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Einleitung

Mathematik beschiftigt sich einerseits mit abstrakten Strukturen und Ideen und
andererseits mit Modellen zur Beschreibung der Umwelt. Schillerinnen und
Schiiler sollten im Mathematikunterricht beide Seiten der Mathematik erfahren.

Heinrich Winter schliisselt den Beitrag des Mathematikunterrichts zur mathe-
matischen Allgemeinbildung sogar in drei Grunderfahrungen auf. Diese drei
Grunderfahrungen sind:

,»Erscheinungen der Welt um uns, die uns alle angehen oder angehen sol-
len, aus Natur, Gesellschaft und Kultur, in einer spezifischen Art wahrzu-
nehmen und zu verstehen,

mathematische Gegenstinde und Sachverhalte, reprisentiert in Sprache,
Symbolen, Bildern und Formeln, als geistige Schépfungen, als eine deduk-
tiv geordnete Welt eigener Art kennenzulernen und zu begreifen,

in der Auseinandersetzung mit Aufgaben Probleml&sefidhigkeiten (heuristi-
sche Fihigkeiten), die iber die Mathematik hinausgehen, zu erwerben.®
(Winter, 2003)

Zur Verwirklichung der ersten Grunderfahrung ist die Einbeziehung von realen
Problemen und Anwendungen von Mathematik unerlisslich. Diesen Beitrag
zur mathematischen Bildung will das Sachrechnen leisten. In diesem Buch geht
es daher um die Frage, wie die Beziige zwischen Mathematik und Realitit in der
Sekundarstufe vermittelt werden kénnen.

Der Begriff Sachrechnen wird hdufig mit Inhalten der Grundschule oder mit
eher ungeeigneten Textaufgaben zu Beginn der Sekundarstufe I in Verbindung
gebracht. Der modernere Begriff ist das mathematische Modellieren. Dieses
Buch trigt dennoch den Titel Didaktik des Sachrechnens in der Sekundarstufe, da der
Begriff des Modellierens nicht alle Aspekte einer Didaktik von anwendungsbe-
zogener Mathematik einschlieft. So wird das Modellieren hier nicht ausge-
klammert, sondern in den Kontext des Sachrechnens eingeordnet und als sein
zentraler Kern beschrieben.

Der Begriff des Sachrechnens wird unterschiedlich aufgefasst und ist nicht
eindeutig zu fassen. Daher wird in einem einfithrenden Kapitel die Frage be-
riicksichtigt, was Sachrechnen eigentlich ist bzw. sein kann. Es werden untet-
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schiedliche Definitionen und Funktionen des Sachrechnen vorgestellt. Eben-
falls befassen wir uns mit Zielsetzungen des Sachrechnens und dem Bezug zu
modernen Bildungsstandards und Lehrplinen.

Um die unterschiedlichen Auffassungen von Sachrechnen besser zu verstehen,
wird im zweiten Kapitel ein kurzer Blick auf die Entwicklung des Sachrechnens
geworfen. Dieses Kapitel hat keinen Anspruch auf Vollstindigkeit und be-
schreibt insbesondere die Entwicklung des Sachrechnens im vergangenen Jahr-
hundert. Es zeigt aber auch die frithen Anfinge von Sachaufgaben in Lehrbu-
chern auf.

Ein Ausblick in das 21. Jahrhundert leitet zum dritten Kapitel tiber Modellieren
und Problemldsen tuiber. Hier wird der zentrale Kern des Sachrechnens be-
schrieben und von unterschiedlichen Seiten beleuchtet. So werden auch Teil-
kompetenzen des Modellierens und empirische Untersuchungsergebnisse be-
trachtet. Auch die unterschiedlichen Schwerpunkte des Probleml6sens und
Modellierens werden herausgearbeitet.

Ein sehr zentraler Punkt des Mathematikunterrichts sind Aufgaben. Besonders
im Sachrechnen gibt es eine Fille unterschiedlichster Aufgaben, die man als
Sachaufgaben bezeichnen kann. Das Ziel dieses vierten Kapitels ist, Aufgaben
sinnvoll zu strukturieren und zu klassifizieren, sodass Studierende und Lehren-
de vorhandene Aufgaben besser einordnen und neue Aufgaben gezielt entwi-
ckeln konnen.

Im finften Kapitel werden einige typische Inhalte des Sachrechnens in der
Sekundarstufe vorgestellt und aus didaktischer Sicht beleuchtet. Hier wird im-
mer wieder Bezug genommen auf die jeweilige Modellbildung, die jeweilige
Auffassung von Sachrechnen und auf unterschiedliche Aufgabentypen, die in
diesem Zusammenhang bearbeitet werden kénnen. Zentral sind Groflen im
Allgemeinen und Zuordnungen von Gréflen — speziell Funktionen —, die in der
Sekundarstufe im anwendungsbezogenen Mathematikunterricht eine besondere
Rolle spielen.

Im sechsten Kapitel werden einige spezielle Aspekte zum Sachrechnen zusam-
mengefasst. Eine besondere Rolle spielen hier der Umgang mit der Ungenauig-
keit und die unterschiedlichen Lésungshilfen fiir Sachaufgaben.

Jedes Kapitel wird mit Ubungsaufgaben zur Vertiefung und Wiederholung
abgeschlossen. Im Anhang befindet sich eine mégliche Klausur zur Didaktik
des Sachrechnens. Viele dieser Aufgabenvorschlige habe ich meinem Mitarbei-
ter Stefan-H. Kaufmann zu verdanken.

Viele Inhalte werden durch entsprechende Beispiele aus aktuellen Schulbiichern
illustriert. Diese Beispiele stehen reprisentativ fiir Aufgabentypen. Hier geht es
nicht darum, eine Kritik an den jeweiligen Schulbiichern zu tiben.
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In dieses Buch sind vielfiltige Erfahrungen aus Unterricht, Lehrerfortbildung,
Forschung und Lehre eingeflossen. Dies war nur moglich, weil viele gemeinsam
mit mir an diesem Thema gearbeitet haben.

Ich danke allen Kolleginnen und Kollegen sowie Studierenden aus den entspre-
chenden Veranstaltungen an den Universititen Minster, Wuppertal und Kéln
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1 Der Begriff des Sachrechnens

1.1 Einfihrung

Der Begriff des Sachrechnens wird keineswegs einheitlich verwendet und kann
daher sowohl enger als auch weiter gefasst werden. Mit Sachrechnen verbindet
man haufig nicht ganz realistische Aufgabenstellungen, in denen eine reale Situ-
ation beschrieben oder angedeutet wird. Im Folgenden ist ein Beispiel fir eine
solche Sachaufgabe angefiihrt.

Das Teilstiick (AB) einer geplanten Autobahnstrecke muss auf einer Stre-
cke (ST) sumpfiges Gelinde iiberqueren. Das sumpfige Geldnde beginnt
220 m von A aus und endet 380 m vor B. Entsprechend der Skizze liegen
die folgenden MaRe fir das Dreieck ABC vor. b = 1330 m; a = 852 m;

y=283"1[.]

Berechne die Langen des Teilstlicks (AB) und der zu Uberquerenden
Sumpfstrecke (ST). [...]

Abb. 1.1 Aufgabenbeispiel Autobahnplanung (Koullen, Mathematik konkret 6, 2008, S.
55)

Bei diesem Aufgabenbeispiel handelt es sich um eine Sachaufgabe, da im Auf-
gabentext ein realer Gegenstand, die geplante Autobahnstrecke durch sumpfi-
ges Gelinde, beschrieben wird. Allerdings kann diese Aufgabe auch ohne Sach-
kontext formuliert werden. Eine mégliche Formulierung ist in Abb. 1.2 darge-
stellt.
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Das Aufgabenbeispiel ohne Sachkontext zeigt den eigentlichen, mathemati-
schen Kern dieser Sachaufgabe. Die Aufgabe verlangt eine Berechnung von
Lingen im Dreieck. Sie wurde im ersten Beispiel in den Kontext der Auto-
bahnplanung ,,eingekleidet*.

Gegeben ist ein Dreieck ABC mit b= 13,3 cm; a = 8,5 cm; y = 83°. Ent-
sprechend der Skizze liegt die Strecke (ST) auf (4B). S ist 2,2 cm von A
und T ist 3,8 cm von B entfernt. [...]

Berechne die Lingen der Strecken (4AB) und (ST). [...]

(\

A S T B

Abb. 1.2 Aufgabenbeispiel ohne Sachkontext

In diesem Beispiel ist es recht einfach, den Kontext der Autobahnplanung in
die entsprechende Mathematik zu tibersetzen, zumal eine Zeichnung vorgege-
ben wird, die praktisch keine realen Gegenstinde mehr enthilt.

Dabher stellt sich natiirlich die Frage, welchen Sinn ein solcher Kontext in einem
solchen Fall hat. Dies fihrt auch zu weitergehenden Fragen, welchen Sinn und
welche Aufgabe Sachaufgaben bzw. das Sachrechnen allgemein in der Sekun-
darstufe haben. Diesen Fragen wollen wir in den néchsten Abschnitten nachge-
hen. Sehr hiufig und auch weniger umstritten wird der Begriff Sachrechnen in
der Primarstufe verwendet (Franke, 2003). Das Sachrechnen gehdrt neben
Arithmetik und Geometrie zu den traditionellen Sachgebieten des Grundschul-
unterrichts im Fach Mathematik (KMI, 2005, S. 6). Hier wird das ,,Sachaufga-
ben 16sen und dabei die Bezichungen zwischen der Sache und den einzelnen
Losungsschritten beschreiben (KMK, 2005, S. 9) explizit erwihnt.

Um den Begriff des Sachrechnens genauer zu fassen, sollen im Folgenden zwei
Beispiele fiir Sachaufgaben nebeneinandergestellt werden, die zu Beginn der
Sekundarstufe bearbeitet werden kénnen. Diese Aufgabenbeispiele stammen
aus Schulbiichern fiir Klasse 5 und beinhalten jeweils einen Sachbezug.
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Zum Einstieg
Wie viele Blumen sind in dem Beet ge-
pflanzt? Berechne mdoglichst geschickt!

Bild 23

Abb. 1.3 Aufgabenbeispiel Blumenbeet (Kuypers, Lauter, & Wuttke, 1995, S. 106)

Tischverteilungen bestimmen

18 Kinder sind zur Geburtstagsfeier von
Julia in die Pizzeria eingeladen. Weil die
Pizzas dort ziemlich grof sind, wurden
insgesamt 12 Pizzas bestellt. Die Pizzeria
hat keinen Tisch fiir alle Kinder. Es gibt
einen fiir héchstens 10 Personen, einen, an
den 6 Kinder passen, und einen kleinen fiir
4 Leute.

Abb. 1.4 Aufgabenbeispiel Pizzaessen (Kliemann, Puscher, Segelken, Schmidt, &
Vernay, 2006, S. 35)

Betrachtet man die Sachkontexte der beiden Aufgabenbeispiele Blumenbeet (s.
Abb. 1.3) und Pizzaessen (s. Abb. 1.4), so stellt man zunichst fest, dass in der
ersten Abbildung der Hund und in der zweiten Abbildung der Pizzabicker
eigentlich iberfliissig sind. Dennoch haben Hund und Pizzabicker jeweils un-
terschiedliche Funktionen. Wihrend der Hund die Aufgabenstellung nicht un-
terstreicht, macht das Foto mit dem Pizzabicker die Aufgabe realistischer; auch
wenn oder gerade weil die Abbildung in keiner Weise die mathematische Struk-
tur der Aufgabenlésung unterstreicht. In der Blumenbeet-Aufgabe ist dagegen
die Mathematisierung durch die Abbildung schon fortgeschritten. Dies wird
beispielsweise an der Beschriftung der Blumenreihen deutlich.

Auch die méglichen Losungen beider Aufgaben sind unterschiedlich. Die erste
Aufgabe hat eine eindeutige Lésung, die allerdings auf unterschiedlichen Wegen
gefunden werden kann. Insbesondere die folgenden beiden Rechnungen sind
erwinscht: 4+ 7 + 4 - 13 =80 und 4 - (7 + 13) = 80. Das Ziel dieser Aufgabe
ist die Veranschaulichung des Distributivgesetzes. Der Losungsweg der zweiten
Aufgabe ist nicht so eindeutig. Die Aufgabenstellung lisst beispielsweise offen,
ob jedes Kind gleich viel von der Pizza essen méchte oder ob nicht Pizzasticke
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von einem Tisch zum anderen weitergereicht werden kénnen. Ein mdglicher
Losungsansatz der Pizzaessen-Aufgabe ist im Folgenden abgebildet (s. Abb.
1.5).

Abb. 1.5 Aufgabenbeispiel Pizzaessen (Kliemann, Puscher, Segelken, Schmidt, &
Vernay, 2006, S. 35)

Es kénnen also 3, 6, 9, 12, 15 oder 18 Kinder an einem Tisch sitzen, wenn die
Pizza vorher nicht geteilt werden soll und alle Kinder gleich viel Pizza bekom-
men sollen. Bei den angegebenen TischgroBen miissen an dem kleinen Tisch 3
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Kinder sitzen, am Ger-Tisch 6 Kinder und am groBen Tisch 9 Kinder. Durch
die Pizzaessen-Aufgabe wird im Unterschied zur Blumenbeet-Aufgabe das
Probieren unterschiedlicher Losungswege angeregt. Die zweite Aufgabe ist also
offener, motivierender und lebensniher. Sie regt das Problemlésen stirker an
als die Aufgabe zum Distributivgesetz, da es fiir die Schiilerinnen und Schiiler
keine Standard-Lésungsverfahren gibt. Auch die erste Aufgabe kénnte die Auf-
gabeneigenschaften der zweiten Aufgabe erhalten, wenn sie entsprechend ver-
indert formuliert wird. Zum Beispiel:

Ein Gartner will 80 Blumen pflanzen. Entwirf einen Plan fiir ein Blumen-
beet!

Die Beispiele machen bereits eine gro3e Spannbreite von Sachaufgaben beziig-
lich ihres mathematischen Inhalts, ihrer Ziele und ihrer Prisentationsformen
deutlich, die durch weitere Beispiele noch vergréBiert werden kénnte. Der zu
diesen Aufgaben passende Unterricht unterscheidet sich sicherlich noch deutli-
cher. So passt beispielsweise zum Aufgabenbeispiel Autobahnplanung ein Un-
terricht, bei dem zunichst die mathematischen Inhalte im Rahmen eines lehrer-
zentrierten Unterrichts eingefiihrt werden, um sie spéter an Sachaufgaben zu
Uben. Zur Pizzaessen-Aufgabe passt eher ein schiilerzentrierter Unterricht mit
Gruppenarbeits- und Prisentationsphasen. Natiitlich kénnen beide Aufgaben
auch in anderen Kontexten Verwendung finden. In jedem Fall kénnen sich
verwendete Aufgabenbeispiele und Unterrichtsmethoden wechselseitig beein-
flussen.

1.2 Definitionen von Sachrechnen

Die einleitenden Aufgabenbeispiele zeigen bereits eine gro3e Bandbreite von
Sachaufgaben. Hinter diesen unterschiedlichen Aufgaben, die im Allgemeinen
zum Sachrechnen gezihlt werden, stehen unterschiedliche Vorstellungen und
Ziele des Sachrechnens. Diese werden deutlich, wenn man Definitionen des
Sachrechnens in der Literatur betrachtet.

Da Sachrechnen bereits in seinem Namen auf den Bezug zur realen Welt (Sache)
und zur Mathematik (Rechnen) hinweist, konnen diese beiden Aspekte auch zur
Definition des Sachrechnens herangezogen werden. Ausgehend vom Bezug zur
realen Umwelt definieren Spiegel und Selter Sachrechnen in einem sehr allge-
meinen Sinn.
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Sachrechnen ist der ,Oberbegriff fiir die Auseinandersetzung mit Aufga-
ben, die einen Bezug zur Wirklichkeit aufweisen” (Spiegel, et al., 2006, S.
74).

Bei Franke wird dieser Bezug zur Wirklichkeit auf den Erfahrungsbereich der
Schiilerinnen und Schiiler oder zumindest auf das reale Leben eingeschrinkt.
Damit werden vollig lebensferne Inhalte aus dem Sachrechnen ausgeschlossen.

Sachrechnen [ist] das Bearbeiten von Aufgaben ..., die eine Situation aus
dem Erfahrungsbereich der Schiiler oder aus dem realen Leben beschrei-
ben (Franke, 2003, S. 5).

Mit Blick auf die Schulrealitit bemerkt Franke allerdings, dass dies auch gelten
soll, wenn die Schulerinnen und Schiiler diese Situationen noch nicht erfahren
haben (Franke, 2003, S. 5). Lewe schrinkt diese Sicht auf das Sachrechnen
noch weiter ein und fordert, dass die mathematischen Zusammenhinge in der
Wirklichkeit entdeckt und wiederum auf die Wirklichkeit angewendet werden
mussen.

Sachrechnen besteht aus dem Entdecken mathematischer Zusammen-
hdange in der Lebenswirklichkeit und dem Anwenden dieser Zusammen-
hdange auf die Lebenswirklichkeit (Lewe, 2001).

Die Definition von Lewe bezieht sich schon stirker auf den zweiten Aspekt des
Sachrechnens, also auf die Mathematik. Definitionen, die noch stirker auf die-
sen Aspekt hinweisen, findet man etwa in den 80er Jahren des vorigen Jaht-
hunderts. Hier wird der mégliche Einsatz mathematischer Methoden stirker in
den Mittelpunkt gestellt.

Sachrechnen befasst sich mit Aufgaben, die von auRermathematischen
Sachverhalten handeln und liber die mit mathematischen Mitteln Aussa-
gen gemacht werden (Fricke, 1987, S. 6).
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Sachrechnen ist aus mathematischer Sicht ein Teil der angewandten Mathema-
tik. Es werden aber iiblicherweise nicht alle Inhalte der angewandten Mathema-
tik zum Sachrechnen gezihlt, sondern nur die Inhalte, die auch in der Schule
moglich sind bzw. typischerweise behandelt werden. So beschiftigt man sich im
Rahmen der angewandten Mathematik beispielsweise mit der numerischen
Simulation von Strémungen; dieses Gebiet ist aber im Rahmen der Schulma-
thematik nicht behandelbar.

Die in der Schule bearbeitbaren Inhalte des Sachrechnens unterliegen mogli-
chen — wenn auch geringen — Verdnderungen, die durch die aktuellen Lehrpli-
ne und Bildungsstandards sowie durch die Schulrealitit bedingt sind. Das Sach-
rechnen in der Sekundarstufe I beschrinkt sich damit auf die Inhalte der ange-
wandten Mathematik, die bis zur zehnten Klassenstufe behandelt werden konn-
ten.

Sachrechnen ist der Teil der Angewandten Mathematik, der Schilern bis
zur 10. Klasse zuganglich ist (Fricke, 1987, S. 10).

Ahnlich sieht Strehl das Sachrechnen als Anwendung von Mathematik. Hier
wird als zusitzlicher Aspekt die Mathematisierung — im Wesentlichen einge-
schrinkt auf numerische Aspekte — genannt.

Sachrechnen ist Anwendung von Mathematik auf vorgegebene Sachpro-
bleme und Mathematisierung konkreter Erfahrungen und Sachzusam-
menhdnge vorwiegend unter numerischem Aspekt (Strehl, 1979, S. 24).

Maier und Schubert schrinken Sachrechnen noch weiter ein und schliefen zu
einfache Aufgaben, die mit einer einzigen Rechenoperation zu bearbeiten sind,
sowie zu komplexe Aufgaben, bei denen die Datenmenge sehr grof3 ist oder
erst noch beschafft werden muss, aus (Maier & Schubert, 1978, S. 11-13). Wir
wollen das Sachrechnen hier nicht in diesem engen Sinne betrachten.

Auller dem bereits gezeigten Wechselspiel zwischen Mathematik und Umwelt
kann in die Definition des Sachrechnens auch die Person det Schilerin bzw.
des Schilers mit einbezogen werden (Krauthausen & Scherer, 2007, S. 76).
Lernprozesse kénnen nur betrachtet werden, wenn die beteiligten Personen mit
in den Blick genommen werden (s. Abb. 1.6).
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Umwelt Mathematik

SACHRECHNEN

Abb. 1.6 Sachrechnen im Wechselspiel von Umwelt, Mathematik und Schiiler/in

Es ist wichtig festzuhalten, dass nach unserem Verstindnis Sachrechnen mehr
ist als ein Unterricht mit Beziigen zur realen Welt und zur Mathematik. Umwelt
und Mathematik lassen sich nicht getrennt betrachten, und die Beziehung von
Umwelt und Mathematik muss genau untersucht und in den Unterricht einbe-
zogen werden. Entscheidend ist hier die Frage, wie der Ubergang von der rea-
len Umwelt zur Mathematik vollzogen werden kann. Diesen Prozess bezeich-
nen wir mit mathematischemr Modellieren (Hinrichs, 2008; Maall K., 2007; Greef-
rath, 2007). Das Modellieren ist demnach ein wichtiger Teil des Sachrechnens.
Sachrechnen geht aber dartiber hinaus und betrachtet auch Unterricht und
Aufgaben, die keinen echten Modellierungscharakter haben. Es beleuchtet auch
die Bezichungen zur Umwelt und zur Mathematik. Wir wollen hier eine Defini-
tion des Sachrechnen im weiteren Sinne verwenden, die auch das Modellieren
mit einschlief3t, aber weit dariiber hinaus geht.

Sachrechnen im weiteren Sinne bezeichnet die Auseinandersetzung mit
der Umwelt sowie die Beschaftigung mit wirklichkeitsbhezogenen Aufga-
ben im Mathematikunterricht.

1.3 Funktionen des Sachrechnens

Aus den unterschiedlichen Definitionen des Sachrechnens kann man auch ver-
schiedene Funktionen des Sachrechnens ableiten. Diese Funktionen lassen sich
nicht klar trennen, sondern tberschneiden sich teilweise. Heinrich Winter be-
schreibt die folgenden Funktionen des Sachrechnens (Winter, 2003, S. 15 ff.):
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Sachrechnen als Lernstoff
Sachrechnen als Lernprinzip
Sachrechnen als Lernziel: UmwelterschlieBung

Bei der Betrachtung des Sachrechnens als Vermittlung von Lernstoff stehen die
mathematischen Inhalte des Sachrechnens, wie z. B. GroBen und Prozentrech-
nung, im Vordergrund. Diese Inhalte des Sachrechnens sind allerdings nicht
klar abzugrenzen. Klassischerweise gehéren zum Sachrechnen in der Sekundar-
stufe die Inhalte GroBen, Prozent- und Zinsrechnung. Weitere Inhalte ergeben
sich daraus, wie der Mathematikunterricht gestaltet wird, denn im Prinzip kon-
nen nahezu alle mathematischen Inhalte in realitidtsbezogenen Kontexten unter-
richtet werden. Dann wiirden diese Inhalte auch zum Sachrechnen zihlen. Die-
se erweiterte Auffassung von Sachrechnen tbersteigt dann deutlich die klassi-
schen Inhalte des Sachrechnens (Winter, 2003, S. 15 ft.).

Betrachtet man das Sachrechnen unter dem Aspekt des Lernprinzips, so wet-
den Sachsituationen beispielsweise zur Motivation, Veranschaulichung oder zur
Ubung mathematischer Lernprozesse genutzt. Hier steht die Arbeit der Schiile-
rin bzw. des Schiilers im Vordergrund, die bzw. der mathematische Inhalte mit
Hilfe von realen oder wirklichkeitsnahen Situationen lernt.

Welches Angebot ist das Beste?

In der Schule soll ein neuer Kopierer angeschafft werden, da der alte Ko-
pierer defekt ist. Die Schulleitung hat sich bereits fir das Modell KM-
C2520 entschieden. Zwei Firmen bieten jeweils einen Service-Vertrag an.

Angebot 1:
649,- € pro Jahr und 1 Cent pro Kopie

Angebot 2:
749,- € pro Jahr und 0,9 Cent pro Kopie

Abb. 1.7 Aufgabenbeispiel Kopierer



14|1 Der Begriff des Sachrechnens

Beispielsweise kann zu Beginn einer Unterrichtsreihe zu linearen Funktionen
das Problem von Kopierkosten einer Schule in den Mittelpunkt gestellt werden.
Die Schiilerinnen und Schiiler sollen dann auf Grund unterschiedlicher Ange-
bote entscheiden, welchen Kopierer die Schule am besten anschaffen sollte.

Diese Anwendung dient dann der Motivation fiir die Arbeit mit linearen Funk-
tionen, die aus den beiden Angeboten abgeleitet werden kénnen. Beispielsweise
kénnen die Kosten pro Jahr in Abhingigkeit von den erstellen Kopien angege-
ben werden. Die Bedeutung des Schnittpunktes der beiden zugehdrigen Gra-
phen kann dann auch im Kontext geklirt werden. Eine solche Sachsituation
wiirde auch dann schon zur Motivation der Schiilerinnen und Schiiler genutzt,
wenn sie nicht bis zum Ende der Unterrichtseinheit als sinnstiftender Kontext
genutzt wirde, sondern nur zu Beginn die Beschiftigung mit linearen Funktio-
nen motiviert. Dieser Ansatz ist also bezogen auf die Losung des tatsichlichen
Problems, wie hier im Beispiel die Wahl des Kopierers, noch ausbaufihig,

Ein anderes Beispiel, das nicht der Motivation aber der Veranschaulichung
dient, ist das Darstellen von Zahlensystemen. Beispielsweise kann das Stellen-
wertsystem mit sechs Ziffern mit Hilfe von Eierverpackungen veranschaulicht
werden. So werden sechs Hier in einem Eierkarton zusammengefasst. In dieser
Veranschaulichung werden dann sechs Eierkartons wiederum in einer gro3eren
Kiste und sechs Kisten auf einer Palette zusammengefasst. Dies entspricht der
Bundelung im Sechsersystem. Die Schiilerinnen und Schiiler kénnen so abs-
trakte mathematische Inhalte wie das Stellenwertsystem mit Hilfe realer be-
kannter Gegenstinde veranschaulichen und so besser verstehen.

Abb. 1.8 Eierverpackung als Veranschaulichung

Hier wird klar, dass auch Dinge aus dem Alltag fir Veranschaulichung im Ma-
thematikunterricht genutzt werden kénnen, wenn sie entsprechend interpretiert
werden. Die Interpretation ist allerdings der entscheidende Punkt. Ein Eierkar-
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ton fihrt bei Schillerinnen und Schiillern noch nicht zu einer entsprechenden
Auseinandersetzung mit dem Stellenwertsystem. Nach einer geeigneten Inter-
pretation im Unterricht kann ein solcher Karton aber ganz andere Assoziatio-
nen auslosen.

Wie bereits Winter (Winter, 2003, S. 26 ff.) feststellt, ist es allerdings im Ma-
thematikunterricht ein verbreitetes Vorgehen, zuerst einen mathematischen
Inhalt ohne Sachkontext einzufiihren und ithn dann mit Hilfe eingekleideter
Sachaufgaben zu tben. Dies wiirde die beiden genannten Aspekte der Motiva-
tion und der Veranschaulichung nicht ganz treffen. Die Motivation wire dann
eventuell nur fur kurzfristige Ubungsphasen zu erreichen und die Veranschauli-
chung beim Lernen eines neuen mathematischen Inhalts wiirde nicht stattfin-
den kénnen. In solchen Fillen kénnten Sachaufgaben nur sehr eingeschrinkt in
der Funktion des Lernprinzips gesehen werden.

Sieht man dagegen die Beschiftigung mit der Ummelt selbst als Lernziel, ist dies
die allgemeinste Funktion des Sachrechnens. Hier steht dann die Sache und
nicht das Rechnen im Mittelpunkt der Lernprozesse. Im Vordergrund steht zu-
nichst nicht, die Mathematik zu vermitteln, sondern die Umwelt — moglichst
auch unter Einbeziehung mathematischer Mittel und Methoden — zu verstehen
und zu erkliren (Winter, 2003, S. 31 ff.). Winter spricht hier von Sachrechnen
im eigentlichen Sinn. Damit ist das Sachrechnen aus sich heraus fichertibergrei-
fend und in der Folge fir Lehrerinnen und Lehrer sehr anspruchsvoll (Winter,
1980, S. 83).

Das Ziel des Sachrechnens ist unter diesem Aspekt die Befdhigung zur Waht-
nehmung und zum Verstehen von Erscheinungen unserer Welt. Damit wird
Sachrechnen auch zur Sachkunde. Zentral ist hier der Aufbau mathematischer
Modelle. Fiir das Modellieren, also fiir die UmwelterschlieBung, ist der Projekt-
unterricht eine empfehlenswerte Unterrichtsform.

Im Aufgabenbeispiel Kopierer (s. Abb. 1.8) kénnte man die Funktion des Sach-
rechnens als Lernziel dann als erreicht ansehen, wenn die Schilerinnen und
Schiiler mit mathematischen Methoden tatsidchlich bestimmen wiirden, welcher
Kopierer angeschafft werden sollte, und dies dann auch fir die Schule eine
relevante Information ist. Dann wiirden im Unterricht nicht sofort lineare
Funktionen eingefiihrt und an anderen Beispielen betrachtet, sondern es wiirde
das Problem des Kopierers mit allen Aspekten ausfihtlich bearbeitet. Dazu
miussten gegebenenfalls auch weitere Informationen eingeholt und andere ma-
thematische Werkzeuge verwendet werden.

Das Ziel des Sachrechnens unter diesem Aspekt ist die Befdhigung zur Wahrt-
nehmung und zum Verstehen von Erscheinungen unserer Welt. Damit wird
Sachrechnen auch zur Sachkunde. Zentral ist hier der Aufbau mathematischer
Modelle (s. Kapitel 3).
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Lernziel:
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Abb. 1.9 Funktionen des Sachrechnens

1.4 Ziele des Sachrechnens

Die Ziele des Sachrechnens orientieren sich an den Funktionen des Sachrech-
nens. Die Funktion des Sachrechnens als Lernstoff fiihrt zu inhaltsorientierten
Zielen des Sachrechnens, wihrend das Sachrechnen als Lernprinzip zu pro-
zessorientierten Zielen fuhrt.

Sachrechnen als Lernziel (ErschlieBung der Umwelt) ldsst sich in zwei Bereiche
unterteilen. Der erste Bereich ist der Prozess des Entdeckens, der im Folgenden
im Bereich der prozessorientierten Ziele beschrieben ist, und der andere Be-
reich ist die Kenntnis der Umwelt, die als inhaltorientiertes Ziel beschrieben
werden kann. Zusitzlich hat Sachrechnen noch allgemeine Ziele, die durch die
Funktionen des Sachrechnens nicht direkt abgedeckt sind.

1.4.1 Inhaltsorientierte Ziele

Die inhaltsorientierten Ziele des Sachrechnens lassen sich fur zwei Bereiche des
Sachrechnens beschreiben. So sind zum einen das Erlernen von mathemati-
schen Begriffen und Strukturen (Strehl, 1979, S. 26) und zum anderen die
Kenntnis der Umwelt inhaltsorientierte Ziele des Sachrechens. Hier haben die
klassischen Inhalte des Sachrechnens, wie GréBen und Zinsrechnung, eine
besondere Bedeutung. Sie tragen dazu bei, die inhaltsorientierten Ziele beider
Kategorien zu erfilllen. Zum einen sind beispielsweise Grélen mathematische
Objekte mit verallgemeinerbaren Strukturen (z. B. GroBenbereich), und zum
anderen fordert die Arbeit mit Gréen auch eine Beschiftigung mit der Um-
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welt heraus. Fiir die Arbeit mit Gréflen im Mathematikunterricht ist der Aufbau
von Vorstellungen Gber Gréfien ein zentraler Punkt. So kénnen Schiilerinnen
und Schiiler nur dann Ergebnisse von Aufgaben auf Plausibilitit iberpriifen,
wenn sie fiir bestimmte wichtige Einheiten sogenannte Stiitzpunktvorstellungen
besitzen. Solche Stitzpunktvorstellungen fiir das Volumen kénnen etwa fiir
1 Liter eine Milchpackung, fiir 10 Liter ein Putzeimer und fir 100 Liter eine
halb gefiillte Badewanne sein.

Milchpackung Putzeimer halb gefillte
Badewanne

10 Liter 100 Liter

1 Liter

Abb. 1.10 Stutzpunktvorstellungen fir Volumina

1.4.2 Prozessorientierte Ziele

Fir das Sachrechens werden hiufig Ziele genannt, bei denen nicht das Ergeb-
nis, wie die Kenntnis mathematischer Inhalte, im Vordergrund stehen, sondern
der Weg zu diesen Zielen. Wichtig sind also Prozesse wie Diskussionen und
Analysen der Umwelt mit mathematischen Mitteln (Spiegel & Selter, 2000, S.
74). Wir konnen hier noch zwei Bereiche unterscheiden. Zum einen gibt es
prozessorientierte Ziele, die spezifisch fiir den Sachrechenunterricht sind, und
zum zweiten gibt es prozessorientierte Ziele, die im Sachrechenunterreicht eine
wichtige Rolle spielen, aber fiir den Mathematikunterricht insgesamt von Be-
deutung sind.

Ein zentrales Ziel des Sachrechenunterrichts ist das Erreichen von Modellie-
rungskompetenz, also der Fihigkeit, Probleme aus der Realitit geeignet in die
Mathematik zu Gbertragen, zu bearbeiten und zu 16sen. Besonders der Schritt
des Mathematisierens, also das Finden bzw. Erkennen eines geeigneten mathe-
matischen Modells, ist als ein wichtiges Ziel des Sachrechnens zu nennen (Fri-
cke, 1987, S. 11-20). Modellierungskompetenz hat zwar auch inhaltliche As-
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pekte, wie Metawissen iber Modellierungsprozesse und die Kenntnis unter-
schiedlicher mathematischer Modelle. Dazu gehéren etwa die Kenntnis konkre-
ter Modellierungskreisldufe und das Wissen tiber unterschiedliche mathemati-
sche Modelle, wie z. B. die proportionalen Zuordnungen. Im Vordergrund
beim Modellieren steht aber das Potenzial, ein Modellierungsproblem 16sen zu
kénnen, also ein prozessorientiertes Ziel. Etwas abgeschwicht kann dieses Ziel
auch als das Anwenden von Mathematik beschrieben werden (Maier & Schu-
bert, 1978, S. 14).

Im Zusammenhang mit Modellierungstitigkeiten kénnen Schilerinnen und
Schiiler auch die Anwendbarkeit von Mathematik sowie deren Grenzen erfah-
ren (Fricke, 1987, S. 11-20). Dies ist ebenfalls ein wichtiges Ziel des Sachre-
chenunterrichts.

Ein weiteres zentrales Ziel des Sachrechenunterrichts ist die Fihigkeit, Proble-
me zu l6sen. Dazu gehéren auch das von Fricke beschriebene kreative sowie
das analytisch-synthetische Denken (Fricke, 1987, S. 11-20). Wihrend aber die
Modellierungskompetenz ein Ziel ist, welches auf Grund des Realititsbezugs
typischerweise zum Sachrechnen zihlt, ist dies bei der Problemlésekompetenz
nicht der Fall. In vielen Fillen sind Sachaufgaben zwar als Problem anzusehen,
fir dessen Losung also auch Problemlésekompetenz erforderlich ist; es gibt
aber auch viele innermathematische Probleme, deren Losung nicht in den Be-
reich des Sachrechnens fillt. Dazu zihlen beispielsweise mathematische Bewei-
se. So ist die Problemlésekompetenz ein prozessbezogenes Ziel, welches nicht
ausschlieBlich dem Sachrechnen zuzuschreiben ist, sondern fur den Mathema-
tikunterricht insgesamt von Bedeutung ist (Strehl, 1979, S. 26).

Weitere prozessorientierte Ziele, die im Sachrechnen erreicht werden kdnnen,
aber fir den Mathematikunterricht insgesamt und auch dartiber hinaus von
Bedeutung sind, sind das Begriinden und Argumentieren, das Reflektieren
(Radatz & Schipper, 1983, S. 20 ) und der Finsatz geeigneter Werkzeuge wie
Messgerite und Computer.

1.4.3 Allgemeine Ziele

In diesem Abschnitt werden Ziele zusammengefasst, die nicht spezifisch fiir
Inhalte und Prozesse des Sachrechenunterrichts sind, sondern dariiber hinaus-
gehen. Diese Ziele kénnen teilweise auch im Rahmen von anderen Fichern
erreicht werden.

Sachrechnen kann — ebenso wie andere Bereiche des Mathematikunterrichts —
die Motivation steigern. Im Rahmen des Sachrechnens als Lernprinzip kénnen

Sachprobleme zu Beginn eines Lernprozesses dieses Ziel besonders gut erfillen
(Maier & Schubert, 1978, S. 14).
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Sachrechnen kann durch seinen Bezug zur Umwelt besonders gut auch zu all-
gemeinen Zielen des Mathematikunterrichts beitragen. Durch die im Sachrech-
nen etlebten Alltagsprobleme, die mathematisch bearbeitet werden kénnen,
wird der Sinn des Faches Mathematik fiir die Schiilerinnen und Schiiler sehr gut
deutlich. Auflerdem kann durch Anwendungen besser auf Ausbildung, Beruf,
Studium und Alltag vorbereitet werden (Westermann, 2003, S. 148).

Der Realitdtsbezug von Sachrechenproblemen legt es nahe, sich intensiver mit
den zugehérigen Wissenschaften zu beschiftigen. Daher ist gerade das Sach-
rechnen ein guter Anknipfungspunkt fiir Zusammenarbeit mit anderen Fi-
chern aber auch mit der Mathematik selbst. So ist das Durchfuhren ficheriber-
greifender Projekte ebenfalls ein Ziel des Sachrechnens (Jahner, 1985, S. 25 ff.).

Die Schiilerinnen und Schiiler beschiftigen sich im Rahmen des Sachrechnens
auch mit Problemen aus der Gesellschaft. Mathematik hat so auch allgemein-
bildenden Charakter (Westermann, 2003, S. 148). Falls dies im Unterricht ge-
schieht, so ist durch die realen Anwendungen des Sachrechnens zumindest eine
spitere Beschiftigung mit politischen, gesellschaftlichen oder dkonomischen
Problemen vorbereitet (Maier & Schubert, 1978, S. 15). Beispielsweise ist die
Diskussion von Steuermodellen ein moglicher gesellschaftsrelevanter Inhalt des
Sachrechnens. Durch die Diskussion gesellschaftlicher und politischer Proble-
me kénnen Schillerinnen und Schiler schlieflich kompetent Verantwortung in
der Gesellschaft ibernehmen.

1.5 Sachrechnen in den Bildungsstandards

Ausgehend von den Lehrplinen und Bildungsstandards fir die Primarstufe
wird im Folgenden beschrieben, welchen Beitrag das Sachrechnen fir den
Kompetenzerwerb in der Sekundarstufe leisten kann.

Sachrechnen geh6rt neben Arithmetik und Geometrie zu den traditionellen
Inhalten des Mathematikunterrichts der Grundschule. Die Bildungsstandards
im Fach Mathematik fiir den Primarbereich aus dem Jahr 2004 (KMK, 2005, S.
8) und beispielsweise der Lehrplan in Nordrhein-Westfalen fiir die Grundschu-
le (Ministerium fiir Schule NRW, 2008) stellen nicht mehr Sachgebiete, sondern
allgemeine und inhaltsbezogene mathematische Kompetenzen in den Mittel-
punkt des Mathematikunterrichts. Im Rahmen dieser allgemeinen, mathemati-
schen Kompetenzen wird fiir die Grundschule auch das Modellieren aufge-
fihrt. Die Bildungsstandards beschreiben in diesem Zusammenhang das Arbei-
ten mit Sachtexten und Darstellungen der Lebenswirklichkeit, das Ubersetzen
in die Sprache der Mathematik sowie das Ubertragen mathematischer Lésungen
auf die Ausgangssituation als zentrale Bausteine dieser Kompetenz. Diese Fi-
higkeiten geh6ren auch zum klassischen Sachrechnen. Zusitzlich wird in den
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Lehrplinen fiir die Grundschule in Nordrhein-Westfalen explizit auf die Inhalte
Grifsen und Messen hingewiesen. Dort werden GréBenvorstellungen und Sachsi-
tuationen explizit genannt (Ministerium fiir Schule NRW, 2008, S. 58).

Der Begriff Sachaufgaben wird hiufig in den Bildungsstandards fiir die Primar-
stufe verwendet, taucht allerdings nicht mehr in den Bildungsstandards fiir den
Hauptschulabschluss (KMIK, 2005) bzw. den Mittleren Schulabschluss (KM,
2004) auf. Daher stellt sich die Frage, welche Rolle Sachrechnen in den Bil-
dungsstandards der Sekundarstufe I spielt.

In der Sekundarstufe wird — ebenso wie in den Bildungsstandards fir die
Grundschule — die Kompetenz des mathematischen Modellierens beschrieben.
Zusitzlich werden, im Rahmen der detaillierten Erlduterung der Leitideen, in
den Bildungsstandards fiir die Sekundarstufe I relevante Titigkeiten fiir das
Sachrechnen beschrieben. Fur den Hauptschulabschluss sind das folgende Teil-
kompetenzen:

Die Schiilerinnen und Schiiler...
runden Zahlen dem Sachverhalt entsprechend sinnvoll;
verwenden Prozent- und Zinsrechnung sachgerecht;
prifen und interpretieren Ergebnisse in Sachsituationen;

nehmen in ihrer Umwelt gezielt Messungen vor oder entnehmen Mallanga-
ben aus Quellenmaterial, fithren damit Berechnungen durch und bewerten
die Ergebnisse sowie den gewihlten Weg in Bezug auf die Sachsituation;

unterscheiden proportionale und antiproportionale Zuordnungen in Sach-
zusammenhingen und stellen damit Berechnungen an;

Zusitzlich werden fir den mittleren Bildungsabschluss noch folgende Teil-
kompetenzen genannt:

Die Schiilerinnen und Schiiler. ..

priifen und interpretieren Hrgebnisse in Sachsituationen unter Hinbezie-
hung einer kritischen Finschitzung des gewidhlten Modells und seiner Be-
arbeitung;

beschreiben und begriinden Eigenschaften und Beziehungen geometrischer
Objekte (wie Symmetrie, Kongruenz, Ahnlichkeit, Lagebeziehungen) und
nutzen diese im Rahmen des Problemldsens zur Analyse von Sachzusam-
menhéngen;

geben zu vorgegebenen Funktionen Sachsituationen an, die mit Hilfe dieser
Funktion beschrieben werden konnen.
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Die Darstellung dieser Teilkompetenzen aus den Bildungsstandards zeigt, dass
das Sachrechnen im weiteren Sinn auch im Rahmen der aktuellen Bildungs-
standards einen groflen Raum einnimmt. Hier ist zu bemerken, dass fur den
Bereich des Mittleren Bildungsabschlusses die fiir die Hauptschule beschriebe-
nen Prozesse noch erginzt werden. Sachrechen-Anteile in den Bildungsstan-
dards lassen sich also nicht auf die Hauptschule beschrinken, wie man es aus
der Geschichte des Sachrechnens vermuten konnte, sondern sie werden fur die
ibrigen Schulformen sogar noch erweitert. Aullerdem lassen sich nicht alle
beschriebenen Teilkompetenzen unter der Kompetenz Modellieren zusammen-
fassen, sodass auch die weiter reichende Definition des Sachrechnens im Hin-
blick auf die Bildungsstandards durchaus sinnvoll ist.

1.6 Aufgaben zur Wiederholung und Vertiefung

Der Begriff Sachrechnen

1. Schreiben Sie einen kurzen Aufsatz iiber die Beziehung von reiner Mathe-
matik und angewandter Mathematik.

2. Definieren Sie fiir sich Sachrechnen, und begriinden Sie ihren Standpunkt.

3. Suchen Sie aus Schulbtichern drei Sachaufgaben heraus, und begriinden Sie,
warum es sich jeweils tatsdchlich um eine Sachaufgabe handelt.

4. Erldutern Sie mit Hilfe von Beispielen, unter welchen Bedingungen Sto-
chastik-Aufgaben auch Sachaufgaben sind.

Ziele des Sachrechnens

1. Sachaufgaben kénnen in einem Lernprozess verschiedene Ziele verfolgen.
Erstellen Sie Sachaufgaben, die jeweils ein Ziel des Sachrechnens besonders
unterstitzen. Begriinden Sie Thre Auswahl.

2. Gibt es einen Zusammenhang zwischen den Zielen und den Funktionen
von Sachaufgaben fiir den Mathematikunterricht? Begriinden Sie Ihre
Antwort mit Hilfe selbst erstellter Beispiele.

Die Funktionen des Sachrechnens

Betrachten Sie die folgende Aufgabenstellung (s. Abb. 1.11) zur Frage, wie viel
Sand in einen Container passt (Greefrath, 2007). Den Schiilerinnen und Schi-
lern soll dazu eine der drei dargestellten Abbildungen des Containers zur Ver-
fiigung gestellt werden.

1. Erldutern Sie, wie sich die Auswahl des Bildes auf die Funktion des Sach-
rechnens, die mit der Aufgabe geférdert wird, auswirken kann.
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2. Analysieren Sie, welche innermathematischen Fertigkeiten die Schiilerinnen
und Schiiler besitzen miissen, um diese Aufgabe mit Hilfe des ersten bzw.
dritten Bildes bearbeiten und I6sen zu kénnen.

3. Analysieren Sie, welche aullermathematischen Fahigkeiten die Schiilerinnen
und Schiler besitzen missen, um diese Aufgabe mit Hilfe des ersten bzw.
dritten Bildes bearbeiten und l6sen zu kénnen.

Der Container soll bis zur Ladekante gefllt werden. Wie viel Sand passt
in den Container?

Bild 3’

Abb. 1.11 Aufgabenbeispiel Container



2 Entwicklung des Sachrechnens

Die Verwendung von Sachaufgaben zum Erlernen von Mathematik hat eine
lange Geschichte. Wir wollen hier keinen vollstindigen Blick auf die Geschichte
von Anwendungen im Mathematikunterricht geben, sondern lediglich an eini-
gen Beispielen die wechselvolle Geschichte des Sachrechnens aufzeigen. Durch
die Erfindung des Buchdrucks im 15. Jahrhundert wurde es méglich, Biicher
zum Erlernen von Mathematik schnell zu verbreiten. Wir wollen daher in dieser
Zeit mit einem Blick auf das Sachrechen beginnen.

2.1 Historisches Sachrechnen

Der Ausspruch ,,nach Adam Ries(e)” ist auch heute noch geliufig. Auf Grund
des Bekanntheitsgrades beginnen wir mit einem Blick auf das Werk von Adam
Ries.

2.1.1 Adam Ries (1492-1559)

Man findet bereits in Rechenbiichern von Adam Ries (1492—1559) viele Bei-
spiele fir Sachaufgaben. Die Biicher von Adam Ries sind in deutscher Sprache
verfasst und wurden auch aus diesem Grund bis ins 18. Jahrhundert fiir den
Mathematikunterricht verwendet.

Abb. 2.1 Titel eines Rechenbuches von Adam Ries (Ries, 1522)
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Silber und Goldt Rechnung

Zur ersten hab achtung auffs gewicht unnd wisse daR ein marck helt 16
loth ein Loth 4 quinten ein quinten 4 pfenning gewicht und ein pfenning
gewicht 2 heller gewicht. Aber in goldt mach 24 karat ein marck. 4 gran
ein karat und 3 gran einen gran.

Item 384 marck 13 loth 3 quenten fein silber kost ein margk 8 floren
facit 3078 floren 17 Schilling 6 Heller machs also sprich: ein mark fiir 8
floren wie komen 384 margk 13 lot 3 quenten mach quenten stehen.

64 8 24631

Abb. 2.2 Textausschnitt von Adam Ries (Ries, 1522)

Rechenbilchlin Adam Kifen. 44
thellein 7.18.21.28.werden 1058 4.4 16,3528 « Sitber.
":h' Addir fommen 20874 Mm::ﬁ;.w;@.fdnw
208 ’ il
o’ b A P e B
o 1. et .marct/ :
LT Sereainin
7 . 1017.{L.5. .
""""',f:,‘"" n-ndm- mmmikmm
T S L
alfo: : ' 6. thardy
66 badact Dacmadh elbcsivms b o P oo oo
e facit i3 . fotompe  wicoben . o S
Silber ond Golve Maco o e et
Rednung. acsetar Silber fan madyt.
hab auffé gewichit/ vnd wfﬁ?&W“"m
m?mm 16. lothy ¢in loth 4. Mmﬁ#ﬁﬁ;" e
S T et s
_Mm+ua m;.wammmmz'

Abb. 2.3 Ausschnitt aus einem Rechenbuch von Adam Ries (Ries, 1522)

Einen groBlen Teil des abgebildeten Buches nimmt eine Aufgabensammlung
ein, in der viele relevante Bereiche des tiglichen Lebens wie Preisberechnun-
gen, Warentransport, Geldwechsel, Warentausch, Prozentrechnung, Zins- und
Zinseszinsrechnung und Miinzschlag behandelt werden. Dabei spielt die Me-
thode des Dreisatzes (regula de tribus), dem insgesamt 190 Sachaufgaben ge-
widmet sind, eine zentrale Rolle (Ries, 1522).
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Das abgebildete Buch von Adam Ries war in erster Linie fir Lehrlinge kauf-
mannischer und handwerklicher Berufe verfasst. Das erklart auch die Auswahl
der Inhalte. Das Rechnen mit GroBen war zu dieser Zeit bereits ein Schwer-
punkt von Sachaufgaben.

2.1.2 Johann Heinrich Pestalozzi (1746-1827)

Pestalozzis Arbeit galt der Neu- und Umgestaltung des Volksschulunterrichts.
Er arbeitete an einem neuen Konzept fiir einen auf pidagogischen Prinzipien
beruhenden Rechenunterricht. Dabei betrachtet er als wichtigstes Ziel, auf das
alle Prinzipien hinarbeiten, die formale Bildung. So sicht Pestalozzi vor, den
Schiilerinnen und Schiilern klare Begriffe und Einsichten zu vermitteln. Die
Aufgabe des Rechenunterrichts bestehe darin, den Verstand aller Menschen zu
entwickeln und zu schulen. Deshalb musste das praktische Rechnen hinter dem
Denkrechnen zurtickstehen. Pestalozzi wurde daher auch vorgeworfen, die
formale Bildung iiberzubetonen und das Sachrechnen voéllig zu vernachlissigen

(Radatz & Schipper, 1983, S. 29).

2.1.3 Sachrechnen im 19. Jahrhundert

Im 19. Jahrhundert wurden kontrovers die formale Bildung und die entsprechen-
de Gegenbewegung, die man als waterielle Bildung bezeichnen kann, gegeneinan-
der gestellt (Winter, 1981, S. 666).

Nach der Revolution von 1848/49 wurden die von Pestalozzi ausgegangenen,
neuhumanistischen Bildungsreformen im Bereich der Volksschule gestoppt.
Durch die strikte Trennung der Schularten wurde die Weiterentwicklung des
Faches Rechnen in der Volksschule vollig getrennt vom Gymnasialbereich
vollzogen.

Es gab Initiativen, den Rechenunterricht der Volksschule ,,méglichst eng an
den Sachunterricht anzuschlieBen. Dabei wird hier auf das von Goltzsch und
Theel verfasste Buch Der Rechenuntervicht in der V'olksschule aus dem Jahr 1859
Bezug genommen. In diesem Buch wird darauf Wert gelegt, die Schilerinnen
und Schiiler auf das Leben praktisch vorzubereiten. ,,Die Kinder sollen durch
denselben [Rechenunterricht] Kenntnis von den spiter an sie herantretenden
Lebensverhiltnissen und der Art und Weise, wie die Zahlen und Zahlverhalt-
nisse auf beide anzuwenden sind, erhalten® (Hartmann, 1913, S. 104).

Der Konflikt tiber den Wert von Anwendungen in der Mathematik und damit
auch von Sachaufgaben spiegelt sich in den am gleichen Tag in Berlin aufge-
stellten Doktorthesen des spiteren Professors fiir angewandte Mathematik in
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Gottingen, Catl Runge, und des spiteren Ordinarius fiir Mathematik in Zirich,
Ferdinand Rudio, wider (s. Abb. 2.4).

Der Werth einer mathematischen Disciplin ist nach ihrer
Anwendbarkeit auf empirische Wissenschaften zu schitzen.

C. RunGe.
Doctorthese Berlin 28. VI. 1880.

Der Werth einer mathematischen Disciplin kann nicht
nach ihrer Anwendbarkeit auf empirische Wissenschaften be-

messen werden.
F. Rupro.
Doctorthese Berlin 28. V1. 1880.

Abb. 2.4 Doktorthesen von Runge und Rudio (Ahrens, 2002, S. 188)

Nach der Einfithrung der Basisgrélen Meter, Kilogramm und Sekunde auf der
ersten Generalkonferenz fiir Mall und Gewicht (CGPM) im Jahr 1889 mussten
die damals neuen Ma3e und Gewichte zunichst bekannt gemacht werden.

I. Gewidyte.

- 1 Kilogramm (oder ju deutfd) itberfegt 1000 Gramm) ijt = 2 Pjuud,
- 1/, Kilogramm ober 500 Gramm find aljo = 1 Pfund (oder = 30 alte
‘ Qoth ober 50 Nith.)
250 Gramm find = 1/, Pfund (vber = 15 altes Loth = 25 NIth.)
125 Gramm jind = 1/, PBfund (ober — 71/, altes Loth — 121/, Nith.)
50 Gramm jind = 1/}, S]Sfuni:u (ober = 3 altes Loth = b NIth.) .
- 25 Gramm jind = 11/, alte Qoth — 21/, NIth.
~ 10 Gramm jind = ein reichlich) Halb Botg.

- Kilogramm wird abgefiivit durch) Kilo; Gramm durd) Gr.;

Neuloth durd) MNIth. ,

1. Mafe @oblmu&e).

An die Stelle der alten Quart-Mafie ijt das Liter getveten.
.~ Diefes ijt nur um ein Adhtel fleiner, al$ das alte Stmrt, aljo 1ijt
. ein iter gleid) 7/g Quart.

& €s fommen am meijten vov 1 Liter, 1/, Liter, 1/, Liter, /g Liter
- WL, weldge jammtli) von den Behirden geaicht fein miijfen. — Anudy
- fiie bie alte Scheffel- und Megen-Bezeichuung 1jt das Liter getveten. Nur
- der Neujdhefjel bletbt, ijt aber um etwa 1/, fleiner, al8 der alte; er enthilt
© B0 iter. An Stelle der verjdpoundenen Wege tritt alfo das Liter; eine
o alte pr. Mege find etwa 31/, Liter. Das o beliebte 5 Litermaf enthalt
11/, alte Mepen. ; . W, “

Abb. 2.5 Kochbuch aus dem Jahr 1903 (Kurth & Petit, 1903)

o=,
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Das ergibt Ende des 19. Jahrhunderts eine weitere Berechtigung fiir Sachaufga-
ben, da auf diese Weise die neuen Einheiten in den Mathematikunterricht Ein-
gang finden kénnen.

Das historische Sachrechnen bestand zu einem wesentlichen Teil aus der Ver-
mittlung von und dem Umgang mit GroBen im Mathematikunterricht. Dabei
sind die GréBen fir Lingen, Gewichte und Zeit sowie deren abgeleitete Einhei-
ten fir Flichen und Volumina von zentraler Bedeutung. Auflerdem ist die
Verwendung der jeweiligen Wihrung ein zentraler Bestandteil des Sachrech-
nens.

2.2 Sachrechnen im 20. Jahrhundert

Die noch im 19. Jahrhundert tbliche Abgrenzung zwischen Volksschule und
Gymnasium durch die Behandlung des lebensnahen Sachrechnens in der
Volksschule und des abstrakten Mathematikunterrichts im Gymnasium wurde
im Laufe des 20. Jahrhunderts aufgehoben.

Die folgenden Ausschnitte (s. Abb. 2.6 u. 2.7) aus einem Rechenbuch von
Backhaus und Wiese fiir das 5. und 6. Schuljahr zeigen typische Aufgaben aus
der Volksschule.

Zum Sachrechnen findet man auller Aufgaben zur Bruch- und Dezimalbruch-
rechnung explizit Aufgaben zu den Biirgerlichen Rechnungsarten wie Schlussrech-
nung, Durchschnittsrechnung und Hundertstelrechnung.

Danbeldgewerbe. .

1176. Sdjweinehindler Freefe Hat fette Shweine aufgefauft, die er auf

: emem audwirtigen Marft verdufert. v bezablte fiiv 8 Stiid,

gujammen 18,16 Btr. fdywer, je & 63 %, filr 13 Stiid, 30,16 Btr.

Ihwer, 62 % je @, fiir 7 Stitd, 17,15 Btr. dhwer, je 64 5,

fiic 18 Gtiid, 39,38 Btr. fdywer, 67 % fe 8. Gewidjtsveriuft

beim Berjand 5f; Unfojten 75 bes Einfanfspreifes; BVerfaufapreis
durd)fdynittlichy 76 F je &. (Abrunden!)

1177, Produftenhin ler Miiller hat ein Strohlager von 136 ,g;r je
75 5, 256 Btr. je 60 5, 197 Bir. je 65 %, 348 Btr. je 85 %,
237 Btr. je 95 % Cinfaufspreis.  Berfaufspreis 1702,30 4;
Unfoften durd)jdynittlich 20 ¥ je Btr.

1178. Getreidefindler Mever zahlte fiir 87 Jtr. Roggen 643,8 M, fiir
145 Btr. 1102 A, 128 Btr. 960 4, fiix 296 Str. 2308,8 .
?grngj bxggi:ﬁmtﬂtcb 8,75 S je Btr.; Unfoften durdhjdhnittlich

e Btr. :

Abb. 2.6 Rechenbuch aus dem Jahr 1925 (Backhaus, Wiese, & Nienaber, 1925, S. 94)
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Abb. 2.7 Rechenbuch aus dem Jahr 1925 (Backhaus, Wiese, & Nienaber, 1925, S. 5)

2.2.1 Johannes Kuhnel (1869-1928)

Auch der Rechenunterricht wurde durch die reformpidagogische Bewegung
beeinflusst. Stellvertretend wird hier Johannes Kithnel als Vertretet der reform-
pidagogischen Bewegung genannt. Im Jahr 1927 fordert Kithnel in seinem
Buch Lebensvoller Rechenunterricht einen sachlicheren, ficheriibergreifenden Ma-
thematikunterricht. Dadurch sollte der Rechenunterricht praktischer und le-
bensniher werden. Er hilt die damals iiblicherweise unterrichtete Mischungs-
und Gesellschaftsrechnung im Schulunterricht des 20. Jahrhunderts fir vollig
lebensfremd. Im Rahmen der Gesellschaftsrechnung wurden beispielsweise
Probleme der Verteilung von Geld nach vorgegebenen Verhiltnissen bearbei-
tet. Hin typisches Problem der Mischungsrechnung wire etwa, dass ein Héndler
eine bestimmte Menge 60%igen Alkohol liefern soll, aber nur 40%igen und
70%igen Alkohol vorritig hat. Im Rahmen der Mischungsrechnung wird dann
bestimmt, wie viel Liter von der jeweiligen Sorte zu verwenden sind.

