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Einleitung 

Mathematik beschäftigt sich einerseits mit abstrakten Strukturen und Ideen und 
andererseits mit Modellen zur Beschreibung der Umwelt. Schülerinnen und 
Schüler sollten im Mathematikunterricht beide Seiten der Mathematik erfahren.  

Heinrich Winter schlüsselt den Beitrag des Mathematikunterrichts zur mathe-
matischen Allgemeinbildung sogar in drei Grunderfahrungen auf. Diese drei 
Grunderfahrungen sind: 

 „Erscheinungen der Welt um uns, die uns alle angehen oder angehen sol-
len, aus Natur, Gesellschaft und Kultur, in einer spezifischen Art wahrzu-
nehmen und zu verstehen, 

 mathematische Gegenstände und Sachverhalte, repräsentiert in Sprache, 
Symbolen, Bildern und Formeln, als geistige Schöpfungen, als eine deduk-
tiv geordnete Welt eigener Art kennenzulernen und zu begreifen, 

 in der Auseinandersetzung mit Aufgaben Problemlösefähigkeiten (heuristi-
sche Fähigkeiten), die über die Mathematik hinausgehen, zu erwerben.“ 
(Winter, 2003) 

Zur Verwirklichung der ersten Grunderfahrung ist die Einbeziehung von realen 
Problemen und Anwendungen von Mathematik unerlässlich. Diesen Beitrag 
zur mathematischen Bildung will das Sachrechnen leisten.  In diesem Buch geht 
es daher um die Frage, wie die Bezüge zwischen Mathematik und Realität in der 
Sekundarstufe vermittelt werden können.  

Der Begriff Sachrechnen wird häufig mit Inhalten der Grundschule oder mit 
eher ungeeigneten Textaufgaben zu Beginn der Sekundarstufe I  in Verbindung 
gebracht. Der modernere Begriff ist das mathematische Modellieren. Dieses 
Buch trägt dennoch den Titel Didaktik des Sachrechnens in der Sekundarstufe, da der 
Begriff des Modellierens nicht alle Aspekte einer Didaktik von anwendungsbe-
zogener Mathematik einschließt. So wird das Modellieren hier nicht ausge-
klammert, sondern in den Kontext des Sachrechnens eingeordnet und als sein 
zentraler Kern beschrieben. 

Der Begriff des Sachrechnens wird unterschiedlich aufgefasst und ist nicht 
eindeutig zu fassen. Daher wird in einem einführenden Kapitel die Frage be-
rücksichtigt, was Sachrechnen eigentlich ist bzw. sein kann. Es werden unter-
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schiedliche Definitionen und Funktionen des Sachrechnen vorgestellt. Eben-
falls befassen wir uns mit Zielsetzungen des Sachrechnens und dem Bezug zu 
modernen Bildungsstandards und Lehrplänen.  

Um die unterschiedlichen Auffassungen von Sachrechnen besser zu verstehen, 
wird im zweiten Kapitel ein kurzer Blick auf die Entwicklung des Sachrechnens 
geworfen. Dieses Kapitel hat keinen Anspruch auf Vollständigkeit und be-
schreibt insbesondere die Entwicklung des Sachrechnens im vergangenen Jahr-
hundert. Es zeigt aber auch die frühen Anfänge von Sachaufgaben in Lehrbü-
chern auf.  

Ein Ausblick in das 21. Jahrhundert leitet zum dritten Kapitel über Modellieren 
und Problemlösen über. Hier wird der zentrale Kern des Sachrechnens be-
schrieben und von unterschiedlichen Seiten beleuchtet. So werden auch Teil-
kompetenzen des Modellierens und empirische Untersuchungsergebnisse be-
trachtet. Auch die unterschiedlichen Schwerpunkte des Problemlösens und 
Modellierens werden herausgearbeitet.  

Ein sehr zentraler Punkt des Mathematikunterrichts sind Aufgaben. Besonders 
im Sachrechnen gibt es eine Fülle unterschiedlichster Aufgaben, die man als 
Sachaufgaben bezeichnen kann. Das Ziel dieses vierten Kapitels ist, Aufgaben 
sinnvoll zu strukturieren und zu klassifizieren, sodass Studierende und Lehren-
de vorhandene Aufgaben besser einordnen und neue Aufgaben gezielt entwi-
ckeln können.  

Im fünften Kapitel werden einige typische Inhalte des Sachrechnens in der 
Sekundarstufe vorgestellt und aus didaktischer Sicht beleuchtet. Hier wird im-
mer wieder Bezug genommen auf die jeweilige Modellbildung, die jeweilige 
Auffassung von Sachrechnen und auf unterschiedliche Aufgabentypen, die in 
diesem Zusammenhang bearbeitet werden können. Zentral sind Größen im 
Allgemeinen und Zuordnungen von Größen – speziell Funktionen –, die in der 
Sekundarstufe im anwendungsbezogenen Mathematikunterricht eine besondere 
Rolle spielen.  

Im sechsten Kapitel werden einige spezielle Aspekte zum Sachrechnen zusam-
mengefasst. Eine besondere Rolle spielen hier der Umgang mit der Ungenauig-
keit und die unterschiedlichen Lösungshilfen für Sachaufgaben.  

Jedes Kapitel wird mit Übungsaufgaben zur Vertiefung und Wiederholung 
abgeschlossen. Im Anhang befindet sich eine mögliche Klausur zur Didaktik 
des Sachrechnens. Viele dieser Aufgabenvorschläge habe ich meinem Mitarbei-
ter Stefan-H. Kaufmann zu verdanken.  

Viele Inhalte werden durch entsprechende Beispiele aus aktuellen Schulbüchern 
illustriert. Diese Beispiele stehen repräsentativ für Aufgabentypen. Hier geht es 
nicht darum, eine Kritik an den jeweiligen Schulbüchern zu üben. 
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In dieses Buch sind vielfältige Erfahrungen aus Unterricht, Lehrerfortbildung, 
Forschung und Lehre eingeflossen. Dies war nur möglich, weil viele gemeinsam 
mit mir an diesem Thema gearbeitet haben.  

Ich danke allen Kolleginnen und Kollegen sowie Studierenden aus den entspre-
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1  Der Begriff des Sachrechnens 

1.1  Einführung 
Der Begriff des Sachrechnens wird keineswegs einheitlich verwendet und kann 
daher sowohl enger als auch weiter gefasst werden. Mit Sachrechnen verbindet 
man häufig nicht ganz realistische Aufgabenstellungen, in denen eine reale Situ-
ation beschrieben oder angedeutet wird. Im Folgenden ist ein Beispiel für eine 
solche Sachaufgabe angeführt. 

 

Das Teilstück  einer geplanten Autobahnstrecke muss auf einer Stre-
cke  sumpfiges Gelände überqueren. Das sumpfige Gelände beginnt 
220 m von A aus und endet 380 m vor B. Entsprechend der Skizze liegen 
die folgenden Maße für das Dreieck ABC vor. b = 1330 m; a = 852 m;  
 = 83° […] 

Berechne die Längen des Teilstücks   und der zu überquerenden 
Sumpfstrecke . […] 

 

AAbb. 1.1 Aufgabenbeispiel Autobahnplanung (Koullen, Mathematik konkret 6, 2008, S. 
55) 

Bei diesem Aufgabenbeispiel handelt es sich um eine Sachaufgabe, da im Auf-
gabentext ein realer Gegenstand, die geplante Autobahnstrecke durch sumpfi-
ges Gelände, beschrieben wird. Allerdings kann diese Aufgabe auch ohne Sach-
kontext formuliert werden. Eine mögliche Formulierung ist in Abb. 1.2 darge-
stellt.  
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Das Aufgabenbeispiel ohne Sachkontext zeigt den eigentlichen, mathemati-
schen Kern dieser Sachaufgabe. Die Aufgabe verlangt eine Berechnung von 
Längen im Dreieck. Sie wurde im ersten Beispiel in den Kontext der Auto-
bahnplanung „eingekleidet“.  

 

Gegeben ist ein Dreieck ABC mit b = 13,3 cm; a = 8,5 cm;  = 83°. Ent-
sprechend der Skizze liegt die Strecke  auf . S ist 2,2 cm von A 
und T ist 3,8 cm von B entfernt. […] 

Berechne die Längen der Strecken  und . […] 

 

Abb. 1.2 Aufgabenbeispiel ohne Sachkontext 

In diesem Beispiel ist es recht einfach, den Kontext der Autobahnplanung in 
die entsprechende Mathematik zu übersetzen, zumal eine Zeichnung vorgege-
ben wird, die praktisch keine realen Gegenstände mehr enthält.  

