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Vorwort

Die Idee zu diesem Buch war, eine Vorlage fiir eine einsemestrige vierstiindige Lehrver-
anstaltung mit dem gleichen Titel zu schaffen, die ich an der Universitit Kiel seit einigen
Jahren regelmdBig anbiete. Diese Vorlesung richtet sich an Studierende der Mathema-
tik und Informatik (mit ausreichenden mathematischen Vorkenntnissen und Interesse).
Zu meiner Freude kommen auch immer wieder Studierende aus in den in Kiel mit dem
Helmholtz-Zentrum GEOMAR und dem DFG-Cluster ,,Future Ocean* stark vertretenden
Klima- und Meereswissenschaften in diese Vorlesung. Damit ist die Zielgruppe dieses
Buches gut beschrieben.

Ich arbeite seit einigen Jahren in der Anwendung von numerischer Mathematik, Op-
timierung und Parameteridentifikation bei Klimamodellen und habe dieses Gebiet als
spannend, vielseitig und anspruchsvoll kennengelernt. Es stellt gewissermaflen eine Kom-
bination aus mathematischer Modellierung und der Theorie und Numerik von Differenti-
algleichungen dar. Meine Idee der Vorlesung und auch des Buches war es, mathematische
Aussagen aus diesen drei Bereichen an Hand ausgewéhlter Klimamodelle vorzustellen
und anzuwenden, und zwar moglichst genau dann, wenn eine entsprechende Fragestellung
im Klimamodell auftritt. Dies unterscheidet dieses Buch eventuell von anderen Lehrbii-
chern tiber Numerik oder Differentialgleichungen.

Da jeder der oben genannten drei Bereiche an sich schon eine oder mehrere Vorle-
sungen fiillen kann, miissen Abstriche in Breite und Tiefe gemacht werden: Sie werden
in diesem Buch nur einen groben Uberblick iiber das Klimasystem und wenig iiber die
Problematik des Klimawandels finden. Auch gibt es im Bereich der Theorie und Numerik
von Differentialgleichungen an vielen Stellen weitere interessante Themen, die hier nicht
behandelt werden. So wird etwa der Bereich der Stromungsmechanik in Ozean und Atmo-
sphire nur ansatzweise behandelt. In seinem jetzigen Umfang geht das Buch schon weiter,
als es die Vorlesungszeit in einem Semester erlaubt. Es ist ebenfalls schwer moglich, in
einem Semester die Details der heute verwendeten dreidimensionalen Klimamodellen mit
der hier angestrebten mathematischen Basis vorzustellen, auch weil bei konkreten Model-
len viele theoretische Aussagen (noch) nicht vorliegen.

Fiir das Buch wird Vorwissen aus Grundvorlesungen der Analysis und Linearen Al-
gebra oder vergleichbarer Mathematik fiir Naturwissenschaften vorausgesetzt. Resultate
aus diesen Grundvorlesungen werden — wenn dies der Verdeutlichung dient — wiederholt
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(ohne Beweis), teilweise wird nur auf Literatur verwiesen. Einige Aussagen (z.B. der Ba-
nach’sche Fixpunktsatz) sind eventuell auch schon aus Mathematik-Vorlesungen bekannt,
wurden hier aber mit Beweis aufgenommen. Einige andere Beweise von Resultaten, die
aus verfiigbarer Literatur stammen, werden hier nicht wiederholt, sondern mit Referenz
angegeben. Die Abschnitte iiber die Existenz schwacher Losungen benutzen einige weni-
ge dariiber hinausgehende Resultate aus der Funktionalanalysis.

Bedanken mochte ich mich bei den Studierenden, die mir immer wieder erlaubt ha-
ben, zu lernen, wie dieser Stoff am besten zu vermitteln ist. Ich bedanke mich ebenfalls
bei den Wissenschaftlichen Mitarbeiterinnen und Mitarbeitern Claudia Kratzenstein, Mal-
te Prief und Jens Burmeister, die die Ubungen zu den Vorlesungen durchgefiihrt haben.
Jens Burmeister und einigen Studierenden danke ich daneben fiir Hinweise zu Fehlerkor-
rekturen. Dank ebenfalls an Kirsten Zickfeld und Stefan Rahmstorf fiir die Moglichkeit
der Arbeit mit dem Boxmodell der Nordatlantikstromung sowie an William E. Schiesser
fiir das Bereitstellen der Dokumentation und des Codes des CO,-Boxmodells. Weiterhin
danke ich dem Springer-Verlag fiir die Betreuung und die Gelegenheit, dieses Buch zu
veroffentlichen.

Kiel, Mirz 2015 Thomas Slawig
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Klimasystem und Klimamodelle

Hier werden die Begriffe Klima, Modelle und Simulationen und der grundlegende Aufbau des Kli-
masystems der Erde mit den wichtigsten Prozessen und Interaktionen diskutiert. Die antreibenden
Krifte des Klimas und damit auch die Ursachen fiir Klimaédnderungen werden zusammengefasst.
Es werden die verschiedenen Klassen von Klimamodellen, auch in ihrer historischen Entwicklung,
kurz vorgestellt. Damit werden die Grundlagen gelegt, um sich spéter genauer mit den Modellen
beschiftigen zu konnen. Es geht hier zuniichst um einen Uberblick, um die einzelnen spiter be-
handelten Modelle und auch verwendete Begriffe einordnen zu kénnen. Der Idee eines Lehrbuchs
folgend, werden diese Inhalte — wenn passend — als Ubungen in Frageform thematisiert. Beispielhaf-
te Antworten werden danach zusammengestellt. Ausfiihrlichere Darstellungen zum Thema finden
sich z.B. in [1-4].

1.1 Wetter und Klima

Zur Definition des Begriffs Klima und seiner Abgrenzung vom Begriff Wetter beginnen
wir mit folgenden Fragen:

Ubung 1.1

(a) Welche Phidnomene und Groflen werden (z.B. in einer Vorhersage) genannt, wenn
von Wetter oder auch Unwetter die Rede ist?

(b) In welchen Teilen des Klimasystems (z. B. Atmosphire, Ozeane, Vegetation etc.)
spielen sich diese Prozesse ab bzw. welchen Teilen ordnen Sie die entsprechenden
GroBen zu?

(c) In welchen rdaumlichen und zeitlichen Bereichen spielen sich diese Prozesse ab bzw.
welche werden (z. B. in einer Vorhersage) unterschieden?

© Springer-Verlag Berlin Heidelberg 2015 1
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1 Klimasystem und Klimamodelle

Den Aufbau und die Teile oder Komponenten des Klimasystems werden wir spiter

noch genauer spezifizieren. Mogliche Antworten sind:

(a)

(b)

()

Im

In einer Wettervorhersage ist meist die Rede von:
e Temperatur

o Wolkenbedeckung und damit Sonneneinstrahlung auf die Erdoberfliche

e Niederschldgen

e Windrichtung und -geschwindigkeit

e Luftdruck, insbesondere Hoch- und Tiefdruckgebiete

o Luftfeuchtigkeit

Unwetterwarnungen beziehen sich auf Extremereignisse wie Stiirme, Starkregen,
Uberflutungen.

Die Groflen beziehen sich meist auf die Atmosphire, mit Ausnahme etwa der Was-
sertemperatur in Meeresregionen oder beim Urlaubswetter.

Kennzeichnend fiir Wettervorhersagen ist ihre zeitliche und réunliche Lokalitdit: Es
ist interessant, wie z. B. die Temperatur in den nichsten Tagen in einer relativ eng
begrenzten Region (z.B. Bundesland, Norden Deutschlands etc.) ist. Langfristige
Vorhersagen (,,Wie wird der nidchste Sommer/Winter?*) sind eher spekulativ. Mit-
telwerte tiber ganz Deutschland und den nichsten Monat sind relativ uninteressant,
hochstens als Riickblick auf das Wetter (oder schon Klima?) vergangener Sommer
oder Jahre.

Vordergrund beim Wetter steht sein Einfluss auf das téigliche Leben. Die in der Wetter-

vorhersage genannten Phiinomene sind daher auf den menschlichen Lebensraum, also den
Bereich der Atmosphire und von Meer oder Fliissen beschrinkt. Der Salzgehalt des Meer-
wassers z. B. in bestimmten Regionen des Pazifiks ist kein Thema einer Wettervorhersage.
Die mit Wetter bezeichneten Phianomene sind rdumlich und zeitlich kleinskalig.

Klima

Um den Gegensatz Wetter — Klima darzustellen, dienen folgende dhnliche Fragen zum
Begriff Klima. Am heute oft verwendeten Begriff Klimawandel kann dies ebenfalls leicht
festgestellt werden.

Ubung 1.2

(a)

(b)

()

Welche Phianomene und Groflen werden genannt, wenn von Klima oder auch Klima-
wandel gesprochen wird?

In welchen Teilen des Klimasystems spielen sich diese Prozesse ab bzw. welchen
Teilen ordnen Sie diese Gréen zu?

Welche raumliche und zeitliche Bereiche werden genannt, wenn von Klima(wandel)
die Rede ist?
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Mogliche Antworten sind:

(a) Hier werden oft folgende Phidnomene oder GroBen genannt: ,,der wirmste Sommer
seit ..., Treibhausgase, Meeresspiegelanstieg, Temperatur (welche ist da gemeint?),
Eisschmelzen, Versteppung, . ..

(b) Die o.g. Phidnomene und Grolen kommen aus allen Bereichen des Klimasystems:
Atmosphire, Ozeane, Vegetation, Bodenbedeckung, Eis, ...

(c) Interessant ist z. B. das ,,Klima am Ende dieses Jahrhunderts in Mitteleuropa“ und
nicht dasjenige Mitte Juli des niichsten Jahres am bevorzugten Urlaubsort. Wéhrend
fiir letzteres eine dreiwochige Regenperiode entscheidend ist, wird sie bei einer Fra-
gestellung zum Klima nur interessant sein, wenn sie sich z.B. jdhrlich wiederholt
oder insgesamt viel mehr Regen fillt.

Als Klima werden rdumlich und zeitlich grof3skalige (d. h. in groleren Regionen oder eben
global und iiber mehrere Jahre oder Jahrzehnte verlaufenden) Prozesse und Phidnomene
bezeichnet (vgl. Abb. 1.1). Bei der Beschreibung des Klimas werden bestimmte relevante
KenngroBen ausgewihlt, die entweder charakteristisch oder urséchlich fiir bestimmte Phi-
nomene und Prozesse sind. Diese Groflen sind oft rdumlich und zeitlich gemittelt, z. B. die
globale mittlere Jahrestemperatur, z. B. an der Meeresoberflidche. Fiir eine Wettervorher-
sage uninteressant, ist sie eine wichtige Kenngrof3e in der Klimaforschung. Ein weiteres
Beispiel ist der ebenfalls gemittelte Meeresspiegelanstieg. Die Klimaforschung bezieht
daher Prozesse und GroBen des gesamten Klimasystems (vgl. etwa das Abschmelzen von
See- und Landeis) mit ein.

Erde |
9 |
S Kontinente H
3 Klima
‘5  Teile von
<C Kontinenten
_CICJ (z.B.
‘O Mitteleuropa)
€
g weer | Wetter
Landesteile
Orte

= ___
Stunden Tage Monate Jahre Jahrhunderte Jahrtausende

zeitliche Auflésung

Abb. 1.1 Schematische Darstellung der Begriffe Wetter und Klima durch rdumliche und zeitliche
Zeitskalen. Die Abgrenzung ist nicht scharf
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Klimaforschung

Der Grund fiir eine Beschiftigung mit dem Klima hat sich mit der Beobachtung einer
globalen Temperaturerhohung und deren nachgewiesenen oder vermuteten Konsequen-
zen (zusammengefasst als Klimawandel) in den letzten Jahrzehnten gewandelt. Durch
die Vermutung bzw. das Wissen, dass menschliche Handlungen Auswirkungen auf das
Klima haben und so auch fiir diesen Wandel ursichlich sind, bekommt das Studium des
Klimas eine bedeutende gesellschaftliche und politische Dimension. Es ist auch immer
noch ein strittiges Thema, welche beobachteten Anderungen welche Ursachen haben und
wie sie vermeidbar oder verdnderbar sind. Gerade das macht die Beschiftigung mit dem
Klima interessant, denn das Verstiandnis der Klimaprozesse ist Voraussetzung, um die Ein-
flussgrofen und -moglichkeiten zu verstehen, Prognosen zu erstellen und Strategien fiir
menschliches Handeln zu entwickeln. Fiir die Wissenschaft bietet sich hier ein anspruchs-
volles interdsiziplinires Arbeitsfeld in Physik, Chemie, Biologie, Mathematik, Informatik
und anderen Disziplinen.

1.2 Klimamodelle

Ganz allgemein kann ein Modell als ein vereinfachtes (Ab-)Bild der Realitit beschrieben
werden. Ein Modell ist vereinfacht, da es einen Uberblick verschaffen oder nur bestimmte
Aspekte des modellierten Gegenstandes betonen und andere vernachlissigen soll (z. B. ein
Stadtplan als Modell einer Stadt). Der Grad der Vereinfachung bzw. der noch vorhandenen
Komplexitit hingt davon ab, was mit dem Modell geschehen soll. Ein Modell, das so
komplex wie der zu modellierende Gegenstand ist, ist nutzlos. Ein zu stark vereinfachtes
kann es ebenfalls sein, wenn relevante Dinge nicht mehr enthalten sind.

Modellierung

Den Prozess der Vereinfachung oder Abstraktion der Realitit bezeichnet man als Modell-
bildung oder Modellierung. Die Sicht oder Interpretation der Realitdt kann individuell
unterschiedlich sein, Messungen realer Grof3en sind mit Fehlern behaftet. Weiterhin gibt
es verschiedene Methoden der Beschreibung, Vereinfachung oder Abstraktion, und auch
die Ziele der Verwendung eines Modells sind unterschiedlich. Daher kann es zu einem
»Gegenstand* verschiedene Modelle geben, die unter Umstdnden auch miteinander kon-
kurrieren.

Formulierung von Modellen

Modelle konnen in verschiedenen Sprachen formuliert werden, es gibt grafische Mo-
delle (z. B. UML-Diagramme in der Informatik), umgangssprachliche Modelle, Modelle
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in Fachsprachen oder Zeichen verschiedener Disziplinen (z. B. chemische Reaktionsfor-
meln). Zur Abstraktion werden viele Modelle mathematisch formuliert. Die Sprache und
Exaktheit der Mathematik erlaubt es, Aussagen zum Verhalten und damit zur Qualitit von
Modellen zu machen. Dabei ergeben sich relevante Groen (z. B. Temperatur in der At-
mosphire) oft als Losungen von Gleichungen, die nur in einfachen Fillen exakt analytisch
(sozusagen ,,auf dem Papier*) berechnet werden konnen. Meist muss algorithmisch eine
Niherungslosung bestimmt werden. Die Sprache der Mathematik liefert dann ebenfalls
eine Basis zur Umsetzung in Sprachen der Informatik, z. B. in eine Programmiersprache
zur Beschreibung und Realisierung eines Algorithmus’ zur Berechnung der Losung mit
Hilfe von Computern.

Von der Art der verwendeten oder durchgefiihrten Modellierung hingen die mathe-
matischen Resultate, die bewiesen, und die Algorithmen, die zur Berechnung von Mo-
dellgroen verwendet werden konnen, ab. Das Wissen tiber die Modellierung und deren
Techniken erlaubt es, die Qualitdt von Modellen zu verstehen und ihre Fehler(-quellen)
abzuschitzen oder anzugeben.

Besonderheiten bei Klimamodellen

Die Prozesse im Klimasystem miissen vereinfacht oder approximiert werden, da das Kli-
masystem selbst und seine internen Interaktionen sehr komplex sind und anders nicht
darstell- oder berechenbar sind. Weiterhin gibt es Prozesse, iiber deren ,,beste oder eine
geeignete Modellierung noch kein Konsens vorhanden ist.

Klimamodelle werden zur Prognose verwendet, zur Abschidtzung von Sensitivitidten
und zur Untersuchung von Unsicherheiten in Parametern und Einflussgrofien, damit auch
zur Entwicklung von Strategien fiir Reaktionen auf den Klimawandel, wie z. B. Anpas-
sung oder Vermeidung.

In der Sprache der Mathematik handelt es sich bei Klimamodellen meist um gekop-
pelte Systeme gewohnlicher oder partieller Differentialgleichungen, in ihrer komplexeren
Form sind diese nichtlinear, riumlich dreidimensional und zeitabhiingig. Es gibt je nach
Anwendungsgebiet Modelle unterschiedlicher Komplexitit.

Viele Klimamodelle enthalten stochastische Parametrisierungen, d. h. Modellierungen,
die kleinskalige Phinomene auf einer grofleren Skala durch stochastische GroB3en darzu-
stellen versuchen.

1.3 Klimasimulationen

Wirklich aussagekriftige Klimamodelle sind zu komplex, um sie analytisch 16sen zu kon-
nen. In Klimasimulationen werden die Klimamodelle in diskretisierter Form auf (meist
Hochstleistungs-)Rechnern implementiert und Rechnungen mit konkret vorgegebenen
Anfangszustinden und Parametern damit durchgefiihrt (z. B. um das Klima der nichsten
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zehn Jahre zu simulieren). Allein durch die rdumliche Gré8e des ,,Modellgegenstandes
Erde* und das Interesse an Langzeitprognosen (z.B. Prognose des Meeresspiegelan-
stiegs bis zum Ende des Jahrhunderts) ist eine diskretisierte Darstellung der modellierten
Prozesse extrem daten- und rechenintensiv.

Eine Klimasimulation ist also gewissermallen eine Instanz (im Sinne der Informatik) ei-
nes Klimamodells mit konkreten Anfangswerten und Parametern. Simulationen sind not-
wendig, um iiberhaupt Ergebnisse zu erzielen, sobald die Modelle etwas komplexer und
damit erst realistisch sind. Simulationsergebnisse geben die Moglichkeit, mit Messwerten
zu vergleichen und damit Aussagen iiber die Qualitit der Modelle und ihre Nutzungs-
moglichkeiten machen zu konnen. Danach kénnen Simulationen z. B. fiir eine Prognose
genutzt werden.

Da durch die Diskretisierung und eventuell auch die Realisierung im Rechner zu-
sdatzlich Fehler auftreten, ist es entscheidend, die benutzten Techniken zu verstehen und
qualitativ einordnen zu konnen, um die Ergebnisse einer Simulation zu bewerten. Der
Diskretisierungsprozess macht aus den Differentialgleichungen meist nichtlineare Glei-
chungssysteme, die linearisiert und damit als eine Folge von linearen Systemen gelost
werden. Ein wesentlicher Punkt ist der Umgang mit der groen Anzahl an Unbekann-
ten, die notig sind, um das Klimasystem in seiner Gesamtheit zu simulieren. Daher sind
Effizienzverbesserungen und die Ausnutzung der sich laufend verdndernden Computer-
konfigurationen (wie z. B. Parallelisierung oder die Benutzung von spezieller Hardware)
von entscheidender Bedeutung.

1.4 Komponenten des Klimasystems

Das Klimasystem besteht aus Komponenten, die auf den ersten Blick relativ klar von-
einander abgegrenzt werden konnen, vgl. Abb. 1.2. Dies spiegelt sich ebenfalls in der
Modellierung und auch in Softwarekomponenten zur Klimasimulation wider. Wir be-

. Landbiosphare
Atmosphéare P J

Land-
oberﬂache

A A
' restliche

Hydrosphére

Ozean

marine
Biogeo-
chemie

Abb. 1.2 Schematische Darstellung des Klimasystems und seiner Interaktionen
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schreiben hier diese Komponenten in kurzer Form. Dabei gehen wir auf folgende Aspekte
ein:

Wie ist die Komponente (meist rdumlich) definiert bzw. abgegrenzt?
Welche Groflen werden in ihr vor allem betrachtet und modelliert?
Welche wichtigen Prozesse oder Phdnomene gibt es darin?

Mit welchen anderen Komponenten interagiert sie?

Welche Konsequenzen ergeben sich daraus fiir die Modellierung?

Dies geschieht beispielhaft und ist nicht vollstindig. Die folgende Darstellung basiert im
Wesentlichen auf [5], vgl. auch die weitere in Anhang genannte Literatur.

Atmosphare

Die Atmosphire ist der gasformige Bereich oberhalb der Erdoberfliche. Die Atmosphi-
re besteht aus verschiedenen Schichten. Wichtige Grofien sind Windgeschwindigkeit und
-richtung, Luftdruck, Temperatur, Luftfeuchtigkeit, die Konzentration von Gasen und Ae-
rosolen.

Eine wesentliche Rolle spielt die Bilanz aus eingehender Sonnenstrahlung und von
der Erde reflektierter Strahlung. Dadurch wird im Wesentlichen die Temperatur der At-
mosphire bestimmt. Durch die Stromung der Luft erfolgt in der Atmosphire auch ein
Transport von Wirme. Wichtig fiir die Temperatur in der Atmosphire ist der Treibhausef-
fekt, durch den ein Teil der riickgestrahlten Energie zuriickgehalten wird und der damit fiir
die iiberhaupt erst fiir Menschen, Tiere und Pflanzen lebensnotwendigen Werte der Tem-
peratur sorgt. Er wird durch Wasserdampf, CO, und andere Gase verursacht. Die erhohte
Konzentration der Treibhausgase, die durch menschliches Verhalten wie massive Verbren-
nung fossiler Brennstoffe, Landwirtschaft u. a. verursacht werden, sind zur Zeit aktuelle,
auch politische und gesellschaftliche Themen. Eine besondere Rolle in der Atmosphire
haben die Wolken, da sie sowohl von ihrer Entstehung als auch ihrer Wirkung her sehr
komplex sind. AuBlerdem sind sie relativ kleinskalig im Vergleich zur Gesamtgrofe der
Atmosphire und erfordern zu ihrer exakten Auflosung eine feine Ortsdiskretisierung in
Modellen, oder eben eine Modellierung der durch sie verursachten Prozesse auf einer gro-
Beren Raumskala.

Die wichtigste Kopplung ist die mit dem Ozean (Austausch von Impuls durch Wind,
Wirme- und Stofftaustausch) und der Vegetation (Stoffaustausch).

Zur Modellierung werden Gleichungen der Stromungsmechanik unter Einbeziehung
der Energiegleichung fiir die Temperatur benutzt. Dabei spielt die besondere geometrische
Form mit Ahnlichkeit zu einer Kugelschale sowie die Diinne im Vergleich zur horizontalen
Ausdehnung eine wichtige Rolle.
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Hydrosphére

Als Hydrosphire werden alle Formen von Wasser auf oder unter der Erdoberfliche be-
zeichnet. Ein wesentlicher Teil sind die Ozeane. Die weiteren Teile der Hydrosphire, Fliis-
se, Seen und Grundwasser, werden meist nur in lokalen Klimamodellen exakt aufgeldst.
In globalen Modellen werden diese Prozesse eher parametrisiert, d. h. ihre Auswirkungen
auf den Rest des Systems werden modelliert. Wichtige Grofien sind Geschwindigkeit und
Richtung der Stromung, Druck, Wassertemperatur und Salzgehalt.

Die globalen Ozeanstromungen werden durch Anderungen von Temperatur und Salz-
gehalt angetrieben (thermohaline Zirkulation, THC: engl. thermohaline circulation). Sie
treibt z. B. den Nordatlantik- oder Golfstrom an, der in unseren mitteleuropéischen Brei-
ten fiir z. B. im Vergleich zu Nordamerika hohe und damit angenehme Temperaturen sorgt.
Die Ozeanstromungen bewirken einen Wirmetransport, und die Meere dienen als Wirme-
speicher und -puffer (vgl. Meeres- zu Kontinentalklima).

Gekoppelt ist der Ozean durch die Luftstromungen iiber Reibung und durch die Wir-
meiibertragung an seiner Oberfliche mit der Atmosphire. Niederschlag, Wasserzufluss
aus Fliissen und Eisschmelze veréndern seinen Salzgehalt. Das Verdampfen von Wasser
hat eine Auswirkung auf den Treibhauseffekt in der Atmosphire, da Wasserdampf daran
einen groflen Anteil hat. Der Ozean spielt eine wesentliche Rolle im Austausch von Ga-
sen wie CO,, das iiber die Oberflache aufgenommen, gelst und durch Photosynthese und
andere biogeochemische Prozesse chemisch transformiert wird. Damit ergibt sich eine
Kopplung zur marinen Biosphire und eine indirekte zu der des Landes. Wichtige aktuel-
le Fragestellungen sind auch Meeresspiegelanstieg oder die Beziehung zu 6konomischen
Aspekten wie Fischfang.

Die Bestimmungsgleichungen im Ozean sind ebenfalls Gleichungen der Stromungs-
mechanik, mit den gleichen geometrischen Besonderheiten wie in der Atmosphire und
zusitzlich den durch Kontinente, Inseln und die Ozeanbodentopographie gegebenen Be-
sonderheiten. Die Zeitskalen in den Ozeanstromungen sind gréBer, so dass Ozeanmodelle
oft mehrere tausend Jahre Modellzeit “einschwingen” miissen (sog. spin-up).

Kryosphare

Unter Kryosphire wird das Eis auf dem Land und im Meer verstanden. Die Bedeckung
der Erde mit Schnee und Eis spielt eine grofle Rolle bei der Albedo, dem Anteil der re-
flektierten Sonneneinstrahlung. Die Eis- und Schneebedeckung hat einen Einfluss auf die
ankommende Energie und damit auf die Temperatur, die wiederum die Eis- und Schneebe-
deckung bestimmt. Einen solchen Mechanismus nennt man Feedbackeffekt. Das Eis stellt
ein Wasserreservoir dar, und sein Abschmelzen bei Temperaturerhhungen beeinflusst da-
mit den Meeresspiegel und auch den Salzgehalt des Meerwassers. Meereis ist aulerdem
schwer zu modellieren, da es sich bewegt. Es ist in dieser Hinsicht grob vergleichbar mit
den Wolken in der Atmosphdre.
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Daher ist die Kryosphére vor allem mit der Hydrosphére durch Schmelzen und daher
Frischwasserzufluss gekoppelt. In vielen Klimamodellen wird die Kryosphire nicht ein-
bezogen oder parametrisiert, da die Modellierung nicht einfach ist. Die Bewegung von
Landeismassen kann mit den Gleichungen fiir Schleichstromungen (Stokes-Gleichungen)
modelliert werden.

Landoberfldche

Die Landoberfldche ist die feste, nicht vom Wasser bedeckte Erdoberflache. Sie definiert
die horizontalen Rinder des Ozeans sowie die vertikalen, unteren Grenzen der Atmosphi-
re. Die Landoberfldche dndert sich z. B. durch Meeresspiegelverinderungen und Erosion.
Wichtig ist ihre Bedeckung z. B. mit Felsen, Erdboden oder Wiiste, da diese wiederum ver-
schiedene Werte der Albedo haben. Sie hingt damit eng mit der nidchsten Komponente,
der Biosphire, der Vegetation zusammen. Der Einfluss von Bodennutzung und Nieder-
schlag spielt eine wichtige Rolle. Damit ist die Eigenschaft der Landoberfliche auch eng
mit der menschlichen Nutzung verbunden.

Biosphare

Als Biosphire bezeichnet man alle Formen von Tier- und Pflanzenwelt auf der Land-
oberfliche und im Ozean. An Land spielt die Bedeckung der Erde mit Gras, Wald etc.
eine wichtige Rolle fiir den Wasserhaushalt, d. h. Verdampfung und Niederschlag. Die
Bedeutung fiir die Albedo wurde oben schon erwihnt. Die Photosynthese bewirkt eine
Aufnahme von CO, und bestimmt damit den Kohlenstoffkreislauf, einen der wesentli-
chen Stoffkeisldufe auf der Erde, der in Klimamodellen simuliert wird. Die oben schon
angesprochene Umwandlung von Treibhausgasen wie CO, im Ozean geschieht durch sog.
Phytoplankton, d. h. Algen, in der Photosynthese. Die Algen sind wiederum Nahrung fiir
Zooplankton, d.h. Tiere, durch die ein Teil des Kohlenstoffs in tiefere Schichten absinkt
und so sedimentiert wird. Die Gesamtmenge des im Ozean gelosten CO, ist 50 mal ho-
her als der in der Atmosphire, und allein ein Drittel des emittierten CO, wird im Meer
aufgenommen. Das heif3t, dass das Meer einen Teil der Emissionen puffert und so ihren
(Treibhaus-)Effekt in der Atmosphire abmildert. Das ist ein Grund, warum diese CO,-
Aufnahme untersucht wird. Sie fiihrt zu einer Versauerung der Ozeane.

Anthroposphire

Mit Anthroposphire wird der menschliche Einfluss bezeichnet. Er duflert sich durch
Emissionen von Schadstoffen und Treibhausgasen in die Atmosphire, die Einleitung von
Schadstoffen ins Meer, die Verdnderung von Flussldufen (damit auch der Hydrosphire),
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die Landnutzung u. a. In der sog. Klimafolgenforschung sind auch die Auswirkungen von
Kimaveridnderungen auf das menschliche Verhalten und die Okonomie, die wiederum das
menschliche Verhalten beeinflussen kann, interessant. Auch ist umgekehrt wichtig, mit
welchen politischen und 6konomischen MaBnahmen welche Anderungen in z. B. Emis-
sionen bewirkt werden konnen, die wiederum Auswirkungen auf die Okonomie haben.
Hier spielen Riickkopplungen offensichtlich eine wichtige Rolle. Da es sich hier auch um
soziale Prozesse handelt, sind hier Modelle fiir menschliches Verhalten wichtig, die sich
von physikalischen oder biochemischen Modellen meist darin unterscheiden, dass sie mit
mehr empirischen Parametern arbeiten. Die Modelle sind von ihrer Komplexitit meist
nicht so umfangreich. Sie werden daher oft auch mit Modellen des Klimasystems von
geringerer oder mittlerer Komplexitit gekoppelt.

1.5 Antreibende Krifte des Klimas und Ursachen
fiir Klimaanderungen

Das Klimasystem ist ein dynamisches, d.h. zeitlich verdnderliches System, das sich in
einer ,,gewissen Balance befindet. Die Dynamik des Systems driickt sich im Austausch
(sog. Fliissen)

e von Energie in Form von Strahlung und Wérme und
e von Masse, vor allem Wasser, aber auch Kohlenstoff und Stickstoff inklusive Phasen-
iibergingen

aus. Wesentliche zeitliche Dynamiken sind der tdgliche und der jihrliche Zyklus, wobei
in zeitlich groberen Modellen nur der letztere erfasst ist, wihrend der erste z. B. durch
Mittelwertbildungen beschrieben (parametrisiert) wird.

Wesentliche antreibende Kraft des Klimas ist die Sonneneinstrahlung, die durch

e Schwankungen in der Intensitédt der von der Sonne ausgehenden Strahlung selbst und
e nicht konstante Parameter der Erdbahn um die Sonne und den Einfluss anderer Him-
melskorper auf diese

variiert. Dazu kommen in geringerem Ausmal

e die Erdrotation und
e der Einfluss anderer Himmelskorper (wie z. B. des Mondes auf die Ozeane).

Anderungen in diesen Antrieben sind damit (in Bezug auf die Erde als Ganzes gesehen)
externe Ursachen fiir Klimaidnderungen.
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Abb. 1.3 Ellipsenform der
Erdbahn mit sonnennichstem
und -fernstem Punkt und de-
ren Abstinden a, b zur Sonne.
Diese definieren die Exzen-
trizitdt. Der kleine Pfeil links
beschreibt die variable Position
der beiden Hauptscheitel der
Erdbahn, hervorgerufen durch
die Prizession der Erde

Milankovitch-Theorie

Diese Theorie beschreibt die Variabilitit der auf die Erde treffende Sonneneinstrahlung
durch die Anderung geometrischer Parameter der Erdumlaufbahn und der Erdneigung zu
ihr (vgl. Abb. 1.3). Es gibt drei Effekte, deren Auswirkung sich auch in Messwerten fiir die
Temperatur in der Vergangenheit (in Eisbohrkernen) bestitigen lédsst. Fiir weitere Details
s. [1, Abschnitt 2.2], aus dem die Daten unten entnommen wurden, und auch [3, Abschnitt
3.6.3]:

Anderungen der Exzentritiit Die Bahn der Erde um die Sonne ist ellipsenihnlich. Als
Exzentrizitit E wird das Verhiltnis

[aZ — 2

a

E =

der Abstinde a,b des sonnenfernsten bzw. -nichsten Punktes der Erde auf ihrer Um-
laufbahn bezeichnet. Der Wert der Exzentrizitit liegt zur Zeit bei £ = 0,017. Die
Milankovitch-Theorie beschreibt Anderungen mit Perioden von 100.000 und 400.000
Jahren mit E € [0,002, 0,05]. Diese Variation ist damit nur fiir Langzeitsimulationen der
Vergangenheit (sog. Paleosimulationen) interessant.

Das Ergebnis ist eine Anderung der auf die Erde treffenden iiber das Jahr gemit-
telten Sonneneinstrahlung, die durch die sog. Solar-,,Konstante* S von zur Zeit S =
1367 W m™2 angegeben wird. Dieser Wert schwankt durch die Variation der Exzentrizitit
umca. | Wm™2.

Anderung des Winkels der Ekliptik Die Neigung der Erdachse zur Ebene der Erdum-
laufbahn variiert in [22°,24,5°] und liegt zur Zeit bei 23,5°. Die Schwankungen haben
eine Periode von ca. 41.000 Jahren und bewirken eine Verdnderung der saisonalen Unter-
schiede der Sonneneinstrahlung, d.h. der Auswirkung der Jahreszeiten, sie beeinflussen
nicht (wie die Variation der Exzentrizitit) die Gesamtmenge der eintreffenden Strahlung,
sondern deren zeitliche Verteilung um lokal bis zu 6 W m™2.
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Prizession Durch die nicht vollkommene Kugelform der Erde beschreibt die Orientie-
rung der Erdachse einen Kreis in der Ebene der Umlaufbahn um die Sonne. Die Erde
bewegt sich gewissermallen wie ein Kreisel, der taumelt. Daher ist die Erdbahn kei-
ne exakte Ellipse und die beiden Hauptscheitel der Erdbahn, der Perihel(ion) und der
Aphel(ion), haben nicht den gleichen Abstand von der Sonne, und ihre Abstinde dndern
sich auch zeitlich. Es gibt zwei Perioden von 19.000 und 23.000 Jahren. Als Ergebnis
treten die Jahreszeiten nicht immer am gleichen Punkt der Umlaufbahn auf. So wird
der Perihel zur Zeit im Nordwinter (d. h. Winter auf der Nordhalbkugel) und der Aphel
im Nordsommer durchlaufen, vor (und wieder in) ca. 11.000 Jahren war (bzw. wird es)
umgekehrt (sein). Daraus resultiert eine zeitliche und riumliche Verdnderung der Sonnen-
einstrahlung, die zwischen 1329 und 1411 W m™? liegt. Auch hier ist die Gesamtmenge
der Strahlung konstant, nur ihre zeitliche und rdumliche Verteilung dndert sich.

Sonnenflecken

Die Sonnenflecken haben eine unterschiedliche Aktivitdt mit einer elfjdhrigen Periode,
die noch von lingeren Schwankungen iiberlagert ist. Die durch Sonnenflecken verursachte
Intensititsschwankung wird auf 0,1 % geschitzt und damit relativ gering, s. [3, Abschnitt
3.3.4], [1, Abschnitt 3.2.2].

Natiirliche interne Ursachen

Es gibt einige natiirliche, das hei3t hier nicht durch menschliche Einwirkungen verursach-
te Griinde fiir Klimaverdnderungen.

Beispiel 1.3 Vulkanausbriiche schleudern Partikel und Gas in die Atmosphire. Wichtig
ist dabei die Hohe, bis zu der diese Stoffe gelangen. Meist ist diese Hohe nur fiinf bis
acht Kilometer, so dass die Stoffe durch die Schwerkraft direkt auf den Boden sinken oder
durch Regen ausgewaschen werden. Dann ist ihre Wirkung minimal. Ist der Ausbruch
heftiger, und gelangen die Stoffe in Hohen von 15 bis 25 km, so verbleiben sie ldnger in
der Atmosphire. Das ausgestoffene Schwefeldioxid SO, reagiert teilweise, es bewirkt eine
erhohte Reflektivitit (Albedo) und damit eine Abkiihlung. Durch den Ausbruch des Vul-
kans Pinatubo 1991 auf den Philippinen gelangten ca. 20 Mio. Tonnen SO, in eine Hohe
von 25km, die Auswirkung auf die Sonneneinstrahlung wird auf —0,4 W m™2 geschiitzt
und die dadurch verursachte Temperaturabsenkung um 0,5 K bzw. 0,5° Celsius. Dies wird
durch Messungen bestétigt.

Beispiel 1.4 In relativ groen Zeitskalen beobachtet kann eine Anderung der thermoha-
linen Zirkulation, d.h. der durch Temperatur- und Salzgehaltinderungen angetriebenen
Konvektionsstromung im Ozean, die z. B. fiir den Golfstrom verantwortlich ist, beobach-
tet werden.
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Beispiel 1.5 In ca. vierjdhrigen Perioden tritt die ENSO (E! Nifio Southern Oscillation)
auf, eine groBflichige Erwirmung des Pazifiks in Aquatornihe. Die entsprechende kiihle
Phase heiflt La Niiia. Beide haben Auswirkungen auf Siid- und Mittelamerika.

Anthropogene Ursachen

Die vom Menschen verursachten Anderungen am Klima sind die, die zur Zeit am meisten
diskutiert werden.

Ubung 1.6 Welche anthropogenen Ursachen fallen Ihnen ein bzw. werden zur Zeit dis-
kutiert? In welchen Teilen des Klimasystems sind sie wirksam und welche Prozesse be-
einflussen sie?

Hier sind einige Beispiele genannt:

Beispiel 1.7 Erhohter Ausstofl von Kohlendioxid (CO;) und Methan (CH,) sind mit ver-
antwortlich fiir den ansteigenden Treibhauseffekt in der Atmosphére, der fiir eine Tem-
peraturerhdhung sorgt. Die Emissionen werden durch Verbrennung fossiler Energien in
Kraftwerken und durch Verkehr verursacht. Methan, das ein vielfach wirksameres Treib-
hausgas als Kohlendioxid ist, entsteht in der Tierproduktion der Landwirtschaft. Erhohte
Temperaturen bewirken Anderungen in Niederschligen und Verdampfung, eine Erh6hung
des Meeresspiegel durch die Ausdehnung des Wassers und Abschmelzen von Eis, Ande-
rungen des Salzgehaltes im Meer etc.

Beispiel 1.8 Aerosole entstehen ebenfalls durch die Luftverschmutzung bei der Verbren-
nung fossiler Energien. Sie bewirken eine vermehrte Riickstrahlung der Sonnenenergie
und damit eine direkte Abkiihlung in der Atmosphére, aulerdem verursachen sie eine
Wolkenbildung und dadurch auch indirekt eine hohere Albedo.

Beispiel 1.9 Die Entdeckung des Ozonlochs war ein wichtiges Umweltthema in den
1980er Jahren. Fiir die Entdeckung der Rolle der vom Menschen in die Atmosphére emit-
tierten Stoffe (Fluorchlorkohlenwasserstoffe, FCKWs) fiir die Ozonschicht wurde 1995
ein Nobelpreis verliehen. Diese Stoffe verbleiben lange in der Atmosphire, sie wirken ei-
nerseits als Treibhausgase. Die Reduktion des Ozons hat in den verschiedenen Schichten
unterschiedliche Wirkungen, sie fiihrt in der unteren Schicht, der Troposphire, zu einer
Erwédrmung, in der hoheren Stratosphire zu einer Abkiihlung.

Beispiel 1.10 Abholzung und Umwandlung in Weideland, Bodenversiegelung haben
Auswirkungen auf Niederschlag und Verdunstung und damit auf den Wasserhaushalt.
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Feedbackeffekte

Zwei oder mehrere Grof3en, die Anderungen im Klimasystem bewirken, sind besonders
wichtig oder kritisch, wenn sie sich gegenseitig beeinflussen und Riickkopplungen, sog.
Feedbacks, verursachen.

Bewirkt die Anderung einer GroBe x die Anderung einer anderen GroBe y und diese
wiederum die Anderung von x in die gleiche Richtung (so dass sich also der gesamte
gekoppelte Prozess verstirkt), so wird dies als positiver Feedbackeffekt bezeichnet (auch
wenn die Auswirkung insgesamt negativ bewertet werden kann). Sind beide Grof3en dif-
ferenzierbar, so kann ein positiver Feedbackeffekt durch die Beziehung

dy _dx
—(x)— 0
oW, 0>

definiert werden. Bei negativem Vorzeichen wird von einem negativen Feedbackeffekt
gesprochen.

Beispiel 1.11 Der Eis-Albedo-Feedbackeffekt ist ein positiver Feedbackeffekt: Eine er-
hohte Albedo bewirkt eine vermehrte Riickstrahlung und damit eine Abkiihlung, die sich
in einer Temperatursenkung auswirkt, die durch hohere Schnee- und Eisbedeckung zu
erneut erhohter Albedo fiihrt.

Beispiel 1.12 Der Wasserdampf-Feedbackeffekt ist ebenfalls positiv in diesem Sinne:
Erhohter Wasserdampfgehalt in der Atmosphére bewirkt einen hoheren Treibhauseffekt,
dieser wiederum eine Temperaturerhohung mit dem Resultat einer hoheren Verdampfung
von Wasser.

1.6 Eine Klassifizierung von Klimamodellen

Es gibt verschiedene Arten von Klimamodellen. Bei ihrer Klassifizierung konnen folgende
Fragestellungen dienen:

e Welche Komponenten des Klimasystems sind modelliert (z. B. nur Ozean, Ozean ge-
koppelt mit Atmosphiére etc.)?

e Welche Prozesse werden einbezogen, vgl. Tab. 1.1?

e Wie ist die rdumliche und zeitliche Auflésung? Ist das Modell rdumlich dreidimensio-
nal? Ist es zeitabhingig oder stationér?

Diese Fragen hingen miteinander zusammen: Bei einem nulldimensionalen Modell kon-
nen die einzelnen Komponenten des Klimasystems nicht unterschieden und auch nur
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Tab. 1.1 Wachsende Komplexitit von Klimamodellen, bezogen auf die Berichte des IPCC, nach-
empfunden [6, Fig. 1-13]. x: in Modellen enthalten

Zeit 1970er | 1980er | 1990 1995 2001 2007 2013/14
IPCC-Sachstandsbericht | - - 1. 2. 3. 4. 5
Atmosphire X X X X X X X
Ozean und Seeeis X X X X X X X
Landoberfliche X X X X X X X
Aerosole X X X X
Kohlenstoffkreislauf X X X
Dynamische Vegetation X X X
Atmosphirenchemie X X
Landeis X X

wenige Prozesse, z.B. nur die Strahlungsbilanz, modelliert und simuliert werden. Be-
stimmte Prozesse bendtigen zu ihrer Modellierung eine spezielle raumliche oder zeitliche
Auflosung, sonst konnen sie eventuell nur gemittelt einbezogen werden.

Welche Wahl des Modells getroffen wird, hiangt wesentlich von der wissenschaftlichen
Fragestellung ab, die untersucht werden soll. Ist nur eine mittlere globale Jahrestemperatur
interessant, so kann eine grobere Auflosung gewihlt werden, als wenn ortlich und zeitlich
lokale Aussagen z. B. iiber Temperaturinderungen in Deutschland (z. B. nur im Sommer)
gemacht werden sollen.

Die Auswirkungen der Wahl des Modells betreffen vor allem die Laufzeit der Simu-
lation, die Notwendigkeit zur Verwendung besonders effizienter Algorithmen oder zur
Parallelisierung. Weiterhin miissen etwaige nicht modellierte gekoppelte Komponenten
(z. B. bei einem reinen Ozeanmodell die Wechselwirkung mit der Atmosphire) durch ent-
sprechende Randbedingungen dargestellt werden.

Es werden folgende Typen von Klimamodellen unterschieden:

e FEnergiebilanzmodelle (EBM) sind meist null- oder eindimensional, stationér oder insta-
tiondr. Sie modellieren nur die Strahlungsbilanz und konnen z. B. den Treibhauseffekt
(grob modelliert) mit einbeziehen, ohne seine Prozesse genau aufzulosen. Sie sind sehr
schnell in ihrer Simulation.

e Boxmodelle, die meist nur fiir eine oder wenige Komponenten des Klimassystems (z. B.
Boxmodell des Nordatlantikstroms) oder zur Simulation bestimmter Prozesse (z.B.
Boxmodell des globalen CO,-Haushalts) verwendet werden. Da diese Modelle meist
nur wenige Boxen haben, sind sie ebenfalls sehr schnell und eignen sich gut zur Kopp-
lung mit anderen Modellen und um viele Simulationslédufe durchzufiihren.

o Globale Zirkulations- oder globale Klimamodelle (GCMs: Global Circulation oder Cli-
mate Models), urspriinglich Modelle fiir Ozean oder Atmosphire, die die stromungs-
mechanischen Gleichungen und damit die Zirkulation auflosen kénnen, d.h. die auf
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den Navier-Stokes-Gleichungen basieren. Durch die Einbeziehung weiterer Kompo-
nenten wie Eis und Biosphire wurden diese Modelle dann zu globalen Klimamodel-
len. sie sind rdumlich dreidimensional und instationir, d. h. sie brauchen am meisten
Rechenzeit und werden meist auf Hochstleistungsrechnern benutzt. Heute wird die Be-
zeichnung ESM — Erdsystemmodelle benutzt.

Modelle mittlerer Komplexitit (EMICs: Earth System Models of Intermediate Com-
plexity) sind reduzierte Versionen der GCMs, bei denen mehr Mittelungen oder grobe-
re Parametrisierungen (d. h. Modellierung bestimmter Prozesse) auf groberen Gittern
durchgefiihrt werden. Dadurch sind EMICs schneller in der Simulation.



Ein nulldimensionales Energiebilanzmodell

Wir formulieren hier das denkbar einfachste Klimamodell, das die Erde als Punkt im Weltraum mo-
delliert. Das Modell basiert auf der Strahlungsbilanz eines ,,nulldimensionalen® Korpers. Es wird
z.B. in [2, 3, 5] behandelt. Es ist eher von akademischen Interesse, zeigt aber bereits die Vorge-
hensweise bei der Aufstellung von Bilanzgleichungen, die Bedeutung von Modellparametern und
Methoden zu ihrer Bestimmung aus Messdaten. Wir betrachten zuerst den stationidren Gleichge-
wichtszustand und anschliefend ein zeitabhédngiges Modell, mit dem man Temperaturinderungen
simulieren kann. Dieses wird sowohl fiir endliche, diskrete Zeitschritte als auch in einer kontinuier-
lichen Zeit hergeleitet. Es liefert das erste Beispiel fiir eine mathematische Modellklasse, ndmlich
die der gewohnlichen Differentialgleichungen.

2.1 Die Strahlungsbilanz eines Korpers im All

Im nulldimensionalen Energiebilanzmodell wird die globale Energiebilanz der Erde auf-
gestellt, bestehend mittleren Temperatur auf der Erde in Beziehung gesetzt wird. Die
eingehende Strahlung wird von der Reflektivitit der Erdoberflache und auch der Wolken
beeinflusst. Die zuriickgestrahlte Energie wird durch den Treibhauseffekt vermindert.

Im stationédren oder Gleichgewichtszustand befinden sich die Energie pro Zeiteinheit,
die auf die Erde treffen und die von ihr abgestrahlt werden, im Gleichgewicht.

Die von der Sonne auf die Erde einstrahlende Energie pro Zeit (das ist physikalisch die
Leistung, Einheit W = Js™'), ist das Produkt aus der sog. Solarkonstante S multipliziert
mit der Fliche der Erde, die von der Sonne bestrahlt wird. Dies ist ein Kreis mit dem
Erdradius r, d. h. die Fliche ist gleich 2. Die Menge der eingehenden Strahlungsenergie
pro Zeit ist daher

ar’S.
Fiir die Konstanten gilt S = 1367 Wm™2, r = 6371 km. Der Erdradius ist dabei ge-
mittelt, denn die Erde ist keine Kugel. Ein Teil dieser Strahlung wird durch die Erde
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reflektiert. Diesen Anteil o € [0, 1] bezeichnet man als Albedo. Die Albedo hingt von der
Oberfliche bzw. deren Farbe ab. Es gilt z. B. fiir frischen Schnee « € [0,8, 0,9], fiir Wald
a € [0,02,0,2]. Der iiber die Erde gemittelte Wert fiir die Albedo ist « & 0,3. Die auf die
Erde auftreffende Strahlungsenergie pro Zeiteinheit ist damit

Rin = 72S(1 — a). (2.1)

Zur Modellierung der von der Erde ausgehenden Strahlung beginnen wir mit dem Stefan-
Boltzmann-Gesetz fiir einen schwarzen Strahler. Dies ist ein Korper, der die gesamte auf
ihn einfallende Strahlung absorbiert. Fiir eine schwarzen Strahler ergibt sich die Riick-
strahlung pro Fliche als Funktion der Temperatur 7" als

oT*
mit der Stefan-Boltzmann-Konstante
0=567-10Wm2K™*.

Fiir die Riickstrahlung der gesamten Erde muss dieser Wert noch mit der Erdoberfliche
47 r? multipliziert werden:

Row = 4nr’o T (2.2)

Gleichsetzen von Rj, und R, ergibt die Bilanzgleichung

(1-a)S

oT*.
4
Die sich daraus ergebende Temperatur ist

4 (1 — Ol)S
40

T = ~ 255K ~ —18°C.
Dieser Wert entspricht nicht der zur Zeit tatsidchlich auf der Erde gemessenen mittleren
Jahrestemperatur, die ca.

Tn ~ 287K ~ 14°C

betrédgt. Die Ursache dafiir ist, dass die Erde eben kein schwarzer Strahler ist, sondern dass
ein Teil der von der Erdoberflache zuriickgestrahlten Energie durch den Treibhauseffekt
in der Atmosphire zuriickgehalten wird. Um dies zu modellieren, wird ein multiplikativer
Parameter, die Emissivitdt ¢, in (2.1) eingefiihrt. Damit ergibt sich die Bilanz

(1—-a)S _

1 eoT*. (2.3)
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Der Wert T, kann zur Bestimmung von ¢ benutzt werden, und es ergibt sich

1—a)S
e = & ~ 0,62.
40T}

Ubung 2.1 Plotten Sie die Temperatur, die sich aus dem stationiren Energiebilanzmodell

1. fiir Werte von « € [0, 1] und festes ¢ = 0,62
2. und fiir Werte von « € [0, 1] und € € (0, 1] ergibt.

Anmerkung 2.2 Andere, insbesondere nichtlineare und temperaturabhiingige Modellie-
rungen der Albedo finden sich in [7-9].

2.2 Dieinstationdare Form der Strahlungsbilanz

Sind eingehende und ausgehende Energie nicht gleich, so bewirkt dies eine zeitliche
Anderung der Temperatur des Korpers, in diesem Fall der Erde. Dies kann als eine Tem-
peraturdnderung in der Atmosphire oder im Ozean interpretiert werden. Je hoher das
Ungleichgewicht zwischen eintreffender und abgestrahlter Energie ist, desto stirker wird
die Temperatur sich pro Zeiteinheit indern. Aus dieser Beobachtung oder Annahme kann
ein zeitabhiingiges oder instationires Energiebilanzmodell hergeleitet werden. Dies kann
auf zwei Arten geschehen, die wir in den nichsten Abschnitten vorstellen: Die erste be-
trachtet endliche, diskrete Zeitschritte, wihrend in der zweiten die Zeit als kontinuierlich
angesehen wird.

Es ist in diesem einfachen Modell mit nur einer Gleichung einleuchtend, dass bei
R, > Ry die Temperatur auf der Erde steigen und im umgekehrten Fall sinken wird.
Das AusmaB der Anderung hiingt weiterhin von folgenden Dingen ab:

e vom betrachteten Zeitintervall, je groB3er dies ist, desto grofler die Temperaturdnderung.

e von dem betrachteten Volumen, fiir das die (dann dariiber rdumlich gemittelte) Tem-
peratur berechnet wird (z. B. Atmosphire oder Ozean): Je grofler das Volumen, desto
geringer die Temperaturdnderung. Wird die Erde wieder als Kugel angenommen, so
handelt es sich um das Volumen einer Kugelschale. Dies ist 4772 H, wenn H die Hohe
oder Dicke der betrachteten Schicht ist.

e von der Wirmeiibertragung in den Stoff, dessen Temperatur beschrieben wird (Luft fiir
die Athmosphire, Wasser fiir den Ozean). Diese ergibt sich als Produkt aus Dichte o des
Stoffes und seiner spezifischen Wirme C. Auch hier ist der Zusammenhang umgekehrt
proportional: Je groBer das Produkt o C, desto geringer die Temperaturdnderung.
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Daraus kann ein zeitabhingiges Modell der Form

Rin (t) - Roul (t)

T+ At)=T(t At
€+ 40 ®+ 4rr?HoC

2.4)

formuliert werden. Hier bezeichnet ¢ einen Zeitpunkt und A¢ > 0 das betrachtete Zeitin-
tervall oder einen Zeitschritt. Es handelt sich um ein zeitdiskretes Modell, und eine solche
Gleichung hei3t auch Differenzengleichung.

In Klimamodellen werden oft ,natiirliche” Zeitschritte wie ein Tag oder ein Jahr be-
trachtet. Da aber die GroBlen R;, und R, und auch die Parameter H, o und C in bestimm-
ten Einheiten angegeben werden, muss der Zeitschritt an diese GrofSen angepasst sein oder
die GroBen R;, und R,y und die Parameter eventuell entsprechend skaliert werden.

2.3 GrundgroBlen und Einheiten nach dem SI-System

Da das Problem der Wahl der Einheiten bzw. der Skalierung von Gréen und Variablen
in Modellen bei Klima- und anderen Modellen eine wesentliche Rolle spielt, wurde der
SI-Standard fiir Einheiten definiert. In ihm sind Grundgréen mit zugehorigen Standar-
deinheiten fiir physikalische und andere Groflen definiert. Wir geben in den Tab. 2.1
und 2.2 die hier benutzten Grundgréfen und Einheiten an, vgl. [10, Abschnitt 0.2].

Werden die Einheiten der Parameter in der Gleichung (2.4) in SI-Einheiten benutzt,
dann muss der Zeitschritt Az als eine Sekunde gewihlt oder die eingehenden Parame-
ter, bei denen eine Zeitabdngigkeit vorhanden ist, entsprechend umgerechnet (umskaliert)
werden.

Tab. 2.1 Liste der Grundg6Ben (oder Dimensionen) mit ihren symbolischen Bezeichnungen und
zugehorigen Einheiten nach SI-Standard. Nach SI-Standard werden Symbole fiir Dimensionen se-
rifenlos und solche fiir Einheiten nicht kursiv gesetzt

Grund- | Linge | Zeit Masse Temperatur Elektrischer | Licht- Substanz-

grofe Strom stirke menge

Symbol | L T M C] | J N

Einheit |Meter | Sekunde Kilogramm | Kelvin Ampere Candela | Mol

Symbol m S kg K A cd mol
0°C=273,15K

Tab.2.2 Liste der im Energiebilanzmodell verwendeten abgeleiteten Grofen mit zugehéorigen Ein-
heiten nach SI-Standard

Abgeleitete Grofe Kraft Arbeit bzw. Energie | Leistung
Dimensionelle Darstellung | MLT ™2 ML2T—2 ML2T—3
Einheit Newton Joule Watt

Symbol/Umrechnung N= kgmsf2 J=Nm=Ws W=1Js"!
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2.4 Formulierung als Differentialgleichung

Die oben angegebene Form (2.4) des Energiebilanzmodell als Differenzengleichung ent-
spricht mit einem gewihlten festen Zeitschritt A¢ der Anschauung. Unabhingig von der
Wahl des Zeitschritts und eventueller Umskalierungen der Parameter und universeller wird
das Modell, wenn die Schrittweite als gegen Null gehend betrachtet wird. Dazu dividieren
wir (2.4) nach Umstellen durch A¢, erhalten

T(t+At)—T()  Rin(t) — Rou(t)  7r’S(1—a)—4nr’eoT(1)*
At ~ 4mwr?HoC d7r2HoC '
und bilden auf beiden Seiten den Grenzwert Ar — 0. Die rechte Seite ist unabhingig

vom Zeitschritt, fiir die linke ergibt sich die Definition der ersten Ableitung von 7" am
Zeitpunkt ¢:

2.5)

dr . T+ A)—T(@)
T'(t) = —(@):= 1 .
==
Oft wird — vor allem in der Physik — auch der Punkt (T) fiir die Ableitung verwendet.
Diese Notation wurde von Newton eingefiihrt.
Damit kann nun folgende Differentialgleichung fiir die instationire Energiebilanz auf-
gestellt werden:

4nr*HoCT'(t) = nr’S(—a) — 4nr’eoT(t)*
N——
zeitliche Anderung eingehende, nicht reflek- zuriickgestrahlte
der Wirmeenergie tierte Strahlungsenergie Strahlungsenergie
pro Zeiteinheit pro Zeiteinheit

Ein Indiz fiir die Korrektheit einer so hergeleiteten Modellgleichung ergibt der Vergleich
der Einheiten. Fiir eine Grofe Q wird mit [Q] deren Einheit bezeichnet, also gilt z. B. fiir

den Erdradius [r] = m. Fiir die Einheiten der rechten Seite der Differentialgleichung gilt,
vgl. Tab. 2.3:

k J K J
[4nr’HoC T'(1)] = mm-2 2w
m3 kgK s

s
Fiir die rechte Seite gilt dies ebenfalls, was leicht zu iliberpriifen ist.

Tab. 2.3 Parameter im Energiebilanzmodell, angewandt auf die Troposphire

Variable = Wert und Einheit Bedeutung
r 6371km = 6,371 x 10°m | Erdradius
H 83km=283x10°m Dicke bzw. Hohe der betrachteten Schicht der Atmo-

sphére, hier: Troposphire (unterste Schicht, die den
GroBteil der Luft enthilt)

0 1,2kg m> Dichte von Luft

C 1037 kg_lK_1 Spezifische Wirme von Luft
N 1,367 x 103 Wm—2 Solarkonstante

o 5,67 x 10°8Wm 2K 4 Stefan-Boltzmann-Konstante
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Durch Kiirzen ergibt sich die Gleichung
I S 4
HoCT'(t) = Z(l —a)—eoT(t)". (2.6)

Die geometrischen Grof3en wie Erdradius und auch die Konstante 7 treten nicht mehr auf.
Diese Gleichung ist eine wesentlich priagnantere Darstellung als die Differenzengleichung
(2.4). Es handelt sich um eine nichtlineare (wegen T*) gewohnliche Differentialgleichung
(Ableitung nur nach der Zeit, keine partiellen Ableitungen) erster Ordnung (nur erste
Ableitung).

Wird diese Gleichung auf einem Zeitintervall oder fiir # > ¢, € R mit einem gegebenen
Anfangswert Ty = T (tp) betrachtet, so ergibt sich ein Anfangswertproblem (AWP).



Anfangswertprobleme und analytische
Losungsverfahren

Gewohnliche Differentialgleichungen und Anfangswertprobleme fiir diese bilden die einfachste,
aber auch grundlegende Klasse von mathematischen Formulierungen von Klimamodellen. Dieses
Kapitel enthilt grundlegende Definitionen, die die Basis fiir die weiteren Modelle und analytischen
und numerischen Methoden bilden. Es gibt weiterhin einen Uberblick iiber analytische Losungs-
methoden, die — wie wir am nulldimensionalen Energiebilanzmodell erkennen kénnen — aber enge
Grenzen haben.

3.1 Anfangswertprobleme

Nahezu alle Klimamodelle sind als Anfangswertproblem fiir eine Differentialgleichung
gegeben oder konnen so formuliert werden. Ein solches Anfangswertproblem besteht
aus der Differentialgleichung und dem zugehdrigen Anfangswert. Wir geben zunéchst
folgende Definition fiir eine gewohnliche Differentialgleichung. Fiir eine allgemeine For-
mulierung benutzen wir y als Name fiir die unbekannte Funktion. Diese kann vektorwertig
oder noch allgemeiner in einem beliebigen Vektorraum (auch einem Funktionenraum)
sein.

Definition 3.1 (Differentialgleichung) Sei / C R ein beliebiges Intervall, D C R”
offenund f : I x D — R". Dann heif3t

V()= f(t.y@®), tel, (3.1)

gewdhnliche Differentialgleichung mit rechter Seite f. Eine auf I differenzierbare Funk-
tion y, die (3.1) erfiillt, heilt (exakte) Losung der Differentialgleichung. Ist allgemeiner
f I x D — X mit einem normierten Vektorraum X und D C X offen, dann heif3t (3.1)
Operatordifferentialgleichung.

Bei Klimamodellen wird die rechte Seite f* oft mit ,,dem Modell “ identifiziert.
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Ein Anfangswertproblem enthilt zusétzlich zur Differentialgleichung einen Anfangs-
wert der Losung an einem festen Anfangszeitpunkt:

Definition 3.2 (Anfangswertproblem) Sei / C R ein abgeschlossenes oder halboffenes
Intervall, d.h. I = [ty, 2] oder I = [ty,2.),t € R,t, € R U {o0},ty < t,. Weiter sei f
wie in Definition 3.1 und yy € D gegeben. Das Problem

Y() = fe.y®), tel, yl) =y 3.2)
heilt Anfangswertproblem mit Anfangswert yj.