Jlch muss zu meiner Schande gestehen, daR ich in meinem ganzen Leben
noch keine Gesellschaftsrechnung nétig gehabt habe, auRer im Unter-
richt. (...) Und Mischungsrechnung! Ich habe wirklich noch nicht ein ein-
ziges Mal Kaffee oder Spiritus oder Gold mischen oder eine solche Mi-
schung berechnen miissen, und vielen hundert anderen Nichtpadagogen
-, die ich darum gefragt habe, ist es gerade so ergangen.” (Kiihnel, S.
178)

Er kritisiert besonders Einkleidungsaufgaben und fordert Aufgaben, die die
Schiilerinnen und Schiiler wirklich interessieren.
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In dieser Zeit wurde die Bedeutung des Sachrechnens deutlich stirker im Lern-
prozess gesehen, beispielsweise zur Veranschaulichung und Motivationssteige-
rung, als fir die Vorbereitung auf das Leben (Winter, 1981, S. 666).

2.2.2 Die Meraner Reform

Wihrend die Arbeiten von Kuhnel und anderen Reformpidagogen stirkeren
Einfluss auf die Volksschulen hatten, gab es auch an den Gymnasien Initiativen
zur Verinderung des Unterrichts. Durch die Meraner Reformbewegung Anfang
des 20. Jahrhunderts wurde ein ausgewogeneres Verhiltnis zwischen Formal-
und Materialbildung angeregt. Insbesondere das Funktionale Denken wurde
dabei in den Mittelpunkt gestellt. Das im Rahmen der Meraner Reform eben-
falls propagierte utilitaristische Prinzip sollte ,,die Fihigkeit zur mathematischen
Behandlung der uns umgebenden Erscheinungswelt zur méglichsten Entwick-
lung bringen (Klein, 1907, S. 209). Durch die industrielle Revolution stieg der
Bedarf an Naturwissenschaftlern und Technikern. So kann es in dieser Zeit zu
einem Aufstieg der Angewandten Mathematik und damit zu einem verstirkten
Einsatz von Sachproblemen. Dieser Trend ldsst sich bis in die 1950er Jahre
beobachten (Toepell, 2003).

2.2.3 Sachrechnen im Nationalsozialismus

b. Zur Kriegsgliederung eines Heeres — Hauptteile einer Division.

Angenommene Verpflegungsstirken einer Infanterie-Division.

Division .... 16000 Mann 6500 Pferde  M.-G.-Komp. .. 140 Mann 60 Pferde
Inf.-Regt. .... 2500 Mann 500 Pferde  Schwadron .... 180 Mann 200 Pferde
Inf.-Batl. ...... 700 Mann 120 Pferde  Art.-Abt. (besp.) 580 Mann 630 Pferde

Schiitzen-Komp. 170 Mann 10 Pferde  Art.-Abt. (mot.) 400 Mann —
So werden kurz die Hauptteile einer Division angegeben: y

ID: 9424121468+ 4F | KD: 2+ 24+ 51+ 15+ 4Fl

363. Wir berechnen darnach die Stiirke der Hauptteile einer Divisicn: a. Infanterie-
division: 9 Bataillone Infanterie, 2 Schwadronen Kavallerie, 12 leichte, 6 schwere
und 4 Flakbatterien; die Batterien rechnen wir einheitlich mit rd. 160 Mann;
b. Kavalleriedivision: 2 Bataillone Infanterie, 24 Schwadronen Kavallerie,
5 leichte, 1 schwere und 4 Flakbatterien.

364, Angenommene Gliederung eines Infanteriebataillons: Stab mit Nachrichien-
staffel, § Schiiizenkompanien, 1 M.-G.-Kompanie, 1 Inf-Pionierzug. Wieviel
Mann und Pferde kommen nach obigen Zahlen auf Stab mit Nachrichtenstaffel
und Inf.-Pionierzug?

365. Angenommene Gliederung eines Infanierieregiments: Stab, Nachrichienzug,
Reiterzug, 3 Bataillone, Infanterie-Geschiitz-Kp., Panzerjiger-Kp., Infanterie-
kolonne. Wieviel Mann und Pferde besitzt das Inf.-Rgt. auflerhalb der
3 Infanterie-Bataillone?

Abb. 2.8 Sachaufgaben aus der Zeit des Nationalsozialismus (Stoffler, um 1942, S. 37)
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Wihrend der Zeit des Nationalsozialismus (1933—1945) kam dem Rechenunter-
richt im Vergleich zu anderen Fichern nur eine unbedeutende Rolle zu. Aus
diesem Grund wurde keine nationalsozialistisch geprigte, eigenstindige Ma-
thematikdidaktik entwickelt.

Nur vereinzelt gehen Autoren explizit auf die nationalsozialistischen Erzie-
hungsideen ein. Allerdings ldsst sich gerade in Sachaufgaben der nationalsozia-
listische Einfluss deutlich erkennen. Das Sachrechnen in den hoheren Klassen
wird erginzt mit Aufgaben, die sich mit dem Militir, nationalsozialistischer
Ideologie etc. beschiftigen.

2.2.4 Sachrechnen in der Nachkriegszeit

In der Nachkriegszeit wurde im Schulwesen an die Ideen der Reformpiddagogik
nahtlos angekntpft. Gerade in den 1950er Jahren und Anfang der 1960er Jahre
fanden Kiihnels Werke weiter gro3en Anklang und wurden vielfach verkauft.

381. Die Luft ist ein Gemisch von rund 79 % Stickstoff, 21 % Sauer-
stoff und 0,04 % Kohlensiure. Beim gewodhnlichen Atmen mit
18 Atemziigen in der Minute wird durch einen Atemzug
1] Luft eingeatmet. Wieviel 1 Luft nimmt der Mensch a) in der
Minute, b) Stunde, c¢) im Tag in die Lunge auf? d) Wieviel 1
Sawerstoff ist dies jedesmal?

382, Ein 1 Sauerstoff wiegt 1,429 g. Berechne das Gewicht des in
a) einer Stunde, b) einem Tag eingeatmeten Sauerstoffs!

Krankheifen

383. Von der gesamten Bevolkerung sind jederzeit durchschnittlich
5 9, krank. Wieviel Menschen sind in Karlsruhe mit 189 850 Ein-
wohnern stets krank?

Bilde selbst dhnliche Aufgaben!

384. Von der Gesamtbevélkerung erkranken im Laufe eines Jahres
etwa 35 % aller Einwohner. Berechne die Krankenziffer a) fiir
Mannheim mit 283800 Einwohnern, b) fiir Mainz mit 158 971 Ein-
wohnern, c} fiir Koblenz mit 91908 Einwohnern, d) Stuttgart mit
459593 Einwohnern, e) Trier mit 80354 Einwohnemn, f) Pirmasens
mit 51578 Einwohnern, g) Heilbronn mit 56800 Einwohnernl

Abb. 2.9 Sachaufgaben aus der Nachkriegszeit (Straub, 1949, S. 55)

2.2.5 Die Neue Mathematik

Mit Neuer Mathematik bezeichnet man die Reform des Mathematikunterrichts
wihrend der 1960er und 1970er Jahre. Dabei sollte Mathematik stirker als Be-
schiftigung mit abstrakten Strukturen gelehrt werden. Das Sachrechnen ist
durch diese Reform erstaunlicherweise nicht vollig verdringt worden, sondern
wurde auf unterschiedliche Weisen sogar positiv beeinflusst. Erstens wurde der
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mathematische Kern des Sachrechnens deutlicher herausgearbeitet, wie z. B.
proportionale und antiproportionale Funktionen, zweitens wurde das inhaltli-
che Repertoire des Sachrechnens ausgeweitet, z. B. durch die Einfiihrung der
Wabhrscheinlichkeitsrechnung in die Schulmathematik, und drittens wurden die
Methoden des Sachrechnens, z. B. durch Diskussion von Veranschaulichungen
mit Hilfe von Diagrammen (vgl. 2.2.6), ausgeweitet (Winter, 1981, S. 667—668).

2.2.6 Systematisches Sachrechnen

Breidenbach hat die inhaltliche Struktur von Sachaufgaben in den Vordergrund
gestellt und damit in den 60er und 70er Jahren des 20. Jahrhunderts das Simp-
lex-Komplex-Verfahren etabliert. Fiir ihn ist die vertiefte Betrachtung des Un-
terrichtsgegenstandes zentral. Im Prinzip handelt es sich dabei um einen Riick-
griff auf die Zeit vor der Reformpidagogik (Radatz & Schipper, 1983, S. 45). Ex
unterscheidet Schwierigkeitsgrade von Sachaufgaben durch ihre strukturelle
Komplexitit und regt an, diese entsprechend zu ordnen. Breidenbach be-
schreibt als strukturell einfachste Form von Sachaufgaben die Simplexaufgabe.

Begriff Simplexaufgabe

Es sind genau zwei GréRen gegeben. Die gesuchte GroRe lasst sich da-
raus eindeutig berechnen (Fricke, 1987, S. 28).

Eine Komplexanfoabe dagegen besteht aus mehreren zusammenhingenden Simp-
lexen (Breidenbach, 1969). Wir betrachten als Beispiel eine einfache Komplex-
aufgabe, die aus zwei Simplexen besteht (Fricke, 1987).

Beispiel Komplexaufgabe

In einer Klasse sind 13 Madchen und 19 Jungen. Immer zwei Kinder sit-
zen an einem Tisch. Wie viele Tische muss der Hausmeister in die Klasse
stellen?

Die Struktur dieser Komplexaufgabe kann mit Hilfe eines Diagramms veran-
schaulicht werden (s. Abb. 2.10).

Zu dieser gegebenen Struktur gibt es viele andere Sachaufgaben. Ebenso hat die
folgende Aufgabe ein identisches Strukturdiagramm.
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Abb. 2.10 Struktur einer einfachen Komplexaufgabe (Fricke, 1987, S. 30)

Rasmus und Linus zdhlen ihre Spielzeugautos. Linus hat 13 Autos, Ras-
mus 19. Sie wollen ihre Autos gerecht aufteilen. Wie viele Autos bekommt
jeder?

[6,40 oM/n] [41 n] [6,30 pM|

Abb. 2.11 Struktur einer komplexen Sachaufgabe (Fricke, 1987, S. 32)
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Dieses Vorgehen, die Struktur von Sachaufgaben unabhingig von ihrem Kon-
text zu erfassen und die Struktur als Hilfsmittel fir Schiilerinnen und Schiiler
zu verwenden, erscheint zundchst plausibel. Um die mdglichen Probleme eines
solchen Vorgehens zu verdeutlichen, wird hier ein weiteres Beispiel vorgestellt.

Schreinergeselle Michaelis hatte in der letzten Woche bei 42 Stunden und
5 Uberstunden (Zuschlag 2,10 DM je Stunde) einen Lohn von 405,30 DM.
In dieser Woche arbeitete er nur 38 Stunden und machte 3 Uberstunden.
Wie viel Lohn bekommt er? (Fricke, 1987, S. 31)

Diese Aufgabe hat eine deutlich héhere Komplexitit als das oben besprochene
Beispiel. Versucht man die Struktur dieser Aufgabe im Sinne Breidenbachs mit
Hilfe eines entsprechenden Diagramms darzustellen, so erhilt man eine um-
fangreiche Baumstruktur (s. Abb. 2.11).

Die Schwierigkeit fiir Schiilerinnen und Schiiler, zu Beginn des Lésungsprozes-
ses der Aufgabe die einzelnen Simplexe zu extrahieren und eine solche Kom-
plex-Struktur der Aufgabe zu durchdringen, liegt darin, die gesamte Struktur
der Aufgabe zu verstehen, bevor mit dem Lésungsprozess begonnen wird.

Bei der Lésung der folgenden Aufgaben soll dir der Rechenbaum helfen, den du
bereits kennengelernt hast.

1. Beispiel: Willi will zu Beginn des Schuljahres 20 Hefte kaufen, 1 Heft kostet
15 Pf. Er gibt dem Verkéaufer 5 DM. Wieviel Geld erhalt er zuriick?

e

pro Heft

5 DM

Gesamtpreis
fir 20 Hefte

&

500—15 - 20=500—300 =200

Abb. 2.12 Rechenbaum in einem Schulbuch aus dem Jahr 1969 (Winter & Ziegler, 1969,

S. 156)
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Celsius in Fahrenheit Fahrenheit in Celsius

Beispiel:

20°C 5 5 42 "2, 36° 232, gg°F

m Rechne die Celsiuswerte in Fahrenheit

um.

100°C; 0°C; 50°C; 10°C und -10°C
Abb. 2.13 Beispiel fiir Rechenbdaume in einem aktuellen Schulbuch (Bottner, et al.,
2005, S. 47)

So miisste die Planung des Ldsungsprozesses abgeschlossen sein, bevor mit
der Ausfuhrung begonnen wird. Dies ist jedoch keine realistische Annahme.
Studien zeigen, dass Schiilerinnen und Schiiler wihrend der Lésung von Auf-
gaben hiufig zwischen Planungs- und Bearbeitungsphasen wechseln (Greefrath,
2004). Losungsplanung und Realisierung kénnen bei komplexen Aufgaben also
nicht getrennt werden.

Es ist im Unterricht tiberdies nicht sinnvoll, alle méglichen Simplexe zu behan-
deln. Es besteht die Gefahr, das Sachrechnen zu stark zu formalisieren und
dadurch eigene, kreative Lésungswege der Schiilerinnen und Schiler zu verhin-

dern (Franke, 2003, S. 14 ff.).

Aus dem Ansatz des systematischen Sachrechnens entstanden Rechenbiume
fur die Schiilerinnen und Schiiler. Diese Rechenbidume wurden in Schulbiicher
als Hilfekonzept fiir die Bearbeitung von Sachaufgaben aufgenommen (s. Abb.
2.12).
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Zusitzlich zu den oben aufgefiihrten Argumenten muss bedacht werden, dass
das Herstellen der Rechenbiume im Unterricht erlernt werden muss. Hier sollte
sorgfiltig abgewogen werden, ob der Gewinn durch solche Darstellungen im
Vergleich zu dem damit verbundenen Aufwand gerechtfertigt ist. Damit Schu-
lerinnen und Schiiler einen solchen Rechenbaum anfertigen kénnen, missen sie
die Struktur der Aufgabe bereits erfasst haben. Dadurch wird der Rechenbaum
als Hilfe fir die Planung in Frage gestellt (Franke, 2003, S. 17 £.).

Auch heute findet man in Schulbiichern noch Rechenbiume (s. Abb. 2.13). Sie
haben aber haufig den Sinn, die Struktur einer Rechnung zu verdeutlichen, und
weniger, die Struktur einer Textaufgabe aufzudecken. Als Losungshilfe fir
Sachaufgaben im Sinne von Simplexen und Komplexen werden Rechenbiume
in der Regel nicht mehr verwendet.

2.2.7 Das Neue Sachrechnen

Das sogenannte Newe Sachrechnen entstand in den 80er Jahren des 20. Jahrhun-
derts. Man begann die Prinzipien der Meraner Reform von 1905 wieder stirker
zu beachten. Im Zusammenhang mit dem Sachrechnen ist das utilitaristische
Prinzip zu nennen, bei dem es darum ging, die Fihigkeit zur mathematischen
Betrachtung der Umwelt zu entwickeln (Toepell, 2003, S. 180).

Ziele des Neuen Sachrechnens waren, fur die Schiilerinnen und Schiiler authen-
tische Themen zu finden und lingerfristige Projekte durchzufithren. Diese
sollten losgel6st vom aktuell behandelten mathematischen Inhalt vielfiltige
Lésungsmoglichkeiten bieten. Dazu wurden schlieBlich auch neue Aufgabenty-
pen, wie z. B. Fermi-Aufgaben (vgl. 4.2.4) oder Zeitungsaufgaben (Herget &
Scholz, 1998), verwendet.

2.2.8 Modellieren und angewandte Mathematik

Gleichzeitig zur Entwicklung des Neuen Sachrechnens verbreitete sich ver-
stirkt der Begriff des Modellierens im Mathematikunterricht. Unter Modellieren oder
Modellbilden wird ein bestimmter Aspekt der angewandten Mathematik ver-
standen. Dieser Aspekt wird zum Teil als eigenstindiger Prozess innerhalb von
Anwendungen oder als eine Auffassung des Anwendens verstanden (Fischer &
Malle, 1985, S. 99). Die stirkere Betonung des Modellierungsaspekts im Zu-
sammenhang mit Anwendungsaufgaben, also auch im Zusammenhang mit
Sachrechnen, hat Pollak Ende der 70er Jahre angestofen.

Unter anderen hat Pollak 1976 den Begriff des Modellierens in der Mathema-
tikdidaktik bekannt gemacht. Er unterscheidet zur Begriffsklirung vier Defini-
tionen von angewandter Mathematik (Pollak, 1977, S. 255 1.).
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Klassische Angewandte Mathematik (physikalische Anwendungen der Ana-
lysis)
Anwendbare Mathematik (Statistik, Lineare Algebra, Informatik, Analysis)

Einfaches Modellieren (einmaliges Durchlaufen eines Modellbildungskreis-
laufs)

Modellieren (mehrmaliges Durchlaufen eines Modellbildungskreislaufs)

Diese vier Charakterisierungen von angewandter Mathematik sind dullerst un-
terschiedlich. Die ersten beiden Punkte beziehen sich auf Inhalte (klassische
bzw. anwendbare Mathematik) und die letzten beiden Punkte bezichen sich auf
den Bearbeitungsprozess. Der Begriff Modellieren legt also den Fokus auf den
Bearbeitungsprozess. Alle vier Definitionen von angewandter Mathematik wer-
den von Pollak visualisiert (s. Abb. 2.14).

Mathematics

Classical
Applied
Mathematics

Applicable
Mathematics

Abb. 2.14 Sichtweisen auf die angewandte Mathematik nach Pollak (Pollak, 1977, S.
256)

Modellieren ist dann als mehrfach zu durchlaufender Kreislauf von der Realitit
(bzw. Rest der Welt) zur Mathematik und zuriick zu verstehen.

Das mathematische Modellieren ist in den 80er Jahren des letzten Jahrhunderts
in Deutschland besonders durch Werner Blum bekannt geworden (s. Abb.
2.15). Im Lauf der folgenden Jahre hat es in Lehrpline und Standards fir den
Mathematikunterricht Einzug gehalten.



2.3 Sachrechnen heute — einige Anmerkungen | 37

—

Q) Vereinfachen, Struk-

turieren, Prizisieren
B) Mathematisieren
Y) Math. Arbeiten

i &) Rick-Interpretieren
bzw. Anwenden

Reale
Situation . Resultate

ilea].itlt: Mathematik
Abb. 2.15 Modellbildungskreislauf nach Blum (Blum, 1985, S. 200)

In diesem Zusammenhang kann auch der Begriff amwendbare Mathematik von
Hans Freudenthal genannt werden. Es soll damit deutlich werden, dass es wei-
terthin Mathematik betrieben wird. Dies wird durch den Begrift Anwendungen
nicht so deutlich (Jahner, 1985, S. 15).

2.3 Sachrechnen heute - einige Anmerkungen

Mit Blick auf die wechselvolle Geschichte des Sachrechnens und viele nicht
erfolgreiche Versuche, authentische und relevante Probleme in den Sachrechen-
unterricht einzubezichen, wird das Wort Sachrechnen heute oft mit eher unge-
cigneten Textaufgaben in Verbindung gebracht.

Sachrechnen im Sinne der Auseinandersetzung mit der Umwelt sowie der Be-
schiftigung mit wirklichkeitsbezogenen Aufgaben im Mathematikunterricht hat
auch heute noch seine Berechtigung und spielt auch im Mathematikunterricht
eine grof3e Rolle.

Zur Klarstellung dieser Intention sollte man daher hiufig besser von Modellieren
sprechen. Dieser Begriff deckt allerdings nicht die ganze mogliche Bandbreite
von sinnvollen Aufgaben mit Realititsbezug ab. Beispielsweise kénnen einfache
Sachaufgaben, die man nicht als Modellierungsaufgaben bezeichnen kann, auch
dem Verstindnis von Teilaspekten des Modellierens oder der Motivation die-
nen.

So sollte der Name Sachrechnen erhalten bleiben, aber in Zukunft stirker mit
Modellierungstitigkeiten als mit dem Lodsen eingekleideter Textaufgaben in
Verbindung gebracht werden.
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2.4 Aufgaben zur Wiederholung und Vertiefung

Altere Geschichte des Sachrechnens

Sachaufgaben sind durch einen Bezug zur Realitit gekennzeichnet. Informieren
Sie sich in der Literatur zur Mathematikgeschichte, ob man in der Antike be-
reits Aufgaben findet, die man aus heutiger Sicht zum Sachrechnen zdhlen wiir-

de.
Literaturhinweise zur Aufgabe:

Hofmann, Joseph Ehrenfried: Geschichte der Mathematik. Erster bis dritter Teil,
2. Auflage, Berlin, 1963.

Troptke, Johannes: Geschichte der Elementarmathematik, Band 1: Arithmetik und
Algebra, Berlin/New York, 1980.

Cantor, Moritz: Vorlesungen iiber Geschichte der Mathematik, Erster bis vierter
Band, dritte Auflage, 1965.

Neuere Geschichte des Sachrechnens

Untersuchen Sie die folgende Aufgabe:

Durch das Umsiedlungswerk wurden nach dem Polenfeldzug viele Volks-
deutsche in den deutschen Lebensraum zuriickgefihrt aus:

Litauen 50 000, Bessarabien 93 400, Sidtirol 185 000, Estland und Lett-
land 75 000, Dobrudscha 14 500, Nord- und Sidbuchenland 99 300,
Galizien und Wolhynien 130 000, Cholmer u. Lubliner Land 32 500, Ge-
neralgouvernement 50 000.

Das gibt a. viele sechskopfige Familien fur Erbhofe, b. viele Bauerndorfer
mit 800 Bewohnern.

Fur das Altreich hat die Volkszdahlung von (...) mit rd. 68,6 Mill. noch eine
Bevolkerungsdichte von rd. 146 ergeben; wir vergleichen mit der Bevdl-
kerungsdichte der zuriickgewonnenen Gebiete (rd. 108).

1. In welcher Zeit kénnten die abgebildeten Sachaufgaben gestellt worden
sein?

2. Welche Ziele verfolgen diese Sachaufgaben?

Systematisches Sachrechnen

Untersuchen Sie die folgende Aufgabe:
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Ein Wasserbehdlter, der 5 m lang, 4 m breit und 3 m hoch ist, ist bis 1,50
m unter dem Rand mit Wasser gefiillt. Die Wassermenge soll durch Zu-
fluss auf 40 m3 ansteigen. Um wie viele Zentimeter wird der Wasserspie-
gel steigen?

Erkliren Sie die Begriffe Simplex und Komplex mit Hilfe der oben gestellten
Wasserbehilter-Aufgabe.

Lésen Sie die Aufgabe mit Hilfe eines Rechenbaumes.

Erstellen Sie eine weitere Sachaufgabe, deren Losung auf exakt den glei-
chen Rechenbaum fihrt.

Welche Funktion des Sachrechnens erfillt die oben genannte Sachaufgabe
im Mathematikunterricht in erster Linie?

Welche Schwierigkeiten kénnen bei Schillerinnen und Schiilern auftreten,
wenn sie solche Aufgaben mit Hilfe eines Rechenbaumes 16sen sollen.

Bezichen Sie Stellung zu der Auffassung von Breidenbach, dass ,,die Lo-
sung von umfangreichen Aufgaben auf die Auflésung in mehrere Simplexe
hinauslduft. Deshalb ist nach seiner Meinung ,das Erkennen eines
Simplexes der Generalschliissel, mit dem alle Sachaufgaben gelost werden
koénnen und miissen® (Franke, 2003, S. 15).



3 Modellieren und Problemlosen

Modellieren und Problemlosen sind in den Bildungsstandards der Kultusminister-
konferenz (KMK, 2004) und in den Kernlehrplinen (Ministerium fiir Schule
NRW, 2004) bzw. Bildungsplinen der einzelnen Bundeslinder als a/lgemeine
mathematische Kompetenzen oder prozessbezogene Kompetenzgen in herausgehobener
Weise benannt.

Modellieren ist spitestens seit Grindung der ISTRON-Gruppe im Jahr 1990
(Forster, Henn, & Meyer, 2000, S. iv) eine sowohl in der Mathematikdidaktik
als auch in der Schulpraxis vieldiskutierte Kompetenz. Modellierungstitigkeiten
bilden das Zentrum des modernen Sachrechenunterrichts im Dienste der Um-
welterschlieBung (Winter, 2003, S. 32).

Mit Modellieren und Problemlésen verbindet man hiufig mathematische
Kompetenzen, die nicht klar voneinander abgrenzbar sind. Wihrend man prob-
lemlosendes Arbeiten in inner- und auBlermathematischen Kontexten kennt, ist
mit Modellieren zwar in der Regel die Arbeit mit Problemen aus der Umwelt
gemeint. Dennoch ist im Bereich der auBlermathematischen Kontexte eine
Trennung der Begriffe schwierig. Daher sollen in den folgenden Abschnitten
diese Begriffe genauer gefasst werden.

3.1 Modellieren

Modellieren und Sachrechnen werden hiufig als Gegensitze wahrgenommen.
Dies ist aber nicht ganz korrekt. Das Modellieren ist sogar — zumindest nach
unserer Auffassung — der zentrale Teil des Sachrechnens. Sachrechnen be-
schreibt die Auseinandersetzung mit der Umwelt im Mathematikunterricht.
Dies geschieht am besten durch echte Probleme, die mathematisch bearbeitet
werden, und nicht nur durch Sachaufgaben mit einem Bezug zur Realitit. Viel-
leicht ist die folgende Sichtweise hilfreich, um die beiden Standpunkte zu kla-
ren.

Werden Anwendungsaufgaben entwickelt, um fiir bestimmte mathematische
Inhalte eine Sachaufgabe zu erhalten, so denkt man hdufig in Richtung der
mathematischen Inhalte, und der Anteil der Realitit ist dann eher nebensich-
lich. Bei diesem Verfahren kénnen leicht eingekleidete Textaufgaben entstehen,
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die dann zum Bereich des Sachrechnens gezihlt werden. Geht man aber von
einem Problem in der Realitit aus und beginnt dies mit mathematischen Me-
thoden zu 16sen, so steht das Modellieren im Mittelpunkt. Schwieriger ist es
dann, ein Modellierungsproblem passend fiir genau die aktuell im Unterricht
behandelten Inhalte zu finden.

Dennoch umfasst Sachrechnen beide Richtungen, auch wenn der Modellie-
rungsaspekt im Vordergrund stehen sollte. Wir wollen uns im Folgenden inten-
siver mit dem Modellieren und dem mathematischen Modell beschiftigen.

Der Modellbildungsprozess im Mathematikunterricht wird meist idealisiert als
Kreislauf dargestellt. Bevor wir zu einer genaueren Diskussion dieses Kreislaufs
kommen, wird zunichst der Begriff des Modellierens betrachtet.

Wir verwenden die Begriffe Modellieren und Modellbilden synonym. Mit Mo-
dellieren wird die T4tigkeit bezeichnet, durch die ein mathematisches Modell zu

einem Anwendungsproblem aufgestellt und bearbeitet wird (Griesel, 2005, S.
064).

3.1.1 Mathematisches Modell

Da beim Modellieren die Schaffung eines mathematischen Modells stattfindet,
muss nun genauer der Begriff des mathematischen Modells diskutiert werden.
Fir diesen Begriff finden wir in der Literatur viele Beschreibungen. Vier dieser
Definitionen eines mathematischen Modells werden hier exemplarisch vorge-
stellt.

Isolierte Wirklichkeit

Ein Modell ist ein vereinfachendes Bild eines Teils der Welt. Dazu wird der
zu betrachtende Teil der Wirklichkeit isoliert und seine Verbindungen zur
Welt kontrolliert. Die Subsysteme des Teils der Wirklichkeit werden durch
bekannte Teile ersetzt, ohne die Gesamtstruktur zu zerstéren. (Ebenhoh,
1990, S. 6; Leuders & Maal}, 2005, S. 2)

Vereinfachung

Ein Modell ist eine vereinfachende, nur gewisse, einigermaRen objekti-
vierbare Teilaspekte beriicksichtigende Darstellung der Realitdt. (Henn &
MaaR, 2003, S. 2)
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Anwendung von Mathematik

Ein mathematisches Modell ist eine Darstellung eines Sachverhaltes, auf
die mathematische Methoden angewandt werden kénnen, um ein ma-
thematisches Resultat zu erhalten. (Zais & Grund, 1991, S. 7)

Entsprechung

Ein mathematisches Modell ist jede vollstindige und konsistente Menge
von mathematischen Strukturen, die darauf ausgelegt ist, einem anderen
Gebilde, namlich seinem Prototyp, zu entsprechen. Dieser Prototyp kann
ein physikalisches, biologisches, soziales, psychologisches oder konzep-
tionelles Gebilde sein, vielleicht sogar ein anderes mathematisches Mo-
dell.

(Aris, zitiert nach Davis & Hersh, das Wort Gleichung wurde dabei nach
dem Vorschlag von Aris durch Struktur ersetzt; Davis & Hersh, 1986, S.
77)

Ein mathematisches Modell ist also eine isolierte Darstellung der Welt, die ver-
einfacht worden ist, dem urspriinglichen Prototyp entspricht und zur Anwen-
dung von Mathematik geeignet ist.

Bei der Bildung eines mathematischen Modells wird demnach ein System durch
ein anderes ersetzt, das leichter behetrschbar ist. Dabei werden Strukturelemen-
te, die fiir wesentlich gehalten werden, auf das neue System tibertragen (Freu-
denthal, 1978, S. 130).

Die Bearbeitung eines realen Problems mit mathematischen Methoden hat auch
Grenzen, da die komplexe Realitit nicht vollstindig in ein mathematisches
Modell tbertragen werden kann. Dies ist sogar im Regelfall gar nicht er-
wiinscht. Fin Grund fiir das Erstellen von Modellen ist die Méglichkeit der
Gberschaubaren Verarbeitung der realen Daten. Im Rahmen eines Modellbil-
dungsprozesses wird deshalb nur ein bestimmter Ausschnitt der Wirklichkeit in
eine mathematische Form gebracht (Henn, 2002, S. 5). Das Modell dient in
vielen Fillen als Ersatzkonstruktion fur die nicht erfassbare Realitit, die so
wenigstens teilweise bearbeitet werden kann (Miiller & Wittmann, 1984, S. 253).
Auch wenn ein mathematisches Modell die Situation nur partiell darstellt, kann
es dennoch eine groBere Genauigkeit fordern als die reale Situation (Revuz,

1965, S. 62).

Die wichtigen Merkmale von mathematischen Modellen sind also die Vereinfa-
chung, die Entsprechung und die mogliche Anwendung mathematischer Me-
thoden. Daraus ergibt sich eine wichtige Eigenschaft von Modellen. Modelle
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sind nicht eindeutig, da es hiufig auf unterschiedliche Weise moglich ist, Ver-
einfachungen vorzunehmen. Wir kénnen aber fiir Modelle fordern, dass sie in
sich widerspruchsfrei, richtig und zweckmilBig sein sollen. Mit richtig ist in
diesem Zusammenhang gemeint, dass wesentliche Bezichungen der realen Situ-
ation im Modell abgebildet werden. Die ZweckmiBigkeit eines Modells kann
nur mit Hilfe des zu bearbeitenden Problems beurteilt werden. Sie kann bei-
spielsweise durch die Sparsamkeit des verwendeten Modells, aber in einer ande-
ren Situation auch durch den Reichtum der dargestellten Beziehungen zum
Ausdruck kommen (Neunzert & Rosenberger, 1991, S. 149). Ein neues Prob-
lem erfordert unter Umstinden eine neue Modellbildung; auch dann, wenn der
gleiche Gegenstand betrachtet wird.

Fur das mathematische Modellieren ist also immer eine Situation aus der Reali-
tit der Ausgangspunkt. Die Situation wird dann mit Hilfe eines mathemati-
schen Modells beschrieben und bearbeitet. Diesen gesamten Prozess bezeich-
nen wir im Folgenden als Modellieren.

Die genaue Beschreibung eines Modellbildungsprozesses wird durch die ver-
schiedenen Arten von Modellen erschwert. Es gibt Modelle, die als Vorbild
dienen. Sie werden normative Modelle genannt. Aullerdem gibt es Modelle, die
als ,Nachbild‘ verwendet werden. Sie heiBlen deskriptive Modelle (Freudenthal,
1978, S. 128). Bei den deskriptiven Modellen lassen sich Eigenschaften von
Modellen wie worbersagen, vorschreiben und beschreiben einordnen. Des Weiteren
kénnen Modelle auch Beobachtungen beeinflussen, Einsichten férdern,
Axiomatisierung unterstiitzen, Mathematik férdern und Sachverhalte erkliren
(Davis & Hersh, 1986, S. 77; Henn, 2002, S. 06).

Modelle in der
Mathematik
]
| |
deskriptive notrmative
Modelle Modelle
1
| | [ |
ohne
zusitzliche explikativ deterministisch ~ probabilistisch
Funktion

Abb. 3.1 Funktionen von Modellen

Deskriptive Modelle sollen einen Gegenstandsbereich bzw. die Realitdt nach-
ahmen oder genau abbilden. Dies kann beschreibend oder auch bereits erkla-
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rend sein (Winter, 2004, S. 110; Winter, 1994, S. 11). Eine Art von deskriptiven
Modellen zielt daher darauf, den entsprechenden Ausschnitt aus der Realitdt
nicht nur zu beschreiben, sondern auch die inneren Zusammenhinge zu ver-
stehen. Beschreibende Modelle sind hiufig wenig aussagekriftic, wenn nicht
Annahmen tber Wirkungszusammenhinge gemacht werden (Kérner, 2003, S.
163). Es ist weiterhin mdglich, zwischen solchen beschreibenden Modellen, die
auf das Verstindnis abzielen, und Modellen mit Voraussagecharakter zu unter-
scheiden (Burscheid, 1980, S. 66). Diese Voraussagen kénnen sowohl vollstin-
dig bestimmt als auch mit bestimmten Wahrscheinlichkeiten behaftet sein. Ins-
gesamt haben wir also deskriptive Modelle, die nur beschreibenden Charakter
haben; solche, die zusitzlich etwas erkliren (explikative deskriptive Modelle),
und Modelle, die zusitzlich Voraussagen treffen (deterministische und
probabilistische deskriptive Modelle).

3.1.2 Auffassungen von Modellieren

Da das Modellbilden als Prozess der Aufgabenbearbeitung und nicht nur als
Inhalt der Aufgabenstellung charakterisiert wird, kann unterschieden werden,
ob dieser Prozess bewusst oder unbewusst stattfindet. Die Reflexion ber das
Modellieren kann dann als Kriterium fiir das Stattfinden eines Modellbildungs-
prozesses verwendet werden. Diese Auffassung von Modellbildung wird auch
als enge Auffassung bezeichnet. Sie steht einer allgemeinen oder naiven Auffas-
sung von Modellieren gegeniiber. Nach dieser allgemeinen Auffassung kann
auch schon von einem Modellbildungsprozess gesprochen werden, wenn er
nicht bewusst geschieht (Fischer & Malle, 1985, S. 104). Wenn also Schiilerin-
nen und Schiiler — ohne das Bewusstsein, auf einer hoheren mathematischen
Ebene die Situation zu vereinfachen — realititsbezogene Aufgaben bearbeiten,
dann arbeiten sie im Rahmen der allgemeinen Auffassung vom Modellieren.
Teilweise stecken bereits hinter einfachen Situationen Modellannahmen, die
dann in einigen Fillen sogar als Realitit angesehen werden (Winter, 1989, S.
218).

Mit dhnlichen Begriffen zum Modellieren wird teilweise auch etwas anderes
verbunden. So bezeichnet Griesel mit Modellieren im engeren Sinne das Auf-
stellen des Modells durch idealisierte Abstraktion, ohne damit zwangsliufig die
Anwendungssituation zu 16sen. Werden auch die relevanten Daten ermittelt, so
spricht er von Modellieren im weiteren Sinne (Griesel, 2005, S. 64).

3.1.3 Modellbildungskreislauf

Der gesamte Modellierungsprozess wird hiutig idealisiert als Kreislauf darge-
stellt. Mit Idealisierung ist hier gemeint, dass diese Darstellung auch selbst wie-
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der ein Modell ist. Der Kreislaufprozess soll hier an einem einfachen Beispiel
dargestellt werden. Soll beispielsweise das Volumen des Sandes berechnet wer-
den, das sich in einem Container befindet, so werden zunichst Vereinfachun-
gen vorgenommen. Diese Vereinfachungen kénnen in diesem Beispiel darin
bestehen, dass man annimmt, der Sand wiirde gleichmiBig im Container ver-
teilt, sodass die Fillhéhe dann ungefihr der Ladekante entspricht. Ebenso
kénnte man die Materialstirke des Containers vernachlissigen und damit Au-
Ben- und Innenmalle gleichsetzen. AuBerdem ist es sinnvoll anzunehmen, dass
der Container keine Beulen oder andere Unebenheiten besitzt. Beim Ubergang
in die Mathematik kann man den mit Sand gefillten Teil des Containers mit
cinem Prisma identifizieren, das eine trapezférmige Grundfliche hat. Im Rah-
men dieses Modells werden dann Berechnungen durchgefithrt, die zu einer
mathematischen Lésung fithren, die schlieBlich als das Volumen des Sandes
interpretiert wird.

Wie viel Sand ist im Das Volumen des

Container? I/> Sandes soll

berechnet werden.

LN Realitat

Math tik
athemati <L

V

Berechnung Das Volumen des
Prismas soll
berechnet werden.

1,1-2m’ = 6,2m’

</I
N

Vv

39417
2

Abb. 3.2 Als Modellbildungskreislauf idealisierter Losungsprozess einer Aufgabe

Etwas abstrakter betrachtet ist die Frage nach dem Sand im Container ein Prob-
lem in der Realitat. Dieses Problem wird zundchst auf der Sachebene vereinfacht
und fihrt zu einem Modell in der Realitit. Dieses bezeichnet man hiufig mit Re-
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almodell. Es konnte aber auch konzeptionelles Model] genannt werden (Sonar, 2001,
S. 21). Nun folgt der Schritt in die Mathematik, zum wathematischen Modell. Mit
Hilfe dieses Modells wird nun eine mathematische Lisung ermittelt, die schlief3lich
wieder auf das reale Problem bezogen werden muss.

Andere Idealisierungen des Losungsprozesses dieses Container-Problems sind
ebenfalls denkbar. So kénnte man beispielsweise die Datenbeschaffung noch
extra ausweisen oder auf den Zwischenschritt bei der Erstellung des mathema-
tischen Modells verzichten. Daher gibt es in der Literatur unterschiedliche
Kreislaufdarstellungen des Modellierens. Wir stellen nun diese Kreislaufdarstel-
lungen nach der Komplexitit vor.

Einfaches Mathematisieren

Bei Miller und Wittmann (s. Abb. 3.3) findet man ein Kreislaufmodell des
Modellierens, bei dem nur ein Schritt von der Situation zum Modell verwendet
wird.

Modellbilden
Situation > Modell
Datenverarbeitung im Modell
Interpretieren
Folgerungen fir <—e—o— Folgerungen im Modell
die Situation
Sachebene Entwurfsebene, mathematische Ebene

Abb. 3.3 Modellbildungskreislauf nach Miller/Wittmann (1984, S. 253)

Winter verwendet ebenfalls nur einen Schritt von der Situation zum Modell
(Winter, 2003, S. 33). Eine besonders anschauliche Darstellung dieses allgemein
anerkannten und tbersichtlichen Modells des Modellierens stammt von Schupp
(Schupp, 1988, S. 11). Dieses Modell unterteilt in einer Dimension Mathematik
und Welt. Dies ist bei Modellen des Modellierens allgemein tblich. Zusitzlich
wird noch gleichberechtigt zwischen Problem und Ldsung in einer zweiten
Dimension unterschieden (s. Abb. 3.4). Dieses Modell verwenden z. B. auch
Danckwerts und Vogel (Danckwerts & Vogel, 2001, S. 25).
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Problem : Lasung

Deduzieren

lieren

Mathematik

Situation

I Mode!

Validieren

Abb. 3.4 Modellbildungskreislauf nach Schupp (1988, S. 11)

Realitiit

& Modell

Abb. 3.5 Modellbildungsspirale nach Biichter und Leuders

Zu den genannten Modellen wird hiufig erginzt, dass der Kreislauf nicht im-
mer vollstindig oder mehrfach durchlaufen werden kann. Bichter und Leuders
stellen diesen mehrfachen Durchlauf des Modellbildungskreislaufs als Modell-
bildungsspirale dar (Biichter & Leuders, 2005, S. 76). Dadurch wird auch die
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Entwicklung wihrend des Modellbildungsprozesses verdeutlicht. Nach jedem
Umlauf vergroBert sich die Erfahrung mit dem Problem. Auch hier wird nicht
zwischen realem Modell und mathematischem Modell unterschieden. Aller-
dings wird in diesem Modell das Prizisieren des Problems als eigener Schritt
zwischen Realitit und Modell formuliert (s. Abb. 3.5).

Spezielle Kreisldufe gibt es fur Teilgebiete der Mathematik. So wird beispiels-
weise in der Stochastik die Modellierung von Axiomensystemen aus Erfahrun-
gen beschrieben (Behnen & Neuhaus, 1984, S. 9). Fur die Verwendung eines
Dynamischen Geometriesystems verwendet Schumann den folgenden Kreislauf
(s. Abb. 3.6).

Geeigneter Eingeben als Bild Modellierungs-
Ausschnitt der = voriage
realen Welt im DGS
Explorieren durch
interpretieren, Nachzeichnen und
Prilfen, Messen/Berechnen:
Simulieren Figurale Analyse/
Funktionsanalyse
Statisches/ Figurale/
Dynamisches |--& Kinematische
Modell Rekonstruieren mit Struktur
den Mitteln des DGS

Abb. 3.6 Modellbildungskreislauf mit DGS (Schumann, 2001, S. 25)

Genaueres Mathematisieren

Der bekannteste Modellbildungskreislauf ist bei Blum (1985, S. 200) beschrie-
ben (s. S. 37). Er stellt in gewisser Weise ein Standardmodell des Modellbildens
fiir den Unterricht dar. Hier wird fiir das Erstellen des mathematischen Modells
noch ein Zwischenschritt eingefligt. Vergleichbar mit dem Container-Problem
(s. Abb. 3.2) wird hier die Vereinfachung in der Realitdt, das Reale Modell, noch
als eigener Schritt betrachtet.

Dieses Modell wird beispielsweise von Henn (Henn, 1995, S. 56), Humenberger
und Reichel (Humenberger & Reichel, 1995, S. 35), Kaiser (Kaiser, 1984, S. 75),
Maal3 (Maal3 K. , 2002, S. 11) und Borromeo Ferri (Borromeo Ferri, 2004, S.
109) verwendet. Maal fihrt allerdings noch als Zwischenschritt von den Ma-
thematischen Resultaten bzw. der Mathematischen Losung zur realen Situation
bzw. Realitit die interpretierte Losung ein (Maal3 K. , 2005, S. 117).
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mathematisieren
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MATHEMATIK

REALITAT

Abb. 3.7 Modellbildungskreislauf nach MaaR (MaaR K. , 2005, S.117)

Komplexes Mathematisieren

Mathematisches
Modell

Situations-
modell

Realsituation

Reale Mathematische
Resultate Resultate

Abb. 3.8 Modellbildungskreislauf von Blum und LeiR (Blum & LeiR, 2005, S. 19)

Ein neueres Modell des Modellierens von Blum und Iei}, das auch von
Borromeo Ferri verwendet wird, ist unter kognitiven Gesichtspunkten erstellt
worden (s. Abb. 3.8). Es wurde im Vergleich zum Modell von Blum aus dem
Jahr 1985 um das Situationsmodell erweitert (Borromeo Ferri, 2006, S. 92). Die
Erstellung des mathematischen Modells wird detaillierter betrachtet, und es
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wird der Prozess des Individuums, welches das Modell erstellt, detaillierter
dargestellt. Das Situationsmodell beschreibt die mentale Darstellung der Situa-
tion durch das Individuum.

Auch im Modell von Fischer und Malle (Fischer & Malle, 1985) wird der Schritt
von der Situation zum mathematischen Modell detailliert beschrieben. Insbe-
sondere das Einfligen der Datenbeschaffung ist hier interessant und spielt bei
vielen offenen Aufgaben im Sachrechnen eine Rolle (s. Abb. 3.9). Beispielswei-
se miissen bei den sogenannten Fermi-Aufgaben viele Informationen durch
Schitzen ermittelt werden.

Befriedigende
Lésung des Problems

Situation
(Probleme)

nterpretatio
der Ergebnisse,

verbesserung Uberprifung
1 /
Situations-
analyse
Y
Daten-
beschaffung

Annahmen, Mathematisches
Vernachléssigungen i Modell

Modell-

Totales -
Fiasko

Abb. 3.9 Modellbildungsprozess nach Fischer und Malle (Fischer & Malle, 1985)

Je nach Zielgruppe, Forschungsgegenstand oder -interesse haben die dargestell-
ten Modelle des Modellierens andere Schwerpunkte. Hiufig ist der Zweck der
dargestellten Modelle des Modellierens unterschiedlich. Insbesondere sind
normative und deskriptive Modelle des Modellierens zu unterscheiden. So
kénnte ein bestimmtes Modell des Modellierens fiir die Beschreibung von
Schiilertitigkeiten verwendet werden. Hierzu eignen sich auch sehr komplexe
Modelle. Ebenso kénnte aber im Rahmen einer Lehrerfortbildung zum Model-
lieren ein leicht merkbarer Kreislauf als Unterstiitzung fur den Unterricht vor-
gestellt werden.
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3.1.4 Teilkompetenzen des Modellierens

In der Vereinbarung der Kultusministerkonferenz iiber Bildungsstandards fir
den Mittleren Schulabschluss vom 3. Dezember 2003 (KMK, 2004) bzw. in den
entsprechenden Lehrplinen der Bundeslinder, z. B. im Kernlehrplan Nord-
rhein-Westfalens (Ministerium fir Schule NRW, 2004), wird Modellieren als
eine allgemeine mathematische Kompetenz bzw. als prozessbezogene Kompe-
tenz beschrieben.

Tabelle 3.1 Teilkompetenzen des Modellierens

Teilkompetenz Indikator

Vereinfachen Die Schilerinnen und Schiiler trennen wichtige und
unwichtige Informationen einer Realsituation.

Mathematisieren Die Schiilerinnen und Schiiler Gibersetzen Realsituationen in
Mathematische Modelle (z.B. Term, Gleichung, Figur,
Diagramm, Funktion)

Rechnen Die Schiilerinnen und Schiiler arbeiten mit dem
mathematischen Modell.

Interpretieren Die Schuilerinnen und Schiler beziehen die im Modell
gewonnenen Informationen auf die Realsituation.

Validieren Die Schilerinnen und Schiler tberprifen die im Modell
gewonnenen Informationen an der Realsituation.

Sie vergleichen und bewerten verschiedene mathematische
Modelle fiir eine Realsituation.

Beurteilen Die Schiilerinnen und Schiiler beurteilen kritisch das
verwendete mathematische Modell.

Realisieren Die Schiilerinnen und Schiler ordnen einem
mathematischen Modell eine passende Realsituation zu
bzw. finden zu einem mathematischen Modell eine
passende Realsituation.

Da aber das Modellieren in den Lehrpldnen neben den inhaltsbezogenen Kom-
petenzen wie Algebra, Funktionen, Geometrie und Stochastik sowie neben
weiteren allgemeinen Kompetenzen wie z. B. Problemldsen und Argumentieren
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steht, kann das Modellieren nur im Zusammenspiel mit Inhalten und weiteren
allgemeinen Kompetenzen betrachtet werden. Das Aufteilen des Modellierens
in Teilkompetenzen bzw. Teilprozesse ist ein méglicher Weg, um die Komple-
xitdt der Problematik zu reduzieren.

Es ist sinnvoll, den Blick nicht nur auf die Zwischenschritte wihrend des Mo-
dellierungsprozesses zu richten, sondern ebenso auf die Teilprozesse, die wih-
rend dieser Schritte (z. B. vom Realmodell zum mathematischen Modell) ablau-
fen. In einigen der oben beschriebenen Modelle des Modellierens, werden auch
diese Teilprozesse benannt. So finden wir beispielsweise die Prozesse Modellie-
ren (Muller & Wittmann, 1984, S. 253), Mathematisieren (Buchter & Leuders,
2005, S. 76) und Vereinfachen (Blum, 1985, S. 200). Fir den zweiten Teil des
Modellierungskreislaufs werden Interpretieren (Muller & Wittmann, 1984, S.
253) und Validieren (Schupp, 1988, S. 11) genannt. Winter beschreibt als wich-
tigste Prozesse: Situation wahrnehmen, Modell entwerfen, evtl. Daten beschat-
fen, Datenverarbeitung im Modell, Interpretieren, Bewerten, Transfers versu-
chen (Winter, 2003, S. 33).

Situation | Vereinfachen> Modell

oo S
/EX Realitat A 2
5 S ARE
g g o
AN o
S8 : HE
g3 Mathematik gide

Losung < Rechnen | Modell

Abb. 3.10 Teilkompetenzen im idealisierten Modellbildungskreislauf

Auch in den Kernlehrplinen von Nordrhein-Westfalen (Ministerium fiir Schule
NRW, 2004) werden einige dieser Prozesse als Teilkompetenzen des Modellie-
rens beschrieben. Dort werden beispielsweise das Mathematisieren, das Validie-
ren und das Realisieren explizit genannt. Mit Hilfe von genaueren Beschreibun-
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gen, die wir hier Indikatoren nennen, wird klargestellt, was unter diesen Teil-
kompetenzen zu verstehen ist. Dieses Verfahren kann auch auf andere Modelle
des Modellierens iibertragen werden. Wir erhalten dann eine umfangreiche
Liste von Teilkompetenzen des Modellierens.

Abb. 3.10 zeigt, wie sich der Prozess der Modellentwicklung aus Vereinfachen
und Mathematisieren zusammensetzt. Das Realisieren ist hier genannt, weil es
auch im Kernlehrplan Nordrhein-Westfalens vorkommt. Diese Kompetenz
scheint zunichst im Kreislaufprozess unndtig zu sein. Sie ist aber beispielsweise
bei der Diskussion von Modellen sinnvoll. Einige Autoren (z. B. Schupp) fih-
ren zwischen Interpretieren und Validieren noch einen Zwischenschritt ein.
Darauf ist hier aus Griinden der Ubersichtlichkeit verzichtet worden (Schupp,
1988, S. 11).

3.1.5 Einige empirische Untersuchungsergebnisse zum
Modellieren

Die Durchfihrung von Modellierungsaktivititen im Unterricht ist vielfach un-
tersucht worden. Dabei interessiert beispielsweise, ob sich Einstellungen von
Lehrenden und Lernenden auf die Modellierungsaktivititen auswirken und ob
die Durchfithrung von Modellierungsaktivititen Einfluss auf die Einstellungen
von Lehrenden und Lernenden zum Modellieren hat. Ebenso sind Unter-
richtsmethoden im Zusammenhang mit Modellierungsaufgaben und die tat-
sichliche Arbeit von Schiilerinnen und Schiilern verglichen mit dem theoreti-
schen Modellierungskreislauf Gegenstand empirischer Forschung.

Einstellungen von Schiilerinnen und Schiilern zu Modellierungsaufga-
ben

Es gibt offenbar relativ festgelegte Einstellungen zu Modellierungsaufgaben bei
Schiilerinnen und Schilern. Maal3 hat unterschiedlichste Beliefs in einer Grup-
pe von 35 Lernenden gefunden. Unter Beliefs versteht man Uberzeugungen
und Auffassungen tiber das Fach Mathematik oder auch das Lehren und Ler-
nen von Mathematik. Maal3 hat die Beliefs in prozessorientierte, schemaorien-
tierte, formalismusorientierte und anwendungsorientierte Beliefs gruppiert.
Auflerdem fand Maal3 sogenannte nicht-fachspezifische Beliefs mit kognitivem
bzw. affektivem Schwerpunkt. Es zeigt sich in dieser Studie, dass Schiilerinnen
und Schiller mit schemaorientierten, formalismusorientierten oder kognitiv
geprigten, nicht fachspezifischen mathematischen Weltbildern Modellierungs-
beispiele vehement ablehnen, wihrend die anderen Gruppen diesen teilweise
positiv oder sehr positiv gegeniiber stehen (Maal3 K. , 2003, S. 51 f.; Maal3 K.,
2005, S. 131 ft).
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Befragt man Schiilerinnen und Schiiler nach geeigneten Anwendungen von
Mathematik, dann werden wirkliche Modellierungsprobleme selten als brauch-
bare, anwendbare Gebiete genannt. Humenberger untersuchte dies im Rahmen
einer schriftlichen Befragung von 491 Schiilerinnen und Schiilern hauptsichlich
der 11. Klasse. Als brauchbare anwendbare Gebiete der Mathematik wurden
am hiufigsten Wahrscheinlichkeitsrechnung, Prozentrechnung, die Grundre-
chenarten und Extremwertaufgaben genannt. Gleichzeitig wurde erhoben, wie
beliebt Mathematik im Vergleich zu anderen Schulfichern ist. Dabei wurde
Mathematik als Lieblingsfach im Vergleich mit anderen Fichern erst an der 7.
Stelle genannt. Die Schilerinnen und Schiiler, die Mathematik als Lieblingsfach
wihlten, zeigten gleichzeitig hoéhere Mathematikleistungen (Humenberger,
1997).

Nicht nur gute Leistungen der Schiilerinnen und Schiiler, sondern auch der
Unterricht mit Modellierungsaktivititen kann die Meinung zum Fach Mathema-
tik allgemein glinstig beeinflussen. Galbraith und Clatworthy haben in Rahmen
einer zweijahrigen Studie zum Modellieren erhoben, dass die durchgefiihrten
Modellierungen die Meinung zum Fach Mathematik deutlich positiv verindert
haben (Galbraith & Clatworthy, 1990, S. 156).

Einstellungen von Studierenden und Lehrenden

Modellierungsprobleme und Anwendungen werden von vielen Lehrerinnen
und Lehrern grundsitzlich positiv gesehen. Es scheint aber noch groB3en Ver-
besserungsbedarf zu geben. Humenberger berichtet von einer schriftlichen
Befragung von 202 Studierenden des Mathematiklehramtes fiir Gymnasien.
Diese nannten als fiir den Mathematikunterricht geeignete auflermathematische
Gebiete am hiufigsten Physik-Technik, Wirtschaft-Handel-Finanzen und In-
formatik. Er befragte auch 174 Lehrerinnen und Lehrer nach ihrer Position zur
Anwendungsorientierung. 58 % der Lehrerinnen und Lehrer gaben an, dass
eine Steigerung der Anwendungsorientierung im Unterricht nétig sei und 85 %
waren der Meinung, dass mit Hilfe von Anwendungsaufgaben auch neuer ma-
thematischer Lernstoff erarbeitet werden kann. Als wichtige Einflussfaktoren
fiir das Ausmal3 an Anwendungen im Unterricht wurden der Lehrstoff und die
Klassensituation angeschen. Fortbildungsangebote und Schulbuchaufgaben
wurden als verbesserungsbediirftig angesechen (Humenberger, 1997).

Wenn Lehrerinnen und Lehrer eine positive Einstellung gegeniiber Anwendun-
gen im Mathematikunterricht haben, dann ist dies hadufig deshalb der Fall, weil
sie sich eine hohere Lernmotivation der Schulerinnen und Schiler erhoffen.
Die aus Sicht des Sachrechnens und Modellierens gewiinschte Umwelterschlie-
Bung scheint dagegen fiir viele Lehrerinnen und Lehrer kein wichtiges Ziel des
Mathematikunterrichts zu sein. So untersuchte Férster Vorstellungen von Leh-
rerinnen und Lehrern im Rahmen einer qualitativen Studie. Dabei zeigte sich
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der Trend, dass die Motivation als dominierendes Argument fir Anwendungen
im Vordergrund steht. Daher spielt bei den befragen Lehrerinnen und Lehrern
die Modellbildung praktisch keine Rolle. Das Fach Mathematik wird in vielen
Fillen in erster Linie als formalbildend angesehen (Férster, 2002, S. 67).

Lehrerinnen und Lehrer sind in vielen Fillen aber an Méglichkeiten des Einsat-
zes von Modellierungsaufgaben im Mathematikunterrich interessiert. Sie sehen
noch einen groBen Bedarf, mehr tiber die Modellierungstitigkeiten und An-
wendungsbeispiele im Mathematikunterricht bereits an der Universitit zu erfah-
ren. Tietze berichtet von einer Befragung in Niedersachsen. Demnach fordern
Gymnasiallehrerinnen und Gymnasiallehrer eine stirkere Berticksichtigung von
Anwendungen der Mathematik in der Hochschulausbildung (Tietze, 1986, S.
191 ff)).

Es scheint schulformspezifische Unterschiede bei Lehrerinnen und Lehrern zur
Einstellung zu Anwendungen im Mathematikunterricht zu geben. Grigutsch et
al. haben tber 300 Mathematiklehrerinnen und Mathematiklehrer zu ihren Ein-
stellungen befragt. Zwei Drittel der Lehrer attestierten darin der Mathematik
einen z. T. starken Anwendungsbezug. Nur 7 % sahen keinen Nutzen in der
Mathematik. Diese Einstellung war allerdings schulformabhingig. Lehrerinnen
und Lehrer an Hauptschulen schitzten die Anwendbarkeit von Mathematik
stirker ein als Lehrerinnen und Lehrer an Realschulen und Gymnasien
(Grigutsch, Raatz, & Torner, 1998).

Priferenzen und Denkstile von Schiilerinnen und Schiilern bei Model-
lierungsaktivitaten

Es gibt Schiilerinnen und Schiiler mit unterschiedlichen Préferenzen fiir Anwen-
dungen in der Mathematik. Maal3 unterscheidet vier Typen von Modellierern
nach der Einstellung gegeniiber der Mathematik bzw. gegeniiber Modellie-
rungsbeispielen. Wihrend der desinteressierte Modellierer, der weder gegentiber
der Mathematik noch gegentiber Modellierungsbeispielen eine positive Einstel-
lung hat, Schwichen in allen Bereichen zeigt, ist es beim reflektierenden Model-
lierer genau umgekehrt. Bei realititsfernen Modellierern liegt eine Schwiche im
Bereich der kontextbezogenen Mathematik vor. Sie haben aber eine positive
Einstellung zur kontextfreien Mathematik. Umgekehrt liegt bei mathematikfer-
nen Modellierern eine Priferenz fiir den Sachkontext und eine Schwiche beim
Bilden und Losen des mathematischen Modells vor (Maal3 K. , 2005, S. 135 £.).

Auch die Denkstile von Schillerinnen und Schiilern haben Einfluss auf die Mo-
dellierungsaktivititen. Borromeo Ferri berichtet, dass Schiilerinnen und Schiler
mit ausgeprigten internen bildlichen Vorstellungen auch extern bildliche Dar-
stellungen anfertigen und einen visuellen Denkstil zeigen. Schilerinnen und
Schiiler mit internen formalen Vorstellungen wurden als eindeutige analytische
Denker beschrieben. Es ergeben sich die Hypothesen (Borromeo Ferri, 2004, S.
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112), dass bildlich ganzheitliche Denker beim Ubersetzen ins mathematische
Modell eher im realen Kontext argumentieren, wihrend symbolisch-
zergliedernde Denker schnell formal argumentieren (Borromeo Ferri, 2003).