Daher stellt sich natürlich die Frage, welchen Sinn ein solcher Kontext in einem 
solchen Fall hat. Dies führt auch zu weitergehenden Fragen, welchen Sinn und 
welche Aufgabe Sachaufgaben bzw. das Sachrechnen allgemein in der Sekun-
darstufe haben. Diesen Fragen wollen wir in den nächsten Abschnitten nachge-
hen. Sehr häufig und auch weniger umstritten wird der Begriff Sachrechnen in 
der Primarstufe verwendet (Franke, 2003). Das Sachrechnen gehört neben 
Arithmetik und Geometrie zu den traditionellen Sachgebieten des Grundschul-
unterrichts im Fach Mathematik (KMK, 2005, S. 6). Hier wird das  „Sachaufga-
ben lösen und dabei die Beziehungen zwischen der Sache und den einzelnen 
Lösungsschritten beschreiben“ (KMK, 2005, S. 9) explizit erwähnt.  

Um den Begriff des Sachrechnens genauer zu fassen, sollen im Folgenden zwei 
Beispiele für Sachaufgaben nebeneinandergestellt werden, die zu Beginn der 
Sekundarstufe bearbeitet werden können. Diese Aufgabenbeispiele stammen 
aus Schulbüchern für Klasse 5 und beinhalten jeweils einen Sachbezug. 
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Abb. 1.3 Aufgabenbeispiel Blumenbeet (Kuypers, Lauter, & Wuttke, 1995, S. 106) 

 

 
Abb. 1.4 Aufgabenbeispiel Pizzaessen (Kliemann, Puscher, Segelken, Schmidt, & 
Vernay, 2006, S. 35) 

Betrachtet man die Sachkontexte der beiden Aufgabenbeispiele Blumenbeet (s. 
Abb. 1.3) und Pizzaessen (s. Abb. 1.4), so stellt man zunächst fest, dass in der 
ersten Abbildung der Hund und in der zweiten Abbildung der Pizzabäcker 
eigentlich überflüssig sind. Dennoch haben Hund und Pizzabäcker jeweils un-
terschiedliche Funktionen. Während der Hund die Aufgabenstellung nicht un-
terstreicht, macht das Foto mit dem Pizzabäcker die Aufgabe realistischer; auch 
wenn oder gerade weil die Abbildung in keiner Weise die mathematische Struk-
tur der Aufgabenlösung unterstreicht. In der Blumenbeet-Aufgabe ist dagegen 
die Mathematisierung durch die Abbildung schon fortgeschritten. Dies wird 
beispielsweise an der Beschriftung der Blumenreihen deutlich.  

Auch die möglichen Lösungen beider Aufgaben sind unterschiedlich. Die erste 
Aufgabe hat eine eindeutige Lösung, die allerdings auf unterschiedlichen Wegen 
gefunden werden kann. Insbesondere die folgenden beiden Rechnungen sind 
erwünscht: 4    4  13  0 und 4  (   13)  0. Das Ziel dieser Aufgabe 
ist die Veranschaulichung des Distributivgesetzes. Der Lösungsweg der zweiten 
Aufgabe ist nicht so eindeutig. Die Aufgabenstellung lässt beispielsweise offen, 
ob jedes Kind gleich viel von der Pizza essen möchte oder ob nicht Pizzastücke 
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von einem Tisch zum anderen weitergereicht werden können. Ein möglicher 
Lösungsansatz der Pizzaessen-Aufgabe ist im Folgenden abgebildet (s. Abb. 
1.5). 

 

 
Abb. 1.5 Aufgabenbeispiel Pizzaessen (Kliemann, Puscher, Segelken, Schmidt, & 
Vernay, 2006, S. 35) 

Es können also 3, 6, 9, 12, 15 oder 1  Kinder an einem Tisch sitzen, wenn die 
Pizza vorher nicht geteilt werden soll und alle Kinder gleich viel Pizza bekom-
men sollen. Bei den angegebenen Tischgrößen müssen an dem kleinen Tisch 3 
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Kinder sitzen, am 6er-Tisch 6 Kinder und am großen Tisch 9 Kinder. Durch 
die Pizzaessen-Aufgabe wird im Unterschied zur Blumenbeet-Aufgabe das 
Probieren unterschiedlicher Lösungswege angeregt. Die zweite Aufgabe ist also 
offener, motivierender und lebensnäher. Sie regt das Problemlösen stärker an 
als die Aufgabe zum Distributivgesetz, da es für die Schülerinnen und Schüler 
keine Standard-Lösungsverfahren gibt. Auch die erste Aufgabe könnte die Auf-
gabeneigenschaften der zweiten Aufgabe erhalten, wenn sie entsprechend ver-
ändert formuliert wird. Zum Beispiel: 

 

Ein Gärtner will 80 Blumen pflanzen. Entwirf einen Plan für ein Blumen-
beet! 

 

Die Beispiele machen bereits eine große Spannbreite von Sachaufgaben bezüg-
lich ihres mathematischen Inhalts, ihrer Ziele und ihrer Präsentationsformen 
deutlich, die durch weitere Beispiele noch vergrößert werden könnte. Der zu 
diesen Aufgaben passende Unterricht unterscheidet sich sicherlich noch deutli-
cher. So passt beispielsweise zum Aufgabenbeispiel Autobahnplanung ein Un-
terricht, bei dem zunächst die mathematischen Inhalte im Rahmen eines lehrer-
zentrierten Unterrichts eingeführt werden, um sie später an Sachaufgaben zu 
üben. Zur Pizzaessen-Aufgabe passt eher ein schülerzentrierter Unterricht mit 
Gruppenarbeits- und Präsentationsphasen. Natürlich können beide Aufgaben 
auch in anderen Kontexten Verwendung finden. In jedem Fall können sich 
verwendete Aufgabenbeispiele und  Unterrichtsmethoden wechselseitig beein-
flussen. 

1.2  Definitionen von Sachrechnen 
Die einleitenden Aufgabenbeispiele zeigen bereits eine große Bandbreite von 
Sachaufgaben. Hinter diesen unterschiedlichen Aufgaben, die im Allgemeinen 
zum Sachrechnen gezählt werden, stehen unterschiedliche Vorstellungen und 
Ziele des Sachrechnens. Diese werden deutlich, wenn man Definitionen des 
Sachrechnens in der Literatur betrachtet.  

Da Sachrechnen bereits in seinem Namen auf den Bezug zur realen Welt (Sache) 
und zur Mathematik (Rechnen) hinweist, können diese beiden Aspekte auch zur 
Definition des Sachrechnens herangezogen werden. Ausgehend vom Bezug zur 
realen Umwelt definieren Spiegel und Selter Sachrechnen in einem sehr allge-
meinen Sinn. 
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Sachrechnen ist der „Oberbegriff für die Auseinandersetzung mit Aufga-
ben, die einen Bezug zur Wirklichkeit aufweisen“ (Spiegel, et al., 2006, S. 
74). 

 

Bei Franke wird dieser Bezug zur Wirklichkeit auf den Erfahrungsbereich der 
Schülerinnen und Schüler oder zumindest auf das reale Leben eingeschränkt. 
Damit werden völlig lebensferne Inhalte aus dem Sachrechnen ausgeschlossen. 

 

Sachrechnen [ist] das Bearbeiten von Aufgaben …, die eine Situation aus 
dem Erfahrungsbereich der Schüler oder aus dem realen Leben beschrei-
ben (Franke, 2003, S. 5). 

 

Mit Blick auf die Schulrealität bemerkt Franke allerdings, dass dies auch gelten 
soll, wenn die Schülerinnen und Schüler diese Situationen noch nicht erfahren 
haben (Franke, 2003, S. 5). Lewe schränkt diese Sicht auf das Sachrechnen 
noch weiter ein und fordert, dass die mathematischen Zusammenhänge in der 
Wirklichkeit entdeckt und wiederum auf die Wirklichkeit angewendet werden 
müssen. 

 

Sachrechnen besteht aus dem Entdecken mathematischer Zusammen-
hänge in der Lebenswirklichkeit und dem Anwenden dieser Zusammen-
hänge auf die Lebenswirklichkeit (Lewe, 2001). 

 

Die Definition von Lewe bezieht sich schon stärker auf den zweiten Aspekt des 
Sachrechnens, also auf die Mathematik. Definitionen, die noch stärker auf die-
sen Aspekt hinweisen, findet man etwa in den 0er Jahren des vorigen Jahr-
hunderts. Hier wird der mögliche Einsatz mathematischer Methoden stärker in 
den Mittelpunkt gestellt.  

 

Sachrechnen befasst sich mit Aufgaben, die von außermathematischen 
Sachverhalten handeln und über die mit mathematischen Mitteln Aussa-
gen gemacht werden (Fricke, 1987, S. 6). 
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Sachrechnen ist aus mathematischer Sicht ein Teil der angewandten Mathema-
tik. Es werden aber üblicherweise nicht alle Inhalte der angewandten Mathema-
tik zum Sachrechnen gezählt, sondern nur die Inhalte, die auch in der Schule 
möglich sind bzw. typischerweise behandelt werden. So beschäftigt man sich im 
Rahmen der angewandten Mathematik beispielsweise mit der numerischen 
Simulation von Strömungen; dieses Gebiet ist aber im Rahmen der Schulma-
thematik nicht behandelbar.  

