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Vorwort

Die Idee zu diesem Buch war, eine Vorlage für eine einsemestrige vierstündige Lehrver-
anstaltung mit dem gleichen Titel zu schaffen, die ich an der Universität Kiel seit einigen
Jahren regelmäßig anbiete. Diese Vorlesung richtet sich an Studierende der Mathema-
tik und Informatik (mit ausreichenden mathematischen Vorkenntnissen und Interesse).
Zu meiner Freude kommen auch immer wieder Studierende aus in den in Kiel mit dem
Helmholtz-Zentrum GEOMAR und dem DFG-Cluster „Future Ocean“ stark vertretenden
Klima- und Meereswissenschaften in diese Vorlesung. Damit ist die Zielgruppe dieses
Buches gut beschrieben.

Ich arbeite seit einigen Jahren in der Anwendung von numerischer Mathematik, Op-
timierung und Parameteridentifikation bei Klimamodellen und habe dieses Gebiet als
spannend, vielseitig und anspruchsvoll kennengelernt. Es stellt gewissermaßen eine Kom-
bination aus mathematischer Modellierung und der Theorie und Numerik von Differenti-
algleichungen dar. Meine Idee der Vorlesung und auch des Buches war es, mathematische
Aussagen aus diesen drei Bereichen an Hand ausgewählter Klimamodelle vorzustellen
und anzuwenden, und zwar möglichst genau dann, wenn eine entsprechende Fragestellung
im Klimamodell auftritt. Dies unterscheidet dieses Buch eventuell von anderen Lehrbü-
chern über Numerik oder Differentialgleichungen.

Da jeder der oben genannten drei Bereiche an sich schon eine oder mehrere Vorle-
sungen füllen kann, müssen Abstriche in Breite und Tiefe gemacht werden: Sie werden
in diesem Buch nur einen groben Überblick über das Klimasystem und wenig über die
Problematik des Klimawandels finden. Auch gibt es im Bereich der Theorie und Numerik
von Differentialgleichungen an vielen Stellen weitere interessante Themen, die hier nicht
behandelt werden. So wird etwa der Bereich der Strömungsmechanik in Ozean und Atmo-
sphäre nur ansatzweise behandelt. In seinem jetzigen Umfang geht das Buch schon weiter,
als es die Vorlesungszeit in einem Semester erlaubt. Es ist ebenfalls schwer möglich, in
einem Semester die Details der heute verwendeten dreidimensionalen Klimamodellen mit
der hier angestrebten mathematischen Basis vorzustellen, auch weil bei konkreten Model-
len viele theoretische Aussagen (noch) nicht vorliegen.

Für das Buch wird Vorwissen aus Grundvorlesungen der Analysis und Linearen Al-
gebra oder vergleichbarer Mathematik für Naturwissenschaften vorausgesetzt. Resultate
aus diesen Grundvorlesungen werden – wenn dies der Verdeutlichung dient – wiederholt
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VI Vorwort

(ohne Beweis), teilweise wird nur auf Literatur verwiesen. Einige Aussagen (z.B. der Ba-
nach’sche Fixpunktsatz) sind eventuell auch schon aus Mathematik-Vorlesungen bekannt,
wurden hier aber mit Beweis aufgenommen. Einige andere Beweise von Resultaten, die
aus verfügbarer Literatur stammen, werden hier nicht wiederholt, sondern mit Referenz
angegeben. Die Abschnitte über die Existenz schwacher Lösungen benutzen einige weni-
ge darüber hinausgehende Resultate aus der Funktionalanalysis.

Bedanken möchte ich mich bei den Studierenden, die mir immer wieder erlaubt ha-
ben, zu lernen, wie dieser Stoff am besten zu vermitteln ist. Ich bedanke mich ebenfalls
bei denWissenschaftlichen Mitarbeiterinnen undMitarbeitern Claudia Kratzenstein, Mal-
te Prieß und Jens Burmeister, die die Übungen zu den Vorlesungen durchgeführt haben.
Jens Burmeister und einigen Studierenden danke ich daneben für Hinweise zu Fehlerkor-
rekturen. Dank ebenfalls an Kirsten Zickfeld und Stefan Rahmstorf für die Möglichkeit
der Arbeit mit dem Boxmodell der Nordatlantikströmung sowie an William E. Schiesser
für das Bereitstellen der Dokumentation und des Codes des CO2-Boxmodells. Weiterhin
danke ich dem Springer-Verlag für die Betreuung und die Gelegenheit, dieses Buch zu
veröffentlichen.

Kiel, März 2015 Thomas Slawig
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1Klimasystem und Klimamodelle

Hier werden die Begriffe Klima, Modelle und Simulationen und der grundlegende Aufbau des Kli-
masystems der Erde mit den wichtigsten Prozessen und Interaktionen diskutiert. Die antreibenden
Kräfte des Klimas und damit auch die Ursachen für Klimaänderungen werden zusammengefasst.
Es werden die verschiedenen Klassen von Klimamodellen, auch in ihrer historischen Entwicklung,
kurz vorgestellt. Damit werden die Grundlagen gelegt, um sich später genauer mit den Modellen
beschäftigen zu können. Es geht hier zunächst um einen Überblick, um die einzelnen später be-
handelten Modelle und auch verwendete Begriffe einordnen zu können. Der Idee eines Lehrbuchs
folgend, werden diese Inhalte – wenn passend – als Übungen in Frageform thematisiert. Beispielhaf-
te Antworten werden danach zusammengestellt. Ausführlichere Darstellungen zum Thema finden
sich z. B. in [1–4].

1.1 Wetter und Klima

Zur Definition des Begriffs Klima und seiner Abgrenzung vom Begriff Wetter beginnen
wir mit folgenden Fragen:

Übung 1.1
(a) Welche Phänomene und Größen werden (z. B. in einer Vorhersage) genannt, wenn

vonWetter oder auch Unwetter die Rede ist?
(b) In welchen Teilen des Klimasystems (z. B. Atmosphäre, Ozeane, Vegetation etc.)

spielen sich diese Prozesse ab bzw. welchen Teilen ordnen Sie die entsprechenden
Größen zu?

(c) In welchen räumlichen und zeitlichen Bereichen spielen sich diese Prozesse ab bzw.
welche werden (z. B. in einer Vorhersage) unterschieden?

1© Springer-Verlag Berlin Heidelberg 2015
T. Slawig, Klimamodelle und Klimasimulationen, Springer-Lehrbuch Masterclass,
DOI 10.1007/978-3-662-47064-0_1



2 1 Klimasystemund Klimamodelle

Den Aufbau und die Teile oder Komponenten des Klimasystems werden wir später
noch genauer spezifizieren. Mögliche Antworten sind:

(a) In einer Wettervorhersage ist meist die Rede von:
� Temperatur
� Wolkenbedeckung und damit Sonneneinstrahlung auf die Erdoberfläche
� Niederschlägen
� Windrichtung und -geschwindigkeit
� Luftdruck, insbesondere Hoch- und Tiefdruckgebiete
� Luftfeuchtigkeit
Unwetterwarnungen beziehen sich auf Extremereignisse wie Stürme, Starkregen,
Überflutungen.

(b) Die Größen beziehen sich meist auf die Atmosphäre, mit Ausnahme etwa der Was-
sertemperatur in Meeresregionen oder beim Urlaubswetter.

(c) Kennzeichnend für Wettervorhersagen ist ihre zeitliche und räunliche Lokalität: Es
ist interessant, wie z. B. die Temperatur in den nächsten Tagen in einer relativ eng
begrenzten Region (z. B. Bundesland, Norden Deutschlands etc.) ist. Langfristige
Vorhersagen („Wie wird der nächste Sommer/Winter?“) sind eher spekulativ. Mit-
telwerte über ganz Deutschland und den nächsten Monat sind relativ uninteressant,
höchstens als Rückblick auf das Wetter (oder schon Klima?) vergangener Sommer
oder Jahre.

Im Vordergrund beim Wetter steht sein Einfluss auf das tägliche Leben. Die in der Wetter-
vorhersage genannten Phänomene sind daher auf den menschlichen Lebensraum, also den
Bereich der Atmosphäre und vonMeer oder Flüssen beschränkt. Der Salzgehalt des Meer-
wassers z. B. in bestimmten Regionen des Pazifiks ist kein Thema einer Wettervorhersage.
Die mit Wetter bezeichneten Phänomene sind räumlich und zeitlich kleinskalig.

Klima

Um den Gegensatz Wetter – Klima darzustellen, dienen folgende ähnliche Fragen zum
Begriff Klima. Am heute oft verwendeten Begriff Klimawandel kann dies ebenfalls leicht
festgestellt werden.

Übung 1.2
(a) Welche Phänomene und Größen werden genannt, wenn von Klima oder auch Klima-

wandel gesprochen wird?
(b) In welchen Teilen des Klimasystems spielen sich diese Prozesse ab bzw. welchen

Teilen ordnen Sie diese Größen zu?
(c) Welche räumliche und zeitliche Bereiche werden genannt, wenn von Klima(wandel)

die Rede ist?



1.1 Wetter und Klima 3

Mögliche Antworten sind:

(a) Hier werden oft folgende Phänomene oder Größen genannt: „der wärmste Sommer
seit . . . “, Treibhausgase, Meeresspiegelanstieg, Temperatur (welche ist da gemeint?),
Eisschmelzen, Versteppung, . . .

(b) Die o. g. Phänomene und Größen kommen aus allen Bereichen des Klimasystems:
Atmosphäre, Ozeane, Vegetation, Bodenbedeckung, Eis, . . .

(c) Interessant ist z. B. das „Klima am Ende dieses Jahrhunderts in Mitteleuropa“ und
nicht dasjenige Mitte Juli des nächsten Jahres am bevorzugten Urlaubsort. Während
für letzteres eine dreiwöchige Regenperiode entscheidend ist, wird sie bei einer Fra-
gestellung zum Klima nur interessant sein, wenn sie sich z. B. jährlich wiederholt
oder insgesamt viel mehr Regen fällt.

Als Klima werden räumlich und zeitlich großskalige (d. h. in größeren Regionen oder eben
global und über mehrere Jahre oder Jahrzehnte verlaufenden) Prozesse und Phänomene
bezeichnet (vgl. Abb. 1.1). Bei der Beschreibung des Klimas werden bestimmte relevante
Kenngrößen ausgewählt, die entweder charakteristisch oder ursächlich für bestimmte Phä-
nomene und Prozesse sind. Diese Größen sind oft räumlich und zeitlich gemittelt, z. B. die
globale mittlere Jahrestemperatur, z. B. an der Meeresoberfläche. Für eine Wettervorher-
sage uninteressant, ist sie eine wichtige Kenngröße in der Klimaforschung. Ein weiteres
Beispiel ist der ebenfalls gemittelte Meeresspiegelanstieg. Die Klimaforschung bezieht
daher Prozesse und Größen des gesamten Klimasystems (vgl. etwa das Abschmelzen von
See- und Landeis) mit ein.

Klima

Stunden Tage Monate Jahre JahrtausendeJahrhunderte

Landesteile

Länder

Teile von  
Kontinenten 

(z.B.  
Mitteleuropa)

Kontinente

Erde

Orte

Wetter

Abb. 1.1 Schematische Darstellung der Begriffe Wetter und Klima durch räumliche und zeitliche
Zeitskalen. Die Abgrenzung ist nicht scharf



4 1 Klimasystemund Klimamodelle

Klimaforschung

Der Grund für eine Beschäftigung mit dem Klima hat sich mit der Beobachtung einer
globalen Temperaturerhöhung und deren nachgewiesenen oder vermuteten Konsequen-
zen (zusammengefasst als Klimawandel) in den letzten Jahrzehnten gewandelt. Durch
die Vermutung bzw. das Wissen, dass menschliche Handlungen Auswirkungen auf das
Klima haben und so auch für diesen Wandel ursächlich sind, bekommt das Studium des
Klimas eine bedeutende gesellschaftliche und politische Dimension. Es ist auch immer
noch ein strittiges Thema, welche beobachteten Änderungen welche Ursachen haben und
wie sie vermeidbar oder veränderbar sind. Gerade das macht die Beschäftigung mit dem
Klima interessant, denn das Verständnis der Klimaprozesse ist Voraussetzung, um die Ein-
flussgrößen und -möglichkeiten zu verstehen, Prognosen zu erstellen und Strategien für
menschliches Handeln zu entwickeln. Für die Wissenschaft bietet sich hier ein anspruchs-
volles interdsiziplinäres Arbeitsfeld in Physik, Chemie, Biologie, Mathematik, Informatik
und anderen Disziplinen.

1.2 Klimamodelle

Ganz allgemein kann ein Modell als ein vereinfachtes (Ab-)Bild der Realität beschrieben
werden. Ein Modell ist vereinfacht, da es einen Überblick verschaffen oder nur bestimmte
Aspekte des modellierten Gegenstandes betonen und andere vernachlässigen soll (z. B. ein
Stadtplan als Modell einer Stadt). Der Grad der Vereinfachung bzw. der noch vorhandenen
Komplexität hängt davon ab, was mit dem Modell geschehen soll. Ein Modell, das so
komplex wie der zu modellierende Gegenstand ist, ist nutzlos. Ein zu stark vereinfachtes
kann es ebenfalls sein, wenn relevante Dinge nicht mehr enthalten sind.

Modellierung

Den Prozess der Vereinfachung oder Abstraktion der Realität bezeichnet man als Modell-
bildung oder Modellierung. Die Sicht oder Interpretation der Realität kann individuell
unterschiedlich sein, Messungen realer Größen sind mit Fehlern behaftet. Weiterhin gibt
es verschiedene Methoden der Beschreibung, Vereinfachung oder Abstraktion, und auch
die Ziele der Verwendung eines Modells sind unterschiedlich. Daher kann es zu einem
„Gegenstand“ verschiedene Modelle geben, die unter Umständen auch miteinander kon-
kurrieren.

Formulierung vonModellen

Modelle können in verschiedenen Sprachen formuliert werden, es gibt grafische Mo-
delle (z. B. UML-Diagramme in der Informatik), umgangssprachliche Modelle, Modelle
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in Fachsprachen oder Zeichen verschiedener Disziplinen (z. B. chemische Reaktionsfor-
meln). Zur Abstraktion werden viele Modelle mathematisch formuliert. Die Sprache und
Exaktheit der Mathematik erlaubt es, Aussagen zum Verhalten und damit zur Qualität von
Modellen zu machen. Dabei ergeben sich relevante Größen (z. B. Temperatur in der At-
mosphäre) oft als Lösungen von Gleichungen, die nur in einfachen Fällen exakt analytisch
(sozusagen „auf dem Papier“) berechnet werden können. Meist muss algorithmisch eine
Näherungslösung bestimmt werden. Die Sprache der Mathematik liefert dann ebenfalls
eine Basis zur Umsetzung in Sprachen der Informatik, z. B. in eine Programmiersprache
zur Beschreibung und Realisierung eines Algorithmus’ zur Berechnung der Lösung mit
Hilfe von Computern.

Von der Art der verwendeten oder durchgeführten Modellierung hängen die mathe-
matischen Resultate, die bewiesen, und die Algorithmen, die zur Berechnung von Mo-
dellgrößen verwendet werden können, ab. Das Wissen über die Modellierung und deren
Techniken erlaubt es, die Qualität von Modellen zu verstehen und ihre Fehler(-quellen)
abzuschätzen oder anzugeben.

Besonderheiten bei Klimamodellen

Die Prozesse im Klimasystem müssen vereinfacht oder approximiert werden, da das Kli-
masystem selbst und seine internen Interaktionen sehr komplex sind und anders nicht
darstell- oder berechenbar sind. Weiterhin gibt es Prozesse, über deren „beste“ oder eine
geeignete Modellierung noch kein Konsens vorhanden ist.

Klimamodelle werden zur Prognose verwendet, zur Abschätzung von Sensitivitäten
und zur Untersuchung von Unsicherheiten in Parametern und Einflussgrößen, damit auch
zur Entwicklung von Strategien für Reaktionen auf den Klimawandel, wie z. B. Anpas-
sung oder Vermeidung.

In der Sprache der Mathematik handelt es sich bei Klimamodellen meist um gekop-
pelte Systeme gewöhnlicher oder partieller Differentialgleichungen, in ihrer komplexeren
Form sind diese nichtlinear, räumlich dreidimensional und zeitabhängig. Es gibt je nach
Anwendungsgebiet Modelle unterschiedlicher Komplexität.

Viele Klimamodelle enthalten stochastische Parametrisierungen, d. h. Modellierungen,
die kleinskalige Phänomene auf einer größeren Skala durch stochastische Größen darzu-
stellen versuchen.

1.3 Klimasimulationen

Wirklich aussagekräftige Klimamodelle sind zu komplex, um sie analytisch lösen zu kön-
nen. In Klimasimulationen werden die Klimamodelle in diskretisierter Form auf (meist
Höchstleistungs-)Rechnern implementiert und Rechnungen mit konkret vorgegebenen
Anfangszuständen und Parametern damit durchgeführt (z. B. um das Klima der nächsten
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zehn Jahre zu simulieren). Allein durch die räumliche Größe des „Modellgegenstandes
Erde“ und das Interesse an Langzeitprognosen (z. B. Prognose des Meeresspiegelan-
stiegs bis zum Ende des Jahrhunderts) ist eine diskretisierte Darstellung der modellierten
Prozesse extrem daten- und rechenintensiv.

Eine Klimasimulation ist also gewissermaßen eine Instanz (im Sinne der Informatik) ei-
nes Klimamodells mit konkreten Anfangswerten und Parametern. Simulationen sind not-
wendig, um überhaupt Ergebnisse zu erzielen, sobald die Modelle etwas komplexer und
damit erst realistisch sind. Simulationsergebnisse geben die Möglichkeit, mit Messwerten
zu vergleichen und damit Aussagen über die Qualität der Modelle und ihre Nutzungs-
möglichkeiten machen zu können. Danach können Simulationen z. B. für eine Prognose
genutzt werden.

Da durch die Diskretisierung und eventuell auch die Realisierung im Rechner zu-
sätzlich Fehler auftreten, ist es entscheidend, die benutzten Techniken zu verstehen und
qualitativ einordnen zu können, um die Ergebnisse einer Simulation zu bewerten. Der
Diskretisierungsprozess macht aus den Differentialgleichungen meist nichtlineare Glei-
chungssysteme, die linearisiert und damit als eine Folge von linearen Systemen gelöst
werden. Ein wesentlicher Punkt ist der Umgang mit der großen Anzahl an Unbekann-
ten, die nötig sind, um das Klimasystem in seiner Gesamtheit zu simulieren. Daher sind
Effizienzverbesserungen und die Ausnutzung der sich laufend verändernden Computer-
konfigurationen (wie z. B. Parallelisierung oder die Benutzung von spezieller Hardware)
von entscheidender Bedeutung.

1.4 Komponenten des Klimasystems

Das Klimasystem besteht aus Komponenten, die auf den ersten Blick relativ klar von-
einander abgegrenzt werden können, vgl. Abb. 1.2. Dies spiegelt sich ebenfalls in der
Modellierung und auch in Softwarekomponenten zur Klimasimulation wider. Wir be-
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Abb. 1.2 Schematische Darstellung des Klimasystems und seiner Interaktionen



1.4 Komponenten des Klimasystems 7

schreiben hier diese Komponenten in kurzer Form. Dabei gehen wir auf folgende Aspekte
ein:

� Wie ist die Komponente (meist räumlich) definiert bzw. abgegrenzt?
� Welche Größen werden in ihr vor allem betrachtet und modelliert?
� Welche wichtigen Prozesse oder Phänomene gibt es darin?
� Mit welchen anderen Komponenten interagiert sie?
� Welche Konsequenzen ergeben sich daraus für die Modellierung?

Dies geschieht beispielhaft und ist nicht vollständig. Die folgende Darstellung basiert im
Wesentlichen auf [5], vgl. auch die weitere in Anhang genannte Literatur.

Atmosphäre

Die Atmosphäre ist der gasförmige Bereich oberhalb der Erdoberfläche. Die Atmosphä-
re besteht aus verschiedenen Schichten. Wichtige Größen sind Windgeschwindigkeit und
-richtung, Luftdruck, Temperatur, Luftfeuchtigkeit, die Konzentration von Gasen und Ae-
rosolen.

Eine wesentliche Rolle spielt die Bilanz aus eingehender Sonnenstrahlung und von
der Erde reflektierter Strahlung. Dadurch wird im Wesentlichen die Temperatur der At-
mosphäre bestimmt. Durch die Strömung der Luft erfolgt in der Atmosphäre auch ein
Transport von Wärme. Wichtig für die Temperatur in der Atmosphäre ist der Treibhausef-
fekt, durch den ein Teil der rückgestrahlten Energie zurückgehalten wird und der damit für
die überhaupt erst für Menschen, Tiere und Pflanzen lebensnotwendigen Werte der Tem-
peratur sorgt. Er wird durch Wasserdampf, CO2 und andere Gase verursacht. Die erhöhte
Konzentration der Treibhausgase, die durch menschliches Verhalten wie massive Verbren-
nung fossiler Brennstoffe, Landwirtschaft u. a. verursacht werden, sind zur Zeit aktuelle,
auch politische und gesellschaftliche Themen. Eine besondere Rolle in der Atmosphäre
haben die Wolken, da sie sowohl von ihrer Entstehung als auch ihrer Wirkung her sehr
komplex sind. Außerdem sind sie relativ kleinskalig im Vergleich zur Gesamtgröße der
Atmosphäre und erfordern zu ihrer exakten Auflösung eine feine Ortsdiskretisierung in
Modellen, oder eben eine Modellierung der durch sie verursachten Prozesse auf einer grö-
ßeren Raumskala.

Die wichtigste Kopplung ist die mit dem Ozean (Austausch von Impuls durch Wind,
Wärme- und Stofftaustausch) und der Vegetation (Stoffaustausch).

Zur Modellierung werden Gleichungen der Strömungsmechanik unter Einbeziehung
der Energiegleichung für die Temperatur benutzt. Dabei spielt die besondere geometrische
Formmit Ähnlichkeit zu einer Kugelschale sowie die Dünne imVergleich zur horizontalen
Ausdehnung eine wichtige Rolle.
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Hydrosphäre

Als Hydrosphäre werden alle Formen von Wasser auf oder unter der Erdoberfläche be-
zeichnet. Ein wesentlicher Teil sind die Ozeane. Die weiteren Teile der Hydrosphäre, Flüs-
se, Seen und Grundwasser, werden meist nur in lokalen Klimamodellen exakt aufgelöst.
In globalen Modellen werden diese Prozesse eher parametrisiert, d. h. ihre Auswirkungen
auf den Rest des Systems werden modelliert. Wichtige Größen sind Geschwindigkeit und
Richtung der Strömung, Druck, Wassertemperatur und Salzgehalt.

Die globalen Ozeanströmungen werden durch Änderungen von Temperatur und Salz-
gehalt angetrieben (thermohaline Zirkulation, THC: engl. thermohaline circulation). Sie
treibt z. B. den Nordatlantik- oder Golfstrom an, der in unseren mitteleuropäischen Brei-
ten für z. B. im Vergleich zu Nordamerika hohe und damit angenehme Temperaturen sorgt.
Die Ozeanströmungen bewirken einenWärmetransport, und die Meere dienen als Wärme-
speicher und -puffer (vgl. Meeres- zu Kontinentalklima).

Gekoppelt ist der Ozean durch die Luftströmungen über Reibung und durch die Wär-
meübertragung an seiner Oberfläche mit der Atmosphäre. Niederschlag, Wasserzufluss
aus Flüssen und Eisschmelze verändern seinen Salzgehalt. Das Verdampfen von Wasser
hat eine Auswirkung auf den Treibhauseffekt in der Atmosphäre, da Wasserdampf daran
einen großen Anteil hat. Der Ozean spielt eine wesentliche Rolle im Austausch von Ga-
sen wie CO2, das über die Oberfläche aufgenommen, gelöst und durch Photosynthese und
andere biogeochemische Prozesse chemisch transformiert wird. Damit ergibt sich eine
Kopplung zur marinen Biosphäre und eine indirekte zu der des Landes. Wichtige aktuel-
le Fragestellungen sind auch Meeresspiegelanstieg oder die Beziehung zu ökonomischen
Aspekten wie Fischfang.

Die Bestimmungsgleichungen im Ozean sind ebenfalls Gleichungen der Strömungs-
mechanik, mit den gleichen geometrischen Besonderheiten wie in der Atmosphäre und
zusätzlich den durch Kontinente, Inseln und die Ozeanbodentopographie gegebenen Be-
sonderheiten. Die Zeitskalen in den Ozeanströmungen sind größer, so dass Ozeanmodelle
oft mehrere tausend Jahre Modellzeit ”einschwingen” müssen (sog. spin-up).

Kryosphäre

Unter Kryosphäre wird das Eis auf dem Land und im Meer verstanden. Die Bedeckung
der Erde mit Schnee und Eis spielt eine große Rolle bei der Albedo, dem Anteil der re-
flektierten Sonneneinstrahlung. Die Eis- und Schneebedeckung hat einen Einfluss auf die
ankommende Energie und damit auf die Temperatur, die wiederum die Eis- und Schneebe-
deckung bestimmt. Einen solchen Mechanismus nennt man Feedbackeffekt. Das Eis stellt
ein Wasserreservoir dar, und sein Abschmelzen bei Temperaturerhöhungen beeinflusst da-
mit den Meeresspiegel und auch den Salzgehalt des Meerwassers. Meereis ist außerdem
schwer zu modellieren, da es sich bewegt. Es ist in dieser Hinsicht grob vergleichbar mit
den Wolken in der Atmosphäre.
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Daher ist die Kryosphäre vor allem mit der Hydrosphäre durch Schmelzen und daher
Frischwasserzufluss gekoppelt. In vielen Klimamodellen wird die Kryosphäre nicht ein-
bezogen oder parametrisiert, da die Modellierung nicht einfach ist. Die Bewegung von
Landeismassen kann mit den Gleichungen für Schleichströmungen (Stokes-Gleichungen)
modelliert werden.

Landoberfläche

Die Landoberfläche ist die feste, nicht vom Wasser bedeckte Erdoberfläche. Sie definiert
die horizontalen Ränder des Ozeans sowie die vertikalen, unteren Grenzen der Atmosphä-
re. Die Landoberfläche ändert sich z. B. durch Meeresspiegelveränderungen und Erosion.
Wichtig ist ihre Bedeckung z. B. mit Felsen, Erdboden oderWüste, da diese wiederum ver-
schiedene Werte der Albedo haben. Sie hängt damit eng mit der nächsten Komponente,
der Biosphäre, der Vegetation zusammen. Der Einfluss von Bodennutzung und Nieder-
schlag spielt eine wichtige Rolle. Damit ist die Eigenschaft der Landoberfläche auch eng
mit der menschlichen Nutzung verbunden.

Biosphäre

Als Biosphäre bezeichnet man alle Formen von Tier- und Pflanzenwelt auf der Land-
oberfläche und im Ozean. An Land spielt die Bedeckung der Erde mit Gras, Wald etc.
eine wichtige Rolle für den Wasserhaushalt, d. h. Verdampfung und Niederschlag. Die
Bedeutung für die Albedo wurde oben schon erwähnt. Die Photosynthese bewirkt eine
Aufnahme von CO2 und bestimmt damit den Kohlenstoffkreislauf, einen der wesentli-
chen Stoffkeisläufe auf der Erde, der in Klimamodellen simuliert wird. Die oben schon
angesprochene Umwandlung von Treibhausgasen wie CO2 im Ozean geschieht durch sog.
Phytoplankton, d. h. Algen, in der Photosynthese. Die Algen sind wiederum Nahrung für
Zooplankton, d. h. Tiere, durch die ein Teil des Kohlenstoffs in tiefere Schichten absinkt
und so sedimentiert wird. Die Gesamtmenge des im Ozean gelösten CO2 ist 50 mal hö-
her als der in der Atmosphäre, und allein ein Drittel des emittierten CO2 wird im Meer
aufgenommen. Das heißt, dass das Meer einen Teil der Emissionen puffert und so ihren
(Treibhaus-)Effekt in der Atmosphäre abmildert. Das ist ein Grund, warum diese CO2-
Aufnahme untersucht wird. Sie führt zu einer Versauerung der Ozeane.

Anthroposphäre

Mit Anthroposphäre wird der menschliche Einfluss bezeichnet. Er äußert sich durch
Emissionen von Schadstoffen und Treibhausgasen in die Atmosphäre, die Einleitung von
Schadstoffen ins Meer, die Veränderung von Flussläufen (damit auch der Hydrosphäre),
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die Landnutzung u. a. In der sog. Klimafolgenforschung sind auch die Auswirkungen von
Kimaveränderungen auf das menschliche Verhalten und die Ökonomie, die wiederum das
menschliche Verhalten beeinflussen kann, interessant. Auch ist umgekehrt wichtig, mit
welchen politischen und ökonomischen Maßnahmen welche Änderungen in z. B. Emis-
sionen bewirkt werden können, die wiederum Auswirkungen auf die Ökonomie haben.
Hier spielen Rückkopplungen offensichtlich eine wichtige Rolle. Da es sich hier auch um
soziale Prozesse handelt, sind hier Modelle für menschliches Verhalten wichtig, die sich
von physikalischen oder biochemischen Modellen meist darin unterscheiden, dass sie mit
mehr empirischen Parametern arbeiten. Die Modelle sind von ihrer Komplexität meist
nicht so umfangreich. Sie werden daher oft auch mit Modellen des Klimasystems von
geringerer oder mittlerer Komplexität gekoppelt.

1.5 Antreibende Kräfte des Klimas und Ursachen
für Klimaänderungen

Das Klimasystem ist ein dynamisches, d. h. zeitlich veränderliches System, das sich in
einer „gewissen“ Balance befindet. Die Dynamik des Systems drückt sich im Austausch
(sog. Flüssen)

� von Energie in Form von Strahlung und Wärme und
� von Masse, vor allem Wasser, aber auch Kohlenstoff und Stickstoff inklusive Phasen-

übergängen

aus. Wesentliche zeitliche Dynamiken sind der tägliche und der jährliche Zyklus, wobei
in zeitlich gröberen Modellen nur der letztere erfasst ist, während der erste z. B. durch
Mittelwertbildungen beschrieben (parametrisiert) wird.

Wesentliche antreibende Kraft des Klimas ist die Sonneneinstrahlung, die durch

� Schwankungen in der Intensität der von der Sonne ausgehenden Strahlung selbst und
� nicht konstante Parameter der Erdbahn um die Sonne und den Einfluss anderer Him-

melskörper auf diese

variiert. Dazu kommen in geringerem Ausmaß

� die Erdrotation und
� der Einfluss anderer Himmelskörper (wie z. B. des Mondes auf die Ozeane).

Änderungen in diesen Antrieben sind damit (in Bezug auf die Erde als Ganzes gesehen)
externe Ursachen für Klimaänderungen.
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Abb. 1.3 Ellipsenform der
Erdbahn mit sonnennächstem
und -fernstem Punkt und de-
ren Abständen a; b zur Sonne.
Diese definieren die Exzen-
trizität. Der kleine Pfeil links
beschreibt die variable Position
der beiden Hauptscheitel der
Erdbahn, hervorgerufen durch
die Präzession der Erde

a

b

Milankovitch-Theorie

Diese Theorie beschreibt die Variabilität der auf die Erde treffende Sonneneinstrahlung
durch die Änderung geometrischer Parameter der Erdumlaufbahn und der Erdneigung zu
ihr (vgl. Abb. 1.3). Es gibt drei Effekte, deren Auswirkung sich auch in Messwerten für die
Temperatur in der Vergangenheit (in Eisbohrkernen) bestätigen lässt. Für weitere Details
s. [1, Abschnitt 2.2], aus dem die Daten unten entnommen wurden, und auch [3, Abschnitt
3.6.3]:

Änderungen der Exzentrität Die Bahn der Erde um die Sonne ist ellipsenähnlich. Als
Exzentrizität E wird das Verhältnis

E WD
p

a2 � b2

a

der Abstände a; b des sonnenfernsten bzw. -nächsten Punktes der Erde auf ihrer Um-
laufbahn bezeichnet. Der Wert der Exzentrizität liegt zur Zeit bei E D 0;017. Die
Milankovitch-Theorie beschreibt Änderungen mit Perioden von 100.000 und 400.000
Jahren mit E 2 Œ0;002; 0;05�. Diese Variation ist damit nur für Langzeitsimulationen der
Vergangenheit (sog. Paleosimulationen) interessant.

Das Ergebnis ist eine Änderung der auf die Erde treffenden über das Jahr gemit-
telten Sonneneinstrahlung, die durch die sog. Solar-„Konstante“ S von zur Zeit S D
1367Wm�2 angegeben wird. Dieser Wert schwankt durch die Variation der Exzentrizität
um ca. 1Wm�2.

Änderung des Winkels der Ekliptik Die Neigung der Erdachse zur Ebene der Erdum-
laufbahn variiert in Œ22ı; 24;5ı� und liegt zur Zeit bei 23;5ı. Die Schwankungen haben
eine Periode von ca. 41.000 Jahren und bewirken eine Veränderung der saisonalen Unter-
schiede der Sonneneinstrahlung, d. h. der Auswirkung der Jahreszeiten, sie beeinflussen
nicht (wie die Variation der Exzentrizität) die Gesamtmenge der eintreffenden Strahlung,
sondern deren zeitliche Verteilung um lokal bis zu 6Wm�2.
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Präzession Durch die nicht vollkommene Kugelform der Erde beschreibt die Orientie-
rung der Erdachse einen Kreis in der Ebene der Umlaufbahn um die Sonne. Die Erde
bewegt sich gewissermaßen wie ein Kreisel, der taumelt. Daher ist die Erdbahn kei-
ne exakte Ellipse und die beiden Hauptscheitel der Erdbahn, der Perihel(ion) und der
Aphel(ion), haben nicht den gleichen Abstand von der Sonne, und ihre Abstände ändern
sich auch zeitlich. Es gibt zwei Perioden von 19.000 und 23.000 Jahren. Als Ergebnis
treten die Jahreszeiten nicht immer am gleichen Punkt der Umlaufbahn auf. So wird
der Perihel zur Zeit im Nordwinter (d. h. Winter auf der Nordhalbkugel) und der Aphel
im Nordsommer durchlaufen, vor (und wieder in) ca. 11.000 Jahren war (bzw. wird es)
umgekehrt (sein). Daraus resultiert eine zeitliche und räumliche Veränderung der Sonnen-
einstrahlung, die zwischen 1329 und 1411Wm�2 liegt. Auch hier ist die Gesamtmenge
der Strahlung konstant, nur ihre zeitliche und räumliche Verteilung ändert sich.

Sonnenflecken

Die Sonnenflecken haben eine unterschiedliche Aktivität mit einer elfjährigen Periode,
die noch von längeren Schwankungen überlagert ist. Die durch Sonnenflecken verursachte
Intensitätsschwankung wird auf 0,1% geschätzt und damit relativ gering, s. [3, Abschnitt
3.3.4], [1, Abschnitt 3.2.2].

Natürliche interne Ursachen

Es gibt einige natürliche, das heißt hier nicht durch menschliche Einwirkungen verursach-
te Gründe für Klimaveränderungen.

Beispiel 1.3 Vulkanausbrüche schleudern Partikel und Gas in die Atmosphäre. Wichtig
ist dabei die Höhe, bis zu der diese Stoffe gelangen. Meist ist diese Höhe nur fünf bis
acht Kilometer, so dass die Stoffe durch die Schwerkraft direkt auf den Boden sinken oder
durch Regen ausgewaschen werden. Dann ist ihre Wirkung minimal. Ist der Ausbruch
heftiger, und gelangen die Stoffe in Höhen von 15 bis 25 km, so verbleiben sie länger in
der Atmosphäre. Das ausgestoßene Schwefeldioxid SO2 reagiert teilweise, es bewirkt eine
erhöhte Reflektivität (Albedo) und damit eine Abkühlung. Durch den Ausbruch des Vul-
kans Pinatubo 1991 auf den Philippinen gelangten ca. 20 Mio. Tonnen SO2 in eine Höhe
von 25 km, die Auswirkung auf die Sonneneinstrahlung wird auf �0;4Wm�2 geschätzt
und die dadurch verursachte Temperaturabsenkung um 0;5K bzw. 0;5ı Celsius. Dies wird
durch Messungen bestätigt.

Beispiel 1.4 In relativ großen Zeitskalen beobachtet kann eine Änderung der thermoha-
linen Zirkulation, d. h. der durch Temperatur- und Salzgehaltänderungen angetriebenen
Konvektionsströmung im Ozean, die z. B. für den Golfstrom verantwortlich ist, beobach-
tet werden.
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Beispiel 1.5 In ca. vierjährigen Perioden tritt die ENSO (El Niño Southern Oscillation)
auf, eine großflächige Erwärmung des Pazifiks in Äquatornähe. Die entsprechende kühle
Phase heißt La Niña. Beide haben Auswirkungen auf Süd- und Mittelamerika.

Anthropogene Ursachen

Die vom Menschen verursachten Änderungen am Klima sind die, die zur Zeit am meisten
diskutiert werden.

Übung 1.6 Welche anthropogenen Ursachen fallen Ihnen ein bzw. werden zur Zeit dis-
kutiert? In welchen Teilen des Klimasystems sind sie wirksam und welche Prozesse be-
einflussen sie?

Hier sind einige Beispiele genannt:

Beispiel 1.7 Erhöhter Ausstoß von Kohlendioxid (CO2) und Methan (CH4) sind mit ver-
antwortlich für den ansteigenden Treibhauseffekt in der Atmosphäre, der für eine Tem-
peraturerhöhung sorgt. Die Emissionen werden durch Verbrennung fossiler Energien in
Kraftwerken und durch Verkehr verursacht. Methan, das ein vielfach wirksameres Treib-
hausgas als Kohlendioxid ist, entsteht in der Tierproduktion der Landwirtschaft. Erhöhte
Temperaturen bewirken Änderungen in Niederschlägen und Verdampfung, eine Erhöhung
des Meeresspiegel durch die Ausdehnung des Wassers und Abschmelzen von Eis, Ände-
rungen des Salzgehaltes im Meer etc.

Beispiel 1.8 Aerosole entstehen ebenfalls durch die Luftverschmutzung bei der Verbren-
nung fossiler Energien. Sie bewirken eine vermehrte Rückstrahlung der Sonnenenergie
und damit eine direkte Abkühlung in der Atmosphäre, außerdem verursachen sie eine
Wolkenbildung und dadurch auch indirekt eine höhere Albedo.

Beispiel 1.9 Die Entdeckung des Ozonlochs war ein wichtiges Umweltthema in den
1980er Jahren. Für die Entdeckung der Rolle der vom Menschen in die Atmosphäre emit-
tierten Stoffe (Fluorchlorkohlenwasserstoffe, FCKWs) für die Ozonschicht wurde 1995
ein Nobelpreis verliehen. Diese Stoffe verbleiben lange in der Atmosphäre, sie wirken ei-
nerseits als Treibhausgase. Die Reduktion des Ozons hat in den verschiedenen Schichten
unterschiedliche Wirkungen, sie führt in der unteren Schicht, der Troposphäre, zu einer
Erwärmung, in der höheren Stratosphäre zu einer Abkühlung.

Beispiel 1.10 Abholzung und Umwandlung in Weideland, Bodenversiegelung haben
Auswirkungen auf Niederschlag und Verdunstung und damit auf den Wasserhaushalt.



14 1 Klimasystemund Klimamodelle

Feedbackeffekte

Zwei oder mehrere Größen, die Änderungen im Klimasystem bewirken, sind besonders
wichtig oder kritisch, wenn sie sich gegenseitig beeinflussen und Rückkopplungen, sog.
Feedbacks, verursachen.

Bewirkt die Änderung einer Größe x die Änderung einer anderen Größe y und diese
wiederum die Änderung von x in die gleiche Richtung (so dass sich also der gesamte
gekoppelte Prozess verstärkt), so wird dies als positiver Feedbackeffekt bezeichnet (auch
wenn die Auswirkung insgesamt negativ bewertet werden kann). Sind beide Größen dif-
ferenzierbar, so kann ein positiver Feedbackeffekt durch die Beziehung

dy

dx
.x/

dx

dy
.y/ > 0

definiert werden. Bei negativem Vorzeichen wird von einem negativen Feedbackeffekt
gesprochen.

Beispiel 1.11 Der Eis-Albedo-Feedbackeffekt ist ein positiver Feedbackeffekt: Eine er-
höhte Albedo bewirkt eine vermehrte Rückstrahlung und damit eine Abkühlung, die sich
in einer Temperatursenkung auswirkt, die durch höhere Schnee- und Eisbedeckung zu
erneut erhöhter Albedo führt.

Beispiel 1.12 Der Wasserdampf-Feedbackeffekt ist ebenfalls positiv in diesem Sinne:
Erhöhter Wasserdampfgehalt in der Atmosphäre bewirkt einen höheren Treibhauseffekt,
dieser wiederum eine Temperaturerhöhung mit dem Resultat einer höheren Verdampfung
von Wasser.

1.6 Eine Klassifizierung von Klimamodellen

Es gibt verschiedene Arten von Klimamodellen. Bei ihrer Klassifizierung können folgende
Fragestellungen dienen:

� Welche Komponenten des Klimasystems sind modelliert (z. B. nur Ozean, Ozean ge-
koppelt mit Atmosphäre etc.)?

� Welche Prozesse werden einbezogen, vgl. Tab. 1.1?
� Wie ist die räumliche und zeitliche Auflösung? Ist das Modell räumlich dreidimensio-

nal? Ist es zeitabhängig oder stationär?

Diese Fragen hängen miteinander zusammen: Bei einem nulldimensionalen Modell kön-
nen die einzelnen Komponenten des Klimasystems nicht unterschieden und auch nur
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Tab. 1.1 Wachsende Komplexität von Klimamodellen, bezogen auf die Berichte des IPCC, nach-
empfunden [6, Fig. 1-13]. �: in Modellen enthalten

Zeit 1970er 1980er 1990 1995 2001 2007 2013/14

IPCC-Sachstandsbericht - - 1. 2. 3. 4. 5.

Atmosphäre � � � � � � �
Ozean und Seeeis � � � � � � �
Landoberfläche � � � � � � �
Aerosole � � � �
Kohlenstoffkreislauf � � �
Dynamische Vegetation � � �
Atmosphärenchemie � �
Landeis � �

wenige Prozesse, z. B. nur die Strahlungsbilanz, modelliert und simuliert werden. Be-
stimmte Prozesse benötigen zu ihrer Modellierung eine spezielle räumliche oder zeitliche
Auflösung, sonst können sie eventuell nur gemittelt einbezogen werden.

Welche Wahl des Modells getroffen wird, hängt wesentlich von der wissenschaftlichen
Fragestellung ab, die untersucht werden soll. Ist nur eine mittlere globale Jahrestemperatur
interessant, so kann eine gröbere Auflösung gewählt werden, als wenn örtlich und zeitlich
lokale Aussagen z. B. über Temperaturänderungen in Deutschland (z. B. nur im Sommer)
gemacht werden sollen.

Die Auswirkungen der Wahl des Modells betreffen vor allem die Laufzeit der Simu-
lation, die Notwendigkeit zur Verwendung besonders effizienter Algorithmen oder zur
Parallelisierung. Weiterhin müssen etwaige nicht modellierte gekoppelte Komponenten
(z. B. bei einem reinen Ozeanmodell die Wechselwirkung mit der Atmosphäre) durch ent-
sprechende Randbedingungen dargestellt werden.

Es werden folgende Typen von Klimamodellen unterschieden:

� Energiebilanzmodelle (EBM) sind meist null- oder eindimensional, stationär oder insta-
tionär. Sie modellieren nur die Strahlungsbilanz und können z. B. den Treibhauseffekt
(grob modelliert) mit einbeziehen, ohne seine Prozesse genau aufzulösen. Sie sind sehr
schnell in ihrer Simulation.

� Boxmodelle, die meist nur für eine oder wenige Komponenten des Klimassystems (z. B.
Boxmodell des Nordatlantikstroms) oder zur Simulation bestimmter Prozesse (z. B.
Boxmodell des globalen CO2-Haushalts) verwendet werden. Da diese Modelle meist
nur wenige Boxen haben, sind sie ebenfalls sehr schnell und eignen sich gut zur Kopp-
lung mit anderen Modellen und um viele Simulationsläufe durchzuführen.

� Globale Zirkulations- oder globale Klimamodelle (GCMs: Global Circulation oderCli-
mate Models), ursprünglich Modelle für Ozean oder Atmosphäre, die die strömungs-
mechanischen Gleichungen und damit die Zirkulation auflösen können, d. h. die auf
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den Navier-Stokes-Gleichungen basieren. Durch die Einbeziehung weiterer Kompo-
nenten wie Eis und Biosphäre wurden diese Modelle dann zu globalen Klimamodel-
len. sie sind räumlich dreidimensional und instationär, d. h. sie brauchen am meisten
Rechenzeit und werden meist auf Höchstleistungsrechnern benutzt. Heute wird die Be-
zeichnung ESM – Erdsystemmodelle benutzt.

� Modelle mittlerer Komplexität (EMICs: Earth System Models of Intermediate Com-
plexity) sind reduzierte Versionen der GCMs, bei denen mehr Mittelungen oder gröbe-
re Parametrisierungen (d. h. Modellierung bestimmter Prozesse) auf gröberen Gittern
durchgeführt werden. Dadurch sind EMICs schneller in der Simulation.



2Ein nulldimensionales Energiebilanzmodell

Wir formulieren hier das denkbar einfachste Klimamodell, das die Erde als Punkt im Weltraum mo-
delliert. Das Modell basiert auf der Strahlungsbilanz eines „nulldimensionalen“ Körpers. Es wird
z. B. in [2, 3, 5] behandelt. Es ist eher von akademischen Interesse, zeigt aber bereits die Vorge-
hensweise bei der Aufstellung von Bilanzgleichungen, die Bedeutung von Modellparametern und
Methoden zu ihrer Bestimmung aus Messdaten. Wir betrachten zuerst den stationären Gleichge-
wichtszustand und anschließend ein zeitabhängiges Modell, mit dem man Temperaturänderungen
simulieren kann. Dieses wird sowohl für endliche, diskrete Zeitschritte als auch in einer kontinuier-
lichen Zeit hergeleitet. Es liefert das erste Beispiel für eine mathematische Modellklasse, nämlich
die der gewöhnlichen Differentialgleichungen.

2.1 Die Strahlungsbilanz eines Körpers im All

Im nulldimensionalen Energiebilanzmodell wird die globale Energiebilanz der Erde auf-
gestellt, bestehend mittleren Temperatur auf der Erde in Beziehung gesetzt wird. Die
eingehende Strahlung wird von der Reflektivität der Erdoberfläche und auch der Wolken
beeinflusst. Die zurückgestrahlte Energie wird durch den Treibhauseffekt vermindert.

Im stationären oder Gleichgewichtszustand befinden sich die Energie pro Zeiteinheit,
die auf die Erde treffen und die von ihr abgestrahlt werden, im Gleichgewicht.

Die von der Sonne auf die Erde einstrahlende Energie pro Zeit (das ist physikalisch die
Leistung, Einheit W D J s�1), ist das Produkt aus der sog. Solarkonstante S multipliziert
mit der Fläche der Erde, die von der Sonne bestrahlt wird. Dies ist ein Kreis mit dem
Erdradius r , d. h. die Fläche ist gleich �r2. Die Menge der eingehenden Strahlungsenergie
pro Zeit ist daher

�r2S:

Für die Konstanten gilt S D 1367Wm�2, r D 6371 km. Der Erdradius ist dabei ge-
mittelt, denn die Erde ist keine Kugel. Ein Teil dieser Strahlung wird durch die Erde

17© Springer-Verlag Berlin Heidelberg 2015
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reflektiert. Diesen Anteil ˛ 2 Œ0; 1� bezeichnet man als Albedo. Die Albedo hängt von der
Oberfläche bzw. deren Farbe ab. Es gilt z. B. für frischen Schnee ˛ 2 Œ0;8; 0;9�, für Wald
˛ 2 Œ0;02; 0;2�: Der über die Erde gemittelte Wert für die Albedo ist ˛ � 0;3. Die auf die
Erde auftreffende Strahlungsenergie pro Zeiteinheit ist damit

Rin D �2S.1 � ˛/: (2.1)

Zur Modellierung der von der Erde ausgehenden Strahlung beginnen wir mit dem Stefan-
Boltzmann-Gesetz für einen schwarzen Strahler. Dies ist ein Körper, der die gesamte auf
ihn einfallende Strahlung absorbiert. Für eine schwarzen Strahler ergibt sich die Rück-
strahlung pro Fläche als Funktion der Temperatur T als

�T 4

mit der Stefan-Boltzmann-Konstante

� D 5;67 � 10�8 Wm�2K�4:

Für die Rückstrahlung der gesamten Erde muss dieser Wert noch mit der Erdoberfläche
4�r2 multipliziert werden:

Rout D 4�r2�T 4: (2.2)

Gleichsetzen von Rin und Rout ergibt die Bilanzgleichung

.1 � ˛/S

4
D �T 4:

Die sich daraus ergebende Temperatur ist

T D 4

r
.1 � ˛/S

4�
� 255K � �18 ıC:

Dieser Wert entspricht nicht der zur Zeit tatsächlich auf der Erde gemessenen mittleren
Jahrestemperatur, die ca.

Tm � 287K � 14 ıC

beträgt. Die Ursache dafür ist, dass die Erde eben kein schwarzer Strahler ist, sondern dass
ein Teil der von der Erdoberfläche zurückgestrahlten Energie durch den Treibhauseffekt
in der Atmosphäre zurückgehalten wird. Um dies zu modellieren, wird ein multiplikativer
Parameter, die Emissivität ", in (2.1) eingeführt. Damit ergibt sich die Bilanz

.1 � ˛/S

4
D "�T 4: (2.3)
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Der Wert Tm kann zur Bestimmung von " benutzt werden, und es ergibt sich

" D .1 � ˛/S

4�T 4
m

� 0;62:

Übung 2.1 Plotten Sie die Temperatur, die sich aus dem stationären Energiebilanzmodell

1. für Werte von ˛ 2 Œ0; 1� und festes " D 0;62

2. und für Werte von ˛ 2 Œ0; 1� und " 2 .0; 1� ergibt.

Anmerkung 2.2 Andere, insbesondere nichtlineare und temperaturabhängige Modellie-
rungen der Albedo finden sich in [7–9].

2.2 Die instationäre Form der Strahlungsbilanz

Sind eingehende und ausgehende Energie nicht gleich, so bewirkt dies eine zeitliche
Änderung der Temperatur des Körpers, in diesem Fall der Erde. Dies kann als eine Tem-
peraturänderung in der Atmosphäre oder im Ozean interpretiert werden. Je höher das
Ungleichgewicht zwischen eintreffender und abgestrahlter Energie ist, desto stärker wird
die Temperatur sich pro Zeiteinheit ändern. Aus dieser Beobachtung oder Annahme kann
ein zeitabhängiges oder instationäres Energiebilanzmodell hergeleitet werden. Dies kann
auf zwei Arten geschehen, die wir in den nächsten Abschnitten vorstellen: Die erste be-
trachtet endliche, diskrete Zeitschritte, während in der zweiten die Zeit als kontinuierlich
angesehen wird.

Es ist in diesem einfachen Modell mit nur einer Gleichung einleuchtend, dass bei
Rin > Rout die Temperatur auf der Erde steigen und im umgekehrten Fall sinken wird.
Das Ausmaß der Änderung hängt weiterhin von folgenden Dingen ab:

� vom betrachteten Zeitintervall, je größer dies ist, desto größer die Temperaturänderung.
� von dem betrachteten Volumen, für das die (dann darüber räumlich gemittelte) Tem-

peratur berechnet wird (z. B. Atmosphäre oder Ozean): Je größer das Volumen, desto
geringer die Temperaturänderung. Wird die Erde wieder als Kugel angenommen, so
handelt es sich um das Volumen einer Kugelschale. Dies ist 4�r2H , wenn H die Höhe
oder Dicke der betrachteten Schicht ist.

� von der Wärmeübertragung in den Stoff, dessen Temperatur beschrieben wird (Luft für
die Athmosphäre,Wasser für den Ozean). Diese ergibt sich als Produkt aus Dichte % des
Stoffes und seiner spezifischen Wärme C . Auch hier ist der Zusammenhang umgekehrt
proportional: Je größer das Produkt %C , desto geringer die Temperaturänderung.
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Daraus kann ein zeitabhängiges Modell der Form

T .t C �t/ D T .t/ C �t
Rin.t/ � Rout.t/

4�r2H%C
: (2.4)

formuliert werden. Hier bezeichnet t einen Zeitpunkt und �t > 0 das betrachtete Zeitin-
tervall oder einen Zeitschritt. Es handelt sich um ein zeitdiskretes Modell, und eine solche
Gleichung heißt auch Differenzengleichung.

In Klimamodellen werden oft „natürliche“ Zeitschritte wie ein Tag oder ein Jahr be-
trachtet. Da aber die Größen Rin und Rout und auch die Parameter H; % und C in bestimm-
ten Einheiten angegeben werden, muss der Zeitschritt an diese Größen angepasst sein oder
die Größen Rin und Rout und die Parameter eventuell entsprechend skaliert werden.

2.3 Grundgrößen und Einheiten nach dem SI-System

Da das Problem der Wahl der Einheiten bzw. der Skalierung von Größen und Variablen
in Modellen bei Klima- und anderen Modellen eine wesentliche Rolle spielt, wurde der
SI-Standard für Einheiten definiert. In ihm sind Grundgrößen mit zugehörigen Standar-
deinheiten für physikalische und andere Größen definiert. Wir geben in den Tab. 2.1
und 2.2 die hier benutzten Grundgrößen und Einheiten an, vgl. [10, Abschnitt 0.2].

Werden die Einheiten der Parameter in der Gleichung (2.4) in SI-Einheiten benutzt,
dann muss der Zeitschritt �t als eine Sekunde gewählt oder die eingehenden Parame-
ter, bei denen eine Zeitabängigkeit vorhanden ist, entsprechend umgerechnet (umskaliert)
werden.

Tab. 2.1 Liste der Grundgößen (oder Dimensionen) mit ihren symbolischen Bezeichnungen und
zugehörigen Einheiten nach SI-Standard. Nach SI-Standard werden Symbole für Dimensionen se-
rifenlos und solche für Einheiten nicht kursiv gesetzt

Grund-
größe

Länge Zeit Masse Temperatur Elektrischer
Strom

Licht-
stärke

Substanz-
menge

Symbol L T M ‚ I J N
Einheit Meter Sekunde Kilogramm Kelvin Ampere Candela Mol

Symbol m s kg K
0ıCD 273;15K

A cd mol

Tab. 2.2 Liste der im Energiebilanzmodell verwendeten abgeleiteten Größen mit zugehörigen Ein-
heiten nach SI-Standard

Abgeleitete Größe Kraft Arbeit bzw. Energie Leistung

Dimensionelle Darstellung MLT�2 ML2T�2 ML2T�3

Einheit Newton Joule Watt

Symbol/Umrechnung N D kgm s�2 J D Nm D Ws W D J s�1
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2.4 Formulierung als Differentialgleichung

Die oben angegebene Form (2.4) des Energiebilanzmodell als Differenzengleichung ent-
spricht mit einem gewählten festen Zeitschritt �t der Anschauung. Unabhängig von der
Wahl des Zeitschritts und eventueller Umskalierungen der Parameter und universeller wird
das Modell, wenn die Schrittweite als gegen Null gehend betrachtet wird. Dazu dividieren
wir (2.4) nach Umstellen durch �t , erhalten

T .t C �t/ � T .t/

�t
D Rin.t/ � Rout.t/

4�r2H%C
D �r2S.1 � ˛/ � 4�r2"�T .t/4

4�r2H%C
; (2.5)

und bilden auf beiden Seiten den Grenzwert �t ! 0. Die rechte Seite ist unabhängig
vom Zeitschritt, für die linke ergibt sich die Definition der ersten Ableitung von T am
Zeitpunkt t :

T 0.t/ WD dT

dt
.t/ WD lim

�t!0

T .t C �t/ � T .t/

�t
:

Oft wird – vor allem in der Physik – auch der Punkt ( PT ) für die Ableitung verwendet.
Diese Notation wurde von Newton eingeführt.

Damit kann nun folgende Differentialgleichung für die instationäre Energiebilanz auf-
gestellt werden:

4�r2H%C T 0.t/„ ƒ‚ …
zeitliche Änderung
der Wärmeenergie

D �r2S.1 � ˛/„ ƒ‚ …
eingehende, nicht reflek-
tierte Strahlungsenergie

pro Zeiteinheit

� 4�r2"�T .t/4„ ƒ‚ …
zurückgestrahlte
Strahlungsenergie
pro Zeiteinheit

Ein Indiz für die Korrektheit einer so hergeleiteten Modellgleichung ergibt der Vergleich
der Einheiten. Für eine Größe Q wird mit ŒQ� deren Einheit bezeichnet, also gilt z. B. für
den Erdradius Œr � D m. Für die Einheiten der rechten Seite der Differentialgleichung gilt,
vgl. Tab. 2.3:

Œ4�r2H%C T 0.t/� D m2 m
kg

m3

J

kgK

K

s
D J

s
D W:

Für die rechte Seite gilt dies ebenfalls, was leicht zu überprüfen ist.

Tab. 2.3 Parameter im Energiebilanzmodell, angewandt auf die Troposphäre

Variable Wert und Einheit Bedeutung

r 6371 km D 6;371 � 106m Erdradius

H 8;3 km D 8;3 � 103m Dicke bzw. Höhe der betrachteten Schicht der Atmo-
sphäre, hier: Troposphäre (unterste Schicht, die den
Großteil der Luft enthält)

% 1;2 kgm�3 Dichte von Luft

C 103 J kg�1K�1 Spezifische Wärme von Luft

S 1;367 � 103Wm�2 Solarkonstante

� 5;67 � 10�8Wm�2 K�4 Stefan-Boltzmann-Konstante
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Durch Kürzen ergibt sich die Gleichung

H%C T 0.t/ D S

4
.1 � ˛/ � "�T .t/4: (2.6)

Die geometrischen Größen wie Erdradius und auch die Konstante � treten nicht mehr auf.
Diese Gleichung ist eine wesentlich prägnantere Darstellung als die Differenzengleichung
(2.4). Es handelt sich um eine nichtlineare (wegen T 4) gewöhnlicheDifferentialgleichung
(Ableitung nur nach der Zeit, keine partiellen Ableitungen) erster Ordnung (nur erste
Ableitung).

Wird diese Gleichung auf einem Zeitintervall oder für t � t0 2 Rmit einem gegebenen
Anfangswert T0 D T .t0/ betrachtet, so ergibt sich ein Anfangswertproblem (AWP).



3Anfangswertprobleme und analytische
Lösungsverfahren

Gewöhnliche Differentialgleichungen und Anfangswertprobleme für diese bilden die einfachste,
aber auch grundlegende Klasse von mathematischen Formulierungen von Klimamodellen. Dieses
Kapitel enthält grundlegende Definitionen, die die Basis für die weiteren Modelle und analytischen
und numerischen Methoden bilden. Es gibt weiterhin einen Überblick über analytische Lösungs-
methoden, die – wie wir am nulldimensionalen Energiebilanzmodell erkennen können – aber enge
Grenzen haben.

3.1 Anfangswertprobleme

Nahezu alle Klimamodelle sind als Anfangswertproblem für eine Differentialgleichung
gegeben oder können so formuliert werden. Ein solches Anfangswertproblem besteht
aus der Differentialgleichung und dem zugehörigen Anfangswert. Wir geben zunächst
folgende Definition für eine gewöhnliche Differentialgleichung. Für eine allgemeine For-
mulierung benutzen wir y als Name für die unbekannte Funktion. Diese kann vektorwertig
oder noch allgemeiner in einem beliebigen Vektorraum (auch einem Funktionenraum)
sein.

Definition 3.1 (Differentialgleichung) Sei I � R ein beliebiges Intervall, D � Rn

offen und f W I � D ! Rn. Dann heißt

y0.t/ D f .t; y.t//; t 2 I; (3.1)

gewöhnliche Differentialgleichung mit rechter Seite f . Eine auf I differenzierbare Funk-
tion y, die (3.1) erfüllt, heißt (exakte) Lösung der Differentialgleichung. Ist allgemeiner
f W I � D ! X mit einem normierten Vektorraum X und D � X offen, dann heißt (3.1)
Operatordifferentialgleichung.

Bei Klimamodellen wird die rechte Seite f oft mit „dem Modell “ identifiziert.
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Ein Anfangswertproblem enthält zusätzlich zur Differentialgleichung einen Anfangs-
wert der Lösung an einem festen Anfangszeitpunkt:

Definition 3.2 (Anfangswertproblem) Sei I � R ein abgeschlossenes oder halboffenes
Intervall, d. h. I D Œt0; te� oder I D Œt0; te/; t0 2 R; te 2 R [ f1g; t0 < te . Weiter sei f

wie in Definition 3.1 und y0 2 D gegeben. Das Problem

y0.t/ D f .t; y.t//; t 2 I; y.t0/ D y0 (3.2)

heißt Anfangswertproblem mit Anfangswert y0.

In vielen Fällen hängt die rechte Seite der Differentialgleichung nicht explizit von der
Variable t ab:

Definition 3.3 (Autonome Differentialgleichung) Eine Differentialgleichung (3.1) heißt
autonom, wenn die rechte Seite f nur von y.t/ und nicht explizit von t abhängt.

Natürlich hängt bei einer nicht zeitlich konstanten Lösung y D y.t/ die rechte Seite
einer autonomen Gleichung, f D f .y.t//, indirekt über y von der Zeit ab, aber nicht
direkt. Dies ist der entscheidende Punkt in der Definition.

Anmerkung 3.4 Bei einer autonomen Gleichung ist offensichtlich

Qy.t/ WD y.t0 C t/; t 2 Œ0; te � t0�

eine Lösung, wenn y eine Lösung auf Œt0; te� ist. Das heißt: Es kann ohne Beschränkung
der Allgemeinheit t0 D 0 betrachtet werden.

Oft wird das Argument t von y weggelassen, d. h. y0 D f .t; y/ in (3.2) bzw. y0 D f .y/

(bei einer autonomen Gleichung) geschrieben.

Beispiel 3.5 Das Energiebilanzmodell (2.6), besteht aus einer autonomenDifferentialglei-
chung, wenn alle Parameter S; ˛; " als nicht explizit von der Zeit abhängig angenommen
werden. Wird eine Temperaturabhängigkeit (z. B. der Albedo als ˛ D ˛.T /) angesetzt, so
bleibt die Gleichung autonom.