Die unterschiedlichen Priaferenzen und Denkstile der Schulerinnen und Schuler
missen im Unterricht berlicksichtigt werden. Schillerinnen und Schiler mit
ablehnender Haltung gegeniiber Modellierungsbeispielen kénnen durch weni-
ger komplexe Modelle in Einstiegsaufgaben langsam herangefiihrt werden,
wihrend reflektierende Modellierer auch gern komplexe Probleme bearbeiten.
Ebenso sollten die unterschiedlichen Denkstile der Schulerinnen und Schiiler
im Unterreicht bertcksichtigt werden und sowohl fiir visuell als auch formal
arbeitende Modellierer Materialien (z. B. Grafiken, Daten etc.) zur Verfliigung
stehen.

Unterrichtformen fiir Modellierungsaktivitdten

Neue Unterrichtsformen kénnen die Arbeit mit anwendungsbezogenen Aufga-
ben erleichtern. So wurden mit verstirkten Schreibaktivititen im Mathematik-
unterricht gute Erfahrungen bezlglich des Kontextbezugs von Losungen ge-
macht. Hollenstein stellt eine Unterrichtsform zur Entwicklung von Schreiban-
lissen im Mathematikunterricht dem traditionellen Lésen von Aufgaben gegen-
tber (n = 42). Dabei wurden in der Experimentalgruppe vergleichsweise weni-
ger hiufig mechanisch-assoziative Muster der Problembewiltigung angewendet
und Strategien, die ein Bemithen um Einsicht in den Kontext bedingen, hiufi-
ger beobachtet. An nicht addquaten Losungen der Kontrollgruppe konnten so
genannte Kapitinssymptome nachgewiesen werden (Hollenstein, 1996).

Die Durchfithrung von Modellierungsaktivititen kann einen positiven Einfluss
auf innermathematische Fihigkeiten haben. Gialamas et al. untersuchten 97
Schiilerinnen und Schiiler eines 11. Jahrgangs. Sie verglichen die Ergebnisse
von Unterricht mit Modellierungsaufgaben mit Unterricht ohne Modellierungs-
aufgaben. In einem Abschlusstest zeigte die Experimentalgruppe nicht nur in
realititsbezogenen Aufgaben, sondern auch in entsprechenden rein mathemati-
schen Aufgaben signifikant bessere Leistungen (Gialamas, Karaliopoulou,
Klaoudatos, Matrozos, & Papastavridis, 1999).

Blum schlieBt aus verschiedenen Untersuchungen, dass Modellierungskompe-
tenz langfristig und gestuft aufgebaut werden muss. Dabei sollte sich die Auf-
gabenkomplexitit begleitet von hiufigen Ubungs- und Festigungsphasen lang-
sam steigern und die Kontexte systematisch variiert werden. Auch heuristische
Fahigkeiten missen parallel aufgebaut werden (Blum, 2007).
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Phasen im Modellbildungskreislauf - eine Untersuchung

Borromeo Ferri beschreibt empirisch gefundene Phasen im Modellbildungs-
kreislauf. Hierbei handelt es sich auBler dem Realmodell, dem mathematischen
Modell, dem mathematischen Resultat und dem realen Resultat noch um die
mentale Reprisentation der Situation. Dabei werden zwei Aspekte betrachtet:
Die Vereinfachung der Situation und die individuelle Priferenz im Umgang mit
dem Problem im Modellbildungsprozess. Dies zeigt, dass die im theoretischen
Modell aufgestellten Modellierungskreisldufe durch empirisch gewonnene Er-
gebnisse erginzt und bestitigt werden konnen. Allerdings sind nicht alle Phasen
im Modellbildungskreislauf immer deutlich zu unterscheiden. So war es insbe-
sondere bei Uberbestimmten Modellierungsproblemen schwierig, Realmodell
und mathematisches Modell zu trennen (Borromeo Ferri, 2006, S. 92).

3.2 Problemlosen

Das Problemldsen stellt wie das Modellieren eine allgemeine bzw. prozessbezo-
gene Kompetenz dar. Setzt man einen Modellierungskreislauf voraus, so kann
man die inhaltbezogenen Kompetenzen im Modellierungskreislauf relativ klar
lokalisieren. Sie spielen im Schritt vom mathematischen Modell zur mathemati-
schen Losung eine besondere Rolle. Das Problemldsen dagegen ldsst sich nicht
so exakt in diesem Kreislauf lokalisieren. Es kann prinzipiell in allen Schritten
cines Modellbildungskreislaufs auftreten.

Problemlésen wird hiufig im Zusammenhang mit Modellieren genannt, da
Modellierungsaufgaben oder Modellierungsproblemse in der Regel fur die Schile-
rinnen und Schiller nicht mit Standardverfahren bearbeitet werden kénnen, also
in diesem Sinne auch Probleme sind. Der Begrift des Problemlisens hingt vom
Verstindnis des Begriffs Problem ab.

Mit Problemen ist hiufig ein weites Feld verschiedener Aufgaben- und Prob-
lemtypen gemeint, denn die Bezeichnung Problem oder offenes Problem wird
nicht einheitlich verwendet (Pehkonen, 2001; Silver, 1995; Graf, 2001). Ein
Problemléseprozess kann auch als Weg von einem Anfangszustand zu einem
Zielzustand beschrieben werden, der durch eine Barriere zunichst verstellt ist

(Klix, 1971, S. 641 fF).

Einige Autoren unterscheiden die Begriffe offene Aufgabe und offenes Prob-
lem. Die Bezeichnung offenes Problem wird von diesen Autoren verwendet,
wenn

Informationen auf fir die Schilerinnen und Schiller neue Weise verkniipft
werden sollen (Pehkonen, 2001),
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die Transformation, d. h. der Weg vom Anfangszustand zum Zielzustand
der Aufgabe, unklar ist (Wiegand & Blum, 1999),

die Transformation keine geldufige Routine ist (Schulz, 2000) oder
der Zielzustand nicht eindeutig ist (Schulz, 2000).

In den anderen Fillen, wenn z. B. lediglich der Anfangszustand nicht genau
beschrieben ist, verwenden diese Autoren die Bezeichnung offene Aufgabe.
Wir verwenden einen weiten Aufgabenbegriff, der die offenen Probleme ein-
schlieBt. Unter Problemldsen wird hier also der Prozess der Lésung von offe-
nen Problemen oder offenen Aufgaben verstanden.

3.2.1 Modelle des Problemlosens

Polya entwickelte 1949 in seinem Buch Schule des Denkens einen Katalog heuris-
tischer Fragen, die bei der Bearbeitung von Problemléseaufgaben helfen sollen.
Dabei wird der Problemléseprozess in die folgenden Abschnitte eingeteilt
(Polya, 1949):

Verstehen der Aufgabe
Ausdenken eines Planes
Ausfiithren des Planes

Rickschau

Tabelle 3.2 Struktur von Problemléseprozessen

Garofalo
Pol hoenfel .
olya Schoenfeld und Cai
Verstehen der Aufgabe Lesen Orientierung
Analysieren
Ausdenken eines Planes Exploration Organisation
Planung
Ausfiihren des Planes Ausfiihrung Ausflihrung
Verifikation
Rickschau Priifung

Ubergang
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In der Literatur findet man schr viele Strukturierungen von Problemléseprozes-
sen. Exemplarisch ist die Grobstruktur von Problemldseprozessen von Polya
(Polya, 1949), Schoenfeld (Schoenfeld, 1985) und Garofalo (Garofalo & Lester,
1985) bzw. Cai (Cai, 1994) in Tabelle 3.2 dargestellt.

Bezogen auf den Modellierungsprozess, der auch als Problemldseprozess im
weiteren Sinne angeschen werden kann, findet das Problemldsen im engeren
Sinn dann schlieBlich im Rahmen des mathematischen Modells statt (Biichter &
Leuders, 2005, S. 30). Wir sechen die gesamte Bearbeitung von Problemen bzw.
Aufgaben als Problemléseprozess an und betrachten bereits die Schaffung des
Modells als Teil eines Probleml6seprozesses.

3.2.2 Problemlosekreislauf

Nicht nur Modellbildungsprozesse, sondern auch Problemldseprozesse kénnen
als Kreislauf dargestellt werden. Hier sind insbesondere das Finden von Bewei-
sen oder Widerlegungen mit heuristischen Mitteln nach dem Lakatos-Modell (s.
Abb. 3.11) und die Schritte von Polya zu nennen.

Vermutung >
Naives Erproben
> > Beweis
A A > Widerlegung
Als Resultat eines P L
lokalen Gegenbeispiels [ < Umformulierung
Als Resuitat eines

A

A

globalen Gegenbeispiels

Abb. 3.11 Lakatos-Modell (Davis & Hersh, 1986, S. 306)
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Das Lakatos-Modell ist fiir das Sachrechnen zwar nur bedingt von Bedeutung,
da Beweise in der Regel im Rahmen des Sachrechnens nicht gefithrt werden,
dennoch zeigt dieses Modell sehr schén die den Modellbildungs-Kreisldufen
analoge Kreislauf-Struktur von Problemléseprozessen.

Entsprechend dem Lakatos-Modell kann auch der Problemléseprozess nach
Polya als Kreislauf dargestellt werden (s. Abb. 3.12).

Plan

ausdenken

Aufgabe Plan
Plan
Aufgabe ausfithren
verstehen

Aufgabe Lésung

Rickschau

Abb. 3.12 Problemldsekreislauf in Anlehnung an Polya

Dieser Kreislauf kann bereits Schiilerinnen und Schillern in der Sekundarstufe 1
als Hilfe bei Problemldseaufgaben an die Hand gegeben werden. Wir wihlen
dazu als Beispiel eine Aufgabe, die auch als einfache Modellierungsaufgabe
angeschen werden kénnte. Wir wollen hier aber den Aspekt des Probleml6sens
in den Vordergrund stellen.

Stefan startet um 7:15 Uhr seinen Schulweg. Die Schule ist 2,5 Kilometer
entfernt. Kurz danach bemerkt seine Mutter, dass er sein Frithstiick ver-
gessen hat, und fahrt um 7:25 Uhr mit dem Fahrrad hinterher. Stefan
lauft etwa 100 Meter pro Minute. Die Mutter fahrt ca. 250 Meter pro Mi-
nute. Wann bekommt Stefan sein Friuhstiick?

Der erste Schritt ist das [erstehen der Aufgabe. Hier fragen die Schillerinnen und
Schiiler, was die wesentlichen Informationen sind und was unbekannt ist. Zu
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den wesentlichen Informationen gehért die Entfernung der Schule, die Ge-
schwindigkeiten von Stefan und seiner Mutter. Unbekannt dagegen ist die Zeit,
zu der sich Stefan und seine Mutter treffen.

Der zweite Schritt im Probleml6sekreislauf ist das Awusdenken eines Plans. Der
Plan kann in diesem Fall darin bestehen, die Informationen des Textes mit
Hilfe von Termen darzustellen und fir die unbekannte Grof3e eine Variable zu
verwenden. Die Zeit, die die Mutter mit dem Fahrrad fahrt, wird x (in Minuten)
genannt. Stefan startet zehn Minuten eher, er legt also die Strecke (x + 10) - 100
Meter zuriick, wihrend seine Mutter x - 250 Meter zuriicklegt. An der Stelle, wo
sich Stefan und seine Mutter treffen, haben sie genau die gleiche Strecke zu-
rickgelegt, d. h. der Weg, den Stefan nach 10 + x Minuten zuriickgelegt hat,
entspricht dem Weg, den die Mutter in x Minuten zuriickgelegt hat. Wir kénnen
dann beide Terme gleichsetzen und erhalten

(x + 10) - 100 = x - 250.

Der nichste Schritt ist das Durchfiibren des Plans. Dies bedeutet in diesem Fall,
dass die aufgestellte Gleichung gel6st wird. Dies geschieht durch eine dquiva-
lente Umformung der Gleichung:

(x +10) - 100 = x - 250
100 - x + 1000 = 250 - x

1000 = 150 - x
)

3
x = 6,7

Stefan und seine Mutter treffen sich also etwa 7 Minuten nach dem Start der
Mutter.

Der vierte und letzte Schritt ist die Riickschan. Hier ist zunichst zu tbetlegen,
ob das Ergebnis sinnvoll und plausibel ist. Nach 17 Minuten hat Stefan 17 - 100
= 1700 Meter zuriickgelegt. Er ist also noch nicht an der Schule angekommen,
da diese 2500 Meter entfernt ist. In 7 Minuten kann man auch ca. 1,7 Kilometer
mit dem Fahrrad fahren. Das Ergebnis ist somit sinnvoll. Setzt man das gerun-
dete Ergebnis in beide Terme ein, so erhilt man

20 2
(?+ 10) +100 = 1666
bzw.

20 2
5 250 = 1666+
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Die Probe liefert ein korrektes Ergebnis. Der Antwortsatz kénnte lauten: Ste-
fan und seine Mutter treffen sich etwa 7 Minuten nach dem Start der Mutter.
Um 7:32 Uhr bekommt Stefan sein Fruhstick.

Tabelle 3.3 Problemléseprozess

Schritt

Fragen

Beispiel

Verstehen der
Aufgabe

Was ist wesentlich?

Was ist unbekannt?

Stefan: 100 m/Min; Start 7:15
Uhr

Mutter 250 m/Min; Start 7:25
Uhr

Entfernung 2,5 km

Zeit des Treffens ist
unbekannt.

Ausdenken eines
Plans

Wie kann ich die
Informationen verarbeiten?

z. B.: Kann ich Terme
aufstellen?

(x +10) ¢ 100 = x  250.

x (in Min.) ist die Zeit nach
dem Start der Mutter

Durchfiihren des

z. B.: Kann ich die Gleichung

100 e x + 1000 = 250 ¢ x

Plans losen? x =20/3
X = 6,7
Riickschau Ist das Ergebnis plausibel? Das Ergebnis ist plausibel.
Kann man eine Probe (? + 10) -100 = 23—0 - 250
durchfiihren? Um 7:32 Uhr bekommt Stefan
Wie lautet der Antwortsatz? sein Fruhstick.
3.2.3 Problemldsestrategien

Da sich Probleme gerade dadurch auszeichnen, dass man zunichst keinen Lo-
sungsweg zur Verfiigung hat, ist es besonders schwierig, Strategien zur Losung
von Problemen anzugeben, die fur alle Probleme Giltigkeit haben. Dies zeigt
bereits das Beispiel mit dem Schulweg. Dort wird auf die in der Situation még-
liche Lésung mit Hilfe einer Gleichung verwiesen. Dies kann aber keine allge-
meine Anweisung zur Lésung von Problemen sein.

Man kann also nur eine Liste von Méglichkeiten angeben, die helfen kénnten,
ein solches Problem zu 16sen. Welche dieser Strategien dann tatsichlich auch
erfolgreich eingesetzt werden kann, hingt zum einen vom konkreten Problem
und zum anderen von den Schiilerinnen und Schiilern ab. Polya hat einige
grundsitzliche Prinzipien fiir das Losen von Problemen zusammengestellt
(Polya, 1964). Dazu zihlen Rationalitit, Okonomie und Durchhalten. Gemeint ist



64 | 3 Modellieren und Problemlésen

damit, dass Schiilerinnen und Schiiler nicht ohne Begriindungen arbeiten sollen

und méglichst alle zur Verfligung stehenden Informationen nutzen sollen. Au-
Berdem soll man nicht zu frith aufgeben.

Leuders formuliert Problemldsestrategien schiilergerecht fiir die Sekundarstu-
fe I (Leuders, 2003, S. 134). Wir stellen daraus im Folgenden eine Auswahl
zusammen (s. Tabelle 3.4). Daran wird deutlich, was Problemldsestrategien
leisten kénnen und wie damit gearbeitet werden kann.

Tabelle 3.4 Problemldsestrategien

Name

Erkldrung

Alternativen suchen

Analogien bilden

Aufteilen

Darstellungswechsel

Muster suchen

Probieren

Riuckwartsarbeiten

Spezialfdlle suchen

systematisches
Vergleichen

Vereinfachen

vollig anderen Ansatz wahlen, um das Problem zu l6sen

Ubertragung von einer bekannten Situation auf eine andere
Situation

Zerlegen eines Problems in Teilprobleme

Darstellung von Informationen in einer anderen Form, z. B.
als Bild, Tabelle oder Formel

nach RegelméaRigkeiten und Wiederholungen suchen

Durchprobieren von moglichen Zahlenwerten und
Beobachten der Ergebnisse

ausgehend von einer Losung zur Problemstellung finden

Suchen besonderer Falle und Ziehen von Riickschlissen fur
das Problem

Gemeinsamkeiten und Unterschiede von zwei Situationen
feststellen und daraus Schliisse ziehen

Weglassen von Bedingungen, um das Problem zu reduzieren

Voraussetzungen Veranderung der Voraussetzungen, um Auswirkungen zu
variieren erkunden
3.2.4 Problemlésen und Modellieren - eine Fallstudie

Im Rahmen einer Fallstudie wurden Schiilerinnen und Schiiler bei der Bearbei-
tung von Modellierungsaufgaben beobachtet. Diese Beobachtungen wurden
unter Probleml6se- und Modellbildungsgesichtspunkten ausgewertet.

Wir betrachten dazu die gesamte Bearbeitung von Modellierungsproblemen
sowohl als Problemlése- wie auch als Modellierungsprozess. So wird beispiels-
weise die Schaffung des Modells nicht nur aus der Sicht des Modellierens, son-
dern auch aus der Sicht eines Planungsprozesses im Rahmen des Probleml6-
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sens angesehen. Sehr grob betrachtet und idealisiert kann man sich Modellbil-
dungs- und Problemldseprozesse — wie in der folgenden Tabelle parallel darge-
stellt — vorstellen.

Tabelle 3.5 Modellbildungs- und Problemldseprozesse

Modellbildungsprozess Problemldseprozess
Analysieren Verstehen der Aufgabe
Vereinfachen Planen
Mathematisieren Verstehen der Aufgabe
Planen
Ausfiihren
Riickschau
Daten verarbeiten Ausfihren

Verstehen der Aufgabe

Planen
Ausfihren
Rickschau
Interpretieren
Validieren Rickschau

Dabei konnen einzelne Schritte des Modellierens, wie hier das Mathematisieren,
evtl. einen weiteren Teil-Problemldseprozess bendtigen, der in der Tabelle ein-
gertickt dargestellt ist.

Fir die Untersuchung wurden offene Aufgaben mit Realititsbezug verwendet.
Schiilerpaare bearbeiteten beispielsweise eine Aufgabe, bei der der Preis fiir das
Verputzen eines Hauses mit Hilfe von Fotos der entsprechenden Flichen be-
stimmt werden sollte (Greefrath, 2007, S. 58 f.). Eine mégliche Losung dieser
Aufgabe besteht darin, mit Hilfe von Stiitzpunktvorstellungen Lingen oder
Flichen zu schitzen und auf dieser Grundlage ein Modell fiir das Haus zu ent-
wickeln, um schlieBlich den Preis fiir das Verputzen zu ermitteln.

Die Arbeit der Schiilerinnen und Schiiler an den Aufgaben wurde videografiert.
Um die Lésung der Aufgaben nicht zu beeinflussen, wurden die Schiilerinnen
und Schiiler bei der Bearbeitung der Aufgaben lediglich beobachtet.

Zur Auswertung der Beobachtungen wurden die Videos komplett transkribiert.
Im Rahmen eines offenen Kodierens mit drei Ratern wurden den einzelnen
AuBerungen der Schiilerinnen und Schiilern konzeptuelle Bezeichnungen zuge-
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ordnet, die in mehreren Durchgingen diskutiert und modifiziert wurden. Diese
Bezeichnungen wurden anschlieBend zu Kategorien zusammengefasst (Corbin
& Strauss, 1996, S. 43 tf)). Die entwickelten Kategorien sind: Planung, Daten-
beschaffung, Datenverarbeitung und Kontrolle. Abschnitte, die keiner der ge-
nannten Kategorien zugeteilt werden konnten, wurden einer sog. Restkategorie
zugeordnet. Diese Restkategorie hat einen maximalen Anteil von 5 % der Ko-
dierungen je Beobachtung. Die Wahl von nur fiinf Kategorien ist erfolgt, um
cine reliable Kodierung der Beobachtungen durch unterschiedliche Rater zu
erméglichen. Die im Problemldseprozess zentralen Kategorien Planung und
Kontrolle sind dann auf wichtige Bausteine untersucht worden.

Insbesondere interessieren Bausteine von Planungs- und Kontrollprozessen,
die von besonderer Bedeutung fiir die Lésung von Modellierungsaufgaben sind
und hdufiger in den Beobachtungen der Schiilerinnen und Schiiler vorkommen.
Wir betrachten die in der Abbildung dargestellten zentralen Bausteine von Pla-
nungs- und Kontrollprozessen (s. Abb. 3.13).

Mathematik
Daten-
verarbeitung
Daten-
beschaffung [ I
Planung Kontrolle

Abb. 3.13 Bausteine von Planungs- und Kontrollprozessen

Es zeigt sich, dass Problemlése- und Modellierungsprozesse ineinander ver-
schrinkt auftreten. So wiirde ein Planungsprozess zum Problemldsen gezihlt
werden. Innerhalb dieser Planung findet man aber die Entwicklung von Teil-
modellen und hiufige Wechsel zwischen Realitit und Mathematik. Dies sind
Phasen, die durch einen Modellbildungsprozess dargestellt werden. Auch die
Orientierungsphase kann mit dem Situationsmodell des Modellierungskreislaufs
von Blum und Leif3 in Verbindung gebracht werden. Weitere Verschrinkungen
von Problemldse- und Modellbildungsprozessen findet man bei der Kontrolle.
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Hier wiirde der entsprechende Schritt im Modellierungsprozess mit Validieren
bezeichnet werden und im Problemléseprozess mit Riickschau. Die gefunde-
nen Bausteine zeigen, dass tatsichlich beide Beschreibungen hier zutreffend
sind. Es ist also zum einen eine Frage der Sichtweise und zum anderen eine
Frage des Zwecks, ob jeweils ein Modellbildungs- oder ein Problemlésekreis-
lauf zugrunde gelegt werden. Eine umfassende Beschreibung einiger Probleme
gelingt nur, wenn beides in den Blick genommen wird (Greefrath, 2008).

3.3 Aufgaben zur Wiederholung und Vertiefung

Modellieren und Problemldsen
Betrachten Sie die folgende Beispielaufgabe (s. Abb. 3.14).

Der Container soll bis zur Ladekante geflllt werden. Wie viel Sand passt
in den Container?

T N

) -

1. Beschreiben Sie wesentliche Phasen eines Modellierungsprozesses.

2. Betrachten Sie erneut die oben abgebildete Aufgabe. Notieren Sie mdgliche
Losungsschritte dieser Aufgabe im Sinne des Modellbildungskreislaufs von
Blum (Blum, 1985) bzw. von Fischer und Malle (Fischer & Malle, 1985).

3. Beschreiben Sie Unterschiede und Gemeinsamkeiten der beiden Modellie-
rungskreisliufe aus Teil 2 im konkreten Beispiel. Erkliren Sie auch die Un-
terschiede der beiden Modelle des Modellierens aus Teil 2 allgemein.

4. Stellen Sie eine mégliche Aufgabenlésung der Container-Aufgabe als Prob-
leml6éseprozess dar.
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5. Diskutieren Sie mit Hilfe von 2. und 4. am konkreten Beispiel Gemeinsam-
keiten und Unterschiede von Modellbildungs- und Problemléseprozessen.

6. Bestitigen oder widerlegen Sie die folgenden Behauptungen:
- Problemldsen ist immer auch Modellieren.
- Modellieren ist immer auch Problemlosen.



4 Aufgabentypen beim
Sachrechnen

Im Mathematikunterricht allgemein und im Sachrechenunterricht speziell spie-
len Aufgaben eine grole Rolle. Die Betrachtung von einzelnen Aufgaben hat
nicht den Anspruch, einen ausreichenden Blick auf die Gestaltung des Unter-
richts, die Planung eines Schuljahres oder weiterfithrende didaktische Uberle-
gungen zu ersetzen. Aufgaben sind im Prinzip die kleinsten Einheiten fiir Uber-
legungen zum Mathematikunterricht. Sie stellen aber gleichzeitig eine anschauli-
che und allgemein anerkannte Diskussionsgrundlage fiir Mathematikunterricht
dar (Biichter & Leuders, 2005, S. 7).

Eine Typisierung von Aufgaben hat unterschiedliche Funktionen. So kénnen
beispielsweise aus Sicht von Lehrerinnen und Lehrern unter Berticksichtigung
der Bildungsstandards (Blum, Dritke-Noe, Hartung, & Koéller, 2006) Aufgaben
im Hinblick auf ihren mathematischen Inhalt, ihren Schwierigkeitsgrad oder auf
die mdgliche Motivation durch ihren Kontext oder ihre Prisentationsform
strukturiert und gezielt im Unterricht eingesetzt werden. Aufgaben kénnen
auch genutzt werden, um Lehrenden und Lernenden zu erreichende Kompe-
tenzen, wie beispielsweise das Problemlsen oder das Modellieren, zu verdeut-
lichen. Ebenso werden Aufgaben fiir Forschungsprojekte klassifiziert (Jordan,
et al., 2008).

Wir stellen hier unterschiedliche Aufgabentypen vor, die abhingig von der Situ-
ation genutzt werden kénnen. Nicht alle Einordnungen sind eindeutig. Aufga-
ben kénnen auch zu mehreren Kategorien gehéren oder Mischformen darstel-
len. AuBerdem kann die konkrete Unterrichtssituation, die Art der Bearbeitung
oder die Person des Lernenden tber den Aufgabentyp mitentscheiden.

Eine Klassifikation von Sachaufgaben ist auf Grund der Vielzahl von Aspekten,
die das Sachrechnen bietet, schwierig. Beispielsweise sind Sachaufgaben hiufig
Textaufgaben, gof. mit weiteren Informationen wie z. B. Bild, Tabelle etc. Aber
nicht jede Textaufgabe ist eine Sachaufgabe, wie das folgende Beispiel zeigt.

Das Dreifache einer Zahl ist um 5 kleiner als das Sechsfache der Zahl. Um
welche Zahl handelt es sich? (Losung: x = 5/3)
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Es handelt sich zwar um eine Textaufgabe. Da aber kein Umwelt- oder Reali-
titsbezug vorhanden ist, handelt es sich nicht um eine Aufgabe aus dem Be-
reich des Sachrechnens. Eine erste Charakterisierung von Sachaufgaben als
Textaufgaben ist also nicht erfolgreich. Wir werden im Folgenden unter ande-
rem mathematische, kontextuelle und prozessorientierte Kriterien zur Charak-
terisierung von Sachaufgaben vorstellen.

4.1 Mathematische Kriterien

4.1.1 Mathematische Inhalte

Aufgaben mit Bezug zur Realitit kénnen das ganze Spektrum der mathemati-
schen Inhalte der Sekundarstufe I abdecken. Daher ist es sinnvoll, Aufgaben
nach den in der Sekundarstufe I zu unterrichtenden mathematischen Inhalten

Arithmetik und Algebra
Geometrie
Stochastik

zu unterteilen. Ahnlich wie beispielsweise in den Kernlehrplinen Nordrhein-
Westfalens fiir die Sekundarstufe I (Ministerium fir Schule NRW, 2004) konnte
noch ein Inhaltsbereich Funktionen hinzugefiigt werden. Diesen Bereich wollen
wir hier — wie auch Vollrath — zur Algebra zidhlen (Vollrath, 2003). Bei vielen
Aufgaben aus Schulbtchern ist die Zuordnung zu diesen Inhaltsbereichen nicht
schwierig, da die meisten Schulbtcher eher inhaltsorientierte Kapitel enthalten.

Welche Ergebnisse kdnnen beim Drehen
des Gliicksrads erzielt werden? Gib die
Wahrscheinlichkeit der Ergebnisse an.
Welche Ergebnisse gehdren zu dem Ereig-
nis ,,gelb oder blau® bzw. ,,griin und gerade
Zahl*? Bestimme die Wahrscheinlichkeit
dieser Ergebnisse.

Nenne ein Ereignis, das mit Sicherheit ein-
tritt und ein Ereignis, das auf keinen Fall
eintritt.

Abb. 4.1 Sachaufgabe zur Stochastik (Kietzmann, et al., 2004, S. 46)



In einem Elektrofachmarkt werden
altere CDs besonders giinstig angebo-
ten.

Anzahl der CDs Preis (€)
iy 1 1,50
2 3,00
3 4,50
4 600 |
e 5 750
6 900
7
8
- 10 - )
10

4.1 Mathematische Kriterien | 71

a) Vergleiche den Preis fiir zwei CDs mit
dem Preis fiir vier CDs (sechs CDs). Was
féllt dir auf?

b) Gib die fehlenden Preise an. Nenne
unterschiedliche Mdglichkeiten zur
Berechnung.

Abb. 4.2 Sachaufgabe zur Arithmetik und Algebra (Herling, Kuhlmann, & Scheele, Ma-

thematik 7, 2008, S. 13)

[A In unserer Umwelt finden wir zahlreiche,
meist nur annihernd symmetrische Figuren.
a) Welche Abbildungen sind zumindest anni-

hernd achsensymmetrisch?

b) Finde weitere achsensymmetrische Figu-

ren/Gegenstinde.
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Abb. 4.3 Sachaufgabe zur Geometrie (Ausschnitt) (Schneider, Stindl, & Schonthaler,
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Mehr als 600 000 Kiirbisse 300 verschiedener Sorten sind bis zum 5. Novem-
ber in Ludwigsburg zu sehen. Die kleinsten Exemplare sind so groB wie eine
Kinderfaust, die groiten haben fast einen Meter Durchmesser. Fantasiereich
sind die Namen der Gewichse: Big Max, Sweet Mama, Baby Boo, Manda-
rin, Halloween oder Uchiki Kurit. Stiddeutsche Zeitung, Oktober 2000

8 a) Wie hoch sind die Kiirbispyramiden
ungefahr?

b) Wie viele Kiirbisse werden ungefihr fiir
eine Pyramide benétigt?

¢) Fiir wie viele solcher Pyramiden reicht
die angegebene Anzahl?

Abb. 4.4 Sachaufgabe zur Geometrie sowie Arithmetik und Algebra (Boer, et al., mathe
live 9, 2002, S. 169)

Es gibt auch Aufgabenbeispiele, die inhaltsiibergreifend einzuordnen sind. Die
abgebildete Sachaufgabe zur Kirbispyramide (s. Abb. 4.4) stellt — abhingig von
der gewihlten Lésung — eine Mischform aus Geometrie sowie Arithmetik und
Algebra dar. Pyramiden zihlen zur Geometrie, wihrend die Berechnungen der
Anzahl zur Arithmetik gehdren. Ggf. konnte die Lésung sogar mit algebrai-
schen Mitteln erarbeitet werden.
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4.1.2 Sachaufgaben und Gleichungen

Vollrath betrachtet Probleme mit Sachaufgaben im Zusammenhang mit Aufga-
ben zu Gleichungen, die nach seiner Einschitzung bei Schiilerinnen und Schi-
lern besonders gefiirchtet sind. Die besondere Schwierigkeit bei Aufgaben die-
ses Typs ist das Finden des Ansatzes, also der Gleichung. Hier sieht Vollrath
(Vollrath, 2003, S. 207 ff.) zwei wesentliche Strategien:

Die gesuchte Grofle wird mit x bezeichnet, und damit werden Terme zu-
sammengesetzt, die dann zueinander in Relation gesetzt werden.

Es werden Relationen erkannt, die dann mit Hilfe von Termen ausgedriickt
werden.

Sachaufgaben zu Gleichungen sind hiufig nicht sehr realistisch und haben oft
ausschlieBflich das Ziel, das Aufstellen und Lésen von Gleichungen zu tben.
Besonders diese Art von Aufgaben zu Gleichungen kann besonders leicht und
schnell fir den Mathematikunterricht entwickelt werden. Die Aufgaben sollten
aber einen echten Kontextbezug haben und einen wirklichen Modellbil-
dungsprozess fordern, um Schwierigkeiten im Umgang mit realen Kontexten
und einem falschen Bild von Mathematik vorzubeugen. Dies stellt allerdings
hohere Anforderungen an Aufgabenentwicklung und Unterricht.

4.2 Offene Aufgaben

4.2.1 Anfangszustand, Transformation und Zielzustand

Es gibt verschiedene Klassifizierungen von offenen Aufgaben, von denen hier
nur auf die von Bruder, Biichter & Leuders und Wiegand & Blum hingewiesen
werden soll (Bruder, 2000; Bruder, 2003; Bichter & Leuders, 2005; Wiegand &
Blum, 1999; Blum & Wiegand, 2000). Alle diese Klassifizierungen nutzen die
aus der Problemldsepsychologie bekannte Beschreibung eines Problems durch
Anfangszustand, Zielzustand und eine Transformation, die den Anfangs- in den Ziel-
zustand Uberfihrt (Klix, 1971).

Offene Aufgaben werden dabei nach Klarheit von Anfangs- und Zielzustand
sowie nach Klarheit und Mechrdeutigkeit der Transformation eingeteilt. Die
oben genannten Autoren kommen dabei zu unterschiedlichen Klassifikationen,
die hier nicht im Einzelnen diskutiert werden sollen. Wir bezichen uns speziell
auf die von Wiegand und Blum vorgestellte Typisierung, die sechs Typen unter-
scheidet (s. Tabelle 4.1).
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Tabelle 4.1 Klassifizierung offener Aufgaben (Wiegand & Blum, 1999)

Typ Anfangszustand Transformation Zielzustand
Typ 1 unklar unklar unklar
Typ 2 unklar unklar klar
Typ 3 klar unklar unklar
Typ 4 klar unklar klar
Typ 5 klar klar unklar
Typ 6 klar klar klar

Bruder unterscheidet acht Aufgabentypen. Sie unterscheidet die Anfangs- und
Endsituation allerdings durch die Begriffe vorgegeben und nicht vorgegeben. Dies
fihrt zu einer etwas anderen Akzentsetzung (s. Tabelle 4.2).

Tabelle 4.2 Klassifizierung offener Aufgaben (Bruder, 2003)

Name Anfangssituation Transformation Endsituation
vollstandig geloste
Aufgabe vorgegeben vorgegeben vorgegeben
Grundaufgabe vorgegeben vorgegeben nicht vorgegeben
Umkehrung einer .

nicht vorgegeben vorgegeben vorgegeben

Grundaufgabe

Bestimmungsaufgabe

vorgegeben

nicht vorgegeben

nicht vorgegeben

Umkehrung einer
Bestimmungsaufgabe

nicht vorgegeben

nicht vorgegeben

vorgegeben

Strategiefindungs-
oder Begriindungs-
aufgabe

vorgegeben

nicht vorgegeben

vorgegeben

Eigenkonstruktionen
- Anwendungen
finden

nicht vorgegeben

vorgegeben

nicht vorgegeben

offene
Aufgabensituationen

nicht vorgegeben

nicht vorgegeben

(nicht
vorgegeben)
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Die Tabellen zeigen, dass Blum und Wiegand mit ##&lar etwas anderes meinen
als Bruder mit #icht vorgegeben. Blum und Wiegand betrachten die Sicht der Leh-
renden, Bruder die Sicht der Lernenden.

Vergleicht man beispielsweise Typ 5 aus Tabelle 4.1 mit der Grundaufgabe aus
Tabelle 4.2, so ist im ersten Fall auch fiir den Lehrer das Ergebnis der Aufgabe
unklar. Er kann nicht alle Lésungen kennen, denn es gibt keine eindeutige L6-
sung. Bei der Grundaufgabe dagegen ist die Lsung der Aufgabe fiir den Schii-
ler zwar nicht bekannt, die Losung existiert aber eindeutig, und sie ist dem Leh-
rer bekannt.

Wir wollen hier die Typisierung aus Tabelle 4.1 noch etwas ausweiten. Man
erhilt dann folgende Liste von Aufgabentypen unter Berticksichtigung der Of-
fenheit von Anfangs- und Zielzustand sowie Transformation.

Tabelle 4.3 Klassifizierung offener Aufgaben (Greefrath, 2004)

Typ der offenen Aufgabe = Anfangszustand  Transformation Zielzustand
Problemsituation unklar unklar unklar
unscharfes Problem unklar unklar klar
Interpretationsproblem klar unklar unklar
Strategiefindungsproblem klar unklar klar
Interpretationsaufgabe klar klar unklar
einfache offene Aufgabe klar klar klar
Aufgabe erfinden unklar klar unklar
Anfangssituation erfinden unklar klar klar

Dabei muss zu den einfachen offenen Aufgaben — wie auch bei Wiegand und
Blum — angemerkt werden, dass hier eine klare, aber mehrdeutige Transforma-
tion gemeint ist, da es sich sonst nicht mehr um eine offene Aufgabe handeln
wiirde.

Als Beispiel wollen wir hier eine Aufgabe vom Typ unscharfes Problem be-
trachten. Dieser Typ umfasst Aufgaben mit unklarer Ausgangssituation, aber
eindeutiger Fragestellung. In diesem Beispiel (s. Abb. 4.5) ist durch die Fotos
nur eine unklare Ausgangssituation gegeben, da genaue Informationen zu dem
Problem nicht vorliegen. Die Fragestellung beschreibt allerdings den Zielzu-
stand klar, da genau benannt ist, was bestimmt werden soll. Die Transformati-
on, also der mogliche Weg zum Erreichen des Zielzustandes, wird ebenfalls
durch die Aufgabenstellung nur angedeutet und ist somit ebenfalls unklar.
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Abb. 4.5 Beispielaufgabe: Was kostet das Verputzen dieses Hauses?

4.2.2 Uberbestimmte und unterbestimmte Aufgaben

Aufgabentexte oder Aufgabenstellungen kénnen Angaben enthalten, die zur
Lésung der Aufgabe nicht erforderlich sind. In einem solchen Fall spricht man
von einer ziberbestimmten Aufgabe. Zech spricht hier von erhéhter Abstraktions-
anforderung (Zech, 1998, S. 328). Ein Beispiel fiir eine solche Aufgabe ist eine
Frage zu einem Sachtext, aus dem nur einige Informationen zur Lésung der
Aufgabe verwendet werden miissen. Moglich wire auch noch der Fall, dass die
Informationen nicht exakt zueinander passen und je nach Auswahl unterschied-
liche Ergebnisse liefern.

Ebenso ist der umgekehrte Fall denkbar, bei dem die Aufgaben nicht alle In-
formationen enhalten, die zur Losung bendtigt werden. Das ist beispielsweise
bei unscharfen Problemen der Fall, bei denen der Anfangszustand unklar ist. In
solchen Fillen spricht man von einer unterbestimmten Aunfgabe. Dann miissen die
fehlenden Informationen beispielswiese durch Alltagswissen, Schitzen oder
eine Recherche ermittelt werden.

4.2.3 Schatzaufgaben

Bei der Bearbeitung von unterbestimmten Aufgaben spielt hiufig das Schitzen
zur Datenbeschaffung eine grofle Rolle. Schdtzen wird zur Ermittlung von Ni-
herungswerten fiir reale Daten verwendet. Im Unterschied zum Raten, wobei
GréBen ohne Vergleich mit bekannten GréBlen ermittelt bzw. erfunden wet-
den, wird beim Schitzen ein gedanklicher Vergleich mit bekannten Gréfien
durchgefiihrt. Solche bekannten GréBlen sind die Stiitzpunktvorstellungen der
Schiilerinnen und Schiiler. Dazu kann beispielsweise gehéren, dass eine Tir in
der Regel eine Hohe von 2 m oder ein DIN A4-Blatt eine Breite von 21 cm hat.
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Falls der Schitzwert als Intervall von kleinst- und gréBtméglichem Wert be-
stimmt wird, spricht man von Abshditzen. Wihrend beim Schitzen und Ab-
schitzen ein gedanklicher Vergleich vorliegt, wird beim Messen mit Hilfe von
Messinstrumenten ein direkter Vergleich mit einer festgelegten Einheit durch-
gefithrt. Das Messen ist daher in den meisten Fillen das genauere Verfahren.
Allerdings sind nicht alle GréBen auch tatsichlich dem Messen zuginglich bzw.
ist nicht immer ein entsprechendes Messinstrument vorhanden.

Der Schwierigkeitsgrad einer Schitzaufgabe hingt von verschiedenen Faktoren
ab. Diese sind zum einen individuelle Faktoren, wie das vorhandene Stiitz-
punktwissen der Schulerinnen und Schiiler, und zum anderen Faktoren der
Schitzaufgabe selbst. So spielt die Anzahl der gleichzeitig zu schitzenden Gro-
Ben genauso eine Rolle wie die Darstellung dieser Grofen.

Wie viele Kiirbisse wachsen auf einem Kiirbisfeld?

Abb. 4.6 SchatzgroRe nicht als Foto, sondern nur gedanklich vorhanden

Auf dem Foto ist ein Ausschnitt eines Kirbisfeldes zu sehen. Wie viele
Kirbisse wachsen auf einem ganzen Kiirbisfeld?

Abb. 4.7 SchatzgroRe als Foto vorhanden
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Bei der zweiten Kurbis-Aufgabe (Abb. 4.7) ist die SchitzgréBe als Foto vor-
handen. Die SchitzgréBen in der ersten Kiirbis-Aufgabe (Abb. 4.6) sind nicht
gegenstindlich vorhanden, sie existieren zum Zeitpunkt der Aufgabenstellung
nur gedanklich. Anders wire das etwa, wenn die Schulklasse zur Bearbeitung
dieser Aufgabe zu dem Feld mit den Kiirbissen gehen wiirde und dort die
Uberlegungen mit direktem Vergleich unterstiitzen kénnte. Fiir die Darstellung
der Schitzgrofe gibt es also im Prinzip die Méglichkeiten, dass sie als Gegen-
stand, als Foto oder nur gedanklich vorliegen. Um eine Schitzaufgabe handelt
es sich aber nur, wenn der Gegenstand oder das Foto nicht zum direkten Mes-
sen benutzt wird bzw. werden kann.

Die Anzahl der zu schitzenden GréBen beeinflusst ebenfalls den Schwierig-
keitsgrad von Schitzaufgaben. In einer einfachen Schatzanfgabe wird nur eine
GroBe gesucht. Die kénnte beispielsweise eine Schitzaufgabe zur Linge eines
Traktoranhidngers sein.

Wie lang ist ein Traktoranhdanger?

In diesem Beispiel ist nur eine Linge zu schitzen. Dies kann z. B. durch den
gedanklichen Vergleich mit bekannten KoérpermalBlen oder der Reifengrof3e
geschehen. Der Erfolg solcher Vergleiche hingt vom Stiitzpunktwissen der
Schiilerinnen und Schiiler ab. Eine Schwierigkeit dabei ist, dass nicht alle An-
hinger die gleiche Linge haben. Hier muss also ein Durchschnittswert ermittelt
werden, wenn der Anhidnger nicht gegenstindlich oder als Foto vorliegt. In
einer komplexen Schatzaufgabe wird mit mindestens zwei GroBlen gearbeitet. Hier
kénnte man an das folgende Beispiel denken.

Wie groB ist die Ladeflache eines Traktoranhangers?

Fir diese Aufgabe kann entweder die Fliche durch Vergleich mit einer geeigne-
ten Stlitzpunktvorstellung (wie z. B. einem Quadratmeter) direkt geschitzt wer-
den, oder es miissen zwei gleichartige Schitzwerte (Linge und Breite) ermittelt
werden. Je nach Vorgehen handelt es sich also um eine einfache Schitzaufgabe
oder bereits um eine komplexe Schitzaufgabe. Der Schwierigkeitsgrad erhéht
sich, wenn weitere Schitzgroflen hinzukommen.

Wie viele Kiirbisse passen auf einen Traktoranhdnger?
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Fir diese Aufgabe missen nicht nur die Fliche des Traktoranhingers, sondern
auch die mogliche Hohe der Ladung sowie die Grofie der Kirbisse bekannt
sein. Das Beispiel kann zu einer Aufgabe mit drei Schitzgroen ausgebaut wer-
den:

Wie viele Traktoranhdnger werden bei der Ernte eines Kiirbisfeldes ge-
fall?

In diesem Abschnitt wurde deutlich, dass die Anzahl der zu schitzenden Gro-
Ben einen Einfluss auf den Schwierigkeitsgrad der Aufgabe hat.
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Abb. 4.8 Darstellung und Anzahl der SchatzgroRen

Allerdings ist auch die Darstellung der SchitzgroB3e fir den Schwierigkeitsgrad
verantwortlich; hier handelt es sich um eine weitere Dimension, die bei Schitz-
aufgaben betrachtet werden kann. Verwenden wir das Aufgabenbeispiel, in dem
die Anzahl der Traktoranhinger ermittelt werden soll, die fur die Ernte eines
Kirbisfeldes benétigt werden, so kénnen sich sicher viele Schilerinnen und
Schiiler nicht gut vorstellen, wie das konkret ablduft und wie die entsprechen-
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den GroBen zueinander in Beziehung stehen. Dazu kénnte dann die Angabe
der SchitzgroBen als Foto (s. Abb. 4.9) eine grofie Hilfe sein (Bonig, 2003;
Franke, 2003; Greefrath, 2007; Greefrath & Leuders, 2009).

Wie viele Traktoranhianger werden bei der Ernte eines Kirbisfeldes ge-
falle?

Abb. 4.9 Komplexe Schatzaufgabe mit SchatzgroRen als Foto

4.2.4 Fermi-Aufgaben

Fermi-Aufgaben sind im Prinzip unterbestimmte offene Aufgaben mit klarem
Endzustand aber unklarem Anfangszustand sowie unklarer Transformation, bei
denen die Datenbeschaffung — meist durch mehrfaches Schitzen — im Vorder-
grund steht. Sie gehen auf den Kernphysiker und Nobelpreistriger Enrico
Fermi (1901-1954) zuriick. Er war fir schnelle Abschitzungen von Problemen
bekannt, fiir die praktisch keine Daten votliegen.

Das klassische Beispiel fiir eine Fermi-Aufgabe ist die Frage nach der Zahl der
Klavierstimmer in Chicago. Hier liegen zunichst keine Informationen vor. Man
kann aber die GroBenordnung schrittweise durch sinnvolle Annahmen tber die
Einwohner von Chicago, die GroBe eines Haushalts, den Anteil von Haushal-
ten mit Klavier, den Zeitraum zwischen zwei Klavierstimmungen, die Dauer
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des Klavierstimmens und das Arbeitspensum eines Klavierstimmers auf etwa
100 schitzen und so die Frage sinnvoll beantworten. Die Antwort wird also
durch geeignete Auswahl und sinnvolles Schitzen von Zwischenangaben be-
stimmt.

Fermi-Aufgaben zeichnen sich auller durch ihre Offenheit auch durch Reali-
titsbezug und eine besondere Zuginglichkeit aus. Sie sind herausfordernd und
koénnen nicht nur weitere Fragen, sondern auch die Verwendung von Mathema-
tik in der Welt anregen.

Der Begriff Fermi-Aufgaben wird auch zw weiteren Sinne fir offene Aufgaben
verwendet, bei denen die Aufgabenstellung nur aus einer Frage besteht. Wir
bezeichnen Fermi-Aufgaben wie die Frage nach der Zahl der Klavierstimmer in
Chicago, die durch Schitzen von Zwischenangaben gel6st werden, als Fermi-
Aufgaben #m urspriinglichen Sinne. Es handelt sich bei solchen Aufgaben also
gleichzeitig auch um komplexe Schitzaufgaben.

Beim Einsatz von Fermi-Aufgaben im Mathematikunterricht steht weniger das
Rechnen im Vordergrund als die anderen Schritte im Modellierungskreislauf
wie das Vereinfachen und das Validieren. Speziell der Umgang mit Ungenauig-
keit, der hiufig keinen grofien Raum im Mathematikunterricht einnimmt, kann
mit Hilfe von Fermi-Aufgaben thematisiert werden. So werden durch eine
Fermi-Aufgabe im urspriinglichen Sinne das Schitzen und die Arbeit mit unge-
nauen Angaben besonders geférdert. Auch das Mathematisieren zu (méglichst
einfachen) Modellen spielt eine wichtige Rolle. Durch Fermi-Aufgaben im wei-
teren Sinne kénnen auBlerdem das Recherchieren und Experimentieren sowie
das Finden verschiedener Wege in den Mittelpunkt gestellt werden. Schiilerin-
nen und Schiiler lernen auBlerdem selbst Fragen zu stellen und so mit heuristi-

schen Strategien zu arbeiten. Sie verwenden Alltagswissen und rechnen mit
GroBen.

Fermi-Aufgaben im weiteren Sinne kénnen entsprechend ihrem Schwerpunkt
im Umgang mit Daten klassifiziert werden:

Schitzen und Uberschlagen von Gréen und Anzahlen
Veranschaulichung gegebener Gréfien und Anzahlen

Schitzen und Uberschlagen sowie Veranschaulichen

Gewinnen fehlender Daten aus Annahmen/Alltagswissen

Bestimmen von Daten aus Abbildungen (s. Abb. 4.10)

Bestimmen fehlender Daten durch Messung/Experiment (s. Abb. 4.11)
Recherchieren von Daten

experimentelles Uberpriifen
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Abb. 4.11 Bestimmen fehlender Daten durch Messung/Experiment (Blichter, Herget,
Leuders, & Miiller, 2006)
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Fermi-Aufgaben im urspringlichen Sinne finden sich in den Typen Schatzen und
Uberschlagen von Griffen und Anzablen sowie Gewinnen fehlender Daten ans Annab-
men/ Alltagswissen. Die Arbeit mit Experimenten und Abbildungen sowie die
Recherche kann Fermi-Aufgaben im weiteren Sinne zugeordnet werden
(Buchter, Herget, Leuders, & Miiller, 2006; Leuders, 2001, S. 104; Herget &
Klika, 2003).

4.3 Kontextuelle und subjektive Kriterien

4.3.1 Klassische Aufgabentypen

Traditionell werden Sachaufgaben mit Blick auf die Ernsthaftigkeit des verwen-
deten Kontextes klassifiziert. Diese Einteilung wird hdufig auf Aufgaben fiir die
Grundschule bezogen, kann aber entsprechend auch fir die Sekundarstufe
verwendet werden.

Eingekleidete Aufgaben

Bei eingekleideten Aufgaben handelt es sich um Rechnungen ohne wirklichen
Realititsbezug. Der Sachkontext spielt fiir die Lésung der Aufgaben keine Rolle
und kann beliebig ausgetauscht werden. Dies birgt die Gefahr, dass der Bezug
zur Brfahrungswirklichkeit im Mathematikunterricht verloren geht (Schiitte,
1994, S. 78 ff.)). Das Ziel eingekleideter Aufgaben ist die Anwendung und
Ubung von Rechenfertigkeiten. Zu diesem Aufgabentyp zihlen auch eingeklei-
dete Knobelaufgaben, wie etwa das folgende Beispiel.

Beispiel fiir eine eingekleidete Aufgabe

In einem Stall werden 42 Tiere gezahlt. Es sind Pferde und Fliegen. Zu-
sammen haben sie 196 Beine. Wie viele Fliegen und wie viele Pferde sind
es?

In der Beispielaufgabe ist nur relevant, dass Pferde vier und Fliegen sechs Beine
haben. Ansonsten kénnte der Kontext beliebig ausgetauscht werden. Aul3er-
dem hat die Fragestellung keinen wirklichen Realitdtsbezug, da es viel leichter
wire, die Art der Tiere zu zihlen als die Beine und die Anzahl der Tiere. Das
Ziel ist also eine Lésung durch geschicktes Ausprobieren. Denkbar ist ebenso —
bezogen auf die Sekundarstufe — das Aufstellen von Gleichungen und deren
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Losung. (Radatz & Schipper, 1983; Krauthausen & Scherer, 2007, S. 84 ftf;
Franke, 2003, S. 32 ff.)

Die Problematik der eingekleideten Aufgaben setzt sich auch in die Sekundar-
stufe II fort. Sie wird durch die nun fast Gberall in Deutschland eingefiihrten
zentralen Priifungen noch verschirft (Henn, 2007, S. 263). So findet man hiu-
fig in Abiturpriifungen Aufgabenformulierungen, bei denen sogar die Einklei-
dung an einigen Stellen fehlt. Beispielsweise wird in einer Abituraufgabe zur
Analysis eine Funktionsgleichung fiir die Zuflussgeschwindigkeit von Wasser
angegeben, aber anschlieBend nicht nach dem in den See geflossenen Volumen,
sondern nach dem Inhalt der Fliche zwischen Graph und t-Achse gefragt.

Beispielaufgabe aus einer zentralen Abiturpriifung

Die Zuflussgeschwindigkeit des Wassers in einem Stausee einer Bergregi-
on lasst sich in den ersten 12 Stunden nach sehr starken Regenfallen na-
herungsweise durch die obige Funktion f, ... beschreiben. ...

d) Berechnen Sie den Inhalt der Flache, die der Graph von f mit der t-
Achse zwischen t = 0 und t = 12 einschlieBt. Interpretieren Sie das Er-
gebnis im Sachzusammenhang. (Ministerium fiir Schule NRW, 2007)

Das Fehlen der Einkleidung kann zum einen zeigen, dass die Aufgaben nicht
ernsthaft im Kontext bearbeitet werden sollen, und zum anderen konnte es als
Hilfe fiir die Schiilerinnen und Schiiler gedacht sein, da so die Ubersetzung des
Kontextes nicht mehr geleistet werden muss. Auch hier besteht die Gefahr,
dass der Bezug zur Realitit im Mathematikunterricht verloren geht.

Textaufgaben

Textaufgaben sind typisch fiir das klassische Sachrechnen. Sie bestehen aus
Aufgaben in Textform — teilweise auch erginzt durch ein Bild. Die Sache ist —
dhnlich wie bei den eingekleideten Aufgaben — austauschbar, und die Realitit ist
hiufig sehr vereinfacht dargestellt. Das Ziel ist die Férderung mathematischer
Fahigkeiten. Daher wird in diesem Zusammenhang auch von Sachrechenanfoaben
gesprochen (Schiitte, 1994, S. 79). Allerdings muss dazu zunichst der Zusam-
menhang zwischen den angegebene Daten im Text erfasst und mathematisch
dargestellt werden. Von einer Erstellung eines mathematischen Modells kann
aber auf Grund des fehlenden echten Realititsbezugs und der vorgegebenen
Vereinfachungen nicht wirklich gesprochen werden. Dennoch besteht ein
Hauptproblem fiir die Schiilerinnen und Schiiler in der Ubersetzung des Textes
in die entsprechenden mathematischen Objekte, wie z. B. Terme oder Glei-
chungen. Aus diesem Grund ist auch die aus der Modellbildung bekante Be-



43  Kontextuelle und subjektive Kriterien | 85

zeichnung Mathematisiernng in diesem Zusammenhang tblich (Schiitte, 1994, S.
79). Bei Textaufgaben dominiert das mathematische Problem im Vergleich zu
den cingekleideten Aufgaben. Ein weiterer Schwerpunkt liegt dann — abhingig
von der konkreten Aufgabenstellung — in der Interpretation der mathemati-
schen Ergebnisse auf die Sachsituation.

Beispiel fiir eine Textaufgabe

Herr Stein bekommt 11 € Stundenlohn. Die monatlichen Abziige betragen
363 €. Er erhdlt daher am Ende des Monats Mai 2035 €. Wie viele Stun-
den hat er im Mai gearbeitet?

Der in der Beispielaufgabe dargestellte Sachverhalt ist zwar méglicherweise real,
allerdings fiir Schiilerinnen und Schiiler nicht wirklich interessant. Vergleichba-
re Textaufgaben werden auch heute noch zu Ubungszwecken im Unterricht
eingesetzt. In den 70er Jahren des letzten Jahrhunderts hat man Textaufgaben
als die eigentlichen Sachaufgaben angesehen (Maier & Schubert, 1978, S. 12).

Die ausgiebige Behandlung derartiger Textaufgaben im Mathematikunterricht
ist stark kritisiert worden. Ein Grund dafiir ist der fehlende echte Realititsbe-
zug. Bin weiterer Grund ist das Verfahren des Einiibens mathematischer Sach-
verhalte an gleichartigen Textaufgaben, sodass noch schneller ein echtes Nach-
denken tiber den verwendeten Kontext tiberfliissig wird. (Franke, 2003, S. 32
tf.; Krauthausen & Scherer, 2007, S. 84 ff.; Radatz & Schipper, 1983)

Sachprobleme

Bei Sachproblemen, die auch als Sachaufgaben bezeichnet werden, steht ein
tatsichliches Problem aus der Umwelt im Vordergrund. Hier wird die Sach-
rechnen-Funktion der UmwelterschlieBung vermittelt. Dabei werden hiufig
reale Daten vorgegeben, zu denen dann authentische Fragen gestellt werden.
Die entsprechenden Probleme kénnen auch im projektartigen Unterricht einge-
setzt werden.

Beispiel fur ein Sachproblem

Sonja hat zum Geburtstag ein 21-Gang-Fahrrad bekommen. Kritisch
fragt sie sich, wie viele Gange es wohl wirklich hat. Was meint ihr? (Hin-
richs, 2008, S. 164)
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Da die bearbeitete Sache eine echte Rolle spielt, missen auch Informationen
tber den entsprechenden Sachverhalt eingeholt und verarbeitet werden. Daher
ist die Bearbeitung von Sachproblemen auch fachiibergreifend bzw. im Idealfall
sogar ficherverbindend. In diesem Sinne sind die Sachprobleme auch Modellie-
rungsaufgaben gleichzusetzen. (Radatz & Schipper, 1983; Krauthausen & Sche-
rer, 2007, S. 84 ff.; Franke, 2003, S. 32 ff.; Maier & Schubert, 1978)

Im Rahmen des modernen Sachrechens beschiftigt man sich mit Aufgaben, bei
denen sowohl die Umwelt als auch die Mathematik etwa gleichberechtigt sind.
Dabher ist die klassische Einteilung im Prinzip tiberflissig. Dennoch wird diese
Einteilung noch hiufig verwendet — allerdings auch nicht ganz eindeutig (Fran-
ke, 2003, S. 35).

Tabelle 4.4 Klassische Aufgabentypen

eingekleidete Textaufgabe Sachaufgabe
Aufgabe
Schwerpunkt rechnerisch mathematisch sachbezogen
Ziel Anwendung und Forderung Umwelterschlie-
Ubung von mathematischer RBung mit Hilfe von
Rechenfertigkeiten Fahigkeiten Mathematik
Darstellung in einfache in (komplexere) reale Daten und
Sachsituationen Sachsituationen Fakten bzw.
eingekleidet eingekleidet offene Angaben
Kontext kein wirklicher kein wirklicher echter
Realitdatsbezug Realitdtsbezug Realitdatsbezug
Tatigkeiten Rechnen Ubersetzen, Recherchieren,
Rechnen, Vereinfachen,
Interpretieren Mathematisieren,
Rechnen,
Interpretieren,
Validieren

4.3.2 Abstufungen des Realitatsbezugs

Der Realititsbezug von Aufgaben kann aufler durch die Charakterisierung als
Sachaufgabe auch genauer durch Begriffe wie Authentizitit, Lebensrelevanz,
Lebensnihe und Schiilerrelevanz gefasst werden.

Eine aunthentische Aufgabe ist fiir Schilerinnen und Schiiler glaubwiirdig und
gleichzeitig bezogen auf die Umwelt realistisch. Fur Mathematikaufgaben ist
hier aulerdem wichtig, dass sie den Bezug der Mathematik zur Realitdt echt
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wiedergeben. Die Awthentizitit von Aufgaben bedeutet noch nicht, dass Schiile-
rinnen und Schiler die entsprechenden Anwendungen tatsichlich bendtigen
oder dass diese Aufgaben fur ihr gegenwirtiges oder zukiinftiges Leben wichtig
sind.