In vielen Fillen héngt die rechte Seite der Differentialgleichung nicht explizit von der
Variable ¢ ab:

Definition 3.3 (Autonome Differentialgleichung) Eine Differentialgleichung (3.1) heif3it
autonom, wenn die rechte Seite f nur von y(¢) und nicht explizit von ¢ abhéngt.

Natiirlich hingt bei einer nicht zeitlich konstanten Losung y = y(¢) die rechte Seite
einer autonomen Gleichung, f = f(y(t)), indirekt iiber y von der Zeit ab, aber nicht
direkt. Dies ist der entscheidende Punkt in der Definition.

Anmerkung 3.4 Bei einer autonomen Gleichung ist offensichtlich

)70) = y(t0+t)v re [O’IE_IO]

eine Losung, wenn y eine Losung auf [z, .] ist. Das heifit: Es kann ohne Beschrinkung
der Allgemeinheit #y = 0 betrachtet werden.

Oft wird das Argument ¢ von y weggelassen, d.h. y’ = f(¢, y)in (3.2) bzw. y' = f(y)
(bei einer autonomen Gleichung) geschrieben.

Beispiel 3.5 Das Energiebilanzmodell (2.6), besteht aus einer autonomen Differentialglei-
chung, wenn alle Parameter S, ¢, ¢ als nicht explizit von der Zeit abhiingig angenommen
werden. Wird eine Temperaturabhéngigkeit (z. B. der Albedo als @ = « (7)) angesetzt, so
bleibt die Gleichung autonom.

Im Rest dieses Kapitels geben wir Methoden an, wie eine gewohnliche Differenti-
algleichung bzw. ein zugehoriges Anfangswertproblem analytisch gelost werden kann.
Um es vorwegzunehmen, fiihren diese Methoden jedoch bereits beim nulldimensionalen
Energiebilanzmodell nicht zu einer geschlossenen Darstellung der Losung. Die folgenden
Abschnitte sind des Uberblicks wegen enthalten, und weil sie die Grenzen der analyti-
schen Losungsverfahren aufzeigen.
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3.2 Die Methode der Trennung der Variablen

Diese Methode kann benutzt werden, um Anfangswertprobleme der Form (3.2) fiir skalare
Differentialgleichungen der Form

Y'() = Aily@) (1) (3.3)

mit fi : D — Rund f, : I — R zu l6sen. Kénnen Stammfunktionen Fy, F; zu 1/ f;
bzw. f, angegeben werden (also Funktionen mit F| = 1/f; bzw. F, = f), dann kann
eine Losung der Differentialgleichung und auch des zugehdrigen Anfangswertproblems
mit Hilfe des folgenden Satzes charakterisiert werden.

Satz 3.6 (Trennung der Variablen) Sei eine Differentialgleichung der Form (3.3) gege-
ben. Weiterhin sei fi stetig mit fi(y(t)) # 0f.a.t € I, und F\, F, seien Stammfunktionen
von 1/ fi bzw. f,. Dann ist eine stetig differenzierbare Funktion y, die die Gleichung

Fi(y@) = F2(t), Vtel, (3.4)
etfiillt, Losung der Differentialgleichung (3.3).

Beweis Vgl. auch [11, §11, Satz 1]. Erfiillt y die Gleichung (3.4), dann gilt fiir beliebige
to.t € I:

Fi(y(@)) — Fi(y(t0)) = F2(t) — Fx(to).

Mit der Definition der Stammfunktion und dem Hauptsatz der Differential- und Integral-
rechnung (s. z. B. [12, §19 Satz 2]) folgt

y(t)

[ G [fz“)ds

y(to)

Da f; stetig und y stetig differenzierbar ist, gilt nach der Substitutionsregel der Integration
(s. z.B. [12, §19 Satz 4]) fiir die linke Seite:

y(t) ¢
1 y'(s)

dz = | ———2_ds,

Ao =) Aee) T
y(to) 0]

also

y'(s) .

ﬁ(y(s))d / s)ds.
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Differentiation auf beiden Seiten ergibt

y'(t)
Sily (@)

Also ist y Losung der Differentialgleichung. O

= f@), tel.

Kann die Gleichung (3.4) nach y aufgeldst, also eine Umkehrfunktion zu F; angegeben
werden, dann ergibt sich eine explizite Darstellung der Losung y. Die in den Stammfunk-
tionen Fi, I, moglichen additiven Konstanten ergeben in (3.4) eine additive Konstante.
Diese wird durch den Anfangswert bestimmt.

In mathematisch etwas unpriziserer Form kann die Vorgehensweise in folgendem Al-
gorithmus beschrieben werden.

Algorithmus 3.7 (Trennung der Variablen)

1. Schreibe die Ableitung als Differentialquotienten

== A0,

Die Abhingigkeit der Funktion y von ¢ wird dabei in der Schreibweise zunichst igno-
riert. Betrachte den Differentialquotienten als Bruch.
2. Trennung der Variablen ergibt

dy
—— = fa(n)dr.
H(y)
Diese Umformung ist nur fiir f;(y) # 0 zuldssig, was am Ende tiberpriift werden
muss.
3. Berechne auf beiden Seiten das unbestimmte Integral. Dies ergibt

1
Si(y)

mit einer Integrationskonstanten ¢ € R.

4. Konnen beide unbestimmten Integrale angegeben und die entstehende Gleichung nach
y aufgeldst werden, so ergibt sich eine explizite Losungsdarstellung fiir y(¢).

5. Die Konstante ¢ wird durch die Anfangsbedingung festgelegt.

6. Uberpriife die Bedingung fi(y) # 0 und Bedingungen, die sie sicherstellen, z.B.
durch Einschriankung des betrachteten Intervalls 7.

dy :ffz(t)dt+c

Im Fall einer autonomen Gleichung gilt f>(¢) = 1 fiirallez € / und f = f;. Dann ist
Fy(t) =t + ¢,c € R, und die Losung der Differentialgleichung entspricht der Umkehr-
funktion von F. Folgendes Beispiel zeigt die Anwendung:
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Beispiel 3.8 Gegeben sei das Anfangswertproblem

y'(@) =Ay@), t=>0, y(0) =y, Ae€R. (3.5)

Dann ergibt der Algorithmus
1
—dy =Adet
y
und damit
1
/—dy:1n|y|:/lt+c. 3.6)
y

Diese Umformungen sind nur fiir y # 0 zuldssig. Anwenden der Exponentialfunktion auf
beiden Seiten der Gleichung liefert

|y(t)| — e/\t+c — CEM.

Da die Exponentialfunktion nur positive Werte annehmen kann, hingt das Vorzeichen
der rechten Seite nur von der bisher noch unbestimmten Konstanten ¢ ab, die durch die
Anfangswerte festgelegt wird. Damit gilt auch

y(t) =ceM,

eventuell nach Anderung des Vorzeichens von ¢. Aus der Anfangsbedingung folgt ¢ =
yo. Fir yo # 0 ist die Umformung (3.6) damit zuldssig. Fiir yo = 0 ist die konstante
Nullfunktion y = 0 die Losung.

Das Anfangswertproblem fiir die einfache lineare Differentialgleichung (3.5) hat also
die Exponentialfunktion als Losung. Je nach Vorzeichen von A ergibt sich ein exponenti-
elles Wachstum oder Abfallen von y.

Ubung 3.9 Geben Sie mit Hilfe der Methode der Trennung der Variablen jeweils Losun-
gen fiir die folgenden Anfangswertprobleme an:

(@ Yy =2y, t=0, y(0)=0
b  y=y4 >0, y0)=1.

Die Existenz und Eindeutigkeit der Losungen beider Probleme wird in Beispiel 3.30 bzw.
Ubung 3.31 thematisiert.

Das Losen einer Differentialgleichung kann also mit dieser Methode auf das Losen
von Integralen zuriickgefiihrt werden. Existieren Stammfunktionen fiir f, und 1/f}, so
ergibt sich eine Beziehung zwischen der unbekannten Funktion y und der unabhéngigen
Variable 7. Ob eine explizite Darstellung fiir y angegeben werden kann, héngt zusétzlich
davon ab, ob die entstehende Gleichung nach y aufgelost werden kann.
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Beispiel 3.10 Fiir das nulldimensionale Energiebilanzmodell ist (mit y = T gesetzt) die
Funktion f] in (3.3) komplizierter als in den obigen Fillen. Die Differentialgleichung

HoCT(t) = %(1 —a)—eoT(t)*
hat die Form
T'(t) =a(l —bT(t)")

mit den Konstanten
S —a) . deo
"~ 4HoC ' =~ S(l—a)HoC’

Die Losung des sich so ergebenden Integrals ist wesentlich komplizierter:

Ubung 3.11 Auf welches Integral fiihrt die Methode der Trennung der Variablen fiir das
Energiebilanzmodell?

3.3 Partialbruchzerlegung

Ist bei der Methode der Trennung der Variablen f; ein Polynom, gilt also

firell = {p:]R—ﬂR,p(x) = iaixi,x eR,a; eR,i :0,...,s}
i=0

mit s > 2, dann kann die Stammfunktion F; von 1/f; durch Partialbruchzerlegung be-
rechnet werden. Dazu wird f; in lineare oder quadratische Faktoren zerlegt und 1/ f; in
eine Summe aufgespalten, fiir deren Summanden dann Stammfunktionen bestimmt wer-
den. Der folgende Algorithmus beschreibt die Vorgehensweise:

Algorithmus 3.12 (Partialbruchzerlegung)

1. Bestimme die (moglicherweise komplexen) Nullstellen x;,i = 0,...,s, von f, d.h.
zerlege das Polynom f] in Linearfaktoren

N

fit) =a, [ [ —x).

i=0

2. Fasse dabei ggfs. Faktoren mit paarweise komplexen Nullstellen zusammen, so dass
sich eine Darstellung

/
fi) =] ]aix)
i=0

mit/ < s undg; € I, oder g; € I, ergibt.
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3. Stelle 1/ f; als Summe der folgenden Art dar:

!
1 pi(x)
=Z , pi € Ilyoder p; € I1,.
h0) T E g

4. Bestimme aus dieser Darstellung durch Koeffizientenvergleich die Koeffizienten der
Polynome p;.
5. Berechne aus dieser Darstellung eine Stammfunktion F; von 1/ fi.

Das folgende Beispiel zeigt die Anwendung.

Beispiel 3.13 Sei f(x) = 1 — x2. Zur Berechnung der Stammfunktion von 1/f gehen
wir wie im Algorithmus vor:

1. Esgilt
fX)=—x+Dx—-1)=01—-x)1+x).

2. Komplexe Nullstellen gibt es nicht. Es gilt go(x) =1 — x,q;1(x) = 1 + x.
3. Ansatz:
1 1 A B

= = , A,BeR.
o) 1 I-x 14x

Dieser Ansatz ist nur fiir |x| # 1 zuléssig.
4. Ausmultiplizieren ergibt

1=4A0+x)+B(l—-x)=A+ B+ x(A—B),
woraus sich durch Koeffizientenvergleich A = B = 1/2 ergibt, also

1 1 1 1 n 1 x| £ 1
= == — ) .x .
f(x) 1-x2 2\1—-x 1+x

5. Fiir die Stammfunktion gilt dann

/ 1 d 1 [ 1 d+/ 1 d
X = — X X
1—x2 2 1—x 1+x
1

1
:E(—ln|1—x|+ln|1+x|)+c:Eln'

14+ x
1—x

+c

Auf dhnliche Art kann jetzt das Integral, das sich beim Energiebilanzmodell mit der
Methode der Trennung der Variablen ergibt, gelost werden:

Ubung 3.14 Geben Sie eine Stammfunktion fiir das in Ubung 3.11 erhaltene Integral an.
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In einigen Fillen fiihrt Substitution mit Winkel- oder Hyperbelfunktionen zu einer ver-
einfachten Darstellung der Stammfunktion, wie im letzten Beispiel:

Beispiel 3.15 Fiir

1 14+x
s:=—=In
2 1—x

gilt mit der Definition der Tangens-Hyperbolicus-Funktion

-1 F-1 1+x—(1-x)

tanh(s) = = 1= = x, O0<x<l.
) e’ +1 41 I4x+l-x
Also ist
1 1
s=—lnﬂ=artanh(x), 0<x <1,
2 1—x
und

1
/ dx = artanh(x) + ¢, O0<x <.
1—x2

Diese Umformung kann helfen, um die fiir die Losung eines Anfangswertproblems
notige Umkehrfunktion von F) anzugeben:

Ubung 3.16 Wenden Sie die Methode der Trennung der Variablen auf das Anfangswert-
problem

Y@)=1-y@)?, tel, y0) =y
an. Welche Voraussetzungen miissen an / gemacht werden?

Ubung 3.17 Benutzen Sie die Umformung aus Beispiel 3.15 fiir die Differentialgleichung
des Energiebilanzmodells. Warum ist es dennoch nicht moglich, eine geschlossene Form
fiir die Losung anzugeben?

Weitere analytische Losungsmethoden (fiir lineare System) werden in den Abschn. 8.1
und 8.2 behandelt.

3.4 Existenz- und Eindeutigkeitsaussagen

Elementare Losungsverfahren sind natiirlich ein Mittel, um die Existenz einer Losung zu
zeigen. Aber es ist generell sinnvoll, Bedingungen fiir die Existenz einer Losung und iiber
ein maximales Intervall / C R, auf der sie definiert sind, anzugeben. Interessant sind
dariiber hinaus Eindeutigkeitsaussagen. Wir geben hier zwei zentrale Sitze an, die sich
mit diesen Themen befassen. Dabei betrachten wir wieder das Anfangswertproblem (3.2).
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Lipschitz-Stetigkeit

Eine hinreichende Bedingung fiir die Eindeutigkeit einer Losung ist die lokale Lipschitz-
Stetigkeit der rechten Seite f beziiglich des zweiten Arguments. Da wir diese Eigenschaft
spiter auch in anderen Zusammenhingen bendétigen, definieren wir sie fiir eine allgemeine
Funktion F', die von einer Variable abhéngt.

Definition 3.18 (Lokale und globale Lipschitz-Stetigkeit) Eine Funktion F' : R" D
D — R” heilit lokal Lipschitz-stetig in D, wenn zu jedem xo € D Zahlen L,e > 0
existieren mit

|F(x)— F(X)|| < L|lx—X|| Vx,X e B:(xo) N D.
Dabei ist || - || eine beliebige Vektornorm und
B.(xp) :={x e R" : ||x — x| < &}.

Die Zahl L heif3t Lipschitz-Konstante. Gilt diese Abschitzung auf ganz D mit einem von
Xo unabhingigen L, dann heillt I global Lipschitz-stetig.

In der Definition ist die Vektornorm, die benutzt wird, nicht spezifiziert. Wir geben hier
noch einmal die wichtigsten Normen auf dem R” als Beispiel an:

Beispiel 3.19 Die folgenden Abbildungen sind Normen auf dem R”:

n 1/p
lalyi= (L) " penpa

i=1
[Xlloo :=" max |x;]
i=1,..n

Auf dem R” sind alle Normen im folgenden Sinne ineinander umrechenbar:

Definition 3.20 Sei R” ein normierter Raum mit Normen || - |4, || - || - Die beiden Normen
heien dquivalent, wenn ¢, cp, € R existieren mit

Ixlla < capllxlls,  Nxlls < cpallxlla VX €R".
Die Umrechnungsfaktoren hidngen im R” zum Teil von der Dimension n ab:

Ubung 3.21 Berechnen Sie die Konstanten ¢y, ¢4, fiir die Normen || - ||, || - |2 und || - || oo
im R”.

Der Wert der Lipschitz-Konstanten hingt also eventuell von der Wahl der Norm ab.
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Ubung 3.22 Wie indert sich die Lipschitz-Konstante, wenn statt der Norm || - ||, eine
andere, dquivalente Norm || - ||, verwendet wird?

Der Banach’sche Fixpunktsatz

Der Beweis des weiter unten folgenden Existenz- und Eindeutigkeitssatzes basiert auf
dem Banach’schen Fixpunktsatz (oder Kontraktionsprinzip). Ein Fixpunkt ist wie folgt
definiert:

Definition 3.23 (Fixpunkt) Ein Punkt x € D C R” heifit Fixpunkt von F : D — D,
wenn F(x) = x gilt.

Eine Kontraktion ist wie folgt definiert:

Definition 3.24 (Kontraktion) Eine Funktion F : R" D D — D heilit kontrahierend
oder Kontraktion auf D, wenn sie auf D global Lipschitz-stetig mit L < 1 ist.

Der Banach’sche Fixpunktsatz liefert nun Aussagen iiber den Fixpunkt einer kontrak-
tiven Abbildung sowie die Moglichkeit, diesen zu approximieren:

Satz 3.25 (Banach’scher Fixpunktsatz) Sei D C R” nichtleer und abgeschlossen und
F : D — D cine kontrahierende Abbildung. Dann gilt:

1. F hat genau einen Fixpunkt x* in D.
2. Die Folge (xp)reN, Xk+1 = F(xy), konvergiert fiir jeden Startwert xy € D gegen x*.
3. Fiiralle k € N gelten die a-priori- und a-posteriori-Fehlerabschdtzungen

k

*
— <
o ="l = 757

[lx1 — xoll,

xp—x¥| <
e ="l = =

lxx — X1l

Beweis Wir zeigen, dass die Folge der Iterierten eine Cauchy-Folge bildet: Es gilt x; €
D,daF :D — D,und

[%mt1 = Xl = [1F(om) = Fem-D|| < L || xm = X1l

< L™ ||x; = xo - 3.7
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Sei [,k € N mit/ > k. Dann folgt mit der Dreiecksungleichung und der Kontraktionsei-
genschaft:

I—k
llxr = x|l = H > (ki — xk+i—l)H
i=1

I—k
< ki — Xepicll

i=1

11—k
<Y LT g = x|

i=1

1—k—1
=L Y L' |lxi = xol
i=0
o) ' Lk
<LKy L x = xof = — I —xoll. (3.8)

i=0

Die letzte Gleichung folgt mit der Formel fiir die geometrische Reihe, s. [13, §4 Satz 6].
Wegen L < 1 wird der letzte Ausdruck fiir groBes k (und damit /) beliebig klein. Also ist
(xx)ken eine Cauchy-Folge, die konvergiert, da der R” vollstindig ist. Da D abgeschlos-
sen ist, ist das Grenzelement in D, also

lim x; = x* € D.
k—>o00

Um zu zeigen, dass x* ein Fixpunkt ist, folgt aus der Stetigkeit von F

x* = lim x;4; = lim F(x;) = F(x%).
k—o00 k—o00

Fiir die Eindeutigkeit seien x*, X zwei Fixpunkte von F in D. Dann gilt:
[x* = %[ = [ F(x™) = F(¥)] = L|x* = X].
Daraus folgt
(1-L)x"=x[ <0

und wegen L < 1 dann ||x* — X|| = 0, also x* = X.
Zum Beweis der a-priori-Fehlerabschitzung wird die gezeigte Abschitzung (3.8) be-
nutzt. Grenziibergang / — oo ergibt wegen der Stetigkeit der Norm

k

X = x| <
" = xell = ——

[l1 = xo]l-
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Fiir die a-posteriori-Fehlerabschitzung setze Xy := xj—;. Dann ist X; = X, und es
folgt aus der a-priori-Fehlerabschétzung

1

* = *
Xp—=x7 || =X —x7| <
o =) = 18 =27 < =

|%1 — X0l =

Xk — Xk—1]|- O
=

Die Aussage des Satzes bleibt in einem vollstindigen normierten und auch in einem
vollstindigen metrischen Raum X giiltig. In letzterem wird dann die Norm durch eine
Metrik (Abstandsbegriff) d : X x X — R™T ersetzt, genauer gesagt die Norm ||x — X||x
durch d(x, X).

Der Satz von Picard-Lindelof

Wir zeigen nun die lokale Existenz und Eindeutigkeit der Losung in einer Umgebung des
Anfangswertes. Dazu benétigen wir noch folgendes Resultat.

Lemma 3.26 Sei ||| eine beliebige Norm auf dem R". Dann gilt fiir alle F €
C(la,b].R")

b

[ Feas) < /b | F(s) lds.

a

Beweis Siehe [11, §6, Hilfssatz nach Satz 5] fiir den Fall der Euklidischen Norm. O
Ubung 3.27 Beweisen Sie diese Aussage fiir eine beliebige Norm.

Es gilt nun folgender lokaler Existenz- und Eindeutigkeitssatz.

Satz 3.28 (Satz von Picard-Lindel6f) Sei D C R x R” offen, f in D stetig und lo-
kal Lipschitz-stetig beziiglich des zweiten Arguments, d. h. (vgl. Definition 3.18) zu jedem
Punkt (ty, yo) € D existieren L, e > 0 mit

If@.y) = f@ I = Llly =yl fiiralle (¢, y), (¢, 7) € Be(to. yo) N D.

Dann hat das Anfangswertproblem (3.2) fiir alle (ty, yo) € D genau eine Losung auf
einem Intervall [ty, to + r] mit r > 0.

Beweis Der Beweis basiert auf dem Banach’schen Fixpunktsatz. Sei (7, yo) € D belie-
big. Da D offen und f lokal Lipschitz-stetig in D ist, existieren r, s > 0, so dass auf der
Menge

U= [lo,to + r] X Bs(y()) cD (3.9)
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die Funktion f sowohl stetig als auch Lipschitz-stetig beziiglich des zweiten Arguments
ist. Die Lipschitz-Konstante sei L = L (o, fy). Es sei

M = t, .
X £, Wl

Wir verkleinern r gegebenenfalls noch so, dass Mr < s gilt.

Ist y eine Losung des Anfangswertproblems, so ist y auf D stetig und die Funktion F,
definiert durch F(¢) := f(¢, y(2)), ist auf [to, #p + r] stetig. Dann gilt mit dem Hauptsatz
der Differential- und Integralrechnung

y(@) = yo + / f(s,y(s)ds =: (Ty)(@) firallet € [to, 19+ r], (3.10)

wobei das Integral komponentenweise zu verstehen ist.
Lost umgekehrt eine Funktion y Gleichung (3.10)), so gilt offensichtlich

y(to) = Yo,

d. h. sie erfiillt die Anfangsbedingung. Ist y stetig, so ist die rechte Seite von (3.10)) stetig
differenzierbar nach ¢, also ist (wieder mit dem Hauptsatz der Differential- und Integral-
rechnung) y stetig differenzierbar, und es gilt

y'(@) = f(t,y()) firallet € [ty,to + 7],

also die Differentialgleichung. Insgesamt ist auf [z, #; + r] damit (3.10) dquivalent zum
Anfangswertproblem (3.2).
Die Integralgleichung (3.10)) konnen wir als Fixpunktgleichung

y=Ty
schreiben, wobei fiir den Operator T gilt:
T :C([ty,t0 +r],R") = C([to, 1o + r],R")
Fiir beliebiges o > 0 ist der Raum C([ty, tp + r], R"), versehen mit der Norm

[Ylle == max [ly(@)] exp(—a(r — 1)),
t€ftg.to+r]

ein Banachraum. Auf der rechten Seite steht dabei eine beliebige Norm im R”. Wir wih-

len, wie spiter deutlich wird, « > L7, und iiberpriifen nun die Voraussetzungen des

Banach’schen Fixpunktsatzes:
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Zuerst zeigen wir, dass T die Menge B, ()y) in sich abbildet. Dazu betrachten wir fiir
t € [ty,tp + r] unter Benutzung von Lemma 3.26:

IT@) = yoll = / s, y(s))ds

< [ (s, y(s))llds
< (- ) max |f2)] < M < s,

Jetzt zeigen wir, dass T eine Kontraktion ist. Es gilt mit der lokalen Lipschitz-Stetigkeit
von f beziiglich des zweiten Arguments:

I(Ty)(®) = (Tz)O) = [(f(say(S)) — f(s.2(s))ds

< / £ (s, y(s)) = f(s.2(s))|ds

t

< /Lny(s) — 2(s) | ds

Io
t

- [ Lily(s) — 2 ()] exp(—a(s — 10)) exp(a(s — o))ds

o
t

<(t—1)L]y -z f exp(a(s — 1y))ds

o

1
= —t0)Llly =zl expla(t —19)) V1 € [to.to +1].

Also folgt

Lr
”Ty - TZ”& = _”y _Z”a-
o
Da « > Lr gewdhlt war, ist T eine Kontraktion, und Existenz und Eindeutigkeit folgen

aus dem Banach’schen Fixpunktsatz. O

Beispiel 3.29 Damit ist klar, dass die Losung y(t) = yoe* des Anfangswertproblems
(3.5) aus Beispiel 3.8 die einzige ist.
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Ein einfaches Beispiel fiir den Nachweis der Eindeutigkeit iiber die lokale Lipschitz-
Stetigkeit von f ist das Anfangswertproblem aus Ubung 3.9(b):

Beispiel 3.30 Die Funktion f(y) = y? ist lokal Lipschitz-stetig auf R. Es gilt

12 =32 =y + Flly — 5 <2|yo + ¢l |y — 7.

wenn y, ¥V € B.(yp). Alsoist L = L(y9) = 2|yo + ¢|. Das Anfangswertproblem hat fiir
beliebigen Anfangswert y; € R eine eindeutige Losung.

Im folgenden Beispiel liegt keine Eindeutigkeit vor, vgl. Ubung 3.9(a):
Ubung 3.31 Geben Sie alle Losungen des Anfangswertproblems
y'=2Jy, 20, y0)=0
an. Welche Voraussetzungen des Satzes von Picard-Lindel6f sind nicht erfiillt?

Ubung 3.32 Was indert sich, wenn y’ = 2./|y| mit gleichem Anfangswert betrachtet
wird?

Was passiert, wenn der Anfangswert y, von Null weg verschoben wird? Dann liegt
(t0, yo) im Inneren des Definitionsbereiches von f und die lokale Lipschitz-Stetigkeit ist
gegeben.

Ubung 3.33 Welche Losungen hat das Problem aus Ubung 3.31 mit y(0) > 0? Sind die
Voraussetzungen des Satzes von Picard-Lindelof erfiillt?

Genauso kann nun das Energiebilanzmodell untersucht werden.

["Jbung 3.34 Untersuchen Sie das Modell (2.6) auf Existenz- und Eindeutigkeit.

Abschiatzung der Lipschitz-Konstante liber die Ableitung

Nur bei einfachen Gleichungen kann die lokale Lipschitz-Stetigkeit direkt mit der Defi-
nition nachgewiesen werden. Bei nichtlinearen Systemen ist dies sehr schwierig. Daher
erweist sich ein Lemma als hilfreich, das die Norm der Jacobi-Matrix zur Abschitzung
der Lipschitz-Konstante benutzt. Diese Norm muss zu der Vektornorm, beziiglich der die
Lipschitz-Konstante berechnet wird, im folgenden Sinne passen:
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Definition 3.35 (Vertrigliche Matrix- und Vektornormen) Eine Vektornorm | - ||y auf
dem R” und eine Matrixnorm || - || 5 auf dem R™*" heiBen (miteinander) vertréiglich oder
kompatibel, wenn gilt:

[Axllv < [Almlxlly VA eR™, x eR"

Folgende Matrixnormen sind vertrdglich mit den entsprechend indizierten Vektornor-
men aus Beispiel 3.19. Dabei benutzen wir folgende Bezeichnung:

Definition 3.36 (Spektralradius) Fiir A € R"*" heift
0(A) := max{|A| : A ist Eigenwert von A}
Spektralradius von A.
Es gilt jetzt:

Lemma 3.37 Sei A = (a;;);; € R"™". Die Abbildungen

|All; := max
j=1

n
|aij|
vl

i=1

| Allo := max > a|

[A]l2 = y/e(AT A).

sind mit den entsprechenden Vektornorm vertréiigliche Normen auf dem R"*".
Die || - ||,-Norm vereinfacht sich offensichtlich, wenn die Matrix symmetrisch ist, dann
ist sie gleich dem betragsgrofiten Eigenwert. Doch Symmetrie ist bei der Jacobi-Matrix

nicht notwendigerweise gegeben.
Zunichst ergibt sich sofort folgende Aussage:

Anmerkung 3.38 Lineare Funktionen sind lokal Lipschitz-stetig. Ist

ft.y) = A@)y

mit einer matrixwertigen Funktion A : I — R"*", dann gilt

If@.y) = f@. Dl = 1A =D < [ADI(y =D,
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wenn die Normen vertrédglich sind. Ist nun A stetig, dann ist
L) = A@)|.
() = max [A()]
Im Fall A(t) = A konstant liegt dann sogar globale Lipschitz-Stetigkeit vor.

Fiir nichtlineare Funktionen kann die Lipschitz-Konstante wie folgt abgeschitzt wer-
den:

Lemma 3.39 Sei U C R” offen und F : U — R" stetig differenzierbar. Dann ist F auf
Jjeder kompakten konvexen Menge D C U global Lipschitz-stetig mit

L = max | F'(x)|
X€D
und einer mit einer Vektornorm auf dem R" vertrdglichen Matrixnorm.

Beweis Aus dem Mittelwertsatz der Differentialrechnung (s. [13, §18 Satz 7] mit ¢ = 1)
folgt fiir x, X € D, da D konvex ist:

1

|F(x)— F&X)| = / F/()? + s(x — X))(x — X)ds
0
1
< [ IF'G + sGe—®)lds | Ilx— 71
0

1

< max | F'(0)] [ Lds | v — 5
xX€D
0
= max || F'GO)lx — £
xX€D

Die Stetigkeit von F’ auf der kompakten Menge D ergibt die Behauptung. O

Mit diesem Lemma reicht fiir die lokale Existenz und Eindeutigkeit die stetige partielle
Differenzierbarkeit (beziiglich y) der rechten Seite einer Differentialgleichung aus:

Korollar 3.40 Sei D C R x R” offen und f in D stetig nach y differenzierter. Dann hat
das Anfangswertproblem (3.2) fiir alle (ty, yo) € D genau eine Losung auf einem Intervall
[to, to + r] mit r > 0.

Mit dieser Aussage ergibt die Existenz und Eindeutigkeit von Losungen der Anfangs-
wertprobleme aus Beispiel 3.30 und Ubung 3.34 wesentlich einfacher.
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Der Satz von Peano

Dieser Satz macht eine Existenzaussage nur mit der Voraussetzung der Stetigkeit der rech-
ten Seite /. Wir notieren ihn hier der Vollstindigkeit halber:

Satz 3.41 (Existenzsatz von Peano) Sei f in einem Gebiet D C R x R” stetig. Dann
geht durch jeden Punkt (ty, yo) € D mindestens eine Losung des Anfangswertproblems
(3.2), die sich bis zum Rand von D fortsetzen ldsst.

Beweis Siehe [14, Satz 6.1.1]. O

3.5 Fortsetzbarkeit und globale Existenz von Losungen

Interessant bei einem Anfangswertproblem ist nicht nur die Existenz lokaler Losun-
gen, sondern auch, auf welchem Intervall sie existieren. Das Anfangswertproblem aus
Ubung 3.9(b) und Beispiel 3.30, wo lokale Eindeutigkeit gegeben ist, aber die Losung
beim Anfangszeitpunkt 7o = O nur fiir # < 1 existiert, ist ein Beispiel dafiir. Das folgende
Lemma zeigt, dass lokale Losungen zusammengesetzt werden konnen.

Lemma 3.42 Seien yi,y, Losungen des Anfangswertproblems (3.2) auf [ty,t1] bzw.
[t1, 2] mit yi(ty) = yo beliebig und y,(t;) = y;(t;). Dann ist

yi(0), 1€ty 1]

(1), t € (i1, 1]

y(@) =

eine Losung von (3.2) auf [to, t;].

Beweis Es ist zu zeigen, dass y in #; die Differentialgleichung erfiillt. Wegen der links-
bzw. rechtsseitigen Differenzierbarkeit von y; bzw. y; in #; gilt

Yyt —h)—y@) _ . ynlti—h) =)
m———————" =1lim

lhll,O h Ew Y = f(ti, y1(t1))
t h) —y(t t h) — t

lim Y+ h) —ym) — lim Yoty + 1) — yo(t1) = f(t1, y2(11)).

hy0 h hl0 h

Wegen y(t;) = y,(#;) stimmen rechts- und linksseitige Ableitung von y in #; iiberein
und sind gleich f (¢, y(#1)). O
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Der folgende Satz benutzt Resultate iiber gleichméBig stetige Funktionen:

Definition 3.43 (GleichmiiBige Stetigkeit) Eine Funktion F : R” D D — R heif}t
gleichmdfig stetig, wenn gilt:

Ve>035>0: ||F(x)—F(X)|<é§ Vx,xeD, |x—X| <$.
Wir benutzen im Beweis folgende Aussagen:

Lemma 3.44 Eine Lipschitz-stetige Funktion ist gleichmdfig stetig. Eine auf einem of-
fenen Intervall gleichmdiflig stetige Funktion ldsst sich stetig auf den Rand des Intervalls
fortsetzen.

Beweis Siehe [13, Aufgaben 11.3(a) und 11.5]. O
Damit wird folgender globaler Existenzsatz gezeigt:

Satz 3.45 Sei D C R x R” offen, f auf D lokal Lipschitz-stetig und (ty, yo) € D. Dann
existiert eine Losung y des Anfangswertproblems (3.2) mit

1. I = [ty,00)
2. oder I = [ty,t,] mitt, < oo und tlintl sup ||y (@)] = o0

3. oder I = [ty,t,] mitt, < oo und tli)ntl dist((z, y(¢)),0D) = 0.

Dabei ist 0D der Rand von D und dist(x, D) der Abstand des Punktes x zu D. Die
Losung y ist eindeutig, d. h. alle anderen Losungen sind Restriktionen.

Beweis Sei Y die Menge aller lokalen Losungen von (3.2). Nach Satz 3.28 ist Y # 4,
und zu y € Y gibtesr = r(y) > 0, so dass y auf [to, 7y + r(y)] existiert. Wegen
der lokalen Eindeutigkeit stimmen zwei Losungen y;, y, € Y auf ihrem gemeinsamen
Existenzintervall [t, to + min{r(y;), r(y,)}] iiberein.

Sei . := fy + sup,ey r(y). Je nachdem, ob das Supremum angenommen wird oder
nicht, konnen wir auf [z, t,] oder [z, #,) eine Losung y definieren, die eindeutig und nach
Konstruktion nicht mehr auf ein grofleres Intervall fortsetzbar ist. Alle anderen Losungen
sind Restriktionen dieser Losung. Wir betrachten fiir diese nicht mehr fortsetzbare Losung
y die Menge

M = {(t,y(@)) e Rn+l ¢ > 1} C D.
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Wir zeigen einen Widerspruch, wenn alle Aussagen 1-3 falsch sind:

Da die Aussagen 1 und 2 falsch sind, ist M beziiglich ¢ und y beschrinkt. Da M nach
Definition abgeschlossen ist, ist M kompakt.

Fall 1: Die nicht mehr fortsetzbare Losung y ist auf dem halboffenen Intervall [£, ¢, )
gegeben. Da die stetige Funktion f auf M beschrinkt ist, ist auch y’ auf der kompakten
Menge M beschrinkt. Mit Lemma 3.39 folgt Lipschitz-Stetigkeit und mit Lemma 3.44
gleichméBige Stetigkeit von y in [£y, ¢,) und die Fortsetzbarkeit

lim y(t) =: y..
t—>te

Wegen der Abgeschlossenheit von M gilt (z,, y.) € M. Die Gleichung
t
50 =+ [ £6.560ds
o

gilt fiir ¢ € [ty,2,). Der Grenziibergang t — f, zeigt, dass sie auch fir ¢t = ¢, gilt.
Damit folgt, dass y in z, linksseitig differenzierbar ist. Damit ist y auf das Intervall [#o, 7,]
fortsetzbar und es ergibt sich ein Widerspruch zur Nichtfortsetzbarkeit.

Fall 2: Die Losung ist auf dem abgeschlossenen Intervall [ty, .] gegeben. Wegen ¢, <
oo und (Z., y.) € M C D kann eine lokale Losung mit Anfangswert (z,, y.) konstruiert
und so y auf ein Intervall [to, f, + 7], r > 0, fortgesetzt werden. Auch in diesem Fall ergibt
sich also ein Widerspruch zur Nichtfortsetzbarkeit von y. O



Umformulierung und Vereinfachung
von Modellen

Thema dieses Kapitels sind einige Methoden, die oft bei Klimamodellen (und auch anderen Model-
len) angewendet werden, um diese in eine Form zu bringen, die sich besser fiir die Beschreibung
der Prozesse selbst, aber auch fiir ihre Berechnung eignet. Dazu gehoren der Ubergang zu dimensi-
onslosen GroBen, die Aufspaltung in einen stationdren und einen instationdren oder Stdrungsanteil
und eine geeignete Skalierung der Gleichungen. Eine weitere Methode, die Linearisierung, wird vor
allem dann angewendet, wenn das urspriingliche Modell nicht direkt analytisch 16sbar ist, wie es
beim instationdren Energiebilanzmodell der Fall war. Die hier vorgestellten Methoden werden in
der einen oder anderen Form in den meisten Klimamodellen angewendet.

4.1 Ubergang zu dimensionslosen GroBen und Skalierung

Die meisten Klima- (und auch andere) Modelle werden in eine dimensionslose Form um-
geschrieben. Dadurch sind sie fiir die mathematische Beschreibung und Analyse und auch
fiir die Umsetzung auf dem Rechner besser handhabbar. Zusitzlich erlaubt diese Entdi-
mensionalisierung, die wirklich relevanten Parameter oder Kennzahlen zu bestimmen.

In diesem Prozess werden alle Grofen als Produkte von dimensionslosen Werten, al-
so Zahlen, und sinnvoll gewihlten, gegebenenfalls dimensionsbehafteten Referenzgrofen
ausgedriickt. Damit entfallen die physikalischen Einheiten (oder Dimensionen, deswegen
dimensionslose Form).

Die Referenzgrofien konnen die Einheiten nach dem SI-Standard (s. Tab. 2.1) sein. Es
kann aber auch sinnvoll sein, andere, problemangepasste Referenzgroflen oder Einheiten
zu wihlen. Zum Beispiel kann die Lédnge nicht in der SI-Einheit m (Meter), sondern in
Vielfachen einer modellspezifischen Grofle der Dimension Lénge ausgedriickt werden,
z. B. der Grof3e eines Behilters, in dem Prozesse untersucht werden, oder einer sinnvollen
Referenzgrofle im Ozean. Bei vielen nur grob aufgeldsten Klimamodellen wie auch dem
Energiebilanzmodell ist statt der SI-Zeiteinheit Sekunde meist ein Jahr eine angemessene
Zeitskala.

© Springer-Verlag Berlin Heidelberg 2015 43
T. Slawig, Klimamodelle und Klimasimulationen, Springer-Lehrbuch Masterclass,
DOI 10.1007/978-3-662-47064-0_4



44 4 Umformulierung und Vereinfachung von Modellen

Dadurch findet zusétzlich zur Entdimensionalisierung eine Skalierung statt. Diese kann
auch sinnvoll sein, um Modellgrofen auf eine dhnliche Groflenordnung zu bringen, was
fiir bestimmte numerische Berechnungsverfahren sinnvoll ist und die Vergleichbarkeit von
GroBien und die Qualitit des Ergebnisses verbessern kann.

Die Prozesse Entdimensionalisierung und Skalierung héngen also miteinander zusam-
men. Wir beginnen mit den Definitionen der beiden Begriffe.

Definition 4.1 Sei ¢ eine dimensionsbehaftete GroBe mit zugehoriger SI-Einheit [g].
Dann heiit § € R mit ¢ = ¢ [¢] zugehorige dimensionslose Grifie. Werden in einem
Modell alle GroéBen durch ihre zugehorigen dimensionslosen Grofen ersetzt und die Di-
mensionen aus dem Modell eliminiert, so heiflt dieser Prozess Entdimensionalisierung
und das entstehende Modell ein dimensionsloses Modell.

Definition 4.2 Sei g € R eine dimensionslose Modellgréfe und ¢ € R \ {0}. Dann heif3t
g mit g = q g mit g skalierte Modellgrifie. Die Grofie g heil3t Skalierungsfaktor.

Beide Prozesse sind dhnlich und kdnnen zusammengefasst werden: Ist g eine dimen-
sionsbehaftete ModellgroBe, [¢] ihre Einheit und g ein Skalierungsfaktor, so wird eine
dquivalente dimensionslose und skalierte Modellformulierung gesucht, also eine, die die
GroBe ¢ mit g = q g [¢] an Stelle von g benutzt.

In Modellen, die Differentialgleichungen und damit Ableitungen enthalten, ist bei der
Transformation der Ableitungen das folgende Lemma hilfreich.

Lemma 4.3 Sei F eine differenzierbare dimensionsbehaftete Funktion einer dimensi-
onsbehafteten Variablen q, [F] := [F(q)] und [q] die zugehérigen Einheiten und F,§
Skalierungsfaktoren fiir F' und q. Fiir die Ableitung der zugehorigen dimensionslosen und
skalierten Funktion F mit dimensionslosem und skaliertem Argument §, definiert durch

F@G) = % oder dquivalent  F(q) = I*:( 7 ]) F [F]. 4.1

gilt

. dF F[F]dF FIF)
Fig) = E(‘]) ma( q) = T F'(§). 4.2)

Beweis Es gilt mit (4.1)

’ IRT 1 e l ~ C]+h ~ L _
F(q)—}}gz(F(q+h)—F(q))—}}1_r>%h(F(q[q]) F( ))F[F]-



4.1 Ubergang zu dimensionslosen GréBen und Skalierung 45

Mit den Bezeichnungen ¢ := ¢/(q [q]), h:=h /(q [g]) und wegen der Aquivalenz
h—>0<=h—>0
folgt

RS LSO I ol 1) VRS [N
Fig) = lim —— (Fa+h—F@) FIF) = 2 2 lim = (FG+b - F@).
a

Der folgende Algorithmus fasst die Vorgehensweise bei Entdimensionalisierung und
Skalierung zusammen.

Algorithmus 4.4 (Entdimensionalisierung und Skalierung)

1. Stelle jede ModellgroBe ¢ als Produkt einer dimensionslosen Grofe ¢, der Einheit [¢]
und ggfs. einem Skalierungsfaktor g dar, d. h. als

q9=44lql

2. Benutze fiir die Transformation von Ableitungen Formel (4.2).

3. Setze die erhaltenen Beziehungen in die Modellgleichung(en) ein und dividiere auf
beiden Seiten durch die Einheiten. Ergebnis ist eine dimensionslose und ggfs. skalierte
Form des Modells.

Beide Prozesse, Entdimensionalisierung und Skalierung, kénnen gleichzeitig oder (mit
der Setzung ¢ = 1 bzw. [¢] = 1) auch nacheinander ausgefiihrt werden.

Das folgende Beispiel zeigt die Entdimensionalisierung des Energiebilanzmodells ohne
zusitzliche Skalierung.

Beispiel 4.5 Wir betrachten die Differentialgleichung (2.6):
1 S 4
HoCT'(t) = Z(l —a)—eaT()". 4.3)

In Tab. 2.3 wurden die im Energiebilanzmodell vorkommenden Parameter aufgelistet.
Schritt 1 des obigen Algorithmus liefert die Beziehungen in Tab. 4.1, wobei o und ¢ bereits
dimensionslos sind. Fiir die einzige auftretende Ableitung gilt mit (4.1):

T'(t) = mT/(f) = ET’(E).
[] s
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Tab. 4.1 Dimensionsbehaftete Dimensionslose | Dimensionsbehaftete Variable/Parameter

und dimensionslose Variablen 7 T=TK
und Parameter im Energiebi- 7 t=7s
lanzmodell - ~
F r=7rm
H H=Hm
o 0=gkgm™’
C C =ClJkg 'K!
S S=SWm2
1o o =6Wm2K™*
o, e el =[] =1

Einsetzen in die urspriingliche Differentialgleichung ergibt

~ - == o~ MmkgJK S Y .
HoCT'()—=— = =—(1 —a)— — 6T "
0 ()m3kgKS 4( oz)m2 e T (1)

W K*
m?2 K4

und durch Kiirzen der Einheiten und Verwendung der Beziehung W = Js™!:

oy W N -\ W
HCT'(H— = (- —a)—eT{0)*)—.
m? 4 m?
Die Gleichung ist also in der Einheit W m™2 formuliert. Eine Division durch die verblei-
bende Einheit ergibt (4.3) in dimensionsloser Form, wenn man die Tilden wieder weglésst.

Das folgende Beispiel motiviert eine Skalierung des Energiebilanzmodells.

Beispiel 4.6 Die Temperatur 7 tritt im Energiebilanzmodell in der vierten Potenz auf. Das
Modell liege hier schon in dimensionsloser Form vor, und die Tilden in der Bezeichnung
sind schon weggelassen. Bei einem Wert von ca. 287 fiir die mittlere Jahrestemperatur
liegt der Wert 7# in der GroBenordnung von ~ 7-10°. In der Modellgleichung (4.3) ergibt
die Multiplikation mit der Boltzmann-Konstante 0 = 5,67 - 107% dann 6 T* ~ 4 - 10,
Mit der GroBenordnung von S &~ 103 haben also beide Terme auf der rechten Seite von
(4.3) ungefihr die gleiche Groenordnung. Hier bietet sich fiir das instationdre Modell die
Skalierung

T(t)=TT()

mit einem zeitlich konstanten Referenzwert T an. Dies kann z. B. die Losung der statio-
nidren Gleichung (2.3) sein. In der Modellgleichung ist nun

oT () =oT*T (1),
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d. h. der fiir eine instationire Rechnung konstante Faktor o 7 fasst die beiden unterschied-
lichen GroBenskalen von o und T* zusammen, die sich im Produkt teilweise aufheben und
die GroBenordnung von = 10? ergeben.

Im Energiebilanzmodell ist es weiterhin sinnvoll, die Zeit nicht in Sekunden, sondern
in Jahren zu messen:

Ubung 4.7 Geben Sie eine dimensionslose und skalierte Form des instationiren Energie-
bilanzmodells an, in dem die Zeit in Jahren gemessen und die Skalierung der Temperatur
wie in Beispiel 4.6 verwendet wird.

4.2 Trennung in Referenzwert und Abweichung/Stérung

In vielen Fillen ist es sinnvoll, nicht den Wert einer Grof3e selbst, sondern nur die Abwei-
chung von einem Referenzwert zu untersuchen und fiir diesen eine Gleichung aufzustel-
len. Bei zeitabhingigen Prozessen kann das zeitliche Verhalten einer GroBe ¢ (¢) etwa als

eine Abweichung oder Stérung des stationdren Wertes g (wenn dieser existiert) aufgefasst
werden, also als

q(1) =4 +q() (4.4)
Die Grofie
qt) =q@)—q
ist die absolute Abweichung vom zeitlich konstanten Referenzwert g. Der Ansatz
q(1) =q(1+4() 4.5)

fiihrt gleichzeitig eine Skalierung der Abweichung §(f) mit dem stationiiren Referenzwert
g durch. Daher heif3t

q(t) —q
q

q(t) =

relative Abweichung. Diese ist ohnehin meist aussagekriftiger, da sie interpretiert werden
kann, ohne den Wert von g nennen zu miissen oder ihn iiberhaupt zu kennen. Analog
kann man auch beziiglich einer rdumlich veridnderlichen Grof3e vorgehen. Hier wird oft
ein Mittelwert als ReferenzgroBle verwendet, was ebenfalls bei zeitabhidngigen Grofen
moglich ist, die z. B. keinen stationdren Wert haben.
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Bei Transformation der Ableitung in einem Modell folgen unmittelbar aus (4.4) und
(4.5) die Beziehungen

9O =40 =44q@).

Die Aufspaltung selbst hat also keine Auswirkung auf die Ableitung, beim Betrachten der
relativen Storung geht wieder der Skalierungsfaktor in die Umrechnung der Ableitungen
ein. Beim Energiebilanzmodell ergibt sich folgende Differentialgleichung:

Beispiel 4.8 Wir nennen die relative Abweichung hier 6(¢) und machen den Ansatz
T(t)y=T+T)=T1+0()),

wobei T der stationire Wert des Modells ist, fiir den (1 — «)S /4 = oeT* gilt, vgl. (2.3).
Fiir die Ableitung nach der Zeit gilt

T't) =T0@t).
Die Differentialgleichung lautet damit
_ S _ _
ThoC6'(1) = (1 — a)Z —oeT*(1+0()* =0eT* (1 - (1 +6(1)").

Damit erhalten wir
T3o¢

0'(t) =
@) HoC

(1-(1+6@)"). (4.6)

eine Gleichung fiir 6, die relative Abweichung vom stationédren Gleichgewichtszustand
der Temperatur. Diese ist so jedoch auch nicht leichter zu l6sen. Das Problem ist die
nichtlineare Funktion 6 + (1 + 6)%.

Die gleiche Technik wird in Kap. 8 auf ein Boxmodell angewendet.

4.3 Linearisierung

Entdimensionalisierung und Skalierung machen ein Modell einfacher in der Notation und
sind bei einer numerischen Auswertung eventuell giinstig, fiir die analytische Losbarkeit
einer Differentialgleichung haben sie in der Regel keinen positiven Effekt, wie im Bei-
spiel 4.8 zu erkennen war. Im Gegensatz dazu fiihrt die Linearisierung eines urspriinglich
nichtlinearen Modells in der Regel auf eine Gleichung oder ein System, das analytisch
gelost werden kann.

Das wichtigste Werkzeug fiir die Linearisierung ist die Taylor-Entwicklung, die auf
folgendem Satz basiert. Sie erlaubt die Approximation einer nichtlinearen, glatten (d. h.
differenzierbaren) Funktion durch ein Polynom.
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Satz 4.9 (Taylor-Formel mit Lagrange-Form des Restglieds) Fiir eine m-mal stetig
differenzierbare Funktion F : [a,b] — R und x, x € [a, b] gilt

(x —X)" mits €10,1].

m—1 - — —
F®(x) o F™M(E +s(x — X))
F(x)=Z = (x —Xx)" + oy

k=0
Der Wert x heifit Entwicklungspunkt der Taylor-Entwicklung. Bei einer vektorwertigen
Funktion F : [a,b] — R" kann die Aussage komponentenweise angewandt werden, aber
fiir jede Komponentenfunktion F; ergibt sich dann in der Regel eine andere Zwischen-
stelle s;.

Beweis Siehe z.B. [12, §22 Satz 2]. O

Anmerkung 4.10 Eine manchmal niitzliche Umformulierung ist fiir x,x + 7 € [a,b],
helR:

m—1
F© FoO(x + sh
F(x +h) = Z%hk %h’", selo,1].
2k !

Die Taylor-Entwicklung wird an vielen Stellen benutzt. Bei der Linearisierung eines
Modells, das in Form einer (hier der Einfachheit halber autonomen) Differentialgleichung

Y'(@) = @)

gegeben ist, wird sie auf die beziiglich y nichtlineare rechte Seite, also auf die Funktion
f = f(y) angewandt. Da eine Linearisierung erreicht werden soll, wird im Satz m =
2 gesetzt. Wieder wird eine Aufspaltung in einen konstanten Referenzwert y und eine
zeitlich veridnderliche Abweichung y gemacht:

y() =y +y@).

Der Referenzwert wird zum Entwicklungspunkt, und daher wird im obigen Satz x = y,
X —x = y(t) (bzw. x = y, h = y(¢) in Anmerkung 4.10) gesetzt. Dies ergibt

Fo@) = fG+30)~ f)+ f(MHFQ)

Mit y’(¢t) = J'(¢) ergibt sich als Approximation eine lineare Differentialgleichung der
Form

(@) = /My + f0).

Der Entwicklungspunkt y wird so gewihlt, dass die beiden auftretenden Terme f(¥), /()
einfach auszuwerten sind. Dabei sollte f'(y) # 0 sein. Bei einem Anfangswertproblem
muss der Anfangswert fiir die neue Unbekannte y entsprechend angepasst werden.

Das folgende Beispiel zeigt die Anwendung auf das Energiebilanzmodell.
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Beispiel 4.11 Wir benutzen hier die Formulierung (4.3), die sich als
T'(t) = ¢ — e, T(1)*

mit ¢; = S(1 —a)/(4HoC) und ¢; = ¢0/(HpC) schreiben lisst. Zu linearisieren ist
also die Funktion f(y) = ¢; — coy*. Mit f/(3) = —4c, 37 gilt

FO@) = fG+70) = —ey® ~ fG)+ fG)F@) = c1 — 27 — 42775 (0).

Zu 16sen ist also eine lineare Differentialgleichung der Form

(1) =c35(t) +ca

mit ¢3 = —4¢,5°, ¢4 = ¢; — ¢,5*. Da der Entwicklungspunkt y sinnvollerweise positiv
gewdhlt wird und ¢, > 0 gilt, ist zu erkennen, dass ¢3 < O ist.

Ubung 4.12 Losen Sie das mit der Taylor-Entwicklung linearisierte Differentialglei-
chung fiir das Energiebilanzmodell. Welches Intervall / kann bei der Methode der
Trennung der Variablen gewihlt werden.

Wird beim Energiebilanzmodell der Ansatz mit der Trennung von stationdrem Zustand
und relativer Storung wie in Beispiel 4.8 verwendet, dann ergibt sich noch eine andere
Moglichkeit der Linearisierung, ohne die Taylor-Formel benutzen zu miissen:

Beispiel 4.13 Fiir die Funktion f(6) = (1 4+ 0)* kann der Binomische Lehrsatz (s. z. B.
[12, §1 Satz 5]) benutzt werden. Danach gilt

" (n
a—+b)' = a"*p*  fiira,b € R,n € N.
wror=33(3)

In unserem speziellen Fall benutzen wira = 1,b = 6,n = 4. Wird die Summe nach dem
zweiten Term (also k = 1) abgebrochen, so ergibt sich ein linearer Ausdruck in 6.

Ubung 4.14
1. Linearisieren Sie mit dem Binomischen Lehrsatz die Funktion f(y) = (1 + y)".

2. Linearisieren Sie damit die Gleichung (4.6) fiir die relative Abweichung im Energie-
bilanzmodell und 16sen Sie das AWP fiir £ > 0 mit einem Anfangswert 6(0) = 6. Ein
Bild des Ergebnisses zeigt Abb. 5.1.

3. Unter welcher Voraussetzung ist die Linearisierung gerechtfertigt?

4. Nach welcher Zeit ist eine Anfangsabweichung 6y bis auf ein Tausendstel des ur-
spriinglichen Wertes abgeklungen?

Bei Anwendung der Taylor-Entwicklung ist das Ziel, eine komplizierte Funktion durch
eine lineare zu approximieren. Dabei ist die Abschitzung des Fehlers interessant. Dafiir
ist die folgende Schreibweise hilfreich.
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Definition 4.15 (Landau-Symbol) Seien F : R — R"und G : R — R*. Dann gilt
F € O(G) fiir h — 0, wenn ¢, h > 0 existieren mit

|F(h)| <cG(h) fiirh < h.
Fiir den Fehler bei der Taylor-Entwicklung gilt folgende Aussage.

Korollar 4.16 (Approximationsfehler bei Taylor-Formel) Unter den Voraussetzungen
von Satz 4.9 und mit der Notation von Anmerkung 4.10 gilt

m—1 k)
Fx+h) = F fx)hk

k=0

e Q™) fiirh — 0.

Beweis Die Abschitzung des Restglieds folgt aus der Stetigkeit der m-ten Ableitung und
damit ihrer Beschrinktheit auf dem Intervall [x, x + A] bzw. [x — &, X]. O



Numerische Losung eines Anfangswertproblems

Wenn analytische Methoden nicht weiterfiihren, muss ein Anfangswertproblem numerisch gelost
werden, d. h. die Losung wird ndherungsweise mit einem Algorithmus berechnet. In diesem Kapitel
wird das Euler-Verfahren als einfachste Moglichkeit dazu vorgestellt. Darauf aufbauend werden die
allgemeinen Konzepte fiir eine ganze Klasse von Losungsalgorithmen, die expliziten Einschrittver-
fahren, zusammengestellt. Dies umfasst Konvergenz und die Abhéngigkeit von Daten- und Run-
dungsfehlern.

Bei der Linearisierung wurde das urspriingliche Problem, das als Anfangswertproblem
fiir eine nichtlineare gewohnliche Differentialgleichung gegeben und so nicht direkt 16s-
bar war, so vereinfacht, dass es 16sbar wurde. Wir haben prinzipiell ein ,,zu schwieriges*
Modell durch ein einfacheres ersetzt, fiir das wir eine Losung angeben konnten.

Alternativ konnen wir auch versuchen, die Losung des komplexen Modells nicht ex-
akt, sondern nur approximativ zu berechnen. Dies kann mit numerischen Losungs- oder
Approximationsverfahren fiir Anfangswertprobleme geschehen. Der Vorteil ist, dass man
diese Methoden zunichst einmal auf beliebige Anfangswertprobleme anwenden kann, oh-
ne vorher erst zu iiberlegen, ob sie vielleicht analytisch 19sbar sind. Ein numerisches Ver-
fahren ist ein Algorithmus, und fiir die Klasse der Anfangswertprobleme fiir gewohnliche
Differentialgleichungen gibt es schon fertige Softwarebibliotheken mit solchen Algorith-
men, so dass prinzipiell auf diese zuriickgegriffen werden kann.

Da es aber dennoch gut ist zu verstehen, was diese tun, und oft Anpassungen notwendig
sind, wird hier zur Motivation das einfachste Verfahren zur numerischen Losung eines
Anfangswertproblems beschrieben.
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5.1 Das explizite Euler-Verfahren

Das Euler-Verfahren ist das einfachste Verfahren, um ein Anfangswertproblem zu 16sen.
Wir betrachten dazu allgemein ein Anfangswertproblem der Form (3.2) auf einem endli-
chen Intervall:

Y@ = f@,y@), tel=lot], ylto)=yo
Das Euler-Verfahren approximiert die Ableitung durch den Differenzenquotienten:

t+h)—y(t
y' (@) ~ w h > 0 fest.
Damit erhilt man folgenden Algorithmus. Wir formulieren ihn direkt fiir den n-dimensio-

nalen Fall, also fiir ein System von Differentialgleichungen.

Algorithmus 5.1 (Explizites Euler-Verfahren mit fester Schrittweite)
Input:

Funktion f : R xR" — R”, f = f(t, y)
Anfangs- und Endzeitpunkte 7,7, € R
Schrittweite 1 = (¢, — tp)/N mit N € N
Anfangswert y, € R”

Algorithmus: Firk =0,...,N —1:

@ Yi+1 = yx +hf( yi)
®) t=1+h

Output: Niherungslosung y = (yo)_; = (yo. ..., yn) € RVFTDX" mit y, ~ y (1o + kh),
k=0,...,N.

Die Anwendung auf das Energiebilanzmodell in der Form (2.6) liefert

1 S
Tiri=Ti+h——(>(1—a)—eoT¢).
k+1 K+ HQC(4( a) —eo k)
Wenn hier der Bruch rechts wieder mit 4772 erweitert wird, ergibt sich (mit den Be-
zeichnungen h = At und T, ~ T(t;)) die Differenzengleichung (2.5). Noch einmal
zusammengefasst:

e Die Differenzengleichung (2.5) war ein zeitdiskretes Modell.

e Daraus wurde durch Ubergang zu beliebig kleinem Zeitschritten die Differentialglei-
chung (2.6) hergeleitet. Diese war direkt nicht 16sbar, also wurde ein spezielles Nihe-
rungsverfahren angewandt (das Euler-Verfahren), und landeten bei einem Algorithmus,
der (2.5) entspricht.
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Abb. 5.1 Exakte Losung des linearisierten Energiebilanzmodells (gestrichelt) und numerische Lo-
sung des nicht linearisierten Modells. Gezeigt ist jeweils die Abweichung vom stationdren Zustand
(2.3) fiir die Parameterwerte aus den Abschn. 2.1 und 2.2 und einen beliebig gewihlten Anfangswert

Also entsprechen sich in diesem Fall beide Wege, um zu einem anwendbaren Verfahren zu
kommen. Das Euler-Verfahren macht den Grenziibergang 7 = At — 0 gewissermalen
wieder riickgingig, denn es verwendet ja gerade eine endliche Schrittweite. Wenn ein
anderes Verfahren als das Euler-Verfahren verwendet wird, um das Anfangswertproblem
fiir die Differentialgleichung zu 16sen, gilt das nicht mehr.

Hier ist zu erkennen, dass ein numerisches Verfahren auch als Teil der Modellierung
aufgefasst werden kann, was bei Klimamodellen oft passiert. Das Ziel ist ein berechenba-
rer Modelloutput (hier 7'(z)). Ist dieser fiir eine Modellformulierung (hier: Anfangswert-
problem fiir eine Differentialgleichung) nicht direkt berechenbar, so ist eine Ndherung
(wie hier mit dem Euler-Verfahren) notwendig. Am Ende steht ein Modell, dessen Output
berechenbar ist.

Ubung 5.2 Implementieren Sie das Euler-Verfahren fiir das Anfangswertproblem (2.6).
Plotten Sie die Ergebnisse und vergleichen Sie mit der Losung der linearisierten Gleichung
aus Ubung 4.14., vgl. Abb. 5.1.

5.2 Allgemeine explizite Einschrittverfahren

Das oben vorgestellte Euler-Verfahren ist das einfachste Beispiel fiir eine ganze Klasse
von Verfahren zur Losung von Anfangswertproblemen bei gewdhnlichen Differentialglei-
chungen. Die allgemeine Form dieser Klasse ist:

Definition 5.3 (Explizites Einschrittverfahren) Seien ein Anfangswertproblem (3.2)
und eine Unterteilung ;41 = t; + hg,ty = t. mit Schrittweiten i,k = 0,..., N — 1,
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gegeben. Ein Verfahren der Form
Vir1 = Ve + e @, ye, he), k=0,1,...,N —1, 5.1
hei3t explizites Einschrittverfahren mit Verfahrensfunktion @ : R x R" x R — R”.

