in (5.14) and are given by

L̂xi = 1− Zx,0i efµ(Zx,0i ,σxi )·Txi

π̃xi
· Φ
(

Φ−1(π̃xi )− σxi
√
T xi

)
,

ŝxi (0, T xi ) = − 1

T xi

(
ln fP̃ (Zx,0i , σxi ) + r(0, T xi )T xi

)
,

with

fµ(Zx,0i , σxi ) :=
−Φ−1(π̃xi )σxi

√
T xi − lnZx,0i + 1

2 (σxi )2 T xi
T xi

,

fP̃ (Zx,0i , σxi ) := P (0, T xi )− V Put(0, T xi , 1, Z
x,0
i , σxi , r0, θ

Q
r , κ

Q
r , σr, ρ

x,r
i ),

and V Put as in Equation (4.15). Note that, as ŝxi (0, T xi ) depends on r(0, T xi )
and fP̃ (Zx,0i , σxi ), the Vasicek parameters r0, σr, θ

Q
r and κQr and the corre-

lation parameter ρx,ri have an impact on the calibration of the risky assets’
parameters.

The parameter estimates Ẑx,0i and σ̂xi are then obtained by running the
minimization problem in (5.15) in Matlab.17 Having done so, the estimate

17To solve the minimization problem, the Matlab function fminsearch is applied to the
function LSi,x2 with starting values Zx,0i,start = σxi,start = 0.1.
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for µxi is derived with the help of Equation (5.14):

µ̂xi =
−Φ−1(π̃xi ) σ̂xi

√
T xi − ln Ẑx,0i + 1

2 (σ̂xi )2 T xi
T xi

.

As there are sufficient degrees of freedom in the calibration, we get a perfect
fit. Based on the Vasicek parameters in Table 5.9 and the correlations in Table
5.5, all observed differences |πxi − π̃xi |, |Lxi − L̃xi | and |sxi (0, T xi )− s̃xi (0, T xi )|
are ≤ 10−15 for all i = 1, ..., nx and x ∈ {CPS,OA}. The resulting model
parameters Ẑx,0i , µ̂xi and σ̂xi of the bank’s risky assets can be found in Table
A.3 in the appendix.

5.3 Scenario Generation

Given the finite time setting Td := {t0, ..., tS} with S ∈ N, t0 = 0,
ti+1 := ti + ∆ for i = 0, ..., S − 1 and ∆ := 0.5

k , k ∈ N where
tS := Tmax := 12.5, we now denote by N ∈ N the number of scenarios
to be simulated. From Proposition 4.1 we know that r(t)|Fs is normally
distributed for t ≥ s, with mean µr(t)|Fs and variance σ2

r(t)|Fs . A sample
real-world path of the short rate can therefore be simulated by

r(tj+1) = r(tj) e
−κPr ∆ + θPr (1− e−κ

P
r ∆) + εrj+1

√
σ2
r

2κPr
(1− e−2κPr ∆),

for j = 0, ..., S − 1, with r(t0) := r0 and εr1, ..., ε
r
S being independent random

draws from a standard normal distribution. Figure 5.13 shows 10, 000
simulated real-world paths of the short rate with ∆ = 0.5. Since r0 < θPr ,
the mean of the short rate increases over time, but the effect is barely visible.
This is not surprising as κPr = 0.01 implies that it takes on average 100
years until the short rate returns to its long term mean θPr = 0.0199. It
also becomes apparent that there is a considerable amount of negative short
rates.

For the simulation of the real-world evolution of the state variable associated
with the bank’s i-th risky asset of type x ∈ {CPS,OA}, i ∈ {1, ..., nx}, the
analytical solution of the stochastic differential equation in Equation (4.18)
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Figure 5.13: 10, 000 simulated real-world paths of the short rate (in grey) and
average simulated short rate (dashed black line).

is used, cf. Brigo et al [23]:

Zxi (tj+1) = Zxi (tj) e
(µxi−0.5 (σxi )2)·∆+σxi

√
∆ εi,xj+1 ,

for j = 0, ..., S − 1, with Zxi (t0) := Zx,0i and εi,x1 , ..., εi,xS being independent
random draws from a standard normal distribution. Figure 5.14 shows 10, 000
simulated real-world paths of the state variable ZCPSS which is associated
with the risky cover pool asset maturing in tS , based on ∆ = 0.5. The
mean of the state variable paths is slightly increasing over time for this asset,
which is a consequence of Remark 4.9 together with µ̂CPS25 = 0.0080 > 0.

Figure 5.14: 10, 000 simulated real-world paths of the state variable ZCPSS (in
grey) and average simulated state variable (dashed black line).
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From the simulated short rate r(tj+1), the price of a risk-free zero coupon
bond with maturity T ≥ tj+1 is calculated according to Proposition 4.3:

P (tj+1, T ) = A(tj+1, T ) · e−B(tj+1,T )·r(tj+1).

Furthermore, given the simulated state variable Zxi (tj+1), the price of the
associated risky zero coupon bond is obtained from Lemma 4.13, i.e. for
tj+1 ≤ T xi we have

P̃ (tj+1, T
x
i ) =P (tj+1, T

x
i )

− V Put(tj+1, T
x
i , 1, Z

x
i (tj+1), σxi , r(tj+1), θQr , κ

Q
r , σr, ρ

x,r
i ).

To simulate N scenarios of the market environment, N ·S ·K random variables
need to be generated, K := nCPS + nOA + 1. For each of the variables εrj ,

εi,CPSj and εk,OAj , i = 1, ..., nCPS and k = 1, ..., nOA, one random draw is
needed at each of the S simulation time steps and in each of the N scenarios.
The vector

εj := (εrj , ε
1,CPS
j , ..., εnCPS ,CPSj , ε1,OAj , ..., εnOA,OAj ) ∈ RK

is normally distributed with εj ∼ N (0,M) for j = 1, ..., S and correla-
tion matrix M as in Assumption 9. It can be simulated by C ε̃j with
ε̃j ∼ N (0, IK), where IK is the identity matrix of size K and C the lower
triangular matrix from the Cholesky decomposition of the matrix M which
fulfils CC> = M , cf. Glassermann [78], p. 82.18 For variance reduction
purposes, we use the method of antithetic variates, i.e. we effectively simulate

Ñ := 1
2 N (with N being a multiple of 2) realizations ε1j , ..., ε

Ñ
j of the vector

εj and set εÑ+l
j := −εlj for l = 1, ..., Ñ .19

18In Matlab, the Cholesky decomposition of the matrix M is obtained by using the
function chol.

19For more details on the method of antithetic variates, see Glassermann [78], Chapter
4.2.
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In the following, we discuss the simulation results obtained from the exem-
plary Mortgage Pfandbrief calibration as specified in the previous chapter.
More specifically, we set ∆ = 0.5 and Tmax = 12.5, which implies S = 25
and Td = {0, 0.5, ..., 12.5}, and take the balance sheet profile in Table
A.1 and the model parameters from Tables 5.5, 5.6, 5.9, A.3 to simulate
N = 100, 000 scenarios. Subsequently, this setup is referred to as the base
run. The associated certainty equivalent scenario (CE scenario) is the deter-
ministic scenario which is obtained when setting the volatility parameters
σ̂r = σ̂CPSi = σ̂OAj = 0 for i, j = 1, ..., S. It describes the future market
environment if all stochastic variables evolve “as expected”, without random
fluctuations. As we will see in the following, the certainty equivalent scenario
can be very helpful in the context of scenario analyses. In Section 6.1 we
have a first look at the default statistics from the base run and in Section
6.2 we analyse the drivers of losses in more detail. Section 6.3 is then
dedicated to bank and cover pool solvency; funding and liquidity aspects
are discussed in Section 6.4. In Section 6.5 we address the topics scenario
quality and stability of simulation results and in Section 6.6 we perform
sensitivity analyses. Finally, Section 6.7 summarizes our findings.

6.1 Default Statistics

To get a first impression of the base run results, we analyse the default
statistics of the bank and the cover pool, i.e. the default probabilities (PDs),
the losses given default (LGDs) and the expected losses (ELs), and look into
the associated default reasons.

Default probabilities. As can be seen from Figure 6.1, the bank’s default
probabilities πBt range from 0% to 1.3%, with the first bank default occurring
in year 1. In the first 3.5 years, bank defaults are still rare with a cumulative
default probability of 0.05%, but they increase over time with their maximum

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2018
M. Spangler, Modelling German Covered Bonds, Mathematische Optimierung
und Wirtschaftsmathematik | Mathematical Optimization and Economathematics,
https://doi.org/10.1007/978-3-658-23915-2_6
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being reached in year 11.5. The cumulative probability of a bank default
until Tmax is 10.4%. The cover pool default probabilities πPt , on the other
hand, are zero prior to year 9. In later years they increase to up to 2.5%
and for t ≥ 11 they are even higher than the corresponding bank default
probabilities. The cumulative probability of a cover pool default until Tmax is
7.6%. All in all, the cover pool defaults in 73% of the bank default scenarios.
Thereof, in 20% of cases the default happens at the same time as the bank
default, while in 53% it occurs at some later time. In 27% of the bank
default scenarios the cover pool does not default at all. Short to mid-term
maturities are very safe, but longer-dated Pfandbriefe suffer from defaults
and are affected by time subordination. For more detailed information on
bank and cover pool default probabilities, see Tables A.4 and A.5 in the
appendix.

Based on the lifetime default probabilities πR(t) in Table A.2 in the appendix,
ratings can be assigned to the bank’s liabilities. For an outstanding liability
with maturity t ∈ {1, 2, ..., 13}, the value πR(t) can be interpreted as upper
barrier for its cumulative default probability πxt,cum, x ∈ {B,P}, to be
assigned a rating R ∈ {AAA,AA,A+, A−, ..., CCC,D}. In the case of non-
integer maturities, linear interpolation is applied to obtain this upper barrier.
It turns out that for Pfandbriefe with maturities of up to 10 years, the
cumulative default probability of the cover pool is in line with a AAA rating.
In the case of other liabilities with maturities not longer than 3.5 years, the
assigned rating is also in the AAA/AA range. For longer maturities, the
ratings get worse. The 12.5-year cumulative default probabilities of the bank
(10.4%) and the cover pool (7.6%) correspond to a rating of BB+ and BBB-
respectively. More details on the assigned PD-ratings can be found in Table
A.6 in the appendix.

Losses given default and expected losses. The losses given default and the
expected losses of the bank’s liabilities are shown in Figure 6.2. In the case
of other liabilities, the losses given default LOLt range from 15.8% to 95.2%.
They are very high (> 80%) most of the time but show a tendency to decrease
after 10 years with the lowest non-zero loss given default being observed in
Tmax. For Pfandbriefe, the losses given default LPBt are considerably lower
and take values from 1.5% to 50.5% (prior to year 9 they are equal to zero),
with a constant decline over time. A detailed analysis of the drivers of these
losses will be performed in Section 6.2 below.
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(a) Default probabilities πBt and πPt .

(b) Cumulative default probabilities πBt,cum and πPt,cum.

(c) Time between bank and cover pool (CP) default, given bank default.

Figure 6.1: Bank and cover pool default probabilities over time.
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The expected losses ELOLt of other liabilities, which are determined by
multiplying the respective default probabilities and losses given default, get
as high as 0.9% with a cumulative expected loss of 8.4% until Tmax. For
Pfandbriefe, the expected losses ELPBt are considerably lower, especially
prior to year 10, and take values of up to 0.5% with a cumulative expected
loss of 1.4% until Tmax. Consequently, the average loss given default turns out
to be LOLavg = 8.4%

10.4% = 80.5% for other liabilities and LPBavg = 1.4%
7.6% = 19.0%

for Pfandbriefe. For more information on the observed losses given default
and the expected losses, we refer to Table A.4 in the appendix.

(a) Losses given default LPBt and LOLt .

(b) Expected losses ELPBt and ELOLt .

Figure 6.2: Losses given default and expected losses over time.

Default reasons. As depicted in Figure 6.3, the availability of funding
plays an important role for the bank: illiquidity is the sole default reason in
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61% of bank default scenarios.1 In the first 3 years, there are only very few
bank defaults, but in all cases illiquidity is the default reason. It also remains
the predominant driver of bank default until year 10. Overindebtedness
does not seem to be a major threat for the bank in the short term. The
situation is different in the case of the cover pool which is overindebted in
the majority of cover pool default scenarios (in 88% of cases). Starting from
the first defaults in year 9, overindebtedness is always the main cover pool
default reason. For more details on the distribution of default reasons over
time, see Table A.7 in the appendix. Further in-depth analyses regarding
overindebtedness and illiquidity will be performed in Sections 6.3 and 6.4
below.