Im Rest dieses Kapitels geben wir Methoden an, wie eine gewöhnliche Differenti-
algleichung bzw. ein zugehöriges Anfangswertproblem analytisch gelöst werden kann.
Um es vorwegzunehmen, führen diese Methoden jedoch bereits beim nulldimensionalen
Energiebilanzmodell nicht zu einer geschlossenen Darstellung der Lösung. Die folgenden
Abschnitte sind des Überblicks wegen enthalten, und weil sie die Grenzen der analyti-
schen Lösungsverfahren aufzeigen.
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3.2 Die Methode der Trennung der Variablen

Diese Methode kann benutzt werden, umAnfangswertprobleme der Form (3.2) für skalare
Differentialgleichungen der Form

y0.t/ D f1.y.t// f2.t/ (3.3)

mit f1 W D ! R und f2 W I ! R zu lösen. Können Stammfunktionen F1; F2 zu 1=f1

bzw. f2 angegeben werden (also Funktionen mit F 0
1 D 1=f1 bzw. F 0

2 D f2), dann kann
eine Lösung der Differentialgleichung und auch des zugehörigen Anfangswertproblems
mit Hilfe des folgenden Satzes charakterisiert werden.

Satz 3.6 (Trennung der Variablen) Sei eine Differentialgleichung der Form (3.3) gege-
ben. Weiterhin sei f1 stetig mit f1.y.t// ¤ 0 f. a. t 2 I , undF1; F2 seien Stammfunktionen
von 1=f1 bzw. f2. Dann ist eine stetig differenzierbare Funktion y, die die Gleichung

F1.y.t// D F2.t/; 8t 2 I; (3.4)

erfüllt, Lösung der Differentialgleichung (3.3).

Beweis Vgl. auch [11, §11, Satz 1]. Erfüllt y die Gleichung (3.4), dann gilt für beliebige
t0; t 2 I :

F1.y.t// � F1.y.t0// D F2.t/ � F2.t0/:

Mit der Definition der Stammfunktion und dem Hauptsatz der Differential- und Integral-
rechnung (s. z. B. [12, §19 Satz 2]) folgt

y.t/Z
y.t0/

1

f1.z/
dz D

tZ
t0

f2.s/ds:

Da f1 stetig und y stetig differenzierbar ist, gilt nach der Substitutionsregel der Integration
(s. z. B. [12, §19 Satz 4]) für die linke Seite:

y.t/Z
y.t0/

1

f1.z/
dz D

tZ
t0

y0.s/

f1.y.s//
ds;

also

tZ
t0

y0.s/

f1.y.s//
ds D

tZ
t0

f2.s/ds:
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Differentiation auf beiden Seiten ergibt

y0.t/
f1.y.t//

D f2.t/; t 2 I:

Also ist y Lösung der Differentialgleichung. �

Kann die Gleichung (3.4) nach y aufgelöst, also eine Umkehrfunktion zu F1 angegeben
werden, dann ergibt sich eine explizite Darstellung der Lösung y. Die in den Stammfunk-
tionen F1; F2 möglichen additiven Konstanten ergeben in (3.4) eine additive Konstante.
Diese wird durch den Anfangswert bestimmt.

In mathematisch etwas unpräziserer Form kann die Vorgehensweise in folgendem Al-
gorithmus beschrieben werden.

Algorithmus 3.7 (Trennung der Variablen)

1. Schreibe die Ableitung als Differentialquotienten

y0 D dy

dt
D f1.y/f2.t/:

Die Abhängigkeit der Funktion y von t wird dabei in der Schreibweise zunächst igno-
riert. Betrachte den Differentialquotienten als Bruch.

2. Trennung der Variablen ergibt

dy

f1.y/
D f2.t/dt:

Diese Umformung ist nur für f1.y/ ¤ 0 zulässig, was am Ende überprüft werden
muss.

3. Berechne auf beiden Seiten das unbestimmte Integral. Dies ergibt

Z
1

f1.y/
dy D

Z
f2.t/dt C c

mit einer Integrationskonstanten c 2 R.
4. Können beide unbestimmten Integrale angegeben und die entstehende Gleichung nach

y aufgelöst werden, so ergibt sich eine explizite Lösungsdarstellung für y.t/.
5. Die Konstante c wird durch die Anfangsbedingung festgelegt.
6. Überprüfe die Bedingung f1.y/ ¤ 0 und Bedingungen, die sie sicherstellen, z. B.

durch Einschränkung des betrachteten Intervalls I .

Im Fall einer autonomen Gleichung gilt f2.t/ D 1 für alle t 2 I und f D f1. Dann ist
F2.t/ D t C c; c 2 R, und die Lösung der Differentialgleichung entspricht der Umkehr-
funktion von F1. Folgendes Beispiel zeigt die Anwendung:
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Beispiel 3.8 Gegeben sei das Anfangswertproblem

y0.t/ D �y.t/; t � 0; y.0/ D y0; � 2 R: (3.5)

Dann ergibt der Algorithmus

1

y
dy D � dt

und damit Z
1

y
dy D ln jyj D �t C c: (3.6)

Diese Umformungen sind nur für y ¤ 0 zulässig. Anwenden der Exponentialfunktion auf
beiden Seiten der Gleichung liefert

jy.t/j D e�tCc D c e�t :

Da die Exponentialfunktion nur positive Werte annehmen kann, hängt das Vorzeichen
der rechten Seite nur von der bisher noch unbestimmten Konstanten c ab, die durch die
Anfangswerte festgelegt wird. Damit gilt auch

y.t/ D c e�t ;

eventuell nach Änderung des Vorzeichens von c. Aus der Anfangsbedingung folgt c D
y0. Für y0 ¤ 0 ist die Umformung (3.6) damit zulässig. Für y0 D 0 ist die konstante
Nullfunktion y 	 0 die Lösung.

Das Anfangswertproblem für die einfache lineare Differentialgleichung (3.5) hat also
die Exponentialfunktion als Lösung. Je nach Vorzeichen von � ergibt sich ein exponenti-
elles Wachstum oder Abfallen von y.

Übung 3.9 Geben Sie mit Hilfe der Methode der Trennung der Variablen jeweils Lösun-
gen für die folgenden Anfangswertprobleme an:

(a) y0 D 2
p

y; t � 0; y.0/ D 0

(b) y0 D y2; t � 0; y.0/ D 1:

Die Existenz und Eindeutigkeit der Lösungen beider Probleme wird in Beispiel 3.30 bzw.
Übung 3.31 thematisiert.

Das Lösen einer Differentialgleichung kann also mit dieser Methode auf das Lösen
von Integralen zurückgeführt werden. Existieren Stammfunktionen für f2 und 1=f1, so
ergibt sich eine Beziehung zwischen der unbekannten Funktion y und der unabhängigen
Variable t . Ob eine explizite Darstellung für y angegeben werden kann, hängt zusätzlich
davon ab, ob die entstehende Gleichung nach y aufgelöst werden kann.
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Beispiel 3.10 Für das nulldimensionale Energiebilanzmodell ist (mit y D T gesetzt) die
Funktion f1 in (3.3) komplizierter als in den obigen Fällen. Die Differentialgleichung

H%C T .t/ D S

4
.1 � ˛/ � "�T .t/4

hat die Form

T 0.t/ D a.1 � bT .t/4/

mit den Konstanten

a D S.1 � ˛/

4H%C
; b D 4"�

S.1 � ˛/H%C
:

Die Lösung des sich so ergebenden Integrals ist wesentlich komplizierter:

Übung 3.11 Auf welches Integral führt die Methode der Trennung der Variablen für das
Energiebilanzmodell?

3.3 Partialbruchzerlegung

Ist bei der Methode der Trennung der Variablen f1 ein Polynom, gilt also

f1 2 ˘s WD
n
p W R ! R; p.x/ D

sX
iD0

aix
i ; x 2 R; ai 2 R; i D 0; : : : ; s

o

mit s � 2, dann kann die Stammfunktion F1 von 1=f1 durch Partialbruchzerlegung be-
rechnet werden. Dazu wird f1 in lineare oder quadratische Faktoren zerlegt und 1=f1 in
eine Summe aufgespalten, für deren Summanden dann Stammfunktionen bestimmt wer-
den. Der folgende Algorithmus beschreibt die Vorgehensweise:

Algorithmus 3.12 (Partialbruchzerlegung)

1. Bestimme die (möglicherweise komplexen) Nullstellen xi ; i D 0; : : : ; s; von f1, d. h.
zerlege das Polynom f1 in Linearfaktoren

f1.x/ D as

sY
iD0

.x � xi /:

2. Fasse dabei ggfs. Faktoren mit paarweise komplexen Nullstellen zusammen, so dass
sich eine Darstellung

f1.x/ D
lY

iD0

qi .x/

mit l 
 s und qi 2 ˘1 oder qi 2 ˘2 ergibt.
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3. Stelle 1=f1 als Summe der folgenden Art dar:

1

f1.x/
D

lX
iD0

pi .x/

qi .x/
; pi 2 ˘0 oder pi 2 ˘1:

4. Bestimme aus dieser Darstellung durch Koeffizientenvergleich die Koeffizienten der
Polynome pi .

5. Berechne aus dieser Darstellung eine Stammfunktion F1 von 1=f1.

Das folgende Beispiel zeigt die Anwendung.

Beispiel 3.13 Sei f .x/ D 1 � x2. Zur Berechnung der Stammfunktion von 1=f gehen
wir wie im Algorithmus vor:

1. Es gilt

f .x/ D �.x C 1/.x � 1/ D .1 � x/.1 C x/:

2. Komplexe Nullstellen gibt es nicht. Es gilt q0.x/ D 1 � x; q1.x/ D 1 C x.
3. Ansatz:

1

f .x/
D 1

1 � x2
D A

1 � x
C B

1 C x
; A; B 2 R:

Dieser Ansatz ist nur für jxj ¤ 1 zulässig.
4. Ausmultiplizieren ergibt

1 D A.1 C x/ C B.1 � x/ D A C B C x.A � B/;

woraus sich durch Koeffizientenvergleich A D B D 1=2 ergibt, also

1

f .x/
D 1

1 � x2
D 1

2

�
1

1 � x
C 1

1 C x

�
; jxj ¤ 1:

5. Für die Stammfunktion gilt dann

Z
1

1 � x2
dx D 1

2

�Z
1

1 � x
dx C

Z
1

1 C x
dx

�

D 1

2
.� ln j1 � xj C ln j1 C xj/ C c D 1

2
ln

ˇ̌̌
ˇ1 C x

1 � x

ˇ̌̌
ˇC c:

Auf ähnliche Art kann jetzt das Integral, das sich beim Energiebilanzmodell mit der
Methode der Trennung der Variablen ergibt, gelöst werden:

Übung 3.14 Geben Sie eine Stammfunktion für das in Übung 3.11 erhaltene Integral an.
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In einigen Fällen führt Substitution mit Winkel- oder Hyperbelfunktionen zu einer ver-
einfachten Darstellung der Stammfunktion, wie im letzten Beispiel:

Beispiel 3.15 Für

s WD 1

2
ln

1 C x

1 � x

gilt mit der Definition der Tangens-Hyperbolicus-Funktion

tanh.s/ D e2s � 1

e2s C 1
D

1Cx
1�x

� 1
1Cx
1�x

C 1
D 1 C x � .1 � x/

1 C x C 1 � x
D x; 0 < x < 1:

Also ist

s D 1

2
ln

1 C x

1 � x
D artanh.x/; 0 < x < 1;

und Z
1

1 � x2
dx D artanh.x/ C c; 0 < x < 1:

Diese Umformung kann helfen, um die für die Lösung eines Anfangswertproblems
nötige Umkehrfunktion von F1 anzugeben:

Übung 3.16 Wenden Sie die Methode der Trennung der Variablen auf das Anfangswert-
problem

y0.t/ D 1 � y.t/2; t 2 I; y.0/ D y0

an. Welche Voraussetzungen müssen an I gemacht werden?

Übung 3.17 Benutzen Sie die Umformung aus Beispiel 3.15 für die Differentialgleichung
des Energiebilanzmodells. Warum ist es dennoch nicht möglich, eine geschlossene Form
für die Lösung anzugeben?

Weitere analytische Lösungsmethoden (für lineare System) werden in den Abschn. 8.1
und 8.2 behandelt.

3.4 Existenz- und Eindeutigkeitsaussagen

Elementare Lösungsverfahren sind natürlich ein Mittel, um die Existenz einer Lösung zu
zeigen. Aber es ist generell sinnvoll, Bedingungen für die Existenz einer Lösung und über
ein maximales Intervall I � R, auf der sie definiert sind, anzugeben. Interessant sind
darüber hinaus Eindeutigkeitsaussagen. Wir geben hier zwei zentrale Sätze an, die sich
mit diesen Themen befassen. Dabei betrachten wir wieder das Anfangswertproblem (3.2).
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Lipschitz-Stetigkeit

Eine hinreichende Bedingung für die Eindeutigkeit einer Lösung ist die lokale Lipschitz-
Stetigkeit der rechten Seite f bezüglich des zweiten Arguments. Da wir diese Eigenschaft
später auch in anderen Zusammenhängen benötigen, definieren wir sie für eine allgemeine
Funktion F , die von einer Variable abhängt.

Definition 3.18 (Lokale und globale Lipschitz-Stetigkeit) Eine Funktion F W Rn �
D ! Rn heißt lokal Lipschitz-stetig in D, wenn zu jedem x0 2 D Zahlen L; " > 0

existieren mit

kF.x/ � F. Qx/k 
 Lkx � Qxk 8x; Qx 2 B".x0/ \ D:

Dabei ist k � k eine beliebige Vektornorm und

B".x0/ WD fx 2 Rn W kx � x0k < "g:

Die Zahl L heißt Lipschitz-Konstante. Gilt diese Abschätzung auf ganz D mit einem von
x0 unabhängigen L, dann heißt F global Lipschitz-stetig.

In der Definition ist die Vektornorm, die benutzt wird, nicht spezifiziert. Wir geben hier
noch einmal die wichtigsten Normen auf dem Rn als Beispiel an:

Beispiel 3.19 Die folgenden Abbildungen sind Normen auf dem Rn:

kxkp WD
� nX

iD1

jxi jp
�1=p

; p 2 N; p > 1;

kxk1 WD max
iD1;:::;n

jxi j

Auf dem Rn sind alle Normen im folgenden Sinne ineinander umrechenbar:

Definition 3.20 SeiRn ein normierter Raummit Normen k � ka, k � kb. Die beiden Normen
heißen äquivalent, wenn cab; cba 2 R existieren mit

kxka 
 cabkxkb; kxkb 
 cbakxka 8x 2 Rn:

Die Umrechnungsfaktoren hängen im Rn zum Teil von der Dimension n ab:

Übung 3.21 Berechnen Sie die Konstanten cab; cba für die Normen k � k1, k � k2 und k � k1
im Rn.

Der Wert der Lipschitz-Konstanten hängt also eventuell von der Wahl der Norm ab.
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Übung 3.22 Wie ändert sich die Lipschitz-Konstante, wenn statt der Norm k � ka eine
andere, äquivalente Norm k � kb verwendet wird?

Der Banach’sche Fixpunktsatz

Der Beweis des weiter unten folgenden Existenz- und Eindeutigkeitssatzes basiert auf
dem Banach’schen Fixpunktsatz (oder Kontraktionsprinzip). Ein Fixpunkt ist wie folgt
definiert:

Definition 3.23 (Fixpunkt) Ein Punkt x 2 D � Rn heißt Fixpunkt von F W D ! D,
wenn F.x/ D x gilt.

Eine Kontraktion ist wie folgt definiert:

Definition 3.24 (Kontraktion) Eine Funktion F W Rn � D ! D heißt kontrahierend
oder Kontraktion auf D, wenn sie auf D global Lipschitz-stetig mit L < 1 ist.

Der Banach’sche Fixpunktsatz liefert nun Aussagen über den Fixpunkt einer kontrak-
tiven Abbildung sowie die Möglichkeit, diesen zu approximieren:

Satz 3.25 (Banach’scher Fixpunktsatz) Sei D � Rn nichtleer und abgeschlossen und
F W D ! D eine kontrahierende Abbildung. Dann gilt:

1. F hat genau einen Fixpunkt x� in D.
2. Die Folge .xk/k2N ; xkC1 D F.xk/, konvergiert für jeden Startwert x0 2 D gegen x�.
3. Für alle k 2 N gelten die a-priori- und a-posteriori-Fehlerabschätzungen

kxk � x�k 
 Lk

1 � L
kx1 � x0k;

kxk � x�k 
 L

1 � L
kxk � xk�1k:

Beweis Wir zeigen, dass die Folge der Iterierten eine Cauchy-Folge bildet: Es gilt xk 2
D, da F W D ! D, und

kxmC1 � xmk D kF.xm/ � F.xm�1/k 
 L kxm � xm�1k

 Lm kx1 � x0k : (3.7)
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Sei l; k 2 N mit l > k. Dann folgt mit der Dreiecksungleichung und der Kontraktionsei-
genschaft:

kxl � xkk D
���

l�kX
iD1

.xkCi � xkCi�1/
���



l�kX
iD1

kxkCi � xkCi�1k



l�kX
iD1

LkCi�1 kx1 � x0k

D Lk

l�k�1X
iD0

Li kx1 � x0k


 Lk

1X
iD0

Li kx1 � x0k D Lk

1 � L
kx1 � x0k : (3.8)

Die letzte Gleichung folgt mit der Formel für die geometrische Reihe, s. [13, §4 Satz 6].
Wegen L < 1 wird der letzte Ausdruck für großes k (und damit l) beliebig klein. Also ist
.xk/k2N eine Cauchy-Folge, die konvergiert, da der Rn vollständig ist. Da D abgeschlos-
sen ist, ist das Grenzelement in D, also

lim
k!1 xk D x� 2 D:

Um zu zeigen, dass x� ein Fixpunkt ist, folgt aus der Stetigkeit von F

x� D lim
k!1 xkC1 D lim

k!1 F.xk/ D F.x�/:

Für die Eindeutigkeit seien x�; Nx zwei Fixpunkte von F in D. Dann gilt:

kx� � Nxk D kF.x�/ � F. Nx/k 
 Lkx� � Nxk:

Daraus folgt

.1 � L/kx� � Nxk 
 0

und wegen L < 1 dann kx� � Nxk D 0, also x� D Nx.
Zum Beweis der a-priori-Fehlerabschätzung wird die gezeigte Abschätzung (3.8) be-

nutzt. Grenzübergang l ! 1 ergibt wegen der Stetigkeit der Norm

kx� � xkk 
 Lk

1 � L
kx1 � x0k:
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Für die a-posteriori-Fehlerabschätzung setze Nx0 WD xk�1. Dann ist Nx1 D xk , und es
folgt aus der a-priori-Fehlerabschätzung

kxk � x�k D k Nx1 � x�k 
 L1

1 � L
k Nx1 � Nx0k D L

1 � L
kxk � xk�1k: �

Die Aussage des Satzes bleibt in einem vollständigen normierten und auch in einem
vollständigen metrischen Raum X gültig. In letzterem wird dann die Norm durch eine
Metrik (Abstandsbegriff) d W X � X ! RC ersetzt, genauer gesagt die Norm kx � QxkX

durch d.x; Qx/.

Der Satz von Picard-Lindelöf

Wir zeigen nun die lokale Existenz und Eindeutigkeit der Lösung in einer Umgebung des
Anfangswertes. Dazu benötigen wir noch folgendes Resultat.

Lemma 3.26 Sei k � k eine beliebige Norm auf dem Rn. Dann gilt für alle F 2
C.Œa; b�;Rn/

������
bZ

a

F.s/ds

������ 

bZ

a

kF.s/kds:

Beweis Siehe [11, §6, Hilfssatz nach Satz 5] für den Fall der Euklidischen Norm. �

Übung 3.27 Beweisen Sie diese Aussage für eine beliebige Norm.

Es gilt nun folgender lokaler Existenz- und Eindeutigkeitssatz.

Satz 3.28 (Satz von Picard-Lindelöf) Sei D � R � Rn offen, f in D stetig und lo-
kal Lipschitz-stetig bezüglich des zweiten Arguments, d. h. (vgl. Definition 3.18) zu jedem
Punkt .t0; y0/ 2 D existieren L; " > 0 mit

kf .t; y/ � f .t; Qy/k 
 Lky � Qyk für alle .t; y/; .t; Qy/ 2 B".t0; y0/ \ D:

Dann hat das Anfangswertproblem (3.2) für alle .t0; y0/ 2 D genau eine Lösung auf
einem Intervall Œt0; t0 C r� mit r > 0.

Beweis Der Beweis basiert auf dem Banach’schen Fixpunktsatz. Sei .t0; y0/ 2 D belie-
big. Da D offen und f lokal Lipschitz-stetig in D ist, existieren r; s > 0, so dass auf der
Menge

U WD Œt0; t0 C r� � Bs.y0/ � D (3.9)
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die Funktion f sowohl stetig als auch Lipschitz-stetig bezüglich des zweiten Arguments
ist. Die Lipschitz-Konstante sei L D L.y0; t0/. Es sei

M WD max
.t;y/2U

kf .t; y/k:

Wir verkleinern r gegebenenfalls noch so, dass M r 
 s gilt.
Ist y eine Lösung des Anfangswertproblems, so ist y auf D stetig und die Funktion F ,

definiert durch F.t/ WD f .t; y.t//, ist auf Œt0; t0 C r� stetig. Dann gilt mit dem Hauptsatz
der Differential- und Integralrechnung

y.t/ D y0 C
tZ

t0

f .s; y.s//ds DW .Ty/.t/ für alle t 2 Œt0; t0 C r�; (3.10)

wobei das Integral komponentenweise zu verstehen ist.
Löst umgekehrt eine Funktion y Gleichung (3.10)), so gilt offensichtlich

y.t0/ D y0;

d. h. sie erfüllt die Anfangsbedingung. Ist y stetig, so ist die rechte Seite von (3.10)) stetig
differenzierbar nach t , also ist (wieder mit dem Hauptsatz der Differential- und Integral-
rechnung) y stetig differenzierbar, und es gilt

y0.t/ D f .t; y.t// für alle t 2 Œt0; t0 C r�;

also die Differentialgleichung. Insgesamt ist auf Œt0; t0 C r� damit (3.10) äquivalent zum
Anfangswertproblem (3.2).

Die Integralgleichung (3.10)) können wir als Fixpunktgleichung

y D Ty

schreiben, wobei für den Operator T gilt:

T W C.Œt0; t0 C r�;Rn/ ! C.Œt0; t0 C r�;Rn/

Für beliebiges ˛ > 0 ist der Raum C.Œt0; t0 C r�;Rn/, versehen mit der Norm

kyk˛ WD max
t2Œt0;t0Cr�

ky.t/k exp.�˛.t � t0//;

ein Banachraum. Auf der rechten Seite steht dabei eine beliebige Norm im Rn. Wir wäh-
len, wie später deutlich wird, ˛ > Lr , und überprüfen nun die Voraussetzungen des
Banach’schen Fixpunktsatzes:
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Zuerst zeigen wir, dass T die Menge Bs.y0/ in sich abbildet. Dazu betrachten wir für
t 2 Œt0; t0 C r� unter Benutzung von Lemma 3.26:

k.Ty/.t/ � y0k D
������

tZ
t0

f .s; y.s//ds

������



tZ

t0

kf .s; y.s//kds


 .t � t0/ max
.s;z/2U

kf .s; z/k 
 rM 
 s:

Jetzt zeigen wir, dass T eine Kontraktion ist. Es gilt mit der lokalen Lipschitz-Stetigkeit
von f bezüglich des zweiten Arguments:

k.Ty/.t/ � .T z/.t/k D
������

tZ
t0

.f .s; y.s// � f .s; z.s//ds

������



tZ

t0

kf .s; y.s// � f .s; z.s//kds



tZ

t0

Lky.s/ � z.s/kds

D
tZ

t0

Lky.s/ � z.s/k exp.�˛.s � t0// exp.˛.s � t0//ds


 .t � t0/Lky � zk˛

tZ
t0

exp.˛.s � t0//ds

D .t � t0/Lky � zk˛

1

˛
exp.˛.t � t0// 8t 2 Œt0; t0 C r�:

Also folgt

kTy � T zk˛ 
 Lr

˛
ky � zk˛:

Da ˛ > Lr gewählt war, ist T eine Kontraktion, und Existenz und Eindeutigkeit folgen
aus dem Banach’schen Fixpunktsatz. �

Beispiel 3.29 Damit ist klar, dass die Lösung y.t/ D y0e�t des Anfangswertproblems
(3.5) aus Beispiel 3.8 die einzige ist.
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Ein einfaches Beispiel für den Nachweis der Eindeutigkeit über die lokale Lipschitz-
Stetigkeit von f ist das Anfangswertproblem aus Übung 3.9(b):

Beispiel 3.30 Die Funktion f .y/ D y2 ist lokal Lipschitz-stetig auf R. Es gilt

jy2 � Qy2j D jy C Qyj jy � Qyj 
 2jy0 C "j jy � Qyj;

wenn y; Qy 2 B".y0/. Also ist L D L.y0/ D 2jy0 C "j. Das Anfangswertproblem hat für
beliebigen Anfangswert y0 2 R eine eindeutige Lösung.

Im folgenden Beispiel liegt keine Eindeutigkeit vor, vgl. Übung 3.9(a):

Übung 3.31 Geben Sie alle Lösungen des Anfangswertproblems

y0 D 2
p

y; t � 0; y.0/ D 0

an. Welche Voraussetzungen des Satzes von Picard-Lindelöf sind nicht erfüllt?

Übung 3.32 Was ändert sich, wenn y0 D 2
pjyj mit gleichem Anfangswert betrachtet

wird?

Was passiert, wenn der Anfangswert y0 von Null weg verschoben wird? Dann liegt
.t0; y0/ im Inneren des Definitionsbereiches von f und die lokale Lipschitz-Stetigkeit ist
gegeben.

Übung 3.33 Welche Lösungen hat das Problem aus Übung 3.31 mit y.0/ > 0? Sind die
Voraussetzungen des Satzes von Picard-Lindelöf erfüllt?

Genauso kann nun das Energiebilanzmodell untersucht werden.

Übung 3.34 Untersuchen Sie das Modell (2.6) auf Existenz- und Eindeutigkeit.

Abschätzung der Lipschitz-Konstante über die Ableitung

Nur bei einfachen Gleichungen kann die lokale Lipschitz-Stetigkeit direkt mit der Defi-
nition nachgewiesen werden. Bei nichtlinearen Systemen ist dies sehr schwierig. Daher
erweist sich ein Lemma als hilfreich, das die Norm der Jacobi-Matrix zur Abschätzung
der Lipschitz-Konstante benutzt. Diese Norm muss zu der Vektornorm, bezüglich der die
Lipschitz-Konstante berechnet wird, im folgenden Sinne passen:
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Definition 3.35 (Verträgliche Matrix- und Vektornormen) Eine Vektornorm k � kV auf
dem Rn und eine Matrixnorm k � kM auf dem Rn�n heißen (miteinander) verträglich oder
kompatibel, wenn gilt:

kAxkV 
 kAkM kxkV 8A 2 Rn�n; x 2 Rn:

Folgende Matrixnormen sind verträglich mit den entsprechend indizierten Vektornor-
men aus Beispiel 3.19. Dabei benutzen wir folgende Bezeichnung:

Definition 3.36 (Spektralradius) Für A 2 Rn�n heißt

%.A/ WD maxfj�j W � ist Eigenwert von Ag

Spektralradius von A.

Es gilt jetzt:

Lemma 3.37 Sei A D .aij /ij 2 Rn�n. Die Abbildungen

kAk1 WD max
j D1;:::;n

nX
iD1

jaij j

kAk1 WD max
iD1;:::;n

nX
j D1

jaij j

kAk2 WD
q

%.A>A/:

sind mit den entsprechenden Vektornorm verträgliche Normen auf dem Rn�n.

Die k � k2-Norm vereinfacht sich offensichtlich, wenn die Matrix symmetrisch ist, dann
ist sie gleich dem betragsgrößten Eigenwert. Doch Symmetrie ist bei der Jacobi-Matrix
nicht notwendigerweise gegeben.

Zunächst ergibt sich sofort folgende Aussage:

Anmerkung 3.38 Lineare Funktionen sind lokal Lipschitz-stetig. Ist

f .t; y/ D A.t/y

mit einer matrixwertigen Funktion A W I ! Rn�n, dann gilt

kf .t; y/ � f .t; Qy/k D kA.t/.y � Qy/k 
 kA.t/kk.y � Qy/k;
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wenn die Normen verträglich sind. Ist nun A stetig, dann ist

L.t0/ D max
t2B".t0/

kA.t/k:

Im Fall A.t/ D A konstant liegt dann sogar globale Lipschitz-Stetigkeit vor.

Für nichtlineare Funktionen kann die Lipschitz-Konstante wie folgt abgeschätzt wer-
den:

Lemma 3.39 Sei U � Rn offen und F W U ! Rn stetig differenzierbar. Dann ist F auf
jeder kompakten konvexen Menge D � U global Lipschitz-stetig mit

L D max
x2D

kF 0.x/k

und einer mit einer Vektornorm auf dem Rn verträglichen Matrixnorm.

Beweis Aus dem Mittelwertsatz der Differentialrechnung (s. [13, §18 Satz 7] mit ' D 1)
folgt für x; Qx 2 D, da D konvex ist:

kF.x/ � F. Qx/k D
������

1Z
0

F 0. Qx C s.x � Qx//.x � Qx/ds

������



0
@

1Z
0

kF 0. Qx C s.x � Qx//kds

1
A kx � Qxk


 max
x2D

kF 0.x/k
0
@

1Z
0

1 ds

1
A kx � Qxk

D max
x2D

kF 0.x/kkx � Qxk:

Die Stetigkeit von F 0 auf der kompakten Menge D ergibt die Behauptung. �

Mit diesem Lemma reicht für die lokale Existenz und Eindeutigkeit die stetige partielle
Differenzierbarkeit (bezüglich y) der rechten Seite einer Differentialgleichung aus:

Korollar 3.40 Sei D � R � Rn offen und f in D stetig nach y differenzierter. Dann hat
das Anfangswertproblem (3.2) für alle .t0; y0/ 2 D genau eine Lösung auf einem Intervall
Œt0; t0 C r� mit r > 0.

Mit dieser Aussage ergibt die Existenz und Eindeutigkeit von Lösungen der Anfangs-
wertprobleme aus Beispiel 3.30 und Übung 3.34 wesentlich einfacher.
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Der Satz von Peano

Dieser Satz macht eine Existenzaussage nur mit der Voraussetzung der Stetigkeit der rech-
ten Seite f . Wir notieren ihn hier der Vollständigkeit halber:

Satz 3.41 (Existenzsatz von Peano) Sei f in einem Gebiet D � R � Rn stetig. Dann
geht durch jeden Punkt .t0; y0/ 2 D mindestens eine Lösung des Anfangswertproblems
(3.2), die sich bis zum Rand von D fortsetzen lässt.

Beweis Siehe [14, Satz 6.1.1]. �

3.5 Fortsetzbarkeit und globale Existenz von Lösungen

Interessant bei einem Anfangswertproblem ist nicht nur die Existenz lokaler Lösun-
gen, sondern auch, auf welchem Intervall sie existieren. Das Anfangswertproblem aus
Übung 3.9(b) und Beispiel 3.30, wo lokale Eindeutigkeit gegeben ist, aber die Lösung
beim Anfangszeitpunkt t0 D 0 nur für t < 1 existiert, ist ein Beispiel dafür. Das folgende
Lemma zeigt, dass lokale Lösungen zusammengesetzt werden können.

Lemma 3.42 Seien y1; y2 Lösungen des Anfangswertproblems (3.2) auf Œt0; t1� bzw.
Œt1; t2� mit y1.t0/ D y0 beliebig und y2.t1/ D y1.t1/. Dann ist

y.t/ WD
8<
:

y1.t/; t 2 Œt0; t1�

y2.t/; t 2 .t1; t2�

eine Lösung von (3.2) auf Œt0; t2�.

Beweis Es ist zu zeigen, dass y in t1 die Differentialgleichung erfüllt. Wegen der links-
bzw. rechtsseitigen Differenzierbarkeit von y1 bzw. y2 in t1 gilt

lim
h#0

y.t1 � h/ � y.t1/

h
D lim

h#0

y1.t1 � h/ � y1.t1/

h
D f .t1; y1.t1//

lim
h#0

y.t1 C h/ � y.t1/

h
D lim

h#0

y2.t1 C h/ � y2.t1/

h
D f .t1; y2.t1//:

Wegen y1.t1/ D y2.t1/ stimmen rechts- und linksseitige Ableitung von y in t1 überein
und sind gleich f .t1; y.t1//. �
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Der folgende Satz benutzt Resultate über gleichmäßig stetige Funktionen:

Definition 3.43 (Gleichmäßige Stetigkeit) Eine Funktion F W Rn � D ! R heißt
gleichmäßig stetig, wenn gilt:

8" > 0 9ı > 0W kF.x/ � F. Qx/k 
 ı 8x; Qx 2 D; kx � Qxk < ı:

Wir benutzen im Beweis folgende Aussagen:

Lemma 3.44 Eine Lipschitz-stetige Funktion ist gleichmäßig stetig. Eine auf einem of-
fenen Intervall gleichmäßig stetige Funktion lässt sich stetig auf den Rand des Intervalls
fortsetzen.

Beweis Siehe [13, Aufgaben 11.3(a) und 11.5]. �

Damit wird folgender globaler Existenzsatz gezeigt:

Satz 3.45 Sei D � R � Rn offen, f auf D lokal Lipschitz-stetig und .t0; y0/ 2 D. Dann
existiert eine Lösung y des Anfangswertproblems (3.2) mit

1. I D Œt0; 1/

2. oder I D Œt0; te� mit te < 1 und lim
t!te

sup ky.t/k D 1
3. oder I D Œt0; te� mit te < 1 und lim

t!te
dist..t; y.t//; @D/ D 0:

Dabei ist @D der Rand von D und dist.x; D/ der Abstand des Punktes x zu D. Die
Lösung y ist eindeutig, d. h. alle anderen Lösungen sind Restriktionen.

Beweis Sei Y die Menge aller lokalen Lösungen von (3.2). Nach Satz 3.28 ist Y ¤ ;,
und zu y 2 Y gibt es r D r.y/ > 0, so dass y auf Œt0; t0 C r.y/� existiert. Wegen
der lokalen Eindeutigkeit stimmen zwei Lösungen y1; y2 2 Y auf ihrem gemeinsamen
Existenzintervall Œt0; t0 C minfr.y1/; r.y2/g� überein.

Sei te WD t0 C supy2Y r.y/. Je nachdem, ob das Supremum angenommen wird oder
nicht, können wir auf Œt0; te� oder Œt0; te/ eine Lösung Ny definieren, die eindeutig und nach
Konstruktion nicht mehr auf ein größeres Intervall fortsetzbar ist. Alle anderen Lösungen
sind Restriktionen dieser Lösung. Wir betrachten für diese nicht mehr fortsetzbare Lösung
Ny die Menge

M WD f.t; Ny.t// 2 RnC1 W t � t0g � D:
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Wir zeigen einen Widerspruch, wenn alle Aussagen 1–3 falsch sind:
Da die Aussagen 1 und 2 falsch sind, ist M bezüglich t und y beschränkt. Da M nach

Definition abgeschlossen ist, ist M kompakt.
Fall 1: Die nicht mehr fortsetzbare Lösung Ny ist auf dem halboffenen Intervall Œt0; te/

gegeben. Da die stetige Funktion f auf M beschränkt ist, ist auch Ny0 auf der kompakten
Menge M beschränkt. Mit Lemma 3.39 folgt Lipschitz-Stetigkeit und mit Lemma 3.44
gleichmäßige Stetigkeit von Ny in Œt0; te/ und die Fortsetzbarkeit

lim
t!te

Ny.t/ DW ye:

Wegen der Abgeschlossenheit von M gilt .te; ye/ 2 M . Die Gleichung

Ny.t/ D y0 C
tZ

t0

f .s; Ny.s//ds

gilt für t 2 Œt0; te/. Der Grenzübergang t ! te zeigt, dass sie auch für t D te gilt.
Damit folgt, dass Ny in te linksseitig differenzierbar ist. Damit ist Ny auf das Intervall Œt0; te �

fortsetzbar und es ergibt sich ein Widerspruch zur Nichtfortsetzbarkeit.
Fall 2: Die Lösung ist auf dem abgeschlossenen Intervall Œt0; te� gegeben. Wegen te <

1 und .te; ye/ 2 M � D kann eine lokale Lösung mit Anfangswert .te; ye/ konstruiert
und so Ny auf ein Intervall Œt0; te Cr�; r > 0; fortgesetzt werden. Auch in diesem Fall ergibt
sich also ein Widerspruch zur Nichtfortsetzbarkeit von Ny. �



4Umformulierung und Vereinfachung
vonModellen

Thema dieses Kapitels sind einige Methoden, die oft bei Klimamodellen (und auch anderen Model-
len) angewendet werden, um diese in eine Form zu bringen, die sich besser für die Beschreibung
der Prozesse selbst, aber auch für ihre Berechnung eignet. Dazu gehören der Übergang zu dimensi-
onslosen Größen, die Aufspaltung in einen stationären und einen instationären oder Störungsanteil
und eine geeignete Skalierung der Gleichungen. Eine weitere Methode, die Linearisierung, wird vor
allem dann angewendet, wenn das ursprüngliche Modell nicht direkt analytisch lösbar ist, wie es
beim instationären Energiebilanzmodell der Fall war. Die hier vorgestellten Methoden werden in
der einen oder anderen Form in den meisten Klimamodellen angewendet.

4.1 Übergang zu dimensionslosen Größen und Skalierung

Die meisten Klima- (und auch andere) Modelle werden in eine dimensionslose Form um-
geschrieben. Dadurch sind sie für die mathematische Beschreibung und Analyse und auch
für die Umsetzung auf dem Rechner besser handhabbar. Zusätzlich erlaubt diese Entdi-
mensionalisierung, die wirklich relevanten Parameter oder Kennzahlen zu bestimmen.

In diesem Prozess werden alle Größen als Produkte von dimensionslosen Werten, al-
so Zahlen, und sinnvoll gewählten, gegebenenfalls dimensionsbehafteten Referenzgrößen
ausgedrückt. Damit entfallen die physikalischen Einheiten (oder Dimensionen, deswegen
dimensionslose Form).

Die Referenzgrößen können die Einheiten nach dem SI-Standard (s. Tab. 2.1) sein. Es
kann aber auch sinnvoll sein, andere, problemangepasste Referenzgrößen oder Einheiten
zu wählen. Zum Beispiel kann die Länge nicht in der SI-Einheit m (Meter), sondern in
Vielfachen einer modellspezifischen Größe der Dimension Länge ausgedrückt werden,
z. B. der Größe eines Behälters, in dem Prozesse untersucht werden, oder einer sinnvollen
Referenzgröße im Ozean. Bei vielen nur grob aufgelösten Klimamodellen wie auch dem
Energiebilanzmodell ist statt der SI-Zeiteinheit Sekunde meist ein Jahr eine angemessene
Zeitskala.

43© Springer-Verlag Berlin Heidelberg 2015
T. Slawig, Klimamodelle und Klimasimulationen, Springer-Lehrbuch Masterclass,
DOI 10.1007/978-3-662-47064-0_4
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Dadurch findet zusätzlich zur Entdimensionalisierung eine Skalierung statt. Diese kann
auch sinnvoll sein, um Modellgrößen auf eine ähnliche Größenordnung zu bringen, was
für bestimmte numerische Berechnungsverfahren sinnvoll ist und die Vergleichbarkeit von
Größen und die Qualität des Ergebnisses verbessern kann.

Die Prozesse Entdimensionalisierung und Skalierung hängen also miteinander zusam-
men. Wir beginnen mit den Definitionen der beiden Begriffe.

Definition 4.1 Sei q eine dimensionsbehaftete Größe mit zugehöriger SI-Einheit Œq�.
Dann heißt Qq 2 R mit q D Qq Œq� zugehörige dimensionslose Größe. Werden in einem
Modell alle Größen durch ihre zugehörigen dimensionslosen Größen ersetzt und die Di-
mensionen aus dem Modell eliminiert, so heißt dieser Prozess Entdimensionalisierung
und das entstehende Modell ein dimensionsloses Modell.

Definition 4.2 Sei q 2 R eine dimensionslose Modellgröße und Nq 2 R n f0g. Dann heißt
Qq mit q D Nq Qq mit Nq skalierte Modellgröße. Die Größe Nq heißt Skalierungsfaktor.

Beide Prozesse sind ähnlich und können zusammengefasst werden: Ist q eine dimen-
sionsbehaftete Modellgröße, Œq� ihre Einheit und Nq ein Skalierungsfaktor, so wird eine
äquivalente dimensionslose und skalierte Modellformulierung gesucht, also eine, die die
Größe Qq mit q D Nq q Œq� an Stelle von q benutzt.

In Modellen, die Differentialgleichungen und damit Ableitungen enthalten, ist bei der
Transformation der Ableitungen das folgende Lemma hilfreich.

Lemma 4.3 Sei F eine differenzierbare dimensionsbehaftete Funktion einer dimensi-
onsbehafteten Variablen q, ŒF � WD ŒF .q/� und Œq� die zugehörigen Einheiten und NF ; Nq
Skalierungsfaktoren für F und q. Für die Ableitung der zugehörigen dimensionslosen und
skalierten Funktion QF mit dimensionslosem und skaliertem Argument Qq, definiert durch

QF . Qq/ WD F. Qq Nq Œq�/

NF ŒF �
oder äquivalent F.q/ D QF

�
q

Nq Œq�

�
NF ŒF �; (4.1)

gilt

F 0.q/ D dF

dq
.q/ D

NF ŒF �

Nq Œq�

d QF
d Qq . Qq/ D

NF ŒF �

Nq Œq�
QF 0. Qq/: (4.2)

Beweis Es gilt mit (4.1)

F 0.q/ D lim
h!0

1

h
.F.q C h/ � F.q// D lim

h!0

1

h

�
QF
�

q C h

Nq Œq�

�
� QF

�
q

Nq Œq�

��
NF ŒF �:
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Mit den Bezeichnungen Qq WD q=. Nq Œq�/; Qh WD h=. Nq Œq�/ und wegen der Äquivalenz

Qh ! 0 ” h ! 0

folgt

F 0.q/ D lim
Qh!0

1

Qh NqŒq�

� QF . Qq C Qh/ � QF . Qq/
� NF ŒF � D

NF ŒF �

Nq Œq�
lim
Qh!0

1

Qh
� QF . Qq C Qh/ � QF . Qq/

�
:

�

Der folgende Algorithmus fasst die Vorgehensweise bei Entdimensionalisierung und
Skalierung zusammen.

Algorithmus 4.4 (Entdimensionalisierung und Skalierung)

1. Stelle jede Modellgröße q als Produkt einer dimensionslosen Größe Qq, der Einheit Œq�

und ggfs. einem Skalierungsfaktor Nq dar, d. h. als

q D Qq Nq Œq�:

2. Benutze für die Transformation von Ableitungen Formel (4.2).
3. Setze die erhaltenen Beziehungen in die Modellgleichung(en) ein und dividiere auf

beiden Seiten durch die Einheiten. Ergebnis ist eine dimensionslose und ggfs. skalierte
Form des Modells.

Beide Prozesse, Entdimensionalisierung und Skalierung, können gleichzeitig oder (mit
der Setzung Nq D 1 bzw. Œq� D 1) auch nacheinander ausgeführt werden.

Das folgende Beispiel zeigt die Entdimensionalisierung des Energiebilanzmodells ohne
zusätzliche Skalierung.

Beispiel 4.5 Wir betrachten die Differentialgleichung (2.6):

H% C T 0.t/ D S

4
.1 � ˛/ � "�T .t/4: (4.3)

In Tab. 2.3 wurden die im Energiebilanzmodell vorkommenden Parameter aufgelistet.
Schritt 1 des obigen Algorithmus liefert die Beziehungen in Tab. 4.1, wobei ˛ und " bereits
dimensionslos sind. Für die einzige auftretende Ableitung gilt mit (4.1):

T 0.t/ D ŒT �

Œt �
QT 0.Qt / D K

s
QT 0.Qt /:
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Tab. 4.1 Dimensionsbehaftete
und dimensionslose Variablen
und Parameter im Energiebi-
lanzmodell

Dimensionslose Dimensionsbehaftete Variable/Parameter
QT T D QT K
Qt t D Qt s
Qr r D Qr m
QH H D QHm

Q% % D Q% kgm�3

QC C D QC J kg�1K�1

QS S D QS Wm�2

Q� � D Q� Wm�2K�4

˛; " Œ˛� D Œ"� D 1

Einsetzen in die ursprüngliche Differentialgleichung ergibt

QH Q% QC QT 0.Qt/ mkg JK

m3 kgK s
D

QS
4

.1 � ˛/
W

m2
� " Q� QT .Qt/4 WK4

m2 K4

und durch Kürzen der Einheiten und Verwendung der Beziehung W D J s�1:

QH Q% QC QT 0.Qt/ W
m2

D
� QS

4
.1 � ˛/ � " Q� QT .Qt /4

�
W

m2
:

Die Gleichung ist also in der Einheit Wm�2 formuliert. Eine Division durch die verblei-
bende Einheit ergibt (4.3) in dimensionsloser Form, wenn man die Tilden wieder weglässt.

Das folgende Beispiel motiviert eine Skalierung des Energiebilanzmodells.

Beispiel 4.6 Die Temperatur T tritt im Energiebilanzmodell in der vierten Potenz auf. Das
Modell liege hier schon in dimensionsloser Form vor, und die Tilden in der Bezeichnung
sind schon weggelassen. Bei einem Wert von ca. 287 für die mittlere Jahrestemperatur
liegt der Wert T 4 in der Größenordnung von � 7 �109. In der Modellgleichung (4.3) ergibt
die Multiplikation mit der Boltzmann-Konstante � D 5;67 � 10�8 dann �T 4 � 4 � 102.
Mit der Größenordnung von S � 103 haben also beide Terme auf der rechten Seite von
(4.3) ungefähr die gleiche Größenordnung. Hier bietet sich für das instationäre Modell die
Skalierung

T .t/ D NT QT .t/

mit einem zeitlich konstanten Referenzwert NT an. Dies kann z. B. die Lösung der statio-
nären Gleichung (2.3) sein. In der Modellgleichung ist nun

�T .t/4 D � NT 4 QT .t/4;
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d. h. der für eine instationäre Rechnung konstante Faktor � NT 4 fasst die beiden unterschied-
lichen Größenskalen von � und T 4 zusammen, die sich im Produkt teilweise aufheben und
die Größenordnung von � 102 ergeben.

Im Energiebilanzmodell ist es weiterhin sinnvoll, die Zeit nicht in Sekunden, sondern
in Jahren zu messen:

Übung 4.7 Geben Sie eine dimensionslose und skalierte Form des instationären Energie-
bilanzmodells an, in dem die Zeit in Jahren gemessen und die Skalierung der Temperatur
wie in Beispiel 4.6 verwendet wird.

4.2 Trennung in Referenzwert und Abweichung/Störung

In vielen Fällen ist es sinnvoll, nicht den Wert einer Größe selbst, sondern nur die Abwei-
chung von einem Referenzwert zu untersuchen und für diesen eine Gleichung aufzustel-
len. Bei zeitabhängigen Prozessen kann das zeitliche Verhalten einer Größe q.t/ etwa als
eine Abweichung oder Störung des stationären Wertes Nq (wenn dieser existiert) aufgefasst
werden, also als

q.t/ D Nq C Qq.t/ (4.4)

Die Größe

Qq.t/ D q.t/ � Nq

ist die absolute Abweichung vom zeitlich konstanten Referenzwert Nq. Der Ansatz

q.t/ D Nq.1 C Oq.t// (4.5)

führt gleichzeitig eine Skalierung der Abweichung Oq.t/ mit dem stationären Referenzwert
Nq durch. Daher heißt

Oq.t/ D q.t/ � Nq
Nq

relative Abweichung. Diese ist ohnehin meist aussagekräftiger, da sie interpretiert werden
kann, ohne den Wert von Nq nennen zu müssen oder ihn überhaupt zu kennen. Analog
kann man auch bezüglich einer räumlich veränderlichen Größe vorgehen. Hier wird oft
ein Mittelwert als Referenzgröße verwendet, was ebenfalls bei zeitabhängigen Größen
möglich ist, die z. B. keinen stationären Wert haben.
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Bei Transformation der Ableitung in einem Modell folgen unmittelbar aus (4.4) und
(4.5) die Beziehungen

q0.t/ D Qq0.t/ D Nq Oq0.t/:

Die Aufspaltung selbst hat also keine Auswirkung auf die Ableitung, beim Betrachten der
relativen Störung geht wieder der Skalierungsfaktor in die Umrechnung der Ableitungen
ein. Beim Energiebilanzmodell ergibt sich folgende Differentialgleichung:

Beispiel 4.8 Wir nennen die relative Abweichung hier �.t/ und machen den Ansatz

T .t/ D NT C QT .t/ D NT .1 C �.t//;

wobei NT der stationäre Wert des Modells ist, für den .1 � ˛/S=4 D �" NT 4 gilt, vgl. (2.3).
Für die Ableitung nach der Zeit gilt

T 0.t/ D NT � 0.t/:

Die Differentialgleichung lautet damit

NT h%C � 0.t/ D .1 � ˛/
S

4
� �" NT 4.1 C �.t//4 D �" NT 4

�
1 � .1 C �.t//4

�
:

Damit erhalten wir

� 0.t/ D
NT 3�"

H%C

�
1 � .1 C �.t//4

�
; (4.6)

eine Gleichung für � , die relative Abweichung vom stationären Gleichgewichtszustand
der Temperatur. Diese ist so jedoch auch nicht leichter zu lösen. Das Problem ist die
nichtlineare Funktion � 7! .1 C �/4.

Die gleiche Technik wird in Kap. 8 auf ein Boxmodell angewendet.

4.3 Linearisierung

Entdimensionalisierung und Skalierung machen ein Modell einfacher in der Notation und
sind bei einer numerischen Auswertung eventuell günstig, für die analytische Lösbarkeit
einer Differentialgleichung haben sie in der Regel keinen positiven Effekt, wie im Bei-
spiel 4.8 zu erkennen war. Im Gegensatz dazu führt die Linearisierung eines ursprünglich
nichtlinearen Modells in der Regel auf eine Gleichung oder ein System, das analytisch
gelöst werden kann.

Das wichtigste Werkzeug für die Linearisierung ist die Taylor-Entwicklung, die auf
folgendem Satz basiert. Sie erlaubt die Approximation einer nichtlinearen, glatten (d. h.
differenzierbaren) Funktion durch ein Polynom.
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Satz 4.9 (Taylor-Formel mit Lagrange-Form des Restglieds) Für eine m-mal stetig
differenzierbare Funktion F W Œa; b� ! R und x; Nx 2 Œa; b� gilt

F.x/ D
m�1X
kD0

F .k/. Nx/

kŠ
.x � Nx/k C F .m/. Nx C s.x � Nx//

mŠ
.x � Nx/m mit s 2 Œ0; 1�:

Der Wert Nx heißt Entwicklungspunkt der Taylor-Entwicklung. Bei einer vektorwertigen
Funktion F W Œa; b� ! Rn kann die Aussage komponentenweise angewandt werden, aber
für jede Komponentenfunktion Fi ergibt sich dann in der Regel eine andere Zwischen-
stelle si .

Beweis Siehe z. B. [12, §22 Satz 2]. �

Anmerkung 4.10 Eine manchmal nützliche Umformulierung ist für x; x C h 2 Œa; b�,
h 2 R:

F.x C h/ D
m�1X
kD0

F .k/.x/

kŠ
hk C F .m/.x C sh/

mŠ
hm; s 2 Œ0; 1�:

Die Taylor-Entwicklung wird an vielen Stellen benutzt. Bei der Linearisierung eines
Modells, das in Form einer (hier der Einfachheit halber autonomen) Differentialgleichung

y0.t/ D f .y.t//

gegeben ist, wird sie auf die bezüglich y nichtlineare rechte Seite, also auf die Funktion
f D f .y/ angewandt. Da eine Linearisierung erreicht werden soll, wird im Satz m D
2 gesetzt. Wieder wird eine Aufspaltung in einen konstanten Referenzwert Ny und eine
zeitlich veränderliche Abweichung Qy gemacht:

y.t/ D Ny C Qy.t/:

Der Referenzwert wird zum Entwicklungspunkt, und daher wird im obigen Satz Nx D Ny,
Nx � x D Qy.t/ (bzw. x D Ny, h D Qy.t/ in Anmerkung 4.10) gesetzt. Dies ergibt

f .y.t// D f . Ny C Qy.t// � f . Ny/ C f 0. Ny/ Qy.t/

Mit y0.t/ D Qy0.t/ ergibt sich als Approximation eine lineare Differentialgleichung der
Form

Qy0.t/ D f 0. Ny/ Qy.t/ C f . Ny/:

DerEntwicklungspunkt Nywird so gewählt, dass die beiden auftretendenTermef . Ny/; f 0. Ny/

einfach auszuwerten sind. Dabei sollte f 0. Ny/ ¤ 0 sein. Bei einem Anfangswertproblem
muss der Anfangswert für die neue Unbekannte Qy entsprechend angepasst werden.

Das folgende Beispiel zeigt die Anwendung auf das Energiebilanzmodell.
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Beispiel 4.11 Wir benutzen hier die Formulierung (4.3), die sich als

T 0.t/ D c1 � c2T .t/4

mit c1 D S.1 � ˛/=.4H%C / und c2 D "�=.H%C / schreiben lässt. Zu linearisieren ist
also die Funktion f .y/ D c1 � c2y4. Mit f 0. Ny/ D �4c2 Ny3 gilt

f .y.t// D f . Ny C Qy.t// D c1 � c2y.t/4 � f . Ny/ C f 0. Ny/ Qy.t/ D c1 � c2 Ny4 � 4c2 Ny3 Qy.t/:

Zu lösen ist also eine lineare Differentialgleichung der Form

Qy0.t/ D c3 Qy.t/ C c4

mit c3 D �4c2 Ny3; c4 D c1 � c2 Ny4. Da der Entwicklungspunkt Ny sinnvollerweise positiv
gewählt wird und c2 > 0 gilt, ist zu erkennen, dass c3 < 0 ist.

Übung 4.12 Lösen Sie das mit der Taylor-Entwicklung linearisierte Differentialglei-
chung für das Energiebilanzmodell. Welches Intervall I kann bei der Methode der
Trennung der Variablen gewählt werden.

Wird beim Energiebilanzmodell der Ansatz mit der Trennung von stationärem Zustand
und relativer Störung wie in Beispiel 4.8 verwendet, dann ergibt sich noch eine andere
Möglichkeit der Linearisierung, ohne die Taylor-Formel benutzen zu müssen:

Beispiel 4.13 Für die Funktion f .�/ D .1 C �/4 kann der Binomische Lehrsatz (s. z. B.
[12, §1 Satz 5]) benutzt werden. Danach gilt

.a C b/n D
nX

kD0

 
n

k

!
an�kbk für a; b 2 R; n 2 N:

In unserem speziellen Fall benutzen wir a D 1; b D �; n D 4. Wird die Summe nach dem
zweiten Term (also k D 1) abgebrochen, so ergibt sich ein linearer Ausdruck in � .

Übung 4.14
1. Linearisieren Sie mit dem Binomischen Lehrsatz die Funktion f .y/ D .1 C y/n.
2. Linearisieren Sie damit die Gleichung (4.6) für die relative Abweichung im Energie-

bilanzmodell und lösen Sie das AWP für t � 0 mit einem Anfangswert �.0/ D �0. Ein
Bild des Ergebnisses zeigt Abb. 5.1.

3. Unter welcher Voraussetzung ist die Linearisierung gerechtfertigt?
4. Nach welcher Zeit ist eine Anfangsabweichung �0 bis auf ein Tausendstel des ur-

sprünglichen Wertes abgeklungen?

Bei Anwendung der Taylor-Entwicklung ist das Ziel, eine komplizierte Funktion durch
eine lineare zu approximieren. Dabei ist die Abschätzung des Fehlers interessant. Dafür
ist die folgende Schreibweise hilfreich.
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Definition 4.15 (Landau-Symbol) Seien F W R ! Rn und G W R ! RC. Dann gilt
F 2 O.G/ für h ! 0, wenn c; Nh > 0 existieren mit

kF.h/k 
 c G.h/ für h < Nh:

Für den Fehler bei der Taylor-Entwicklung gilt folgende Aussage.

Korollar 4.16 (Approximationsfehler bei Taylor-Formel) Unter den Voraussetzungen
von Satz 4.9 und mit der Notation von Anmerkung 4.10 gilt

F.x C h/ �
m�1X
kD0

F .k/.x/

kŠ
hk 2 O.hm/ für h ! 0:

Beweis Die Abschätzung des Restglieds folgt aus der Stetigkeit der m-ten Ableitung und
damit ihrer Beschränktheit auf dem Intervall Œx; x C h� bzw. Œx � h; Nx�. �
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Wenn analytische Methoden nicht weiterführen, muss ein Anfangswertproblem numerisch gelöst
werden, d. h. die Lösung wird näherungsweise mit einem Algorithmus berechnet. In diesem Kapitel
wird das Euler-Verfahren als einfachste Möglichkeit dazu vorgestellt. Darauf aufbauend werden die
allgemeinen Konzepte für eine ganze Klasse von Lösungsalgorithmen, die expliziten Einschrittver-
fahren, zusammengestellt. Dies umfasst Konvergenz und die Abhängigkeit von Daten- und Run-
dungsfehlern.

Bei der Linearisierung wurde das ursprüngliche Problem, das als Anfangswertproblem
für eine nichtlineare gewöhnliche Differentialgleichung gegeben und so nicht direkt lös-
bar war, so vereinfacht, dass es lösbar wurde. Wir haben prinzipiell ein „zu schwieriges“
Modell durch ein einfacheres ersetzt, für das wir eine Lösung angeben konnten.

Alternativ können wir auch versuchen, die Lösung des komplexen Modells nicht ex-
akt, sondern nur approximativ zu berechnen. Dies kann mit numerischen Lösungs- oder
Approximationsverfahren für Anfangswertprobleme geschehen. Der Vorteil ist, dass man
diese Methoden zunächst einmal auf beliebige Anfangswertprobleme anwenden kann, oh-
ne vorher erst zu überlegen, ob sie vielleicht analytisch lösbar sind. Ein numerisches Ver-
fahren ist ein Algorithmus, und für die Klasse der Anfangswertprobleme für gewöhnliche
Differentialgleichungen gibt es schon fertige Softwarebibliotheken mit solchen Algorith-
men, so dass prinzipiell auf diese zurückgegriffen werden kann.

Da es aber dennoch gut ist zu verstehen, was diese tun, und oft Anpassungen notwendig
sind, wird hier zur Motivation das einfachste Verfahren zur numerischen Lösung eines
Anfangswertproblems beschrieben.

53© Springer-Verlag Berlin Heidelberg 2015
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5.1 Das explizite Euler-Verfahren

Das Euler-Verfahren ist das einfachste Verfahren, um ein Anfangswertproblem zu lösen.
Wir betrachten dazu allgemein ein Anfangswertproblem der Form (3.2) auf einem endli-
chen Intervall:

y0.t/ D f .t; y.t//; t 2 I D Œt0; te �; y.t0/ D y0:

Das Euler-Verfahren approximiert die Ableitung durch den Differenzenquotienten:

y0.t/ � y.t C h/ � y.t/

h
; h > 0 fest:

Damit erhält man folgenden Algorithmus. Wir formulieren ihn direkt für den n-dimensio-
nalen Fall, also für ein System von Differentialgleichungen.

Algorithmus 5.1 (Explizites Euler-Verfahren mit fester Schrittweite)
Input:

� Funktion f W R � Rn ! Rn; f D f .t; y/

� Anfangs- und Endzeitpunkte t0; te 2 R
� Schrittweite h D .te � t0/=N mit N 2 N
� Anfangswert y0 2 Rn

Algorithmus: Für k D 0; : : : ; N � 1:

(a) ykC1 D yk C hf .t; yk/

(b) t D t C h.

Output: Näherungslösung y D .yk/N
kD0 WD .y0; : : : ; yN / 2R.N C1/�n mit yk � y.t0 C kh/,

k D 0; : : : ; N .

Die Anwendung auf das Energiebilanzmodell in der Form (2.6) liefert

TkC1 D Tk C h
1

H%C

�
S

4
.1 � ˛/ � "�T 4

k

�
:

Wenn hier der Bruch rechts wieder mit 4�r2 erweitert wird, ergibt sich (mit den Be-
zeichnungen h D �t und Tk � T .tk/) die Differenzengleichung (2.5). Noch einmal
zusammengefasst:

� Die Differenzengleichung (2.5) war ein zeitdiskretes Modell.
� Daraus wurde durch Übergang zu beliebig kleinem Zeitschritten die Differentialglei-

chung (2.6) hergeleitet. Diese war direkt nicht lösbar, also wurde ein spezielles Nähe-
rungsverfahren angewandt (das Euler-Verfahren), und landeten bei einem Algorithmus,
der (2.5) entspricht.
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Abb. 5.1 Exakte Lösung des linearisierten Energiebilanzmodells (gestrichelt) und numerische Lö-
sung des nicht linearisierten Modells. Gezeigt ist jeweils die Abweichung vom stationären Zustand
(2.3) für die Parameterwerte aus den Abschn. 2.1 und 2.2 und einen beliebig gewählten Anfangswert

Also entsprechen sich in diesem Fall beideWege, um zu einem anwendbaren Verfahren zu
kommen. Das Euler-Verfahren macht den Grenzübergang h D �t ! 0 gewissermaßen
wieder rückgängig, denn es verwendet ja gerade eine endliche Schrittweite. Wenn ein
anderes Verfahren als das Euler-Verfahren verwendet wird, um das Anfangswertproblem
für die Differentialgleichung zu lösen, gilt das nicht mehr.

Hier ist zu erkennen, dass ein numerisches Verfahren auch als Teil der Modellierung
aufgefasst werden kann, was bei Klimamodellen oft passiert. Das Ziel ist ein berechenba-
rer Modelloutput (hier T .t/). Ist dieser für eine Modellformulierung (hier: Anfangswert-
problem für eine Differentialgleichung) nicht direkt berechenbar, so ist eine Näherung
(wie hier mit dem Euler-Verfahren) notwendig. Am Ende steht ein Modell, dessen Output
berechenbar ist.

Übung 5.2 Implementieren Sie das Euler-Verfahren für das Anfangswertproblem (2.6).
Plotten Sie die Ergebnisse und vergleichen Sie mit der Lösung der linearisierten Gleichung
aus Übung 4.14., vgl. Abb. 5.1.

5.2 Allgemeine explizite Einschrittverfahren

Das oben vorgestellte Euler-Verfahren ist das einfachste Beispiel für eine ganze Klasse
von Verfahren zur Lösung von Anfangswertproblemen bei gewöhnlichen Differentialglei-
chungen. Die allgemeine Form dieser Klasse ist:

Definition 5.3 (Explizites Einschrittverfahren) Seien ein Anfangswertproblem (3.2)
und eine Unterteilung tkC1 D tk C hk; tN D te mit Schrittweiten hk; k D 0; : : : ; N � 1;
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gegeben. Ein Verfahren der Form

ykC1 D yk C hk˚.tk; yk; hk/; k D 0; 1; : : : ; N � 1; (5.1)

heißt explizites Einschrittverfahren mit Verfahrensfunktion ˚ W R � Rn � R ! Rn.