Die in der Schule bearbeitbaren Inhalte des Sachrechnens unterliegen mögli-
chen – wenn auch geringen – Veränderungen, die durch die aktuellen Lehrplä-
ne und Bildungsstandards sowie durch die Schulrealität bedingt sind. Das Sach-
rechnen in der Sekundarstufe I beschränkt sich damit auf die Inhalte der ange-
wandten Mathematik, die bis zur zehnten Klassenstufe behandelt werden könn-
ten.  

 

Sachrechnen ist der Teil der Angewandten Mathematik, der Schülern bis 
zur 10. Klasse zugänglich ist (Fricke, 1987, S. 10). 

 

Ähnlich sieht Strehl das Sachrechnen als Anwendung von Mathematik. Hier 
wird als zusätzlicher Aspekt die Mathematisierung – im Wesentlichen einge-
schränkt auf numerische Aspekte – genannt.  

 

Sachrechnen ist Anwendung von Mathematik auf vorgegebene Sachpro-
bleme und Mathematisierung konkreter Erfahrungen und Sachzusam-
menhänge vorwiegend unter numerischem Aspekt (Strehl, 1979, S. 24). 

 

Maier und Schubert schränken Sachrechnen noch weiter ein und schließen zu 
einfache Aufgaben, die mit einer einzigen Rechenoperation zu bearbeiten sind, 
sowie zu komplexe Aufgaben, bei denen die Datenmenge sehr groß ist oder 
erst noch beschafft werden muss, aus (Maier  Schubert, 19 , S. 11 13). Wir 
wollen das Sachrechnen hier nicht in diesem engen Sinne betrachten.  

Außer dem bereits gezeigten Wechselspiel zwischen Mathematik und Umwelt 
kann in die Definition des Sachrechnens auch die Person der Schülerin bzw. 
des Schülers mit einbezogen werden (Krauthausen  Scherer, 200 , S. 6). 
Lernprozesse können nur betrachtet werden, wenn die beteiligten Personen mit 
in den Blick genommen werden (s. Abb. 1.6). 
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Abb. 1.6 Sachrechnen im Wechselspiel von Umwelt, Mathematik und Schüler/in 

Es ist wichtig festzuhalten, dass nach unserem Verständnis Sachrechnen mehr 
ist als ein Unterricht mit Bezügen zur realen Welt und zur Mathematik. Umwelt 
und Mathematik lassen sich nicht getrennt betrachten, und die Beziehung von 
Umwelt und Mathematik muss genau untersucht und in den Unterricht einbe-
zogen werden. Entscheidend ist hier die Frage, wie der Übergang von der rea-
len Umwelt zur Mathematik vollzogen werden kann. Diesen Prozess bezeich-
nen wir mit mathematischem Modellieren (Hinrichs, 200 ; Maaß K., 200 ; Greef-
rath, 200 ). Das Modellieren ist demnach ein wichtiger Teil des Sachrechnens. 
Sachrechnen geht aber darüber hinaus und betrachtet auch Unterricht und 
Aufgaben, die keinen echten Modellierungscharakter haben. Es beleuchtet auch 
die Beziehungen zur Umwelt und zur Mathematik. Wir wollen hier eine Defini-
tion des Sachrechnen im weiteren Sinne verwenden, die auch das Modellieren 
mit einschließt, aber weit darüber hinaus geht. 

 

Sachrechnen im weiteren Sinne bezeichnet die Auseinandersetzung mit 
der Umwelt sowie die Beschäftigung mit wirklichkeitsbezogenen Aufga-
ben im Mathematikunterricht. 

1.3  Funktionen des Sachrechnens 
Aus den unterschiedlichen Definitionen des Sachrechnens kann man auch ver-
schiedene Funktionen des Sachrechnens ableiten. Diese Funktionen lassen sich 
nicht klar trennen, sondern überschneiden sich teilweise. Heinrich Winter be-
schreibt die folgenden Funktionen des Sachrechnens (Winter, 2003, S. 15 ff.):  

Umwelt Mathematik 

Schüler/in 

SACHRECHNEN 
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 Sachrechnen als Lernstoff 

 Sachrechnen als Lernprinzip 

 Sachrechnen als Lernziel: Umwelterschließung 

Bei der Betrachtung des Sachrechnens als Vermittlung von Lernstoff stehen die 
mathematischen Inhalte des Sachrechnens, wie z. B. Größen und Prozentrech-
nung, im Vordergrund. Diese Inhalte des Sachrechnens sind allerdings nicht 
klar abzugrenzen. Klassischerweise gehören zum Sachrechnen in der Sekundar-
stufe die Inhalte Größen, Prozent- und Zinsrechnung. Weitere Inhalte ergeben 
sich daraus, wie der Mathematikunterricht gestaltet wird, denn im Prinzip kön-
nen nahezu alle mathematischen Inhalte in realitätsbezogenen Kontexten unter-
richtet werden. Dann würden diese Inhalte auch zum Sachrechnen zählen. Die-
se erweiterte Auffassung von Sachrechnen übersteigt dann deutlich die klassi-
schen Inhalte des Sachrechnens (Winter, 2003, S. 15 ff.). 

Betrachtet man das Sachrechnen unter dem Aspekt des Lernprinzips, so wer-
den Sachsituationen beispielsweise zur Motivation, Veranschaulichung oder zur 
Übung mathematischer Lernprozesse genutzt. Hier steht die Arbeit der Schüle-
rin bzw. des Schülers im Vordergrund, die bzw. der mathematische Inhalte mit 
Hilfe von realen oder wirklichkeitsnahen Situationen lernt.   

 

Welches Angebot ist das Beste? 

 

In der Schule soll ein neuer Kopierer angeschafft werden, da der alte Ko-
pierer defekt ist. Die Schulleitung hat sich bereits für das Modell KM-
C2520 entschieden. Zwei Firmen bieten jeweils einen Service-Vertrag an. 

 

Angebot 1: 

649,- € pro Jahr und 1 Cent pro Kopie 

 

Angebot 2:  

749,- € pro Jahr und 0,9 Cent pro Kopie 

 

 

Abb. 1.7 Aufgabenbeispiel Kopierer 
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Beispielsweise kann zu Beginn einer Unterrichtsreihe zu linearen Funktionen 
das Problem von Kopierkosten einer Schule in den Mittelpunkt gestellt werden. 
Die Schülerinnen und Schüler sollen dann auf Grund unterschiedlicher Ange-
bote entscheiden, welchen Kopierer die Schule am besten anschaffen sollte. 

Diese Anwendung dient dann der Motivation für die Arbeit mit linearen Funk-
tionen, die aus den beiden Angeboten abgeleitet werden können. Beispielsweise 
können die Kosten pro Jahr in Abhängigkeit von den erstellen Kopien angege-
ben werden. Die Bedeutung des Schnittpunktes der beiden zugehörigen Gra-
phen kann dann auch im Kontext geklärt werden. Eine solche Sachsituation 
würde auch dann schon zur Motivation der Schülerinnen und Schüler genutzt, 
wenn sie nicht bis zum Ende der Unterrichtseinheit als sinnstiftender Kontext 
genutzt würde, sondern nur zu Beginn die Beschäftigung mit linearen Funktio-
nen motiviert. Dieser Ansatz ist also bezogen auf die Lösung des tatsächlichen 
Problems, wie hier im Beispiel die Wahl des Kopierers, noch ausbaufähig.  

Ein anderes Beispiel, das nicht der Motivation aber der Veranschaulichung 
dient, ist das Darstellen von Zahlensystemen. Beispielsweise kann das Stellen-
wertsystem mit sechs Ziffern mit Hilfe von Eierverpackungen veranschaulicht 
werden. So werden sechs Eier in einem Eierkarton zusammengefasst. In dieser 
Veranschaulichung werden dann sechs Eierkartons wiederum in einer größeren 
Kiste und sechs Kisten auf einer Palette zusammengefasst. Dies entspricht der 
Bündelung im Sechsersystem. Die Schülerinnen und Schüler können so abs-
trakte mathematische Inhalte wie das Stellenwertsystem mit Hilfe realer be-
kannter Gegenstände veranschaulichen und so besser verstehen. 

 

 
Abb. 1.8 Eierverpackung als Veranschaulichung  

Hier wird klar, dass auch Dinge aus dem Alltag für Veranschaulichung im Ma-
thematikunterricht genutzt werden können, wenn sie entsprechend interpretiert 
werden. Die Interpretation ist allerdings der entscheidende Punkt. Ein Eierkar-



1.3  Funktionen des Sachrechnens   15 

 

ton führt bei Schülerinnen und Schülern noch nicht zu einer entsprechenden 
Auseinandersetzung mit dem Stellenwertsystem. Nach einer geeigneten Inter-
pretation im Unterricht kann ein solcher Karton aber ganz andere Assoziatio-
nen auslösen.  