(a) Bank default reasons.

(b) Cover pool default reasons.

Figure 6.3: Relative frequency of default reasons over time (as percentage of
100, 000 scenarios).

1The bank is said to be illiquid only if it is not overindebted (Definition 4.26), but
overindebtedness does not necessarily mean that the bank is still liquid (Definition
4.25).
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6.2 Analysis of Loss Drivers

In the previous section we found that losses given default vary depending on
the default time. The distribution of relative losses in the single scenarios
which lead to the losses given default in Figure 6.2 is shown in Figure 6.4.
For other liabilities, the observed losses range from 0.2% to 100%, with an
average of 80.5% and a standard deviation of 18.3%. Average losses are
higher than 90% for τ ∈ [2.5, 8.5] and fall constantly starting from year 6.5.
In case of a bank default in Tmax, the average loss is 15.8%. Pfandbrief losses
are considerably lower and take values from 0.0% to 52.8%, with an average
of 19.0% and a standard deviation of 7.4%. Obviously, average Pfandbrief
losses decrease with increasing cover pool default time τ∗, from 50.5% in
year 9 to 1.5% in Tmax. To get a better understanding of the drivers of
these losses, we decompose the losses in the single scenarios into several
components.

Losses of other liabilities. In the case of a bank default at time τ < ∞,
the loss of other liabilities is given by

LSOL(τ) : =

1− F̂OL(τ)
COL(τ)

, if τ = τ̄ ,

1− F̂OL(τ)+F̂OL(τ̄)·P (τ,τ̄)
COL(τ)

, if τ < τ̄ ,

= 1− kGOL(τ) · (1− hOA,avgLI (τ)) · fVOL(τ)− fPAOL (τ)− fCPOL (τ),
(6.1)

with τ̄ := min(τ∗, Tmax). The average liquidation haircut of non-pledged

other assets is denoted by hOA,avgLI (τ) := 1 − LV OANPL(τ)/V OANPL(τ) and the
relative value of non-pledged other assets as compared to the claim of
outstanding other liabilities is measured by fVOL(τ) := V OANPL(τ)/COL(τ).
Furthermore, the relative value of the subordinated claim on pledged assets
is defined by fPAOL (τ) := kGOL(τ) · EPA(τ)/COL(τ) and the relative value of
the subordinated claim on the cover pool is given by

fCPOL (τ) :=


kGOL(τ)·ECP (τ)

COL(τ)
, if τ = τ̄ ,

kGOL(τ̄)·ECP (τ̄)·P (τ,τ̄)
COL(τ)

, if τ < τ̄ .
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(a) Other liabilities.

(b) Pfandbriefe.

Figure 6.4: Distribution of relative loss sizes by default time (central mark of
boxes: median, edges of boxes: 25th and 75th percentiles).

Obviously, the higher the values kGOL(τ), fVOL(τ), fPAOL (τ) and fCPOL (τ) and

the lower hOA,avgLI (τ), the lower is LSOL(τ).

Table 6.1 summarizes the main statistics of the loss drivers in the base run. It
can be observed that fVOL(τ), kGOL(τ) and 1− hOA,avgLI (τ) play an important
role in the context of loss sizes, with average values of 26%, 89% and 68%.
As fVOL(τ) = V OANPL(τ)/COL(τ) =

(
1− kOAPl (τ −∆)

)
· V OA(τ)/COL(τ), the

relative value fVOL(τ) comprises not only effects from the performance of
other assets and from potential reinvestment activities but also information
on previous asset pledging activities. Indeed, asset pledging turns out to
have a considerable impact on losses with kOAPL (τ − ∆) being quite high
on average (75%) and values reaching up to 100% in single scenarios. On
the other hand, the relative value of the subordinated claims fPAOL (τ) and
fCPOL (τ) is rather low on average (3% and 1% respectively) but reaches higher
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values in single scenarios. Other liabilities obviously suffer from structural
subordination and asset encumbrance caused by secured funding activities
(Pfandbrief issuance and funding from the collateralized liquidity line). This
observation is not surprising and in line with expected behaviour patterns.
Ahnert et al [4] also find that the issuance of secured debt asymmetrically
shifts risk onto unsecured debt holders (other liabilities in our model). As
can be seen from Figure A.1 in the appendix, in our example the variations
in loss sizes are mainly driven by the relative value fVOL(τ) of remaining
other assets, which already comprises potential changes in kOAPL (τ −∆), and
by the fraction kGOL(τ).

Table 6.1: Main statistics of the loss drivers of other liabilities according to
Equation (6.1).

Loss driver Avg Std Max Min Range Impact

kGOL(τ) 89% 15% 100% 45% 55% decreasing

hOA,avgLI (τ) 32% 8% 40% 0% 40% increasing

fVOL(τ) 26% 26% 181% 0% 181% decreasing

... kOAPL (τ −∆) 75% 25% 100% 0% 100% increasing

fPAOL (τ) 3% 6% 53% 0% 53% decreasing

fCPOL (τ) 1% 2% 18% 0% 18% decreasing

A closer look at the scenarios with the ten highest losses of other liabilities
reveals that the top ten losses are equal to 100%.2 In all these cases, the bank
defaults quite early, between year 2.5 and year 4, with the default reason
being either overindebtedness (in three cases) or illiquidity (in seven cases).
The fractions kGOL(τ) are between 74% and 100%, but as kOAPL (τ−∆) = 100%
and fPAOL (τ) = 0%, all other assets have been pledged at the time prior to
bank default and are needed to repay the bank’s liquidity line at time τ , i.e.
all assets are encumbered and there is nothing left in the general insolvency
estate. Furthermore, the cover pool defaults at some later time τ∗ ∈ [10, 12]
in all ten scenarios, which results in fCPOL (τ) = 0 and means that there are
no excess cover pool assets which can be used to satisfy the residual claim
RCOL(τ∗) of other liabilities.

2Altogether, there are 12 (out of a total of 100, 000 scenarios with 10, 448 bank defaults)
with a loss of 100%.



6.2 Analysis of Loss Drivers 189

In the scenarios with the ten lowest losses of other liabilities, losses range
from 0.2% to 1.1%. In all ten cases, the bank defaults in Tmax, meaning
that there are no liquidation losses and hOALI (τ) = 0, which generally implies
higher recoveries. The reason for default is always overindebtedness, with
fVOL(τ) > 83% and kOAPL (τ − ∆) < 39% in nine out of the ten scenarios.
In the remaining scenario we have fVOL(τ) = 46% and kOAPL (τ −∆) = 72%,
but with fPAOL (τ) = 48% there are comparably high liquidation proceeds
from pledged assets which are released to the general insolvency estate.3

Furthermore, the cover pool does not default at all in five out of the ten
scenarios with fCPOL (τ) taking values of up to 6%, i.e. cover pool assets which
are not needed for the repayment of Pfandbriefe are released to the general
insolvency estate. For more details on the scenarios with the ten highest
and the ten lowest losses of other liabilities, see Table A.8 in the appendix.

Pfandbrief losses. In the case of a cover pool default at time τ∗ < ∞,
Pfandbrief losses are given by

LSPB(τ∗) : = 1− F̂PB(τ∗)

CPB(τ∗)

= 1− kCPPB(τ∗) · (1− hCP,avgLI (τ∗)) · fVPB(τ∗)− fGIEPB (τ∗).
(6.2)

Here, the average liquidation haircut of non-pledged cover pool assets is
denoted by hCP,avgLI (τ∗) := 1−LV CPNPL(τ∗)/(V CPSNPL (τ∗)+NCPL(τ∗)) and the
relative value of non-pledged cover pool assets as compared to the claim of
outstanding Pfandbriefe is fVPB(τ∗) := (V CPSNPL (τ∗) +NCPL(τ∗))/CPB(τ∗).
In addition, the relative value of assets from the general insolvency estate is
fGIEPB (τ∗) := kGPB(τ∗) · LV IE(τ∗)/CPB(τ∗). Obviously, the higher kCPPB(τ∗),

fVPB(τ∗) and fGIEPB (τ∗) and the lower hCP,avgLI (τ∗), the lower is LSPB(τ∗).

Table 6.2 summarizes the main statistics of the loss drivers in the base run. It
turns out that kCPPB(τ∗) is 100% in all scenarios, i.e. liquidation proceeds from
the cover pool do not need to be shared with the cover pool’s liquidity line.
Moreover, fVPB(τ∗) and 1−hCP,avgLI (τ∗) take average values of 91% and 87%.
As fVPB(τ∗) =

(
(1− kCPSPL (τ∗ −∆)) · V CPS(τ∗) +NCPL(τ∗)

)
/CPB(τ∗),

the relative value fVPB(τ∗) does not only comprise effects from the per-
formance of cover pool assets but also from potential previous asset pledging
activities. However, as kCPSPL (τ∗ −∆) = 0 in all scenarios, there are never

3In the other nine scenarios, the fraction fPAOL (τ) is much lower with values up to 18%.
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pledged cover pool assets at the time of cover pool default. The relative value
fVPB(τ∗) of non-pledged cover pool assets, which implicitly also contains
the Pfandbrief holder’s priority claim on the cover pool, is much higher
than the relative value fVOL(τ) of the claim of other liabilities on the general
insolvency estate: 91% vs. 26%. In addition, the average liquidation hair-
cut hCP,avgLI (τ∗) = 13% is much lower than hOA,avgLI (τ) = 32%. These two
observations already explain to a large degree the differences in losses given
default between other liabilities and Pfandbriefe. The value of the additional
claim of Pfandbrief holders on the general insolvency estate, measured by
fGIEPB (τ∗), is comparably small in our example, with an average of 2% and a
standard deviation of 3%. Further investigations reveal that, apart from the
fact that we only account for this claim in the case of a simultaneous bank
and cover pool default, this is caused by the low liquidation proceeds of the
general insolvency estate.4 The fraction of the claim of Pfandbrief holders
at the time of cover pool default which is not satisfied by the liquidation

proceeds of non-pledged cover pool assets, measured by GPB(τ∗)
CPB(τ∗)

, is still

20.5% on average. Despite the low value of fGIEPB (τ∗) in our example, it
can therefore not be concluded that the value of the additional claim of
Pfandbrief holders on the general insolvency estate is negligible in general,
see related discussions in Hillenbrand [84]. As can be seen from Figure A.2
in the appendix, in the base run the variations in loss sizes are solely driven
by the relative value fVPB(τ∗) of the cover pool, the realized liquidation hair-

cut hCP,avgLI (τ∗) and the relative value fGIEPB (τ∗) of assets from the general
insolvency estate.

Table 6.2: Main statistics of Pfandbrief loss drivers according to Equation
(6.2).

Loss driver Avg Std Max Min Range Impact

kCPPB(τ∗) 100% 0% 100% 100% 0% decreasing

hCP,avgLI (τ∗) 13% 4% 21% 0% 21% increasing

fVPB(τ∗) 91% 6% 100% 59% 41% decreasing

... kCPSPL (τ∗ −∆) 0% 0% 0% 0% 0% increasing

fGIEPB (τ∗) 2% 3% 27% 0% 27% decreasing

4For the bivariate distribution of kGPB(τ∗) and
LV IE(τ∗)

CPB(τ∗)
, see Figure A.3 in the appendix.

On average,
LV IE(τ∗)

CPB(τ∗)
is only 4.4%, while kGPB(τ∗) is 25.8%.
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As in the case of other liabilities, we now examine the scenarios with the
ten highest and the ten lowest Pfandbrief losses. The ten highest losses
range from 44.0% to 52.8% and are observed between year 9 and 9.5, with
cover pool overindebtedness being the reason of default. It turns out that
fVPB(τ∗) is between 59% and 68% in all cases, i.e. the value of the cover
pool is quite low as compared to the claim of Pfandbrief holders. Due to
the fact that the cover pool defaults prior to Tmax, a liquidation haircut of
hCPSLI = 25% applies to outstanding strategic cover pool assets, which results

in an average cover pool liquidation haircut hCP,avgLI (τ∗) between 16% and
20%. In addition, in all ten scenarios the bank has already defaulted at some
earlier time τ ∈ [4, 5.5], which is why Pfandbrief holders do not have a claim
against the bank’s general insolvency estate, i.e. fGIEPB (τ∗) = 0.