Die Verfahrensfunktion héngt — prizise formuliert — auch noch von der rechten Seite f
der Differentialgleichung ab, was wir hier nicht in der Notation ausdriicken. Das Verfahren
liefert eine sog. Gitterfunktion (yk),]:'=0 an den Gitterpunkt ty,.

o Explizit heiflt das Verfahren, da zur Berechnung von yj 4| nur die Werte yj eingesetzt,
aber keine Gleichung gelost werden muss. Im Gegensatz dazu benutzt die Verfahrens-
funktion eines impliziten Verfahrens auch den Wert y; 4. Daher ist dann in jedem
Schritt eine implizite Gleichung zu 16sen.

o FEinschrittverfahren heillt das Verfahren, weil nur der letzte Wert y; zur Berechnung
herangezogen wird (und nicht etwa y;_;).

Das Verfahren ist in dieser Form fiir beliebige Differentialgleichungen anwendbar. Beim
Euler-Verfahren wird @ = f als Verfahrensfunktion benutzt.

Um die Qualitét eines Verfahrens zu bewerten, spielen zwei Dinge eine Rolle: Der
Aufwand und die Approximationsgiite oder Konvergenzgeschwindigkeit des Verfahrens.
Der Aufwand kann relativ leicht angegeben werden:

Anmerkung 5.4 Der Aufwand eines expliziten Einschrittverfahrens wird bestimmt durch

e die Anzahl N der Zeitschritte und damit durch die Wahl der Schrittweiten s und die
Linge des betrachteten Zeitintervalls [, Z.],

e die Anzahl der Auswertungen von f, die fiir eine Auswertung der Verfahrensfunktion
@ bendtigt werden

e und den Aufwand zur Auswertung der Funktion f.

Wenn @ insgesamt s Auswertungen von f erfordert, gilt dann

Aufwand(explizites Einschrittverfahren) = N - s - Aufwand( f).

5.3 Der Konvergenzbegriff bei Einschrittverfahren

Nach der obigen Betrachtung ist also der Aufwand geringer, je weniger Zeitschritte notig
sind und je einfacher die Verfahrensfunktion ist. Andererseits ist die erreichte Genauigkeit
der Niherungslosung interessant. Es ist leicht einsichtig, dass etwa beim Euler-Verfahren
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die Approximation der Ableitung durch den Differenzenquotienten (die zur Motivation
des Verfahrens verwendet wurde) schlechter wird, je groler die Schrittweite ist.

Mit Genauigkeit ist die Differenz zwischen den exakten Losung y des Anfangswert-
problems und der mit dem Verfahren bestimmten Nédherungslosung (yk),’(\;o gemeint. Das
ist die Frage nach der Konvergenz des Verfahrens.

Definition 5.5 Seien ein Anfangswertproblem (3.2) und eine zum Schrittweitenvektor
(hi)}=} gehorende Niherungslosung (yx);_, eines Verfahrens wie in (5.1) gegeben. Wei-
terhin sei y = y(¢),t € [ty, t.] die exakte Losung.

1. Als globalen Fehler an der Stelle ; bezeichnen wir die Grofle
e = e(lx, ho, ... . hk—1) == y(tx) — yk-
2. Das Verfahren heif3t konvergent, wenn fiir

h = max hy
0<k<N

und allek =0,..., N gilt:
%i_l}}) e, =0.
3. Es heiB3t konvergent von Ordnung p € N, wenn es c, h>0 gibt mit
lexll < ch? Yk =0,...,Nundh < h,
oder (anders ausgedriickt, vgl. Definition 4.15):
e € O(h?) firh -0 Vk=0,...,N.
Fiir die Konvergenz eines Verfahrens sind zwei Dinge entscheidend:

e Zum einen die lokale Approximationseigenschaft des Verfahrens, d. h.: Wie gut appro-
ximiert der Wert der Verfahrensfunktion @(t;, y, hy) die Ableitung der Losung die
mittlere Steigung oder Ableitung der Losung iiber das Teilintervall [#;, #;+1]? Diese
Eigenschaft wird als Konsistenz des Verfahrens bezeichnet.

o Andererseits die Akkumulation der so in jedem Schritt des Verfahrens entstehenden
lokalen Fehler und auch der Einfluss von Rundungsfehlern. Da ja die Schritte nachein-
ander {iber das Intervall [z, f,] berechnet werden, konnen sich Fehler in jedem Schritt
verstirken. Die Beschrinktheit dieser Verstirkung wird als Stabilitdt bezeichnet.

Erst beides zusammen sichert die Konvergenz des Verfahrens, weshalb oft die folgende
Faustregel verwendet wird:

Konsistenz + Stabilitit =—> Konvergenz.
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5.4 Konsistenz

Um die Qualitit eines Einschrittverfahrens zu untersuchen, spielt zunichst eine Rolle, wie
gut die Verfahrensfunktion @ die Ableitung y’ approximiert. Diese Eigenschaft bezeich-
net man als Konsistenz.

Definition 5.6 (Lokaler Verfahrensfehler, Konsistenz) Seien ein Anfangswertproblem
(3.2) und ein Einschrittverfahren der Form (5.1) gegeben. Die exakte Losung des An-
fangswertproblems werde mit y bezeichnet.

1. Fiir beliebiges & > 0 heifit die GroBe

_ ) -y
h
Abschneide- oder lokaler Verfahrensfehler. An den Gitterpunkten #; schreiben wir
auch kurz 7, 1= ©(t, y, hy).
2. Das Verfahren heiflt konsistent mit dem Anfangswertproblem (3.2), wenn fiir alle ¢ €
[0, 2.) gilt:

w(t, v, h) : —&(t, y(t), h)

lim (¢, y,h) = 0.
h—0

3. Es heiBit konsistent von Ordnung p € N, wenn fiir alle ¢ € [z, t,) gilt:
Iz, y,h)|| <ch? mitc >O0firh —0
bzw. (mit Landau-Symbol)
z(t, y,h) € O(h?) firh — 0.

Um Konsistenz zu zeigen, reicht beim Euler-Verfahren die Definition der Differenzier-
barkeit aus:

Beispiel 5.7 Fiir den lokalen Verfahrensfehler gilt beim expliziten Euler-Verfahren fiir
beliebiges ¢ € [to, .)

_ Y +h)—y@)
B h

ye+h—y@

, 5h
T(t, y,h) h

— (. y(t).h) = - ft.y@)

und damit
lim 2z, y, h) = y'(1) = f(1, (1)) = 0.

Um die Konsistenzordnung zu bestimmen (auch fiir andere Verfahren), wird die Taylor-
Entwicklung aus Satz 4.9 bzw. die Korollar 4.16 benutzt. So ergibt sich fiir das Euler-
Verfahren die Konsistenzordnung p = 1:



5.5 Stabilitdt und Konvergenz 59

Beispiel 5.8 Beim Euler-Verfahren erhalten wir die Konsistenzordnung p = 1, denn mit
Taylor-Entwicklung gilt unter der Voraussetzung, dass die Losung y des Anfangswertpro-
blems zweimal stetig differenzierbar ist:

h2
y(t +h)=y@)+hy'(t) + ?y”(t +sh) mits € [0, 1].

Wegen @ = f und y'(t) = f(y(t),t) fiir die exakte Losung und der Stetigkeit der
zweiten Ableitung folgt:

Y+ =y

h
2 D(t,y,h) = Ey”(t +sh) = 0O(h) firh — 0.

Das folgende Verfahren hat eine hohere Konsistenzordnung, bendtigt aber auch zwei
Funktionsauswertungen pro Schritt:

Ubung 5.9 Zeigen Sie: Das verbesserte Euler-Verfahren, definiert durch

h h
¢m»m=f0+zy+5myﬂ 5.2)

hat die Konsistenzordnung 2.

Weitere Verfahren hoherer Ordnung und ihre Konstruktionsprinzipien sind Thema von
Kap. 11.

5.5 Stabilitat und Konvergenz

Unter Stabilitdt versteht man die Eigenschaft eines Verfahrens, die Fehler, die im An-
fangswert enthalten sind und die, die durch die Approximation der Ableitung und durch
Rundungsfehler in jedem Teilschritt hinzukommen, nur beschrinkt zu verstirken.

Definition 5.10 (Stabilitiit eines Einschrittverfahrens) Sei (yi)r=1.. n die durch ein
Verfahren (5.1) und ()« die durch das im Anfangswert und in jedem Schritt durch g; €
R" gestorte Verfahren generierte Folge, d. h.

Vi+1 = Yk + i@t yi hie),
Vkat = Yk +he @, i hi) e, k=0,...,N—1.

Das Verfahren heilt stabil, wenn eine von /; unabhéngige Konstante S existiert mit

N-—1
S -
oHAX, |7 —yell < S (Ilyo Yoll + ];) ||8k||)-
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Bevor wir ein Kriterium zum Nachweis der Stabilitit angeben, zeigen wir, wie aus der
Konsistenz eines Verfahrens mit der Stabilitit die Konvergenz folgt.

Satz 5.11 Sei ein Einschrittverfahren (5.1) fiir das Anfangswertproblem (3.2) gegeben.
Insbesondere werde mit dem exakten Anfangswert begonnen. Ist das Verfahren stabil mit
Stabilititskonstante S, dann gilt fiir den globalen Fehler

N—1

<S h <St(t, -t
Jmax e = ;0 ellzll < ST —10)

mit
7T:= max |z].
0<k<N

Ist das Verfahren konsistent und stabil, so ist es konvergent, und die Konsistenzordung des
Verfahrens tibertrdgt sich auf seine Konvergenzordnung.

Beweis Die Definition des lokalen Verfahrensfehlers an den Gitterpunkten ergibt fiir alle
k=0,....,N—1

V(1) — y ()

A — D (te, y(te), hie) = T,
k

also

Y(terr) = y () + hi (e, y (1), hi) + tiehy. (5.3)

Wir betrachten jetzt die exakte Losung als ,,Storung® der numerischen Losung. Dazu set-
zen wir in der Stabilititsdefinition 5.10 j; = y(#) und erhalten

Vi1 = Yk + b @, i, hi) + &k

mit &y = 7 hg. Da das Verfahren stabil ist und mit dem exakten Anfangswert begonnen
wird (also yy = Yy ist), folgt aus der Stabilitidtsdefintion

N—1 N—1
max ) — = max |yx — <S hillwe| < St hi = St(te — to).
Jmax [y () = yill = max 5 = el = ;0 el < ;0 & = STt —10)

Wegen der Konsistenzordnung p folgt T € O(h?) und damit die gleiche Ordnung fiir das
Maximum des globalen Fehlers. O
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5.6 Ein hinreichendes Stabilitatskriterium

Die folgende Bedingung erlaubt es, fiir bestimmte Differentialgleichungen bzw. Verfah-
rensfunktionen die Stabilitdt des Verfahrens nachzuweisen.

Satz 5.12 Ist die Verfahrensfunktion @ eines expliziten Einschrittverfahrens fiir alle t €
[to, t.] Lipschitz-stetig beziiglich y mit Lipschitz-Konstante L, dann gilt fiir die Stabilitdts-
konstante S in Definition 5.10:

S =exp(L(t, — tp)). 5.4
Beweis Aus

Vit1 = Yk + i@, yi, hie),
Vea1 = Pk + @, i hy) e, k=0,...,N—1

ergibt sich durch Subtraktion

Vk+1 = Yi+1 = Yk — Vi + i (@b, Vi b)) — Pk, yio hi)) + e

und mit der Lipschitz-Stetigkeit von @

k1= Yirrll < (A + A L)Yk — yiell + llell-

Mit den Bezeichnungen ay := || Jx — vk ||, bx := hi L, ¢k := ||k || kann diese Ungleichung
als

a1 < (L +bag +cx, k=0,....N—1, (5.5)

geschrieben werden. Diese rekursive Abschitzung kann mit Hilfe des nachfolgenden
Lemmas durch eine explizite Abschétzung ersetzt werden. Es gilt

k—1 k—
Z =L(x—1y) Yk=1,...,N.

i=0 i =0

Das folgende Lemma ergibt dann
N-1
15 — yill < ehtx=o) (IIﬁo ol + > ||sk||) :
k=0

Maximumsbildung liefert mit exp(L (¢ —2p)) < exp (L(t, — 1)) fiir alle k die gewiinschte
Abschitzung. O
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Lemma 5.13 Seien ay, by, cx > 0 mit (5.5). Dann gilt fiir allek = 0,...,N:
k—1 k—1
ap < (ao + Zc,) exp (Z bi> .
i=0 i=0

Ubung 5.14 Beweisen Sie das Lemma.

5.7 Der Einfluss von Rundungs- und Datenfehlern

Bei der Untersuchung des globalen Fehlers im letzten Abschnitt wurde davon ausgegan-
gen, dass alle Rechnungen exakt durchgefiihrt wurden und dass auch der Anfangswert
exakt gegeben ist. Dies ist auf dem Computer durch die endliche Zahlendarstellung und
bei realen (Mess-)Daten als Anfangswerte nicht gegeben. Es stellt sich die Frage, ob das
Resultat des Satzes iiber den globalen Fehler (dass namlich die exakte Losung beliebig
genau approximiert werden kann, wenn % klein genug ist) unter dem Einfluss von solchen
Daten- und Rundungsfehlern noch giiltig bleibt.

Der Fehler durch einen gestorten oder ungenauen Anfangswert y, kann durch einen
Term (Jy— yo) dargestellt werden. Es kann sich dabei um Messfehler und Darstellungsfeh-
ler, also Rundungsfehler bei der Darstellung der Anfangswerte auf dem Rechner handeln.

Zusitzlich liefert jeder Schritt der Rechenvorschrift (5.1) des Einschrittverfahrens ge-
rundete Werte, die wir mit ebenfalls einer Tilde iiber der entsprechenden Variable be-
zeichnen. Die Vorschrift des Verfahrens mit gerundeten Rechnungen ergibt ebenfalls einen
Fehler, den wir mit g; bezeichnen:

Vi1 = Yk + e @(te, i hie) + ek, k=0,...,N —1. (5.6)

Auch in der Auswertung von @ konnen Datenfehler auftreten, etwa durch in f und damit
in @ eingehende Parameter. Die Abhingigkeit von diesen Datenfehlern betrachten wir
zundchst nicht.

Bevor wir die Groflenordnung dieser Rundungsfehler abschétzen, untersuchen wir, wie
sie sich auf den Fehler zwischen der exakten Losung und den gerundeten Werten der Ni-
herungslosung, also den Werten, die wir wirklich auf einem Computer berechnen konnen,
auswirken. Wir folgen hier [15] und bezeichnen diese Differenz als Gesamtfehler. Er er-
gibt sich aus der Summe von Approximationsfehlern und Rundungsfehlern.

Definition 5.15 Es bezeichne y; die unter Beriicksichtigung von Rundungsfehlern
berechneten Niherungslosung des Anfangswertproblems (3.2) an der Stelle #, k =
0,...,N.Die Grofe

Er = y(t) — Y

heilit Gesamtfehler an der Stelle ;.
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Es ist zu sehen, dass eine Analogie zwischen Abschneidefehler 7 in (5.3)
V(1) = y(te) + he @, y (1), hie) + Tchy
und der GroBe gy / by in (5.6)
Vi+1 = Yk + he @k, Yi, hi) + ek

besteht. Damit ist der Beweis des folgenden Satzes analog zu demjenigen von Satz 5.11
iber den globalen Fehler.

Satz 5.16 Sei ein durch Fehler im Anfangswert und Rundungsfehler ey in jedem Schritt
gestortes Einschrittverfahren der Form (5.6) fiir das Anfangswertproblem (3.2) gegeben.
Ist das Verfahren stabil mit Stabilitiitskonstante S, dann gilt fiir den Gesamtfehler

N—1 -
£
max |5 =S (1ol + 3 Oelimll + sl | < 8 (||E0|| + ( T —))
0= k=0 h
mit
&= max leell, 7:= max ||z|, h:= min hy.
0<k< 0<k<N 0<k<N

Beweis Wir setzen
Vi+1 = Yk + @t Yio, hie) + e
und erhalten analog zum Beweis von Satz 5.11
N—1
Jmax |5 = el < (nyo -yl + ) ||sk||)
k=0

Da die Anzahl N der Schritte fiir 71z — 0 gegen unendlich geht und hier kein /; in dem
Storungsterm auftaucht, muss es kiinstlich eingefiihrt werden, um eine Abschitzung zu
erhalten, die die Summe nicht mehr enthilt. Es gilt

= e, _ 85
Dol =) —— » f;Z
= k=0 k=0

(te — o)

tﬂl Y]

und damit

g
Vv, — < S Vo — —=(t, — ¢ . 57
oHAx |7k — yill < (Ilyo yoll + h(e 0)) (5.7)
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Der Gesamtfehler setzt sich nun mit der Dreiecksungleichung aus der Differenz e der
exakten Losung und der ungestorten Niherungslosung (Resultat von Satz 5.11) und der
Differenz zwischen ungestorter und gestorter Nidherungslosung, abgeschitzt durch (5.7),
zusammen:

Ey| < t) — Vi —
omax I Ex |l = max Iy (@) — yill +Olﬁgafo |7 — yill
_ &
ES(||E0||+(T+Z) (ze—zo)). .

Um die Grofle der Rundungsfehler ¢4 in den einzelnen Schritten des Verfahrens abzu-
schitzen, untersuchen wir die Berechnungsvorschrift (5.1): Es werden nacheinander

e die Auswertung der Verfahrensfunktion @,
e die Multiplikation mit der Schrittweite 4; und
e die Addition zum letzten Wert yy

durchgefiihrt. Dabei werden Fehler gemacht, die wir in der folgenden Form als relative
Fehler schreiben. Die auf dem Computer berechneten gerundeten Werte werden hier mit
einer Tilde tiber der Variable, dem jeweiligen Operator (fiir zusammengesetzte Ausdriicke)
oder der Funktionsauswertung bezeichnet:

D (1, i hie) = Pty T i) (1 + atg).
h %D (b, i, i) = he @ (ty, I, i) (1 + Br),
Fe F ¥ Dy, i, i) = Fr + hi %D (te, Fi, b)) (1 + yi).

Damit erhalten wir insgesamt

Fer1 = (Fk + hie @t e i) (1 + ) (1 + Br) (1 + i) (5.8)

Die einzelnen relativen Rundungsfehler konnen mit der Maschinengenauigkeit abge-
schitzt werden. Auf dem Rechner gibt es nur endlich viele darstellbare Maschinenzahlen,
bezeichnet mit der Menge M C R. Diese ist die auf heutigen Computern und in den
meisten Programmiersprachen durch Standards des IEEE (Institute of Electrical and
Electronical Engineers) fiir einfache und doppelte Genauigkeit von Gleitpunktzahlen
festgelegt. Wir definieren:

Definition 5.17 (Maschinengenauigkeit) Die kleinste Maschinenzahl x € M, fiir die
auf dem Computer (d. h. unter Einbeziehung von Rundungsfehlern) 1 + x > 1 gilt, heiBt

Maschinengenauigkeit und wird mit eps bezeichnet:

eps :=min{x € M : 1 + x > 1}.
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Die Maschinengenauigkeit ist bei einfacher Genauigkeit (single precision, 4 Byte) ca.
1078, bei doppelter (double precision, 8 Byte) etwa 10716

Uber die einzelnen relativen Fehler ist bei der Addition und Multiplikation bekannt,
dass sie alle von der Groflenordnung eps sind. Bei der Auswertung der Verfahrensfunkti-
on wird das ebenfalls angenommen. Hier konnen aber auch Fehler in den in f und daher
@ eingehenden Parameter eine Rolle spielen, so dass der relative Fehler 8 eventuell von
anderer Grofenordnung ist, was wir hier nicht beachten. Ausmultiplizieren und Vernach-
lassigen von quadratischen Termen der Fehler in (5.8) ergibt dann

ek ~ hx P, Y, hi) (o + Br + vi) + Vv
Fiir kleine A ist der zweite Summand entscheidend, es kann also
lell ~ |1 Vi lleps

gesetzt werden. Wenn statt der gerundeten Niherungslosung die exakte Losung eingesetzt
wird, gilt

lexll = [ykleps
und global
&~ eps max |y(0)|
t€lto.te]

und damit insgesamt die Abschitzung

_  epsmax » t
max |[E] < S (||E0|| + (r+ PS Mk cfose) 1€ )”)(re—m).
0<k<N h

Dabei kann der Fehler E durch etwaige Messfehler in den Anfangsdaten von anderer
Grolienordnung sein als die Rundungsfehler.



Ein Boxmodell des Nordatlantikstroms

In diesem Kapitel wird ein von Stefan Rahmstorf entwickeltes Boxmodell der nordatlantischen ther-
mohalinen, d.h. durch Temperatur- und Salzgehaltunterschiede induzierten Stromung vorgestellt.
Es gibt Einblicke in die Modellierung mit Hilfe von Bilanzgleichungen und die Formulierung eines
entsprechenden gewohnlichen Differentialgleichungssystems. Mit diesem Modell konnen Szenari-
en der globalen Erwérmung gerechnet werden, die durch die Variation einer Inputgrofle realisiert
werden. Das Rahmstorf-Boxmodell wird im nichsten Kapitel als ein Beispiel fiir die Berechnung
stationdrer Zustdnde verwendet. Wir definieren in diesem Kapitel am Beispiel des Modells auch
noch einige spezifische Begriffe zur Unterscheidung verschiedener in Klimamodellen auftretender
Grofen.

Boxmodelle sind nach den globalen Energiebilanzmodellen die konzeptionell einfachsten
Klimamodelle. Sie modellieren das gesamte oder einen Teil des Klimasystems in wenigen
Kompartments oder Boxen. Dabei reprisentiert eine Box entweder einen gesamten Teil
des Klimasystems (wie z.B. Ozean, Atmosphire etc.) oder — wie in dem Beispiel, das
wir in diesem Kapitel betrachten — ein Teil des Systems wird nur grob rdumlich aufge-
16st. Zwischen den einzelnen Boxen werden Bilanzen oder Fliisse modelliert. Auf Grund
der groben rdumlichen Auflosung besteht das Modell aus algebraischen Gleichungen (im
stationdren Fall) oder aus gewohnlichen Differentialgleichungen (wenn zeitabhingiges
Verhalten simuliert wird).

Boxmodelle sind schnell numerisch 16sbar, da sie meist nur aus wenigen Gleichun-
gen aufgebaut sind. Sie sind dennoch komplex genug, um differenzierte Aussagen iiber
wichtige GroBen wie z. B. die im Atlantik bewegte Wassermasse zu treffen. Aus beiden
Griinden eignen sie sich fiir langfristige Vorhersagen, Sensitivitits- und Unsicherheitsstu-
dien und auch die Kopplung mit 6konomischen und sozialen Modellen. Fiir Boxmodelle
werden auch Verzweigungspunkte und Hystereseverhalten (unterschiedliches Verhalten
beim Ubergang von Zustand 1 in Zustand 2 und im umgekehrten Fall) studiert. Box-
modelle sind bei aller Einfachheit andererseits doch meist so komplex, dass analytische
Berechnungsmethoden nicht mehr anwendbar sind. Daher kommen die numerischen Me-
thoden fiir gewohnliche Differentialgleichungen aus dem letzten Kapitel zum Einsatz.
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Ein Boxmodell der Nordatlantikstromung ist das von Stommel (s. [9, Kapitel 13]), das
die Ozeanstromung in zwei Boxen darstellt. Das hier betrachtete Modell von Rahmstorf
[16, 17] ist gewissermallen eine Erweiterung.

6.1 Die thermohaline Zirkulation

Hier beschreiben wir das vom Boxmodell beschriebene Phinomen der thermohalinen Zir-
kulation und geben eine mathematische Modellierung dafiir an. Die sog. thermohaline
Zirkulation (THC fiir engl. Thermohaline Circulation) ist eine der wichtigsten, groffla-
chigen und massereichen Stromungen im Ozean. Angetrieben wird sie durch Differenzen
in Temperatur und Salzgehalt im Meerwasser. Beide Ursachen bewirken eine Dichteédnde-
rung:

o Warmes (Wasser) steigt nach oben, d. h. eine wachsende Temperatur bewirkt eine Dich-
teverminderung. Wird also Wasser z. B. von unten in einem Topf erwirmt, so steigt es
auf Grund der geringeren Dichte nach oben, verdriangt dort kélteres, das gleichzeitig
absinkt. Die entstehende Stromung wird als Konvektionsstromung bezeichnet.

o Stirker salzhaltiges Wasser hat eine hohere Dichte, vgl. das Beispiel des Toten Meeres:
Der menschliche Korper, an sich schwerer als das in unseren Breiten vorhandene relativ
salzarme Wasser, geht dort nicht unter.

Im Meer wird das Wasser nun nicht von unten erwirmt, sondern von oben durch die
Sonneneinstrahlung. Diese ist je nach Breitengrad unterschiedlich: Am Aquator wird das
Wasser stirker erwirmt als an den Polen. Es ergibt sich also eine Temperaturdifferenz zwi-
schen den Wassermassen am Aquator und z. B. am Nordpol. Diese Differenz bewirkt, dass
sich wirmeres Wasser geringerer Dichte an der Oberflache nach Norden bewegt und dort
kiihleres an den Boden verdringt. Auch hier kommt also eine Zirkulation in Gang, die auf
der gesamten Erde in den Ozeanen als grofle, massereiche Stromungsbinder beobachtet
werden kann. Diese wird als thermohaline Zirkulation bezeichnet.

Durch verstirktes Verdunsten von Wasser (Erhchen des Salzgehaltes) in Aquatornihe
und verstirkten Niederschlag in hoheren Breiten plus Abschmelzen von Eis (Verringerung
des Salzgehaltes) ist ebenfalls ein dem entgegenwirkender Effekt vorhanden. Da Letzte-
rer durch anthropogenen Einfluss zunimmt, ist eine Verdnderung der THC bis zu ihrem
Kollabieren theoretisch moglich. Um diesen Effekt, der fiir Mitteleuropa deutliche Klima-
verdnderungen zur Folge hitte, zu untersuchen, dient das in hier beschriebene Boxmodell.

Die lineare Zustandsgleichung fiir die Dichte

In der einfachsten Form kann folgender linearen Zusammenhang zwischen Dichte o einer-
seits und Temperatur 7 und Salinitdt oder Salzgehalt S andererseits aufgestellt werden,
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und zwar punktweise im Raum oder auch fiir ein rdumliches Volumen (eine Box) sowie
zusitzlich in Abhéngigkeit von der Zeit:

o(T.8) = oo (1 —a(T —To) + B(S — So)) -

Dabei gehen Proportionalititskoeffizienten o, 8 > 0 und eine Referenzdichte oy =
0(Ty, Sp), gegeben bei einer Referenztemperatur 7; und einem Referenzwert des Salzge-
haltes Sy, ein. Man nennt diesen Zusammenhang eine Zustandsgleichung.

Gibt es zwei Bereiche oder Boxen, die mit Wasser der Temperaturen 77, 7, und der
Salzgehalte S, S, gefiillt sind, so ergibt sich die relative Dichtedifferenz mit o; :=
o(T;,S;),i =1,2,zu

02— 01
Qo

=p(S2—S) —a(l2—TY). (6.1)

Die Werte Ty, Sy selbst treten nicht mehr auf. Auflerdem ist die GréBe auf der linken Seite
bereits dimensionslos. Folglich muss dies auch fiir die rechte Seite gelten. Dies fiihrt uns
zu den Einheiten der beiden Koeffizienten «, 8. Diese heifien thermischer oder thermaler
bzw. haliner Ausdehnungskoeffizient. Bezeichnen wir wieder mit [¢] die Einheit einer
Grofe ¢, so gilt:

[T]=K, [S]=1.

Oft wird fiir den Salzgehalt die ,,Einheit” psu (Practical Salinity Unit) angegeben, die
jedoch dimensionslos ist und keine Einheit im physikalischen Sinne darstellt. Daher ist

@)= [Bl=1

Der hier beschriebene lineare Zusammenhang wird zum Teil auch in komplexeren Kli-
mamodellen verwendet oder durch ebenfalls komplexere, nichtlineare Modellierungen
ersetzt.

6.2 Das Rahmstorf-Boxmodell

Das Rahmstorf-Boxmodell simuliert die Stromung in einem Teil des Atlantiks. Es ist
bekannt, dass eine thermohalin angetriebene Stromung in Aquatornihe im Siidatlantik
beginnt und bis ins Nordpolarmeer reicht. Das ist die bei uns als Golfstrom bekannte Stro-
mung. Das Modell simuliert nur diese, also nur einen Teil der gesamten Ozeanstrémung.
Dazu benutzt es vier Boxen, die

den dquatornahen siidlichen Teil des Atlantik in seiner gesamten Tiefe,
den Nordatlantik in seiner gesamten Tiefe,

den oberen

und den unteren (tiefen) Teil des dquatornahen Teil des Nordatlantiks

L=
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Abb. 6.1 Rahmstorf- T1*¢ F r ¢ F, ¢T£
Boxmodell /) /)
A \
> 4 >
1 2
< 4

umfassen, vgl. Abb. 6.1. Die vier Boxen haben unterschiedliche Volumina V;. Der Index
i €{1,2,3,4} bezieht sich auf die oben genannte Nummerierung.

In den vier Boxen werden die zeitabhidngigen Werte von Temperatur und Salzgehalt
als T;(¢) und S;(¢),t € I, bezeichnet, wobei wir das betrachtete Zeitintervall / hier noch
unbestimmt lassen.

Nach dem linearen Ansatz aus dem letzten Abschnitt kann mit (6.1) der Volumenstrom,
d.h. die Menge an Wasser, die pro Zeiteinheit umgewilzt wird (das sog. Overturning), als

M(1) =k (B (S2(2) — S1(1)) — o (Ta(2) — Ti (1)) (6.2)
angegeben werden. Fiir die Einheit gilt, da (6.1) dimensionslos formuliert war:

[M()] = m’s™" = [k].

Modellierung der Stromung

Die Anderung der Temperatur pro Zeiteinheit in zwei benachbarten Boxen kann nun
jeweils durch die Temperaturdifferenz zwischen diesen Boxen, multipliziert mit dem Vo-
lumenstrom pro Zeiteinheit und dividiert durch das Boxvolumen beschrieben werden.
Dabei wird in diesem Modell davon ausgegangen, dass die Stromungsrichtung wie in
Abb. 6.1 angedeutet in Richtung der Boxen

1-3->2—-4—->1

fest ist. Fiir die zeitliche Anderung Temperatur in Box 1 ergibt sich daher:

M
T((t) = %(7}0) —T(1)).

Das heif3t:

e Die Temperatur in Box 1 erhoht sich, wenn das einstromende Wasser (aus Box 4) eine
hohere Temperatur als das in Box 1 hat, andernfalls sinkt sie.
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e Die Temperaturdnderung pro Zeiteinheit ist
— proportional zur Temperaturdifferenz Ty(z) — T1(¢)
— und zum Volumenstrom M (t)
— und umgekehrt proportional zum Boxvolumen V}, da sich die Wirme des einstro-
menden Wassers auf mehr Volumen verteilt.

Analog wird fiir alle Boxen und auch fiir den Salzgehalt verfahren.
Damit ergeben sich zunéchst folgende Modellgleichungen.

T{(t) = %:)(TW) -Ti(), Si@)= MT(:)(SW) - 81(2)).

Ty(0) = MT(;)(Ts(z) “Ty). Sy = %”(Ss(z) —S0)).

70 = 520 - 1), S50 = 52610 - i)
M(1) M(r)

T,(t) = 74(T2(f) —Ty(t), Si(0) = 74(52(1) — 84(2))

mit der Darstellung (6.2) fiir den Volumenstrom. Beachte, dass M von T}, T,, Sy, S ab-
hingt, was in der Bezeichnung hier unterdriickt wird, aber fiir Nichtlinearitit des Systems
sorgt.

Kopplung mit der Atmosphare

Das Boxmodell beschreibt nur eine Klimakomponente, den Ozean. Die wichtigste Kopp-
lung des Ozeans, ndmlich die mit der Atmosphire, muss sinnvoll mit einbezogen werden.
Das heif3t hier, dass Kopplungseffekte oder Einfliisse der Atmosphire auf den Ozean in-
sofern modelliert werden miissen, als sie die Phinomene betreffen, die das Boxmodell
darstellen soll. Das sind Temperatur und Salzgehalt. Beide Groflen werden durch die At-
mosphire beeinflusst:

Kopplung durch Oberflichentemperaturen An den Boxen 1 bis 3, die Kontakt mit
der Atmosphire haben, wird die Wassertemperatur ebenfalls durch die Atmosphéren-
temperatur beeinflusst. Es wird hier zwar kein Massentransport modelliert, aber es gibt
Wirmeleitung an der Grenzfliche. Dazu werden die Modellparameter 7;*,i = 1,2,3
eingefiihrt, die die Atmosphirentemperatur iiber den jeweiligen Boxen widerspiegeln.
Zunichst sind diese konstant, fiir sog. Global Warming-Szenarien kann hier ein Trend
mit einer zeitlichen Temperaturerhohung eingefiihrt werden. Der Warmetransport an der
Ozeanoberfliche wird vereinfacht durch einen linearen Term der Form

M(TF =T, A >0



72 6 Ein Boxmodell des Nordatlantikstroms

modelliert. In feiner rdumlich aufgeldosten Modellen wird der Warmetransport an der
Oberfldche durch eine Randbedingung an eben dieser Oberflache dargestellt. Dies ist in
einem Boxmodell nicht méglich. Daher sind die A; Modellparameter, die die Wirkung des
Wirmetransportes an der Oberflaiche umgerechnet auf eine Temperaturinderung in der
gesamten Box beschreiben.

Die Parameter A; werden aus einer Konstante I” und der jeweiligen Boxtiefe z; berech-
net:

r

COoZ;

Ai =
Dabei ist ¢ die spezifische Warmekapazitit von Meerwasser, oo wieder die Referenzdichte

und I" eine thermale Kopplungskonstante. Es gilt

(] 1

ool = -5, (M=

lel Ks’

[Ai]

 kgK’  lellod[z] s
Kopplung durch Frischwasserfliisse Ein zweiter wichtiger Effekt der Atmosphire auf
die thermohaline Zirkulation ist die Anderung des Salzgehaltes im Meerwasser durch

e unterschiedliche Niederschldge und Verdunstung
e und windgetriebenen Wassertransport an der Ozeanoberfldche.

Niederschldge verringern den Salzgehalt, Verdunstung erhoht ihn. Fiir die Variablen S; des
Boxmodells ist nur die Bilanz beider Prozesse wichtig. Aulerdem wird die Menge des so
ins Meer gelangenden oder verdunstenden Wassers vernachlissigt, d. h. die Volumina V;
bleiben unveréndert.

Durch Wind wird das Wasser an der Oberfliche bewegt, und so kann natiirlich auch
Wasser mit geringerem oder hoherem Salzgehalt von einer Box in die andere gelangen.
Auch dies kann damit als Frischwasserfluss modelliert werden. Tatsdchlich ist dies der
Grund, warum ein positiver Frischwassertransport (7 > 0) von Box 1 in Box 3 untersucht
wird.

Diese Effekte werden durch sog. Frischwasserfliisse F; (zwischen der siidlichen Box
1 und der mittleren Oberflichenbox 3) und F, zwischen Box 3 und der nérdlichen Box 2)
modelliert. Die Vorzeichen sind so gewihlt, dass positive Werte einen Fluss in nordliche
Richtung beschreiben. In den Modellgleichungen wird dies so benutzt, dass folgendes gilt:

e [ ist positiv, wenn Frischwasser von Box 1 in Box 3 gelangt, also wenn an der Ober-
flache von Box 1 mehr Wasser verdunstet als Niederschlag vorhanden ist, Frischwasser
durch Fliisse ins Meer gelangt oder ein entsprechender windgetriebener Transport von
salzarmem Wasser in Nordrichtung gegeben ist.

e [} ist positiv, wenn das gleiche zwischen Box 3 und Box 2 gilt. Zusitzlich geht hier
noch eine Eisschmelze von salzarmem Landeis (z. B. des Gronlandeises) ein.
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Beide Parameter sind relativ zum Referenzwert Sy des Salzgehaltes gewdhlt. Sie wer-
den als Parameter der globalen Erwidrmung betrachtet und kénnen (wie die 7;*) in einem
Global-Warming-Szenario zeitlich erhoht werden.

6.3 Die Modellgleichungen

Damit ergibt sich als Modell ein System gewohnlicher Differentialgleichungen fiir Tem-
peraturen und Salinitéiten in den vier Boxen:

T{(l‘) = MT(:)(H(I) —Ti(t)) + AI(TI* —Ti(t)) (6.3)
0 = ST ~ BO) + 2a(T5 = T20) (64
{0 = 200~ TO) + Aa(T5 = To0) 6.5)
i) = B0 - 1) (6.6)
S0 = 2S00 = S1(0) + o7 67)
S3(0) = M7(2’)<S3<r> ~ 530) ~ 507 ©8)
Si(t) = %ﬂ(sl(r) — Sy 0) + So 2 ;3 b (6.9)
10 = 2520 = S40) (6.10)

mit der Darstellung (6.2) fiir den Volumenstrom. Das System ist autonom, denn M ()
bedeutet eigentlich M(Ty(¢t), T»(t), S1(¢), S»(¢)). Daher konnen wir es fiir 1 > £p = 0
betrachten. Geeignete Anfangswerte

T;(to) = Tio. Si(to) = Sio, i=1,...,4,

miissen gegeben sein.

Dimensionslose Form des Modells

Wir beschreiben hier die Entdimensionalisierung des Boxmodells, die wie in Abschn. 4.1
durchgefiihrt wird. Dariiber hinaus ist es beim Boxmodell sinnvoll, in der Zeiteinheit Jahre
statt Sekunden zu rechnen. AuBlerdem wird eine geeignete Skalierung durchgefiihrt, da
die Boxvolumina hier sehr groB sind und eine Darstellung in der SI-Einheit m? sehr groBe
Zahlen liefert.
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Die dimensionslosen und zum Teil skalierten Grof3en bezeichnen wir zundchst wieder
mit einer Tilde (vgl. Tab. 6.1). Wir definieren sie mit Hilfe der folgenden Beziehungen:

T,=T,K T*=T'K. V;=V,-10"m’, 1 =17sypeurs.
Dabei wird die Zeit auf Jahre umgerechnet mit Hilfe der Konstanten
Syear = 365-24-60-60 = 31.536.000.

Da in den Modellgleichungen die Temperaturen 7;, 7;* nur als Differenzen auftreten, kon-
nen diese auch in Grad Celsius (°C) statt in Kelvin (K) angegeben werden. Auflerdem
benutzen wir

r=ro ! ! , zi=ZzZm, c=¢ ! , Qo—éok—g,
Syear M2 K's ke K 3
Lo r 1 kgKm31=)~L_ll
co0zi  COoZi Syer m*Ks J kgm "Syear S
1 ~10"7 m*

Salinititen S; und der Koeffizient § sind bereits dimensionslos und werden auch nicht
skaliert. Fiir den Volumenstrom gilt mit «7; = &7;, dass

M =k[B(S2 — S1) —a(To — T1)]
- L 17 3 1017 m3
CRIB(S,— 8)) —a(Ty — T ™ 1 m

Syear S Syear S

wobei die Abhingigkeit von ¢ hier unterdriickt wurde. Analog skalieren wir die Frisch-
wasserfliisse

~1017 3
F=F—"

Syear S

Wenden wir diese Skalierungen auf die Differentialgleichungen an, so erhalten wir mit
Lemma 4.3 z. B. aus (6.3)
., 1 K M@ ( [) = 107 m’K

7 =3 = L) jor— e (T} - Tl(r)) P

und vereinfacht
M (D)

1

T{ () =

(Ty()) — Ta (D)) + (T} — Ta (D).

Gleichung (6.7) ergibt analog

. F
S1(7)) + So—.
l()) OV1

M (7)

Si(@) =
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Tab. 6.1 Parameter und Grofen des Boxmodells und ihre Einheiten und Skalierungen. Fiir das
Overturning und die Frischwasserfliisse sind die Skalierungen auf die in der Literatur angegebenen
Werte m, f1, f> gelistet. Der Wert von f] fiir die jetzige Klimasituation ist 0,014. Da das Modell
nur Temperaturdifferenzen und -ableitungen benutzt, kann dquivalent in Grad Celsius statt in Kelvin
gerechnet werden

Grofle Einheit | Skalierungs-  Wert dimensionslos | Literaturwerte
faktor g und skaliert fiir Fliisse (Sv)
q [q] 9=4q4qlql ¢
T;,i=1,...,4 K
Si,i=1,....,4 |1
T K 279,6 (6,6)
Ty K 275,7(2,7)
Ty K 284,7(11,7)
" m3 1017 1,1
V2 m? 107 0.4
V3 m3 1017 0,68
Va m3 1017 0,05
71 m 3000
Zn m 3000
z3 m 1000
! 4000
¢ -
kgK
k;
Qo —i 1025
m
J 1
r —_ 7,3-108
m2Ks | Syear
1
a — 1,7-107%
K
B 1 81074
3 17
10
k m 254
S Syear
So 1 35
m3 1017 - - 1011
M — M m=M € [0, 30]
S Syear Syear
m3 1017 . _ 101
Fi — Fi f1 = F] € [—0,2,0,2]
S Syear Syear
m'§ 1017 5 -1 11
F> — F> fo=F = 0,065
S Syear Syear
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Fiir die anderen Gleichungen funktioniert das genauso. Damit ist das Modell wieder in
seiner urspriinglichen Form, wenn die Tilden weggelassen werden.

In Plots und Tabellen in [16, 17] werden nicht die so skalierten Werte M, 17“,-, sondern
Werte m, f; in der Einheit Sverdrup (1 Sv = 10°m?s™!) angegeben. Um die Werte also
zu vergleichen, konnen wir hier nachtriglich

107m*  10°m’

Fi=F =/
SyearS S

setzen, und analog fiir M , also erhalten wir (hier ist 72 nicht zu verwechseln mit der Einheit
Meter)
-1 01 1 5 101 1
ﬁ = E s m = M
Syear Syear

(6.11)

Natiirlich kann auch direkt mit dieser Skalierung begonnen werden.

Ubung 6.1 Simulieren Sie das Boxmodell mit dem Euler-Verfahren und beliebigen (sinn-
vollen) Anfangswerten iiber einige hundert Jahre Modellzeit, bis es sich ,.einschwingt*
(vgl. Abschn. 7.3).

6.4 ZustandsgrofB3en, prognostische und diagnostische Variablen
und Parameter

Das Modell ist oben in eine mathematische Formulierung iiberfiihrt worden. An dieser
Stelle sollen an seinem Beispiel mehrere Begriffe definiert werden, die in Klimamodellen
immer wieder auftreten, die fiir Fachfremde aber nicht immer klar sind und zum Teil in der
Mathematik und Informatik auch anders verwendet werden. Die Unterschiede zwischen
den Begriffen kann mit Hilfe folgender Fragen klargemacht werden:

e Was muss gegeben sein, damit eine Simulation mit dem Boxmodell durchgefiihrt wer-
den kann, was wird als Input benotigt?
o Was liefert das Modell als Output?

Um eine Simulation durchfiihren zu konnen (zum Beispiel mit dem Euler-Verfahren),
werden folgende GroBen bendtigt

e Anfangswerte,
o Werte fiir die Parameter

Vii = 1,.... 4,13 = 1,2,3), F:(i = 1,2), So.k,a,B.

Als Output liefert das Modell fiir jeden Zeitpunkt (an dem — z. B. mit dem Euler-Verfah-
ren — eine Naherungslosung ausgerechnet wurde) einen Wert fiir die Modellvariablen oder
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Zustandsgrofien oder prognostischen Variablen T; und S;,i =1, ..., 4. Hier ist schon zu
erkennen, dass hier mehrere Begriffe fiir dieselben Dinge benutzt werden.

Der Volumenstrom M wird weder als Input bendtigt, noch wird er direkt durch die
Gleichungen des Modells bestimmt. Eigentlich ist M nur eine Bezeichnung fiir die in (6.2)
formulierte Beziehung, und es kénnte im Modell auch ohne ihn ausgekommen werden,
indem (6.2) in die Differentialgleichungen direkt eingesetzt wird. Der Wert von M ist
aber oft die GroB3e, der von Interesse ist. Eine solche Grofle wird auch als diagnostische
Variable bezeichnet.

Definition 6.2 Groflen, die zur Auswertung und Simulation eines Modells notwendig
sind, vor einem Simulationslauf bekannt sind und nicht erst durch die Simulation berech-
net werden, werden als (Modell-)Parameter bezeichnet, zeitlich variable Parameter oft
auch als Forcingdaten oder kurz Forcing.

Damit kdnnen auch Anfangswerte (oder Randwerte bei ortsabhiingigen Modellen) als
Modellparameter betrachtet werden. In einer Kalibrierung oder Parameteridentifikation
werden die Parameter variiert, um ein Modellergebnis zu erhalten, das z. B. mit Messwer-
ten gut iibereinstimmt. Dennoch sind fiir einen Modelllauf die Parameter fest. Parameter
werden in einem zeitabhéngigen Modell (wie dem instationdren Energiebilanzmodell oder
dem Boxmodell) meist als zeitlich konstant angesehen. Der Begriff Forcing kommt vom
englischen Begriff fiir antreibende Kraft.

Beispiel 6.3 Wird in einem Modell z. B. die Variabilititit der Sonneneinstrahlung nach
den Milankovitch-Zyklen als zeitlich variabler Input benutzt, so wird dies hier eher For-
cing genannt. Die Solarkonstante wiirde eher als Parameter bezeichnet.

Beispiel 6.4 Die GroBen o, B, k, V;, A; im Boxmodell werden als Modellparameter be-
zeichnet. Dagegen werden fiir Global-Warming-Szenarien die Fliisse f; und die Tempe-
raturen 7;* als zeitlich variabel angesehen und als Forcing betrachtet, s. [17]. Sind sie
zeitlich konstant, werden sie ebenfalls als Parameter bezeichnet.

Ubung 6.5 Lassen Sie das Modell von beliebigen Anfangswerten einige hundert Jahre
Modellzeit, vgl. Ubung 6.1, und addieren Sie dann zu den Temperaturen T* und Frisch-
wasserfliissen f; lineare Trends der Form

AT (1) = pit, i=1,2,3,
Aﬁ(l)=hiqil, i=1,2
jeweils tiber n Jahre (z. B. mit n = 200). Dabei seien p; = 0,91, p, = ¢, = 1,07, p3 =

0,79,q; = 0,93, h; = —0,005, h, = 0,013, wenn das Modell fiir ¢ in Jahren skaliert ist.
Fiir Details s. [17, Abschnitt 4].

Fiir die GroBen, die als Ergebnis in einer Simulation berechnet werden, gibt es ver-
schiedene Bezeichnungen.
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Definition 6.6 Die Grofen, die in einem Modell berechnet werden und die das System
beschreiben, heilen Zustandsgrdfsen oder Zustandsvariablen. Handelt es sich um ein zeit-
abhingiges Modell, so werden sie auch prognostische Variablen genannt.

Fiir prognostische Variablen wird eine Prognose mit Hilfe des Modells bzw. der Simu-
lation gemacht. Der Begriff Prognose ergibt nur Sinn, wenn es sich um ein zeitabhéngiges
oder transientes Modell handelt.

Definition 6.7 Variablen, die in einer Simulation berechnet werden, aber zur Beschrei-
bung des Zustandes des modellierten Systems nicht notwendig sind, werden diagnostische
Variablen genannt.

Diagnostische Variablen sind meist Grofien, die aus den prognostischen Variablen be-
stimmt werden, fiir die aber selbst keine Modellgleichung mit einer Zeitableitung vorhan-
den ist. Thre zeitliche Anderung kann daher iiber die prognostischen Variablen bestimmt
werden. Manchmal sind nur prognostische, d.h. aggregierte Variablen interessant, und
nicht die Zustandsgrofien selbst.

Beispiel 6.8 Prognostische Variablen des Boxmodells sind Temperaturen und Salzgehal-
te T;, S; in den vier Boxen. Der Volumenstrom M selbst ist dagegen eine diagnostische
Variable. Er kann mit (6.2) aus dem Modell eliminiert werden. Fiir ihn ist keine Differen-
tialgleichung formuliert, er ergibt sich aus den diagnostischen Variablen. Er ist der meist
betrachtete relevante Output.

6.5 Eine erweiterte Form des Boxmodells

Das Boxmodell ist nur giiltig, wenn M > 0 ist, d. h. der Volumenstroms in eine vorgege-
bene Richtung flieft. Daher ist in einer transienten Simulation immer die Abfrage M > 0
notwendig, um die Rechnung abzubrechen, wenn dies nicht der Fall ist. Das Modell ist
dann in dieser Form nicht beziiglich der Zustandsgroflen differenzierbar. Dieser Mangel
fiir bestimmte mathematische Aussagen kann durch eine Erweiterung beseitigt werden,
den wir hier kurz vorstellen. Diese erweiterte Form wurde in [18] fiir numerische Unter-
suchungen von Verzweigungen vorgeschlagen und benutzt, bei denen Differenzierbarkeit
benotigt wird.

Die Idee ist die folgende: In den Differentialgleichungen fiir Temperatur und Salzge-
halt werden die Terme, die den Volumenstrom enthalten, um analoge ergiinzt, die eine
umgekehrte Stromungsrichtung représentieren. Statt nun mit einer Abfrage M > 0 den
entsprechenden Term gewissermaBlen an- und abzuschalten, der die korrekte Stromungs-
richtung darstellt, werden beide mit einem Faktor versehen, der den jeweils ,.richtigen*
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positiv und den anderen gering gewichtet, und im Bereich M = 0 fiir einen glatten Uber-
gang sorgt. Dazu konnen die Funktionen

-M

+ _ - —
sT(M) = o S M) = [ (6.12)
mit @ > 0 geeignet verwendet werden. Solche Funktionen werden auch als Sigmoide
bezeichnet. Sie dienen dazu, eine unstetige Grofle durch eine glatte, differenzierbare zu
approximieren, wenn z. B. aus mathematischen Griinden die Glattheit von Bedeutung ist.

Es gilt:

. =+ Ma M 2 05 . — 05 M 2 05
lim s (M) = lim s~ (M) =
a—00 0, M<0O, a—00 -M, M <0O.

Ubung 6.9 Plotten Sie den Ubergang in der Umgebung der Stelle M = 0 zwischen s+
und s~ fiir verschiedene Werte von a > 0.

Ubung 6.10 Wie oft ist die Funktion s : R — R mit

st(M), M >0,
s (M), M <O,

s(M) =

in M = O stetig differenzierbar?

Mit (6.12) und der Bezeichnung M *(¢) = st (M(t)), ¢t € I, und s*(¢) analog ergibt
sich folgende Form des Modells:

0 =00 -1y + X ST - o) + 217 - T
T/(1) = +(”(T3(z> ST + _(’)(n(r) —Ty(0) + Aa(T5 — To(0)
(1) = M;: (1) - Ty + M;f LTy = o) + (T3 — T5(0))
i) = 20 1) - ey + X 20 - 1)

sl =2 +(’)(S4(z> —S10) + ( ($5(0) — Si(0)) + 220

si =2 +(’)(Sg(z) — S0+ % ( (540 - 520 - S°F :

Si() = MV( X510 - s + e L5260 - s + S‘)(FZT;F”
s =" 50 - sy + 60 - 510,
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Der Parameter a aus (6.12) ist nun ein zusétzlicher Modellparameter. Verglichen mit dem
urspriinglichen Boxmodell ist eine andere Art von Nichtlinearitit in M+, M~ hinzuge-
kommen.

Ubung 6.11 Simulieren Sie dieses Modell mit dem Euler-Verfahren und vergleichen Sie
fiir die Parameter aus Tab. 6.1 und verschiedene Werte fiir a die Ergebnisse fiir M. Was
ist ein ,,optimaler* oder ein besonders gut geeigneter Wert fiir a? (Vgl. z.B. [19]).



Stationare Zustande

Stationdre Zustinde eines Modells sind solche, bei denen keine zeitliche Anderung der Modell-
groBen stattfindet. Im Klimasystem ist ein solches Verhalten eigentlich nicht vorhanden. Werden
jedoch grofie Zeitskalen betrachtet und zum Beispiel tages- und jahreszeitliche Schwankungen ge-
mittelt bzw. nicht erfasst, dann kénnen auch Klimamodelle stationire Zustinde haben. Diese werden
oft — mit gemittelten Daten — zur Kalibrierung des Modells verwendet. Dabei werden dann z. B. Pa-
rameter so angepasst, dass das Modell ebenfalls gemittelte Messwerte trifft. Dies ist die Motivation,
in diesem Kapitel verschiedene Verfahren zur Berechnung stationédrer Punkte vorzustellen und sie,
vor allem auf das Rahmstorf-Boxmodell, anzuwenden. Mathematisch ergibt sich die Moglichkeit,
Algorithmen wie Fixpunktiteration und Newton-Verfahren anzuwenden.

Oft ist es zunichst interessant, stationdre Zustinde eines Modells zu kennen. Bei der
Entwicklung des Rahmstorf-Boxmodells war ein Ziel, es im Hinblick auf die sog. War-
ming-Parameter F|, F, (oder fi, f> in der umskalierten Form) zu untersuchen. Diese
werden als GroBen betrachtet, die sich durch globale Erwdrmung dndern, nimlich durch
Eisschmelzen oder hohere Verdunstung.

Wir wenden hier verschiedene analytische und numerische Methoden zur Bestimmung
dieser stationidren Zustinde am Beispiel des Boxmodells an. Eine Besonderheit beim die-
sem Modell ist, dass eventuell gar nicht die stationdren Werten der Variablen 7;, S; selbst,
sondern nur die des Volumenstroms M interessant sind.

7.1 Definition und Beispiele
Zuerst definieren wir den Begriff der stationiren Zustéinde.

Definition 7.1 Fiir eine autonome Differentialgleichung der Form

Yty =f@). tel (7.1)
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heiBt eine Losung mit y'(¢) = 0 f.a. ¢ € I, also eine Losung der Gleichung

f(y) =0, (7.2)

stationdre(r) Losung, Zustand oder Punkt. Weitere verwendete Begriffe sind Gleichge-
wichtslosung und Equilibrium.

Die Bezeichnung ,,Fixpunkt®, die manchmal verwendet wird, ist zwar anschaulich kor-
rekt (die Losung ist ,,fix“, d.h. sie verdndert sich in der Zeit nicht). Es ist jedoch kein
Fixpunkt von f im mathematischen Sinne (vgl. Definition 3.23) gemeint, sondern eine
Nullstelle von f.

Die Berechnung der stationdren Punkte ist bei einer nichtlinearen und vektorwertigen
Funktion nicht trivial, denn (7.2) ist dann ein nichtlineares algebraisches Gleichungssys-
tem.

Beispiel 7.2 Beim Energiebilanzmodell wurde in Abschn. 2.1 zuerst die stationidre Lo-
sung aus der nichtlinearen Gleichung (2.3) berechnet.

Das Rahmstorf-Boxmodell besteht aus mehreren Gleichungen. Es lassen sich einige
davon eliminieren, wenn nur stationdre Zustinde interessant sind:

Beispiel 7.3 Beim Boxmodell folgt aus den Gleichungen (6.6) und (6.10) fiir stationire
Losungen sofort 7, = Ty, S; = S4.

Die Anzahl der Gleichungen, die fiir einen stationédren Zustand bestimmend sind, ladsst
sich beim Boxmodell noch weiter reduzieren.

Ubung 7.4 Zeigen Sie, dass sich zur Berechnung von stationiren Zustinden das Boxmo-
dell auf fiinf Gleichungen reduzieren lésst.

Ubung 7.5 Zeigen Sie, dass vier Gleichungen ausreichen, wenn nur der stationire Wert
des Volumenstroms M von Interesse ist. Welcher der beiden Frischwasserfliisse hat Ein-
fluss auf den stationiren Wert von M ?

Wenn stationdre Zustinde nicht analytisch berechnet werden konnen, weil die Glei-
chungen (7.2) wegen ihrer Nichtlinearitit zu komplex sind, dann werden numerische
Approximationsverfahren benutzt. In den nidchsten beiden Abschnitten werden zwei wich-
tige Methoden behandelt.
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7.2 Numerische Berechnung mit dem Newton-Verfahren

Das klassische Verfahren zur Losung einer nichtlinearen Gleichung der Form

f) =0

ist das Newton-Verfahren:

Algorithmus 7.6 (Newton-Verfahren fiir ein nichtlineares Systems)
Input:

Funktion f : R" — R”

Startwert yy € R”,

Abbruchkriterium K (z.B. als Funktion),
Abbruchschranke ¢ > 0.

Algorithmus:

1. Setze k = 0.

2. Solange K(yi, yi—1) > &:
(@) Lose f'(ye)Ay = —f (i)
(b) Setze yr4+1 = yx + Ay.
(¢) Setzek =k + 1.

Output: Approximation yj einer Nullstelle von f.
Beispiele fiir das Abbruchkriterium K sind absolute Werte
Kk, yi=1) = vk = ye=1ll, - KOw) = 1/ o)l (7.3)

oder relative Werte

Ik — vl I/ Gl
0 KOw) =77,
[ Veypll Il feypl

wobei yyp, fiyp € R\ {0} geeignet gewihlte, ,,typische* Werte fiir die Iterierten bzw. den
Funktionswert sind.

Kk, yk—1) = (7.4)

)

Ubung 7.7 Berechnen Sie die Jacobi-Matrix des stationiren Rahmstorf-Boxmodells in
der in Ubung 7.4 erhaltenen, auf fiinf Gleichungen reduzierten Form. Implementieren Sie
das Newton-Verfahren und testen Sie es fiir die in Tab. 6.1 gelisteten Parameter im Bereich
f1 € [-0,2,0,125]. Was passiert fiir groflere Werte von f|? Das Ergebnis ist in Abb. 7.1
zu erkennen.
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Abb.7.1 Stationidre Werte des skalierten Volumenstroms m, berechnet mit dem Newton-Verfahren,
fiir verschiedene Werte von f1, vgl. (6.11). Fiir Werte iiber f1 = 0,125 konvergiert das Verfahren
nicht mehr

Konvergenz

Zur Konvergenz des Newton-Verfahrens gibt es verschiedene Aussagen. Der folgende Satz
setzt die Existenz der Nullstelle voraus:

Satz 7.8 Sei f auf einer offenen und konvexen Menge D C R" stetig differenzierbar,
y* € D mit f(y*) = 0und f'(y*) invertierbar mit || f'(y*)~'|| < B.

(a) Sei ' in B,(y*) C D,r > 0, Lipschitz-stetig mit Lipschitz-Konstante L. Dann

existiert € > 0, so dass fiir alle yo € By(y*) die Newton-Iterierten wohldefiniert sind
und lokal quadratisch gegen y* konvergieren, d. h. es gilt:

Vi1 — ¥*I| < BLllyk — y*|I*> Vk € N.
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(b) Ohne die Lipschitz-Stetigkeit von [’ gibt es ¢ > 0, so dass fiir alle yy € B.(y*) die
Newton-Iterierten superlinear gegen y* konvergieren, d. h. es existiert eine positive
Nullfolge (ci)renN und kg € N mit

[yk+1 =y Il S crllye = y* I Vk = ko.
Beweis Fiir (a) s. [20, Theorem 5.2.1], fiir (a,b) [21, Kapitel 2, Satz 3.1] O

Der nun folgende Satz setzt die Existenz nicht voraus, sondern fordert neben der
Lipschitz-Stetigkeit nur Eigenschaften im Startwert y, der Newton-Iteration. Er benutzt
die sog. Grenzennorm:

Definition 7.9 (Grenzennorm) Fiir A € R"*" und eine Vektornorm | - || heif3it die Ma-
trixnorm

| Ax|lv
ma _—
xeR™\{0} ||x|lv

[Ally :=
Grenzennorm oder lub-Norm (lowest upper bound).

Die in Lemma 3.37 definierten Normen sind alle Grenzennormen der entsprechenden
Vektornormen mit denselben Indizes. Per Definition ist die Grenzennorm vertraglich (vgl.
Definition 3.35) mit der zu Grunde liegenden Vektornorm. Nun gilt folgende Aussage:

Satz 7.10 (Kantorovich) Seir > 0, yo € R", f : B,(yo) — R”" stetig differenzierbar,
f"in B,(yo) Lipschitz-stetig beziiglich einer Vektornorm | - ||y mit Lipschitz-Konstante
L, und f'(yo) invertierbar mit

L Go) v =B 1Lf Go) ™ SO0l < n.

o Ista := BnL < 1/2undr > s := (1 — 1 —-2a)/(BL), dann konvergiert die
Newton-Folge gegen die einzige Nullstelle y* € B(y).
o Ista < 1/2, dannist y* die einzige Nullstelle in Bg(yo) mit

S = min 7,

14+ V1 -2«
BL

und es gilt
k
Ly = »*llv < 2a)* n/a.

Beweis Siehe [20, Theorem 5.3.1] oder die Referenzen in [22, Theorem 5.3.4]. O
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Moglichkeiten zur Berechnung der Jacobi-Matrix

Eine exakte (analytische) Berechnung der Jacobi-Matrix ,,auf dem Papier* ist fiir das Box-
modell moglich, aber fiir andere Modelle oft zu aufwiéndig.