Wie bereits Winter (Winter, 2003, S. 26 ff.) feststellt, ist es allerdings im Ma-
thematikunterricht ein verbreitetes Vorgehen, zuerst einen mathematischen 
Inhalt ohne Sachkontext einzuführen und ihn dann mit Hilfe eingekleideter 
Sachaufgaben zu üben. Dies würde die beiden genannten Aspekte der Motiva-
tion und der Veranschaulichung nicht ganz treffen. Die Motivation wäre dann 
eventuell nur für kurzfristige Übungsphasen zu erreichen und die Veranschauli-
chung beim Lernen eines neuen mathematischen Inhalts würde nicht stattfin-
den können. In solchen Fällen könnten Sachaufgaben nur sehr eingeschränkt in 
der Funktion des Lernprinzips gesehen werden.  

Sieht man dagegen die Beschäftigung mit der Umwelt selbst als Lernziel, ist dies 
die allgemeinste Funktion des Sachrechnens. Hier steht dann die Sache und 
nicht das Rechnen im Mittelpunkt der Lernprozesse. Im Vordergrund steht zu-
nächst nicht, die Mathematik zu vermitteln, sondern die Umwelt – möglichst 
auch unter Einbeziehung mathematischer Mittel und Methoden – zu verstehen 
und zu erklären (Winter, 2003, S. 31 ff.). Winter spricht hier von Sachrechnen 
im eigentlichen Sinn. Damit ist das Sachrechnen aus sich heraus fächerübergrei-
fend und in der Folge für Lehrerinnen und Lehrer sehr anspruchsvoll (Winter, 
19 0, S. 3). 

Das Ziel des Sachrechnens ist unter diesem Aspekt die Befähigung zur Wahr-
nehmung und zum Verstehen von Erscheinungen unserer Welt. Damit wird 
Sachrechnen auch zur Sachkunde. Zentral ist hier der Aufbau mathematischer 
Modelle. Für das Modellieren, also für die Umwelterschließung, ist der Projekt-
unterricht eine empfehlenswerte Unterrichtsform. 

Im Aufgabenbeispiel Kopierer (s. Abb. 1. ) könnte man die Funktion des Sach-
rechnens als Lernziel dann als erreicht ansehen, wenn die Schülerinnen und 
Schüler mit mathematischen Methoden tatsächlich bestimmen würden, welcher 
Kopierer angeschafft werden sollte, und dies dann auch für die Schule eine 
relevante Information ist. Dann würden im Unterricht nicht sofort lineare 
Funktionen eingeführt und an anderen Beispielen betrachtet, sondern es würde 
das Problem des Kopierers mit allen Aspekten ausführlich bearbeitet. Dazu 
müssten gegebenenfalls auch weitere Informationen eingeholt und andere ma-
thematische Werkzeuge verwendet werden.  

Das Ziel des Sachrechnens unter diesem Aspekt ist die Befähigung zur Wahr-
nehmung und zum Verstehen von Erscheinungen unserer Welt. Damit wird 
Sachrechnen auch zur Sachkunde. Zentral ist hier der Aufbau mathematischer 
Modelle (s. Kapitel 3).  



116  1  Der Begriff des Sachrechnens 

 

 

 

 

 

 

 

 

 

 

 
Abb. 1.9 Funktionen des Sachrechnens 

1.4  Ziele des Sachrechnens 
Die Ziele des Sachrechnens orientieren sich an den Funktionen des Sachrech-
nens. Die Funktion des Sachrechnens als Lernstoff führt zu inhaltsorientierten 
Zielen des Sachrechnens, während das Sachrechnen als Lernprinzip zu pro-
zessorientierten Zielen führt.  

Sachrechnen als Lernziel (Erschließung der Umwelt) lässt sich in zwei Bereiche 
unterteilen. Der erste Bereich ist der Prozess des Entdeckens, der im Folgenden 
im Bereich der prozessorientierten Ziele beschrieben ist, und der andere Be-
reich ist die Kenntnis der Umwelt, die als inhaltorientiertes Ziel beschrieben 
werden kann. Zusätzlich hat Sachrechnen noch allgemeine Ziele, die durch die 
Funktionen des Sachrechnens nicht direkt abgedeckt sind. 

1.4.1  Inhaltsorientierte Ziele 
Die inhaltsorientierten Ziele des Sachrechnens lassen sich für zwei Bereiche des 
Sachrechnens beschreiben. So sind zum einen das Erlernen von mathemati-
schen Begriffen und Strukturen (Strehl, 19 9, S. 26) und zum anderen die 
Kenntnis der Umwelt inhaltsorientierte Ziele des Sachrechens. Hier haben die 
klassischen Inhalte des Sachrechnens, wie Größen und Zinsrechnung, eine 
besondere Bedeutung. Sie tragen dazu bei, die inhaltsorientierten Ziele beider 
Kategorien zu erfüllen. Zum einen sind beispielsweise Größen mathematische 
Objekte mit verallgemeinerbaren Strukturen (z. B. Größenbereich), und zum 
anderen fordert die Arbeit mit Größen auch eine Beschäftigung mit der Um-

Funktionen des 
SACHRECHNENS 

Lernziel:  
Umwelt entdecken 

und erklären 

Lernstoff:  
mathematische 

Inhalte  

Lernprinzip:  
mathematisch 

Arbeiten 
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welt heraus. Für die Arbeit mit Größen im Mathematikunterricht ist der Aufbau 
von Vorstellungen über Größen ein zentraler Punkt. So können Schülerinnen 
und Schüler nur dann Ergebnisse von Aufgaben auf Plausibilität überprüfen, 
wenn sie für bestimmte wichtige Einheiten sogenannte Stützpunktvorstellungen 
besitzen. Solche Stützpunktvorstellungen für das Volumen können etwa für 
1 Liter eine Milchpackung, für 10 Liter ein Putzeimer und für 100 Liter eine 
halb gefüllte Badewanne sein.   

 
Milchpackung 

 
Putzeimer 

 
halb gefüllte  
Badewanne 

 
1 Liter 

10 Liter 100 Liter 

Abb. 1.10 Stützpunktvorstellungen für Volumina 

1.4.2  Prozessorientierte Ziele 
Für das Sachrechens werden häufig Ziele genannt, bei denen nicht das Ergeb-
nis, wie die Kenntnis mathematischer Inhalte, im Vordergrund stehen, sondern 
der Weg zu diesen Zielen. Wichtig sind also Prozesse wie Diskussionen und 
Analysen der Umwelt mit mathematischen Mitteln (Spiegel & Selter, 2006, S. 
4). Wir können hier noch zwei Bereiche unterscheiden. Zum einen gibt es 

prozessorientierte Ziele, die spezifisch für den Sachrechenunterricht sind, und 
zum zweiten gibt es prozessorientierte Ziele, die im Sachrechenunterreicht eine 
wichtige Rolle spielen, aber für den Mathematikunterricht insgesamt von Be-
deutung sind.  

Ein zentrales Ziel des Sachrechenunterrichts ist das Erreichen von Modellie-
rungskompetenz, also der Fähigkeit, Probleme aus der Realität geeignet in die 
Mathematik zu übertragen, zu bearbeiten und zu lösen. Besonders der Schritt 
des Mathematisierens, also das Finden bzw. Erkennen eines geeigneten mathe-
matischen Modells, ist als ein wichtiges Ziel des Sachrechnens zu nennen (Fri-
cke, 19 , S. 11 20). Modellierungskompetenz hat zwar auch inhaltliche As-
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pekte, wie Metawissen über Modellierungsprozesse und die Kenntnis unter-
schiedlicher mathematischer Modelle. Dazu gehören etwa die Kenntnis konkre-
ter Modellierungskreisläufe und das Wissen über unterschiedliche mathemati-
sche Modelle, wie z. B. die proportionalen Zuordnungen. Im Vordergrund 
beim Modellieren steht aber das Potenzial, ein Modellierungsproblem lösen zu 
können, also ein prozessorientiertes Ziel. Etwas abgeschwächt kann dieses Ziel 
auch als das Anwenden von Mathematik beschrieben werden (Maier & Schu-
bert, 19 , S. 14).  

Im Zusammenhang mit Modellierungstätigkeiten können Schülerinnen und 
Schüler auch die Anwendbarkeit von Mathematik sowie deren Grenzen erfah-
ren (Fricke, 19 , S. 11 20). Dies ist ebenfalls ein wichtiges Ziel des Sachre-
chenunterrichts. 