The ten lowest Pfandbrief losses take values between 0.001% and 0.034%. In
all ten cases, the default reason is overindebtedness, but as kCPSPL (τ∗−∆) = 0
and fVPB(τ∗) > 95%, the value of the cover pool is quite close to the claim
of Pfandbrief holders. In addition, the cover pool defaults in Tmax, i.e. there
are no liquidation losses and hCP,avgLI (τ∗) = 0. Due to the fact that there
is a simultaneous bank default in all ten scenarios, Pfandbrief holders also
have a claim against the general insolvency estate, but this claim is only of
comparably low value with fGIEPB (τ∗) < 5%. More details on the scenarios
with the ten highest and the ten lowest Pfandbrief losses can be found in
Table A.9 in the appendix.

A short remark on the liquidity lines. The bank’s liquidity line is affected
by an event of bank default in 10, 058 out of the 10, 448 bank default scenarios
in the base run, i.e. in 96% of cases. In these scenarios, the ratio of the losses
of the bank’s liquidity line to the losses of other liabilities ranges from 0%
to 32.1% and is on average 4.4% with a standard deviation of 5.4%, which
implies that the losses of the bank’s liquidity line are significantly below the
ones of other liabilities. The claim of the liquidity line in these scenarios
is on average 59% of the corresponding average claim of other liabilities.
The associated bivariate loss distribution in Figure A.4 in the appendix
clearly shows the loss mitigation effect of the liquidity line’s priority claim
on pledged assets. The losses of the bank’s liquidity line are much lower
than those of other liabilities. In the base run, the cover pool’s liquidity line
is not affected by an event of cover pool default.
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6.3 Bank and Cover Pool Solvency

From Section 6.1 we know that overindebtedness plays an important role in
the base run, especially in the cover pool’s case. In the following, we examine
the solvency situation of the bank and the cover pool and investigate the
impact of the default barrier in more detail.

Bank solvency. To get a first impression of the bank’s solvency situation,
we compare the certainty equivalent scenario to an exemplary scenario where
the bank defaults due to overindebtedness. As can be seen from Figure 6.5,
in the certainty equivalent scenario in which interest rates and the assets’
creditworthiness evolve “as expected”, the present value V OB,CE(t) of the

bank’s assets is above the default barrier BOB,CE(t) at all times. In the
exemplary bank default scenario, the bank defaults at time τ = 11 when the
value V OB (t) of the bank’s assets falls below the default barrier BOB (t) for the
first time.

Figure 6.5: Illustration of the bank’s solvency situation: certainty equivalent
scenario vs. an exemplary bank default scenario.

In Section 6.1 we found that bank defaults due to overindebtedness mainly oc-
cur after the first 10 years. The bank’s relative solvency buffer in the certainty
equivalent scenario, which is defined by BSCE(t) := V OB,CE(t)/BOB,CE(t)− 1
and shown in Figure 6.6, gives an indication why. With values between
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60% and 74% until year 9.5, it is comparably high in the earlier years but
gets lower thereafter, taking values from 39% to 52% until year 12. This
tendency of lower buffers in later years in conjunction with random fluc-
tuations in asset present values is likely to result in more defaults due to
overindebtedness. In the stochastic scenarios, the bank’s solvency situation

Figure 6.6: The bank’s relative solvency buffer BSCE(t) in the certainty equiva-
lent scenario.

changes due to variations in the assets’ present value V OB (t) and the default
barrier BOB (t). While changes in the assets’ present value are mainly driven
by the market environment and potential reinvestment activities, the bank’s
default barrier changes due to additional liabilities from funding activities
and due to discounting effects caused by changes in interest rates. From
Figure A.5 in the appendix it can be seen that fluctuations in the value
V OB (t) of the bank’s assets tend to be more pronounced than fluctuations
in the bank’s default barrier BOB (t), especially in the earlier years. Further
investigations reveal that in the scenarios where the bank defaults due to
overindebtedness, the value V OB (t) of the bank’s assets at the time of default
is always below V OB,CE(t) and in 92% of these scenarios the barrier BOB (t) is

above BOB,CE(t). It also turns out that fluctuations in asset present values
are more pronounced for other assets than for the cover pool. In addition,
asset nominals are rather stable except for other assets after year 10, i.e.
reinvestment activities seem to be of lower importance in our example. For
more details, see Figures A.6 and A.7 in the appendix.

The role of the bank’s solvency situation is further investigated by a scenario
analysis where we assume that bank overindebtedness does not trigger an
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event of bank default (Scenario O1).5 As illustrated by Table 6.3, the bank’s
cumulative default probability πBTmax,cum

decreases only marginally, from
10.4% to 10.3%, as the number of scenarios increases where the bank defaults
due to illiquidity.

Table 6.3: Scenario analysis: the role of bank overindebtedness.

Default probability Base run O1

πBTmax,cum
10.4% 10.3%

... thereof overindebted 4.0% 0%

... thereof illiquid 6.4% 10.3%

Cover pool solvency. The cover pool’s solvency situation is illustrated by
an exemplary cover pool default scenario which is shown in Figure 6.7. In
this scenario, the bank is illiquid in year 8.5 while the cover pool survives
until year 12 when the present value of its assets falls below the default
barrier BOP (t). As no event of bank default occurs in the certainty equivalent
scenario, no information regarding the standalone cover pool’s solvency
situation is available for this scenario.

In the stochastic scenarios, the cover pool’s solvency situation varies due to
fluctuations in the cover pool’s present value V OP (t) and the default barrier
BOP (t). Similar to the bank’s case, the cover pool’s present value is driven
by the market environment and potential reinvestment activities, while its
default barrier changes due to discounting effects caused by changes in
interest rates or additional liabilities from funding activities. As presented
in Figure A.8 in the appendix, V OP (t) fluctuates much more than BOP (t) and
further investigations reveal that overindebtedness is indeed mostly triggered
by comparably low cover pool present values. In our example, there are
never outstanding liabilities from the cover pool’s liquidity line in case of
a cover pool default due to overindebtedness, i.e. changes to the default
barrier at this time are not triggered by funding activities. More details on

5For our scenario analysis, it is not sufficient to set the parameters MLT and MST of the
default barrier to 0. We need to allow for overindebtedness in Tmax as, by definition,
the bank cannot be illiquid at that time. Instead, overindebtedness in Tmax implies
that the bank is not able to fulfil its payment obligations, see Remark 4.34, which we
interpret as illiquidity in the context of this scenario analysis.
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Figure 6.7: An exemplary scenario with cover pool overindebtedness.

the cover pool’s solvency situation in the stochastic scenarios can be found
in Figures A.9 and A.10 in the appendix.

As in the bank’s case, the cover pool’s solvency situation is further investi-
gated by a scenario analysis where we assume that cover pool overindebt-
edness does not trigger an event of cover pool default (Scenario O2), see
Table 6.4. Again, the cumulative default probability πPTmax,cum

decreases
only marginally, from 7.6% to 7.5% as the number of scenarios where the
cover pool defaults due to illiquidity increases.

Table 6.4: Scenario analysis: the role of cover pool overindebtedness.

Default probability Base run O2

πPTmax,cum
7.6% 7.5%

... thereof overindebted 6.7% 0%

... thereof illiquid 0.9% 7.5%

Choice of the default barrier. To get a better understanding of the role of
the default barrier, we consider three alternative barrier specifications for the
bank (G1, G2, G3) and the cover pool (H1, H2, H3) and compare them to
the corresponding base run specification where MST = 1, MLT = TST = 0.5
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and TLT = 2.5. The alternative default barriers G1 and H1 are chosen to
fully account for debt of all maturities, i.e. MST = MLT = 1 and TST = 0,
TLT = 0.5, while G2 and H2 completely ignore all debt which is not due at
the respective time, MST = 1, MLT = TST = 0 and TLT = 0.5. The barriers
G3 and H3 lie between the base run setup and G2 and H2, with MST = 1,
MLT = 0, TST = 0.5 and TLT = 2.5. Figure 6.8 visualizes the different bank
default barrier choices in the certainty equivalent scenario and compares
them to the value V OB (t) of the bank’s assets. Obviously, fully taking into
account all outstanding debt (G1) is extremely conservative and results in
the bank being close to overindebtedness already in the certainty equivalent
scenario. Focusing on debt maturities at the current time (G2) or in the
near future (G3) leaves the bank with a higher solvency buffer.

Figure 6.8: Alternative bank default barrier choices in the certainty equivalent
scenario.

Table 6.5 shows the simulated default probabilities from a standalone modi-
fication of the bank and the cover pool default barrier. In the bank’s case,
the impact on πBTmax,cum

is considered, while in the cover pool’s case we are

interested in the impact on πPTmax,cum
. Changing the bank’s default barrier

to G1 more than doubles the bank’s cumulative default probability, from
10.4% to 21.6%. Considering all outstanding debt no matter how far in the
future it is due is, however, likely to be overly conservative. On the other
hand, lowering the bank’s default barrier to G3 or even G2 does not have
a notable impact on πBTmax,cum

. In the cover pool’s case, the scenario H1

increases the cumulative default probability from 7.6% to 8.5%, while H2

and H3 leave πPTmax,cum
almost unchanged.
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Table 6.5: Impact of alternative default barrier choices.

Default probability Base run G1 G2 G3 H1 H2 H3

πBTmax,cum
10.4% 21.6% 10.3% 10.4% — — —

πPTmax,cum
7.6% — — — 8.5% 7.5% 7.6%

The observation that lowering the base run default barriers BOB (t) and BOP (t)
only has a marginal impact on default probabilities is in line with our previous
findings that overindebtedness not being a default reason only leads to a small
reduction of πBTmax,cum

and πPTmax,cum
as defaults due to illiquidity increase

accordingly, cf. Tables 6.3 and 6.4. The model risk of underestimating default
probabilities due to an incorrect (i.e. too low) specification of the default
barrier is therefore mitigated as we also consider illiquidity as a default
reason. In our example, the ratio of the bank’s default barrier BOB,CE(t) and

its outstanding debt NL
CE(t) := NPB

CE (t) + NOL
CE (t) + NLL

B,CE(t) is between
59% and 100% in the certainty equivalent scenario, with an average of
70% over time and a tendency of higher values in later years, see Figure
6.9. Comparing these values to Davydenko [36], who uses market values of
defaulting companies and finds mean default barrier estimates of 66% of the
face value of outstanding debt, and to Huang and Huang [88], who assume
a default boundary of around 60%, there is no indication that our default
barrier is chosen too low. In later years our default barrier might even be a
bit conservative, but as already mentioned before, lowering the barrier does
not lead to a notable change in default probabilities.

Figure 6.9: Bank default barrier BOB,CE(t) vs. outstanding debt NL
CE(t) in the

certainty equivalent scenario.
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6.4 Funding and Liquidity

In Section 6.1 we found that in the base run the availability of funding
plays an important role for the bank, while for the cover pool it seems to
be less important. In the following, we analyse the funding situation of the
bank and the cover pool in more detail and perform scenario analyses in the
context of funding.

Bank funding. The bank’s high dependence on funding in the stochastic
scenarios is obvious from Figure 6.10, which depicts the relative frequency
of a bank funding need. It turns out that from year 1 to year 9.5 the bank
needs funding in all relevant scenarios where the bank has not defaulted
prior to the respective time. Thereafter, the relative frequency of a bank
funding need drops continuously from 39% in year 10 to 2% in year 12.6 All
in all, across all time steps prior to Tmax, the bank needs funding in 75%
of cases given that it has not defaulted, but funding is not always granted
when needed.

Figure 6.10: Relative frequency of a bank funding need in the base run, given
that the bank has not defaulted prior to the respective time.