Symbolisches und algorithmisches Ableiten Eine Moglichkeit ist die Berechnung mit
Programmen, die symbolisches Rechnen erlauben, oder die algorithmische Generierung
von Ableitungscode durch sog. Algorithmisches bzw. Automatisches Differenzieren, s.
[23].

Quasi-Newon-Verfahren Diese, in der Optimierung weit verbreiteten Verfahren berech-
nen eine schrittweise Approximation der Jacobi-Matrix wihrend der Newton-Iteration
durch eine Updateformel By4+; = By + Uy. Der Start kann z. B. mit By = [ erfolgen,
vgl. etwa [20, Abschnitt 8].

Finite Differenzen-Approximationen Eine fiir jedes Modell durchfiihrbare Berech-
nungsmethode ist die der Approximation durch Differenzenquotienten: Wir geben diese
hier fiir eine Funktion F : R — R an. Fiir den beim Newton-Verfahren benotigten
mehrdimensionalen Fall wird auf jeden Eintrag der Jacobi-Matrix, d.h. jede partielle
Ableitung

dfi .
a_(y)v l,]ZI,...,n, J’:(yl,---,yn),
Vi

einer der folgenden Differenzenquotienten angewendet.

Definition 7.11 (Differenzenquotienten) Sei D C R offen, F : D — R, x € D und
h > 0. Dann definieren wir folgende Differenzenquotienten:

F(x+h)— F(x
vorwdrts genommener erster Ordnung: Dh+ F(x):= (x +h) ( ),

h
Fx)— F(x—h
riickwdrts genommener erster Ordnung: D) F(x) := %’
F hy—F(x—h
zentraler erster Ordnung: D, F(x) := (x + )2h (x )

Es gelten folgende Genauigkeitsaussagen.

Satz 7.12 Ist F wie oben und in [x,x + h] C D bzw. [x — h,x] C D zweimal stetig
differenzierbar, dann gilt

D;fF(x)— F'(x), D, F(x) — F'(x) € O(h), h — 0.
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Ist F in[x — h,x + h] C D dreimal stetig differenzierbar, dann gilt
DyF(x)—F'(x) e O(h*), h—0.
Ubung 7.13 Beweisen Sie diese Aussagen.

Die Konvergenzaussage des Satzes 7.8 geht bei der Finiten-Differenzen-Approximation
teilweise verloren:

Satz 7.14 (Newton-Verfahren bei inexakter Jacobi-Matrix) Seien die Voraussetzungen
des Satzes 7.8(a) erfiillt und By eine Approximation von f'(yy) mit dem vorwiirtsgenom-
menen Differenzenquotienten mit Schrittweite hy. Dann existieren §,h > 0 so, dass fiir
hy < h die Newton-Iterierten fiir einen Startwert yy € Bs(y™) linear gegen die Nullstelle
y* konvergieren. Gilt hy — 0, dann ist die Konvergenz superlinear. Gilt by, < c||yr—y*|,
dann ist die Konvergenz quadratisch.

Beweis Siehe [20, Theorem 5.4.1]. O

Aufwand

In jedem Schritt des Newton-Verfahrens ist die Losung eines linearen Gleichungsssystems
der GroBe n und je eine Auswertung der Funktion und der Ableitung, d.h. der Jacobi-
Matrix f’(yx) € R™", notig.

Ubung 7.15 Wieviele Funktionsauswertungen werden in einem Newton-Schritt benstigt,
wenn die Ableitung durch die o. g. Differenzenquotienten approximiert wird?

Eine sehr simple Vereinfachungsmoglichkeit zur Reduzierung des Aufwands ist ein
Update der Jacobi-Matrix nicht in jedem, sondern nur alle j > 1 Newton-Schritte.

7.3 Pseudo-Zeitschrittverfahren

Eine alternative, in der Klimaforschung oft benutzte Moglichkeit, stationdre Losungen zu
berechnen, ist das sog. Pseudo-Zeitschrittverfahren. Das bedeutet, dass eine numerische
Zeitintegration, z. B. mit dem Euler-Verfahren, durchgefiihrt wird, solange bis ein statio-
nérer Zustand erreicht ist. Wir geben hier die grundlegende Vorgehensweise am Beispiel
eines Einschrittverfahrens an. Die mathematische Rechtfertigung fiir die Vorgehenswei-
se liefert der Banach’sche Fixpunktsatz 3.25. Dann wenden wir das Verfahren auf das
Energiebilanz- und das Rahmstorf-Boxmodell an.
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Algorithmus 7.16 (Pseudo-Zeitschrittverfahren)
Input:

Funktion f, rechte Seite der Differentialgleichung
Verfahrensfunktion @ des Zeitintegrationsverfahrens
Startwert yy € R”,

Abbruchkriterium K z. B. als Funktion,
Abbruchschranke ¢ > 0

Algorithmus:

1. Setzek =0

2. Solange K(yi, yi—1) > &:
(a) Berechne yit1 = yr + " @(tx, yio, hi)
b) k=k+1.

Output: Approximation yj einer stationdren Losung von y’ = f(y).

Als Abbruchbedingung konnen die Varianten (7.3) wie beim Newton-Verfahren be-
nutzt werden oder auch || @(#, yx, hi)|| < e. Die Iteration

Vi+1 = Yk + he@(te, yi, i) =t Gr(yk) (1.5)
im Algorithmus kann als Fixpunktiteration fiir die Funktionen
Gk :R" - R”

interpretiert werden.

Wenn die Schrittweiten A; nicht konstant sind oder die Differentialgleichung nicht
autonom ist (also die Verfahrensfunktion explizit von #; abhéngt) hingt auch die Iterati-
onsfunktion von k ab. Nur im Fall einer autonomen Differentialgleichung und konstanter
Schrittweite ist sie in jedem Zeitschritt gleich. Wir beschrianken uns daher zunéchst auf
den Fall einer konstanten Schrittweite &, = h fiir alle k € N.

Ubung 7.17 Implementieren Sie das Pseudo-Zeitschrittverfahren und vergleichen Sie mit
den Ergebnissen aus Ubung 7.7, s. Abb. 7.2.

Konvergenznachweis mit Kontraktionsbedingung

Uber die Konvergenz einer solchen Iteration und die Existenz eines Fixpunktes (der Ite-

rationsfunktion G, nicht der rechten Seite f der Differentialgleichung) macht der Ba-
nach’sche Fixpunktsatz 3.25 eine Aussage. Der Satz benutzt die Kontraktionseigenschaft
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Abb. 7.2 Stationire Werte des skalierten Volumenstroms m, berechnet mit dem Pseudo-
Zeitschrittverfahren, fiir verschiedene Werte von f

(Definition 3.24) der Iterationsfunktion, die — auf die Iterationsfunktion G angewandt —
lautet:

AL <1: |G -GOWI =Lly—-yl Vy.yeD.

Verwendung eines Einschrittverfahrens

Beim expliziten Einschrittverfahren mit konstanter Schrittweite und fiir eine autonome
Gleichung ergibt sich fiir zwei beliebige y, y € R”

IG() =G = lly =3 + (@) = 2.

Hier haben wir kurz @(y) fiir @(¢, y, h) geschrieben. Selbst wenn die Verfahrensfunktion
Lipschitz-stetig ist, also

|2(y) =2l = Ly —7yll. L >0,
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gilt, reicht das nicht unbedingt aus. Vor allem fiihrt die einfache Anwendung der Drei-
ecksungleichung

Iy =y +h(@») =GN =y =¥ + 2l(@(y) =)l = A +AL)|ly = ¥

nicht weiter, auch wenn /4 noch so klein gewihlt wird.
Wir betrachten als einfachstes Beispiel noch einmal das linearisierte Energiebilanzmo-
dell aus Ubung 4.14 also eine skalare Differentialgleichung.

Beispiel 7.18 (Euler-Verfahren, linearisiertes Energiebilanzmodell) Die Differentialglei-
chung lautet:

/

y' =-cy, c¢>0.
Damit erhalten wir beim expliziten Euler-Verfahren:

G(y) =y —hcy =(1—hc)y.

Die Iterationsfunktion ist also kontrahierend fiir |1 — hc| < 1, d.h. fir & < 2/c. Fiir
diese Gleichung konvergiert ein Pseudo-Zeitschrittverfahren mit dem expliziten Euler-
Verfahren also nur fiir diese Schrittweiten. Da im Beispiel ¢ &~ 1077 sehr klein war, kann
h groB gewihlt werden.

Bei der Wahl der Abbruchbedingung im Algorithmus sollte folgende Anmerkung be-
achtet werden:

Anmerkung 7.19 Aus der Giiltigkeit einer Abbruchbedingung || yx — yxk—1| < ¢ folgt
noch nicht die Cauchy-Folgen-Eigenschaft, die im Beweis des Banach’schen Fixpunkt-
satzes 3.25 benotigt wird. Die Folge ()i kann also trotzdem divergieren. Betrachte z. B.
eine Folge mit || yx — yr—1|| = %

In der Praxis ist nicht immer jeder Iterationsschritt fiir sich kontrahierend. Es reicht
jedoch aus, wenn eine feste Anzahl von Schritten zusammengenommen die Kontraktions-
eigenschaft hat:

Ubung 7.20 Zeigen Sie: Ist G* := G o --- o G, d.h. s Iterationsschritte hintereinander
ausgefiihrt, eine Kontraktion, so hat auch G einen Fixpunkt, ndmlich denselben wie G*.

Diese Aussage ist nicht mehr giiltig, wenn G = Gy, also abhéngig vom Iterationsschritt
ist. Dann folgt aus der Kontraktivitit nur die Existenz einer periodischen Losung

y*=Gso---0Gi(yY).
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Kontraktionsbedingung liber Jacobi-Matrix

Nur bei einfachen Gleichungen kann die lokale Lipschitz-Stetigkeit direkt mit der Defi-
nition nachgewiesen werden. Bei nichtlinearen Systemen ist dies sehr schwierig. Daher
erweist sich Lemma 3.39 als niitzlich.

Wir berechnen daher die Jacobi-Matrix der Iterationsfunktion G, zunichst fiir konstan-
tes h. Es gilt

G'(y)=1+h®(y),

wieder mit der Voraussetzung, dass @ nur von y abhéngt und nicht von 4 und ¢. Beim
expliziten Euler gilt also

G'(y)=1+hf"(y).

Dieses Verfahren ldsst sich fiir das Rahmstorf-Boxmodell benutzen. Um die Konvergenz
z.B. bei der Verwendung des expliziten Euler-Verfahrens zu untersuchen, wird die oben
berechnete Jacobi-Matrix in ihrer Norm abgeschitzt. Hier werden jedoch alle Gleichungen
benotigt, d. h. die Variablen T}, S; konnen nicht eliminiert werden.

Ubung 7.21 Berechnen Sie die Jacobi-Matrix der rechten Seite f, wenn das Boxmodell
als y' = f(y) geschrieben wird.

Die Wahl der Matrixnorm ist beliebig, es kann also eine gewihlt werden, bei der eine
Abschitzung relativ leicht fillt. Mit der obigen Ubung gilt:

Beispiel 7.22 Beim Boxmodell lautet die erste Zeile der Jacobi-Matrix mit der Bezeich-
nung Ay := (ay;)j—; € R" fir 4 = (a;;)} ;- € R

, kO{(T4—T1)—M kO[(T4—T1) M
- P P L Rk VY ey
(rom = (< el o 8
0’_k:3(T4_Tl),kﬁ(T4_Tl)’0,0)‘
|4 Vi

Damit gilt fiir G(y) = I + hf'(y):

L R e ) I e e

Vi Vi

Ist AV} < ka(Ty — Ty) — M, dann gilt

(G O illoo =1+ ('k“m_ T) - M| —Al) L pkCB+ T = Til+ M

14 Vi
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Gilt zusitzlich ka (T, — T) > M, also auch Ty > T}, dann ist

L R e ) R =

4 (Zk(ﬂ +a)(Ty —Th) —M) .
Vi

Es wird deutlich, wie komplex die Rechnungen bereits bei diesem Modell werden. Fiir
diese Konstellation ist es immerhin moglich, dass die Kontraktionsbedingung erfiillt ist,
wenn Aj, verglichen mit den anderen Parametern und insbesondere den ZustandsgroBen
Ty, Ty und M, die ,richtige* Grofle hat. Die anderen Fille wurden hier noch nicht unter-
sucht. Wie in Abb. 7.3 zu erkennen (und an Hand der Abschétzungen zu vermuten) ist, ist
die Kontraktionsbedingung jedoch nicht fiir alle Werte der Parameter und Zustéinde erfiillt.

Da die Matrixnorm beliebig ist, ist es nicht unbedingt notwendig, sie angeben zu kon-
nen. Es reicht aus, dass eine Matrixnorm existiert, deren Wert fiir die Jacobi-Matrix der
Iterationsfunktion kleiner eins ist. Hilfreich ist folgende Aussage, bei der die Eigenwerte
der Jacobi-Matrix G'(y) untersucht werden.

Lemma 7.23 Zu jeder Matrix A und jedem & > 0 existiert eine Vektornorm, so dass fiir
die entsprechende Grenzennorm gilt

[Ally < o(4) + &.
Fiir die Definition des Spektralradius o vgl. Definition 3.36.

Beweis [24, Satz 6.9.2]. O

Damit reicht es zum Nachweis der Kontraktionseigenschaft, die Eigenwerte der Jacobi-
Matrix der Iterationsfunktion abzuschitzen.

Numerische Approximation der Kontraktionskonstante

Wenn man die Lipschitz-Konstante L nicht analytisch fiir alle y, y € D berechnen kann
(was meist der Fall ist), kann man sie im Laufe der Iteration approximieren, ndmlich durch

k=l NG(k) = Ge—1) |l

Ly = _
v = yi—1ll v = yi—1ll

(7.6)

Dies funktioniert auch, wenn die Iterationsfunktion von k abhingt, also fiir G statt G,
z. B. wenn eine variable Schrittweite im Pseudo-Zeitschrittverfahren verwendet wird. Das
oben definierte Ly, ist gewissermafen die Kontraktionszahl im k-ten Schritt. Selbst wenn
L < 1 fiir alle k ist, ist die Voraussetzung des Banach’schen Satzes nicht erfiillt, da die
Kontraktivitit nur fiir die Iterierten y;, aber nicht unbedingt fiir alle y, y € D gilt.
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Trotzdem konvergieren Iterationen oft, ohne dass die Voraussetzungen des Ba-
nach’schen Fixpunktsatzes 3.25, erfiillt sind:

Ubung 7.24 Verallgemeinern Sie die Aussage des Banach’schen Fixpunktsatzes 3.25 auf
den Fall, dass fiir die Iterierten nur

Vi1 = Vil < Lillye — ye—1ll mit Ly <L <1 VkeN
erfiillt ist. Welche Aussagen bleiben erhalten?

Wenn die Bedingung L; < L < 1 nicht erfiillt ist, kann das Verfahren trotzdem abbre-
chen: Gilt ndmlich

Ly, >O0fiirallek €e N und klim (Li---Ly) =0, (1.7
—00
so folgt wegen
Li-Ly = i1 — yill vk — ye—ll I3 = yall ly2 =yl _ Y1 — vl
1V = Y=l lye—1 — ye—l ly2 = »ill lyr = yoll [y1 = yoll
dass
i et = Vel o

k=00 [ly1 = yol

und damit auch
lim ||yx+1 — yxll = 0.
k—o00

Also bricht das Verfahren ab, wenn | yr+1 — yi|| < € als Abbruchbedingung gewihlt
wird, was aber (vgl. Anmerkung 7.19) noch keine Konvergenz der Iterierten bedeutet. Die
Bedingung (7.7) kann auch erfiillt sein, wenn einzelne L, > 1 sind. Eine (geometrische)
Mittellung iiber alle bisherigen Schritte ist

Ly = XL Ly=F [e+1 — il (78)

Iy — yoll '

["Jbung 7.25 Geben Sie fiir das Rahmstorf-Boxmodell die Werte L; aus (7.6) (vgl.
Abb. 7.3) und Lk aus (7.8) in jeder Iteration aus.

Beispiel 7.26 Das Pseudo-Zeitschrittverfahren wird in Abschn. 9.3, auf ein weiteres Mo-
dell, die Lorenz-Gleichungen, angewendet.
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Abb. 7.3 Kontraktionszahl L beim Pseudo-Zeitschrittverfahren fiir das Boxmodell, a fiir f; =
—0,1, b fiir f; = 0,1
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Konvergenz bei Quasi-Kontraktion
In vielen Anwendungen ist die Kontraktionsbedingung des Banach’schen Fixpunktsatzes

(L < 1) nicht erfiillt, dennoch liegt Konvergenz des Pseudo-Zeitschrittverfahrens vor.
Eine Verallgemeinerung des Satzes verlangt nur die sog. Quasi-Kontraktivitiit:

Definition 7.27 (Quasi-Kontraktion) Eine Funktion G : R” D D — D heilit Quasi-
Kontraktion auf D, wenn fiir ein L < 1 gilt:

IG) — G < Lmax{|ly = FIl.lly —GOWI. 17 — Gl
ly =GO 17 -G}  Vy.jeD. (7.9)

Der Satz liefert eine zum Banach’schen Satz analoge Aussage:

Satz 7.28 (Konvergenz bei Quasi-Kontraktion) Die Aussagen von Satz 3.25 bleiben
giiltig, wenn G : D — D eine quasi-kontrahierende Abbildung ist.

Beweis Siehe [25, Satz 1]. O

Auch die Quasi-Kontraktivitdt kann numerisch wéhrend der Iteration getestet werden:
Fiir y =y, J = yi—1ist G(y) = yk41. G(¥) = yx, y = G(¥) und (7.9) ergibt:

[Ve+1 = yill = Lmax{||ye = i1l | Vi1 = yiells 11 = ye—1 13- (7.10)
Ist nun fiirein L < 1
ye+1 = yill = Lmax{|[ye = yi—1ll. | yie+1 = =113, (7.11)
also
lvk+1 — el < max{{lye — ye=1lllye+1 — ye—1ll}s
dann folgt (7.10) aus (7.11). Damit ist

_ i1 — yill
max{|| vk — Vi—1lls [ Ye+1 — Ye—1ll}

(7.12)

das Analogon zu (7.6).

["Jbung 7.29 Geben Sie fiir das Rahmstorf-Boxmodell die Werte Ly aus (7.12) in jeder
Iteration aus, vgl. Abb. 7.4.
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Abb. 7.4 Quasi-Kontraktionszahl L aus (7.12) beim Pseudo-Zeitschrittverfahren fiir das Boxmo-

dell, a fiir 1 = —0,1, b fiir /1 = 0,1
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7.4 Reduktion der Modellgleichungen beim Rahmstorf-Boxmodell

In vielen Fillen sind nicht alle Zustandsgrofen, sondern nur bestimmte, daraus abgeleite-
te, diagnostische Gréfen von Interesse. So kann es sein, dass ebenfalls nur die stationdren
Zustinde dieser diagnostischen Groflen berechnet werden sollen. In einigen Fillen ist es
so moglich, das System erheblich in seiner Dimension zu reduzieren. Im Idealfall kénnen
dann stationdre Zustdnde analytisch berechnet werden, oder spezielle numerische Metho-
den zu ihrer Berechnung sind anwendbar.

Eine analytische oder vergleichsweise einfache numerische Berechnung stationérer Lo6-
sungen ist moglich, wenn sich das Problem auf eine skalare Gleichung reduzieren ldsst.
Im Rahmstorf-Boxmodell ist das der Fall, wenn nur der stationdre Wert des Volumen-
stroms M berechnet werden soll. Wir nehmen daher das Boxmodell als Beispiel, um die
Vorgehensweise darzustellen und numerische Verfahren zu prisentieren.

Ist es moglich, M im Rahmstorf-Modell zu berechnen, ohne die zugehdrigen statio-
niaren Werte der Temperaturen und Salinitédten selbst zu kennen? Der Vorteil wire, dass
sich eine skalare Gleichung ergiibe, die sehr viel einfacher und schneller gelost werden
konnte als das stationire System fiir die 7; und S;. Die folgenden Uberlegungen zeigen,
dass dies moglich ist. Die Losung von Ubung 7.4 ergibt die Gleichung

M - F -
0=—3S+So— itS; =85,—-S8
7 1+ OV1 mit 5y 2 1
und damit
SiM = —S,F,.

Multiplizieren wir die Darstellung des Volumenstroms (6.2) mit M und benutzen die eben
erhaltene Beziehung, so ergibt sich

M? + k(BSoF, + (T, — T))M) = 0. (7.13)

Gelingt es jetzt noch, die Differenz T, — 7 nur durch M und Modellparameter, aber ohne
explizite Verwendung der zeitabhéngigen Groflen T;, S; auszudriicken, dann erhalten wir
eine skalare Gleichung fiir das stationdre M. Aus den stationiren Varianten von (6.3) bis
(6.5) erhalten wir ein lineares Gleichungssystem fiir 77, 7>, T3, wenn wir die Abhingigkeit
des Volumenstroms M von T, T, S 1 nicht beachten. Damit kann man die 7; und insbe-
sondere die Differenz T, — 77, die in (7.13) auftritt, nur durch M und die Modellparameter
ausdriicken. Dies ist in der folgenden Ubung formuliert.

Ubung 7.30 Zeigen Sie: Fiir die stationiren Werte von T, T, gilt:

M (IIIZ(TZ* - Tl*) + 1113(T3* - Tl*)) + 111213(T2* - Tl*)

h-h= (F + )M + L)(M + 1) — M3

mitl,- = )LlV,,l = 1,2,3.
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Wird diese Beziehung in Gleichung (7.13) eingesetzt, so ergibt sich

p(M)\
q(M)) =0

mit p,q € I1,, da sich der Term M 3 im Nenner aufhebt. Dabei sind

M?*+k (,BSOFl +a (7.14)

p(M) =a;M* +a M, aj.a;€R,
3 3
q(M) =>"1L:M* + (hly + L5 + LiM + [ ] 1.

=1 i=1

Wird (7.14) ndher untersucht, so kann folgende Aussage bewiesen werden:

Ubung 7.31 Zeigen Sie: Fiir ; > 0,i = 1,2,3 und alle F; € R hat das Polynom ¢ in
der Darstellung (7.14) keine positiven Nullstellen.

Damit kann (7.14) dquivalent als Polynom vierten Grades in M geschrieben werden,
indem mit g(M) # 0 multipliziert wird:

g(MYM? + k (BSoFig(M) + ap(M)) = 0. (7.15)

Mogliche Werte fiir den stationdren Volumenstrom M sind also die Nullstellen eines Po-
lynom vierten Grades, wobei aber nur reelle und nicht negative Werte in Frage kommen.

Fiir Polynome vierten Grades gibt es einen analytische Losungsformel, die sich jedoch
aus einem bestimmten Grund nicht gut eignet:

Ubung 7.32 Recherchieren Sie nach einer expliziten Losungsformel fiir die Nullstellen
eines Polynoms vierten Grades. Warum ist diese Methode fiir unsere Zwecke nicht beson-
ders geeignet?

Ziel ist es, fiir gegebene Werte des Frischwasserflusses F; die zugehorigen stationdren
Werte von M zu bestimmen. Gleichung (7.14) kann jedoch schon einen Eindruck der Be-
ziehung zwischen diesen beiden Groflen ergeben, wenn darin umgekehrt F; als Funktion
von M angesehen wird, nimlich als

_ 1 2 p(M)
FI(M)__k,BSO (M +k(x—q(M)). (7.16)

Es ist zu erkennen, dass sich die Darstellung des Frischwasserflusses F; in Abhiingigkeit
von M aus einer Parabel mit negativem Vorzeichen und einem Term p(M)/q(M) zusam-

mensetzt. Dieser zweite Term ist, als Quotient zweier Polynome zweiten Grades (s.o0.)
und da der Nenner keine positiven reellen Nullstellen hat, beschrinkt. Es folgt ebenfalls
Fi(0) =0.

["Jbung 7.33 Fiihren Sie eine Kurvendiskussion fiir die Funktion F; in (7.16) durch und
skizzieren Sie sie.
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7.5 Berechnung der Nullstellen einer skalaren Gleichung

Als numerisches Losungsverfahren kann wieder das Newton-Verfahren angewendet wer-
den. Die Ableitung ist fiir ein Polynom einfach anzugeben. Das Verfahren liefert nur eine
Nullstelle, zur Berechnung aller muss es mehrfach von verschiedenen Werten aus gestartet
werden.

Einfacher und hier ausreichend ist das folgende Verfahren, die Bisektion:

Algorithmus 7.34 (Bisektion)
Input:

e Stetige Funktion F, von der eine Nullstelle berechnet werden soll.
e Intervall [ag, by], in dem genau eine Nullstelle liegt.
e Genauigkeit £ > 0, mit der die Nullstelle berechnet werden soll.

Algorithmus:

1. k=0
2. Solange by —ay > e:
(@) xi := 3(ar + br)
(b) Wenn F(ax) F(xy) <O0:agy1 = ag, b1 = xi
Sonst: ay1 = X, b1 = bg.
@k=k+1

Output: Nullstelle xy.

Das Verfahren funktioniert nur, wenn im Intervall [a, b] genau eine Nullstelle liegt. Es
muss daher fiir das Rahmstorf-Boxmodell die positiven reellen Zahlen in kleinen Schritten
abgesucht werden, um alle Nullstellen zu finden. Das macht das Verfahren unpraktisch.

Berechnung liber Eigenwerte

Eine weitere Alternative ist die Berechnung der Nullstellen iiber die sog. Begleitma-
trix: Die Idee dabei ist, eine Matrix A aufzustellen, deren charakteristisches Polynom
det(A — A1) genau das vorliegende Polynom ist, dessen Nullstellen gesucht sind. Da die
Dimension der Matrix gleich dem Grad des Polynoms ist, handelt es sich zumeist um
eine Matrix geringer Dimension. Die entscheidende Frage ist, wie diese Matrix gewéahlt
einfach werden kann.
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Abb.7.5 Stationdre Zustinde beim Rahmstorf-Boxmodell, berechnet iiber die Eigenwerte der Be-
gleitmatrix. b Ein Zoom, der zeigt, dass sich fiir f1 = 0 die Reihenfolge der Eigenwerte dndert.
Gezeigt sind nur die reellen Eigenwerte
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Beispiel 7.35 Das charakteristische Polynom der Matrix

0 1 0

kann mit dem Laplace’schen Entwicklungssatz zu

1 0 -1 0 -4 1
det(A — AI) = —c( det det — A) det
et( ) Co de (—)L 1)+Cl e (0 1) (c2 +A)de (0 _A)

= —co—CiA— A2 =23 =1q()

berechnet werden. Die Nullstellen von
3
p(d) = Zaill
i=0

sind daher gleich der Nullstellen von ¢ und —¢g, und entsprechen damit den Eigenwerten
von A, wenn ¢; = a; /a3, i =0, 1,2 gesetzt wird.

Diese Idee kann fiir beliebige Dimension n angewendet werden:
Ubung 7.36 Verallgemeinern Sie die obige Idee fiir ein Polynom p € IT,.

Beispiel 7.37 MATLAB' und OCTAVE implementieren diesen Algorithmus in der Funk-
tion roots. (Die Koeffizienten sind dort umgekehrt nummeriert!)

Beispiel 7.38 Beim Rahmstorf-Boxmodell wird die Methode auf das Polynom aus (7.15)
angewendet.

Ubung 7.39 Wenden Sie die Funktion roots fiir das Boxmodell an und erzeugen Sie
einen entsprechenden Plot, vgl. Abb. 7.5.

I MATLAB ist ein eingetragenes Warenzeichen von The MathWorks Inc.
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Hier wird ein weiteres Boxmodell vorgestellt, das den globalen Kohlenstoffkreislauf modelliert.
Verglichen mit dem Rahmstorf-Modell ist es linear und damit wesentlich einfacher. Es gibt die
Moglichkeit, Aussagen iiber die Theorie linearer Differentialgleichungssysteme mit konstanten Ko-
effizienten vorzustellen und anzuwenden.

Das hier vorgestellte Modell wurde von G. W. Griffiths, A.J. McHugh und W. E. Schiesser
in der hier benutzten Version in [26] vorgestellt. Dokumentation [27] und Implementie-
rung sind vom dritten Autor erhiltlich.

Das Modell beschreibt die globalen CO,-Fliisse und benutzt dazu sieben rdumliche
Boxen oder Kompartments. In diesen Kompartments wird die ortliche Verteilung des CO,
vernachlissigt, was natiirlich eine grobe, fiir Boxmodelle eben charakteristische Ideali-
sierung darstellt. Das zeitabhingige Verhalten der Konzentrationen in den sieben Boxen
wird modelliert, und so ergibt sich ein gewohnliches Differentialgleichungssysteme. Mit
einem Quell- oder Forcingterm konnen CO,-Emissionen in das Modell eingebracht und
so seine Reaktion auf verschiedene globale Erwédrmungsszenarien simuliert werden. Es
ist ebenfalls leicht moglich, tiber Parametervariationen der Kopplungsterme zwischen den
einzelnen Kompartments Sensitivititstudien durchzufiihren. Die sieben Boxen des Mo-
dells sind, vgl. Abb. 8.1:

Unterer Bereich der Atmosphire (Engl.: lower atmosphere): la
Oberer Bereich der Atmosphire (Engl.: upper atmosphere): ua
Kurzlebige Lebewesen (Biota, Engl.: short-lived biota): sb
Langlebige Lebewesen (Biota, Engl.: long-lived biota): | b
Obere Schicht des Ozeans (Engl.: upper layer): ul

Untere Schicht des Ozeans (Engl.: deeper layer): d1

Marine Biosphire (Engl.: marine biota: mb.

Der CO,-Gehalt in diesen Kompartments wird hier jeweils mit y; mit j € {I,...,7} =
{la,ua,sb,lb,ul,dl, mb}bezeichnet. (Im Originalmodell wird c statt y fiir die Zustands-

© Springer-Verlag Berlin Heidelberg 2015 103
T. Slawig, Klimamodelle und Klimasimulationen, Springer-Lehrbuch Masterclass,
DOI 10.1007/978-3-662-47064-0_8
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Abb. 8.1 Boxen bzw. Kom-

partments des globalen upper
CO»-Modells mit Interak- atmosphere
tionen und Forcing/Inputterm T
long-lived lower short-lived
biota ~ 7| atmosphere[” biota

marine upper layer @
biota < ocean

deeper layer
ocean

A

oder Modellvariablen verwendet.) Die Kompartments sind wie in Abb. 8.1 miteinander
gekoppelt. Der zusitzliche Forcingterm beeinflusst die untere Schicht der Atmosphire,
also die Gleichung fiir y; = yy,.

Es wird ein Anfangswertproblem in der Standardform (3.2) fiir ein System mit den sie-
ben Zustandsvariablen y = (yi)l?:1 betrachtet. Ziel des Modells ist die Berechnung der
Abweichung des CO,-Gehalts vom vorindustriellen Zustand, der fiir 7y = 1850 angenom-
men wird. Die Zeitskala im Modell ist bereits in Jahren formuliert. Anschlieend erfolgt
eine Umformulierung mit

e eciner Verschiebung der Zeitskala 7 =t —ty = ¢ — 1850
e cine Verschiebung und Skalierung (analog zur Vorgehensweise in den Abschn. 4.1 und
4.2) der Werte der Zustandsvariablen

- yilto+ 1) — yi(t)

5 (7) := 8.1
Yi(t) ) (8.1
Es gilt

S dy 1

yi(t) =4 @) = Vi(to) dt @) = yi(fo)yi(t)‘ (8.2)

Die Kopplungen zwischen den Kompartments oder Boxen werden als lineare Reaktions-
terme der Form

T = ay () - 5 (1)
J#Fi
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angenommen. Nicht in jeder Gleichung sind alle Kopplungsterme ungleich Null. Welche
Reaktionen stattfinden bzw. welche Boxen miteinander verbunden sind, ergibt sich aus
ihrer Definition und Anordnung, wie in Abb. 8.1 dargestellt. Dabei sind in den Reaktions-
koeffizienten a;; bereits die Skalierungen aus (8.1) bzw. (8.2) eingegangen. Sie werden
durch

aij=_ la]=lv’7’.]7él’ Wenneij¢0,

9[] ’
als das Inverse der mittleren Aufenthaltsdauer oder Mischungszeit 6; ; des CO,, das aus
Box i in Box j gelangt, beschrieben, sofern iiberhaupt ein Transfer stattfindet. Der Wert
6;; beschreibt die Zeit (in Jahren), die das CO, in Kompartment j benétigt, um sich mit
dem in Kompartment i zu mischen. Einige der in [27] verwendeten Werte

012 = 5, O3 =1, 014 =100, 6;5=30, 6y =5, 031 =1,

8.3
04 =100, 05 =30, 055 =100, 057 =10, 66 = 1000, 675 = 10. )

werden dort wie folgt motiviert:

e 013 = 1 (Jahr) fiir den Transfer von der unteren Atmosphire in die kurzlebige Vege-
tation, die hier hauptsichlich als landwirtschaftlich genutzte Pflanzen (mit jéhrlicher
Ernte) angesehen werden.

e 0, = 100 (Jahre) fiir den Transfer von der unteren Atmosphire in die langlebige
Vegetation, die hauptsidchlich aus Bidumen besteht mit einer Lebensdauer im Bereich
von 100 Jahren.

e (g = 1000 fiir den Transfer der oberen in die tiefere Schicht des Ozeans, was die
Annahme widerspiegelt, dass CO, 1000 Jahre in dieser unteren Schicht verbleibt.

Aus Griinden der Stoftbilanz (wenn keine Quellen vorliegen) gilt

;
Y a; =0 also a;=-Y a; i=1.."7 (8.4)

j=1 j#i
Allgemeiner definieren wir:

Definition 8.1 Ein System von Differentialgleichungen (3.1) mit f : I x D C R" - R”
heillt masse- (oder stoff-) erhaltend in I, wenn gilt:

Y fiy®)=0 Viel
i=1

Damit ergibt sich fiir die transformierten und skalierten Zustandsvariablen, die wir hier
wieder ohne Tilde schreiben, ein Anfangswertproblem der Form

y'(1) = Ay(t) + b(t), >0, y(0) = 0.
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Die Matrix A hat die Gestalt
la wa sb b ul dl mb

la [an apn a3z au as 0
ua | ay a 0 0 0
sb layy 0 azxz O 0
A=1b lay 0 0 au 0
ul lass 0 0 ass dsg dsy
dl 0 0 0 dgs dgg O
mb \ 0 0 0 ais 0 ap

Ubung 8.2 Begriinden Sie: Wegen der Massenerhaltung muss die Matrix singulir sein.

Der Forcingterm b(t) fiigt dem System Stoff (hier CO;) hinzu. Er wirkt nur in der
ersten Gleichung und wird daher als

b(t) = (b1(1),0,...,0)T
geschrieben, z. B. mit (wie in [27] vorgeschlagen):
bi(t) = crexp(ri(t)), c1.r1 > 0.
Dabei ist c; = 4,4x1073 ppm als Referenzwert fiir 2007. Fiir | wird einmal die Konstante

rip = 0,01 und als andere Beispiele ein Ansatz

t —2010
2100 — 2010

mit . € {0,005,0,0025, —0,01}, d. h. verschiedene Steigerungen und eine Reduktion
vorgeschlagen. In [27] wird die Ozeanchemie noch weiter untersucht, worauf wir hier

rit) =rp+rie

verzichten.

8.1 Losungsstruktur linearer Differentialgleichungssysteme

Wir beweisen einige allgemeine Resultate fiir lineare Systeme mit eventuell zeitabhéngi-
gen Koeffizienten, d. h. Anfangswertprobleme der Form

Y'(@) = A@t)y(t) +b(), t €1, (8.5)
y(to) = yo (8.6)

mit stetigen Funktionen 4 : I — R™" (bzw. C"”")und b : I — R" (bzw. C") so-
wie I,y wie in Definition 3.2. Die folgende Aussage ist fiir Uberlegungen im nichsten
Abschnitt niitzlich. Dort wird sie auch fiir komplexe Systeme benétigt. Sie betrachtet des
Losungsraum des sog. homogenen Systems, d.h. fir b = 0.
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Lemma 8.3 Die reellen (bzw. komplexen) Losungen des homogenen Differentialglei-
chungssystems (8.5), b = 0, bilden einen n-dimensionalen Vektorraum iiber R (bzw. C).
Die Abbildung yy — y(t) vom Anfangswert auf die Losung von (8.5),(8.6) ist linear und
bijektiv.

Beweis Nach Satz 3.28 und Anmerkung 3.38 ist die Losung von (8.5),(8.6) eindeutig.
Damitist yo — y(¢) wohldefiniert. Sei yo = pa+&b, u, & € R (bzw. C),a,b € R” (bzw.
C") und y die zugehorige Losung. Weiter seien y,, y, Losungen mit den Anfangswerten
Yo = a bzw. yo = b. Dann gilt wegen der Linearitit der Gleichung

y(0) = mya(t) +Eyp(1), 1t el
also ist yo > y(t) linear, und die Dimension des Losungsraumes ist n. Daher ist die

Abbildung yo + y(¢) bijektiv. O

Diese Aussage motiviert die folgende Bezeichnung, die sich auf die Gesamtheit der
Losungen der Differentialgleichung (8.5) bezieht.

Definition 8.4 ((Losungs-)Fundamentalsystem) Eine Basis (y;)’_; mit y; : / — R”
(bzw. C"),i = 1,...,n, des Losungsraumes des homogenen Systems (8.5), b = 0, heift
Fundamentalsystem und wird, spaltenweise angeordnet, als Y := (y;)/_, geschrieben.

Ein Fundamentalsystem erfiillt die Gleichung
Y ()= AD)Y(@), tel. (8.7)

Ist Y das Fundamentalsystem mit Y (¢y) = I, dann hat das Anfangswertproblem fiir die
homogene Gleichung die Losungsgestalt

() = Y(@)yo. (8.8)

Wir betrachten nun inhomogene Gleichungen.

Lemma 8.5 Sei Y ein Fundamentalsystem der Gleichung (8.5), b = 0. Jede Losung y
der inhomogenen Gleichung (b # 0) hat die Form y(t) = Y(t)c + y(t) mit ¢ € R" und
einer beliebigen Lisung y der inhomogenen Gleichung.

Beweis Sind y, y zwei beliebige Losungen der inhomogenen Gleichung, dann 16st y — y
die homogene Gleichung, lasst sich also als Linearkombination der Elemente des Funda-
mentalsystems, d.h. als y(¢) — y(¢) = Y(¢)c schreiben. O

Analog erhalten wir:

Korollar 8.6 Die Losung des Anfangswertproblems (8.5),(8.6) ergibt sich als Summe der
Losung der homogenen Gleichung und Anfangswert yo und einer Losung der inhomoge-
nen Gleichung mit Anfangswert yo = 0.
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Mit dem Fundamentalsystem lisst sich dies wie folgt ausdriicken.

Lemma 8.7 Sei Y das Fundamentalsystem der Gleichung (8.5) mitb = 0, das Y (ty) = I
etfiillt. Dann ist die Losung des Anfangswertproblems der inhomogenen Gleichung

t

y(@) =Y(t)yo + / Y()Y(s) 'b(s)ds, tel.

to

Beweis Mit Korollar 8.6 und (8.8) ist y(¢) = Y(¢)yo Losung des Anfangswertproblems
der homogenen Gleichung. Auflerdem erfiillt

y() := Y(Z)/Y(s)_lb(s)ds

die Anfangsbedingung y(fo) = 0. Fiir die Ableitung des unbestimmten Integrals (vgl. [13,
§19 Satz 1]) gilt

1

% / Y($) 'b(s)ds | = Y(@)'b(r), tel.

lo

Damit ist y wegen (8.7) und

() = Y'(t) [ Y(s)"'b(s)ds + Y)Y (1)~ b(r)

= AY (1) f Y(s)'b(s)ds + b(t) = AP (t) + b(2)

eine Losung der inhomogenen Gleichung. O

8.2 Lineare Differentialgleichungssysteme mit konstanten
Koeffizienten

Wir betrachten jetzt (8.5) mit konstanter (zuerst wieder komplexer) Koeffizientenmatrix
A € C™" und, da die Gleichung dann autonom ist, z, = 0:
y'(t) = Ay(r), t>0. (8.9)

Ein Fundamentalsystem kann mit Hilfe der Matrix-Exponentialfunktion dhnlich zum ein-
dimensionalen Fall (Losung: y () = ce’) angegeben werden. Fiir die Definition benoti-
gen wir die folgende Eigenschaft fiir Matrixnormen:
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Definition 8.8 (Submultiplikative Matrixnorm) Eine Matrixnorm || - || auf dem R™*”"
heillt submultiplikativ, wenn gilt:

IAB < [[AllB] VA.BeR"™.

Ubung 8.9 Welche der in Lemma 3.37 angegebenen Matrixnormen sind submultiplika-
tiv?

Nun kann die Matrix-Exponentialfunktion definiert und ihre Eigenschaften gezeigt
werden:

Lemma 8.10 (Matrix-Exponentialfunktion) Fiir A € C"*" konvergiert
-
= [

absolut. Fiir alle t € R ist die Funktion t — e differenzierbar mit

d
g
dr

= Ae™
Damit ist e ein F undamentalsystem von (8.9).

Beweis Da fiir eine beliebige submultiplikative Matrixnorm

gilt, folgt die Konvergenz analog zur Exponentialfunktion mit skalarem Argument. Der
Konvergenzradius der Reihe e?’ ist 0o, daher kann sie iiberall gliedweise differenziert
werden (vgl. [13, §21 Satz 5]):

|A||’

d ” S ll_lAl ll lAl e ll_lAl S Z1A1+1 4
Lot =% LA NP2 e,

Die Eigenschaft des Fundamentalsystem folgt aus Definition 8.4. O

Wir benétigen spiter die Funktionalgleichung der Exponentialfunktion (analog zu der
fiir reelle Argumente):

Ubung 8.11 Zeigen Sie: Fiir A, B € C"™" mit AB = BA gilt 478 = ¢4e?.
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Wegen e?’|,—o = I gilt fiir die Losung eines Anfangswertproblems, vgl. (8.8):
Korollar 8.12 Die Lisung von (8.9) mit y(0) = y, ist y(t) = e* yy,t > 0.

Je nach den Eigenschaften von A € R™*", speziell ihrer Eigenwerte, haben Fundamen-
talsysteme fiir (8.9) unterschiedliche Form. Wir betrachten fiir Klimamodelle nur reelle
Matrizen und interessieren uns auch nur fiir reelle Fundamentalsysteme. Zur Darstellung

des Fundamentalsystems e’ benutzen wir die Jordan’schen Normalform:

Lemma 8.13 (Jordan’sche Normalform) Zu A € R"*" existieren eine reguliire Matrix
S € C"™" und eine Blockdiagonalmatrix

J =diag(Jy,...,J,) € C™" mitm e {l,...,n}, (8.10)
so dass
A=S8JS"! (8.11)
gilt. Jedes Jy. ist bidiagonal von der Form
A 10 0

Ji

Z/Xklnk—I—NkEanxnk, ng>1,k=1,...,m.
: . o1
0 - 0 A
Dabei bezeichnet 1,, die Einheitsmatrix der Grdfie ny. Die Eigenwerte von A sind ent-
sprechend nummeriert, d. h. zu jedem Block J;, gehirt der Eigenwert Ay. Die Matrizen Ny,
sind nilpotent mit N, ,:' kK = 0. Ein Eigenwert mit identischer algebraischer und geometri-
scher Vielfachheit hat so viele Blocke Ji mit n = 1, wie seiner Vielfachheit entspricht.
Ein Eigenwert, dessen algebraische und geometrische Vielfachheit sich unterscheiden, hat
so viele Blocke Ji. mit n > 1, wie seiner geometrischen Vielfachheit entspricht.

Beweis Siehe [28, 4.6.7]. O

Nach Lemma 8.10 ist e’ ein Fundamentalsystem, das aber auch fiir 4 € R"*" we-
gen moglicherweise auftretender komplexer Eigenwerte komplex sein kann. Wegen A' =
(SJ57")" = SJ'S7!,1 € N, und daher

eAt — SeJ[S_l,

bestimmen wir zunichst die Exponentialfunktion der Jordan-Matrix J:
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Lemma 8.14 Seien A, J, S wie in Lemma 8.13. Dann ist

e’! = diag ((exp(Ji?))f—,) (8.12)
mit
L pui@®) - Prng—1(2)
exp(Jet) = exp(Ae?) (_) .1 ‘ : e RNk puell. (8.13)
: DPr1(t)

Beweis Die Matrix e’’ ist eine Blockdiagonalmatrix mit
e’! = diag ((exp(Jit))y—,) -
Mit Ubung 8.11 und exp(Axtly,, ) = I, exp(Axt) ist
exp(Jxt) = exp(Axtl,, ) exp(Nit) = exp(Axt) exp(Nit).

Da Ny nilpotent ist, gilt

e’} N]éll ng—1 ngll nr—1 l
exp(Nit) = ) —— = > = > N{pa(t) mit pry € Iy, pr(0) = 1.
1=0 : 1=0 : 1=0

Die Darstellung (8.13) folgt durch Berechnen der Matrixpotenzen N,g und der Struktur
von Nj. O

Damit und wegen der Regularitéit von S ergeben sich folgende Darstellungen komple-
xer Fundamentalsysteme:

Satz 8.15 Mit A, S, J wie in Lemma 8.13 sind e’', Se’' und e’' = Se’' S~ komplexe
Fundamentalsysteme von (8.9).

Bei komplexen Eigenwerten (die immer als paarweise zueinander konjugiert komplexe
Werte auftreten) ergibt sich folgende allgemeine Darstellung eines reellen Fundamental-
systems:

Satz 8.16 Scien A, S, J wie in Lemma 8.13, S, € C"*"k die zum Eigenwert Aj, gehiren-
de Teilmatrix von S mit den Spalten sy € C*", 1l = 1,...,ng, pry € ;1,1 =1,...,npy—1
wie in (8.13) und pyo := 1. Dann bilden die folgenden Funktionen ein reelles Fundamen-
talsystem von (8.9):

e Fiir reelle Eigenwerte A,k € {1,...,m},j =1,... ng:

J
Vi (0) =D pej—1()skr exp(Aet). (8.14)
=1
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e Fiir zueinander konjugiert komplexe Eigenwertpaare A1, = Ay k € {1,...,m}, j =
1, e Nl

J
(@) = Z Di.j—1(t) (Resg; cos(Im Agt) — Im sy sin(Im Ag 1)) exp(Re Axt),
= (8.15)

j
Vi1, () = Z Di.j—1(t) (Re sy sin(Im Agt) 4 Im sz cos(Im Axt)) exp(Re At).
=1

Beweis Die Spalten s;; von S € C™"k sind die zu A, gehorenden Eigen- und (fiir
ny > 1) Hauptvektoren. Es gilt

Se’' = (S.....S,) diag ((exp(Jet))j—,) (8.16)
= (S1exp(Jit), ..., Sy exp(Jut))

mit Si exp(Jixt) € C"™"k k = 1,...,m. Fiir die j-te Spalte von S} exp(Jit) ergibt sich
aus (8.13):

J
(Skexp(Jit)); = Y st pij—i () exp(Aet) =: 255 (1), j = 1,....ns. (8.17)
1=

Diese Funktionen bilden fiir k = 1,...,m das komplexe Fundamentalsystem S ell s,
(8.16), und sind fiir A; € R als yi; = z; auch Teile des reellen Fundamentalsystems.
SeiIm Ay # Ound Ay, Apy; = A zueinander konjugiert komplexe Eigenwerte. Es gilt

dann sg41; = 5,1 = 1,...,ng, da die Eigen- bzw. Hauptvektoren ebenfalls zueinander
konjugiert komplex sind.
Fiir dieses k und jedes feste j € {1,...,n,} sind die Funktionen z;;, zxy1,; aus (8.17)

als Teil eines komplexen Fundamentalsystems linear unabhéngig.
Die beiden Funktionen yy; := Re z;, yry1,; := Imz; : R — R”, also

J
Yij(t) = Z Dk.j—i1(t) (Re sy cos(Im A1) — Im sy sin(Im Ay 7)) exp(Re At)
=1

J
Vi1, () = Z Di,j—1(t) (Resg; sin(Im Agt) + Imsg; cos(Im Ax2)) exp(Re A t)
=1

sind, im reellen Vektorraum der reellen Losungen, linear unabhéngig voneinander und von
den anderen auf gleiche Weise konstruierten Funktionen yy;. O

Anmerkung 8.17 Aus y(t) = Y(t)c, ¢ € R" folgt mit y(0) = Y(0)c, dass ¢ = Y(0)"'y,
ist. Also kann jede Losung mit dem Fundamentalsystem oben als y(1) = Y (¢)Y(0)!y,
geschrieben werden und es gilt e’ = Y(1)Y(0)~".



Das Lorenz-Modell

Das Lorenz-Modell ist ein System aus drei nichtlinearen gewohnlichen Differentialgleichungen.
Im Vergleich etwa zum Rahmstorf-Boxmodell ist seine Herleitung schwieriger zu verstehen. Das
Modell ist dlter und unter dem Aspekt der Reduktion des Rechenaufwands entstanden. Es stellt
ein einfaches Modell der Konvektionsstromung, d. h. der durch Temperaturunterschiede bewirkten
Stromung in der Atmosphire dar. Das Lorenz-Modell kann als Beginn der Chaostheorie angesehen
werden. In der Klimaforschung ist das Modell nicht mehr relevant. Fiir unterschiedliche Werte der
drei im Modell vorhandenen Parameter ergeben sich unterschiedliche Losungstypen, wie etwa peri-
odische Losungen oder den bekannten Lorenz-Attraktor. Die Sensitivitit der Losung beziiglich von
Anfangswerten und Parametern ist hoch, so dass an diesem Modell gut Verfahren hoherer Konver-
genzordnung getestet werden konnen. Fiir weitere Details s. [29-31].

Das Lorenz-Modell oder die Lorenz-Gleichungen sind nach Edward N. Lorenz benannt.
Das Modell wurde von ihm 1963 in [29] publiziert. Es stellt ein einfaches Modell der
Konvektionsstromung, d. h. der durch Temperaturunterschiede bewirkten Stromung in der
Atmosphire dar. Lorenz machte mit den damals vorhandenen bescheidenen Computerres-
sourcen numerische Rechnungen, die bei einer kleinen Anderung der Anfangswerte groBe
Anderungen der Modellgroien bewirkten, was zu dem Ausdruck ,,Schmetterlingseffekt*
fiihrte. Das Modell enthilt drei Parameter. Fiir bestimmte Werte dieser Parameter er-
hilt man z. B. eine periodische Losung, fiir andere den heute schon teilweise auch als
Bildschirmschoner verwendeten Lorenz-Attraktor. Auf Grund der heutigen verfiigbaren
Rechenkapazititen ist die im Lorenz-Modell durchgefiihrte Vereinfachung fiir Klimasi-
mulationen nicht mehr notig.
Die Modellgleichungen fiir die drei Zustandsvariablen y := (X, Y, Z) lauten

X'(t) =o(Y (1) — X(1))
V)= fo@) <= Y'(t)=(R—-Z(1)X(t) —Y(@)
Z'(t) = X(@)Y(t) — BZ(2).

Dabei sind o, R, B > 0 Modellparameter. Zusammen mit Anfangswerten erhélt man ein
Anfangswertproblem fiir ein dreidimensionales System gewohnlicher, autonomer Diffe-
rentialgleichungen erster Ordnung.

© Springer-Verlag Berlin Heidelberg 2015 13
T. Slawig, Klimamodelle und Klimasimulationen, Springer-Lehrbuch Masterclass,
DOI 10.1007/978-3-662-47064-0_9
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9.1 Ein Einblick in die Modellierung

Die Modellierung des Lorenz-Modells basiert auf stromungsmechanischen Grundglei-
chungen, die wir erst spiter behandeln. Wir wollen das Modell trotzdem benutzen, be-
schreiben hier aber nur kurz die Idee der Modellierung.

Das Lorenz-Modell beschreibt die Stromung in der Atmosphire, und zwar in einem
zweidimensionalen vertikalen Schnitt und in dieser Ebene in einem Rechteck mit Seiten-
lingen H/a (in x;-Richtung) und a. Zweidimensional heif3t hier, dass angenommen wird,
dass in Richtung der dritten Dimension keine Anderung stattfindet. Angenommen wird
auflerdem, dass am unteren Rand, d. h. am Boden, und am oberen Rand der betrachteten
Luftschicht jeweils eine konstante Temperatur mit einer Differenz AT vorliegt. Die Tem-
peraturdifferenz AT bewirkt — wie beim Boxmodell — eine sog. Konvektionsstromung: Es
bilden sich Zellen, das sind in diesem zweidimensionalen Modellen kreis- oder ellipsen-
dhnliche Formationen, auf denen die Luft zirkuliert.

Die relevanten Grofien des Modells sind der Geschwindigkeitsvektor v mit seinen bei-
den Komponenten v; und v, sowie die Temperatur 7. Diese Groen sind Funktionen von
Ort x = (xy, x;) und Zeit ¢.

Nun erfolgt ein in der zweidimensionalen Stromungsmechanik eine gewisse Zeit sehr
populédrer Ansatz: Es wird eine Funktion ¥ eingefiihrt, aus der die beiden Geschwindig-
keitskomponenten wie folgt berechnet werden konnen:

v 4
U](x,t) = a_xz(xst)s vz(xst) = _a_xl(xst)

Mit dieser Setzung ist nur eine skalare Funktion ¥ zu bestimmen. Aulerdem ist so die
Massebilanz, eine wesentliche Erhaltungsgleichung in der Stromungsmechanik (vgl. Ab-
schn. 16.1), automatisch erfiillt. In Zeiten geringerer Rechenleistung war dies eine we-
sentliche Reduzierung des Aufwands. Dieser Ansatz funktioniert so jedoch nur in zweidi-
mensionalen Stromungen.

Die Funktion ¥ heiflit Stromfunktion. Sie ist nicht nur ein Konstrukt zur einfachen
Losung der Gleichungen, sondern ihre Linien gleicher Funktionswerte hilfreich zum Ver-
standnis der Stromung:

Definition 9.1 (Niveaumenge) Fiir F : R” D D — R und ¢ € R heifit
N(F,¢):={xeR": F(x) =c}
Niveaumenge von F zum Wert c.

Diese sog. Stromlinien sind ndmlich stets tangential zum Geschwindigkeitsvektor v. Im
stationdren Fall v = v(x) sind die Stromlinien gleich der Bahnlinien der Luftteilchen, die
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Abb.9.1 Ansatzfunktionen beim Lorenz-Modell fiir H = a = 1, a fiir die Stromfunktion ¥, b fiir
die Temperaturabweichung 6

sich bewegen. Mit der Stromfunktion kann also schon die Stromung visualisiert werden,
indem ihre Niveaulinien gezeichnet werden.

Um die Stromfunktion und die Temperatur zu bestimmen, werden zwei weitere Bilanz-
gleichungen, nimlich die Impulsbilanz (Newton’s zweites Gesetz) und die Energiebilanz
benutzt. Diese werden wir hier noch nicht behandeln. Insbesondere die Impulsbilanz ist
nichtlinear und, da sie fiir die Stromfunktion formuliert werden muss, etwas kompliziert.
Fiir die Temperatur wird wieder (analog zum nulldimensionalen Energiebilanzmodell) ein
Ansatz gemacht, der nur die Anderung ® zum Mittelwert betrachtet.

Lorenz machte nun den Ansatz

W(x,t) = ¢ X(t)v/2sin (%xl) sin (%xz)

Ox,t) = cz(Y(I)ﬁcos (%xl) sin (%xz) — Z(t)sin (%xz))

Die Grundidee ist, die Zeitabhédngigkeit nur in den Koeffizientenfunktionen X, Y, Z an-
zusetzen und fiir die Ortsabhingikeit periodische Funktionen zu benutzen. Dabei sind
c1, ¢y Konstanten. Die sich aus den einzelnen ortsabhédngigen Ansatzfunktionen erge-
benden Stromlinien bzw. Niveaulinien der Temperaturabweichung sind in Abb. 9.1 zu
erkennen.

Werden diese Darstellungen in die Impuls- und Energiebilanz eingesetzt, so erge-
ben sich bei weiterer Approximation die Lorenz-Gleichungen. Der Parameter B in den
Lorenz-Gleichungen hingt damit z. B. nur von dem Seitenverhiltnis a ab, o ist die sog.
Prandtizahl, die das Verhiltnis von Zihigkeit (der Luft) und der Wirmeleitfahigkeit (der
Luft) bezeichnet. Der Wert R hingt selbst wieder von a, H, AT und Pr ab.
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9.2 Existenz, Eindeutigkeit und Symmetrie

Einige Eigenschaften des Lorenz-Modells konnen sehr einfach gezeigt werden: Zum einen
gilt folgende Symmetrieeigenschaft.

Ubung 9.2 Essei (X(¢),Y(¢), Z(t)),t > 0 eine Losung des Lorenz-Modells. Zeigen Sie,
dass auch (—X(¢),—Y(¢), Z(t)),t > 0 eine Losung ist.

Ebenfalls gezeigt werden kann die Existenz und Eindeutigkeit der Losung.

Ubung 9.3 Wenden Sie den Satz von Picard-Lindeldf auf die Lorenz-Gleichungen an:
Gibt es fiir beliebige Anfangswerte eine eindeutige Losung?

Interessant sind auch Mengen, die eine Trajektorie nicht verldsst, wenn sie darin einmal
angekommen ist.

Definition 9.4 (Invariante Menge) Fiir eine Differentialgleichung (3.1) mit f, I, D wie
dort definiert und 7y € I, heilt M C D positiv invariant, wenn aus y, € M folgt, dass
auch {y(t) :t € I,t > ty, y(to) = yo} C M gilt.

Ubung 9.5 Zeigen Sie: Die z-Achse ist eine invariante Menge.

9.3 Stationdre Zustande

Die Berechnung der stationdren Punkte ist — wie beim Boxmodell deutlich wurde — bei ei-
ner nichtlinearen und vektorwertigen Funktion nicht trivial. Beim Lorenz-Modell konnen
diese Punkte analytisch berechnet werden.

Ubung 9.6 Zeigen Sie: Die stationiren Punkte des Lorenz-Modells sind

y1 =1(0,0,0), y»=(yB(R-1).,y/B(R—1),R—1) wenn R > 1,
y3=(-vB(R-1),—yB(R—1),R—1) wennR > 1.

Numerische Berechnung

Die in Kap. 7 vorgestellten Methoden zur numerischen Berechnung von stationédren Punk-
ten konnen (z. B. zur Ubung oder zum Test der numerischen Verfahren) auch beim Lorenz-
Modell angewendet werden.

Fiir das Newton-Verfahren wird die Jacobi-Matrix von f benétigt. Sie lautet fiir die
Lorenz-Gleichungen:

ffoy=lr-z -1 -x|. ©.1)
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Ubung 9.7 Wenden Sie das Newton-Verfahren auf die Lorenz-Gleichungen an und ver-
suchen Sie damit alle stationdren Punkte zu berechnen.

Wir betrachten auch das Pseudo-Zeitschrittverfahren (Algorithmus 7.16) mit dem
Euler-Verfahren. Fiir die Jacobi-Matrix der Iterationsfunktion gilt:

1—ho ho 0
Gy)=1+hf'y)=|h(R-=2Z) 1-h —hX
hY hX 1—hB

Um die Kontraktionseigenschaft nachzuweisen, kann nach Lemma 3.39 eine Norm (vgl.
Lemma 3.37) der Jacobi-Matrix betrachtet werden.

Betrachten wir fiir das Lorenz-Modell die Zeilensummennorm || - || o, s0 wird direkt
deutlich, dass die Summe der Betrige der Elemente der ersten Zeile immer grofer oder
gleich 1 ist, so dass die Kontraktionseigenschaft mit dieser Norm nicht gezeigt werden
kann, egal wie h gewihlt wird.

Ubung 9.8 Untersuchen Sie die Konvergenz des Pseudo-Zeitschrittverfahrens mit Hilfe
der Spaltensummennorm der Jacobi-Matrix. Unter welchen Bedingungen an die Schritt-
weite h, die Parameter R, B, o und fiir welche Bereiche von X, Y, Z liegt Konvergenz
vor?

Bei den Lorenz-Gleichungen liefert Lemma 7.23 ein Ergebnis:

Ubung 9.9 Berechnen Sie die Eigenwerte der Jacobi-Matrix von G an der Stelle y =
(0,0, 0). Unter welcher Bedingung sind alle Eigenwerte echt kleiner Eins? Welche Kon-
sequenz hat dies fiir das Pseudo-Zeitschrittverfahren?

Ubung 9.10 Wenden Sie das Pseudo-Zeitschrittverfahren mit dem Euler-Verfahren fiir
die Parameterwerte (o, R, B) = (20, 10, 8/3) an, s. Abb. 9.2 und 9.3. Kénnen Sie durch

Abb. 9.2 Pscudo-Zeitschrittverfahren (Euler-Verfahren, 7 = 10~%) mit den Parametern aus
Ubung 9.10, hier Konvergenz gegen y3 aus Ubung 9.6
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Abb. 9.3 Wie Abb. 9.2, hier Konvergenz gegen y» (a). b Start in (10~'¢,1071°,0), also nur mi-
nimal von y1 = (0, 0, 0) entfernt

Variation der Startwerte alle drei stationdren Punkte finden? Wie grof3 konnen bzw. wie
klein miissen Sie 4 wihlen?

Ubung 9.11 Wiederholen Sie die Experimente aus Ubung 9.10 mit R < 1.