Ein weiteres zentrales Ziel des Sachrechenunterrichts ist die Fähigkeit, Proble-
me zu lösen. Dazu gehören auch das von Fricke beschriebene kreative sowie 
das analytisch-synthetische Denken (Fricke, 19 , S. 11 20). Während aber die 
Modellierungskompetenz ein Ziel ist, welches auf Grund des Realitätsbezugs 
typischerweise zum  Sachrechnen zählt, ist dies bei der Problemlösekompetenz 
nicht der Fall. In vielen Fällen sind Sachaufgaben zwar als Problem anzusehen, 
für dessen Lösung also auch Problemlösekompetenz erforderlich ist; es gibt 
aber auch viele innermathematische Probleme, deren Lösung nicht in den Be-
reich des Sachrechnens fällt. Dazu zählen beispielsweise mathematische Bewei-
se. So ist die Problemlösekompetenz ein prozessbezogenes Ziel, welches nicht 
ausschließlich dem Sachrechnen zuzuschreiben ist, sondern für den Mathema-
tikunterricht insgesamt von Bedeutung ist (Strehl, 19 9, S. 26). 

Weitere prozessorientierte Ziele, die im Sachrechnen erreicht werden können, 
aber für den Mathematikunterricht insgesamt und auch darüber hinaus von 
Bedeutung sind, sind das Begründen und Argumentieren, das Reflektieren 
(Radatz & Schipper, 19 3, S. 20 f.) und der Einsatz geeigneter Werkzeuge wie 
Messgeräte und Computer.  

1.4.3  Allgemeine Ziele 
In diesem Abschnitt werden Ziele zusammengefasst, die nicht spezifisch für 
Inhalte und Prozesse des Sachrechenunterrichts sind, sondern darüber hinaus-
gehen. Diese Ziele können teilweise auch im Rahmen von anderen Fächern 
erreicht werden. 

Sachrechnen kann – ebenso wie andere Bereiche des Mathematikunterrichts – 
die Motivation steigern. Im Rahmen des Sachrechnens als Lernprinzip können 
Sachprobleme zu Beginn eines Lernprozesses dieses Ziel besonders gut erfüllen 
(Maier & Schubert, 19 , S. 14). 
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Sachrechnen kann durch seinen Bezug zur Umwelt besonders gut auch zu all-
gemeinen Zielen des Mathematikunterrichts beitragen. Durch die im Sachrech-
nen erlebten Alltagsprobleme, die mathematisch bearbeitet werden können, 
wird der Sinn des Faches Mathematik für die Schülerinnen und Schüler sehr gut 
deutlich. Außerdem kann durch Anwendungen besser auf Ausbildung, Beruf, 
Studium und Alltag vorbereitet werden (Westermann, 2003, S. 14 ). 

Der Realitätsbezug von Sachrechenproblemen legt es nahe, sich intensiver mit 
den zugehörigen Wissenschaften zu beschäftigen. Daher ist gerade das Sach-
rechnen ein guter Anknüpfungspunkt für Zusammenarbeit mit anderen Fä-
chern aber auch mit der Mathematik selbst. So ist das Durchführen fächerüber-
greifender Projekte ebenfalls ein Ziel des Sachrechnens (Jahner, 19 5, S. 25 ff.).  

Die Schülerinnen und Schüler beschäftigen sich im Rahmen des Sachrechnens 
auch mit Problemen aus der Gesellschaft. Mathematik hat so auch allgemein-
bildenden Charakter (Westermann, 2003, S. 14 ). Falls dies im Unterricht ge-
schieht, so ist durch die realen Anwendungen des Sachrechnens zumindest eine 
spätere Beschäftigung mit politischen, gesellschaftlichen oder ökonomischen 
Problemen vorbereitet (Maier & Schubert, 19 , S. 15). Beispielsweise ist die 
Diskussion von Steuermodellen ein möglicher gesellschaftsrelevanter Inhalt des 
Sachrechnens. Durch die Diskussion gesellschaftlicher und politischer Proble-
me können Schülerinnen und Schüler schließlich kompetent Verantwortung in 
der Gesellschaft übernehmen.   

1.5  Sachrechnen in den Bildungsstandards 
Ausgehend von den Lehrplänen und Bildungsstandards für die Primarstufe 
wird im Folgenden beschrieben, welchen Beitrag das Sachrechnen für den 
Kompetenzerwerb in der Sekundarstufe leisten kann. 

Sachrechnen gehört neben Arithmetik und Geometrie zu den traditionellen 
Inhalten des Mathematikunterrichts der Grundschule. Die Bildungsstandards 
im Fach Mathematik für den Primarbereich aus dem Jahr 2004 (KMK, 2005, S. 
) und beispielsweise der Lehrplan in Nordrhein-Westfalen für die Grundschu-

le (Ministerium für Schule NRW, 200 ) stellen nicht mehr Sachgebiete, sondern 
allgemeine und inhaltsbezogene mathematische Kompetenzen in den Mittel-
punkt des Mathematikunterrichts. Im Rahmen dieser allgemeinen, mathemati-
schen Kompetenzen wird für die Grundschule auch das Modellieren aufge-
führt. Die Bildungsstandards beschreiben in diesem Zusammenhang das Arbei-
ten mit Sachtexten und Darstellungen der Lebenswirklichkeit, das Übersetzen 
in die Sprache der Mathematik sowie das Übertragen mathematischer Lösungen 
auf die Ausgangssituation als zentrale Bausteine dieser Kompetenz. Diese Fä-
higkeiten gehören auch zum klassischen Sachrechnen. Zusätzlich wird in den 
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Lehrplänen für die Grundschule in Nordrhein-Westfalen explizit auf die Inhalte 
Größen und Messen hingewiesen. Dort werden Größenvorstellungen und Sachsi-
tuationen explizit genannt (Ministerium für Schule NRW, 200 , S. 5 ).  

Der Begriff Sachaufgaben wird häufig in den Bildungsstandards für die Primar-
stufe verwendet, taucht allerdings nicht mehr in den Bildungsstandards für den 
Hauptschulabschluss (KMK, 2005) bzw. den Mittleren Schulabschluss (KMK, 
2004) auf. Daher stellt sich die Frage, welche Rolle Sachrechnen in den Bil-
dungsstandards der Sekundarstufe I spielt.  

In der Sekundarstufe wird – ebenso wie in den Bildungsstandards für die 
Grundschule – die Kompetenz des mathematischen Modellierens beschrieben. 
Zusätzlich werden, im Rahmen der detaillierten Erläuterung der Leitideen, in 
den Bildungsstandards für die Sekundarstufe I relevante Tätigkeiten für das 
Sachrechnen beschrieben. Für den Hauptschulabschluss sind das folgende Teil-
kompetenzen:  

Die Schülerinnen und Schüler… 

 runden Zahlen dem Sachverhalt entsprechend sinnvoll; 

 verwenden Prozent- und Zinsrechnung sachgerecht; 

 prüfen und interpretieren Ergebnisse in Sachsituationen;  

 nehmen in ihrer Umwelt gezielt Messungen vor oder entnehmen Maßanga-
ben aus Quellenmaterial, führen damit Berechnungen durch und bewerten 
die Ergebnisse sowie den gewählten Weg in Bezug auf die Sachsituation; 

 unterscheiden proportionale und antiproportionale Zuordnungen in Sach-
zusammenhängen und stellen damit Berechnungen an; 

Zusätzlich werden für den mittleren Bildungsabschluss noch folgende Teil-
kompetenzen genannt: 

Die Schülerinnen und Schüler… 

 prüfen und interpretieren Ergebnisse in Sachsituationen unter Einbezie-
hung einer kritischen Einschätzung des gewählten Modells und seiner Be-
arbeitung; 

 beschreiben und begründen Eigenschaften und Beziehungen geometrischer 
Objekte (wie Symmetrie, Kongruenz, Ähnlichkeit, Lagebeziehungen) und 
nutzen diese im Rahmen des Problemlösens zur Analyse von Sachzusam-
menhängen; 

 geben zu vorgegebenen Funktionen Sachsituationen an, die mit Hilfe dieser 
Funktion beschrieben werden können. 
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Die Darstellung dieser Teilkompetenzen aus den Bildungsstandards zeigt, dass 
das Sachrechnen im weiteren Sinn auch im Rahmen der aktuellen Bildungs-
standards einen großen Raum einnimmt. Hier ist zu bemerken, dass für den 
Bereich des Mittleren Bildungsabschlusses die für die Hauptschule beschriebe-
nen Prozesse noch ergänzt werden. Sachrechen-Anteile in den Bildungsstan-
dards lassen sich also nicht auf die Hauptschule beschränken, wie man es aus 
der Geschichte des Sachrechnens vermuten könnte, sondern sie werden für die 
übrigen Schulformen sogar noch erweitert. Außerdem lassen sich nicht alle 
beschriebenen Teilkompetenzen unter der Kompetenz Modellieren zusammen-
fassen, sodass auch die weiter reichende Definition des Sachrechnens im Hin-
blick auf die Bildungsstandards durchaus sinnvoll ist.  

1.6  Aufgaben zur Wiederholung und Vertiefung 

Der Begriff Sachrechnen 

1. Schreiben Sie einen kurzen Aufsatz über die Beziehung von reiner Mathe-
matik und angewandter Mathematik. 

2. Definieren Sie für sich Sachrechnen, und begründen Sie ihren Standpunkt. 

3. Suchen Sie aus Schulbüchern drei Sachaufgaben heraus, und begründen Sie, 
warum es sich jeweils tatsächlich um eine Sachaufgabe handelt.  