To get a better understanding of the bank’s funding situation, we have a
look at the certainty equivalent scenario. As can be seen from Figure 6.11(a),
already in this scenario the bank heavily depends on funding with a funding

6In our model, the bank’s funding need in Tmax is set to 0 for technical reasons, cf.
Definition 4.21. This does not necessarily mean that the bank has enough cash to
fulfil its payment obligations, but in case of insufficient cash in Tmax the bank defaults
due to overindebtedness by model construction.
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need at all times from year 1 to year 9.5, but there are always sufficient other
assets available for pledging. Strategic cover pool assets are not available for
pledging from year 4.5 to year 10. This is a result of the bank’s initial balance
sheet according to which the percentage nominal overcollateralization of
the cover pool is negative from year 4.5 to year 12, with the gap becoming
increasingly negative until year 10, see Figure 6.11(b). Consequently, the
nominal cover needs to be reestablished and no excess strategic cover pool
assets are available for funding activities. As depicted in Figure 6.11(c), the
bank’s funding need is mostly stemming from cash flow mismatches, but a
certain amount of funding is also needed to reestablish cover requirements,
especially in the later years. More specifically, in year 1 the funding need
is caused by cash flow mismatches and the need to reestablish the 180d
liquidity rule, while between year 1.5 and year 3.5 it is entirely triggered
by cash flow mismatches. Thereafter, both cash flow mismatches and the
need to reestablish cover requirements are responsible for the funding gaps,
with the contribution of cover requirements increasing continually from year
4 to year 9.5. The relative importance of cash flow mismatches decreases
accordingly. Further analyses reveal that the observed cash flow mismatches
in the first years are a direct consequence of the bank’s initial balance sheet
which implies a negative cumulative net cash flow from year 1 to year 7, see
Figure 6.11(d).7

Given the observations from the certainty equivalent scenario, the bank’s
high dependence on funding is not surprising. It also turns out that the
bank’s funding need and the available funding from other assets fluctuate
considerably in the stochastic scenarios, with the distributions seeming rather
asymmetric with unfavourable patterns, see Figure A.11 in the appendix.
In year 9.5, for example, the bank’s funding need can get about 9 times as
high as in the certainty equivalent scenario. Similarly, the available funding
from other assets may turn out to be significantly lower than in the certainty
equivalent scenario. In year 12 the smallest observed value is only about 1

10
of the one in the certainty equivalent scenario. Relying solely on the certainty
equivalent scenario for the planning of funding activities is therefore not
advisable; conditions can turn out to be much less favourable.

7It should be kept in mind that the cumulative net cash flow as implied by the bank’s
initial balance sheet, i.e. if there were no asset liability management activities by the
bank, does not account for funding to be repaid to the bank’s liquidity line or potential
asset defaults. The effective cumulative net cash flow in the certainty equivalent
scenario can therefore get even more negative than the one in Figure 6.11(d).
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(a) Bank funding need vs. availability of funding.

(b) Percentage nominal overcollateralization (OC).

(c) Composition of the bank’s funding need.

(d) Net cumulative cash flow (NCF) as implied by the bank’s initial
balance sheet.

Figure 6.11: The bank’s funding situation in the certainty equivalent scenario.
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The bank’s high dependence on funding is further confirmed by scenario
analyses where different degrees of funding availability are compared to the
base run. In the first scenario, we do not allow for bank funding by pledging
strategic cover pool assets (Scenario B1). Then, we omit the possibility of
funding by pledging other assets (Scenario B2) and finally we disregard both
funding alternatives (Scenario B3). Table 6.6 shows the bank’s cumulative
default probability πBTmax,cum

and the average loss given default LOLavg of other
liabilities in all these scenarios. Omitting bank funding by pledging strategic
cover pool assets leaves πBTmax,cum

unchanged, solely the default reasons
change slightly. Out of the 10, 448 bank defaults there are now 3 more
defaults due to illiquidity as compared to the base run. LOLavg also remains
almost unchanged. Omitting the possibility of bank funding by pledging
other assets or bank funding in general both results in a bank default due to
illiquidity with a probability of 100%. Given the bank’s funding need right
from the beginning, it is not surprising that most of these defaults happen
already in year one 1 and some even earlier in year 0.5. The average loss
given default is 27.9% in both cases and therefore much lower than in the
base run. Further investigations reveal that this is mainly due to a much
higher value of fVOL(τ) (there are no pledged assets from previous funding
activities) and higher values of kGOL(τ) and fCPOL (τ), see Figure A.12 in the
appendix.

Table 6.6: Scenario analysis: the role of bank funding (B1: no bank funding
by pledging strategic cover pool assets; B2: no bank funding by
pledging other assets; B3: no bank funding at all).

Default statistics Base run B1 B2 B3

πBTmax,cum
10.4% 10.4% 100% 100%

... thereof overindebted 4.0% 4.0% 0% 0%

... thereof illiquid 6.4% 6.4% 100% 100%

LOLavg 80.5% 80.4% 27.9% 27.9%

The above scenario analyses clearly demonstrate the crucial role of bank
funding in the base run. The availability of other assets for pledging purposes
is of high importance for our bank to survive; strategic cover pool assets on
the other hand seem to only play a minor role. This is not surprising as the
potential funding from strategic cover pool assets is in general much lower
than the available funding from other assets. Furthermore, the nominal
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overcollateralization of the cover pool is 0 between year 4.5 and year 10 in all
relevant scenarios, i.e. no funding from pledging strategic cover pool assets
is available to the bank, which is why there is no difference between the base
run and scenario B1 at these times. For more details on the above findings,
see Figure A.11 in the appendix. Note that the funding haircuts hCPSPL

and hOAPL also play an important role in the context of funding. Sensitivity
analyses regarding the impact of these haircuts will be performed in Section
6.6.

Cover pool funding. The relative frequency of a cover pool funding need in
the stochastic scenarios is depicted in Figure 6.12. In years 1.5 and 2, there
are 15 out of the 100, 000 scenarios (0.015%) in which we observe a standalone
cover pool. In all these cases, the cover pool needs funding (i.e. the relative
frequency of a cover pool funding need given bank default is 100%) and
the funding is granted. There are also scenarios with a cover pool funding
need in t ∈ {1, 2.5, 10.5, 11, 11.5, 12}, but the relative frequency of a cover
pool funding need is much lower at these times. While funding is granted in
all scenarios with a funding need in the earlier years, the cover pool never
survives a funding need between years 10.5 and 12. Across all time steps
prior to Tmax, funding is needed in only 4% of cases with a standalone cover
pool, meaning that the cover pool’s dependence on funding is comparably
low in our example. The cover pool administrator’s reinvestment strategy,
which concentrates on liquid cover pool assets, certainly contributes to this
situation as it mitigates funding pressure.

Figure 6.12: Relative frequency of a cover pool funding need in the base run,
given that the bank has already defaulted but the cover pool has
not defaulted prior to the respective time.
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The cover pool’s low dependence on funding is further confirmed by a scenario
analysis where no cover pool funding is available (Scenario P1). As presented
in Table 6.7, the cumulative default probability πPTmax,cum

and the average

loss given default LPBavg of Pfandbriefe are only marginally affected; there are
15 additional defaults due to illiquidity which all happen in year 1 or year
1.5.

Table 6.7: Scenario analysis: the role of cover pool funding.

Default statistics Base run P1

πPTmax,cum
7.6% 7.6%

... thereof overindebted 6.7% 6.7%

... thereof illiquid 0.9% 0.9%

LPBavg 19.0% 18.9%

6.5 Scenario Quality and Stability of Results

To get a feeling how reliable our simulation results are, we analyse the quality
of the 100, 000 simulated short rate and state variable paths and investigate
the stability of our base run default statistics.

Scenario quality. The quality of the simulated base run scenarios can be
assessed by comparing the theoretical short rate statistics µr(t)|F0

and σr(t)|F0

to their realized counterparts for each time t ∈ Td. The same can be done
for the default parameters πCPSi , πOAj , LCPSi and LOAj , where i, j = 1, ..., S.
The results are summarized in Table 6.8. The quality of the simulated
short rate scenarios turns out to be quite good. The maximum absolute
deviation of the realized short rate mean from µr(t)|F0

is below 10−16 and
in the case of σr(t)|F0

it is below 10−4. On average, the deviations are even
lower. A comparison of the theoretical asset default probabilities πCPSi and
πOAj to their realized counterparts shows that these values are roughly in
line with deviations becoming not bigger than 25 basis points. The average
(the maximum) observed deviations are 0.08% (0.25%) for strategic cover
pool assets and 0.08% (0.19%) for other assets. Moreover, the average (the
maximum) deviations of realized losses given defaults from the theoretical
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values LCPSi and LOAj are 0.09% (0.21%) in the case of strategic cover pool
assets and 0.29% (1.62%) in the case of other assets. With deviations of
up to 1.62%, the differences for losses given defaults of other assets are
comparably high, especially for maturities up to five years.8 As we will see
in the following, this is related to the corresponding state variable process
parameters.

Table 6.8: Absolute deviations of realized statistics from their theoretical
counterparts.

r(t) µr(t)|F0
σr(t)|F0

avg 2 · 10−17 1 · 10−5

max 6 · 10−17 4 · 10−5

CPS πCPSi LCPSi

avg 0.08% 0.09%

max 0.25% 0.21%

OA πOAj LOAj

avg 0.08% 0.29%

max 0.19% 1.62%

A comparison of the state variable process parameters reveals that the
parameters ZOA,0k and σOAk are considerably higher than their counterparts

ZCPS,0k and σCPSk , with differences being more pronounced for shorter
maturities, see Figure A.14 in the appendix. As can be seen from Table 6.9,
the starting values ZOA,0k are on average by a factor of almost 200 higher than

ZCPS,0k and σOAk is about 9 times as high as σCPSk . The parameters µCPSk and
µOAk are in a similar order of magnitude. As the rating assumptions are the
same for strategic cover pool assets and other assets (qCPS = qOA = BB+),
the parameter differences must be caused by the differences in losses given
default (LOA = 40% vs. LCPS = 7%). For fixed rating and asset maturity,
more extreme parameter constellations seem to be needed to fit the higher
loss given default target. This is confirmed by the results from five additional
model calibrations as described in the following.

Table 6.9: Base run state variable process parameter statistics.

CPS Z
CPS,0
i µCPSi σCPSi

avg 1.3 0.6% 9.4%

max 2.0 0.8% 35.1%

min 1.1 0.3% 4.0%

OA Z
OA,0
j µOAj σOAj

avg 263.8 0.8% 80.3%

max 3718.1 1.1% 303.8%

min 6.0 0.3% 33.8%

8For a more detailed view on the deviations, we refer to Figure A.13 in the appendix.
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To assess the sensitivity of the calibrated state variable process parameters
ZOA,0j , µOAj and σOAj with respect to the choice of the calibration target LOA,
we leave all other model settings (including default probabilities) unchanged
and perform additional calibrations for LOA ∈ {10%, 20%, 30%, 50%, 60%}
instead of LOA = 40%. Table 6.10 compares the statistics of the obtained
state variable process parameters.9 Obviously, ZOA,0j and σOAj highly depend

on the choice of LOA while µOAj remains comparably stable. For LOA = 10%,

the average starting value ZOA,0j is 1.6 but gets higher with increasing

calibration targets LOA, reaching an average of 1.6 · 109 for LOA = 60%.
Similarly, the average value σOAj increases from 13.8% to 176.1%.

Table 6.10: State variable process parameter statistics for different choices of
L := LOA ∈ {10%, ..., 60%}.

L =

10%

Z
OA,0
j µOAj σOAj

avg 1.6 0.7% 13.8%

max 2.9 0.9% 51.8%

min 1.1 0.3% 5.9%

L =

40%

Z
OA,0
j µOAj σOAj

avg 263.8 0.8% 80.3%

max 3718.1 1.1% 303.8%

min 6.0 0.3% 33.8%

L =

20%

Z
OA,0
j µOAj σOAj

avg 3.7 0.7% 30.8%

max 13.3 1.1% 115.7%

min 1.6 0.3% 13.1%

L =

50%

Z
OA,0
j µOAj σOAj

avg 5.4 · 104 0.7% 119.0%

max 1.1 · 106 1.0% 452.1%

min 24.4 0.2% 49.7%

L =

30%

Z
OA,0
j µOAj σOAj

avg 16.1 0.8% 52.2%

max 121.3 1.1% 196.8%

min 2.6 0.3% 22.1%

L =

60%

Z
OA,0
j µOAj σOAj

avg 1.6 · 109 0.6% 176.1%

max 3.9 · 1010 0.9% 672.4%

min 338.7 0.2% 73.0%

Running 100, 000 scenarios with the same random variables (fixed seed) for
each of the above LOA calibrations and comparing the obtained absolute
deviations of realized loss given default statistics from their theoretical

9By model construction, the calibration of the parameters ZCPS,0i , µCPSi and σCPSi is

not affected by the choice of LOA.
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counterparts LOAj yields the results as shown in Table 6.11. Obviously,

deviations get larger for higher values of LOA, for which the parameters
take more extreme values. These results indicate that our asset model might
not be suitable for arbitrary constellations of asset default probabilities and
asset losses given defaults. Default parameter constellations which force the
parameters of the state variable processes into extreme values may result in
instabilities in the simulations which can, if at all, only be counteracted by
increasing the number of simulated scenarios.

Table 6.11: Absolute deviations of realized statistics from their theoretical
counterparts LOAj for different choices of LOA ∈ {10%, ..., 60%}.