9.4 Transiente Losungen

Interessant sind beim Lorenz-Modell vor allem zeitabhingige, sog. transiente Losungen.
Je nach Wahl der Parameter ergeben sich verschiedene Typen:

e Eine periodische Losung fiir (o, R, B) = (10,100,5,8/3) und Startwert y, =
(18,7,29,9, 100), vgl. Abb. 9.4.
e Der Lorenz-Attraktor: (o, R, B) = (10, 28,8/3), yo = (1,1,0), Abb. 9.5.
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Abb. 9.4 Periodische Losung der Lorenz-Gleichungen
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Abb. 9.5 Lorenz-Attraktor
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Abb. 9.6 Storung (um 1%) des stationdren Punktes y, aus Ubung 9.6, a fiir (o, R, B) =
(10,28, 8/3), b fiir (0, R, B) = (10, 20, 8/3), berechnet mit dem Euler-Verfahren mit 7 = 104

Ubung 9.12 Berechnen Sie mit dem Euler-Verfahren die beiden oben genannten Losun-
gen. Wie klein muss die Schrittweite gewihlt werden, damit die Losungsstruktur noch
zu erkennen ist? Wie viele Schritte sind dazu jeweils notwendig? Was passiert bei leicht
gestortem Startwert bzw. leicht gestorten Parametern, was bei Start in unmittelbarer Néhe
eines der in Ubung 9.6 angegebenen stationiren Punkte, vgl. Abb. 9.6?

Es stellt sich die Frage, ob das in den Abb. 9.3b und 9.6a zu sehende Verhalten eine
Eigenschaft des Modells ist, die verwendete Schrittweite zu grof oder das Euler-Verfahren
nicht geeignet ist. Den ersten Fall untersuchen wir im néchsten Kapitel.
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Differentialgleichungen

Unter Stabilitédt einer Losung und speziell eines stationdren Punktes wird die Eigenschaft verstan-
den, bei kleinen Storungen ebenfalls nur kleine Anderungen in der Losung zu zeigen bzw. sogar
wieder in den stationdren Punkt zuriickzukehren. Befindet sich ein System im Gleichgewicht, so ist
von elementarer Bedeutung, ob Storungen sich nachhaltig auswirken oder nach einiger Zeit abklin-
gen und verschwinden. Die Anwendung und Bedeutung bei Klimamodellen ist offensichtlich. Daher
ist wichtig, ob und wie das Stabilitdtsverhalten von Gleichgewichtslosungen analytisch untersucht
werden kann. Es geht hier um die exakte Losung der Modellgleichungen, noch nicht um ihre nume-
rische Approximation in einer Simulation. Bei einer Simulation konnen wiederum Instabilitéiten des
angewendeten numerischen Verfahrens auftreten. Es ist wichtig, beide Phinomene auseinderhalten
zu konnen. Die Stabilitdtsuntersuchung der exakten Losung ist jedoch — vor allem bei nichtlinearen
Systemen — nicht einfach. In diesem Kapitel werden die Stabilitétsbegriffe definiert sowie analyti-
sche Aussagen angegeben.

Bei manchen Differentialgleichung bewirkt eine Stérung einer stationéren Losung, dass
die Losung relativ schnell wieder in den stationdren Zustand zuriickkehrt, wihrend dies
in anderen Fillen nicht der Fall ist. Beim Lorenz-Modell wurden in Ubung 9.6 die statio-
ndren Losungen analytisch berechnet. In Abb. 9.6 war fiir eine dieser stationidren Losungen
zu sehen, dass fiir zwei verschiedene Werte eines Parameters eine kleine Storung — zumin-
dest in der numerischen Simulation — genau diese beiden unterschiedlichen Effekte hat.

Dieses Verhalten wird mathematisch als Stabilitit bzw. Instabilitit bezeichnet. Wir
betrachten wieder ein Anfangswertproblem fiir eine Differentialgleichung in der Form
(3.2). Wir benutzen folgende Definition:

Definition 10.1 Eine Losung y von (3.2) heifit

1. stabil, wenn zu jedem & > 0 ein § > 0 existiert, so dass fiir alle Losungen ys von (3.2)
mit gestortem Anfangswert yo s, || vo — yos| <6, gilt:

ly@) —ys@ll <& V¥t =1
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2. asymptotisch stabil, wenn ein § > 0 existiert, so dass fiir alle gestorte Losungen y;
wie in 1 gilt:

Tim [ly(1) = ys ()] =0.
o0
3. instabil, wenn sie nicht stabil ist.

Hat ein Anfangswertproblem keine eindeutige Losung, so sind die Losungen nach die-
ser Definition instabil:

Beispiel 10.2 Betrachte das Anfangswertproblem aus Ubung 3.31:

y =2y, t>0, y(0)=0.

Am Anfangspunkt ¢t = 0, y = 0 ist die rechte Seite nicht Lipschitz-stetig. Die Funktionen
y = 0 und j(¢) = t? sind Losungen (es gibt noch mehr!). Sei & > 0 beliebig gewihlt.
Dann gilt

Iy @) =5 @) = >

Fiir geeignet grofes ¢ wird diese Differenz also groBer als jedes ¢, egal wie § gewihlt wird,
da beide Losungen denselben Anfangswert yo = y, = 0 haben.

Betrachten wir nun ein eindeutig 16sbares Problem mit einer Stdrung im Anfangswert
und untersuchen, was die Stabilititsdefinition aussagt:

Beispiel 10.3 Seien y, j wie im letzten Beispiel. Das Anfangswertproblem (vgl. Ubung
3.33) mit yy = yo > 0 hat jetzt die eindeutige Losung

y() =@+ %) =0
Die im Anfangswert gestorte Losung mit y(0) = yg + 8, |§] < yo ist

ys(t) = (t + v/ yo+8)* =0,

und ebenfalls eindeutig. Fiir die Differenz gilt

[y(6) — ys()] = | + 2t /yo + yo — (17 + 2t (/Yo + 8) + yo + 8)| = 2 + D)]4].

Sei ¢ > 0. Es existiert kein § > 0, fiir das dieser Term durch ¢ beschrinkt werden kann,
da er fiir t — oo unbeschrinkt ist. Die Losung y ist nicht stabil.

Im folgenden Beispiel liegt (sogar asymptotische) Stabilitét vor:

Beispiel 10.4 Das Anfangswertproblem

y'=—ay+1, =0, y(0) =y (10.1)
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hat fiir yo = 1/a die Konstante y = y, als Losung. Da hier die rechte Seite f der Glei-
chung affin-linear und damit global Lipschitz-stetig ist, ist dies auch die einzige Losung.
Eine Stérung § im Anfangswert

1
Yos = — + 6,
a

liefert (Anwendung von Lemma 8.7) die exakte Losung

1
ys(t) = —+ Se™, 1=0.

Der durch die Stérung hinzugekommene Term klingt exponentiell ab, desto schneller, je
grofler a ist. Fiir t beliebiges € > 0 gilt

ly(@) — ys()] = [8]le™"" < |8] <, (10.2)

wenn § = ¢ gewhlt wird. Die Losung y = 1/a ist also stabil, und da (10.2) mit ¢t — oo
gegen Null geht, sogar exponentiell stabil.

Diese Beispiele benutzten die Kenntnis der exakten Losungen zum Nachweis der (In-)
Stabilitdt. Da explizites Losen fiir die meisten Differentialgleichungen nicht moglich ist,
sind Aussagen interessant, bei denen diese Kenntnis nicht notig ist. Der wesentliche Un-
terschied ist dabei, ob das betrachtete Problem linear oder nichtlinear ist.

10.1 Lineare Systeme

Bei linearen Systemen mit konstanten Koeffizienten beruht die Stabilititsunterschung auf
der Losungstheorie, wie sie in Abschn. 8.2 dargestellt wurde, und damit auf den Eigen-
werten der Systemmatrix. Ein lineares Differentialgleichungssystem hat die Form

y'(t) = Ay(t) +b(r), tel, (10.3)

mitAd: [ - R b: I — R".

Zur Untersuchung der Stabilitdt kann sich auf die Nulllosung y = 0 der homogenen
Gleichung (b = 0) beschriankt werden, denn es gilt: Sind y, y zwei Losungen von (10.3),
so ist y — y Losung der homogenen Gleichung

y'(t) =A@)y@), tel. (10.4)

Die Untersuchung der Stabilitit einer Losung y der inhomogenen Gleichung ist, sozusa-
gen geschrieben als

Iy =yl =1y =) =0l

in den obigen Definitionen der Stabilitit, dquivalent zur Untersuchung der Stabilitédt der
Nulllosung der homogenen Gleichung.
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Systeme mit konstanten Koeffizienten

Hat A konstante Koeffizienten, so kann jede Storung y der Nulllésung mit Hilfe des
reellen Fundamentalsystems aus Satz 8.16 dargestellt werden. Zur Abschitzung dessen
zeitabhingiger Terme wird folgende Aussage benutzt:

Ubung 10.5 Zeigen Sie: Fiir A, € R, A < x und jedes Polynom p beliebigen Grades
existiert ¢ > 0 mit

|p(t)e™ | < ce™ Vi=>0. (10.5)
Damit ldsst sich eine Abschitzung fiir das reelle Fundamentalsystem herleiten:

Lemma 10.6 Gilt Re A, < u fiir alle Eigenwerte, dann erfiillt das reelle Fundamental-
system Y aus Satz 8.16 die Abschdtzung

[Y(@)] < cet" YVt =0

mit einer beliebigen Matrixnorm und ¢ > 0. Ist diese Matrixnorm vertréiglich mit einer
Vektornorm, dann gilt fiir diese

[Y()z]| <ce™|z] Vt=>0,z€eR"

Gilt Re A, < 0 fiir alle Eigenwerte und ist die algebraische Vielfachheit n, = 1 fiir alle
mit Re Ay = 0, dann ist Y zumindest noch beschrinkt, d. h. es gilt

1Y(@)z| <cllz|| Vt=0,z€R".

Die gleichen Aussagen gelten, mit einem anderen c, auch fiir das Fundamentalsystem
et =Y()Y(0)~L.

Beweis Nach Satz 8.16 hat jede Komponente der Vektoren in Y die Form

g(t)p(t) exp(Re A1), p € Iy, i, (10.6)

wobei g nur bei komplexen Eigenwerten auftritt und sich aus trigonometrischen Funktio-
nen und Vorfaktoren, die aus den Eigen- oder Hauptvektoren stammen, zusammensetzt.
Die Funktion g ist also beschrinkt. Daher folgt mit Ubung 10.5 die Abschitzung fiir jede
Komponente von Y (¢) und mit einer beliebigen Matrixnorm die erste Abschétzung. Die
zweite folgt aus der Vertriglichkeit der Normen. Die dritte Abschétzung folgt ebenfalls
aus (10.6), da fiir die rein imaginiren Eigenwerte p dort ein Polynom nullten Grades ist.
Die Aussagen fiir e’ folgen aus Anmerkung 8.17. O
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Der sich ergebende Stabilititssatz fiir lineare Systeme lautet:

Satz 10.7 (Stabilitit linearer Systeme) Sei A € R™" mir Eigenwerten Ay, k =
1,...,m wie in Lemma 8.13. Die Nulllosung von (10.4) ist

1. asymptotisch stabil, wenn max; Re A, < 0,

2. instabil, wenn max; Re A, > 0,

3. stabil, aber nicht asymptotisch stabil, wenn max; Re Ay = 0 und die Eigenwerte mit
Re Ay = 0 algebraische Vielfachheit 1 haben.

Beweis 1.und 3. folgen direkt aus Lemma 10.6. Zu 2: Fiir einen Eigenwert mit Re A; > 0
werden die zugehorigen Komponenten (10.6) des Fundamentalsystems fiir t — oo unbe-
schriankt: Es gilt |p(¢)|exp(Re Axt) — oo fiir ¢ — oo. Die bei komplexem A; auftre-
tenden trigonometrischen Terme oszillieren, sie streben aber nicht gegen Null, daher wird
ihr Produkt mit den Termen p(¢) exp(Re Axt) fiir # — oo unbeschrinkt. Damit ist die
Nulllosung instabil. O

Die Eigenwerte des CO,-Boxmodells konnen numerisch berechnet werden:

Ubung 10.8 Zeigen Sie: Fiir die in (8.3) angegebenen Parameter ist die Nulllosung des
homogenen CO,-Boxmodells asymptotisch stabil.

10.2 Nichtlineare Systeme

Es gibt mehrere Ansitze zur Untersuchung der Stabilitédt nichtlinearer Systeme. Wir be-
trachten hier nur die Methode, die auf der Linearisierung beruht. Andere Methoden, wie
etwa die von Lyapunov (vgl. z.B. [32, V §30]), werden hier nicht behandelt, da sie schwer
anwendbar sind. Wir trennen die rechte Seite der Systeme in einen linearen und einen
nichtlinearen Teil, schreiben also

y'=Ay+b(t,y), tel, (10.7)

wobei A € R"" konstante Koeffizienten hat und » : I x R” — R” nichtlinear ist. Der
Einfachheit wéhlen wir #y = 0. Fiir Systeme dieser Art kann die obige Aussage fiir lineare
System zum Teil iibertragen werden. Wir schreiben zunichst die Losung dhnlich wie in
Lemma 8.7:

Lemma 10.9 Die Losung von (10.7) mit Anfangswert y(0) = y, ist

t

y(t) = ey + [ e p(s, y(s))ds, el (10.8)

o
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Beweis Der Beweis ist analog zu Lemma 8.7 und folgt mit der Tatsache, dass e’ Funda-
mentalsystem ist, s. Lemma 8.10. O

Nun erhalten wir diese Aussage:

Satz 10.10 Sei b : I x B,(0) stetig mit

b(t,
| ||m0 % =0 gleichmdpigVt > 0, (10.9)

d. h. fiir jedes € > 0 existiert ein (von t unabhdngiges) r > 0, so dass

Io(z, 2)

T <e VzeB(0O)CR"t>0

(insbesondere also b(0,0) = 0). Dann sind Aussagen 1 und 2 von Satz 10.7 giiltig, Aus-
sage 3 jedoch nicht.

Beweis Siehe [32, §29, Satz VIII]. O

Anmerkung 10.11 Das Resultat des letzten Satzes kann mit der Jacobi-Matrix A =
f'(¥*) an einer stationiren Losung y* verwendet werden. Ist f dort beziiglich y total
differenzierbar, so gilt gerade (10.9), vgl. z. B. [11, §6].

10.3 Stabilitat beim Lorenz-Modell

Das Lorenz-Modell steht oft als Beispiel fiir chaotisches Verhalten oder den sog. ,,Schmet-
terlingseffekt™. Damit ist gemeint, dass kleine Storungen grofle Auswirkungen haben kon-
nen, was gerade das oben definierte Stabilitdtskonzept ist. Das war eine der Entdeckungen
von Lorenz mit diesen Gleichungen: Er hatte einen Modelllauf wiederholt, aber bei den
Anfangswerten einige Nachkommastellen weggelassen und festgestellt, dass sich die Lo-
sungen nach einiger Zeit deutlich unterschieden.

Mit den obigen Resultaten kann jetzt geklédrt werden, wie das Stabilitdtsverhalten der
exakten stationdren Losungen ist, vgl. die Abb. 9.3 und 9.6. Es kann ja auch sein, dass sich
ein ,,Schmetterlingseffekt™ zeigt, weil das verwendete numerische Verfahren ungeeignet
1st.

Beispiel 10.12 Die Eigenwerte von f’(y) im stationdren Punkt y; = (0,0,0) aus
Ubung 9.6 sind

] T o)
M= —B, Jos—-— ;“i\/( Z(’) —o(1—R).
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Die Parameter beim Lorenz-Modell sind alle nicht negativ, also gilt immer A; < 0. Ist
der Term unter der Wurzel negativ, so sind A,, A3 komplex mit negativem Realteil. Ist der
Term unter der Wurzel positiv, dann gilt A3 < 0, aber A, < 0 nur dann, wenn R < 1 ist.
Andernfalls ist A, > 0.

Alsoist y; fiir R < 1 asymptotisch stabil. Die Rechnungen aus Ubung 9.11 sollten also
bei Anfangswerten in der Nihe von y; = (0,0, 0) zeigen, dass die gestorten Losungen
wieder in den Nullpunkt zuriicklaufen. Wenn nicht, liegt es an dem benutzten Verfahren
oder der Schrittweite. Bereits bei R = 0,99 zeigt sich ein entsprechendes Verhalten, auch
bei R = 1, obwohl der Stabilititssatz 10.10 hier keine Aussage macht.

Fiir R > 1ist y; instabil, denn der Eigenwert A, wird positiv. Dies bestitigt das Verhal-
ten in Ubung 9.10 und Abb. 9.3. Eine Verkleinerung der Schrittweite und auch ein anderes
numerisches Verfahren wird also nichts bewirken. Im nichsten Kapitel kann dies getestet
werden, da dort entsprechende Verfahren vorgestellt werden.

Beispiel 10.13 Fiir den zweiten stationidren Punkt

y2=(VB(R—-1),yB(R-1),R—-1)

zeigte Abb. 9.6 entscheidende Unterschiede bei der Simulation mit leicht gestdrtem y, als
Anfangswert, abhingig vom Parameter R, dort als Beispiel zwischen R = 20 (stabiles
Verhalten) und R = 28 (instabiles Verhalten). Die Jacobi-Matrix lautet hier

—0 o 0
f'(y) = 1 —1 ~-JBR-1|.
VB(R—1) /B(R-1) —B
und fiir die Eigenwerte A gilt
—0—A o 0
0 = det 1 —1-2A —yB(R-1)
VB(R—1) /B(R-1) —-B—

= (0 + M1 +AN)B+A)—0BR-1)— (0 +M)BR-1)+0(B+2)
= @+ M)A +NB+A) - Q20 +M)B(R—1)+0(B+1).

Fiir den dritten stationidren Punkt y; ergeben sich dieselben Eigenwerte, da sich nur die
X-und Y -Werte im Vorzeichen unterscheiden und diese Terme in der Determinante nur
quadratisch bzw. als Produkt auftauchen.

Ein Versuch der expliziten Berechnung der Nullstellen fiihrt hier nicht weiter, es emp-
fiehlt sich eine numerische Berechnung der Eigenwerte.
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Abb. 10.1 Realteil zweier Eigenwerte von f’(y) im zweiten und dritten stationiren Punkt,
s. Ubung 10.14. Der dritte Eigenwert hat fiir alle gezeigten Parameterwerte einen negativen Realteil

Ubung 10.14 Berechnen Sie numerisch die Eigenwerte der Jacobi-Matrix f”(y,) fiir
B =8/3,0 = 10 und ein Intervall fiir R und stellen Sie sie grafisch dar, vgl. Abb. 10.1.

Es ist zu erkennen, dass fiir B = 8/3, ¢ = 10 nur fiir Werte von R < 25 alle Eigen-
werte negativen Realteil haben. Das heifit, dass die beiden stationdren Punkte y,, y3 nur
dann stabil sind. Dies passt zu Abb. 9.6.



Verfahren hoherer Ordnung fiir
Anfangswertprobleme

In diesem Kapitel werden Moglichkeiten zur numerischen Losung von Anfangswertproblemen vor-
gestellt, die iiber die in Kap. 5 vorgestellten in Bezug auf Approximationsgiite und Effizienz hin-
ausgehen. Dies sind im wesentlichen explizite Runge-Kutta-Verfahren. Weiterhin beschrieben wir
prinzipiell die Methode der Schrittweitensteuerung zur adaptiven Wahl der Zeitschrittweite bei sol-
chen Verfahren. In globalen Klimamodellen werden diese Verfahren in der Praxis kaum eingesetzt,
jedoch ist z. B. bei der Berechnung von transienten Losungen des Lorenz-Modells erkennbar, wie
sie sinnvoll benutzt werden konnen.

In vielen Fillen gibt es keine stationidren Losungen, sondern nur transiente, also zeitlich
veridnderliche oder periodische. Was kann getan werden, um solche Losungen effizient
zu berechnen? Bisher kennen wir nur das Euler- und das verbesserte Euler-Verfahren.
AuBerdem haben wir zwar eine variable Schrittweite /; in den Einschrittverfahren zu-
gelassen, aber keine Methode angegeben, wie sie geschickt oder sogar optimal gewéhlt
werden kann. Darum geht es in diesem Abschnitt. Die Verfahren, die hier vorgestellt wer-
den, sind natiirlich auch beim Pseudo-Zeitschrittverfahren wichtig, um Iterationsschritte
bei der Berechnung eines stationédren Punktes zu sparen.

Wir betrachten hier zunichst Verfahren hoherer Ordnung und dann eine Methode zur
adaptiven Schrittweitenwahl. Schlieflich lernen wir exemplarisch Bibliotheksroutinen
kennen, in denen diese implementiert sind.

11.1  Konstruktion von Verfahren hoherer Ordnung

Bisher haben wir nur (in Abschn. 5.4) zwei Varianten des Euler-Verfahrens erster bzw.
zweiter Ordnung kennengelernt. Sollen Zeitschritte eingespart werden, um Aufwand und
auch Rundungsfehler zu reduzieren, so kénnen Verfahren hoherer Ordnung verwendet
werden. Die Idee dabei basiert auf der Feststellung, dass — von # zu #;4; gehend — ja
nicht nur wie beim einfachen Euler-Verfahren die Steigung in #;, sondern eigentlich eine
gemittelte Steigung iiber das Intervall [, 7 4+;] bendtigt wird. Dies folgt direkt aus dem
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Hauptsatz der Differential- und Integralrechnung:

lk+1

Vi) = y(i) + / £y dr. (1L.1)

Diese gemittelte Steigung der Losung wird nun nicht durch f(#, yx) wie beim Euler-
Verfahren approximiert, sondern durch Kombinationen von mehreren Steigungen im
Intervall [t;, tx+1]. Dies entspricht einer numerischen Approximation des Integrals auf
der rechten Seite mit einer geeignet gewihlten numeirschen Integrations- oder Quadra-
turformel, vgl. [22, Kapitel 3] oder andere Numerikbiicher fiir Beispiele. Die in [t tx41]
nicht vorhandenen Werte der Ndherungslosung lassen sich durch Zwischenberechnungen,
z. B. mit dem Euler-Verfahren, beschaffen. Anders ausgedriickt: Fiir das Integral in (11.1)
wird eine andere numerische Integrationsformel angewendet.

Beispiel 11.1 Ein Beispiel ist das bereits in Ubung 5.9 vorgestellte verbesserte Euler-
Verfahren: Bei dem Betrachten einer Skizze liegt die Idee nahe, die Steigung im Mit-
telpunkt 7, + hy /2 des Intervalls [, t + hy] zu benutzen, um den nichsten Punkt der
Niherungslosung zu konstruieren. Da im Punkt # + /4 /2 noch kein Néherungswert vor-
liegt, wird dieser mit dem Euler-Verfahren approximiert. Damit ergibt sich genau das
verbesserte Euler-Verfahrens aus (5.2) (oder auch Verfahren von Collatz):

h h
Vk+1 =yk+hkf(tk+7k,Yk+jkf(tk,Yk))a k=0,1,...

Manchmal wird das Verfahren auch wie folgt mit ,,gebrochenen® Zeitschritten (engl: frac-
tional steps) geschrieben:

/’lk hk
Vi+1/2 = Yk + Tf(lkv)%)v let1/2 = e+ —
hi
Yi+1 = Yk + i f(tev1y2, Ye+12)s Tl = tev1j2 + > k=0,1,...

Ubung 11.2 Welcher Quadraturformel entspricht dieses Verfahren?

Bedingungen fiir ein Verfahren zweiter Ordnung

Die oben fiir das verbesserte Euler-Verfahren benutzte Idee, Zwischenwerte zu berechnen
und damit die Steigung an der Stelle #; genauer zu approximieren, kann wie folgt verall-
gemeinert werden. Eine Taylor-Entwicklung fiir eine allgemeine Verfahrensfunktion mit
vier Parametern «, 8, y1, y, ergibt:

D(t,y.h) =y ft.y) +naf(t +ah,y + Bhf(t,y))

) a
= (1 P ) + P 0.) + 7B, £0.3) + O0R).



1.2 Allgemeine explizite Runge-Kutta-Verfahren 131

Mit der Kettenregel und wegen y(z) = f(t, y(¢)) gilt

0 0
YO = Sy O) = T O) + 5O a0

Eine Taylor-Entwicklung von y liefert damit

I h
w =)0+ )"0 + o)

h (9 a
= ftr@) + 5 (T30 + 0 y0) 050 + 000
y

Ein Koeffizientenvergleich ergibt ein Verfahren zweiter Ordnung, wenn bestimmte Bedin-
gungen fiir die Parameter «, B, y;, y, erfiillt sind.

Ubung 11.3 Wie lauten diese? Leiten Sie das Verfahren zweiter Ordnung her, das sich
fiir y; = 1/2 ergibt.

11.2 Allgemeine explizite Runge-Kutta-Verfahren

Runge-Kutta-Verfahren sind Verallgemeinerungen des oben vorgefiihrten Prinzips. Damit
werden Verfahren hoherer Genauigkeit konstruiert. Der Nachweis wird analog mit Taylor-
Entwicklungen gefiihrt, ist aber bei htheren Ableitungen naturgeméal komplizierter. Das
,klassische* Runge-Kutta-Verfahren (s. u.) ist von vierter Ordnung. Der Begriff Runge-
Kutta-Verfahren wird fiir die gesamte Klasse von Verfahren benutzt.

Allgemein wird von Stufen eines Runge-Kutta- Verfahrens gesprochen fiir jeden einge-
fiihrten Zwischenschritt bzw. Zeitpunkt im Intervall [#;, #; 4], der zur Approximation der
mittleren Steigung in diesem Intervall benutzt wird.

Die allgemeine Form eines m-stufigen expliziten Verfahrens lautet

m -1
@(l,y,h)=2)/1k1, k1=f(t+oclh,y+hz,31jkj), l=1,....,m.
=1

Jj=1

Die Koeffizienten «;, f8;, y; werden in einer sog. Butcher-Tabelle angeordnet:

(051
o | B
(11.2)
O ,Bml to ,Bm.m—l
Y1 e Ym—1 VYm
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Beispiel 11.4 Beispiele sind das Euler-Verfahren (m = 1), das verbesserte Euler-
Verfahren (m = 2) und das klassische Runge-Kutta-Verfahren (m = 4) mit den
Butcher-Tabellen (von links nach rechts):

0
1] 1
0 0 3|3
11 1| 1
A'T 2|2 510 3
0 1 110 0 1
11 1 1
6 3 3 6

Konsistenz ergibt sich unter einer Bedingung an die Koeffizienten. Es gilt:

Ubung 11.5 Zeigen Sie: Unter der Bedingung

ist ein m-stufiges explizites Runge-Kutta-Verfahren konsistent. Gilt zusétzlich
i—1 . m 1
;,Bij =qa;,i=1,...,m, ;yiai =5

dann hat das Verfahren mindestens die Konsistenzordnung p = 2.

Mit der Stufe steigt die Konsistenz- und damit die Konvergenzordnung bei Stabilitit.
Es kann gezeigt werden, dass folgende Tabelle gilt, s. [33, 4.3.7]:

Stfem |1 2 3 456 7 8 9]/>9
Ordnungp [1 2 3 4 4 5 6 6 7[<m-2

1.3 Schrittweitensteuerung

Bei einem Einschrittverfahren ist die Schrittweite der Parameter, der sowohl (bei gewéhl-
ter Stufe des Verfahrens) die Genauigkeit als auch den Aufwand und den Einfluss von
Rundungsfehlern bestimmt. Daher ist es am sinnvollsten, genau so grofle bzw. kleine
Schritte zu machen, wie fiir die gewiinschte Genauigkeit erforderlich sind, aber keine
groBeren. Diesem Ziel dient eine Schrittweitensteuerung. Mit Hilfe von Schitzern fiir den
im aktuellen Schritt zu erwartenden Fehler wird die Schrittweite wihrend des Verfahrens
automatisch angepasst. Diese Methoden sind in modernen Bibliotheksroutinen eingebaut.
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Allerdings werden sie in der Klimasimulation nur wenig eingesetzt. Wir stellen sie hier
der Vollstidndigkeit halber vor.
Zu einer Schrittweitensteuerung gibt es zwei Moglichkeiten,

e sog. eingebettete Verfahren
o und die Methode der Halbierung der Schrittweite.

Eingebettete Verfahren

Eingebettete Verfahren bestehen aus einem Paar von Verfahren unterschiedlicher Fehler-
ordnungen (z.B. p = 2, 3). Fiir das Verfahren hoherer Ordnung werden moglichst viele
der bereits fiir dasjenige niedrigerer Ordnung berechneten Werte wieder verwendet und
nur wenige oder keine zusétzlich neu berechnet. Das Verfahren der Ordnung p wird so
in das Verfahren der Ordnung p + 1 eingebettet. Mit den beiden Approximationslosun-
gen kann der Fehler geschitzt und damit eine optimale Schrittweite gefunden werden. Die
Darstellung hier folgt im Wesentlichen [15, Abschnitt 11.5].

Die Schitzung des lokalen Fehlers basiert auf folgender Idee: Fiir zwei Verfahren der
Ordnungen p und p + 1 mit den Verfahrensfunktionen @,, @, gilt jeweils fiir die Ab-
schneidefehler:

yi+h)—y@)

Tp(tvyvh)= h _¢p(t’y(t)’h)=0(hp)
h) —
ity = 22O gy = 00

(fiir die exakte Losung y) und daher

Tp(ts ys h) = Tp+1 (ts ys h) + (pp+1 (ts y(t)s h) - (pp(ts Y(Z)s h)
~ Ppi1(t,y(t). h) — Dy(t, y(1). h) = O(h"),
da der Fehler hoherer Ordnung fiir kleines /2 vernachlissigt werden kann.

Im Algorithmus werden in jedem Zeitschritt die Werte der beiden Verfahrensfunktio-
nen (hier im k-ten Zeitschritt) berechnet. Ist nun

t(h) == | Pps1(tk, Yk, h) — Pp(tx, yi . h)|| < ¢ (11.3)

fiir die gewiinschte lokale Genauigkeitsschranke &, dann wird die aktuelle Schrittweite &
akzeptiert, ansonsten verkleinert und der Schritt wiederholt. Ist (%) umgekehrt kleiner als
&, so wird die Niherung akzeptiert und fiir den néchsten Schritt & vergroBert. Da t(h) ~
T,(t, y, h) € O(h?) ist, gilt

t(h) = Ch?,
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mit einer unbekannten Konstanten C. Dann ist

Npew = h Y&/t

eine sinnvolle Wahl. Der (Teil-)Algorithmus der Schrittweitensteuerung im k-ten Zeit-
schritt lautet dann wie in der Formulierung aus [15, Alg. 11.10]:

Algorithmus 11.6 (Schrittweitensteuerung)

. Berechne @, := @, (#, yr. h)
. Berechne @, := @, (t, yx, h)
. Berechne v = ||@,4| — D, ||
. Wennt <g¢:
@ tipr: =t +h
(®) yk+1:=yk +h®,
© k=k+1
5. Wennt <g/2:h:=h¥%/e/t
Sonst: h:=h ‘\’/8/_1 und gehe zurtick zu 1.

B W o =

Die Schranke ¢ kann noch mit einem Faktor v := (1 + ||yx||) versehen werden, der
eine Skalierung vornimmt und dafiir sorgt, dass der Wert auch bei y; ~ 0 sinnvoll bleibt.

Beispiel 11.7 Das Runge-Kutta-Verfahren RK2(3) mit Ordnungen p = 2,(p + 1 = 3)
hat die Butcher-Tabelle:

0

1|1
ol

2 i 3
_ 1 1
pP=<s13 3

1 1 2

P=3]5 5 3

Ahnliche Verfahren sind das von Runge-Kutta-Fehlberg und das von Dormand und
Prince, beide mit p = 4(5), s. [15, Beispiel 11.12].

Berechnung mit zwei verschiedenen Schrittweiten
Eine andere Moglichkeit der Schrittweitensteuerung besteht in der Anwendung zweier

Schrittweiten (z. B. 7 und //2) bei einem Verfahren derselben Ordnung. Damit kann der
Fehler geschitzt und eine Schrittweite bestimmt werden, s. [24, Abschnitt 7.2.5].
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Beispiel 11.8 Tn MATLAB! gibt es mit ode23 und ode45 die oben beschriebenen ein-
gebetteten Verfahren der Ordnungen p = 2(3) und p = 4(5).

Beispiel 11.9 OCTAVE ist eine freie Alternative zu MATLAB mit dhnlicher Syntax und
Funktionalitét. Hier steht die Funktion 1sode zur Verfiigung, die die gleichnamige Bi-
bliothek verwendet.

Beispiel 11.10 Eine Bibliothek, die direkt in Programmiersprachen wie FORTRAN, C
oder C++ aufgerufen werden kann, ist z. B. ODEPACK in FORTRAN. Auch die in OCTAVE
verwendete Bibliothek LSODE ist als Quellcode erhiltlich.

Ubung 11.11 Verwenden Sie Bibliotheksroutinen zur Losung der Anfangswerte des
Energiebilanz-, der beiden Box- oder des Lorenz-Modells. Vergleichen Sie die Anzahl der
benotigten Schritte mit denen fiir das Euler-Verfahren bei verschiedenen Genauigkeiten.

I MATLARB ist ein eingetragenes Warenzeichen von The MathWorks, Inc.
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Transportmodelle und -gleichungen oder Konvektions-Diffusionsgleichungen werden in diesem
Buch benutzt, um wichtige Konzepte der Modellierung, Diskretisierung und Lésung rdumlich und
zeitlich verteilter Klimamodelle zu verdeutlichen. Die Modellierung basiert auf dem grundlegenden
Prinzip einer Erhaltungsgleichung. Fast alle wesentlichen Techniken und Problematiken kénnen an
dieser Modellklasse erklirt werden. Transportmodelle bieten im Vergleich zu beispielsweise stro-
mungsmechanischen Gleichungen einen vergleichsweise einfachen Einstieg. Auf den hier und in
den folgenden Kapiteln (die sich als Beispiel auf die Transportgleichungen beziehen) prisentierten
Inhalten kann spéter aufgebaut werden.

Transportmodelle beschreiben die Verteilung der Konzentration eines Stoffes in einem
bewegten fliissigen oder gasformigen Medium. Als Beispiel kann ein in einen Fluss oder
in die Atmosphire eingeleiteter Schadstoff dienen oder auch ein Nihrstoff im Ozean.
Transportgleichungen sind daher in der Klimaforschung von grofer Bedeutung, z. B. um
die Bewegung und Verteilung von sog. Spurenstoffen (Tracern) in der Atmosphire oder
im Ozean zu modellieren und zu simulieren.

ZustandsgroBe ist die Konzentration y(x,?) des Stoffes zur Zeit + am Ort x =
(x1, X2, x3) in einem Gebiet 2 C R3. Die Konzentration hat die Einheit des Stoffes
pro Volumeneinheit (also z. B. mmol m™ oder, etwa fiir den Salzgehalt, m~3).

Fiir einen solchen Stoff kann folgendes Erhaltungsprinzip formuliert werden: Die zeit-
liche Anderung der Stoffmenge in einem raumfesten Gebiet wird durch vier Prozesse
bestimmt:

1. Advektion, das ist der Transport iiber den Rand des Gebietes in das Gebiet hinein oder
aus ihm heraus

2. Diffusion iiber den Rand des Gebietes

3. Reaktionen oder Prozesse chemischer oder biologischer Art (z. B. radioaktiver Zerfall,
Reaktionen mehrerer Stoffe miteinander, Nahrungsaufnahme, Absterben)

4. Quellen und Senken, also Hinzufiigen oder Entnehmen des Stoffes.

© Springer-Verlag Berlin Heidelberg 2015 137
T. Slawig, Klimamodelle und Klimasimulationen, Springer-Lehrbuch Masterclass,
DOI 10.1007/978-3-662-47064-0_12
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Wir formulieren das Erhaltungsprinzip nun mathematisch und leiten Gleichungen daraus
ab. Dabei schreiben wir die zugehorigen Terme zunichst in einer auf das Gebiet bezoge-
nen sog. integralen Form und anschlieend in einer punktweisen, differentiellen Form.

Das betrachtete Gebiet §2 kann eine beliebige, auch krummlinig berandete Form haben.
Den Rand bezeichnen wir mit d£2. Wir benétigen fiir bestimmte mathematische Aussagen
eine exakte, aber etwas technische Definition der Regularitit des Randes, die in der fol-
genden Definition gegeben wird. Sie sagt aus, dass der Rand des Gebietes stiickweise als
Graph einer Funktion dargestellt werden kann.

Definition 12.1 (Regularit:it eines Gebietes bzw. seines Randes) Sei £2 C R3 offen und
082 sein Rand. Dann heiBt 082 reguliir von der Klasse C*' (bzw. C* fiir k € N), wenn
fiir alle x € 042 eine Umgebung U and orthogonale Koordinaten (sy, s5,5") =: (s,s’)
existieren, so dass gilt:

1. U ist ein Quader in diesen Koordinaten, also
U = [—c1,c1] X [—¢2, 6] x [=¢, ' mit ¢y, ¢,¢” > 0.

2. Es existiert eine Funktion ¢ € C%(I) (bzw. C*(I)) mit
!

lo(s)] 5% Vsel ={seR>:|si|<ci.i =12},

2NU={(@s,8)cU:s <))},
02 NU ={(s,s) e U : 5" = p(s)}.

Fiir den zu x € 92 gehorigen Wert des Parametervektors s € I der lokalen Parametrisie-
rung ¢ des Randes wird s(x) geschrieben, d. h. es gilt x = (s(x), ¢(s(x))). Ein Gebiet ist
von der Klasse C*, wenn es von C¥ mitk € N beliebig ist.

Bedingung 2 sagt aus, dass der Rand lokal als Graph von ¢ geschrieben werden kann,
und dass das Gebiet lokal auf einer Seite dieses Graphen liegt.

Die Transformation vom lokalen Koordinatensystem (s,s’) = (s, 52, s’) in das ur-
spriingliche System x = (x|, X2, x3) kann durch eine Matrix S, die

S1 X1 ( )
s(x
Solsa |l =1 x2 bzw. S =X (12.1)
1 “\e(s))
N X3

erfiillt, dargestellt werden. Es gibt also fiir jeden Punkt x € 02 ein S, € R33, das (12.1)
eriillt.

Die Begriffe Regularitiit eines Gebietes und Regularitit des Randes (eines Gebie-
tes) werden synonym verwendet. Kurz wird von einem C*-Gebiet gesprochen, ein C%!-
Gebiet heillt auch Lipschitz-Gebiet.

Ubung 12.2 Zeigen Sie, dass ein Kreis im R? ein regulires Gebiet der Klasse C* ist.
Ubertragen Sie dazu die Definition auf den zweidimensionalen Fall.
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12.1 Modellierung

Wir modellieren jetzt der Reihe nach alle vier oben genannten Effekte oder Prozesse, die
in die Erhaltungsgleichung eingehen und eine zeitliche Anderung der Stoffkonzentration
bewirken konnen. Dazu betrachten wir ein zeitlich festes Gebiet §2. Die Stoffmenge des
gesamten in §2 enthaltenen Stoffes beschreiben wir als

Mq(t) :=[y(x,t)dx

2

mit der Konzentration y(x, ¢) des Stoffes am Ort x € §2 zur Zeit . Die zeitliche Anderung
der Stoffmenge in £2 erhalten wir damit als

d d
Mg(1) = EMQ(I) = d—tfy(X,l)dx.
2

Da wir £2 als zeitlich fest angenommen haben, hingen die Punkte x € 2, iiber die inte-
griert wird, nicht von ¢ ab. Im Folgenden schreiben wir

MG (1) = Mago(t) + Mpigr(t) + Mquen (t) + Mgeax (1) (12.2)

mit vier, den o. g. Prozessen entsprechenden Termen. Die Einheit von M(, () ist Stoff-
menge pro Zeiteinheit. Die Konzentration y wird dabei in Stoffmenge (z. B. in mmol oder
auch in Masseeinheiten wie kg) pro Volumeneinheit in m* angegeben. Da wir hier keine
Festlegung der Mengeneinheit vornehmen, benutzen wir fiir die Einheit der Konzentration
das Symbol [y]. Also gilt

3
(Mp(0)] = [y] =

Advektion

Advektion ist der Transport des Stoffes durch die Stromung iiber den Rand des betrachte-
ten Gebietes §2. Dieser Transport hdangt von der als gegeben betrachteten Geschwindigkeit
v = (v1, 2, v3) (oft wird auch (vy, v, v3) = (4, v, w) geschrieben) ab. Es spielt hier nur
der Teil des Geschwindigkeitsvektors eine Rolle, der senkrecht (normal) zum Rand des
Gebiets steht, der tangentiale Geschwindigkeitsanteil hat keinen Einfluss. Ist der Rand
z.B. eine ebene Fliche, so sorgt eine tangentiale Geschwindigkeit parallel zu dieser Wand
klarerweise fiir keine Stoffmengeninderung im Gebiet. Um nur diesen senkrechten Anteil
der Geschwindigkeit zu beschreiben, wird folgende Definition verwendet.

Definition 12.3 (Tangential- und Normalenvektoren) Sei 2 C R? ein Gebiet mit C!-
Rand 0£2. Sei x € 352 mit der lokalen Parametrisierung x = (s, ¢(s)), s = s(x) € I und
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S, die Transformationsmatrix vom Koordinatensystem (x1, x5, x3) in das lokale Koordi-
natensystem (s, s”). Dann heifen die Vektoren

1 0
nx) =S, a<p0 . hx) =S, 3(p1
a—sl(s) 8_sz(s)

Tangentialvektoren in x an 952. Der Vektor n = n(x) € R? mit
n(x)-t(x) =n(x) -tH(x) =0, det(n(x), n(x), n(x)) >0, |nx)|=1

heiBt duferer (Einheits-)Normalenvektor in x an 9052. Dabei bezeichnet

3
vew:i= Y vw, v=)io, w= W) €R’

i=1

das Euklidische Skalarprodukt im R?.

Durch die Normierung ist der Wert des Skalarproduktes v - n der Anteil des Geschwin-
digkeitsvektors, der aus dem Gebiet heraus zeigt. Ist in einem Punkt v - n > 0, so hat der
Geschwindigkeitsvektor einen Anteil in Richtung des dufleren Normalenvektors, d. h. ein
Anteil von v zeigt aus dem Gebiet heraus, und es wird in diesem Punkt Stoff nach auBen
transportiert. Ist v-n < 0, so wird in diesem Punkt Stoff in das Gebiet hinein transportiert.

Die Stoffmenge, die durch die Stromung iiber den Rand in das Gebiet hinein oder aus
dem Gebiet hinaus transportiert wird, ist damit durch

Mgy () := —[y(x,t)v(x,t) -n(x)ds(x) (12.3)

a2

gegeben. Das negative Vorzeichen ist in der Richtung des Vektors n (ndmlich nach auf3en)
begriindet. Die Einheit des Terms ergibt sich wie folgt: Da die Einheit der Geschwindig-
keit Lénge pro Zeit ist, ergibt sich durch die Multiplikation mit der Fldache (Einheit: Linge
zum Quadrat) wieder die richtige Einheit Stoffmenge pro Zeit.

Diffusion

Diffusion entsteht, wenn in zwei benachbarten Bereichen des Gebietes unterschiedlich
hohe Konzentrationen vorliegen. Die Konzentration gleicht sich dann mit der Zeit in
beiden Bereichen aus. Man kann das auch mit zuféllig zwischen beiden Bereichen ,,liber-
springenden® Stoffmolekiilen erklidren. Je hoher die Konzentration, desto mehr Teilchen
»springen®, d. h. es entsteht ein Konzentrationsfluss vom Bereich mit hoherer Konzentra-
tion zu dem mit niedrigerer Konzentration.
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Eine Anderung der Stoffmenge durch Diffusion in dem betrachteten Gebiet §2 entsteht,
wenn am Rand 052 der Gradient der Konzentration, also
ay 3
Vy(x,t) :=grad y(x,t) := (—(x,t)) ,
dx; i=1
einen Anteil senkrecht, d. h. normal zum Rand hat. Wenn auf dem Rand ein von Null ver-
schiedener Gradient der Konzentration vorliegt und dieser in das Gebiet £2 hinein gerichtet
ist, dann ist die Konzentration in £2 groBer als aulen, und die Konzentration im Gebiet
nimmt mit der Zeit ab. Ein einwérts gerichteter Gradient bedeutet Vy(x) - n(x) < 0. Die
Gesamtinderung der Stoffmenge in §2 ergibt sich durch Integration iiber den gesamten

Rand. Damit ergibt sich folgender Diffusionsterm:

Mbpig(2) = [K(X)Vy(x,t)-n(x)ds(x). (12.4)
FYe)

Der Koeffizient « ist der positive, vom Stoff und ggfs. auch von Ort und Zeit abhiingige
Diffusionskoeffizient. Wenn « raumlich konstant ist, kann der Diffusionskoeffizienten hier
vor das Integral geschrieben werden. Im Fall k = «(y) wird dieser Term und spiter die
gesamt Bilanzgleichung nichtlinear (beziiglich der Zustandsvariable y). Die Einheit von
k ist Linge zum Quadrat pro Zeiteinheit, was wieder zur richtigen Einheit

[v] m’ [y]

3
[MDiff(t)] = [K] [x] [n][ds] — 2 _ [y]m

1-m ,

S m S

also Stoffmenge pro Zeit, fiihrt.

Quellen und Senken

Gibt es Quellen des Stoffes innerhalb des Gebietes (zum Beispiel durch Einleiten eines
Schadstoffes etc.) oder wird umgekehrt Stoff entfernt, so ergibt sich entsprechend ein
Zusatzterm

Mauen(t) := | g(x,t)dx.
/

Dabei ist ¢(x, t) positiv fiir eine Quelle und negativ fiir eine Senke im Punkt x zum Zeit-
punkt 7. In dieser Formulierung hat der Quellterm g die Einheit Konzentration pro Zeit,
also [q] = [y]s™'. Durch die raumliche Integration mit dx = dx;dx,dx3 und daher
[dx] = [dx;]? = m? ergibt sich

[Mauen()] = [y]m’s

Reaktionsterme

Chemische Reaktionen oder biologische Prozesse passieren lokal, und die Reaktion an
einem Punkt hingt normalerweise nicht mit der an anderen Punkten im Raum zusam-
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men. Sie sind allerdings in der Regel abhiingig von der bereits vorhandenen Menge oder
Konzentration des Stoffes. Damit hat ein Reaktionsterm die Form

c(y) oder c(x,t,y(x,t)),

je nachdem ob die Reaktion nur von der Konzentration oder auch noch explizit von Raum
und Zeit abhingt. Zum Beispiel konnen Reaktionen vom Lichteinfall (und damit von der
Zeit und vom Ort, z. B. im Meer von der Tiefe und dem Lichteinfall) abhéingen. Die Funk-
tion ¢ kann linear oder nichtlinear in y sein. Ein einfaches Beispiel ist der radioaktive
Zerfall, der nach dem Gesetz

c(y)=-Ay, A>0, (12.5)

stattfindet. Dabei ist A die Zerfallsrate. Die durch die Reaktion in £2 verursachte Anderung
der Stoffkonzentration ist daher in der allgemeinen Form

M) = [ c(x. 1. y(x. D)dx.

2

Der Reaktionsterm c¢(y) hat hier ebenfalls die Einheit Konzentration pro Zeit [y]s™!.
Durch die rdumliche Integration ergibt sich

[MReak(t)] = [y] m’ S_l.

12.2 Die Transportgleichung in integraler Form

Insgesamt lautet die Bilanzgleichung (12.2) damit wie folgt. Wir sprechen hier von ei-
ner integralen Form, im Gegensatz zu der unten hergeleiteten Form, in der die Integrale
eliminiert werden.

d
Mg(t) = E/y(x,t)dx (12.6)
2

= —/y(x,t)v(x,t)-n(x)ds(x)

382
Advektion
+ //c(x,t)Vy(x,t) -n(x)ds(x) + /(c(x,t,y(x,t)) + g(x,t))dx.
a2 Q

Diffusion Reaktionen + Quellen
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Zur konkreten Berechnung der Konzentration in £2 eignet sich diese Formulierung noch
nicht, sie muss diskretisiert werden, was wir im néchsten Kapitel beschreiben. Zuméchst
soll aber noch eine zweite Form hergeleitet werden.

In der obigen Form treten Rand- und Volumenintegrale auf. Eine Zusammenfassung zu
einem Integral ist so nicht moglich. An dieser Stelle kann aber direkt ein Diskretisierungs-
verfahren, die Finite-Volumen-Methode, angesetzt werden. Diese Methode beruht gerade
auf der integralen Form und der Beschreibung der Bilanz durch Fliisse iiber den Rand von
gewihlten diskreten Kontrollvolumina. Wir beschreiben diese Methode in Abschn. 13.1.

Transformation in Volumenintegrale

In der integralen Form (12.6) konnen mit dem Gauf3’schen Integralsatz die beiden Ran-
dintegrale zu Volumenintegralen umgewandelt werden. Damit ergibt sich eine alternative
integrale Form, die anschlieend einfach in eine differentielle Form, d. h. in eine Differen-
tialgleichung umgewandelt werden kann.

Wir nehmen fiir den Gauf3’schen Satz jetzt an, dass §2 beschrinkt ist und der Rand 052
glatt genug ist, vgl. Definition 12.1. Der Gauf3’sche Satz gibt nun die Formel an, mit der
ein Oberflichen- oder Randintegral in ein Volumenintegral transformiert werden kann. Es
tritt folgende Grofe auf:

Definition 12.4 (Divergenz) Sei D C R offenund F : D — R? in alle Koordinaten-
richtungen partiell differenzierbar. Dann heif3t

. . OF,
div F(x) := V- F(x) ::Zax‘(x)ER

i=1 7!

Divergenz von F.

Der Gaul3’sche Satz lautet nun:

Satz 12.5 (GauB’scher Integralsatz) Sei D C RY offen, F : D — R stetig differen-
zierbar und 2 C D kompakt mit C'-Rand. Dann gilt

fdiv F(x)dx = / F(x)-n(x)ds(x).

2 2

Beweis [12, §15 Satz 3]. O
Wir setzen in der Transportgleichung (12.6) fiir festes ¢

F(x) =—y(x,t)v(x,t) + k(x,t)Vy(x,t)
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und erhalten mit dem Gauf3’schen Satz

/F(x) -n(x)ds(x) = / (=y(x,Hv(x,t) + k(x,t)Vy(x,t)) - n(x)ds(x)
FYe)

2

= /div (—y(x,Hv(x,t) + «(x)Vy(x,t))dx.
2

Um auch auf der linken Seite der Gleichung das Integral einer Funktion und nicht sei-
ne zeitliche Ableitung zu erhalten, setzen wir voraus, dass wir Integration und zeitliche
Differentiation vertauschen konnen, dass also gilt

d 9
Mp () = 3 Ma() :/a—);(x,t)dx. (12.7)
2

Die Voraussetzungen dafiir liefert folgender Satz aus der Analysis:

Satz 12.6 (Differenzierbarkeit parameterabhiingiger Integrale) Sei 2 C R¢, I C R
ein Intervall und F : 2 x I — R. Es gelte:

e Die Funktiont — F(x,t) ist fiir jedes x € 2 auf I differenzierbar.
e Die Funktion x — F(x,t) ist fiir jedes t € I iiber §2 integrierbar.
o Es gibt eine integrierbare Funktion F : 2 — R* U {oo} mit

'%—f(x,t) <F(x) VY(x,t)efxI.

Dann ist die Funktion G : I — R, definiert durch
G(t) = / F(x,t)dx, tel,
Q2
differenzierbar mit
oF
G'() = / W(x,t)dx, tel.
Q2

Beweis [12, §11 Satz 2]. O
Wir kdnnen also Zeitableitung und Integration in (12.7) vertauschen, wenn

e y fiir alle ¢ liber £2 integrierbar ist,
e die partielle Ableitung von y nach ¢ in £2 existiert und nach oben durch eine integrier-
bare Funktion beschrénkt ist.
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Unter diesen Voraussetzungen ergibt sich eine zweite integrale Form der Transportglei-
chung:

/a%y(x,t)dx = —[div(y(x,t)v(x,t))dx (12.8)
2

2
+ [div(/c(x)Vy(x,t))dx + /(c(y(x,t)) + g (x,1))dx.
2 2

12.3 Die Transportgleichung in differentieller Form

Eine differentielle Form ist eine, bei der das Gebiet §2, das ja — bis auf Glattheitseigen-
schaften — beliebig war, als differentiell oder infinitesimal klein oder ,,um einen Punkt x
zusammengezogen* angesehen wird. So ergibt sich eine punktweise Transportgleichung
mit Diffusion und Reaktionsterm oder Advektions-Diffusions-Reaktionsgleichung. Sie lau-
tet

?)—);(x,t) = —div(y(x,H)v(x,1)) + div (k(X)Vy(x,1)) + c(x. 1, y(x,1)) + g(x,1).

Ist ¥ unabhéngig von x, so erhalten wir mit Benutzung des Laplace-Operators
3 3
. 0 (oF 0°F
div(VF(x)) = E — (E(x)) = E —(x) =: AF(x)

Ax; ax?

i=1 i=1

die Gleichung
g—);(x, t) = —div(v(x,t)y(t,x)) + k() Ay(x,t) + c(x,t, y(x,1)) + q(x,1).

Der erste Term rechts vom Gleichheitszeichen kann mit der Definition der Divergenz und
der Produktregel als

div (vy)(x,t) =divu(x,t) y(x,t) + v(x,t) - Vy(x,t) (12.9)

geschrieben werden. In vielen Fillen gilt fiir die Geschwindigkeit divv(x,?) = 0 in §2
fiir alle . Dann vereinfacht sich diese Gleichung zu

%(x, 1) =—v(x,0) - Vy(x,1) + div (k(x, ) Vy(x.1)) + c(x. 1, y(x, 1)) +q(x,0).
(12.10)

und wie oben bei raumlich konstanter Diffusion.

Ubung 12.7 Beweisen Sie die Produktregel (12.9).
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Rand- und Anfangswerte

Obige Differentialgleichung wird — ergidnzt durch Anfangs- und Randwerte — zu einem
Anfangsrandwertproblem. Als Anfangswert wird eine Konzentration

y(x,10) = yo(x), x € £

vorgegeben. Bei den Randbedingungen gibt es folgende Bezeichnungen:

Definition 12.8 (Typen von Randbedingungen) Fiir die Randbedingung bei einer Diffe-
rentialgleichung fiir die Zustandsvariable y = y(x), x € 2 C R¢ definieren wir jeweils
fiir x € 062:

ad
Neumann-Randbedingungen: 8—y(X) = Vy(x)-n(x) = gx),
n
Dirichlet-Randbedingungen: y(x) = g(x),
ad
Robin- oder gemischte Randbedingungen: a—y X))+ ax)y(x) = gx).
n

mit vorgegebenen Funktionen o, g : 052 — R.

Bei Transportgleichungen sind meist Neumann-Bedingungen sinnvoll, die Fliisse des
Stoffes iiber den Rand des Gebietes definieren. Ist g = 0, so gibt es keinen Fluss iiber den
Rand, was z. B. am Boden des Ozeans oder auch an der Wasseroberflache sinnvoll sein
kann. Dabei ist zu beachten:

Anmerkung 12.9 Bei einer stationdren Transportgleichung ohne Reaktionsterm und mit
Neumann-Bedingungen kann eine Losung nur bis auf eine additive Konstante eindeutig
bestimmt sein, da nur Ableitungen von y in der Gleichung und den Randbedingungen
auftreten.

12.4 Stationdre schwache Losungen

Theoretische Aussagen zu Existenz und Eindeutigkeit der Losungen fiir die Transport-
gleichung basieren meist auf dem Konzept der schwachen Losungen. Wir stellen dieses
Konzept hier vor. Dabei beginnen wir mit der stationédren Gleichung in der Form

—div(kVy)+v-Vy—cy =gq in2 CRYde{l,2,3}

(12.11)
kVy-n =g aufdf.

wobei alle von y abhidngigen Terme auf die linke Seite gebracht wurden. Wir haben
hier eine Neumann-Randbedingung gewdhlt. Der Reaktionsterm ist als linear vorausge-
setzt, damit die gesamte Gleichung linear bleibt. Alle Koeffizientenfunktionen und Daten
v, k, ¢, q konnen von x abhingen.
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Mit schwacher Form der Gleichung ist gemeint, dass geringere riumliche Differenzier-
barkeitseigenschaften (als die in der differentiellen Form oben mit den dort auftretenden
zweiten Ableitungen) verlangt werden und die obige Gleichung in eine Integralgleichung
umgeformt wird.

Die Vorgehensweise ist die folgende: Die Gleichung wird mit einer zunéchst nicht
spezifizierten Testfunktion ¢ = ¢ (x) multipliziert und das Ergebnis iiber §2 integriert.
Damit ergibt sich

—/diV(KVy)¢dX +/U-Vy¢dx—[cy¢dx = /qq&dx (12.12)
2 2 2 2

Ziel bei der Herleitung der schwachen Formulierung ist es, die zweimalige Differenzier-
barkeit von y, die fiir die Formulierung (12.12) nétig ist, abzuschwichen und eine Ablei-
tung auf die Testfunktion ¢ zu verlagern. Dazu wird folgende Konsequenz des Gauf3’schen
Satzes verwendet:

Korollar 12.10 Seien D, §2 wie in Satz 12.5 und k, ¢ einmal und y zweimal stetig auf D
differenzierbar. Dann gilt

—/div(KVy)d)dx = [KVy~V¢dx—[/<g—y¢ds
n
Q2 2 EYe)

Beweis Setze F = kVy ¢ in Satz 12.5. Es gilt mit der Produktregel

div(kVy ¢) = div(kVy)p + kVy - Vo. (12.13)
O

["Jbung 12.11 Weisen Sie die Identitit (12.13) nach.

Die Anwendung dieses Korollars auf den ersten Term in (12.12) ergibt unter Benutzung
der Randbedingung aus (12.11):

—/div(KVy)d)dx = [KVy~V¢dx—[g¢ds
2 2 a2
und damit fiir die gesamte Gleichung (12.12):
[KVy-chdx+[U-Vy¢dx—[cy¢dx = /q¢dx+[g¢ds. (12.14)
2 2 2 2 b)Yl

Damit reicht nun einmalige Differenzierbarkeit aus. Da hier aber keine punktweise, son-
dern nur ein integrale Beziehung vorliegt, kann ein schwicherer Differenzierbarkeitsbe-
griff als der klassische verwendet werden.
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Schwache Differenzierbarkeit

Wir verwenden die Notation der Multiindizes
d
aeN! | := Z(x,-
i=1
und fiir die partiellen Ableitungen die Bezeichnung

LA
axyt o axge

D%y(x) :=
Das Konzept der schwachen Ableitung ist wie folgt definiert:

Definition 12.12 Sei @ € N¢ ein Multiindex. Die Funktion y € L! (£2) heiBt schwach

loc
differenzierbar (zum Multiindex «), wenn w € Llloc (£2) existiert mit

/ Y D p(x)dx = (—1) [ wP)dx Ve € CE(Q).

2 2

Die Funktion w := D%y heilit schwache Ableitung von y. Im eindimensionalen Fall wird
ebenfalls die Bezeichnung y’ verwendet.

Der Raum L!

loc

(£2) ist der Raum der auf £2 lokal integrierbaren Funktionen, d. h. derje-
nigen Funktionen, die auf jeder kompaktem Teilmenge von £2 integrierbar sind, vgl. etwa
[12, §5, S. 58]. Der Raum C$°(£2) ist der Raum der unendlich oft in 2 (im klassischen
Sinne) differenzierbaren Funktionen mit kompaktem Triger in £2, vgl. [12, §10, S. 112].

Dass das Konzept der schwachen Ableitung wirklich weniger restriktiv ist als das der
klassischen Differenzierbarkeit, ist hier zu erkennen:

Beispiel 12.13 Sei 2 = (—a,a) mit a > 0 beliebig. Die Betragsfunktion y : 2 — R,
y(x) = |x| ist einmal schwach differenzierbar mit schwacher Ableitung

-1, —a <x <0,
y'(x) =wkx) =11, 0<x<a,

beliebig, x = 0.
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Es gilt fiir ¢ € C{°(—a, a) mit partieller Integration (wobei die Randterme wegfallen):

a 0 a
/y(x)d/(x)dx = —[xd/(x)dx + /xgb/(x)dx
—a —a 0

0 a
:l¢(x)dx—!¢(x)dx
0 a

= —[(—1)¢(x)dx—/1¢(X)dx = —fw(x)¢>(X)dX-

“a 0 —a

a

Eine solche Funktion mit einem ,,Knick* ist im eindimensionalen Raum also schwach
differenzierbar. Fiir eine Treppenfunktion ist das nicht der Fall:

Ubung 12.14 Zeigen Sie, dass die Funktion y aus Beispiel 12.13 nicht zweimal schwach
differenzierbar ist.

Jetzt wird deutlich, welche Voraussetzungen an die Funktionen y, ¢ und auch an die
Daten g und g erfiillt sein miissen, damit diese Formulierung Sinn ergibt. Dazu definieren
wir den folgenden Funktionenraum:

Definition 12.15 (Sobolevraum H!(£2)) Der Raum aller iiber £2 quadratisch integrier-
baren Funktionen mit iiber 2 quadratisch integrierbaren partiellen Ableitungen erster
Ordnung heif3it

H' (2):={y e L*(Q): D% € L*(2) Ya € N? |a| = 1}.
Fiir die Definition der L”-Ridume verweisen wir auf [12, §12], fiir eine aIlgemeine

Definition von Sobolevraumen auf [34, 1.27] oder [35, Abschnitt 2.2.3]. Offensichtlich ist
fiir eine Funktion y € H'(£2) der Gradient Vy € L?(£2)%.