Eine Aufgabe ist dagegen re/evant, wenn Sie als bedeutsam fiir das gegenwiirtige
oder zukiinftige Leben von Schilerinnen und Schilern angesehen wird. Wenn
eine Aufgabe aus Sicht der Schiilerinnen und Schiiler bereits gegenwirtig als
bedeutsam angesehen wird, sprechen wir von Schiilerrelevang. Wird eine Aufgabe
dagegen erst in zukiinftigen Situationen fur Schiilerinnen und Schiiler relevant,
dann sprechen wir von Lebensrelevanz. Etwas abgeschwichter ist mit Lebensndbe
lediglich gemeint, dass die entsprechenden Aufgaben mit dem gegenwirtigen
oder zukiinftigen Leben der Schiilerinnen und Schiiler in Verbindung gebracht
werden kénnen, aber nicht unbedingt relevant sind (Leuders, 2001, S. 100 ff.).

4.3.3 Subjektive Kriterien

Ob eine Aufgabe aus Sicht der Schilerinnen und Schiiler als interessant ange-
sehen wird, kann vielfiltige Griinde haben. Hiufig werden zwar schiilerrelevan-
te Aufgaben als interessanter empfunden als nicht authentische Aufgaben, aber
auch weniger relevante Aufgaben kénnen, wenn sie beispielsweise interessant
prisentiert sind oder in bestimmter Weise auf die Erfahrungswelt der Schiile-
rinnen und Schiiler eingehen, interessant sein.

Die folgende Beispielaufgabe (s. Abb. 4.12) ist zwar nicht relevant, da Elefanten
vermutlich selten in randvollen Becken baden, sie wird aber von Schilerinnen
und Schiilern hiufig als interessant charakterisiert.

Ein Grund fir den moglicherweise stirkeren Aufforderungscharakter dieser
Aufgabe ist sicherlich, dass eine solche Aufgabe im Mathematikunterricht eher
selten bearbeitet wird und viele Schiilerinnen und Schiiler Elefanten sehr inte-
ressant finden. Es kann also eine Frage des Unterrichtskontextes und des Inbalts
sein, ob Schiilerinnen und Schiiler eine Aufgabe interessant finden.

Schon kleine Unterschiede von Aufgaben kénnen einen Beitrag zu einem er-
héhten Interesse liefern. So ist beispielsweise eine Aufgabe, in der das eigene
Zimmer der Schilerinnen und Schiiler angestrichen werden soll, vermutlich
interessanter als eine Aufgabe, in der bestimmte MaBle eines fiktiven Zimmers
angegeben sind. Hier wire dann der Faktor Schiilerrelevanz entscheidend.

Auch die Frage der Aktualitit kann eine Rolle spielen. So ist beispielsweise die
Frage, ob man mit Hilfe der Wahrscheinlichkeitsrechnung auch Aussagen tber
den zukiinftigen FuBiballweltmeister machen kann (HuBlmann & Leuders, 2000)
kurz vor der Fuliballweltmeisterschaft sicher viel interessanter als ein Jahr spa-
ter.
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Der Elefant soll baden. Wie viel Wasser wird aus einem randvollen Becken
Uberlaufen? (Greefrath, 2007, S. 109)

Abb. 4.12 Aufgabenbeispiel Elefant

Fir Schilerinnen und Schiler kann auch eine Aufgabe interessant sein, die
nicht im Einklang mit bisherigen Vorstellungen ist. Sie 16st dann einen &ognitiven
Konflikt aus, der das Interesse an einer Losung erhoht. Hierzu zihlt beispiels-
weise das Ziegenproblem, in dem es um eine Spielshow geht, bei der ein Kan-
didat ein Auto gewinnen kann. Dazu werden folgende Regeln festgelegt
(Wikipedia, Ziegenproblem, 2009).

Ein Auto und zwei Ziegen werden zufillig auf drei Tore verteilt.

Zu Beginn des Spiels sind alle Tore verschlossen, sodass Auto und Ziegen
nicht sichtbar sind.

Der Kandidat wihlt ein Tor aus, welches aber vorerst verschlossen bleibt.

Hat der Kandidat das Tor mit dem Auto gewihlt, dann 6ffnet der Modera-
tor zufillig ausgewihlt eines der beiden anderen Tore, hinter dem sich im-
mer eine Ziege befindet.

Hat der Kandidat ein Tor mit einer Ziege gewihlt, dann 6ffnet der Mode-
rator dasjenige der beiden anderen Tore, hinter dem die zweite Ziege steht.

Der Moderator bietet dem Kandidaten an, seine Entscheidung zu iberden-
ken und das andere, ungedftnete Tor zu wihlen.
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Das vom Kandidaten letztlich gewihlte Tor wird gedffnet, und er erhilt
das Auto, falls es sich hinter diesem Tor befindet.

Die Frage ist nun, wie sich der Kandidat entscheiden soll. Tatsdchlich ist es
vorteilhaft fir den Kandidaten, das Tor zu wechseln. Dies ist fiir viele uberra-
schend und kann Ausgangspunkt fiir eine Beschifticung mit bedingten Waht-
scheinlichkeiten sein.

Die Frage, ob eine Aufgabe von Schiilerinnen und Schillern subjektiv als interes-
sant angesehen wird, hingt also von Faktoren unterschiedlichster Dimension
ab. Hier haben wir als Auswahl den kognitiven Konflikt, die Aktualitit, die
Schiilerrelevanz, den Inhalt und den Unterrichtskontext vorgestellt.

4.4 Prozessorientierte Aufgaben

Aufgaben koénnen auf verschiedene Aspekte fokussieren. Es kann interessant
sein, nicht nur auf den Inhalt, den Kontextbezug und die Offenheit von Auf-
gaben zu schauen, sondern auch auf den Bearbeitungsprozess. Die Bildungs-
standards und Lehrpline beschreiben prozessbezogene Kompetenzen, die sich
in Aufgaben des Sachrechnens widerspiegeln sollten. Der Bearbeitungsprozess
von Aufgaben hingt zwar von vielen Faktoren und nicht nur von der Aufgabe
allein ab, aber man kann bei der Erstellung von Aufgaben besonders den Loé-
sungsprozess in den Blick nehmen.

4.4.1 Lernen, Leisten und Diagnostizieren

Aufgaben unterscheiden sich hdufig abhingig vom Zweck, fiur den sie erstellt
worden sind. Es gibt eher offene Aufgabenformate, die fur den Lernprozess
erstellt worden sind. Hier werden héufig nicht alle Informationen vorgegeben,
und die Schiilerinnen und Schiiler sollen zunichst eigenstindig recherchieren.

Aufgaben fiir den Lernprozess kénnen noch dahin gehend unterschieden wer-
den, welche Funktion im Lernprozess sie einnechmen sollen. So kénnen es Auf-
gaben zum Entdecken, zum Systematisieren oder zum Uben sein. Aufgaben
zum Entdecken sind vom Charakter her in der Regel offener, um unterschiedli-
che Wege zu ermdglichen. Aufgaben zum Systematisieren geben dagegen hiu-
fig eine Struktur vor.

Sind Aufgaben fiir eine Klassenarbeit konzipiert, so kann es sein, dass Lehre-
rinnen und Lehrer zunichst an méglichst gerechte und einfache Korrekturmég-
lichkeiten denken. Das Ziel ist dann die Feststellung der Leistung. Bei der indi-
viduellen Diagnose dagegen liegen die Interessen von Lehrerinnen und Lehrern
im Auffinden von Schwichen und Stirken der Schiilerinnen und Schiler mit
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dem Ziel der individuellen Férderung. Diagnoseaufgaben haben insbesondere
das Ziel herauszufinden, was Schillerinnen und Schiiler bereits kénnen (Sche-
rer, 1999, S. 170).

Hier sollten Aufgaben fiir die Lehrerinnen und Lehrer besonders informativ
sein und beispielsweise ausreichend Méglichkeiten und Anreize fir individuelle
Erlduterungen und ausfithrliche Begriindungen sowie Nebenrechnungen zur
Verfiigung stehen. So koénnen beispielsweise Aufgaben durch eine systemati-
sche Serie von Veridnderungen an den Zahlenwerten, durch Variationen von
Formulierungen, durch die Verdnderung der Darstellungsform oder durch die
Aufforderung, die Vorgehensweise zu erkliren, fiir die Lehrerinnen und Lehrer
informativ werden und so eine individuelle Diagnose erméglichen. Dabet ist es
stets das Ziel, dass die Schillerinnen und Schiiler in méglichst hohem Mal3e
Eigenproduktionen erzeugen und auf diese Weise nicht nur deutlich wird, ob
eine Schiilerin oder ein Schiiler eine Aufgabe gel6st hat, sondern auch, an wel-
cher Stelle und auf welchem Niveau Schwierigkeiten aufgetreten sind (Sunder-
mann & Selter, 20006, S. 79 ff.; Leuders, 2000).

Des Weiteren sollten Diagnoseaufgaben im Hinblick auf die zu untersuchende
Kompetenz oder Teilkompetenz valide sein und diese nicht mit anderen As-
pekten vermischen (Biichter & Leuders, 2005, S. 173; Abel, M. et al., 2000).
Erfordern die Diagnoseaufgaben unterschiedliche Teilkompetenzen gleichzei-
tig, so ist die Analyse von Aufgabenlésungen schwieriger als fiir Aufgaben, die
nur eine Teilkompetenz erfordern.

Eine Méglichkeit, um solche Eigenproduktionen zu motivieren, sind Aufgaben,
die mit authentischem Material arbeiten und auffordern, vorhandene Widet-
spriiche oder Fehler zu finden und richtig zu stellen.

Schnellfahrer

Fuhr vor einigen Jahren noch jeder zehnte Autofahrer zu schnell, so ist es
mittlerweile heute ,nur noch” jeder fiinfte. Doch auch finf Prozent sind
zu viele, und so wird weiterhin kontrolliert, und die Schnellfahrer haben
zu zahlen (in: Norderneyer Badezeitung; Herget & Scholz, 1998, S. 32).

Auf diese Weise konnen auch Lehrende feststellen, ob Schiilerinnen und Schii-
ler die Zusammenhinge von Bruch- und Prozentrechnung und deren Anwen-
dung auf reale Situationen verstanden haben (Herget, 2000).

Insbesondere die Gestaltung von Prifungsaufgaben mit Anwendungsbezug ist
problematisch, wenn nicht nur eingekleidete Aufgaben verwendet werden sol-
len. Hier kénnte es auch eine Lésung sein, wieder hiufiger die Erstellung von
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Texten iber Mathematik in Priffungen zu verlangen. Beispielsweise kénnte in
einer Prafungsaufgabe zum Dreisatz auch ein kurzer Text tUber die Anwen-
dungsmoglichkeiten des Dreisatzes und tber Situationen, in denen er nicht
verwendet werden kann, verlangt werden.

Dieses Vorgehen ist auch in der Sekundarstufe II noch empfehlenswert. Bei-
spielsweise konnte in einer Prifung zur Integralrechnung folgende Aufgabe
gestellt werden.

Beschreibe ein Anwendungsbeispiel, in dem die Integralrechnung ver-
wendet werden kann.

Das Ziel einer solchen Aufgabe ist die Reflexion der Verwendung von Mathe-
matik im Alltag. Dieser Aufgabentyp gibt keinen spezifischen Anwendungsbe-
zug vor, sondern ist — auch in zentralen Prifungen — flexibel auf den Unterricht
bezogen (Greefrath, Leuders, & Pallack, 2008).

4.4.2 Teilkompetenzen des Modellierens

Schiilerinnen und Schiiler kdnnen bei der Bearbeitung einer Modellierungsauf-
gabe an vielen Stellen auf Probleme stoflen. Fiir eine gezielte Férderung oder
eine genaue Diagnose von Modellierungskompetenzen ist es sinnvoll, Modellie-
rungsaufgaben zu Teilaufgaben zu reduzieren, die Teilschritte des Modellie-
rungskreislaufs besonders in den Blick nehmen. Diesen Teilschritten entspre-
chen die schon angesprochenen Teilkompetenzen des Modellierens (s. S. 52).

Das Entwickeln von Aufgaben fiir einzelne Teilkompetenzen des Modellierens
ist schwierig, da bei der Reduktion von Modellierungsaufgaben auf eine Teil-
kompetenz die Auwthentizitat der Aufgabe verloren gehen kann. Gerade die Au-
thentizitit ist aber fir Modellierungstitigkeiten eine unverzichtbare Vorausset-
zung. Ob die entsprechende Aufgabe tatsichlich geeignet ist, (nur) auf eine
Teilkompetenz des Modellierens zu fokussieren, muss jeweils kritisch hinter-
fragt werden. Wird beispielsweise mehr als cine Teilkompetenz angesprochen
oder ist die Aufgabe keine Modellierungsaufgabe mehr, so kann sie nicht zur
Diagnose einer bestimmten Teilkompetenz des Modellierens eingesetzt werden.

Im Folgenden sollen Aufgaben zu Teilkompetenzen des Modellierens vorge-
stellt werden, die durch das Einschrinken einer vorhandenen Modellierungs-
aufgabe (s. Abb. 4.13) durch Angabe von weiteren Informationen gewonnen
wurden. So werden die Schiilerinnen und Schiiler von bestimmten Tatigkeiten
im Modellbildungsprozess entlastet und kénnen sich auf eine (oder auch weni-
ge) Teilkompetenz(en) des Modellierens konzentrieren. Dadurch wird eine
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Diagnose oder Foérderung dieser Teilkompetenzen moglich. Diese Vorgehens-
weise stellen wir an einer Modellierungsaufgabe zum Themenbereich Stau vor
und schrinken diese im ersten Beispiel auf das Vereinfachen und im zweiten
Beispiel auf das Validieren ein.

Die Sommerferien beginnen haufig mit vielen Kilometern Stau in
Deutschland. Im letzten Jahr waren es an einem Tag insgesamt 180 km.
Wie viele Menschen befanden sich dann vermutlich im Stau?

Abb. 4.13 Modellierungsaufgabe Stau

In der Teilkompetenzaufgabe 1 (s. Abb. 4.14) werden Méglichkeiten zur Ver-
cinfachung des Problems vorgegeben. Nicht alle angegebenen Moglichkeiten
sind zur Lésung der Stau-Aufgabe sinnvoll. Bei einigen ist sogar eine Entschei-
dung schwierig, da beispielsweise die Tageszeit auf Grund von Berufspendlern
schon Finfluss auf die Anzahl der Personen im Auto haben kénnte. Deshalb
wird auch eine Begriindung eingefordert. In dieser Aufgabe wird keine Rech-
nung oder weitere Bearbeitung verlangt. Sie zielt allein auf die Wahl geeigneter
Modellparameter ab. Die Aufgabe ist — obwohl sie deutlich eingeschrinkter ist
als die Modellierungsaufgabe — weiterhin offen, da ja die Wahl einiger Moglich-
keiten auch von den entsprechenden Begriindungen abhingt. Aulerdem hat die
Aufgabe durch die Einschrinkung nicht ihre Authentizitit verloren. Sie ist als
Diagnose- und Férderaufgabe zur Teilkompetenz Vereinfachen geeignet, weil
sie sehr gezielt nur diese Kompetenz anspricht und auf Grund der eingefordet-

ten Begriindungen viele Informationen iber die Gedanken der Schiilerinnen
und Schiiler liefert.

In der Teilkompetenzaufgabe 2 dagegen werden zwei Berechnungsmdoglichkei-
ten vorgegeben. Die Schillerinnen und Schiiler sollen diese Rechnungen ver-
gleichen und bewerten. Dazu miissen die gegebenen mathematischen Modelle
analysiert und mit der realen Situation in Beziehung gesetzt werden. Die Schi-
lerinnen und Schiiler miissen dazu die entsprechenden Faktoren aus der Rech-
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nung in der Realitit deuten und auf Plausibilitit iberprifen. Dies spricht die
Teilkompetenz des Validierens an. Die Bewertung der beiden Rechnungen
erfordert eine lingere Begriindung, die hier ermdglicht, dass die Gedanken der
Schiilerinnen und Schiiler erfasst werden kénnen (Greefrath, 2008).

Katja und Toni wollen berechnen, wie viele Menschen sich vermutlich in
einem Stau der Ldange 180 km befinden. Sie haben sich Uberlegt, welche
Informationen wichtig sein kénnten, und eine Liste von bendtigten Infor-
mationen erstellt. Fir welche dieser Informationen wirdest du dich ent-
scheiden? Begriinde!

Fahrzeugldange

Wetter

Art des Fahrzeugs
Benzinverbrauch
Bundesland

Abstand zum nachsten Pkw
Anzahl der Fahrspuren
Jahreszeit

Alter des Fahrers
Anzahl der Mitfahrer
Tageszeit

Wochentag

Baustellen

Ferienzeit

Abb. 4.14 Teilkompetenzaufgabe 1
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Katja und Toni wollen berechnen, wie viele Menschen sich vermutlich in
einem Stau der Lange 180 km befinden. Sie gehen davon aus, dass ein
Fahrzeug 10 m Platz auf der StraRe benétigt, und haben sich folgende
Rechnungen iiberlegt.

3-18000 4 =
3:18000°2 =

Vergleiche die beiden Rechnungen und bewerte sie!

Abb. 4.15 Teilkompetenzaufgabe 2

4.4.3 Deskriptive und normative Modelle

Aufgaben zu deskriptiven oder normativen mathematischen Modellen kénnen
sehr unterschiedlichen Charakter haben. Wihrend es bei deskriptiven Modellen
im Prinzip darum geht, mathematische Modelle zu verwenden, um realitdts-
bezogene Probleme zu beschreiben und schlieflich zu l6sen, so geht es bei
normativen Modellen darum, mathematische Vorschriften zu entwickeln, die in
bestimmten Situationen fiir Entscheidungen verwendet werden kénnen.

Ein Beispiel fiir eine deskriptive Modellierung wire die Ermittlung von Materi-
alkosten von selbst hergestellter Marmelade. Dazu miissten die Schillerinnen
und Schiiler zunichst durch die Aufgabe oder durch eine Recherche die Infor-
mationen zusammenstellen, die man in diesem Zusammenhang benétigt. Die
Kosten kénnen dann auf der Basis entsprechender Annahmen und Berechnun-
gen ermittelt werden (Leuders & Leil3, 20006).

Ein Beispiel fiir eine normative Modellierung ist die Verteilung der Heizkosten
in einem Haus mit mehreren Wohnungen. Dies ist tatsichlich ein reales Prob-
lem, das von Schulerinnen und Schilern in der Sekundarstufe 1 verstanden und
bearbeitet werden kann. Finen Unterrichtsvorschlag findet man dazu bei Maal3
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(MaaB J. , 2007). Hier kénnen Schiilerinnen und Schiiler erkennen, dass unter-
schiedliche Modelle gleichberechtigte Lésungen dieses Problems sein kénnen.

Im ersten Beispiel bei der Preisermittlung der Marmelade wird die Realitit mit
Hilfe von Mathematik beschrieben, beispielsweise wird berechnet, wie schwer
die Marmelade ist, wie viel Marmelade in ein herkémmliches Glas passt und wie
teuer die Gliser sind. Im zweiten Beispiel wird die Realitdt durch die Entschei-
dung fir ein bestimmtes mathematisches Modell, beispielsweise die Aufteilung
der Kosten nach Fliche, Personenzahl oder Verbrauch, erst erschaffen.

4.5 Aufgaben zur Wiederholung und Vertiefung

Europapark-Aufgabe

Die Eurosat im Europa Park ist eine der schnellsten Indoor-Achterbahnen
Deutschlands. Der gesamte Streckenverlauf ist in eine silberfarbene Ku-
gel gebaut. Wie viele FuBballe wiirden anstelle der Achterbahn in die Ku-
gel passen?

Abb. 4.16 Aufgabenbeispiel Europapark
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Untersuchen Sie das Aufgabenbeispiel (s. Abb. 4.16).

1.

Erldutern Sie anhand des Inhalts und der Prisentationsform der Aufgabe,
ob diese Aufgabe fiir Schiilerinnen und Schiiler interessant sein kénnte.

Erkliren Sie am Beispiel dieser Aufgabe die Begriffe Sachanfsabe und einge-
kleidete Aufgabe. Wie wiirden Sie diese Aufgabe zuordnen? Wie kénnte man
die Aufgabe verdndern, sodass sie anders eingeordnet werden muss?

Lésen Sie die Aufgabe ohne Hilfsmittel (wie beispielsweise das Internet).

Welche Schwierigkeiten kénnen fiir Schiilerinnen und Schiler bei der Auf-
gabenbearbeitung entstehen? Gehen Sie in diesem Zusammenhang auf die
Frage nach der Genauigkeit der Losung ein.

Ein mathematisches Modell kann durch Isolierte Wirklichkeit, 1 ereinfachung,
Anwendung von Mathematik und Entsprechung (s. 3.1.1) charakterisiert werden.
Erldutern Sie dies am Beispiel der vorliegenden Aufgabe.

Sie haben verschiedene Modelle des Modellierens (Modellierungskreisldufe)
kennengelernt. Welches dieser Modelle trifft am besten auf lhre Ldsung
dieser Aufgabe zu?

Aufgabentypen

1.

Suchen Sie in Schulbtichern der Sekundarstufe I zwei Sachrechenaufgaben
zum gleichen mathematischen Inhalt heraus. Eine der beiden Aufgaben soll
lediglich einen Realititsbezug besitzen, wihrend die andere Aufgabe zu-
sitzlich noch authentische Materialien verwendet.

Entwickeln Sie zum Themenbereich /Jneare Funktionen eine eingekleidete
Aufgabe, eine Textaufgabe und eine Sachaufgabe.

Lésen Sie die folgende Fermi-Aufgabe, und ordnen Sie die Aufgabe in das
Schema fiir Schitzaufgaben ein.

Wie viele Kopien werden in unserer Schule in einem Jahr gemacht?

Projekt

1.

Entwickeln Sie ein Projekt zum Themenbereich ,,kostbares Wasser® fir die
Hauptschule. Stellen Sie dar, welche Informationen Schilerinnen und
Schiilern gegeben werden und welche Ziele Sie mit dem Projekt verfolgen.

Welche Eigenschaften kennzeichnen Projektarbeit im Unterschied zu ande-
ren Unterrichtsformen?
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3. Welche Ziele und Funktionen des Sachrechnens werden durch Projektar-

beit fokussiert?

Teilkompetenzen des Modellierens

1.

In den Kernlehrplinen der Sekundarstufe I von Nordrhein-Westfalen wird
das Modellieren als Kompetenz in drei Teilkompetenzen Mathematisieren,
Validieren und Realisieren unterteilt. Erkldren Sie diese drei Teilkompetenzen
des Modellierens.

Formulieren Sie die oben abgebildete Europapark-Aufgabe so um, dass
jeweils eine der in a) genannten drei Teilkompetenzen des Modellierens im
Vordergrund steht.

Koénnte man eine allgemeine Rangordnung beziiglich der Wichtigkeit ein-
zelner Teilkompetenzen bei Modellierungsprozessen erstellen?

Erstellen Sie fiir die Sekundarstufe eine Modellierungsaufgabe zum The-
menfteld Volumenberechnung. Analysieren Sie, welcher Teilkompetenz bzw.
welchen Teilkompetenzen Thre Aufgabe in erster Linie anspricht.



5 Ausgewadhlte Inhaltsbereiche
des Sachrechnens

Insbesondere die Klassifizierung von Aufgaben hat gezeigt, dass Sachrechnen
in allen Bereichen der Schulmathematik eine Rolle spielen kann. Im Prinzip
kénnen also alle Inhalte in den Sekundarstufen auch realitdtsbezogen unterrich-
tet werden. In diesem Kapitel werden einige typische Inhaltsbereiche ausge-
wihlt, in denen Aspekte des Sachrechnens eine besondere Rolle spielen.

Die Inhalte dieses Kapitels sollen auch im Hinblick auf den Modellbil-
dungsprozess betrachtet werden. Dazu verwenden wir einen vereinfachten
Modellbildungskreislauf, der fiir diese Zwecke ausreicht. Das soll natitlich
nicht dartber hinwegtiuschen, dass tatsichliche Modellbildungsprozesse in der
Regel wesentlich komplexer sind. Hier hat die Betrachtung der Modellbil-
dungsprozesse cher theoretischen und normativen Charakter.

Abb. 5.1 Die ,preuRische halbe Ruthe" an der AuRenwand des Rathauses in Miinster
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Ein Kklassischer Inhalt des Sachrechnens ist die Beschiftigung mit Gréen. Wir
wollen uns hier auf die Aspekte von Grélen konzentrieren, die in der Sekun-
darstufe eine besondere Rolle spielen.

5.1 GroRen

Groéflen begegnen uns an vielen Stellen im Alltag, sind aber gleichzeitig ideali-
sierte mathematische Objekte. Daher stellen Aufgaben, die Grélen aus dem
Alltag beinhalten, in gewisser Weise eine ideale Verbindung zwischen Realitit
und Mathematik dar. Es gibt eine mathematische und eine physikalische Sicht-
weise auf Groflen, die im Sachrechenunterricht zusammenflieBen. GroBen
cignen sich besonders gut fiir die Auseinandersetzung mit der Umwelt und
stellen den Kernbereich des Sachrechnens dar.

5.1.1 Grundlagen und ausgewadhlte GrundgréRen

GroBen dienen der Beschreibung einer bestimmten Eigenschaft realer Objekte.
Allerdings wird nicht eine beliebige Eigenschaft eines realen Objektes ausge-
wihlt, sondern eine objektiv messbare Eigenschaft. Diese existiert aus physika-
lischer Sicht nur dann, wenn es méglich ist, eine eindeutige und reproduzierba-
re Messvorschrift anzugeben. Fine solche Messvorschrift kénnte im Beispiel
der preufiischen halben Rute (s. Abb. 5.1) so formuliert werden, dass die Linge
einer halben Rute dem Abstand der duBleren Begrenzungen des am Rathaus
angebrachten Prototyps entspricht.

Fir die Rute war allerdings diese Messvorschrift im 19. Jahrhundert nur lokal
cinheitlich. So waren beispielsweise die in Tabelle 5.1 aufgefithrten Lingen
einer Rute iblich.

Tabelle 5.1 Die Lange einer Rute im 19. Jahrhundert (Wikipedia, Rute, 2009)

Gebiet Lange einer Rute
Baden 3m
Bremen 4,63 m
Hessen 3,99 m
Hildesheim 4,47 m
Koln 4,60 m
PreuRen 3,766 m

Schleswig-Holstein 4,58 m
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Abb. 5.2 Tafel an der AuRenwand des Rathauses in Miinster

Das Messen einer Groéfle kann aus physikalischer Sicht direkt oder indirekt
geschehen. Direktes Messen besteht beispielsweise aus dem Vergleich mit dem
oben beschriebenen Prototyp der Rute. Indirektes Messen kann auf der Grund-
lage eines Naturgesetzes geschehen. Beispielsweise kann die Temperatur mit
Hilfe der Lingenausdehnung einer Quecksilbersiule im Thermometer gemes-
sen werden.

Es gibt GrundgroBien und abgeleitete GroBen. Die Festlegung kann prinzipiell
nach ZweckmilBigkeit erfolgen. Durchgesetzt hat sich das 1960 eingefiihrte
Internationale Einheitensystem (Systeme international d’unités) fir physikali-
sche GroBen. Es beruht auf sieben festgelegten Basiseinheiten zu entsprechen-
den GrundgroBen. Zu den GrundgréBen gehéren Linge, Masse, Zeit, Strom-
stirke, thermodynamische Temperatur, Stoffmenge und Lichtstirke (s. Tabelle
5.2).

Fir den Mathematikunterricht sind von den GrundgroBen in erster Linie Lin-
ge, Masse (bzw. Gewicht) und Zeit relevant. Auch die Temperatur wird im
Mathematikunterricht behandelt, allerdings nicht — wie physikalisch tiblich —



102 | 5 Ausgewihlte Inhaltsbereiche des Sachrechnens

mit der Einheit Kelvin, sondern gemessen in Grad Celsius (°C). Die Definitio-
nen in der Tabelle zeigen, dass es sowohl GrundgroBen gibt, die direkt, als auch
solche, die indirekt definiert werden. Beispielsweise wird die Masse durch Ver-
gleich mit einem Prototyp, z. B. mit Hilfe einer Balkenwaage, gemessen, wih-
rend das Meter nicht als Lingenmessung, sondern mit Hilfe einer Zeitmessung
tber die konstante Lichtgeschwindigkeit definiert ist.

Tabelle 5.2 Ausgewahlte GrundgrofRen mit der Definition der Grundeinheiten
(Wikipedia, Internationales Einheitensystem, 2009)

GroRe Einheit Definition

Lange Meter Lange der Strecke, die das Licht im Vakuum wahrend der Dauer
von 1/299 792 458 Sekunden durchlauft

Masse Kilogramm entspricht der Masse des Internationalen Kilogrammprototyps

Zeit Sekunde das 9 192 631 770-fache der Periodendauer der dem Ubergang
zwischen den beiden Hyperfeinstrukturniveaus des Grundzu-
stands von Atomen des Nuklids 133Cs entsprechenden Strah-
lung

Auch sogenannte abgeleitete GréBen werden im Mathematikunterricht behan-
delt. Das sind beispielsweise die Fliche (Linge mal Breite), die Geschwindigkeit
(Weg pro Zeit) oder die Dichte (Masse pro Volumen). Sie setzen sich aus einer
oder mehrerer Basisgrolen (z. B. im Fall der Fliche und der Geschwindigkeit)
oder aus Basisgrofen und anderen abgeleiteten GroBen (z. B. im Fall der Dich-
te) oder nur aus anderen abgeleiteten Gréf3en zusammen.

Fir jede GroBle wird eine Malleinheit festgelegt. Hier ist zwischen natlrlichen
und willkiirlichen MaB3einheiten zu unterscheiden. Eine natiirliche Mal3einheit
ist beispielsweise die Lichtgeschwindigkeit im Vakuum, weil diese unverinder-
lich feststeht. Willkiirlich festgelegte MaBleinheiten sind beispielsweise das Me-
ter oder auch die preuflische halbe Rute.

Die Messung erfolgt im Prinzip in drei Schritten. Zunidchst muss eine passende
MafBeinheit ausgewihlt werden. Dann werden die entsprechenden Vertreter
nebeneinandergelegt. Die Einheit wird dazu ggf. vervielfacht oder zerlegt. Zur
Messung wird die Anzahl der entsprechenden Einheiten oder Untereinheiten
gezihlt (Peter-Koop & Nithrenboérger, 2007).

Die Angabe einer GroBe setzt sich zusammen aus einer (reellen) Maf3zahl und
einer MaBeinheit. Die Gro3enangabe kann als Produkt aus Mal3zahl und MaB3-
einheit dargestellt werden, z. B. 4 m fir die Linge eines Objektes mit der Mal3-
zahl 4 und der MaBleinheit m (Meter).
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Wenn der Quotient zweier Gro3enangaben eine reelle Zahl ist, so sind die zu-
gehorigen Grofien gleichartig. Die Grofenart ist der Oberbegrift fur alle GréBen,
fir die das méglich ist. Beispielsweise ist die Angabe einer Linge mit 4 m und
die Angabe einer Breite mit 300 cm gleichartig, da der Quotient

dm 4m _ 4
300 cm ~ 300-102m 3
eine reelle Zahl ist. Die Angabe einer Linge mit 4 m und die Angabe einer Fli-

che mit 30 000 cm? ist dagegen nicht gleichartig, da der Quotient

30 000 cm?  30000-10~*m? 3
keine reelle Zahl ist, sondern noch die Einheit m™

4m 4m 4 1
= m

L enthilt.

Linge und Breite sind also von der gleichen GréBenart. Ebenso sind der
Durchmesser eines Rohres, die Niederschlagshéhe und die Wellenlinge Groé-
Ben der GroBenart Iange. Linge und Fliche dagegen sind nicht von der glei-
chen GroBienart (Gerthsen, Kneser, & Vogel, 1989, S. 3 ff.; Kuchling, 1985).

5.1.2 Weitere GrolRen

Die GroBlen Anzahl, Temperatur, Gewicht, digitale Speicherkapazitit und Geld
spielen in gewisser Weise — aus unterschiedlichen Grinden — eine Sonderrolle.

Anzahl

Die Anzahl benétigt keine Mal3einheit. Es handelt sich im Prinzip um die Na-
tiirlichen Zahlen N. Um eine Konsistenz mit der oben ausgefiihrten Ubetle-
gung herzustellen, kann der Anzahl die Einheit 1 zugeordnet werden. Dann ist
in diesem Fall das Produkt aus Mal3zahl (also Anzahl) und Mal3einheit (also 1)
wieder die Anzahl.

Temperatur

Die der GrundgréB3e Temperatur zugrunde liegende thermodynamische Tem-
peraturskala in Kelvin (K) bezieht sich auf den absoluten Nullpunkt. Da es
physikalisch betrachtet keine niedrigere Temperatur als den absoluten Null-
punkt geben kann, sind alle Temperaturwerte positiv. Die Kelvin-Skala ist so
geeicht, dass der Gefrierpunkt von Wasser einer Temperatur von 273,16 K
entspricht. Daher passt die Kelvin-Skala zu den anderen bekannten physikali-
schen Einheiten, die auch positive Maf3zahlen haben. Im Alltag und im Mathe-
matikunterricht wird tblicherweise die Temperaturskala in Grad Celsius ver-
wendet. Dies fiihrt zu der Besonderheit, dass auch negative Werte fiir die Tem-
peratur auftreten. Im Mathematikunterricht wird diese Besonderheit hiaufig zur
Einfiihrung der negativen rationalen Zahlen verwendet.
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K} 1m Jahre 1714 entwickelte der aus
Danzig stammende Glasbldser und
Mechaniker Gabriel Daniel Fahrenheit
(1686-1736) das erste brauchbare Ther-
mometer.

Als Fliissigkeit benutzte er Quecksilber.
Die von ihm vorgeschlagene Messweise
ist heute noch in englischsprachigen
Landern gebrauchlich.

a) Lies die markierten Fahrenheit-Tem-
peraturen aus der Grafik ab.

Siedepunkt des Wassers ———

Kérpertemperatur 96
des Menschen E

Die tiefste Temperatur, die -
Fahrenheit durch eine Kilte- ——{ ——o0
mischung aus Wasser, Eis und )
Salmiak erzeugen konnte. @

b) Spater gab es Schwierigkeiten bei
der Messung mit dem Fahrenheit-Ther-
mometer, denn es gab einen Winter, der
noch viel kalter war als Null Grad Fah-
renheit.

Welche Probleme traten auf und wie
wiirdet ihr sie l6sen?

¢) Vergleiche die Fahrenheit-Skala mit
der bei uns iiblichen Celsius-Skala.

Anders Celsius
(1701-1744) legte
1742 die Celsius-
Skala fest.

Sie hatte als
Fixpunkte den
Gefrierpunkt und
Siedepunkt des
Wassers.

Abb. 5.3 Einfihrung der negativen rationalen Zahlen mit Hilfe der Temperatur (Herling,
Kuhlmann, & Scheele, 2008, S. 102)
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Gewicht

Umgangssprachlich meint man hiufig mit Masse und Gewicht das gleiche.
Physikalisch bezeichnet das Gewicht (oder besser die Gewichtskraft) ecines
Objekts seine nach unten gerichtete Anziehungskraft durch die Gravitation.
Gemessen wird das Gewicht in der Einheit Newton, also einer Einheit der
Kraft. Masse dagegen wird in Kilogramm gemessen und kann mit Hilfe der
Trigheit von Kérpern beschrieben werden. Auf der Erde kénnen zwei Massen
mit Hilfe einer Balkenwaage vergleichen werden. Allgemeiner werden zwei
Massen als gleich bezeichnet, wenn sie nach einem unelastischen Stof3 bei ent-
gegengesetzt gleichen Geschwindigkeiten zur Ruhe kommen. Gewicht wird im
Mathematikunterricht hiufig — physikalisch nicht korrekt — im Sinne von Masse
verwendet.

Wie viel Gramm pro Mahlzeit darf eines
dieser Kétzchen bekommen? Wie viel Kilo-
gramm sind das pro Woche?

Fitterungen Menge

Alter/Gewicht pro Tag pro Tag
Jungtiere
7-12 Wochen 2 il
Halberwachsene
3-6 Monate 2 140g
15kg
Erwachsene
ab 7 Monate 2 340g
etwa 4kg
Ubrigens Kilog ist die GrundmaReinheit filr Gewichte.
In der Physik verwen- Tonne t -
det man statt Gewicht Kilogramm kg u: ‘IDCI“Dkg = 1000
den Begriff Masse. Gramm g ke 1§ =1000mg
Milligramm mg
Die Umwandlungszahl ist 1000.
Fiir die Umwandlung von Gewichtsangaben in andere Gewichtseii
oder in die Kommaschreibweise eignet sich die Darstellung in einer Stellenwemafel
t kg g mg
H|Z|E|H|Z|E|H|Z|E}|H |Z|E:| Beispiele:
317162 3762t = 3t762kg = 3762kg
A 2T RES 42185kg = 42kg185g = 42185g
7 0 5 8| 7058g - 7gS8mg - 7058mg

Abb. 5.4 Verwendung von Gewicht im Sinne von Masse (Kliemann, Puscher, Segelken,
Schmidt, & Vernay, 2006, S. 108)

Digitale Speicherkapazitat

Die digitale Speicherkapazitit ist eine relativ neue Gré3e aus der Informatik
bzw. der Informationstechnik und wird daher noch selten im Mathematikunter-
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richt behandelt. Sie wird in Bit (b) oder Byte (B) gemessen. Bit ist die Abkiir-
zung fur binary digit, also Binirziffer. Ein Byte ist die Datenmenge von 8 Bit.
Fir Bit und Byte kénnen auch die iiblichen dezimalen Vielfachen (z. B. Kilo fir
1000) verwendet werden. Allerdings ist die Verwendung nicht ganz einheitlich,
da der Faktor 210 teilweise an Stelle von 1000 verwendet wird. Dann entspriche
1 kB also 1024 B und nicht 1000 B. Hier versucht man durch die Einheit
KiBiByte (k:lo binary) den Unterschied zu verdeutlichen. Dies hat sich aber noch

nicht durchgesetzt.

Tabelle 5.3 Ausgewahlte GroRenarten in der Sekundarstufe |

GroRenart Einheiten Vertreter Zusammenhang
Ldange m, cm, mm, km, | Stdbe, Autos, Personen, GrundgroRe
Flache m2, cm2, mm?2, Fliesen, Grundstiicke, Lange-Ldnge

km2, ...

Volumen m3, |, ml, hl Glaser, Lange3

(=1001), ... Milchpackungen,
Kannen, Badewannen,
Masse g, kg, mg, t, ... Lebensmittel (Kase, GrundgroRe
Fleisch), Personen,...
Zeit s, min, h, ms, ... 100-m-Lauf, GrundgroRe
Schulstunde, ...
Frequenz Hz, 1/s, ... Musik, Martinshorn, ... 1/Zeit
Temperatur K, °C, °F, ... Backofen, GrundgroRe
AuBRentemperatur, ...
Dichte kg/m3, kg/I, Steine, Federn, Sand, ... Masse/Volumen
g/ms, ...

Geschwindigkeit

m/s, km/h, mph,

100-m-Laufer

Lange
(Strecke)/Zeit

Winkel lrad =1 Dreieck, Rampe, Tisch, dimensionslos

Anzahl 1 Apfel, Schiiler, Autos, dimensionslos

Geld €5, .. Minzen, Geldscheine, okonomische
Uberweisungen, ... Einheit

digitale Speicher- Bit, Byte Festplatte, USB-Stick, informatische

kapazitat

Einheit
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Geld

Geld wird nicht als physikalische, sondern als 6konomische Gréfie verwendet.
Hier gibt es keine eindeutige und reproduzierbare Messvorschrift, um den
Geldwert eines bestimmten Gegenstandes zu bestimmen. Ansonsten wird die
GroBe Geld analog zu den physikalischen GréBen mit Maf3zahl und MaBeinheit
(z. B. Euro) verwendet. In diesem Zusammenhang muss noch zwischen Bar-
geld und Buchgeld unterschieden werden, da Bargeld nicht in beliebig kleinen
Betridgen existiert, sondern durch die kleinste Einheit 1 Eurocent begrenzt wird.
Buchgeld dagegen kann theoretisch in beliebig kleinen Betrigen auftreten.

5.1.3 GroRen als mathematisches Modell

Bei GréBen handelt es sich um idealisierte Eigenschaften von realen Objekten.
Der Ubergang vom Arbeiten mit realen Objekten zum Rechnen mit Gréfen im
Mathematikunterricht kann daher als Modellbildungsprozess angesehen wet-
den.

reales Objekt | Vereinfachen> Eigenschaft

A 2

Q

< D

3 Realitat 2

ko) 0

s 2}

S ; 2
g Mathematik \37
Losung < Rechnen | GroRe

(MaR3zahl, Einheit)

Abb. 5.5 GroRen als mathematisches Modell

Bei vielen im Mathematikunterricht verwendeten Aufgaben im Zusammenhang
mit GroBen sind ein oder mehrere reale Objekte der Ausgangspunkt. Die Ob-
jekte werden zundchst auf der realen Ebene vereinfacht, da nur eine oder weni-
ge idealisierte Eigenschaften der Objekte betrachtet werden. Diese Eigenschaf-
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ten koénnen beispielsweise die Linge oder das Gewicht dieser Objekte sein (s.

Abb. 5.5).

Bei der mathematischen Bearbeitung der idealisierten Eigenschaften als Mal3-
zahl mit Einheit spielt die konkrete Konstellation dieser Eigenschaften am rea-
len Objekt dann keine Rolle mehr. Beispielsweise missen fir die Addition von
zwel Lingen aus mathematischer Sicht keine besonderen Bedingungen erfiillt
sein. In der Realitit dagegen ist die Addition von zwei Lingen im Prinzip nur
sinnvoll, wenn die entsprechenden Objekte hintereinander liegen und damit ein
neues Objekt mit der entsprechenden Linge entsteht.

Das mathematische Modell Griffe ist unabhingig vom jeweiligen Vertreter, also
dem konkreten realen Objekt mit der betrachteten Eigenschaft. Die nach der
mathematischen Bearbeitung einer oder mehrerer GréBlen erhaltenen Ergebnis-
se, beispielsweise die Summe von zwei Lingen oder die Fliche (als Produkt von
zwel Lingen), werden schlieBlich in der konkreten Situation als Eigenschaft
eines bestimmten Vertreters interpretiert. An dieser Stelle schlie3t sich dann der
Modellierungskreislauf bei der Arbeit mit GroBen.

Die einzelnen Schritte in diesem Modellierungsprozess sind nicht eindeutig
bestimmt. Jedes Objekt besitzt mehrere Eigenschaften, die jeweils betrachtet
werden kénnen, und zu jedem Objekt gibt es — sogar fiir dieselbe Eigenschaft —
unterschiedliche Darstellungen als GréBe. Dies zeigt auch schon die Tafel fir
die preuBlische halbe Rute am Rathaus von Miinster. So kann die halbe Rute
etwa mit 12 Full oder 144 Zoll bezeichnet werden (s. Abb. 5.2). Auch die In-
terpretation von mathematischen Losungen in der Realitdt ist nicht eindeutig,
da es unterschiedliche Objekte mit den entsprechenden Eigenschaften geben
kann.

Aus mathematischer Sicht ist es interessant, nicht die Vielfalt der Vertreter und
deren Figenschaften, sondern gemeinsame Figenschaften aller Gréen zu be-
trachten. Dies rechtfertigt die Verwendung des Begriffs Mode// und die Be-
schreibung der GréBen als Modellbildungsprozess sowie die gemeinsame Be-
zeichnung Gréfen.

Aus didaktischer Sicht sind far das Modell Gré3e zwei Bereiche interessant.
Zum einen wollen wir die Erstellung des mathematischen Modells mit den
zugehorigen mathematischen Hintergriinden und zum anderen die Arbeit im
Modell GroBe genauer betrachten.

5.1.4 Mathematisieren von GroRen

Bei der Erstellung des mathematischen Modells Gréf3e werden Vereinfachun-
gen durchgefihrt, durch die mehreren Objekten die gleiche GréBe zugeschrie-
ben wird. In der Regel gibt es immer mehrere unterschiedliche reale Objekte
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fir dieselbe GroBe. Beispielsweise gibt es sehr viele Gegenstinde mit gleichem
Rauminhalt oder auch viele unterschiedliche Situationen, in denen Objekte die
gleiche Geschwindigkeit haben. Das Volumen ist dann die gemeinsame Higen-
schaft aller Objekte mit gleichem Rauminhalt und die Geschwindigkeit die
gemeinsame Figenschaft aller Situationen, die gleich schnell ablaufen.

Eigenschaft

<

3

Bildung 3
disjunkter §
Klassen von =
Vertretern o)
)

\3/

Grofe
(Maf3zahl, Einheit)

Abb. 5.6 Bildung disjunkter Klassen

Wir fassen also alle Objekte mit gleichem Volumen — unabhingig von ihren
sonstigen Eigenschaften — zu einer Klasse von Objekten zusammen, die ma-
thematisch gleich behandelt werden kann. Beziiglich dieser Grofe, also hier des
Volumens, kann ein bestimmtes Objekte nur genau zu einer Klasse gehéren.
Zu einer Grofie kann es selbstverstindlich unendlich viele Klassen geben, da im
Beispiel des Volumens zu jeder reellen Zahl eine Klasse von Objekten existie-
ren kann, deren GréBle genau den Wert der gewihlten MaB3zahl hat. Beispiels-
weise gibt es Kérper mit dem Rauminhalt 2 m?, aber auch 2,01 m?® und V2 m?®.
Nicht alle GréBen kénnen beliebige reelle Werte annehmen. Die Anzahl hat
beispielsweise nur positive ganzzahlige Werte.

Diese Aufteilung in disjunkte Klassen, die sich aus der Realitit ergibt, definiert
aus mathematischer Sicht eine Aquivalenzrelation (siehe z. B. Scheid und
Schwarz 2008, S. 105). Es liegt daher die Beschreibung von Gréfen mit Hilfe
einer Aquivalenzrelarion nahe, die eine solche Zetlegung induziert. Eine Aqui—
valenzrelation ist transitiv, symmetrisch und reflexiv. Wir betrachten diese Ei-
genschaften am Beispiel des Vergleichs von Flicheninhalten.
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Vergleicht man drei Fenster beztiglich ihres Flicheninhalts und stellt fest, dass
das erste Fenster den gleichen Flicheninhalt wie das zweite Fenster hat und das
zweite Fenster den gleichen Flicheninhalt wie das dritte Fenster, dann weil3
man auch, dass das erste Fenster den gleichen Flicheninhalt wie das dritte
Fenster hat (Transitivitit). Alle drei genannten Fenster wiirden also beziiglich
des Flicheninhalts zu einer Klasse gehoren.

Fenster A Fenster B Fenster C

Abb. 5.7 Transitivitat am Beispiel des Flacheninhalts von Fenstern

Ebenso klar ist, dass beim Vergleich von zwei Fenstern aus der Kenntnis, dass
das erste Fenster den gleichen Flicheninhalt hat wie das zweite Fenster, dies
auch umgekehrt gilt (Symmetrie). Aullerdem hat ein Fenster den gleichen Fla-
cheninhalt wie es selbst (Reflexivitit). Diese Eigenschaft ist allerdings so offen-
sichtlich, dass sie hiufig nicht als eigene Aussage wahrgenommen wird. Kurz
zusammengefasst gelten folgende Eigenschaften fiir eine Aquivalenzrelation R
auf der Menge A der GroBen:

Reflexiv, wenn aRa fiir alle GroBen a gilt.
Symmetrisch, wenn aus aRb stets bRa folgt.
Transitiv, wenn aus aRb und bRc stets aRc folgt.

Dabei ist A die Menge aller in Frage kommenden Vertreter einer GréB3e und die
Relation R eine Teilmenge des kartesischen Produkts A x A (Scheid &
Schwarz, 2008, S. 104); im Beispiel mit den Fenstern ist die zugehérige Relation
,»-.. hat den gleichen Flicheninhalt wie ...,

Die drei oben dargestellten Fenster sind beztglich ihres Flicheninhalts in einer
Aquivalenzklasse — zusammen mit allen Objekten gleichen Flicheninhalts. Bei-
spielsweise gehort auch das folgende Fenster (Abb. 5.8) zu dieser Aquiva-
lenzklasse.
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I

Fenster D

Abb. 5.8 Beispiel fir ein flichengleiches Fenster

Auller diesen Fenstern sind alle anderen Objekte mit gleicher Fliche in dersel-
ben Klasse und werden alle mit der gleichen GréBe, z. B. 12 m?, bezeichnet.
AuBler dieser Klasse gibt es unendlich viele andere Klassen mit jeweils vielen
unterschiedlichen Objekten. Jedes Objekt kann beziiglich der Fliche aber nur
in einer dieser Klassen sein.

Die drei Eigenschaften einer Aquivalenzrelation sind hier am Beispiel des Fli-
cheninhalts beschrieben worden und gelten allgemein fir den Mathematisie-
rungsprozess bei Grolen. Aus didaktischer Sicht erscheint es zentral, nicht die
Eigenschaften der Aquivalenzrelation in den Vordergrund zu stellen, sondern
die Aufteilung in disjunkte Klassen von Objekten zu thematisieren, die die
Aquivalenzrelation bewirkt. Die Aufteilung in disjunkte Klassen verdeutlicht
auch die Vereinfachungsschritte bei der Erstellung des mathematischen Mo-
dells Grifie. Der Modellbildungsprozess bei GroBlen kann mathematisch also
mit Hilfe der disjunkten Einteilung von ausgewihlten Eigenschaften in Klassen
beschrieben werden.

5.1.5 GroRen im Unterricht

Hiufig werden fir die Einfihrung von Grolen sogenannte Stufenmodelle be-
nutzt. Dabei wird das Rechnen mit GroBlen in mehreren Schritten erarbeitet,
und insbesondere die standardisierten Mal3einheiten werden erst nach umfang-
reichen Erfahrungen mit exemplarischen Objekten und selbstgewidhlten Mal3-
einheiten verwendet. Eine Schwierigkeit dabei ist allerdings, die Vorerfahrungen
der Kinder adidquat aufzugreifen. Beispielsweise sind standardisierte Mal3einhei-
ten wie Meter und Stunde hiufig bereits vor der Behandlung der entsprechen-
den GréBen im Unterricht bekannt. Es ist daher nicht sinnvoll dieses Wissen zu
ignorieren und die Schiilerinnen und Schiiler zunichst mit unterschiedlichen
selbstgewihlten Einheiten arbeiten zu lassen, um schliefllich die — schon be-
kannten — standardisierten Mal3einheiten nacherfinden zu lassen. So ist es kaum
méglich, in jedem Fall eine festgelegte Stufenfolge einzuhalten, sondern es kann
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nur im Einzelfall entschieden werden, welche Erfahrungsmdoglichkeiten noch
angeboten werden missen.

Auflerdem wird bei derartigen Stufenmodellen auf die Besonderheiten der ein-
zelnen GréBen nicht eingegangen. Dies ist speziell in der Sekundarstufe interes-
sant, da hier die Anzahl der GroBenarten hoher ist als in der Primarstufe. Die
Problematik der Einfihrung von GréBen ist sehr vielfiltic und muss daher
immer an die eigene Lerngruppe angepasst werden (Franke, 2003, S. 201 ff.;
Picker, 1987; Radatz & Schipper, 1983, S. 125; Ruwisch, 2003; Krauthausen &
Scherer, 2007, S. 100).

Typische Algen des Vierwaldstittersees

Blaualgen Kieselalgen
Lange: 1-10-*m, Durchmesser: 1-10-*m Lange: 7 - 10-*m, Durchmesser: 1-10-*m

Typische Wassertierchen des Vierwaldstiéttersees

Ridertier Ruderfusskrebs
Lange: 4.3 -10-* m, Pflanzen fressend Lange: 1.6 - 10-? m, Fleisch fressend

Abb. 5.9 Verfeinerung von Langen (Affolter, et al., 2003, S. 20)

In der Primarstufe werden fast alle im Mathematikunterricht zu behandelnden
GroBenarten bereits eingefithrt. In der Sekundarstufe liegt der Schwerpunkt der
Arbeit mit GréBen cher in der Verfeinerung und Vergroberung der bereits
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bekannten Maf3einheiten und im Rechnen mit GréBen. Im gezeigten Beispiel (s.
Abb. 5.9) wird die GroBenart Linge verfeinert. In diesem Beispiel werden aller-
dings keine neuen Einheiten, sondern es wird die Dezimalschreibweise einge-

fihrt.

In der Sekundarstufe wird — auller der Verwendung unterschiedlicher MaGein-
heiten fir eine Grofenart — verstirkt der gleichzeitige Umgang mit unterschied-

lichen GroB3enarten thematisiert.

K u Das geborene Kénguru krabbelt nach einer
Tragzeit von 27 - 36 d sofort (iber den Bauch der Mutter

in den Beutel. Es ist jetzt 2-3 cm gross und 0.8 g schwer.
Im Beutel saugt es sich an einer Zitze fest. Erst nach rund
200 d ist es mit 2 -4 kg kriiftig genug fiir einen ersten
Spaziergang. Es schliipft jedoch immer wieder in den Beutel,
besonders bei Gefahr und Hunger. Mit einem Jahr wiegt
das Kénguru 10 kg. Es ist nun erwachsen und verlasst den
Beutel fir immer.

Die Kéngurumutter ist bis zu 60 kg schwer und 1.8 m lang.
Sie frisst vor allem Graser und Blitter.

& Wahle Infor i zurE

klung von Let aus und stelle damit Berechnungsaufgaben

zusammen. Bestimme zu jeder Aufgabe die Lésung und stelle deinen Losungsweg dar.

Gib die Aufgaben andern zu I6sen.

Abb. 5.10 Umgang mit unterschiedlichen GroRenarten (Affolter, et al., 2004, S. 5)

Ebenso wird in der Sekundarstufe die Berechnung der abgeleiteten Gréfien
fortgesetzt. Beispielsweise wird die Fliche nicht nur fiir Rechtecke mit ganzzah-
ligen Lingen, sondern auch fir beliebige Rechtecke, Dreiecke und Kreise ein-

gefiihrt.

Nur wenige neue Groflen spielen im Mathematikunterricht der Sekundarstufe
cine Rolle. In vielen Schulbichern findet man Sachaufgaben zu den GroB3enar-
ten Geschwindigkeit und Dichte. Diese Groen werden hiufig nicht systematisch
eingeftihrt, sondern als bekannt vorausgesetzt oder durch die Angabe einer

entsprechenden Formel erklirt.
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I3 Herr Peters legt mit seinem Auto
eine Strecke von 300 km Lédnge in 2 h
30 min zurlick.

a) Wie lange benétigt er bei gleicher
Durchschnittsgeschwindigkeit fiir eine
Strecke von 400 km (240 km, 90 km)?

b) Warum kann Herr Peters eine

3000 km lange Strecke nicht in 25 Stun-
den zuriicklegen?

Abb. 5.11 Aufgabe zur Geschwindigkeit (Herling, Kuhlmann, & Scheele, 2008, S. 31)

Volumenbestimmung
Volumen von Prismen kbnnen mit der Formel « Grundfliche - Hohe» berechnet
. Vol gelmassiger Korper kann man mit der Tauchmethode
bestimmen.
P ————wm———
< '
- |

@ A Beschreibt, wie man mit der Tauchmethode das Volumen eines Kérpers

bestimmen kann.
8 Besti mit dieser Methode Vol hied: Korper.
€ Bestimmt das Volumen einiger Kérper durch Berechnung und mit der Tauch-
1l =1dm?* L DO The Ehensss
1ml = 1cm?*
10001 = 1m* Volumen und Gewicht
@ A Nehmt mehrere verschieden grosse Steine der gleichen Sorte.
B jeweils ihr Vi und ihr Gewich
Sepnion: 1) & Stellt die Ergebnisse in einer Tabelle dar.
€ Stellt die Werte aus der Tabelle in einem Koordinatensystem dar,
D Was stellt ihr fest?
@ Definition: 1 g entspricht dem Gewicht von 1cm* Wasser bei 4 °C.
A Erstellt eine Tabelle fir Volumen und Gewicht von Wasser.
Volumen (em?) & Stellt diese Beziehung wie in Aufgabe 2C dar.

Abb. 5.12 Aufgabe zur Erkundung der Dichte (Affolter, et al., 2003, S. 60)
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Trotz der aufgefithrten Vorbehalte méchten wir hier die in Stufenmodellen
beschriebenen Schritte in den Modellbildungskreislauf zu Gréfien einordnen (s.
Abb. 5.13).

sammeln Vergleich Vergleich

N

N \\ N\
reales Objekt | Vereinfachen> Eigenschaft

1. Erfahrungen 2. direkter ‘ 3. indirekter

A 2

9

< D

3 Realitat 2

2 3

) %)

S . )

38 Mathematik o
= \/
Ldsung Rechnen | GroRe

(MaR3zahl, Einheit)

N N
) )

5. Arbeiten mit 4. Vorstellungen
Grofien und Umrechnen

Abb. 5.13 Einordnung des Stufenmodells im Modellbildungskreislauf

Fir die in der Sekundarstufe neu eingefihrten GroBen liegen hiufig nur sehr
unvollstindige Vorerfahrungen vor, da es sich um zusammengesetzte Grélen
handelt, deren Messung beispielsweise nicht immer einfach méglich ist.

Typische Schritte in didaktischen Stufenmodellen zur Behandlung von Gréf3en
sind:

1. Erfahrungen in Sachsituationen sammeln
2. Direkter Vergleich von Objekten
3. Indirekter Vergleich von Objekten



116 | 5 Ausgewihlte Inhaltsbereiche des Sachrechnens

4. Stitzpunkt-Vorstellungen erwerben und Umrechnen von Mal3einheiten
5. Arbeiten mit GréBen
(Franke, 2003; Radatz & Schipper, 1983; Krauthausen & Scherer, 2007, S. 106)

Wir wollen dies im Folgenden an der GroBe Geschwindigkeit erliutern. Diese
GréBe wird in der Regel erst in der Sekundarstufe I thematisiert und tritt haufi-
ger in Sachaufgaben unterschiedlicher Jahrginge auf. Sie wird allerdings selten
im Mathematikunterricht systematisch eingefiihrt. Fir die Einfihrung des
Grenzwertkonzepts in der Sekundarstufe II ist ein sicheres Verstindnis der
GroBe Geschwindigkeit allerdings hiaufig Voraussetzung.

Erfahrungen sammeln

Schilerinnen und Schiiler haben Vorerfahrungen zur Gréle Geschwindigkeit.
Sie wissen beispielsweise, dass man mit dem Fahrrad normalerweise schneller
unterwegs ist als zu Ful3. Im ersten Schritt kénnen diese Erfahrungen gesam-
melt werden. Dazu kann eine Tabelle angelegt werden, in der bewegte Korper
und Informationen tber die jeweilige Geschwindigkeit zusammengetragen
werden. Um tber Geschwindigkeit ins Gesprich zu kommen, eignet sich auch
ein Spielzeugauto, das man auf einem schrig gestellten Brett herunterfahren
lisst. Ebenso sind Schilerinnen und Schiilern hiufig Angaben zu Geschwin-
digkeiten bekannt. Diese kénnen ebenfalls gesammelt und strukturiert werden.
In dieser Stufe wird immer mit den konkreten Objekten gearbeitet bzw. tiber
konkrete Situationen gesprochen.