Die Verfahrensfunktion hängt – präzise formuliert – auch noch von der rechten Seite f

der Differentialgleichung ab, was wir hier nicht in der Notation ausdrücken. Das Verfahren
liefert eine sog. Gitterfunktion .yk/N

kD0 an den Gitterpunkt tk .

� Explizit heißt das Verfahren, da zur Berechnung von ykC1 nur die Werte yk eingesetzt,
aber keine Gleichung gelöst werden muss. Im Gegensatz dazu benutzt die Verfahrens-
funktion eines impliziten Verfahrens auch den Wert ykC1. Daher ist dann in jedem
Schritt eine implizite Gleichung zu lösen.

� Einschrittverfahren heißt das Verfahren, weil nur der letzte Wert yk zur Berechnung
herangezogen wird (und nicht etwa yk�1).

Das Verfahren ist in dieser Form für beliebige Differentialgleichungen anwendbar. Beim
Euler-Verfahren wird ˚ D f als Verfahrensfunktion benutzt.

Um die Qualität eines Verfahrens zu bewerten, spielen zwei Dinge eine Rolle: Der
Aufwand und die Approximationsgüte oder Konvergenzgeschwindigkeit des Verfahrens.
Der Aufwand kann relativ leicht angegeben werden:

Anmerkung 5.4 Der Aufwand eines expliziten Einschrittverfahrens wird bestimmt durch

� die Anzahl N der Zeitschritte und damit durch die Wahl der Schrittweiten hk und die
Länge des betrachteten Zeitintervalls Œt0; te �,

� die Anzahl der Auswertungen von f , die für eine Auswertung der Verfahrensfunktion
˚ benötigt werden

� und den Aufwand zur Auswertung der Funktion f .

Wenn ˚ insgesamt s Auswertungen von f erfordert, gilt dann

Aufwand.explizites Einschrittverfahren/ D N � s � Aufwand.f /:

5.3 Der Konvergenzbegriff bei Einschrittverfahren

Nach der obigen Betrachtung ist also der Aufwand geringer, je weniger Zeitschritte nötig
sind und je einfacher die Verfahrensfunktion ist. Andererseits ist die erreichte Genauigkeit
der Näherungslösung interessant. Es ist leicht einsichtig, dass etwa beim Euler-Verfahren
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die Approximation der Ableitung durch den Differenzenquotienten (die zur Motivation
des Verfahrens verwendet wurde) schlechter wird, je größer die Schrittweite ist.

Mit Genauigkeit ist die Differenz zwischen den exakten Lösung y des Anfangswert-
problems und der mit dem Verfahren bestimmten Näherungslösung .yk/N

kD0 gemeint. Das
ist die Frage nach der Konvergenz des Verfahrens.

Definition 5.5 Seien ein Anfangswertproblem (3.2) und eine zum Schrittweitenvektor
.hk/N �1

kD0 gehörende Näherungslösung .yk/N
kD0 eines Verfahrens wie in (5.1) gegeben.Wei-

terhin sei y D y.t/; t 2 Œt0; te � die exakte Lösung.

1. Als globalen Fehler an der Stelle tk bezeichnen wir die Größe

ek WD e.tk; h0; : : : ; hk�1/ WD y.tk/ � yk:

2. Das Verfahren heißt konvergent, wenn für

h WD max
0�k<N

hk

und alle k D 0; : : : ; N gilt:

lim
h!0

ek D 0:

3. Es heißt konvergent von Ordnung p 2 N, wenn es c; Nh > 0 gibt mit

kekk 
 chp 8k D 0; : : : ; N und h < Nh;

oder (anders ausgedrückt, vgl. Definition 4.15):

ek 2 O.hp/ für h ! 0 8k D 0; : : : ; N:

Für die Konvergenz eines Verfahrens sind zwei Dinge entscheidend:

� Zum einen die lokale Approximationseigenschaft des Verfahrens, d. h.: Wie gut appro-
ximiert der Wert der Verfahrensfunktion ˚.tk; yk; hk/ die Ableitung der Lösung die
mittlere Steigung oder Ableitung der Lösung über das Teilintervall Œtk; tkC1�? Diese
Eigenschaft wird als Konsistenz des Verfahrens bezeichnet.

� Andererseits die Akkumulation der so in jedem Schritt des Verfahrens entstehenden
lokalen Fehler und auch der Einfluss von Rundungsfehlern. Da ja die Schritte nachein-
ander über das Intervall Œt0; te� berechnet werden, können sich Fehler in jedem Schritt
verstärken. Die Beschränktheit dieser Verstärkung wird als Stabilität bezeichnet.

Erst beides zusammen sichert die Konvergenz des Verfahrens, weshalb oft die folgende
Faustregel verwendet wird:

Konsistenz C Stabilität H) Konvergenz:
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5.4 Konsistenz

Um die Qualität eines Einschrittverfahrens zu untersuchen, spielt zunächst eine Rolle, wie
gut die Verfahrensfunktion ˚ die Ableitung y0 approximiert. Diese Eigenschaft bezeich-
net man als Konsistenz.

Definition 5.6 (Lokaler Verfahrensfehler, Konsistenz) Seien ein Anfangswertproblem
(3.2) und ein Einschrittverfahren der Form (5.1) gegeben. Die exakte Lösung des An-
fangswertproblems werde mit y bezeichnet.

1. Für beliebiges h > 0 heißt die Größe

�.t; y; h/ WD y.t C h/ � y.t/

h
� ˚.t; y.t/; h/

Abschneide- oder lokaler Verfahrensfehler. An den Gitterpunkten tk schreiben wir
auch kurz �k WD �.tk; y; hk/.

2. Das Verfahren heißt konsistent mit dem Anfangswertproblem (3.2), wenn für alle t 2
Œt0; te/ gilt:

lim
h!0

�.t; y; h/ D 0:

3. Es heißt konsistent von Ordnung p 2 N, wenn für alle t 2 Œt0; te/ gilt:

k�.t; y; h/k 
 chp mit c > 0 für h ! 0

bzw. (mit Landau-Symbol)

�.t; y; h/ 2 O.hp/ für h ! 0:

Um Konsistenz zu zeigen, reicht beim Euler-Verfahren die Definition der Differenzier-
barkeit aus:

Beispiel 5.7 Für den lokalen Verfahrensfehler gilt beim expliziten Euler-Verfahren für
beliebiges t 2 Œt0; te/

�.t; y; h/ D y.t C h/ � y.t/

h
� ˚.t; y.t/; h/ D y.t C h/ � y.t/

h
� f .t; y.t//

und damit

lim
h!0

�.t; y; h/ D y0.t/ � f .t; y.t// D 0:

Um die Konsistenzordnung zu bestimmen (auch für andere Verfahren), wird die Taylor-
Entwicklung aus Satz 4.9 bzw. die Korollar 4.16 benutzt. So ergibt sich für das Euler-
Verfahren die Konsistenzordnung p D 1:
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Beispiel 5.8 Beim Euler-Verfahren erhalten wir die Konsistenzordnung p D 1, denn mit
Taylor-Entwicklung gilt unter der Voraussetzung, dass die Lösung y des Anfangswertpro-
blems zweimal stetig differenzierbar ist:

y.t C h/ D y.t/ C hy0.t/ C h2

2
y00.t C sh/ mit s 2 Œ0; 1�:

Wegen ˚ D f und y0.t/ D f .y.t/; t/ für die exakte Lösung und der Stetigkeit der
zweiten Ableitung folgt:

y.t C h/ � y.t/

h
� ˚.t; y; h/ D h

2
y00.t C sh/ D O.h/ für h ! 0:

Das folgende Verfahren hat eine höhere Konsistenzordnung, benötigt aber auch zwei
Funktionsauswertungen pro Schritt:

Übung 5.9 Zeigen Sie: Das verbesserte Euler-Verfahren, definiert durch

˚.t; y; h/ D f

�
t C h

2
; y C h

2
f .t; y/

�
(5.2)

hat die Konsistenzordnung 2.

Weitere Verfahren höherer Ordnung und ihre Konstruktionsprinzipien sind Thema von
Kap. 11.

5.5 Stabilität und Konvergenz

Unter Stabilität versteht man die Eigenschaft eines Verfahrens, die Fehler, die im An-
fangswert enthalten sind und die, die durch die Approximation der Ableitung und durch
Rundungsfehler in jedem Teilschritt hinzukommen, nur beschränkt zu verstärken.

Definition 5.10 (Stabilität eines Einschrittverfahrens) Sei .yk/kD1;:::;N die durch ein
Verfahren (5.1) und . Qyk/k die durch das im Anfangswert und in jedem Schritt durch "k 2
Rn gestörte Verfahren generierte Folge, d. h.

ykC1 D yk C hk˚.tk; yk; hk/;

QykC1 D Qyk C hk˚.tk; Qyk; hk/ C "k; k D 0; : : : ; N � 1:

Das Verfahren heißt stabil, wenn eine von hk unabhängige Konstante S existiert mit

max
0�k�N

k Qyk � ykk 
 S

 
k Qy0 � y0k C

N �1X
kD0

k"kk
!

:



60 5 Numerische Lösung eines Anfangswertproblems

Bevor wir ein Kriterium zum Nachweis der Stabilität angeben, zeigen wir, wie aus der
Konsistenz eines Verfahrens mit der Stabilität die Konvergenz folgt.

Satz 5.11 Sei ein Einschrittverfahren (5.1) für das Anfangswertproblem (3.2) gegeben.
Insbesondere werde mit dem exakten Anfangswert begonnen. Ist das Verfahren stabil mit
Stabilitätskonstante S , dann gilt für den globalen Fehler

max
0�k�N

kekk 
 S

N �1X
kD0

hkk�kk 
 S N�.te � t0/

mit

N� WD max
0�k<N

k�kk:

Ist das Verfahren konsistent und stabil, so ist es konvergent, und die Konsistenzordung des
Verfahrens überträgt sich auf seine Konvergenzordnung.

Beweis Die Definition des lokalen Verfahrensfehlers an den Gitterpunkten ergibt für alle
k D 0; : : : ; N � 1

y.tkC1/ � y.tk/

hk

� ˚.tk; y.tk/; hk/ D �k;

also

y.tkC1/ D y.tk/ C hk˚.tk; y.tk/; hk/ C �khk: (5.3)

Wir betrachten jetzt die exakte Lösung als „Störung“ der numerischen Lösung. Dazu set-
zen wir in der Stabilitätsdefinition 5.10 Qyk D y.tk/ und erhalten

QykC1 D Qyk C hk˚.tk; Qyk; hk/ C "k

mit "k D �khk . Da das Verfahren stabil ist und mit dem exakten Anfangswert begonnen
wird (also Qy0 D y0 ist), folgt aus der Stabilitätsdefintion

max
0�k�N

ky.tk/ � ykk D max
0�k�N

k Qyk � ykk 
 S

N �1X
kD0

hkk�kk 
 S N�
N �1X
kD0

hk D S N�.te � t0/:

Wegen der Konsistenzordnung p folgt N� 2 O.hp/ und damit die gleiche Ordnung für das
Maximum des globalen Fehlers. �
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5.6 Ein hinreichendes Stabilitätskriterium

Die folgende Bedingung erlaubt es, für bestimmte Differentialgleichungen bzw. Verfah-
rensfunktionen die Stabilität des Verfahrens nachzuweisen.

Satz 5.12 Ist die Verfahrensfunktion ˚ eines expliziten Einschrittverfahrens für alle t 2
Œt0; te � Lipschitz-stetig bezüglich y mit Lipschitz-Konstante L, dann gilt für die Stabilitäts-
konstante S in Definition 5.10:

S D exp.L.te � t0//: (5.4)

Beweis Aus

ykC1 D yk C hk˚.tk; yk; hk/;

QykC1 D Qyk C hk˚.tk; Qyk; hk/ C "k; k D 0; : : : ; N � 1

ergibt sich durch Subtraktion

QykC1 � ykC1 D Qyk � yk C hk .˚.tk; Qyk; hk/ � ˚.tk; yk; hk// C "k

und mit der Lipschitz-Stetigkeit von ˚

k QykC1 � ykC1k 
 .1 C hkL/k Qyk � ykk C k"kk:

Mit den Bezeichnungen ak WD k Qyk �ykk, bk WD hkL, ck WD k"kk kann diese Ungleichung
als

akC1 
 .1 C bk/ak C ck; k D 0; : : : ; N � 1; (5.5)

geschrieben werden. Diese rekursive Abschätzung kann mit Hilfe des nachfolgenden
Lemmas durch eine explizite Abschätzung ersetzt werden. Es gilt

k�1X
iD0

bi D L

k�1X
iD0

hi D L.tk � t0/ 8k D 1; : : : ; N:

Das folgende Lemma ergibt dann

k Qyk � ykk 
 eL.tk�t0/

 
k Qy0 � y0k C

N �1X
kD0

k"kk
!

:

Maximumsbildung liefert mit exp.L.tk �t0// 
 exp .L.te � t0// für alle k die gewünschte
Abschätzung. �
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Lemma 5.13 Seien ak; bk; ck � 0 mit (5.5). Dann gilt für alle k D 0; : : : ; N :

ak 

 

a0 C
k�1X
iD0

ci

!
exp

 
k�1X
iD0

bi

!
:

Übung 5.14 Beweisen Sie das Lemma.

5.7 Der Einfluss von Rundungs- und Datenfehlern

Bei der Untersuchung des globalen Fehlers im letzten Abschnitt wurde davon ausgegan-
gen, dass alle Rechnungen exakt durchgeführt wurden und dass auch der Anfangswert
exakt gegeben ist. Dies ist auf dem Computer durch die endliche Zahlendarstellung und
bei realen (Mess-)Daten als Anfangswerte nicht gegeben. Es stellt sich die Frage, ob das
Resultat des Satzes über den globalen Fehler (dass nämlich die exakte Lösung beliebig
genau approximiert werden kann, wenn h klein genug ist) unter dem Einfluss von solchen
Daten- und Rundungsfehlern noch gültig bleibt.

Der Fehler durch einen gestörten oder ungenauen Anfangswert Qy0 kann durch einen
Term . Qy0�y0/ dargestellt werden. Es kann sich dabei umMessfehler und Darstellungsfeh-
ler, also Rundungsfehler bei der Darstellung der Anfangswerte auf dem Rechner handeln.

Zusätzlich liefert jeder Schritt der Rechenvorschrift (5.1) des Einschrittverfahrens ge-
rundete Werte, die wir mit ebenfalls einer Tilde über der entsprechenden Variable be-
zeichnen. Die Vorschrift des Verfahrens mit gerundeten Rechnungen ergibt ebenfalls einen
Fehler, den wir mit "k bezeichnen:

QykC1 D Qyk C hk˚.tk; Qyk; hk/ C "k; k D 0; : : : ; N � 1: (5.6)

Auch in der Auswertung von ˚ können Datenfehler auftreten, etwa durch in f und damit
in ˚ eingehende Parameter. Die Abhängigkeit von diesen Datenfehlern betrachten wir
zunächst nicht.

Bevor wir die Größenordnung dieser Rundungsfehler abschätzen, untersuchen wir, wie
sie sich auf den Fehler zwischen der exakten Lösung und den gerundeten Werten der Nä-
herungslösung, also den Werten, die wir wirklich auf einem Computer berechnen können,
auswirken. Wir folgen hier [15] und bezeichnen diese Differenz als Gesamtfehler. Er er-
gibt sich aus der Summe von Approximationsfehlern und Rundungsfehlern.

Definition 5.15 Es bezeichne Qyk die unter Berücksichtigung von Rundungsfehlern
berechneten Näherungslösung des Anfangswertproblems (3.2) an der Stelle tk , k D
0; : : : ; N . Die Größe

Ek WD y.tk/ � Qyk

heißt Gesamtfehler an der Stelle tk .
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Es ist zu sehen, dass eine Analogie zwischen Abschneidefehler �k in (5.3)

y.tkC1/ D y.tk/ C hk˚.tk; y.tk/; hk/ C �khk

und der Größe "k=hk in (5.6)

QykC1 D Qyk C hk˚.tk; Qyk; hk/ C "k

besteht. Damit ist der Beweis des folgenden Satzes analog zu demjenigen von Satz 5.11
über den globalen Fehler.

Satz 5.16 Sei ein durch Fehler im Anfangswert und Rundungsfehler "k in jedem Schritt
gestörtes Einschrittverfahren der Form (5.6) für das Anfangswertproblem (3.2) gegeben.
Ist das Verfahren stabil mit Stabilitätskonstante S , dann gilt für den Gesamtfehler

max
0�k�N

kEkk 
 S

 
kE0k C

N �1X
kD0

.hkk�kk C k"kk/

!

 S

�
kE0k C

�
N� C N"

Nh
��

mit

N" WD max
0�k<N

k"kk; N� WD max
0�k<N

k�kk; Nh WD min
0�k<N

hk:

Beweis Wir setzen

QykC1 D Qyk C hk˚.tk; Qyk; hk/ C "k

und erhalten analog zum Beweis von Satz 5.11

max
0�k�N

k Qyk � ykk 
 S

 
k Qy0 � y0k C

N �1X
kD0

k"kk
!

:

Da die Anzahl N der Schritte für hk ! 0 gegen unendlich geht und hier kein hk in dem
Störungsterm auftaucht, muss es künstlich eingeführt werden, um eine Abschätzung zu
erhalten, die die Summe nicht mehr enthält. Es gilt

N �1X
kD0

k"kk D
N �1X
kD0

k"kk
hk

hk 
 N"
Nh

N �1X
kD0

hk D N"
Nh.te � t0/

und damit

max
0�k�N

k Qyk � ykk 
 S

�
k Qy0 � y0k C N"

Nh.te � t0/

�
: (5.7)
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Der Gesamtfehler setzt sich nun mit der Dreiecksungleichung aus der Differenz ek der
exakten Lösung und der ungestörten Näherungslösung (Resultat von Satz 5.11) und der
Differenz zwischen ungestörter und gestörter Näherungslösung, abgeschätzt durch (5.7),
zusammen:

max
0�k�N

kEkk 
 max
0�k�N

ky.tk/ � ykk C max
0�k�N

k Qyk � ykk


 S

�
kE0k C

�
N� C N"

Nh
�

.te � t0/

�
: �

Um die Größe der Rundungsfehler "k in den einzelnen Schritten des Verfahrens abzu-
schätzen, untersuchen wir die Berechnungsvorschrift (5.1): Es werden nacheinander

� die Auswertung der Verfahrensfunktion ˚ ,
� die Multiplikation mit der Schrittweite hk und
� die Addition zum letzten Wert Qyk

durchgeführt. Dabei werden Fehler gemacht, die wir in der folgenden Form als relative
Fehler schreiben. Die auf dem Computer berechneten gerundeten Werte werden hier mit
einer Tilde über der Variable, dem jeweiligen Operator (für zusammengesetzte Ausdrücke)
oder der Funktionsauswertung bezeichnet:

Q̊ .tk ; Qyk; hk/ D ˚.tk; Qyk; hk/.1 C ˛k/;

hk Q� Q̊ .tk ; Qyk; hk/ D hk
Q̊ .tk ; Qyk; hk/.1 C ˇk/;

Qyk QC hk Q� Q̊ .tk ; Qyk; hk/ D . Qyk C hk Q� Q̊ .tk ; Qyk; hk//.1 C 	k/:

Damit erhalten wir insgesamt

QykC1 D � Qyk C hk˚.tk; Qyk; hk/.1 C ˛k/.1 C ˇk/
�
.1 C 	k/: (5.8)

Die einzelnen relativen Rundungsfehler können mit der Maschinengenauigkeit abge-
schätzt werden. Auf dem Rechner gibt es nur endlich viele darstellbareMaschinenzahlen,
bezeichnet mit der Menge M � R. Diese ist die auf heutigen Computern und in den
meisten Programmiersprachen durch Standards des IEEE (Institute of Electrical and
Electronical Engineers) für einfache und doppelte Genauigkeit von Gleitpunktzahlen
festgelegt. Wir definieren:

Definition 5.17 (Maschinengenauigkeit) Die kleinste Maschinenzahl x 2 M, für die
auf dem Computer (d. h. unter Einbeziehung von Rundungsfehlern) 1 QC x > 1 gilt, heißt
Maschinengenauigkeit und wird mit eps bezeichnet:

eps WD minfx 2 M W 1 QC x > 1g:
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Die Maschinengenauigkeit ist bei einfacher Genauigkeit (single precision, 4 Byte) ca.
10�8, bei doppelter (double precision, 8 Byte) etwa 10�16.

Über die einzelnen relativen Fehler ist bei der Addition und Multiplikation bekannt,
dass sie alle von der Größenordnung eps sind. Bei der Auswertung der Verfahrensfunkti-
on wird das ebenfalls angenommen. Hier können aber auch Fehler in den in f und daher
˚ eingehenden Parameter eine Rolle spielen, so dass der relative Fehler ˇk eventuell von
anderer Größenordnung ist, was wir hier nicht beachten. Ausmultiplizieren und Vernach-
lässigen von quadratischen Termen der Fehler in (5.8) ergibt dann

"k � hk˚.tk; Qyk; hk/.˛k C ˇk C 	k/ C Qyk	k:

Für kleine hk ist der zweite Summand entscheidend, es kann also

k"kk � k Qykkeps

gesetzt werden. Wenn statt der gerundeten Näherungslösung die exakte Lösung eingesetzt
wird, gilt

k"kk � jykjeps

und global

N" � eps max
t2Œt0;te �

ky.t/k

und damit insgesamt die Abschätzung

max
0�k�N

kEkk 
 S

�
kE0k C

�
N� C epsmaxt2Œt0;te � ky.t/k

Nh
�

.te � t0/

�
:

Dabei kann der Fehler E0 durch etwaige Messfehler in den Anfangsdaten von anderer
Größenordnung sein als die Rundungsfehler.
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In diesem Kapitel wird ein von Stefan Rahmstorf entwickeltes Boxmodell der nordatlantischen ther-
mohalinen, d. h. durch Temperatur- und Salzgehaltunterschiede induzierten Strömung vorgestellt.
Es gibt Einblicke in die Modellierung mit Hilfe von Bilanzgleichungen und die Formulierung eines
entsprechenden gewöhnlichen Differentialgleichungssystems. Mit diesem Modell können Szenari-
en der globalen Erwärmung gerechnet werden, die durch die Variation einer Inputgröße realisiert
werden. Das Rahmstorf-Boxmodell wird im nächsten Kapitel als ein Beispiel für die Berechnung
stationärer Zustände verwendet. Wir definieren in diesem Kapitel am Beispiel des Modells auch
noch einige spezifische Begriffe zur Unterscheidung verschiedener in Klimamodellen auftretender
Größen.

Boxmodelle sind nach den globalen Energiebilanzmodellen die konzeptionell einfachsten
Klimamodelle. Sie modellieren das gesamte oder einen Teil des Klimasystems in wenigen
Kompartments oder Boxen. Dabei repräsentiert eine Box entweder einen gesamten Teil
des Klimasystems (wie z. B. Ozean, Atmosphäre etc.) oder – wie in dem Beispiel, das
wir in diesem Kapitel betrachten – ein Teil des Systems wird nur grob räumlich aufge-
löst. Zwischen den einzelnen Boxen werden Bilanzen oder Flüsse modelliert. Auf Grund
der groben räumlichen Auflösung besteht das Modell aus algebraischen Gleichungen (im
stationären Fall) oder aus gewöhnlichen Differentialgleichungen (wenn zeitabhängiges
Verhalten simuliert wird).

Boxmodelle sind schnell numerisch lösbar, da sie meist nur aus wenigen Gleichun-
gen aufgebaut sind. Sie sind dennoch komplex genug, um differenzierte Aussagen über
wichtige Größen wie z. B. die im Atlantik bewegte Wassermasse zu treffen. Aus beiden
Gründen eignen sie sich für langfristige Vorhersagen, Sensitivitäts- und Unsicherheitsstu-
dien und auch die Kopplung mit ökonomischen und sozialen Modellen. Für Boxmodelle
werden auch Verzweigungspunkte und Hystereseverhalten (unterschiedliches Verhalten
beim Übergang von Zustand 1 in Zustand 2 und im umgekehrten Fall) studiert. Box-
modelle sind bei aller Einfachheit andererseits doch meist so komplex, dass analytische
Berechnungsmethoden nicht mehr anwendbar sind. Daher kommen die numerischen Me-
thoden für gewöhnliche Differentialgleichungen aus dem letzten Kapitel zum Einsatz.

67© Springer-Verlag Berlin Heidelberg 2015
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Ein Boxmodell der Nordatlantikströmung ist das von Stommel (s. [9, Kapitel 13]), das
die Ozeanströmung in zwei Boxen darstellt. Das hier betrachtete Modell von Rahmstorf
[16, 17] ist gewissermaßen eine Erweiterung.

6.1 Die thermohaline Zirkulation

Hier beschreiben wir das vom Boxmodell beschriebene Phänomen der thermohalinen Zir-
kulation und geben eine mathematische Modellierung dafür an. Die sog. thermohaline
Zirkulation (THC für engl. Thermohaline Circulation) ist eine der wichtigsten, großflä-
chigen und massereichen Strömungen im Ozean. Angetrieben wird sie durch Differenzen
in Temperatur und Salzgehalt im Meerwasser. Beide Ursachen bewirken eine Dichteände-
rung:

� Warmes (Wasser) steigt nach oben, d. h. eine wachsende Temperatur bewirkt eine Dich-
teverminderung. Wird also Wasser z. B. von unten in einem Topf erwärmt, so steigt es
auf Grund der geringeren Dichte nach oben, verdrängt dort kälteres, das gleichzeitig
absinkt. Die entstehende Strömung wird als Konvektionsströmung bezeichnet.

� Stärker salzhaltiges Wasser hat eine höhere Dichte, vgl. das Beispiel des Toten Meeres:
Der menschliche Körper, an sich schwerer als das in unseren Breiten vorhandene relativ
salzarme Wasser, geht dort nicht unter.

Im Meer wird das Wasser nun nicht von unten erwärmt, sondern von oben durch die
Sonneneinstrahlung. Diese ist je nach Breitengrad unterschiedlich: Am Äquator wird das
Wasser stärker erwärmt als an den Polen. Es ergibt sich also eine Temperaturdifferenz zwi-
schen denWassermassen am Äquator und z. B. am Nordpol. Diese Differenz bewirkt, dass
sich wärmeres Wasser geringerer Dichte an der Oberfläche nach Norden bewegt und dort
kühleres an den Boden verdrängt. Auch hier kommt also eine Zirkulation in Gang, die auf
der gesamten Erde in den Ozeanen als große, massereiche Strömungsbänder beobachtet
werden kann. Diese wird als thermohaline Zirkulation bezeichnet.

Durch verstärktes Verdunsten von Wasser (Erhöhen des Salzgehaltes) in Äquatornähe
und verstärkten Niederschlag in höheren Breiten plus Abschmelzen von Eis (Verringerung
des Salzgehaltes) ist ebenfalls ein dem entgegenwirkender Effekt vorhanden. Da Letzte-
rer durch anthropogenen Einfluss zunimmt, ist eine Veränderung der THC bis zu ihrem
Kollabieren theoretisch möglich. Um diesen Effekt, der für Mitteleuropa deutliche Klima-
veränderungen zur Folge hätte, zu untersuchen, dient das in hier beschriebene Boxmodell.

Die lineare Zustandsgleichung für die Dichte

In der einfachsten Form kann folgender linearen Zusammenhang zwischen Dichte % einer-
seits und Temperatur T und Salinität oder Salzgehalt S andererseits aufgestellt werden,
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und zwar punktweise im Raum oder auch für ein räumliches Volumen (eine Box) sowie
zusätzlich in Abhängigkeit von der Zeit:

%.T; S/ D %0 .1 � ˛.T � T0/ C ˇ.S � S0// :

Dabei gehen Proportionalitätskoeffizienten ˛; ˇ > 0 und eine Referenzdichte %0 D
%.T0; S0/, gegeben bei einer Referenztemperatur T0 und einem Referenzwert des Salzge-
haltes S0, ein. Man nennt diesen Zusammenhang eine Zustandsgleichung.

Gibt es zwei Bereiche oder Boxen, die mit Wasser der Temperaturen T1; T2 und der
Salzgehalte S1; S2 gefüllt sind, so ergibt sich die relative Dichtedifferenz mit %i WD
%.Ti ; Si /; i D 1; 2; zu

%2 � %1

%0

D ˇ.S2 � S1/ � ˛.T2 � T1/: (6.1)

Die Werte T0; S0 selbst treten nicht mehr auf. Außerdem ist die Größe auf der linken Seite
bereits dimensionslos. Folglich muss dies auch für die rechte Seite gelten. Dies führt uns
zu den Einheiten der beiden Koeffizienten ˛; ˇ. Diese heißen thermischer oder thermaler
bzw. haliner Ausdehnungskoeffizient. Bezeichnen wir wieder mit Œq� die Einheit einer
Größe q, so gilt:

ŒT � D K; ŒS� D 1:

Oft wird für den Salzgehalt die „Einheit“ psu (Practical Salinity Unit) angegeben, die
jedoch dimensionslos ist und keine Einheit im physikalischen Sinne darstellt. Daher ist

Œ˛� D 1

K
; Œˇ� D 1:

Der hier beschriebene lineare Zusammenhang wird zum Teil auch in komplexeren Kli-
mamodellen verwendet oder durch ebenfalls komplexere, nichtlineare Modellierungen
ersetzt.

6.2 Das Rahmstorf-Boxmodell

Das Rahmstorf-Boxmodell simuliert die Strömung in einem Teil des Atlantiks. Es ist
bekannt, dass eine thermohalin angetriebene Strömung in Äquatornähe im Südatlantik
beginnt und bis ins Nordpolarmeer reicht. Das ist die bei uns als Golfstrom bekannte Strö-
mung. Das Modell simuliert nur diese, also nur einen Teil der gesamten Ozeanströmung.
Dazu benutzt es vier Boxen, die

1. den äquatornahen südlichen Teil des Atlantik in seiner gesamten Tiefe,
2. den Nordatlantik in seiner gesamten Tiefe,
3. den oberen
4. und den unteren (tiefen) Teil des äquatornahen Teil des Nordatlantiks
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Abb. 6.1 Rahmstorf-
Boxmodell

1

4

3

2

T*1 T*
2T*

3 F2F1

umfassen, vgl. Abb. 6.1. Die vier Boxen haben unterschiedliche Volumina Vi . Der Index
i 2 f1; 2; 3; 4g bezieht sich auf die oben genannte Nummerierung.

In den vier Boxen werden die zeitabhängigen Werte von Temperatur und Salzgehalt
als Ti .t/ und Si.t/; t 2 I; bezeichnet, wobei wir das betrachtete Zeitintervall I hier noch
unbestimmt lassen.

Nach dem linearen Ansatz aus dem letzten Abschnitt kann mit (6.1) der Volumenstrom,
d. h. die Menge an Wasser, die pro Zeiteinheit umgewälzt wird (das sog. Overturning), als

M.t/ D k .ˇ .S2.t/ � S1.t// � ˛ .T2.t/ � T1.t/// (6.2)

angegeben werden. Für die Einheit gilt, da (6.1) dimensionslos formuliert war:

ŒM.t/� D m3s�1 D Œk�;

Modellierung der Strömung

Die Änderung der Temperatur pro Zeiteinheit in zwei benachbarten Boxen kann nun
jeweils durch die Temperaturdifferenz zwischen diesen Boxen, multipliziert mit dem Vo-
lumenstrom pro Zeiteinheit und dividiert durch das Boxvolumen beschrieben werden.
Dabei wird in diesem Modell davon ausgegangen, dass die Strömungsrichtung wie in
Abb. 6.1 angedeutet in Richtung der Boxen

1 ! 3 ! 2 ! 4 ! 1

fest ist. Für die zeitliche Änderung Temperatur in Box 1 ergibt sich daher:

T 0
1.t/ D M.t/

V1

.T4.t/ � T1.t//:

Das heißt:

� Die Temperatur in Box 1 erhöht sich, wenn das einströmende Wasser (aus Box 4) eine
höhere Temperatur als das in Box 1 hat, andernfalls sinkt sie.
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� Die Temperaturänderung pro Zeiteinheit ist
– proportional zur Temperaturdifferenz T4.t/ � T1.t/

– und zum Volumenstrom M.t/

– und umgekehrt proportional zum Boxvolumen V1, da sich die Wärme des einströ-
menden Wassers auf mehr Volumen verteilt.

Analog wird für alle Boxen und auch für den Salzgehalt verfahren.
Damit ergeben sich zunächst folgende Modellgleichungen.

T 0
1.t/ D M.t/

V1

.T4.t/ � T1.t//; S 0
1.t/ D M.t/

V1

.S4.t/ � S1.t//;

T 0
2.t/ D M.t/

V2

.T3.t/ � T2.t//; S 0
2.t/ D M.t/

V2

.S3.t/ � S2.t//;

T 0
3.t/ D M.t/

V3

.T1.t/ � T3.t//; S 0
3.t/ D M.t/

V3

.S1.t/ � S3.t//;

T 0
4.t/ D M.t/

V4

.T2.t/ � T4.t//; S 0
4.t/ D M.t/

V4

.S2.t/ � S4.t//

mit der Darstellung (6.2) für den Volumenstrom. Beachte, dass M von T1; T2; S1; S2 ab-
hängt, was in der Bezeichnung hier unterdrückt wird, aber für Nichtlinearität des Systems
sorgt.

Kopplungmit der Atmosphäre

Das Boxmodell beschreibt nur eine Klimakomponente, den Ozean. Die wichtigste Kopp-
lung des Ozeans, nämlich die mit der Atmosphäre, muss sinnvoll mit einbezogen werden.
Das heißt hier, dass Kopplungseffekte oder Einflüsse der Atmosphäre auf den Ozean in-
sofern modelliert werden müssen, als sie die Phänomene betreffen, die das Boxmodell
darstellen soll. Das sind Temperatur und Salzgehalt. Beide Größen werden durch die At-
mosphäre beeinflusst:

Kopplung durch Oberflächentemperaturen An den Boxen 1 bis 3, die Kontakt mit
der Atmosphäre haben, wird die Wassertemperatur ebenfalls durch die Atmosphären-
temperatur beeinflusst. Es wird hier zwar kein Massentransport modelliert, aber es gibt
Wärmeleitung an der Grenzfläche. Dazu werden die Modellparameter T �

i ; i D 1; 2; 3

eingeführt, die die Atmosphärentemperatur über den jeweiligen Boxen widerspiegeln.
Zunächst sind diese konstant, für sog. Global Warming-Szenarien kann hier ein Trend
mit einer zeitlichen Temperaturerhöhung eingeführt werden. Der Wärmetransport an der
Ozeanoberfläche wird vereinfacht durch einen linearen Term der Form

�i .T
�
i � Ti /; �i > 0
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modelliert. In feiner räumlich aufgelösten Modellen wird der Wärmetransport an der
Oberfläche durch eine Randbedingung an eben dieser Oberfläche dargestellt. Dies ist in
einem Boxmodell nicht möglich. Daher sind die �i Modellparameter, die die Wirkung des
Wärmetransportes an der Oberfläche umgerechnet auf eine Temperaturänderung in der
gesamten Box beschreiben.

Die Parameter �i werden aus einer Konstante 
 und der jeweiligen Boxtiefe zi berech-
net:

�i D 


c%0zi

:

Dabei ist c die spezifische Wärmekapazität von Meerwasser, %0 wieder die Referenzdichte
und 
 eine thermale Kopplungskonstante. Es gilt

Œc� D J

kgK
; Œ%0� D kg

m3
; Œ
 � D J

m2 Ks
; Œ�i � D Œ
 �

Œc�Œ%0�Œzi �
D 1

s
:

Kopplung durch Frischwasserflüsse Ein zweiter wichtiger Effekt der Atmosphäre auf
die thermohaline Zirkulation ist die Änderung des Salzgehaltes im Meerwasser durch

� unterschiedliche Niederschläge und Verdunstung
� und windgetriebenen Wassertransport an der Ozeanoberfläche.

Niederschläge verringern den Salzgehalt, Verdunstung erhöht ihn. Für die VariablenSi des
Boxmodells ist nur die Bilanz beider Prozesse wichtig. Außerdem wird die Menge des so
ins Meer gelangenden oder verdunstenden Wassers vernachlässigt, d. h. die Volumina Vi

bleiben unverändert.
Durch Wind wird das Wasser an der Oberfläche bewegt, und so kann natürlich auch

Wasser mit geringerem oder höherem Salzgehalt von einer Box in die andere gelangen.
Auch dies kann damit als Frischwasserfluss modelliert werden. Tatsächlich ist dies der
Grund, warum ein positiver Frischwassertransport (F1 > 0) von Box 1 in Box 3 untersucht
wird.

Diese Effekte werden durch sog. Frischwasserflüsse F1 (zwischen der südlichen Box
1 und der mittleren Oberflächenbox 3) und F2 zwischen Box 3 und der nördlichen Box 2)
modelliert. Die Vorzeichen sind so gewählt, dass positive Werte einen Fluss in nördliche
Richtung beschreiben. In den Modellgleichungen wird dies so benutzt, dass folgendes gilt:

� F1 ist positiv, wenn Frischwasser von Box 1 in Box 3 gelangt, also wenn an der Ober-
fläche von Box 1 mehr Wasser verdunstet als Niederschlag vorhanden ist, Frischwasser
durch Flüsse ins Meer gelangt oder ein entsprechender windgetriebener Transport von
salzarmem Wasser in Nordrichtung gegeben ist.

� F2 ist positiv, wenn das gleiche zwischen Box 3 und Box 2 gilt. Zusätzlich geht hier
noch eine Eisschmelze von salzarmem Landeis (z. B. des Grönlandeises) ein.
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Beide Parameter sind relativ zum Referenzwert S0 des Salzgehaltes gewählt. Sie wer-
den als Parameter der globalen Erwärmung betrachtet und können (wie die T �

i ) in einem
Global-Warming-Szenario zeitlich erhöht werden.

6.3 Die Modellgleichungen

Damit ergibt sich als Modell ein System gewöhnlicher Differentialgleichungen für Tem-
peraturen und Salinitäten in den vier Boxen:

T 0
1.t/ D M.t/

V1

.T4.t/ � T1.t// C �1.T �
1 � T1.t// (6.3)

T 0
2.t/ D M.t/

V2

.T3.t/ � T2.t// C �2.T �
2 � T2.t// (6.4)

T 0
3.t/ D M.t/

V3

.T1.t/ � T3.t// C �3.T �
3 � T3.t// (6.5)

T 0
4.t/ D M.t/

V4

.T2.t/ � T4.t// (6.6)

S 0
1.t/ D M.t/

V1

.S4.t/ � S1.t// C S0

F1

V1

(6.7)

S 0
2.t/ D M.t/

V2

.S3.t/ � S2.t// � S0

F2

V2

(6.8)

S 0
3.t/ D M.t/

V3

.S1.t/ � S3.t// C S0

F2 � F1

V3

(6.9)

S 0
4.t/ D M.t/

V4

.S2.t/ � S4.t// (6.10)

mit der Darstellung (6.2) für den Volumenstrom. Das System ist autonom, denn M.t/

bedeutet eigentlich M.T1.t/; T2.t/; S1.t/; S2.t//. Daher können wir es für t � t0 D 0

betrachten. Geeignete Anfangswerte

Ti .t0/ D Ti0; Si .t0/ D Si0; i D 1; : : : ; 4;

müssen gegeben sein.

Dimensionslose Form des Modells

Wir beschreiben hier die Entdimensionalisierung des Boxmodells, die wie in Abschn. 4.1
durchgeführt wird. Darüber hinaus ist es beim Boxmodell sinnvoll, in der Zeiteinheit Jahre
statt Sekunden zu rechnen. Außerdem wird eine geeignete Skalierung durchgeführt, da
die Boxvolumina hier sehr groß sind und eine Darstellung in der SI-Einheit m3 sehr große
Zahlen liefert.
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Die dimensionslosen und zum Teil skalierten Größen bezeichnen wir zunächst wieder
mit einer Tilde (vgl. Tab. 6.1). Wir definieren sie mit Hilfe der folgenden Beziehungen:

Ti D QTi K; T �
i D QT �

i K; Vi D QVi � 1017m3; t D Qt syear s:

Dabei wird die Zeit auf Jahre umgerechnet mit Hilfe der Konstanten

syear WD 365 � 24 � 60 � 60 D 31:536:000:

Da in den Modellgleichungen die Temperaturen Ti ; T �
i nur als Differenzen auftreten, kön-

nen diese auch in Grad Celsius (ıC) statt in Kelvin (K) angegeben werden. Außerdem
benutzen wir


 D Q
 1

syear

J

m2 Ks
; zi D Qzim; c D Qc J

kgK
; %0 D Q%0

kg

m3
;

�i D 


c%0zi

D
Q


Qc Q%o Qzi

1

syear

J

m2 Ks

kgK

J

m3

kg

1

m
D Q�i

1

syear

1

s
;

˛ D Q̨ 1

K
; k D Qk 1017

syear

m3

s
:

Salinitäten Si und der Koeffizient ˇ sind bereits dimensionslos und werden auch nicht
skaliert. Für den Volumenstrom gilt mit ˛Ti D Q̨ QTi , dass

M D kŒˇ.S2 � S1/ � ˛.T2 � T1/�

D QkŒˇ.S2 � S1/ � Q̨ . QT2 � QT1/�
1017

syear

m3

s
DW QM

1017

syear

m3

s
;

wobei die Abhängigkeit von t hier unterdrückt wurde. Analog skalieren wir die Frisch-
wasserflüsse

Fi D QFi

1017

syear

m3

s
:

Wenden wir diese Skalierungen auf die Differentialgleichungen an, so erhalten wir mit
Lemma 4.3 z. B. aus (6.3)

QT1.Qt/0 1

syear

K

s
D

QM.Qt /
QV1

. QT4.Qt / � QT1.Qt // 1017

1017syear

m3K

sm3
C Q�1. QT �

1 � QT1.Qt // 1

syear

K

s

und vereinfacht

QT 0
1.Qt / D

QM.Qt /
QV1

. QT4.Qt / � QT1.Qt// C Q�1. QT �
1 � QT1.Qt //:

Gleichung (6.7) ergibt analog

S 0
1.Qt / D

QM.Qt /
QV1

.S4.Qt / � S1.Qt// C S0

QF1

QV1

:
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Tab. 6.1 Parameter und Größen des Boxmodells und ihre Einheiten und Skalierungen. Für das
Overturning und die Frischwasserflüsse sind die Skalierungen auf die in der Literatur angegebenen
Werte m; f1; f2 gelistet. Der Wert von f1 für die jetzige Klimasituation ist 0;014. Da das Modell
nur Temperaturdifferenzen und -ableitungen benutzt, kann äquivalent in Grad Celsius statt in Kelvin
gerechnet werden

Größe Einheit Skalierungs-
faktor Nq

Wert dimensionslos
und skaliert

Literaturwerte
für Flüsse (Sv)

q Œq� q D Qq Nq Œq� Qq
Ti , i D 1; : : : ; 4 K

Si , i D 1; : : : ; 4 1

T �

1
K 279,6 (6,6)

T �

2
K 275,7 (2,7)

T �

3
K 284,7 (11,7)

V1 m3 1017 1,1

V2 m3 1017 0,4

V3 m3 1017 0,68

V4 m3 1017 0,05

z1 m 3000

z2 m 3000

z3 m 1000

c
J

kg K
4000

%0

kg

m3
1025



J

m2K s

1

syear
7;3 � 108

˛
1

K
1;7 � 10�4

ˇ 1 8 � 10�4

k
m3

s

1017

syear
25,4

S0 1 35

M
m3

s

1017

syear
QM m D QM

1011

syear
2 Œ0; 30�

F1

m3

s

1017

syear
QF1 f1 D QF1

1011

syear
2 Œ�0;2; 0;2�

F2

m3

s

1017

syear
QF2 f2 D QF2

1011

syear
D 0;065
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Für die anderen Gleichungen funktioniert das genauso. Damit ist das Modell wieder in
seiner ursprünglichen Form, wenn die Tilden weggelassen werden.

In Plots und Tabellen in [16, 17] werden nicht die so skalierten Werte M; QFi , sondern
Werte m; fi in der Einheit Sverdrup (1 Sv D 106 m3 s�1) angegeben. Um die Werte also
zu vergleichen, können wir hier nachträglich

Fi D QFi

1017m3

syears
D fi

106m3

s

setzen, und analog für QM , also erhalten wir (hier ist m nicht zu verwechseln mit der Einheit
Meter)

fi D QFi

1011

syear
; m D QM

1011

syear
: (6.11)

Natürlich kann auch direkt mit dieser Skalierung begonnen werden.

Übung 6.1 Simulieren Sie das Boxmodell mit dem Euler-Verfahren und beliebigen (sinn-
vollen) Anfangswerten über einige hundert Jahre Modellzeit, bis es sich „einschwingt“
(vgl. Abschn. 7.3).

6.4 Zustandsgrößen, prognostische und diagnostische Variablen
und Parameter

Das Modell ist oben in eine mathematische Formulierung überführt worden. An dieser
Stelle sollen an seinem Beispiel mehrere Begriffe definiert werden, die in Klimamodellen
immer wieder auftreten, die für Fachfremde aber nicht immer klar sind und zum Teil in der
Mathematik und Informatik auch anders verwendet werden. Die Unterschiede zwischen
den Begriffen kann mit Hilfe folgender Fragen klargemacht werden:

� Was muss gegeben sein, damit eine Simulation mit dem Boxmodell durchgeführt wer-
den kann, was wird als Input benötigt?

� Was liefert das Modell als Output?

Um eine Simulation durchführen zu können (zum Beispiel mit dem Euler-Verfahren),
werden folgende Größen benötigt

� Anfangswerte,
� Werte für die Parameter

Vi .i D 1; : : : ; 4/; �i .i D 1; 2; 3/; Fi .i D 1; 2/; S0; k; ˛; ˇ:

Als Output liefert das Modell für jeden Zeitpunkt (an dem – z. B. mit dem Euler-Verfah-
ren – eine Näherungslösung ausgerechnet wurde) einenWert für dieModellvariablen oder
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Zustandsgrößen oder prognostischen Variablen Ti und Si ; i D 1; : : : ; 4. Hier ist schon zu
erkennen, dass hier mehrere Begriffe für dieselben Dinge benutzt werden.

Der Volumenstrom M wird weder als Input benötigt, noch wird er direkt durch die
Gleichungen des Modells bestimmt. Eigentlich ist M nur eine Bezeichnung für die in (6.2)
formulierte Beziehung, und es könnte im Modell auch ohne ihn ausgekommen werden,
indem (6.2) in die Differentialgleichungen direkt eingesetzt wird. Der Wert von M ist
aber oft die Größe, der von Interesse ist. Eine solche Größe wird auch als diagnostische
Variable bezeichnet.

Definition 6.2 Größen, die zur Auswertung und Simulation eines Modells notwendig
sind, vor einem Simulationslauf bekannt sind und nicht erst durch die Simulation berech-
net werden, werden als (Modell-)Parameter bezeichnet, zeitlich variable Parameter oft
auch als Forcingdaten oder kurz Forcing.

Damit können auch Anfangswerte (oder Randwerte bei ortsabhängigen Modellen) als
Modellparameter betrachtet werden. In einer Kalibrierung oder Parameteridentifikation
werden die Parameter variiert, um ein Modellergebnis zu erhalten, das z. B. mit Messwer-
ten gut übereinstimmt. Dennoch sind für einen Modelllauf die Parameter fest. Parameter
werden in einem zeitabhängigenModell (wie dem instationären Energiebilanzmodell oder
dem Boxmodell) meist als zeitlich konstant angesehen. Der Begriff Forcing kommt vom
englischen Begriff für antreibende Kraft.

Beispiel 6.3 Wird in einem Modell z. B. die Variabilitätät der Sonneneinstrahlung nach
den Milankovitch-Zyklen als zeitlich variabler Input benutzt, so wird dies hier eher For-
cing genannt. Die Solarkonstante würde eher als Parameter bezeichnet.

Beispiel 6.4 Die Größen ˛; ˇ; k; Vi ; �i im Boxmodell werden als Modellparameter be-
zeichnet. Dagegen werden für Global-Warming-Szenarien die Flüsse fi und die Tempe-
raturen T �

i als zeitlich variabel angesehen und als Forcing betrachtet, s. [17]. Sind sie
zeitlich konstant, werden sie ebenfalls als Parameter bezeichnet.

Übung 6.5 Lassen Sie das Modell von beliebigen Anfangswerten einige hundert Jahre
Modellzeit, vgl. Übung 6.1, und addieren Sie dann zu den Temperaturen T �

i und Frisch-
wasserflüssen fi lineare Trends der Form

�T �
i .t/ D pi t; i D 1; 2; 3;

�fi .t/ D hi qi t; i D 1; 2

jeweils über n Jahre (z. B. mit n D 200). Dabei seien p1 D 0;91; p2 D q2 D 1;07; p3 D
0;79; q1 D 0;93; h1 D �0;005; h2 D 0;013, wenn das Modell für t in Jahren skaliert ist.
Für Details s. [17, Abschnitt 4].

Für die Größen, die als Ergebnis in einer Simulation berechnet werden, gibt es ver-
schiedene Bezeichnungen.
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Definition 6.6 Die Größen, die in einem Modell berechnet werden und die das System
beschreiben, heißen Zustandsgrößen oder Zustandsvariablen. Handelt es sich um ein zeit-
abhängiges Modell, so werden sie auch prognostische Variablen genannt.

Für prognostische Variablen wird eine Prognose mit Hilfe des Modells bzw. der Simu-
lation gemacht. Der Begriff Prognose ergibt nur Sinn, wenn es sich um ein zeitabhängiges
oder transientesModell handelt.

Definition 6.7 Variablen, die in einer Simulation berechnet werden, aber zur Beschrei-
bung des Zustandes des modellierten Systems nicht notwendig sind, werden diagnostische
Variablen genannt.

Diagnostische Variablen sind meist Größen, die aus den prognostischen Variablen be-
stimmt werden, für die aber selbst keine Modellgleichung mit einer Zeitableitung vorhan-
den ist. Ihre zeitliche Änderung kann daher über die prognostischen Variablen bestimmt
werden. Manchmal sind nur prognostische, d. h. aggregierte Variablen interessant, und
nicht die Zustandsgrößen selbst.

Beispiel 6.8 Prognostische Variablen des Boxmodells sind Temperaturen und Salzgehal-
te Ti ; Si in den vier Boxen. Der Volumenstrom M selbst ist dagegen eine diagnostische
Variable. Er kann mit (6.2) aus dem Modell eliminiert werden. Für ihn ist keine Differen-
tialgleichung formuliert, er ergibt sich aus den diagnostischen Variablen. Er ist der meist
betrachtete relevante Output.

6.5 Eine erweiterte Form des Boxmodells

Das Boxmodell ist nur gültig, wenn M � 0 ist, d. h. der Volumenstroms in eine vorgege-
bene Richtung fließt. Daher ist in einer transienten Simulation immer die Abfrage M � 0

notwendig, um die Rechnung abzubrechen, wenn dies nicht der Fall ist. Das Modell ist
dann in dieser Form nicht bezüglich der Zustandsgrößen differenzierbar. Dieser Mangel
für bestimmte mathematische Aussagen kann durch eine Erweiterung beseitigt werden,
den wir hier kurz vorstellen. Diese erweiterte Form wurde in [18] für numerische Unter-
suchungen von Verzweigungen vorgeschlagen und benutzt, bei denen Differenzierbarkeit
benötigt wird.

Die Idee ist die folgende: In den Differentialgleichungen für Temperatur und Salzge-
halt werden die Terme, die den Volumenstrom enthalten, um analoge ergänzt, die eine
umgekehrte Strömungsrichtung repräsentieren. Statt nun mit einer Abfrage M � 0 den
entsprechenden Term gewissermaßen an- und abzuschalten, der die korrekte Strömungs-
richtung darstellt, werden beide mit einem Faktor versehen, der den jeweils „richtigen“
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positiv und den anderen gering gewichtet, und im Bereich M � 0 für einen glatten Über-
gang sorgt. Dazu können die Funktionen

sC.M / D M

1 � e�aM
; s�.M / D �M

1 � eaM
; (6.12)

mit a > 0 geeignet verwendet werden. Solche Funktionen werden auch als Sigmoide
bezeichnet. Sie dienen dazu, eine unstetige Größe durch eine glatte, differenzierbare zu
approximieren, wenn z. B. aus mathematischen Gründen die Glattheit von Bedeutung ist.
Es gilt:

lim
a!1 sC.M / D

8<
:

M; M � 0;

0; M < 0;
lim

a!1 s�.M / D
8<
:

0; M � 0;

�M; M < 0:

Übung 6.9 Plotten Sie den Übergang in der Umgebung der Stelle M D 0 zwischen sC
und s� für verschiedene Werte von a > 0.

Übung 6.10 Wie oft ist die Funktion s W R ! R mit

s.M / D
8<
:

sC.M /; M � 0;

s�.M /; M < 0;

in M D 0 stetig differenzierbar?

Mit (6.12) und der Bezeichnung M C.t/ D sC.M.t//, t 2 I , und sC.t/ analog ergibt
sich folgende Form des Modells:

T 0
1.t/ D M C.t/

V1

.T4.t/ � T1.t// C M �.t/

V1

.T3.t/ � T1.t// C �1.T �
1 � T1.t//

T 0
2.t/ D M C.t/

V2

.T3.t/ � T2.t// C M �.t/

V2

.T4.t/ � T2.t// C �2.T �
2 � T2.t//

T 0
3.t/ D M C.t/

V3

.T1.t/ � T3.t// C M �.t/

V3

.T2.t/ � T4.t// C �3.T �
3 � T3.t//

T 0
4.t/ D M C.t/

V4

.T2.t/ � T4.t// C M �.t/

V4

.T1.t/ � T4.t//

S 0
1.t/ D M C.t/

V1

.S4.t/ � S1.t// C M �.t/

V1

.S3.t/ � S1.t// C S0F1

V 1

S 0
2.t/ D M C.t/

V2

.S3.t/ � S2.t// C M �.t/

V2

.S4.t/ � S2.t// � S0F2

V2

S 0
3.t/ D M C.t/

V3

.S1.t/ � S3.t// C M �.t/

V3

.S2.t/ � S4.t// C S0.F2 � F1/

V3

S 0
4.t/ D M C.t/

V4

.S2.t/ � S4.t// C M �.t/

V4

.S1.t/ � S4.t//:
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Der Parameter a aus (6.12) ist nun ein zusätzlicher Modellparameter. Verglichen mit dem
ursprünglichen Boxmodell ist eine andere Art von Nichtlinearität in M C; M � hinzuge-
kommen.

Übung 6.11 Simulieren Sie dieses Modell mit dem Euler-Verfahren und vergleichen Sie
für die Parameter aus Tab. 6.1 und verschiedene Werte für a die Ergebnisse für M . Was
ist ein „optimaler“ oder ein besonders gut geeigneter Wert für a? (Vgl. z.B. [19]).
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Stationäre Zustände eines Modells sind solche, bei denen keine zeitliche Änderung der Modell-
größen stattfindet. Im Klimasystem ist ein solches Verhalten eigentlich nicht vorhanden. Werden
jedoch große Zeitskalen betrachtet und zum Beispiel tages- und jahreszeitliche Schwankungen ge-
mittelt bzw. nicht erfasst, dann können auch Klimamodelle stationäre Zustände haben. Diese werden
oft – mit gemittelten Daten – zur Kalibrierung des Modells verwendet. Dabei werden dann z. B. Pa-
rameter so angepasst, dass das Modell ebenfalls gemittelte Messwerte trifft. Dies ist die Motivation,
in diesem Kapitel verschiedene Verfahren zur Berechnung stationärer Punkte vorzustellen und sie,
vor allem auf das Rahmstorf-Boxmodell, anzuwenden. Mathematisch ergibt sich die Möglichkeit,
Algorithmen wie Fixpunktiteration und Newton-Verfahren anzuwenden.

Oft ist es zunächst interessant, stationäre Zustände eines Modells zu kennen. Bei der
Entwicklung des Rahmstorf-Boxmodells war ein Ziel, es im Hinblick auf die sog. War-
ming-Parameter F1; F2 (oder f1; f2 in der umskalierten Form) zu untersuchen. Diese
werden als Größen betrachtet, die sich durch globale Erwärmung ändern, nämlich durch
Eisschmelzen oder höhere Verdunstung.

Wir wenden hier verschiedene analytische und numerische Methoden zur Bestimmung
dieser stationären Zustände am Beispiel des Boxmodells an. Eine Besonderheit beim die-
sem Modell ist, dass eventuell gar nicht die stationären Werten der Variablen Ti ; Si selbst,
sondern nur die des Volumenstroms M interessant sind.

7.1 Definition und Beispiele

Zuerst definieren wir den Begriff der stationären Zustände.

Definition 7.1 Für eine autonome Differentialgleichung der Form

y0.t/ D f .y.t//; t 2 I (7.1)

81© Springer-Verlag Berlin Heidelberg 2015
T. Slawig, Klimamodelle und Klimasimulationen, Springer-Lehrbuch Masterclass,
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heißt eine Lösung mit y0.t/ D 0 f. a. t 2 I , also eine Lösung der Gleichung

f .y/ D 0; (7.2)

stationäre(r) Lösung, Zustand oder Punkt. Weitere verwendete Begriffe sind Gleichge-
wichtslösung und Equilibrium.

Die Bezeichnung „Fixpunkt“, die manchmal verwendet wird, ist zwar anschaulich kor-
rekt (die Lösung ist „fix“, d. h. sie verändert sich in der Zeit nicht). Es ist jedoch kein
Fixpunkt von f im mathematischen Sinne (vgl. Definition 3.23) gemeint, sondern eine
Nullstelle von f .

Die Berechnung der stationären Punkte ist bei einer nichtlinearen und vektorwertigen
Funktion nicht trivial, denn (7.2) ist dann ein nichtlineares algebraisches Gleichungssys-
tem.

Beispiel 7.2 Beim Energiebilanzmodell wurde in Abschn. 2.1 zuerst die stationäre Lö-
sung aus der nichtlinearen Gleichung (2.3) berechnet.

Das Rahmstorf-Boxmodell besteht aus mehreren Gleichungen. Es lassen sich einige
davon eliminieren, wenn nur stationäre Zustände interessant sind:

Beispiel 7.3 Beim Boxmodell folgt aus den Gleichungen (6.6) und (6.10) für stationäre
Lösungen sofort T2 D T4; S2 D S4.

Die Anzahl der Gleichungen, die für einen stationären Zustand bestimmend sind, lässt
sich beim Boxmodell noch weiter reduzieren.

Übung 7.4 Zeigen Sie, dass sich zur Berechnung von stationären Zuständen das Boxmo-
dell auf fünf Gleichungen reduzieren lässt.

Übung 7.5 Zeigen Sie, dass vier Gleichungen ausreichen, wenn nur der stationäre Wert
des Volumenstroms M von Interesse ist. Welcher der beiden Frischwasserflüsse hat Ein-
fluss auf den stationären Wert von M ?

Wenn stationäre Zustände nicht analytisch berechnet werden können, weil die Glei-
chungen (7.2) wegen ihrer Nichtlinearität zu komplex sind, dann werden numerische
Approximationsverfahren benutzt. In den nächsten beiden Abschnitten werden zwei wich-
tige Methoden behandelt.
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7.2 Numerische Berechnungmit demNewton-Verfahren

Das klassische Verfahren zur Lösung einer nichtlinearen Gleichung der Form

f .y/ D 0

ist das Newton-Verfahren:

Algorithmus 7.6 (Newton-Verfahren für ein nichtlineares Systems)
Input:

� Funktion f W Rn ! Rn

� Startwert y0 2 Rn,
� Abbruchkriterium K (z. B. als Funktion),
� Abbruchschranke " > 0.

Algorithmus:

1. Setze k D 0.
2. Solange K.yk; yk�1/ > ":

(a) Löse f 0.yk/�y D �f .yk/.
(b) Setze ykC1 D yk C �y.
(c) Setze k D k C 1.

Output: Approximation yk einer Nullstelle von f .

Beispiele für das Abbruchkriterium K sind absolute Werte

K.yk; yk�1/ D kyk � yk�1k; K.yk/ D kf .yk/k (7.3)

oder relative Werte

K.yk; yk�1/ D kyk � yk�1k
kytypk ; K.yk/ D kf .yk/k

kftypk ; (7.4)

wobei ytyp; ftyp 2 Rn nf0g geeignet gewählte, „typische“ Werte für die Iterierten bzw. den
Funktionswert sind.

Übung 7.7 Berechnen Sie die Jacobi-Matrix des stationären Rahmstorf-Boxmodells in
der in Übung 7.4 erhaltenen, auf fünf Gleichungen reduzierten Form. Implementieren Sie
das Newton-Verfahren und testen Sie es für die in Tab. 6.1 gelisteten Parameter im Bereich
f1 2 Œ�0;2; 0;125�. Was passiert für größere Werte von f1? Das Ergebnis ist in Abb. 7.1
zu erkennen.
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Abb. 7.1 Stationäre Werte des skalierten Volumenstroms m, berechnet mit dem Newton-Verfahren,
für verschiedene Werte von f1, vgl. (6.11). Für Werte über f1 D 0;125 konvergiert das Verfahren
nicht mehr

Konvergenz

Zur Konvergenz des Newton-Verfahrens gibt es verschiedene Aussagen. Der folgende Satz
setzt die Existenz der Nullstelle voraus:

Satz 7.8 Sei f auf einer offenen und konvexen Menge D � Rn stetig differenzierbar,
y� 2 D mit f .y�/ D 0 und f 0.y�/ invertierbar mit kf 0.y�/�1k 
 ˇ.

(a) Sei f 0 in Br.y
�/ � D; r > 0; Lipschitz-stetig mit Lipschitz-Konstante L. Dann

existiert " > 0, so dass für alle y0 2 B".y
�/ die Newton-Iterierten wohldefiniert sind

und lokal quadratisch gegen y� konvergieren, d. h. es gilt:

kykC1 � y�k 
 ˇLkyk � y�k2 8k 2 N:
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(b) Ohne die Lipschitz-Stetigkeit von f 0 gibt es " > 0, so dass für alle y0 2 B".y
�/ die

Newton-Iterierten superlinear gegen y� konvergieren, d. h. es existiert eine positive
Nullfolge .ck/k2N und k0 2 N mit

kykC1 � y�k 
 ckkyk � y�k 8k � k0:

Beweis Für (a) s. [20, Theorem 5.2.1], für (a,b) [21, Kapitel 2, Satz 3.1] �

Der nun folgende Satz setzt die Existenz nicht voraus, sondern fordert neben der
Lipschitz-Stetigkeit nur Eigenschaften im Startwert y0 der Newton-Iteration. Er benutzt
die sog. Grenzennorm:

Definition 7.9 (Grenzennorm) Für A 2 Rn�n und eine Vektornorm k � kV heißt die Ma-
trixnorm

kAkV WD max
x2Rnnf0g

kAxkV

kxkV

Grenzennorm oder lub-Norm (lowest upper bound).