Lemma 12.16 Der H'(R2) ist ein Hilbertraum mit dem Skalarprodukt

(y,w) := /Vy(x) - Vw(x)dx +/y(x)w(x)dx.

2 2

Beweis Siehe [34, 1.27]. O



150 12 Transportmodelle

Die natiirliche Norm auf dem H !(£2) ist damit definiert als

1/2
12y = (199122 + 15 12(q))

Dabei ist die Norm fiir den Produktraum L?(£2)¢ als Euklidische Norm der L?(£2)-
Normen der Komponenten definiert.
Damit kann eine schwache Formulierung wie folgt angegeben werden:

Definition 12.17 Seien k € L®(2),v € L®(R2)¢,q € L*(2).g € L?*(382). Eine
Funktion y € H'(£2) heiBt schwache Losung von (12.11), wenn gilt:

/KVy-Vd)dx+/v-Vy¢dx—/cy¢dx = /qd)dx—i-/ggbds Vo € H'(R).
Q2 Q2 2 2 EYe)
(12.15)

Diese Formulierung lésst sich wie folgt verallgemeinern. Wir fiihren dazu den Dual-
raum eines normierten Raumes Y ein:

Definition 12.18 (Dualraum, duale Paarung) Sei Y ein normierter Vektorraum. Dann
heiflit die Menge aller beschrinkten linearen Funktionale

Y*:={l:Y — R,[ ist linear und beschrinkt}
Dualraum von Y . Mit der Norm

l7 *.
Iy = sup LT
ver Iyl

ist Y* ein normierter Vektorraum. Die Anwendung von / € Y* auf ein y € Y wird als
duale Paarung bezeichnet und geschrieben als

(yyyy =1(), yeY.

Wir definieren jetzt mit Y = H'(£2) eine Bilinearforma : ¥ x ¥ — R und ein
lineares Funktional / € Y* = H'(£)* durch

a(y,p) = [KVy-Vc;Sd)C+/U-Vy¢dx—/cy¢dx (12.16)

2 2 2
(Li)y=y := /qudx +/g¢ds. (12.17)
2 02

Damit lautet eine zu (12.15) dquivalente Formulierung: Finde y € Y mit

a(y.¢) =(l.¢)y+y Voev.
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Existenz, Eindeutigkeit und stetige Abhangigkeit der L6sung

Fiir dieses Problem liefert der folgende Satz eine Existenz- und Eindeutigkeitsaussage
sowie eine Abschitzung fiir die Losung. Dazu miissen folgende Voraussetzungen erfiillt
sein.

Definition 12.19 (Stetigkeit und Elliptizitiit einer Bilinearform) Sei Y ein normierter
Vektorraum. Eine Bilinearform a : ¥ x Y — R heil3t stetig, wenn eine von y,¢ € Y
unabhingige Konstante ¢; > 0 existiert mit

la(y.®) = cslyllyl@lly Vy.¢ €Y.

Die Bilinearform heif3t Y -elliptisch, wenn eine von y € Y unabhingige Konstante ¢, > 0
existiert mit

a(y.y) z cllylly ¥y eY.
Mit diesen Voraussetzungen erhalten wir folgendes Resultat:

Satz 12.20 (Lax-Milgram-Lemma) Sei Y ein Hilbertraum und a eine stetige und Y -
elliptische Bilinearform. Dann existiert zu jedem | € Y™ eine eindeutige Losung der
Gleichung

a(y.¢) =({l.¢)y~y VoeY,

fiir die gilt:
1
Ivlly = —lllly=.
Ce
Beweis Siehe [34, 4.2]. Die Abschitzung folgt mit ¢ = y aus der Elliptizitit:

cellyly =a.y) =L y)vey = Wly=llylly- m

Fiir die schwache Formulierung (12.15) der Transportgleichung sind diese Vorausset-
zung erfiillt:

Lemma 12.21 Die Bilinearform a : H'(2) x H'(2) — R, definiert in (12.15), ist
stetig.
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Beweis Es gilt mit einer relativ groben Abschitzung.

a(y,¢) = /KVy~V¢dx+/v~Vy¢dx—/cy¢dx

2 2 2
< IkllLoo @) IVYlL2(2)a VOl 2(@)a + [VllLo@)IVYIlL2(2)e @1l 22
+ el @) Iy 2@y 11120

= (||’<||L°°(Q) + [[vllzeo(2) + ||C||L°°(:2)) Iyl @)l o) O

Fiir den Nachweis, dass das Funktional / beschrinkt ist, wird eine Abschitzung der
Norm der Restriktion einer Funktion aus H '(£2) auf den Rand 952 des Gebietes benétigt,
d. h. die Beschrénktheit des folgenden Operators:

Definition 12.22 (Spuroperator) Der Operator
o HY(R2) = L?(02): y Yo (12.18)
hei3t Spuroperator.

Die Abschétzung lautet nun:

Lemma 12.23 (Spursatz) Der Spuroperator (12.18) ist linear und beschrinkt, d. h. es
existiert ¢ > 0 mit

ltaeylizoe) < cllylnie Yy eH' ().
Beweis Siehe [34, A 6.6] oder [36, Satze 1.1.5,6], [37, 6.2.40,41]. O
Das Bild des Spuroperators wird wie folgt bezeichnet:
Definition 12.24 Wir definieren
H'"?02):={ve L*0R):3y € H'(R), 190y = v}
mit der Norm

||U||1-11/2(39) ‘= min {”)’”Hl(rz)’y € HI(Q)aTE)Q)’ = v}.
yeH1(Q)
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Riume H°* mit reellen Werten von s lassen sich auch anders definieren, vgl. [36]. Nun
lasst sich die Beschrinktheit des Funktionals / in (12.15) zeigen:

Lemma 12.25 Das Funktional I, definiert in (12.17), ist in Hl(.Q)* mit

”l”Hl(Q)* = maX{”‘]”L%Q)vCr||g||L2(39)}-

Beweis Es gilt mit dem Spursatz, Lemma 12.23:

(1. By = / gpdx + [ 2645 < lall 20 1812 + 12 l20m 16200
2 02

= max{”quLZ(Q)’Cr”g”LZ(aQ)}”qb”Hl(Q)‘ o

Fiir die Transportgleichung gilt folgende Eigenschaft, die beim Nachweis der Elliptizi-
tit der Bilinearform a hilfreich ist.

Lemma 12.26 Seien y € H'(2),v € H'(£2)? mit divv = 0 fast iiberall in 2 und
v -n = 0 fast iiberall auf 0§2. Dann gilt

[(v -Vy)ydx = 0.
Q2

Beweis Es gilt punktweise fiir x € §2:

ayi 1 I _ 1 )
.V = 2Ly = = = .V .
(v-Vy)y ij, i, ZJZv, i, =20 V0

Fiir F = vy? gilt mit Produktregel und der Divergenzfreiheit von v:

div F = div (vyz) = (divv) y? +v-V(H?) =v- V),

also %div F = (v-Vy)y fast iiberall in £2. Der Gaul3’sche Satz 12.5 ergibt jetzt

[(U'VJ’)ydx=E/didex:E/F%ds:ifvyz.nds
2

2 082 a2

1 2
- - . d —O
/yv nas

82

wegen v - n = 0 fast iiberall auf dem Rand. O
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Damit folgt nun die Elliptizitit:
Lemma 12.27 Es gelte

Kmin = essinf{k(x) : x € 2} >0

Cmin := essinf{—c(x) : x € 2} >0
mit dem essentiellen Infimum
essinf{ F(x) : x € 2} :=sup{e e R : |[{F(x) < &}| = 0}.
Dann ist die Bilinearform a elliptisch auf H'(2) mit
Ce = Min{Kmin, Cmin }-

Beweis Es gilt mit Lemma 12.26:

a(y,y) = /KVy -Vydx + /(v -Vy)ydx —/cyzdx
2 2 2

2 2
= Kmin”Vy”LZ(Q)d + Cmin“.yan(Q)

= min{Kmin’ Cmin}“y”ill(g)- o
Damit ldsst sich das Lax-Milgram-Lemma 12.20 anwenden. Es gilt:

Korollar 12.28 Seien g € L*(2),g € L*(32),v € H'(2)¢ N L®(2)? mit divv = 0
fast iiberall in 2 und v - n = 0 fast iiberall auf 952 sowie k,c € L°°($2) mit den Voraus-
setzungen aus Lemma 12.27. Dann existiert genau eine schwache Losung y € H'(2) der
Transportgleichung (12.15). Diese erfiillt

max{||q ”LZ(.Q)’ Cr ||g||L2(a:2)}

nﬁn{Kmin s Cmin}

Y1) =
Beweis Die Abschitzung folgt mit den Lemmas 12.25 und 12.27. O

Der Nachweis der Existenz einer schwachen Losung fiihrt wie folgt auf die Existenz
einer klassischen Losung der urspriinglichen Transportgleichung (12.11): Sei eine schwa-
che Losung gegeben, die zusitzlich zweimal stetig differenzierbar ist, so dass alle Terme
in (12.11) punktweise definiert sind. Dann kann die Anwendung der Green’schen For-
mel in (12.14) riickgingig gemacht und (12.12) zuriick erhalten werden. Ein Test mit
¢ € C§°(82) liefert dann die punktweise Formulierung (12.11). Dabei wird [12, §10
Hilfssatz 1] benutzt.
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Hier wurde nur ein Typ von Randbedingungen untersucht. Es ist an der Vorgehensweise
zu erkennen, dass das Auftreten des Reaktionsterms und sein Vorzeichen wichtig sind fiir
die Abschitzung der Elliptizitat.

Fiir vorgegebene Werte der Konzentration auf dem Rand (Dirichlet-Randbedingungen)
lasst sich @hnlich verfahren. Dann kann mit Hilfe des Spursatzes (Lemma 12.23) das
Problem auf homogene Randwerte transformiert und eine Formulierung mit Hilfe des
folgenden Raumes untersucht werden:

Definition 12.29 (Sobolevraum H01 ($2)) Wird definieren
Hy(2):={y e H(Q): uoy =0}

Dieser Raum ist ein abgeschlossener Teilraum des H'(£2) und damit wieder ein Hil-
bertraum. Fiir den Nachweis der Elliptizitit im Fall von Dirichlet-Randbedingungen wird
folgende Aussage benutzt:

Lemma 12.30 (Poincaré-Ungleichung) Sei 2 C R beschrinkt und offen y € HJ(£2).
Dann existiert ¢ = c(§2) mit

Y22 < cllVylL2g)a-
Fiir 2 C [—s,s]? mits > 0 gilt c(2) = 1 +s.
Beweis [38,11.1.5-7], [34, 4.7], fiir eine Verallgemeinerung: [35, Lemma 2.5]. O

Ubung 12.31 Beweisen Sie die Poincaré-Ungleichung. Benutzen Sie den Hauptsatz der
Differential- und Integralrechnung.

Ubung 12.32 Leiten Sie die schwache Formulierung fiir die Transportgleichung mit
Dirichlet-Randwerten her und untersuchen Sie Existenz und Eindeutigkeit der Losung.
Was muss der Reaktionsterm erfiillen?

12.5 Klassische Losung eines reinen Diffusionsproblems

In diesem Abschnitt diskutieren wir die klassische Losung der riumlich eindimensionalen
reinen Diffusionsgleichung mit konstanter Diffusion, also

ay %y

——«k—=0 in2x]/ 12.19

ot dx? ¢ )
mit der Einfachheit halber £2 = (0, 1), dem Zeitintervall / = [0, c0) und homogenen
Dirichlet-Randbedingungen.
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Einerseits zeigen sich hier die Moglichkeiten und Grenzen einer direkten Losungs-
methode auf, andererseits gibt die explizite Darstellung der Losung einen Eindruck vom
zeitlichen Verhalten der Losung. Bei der Wahl geeigneter Zeitdiskretisierungsverfahren
wird dies niitzlich sein.

Die Gleichung (12.19) kann mit dem sog. Produktansatz (auch Trennung der Variablen
genannt), gelost werden. Der Ansatz

y(x,t) = Xx)T(t), xef2,tel,
mit X : 2 — R, T : I — R fiihrt auf
T'()X(x) —«T @) X"(x) = 0.
Nach Division durch X(¢)7'(¢) # 0 ergibt sich

') X'(x)
T X

e R.

Beide Briiche miissen konstant sein, da der rechte nicht von ¢ und der linke nicht von x
abhingt. Damit folgt

T'(t) = uT (),
also
T(t) =cie*, c; €R.

Die Differentialgleichung fiir X lautet

X"(x) = Ex(x).

K
Die Losung der Differentialgleichung fiir ©# > 0 lautet
X(x) = cpexp (\/,u//cx) +c3, ¢p,c3 €R, (12.20)

doch damit ergibt sich fiir homogene Randbedingungen nur die Nulllésung (warum?). Bei
Anfangswerten yo # 0 liefert (12.20) also keine brauchbare Losung. Fiir 4 < 0 sind (fiir
homogene Randbedingungen) die Funktionen

Xu(x) = —sin (VIul/k ), VIuljx € {jz : j €N},
Losungen. Umformuliert ergibt sich mit u = —(jm)?:

Ti(t) = cjexp (—(jT[)ZKl‘), cj €R, Xj(x) = —sin(jmx), j €N
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bzw. (wenn das Vorzeichen mit in die Konstante ¢; hineingenommen wird):
yj(x,1) = ¢jexp (—(jm)’kt) sin(jrx), ¢; €R,j e N.
Da die Gleichung linear ist, ist jede Linearkombination

y(x,t) = Z cj exp (—(jm)*kt) sin(jrx), ¢; €R, (12.21)
jeN

wieder eine Losung. Die Konstanten ¢; werden aus der Anfangsbedingung
y(x,0) = Z cjsin(jmx)
jeN

bestimmt. Die zentrale Beobachtung, die wir hier machen wollen, ist dass fiir # — oo alle
Losungsanteile exponentiell abfallen. Insbesondere bedeutet das wegen der Linearitit der
Gleichung: Liegt eine stationdre Losung vor und wird diese zu einem Zeitpunkt gestort,
dann klingt die Storung mit der Zeit ab.

Ubung 12.33 Was indert sich, wenn inhomogene Dirichlet--Randbedingungen oder Neu-
mann-Randbedingungen betrachtet werden?
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Am Beispiel der Transportgleichungen werden in diesem Kapitel Methoden zur Ortsdiskretisierung
vorgestellt. Zunéchst wird die Methode der Finiten Volumen behandelt, die sich aus der integralen
Form der Gleichungen ergibt. Wir beginnen dabei mit der rdumlich eindimensionalen Variante, da
daran das Prinzip am einfachsten zu verstehen ist. Die gewihlte Darstellung kann auch unabhén-
gig von der Modellierung im letzten Kapitel betrachtet werden. Es handelt sich praktisch um eine
Modellierung direkt in diskreter Form, was bei Klimamodellen in vielen Fillen anzutreffen ist. Die
Problematik der numerischen Instabilitit bei konvektions- oder advektionsdominanten Problemen
wird diskutiert, und darauf angepasste Diskretisierungsschemata werden vorgestellt. Anschlieend
beschreiben wir die Methode der Finiten Differenzen, die auf der differenziellen Form der Mo-
dellgleichungen basiert, ebenfalls in eindimensionaler Form. Wir gehen auf die Besonderheiten des
mehrdimensionalen Falles ein, ohne diesen im Detail auszuarbeiten. Die beschriebenen Ortsdiskre-
tisierungstechniken konnen auch fiir andere Gleichungen benutzt werden.

13.1 Die Finite-Volumen-Methode

Aus der integralen Form (12.6) der Transportgleichung kann in einer Raumdimension
relativ einfach eine Ortsdiskretisierung abgeleitet werden. Es kann aber auch direkt eine
diskrete Modellierung durchgefiihrt werden, was wir hier auch tun. So werden hier einige
Inhalte aus dem letzten Kapitel wiederholt.

Eine eindimensionale Modellierung oder Formulierung kann begriindet werden bzw.
sinnvoll sein, wenn alle Prozesse und gegebenen Daten beziiglich zwei Koordinatenrich-
tungen als konstant angenommen werden (konnen).

Wir betrachten den Transport eines Stoffes (z. B. eines Nahr- oder Schadstoffes) in ei-
nem bewegten Medium (z. B. Wasser oder Luft) in einem Gebiet £2, das zunédchst noch
eine Teilmenge des R ist. Die Geschwindigkeit des bewegten Mediums sei bekannt. Ge-
sucht ist die Konzentration y = y(x, t) des Stoffes in Stoffmenge pro Volumeneinheit am
Punkt x € §2 zur Zeit ¢.
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Als Voraussetzung fiir eine eindimensionale Modellierung nehmen wir an:

e Das betrachtete Gebiet 2 ist ein zeitlich fester Quader, der in einer, hier der x;-
Richtung durch ein Intervall [a, b] gegeben ist. Die Seitenldngen in die anderen beiden
Richtungen spielen keine Rolle, ihr Produkt und damit die Seitenflache des Quaders in
der x,-x3-Ebene sei A.

e Die Konzentration y héngt nur von der Koordinatenrichtung x| und der Zeit ¢ ab und ist
beziiglich der anderen beiden Ortsrichtungen x,, x3 konstant, d. h. es gilt: y = y(xy, ).

e Die Geschwindigkeit und alle anderen gegeben Daten haben nur eine Komponente in
dieselbe Richtung, und diese verbleibende Komponente ist wieder nur eine Funktion
von x; und ¢. Es gilt also v = (vy,0,0) mit v; = v;(xy, ). Fiir die Geschwindigkeit
wird dariiber hinaus vorausgesetzt, dass sie konstant beziiglich x; ist. Dies resultiert
aus der Massenerhaltung des bewegten Mediums, das wir hier als inkompressibel an-
nehmen (vgl. Abschn. 16.3). Das ergibt dann

divv(xy, x2,x3,£) =0

(vgl. Definition 12.4) und im eindimensionalen Fall
v
——(x1,0) = 0.
ox 1
Da so alle Abhiéngigkeiten von x;, x3 entfallen, schreiben wir kurz
X;=:x und v =:v

fiir die eindimensionale Koordinate bzw. den verbleibenden Anteil der Geschwindigkeit.
Es wird zu erkennen sein, dass sich die Seitenfliche A des betrachteten Quaders aus den
Gleichungen herauskiirzt.

Aquidistantes Ortsgitter

Wir unterteilen nun das Intervall [a, b] der Einfachheit halber zunichst in dquidistante
Teile. In Klimamodellen ist jedoch vor allem in der vertikalen Richtung ein Gitter mit
unterschiedlichen Gitterweiten iiblich. Die sich ergebenden Anderungen werden spiter
diskutiert. Das dquidistante Ortsgitter wird wie folgt bezeichnet (vgl. Abb. 13.1):

xi=a+ih, i=0,...,N, h= . (13.1)

Dabei ist /i die Linge einer Gitterzelle oder Gitterbox V;, die in x-Richtung das Intervall
[x;—1, x;] ausmacht und in der durch die anderen beiden Koordinatenrichtungen aufge-
spannten Ebene die Fliche A hat. Eine solche Zelle V; wird auch ein finites Volumen
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Abb. 13.1 Nummerierung Ki_1 Ki Kit1

der Gitterpunkte, Boxen und v _ v ‘ v

Variablen in der eindimensio- | 3{1 A sz+1 |

nalen Finite-Volumen-Methode I I 1

fiir die Transportgleichung T 1 h T h Tit1
Vi Vi

genannt, was dem Verfahren seinen Namen gibt. Es gibt N solcher Zellen mit den Indizes
i=1,...,N,undes gilt

N
2=JV. itVinintV; =0.i # j. (13.2)

i=1

Hier bezeichnet int M := M \ dM das Innere einer Menge. Da wir integrale Beziehun-
gen aufstellen, ist es nicht wichtig, ob die V; als offene oder wie hier als abgeschlossene
Mengen betrachtet werden.

Wir stellen nun eine Bilanz fiir die Stoffmenge in der Zelle V; auf und betrachten die
vier oben genannten Prozesse Advektion, Diffusion, Quellen/Senken und Reaktionen. Dazu
nehmen wir an, dass die Werte der Konzentration y in der Gitterbox V; beziiglich x kon-
stant sind, oder anders ausgedriickt: Wir approximieren den Mittelwert der Konzentration
in jeder Zelle. Diese Approximation bezeichnen wir mit

yit) ~ y(x,t), x€V, i=1,...,N.

Die Stoffmenge in einer Gitterbox

Die gesamte in Box V; enthaltene Stoffmenge zur Zeit ¢ ist gegeben durch

Xi

M;(t) = [y(x,t)dx =A / y(x,t)dx ~ Ahy; ().

Vi Xj—1

Da wir £2 als zeitlich fest angenommen haben, hingt die Menge, {iber die integriert wird,
nicht von ¢ ab.

Die zeitliche Anderung der Stoffmenge in §2 erhalten wir — wenn wir die mathema-
tischen Voraussetzungen fiir das Vertauschen von Integration und Differentiation (vgl.
Satz 12.6) als gegeben annehmen — als

Xj 5
M) = A / a—);(x,t)dx ~ Ahy! (7).

Xi—1
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Dabei ist y; die Zeitableitung der approximierten Losung in Box V;. Die Einheit von
M (1) ist Stoffmenge pro Zeiteinheit, also [M/(¢)] = [y]s™', vgl. dazu die Begriindung
hinter Formel (12.2).

Advektion

Unter Advektion verstehen wir den durch die Geschwindigkeit v = v(¢) des Mediums
bewirkten Transport von Stoff iiber den Rand des betrachteten Gebietes, hier also der
Box V;. Diesen Transport oder Fluss bezeichnen wir mit Mag, ; (¢). Der Rand von V; ist
gegeben durch die beiden Seiten mit Fliche A an den Punkten x = x;_; und x = x;. Es
ergibt sich fiir die zur Zeit ¢ iiber den Rand ein- und ausstrémende Stoffmenge

Maay,i (t) = Av(t)(y(xi=1, 1) — y(xi.1)), (13.3)

wobei benutzt wurde, dass v beziiglich des Ortes konstant ist. Ist v(¢) > 0, so stromt iiber
den linken Rand Stoff ein und iiber den rechten Rand hinaus. Durch Multiplikation mit
der Fldche (Einheit: Linge zum Quadrat) ergibt sich fiir den Fluss die richtige Einheit
Stoffmenge pro Zeit. Wir bendétigen jetzt in (13.3) die Werte von y an den Réndern der
Gitterbox. Da wir nur Werte innerhalb der Box haben, benutzen wir die Mittelwerte der
Werte in den beiden angrenzenden Gitterboxen

Yi—1(t) + yi (1) yi(t)+yi+l(t)'

i—s[ ~ ) l's[ ~
y(Xi-1,1) 5 y(xi,1) 5

Damit wird (13.3) durch

Mg, (1) ~ Av(z)w (13.4)

approximiert. Diese Mittelwertbildung ist unabhéngig vom Vorzeichen von v. Alterna-
tiv konnen wir auch in Abhingigkeit des Vorzeichens von v nur den Wert der Gitter-
box nehmen, die der Stromungsrichtung entgegengesetzt ist. Auf diese sog. Upwind-
Diskretisierungsvariante gehen wir spéter ein.

Der diskrete Advektionsterm (13.3) ergibt sich ebenfalls aus der integralen Form der
Gleichung (12.6) wenn der dortige Advektionsterm

Maa(t) = — [ Y (1) - n(x)ds(x)
02

diskretisiert wird: Das Skalarprodukt aus Geschwindigkeits- und Normalenvektor ist in
diesem Fall nur auf den beiden Seitenflachen der quaderférmigen Box V;, die senkrecht
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zur x-Koordinate (x = x;—; und x = x;) sind, ungleich Null. Mit den beiden dufleren
Einheitsnormalenvektoren

n(x;—1) = (-=1,0,0), n(x;)=(1,0,0) (13.5)

an diese Seitenflachen folgt dann genau (13.3).

Diffusion

Diffusion ist der Prozess, der durch molekulare Bewegung einen Ausgleich zwischen
benachbarten Bereichen unterschiedlicher Stoffkonzentration bewirkt, auch wenn das Me-
dium, in dem sich der Stoff befindet, in Ruhe ist.

Diffusion kann iiber die Ableitung senkrecht zu den beiden Rindern, also in x-
Richtung modelliert werden. Am linken Rand der Box V;, also bei x = x;_;, kann der
Zuwachs der Stoffmenge in der Box iiber diesen Rand durch den Term

—Ak(xi— l,t) (x, 1,1)
und am rechten Rand durch
AK(x,,l) (xl,t)

modelliert werden. Dabei ist « ein positiver Parameter (der Diffusionskoeffizient), der
vom Stoff, von Ort und Zeit und von der Konzentration y selbst abhéingen kann. Im Fall
k = k(y) wird die Gleichung nichtlinear.

Zu beachten sind die richtigen Vorzeichen: Bei einer positiven Ableitung am linken
Rand sind ,,mehr* Stoffmolekiile innerhalb von V; als au3erhalb, also diffundieren Mole-
kiile nach auBlen, und die Stoffmenge in der Box verringert sich entsprechend, was durch
das negative Vorzeichen ausgedriickt wird. Am rechten Rand ist es umgekehrt. Insgesamt
ergibt sich fiir die durch Diffusion bewirkte zeitliche Anderung der Stoffmenge in V; der
Wert

MDiff,i(f)=A(K(xuf) (xi, 1) — Kk (xi— 1f) (xz 11)) (13.6)

wobei hier der allgemeine Fall eines von Ort und Zeit abhéngigen Diffusionskoeffizien-
ten k = k(xy,t) angenommen wurde. Nur wenn « rdumlich konstant ist, kann man den
Diffusionskoeffizienten hier ausklammern. Es ist zu erkennen, dass x an den Rindern der
Gitterboxen, d. h. als

ki (t) :=x(x;,t), ©i=0,...,N, (13.7)
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benotigt wird, vgl. Abb. 13.1. Auflerdem bendtigen wir auch Approximationen fiir die
Ortsableitung von y an den Rindern der Gitterboxen. Da wir nur Werte innerhalb der
Boxen haben, benutzen wir Differenzenquotienten (vgl. Definition 7.11):

dy yi(t) — yi—1(t) dy Yi+1(t) = yi(t)
gy imn 1) ~ h Do h :

Damit approximieren wir den Diffusionsanteil durch

(13.8)

Mbpigi (1) = A (Ki (I)M M) '

P —ki—1(2) A

Fiir die Einheit ergibt sich mit [«] = m?s™!:

bl _ bl bl
[x] s m s

[Mpisei (1)] = [A][x]

Der diskrete Diffusionsterm (13.8) ergibt sich ebenfalls aus der integralen Form der
Gleichung (12.6) wenn dort im Diffusionsterm

Mpin(0) = / €)Yy (1) - n(x) ds().

EYe;
die Darstellung (13.5) der Normalenvektoren an den beiden Seitenflichen V; und die
Tatsache, dass der Gradient Vy(x,¢) in diesem Fall senkrecht zu diesen Flichen steht,
benutzt wird.
Quellen und Senken
Quellen und Senken des Stoffes werden mit einer Funktion
qi(t) ~ q(x,1), x€V

die positiv fiir eine Quelle und negativ fiir eine Senke in der i -ten Box ist, angegeben. Der
Quellterm ergibt sich dann zu

Muan (1) = A / g(r.0)dx ~ Ahg, (1).
Vi

Die Funktion g;(z) hat die Einheit [¢] = [y]s™'. Die Herleitung dieses Terms aus der
integralen Form (12.6) der Transportgleichung ergibt sich sofort.
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Reaktionsterme

Chemische oder biologische Reaktionen werden durch einen Term der Form

Ci(tsyi(l))%C(-xvtsy(-xvt))s )CEV,‘

modelliert. Die Funktion ¢ kann linear oder nichtlinear in y sein. Ein einfaches Beispiel
ist der radioaktive Zerfall, vgl. (12.5). Die durch die Reaktion in V; verursachte Anderung
der Stoffkonzentration ist daher

Meeas (1) = A [ c(x. 1.y (e.1)dx ~ Ahey(t, i (1)).
V;

Der Reaktionsterm ¢; (¢, y; (t)) hat wieder die Einheit Konzentration pro Zeit [y] s™'. Auch
hier ergibt sich die Herleitung dieses Terms aus der integralen Form (12.6) der Transport-
gleichung unmittelbar.

Die diskrete Gleichung

Alle vier Prozesse zusammengefasst ergeben folgende Bilanz:
M](t) = Maavi(t) + Mbist; (1) + Mauen i (t) + Mreak.i (1)-

Einsetzen der oben hergeleiteten Approximationen fiir diese Terme ergibt eine diskrete
Gleichung, aus der der Faktor der Flidche A in x,-x3-Ebene herausgekiirzt werden kann.
Zusammengesetzt und durch 4 dividiert ergibt sich, wobei wir das Argument ¢ der Uber-
sicht wegen weglassen:

’ Yi—1 — Yi+1 Yi+1 — Vi Vi — YVi—1
v f — K| ——————

Vi = o T =170 +ci(i)+qi. i=1,....N,
(13.9)
und wenn die Unbekannten zusammengefasst werden:
/_(Ki—1+v) Ki + Ki—1 +<Ki U) o)+
Vi = h2 2% Yi—1 hz Vi h2 2% Yi+1 i Wi qi,
(13.10)
Ist der Diffusionskoeffizient riumlich konstant, d. h. gilt x; = « fiir alle 7, dann ergibt
sich:
;K v 2k K v —_—
yi = (ﬁ + ﬁ)yi—l S + (ﬁ _E)yi+l +ea(i)+q, i=1...,N.

(13.11)
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Randbedingungen

Die in (13.10) auftretenden Werte y,, yy +1 beziehen sich auf Gitterboxen, die auf3erhalb
des Rechengebietes liegen. Sie miissen daher direkt oder indirekt tiber Randbedingungen
bestimmt werden. Dabei konnen an verschiedenen Teilen des Randes (im eindimensio-
nalen Fall sind das die beiden Punkte x = a, b) verschiedene Bedingungen vorgegeben
sein. Welche Randbedingungen sinnvoll sind, ergibt sich aus der modellierten Konfigura-
tion. Wir unterscheiden folgende Fille:

1. Vorgegebene Konzentration am Rand (Dirichlet-Randbedingung): Hier ist die Konzen-
tration am Rand als

Yo(t) = ya(t)  bzw.  yn11(2) = yp (1) (13.12)

gegeben, was in die Gleichung (13.10) fiiri =1

K v
Jrtatn+ai+ (545 (313)

S—————
=r

;o K1 + Ko K1 v
=t (e

bzw.i = N (analog) eingesetzt wird. Diese Randbedingung ist fiir Transportgleichun-
gen sinnvoll, wenn Messungen am Rand vorliegen und der Verlauf im Gebiet daraus
rekonstruiert werden soll. Es gibt sich in der entsprechenden Gleichung ein zusétzli-
cher Randterm r;(7) bzw. ry(¢). Die Koeffizienten der Unbekannten (y;)!_, bleiben
unverédndert.

2. Vorgegebener Fluss iiber den Rand (Neumann-Randbedingung): Die Stofffliisse iiber
den Rand sind in der Gleichung (13.9) fiiri = 1 bzw. i = N durch den jeweiligen

Advektionsterm

yo(t) — »(t)
2 T 2

- yv—1 () —yn1 ()
T =:y,(t) bzw. v(r) =

2h

CP)  (13.14)

gegeben, fiir den Randdaten y, () bzw. y,(¢) eingesetzt werden konnen. Es ergibt sich
z.B.firx = b,alsoi = N:

’ - YN+1 — YN YN — YN—1
YN =Vb tKN—5— _KN—IT

+ev(n) +gn.
Zusitzlich treten die Werte yg, yy+1 auch in den Diffusionstermen auf. Dort kénnen
dann entweder die Diffusionskoeffizienten an den Réndern, also kg, ky = 0 gesetzt
werden (wenn angenommen wird, dass keine Diffusion iiber den Rand stattfindet).
Oder die Unbekannten yy bzw. yy4+; werden mit (13.14) durch y;, y, bzw. yy—1, Vp
ausgedriickt. Wieder ergibt sich in Gleichungi = 1 oderi = N ein zusitzlicher Rand-
term r{(¢), ry (¢), und auch die Koeffizienten einiger Unbekannten veridndern sich.
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3. Keine Konzentrationséinderung am Rand (homogene Neumann-Bedingung): Dies gibt
z. B. einen Sinn, wenn an einem Rand eine Messung vorliegt (Fall 1) und das Gebiet als
so grof} angenommen wird, dass am anderen Rand die Konzentration konstant bleibt,
weil der Stoff schon diffundiert ist.

Dieser Spezialfall kann natiirlich wie oben mit y, = 0 bzw. y;, = 0 behandelt werden.
Alternativ konnen die Werte yg, yy+; dazu benutzt werden, um am Rand des Gebietes
ein rdumlich konstantes Verhalten der Konzentration zu simulieren. Dann wird

Yo(t) = y1(¢) oder/und yy1((t) = yn(2)

in (13.9) gesetzt, und es ergibt sich z. B. fir x = b,i = N:

v INF1—Y yn () —yn—
v =57 v-1— J/N+1)+KNL2N _KN—I%"'CN(J’N)'H]N'
2h — h h
~———

=JVN -0

(13.15)

Im Diffusionsterm bedeutet das also praktisch xy = 0. Hier entsteht kein zusitzlicher
Randterm, aber wieder veridndern sich die Koeffizienten der Unbekannten (hier der

von yy).

Das diskrete System in Matrix-Vektor-Schreibweise

Der Advektions- und Diffusionsanteil kann — da sie linear sind — als Matrix-Vektor-
Produkt geschrieben werden. Mit den Vektorfunktionen

y@©) = i) g = @ @)L e y0) = (@)L,

gilt dann

V' (1) = (Aaav(t) + Apise(2)) y (1) + c(t, y(t)) + q (1) + r(1). (13.16)

Die Matrizen Aaqy(¢) und Api(¢) haben jeweils die Dimension N x N, der Vektor r(¢) €
R¥ enthilt eventuelle Randterme.

Fiir die oben aufgefiihrten verschiedenen Randbedingungen ergeben sich unterschied-
liche Eintrige in den Matrizen und im Vektor r. Wir geben zwei Beispiele an: Dabei
benutzen wir die Bezeichnung

b ¢

wridiagy (@.b,c) := |4 . abceC (13.17)
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fiir eine Tridiagonalmatrix in CV*V

Nebendiagonalen.

mit konstanten Eintrdgen auf der Diagonalen und den

Beispiel 13.1 Fiir vorgegebene Konzentrationen (13.12) an beiden Réndern und konstante
Diffusion ergeben sich die Matrizen:

t t
AAdv(z)=%mdiag,v(l,o,—l), ADiff(z)=%mdiag,v(l,—z,l) (13.18)

und der Vektor
k(@) v(t) k() (@)
0= (524 52) 000 (82 29) o) ern. aaa

Beispiel 13.2 Fiir eine gemischte Randbedingung mit vorgegebenem Wert der Konzen-
tration in x = « und keiner Stoffkonzentrationdnderung in x = b wirkt sich die zweite
Bedingung auf die letzte Zeile der Advektionsmatrix aus, sie bestimmt sich aus (13.15).
Es entsteht ein zusitzlicher Diagonaleintrag:

0 -1
v(t) | 1

Anan() = A . (13.20)

In der Diffusionsmatrix entfdllt im letzten Diagonalelement der Eintrag «, vgl. (13.15).
Damit lautet die Matrix mit k; = «; (¢):

—(Kko + K1) K1
Apigr (1) = L “ it ) . (13.21)
h? —(Kn—2 +KnN—1)  Kn—1
KN—1 —KN-—1

Der Vektor mit den Randtermen hat nur den Eintrag r; wie in (13.19).

Ubung 13.3 Geben Sie das diskrete System fiir den Fall mit keiner Anderung der Kon-
zentrationen an beiden Randern an (Fall 3 oben).

13.2 Die Finite-Differenzen-Methode

Die Finite-Differenzen-Methode ist eine Diskretisierungsmethode, die auf der differenti-
ellen Form einer Bilanzgleichung oder allgemein einer Differentialgleichung aufbaut. Bei
dieser Methode wird dhnlich wie bei der Finiten-Volumen-Methode ein Gitter erzeugt.
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AnschlieBend werden die in der punktweisen Formulierung auftretenden Differentialope-
ratoren durch Differenzenquotienten approximiert.

In diesem Abschnitt zeigen wir die Anwendung der Finite-Differenzen-Methode auf
die differentielle Form (12.10) der Transportgleichung. Wir betrachten hier zunichst wie-
der nur die Ortsdiskretisierung.

Differenzenquotienten

Die Ableitungen erster und zweiter Ordnung beziiglich der Ortskoordinaten x; werden mit
Differenzenquotienten approximiert. Fiir die ersten Ableitungen wurden diese bereits in
Definition 7.11 angegeben, denjenigen fiir die zweite Ableitung ergénzen wir hier, wieder
nur im eindimensionalen Fall.

Definition 13.4 (Differenzenquotient 2. Ordnung) Sei D C R offen, y : D — R,
x € D und h > 0. Dann definieren wir den zentralen Differenzenquotienten zweiter
Ordnung:

h) — —h
Dapy(n) = XEFNZ2TICZ])

Es gilt:

Satz 13.5 Ist y wie oben und in [x — h, x + h] C D viermal stetig differenzierbar, dann
gilt

Dypy(x) —y"(x) € O(h*), h — 0.

Ubung 13.6 Beweisen Sie dieses Resultat und zeigen Sie, dass sich der zentrale Differen-
zenquotient zweiter Ordnung durch Nacheinanderanwendung des vorwiérts und riickwirts
genommenen Differenzenquotienten erster Ordnung ergibt.

Anwendung auf die eindimensionale Transportgleichung

Wir wenden die oben eingefiihrten Differenzenquotienten nun auf die Ortsableitungen der
rdumlich eindimensionalen Transportgleichung (12.10) an. Die Zeitableitung bleibt zu-
nichst unverdndert. Die Geschwindigkeit v wird wieder als rdumlich konstant angesehen,
was im eindimensionalen Fall sinnvoll ist (vgl. die Begriindung in Abschn. 13.1).

In der Diskretisierung wird das gleiche Gitter

xi=a+ih, i=0,....N, xy=b, h= (13.22)
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wie bei der Finiten-Volumen-Methode in (13.1) benutzt. Im Gegensatz dazu wird jetzt mit
y; allerdings die Approximation der Losung am Gitterpunkt x; bezeichnet:

yi(t) =~ y(x;,1).

Wird definieren analog an den Gitterpunkten

qi () :==q(x;. 1), ¢i(t,yi(t)) :=c(x;, 1,y (1))

und setzen fiir die Ableitung im Advektionsterm den zentralen Differenzenquotienten ers-
ter Ordnung an:

Yit1(t) _yi—l(t)'

0
0(e) 3 () A~ 0(0)

Den Diffusionsterm diskretisieren wir durch Hintereinanderausfiihren des Vorwirts- und
riickwirtsgenommen Differenzenquotienten erster Ordnung als

! ( ay) (xi,1) & Dja (k(xi, ) Dy (xi, 1))

ax “ox
i Est - i_ﬁst
— Dip (K(xhl)yu +4 )hyoc 5 ))

=K(xi +ﬁ,,) M_K(xi_ﬁ,,) Yi(D) =y ()

2 h? 2 h?

Ubung 13.7 Welche Approximation ergibt sich bei Verwendung der Differenzenquotien-
ten D, , D,j' (und umgekehrt)? Was ist der Nachteil dieser beiden Varianten gegeniiber
der oben verwendeten?

Es werden bei der hier verwendeten Variante die Diffusionskoeffizienten nicht an den
Gitterpunkten, sondern an den Mittelpunkten x; — % der Boxen V; (vgl. Abb. 13.1) beno-
tigt. Mit der Bezeichnung

h
ki(t) ==« (x,- — E’Z)’ i=1,...,N, (13.23)

ergibt sich

9 dy o yier () —yi(@) yit) = yic1(0)
x (Ka) (xi, 1) NKI—H(I)—hZ /c,(t)—h2 )

Die Diskretisierung der Differentialgleichung (12.10) im Inneren des Gebietes (d. h. fiir
die Gitterpunkte i = 1,..., N — 1) ergibt so folgende Gleichungen (das Argument ¢ ist
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wieder unterdriickt):

’ Yi+1 = Vi—1
_v—

r_ Yier — Vi Vi — Vi1
yz 2]’[ 1

+ Ki+ W Ki 2

+ci(yi) +qi,
i=1,...,N —1.

Dies sind N — 1 Gleichungen fiir zuniichst N + 1 Unbekannte. Die fehlenden zwei Glei-
chungen kommen aus den Randbedingungen. Ein Umsortieren ergibt

;[ Ki v Ki + Ki+1 Ki+1 v
¥ = (55 + 57 ) vim = Ty (S - ) v+ GO0 4 (1324

i=1,...,N—1.

Dies entspricht dem System (13.10) das sich mit Finiten Volumen ergibt, wenn N dort
durch n := N —1 hier ersetzt wird. Einziger Unterschied ist die andere Bedeutung (13.23)
statt (13.7) der Diffusionskoeffizienten und ihre damit verbundene veridnderte Nummerie-
rung.

Ubung 13.8 Die Werte des Diffusionskoeffizienten in den Mittelpunkten der Boxen kon-
nen auch durch Mittelung der Werte an den Kanten, also als

( h ) ki—1(t) +«; (1)
klxi—=t)|~ ———=
2 2

mit k; wie in (13.7) approximiert werden. Welche Diskretisierung ergibt sich in diesem
Fall?

Das System kann wieder in Matrix-Vektor-Form als
Y1) = (Anav(t) + Apier(1) y (@) + c(t, y(1) + ¢ (@) + r () (13.25)

geschrieben werden. Der zusitzliche Vektor r(¢#) € R” und die genaue Form der Matrizen
bestimmen sich wieder aus den Randbedingungen.

Beispiel 13.9 Im Fall beiderseitiger Dirichlet-Randbedingungen ergibt sich dasselbe Sys-
tem wie bei der Finite-Volumen-Methode in Beispiel 13.1.

Beispiel 13.10 Wie in Beispiel 13.2 sei an einem Rand x = a der Wert der gesuchten

Funktion y vorgegeben (also eine Dirichlet-Randbedingung), in x = b sei eine homogene
Neumann-Bedingung gegeben, d. h.

d
Y@, 1) = ya(t). %(b,r) —0.
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Fiir die Dirichlet-Randbedingung an x = a wird in (13.24) fiir i = 1 der Wert y, durch
den Randwert y, ersetzt. Dies ergibt fiir konstante Diffusion
2k ( K

y=—7n+ )yz + () +q1 + ( v )ya . (13.26)
T h2 2 2h w2t o
—— ———

=iry

Bei der Diskretisierung der Ableitung am rechten Rand existiert der Gitterpunkt xy 4,
der bei der Verwendung des zentralen Differenzenquotienten fiir die Ableitung in xy = b
bendtigt wird, nicht. Wir verwenden daher den riickwirts genommenen Differenzenquo-
tienten fiir die Neumann-Bedingung:

yN () — yn—1(t)
—

Damit erhalten wir aus der homogenen Neumann-Bedingung yy (f) = yy—;(¢), und die
letzte Gleichung (i = N — 1) dndert sich zu

d
Ly ~

, v K v
YN—1=( 2h)yN -2 = (— zh)YN 1 +Fevoi(yv=1) +gn-1.

Die Matrizen in (13.25) sind jetzt gegeben durch

0 -1 -2 1

v@) |1 . e K(t 1
Z(h) , Apie(t) = %
0 -1 .o=2 1

I -1 1 -1

Aaav(t) = e R™"

mit n = N — 1. Der Diagonaleintrag in der letzten Zeile der Advektionsmatrix ist hinzu-
gekommen, und an gleicher Stelle hat sich die Diffusionsmatrix verdndert. Der Randterm
r(t) in (13.25) enthilt nur den Eintrag (13.26), alle anderen sind Null.

Anmerkung 13.11 Die Matrizen entsprechen derjenigen der Finite-Volumen-Methode aus
Beispiel 13.2 mit konstanter Diffusion.

Der Nachteil der beschriebenen Diskretisierung der Neumann-Bedingung ist die nied-
rigere Genauigkeit ©(h) als die der Differentialgleichung im Inneren (O (h?)). Eine zweite
Variante vermeidet diesen Genauigkeitsverlust:

Beispiel 13.12 Wir behalten yy . als ,,virtuelle” Unbekannte und diskretisieren die Dif-
ferentialgleichung auch an der Stelle x = xy = b. Damit erhalten wir ein Gleichungssys-
tem der Dimension n = N . Die Neumann-Bedingung diskretisieren wir mit dem zentralen
Differenzenquotienten, der die Ordnung O(h?) hat, und setzen

dy YN+1— YN—-1
—y) x ————

= O’
2h
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also yy+1(t) = yy—1(t). Die Gleichungen firi = 1,..., N — 1 haben dieselbe Form
wie in (13.24), und diese Gleichung benutzen wir nun auch fiir i = N. Darin entfillt der
erste Term genau wegen der Neumann-Bedingung, und yy +; wird im zweiten Term durch
YN—1 ersetzt:

—2yn () +2yN—1(t)

yn (1) = k(1) + en(t. yn () + gn(0).

h2
Damit ist nun
0 -1 -2 1
v@) |1 . . k(t 1 e
Apav(t) = 2(—h) . Apig(t) = % e RV*N,
1 . =1 1 .1
0 O 2 =2

Beide Matrizen haben sich im letzten unteren Nebendiagonaleintrag gedndert.

Ubung 13.13 Stellen Sie die diskreten System fiir beidseitige Neumann- und beidseitige
Dirichlet-Randbedingungen auf. Vergleichen Sie mit den entsprechenden Systemen der
Finite-Volumen-Methode.

13.3 Losbarkeit des diskreten stationdren Systems

In diesem Abschnitt soll die Losbarkeit der stationédren diskreten Gleichungen untersucht
werden, die sich — wie gesehen — fiir beide Diskretsierungsvarianten (Finite-Volumen-
oder Finite-Differenzen-Methode) nicht unterscheiden.

In Korollar 12.28 wurde gezeigt, dass die Transportgleichung mit Neumann-Bedin-
gungen unter bestimmten Voraussetzungen an « und ¢ (vor allem ¢ # 0) eine eindeutige
schwache stationdre Losung hat. Ubung 12.32 zeigt das gleiche Resultat fiir Dirichlet-
Bedingungen sogar fiir ¢ = 0. Gibt es eine klassische Losung mit entsprechender zwei-
maligen Differenzierbarkeit im Ort, dann ist diese Losung auch eine schwache Losung
und somit eindeutig.

Es ist wiinschenswert, dass auch das diskretisierte stationdre System, das sich aus
(13.16) bzw. (13.25) zu

(Aagy + Api)y +¢c(y) +g+r =0 (13.27)

ergibt, diese Eigenschaft hat. Ist ¢ linear, so ist die Losbarkeit des dann linearen Systems
dquivalent zur Regularitit der Matrix Aagy + Apigr + ¢/ mit der N-dimensionalen Ein-
heitsmatrix /.
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Der Diffusionsanteil
Wir betrachten zunichst den Diffusionsanteil mit konstantem « und dazu als Beispiel

die Matrix (13.18) aus den Beispielen 13.1 bzw. 13.9 der Finiten-Volumen- bzw. Finite-
Differenzen-Diskretisierung:

Apier = %tridiagn(l, 2. 1). (13.28)
Fiir diese Matrix kann gezeigt werden, dass sie regulér ist.
Definition 13.14 Eine Matrix A € R™*" heiBt positiv-semidefinit, wenn
xTAx >0 V¥xeR" (13.29)

gilt. Sie heilt positiv-definit, wenn Gleichheit in (13.29) nur fiir x = 0 gilt. Sie heifit
negativ-(semi-)definit, wenn (—A) positiv-(semi-)definit ist.

Fiir eine definite Matrix gelten folgende Aussagen:
Ubung 13.15 Zeigen Sie:
1. Eine positiv- oder negativ-definite Matrix ist regulir.
2. FEine symmetrische Matrix ist genau dann positiv- (bzw. negativ-) definit, wenn alle
Eigenwerte positiv (bzw. negativ) sind.
3. Fiir eine symmetrische positiv-definite Matrix A gilt
AminllX[3 < xTAx < Apaxllx 3 Vx € R”,
wobei Apin, Amax der betragskleinste bzw. -grofite Eigenwert von A ist.
Fiir die Matrix Api kann direkt mit der Definition ihre Definitheit gezeigt werden:
Ubung 13.16 Zeigen Sie, dass die Matrix A := tridiag, (—1, 2, —1) positiv-definit ist.
Da Schrittweite 4 und Diffusionskonstante « groBer Null sind, ist der diskretisierte
Diffusionsoperator mit konstanter Diffusion in der Form (13.28) und auch in den Varianten
fiir andere Randbedingungen regulér:
Korollar 13.17 Die Matrix Apig aus (13.28) ist negativ-definit. Dies gilt ebenfalls, wenn

das erste oder/und letzte Diagonalelement auf Grund anderer Randbedingungen den Wert
—1 statt —2 hat.
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Zusatzliche Advektion

Wenn bei konstantem v und « und geeigneten Randbedingungen (z. B. mit vorgegebenen
Werten vy, yn+1, vgl. Beispiele 13.1, 13.9) die Matrizen Apis, Aagy auf den jeweiligen
Haupt- und Nebendiagonalen konstante Eintrige haben, kann eine hinreichende Bedin-
gung fiir die Regularitit der Matrix mit Hilfe ihrer Eigenwerte mit dem folgenden Satz

gezeigt werden.

Satz 13.18 Die Matrix A := tridiag, (a,b,c),a,b,c € C hat die Eigenwerte

jr .
Aj=b+24y , =1...,n.
j + accos(n+1) ] n

Beweis Den Beweis formulieren wir als Ubungsaufgabe, s. u.
Wir wenden den Satz auf die Matrix
A = Apir + Anavs

gegeben durch (13.18) mit konstanten Werten fiir ¥ an und setzen

_v+/c b— 2K _ U+K
T TR T TR T T T

Damit gilt fiir die Eigenwerte von A:

2K [k2 v v K Jjm .
Aj:—ﬁ‘Fz E_WSIgn(E—Fﬁ)COS(n—i—I)’ .1:1"'7”'

Entscheidend ist der Term
( v K ) ( v /c) k2 v?
ac = | — — —_—— — )= — — —
2h - K? 2h  h? h*  4h?
unter der Wurzel. Ist er nicht negativ, dann ist

2 2 2

K v K

O=ac=ri~m =

(13.30)

d

(13.31)

und die Wurzel ist reell. Das Argument der Kosinusfunktion in (13.30) liegt immer im
offenen Intervall (0, ), da j = 0,n + 1 nicht auftreten. Daher ist der Wert der Kosinus-

funktion im offenen Intervall (—1, 1), insbesondere gilt

cos( il )<1 Vi=1,...n.
n+1
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Es gilt
jm 2k .
2 2 = — V :1,..., .
Jac cos (n T 1) < z+va 72 J n
Also folgt
5 2k 2k .

Ist der Term ac unter der Wurzel negativ, dann ist /ac eine rein imaginire Zahl mit
Imaginirteil d = \/W # 0. Damit gilt fiir alle Eigenwerte A; # 0, j = 1,...,n. Also
ist A regulir, unabhingig vom Term unter der Wurzel und damit unabhingig von v, , h.
Das stationire System ist eindeutig 16sbar.

Ubung 13.19 Beweisen Sie Satz 13.18. Tipp/Schritte:

1. Fiihren Sie A4 durch eine Ahnlichkeitstransformation mit einer Diagonalmatrix in eine
symmetrische Matrix B iiber.

2. Schreiben Sie diese als B = ol + BC, C = tridiag(1,0, 1) mite, B € C.

3. Zeigen Sie mit dem Additionstheorem sin(x + y) + sin(x — y) = 2sin x cos y, dass

die Vektoren
km "
v 1= (sin(j—)) eR", j=1,....n
n+1) /=

Eigenvektoren von C sind und bestimmen Sie die zugehorigen Eigenwerte.
4. Berechnen Sie daraus die Eigenwerte von B und damit von A.

Ubung 13.20 Was bedeutet es fiir die Losbarkeit des stationdren Systems, wenn ein li-
nearer Reaktionsterm c(y) = —cy, ¢ > 0, hinzukommt? (Wie) Passt dieses Ergebnis zu
den Resultaten aus Abschn. 12.4?

Bei nicht konstanten Eintrdgen auf den Diagonalen der Systemmatrix kann eine Ab-
schétzung fiir die Eigenwerte benutzt werden, um die Regularitit zu untersuchen. Dazu

bendtigen wir folgenden Begriff.

Definition 13.21 (Irreduzible Matrix) Sei A = (a;;);; € C"".

1. Indizesi, j € {1,...,n} heien direkt verbunden, wenn a;; # 0 gilt.
2. Indizes i, j heiBen verbunden, wennes iy, k = 1,...,[, gibtmiti; = i,i; = j, wobei
ik,ix+ furalle k = 1,...,/ — 1 direkt verbunden sind.

3. A heiBt irreduzibel, wenn alle i, j € {1,...,n} verbunden sind.
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Der Begriff tritt in folgender Eigenwertabschédtzung auf:
Satz 13.22 (Satz von Gerschgorin) Sei A = (a;;);; € C"*". Dann gilt:

1. Alle Eigenwerte von A liegen in der Menge

n

\JBr(@i) mitri:= )" lagl.i=1.....n. (13.32)

i=1 J=1,j#i
2. Ist A irreduzibel, dann liegen alle Eigenwerte in der Menge
n n
U Bri (@) U () 9By, (i)
i=1 i=1
Beweis Sei A Eigenwert von A und v zugehoriger Eigenvektor mit ||v]|eoc = 1, d.h. es

existiert i mit |v;| = 1. Die i-te Zeile der Gleichung Av = Av ergibt

()L—a,-i)v,- = Z a;jv;.

j=Lj#i
Wegen |v;| = 1 = ||v]|oo folgt
n n n
A —a;i| < Z laijllv;| < Z laijIv]loo = Z lai| = ri. (13.33)
j=Lj#i j=Lj#i J=Lj#i

Damit ist Behauptung 1 bewiesen: A liegt in der Vereinigung der abgeschlossenen Kreise
B, (ai;).

Liegt A in der Vereinigung des Inneren dieser Kreise, so ist Behauptung 2 ebenfalls
bewiesen. Wir nehmen jetzt an, dass

A ¢ B, (@) (13.34)

i=1
Fiir i mit |v;| = 1 gilt nach Behauptung 1: A € B,, (a;;), also mit (13.34) dann

A€ 8B,,(aii), d.h. |A — al‘,’| =17r;. (1335)
Zwischenbehauptung: Fiir i mit |v;| = 1 und beliebiges j gilt:

(13.35),61,'/' 75 0 = |Uj| =1, M - a/-j| =T;. (13.36)
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Aus (13.35) folgt, dass in (13.33) iiberall Gleichheit gilt, also:

> layllyl= 37 layl.
j=1j#i j=lj#i
Wegen v; < ||v]leo = 1 muss |a;;| |v;| = |a;;| fiir alle j gelten. Ist a;; # 0, so folgt dann

v; = 1. Abschitzung (13.33) auf j angewandt ergibt
[A —aj;| <y,

und Annahme (13.34) impliziert wieder Gleichheit. Also ist die Zwischenbehauptung
(13.36) bewiesen.

Sei A irreduzibel und j beliebig. Dann sind i, j verbunden, d. h. es existieren iy, k =
1,...,/miti; =i,i; = j und Aigigy #0fiirk =1,...,] — 1. Aussage (13.36) auf alle
direkt verbundenen Indexpaare (iy, ix+) angewandt ergibt

il =1, |A—ai,l=r Vk=1,...,L
Fiir k = [ bedeutet das wegen i; = j
[A—ajj| =rj,
alsoist A € 9B, (a;;). Da j beliebig war, folgt die Behauptung. O
Fiir die Diskretisierungsmatrizen benutzen wir den Begriff der Diagonaldominanz:

Definition 13.23 (Diagonaldominanz) Eine Matrix A = (a;;);; € R"™" heilit schwach
diagonaldominant, wenn

n

laii] = > layl Yi=1....n (13.37)
j=Lj#i

gilt. Gilt in (13.37) fiir mindestens ein i = 1,...,n Ungleichheit, dann heifit A dia-
gonaldominant. Gilt in (13.37) fiir alle i = 1,...,n Ungleichheit, dann heillt A strikt
diagonaldominant.

Korollar 13.24 Die Matrix A € R"™" habe positive Diagonalelemente und sei entwe-
der (1) strikt diagonaldominant oder (2) irreduzibel und diagonaldominant. Dann ist A
positiv-definit.
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Beweis (1) Es gilt |a;;| > r; fiir alle i, vgl. (13.32) und (13.37). Es folgt

| B (@) N (~00.0] = 0.

i=1

Nach Teil 1 des Satzes von Gerschgorin sind dann alle Eigenwerte positiv.
(2) Sei i der Index, fiir den in der Definition der Diagonaldominanz echte Ungleichheit,
also |a;;| > r;, gilt. Es gilt nun

| B (@) N (-00.01=0 und ()0B,,(a;;) C 9B, (ai),
j=1 j=1

wobei 0B, (a;;) N (—oo, 0] = @. Nach Teil 2 des Satzes folgt ebenfalls, dass alle Eigen-

werte positiv sind. O

Um dieses Korollar auf die Diskretisierungsmatrizen anzuwenden, stellen wir zuerst
fest:

Anmerkung 13.25 In jedem Fall der betrachteten Randbedingungen ist die aus der ein-
dimensionalen Finite-Volumen- oder Finite-Differenzen-Methode erhaltene Diskretisie-
rungsmatrix Aagy + Apir irreduzibel.

Wir betrachten als Beispiel die Finite-Volumen-Variante aus Beispiel 13.2 also die Ma-
trizen (13.20) und (13.21) mit konstanter Diffusion.

Beispiel 13.26 Wir wenden Korollar 13.24 auf die Matrix

0 —1 2 -1

v |1 . e k| —1
A:Z_(AAdv'i‘ADiff):ﬁ ' + =

an. Diese hat positive Diagonalelemente, wenn (wegen der letzten Zeile) gilt:

K v K v 2K
— — — >0, also 5 > bzw. (v < 0oderh < —) . (13.38)
v

Es gilt mit der Bezeichnung r;, definiert in (13.32):

v K v K
any = =3 + 37 = |35~ 3l = 2 laxj =r.
J#EN
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Firi =2,...,N — 1 gilt mit (13.38):

2Kk

wi=g =gt wl e 5+ 3l
Es gilt
)——I——‘—i—|—£<:>1—|—£>0<:>v>00der—>u
2h B2l 2h B2 2h  h? h? "~ 2h
2k
<:>v>00derh<ﬂ,
v
‘-1—) K<:>U+K<O<:> < Ound <v vl
—t === — + — v un— - =
2h  h? 2h  h? 2h  h? h? 2h  2h

2
— v<0undh>ﬁ
v

Wegen (13.38) gibt es noch drei Fille:

A 2K K v v K 2K
(1) v >0, <T. ri:ﬁ_ﬁ-i_ﬁ-i_ﬁ:ﬁ:aii
@ v<0 h<>X d ot 2«
v — . ri:——— —_— —:—:a”
| | h?  2h h2 k2
2
(3) U<Ol’l>— ri=£—1—1—£=M>_K=aii'

v] R 2h 2h k2 kR

Nur fiir
2k
h< — (13.39)
lv
giltalsor; < a;;,i =2,...,N. Diese Voraussetzung impliziert (13.38). Unter der Vor-

aussetzung (13.39) gilt fiir die erste Zeile

Iﬂ

% |z,
also ist die Matrix fiir Schrittweiten, die (13.39) erfiillen, diagonaldominant.

Die Aussage im Beispiel bedeutet nicht, dass die Matrix in anderen Féllen nicht regulér
ist, fiir den Beweis werden nur andere Methoden benétigt.

Ubung 13.27 Implementieren Sie die Version mit Dirichlet- oder gemischten Randbe-
dingungen, wihlen Sie « und v beliebig und untersuchen Sie, was bei verschiedenen
Schrittweiten & passiert, insbesondere dann, wenn Bedingung (13.39) verletzt ist.
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13.4 Numerische Instabilitat advektionsdominanter Probleme

Wie in Abb. 13.2 zu sehen, entstehen bei zu grofl gewihlten Schrittweiten Oszillationen
bei der numerischen Losung der stationdren Transportgleichung. Numerische Experimen-
te zeigen, dass der Wert in (13.39) eine kritische Grenze darstellt. Nur bei kleineren
Schrittweiten werden Oszillationen vermieden. Je kleiner die Diffusion (genauer: der
Diffusionskoeffizient) und je groBer die Geschwindigkeit, desto kleiner muss A gewihlt
werden.