Direkter Vergleich

Aufbauend auf den Erfahrungen kénnen im zweiten Schritt Objekte direkt
verglichen werden. Bei der Geschwindigkeit als zusammengesetzte GroBe ist
eine Besonderheit zu beachten. Da die Geschwindigkeit von der Strecke, also
der GroBenart Linge, und der Zeitdifferenz, also der GréBenart Zeit, abhingt,
kann sie nur direkt verglichen werden, wenn die beobachteten Gegenstinde zur
gleichen Zeit am gleichen Ort sind. Beispiclweise kann die Geschwindigkeit
von zwei Spielzeugautos vergleichen werden, wenn sie die gleiche Strecke
gleichzeitig durchfahren. Am Ende der Strecke kann direkt festgestellt werden,
welches Spielzeugauto eine héhere (Durchschnitts-)Geschwindigkeit hat. Eben-
falls moglich ist der Vergleich von Fahrradgeschwindigkeiten auf dem Schul-
hof. Dazu wird eine bestimmte Strecke gekennzeichnet, die von den Schiilerin-
nen und Schiilern durchfahren wird. Dazu ist es allerdings nétig, dass beide
(oder mehrere) Fahrrider zum gleichen Zeitpunkt den Startpunkt durchfahren.
Auf dieser Stufe werden die Objekte bzw. Situationen vereinfacht, und es wird
nur noch ihre Geschwindigkeit betrachtet. Allerdings ist es nétig, die Objekte
noch gleichzeitig an einem bestimmten Ort zu betrachten, um die Geschwin-
digkeiten vergleichen zu kénnen. Es handelt sich hier um eine Arbeit mit kon-
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kreten Objekten. Die Vereinfachung besteht darin, dass nicht zu beachtende
Eigenschaften wie beispielsweise das Volumen der Objekte bereits ignoriert
werden.

Indirekter Vergleich

Die Schwierigkeit beim direkten Vergleich von Geschwindigkeiten, dass die
Startlinie zum gleichen Zeitpunkt tberschritten werden muss, motiviert den
indirekten Vergleich von Geschwindigkeiten. In den unterschiedlichen Stufen-
modellen wird dieser Schritt in der Regel unterteilt in den indirekten Vergleich
mit Hilfe willkiitlicher bzw. selbstgewihlter Malleinheiten und den indirekten
Vergleich mit Hilfe standardisierter Mal3einheiten. Diese Unterscheidung ist im
Fall einer abgeleiteten Gré3e wie der Geschwindigkeit nur in begrenztem Um-
fang sinnvoll. Verwendet man eine beliebige, aber fest gewihlte Strecke und
vergleicht Zeiten, die Fahrrider oder Spielzeugautos fiir diese Strecke bendti-
gen, so hat die Geschwindigkeit tatsidchlich eine selbstgewihlte Einheit, in der
allerdings schon eine standardisierte MaB3einheit (Sekunde) vorkommt. Hier
wire es ja nicht sinnvoll, die schon bekannten standardisierten Maf3einheiten zu
ignorieren. Vergleicht man die zuriickgelegten Strecken bei gleichen Zeitinter-
vallen, so werden beide GréBen, die fiir die Geschwindigkeit benétigt werden,
mit standardisierten Mal3einheiten gemessen.

Abb. 5.14 Bewegungssensor EA-2 der Firma Casio

Ein indirekter Vergleich von Geschwindigkeiten wire ebenso mit Hilfe von
Messinstrumenten mdoglich, die die Geschwindigkeit direkt anzeigen. Dazu ist
die Verwendung von Tachometern, die an vielen Fahrridern vorhanden sind,
ebenso moglich wie der Einsatz einer Laserpistole, die von der Polizei fir die
Geschwindigkeitsmessung verwendet wird. Fir einige grafikfihige Taschen-
rechner gibt es auch Bewegungssensoren, die die Geschwindigkeit direkt auf-
zeichnen kénnen (s. Abb. 5.14). Wenn die entsprechenden Taschenrechner im
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Mathematikunterricht ohnehin eingesetzt werden, dann kénnen auf diese Weise
auch Messungen durchgefithrt werden.

In dieser Stufe wird die Vereinfachung der Objekte konsequent weitergedacht.
Die Eigenschaft Geschwindigkeit der Objekte kann unabhingig von Ort und
Zeit festgestellt werden. Dennoch miissen konkrete Messungen an den realen
Objekten durchgefithrt werden.

Vorstellungen und Umrechnen

Der Aufbau von Stiitzpunktvorstellungen zur Geschwindigkeit ist wegen der
beiden gleichzeitig zu berticksichtigenden GréBen unterschiedlicher Art schwie-
riger als beispielsweise bei Lingen oder Volumina. Die eigenen Versuche der
Schiilerinnen und Schiiler kénnen dazu beitragen, einen Fundus an Reprisen-
tanten anzulegen. Fir héhere Geschwindigkeiten muss allerdings auf eine Re-
cherche, z. B. im Internet oder Lexikon, zuriickgegriffen werden. In der Tabelle
sind einige Beispiele fir solche Reprisentanten aufgeftihrt. Dabei wurden die
Geschwindigkeiten in zwei MaBleinheiten angegeben und jeweils auf glatte Wer-
te gerundet.

Tabelle 5.4 Reprasentanten (Stiitzpunktvorstellungen) fir Geschwindigkeiten

Reprasentant Geschwindigkeit in m/s Geschwindigkeit in km/h
Schnecke 0,002 m/s 0,007 km/h
FuRganger 1,5m/s 5 km/h
Radfahrer 6 m/s 20 km/h

Auto im Wohngebiet 8m/s 30 km/h
100-m-Laufer 10 m/s 36 km/h

Auto in Ortschaft 15m/s 50 km/h

Auto auf der LandstraRe 30 m/s 100 km/h
Orkan 33 m/s 120 km/h
Auto auf der Autobahn 35m/s 130 km/h

ICE 80 m/s 280 km/h
Verkehrsflugzeug 250 m/s 900 km/h
Schallgeschwindigkeit 340 m/s 1200 km/h
Lichtgeschwindigkeit 300 000 000 m/s 1 100 000 000 km/h

Die bekanntesten Einheiten fiir Geschwindigkeit sind km/h und m/s. Zur
Verdeutlichung der Schreibweise und Bewusstmachung, dass die Zeit jeweils im
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Nenner steht, sollten die Maf3einheiten zur Einfiihrung besser in Bruchstrich-
schreibweise notiert werden. Das unterstiitzt auch das Umrechnen zur Vergré-
berung und Verfeinerung der Einheiten. Das Umrechnen von Malleinheiten
der Geschwindigkeit ist auf Grund der Unterschiede in der Umrechnung von
Lingen und Zeiten schwieriger als bei anderen zusammengesetzten Groéfienar-
ten. Wihrend bei Lingen mit dezimalen Vielfachen und Teilen gearbeitet wird,
verwendet man bei Zeiten unterschiedliche Vielfache.

= Beispiele

— | von Vergleichsgréfen zu Lingen:

dein Zeigefinger ist etwa | cm breit — ein Stichling ist etwa 4 cm lang

die Spanne zwischen Daumen und Zeigefinger ist etwa 10cm —ein junger Goldhamster ist
etwa 10cm lang

eine Schrittlinge ist etwa I m — ein Schiferhund misst bis zur Schwanzspitze etwa | m.

von Vergleichsgrifien zu Gewichten:

1 Fiillerpatrone wiegt etwa 1 g — ein Zaunkonig wiegt etwa 1 g

1 Fiiller wiegt etwa 10g — ein Essloffel voll Weizenkorner wiegt etwa 10g

| Tafel Schokolade wiegt etwa 100g — ein neu geborener Hund wiegt etwa 100 g

I Packung Zucker wiegt etwa 1 kg — ein erwachsenes Meerschweinchen wiegt etwa | kg

Abb. 5.15 Stitzpunktvorstellungen zu Langen und Gewichten (Kliemann, Puscher,
Segelken, Schmidt, & Vernay, 2006, S. 88)

Tabelle 5.5 Dezimale Vielfache und Teile fur Langen

Faktor Vorsatz Zeichen Faktor Vorsatz Zeichen
10! Deka da 10 Dezi d
102 Hekto h 10-2 Zenti C
103 Kilo k 10-3 Milli m
106 Mega M 10-6 Mikro p
109 Giga G 10-9 Nano n
1012 Tera T 10-12 Piko p
1015 Peta P 10-15 Femto f
108 Exa E 10-18 Atto a
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Tabelle 5.6 Zeiteinheiten

Jahr Monat Woche Tag Stunde Minute Sekunde
1 12 ca. 52 365 8760 525 600 31 536 000
366 8784 527 040 31 622 400
1 ca. 4 28 672 40 320 2419 200
29 696 41760 2505 600
30 720 43 200 2 592 000
31 744 44 640 2678 400

1 7 168 10 080 604 800

1 24 1440 86 400

1 60 3600
1 60

Wihrend die Zeiteinheiten Woche, Tag, Stunde, Minute und Sekunde konstan-
te — aber unterschiedliche — Umrechnungsfaktoren haben, ist dies bei Jahr,
Monat, Woche und Tag nicht der Fall, da durch die Schaltjahrregelung nicht
immer gleich viele Tage zu einem Jahr gezihlt werden. Die Schaltjahrregelung
besagt, dass ein Schalttag eingefiigt wird, wenn die Jahreszahl durch vier teilbar
ist, aufer in vollen Jahrhunderten, die nicht durch 400 teilbar sind. Dies hat
dann auch Auswirkungen auf die Anzahl der Wochen. Fiir die Umrechnung der
Geschwindigkeitseinheiten km/h und m/s wird nur der eindeutige Faktor 3600
von Stunden und Sekunden verwenden. Die Umrechnung fiir die Lingen- und
Zeiteinheiten sollte bereits sicher beherrscht werden. Dann kann etwa durch
die folgende Rechnung die Umrechnung der beiden bekannten Einheiten fiir
die Geschwindigkeit vorgenommen werden.

12_3600m_3,6-1000m_3,6km_36k_m
s 3600s  3600s  1h " h
bzw.
1km_lOOOm_lOOOm_lOm_ 1 m
h ~ 60-60s 3600s 365 3,6 s

Die Messung der Groe Geschwindigkeit hingt auf Grund der Zusammenset-
zung der GrofBe aus Linge und Zeit von zwei Messungen ab.

Arbeiten mit GroRen

Im idealisierten Modellbildungskreislauf findet die Arbeit mit GroéBen im Be-
reich der Mathematik statt. Bei der Arbeit im mathematischen Modell kommen
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praktisch aber auch Rickgriffe auf die reale Ebene vor, da die Operationen der
disjunkten Klassen mit Hilfe entsprechender Operationen der Vertreter selbst
erklirt werden.

Vertreter

Vertreter
Vertreter

N\

Arbeit mit
Klassen von
Vertretern

Loésung < Rechnen Grolke
(MaRzahl, Einheit)

Abb. 5.16 Arbeit mit Klassen von Vertretern

Fir die Arbeit mit GréB3en kann man zunichst den Vergleich von zwei Gréfien
nennen. Im Beispiel der Geschwindigkeit kénnte es interessant sein, ob zwei
Fahrrider die gleiche Geschwindigkeit haben. Hier ist zuerst zu kliren, ob es
sich um eine momentane Geschwindigkeit oder um eine durchschnittliche Ge-
schwindigkeit handeln soll. Es ist durchaus mdéglich, dass ein Fahrradfahrer mit
einer niedrigeren Durchschnittsgeschwindigkeit (iber einen lingeren Zeitraum
ausgewertet) zu einem bestimmten Zeitpunkt eine hohere momentane Ge-
schwindigkeit hat als ein anderer Fahrradfahrer, der eine héhere Durchschnitts-
geschwindigkeit fahrt. Dabei kénnen nun die Geschwindigkeiten der Objekte
auf Grund der entsprechenden Malizahlen vergleichen werden, ohne die kon-
kreten Objekte direkt zu verwenden. Dies ist noch ein Abstraktionsschritt mehr
als der indirekte Vergleich mit Hilfe von Messungen konkreter Objekte. Den-
noch wird man zur Veranschaulichung und zur Validierung immer wieder die
konkreten Vertreter in den Blick nehmen. Dies wird auch in der Abbildung zur
Arbeit mit Klassen von Vertretern deutlich.

AuBer dem Vergleich von GréBen kann komplexer mit GréB3en operiert wer-
den, beispielsweise kénnen die Geschwindigkeit eines Flusses und des in Flie(3-
richtung fahrenden Bootes addiert werden. Diese Operationen kénnen auch
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ausgefithrt werden, ohne dass die entsprechenden Vertreter diese Aktion tat-
sichlich ausfihren.

Das Rechnen mit Gréflen spielt auch im Rahmen der Bruchrechnung eine
wichtige Rolle. Hier wird es zur Veranschaulichung und Motivation der Additi-
on und Subtraktion von Brichen im Rahmen des GroBlenkonzepts verwendet.
Fir die Multiplikation dagegen kann nur die Multiplikation einer GréBe mit
einer Zahl betrachtet werden, da sonst die Gré3enart verlassen wird (Padberg,
2009, S. 14).

5.1.6 Mathematische Vertiefung

Wir betrachten noch einmal das Beispiel der GréBenart Lange. Linge, Breite
und Hohe gehoren alle zur GroBlenart Linge. Allgemein haben wir die Gréfen
als eine Grifienart bezeichnet, deren Quotient eine reelle Zahl ist.

Wir wollen im Folgenden die mathematischen Figenschaften einer Gréf3enart
genauer untersuchen. Dazu kann ein entsprechendes Objekt, ndmlich ein Gro-
Benbereich, definiert werden. Ein GréBenbereich wird als eine bestimmte alge-
braische Struktur definiert, in der addiert und verglichen werden kann und die
die dblichen im Mathematikunterricht behandelten GréBen sinnvoll zusam-
menfasst.

Definition Gr6Renbereich

Eine Menge G mit Elementen a, b, c, ..., fur die eine innere Verkniipfung
+, die wir Addition nennen, und eine strenge Ordnungsrelation <, die wir
Kleinerrelation nennen, erklart sind, heilt GroRenbereich genau dann,
wenn fir beliebige a, b, c € G gilt:

Assoziativgesetz der Addition: (a +b)+c=a+ (b + ),
Kommutativgesetz der Addition: a+b = b + a,

Trichotomiegesetz: Fir a,b e G gilt stets genau einer der drei Falle
a<b b<a a=hb.

Losbarkeitsgesetz: a + x = b ist |6sbar mit xe G genau dann, wenn a < b.

Der GroRenbereich wird durch die Menge G, die Addition und die Kleiner-
relation festgelegt. Schreibweise: (G, +, <).

Die Definition des Groflenbereichs stellt sicher, dass man GroBen eines Gro-
Benbereichs addieren und vergleichen kann.
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Es handelt sich hier, bezogen auf die bekannten Strukturen Gruppe und Ring,
um eine neue algebraische Struktur. Ein Gréfienbereich ist beispielsweise auf
Grund des Losbarkeitsgesetzes keine Gruppe, da in einer Gruppe eine entspre-
chende Gleichung immer (eindeutig) 16sbar wiire.

Das Loésbarkeitsgesetz ist ebenfalls ein Grund dafiir, warum eine der bekannten
GroBen aus mathematischer Sicht keinen GréB3enbereich darstellt. Die Tempe-
ratur — gemessen in Grad Celsius (°C) — kann auch negative Werte haben. Dies
ist nicht im Finklang mit dem Lo&sbarkeitsgesetz, da beispielsweise die Glei-
chung 7°C + x = 5°C lésbar ist mit x = —2°C. Nach dem Losbarkeitsgesetz ist
eine solche Gleichung 2 + x = b aber genau dann 16sbar, wenn a < b gelten
wirde. Dies ist hier nicht der Fall, da 7 > 5 ist. Wird die Temperatur, wie in der
Physik tiblich, in Kelvin angegeben, so tritt dieses Problem nicht auf. Des Wei-
teren ist es in einigen Fillen iiblich, manchen GréBen — beispielsweise der Ge-
schwindigkeit — negative Absolutbetrige zuzuordnen, um eine entgegengesetzte
Richtung zum Ausdruck zu bringen. Auch dies passt nicht mit dem Lésbar-
keitsgesetz zusammen.

Die Definition des GroBlenbereichs schlie3t die Menge N der nattrlichen Zah-
len (ohne Null), die Menge Q* der positiven rationalen Zahlen und die Menge
R* der positiven reellen Zahlen ein.

Man kann Gréfen mit natiirlichen Zahlen multiplizieren. Dies wird mit Hilfe
der Addition rekursiv definiert.

Definition Multiplikation

Fiir jedes a € G sei 1-a=a, und wenn n-a schon definiert ist,
(n+1)-a=n-a+a far alle natirlichen Zahlen n.

Die Multiplikation von zwei GrofB3en fithrt allerdings (mit Ausnahme der Gro-
Ben mit der Einheit 1) aus der GroBenart heraus. Beispielsweise erhdlt man
durch Multiplikation von zwei Lingen die GroBenart Fliche.

Die Division von GréB3en durch natiirliche Zahlen ist nicht in allen Fallen un-
eingeschrinkt moglich. Beispielsweise ist es bei der Grofie Geld — zumindest
bezogen auf das Bargeld — nicht méglich, beliebig zu dividieren und wieder ein
durch Bargeld darstellbares Ergebnis zu erhalten. So ist zum Beispiel 1 € : 200
= 0,005 € = 0,5 ct. Eine solche Miinze gibt es aber nicht. Ebenso ist die Divisi-
on von Anzahlen, die auf nicht-ganze Zahlen fihrt, ein Beispiel fiir eine nicht
ausfihrbare Division von GroBen. Falls aber die Division doch uneinge-
schrinkt moglich ist, spricht man von einem GréBenbereich mit Teilbarkeitsei-
genschaft.
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Definition Teilbarkeitseigenschaft

Der GroRenbereich (G,+,<) hat die Teilbarkeitseigenschaft genau dann,
wenn es zu jedem a € G und n € N stets ein x € G gibt, sodass n-x = a.

Beispielsweise haben die Lingen und Temperaturen die Teilbarkeitseigenschaft.
In diesen GroBenbereichen kann durch beliebige natiitliche Zahlen dividiert
werden.

Eine weitere Frage ist, ob sich in einem GréBenbereich eine gegebene Grofie
uneingeschrinkt messen lisst. Das Messen ist der Vergleich mit der bekannten
Einheit. Aus mathematischer Sicht wire Messen mit einer gegebenen Einheit
ein Vorgang, bei dem die Grof3e als Vielfaches einer Einheit geschrieben wer-
den kann. Wenn in einem GréBenbereich das Messen uneingeschrinkt méglich
sein soll, dann muss zu zwei beliebigen GréBen eine Einheit existieren, sodass
beide GroBen als Vielfache dieser Einheit geschrieben werden kénnen.

Definition Kommensurabilitdt

Ein GroRenbereich (G, +, <) heiRt kommensurabel, wenn es zu zwei belie-
bigen GroRen g und h eine Einheit e € G gibt, sodass gilt: g=n-e und
h=m-e mitmmné€N.

Wenn zwei Grolen kommensurabel sind, dann ist die eine Gro3e als Produkt
der anderen GroBe mit einer positiven rationalen Zahl darstellbar. In einem
solchen Fall gilt nimlich
1 n
g=n-e und h=m-e:>g=n-g-h=;-h

fir zwei Elemente g 4 € G und zwei natiirliche Zahlen 7, » € N. Gilt umge-
kehrt fiir zwei beliebige Elemente g 4 € G und zwei natlrliche Zahlen », 7 € N,
die Gleichung

so konnte man 7/# - / als Einheit wihlen und damit g messen. Umgekehrt
konnte man auch 7/ - g als Einheit wihlen und damit / messen. In einem
solchen GroéBenbereich ist die Division ohne Einschrinkungen moglich. Au-
Berdem ist der Quotient der beiden Gréfien g und 4 eine rationale Zahl, also
auch eine reelle Zahl. Die GréBen gehéren damit zur gleichen GroB3enart.



Die GréBen Anzahl und (Bar-)Geld sind beispielsweise kommensurabel. Im
Fall von Euro kann als Einheit immer 1 ct gewihlt werden; in vielen Beispielen
ist auch eine andere Wahl moglich. Die Linge dagegen ist nicht kommensura-
bel, da beispielsweise ein Kreis mit dem Durchmesser 1 m einen Umfang von
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7 m hat und © keine rationale Zahl ist (Picker, 1987; Strehl, 1979, S. 46 ft.).

5.2 Zuordnungen von GroRen

Die Behandlung von Zuordnungen und speziell funktionalen Zusammenhin-
gen gehort nicht prinzipiell zum Sachrechnen. Sehr haufig werden aber Zuord-
nungen von zwei Groflen (z. B. Strecke und Geschwindigkeit) im Mathematik-

unterricht betrachtet.

Jeden Morgen fahrt Peter im Auto zur Schule, denn sie liegt am Arbeitsweg seines Vaters.
Auf den geraden Strecken fahrt das Auto mit etwa 50 km/h. In den Kurven muss die Geschwin-
digkeit entsprechend gesenkt werden. Der g Schulweg hat eine Linge von 1100 m.

7

2
#4]
b
\-.

be die Verénderungen der Geschwindigkeit wahrend der Fahrt.

Ubertrage die unten stehende Darstellung in dein Heft. Zeichne einen Graphen.
Er soll zeigen, wie sich die Geschwindigkeit im Verlauf der Fahrt ndert.

Geschwindigkeit (km/h)
60
a0

+ }—  Distanz zum Wohnort (m)
200 400 600 800 1000 1200

Vergleicht eure Graphen und begriindet die U hied:

Abb. 5.17 Zuordnung von zwei GroRen (Affolter, et al., 2004, S. 7)
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Umgekehrt ist es auch sehr gut méglich, mit Hilfe des Zusammenhangs von
zwel Groflen den Begriff der Funktion zu verdeutlichen (s. Abb. 5.18). Die
Gegenstinde des Sachrechnens und zentrale Bereiche des Mathematikunter-
richts der Sekundarstufe kénnen sich hier wechselseitig erginzen.

= yriohe Temp. in °C Beide Schaubilder beschreiben den
in Jam Zusammenhang zwischen Hihe und
30- 407 Temperatur.
_ 2“‘\ Wihle einige Hohen aus. Welche Tempera-
Mesosphire 0 i tur herrscht dort jeweils?

Wiihle einige Temperaturen aus. In welcher
Hohe findest du sie jeweils?

Die erste Frage lisst sich eindeutig beant-
worten, die zweite nicht.

-604 -,5
2 Tl.'!;l'l!l. -804 % 3‘
Tmh in *C £ é

-100 -60 -20 0 2040
Temperatur —= Héihe Hdhe —= Temperatur

Zusammenhang zwischen zwei GroBen kann durch eine Zuordnung beschrieben
: erste Grafle — zweite Grifle.
es zur ersten GroBe immer nur eine zweite Grofle, dann ist die Zuordnung eine

Funktionen konnen durch Terme, Tabellen und Schaubilder beschrieben werden.

Abb. 5.18 Einfiihrung von Funktionen mit Hilfe von GroRen (Kietzmann, et al., 2004)

In lebendem organischem Material, z. B. in einem Baumstamm, kommt Kohlenstoff

in den Isotopen C12 und C14 im Verhaltnis 10%: 1 vor. C14 ist radioaktiv. Sobald der Tod
eintritt und der Stoffwechsel zum Erliegen kommt, halbiert sich der C14-Anteil etwa

alle 5700 Jahre.

Alter des Fossils 0T (lebend) 1T(=5700a) | 2T(=11400a) | 3T (=17000a) | 4T (=23 000 a)

Anzahl C12-Atome | 10” 10" 10 10" 10"
Anzahl C14-Atome | 1000 500 250 125 =60
Anteil C14-Atome | 100% 50 % 25% 125% 6.25%

A Erklart einander die Bedeutungen und Beziehungen der einzelnen Angaben
in der Tabelle.

Abb. 5.19 Zuordnungen als Mittel zur UmwelterschlieRung (Affolter, et al., 2006, S. 39)

Die Zuordnungen sind damit eine Fortfilhrung des Inhaltes Gréflen in der
Sekundarstufe. Gerade bei der Behandlung von Zuordnungen wird deutlich,
dass fast alle mathematischen Inhalte mit Hilfe von Realititsbeziigen motiviert
oder bearbeitet werden kénnen und umgekehrt die Umwelt mit Hilfe von Ma-
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thematik erschlossen und verstanden werden kann (s. Abb. 5.19). Man findet
daher eine groBe Bandbreite von Unterrichtsmaterialien mit kaum vorhande-
nem bis sehr ernst genommenem Realititsbezug. Diese Thematik ist im Zu-
sammenhang mit den Funktionen des Sachrechnens bereits diskutiert worden.

5.2.1 Zuordnungen und Funktionen

Hintergrund

Bevor auf spezielle Funktionstypen oder Eigenschaften von Funktionen einge-
gangen wird, soll hier zunichst der allgemeine Begriff der Zuordnung von zwei
oder auch mehr GréBlen betrachtet werden. Eine Funktion kann dann als Spe-
zialfall einer Zuordnung angesehen werden. Gerade aus Sicht des Sachrechnens
ist dieser allgemeinere Zugang sinnvoll, da nicht alle Bezichungen von Gréien
als funktionale Zusammenhinge modelliert werden kénnen.

Zuordnung

Eine Zuordnung ist eine Menge von Paaren (x;y) mit x,y aus einer Menge
V, bei denen die Reihenfolge der Zahlen x und y unterschieden wird. Bei
solchen sogenannten geordneten Paaren sind (x;y) und (y;x) verschiedene
Zahlenpaare.

Eine Zuordnung muss nicht eindeutig sein. So koénnen mehrere Paare
(>, a), (x, b), ... mit a # b existieren, die einem x-Wert unterschiedliche j-Werte
zuordnen. Eine eindeutige Zuordnung dagegen wird als Funktion bezeichnet.

Funktion

Eine Funktion fordnet jedem Element x einer Definitionsmenge D genau
ein Element y einer Zielmenge Z zu.

Schreibweise: f:D » Z mit x » y bzw. f(x) = y.

Wie bereits die Definition zeigt, beschrinkt man sich bei der Einfithrung von
Funktionen als Zuordnung von Gréflen sehr hiufig auf die Termdarstellung.
Die klassische Einteilung der Schulmathematik in lineare, quadratische, trigo-
nometrische (z. B. Sinusfunktion) und Exponentialfunktionen beruht auch auf
der Betrachtung der Struktur der Funktionsterme.
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Tabelle 5.7 Typisierung von Funktionen nach Funktionstermen

Name Funktionsterm

lineare Funktion fx)=ax+b

quadratische Funktion f(x) =ax*+bx +¢

Sinusfunktion f(x) =a-sin(bx +¢)

Exponentialfunktion f(x)=a-b*

Gerade bei der Betrachtung von Zuordnungen von Grofen wire es in einigen
Zusammenhingen sicherlich hilfreich, Funktionen nach Wachstumseigenschaf-
ten (z. B. monoton wachsend) oder Eigenschaften der Funktionalgleichung
(z. B. additiv) einzuteilen.

Monoton wachsende und fallende Funktionen

Eine Funktion f:D — Z heift monoton wachsend in D, wenn fir je zwei
Elemente x;, x, der Definitionsmenge D mit x; < x, gilt: f(x;) < f(x).

Eine Funktion f:D — Z heift monoton fallend in D, wenn fiir je zwei Ele-
mente x;, x, der Definitionsmenge D mit x; < x, gilt: f(x;) = f(xy).

Additive und multiplikative Funktionen

Eine Funktion f:D — Z heilt additiv in D, wenn fiir je zwei Elemente x;, x,
der Definitionsmenge D gilt: f(x; + x) = f(x1) + f(x2).

Eine Funktion f:D — Z heilft multiplikativ in D, wenn fiir je zwei Elemente
X1, x, der Definitionsmenge D gilt: f(x; - x) = f(xq) - f(x3).

Die Funktionalgleichungen von additiven und multiplikativen Funktionen wer-
den hier nur exemplarisch ausgewihlt. Es gibt weitere Higenschaften von Funk-
tionen, die mit Hilfe von Funktionalgleichungen ausgedriickt werden kénnen.

Ein Beispiel fir eine monoton wachsende Funktion ist fix) = 7, da fiir beliebi-
ge x7 < xz stets auch x77 < x gilt. Ein Beispiel fiir eine monoton fallende Funk-
tion ist f{x) = —/x. Eine additive Funktion ist beispielsweise f{x) = 3x und eine
multiplikative Funktion f{x) = x (Vollrath, 2003, S. 123).
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Modellierung

Der Funktionsbegriff stellt ein gleichermalien spezielles und flexibles mathema-
tisches Modell dar. Es ist mit Blick auf allgemeine Zuordnungen speziell und
bezogen auf die unterschiedlichen Funktionstypen flexibel. Der Funktionsbe-
griff kann im Rahmen des Sachrechnens ausgehend von anwendungsorientier-
ten Zuordnungen von Grofen entwickelt werden.

Der Schritt von der anwendungsorientierten Zuordnung von Groflen zum
fachwissenschaftlichen Funktionsbegriff sollte nicht zu schnell vollzogen wer-
den. Anderenfalls besteht die Gefahr, dass Schiilerinnen und Schiiler den Funk-
tionsbegriff nicht auf der Basis der Zuordnung von Gréfen und mit unter-
schiedlichen Darstellungsformen wie Graph, Tabelle, Beschreibung und Term
aufbauen konnen, sondern nur einen eingeengten Blick auf dieses fir die
Schulmathematik zentrale mathematische Modell bekommen.

Der Funktionsbegriff spielt in den Bildungsstandards und Lehrplinen fir die
Sekundarstufe der einzelnen Bundeslinder eine sehr zentrale Rolle. Der funkti-
onale Zusammenhang ist beispielsweise als Leitidee in den Bildungsstandards
fir den mittleren Bildungsabschluss der Kultusministerkonferenz zu finden
(KMK, 2004, S. 11). Die allgemeineren Zuordnungen dagegen werden hiufig
nur am Rande erwihnt, in den Bildungsstandards beispielsweise als ein Unter-
punkt im Zusammenhang mit moglichen mathematischen Modellen und in den
Kernlehrplinen Nordrhein-Westfalens an einigen Stellen im Sinne von Funkti-
onen (Ministerium fiir Schule NRW, 2004).

Der zu schnelle Ubergang von allgemeinen Zuordnungen zum Funktionsbe-
griff, also zu den tblicherweise zuerst behandelten linearen Funktionen, kann
den Blick fir andere Klassen von Funktionen einschrinken. In der Realitit
spielen viele unterschiedliche Funktionenklassen eine Rolle, ebenso wie auch
Zuordnungen und funktionale Zusammenhinge, die nicht durch eine einfach
darzustellende Funktionsgleichung beschrieben werden kénnen. Daher ist es
hilfreich, zundchst eine breite Palette von moglichen Zuordnungen kennenzu-
lernen. Da dies in der Jahrgangstufe 7, in der Giblicherweise in diesen Inhaltsbe-
reich eingefithrt wird, nicht in der Termdarstellung méglich ist, sollten die
Schiilerinnen und Schiler in dieser Phase verstirkt mit Graphen, Beschreibun-
gen und Tabellen arbeiten. Dann sind beispielsweise auch stiickweise definierte
Funktionsgraphen problemlos darstellbar.

Sehr hiufig wird im Mathematikunterricht mit Hilfe von Funktionen model-
liert. Die Modellbildung ist dabei natlrlich abhingig von den vorhandenen
»mathematischen Werkzeugen®, also den Funktionenklassen, die den Schiile-
rinnen und Schiilern bekannt sind. Bis zur Klassenstufe 8 sind dies in der Regel
nur lineare Funktionen. Daher liegt die Modellierung hiufig auf der Hand. Eine
wirkliche Wahl eines mathematischen Modells kann auf diese Weise hédufig
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nicht stattfinden. Es kann sogar nicht einmal von einer Wahl der Funktionsart,
sondern lediglich von der Bestimmung der Parameter der linearen Funktion
gesprochen werden. Fin entsprechender Modellierungskreislauf mit vorgegebe-
nem linearem Modell verdeutlicht dies (s. Abb. 5.20).

reales Objekt Vereinfachen > Linearitat

Realitat

Mathematik

Losung Rechnen lineare
Funktion

Abb. 5.20 Lineare Funktionen als mathematisches Modell

Interpretieren >
<U6J9!S!JBW6UJEW |

Der im Kreislauf dargestellte Vereinfachungsschritt zur Eigenschaft Linearitit
liegt allerdings auf der Hand. Wenn keine anderen Modelle zur Verfiigung ste-
hen, ist daher die Vereinfachung keine besondere Leistung. Bei der Bearbeitung
von Problemen, denen ein derartiger enger Modellbildungsprozess zugrunde
liegt, besteht die Gefahr, dass die Vereinfachung sowie die Mathematisierung
der Sache nicht gerecht wird und — aus Mangel an alternativen realen Modellen
— von linearen Zusammenhingen ausgegangen werden muss.

Bei Modellbildungsprozessen sollte aber die Wahl des Modells méglichst offen
sein und die Diskussion der Vereinfachung der Realsituation Alternativen bie-
ten. Modellierungsaufgaben mit vorgegebenem Modell sind daher kritisch zu
sehen. Um zu vermeiden, dass im Mathematikunterricht Modelle nur als Funk-
tionsterm wahrgenommen werden, kénnen unterschiedliche Darstellungsfor-
men von Funktionen immerhin eine grélere Vielfalt von Bearbeitungsschritten
liefern.
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Darstellungsformen

Das Einfithren von funktionalen Abhéngigkeiten mit Hilfe von Graphen erfiillt
mehrere Zielsetzungen. Zum einen werden nichttriviale Zusammenhinge von
unterschiedlichen GroBenarten untersucht, und zum anderen werden die ma-
thematischen Methoden bereitgestellt, solche Zusammenhinge von Grofien
mathematisch zu beschreiben und zu untersuchen. Dazu kénnen unterschiedli-
che Darstellungsformen verwendet werden.

1 Schaubilder kéinnen Geschichten er-
zithlen und Situationen beschreiben.
Wann steigt das Wasser, wann sinkt es?
Was konnten die Griinde sein?

Léuft Wasser aus dem Hahn?

Steigt jemand in die Badewanne?

Lisst sich das im Schaubild erkennen?
Wann liuft Wasser zu, wann liuft es ab?
Wann steht das Wasser am héichsten?

2 Indem linken Schaubild konnt ihr er-
kennen, wie sich die Wasserhdhe in einer
Badewanne im Lauf der Zeit dndert.
Schreibt dazu eine Geschichte.

Fusrst: Rommt Kaoandras Hund Hirn dran, damn
in die Bad, and, dveht dom Waserhall
auf. Danm gehem 4t vaus, wm Kira 20 suchon, die

Zeit in_min
)

T T T 1 T ) ) T - T L ) T
=31 101542012530 35140451 50+ 55160+ 65+ 70—

e Fiillt zu Hause das Spiilbecken in der

Kiiche 10cm hoch mit Wasser und lasst es
wieder ablaufen.

Zeichnet ein moglichst genaues Schaubild.
Untersucht, ob das Wasser gleich schnell
steigt und sinkt.

4 Zeichnet zu der Geschichte von Ka-
sandra und Marion ein passendes Schaubild.
Erfindet selbst Schaubildgeschichten und

sich vorstacht Aat . Endlich. Rabon sie Hira ge -
fundsn und. 2erren sie. sns Hows. Die Wanne
st aber viel zu voll und. 4o Lnssen Kaoamdna,
snd, Marion, cie Falfte des Wassers witdor alk-
Laufen . Sie aden Kira, Midisse fortig ist, ist
das Waser jedoch viel T schmutiaig., wm
Rallr vot ist, badem sie Lucy .

tauscht sie zur Losung aus.

Abb. 5.21 Zeichnen und Interpretieren (Kietzmann, et al., 2004, S. 94)

Abb. 5.22 zeigt, dass es mit den vier Darstellungsformen fir Funktionen zwolf
unterschiedliche Titigkeiten gibt, wenn Darstellungen ineinander Uberfihrt
werden sollen. Im Mathematikunterricht findet man besonders hiufig das Be-
rechnen von Tabellenwerten aus Funktionstermen mit anschlieBendem Skizzie-
ren von Funktionsgraphen. Seltener dagegen findet man das Arbeiten mit Ta-
bellen und Graphen oder beispielsweise das Zeichnen von Graphen aus gege-
benen Situationen, wie etwa im abgebildeten Schulbuchbeispiel (s. Abb. 5.21).
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nach Situation Tabelle Graph Term
von
Situation Ausmessen Zeichnen Mathematisieren
Tabelle Ablesen Einzeichnen Anpassen
Graph Interpretieren Ablesen Anpassen
Term Realisieren Berechnen Skizzieren

Abb. 5.22 Mdégliche Wechsel von Darstellungsformen (Swan, 1982)

Wir wollen diese allgemeineren Uberlegungen zu Zuordnungen von Gré3enbe-
reichen nun an speziellen Funktionenklassen konkretisieren.

5.2.2 Proportionalitat

Definition und charakteristische Eigenschaften

Die Eigenschaft Proportionalitit einer auf den positiven rationalen Zahlen Q%
definierten Funktion /: QT — Q7 lisst sich mathematisch durch die Bedingung

flc-x)=c-f(x)firallec € Q" (.1

definieren. Diese Eigenschaft bezeichnet man auch als Verielfachungseigenschaft
(Fricke, 1987, S. 111).

Proportionale Zusammenhinge koénnen, zusitzlich zur in der Definition ge-
wihlten algebraischen Darstellung, auch sprachlich, tabellarisch und grafisch
dargestellt werden. So kann beispielsweise bei einer Zugfahrt mit konstanter
Geschwindigkeit der proportionale Zusammenhang der Gréfien Linge (d. h.
der zuriickgelegten Strecke) und Zeit auch sprachlich formuliert werden.

Beispiel Proportionalitat

Der Zug legt in gleichen Zeiten gleiche Strecken zuriick. In drei Minuten
legt er 10 km zurlick. In doppelter Zeit wird auch die doppelte Strecke
zuriickgelegt, in dreifacher Zeit die dreifache Strecke und so weiter.
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Ebenso ist eine Tabelle oder ein Graph zur Darstellung dieses Sachverhalts
méglich. Die tabellarische Darstellung orientiert sich hier am Text. Sie beginnt
mit dem im Text genannten Wert. Weitere Wertepaare werden wie im Text
beschrieben erzeugt. Anschlieend wird die Tabelle noch weiter fortgesetzt.

Tabelle 5.9 Zeit und zuriickgelegte Strecke eines Zuges

Zeit (in Minuten) zuriickgelegte Strecke (in km)

3 10
6 20
9 30
12 40
60 200

Die folgende grafische Darstellung beruht auf den Daten der Tabelle. Die Art
der Darstellung erméglicht direkt auch ein Ablesen von Zwischenwerten und
somit die Erginzung bzw. Fortsetzung der Tabelle.

a

200

150

100

50

0 10 20 30 40 50 60 70
Abb. 5.23 Zeit (x-Achse) und zuriickgelegte Strecke (y-Achse) eines Zuges

Auf der Basis der eingangs zitierten Definition gibt es unterschiedliche Eigen-
schaften, die im Zusammenhang mit der Proportionalitit in den Vordergrund
gestellt werden kénnen. Die erste dieser Eigenschaften ist die Verbaltnisgleichbeit.
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Die Verhiltnisgleichheit bringt zum Ausdruck, dass der Quotient von zwei
x-Werten dem Quotient der zugeordneten Funktionswerte entspricht, d. h.

x1 _ flx1)
X3  flx2)
Die Eigenschaft (5.2) ldsst sich fir x> = ¢+ x s mit Hilfe der Definition (5.1)

ableiten:

fO) _ fx) _ fG) 1 x %

fl)  flex)  of(x) ¢ cxp oxg
Ebenso kann man auch die Quotientengleichheit (Fricke, 1987, S. 112) aus der
Verhiltnisgleichheit ableiten. Sie besagt, dass der Quotient aus Funktionswert
und entsprechendem x-Wert jeweils konstant ist, d. h.

= const.

f&)
X

fur alle x € Q7. Dies folgt aus der Verhiltnisgleichheit fiir x7 = x und x, = 1:

x _ f(x) f) _
1 - f(].) N x - f(l)

Diese Rechnung zeigt auch, dass der konstante Faktor gleich dem Funktions-
wert an der Stelle 1 ist. Daraus ldsst sich eine Funktionsgleichung ableiten. Wenn
fiir den konstanten Faktor f1) = a gesetzt wird, erhalten wir

f(x)=a-x. (5.2)
Alternativ sicht man mit Hilfe von (5.1) mit ¢ = x, dass gilt
fO) =flx-D=xfl)=a-x
Der Proportionalititsfaktor a ist gleich dem Funktionswert an der Stelle 1.
Eine weitere Eigenschaft ist die Additivitit oder Summeneigenschaft (Fricke, 1987,
S. 111), die nun aus der Funktionsgleichung (5.2) gefolgert werden kann. Es gilt
[ +2x2) = f(x1) + f(x2),

denn es ist

fOa+x)=a-(x1+x)=a-x;ta-x;=f(x)+ f(x2).

AuBlerdem gilt fiir proportionale Zuordnungen die sogenannte Mittelwertseigen-
schaft (Fricke, 1987, S. 112)

x1+x2\ _ fle)+f(x2)
f( 2 )_ 2 >
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d. h. dem Mittelwert von zwei Gréflen oder Zahlen wird der Mittelwert der
entsprechenden Funktionswerte zugeordnet. Dies folgt beispielsweise mit Hilfe
der Definition (5.1) fiir ¢ = 1/2 und der Additivitat, denn

+ (x)+
F(EE) = 2 £ +30) = S (F () + () = LD,
oder direkt mit Hilfe der Funktionsgleichung (5.2)

f (xlzﬂ) —a (X1‘2|'x2) _ a'x1;'a'x2 _ f(x1)-2rf(x2)'

Diese Higenschaft gilt allerdings nicht nur fiir proportionale Funktionen, son-
der auch allgemein fiir lineare Funktionen f:R = R mit f(x) =a-x+b,
denn

x1+x2) _ x1+x2 a-xy+b+a-xy;+b _ f(x1)+f(x2)
f( 2 ) - a( ) tbh= 2 - 2 :

An proportionalen Funktionen kénnen also auch Eigenschaften erkannt wer-
den, die in allgemeineren Zusammenhingen gelten und nicht nur typisch fiir
proportionale Funktionen sind. (Vollrath, 2003, S. 126 ff.)

Die oben beschriebenen Zusammenhinge kénnen in Tabellenform zusammen-
gefasst werden. Dabei benutzen wir die oben verwendeten Bezeichnungen.

Tabelle 5.10 Proportionalitit von zwei GréRen

GroRe 1 GroRe 2
X1 n=fG)=f1)x
Xy =C"Xp V2=f)=flc-x)=c-flx)=c-f(1) x

Bezogen auf das Beispiel des mit konstanter Geschwindigkeit bewegten Zuges,
kann man mit Hilfe der ersten drei Zeilen der entsprechenden Tabelle 5.9 die
oben dargestellten Eigenschaften konkret veranschaulichen.

Tabelle 5.11 Eigenschaften von proportionalen Zuordnungen am Beispiel Zug

Eigenschaft Beispiel
Verhaltnisgleichheit 3 min - 10 km
6min 20 km
Quotientengleichheit 10 k_m _20 k_m = ... = const. = f(1)
3min 6 min
10 km

Funktionsgleichung flx) = x
3 min
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Additivitat 30 km = f(3 min 4+ 6 min) = f(3 min) + (6 min) = 10 km + 20 km
Mittelwertseigenschaft f(w — £(6 min) = 20 km = 10km + 30 km
2

f(3 min) + £(9 min)
2

Modellierung

Hiufig werden proportionale Zuordnungen im Zusammenhang mit Modellie-
rungen des Kontextes Einkanfen verwendet, da viele Preise in bestimmten Be-
reichen proportional zur Anzahl oder Menge der Waren sind. Eventuelle An-
gebote oder Rabatte werden hidufig in dieser Phase ignoriert, was bei einer
ernsthaften Betrachtung des Kontextes bei Schiilerinnen und Schiilern zu
Schwierigkeiten fihren kann.

n Fiir sechs Gelroller muss Johanna im
Schreibwarengeschaft 5,40 € bezahlen.
Daniel mdchte drei Gelroller kaufen,
Julia zwei, Timo vier, André acht und
Sarah neun. Lege eine Tabelle an und
berechne die fehlenden Preise.

357

Gelroller

-
G-1

Gelroller Gelroller

Abb. 5.24 Beispielaufgabe zur Proportionalitdt (Herling, Kuhlmann, & Scheele, 2008, S.
13)

In der Beispielaufgabe (s. Abb. 5.24) wird die Proportionalitit von Menge und
Preis vorausgesetzt, obwohl Giberhaupt nicht klar ist, ob es fiir die 6er-Packung
gegebenenfalls einen Rabatt oder ein anderes Preismodell gibt und ob es tber-
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haupt méglich ist, die Stifte in jeder Stiickzahl zu kaufen. Hier wird also weni-
ger der Kontext als das mathematische Modell der Proportionalitit in den Vor-
dergrund gestellt. Dies ist bei den vielen Aufgaben zu proportionalen Zuord-
nungen der Fall, da das Modell in den meisten Kontexten au3erhalb bestimm-
ter Intervalle an Grenzen st63t. Dies ist auch beim eingangs angefithrten Zu-
sammenhang von zuriickgelegter Strecke und Zeit eines Zuges der Fall. Aus
mathematischer Sicht handelt es sich also um ein normatives Modell, wahrend
im Kontext in der Regel das deskriptive Modell einschlieflich seiner Grenzen
im Vordergrund steht (s. S. 44).

Waren zum - beliebige Mengen
Verkauf | Vereinfachen u. keine Rabatte

Realitat

Mathematik

Interpretieren >
<JGJG!S!}EW6U}9W |

r proportionale
osung < Rechnen | Zuordnung

Abb. 5.25 Proportionalitat im Einkaufskontext

Um den dadurch entstehenden gedanklichen Konflikt der Schilerinnen und
Schiiler zu 16sen, muss explizit die Vereinfachung des Einkaufsproblems durch
den Verzicht auf Rabatte und die Abgabe beliebiger Mengen in bestimmten
Bereichen deutlich gemacht und diskutiert werden (s. Abb. 5.25). Dann kann
die Modellierung als proportionale Zuordnung sinnvoll sein. Es handelt sich
aber um ein Modell, das die Realitit nur in bestimmten Grenzen abbildet.

Ein anderer Ansatz, zu einer sinnvollen Modellbildung zu kommen, ist, die
Schiilerinnen und Schiiler auf der Basis eines Experiments das mathematische
Modell der Proportionalitit selbst entdecken zu lassen. Fin geeignetes Beispiel
ist die Untersuchung des Gewichts von Miinzen. Dazu wiegen die Schiilerinnen
und Schiiler einige Miinzstapel und kénnen dann die Frage beantworten, wie
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schwer ein sehr hoher Miinzstapel sein wiirde. Die Modellierung wird dann von
den Schilerinnen und Schillern selbst entwickelt und verwendet. Auch Wech-

selkurse kénnen sinnvoll mit proportionalen Zuordnungen modelliert werden.
(Affolter, et al., 2004, S. 10 f.)

Abb. 5.26 Proportionalitdt von Anzahl und Hohe (Affolter, et al., 2004, S. 10)

Zur Bearbeitung von proportionalen Zuordnungen im Unterricht sollte die
entsprechende Modellierung thematisiert werden. Des Weiteren sind bei der
Proportionalitit die Vielfalt der mathematischen Eigenschaften wie Verhiltnis-
gleichheit, Quotientengleichheit, Funktionsgleichung, Additivitit und Mittel-
wertseigenschaft sowie die unterschiedlichen Darstellungsformen als Text,
Tabelle, Graph und Term zu thematisieren.

5.2.3 Dreisatz

Viele klassische Sachaufgaben kénnen mit dem sogenannten Dreisatz gelGst
werden. Hierbei handelt es sich um ein Verfahren zur Losung von Aufgaben
mit proportionalen Zuordnungen. Der Dreisatz taucht bereits in den Rechen-
btchern von Adam Ries auf. Dort spielt die Methode des Dreisatzes (regula
detri oder regula de tribus), dem beispielsweise im Rechenbuch mit dem Titel
Rechnung anf Linien und Federn insgesamt 190 Sachaufgaben gewidmet sind, eine
zentrale Rolle (Ries, 1522). Dreisatz ist anwendbar auf Aufgaben, fur die die
Proportionalitit vorausgesetzt wird und ein Wertepaar gegeben ist. Von einem
anderen Wertepaar ist ein Wert gesucht. Eine (nicht sehr authentische) Aufgabe

zu diesem Themenbereich kénnte dann etwa wie folgt formuliert sein (s. Abb.
5.27).

Die klassische Dreisatzrechnung, die sich in der im Folgenden dargestellten
Form etwa in der ersten Hilfte des 19. Jahrhunderts entwickelt hat (Vollrath,
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2003, S. 149), wiirde dann so aufgestellt, dass die gesuchte Grof3e, in diesem
Fall die Zeit, auf der rechten Seite steht.

Ein mit konstanter Geschwindigkeit fahrender Zug benétigt fir 40 km 12
Minuten. Wie viel Zeit bendtigt er fiir 75 km?

Abb. 5.27 Beispielaufgabe zum Dreisatz

In der ersten Zeile wird das bekannte Wertepaar (40 km; 12 Minuten) verwen-
det. In der zweiten Zeile wird auf der Basis der vorausgesetzten Proportionali-
tit die Zeit fiir 1 km berechnet und in der dritten Zeile wird dann die gesuchte
Zeit tir 75 km bestimmt.

Fir 40 km benétigt der Zug 12 Minuten.
Fir 1 km benétigt der Zug 12 : 40 Minuten = 0,3 Minuten.
Fir 75 km bendtigt der Zug 12 : 40 - 75 Minuten = 22,5 Minuten.

Vor der Verwendung des Dreisatzes in dieser Form wurde aus den drei gege-
benen Daten (40 km in 12 Min; 75 km) direkt die Rechnung 12 : 40 - 75 = 22,5
durchgefiihrt. Diese Methode erscheint zwar einfacher, es besteht allerdings die
Gefahr, dass sie unverstanden ausgefithrt wird und von Schiilerinnen und Schii-
lern dann nicht geeignet auf andersartige Probleme wie antiproportionale oder
nicht proportionale Zuordnungen angepasst werden kann.

Ebenso bekannt wie die Berechnung mit Hilfe von drei Zeilen ist die Verwen-
dung des Dreisatzes im Rahmen einer Tabelle. Diese Darstellung der Berech-
nung kann gef. noch durch Pfeile, die den Faktor angeben mit dem die Zeilen
jeweils multipliziert werden, unterstiitzt werden.

Tabelle 5.12 Dreisatzrechnung

Strecke Zeit

40 km 12 Minuten
1 km 0,3 Minuten
75 km 22,5 Minuten

Der Vorteil der Dreisatzrechnung ist ihre Ubersichtlichkeit. Der Nachteil ist,
dass eine relativ einfache Rechnung aufwindiger als nétig durchgefithrt wird.
Ebenso denkbar wire es, eine der Eigenschaften der proportionalen Zuord-
nungen auszuwiéhlen und damit den fehlenden Wert zu bestimmen. Beispiels-
weise konnte mit Hilfe der Quotientengleichheit und einer anschlieBenden
Gleichungsumformung



140 | 5 Ausgewihlte Inhaltsbereiche des Sachrechnens

X 12 12-75

75 40 40
die Zeit berechnet werden oder auch mit Hilfe der Funktionsgleichung die Zeit
direkt bestimmt werden:

f(75) =1-75.

(Fricke, 1987, S. 122) Analoge Betrachtungen sind fiir antiproportionale Zu-
ordnungen mit Dreisatz moglich (Vollrath, 2003, S. 126 ft.).

Didaktisch ist anzumerken, dass dieses Verfahren leicht erlernbar ist, allerdings
zu einem automatisierten Algorithmus werden kann. Problematisch ist eben-
falls, dass die Proportionalitit des Sachproblems in der Regel nicht in Frage
gestellt wird und somit keine Modellbildung mehr stattfindet, sondern nur eine
Anwendung eines Verfahrens fiir ein gegebenes Modell. Dazu ist es auch not-
wendig, zunichst zu diskutieren, ob die proportionale Zuordnung tberhaupt
das geeignete Modell ist. Es miissen entsprechend viele Beispiele im Unterricht
vorkommen, bei denen das dann nicht der Fall ist. Ebenso muss der Fehlvor-
stellung entgegengewirkt werden, dass es nur entweder proportionale oder anti-
proportionale Zuordnungen gibt. Hier gibt es in einigen Schulbiichern bereits
Beispiele, die dieser Vorstellung entgegenwirken. Solche Beispiele sind etwa
(Herling, Kuhlmann, & Scheele, 2008, S. 32):

Vier Musiker spielen ein Musikstiick in 4 Minuten und 40 Sekunden. Ben6-
tigen drei Musiker fir das Musikstiick mehr Zeit?

Ein einjdhriges Kind hat eine Korpergrofie von 75 cm. Kannst Du berech-
nen, wie grof3 das Kind mit zwei Jahren sein wird?

In Lauras Klasse sind im 7. Jahrgang insgesamt 14 Miédchen. Kannst Du
berechnen, wie viele Madchen die Klasse im 8. Jahrgang haben wird?

Sachaufgaben zu proportionalen Zuordnungen sollten sich nicht auf die blofe
Ubersetzung von Texten in Dreisatztabellen beschrinken.

Die hier dargestellte Reihenfolge, ausgehend vom allgemeinen Zuordnungs-
bzw. Funktionsbegriff iiber proportionale Zuordnungen zum Dreisatz zu ge-
langen, ist nach aktuellem Stand der Gibliche Weg in Klassenstufe 7. Auf dieser
Basis soll der Unterricht des Dreisatzes deutlich tiber die korrekte Anwendung
hinausgehen und in den Kontext der Funktionen eingebunden werden. Insbe-
sondere soll jeweils das verwendete mathematische Modell kritisch hinterfragt
werden (Fuhrer, 2007).

Humenberger schldgt vor, Aufgaben mit tiberfliissigen oder fehlenden Angaben
zu verwenden. Eine Beispielaufgabe, die in diesen Zusammenhang verwendet
werden kann, ist in der folgenden Abbildung (s. Abb. 5.28) dargestellt. Im Zu-
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sammenhang mit dieser Aufgabe kénnen unterschiedliche Fragen gestellt wer-
den, fiir die jeweils nicht alle im Text vorhandenen Angaben bendtig werden.

Ein Arbeitnehmer fahrt mit dem Fahrrad zur Arbeit. Er fahrt die 3 km lan-
ge Strecke normalerweise mit einer mittleren Geschwindigkeit von 15
km/h. Dieses Mal hatte er jedoch Pech, denn nach 1 km platzte der
Schlauch eines Reifens, und er brauchte um 20 Minuten langer, weil er ab
dieser Stelle das Rad schieben musste. In der Arbeitsstitte konnte er
glicklicherweise den Schaden beheben und abends ungehindert nach
Hause fahren. (Humenberger, 1995)

Abb. 5.28 Beispielaufgabe zum Dreisatz mit Gberfliissigen Angaben

Wie groR miisste wohl ein entsprechendes Denkmal sein, wenn es Ade-
nauer ,von Kopf bis FuR" in demselben MaRstab darstellen soll? (Herget,
Jahnke, & Kroll, 2001)

Abb. 5.29 Beispielaufgabe zum Dreisatz mit fehlenden Angaben

Interessante Fragen zur Beispiclaufgabe zum Dreisatz mit tberfliissigen Anga-
ben kénnten die Folgenden sein:

Wie viel km ist er insgesamt mehr gefahren als gegangen?
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Welche Daten sind fiir die erste Frage tiberfliissig?

Wie lange braucht er mit dem Fahrrad normalerweise fiir die Strecke?
Wie lange (zeitlich) musste er das Rad schieben?

Welche mittlere Geschwindigkeit hatte er beim Schieben?

Nicht alle diese Aufgabenteile benétigen eine Dreisatzrechnung, aber insgesamt
kénnen bei den aufgefithrten Fragestellungen zwei Mal sinnvoll Dreisatzrech-
nungen durchgefithrt werden. Dazu muss in jedem Fall genau tibetlegt werden,
was gegeben und gesucht ist und ob der Dreisatz ein sinnvolles Verfahren zur
Losung des Problems ist. In diesem Beispiel ist durch die iberfliissigen Anga-
ben gewihrleistet, dass Schiilerinnen und Schiiler ernsthaft die Wahl eines pro-
portionalen oder antiproportionalen mathematischen Modells treffen miissen.

Ein weiteres Beispiel fiir eine Aufgabe, die den Dreisatz verwendet, bei der aber
nicht alle notwendigen Informationen eindeutig gegeben sind, hat Herget er-
stellt. Hier handelt es sich um eine Fermi-Aufgabe im weiteren Sinne (s. Abb.
5.29). Diese Aufgabe kann ebenfalls mit dem Dreisatz bearbeitet werden, aller-
dings mussen vorher mit Hilfe des Fotos Daten ermittelt werden, die nicht
eindeutig sind. Es ist also gleichzeig auch — wie solche Fermi-Aufgaben generell
— eine offene Aufgabe mit unklarem Anfangszustand (Humenberger, 2003).

5.2.4 Antiproportionalitat

Definition, Darstellungsmdoglichkeiten und charakteristische Eigen-
schaften

Die Antiproportionalitit einer auf den positiven rationalen Zahlen Q™" definier-
ten Funktion f: Q* — Q%lisst sich analog zur Definition der Proportionalitit
durch die folgende Bedingung beschreiben

flc-x) = %-f(x) fiir alle ¢ € Q. (5.3)

Hier sind ebenfalls sprachliche, tabellarische und grafische Darstellungen mog-
lich. So kann beispielsweise fiir eine Zugfahrt auf einer bestimmten Strecke mit
konstanter Geschwindigkeit der antiproportionale Zusammenhang der Gréfien
Geschwindigkeit und Zeit auch sprachlich formuliert werden.

Je schneller der Zug fahrt, desto weniger Zeit wird (fir eine konstante
Strecke) benétigt. Bei einer Geschwindigkeit von 50 km/h benétigt der
Zug (fur eine Strecke von 100 km) zwei Stunden. Mit doppelter Ge-
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schwindigkeit wird die halbe Zeit bendétigt, bei dreifacher Geschwindig-
keit ein Drittel der Zeit und so weiter.

Auch dieser Sachverhalt kann mit Hilfe einer Tabelle (s. Tabelle 5.13) oder
eines Graphen (s. Abb. 5.30) dargestellt werden.