LOA 10% 20% 30% 40% 50% 60%

avg 0.09% 0.17% 0.23% 0.29% 0.33% 0.36%

max 0.52% 0.97% 1.34% 1.62% 1.80% 1.85%

In order to test how much the scenario quality can be improved by increasing
the number of scenarios, we compare the quality of the LOAj fit to LOA = 40%
for four different scenario sets: S1 (10, 000 scenarios), S2 (100, 000 scenarios),
S3 (250, 000 scenarios) and S4 (500, 000 scenarios), with S1 ⊂ S2 ⊂ S3 ⊂ S4

and S2 being equal to our base run scenario set. As can be seen from Table
6.12, average deviations tend to get smaller for increasing scenario size. For
10, 000 scenarios, the average deviation from LOAj is 1.12%, while for 500, 000
scenarios it is 0.19% only. Similarly, the maximum deviation decreases from
5.21% to 1.46%.

Table 6.12: Absolute deviations of realized statistics from their theoretical
counterparts LOAj for increasing scenario size: S1 (10, 000 sce-
narios), S2 (100, 000 scenarios), S3 (250, 000 scenarios) and S4

(500, 000 scenarios).

Scenario S1 S2 S3 S4

avg 1.12% 0.29% 0.24% 0.19%

max 5.21% 1.62% 0.77% 1.46%
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Stability of simulation results. To test whether the default statistics ob-
tained from the 100, 000 base run scenarios are sufficiently stable, we vary
the choice of the random seed used for scenario generation and compare the
resulting default statistics. Including the base run, we compare ten scenario
sets with 100, 000 scenarios each, i.e. we generate nine additional scenario
sets. The results are summarized in Table 6.13. For a better comparison, the
default statistics of the base run are also shown (second column). It turns
out that, even though there is a certain variation in default statistics across
the 10 scenario sets, the cumulative default probabilities and the average
losses given default from the base scenario are very close to the averages
obtained from the ten scenario sets and differ by at most 0.2%.

Table 6.13: Default statistics from ten scenario sets with 100, 000 scenarios.

Default statistics Base Run Avg Std Max Min Range

πBTmax,cum 10.4% 10.6% 0.1% 10.7% 10.4% 0.2%

πPTmax,cum 7.6% 7.7% 0.1% 7.7% 7.5% 0.2%

LOLavg 80.5% 80.5% 0.2% 80.8% 80.2% 0.6%

LPBavg 19.0% 19.1% 0.1% 19.2% 19.0% 0.2%

We conclude that the base run default statistics obtained from 100, 000
scenarios are reasonably stable and that there is no indication that they are
not representative. Increasing the amount of simulated scenarios to 250, 000
or 500, 000 would of course add additional stability, but a trade-off between
accurateness and run time has to be made. As the focus of this work is
not on computational aspects but on the Pfandbrief model itself, 100, 000
scenarios are acceptable for illustrational purposes.

6.6 Sensitivity Analyses

As already discussed in Chapter 5, some of our parameter settings are
exemplary only. To get a better understanding of the impact of different
parameter choices on the resulting default statistics, we run sensitivity
analyses on asset ratings, losses given default, correlations and funding
and liquidation haircuts. For ease of presentation, we concentrate on the
impact on the cumulative default probabilities πBTmax,cum

and πPTmax,cum
and
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the average losses given default LOLavg and LPBavg. All impacts are given in
terms of a standalone shift of the respective parameter. We also show the
results of a combined stress scenario where several parameters are shocked
simultaneously.

Asset rating. The sensitivity analyses with respect to asset ratings are
performed for qCPS , qOA ∈Mr := {AAA,AA,A,BBB,BB,B,CCC}, see
Figure 6.13.10 As intuitively expected, the bank’s cumulative default proba-
bility πBTmax,cum

highly depends on the choice of qOA. Better asset ratings
result in lower default probabilities with an observed range of 61.1% (0.8%
for AAA and 61.9% for CCC). The impact of qCPS on πBTmax,cum

is similar
but less pronounced with a range of 10.8% (9.0% for AAA and 19.8% for
CCC). In the cover pool’s case, better ratings also result in lower default
probabilities, but πPTmax,cum

is more sensitive to qCPS than to qOA (ranges:

19.4% vs. 10.7%). The impact of asset ratings on LOLavg and LPBavg is ambiguous.
Here it needs to be kept in mind that initial asset default probabilities do not
only have an impact on asset present values and cash flows but also on bank
and cover pool default timing and therefore the circumstances of default,
which in turn determine the actual loss size, see discussions in Section 6.2.
While LPBavg is more sensitive to qCPS than to qOA, the opposite is true for

LOLavg. This observation is in line with our previous findings on loss drivers.11

Loss given default of assets. The impact of different asset loss given
default parameters LCPS , LOA ∈ Ml := {10%, 20%, ..., 90%} is shown in
Figure 6.14.12 Both LCPS and LOA turn out to have a considerable impact
on the bank’s and the cover pool’s default statistics. The higher the loss
given default of the assets, the higher the cumulative default probability
of the bank and the cover pool. While πBTmax,cum

is more sensitive to LOA,

πPTmax,cum
is more sensitive to LCPS . The observed range of cumulative bank

default probabilities is 13.9% (for LCPS) and 20.5% (for LOA), and for the

10We explicitly do not choose a more granular grid to avoid distortions due to default
probabilities of neighboured rating classes being quite close, especially for good ratings.
Otherwise, it may happen that realized asset default probabilities are higher for better
ratings (violated rating hierarchy) due to stochastic fluctuations, see the results from
the scenario quality analyses in Section 6.5 above.

11In Section 6.2 we found that Pfandbrief losses are more influenced by fVPB(τ∗) than by

fGIEPB (τ∗), while losses of other liabilities depend more on fVOL(τ) than on fCPOL (τ).
12In our model, asset loss given default parameters equal to 0% or 100% are not permit-

ted.
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(a) Cumulative bank default probability πBTmax,cum
.

(b) Cumulative cover pool default probability πPTmax,cum
.

(c) Loss given default LOLavg of other liabilities.

(d) Loss given default LPBavg of Pfandbriefe.

Figure 6.13: Rating sensitivities.
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cover pool we get a range of 15.2% and 8.0% respectively. As in the case
of asset ratings, the impact on losses given default is ambiguous, with loss
sizes depending on the circumstances of default. LCPS has a large positive
impact on LPBavg (range: 24.1%) and a small negative impact on LOLavg (range:

4.7%). The opposite is true in the case of LOA, which has a small negative
impact on LPBavg (range: 2.9%) and a positive impact on LOLavg (range: 10.2%).

Correlations. The impact of changes in the correlation parameters is
analysed for pairwise correlations in Mc := {−100%,−90%, ..., 90%, 100%}
which result in a positive definite correlation matrix. In the case of ρCPS,r and
ρOA,r, this is fulfilled for Mc1 := {−60%,−50%, ..., 10%, 20%} and in the
case of ρCPS,CPS and ρOA,OA, it is given forMc2 := {60%, 70%, 80%, 90%}.
For ρCPS,OA, positive definiteness restricts the choice of parameter val-
ues to Mc3 := {−60%,−50%, ..., 70%, 80%}. As illustrated by Figure 6.15,
the bank’s and the cover pool’s default statistics are not very sensitive to
ρCPS,r and ρOA,r: the range of observed values is below 1% in all eight
cases. Similarly, with a maximum observed range of 2.3%, the impact of
ρCPS,CPS and ρOA,OA is also not very big. The situation is different for
ρCPS,OA where πPTmax,cum

increases from 0.5% for ρCPS,OA = −60% to 9.0%

for ρCPS,OA = 80%. This positive relationship intuitively makes sense as
bank default is likely to be accompanied by bad asset performance. If both
other assets and strategic cover pool assets perform poorly at the same time,
the cover pool is more likely to default if the bank defaults. For the three
other default statistics, the observed ranges of sensitivities with respect to
ρCPS,OA are lower (less than 6%).

Funding haircuts. The results of our sensitivity analyses with respect to
funding haircuts, with h̃OAPL and hCPSPL ∈ Mh := {0%, 10%, ..., 90%, 100%},
are summarized in Figure 6.16. The bank’s cumulative default probability
πBTmax,cum

turns out to be extremely sensitive to the choice of the funding
haircut of other assets; the observed range of values is 89.6%. Higher
haircuts h̃OAPL result in higher default probabilities as they imply that less

funding is available to the bank. For h̃OAPL = 0%, we get a cumulative

bank default probability of 10.4% until Tmax, while for h̃OAPL = 40% we still

have πBTmax,cum
= 12.9%. For h̃OAPL ≥ 60%, the bank’s cumulative default

probability reaches 100%, i.e. the bank defaults for sure once a certain
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(a) Cumulative bank default probability πBTmax,cum
.

(b) Cumulative cover pool default probability πPTmax,cum
.

(c) Loss given default LOLavg of other liabilities.

(d) Loss given default LPBavg of Pfandbriefe.

Figure 6.14: Loss given default sensitivities.
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(a) Cumulative bank default probability πBTmax,cum
.

(b) Cumulative cover pool default probability πPTmax,cum
.

(c) Loss given default LOLavg of other liabilities.

(d) Loss given default LPBavg of Pfandbriefe.

Figure 6.15: Correlation sensitivities.
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haircut level is reached.13 The funding haircut hCPSPL does not have an
impact on πBTmax,cum

at all. Both findings are in line with our previous

findings in the context of funding.14 The cover pool’s cumulative default
probability πPTmax,cum

is also sensitive to the choice of h̃OAPL but to a much

lesser extent than πBTmax,cum
. It ranges from 0.1% to 8.4% with a mostly

negative impact in our example. Similar to the bank’s case, the cover pool’s
cumulative default probability is insensitive to the choice of hCPSPL . As cover
pool funding does not rely on asset pledging and hCPSPL was found to have
no impact on πBTmax,cum

, this does not come at a surprise. The average loss

given default of other liabilities highly depends on the choice of h̃OAPL , with
values ranging from 27.9% to 80.6% and a tendency of decreasing values for
higher haircuts. The impact of h̃OAPL on LPBavg is much lower with no clear
direction and observed values between 14.4% and 19.1%. The choice of the
funding haircut hCPSPL has no impact on LOLavg and LPBavg.

Liquidation haircuts. Figure 6.17 shows the results of our sensitivity analy-
ses with respect to the liquidation haircuts h̃OALI and hCPSLI for values in Mh.
As intuitively expected, the cumulative default probabilities πBTmax,cum

and

πPTmax,cum
are not affected by the choice of these haircuts. The average losses

given defaults increase with increasing haircuts as less liquidation proceeds
are available to satisfy the creditors’ claims. For Pfandbriefe, the average
loss given default LPBavg is highly sensitive to hCPSLI , taking values from 7.8%

to 53.9%. The impact of h̃OALI is much lower with a range of only 1.0%. In

the case of other liabilities, it is reversed: LOLavg is more sensitive to h̃OALI
(range: 15.8%) than to hCPSLI (range: 4.2%). These findings are perfectly in
line with our previous results on loss drivers from Section 6.2.15

13A choice of h̃OAPL = 0 corresponds to an effective funding haircut of hOAPL = pe = 33.6%,

while h̃OAPL = 60% results in hOAPL = 73.4%. As already discussed in Section 5.1.3, the

effective haircut hOAPL takes into consideration the bank’s level of asset encumbrance
from other Pfandbrief types.

14In Section 6.4 we found that the availability of other assets for pledging purposes is of
high importance for bank survival, but funding from strategic cover pool assets does
not play a notable role.

15In Section 6.2 we found that Pfandbrief losses are, among others, driven by hCP,avgLI (τ∗)

but not so much by fGIEPB (τ∗), while losses of other liabilities depend more on

hOA,avgLI (τ) than on fCPOL (τ).
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(a) Cumulative bank default probability πBTmax,cum
.

(b) Cumulative cover pool default probability πPTmax,cum
.

(c) Loss given default LOLavg of other liabilities.

(d) Loss given default LPBavg of Pfandbriefe.

Figure 6.16: Sensitivities with respect to funding haircuts.
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(a) Cumulative bank default probability πBTmax,cum
.

(b) Cumulative cover pool default probability πPTmax,cum
.

(c) Loss given default LOLavg of other liabilities.

(d) Loss given default LPBavg of Pfandbriefe.