Theoretisch kann dieses Verhalten an folgender Modellkonfiguration erkléart werden:
Die diskreten Gleichungen (13.10) lauten im stationéren Fall fiir konstante v,k und g =
0, ¢ = 0 und gegebenen Randwerten yg, yny +1:

0=(%Jr%)yi_l_fl_’;yiJr(%_%)yiﬂ, i=1,...N

Nach Multiplikation mit 42/ erhalten wir mit der Abkiirzung

vh

T
die Gleichungen:
(1+S)yi—1—2)h'+(1—5)yi+1 :O, i :1,...,N. (1340)

Eine solche Differenzengleichung oder auch Dreitermrekursion kann gelost werden, in-

dem zunichst y; = ', € R, angesetzt wird. Nach Division durch p/ ™! ergibt sich die

a b
1 ] 1 ] ] ] 1

09t 09+

0.8+
0.8

0.7 t
0.7t

0.6
0.6 05
0.5 1 04t
0.4 0.3

0 010203 04 0506 07 0.8 0.9 1 0 010203 04 0506 07 0.8 0.9 1

Abb.13.2 Lisung der Advektions-Diffusionsgleichung mit vorgegebenen Randwerten fiir die Kon-
zentrationen y, = 0,5, yp = 1 an den Intervallrdndern und ¢ = 0, v = 2, ¥ = 0,05, Schrittweite
h =0,02 (a)und h = 0,1 (b)
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quadratische Gleichung
ap®* +bpu+c=0.

Sind w1, up deren Losungen, dann ist — da die Differenzengleichung linear war — jede
Linearkombination der Form

yi=cap +eph c,eeR, i=0,...,N+1, (13.41)

eine Losung. Es kann dann auch gezeigt werden, dass dies die einzigen sind. Die Kon-
stanten ¢; werden aus den Randwerten yy, yy+1 bestimmt. Hier ist

a=1—-s, b=-2, c=1+s,
also gilt (wenn a # 0)

—b+ Vb2 —dac 2+ /4—4(1—s?) 2+ 452 1+]s]
2a N 2(1 — ) T 2(l-s) 1—s

12 =

Fir s = 0 gilt u; = p, = 1, sonst gibt es immer die beiden Losungen

1+s
1—s

mr=1 pu=

)

egal ob s positiv oder negativ ist. Aus (13.41) ergibt sich fiir s = 0 eine konstante Gitter-
funktion, fiir s # 0 die allgemeine Losung

1
y,-:cl—l—cz(lli_j) L i=0,... N+1. (13.42)
Diese oszilliert, wenn |s| > 1 ist, da dann Zdhler oder Nenner (und genau einer von ih-
nen) im zweiten Summanden negativ ist. Dieses Verhalten wird numerische Instabilitit
genannt. Die Bedingung |s| < 1, bei der keine Instabilitit auftritt, bedeutet genau (13.39).
Die Schrittweite & muss also klein genug sein, um diese Instabilitéit zu vermeiden. Die Sta-
bilitdtsbedingung wird oft mit der sog. (Zell-)Peclet-Zahl, die das Verhiltnis von Diffusion
zu Advektion und Schrittweite beschreibt, als

|vlh
Pe:=2|s| =— <2
K

angegeben. Im Fall s = 1, d.h. @ = 0 in der quadratischen Gleichung ergibt die Differen-
zengleichung (13.40) die Beziehung

1 .
yi:§(1+S)yi—1=y,-_1, i=1,...,N,

d. h. eine konstante Gitterfunktion.
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13.5 Diskretisierung mit Upwind-Schema

Als Abhilfe des im letzten Abschnitts beschriebenen Problems werden sog. Upstream-
oder Upwind-Schemata benutzt. Sie verwenden fiir den Advektionsterm eine der Richtung
der Geschwindigkeit angepasste Diskretisierung. Bei Finiten Volumen wird der Fluss iiber
den Rand einer Zelle nicht mit dem Mittelwert beider angrenzender Zellen berechnet,
sondern nur der Wert derjenigen Zelle genommen, aus der die Strémung kommt, vgl.
Abb. 13.3.

Die Diskretisierung wird gewissermaf3en der Geschwindigkeit entgegengesetzt vorge-
nommen wird, was den Namen Upwind/Upstream erklirt. Im Advektionsterm Mgy ;, vgl.
(13.3) werden die Ausdriicke

Yi-1(t).  wennv(z) >0, Yici(t) + i (1)
y(Xi-1,1) ~ anstatt ——~ - '~ 7
yi(t),  wennuv(t) <0, 2
i(l), enn v(r) > 0, NG it
y(xi, 1) ~ yi(®) v @) anstattw
yi+1(t), wennv(r) <O, 2

verwendet. Damit wird der Advektionsterm als

Yi—1(®) = yi (1)), v>0,
i) = yiy1(2)), v <O,

Mpayi (1) = Av(r)

anstatt als

Yi—1(t) = yi+1(2)

Mpgyi (1) = Av(r) 5

approximiert. In der Finite-Volumen-Diskretisierung (13.9) der Transportgleichung be-
wirkt dies nach Division durch A4 (der Ubersicht wegen mit Unterdriickung des Argu-
ments ¢):

Yi—1—Yi
vi

h ©>0) Vit1 =y yi—y
1 — Vi C— Yio
yi = Vi — Vi1 +M#-M-1#+Ci(%)+qlﬁ
v—="T" (v <0)
h
1=1,...,
Abb. 13.3 Noch einmal die Ki—1 Ki Kit1
Nummerierung der Gitterpunk- v _ v _ v
te und Boxen und Variablen in t yi 1 Yirt i
der eindimensionalen Finite- I : T : 1
Volumen-Methode 2 h ) h ;
1—1 ZTq Ti41

Vi Vit
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Wenn die Unbekannten zusammengefasst werden, lautet das System

Ki Ki—1 + K; v Ki—
h—;J’i+1 - (; + —) Vi + (l—l + %) Yi-1 (v>0)

2 2
y = h h h (13.43)
ki v Ki—1 + ki v Ki—1
(o7 v (3w v @<

+ci(t,yi(2) + qi (1), i=1,...,N.

Der Koeffizient von y; kann einheitlich mit |v| ausgedriickt werden, bei konstanter Dif-
fusion auch die von y;_;, y;+;. In Abhiingigkeit des Vorzeichens von v vertauschen sich
dann nur die Koeffizienten von y;_; und y; . Ist die Geschwindigkeit zeitabhingig, dann
dndert sich die Ortsdiskretisierung eventuell ebenfalls mit der Zeit, je nach Vorzeichen
von v(t).

Das Upwind-Schema bewirkt quasi zuséatzliche numerische Diffusion:

Ubung 13.28 Zeigen Sie: Das Upwind-Schema kann als Erhohung der Diffusion im Stan-
dardschema interpretiert werden.

Da das eindimensionale diskrete System bei Anwendung von Finiten Differenzen dem
der Finite-Volumen-Methode entspricht, kann auch das Upwind-Verfahren dort benutzt
werden:

Ubung 13.29 Zeigen Sie: Das Upwind-Schema entspricht beim Finite-Differenzen-
Verfahren der Verwendung einseitiger Differenzenquotienten.

Losbarkeit und Stabilitat des stationdren Systems

Aus (13.43) lassen sich die Eintrdge der Matrix A = Ap;g + Aagy in der stationdren Glei-
chung (13.27) ablesen. Bei beidseitig vorgegebenen Randkonzentrationen werden wieder
yo und yy durch diese ersetzt. Es zeigt sich fiir dieses Beispiel die Diagonaldominanz der
Matrix, wobei die Abhingigkeit vom Vorzeichen von v mit der Betragsfunktion ausge-
driickt werden kann:

Ki—1 + Ki [v] .
a;; = — _ + — s l:1,...,N,
( h? h)
E |a..|_-r._b+ﬁ+m i=2 N -1
i VT T o2 h? h'’ S ’
Eau
K1 KN—1 v
Fl = = +—, v>0,
TR YT T T
K v Ky—
r _1 || N = Nl U<O
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Die Diagonaldominanz wird genau durch den Zusatzterm |v|/h auf der Diagonale be-
wirkt. Anwendung der Korollar 13.24 auf die Matrix (—A) ergibt:

Korollar 13.30 Die Matrix des Upwind-Schemas ist fiir alle «, v und jede Wahl von h
reguldr.

Ubung 13.31 Weisen Sie dieses Korollar auch fiir gemischte Randbedingungen nach.

Das Upwind-Schema 16st auch das Problem der Instabilitédten:

Ubung 13.32 Zeigen Sie analytisch und numerisch, dass beim Upwind-Schema keine
Oszillationen auftreten, egal wie das Verhiltnis von v, ., & ist.

13.6 Nicht-dquidistantes Ortsgitter

In Klimamodellen wird meist in der vertikalen Koordinate mit nichtiquidistanten Gittern
gerechnet, z. B. am Ozeanboden mit wesentlich groberen als an der Oberflidche. Allgemein
schreiben wir dann

a=xg<xo+h =x1<...<xy_1+hy=xy=b, h=x;—x_1,

Finite-Volumen-Diskretisierung

Fiir die Diskretisierung ist die variable Lénge /; der Gitterbox V; der einzige Unterschied,
vgl. Abb. 13.4.

Die unterschiedliche Gitterboxldnge hat Auswirkung auf die Approximation der Ab-
leitungen in der Modellierung der Diffusion in Box V;:
yi(t) = yi-1(t) 9y Yit1(r) — yi(t)

i 42 ox D S s a2

Damit dndert sich der Diffusionsterm (13.6) zu

d
%(Xi—lsl)

MDiff.i(f)=A(Kz(f) (xi 1) —Ki— 1(1) (xz 11))

Vi1 () —yi()

i (¢ i—1(f
hi + hiq hi—1 + h;
Abb.13.4 Nummerierung Ki—1 Ki Ki+1
der Gitterpunkte, Boxen und v _ v _
Variablen in der eindimensio- | Ye | Yit1 |
nalen Finite-Volumen-Methode I ; I : 1
mit variabler Boxlidnge /; P hs . hita _m:+1

Vi Vit
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Alle anderen Terme bleiben (mit 2 = h;) unveridndert. Zusammengesetzt und durch die
Linge h; der Gitterbox dividiert ergibt analog zu (13.10):

/ Yi-1—=Yi+1 | 2 Yi+1—Yi Yi—Yi—1 .
=yt — | —— — Kk ————— c(y; i, 1=1,...,N.
Vi 2, +hi( lhi+hi+1 i 1hi—1+hi)+ (yz)+qz

Hier wurde das Argument ¢ wieder der Ubersicht halber unterdriickt. Wenn die Unbe-
kannten zusammenfasst werden, lassen sich die Eintrdge der entstehenden Matrix des
Advektions-Diffusionsanteils erkennen:

g i ﬁ + B N 3 ki + Ki—1 )
¥i = hi \hi-i+h; 2 izt hi \hi +hiy1 i+ hy Vi

1 2k; v
+ =T =5 | Vi+1 T cWi) +qi, i=1...,N.

hi (hi+hi+l 2))’+1 i) +a
Die Regularitit der Systemmatrix im linearen stationdren Fall kann analog wie in Ab-
schn. 13.3 untersucht werden.

Ubung 13.33 Wenden Sie Korollar 13.24 auf eine Diskretisierung mit einem variablen
Gitter an. Welche Aussagen lassen sich tibertragen? Welche Voraussetzungen miissen an
die Gitterweiten /; gemacht werden?

Auch hier tritt das Problem der Instabilitit bei ungiinstigem Verhiltnis von 4;, k; und v
auf. Die Differenzengleichungen haben jedoch jetzt keine konstanten Koeffizienten mehr,
und ein Ansatz y; = u', u € R wie in (13.40) fiihrt nicht mehr zu einer geschlossenen
Darstellung der diskreten Losung, an der dies direkt abzulesen wire. Die numerischen
Instabilititen konnen ebenfalls mit Upwind-Techniken wie in Abschn. 13.5 behoben wer-
den.

Ubung 13.34 Uberlegen Sie sich eine sinnvolle Verallgemeinerung der Stabilititsbe-
dingung (13.39) fiir ein nicht-dquidistantes Gitter. Welche Grofle der Diskretisierung ist
relevant?

Zur numerischen Uberpriifung dient die folgende Ubung:

Ubung 13.35 Implementieren Sie die Diskretisierung fiir ein variables Gitter mit zu ei-
nem Ende des Intervalls hin immer grober werdenden Gitterboxen, z.B. h; < h;4q,
i =1,..., N — 1. Wihlen Sie dabei auch extreme Unterschiede in den Gitterweite, z. B.
hy = 50h;. Dies ist ein in manchen eindimensionalen (vertikalen) Modellen fiir den
Ozean verwendetes Verhiltnis.



13.7 Ausblick auf die mehrdimensionale Diskretisierung 187

13.7 Ausblick auf die mehrdimensionale Diskretisierung

Die vorgestellte eindimensionale Diskretisierung beschreibt die prinzipielle Vorgehens-
weise, ist jedoch bei Klimamodellen nur in Einzeldllen zu finden. Realistische Modelle
fiir Ozean- oder Atmosphérenstromungen bzw. Transportprozesse darin benotigen eine
dreidimensionale Auflosung.

In diesem Abschnitt beschreiben wir die Vorgehensweise prinzipiell, aber nicht bis ins
letzte Detail. Die Herleitung basiert wieder auf der Modellierung in Abschn. 12.1.

Wesentlicher Unterschied zu einer Raumdimension ist zunidchst das Gitter. In Kli-
mamodellen werden — was die Darstellung und Erkldrung wesentlich vereinfacht — fast
ausnahmslos strukturierte Gitter verwendet, und zumeist auch rechtwinklige, bei denen
oft in den beiden horizontalen Richtung dquidistante Gitterweiten verwendet werden.
Es entstehen als Gitterboxen also Quader. Am Ozeanboden werden zur Anpassung an
die Bodentopographie auch Gitterboxen mit abgeschrédgten Seitenfldchen, d. h. acht- oder
sechseckige Polyeder verwendet.

Fiir beide in einer Dimension vorgestellten Diskretisierungsvarianten ist die Numme-
rierung der Gitterboxen (bei der Finite-Volumen-Diskretisierung) bzw. der Gitterpunkte
(bei Finiten Differenzen) von Bedeutung, da die Nachbarschaftrelationen die Struktur des
sich ergebenden diskreten Systems, das von seiner Struktur wie in (13.16) aussieht, beein-
flussen.

Gittergenerierung

Unter Gittergenerierung wird die Zerlegung des betrachteten Rechengebietes 2 C R?,
d = 2 oder 3 in disjunkte Teilgebiete oder Gitterboxen V;, analog zu (13.2) verstanden.
Grundsitzlich wird zwischen strukturierten und unstrukturierten Gittern unterschieden:

e Strukturierte Gitter (Abb. 13.5a) bestehen aus oder basieren zumindest auf einer rechte-
ckigen (Dimension d = 2) bzw. quaderférmigen (d = 3) Zerlegung von 2. Eventuell
werden die Gitter an den Réindern angepasst und Rechtecke in Dreiecke und analog fiir
d = 3 Quader z.B. in Tetraeder weiter unterteilt. Eine Struktur bleibt jedoch erhal-
ten und auch sichtbar. Eventuell kdnnen strukturierte Gitter mit einer Transformation
krummlinigen Konturen angepasst werden.

e Unstrukturierte Gitter (Abb. 13.5b) basieren auf einer Zerlegung des Gebietes in Drei-
ecke (d = 2) bzw. Tetraeder oder anderer dreidimensionaler Polyeder. Diese Gitter
konnen unregelmifig berandeten Gebieten einfacher angepasst werden, ihre Generie-
rung ist jedoch besonders im dreidimensionalen Fall aufwiéndiger.

In beiden Varianten wird meist (nicht unbedingt immer) daiir gesorgt, dass keine sog. héin-
genden Knoten entstehen, dass also kein Gitterpunkt einer Box auf einer Kante bzw. Seite
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Abb. 13.5 a Strukturiertes zweidimensionales Gitter mit Approximation eines Randes: Im rechten
Teil durch Rechtecke unterschiedlicher Hohe, im linken durch angefiigte Dreiecke bzw. Vierecke,
die aus Rechtecken durch Abschrigen einer Kante entstehen. In drei Raumdimensionen kann ana-
log mit angepassten Quadern bzw. sechs- oder achteckigen Polyedern gearbeitet werden. b Zum
Vergleich ein unstrukturiertes Dreiecksgitter zur Simulation einer Tragfliigelumstromung

einer anderen liegt, ohne wieder Eckpunkt dieser Box zu sein. Dies wird mit folgendem
Begriff beschrieben:

d = 2,3, wenn

N
2=Jv. intVinintV; =0.i #j.

i=1

gilt. Sie heiflt reguldr, wenn fiir alle i, j,i # j zusitzlich genau einer der folgenden Fille
gilt:

@a
— ein gemeinsamer Eckpunkt von V;, V;,
eine gemeinsame Kante von V;, V;,

eine gemeinsame Seite von V;, V; (nur fiir d = 3).

Wihrend in technischen und vielen wissenschaftlichen Anwendungen unstrukturierte
Gitter Standard sind, ist dies bei Klimamodellen — mit wenigen Ausnahmen — nicht der
Fall. Das macht vor allem die Indizierung der Gitterboxen V; einfacher: Es kann fiird = 3
horizontal zeilen- oder spaltenweise und dann vertikal in der dritten Dimension numme-
riert werden. Diese Zihlweise kann sowohl fiir die Gitterboxen als auch fiir Gitterpunkte
angewandt werden.
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Finite-Volumen-Methode

Die Finite-Volumen-Methode basiert auf der Approximation der Randfliisse in Advek-
tions- und Diffusionsterm der integralen Formulierung der Transportgleichung, vgl. Ab-
schn. 12.1:

Maan(0) = — / Y vl 1) - n(x)ds(x),

02
M) = / ()Y y(x. 1) - n(x)ds ().
02

Diese Ausdriicke werden analog zur eindimensionalen Variante fiir jede Gitterbox V; ap-
proximiert. Dazu sind folgende Schritte notwendig:

e Bestimmung der Gitterboxen, die mit V; eine Seite gemeinsam haben. Bei einem regu-
ldren Gitter sind dies fiir d = 3 maximal sechs mit Indizes j;,k = 1,...,6.
e Zerlegung des Randes in entsprechende Teile:

6
i = Sk.
k=1
e Bestimmung der Flichen Ay := |Sk| dieser Teilrinder.
e Bestimmung der zugehorigen duBeren Einheitsnormalenvektoren ng,k = 1,...,6.

Hierbei ist bei einem strukturierten und zu den Koordinatenachsen parallelen Gitter
von Vorteil, dass dann auch die Normalenvektoren mit den Koordinatenvektoren bis
auf das Vorzeichen iibereinstimmen.

Mit dem Geschwindigkeitsvektor vi (t) &~ v(x,t),x € Sk, an der entsprechenden Kante
kann eine Approximation des gesamten Advektionsterms berechnet werden. Es gilt

6
Mases®) == 3 [ 3x.0r.0) (st

k=1g,

v (1) - ny Ay,

6
i)+ @)
X

wenn fiir den Wert der Konzentration auf der Kante wieder der Mittelwert der Konzen-
trationen der beiden benachbarten Gitterboxen verwendet wird. Ein Upwind-Schema ist
entsprechend je nach dem Vorzeichen des Skalarproduktes v - n auf Sy modifiziert.
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Fiir den Diffusionsterm Mp;s; muss auf jedem Teilrand der Diffusionskoeffizient
kr(t) =~ Kk(x,t),x € Sk, bekannt sein oder approximiert werden. Fiir das Skalarprodukt
des Gradienten von y mit dem dulleren Normalenvektor kann, da letzterer immer von V;
nach Vj, zeigt und Linge 1 hat, die Approximation

Yie () — yi (@)

Vy(x,t) -n(x) ~ e ;

x €8,

benutzt werden. Dabei ist d;; der Abstand der Mittel- bzw. Schwerpunkte beider Boxen
ist. Es gilt also

6 6
Mbpigi(1) = Z/K(x)Vy(x,t) n(x)ds(x) ~ ]{X:;Kk(l) Vik (Z)d‘— yi(?) A,

— ik
k—lSk

Entscheidend fiir die Struktur des diskreten Systems, das wie im eindimensionalen Fall
(vgl. (13.25)) als

V' (1) = (Aaav(t) + Apige(1)) y (1) + c(t, y(1)) + q(t) + (1) (13.44)

geschrieben werden kann, ist die Nummerierung der Boxen V.
Um das Prinzip zu erkldren, nehmen wir an, dass es sich bei dem Gebiet um einen
Quader

2 = (a1, b1) x (az, by) x (a3, b3), a, <b.,,r=1,2,3,

handelt und dass eine Diskretisierung mit Gitterpunkten vorliegt, die analog zur eindimen-
sionalen Variante zunichst in jeder Richtung dquidistant als

. . br_ar
X =a,+ih,, i =0,...,N,, h,=T, r=12,3, (13.45)

gegeben ist. Wir verwenden zunichst fiir die Boxen eine Nummerierung mit drei Indizes
(j, k,1), die wir spiter wieder in einen Index i umrechnen. Es sei

Vi = (1 j—1, x17) X (Xo4—1, X21) X (X371, X371),
j=1,...,N,k=1,...,N,, [ =1,...,Ns.

Damit sind die Nachbarboxen von V;;; diejenigen mit den Indizes
(j :l: 15kal)5 (j’k :l: 151)’ (j’k5l :l: 1)‘
Analog zum eindimensionalen Fall definieren wir die Naherungslosung als

yikit) = y(x,t), x € V.
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Die Besetzungsstruktur der Matrizen Aaqy, Apigr hingt wesentlich von der Nummerierung
der Variablen bzw. Gitterpunkte ab. Eine bijektive Abbildung von den oben verwendeten
Indextripeln (j, k, 1) auf einen einzigen Index muss definiert werden, z. B. in dieser Form:

(jok, 1) =i =(—=1)N,N, + (k —1)N; + J. (13.46)

Die Randbedingungen werden analog zum eindimensionalen Fall je nach Typ eingearbei-
tet. Fiir die entsprechend als Vektor angeordneten Unbekannten

Yiki <> Yi

konnen dann die diskreten Gleichungen als (13.44) aufgeschrieben werden.

Es ergibt sich fiir A eine Bandmatrix mit Eintrdgen auf der Diagonale (fiir Indextripel
(j,k,1)), den beiden Nebendiagonalen (fiir (j & 1, k, /)) sowie auf Nebendiagonalen im
Abstand von Ny (fiir (j,k = 1,1)) und Ny N, (fiir (j, k,! £ 1)). Fiir nicht quaderférmige
(d. h. realistische) Gebiete wie in Abb. 13.5a ist die Umrechnung entsprechend komplexer.
Unterschiedliche Tiefen im Ozean bewirken eine Abhingigkeit N, = N,(k,!), und die
Landmaske (Inseln und Kontinente) bewirkt N; = N;(k). Die Bénder in A sind dann
entsprechend versetzt.

Fiir effektive Speicherung eignen sich verschiedene Formate. Dabei ist jedoch nicht
nur entscheidend, ob die Speicherung effektiv ist (d.h. moglichst wenig Nullelemente
gespeichert werden), sondern ebenso, dass die zur Losung der Gleichung notigen Opera-
tionen schnell durchgefiihrt werden. Dies sind im wesentlichen Matrix-Vektor-Produkte
und Losen linearer Gleichungssysteme, die bei hochdimensionalen Problemen oft wie-
der mit Algorithmen (Krylov-Unterraummethoden wie z. B. CG-/Konjugierte Gradienten-
Verfahren, vgl. [38, Kap. IV]) durchgefiihrt werden, deren Basisoperationen Matrix-Vek-
tor-Produkte sind.

Speicherung als Bandmatrix

Ist die Struktur von A noch in Bandform wie im eindimensionalen Fall oder im mehr-
dimensionalen bei einem strukturiertem Gitter in einem achsenparallelen Gebiet, dann
konnen die einzelnen Diagonalen und Nebendiagonalen in Vektoren entsprechender Lén-
ge gespeichert werden, z. B. bei einer Tridiagonalmatrix als

d,-=ai,-,i=1,...,N, l,‘=a,-,,<_1,i=2,...,N, u,-=a,-,,<+1,i=1,...,N—1.
Sollten Nebendiagonalen durch eine unregelmiBig berandetes Gebiet versetzt sein, wer-

den mit diesem Format auch Nullen gespeichert. Eine numerische Bibliothek, die diese
Struktur verwendet, ist z. B. LAPACK [39].
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MATLAB'-sparse-Format

In diesem Format wird fiir jeden Nichtnulleintrag a;; von A ein Tripel (i, j, a;;). Dieses
Format ist extrem flexibel, speichert keinen Nullen. MATLAB verfiigt auch iiber angepass-
te Algorithmen, die automatisch z. B. einen speziellen Gleichungsloser verwenden, sobald
eine Matrix in diesem Format gegeben ist.

Compressed Column Format

Diese Format wird z. B. OCTAVE [40] benutzt. Dabei wird eine Matrix spaltenweise kom-
primiert, so dass nur ihre Nichtnullelemente gespeichert sind. Benutzt werden drei Vekto-
ren

e d (= data) mit den spaltenweise angeordneten Nichtnullelementen,

e 7 (= row index) mit den zugehorigen Zeilenindizes,

e ¢ (= column index) mit den Indexbereichen von d, die zu einer Spalte gehoren. Dieser
Vektor hat N 4 1 Eintrége bei einer Matrix mit N Spalten. Fiir Spalte j gibt ¢ an, dass
die Eintrdge d(cj, ..., cj4+1 — 1) die Eintrdige in der Spalte sind.

Beispiel 13.37 Fiir die Matrix

A O =
0w o
==

ergibt sich bei Zihlweise der Indizes von 0 (wie im Compressed Column Format verwen-
det):

d=(,4,3,52), r=1(0,2,1,2,0) ¢ =(0,2,4,6).
Mit dem Codefragment

forj =0,...,N:
fori =c¢j,...,cj41— It
ar,.j = di

kann die Matrix ausgegeben oder bearbeitet werden. Dabei ist die Niitzlichleit der Wahl
des Vektors ¢ zu erkennen.

Ubung 13.38 Schreiben Sie den Algorithmus fiir eine Matrix-Vektor-Multiplikation in
allen drei Speicherformaten in Pseudocode auf.

I MATLARB ist ein eingetragenes Warenzeichen von The Mathworks Inc.
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Finite-Differenzen-Methode

Die Diskretisierung kann wie in (13.45) gewihlt werden. Wir verwenden zunichst fiir die
Unbekannten eine Nummerierung mit drei Indizes (fiir jede Koordinatenrichtung einen)
der Form

yljk(t)%y(xll7'x2]7'x3k7t)7 i:07"'7N17j:07"'5N25k:07"'7N3'

Damit konnen nun die Ableitungen approximiert werden. Das ergibt im Advektionsterm
(ohne das Argument #):

3
dy
V- V) e) =Y (vrg) (x0)
r=1 r
Yi+1kl — YVj—1kl
2h
Yikl4+1 — Yjki—1
2h3 '

Yik+11 — Yjk—1.

+ v2(xjk1) 7

~ v1(Xjkr)

+ v3(xjk1)

Fiir den Diffusionsterm fiir riumlich konstantes k ergibt sich:

3
. dy
div (1 Vy) (xijp) = kAY (xiji) = 1€ Y 7 ik)
r=1 r

Vi+tkl —2YVjki + Yi—1ki | Vik+1l — 2Yjki + Vjk—11
K +
h? h?
1 2
Yiki+1 = 2Yjki + Yiki-1
+ 3 .
h3

Fiir die allgemeineren Fille, dass x oder die Gitterweiten /4, nicht konstant sind, ergeben
sich entsprechend kompliziertere Terme, die analog zu den eindimensionalen aufgestellt
werden konnen. Gleiches gilt fiir Upwind-Diskretisierungen, die aus denselben Stabilitéts-
griinden wie im eindimensionalen Fall sinnvoll sind. Das entstehende diskrete System hat
die gleiche Form (13.44). Die weiteren Uberlegungen sind wie oben im Finite-Volumen-
Fall.
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In diesem Kapitel beschreiben wir Moglichkeiten der Zeitdiskretisierung von Bilanzgleichungen
und partiellen Differentialgleichungen, deren Ortsdikretisierung schon — wie im letzten Kapitel ge-
zeigt — durchgefiihrt wurde. Wir beziehen uns auf die bereits in friiheren Kapiteln vorgestellten
Losungsmethdoen fiir Anfangswertprobleme gewohnlicher Differentialgleichungen. Es zeigt sich,
dass bei bestimmten Problemen eine zweite Quell der numerischen Instabilitit auftritt, die es zu
beachten gilt. Dabei konzentrieren wir uns die Grundlagen fiir einige der in Klimamodellen ver-
wendeten Verfahren. Dort werden auch ncoh andere Verfahren verwendet, die in dieser Einfiihrung
nicht behandelt werden. Als Beispiel dient die Transportgleichung. Die hier vorgestellten Verfahren
konnen auch fiir andere Gleichungen verwendet werden.

Nach der Ortsdiskretisierung einer Bilanzgleichung oder einer partiellen Differentialglei-
chung, wie sie die Transportgleichung in integraler bzw. differentieller Form darstellt,
entsteht ein System gewohnlicher Differentialgleichungen. Zusammen mit gegebenen An-
fangswerten liegt wieder ein Anfangswertproblem in der Form (3.2) vor. Die Funktion
f auf der rechten Seite der Gleichung hat jetzt Werte im R”, wobei die Dimension n
von der Diskretisierungsmethode, der Ortsschrittweite und der Raumdimension abhingt.
Besonders in dreidimensionalen Problemen entstehen sehr grof3e Systeme. Das Differen-
tialgleichungssystem ist im Ort diskret, in der Zeit noch kontinuierlich. Daher wird auch
von einem semidiskreten System oder, da jetzt gewissermallen auf jeder Ortslinie eine
Differentialgleichung geldst wird, von der Linienmethode gesprochen.

Beispiel 14.1 Die rechte Seite ist bei der Transportgleichung als

. y@) = A@)y@) +ct. y(@) +q) + ()

mit A = Aagy + Apigr gegeben, vgl. (13.16) bzw. (13.25). Dazu kommen Anfangswerte
Yo; in den Volumina V; bzw. an den Gitterpunkten Xx;.

Es kann jetzt ein beliebiges Zeitintegrationsverfahren auf diese Gleichung angewendet
werden, z. B. das Euler-Verfahren oder ein anderes aus Kap. 11. In der Klimasimulation
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werden jedoch meist Verfahren relativ niedriger Ordnung und auch mit konstanter Schritt-
weite fiir die Zeitintegration verwendet. Dazu wird ein Zeitgitter

1 = e + AL, k=0,1,....K, tx=1t,,
definiert. Da das System die Dimension n hat, bezeichnen wir jetzt mit
Vi = (yki);’=1 eR", k=0,...,K

die Vektoren der Niherungslosungen in den Zeitschritten #;:

Xx,t), x €V;, DbeiFiniten Volumen, .
e RS k=0,...K,i=1,...n.

y(xi, ), bei Finiten Differenzen,

14.1 Explizite Verfahren fiir die Transportgleichung

Das explizite Euler-Verfahren ergibt jetzt fiir einen gegebenen Vektor y, von Anfangswer-
ten in jedem Zeitschritt k = 0,1, ..., K — 1 das Schema

YVi+1 — Vi

A S Apyi + e (yi) +qr + i

mit Ay 1= A(t), cx (yx) = c(te, y&), qr := q(tx), rr := r(t;). Als Iterationsvorschrift
ergibt sich

Vi+1 =(I+AlAk)yk+Al(Ck(yk)+qk+rk), k=0,1,...,K—1. (14.1)
Ist ¢x linear, dann kann ein Iterationsschritt in die allgemeine Form
Yi+1 = Cryk + by (14.2)

mit Cx = I + At(Ax + ¢ 1) und by = At(gx + ri) gebracht werden.

Dasselbe Schema ergibt sich bei direkter, simultaner Diskretisierung in ¢ und x, wenn
fiir die Zeit ¢ der vorwérts genommene Differenzenquotienten, der dem Euler-Verfahren
entspricht, verwendet wird. Fiir konstante Diffusion ergibt sich bei Finiten Volumen (vgl.
(13.9)):

Vit1i = Vki _ Vki+1 = Vki—1 Vii+1 = 2Yki + Yri-1
- —v 7 +« 2 + cri Vki) + Gk

k=1,...,K—-1,i=1,...,N,
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wobei hier die Variante mit dem zentralen Differenzenquotienten fiir den Advektionsterm
verwendet wurde. Die Reihenfolge der beiden Diskretisierungen ist unerheblich. Da das
Verfahren explizit in der Zeit ist, werden diese Gleichungen benutzt, um die Werte von y
sukzessive in der néchsten Zeitschicht & + 1 aus denen in der vorhergehenden Schicht &
zu berechnen:

R n kit —2Yki + Vi1
2h h?
k=0,...,.K—-1,i=1,...,N.

Vi+1,i = Vi + At (— + ki (Vi) + qki) ,

Zusammenfassen der entsprechenden Terme ergibt
At vh 2k At At vh
Yitri = 3 \K+ 5 | Yeim1 F 1- ) Y T gz (e ki
+ At(cki (ki) + Gri)s k=0,..,.K—1,i=1,...,N.

Die Randwerte werden wieder in die entsprechenden Gleichungen (i = 1, N) in einen
Vektor r; eingearbeitet, dessen Eintrige jetzt mit Ar multipliziert werden. Das entstehen-
de System hat damit wieder die Form (14.1). Bei Finiten Differenzen ist die Vorgehens-
weise analog.

Ubung 14.2 Implementieren Sie das Euler-Verfahren fiir die Advektions-Diffusionsglei-
chung. Verwenden Sie eine beliebige Anfangsbedingung und dazu passende Randwerte.
Testen Sie zunidchst ohne Advektion verschiedene Zeitschrittweiten, vgl. Abb. 14.1.

Wie das explizite Euler-Verfahren konnen Verfahren hoherer Ordnung in der Zeit (vgl.
Ubung 5.9 und Kap. 11) angewendet werden. Die Ubertragung fiir variable Zeitschritte
Aty ist ebenfalls direkt moglich.

8 1

e
0.

0.6

Abb. 14.1 Stabile (a) und (am Ende des Zeitintervalls) instabile numerische Losung eines reinen
Diffusionsproblems (b). Anfangswert ist in beiden Féllen dieselbe Sinusfunktion
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14.2 Numerische Instabilitat bei der Zeitintegration

Bei der Transportgleichung war eine instabile Losung in Form einer Oszillation in der sta-
tiondren Gleichung zu sehen, wenn die verwendete Schrittweite im Verhiltnis zum Quo-
tienten aus Geschwindigkeit und Diffusionskoeffizient zu gro3 war, vgl. Abschn. 13.4.
Bei zeitabhingiges Problemen tritt ein dhnliches Phianomen auf, selbst wenn ein reines
Diffusionsproblem vorliegt, wie in Abb. 14.1 zu sehen ist. Diese numerische Instabili-
tat resultiert aus der Zeitintegration und ist Thema dieses Abschnittes. Sie tritt auch bei
anderen Problemen auf.

Wird eine stationdre numerische Losung y der Transportgleichung, die also (13.27) er-
fiillt, zu einem Zeitpunkt #, durch y gestort, so erfiillt y 4 y fiir # > #, die instationdre
Gleichung. Wegen der Linearitit erfiillt aber auch die Stérung y allein die instationdre
Gleichung. Um das zeitliche Verhalten der Storung zu untersuchen, kann also ein Anfangs-
wertproblem fiir die Storung mit entsprechendem Anfangswert y (¢y) betrachtet werden.
In Abschn. 12.5 war bei einem reinen Diffusionsproblem zu erkennen, dass eine Storung
in der exakten Losung exponentiell mit der Zeit abklingt. Die Frage ist, ob dies bei al-
len numerischen Zeitintegrationsverfahren ebenfalls der Fall ist. Abbildung 14.1 zeigt das
Gegenteil.

Bevor wir untersuchen, warum die Instabilitit bei der Diffusionsgleichung auftritt, zei-
gen wir die Ursache an dem einfacheren Beispiel 10.4:

Beispiel 14.3 Fiir a > 0 hat das Anfangswertproblem

4 —_—

1
y'=—ay+1, t>0, y(0)=yo=;

die eindeutige Losung y = y,, die (wie in Beispiel 10.4 gezeigt) asymptotisch stabil ist:
Ein gestorter Anfangswert ys o = yo + § fiihrt zur Losung

ys(t) = yo + 8™, >0,

die fiir r — oo gegen die ungestorte Losung konvergiert.

Das Euler-Verfahren mit konstanter Schrittweite ergibt wegen f(1/a) = 0 fiir den
ungestorten Anfangswert die exakte, konstante Losung yy = yo = 1/a fiir alle k =
1,2, ... Fiir den gestorten Anfangswert liefert es die Ndherungsldsung

Vsi+1 = Yok + At(—aysy +1) = (1 —alt)ys; + At.

Subtrahieren wir davon die ungestorte Ndaherungslosung, dann erhalten wir:

1
Vok+1 — Yi+1 = (1 —alAt)ysp + At — "

= (1~ @Ay — (1 ~aBn) = (1 - aAn)(is — )
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Mehrfache Anwendung und damit Zuriickfiihren auf die Anfangswerte ergibt

ysk — i = (1 —alAt) (5o — o) = (1 —aAt)*s.

Die Differenz zwischen der numerischen (hier = der exakten, konstanten) Losung (y )
und derjenigen mit gestorten Anfangswerten, (Vs x )k, konvergiert nur gegen Null, wenn

2
[1 —aAt| <1, also At < — (14.3)
a

gewihlt wird. Eine beliebig kleine Stérung in den Anfangsdaten wird bei einer zu gro3en
Schrittweite bis zur Divergenz des Verfahrens verstérkt.

Dieselbe Problematik des angewendeten numerischen Verfahrens wird bereits bei der
Betrachtung einer ungestorten Losung deutlich: Bei der einfachen linearen skalaren Diffe-
rentialgleichung aus Beispiel 3.8 der sog. Testgleichung, wird das asymptotische Verhalten
der exakten Losung nur fiir bestimmte Schrittweiten reproduziert:

Beispiel 14.4 Wir betrachten fiir A < 0 das lineare Anfangswertproblem
y'=2ay. =0, y(0) =y #0.
Fiir die eindeutige exakte Losung gilt
y(t) = yoe* — 0 fiirt — oo. (14.4)
Das explizite Euler-Verfahren ergibt
Vier = vk F AAtye = (1 + AAD Y = (1 + AAD)F Ty, fiirk =0,1,...
Um qualitativ (14.4) zu erhalten, sollte die Ndherungslosung
Vi = 0 firk — oo

erfiillen. Dies ist genau fiir Schrittweiten mit (14.3) gegeben. Fiir betragsmiBig groBes A
muss eine entsprechend kleine Schrittweite gewihlt werden, obwohl die exakte Losung
extrem schnell (exponentiell) gegen Null abklingt. Ist Af zu groB, oszilliert die Losung
und divergiert.

Problematisch wird dieses Verhalten, wenn mehrere Losungsanteile der Gestalt (14.4),
aber mit unterschiedlich groem negativem A, gegeben sind. Sei ein System mit konstan-
ten Koeffizienten, d. h. das Anfangswertproblem

y' =4y, t>0, y(0) =y,
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mit diagonalisierbarer Matrix 4 € R"*" gegeben, d.h. es gilt A = SDS~! mit einer Dia-
gonalmatrix D = diag((A;);=1...)- In S stehen spaltenweise zugehorige Eigenvektoren.
Sind alle Eigenwerte reell, so ist die Losung

(1) =vier + . 4t >0 mitv, eR", i =1,...,n, (14.5)

vgl. Satz 8.15.
Das explizite Euler-Verfahren liefert wie im Beispiel 14.4:

yi = (I + AtA)* yy, k=0,1,... (14.6)
Die Diagonalisierbarkeit von A4 ergibt I + AtA = S(I + AtD)S~! und so
(I + AtA) = (S(I + AtD)S™) = S(I + AtDY*s™.

Die Transformation z; = S~'y; liefert die Koeffizienten der Losung beziiglich der Ei-
genvektoren von A. In (14.6) ergibt sich

Ze =8y = + AtD}S7lyy = (I + AtD)*zy, k=0,1,...

Dabei ist zo die Darstellung des Anfangswertes yo = Szp = ), zo;8; beziiglich der
Eigenvektoren s;. Nun gilt fiir die Diagonalmatrix

also ist die Losung in der Basis der Eigenvektoren von A gegeben durch:

ze = ((1+ X A0 z), _,

i=

. k=01,... (14.7)

Es gilt das gleiche wie bei der skalaren Gleichung in Beispiel 14.4: Fiir k — oo haben
die Komponenten der Nédherungslosung nur dann das abklingende Verhalten der exakten
Losung (14.5), wenn (14.3) fiir alle Eigenwerte A; gilt. Also muss die Schrittweite als

2 2
AT T manmr Tl (148
gewihlt werden. Der betragsmiBig grofite Eigenwert limitiert die Schrittweite, obwohl er
zu dem am schnellsten abklingenden Losungsanteil in (14.5) gehort und in der exakten
Losung nach sehr kurzer Zeit schon keine Rolle mehr spielt. Auch fiir komplexe Eigen-
werte tritt der Effekt auf, das abklingende Verhalten der exakten Losung liegt dann fiir
Re A; < O vor.
Die Darstellung (14.7) enthilt eine zusitzliche Information: Wenn die Bedingung
(14.8) fiir einen Eigenwert A; verletzt ist, wird genau der Anteil zy; des zugehorigen
Eigenvektors v; in den Anfangswerten y, in der Zeitintegration verstarkt.
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Diese Problematik ist nicht auf das Euler-Verfahren beschrinkt, denn fiir die Gleichung
(14.4) ergibt ein Runge-Kutta-Verfahren (vgl. Abschn. 11.2):

Yer1 =@y, k=1,2,...

mit einem Polynom p € I1,, vom Grad m (der Stufe des Verfahrens) und z = AA¢. Daher
wird folgender Begriff definiert.

Definition 14.5 (Stabilitéitsbereich) Sei (y;); die mit einem Einschrittverfahren berech-
nete Niherungslosung der Gleichung (14.4). Die Menge

A:={ze€C:z=7AAt|yk+1ll < |lyk|l firallek =0,1,...}
heilt Bereich der absoluten Stabilitit des Verfahrens.
Beispiel 14.6 Beim Euler-Verfahren ist nach den obigen Rechnungen
A={zeC:|1+z|<1},
das ist der offene Kreis um zo = —1 mit Radius 1.

Dieser Stabilititsbegriff erweitert denjenigen aus Abschn. 5.5. Der dort definierte Be-
griff war ein Hilfsmittel zum Nachweis der Konvergenz eines Verfahrens fiir 4 bzw.
At — 0. Fiir die in diesem Abschnitt benutzten Beispiele liefert Satz 5.11 auch die
Konvergenz, denn nach dem Kriterium aus Satz 5.12 geniigt die Lipschitz-Stetigkeit der
Verfahrensfunktion, die bei einer linearen Gleichung und dem Euler-Verfahren mit @ = f
unmittelbar sichtbar ist. Die Stabilitditskonstanten sind bei den Beispielen hier zwar even-
tuell grofl (L = |A| steht in (5.4) im Exponenten), doch die theoretische Konvergenzaus-
sage bleibt giiltig. Konvergenz ist naturgemif eine Eigenschaft fiir # bzw. At — 0, und
fiir kleine Schrittweiten gibt es ja auch keine Probleme. Fiir eine reale Simulation, die
logischerweise ein At > 0 verwendet, ist jedoch wichtig, wie klein die Zeitschrittweite
in der Praxis gewihlt werden muss, damit keine Stérungsverstirkung auftritt. Dazu macht
das Stabilititsgebiet aus Definition 14.5 eine Aussage.

14.3 Implizite Verfahren

Die Instabilitédt bei expliziten Zeitintegrationsverfahren kann durch die Anwendung im-
pliziter Verfahren vermieden werden. Dabei wird in der Verfahrensfunktion @ zur Be-
rechnung von yj 4 statt der Information im aktuellen Zeitschritt #; mit zugehoriger Ni-
herungslosung y; diejenige zum néchsten Zeitschritt, also #x4; und yx4;, verwendet.
Dadurch entsteht eine implizite Gleichung fiir y;,. Die Definition ist wie folgt (vgl.
Definition 5.3):
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Definition 14.7 (Implizites Einschrittverfahren) Seien ein Anfangswertproblem (3.2)
mit f, @ und (& )x=o.... x und (hy)k=0... N—1 Wie in Definition 5.3 gegeben. Ein Verfahren
der Form

Vi+1 = Yk + b @Wet1, Vi1, i), k=0,1,...,N —1, (14.9)

heil3t implizites Einschrittverfahren.

Beispiel 14.8 Beim impliziten Euler-Verfahren wird wieder @ = f gesetzt:

i+t = Vi + i ftr1. yer1), k=0,1,...

Beispiel 14.9 Auf gleiche Art sind implizite Runge-Kutta-Verfahren definiert. IThre
Butcher-Tabellen (vgl. (11.2)) haben keine Dreiecksgestalt mehr, sondern haben auch
Eintridge oberhalb der Diagonalen, s. z. B. [15].

Nun kann die Niherungslosung am nédchsten Zeitpunkt nicht mehr explizit, sondern
nur durch Losen einer linearen oder nichtlinearen Gleichung bzw. eines System bestimmt
werden.

Bei Genauigkeit der Approximation und Konvergenz gibt es keine Unterschiede zum
entsprechenden expliziten Verfahren. Der Begriff der Stabilitit kann dabei analog aus De-
finition 5.10 auf implizite Verfahren iibertragen werden. Beim Euler-Verfahren gilt:

Ubung 14.10 Zeigen Sie: Das implizite Euler- Verfahren hat ebenfalls Konsistenzordnung
p=1

Der Unterschied zeigt sich wieder beim Vergleich des qualitativen Verhaltens einer
abklingenden exakten Losung mit der zugehdrigen Néaherungslosung wie in den Beispie-
len 14.3 und 14.4.

Ubung 14.11 Untersuchen Sie das Problem aus Beispiel 14.3 bei Anwendung des impli-
ziten Euler-Verfahrens.

Beispiel 14.12 Bei der Testgleichung (Beispiel 14.4) ergibt sich beim impliziten Euler-
Verfahren (Schrittweite hier wieder mit At bezeichnet):

Vik+1 :yk+AAlyk+1, k:O,l,

also (1 — AA#)yr+1 = yx und damit

Yo

= -, k=0,1,
(1 — AAD)K

Yk

Um fiir A < 0 ein Abklingen y; — 0 (k — o0) wie bei der exakten Losung zu erhalten,
ist keine Einschriankung an die Schrittweite notig, denn:

1—AAt =1+ At[A] >1 VA7 >0.

Die Schrittweite ist nur durch die gewiinschte Approximationsgiite bestimmt.
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Auch das Verhalten bei mehreren unterschiedlich schnell abfallenden Losungsanteilen
wie in (14.5) ist unproblematisch. Auch bei groler Schrittweite klingt der entsprechende
Anteil der Ndherungslosung so ab, wie es die exakte Losung tut. Die Schrittweite muss
nur so klein gewihlt werden, dass das schnelle Abfallen noch aufgelost wird, wenn dies
gewlinscht wird.

Der Stabilitétsbereich des impliziten Euler-Verfahren nach Definition 14.5 ist

A={zeC:|1—-z|>1},

das ist die gesamte komplexe Ebene mit Ausnahme des Kreises um zy = 1 mit Radius 1.
Insbesondere gehort die gesamte linke Halbebene dazu, und nur dort liegen die Werte von
z =hAfirReA <0.

14.4 Numerische Stabilitat des Diffusionsanteils

Bei der reinen Diffusionsgleichung konnte in Abschn. 12.5 im rdumlich eindimensiona-
len Fall das zeitliche asymptotische Verhalten angegeben werden. Die Losung hat (vgl.
(12.21)) die Form

y(x,t) = ch exp(—(jm)*kt) sin(jmx), ¢; €R,
jeN

d.h. sie klingt exponentiell mit der Zeit ab. Die Koeffizienten ¢; waren dabei die entspre-
chenden Fourier-Koeffizienten der Anfangsbedingung

y(x,0) = ch sin(jmx).

JEN

Da die Diffusionsgleichung linear ist, klingt eine Stdrung ebenfalls exponentiell ab, wo-
bei das Abklingverhalten der einzelnen ortlichen Anteile der Stérung aus der Grofle der
entsprechenden Faktoren exp(—(jm)?«t) ablesbar ist.

Die zugehorige ortsdiskrete Losung

Nach Ortsdiskretisierung mit Finiten Volumen oder Differenzen ergibt sich ein System
gewohnlicher Differentialgleichungen der Form

y'(t) = Apigr()y(2), t =0, y(0) = yo.
Die Matrix Apig(?) ist die reine Diffusionsmatrix

t
Apin(1) = W tridiag, (1,2, 1),
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Die Eigenwerte dieser Matrix konnen mit Satz 13.18 angegeben werden, vgl. (13.31) fiir
v =0:

2K (1) [k (1)? jm 2K jm
Aj=— i +2 W cos oY =_ﬁ 1 —cos o <0,

j=1....n, (14.10)

da der Kosinus fiir die betrachteten Argumente immer im Intervall (—1, 1) liegt. Also
hat Api nur negative Eigenwerte. Diese sind paarweise verschieden, die Matrix ist also
diagonalisierbar. Die Losung hat wieder die Form (14.5), und da alle Eigenwerte negativ
sind, klingen die Losungsanteile an allen diskreten Ortsgitterpunkten x; exponentiell mit
der Zeit ab, und zwar fiir alle Werte von « und der Ortsdiskretisierungschrittweite 4. Die
semi-diskrete Losung représentiert also das Verhalten der kontinuierlichen Losung, egal
wie h gewihlt wird.

Die volldiskrete L6sung mit dem expliziten Euler-Verfahren

Wird jetzt wie oben beschrieben mit dem expliziten Euler-Verfahren diskretisiert, so er-
halten wir in (14.2) ohne Quellen und Reaktionsterm und bei Nullrandbedingungen:

Ci=C =1+ AtApis(ty), b =0, Vk=0,...,K.

Ist Apige(#;) zeitlich konstant, dann liegt der Fall (14.6) mit A = Ap; vor. Wie dort muss
also die Zeitschrittweite (14.8) erfiillen, d. h.

2
At < (14.11)

Der betragsgrofite Eigenwert in (14.10) ist derjenige, fiir den der Kosinus minimal (negativ
mit maximalem Betrag) wird. Das ist fiir j = n der Fall, wo der Kosinus nahe bei -1 und
der Wert der Klammer nahe bei 2 ist. Betrachtet man immer feinere Ortsdiskretisierungen
(h — 0bzw. n — 00), so gilt

. nmw
lim cos =cosmw = —1
n—>00 n+1
und daher

. t
;1_13})],211?.7&" |A; (Apier)| = 4’(?-
Dies fiihrt mit (14.11) zu der Kopplung der Zeitschrittweite an die Ortsschrittweite und
die (hier konstant angenommene) Diffusionskonstante:
h2

At < —. (14.12)
2K
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Nur dann hat die mit dem expliziten Euler-Verfahren erhaltene Losung das Abklingver-
halten der semi-diskreten und der exakten, analytischen Losung. Fiir grofere Zeitschritt-
weiten oszillieren die Werte.

["Jbung 14.13 Wie wirken sich die Werte von ¢; (bei einem linearen Reaktionsterm) auf
die Stabilitit des Systems aus?

Ubung 14.14 Wie konnen diese Uberlegungen verallgemeinert werden, wenn « nicht
mehr zeitlich konstant ist?
Lésung mit dem impliziten Euler-Verfahren

Das implizite Euler-Verfahren ergibt analog zu (14.1):

YVi+1 — Vi

I Aks1Yk+1 + k1 (V1) + o1 + 141, k=0,1,..., K —1.

bzw.

(I — AtAi1) Yir1 — Atcrr1 (V1) = Yie + At(gir1 + Fegr).

Fiir linearen Reaktionsterm cx(yx) = ckyk,cr € R, ergibt sich wieder die allgemeine
Form (14.2):

Vi1 = Ceyve + b, k=0,1,...,K—1.
Hier ist jetzt Cy = (I — At(Axyy + cx1 1) und by = AtCr(gro1 + rrs1). Das Ver-
fahren verlangt in jedem Zeitschritt die Losung eines linearen oder nichtlinearen Systems.
Im letzteren Fall ist dann eine innere Iteration notig.

Semi-implizite oder Splitting-Verfahren

Wenn c nichtlinear ist, kann es sinnvoll sein, nur einige Terme implizit und andere explizit
zu behandeln. Eine Variante ist im k-ten Schritt

YVi+1 — Vi

A = Ayk41 + (k) + Gr+1 + Tit1,

bzw.

[I — AtA]lyk+1 = yk + Atle(Ve) + Qi1 + el
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Hier ist der Reaktionsterm explizit, bei f spielt es fr die Rechnung keine Rolle, ob hier der
k-te oder (k + 1)-te Zeitschritt benutzt wird (hier durch die Notation f (1) angedeutet).
In jedem Schritt ist ein lineares System zu Isen. Formal kann man einen Iterationsschritt
auch als

Vir1 = [I — AtA] 7 (v + Atle () + get1 + re+1])

schreiben. Ist ¢ = 0 oder linear, dann lisst sich das Schema wieder in der Form (14.2),
diesmal mit C;, = [I — AtA]™! (fiir ¢ = 0) und

b = At[I — AtA]™ (qrr + ret1)

schreiben.

Oft wird auch die Matrix A wieder aufgesplittet behandelt, z. B. in Advektionsteil Aqy
und Diffusionsteil Ap;;. Die Diffusion wird meist implizit gerechnet, sie kann nidmlich
sonst numerische Instabilitéit verursachen. Dann wird das Splitting-Verfahren

Vi+1 — Yk

AL = Apav Yk + ApiteVi+1 + ¢ (Vi) + Gre+1 + Tiet1

bzw.
(I — AtApig) yk+1 = (I + AtApa)yi + At(c(i) + Gr+1 + Tet1)
verwendet, oder wieder formal mit der Inversen als
Vw1 = (I — AtApig) (I + AtA) ye + At(c(Vk) + i1 + Tes1)-
Damit haben wir fiir ¢ = 0 oder linear wieder die allgemeine Form (14.2), jetzt mit
Ce=(—AtA)™!
(fiir c = 0) und
b = At(I — AtA) ™ (+qi+1 + Tit).
Die Frage, welche Teile der Gleichung explizit und welche implizit behandeln werden
sollte, hingt vom Aufwand (z.B. Losen eines nichtlinearen Systems, wenn ¢ implizit

behandelt wird) und von zu erwartenden Instabilititen ab. Diffusion wird meist implizit
diskredisiert.
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Marine Okosystem- und biogeochemische Modelle sind ein Beispiel fiir nichtlineare Reaktions-
und Kopplungsterme in Transportgleichungen. Sie werden hier als Beispiel fiir eine Modellierung
und Berechnung der Biosphire verwendet. Die Forschung in diesem Bereich ist weniger fortge-
schritten als z. B. im Bereich der Fluidmechanik, mit der die Ozean- oder Atmosphirenstromungen
modelliert und simuliert werden. Dieses Kapitel gibt nur einen Einblick. Rauber-Beute-Modelle
und ihre Verwendung als Basis fiir Okosystemmodelle werden dargestellt. Viele der bisher vorge-
stellten Methoden aus Theorie und Numerik der gewohnlichen Differentialgleichungen konnen hier
noch einmal angewendet werden. Am Ende des Kapitels beschreiben wir, wie eine Kopplung an den
Ozeantransport aussehen kann.

Die einfachsten Populationsmodelle gehen davon aus, das sich die Spezies ohne Ein-
schrinkung mit einer konstanten Wachstumsrate vermehrt. Das Wachstum der Population
ist dann proportional der GroéBe der Population. Das ergibt die lineare Differentialglei-
chung

Y'() =ay@®), t=0 (15.1)
deren Losung bei Anfangsbedingung y(0) = y als

y(t) = yoe*', t=>0,

gegeben ist, vgl. Beispiel 3.8. Wenn « positiv ist, ergibt sich ein exponentielles Wachstum
der Population, was in der Realitit normalerweise nicht oder nur fiir gewisse Zeiten gege-
ben ist. Umgekehrt kann mit demselben Modell ein Sterben einer Population beschrieben
werden, wenn es kein Wachstum, sondern nur eine konstante Sterberate o < 0 gibt. Auch
dieser Fall ist meist unrealistisch. Zusammengefasst kann (15.1) Wachstum und Abster-
ben mit konstanter Wachstums- bzw. Sterberate beschreiben. Die Konstante ¢ ist dann die
Differenz beider Raten.

Ist die Differenz von Wachstums- und Sterberate zeitabhingig, gilt also o« = (),
dann kann mit der Methode der Trennung der Variablen (Satz 3.6) eine Losung des An-
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fangswertproblems berechnet werden: In der Aussage des Satzes ist dann f;(y) = y und
f>» = o. Damit gilt

t

y(t) = yoexp [a(s)ds , t>0. (15.2)
0

Die Wachstumsrate muss dann zumindest eine integrierbarbare Funktion sein.
Okosystemmodelle beschreiben die Interaktion von zumindest zwei Spezies. Sie sind
Themen der folgenden Abschnitte.

15.1 Das klassische Rauber-Beute-Modell

Im einfachsten Beispiel mit zwei Spezies ist die Sterberate der einen Population (hier y;)
proportional der Grée der Population einer zweiten (eines Réubers, hier y,) abhiingig.
Es gilt also

y1(t) = yi1() (e — By (1)) (15.3)

Diese erste Population ist dann die Beute. Umgekehrt ist das Wachstum der Rauberpo-
pulation proportional der verfiigbaren Beutemenge, was die Wachstumsrate des Réaubers
beeinflusst:

y5(t) = ()1 (1) — y). (15.4)

Die Konstanten «, y, 8 sind hier grofier Null. Wenn ein natiirliches Sterben (ohne den
Einfluss des Réubers) fiir y; mit modelliert werden soll und die Sterberate grofer als die
Wachstumsrate der Beute ist, kann 8 < 0 sein. Meist wird aber 8 > 0 angenommen, was
bedeutet, dass die einzige Sterbeursache der Beute das Zusammentreffen mit dem Riuber
ist.

Das sich aus den beiden Differentialgleichungen (15.3) und (15.4) ergebende System
ist das klassische Riuber-Beute-Modell von Lotka-Volterra.

Mit den bisher vorhandenen Methoden kann das Modell analysiert werden:

Existenz und Eindeutigkeit zeitabhdngiger Losungen

Eine lokale Existenz und Eindeutigkeit ergibt sich aus dem Satz von Picard-Lindelsf, da
f auf dem gesamten R? stetig partiell differenzierbar und damit lokal Lipschitz-stetig ist,
vgl. Korollar 3.40.

Die numerische Simulation zeigt ein periodisches Verhalten, vgl. Abb. 15.1.
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0 10 20 30 40 50 60 70 80 90100 06 08 1 12 J.4 16 18 2 22
t 1
Abb. 15.1 Periodische Losung des klassischen Riuber-Beute-Modells (15.3), (15.4) mit ¢ = 1,
B=2,y=456=3

Ubung 15.1 Untersuchen Sie das Verhalten der Losung des Riuber-Beute-Modells mit
dem Euler-Verfahren oder einem anderen Verfahren fiir verschiedene Parameter- und An-
fangswerte.

Stationdre Losungen

Ubung 15.2 Zeigen Sie: Die stationiren Losungen des Biuber-Beute-Modells (15.3),
(15.4)mit 8,6 # 0sind y; = y, =0und y; = y/68, y, = a/B.

Zur Charakterisierung der stationidren Losungen benutzen wir die Funktionalmatrix

f’(yl,yz)z(;‘ ‘ﬂ”)
Y1 -V

und damit fiir die beiden stationdren Punkte:

/ — o / Zg — 5
/0.0 (0 _y), r(%5) “

["Jbung 15.3 Wie verhilt sich ein Pseudo-Zeitschrittverfahren beim Réuber-Beute-Mo-
dell? Konnen Sie damit alle stationdren Zustiinde approximieren?

Ubung 15.4 Untersuchen Sie die stationiren Zustinde auf Stabilitit, einmal analytisch
mit den Methoden aus Kap. 10, andererseits mit numerischen Experimenten, indem Sie
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von den stationiren Punkten mit leicht gestorten Anfangswerten Simulationen mit einem
Einschrittverfahren durchfiihren.
Positivitat von Losungen
Interessant ist oft die Positivitit oder Nichtnegativitit von Losungen, zum Beispiel wenn
die Modellvariable eine Grofe représentiert, die nicht negativ sein kann, wie z.B. die
Temperatur, der Salzgehalt oder eine Stoffkonzentration. Ein Kriterium zum Nachweis
der Nichtnegativitit, d. h. zum Nachweis, dass die Menge

M:={xeR":x;>0,i =1,...,n} (15.5)

invariant ist (vgl. Definition 9.4), wird hier angegeben:

Definition 15.5 (Quasipositivitit) Seien f = (fi);=,,I, D wie in (3.1) definiert und
to € 1. Dann heiit f quasipositiv, wenn fiiralle k = 1,...,n gilt:

fit,y) =0 Ve>toVyef{yeD:y=0,y,>0,i =1,...,n}.
Mit dieser Eigenschaft folgt dann die Invarianz der Menge M aus (15.5):
Satz 15.6 (Nichtnegativitit von Losungen) Seien f, I, D wie in (3.1) und f sei stetig,
lokal Lipschitz-stetig beziiglich y und quasipositiv. Dann gilt fiir die Losung des Anfangs-
wertproblems (3.2) mit yo; > 0,i =1,...,n:

yi(t) >0 Vt>ty,i=1,....n.