4. Erläutern Sie mit Hilfe von Beispielen, unter welchen Bedingungen Sto-
chastik-Aufgaben auch Sachaufgaben sind. 

Ziele des Sachrechnens 

1. Sachaufgaben können in einem Lernprozess verschiedene Ziele verfolgen. 
Erstellen Sie Sachaufgaben, die jeweils ein Ziel des Sachrechnens besonders 
unterstützen. Begründen Sie Ihre Auswahl. 

2. Gibt es einen Zusammenhang zwischen den Zielen und den Funktionen 
von Sachaufgaben für den Mathematikunterricht? Begründen Sie Ihre 
Antwort mit Hilfe selbst erstellter Beispiele. 

Die Funktionen des Sachrechnens 

Betrachten Sie die folgende Aufgabenstellung (s. Abb. 1.11) zur Frage, wie viel 
Sand in einen Container passt (Greefrath, 200 ). Den Schülerinnen und Schü-
lern soll dazu eine der drei dargestellten Abbildungen des Containers zur Ver-
fügung gestellt werden. 

1. Erläutern Sie, wie sich die Auswahl des Bildes auf die Funktion des Sach-
rechnens, die mit der Aufgabe gefördert wird, auswirken kann. 
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2. Analysieren Sie, welche innermathematischen Fertigkeiten die Schülerinnen 
und Schüler besitzen müssen, um diese Aufgabe mit Hilfe des ersten bzw. 
dritten Bildes bearbeiten und lösen zu können.  

3. Analysieren Sie, welche außermathematischen Fähigkeiten die Schülerinnen 
und Schüler besitzen müssen, um diese Aufgabe mit Hilfe des ersten bzw. 
dritten Bildes bearbeiten und lösen zu können.  

 

Der Container soll bis zur Ladekante gefüllt werden. Wie viel Sand passt 
in den Container?  

 

 
 

 
 
 

 
 

Abb. 1.11 Aufgabenbeispiel Container 



 

 

2  Entwicklung des Sachrechnens 

Die Verwendung von Sachaufgaben zum Erlernen von Mathematik hat eine 
lange Geschichte. Wir wollen hier keinen vollständigen Blick auf die Geschichte 
von Anwendungen im Mathematikunterricht geben, sondern lediglich an eini-
gen Beispielen die wechselvolle Geschichte des Sachrechnens aufzeigen. Durch 
die Erfindung des Buchdrucks im 15. Jahrhundert wurde es möglich, Bücher 
zum Erlernen von Mathematik schnell zu verbreiten. Wir wollen daher in dieser 
Zeit mit einem Blick auf das Sachrechen beginnen.  

2.1  Historisches Sachrechnen 
Der Ausspruch „nach Adam Ries(e)” ist auch heute noch geläufig. Auf Grund 
des Bekanntheitsgrades beginnen wir mit einem Blick auf das Werk von Adam 
Ries.   

2.1.1  Adam Ries (1492-1559) 
Man findet bereits in Rechenbüchern von Adam Ries (1492 1559) viele Bei-
spiele für Sachaufgaben. Die Bücher von Adam Ries sind in deutscher Sprache 
verfasst und wurden auch aus diesem Grund bis ins 1 . Jahrhundert für den 
Mathematikunterricht verwendet.  
 

 
AAbb. 2.1 Titel eines Rechenbuches von Adam Ries (Ries, 1522) 
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Silber und Goldt Rechnung 

Zur ersten hab achtung auffs gewicht unnd wisse daß ein marck helt 16 
loth ein Loth 4 quinten ein quinten 4 pfenning gewicht und ein pfenning 
gewicht 2 heller gewicht. Aber in goldt mach 24 karat ein marck. 4 gran 
ein karat und 3 grän einen gran. 

Item 384 marck 13 loth 3 quenten fein silber kost ein margk 8 floren 
facit 3078 floren 17 Schilling 6 Heller machs also sprich: ein mark für 8 
floren wie komen 384 margk 13 lot 3 quenten mach quenten stehen.  

64    8      24631 

Abb. 2.2 Textausschnitt von Adam Ries (Ries, 1522) 

 
Abb. 2.3 Ausschnitt aus einem Rechenbuch von Adam Ries (Ries, 1522) 

 

Einen großen Teil des abgebildeten Buches nimmt eine Aufgabensammlung 
ein, in der viele relevante Bereiche des täglichen Lebens wie Preisberechnun-
gen, Warentransport, Geldwechsel, Warentausch, Prozentrechnung, Zins- und 
Zinseszinsrechnung und Münzschlag behandelt werden. Dabei spielt die Me-
thode des Dreisatzes (regula de tribus), dem insgesamt 190 Sachaufgaben ge-
widmet sind, eine zentrale Rolle (Ries, 1522). 
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Das abgebildete Buch von Adam Ries war in erster Linie für Lehrlinge kauf-
männischer und handwerklicher Berufe verfasst. Das erklärt auch die Auswahl 
der Inhalte. Das Rechnen mit Größen war zu dieser Zeit bereits ein Schwer-
punkt von Sachaufgaben.  

2.1.2  Johann Heinrich Pestalozzi (1746-1827) 
Pestalozzis Arbeit galt der Neu- und Umgestaltung des Volksschulunterrichts. 
Er arbeitete an einem neuen Konzept für einen auf pädagogischen Prinzipien 
beruhenden Rechenunterricht. Dabei betrachtet er als wichtigstes Ziel, auf das 
alle Prinzipien hinarbeiten, die formale Bildung. So sieht Pestalozzi vor, den 
Schülerinnen und Schülern klare Begriffe und Einsichten zu vermitteln. Die 
Aufgabe des Rechenunterrichts bestehe darin, den Verstand aller Menschen zu 
entwickeln und zu schulen. Deshalb musste das praktische Rechnen hinter dem 
Denkrechnen zurückstehen. Pestalozzi wurde daher auch vorgeworfen, die 
formale Bildung überzubetonen und das Sachrechnen völlig zu vernachlässigen 
(Radatz & Schipper, 19 3, S. 29).  

2.1.3  Sachrechnen im 19. Jahrhundert 
Im 19. Jahrhundert wurden kontrovers die formale Bildung und die entsprechen-
de Gegenbewegung, die man als materielle Bildung bezeichnen kann, gegeneinan-
der gestellt (Winter, 19 1, S. 666).  

Nach der Revolution von 1 4 49 wurden die von Pestalozzi ausgegangenen, 
neuhumanistischen Bildungsreformen im Bereich der Volksschule gestoppt. 
Durch die strikte Trennung der Schularten wurde die Weiterentwicklung des 
Faches Rechnen in der Volksschule völlig getrennt vom Gymnasialbereich 
vollzogen. 

Es gab Initiativen, den Rechenunterricht der Volksschule „möglichst eng an 
den Sachunterricht anzuschließen“. Dabei wird hier auf das von Goltzsch und 
Theel verfasste Buch Der Rechenunterricht in der Volksschule aus dem Jahr 1 59 
Bezug genommen. In diesem Buch wird darauf Wert gelegt, die Schülerinnen 
und Schüler auf das Leben praktisch vorzubereiten. „Die Kinder sollen durch 
denselben [Rechenunterricht] Kenntnis von den später an sie herantretenden 
Lebensverhältnissen und der Art und Weise, wie die Zahlen und Zahlverhält-
nisse auf beide anzuwenden sind, erhalten“ (Hartmann, 1913, S. 104).  

Der Konflikt über den Wert von Anwendungen in der Mathematik und damit 
auch von Sachaufgaben spiegelt sich in den am gleichen Tag in Berlin aufge-
stellten Doktorthesen des späteren Professors für angewandte Mathematik in 
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Göttingen, Carl Runge, und des späteren Ordinarius für Mathematik in Zürich, 
Ferdinand Rudio, wider (s. Abb. 2.4). 
 

 

 
Abb. 2.4 Doktorthesen von Runge und Rudio (Ahrens, 2002, S. 188) 

Nach der Einführung der Basisgrößen Meter, Kilogramm und Sekunde auf der 
ersten Generalkonferenz für Maß und Gewicht (CGPM) im Jahr 1 9 mussten 
die damals neuen Maße und Gewichte zunächst bekannt gemacht werden.  

 

 

 
Abb. 2.5 Kochbuch aus dem Jahr 1903 (Kurth & Petit, 1903) 
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Das ergibt Ende des 19. Jahrhunderts eine weitere Berechtigung für Sachaufga-
ben, da auf diese Weise die neuen Einheiten in den Mathematikunterricht Ein-
gang finden können.  