Figure 6.17: Sensitivities with respect to liquidation haircuts.
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Stress scenario. To get a feeling for the impact of combined parameter
changes, we also consider a stress scenario where several parameters are
shocked simultaneously in an unfavourable manner. More specifically, we set
the ratings qCPS and qOA to BB instead of BB+, which roughly corresponds
to a 4.5% (absolute) increase in the 12.5-year default probability of the risky
assets. In addition, we also shock the base run losses given default LCPS

and LOA, the funding and liquidation haircuts hCPSPL , h̃OAPL , hCPSLI and h̃OALI
and the correlation ρCPS,OA by +5% in absolute terms. The results are
shown in Table 6.14. As compared to the base run, the cumulative default
probabilities of the bank and the cover pool increase by 6.4% and 6.8%
respectively, while the losses given default increase by 2.8% and 7.0%. In the
case of πBTmax,cum

and πPTmax,cum
, the impact of the combined shock (third

column) is bigger than the sum of the impacts of the same but standalone
stresses (last column), which indicates non-linear dependencies. For the
losses given default, both impacts are roughly the same.

Table 6.14: Stress scenario results: impact of the combined stress (CS) and the
sum of impacts of the standalone stresses (SS) as compared to the
base run.

Default statistics Base run Impact of CS Sum of impacts of SS

πBTmax,cum
10.4% +6.4% +5.9%

πPTmax,cum
7.6% +6.8% +5.4%

LOLavg 80.5% +2.8% +2.8%

LPBavg 19.0% +7.0% +7.0%

Interestingly, the increase in πBTmax,cum
in the combined stress scenario is

accompanied by an increase in the default probabilities for most maturities,
but the increase in πPTmax,cum

mainly affects later maturities, see Figure
6.18. Even in the combined stress scenario, Pfandbrief maturities of up
to 9 years are in line with a AAA rating, with a cumulative cover pool
default probability of πPTmax,cum

(9) = 0.18%. This further illustrates the
high level of protection of Pfandbrief holders and also the phenomenon of
time subordination.
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(a) Bank default probabilities πBt .

(b) Cover pool default probabilities πPt .

Figure 6.18: Stress scenario: default probabilities over time.

6.7 Summary of Simulation Results

In our base run setting, bank defaults are very rare in the first few years
(AAA/AA rating), but they increase significantly over time with a cumulative
default probability of 10.4% for the longest other liability (BB+ rating).
Illiquidity turns out to be the main reason of bank default, especially in the
short term and prior to year 10. The bank’s high dependence on funding is
already present in the certainty equivalent scenario where there is a bank
funding need at all times between year 1 and year 9.5. This funding need is
mostly caused by cash flow mismatches (and therefore a direct consequence
of the bank’s initial balance sheet), but to a certain extent it is also triggered
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by the need to reestablish cover requirements. In the certainty equivalent
scenario, there are always sufficient assets available for pledging and no event
of default occurs. The situation is different in the stochastic scenarios where
the bank’s funding need and the available funding fluctuate considerably and
funding is not always granted any more. The observed patterns regarding
the bank’s funding need remain unchanged in the stochastic scenarios. The
bank always needs funding between year 1 and year 9.5 as long as it has
not defaulted prior to the respective time. The crucial role which funding
plays for our bank is further demonstrated by the fact that omitting the
possibility of bank funding by pledging other assets results in an almost
immediate bank default. With respect to overindebtedness, we find that
the bank’s initial balance sheet implies a tendency of lower buffers in later
years, which is clearly visible in the certainty equivalent scenario. This, in
conjunction with fluctuation in asset present values and the default barrier,
results in an increasing number of bank defaults due to overindebtedness in
later years in the stochastic scenarios, mainly triggered by a deterioration
of asset performance. To a certain degree, overindebtedness also implies
illiquidity. Scenario analyses where we assume that overindebtedness does
not trigger an event of default reveal no significant reduction of the bank’s
and the cover pool’s cumulative default probabilities as defaults due to
illiquidity increase accordingly. Regarding the choice of the default barrier
this means that the model risk of underestimating default probabilities due
to a too low default barrier choice is mitigated. Furthermore, results from
the certainty equivalent scenario indicate that the ratio of the bank’s default
barrier and its outstanding debt is between 59% and 100%, with an average
of 70% over time and a tendency of higher values in later years. This is
roughly in line with values used in the literature (60% to 66%) but appears
to be a bit high. In conjunction with our previous finding that lowering the
default barrier does not result in a notable change in the bank’s cumulative
default probability, it can be concluded that there is no indication that our
default barrier choice is inadequate or distorts default statistics.

Pfandbiefe with maturities of up to 10 years are quite safe in our example,
and their default probabilities are in line with a AAA rating. As expected,
the cumulative cover pool default probability is below the one of a bank
default for all maturities. For longer-dated Pfandbriefe, there is a non-
negligible risk of default with a cumulative default probability of 7.6% for
the longest maturity (BBB- rating). Effectively, only in 27% of the bank
default scenarios all Pfandbriefe survive. Maturities of 9 years or longer,
which are affected by an event of default in our simulations, account for



6.7 Summary of Simulation Results 219

46% of the initially outstanding Pfandbrief nominal. The phenomenon of
a high level of protection on the one hand and the risk of potential time
subordination on the other hand becomes even more visible when comparing
the combined stress scenario with simultaneous adverse parameter shocks of
+5% as compared to the base run. The 6.8% absolute increase in πPTmax,cum

mainly affects Pfandbrief maturities longer than 9 years, with shorter-dated
maturities remaining in line with a AAA rating. In the case of the cover
pool, overindebtedness is the main default reason, while the dependence on
funding is comparably low. On the other hand, we do not find a significant
reduction in the cover pool’s cumulative default probability if we assume
that overindebtedness does not trigger an event of cover pool default.

In the base run, the average loss given default of Pfandbriefe (19.0%) is
considerably lower than the one of other liabilities (80.5%). Apart from
differences in asset riskiness (default parameters of strategic cover pool assets
vs. other assets) and liquidation losses as implied by the chosen liquidation
haircuts, this is mainly due to the priority claim of Pfandbrief holders on
the cover pool. The value of the additional claim of Pfandbrief holders on
the general insolvency estate turns out to be rather small in our example.
This is not solely a consequence of our assumption that this claim is only
enforceable in the case of a simultaneous bank and cover pool default, but
it is also caused by the low liquidation proceeds remaining in the general
insolvency estate as many other assets have been pledged to the bank’s
liquidity line prior to default. It should not be concluded that the value of
the additional claim of Pfandbrief holders on the general insolvency estate is
negligible in general. The low recovery rates of other liabilities, on the other
hand, are not only caused by structural subordination and the performance
of other assets. They also result from the bank’s high asset encumbrance
from other Pfandbrief types (modelled implicitly through the liquidation
haircut of other assets) and its extensive funding activities (with a high
amount of assets having been pledged prior to bank default and therefore
not being available to the general insolvency estate).

The results of our sensitivity analyses are plausible and reveal that the
parameters specifying the creditworthiness of the bank’s risky assets need to
be chosen with care as they can have a large impact on the liabilities’ default
statistics. They do not only influence asset present values and cash flows but,
more generally, bank and cover pool default timing and the circumstances of
default, which in turn determine the associated losses. Similarly, the assumed
funding and liquidation haircuts can also strongly influence the simulation
results. The impact of correlations, on the other hand, is rather small, the
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only exception being the correlation between state variable processes of
strategic cover pool assets and other assets. Due to non-linear dependencies,
simultaneous changes in more than one of the parameters can result in a
stronger effect than the sum of the effects of the standalone changes.

With respect to scenario quality and the stability of simulation results we
find that the default statistics obtained from our base run with 100, 000
simulated scenarios are reasonably stable and representative. Findings from
our analyses do, however, indicate that the used asset model might not be
suitable for arbitrary constellations of asset default parameters. Extreme
state variable process parameters obtained in the calibration can result in
simulation instabilities.

All in all, given the bank’s initial balance sheet and its implications on
asset liability mismatches and asset riskiness, the bank highly depends on
funding and there is a non-negligible probability of bank default due to
illiquidity after the first few years. Providing unsecured funding for a longer
time horizon would therefore not be advisable for a risk-averse investor. By
contrast, Pfandbriefe are very safe for short and mid-term maturities, but
longer dated Pfandbriefe are affected by time subordination. This risk could
be mitigated by the introduction of additional Pfandbrief features which
prevent the excessive use of cover pool proceeds for the repayment of shorter-
dated Pfandbriefe, cf. Spangler and Werner [145]. As compared to other
liabilities, Pfandbriefe benefit from comparably high recovery rates. This is,
amongst others, due to the priority claim on the cover pool. The value of the
additional claim of Pfandbrief holders on the bank’s general insolvency estate,
which is quite low in our example, depends on the amount of unencumbered
other assets at the time of bank default. Other liabilities do not only
suffer from structural subordination but also from asset encumbrance due
to collateralized funding activities.

All our results do, of course, highly depend on the assumptions on which our
model is based. These comprise not only the model calibration itself (e.g.
the bank’s initial balance sheet and the choice of our model parameters),
but also more general assumptions including the choice of the default barrier
and the assumption that cover pools from additional Pfandbrief types are
only implicitly modelled via haircuts. Especially what happens in later years
is highly influenced by our run-off consideration (e.g. no new business, no
active maintenance of voluntary overcollateralization) and the assumed asset
liability management (e.g. reinvestment strategies) and should therefore
be considered with care. For practical applications an adequate choice of
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the balance sheet parameters is essential. To obtain realistic bank-specific
results, more granular information on the balance sheet composition, which
is typically available to the issuing bank, rating agencies or sophisticated
investors, is needed and should be used instead. Due to the expert judgement
on which our asset default parameters and asset present values are based, our
obtained default statistics can only be considered of exemplary character.



7 Conclusion and Outlook

The purpose of this work was to develop a Pfandbrief model for structural
analyses in the context of product features and risk profiles which accounts
for the Pfandbrief’s most important characteristics and adequately reflects
its main risks. Required modelling features where derived based on the legal
framework for Pfandbrief issuance and an analysis of product-specific risks.
A multi-period simulation-based framework in which all terms can be easily
calculated by recursive computation turned out to be most suitable for our
purpose. Similar cash flow approaches are commonly used by insurance
companies, for the market-consistent valuation of insurance liabilities.

Our Pfandbrief model, which is inspired by Sünderhauf [148] and Liang et al
[114], is based on the distinction of nine Pfandbrief scenarios which depend
on the current simulation time and the occurrence of the events of bank and
cover pool default. Each of these scenarios triggers different liability cash
flows and asset liability management activities. The bank’s balance sheet
consists of several classes of assets and liabilities, with different nominals,
maturities and riskiness, and therefore allows for an adequate representation
of asset liability mismatches and an explicit distinction of the balance sheet
positions which are related to the bank’s Pfandbrief business. To avoid an
artificial change of the risk profile over time, we work in in a run-off setup
with no new business being made. The market environment is represented
through the stochastic dynamics of the short rate and the creditworthiness of
the bank’s risky assets. Due to our specific model assumptions, the impact of
these risk drivers on the assets’ present values and cash flows (and therefore
on the bank’s balance sheet) can be calculated analytically. The asset
liability management in our model is dynamic and accounts for funding and
reinvestment strategies as well as for the maintenance of overcollateralization
according to the legal requirements. The bank’s funding situation, which is
explicitly modelled, plays a crucial role for the specification of bank default.
Under defined circumstances, liquidity shortages can be overcome by drawing
cash from a collateralized liquidity line. Our model distinguishes between
bank and cover pool default and takes into consideration two different default
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triggering events: overindebtedness and illiquidity. While overindebtedness is
caused by a deterioration of asset quality, illiquidity stems from the inability
to raise sufficient funding to fulfil payment obligations. Both default events
are influenced by the market environment and the resulting liquidation
payments take into account the Pfandbrief-specific priority of payments.

The model’s primary outputs are Pfandbrief default statistics. If adequately
calibrated it can therefore be used for the estimation of real-world default
probabilities and losses given default, as a supplement to and a verification of
existing expert judgement for these parameters. This is especially desirable
given the lack of historic default data, but results have to be interpreted
with care as this also implies that backtesting is not possible. Nonetheless,
our simulation results obtained from an exemplary Mortgage Pfandbrief
calibration with typical asset liability mismatches capture the main expected
behaviour patterns of Pfandbriefe. Even if there is a non-negligible probabil-
ity of bank default after the first few years, Pfandbriefe are still comparably
safe with much lower default probabilities, at least for short to mid-term
maturities. Longer-dated Pfandbriefe are affected by time subordination,
which arises from the fact that the PfandBG does not specify any restrictions
to use cover pool proceeds for the repayment of Pfandbriefe with shorter
maturities. Due to the priority claim on the cover pool, Pfandbrief recovery
rates are notably higher than those of other liabilities which suffer from
structural subordination and potential asset encumbrance. The value of
the Pfandbrief holder’s additional claim on the bank’s general insolvency
estate depends on the amount of unencumbered other assets at the time
of bank default. Our sensitivity analyses reveal that the impact of model
parameters on resulting default statistics can be quite high, which implies
that the individual risk profile plays an important role and that Pfandbriefe
are not automatically safe by construction. To obtain realistic bank-specific
results, an adequate model calibration is therefore of uttermost importance.