Die in Lemma 3.37 definierten Normen sind alle Grenzennormen der entsprechenden
Vektornormen mit denselben Indizes. Per Definition ist die Grenzennorm verträglich (vgl.
Definition 3.35) mit der zu Grunde liegenden Vektornorm. Nun gilt folgende Aussage:

Satz 7.10 (Kantorovich) Sei r > 0, y0 2 Rn, f W Br.y0/ ! Rn stetig differenzierbar,
f 0 in Br.y0/ Lipschitz-stetig bezüglich einer Vektornorm k � kV mit Lipschitz-Konstante
L, und f 0.y0/ invertierbar mit

kf 0.y0/�1kV 
 ˇ; kf 0.y0/�1f .y0/kV 
 �:

� Ist ˛ WD ˇ�L 
 1=2 und r � s WD .1 � p
1 � 2˛/=.ˇL/, dann konvergiert die

Newton-Folge gegen die einzige Nullstelle y� 2 Bs.y0/.
� Ist ˛ < 1=2, dann ist y� die einzige Nullstelle in Bs.y0/ mit

s D min

(
r;

1 C p
1 � 2˛

ˇL

)

und es gilt

kyk � y�kV 
 .2˛/2k�=˛:

Beweis Siehe [20, Theorem 5.3.1] oder die Referenzen in [22, Theorem 5.3.4]. �
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Möglichkeiten zur Berechnung der Jacobi-Matrix

Eine exakte (analytische) Berechnung der Jacobi-Matrix „auf dem Papier“ ist für das Box-
modell möglich, aber für andere Modelle oft zu aufwändig.

Symbolisches und algorithmisches Ableiten Eine Möglichkeit ist die Berechnung mit
Programmen, die symbolisches Rechnen erlauben, oder die algorithmische Generierung
von Ableitungscode durch sog. Algorithmisches bzw. Automatisches Differenzieren, s.
[23].

Quasi-Newon-Verfahren Diese, in der Optimierung weit verbreiteten Verfahren berech-
nen eine schrittweise Approximation der Jacobi-Matrix während der Newton-Iteration
durch eine Updateformel BkC1 D Bk C Uk . Der Start kann z. B. mit B0 D I erfolgen,
vgl. etwa [20, Abschnitt 8].

Finite Differenzen-Approximationen Eine für jedes Modell durchführbare Berech-
nungsmethode ist die der Approximation durch Differenzenquotienten: Wir geben diese
hier für eine Funktion F W R ! R an. Für den beim Newton-Verfahren benötigten
mehrdimensionalen Fall wird auf jeden Eintrag der Jacobi-Matrix, d. h. jede partielle
Ableitung

@fi

@yj

.y/; i; j D 1; : : : ; n; y D .y1; : : : ; yn/;

einer der folgenden Differenzenquotienten angewendet.

Definition 7.11 (Differenzenquotienten) Sei D � R offen, F W D ! R, x 2 D und
h > 0. Dann definieren wir folgende Differenzenquotienten:

vorwärts genommener erster Ordnung: DC
h F.x/ WD F.x C h/ � F.x/

h
;

rückwärts genommener erster Ordnung: D�
h F.x/ WD F.x/ � F.x � h/

h
;

zentraler erster Ordnung: DhF.x/ WD F.x C h/ � F.x � h/

2h
:

Es gelten folgende Genauigkeitsaussagen.

Satz 7.12 Ist F wie oben und in Œx; x C h� � D bzw. Œx � h; x� � D zweimal stetig
differenzierbar, dann gilt

DC
h F.x/ � F 0.x/; D�

h F.x/ � F 0.x/ 2 O.h/; h ! 0:
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Ist F in Œx � h; x C h� � D dreimal stetig differenzierbar, dann gilt

DhF.x/ � F 0.x/ 2 O.h2/; h ! 0:

Übung 7.13 Beweisen Sie diese Aussagen.

Die Konvergenzaussage des Satzes 7.8 geht bei der Finiten-Differenzen-Approximation
teilweise verloren:

Satz 7.14 (Newton-Verfahren bei inexakter Jacobi-Matrix) Seien die Voraussetzungen
des Satzes 7.8(a) erfüllt und Bk eine Approximation von f 0.yk/ mit dem vorwärtsgenom-
menen Differenzenquotienten mit Schrittweite hk . Dann existieren ı; h > 0 so, dass für
hk 
 h die Newton-Iterierten für einen Startwert y0 2 Bı.y

�/ linear gegen die Nullstelle
y� konvergieren. Gilt hk ! 0, dann ist die Konvergenz superlinear. Gilt hk 
 ckyk �y�k,
dann ist die Konvergenz quadratisch.

Beweis Siehe [20, Theorem 5.4.1]. �

Aufwand

In jedem Schritt des Newton-Verfahrens ist die Lösung eines linearen Gleichungsssystems
der Größe n und je eine Auswertung der Funktion und der Ableitung, d. h. der Jacobi-
Matrix f 0.yk/ 2 Rn�n, nötig.

Übung 7.15 Wieviele Funktionsauswertungen werden in einem Newton-Schritt benötigt,
wenn die Ableitung durch die o. g. Differenzenquotienten approximiert wird?

Eine sehr simple Vereinfachungsmöglichkeit zur Reduzierung des Aufwands ist ein
Update der Jacobi-Matrix nicht in jedem, sondern nur alle j > 1 Newton-Schritte.

7.3 Pseudo-Zeitschrittverfahren

Eine alternative, in der Klimaforschung oft benutzte Möglichkeit, stationäre Lösungen zu
berechnen, ist das sog. Pseudo-Zeitschrittverfahren. Das bedeutet, dass eine numerische
Zeitintegration, z. B. mit dem Euler-Verfahren, durchgeführt wird, solange bis ein statio-
närer Zustand erreicht ist. Wir geben hier die grundlegende Vorgehensweise am Beispiel
eines Einschrittverfahrens an. Die mathematische Rechtfertigung für die Vorgehenswei-
se liefert der Banach’sche Fixpunktsatz 3.25. Dann wenden wir das Verfahren auf das
Energiebilanz- und das Rahmstorf-Boxmodell an.
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Algorithmus 7.16 (Pseudo-Zeitschrittverfahren)
Input:

� Funktion f , rechte Seite der Differentialgleichung
� Verfahrensfunktion ˚ des Zeitintegrationsverfahrens
� Startwert y0 2 Rn,
� Abbruchkriterium K z. B. als Funktion,
� Abbruchschranke " > 0

Algorithmus:

1. Setze k D 0

2. Solange K.yk; yk�1/ > ":
(a) Berechne ykC1 D yk C hk˚.tk; yk; hk/

(b) k D k C 1.

Output: Approximation yk einer stationären Lösung von y0 D f .y/.

Als Abbruchbedingung können die Varianten (7.3) wie beim Newton-Verfahren be-
nutzt werden oder auch k˚.tk; yk; hk/k < ". Die Iteration

ykC1 D yk C hk˚.tk; yk; hk/ DW Gk.yk/ (7.5)

im Algorithmus kann als Fixpunktiteration für die Funktionen

Gk W Rn ! Rn

interpretiert werden.
Wenn die Schrittweiten hk nicht konstant sind oder die Differentialgleichung nicht

autonom ist (also die Verfahrensfunktion explizit von tk abhängt) hängt auch die Iterati-
onsfunktion von k ab. Nur im Fall einer autonomen Differentialgleichung und konstanter
Schrittweite ist sie in jedem Zeitschritt gleich. Wir beschränken uns daher zunächst auf
den Fall einer konstanten Schrittweite hk D h für alle k 2 N.

Übung 7.17 Implementieren Sie das Pseudo-Zeitschrittverfahren und vergleichen Sie mit
den Ergebnissen aus Übung 7.7, s. Abb. 7.2.

Konvergenznachweis mit Kontraktionsbedingung

Über die Konvergenz einer solchen Iteration und die Existenz eines Fixpunktes (der Ite-
rationsfunktion G, nicht der rechten Seite f der Differentialgleichung) macht der Ba-
nach’sche Fixpunktsatz 3.25 eine Aussage. Der Satz benutzt die Kontraktionseigenschaft
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Abb. 7.2 Stationäre Werte des skalierten Volumenstroms m, berechnet mit dem Pseudo-
Zeitschrittverfahren, für verschiedene Werte von f1

(Definition 3.24) der Iterationsfunktion, die – auf die Iterationsfunktion G angewandt –
lautet:

9L < 1 W kG.y/ � G. Qy/k 
 Lky � Qyk 8y; Qy 2 D:

Verwendung eines Einschrittverfahrens

Beim expliziten Einschrittverfahren mit konstanter Schrittweite und für eine autonome
Gleichung ergibt sich für zwei beliebige Qy; y 2 Rn

kG.y/ � G. Qy/k D ky � Qy C h.˚.y/ � ˚. Qy//k:

Hier haben wir kurz ˚.y/ für ˚.t; y; h/ geschrieben. Selbst wenn die Verfahrensfunktion
Lipschitz-stetig ist, also

j˚.y/ � ˚. Qy/k 
 Lky � Qyk; L > 0;
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gilt, reicht das nicht unbedingt aus. Vor allem führt die einfache Anwendung der Drei-
ecksungleichung

ky � Qy C h.˚.y/ � ˚. Qy//k 
 ky � Qyk C hk.˚.y/ � ˚. Qy//k 
 .1 C hL/ky � Qyk

nicht weiter, auch wenn h noch so klein gewählt wird.
Wir betrachten als einfachstes Beispiel noch einmal das linearisierte Energiebilanzmo-

dell aus Übung 4.14 also eine skalare Differentialgleichung.

Beispiel 7.18 (Euler-Verfahren, linearisiertes Energiebilanzmodell) Die Differentialglei-
chung lautet:

y0 D �cy; c > 0:

Damit erhalten wir beim expliziten Euler-Verfahren:

G.y/ D y � hcy D .1 � hc/y:

Die Iterationsfunktion ist also kontrahierend für j1 � hcj < 1, d. h. für h < 2=c. Für
diese Gleichung konvergiert ein Pseudo-Zeitschrittverfahren mit dem expliziten Euler-
Verfahren also nur für diese Schrittweiten. Da im Beispiel c � 10�7 sehr klein war, kann
h groß gewählt werden.

Bei der Wahl der Abbruchbedingung im Algorithmus sollte folgende Anmerkung be-
achtet werden:

Anmerkung 7.19 Aus der Gültigkeit einer Abbruchbedingung kyk � yk�1k < " folgt
noch nicht die Cauchy-Folgen-Eigenschaft, die im Beweis des Banach’schen Fixpunkt-
satzes 3.25 benötigt wird. Die Folge .yk/k kann also trotzdem divergieren. Betrachte z. B.
eine Folge mit kyk � yk�1k D 1

k
.

In der Praxis ist nicht immer jeder Iterationsschritt für sich kontrahierend. Es reicht
jedoch aus, wenn eine feste Anzahl von Schritten zusammengenommen die Kontraktions-
eigenschaft hat:

Übung 7.20 Zeigen Sie: Ist Gs WD G ı � � � ı G, d. h. s Iterationsschritte hintereinander
ausgeführt, eine Kontraktion, so hat auch G einen Fixpunkt, nämlich denselben wie Gs .

Diese Aussage ist nicht mehr gültig, wennG D Gk , also abhängig vom Iterationsschritt
ist. Dann folgt aus der Kontraktivität nur die Existenz einer periodischen Lösung

y� D Gs ı � � � ı G1.y�/:
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Kontraktionsbedingung über Jacobi-Matrix

Nur bei einfachen Gleichungen kann die lokale Lipschitz-Stetigkeit direkt mit der Defi-
nition nachgewiesen werden. Bei nichtlinearen Systemen ist dies sehr schwierig. Daher
erweist sich Lemma 3.39 als nützlich.

Wir berechnen daher die Jacobi-Matrix der Iterationsfunktion G, zunächst für konstan-
tes h. Es gilt

G0.y/ D I C h˚ 0.y/;

wieder mit der Voraussetzung, dass ˚ nur von y abhängt und nicht von h und t . Beim
expliziten Euler gilt also

G0.y/ D I C hf 0.y/:

Dieses Verfahren lässt sich für das Rahmstorf-Boxmodell benutzen. Um die Konvergenz
z. B. bei der Verwendung des expliziten Euler-Verfahrens zu untersuchen, wird die oben
berechnete Jacobi-Matrix in ihrer Norm abgeschätzt. Hier werden jedoch alle Gleichungen
benötigt, d. h. die Variablen T4; S4 können nicht eliminiert werden.

Übung 7.21 Berechnen Sie die Jacobi-Matrix der rechten Seite f , wenn das Boxmodell
als y0 D f .y/ geschrieben wird.

Die Wahl der Matrixnorm ist beliebig, es kann also eine gewählt werden, bei der eine
Abschätzung relativ leicht fällt. Mit der obigen Übung gilt:

Beispiel 7.22 Beim Boxmodell lautet die erste Zeile der Jacobi-Matrix mit der Bezeich-
nung A1 WD .a1j /n

j D1 2 Rn für A D .aij /n
i;j D1 2 Rn�n:

.f 0.y//1 D
�

k˛.T4 � T1/ � M

V1

� �1; �k˛.T4 � T1/

V1

; 0;
M

V1

;

0; �kˇ.T4 � T1/

V1

;
kˇ.T4 � T1/

V1

; 0; 0

�
:

Damit gilt für G.y/ D I C hf 0.y/:

k.G0.y//1k1 D
ˇ̌̌
ˇ1 C h

�
k˛.T4 � T1/ � M

V1

� �1

�ˇ̌̌
ˇC h

k.2ˇ C ˛/jT4 � T1j C M

V1

:

Ist �V1 
 k˛.T4 � T1/ � M , dann gilt

k.G0.y//1k1 D 1 C h

� jk˛.T4 � T1/ � M j
V1

� �1

�
C h

k.2ˇ C ˛/jT4 � T1j C M

V1
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Gilt zusätzlich k˛.T4 � T1/ > M , also auch T4 > T1, dann ist

k.G0.y//1k1 D 1 C h

�
k˛.T4 � T1/ � M

V1

� �1

�
C h

k.2ˇ C ˛/.T4 � T1/ C M

V1

D 1 C h

�
2k.ˇ C ˛/.T4 � T1/

V1

� �1

�
:

Es wird deutlich, wie komplex die Rechnungen bereits bei diesem Modell werden. Für
diese Konstellation ist es immerhin möglich, dass die Kontraktionsbedingung erfüllt ist,
wenn �1, verglichen mit den anderen Parametern und insbesondere den Zustandsgrößen
T1; T4 und M , die „richtige“ Größe hat. Die anderen Fälle wurden hier noch nicht unter-
sucht. Wie in Abb. 7.3 zu erkennen (und an Hand der Abschätzungen zu vermuten) ist, ist
die Kontraktionsbedingung jedoch nicht für alle Werte der Parameter und Zustände erfüllt.

Da die Matrixnorm beliebig ist, ist es nicht unbedingt notwendig, sie angeben zu kön-
nen. Es reicht aus, dass eine Matrixnorm existiert, deren Wert für die Jacobi-Matrix der
Iterationsfunktion kleiner eins ist. Hilfreich ist folgende Aussage, bei der die Eigenwerte
der Jacobi-Matrix G0.y/ untersucht werden.

Lemma 7.23 Zu jeder Matrix A und jedem " > 0 existiert eine Vektornorm, so dass für
die entsprechende Grenzennorm gilt

kAkV 
 %.A/ C ":

Für die Definition des Spektralradius % vgl. Definition 3.36.

Beweis [24, Satz 6.9.2]. �

Damit reicht es zumNachweis der Kontraktionseigenschaft, die Eigenwerte der Jacobi-
Matrix der Iterationsfunktion abzuschätzen.

Numerische Approximation der Kontraktionskonstante

Wenn man die Lipschitz-Konstante L nicht analytisch für alle y; Qy 2 D berechnen kann
(was meist der Fall ist), kann man sie im Laufe der Iteration approximieren, nämlich durch

Lk WD kykC1 � ykk
kyk � yk�1k D kG.yk/ � G.yk�1/k

kyk � yk�1k : (7.6)

Dies funktioniert auch, wenn die Iterationsfunktion von k abhängt, also für Gk statt G,
z. B. wenn eine variable Schrittweite im Pseudo-Zeitschrittverfahren verwendet wird. Das
oben definierte Lk ist gewissermaßen die Kontraktionszahl im k-ten Schritt. Selbst wenn
Lk < 1 für alle k ist, ist die Voraussetzung des Banach’schen Satzes nicht erfüllt, da die
Kontraktivität nur für die Iterierten yk , aber nicht unbedingt für alle y; Qy 2 D gilt.
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Trotzdem konvergieren Iterationen oft, ohne dass die Voraussetzungen des Ba-
nach’schen Fixpunktsatzes 3.25, erfüllt sind:

Übung 7.24 Verallgemeinern Sie die Aussage des Banach’schen Fixpunktsatzes 3.25 auf
den Fall, dass für die Iterierten nur

kykC1 � ykk 
 Lkkyk � yk�1k mit Lk 
 L < 1 8k 2 N

erfüllt ist. Welche Aussagen bleiben erhalten?

Wenn die Bedingung Lk 
 L < 1 nicht erfüllt ist, kann das Verfahren trotzdem abbre-
chen: Gilt nämlich

Lk > 0 für alle k 2 N und lim
k!1.Lk � � � L1/ D 0; (7.7)

so folgt wegen

Lk � � � L1 D kykC1 � ykk
kyk � yk�1k

kyk � yk�1k
kyk�1 � yk�2k � � � ky3 � y2k

ky2 � y1k
ky2 � y1k
ky1 � y0k D kykC1 � ykk

ky1 � y0k ;

dass

lim
k!1

kykC1 � ykk
ky1 � y0k D 0

und damit auch

lim
k!1 kykC1 � ykk D 0:

Also bricht das Verfahren ab, wenn kykC1 � ykk < " als Abbruchbedingung gewählt
wird, was aber (vgl. Anmerkung 7.19) noch keine Konvergenz der Iterierten bedeutet. Die
Bedingung (7.7) kann auch erfüllt sein, wenn einzelne Lk > 1 sind. Eine (geometrische)
Mittellung über alle bisherigen Schritte ist

NLk WD k
p

Lk � � � L1 D k

s
kykC1 � ykk
ky1 � y0k : (7.8)

Übung 7.25 Geben Sie für das Rahmstorf-Boxmodell die Werte Lk aus (7.6) (vgl.
Abb. 7.3) und NLk aus (7.8) in jeder Iteration aus.

Beispiel 7.26 Das Pseudo-Zeitschrittverfahren wird in Abschn. 9.3, auf ein weiteres Mo-
dell, die Lorenz-Gleichungen, angewendet.
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Abb. 7.3 Kontraktionszahl Lk beim Pseudo-Zeitschrittverfahren für das Boxmodell, a für f1 D
�0;1, b für f1 D 0;1
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Konvergenz bei Quasi-Kontraktion

In vielen Anwendungen ist die Kontraktionsbedingung des Banach’schen Fixpunktsatzes
(L < 1) nicht erfüllt, dennoch liegt Konvergenz des Pseudo-Zeitschrittverfahrens vor.
Eine Verallgemeinerung des Satzes verlangt nur die sog. Quasi-Kontraktivität:

Definition 7.27 (Quasi-Kontraktion) Eine Funktion G W Rn � D ! D heißt Quasi-
Kontraktion auf D, wenn für ein L < 1 gilt:

kG.y/ � G. Qy/k 
 Lmax
˚ky � Qyk; ky � G.y/k; k Qy � G. Qy/k;

ky � G. Qy/k; k Qy � G.y/k	 8y; Qy 2 D: (7.9)

Der Satz liefert eine zum Banach’schen Satz analoge Aussage:

Satz 7.28 (Konvergenz bei Quasi-Kontraktion) Die Aussagen von Satz 3.25 bleiben
gültig, wenn G W D ! D eine quasi-kontrahierende Abbildung ist.

Beweis Siehe [25, Satz 1]. �

Auch die Quasi-Kontraktivität kann numerisch während der Iteration getestet werden:
Für y D yk; Qy D yk�1 ist G.y/ D ykC1; G. Qy/ D yk; y D G. Qy/ und (7.9) ergibt:

kykC1 � ykk 
 Lmaxfkyk � yk�1k; kykC1 � ykk; kykC1 � yk�1kg: (7.10)

Ist nun für ein L < 1

kykC1 � ykk 
 Lmaxfkyk � yk�1k; kykC1 � yk�1kg; (7.11)

also

kykC1 � ykk < maxfkyk � yk�1kkykC1 � yk�1kg;

dann folgt (7.10) aus (7.11). Damit ist

Lk WD kykC1 � ykk
maxfkyk � yk�1k; kykC1 � yk�1kg (7.12)

das Analogon zu (7.6).

Übung 7.29 Geben Sie für das Rahmstorf-Boxmodell die Werte Lk aus (7.12) in jeder
Iteration aus, vgl. Abb. 7.4.
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Abb. 7.4 Quasi-Kontraktionszahl Lk aus (7.12) beim Pseudo-Zeitschrittverfahren für das Boxmo-
dell, a für f1 D �0;1, b für f1 D 0;1
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7.4 Reduktion derModellgleichungen beim Rahmstorf-Boxmodell

In vielen Fällen sind nicht alle Zustandsgrößen, sondern nur bestimmte, daraus abgeleite-
te, diagnostische Größen von Interesse. So kann es sein, dass ebenfalls nur die stationären
Zustände dieser diagnostischen Größen berechnet werden sollen. In einigen Fällen ist es
so möglich, das System erheblich in seiner Dimension zu reduzieren. Im Idealfall können
dann stationäre Zustände analytisch berechnet werden, oder spezielle numerische Metho-
den zu ihrer Berechnung sind anwendbar.

Eine analytische oder vergleichsweise einfache numerische Berechnung stationärer Lö-
sungen ist möglich, wenn sich das Problem auf eine skalare Gleichung reduzieren lässt.
Im Rahmstorf-Boxmodell ist das der Fall, wenn nur der stationäre Wert des Volumen-
stroms M berechnet werden soll. Wir nehmen daher das Boxmodell als Beispiel, um die
Vorgehensweise darzustellen und numerische Verfahren zu präsentieren.

Ist es möglich, M im Rahmstorf-Modell zu berechnen, ohne die zugehörigen statio-
nären Werte der Temperaturen und Salinitäten selbst zu kennen? Der Vorteil wäre, dass
sich eine skalare Gleichung ergäbe, die sehr viel einfacher und schneller gelöst werden
könnte als das stationäre System für die Ti und Si . Die folgenden Überlegungen zeigen,
dass dies möglich ist. Die Lösung von Übung 7.4 ergibt die Gleichung

0 D M

V1

QS1 C S0

F1

V1

mit QS1 D S2 � S1

und damit

QS1M D �S0F1:

Multiplizieren wir die Darstellung des Volumenstroms (6.2) mit M und benutzen die eben
erhaltene Beziehung, so ergibt sich

M 2 C k.ˇS0F1 C ˛.T2 � T1/M / D 0: (7.13)

Gelingt es jetzt noch, die Differenz T2 � T1 nur durch M und Modellparameter, aber ohne
explizite Verwendung der zeitabhängigen Größen Ti ; QSi auszudrücken, dann erhalten wir
eine skalare Gleichung für das stationäre M . Aus den stationären Varianten von (6.3) bis
(6.5) erhalten wir ein lineares Gleichungssystem für T1; T2; T3, wenn wir die Abhängigkeit
des Volumenstroms M von T1; T2; QS1 nicht beachten. Damit kann man die Ti und insbe-
sondere die Differenz T2 �T1, die in (7.13) auftritt, nur durch M und die Modellparameter
ausdrücken. Dies ist in der folgenden Übung formuliert.

Übung 7.30 Zeigen Sie: Für die stationären Werte von T1; T2 gilt:

T2 � T1 D M
�
l1l2.T

�
2 � T �

1 / C l1l3.T
�
3 � T �

1 /
�C l1l2l3.T

�
2 � T �

1 /

.M C l1/.M C l2/.M C l3/ � M 3

mit li WD �i Vi ; i D 1; 2; 3.



98 7 Stationäre Zustände

Wird diese Beziehung in Gleichung (7.13) eingesetzt, so ergibt sich

M 2 C k

�
ˇS0F1 C ˛

p.M /

q.M /

�
D 0 (7.14)

mit p; q 2 ˘2, da sich der Term M 3 im Nenner aufhebt. Dabei sind

p.M / D a2M
2 C a1M; a1; a2 2 R;

q.M / D
3X

iD1

li M
2 C .l1l2 C l1l3 C l2l3/M C

3Y
iD1

li :

Wird (7.14) näher untersucht, so kann folgende Aussage bewiesen werden:

Übung 7.31 Zeigen Sie: Für �i > 0; i D 1; 2; 3 und alle F1 2 R hat das Polynom q in
der Darstellung (7.14) keine positiven Nullstellen.

Damit kann (7.14) äquivalent als Polynom vierten Grades in M geschrieben werden,
indem mit q.M / ¤ 0 multipliziert wird:

q.M /M 2 C k .ˇS0F1q.M / C ˛p.M // D 0: (7.15)

Mögliche Werte für den stationären Volumenstrom M sind also die Nullstellen eines Po-
lynom vierten Grades, wobei aber nur reelle und nicht negative Werte in Frage kommen.

Für Polynome vierten Grades gibt es einen analytische Lösungsformel, die sich jedoch
aus einem bestimmten Grund nicht gut eignet:

Übung 7.32 Recherchieren Sie nach einer expliziten Lösungsformel für die Nullstellen
eines Polynoms vierten Grades. Warum ist diese Methode für unsere Zwecke nicht beson-
ders geeignet?

Ziel ist es, für gegebene Werte des Frischwasserflusses F1 die zugehörigen stationären
Werte von M zu bestimmen. Gleichung (7.14) kann jedoch schon einen Eindruck der Be-
ziehung zwischen diesen beiden Größen ergeben, wenn darin umgekehrt F1 als Funktion
von M angesehen wird, nämlich als

F1.M / D � 1

kˇS0

�
M 2 C k˛

p.M /

q.M /

�
: (7.16)

Es ist zu erkennen, dass sich die Darstellung des Frischwasserflusses F1 in Abhängigkeit
von M aus einer Parabel mit negativemVorzeichen und einem Term p.M /=q.M / zusam-
mensetzt. Dieser zweite Term ist, als Quotient zweier Polynome zweiten Grades (s. o.)
und da der Nenner keine positiven reellen Nullstellen hat, beschränkt. Es folgt ebenfalls
F1.0/ D 0.

Übung 7.33 Führen Sie eine Kurvendiskussion für die Funktion F1 in (7.16) durch und
skizzieren Sie sie.
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7.5 Berechnung der Nullstellen einer skalaren Gleichung

Als numerisches Lösungsverfahren kann wieder das Newton-Verfahren angewendet wer-
den. Die Ableitung ist für ein Polynom einfach anzugeben. Das Verfahren liefert nur eine
Nullstelle, zur Berechnung aller muss es mehrfach von verschiedenenWerten aus gestartet
werden.

Einfacher und hier ausreichend ist das folgende Verfahren, die Bisektion:

Algorithmus 7.34 (Bisektion)
Input:

� Stetige Funktion F , von der eine Nullstelle berechnet werden soll.
� Intervall Œa0; b0�, in dem genau eine Nullstelle liegt.
� Genauigkeit " > 0, mit der die Nullstelle berechnet werden soll.

Algorithmus:

1. k D 0

2. Solange bk � ak > ":
(a) xk WD 1

2
.ak C bk/

(b) Wenn F.ak/F.xk/ < 0 W akC1 D ak; bkC1 D xk

Sonst: akC1 D xk; bkC1 D bk .
(a) k D k C 1

Output: Nullstelle xk.

Das Verfahren funktioniert nur, wenn im Intervall Œa; b� genau eine Nullstelle liegt. Es
muss daher für das Rahmstorf-Boxmodell die positiven reellen Zahlen in kleinen Schritten
abgesucht werden, um alle Nullstellen zu finden. Das macht das Verfahren unpraktisch.

Berechnung über Eigenwerte

Eine weitere Alternative ist die Berechnung der Nullstellen über die sog. Begleitma-
trix: Die Idee dabei ist, eine Matrix A aufzustellen, deren charakteristisches Polynom
det.A � �I/ genau das vorliegende Polynom ist, dessen Nullstellen gesucht sind. Da die
Dimension der Matrix gleich dem Grad des Polynoms ist, handelt es sich zumeist um
eine Matrix geringer Dimension. Die entscheidende Frage ist, wie diese Matrix gewählt
einfach werden kann.
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Abb. 7.5 Stationäre Zustände beim Rahmstorf-Boxmodell, berechnet über die Eigenwerte der Be-
gleitmatrix. b Ein Zoom, der zeigt, dass sich für f1 D 0 die Reihenfolge der Eigenwerte ändert.
Gezeigt sind nur die reellen Eigenwerte
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Beispiel 7.35 Das charakteristische Polynom der Matrix

A D

0
B@

0 1 0

0 0 1

�c0 �c1 �c2

1
CA

kann mit dem Laplace’schen Entwicklungssatz zu

det.A � �I/ D �c0 det

 
1 0

�� 1

!
C c1 det

 
�� 0

0 1

!
� .c2 C �/ det

 
�� 1

0 ��

!

D �c0 � c1� � c2�2 � �3 DW q.�/

berechnet werden. Die Nullstellen von

p.�/ D
3X

iD0

ai�
i

sind daher gleich der Nullstellen von q und �q, und entsprechen damit den Eigenwerten
von A, wenn ci D ai =a3, i D 0; 1; 2 gesetzt wird.

Diese Idee kann für beliebige Dimension n angewendet werden:

Übung 7.36 Verallgemeinern Sie die obige Idee für ein Polynom p 2 ˘n.

Beispiel 7.37 MATLAB1 und OCTAVE implementieren diesen Algorithmus in der Funk-
tion roots. (Die Koeffizienten sind dort umgekehrt nummeriert!)

Beispiel 7.38 Beim Rahmstorf-Boxmodell wird die Methode auf das Polynom aus (7.15)
angewendet.

Übung 7.39 Wenden Sie die Funktion roots für das Boxmodell an und erzeugen Sie
einen entsprechenden Plot, vgl. Abb. 7.5.

1 MATLAB ist ein eingetragenes Warenzeichen von The MathWorks Inc.



8Ein Boxmodell des globalen Kohlenstoffkreislaufs

Hier wird ein weiteres Boxmodell vorgestellt, das den globalen Kohlenstoffkreislauf modelliert.
Verglichen mit dem Rahmstorf-Modell ist es linear und damit wesentlich einfacher. Es gibt die
Möglichkeit, Aussagen über die Theorie linearer Differentialgleichungssysteme mit konstanten Ko-
effizienten vorzustellen und anzuwenden.

Das hier vorgestellte Modell wurde von G.W. Griffiths, A. J. McHugh undW.E. Schiesser
in der hier benutzten Version in [26] vorgestellt. Dokumentation [27] und Implementie-
rung sind vom dritten Autor erhältlich.

Das Modell beschreibt die globalen CO2-Flüsse und benutzt dazu sieben räumliche
Boxen oder Kompartments. In diesen Kompartments wird die örtliche Verteilung des CO2

vernachlässigt, was natürlich eine grobe, für Boxmodelle eben charakteristische Ideali-
sierung darstellt. Das zeitabhängige Verhalten der Konzentrationen in den sieben Boxen
wird modelliert, und so ergibt sich ein gewöhnliches Differentialgleichungssysteme. Mit
einem Quell- oder Forcingterm können CO2-Emissionen in das Modell eingebracht und
so seine Reaktion auf verschiedene globale Erwärmungsszenarien simuliert werden. Es
ist ebenfalls leicht möglich, über Parametervariationen der Kopplungsterme zwischen den
einzelnen Kompartments Sensitivitätstudien durchzuführen. Die sieben Boxen des Mo-
dells sind, vgl. Abb. 8.1:

� Unterer Bereich der Atmosphäre (Engl.: lower atmosphere): la

� Oberer Bereich der Atmosphäre (Engl.: upper atmosphere): ua

� Kurzlebige Lebewesen (Biota, Engl.: short-lived biota): sb

� Langlebige Lebewesen (Biota, Engl.: long-lived biota): lb

� Obere Schicht des Ozeans (Engl.: upper layer): ul

� Untere Schicht des Ozeans (Engl.: deeper layer): dl

� Marine Biosphäre (Engl.: marine biota: mb.

Der CO2-Gehalt in diesen Kompartments wird hier jeweils mit yj mit j 2 f1; : : : ; 7g ¶
fla; ua; sb; lb; ul; d l; mbg bezeichnet. (ImOriginalmodell wird c statt y für die Zustands-

103© Springer-Verlag Berlin Heidelberg 2015
T. Slawig, Klimamodelle und Klimasimulationen, Springer-Lehrbuch Masterclass,
DOI 10.1007/978-3-662-47064-0_8
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Abb. 8.1 Boxen bzw. Kom-
partments des globalen
CO2-Modells mit Interak-
tionen und Forcing/Inputterm

upper layer 
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ocean
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Input

oder Modellvariablen verwendet.) Die Kompartments sind wie in Abb. 8.1 miteinander
gekoppelt. Der zusätzliche Forcingterm beeinflusst die untere Schicht der Atmosphäre,
also die Gleichung für y1 OD yla.

Es wird ein Anfangswertproblem in der Standardform (3.2) für ein System mit den sie-
ben Zustandsvariablen y D .yi /

7
iD1 betrachtet. Ziel des Modells ist die Berechnung der

Abweichung des CO2-Gehalts vom vorindustriellen Zustand, der für t0 D 1850 angenom-
men wird. Die Zeitskala im Modell ist bereits in Jahren formuliert. Anschließend erfolgt
eine Umformulierung mit

� einer Verschiebung der Zeitskala Qt D t � t0 D t � 1850

� eine Verschiebung und Skalierung (analog zur Vorgehensweise in den Abschn. 4.1 und
4.2) der Werte der Zustandsvariablen

Qyi .Qt / WD yi .t0 C Qt / � yi .t0/

yi .t0/
: (8.1)

Es gilt

Qy0
i .Qt / D d Qyi

dQt .Qt / D 1

yi .t0/

dyi

dt
.t/ D 1

yi .t0/
y0

i .t/: (8.2)

Die Kopplungen zwischen den Kompartments oder Boxen werden als lineare Reaktions-
terme der Form

Qy0
i .t/ D

X
j ¤i

aij . Qyj .t/ � Qyi .t//
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angenommen. Nicht in jeder Gleichung sind alle Kopplungsterme ungleich Null. Welche
Reaktionen stattfinden bzw. welche Boxen miteinander verbunden sind, ergibt sich aus
ihrer Definition und Anordnung, wie in Abb. 8.1 dargestellt. Dabei sind in den Reaktions-
koeffizienten aij bereits die Skalierungen aus (8.1) bzw. (8.2) eingegangen. Sie werden
durch

aij D 1

�ij

; i; j D 1; : : : ; 7; j ¤ i; wenn �ij ¤ 0;

als das Inverse der mittleren Aufenthaltsdauer oder Mischungszeit �ij des CO2, das aus
Box i in Box j gelangt, beschrieben, sofern überhaupt ein Transfer stattfindet. Der Wert
�ij beschreibt die Zeit (in Jahren), die das CO2 in Kompartment j benötigt, um sich mit
dem in Kompartment i zu mischen. Einige der in [27] verwendeten Werte

�12 D 5; �13 D 1; �14 D 100; �15 D 30; �21 D 5; �31 D 1;

�41 D 100; �51 D 30; �56 D 100; �57 D 10; �65 D 1000; �75 D 10:
(8.3)

werden dort wie folgt motiviert:

� �13 D 1 (Jahr) für den Transfer von der unteren Atmosphäre in die kurzlebige Vege-
tation, die hier hauptsächlich als landwirtschaftlich genutzte Pflanzen (mit jährlicher
Ernte) angesehen werden.

� �14 D 100 (Jahre) für den Transfer von der unteren Atmosphäre in die langlebige
Vegetation, die hauptsächlich aus Bäumen besteht mit einer Lebensdauer im Bereich
von 100 Jahren.

� �65 D 1000 für den Transfer der oberen in die tiefere Schicht des Ozeans, was die
Annahme widerspiegelt, dass CO2 1000 Jahre in dieser unteren Schicht verbleibt.

Aus Gründen der Stoffbilanz (wenn keine Quellen vorliegen) gilt

7X
j D1

aij D 0; also aii D �
X
j ¤i

aij ; i D 1; : : : ; 7: (8.4)

Allgemeiner definieren wir:

Definition 8.1 Ein System von Differentialgleichungen (3.1) mit f W I � D � Rn ! Rn

heißt masse- (oder stoff-) erhaltend in I , wenn gilt:

nX
iD1

fi .t; y.t// D 0 8t 2 I:

Damit ergibt sich für die transformierten und skalierten Zustandsvariablen, die wir hier
wieder ohne Tilde schreiben, ein Anfangswertproblem der Form

y0.t/ D Ay.t/ C b.t/; t � 0; y.0/ D 0:
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Die Matrix A hat die Gestalt

A D

0
BBBBBBBBBBBB@

la ua sb lb ul d l mb

la a11 a12 a13 a14 a15 0 0

ua a21 a22 0 0 0 0 0

sb a31 0 a33 0 0 0 0

lb a41 0 0 a44 0 0 0

ul a51 0 0 0 a55 a56 a57

d l 0 0 0 0 a65 a66 0

mb 0 0 0 0 a75 0 a77

1
CCCCCCCCCCCCA

:

Übung 8.2 Begründen Sie: Wegen der Massenerhaltung muss die Matrix singulär sein.

Der Forcingterm b.t/ fügt dem System Stoff (hier CO2) hinzu. Er wirkt nur in der
ersten Gleichung und wird daher als

b.t/ D .b1.t/; 0; : : : ; 0/>

geschrieben, z. B. mit (wie in [27] vorgeschlagen):

b1.t/ D c1 exp.r1.t//; c1; r1 > 0:

Dabei ist c1 D 4;4�10�3 ppm als Referenzwert für 2007. Für r1 wird einmal die Konstante
r1b D 0;01 und als andere Beispiele ein Ansatz

r1.t/ D r1b C r1c

t � 2010

2100 � 2010

mit r1c 2 f0;005; 0;0025; �0;01g, d. h. verschiedene Steigerungen und eine Reduktion
vorgeschlagen. In [27] wird die Ozeanchemie noch weiter untersucht, worauf wir hier
verzichten.

8.1 Lösungsstruktur linearer Differentialgleichungssysteme

Wir beweisen einige allgemeine Resultate für lineare Systeme mit eventuell zeitabhängi-
gen Koeffizienten, d. h. Anfangswertprobleme der Form

y0.t/ D A.t/y.t/ C b.t/; t 2 I; (8.5)

y.t0/ D y0 (8.6)

mit stetigen Funktionen A W I ! Rn�n (bzw. Cn�n) und b W I ! Rn (bzw. Cn) so-
wie I; t0 wie in Definition 3.2. Die folgende Aussage ist für Überlegungen im nächsten
Abschnitt nützlich. Dort wird sie auch für komplexe Systeme benötigt. Sie betrachtet des
Lösungsraum des sog. homogenen Systems, d. h. für b D 0.
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Lemma 8.3 Die reellen (bzw. komplexen) Lösungen des homogenen Differentialglei-
chungssystems (8.5), b D 0, bilden einen n-dimensionalen Vektorraum über R (bzw. C/.
Die Abbildung y0 7! y.t/ vom Anfangswert auf die Lösung von (8.5),(8.6) ist linear und
bijektiv.

Beweis Nach Satz 3.28 und Anmerkung 3.38 ist die Lösung von (8.5),(8.6) eindeutig.
Damit ist y0 7! y.t/ wohldefiniert. Sei y0 D �aC
b; �; 
 2 R (bzw.C), a; b 2 Rn (bzw.
Cn) und y die zugehörige Lösung. Weiter seien ya; yb Lösungen mit den Anfangswerten
y0 D a bzw. y0 D b. Dann gilt wegen der Linearität der Gleichung

y.t/ D �ya.t/ C 
yb.t/; t 2 I;

also ist y0 7! y.t/ linear, und die Dimension des Lösungsraumes ist n. Daher ist die
Abbildung y0 7! y.t/ bijektiv. �

Diese Aussage motiviert die folgende Bezeichnung, die sich auf die Gesamtheit der
Lösungen der Differentialgleichung (8.5) bezieht.

Definition 8.4 ((Lösungs-)Fundamentalsystem) Eine Basis .yi /
n
iD1 mit yi W I ! Rn

(bzw. Cn), i D 1; : : : ; n, des Lösungsraumes des homogenen Systems (8.5), b D 0, heißt
Fundamentalsystem und wird, spaltenweise angeordnet, als Y WD .yi /

n
iD1 geschrieben.

Ein Fundamentalsystem erfüllt die Gleichung

Y 0.t/ D A.t/Y.t/; t 2 I: (8.7)

Ist Y das Fundamentalsystem mit Y.t0/ D I , dann hat das Anfangswertproblem für die
homogene Gleichung die Lösungsgestalt

y.t/ D Y.t/y0: (8.8)

Wir betrachten nun inhomogene Gleichungen.

Lemma 8.5 Sei Y ein Fundamentalsystem der Gleichung (8.5), b D 0. Jede Lösung y

der inhomogenen Gleichung (b ¤ 0) hat die Form y.t/ D Y.t/c C Oy.t/ mit c 2 Rn und
einer beliebigen Lösung Oy der inhomogenen Gleichung.

Beweis Sind y; Oy zwei beliebige Lösungen der inhomogenen Gleichung, dann löst y � Oy
die homogene Gleichung, lässt sich also als Linearkombination der Elemente des Funda-
mentalsystems, d. h. als y.t/ � Oy.t/ D Y.t/c schreiben. �

Analog erhalten wir:

Korollar 8.6 Die Lösung des Anfangswertproblems (8.5),(8.6) ergibt sich als Summe der
Lösung der homogenen Gleichung und Anfangswert y0 und einer Lösung der inhomoge-
nen Gleichung mit Anfangswert y0 D 0.
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Mit dem Fundamentalsystem lässt sich dies wie folgt ausdrücken.

Lemma 8.7 Sei Y das Fundamentalsystem der Gleichung (8.5)mit b D 0, das Y.t0/ D I

erfüllt. Dann ist die Lösung des Anfangswertproblems der inhomogenen Gleichung

y.t/ D Y.t/y0 C
tZ

t0

Y.t/Y.s/�1b.s/ds; t 2 I:

Beweis Mit Korollar 8.6 und (8.8) ist Ny.t/ D Y.t/y0 Lösung des Anfangswertproblems
der homogenen Gleichung. Außerdem erfüllt

Oy.t/ WD Y.t/

tZ
t0

Y.s/�1b.s/ds

die Anfangsbedingung Oy.t0/ D 0. Für die Ableitung des unbestimmten Integrals (vgl. [13,
§19 Satz 1]) gilt

d

dt

0
@

tZ
t0

Y.s/�1b.s/ds

1
A D Y.t/�1b.t/; t 2 I:

Damit ist Oy wegen (8.7) und

Oy0.t/ D Y 0.t/
tZ

t0

Y.s/�1b.s/ds C Y.t/Y.t/�1b.t/

D AY.t/

tZ
t0

Y.s/�1b.s/ds C b.t/ D A Oy.t/ C b.t/

eine Lösung der inhomogenen Gleichung. �

8.2 Lineare Differentialgleichungssystememit konstanten
Koeffizienten

Wir betrachten jetzt (8.5) mit konstanter (zuerst wieder komplexer) Koeffizientenmatrix
A 2 Cn�n und, da die Gleichung dann autonom ist, t0 D 0:

y0.t/ D Ay.t/; t � 0: (8.9)

Ein Fundamentalsystem kann mit Hilfe der Matrix-Exponentialfunktion ähnlich zum ein-
dimensionalen Fall (Lösung: y.t/ D ce�t ) angegeben werden. Für die Definition benöti-
gen wir die folgende Eigenschaft für Matrixnormen:
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Definition 8.8 (Submultiplikative Matrixnorm) Eine Matrixnorm k � k auf dem Rn�n

heißt submultiplikativ, wenn gilt:

kABk 
 kAkkBk 8A; B 2 Rn�n:

Übung 8.9 Welche der in Lemma 3.37 angegebenen Matrixnormen sind submultiplika-
tiv?

Nun kann die Matrix-Exponentialfunktion definiert und ihre Eigenschaften gezeigt
werden:

Lemma 8.10 (Matrix-Exponentialfunktion) Für A 2 Cn�n konvergiert

eA WD
1X

lD0

Al

l Š

absolut. Für alle t 2 R ist die Funktion t 7! eAt differenzierbar mit

d

dt
eAt D AeAt :

Damit ist eAt ein Fundamentalsystem von (8.9).

Beweis Da für eine beliebige submultiplikative Matrixnorm

����Al

lŠ

���� 
 kAkl

l Š

gilt, folgt die Konvergenz analog zur Exponentialfunktion mit skalarem Argument. Der
Konvergenzradius der Reihe eAt ist 1, daher kann sie überall gliedweise differenziert
werden (vgl. [13, §21 Satz 5]):

d

dt
eAt D

1X
lD0

l
t l�1Al

l Š
D

1X
lD1

l
t l�1Al

l Š
D

1X
lD1

t l�1Al

.l � 1/Š
D

1X
lD0

t l AlC1

l Š
D AeAt :

Die Eigenschaft des Fundamentalsystem folgt aus Definition 8.4. �

Wir benötigen später die Funktionalgleichung der Exponentialfunktion (analog zu der
für reelle Argumente):

Übung 8.11 Zeigen Sie: Für A; B 2 Cn�n mit AB D BA gilt eACB D eAeB .
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Wegen eAt jtD0 D I gilt für die Lösung eines Anfangswertproblems, vgl. (8.8):

Korollar 8.12 Die Lösung von (8.9) mit y.0/ D y0 ist y.t/ D eAt y0; t � 0:

Je nach den Eigenschaften von A 2 Rn�n, speziell ihrer Eigenwerte, haben Fundamen-
talsysteme für (8.9) unterschiedliche Form. Wir betrachten für Klimamodelle nur reelle
Matrizen und interessieren uns auch nur für reelle Fundamentalsysteme. Zur Darstellung
des Fundamentalsystems eAt benutzen wir die Jordan’schen Normalform:

Lemma 8.13 (Jordan’sche Normalform) Zu A 2 Rn�n existieren eine reguläre Matrix
S 2 Cn�n und eine Blockdiagonalmatrix

J D diag.J1; : : : ; Jm/ 2 Cn�n mit m 2 f1; : : : ; ng; (8.10)

so dass

A D SJS�1 (8.11)

gilt. Jedes Jk ist bidiagonal von der Form

Jk D

0
BBBBB@

�k 1 0 0

0
: : :

: : : 0
:::

: : :
: : : 1

0 � � � 0 �k

1
CCCCCA

D �kInk
C Nk 2 Cnk�nk ; nk � 1; k D 1; : : : ; m:

Dabei bezeichnet Ink
die Einheitsmatrix der Größe nk . Die Eigenwerte von A sind ent-

sprechend nummeriert, d. h. zu jedem Block Jk gehört der Eigenwert �k . Die Matrizen Nk

sind nilpotent mit N
nk

k D 0. Ein Eigenwert mit identischer algebraischer und geometri-
scher Vielfachheit hat so viele Blöcke Jk mit nk D 1, wie seiner Vielfachheit entspricht.
Ein Eigenwert, dessen algebraische und geometrische Vielfachheit sich unterscheiden, hat
so viele Blöcke Jk mit nk > 1, wie seiner geometrischen Vielfachheit entspricht.

Beweis Siehe [28, 4.6.7]. �

Nach Lemma 8.10 ist eAt ein Fundamentalsystem, das aber auch für A 2 Rn�n we-
gen möglicherweise auftretender komplexer Eigenwerte komplex sein kann. Wegen Al D�
SJS�1

�l D SJ lS�1; l 2 N; und daher

eAt D SeJ tS�1;

bestimmen wir zunächst die Exponentialfunktion der Jordan-Matrix J :
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Lemma 8.14 Seien A; J; S wie in Lemma 8.13. Dann ist

eJ t D diag
�
.exp.Jkt//m

kD1

�
(8.12)

mit

exp.Jkt/ D exp.�kt/

0
BBBBB@

1 pk1.t/ � � � pk;nk�1.t/

0 1
:::

:::
: : :

: : : pk1.t/

0 � � � 0 1

1
CCCCCA

2 Rnk�nk ; pkl 2 ˘l : (8.13)

Beweis Die Matrix eJ t ist eine Blockdiagonalmatrix mit

eJ t D diag
�
.exp.Jkt//m

kD1

�
:

Mit Übung 8.11 und exp.�ktInk
/ D Ink

exp.�kt/ ist

exp.Jkt/ D exp.�ktInk
/ exp.Nkt/ D exp.�kt/ exp.Nkt/:

Da Nk nilpotent ist, gilt

exp.Nkt/ D
1X

lD0

N l
k t l

l Š
D

nk�1X
lD0

N l
k t l

l Š
D

nk�1X
lD0

N l
k Qpkl .t/ mit Qpkl 2 ˘l ; Qpkl .0/ D 1:

Die Darstellung (8.13) folgt durch Berechnen der Matrixpotenzen N l
k und der Struktur

von Nk . �

Damit und wegen der Regularität von S ergeben sich folgende Darstellungen komple-
xer Fundamentalsysteme:

Satz 8.15 Mit A; S; J wie in Lemma 8.13 sind eJ t ; SeJ t und eAt D SeJ t S�1 komplexe
Fundamentalsysteme von (8.9).

Bei komplexen Eigenwerten (die immer als paarweise zueinander konjugiert komplexe
Werte auftreten) ergibt sich folgende allgemeine Darstellung eines reellen Fundamental-
systems:

Satz 8.16 Seien A; S; J wie in Lemma 8.13, Sk 2 Cn�nk die zum Eigenwert �k gehören-
de Teilmatrix von S mit den Spalten skl 2 Cn; l D 1; : : : ; nk; pkl 2 ˘l ; l D 1; : : : ; nk �1

wie in (8.13) und pk0 WD 1. Dann bilden die folgenden Funktionen ein reelles Fundamen-
talsystem von (8.9):

� Für reelle Eigenwerte �k; k 2 f1; : : : ; mg; j D 1; : : : ; nk:

ykj .t/ D
jX

lD1

pk;j �l .t/skl exp.�kt/: (8.14)
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� Für zueinander konjugiert komplexe Eigenwertpaare �kC1 D N�k; k 2 f1; : : : ; mg; j D
1; : : : ; nk:

ykj .t/ D
jX

lD1

pk;j �l .t/ .Re skl cos.Im�kt/ � Im skl sin.Im�kt// exp.Re�kt/;

ykC1;j .t/ D
jX

lD1

pk;j �l .t/ .Re skl sin.Im�kt/ C Im skl cos.Im�kt// exp.Re�kt/:

(8.15)

Beweis Die Spalten skl von Sk 2 Cn�nk sind die zu �k gehörenden Eigen- und (für
nk > 1) Hauptvektoren. Es gilt

SeJ t D .S1; : : : ; Sm/ diag
�
.exp.Jkt//m

kD1

�
(8.16)

D .S1 exp.J1t/; : : : ; Sm exp.Jmt//

mit Sk exp.Jkt/ 2 Cn�nk ; k D 1; : : : ; m. Für die j -te Spalte von Sk exp.Jkt/ ergibt sich
aus (8.13):

.Sk exp.Jkt//j D
jX

lD1

skl pi;j �l .t/ exp.�kt/ DW zkj .t/; j D 1; : : : ; nk: (8.17)

Diese Funktionen bilden für k D 1; : : : ; m das komplexe Fundamentalsystem SeJ t , s.
(8.16), und sind für �k 2 R als ykj D zkj auch Teile des reellen Fundamentalsystems.

Sei Im �k ¤ 0 und �k; �kC1 D N�k zueinander konjugiert komplexe Eigenwerte. Es gilt
dann skC1;l D Nskl ; l D 1; : : : ; nk , da die Eigen- bzw. Hauptvektoren ebenfalls zueinander
konjugiert komplex sind.

Für dieses k und jedes feste j 2 f1; : : : ; nkg sind die Funktionen zkj ; zkC1;j aus (8.17)
als Teil eines komplexen Fundamentalsystems linear unabhängig.

Die beiden Funktionen ykj WD Re zkj ; ykC1;j WD Im zkj W R ! Rn, also

ykj .t/ D
jX

lD1

pk;j �l .t/ .Re skl cos.Im�kt/ � Im skl sin.Im�kt// exp.Re�kt/

ykC1;j .t/ D
jX

lD1

pk;j �l .t/ .Re skl sin.Im�kt/ C Im skl cos.Im�kt// exp.Re�kt/

sind, im reellen Vektorraum der reellen Lösungen, linear unabhängig voneinander und von
den anderen auf gleiche Weise konstruierten Funktionen ykj . �

Anmerkung 8.17 Aus y.t/ D Y.t/c, c 2 Rn folgt mit y.0/ D Y.0/c, dass c D Y.0/�1y0

ist. Also kann jede Lösung mit dem Fundamentalsystem oben als y.t/ D Y.t/Y.0/�1y0

geschrieben werden und es gilt eAt D Y.t/Y.0/�1.
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Das Lorenz-Modell ist ein System aus drei nichtlinearen gewöhnlichen Differentialgleichungen.
Im Vergleich etwa zum Rahmstorf-Boxmodell ist seine Herleitung schwieriger zu verstehen. Das
Modell ist älter und unter dem Aspekt der Reduktion des Rechenaufwands entstanden. Es stellt
ein einfaches Modell der Konvektionsströmung, d. h. der durch Temperaturunterschiede bewirkten
Strömung in der Atmosphäre dar. Das Lorenz-Modell kann als Beginn der Chaostheorie angesehen
werden. In der Klimaforschung ist das Modell nicht mehr relevant. Für unterschiedliche Werte der
drei im Modell vorhandenen Parameter ergeben sich unterschiedliche Lösungstypen, wie etwa peri-
odische Lösungen oder den bekannten Lorenz-Attraktor. Die Sensitivität der Lösung bezüglich von
Anfangswerten und Parametern ist hoch, so dass an diesem Modell gut Verfahren höherer Konver-
genzordnung getestet werden können. Für weitere Details s. [29–31].

Das Lorenz-Modell oder die Lorenz-Gleichungen sind nach Edward N. Lorenz benannt.
Das Modell wurde von ihm 1963 in [29] publiziert. Es stellt ein einfaches Modell der
Konvektionsströmung, d. h. der durch Temperaturunterschiede bewirkten Strömung in der
Atmosphäre dar. Lorenz machte mit den damals vorhandenen bescheidenen Computerres-
sourcen numerische Rechnungen, die bei einer kleinen Änderung der Anfangswerte große
Änderungen der Modellgrößen bewirkten, was zu dem Ausdruck „Schmetterlingseffekt“
führte. Das Modell enthält drei Parameter. Für bestimmte Werte dieser Parameter er-
hält man z. B. eine periodische Lösung, für andere den heute schon teilweise auch als
Bildschirmschoner verwendeten Lorenz-Attraktor. Auf Grund der heutigen verfügbaren
Rechenkapazitäten ist die im Lorenz-Modell durchgeführte Vereinfachung für Klimasi-
mulationen nicht mehr nötig.

Die Modellgleichungen für die drei Zustandsvariablen y WD .X; Y; Z/ lauten

y0.t/ D f .y.t// ”

8̂<
:̂

X 0.t/ D �.Y.t/ � X.t//

Y 0.t/ D .R � Z.t//X.t/ � Y.t/

Z 0.t/ D X.t/Y.t/ � BZ.t/:

Dabei sind �; R; B > 0 Modellparameter. Zusammen mit Anfangswerten erhält man ein
Anfangswertproblem für ein dreidimensionales System gewöhnlicher, autonomer Diffe-
rentialgleichungen erster Ordnung.

113© Springer-Verlag Berlin Heidelberg 2015
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9.1 Ein Einblick in die Modellierung

Die Modellierung des Lorenz-Modells basiert auf strömungsmechanischen Grundglei-
chungen, die wir erst später behandeln. Wir wollen das Modell trotzdem benutzen, be-
schreiben hier aber nur kurz die Idee der Modellierung.

Das Lorenz-Modell beschreibt die Strömung in der Atmosphäre, und zwar in einem
zweidimensionalen vertikalen Schnitt und in dieser Ebene in einem Rechteck mit Seiten-
längen H=a (in x1-Richtung) und a. Zweidimensional heißt hier, dass angenommen wird,
dass in Richtung der dritten Dimension keine Änderung stattfindet. Angenommen wird
außerdem, dass am unteren Rand, d. h. am Boden, und am oberen Rand der betrachteten
Luftschicht jeweils eine konstante Temperatur mit einer Differenz �T vorliegt. Die Tem-
peraturdifferenz�T bewirkt – wie beim Boxmodell – eine sog. Konvektionsströmung: Es
bilden sich Zellen, das sind in diesem zweidimensionalen Modellen kreis- oder ellipsen-
ähnliche Formationen, auf denen die Luft zirkuliert.

Die relevanten Größen des Modells sind der Geschwindigkeitsvektor v mit seinen bei-
den Komponenten v1 und v2 sowie die Temperatur T . Diese Größen sind Funktionen von
Ort x D .x1; x2/ und Zeit t .

Nun erfolgt ein in der zweidimensionalen Strömungsmechanik eine gewisse Zeit sehr
populärer Ansatz: Es wird eine Funktion � eingeführt, aus der die beiden Geschwindig-
keitskomponenten wie folgt berechnet werden können:

v1.x; t/ D @�

@x2

.x; t/; v2.x; t/ D � @�

@x1

.x; t/:

Mit dieser Setzung ist nur eine skalare Funktion � zu bestimmen. Außerdem ist so die
Massebilanz, eine wesentliche Erhaltungsgleichung in der Strömungsmechanik (vgl. Ab-
schn. 16.1), automatisch erfüllt. In Zeiten geringerer Rechenleistung war dies eine we-
sentliche Reduzierung des Aufwands. Dieser Ansatz funktioniert so jedoch nur in zweidi-
mensionalen Strömungen.

Die Funktion � heißt Stromfunktion. Sie ist nicht nur ein Konstrukt zur einfachen
Lösung der Gleichungen, sondern ihre Linien gleicher Funktionswerte hilfreich zum Ver-
ständnis der Strömung:

Definition 9.1 (Niveaumenge) Für F W Rn � D ! R und c 2 R heißt

N .F; c/ WD fx 2 Rn W F.x/ D cg

Niveaumenge von F zum Wert c.

Diese sog. Stromlinien sind nämlich stets tangential zumGeschwindigkeitsvektor v. Im
stationären Fall v D v.x/ sind die Stromlinien gleich der Bahnlinien der Luftteilchen, die
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Abb. 9.1 Ansatzfunktionen beim Lorenz-Modell für H D a D 1, a für die Stromfunktion� , b für
die Temperaturabweichung �

sich bewegen. Mit der Stromfunktion kann also schon die Strömung visualisiert werden,
indem ihre Niveaulinien gezeichnet werden.

Um die Stromfunktion und die Temperatur zu bestimmen, werden zwei weitere Bilanz-
gleichungen, nämlich die Impulsbilanz (Newton’s zweites Gesetz) und die Energiebilanz
benutzt. Diese werden wir hier noch nicht behandeln. Insbesondere die Impulsbilanz ist
nichtlinear und, da sie für die Stromfunktion formuliert werden muss, etwas kompliziert.
Für die Temperatur wird wieder (analog zum nulldimensionalen Energiebilanzmodell) ein
Ansatz gemacht, der nur die Änderung � zum Mittelwert betrachtet.

Lorenz machte nun den Ansatz

�.x; t/ D c1X.t/
p

2 sin

�
�a

H
x1

�
sin

�
�

H
x2

�

�.x; t/ D c2

�
Y.t/

p
2 cos

�
�a

H
x1

�
sin
�

�

H
x2

�
� Z.t/ sin

�
2�

H
x2

��
:

Die Grundidee ist, die Zeitabhängigkeit nur in den Koeffizientenfunktionen X; Y; Z an-
zusetzen und für die Ortsabhängikeit periodische Funktionen zu benutzen. Dabei sind
c1; c2 Konstanten. Die sich aus den einzelnen ortsabhängigen Ansatzfunktionen erge-
benden Stromlinien bzw. Niveaulinien der Temperaturabweichung sind in Abb. 9.1 zu
erkennen.

Werden diese Darstellungen in die Impuls- und Energiebilanz eingesetzt, so erge-
ben sich bei weiterer Approximation die Lorenz-Gleichungen. Der Parameter B in den
Lorenz-Gleichungen hängt damit z. B. nur von dem Seitenverhältnis a ab, � ist die sog.
Prandtlzahl, die das Verhältnis von Zähigkeit (der Luft) und der Wärmeleitfähigkeit (der
Luft) bezeichnet. Der Wert R hängt selbst wieder von a; H; �T und Pr ab.
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9.2 Existenz, Eindeutigkeit und Symmetrie

Einige Eigenschaften des Lorenz-Modells können sehr einfach gezeigt werden: Zum einen
gilt folgende Symmetrieeigenschaft.

Übung 9.2 Es sei .X.t/; Y.t/; Z.t//; t � 0 eine Lösung des Lorenz-Modells. Zeigen Sie,
dass auch .�X.t/; �Y.t/; Z.t//; t � 0 eine Lösung ist.

Ebenfalls gezeigt werden kann die Existenz und Eindeutigkeit der Lösung.

Übung 9.3 Wenden Sie den Satz von Picard-Lindelöf auf die Lorenz-Gleichungen an:
Gibt es für beliebige Anfangswerte eine eindeutige Lösung?

Interessant sind auchMengen, die eine Trajektorie nicht verlässt, wenn sie darin einmal
angekommen ist.

Definition 9.4 (Invariante Menge) Für eine Differentialgleichung (3.1) mit f; I; D wie
dort definiert und t0 2 I , heißt M � D positiv invariant, wenn aus y0 2 M folgt, dass
auch fy.t/ W t 2 I; t � t0; y.t0/ D y0g � M gilt.

Übung 9.5 Zeigen Sie: Die z-Achse ist eine invariante Menge.

9.3 Stationäre Zustände

Die Berechnung der stationären Punkte ist – wie beim Boxmodell deutlich wurde – bei ei-
ner nichtlinearen und vektorwertigen Funktion nicht trivial. Beim Lorenz-Modell können
diese Punkte analytisch berechnet werden.

Übung 9.6 Zeigen Sie: Die stationären Punkte des Lorenz-Modells sind

y1 D .0; 0; 0/; y2 D �p
B.R � 1/;

p
B.R � 1/; R � 1

�
wenn R > 1;

y3 D ��pB.R � 1/; �
p

B.R � 1/; R � 1
�

wenn R > 1:

Numerische Berechnung

Die in Kap. 7 vorgestellten Methoden zur numerischen Berechnung von stationären Punk-
ten können (z. B. zur Übung oder zum Test der numerischen Verfahren) auch beim Lorenz-
Modell angewendet werden.

Für das Newton-Verfahren wird die Jacobi-Matrix von f benötigt. Sie lautet für die
Lorenz-Gleichungen:

f 0.y/ D

0
B@

�� � 0

R � Z �1 �X

Y X �B

1
CA : (9.1)
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Übung 9.7 Wenden Sie das Newton-Verfahren auf die Lorenz-Gleichungen an und ver-
suchen Sie damit alle stationären Punkte zu berechnen.