Tabelle 5.13 Geschwindigkeit und bendétigte Zeit eines Zuges

Geschwindigkeit (in km/h) Zeit (in Minuten)

50 120

100 60

150 40

200 30

250 24
160
140
120
100
80
60
40
20
0

0 50 100 150 200 250

Abb. 5.30 Geschwindigkeit (x-Achse) und Zeit (y-Achse) fiir einen Zug
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Fir antiproportionale Zuordnungen lassen sich der proportionalen Zuordnung
entsprechende Eigenschaften ableiten. Die erste dieser Eigenschaften ist die
umgekehrte Verbdltnisgleichbeit, d. h.

x1 _ f(x2)

X2 fGxr)

Diese Eigenschalft ldsst sich fiir x» = ¢+ xy mit Hilfe der Definition (5.3) zeigen:

fO2) _ flexy) _ fG) _ 1 _ %1 _x1
f(x1) f(x1) cf(x1) ¢ cxp o xp

Ebenso kann man auch die Produktgleichheit (Fricke, 1987, S. 138) ableiten. Sie
besagt, dass das Produkt

X+ f(x) = const.

fiir alle x € Q7 gilt. Dies folgt aus der umgekehrten Verhiltnisgleichheit fiir x; =
xund x2 = 1:

x _ fQ) _
;—m@x'f(x)—f(l)-

Diese Rechnung zeigt auch, dass der konstante Faktor gleich dem Funktions-
wert an der Stelle 1 ist. Daraus ldsst sich nun auch eine Funktionsgleichung ablei-
ten. Wenn fiir den konstanten Faktor f{7) = a gesetzt wird, erhalten wir

fe)=a-3

Alternativ sicht man mit Hilfe von (5.3) mit ¢ = x, dass gilt

1 1
f&) = f&x- D=1 fD =a 3.
Der Antiproportionalititsfaktor « ist also gleich dem Funktionswert an der
Stelle 1 (Vollrath, 2003, S. 126 ff.).

Diese Zusammenhinge kénnen in Tabellenform zusammengefasst werden.
Dabei benutzen wir ebenfalls die oben verwendeten Bezeichnungen.

Tabelle 5.14 Antiproportionalitdt von zwei GroRen

GroRe 1 GroRe 2

1
x n=fe)=f-

1 1 1
2=cn v = fl) = flex) = ) = o f()
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Bezogen auf das Beispiel des auf einer festen Strecke betrachteten Zuges kann
man mit Hilfe der ersten zwei Zeilen der entsprechenden Tabelle 5.13 die oben
dargestellten Eigenschatten konkret veranschaulichen.

Tabelle 5.15 Eigenschaften von antiproportionalen Zuordnungen am Beispiel Zug

Eigenschaft Beispiel

Umgekehrte km

504~ _ 60 min
Verhiltnisgleichheit km ~ 120 min
100T

100km

Produktgleichheit 50="- 120 min = - 60min = - = const.= f(1) =

6000‘% min

Funktionsgleichung fx) = 6oook_mmin.1
h x

Additivitit und Mittelwertseigenschaft gelten fiir antiproportionale Zuordnun-
gen nicht (siche Aufgabe S. 199).

Modellierung

Wir kénnten ja den
[ Kleinen Bagger mit halber
Tagesleistung zusétzlich /

JWir missen in e
Woche fertig sein, aber

Abb. 5.31 Beispielaufgabe zur Antiproportionalitdt (Schréder, Wurl, & Wynands, 2000,
S.7)

Hiufig werden antiproportionale Zuordnungen im Zusammenhang mit Model-
lierungen des Kontextes Zez verwendet, da beispielsweise Fahrzeit und Ge-
schwindigkeit oder auch Arbeitszeit und Leistung in bestimmten Bereichen
antiproportional sind. Bereiche, in denen die Antiproportionalitit nicht gilt,
werden hdufig bei der Einfiihrung von antiproportionalen Zuordnungen igno-
riert, was bei einer ernsthaften Betrachtung des Kontextes bei Schtilerinnen und
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Schiilern zu Schwierigkeiten fithren kann. Haufig kommt man in Bereiche, in
denen beispielsweise die Geschwindigkeit nicht iiber einen langen Zeitraum als
konstant angenommen werden kann oder die Anzahl der Arbeiter so grof3 wird,
dass sie sich gegenseitig behindern. Als Beispiel fiir eine antiproportionale Zu-
ordnung betrachten wir eine Schulbuchaufgabe, in der der Zusammenhang von
Zeit und Leistung von Baggern vorgegeben ist (s. Abb. 5.31).

Tabelle 5.16 Leistung und Zeit

Leistung Zeit
100 % 12 Tage
1% 12 Tage - 100 = 1200 Tage
150 % 12 Tage - 100 / 150 = 8 Tage

In der erwarteten Losung dieser Aufgabe geht man von der Vereinfachung aus,
dass ein Bagger einen Fahrer braucht und jeden Tag die gleiche Leistung er-
bracht wird. Aulerdem muss die Baustelle so beschaffen sein, dass sich zwei
Bagger nicht behindern. Die beiden Bagger und die entsprechenden Arbeiter
werden also unabhingig voneinander und auch gleichmiBig in ihrer jeweiligen
Leistung gesehen. Dann kann man von einer antiproportionalen Zuordnung
ausgehen und beispielsweise mit Hilfe des Dreisatzes die Zeit berechnen, die
bei einer Leistung von 12 grofien Baggern bendtigt wiirde (s. Tabelle 5.16).

Die dbliche Dreisatzrechnung ist hier kritisch zu hinterfragen, da die in der
zweiten Zeile berechnete Anzahl der Arbeitstage fir einen Bagger mit 1%iger
Leistung keine reale Entsprechung hat. Hier wire es realistischer zu fragen, wie
lange ein kleiner Bagger mit halber Tagesleistung benétigen wiirde. Auch dann
konnte man im dritten Schritt auf 150% schlieBen.

R \..M"U- (\Q
\\O‘C‘{\ cinOlen | A ON Zb&dgt q,
0 be sk fernces daat] wil
e T K'ss becqu_;xch\-u*\
D&ﬂ!ﬂ aehaA Fen N GEIVORA
O NEAVZEA 2 S NY
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Abb. 5.32 Aufgabenlésung einer Schiilerin

Die Schiilerin macht fiir IThre Losung aber andere Modellierungsschritte, als in
einer Musterlésung zu erwarten sind. Sie macht Annahmen, die auch einen
realen Hintergrund haben; beispielsweise geht sie davon aus, dass das Vorhan-
densein eines Chefs die Arbeit beschleunigen kann. Solche Punkte sieht das
mathematische antiproportionale Modell nicht vor. Daher kommt die Schiilerin
zu der Aussage, dass bei Anwesenheit des Chefs das Ziel erreicht werden kann,
auch wenn die mathematische Lésung ergibt, dass die Arbeiter es nicht schaf-
fen kénnen. Die in der Aufgabe eigentlich gewlinschte Rechnung hat sie nicht
durchgefihrt. Fir die Schiilerin war auf Grund des gegebenen Kontextes nicht
klar, dass ein mathematisches Modell gesucht wird.

Die Losung der Schiilerin ist interessant. Im Mathematikunterricht wiinscht
man sich aber hiufig eine Lésung mit mathematischen Methoden. Dazu kénnte
im Unterricht stirker die Vereinfachung der realen Situationen diskutiert wer-
den. Dann kann die Modellierung als antiproportionale Zuordnung besser in
die Realitit eingeordnet werden. Es muss immer deutlich werden, dass es sich
um ein mathematisches Modell handelt, das die Realitit nur in bestimmten
Grenzen abbildet.

Arbeitszeit und - Unabhangigkeit
Leistung | Vereinfachen GleichmaRigkeit

Realitat

Mathematik

Interpretieren >
<]uwa_13_1,zewaq,zew |

Loésung antiproportionale
Rechnen | Zuordnung

Abb. 5.33 Antiproportionalitat im Kontext Arbeitszeit
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5.2.5 Kombination proportionaler und antiproportiona-
ler Zuordnungen

Die mathematischen Uberlegungen zur Proportionalitit und Antiproportionali-
tat lassen bereits die Vielfalt erahnen, die reale Sachkontexte im Zusammen-
hang mit proportionalen und antiproportionalen Zuordnungen bieten kénnen.
Mathematisch ist aullerdem eine Verkettung von beiden Zuordnungsarten
méglich. Allerdings sind authentische Anwendungskontexte hierzu schwierig zu
finden. Eine typische Sachaufgabe aus diesem Themenfeld ist im folgenden
Kasten angefihrt.

Im Hiltruper Freibad bendtigt man 5 Stunden, um mit 3 Pumpen ein Be-
cken von 1200 m3 Volumen halb zu fillen. Wie lange dauert es, wenn 4
Pumpen eingesetzt werden und das Becken ganz gefullt werden soll?

In diesem Fall sind Zeit und Pumpenanzahl antiproportional, Zeit und Volu-
men dagegen (direkt) proportional. Insgesamt ist der Quotient aus Volumen
und Pumpenanzahl p proportional zur Zeit Z, also

ZV,p)=a: %.

Damit ldsst sich die gesuchte Zeit berechnen, wenn die Proportionalititskon-
stante bekannt ist. Also setzten wir

5=a 600=>a— L
- 3 T 40

und berechnen damit

1 1200
Z(12004) = w1 7,5,
also werden mit 4 Pumpen fiir 1200 m? 7,5 Stunden bendtigt. Eine alternative
Berechnungsmethode, die der des Dreisatzes dhnelt, verwendet die entspre-
chend formulierten Beziehungen. Dabei wird jeweils nur eine Gré3e verindert,

wahrend die andere konstant bleibt.

Fiir 600 m? bendétigen 3 Pumpen 5 Stunden.

. . 5 1
Fir 1 m® bendtigen 3 Pumpen 200 Stunden = 20 Stunden.

5-1200
600

5-1200
600

Fir 1200 m? benétigen 3 Pumpen Stunden = 10 Stunden.

Fir 1200 m? benétigt 1 Pumpe + 3 Stunden = 30 Stunden.
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5:1200 3
w00 2 Stunden = 7,5 Stunden.

Fir 1200 m? bendtigen 4 Pumpen

Die mittlere Zeile ist hier gleichzeitig die letzte Zeile der ersten (proportionalen)
Dreisatzrechnung und die erste Zeile der zweiten (antiproportionalen) Dreisatz-
rechnung.

Dieses Beispiel zeigt, dass es im Prinzip drei Fille fiir solche Verkettungen von
(Anti-)Proportionalititen gibt. Entweder liegen zwei proportionale oder zwei
antiproportionale Beziehungen vor, oder es ist — wie im obigen Beispiel — eine
proportionale und eine antiproportionale Zuordnung gegeben. In allen Fillen
kann eine gemeinsame Proportionalititskonstante — im Beispiel oben war es

@ = - — ermittelt werden (Vollrath, 2003, S. 126 ff).

Beispiel elektrischer Widerstand

In einem Experiment wurde der elektrische Widerstand eines Drahtes un-
tersucht. Dabei wurden die Querschnittsfliche und die Lange des Drahtes
verandert.

e 0,30m |060m |09m [1,20m |1,50m
(in Meter m)
Widerstand
(inOhm Q) 2,7Q  |53Q 800 |100Q |133Q

Querschnittsflache

(in Quadratmillimeter mm?)
Widerstand

(inOhm Q)

0,2mm? | 0,4 mm? | 0,6 mm? | 0,8mm? | 1,0mm?

2,2Q 1,10 0,74Q | 0,59Q 0,45Q

Die erste Messung wurde fiir eine Querschnittsfliche von 0,2 mmz2, die
zweite fir eine Lange von 0,25 m durchgefiihrt.

Finde einen Zusammenhang zwischen Widerstand und Querschnittsflache
sowie Widerstand und Leiterldange.

Wie kann der Widerstand aus Querschnittsfliche und Leiterldnge direkt
berechnet werden?

Abb. 5.34 Beispielaufgabe zum elektrischen Widerstand

Im Mathematikunterricht spielen solche Uberlegungen allerdings weniger eine
Rolle als im Physikunterricht, wo bei der experimentellen Bestitigung von Na-
turgesetzen — wie zum Beispiel des elektrischen Widerstands eines Leiters mit
Querschnittsfliche .4 und Linge / — hiufig mehrere Proportionalititen gleich-
zeitig betrachtet werden missen. Diese physikalischen Gesetze stellen auch
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einen sinnvollen Kontext fiir einen experimentellen Zugang zu Problemen dar,
die mit Hilfe von verketteten proportionalen und antiproportionalen Zuord-
nungen modelliert werden kénnen (s. Abb. 5.34).

Das Beispiel zeigt einen nahezu proportionalen Zusammenhang von Wider-
stand und Linge sowie einen annihernd antiproportionalen Zusammenhang
von Widerstand und Querschnittsfliche. Insgesamt ist der Quotient aus Linge 1
und Querschnittsfliche A proportional zum elektrischen Widerstand R, also

l
R(l,A) =a- Z

Als Proportionalititskonstante erhalten wir

a~182q.
m

Die Messwerte entsprechen nicht exakt dem jeweiligen mathematischen Mo-
dell. So kénnen die entsprechenden Idealisierungen diskutiert und validiert
werden. Dazu werden die im Modell gewonnenen Daten mit den realen Mess-
werten verglichen.

Tabelle 5.17 Leiterldange und Widerstand

_ Linge 0,30 m 0,60 m 0,90 m 1,20 m 1,50 m
(in Meter m)
Widerstand
(in Ohm Q) 27 530 80Q 1000 133Q
Modellwert

2,7Q 540 8,1 Q 10,8Q 13,50
(in Ohm Q)

Tabelle 5.18 Querschnittsflache und Widerstand

Querschnittsflache

. . 0,2mm2 0,4mm2 0,6 mmz 0,8mm2 1,0 mm?
(in Quadratmillimeter mm?2)

Widerstand

(in Ohm Q) 2,20 1,1Q  074Q  059Q 0,450
Modellwert

(in Ohm Q) 23 11 0,8 0,6 0,5

Fir das Verstindnis des Modells von proportionalen und antiproportionalen
Zusammenhingen sind zu Beginn des Lernprozesses sicherlich inhaltliche und
numetische Uberlegungen zielfithrender als algebraische Betrachtungen.



5.2 Zuordnungen von Gréfen | 151

5.2.6 Prozent- und Zinsrechnung

Die Prozent- und die Zinsrechnung gehéren zu den klassischen Gebieten des
Sachrechnens. Sie beschiftigen sich einerseits mit GréBen, und andererseits
spielen Rechnungen mit Prozent- und Zinsangaben im tdglichen Leben eine
wichtige Rolle.

Grundlagen der Prozentrechnung

GréBen werden hiufig mit Hilfe von Prozentangaben verglichen oder einge-
ordnet. Die Prozentrechnung kann mathematisch in zwei Zusammenhingen
geschen werden. Zum einen kann die Prozentrechnung als ein Teil der Bruch-
rechnung und zum anderen als ein Spezialfall der Dreisatzrechnung aufgefasst
werden (Strehl, 1979, S. 119 £).

Die tblichen Bezeichnungen im Zusammenhang mit der Prozentrechnung sind
Grundwert G, Progentwert W und Progentsatz p. Mit der Progentangabe p% wird der
Bruch p/100 bezeichnet. Der Prozentsatz p gibt an, wie viele Hundertstel des
Grundwertes die Prozentangabe betridgt. Dabei sind Grundwert und Prozent-
wert jeweils von derselben GroBlenart. Der Prozentsatz dagegen ist eine reelle
Zahl. Die Bezeichnung fiir den Prozentsatz ist nicht einheitlich. Man findet
auch die Angabe p% mit der Bezeichnung Prozentsary (Fricke, 1987, S. 162).

Die Berechnung eines Prozentsatzes kann im Sinne der Bruchrechnung als das
Finden einer Bruchzahl mit dem Nenner 100 aufgefasst werden. Der Zihler
dieses Bruchs ist dann der gesuchte Prozentsatz. Sind beispielsweise drei von
vier Gewichtsanteilen eines Lebensmittels Zucker, so sind dies

3 75
= = 0,
4—100—75A).

Prozentangaben driicken also Anteile oder Mengenverhiltnisse aus, die ebenso
durch Briiche dargestellt werden kénnen. Die Angabe als Prozentsatz erleich-
tert durch den gleichen Nenner allerdings den Vergleich. Sind etwa bei einem
anderen Lebensmittel nur

5 71
2~ =710
7 100 %
des Gewichts Zucker, so kann dies durch die Darstellung als Prozentsatz sofort

vergleichen werden, wihrend bei der Angabe der beiden Briiche

3 5

Z bzw. ;
in der Regel noch weiterfithrende Uberlegungen notwendig sind. Noch deutli-
cher wird der Vorteil durch die Angabe von Prozentsitzen bei weiteren Ver-
gleichen. Als Nachteil kann gesehen werden, dass Prozentangaben fir Briiche,
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deren Nenner sich nicht auf Hundertstel erweitern lassen, sinnvoll gerundet
werden miissen.

Im ersten Beispiel war der Gewichtsanteil 3 der Prozentwert, der Gewichtsan-
teil 4 der Grundwert und 75 der Prozentsatz. Es gilt also der Zusammenhang
p w
P% =10 =
Diese Formel gibt den allgemeinen Zusammenhang von Prozentwert IV
Grundwert G und Prozentsatz p an. Sie kann auch entsprechend nach W oder
G aufgel6st werden. Dann erhilt man die bekannten Zusammenhinge

G=%-100und

P
W—100 G.

Diese drei Formeln fur p%, G und W stehen im Prinzip fir die drei Standard-
Aufgabentypen der Prozentrechnung. Die Schwierigkeit fiir die Schilerinnen
und Schiiler ist dabei in der Regel nicht die Verwendung derartiger Formeln,
sondern die Zuordnung der Angaben in der Aufgabe zu den entsprechenden
Bezeichnungen.

Der Prozentsatz kann auch als Resultat einer proportionalen Zuordnung aufge-
fasst werden. Dabei wird dem Grundwert die Prozentangabe 1 = 100% zuge-
ordnet. Die Prozentangabe p% entspricht dann dem Prozentwert V.

A

p%

w G

Abb. 5.35 Proportionale Zuordnung der Prozentrechnung
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Diese Zuordnung bildet von der entsprechenden GréBe, in der Grundwert und
Prozentwert angegeben sind, in die Menge der positiven reellen Zahlen, also die
Prozentangabe, ab. Dem Grundwert wird die Zahl 1, d. h. 100%, zugeordnet.
Dem Prozentwert entspricht dann die Prozentangabe p%.

Tabelle 5.19 Prozentrechnung als Spezialfall des Dreisatzes

GréRe zugeordnete Prozentangabe
100
Grundwert G 1=— =1009
100 00%
1 100 1
1 ¢~ Toc g 100%

Prozentwert W _——':—~100% =p%

Betrachten wir als Beispiel den Grundwert G = 360 und den Prozentwert I/ =
162, dann wird dem Grundwert die Prozentangabe 100% zugeordnet. Mit Hilfe
des Dreisatzes wird zunichst die zugeordnete Prozentangabe fir die Maf3zahl 1
und schlieBlich die Prozentangabe fir den Prozentwert 162 berechnet. Der
zugehérige Prozentsatz ist in diesem Beispiel p = 45.

Tabelle 5.20 Beispiel fiir Prozentrechnung

GroRe zugeordnete Prozentangabe
G =360 100%
1 == ——-100%
W= 162 162 _ 102 ) h0v6 = 45%

360 360

Hier ist noch zu bemerken, dass Grundwert und Prozentwert jeweils die gleiche
GrofBienart haben und damit der Quotient die Einheit 1 hat.

Prozentrechnung im Unterricht

Die konkrete Behandlung der Prozentrechnung im Unterricht kann sich an den
beiden oben genannten mathematischen Zusammenhingen orientieren; das
heif3t, sie kann zum einen an die Bruchrechnung und zum anderen an die Drei-
satzrechnung ankntpfen.

Zur Einfithrung der Prozentrechnung ist hier einerseits ein eher innermathema-
tischer Zugang mit Hilfe unterschiedlicher Darstellungen von Bruchzahlen
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denkbar. So kénnen die Darstellungen einer Zahl als Kreisdiagramm, als Bruch
bzw. Dezimalbruch und als Prozentangabe miteinander in Beziehung gesetzt
werden (s. Abb. 5.36). Dann wird der enge Zusammenhang zwischen Dezimal-
bruchdarstellung und Prozentangabe deutlich.

Prozentscheibe herstellen

Schneide zwei verschiedenfarbige Rondellen mit einem Radius von

5 cm aus. Schneide bei jeder Rondelle bis in die Mitte ein. Nun kannst du
die beiden Rondellen ineinander stecken. Wenn du an den Rondellen
drehst, erhaltst du zwei verschieden gefarbte Kreisausschnitte. Mit dieser
Prozentscheibe kannst du sowohl Bruchteile als auch Prozentanteile

des Kreises darstellen. Stelle verschiedene Bruchteile ein und iibertrage
die Angaben in eine Tabelle.

0.333 ... 33.33...%

Zeichnung Bruch Dezimalbruch Prozent

Abb. 5.36 Einfihrung der Prozentrechnung mit Hilfe unterschiedlicher Bruchdarstel-
lungen (Affolter, et al., 2004, S. 45)

Andererseits bietet sich zur Einfithrung der Prozentrechnung an, den besseren
Vergleich von Anteilen durch Prozentangaben im Sachkontext herauszustellen.
Dazu kann beispielsweise der Kontext Ermndhrung verwendet werden, in dem die
Inhaltsstoffe von Nahrungsmitteln verglichen werden (s. Abb. 5.37).

Ein alternativer Zugang zur Prozentrechnung fithrt Gber die Awswertung von
realen Daten. So kann etwa in der Jahrgangstufe eine Umfrage im Umfeld der
Schiilerinnen und Schiiler iiber das Alter, die Geschwister, den Wohnortt (bzw.
Stadtteil), etc. durchgefithrt werden. In der Auswertung werden dann die Klas-
sen (mit unterschiedlicher Anzahl von Lernenden) miteinander verglichen.

Bei der konkreten Berechnung dieser Anteile wird dann hiufig die Dreisatz-
rechnung in Form von Tabellen verwendet. So wird zur Einfihrung also in der
Regel auf die Bruchrechnung zuriickgegriffen, wihrend zur Arbeit mit Prozent-
angaben hiufig die Dreisatzrechnung verwendet wird.

In beiden Zusammenhingen wird meist auf vielfiltige Darstellungsformen
gesetzt, um diese Vernetzungen mit den bereits bekannten mathematischen
Gebieten zu verdeutlichen. Dies geschieht bei der Einfithrung wie in Abb. 5.36
durch die unterschiedlichen Méglichkeiten der Darstellung von Bruchzahlen.
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Bei der Bearbeitung von Sachkontexten kénnen auller dem Dreisatz und den
oben genannten Formeln fiir die Prozentrechnung auch grafische Zuginge
angeboten werden. So kénnen beispielsweise die entsprechenden Skalen fiir die
betrachtete Gréfie und die Prozentangabe nebeneinander dargestellt werden (s.
Abb. 5.38). Das Beispiel zeigt den Fall, dass der Grundwert 360 betrdgt und der
Prozentwert berechnet werden soll.

n Der Zuckeranteil der abgebildeten
Lebensmitteln ist jeweils angegeben.
Wie viel Gramm Zucker sind in jedem
Lebensmittel enthalten?

Abb. 5.37 Einflihrung der Prozentrechnung zum Vergleich von Anteilen (Herling,
Kuhlmann, & Scheele, 2008, S. 47)

Zahlenstrahl
45% 100%

oottt o
s s s b L L S

? 360

Abb. 5.38 Zahlenstrahlen fiir die Prozentrechnung (Boer, et al., 2007, S. 99)

Alternativ zur Darstellung auf zwei untereinander gezeichneten Zahlenstrahlen,
die so skaliert sind, dass der Grundwert dem Prozentwert 100 entspricht, kén-
nen diese Skalen auch in einem Koordinatensystem dargestellt werden. Die
Ursprungsgerade durch den Punkt (100 |360) zu 100 Prozent und dem Grund-



156 | 5 Ausgewihlte Inhaltsbereiche des Sachrechnens

wert (im Beispiel G = 360) gibt dann die Prozentsitze zu den entsprechenden
Prozentwerten I auf der y-Achse an (s. Abb. 5.39).

360
340
320
300
280
260
240
220
200
180
160
140
120
100
80
60
40
20
0

0 10 20 30 40 50 60 70 &80 90 100

Abb. 5.39 Koordinatensystem fir die Prozentrechnung

Im Koordinatensystem fiir die Prozentrechnung wurde die Prozentskala auf die
x-Achse gelegt. Dies ist nattrlich eine willkiirliche Festlegung. Sie hat den Vor-
teil, dass der Graph der proportionalen Zuordnung aus dem Grundwert sehr
einfach abzuleiten ist. FEin geeignetes Gitter im Hintergrund ermdglicht das
Ablesen von Zwischenwerten.

Sind der Grundwert und der Prozentwert bekannt, |dsst sich der Prozentsatz berechnen. Dabei stehen verschie-
dene Losungswege zur Verfiigung.
Wie viel Prozent sind 200 von 2507

Zahlenstrahl Dreisatz Formel
L o 200 20 250 — 100% Prozentsatz = 3&‘-::::&"@;“
r LE T Ll T Ll T T L T 1 100 P
ke L L _:_ |:'l daaa b oo Lo L L 1 1 - iga% p% = E
L R, il B T s . . 100 - 200 200
2100% 200 — 1992000 - g0 % p% =220 =0,8=80%

Abb. 5.40 Unterschiedliche L6sungswege bei der Prozentrechnung (Boer, et al., 2007,
S. 98)
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Insgesamt bieten sich fiir die Bearbeitung von Aufgaben zur Prozentrechnung
also drei unterschiedliche Lésungswege an: der grafische Zugang, der Dreisatz
und die Formel (s. Abb. 5.40).

Zur Unterstlitzung kann auch sehr gut ein Tabellenkalkulationsprogramm ver-
wendet werden. Darin kénnen die Schiilerinnen und Schiiler beispielsweise die
drei Grundaufgaben der Prozentrechnung in einem Tabellenblatt programmie-
ren, um das Verstindnis der Formeln zu vertiefen.

Man interessiert sich allerdings nicht immer fiir die drei Grundaufgaben, bei-
spielsweise also fiir die Berechnung des Prozentsatzes bei gegebenem Grund-
wert und Prozentwert. Es gibt auch Situationen, in denen etwa die Differenz
von Grundwert und Prozentwert gesucht wird.

Ein Kontext fiir die Prozentrechnung

Ein typisches Anwendungsgebiet der Prozentrechnung ist der Kontext Preise.
Hier interessiert man sich fiir Rabatte und Steuern. Die Schillerinnen und Schii-
ler lernen so auch die im Alltag gebriuchlichen Begriffe Rabart, Skonto und
Mebhrwertstener kennen. In einigen Schulbiichern werden diese Begriffe explizit
erkldrt (s. Abb. 5.41).

Im Alltag treten in Zusammenhang mit Prozenten haufig folgende Begriffe auf:

Rabatt Unter Rabatt versteht man eine Preisermafigung beim Kauf einer Ware,
z.B. Mengenrabatt oder Mitarbeiterrabatt.
Skonto Skonto ist ein Preisnachlass, den man erhalt, wenn man eine Ware inner-

halb eines bestimmten Zeitraumes, z.B. 8 Tagen, bezahit.
Mehrwertsteuer Auf Waren und Dienstleistungen erhebt der Staat eine gesetzliche Mehr-

wertsteuer (MwSt.). Diese betragt zur Zeit in Deutschland 19 %. Fiir Le-

bensmittel, Biicher und Zeitungen gilt ein ermagigter Steuersatz von 7%.

Abb. 5.41 Begriffe im Zusammenhang mit Prozentrechnung (Boer, et al., 2007, S. 104)

So kann beispielsweise die im Preis enthaltene Mehrwertsteuer berechnet oder
der Endpreis unter Beriicksichtigung von Rabatt oder Skonto ermittelt werden.
Die Mehrwertsteuerangabe p% bezicht sich auf den Preis ohne Mehrwertsteuer.
Ist also der Endpreis inklusive Mehrwertsteuer angegeben, so entspricht dieser
(100+p)% bzw. der Summe aus Grundwert und Prozentwert G+W. Interessiert
man sich fir den Preis ohne Mehrwertsteuer, also den Grundwert G, so kann
die folgende Rechnung durchgeftihrt werden:

_ p _ 100+p _ G+wW
G+W—G+M-G—G( L ):G_(lmp).
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Die hier notierte Formel ist zwar fiir den Unterricht nicht unbedingt hilfreich,
macht aber deutlich, dass es hdufig einfache Berechnungsmoglichkeiten fiir
bestimmte Probleme gibt — ndmlich dass der Preis incl. Mehrwertsteuer durch
1,19 dividiert wird, um den Preis ohne Mehrwertsteuer zu erhalten — wihrend
dies mit Hilfe der typischen Dreisatzrechnung eine Tabelle und drei Bearbei-
tungsschritte erfordert. Dies wird in der folgenden Tabelle am Beispiel p = 19
durchgefthrt.

Tabelle 5.21 Dreisatzrechnung im Kontext Preise

Prozentangabe GroRe
100% + 19% G+W
1% G+w
119
100% &% 100
119

Der Vorteil der Berechnung mit Hilfe der Tabelle im Rahmen des Dreisatzes ist
aber, dass die Zuordnung von Prozentwert und Prozentangabe deutlicher wird
als bei der Verwendung entsprechender Formeln. Der Aufwand ist auch des-
halb vergleichbar, da die Formeln ebenfalls umgeformt werden mussen. Dies
wirde nur entfallen, wenn die Schuilerinnen und Schiiler alle Formeln der Pro-
zentrechnung auswendig lernen wiirden. Es ist jedoch kein sinnvolles Ziel des
Mathematikunterrichts, dquivalente Formeln auswendig zu lernen. Hier sollten
schon die entsprechenden Umformungen ausgefiihrt werden kénnen. Auch die
grafischen Losungsmoglichkeiten mit Hilfe von Zahlenstrahlen oder Koordina-
tensystem konnen in Betracht gezogen werden.

Dagegen interessiert man sich im Fall einer Rechnung, die abztglich p% Skonto
bezahlt werden soll, fiir den Grundwert abziiglich des Prozentwertes:

_ p _ 100—p
G-W=06-26=6(=L).

Eine Schwierigkeit von Schiilerinnen und Schiilern ist hiufig die korrekte Zu-
ordnung von Grundwert und Prozentwert aus den gegeben Gréfen. Der Pro-
zentsatz kann auf Grund der dimensionslosen Angaben normalerweise nicht
verwechselt werden. Schwieriger ist die Identifizierung von Grundwert und
Prozentwert. Speziell kénnen — wie im Beispiel der Mehrwertsteuer — Summen
oder Differenzen von Grundwert und Prozentwert auftreten. Hier kénnen
grafische Darstellungen des Sachverhalts und Tabellen zur Berechnung eine
Hilfe fiir die Schilerinnen und Schiiler darstellen (Strehl, 1979, S. 119 ff.).
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Zinsrechnung

Die Zinsrechnung kann als Spezialfall der Prozentrechnung behandelt werden.
Dabei gibt es zwei Punkte zu beachten. Zum einen ist die betrachtete Gréfie in
allen Fillen das Geld, und zum anderen kommt ein Zeitfaktor dazu, da der
Prozentsatz im Kontext der Zinsrechnung fiir eine bestimmte Zeit, in der Regel
fiir ein Jahr, gilt.

Auf Grund der Besonderheiten verwendet man auch spezielle Bezeichnungen.
Der Grundwert wird nun mit Kapita/ K bezeichnet. Der Prozentwert heil3t Zin-
sen Z, und der Prozentsatz wird mit Zinssatz p bezeichnet. Der Zinssatz und die
Zinsen werden iiblicherweise auf ein Jahr bezogen.

Werden die Zinsen fur kiirzere Zeitrdiume als ein Jahr berechnet, so wird mit
den entsprechenden Faktoren multipliziert. Beispielsweise gilt fiir die Zinsen
nach T Tagen:

— »r T
Z=K 100 360

Wird die Zeit in Monaten M angegeben, so verwendet man die Formel

—g.P2.M
Z=K15 17
Es ist in den Banken Gblich, bei einem Jahr mit 12 Monaten und 30 Tagen pro
Monat zu rechnen.

Hier ist es ebenso wie bei der Prozentrechnung mdglich, die entsprechenden
Formeln umzustellen oder mit dem Dreisatz zu arbeiten.

Fir die Zinsrechnung kommt noch ein weiterer interessanter Aspekt hinzu.
Werden die Zinsen am Ende des Jahres dem Konto gutgeschrieben, so werden
sie im folgenden Jahr zum Kapital gezihlt und auch verzinst. Man spricht dann
von Zinseszins. Dieser Effekt kann sehr gut mit Hilfe eines Tabellenkalkula-
tionsprogramms veranschaulicht werden. Vergleicht man eine einfache Verzin-
sung mit Zinseszinsen, so stellen sich nach einiger Zeit deutliche Unterschiede
heraus. Bei der einfachen Verzinsung werden die Zinsen zwar addiert, aller-
dings wird nur das urspriingliche Kapital zur Berechnung der Zinsen zugrunde

gelegt (s. Abb. 5.42).

Wihrend sich in dieser Modellrechnung das Startkapital bei der einfachen Ver-
zinsung nach 34 Jahren verdoppelt, so geschieht dies bei der Zinseszinsrech-
nung bereits nach 24 Jahren.

Diese numerischen Uberlegungen koénnen dann zu den algebraischen Formeln
tbetleiten, da bei der Implementierung der Formeln in der Tabellenkalkulation
bereits vorbereitende Uberlegungen nétig sind (s. Abb. 5.43).
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AW 5 c
1 Jahre| einfache Verzinsung Zinseszins
2 0 1.000,00 € 1.000,00 €
3 1 1.030,00 € 1.030,00 €
42| 2 1.060,00 € 1.060,90 €
5 3 1.090,00 € 1.092,73 €
6 4 1.120,00 € 1.125,51 €
7 5 1.150,00 € 1.159,27 €
8 6 1.180,00 € 1.194,05 €
|2 7 1.210,00 € 1.229,87 €
10 8 1.240,00 € 1.266,77 €
11 9 1.270,00 € 1.304,77 €
12 10 1.300,00 € 1.34392 €
13 11 1.330,00 € 1.384,23 €
B 12 1.360,00 € 1.425,76 €
A5 13 1.390,00 € 1.468,53 €
16 14 1.420,00 € 1.512,59 €

Abb. 5.42 Vergleich unterschiedlicher Verzinsungen

| A B C

1 Jahre| einfache Verzinsung Zinseszins
2 |0 1000 1000

3 |1 =$B$2+(A3*30) =C2*1,03

4 (2 =SBS2+(A4*30) =C3*1,03

a3 =$BS$2+(A5*30) =C4*1,03

6 4 =$BS2+(A6*30) =C5*1,03

B 5 =SBS2+(A7*30) =C6*1,03

Abb. 5.43 Formeln in der Tabellenkalkulation

Fir die Berechnung des Kapitals K, nach # Jahren bei einfacher Verzinsung mit
dem Zinssatz p und dem Startkapital Ky erhalten wir eine lineare Funktion in
Abhingigkeit von der Zeit # in Jahren

p
Kn=K0+K0'm'n.

Fir die Berechnung des Kapitals K, nach # Jahren unter Berticksichtigung des
Zinseszins mit dem Zinssatz p und dem Startkapital Ky erhalten wir eine expo-
nentielle Funktion in Abhdngigkeit von der Zeit # in Jahren
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K, =Ko (1+ 1’;—0)71

denn nach einem Jahr erhéht sich das Kapital auf
= L _ P
Ky =Ko + Koggs = Ko (1 + 100)’
nach zwei Jahren auf
— P _ L 2 £
Ky =K+ Kigg = Ko (1 + 100) =Ko (1 + 100) (1 + 100)’
usw. So erhilt man sukzessiv die Formel fiir das Kapital nach # Jahren.

Schwieriger wird der allerdings realistischere Fall, dass nicht nur der Zinseszins
fir ein einmal angelegtes Kapital berechnet werden soll, sondern regelmifig,
beispielsweise monatlich, ein bestimmter Betrag angelegt wird, der mit einem
bestimmten Zinssatz p jihrlich verzinst wird. Die folgende Tabelle zeigt ein
Beispiel fiir das erste Jahr mit einer monatlichen Rate von 100,- € und einer
jahtlichen Verzinsung mit p = 3 (s. Tabelle 5.22).

Tabelle 5.22 Beispieltabelle Ratensparen

Monate Einzahlung Kontostand Zinsen
1 100,00 € 100,00 € 0,25 €
2 100,00 € 200,00 € 0,50 €
3 100,00 € 300,00 € 0,75 €
4 100,00 € 400,00 € 1,00 €
5 100,00 € 500,00 € 1,25 €
6 100,00 € 600,00 € 1,50 €
7 100,00 € 700,00 € 1,75 €
8 100,00 € 800,00 € 2,00 €
9 100,00 € 900,00 € 2,25 €
10 100,00 € 1.000,00 € 2,50 €
11 100,00 € 1.100,00 € 2,75 €
12 100,00 € 1.200,00 € 3,00 €
1 100,00 € 1.319,50 € 3,30 €
2 100,00 € 1.419,50 € 3,55 €
3 100,00 € 1.519,50 € 3,80 €
4 100,00 € 1.619,50 € 4,05 €
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5 100,00 € 1.719,50 € 4,30 €
6 100,00 € 1.819,50 € 4,55 €
7 100,00 € 1.919,50 € 4,80 €
8 100,00 € 2.019,50 € 5,05 €
9 100,00 € 2.119,50 € 5,30 €
10 100,00 € 2.219,50 € 5,55 €
11 100,00 € 2.319,50 € 5,80 €
12 100,00 € 2.419,50 € 6,05 €

2.475,59 €

Die Daten dieser Tabelle konnten mit Hilfe von Formeln berechnet werden.
Hier erscheint allerdings die numerische Lésung sinnvoller, da eine entspre-
chende Tabelle in einem Tabellenkalkulationsprogramm #hnlich flexibel wie
eine Formel verwendet werden kann und deutlich Gbersichtlicher ist. An 4dhnli-
chen Beispielen kénnen auch die Auswirkungen von vierteljahrlichen oder jihr-
lichen Zinsen oder die Auswirkungen der Verinderung des Zinssatzes sowie
der monatlichen Rate untersucht werden.

Die Schiilerinnen und Schiiler bekommen auf diese Weise ein Werkzeug, mit
dem vergleichbare Probleme im Alltag, die spiter auf sie zukommen, bearbeitet
werden kénnen.

Die Motivation der Zinsrechnung ist hiufig problematisch, da die Schiilerinnen
und Schiiler in der Mitte der Sekundarstufe I, in der die Zinsrechnung themati-
siert wird, die Relevanz fir ihr spiteres Leben hiufig noch nicht erkennen. Bei
Ratenkaufangeboten mit angegebener Rate und angegebenem Barpreis, die fiir
Schiilerinnen und Schiiler evtl. relevant sind, bendtigt man im Alltag in der
Regel keine Zinsrechnung, um die Ratenzahlung mit dem Barkauf zu verglei-
chen, da der effektive Jahreszins als Vergleichswert angegeben wird. Die Kon-
trolle des angegebenen effektiven Jahreszinses ist allerdings schulmathematisch
kaum zu leisten. Die Zinsrechnung greift aulerdem auf die Prozentrechnung
zurlick, deren Bearbeitung dann meist einige Zeit zurlickliegt. Dies kann zu
weiteren Schwierigkeiten fithren (Strehl, 1979, S. 138 ff.).

5.2.7 Lineare Modelle

Lineare Funktionen sind in der Regel die erste Funktionenklasse, die Schiilerin-
nen und Schuler in der Sekundarstufe I kennenlernen.
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Lineare Funktion

Eine lineare Funktion ist eine Funktion der Form f:R - R mit x » mx +n
bzw. f(x) = mx +n (m,n € R).

Um Verwechslungen mit homogenen linearen Funktionen (Proportionalititen), d.h.
Funktionen f: R = R mit

f() = mx (me R),

vorzubeugen, nennt man lineare Funktionen auch allgemeine lineare Funktionen.
Bei linearen Funktionen handelt es sich also um reelle Polynome erster Ord-
nung. Allgemein ist ein reelles Polynom bzw. eine Polynomfunktion eine Funk-
tion p: R = R der Form

p(x) = apyx™ + a1 X"+ +ayx + ay.

Der Graph einer allgemeinen linearen Funktion ist eine Gerade, die nicht not-
wendig durch den Ursprung des Koordinatensystems fiihrt.

Lineare Funktionen sind — wie im Prinzip alle in der Schule behandelten Funk-
tionen — stetig. Viele reale Probleme sind allerding nicht stetig, wenn beispiels-
weise die Preise fiir Briefe in Abhingigkeit von der Masse betrachtet werden.
Diese Funktion macht Preisspriinge fiir bestimmte Werte, und es kann daher
keine stetige Funktion zur Beschreibung dieses Problems angegeben werden.

. &
Preis

Menge'

Abb. 5.44 Einkaufsmodell

Man kann aber wie Vollrath einige spezielle stiickweise definierte mathemati-
sche Modelle angeben, die in vielen Situationen eine geeignete Beschreibung
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darstellen (Vollrath, 2003, S. 154 f)). Dazu fassen wir im Folgenden die typi-
schen Preismodelle, die lineare Funktionen beinhalten, zusammen. Es handelt
sich dabei um das klassische Einkaufsmodell, das Flatrate-Modell, das Strom-
modell, das Parkhausmodell und das Heizolmodell.

Das klassische Einkaufsmodell (s. Abb. 5.44) geht davon aus, dass beliebige
Mengen moglich sind und Rabatte nicht vorkommen. Wir erhalten dann eine
proportionale lineare Funktion.

. A
Preis

Datenmenge'
Abb. 5.45 Flatrate-Modell

Das Flatrate-Modell (s. Abb. 5.45), das durch Preisangebote fiir Mobil- und
Festnetztelefone bekannt geworden ist, geht davon aus, dass (in einer bestimm-
ten Zeit) eine beliebige Datenmenge tibertragen werden kann. Wir erhalten eine
lineare Funktion, deren Graph zur x-Achse parallel ist.

. A
Preis

Stromverbrauch

Abb. 5.46 Strommodell



5.2 Zuordnungen von Gréfen | 165

Bei der Berechnung von Kosten fiir den Stromverbrauch ist es tiblich, dass es
einen Grundpreis und einen verbrauchsabhingigen Preis gibt. Der Preisverlauf
im Strommodell kann beschrieben werden durch eine allgemeine lineare Funk-
tion, deren Graph nicht durch den Ursprung des Koordinatensystems geht.

. A
Preis

>
Zeit

Abb. 5.47 Parkhausmodell

Das Parkhausmodell geht davon aus, dass der Preis sich nach gewissen Zeitab-
stinden erhéht und dann fir immer gleiche Zeitdauern konstant bleibt. Ggf. ist
der Preis fiir die erste Stunde anders als fiir weitere Stunden. Nach sehr vielen
Stunden gibt es méglicherweise Rabatte, die hier vernachldssigt werden. Dies
ergibt eine Treppenfunktion, deren erste Stufe ggf. eine andere Hohe hat. Hier
koénnte im Prinzip auch das eingangs erwihnte Beispiel fiir den Preis von Brie-
fen in Abhingigkeit von der Masse eingeordnet werden.

. A
Preis

r

»
Volumen

Abb. 5.48 Heizolmodell
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Das Heizolmodell geht auch von einer proportionalen Zuordnung von Menge
und Preis aus, berlicksichtigt aber Rabatte. An einigen Stellen setzt also eine
neue proportionale Zuordnung an. Fir eine sinnvolle Fortsetzung an den
Ubergangsstellen setzen wir voraus, dass man fiir eine geringere Menge nicht
mehr bezahlen muss als fir eine gro3ere Menge.

5.2.8 Wachstums- und Abnahmemodelle

Bereits die Uberlegungen zur einfachen Verzinsung und zum Zinseszins haben
gezeigt, dass es unterschiedliche Wachstumsarten gibt. Ebenso werden Wachs-
tumsprozesse in der Natur wie Bakterien- oder Pflanzenwachstum haufig ma-
thematisch modelliert. Analog dazu gibt es Abnahmeprozesse wie Abkihlung
und radioaktiver Zerfall, die hiufig ebenfalls mit Hilfe von Funktionen model-
liert werden. Dazu gibt es unterschiedliche Modelle, die im Folgenden an Bei-
spielen vorgestellt werden sollen.

Beispiel: Bakterienwachstum

Bakterien wachsen in einer Bakterienkultur in unterschiedlichen Phasen. In
einer dieser Phasen vermehren sich die Bakterien sehr schnell, bis schlieB3lich
die Nihrstoffe erschopft sind und sich Stoffwechselprodukte im Nihrmedium
angesammelt haben.

1800

y = 80,172e05983
1600 '
1400 /r
1200 /
1000

800 7’/

600

400 /I/

200 /

L

0 T T T T T 1

Abb. 5.49 Diagramm zum Bakterienwachstum
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In dieser Phase der schnellen Vermehrung kénnen beispielsweise folgende
Daten ermittelt werden (s. Tabelle 5.23). Stellt man diese Daten in einem Dia-
gramm dar, so kann man erkennen, dass sich das Bakterienwachstum gut durch
eine Exponentialfunktion beschreiben ldsst (s. Abb. 5.49).

Tabelle 5.23 Bakterienwachstum (Freudigmann, et al., 2000)

Zeit in 0 1 2 3 4 5
Stunden
Bakterienzahl 80,0 145,9 266,4 482,4 875,7 1597,8
in Mio

Schaut man auf die Daten des Bakterienwachstums, so stellt man fest, dass der
Quotient benachbarter Werte konstant ist.

Tabelle 5.24 Bakterienwachstum

Zeit in Stunden 0 1 2 3 4 5
Bakter;\‘;:"ozah' N1 80,0 1459 2664 4824 8757  1597.8
Quotient 145,9 266,4 482,4 875,7 1597,8
benachbarter 80,0 14?133 26?31 4824 875,7

_ =1, =1, =1,82 =
Werte 182 1,82

Wenn das Wachstum der Bakterien im Laufe der Zeit durch eine Wachstums-
funktion mit dem Term f{#) beschrieben wird, dann gilt in diesem Beispiel der
Zusammenhang

fe+1)
f@o
Betrachten wir diese Situation allgemeiner, so gehen wir im Fall des dargestell-
ten Bakterienwachstums davon aus, dass das Wachstum rascher erfolgt, wenn
mehr Bakterien vorhanden sind. Da es sich um eine Bakterienkultur handelt,
konnen weitere Wechselwirkungen, z. B. mit der AuBlenwelt, im Modell ver-
nachlissigt werden. Die Zunahme f{#+5)—f(?) wird also proportional zum vor-
handenen Bestand f{7) und zur verstrichenen Zeit » angenommen. Wir erhalten
damit fir kleine 4 die Modellannahme:

fE+h) —f)=c-f@®)-h

const.
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Diese Gleichung kann diskret oder kontinuierlich bearbeitet werden. Wir be-
schiftigen uns hier zunichst mit der diskreten Bearbeitung (Hinrichs, 2008, S.
268 ft.). Dazu ist die Darstellung

fE+hn) =fO+c-f(®)-h

hilfreich. Hier wird deutlich, dass bei festem Zeitschritt 4 der jeweils folgende
Funktionswert nach Kenntnis des Parameters ¢ ermittelt werden kann. Ebenso
ist noch ein Startwert, z. B. zur Zeit # = 0, vorauszusetzen.

| A | A | B L€ | D | E
1 Diskretes Wachstumsmodell
2 |Startwert 80

3 Parameter (82 g L L
4 Zeit Modellwert Wert |Quadratische Abweichung
5 0 80,0 80 0,0
6 1 145,6 145,9 0,1
iz 2 265,0 266,4 2,0
8 3 482,3 482,4 0,0
9 4 8778 875,7 4,2
5 1597,5 1597,8 0,1
6,4

Abb. 5.50 Diskretes Wachstumsmodell fiir das Bakterienwachstum

Der Modellwert wird in der abgebildeten Excel-Tabelle jeweils mit Hilfe der
Formel

fE+D=f(®)+c-f()

berechnet. Der Parameter ¢ wird dabei mit Hilfe des Schiebereglers (siche Hin-
weis S. 235) so modifiziert, dass die Summe der quadratischen Abweichungen
vom gegebenen Wert minimal wird. Dies ist in dem Beispiel fiir ¢ = 0,82 der
Fall. Auf diese Weise erhilt man ein diskretes numetisches Modell fiir das Bak-
terienwachstum mit der Modellannahme, dass die Bakterien in jedem Zeit-
schritt um ein ¢faches des aktuellen Bestandes zunehmen. Dieses Modell er-
méglicht sowohl die Berechnung von Zwischenwerten als auch eine Prognose
des Bakterienwachstums unter der Voraussetzung, dass die Modellannahmen
weiter gelten. Der jeweils nidchste Wert wird unter Verwendung des Parameters
¢ rekursiv berechnet. Die verwendete Modellannahme ist also nicht nur im
Kontext des Bakterienwachstums plausibel, sondern liefert auch fir die gege-
benen Daten passende Werte.

Moéchte man die Gleichung
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fE+h)—f@O=c-f()-h

kontinuierlich bearbeiten, so dividiert man diese Gleichung durch 4 und erhilt
eine Form, die fir differenzierbare Funktionen fmit Hilfe der Differenzialrech-
nung weiter bearbeitet werden kann.

(E+h)—f ()
% =c-f(t).

Auf der linken Seite der Gleichung steht dann ein Differenzenquotient der
Funktion fan der Stelle z Ein Grenzprozess fur » — 0 fihrt zu der Gleichung

f@®)y=c-f@).

Bei dieser Gleichung handelt es sich um eine Differenzialgleichung erster Ord-
nung, da auller der Funktion fauch die erste Ableitung der Funktion fin der
Gleichung auftritt. Die Funktion des Typs

fO=a-e""
16st diese Differenzialgleichung, da fiir die Ableitung

f'@t) =ac et =c-f(t)

gilt. Alternativ kann diese Differenzialgleichung auch mit Hilfe des Verfahrens
der Trennung der Variablen gelost werden. Stellt man sich die Frage, ob die
Funktionen des Typs

f®) =a-ect

die einzigen Funktionen sind, die diese Differenzialgleichung 16sen, dann kann
man eine weitere Lésung g(?) annehmen, die ebenfalls die Differenzialgleichung
erfillt:

g =c-gt).
Mit der Quotientenregel erhilt man dann

(@) _ [ ®9®-g ©F©

9(® (9®)°
— cfDgO)—cg®Of®) _

(g(®))*? '

Die beiden Losungen f{z) und g(#) kénnen sich also nur um eine multiplikative
Konstante unterscheiden. Der urspriinglich aus den gegebenen Daten berech-

nete Quotient kann nach Kenntnis der Ldsungsfunktion genauer betrachtet
werden.
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f+1) _ a-eC ) _aetet e = const
) ~  aect —  agect - ’

Es zeigt sich also, dass der Logarithmus des entsprechenden Quotienten

()

der Wachstumskonstanten ¢ der Bakterienkultur entspricht.

[ 4] A | B lc] o | E
1 Kontinuierliches Wachstumsmodell
2 Startwert 80

3 |Parameter 0,60 4 ™ L¢
4 Zeit Modellwert Wert | Quadratische Abweichung
5 0 80,0 80 0,0
6 1 145,8 145,9 0,0
7 2 265,6 266,4 0,6
8 3 484,0 482,4 2,5
9 4 881,9 875,7 37,9

5 1606,8 1597.8 81,8

122,8

Abb. 5.51 Kontinuierliches Wachstumsmodell fuir das Bakterienwachstum

Der Modellwert wird in der abgebildeten Excel-Tabelle im kontinuierlichen
Wachstumsmodell jeweils mit Hilfe der Formel

f(t) =80-e°t

berechnet. Der Parameter ¢ wird dabei mit Hilfe des Schiebereglers so modifi-
ziert, dass die Summe der quadratischen Abweichungen vom gegebenen Wert
minimal wird. Dies ist in dem Beispiel fur ¢ = 0,60 der Fall. Auf diese Weise
erhilt man ein kontinuierliches Modell fiir das Bakterienwachstum mit der Mo-
dellannahme, dass die Bakterien in jedem Zeitpunkt um ein ¢-faches des aktuel-
len Bestandes zunehmen. Dieses Modell erméglicht sowohl die Berechnung
von Zwischenwerten als auch eine Prognose des Bakterienwachstums unter der
Voraussetzung, dass die Modellannahmen weiter gelten. Bei der Berechnung
einzelner Werte werden die jeweilige Zeit, der Startwert und der Parameter ¢
verwendet.

Exponentielles Wachstum wird durch den Funktionstyp

f®)=a-e‘t
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beschrieben. Dabei ist a der Anfangsbestand zur Zeit # = 0 und die positive
Konstante ¢ die Wachstumskonstante. Charakteristisch fir das exponentielle
Wachstum ist die Verdoppelungszeit, also die Zeit T, fiir die gilt:

fE+T) = 2f(.

Fir die Funktion des exponentiellen Wachstums

f® =a-et
folgt damit die Bedingung:

a-eCtth = 2q. ¢t byy T =2,

Nach entsprechender Vereinfachung

In(e¢T) = 1n(2)
erhalten wir fir die Verdoppelungszeit 1" die Gleichung:
T = In(2) ‘

c
Die Verdoppelungszeit ist unabhingig vom Zeitpunkt #und daher konstant. Sie
kann somit als charakteristisch fiir den Wachstumsprozess angesehen werden.

Fir Abnahmeprozesse kann ebenfalls dieser Funktionstyp gewihlt werden. Die
Kontante ¢ ist dann negativ und heil3t Zerfallskonstante. Bei Abnahmefunktionen
spricht man von der — im Zusammenhang mit Radioaktivitit bekannten —
Halbwertszeit, also von der Zeit, fiir die gilt:

fE+T) =3f(®).

Wie bei der Verdoppelungszeit erhilt man fur die Halbwertszeit den Zusam-
menhang

T=-23

c

Wir kénnen also fiir das exponentielle Wachstum Folgendes festhalten:

Exponentielles Wachstum

Wir gehen von einem geschlossenen System aus, bei dem das Wachstum
proportional zum Bestand ist. Charakteristisch ist die Wachstumskon-
stante ¢ Alternativ kann auch die Verdoppelungszeit 7 angegeben wer-
den. Exponentielles Wachstum wird mit Hilfe von Wachstumsfunktionen
des Typs f(t) = a-e‘* beschrieben.



172 | 5 Ausgewihlte Inhaltsbereiche des Sachrechnens

Mit einem geschlossenen System sind hier zwei Aspekte gemeint. Zum einen
wird davon ausgegangen, dass weder Lebewesen hinzukommen noch abwan-
dern, und zum anderen, dass es keine Wechselwirkung mit anderen Populatio-
nen gibt, d. h. insbesondere keine Feinde innerhalb des Systems existieren.

Beispiel: Abkiihlen von Kaffee

Tabelle 5.25 Abkiihlen von Kaffee

Zeit in Minuten Temperatur in Grad

0 70,0
2 57,5
4 49,5
6 42,7
8 36,9
10 32,0
12 27,9
14 24,4

Beim Abkiihlen von Kaffee handelt es sich nicht um einen Wachstumsprozess,
sondern um einen Abnahmeprozess. Wir haben im Fall des exponentiellen
Wachstums der Bakterien gesehen, dass Abnahmeprozesse mit den gleichen
mathematischen Modellen beschrieben werden kénnen wie Wachstumsprozes-
se; mit dem Unterschied, dass der entsprechende Parameter ein anderes Vor-
zeichen hat. Wir wihlen daher als zweites Bespiel einen Temperaturabnahme-
prozess mit einem charakteristischen Verhalten. Typische Messwerte eines
solchen Abkithlungsvorgangs sind in der Tabelle (s. Tabelle 5.25) dargestellt.

Wir kénnen also vereinfacht von folgendem Zusammenhang ausgehen:

fe+h) =f@®)+c-(S=f®)-h

Dabei ist ¢ die Konstante, die den Abkihlvorgang beschreibt und § die Tempe-
ratur der AuBlenluft. Auch hier sind wieder eine diskrete und eine kontinuierli-
che Bearbeitung des Problems méglich. Wir betrachten zunichst eine diskrete
Modellierung des Problems.



5.2 Zuordnungen von Gréfen | 173

A 8 C D
1 |Diskretes Modell der beschrankten Abnahme
2 Konstante ¢ 0,163 < [ »
3 Schranke S 5
4 Startwert 70
5 Zeitin Minuten [Temperatur in °C | Modellwerte in °C | Quadr. Abw.
6 0 70,0 70,0 0,00
7 2 57,5 59,4 3,54
8 4 49,5 50,5 0,99
9 6 42,7 43,1 0,13
10 8 36,9 36,8 0,00
1 10 32,0 31,6 0,13
12 27,9 27,3 0,37
E 14 24,4 23,6 0,57
5.73

Abb. 5.52 Diskretes Modell der beschrankten Abnahme

In der Tabelle wurden die gegeben Daten mit den durch die Formel

fe+h) =f)+c-(5°C—f(©)-h

berechneten Modellwerten verglichen. Als Startwert wurde 70 °C verwendet.
Als Maf fiir die mathematische Passung der Modellwerte wurde die Summe der
quadratischen Abweichungen berechnet. Die Konstante ¢ = 0,163 wurde expe-
rimentell mit Hilfe des Schiebereglers gefunden. Alternativ kann auch der Sol-
ver von Excel genutzt werden. Die verwendete Modellannahme ist also nicht
nur im Kontext des abkiihlenden Kaffees plausibel, sondern liefert auch fir die
gegebenen Daten passende Werte.

Es ist aber ebenso eine kontinuierliche Modellierung méglich. Dazu wird die
Gleichung

fe+hR) =f@®)+c-(S=f(®)-h

entsprechend umgeformt, und man erhilt eine Form, die fir differenzierbare
Funktionen /mit Hilfe der Differenzialrechnung weiter bearbeitet werden kann.

fa+h)—f@©) _
Bl (s—f®).

Auf der linken Seite der Gleichung steht dann ein Differenzenquotient der
Funktion fan der Stelle # Ein Grenzprozess fiir 4 — 0 fithrt zu der Gleichung

f@=c-(S—f@®).
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Diese Differenzialgleichung der beschrinkten Abnahme wird von Funktionen
des Typs

fO=S-(S—f(0)-e
gelost, denn fir die Ableitung der Funktion fgilt:

f®

=c-(§-f(0)-e
=c-(S—S+(S—f(0)-e™)
=c-(S=(5-(S—f(®)-e))
=c-(S-f@®).

Wir kénnen also fiir die beschrankte exponentielle Abnahme Folgendes festhal-
ten.

Beschrdnkte exponentielle Abnahme

Wir gehen von einem geschlossenen System aus, bei dem die Abnahme
proportional zur Differenz von Grenzwert S und Bestand ist. Charakteris-
tisch ist die sogenannte Zerfallskonstante ¢

Beschrankte exponentielle Abnahme wird mit Hilfe von Funktionen des
Typs f(t) =S — (S = f(0)) - e~ beschrieben.

Mit einem geschlossenen System ist in diesem Beispiel gemeint, dass keine wei-
teren Temperatureinflisse als die AuBlentemperatur auftreten.

Beispiel Hefewachstum

Das Wachstum einer Hefekultur wurde bereits 1913 genauer untersucht und
dokumentiert (Carlson, 1913). Die entsprechenden Daten sind in der folgenden
Tabelle (s. Tabelle 5.26) dargestellt.

Stellt man die ersten Daten der Tabelle in einem Koordinatensystem dar, so
kann man ein nahezu exponentielles Wachstum vermuten (s. Abb. 5.53).