Das historische Sachrechnen bestand zu einem wesentlichen Teil aus der Ver-
mittlung von und dem Umgang mit Größen im Mathematikunterricht. Dabei 
sind die Größen für Längen, Gewichte und Zeit sowie deren abgeleitete Einhei-
ten für Flächen und Volumina von zentraler Bedeutung. Außerdem ist die 
Verwendung der jeweiligen Währung ein zentraler Bestandteil des Sachrech-
nens.   

2.2  Sachrechnen im 20. Jahrhundert  
Die noch im 19. Jahrhundert übliche Abgrenzung zwischen Volksschule und 
Gymnasium durch die Behandlung des lebensnahen Sachrechnens in der 
Volksschule und des abstrakten Mathematikunterrichts im Gymnasium wurde 
im Laufe des 20. Jahrhunderts aufgehoben.  

Die folgenden Ausschnitte (s. Abb. 2.6 u. 2. ) aus einem Rechenbuch von 
Backhaus und Wiese für das 5. und 6. Schuljahr zeigen typische Aufgaben aus 
der Volksschule. 

Zum Sachrechnen findet man außer Aufgaben zur Bruch- und Dezimalbruch-
rechnung explizit Aufgaben zu den Bürgerlichen Rechnungsarten wie Schlussrech-
nung, Durchschnittsrechnung und Hundertstelrechnung.  

 

 
Abb. 2.6 Rechenbuch aus dem Jahr 1925 (Backhaus, Wiese, & Nienaber, 1925, S. 94) 



228  2  Entwicklung des Sachrechnens 

 

 
Abb. 2.7 Rechenbuch aus dem Jahr 1925 (Backhaus, Wiese, & Nienaber, 1925, S. 5) 

2.2.1  Johannes Kühnel (1869-1928) 
Auch der Rechenunterricht wurde durch die reformpädagogische Bewegung 
beeinflusst. Stellvertretend wird hier Johannes Kühnel als Vertretet der reform-
pädagogischen Bewegung genannt. Im Jahr 192  fordert Kühnel in seinem 
Buch Lebensvoller Rechenunterricht einen sachlicheren, fächerübergreifenden Ma-
thematikunterricht. Dadurch sollte der Rechenunterricht praktischer und le-
bensnäher werden. Er hält die damals üblicherweise unterrichtete Mischungs- 
und Gesellschaftsrechnung im Schulunterricht des 20. Jahrhunderts für völlig 
lebensfremd. Im Rahmen der Gesellschaftsrechnung wurden beispielsweise 
Probleme der Verteilung von Geld nach vorgegebenen Verhältnissen bearbei-
tet. Ein typisches Problem der Mischungsrechnung wäre etwa, dass ein Händler 
eine bestimmte Menge 60%igen Alkohol liefern soll, aber nur 40%igen und 
0%igen Alkohol vorrätig hat.  Im Rahmen der Mischungsrechnung wird dann 

bestimmt, wie viel Liter von der jeweiligen Sorte zu verwenden sind.  

 

„Ich muss zu meiner Schande gestehen, daß ich in meinem ganzen Leben 
noch keine Gesellschaftsrechnung nötig gehabt habe, außer im Unter-
richt. (…) Und Mischungsrechnung! Ich habe wirklich noch nicht ein ein-
ziges Mal Kaffee oder Spiritus oder Gold mischen oder eine solche Mi-
schung berechnen müssen, und vielen hundert anderen Nichtpädagogen 
-, die ich darum gefragt habe, ist es gerade so ergangen.“ (Kühnel, S. 
178) 

 

Er kritisiert besonders Einkleidungsaufgaben und fordert Aufgaben, die die 
Schülerinnen und Schüler wirklich interessieren.  
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In dieser Zeit wurde die Bedeutung des Sachrechnens deutlich stärker im Lern-
prozess gesehen, beispielsweise zur Veranschaulichung und Motivationssteige-
rung, als für die Vorbereitung auf das Leben (Winter, 19 1, S. 666). 

2.2.2  Die Meraner Reform  
Während die Arbeiten von Kühnel und anderen Reformpädagogen stärkeren 
Einfluss auf die Volksschulen hatten, gab es auch an den Gymnasien Initiativen 
zur Veränderung des Unterrichts. Durch die Meraner Reformbewegung Anfang 
des 20. Jahrhunderts wurde ein ausgewogeneres Verhältnis zwischen Formal- 
und Materialbildung angeregt. Insbesondere das Funktionale Denken wurde 
dabei in den Mittelpunkt gestellt. Das im Rahmen der Meraner Reform eben-
falls propagierte utilitaristische Prinzip sollte „die Fähigkeit zur mathematischen 
Behandlung der uns umgebenden Erscheinungswelt zur möglichsten Entwick-
lung bringen“ (Klein, 190 , S. 209). Durch die industrielle Revolution stieg der 
Bedarf an Naturwissenschaftlern und Technikern. So kann es in dieser Zeit zu 
einem Aufstieg der Angewandten Mathematik und damit zu einem verstärkten 
Einsatz von Sachproblemen. Dieser Trend lässt sich bis in die 1950er Jahre 
beobachten (Toepell, 2003).  

2.2.3  Sachrechnen im Nationalsozialismus 
 

 
Abb. 2.8 Sachaufgaben aus der Zeit des Nationalsozialismus (Stöffler, um 1942, S. 37) 
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Während der Zeit des Nationalsozialismus (1933 1945) kam dem Rechenunter-
richt im Vergleich zu anderen Fächern nur eine unbedeutende Rolle zu. Aus 
diesem Grund wurde keine nationalsozialistisch geprägte, eigenständige Ma-
thematikdidaktik entwickelt.  

Nur vereinzelt gehen Autoren explizit auf die nationalsozialistischen Erzie-
hungsideen ein. Allerdings lässt sich gerade in Sachaufgaben der nationalsozia-
listische Einfluss deutlich erkennen. Das Sachrechnen in den höheren Klassen 
wird ergänzt mit Aufgaben, die sich mit dem Militär, nationalsozialistischer 
Ideologie etc. beschäftigen. 

2.2.4 Sachrechnen in der Nachkriegszeit 
In der Nachkriegszeit wurde im Schulwesen an die Ideen der Reformpädagogik 
nahtlos angeknüpft. Gerade in den 1950er Jahren und Anfang der 1960er Jahre 
fanden Kühnels Werke weiter großen Anklang und wurden vielfach verkauft. 
 

 
Abb. 2.9 Sachaufgaben aus der Nachkriegszeit (Straub, 1949, S. 55) 

2.2.5  Die Neue Mathematik 
Mit Neuer Mathematik bezeichnet man die Reform des Mathematikunterrichts 
während der 1960er und 19 0er Jahre. Dabei sollte Mathematik stärker als Be-
schäftigung mit abstrakten Strukturen gelehrt werden. Das Sachrechnen ist 
durch diese Reform erstaunlicherweise nicht völlig verdrängt worden, sondern 
wurde auf unterschiedliche Weisen sogar positiv beeinflusst. Erstens wurde der 
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mathematische Kern des Sachrechnens deutlicher herausgearbeitet, wie z. B. 
proportionale und antiproportionale Funktionen, zweitens wurde das inhaltli-
che Repertoire des Sachrechnens ausgeweitet, z. B. durch die Einführung der 
Wahrscheinlichkeitsrechnung in die Schulmathematik, und drittens wurden die 
Methoden des Sachrechnens, z. B. durch Diskussion von Veranschaulichungen 
mit Hilfe von Diagrammen (vgl. 2.2.6), ausgeweitet (Winter, 19 1, S. 66 66 ). 

2.2.6  Systematisches Sachrechnen 
Breidenbach hat die inhaltliche Struktur von Sachaufgaben in den Vordergrund 
gestellt und damit in den 60er und 0er Jahren des 20. Jahrhunderts das Simp-
lex-Komplex-Verfahren etabliert. Für ihn ist die vertiefte Betrachtung des Un-
terrichtsgegenstandes zentral. Im Prinzip handelt es sich dabei um einen Rück-
griff auf die Zeit vor der Reformpädagogik (Radatz & Schipper, 19 3, S. 45). Er 
unterscheidet Schwierigkeitsgrade von Sachaufgaben durch ihre strukturelle 
Komplexität und regt an, diese entsprechend zu ordnen. Breidenbach be-
schreibt als strukturell einfachste Form von Sachaufgaben die Simplexaufgabe. 

 

Begriff Simplexaufgabe 

Es sind genau zwei Größen gegeben. Die gesuchte Größe lässt sich da-
raus eindeutig berechnen (Fricke, 1987, S. 28). 

 

Eine Komplexaufgabe dagegen besteht aus mehreren zusammenhängenden Simp-
lexen (Breidenbach, 1969). Wir betrachten als Beispiel eine einfache Komplex-
aufgabe, die aus zwei Simplexen besteht (Fricke, 19 ).  

 

Beispiel Komplexaufgabe 

In einer Klasse sind 13 Mädchen und 19 Jungen. Immer zwei Kinder sit-
zen an einem Tisch. Wie viele Tische muss der Hausmeister in die Klasse 
stellen?  