Wir betrachten auch das Pseudo-Zeitschrittverfahren (Algorithmus 7.16) mit dem
Euler-Verfahren. Für die Jacobi-Matrix der Iterationsfunktion gilt:

G0.y/ D I C hf 0.y/ D

0
B@

1 � h� h� 0

h.R � Z/ 1 � h �hX

hY hX 1 � hB

1
CA

Um die Kontraktionseigenschaft nachzuweisen, kann nach Lemma 3.39 eine Norm (vgl.
Lemma 3.37) der Jacobi-Matrix betrachtet werden.

Betrachten wir für das Lorenz-Modell die Zeilensummennorm k � k1, so wird direkt
deutlich, dass die Summe der Beträge der Elemente der ersten Zeile immer größer oder
gleich 1 ist, so dass die Kontraktionseigenschaft mit dieser Norm nicht gezeigt werden
kann, egal wie h gewählt wird.

Übung 9.8 Untersuchen Sie die Konvergenz des Pseudo-Zeitschrittverfahrens mit Hilfe
der Spaltensummennorm der Jacobi-Matrix. Unter welchen Bedingungen an die Schritt-
weite h, die Parameter R; B; � und für welche Bereiche von X; Y; Z liegt Konvergenz
vor?

Bei den Lorenz-Gleichungen liefert Lemma 7.23 ein Ergebnis:

Übung 9.9 Berechnen Sie die Eigenwerte der Jacobi-Matrix von G an der Stelle y D
.0; 0; 0/. Unter welcher Bedingung sind alle Eigenwerte echt kleiner Eins? Welche Kon-
sequenz hat dies für das Pseudo-Zeitschrittverfahren?

Übung 9.10 Wenden Sie das Pseudo-Zeitschrittverfahren mit dem Euler-Verfahren für
die Parameterwerte .�; R; B/ D .20; 10; 8=3/ an, s. Abb. 9.2 und 9.3. Können Sie durch
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Abb. 9.2 Pseudo-Zeitschrittverfahren (Euler-Verfahren, h D 10�4) mit den Parametern aus
Übung 9.10, hier Konvergenz gegen y3 aus Übung 9.6
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Abb. 9.3 Wie Abb. 9.2, hier Konvergenz gegen y2 (a). b Start in .10�16; 10�16; 0/, also nur mi-
nimal von y1 D .0; 0; 0/ entfernt

Variation der Startwerte alle drei stationären Punkte finden? Wie groß können bzw. wie
klein müssen Sie h wählen?

Übung 9.11 Wiederholen Sie die Experimente aus Übung 9.10 mit R < 1.

9.4 Transiente Lösungen

Interessant sind beim Lorenz-Modell vor allem zeitabhängige, sog. transiente Lösungen.
Je nach Wahl der Parameter ergeben sich verschiedene Typen:

� Eine periodische Lösung für .�; R; B/ D .10; 100;5; 8=3/ und Startwert y0 D
.18;7; 29;9; 100/, vgl. Abb. 9.4.

� Der Lorenz-Attraktor: .�; R; B/ D .10; 28; 8=3/; y0 D .1; 1; 0/, Abb. 9.5.
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Abb. 9.4 Periodische Lösung der Lorenz-Gleichungen
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Abb. 9.6 Störung (um 1%) des stationären Punktes y2 aus Übung 9.6, a für .�; R; B/ D
.10; 28; 8=3/, b für .�; R; B/ D .10; 20; 8=3/, berechnet mit dem Euler-Verfahren mit h D 10�4

Übung 9.12 Berechnen Sie mit dem Euler-Verfahren die beiden oben genannten Lösun-
gen. Wie klein muss die Schrittweite gewählt werden, damit die Lösungsstruktur noch
zu erkennen ist? Wie viele Schritte sind dazu jeweils notwendig? Was passiert bei leicht
gestörtem Startwert bzw. leicht gestörten Parametern, was bei Start in unmittelbarer Nähe
eines der in Übung 9.6 angegebenen stationären Punkte, vgl. Abb. 9.6?

Es stellt sich die Frage, ob das in den Abb. 9.3b und 9.6a zu sehende Verhalten eine
Eigenschaft des Modells ist, die verwendete Schrittweite zu groß oder das Euler-Verfahren
nicht geeignet ist. Den ersten Fall untersuchen wir im nächsten Kapitel.
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Unter Stabilität einer Lösung und speziell eines stationären Punktes wird die Eigenschaft verstan-
den, bei kleinen Störungen ebenfalls nur kleine Änderungen in der Lösung zu zeigen bzw. sogar
wieder in den stationären Punkt zurückzukehren. Befindet sich ein System im Gleichgewicht, so ist
von elementarer Bedeutung, ob Störungen sich nachhaltig auswirken oder nach einiger Zeit abklin-
gen und verschwinden. Die Anwendung und Bedeutung bei Klimamodellen ist offensichtlich. Daher
ist wichtig, ob und wie das Stabilitätsverhalten von Gleichgewichtslösungen analytisch untersucht
werden kann. Es geht hier um die exakte Lösung der Modellgleichungen, noch nicht um ihre nume-
rische Approximation in einer Simulation. Bei einer Simulation können wiederum Instabilitäten des
angewendeten numerischen Verfahrens auftreten. Es ist wichtig, beide Phänomene auseinderhalten
zu können. Die Stabilitätsuntersuchung der exakten Lösung ist jedoch – vor allem bei nichtlinearen
Systemen – nicht einfach. In diesem Kapitel werden die Stabilitätsbegriffe definiert sowie analyti-
sche Aussagen angegeben.

Bei manchen Differentialgleichung bewirkt eine Störung einer stationären Lösung, dass
die Lösung relativ schnell wieder in den stationären Zustand zurückkehrt, während dies
in anderen Fällen nicht der Fall ist. Beim Lorenz-Modell wurden in Übung 9.6 die statio-
nären Lösungen analytisch berechnet. In Abb. 9.6 war für eine dieser stationären Lösungen
zu sehen, dass für zwei verschiedeneWerte eines Parameters eine kleine Störung – zumin-
dest in der numerischen Simulation – genau diese beiden unterschiedlichen Effekte hat.

Dieses Verhalten wird mathematisch als Stabilität bzw. Instabilität bezeichnet. Wir
betrachten wieder ein Anfangswertproblem für eine Differentialgleichung in der Form
(3.2). Wir benutzen folgende Definition:

Definition 10.1 Eine Lösung y von (3.2) heißt

1. stabil, wenn zu jedem " > 0 ein ı > 0 existiert, so dass für alle Lösungen yı von (3.2)
mit gestörtem Anfangswert y0;ı ; ky0 � y0;ık 
 ı, gilt:

ky.t/ � yı.t/k 
 " 8t � t0:
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2. asymptotisch stabil, wenn ein ı > 0 existiert, so dass für alle gestörte Lösungen yı

wie in 1 gilt:

lim
t!1 ky.t/ � yı.t/k D 0:

3. instabil, wenn sie nicht stabil ist.

Hat ein Anfangswertproblem keine eindeutige Lösung, so sind die Lösungen nach die-
ser Definition instabil:

Beispiel 10.2 Betrachte das Anfangswertproblem aus Übung 3.31:

y0 D 2
p

y; t � 0; y.0/ D 0:

Am Anfangspunkt t D 0; y D 0 ist die rechte Seite nicht Lipschitz-stetig. Die Funktionen
y 	 0 und Qy.t/ D t2 sind Lösungen (es gibt noch mehr!). Sei " > 0 beliebig gewählt.
Dann gilt

ky.t/ � Qy.t/k D t2:

Für geeignet großes t wird diese Differenz also größer als jedes ", egal wie ı gewählt wird,
da beide Lösungen denselben Anfangswert y0 D Qy0 D 0 haben.

Betrachten wir nun ein eindeutig lösbares Problem mit einer Störung im Anfangswert
und untersuchen, was die Stabilitätsdefinition aussagt:

Beispiel 10.3 Seien y; Qy wie im letzten Beispiel. Das Anfangswertproblem (vgl. Übung
3.33) mit y0 D y0 > 0 hat jetzt die eindeutige Lösung

y.t/ D .t C p
y0/2; t � 0:

Die im Anfangswert gestörte Lösung mit y.0/ D y0 C ı; jıj < y0 ist

yı.t/ D .t C
p

y0 C ı/2; t � 0;

und ebenfalls eindeutig. Für die Differenz gilt

jy.t/ � yı.t/j D ˇ̌
t2 C 2t

p
y0 C y0 � �

t2 C 2t.
p

y0 C ı/ C y0 C ı
�ˇ̌ D .2t C 1/jıj:

Sei " > 0. Es existiert kein ı > 0, für das dieser Term durch " beschränkt werden kann,
da er für t ! 1 unbeschränkt ist. Die Lösung y ist nicht stabil.

Im folgenden Beispiel liegt (sogar asymptotische) Stabilität vor:

Beispiel 10.4 Das Anfangswertproblem

y0 D �ay C 1; t � 0; y.0/ D y0: (10.1)
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hat für y0 D 1=a die Konstante y 	 y0 als Lösung. Da hier die rechte Seite f der Glei-
chung affin-linear und damit global Lipschitz-stetig ist, ist dies auch die einzige Lösung.
Eine Störung ı im Anfangswert

y0ı D 1

a
C ı;

liefert (Anwendung von Lemma 8.7) die exakte Lösung

yı.t/ D 1

a
C ıe�at ; t � 0:

Der durch die Störung hinzugekommene Term klingt exponentiell ab, desto schneller, je
größer a ist. Für t beliebiges " > 0 gilt

jy.t/ � yı.t/j D jıje�at 
 jıj 
 "; (10.2)

wenn ı D " gewhlt wird. Die Lösung y 	 1=a ist also stabil, und da (10.2) mit t ! 1
gegen Null geht, sogar exponentiell stabil.

Diese Beispiele benutzten die Kenntnis der exakten Lösungen zum Nachweis der (In-)
Stabilität. Da explizites Lösen für die meisten Differentialgleichungen nicht möglich ist,
sind Aussagen interessant, bei denen diese Kenntnis nicht nötig ist. Der wesentliche Un-
terschied ist dabei, ob das betrachtete Problem linear oder nichtlinear ist.

10.1 Lineare Systeme

Bei linearen Systemen mit konstanten Koeffizienten beruht die Stabilitätsunterschung auf
der Lösungstheorie, wie sie in Abschn. 8.2 dargestellt wurde, und damit auf den Eigen-
werten der Systemmatrix. Ein lineares Differentialgleichungssystem hat die Form

y0.t/ D Ay.t/ C b.t/; t 2 I; (10.3)

mit A W I ! Rn�n; b W I ! Rn.
Zur Untersuchung der Stabilität kann sich auf die Nulllösung Ny D 0 der homogenen

Gleichung (b D 0) beschränkt werden, denn es gilt: Sind y; Ny zwei Lösungen von (10.3),
so ist y � Ny Lösung der homogenen Gleichung

y0.t/ D A.t/y.t/; t 2 I: (10.4)

Die Untersuchung der Stabilität einer Lösung Ny der inhomogenen Gleichung ist, sozusa-
gen geschrieben als

ky � Nyk D k.y � Ny/ � 0k
in den obigen Definitionen der Stabilität, äquivalent zur Untersuchung der Stabilität der
Nulllösung der homogenen Gleichung.
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Systememit konstanten Koeffizienten

Hat A konstante Koeffizienten, so kann jede Störung y der Nulllösung mit Hilfe des
reellen Fundamentalsystems aus Satz 8.16 dargestellt werden. Zur Abschätzung dessen
zeitabhängiger Terme wird folgende Aussage benutzt:

Übung 10.5 Zeigen Sie: Für �; � 2 R; � < � und jedes Polynom p beliebigen Grades
existiert c > 0 mit

ˇ̌
p.t/e�t

ˇ̌ 
 ce�t 8t � 0: (10.5)

Damit lässt sich eine Abschätzung für das reelle Fundamentalsystem herleiten:

Lemma 10.6 Gilt Re�k < � für alle Eigenwerte, dann erfüllt das reelle Fundamental-
system Y aus Satz 8.16 die Abschätzung

kY.t/k 
 ce�t 8t � 0

mit einer beliebigen Matrixnorm und c > 0. Ist diese Matrixnorm verträgl̈ich mit einer
Vektornorm, dann gilt für diese

kY.t/zk 
 ce�t kzk 8t � 0; z 2 Rn:

Gilt Re�k 
 0 für alle Eigenwerte und ist die algebraische Vielfachheit nk D 1 für alle
mit Re�k D 0, dann ist Y zumindest noch beschränkt, d. h. es gilt

kY.t/zk 
 ckzk 8t � 0; z 2 Rn:

Die gleichen Aussagen gelten, mit einem anderen c, auch für das Fundamentalsystem
eAt D Y.t/Y.0/�1.

Beweis Nach Satz 8.16 hat jede Komponente der Vektoren in Y die Form

g.t/p.t/ exp.Re�kt/; p 2 ˘nk�1; (10.6)

wobei g nur bei komplexen Eigenwerten auftritt und sich aus trigonometrischen Funktio-
nen und Vorfaktoren, die aus den Eigen- oder Hauptvektoren stammen, zusammensetzt.
Die Funktion g ist also beschränkt. Daher folgt mit Übung 10.5 die Abschätzung für jede
Komponente von Y.t/ und mit einer beliebigen Matrixnorm die erste Abschätzung. Die
zweite folgt aus der Verträglichkeit der Normen. Die dritte Abschätzung folgt ebenfalls
aus (10.6), da für die rein imaginären Eigenwerte p dort ein Polynom nullten Grades ist.
Die Aussagen für eAt folgen aus Anmerkung 8.17. �
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Der sich ergebende Stabilitätssatz für lineare Systeme lautet:

Satz 10.7 (Stabilität linearer Systeme) Sei A 2 Rn�n mit Eigenwerten �k; k D
1; : : : ; m wie in Lemma 8.13. Die Nulllösung von (10.4) ist

1. asymptotisch stabil, wenn maxk Re�k < 0;

2. instabil, wenn maxk Re�k > 0;

3. stabil, aber nicht asymptotisch stabil, wenn maxk Re�k D 0 und die Eigenwerte mit
Re�k D 0 algebraische Vielfachheit 1 haben.

Beweis 1. und 3. folgen direkt aus Lemma 10.6. Zu 2: Für einen Eigenwert mit Re�k > 0

werden die zugehörigen Komponenten (10.6) des Fundamentalsystems für t ! 1 unbe-
schränkt: Es gilt jp.t/j exp.Re�kt/ ! 1 für t ! 1. Die bei komplexem �k auftre-
tenden trigonometrischen Terme oszillieren, sie streben aber nicht gegen Null, daher wird
ihr Produkt mit den Termen p.t/ exp.Re�kt/ für t ! 1 unbeschränkt. Damit ist die
Nulllösung instabil. �

Die Eigenwerte des CO2-Boxmodells können numerisch berechnet werden:

Übung 10.8 Zeigen Sie: Für die in (8.3) angegebenen Parameter ist die Nulllösung des
homogenen CO2-Boxmodells asymptotisch stabil.

10.2 Nichtlineare Systeme

Es gibt mehrere Ansätze zur Untersuchung der Stabilität nichtlinearer Systeme. Wir be-
trachten hier nur die Methode, die auf der Linearisierung beruht. Andere Methoden, wie
etwa die von Lyapunov (vgl. z.B. [32, V §30]), werden hier nicht behandelt, da sie schwer
anwendbar sind. Wir trennen die rechte Seite der Systeme in einen linearen und einen
nichtlinearen Teil, schreiben also

y0 D Ay C b.t; y/; t 2 I; (10.7)

wobei A 2 Rn�n konstante Koeffizienten hat und b W I � Rn ! Rn nichtlinear ist. Der
Einfachheit wählen wir t0 D 0. Für Systeme dieser Art kann die obige Aussage für lineare
System zum Teil übertragen werden. Wir schreiben zunächst die Lösung ähnlich wie in
Lemma 8.7:

Lemma 10.9 Die Lösung von (10.7) mit Anfangswert y.0/ D y0 ist

y.t/ D eAt y0 C
tZ

t0

eA.t�s/b.s; y.s//ds; t 2 I: (10.8)
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Beweis Der Beweis ist analog zu Lemma 8.7 und folgt mit der Tatsache, dass eAt Funda-
mentalsystem ist, s. Lemma 8.10. �

Nun erhalten wir diese Aussage:

Satz 10.10 Sei b W I � Br.0/ stetig mit

lim
kzk!0

kb.t; z/k
kzk D 0 gleichmäßig 8t � 0; (10.9)

d. h. für jedes " > 0 existiert ein (von t unabhängiges) r > 0, so dass

kb.t; z/k
kzk < " 8z 2 Br.0/ � Rn; t � 0

(insbesondere also b.0; 0/ D 0). Dann sind Aussagen 1 und 2 von Satz 10.7 gültig, Aus-
sage 3 jedoch nicht.

Beweis Siehe [32, §29, Satz VIII]. �

Anmerkung 10.11 Das Resultat des letzten Satzes kann mit der Jacobi-Matrix A D
f 0.y�/ an einer stationären Lösung y� verwendet werden. Ist f dort bezüglich y total
differenzierbar, so gilt gerade (10.9), vgl. z. B. [11, §6].

10.3 Stabilität beim Lorenz-Modell

Das Lorenz-Modell steht oft als Beispiel für chaotisches Verhalten oder den sog. „Schmet-
terlingseffekt“. Damit ist gemeint, dass kleine Störungen große Auswirkungen haben kön-
nen, was gerade das oben definierte Stabilitätskonzept ist. Das war eine der Entdeckungen
von Lorenz mit diesen Gleichungen: Er hatte einen Modelllauf wiederholt, aber bei den
Anfangswerten einige Nachkommastellen weggelassen und festgestellt, dass sich die Lö-
sungen nach einiger Zeit deutlich unterschieden.

Mit den obigen Resultaten kann jetzt geklärt werden, wie das Stabilitätsverhalten der
exakten stationären Lösungen ist, vgl. die Abb. 9.3 und 9.6. Es kann ja auch sein, dass sich
ein „Schmetterlingseffekt“ zeigt, weil das verwendete numerische Verfahren ungeeignet
ist.

Beispiel 10.12 Die Eigenwerte von f 0.y/ im stationären Punkt y1 D .0; 0; 0/ aus
Übung 9.6 sind

�1 D �B; �2;3 D �1 C �

2
˙
r

.1 C �/2

4
� �.1 � R/:
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Die Parameter beim Lorenz-Modell sind alle nicht negativ, also gilt immer �1 < 0. Ist
der Term unter der Wurzel negativ, so sind �2; �3 komplex mit negativem Realteil. Ist der
Term unter der Wurzel positiv, dann gilt �3 < 0, aber �2 < 0 nur dann, wenn R < 1 ist.
Andernfalls ist �2 > 0.

Also ist y1 für R < 1 asymptotisch stabil. Die Rechnungen aus Übung 9.11 sollten also
bei Anfangswerten in der Nähe von y1 D .0; 0; 0/ zeigen, dass die gestörten Lösungen
wieder in den Nullpunkt zurücklaufen. Wenn nicht, liegt es an dem benutzten Verfahren
oder der Schrittweite. Bereits bei R D 0;99 zeigt sich ein entsprechendes Verhalten, auch
bei R D 1, obwohl der Stabilitätssatz 10.10 hier keine Aussage macht.

Für R > 1 ist y1 instabil, denn der Eigenwert �2 wird positiv. Dies bestätigt das Verhal-
ten in Übung 9.10 und Abb. 9.3. Eine Verkleinerung der Schrittweite und auch ein anderes
numerisches Verfahren wird also nichts bewirken. Im nächsten Kapitel kann dies getestet
werden, da dort entsprechende Verfahren vorgestellt werden.

Beispiel 10.13 Für den zweiten stationären Punkt

y2 D .
p

B.R � 1/;
p

B.R � 1/; R � 1/

zeigte Abb. 9.6 entscheidende Unterschiede bei der Simulation mit leicht gestörtem y2 als
Anfangswert, abhängig vom Parameter R, dort als Beispiel zwischen R D 20 (stabiles
Verhalten) und R D 28 (instabiles Verhalten). Die Jacobi-Matrix lautet hier

f 0.y2/ D

0
B@

�� � 0

1 �1 �pB.R � 1/p
B.R � 1/

p
B.R � 1/ �B

1
CA ;

und für die Eigenwerte � gilt

0 D det

0
B@

�� � � � 0

1 �1 � � �pB.R � 1/p
B.R � 1/

p
B.R � 1/ �B � �

1
CA

D �.� C �/.1 C �/.B C �/ � �B.R � 1/ � .� C �/B.R � 1/ C �.B C �/

D �.� C �/.1 C �/.B C �/ � .2� C �/B.R � 1/ C �.B C �/:

Für den dritten stationären Punkt y3 ergeben sich dieselben Eigenwerte, da sich nur die
X-und Y -Werte im Vorzeichen unterscheiden und diese Terme in der Determinante nur
quadratisch bzw. als Produkt auftauchen.

Ein Versuch der expliziten Berechnung der Nullstellen führt hier nicht weiter, es emp-
fiehlt sich eine numerische Berechnung der Eigenwerte.
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Abb. 10.1 Realteil zweier Eigenwerte von f 0.y/ im zweiten und dritten stationären Punkt,
s. Übung 10.14. Der dritte Eigenwert hat für alle gezeigten Parameterwerte einen negativen Realteil

Übung 10.14 Berechnen Sie numerisch die Eigenwerte der Jacobi-Matrix f 0.y2/ für
B D 8=3; � D 10 und ein Intervall für R und stellen Sie sie grafisch dar, vgl. Abb. 10.1.

Es ist zu erkennen, dass für B D 8=3, � D 10 nur für Werte von R 
 25 alle Eigen-
werte negativen Realteil haben. Das heißt, dass die beiden stationären Punkte y2; y3 nur
dann stabil sind. Dies passt zu Abb. 9.6.



11Verfahren höherer Ordnung für
Anfangswertprobleme

In diesem Kapitel werden Möglichkeiten zur numerischen Lösung von Anfangswertproblemen vor-
gestellt, die über die in Kap. 5 vorgestellten in Bezug auf Approximationsgüte und Effizienz hin-
ausgehen. Dies sind im wesentlichen explizite Runge-Kutta-Verfahren. Weiterhin beschrieben wir
prinzipiell die Methode der Schrittweitensteuerung zur adaptiven Wahl der Zeitschrittweite bei sol-
chen Verfahren. In globalen Klimamodellen werden diese Verfahren in der Praxis kaum eingesetzt,
jedoch ist z. B. bei der Berechnung von transienten Lösungen des Lorenz-Modells erkennbar, wie
sie sinnvoll benutzt werden können.

In vielen Fällen gibt es keine stationären Lösungen, sondern nur transiente, also zeitlich
veränderliche oder periodische. Was kann getan werden, um solche Lösungen effizient
zu berechnen? Bisher kennen wir nur das Euler- und das verbesserte Euler-Verfahren.
Außerdem haben wir zwar eine variable Schrittweite hk in den Einschrittverfahren zu-
gelassen, aber keine Methode angegeben, wie sie geschickt oder sogar optimal gewählt
werden kann. Darum geht es in diesem Abschnitt. Die Verfahren, die hier vorgestellt wer-
den, sind natürlich auch beim Pseudo-Zeitschrittverfahren wichtig, um Iterationsschritte
bei der Berechnung eines stationären Punktes zu sparen.

Wir betrachten hier zunächst Verfahren höherer Ordnung und dann eine Methode zur
adaptiven Schrittweitenwahl. Schließlich lernen wir exemplarisch Bibliotheksroutinen
kennen, in denen diese implementiert sind.

11.1 Konstruktion von Verfahren höherer Ordnung

Bisher haben wir nur (in Abschn. 5.4) zwei Varianten des Euler-Verfahrens erster bzw.
zweiter Ordnung kennengelernt. Sollen Zeitschritte eingespart werden, um Aufwand und
auch Rundungsfehler zu reduzieren, so können Verfahren höherer Ordnung verwendet
werden. Die Idee dabei basiert auf der Feststellung, dass – von tk zu tkC1 gehend – ja
nicht nur wie beim einfachen Euler-Verfahren die Steigung in tk , sondern eigentlich eine
gemittelte Steigung über das Intervall Œtk; tkC1� benötigt wird. Dies folgt direkt aus dem
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Hauptsatz der Differential- und Integralrechnung:

y.tkC1/ D y.tk/ C
tkC1Z
tk

f .t; y.t// dt: (11.1)

Diese gemittelte Steigung der Lösung wird nun nicht durch f .tk; yk/ wie beim Euler-
Verfahren approximiert, sondern durch Kombinationen von mehreren Steigungen im
Intervall Œtk; tkC1�. Dies entspricht einer numerischen Approximation des Integrals auf
der rechten Seite mit einer geeignet gewählten numeirschen Integrations- oder Quadra-
turformel, vgl. [22, Kapitel 3] oder andere Numerikbücher für Beispiele. Die in Œtk; tkC1�

nicht vorhandenenWerte der Näherungslösung lassen sich durch Zwischenberechnungen,
z. B. mit dem Euler-Verfahren, beschaffen. Anders ausgedrückt: Für das Integral in (11.1)
wird eine andere numerische Integrationsformel angewendet.

Beispiel 11.1 Ein Beispiel ist das bereits in Übung 5.9 vorgestellte verbesserte Euler-
Verfahren: Bei dem Betrachten einer Skizze liegt die Idee nahe, die Steigung im Mit-
telpunkt tk C hk=2 des Intervalls Œtk; tk C hk� zu benutzen, um den nächsten Punkt der
Näherungslösung zu konstruieren. Da im Punkt tk C hk=2 noch kein Näherungswert vor-
liegt, wird dieser mit dem Euler-Verfahren approximiert. Damit ergibt sich genau das
verbesserte Euler-Verfahrens aus (5.2) (oder auch Verfahren von Collatz):

ykC1 D yk C hkf

�
tk C hk

2
; yk C hk

2
f .tk ; yk/

�
; k D 0; 1; : : :

Manchmal wird das Verfahren auch wie folgt mit „gebrochenen“ Zeitschritten (engl: frac-
tional steps) geschrieben:

ykC1=2 D yk C hk

2
f .tk ; yk/; tkC1=2 D tk C hk

2

ykC1 D yk C hkf .tkC1=2; ykC1=2/; tkC1 D tkC1=2 C hk

2
; k D 0; 1; : : :

Übung 11.2 Welcher Quadraturformel entspricht dieses Verfahren?

Bedingungen für ein Verfahren zweiter Ordnung

Die oben für das verbesserte Euler-Verfahren benutzte Idee, Zwischenwerte zu berechnen
und damit die Steigung an der Stelle tk genauer zu approximieren, kann wie folgt verall-
gemeinert werden. Eine Taylor-Entwicklung für eine allgemeine Verfahrensfunktion mit
vier Parametern ˛; ˇ; 	1; 	2 ergibt:

˚.t; y; h/ WD 	1f .t; y/ C 	2f .t C ˛h; y C ˇhf .t; y//

D .	1 C 	2/f .t; y/ C 	2˛h
@f

@t
.t; y/ C 	2ˇh

@f

@y
.t; y/f .t; y/ C O.h2/:
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Mit der Kettenregel und wegen y.t/ D f .t; y.t// gilt

y00.t/ D d

dt
f .t; y.t// D @f

@t
.t; y.t// C @f

@y
.t; y.t//f .t; y.t//:

Eine Taylor-Entwicklung von y liefert damit

y.t C h/ � y.t/

h
D y0.t/ C h

2
y00.t/ C O.h2/

D f .t; y.t// C h

2

�
@f

@t
.t; y.t// C @f

@y
.t; y.t//f .t; y.t//

�
C O.h2/:

Ein Koeffizientenvergleich ergibt ein Verfahren zweiter Ordnung, wenn bestimmte Bedin-
gungen für die Parameter ˛; ˇ; 	1; 	2 erfüllt sind.

Übung 11.3 Wie lauten diese? Leiten Sie das Verfahren zweiter Ordnung her, das sich
für 	1 D 1=2 ergibt.

11.2 Allgemeine explizite Runge-Kutta-Verfahren

Runge-Kutta-Verfahren sind Verallgemeinerungen des oben vorgeführten Prinzips. Damit
werden Verfahren höherer Genauigkeit konstruiert. Der Nachweis wird analog mit Taylor-
Entwicklungen geführt, ist aber bei höheren Ableitungen naturgemäß komplizierter. Das
„klassische“ Runge-Kutta-Verfahren (s. u.) ist von vierter Ordnung. Der Begriff Runge-
Kutta-Verfahren wird für die gesamte Klasse von Verfahren benutzt.

Allgemein wird von Stufen eines Runge-Kutta-Verfahrens gesprochen für jeden einge-
führten Zwischenschritt bzw. Zeitpunkt im Intervall Œtk; tkC1�, der zur Approximation der
mittleren Steigung in diesem Intervall benutzt wird.

Die allgemeine Form eines m-stufigen expliziten Verfahrens lautet

˚.t; y; h/ D
mX

lD1

	lkl ; kl D f

�
t C ˛lh; y C h

l�1X
j D1

ˇlj kj

�
; l D 1; : : : ; m:

Die Koeffizienten ˛i ; ˇi ; 	i werden in einer sog. Butcher-Tabelle angeordnet:

˛1

˛2 ˇ21

:::
:::

: : :

˛m ˇm1 � � � ˇm;m�1

	1 � � � 	m�1 	m

(11.2)
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Beispiel 11.4 Beispiele sind das Euler-Verfahren (m D 1), das verbesserte Euler-
Verfahren (m D 2) und das klassische Runge-Kutta-Verfahren (m D 4) mit den
Butcher-Tabellen (von links nach rechts):

0

1

0
1
2

1
2

0 1

0
1
2

1
2

1
2

0 1
2

1 0 0 1
1
6

1
3

1
3

1
6

Konsistenz ergibt sich unter einer Bedingung an die Koeffizienten. Es gilt:

Übung 11.5 Zeigen Sie: Unter der Bedingung

mX
iD1

	i D 1

ist ein m-stufiges explizites Runge-Kutta-Verfahren konsistent. Gilt zusätzlich

i�1X
j D1

ˇij D ˛i ; i D 1; : : : ; m;

mX
iD1

	i ˛i D 1

2
;

dann hat das Verfahren mindestens die Konsistenzordnung p D 2.

Mit der Stufe steigt die Konsistenz- und damit die Konvergenzordnung bei Stabilität.
Es kann gezeigt werden, dass folgende Tabelle gilt, s. [33, 4.3.7]:

Stufe m 1 2 3 4 5 6 7 8 9 > 9

Ordnung p 1 2 3 4 4 5 6 6 7 < m � 2

11.3 Schrittweitensteuerung

Bei einem Einschrittverfahren ist die Schrittweite der Parameter, der sowohl (bei gewähl-
ter Stufe des Verfahrens) die Genauigkeit als auch den Aufwand und den Einfluss von
Rundungsfehlern bestimmt. Daher ist es am sinnvollsten, genau so große bzw. kleine
Schritte zu machen, wie für die gewünschte Genauigkeit erforderlich sind, aber keine
größeren. Diesem Ziel dient eine Schrittweitensteuerung. Mit Hilfe von Schätzern für den
im aktuellen Schritt zu erwartenden Fehler wird die Schrittweite während des Verfahrens
automatisch angepasst. Diese Methoden sind in modernen Bibliotheksroutinen eingebaut.
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Allerdings werden sie in der Klimasimulation nur wenig eingesetzt. Wir stellen sie hier
der Vollständigkeit halber vor.

Zu einer Schrittweitensteuerung gibt es zwei Möglichkeiten,

� sog. eingebettete Verfahren
� und die Methode der Halbierung der Schrittweite.

Eingebettete Verfahren

Eingebettete Verfahren bestehen aus einem Paar von Verfahren unterschiedlicher Fehler-
ordnungen (z. B. p D 2; 3). Für das Verfahren höherer Ordnung werden möglichst viele
der bereits für dasjenige niedrigerer Ordnung berechneten Werte wieder verwendet und
nur wenige oder keine zusätzlich neu berechnet. Das Verfahren der Ordnung p wird so
in das Verfahren der Ordnung p C 1 eingebettet. Mit den beiden Approximationslösun-
gen kann der Fehler geschätzt und damit eine optimale Schrittweite gefunden werden. Die
Darstellung hier folgt im Wesentlichen [15, Abschnitt 11.5].

Die Schätzung des lokalen Fehlers basiert auf folgender Idee: Für zwei Verfahren der
Ordnungen p und p C 1 mit den Verfahrensfunktionen p̊ ; p̊C1 gilt jeweils für die Ab-
schneidefehler:

�p.t; y; h/ D y.t C h/ � y.t/

h
� p̊.t; y.t/; h/ D O.hp/

�pC1.t; y; h/ D y.t C h/ � y.t/

h
� p̊C1.t; y.t/; h/ D O.hpC1/

(für die exakte Lösung y) und daher

�p.t; y; h/ D �pC1.t; y; h/ C p̊C1.t; y.t/; h/ � p̊.t; y.t/; h/

� p̊C1.t; y.t/; h/ � p̊.t; y.t/; h/ D O.hp/;

da der Fehler höherer Ordnung für kleines h vernachlässigt werden kann.
Im Algorithmus werden in jedem Zeitschritt die Werte der beiden Verfahrensfunktio-

nen (hier im k-ten Zeitschritt) berechnet. Ist nun

�.h/ WD k p̊C1.tk ; yk; h/ � p̊.tk ; yk; h/k 
 " (11.3)

für die gewünschte lokale Genauigkeitsschranke ", dann wird die aktuelle Schrittweite h

akzeptiert, ansonsten verkleinert und der Schritt wiederholt. Ist �.h/ umgekehrt kleiner als
", so wird die Näherung akzeptiert und für den nächsten Schritt h vergrößert. Da �.h/ �
�p.t; y; h/ 2 O.hp/ ist, gilt

�.h/ D C hp;



134 11 Verfahren höherer Ordnung für Anfangswertprobleme

mit einer unbekannten Konstanten C . Dann ist

hneu D h p
p

"=�

eine sinnvolle Wahl. Der (Teil-)Algorithmus der Schrittweitensteuerung im k-ten Zeit-
schritt lautet dann wie in der Formulierung aus [15, Alg. 11.10]:

Algorithmus 11.6 (Schrittweitensteuerung)

1. Berechne p̊ WD p̊.tk; yk; h/

2. Berechne p̊C1 WD p̊C1.tk ; yk; h/

3. Berechne � D k p̊C1 � p̊k
4. Wenn � 
 " W

(a) tkC1 WD tk C h

(b) ykC1 WD yk C h p̊

(c) k WD k C 1

5. Wenn � 
 "=2: h WD h p
p

"=�

Sonst: h WD h p
p

"=� und gehe zurück zu 1.

Die Schranke " kann noch mit einem Faktor � WD .1 C kykk/ versehen werden, der
eine Skalierung vornimmt und dafür sorgt, dass der Wert auch bei yk � 0 sinnvoll bleibt.

Beispiel 11.7 Das Runge-Kutta-Verfahren RK2(3) mit Ordnungen p D 2; .p C 1 D 3/

hat die Butcher-Tabelle:

0

1 1
1
2

1
4

1
4

p D 2 1
2

1
2

p D 3 1
6

1
6

2
3

Ähnliche Verfahren sind das von Runge-Kutta-Fehlberg und das von Dormand und
Prince, beide mit p D 4.5/, s. [15, Beispiel 11.12].

Berechnungmit zwei verschiedenen Schrittweiten

Eine andere Möglichkeit der Schrittweitensteuerung besteht in der Anwendung zweier
Schrittweiten (z. B. h und h=2) bei einem Verfahren derselben Ordnung. Damit kann der
Fehler geschätzt und eine Schrittweite bestimmt werden, s. [24, Abschnitt 7.2.5].
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Beispiel 11.8 In MATLAB1 gibt es mit ode23 und ode45 die oben beschriebenen ein-
gebetteten Verfahren der Ordnungen p D 2.3/ und p D 4.5/.

Beispiel 11.9 OCTAVE ist eine freie Alternative zu MATLAB mit ähnlicher Syntax und
Funktionalität. Hier steht die Funktion lsode zur Verfügung, die die gleichnamige Bi-
bliothek verwendet.

Beispiel 11.10 Eine Bibliothek, die direkt in Programmiersprachen wie FORTRAN, C
oder C++ aufgerufen werden kann, ist z. B. ODEPACK in FORTRAN. Auch die in OCTAVE

verwendete Bibliothek LSODE ist als Quellcode erhältlich.

Übung 11.11 Verwenden Sie Bibliotheksroutinen zur Lösung der Anfangswerte des
Energiebilanz-, der beiden Box- oder des Lorenz-Modells. Vergleichen Sie die Anzahl der
benötigten Schritte mit denen für das Euler-Verfahren bei verschiedenen Genauigkeiten.

1 MATLAB ist ein eingetragenes Warenzeichen von The MathWorks, Inc.
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Transportmodelle und -gleichungen oder Konvektions-Diffusionsgleichungen werden in diesem
Buch benutzt, um wichtige Konzepte der Modellierung, Diskretisierung und Lösung räumlich und
zeitlich verteilter Klimamodelle zu verdeutlichen. Die Modellierung basiert auf dem grundlegenden
Prinzip einer Erhaltungsgleichung. Fast alle wesentlichen Techniken und Problematiken können an
dieser Modellklasse erklärt werden. Transportmodelle bieten im Vergleich zu beispielsweise strö-
mungsmechanischen Gleichungen einen vergleichsweise einfachen Einstieg. Auf den hier und in
den folgenden Kapiteln (die sich als Beispiel auf die Transportgleichungen beziehen) präsentierten
Inhalten kann später aufgebaut werden.

Transportmodelle beschreiben die Verteilung der Konzentration eines Stoffes in einem
bewegten flüssigen oder gasförmigen Medium. Als Beispiel kann ein in einen Fluss oder
in die Atmosphäre eingeleiteter Schadstoff dienen oder auch ein Nährstoff im Ozean.
Transportgleichungen sind daher in der Klimaforschung von großer Bedeutung, z. B. um
die Bewegung und Verteilung von sog. Spurenstoffen (Tracern) in der Atmosphäre oder
im Ozean zu modellieren und zu simulieren.

Zustandsgröße ist die Konzentration y.x; t/ des Stoffes zur Zeit t am Ort x D
.x1; x2; x3/ in einem Gebiet ˝ � R3. Die Konzentration hat die Einheit des Stoffes
pro Volumeneinheit (also z. B. mmolm�3 oder, etwa für den Salzgehalt, m�3).

Für einen solchen Stoff kann folgendes Erhaltungsprinzip formuliert werden: Die zeit-
liche Änderung der Stoffmenge in einem raumfesten Gebiet wird durch vier Prozesse
bestimmt:

1. Advektion, das ist der Transport über den Rand des Gebietes in das Gebiet hinein oder
aus ihm heraus

2. Diffusion über den Rand des Gebietes
3. Reaktionen oder Prozesse chemischer oder biologischer Art (z. B. radioaktiver Zerfall,

Reaktionen mehrerer Stoffe miteinander, Nahrungsaufnahme, Absterben)
4. Quellen und Senken, also Hinzufügen oder Entnehmen des Stoffes.

137© Springer-Verlag Berlin Heidelberg 2015
T. Slawig, Klimamodelle und Klimasimulationen, Springer-Lehrbuch Masterclass,
DOI 10.1007/978-3-662-47064-0_12
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Wir formulieren das Erhaltungsprinzip nun mathematisch und leiten Gleichungen daraus
ab. Dabei schreiben wir die zugehörigen Terme zunächst in einer auf das Gebiet bezoge-
nen sog. integralen Form und anschließend in einer punktweisen, differentiellen Form.

Das betrachtete Gebiet ˝ kann eine beliebige, auch krummlinig berandete Form haben.
Den Rand bezeichnen wir mit @˝. Wir benötigen für bestimmte mathematische Aussagen
eine exakte, aber etwas technische Definition der Regularität des Randes, die in der fol-
genden Definition gegeben wird. Sie sagt aus, dass der Rand des Gebietes stückweise als
Graph einer Funktion dargestellt werden kann.

Definition 12.1 (Regularität eines Gebietes bzw. seines Randes) Sei ˝ � R3 offen und
@˝ sein Rand. Dann heißt @˝ regulär von der Klasse C 0;1 (bzw. C k für k 2 N), wenn
für alle x 2 @˝ eine Umgebung U and orthogonale Koordinaten .s1; s2; s0/ DW .s; s0/
existieren, so dass gilt:

1. U ist ein Quader in diesen Koordinaten, also

U D Œ�c1; c1� � Œ�c2; c2� � Œ�c0; c0� mit c1; c2; c0 > 0:

2. Es existiert eine Funktion ' 2 C 0;1.I / (bzw. C k.I /) mit

j'.s/j 
 c0

2
8s 2 I WD fs 2 R2 W jsi j < ci ; i D 1; 2g;

˝ \ U D f.s; s0/ 2 U W s0 < '.s/g;
@˝ \ U D f.s; s0/ 2 U W s0 D '.s/g:

Für den zu x 2 @˝ gehörigen Wert des Parametervektors s 2 I der lokalen Parametrisie-
rung ' des Randes wird s.x/ geschrieben, d. h. es gilt x D .s.x/; '.s.x///. Ein Gebiet ist
von der Klasse C 1, wenn es von C k mit k 2 N beliebig ist.

Bedingung 2 sagt aus, dass der Rand lokal als Graph von ' geschrieben werden kann,
und dass das Gebiet lokal auf einer Seite dieses Graphen liegt.

Die Transformation vom lokalen Koordinatensystem .s; s0/ D .s1; s2; s0/ in das ur-
sprüngliche System x D .x1; x2; x3/ kann durch eine Matrix S' , die

S'

0
B@

s1

s2

s0

1
CA D

0
B@

x1

x2

x3

1
CA bzw. S'

 
s.x/

'.s.x//

!
D x (12.1)

erfüllt, dargestellt werden. Es gibt also für jeden Punkt x 2 @˝ ein S' 2 R3�3, das (12.1)
erüllt.

Die Begriffe Regularität eines Gebietes und Regularität des Randes (eines Gebie-
tes) werden synonym verwendet. Kurz wird von einem C k-Gebiet gesprochen, ein C 0;1-
Gebiet heißt auch Lipschitz-Gebiet.

Übung 12.2 Zeigen Sie, dass ein Kreis im R2 ein reguläres Gebiet der Klasse C 1 ist.
Übertragen Sie dazu die Definition auf den zweidimensionalen Fall.
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12.1 Modellierung

Wir modellieren jetzt der Reihe nach alle vier oben genannten Effekte oder Prozesse, die
in die Erhaltungsgleichung eingehen und eine zeitliche Änderung der Stoffkonzentration
bewirken können. Dazu betrachten wir ein zeitlich festes Gebiet ˝. Die Stoffmenge des
gesamten in ˝ enthaltenen Stoffes beschreiben wir als

M˝.t/ WD
Z
˝

y.x; t/dx

mit der Konzentration y.x; t/ des Stoffes am Ort x 2 ˝ zur Zeit t . Die zeitliche Änderung
der Stoffmenge in ˝ erhalten wir damit als

M 0̋ .t/ D d

dt
M˝.t/ D d

dt

Z
˝

y.x; t/dx:

Da wir ˝ als zeitlich fest angenommen haben, hängen die Punkte x 2 ˝, über die inte-
griert wird, nicht von t ab. Im Folgenden schreiben wir

M 0̋ .t/ D MAdv.t/ C MDiff.t/ C MQuell.t/ C MReak.t/ (12.2)

mit vier, den o. g. Prozessen entsprechenden Termen. Die Einheit von M 0̋ .t/ ist Stoff-
menge pro Zeiteinheit. Die Konzentration y wird dabei in Stoffmenge (z. B. in mmol oder
auch in Masseeinheiten wie kg) pro Volumeneinheit in m3 angegeben. Da wir hier keine
Festlegung der Mengeneinheit vornehmen, benutzen wir für die Einheit der Konzentration
das Symbol Œy�. Also gilt

ŒM 0̋ .t/� D Œy�
m3

s
:

Advektion

Advektion ist der Transport des Stoffes durch die Strömung über den Rand des betrachte-
ten Gebietes ˝. Dieser Transport hängt von der als gegeben betrachteten Geschwindigkeit
v D .v1; v2; v3/ (oft wird auch .v1; v2; v3/ D .u; v; w/ geschrieben) ab. Es spielt hier nur
der Teil des Geschwindigkeitsvektors eine Rolle, der senkrecht (normal) zum Rand des
Gebiets steht, der tangentiale Geschwindigkeitsanteil hat keinen Einfluss. Ist der Rand
z. B. eine ebene Fläche, so sorgt eine tangentiale Geschwindigkeit parallel zu dieser Wand
klarerweise für keine Stoffmengenänderung im Gebiet. Um nur diesen senkrechten Anteil
der Geschwindigkeit zu beschreiben, wird folgende Definition verwendet.

Definition 12.3 (Tangential- und Normalenvektoren) Sei ˝ � R3 ein Gebiet mit C 1-
Rand @˝. Sei x 2 @˝ mit der lokalen Parametrisierung x D .s; '.s//, s D s.x/ 2 I und
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S' die Transformationsmatrix vom Koordinatensystem .x1; x2; x3/ in das lokale Koordi-
natensystem .s; s0/. Dann heißen die Vektoren

t1.x/ D S'

0
BB@

1

0
@'

@s1

.s/

1
CCA ; t2.x/ D S'

0
BB@

0

1
@'

@s2

.s/

1
CCA

Tangentialvektoren in x an @˝. Der Vektor n D n.x/ 2 R2 mit

n.x/ � t1.x/ D n.x/ � t2.x/ D 0; det
�

t1.x/; t2.x/; n.x/
�

> 0; kn.x/k2 D 1

heißt äußerer (Einheits-)Normalenvektor in x an @˝. Dabei bezeichnet

v � w WD
3X

iD1

vi wi ; v D .vi /
3
iD1; w D .wi /

3
iD1 2 R3

das Euklidische Skalarprodukt im R3.

Durch die Normierung ist der Wert des Skalarproduktes v � n der Anteil des Geschwin-
digkeitsvektors, der aus dem Gebiet heraus zeigt. Ist in einem Punkt v � n > 0, so hat der
Geschwindigkeitsvektor einen Anteil in Richtung des äußeren Normalenvektors, d. h. ein
Anteil von v zeigt aus dem Gebiet heraus, und es wird in diesem Punkt Stoff nach außen
transportiert. Ist v �n < 0, so wird in diesem Punkt Stoff in das Gebiet hinein transportiert.

Die Stoffmenge, die durch die Strömung über den Rand in das Gebiet hinein oder aus
dem Gebiet hinaus transportiert wird, ist damit durch

MAdv.t/ WD �
Z

@˝

y.x; t/v.x; t/ � n.x/ds.x/ (12.3)

gegeben. Das negative Vorzeichen ist in der Richtung des Vektors n (nämlich nach außen)
begründet. Die Einheit des Terms ergibt sich wie folgt: Da die Einheit der Geschwindig-
keit Länge pro Zeit ist, ergibt sich durch die Multiplikation mit der Fläche (Einheit: Länge
zum Quadrat) wieder die richtige Einheit Stoffmenge pro Zeit.

Diffusion

Diffusion entsteht, wenn in zwei benachbarten Bereichen des Gebietes unterschiedlich
hohe Konzentrationen vorliegen. Die Konzentration gleicht sich dann mit der Zeit in
beiden Bereichen aus. Man kann das auch mit zufällig zwischen beiden Bereichen „über-
springenden“ Stoffmolekülen erklären. Je höher die Konzentration, desto mehr Teilchen
„springen“, d. h. es entsteht ein Konzentrationsfluss vom Bereich mit höherer Konzentra-
tion zu dem mit niedrigerer Konzentration.
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Eine Änderung der Stoffmenge durch Diffusion in dem betrachteten Gebiet ˝ entsteht,
wenn am Rand @˝ der Gradient der Konzentration, also

ry.x; t/ WD grady.x; t/ WD
�

@y

@xi

.x; t/

�3

iD1

;

einen Anteil senkrecht, d. h. normal zum Rand hat. Wenn auf dem Rand ein von Null ver-
schiedener Gradient der Konzentration vorliegt und dieser in das Gebiet˝ hinein gerichtet
ist, dann ist die Konzentration in ˝ größer als außen, und die Konzentration im Gebiet
nimmt mit der Zeit ab. Ein einwärts gerichteter Gradient bedeutet ry.x/ � n.x/ < 0. Die
Gesamtänderung der Stoffmenge in ˝ ergibt sich durch Integration über den gesamten
Rand. Damit ergibt sich folgender Diffusionsterm:

MDiff.t/ WD
Z

@˝

�.x/ry.x; t/ � n.x/ds.x/: (12.4)

Der Koeffizient � ist der positive, vom Stoff und ggfs. auch von Ort und Zeit abhängige
Diffusionskoeffizient. Wenn � räumlich konstant ist, kann der Diffusionskoeffizienten hier
vor das Integral geschrieben werden. Im Fall � D �.y/ wird dieser Term und später die
gesamt Bilanzgleichung nichtlinear (bezüglich der Zustandsvariable y). Die Einheit von
� ist Länge zum Quadrat pro Zeiteinheit, was wieder zur richtigen Einheit

ŒMDiff.t/� D Œ��
Œy�

Œxi �
Œn�Œds� D m2

s

Œy�

m
� 1 � m2 D Œy�m3

s
;

also Stoffmenge pro Zeit, führt.

Quellen und Senken

Gibt es Quellen des Stoffes innerhalb des Gebietes (zum Beispiel durch Einleiten eines
Schadstoffes etc.) oder wird umgekehrt Stoff entfernt, so ergibt sich entsprechend ein
Zusatzterm

MQuell.t/ WD
Z
˝

q.x; t/dx:

Dabei ist q.x; t/ positiv für eine Quelle und negativ für eine Senke im Punkt x zum Zeit-
punkt t . In dieser Formulierung hat der Quellterm q die Einheit Konzentration pro Zeit,
also Œq� D Œy� s�1: Durch die räumliche Integration mit dx D dx1dx2dx3 und daher
Œdx� D Œdxi�

3 D m3 ergibt sich

ŒMQuell.t/� D Œy�m3 s
�1

:

Reaktionsterme

Chemische Reaktionen oder biologische Prozesse passieren lokal, und die Reaktion an
einem Punkt hängt normalerweise nicht mit der an anderen Punkten im Raum zusam-
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men. Sie sind allerdings in der Regel abhängig von der bereits vorhandenen Menge oder
Konzentration des Stoffes. Damit hat ein Reaktionsterm die Form

c.y/ oder c.x; t; y.x; t//;

je nachdem ob die Reaktion nur von der Konzentration oder auch noch explizit von Raum
und Zeit abhängt. Zum Beispiel können Reaktionen vom Lichteinfall (und damit von der
Zeit und vom Ort, z. B. im Meer von der Tiefe und dem Lichteinfall) abhängen. Die Funk-
tion c kann linear oder nichtlinear in y sein. Ein einfaches Beispiel ist der radioaktive
Zerfall, der nach dem Gesetz

c.y/ D ��y; � > 0; (12.5)

stattfindet. Dabei ist � die Zerfallsrate. Die durch die Reaktion in ˝ verursachte Änderung
der Stoffkonzentration ist daher in der allgemeinen Form

MReak.t/ D
Z
˝

c.x; t; y.x; t//dx:

Der Reaktionsterm c.y/ hat hier ebenfalls die Einheit Konzentration pro Zeit Œy� s�1:

Durch die räumliche Integration ergibt sich

ŒMReak.t/� D Œy�m3 s
�1

:

12.2 Die Transportgleichung in integraler Form

Insgesamt lautet die Bilanzgleichung (12.2) damit wie folgt. Wir sprechen hier von ei-
ner integralen Form, im Gegensatz zu der unten hergeleiteten Form, in der die Integrale
eliminiert werden.

M 0̋ .t/ D d

dt

Z
˝

y.x; t/dx (12.6)

D �
Z

@˝

y.x; t/v.x; t/ � n.x/ds.x/

„ ƒ‚ …
Advektion

C
Z

@˝

�.x; t/ry.x; t/ � n.x/ds.x/

„ ƒ‚ …
Diffusion

C
Z
˝

.c.x; t; y.x; t// C q.x; t//dx

„ ƒ‚ …
Reaktionen + Quellen

:
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Zur konkreten Berechnung der Konzentration in ˝ eignet sich diese Formulierung noch
nicht, sie muss diskretisiert werden, was wir im nächsten Kapitel beschreiben. Zumächst
soll aber noch eine zweite Form hergeleitet werden.

In der obigen Form treten Rand- und Volumenintegrale auf. Eine Zusammenfassung zu
einem Integral ist so nicht möglich. An dieser Stelle kann aber direkt ein Diskretisierungs-
verfahren, die Finite-Volumen-Methode, angesetzt werden. Diese Methode beruht gerade
auf der integralen Form und der Beschreibung der Bilanz durch Flüsse über den Rand von
gewählten diskreten Kontrollvolumina. Wir beschreiben diese Methode in Abschn. 13.1.

Transformation in Volumenintegrale

In der integralen Form (12.6) können mit dem Gauß’schen Integralsatz die beiden Ran-
dintegrale zu Volumenintegralen umgewandelt werden. Damit ergibt sich eine alternative
integrale Form, die anschließend einfach in eine differentielle Form, d. h. in eine Differen-
tialgleichung umgewandelt werden kann.

Wir nehmen für den Gauß’schen Satz jetzt an, dass ˝ beschränkt ist und der Rand @˝

glatt genug ist, vgl. Definition 12.1. Der Gauß’sche Satz gibt nun die Formel an, mit der
ein Oberflächen- oder Randintegral in ein Volumenintegral transformiert werden kann. Es
tritt folgende Größe auf:

Definition 12.4 (Divergenz) Sei D � Rd offen und F W D ! Rd in alle Koordinaten-
richtungen partiell differenzierbar. Dann heißt

divF.x/ WD r � F.x/ WD
dX

iD1

@Fi

@xi

.x/ 2 R

Divergenz von F .

Der Gauß’sche Satz lautet nun:

Satz 12.5 (Gauß’scher Integralsatz) Sei D � Rd offen, F W D ! Rd stetig differen-
zierbar und ˝ � D kompakt mit C 1-Rand. Dann gilt

Z
˝

divF.x/dx D
Z

@˝

F.x/ � n.x/ds.x/:

Beweis [12, §15 Satz 3]. �

Wir setzen in der Transportgleichung (12.6) für festes t

F .x/ D �y.x; t/v.x; t/ C �.x; t/ry.x; t/
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und erhalten mit dem Gauß’schen Satz
Z
˝

F.x/ � n.x/ds.x/ D
Z

@˝

.�y.x; t/v.x; t/ C �.x; t/ry.x; t// � n.x/ds.x/

D
Z
˝

div .�y.x; t/v.x; t/ C �.x/ry.x; t// dx:

Um auch auf der linken Seite der Gleichung das Integral einer Funktion und nicht sei-
ne zeitliche Ableitung zu erhalten, setzen wir voraus, dass wir Integration und zeitliche
Differentiation vertauschen können, dass also gilt

M 0̋ .t/ D d

dt
M˝.t/ D

Z
˝

@y

@t
.x; t/dx: (12.7)

Die Voraussetzungen dafür liefert folgender Satz aus der Analysis:

Satz 12.6 (Differenzierbarkeit parameterabhängiger Integrale) Sei ˝ � Rd , I � R
ein Intervall und F W ˝ � I ! R. Es gelte:

� Die Funktion t 7! F.x; t/ ist für jedes x 2 ˝ auf I differenzierbar.
� Die Funktion x 7! F.x; t/ ist für jedes t 2 I über ˝ integrierbar.
� Es gibt eine integrierbare Funktion NF W ˝ ! RC [ f1g mit

ˇ̌̌
ˇ@F@t

.x; t/

ˇ̌̌
ˇ 
 NF .x/ 8.x; t/ 2 ˝ � I:

Dann ist die Funktion G W I ! R, definiert durch

G.t/ D
Z
˝

F.x; t/dx; t 2 I;

differenzierbar mit

G0.t/ D
Z
˝

@F

@t
.x; t/dx; t 2 I:

Beweis [12, §11 Satz 2]. �

Wir können also Zeitableitung und Integration in (12.7) vertauschen, wenn

� y für alle t über ˝ integrierbar ist,
� die partielle Ableitung von y nach t in ˝ existiert und nach oben durch eine integrier-

bare Funktion beschränkt ist.
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Unter diesen Voraussetzungen ergibt sich eine zweite integrale Form der Transportglei-
chung:

Z
˝

@

@t
y.x; t/dx D �

Z
˝

div
�
y.x; t/v.x; t/

�
dx (12.8)

C
Z
˝

div
�
�.x/ry.x; t/

�
dx C

Z
˝

.c.y.x; t// C q.x; t//dx:

12.3 Die Transportgleichung in differentieller Form

Eine differentielle Form ist eine, bei der das Gebiet ˝, das ja – bis auf Glattheitseigen-
schaften – beliebig war, als differentiell oder infinitesimal klein oder „um einen Punkt x

zusammengezogen“ angesehen wird. So ergibt sich eine punktweise Transportgleichung
mit Diffusion und Reaktionsterm oderAdvektions-Diffusions-Reaktionsgleichung. Sie lau-
tet

@y

@t
.x; t/ D �div

�
y.x; t/v.x; t/

� C div
�
�.x/ry.x; t/

� C c.x; t; y.x; t// C q.x; t/:

Ist � unabhängig von x, so erhalten wir mit Benutzung des Laplace-Operators

div.rF.x// D
3X

iD1

@

@xi

�
@F

@xi

.x/

�
D

3X
iD1

@2F

@x2
i

.x/ DW �F.x/

die Gleichung

@y

@t
.x; t/ D �div .v.x; t/y.t; x// C �.t/�y.x; t/ C c.x; t; y.x; t// C q.x; t/:

Der erste Term rechts vom Gleichheitszeichen kann mit der Definition der Divergenz und
der Produktregel als

div .vy/.x; t/ D div v.x; t/ y.x; t/ C v.x; t/ � ry.x; t/ (12.9)

geschrieben werden. In vielen Fällen gilt für die Geschwindigkeit div v.x; t/ D 0 in ˝

für alle t . Dann vereinfacht sich diese Gleichung zu

@y

@t
.x; t/ D �v.x; t/ � ry.x; t/ C div .�.x; t/ry.x; t// C c.x; t; y.x; t// C q.x; t/:

(12.10)

und wie oben bei räumlich konstanter Diffusion.

Übung 12.7 Beweisen Sie die Produktregel (12.9).
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Rand- und Anfangswerte

Obige Differentialgleichung wird – ergänzt durch Anfangs- und Randwerte – zu einem
Anfangsrandwertproblem. Als Anfangswert wird eine Konzentration

y.x; t0/ D y0.x/; x 2 ˝

vorgegeben. Bei den Randbedingungen gibt es folgende Bezeichnungen:

Definition 12.8 (Typen von Randbedingungen) Für die Randbedingung bei einer Diffe-
rentialgleichung für die Zustandsvariable y D y.x/, x 2 ˝ � Rd definieren wir jeweils
für x 2 @˝:

Neumann-Randbedingungen:
@y

@n
.x/ WD ry.x/ � n.x/ D g.x/;

Dirichlet-Randbedingungen: y.x/ D g.x/;

Robin- oder gemischte Randbedingungen:
@y

@n
.x/ C ˛.x/y.x/ D g.x/:

mit vorgegebenen Funktionen ˛; g W @˝ ! R.

Bei Transportgleichungen sind meist Neumann-Bedingungen sinnvoll, die Flüsse des
Stoffes über den Rand des Gebietes definieren. Ist g D 0, so gibt es keinen Fluss über den
Rand, was z. B. am Boden des Ozeans oder auch an der Wasseroberfläche sinnvoll sein
kann. Dabei ist zu beachten:

Anmerkung 12.9 Bei einer stationären Transportgleichung ohne Reaktionsterm und mit
Neumann-Bedingungen kann eine Lösung nur bis auf eine additive Konstante eindeutig
bestimmt sein, da nur Ableitungen von y in der Gleichung und den Randbedingungen
auftreten.

12.4 Stationäre schwache Lösungen

Theoretische Aussagen zu Existenz und Eindeutigkeit der Lösungen für die Transport-
gleichung basieren meist auf dem Konzept der schwachen Lösungen. Wir stellen dieses
Konzept hier vor. Dabei beginnen wir mit der stationären Gleichung in der Form

�div .�ry/ C v � ry � cy D q in ˝ � Rd ; d 2 f1; 2; 3g
�ry � n D g auf @˝:

(12.11)

wobei alle von y abhängigen Terme auf die linke Seite gebracht wurden. Wir haben
hier eine Neumann-Randbedingung gewählt. Der Reaktionsterm ist als linear vorausge-
setzt, damit die gesamte Gleichung linear bleibt. Alle Koeffizientenfunktionen und Daten
v; �; c; q können von x abhängen.
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Mit schwacher Form der Gleichung ist gemeint, dass geringere räumliche Differenzier-
barkeitseigenschaften (als die in der differentiellen Form oben mit den dort auftretenden
zweiten Ableitungen) verlangt werden und die obige Gleichung in eine Integralgleichung
umgeformt wird.

Die Vorgehensweise ist die folgende: Die Gleichung wird mit einer zunächst nicht
spezifizierten Testfunktion � D �.x/ multipliziert und das Ergebnis über ˝ integriert.
Damit ergibt sich

�
Z
˝

div .�ry/�dx C
Z
˝

v � ry�dx �
Z
˝

cy�dx D
Z
˝

q�dx (12.12)

Ziel bei der Herleitung der schwachen Formulierung ist es, die zweimalige Differenzier-
barkeit von y, die für die Formulierung (12.12) nötig ist, abzuschwächen und eine Ablei-
tung auf die Testfunktion � zu verlagern. Dazu wird folgende Konsequenz des Gauß’schen
Satzes verwendet:

Korollar 12.10 Seien D; ˝ wie in Satz 12.5 und �; � einmal und y zweimal stetig auf D

differenzierbar. Dann gilt

�
Z
˝

div .�ry/�dx D
Z
˝

�ry � r�dx �
Z

@˝

�
@y

@n
�ds

Beweis Setze F D �ry � in Satz 12.5. Es gilt mit der Produktregel

div.�ry �/ D div.�ry/� C �ry � r�: (12.13)
�

Übung 12.11 Weisen Sie die Identität (12.13) nach.