Beweis Siehe [14, Satz 4.2.2] O

15.2 Eine Erweiterung mit beschranktem Wachstum

Dieses Modell fiihrt zusitzlich einen quadratischen Term ein, der das Wachstum jeder
Spezies unabhéngig von der jeweils anderen Population beschrinkt. Das kann als ,,soziale
Reibung* oder eine Konkurrenz der Lebewesen einer Spezies untereinander interpretiert
werden. Das Modell lautet

Y1) = @)@ = By2(0)) = Ay (1),

15.6
WA0) = 20631 (1) — v) — a0 (150
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Abb. 15.2 Eine Losung des Riuber-Beute-Modells (15.6) mit beschrinktem Wachstum, o = 1,
B=2y=48=31=p=0,1

Ubung 15.7 Untersuchen Sie auch dieses Modell auf stationire Punkte und diese dann
analytisch und numerisch (vgl. Abb. 15.2) auf Stabilitdt. Was konnen Sie iiber Positivitét
von Losungen aussagen?

15.3 Ein marines biogeochemisches Modell

Das folgende Modell (vgl. [41]) ist eines der einfachsten, das fiir die Modellierung der
biogeochemischen Prozess im Ozean verwendet wird. Es hat zwei Modellvariablen, nim-
lich

e die vorhandenen Nihrstoffe y;, hier ist das Phosphat, POy,
e den gesamten im Plankton enthaltenen organischen Phosphor y, = DOP fiir dissolved
organic phosphorus.

Bei dieser Modellierung wird pflanzliches (Phyto-) und tierisches (Zoo-) Plankton nicht
unterschieden. Phytoplankton (Algen) nimmt Phosphat als Néhrstoff auf und dient selbst
als Nahrung fiir Zooplankton. Absterbendes Plankton wird teilweise remineralisiert und
wieder Nahrstoff. Insofern ergibt sich eine Wechselwirkung, die sich von den klassischen
Réuber-Beute-Modellen zunichst noch unterscheidet. Mit der Bezeichnung N fiir Nihr-
stoffe und DOP wird dieses Modell als N-DOP-Modell bezeichnet.

Die Bedeutung des Modells ist, dass der Gehalt von Kohlenstoff C im Phytoplankton
nach dem Redfield Ratio als proportional zu Stickstoff (chemisches Formelzeichen N),
Phosphor P im Verhiltnis N : P : C = 1 : 16 : 106 angesehen wird. In der pflanzli-
chen Photosynthese wird CO, aufgenommen und aufgespalten und Sauerstoff abgegeben.
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Damit kann mit der Berechnung der Menge des Phosphors (Modellvariable y,) indirekt
die Menge des im Plankton enthaltenen Kohlenstoffs berechnet oder zumindest geschitzt
werden. Die Aufnahme der Néhrstoffe y; in das Plankton héngt nichtlinear von y; ab,
nach der Formel

V1

G(y) =a———ro
) i+ Ky

mit der maximalen Wachstumsrate o > 0 und der Halbsittigungsrate Ky > 0.

Ubung 15.8 Fiihren Sie fiir die Funktion G eine Kurvendiskussion durch. Ist die Funktion
Lipschitz-stetig (spiter wichtig fiir die Eindeutigkeit der Losung)?

Weiterhin spielt aber auch die vorhanden Lichteinstrahlung eine Rolle, da Photosyn-
these ohne Licht nicht stattfindet. Damit wird obige Funktion modifiziert zu

yi(x,1) I(x,1)

G(x,t, =«
(. 1.31) yilx,t) + Ky I(x,t) + K;

mit der Lichtintensitit 7, die von Ort und Zeit abhiingt, und einer weiteren Halbsittigungs-
rate K; > O fiir die Einstrahlung. Je nach Zeitauflosung konnen bzw. miissen Tages-
und Jahresschwankungen betrachtet werden, die Ortsabhidngigkeit ergibt sich aus dem
betrachten Punkt auf der Erdoberfliche und aus der Tiefe des betrachteten Punktes in
der Wassersdule, da das Wasser den Lichteinfall dampft. In komplexeren Modellierungen
didmpft auch das in oberen Schichten vorhandene Phytoplankton den Lichteinfall, so dass
sich ein I = I(x,t,y;) ergibt. Die Modellparameter sind nur durch Schitzungen oder
durch eine Parameteridentifikation oder Modellkalibrierung (dem Vergleich des Model-
loutputs mit Messwerten) zu bestimmen.

Wird eine rdumlich nulldimensionale Situation betrachtet, die z. B. eine Versuchsan-
ordnung in einem Behilter vereinfacht beschreiben kann, dann ergeben sich folgende
Modellgleichungen als gewohnliches Differentialgleichungssystem:

yi(t) = Aya(t) — G(1, y1 (1)),

) (15.7)
Y2(t) = =Aya(t) + G(2, y1 (1))

und die Ortsvariable x in 7 ist fest. Der Parameter A > 0 ist die Remineralisierunsgrate.
Ubung 15.9 Analysieren Sie das nulldimensionale Modell mit den vorgestellten Me-
thoden in Bezug auf stationidre Zustdnde, deren Stabilitit, Existenz und Eindeutigkeit

transienter Losungen und deren Nichtnegativitit.

In dieser Form ist das Modell extrem vereinfacht. Im realen ein- oder dreidimensio-
nalen Fall einer vertikale Wassersdule bzw. des gesamten Ozeans wird der Ozean im
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Modell (vgl. [41]) in die obere euphotische, lichtdurchflutete Zone und die untere nicht-
euphotische Zone aufgeteilt. Entsprechend wird die Abhéngigkeit / = I(x,t) modelliert.
Zusitzlich wird ein Absinken der nicht aufgenommen Nihrstoffe einbezogen, d. h. obige
Gleichungen gelten nur in der euphotischen Zone und der nichtlineare Term enthilt in der
zweiten Gleichung eines Vorfaktor v € (0, 1). Es wird also nur ein Teil der Néhrstoffe
aufgenommen, der Rest sinkt in die untere, nicht-euphotische Schicht.

Kopplung an den Ozeantransport

Die Kopplung an ein System von zwei Transportgleichungen fiir y;, y, kann nun durch
Definition zweier entsprechender Reaktionsterme ¢y, ¢,, die den rechten Seiten in (15.7)
entsprechen, durchgefiihrt werden. Die Transportgleichungen kdnnen sonst gleich blei-
ben. Im Ozean wird die durch Turbulenz der Stromung erzeugte Diffusion als grofer
angenommen als die molekulare Diffusion der beiden Stoffe y;, y,. Insofern kann « in
beiden Diffusionsgleichungen als identisch angesehen werden. Die Werte, die von Ort
und Zeit abhiingen, miissen genauso wie die Geschwindigkeit von einem Ozeanmodell
vorher berechnet worden sein.
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Atmosphiren- und Ozeanmodelle basieren auf den Gesetzen der Stromungsmechanik (von Luft
und Wasser). Diese Grundgleichungen der Fluidmechanik leiten sich aus Masse- und Impulsbilanz
her. Diese Gleichungen werden benutzt, um den — im Unterschied zu den Transportgleichungen —
jetzt unbekannten Geschwindigkeitsvektor zu bestimmen. Als zusitzliche Unbekannte tritt in der
Impulsbilanz der Druck auf. In dieser Form sind die Gleichungen dhnlich zu denen, die auch fiir
eher technisch oder ingenieurwissenschaftlich motivierte Anwendungen benutzt werden. In den
Klimawissenschaften kommen meist noch Gleichungen fiir Temperatur und bei Ozeanstromungen
Salzgehalt hinzu. Dies sind Transportgleichungen, die wir schon kennengelernt haben. Dieses Ka-
pitel gibt nur einen Einblick in diese umfangreiche Thematik.

Bei den Transportgleichungen interessierten wir uns fiir die zeitliche Anderung der Kon-
zentration eines Stoffes in einem bewegten fliissigen oder gasformigen Medium. Die Ge-
schwindigkeit dieses Mediums war gegeben. In Klimamodellen, insbesondere Ozean- und
Atmosphidrenmodellen, ist aber die Geschwindigkeit des Mediums, in diesen Féllen also
Wasser oder Luft, unbekannt und muss selbst berechnet werden.

Auch fiir die Herleitung von Modellgleichungen zur Berechnung der Geschwindigkeit
und weiterer sie beeinflussender Groflen werden Bilanzgleichungen benutzt. Es sind dies
in ersten Linie die Masse- und Impulsbilanz, aulerdem die Energiebilanz.

Fluide

Um die Eigenschaften von Stromungen von Luft und Wasser zu beschrieben, wird ein Mo-
dellmedium, das sog. Fluid, definiert. Ein Fluid ist ein Spezialfall eines Kontinuums. In
einem Kontinuum wird die molekulare Struktur des Stoffes vernachlissigt. Ein Kontinu-
um kann als eine homogene Ansammlung von Teilchen oder Partikeln angesehen werden.
Jedes Teilchen oder Partikel X des Kontinuums hat zu einer gegebenen Zeit ¢ einen wohl-
definierten Ort x = x(X,#) € R>. Ein Fluid wird dann wie folgt definiert, vgl. [42,
LE 1.3].
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Definition 16.1 (Fluid) Ein Fluid ist ein Modellmedium mit den folgenden Eigenschat-
ten:

e Es ist ein Kontinuum: Es besteht aus einzelnen Teilchen (Partikeln), die weder eine
rdumliche Ausdehnung noch einen Abstand zueinander haben.

e Im nicht bewegten Zustand treten nur Krifte orthogonal und in Richtung zur Oberfliche
des Fluides auf (sog. Druckkrifte). Es gibt im Ruhezustand keine Kréfte, die tangential
oder orthogonal und von der Oberfliche weg gerichtet sind.

Luft und Wasser werden als Fluide angesehen.

16.1 Masseerhaltung

Das Prinzip der Masseerhaltung ist eine wichtige Grundgleichung der Mechanik. Da es
in diesem Kapitel darum geht, die Bilanzgleichungen fiir ein bewegtes Fluid wie Wasser
und Luft in Ozean, Gewéssern und der Atmosphire zu beschreiben, spielt die Massebilanz
eine wichtige Rolle.

Das Prinzip der Masseerhaltung lautet in Worten:

Masse wird weder erzeugt noch zerstort.

Wir formulieren dieses Prinzip nun mathematisch und leiten eine Gleichung daraus ab.
Das funktioniert dhnlich wie bei der Transportgleichung, aber mit einigen Unterschieden:
Von den im Kapitel iiber die Transportgleichung beschriebenen vier Prozessen Advektion,
Diffusion, Quellen/Senken und Reaktionen gibt es hier nur Advektion: Masse diffundiert
nicht, es gibt bei den uns in Klimamodellen interessierenden Phianomenen auch keine
Quellen von Masse und keine Reaktionen fiir das Medium selbst, fiir das wir die Bilanz-
gleichungen aufstellen, ndmlich Wasser oder Luft.

Wir betrachten wieder ein rdaumlich und zeitlich festes Gebiet 2 C R¢ in einem — sich
eventuell auch bewegendem — Fluid (oder einem anderen Kontinuum). Das Analogon zur
Konzentration des Stoffes y ist jetzt die Dichte, bezeichnet mit o(x, ¢). Das o. g. Prinzip
der Masseerhaltung ergibt dann fiir das Gebiet £2 die folgende Aussage:

Die zeitliche Anderung der Masse in $2 ist gleich der Differenz der Masse, die iiber den
Rand 982 in das Gebiet gelangt bzw. es dariiber verldsst.

Die Masse des gesamten in in §2 enthaltenen Fluides beschreiben wir analog zur Model-
lierung der Transportgleichung in Kap. 12 als

Mg(t) = /Q(x,t)dx.

2
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Die zeitliche Anderung der Masse in £2 erhalten wir, wenn wir wieder die Voraussetzun-
gen zur Vertauschung von Integration und Differentiation (vgl. Satz 12.6) annehmen:

d 0
MG(t) = E/Q(x,t)dx =/a—f(x,t)dx.
2 2

Vollkommen analog zum Advektionsterm (12.3) in der Transportgleichung erhalten wir,
da keine anderen Terme auftreten, die Massebilanz in integraler Form:

0
[a—f(x,t) dx = —/Q(x,t)v(x,t)~n(x) ds(x).
Q

2

Wiederum analog zur Transportgleichung konnen wir den Gauf3’schen Satz 12.5 auf das
Vektorfeld F' = pv anwenden und erhalten

[ (g_f(x’f) + diV(Q(x,t)v(x,t))) dx = 0.
2

Wir haben dabei die stetige Differenzierbarkeit von Dichte und Geschwindigkeitsvektor
vorausgesetzt.

Da £2 vollkommen beliebig gewihlt war, erhalten wir wieder analog zur Transportglei-
chung eine differentielle Form der Masseerhaltung, die sog. Kontinuitdtsgleichung:

g—f(x, t) + div(o(x,t)v(x,t)) = 0. (16.1)

Diese Gleichung hat dann im Gebiet §2 und im betrachteten Zeitintervall Giiltigkeit, was
hier und in den folgenden differentiellen Form gilt, in der Notation aber nicht jedesmal
hinzugefiigt wird. Wird die Produktregel der Differentiation angewendet, so ergibt sich
daraus

div(ov)(x,t) = Vo(x,t) - v(x,t) + o(x,t)divv(x,1)
und damit

g—f(x,t) + Vo(x,t) - v(x,t) + o(x,t)divv(x,t) = 0. (16.2)

16.2 Modellierung im bewegten Gebiet

Fiir die Impulsbilanz miissen — im Gegensatz zur Massebilanz — Erhaltungsgleichungen in
einem bewegten Gebiet aufgestellt werden. Ein bewegtes Gebiet — betrachtet als Ansamm-
lung von sich bewegenden Fluidpartikeln — wird bei der Herleitung der Impulsbilanz wie
ein Korper aufgefasst, fiir den der Impuls (physikalisch Masse mal Geschwindigkeit) und
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damit auch die Impulsbilanz berechnet werden kann. Wir beginnen hier mit zwei Darstel-
lungsmoglichkeiten fiir GroBen, die einem bewegten Partikel zugeordnet werden konnen
und so von Ort und Zeit abhidngen. Anschlieend definieren wird die Geschwindigkeit und
leiten anschlieBend eine Formel fiir die zeitliche Ableitung des Integrals einer Grofe tiber
ein bewegtes Gebiet her, um spiiter die zeitliche Anderung des Impulses in einer Formel
darstellen zu konnen.

Lagrange’sche und Euler’sche Darstellung

Wir betrachten ein Fluid, das zur Zeit ¢t = 1, ein Gebiet £2,, C R3 ausfiillt. Bewegt sich
das Fluid, so bezeichnen wir als Trajektorie eines Partikels X, das zur Zeit ¢, die Position
Xo € §2,, hatte, den Graphen der Funktion

t = x(xg, o, 1).
Da 1, fest ist, wird dieses Argument oft weggelassen und
t — x(xp,1)
geschrieben. Das Fluid fiillt dann zur Zeit ¢ > 7, das Gebiet
£, :={x(x0,1) : X0 € 824}
aus. Wir haben damit die Beziehungen

x = x(xo,%,t) oderkurz: x = x(xq,1),

Xo = Xo(x,%,t) oderkurz: xo = xo(x,1).

Einer beliebige GroBe F = F(X,t) eines Teilchens X des Fluids zur Zeit ¢ kann da-
mit ebenfalls auf zwei verschiedene Arten raumlichen Koordinaten zugeordnet werden,
niamlich

e in Lagrange’scher Darstellung als F = F(xg, ty, t)
e oder in Euler’scher Darstellung als F = F(x,1t).

Daher heifien (xo, ty,t) Lagrange’sche oder materielle Variablen oder Koordinaten und
(x,t) Euler’sche Variablen oder Koordinaten.

In der Euler’schen Darstellung ist das Partikel zur Zeit ¢ durch seine Position x = x(¢)
eindeutig beschrieben. Zu einer anderen Zeit 7 befindet sich am gleichen Ort x € £2 ein
anderes Teilchen. Wenn wir eine beliebige Grofle F, z. B. die Konzentration eines Stoffes
in dem betrachteten Bereich £2 beschreiben, so tun wir das auf den Ort x und die Zeit ¢
bezogen, egal welches Partikel sich nun gerade zu dieser Zeit an diesem Ort befindet.
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In der Lagrange’schen Darstellung wird dagegen eine Eigenschaft des Fluids im betref-
fenden Gebiet teilchenorientiert betrachtet. Sei z. B. #, eine festgelegte (Referenz-)Zeit,
etwa die Anfangszeit einer Bewegung. Dann kann die Grofle F eines Teilchen zur Zeit
t bezogen auf die Position x(, an der sich das Teilchen zur Zeit #, befand, beschrieben
werden. Die aktuelle Position x = x (z, o, X¢) tritt in der Beschreibung der Grofle F' dann
nicht explizit auf.

Die Geschwindigkeit

Die Geschwindigkeit eines Partikels X des Fluids wird wie folgt beschrieben: Sei x () =
(x1(2), x2(2), x3(¢)) die Trajektorie des Fluidpartikels in Euler’schen Koordinaten, wobei
wir hier der Einfachheit halber das Argument x, weggelassen haben. Dann ist der Ge-
schwindigkeitsvektor v = (vy, v,, v3), ebenfalls in Euler’schen Koordinaten, als

v(x, 1) = x'(1) = (x](1), x3(1), X5(2)) (16.3)

gegeben. Ist nun die Grofie F in Euler’scher Darstellung, also als Funktion von x = x(¢)
und ¢ gegeben, dann erhalten wir fiir ihre Ableitung nach der Zeit mit der Kettenregel

d%F(xl(t), (1), X3(t), 1)
3

oF , oF
=D 5 X[ + (D)

d
g Fx@®.1)

i=1

= ; 3_)ci(x’t)vi(t) + W(X’t) = 5(x,z) + (v-VF)(x,t).

Definition 16.2 (Materielle Ableitung) Der Operator

D a
_— = — .V
Dt at v

hei3t materielle (oder substantielle) Ableitung.

Das Transporttheorem

Das Transporttheorem ist eine zentrale Aussage fiir die Impulsbilanz: Es sagt aus, wie die
Zeitableitung des Integrals einer Grofe in einem zeitabhiingigen Gebiet unter das Integral
gezogen werden kann. Wir benutzen dazu fiir ¢ > ¢, die Abbildung

X(, 1)1 824y = 2/, xo > X(X0,1), (16.4)



220 16 Atmosphédren- und Ozeanstromung

setzen ihre Differenzierbarkeit voraus und bezeichnen mit J die Determinante ihrer Funk-
tionalmatrix

3
J(xp,1) := det (g—;(xo, t)), ]

o
mit xo := (1, &, &). Es gilt nun:

Lemma 16.3 Ist die Abbildung (16.4) stetig differenzierbar, dann gilt
0 .
EJ(xo,t) = J(xo,t)divv(x(xo,2),1), X0 € §24, t > 1.

Beweis Wir unterdriicken die Argumente x, f und erhalten mit der Definition der Deter-

minante
3

axi
J = i .
D sign (n)i]:[l T

TEP3

Dabei ist P5 die Menge der Permutationen von {1, 2, 3}. Die Produktregel ergibt

Z Z sign (n) ot 35n(k) l_[ 357:(1)

k=1m€eP3 =1,i#k

Wegen der Glattheit von (16.4), der Definition (16.3) der Geschwindigkeit und der Ket-
tenregel gilt

%?;;{ B aaél a;zk - %?; ]Z 2;’; g); k=123,
und daher
o 1; n;g sien () Z gif 82:(jk) ,-=1;ék az::i)
-y (i O i) T
Ly <”>(a—",13a?’“;> = L)

0
Z( vk J+ Z Zs1gn(n)agn) l_[ 357:(1))

=1, ;ék TS i=li#k

} 8vk } 8vk ki
= (—J+ Y det Al ,,))

Xy X;
j=Lj#k 7
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wobei die Matrizen A%/ fiir j # k folgende Form haben:

8x,~

—, i #k
g — ) 08 ”
il ij . k

—, I =k.

9§

Da j # k, sind die Determinanten aller dieser Matrizen gleich Null, also gilt

aJ 9
oS Ty~ dive) . O

at P X

Wir benétigen die Transformationsformel der Integration:

Lemma 16.4 (Transformationsformel) Seien U,V C R”" offen, @ : U — V stetig
differenzierbar und invertierbar mit stetig differenzierbarer Inversen. Dann ist F' : V —
R genau dann integrierbar, wenn F o ®|det @'| iiber U integrierbar ist und es gilt

[ F((8)] det &' ()] de = / F(x)dx.

U 14

Beweis [12, §13 Satz 2] O
Damit beweisen wir folgende Aussage:

Satz 16.5 (Transporttheorem) Sei D C R? offen. Fiirallet € I sei 2, C D. Auferdem
sei I auf D x I stetig differenzierbar. Dann gilt fiir alle t € I

%[F(x,t)dx =[(%—f(x,t)+div(Fv)(x,t)) dx.
2

2

Beweis Wir setzen voraus, dass die Abbildung (16.4) stetig differenzierbar und invertier-
bar ist. Jetzt transformieren wir das Integral iiber §2, auf das Referenzgebiet £2,, mit der
Transformationsformel:

/F(x,t)dx= [ F(x(xo,1),1)|J(xq,1)| dxo.

2 910

Da das Integrationsgebiet nun zeitlich konstant ist und die Funktion F beziiglich 7 stetig
differenzierbar ist, konnen wir (vgl. Satz 12.6) unter dem Integral nach ¢ differenzieren
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und erhalten
d ox oF
d—tF(x(xosl),l) = VF(x(xo,1),1) - E(Xo,l‘) + E(x(xo,t),t)
oF
= VF(x(xo,1).,1) - v(x,1)) + E(x(xo,t),t)-

Lemma 16.3 ergibt

d oF
d—t[F(x,t)dx = / (E +v-VF + Fdivv) (x, 1) |J(x0,1)| dxg
2 .Qto

mit dem Argument (x,#) = (x(xo,?),?) in allen Termen in der runden Klammer auf der
rechten Seite. Die Jacobi-Matrix ist fiir die betrachteten Transformationen und fiir alle ¢
reguldr und ihre Determinante daher nie Null. Daher ist auch ihr Betrag differenzierbar
nach der Formel aus dem letzten Lemma. Die Riicktransformation auf £2, ergibt

d%/F(x,t) dx = / (%—f(x,t) +v(x,t) - VF(x,t) + F(x,t)div v(x,t)) dx
.Q[ -Qf

und damit die Behauptung mit der Produktregel. O

16.3 Spezielle Fluide

Es gibt spezielle Fille, die in technischen Anwendungen und in den Klimawissenschaften
auftreten und die die Bilanzgleichungen wesentliche vereinfachen.

Inkompressible Fluide

In vielen Anwendungen wird angenommen, dass das Fluid inkompressibel ist, d.h. dass
sich das Volumen eines vom Fluid eingenommenen Gebietes nicht mit der Zeit dndert:

Definition 16.6 Ein Fluid heilit inkompressibel, wenn fiir ein von ihm zur Zeit ¢ einge-
nommenes Gebiet §2, gilt
:
— [ dx =0.
dr
2t
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Um daraus eine Aussage iiber die Geschwindigkeit des Fluides machen zu konnen,
benutzen wir das Transportheorem fiir ' = 1. Es ergibt sich

d
0= E/dx = /divv(x,t)dx.
2 2

Mit der schon oben angewandten Argumentation (Auswahl eines infinitesimal kleinen
Gebietes) und o > 0 folgt damit aus (16.2):

Korollar 16.7 Die Inkompressibilitiit eines Fluides ist dquivalent zu
divv =0 1in£2 (16.5)

und zum Verschwinden der materiellen Ableitung

D
2 _0 e
D1

Die Massebilanz (16.1) ergibt nun fiir ein inkompressibles Fluid

de
ot

de
ot

do

+ div(ov) = 5

+Vo-v+opodivy = + Vo-v=0.

=0

In vielen technischen und physikalischen Anwendungen wird o = gy € R als konstant
angenommen und bezeichnet ein solches Fluid als inkompressibel bezeichnet. Dann ist
die Aussage der Korollar bereits die Massebilanz.

Homogene und geschichtete Fluide
In Klimamodellen gibt es oft Fluide mit zeitlich, aber nicht rdumlich konstanter Dichte.
Daher ist es sinnvoll, zwischen rdaumlicher und zeitlicher Konstanz zu unterscheiden. Zur
Abgrenzung dient die folgende Definition.

Definition 16.8 Ein Fluid mit rdumlich konstanter Dichte, also ¢ = o(t), heifit homogen.

Fiir ein homogenes Fluid gilt wegen (16.2) offensichtlich

%, pdive =0
—_— 1IVV = U.
ar ¢

Damit folgt sofort, dass ein inkompressibles homogenes Fluid auch zeitlich konstant ist,
also o = gy € R erfiillt. Die Massebilanz liefert dann die Gleichung (16.5).
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Im Ozean wird meist folgende Eigenschaft angenommen:

Definition 16.9 Ein inkompressibles inhomogenes Fluid heilit geschichtet.

Dann lautet die Massebilanz

do
— +Vo-v=0.
5 T Ve

16.4 Impulsbilanz

Die zweite wesentliche Bilanz- oder Erhaltungsgleichung, die benutzt wird, um eine Glei-
chung fiir den unbekannten Geschwindigkeitsvektor v herzuleiten, ist die Impulsbilanz.
Impuls ist das Produkt aus Masse und Geschwindigkeit. Das Prinzip der Impulsbilanz ist
Newtons zweites Gesetz, dass man im Allgemeinen kurz als

Kraft ist gleich Masse mal Beschleunigung
oder in Formeln als
F =ma
schreibt. Genauer gesagt lautet die Impulsbilanz:
Die zeitliche Anderung des Impulses ist gleich der Summe der angreifenden Kriifte.

Die Beschleunigung « ist die zeitliche Anderung der Geschwindigkeit, die wir mit der
substantiellen Ableitung aus Definition 16.2 schreiben koénnen:

&2 d D
a(x (), 1) = ?’;(z) = Zo(x(0.0) = D—lt)(x,t).

Fiir die Impulsbilanz bendtigen wir die Kréfte, die auf ein mit Fluid gefiilltes Gebiet wir-
ken. Wir betrachten zunéchst den stationiren Zustand. Es gibt zwei Arten von Kréften, die
wirken, ndmlich Volumen- und Oberflichenkifte.

Volumenkrifte

Volumenkrifte sind Schwerkraft oder Magnetkrifte sowie in Klimamodellen die Coriolis-
kraft, die durch die Erdrotation bewirkt wird. Wir beschreiben diese Krifte als Kraftdichte
b(x,t) € R? pro Dichteeinheit. Damit ist die Gesamtvolumenkraft auf ein Gebiet £2 ge-
geben durch

B = [Q(x,t)b(x,t)dx.

2



16.4 Impulsbilanz 225

Oberflachenkrafte im Ruhezustand

Bei den auf die Oberflidche eines Fluides auftretenden Kréfte spielt die Definition 16.1 des
idealisierten Mediums Fluid eine entscheidende Rolle. Wegen der dort genannten zweiten
Eigenschaft konnen wir die Oberflichenkrifte im Ruhezustand als Produkt des skalaren
Druckes p und des negativen dufleren Normalenvektors (—n) schreiben:

S = —/p(x,t)n(x)ds(x).

82

In dieser Bezeichnung ist der Druck dann immer nicht negativ. Mit dem Gauf3’schen
Satz 12.5 erhalten wir fiir einen beliebigen konstanten Vektor w € R*:

S-w:—/n~(pw)ds :—/div(pw)dx

82 Q
= _/ ((Vp)-w+ pdivw)dx = —[(Vp)'wdx.
$2 Q
Also gilt:
S = —[Vp dx. (16.6)
2

Oberflichenkrifte im bewegten Zustand

Fiir die Impulsbilanz kénnen wir nicht mehr vom Ruhezustand des Fluides ausgehen.
Also konnen zusitzliche Krifte, z. B. tangentiale Scherkréfte auftreten. Ein Fluid, bei dem
auch in Bewegung solche Krifte Null sind, bei dem also die zweite Eigenschaft in der
Definition 16.1 dann weiterhin gilt, heit ideales Fluid. Insbesondere Reibung, die zu
Tangentialkriéften fiihrt, wird bei idealen Fluiden vernachlissigt. In Klimamodellen sind
ideale Fluide allerdings ohne grof3e Bedeutung, da Wasser und Luft diese Bedingung nicht
erfiillen.

Im allgemeinen Fall muss der Ansatz (16.6) fiir die Oberflachenkrifte also verallge-
meinert werden. Der skalare Druck p wird durch eine Matrix (oder auch Tensor zweiter
Stufe genannt) ersetzt, den sog. Spannungstensor

011 012 O13
0:= |02 02 023

031 032 033
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Die komponentenweise Multiplikation des skalaren Druckes p mit dem Normalenvektor
wird ersetzt durch das innere Produkt zwischen dem Spannungstensor (zweiter Stufe) und
dem Normalenvektor (in der Tensorrechnung, vgl. etwa [42, Anhang 1] ein Tensor erster
Stufe). Es ist definiert durch die Summation iiber die beiden inneren Indizes und entspricht
damit in diesem Fall der Matrix-Vektor-Multiplikation:

3
Z,‘:]niail

— 3
n-o:=|37_,nion

Zi3=l nioi3

wobei die Argumente weggelassen wurden und n := (ny,n,,n3) gesetzt wurde. Damit
werden die Oberflichenkrifte als

S = fn(x, t)-o(x,t)ds(x)
EYe]
geschrieben, und der Gaul3’sche Satz ergibt
S = / divodx.
2

Die Divergenz ist fiir Tensoren (beliebiger, hier zweiter Stufe) als inneres Produkt des
Nabla-Operators V mit dem Tensor definiert, d. h. die Summation und damit auch die
partiellen Ableitungen werden auf den ersten, also den Zeilenindex (also auf die Spalten)
des Tensors zweiter Stufe angewendet:

do;
divo:=V .o —( Uj)
i=l1 axl i

Wird der Spannungstensor als 0 = —p/ (mit der Einheitsmatrix bzw. dem Einheitsten-
sor 1) gesetzt, so ergibt sich div / = V und damit wieder (16.6).
Die Integrale Form der Impulsbilanz

Insgesamt ergibt sich also nun fiir die Summe der auf ein jetzt bewegtes und damit von
der Zeit ¢ abhingiges Gebiet §2, wirkenden Krifte der Ausdruck

S+ B :/(diva+gf)dx.
2
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Wir erhalten damit fiir das bewegte Gebiet £2;:

d% o(x,Hv(x,t)dx = / (divo(x,t) + o(x,t)b(x,1)) dx. (16.7)
.Q[ -Qf

Differentielle Form der Impulsbilanz

Fiir eine differentielle Form benutzen wir wieder das Transporttheorem (Satz 16.5), und
zwar komponentenweise auf die linke Seite der integralen Impulsbilanz, d. h. mit pv; als
Integrand:

d (e
E/Qv,dx = /( 5 + div(ov; U)) dx
2

2

:[(B(S;)l) +(U'V)(Qvi)+Qvi divv) dx’ I = 1,2,3.
24

Wieder als Vektorgleichung geschrieben ergibt sich:

4 ovdx = [ M + (v-V)(ov) + ovdivv | dx.
dt ot
2 2

Da 2, beliebig war und wir es uns als infinitesimal klein vorstellen konnen, erhalten wir
aus (16.7) die differentielle Form der Impulsbilanz:

—a(agtv) + (v-V)(ov) + ovdivv —divo —of = 0. (16.8)

Mit der Produktregel
(v-V)(ov) =v-(Vov) +v-0oVv

und der Kontinuititsgleichung (Massebilanz) fiir

d(ov) 0Jo v . v )
=— — = —=—(v d
5 BZU+Q8I IV(QU)U-I-Qa[ (Vov + odivv) v

konnen wir die Impulsbilanz dquivalent als

dv

o7 +o(-Vv)—dive = of (16.9)

0

schreiben. Je nachdem, wie jetzt der Spannungstensor o0 modelliert wird, ergeben sich
verschiedene Gleichungen:
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Ideale Fluide: Euler-Gleichungen

Ein ideales oder nicht-viskoses Fluid erfiillt auch im bewegten Zustand
o:=—pl
mit dem Druck p > 0. Damit wird (16.8) zu den Euler-Gleichungen:

av

o3, +o(w-Vv)+Vp =of (16.10)

Linear-viskose (Newton’sche) Fluide: Navier-Stokes-Gleichungen

Eine der einfachsten Annahmen fiir nicht-ideale Fluide ist, das es Schubspannungen gibt,
die linear vom Geschwindigkeitsgradienten abhéangen. Man denke zum Beispiel an Rei-
bungskrifte, die entstehen, wenn zwei Schichten im Fluid sich mit unterschiedlicher Ge-
schwindigkeit zueinander bewegen, d.h. wenn eine sog. Scherstrémung vorliegt. Solche
Fluide nennt man linear-viskose oder Newtonische Fluide. Man setzt

0:=—pl+1v:=(—p+Adivv)] +2uDv
mit

o Volumenviskositiit A,
o dynamischer Visositdt
e und dem symmetrisierten Gradienten

D 1 avi+3vj :
v 2 an axi

ij=1

Die beiden Viskositidten werden vereinfacht als rdumlich konstant angenommen. Damit
erhilt man die kompressiblen Navier-Stokes-Gleichungen:

d(ov)
ot

+ (w-V)(ov) +ovdivv + (A + u)Vdivv — ulAv + Vp = of

Mit der Produktregel fiir den zweiten und dritten Term links ergibt sich

v

o +o(-Vv)+ A+ pn)V({divv) — uAv+ Vp = of.

0
Die entsprechende Massebilanz bzw. Kontinuititsgleichung lautet, vgl. (16.2):

d

o + Vo v +odivy =0.
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Inkompressible Newtonische Fluide: inkompressible
Navier-Stokes-Gleichungen

Ein inkompressibles Fluid erfiillt
divv = 0.
Damit ergeben sich die inkompressiblen Navier-Stokes-Gleichungen:

v

5, 1o Vv) —pulv+Vp =of.

4

d.h. es tritt nur noch die dynamische Zahigkeit o auf. Die entsprechende Massebilanz
bzw. Kontinuitétsgleichung lautet hier

do
— +Vo-v=0.
o1 + Vo-v

Homogene inkompressible Newtonische Fluide

Das Fluid heifit homogen, wenn die Dichte rdumlich konstant ist, also
o(x,1) = o(?)
gilt. Ist das Fluid homogen und inkompressibel, dann ist die Dichte konstant:
o(x.1) = 0o > 0.

In diesem Fall erhalten wir folgende Gleichungen, die manchmal (besonders in techni-
schen Anwendungen) als inkompressible Navier-Stokes-Gleichungen bezeichnet werden:

v
00 (5 +(v- V)v) —pAv+Vp=ogof
oder mit der kinematischen Viskositdt
M
V= —
Qo
als

v

1
+@W-V)v—vAv+ —Vp=f
ot Qo

werden. Die Kontinuitétsgleichung wird (s. 0.) zu

divv = 0.
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Inkompressible und geschichtete Fluide

In Klimaanwendungen wird ein Fluid aber gerade nicht als homogen, sondern die Dichte
als rdumlich verdnderlich, aber zeitlich konstant angesetzt, d. h.

o(x,1) = o(x).

AuBerdem wird die Annahme der konstanten Viskositit fallen gelassen, sondern z.B.
angenommen, dass sie von der vertikalen Koordinate abhingt. Damit erhalten die Navier-
Stokes-Gleichungen die Form

Jv
Sy

Die entsprechende Kontinuititsgleichung ist wieder (16.5).

+ o(v - Vv) —div(uDv) + Vp = of.

16.5 Gleichungen fiir Ozeanmodelle

Ozeanmodelle bestehen neben der Masse- und Impulsbilanz zusitzlich aus Gleichungen
fiir Temperatur und Salzgehalt. Beide haben die Form von Transportgleichungen, wie sie
im Kap. 12 behandelt wurden. Wie schon im Kap. 6 iiber das Rahmstorf-Boxmodell be-
schrieben, spielen beide GroBen fiir die globale Ozeanstromung eine wichtige Rolle, so
dass sie nicht vernachléssigt werden konnen.

Die Energiegleichung

Die Form der Gleichung fiir die Temperatur ist eine Transportgleichung, als die wir sie
hier direkt einfiihren. Die Temperatur- oder besser Energiegleichung kann auch iiber die
Energiebilanz analog zu den anderen beiden Bilanzgleichungen fiir Masse und Impuls
hergeleitet werden. Sie ergibt sich als Gleichung fiir die Temperatur 7T fiir ein allgemeines,
nicht als inkompressibel vorausgesetztes Fluid

aoT
m +div(Tv —«kVT) = 0.

Ist das Fluid inkompressibel, so vereinfacht sich diese Gleichung zu

T
v VT —div (VT) = 0.

Der Diffusionskoeffizient wird in Ozeanmodellen meist nicht als konstant angenommen.
Wird dies zusitzlich angenommen, so ergibt sich
oT

— 4+ v-VT — kAT = 0.
Jat
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Gleichung fiir den Salzgehalt

Salz kann als Spurenstoff (Tracer) betrachtet werden, fiir den eine Transportgleichung wie
in Kap. 12 benutzt wird. Daher gilt

aS
5 + div(Sv —«VS) =0

bzw. wieder mit einem inkompressiblen Fluid

aS
i +v-VS —div(kVS) = 0.
Die Diffusion wird fiir Energie- und Salzgehaltgleichung eventuell unterschiedlich mo-

delliert, daher verwenden wir auch die Indizes k7 und k.

Die Zustandsgleichung

Wie bereits beim Boxmodell benétigt man eine zusitzliche Gleichung, die die Dichte
mit Druck, Temperatur und Salzgehalt koppelt. Beim Boxmodell gab es keinen Druck,
daher wurden dort in der Zustandsgleichung nur die anderen drei gréflen zueinander in
Beziehung gesetzt, im einfachsten Fall die Dichte als linear von Temperatur- und Salz-
gehaltsdifferenz modelliert. Allgemeiner kann die Zustandsgleichung auf verschieden Art
geschrieben werden. Wir benutzen hier die Form

o= f(T.S, p).
Als Spezialfille hat man z. B.
e die idealen Gase mit
__r
C=RT

mit einer Materialkonstante R,
e und die inkompressiblen Fluide mit konstanter Dichte mit o(x, 1) = .

Die Boussinesq-Approximation

Zusammengefasst ergibt sich fiir den Ozean aus Masse-, Impuls-, Energiebilanz sowie mit
der Transportgleichung fiir die Salinitédt und der Zustandsgleichung folgendes System

0
a—i‘) + div(ov) =0

3
(@) | (v V) (ov) + ovdive + (A + )V dive — pAv + Vp = ob.

ot

oT
T + div(Tv —k7VT) =0

%—f + div(Sv —ksVS) =0
o= f(T.S, p).
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Hier ist das Fluid in allen Gleichungen noch als kompressibel angenommen. Oft wird nun
folgende Vereinfachung gemacht, die sog. Boussinesq-Approximation:

e Die Dichte ist konstant, auBer in der duBeren Kraft b auf der rechten Seite der Impuls-
gleichung, wo ein Auftriebsterm mit der Kraftdichte

b=—ge;
eingesetzt wird. Dabei ist e3 der Basisvektor in Richtung der vertikalen Koordina-
tenrichtung und g die Erdbeschleunigung. In allen anderen Termen wird o = gy als
konstant angenommen.

e Auflerdem werden die Diffusionen und Viskosititen als konstant angenommen.

Damit ergeben sich folgende Gleichungen:

divv =0

v o
— 4+ v-Vv—vAv+ Vp = ——ges,
ot Qo

oT

E“FU'VT—KTAT:O

S

— 4+ 0v-VS —kgAS =0

dt

o= f(T.S.p)

mit v = p/0p. Damit ist (s. die erste Gleichung dieses Systems) jetzt praktisch die Inkom-
pressibilitit des Fluides vorausgesetzt. Die Zustandsgleichung kann jetzt direkt auf der
rechten Seite der Impulsgleichung eingesetzt werden. In dieser Form (ohne Salzgehalt)
werden die Gleichungen auch in technischen Anwendungen, bei denen die Temperatur
eine Rolle spielt, verwendet.

Verallgemeinert konnen die Viskositit v und die beiden Diffusionen x7 und kg als nicht
konstant angesetzt werden. Dann ergibt sich statt des Laplace-Terms fiir Geschwindigkeit,
Temperatur und Salzgehalt jeweils wieder die Divergenzform.

In der Ozean- und auch Atmosphédrenmodellierung wird auf die speziellen geometri-
schen Bedingungen des Rechengebietes eingegangen.

16.6 Besonderheiten der Erdgeometrie

In diesem Abschnitt gehen wir auf Besonderheiten bei Klimamodellen ein, die sich auf die
Geometrie des betrachteten Gebietes bei globalen Modellen beziehen, besonders bei der
Atmosphiren- oder Ozeankomponente. Die Geometrie des Ozeans und der Atmosphire
weisen zweil wesentliche Besonderheiten auf:
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e Das Rechengebiet hat niherungsweise die Form einer Kugelschale
e und es hat in vertikaler Richtung eine wesentlich geringere Ausdehnung als in horizon-
taler.

Die beiden charakteristischen Tatsachen werden sinnvollerweise bei der Modellierung be-
rlicksichtigt und ausgenutzt. Die erste durch die Wahl von Kugelkoordinaten, die zweite
durch eine unterschiedliche Behandlung der vertikalen Richtung mit einer zusitzlichen
Approximation. Beides hat Auswirkungen auf die Modellgleichungen, die wir hier be-
schreiben.

Raumliche Polar- oder Kugelkoordinaten

Die Erde ist keine exakte Kugel, wird aber in Modellen als solche angenommen. Fiir den
Erdradius wird meist ein Mittelwert von 6371 km benutzt, der einer Kugel mit dem Erd-
volumen entspricht. Es bietet sich an, den Ozean und die Atmosphére als Kugelschale mit
einer — verglichen mit der horizontalen Ausdehnung — relativ geringen Dicke zu modellie-
ren. Dazu werden zweckmiBigerweise die rdumlichen Polar- oder auch Kugelkoordinaten
verwendet.

Wir betrachten dazu zuerst die ebenen Polarkoordinaten, die fiir einen Punkt x =
(x1, x2) € R? gegeben sind als

(¢, 7) € [0,27] x [0, 00), (2) - (rr(;fjj)

X2
arctan —, X1, X2 >0,
X1

7 2 4,2 X2
F=lxll2=+/x7+x3, ¢ = |7 tarctan-=, X = 0, (16.11)
1

X2
2w + arctan —, x; >0,x, <O0.
X1

Dabei wurde die Arcustangensfunktion mit dem Hauptzweig, d.h. dem Wertebereich
(—m/2,m/2) (vgl. [13, §14]) benutzt. Auf der Erde gibt — auf einem festen Breitenkreis —
der Winkel ¢ dann den Léngengrad an.

Wird die Kugel bzw. Erde gewissermaflen aus den einzelne Breitenkreisen (bzw. ent-
sprechenden Kreisscheiben) ,,zusammengesetzt* vorgestellt, so ergibt sich eine Motiva-
tion fiir die rdumlichen Polarkoordinaten. Dazu wird als dritte Koordinate der Winkel 6
zwischen

e dem Ortsvektors eines Punktes auf der Erdoberfliche (mit dem Erdmittelpunkt als Ko-
ordinatenursprung)
e und der zum Koordinatensystem vertikalen Erdachse,
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gemessen von einem Pol an und daher im Bereich [0, 7] liegend, benutzt. Dann gibt 6 — %

den Breitengrad an, wenn der Siidpol bei 8 = 0 ist und mit 6 < O siidliche und mit 8 > 0
nordliche Breitengrade bezeichnet werden.

Fiir festes 6 hat der Kreis des entsprechenden Breitengrades den Radius 7 = rsin 6,
wenn r der Abstand des Punktes x = (x1, X3, X3) € R? vom Erdmittelpunkt ist. Damit
wird folgende Abbildung von den Kugelkoordinaten (6, ¢, r) in die festen Koordinaten
(x1, X2, x3) definiert:

@ :[0,27] x [0, ] x [0, 00) — R3,

D, r sin 6 cos ¢ X1
@0,¢.r):=| D, | (0.¢.r):=| rsinfsing | = | x, |- (16.12)
D3 rcos 6 X3

Die Umkehrabbildung ist gegeben durch

2 2
7T VX T X
r=|xlla=+/x}+x3+x3 ¢wiein(l6.11), 6= 3 + arctan ——.

X3

Basisvektoren des Kugelkoordinatensystems

Um eine vektorielle Groe (wie z. B. die Geschwindigkeit) in die neuen Koordinaten zu
transformieren, werden Basisvektoren des neuen Koordinatensystems benétigt. Haben wir
bisher geschrieben

v =(v1,v,v3) oder v=(vy,vyv3)",

so bezog sich diese Koordinatendarstellung immer auf das raumfeste Koordinatensystem
mit orthonormalen Basisvektoren, die wir mit e;, e, e3 € R3 bezeichnen. Ein Vektor
x € R3 wird damit als

X = X161 + X263 + X3€3

geschrieben, und seine Koordinatenschreibweise x = (x1, X2, x3) bezieht sich auf die-
se Koordinaten, d.h. wir schreiben x = (xy,xp,x3)g mit £ = (ey, e,, e3). Dabei ist
es belanglos, ob wir einen solchen Vektor der Koordinatendarstellung als Zeilen- oder
Spaltenvektor schreiben. Dies spielt nur eine Rolle, wenn wir Vektorgleichungen oder
Matrix-Vektoroperationen in Koordinatenschreibweise aufstellen. Wir werden zwischen
vektorieller und Koordinatenschreibweise hier nicht unterscheiden, d. h. auch ein Gleich-
heitszeichen zwischen beiden Schreibweisen verwenden.

Zu den Kugelkoordinaten gehoren nicht mehr feste, sondern in jedem Punkt x € R?
unterschiedliche Basisvektoren ey, ey, e,. Diese zeigen fiir die beiden Winkelkoordinaten
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tangential an die entsprechenden Kreise, fiir ¥ vom Nullpunkt weg auf den aktuellen Punkt
x € R3 hin. Thre Koordinatendarstellung in der Basis E sind:

cos 6 cos ¢ —sin¢ sin 0 cos ¢
eg = | cosOsing | .epg =| cos¢ | .e, = | sinfsing
—sinf /. 0 /g cosf /.

Die Matrix der Transformation von den Kugelkordinaten in die Koordinaten E ist

cosfcos¢p —sing sinf cos¢
T(0,¢,r):=]cosfsing cos¢ sinfsing |,

—sinf 0 cos 0
d.h. es gilt
U1 Vg
Uy = T(ea ¢’ r) Vg
U3 E Uy Ie

mit K = (e, ey, e,). Die umgekehrte Transformation ldsst sich leicht angeben, denn es
gilt:

Ubung 16.10 Zeigen Sie: Die Matrix T'(6, ¢, r) ist fiir alle (6, ¢, r) orthogonal, d. h. ihre
Zeilen und Spalten bilden ein Orthonormalsystem.

Fiir orthogonale Matrizen gilt T-'=71T, vgl. [28, 5.5], also ist

Vy U
U¢ = T(es ¢s r)T 1%}
Uy K U3 E

Transformation von Ableitungen skalarer Funktionen

Sei F = F(x) eine Funktionund F = F o @, also F(0,¢,r) = F(®(0,¢,r)) die in
Kugelkoordinaten ausgedriickte Funktion. Um Umrechnungsvorschriften fiir die partiel-
len Ableitungen von F beziiglich x; und derjenigen von F beziiglich 6, ¢, r zu erhalten,
werden wegen

oF
g (0.9.1) = Z—( s (9 ¢.7) (16.13)

und analogen Rechnungen fiir ¢, r die partiellen Ableitungen der Transformation & be-
notigt.
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Ubung 16.11 Berechnen Sie die Jacobi-Matrix ®'(6, ¢, r) der Transformation @ aus
(16.12) und zeigen Sie, dass @' (6, ¢,r) = T(0, ¢, r)D(6, ¢, r) mit einer Diagonalmatrix
D gilt.

Ubung 16.12 Berechnen Sie damit die Transformationen der partiellen Ableitungen in
(16.13) und analog die beziiglich ¢ und r.

Soll eine Differentialgleichung transformiert werden, so werden die umgekehrten
Transformationen benétigt. Sie ergeben sich mit Hilfe der inversen Matrix @' (0, ¢, r)~! =

(@7 (x):

Ubung 16.13 Zeigen Sie: Es gilt

cosfcos¢ cosfsing sin 0
r r r
'O, ¢,r) ' =] _ sin ¢ cos ¢ 0
rsin 6 rsin 6

sinfcos¢ sinfsing cosf

Umrechnung von Differentialoperatoren

Mit den bereitgestellten Hilfsmitteln konnen jetzt die Differentialoperatoren Gradient,
Divergenz und der Laplace-Operator umgerechnet werden. Diese Aussagen finden sich
teilweise auch in [12, (10.6)], wir formulieren sie als Ubungen:

Ubung 16.14 Transformieren Sie den Gradienten einer Funktion F = F(x) in Kugelko-
ordinaten, d. h. berechnen Sie fiir F=Fo®in

aF

grad; F(x) = Vg F(x) = (8x1

oF JaF
() G0 50
oF oF oF
= a—xl(x)é’l + 8—xz(x)€z + 8_x3(x)e3
= g@(ev ¢v I')é’@ + gqﬁ(es ¢s r)e¢ + gr(ev ¢v r)er
= (gO(es ¢s r)s g¢(95 ¢s r), g,.(Q, ¢v r))K

= VkF(0,¢,r)
=: gradKF(0,¢, r)

die Koeffizienten gg, g4 und g,.

Um die Divergenz in Kugelkordinaten zu berechnen und in eine kompakte Form zu
bringen, sind folgende Beziehungen hilfreich:
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Ubung 16.15 Zeigen Sie: Fiir die Basisvektoren des Kugelkoordinatensystems gilt:

9 14, 20 14, % _,, 20
0 30 " B¢

e .
— = sin ey

= cosfey,
¢ )

Dabei benutzen wir die Bezeichnung a Lb :<=> a -b = 0 fiira, b € R?.

Ubung 16.16 Berechnen Sie fiir eine vektorwertige, in Kugelkordinaten gegebene Funk-

tion I = (Fy, Fy, Fy)x mit F; = F;(0,¢,r) firi € {0, ¢,r} die Divergenz in Kugel-

kordinaten, d. h.

diVKF(e, ¢, r) = VK . F(G, ¢, r).
Ubung 16.17 Transformieren Sie den Laplace-Operator in Kugelkordinaten.

Transformation von Integralen
Bei den Bilanzgleichungen wurden Volumenintegrale benutzt. Werden die enthaltenen
GroBen in Kugelkoordinaten formuliert, so miissen auch die Integrale auf Kugelkoordina-

ten gebracht werden. Dazu dient die Transformationsformel, vgl. Satz 16.4.

Korollar 16.18 Es gilt fiir 2 = {x € R3: ||x||, < R}:

R 2 m

Q/F(x)dx = 0/0[0[ F(D(6,¢,r))r?sin 0dOdedr.

Dabei wurde benutzt (vgl. [12, §9 Corollar 2]):

Ubung 16.19 Zeigen Sie: det ®'(0, ¢, r) = r?sin 6.
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Literatur-Grundlagen

Literatur, die beim Schreiben dieses Buches geholfen hat.

Klimamodelle:

— Latif: Klimawandel und Klimadynamik [1]

— McGuffie, Henderson-Sellers: A Climate Modeling Primer [5] bzw. in einer liberar-
beiteten Auflage [4]

— Rahmstorf, Richardson: Wie bedroht sind die Ozeane? [43]

— Stocker: Introduction to Climate Modeling, Skript [2], erweitert, auf der Basis von
[44]

— v. Storch, Giiss, Heimann: Das Klimasystem und seine Modellierung [3]

— Intergovernmental Panel on Climate Change (IPCC): 5. Assessment Report 2013
[6], s. auch www.ipcc.ch.

Stromungsmechanik:

— Chorin, Marsden: A Mathematical Introduction to Fluid Mechanics [45]

— Schade, Kunz: Stromungsmechanik [42]

Numerische Mathematik:

— Bollhofer, Mehrmann: Numerische Mathematik [15]

— Plato: Numerische Mathematik kompakt [46]

— Stoer, Bulirsch: Numerische Mathematik 1 und 2 [22],[24]

Differentialgleichungen:

— Amann: Gewohnliche Differentialgleichungen [47]

— Demailly: Gewohnliche Differentialgleichungen [48]

— Hackbusch: Theorie und Numerik elliptischer Differentialgleichungen [49]

— Priiss, Wilke: Gewohnliche Differentialgleichungen und dynamische Systeme [14]

— Walter: Gewohnliche Differentialgleichungen [32]

— Werner, Arndt: Gewohnliche Differentialgleichungen [33].

In letzter Zeit sind weitere Bilicher zum Thema Mathematik und Klima erschienen, von

denen folgende hier genannt sind:

— Drake: Climate Modeling for Scientists and Engineers [50].

— Kaper, Engler: Mathematics & Climate [51].
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Bandmatrix, 191
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Boussinesq-Approximation, 231
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D (symmetrisierter Gradient), 228
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D¥ (partielle Ableitung), 148

D7 _h (Differenzenquotient), 86

D~ _h (Differenzenquotient), 86

Daten(-fehler), 62

D_h (Differenzenquotient), 86

diagnostische Variable, 78

diagonaldominante Matrix, 178

Dichte, 21, 68, 216, 231

Differentialgleichung, 21, 23

differentielle Form, 138, 145, 217, 227

Differenzengleichung, 20, 54, 181

Differenzenquotient, 54, 86, 169

Diffusion, 137, 140, 163

Diffusionsgleichung, 155

Diffusionskoeffizient, 141, 163, 181, 198, 230

Diffusionsterm, 141, 164, 170, 174, 185, 190,
203

Dimension, 20

dimensionslos, 43, 73

Dirichlet-Randbedingung, 146, 155, 166, 171,
173, 180

dist (Abstand), 41

div (Divergenz), 143, 236
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Dormand und Prince, Verfahren von, 134

Dreitermrekursion, 181

Druck, 226, 231

duale Paarung, 150

Dualraum, 150

dynamische Viskositit, 228
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ebene Polarkoordinaten, 233
Eigenwert, 99, 117, 124, 127, 174, 204
Eigenwertabschitzung, 177
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Einschrittverfahren, 55, 89

einseitiger Differenzenquotient, 184
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Energie, 20

Energiebilanz, 115, 215, 230
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Energiegleichung, 230

Entdimensionalisierung, 43
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Erdachse, 233

Erdgeometrie, 232
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essentielles Infimum, 154

Euklidisches Skalarprodukt, 140

Euler-Gleichungen, 228
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Euler-Verfahren, 54, 58, 117, 129, 132, 135,
195, 202

euphotische Zone, 213

Existenz und Eindeutigkeit, 146, 173, 208

Existenz- und Eindeutigkeitssatz, 34

Existenzsatz, 40

explizites Einschrittverfahren, 55

explizites Euler-Verfahren, 54, 91, 196, 205

explizites Zeitintegrationsverfahren, 201

Exzentrizitit, 11

F

Fehlerabschitzung, 32

Finite-Differenzen-Methode, 168, 173

Finite-Volumen-Methode, 143, 159, 173, 183,
189

Fixpunkt, 32, 81

Fixpunktiteration, 88

Fixpunktsatz, 32

Fluid, 216

Fluss, 162

Forcing(-daten), 77, 106

Fortran, 135

Fortsetzbarkeit, 40

Fourier-Koeffizienten, 203

Frischwasserfluss, 72, 74, 98

Fundamentalsystem, 107, 124

Funktionalgleichung, 109



Sachverzeichnis 247

G integrale Form, 138, 142, 145, 226
Gauf3’scher Integralsatz, 143, 217 invariante Menge, 116

Gebiet, 138, 159 irreduzible Matrix, 176

gemischte Randbedingung, 146, 180 Iterationsfunktion, 88, 92, 117

geometrische Reihe, 33
geometrische Vielfachheit, 110

Gerschgorin, 177 J
gerundet, 65 J (Joule), 20
geschichtetes Fluid, 224 Jacobi-Matrix, 91, 116, 117

Geschwindigkeit, 114, 159, 181, 198, 219,223  Jordan’sche Normalform, 110
gestorter Anfangswert, 62
gewohnliche Differentialgleichung, 23

Gitter, 169, 187 K

Gitterbox, 160, 186 K (Kugelkoordinatensystem), 235
Gitterfunktion, 56 Kantorovich, 85

Gleichgewichtspunkt, -16sung, -zustand, 17, 81  klassische Losung, 155

globale Existenz, 40 Kohlenstoff, 211

globale Lipschitz-Stetigkeit, 31 komplexe Eigenwerte, 111

globaler Fehler, 57 komplexes Fundamentalsystem, 111

Gradient, 236 kompressible Navier-Stokes-Gleichungen, 228
Grenzennorm, 85 Konsistenz, 58, 132

GrundgroBie, 20 Konsistenzordnung, 58, 132

konstante Koeffizienten, 108, 124
Kontinuitétsgleichung, 217, 227, 228

H Kontinuum, 216
h (Ortsschrittweite, 195 Kontraktion, 32, 36, 117
H () (Sobolevraum), 149 Kontraktionsbedingung, 88
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H?(382), 152 Konvektion, 114
Halbsittigungsrate, 212 Konvergenz, 56, 60, 84
Hauptsatz der Differential- und Konvergenzordnung, 57, 132

Integralrechnung, 25, 130, 155 Konzentration, 137, 139
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homogenes Fluid, 223 Koordinatentransformation, 235
Hydrosphire, 8 Kraft, 20, 224
Hyperbelfunktion, 30 Kryosphire, 8
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ideales Fluid, 228 L
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Lipschitz-Gebiet, 138
Lipschitz-Konstante, 31, 39, 92
Lipschitz-Stetigkeit, 31, 201, 212
L_loc'(£2), 148

lokal quadratische Konvergenz, 84
lokale Lipschitz-Stetigkeit, 31
lokaler (Verfahrens-) Fehler, 58, 133
Lorenz-Attraktor, 113
Lorenz-Modell, 113, 126, 135
Losbarkeit, 173, 184
Losungsraum, 107
Lotka-Volterra-Modell, 208
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Lyapunov, 125
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M _Adv (Advektionsterm), 162, 183
Maschinengenauigkeit, 64
Maschinenzahlen, 64

Masse, 20, 216

Massebilanz, 215, 216, 227, 228
materielle Ableitung, 219, 223
Matrix-Exponentialfunktion, 109
Matrixnorm, 38, 109

M _Diff (Diffusionsterm), 164, 185, 190

Medium, 159, 215
Messfehler, 62

Metrik, 34

metrischer Raum, 34
Milankovitch-Zyklen, 77
Mittelwert, 115

Mittelwertsatz der Differentialrechnung, 39

Modell, 23
Modellkalibrierung, 77
Modellvariable, 76

mol (Mol), 20, 139

M _Quell (Quellterm), 164

M _Reak (Reaktionsterm), 165
Multiindex, 148

N

N (Nihrstoff), 211

N (Newton), 20

N (Stickstoff), 211

N-DOP-Modell, 211

negativ-(semi-)definit, 174

Neumann-Randbedingung, 146, 157, 166, 171,
173

Newton, 21

Newton’sches Fluid, 228

Newton-Verfahren, 83, 116

nicht-euphotische Zone, 213

nicht-viskoses Fluid, 228

Niveaumenge, 114

Nordatlantikstrom, 67

Normalenvektor, 139, 163, 226
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Nulllésung, 123

Nullstelle, 83, 99, 127

numerische (In-) Stabilitét, 198

numerische Diffusion, 184

numerisches Verfahren, 53
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O (Landau-Symbol), 51, 57
Oberflichenkraft, 225

Octave, 135, 192

ODEPACK, 135
Okosystemmodell, 207
Operatordifferentialgleichung, 23
orthogonale Matrix, 235
Ortsgitter, 160

Ortsschrittweite, 195

Oszillation, 181, 185
Overturning, 70, 75

Ozean, 8, 137, 187,213, 215, 230, 232
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p (Druck), 226, 231

Parameter, 75, 76, 209
parameterabhingiges Integral, 144
Parametrisierung, 138, 140
Partialbruchzerlegung, 28
partielle Integration, 149

Partikel, 218

Pe (Zell-Peclet-Zahl), 182

Peano, 40
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Picard-Lindelof, 34
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PO_4 (Phosphat), 211
Poincaré-Ungleichung, 155
Polynom, 98, 124
Populationsmodell, 207
positiv-(semi-)definit, 174
Prandtlzahl, 115

Produktansatz, 156

Produktregel, 145, 147
prognostische Variable, 77
Pseudo-Zeitschrittverfahren, 88, 117

Q
quadratische Gleichung, 182

Quasi-Kontraktion, 95
quasipositiv, 210
Quelle, 137, 141, 164
Quellterm, 141, 164

R

radioaktiver Zerfall, 137, 142
Rahmstorf-Boxmodell, 69, 91, 95, 230
Rand, 41, 139

Randbedingung, 77, 146, 147, 166, 179
Riuber-Beute-Modell, 208

Reaktion, 104, 137, 141
Reaktionsterm, 141, 146, 155, 165, 176, 205
Redfield Ratio, 211

reelles Fundamentalsystem, 111
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reguldre Matrix, 174
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