Our Pfandbrief model provides a flexible framework for structural analyses
and can be easily extended for tailor-made analyses. It can, for example,
contribute to current debates on extendible Pfandbrief maturities. As
outlined in vdp [156], there is a proposal to introduce a maturity extension
option of up to 12 months for newly issued and outstanding Pfandbriefe, to
ease funding pressure and to reduce the risk of fire-sales in times of market
distortions in the immediate aftermath of an issuer default. Unlike soft bullet
bonds in other jurisdictions which have become more and more popular in
recent years, the proposed limited maturity extension is planned to be not
trigger-based but needs to be activated by the cover pool administrator. At
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the time of writing, the final design of the maturity extension was not yet
clear and discussions were still ongoing, cf. IFR [95]. Once potential criteria
for the maturity extension are specified and implemented in our model, a
quantification of the impact on Pfandbrief default statistics is straightforward.
The insights of such analyses would be especially interesting in light of market
observations which do not reveal a clear spread differentiation between soft
bullet and hard bullet structures, cf. Rudolf and Rühlmann [138]. Other
interesting topics which may be worth further investigations include but are
not limited to (i) a comparison of different business models through balance
sheet modifications and variations in asset liability management strategies,
(ii) a quantification of the value of individual legal cover requirements,
(iii) analyses related to cover pool insolvency timing, (iv) analyses in the
context of asset encumbrance caused by Pfandbrief issuance and (v) analyses
regarding the cover add-on which has been introduced in 2014 to facilitate a
reaction of BaFin to unfavourable issuer- or cover pool-specific developments

We conclude this work by identifying several avenues for potential model
improvements. First, our model assumes that it is sufficient to model
only one type of Pfandbriefe, the Pfandbrief type under consideration. In
practice, Pfandbrief banks often have more than one type of Pfandbriefe
outstanding. As long as the size of the additional Pfandbrief business is
small, our assumptions in this context (i.e. an implicit modelling by adjusting
funding and liquidation haircuts in a suitable manner) may be viable, but
for banks with considerable volumes of other Pfandbrief types an explicit
modelling of these positions should be considered to allow for a proper study
of cross-effects between the different cover pools and their impact on the
bank’s creditors. Even though the modelling of such effects is likely to have
an impact on the resulting default statistics, we expect our main insights
to remain unchanged. Second, our modelling approach relies on strong
assumptions in the context of default specification. The choice of our bank
default barrier which triggers overindebtedness is not straightforward and
may have a considerable impact on model results. Given empirical findings
and our exemplary model calibration, we could not find any indications
that our default barrier choice is inadequate. Nevertheless, further analyses
regarding the choice of the default barrier, especially in light of the prevalence
of a second default reason (illiquidity), are worth consideration. This also
applies to the default barrier of the cover pool, which is chosen in a similar
way as in the bank’s case, due to the fact that the PfandBG does not specify
concrete default triggering events for the cover pool. Third, further analyses
on the choice of the asset model would also be desirable. The current model
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allows for analytical solutions for asset present values under stochastic interest
rates and creditworthiness (a necessary requirement), but thorough analyses
regarding the advantages and implications of different asset models and the
choice of the most suitable model for our purpose was beyond the scope of
this work. Given the limited degrees of freedom (only three parameters),
our asset model cannot be reasonably calibrated to a term structure of PDs,
LGDs and spreads, which describes how these parameters are expected to
change over time with decreasing time to maturity. In addition, findings from
our analyses indicate that the used asset model is likely to be not suitable for
arbitrary constellations of asset default probabilities and losses given default
as extreme state variable process parameters obtained in the calibration are
likely to result in simulation instabilities. The Vasicek model underlying the
real-world and risk-neutral dynamics of the interest rates also reveals some
deficiencies in the context of calibration, which allow for a questioning of the
related model assumptions. Finally, extending our model to allow for more
sophisticated asset liability management would enable a proper study of how
assumptions in the context of funding, reinvestments and the maintenance
of overcollateralization affect the default statistics. In practice, asset liability
management decisions depend not only on the financial situation of the
bank and on legal requirements but also on strategic considerations. Taking
all relevant aspects into account, the modelling can quickly become very
complex, which means that a reasonable trade-off between adequacy and
resulting model complexity is necessary. In our model, two assumptions
in the context of asset liability management are particularly worth further
investigations. We currently assume that voluntary overcollateralization
in excess of legal requirements is not actively maintained. Here, it would
be interesting to see how a certain level of voluntary overcollateralization
impacts the risk profile of Pfandbriefe and other liabilities. This would,
however, also need further assumptions regarding the refinancing of the
additional overcollateralization, which becomes especially relevant when
there is not sufficient cash available to add additional cover pool assets. The
second assumption which might be reviewed is related to the bank’s and the
cover pool’s reinvestment strategies. In our model, the bank’s reinvestment
activities concentrate on other assets and always take place pro rata. Here,
more realistic strategies which account for current asset performance and
existing asset liability mismatches or a given target asset mix could be
considered. The same holds for the cover pool administrator’s reinvestment
strategy, which currently only concentrates on liquid cover pool assets.
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In the end, no model can fully explain the complex interdependencies on
financial markets. Nevertheless, a Pfandbrief model like ours can help to
analyse and understand certain relationships better.
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[80] R. Grossmann and O. Stöcker. Overview of covered bonds. In: Eu-
ropean Covered Bond Council: European Covered Bond Fact Book,
ECBC Publication, 11th edition, August 2016, pp. 131–144.

[81] X. Guo, R. A. Jarrow, and Y. Zeng. Credit Risk Models with Incom-
plete Information. Mathematics of Operations Research, Vol. 34, No.
2, May 2009, pp. 320–332.

[82] L. Hagen and R. Holter. Auswirkungen von Basel II auf das Risiko-
management deutscher Hyopthekenbanken. In: Verband Deutscher
Hypothekenbanken, Professionelles Immobilien-Banking, 1st edition,
Berlin, 2002, pp. 53–64.

[83] Hamburger Sparkasse AG. Pfandbrief statistics pursuant to §28 Pfand-
brief Act, Q4 2014.

[84] F. Hillenbrand. Covered Bonds in der Insolvenz – ein systematischer
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[146] Sparkasse KölnBonn. Pfandbrief statistics pursuant to §28 Pfandbrief
Act, Q4 2014.

[147] R. K. Sundaram. The Merton/KMV Approach to Pricing Credit Risk.
Working Paper, January 2001.

[148] R. Sünderhauf. Bewertung des Ausfallrisikos deutscher
Hypothekenbank-Pfandbriefe. BWV Berliner Wissenschafts-Verlag
GmbH, 2006.

[149] D. Tasche. Fitting a distribution to Value-at-Risk and Expected
Shortfall, with an application to covered bonds. Journal of Credit
Risk, Vol. 12, No. 2, pp. 1–34, 2016.

[150] M. Uhrig-Homburg. Cash-flow shortage as an endogenous bankruptcy
reason. Journal of Banking & Finance, Vol. 29, Issue 6, June 2005, pp.
1509–1534.



Bibliography 241

[151] M. Uhrig-Homburg. Valuation of Defaultable Claims - A Survey.
Schmalenbach Business Review, Vol. 54, January 2002, pp. 24–57.

[152] UniCredit Bank AG. Pfandbrief statistics pursuant to §28 Pfandbrief
Act, Q4 2014.

[153] Valovis Bank AG. Pfandbrief statistics pursuant to §28 Pfandbrief
Act, Q4 2014.

[154] O. Vasicek. An Equilibrium Characterization Of The Term Structure.
Journal of Financial Economics, Vol. 5, No. 2, November 1977, pp.
177–188.

[155] O. A. Vasicek. Credit Valuation. KMV Publication, March 1984.

[156] Verband Deutscher Pfandbriefbanken. Infobrief, Ausgabe Q2 2016.
Available on http://www.pfandbrief.de/.

[157] Verband Deutscher Pfandbriefbanken. Pfandbrief Act (as at November
2015). Brochure.

[158] Verband Deutscher Pfandbriefbanken. The Pfandbrief 2012/2013:
Facts and Figures about Europe’s Covered Bond Benchmark. Pfand-
brief Fact Book, 17th edition, Berlin, 2012.

[159] Verband Deutscher Pfandbriefbanken. The Pfandbrief 2013/2014:
Facts and Figures about Europe’s Covered Bond Benchmark. Pfand-
brief Fact Book, 18th edition, Berlin, 2013.

[160] Verband Deutscher Pfandbriefbanken. The Pfandbrief 2014/2015:
Facts and Figures about Europe’s Covered Bond Benchmark. Pfand-
brief Fact Book, 19th edition, Berlin, 2014.

[161] Verband Deutscher Pfandbriefbanken. The Pfandbrief 2015/2016:
Facts and Figures about Europe’s Covered Bond Benchmark. Pfand-
brief Fact Book, 20th edition, Berlin, 2015.

[162] Verband Deutscher Pfandbriefbanken. The Pfandbrief 2016/2017:
Facts and Figures about Europe’s Covered Bond Benchmark. Pfand-
brief Fact Book, 21th edition, Berlin, 2016.

[163] Verband Deutscher Pfandbriefbanken. Volume outstanding and is-
suance 2003-2014. Pfandbrief market statistics, 2015.

[164] Verband deutscher Pfandbriefbanken e. V. Pfandbrief statistics pur-
suant to §28 Pfandbrief Act, Q4 2014.



242 Bibliography

[165] Westdeutsche ImmobilienBank AG. Pfandbrief statistics pursuant to
§28 Pfandbrief Act, Q4 2014.

[166] WL BANK AG Westfälische Landschaft Bodenkreditbank. Pfandbrief
statistics pursuant to §28 Pfandbrief Act, Q4 2014.
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Supplementary Tables and Figures

Table A.1: Exemplary bank balance sheet.

t CPS CPL OA PB OL

0.5 879 821 5,142 1,700 4,909
1 1,372 — 496 1,054 2,187

1.5 858 — 142 2,155 778
2 1,238 — 142 430 778

2.5 1,082 — 142 309 778
3 1,101 — 142 313 778

3.5 955 — 142 343 778
4 971 — 142 347 778

4.5 872 — 142 572 778
5 887 — 142 579 778

5.5 772 — 919 500 525
6 785 — 919 506 525

6.5 798 — 919 513 525
810 — 919 520 525

7.5 823 — 919 527 525
8 836 — 919 534 525

8.5 849 — 919 541 525
9 863 — 919 548 525

9.5 876 — 919 555 525
10 890 — 919 563 525

10.5 910 — 919 1,573 525
11 924 — 919 1,594 525

11.5 939 — 919 1,614 525
12 953 — 919 1,636 525

12.5 968 — 919 1,657 525
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Table A.2: Exemplary lifetime default probabilities πR(t) for different rating
classes R ∈ {AAA,AA,AA,A+, ..., CCC,D} and asset maturities
t ∈ {1, 2, 3, ..., 13}.