Die Anwendung dieses Korollars auf den ersten Term in (12.12) ergibt unter Benutzung
der Randbedingung aus (12.11):

�
Z
˝

div .�ry/�dx D
Z
˝

�ry � r�dx �
Z

@˝

g�ds

und damit für die gesamte Gleichung (12.12):

Z
˝

�ry � r�dx C
Z
˝

v � ry�dx �
Z
˝

cy�dx D
Z
˝

q�dx C
Z

@˝

g�ds: (12.14)

Damit reicht nun einmalige Differenzierbarkeit aus. Da hier aber keine punktweise, son-
dern nur ein integrale Beziehung vorliegt, kann ein schwächerer Differenzierbarkeitsbe-
griff als der klassische verwendet werden.
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Schwache Differenzierbarkeit

Wir verwenden die Notation der Multiindizes

˛ 2 Nd ; j˛j WD
dX

iD1

˛i

und für die partiellen Ableitungen die Bezeichnung

D˛y.x/ WD @˛1y

@x
˛1

1

� � � @˛d y

@x
˛d

d

.x/:

Das Konzept der schwachen Ableitung ist wie folgt definiert:

Definition 12.12 Sei ˛ 2 Nd ein Multiindex. Die Funktion y 2 L1
loc.˝/ heißt schwach

differenzierbar (zum Multiindex ˛), wenn w 2 L1
loc.˝/ existiert mit

Z
˝

y.x/D˛�.x/dx D .�1/j˛j
Z
˝

w.x/�.x/dx 8� 2 C 1
0 .˝/:

Die Funktion w WD D˛y heißt schwache Ableitung von y. Im eindimensionalen Fall wird
ebenfalls die Bezeichnung y0 verwendet.

Der Raum L1
loc.˝/ ist der Raum der auf ˝ lokal integrierbaren Funktionen, d. h. derje-

nigen Funktionen, die auf jeder kompaktem Teilmenge von ˝ integrierbar sind, vgl. etwa
[12, §5, S. 58]. Der Raum C 1

0 .˝/ ist der Raum der unendlich oft in ˝ (im klassischen
Sinne) differenzierbaren Funktionen mit kompaktem Träger in ˝, vgl. [12, §10, S. 112].

Dass das Konzept der schwachen Ableitung wirklich weniger restriktiv ist als das der
klassischen Differenzierbarkeit, ist hier zu erkennen:

Beispiel 12.13 Sei ˝ D .�a; a/ mit a > 0 beliebig. Die Betragsfunktion y W ˝ ! R,
y.x/ D jxj ist einmal schwach differenzierbar mit schwacher Ableitung

y0.x/ D w.x/ D

8̂̂
<
ˆ̂:

�1; �a < x < 0;

1; 0 < x < a;

beliebig; x D 0:
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Es gilt für � 2 C 1
0 .�a; a/ mit partieller Integration (wobei die Randterme wegfallen):

aZ
�a

y.x/�0.x/dx D �
0Z

�a

x�0.x/dx C
aZ

0

x�0.x/dx

D
0Z

�a

�.x/dx �
aZ

0

�.x/dx

D �
0Z

�a

.�1/�.x/dx �
aZ

0

1 �.x/dx D �
aZ

�a

w.x/�.x/dx:

Eine solche Funktion mit einem „Knick“ ist im eindimensionalen Raum also schwach
differenzierbar. Für eine Treppenfunktion ist das nicht der Fall:

Übung 12.14 Zeigen Sie, dass die Funktion y aus Beispiel 12.13 nicht zweimal schwach
differenzierbar ist.

Jetzt wird deutlich, welche Voraussetzungen an die Funktionen y; � und auch an die
Daten q und g erfüllt sein müssen, damit diese Formulierung Sinn ergibt. Dazu definieren
wir den folgenden Funktionenraum:

Definition 12.15 (Sobolevraum H 1.˝/) Der Raum aller über ˝ quadratisch integrier-
baren Funktionen mit über ˝ quadratisch integrierbaren partiellen Ableitungen erster
Ordnung heißt

H 1.˝/ WD fy 2 L2.˝/ W D˛y 2 L2.˝/ 8˛ 2 Nd ; j˛j D 1g:

Für die Definition der Lp-Räume verweisen wir auf [12, §12], für eine al̈lgemeine
Definition von Sobolevräumen auf [34, 1.27] oder [35, Abschnitt 2.2.3]. Offensichtlich ist
für eine Funktion y 2 H 1.˝/ der Gradient ry 2 L2.˝/d .

Lemma 12.16 Der H 1.˝/ ist ein Hilbertraum mit dem Skalarprodukt

.y; w/ WD
Z
˝

ry.x/ � rw.x/dx C
Z
˝

y.x/w.x/dx:

Beweis Siehe [34, 1.27]. �
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Die natürliche Norm auf dem H 1.˝/ ist damit definiert als

kykH1.˝/ D
�
kryk2

L2.˝/d
C kyk2

L2.˝/

�1=2

:

Dabei ist die Norm für den Produktraum L2.˝/d als Euklidische Norm der L2.˝/-
Normen der Komponenten definiert.

Damit kann eine schwache Formulierung wie folgt angegeben werden:

Definition 12.17 Seien � 2 L1.˝/; v 2 L1.˝/d ; q 2 L2.˝/; g 2 L2.@˝/. Eine
Funktion y 2 H 1.˝/ heißt schwache Lösung von (12.11), wenn gilt:
Z
˝

�ry � r�dx C
Z
˝

v � ry�dx �
Z
˝

cy�dx D
Z
˝

q�dx C
Z

@˝

g�ds 8� 2 H 1.˝/:

(12.15)

Diese Formulierung lässt sich wie folgt verallgemeinern. Wir führen dazu den Dual-
raum eines normierten Raumes Y ein:

Definition 12.18 (Dualraum, duale Paarung) Sei Y ein normierter Vektorraum. Dann
heißt die Menge aller beschränkten linearen Funktionale

Y � WD fl W Y ! R; l ist linear und beschränktg
Dualraum von Y . Mit der Norm

klkY � WD sup
y2Y

hl; yiY �:Y

kykY

ist Y � ein normierter Vektorraum. Die Anwendung von l 2 Y � auf ein y 2 Y wird als
duale Paarung bezeichnet und geschrieben als

hl; yiY �;Y WD l.y/; y 2 Y:

Wir definieren jetzt mit Y D H 1.˝/ eine Bilinearform a W Y � Y ! R und ein
lineares Funktional l 2 Y � D H 1.˝/� durch

a.y; �/ WD
Z
˝

�ry � r�dx C
Z
˝

v � ry�dx �
Z
˝

cy�dx (12.16)

hl; �iY �;Y WD
Z
˝

q�dx C
Z

@˝

g�ds: (12.17)

Damit lautet eine zu (12.15) äquivalente Formulierung: Finde y 2 Y mit

a.y; �/ D hl; �iY �;Y 8� 2 Y:
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Existenz, Eindeutigkeit und stetige Abhängigkeit der Lösung

Für dieses Problem liefert der folgende Satz eine Existenz- und Eindeutigkeitsaussage
sowie eine Abschätzung für die Lösung. Dazu müssen folgende Voraussetzungen erfüllt
sein.

Definition 12.19 (Stetigkeit und Elliptizität einer Bilinearform) Sei Y ein normierter
Vektorraum. Eine Bilinearform a W Y � Y ! R heißt stetig, wenn eine von y; � 2 Y

unabhängige Konstante cs > 0 existiert mit

ja.y; �/j 
 cskykY k�kY 8y; � 2 Y:

Die Bilinearform heißt Y -elliptisch, wenn eine von y 2 Y unabhängige Konstante ce > 0

existiert mit

a.y; y/ � cekyk2
Y 8y 2 Y:

Mit diesen Voraussetzungen erhalten wir folgendes Resultat:

Satz 12.20 (Lax-Milgram-Lemma) Sei Y ein Hilbertraum und a eine stetige und Y -
elliptische Bilinearform. Dann existiert zu jedem l 2 Y � eine eindeutige Lösung der
Gleichung

a.y; �/ D hl; �iY �;Y 8� 2 Y;

für die gilt:

kykY 
 1

ce

klkY � :

Beweis Siehe [34, 4.2]. Die Abschätzung folgt mit � D y aus der Elliptizität:

cekyk2
Y 
 a.y; y/ D hl; yiY �;Y 
 klkY �kykY : �

Für die schwache Formulierung (12.15) der Transportgleichung sind diese Vorausset-
zung erfüllt:

Lemma 12.21 Die Bilinearform a W H 1.˝/ � H 1.˝/ ! R, definiert in (12.15), ist
stetig.
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Beweis Es gilt mit einer relativ groben Abschätzung.

a.y; �/ D
Z
˝

�ry � r�dx C
Z
˝

v � ry�dx �
Z
˝

cy�dx


 k�kL1.˝/krykL2.˝/d kr�kL2.˝/d C kvkL1.˝/krykL2.˝/d k�kL2.˝/

C kckL1.˝/kykL2.˝/k�kL2.˝/


 �k�kL1.˝/ C kvkL1.˝/ C kckL1.˝/

� kykH1.˝/k�kH1.˝/: �

Für den Nachweis, dass das Funktional l beschränkt ist, wird eine Abschätzung der
Norm der Restriktion einer Funktion aus H 1.˝/ auf den Rand @˝ des Gebietes benötigt,
d. h. die Beschränktheit des folgenden Operators:

Definition 12.22 (Spuroperator) Der Operator

�@˝ W H 1.˝/ ! L2.@˝/ W y 7! yj@˝ (12.18)

heißt Spuroperator.

Die Abschätzung lautet nun:

Lemma 12.23 (Spursatz) Der Spuroperator (12.18) ist linear und beschränkt, d. h. es
existiert c > 0 mit

k�@˝ykL2.@˝/ 
 c� kykH1.˝/ 8y 2 H 1.˝/:

Beweis Siehe [34, A 6.6] oder [36, Satze I.1.5,6], [37, 6.2.40,41]. �

Das Bild des Spuroperators wird wie folgt bezeichnet:

Definition 12.24 Wir definieren

H 1=2.@˝/ WD fv 2 L2.@˝/ W 9y 2 H 1.˝/; �@˝y D vg

mit der Norm

kvkH1=2.@˝/ WD min
y2H1.˝/

fkykH1.˝/; y 2 H 1.˝/; �@˝y D vg:
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Räume H s mit reellen Werten von s lassen sich auch anders definieren, vgl. [36]. Nun
lässt sich die Beschränktheit des Funktionals l in (12.15) zeigen:

Lemma 12.25 Das Funktional l , definiert in (12.17), ist in H 1.˝/� mit

klkH1.˝/� 
 maxfkqkL2.˝/; c� kgkL2.@˝/g:

Beweis Es gilt mit dem Spursatz, Lemma 12.23:

hl; �iY �;Y D
Z
˝

q�dx C
Z

@˝

g�ds 
 kqkL2.˝/k�kL2.˝/ C kgkL2.@˝/k�kL2.@˝/


 maxfkqkL2.˝/; c� kgkL2.@˝/gk�kH1.˝/: �

Für die Transportgleichung gilt folgende Eigenschaft, die beim Nachweis der Elliptizi-
tät der Bilinearform a hilfreich ist.

Lemma 12.26 Seien y 2 H 1.˝/; v 2 H 1.˝/d mit div v D 0 fast überall in ˝ und
v � n D 0 fast überall auf @˝. Dann gilt

Z
˝

.v � ry/ydx D 0:

Beweis Es gilt punktweise für x 2 ˝:

.v � ry/y D
X

j

vj

@yi

@xj

y D 1

2

X
j

vj

@.y2/

@xj

D 1

2
v � r.y2/:

Für F D vy2 gilt mit Produktregel und der Divergenzfreiheit von v:

divF D div
�
vy2

� D .div v/ y2 C v � r.y2/ D v � r.y2/;

also 1
2
divF D .v � ry/y fast überall in ˝. Der Gauß’sche Satz 12.5 ergibt jetzt

Z
˝

.v � ry/ydx D 1

2

Z
˝

divF dx D 1

2

Z
@˝

F � nds D 1

2

Z
@˝

vy2 � nds

D 1

2

Z
@˝

y2v � nds D 0

wegen v � n D 0 fast überall auf dem Rand. �
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Damit folgt nun die Elliptizität:

Lemma 12.27 Es gelte

�min WD essinff�.x/ W x 2 ˝g > 0

cmin WD essinff�c.x/ W x 2 ˝g > 0

mit dem essentiellen Infimum

essinffF.x/ W x 2 ˝g WD supf" 2 R W jfF.x/ < "gj D 0g:

Dann ist die Bilinearform a elliptisch auf H 1.˝/ mit

ce D minf�min; cming:

Beweis Es gilt mit Lemma 12.26:

a.y; y/ D
Z
˝

�ry � rydx C
Z
˝

.v � ry/ydx �
Z
˝

cy2dx

� �minkryk2
L2.˝/d

C cminkyk2
L2.˝/

� minf�min; cmingkyk2
H1.˝/

: �

Damit lässt sich das Lax-Milgram-Lemma 12.20 anwenden. Es gilt:

Korollar 12.28 Seien q 2 L2.˝/; g 2 L2.@˝/; v 2 H 1.˝/d \ L1.˝/d mit div v D 0

fast überall in ˝ und v � n D 0 fast überall auf @˝ sowie �; c 2 L1.˝/ mit den Voraus-
setzungen aus Lemma 12.27. Dann existiert genau eine schwache Lösung y 2 H 1.˝/ der
Transportgleichung (12.15). Diese erfüllt

kykH1.˝/ 
 maxfkqkL2.˝/; c� kgkL2.@˝/g
minf�min; cming :

Beweis Die Abschätzung folgt mit den Lemmas 12.25 und 12.27. �

Der Nachweis der Existenz einer schwachen Lösung führt wie folgt auf die Existenz
einer klassischen Lösung der ursprünglichen Transportgleichung (12.11): Sei eine schwa-
che Lösung gegeben, die zusätzlich zweimal stetig differenzierbar ist, so dass alle Terme
in (12.11) punktweise definiert sind. Dann kann die Anwendung der Green’schen For-
mel in (12.14) rückgängig gemacht und (12.12) zurück erhalten werden. Ein Test mit
� 2 C 1

0 .˝/ liefert dann die punktweise Formulierung (12.11). Dabei wird [12, §10
Hilfssatz 1] benutzt.
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Hier wurde nur ein Typ von Randbedingungen untersucht. Es ist an der Vorgehensweise
zu erkennen, dass das Auftreten des Reaktionsterms und sein Vorzeichen wichtig sind für
die Abschätzung der Elliptizität.

Für vorgegebeneWerte der Konzentration auf dem Rand (Dirichlet-Randbedingungen)
lässt sich ähnlich verfahren. Dann kann mit Hilfe des Spursatzes (Lemma 12.23) das
Problem auf homogene Randwerte transformiert und eine Formulierung mit Hilfe des
folgenden Raumes untersucht werden:

Definition 12.29 (SobolevraumH 1
0
.˝/) Wird definieren

H 1
0 .˝/ WD fy 2 H 1.˝/ W �@˝ y D 0g:

Dieser Raum ist ein abgeschlossener Teilraum des H 1.˝/ und damit wieder ein Hil-
bertraum. Für den Nachweis der Elliptizität im Fall von Dirichlet-Randbedingungen wird
folgende Aussage benutzt:

Lemma 12.30 (Poincaré-Ungleichung) Sei ˝ � Rd beschränkt und offen y 2 H 1
0 .˝/.

Dann existiert c D c.˝/ mit

kykL2.˝/ 
 ckrykL2.˝/d :

Für ˝ � Œ�s; s�d mit s > 0 gilt c.˝/ D 1 C s.

Beweis [38, II.1.5-7], [34, 4.7], für eine Verallgemeinerung: [35, Lemma 2.5]. �

Übung 12.31 Beweisen Sie die Poincaré-Ungleichung. Benutzen Sie den Hauptsatz der
Differential- und Integralrechnung.

Übung 12.32 Leiten Sie die schwache Formulierung für die Transportgleichung mit
Dirichlet-Randwerten her und untersuchen Sie Existenz und Eindeutigkeit der Lösung.
Was muss der Reaktionsterm erfüllen?

12.5 Klassische Lösung eines reinen Diffusionsproblems

In diesem Abschnitt diskutieren wir die klassische Lösung der räumlich eindimensionalen
reinen Diffusionsgleichung mit konstanter Diffusion, also

@y

@t
� �

@2y

@x2
D 0 in ˝ � I (12.19)

mit der Einfachheit halber ˝ D .0; 1/, dem Zeitintervall I D Œ0; 1/ und homogenen
Dirichlet-Randbedingungen.
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Einerseits zeigen sich hier die Möglichkeiten und Grenzen einer direkten Lösungs-
methode auf, andererseits gibt die explizite Darstellung der Lösung einen Eindruck vom
zeitlichen Verhalten der Lösung. Bei der Wahl geeigneter Zeitdiskretisierungsverfahren
wird dies nützlich sein.

Die Gleichung (12.19) kann mit dem sog. Produktansatz (auch Trennung der Variablen
genannt), gelöst werden. Der Ansatz

y.x; t/ D X.x/T .t/; x 2 ˝; t 2 I;

mit X W ˝ ! R; T W I ! R führt auf

T 0.t/X.x/ � �T .t/X 00.x/ D 0:

Nach Division durch X.t/T .t/ ¤ 0 ergibt sich

T 0.t/
T .t/

D �
X 00.x/

X.x/
DW � 2 R:

Beide Brüche müssen konstant sein, da der rechte nicht von t und der linke nicht von x

abhängt. Damit folgt

T 0.t/ D �T .t/;

also

T .t/ D c1e�t ; c1 2 R:

Die Differentialgleichung für X lautet

X 00.x/ D �

�
X.x/:

Die Lösung der Differentialgleichung für � � 0 lautet

X.x/ D c2 exp
�p

�=�x
�C c3; c2; c3 2 R; (12.20)

doch damit ergibt sich für homogene Randbedingungen nur die Nulllösung (warum?). Bei
Anfangswerten y0 ¤ 0 liefert (12.20) also keine brauchbare Lösung. Für � < 0 sind (für
homogene Randbedingungen) die Funktionen

X�.x/ D � sin
�pj�j=� x

�
;

p
j�j=� 2 fj� W j 2 Ng;

Lösungen. Umformuliert ergibt sich mit � D �.j�/2:

Tj .t/ D cj exp
��.j�/2�t

�
; cj 2 R; Xj .x/ D � sin.j�x/; j 2 N
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bzw. (wenn das Vorzeichen mit in die Konstante cj hineingenommen wird):

yj .x; t/ D cj exp
��.j�/2�t

�
sin.j�x/; cj 2 R; j 2 N:

Da die Gleichung linear ist, ist jede Linearkombination

y.x; t/ D
X
j 2N

cj exp
��.j�/2�t

�
sin.j�x/; cj 2 R; (12.21)

wieder eine Lösung. Die Konstanten cj werden aus der Anfangsbedingung

y.x; 0/ D
X
j 2N

cj sin.j�x/

bestimmt. Die zentrale Beobachtung, die wir hier machen wollen, ist dass für t ! 1 alle
Lösungsanteile exponentiell abfallen. Insbesondere bedeutet das wegen der Linearität der
Gleichung: Liegt eine stationäre Lösung vor und wird diese zu einem Zeitpunkt gestört,
dann klingt die Störung mit der Zeit ab.

Übung 12.33 Was ändert sich, wenn inhomogeneDirichlet--Randbedingungen oder Neu-
mann-Randbedingungen betrachtet werden?



13Diskretisierung imOrt

Am Beispiel der Transportgleichungen werden in diesem Kapitel Methoden zur Ortsdiskretisierung
vorgestellt. Zunächst wird die Methode der Finiten Volumen behandelt, die sich aus der integralen
Form der Gleichungen ergibt. Wir beginnen dabei mit der räumlich eindimensionalen Variante, da
daran das Prinzip am einfachsten zu verstehen ist. Die gewählte Darstellung kann auch unabhän-
gig von der Modellierung im letzten Kapitel betrachtet werden. Es handelt sich praktisch um eine
Modellierung direkt in diskreter Form, was bei Klimamodellen in vielen Fällen anzutreffen ist. Die
Problematik der numerischen Instabilität bei konvektions- oder advektionsdominanten Problemen
wird diskutiert, und darauf angepasste Diskretisierungsschemata werden vorgestellt. Anschließend
beschreiben wir die Methode der Finiten Differenzen, die auf der differenziellen Form der Mo-
dellgleichungen basiert, ebenfalls in eindimensionaler Form. Wir gehen auf die Besonderheiten des
mehrdimensionalen Falles ein, ohne diesen im Detail auszuarbeiten. Die beschriebenen Ortsdiskre-
tisierungstechniken können auch für andere Gleichungen benutzt werden.

13.1 Die Finite-Volumen-Methode

Aus der integralen Form (12.6) der Transportgleichung kann in einer Raumdimension
relativ einfach eine Ortsdiskretisierung abgeleitet werden. Es kann aber auch direkt eine
diskrete Modellierung durchgeführt werden, was wir hier auch tun. So werden hier einige
Inhalte aus dem letzten Kapitel wiederholt.

Eine eindimensionale Modellierung oder Formulierung kann begründet werden bzw.
sinnvoll sein, wenn alle Prozesse und gegebenen Daten bezüglich zwei Koordinatenrich-
tungen als konstant angenommen werden (können).

Wir betrachten den Transport eines Stoffes (z. B. eines Nähr- oder Schadstoffes) in ei-
nem bewegten Medium (z. B. Wasser oder Luft) in einem Gebiet ˝, das zunächst noch
eine Teilmenge des R3 ist. Die Geschwindigkeit des bewegten Mediums sei bekannt. Ge-
sucht ist die Konzentration y D y.x; t/ des Stoffes in Stoffmenge pro Volumeneinheit am
Punkt x 2 ˝ zur Zeit t .

159© Springer-Verlag Berlin Heidelberg 2015
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Als Voraussetzung für eine eindimensionale Modellierung nehmen wir an:

� Das betrachtete Gebiet ˝ ist ein zeitlich fester Quader, der in einer, hier der x1-
Richtung durch ein Intervall Œa; b� gegeben ist. Die Seitenlängen in die anderen beiden
Richtungen spielen keine Rolle, ihr Produkt und damit die Seitenfläche des Quaders in
der x2-x3-Ebene sei A.

� Die Konzentration y hängt nur von der Koordinatenrichtung x1 und der Zeit t ab und ist
bezüglich der anderen beiden Ortsrichtungen x2; x3 konstant, d. h. es gilt: y D y.x1; t/.

� Die Geschwindigkeit und alle anderen gegeben Daten haben nur eine Komponente in
dieselbe Richtung, und diese verbleibende Komponente ist wieder nur eine Funktion
von x1 und t . Es gilt also v D .v1; 0; 0/ mit v1 D v1.x1; t/. Für die Geschwindigkeit
wird darüber hinaus vorausgesetzt, dass sie konstant bezüglich x1 ist. Dies resultiert
aus der Massenerhaltung des bewegten Mediums, das wir hier als inkompressibel an-
nehmen (vgl. Abschn. 16.3). Das ergibt dann

div v.x1; x2; x3; t/ D 0

(vgl. Definition 12.4) und im eindimensionalen Fall

@v1

@x1

.x1; t/ D 0:

Da so alle Abhängigkeiten von x2; x3 entfallen, schreiben wir kurz

x1 DW x und v1 DW v

für die eindimensionale Koordinate bzw. den verbleibenden Anteil der Geschwindigkeit.
Es wird zu erkennen sein, dass sich die Seitenfläche A des betrachteten Quaders aus den
Gleichungen herauskürzt.

Äquidistantes Ortsgitter

Wir unterteilen nun das Intervall Œa; b� der Einfachheit halber zunächst in äquidistante
Teile. In Klimamodellen ist jedoch vor allem in der vertikalen Richtung ein Gitter mit
unterschiedlichen Gitterweiten üblich. Die sich ergebenden Änderungen werden später
diskutiert. Das äquidistante Ortsgitter wird wie folgt bezeichnet (vgl. Abb. 13.1):

xi D a C ih; i D 0; : : : ; N; h D b � a

N
: (13.1)

Dabei ist h die Länge einer Gitterzelle oder Gitterbox Vi , die in x-Richtung das Intervall
Œxi�1; xi � ausmacht und in der durch die anderen beiden Koordinatenrichtungen aufge-
spannten Ebene die Fläche A hat. Eine solche Zelle Vi wird auch ein finites Volumen
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Abb. 13.1 Nummerierung
der Gitterpunkte, Boxen und
Variablen in der eindimensio-
nalen Finite-Volumen-Methode
für die Transportgleichung xi−1 xi xi+1

h h� � � �

Vi Vi+1

yi yi+1
v v v
κi−1 κi κi+1

genannt, was dem Verfahren seinen Namen gibt. Es gibt N solcher Zellen mit den Indizes
i D 1; : : : ; N , und es gilt

˝ D
N[

iD1

Vi ; intVi \ intVj D ;; i ¤ j: (13.2)

Hier bezeichnet intM WD M n @M das Innere einer Menge. Da wir integrale Beziehun-
gen aufstellen, ist es nicht wichtig, ob die Vi als offene oder wie hier als abgeschlossene
Mengen betrachtet werden.

Wir stellen nun eine Bilanz für die Stoffmenge in der Zelle Vi auf und betrachten die
vier oben genannten Prozesse Advektion, Diffusion, Quellen/Senken und Reaktionen. Dazu
nehmen wir an, dass die Werte der Konzentration y in der Gitterbox Vi bezüglich x kon-
stant sind, oder anders ausgedrückt: Wir approximieren den Mittelwert der Konzentration
in jeder Zelle. Diese Approximation bezeichnen wir mit

yi .t/ � y.x; t/; x 2 Vi ; i D 1; : : : ; N:

Die Stoffmenge in einer Gitterbox

Die gesamte in Box Vi enthaltene Stoffmenge zur Zeit t ist gegeben durch

Mi .t/ D
Z
Vi

y.x; t/dx D A

xiZ
xi�1

y.x; t/dx � Ahyi .t/:

Da wir ˝ als zeitlich fest angenommen haben, hängt die Menge, über die integriert wird,
nicht von t ab.

Die zeitliche Änderung der Stoffmenge in ˝ erhalten wir – wenn wir die mathema-
tischen Voraussetzungen für das Vertauschen von Integration und Differentiation (vgl.
Satz 12.6) als gegeben annehmen – als

M 0
i .t/ D A

xiZ
xi�1

@y

@t
.x; t/dx � Ahy0

i .t/:
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Dabei ist y0
i die Zeitableitung der approximierten Lösung in Box Vi . Die Einheit von

M 0
i .t/ ist Stoffmenge pro Zeiteinheit, also ŒM 0

i .t/� D Œy�s�1, vgl. dazu die Begründung
hinter Formel (12.2).

Advektion

Unter Advektion verstehen wir den durch die Geschwindigkeit v D v.t/ des Mediums
bewirkten Transport von Stoff über den Rand des betrachteten Gebietes, hier also der
Box Vi . Diesen Transport oder Fluss bezeichnen wir mit MAdv;i .t/. Der Rand von Vi ist
gegeben durch die beiden Seiten mit Fläche A an den Punkten x D xi�1 und x D xi . Es
ergibt sich für die zur Zeit t über den Rand ein- und ausströmende Stoffmenge

MAdv;i .t/ D Av.t/
�
y.xi�1; t/ � y.xi ; t/

�
; (13.3)

wobei benutzt wurde, dass v bezüglich des Ortes konstant ist. Ist v.t/ > 0, so strömt über
den linken Rand Stoff ein und über den rechten Rand hinaus. Durch Multiplikation mit
der Fläche (Einheit: Länge zum Quadrat) ergibt sich für den Fluss die richtige Einheit
Stoffmenge pro Zeit. Wir benötigen jetzt in (13.3) die Werte von y an den Rändern der
Gitterbox. Da wir nur Werte innerhalb der Box haben, benutzen wir die Mittelwerte der
Werte in den beiden angrenzenden Gitterboxen

y.xi�1; t/ � yi�1.t/ C yi .t/

2
; y.xi ; t/ � yi .t/ C yiC1.t/

2
:

Damit wird (13.3) durch

MAdv;i .t/ � Av.t/
yi�1.t/ � yiC1.t/

2
(13.4)

approximiert. Diese Mittelwertbildung ist unabhängig vom Vorzeichen von v. Alterna-
tiv können wir auch in Abhängigkeit des Vorzeichens von v nur den Wert der Gitter-
box nehmen, die der Strömungsrichtung entgegengesetzt ist. Auf diese sog. Upwind-
Diskretisierungsvariante gehen wir später ein.

Der diskrete Advektionsterm (13.3) ergibt sich ebenfalls aus der integralen Form der
Gleichung (12.6) wenn der dortige Advektionsterm

MAdv.t/ D �
Z

@˝

y.x; t/v.x; t/ � n.x/ds.x/

diskretisiert wird: Das Skalarprodukt aus Geschwindigkeits- und Normalenvektor ist in
diesem Fall nur auf den beiden Seitenflächen der quaderförmigen Box Vi , die senkrecht



13.1 Die Finite-Volumen-Methode 163

zur x-Koordinate (x D xi�1 und x D xi ) sind, ungleich Null. Mit den beiden äußeren
Einheitsnormalenvektoren

n.xi�1/ D .�1; 0; 0/; n.xi / D .1; 0; 0/ (13.5)

an diese Seitenflächen folgt dann genau (13.3).

Diffusion

Diffusion ist der Prozess, der durch molekulare Bewegung einen Ausgleich zwischen
benachbarten Bereichen unterschiedlicher Stoffkonzentration bewirkt, auch wenn das Me-
dium, in dem sich der Stoff befindet, in Ruhe ist.

Diffusion kann über die Ableitung senkrecht zu den beiden Rändern, also in x-
Richtung modelliert werden. Am linken Rand der Box Vi , also bei x D xi�1, kann der
Zuwachs der Stoffmenge in der Box über diesen Rand durch den Term

�A �.xi�1; t/
@y

@x
.xi�1; t/

und am rechten Rand durch

A �.xi ; t/
@y

@x
.xi ; t/

modelliert werden. Dabei ist � ein positiver Parameter (der Diffusionskoeffizient), der
vom Stoff, von Ort und Zeit und von der Konzentration y selbst abhängen kann. Im Fall
� D �.y/ wird die Gleichung nichtlinear.

Zu beachten sind die richtigen Vorzeichen: Bei einer positiven Ableitung am linken
Rand sind „mehr“ Stoffmoleküle innerhalb von Vi als außerhalb, also diffundieren Mole-
küle nach außen, und die Stoffmenge in der Box verringert sich entsprechend, was durch
das negative Vorzeichen ausgedrückt wird. Am rechten Rand ist es umgekehrt. Insgesamt
ergibt sich für die durch Diffusion bewirkte zeitliche Änderung der Stoffmenge in Vi der
Wert

MDiff;i .t/ D A

�
�.xi ; t/

@y

@x
.xi ; t/ � �.xi�1; t/

@y

@x
.xi�1; t/

�
; (13.6)

wobei hier der allgemeine Fall eines von Ort und Zeit abhängigen Diffusionskoeffizien-
ten � D �.x1; t/ angenommen wurde. Nur wenn � räumlich konstant ist, kann man den
Diffusionskoeffizienten hier ausklammern. Es ist zu erkennen, dass � an den Rändern der
Gitterboxen, d. h. als

�i .t/ WD �.xi ; t/; i D 0; : : : ; N; (13.7)
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benötigt wird, vgl. Abb. 13.1. Außerdem benötigen wir auch Approximationen für die
Ortsableitung von y an den Rändern der Gitterboxen. Da wir nur Werte innerhalb der
Boxen haben, benutzen wir Differenzenquotienten (vgl. Definition 7.11):

@y

@x
.xi�1; t/ � yi .t/ � yi�1.t/

h
;

@y

@x
.xi ; t/ � yiC1.t/ � yi .t/

h
:

Damit approximieren wir den Diffusionsanteil durch

MDiff;i .t/ D A

�
�i .t/

yiC1.t/ � yi .t/

h
� �i�1.t/

yi .t/ � yi�1.t/

h

�
: (13.8)

Für die Einheit ergibt sich mit Œ�� D m2 s�1:



MDiff;i .t/

� D ŒA�Œ��
Œy�

Œx1�
D m2m

2

s

Œy�

m
D Œy�m3

s
:

Der diskrete Diffusionsterm (13.8) ergibt sich ebenfalls aus der integralen Form der
Gleichung (12.6) wenn dort im Diffusionsterm

MDiff.t/ D
Z

@˝

�.x/ry.x; t/ � n.x/ ds.x/:

die Darstellung (13.5) der Normalenvektoren an den beiden Seitenflächen Vi und die
Tatsache, dass der Gradient ry.x; t/ in diesem Fall senkrecht zu diesen Flächen steht,
benutzt wird.

Quellen und Senken

Quellen und Senken des Stoffes werden mit einer Funktion

qi .t/ � q.x; t/; x 2 Vi ;

die positiv für eine Quelle und negativ für eine Senke in der i-ten Box ist, angegeben. Der
Quellterm ergibt sich dann zu

MQuell;i .t/ D A

Z
Vi

q.x; t/dx � Ahqi .t/:

Die Funktion qi .t/ hat die Einheit Œq� D Œy� s�1: Die Herleitung dieses Terms aus der
integralen Form (12.6) der Transportgleichung ergibt sich sofort.
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Reaktionsterme

Chemische oder biologische Reaktionen werden durch einen Term der Form

ci .t; yi .t// � c.x; t; y.x; t//; x 2 Vi

modelliert. Die Funktion c kann linear oder nichtlinear in y sein. Ein einfaches Beispiel
ist der radioaktive Zerfall, vgl. (12.5). Die durch die Reaktion in Vi verursachte Änderung
der Stoffkonzentration ist daher

MReak;i .t/ D A

Z
Vi

c.x; t; y.x; t//dx � Ahci .t; yi .t//:

Der Reaktionsterm ci .t; yi .t// hat wieder die Einheit Konzentration pro Zeit Œy� s�1: Auch
hier ergibt sich die Herleitung dieses Terms aus der integralen Form (12.6) der Transport-
gleichung unmittelbar.

Die diskrete Gleichung

Alle vier Prozesse zusammengefasst ergeben folgende Bilanz:

M 0
i .t/ D MAdv;i .t/ C MDiff;i .t/ C MQuell;i .t/ C MReak;i .t/:

Einsetzen der oben hergeleiteten Approximationen für diese Terme ergibt eine diskrete
Gleichung, aus der der Faktor der Fläche A in x2-x3-Ebene herausgekürzt werden kann.
Zusammengesetzt und durch h dividiert ergibt sich, wobei wir das Argument t der Über-
sicht wegen weglassen:

y0
i D v

yi�1 � yiC1

2h
C �i

yiC1 � yi

h2
� �i�1

yi � yi�1

h2
C ci .yi / C qi ; i D 1; : : : ; N;

(13.9)

und wenn die Unbekannten zusammengefasst werden:

y0
i D

��i�1

h2
C v

2h

�
yi�1 � �i C �i�1

h2
yi C

� �i

h2
� v

2h

�
yiC1 C ci .yi / C qi ;

(13.10)

Ist der Diffusionskoeffizient räumlich konstant, d. h. gilt �i D � für alle i , dann ergibt
sich:

y0
i D

� �

h2
C v

2h

�
yi�1 � 2�

h2
yi C

� �

h2
� v

2h

�
yiC1 C ci .yi / C qi ; i D 1; : : : ; N:

(13.11)
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Randbedingungen

Die in (13.10) auftretenden Werte y0; yN C1 beziehen sich auf Gitterboxen, die außerhalb
des Rechengebietes liegen. Sie müssen daher direkt oder indirekt über Randbedingungen
bestimmt werden. Dabei können an verschiedenen Teilen des Randes (im eindimensio-
nalen Fall sind das die beiden Punkte x D a; b) verschiedene Bedingungen vorgegeben
sein. Welche Randbedingungen sinnvoll sind, ergibt sich aus der modellierten Konfigura-
tion. Wir unterscheiden folgende Fälle:

1. Vorgegebene Konzentration am Rand (Dirichlet-Randbedingung): Hier ist die Konzen-
tration am Rand als

y0.t/ D ya.t/ bzw. yN C1.t/ D yb.t/ (13.12)

gegeben, was in die Gleichung (13.10) für i D 1

y0
1 D ��1 C �0

h2
y1 C

� �1

h2
� v

2h

�
y2 C c1.y1/ C q1 C

� �0

h2
C v

2h

�
ya„ ƒ‚ …

Dr1

(13.13)

bzw. i D N (analog) eingesetzt wird. Diese Randbedingung ist für Transportgleichun-
gen sinnvoll, wenn Messungen am Rand vorliegen und der Verlauf im Gebiet daraus
rekonstruiert werden soll. Es gibt sich in der entsprechenden Gleichung ein zusätzli-
cher Randterm r1.t/ bzw. rN .t/. Die Koeffizienten der Unbekannten .yi /

N
iD1 bleiben

unverändert.
2. Vorgegebener Fluss über den Rand (Neumann-Randbedingung): Die Stoffflüsse über

den Rand sind in der Gleichung (13.9) für i D 1 bzw. i D N durch den jeweiligen
Advektionsterm

v
y0.t/ � y2.t/

2h
DW Nya.t/ bzw. v.t/

yN �1.t/ � yN C1.t/

2h
DW Nyb.t/ (13.14)

gegeben, für den Randdaten Nya.t/ bzw. Nyb.t/ eingesetzt werden können. Es ergibt sich
z. B. für x D b, also i D N :

y0
N D Nyb C �N

yN C1 � yN

h2
� �N �1

yN � yN �1

h2
C cN .yN / C qN :

Zusätzlich treten die Werte y0; yN C1 auch in den Diffusionstermen auf. Dort können
dann entweder die Diffusionskoeffizienten an den Rändern, also �0; �N D 0 gesetzt
werden (wenn angenommen wird, dass keine Diffusion über den Rand stattfindet).
Oder die Unbekannten y0 bzw. yN C1 werden mit (13.14) durch y2; Nya bzw. yN �1; Nyb

ausgedrückt. Wieder ergibt sich in Gleichung i D 1 oder i D N ein zusätzlicher Rand-
term r1.t/; rN .t/, und auch die Koeffizienten einiger Unbekannten verändern sich.
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3. Keine Konzentrationsänderung am Rand (homogene Neumann-Bedingung): Dies gibt
z. B. einen Sinn, wenn an einem Rand eineMessung vorliegt (Fall 1) und das Gebiet als
so groß angenommen wird, dass am anderen Rand die Konzentration konstant bleibt,
weil der Stoff schon diffundiert ist.
Dieser Spezialfall kann natürlich wie oben mit Nya D 0 bzw. Nyb D 0 behandelt werden.
Alternativ können die Werte y0; yN C1 dazu benutzt werden, um am Rand des Gebietes
ein räumlich konstantes Verhalten der Konzentration zu simulieren. Dann wird

y0.t/ D y1.t/ oder/und yN C1.t/ D yN .t/

in (13.9) gesetzt, und es ergibt sich z. B. für x D b; i D N :

y0
N D v

2h
.yN �1 � yN C1„ƒ‚…

DyN

/ C �N

yN C1 � yN

h2„ ƒ‚ …
D0

� �N �1

yN .t/ � yN �1

h2
C cN .yN / C qN :

(13.15)

Im Diffusionsterm bedeutet das also praktisch �N D 0. Hier entsteht kein zusätzlicher
Randterm, aber wieder verändern sich die Koeffizienten der Unbekannten (hier der
von yN ).

Das diskrete System inMatrix-Vektor-Schreibweise

Der Advektions- und Diffusionsanteil kann – da sie linear sind – als Matrix-Vektor-
Produkt geschrieben werden. Mit den Vektorfunktionen

y.t/ D .yi .t//
N
iD1; q.t/ D .qi .t//

N
iD1; c.t; y.t// D .ci .t; yi .t///

N
iD1

gilt dann

y0.t/ D .AAdv.t/ C ADiff.t// y.t/ C c.t; y.t// C q.t/ C r.t/: (13.16)

Die Matrizen AAdv.t/ und ADiff.t/ haben jeweils die Dimension N �N , der Vektor r.t/ 2
RN enthält eventuelle Randterme.

Für die oben aufgeführten verschiedenen Randbedingungen ergeben sich unterschied-
liche Einträge in den Matrizen und im Vektor r . Wir geben zwei Beispiele an: Dabei
benutzen wir die Bezeichnung

tridiagN .a; b; c/ WD

0
BBBBB@

b c

a
: : :

: : :

: : :
: : : c

a b

1
CCCCCA

; a; b; c 2 C (13.17)
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für eine Tridiagonalmatrix inCN �N mit konstanten Einträgen auf der Diagonalen und den
Nebendiagonalen.

Beispiel 13.1 Für vorgegebeneKonzentrationen (13.12) an beiden Rändern und konstante
Diffusion ergeben sich die Matrizen:

AAdv.t/ D v.t/

2h
tridiagN .1; 0; �1/; ADiff.t/ D �.t/

h2
tridiagN .1; �2; 1/ (13.18)

und der Vektor

r.t/ D
��

�.t/

h2
C v.t/

2h

�
ya.t/; 0; : : : ; 0;

�
�.t/

h2
C v.t/

2h

�
yb.t/

�
2 RN : (13.19)

Beispiel 13.2 Für eine gemischte Randbedingung mit vorgegebenem Wert der Konzen-
tration in x D a und keiner Stoffkonzentrationänderung in x D b wirkt sich die zweite
Bedingung auf die letzte Zeile der Advektionsmatrix aus, sie bestimmt sich aus (13.15).
Es entsteht ein zusätzlicher Diagonaleintrag:

AAdv.t/ D v.t/

2h

0
BBBBB@

0 �1

1
: : :

: : :

: : : 0 �1

1 �1

1
CCCCCA

: (13.20)

In der Diffusionsmatrix entfällt im letzten Diagonalelement der Eintrag �N , vgl. (13.15).
Damit lautet die Matrix mit �i D �i .t/:

ADiff.t/ D 1

h2

0
BBBB@

�.�0 C �1/ �1

�1 �.�1 C �2/ �2.t/

: : : �.�N �2 C �N �1/ �N �1

�N �1 ��N �1

1
CCCCA : (13.21)

Der Vektor mit den Randtermen hat nur den Eintrag r1 wie in (13.19).

Übung 13.3 Geben Sie das diskrete System für den Fall mit keiner Änderung der Kon-
zentrationen an beiden Rändern an (Fall 3 oben).

13.2 Die Finite-Differenzen-Methode

Die Finite-Differenzen-Methode ist eine Diskretisierungsmethode, die auf der differenti-
ellen Form einer Bilanzgleichung oder allgemein einer Differentialgleichung aufbaut. Bei
dieser Methode wird ähnlich wie bei der Finiten-Volumen-Methode ein Gitter erzeugt.
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Anschließend werden die in der punktweisen Formulierung auftretenden Differentialope-
ratoren durch Differenzenquotienten approximiert.

In diesem Abschnitt zeigen wir die Anwendung der Finite-Differenzen-Methode auf
die differentielle Form (12.10) der Transportgleichung. Wir betrachten hier zunächst wie-
der nur die Ortsdiskretisierung.

Differenzenquotienten

Die Ableitungen erster und zweiter Ordnung bezüglich der Ortskoordinaten xi werden mit
Differenzenquotienten approximiert. Für die ersten Ableitungen wurden diese bereits in
Definition 7.11 angegeben, denjenigen für die zweite Ableitung ergänzen wir hier, wieder
nur im eindimensionalen Fall.

Definition 13.4 (Differenzenquotient 2. Ordnung) Sei D � R offen, y W D ! R,
x 2 D und h > 0. Dann definieren wir den zentralen Differenzenquotienten zweiter
Ordnung:

D2;hy.x/ WD y.x C h/ � 2y.x/ C y.x � h/

h2
:

Es gilt:

Satz 13.5 Ist y wie oben und in Œx � h; x C h� � D viermal stetig differenzierbar, dann
gilt

D2;hy.x/ � y00.x/ 2 O.h2/; h ! 0:

Übung 13.6 Beweisen Sie dieses Resultat und zeigen Sie, dass sich der zentrale Differen-
zenquotient zweiter Ordnung durch Nacheinanderanwendung des vorwärts und rückwärts
genommenen Differenzenquotienten erster Ordnung ergibt.

Anwendung auf die eindimensionale Transportgleichung

Wir wenden die oben eingeführten Differenzenquotienten nun auf die Ortsableitungen der
räumlich eindimensionalen Transportgleichung (12.10) an. Die Zeitableitung bleibt zu-
nächst unverändert. Die Geschwindigkeit v wird wieder als räumlich konstant angesehen,
was im eindimensionalen Fall sinnvoll ist (vgl. die Begründung in Abschn. 13.1).

In der Diskretisierung wird das gleiche Gitter

xi D a C ih; i D 0; : : : ; N; xN D b; h D b � a

N
(13.22)
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wie bei der Finiten-Volumen-Methode in (13.1) benutzt. Im Gegensatz dazu wird jetzt mit
yi allerdings die Approximation der Lösung am Gitterpunkt xi bezeichnet:

yi .t/ � y.xi ; t/:

Wird definieren analog an den Gitterpunkten

qi .t/ WD q.xi ; t/; ci .t; yi .t// WD c.xi ; t; yi .t//

und setzen für die Ableitung im Advektionsterm den zentralen Differenzenquotienten ers-
ter Ordnung an:

v.t/
@y

@x
.xi ; t/ � v.t/

yiC1.t/ � yi�1.t/

2h
:

Den Diffusionsterm diskretisieren wir durch Hintereinanderausführen des Vorwärts- und
rückwärtsgenommen Differenzenquotienten erster Ordnung als

@

@x

�
�

@y

@x

�
.xi ; t/ � Dh=2

�
�.xi ; t/Dh=2y.xi ; t/

�

D Dh=2

 
�.xi ; t/

y.xi C h
2
; t/ � y.xi � h

2
; t/

h

!

D �

�
xi C h

2
; t

�
yiC1.t/ � yi .t/

h2
� �

�
xi � h

2
; t

�
yi .t/ � yi�1.t/

h2
:

Übung 13.7 Welche Approximation ergibt sich bei Verwendung der Differenzenquotien-
ten D�

h ; DC
h (und umgekehrt)? Was ist der Nachteil dieser beiden Varianten gegenüber

der oben verwendeten?

Es werden bei der hier verwendeten Variante die Diffusionskoeffizienten nicht an den
Gitterpunkten, sondern an den Mittelpunkten xi � h

2
der Boxen Vi (vgl. Abb. 13.1) benö-

tigt. Mit der Bezeichnung

�i .t/ WD �

�
xi � h

2
; t

�
; i D 1; : : : ; N; (13.23)

ergibt sich

@

@x

�
�

@y

@x

�
.xi ; t/ � �iC1.t/

yiC1.t/ � yi .t/

h2
� �i .t/

yi .t/ � yi�1.t/

h2
:

Die Diskretisierung der Differentialgleichung (12.10) im Inneren des Gebietes (d. h. für
die Gitterpunkte i D 1; : : : ; N � 1) ergibt so folgende Gleichungen (das Argument t ist
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wieder unterdrückt):

y0
i D �v

yiC1 � yi�1

2h
C �iC1

yiC1 � yi

h2
� �i

yi � yi�1

h2
C ci .yi / C qi ;

i D 1; : : : ; N � 1:

Dies sind N � 1 Gleichungen für zunächst N C 1 Unbekannte. Die fehlenden zwei Glei-
chungen kommen aus den Randbedingungen. Ein Umsortieren ergibt

y0
i D

� �i

h2
C v

2h

�
yi�1 � �i C �iC1

h2
yi C

��iC1

h2
� v

2h

�
yiC1 C ci .yi / C qi ; (13.24)

i D 1; : : : ; N � 1:

Dies entspricht dem System (13.10) das sich mit Finiten Volumen ergibt, wenn N dort
durch n WD N �1 hier ersetzt wird. Einziger Unterschied ist die andere Bedeutung (13.23)
statt (13.7) der Diffusionskoeffizienten und ihre damit verbundene veränderte Nummerie-
rung.

Übung 13.8 Die Werte des Diffusionskoeffizienten in den Mittelpunkten der Boxen kön-
nen auch durch Mittelung der Werte an den Kanten, also als

�

�
xi � h

2
; t

�
� �i�1.t/ C �i .t/

2

mit �i wie in (13.7) approximiert werden. Welche Diskretisierung ergibt sich in diesem
Fall?

Das System kann wieder in Matrix-Vektor-Form als

y0.t/ D .AAdv.t/ C ADiff.t// y.t/ C c.t; y.t// C q.t/ C r.t/ (13.25)

geschrieben werden. Der zusätzliche Vektor r.t/ 2 Rn und die genaue Form der Matrizen
bestimmen sich wieder aus den Randbedingungen.

Beispiel 13.9 Im Fall beiderseitiger Dirichlet-Randbedingungen ergibt sich dasselbe Sys-
tem wie bei der Finite-Volumen-Methode in Beispiel 13.1.

Beispiel 13.10 Wie in Beispiel 13.2 sei an einem Rand x D a der Wert der gesuchten
Funktion y vorgegeben (also eine Dirichlet-Randbedingung), in x D b sei eine homogene
Neumann-Bedingung gegeben, d. h.

y.a; t/ D ya.t/;
@y

@x
.b; t/ D 0:
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Für die Dirichlet-Randbedingung an x D a wird in (13.24) für i D 1 der Wert y0 durch
den Randwert ya ersetzt. Dies ergibt für konstante Diffusion

y0
1 D �2�

h2
y1 C

� �

h2
� v

2h

�
y2 C c1.y1/ C q1 C

� �

h2
C v

2h

�
ya„ ƒ‚ …

DWr1

: (13.26)

Bei der Diskretisierung der Ableitung am rechten Rand existiert der Gitterpunkt xN C1,
der bei der Verwendung des zentralen Differenzenquotienten für die Ableitung in xN D b

benötigt wird, nicht. Wir verwenden daher den rückwärts genommenen Differenzenquo-
tienten für die Neumann-Bedingung:

@y

@x
.xN ; t/ � yN .t/ � yN �1.t/

h
:

Damit erhalten wir aus der homogenen Neumann-Bedingung yN .t/ D yN �1.t/; und die
letzte Gleichung (i D N � 1) ändert sich zu

y0
N �1 D

� �

h2
C v

2h

�
yN �2 �

� �

h2
C v

2h

�
yN �1 C cN �1.yN �1/ C qN �1:

Die Matrizen in (13.25) sind jetzt gegeben durch

AAdv.t/ D v.t/

2h

0
BBBBB@

0 �1

1
: : :

: : :

: : : 0 �1

1 �1

1
CCCCCA

; ADiff.t/ D �.t/

h2

0
BBBBB@

�2 1

1
: : :

: : :

: : : �2 1

1 �1

1
CCCCCA

2 Rn�n

mit n D N � 1. Der Diagonaleintrag in der letzten Zeile der Advektionsmatrix ist hinzu-
gekommen, und an gleicher Stelle hat sich die Diffusionsmatrix verändert. Der Randterm
r.t/ in (13.25) enthält nur den Eintrag (13.26), alle anderen sind Null.

Anmerkung 13.11 DieMatrizen entsprechen derjenigen der Finite-Volumen-Methode aus
Beispiel 13.2 mit konstanter Diffusion.

Der Nachteil der beschriebenen Diskretisierung der Neumann-Bedingung ist die nied-
rigere GenauigkeitO.h/ als die der Differentialgleichung im Inneren (O.h2/). Eine zweite
Variante vermeidet diesen Genauigkeitsverlust:

Beispiel 13.12 Wir behalten yN C1 als „virtuelle“ Unbekannte und diskretisieren die Dif-
ferentialgleichung auch an der Stelle x D xN D b. Damit erhalten wir ein Gleichungssys-
tem der Dimension n D N . Die Neumann-Bedingung diskretisieren wir mit dem zentralen
Differenzenquotienten, der die Ordnung O.h2/ hat, und setzen

@y

@x
.xN / � yN C1 � yN �1

2h
D 0;
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also yN C1.t/ D yN �1.t/: Die Gleichungen für i D 1; : : : ; N � 1 haben dieselbe Form
wie in (13.24), und diese Gleichung benutzen wir nun auch für i D N . Darin entfällt der
erste Term genau wegen der Neumann-Bedingung, und yN C1 wird im zweiten Term durch
yN �1 ersetzt:

y0
N .t/ D �.t/

�2yN .t/ C 2yN �1.t/

h2
C cN .t; yN .t// C qN .t/:

Damit ist nun

AAdv.t/ D v.t/

2h

0
BBBBB@

0 �1

1
: : :

: : :

1
: : : �1

0 0

1
CCCCCA

; ADiff.t/ D �.t/

h2

0
BBBBB@

�2 1

1
: : :

: : :

1
: : : 1

2 �2

1
CCCCCA

2 RN �N :

Beide Matrizen haben sich im letzten unteren Nebendiagonaleintrag geändert.

Übung 13.13 Stellen Sie die diskreten System für beidseitige Neumann- und beidseitige
Dirichlet-Randbedingungen auf. Vergleichen Sie mit den entsprechenden Systemen der
Finite-Volumen-Methode.

13.3 Lösbarkeit des diskreten stationären Systems

In diesem Abschnitt soll die Lösbarkeit der stationären diskreten Gleichungen untersucht
werden, die sich – wie gesehen – für beide Diskretsierungsvarianten (Finite-Volumen-
oder Finite-Differenzen-Methode) nicht unterscheiden.

In Korollar 12.28 wurde gezeigt, dass die Transportgleichung mit Neumann-Bedin-
gungen unter bestimmten Voraussetzungen an � und c (vor allem c ¤ 0) eine eindeutige
schwache stationäre Lösung hat. Übung 12.32 zeigt das gleiche Resultat für Dirichlet-
Bedingungen sogar für c D 0. Gibt es eine klassische Lösung mit entsprechender zwei-
maligen Differenzierbarkeit im Ort, dann ist diese Lösung auch eine schwache Lösung
und somit eindeutig.

Es ist wünschenswert, dass auch das diskretisierte stationäre System, das sich aus
(13.16) bzw. (13.25) zu

.AAdv C ADiff/y C c.y/ C q C r D 0 (13.27)

ergibt, diese Eigenschaft hat. Ist c linear, so ist die Lösbarkeit des dann linearen Systems
äquivalent zur Regularität der Matrix AAdv C ADiff C cI mit der N -dimensionalen Ein-
heitsmatrix I .
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Der Diffusionsanteil

Wir betrachten zunächst den Diffusionsanteil mit konstantem � und dazu als Beispiel
die Matrix (13.18) aus den Beispielen 13.1 bzw. 13.9 der Finiten-Volumen- bzw. Finite-
Differenzen-Diskretisierung:

ADiff D �

h2
tridiagn.1; �2; 1/: (13.28)

Für diese Matrix kann gezeigt werden, dass sie regulär ist.

Definition 13.14 Eine Matrix A 2 Rn�n heißt positiv-semidefinit, wenn

x>Ax � 0 8x 2 Rn (13.29)

gilt. Sie heißt positiv-definit, wenn Gleichheit in (13.29) nur für x D 0 gilt. Sie heißt
negativ-(semi-)definit, wenn .�A/ positiv-(semi-)definit ist.

Für eine definite Matrix gelten folgende Aussagen:

Übung 13.15 Zeigen Sie:

1. Eine positiv- oder negativ-definite Matrix ist regulär.
2. Eine symmetrische Matrix ist genau dann positiv- (bzw. negativ-) definit, wenn alle

Eigenwerte positiv (bzw. negativ) sind.
3. Für eine symmetrische positiv-definite Matrix A gilt

�minkxk2
2 
 x>Ax 
 �maxkxk2

2 8x 2 Rn;

wobei �min; �max der betragskleinste bzw. -größte Eigenwert von A ist.

Für die Matrix ADiff kann direkt mit der Definition ihre Definitheit gezeigt werden:

Übung 13.16 Zeigen Sie, dass die Matrix A WD tridiagn.�1; 2; �1/ positiv-definit ist.

Da Schrittweite h und Diffusionskonstante � größer Null sind, ist der diskretisierte
Diffusionsoperator mit konstanter Diffusion in der Form (13.28) und auch in den Varianten
für andere Randbedingungen regulär:

Korollar 13.17 Die Matrix ADiff aus (13.28) ist negativ-definit. Dies gilt ebenfalls, wenn
das erste oder/und letzte Diagonalelement auf Grund anderer Randbedingungen den Wert
�1 statt �2 hat.
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Zusätzliche Advektion

Wenn bei konstantem v und � und geeigneten Randbedingungen (z. B. mit vorgegebenen
Werten y0; yN C1, vgl. Beispiele 13.1, 13.9) die Matrizen ADiff; AAdv auf den jeweiligen
Haupt- und Nebendiagonalen konstante Einträge haben, kann eine hinreichende Bedin-
gung für die Regularität der Matrix mit Hilfe ihrer Eigenwerte mit dem folgenden Satz
gezeigt werden.

Satz 13.18 Die Matrix A WD tridiagn.a; b; c/; a; b; c 2 C hat die Eigenwerte

�j D b C 2
p

ac cos

�
j�

n C 1

�
; j D 1 : : : ; n: (13.30)

Beweis Den Beweis formulieren wir als Übungsaufgabe, s. u. �

Wir wenden den Satz auf die Matrix

A D ADiff C AAdv;

gegeben durch (13.18) mit konstanten Werten für � an und setzen

a D v

2h
C �

h2
; b D �2�

h2
; c D � v

2h
C �

h2
:

Damit gilt für die Eigenwerte von A:

�j D �2�

h2
C 2

r
�2

h4
� v2

4h2
sign

� v

2h
C �

h2

�
cos

�
j�

n C 1

�
; j D 1 : : : ; n: (13.31)

Entscheidend ist der Term

ac D
� v

2h
C �

h2

��
� v

2h
C �

h2

�
D �2

h4
� v2

4h2

unter der Wurzel. Ist er nicht negativ, dann ist

0 
 ac D �2

h4
� v2

4h2

 �2

h4

und die Wurzel ist reell. Das Argument der Kosinusfunktion in (13.30) liegt immer im
offenen Intervall .0; �/, da j D 0; n C 1 nicht auftreten. Daher ist der Wert der Kosinus-
funktion im offenen Intervall .�1; 1/, insbesondere gilt

cos
�

j�

n C 1

�
< 1 8j D 1; : : : ; n:
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Es gilt

2
p

ac cos

�
j�

n C 1

�
< 2

p
ac D 2�

h2
8j D 1; : : : ; n:

Also folgt

�j < �2�

h2
C 2�

h2
D 0 8j D 1; : : : ; n:

Ist der Term ac unter der Wurzel negativ, dann ist
p

ac eine rein imaginäre Zahl mit
Imaginärteil d D pjacj ¤ 0. Damit gilt für alle Eigenwerte �j ¤ 0; j D 1; : : : ; n. Also
ist A regulär, unabhängig vom Term unter der Wurzel und damit unabhängig von v; �; h.
Das stationäre System ist eindeutig lösbar.

Übung 13.19 Beweisen Sie Satz 13.18. Tipp/Schritte:

1. Führen Sie A durch eine Ähnlichkeitstransformation mit einer Diagonalmatrix in eine
symmetrische Matrix B über.

2. Schreiben Sie diese als B D ˛I C ˇC; C D tridiag.1; 0; 1/ mit ˛; ˇ 2 C.
3. Zeigen Sie mit dem Additionstheorem sin.x C y/ C sin.x � y/ D 2 sin x cosy, dass

die Vektoren

vj WD
�
sin

�
j

k�

n C 1

��n

kD1

2 Rn; j D 1; : : : ; n

Eigenvektoren von C sind und bestimmen Sie die zugehörigen Eigenwerte.
4. Berechnen Sie daraus die Eigenwerte von B und damit von A.

Übung 13.20 Was bedeutet es für die Lösbarkeit des stationären Systems, wenn ein li-
nearer Reaktionsterm c.y/ D �cy; c > 0, hinzukommt? (Wie) Passt dieses Ergebnis zu
den Resultaten aus Abschn. 12.4?

Bei nicht konstanten Einträgen auf den Diagonalen der Systemmatrix kann eine Ab-
schätzung für die Eigenwerte benutzt werden, um die Regularität zu untersuchen. Dazu
benötigen wir folgenden Begriff.

Definition 13.21 (Irreduzible Matrix) Sei A D .aij /ij 2 Cn�n.

1. Indizes i; j 2 f1; : : : ; ng heißen direkt verbunden, wenn aij ¤ 0 gilt.
2. Indizes i; j heißen verbunden, wenn es ik; k D 1; : : : ; l; gibt mit i1 D i; il D j , wobei

ik; ikC1 für alle k D 1; : : : ; l � 1 direkt verbunden sind.
3. A heißt irreduzibel, wenn alle i; j 2 f1; : : : ; ng verbunden sind.
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Der Begriff tritt in folgender Eigenwertabschätzung auf:

Satz 13.22 (Satz von Gerschgorin) Sei A D .aij /ij 2 Cn�n. Dann gilt:

1. Alle Eigenwerte von A liegen in der Menge

n[
iD1

Bri .ai i / mit ri WD
nX

j D1;j ¤i

jaij j; i D 1; : : : ; n: (13.32)

2. Ist A irreduzibel, dann liegen alle Eigenwerte in der Menge

n[
iD1

Bri .ai i / [
n\

iD1

@Bri .ai i /:

Beweis Sei � Eigenwert von A und v zugehöriger Eigenvektor mit kvk1 D 1, d. h. es
existiert i mit jvi j D 1. Die i-te Zeile der Gleichung Av D �v ergibt

.� � aii /vi D
nX

j D1;j ¤i

aij vj :

Wegen jvi j D 1 D kvk1 folgt

j� � aii j 

nX

j D1;j ¤i

jaij jjvj j 

nX

j D1;j ¤i

jaij jkvk1 

nX

j D1;j ¤i

jaij j D ri : (13.33)

Damit ist Behauptung 1 bewiesen: � liegt in der Vereinigung der abgeschlossenen Kreise
Bri .ai i /.

Liegt � in der Vereinigung des Inneren dieser Kreise, so ist Behauptung 2 ebenfalls
bewiesen. Wir nehmen jetzt an, dass

� …
n[

iD1

Bri .ai i /: (13.34)

Für i mit jvi j D 1 gilt nach Behauptung 1: � 2 Bri .ai i /, also mit (13.34) dann

� 2 @Bri .ai i /; d. h. j� � aii j D ri : (13.35)

Zwischenbehauptung: Für i mit jvi j D 1 und beliebiges j gilt:

(13.35); aij ¤ 0 H) jvj j D 1; j� � ajj j D rj : (13.36)
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Aus (13.35) folgt, dass in (13.33) überall Gleichheit gilt, also:

nX
j D1;j ¤i

jaij j jvj j D
nX

j D1;j ¤i

jaij j:

Wegen vj 
 kvk1 D 1 muss jaij j jvj j D jaij j für alle j gelten. Ist aij ¤ 0, so folgt dann
vj D 1. Abschätzung (13.33) auf j angewandt ergibt

j� � ajj j 
 rj ;

und Annahme (13.34) impliziert wieder Gleichheit. Also ist die Zwischenbehauptung
(13.36) bewiesen.