Notiert man allerdings alle vorhandenen Daten im Koordinatensystem, so wird
deutlich, dass das Hefewachstum im Laufe der Zeit abnimmt und nicht der
Annahme eines zum Bestand proportionalen Wachstums gentigt. Das Hefe-
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wachstum kann also nicht durch eine exponentielle Wachstumsfunktion be-

schrieben werden (s. Abb. 5.54).

Tabelle 5.26 Hefewachstum

Zeit (in Stunden) Hefemenge (in mg) Zeit (in Stunden) Hefemenge (in mg)
0 9,6 10 513,3
1 18,3 11 559,7
2 29 12 594,8
3 47,2 13 629,4
4 71,1 14 640,8
5 119,1 15 651,1
6 174,6 16 655,9
7 257,3 17 659,6
8 350,7 18 661,8
9 441
300
250 /F

200 //
150

100 /
50 !

0 2 4 6 8

Hefemenge (in mg)

Zeit (in Stunden)

Abb. 5.53 Hefewachstum in den ersten 7 Stunden

Bei genauerer Analyse stellt man fest, dass das Hefewachstum von Anfang an
nicht zum Bestand proportional ist, sondern zunehmend verlangsamt wird. Der
fir das exponentielle Wachstum charakteristische Quotient
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f+1)
f@®

ist auch in den ersten sieben Stunden nicht konstant.
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Abb. 5.54 Hefewachstum in den ersten 18 Stunden

Wir stellen daher nun weitergehende Modellannahmen auf als beim exponenti-
ellen Wachstum. Dabei gehen wir immer noch von einem geschlossenen Sys-
tem mit einer Wachstumskonstanten ¢ aus. Allerdings unterstellen wir gleichzei-
tig eine Verlangsamung des Wachstums, da der im Laufe des Prozesses entste-
hende Alkohol das Hefewachstum bremst. Die Situation kann zunachst durch
die folgende Gleichung beschrieben werden:

f@+n)—=fO =c-f(t)-h=s-f()-h

Dabei beschreibt der zusitzliche Term s+£{#)-h die Verlangsamung des Wachs-
tums. Der Faktor s wird auch als S#erberate bezeichnet. Dieses Modell wire aber,
verglichen mit dem exponentiellen Wachstum, kein neues Modell, wenn ¢ und s
beide konstant sind. In diesem Fall kénnten ¢ und s zu einer neuen Wachstums-
konstanten ¢— zusammengefasst werden. Geht man davon aus, dass die Sterbe-
rate 5 auch vom Bestand f{?) abhingt, was im Fall des vermuteten Zusammen-
hangs von Alkoholproduktion und Hefewachstum durchaus plausibel ist, dann
handelt es sich um ein neues Modell. Wir wollen hier die Annahme, dass die
Sterberate s proportional zum Bestand ist, voraussetzen. So erhalten wir das
sogenannte /logistische Model/

fE+h) =f®)+c-f®)-h—d-f()* h
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mit der Wachstumskonstanten ¢ und dem Behinderungsfaktor d. Auch in diesem
Beispiel kann man diskret und kontinuierlich weiterarbeiten. Zunichst wollen
wir die diskrete Form bearbeiten.

Berechnen wir nun optimale Konstanten ¢ und 4, so kénnen wir die gegebenen
Daten recht gut approximieren. Fiir einen Startwert f{0) = 15 und die Parame-
terwerte ¢ = 0,56 und 4 = 0,00086 erhalten wir die folgenden Modellwerte
(Auswabhl).

Tabelle 5.27 Berechnete Modellwerte und Daten im Vergleich (Auswahl)

Zeit Modellwerte Daten
0 15 10
1 23 18
5 123 119
10 512 513
15 649 651
18 652 662
700
xxxxxx e Modellwerte
600 w X Daten
& 500 x
£ X
= 400
) X
g 300
3 200 X
I X
100 X
X X
0 X X
0 5 10 15 20
Zeit (in Stunden)

Abb. 5.55 Diskretes logistisches Wachstumsmodell von Hefe

Die passenden Parameterwerte kénnen durch Experimentieren mit den Schie-
bereglern in Excel gefunden werden; allerdings ist dies nun erheblich schwieri-
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ger als beim exponentiellen Wachstum, da wir nicht nur einen Wert, sondern
zwei Parameter und den Startwert variiert haben. Lisst man den Startwert fest,
was in gewisser Weise sinnvoll ist, ist die Anpassung an die Daten schlechter.
Alternativ zur experimentellen Arbeit mit den Schiebereglern kann die Anpas-
sung mit Hilfe des Solver-Add-In von Excel automatisiert werden.

Die Grafik zeigt die Anpassung der Modellwerte an die gegebenen Daten. Es
ist aber ebenso eine kontinuierliche Modellierung méglich. Dazu wird die Glei-
chung

fE+h) =f®O+c-f®)-h—d-f(©)* h

entsprechend umgeformt, und man erhilt eine Form, die fiir differenzierbare
Funktionen /mit Hilfe der Differenzialrechnung weiter bearbeitet werden kann.

M TO - e f-d-f©)2.

Auf der linken Seite der Gleichung steht dann ein Differenzenquotient der
Funktion fan der Stelle # Ein Grenzprozess fiir 4 — 0 fithrt zu der Gleichung

f@®=c-f&y—d-f(©?.

Diese Differenzialgleichung des logistischen Wachstums wird von Funktionen

des Typs

f(f)=+%)

d+e‘”'t-(f(0)

gel6st. Im folgenden Exkurs wird eine mogliche Bestimmung der Losungsfunk-
tion dargestellt (Bronstein & Semendjajew, 1989, S. 417 ff.).

Exkurs
Die L6sung der Differenzialgleichung
f@®=c-f©)y—d-f©)?

kann mit Hilfe des Verfahrens der Trennung der Variablen gefunden wer-
den. Der Ansatz

1
/ c-f()—d-f(t)2 df = [dt

liefert mit Hilfe der Partialbruchzerlegung

1 1 _re
J (dT(t) + c—d~f(t)) df = fd dt.
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Die Integrale auf beiden Seiten kdénnen geldst werden. Nach Multiplikati-

on mit d erhalten wir

In|f(t)|—Inlc—d-f(t)|=c-t+C.

Die linke Seite kann zusammengefasst werden, und nach Anwendung der

Exponentialfunktion erhalten wir

O et
C_d.f(t)—e C.

Wir bilden nun den Kehrwert auf beiden Seiten

c "
£ —d4ect.C
fo-dte ’

bestimmen die Konstante C** mit

%=d+e’c't-(ﬂc—0)—d)

und l6sen die Gleichung nach ft) auf. Dann erhalten wir fir die Wachs-

tumsfunktion

c

f@®) = _dJre_c.t_(ﬁ,d) :
15
+
10 +
c
b]
8 s +-° -
% ° o o ° + + 3
3 0 ° e e Abweichungen
= 0 L5, e 10, % 20 (kontinuierlich)
?:.0 5 I + +
s -1 + . . + Abweichungen
S + (diskret)
g -10
2 +
-15 +
+
-20
Zeit (in Stunden)

Abb. 5.56 Abweichungen der Modellwerte von den Daten

Mit Excel kénnen auch fiir dieses kontinuierliche Modell des logistischen
Wachstums die Parameter angepasst werden. Verwendet man als Startwert den
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gegebenen Wert fiir # = 0, so erhilt man fiir die Parameter ¢ = 0,54 und 4 =
0,00081. Diese Anpassung kann mit Hilfe der Schieberegler fur die entspre-
chenden Parameter oder mit Hilfe des Solver-Add-In von Excel durchgefiihrt
werden (s. Abb. 5.50).

Es zeigt sich hier, dass das kontinuierliche Modell besser an die Daten ange-
passt werden kann als das diskrete Modell. In jedem Fall kénnen wir fur das

logistische Wachstum Folgendes festhalten.

Logistisches Wachstum

Wir gehen von einem geschlossenen System aus, bei dem das Wachstum

und gleichzeitig die Sterberate proportional zum Bestand sind.

Charakteristisch sind die Wachstumskonstante ¢ und der Behinderungs-
faktor d. Logistisches Wachstum wird mit Hilfe von Wachstumsfunktionen

des Typs

beschrieben.

f@) =

d+ et (ﬁ— d)

Hefekultur

- geschlossenes
System

- Wachstum und Ster-
berate proportional
zum Bestand

Realitat

-oyjep

Interpretieren >

Lésung

Mathematik

< Rechnen |

uaJaisnew

4

logistische
Wachstums-
funktion

Abb. 5.57 Modellierung des Hefewachstums
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Betrachtet man die Modellierung des Beispiels Hefekultur, so werden zwei
wesentliche Annahmen zur Bildung des mathematischen Modells der logisti-
schen Wachstumsfunktion gemacht. Dies ist zum einen die Annahme, dass es
keine Wechselwirkungen zwischen Hefekultur und Aullenwelt gibt, und zum
anderen, dass das Wachstum und die Sterberate proportional zum Bestand sind
(Kohortst & Portscheller, 1999; Hinrichs, 2008).

Weitere Modelle

Wachstums- und Abnahmeprozesse kénnen auch mit Hilfe weiterer Funktions-
typen, wie z. B. linearen Funktionen und Potenzfunktionen, modelliert werden.
Auch Arcustangensfunktionen findet man in der Literatur zur Beschreibung
von Wachstumsprozessen (Winter, 1994, S. 336). Wir wollen hier kurz auf line-
are Funktionen und Potenzfunktionen eingehen.

Lineare Funktionen des Typs

f(t)=at+b
geniigen der Differenzialgleichung
f®=a

Die Wachstumsgeschwindigkeit ist also konstant. Betrachtet man in diesem Fall
die Verdoppelungszeit, also die Zeit T, fir die gilt:

fE+T)= 2f(0),
dann folgt fiir das lineare Wachstum die Bedingung:
a(t+T)+ b =2(at + b).
Nach entsprechender Vereinfachung erhalten wir fiir die Verdoppelungszeit T'
die Gleichung:
T=t+2
a

Die Verdoppelungszeit ist also anders als bei Exponentialfunktionen abhingig
von der Zeit 7 Je mehr Zeit seit Beginn des Prozesses vergangen ist, umso lin-
ger dauert es, bis sich der gegenwiirtige Bestand verdoppelt hat.

Potenzfunktionen des Typs

f®)=atb
geniigen der Gleichung

f© =7,
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In diesem Fall ist die Wachstumsgeschwindigkeit proportional zum Bestand
und antiproportional zur Zeit. Auch hier ist — wie zu erwarten — die Verdoppe-
lungszeit nicht konstant, sondern zeitabhingig (Winter, 1994).

5.3 Optimierungsprobleme

reales Objekt | Vereinfachen> reales Modell

Optimierung der
Modellerstelluna

Optimierung mit
Hilfe des Modells

S

) mathematisches
Losung < Rechnen | Modelll

aJaisiewayep |

Interpretieren >

<

Abb. 5.58 Optimierungsprobleme an unterschiedlichen Stellen im Modellierungspro-
zess

Eine interessante Klasse von Sachaufgaben und Modellierungsproblemen stel-
len Optimierungen dar. Optimierungsprobleme sind sehr vielschichtig und
konnen mit den unterschiedlichsten mathematischen Methoden bearbeitet wet-
den. In vielen Fillen wird zur Lésung eines Optimierungsproblems zunichst
eine Realsituation in ein mathematisches Modell ubersetzt. Dieses — in der Re-
gel deskriptive — Modell wird anschlieBend mit mathematischen Methoden,
z. B. mit der Differenzialrechnung, bearbeitet. Dann findet die Optimierung
mit Hilfe des bereits erstellten mathematischen Modells statt. Es gibt aber auch
Fille, bei denen der Modellbildungsprozess mit dem Optimierungsprozess
zusammentillt. Dann ist die Optimierung im Prinzip mit dem erstellten ma-
thematischen Modell abgeschlossen. Die dann folgende Arbeit im optimierten
Modell dient der Berechnung konkreter Ergebnisse.

Im Folgenden werden typische Bereiche fiir Optimierungen im Sachrechen-
unterricht vorgestellt, bei denen reale Probleme und mathematische Modelle
eine wichtige Rolle spielen.
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5.3.1 Funktionale Modelle

Optimierung mit Funktionen

Im Mathematikunterricht werden Optimierungsprobleme hiufig mit Hilfe von
funktionalen mathematischen Modellen bearbeitet. Ein Beispiel ist das bekann-
te Problem, die Mal3e einer materialminimierten Konservendose zu bestimmen.
So haben beispielsweise die abgebildeten Dosen bei annihernd gleichem Vo-
lumen einen unterschiedlichen Materialverbrauch.

Abb. 5.59 Dosen mit gleichem Volumen und unterschiedlichem Materialverbrauch

In diesem Beispiel kann man fiir eine als Zylinder modellierte Dose eine Funk-
tion aufstellen, die den Materialbedarf M(7) fir ein Volumen von 330 ml in
Abhingigkeit vom Dosenradius niherungsweise beschreibt:
M(r) = 2nr? + ang = 2mr? + 22,
nr T

Als Vereinfachung fiir dieses Modell wird angenommen, dass Schweilindhte
und kleinere Kanten vernachlidssigt werden kénnen. Ebenso wird vorausge-
setzt, dass die Dose ein Volumen von "= 7 -2 - ) = 330, d. h. eine Hohe von

330
w2

hat. Mit Hilfe der Differenzialrechnung kénnen dann Werte fiir Radius und
Hohe der Dose bestimmt werden, die einem Zylinder mit minimaler Oberfld-
che bei gegebenem Volumen entspricht, die also einen minimalen Materialver-
brauch aufweist. In diesem Beispiel sind das fir den Radius etwa 3,7 cm und
fir die Héhe der Dose etwa 7,5 cm. Die Erdnussdose ist daher in Bezug auf

den Materialverbrauch nahezu optimal. Viele Optimierungsprobleme, die mit
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funktionalen Modellen bearbeitet werden kénnen, werden im Prinzip auf diese
Weise gel6st.

Zuerst werden Vereinfachungen in der Realitit gemacht, beispielsweise die
Dose als Zylinder aufgefasst. AnschlieBend wird die gesuchte Gréf3e, hier das
Volumen, als Funktionsgleichung ausgedriickt. Dazu miissen in der Regel noch
sogenannte Nebenbedingungen — wie im Beispiel der Zusammenhang von
Radius und Héhe durch das gegebene Volumen — verwendet werden, damit die
Funktion mit nur einer Variablen geschricben werden kann. Dann wird dieses
funktionale Modell mit Hilfe der Differenzialrechnung untersucht. Fir die voll-
stindige Untersuchung ist auch noch die Betrachtung von Randstellen und des
Definitionsbereichs notig.

Es gibt auch Optimierungsprobleme mit Funktionen, die auf quadratische
Funktionen fihren und damit ohne Differenzialrechnung mit den Mitteln der
Sekundarstufe 1 geldst werden kénnen oder die mit Hilfe von numerischen
Verfahren aus der Sekundarstufe I bearbeitet werden kénnen (s. Abb. 5.60).

1 Die offene Schachtel

e Stellt aus DIN-A4-Blittern oben offene
Schachteln her.

e Skizziert eure Netze.

e Berechnet die Rauminhalte der Schach-
teln.

@ Versucht eine Schachtel mit moglichst
groBem Inhalt zu finden.

2 Welche MaBe hat eine oben offene
quaderférmige Schachtel mit moglichst
groBem Volumen, die aus

a) einem DIN-A3-Blatt,

b) einem quadratischen Blatt mit derselben
Fliche wie ein DIN-A3-Blatt hergestellt
wurde?

Abb. 5.60 Optimierungsproblem fir die Sekundarstufe | (Boer, et al., 2003, S. 79)

Grundsitzlich ist aber diese Art von Optimierungsproblemen stark funktional
geprigt und insbesondere im Mathematikunterricht der Oberstufe weit verbrei-
tet. So kénnte der Eindruck entstehen, dass fast alle mathematischen Optimie-
rungsprobleme von dieser Art sind und mit Hilfe von Funktionen gelést wer-
den kénnen. Es gibt aber auch Optimierungsprobleme, bei denen die Funktion
selbst das optimierte Objekt ist.



53  Optimierungsprobleme | 185

Optimierung von Funktionen

Wenn man bestimmte Daten zur Verfiigung hat, die weiter bearbeitet werden
sollen, dann sind héufig Funktionen selbst die zu optimierenden Objekte. Die
Frage ist dann, welcher Funktionstyp und welche spezielle Funktionsgleichung
die gegeben Daten am besten beschreiben. Mit einem solchen funktionalen
Modell kénnen dann beispielsweise Voraussagen Uber den weiteren Verlauf des
beobachteten Prozesses oder Aussagen tber den potenziellen Verlauf zwischen
zwei Messpunkten gemacht werden.

Ein typisches Problem zur Optimierung von Funktionen soll im Folgenden
vorgestellt werden. Gegeben ist ein Datensatz zu einem in den Boden eingelas-
senen Oltank, bei dem die Peilstabhéhe fiir ein bestimmtes Tankvolumen be-
kannt ist (s. Abb. 5.61).

Von einem in den Boden eingelassenen Oltank sind folgende Daten be-
kannt:

Tankvolumen | Peilstabhohe
10001 411 mm
2000 1 672 mm
3000 1 915 mm
4000 | 1176 mm
5000 | 1587 mm

Zur Bestimmung genauer Zwischenwerte des Tankvolumens soll eine
Funktionsgleichung ermittelt werden, die den Zusammenhang von Tank-
volumen und Peilstabhdhe optimal beschreibt.

Abb. 5.61 Aufgabenbeispiel Oltank

Diese Tabelle ist aber fiir den praktischen Gebrauch nicht genau genug. Zur
Verbesserung der Situation soll eine Funktionsgleichung ermittelt werden, die
die Daten optimal beschreibt. Hier ist die Funktion einerseits das Ziel des Op-
timierens und andererseits gleichzeitig das mathematische Modell. Bei einem
solchen Optimierungsproblem muss zunichst entschieden werden, welcher
Funktionstyp die gréten Erfolgsaussichten fiir eine optimale Anpassung bietet.

Diese Entscheidung kann sowohl deskriptiv als auch explikativ getroffen wer-
den. Wenn ein rein deskriptives Modell gewihlt wird, dann wiirde auf der Basis
der bekannten Funktionstypen entschieden, welcher am besten zu dem Prob-
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lem passt. In der Schulmathematik kénnen beispielsweise die folgenden Funk-
tionstypen als mathematische Modelle verwendet werden:

lineare Funktionen
quadratische Funktionen
ganzrationale Funktionen
Potenzfunktionen
Exponentialfunktionen
Logarithmusfunktionen
In diesem Fall wiirde etwa eine ganzrationale Funktion dritten Grades die Da-

ten recht gut beschreiben (s. Abb. 5.62).

-18011]
5000
4000
3000
2000

1000

400 800 1200 1600

=1000

Abb. 5.62 Deskriptiv optimierte ganzrationale Funktion dritten Grades

Die Berechnung der entsprechenden Funktionsparameter geschieht am besten
mit einem Computeralgebrasystem. Dort sind Funktionsanpassungen fiir die in
der Schule tblicherweise verwendeten Funktionstypen in der Regel implemen-
tiert. Fur die optimale Anpassung von Funktionen an Messwerte kénnen unter-
schiedliche Modelle diskutiert werden. Ublicherweise verwendet man die Sum-
me der quadratischen Abweichungen in y-Richtung (Greefrath, 2009).
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Zusitzlich zum Finden eines geeigneten optimierten deskriptiven Modells kann
der Wunsch aufkommen, den Zusammenhang von Peilstabhdhe und Tankvo-
lumen wirklich zu verstehen. Wenn das Modell auch dieses leistet, spricht man
von einer explikativen Modellierung. Um diesen Zusammenhang anzugeben,
muss die Form des Tanks bekannt sein. Da dieser im gegebenen Beispiel im
Boden versenkt ist, kénnen Modellannahmen weiterhelfen. Eine mégliche Mo-
dellannahme ist, dass der Tank ein liegender Zylinder (mit Radius » und Linge
/) ist. Dann konnte die Abhingigkeit von Peilstabhche und Volumen mit Hilfe
der folgenden Ubetlegung bestimmt werden (s. Abb. 5.63).

Abb. 5.63 Seitenansicht eines zylinderférmigen Tanks

Im unteren Teil des Tanks gilt nach dem Satz des Pythagoras fiir die Linge x:

x=+1r*—(r—h)>=+2rh—h*.

Dabher kann die Querschnittsfliche in der Fiillhéhe 4 mit der Formel

A(R) = 2IN2rh — hZ

beschrieben werden. Aus Symmetriegrinden gilt diese Formel auch fir den
oberen Teil des Tanks. Integrieren wir (z. B. mit Hilfe eines Computeralgebra-
systems) diese Fliche nun nach der HShe 4, so erhalten wir das Volumen des
bis zur jeweiligen Héhe H gefillten Tanks.

V(H) = nmrl + Ir? arcsm( ) + I(H — )/ 2Hr — H>.

Dieses funktionale Modell ist zunachst erheblich untbersichtlicher als das rein
deskriptive Modell. In dieses Modell sind bereits Informationen tiber den Tank
eingeflossen. Uberpriift man die Ergebnisse dieses Modell nun numerisch, stellt
sich heraus, dass es weiter verbessert werden muss. Einerseits misste das Ge-
samtvolumen des vollgefiillten Tanks bei einer Peilstabhéhe von 1587 mm dem
Gesamtvolumen 5000 | entsprechen. Andererseits miisste der Radius der hal-
ben maximalen Peilstabhohe, also etwa 794 mm, entsprechen. Die Linge des
Tanks ergibt sich dann aus der Formel fiir das Volumen als 2528 mm. Rechnet
man nun mit diesen Daten, so ergibt sich die folgende Tabelle:



188 | 5 Ausgewihlte Inhaltsbereiche des Sachrechnens

Tabelle 5.28 Werte fiir das explikative Zylindermodell

Tankvolumen Peilstabhdhe

1028 | 411mm
20161 672 mm
29871 915 mm
3976 | 1176 mm
5007 | 1587 mm

Diese Werte sind zwar relativ genau, verglichen mit dem nur deskriptiven Mo-
dell allerdings schlechter. Die entsprechende Modellannahme war also offenbar
nicht optimal. Viele Tanks entsprechen ndmlich nicht genau einem Zylinder,
sondern haben gewdlbte Seiten. Berilicksichtigt man auch noch die gewdlbten
Seiten, so erhdlt man mit einer entsprechenden Rechnung folgende Werte:

Tabelle 5.29 Werte fiir das explikative Zylindermodell mit gewdlbten Seiten

Tankvolumen Peilstabhohe

999 | 411mm
2002 | 672 mm
2998 | 915 mm
4001 | 1176 mm
5000 | 1587 mm

Bei der Frage der Genauigkeit des Modells ist zu beachten, dass bei einer ange-
nommenen Ablesegenauigkeit des Peilstabs von 1 cm die Genauigkeit der Vo-
lumenangabe im mittleren Bereich des Tanks in der GréBenordnung von 40
Litern liegt.

Dieses Beispiel hat gezeigt, dass auch die Funktion selbst das Ziel der Optimie-
rung sein kann. Dazu kénnen entweder die Daten mit Hilfe einer Regression
(deskriptiv) angepasst werden, oder es kann durch zusitzliche Modellannahmen
ein — den Sachverhalt erklirendes — optimales Modell gefunden werden (Greef-
rath, 2008).

Es gibt jedoch auch andersartige Optimierungsprobleme, die nicht mit Hilfe
von Funktionen und Differenzialrechnung bearbeitet werden. Dazu gehort die
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Klasse der Wegoptimierungsprobleme. So sind beispielsweise die Suche nach
dem schnellsten Weg mit der U-Bahn in einem U-Bahn-Netz oder nach dem
besten Weg fiir einen Briefzusteller in einem Stadtteil derartige Probleme. Diese
Probleme sind sogenannte kombinatorische Optimierungsprobleme (HuB3mann
& Lutz-Westphal, 2007), bei denen die Menge der zuldssigen Lésungen nicht
kontinuietlich (wie z. B. der Radius der Konservendose), sondern diskret ist.
Bei solchen Problemen verwendet man als mathematisches Modell hiufig einen
Graphen, also ein Gebilde aus Ecken und Kanten, bei dem jede Kante zwei
Ecken verbindet.

5.3.2 Diskrete Modelle

Optimierung mit Graphen

Wir betrachten als Beispiel ein Wohngebiet, in dem der optimale Weg fiir einen
Briefzusteller gesucht wird, d. h. alle Strallen sollen genau einmal abgelaufen
werden. Die Stralen in diesem Wohngebiet kénnen in diesem Beispiel durch
den folgenden Graphen veranschaulicht werden (s. Abb. 5.64).

Abb. 5.64 Graph eines Wohngebiets

Man kann aber einen gegebenen Graphen nur dann ohne abzusetzen zeichnen
und dabei jede Kante genau einmal durchlaufen, wenn alle Ecken eine gerade
Ordnung besitzen oder genau zwei Ecken von ungerader Ordnung sind. Die
Ordnung einer Ecke ist dabei die Zahl der Kantenenden, die die Ecke treffen.
Falls genau zwei Ecken eine ungerade Ordnung besitzen, ist die eine Anfangs-
punkt und die andere Endpunkt eines solchen Weges (Nitzsche, 2005, S. 25).

Es kann also in diesem Beispiel keinen Weg geben, bei dem der Briefzusteller
jeden Weg genau einmal durchliuft, da in diesem Zustellgebiet nicht an jeder
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Kreuzung 4, 6 oder 8 Strallen zusammentreffen. Daher stellt sich fiir den Brief-
zusteller die Frage, welche StraBen er doppelt gehen soll. Man sucht nun im
zugehorigen Graphen — also im zugehdrigen deskriptiven Modell des Stadtteils
— an Ecken mit ungerader Ordnung nach Méglichkeiten durch Einfligen von
méglichst wenigen Kanten alle Eckenordnungen so zu verindern, dass sie ge-
rade sind. Ein Beispiel fir eine mogliche Briefzustellertour in diesem Wohnge-
biet zeigt die folgende Abbildung (s. Abb. 5.65).

Abb. 5.65 Eine mogliche Briefzustellertour in diesem Wohngebiet

Optimierung von Graphen

Ein zweites Beispiel fiir ein Optimierungsproblem ist der Bau eines Stromnet-
zes. Auch dieses Problem kann als Graph modelliert werden. Dabei entspre-
chen die Ecken den Verzweigungen oder den Abnehmern des Netzes und die
Kanten den Leitungen. Hier ist nicht ein erstellter Graph, sondern bereits die
Struktur des Graphen bei der Erstellung zu optimieren. Zwar liegt bei derarti-
gen Problemen die Lage einiger HEcken in der Regel fest, allerdings kénnen
zusitzliche Ecken, also Stellen an denen Verzweigungen des Netzes gebaut
werden, frei gewihlt werden. Betrachten wir als einfachstes Beispiel ein geplan-
tes Netz bestehend aus einer Quelle und zwei Verbrauchern, also drei zu ver-
bindenden Punkten, so kann unter bestimmten Bedingungen durch Einfligen
eines weiteren Punktes die Gesamtlinge des Netzes reduziert werden.

Zur Lésung dieses Problems kann man den Steinerpunkt verwenden. Der Stei-
nerpunkt ist der Punkt, von dem die Summe der Entfernungen zu den Ecken
eines Dreiecks (A ABC) minimal ist. Uberschreitet allerdings ein Winkel des
Dreiecks 120°, so liegt der Steinerpunkt auBlerhalb des Dreiecks. In diesem Fall
ist einer der Eckpunkte des Dreiecks der gesuchte optimale Punkt. Fir drei
gegebene Punkte kann der Steinerpunkt mit Hilfe des Umkreises des gleichsei-
tigen Dreiecks ACX auf der lingsten Seite des Dreiecks aus den gegebenen
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Punkten A, B und C konstruiert werden. Der Steinerpunkt ist der Schnittpunkt
P des Umkreises mit der Verbindungsstrecke von B und X. Die Entfernung
BX entspricht der Linge des kiirzesten Netzes zwischen den drei gegebenen
Punkten A, B und C. Dies kann mit Hilfe des Satzes von Ptolemaus bewiesen
werden (Fricke, 1984, S. 24 ff.).

Umkreis des gleichseitigen
Dreiecks ACX auf der langsten

Kirzestes Netzwerk von drei Punkten

Abb. 5.66 Konstruktion des Steinerpunktes

Sind mehr als drei Punkte gegeben, kann mit Hilfe des Melzak-Algorithmus
gearbeitet werden. Beim Melzak-Algorithmus werden Mehrpunkt-Probleme in
kleinere Einheiten aufgeteilt. Sind zum Beispiel 3 Punkte fiir sich abspaltbar,
wird in diesem Dreieck der Steinerpunkt konstruiert und in diesem Teil das
Problem bereits reduziert. So ldsst sich etwa ein 7-Punkte-Problem auf ein 5-
und ein 3-Punkteproblem aufteilen. Der Verbindungspunkt der beiden Teil-
probleme wird dabei doppelt gezihlt.

Die 5 Punkte werden mit einem Steinernetz verbunden, wobei immer 2 Punkte
auf ecinen Punkt reduziert werden. Dazu wird, im Beispiel etwa fiir die Punkte B
und C, ein gleichseitiges Dreieck auf der Strecke BC konstruiert. Mit Hilfe des
Umkreises dieses Dreiecks wird wie oben beschrieben der Steinerpunkt kon-
struiert. Der Punkt X kann nun als Ersatzpunkt fiir B und C verwendet werden
und steht fiir die Konstruktion weiterer gleichseitiger Dreiecke zur Verfiigung,
Diese Ersatzpunkte werden dann verbunden, wodurch sich die Verzweigungen
des Netzes ergeben. Zum Schluss werden alle Ausgangspunkte mit diesen Ver-
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zweigungen verbunden. Diese Konstruktionen kénnen sehr gut mit einem dy-
namischen Geomettieprogramm (z. B. Euklid) durchgefithrt und veranschau-
licht werden. Die beste Lésung des Problems ldsst sich allerdings bei diesem
Verfahren nicht vorhersagen, daher mussen alle Méglichkeiten getestet werden,
den kiirzesten Baum zu finden. Dieses Beispiel verdeutlicht, dass auch geomet-
rische Inhalte in den Bereich des Sachrechnens fallen konnen, da sie in diesem
Beispiel zur Losung des realen Problems beitragen (Bern & Graham, 1996).

Abb. 5.67 Beispiel fiir den Melzak-Algorithmus (Bern & Graham, 1996)

Die beiden Beispiele zeigen, wie kombinatorische Optimierung und Modellbil-
dung zusammenhingen kénnen. Im ersten Beispiel mit dem Weg des Briefzu-
stellers wurde durch Reduktion auf wesentliche Informationen ein deskriptives
Modell des Stadtteils entwickelt. An diesem Modell wurde dann das Optimie-
rungsproblem geldst. Dazu wurden weitere Kanten, entsprechend den Wegen
des Brieftrigers, so eingefiigt, dass der Gesamtweg optimal ist. Im Beispiel des
optimalen Stromnetzes fand die Optimierung noch wihrend der Modellent-
wicklung statt. Dazu wurden zusitzliche Ecken in den Graphen an optimalen
Stellen eingefiigt. Hierzu wurde also ein deskriptives Modell, das die Verbrau-
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cher eines Stromnetzes beschreibt, entsprechend weiterentwickelt, indem weite-
re Ecken eingefiigt wurden. Dieses neue Modell wird dann fiir den Bau des
Stromnetzes als Vorlage verwendet. Dieser Optimierungsprozess zeigt daher
deskriptive und normative Anteile der Modellierung. Ein solches Wechselspiel
zwischen deskriptiver und normativer Modellierung kann als doppelte Modellbil-
dung (Winter, 1991) bezeichnet werden (Greefrath, 2008).

Optimierung mit Tabellen

Optimierungsprobleme kénnen auch mit anderen mathematischen Werkzeugen
als Funktionen und Graphen bearbeitet werden. Ein bekanntes Beispiel ist die
Suche nach der optimalen Tankstelle in einem Grenzgebiet mit unter-
schiedlichen Kraftstoffpreisen (Blum & Leif3, 2005).

Im konkreten Beispiel wird fiir zwei Autofahrer und eine Autofahrerin, die in
Deutschland grenznah zu Tschechien und Osterreich wohnen, untersucht, an
welchem Ort das Tanken am giinstigsten ist. Fur die Modellierung muss zu-
nichst nach geeigneten Faktoren zur Vereinfachung des Problems gesucht
werden. Eine mogliche Liste solcher Faktoren kénnte sein:

Benzinpreise in Deutschland und im Ausland
Entfernung zu den jeweiligen Tankstellen
Tankvolumen

Verbrauch pro 100 km

Diese Liste kann im Prinzip weiter fortgesetzt werden. Dies hidngt davon ab,
wie detailliert und komplex das Modell werden soll. Ebenso ist es beispielsweise
denkbar, die Héchstgrenze fiir Reservekanister, die Verschleilkosten oder die
benoétigte Zeit fiir die Tankfahrt in das Modell aufzunehmen. Weitere Punkte
wie Umweltbelastung und Unfallrisiko kénnen ebenfalls in das Modell einbezo-
gen werden. Bei der Bildung des mathematischen Modells ist nun zu entschei-
den, welche Faktoren tatsdchlich beriicksichtigt werden sollen.

| A | B | c | D | E | F | 6 |
1 Preis Entfernung in km Preis fur 55 Liter | Preis for die Fahrt Gesamtkosten  Differenz
2 |Waldkirchen 125€ 1] BBTE € 0,00 € 68,75 € 0,00 €
3 |Stozec 099 € 2 5445 € JA€ 5789 € 1086 €
4 |Strazny 096 € 33 5280 € 501 € 5781 € 1094 €
5 |Ulrichsberg 103 € 28 5665 € 456 € 6121 € 754 €
B |Schwarzenberg 106 € 18 58,30 € 301 € 6131 € TA4 €
7

Abb. 5.68 Tabelle zur Optimierung

Ein mogliches Modell berticksichtigt die vier oben genannten Punkte. Konkret
gehen wir von einem Durchschnittsverbrauch von 7,9 1 pro 100 km aus. Damit
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werden dann die Tankkosten und die Benzinkosten fiir die Tankfahrt berech-
net. Als optimal wird der Ort der Tankstelle angesehen, bei dem die Summe der
Tankkosten und der Benzinkosten fiir die Tankfahrt am niedrigsten ist. Die
vorstehende Tabelle zeigt eine solche Berechnung. Die so bestimmten Gesamt-
kosten kénnen nun verglichen und die in diesem Modell optimale Tankstelle
kann anschlieBend ausgewihlt werden.

Fir unterschiedliche Durchschnittsverbrauchswerte muss die Tabelle entspre-
chend angepasst werden. Die Verwendung der Tabellenkalkulation ist hier sehr
hilfreich, da die entsprechenden Rechnungen alle gleichartig sind und fiir unter-
schiedliche Durchschnittsverbriuche wiederholt werden miissen. Die Optimie-
rung besteht hier aus der Auswertung der entsprechenden Spalte der Tabelle
fir unterschiedliche Annahmen.

Die Ergebnisse verindern sich schlief3lich, wenn die Zeit, die durch eine lingere
Fahrt zur ginstigsten Tankstelle verloren geht, mit in die Rechnung einbezogen
wird. Einen #hnlichen FEinfluss hitte die Berlicksichtigung der Verschleil3-
kosten. Dies ist in der folgenden Abbildung dargestellt.

— A |®8] c | b | €E | F | e | H ] v |
1 Preis En:;e:::_:ng Pfe'fltfgrrss prefaf#r;dle Cag osten Ver i 1| Gesarr 1 Differenz

2 |Waldkirchen | 125€ 0 6875€ | O0p0€ BB75€ | DD0E 68,75 € 0po0€

3 |Stozec 099€ 22 B445€ | 344€ 5789€ | 440€ 6229 € 646 €
4_|Strazny 09€ 33 5280€ | 501¢€ 5781€ | BROE 64,41 € 434 €

"5 |Ulrichsberg 103€ 28 SEESE€ | ASBE Bl21€ | Gp0E 6601 € 194€

6 |Schwarzenberg | 106€ 18 5830€ | 301€ B131€ | 3p0€ 64,91 € EET

Abb. 5.69 Tabelle zur Optimierung mit Beriicksichtigung der VerschleiRkosten

Aber auch diese Modellierung umfasst noch lingst nicht alle relevanten Fakto-
ren. So fithren die Einbeziehung von Abschreibungskosten, aber auch die M6g-
lichkeit, einen Reservekanister zu fiillen, zu neuen Modellierungen und verin-
dern dann auch den Ort der optimalen Tankstelle.

Dieses Beispiel zeigt einen starken normativen Charakter des Optimierens mit
Hilfe von mathematischen Modellen. Der Ort der optimalen Tankstelle hingt
davon ab, welche Faktoren das gewihlte Modell berticksichtigt und wie diese
gewichtet werden (Greefrath & Laakmann, 2007).

5.3.3 Optimieren und Modellieren

Man kann viele Optimierungsprobleme auch mit dem Computer bearbeiten.
Dann vergroBert sich auch die Anzahl an alternativen Losungsmoglichkeiten
noch weiter. Mit dem Computer kénnen viele Probleme, die sonst mit Funkti-
onen bearbeitet werden, auch numerisch mit Hilfe eines Tabellenkalkulations-
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programms oder geometrisch mit Hilfe einer dynamischen Geometriesoftware
bearbeitet werden. So ist es moglich, dass sich auch die Art des verwendeten
Modells verindert und beispielsweise ein kontinuierliches Problem nicht mit
Hilfe von Funktionen, sondern numerisch oder grafisch gel6st wird.

Die Beispiele zeigen die Vielfiltigkeit von Optimierungsproblemen mit realem
Hintergrund. Optimierungsprobleme im Unterricht sollten daher nicht auf die
Behandlung von deskriptiven funktionalen Modellen, wie das Beispiel der Kon-
servendose, beschrinkt werden, die mit Hilfe der Differenzialrechnung opti-
miert werden. Optimierungsprobleme sind einerseits hdufig fiir Schiilerinnen
und Schiiler sehr motivierend und andererseits unter dem Aspekt der Umwelt-
erschlieBung sehr interessant fiir das Sachrechnen. Sie reichen von funktionalen
tber grafische bis zu diskreten numerischen Modellen. Die Optimierung kann
nach oder wihrend der Modellerstellung stattfinden, und es gibt deskriptive
und normative Modellierungen.

Optimierungsprobleme
Zeitpunkt Typ des Modells Art des Modells
* I .] 1
zut ook _ diskret funktional
Modell- Modell- deskriptiv
erstellung  erstellung Graph
normativ Tabelle

Abb. 5.70 Vielfalt von Optimierungsproblemen

5.4 Probleme aus Statistik und Stochastik

Aufgaben aus Statistik und Stochastik gehen in vielen Fillen von einem Prob-
lem in der Realitit aus und beschiftigen sich mit Modellierungsprozessen im
Zusammenhang mit Daten.

Auch im Rahmen der Bildungsstandards im Fach Mathematik fiir den Mittleren
Bildungsabschluss (KMK, 2004) wird die Leitidee Daten und Zufall besonders
herausgestellt. Im Rahmen dieser Leitidee sollen Schiilerinnen und Schiiler ins-
besondere

statistische Erhebungen planen und auswerten,

Zufallserscheinungen in alltiglichen Situationen beschreiben sowie
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Wabhrscheinlichkeiten bei Zufallsexperimenten bestimmen.

Hier kann man zwei Bereiche unterscheiden. Der erste Bereich betrifft Model-
lierungen mit realen Daten im Rahmen einer Datenanalyse, und der zweite
Bereich beschiftigt sich mit Modellierungen mit Hilfe von Wahrscheinlichkei-
ten und Wahrscheinlichkeitsverteilungen.

Situation | Datenerhebung Daten

Realitat

Mathematik

Interpretieren / Validier[en>

<ue/u?/vl apoyIop Jejs |

Muster in den - | statistisches
Daten Lésungen erzeugen Modell

Abb. 5.71 Datenanalyse als stochastischer Modellierungskreislauf (Eichler & Vogel,
2009, S.132)

Betrachten wir hier etwa das Beispiel des Hefewachstums (S. 174), dann ent-
spricht die Situation der realen Hefekultur, die beobachtet wird. Diese Situation
wird um unwesentlich scheinende Aspekte reduziert, und es wird lediglich die
Hefemenge in Abhingigkeit von der Zeit betrachtet. Weitere Eigenschaften,
wie etwa die Art der Ausbreitung, werden vernachldssigt. Im Mathematisie-
rungsschritt werden die Daten der Hefemenge in Abhingigkeit von der Zeit in
ein mathematisches Modell ibersetzt. Dies kann im ersten Schritt ein exponen-
tielles Wachstum oder im zweiten Schritt ein logistisches Wachstumsmodell
sein. Dabei wird ein Muster in den Wachstumsdaten gesucht, und gleichzeitig
werden Informationen reduziert. Denn beispielsweise bei der Verwendung
eines exponentiellen Wachstumsmodells werden nicht mehr alle gesammelten
Daten, sondern nur noch die geeigneten Parameter weiter verwendet.

In Fall der Wahrscheinlichkeitsbetrachtungen ist ebenfalls eine Beschreibung
als Modellierungskreislauf sinnvoll. Nach der Analyse der Daten erfolgt dann
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im Mathematisierungsschritt der Ubergang zum Modell. In der Schule wird
dazu sehr hiufig die Binomialverteilung verwendet. Mit Hilfe des Modells und
der vorhandenen Daten wird dann die Realsituation simuliert. So kénnen die
Ergebnisse der Simulation mit dem Modell mit der Realitit verglichen und so
interpretiert und validiert werden (Eichler & Vogel, 2009).

Im Verlauf der gesamten Sekundarstufe werden immer wieder Inhalte aus Sta-
tistik und Stochastik im Unterricht behandelt. Einige Beispiele zur Datenanaly-
se sind bereits in den Abschnitten 5.2.8 und 5.3 behandelt worden. Im Rahmen
der Statistik werden ebenso Mittelwerte und Streuungen berechnet sowie Dia-
gramme interpretiert.

Auch der Wahrscheinlichkeitsbegriff wird meist in realen Kontexten prisen-
tiert. Hier verwendet man in der Sekundarstufe I hdufig Glucksspiele, wie bei-
spielsweise den Wirfelwurf (s. Abb. 5.72) oder Lottoprobleme.

®E ©.
@ ®

Abb. 5.72 Beispielaufgabe zum Wirfelwurf (Kietzmann, et al., 2004, S. 44)

Hier sichst du fiinf verschiedene , Wiirfel".
Fiir welche liisst sich die Wahrscheinlich-
keit, eine Eins zu werfen, leicht angeben
und fiir welche nicht? Begriinde!

Schitze fiir die ,,Wiirfel* (D und @) die
Wahrscheinlichkeit, mit der die einzelnen
Ergebnisse zu erwarten sind. Begriinde dei-
ne Schitzung.

Ebenso kann der mehrfache Wiirfelwurf thematisiert werden (s. Abb. 5.73). Er
wird im Unterricht mit Hilfe von Baumdiagrammen dargestellt. Zur Vorberei-
tung der Laplace-Wahrscheinlichkeit werden im Unterricht kombinatorische
Probleme thematisiert. Auch hier kénnen Kontexte aus der Realitidt verwendet
werden. Ein Beispiel zeigt die folgende Abbildung (s. Abb. 5.74).

Bci dem Spiel ,,Schweinerei** werden Schweinchen geworfen.
% Suhle Dabei gibt es fiinf Maglichkeiten, wie das Schweinchen fallen kann.
e Sau - Seitenlage ® Suhle - Riickenlage
Sau 65% 25% ® Haxe - stehend ® Schnauze - auf der Schnauze

@ Backe - wie Schnauze, jedoch seitlich auf einer Backe

Haxe Die Wahrscheinlichkeit fiir jede einzelne Lage kannst du d/gr Abbil-

F% dung entnehmen.
a) Gib einige mogliche Ergebnisse an, wenn zwei Schweinchen ge-
worfen werden.

Back Schnauze b) Kannst du die Wahrscheinlichkeiten dafiir angeben?
1% 2%

Abb. 5.73 Wahrscheinlichkeiten von zwei Wiirfen
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Kl An einem Eisstand im Freibad werden elf
verschiedene Sorten Eis verkauft, darunter fiinf
Sorten Fruchteis.

Abb. 5.74 Beispielaufgabe zur Kombinatorik (Koullen, 1993)

Die Beispiele zeigen, dass Aufgaben aus Statistik und Stochastik mit Realitits-
bezug an vielen Stellen des Unterrichts auftreten. Auch in diesem Inhaltsbe-
reich sind die Funktionen des Sachrechnens vielfiltig. Wihrend bei einigen
Aufgaben der Sachkontext cher eingekleidet ist, gibt es auch — beispielsweise
bei der Datenanalyse — umfangreiche Modellierungsaufgaben.

5.5 Aufgaben zur Wiederholung und Vertiefung

Geschwindigkeit

Es ist moglich, dass ein Fahrradfahrer mit einer niedrigeren Durchschnittsge-
schwindigkeit zu einem bestimmten Zeitpunkt eine hShere momentane Ge-
schwindigkeit hat als ein anderer Fahrradfahrer, der eine héhere Durchschnitts-
geschwindigkeit fihrt. Zeichnen Sie ein Zeit-Weg-Diagramm fiir zwei Fahrrad-
fahret, auf das dies zutrifft.

Eigenschaften von Funktionen

Zeigen Sie mit Hilfe der Definitionen, dass Folgendes gilt:

1. f(x) = x3 ist eine wachsende Funktion.

2. f(x) = —7x ist eine fallende Funktion.
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3. f(x) = 3x ist eine additive Funktion.

4. f(x) = x ist eine multiplikative Funktion.

Proportionale und antiproportionale Zuordnungen

Gegeben ist der Graph einer proportionalen Zuordnung.

180
160
140
120
100
80
60
40

20

Abb. 5.75 Graph einer proportionalen Zuordnung

1. Erldutern Sie anschaulich mit Hilfe des Graphen die Eigenschaften Ver-
hiltnisgleichheit, Quotientengleichheit, Additivitit und die Mittelwertsei-
genschaft.

2. Zeigen Sie mit Hilfe eines selbstgewihlten Beispiels, dass die Additivitdt
und die Mittelwertseigenschaft fiir antiproportionale Zuordnungen nicht
gelten.

Wachstumsfunktionen

Das Hefewachstum kann alternativ durch eine Gleichung der Form

fE+h)=fO) +k-S—=f®)-f)-h



200 | 5 Ausgewihlte Inhaltsbereiche des Sachrechnens

beschrieben werden.

1.

Stellen Sie Gemeinsamkeiten und Unterschiede zur Gleichung des expo-
nentiellen Wachstums dar.

Stellen Sie Gemeinsamkeiten und Unterschiede zur Gleichung des be-
schrinkten Wachstums dar.

Interpretieren Sie die Konstanten £ und § im Sachzusammenhang des He-
fewachstums.

Notieren Sie eine passende Differenzialgleichung zur kontinuierlichen Mo-
dellierung des Hefewachstums

Finden Sie mit Hilfe der bekannten Losungsfunktion der Differenzialglei-
chung

fO=cf©—d-f(t)>

eine Losungsfunktion fir die Gleichung aus 4. in Abhingigkeit von den Pa-
rametern £ und S.

Allometrisches Wachstum

1.
2.

Recherchieren Sie den Begriff ,,allometrisches Wachstum®.

Finden Sie ein Beispiel fiir einen Wachstumsprozess, der durch eine Po-
tenzfunktion beschrieben werden kann, und stellen Sie die Annahmen fir
dieses Wachstumsmodell dar.

Berechnen Sie die ,,Verdoppelungszeit im Fall des Wachstumsansatzes mit
Potenzfunktionen.



6 Spezielle Aspekte des
Sachrechnens

6.1 Schwierigkeiten und Lésungshilfen

6.1.1 Schwierigkeiten beim Unterrichten von Anwen-
dungsbeziigen

Anwendungsbezogene Aufgaben werden aus vielfiltigen Grinden nicht so
intensiv im Unterricht eingesetzt, wie das wunschenswert ist. Beispielsweise
treten organisatorische, persdnliche und materialbezogene Hindernisse auf.

Hiufig benédtigen Modellierungs- oder Sachaufgaben ecine lingere Bearbei-
tungszeit, als dies in einer Schulstunde moglich ist. Fir derartige Aufgaben
miissen unter Umstinden eine umfangreiche Recherche oder Experimente
durchgefiihrt werden. Hier ist projektartiges Arbeiten vorteilhaft, wenn es or-
ganisatorisch méglich ist. Ebenfalls ist es schwierig, entsprechend umfangreiche
Aufgaben in Priifungen zu verwenden. Dies hat wieder Riickwirkungen auf den
tatsichlichen Einsatz im Unterricht und die Motivation der Schiilerinnen und
Schiler.

Die Verwendung von Aufgaben mit auBlermathematischen Kontexten stellt
Schiilerinnen und Schiiler sowie Lehrerinnen und Lehrer vor neue Herausfor-
derungen. Méglicherweise sind hier persdnliche Vorbehalte gegen anspruchs-
volle und zusitzliche Titigkeiten (wie beispielsweise die Vereinfachung und
Ubersetzung in das mathematische Modell) im Mathematikunterricht vorhan-
den. Auch fir die Lehrenden bedeutet anwendungsbezogener Mathematikun-
terricht mehr Vorbereitungsaufwand.

Fir den Unterricht gibt es heutzutage vielfiltige Materialien, um Realititsbezu-
ge ecinzubeziechen. Exemplarisch sei hier die Schriftenreihe der ISTRON-
Gruppe (Schriftenreihe der ISTRON-Gruppe) genannt. Dennoch sind Sach-
und Modellierungsaufgaben in viele Schulbiicher noch nicht so integriert, dass

auf weitere Materialien, die erst aufwindig gesucht werden miissen, verzichtet
werden kénnte (Blum, 1996, S. 31 £)).
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Eine Moglichkeit besteht darin, passende Anwendungs- oder Modellierungs-
aufgaben und Projekte selbst zu erstellen. Hierzu gibt es vielfiltige Ansitze wie
beispielsweise das Offnen (Dockhorn, 2000) oder Vatriieren (Schupp, 2000) von
Schulbuchaufgaben und das Erstellen von eigenem Material (Greefrath, 2009).

Eine Schwierigkeit bei Aufgaben mit Sachkontext bzw. Modellierungsaufgaben
ist die Frage der Beurteilung von Schiilerarbeiten. Katja Maal3 regt an, nicht nur
die mathematische Bearbeitung, sondern auch den Modellierungsprozess in die
Beurteilung mit einzubeziehen. Sie schligt vor, die Bildung des Realmodells, die
Interpretation der Lésung, die kritische Reflexion, die Dokumentation und die
Art des Vorgehens zusitzlich zur mathematischen Bearbeitung in die Beurtei-
lung einzubeziehen. Ein Beurteilungsschema kénnte etwa wie folgt aussehen:

Tabelle 6.1 Bewertung von Modellierungsaufgaben (MaaR K. , 2007, S. 40)

Bereich Aspekte Anteil

Bildung des Realmodells sinnvolle Annahmen 20%
angemessene Vereinfachung

mathematische Bearbeitung Mathematisierung der GroRen und Beziehungen 25 %
mathematische Notation
heuristische Strategien

Korrektheit der Losung

Interpretation der Losung Realitatsbezug der Interpretation 10%

Korrektheit der Interpretation

kritische Reflexion Berilicksichtigung aller Aspekte 20 %
inhaltliche Tiefe

Hinzunahme von Vergleichswerten

Dokumentation und schrittweise Dokumentation 25 %
Vorgehen globale Planung

zielgerichtetes Vorgehen

6.1.2 Schwierigkeiten beim Bearbeiten von Modellie-
rungsaufgaben

Auch die Schulerinnen und Schiiler kénnen im anwendungsorientieren Unter-
richt in vielen Fillen auf Schwierigkeiten stoBen. Insbesondere bei der Bearbei-
tung von Modellierungsaufgaben kénnen an vielen Stellen Probleme auftreten,
die hier am Modellierungskreislauf verdeutlicht werden sollen (s. Abb. 6.1).
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reales Modell

reales Objekt | |

Schwierigkeiten
beim ganzen
Modellierungs-
prozess

A

Schwierigkeiten
bei der
Modellerstellung

-

74

Schwierigkeiten Schwierigkeiten bei
beim der Arbeit im
Interpretieren und mathematischen
Validieren Modell

. mathematisches
Lésung |

Modell

4

Abb. 6.1 Mogliche Schwierigkeiten bei Modellierungsaufgaben (vgl. MaaR K. , 2004, S.
160 f.)

In den beiden ersten Schritten des idealisierten Modellierungskreislaufs werden
das Realmodell und das mathematische Modell aufgestellt. Hier kann es vor-
kommen, dass falsche Annahmen in das Modell eingehen oder die Realsituation
unangemessen vereinfacht wird. Schiilerinnen und Schiilern fehlt hiufig Stiitz-
punktwissen, z. B. beziiglich Lingen und Anzahlen. AuBlerdem werden Werte
oft nicht kritisch hinterfragt, sondern einfach tibernommen. Bei diesen Schwie-
rigkeiten kommt dem Aufgabentext bzw. der Darstellung des Problems eine
besondere Rolle zu. Durch eine klare Darstellung kann hdufig das Verstindnis
des Problems positiv beeinflusst werden.

Beim Ubertragen des Realmodells in das mathematische Modell kénnen eben-
falls Probleme auftreten. Sie hdngen unter anderem von den zur Verfugung
stchenden mathematischen Modellen ab. Hier kénnen beispielsweise falsche
Symbole und Algorithmen ausgewihlt werden oder Fehler in Formeln gemacht
werden.

Auch bei der Arbeit im mathematischen Modell kénnen Probleme auftreten.
Gerade bei Modellierungsaufgaben finden Schiilerinnen und Schiiler aber hiu-
tig die Rechenfehler selbststindig, wenn dazu entsprechend Gelegenheit gebo-
ten wird.
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Das Interpretieren und Validieren von Ergebnissen des mathematisches Mo-
dells wird haufig nicht ernst genug genommen. Schilerinnen und Schillern
fehlen zum Teil Kontrollkompetenzen; speziell im Bereich von Plausibilititsbe-
trachtungen.

Insbesondere die Validierung muss genauer in den Blick genommen werden.
Maull und Berry haben am Beispiel der Abkthlung von Tee das Modellierungs-
verhalten von vier Schiilergruppen untersucht. Dabei zeigten drei Gruppen
einen experimentellen Zugang zu diesem Problem. Sie verwendeten allerdings
wenig Zeit fiir die Betrachtung der Komplexitit des Sachkontextes. Aulerdem
wurde der Modellierungskreislauf nicht vollstindig durchlaufen, da keine Refle-
xion des Modells stattfand. Eine Gruppe verwendete unreflektiert ein mathe-
matisches Modell fiir dieses Problem. In allen Fillen war auffillig, dass keine
Validierung stattfand (Maull & Berry, 2001).

Wihrend die genannten Schwierigkeiten konkret einzelnen Punkten im Model-
lierungskreislauf zugeordnet werden kénnen, gibt es auch Fehler, die den gan-
zen Modellierungsprozess betreffen. So kann es vorkommen, dass Schiilerinnen
und Schiiler den Uberblick verlieren und ihren Losungsplan nicht weiter ver-
folgen kénnen oder keinen Bezug zur Mathematik herstellen, um das Problem
weiter zu bearbeiten. Ebenfalls problematisch ist, wenn Schiilerinnen und Schii-
ler ihre Bearbeitung nicht darstellen kénnen. Dann ist eine Beurteilung ihrer
Leistungen kaum mdglich (Maal3 K. , 2004, S. 160 £.).

Es gibt unterschiedliche Méglichkeiten, diesen Schwierigkeiten von Schiilerin-
nen und Schillern mit Modellierungsaufgaben zu begegnen. Einerseits gibt es
Losungspline speziell fur Modellierungsaufgaben (s. Abschnitt 6.2), und ande-
rerseits ermbglichen Aufgaben zu Teilkompetenzen des Modellierens (s. Ab-
schnitt 4.4.2) gezielt den Umgang mit Schwierigkeiten an bestimmten Stellen im
Modellierungskreislauf, wie beispielsweise dem Validieren. Des Weiteren kann
das Bewusstmachen des Modellierungsprozesses durch entsprechende Kreis-
laufdarstellungen Fehlern, die den ganzen Modellierungskreislauf betreffen,
vorbeugen.

6.1.3 Losungshilfen beim Sachrechnen

Der Einsatz von anwendungsbezogenen Aufgaben kann nicht nur mit Schwie-
rigkeiten verbunden sein, sondern erméglicht auch, Lésungshilfen — wie oben
schon angedeutet — speziell fur anwendungsbezogene Aufgaben zu formulie-
ren.

Man unterscheidet unterschiedliche Arten von Hilfen. So konnen Hilfen bei-
spielsweise dazu dienen, Schiilerinnen und Schiiler zur Weiterarbeit zu motivie-
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ren, ithnen mitzuteilen ob ihre Ldsungen oder ihre Strategie erfolgreich sind.
Ebenso kénnen inhaltliche Hinweise zur Losung der Aufgabe gegeben werden.

VERSTEHEN DER AUFGABE

® Was ist unbekannt? Was ist gegeben? Wie lautet die Bedingung ?

@ Ist es méglich, die Bedingung zu befriedigen? Ist die Bedingung aus-
reichend, um die Unbekannte zu bestimmen? Oder ist sie unzurei-
chend? Oder iiberbestimmt? Oder kontradiktorisch?

@ Zeichne eine Figur! Fiihre eine passende Bezeichnung einl

@ Trenne die verschiedenen Teile der Bedingung! Kannst Du sie hin-
schreiben?

AUSDENKEN EINES PLANES

@ Hast Du die Aufgabe schon frither gesehen? Oder hast Du dieselbe
Aufgabe in einer wenig verschiedenen Form gesehen?

@ Kennst Du eine verwandte Aufgabe ? Kennst Du einen Lehrsatz, der for-
derlich sein konnte?

@ Betrachte die Unbekannte! Und versuche, Dich auf eine Dir bekannte
Aufgabe zu besinnen, die dieselbe oder eine dhnliche Unbekannte hat.

@ Hiér ist eine Aufgake, die der Deinen verwandt snd schon gelist ist. Kannst
Du sie gebrauchen? Kannst Du ihr Resultat verwenden? Kannst Du
ihre Methode verwenden? Wiirdest Du irgend ein Hilfselement ein-
fithren, damit Du sie verwenden kannst?

@ Kannst Du die Aufgabe anders ausdriicken? Kannst Du sie auf noch
verschiedene Weise ausdriicken? Geh auf die Definition zuriick!

@® Wenn Du die vorliegende Aufgabe nicht losen kannst, so versuche,
zuerst eine verwandte Aufgabe zu l6sen. Kannst Du Dir eine zuging-
lichere verwandte Aufgabe denken? Eine allgemeinere Aufgabe? Eine
speziellere Aufgabe? Eine analoge Aufgabe? Kannst Du einen Teil
der Aufgabe losen? Behalte nur einen Teil der Bedingung bei und
lasse den anderen fort; wie weit ist die Unbekannte dann bestimmt,
wie kann ich sie verindern? Kannst Du etwas Férderliches aus den
Daten ableiten? Kannst Du Dir andere Daten denken, die geeignet
sind, die Unbekannte zu bestimmen ? Kannst Du die Unbekannte dndern
oder die Daten oder, wenn notig, beide, so daB die neue Unbekanate
und die neuen Daten einander niher sind?