t πAAA πAA πA+ πA πA− πBBB+ πBBB πBBB−

1 0.01% 0.02% 0.03% 0.05% 0.09% 0.12% 0.17% 0.26%
2 0.02% 0.04% 0.06% 0.11% 0.19% 0.26% 0.38% 0.58%
3 0.04% 0.07% 0.10% 0.17% 0.31% 0.44% 0.63% 0.98%
4 0.06% 0.10% 0.14% 0.25% 0.45% 0.65% 0.94% 1.45%
5 0.08% 0.14% 0.19% 0.33% 0.61% 0.89% 1.31% 2.01%
6 0.10% 0.18% 0.24% 0.44% 0.81% 1.19% 1.74% 2.66%
7 0.13% 0.22% 0.30% 0.55% 1.04% 1.53% 2.24% 3.38%
8 0.16% 0.28% 0.37% 0.69% 1.30% 1.92% 2.79% 4.18%
9 0.20% 0.34% 0.46% 0.85% 1.60% 2.35% 3.41% 5.05%
10 0.24% 0.41% 0.55% 1.04% 1.94% 2.84% 4.08% 5.97%
11 0.29% 0.50% 0.66% 1.24% 2.31% 3.37% 4.80% 6.94%
12 0.35% 0.59% 0.79% 1.48% 2.73% 3.94% 5.57% 7.95%
13 0.42% 0.70% 0.93% 1.74% 3.18% 4.55% 6.37% 8.99%

t πBB+ πBB πBB− πB+ πB πB− πCCC πD

1 0.59% 0.88% 1.98% 2.96% 6.67% 10.00% 20.00% 100%

2 1.33% 1.98% 4.37% 6.52% 13.69% 18.78% 32.76% 100%
3 2.23% 3.30% 7.05% 10.32% 20.23% 26.22% 41.51% 100%
4 3.28% 4.80% 9.89% 14.15% 26.05% 32.45% 47.88% 100%
5 4.47% 6.44% 12.79% 17.88% 31.13% 37.68% 52.75% 100%
6 5.78% 8.19% 15.67% 21.44% 35.57% 42.11% 56.63% 100%
7 7.18% 10.00% 18.50% 24.79% 39.45% 45.88% 59.81% 100%
8 8.64% 11.85% 21.22% 27.91% 42.85% 49.14% 62.47% 100%
9 10.15% 13.71% 23.82% 30.82% 45.86% 51.98% 64.75% 100%
10 11.69% 15.56% 26.29% 33.51% 48.54% 54.47% 66.73% 100%
11 13.24% 17.39% 28.64% 36.01% 50.94% 56.69% 68.46% 100%
12 14.79% 19.19% 30.85% 38.33% 53.09% 58.67% 70.00% 100%
13 16.33% 20.94% 32.94% 40.48% 55.05% 60.46% 71.37% 100%



Supplementary Tables and Figures 245

Table A.3: Calibrated model parameters Ẑx,0i , µ̂xi and σ̂xi for i = 1, ..., nx and
x ∈ {CPS,OA}, based on the Vasicek parameters in Table 5.9 and
the correlations in Table 5.5.

t Ẑ
CPS,0
i µ̂CPSi σ̂CPSi Ẑ

OA,0
i µ̂OAi σ̂OAi

0.5 2.0411 0.0030 0.3514 3718.0747 0.0028 3.0381
1 1.8418 0.0036 0.2332 1189.3540 0.0036 2.0107

1.5 1.7129 0.0041 0.1812 538.0490 0.0041 1.5589
2 1.6300 0.0045 0.1513 316.8214 0.0047 1.3000

2.5 1.5586 0.0049 0.1308 197.5797 0.0051 1.1213
3 1.5042 0.0052 0.1160 137.2294 0.0055 0.9935

3.5 1.4542 0.0055 0.1044 97.4509 0.0059 0.8929
4 1.4132 0.0058 0.0953 73.5089 0.0063 0.8140

4.5 1.3748 0.0061 0.0877 56.2259 0.0066 0.7478
5 1.3419 0.0063 0.0814 44.6908 0.0069 0.6932

5.5 1.3108 0.0065 0.0759 35.9184 0.0072 0.6459
6 1.2834 0.0067 0.0713 29.6324 0.0075 0.6055

6.5 1.2575 0.0069 0.0671 24.6829 0.0078 0.5697
7 1.2341 0.0071 0.0635 20.9447 0.0081 0.5384

7.5 1.2120 0.0072 0.0603 17.9251 0.0083 0.5103
8 1.1917 0.0074 0.0574 15.5497 0.0086 0.4852

8.5 1.1726 0.0075 0.0547 13.5920 0.0089 0.4625
9 1.1549 0.0076 0.0524 12.0014 0.0091 0.4420

9.5 1.1381 0.0077 0.0502 10.6685 0.0094 0.4232
10 1.1224 0.0078 0.0482 9.5568 0.0096 0.4061

10.5 1.1076 0.0078 0.0464 8.6122 0.0099 0.3903
11 1.0936 0.0079 0.0447 7.8070 0.0101 0.3758

11.5 1.0804 0.0079 0.0431 7.1145 0.0104 0.3623
12 1.0679 0.0080 0.0417 6.5136 0.0106 0.3498

12.5 1.0560 0.0080 0.0403 5.9912 0.0108 0.3382
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Table A.4: Base run default statistics.
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Table A.5: Base run default timing: number of default events by simulation
time (‘# D’ = total number of bank defaults, ‘# S’ = number of
simultaneous cover pool defaults, ‘# L’ = number of later cover
pool defaults, ‘# N’ = number of no cover pool defaults in case of
bank default).

t # D # S # L # N

0.5 0 0 0 0
1 15 0 0 15

1.5 0 0 0 0
2 0 0 0 0

2.5 6 0 2 4
3 4 0 1 3

3.5 20 0 5 15
4 61 0 38 23

4.5 170 0 129 41
5 451 0 338 113

5.5 444 0 338 106
6 451 0 327 124

6.5 505 0 378 127
7 550 0 405 145

7.5 554 0 392 162
8 538 0 383 155

8.5 538 0 386 152
9 594 0 454 140

9.5 602 0 443 159
10 602 0 452 150

10.5 788 259 365 164
11 1008 411 377 220

11.5 1316 638 325 353
12 1006 594 22 390

12.5 225 152 0 73

Total 10448 2054 5560 2834

% 100% 20% 53% 27%
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Table A.6: Base run PD-ratings.

t OL PB

0.5 AAA AAA
1 AA AAA

1.5 AAA AAA
2 AAA AAA

2.5 AAA AAA
3 AAA AAA

3.5 AAA AAA
4 A+ AAA

4.5 A AAA
5 BBB+ AAA

5.5 BBB AAA
6 BBB AAA

6.5 BBB- AAA
7 BBB- AAA

7.5 BBB- AAA
8 BBB- AAA

8.5 BBB- AAA
9 BBB- AAA

9.5 BBB- AAA
10 BB+ AAA

10.5 BB+ A
11 BB+ BBB+

11.5 BB+ BBB-
12 BB+ BBB-

12.5 BB+ BBB-
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Table A.7: Base run default reasons over time (‘# D-B’ = total number of
bank defaults, ‘# O-B’ = number of bank defaults triggered by
overindebtedness, ‘# I-B’ = number of bank defaults triggered by
illiquidity, ‘# D-P’ = total number of cover pool defaults, ‘# O-P’
= number of cover pool defaults triggered by overindebtedness, ‘#
I-P’ = number of cover pool defaults triggered by illiquidity).

t # D-B # O-B # I-B # D-P # O-P # I-P

0.5 0 0 0 0 0 0
1 15 0 15 0 0 0

1.5 0 0 0 0 0 0
2 0 0 0 0 0 0

2.5 6 0 6 0 0 0
3 4 0 4 0 0 0

3.5 20 0 20 0 0 0
4 61 7 54 0 0 0

4.5 170 5 165 0 0 0
5 451 1 450 0 0 0

5.5 444 1 443 0 0 0
6 451 2 449 0 0 0

6.5 505 1 504 0 0 0
7 550 1 549 0 0 0

7.5 554 0 554 0 0 0
8 538 0 538 0 0 0

8.5 538 0 538 0 0 0
9 594 3 591 2 2 0

9.5 602 26 576 10 10 0
10 602 88 514 71 71 0

10.5 788 442 346 771 530 241
11 1008 911 97 1942 1537 405

11.5 1316 1313 3 2482 2233 249
12 1006 1006 0 2091 2087 4

12.5 225 225 0 245 245 0

Total 10448 4032 6416 7614 6715 899

% 100% 39% 61% 100% 88% 12%
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(a) kGOL(τ).

(b) hOA,avgLI (τ).

(c) fVOL(τ).

Figure A.1: (part 1) Base run distribution of loss drivers of other liabilities
(central mark of boxes: median, edges of boxes: 25th and 75th
percentiles).
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(d) kOAPL (τ −∆).

(e) fPAOL (τ).

(f) fCPOL (τ).

Figure A.1: (part 2) Base run distribution of loss drivers of other liabilities
(central mark of boxes: median, edges of boxes: 25th and 75th
percentiles).
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Table A.8: Base run scenarios with the ten highest/lowest losses of other  
liabilities.
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(a) kCPPB(τ∗).

(b) hCP,avgLI (τ∗).

(c) fVPB(τ∗).

(d) kCPSPL (τ∗ −∆).

(e) fGIEPB (τ∗).

Figure A.2: Base run distribution of Pfandbrief loss drivers (central mark of
boxes: median, edges of boxes: 25th and 75th percentiles).
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Figure A.3: Bivariate distribution of kGPB(τ∗) and LV IE(τ∗)

CPB(τ∗)
in the base run.
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Table A.9: Base run scenarios with the ten highest/lowest losses of Pfandbriefe.
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Figure A.4: Bivariate loss distribution of other liabilities and the bank’s liquid-
ity line in the base run.
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(a) Value of the bank’s assets, V OB (t).

(b) Bank default barrier, BOB (t).

(c) Value of the bank’s assets vs. bank default barrier,
VOB (t)

BO
B

(t)
.

Figure A.5: The bank’s solvency situation in the base run, given that the bank
has not defaulted prior to the respective time (central mark of
boxes: median, edges of boxes: 25th and 75th percentiles).
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(a) Cover pool value, V CP (t).

(b) Value of strategic cover pool assets, V CPS(t).

(c) Value of liquid cover pool assets, V CPL(t).

(d) Value of other assets, V OA(t).

Figure A.6: Distribution of asset present values in the base run, given that the
bank has not defaulted prior to the respective time (central mark
of boxes: median, edges of boxes: 25th and 75th percentiles).
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(a) Cover pool nominal, NCP (t).

(b) Nominal of strategic cover pool assets, NCPS(t).

(c) Nominal of liquid cover pool assets, NCPL(t).

(d) Nominal of other assets, NOA(t).

Figure A.7: Distribution of asset nominals in the base run, given that the
bank has not defaulted prior to the respective time (central mark
of boxes: median, edges of boxes: 25th and 75th percentiles).
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(a) Cover pool value, V OP (t).

(b) Cover pool default barrier, BOP (t).

(c) Cover pool value vs. cover pool default barrier,
VOP (t)

BO
P

(t)
.

Figure A.8: The cover pool’s solvency situation in the base run, given that the
bank has already defaulted but the cover pool has not defaulted
prior to the respective time (central mark of boxes: median, edges
of boxes: 25th and 75th percentiles).
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(a) Cover pool value, V CPNPL(t).

(b) Value of strategic cover pool assets, V CPSNPL (t).

(c) Value of liquid cover pool assets, V CPL(t).

Figure A.9: Distribution of cover pool present values in the base run, given
that the bank has already defaulted but the cover pool has not
defaulted prior to the respective time (central mark of boxes:
median, edges of boxes: 25th and 75th percentiles).
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(a) Cover pool nominal, NCP
NPL(t).

(b) Nominal of strategic cover pool assets, NCPS
NPL(t).

(c) Nominal of liquid cover pool assets, NCPL(t).

Figure A.10: Distribution of cover pool nominals in the base run, given that
the bank has already defaulted but the cover pool has not de-
faulted prior to the respective time (central mark of boxes: me-
dian, edges of boxes: 25th and 75th percentiles).
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(a) The bank’s funding need, GCB(t).

(b) Potential funding from other assets, Lmax
OA (t).

(c) Percentage nominal overcollateralization,
ÑCPS(t)−ÑPB(t)

ÑPB(t)
.

(d) Potential funding from strategic cover pool assets, Lmax
CPS(t).

Figure A.11: The bank’s funding situation in the base run, given that the
bank has not defaulted prior to the respective time (central mark
of boxes: median, edges of boxes: 25th and 75th percentiles).
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(a) kGOL(τ).

(b) hOA,avgLI (τ).

(c) fVOL(τ).

(d) fPAOL (τ).

(e) fCPOL (τ).

Figure A.12: Bank funding scenario analysis: distribution of loss drivers of
other liabilities (central mark of boxes: median, edges of boxes:
25th and 75th percentiles).
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(a) Short rate mean µr(t)|F0
: model vs. realized.

(b) Short rate volatility σr(t)|F0
: model vs. realized.

(c) Asset PDs πCPSi and πOAj : model vs. realized.

(d) Asset LGDs  LCPSi and  LOAj : model vs. realized.

Figure A.13: Absolute deviations of realized statistics from their theoretical
counterparts in the base run, by time bucket.
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(a) Comparison of Zx,0k , x ∈ {CPS,OA}.

(b) Comparison of µxk , x ∈ {CPS,OA}.

(c) Comparison of σxk , x ∈ {CPS,OA}.

Figure A.14: State variable process parameters in the base run.
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