Sei A irreduzibel und j beliebig. Dann sind i; j verbunden, d. h. es existieren ik; k D
1; : : : ; l mit i1 D i; il D j und aik ikC1

¤ 0 für k D 1; : : : ; l � 1. Aussage (13.36) auf alle
direkt verbundenen Indexpaare .ik; ikC1/ angewandt ergibt

jvik j D 1; j� � aik ik j D rik 8k D 1; : : : ; l:

Für k D l bedeutet das wegen il D j

j� � ajj j D rj ;

also ist � 2 @Brj .ajj /. Da j beliebig war, folgt die Behauptung. �

Für die Diskretisierungsmatrizen benutzen wir den Begriff der Diagonaldominanz:

Definition 13.23 (Diagonaldominanz) Eine Matrix A D .aij /ij 2 Rn�n heißt schwach
diagonaldominant, wenn

jaii j �
nX

j D1;j ¤i

jaij j 8i D 1; : : : ; n (13.37)

gilt. Gilt in (13.37) für mindestens ein i D 1; : : : ; n Ungleichheit, dann heißt A dia-
gonaldominant. Gilt in (13.37) für alle i D 1; : : : ; n Ungleichheit, dann heißt A strikt
diagonaldominant.

Korollar 13.24 Die Matrix A 2 Rn�n habe positive Diagonalelemente und sei entwe-
der (1) strikt diagonaldominant oder (2) irreduzibel und diagonaldominant. Dann ist A

positiv-definit.
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Beweis (1) Es gilt jaii j > ri für alle i , vgl. (13.32) und (13.37). Es folgt

n[
iD1

Bri .ai i / \ .�1; 0� D ;:

Nach Teil 1 des Satzes von Gerschgorin sind dann alle Eigenwerte positiv.
(2) Sei i der Index, für den in der Definition der Diagonaldominanz echte Ungleichheit,

also jaii j > ri , gilt. Es gilt nun

n[
j D1

Brj .ajj / \ .�1; 0� D ; und
n\

j D1

@Brj .ajj / � @Bri .ai i /;

wobei @Bri .ai i / \ .�1; 0� D ;: Nach Teil 2 des Satzes folgt ebenfalls, dass alle Eigen-
werte positiv sind. �

Um dieses Korollar auf die Diskretisierungsmatrizen anzuwenden, stellen wir zuerst
fest:

Anmerkung 13.25 In jedem Fall der betrachteten Randbedingungen ist die aus der ein-
dimensionalen Finite-Volumen- oder Finite-Differenzen-Methode erhaltene Diskretisie-
rungsmatrix AAdv C ADiff irreduzibel.

Wir betrachten als Beispiel die Finite-Volumen-Variante aus Beispiel 13.2 also die Ma-
trizen (13.20) und (13.21) mit konstanter Diffusion.

Beispiel 13.26 Wir wenden Korollar 13.24 auf die Matrix

A WD � .AAdv C ADiff/ D v

2h

0
BBBBB@

0 �1

1
: : :

: : :

: : : 0 �1

1 �1

1
CCCCCA

C �

h2

0
BBBBB@

2 �1

�1
: : :

: : :

: : : 2 �1

�1 1

1
CCCCCA

an. Diese hat positive Diagonalelemente, wenn (wegen der letzten Zeile) gilt:

�

h2
� v

2h
> 0; also

�

h2
>

v

2h
bzw.

�
v < 0 oder h <

2�

v

�
: (13.38)

Es gilt mit der Bezeichnung ri , definiert in (13.32):

aNN D � v

2h
C �

h2
D
ˇ̌̌ v

2h
� �

h2

ˇ̌̌
D
X
j ¤N

jaNj j D rN :
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Für i D 2; : : : ; N � 1 gilt mit (13.38):

aii D 2�

h2
; ri D

ˇ̌̌ v

2h
� �

h2

ˇ̌̌
C
ˇ̌̌
� v

2h
� �

h2

ˇ̌̌
D �

h2
� v

2h
C
ˇ̌̌ v

2h
C �

h2

ˇ̌̌
:

Es gilt

ˇ̌̌ v

2h
C �

h2

ˇ̌̌
D v

2h
C �

h2
” v

2h
C �

h2
> 0 ” v > 0 oder

�

h2
>

jvj
2h

” v > 0 oder h <
2�

jvj ;ˇ̌̌ v

2h
C �

h2

ˇ̌̌
D � v

2h
� �

h2
” v

2h
C �

h2
< 0 ” v < 0 und

�

h2
< � v

2h
D jvj

2h

” v < 0 und h >
2�

jvj :

Wegen (13.38) gibt es noch drei Fälle:

.1/ v > 0; h <
2�

v
W ri D �

h2
� v

2h
C v

2h
C �

h2
D 2�

h2
D aii

.2/ v < 0; h <
2�

jvj W ri D �

h2
� v

2h
C v

2h
C �

h2
D 2�

h2
D aii

.3/ v < 0; h >
2�

jvj W ri D �

h2
� v

2h
� v

2h
� �

h2
D jvj

h
>

2�

h2
D aii :

Nur für

h <
2�

jvj (13.39)

gilt also ri 
 aii ; i D 2; : : : ; N . Diese Voraussetzung impliziert (13.38). Unter der Vor-
aussetzung (13.39) gilt für die erste Zeile

a11 D 2�

h2
<
ˇ̌̌
� v

2h

ˇ̌̌
D jv�

2h
D r1;

also ist die Matrix für Schrittweiten, die (13.39) erfüllen, diagonaldominant.

Die Aussage im Beispiel bedeutet nicht, dass die Matrix in anderen Fällen nicht regulär
ist, für den Beweis werden nur andere Methoden benötigt.

Übung 13.27 Implementieren Sie die Version mit Dirichlet- oder gemischten Randbe-
dingungen, wählen Sie � und v beliebig und untersuchen Sie, was bei verschiedenen
Schrittweiten h passiert, insbesondere dann, wenn Bedingung (13.39) verletzt ist.
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13.4 Numerische Instabilität advektionsdominanter Probleme

Wie in Abb. 13.2 zu sehen, entstehen bei zu groß gewählten Schrittweiten Oszillationen
bei der numerischen Lösung der stationären Transportgleichung. Numerische Experimen-
te zeigen, dass der Wert in (13.39) eine kritische Grenze darstellt. Nur bei kleineren
Schrittweiten werden Oszillationen vermieden. Je kleiner die Diffusion (genauer: der
Diffusionskoeffizient) und je größer die Geschwindigkeit, desto kleiner muss h gewählt
werden.

Theoretisch kann dieses Verhalten an folgender Modellkonfiguration erklärt werden:
Die diskreten Gleichungen (13.10) lauten im stationären Fall für konstante v; � und q 	
0; c 	 0 und gegebenen Randwerten y0; yN C1:

0 D
� �

h2
C v

2h

�
yi�1 � 2�

h2
yi C

� �

h2
� v

2h

�
yiC1; i D 1; : : : ; N:

Nach Multiplikation mit h2=� erhalten wir mit der Abkürzung

s WD vh

2�

die Gleichungen:

.1 C s/ yi�1 � 2yi C .1 � s/ yiC1 D 0; i D 1; : : : ; N: (13.40)

Eine solche Differenzengleichung oder auch Dreitermrekursion kann gelöst werden, in-
dem zunächst yi D �i; � 2 R, angesetzt wird. Nach Division durch �i�1 ergibt sich die

0.3
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Abb. 13.2 Lösung der Advektions-Diffusionsgleichungmit vorgegebenen Randwerten für die Kon-
zentrationen ya D 0;5, yb D 1 an den Intervallrändern und c D 0, v D 2, � D 0;05, Schrittweite
h D 0;02 (a) und h D 0;1 (b)
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quadratische Gleichung

a�2 C b� C c D 0:

Sind �1; �2 deren Lösungen, dann ist – da die Differenzengleichung linear war – jede
Linearkombination der Form

yi D c1�
i
1 C c2�i

2; c1; c2 2 R; i D 0; : : : ; N C 1; (13.41)

eine Lösung. Es kann dann auch gezeigt werden, dass dies die einzigen sind. Die Kon-
stanten ci werden aus den Randwerten y0; yN C1 bestimmt. Hier ist

a D 1 � s; b D �2; c D 1 C s;

also gilt (wenn a ¤ 0/

�1;2 D �b ˙ p
b2 � 4ac

2a
D 2 ˙p

4 � 4.1 � s2/

2.1 � s/
D 2 ˙ p

4s2

2.1 � s/
D 1 ˙ jsj

1 � s
:

Für s D 0 gilt �1 D �2 D 1, sonst gibt es immer die beiden Lösungen

�1 D 1; �2 D 1 C s

1 � s
;

egal ob s positiv oder negativ ist. Aus (13.41) ergibt sich für s D 0 eine konstante Gitter-
funktion, für s ¤ 0 die allgemeine Lösung

yi D c1 C c2

�
1 C s

1 � s

�i

; i D 0; : : : ; N C 1: (13.42)

Diese oszilliert, wenn jsj > 1 ist, da dann Zähler oder Nenner (und genau einer von ih-
nen) im zweiten Summanden negativ ist. Dieses Verhalten wird numerische Instabilität
genannt. Die Bedingung jsj < 1, bei der keine Instabilität auftritt, bedeutet genau (13.39).
Die Schrittweite h muss also klein genug sein, um diese Instabilität zu vermeiden. Die Sta-
bilitätsbedingung wird oft mit der sog. (Zell-)Peclet-Zahl, die das Verhältnis von Diffusion
zu Advektion und Schrittweite beschreibt, als

P e WD 2jsj D jvjh
�

< 2

angegeben. Im Fall s D 1, d. h. a D 0 in der quadratischen Gleichung ergibt die Differen-
zengleichung (13.40) die Beziehung

yi D 1

2
.1 C s/ yi�1 D yi�1; i D 1; : : : ; N;

d. h. eine konstante Gitterfunktion.
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13.5 Diskretisierungmit Upwind-Schema

Als Abhilfe des im letzten Abschnitts beschriebenen Problems werden sog. Upstream-
oderUpwind-Schemata benutzt. Sie verwenden für den Advektionsterm eine der Richtung
der Geschwindigkeit angepasste Diskretisierung. Bei Finiten Volumen wird der Fluss über
den Rand einer Zelle nicht mit dem Mittelwert beider angrenzender Zellen berechnet,
sondern nur der Wert derjenigen Zelle genommen, aus der die Strömung kommt, vgl.
Abb. 13.3.

Die Diskretisierung wird gewissermaßen der Geschwindigkeit entgegengesetzt vorge-
nommen wird, was den NamenUpwind/Upstream erklärt. Im AdvektionstermMAdv;i , vgl.
(13.3) werden die Ausdrücke

y.xi�1; t/ �
8<
:

yi�1.t/; wenn v.t/ > 0;

yi .t/; wenn v.t/ < 0;
anstatt

yi�1.t/ C yi .t/

2
;

y.xi ; t/ �
8<
:

yi .t/; wenn v.t/ > 0;

yiC1.t/; wenn v.t/ < 0;
anstatt

yi .t/ C yiC1.t/

2

verwendet. Damit wird der Advektionsterm als

MAdv;i .t/ � Av.t/

8<
:

.yi�1.t/ � yi .t//; v > 0;

.yi .t/ � yiC1.t//; v < 0;

anstatt als

MAdv;i .t/ � Av.t/
yi�1.t/ � yiC1.t/

2

approximiert. In der Finite-Volumen-Diskretisierung (13.9) der Transportgleichung be-
wirkt dies nach Division durch Ah (der Übersicht wegen mit Unterdrückung des Argu-
ments t):

y0
i D

8̂<
:̂

v
yi�1 � yi

h
.v > 0/

v
yi � yiC1

h
.v < 0/

9>=
>;C �i

yiC1 � yi

h2
� �i�1

yi � yi�1

h2
C ci .yi / C qi ;

i D 1; : : : ; N:

Abb. 13.3 Noch einmal die
Nummerierung der Gitterpunk-
te und Boxen und Variablen in
der eindimensionalen Finite-
Volumen-Methode xi−1 xi xi+1

h h� � � �

Vi Vi+1

yi yi+1
v v v
κi−1 κi κi+1
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Wenn die Unbekannten zusammengefasst werden, lautet das System

y0
i D

8̂̂
<
ˆ̂:

�i

h2
yiC1 �

�
�i�1 C �i

h2
C v

h

�
yi C

��i�1

h2
C v

h

�
yi�1 .v > 0/

� �i

h2
� v

h

�
yiC1 �

�
�i�1 C �i

h2
� v

h

�
yi C �i�1

h2
yi�1 .v < 0/

9>>=
>>;

(13.43)

C ci .t; yi .t// C qi .t/; i D 1; : : : ; N:

Der Koeffizient von yi kann einheitlich mit jvj ausgedrückt werden, bei konstanter Dif-
fusion auch die von yi�1; yiC1. In Abhängigkeit des Vorzeichens von v vertauschen sich
dann nur die Koeffizienten von yi�1 und yiC1. Ist die Geschwindigkeit zeitabhängig, dann
ändert sich die Ortsdiskretisierung eventuell ebenfalls mit der Zeit, je nach Vorzeichen
von v.t/.

Das Upwind-Schema bewirkt quasi zusätzliche numerische Diffusion:

Übung 13.28 Zeigen Sie: Das Upwind-Schema kann als Erhöhung der Diffusion im Stan-
dardschema interpretiert werden.

Da das eindimensionale diskrete System bei Anwendung von Finiten Differenzen dem
der Finite-Volumen-Methode entspricht, kann auch das Upwind-Verfahren dort benutzt
werden:

Übung 13.29 Zeigen Sie: Das Upwind-Schema entspricht beim Finite-Differenzen-
Verfahren der Verwendung einseitiger Differenzenquotienten.

Lösbarkeit und Stabilität des stationären Systems

Aus (13.43) lassen sich die Einträge der Matrix A D ADiff C AAdv in der stationären Glei-
chung (13.27) ablesen. Bei beidseitig vorgegebenen Randkonzentrationen werden wieder
y0 und yN durch diese ersetzt. Es zeigt sich für dieses Beispiel die Diagonaldominanz der
Matrix, wobei die Abhängigkeit vom Vorzeichen von v mit der Betragsfunktion ausge-
drückt werden kann:

aii D �
�

�i�1 C �i

h2
C jvj

h

�
; i D 1; : : : ; N;

X
j ¤i

jaij j DW ri D �i�1

h2
C �i

h2
C jvj

h
; i D 2; : : : ; N � 1;

r1 D �1

h2
; rN D �N �1

h2
C jvj

h
; v > 0;

r1 D �1

h2
C jvj

h
; rN D �N �1

h2
; v < 0:
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Die Diagonaldominanz wird genau durch den Zusatzterm jvj=h auf der Diagonale be-
wirkt. Anwendung der Korollar 13.24 auf die Matrix .�A/ ergibt:

Korollar 13.30 Die Matrix des Upwind-Schemas ist für alle �; v und jede Wahl von h

regulär.

Übung 13.31 Weisen Sie dieses Korollar auch für gemischte Randbedingungen nach.

Das Upwind-Schema löst auch das Problem der Instabilitäten:

Übung 13.32 Zeigen Sie analytisch und numerisch, dass beim Upwind-Schema keine
Oszillationen auftreten, egal wie das Verhältnis von v; �; h ist.

13.6 Nicht-äquidistantes Ortsgitter

In Klimamodellen wird meist in der vertikalen Koordinate mit nichtäquidistanten Gittern
gerechnet, z. B. amOzeanboden mit wesentlich gröberen als an der Oberfläche. Allgemein
schreiben wir dann

a D x0 < x0 C h1 D x1 < : : : < xN �1 C hN D xN D b; hi D xi � xi�1;

Finite-Volumen-Diskretisierung

Für die Diskretisierung ist die variable Länge hi der Gitterbox Vi der einzige Unterschied,
vgl. Abb. 13.4.

Die unterschiedliche Gitterboxlänge hat Auswirkung auf die Approximation der Ab-
leitungen in der Modellierung der Diffusion in Box Vi :

@y

@x
.xi�1; t/ � yi .t/ � yi�1.t/

.hi�1 C hi /=2
;
@y

@x
.xi ; t/ � yiC1.t/ � yi .t/

.hi C hiC1/=2
:

Damit ändert sich der Diffusionsterm (13.6) zu

MDiff;i.t/ D A

�
�i.t/

@y

@x
.xi ; t/ � �i�1.t/

@y

@x
.xi�1; t/

�

� 2A

�
�i .t/

yiC1.t/ � yi .t/

hi C hiC1

� �i�1.t/
yi .t/ � yi�1.t/

hi�1 C hi

�
:

Abb. 13.4 Nummerierung
der Gitterpunkte, Boxen und
Variablen in der eindimensio-
nalen Finite-Volumen-Methode
mit variabler Boxlänge hi xi−1 xi xi+1

hi hi+1
� � � �

Vi Vi+1

yi yi+1
v v v

κi−1 κi κi+1
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Alle anderen Terme bleiben (mit h D hi ) unverändert. Zusammengesetzt und durch die
Länge hi der Gitterbox dividiert ergibt analog zu (13.10):

y0
i D v

yi�1 �yiC1

2hi

C 2

hi

�
�i

yiC1 �yi

hi ChiC1

� �i�1

yi �yi�1

hi�1 Chi

�
C c.yi / C qi ; i D 1; : : : ; N:

Hier wurde das Argument t wieder der Übersicht halber unterdrückt. Wenn die Unbe-
kannten zusammenfasst werden, lassen sich die Einträge der entstehenden Matrix des
Advektions-Diffusionsanteils erkennen:

y0
i D 1

hi

�
2�i�1

hi�1 C hi

C v

2

�
yi�1 � 2

hi

�
�i

hi C hiC1

C �i�1

hi�1 C hi

�
yi

C 1

hi

�
2�i

hi C hiC1

� v

2

�
yiC1 C c.yi / C qi ; i D 1; : : : ; N:

Die Regularität der Systemmatrix im linearen stationären Fall kann analog wie in Ab-
schn. 13.3 untersucht werden.

Übung 13.33 Wenden Sie Korollar 13.24 auf eine Diskretisierung mit einem variablen
Gitter an. Welche Aussagen lassen sich übertragen? Welche Voraussetzungen müssen an
die Gitterweiten hi gemacht werden?

Auch hier tritt das Problem der Instabilität bei ungünstigem Verhältnis von hi ; �i und v

auf. Die Differenzengleichungen haben jedoch jetzt keine konstanten Koeffizienten mehr,
und ein Ansatz yi D �i ; � 2 R wie in (13.40) führt nicht mehr zu einer geschlossenen
Darstellung der diskreten Lösung, an der dies direkt abzulesen wäre. Die numerischen
Instabilitäten können ebenfalls mit Upwind-Techniken wie in Abschn. 13.5 behoben wer-
den.

Übung 13.34 Überlegen Sie sich eine sinnvolle Verallgemeinerung der Stabilitätsbe-
dingung (13.39) für ein nicht-äquidistantes Gitter. Welche Größe der Diskretisierung ist
relevant?

Zur numerischen Überprüfung dient die folgende Übung:

Übung 13.35 Implementieren Sie die Diskretisierung für ein variables Gitter mit zu ei-
nem Ende des Intervalls hin immer gröber werdenden Gitterboxen, z. B. hi < hiC1,
i D 1; : : : ; N � 1. Wählen Sie dabei auch extreme Unterschiede in den Gitterweite, z. B.
hN D 50 h1. Dies ist ein in manchen eindimensionalen (vertikalen) Modellen für den
Ozean verwendetes Verhältnis.
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13.7 Ausblick auf die mehrdimensionale Diskretisierung

Die vorgestellte eindimensionale Diskretisierung beschreibt die prinzipielle Vorgehens-
weise, ist jedoch bei Klimamodellen nur in Einzelällen zu finden. Realistische Modelle
für Ozean- oder Atmosphärenströmungen bzw. Transportprozesse darin benötigen eine
dreidimensionale Auflösung.

In diesem Abschnitt beschreiben wir die Vorgehensweise prinzipiell, aber nicht bis ins
letzte Detail. Die Herleitung basiert wieder auf der Modellierung in Abschn. 12.1.

Wesentlicher Unterschied zu einer Raumdimension ist zunächst das Gitter. In Kli-
mamodellen werden – was die Darstellung und Erklärung wesentlich vereinfacht – fast
ausnahmslos strukturierte Gitter verwendet, und zumeist auch rechtwinklige, bei denen
oft in den beiden horizontalen Richtung äquidistante Gitterweiten verwendet werden.
Es entstehen als Gitterboxen also Quader. Am Ozeanboden werden zur Anpassung an
die Bodentopographie auch Gitterboxen mit abgeschrägten Seitenflächen, d. h. acht- oder
sechseckige Polyeder verwendet.

Für beide in einer Dimension vorgestellten Diskretisierungsvarianten ist die Numme-
rierung der Gitterboxen (bei der Finite-Volumen-Diskretisierung) bzw. der Gitterpunkte
(bei Finiten Differenzen) von Bedeutung, da die Nachbarschaftrelationen die Struktur des
sich ergebenden diskreten Systems, das von seiner Struktur wie in (13.16) aussieht, beein-
flussen.

Gittergenerierung

Unter Gittergenerierung wird die Zerlegung des betrachteten Rechengebietes ˝ � Rd ,
d D 2 oder 3 in disjunkte Teilgebiete oder Gitterboxen Vi , analog zu (13.2) verstanden.
Grundsätzlich wird zwischen strukturierten und unstrukturierten Gittern unterschieden:

� Strukturierte Gitter (Abb. 13.5a) bestehen aus oder basieren zumindest auf einer rechte-
ckigen (Dimension d D 2) bzw. quaderförmigen (d D 3) Zerlegung von ˝. Eventuell
werden die Gitter an den Rändern angepasst und Rechtecke in Dreiecke und analog für
d D 3 Quader z. B. in Tetraeder weiter unterteilt. Eine Struktur bleibt jedoch erhal-
ten und auch sichtbar. Eventuell können strukturierte Gitter mit einer Transformation
krummlinigen Konturen angepasst werden.

� Unstrukturierte Gitter (Abb. 13.5b) basieren auf einer Zerlegung des Gebietes in Drei-
ecke (d D 2) bzw. Tetraeder oder anderer dreidimensionaler Polyeder. Diese Gitter
können unregelmäßig berandeten Gebieten einfacher angepasst werden, ihre Generie-
rung ist jedoch besonders im dreidimensionalen Fall aufwändiger.

In beiden Varianten wird meist (nicht unbedingt immer) daür gesorgt, dass keine sog. hän-
genden Knoten entstehen, dass also kein Gitterpunkt einer Box auf einer Kante bzw. Seite
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a b

Abb. 13.5 a Strukturiertes zweidimensionales Gitter mit Approximation eines Randes: Im rechten
Teil durch Rechtecke unterschiedlicher Höhe, im linken durch angefügte Dreiecke bzw. Vierecke,
die aus Rechtecken durch Abschrägen einer Kante entstehen. In drei Raumdimensionen kann ana-
log mit angepassten Quadern bzw. sechs- oder achteckigen Polyedern gearbeitet werden. b Zum
Vergleich ein unstrukturiertes Dreiecksgitter zur Simulation einer Tragflügelumströmung

einer anderen liegt, ohne wieder Eckpunkt dieser Box zu sein. Dies wird mit folgendem
Begriff beschrieben:

Definition 13.36 Eine Menge fVigiD1;:::;NV
heißt Zerlegung von oderGitter auf ˝ � Rd ,

d D 2; 3, wenn

˝ D
N[

iD1

Vi ; intVi \ intVj D ;; i ¤ j;

gilt. Sie heißt regulär, wenn für alle i; j; i ¤ j zusätzlich genau einer der folgenden Fälle
gilt:

V i \ V j D

8̂̂
ˆ̂̂<
ˆ̂̂̂̂
:

;;

ein gemeinsamer Eckpunkt von Vi ; Vj ;

eine gemeinsame Kante von Vi ; Vj ;

eine gemeinsame Seite von Vi ; Vj (nur für d D 3):

Während in technischen und vielen wissenschaftlichen Anwendungen unstrukturierte
Gitter Standard sind, ist dies bei Klimamodellen – mit wenigen Ausnahmen – nicht der
Fall. Das macht vor allem die Indizierung der Gitterboxen Vi einfacher: Es kann für d D 3

horizontal zeilen- oder spaltenweise und dann vertikal in der dritten Dimension numme-
riert werden. Diese Zählweise kann sowohl für die Gitterboxen als auch für Gitterpunkte
angewandt werden.
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Finite-Volumen-Methode

Die Finite-Volumen-Methode basiert auf der Approximation der Randflüsse in Advek-
tions- und Diffusionsterm der integralen Formulierung der Transportgleichung, vgl. Ab-
schn. 12.1:

MAdv.t/ D �
Z

@˝

y.x; t/v.x; t/ � n.x/ds.x/;

MDiff.t/ D
Z

@˝

�.x/ry.x; t/ � n.x/ds.x/:

Diese Ausdrücke werden analog zur eindimensionalen Variante für jede Gitterbox Vi ap-
proximiert. Dazu sind folgende Schritte notwendig:

� Bestimmung der Gitterboxen, die mit Vi eine Seite gemeinsam haben. Bei einem regu-
lären Gitter sind dies für d D 3 maximal sechs mit Indizes jk; k D 1; : : : ; 6.

� Zerlegung des Randes in entsprechende Teile:

@Vi D
6[

kD1

Sk:

� Bestimmung der Flächen Ak WD jSkj dieser Teilränder.
� Bestimmung der zugehörigen äußeren Einheitsnormalenvektoren nk; k D 1; : : : ; 6:

Hierbei ist bei einem strukturierten und zu den Koordinatenachsen parallelen Gitter
von Vorteil, dass dann auch die Normalenvektoren mit den Koordinatenvektoren bis
auf das Vorzeichen übereinstimmen.

Mit dem Geschwindigkeitsvektor vk.t/ � v.x; t/; x 2 Sk; an der entsprechenden Kante
kann eine Approximation des gesamten Advektionsterms berechnet werden. Es gilt

MAdv;i.t/ D �
6X

kD1

Z
Sk

y.x; t/v.x; t/ � n.x/ds.x/

� �
6X

kD1

yi .t/ C yjk .t/

2
vk.t/ � nkAk;

wenn für den Wert der Konzentration auf der Kante wieder der Mittelwert der Konzen-
trationen der beiden benachbarten Gitterboxen verwendet wird. Ein Upwind-Schema ist
entsprechend je nach dem Vorzeichen des Skalarproduktes v � n auf Sk modifiziert.
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Für den Diffusionsterm MDiff;i muss auf jedem Teilrand der Diffusionskoeffizient
�k.t/ � �.x; t/; x 2 Sk; bekannt sein oder approximiert werden. Für das Skalarprodukt
des Gradienten von y mit dem äußeren Normalenvektor kann, da letzterer immer von Vi

nach Vjk zeigt und Länge 1 hat, die Approximation

ry.x; t/ � n.x/ � yjk .t/ � yi .t/

dik

; x 2 Sk;

benutzt werden. Dabei ist dik der Abstand der Mittel- bzw. Schwerpunkte beider Boxen
ist. Es gilt also

MDiff;i.t/ D
6X

kD1

Z
Sk

�.x/ry.x; t/ � n.x/ds.x/ �
6X

kD1

�k.t/
yjk .t/ � yi .t/

dik

Ak:

Entscheidend für die Struktur des diskreten Systems, das wie im eindimensionalen Fall
(vgl. (13.25)) als

y0.t/ D .AAdv.t/ C ADiff.t// y.t/ C c.t; y.t// C q.t/ C r.t/ (13.44)

geschrieben werden kann, ist die Nummerierung der Boxen Vi .
Um das Prinzip zu erklären, nehmen wir an, dass es sich bei dem Gebiet um einen

Quader

˝ D .a1; b1/ � .a2; b2/ � .a3; b3/; ar < br ; r D 1; 2; 3;

handelt und dass eine Diskretisierung mit Gitterpunkten vorliegt, die analog zur eindimen-
sionalen Variante zunächst in jeder Richtung äquidistant als

xri D ar C ihr ; i D 0; : : : ; Nr ; hr D br � ar

Nr

; r D 1; 2; 3; (13.45)

gegeben ist. Wir verwenden zunächst für die Boxen eine Nummerierung mit drei Indizes
.j; k; l/, die wir später wieder in einen Index i umrechnen. Es sei

Vjkl D .x1;j �1; x1j / � .x2;k�1; x2k/ � .x3;l�1; x3l /;

j D 1; : : : ; N1; k D 1; : : : ; N2; l D 1; : : : ; N3:

Damit sind die Nachbarboxen von Vjkl diejenigen mit den Indizes

.j ˙ 1; k; l/; .j; k ˙ 1; l/; .j; k; l ˙ 1/:

Analog zum eindimensionalen Fall definieren wir die Näherungslösung als

yjkl .t/ � y.x; t/; x 2 Vjkl :
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Die Besetzungsstruktur der Matrizen AAdv; ADiff hängt wesentlich von der Nummerierung
der Variablen bzw. Gitterpunkte ab. Eine bijektive Abbildung von den oben verwendeten
Indextripeln .j; k; l/ auf einen einzigen Index muss definiert werden, z. B. in dieser Form:

.j; k; l/ 7! i D .l � 1/N2N1 C .k � 1/N1 C j: (13.46)

Die Randbedingungen werden analog zum eindimensionalen Fall je nach Typ eingearbei-
tet. Für die entsprechend als Vektor angeordneten Unbekannten

yjkl $ yi

können dann die diskreten Gleichungen als (13.44) aufgeschrieben werden.
Es ergibt sich für A eine Bandmatrix mit Einträgen auf der Diagonale (für Indextripel

.j; k; l/), den beiden Nebendiagonalen (für .j ˙ 1; k; l/) sowie auf Nebendiagonalen im
Abstand von N1 (für .j; k ˙ 1; l/) und N1N2 (für .j; k; l ˙ 1/). Für nicht quaderförmige
(d. h. realistische) Gebiete wie in Abb. 13.5a ist die Umrechnung entsprechend komplexer.
Unterschiedliche Tiefen im Ozean bewirken eine Abhängigkeit N2 D N2.k; l/, und die
Landmaske (Inseln und Kontinente) bewirkt N1 D N1.k/. Die Bänder in A sind dann
entsprechend versetzt.

Für effektive Speicherung eignen sich verschiedene Formate. Dabei ist jedoch nicht
nur entscheidend, ob die Speicherung effektiv ist (d. h. möglichst wenig Nullelemente
gespeichert werden), sondern ebenso, dass die zur Lösung der Gleichung nötigen Opera-
tionen schnell durchgeführt werden. Dies sind im wesentlichen Matrix-Vektor-Produkte
und Lösen linearer Gleichungssysteme, die bei hochdimensionalen Problemen oft wie-
der mit Algorithmen (Krylov-Unterraummethodenwie z. B. CG-/Konjugierte Gradienten-
Verfahren, vgl. [38, Kap. IV]) durchgeführt werden, deren Basisoperationen Matrix-Vek-
tor-Produkte sind.

Speicherung als Bandmatrix

Ist die Struktur von A noch in Bandform wie im eindimensionalen Fall oder im mehr-
dimensionalen bei einem strukturiertem Gitter in einem achsenparallelen Gebiet, dann
können die einzelnen Diagonalen und Nebendiagonalen in Vektoren entsprechender Län-
ge gespeichert werden, z. B. bei einer Tridiagonalmatrix als

di D aii ; i D 1; : : : ; N; li D ai;i�1; i D 2; : : : ; N; ui D ai;iC1; i D 1; : : : ; N � 1:

Sollten Nebendiagonalen durch eine unregelmäßig berandetes Gebiet versetzt sein, wer-
den mit diesem Format auch Nullen gespeichert. Eine numerische Bibliothek, die diese
Struktur verwendet, ist z. B. LAPACK [39].
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MATLAB1-sparse-Format

In diesem Format wird für jeden Nichtnulleintrag aij von A ein Tripel .i; j; aij /. Dieses
Format ist extrem flexibel, speichert keinen Nullen. MATLAB verfügt auch über angepass-
te Algorithmen, die automatisch z. B. einen speziellen Gleichungslöser verwenden, sobald
eine Matrix in diesem Format gegeben ist.

Compressed Column Format

Diese Format wird z. B. OCTAVE [40] benutzt. Dabei wird eine Matrix spaltenweise kom-
primiert, so dass nur ihre Nichtnullelemente gespeichert sind. Benutzt werden drei Vekto-
ren

� d (D data) mit den spaltenweise angeordneten Nichtnullelementen,
� r (D row index) mit den zugehörigen Zeilenindizes,
� c (D column index) mit den Indexbereichen von d , die zu einer Spalte gehören. Dieser

Vektor hat N C 1 Einträge bei einer Matrix mit N Spalten. Für Spalte j gibt c an, dass
die Einträge d.cj ; : : : ; cj C1 � 1/ die Einträge in der Spalte sind.

Beispiel 13.37 Für die Matrix
0
B@

1 0 2

0 3 0

4 5 0

1
CA

ergibt sich bei Zählweise der Indizes von 0 (wie im Compressed Column Format verwen-
det):

d D .1; 4; 3; 5; 2/; r D .0; 2; 1; 2; 0/ c D .0; 2; 4; 6/:

Mit dem Codefragment

for j D 0; : : : ; N W
for i D cj ; : : : ; cj C1 � 1W

ari ;j D di

kann die Matrix ausgegeben oder bearbeitet werden. Dabei ist die Nützlichleit der Wahl
des Vektors c zu erkennen.

Übung 13.38 Schreiben Sie den Algorithmus für eine Matrix-Vektor-Multiplikation in
allen drei Speicherformaten in Pseudocode auf.

1 MATLAB ist ein eingetragenes Warenzeichen von The Mathworks Inc.
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Finite-Differenzen-Methode

Die Diskretisierung kann wie in (13.45) gewählt werden. Wir verwenden zunächst für die
Unbekannten eine Nummerierung mit drei Indizes (für jede Koordinatenrichtung einen)
der Form

yijk.t/ � y.x1i ; x2j ; x3k; t/; i D 0; : : : ; N1; j D 0; : : : ; N2; k D 0; : : : ; N3:

Damit können nun die Ableitungen approximiert werden. Das ergibt im Advektionsterm
(ohne das Argument t):

.v � ry/.xjkl / D
3X

rD1

�
vr

@y

@xr

�
.xjl /

� v1.xjkl /
yj C1;kl � yj �1;kl

2h1

C v2.xjkl /
yj;kC1;l � yj;k�1;l

2h2

C v3.xjkl /
yjk;lC1 � yjk;l�1

2h3

:

Für den Diffusionsterm für räumlich konstantes � ergibt sich:

div .�ry/.xijk/ D ��y.xijk/ D �

3X
rD1

@y

@xr

.xijk/

� �

�
yj C1;kl � 2yjkl C yj �1;kl

h2
1

C yj;kC1;l � 2yjkl C yj;k�1;l

h2
2

C yjk;lC1 � 2yjkl C yjk;l�1

h2
3

�
:

Für die allgemeineren Fälle, dass � oder die Gitterweiten hr nicht konstant sind, ergeben
sich entsprechend kompliziertere Terme, die analog zu den eindimensionalen aufgestellt
werden können. Gleiches gilt für Upwind-Diskretisierungen, die aus denselben Stabilitäts-
gründen wie im eindimensionalen Fall sinnvoll sind. Das entstehende diskrete System hat
die gleiche Form (13.44). Die weiteren Überlegungen sind wie oben im Finite-Volumen-
Fall.
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In diesem Kapitel beschreiben wir Möglichkeiten der Zeitdiskretisierung von Bilanzgleichungen
und partiellen Differentialgleichungen, deren Ortsdikretisierung schon – wie im letzten Kapitel ge-
zeigt – durchgeführt wurde. Wir beziehen uns auf die bereits in früheren Kapiteln vorgestellten
Lösungsmethdoen für Anfangswertprobleme gewöhnlicher Differentialgleichungen. Es zeigt sich,
dass bei bestimmten Problemen eine zweite Quell der numerischen Instabilität auftritt, die es zu
beachten gilt. Dabei konzentrieren wir uns die Grundlagen für einige der in Klimamodellen ver-
wendeten Verfahren. Dort werden auch ncoh andere Verfahren verwendet, die in dieser Einführung
nicht behandelt werden. Als Beispiel dient die Transportgleichung. Die hier vorgestellten Verfahren
können auch für andere Gleichungen verwendet werden.

Nach der Ortsdiskretisierung einer Bilanzgleichung oder einer partiellen Differentialglei-
chung, wie sie die Transportgleichung in integraler bzw. differentieller Form darstellt,
entsteht ein System gewöhnlicher Differentialgleichungen. Zusammenmit gegebenen An-
fangswerten liegt wieder ein Anfangswertproblem in der Form (3.2) vor. Die Funktion
f auf der rechten Seite der Gleichung hat jetzt Werte im Rn, wobei die Dimension n

von der Diskretisierungsmethode, der Ortsschrittweite und der Raumdimension abhängt.
Besonders in dreidimensionalen Problemen entstehen sehr große Systeme. Das Differen-
tialgleichungssystem ist im Ort diskret, in der Zeit noch kontinuierlich. Daher wird auch
von einem semidiskreten System oder, da jetzt gewissermaßen auf jeder Ortslinie eine
Differentialgleichung gelöst wird, von der Linienmethode gesprochen.

Beispiel 14.1 Die rechte Seite ist bei der Transportgleichung als

f .t; y.t// D A.t/y.t/ C c.t; y.t// C q.t/ C r.t/

mit A D AAdv C ADiff gegeben, vgl. (13.16) bzw. (13.25). Dazu kommen Anfangswerte
y0i in den Volumina Vi bzw. an den Gitterpunkten xi .

Es kann jetzt ein beliebiges Zeitintegrationsverfahren auf diese Gleichung angewendet
werden, z. B. das Euler-Verfahren oder ein anderes aus Kap. 11. In der Klimasimulation

195© Springer-Verlag Berlin Heidelberg 2015
T. Slawig, Klimamodelle und Klimasimulationen, Springer-Lehrbuch Masterclass,
DOI 10.1007/978-3-662-47064-0_14
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werden jedoch meist Verfahren relativ niedriger Ordnung und auch mit konstanter Schritt-
weite für die Zeitintegration verwendet. Dazu wird ein Zeitgitter

tkC1 D tk C �t; k D 0; 1; : : : ; K; tK D te;

definiert. Da das System die Dimension n hat, bezeichnen wir jetzt mit

yk WD .yki /
n
iD1 2 Rn; k D 0; : : : ; K

die Vektoren der Näherungslösungen in den Zeitschritten tk :

yki �
8<
:

y.x; tk/; x 2 Vi ; bei Finiten Volumen;

y.xi ; tk/; bei Finiten Differenzen;
k D 0; : : : ; K; i D 1; : : : ; n:

14.1 Explizite Verfahren für die Transportgleichung

Das explizite Euler-Verfahren ergibt jetzt für einen gegebenen Vektor y0 von Anfangswer-
ten in jedem Zeitschritt k D 0; 1; : : : ; K � 1 das Schema

ykC1 � yk

�t
D Akyk C ck.yk/ C qk C rk

mit Ak WD A.tk/, ck.yk/ WD c.tk ; yk/, qk WD q.tk/; rk WD r.tk/. Als Iterationsvorschrift
ergibt sich

ykC1 D .I C �tAk/yk C �t.ck.yk/ C qk C rk/; k D 0; 1; : : : ; K � 1: (14.1)

Ist ck linear, dann kann ein Iterationsschritt in die allgemeine Form

ykC1 D Ckyk C bk (14.2)

mit Ck D I C �t.Ak C ckI / und bk D �t.qk C rk/ gebracht werden.
Dasselbe Schema ergibt sich bei direkter, simultaner Diskretisierung in t und x, wenn

für die Zeit t der vorwärts genommene Differenzenquotienten, der dem Euler-Verfahren
entspricht, verwendet wird. Für konstante Diffusion ergibt sich bei Finiten Volumen (vgl.
(13.9)):

ykC1;i � yki

�t
D �v

yk;iC1 � yk;i�1

2h
C �

yk;iC1 � 2yki C yk;i�1

h2
C cki .yki / C qki ;

k D 1; : : : ; K � 1; i D 1; : : : ; N;
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wobei hier die Variante mit dem zentralen Differenzenquotienten für den Advektionsterm
verwendet wurde. Die Reihenfolge der beiden Diskretisierungen ist unerheblich. Da das
Verfahren explizit in der Zeit ist, werden diese Gleichungen benutzt, um die Werte von y

sukzessive in der nächsten Zeitschicht k C 1 aus denen in der vorhergehenden Schicht k

zu berechnen:

ykC1;i D yki C �t

�
�v

yk;iC1 � yk;i�1

2h
C �

yk;iC1 � 2yki C yk;i�1

h2
C cki .yki / C qki

�
;

k D 0; : : : ; K � 1; i D 1; : : : ; N:

Zusammenfassen der entsprechenden Terme ergibt

ykC1;i D �t

h2

�
� C vh

2

�
yk;i�1 C

�
1 � 2��t

h2

�
yki C �t

h2

�
� � vh

2

�
yk;iC1

C �t.cki .yki / C qki /; k D 0; : : : ; K � 1; i D 1; : : : ; N:

Die Randwerte werden wieder in die entsprechenden Gleichungen (i D 1; N ) in einen
Vektor rk eingearbeitet, dessen Einträge jetzt mit �t multipliziert werden. Das entstehen-
de System hat damit wieder die Form (14.1). Bei Finiten Differenzen ist die Vorgehens-
weise analog.

Übung 14.2 Implementieren Sie das Euler-Verfahren für die Advektions-Diffusionsglei-
chung. Verwenden Sie eine beliebige Anfangsbedingung und dazu passende Randwerte.
Testen Sie zunächst ohne Advektion verschiedene Zeitschrittweiten, vgl. Abb. 14.1.

Wie das explizite Euler-Verfahren können Verfahren höherer Ordnung in der Zeit (vgl.
Übung 5.9 und Kap. 11) angewendet werden. Die Übertragung für variable Zeitschritte
�tk ist ebenfalls direkt möglich.
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Abb. 14.1 Stabile (a) und (am Ende des Zeitintervalls) instabile numerische Lösung eines reinen
Diffusionsproblems (b). Anfangswert ist in beiden Fällen dieselbe Sinusfunktion



198 14 Explizite und implizite Zeitdiskretisierung

14.2 Numerische Instabilität bei der Zeitintegration

Bei der Transportgleichung war eine instabile Lösung in Form einer Oszillation in der sta-
tionären Gleichung zu sehen, wenn die verwendete Schrittweite im Verhältnis zum Quo-
tienten aus Geschwindigkeit und Diffusionskoeffizient zu groß war, vgl. Abschn. 13.4.
Bei zeitabhängiges Problemen tritt ein ähnliches Phänomen auf, selbst wenn ein reines
Diffusionsproblem vorliegt, wie in Abb. 14.1 zu sehen ist. Diese numerische Instabili-
tät resultiert aus der Zeitintegration und ist Thema dieses Abschnittes. Sie tritt auch bei
anderen Problemen auf.

Wird eine stationäre numerische Lösung Ny der Transportgleichung, die also (13.27) er-
füllt, zu einem Zeitpunkt t0 durch Qy gestört, so erfüllt Ny C Qy für t � t0 die instationäre
Gleichung. Wegen der Linearität erfüllt aber auch die Störung Qy allein die instationäre
Gleichung. Um das zeitliche Verhalten der Störung zu untersuchen, kann also ein Anfangs-
wertproblem für die Störung mit entsprechendem Anfangswert Qy.t0/ betrachtet werden.
In Abschn. 12.5 war bei einem reinen Diffusionsproblem zu erkennen, dass eine Störung
in der exakten Lösung exponentiell mit der Zeit abklingt. Die Frage ist, ob dies bei al-
len numerischen Zeitintegrationsverfahren ebenfalls der Fall ist. Abbildung 14.1 zeigt das
Gegenteil.

Bevor wir untersuchen, warum die Instabilität bei der Diffusionsgleichung auftritt, zei-
gen wir die Ursache an dem einfacheren Beispiel 10.4:

Beispiel 14.3 Für a > 0 hat das Anfangswertproblem

y0 D �ay C 1; t � 0; y.0/ D y0 D 1

a

die eindeutige Lösung y 	 y0, die (wie in Beispiel 10.4 gezeigt) asymptotisch stabil ist:
Ein gestörter Anfangswert yı;0 D y0 C ı führt zur Lösung

yı.t/ D y0 C ıe�at ; t � 0;

die für t ! 1 gegen die ungestörte Lösung konvergiert.
Das Euler-Verfahren mit konstanter Schrittweite ergibt wegen f .1=a/ D 0 für den

ungestörten Anfangswert die exakte, konstante Lösung yk D y0 D 1=a für alle k D
1; 2; : : : Für den gestörten Anfangswert liefert es die Näherungslösung

yı;kC1 D yı;k C �t.�ayı;k C 1/ D .1 � a�t/yı;k C �t:

Subtrahieren wir davon die ungestörte Näherungslösung, dann erhalten wir:

yı;kC1 � ykC1 D .1 � a�t/yı;k C �t � 1

a

D .1 � a�t/yı;k � .1 � a�t/
1

a
D .1 � a�t/.yı;k � yk/:
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Mehrfache Anwendung und damit Zurückführen auf die Anfangswerte ergibt

yı;k � yk D .1 � a�t/k.yı;0 � y0/ D .1 � a�t/kı:

Die Differenz zwischen der numerischen (hier = der exakten, konstanten) Lösung .yk/k

und derjenigen mit gestörten Anfangswerten, .yı;k/k , konvergiert nur gegen Null, wenn

j1 � a�t j < 1; also �t <
2

a
(14.3)

gewählt wird. Eine beliebig kleine Störung in den Anfangsdaten wird bei einer zu großen
Schrittweite bis zur Divergenz des Verfahrens verstärkt.

Dieselbe Problematik des angewendeten numerischen Verfahrens wird bereits bei der
Betrachtung einer ungestörten Lösung deutlich: Bei der einfachen linearen skalaren Diffe-
rentialgleichung aus Beispiel 3.8 der sog. Testgleichung, wird das asymptotische Verhalten
der exakten Lösung nur für bestimmte Schrittweiten reproduziert:

Beispiel 14.4 Wir betrachten für � < 0 das lineare Anfangswertproblem

y0 D �y; t � 0; y.0/ D y0 ¤ 0:

Für die eindeutige exakte Lösung gilt

y.t/ D y0e�t ! 0 für t ! 1: (14.4)

Das explizite Euler-Verfahren ergibt

ykC1 D yk C ��tyk D .1 C ��t/yk D .1 C ��t/kC1y0 für k D 0; 1; : : :

Um qualitativ (14.4) zu erhalten, sollte die Näherungslösung

yk ! 0 für k ! 1

erfüllen. Dies ist genau für Schrittweiten mit (14.3) gegeben. Für betragsmäßig großes �

muss eine entsprechend kleine Schrittweite gewählt werden, obwohl die exakte Lösung
extrem schnell (exponentiell) gegen Null abklingt. Ist �t zu groß, oszilliert die Lösung
und divergiert.

Problematisch wird dieses Verhalten, wenn mehrere Lösungsanteile der Gestalt (14.4),
aber mit unterschiedlich großem negativem �, gegeben sind. Sei ein System mit konstan-
ten Koeffizienten, d. h. das Anfangswertproblem

y0 D Ay; t � 0; y.0/ D y0;



200 14 Explizite und implizite Zeitdiskretisierung

mit diagonalisierbarer Matrix A 2 Rn�n gegeben, d. h. es gilt A D SDS�1 mit einer Dia-
gonalmatrix D D diag..�i /iD1;:::;n/. In S stehen spaltenweise zugehörige Eigenvektoren.
Sind alle Eigenwerte reell, so ist die Lösung

y.t/ D v1e�1t C : : : C vne�nt ; t � 0 mit vi 2 Rn; i D 1; : : : ; n; (14.5)

vgl. Satz 8.15.
Das explizite Euler-Verfahren liefert wie im Beispiel 14.4:

yk D .I C �tA/ky0; k D 0; 1; : : : (14.6)

Die Diagonalisierbarkeit von A ergibt I C �tA D S.I C �tD/S�1 und so

.I C �tA/k D �
S.I C �tD/S�1

�k D S.I C �tD/kS�1:

Die Transformation zk D S�1yk liefert die Koeffizienten der Lösung bezüglich der Ei-
genvektoren von A. In (14.6) ergibt sich

zk D S�1yk D .I C �tD/kS�1y0 D .I C �tD/kz0; k D 0; 1; : : :

Dabei ist z0 die Darstellung des Anfangswertes y0 D Sz0 D P
i z0i si bezüglich der

Eigenvektoren si . Nun gilt für die Diagonalmatrix

.I C �tD/k D diag
��

.1 C �i �t/k
�

iD1;:::;n

�
;

also ist die Lösung in der Basis der Eigenvektoren von A gegeben durch:

zk D �
.1 C �i �t/kz0i

�
iD1;:::;n

; k D 0; 1; : : : (14.7)

Es gilt das gleiche wie bei der skalaren Gleichung in Beispiel 14.4: Für k ! 1 haben
die Komponenten der Näherungslösung nur dann das abklingende Verhalten der exakten
Lösung (14.5), wenn (14.3) für alle Eigenwerte �i gilt. Also muss die Schrittweite als

�t < min
iD1;:::;n

2

j�i j D 2

maxiD1;:::;n j�i j (14.8)

gewählt werden. Der betragsmäßig größte Eigenwert limitiert die Schrittweite, obwohl er
zu dem am schnellsten abklingenden Lösungsanteil in (14.5) gehört und in der exakten
Lösung nach sehr kurzer Zeit schon keine Rolle mehr spielt. Auch für komplexe Eigen-
werte tritt der Effekt auf, das abklingende Verhalten der exakten Lösung liegt dann für
Re�i < 0 vor.

Die Darstellung (14.7) enthält eine zusätzliche Information: Wenn die Bedingung
(14.8) für einen Eigenwert �i verletzt ist, wird genau der Anteil z0i des zugehörigen
Eigenvektors vi in den Anfangswerten y0 in der Zeitintegration verstärkt.
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Diese Problematik ist nicht auf das Euler-Verfahren beschränkt, denn für die Gleichung
(14.4) ergibt ein Runge-Kutta-Verfahren (vgl. Abschn. 11.2):

ykC1 D p.z/yk; k D 1; 2; : : :

mit einem Polynom p 2 ˘m vom Grad m (der Stufe des Verfahrens) und z D ��t . Daher
wird folgender Begriff definiert.

Definition 14.5 (Stabilitätsbereich) Sei .yk/k die mit einem Einschrittverfahren berech-
nete Näherungslösung der Gleichung (14.4). Die Menge

A WD fz 2 C W z D ��t; kykC1k < kykk für alle k D 0; 1; : : :g

heißt Bereich der absoluten Stabilität des Verfahrens.

Beispiel 14.6 Beim Euler-Verfahren ist nach den obigen Rechnungen

A D fz 2 C W j1 C zj < 1g;

das ist der offene Kreis um z0 D �1 mit Radius 1.

Dieser Stabilitätsbegriff erweitert denjenigen aus Abschn. 5.5. Der dort definierte Be-
griff war ein Hilfsmittel zum Nachweis der Konvergenz eines Verfahrens für h bzw.
�t ! 0. Für die in diesem Abschnitt benutzten Beispiele liefert Satz 5.11 auch die
Konvergenz, denn nach dem Kriterium aus Satz 5.12 genügt die Lipschitz-Stetigkeit der
Verfahrensfunktion, die bei einer linearen Gleichung und dem Euler-Verfahrenmit˚ D f

unmittelbar sichtbar ist. Die Stabilitätskonstanten sind bei den Beispielen hier zwar even-
tuell groß (L D j�j steht in (5.4) im Exponenten), doch die theoretische Konvergenzaus-
sage bleibt gültig. Konvergenz ist naturgemäß eine Eigenschaft für h bzw. �t ! 0, und
für kleine Schrittweiten gibt es ja auch keine Probleme. Für eine reale Simulation, die
logischerweise ein �t > 0 verwendet, ist jedoch wichtig, wie klein die Zeitschrittweite
in der Praxis gewählt werden muss, damit keine Störungsverstärkung auftritt. Dazu macht
das Stabilitätsgebiet aus Definition 14.5 eine Aussage.

14.3 Implizite Verfahren

Die Instabilität bei expliziten Zeitintegrationsverfahren kann durch die Anwendung im-
pliziter Verfahren vermieden werden. Dabei wird in der Verfahrensfunktion ˚ zur Be-
rechnung von ykC1 statt der Information im aktuellen Zeitschritt tk mit zugehöriger Nä-
herungslösung yk diejenige zum nächsten Zeitschritt, also tkC1 und ykC1, verwendet.
Dadurch entsteht eine implizite Gleichung für ykC1. Die Definition ist wie folgt (vgl.
Definition 5.3):
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Definition 14.7 (Implizites Einschrittverfahren) Seien ein Anfangswertproblem (3.2)
mit f , ˚ und .tk/kD0;:::;N und .hk/kD0;:::;N �1 wie in Definition 5.3 gegeben. Ein Verfahren
der Form

ykC1 D yk C hk˚.tkC1; ykC1; hk/; k D 0; 1; : : : ; N � 1; (14.9)

heißt implizites Einschrittverfahren.

Beispiel 14.8 Beim impliziten Euler-Verfahren wird wieder ˚ D f gesetzt:

ykC1 D yk C hkf .tkC1; ykC1/; k D 0; 1; : : :

Beispiel 14.9 Auf gleiche Art sind implizite Runge-Kutta-Verfahren definiert. Ihre
Butcher-Tabellen (vgl. (11.2)) haben keine Dreiecksgestalt mehr, sondern haben auch
Einträge oberhalb der Diagonalen, s. z. B. [15].

Nun kann die Näherungslösung am nächsten Zeitpunkt nicht mehr explizit, sondern
nur durch Lösen einer linearen oder nichtlinearen Gleichung bzw. eines System bestimmt
werden.

Bei Genauigkeit der Approximation und Konvergenz gibt es keine Unterschiede zum
entsprechenden expliziten Verfahren. Der Begriff der Stabilität kann dabei analog aus De-
finition 5.10 auf implizite Verfahren übertragen werden. Beim Euler-Verfahren gilt:

Übung 14.10 Zeigen Sie: Das implizite Euler-Verfahren hat ebenfalls Konsistenzordnung
p D 1.

Der Unterschied zeigt sich wieder beim Vergleich des qualitativen Verhaltens einer
abklingenden exakten Lösung mit der zugehörigen Näherungslösung wie in den Beispie-
len 14.3 und 14.4.

Übung 14.11 Untersuchen Sie das Problem aus Beispiel 14.3 bei Anwendung des impli-
ziten Euler-Verfahrens.

Beispiel 14.12 Bei der Testgleichung (Beispiel 14.4) ergibt sich beim impliziten Euler-
Verfahren (Schrittweite hier wieder mit �t bezeichnet):

ykC1 D yk C ��tykC1; k D 0; 1; : : :

also .1 � ��t/ykC1 D yk und damit

yk D y0

.1 � ��t/k
; k D 0; 1; : : :

Um für � < 0 ein Abklingen yk ! 0 .k ! 1/ wie bei der exakten Lösung zu erhalten,
ist keine Einschränkung an die Schrittweite nötig, denn:

1 � ��t D 1 C �t j�j > 1 8�t > 0:

Die Schrittweite ist nur durch die gewünschte Approximationsgüte bestimmt.



14.4 Numerische Stabilität des Diffusionsanteils 203

Auch das Verhalten bei mehreren unterschiedlich schnell abfallenden Lösungsanteilen
wie in (14.5) ist unproblematisch. Auch bei großer Schrittweite klingt der entsprechende
Anteil der Näherungslösung so ab, wie es die exakte Lösung tut. Die Schrittweite muss
nur so klein gewählt werden, dass das schnelle Abfallen noch aufgelöst wird, wenn dies
gewünscht wird.

Der Stabilitätsbereich des impliziten Euler-Verfahren nach Definition 14.5 ist

A D fz 2 C W j1 � zj > 1g;

das ist die gesamte komplexe Ebene mit Ausnahme des Kreises um z0 D 1 mit Radius 1.
Insbesondere gehört die gesamte linke Halbebene dazu, und nur dort liegen die Werte von
z D h� für Re� < 0.

14.4 Numerische Stabilität des Diffusionsanteils

Bei der reinen Diffusionsgleichung konnte in Abschn. 12.5 im räumlich eindimensiona-
len Fall das zeitliche asymptotische Verhalten angegeben werden. Die Lösung hat (vgl.
(12.21)) die Form

y.x; t/ D
X
j 2N

cj exp.�.j�/2�t/ sin.j�x/; cj 2 R;

d. h. sie klingt exponentiell mit der Zeit ab. Die Koeffizienten cj waren dabei die entspre-
chenden Fourier-Koeffizienten der Anfangsbedingung

y.x; 0/ D
X
j 2N

cj sin.j�x/:

Da die Diffusionsgleichung linear ist, klingt eine Störung ebenfalls exponentiell ab, wo-
bei das Abklingverhalten der einzelnen örtlichen Anteile der Störung aus der Größe der
entsprechenden Faktoren exp.�.j�/2�t/ ablesbar ist.

Die zugehörige ortsdiskrete Lösung

Nach Ortsdiskretisierung mit Finiten Volumen oder Differenzen ergibt sich ein System
gewöhnlicher Differentialgleichungen der Form

y0.t/ D ADiff.t/y.t/; t � 0; y.0/ D y0:

Die Matrix ADiff.t/ ist die reine Diffusionsmatrix

ADiff.t/ D �.t/

h2
tridiagn.1; �2; 1/:
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Die Eigenwerte dieser Matrix können mit Satz 13.18 angegeben werden, vgl. (13.31) für
v D 0:

�j D �2�.t/

h2
C 2

r
�.t/2

h4
cos

�
j�

n C 1

�
D �2�

h2

�
1 � cos

�
j�

n C 1

��
< 0;

j D 1 : : : ; n; (14.10)

da der Kosinus für die betrachteten Argumente immer im Intervall .�1; 1/ liegt. Also
hat ADiff nur negative Eigenwerte. Diese sind paarweise verschieden, die Matrix ist also
diagonalisierbar. Die Lösung hat wieder die Form (14.5), und da alle Eigenwerte negativ
sind, klingen die Lösungsanteile an allen diskreten Ortsgitterpunkten xi exponentiell mit
der Zeit ab, und zwar für alle Werte von � und der Ortsdiskretisierungschrittweite h. Die
semi-diskrete Lösung repräsentiert also das Verhalten der kontinuierlichen Lösung, egal
wie h gewählt wird.

Die volldiskrete Lösungmit dem expliziten Euler-Verfahren

Wird jetzt wie oben beschrieben mit dem expliziten Euler-Verfahren diskretisiert, so er-
halten wir in (14.2) ohne Quellen und Reaktionsterm und bei Nullrandbedingungen:

Ck D C D I C �tADiff.tk/; bk D 0; 8k D 0; : : : ; K:

Ist ADiff.tk/ zeitlich konstant, dann liegt der Fall (14.6) mit A D ADiff vor. Wie dort muss
also die Zeitschrittweite (14.8) erfüllen, d. h.

�t <
2

maxj D1;:::;n j�j .ADiff/j : (14.11)

Der betragsgrößte Eigenwert in (14.10) ist derjenige, für den der Kosinus minimal (negativ
mit maximalem Betrag) wird. Das ist für j D n der Fall, wo der Kosinus nahe bei -1 und
der Wert der Klammer nahe bei 2 ist. Betrachtet man immer feinere Ortsdiskretisierungen
.h ! 0 bzw. n ! 1), so gilt

lim
n!1 cos

�
n�

n C 1

�
D cos� D �1

und daher

lim
h!0

max
j D1;:::;n

j�j .ADiff/j D 4�
�t

h2
:

Dies führt mit (14.11) zu der Kopplung der Zeitschrittweite an die Ortsschrittweite und
die (hier konstant angenommene) Diffusionskonstante:

�t <
h2

2�
: (14.12)
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Nur dann hat die mit dem expliziten Euler-Verfahren erhaltene Lösung das Abklingver-
halten der semi-diskreten und der exakten, analytischen Lösung. Für größere Zeitschritt-
weiten oszillieren die Werte.

Übung 14.13 Wie wirken sich die Werte von ck (bei einem linearen Reaktionsterm) auf
die Stabilität des Systems aus?

Übung 14.14 Wie können diese Überlegungen verallgemeinert werden, wenn � nicht
mehr zeitlich konstant ist?

Lösungmit dem impliziten Euler-Verfahren

Das implizite Euler-Verfahren ergibt analog zu (14.1):

ykC1 � yk

�t
D AkC1ykC1 C ckC1.ykC1/ C qkC1 C rkC1; k D 0; 1; : : : ; K � 1:

bzw.

.I � �tAkC1/ ykC1 � �tckC1.ykC1/ D yk C �t.qkC1 C rkC1/:

Für linearen Reaktionsterm ck.yk/ D ckyk; ck 2 R; ergibt sich wieder die allgemeine
Form (14.2):

ykC1 D Ckyk C bk; k D 0; 1; : : : ; K � 1:

Hier ist jetzt Ck D .I � �t.AkC1 C ckC1I /�1 und bk D �tCk.qkC1 C rkC1/. Das Ver-
fahren verlangt in jedem Zeitschritt die Lösung eines linearen oder nichtlinearen Systems.
Im letzteren Fall ist dann eine innere Iteration nötig.

Semi-implizite oder Splitting-Verfahren

Wenn c nichtlinear ist, kann es sinnvoll sein, nur einige Terme implizit und andere explizit
zu behandeln. Eine Variante ist im k-ten Schritt

ykC1 � yk

�t
D AykC1 C c.yk/ C qkC1 C rkC1;

bzw.

ŒI � �tA�ykC1 D yk C �tŒc.yk/ C qkC1 C rkC1�:
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Hier ist der Reaktionsterm explizit, bei f spielt es fr die Rechnung keine Rolle, ob hier der
k-te oder .k C 1/-te Zeitschritt benutzt wird (hier durch die Notation fk.C1/ angedeutet).
In jedem Schritt ist ein lineares System zu lsen. Formal kann man einen Iterationsschritt
auch als

ykC1 D ŒI � �tA��1.yk C �tŒc.yk/ C qkC1 C rkC1�/

schreiben. Ist c D 0 oder linear, dann lässt sich das Schema wieder in der Form (14.2),
diesmal mit Ck D ŒI � �tA��1 (für c D 0) und

bk D �tŒI � �tA��1.qkC1 C rkC1/

schreiben.
Oft wird auch die Matrix A wieder aufgesplittet behandelt, z. B. in Advektionsteil AAdv

und Diffusionsteil ADiff. Die Diffusion wird meist implizit gerechnet, sie kann nämlich
sonst numerische Instabilität verursachen. Dann wird das Splitting-Verfahren

ykC1 � yk

�t
D AAdvyk C ADiffykC1 C c.yk/ C qkC1 C rkC1

bzw.

.I � �tADiff/ykC1 D .I C �tAAdv/yk C �t.c.yk/ C qkC1 C rkC1/

verwendet, oder wieder formal mit der Inversen als

ykC1 D .I � �tADiff/
�1..I C �tA1/yk C �t.c.yk/ C qkC1 C rkC1//:

Damit haben wir für c D 0 oder linear wieder die allgemeine Form (14.2), jetzt mit

Ck D .I � �tA/�1

(für c D 0) und

bk D �t.I � �tA/�1.CqkC1 C rkC1/:

Die Frage, welche Teile der Gleichung explizit und welche implizit behandeln werden
sollte, hängt vom Aufwand (z. B. Lösen eines nichtlinearen Systems, wenn c implizit
behandelt wird) und von zu erwartenden Instabilitäten ab. Diffusion wird meist implizit
diskredisiert.