@ Hast Du alle Daten benutzt? Hast Du die ganze Bedingung benutzt?
Hast Du alle wesentlichen Begriffe in Rechnung gezogen, die in der
Aufgabe enthalten sind ?

AUSFUHREN DES PLANES

@® Wenn Du Deinen Plan der Losung durchfithrst, so komirolliere jeden
Schritt, Kannst Du deutlich sehen, daB der Schritt richtig ist? Kannst
Du beweisen, daf} er richtig ist?

RUCKSCHAU

@ Kannst Du das Reswltat kontrollieren? Kannst Du den Beweis kon-
trollieren ?

@ Kannst Du das Resultat auf verschiedene Weise ableiten? Kannst Du
es auf den ersten Blick schen?

@ Kannst Du das Resultat oder die Methode fiir irgend cine andere Auf-
gabe gebrauchen?

Abb. 6.2 Wie sucht man die Lésung? (Polya, 1949)
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Es sind also folgende Kategorien von Hilfen zu unterscheiden:
Motivationshilfen
Rickmeldungshilfen
allgemeine strategische Hilfen
inhaltsorientierte strategische Hilfen
inhaltliche Hilfen

Innerhalb jeder Kategorie kann man noch zwischen direkten und indirekten Hil-
fen unterscheiden. Bei direkten Hilfen wird speziell eine Schiilerin oder ein
Schiiler, eine konkrete Stelle in der Aufgabenbearbeitung oder ein konkreter
mathematischer Inhalt angesprochen. Bei indirekten Hilfen dagegen wird die
ganze Klasse, die Aufgabenbearbeitung als Ganzes oder ein weniger konkreter
mathematischer Inhalt angesprochen (Zech, 1998, S. 315 ff.).

Viele Losungspline in der Literatur sind sehr umfangreich. Beispielsweise fullt
eine Handlungsorientierung zum Losen von Sachaufgaben fur die Sekundarstu-
fe I ein ganze Buchseite (Zech, 1998, S. 339). Sie besteht aus 15 Punkten, die
teilweise noch durch mehrere Fragen konkretisiert werden. Die Schwierigkeit
bei derartigen umfangreichen Lésungsplinen ist, dass sie einerseits ein eher
starres Schema fiir die Bearbeitung festlegen und andererseits kaum ohne Noti-
zen von Schilerinnen und Schiilern behetrscht werden konnen. In der Praxis
scheinen sich cher kiirzere Losungspline durchzusetzen, die aus etwa vier
Schritten mit wenigen Unterpunkten bestehen und flexibel eingesetzt werden
konnen.

Die im Folgenden aufgefithrten Losungspline gehdren in der Mehrzahl zu den
indirekten allgemeinen strategischen Hilfen, da sie zwar auf allgemeine fachli-
che Problemlése- und Modellierungsmethoden hinweisen, aber keine konkreten
und auf den Inhalt der Aufgabe bezogenen Hilfestellungen geben.

AuBlerdem gibt es viele spezielle, also inhaltliche und inhaltsorientierte strategi-
sche Hilfen fiir bestimmte Gebiete des mathematischen Unterrichts. So findet
man auch spezielle Hinweise zum Ermitteln des mathematischen Ansatzes,
d. h. zum Entwickeln des mathematischen Modells. Hier spielen Heuristiken
wie Vorwirts- und Rickwirtsarbeiten und inhaltliche Hinweise zum Aufstellen
von Gleichungen eine zentrale Rolle (Zech, 1998, S. 341).

Ein sehr bekannter Losungsplan fiir Problemldseaufgaben stammt von Polya
(s. Tabelle 6.2). Er hat sich Mitte des 20. Jahrhunderts mit Problemléseprozes-
sen in der Mathematik beschiftigt. Genauer ist der Losungsplan von Polya auf
der inneren Umschlagseite seines Buches. Dieser besteht aus weiteren detaillier-
ten Fragen (s. Abb. 6.2).
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Tabelle 6.2 Losungsplan fiir Problemléseaufgaben (Polya, 1949)

1 Verstehen der
Aufgabe

Du musst die Aufgabe
verstehen.

Was ist unbekannt?

Was ist gegeben?

Wie lautet die Bedingung?
(...)

2 Ausdenken
eines Plans

Suche den Zusammenhang
zwischen den Daten und der
Unbekannten.

Du musst vielleicht
Hilfsaufgaben betrachten (...)

Du musst schlieRlich einen Plan
der Losung erhalten.

Hast Du dieselbe Aufgabe in
einer wenig verschiedenen
Form gesehen?

Versuche zuerst eine
verwandte Aufgabe zu I6sen.

Hast Du alle Daten benutzt?

(..

3 Ausfihren des

Fiihre Deinen Plan aus.

Wenn Du Deinen Plan der

Plans Losung durchfiihrst, so

kontrolliere jeden Schritt.
Kannst Du deutlich sehen, dass
der Schritt richtig ist?

4 Rickschau Kannst Du das Resultat

kontrollieren?

Priife die erhaltene Losung.

Kannst Du das Resultat auf
verschiedene Weise ableiten?

Kannst Du die Methode fiir
irgendeine andere Aufgabe
gebrauchen?

Es gibt auch spezielle Lésungshilfen zu bestimmten Probleml6se-Strategien.
Der Vortell ist, dass diese Hilfen konkreter ausfallen konnen, da sie auf eine
bestimmte Strategie fokussieren. Der Nachteil ist allerdings, dass sie nicht mehr
in allen Fillen eingesetzt werden kénnen, sondern nur dann, wenn die spezielle
Strategie auch weiterhilft.

Zum Uben bestimmter Strategien kann dieses Vorgehen durchaus sinnvoll sein.
Beispielsweise findet man fiir die Problemlose-Strategie Tabelle anlegen folgende
Loésungshilfen, die mit Hilfe eines Beispielproblems erklirt werden (s. Abb.
0.3).

Auch fir Modellierungsaufgaben wurden Losungspline entwickelt. Blum ver-
wendet im Rahmen des DISUM-Projekts einen Lésungsplan fiir die Schiilerin-
nen und Schiiler, der sich an einem vereinfachten Modellbildungskreislauf ori-
entiert (s. Tabelle 6.3).
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,Problem: Jedes Jahr zum Geburtstag bekommt Peter 50 € von seinen
GroReltern. Er hat das Geld immer in seinem Zimmer aufbewahrt und
bisher nichts davon ausgegeben. Heute ist sein 12. Geburtstag. Er moch-
te sein gesamtes Geld zur Bank bringen und ein Konto eroffnen, das
jahrlich 2,1% Zinsen einbringt. Wenn Peter sein Geburtstagsgeld weiterhin
jedes Jahr einzahlt, wie viel Geld ist dann nach 3 Jahren auf seinem Kon-
to?

Verstehen

1. Welche Informationen sind gegeben?

Planen
2. Kannst Du eine Tabelle anlegen, die Dir hilft, das Problem zu I6sen?

3. Wenn ja, wie wirde sie aussehen?

Ldsen
4. Welche Rechenschritte fuhrst Du beim Ausfillen der Tabelle durch?

5. Wie viel Geld ist nach 3 Jahren auf Peters Konto?

Uberdenken

6. Scheint Deine Antwort sinnvoll zu sein?“ (Bolzen, 2007)

Abb. 6.3 Beispielaufgabe zur Problemldsestrategie 7abelle anlegen

Tabelle 6.3 Lésungsplan fiir Modellierungsaufgaben (Blum, 2006)

1

Aufgabe Was ist gegeben, was ist Text genau lesen

verstehen gesucht? Situation genau vorstellen

Skizze anfertigen

2 Modell Welche mathematischen evtl. Annahmen treffen,
erstellen Beziehungen kann ich z. B. Gleichung aufstellen oder
aufstellen? Dreieck einzeichnen
3 Mathematik Wie kann ich die Aufgabe z. B. Gleichung ausrechnen oder
benutzen mathematisch |6sen? Pythagoras anwenden

mathematisches Ergebnis
aufschreiben
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4 Ergebnis Wie lautet mein mathematisches Ergebnis runden
erklaren Endergebnis? und auf die Aufgaben beziehen -
Ist es sinnvoll? evtl. zurlick zu 1

Antwort hinschreiben

Er umfasst vier Schritte, die Aufgabe verstehen, Modell erstellen, Mathematik benutzen
und Ergebnis erklaren genannt werden. Jeder Schritt wird fiir die Schiilerinnen
und Schiiler mit einer Frage und einigen erklirenden Punkten erldutert.

Im Schritt 3 dieses Losungsplans wird die Allgemeinheit der strategischen Hilfe
zugunsten inhaltsorientierter Hinweise verlassen. Es handelt sich daher wegen
des Hinweises Gleichung ausrechnen oder Pythagoras amwpenden — zumindest bei Auf-
gaben, fiir die das relevant ist — um eine inhaltsorientierte strategische Hilfe.

Auch fir die in Kapitel 5 diskutierten Optimierungsprobleme mit Funktionen
kann man inhaltsorientierte strategische Hilfen angeben. Diese kdénnten etwa
die folgenden Punkte beinhalten:

1. Notiere Ausgangsgroflien und gesuchte Gréflen und verwende geeignete
Bezeichnungen.

Erstelle eine Skizze der gegebenen Situation.
Stelle mit Hilfe der GréBen aus 1. eine Zielfunktion auf.

Formuliere geeignete Nebenbedingungen.

AR S N

Verwende die Nebenbedingungen, sodass eine Zielfunktion in Abhingig-
keit von nur einer Ausgangsgréfie entsteht.

6. Bestimme mit Hilfe der Differenzialrechnung die Maxima bzw. Minima der
Zielfunktion.

7. Uberpriife den Definitionsbereich und die Rinder des Definitionsbereichs.

8. Formuliere eine Antwort fir das gegebene Problem.

Ahnliche Vorschlige findet man hiufig auch in Schulbiichern fiir die Sekundar-
stufe II (s. Abb. 6.4). Hier ist die Inhaltsorientierung deutlich stirker als beim
Loésungsplan fir Modellierungsaufgaben aus Tabelle 6.3, da eine Verwendung
tiir Probleme aus einem anderen Gebiet praktisch ausgeschlossen ist, wihrend
dies durch leichte Verinderungen am Losungsplan fiir Modellierungsaufgaben
moglich wire.
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Strategie fiir das Losen von Extremwertproblemen:

1. Beschreiben der GriBe, die extremal werden soll, durch einen Term. Dieser kann mehrere
Variablen enthalten.

2. Aufsuchen von Nebenbedingungen.

3. Bestimmung der Zielfunktion.

4. Untersuchung der Zielfunktion auf Extremwerte und Formulierung des Ergebnisses.

Hier sind auch absolute Extremwerte und Randwerte zu untersuchen.

Abb. 6.4 Strategie fur das Losen von Extremwertproblemen im Schulbuch (Brandt &
Reinelt, 2007, S. 93)

Die Schrittfolge zeigt, dass hidufig sehr gleichartige Probleme in der Schule
bearbeitet werden. So besteht die Gefahr, dass nicht mehr die Probleme selbst,
sondern das Schema zur Losung der Probleme in den Mittelpunkt gestellt wird.

Auch fir Aufgaben zum Dreisatz kann man inhaltsbezogene strategische Hil-
fen angeben. Dies konnte etwa wie folgt aussehen (Herling, Kuhlmann, &
Scheele, 2008, S. 28):

1. Uberlege, ob fiir die GréBen der Zusammenhang ,,je mehr — desto mehr
oder ,,je mehr — desto weniger® vorliegt.

2. Uberlege im ersten Fall, ob auch dem Doppelten das Doppelte, dem Drei-
fachen das Dreifache, ... oder im anderen Fall dem Doppelten die Hilfte,
dem Dreifachen ein Drittel, ... zugeordnet wird.

3. Ist die Zuordnung proportional bzw. antiproportional, dann verwende eine
Tabelle zur Berechnung der gesuchten Grof3e.

4. Notiere einen Antwortsatz.

Dieses Schema setzt nicht nur proportionale und antiproportionale Zuordnun-
gen voraus, sondern priift im ersten und zweiten Schritt, ob es sich tatsichlich
um Zuordnungen handelt, die mit der Dreisatztabelle bearbeitet werden kén-
nen. Allerdings fehlen Alternativen fiir den Fall, dass sich andere Zusammen-
hinge herausstellen.

Eine wichtige Aufgabenklasse im Sachrechnen sind offene Aufgaben bzw. spe-
ziell Fermi-Aufgaben. Fir diese Aufgaben haben Biichter und Leuders strategi-
sche Hilfen entwickelt, die auch auf andere Aufgabentypen iibertragbar sind.

Fir Schillerinnen und Schiler, die bei der Bearbeitung von Fermi-Aufgaben
Schwierigkeiten haben, kénnen die nachfolgend aufgefithrten heuristischen
Strategien eine Unterstiitzung sein.

Suche zuerst alle Daten zusammen, die mit dem Problem zu tun haben.

Welche Zahlen und GréBen sind gesucht?



6.2 Uben im Sachrechnen | 211

Ubetlege, was Du aus den bekannten Daten berechnen kannst. (Vorwirts-
rechnen)

Uberlege, was Du kennen musst, um eine gesuchte GroBe berechnen zu
kénnen. (Ruckwirtsrechnen)

Schitze die Zahlen und Werte, die nicht bekannt sind.

Frage beim Schitzen nach dem gréften und dem kleinsten verntinftigen
Wert.

Uberpriife das Ergebnis dahingehend, ob es sinnvoll und logisch ist. Ist es
vielleicht zu grof3 oder zu klein?

Kontrolliere durch Verwenden gré3erer und kleinerer Werte.

Uberlege vor dem Rechnen, welche Auswirkung gréBere oder kleinere
Werte auf das Ergebnis haben — wird es dann gréBer oder kleiner?

(Blchter & Leuders, 2005, S. 161). Diese Hilfen sind zunichst fir Fermi-
Aufgaben konzipiert, kénnen aber auch fiir verwandte Aufgaben mit Schitz-
oder Modellierungsanteilen verwendet werden. Im Prinzip handelt es sich um
allgemeine strategische Hilfen, die allerdings sehr konkret gefasst sind.

6.2 Uben im Sachrechnen

Die Festigung von Kompetenzen ist nur durch entsprechendes Uben moglich.
Dabei sind auBler der Festigung von Routinen auch beispielsweise das Anwen-
den des Gelernten auf dhnliche Situationen und das Vernetzen Ziele des Ubens
(Wynands, 2006). Ebenso koénnen durch Ubungsphasen Selbstregulationskom-
petenzen, Selbstbewusstsein und Kreativitit geférdert werden (Blchter &
Leuders, 2005, S. 143).

Zum Uben eigenen sich im Prinzip alle vorgestellten Aufgabentypen; allerdings
sollte auf eine gewisse Vielfalt Wert gelegt werden. Besonders interessant fiir
Schiilerinnen und Schiiler sind Aufgabentypen, die auch in Diagnose- oder
Leistungstests eine Rolle spielen. Fasst man das Lernen nach Winter (Winter,
1984) als gelenkte Entdecknng auf, so bedeutet dies fiir das Uben, dass es sich um
die entsprechende Fortsetzung des entdeckenden Lernens handelt, die auch
kreativ sein sollte. Winter formuliert fiir das Uben einige Prinzipien, von denen
im Zusammenhang mit dem Sachrechnen besonders das Prinzip des sachorientier-
ten Ubens zu nennen ist. Das Ziel dieses Prinzips ist es, im Zusammenhang mit
Ubungen auch gleichzeitig das Wissen tiber die Umwelt zu erweitern. Weitere
Prinzipien sind die des reflektierenden und operativen Ubens. Sie besagen, dass
beim Einiiben einer Fahigkeit auch Reflexionen und vielfiltige Variationen der
Operationen ausgefiihrt werden sollten (Biichter & Leuders, 2005, S. 144 ff.).
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Wichtig ist, dass sich durch wiederholte Ubungsaufgaben gleichen Typs nicht
ein automatisiertes Uben ohne Nachdenken entwickelt, bei dem Kontexte und
Rechenverfahren nicht mehr hinterfragt werden. Diese Entwicklung wird im
Rahmen des Sachrechnens besonders durch eingekleidete und einfache Text-
aufgaben begiinstigt.

] Gemiise- und Obstkonser-
ven haben zylind-
rische Form.

ders und iiberlappt zum Verkleben 1,3 cm. Wie
groB ist die Fliche des Etiketts, wenn die Dose
die Hohe h und den Radius r hat.

a) h=10,7cm; r=42cm

b) h=11,1cm; r=5cm

¢) h=103cm; r=3,65cm

d) h=14cm; r=29cm

Abb. 6.5 Beispiel fiir eine Aufgabe mit wiederholten Ubungen (Koullen, 1993)

Die abgebildete Aufgabe dient dazu, die Berechnung der Mantelfliche eines
Zylinders am Beispiel einer Konservendose zu iiben. Dabei wird berticksichtigt,
dass das Etikett verklebt werden muss. Allerdings werden die Schiilerinnen und
Schiler ab der zweiten Teilaufgabe nicht mehr tiber den Kontext Dose nach-
denken, sondern nur noch mechanisch den gleichen Algorithmus ausfithren wie
im ersten Aufgabenteil. Ein solches mechanisches Ausfithren von Fertigkeiten
kann zum einen die Schiilerinnen und Schiiler von Routinetitigkeiten entlasten
und das Nachdenken tber schwierige Probleme ermdglichen, kann aber auch
beim Fehlen von anderen Fragen das Gegenteil bewirken (Leuders, 2000).

Es ist daher wiinschenswert, dass Ubungsaufgaben zum Sachrechnen auch Re-
flexionen und Entdeckungen erméglichen. Als Méglichkeit solche Reflexions-
anldsse bei herkémmlichen Aufgabensammlungen zu schaffen, schligt Leuders
vor, zusitzliche Fragen zu mehreren Aufgaben gleichzeitig zu stellen (Leuders,
20006). Einige Beispiele fiir diese Fragen sind:

Stelle die Aufgaben zunichst in Gruppen zusammen. Welche Aufgaben
sehen ahnlich aus?
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Suche die Aufgaben heraus, die Du bereits 16sen kannst. Wieso sind sie
einfacher?

Insgesamt kénnen Schiilerinnen und Schiiler zu vielfiltigen Titigkeiten beim
Uben mit herkémmlichen Aufgabensammlungen aufgefordert werden. Dazu
zdhlen die begrindete Auswahl einiger Aufgaben oder die Verdnderung der
Reihenfolge sowie die Bildung von Aufgabengruppen oder das Erginzen durch
eigene Beispiele. Ebenso sind die Reflexion der eigenen Vorgehensweise oder
der eigenen Schwierigkeiten und die Kommunikation tber Besonderheiten
wichtige Beitriige zum sinnvollen Uben (Leuders, 2000).

Im Folgenden ist eine Liste von typischen Ubungsaufgaben zu Zuordnungen
aufgefithrt (Aits, et al., 2000, S. 196). Mogliche reflektierende Fragen in diesem
Zusammenhang sind etwa: Fallt eine Aufgabe herans? Warnm? Ebenso denkbar ist
der Arbeitsauftrag Denk dir eine Aufgabe aus, die man so nicht lisen kann! Begriinde!
Auch sinnvoll ist das kritische Hinterfragen des erwarteten proportionalen Zu-
sammenhangs. Beispielsweise konnte es nidmlich Mengenrabatt oder Grund-
preise geben.

Ein Heft kostet 0,56 €. Wie viel € kosten 8 Hefte?
Eine Tube Klebstoff kostet 1,53 €. Wie viel € kosten 3 Tuben?
Eine Packung Bleistifte kostet 2,53 €. Wie viel € kosten 3 Packungen?

Fur 2 kg Apfel zahlt Herr Brandt 3,60 €. Wie teuer sind 5 kg der gleichen
Sorte?

Die beiden Batterien in einem Walkman reichen fur eine Spielzeit von 7
Stunden. Wie lange reicht eine Viererpackung mit den entsprechenden
Batterien?

Akkus sind umweltfreundlicher als Batterien, da man sie wieder aufladen
kann. Eine Viererpackung Akkus kostet 9,90 €. Wie teuer sind 12 Akkus,
die so abgepackt sind?

Ein Mieter muss fiir 20 m3 Wasser einschlieRlich Nebenkosten 42,20 €
bezahlen. Wie viel zahlt ein anderer Hausbewohner fiir 22 m3 Wasser?

Fir ein dreizeiliges Inserat in einer Werbezeitung werden 9 € berechnet.
Was kostet ein Inserat fiir 5 (7, 9) Zeilen in dieser Zeitung?

Bei diesem Ausschnitt handelt es sich nur um einen Teil der auf dieser Seite
(Aits, et al., 2000, S. 1906) tatsdchlich abgedruckten Aufgaben. Die hohe Anzahl
kann sicherlich auch die Auswahl von geeigneten Aufgaben fir den Unterricht
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ermoglichen, sie bietet aber die Gefahr des gedankenlosen Abarbeitens von
Sachaufgaben.

6.3 Der Umgang mit der Ungenauigkeit

Felix Klein hat zwei Bereiche der Mathematik charakterisiert und diese beiden
Bereiche Prizisionsmathematik und Approximationsmathematik genannt. Dabei hat
er Wert darauf gelegt, dass diese beiden Gebiete als gleichberechtigte Gesichter
der Mathematik geschen werden (Blankenagel, 1985, S. 11). Speziell im Zu-
sammenhang mit realititsbezogenen Aufgaben spielt die Frage des Umgangs
mit der Ungenauigkeit, also die Approximationsmathematik, eine grof3e Rolle.

Abb. 6.6 Schulbuchbeispiel Uberschlagen (Kliemann, Puscher, Segelken, Schmidt, &
Vernay, 2006, S. 58)

In Schulbiichern findet man zum Umgang mit der Ungenauigkeit hiufig zu
Beginn der Sekundarstufe I Aufgabenbeispiele zum Runden, Uberschlagen und
Schiitzen, die allerdings spiter oft nicht mehr aufgegriffen werden.

HEs gibt auBler innermathematischen Aspekten des Umgangs mit Daten, wie
beispielsweise Runden, auch kontextbezogene Aspekte wie das Schitzen. Be-
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trachtet man den Umgang mit Daten im Modellierungskreislauf, so kommt
der Umgang mit der Ungenauigkeit in allen Schritten des Modellierungskreis-
laufs vor. Zum einen werden Daten im Bereich der Erstellung des Modells
beschafft und zum anderen im Bereich der Arbeit im mathematischen Modell
verarbeitet. AnschlieBend werden die Ergebnisse interpretiert und kontrolliert.
In allen Bereichen gibt es unterschiedliche, typische Titigkeiten beim Umgang
mit der Ungenauigkeit.

Wic schwer ist wohl ein Wic viele Fische sind wohl
neu geborenes Meerschweinchen? in diesem Schwarm?

Manchmal kénnen wir die genaue Anzahl, Linge, GroBe oder das genaue Gewicht nicht
bestimmen.

&ine ungefihre Vorstellung von einer Anzahl oder einem MaB erhiilt man durch
Schiitzen. Dazu braucht man Erfahrung und VergleichsgréBen.

Abb. 6.7 Schulbuchbeispiel zum Schatzen (Emde, Kliemann, Pelzer, Schifer, & Schmidt,
1998, S. 88)

Die Beschaffung von Daten aus der Realitit kann unterschiedlich realisiert
werden. Sie kann beispielsweise durch Sehdizzen geschehen. Beim Schitzen findet
— anders als beim Raten — ein gedanklicher Vergleich mit bekannten Gréfien
statt. Diese bekannten GroBen kénnen, abhingig von sogenanntem Stitz-
punktwissen, beispielsweise der Inhalt einer Milchpackung oder die Breite einer
Thir sein. Beim Raren dagegen werden die Werte ohne Anhaltspunkte gefunden.
Legt man beim Schitzen zusitzlich ein mogliches Maximum und Minimum des
Schitzwertes fest, so wird dies auch mit dem Begriff .4bschatzen bezeichnet.

Auch durch Messen ist die Beschaffung von Daten mdoglich. Wihrend beim
Schitzen und Abschitzen ein gedanklicher Vergleich vorliegt, wird beim Mes-
sen mit Hilfe von Messinstrumenten ein direkter Vergleich mit einer festgeleg-
ten Einheit durchgefiihrt. Messungen sind in der Regel durch den Messprozess
einer Ungenauigkeit unterworfen. Wenn beispielsweise ein Messbecher eine
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Einteilung in der Einheit Milliliter besitzt, so wird der Wert beim Ablesen prak-
tisch in dieser GréBenordnung gerundet.

reales Objekt | > reales Modell

Datenbeschaffung:
Schéatzen,

Abschatzen, Messen
Abzahlen 7

Interpretieren, Datenverarbeitung:

Kontrollieren: Runden,
Uberschlagen, Fehlerfortpflanzung

Runden

Lésun | mathematisches
g Modell

Abb. 6.8 Umgang mit der Ungenauigkeit im Modellierungskreislauf

Handelt es sich um eine Anzahl von Objekten, kann mit Hilfe von Abzdiblen ein
Wert bestimmt werden. Dies kann ggf. unter Verwendung einer geschickten
Systematik geschehen.

Auch bei der Datenverarbeitung muss man mit der Ungenauigkeit umgehen.
Beim Runden wird mit Hilfe bestimmter Regeln ein Ergebnis ermittelt. Diese
Regeln kénnen einerseits vorher festgelegt sein (z. B. Aufrunden fiir die Ziffern
5,6,7,8,9; Abrunden fir die Ziffern 1, 2, 3, 4) oder andererseits aus der realen
Situation abgeleitet werden. So wiirde bei einer Aufgabe, in der die Anzahl der
Taxis berechnet werden soll, die fiir 13 Personen bendtigt werden, das Ergebnis
in jedem Fall aufgerundet werden, da alle Personen beférdert werden sollen.
Allerdings ist die Rundung im Sachkontext nicht in allen Fillen eindeutig. Wird
beispielsweise die Hohe eines Berges gerundet, muss man sich fragen, ob Mess-
genauigkeit und Schneehoéhe eine Rundung auf Meter tberhaupt sinnvoll er-
scheinen lassen. Hier kann man abhingig vom jeweiligen Kontext zu unter-
schiedlichen Einschitzungen kommen.

Beim Rechnen mit ungenauen Daten spielt die Feblerfortpflangung, also die Frage,
wie sich die Ungenauigkeit durch die Rechenoperationen verindert, eine wich-
tige Rolle. In einfachen Fillen kann man die Fehlerfortpflanzung algebraisch,
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grafisch und numerisch veranschaulichen. Wir wollen im Folgenden die Additi-
on und die Multiplikation von zwei fehlerbehafteten GroéfB3en betrachten.

Olympische Spiele 1972 in Miinchen

An den Olympischen Spielen 1972 in Miinchen wurden die Zeiten bei den Schwimmwett-
bewerben auf ;35 Sekunde genau gemessen. Die beiden Spitzenschwimmer erreichten im
Schwimm-Final (400 m Lagen im 50-m-Becken) folgende Zeiten:

Gold: Gunnar Larson 4:31.981
Silber: Alexander Mc Kee  4:31.983

@ A Wie viele Millimeter Vorsprung hatte Gunnar Larson auf Alexander Mc Kee?
B Eine Nachmessung der beiden Schwimmbahnen hat ergeben, dass die 50-m-Bahn von
Alexander Mc Kee einen Millimeter langer war als die Bahn von Gunnar Larson.
War die Rangliste gerecht? Begriinde.
Cc Wie genau miisste das 50-m-Becken gebaut sein?
D Begrinde, warum nach den Olympischen Spielen in Minchen die Zeiten in den
Schwimmwettbewerben wieder auf eine Hundertstelsekunde genau gemessen werden.

Abb. 6.9 Beispiel zur Messgenauigkeit von Zeiten (Affolter, et al., 2006, S. 32)

Algebraisch kann die Fehlerfortpflanzung fur die Addition wie folgt gesehen
werden: Werden zwei ungenau bekannte GroBen, beispielsweise die Linge x
und die Linge y, addiert, und gehen wir davon aus, dass die Linge x um hochs-
tens A/ vom tatsichlichen Wert / abweicht sowie die Linge y um héchstens Ab
von b, dann bewegt sich der Wert x der ersten Linge zwischen / — A/und / + A/
und der Wert y der zweiten Linge zwischen b — Ab und & + Ab. Es gelten also
fir die beiden GréBen die Ungleichungen

[—Al<x<1+Al

und
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b—Ab<y<b+Ab.
Alist der absolute Fehler der Linge / und Ab ist der absolute Fehler der Linge
b. Fir die Summe x + y der beiden Grof3en gilt dann die Ungleichung
U-AD+ (B —-AbD)<x+y<({+AD)+ (b+Ab)

bzw.

(U+Db)—(Al+Ab) <x+y < (l+Db)+ (AL + AD).

Die Summe weicht also héchstens um A/ + Ab vom tatsichlichen Wert / + 4 ab.
Insgesamt kann festgehalten werden, dass sich im Fall der Addition die absolu-
ten Fehler addieren. Fir die Praxis kann man daraus die folgende Regel ablei-
ten:

Bei der Summe von Dezimalzahlen werden nur so viele Stellen nach dem
Komma angegeben, wie der ungenaueste Summand aufweist (Blankena-
gel, 1994, S. 136).

Beispiel: 13,1 m + 0,032 m=~ 13,1 m

Bei Werten ohne Nachkommastellen kann die Regel sinngemal fir die Stellen
vor dem Komma angewendet werden. Ein analoges Beispiel wire etwa:

13100 m +32m =13 100 m.

Dies gilt unter der Voraussetzung, dass der erste Summand tatsdchlich nur bis
zur Hunderter-Stelle genau angegeben werden kann.

Betrachtet man die Multiplikation von zwei GroB3en, dann kann der Fehler des
Produkts wie folgt eingegrenzt werden.

(U=AD)-(b—Ab) <x-y<(l+Al)-(b+Ab)
bzw.
l-b—({-Ab+b-Al)+Al-Ab < x-yund

x-y<l-b+(l-Ab+b-Al)+Al-Ab.

Wir gehen bei dieser Betrachtung davon aus, dass die absoluten Fehler klein
gegenitber den Niherungswerten sind und damit auch das Produkt der beiden
Fehler A/ - Ab vernachlissigt werden kann.
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In diesem Fall ist es sinnvoll, die relativen Fehler zu betrachten. Der relative
Fehler der GroBe /ist A///, und der relative Fehler der Gro3e b ist Ab/b. Der
maximale relative Fehler des Produkts betridgt dann ungefihr

I-Ab+b-Al _ Ab | Al
b b L

Der relative Fehler des Produkts entspricht somit ungefihr der Summe der

beiden relativen Fehler. Bei Dezimalzahlen sind die relativen Fehler durch die

Anzahl der zuverldssigen Ziffern bestimmt. Daraus kann man auch fir die

Multiplikation von Dezimalzahlen eine Regel ableiten:

In Produkten von Naherungswerten werden nur so viele Dezimalziffern
angegeben, wie der ungenaueste Wert aufweist (Blankenagel, 1994, S.
137).

Beispiel: 13,1 m - 0,032 m ~ 0,42 m?

In dem Beispiel hat der erste Faktor drei und der zweite Faktor zwei zuverldssi-
ge Ziffern. Das Produkt wird dementsprechend auf zwei zuverldssige Ziffern
gerundet. Entsprechende Aussagen tiber Fehler sind auch fir die Subtraktion
und die Division méglich (Blankenagel, 1994, S. 136 t.).

Fir den Fall, dass es sich bei den GréBen um Lingen handelt, kann man die
Fehlerfortpflanzung bei der Addition und der Multiplikation auch grafisch dar-
stellen. Wir verwenden hier aus Griinden der Ubersichtlichkeit nur die maxima-
le Abweichung nach oben. Bei der Addition wird in der Abbildung deutlich,
dass sich die absoluten Fehler addieren.

/ Al b Ab

[+ D Al + A

Abb. 6.10 Fehlerfortpflanzung bei der Addition

Bei der Multiplikation von Lingen erhalten wir eine Fliche. Daher kann dieser
Fall mit Hilfe eines Rechtecks veranschaulicht werden. Die Grafik — fur den
Fall der Abweichung nach oben — zeigt aul3er den Fehler-Rechtecken mit den
Flachen b - A/und / - Ab, dass das Produkt A/ - Ab hier tatsichlich vernachlis-
sigt werden kann.
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b

Ab

Abb. 6.11 Fehlerfortpflanzung bei der Multiplikation

Die Summe der Flichen der beiden duBleren Rechtecke entspricht ungefihr
dem maximalen Fehler im Fall der Multiplikation.

Numerisch kann man Fehler mit Hilfe der Doppelrechnung bearbeiten (Blankena-
gel, 1985, S. 56 ff.). Wir betrachten dazu als Beispiel die Lingen /= 100 cm mit
A/=5cmund 4= 50 cm mit Ab = 3 cm. Dann gilt fiir die Addition:

142cm < x +y <158 cm.
Im Fall der Multiplikation gilt:

4465 cm® < x -y < 5565 cm?.

A02 -5|2]
sozZ
| [ [ 1¢]212

222

Abb. 6.12 Fragezeichenrechnung
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Etwas einfacher fur Schillerinnen und Schiler ist die sogenannte Fragezeichen-
rechnung. Dabel werden die mit Fehlern behafteten Ziffern durch Fragezeichen
ersetzt. Dann wird die Rechnung schriftlich durchgefithrt. Die Fragezeichen im

Ergebnis signalisieren, an welcher Stelle etwa das Ergebnis ungenau ist (s. Abb.
6.12).

Nach diesem Ausblick auf die Fehlerfortpflanzung kommen wir noch einmal
auf die Titigkeiten mit ungenauen Werten im Modellbildungskreislauf zurtick.

Hat man nun ein Ergebnis erhalten, so muss dies noch interpretiert und kon-
trolliert werden. Hierzu muss das Ergebnis sinnvoll gerundet werden. Dies
betrifft wiederum das Runden im Sachkontext. Zum Zweiten ist durch Uber-
schlagen, also vereinfachtes Rechnen mit gerundeten Daten, eine Kontrolle des
Ergebnisses moglich.

Alle diese Titigkeiten im Umgang mit ungenauen Werten kénnen in der Se-
kundarstufe an vielen Stellen erarbeitet werden. Die folgende Tabelle zeigt ei-
nen Vorschlag fir eine Reihenfolge der entsprechenden Inhalte und eine Ver-
teilung auf die Sekundarstufen.

Tabelle 6.4 Umgang mit der Ungenauigkeit im Unterricht der Sekundarstufen (Greef-
rath & Leuders, 2009, S. 4)

Inhalt Voraussetzung
zweckabhédngiges und sinnvolles Runden in Sachzusam- GroRen mit Dezimal-
menhdngen komma

Genauigkeit der Addition im Stellenwertsystem, Dezimalzahlen,
Genauigkeit der Multiplikation mit grafischer Darstellung Flacheninhalt
schriftliche Division mit sachbezogenem Runden, periodische
reflektierter Umgang mit Taschenrechnerzahlen, Dezimalzahlen

Doppelrechnung mit Zahlen

Doppelrechnung mit Variablen, reelle Zahlen,
Fehlerfortpflanzung bei der Multiplikation und in anderen Approximation,
funktionalen Zusammenhangen Intervallschachtelung
Variablen
Approximation von Funktionen Ableitung, Potenzreihen

Die Approximation von Funktionen ist erst in der Sekundarstufe II vorgese-
hen. Die anderen Inhalte kénnen bereits in der Sekundarstufe I bearbeitet wer-
den (Greefrath & Leuders, 2009).
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6.4 Computereinsatz im Sachrechnen

Das Sachrechnen hat sich nicht zuletzt durch die Existenz von Computern mit
entsprechenden digitalen Werkzeugen in den letzten Jahren verindert. Der
Schwerpunkt hat sich stirker in Richtung von anwendungsbezogenen Aufga-
ben und Modellierungsproblemen verschoben.

Hier kann der Computer oder ein entsprechend ausgestatteter grafikfihiger
Taschenrechner ein sinnvolles Werkzeug zur Unterstiitzung von Lehrenden
und Lernenden sein. Im Folgenden wird ein Uberblick tiber unterschiedliche
Einsatzmoglichkeiten von Computern im Sachrechnen gegeben.

Computer kénnen im Unterricht unterschiedlichste Aufgaben iibernehmen.
Eine dieser Aufgaben ist das Experimentieren. Die folgende Aufgabe regt bei-
spielsweise dazu an, den Computer als Experimentierwerkzeug zu verwenden.

Hunde-Problem

Tim Pennings beobachtete bei einem Strandspaziergang mit seinem
Hund ein seltsames Phanomen. Mehrmals warf er einen Ball ins Wasser,
sodass Elvis diesen zuriickholen musste. Elvis sprintete jedoch nicht di-
rekt ins Wasser, sondern lief ein Stiick am Meer entlang, bevor er ins
Wasser tauchte. Sucht Erklarungen! (HuBmann & Leuders, 2007)

d(P1.P4)20 + d(P4,P3)/110
0,8139 ;

4,158 cm 7

7,963 cm
Abb. 6.13 DGS-Modell des Hunde-Problems
Diese Aufgabe kann auf unterschiedliche Weise mit dem Computer bearbeitet

werden. Beispielsweise kann man mit Hilfe einer dynamischen Geometriesoft-
ware (DGS) die Situation in ein Modell ibertragen und darin experimentieren.
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Mit Hilfe dieses DGS-Modells (s. Abb. 6.13) kénnen Schiilerinnen und Schiiler
experimentell die Stelle finden, an der der Hund optimalerweise ins Wasser
springen sollte. Es ist bei diesem Problem ebenso méglich, mit Hilfe einer Ta-

bellenkalkulation (TK) zu arbeiten und dieses Problem mit einem numerischen
Modell zu bearbeiten (s. Abb. 6.14).

Eine sehr dhnliche Titigkeit wie das Experimentieren ist das Siwulieren von
Realsituationen mit dem Computer. Dabei werden Experimente an einem Mo-
dell durchgefiihrt, wenn die Realsituation zu komplex ist. Wihrend das oben
beschriebene Hunde-Problem gerade noch in der Realitit ausprobiert werden
kann, so wiren beispielsweise Voraussagen tber die Population einer bestimm-
ten Tierart bei unterschiedlichen Umweltbedingungen nur mit Hilfe einer Simu-
lation méglich.

Nach Experiment oder Simulation kann iiber mathematische Begriindungen fiir
die gewonnene Losung nachgedacht werden. Auch dazu ist ein Computeralgeb-
rasystem ein geeignetes Hilfsmittel (Henn, 2004).

. | B8 | ¢ | D E | F |
| X | _Landweg |"Wassemeg|_ Landzeit |-Wasserz;it“Ges;mlzeit
2 0,0 10,0 3,6 0,50 0,36 0,86
3 | 0,1 9,9 3,6 0,50 0,36 0,86

| 0,2 9,8 3,6 0,49 0,36 0,85
15 | 1,3 8,7 3,9 0,44 0,39 0,82
| 16 | 14 8,6 3,9 0,43 0,39 0,82
17 | 1,5 8,5 3,9 0,43 0,39 0,82
8 1,6 84 4,0 0,42 0,40 0,82
9| 1,7 8,3 4,0 0,42 0,40 0,82
0 1,8 8,2 4,0 0,41 0,40 0,81
1| 1,9 81 4,1 0,41 0,41 0,81
22 | 2,0 8,0 4,1 0,40 0,41 0,81
23 | 2,1 7,9 4,2 0,40 0,42 0,81
24 2,2 7,8 4,2 0,39 0,42 0,81
25 | 2,3 7,7 4,3 0,39 0,43 0,81
26, 24 7,6 4,3 0,38 0,43 0,81
27 | 2,5 7,5 4,4 0,38 0,44 0,82
28 | 2,6 7.4 4,5 0,37 0,45 0,82
29 | 2,7 7,3 4,5 0,37 0,45 0,82
30

Abb. 6.14 TK-Modell des Hunde-Problems
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Computer kénnen aullerdem die Aufgabe des Iisualisierens im Unterricht tber-
nehmen. Beispielsweise kénnen gegebene Daten mit Hilfe einer Computeral-
gebra- oder einer Statistikanwendung in einem Koordinatensystem dargestellt

werden (s. Abb. 6.15 u. Abb. 6.106).

Eine Datei wird in 38 Sekunden aus dem Internet auf dem eigenen Com-
puter gespeichert. Dabei wird zu einigen Zeitpunkten die Ubertragungs-
rate notiert (siehe Abbildungen und Tabelle).

27% von 1106648098578 Einfiihrung Expo... |._

3

kY &

Speschern:
-+« Exponentialfunitionen.doc von db.leamiine. de

60% von 1106848098578 _Finfiihrung Expo... [= | = [X]

® 4
Speichern:
+++ Exponentislfunktionen.doc von db.leamiine. de

[Feew )

Geschitzte Daver: 16 Sek. (92,0 KB von 427 KB kopiert)

Ubertragungsrate: 17,6 KB/Sek.
[JiRislogleld nach Beendigung des Downloads schiefler}

Download nach:  ...\f1 106548098578 Em Exponentialfunitio

Geschitzte Daver: 18 Sek. (253 KB von 427 KB kopiert)

Download nach:  ...\f1106848098578_Einfihrung Exponentialfunidion
Ubertragungsrake: 9,62 KBSk,

[Oiislogfeid nach Beendigung des Downloads schbefier]

Download nach 5,3 Sek. Download nach 18,4 Sek.
Zeit in Sek. 0 53 | 10,9 | 18,4 | 32,1 38

Ubertragungsrate in KB/Sek. | 17,6

176 | 11,2 | 9,62 | 9,62 | 11,2

Abb. 6.15 Aufgabenbeispiel Download

20

15

10 : i

10 20

=5

30 40

Abb. 6.16 Visualisierung der Daten zur Download-Aufgabe
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Eine verbreitete Verwendung von Computeralgebrasystemen ist die Berechnung
von numerischen oder algebraischen Ergebnissen, die Schiilerinnen und Schi-
ler ohne Computer nicht oder nicht in angemessener Zeit erhalten kénnen. Ein
Beispiel ist die Berechnung von optimalen komplexen Verpackungsproblemen
wie etwa einer Milchverpackung (Boer, 1993). Wird dieses Problem mit Hilfe
von Funktionsgleichungen und der Differenzialrechnung bearbeitet, so kommt
man leicht auf gebrochen-rationale Funktionen, bei denen die Nullstellen der
ersten Ableitung mit Methoden der Schulmathematik nicht mehr zu bestimmen

sind. Ein Beispiel fiir eine solche Berechnung ist in der folgenden Abbildung zu
schen (s. Abb. 6.17).

44.b 3820 2865 169

- - - =0
#1: 5 2 3 20
b b
44.b 3820 2865 169
APPROX| SOLVE - - + =0, b, Real
#2: 5 2 3 20
b b

#3: b = -0.7502042796 v b = 7.508524164

Abb. 6.17 Rechnen mit komplexen Termen

In den Bereich der Berechnungen mit dem Computer gehért auch das Finden
von algebraischen Darstellungen aus gegebenen Informationen. Wenn bei-
spielsweise eine Funktionsgleichung aus vorhandenen Daten ermittelt wird,
wird der Computer ebenfalls als Rechenwerkzeug verwendet. Dieses sogenann-
te Algebraisieren ist dadurch charakterisiert, dass reale Daten in den Computer
eingegeben werden und der Rechner eine algebraische Darstellung liefert.

Bei einem Flug mit einem Ballon liegt der Start in der Hohe 0 m, die Lan-
dung erfolgt 2 Stunden spater auf einer Anhohe, die 40 m hoher als der
Start liegt. 40 min befindet sich der Ballon im Steigflug, danach sinkt er
etwas, um nach 1,5 Stunden die maximale H6he 2000 m zu erreichen.
Bestimme eine [...] Funktion, die die Flughohe in Abhdngigkeit von der
Flugdauer beschreibt. [...] (Freudigmann, et al., 2000)

Abb. 6.18 Schulbuchaufgabe zur Funktionsbestimmung

Das Kontrollieren ist ebenfalls eine sinnvolle Funktion des Computers bei Lern-
prozessen im Sachrechnen. So kénnen Computer etwa bei der Bestimmung
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von Punktionen zu gegebenen Eigenschaften auf unterschiedliche Weise Kon-
trollprozesse unterstiitzen. Wird beispielsweise eine Funktionsgleichung mit
bestimmten Bedingungen gesucht (s. Abb. 6.18), so kann das entsprechende
Ergebnis — unabhingig davon, ob es mit oder ohne Computer bestimmt wor-
den ist — sowohl durch algebraisches Nachvollzichen der Rechnungen mit Hilfe
eines Computeralgebrasystems als auch durch grafische oder numerische Ver-
fahren kontrolliert werden (s. Abb. 6.19 u. Abb. 6.20).

2500
f(x) = - 31640/11.x™4 + 1079720/99-x"3 + - 127730/9-x"2 + 257080/33-x
2000 ———

1500 i \

/ ‘a‘
100 []J / : \

{ 1-s00 '\

-1000 |

Abb. 6.19 Kontrolle mit Hilfe des Graphen

Verwendet man im Mathematikunterricht nicht nur grafikfihige Taschenrech-
ner, sondern Computer mit Internetanschluss, so kénnen diese auch zum Re-
cherchieren von Informationen, beispielsweise im Zusammenhang mit Anwen-
dungskontexten, verwendet werden.

Computer kénnen im Mathematikunterricht wichtige und vielfiltige Aufgaben
tbernehmen. Allerdings ersetzen sie nicht das Verstehen der mathematischen
Ideen. Ein wichtiges Konzept im Mathematikunterricht der Oberstufe ist bei-
spielsweise der Grenzwert. Der Grenzwertprozess ist einerseits bei der Einfiih-
rung der Ableitung und andererseits bei der Finfiihrung des Integrals die zen-
trale Idee.

Denkt man an die Einfithrung der Ableitung am Beispiel der Steigung einer
Tangente in einem Punkt eines Funktionsgraphen, so konnen Computer zwar
numerisch vor dem Grenzwertprozess in nahezu beliebiger Genauigkeit die
entsprechenden Werte von Sekanten in der Nihe dieses Punktes berechnen
und auf der anderen Seite nach Durchfithrung des Grenzwertprozesses algebra-
isch auch Grenzwert und Ableitung ermitteln. Die Idee des Grenzwertes selbst
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muss aber von den Schiilerinnen und Schiilern — auch ohne Computer — ver-
standen werden.

31640 4 1079720 3 127730 2 257080
f(x) = - K+ X + = K+ X
2k k 99 9 33
f(0)
0
f(2)
40
2
f'|—
3
0
£'(1.5)
0
f(1.5)
2000

Abb. 6.20 Numerische Kontrolle des Funktionsterms mit einem Computerprogramm

Mit Computern kann allerdings dieses Verstindnis unterstiitzt werden, da sie
durch das Experimentieren, Visualisieren und Berechnen von Beispielen Hilfe-
stellungen geben koénnen. Hier ist sicherlich eine Erkundungsphase mit dem
Computer eine wichtige Hilfe fiir ein tiefgreifendes Verstindnis dieses zentralen
Konzepts. Dennoch bedarf es eines gedanklichen — quasi computerfreien —
Schritts von einer Sekante mit sehr nahe beieinanderliegenden Punkten zu einer
Tangente. Dieser gedankliche Schritt kann aber durch den Einsatz von Compu-
tern etleichtert und besonders durch experimentellen und visualisierenden Ein-
satz verkleinert werden.

Computereinsatz und Modellieren

Die unterschiedlichen Funktionen des Rechners im Mathematikunterricht
kommen bei anwendungsbezogenen Aufgaben an unterschiedlichen Stellen im
Modellbildungskreislauf zum Tragen. So sind Kontrollprozesse in der Regel im
letzten Schritt des Modellbildungskreislaufs anzusiedeln. Die Berechnungen
finden mit Hilfe des erstellen mathematischen Modells statt, das beispielsweise
in der Analysis in der Regel eine Funktion ist.
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Mathematische .
Alltagssprache -- 1 " Befehlssprache

Aufgaben- Mathematische | Rechner- |
Lésung Lésung l6sung

Abb. 6.21 Integration des Computers in den Modellierungskreislauf

Die Bearbeitung realitdtsnaher Aufgaben mit einem Computeralgebrasystem
erfordert zwei Ubersetzungsprozesse. Zunichst muss der Aufgabentext ver-
standen und in die Sprache der Mathematik tibersetzt werden. Der Computeral-
gebrasystem-Rechner kann jedoch erst angewendet werden, wenn die mathe-
matischen Ausdriicke in die Sprache des Rechners tibersetzt worden sind. Die
Ergebnisse des Rechners miissen dann wieder in die Sprache der Mathematik
zuriicktransformiert werden. SchlieBllich kann dann die Aufgabe gelést werden,
wenn die mathematischen Ergebnisse auf diese reale Situation bezogen werden.
Dieser weitere Schritt im Modellierungskreislauf kann zu unterschiedlichen
Schwierigkeiten fithren. So muss beispielsweise in Prifungen darauf geachtet
werden, dass die verwendeten Computeralgebrasysteme auch vergleichbare
Funktionalititen besitzen und die Handhabung sowie die Rechenzeit fiir be-
stimmte Probleme nicht zu Vorteilen fithren kénnen. Auch die durch den Ein-
satz von Computeralgebrasystemen bedingte groflere Losungsvielfalt von Auf-
gaben muss sowohl im Unterricht als auch in Prifungen beriicksichtigt werden.

6.5 Aufgaben zur Wiederholung und Vertiefung

Ungenauigkeit
1. Vergleichen Sie das ,,Schitzen und das ,,Runden® miteinander.

2. Geben Sie Aufgaben aus dem Mathematikunterricht an, in denen das
Schiitzen oder das Runden enthalten ist.

3. Erkliren Sie, inwieweit eine Auseinandersetzung mit ungenauen bzw. feh-
lerbehafteten Werten fiir Schiilerinnen und Schiiler wichtig ist.
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Fehlerrechnung

Gegeben ist ein Tisch mit Linge # und Breite 4. Die gemessenen Werte wei-
chen um Aa bzw. Ab von den tatsdchlichen Werten ab. Rechnet man mit diesen
gemessenen Werten den Flicheninhalt aus, so weicht der errechnete Flichenin-
halt um A von dem tatsichlichen Flicheninhalt .4 ab.

1. Begriinden Sie, wieso bei einer Messung Fehler entstehen kénnen.

2. Zeigen Sie, wie sich die Fehler Az und A/ auf den absoluten Fehler A4
auswirken.

3. Bestimmen Sie den relativen Fehler fiir die obige Tischplatte.

4. Welcher Vorteil besteht darin, nicht den absoluten Fehler, sondern den
relativen Fehler einer Messung zu betrachten?

5. Der Tisch sei nun 126,8 cm lang und 97,5 cm breit. Gemessen wird fiir die
Linge 125 cm und fir die Breite 95 cm. Bestimmen Sie den absoluten und
den relativen Fehler, die bei der Berechnung der Tischfliche entstehen.

6. Berechnen Sie den relativen und den absoluten Fehler fiir die Geschwin-
digkeit eines Schwimmers, der fir eine 400 m-Strecke (gemessen mit einer
Genauigkeit von einem Zentimeter) die Zeit 4:52,34 (gemessen mit einer
Genauigkeit von einer Hundertstel Sekunde) bendtigt. Vergleichen Sie die
relativen Fehler vom Ergebnis und den gegebenen Werten, und formulie-
ren Sie eine Regel fiir die Division von ungenau gegebenen Werten.



A Anhang

A.1 Beispielklausur

Aufgabe 1
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Der Colonius in Kéln wurde im Jahr 1981 erbaut und galt zu dieser Zeit

als eines der technisch modernsten Gebdude weltweit. 1992 wurde die
Spitze des Turmes aus Modernisierungsgriinden um eine 14m lange rot-
weile Antenne verlangert. Wie viele Treppenstufen hatte eine Treppe, die

bis in die Spitze des Turmes fiihrt?

1. Bestimmen Sie eine mogliche Losung der Aufgabe. Erkliren Sie ihre Ar-
beitsschritte!

2. Diskutieren Sie auf der Basis der bekannten Eigenschaften von Aufgaben-
typen, weshalb diese Sachaufgabe Schiilerinnen und Schiler ansprechen
konnte.

3. Stellen Sie einen idealisierten Losungsprozess dieser Aufgabe mit dem Mo-
dellierungskreislauf von Blum dar. Erkldren Sie, weshalb man von idealisiert
spricht.

4. Worin unterscheiden sich die Modellierungskreisliufe von Blum und
Borromeo Ferri?

5. Kann die Colonins-Aufgabe als Schitzaufgabe eingestuft werden? Falls ja, um
welche Art von Schitzaufgabe handelt es sich?

Aufgabe 2

1. Nennen und erkliren Sie die von Heinrich Winter eingefithrten Funktionen
des Sachrechnens.

2. Welche dieser Funktionen steht bei der Colonius-Aufgabe (siche Aufgabe
1) im Vordergrund?

3. Gegeben sind die unten abgedruckten Sachaufgaben. Ordnen Sie die Auf-

gaben den klassischen Aufgabentypen eingekleidete Aufgabe, Textanfgabe oder
Sachproblem zu.

(1) Peter mochte sich einen DVD-Rekorder fir 255 € kaufen. 189 € hat er
schon gespart.

(2) Das Ehepaar Klein und ihr 11-jdhriger Sohn wollen im August am
Meer Urlaub machen. Mehr als 1500 € stehen nicht zur Verfuigung.

(3) Bei Erdarbeiten fiir den StraRenbau bendtigen 6 Bagger 12 Tage. Nach
3 Tagen fallen 2 Bagger aus. Um wie viele Tage verzogern sich die Erdar-
beiten?
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(4) Klaus will sich ein Mofa kaufen. Fiir ihn kommen nur noch eine Honda

Silver oder eine Zindapp 2000 in Frage. Bei seiner Entscheidung will er
neben den Anschaffungskosten auch die laufenden Kosten in Betracht

ziehen.

Aufgabe 3

1.

Skizzieren Sie die Stufen im didaktischen Stufenmodell zur Behandlung

von Langen.
Otdnen Sie die folgende Aufgabe in das Stufenmodell von Aufgabenteil 1.

ein.

Hiipfwettbewerb
Bastelt Faltfrosche aus Papier.
Lasst dann eure Frésche von einer

Startlinie aus hdpfen und messt
die Strecken. Vergleicht anschliefend.

Abb. A.1 Aufgabenbeispiel (Fuchs, Hissnauer, Kapnick, PeterBen, & von Witzleben,
2004)

Aufgabe 4
» Ein tropfender Wasserhahn kann pro Tag bis zu 100 Liter Wasser
verschwenden” - kann das stimmen?

Ob Regen oder Trockenhei ‘asser
{ t— W,
ist das ganze Jahr iiber sinnvoll i

&ngcsichts'der letzen Regenfille denken viele, wir
xonnten wieder zum a_!l!ag!ichen Wsss:ncrb;auch

:’e"\l;r‘:lﬂe L::;m ;Jn::-:ga"l‘z;g;gt t}ler Wertvollen Ressour-
:::Lc:r gg::}; :::l:;n‘;gjur ;;l:cugl:mr ﬁ::gn:;:{v?;
of Kemucky.' .AuBm-demrr;st ;?l[:::e:osv::srel;h:;v::ity
sg;r:] ::]:l f;:;:reitl;. also‘i‘st es auch schon ﬁmzi::l;
B (;-;- S 33(:;?“ VYon Haven Miller

Ein tropfender Wasserhahn
kann pro Tag bis zu 100 Liter
Wasser verschwenden!
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Abb. A.2 Aufgabenbeispiel (Buchter, Herget, Leuders, & Muller, 2006)

1.
2.

Erkliren Sie den Begriff Fermi-Aufgabe.

Zur eindeutigen Klassifizierung von Sachaufgaben wird vorgeschlagen, sie
wie folgt einzuteilen: Modelliernngsanfgabe, Problemloseanfgabe, Fermi-Anfoabe,
Schitzanfgabe. Beurteilen Sie am Beispiel der obigen Aufgabe, ob sich Sach-
aufgaben auf diese Weise sinnvoll klassifizieren lassen.

Geben Sie zwei Kategoriensysteme flir Sachaufgaben mit ihren jeweiligen
Ausprigungen an.

Das Modellieren wird in den Lehrplinen des Landes Nordrhein-Westfalen
durch die drei Teilkompetenzen Mathematisieren, Realisieren und 1 alidieren
ausgewiesen. Erkldren Sie die drei Kompetenzen mit Hilfe der obigen Bei-
spielaufgabe.

Geben Sie zwei weitere Teilkompetenzen an, die durch das Modellieren
gefordert werden, und erkliren Sie diese an geeigneten Beispicelen.

Aufgabe 5

Die Firma [epzig ist bekannt fiir ihre Raufasertapeten. Auf der Verpackung ist
angegeben, dass eine Rolle 60 cm breit und ca. 10,50 m lang ist. Das bedeutet:
Die Linge der Rolle schwankt zwischen 10,45 m und 10,55 m.

1. Schitzen Sie den absoluten Fehler der Tapetenfliche auf einer Rolle mit
Hilfe einer Doppelrechnung und mit Hilfe einer Fragezeichenrechnung,

2. Bestimmen Sie allgemein den relativen Fehler der Tapetenfliche auf einer
Rolle mit fester Breite und fehlerbehafteter Linge.

Aufgabe 6

1. Geben Sie zwei Definitionen von Sachrechnen an, und begrinden Sie, wel-

cher Definition Sie sich anschlieen wurden.

Wilhelm von Humboldt schrieb in seinen /deen zu einem Versuch, die

Grdnzen der Wirksamkeit des Staates zu bestimmen:. ,Der wahre Zweck
des Menschen [. . .] ist die hochste und proportionirlichste Bildung seiner
Krafte zu einem Ganzen. Zu dieser Bildung ist Freiheit die erste und un-
erlaRliche Bedingung. Allein auRer der Freiheit erfordert die Entwicklung
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der menschlichen Krafte noch etwas andres, obgleich mit der Freiheit eng
verbundenes, Mannigfaltigkeit der Situationen.”

2. Beurteilen Sie, ob Humboldt ein Befiirworter oder Gegner von Sachaufga-
ben im Schulunterricht gewesen wire.

A.2 Schieberegler in Excel

Zum Einflgen eines Schiebereglers (bzw. einer Bildlaufleiste) in Excel 2007
klicken Sie auf die Schaltfliche Microsoft Office (oben links) und anschlieBend auf
Excel-Optionen.

Aktivieren Sie gef. in der Kategorie Haufig verwendet unter Die am hanfigsten ver-
wendeten Optionen bei der Arbeit mit Excel das Kontrollkdstchen Registerkarte "Ent-
wicklertools' in der Multifunktionsleiste anzeigen, und klicken Sie dann auf OK.

Klicken Sie auf der Registerkarte Entwicklertools in der Gruppe Steuerelemente auf
Einfiigen, und klicken Sie dann unter Formularsteuerelemente auf Bildlaufleiste.

Die Bildlaufleiste kann nun auf dem Tabellenblatt an einer beliebigen Stelle
platziert werden und mit der rechten Maustaste eingestellt werden.
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