15Ökosystemmodelle

Marine Ökosystem- und biogeochemische Modelle sind ein Beispiel für nichtlineare Reaktions-
und Kopplungsterme in Transportgleichungen. Sie werden hier als Beispiel für eine Modellierung
und Berechnung der Biosphäre verwendet. Die Forschung in diesem Bereich ist weniger fortge-
schritten als z. B. im Bereich der Fluidmechanik, mit der die Ozean- oder Atmosphärenströmungen
modelliert und simuliert werden. Dieses Kapitel gibt nur einen Einblick. Räuber-Beute-Modelle
und ihre Verwendung als Basis für Ökosystemmodelle werden dargestellt. Viele der bisher vorge-
stellten Methoden aus Theorie und Numerik der gewöhnlichen Differentialgleichungen können hier
noch einmal angewendet werden. Am Ende des Kapitels beschreiben wir, wie eine Kopplung an den
Ozeantransport aussehen kann.

Die einfachsten Populationsmodelle gehen davon aus, das sich die Spezies ohne Ein-
schränkung mit einer konstanten Wachstumsrate vermehrt. Das Wachstum der Population
ist dann proportional der Größe der Population. Das ergibt die lineare Differentialglei-
chung

y0.t/ D ˛y.t/; t � 0; (15.1)

deren Lösung bei Anfangsbedingung y.0/ D y0 als

y.t/ D y0e˛t ; t � 0;

gegeben ist, vgl. Beispiel 3.8. Wenn ˛ positiv ist, ergibt sich ein exponentielles Wachstum
der Population, was in der Realität normalerweise nicht oder nur für gewisse Zeiten gege-
ben ist. Umgekehrt kann mit demselben Modell ein Sterben einer Population beschrieben
werden, wenn es kein Wachstum, sondern nur eine konstante Sterberate ˛ < 0 gibt. Auch
dieser Fall ist meist unrealistisch. Zusammengefasst kann (15.1) Wachstum und Abster-
ben mit konstanter Wachstums- bzw. Sterberate beschreiben. Die Konstante ˛ ist dann die
Differenz beider Raten.

Ist die Differenz von Wachstums- und Sterberate zeitabhängig, gilt also ˛ D ˛.t/,
dann kann mit der Methode der Trennung der Variablen (Satz 3.6) eine Lösung des An-
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fangswertproblems berechnet werden: In der Aussage des Satzes ist dann f1.y/ D y und
f2 D ˛. Damit gilt

y.t/ D y0 exp

0
@

tZ
0

˛.s/ds

1
A; t � 0: (15.2)

Die Wachstumsrate muss dann zumindest eine integrierbarbare Funktion sein.
Ökosystemmodelle beschreiben die Interaktion von zumindest zwei Spezies. Sie sind

Themen der folgenden Abschnitte.

15.1 Das klassische Räuber-Beute-Modell

Im einfachsten Beispiel mit zwei Spezies ist die Sterberate der einen Population (hier y1)
proportional der Größe der Population einer zweiten (eines Räubers, hier y2) abhängig.
Es gilt also

y0
1.t/ D y1.t/.˛ � ˇy2.t// (15.3)

Diese erste Population ist dann die Beute. Umgekehrt ist das Wachstum der Räuberpo-
pulation proportional der verfügbaren Beutemenge, was die Wachstumsrate des Räubers
beeinflusst:

y0
2.t/ D y2.t/.ıy1.t/ � 	/: (15.4)

Die Konstanten ˛; 	; ı sind hier größer Null. Wenn ein natürliches Sterben (ohne den
Einfluss des Räubers) für y1 mit modelliert werden soll und die Sterberate größer als die
Wachstumsrate der Beute ist, kann ˇ < 0 sein. Meist wird aber ˇ > 0 angenommen, was
bedeutet, dass die einzige Sterbeursache der Beute das Zusammentreffen mit dem Räuber
ist.

Das sich aus den beiden Differentialgleichungen (15.3) und (15.4) ergebende System
ist das klassische Räuber-Beute-Modell von Lotka-Volterra.

Mit den bisher vorhandenen Methoden kann das Modell analysiert werden:

Existenz und Eindeutigkeit zeitabhängiger Lösungen

Eine lokale Existenz und Eindeutigkeit ergibt sich aus dem Satz von Picard-Lindelöf, da
f auf dem gesamten R2 stetig partiell differenzierbar und damit lokal Lipschitz-stetig ist,
vgl. Korollar 3.40.

Die numerische Simulation zeigt ein periodisches Verhalten, vgl. Abb. 15.1.
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Abb. 15.1 Periodische Lösung des klassischen Räuber-Beute-Modells (15.3), (15.4) mit ˛ D 1,
ˇ D 2, 	 D 4, ı D 3

Übung 15.1 Untersuchen Sie das Verhalten der Lösung des Räuber-Beute-Modells mit
dem Euler-Verfahren oder einem anderen Verfahren für verschiedene Parameter- und An-
fangswerte.

Stationäre Lösungen

Übung 15.2 Zeigen Sie: Die stationären Lösungen des Bäuber-Beute-Modells (15.3),
(15.4) mit ˇ; ı ¤ 0 sind y1 D y2 D 0 und y1 D 	=ı; y2 D ˛=ˇ.

Zur Charakterisierung der stationären Lösungen benutzen wir die Funktionalmatrix

f 0.y1; y2/ D
 

˛ �ˇy2

ıy1 �	

!

und damit für die beiden stationären Punkte:

f 0.0; 0/ D
 

˛ 0

0 �	

!
; f 0

�
	

ı
;

˛

ˇ

�
D

0
B@ ˛ �ˇ	

ı
˛ı

ˇ
�	

1
CA :

Übung 15.3 Wie verhält sich ein Pseudo-Zeitschrittverfahren beim Räuber-Beute-Mo-
dell? Können Sie damit alle stationären Zustände approximieren?

Übung 15.4 Untersuchen Sie die stationären Zustände auf Stabilität, einmal analytisch
mit den Methoden aus Kap. 10, andererseits mit numerischen Experimenten, indem Sie
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von den stationären Punkten mit leicht gestörten Anfangswerten Simulationen mit einem
Einschrittverfahren durchführen.

Positivität von Lösungen

Interessant ist oft die Positivität oder Nichtnegativität von Lösungen, zum Beispiel wenn
die Modellvariable eine Größe repräsentiert, die nicht negativ sein kann, wie z. B. die
Temperatur, der Salzgehalt oder eine Stoffkonzentration. Ein Kriterium zum Nachweis
der Nichtnegativität, d. h. zum Nachweis, dass die Menge

M WD fx 2 Rn W xi � 0; i D 1; : : : ; ng (15.5)

invariant ist (vgl. Definition 9.4), wird hier angegeben:

Definition 15.5 (Quasipositivität) Seien f D .fk/n
kD1 ; I; D wie in (3.1) definiert und

t0 2 I . Dann heißt f quasipositiv, wenn für alle k D 1; : : : ; n gilt:

fk.t; y/ � 0 8t � t0 8y 2 fy 2 D W yk D 0; yi � 0; i D 1; : : : ; ng:

Mit dieser Eigenschaft folgt dann die Invarianz der Menge M aus (15.5):

Satz 15.6 (Nichtnegativität von Lösungen) Seien f; I; D wie in (3.1) und f sei stetig,
lokal Lipschitz-stetig bezüglich y und quasipositiv. Dann gilt für die Lösung des Anfangs-
wertproblems (3.2) mit y0i � 0; i D 1; : : : ; n:

yi .t/ � 0 8t � t0; i D 1; : : : ; n:

Beweis Siehe [14, Satz 4.2.2] �

15.2 Eine Erweiterungmit beschränktemWachstum

Dieses Modell führt zusätzlich einen quadratischen Term ein, der das Wachstum jeder
Spezies unabhängig von der jeweils anderen Population beschränkt. Das kann als „soziale
Reibung“ oder eine Konkurrenz der Lebewesen einer Spezies untereinander interpretiert
werden. Das Modell lautet

y0
1.t/ D y1.t/.˛ � ˇy2.t// � �y1.t/

2;

y0
2.t/ D y2.t/.ıy1.t/ � 	/ � �y2.t/

2:
(15.6)
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Abb. 15.2 Eine Lösung des Räuber-Beute-Modells (15.6) mit beschränktem Wachstum, ˛ D 1,
ˇ D 2, 	 D 4, ı D 3, � D � D 0;1

Übung 15.7 Untersuchen Sie auch dieses Modell auf stationäre Punkte und diese dann
analytisch und numerisch (vgl. Abb. 15.2) auf Stabilität. Was können Sie über Positivität
von Lösungen aussagen?

15.3 Ein marines biogeochemisches Modell

Das folgende Modell (vgl. [41]) ist eines der einfachsten, das für die Modellierung der
biogeochemischen Prozess im Ozean verwendet wird. Es hat zwei Modellvariablen, näm-
lich

� die vorhandenen Nährstoffe y1, hier ist das Phosphat, PO4,
� den gesamten im Plankton enthaltenen organischen Phosphor y2 D DOP für dissolved

organic phosphorus.

Bei dieser Modellierung wird pflanzliches (Phyto-) und tierisches (Zoo-) Plankton nicht
unterschieden. Phytoplankton (Algen) nimmt Phosphat als Nährstoff auf und dient selbst
als Nahrung für Zooplankton. Absterbendes Plankton wird teilweise remineralisiert und
wieder Nährstoff. Insofern ergibt sich eine Wechselwirkung, die sich von den klassischen
Räuber-Beute-Modellen zunächst noch unterscheidet. Mit der Bezeichnung N für Nähr-
stoffe und DOP wird dieses Modell als N-DOP-Modell bezeichnet.

Die Bedeutung des Modells ist, dass der Gehalt von Kohlenstoff C im Phytoplankton
nach dem Redfield Ratio als proportional zu Stickstoff (chemisches Formelzeichen N),
Phosphor P im Verhältnis N W P W C D 1 W 16 W 106 angesehen wird. In der pflanzli-
chen Photosynthese wird CO2 aufgenommen und aufgespalten und Sauerstoff abgegeben.
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Damit kann mit der Berechnung der Menge des Phosphors (Modellvariable y2) indirekt
die Menge des im Plankton enthaltenen Kohlenstoffs berechnet oder zumindest geschätzt
werden. Die Aufnahme der Nährstoffe y1 in das Plankton hängt nichtlinear von y1 ab,
nach der Formel

QG.y1/ D ˛
y1

y1 C KN

mit der maximalen Wachstumsrate ˛ > 0 und der Halbsättigungsrate KN > 0.

Übung 15.8 Führen Sie für die Funktion QG eine Kurvendiskussion durch. Ist die Funktion
Lipschitz-stetig (später wichtig für die Eindeutigkeit der Lösung)?

Weiterhin spielt aber auch die vorhanden Lichteinstrahlung eine Rolle, da Photosyn-
these ohne Licht nicht stattfindet. Damit wird obige Funktion modifiziert zu

G.x; t; y1/ D ˛
y1.x; t/

y1.x; t/ C KN

I.x; t/

I.x; t/ C KI

mit der Lichtintensität I , die von Ort und Zeit abhängt, und einer weiteren Halbsättigungs-
rate KI > 0 für die Einstrahlung. Je nach Zeitauflösung können bzw. müssen Tages-
und Jahresschwankungen betrachtet werden, die Ortsabhängigkeit ergibt sich aus dem
betrachten Punkt auf der Erdoberfläche und aus der Tiefe des betrachteten Punktes in
der Wassersäule, da das Wasser den Lichteinfall dämpft. In komplexeren Modellierungen
dämpft auch das in oberen Schichten vorhandene Phytoplankton den Lichteinfall, so dass
sich ein I D I.x; t; y2/ ergibt. Die Modellparameter sind nur durch Schätzungen oder
durch eine Parameteridentifikation oder Modellkalibrierung (dem Vergleich des Model-
loutputs mit Messwerten) zu bestimmen.

Wird eine räumlich nulldimensionale Situation betrachtet, die z. B. eine Versuchsan-
ordnung in einem Behälter vereinfacht beschreiben kann, dann ergeben sich folgende
Modellgleichungen als gewöhnliches Differentialgleichungssystem:

y0
1.t/ D �y2.t/ � G.t; y1.t//;

y0
2.t/ D ��y2.t/ C G.t; y1.t//

(15.7)

und die Ortsvariable x in I ist fest. Der Parameter � > 0 ist die Remineralisierunsgrate.

Übung 15.9 Analysieren Sie das nulldimensionale Modell mit den vorgestellten Me-
thoden in Bezug auf stationäre Zustände, deren Stabilität, Existenz und Eindeutigkeit
transienter Lösungen und deren Nichtnegativität.

In dieser Form ist das Modell extrem vereinfacht. Im realen ein- oder dreidimensio-
nalen Fall einer vertikale Wassersäule bzw. des gesamten Ozeans wird der Ozean im
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Modell (vgl. [41]) in die obere euphotische, lichtdurchflutete Zone und die untere nicht-
euphotische Zone aufgeteilt. Entsprechend wird die Abhängigkeit I D I.x; t/ modelliert.
Zusätzlich wird ein Absinken der nicht aufgenommen Nährstoffe einbezogen, d. h. obige
Gleichungen gelten nur in der euphotischen Zone und der nichtlineare Term enthält in der
zweiten Gleichung eines Vorfaktor � 2 .0; 1/. Es wird also nur ein Teil der Nährstoffe
aufgenommen, der Rest sinkt in die untere, nicht-euphotische Schicht.

Kopplung an den Ozeantransport

Die Kopplung an ein System von zwei Transportgleichungen für y1; y2 kann nun durch
Definition zweier entsprechender Reaktionsterme c1; c2, die den rechten Seiten in (15.7)
entsprechen, durchgeführt werden. Die Transportgleichungen können sonst gleich blei-
ben. Im Ozean wird die durch Turbulenz der Strömung erzeugte Diffusion als größer
angenommen als die molekulare Diffusion der beiden Stoffe y1; y2. Insofern kann � in
beiden Diffusionsgleichungen als identisch angesehen werden. Die Werte, die von Ort
und Zeit abhängen, müssen genauso wie die Geschwindigkeit von einem Ozeanmodell
vorher berechnet worden sein.
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Atmosphären- und Ozeanmodelle basieren auf den Gesetzen der Strömungsmechanik (von Luft
und Wasser). Diese Grundgleichungen der Fluidmechanik leiten sich aus Masse- und Impulsbilanz
her. Diese Gleichungen werden benutzt, um den – im Unterschied zu den Transportgleichungen –
jetzt unbekannten Geschwindigkeitsvektor zu bestimmen. Als zusätzliche Unbekannte tritt in der
Impulsbilanz der Druck auf. In dieser Form sind die Gleichungen ähnlich zu denen, die auch für
eher technisch oder ingenieurwissenschaftlich motivierte Anwendungen benutzt werden. In den
Klimawissenschaften kommen meist noch Gleichungen für Temperatur und bei Ozeanströmungen
Salzgehalt hinzu. Dies sind Transportgleichungen, die wir schon kennengelernt haben. Dieses Ka-
pitel gibt nur einen Einblick in diese umfangreiche Thematik.

Bei den Transportgleichungen interessierten wir uns für die zeitliche Änderung der Kon-
zentration eines Stoffes in einem bewegten flüssigen oder gasförmigen Medium. Die Ge-
schwindigkeit dieses Mediums war gegeben. In Klimamodellen, insbesondere Ozean- und
Atmosphärenmodellen, ist aber die Geschwindigkeit des Mediums, in diesen Fällen also
Wasser oder Luft, unbekannt und muss selbst berechnet werden.

Auch für die Herleitung von Modellgleichungen zur Berechnung der Geschwindigkeit
und weiterer sie beeinflussender Größen werden Bilanzgleichungen benutzt. Es sind dies
in ersten Linie die Masse- und Impulsbilanz, außerdem die Energiebilanz.

Fluide

Um die Eigenschaften von Strömungen von Luft undWasser zu beschrieben, wird ein Mo-
dellmedium, das sog. Fluid, definiert. Ein Fluid ist ein Spezialfall eines Kontinuums. In
einem Kontinuum wird die molekulare Struktur des Stoffes vernachlässigt. Ein Kontinu-
um kann als eine homogene Ansammlung von Teilchen oder Partikeln angesehen werden.
Jedes Teilchen oder Partikel X des Kontinuums hat zu einer gegebenen Zeit t einen wohl-
definierten Ort x D x.X; t/ 2 R3. Ein Fluid wird dann wie folgt definiert, vgl. [42,
LE 1.3].
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Definition 16.1 (Fluid) Ein Fluid ist ein Modellmedium mit den folgenden Eigenschaf-
ten:

� Es ist ein Kontinuum: Es besteht aus einzelnen Teilchen (Partikeln), die weder eine
räumliche Ausdehnung noch einen Abstand zueinander haben.

� Im nicht bewegten Zustand treten nur Kräfte orthogonal und in Richtung zur Oberfläche
des Fluides auf (sog. Druckkräfte). Es gibt im Ruhezustand keine Kräfte, die tangential
oder orthogonal und von der Oberfläche weg gerichtet sind.

Luft und Wasser werden als Fluide angesehen.

16.1 Masseerhaltung

Das Prinzip der Masseerhaltung ist eine wichtige Grundgleichung der Mechanik. Da es
in diesem Kapitel darum geht, die Bilanzgleichungen für ein bewegtes Fluid wie Wasser
und Luft in Ozean, Gewässern und der Atmosphäre zu beschreiben, spielt die Massebilanz
eine wichtige Rolle.

Das Prinzip der Masseerhaltung lautet in Worten:

Masse wird weder erzeugt noch zerstört.

Wir formulieren dieses Prinzip nun mathematisch und leiten eine Gleichung daraus ab.
Das funktioniert ähnlich wie bei der Transportgleichung, aber mit einigen Unterschieden:
Von den im Kapitel über die Transportgleichung beschriebenen vier Prozessen Advektion,
Diffusion, Quellen/Senken und Reaktionen gibt es hier nur Advektion: Masse diffundiert
nicht, es gibt bei den uns in Klimamodellen interessierenden Phänomenen auch keine
Quellen von Masse und keine Reaktionen für das Medium selbst, für das wir die Bilanz-
gleichungen aufstellen, nämlich Wasser oder Luft.

Wir betrachten wieder ein räumlich und zeitlich festes Gebiet ˝ � Rd in einem – sich
eventuell auch bewegendem – Fluid (oder einem anderen Kontinuum). Das Analogon zur
Konzentration des Stoffes y ist jetzt die Dichte, bezeichnet mit %.x; t/. Das o. g. Prinzip
der Masseerhaltung ergibt dann für das Gebiet ˝ die folgende Aussage:

Die zeitliche Änderung der Masse in ˝ ist gleich der Differenz der Masse, die über den
Rand @˝ in das Gebiet gelangt bzw. es darüber verlässt.

Die Masse des gesamten in in ˝ enthaltenen Fluides beschreiben wir analog zur Model-
lierung der Transportgleichung in Kap. 12 als

M˝.t/ WD
Z
˝

%.x; t/ dx:
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Die zeitliche Änderung der Masse in ˝ erhalten wir, wenn wir wieder die Voraussetzun-
gen zur Vertauschung von Integration und Differentiation (vgl. Satz 12.6) annehmen:

M 0̋ .t/ D d

dt

Z
˝

%.x; t/ dx D
Z
˝

@%

@t
.x; t/ dx:

Vollkommen analog zum Advektionsterm (12.3) in der Transportgleichung erhalten wir,
da keine anderen Terme auftreten, die Massebilanz in integraler Form:

Z
˝

@%

@t
.x; t/ dx D �

Z
@˝

%.x; t/v.x; t/ � n.x/ ds.x/:

Wiederum analog zur Transportgleichung können wir den Gauß’schen Satz 12.5 auf das
Vektorfeld F D %v anwenden und erhalten

Z
˝

�
@%

@t
.x; t/ C div.%.x; t/v.x; t//

�
dx D 0:

Wir haben dabei die stetige Differenzierbarkeit von Dichte und Geschwindigkeitsvektor
vorausgesetzt.

Da ˝ vollkommen beliebig gewählt war, erhalten wir wieder analog zur Transportglei-
chung eine differentielle Form der Masseerhaltung, die sog. Kontinuitätsgleichung:

@%

@t
.x; t/ C div.%.x; t/v.x; t// D 0: (16.1)

Diese Gleichung hat dann im Gebiet ˝ und im betrachteten Zeitintervall Gültigkeit, was
hier und in den folgenden differentiellen Form gilt, in der Notation aber nicht jedesmal
hinzugefügt wird. Wird die Produktregel der Differentiation angewendet, so ergibt sich
daraus

div.%v/.x; t/ D r%.x; t/ � v.x; t/ C %.x; t/ div v.x; t/

und damit

@%

@t
.x; t/ C r%.x; t/ � v.x; t/ C %.x; t/ div v.x; t/ D 0: (16.2)

16.2 Modellierung im bewegten Gebiet

Für die Impulsbilanz müssen – im Gegensatz zur Massebilanz – Erhaltungsgleichungen in
einem bewegten Gebiet aufgestellt werden. Ein bewegtes Gebiet – betrachtet als Ansamm-
lung von sich bewegenden Fluidpartikeln – wird bei der Herleitung der Impulsbilanz wie
ein Körper aufgefasst, für den der Impuls (physikalisch Masse mal Geschwindigkeit) und
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damit auch die Impulsbilanz berechnet werden kann. Wir beginnen hier mit zwei Darstel-
lungsmöglichkeiten für Größen, die einem bewegten Partikel zugeordnet werden können
und so von Ort und Zeit abhängen. Anschließend definieren wird die Geschwindigkeit und
leiten anschließend eine Formel für die zeitliche Ableitung des Integrals einer Größe über
ein bewegtes Gebiet her, um später die zeitliche Änderung des Impulses in einer Formel
darstellen zu können.

Lagrange’sche und Euler’sche Darstellung

Wir betrachten ein Fluid, das zur Zeit t D t0 ein Gebiet ˝t0 � R3 ausfüllt. Bewegt sich
das Fluid, so bezeichnen wir als Trajektorie eines Partikels X , das zur Zeit t0 die Position
x0 2 ˝t0 hatte, den Graphen der Funktion

t 7! x.x0; t0; t/:

Da t0 fest ist, wird dieses Argument oft weggelassen und

t 7! x.x0; t/

geschrieben. Das Fluid füllt dann zur Zeit t � t0 das Gebiet

˝t WD fx.x0; t/ W x0 2 ˝t0g

aus. Wir haben damit die Beziehungen

x D x.x0; t0; t/ oder kurz: x D x.x0; t/;

x0 D x0.x; t0; t/ oder kurz: x0 D x0.x; t/:

Einer beliebige Größe F D F.X; t/ eines Teilchens X des Fluids zur Zeit t kann da-
mit ebenfalls auf zwei verschiedene Arten räumlichen Koordinaten zugeordnet werden,
nämlich

� in Lagrange’scher Darstellung als F D F.x0; t0; t/

� oder in Euler’scher Darstellung als F D F.x; t/.

Daher heißen .x0; t0; t/ Lagrange’sche oder materielle Variablen oder Koordinaten und
.x; t/ Euler’sche Variablen oder Koordinaten.

In der Euler’schen Darstellung ist das Partikel zur Zeit t durch seine Position x D x.t/

eindeutig beschrieben. Zu einer anderen Zeit Qt befindet sich am gleichen Ort x 2 ˝ ein
anderes Teilchen. Wenn wir eine beliebige Größe F , z. B. die Konzentration eines Stoffes
in dem betrachteten Bereich ˝ beschreiben, so tun wir das auf den Ort x und die Zeit t

bezogen, egal welches Partikel sich nun gerade zu dieser Zeit an diesem Ort befindet.
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In der Lagrange’schen Darstellung wird dagegen eine Eigenschaft des Fluids im betref-
fenden Gebiet teilchenorientiert betrachtet. Sei z. B. t0 eine festgelegte (Referenz-)Zeit,
etwa die Anfangszeit einer Bewegung. Dann kann die Größe F eines Teilchen zur Zeit
t bezogen auf die Position x0, an der sich das Teilchen zur Zeit t0 befand, beschrieben
werden. Die aktuelle Position x D x.t; t0; x0/ tritt in der Beschreibung der Größe F dann
nicht explizit auf.

Die Geschwindigkeit

Die Geschwindigkeit eines Partikels X des Fluids wird wie folgt beschrieben: Sei x.t/ D
.x1.t/; x2.t/; x3.t// die Trajektorie des Fluidpartikels in Euler’schen Koordinaten, wobei
wir hier der Einfachheit halber das Argument x0 weggelassen haben. Dann ist der Ge-
schwindigkeitsvektor v D .v1; v2; v3/, ebenfalls in Euler’schen Koordinaten, als

v.x; t/ WD x0.t/ D �
x0

1.t/; x0
2.t/; x0

3.t/
�

(16.3)

gegeben. Ist nun die Größe F in Euler’scher Darstellung, also als Funktion von x D x.t/

und t gegeben, dann erhalten wir für ihre Ableitung nach der Zeit mit der Kettenregel

d

dt
F .x.t/; t/ D d

dt
F .x1.t/; x2.t/; x3.t/; t/

D
3X

iD1

@F

@xi

.x; t/x0
i .t/ C @F

@t
.x; t/

D
3X

iD1

@F

@xi

.x; t/vi .t/ C @F

@t
.x; t/ D @F

@t
.x; t/ C .v � rF /.x; t/:

Definition 16.2 (Materielle Ableitung) Der Operator

D

Dt
WD @

@t
C v � r

heißt materielle (oder substantielle) Ableitung.

Das Transporttheorem

Das Transporttheorem ist eine zentrale Aussage für die Impulsbilanz: Es sagt aus, wie die
Zeitableitung des Integrals einer Größe in einem zeitabhängigen Gebiet unter das Integral
gezogen werden kann. Wir benutzen dazu für t � t0 die Abbildung

x.�; t/ W ˝t0 ! ˝t ; x0 7! x.x0; t/; (16.4)
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setzen ihre Differenzierbarkeit voraus und bezeichnen mit J die Determinante ihrer Funk-
tionalmatrix

J.x0; t/ WD det
�

@xi

@
j

.x0; t/

�3

i;j D1

:

mit x0 WD .
1; 
2; 
3/. Es gilt nun:

Lemma 16.3 Ist die Abbildung (16.4) stetig differenzierbar, dann gilt

@

@t
J.x0; t/ D J.x0; t/ div v.x.x0; t/; t/; x0 2 ˝t0 ; t � t0:

Beweis Wir unterdrücken die Argumente x0; t und erhalten mit der Definition der Deter-
minante

J D
X

�2P3

sign .�/

3Y
iD1

@xi

@
�.i/

:

Dabei ist P3 die Menge der Permutationen von f1; 2; 3g. Die Produktregel ergibt

@J

@t
D

3X
kD1

X
�2P3

sign .�/
@

@t

@xk

@
�.k/

3Y
iD1;i¤k

@xi

@
�.i/

:

Wegen der Glattheit von (16.4), der Definition (16.3) der Geschwindigkeit und der Ket-
tenregel gilt

@

@t

@xk

@
l

D @

@
l

@xk

@t
D @vk

@
l

D
3X

j D1

@vk

@xj

@xj

@
l

; k; l D 1; 2; 3;

und daher

@J

@t
D

3X
kD1

X
�2P3

sign .�/

3X
j D1

@vk

@xj

@xj

@
�.k/

3Y
iD1;i¤k

@xi

@
�.i/

D
3X

kD1

X
�2P3

sign .�/

�
@vk

@xk

@xk

@
�.k/

C
3X

j D1;j ¤k

@vk

@xj

@xj

@
�.k/

� 3Y
iD1;i¤k

@xi

@
�.i/

D
3X

kD1

X
�2P3

sign .�/

�
@vk

@xk

3Y
iD1

@xi

@
�.i/

C
3X

j D1;j ¤k

@vk

@xj

@xj

@
�.k/

3Y
iD1;i¤k

@xi

@
�.i/

�

D
3X

kD1

�
@vk

@xk

J C
3X

j D1;j ¤k

@vk

@xj

X
�2P3

sign .�/
@xj

@
�.k/

3Y
iD1;i¤k

@xi

@
�.i/

�

D
3X

kD1

�
@vk

@xk

J C
3X

j D1;j ¤k

@vk

@xj

detA.k;j /

�



16.2 Modellierung im bewegten Gebiet 221

wobei die Matrizen A.k;j / für j ¤ k folgende Form haben:

a
.k;j /

i l D

8̂̂
<
ˆ̂:

@xi

@
l

; i ¤ k

@xj

@
l

; i D k:

Da j ¤ k, sind die Determinanten aller dieser Matrizen gleich Null, also gilt

@J

@t
D

3X
kD1

@vk

@xk

J D .div v/ J: �

Wir benötigen die Transformationsformel der Integration:

Lemma 16.4 (Transformationsformel) Seien U; V � Rn offen, ˚ W U ! V stetig
differenzierbar und invertierbar mit stetig differenzierbarer Inversen. Dann ist F W V !
R genau dann integrierbar, wenn F ı ˚ j det˚ 0j über U integrierbar ist und es gilt

Z
U

F.˚.
/j det˚ 0.
/j d
 D
Z
V

F.x/ dx:

Beweis [12, §13 Satz 2] �

Damit beweisen wir folgende Aussage:

Satz 16.5 (Transporttheorem) Sei D � R3 offen. Für alle t 2 I sei ˝t � D. Außerdem
sei F auf D � I stetig differenzierbar. Dann gilt für alle t 2 I

d

dt

Z
˝t

F.x; t/ dx D
Z

˝t

�
@F

@t
.x; t/ C div .F v/.x; t/

�
dx:

Beweis Wir setzen voraus, dass die Abbildung (16.4) stetig differenzierbar und invertier-
bar ist. Jetzt transformieren wir das Integral über ˝t auf das Referenzgebiet ˝t0 mit der
Transformationsformel:

Z
˝t

F.x; t/ dx D
Z

˝t0

F.x.x0; t/; t/jJ.x0; t/j dx0:

Da das Integrationsgebiet nun zeitlich konstant ist und die Funktion F bezüglich t stetig
differenzierbar ist, können wir (vgl. Satz 12.6) unter dem Integral nach t differenzieren
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und erhalten

d

dt
F .x.x0; t/; t/ D rF.x.x0; t/; t/ � @x

@t
.x0; t/ C @F

@t
.x.x0; t/; t/

D rF.x.x0; t/; t/ � v.x; t// C @F

@t
.x.x0; t/; t/:

Lemma 16.3 ergibt

d

dt

Z
˝t

F.x; t/ dx D
Z

˝t0

�
@F

@t
C v � rF C F div v

�
.x; t/ jJ.x0; t/j dx0

mit dem Argument .x; t/ D .x.x0; t/; t/ in allen Termen in der runden Klammer auf der
rechten Seite. Die Jacobi-Matrix ist für die betrachteten Transformationen und für alle t

regulär und ihre Determinante daher nie Null. Daher ist auch ihr Betrag differenzierbar
nach der Formel aus dem letzten Lemma. Die Rücktransformation auf ˝t ergibt

d

dt

Z
˝t

F.x; t/ dx D
Z

˝t

�
@F

@t
.x; t/ C v.x; t/ � rF.x; t/ C F.x; t/ div v.x; t/

�
dx

und damit die Behauptung mit der Produktregel. �

16.3 Spezielle Fluide

Es gibt spezielle Fälle, die in technischen Anwendungen und in den Klimawissenschaften
auftreten und die die Bilanzgleichungen wesentliche vereinfachen.

Inkompressible Fluide

In vielen Anwendungen wird angenommen, dass das Fluid inkompressibel ist, d. h. dass
sich das Volumen eines vom Fluid eingenommenen Gebietes nicht mit der Zeit ändert:

Definition 16.6 Ein Fluid heißt inkompressibel, wenn für ein von ihm zur Zeit t einge-
nommenes Gebiet ˝t gilt

d

dt

Z
˝t

dx D 0:
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Um daraus eine Aussage über die Geschwindigkeit des Fluides machen zu können,
benutzen wir das Transportheorem für F 	 1. Es ergibt sich

0 D d

dt

Z
˝t

dx D
Z

˝t

div v.x; t/dx:

Mit der schon oben angewandten Argumentation (Auswahl eines infinitesimal kleinen
Gebietes) und % > 0 folgt damit aus (16.2):

Korollar 16.7 Die Inkompressibilität eines Fluides ist äquivalent zu

div v D 0 in ˝ (16.5)

und zum Verschwinden der materiellen Ableitung

D%

Dt
D 0 in ˝:

Die Massebilanz (16.1) ergibt nun für ein inkompressibles Fluid

@%

@t
C div.%v/ D @%

@t
C r% � v C % div v„ƒ‚…

D0

D @%

@t
C r% � v D 0:

In vielen technischen und physikalischen Anwendungen wird % 	 %0 2 R als konstant
angenommen und bezeichnet ein solches Fluid als inkompressibel bezeichnet. Dann ist
die Aussage der Korollar bereits die Massebilanz.

Homogene und geschichtete Fluide

In Klimamodellen gibt es oft Fluide mit zeitlich, aber nicht räumlich konstanter Dichte.
Daher ist es sinnvoll, zwischen räumlicher und zeitlicher Konstanz zu unterscheiden. Zur
Abgrenzung dient die folgende Definition.

Definition 16.8 Ein Fluid mit räumlich konstanter Dichte, also % D %.t/, heißt homogen.

Für ein homogenes Fluid gilt wegen (16.2) offensichtlich

@%

@t
C % div v D 0:

Damit folgt sofort, dass ein inkompressibles homogenes Fluid auch zeitlich konstant ist,
also % 	 %0 2 R erfüllt. Die Massebilanz liefert dann die Gleichung (16.5).
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Im Ozean wird meist folgende Eigenschaft angenommen:

Definition 16.9 Ein inkompressibles inhomogenes Fluid heißt geschichtet.

Dann lautet die Massebilanz

@%

@t
C r% � v D 0:

16.4 Impulsbilanz

Die zweite wesentliche Bilanz- oder Erhaltungsgleichung, die benutzt wird, um eine Glei-
chung für den unbekannten Geschwindigkeitsvektor v herzuleiten, ist die Impulsbilanz.
Impuls ist das Produkt aus Masse und Geschwindigkeit. Das Prinzip der Impulsbilanz ist
Newtons zweites Gesetz, dass man im Allgemeinen kurz als

Kraft ist gleich Masse mal Beschleunigung

oder in Formeln als

F D ma

schreibt. Genauer gesagt lautet die Impulsbilanz:

Die zeitliche Änderung des Impulses ist gleich der Summe der angreifenden Kräfte.

Die Beschleunigung a ist die zeitliche Änderung der Geschwindigkeit, die wir mit der
substantiellen Ableitung aus Definition 16.2 schreiben können:

a.x.t/; t/ D d2x

dt2
.t/ D d

dt
v.x.t/; t/ D Dv

Dt
.x; t/:

Für die Impulsbilanz benötigen wir die Kräfte, die auf ein mit Fluid gefülltes Gebiet wir-
ken. Wir betrachten zunächst den stationären Zustand. Es gibt zwei Arten von Kräften, die
wirken, nämlich Volumen- und Oberflächenkäfte.

Volumenkräfte

Volumenkräfte sind Schwerkraft oder Magnetkräfte sowie in Klimamodellen die Coriolis-
kraft, die durch die Erdrotation bewirkt wird. Wir beschreiben diese Kräfte als Kraftdichte
b.x; t/ 2 R3 pro Dichteeinheit. Damit ist die Gesamtvolumenkraft auf ein Gebiet ˝ ge-
geben durch

B D
Z
˝

%.x; t/b.x; t/ dx:
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Oberflächenkräfte im Ruhezustand

Bei den auf die Oberfläche eines Fluides auftretenden Kräfte spielt die Definition 16.1 des
idealisierten Mediums Fluid eine entscheidende Rolle. Wegen der dort genannten zweiten
Eigenschaft können wir die Oberflächenkräfte im Ruhezustand als Produkt des skalaren
Druckes p und des negativen äußeren Normalenvektors .�n/ schreiben:

S D �
Z

@˝

p.x; t/n.x/ds.x/:

In dieser Bezeichnung ist der Druck dann immer nicht negativ. Mit dem Gauß’schen
Satz 12.5 erhalten wir für einen beliebigen konstanten Vektor w 2 R3:

S � w D �
Z

@˝

n � .pw/ ds D �
Z
˝

div.pw/ dx

D �
Z
˝

�
.rp/ � w C p divw

�
dx D �

Z
˝

.rp/ � w dx:

Also gilt:

S D �
Z
˝

rp dx: (16.6)

Oberflächenkräfte im bewegten Zustand

Für die Impulsbilanz können wir nicht mehr vom Ruhezustand des Fluides ausgehen.
Also können zusätzliche Kräfte, z. B. tangentiale Scherkräfte auftreten. Ein Fluid, bei dem
auch in Bewegung solche Kräfte Null sind, bei dem also die zweite Eigenschaft in der
Definition 16.1 dann weiterhin gilt, heißt ideales Fluid. Insbesondere Reibung, die zu
Tangentialkräften führt, wird bei idealen Fluiden vernachlässigt. In Klimamodellen sind
ideale Fluide allerdings ohne große Bedeutung, daWasser und Luft diese Bedingung nicht
erfüllen.

Im allgemeinen Fall muss der Ansatz (16.6) für die Oberflächenkräfte also verallge-
meinert werden. Der skalare Druck p wird durch eine Matrix (oder auch Tensor zweiter
Stufe genannt) ersetzt, den sog. Spannungstensor

� WD

0
B@

�11 �12 �13

�21 �22 �23

�31 �32 �33

1
CA :
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Die komponentenweise Multiplikation des skalaren Druckes p mit dem Normalenvektor
wird ersetzt durch das innere Produkt zwischen dem Spannungstensor (zweiter Stufe) und
dem Normalenvektor (in der Tensorrechnung, vgl. etwa [42, Anhang 1] ein Tensor erster
Stufe). Es ist definiert durch die Summation über die beiden inneren Indizes und entspricht
damit in diesem Fall der Matrix-Vektor-Multiplikation:

n � � WD

0
BB@
P3

iD1 ni �i1P3
iD1 ni �i2P3
iD1 ni �i3

1
CCA

wobei die Argumente weggelassen wurden und n WD .n1; n2; n3/ gesetzt wurde. Damit
werden die Oberflächenkräfte als

S D
Z

@˝

n.x; t/ � �.x; t/ds.x/

geschrieben, und der Gauß’sche Satz ergibt

S D
Z
˝

div�dx:

Die Divergenz ist für Tensoren (beliebiger, hier zweiter Stufe) als inneres Produkt des
Nabla-Operators r mit dem Tensor definiert, d. h. die Summation und damit auch die
partiellen Ableitungen werden auf den ersten, also den Zeilenindex (also auf die Spalten)
des Tensors zweiter Stufe angewendet:

div � WD r � � WD
 

nX
iD1

@�ij

@xi

!3

j D1

:

Wird der Spannungstensor als � D �pI (mit der Einheitsmatrix bzw. dem Einheitsten-
sor I ) gesetzt, so ergibt sich div I D r und damit wieder (16.6).

Die Integrale Form der Impulsbilanz

Insgesamt ergibt sich also nun für die Summe der auf ein jetzt bewegtes und damit von
der Zeit t abhängiges Gebiet ˝t wirkenden Kräfte der Ausdruck

S C B D
Z

˝t

.div � C %f / dx:
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Wir erhalten damit für das bewegte Gebiet ˝t :

d

dt

Z
˝t

%.x; t/v.x; t/dx D
Z

˝t

.div �.x; t/ C %.x; t/b.x; t// dx: (16.7)

Differentielle Formder Impulsbilanz

Für eine differentielle Form benutzen wir wieder das Transporttheorem (Satz 16.5), und
zwar komponentenweise auf die linke Seite der integralen Impulsbilanz, d. h. mit %vi als
Integrand:

d

dt

Z
˝t

%vidx D
Z
˝t

�
@.%vi/

@t
C div.%vi v/

�
dx

D
Z
˝t

�
@.%vi/

@t
C .v � r/.%vi / C %vi div v

�
dx; i D 1; 2; 3:

Wieder als Vektorgleichung geschrieben ergibt sich:

d

dt

Z
˝t

%vdx D
Z

˝t

�
@.%v/

@t
C .v � r/.%v/ C %v div v

�
dx:

Da ˝t beliebig war und wir es uns als infinitesimal klein vorstellen können, erhalten wir
aus (16.7) die differentielle Form der Impulsbilanz:

@.%v/

@t
C .v � r/.%v/ C %v div v � div� � %f D 0: (16.8)

Mit der Produktregel

.v � r/.%v/ D v � .r%v/ C v � %rv

und der Kontinuitätsgleichung (Massebilanz) für

@.%v/

@t
D @%

@t
v C %

@v

@t
D �div.%v/v C %

@v

@t
D � .r%v C % div v/ v

können wir die Impulsbilanz äquivalent als

%
@v

@t
C %.v � rv/ � div � D %f (16.9)

schreiben. Je nachdem, wie jetzt der Spannungstensor � modelliert wird, ergeben sich
verschiedene Gleichungen:
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Ideale Fluide: Euler-Gleichungen

Ein ideales oder nicht-viskoses Fluid erfüllt auch im bewegten Zustand

� WD �pI

mit dem Druck p � 0. Damit wird (16.8) zu den Euler-Gleichungen:

%
@v

@t
C %.v � rv/ C rp D %f: (16.10)

Linear-viskose (Newton’sche) Fluide: Navier-Stokes-Gleichungen

Eine der einfachsten Annahmen für nicht-ideale Fluide ist, das es Schubspannungen gibt,
die linear vom Geschwindigkeitsgradienten abhängen. Man denke zum Beispiel an Rei-
bungskräfte, die entstehen, wenn zwei Schichten im Fluid sich mit unterschiedlicher Ge-
schwindigkeit zueinander bewegen, d. h. wenn eine sog. Scherströmung vorliegt. Solche
Fluide nennt man linear-viskose oder Newtonische Fluide. Man setzt

� WD �pI C � WD .�p C � div v/I C 2�Dv

mit

� Volumenviskosität �,
� dynamischer Visosität �

� und dem symmetrisierten Gradienten

Dv WD 1

2

�
@vi

@xj

C @vj

@xi

�3

i;j D1

:

Die beiden Viskositäten werden vereinfacht als räumlich konstant angenommen. Damit
erhält man die kompressiblen Navier-Stokes-Gleichungen:

@.%v/

@t
C .v � r/.%v/ C %v div v C .� C �/r div v � �4v C rp D %f

Mit der Produktregel für den zweiten und dritten Term links ergibt sich

%
@v

@t
C %.v � rv/ C .� C �/r.div v/ � �4v C rp D %f:

Die entsprechende Massebilanz bzw. Kontinuitätsgleichung lautet, vgl. (16.2):

@%

@t
C r% � v C % div v D 0:
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Inkompressible Newtonische Fluide: inkompressible
Navier-Stokes-Gleichungen

Ein inkompressibles Fluid erfüllt

div v D 0:

Damit ergeben sich die inkompressiblen Navier-Stokes-Gleichungen:

%
@v

@t
C %.v � rv/ � �4v C rp D %f;

d. h. es tritt nur noch die dynamische Zähigkeit � auf. Die entsprechende Massebilanz
bzw. Kontinuitätsgleichung lautet hier

@%

@t
C r% � v D 0:

Homogene inkompressible Newtonische Fluide

Das Fluid heißt homogen, wenn die Dichte räumlich konstant ist, also

%.x; t/ D %.t/

gilt. Ist das Fluid homogen und inkompressibel, dann ist die Dichte konstant:

%.x; t/ 	 %0 > 0:

In diesem Fall erhalten wir folgende Gleichungen, die manchmal (besonders in techni-
schen Anwendungen) als inkompressible Navier-Stokes-Gleichungen bezeichnet werden:

%0

�
@v

@t
C .v � r/v

�
� �4v C rp D %0f

oder mit der kinematischen Viskosität

� WD �

%0

als

@v

@t
C .v � r/v � �4v C 1

%0

rp D f

werden. Die Kontinuitätsgleichung wird (s. o.) zu

div v D 0:
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Inkompressible und geschichtete Fluide

In Klimaanwendungen wird ein Fluid aber gerade nicht als homogen, sondern die Dichte
als räumlich veränderlich, aber zeitlich konstant angesetzt, d. h.

%.x; t/ D %.x/:

Außerdem wird die Annahme der konstanten Viskosität fallen gelassen, sondern z. B.
angenommen, dass sie von der vertikalen Koordinate abhängt. Damit erhalten die Navier-
Stokes-Gleichungen die Form

%
@v

@t
C %.v � rv/ � div.�Dv/ C rp D %f:

Die entsprechende Kontinuitätsgleichung ist wieder (16.5).

16.5 Gleichungen für Ozeanmodelle

Ozeanmodelle bestehen neben der Masse- und Impulsbilanz zusätzlich aus Gleichungen
für Temperatur und Salzgehalt. Beide haben die Form von Transportgleichungen, wie sie
im Kap. 12 behandelt wurden. Wie schon im Kap. 6 über das Rahmstorf-Boxmodell be-
schrieben, spielen beide Größen für die globale Ozeanströmung eine wichtige Rolle, so
dass sie nicht vernachlässigt werden können.

Die Energiegleichung

Die Form der Gleichung für die Temperatur ist eine Transportgleichung, als die wir sie
hier direkt einführen. Die Temperatur- oder besser Energiegleichung kann auch über die
Energiebilanz analog zu den anderen beiden Bilanzgleichungen für Masse und Impuls
hergeleitet werden. Sie ergibt sich als Gleichung für die Temperatur T für ein allgemeines,
nicht als inkompressibel vorausgesetztes Fluid

@T

@t
C div .T v � �rT / D 0:

Ist das Fluid inkompressibel, so vereinfacht sich diese Gleichung zu

@T

@t
C v � rT � div .�rT / D 0:

Der Diffusionskoeffizient wird in Ozeanmodellen meist nicht als konstant angenommen.
Wird dies zusätzlich angenommen, so ergibt sich

@T

@t
C v � rT � ��T D 0:
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Gleichung für den Salzgehalt

Salz kann als Spurenstoff (Tracer) betrachtet werden, für den eine Transportgleichung wie
in Kap. 12 benutzt wird. Daher gilt

@S

@t
C div.Sv � �rS/ D 0

bzw. wieder mit einem inkompressiblen Fluid

@S

@t
C v � rS � div.�rS/ D 0:

Die Diffusion wird für Energie- und Salzgehaltgleichung eventuell unterschiedlich mo-
delliert, daher verwenden wir auch die Indizes �T und �S .

Die Zustandsgleichung

Wie bereits beim Boxmodell benötigt man eine zusätzliche Gleichung, die die Dichte
mit Druck, Temperatur und Salzgehalt koppelt. Beim Boxmodell gab es keinen Druck,
daher wurden dort in der Zustandsgleichung nur die anderen drei größen zueinander in
Beziehung gesetzt, im einfachsten Fall die Dichte als linear von Temperatur- und Salz-
gehaltsdifferenz modelliert. Allgemeiner kann die Zustandsgleichung auf verschieden Art
geschrieben werden. Wir benutzen hier die Form

% D f .T; S; p/:

Als Spezialfälle hat man z. B.

� die idealen Gase mit

% D p

RT

mit einer Materialkonstante R,
� und die inkompressiblen Fluide mit konstanter Dichte mit %.x; t/ 	 %0.

Die Boussinesq-Approximation

Zusammengefasst ergibt sich für den Ozean aus Masse-, Impuls-, Energiebilanz sowie mit
der Transportgleichung für die Salinität und der Zustandsgleichung folgendes System

@%

@t
C div.%v/ D 0

@.%v/

@t
C .v � r/.%v/ C %v div v C .� C �/r div v � �4v C rp D %b;

@T

@t
C div.T v � �T rT / D 0

@S

@t
C div.Sv � �S rS/ D 0

% D f .T; S; p/:
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Hier ist das Fluid in allen Gleichungen noch als kompressibel angenommen. Oft wird nun
folgende Vereinfachung gemacht, die sog. Boussinesq-Approximation:

� Die Dichte ist konstant, außer in der äußeren Kraft b auf der rechten Seite der Impuls-
gleichung, wo ein Auftriebsterm mit der Kraftdichte

b D �ge3

eingesetzt wird. Dabei ist e3 der Basisvektor in Richtung der vertikalen Koordina-
tenrichtung und g die Erdbeschleunigung. In allen anderen Termen wird % 	 %0 als
konstant angenommen.

� Außerdem werden die Diffusionen und Viskositäten als konstant angenommen.

Damit ergeben sich folgende Gleichungen:

div v D 0

@v

@t
C v � rv � �4v C rp D � %

%0

ge3;

@T

@t
C v � rT � �T 4T D 0

@S

@t
C v � rS � �S 4S D 0

% D f .T; S; p/

mit � D �=%0. Damit ist (s. die erste Gleichung dieses Systems) jetzt praktisch die Inkom-
pressibilität des Fluides vorausgesetzt. Die Zustandsgleichung kann jetzt direkt auf der
rechten Seite der Impulsgleichung eingesetzt werden. In dieser Form (ohne Salzgehalt)
werden die Gleichungen auch in technischen Anwendungen, bei denen die Temperatur
eine Rolle spielt, verwendet.

Verallgemeinert können die Viskosität � und die beiden Diffusionen �T und �S als nicht
konstant angesetzt werden. Dann ergibt sich statt des Laplace-Terms für Geschwindigkeit,
Temperatur und Salzgehalt jeweils wieder die Divergenzform.

In der Ozean- und auch Atmosphärenmodellierung wird auf die speziellen geometri-
schen Bedingungen des Rechengebietes eingegangen.

16.6 Besonderheiten der Erdgeometrie

In diesem Abschnitt gehen wir auf Besonderheiten bei Klimamodellen ein, die sich auf die
Geometrie des betrachteten Gebietes bei globalen Modellen beziehen, besonders bei der
Atmosphären- oder Ozeankomponente. Die Geometrie des Ozeans und der Atmosphäre
weisen zwei wesentliche Besonderheiten auf:
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� Das Rechengebiet hat näherungsweise die Form einer Kugelschale
� und es hat in vertikaler Richtung eine wesentlich geringere Ausdehnung als in horizon-

taler.

Die beiden charakteristischen Tatsachen werden sinnvollerweise bei der Modellierung be-
rücksichtigt und ausgenutzt. Die erste durch die Wahl von Kugelkoordinaten, die zweite
durch eine unterschiedliche Behandlung der vertikalen Richtung mit einer zusätzlichen
Approximation. Beides hat Auswirkungen auf die Modellgleichungen, die wir hier be-
schreiben.

Räumliche Polar- oder Kugelkoordinaten

Die Erde ist keine exakte Kugel, wird aber in Modellen als solche angenommen. Für den
Erdradius wird meist ein Mittelwert von 6371 km benutzt, der einer Kugel mit dem Erd-
volumen entspricht. Es bietet sich an, den Ozean und die Atmosphäre als Kugelschale mit
einer – verglichen mit der horizontalen Ausdehnung – relativ geringen Dicke zu modellie-
ren. Dazu werden zweckmäßigerweise die räumlichen Polar- oder auch Kugelkoordinaten
verwendet.

Wir betrachten dazu zuerst die ebenen Polarkoordinaten, die für einen Punkt x D
.x1; x2/ 2 R2 gegeben sind als

.�; Qr/ 2 Œ0; 2�� � Œ0; 1/;

 
x1

x2

!
D
 

Qr cos�

Qr sin�

!
;

Qr D kxk2 D
q

x2
1 C x2

2; � D

8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
:̂

arctan
x2

x1

; x1; x2 � 0;

� C arctan
x2

x1

; x1 
 0;

2� C arctan
x2

x1

; x1 � 0; x2 
 0:

(16.11)

Dabei wurde die Arcustangensfunktion mit dem Hauptzweig, d. h. dem Wertebereich
.��=2; �=2/ (vgl. [13, §14]) benutzt. Auf der Erde gibt – auf einem festen Breitenkreis –
der Winkel � dann den Längengrad an.

Wird die Kugel bzw. Erde gewissermaßen aus den einzelne Breitenkreisen (bzw. ent-
sprechenden Kreisscheiben) „zusammengesetzt“ vorgestellt, so ergibt sich eine Motiva-
tion für die räumlichen Polarkoordinaten. Dazu wird als dritte Koordinate der Winkel �

zwischen

� dem Ortsvektors eines Punktes auf der Erdoberfläche (mit dem Erdmittelpunkt als Ko-
ordinatenursprung)

� und der zum Koordinatensystem vertikalen Erdachse,
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gemessen von einem Pol an und daher im Bereich Œ0; �� liegend, benutzt. Dann gibt � � �
2

den Breitengrad an, wenn der Südpol bei � D 0 ist und mit � < 0 südliche und mit � > 0

nördliche Breitengrade bezeichnet werden.
Für festes � hat der Kreis des entsprechenden Breitengrades den Radius Qr D r sin � ,

wenn r der Abstand des Punktes x D .x1; x2; x3/ 2 R3 vom Erdmittelpunkt ist. Damit
wird folgende Abbildung von den Kugelkoordinaten .�; �; r/ in die festen Koordinaten
.x1; x2; x3/ definiert:

˚ W Œ0; 2�� � Œ0; �� � Œ0; 1/ ! R3;

˚.�; �; r/ WD

0
B@

˚1

˚2

˚3

1
CA .�; �; r/ WD

0
B@

r sin � cos�

r sin � sin�

r cos �

1
CA D

0
B@

x1

x2

x3

1
CA : (16.12)

Die Umkehrabbildung ist gegeben durch

r D kxk2 D
q

x2
1 C x2

2 C x2
3; � wie in (16.11); � D �

2
C arctan

q
x2

1 C x2
2

x3

:

Basisvektoren des Kugelkoordinatensystems

Um eine vektorielle Größe (wie z. B. die Geschwindigkeit) in die neuen Koordinaten zu
transformieren, werden Basisvektoren des neuen Koordinatensystems benötigt. Haben wir
bisher geschrieben

v D .v1; v2; v3/ oder v D .v1; v2; v3/>;

so bezog sich diese Koordinatendarstellung immer auf das raumfeste Koordinatensystem
mit orthonormalen Basisvektoren, die wir mit e1; e2; e3 2 R3 bezeichnen. Ein Vektor
x 2 R3 wird damit als

x D x1e1 C x2e2 C x3e3

geschrieben, und seine Koordinatenschreibweise x D .x1; x2; x3/ bezieht sich auf die-
se Koordinaten, d. h. wir schreiben x D .x1; x2; x3/E mit E D .e1; e2; e3/. Dabei ist
es belanglos, ob wir einen solchen Vektor der Koordinatendarstellung als Zeilen- oder
Spaltenvektor schreiben. Dies spielt nur eine Rolle, wenn wir Vektorgleichungen oder
Matrix-Vektoroperationen in Koordinatenschreibweise aufstellen. Wir werden zwischen
vektorieller und Koordinatenschreibweise hier nicht unterscheiden, d. h. auch ein Gleich-
heitszeichen zwischen beiden Schreibweisen verwenden.

Zu den Kugelkoordinaten gehören nicht mehr feste, sondern in jedem Punkt x 2 R3

unterschiedliche Basisvektoren e� ; e�; er . Diese zeigen für die beiden Winkelkoordinaten
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tangential an die entsprechenden Kreise, für r vomNullpunkt weg auf den aktuellen Punkt
x 2 R3 hin. Ihre Koordinatendarstellung in der Basis E sind:

e� D

0
B@
cos � cos�

cos � sin�

� sin �

1
CA

E

; e� D

0
B@

� sin�

cos�

0

1
CA

E

; er D

0
B@
sin � cos�

sin � sin �

cos �

1
CA

E

:

Die Matrix der Transformation von den Kugelkordinaten in die Koordinaten E ist

T .�; �; r/ WD

0
B@
cos � cos� � sin� sin � cos�

cos � sin� cos� sin � sin�

� sin � 0 cos �

1
CA ;

d. h. es gilt
0
B@

v1

v2

v3

1
CA

E

D T .�; �; r/

0
B@

v�

v�

vr

1
CA

K

mit K D .e� ; e�; er /. Die umgekehrte Transformation lässt sich leicht angeben, denn es
gilt:

Übung 16.10 Zeigen Sie: Die Matrix T .�; �; r/ ist für alle .�; �; r/ orthogonal, d. h. ihre
Zeilen und Spalten bilden ein Orthonormalsystem.

Für orthogonale Matrizen gilt T �1 D T >, vgl. [28, 5.5], also ist
0
B@

v�

v�

vr

1
CA

K

D T .�; �; r/>

0
B@

v1

v2

v3

1
CA

E

Transformation von Ableitungen skalarer Funktionen

Sei F D F.x/ eine Funktion und QF D F ı ˚ , also QF .�; �; r/ D F.˚.�; �; r// die in
Kugelkoordinaten ausgedrückte Funktion. Um Umrechnungsvorschriften für die partiel-
len Ableitungen von F bezüglich xi und derjenigen von QF bezüglich �; �; r zu erhalten,
werden wegen

@ QF
@�

.�; �; r/ D
3X

iD1

@F

@xi

.x/
@˚i

@�
.�; �; r/ (16.13)

und analogen Rechnungen für �; r die partiellen Ableitungen der Transformation ˚ be-
nötigt.
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Übung 16.11 Berechnen Sie die Jacobi-Matrix ˚ 0.�; �; r/ der Transformation ˚ aus
(16.12) und zeigen Sie, dass ˚ 0.�; �; r/ D T .�; �; r/D.�; �; r/ mit einer Diagonalmatrix
D gilt.

Übung 16.12 Berechnen Sie damit die Transformationen der partiellen Ableitungen in
(16.13) und analog die bezüglich � und r .

Soll eine Differentialgleichung transformiert werden, so werden die umgekehrten
Transformationen benötigt. Sie ergeben sich mit Hilfe der inversenMatrix ˚ 0.�; �; r/�1 D
.˚�1/0.x/:

Übung 16.13 Zeigen Sie: Es gilt

˚ 0.�; �; r/�1 D

0
BBBBB@

cos � cos�

r

cos � sin �

r
�sin �

r

� sin�

r sin �

cos�

r sin �
0

sin � cos� sin � sin� cos �

1
CCCCCA

Umrechnung vonDifferentialoperatoren

Mit den bereitgestellten Hilfsmitteln können jetzt die Differentialoperatoren Gradient,
Divergenz und der Laplace-Operator umgerechnet werden. Diese Aussagen finden sich
teilweise auch in [12, (10.6)], wir formulieren sie als Übungen:

Übung 16.14 Transformieren Sie den Gradienten einer Funktion F D F.x/ in Kugelko-
ordinaten, d. h. berechnen Sie für QF D F ı ˚ in

gradE F.x/ D rEF.x/ D
�

@F

@x1

.x/;
@F

@x2

.x/;
@F

@x3

.x/

�
E

D @F

@x1

.x/e1 C @F

@x2

.x/e2 C @F

@x3

.x/e3

D g�.�; �; r/e� C g�.�; �; r/e� C gr.�; �; r/er

D .g�.�; �; r/; g�.�; �; r/; gr .�; �; r//K

DW rK
QF .�; �; r/

DW gradK
QF .�; �; r/

die Koeffizienten g� ; g� und gr .

Um die Divergenz in Kugelkordinaten zu berechnen und in eine kompakte Form zu
bringen, sind folgende Beziehungen hilfreich:
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Übung 16.15 Zeigen Sie: Für die Basisvektoren des Kugelkoordinatensystems gilt:

@e�

@�
?e�;

@e�

@�
?e� ;

@er

@�
D e� ;

@e�

@�
D cos �e�;

@er

@�
D sin �e�

Dabei benutzen wir die Bezeichnung a?b W” a � b D 0 für a; b 2 Rd .

Übung 16.16 Berechnen Sie für eine vektorwertige, in Kugelkordinaten gegebene Funk-
tion F D .F� ; F�; Fr /K mit Fi D Fi .�; �; r/ für i 2 f�; �; rg die Divergenz in Kugel-
kordinaten, d. h.

divKF.�; �; r/ WD rK � F.�; �; r/:

Übung 16.17 Transformieren Sie den Laplace-Operator in Kugelkordinaten.

Transformation von Integralen

Bei den Bilanzgleichungen wurden Volumenintegrale benutzt. Werden die enthaltenen
Größen in Kugelkoordinaten formuliert, so müssen auch die Integrale auf Kugelkoordina-
ten gebracht werden. Dazu dient die Transformationsformel, vgl. Satz 16.4.

Korollar 16.18 Es gilt für ˝ D fx 2 R3 W kxk2 
 Rg:

Z
˝

F.x/dx D
RZ

0

2�Z
0

�Z
0

F.˚.�; �; r//r2 sin �d�d�dr:

Dabei wurde benutzt (vgl. [12, §9 Corollar 2]):

Übung 16.19 Zeigen Sie: det˚ 0.�; �; r/ D r2 sin � .



Anhang

Literatur-Grundlagen

Literatur, die beim Schreiben dieses Buches geholfen hat.

� Klimamodelle:
– Latif: Klimawandel und Klimadynamik [1]
– McGuffie, Henderson-Sellers: A Climate Modeling Primer [5] bzw. in einer überar-

beiteten Auflage [4]
– Rahmstorf, Richardson: Wie bedroht sind die Ozeane? [43]
– Stocker: Introduction to Climate Modeling, Skript [2], erweitert, auf der Basis von

[44]
– v. Storch, Güss, Heimann: Das Klimasystem und seine Modellierung [3]
– Intergovernmental Panel on Climate Change (IPCC): 5. Assessment Report 2013

[6], s. auch www.ipcc.ch.
� Strömungsmechanik:

– Chorin, Marsden: A Mathematical Introduction to Fluid Mechanics [45]
– Schade, Kunz: Strömungsmechanik [42]

� Numerische Mathematik:
– Bollhöfer, Mehrmann: Numerische Mathematik [15]
– Plato: Numerische Mathematik kompakt [46]
– Stoer, Bulirsch: Numerische Mathematik 1 und 2 [22],[24]

� Differentialgleichungen:
– Amann: Gewöhnliche Differentialgleichungen [47]
– Demailly: Gewöhnliche Differentialgleichungen [48]
– Hackbusch: Theorie und Numerik elliptischer Differentialgleichungen [49]
– Prüss, Wilke: Gewöhnliche Differentialgleichungen und dynamische Systeme [14]
– Walter: Gewöhnliche Differentialgleichungen [32]
– Werner, Arndt: Gewöhnliche Differentialgleichungen [33].

� In letzter Zeit sind weitere Bücher zum Thema Mathematik und Klima erschienen, von
denen folgende hier genannt sind:
– Drake: Climate Modeling for Scientists and Engineers [50].
– Kaper, Engler: Mathematics & Climate [51].

239© Springer-Verlag Berlin Heidelberg 2015
T. Slawig, Klimamodelle und Klimasimulationen, Springer-Lehrbuch Masterclass,
DOI 10.1007/978-3-662-47064-0

www.ipcc.ch
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