 

Die Struktur dieser Komplexaufgabe kann mit Hilfe eines Diagramms veran-
schaulicht werden (s. Abb. 2.10). 

Zu dieser gegebenen Struktur gibt es viele andere Sachaufgaben. Ebenso hat die 
folgende Aufgabe ein identisches Strukturdiagramm. 
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Abb. 2.10 Struktur einer einfachen Komplexaufgabe (Fricke, 1987, S. 30) 

 

Rasmus und Linus zählen ihre Spielzeugautos. Linus hat 13 Autos, Ras-
mus 19. Sie wollen ihre Autos gerecht aufteilen. Wie viele Autos bekommt 
jeder? 

 

 
Abb. 2.11 Struktur einer komplexen Sachaufgabe (Fricke, 1987, S. 32) 
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 Dieses Vorgehen, die Struktur von Sachaufgaben unabhängig von ihrem Kon-
text zu erfassen und die Struktur als Hilfsmittel für Schülerinnen und Schüler 
zu verwenden, erscheint zunächst plausibel. Um die möglichen Probleme eines 
solchen Vorgehens zu verdeutlichen, wird hier ein weiteres Beispiel vorgestellt.  

 

Schreinergeselle Michaelis hatte in der letzten Woche bei 42 Stunden und 
5 Überstunden (Zuschlag 2,10 DM je Stunde) einen Lohn von 405,30 DM. 
In dieser Woche arbeitete er nur 38 Stunden und machte 3 Überstunden. 
Wie viel Lohn bekommt er? (Fricke, 1987, S. 31) 

 

Diese Aufgabe hat eine deutlich höhere Komplexität als das oben besprochene 
Beispiel. Versucht man die Struktur dieser Aufgabe im Sinne Breidenbachs mit 
Hilfe eines entsprechenden Diagramms darzustellen, so erhält man eine um-
fangreiche Baumstruktur (s. Abb. 2.11). 

Die Schwierigkeit für Schülerinnen und Schüler, zu Beginn des Lösungsprozes-
ses der Aufgabe die einzelnen Simplexe zu extrahieren und eine solche Kom-
plex-Struktur der Aufgabe zu durchdringen, liegt darin, die gesamte Struktur 
der Aufgabe zu verstehen, bevor mit dem Lösungsprozess begonnen wird.  
 

 
Abb. 2.12 Rechenbaum in einem Schulbuch aus dem Jahr 1969 (Winter & Ziegler, 1969, 
S. 156) 
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Abb. 2.13 Beispiel für Rechenbäume in einem aktuellen Schulbuch (Böttner, et al., 
2005, S. 47) 

 So müsste die Planung des Lösungsprozesses abgeschlossen sein, bevor mit 
der Ausführung begonnen wird. Dies ist jedoch keine realistische Annahme. 
Studien zeigen, dass Schülerinnen und Schüler während der Lösung von Auf-
gaben häufig zwischen Planungs- und Bearbeitungsphasen wechseln (Greefrath, 
2004). Lösungsplanung und Realisierung können bei komplexen Aufgaben also 
nicht getrennt werden.  

Es ist im Unterricht überdies nicht sinnvoll, alle möglichen Simplexe zu behan-
deln. Es besteht die Gefahr, das Sachrechnen zu stark zu formalisieren und 
dadurch eigene, kreative Lösungswege der Schülerinnen und Schüler zu verhin-
dern (Franke, 2003, S. 14 ff.). 

Aus dem Ansatz des systematischen Sachrechnens entstanden Rechenbäume 
für die Schülerinnen und Schüler. Diese Rechenbäume wurden in Schulbücher 
als Hilfekonzept für die Bearbeitung von Sachaufgaben aufgenommen (s. Abb. 
2.12). 
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Zusätzlich zu den oben aufgeführten Argumenten muss bedacht werden, dass 
das Herstellen der Rechenbäume im Unterricht erlernt werden muss. Hier sollte 
sorgfältig abgewogen werden, ob der Gewinn durch solche Darstellungen im 
Vergleich zu dem damit verbundenen Aufwand gerechtfertigt ist. Damit Schü-
lerinnen und Schüler einen solchen Rechenbaum anfertigen können, müssen sie 
die Struktur der Aufgabe bereits erfasst haben. Dadurch wird der Rechenbaum 
als Hilfe für die Planung in Frage gestellt (Franke, 2003, S. 1  f.). 

Auch heute findet man in Schulbüchern noch Rechenbäume (s. Abb. 2.13). Sie 
haben aber häufig den Sinn, die Struktur einer Rechnung zu verdeutlichen, und 
weniger, die Struktur einer Textaufgabe aufzudecken. Als Lösungshilfe für 
Sachaufgaben im Sinne von Simplexen und Komplexen werden Rechenbäume 
in der Regel nicht mehr verwendet.  

2.2.7  Das Neue Sachrechnen 
Das sogenannte Neue Sachrechnen entstand in den 0er Jahren des 20. Jahrhun-
derts. Man begann die Prinzipien der Meraner Reform von 1905 wieder stärker 
zu beachten. Im Zusammenhang mit dem Sachrechnen ist das utilitaristische 
Prinzip zu nennen, bei dem es darum ging, die Fähigkeit zur mathematischen 
Betrachtung der Umwelt zu entwickeln (Toepell, 2003, S. 1 0).  

Ziele des Neuen Sachrechnens waren, für die Schülerinnen und Schüler authen-
tische Themen zu finden und längerfristige Projekte durchzuführen. Diese 
sollten losgelöst vom aktuell behandelten mathematischen Inhalt vielfältige 
Lösungsmöglichkeiten bieten. Dazu wurden schließlich auch neue Aufgabenty-
pen, wie z. B. Fermi-Aufgaben (vgl. 4.2.4) oder Zeitungsaufgaben (Herget & 
Scholz, 199 ), verwendet. 

2.2.8  Modellieren und angewandte Mathematik 
Gleichzeitig zur Entwicklung des Neuen Sachrechnens verbreitete sich ver-
stärkt der Begriff des Modellierens im Mathematikunterricht. Unter Modellieren oder 
Modellbilden wird ein bestimmter Aspekt der angewandten Mathematik ver-
standen. Dieser Aspekt wird zum Teil als eigenständiger Prozess innerhalb von 
Anwendungen oder als eine Auffassung des Anwendens verstanden (Fischer & 
Malle, 19 5, S. 99). Die stärkere Betonung des Modellierungsaspekts im Zu-
sammenhang mit Anwendungsaufgaben, also auch im Zusammenhang mit 
Sachrechnen, hat Pollak Ende der 0er Jahre angestoßen.  

Unter anderen hat Pollak 19 6 den Begriff des Modellierens in der Mathema-
tikdidaktik bekannt gemacht. Er unterscheidet zur Begriffsklärung vier Defini-
tionen von angewandter Mathematik (Pollak, 19 , S. 255 f.).  
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 Klassische Angewandte Mathematik (physikalische Anwendungen der Ana-
lysis) 

 Anwendbare Mathematik (Statistik, Lineare Algebra, Informatik, Analysis) 

 Einfaches Modellieren (einmaliges Durchlaufen eines Modellbildungskreis-
laufs) 

 Modellieren (mehrmaliges Durchlaufen eines Modellbildungskreislaufs) 

Diese vier Charakterisierungen von angewandter Mathematik sind äußerst un-
terschiedlich. Die ersten beiden Punkte beziehen sich auf Inhalte (klassische 
bzw. anwendbare Mathematik) und die letzten beiden Punkte beziehen sich auf 
den Bearbeitungsprozess. Der Begriff Modellieren legt also den Fokus auf den 
Bearbeitungsprozess. Alle vier Definitionen von angewandter Mathematik wer-
den von Pollak visualisiert (s. Abb. 2.14).  

 
 

 
Abb. 2.14 Sichtweisen auf die angewandte Mathematik nach Pollak (Pollak, 1977, S. 
256)  

Modellieren ist dann als mehrfach zu durchlaufender Kreislauf von der Realität 
(bzw. Rest der Welt) zur Mathematik und zurück zu verstehen.  

 

Das mathematische Modellieren ist in den 0er Jahren des letzten Jahrhunderts 
in Deutschland besonders durch Werner Blum bekannt geworden (s. Abb. 
2.15). Im Lauf der folgenden Jahre hat es in Lehrpläne und Standards für den 
Mathematikunterricht Einzug gehalten. 
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Abb. 2.15 Modellbildungskreislauf nach Blum (Blum, 1985, S. 200)  

In diesem Zusammenhang kann auch der Begriff anwendbare Mathematik von 
Hans Freudenthal genannt werden. Es soll damit deutlich werden, dass es wei-
terhin Mathematik betrieben wird. Dies wird durch den Begriff Anwendungen 
nicht so deutlich (Jahner, 19 5, S. 15).  

2.3  Sachrechnen heute – einige Anmerkungen 
Mit Blick auf die wechselvolle Geschichte des Sachrechnens und viele nicht 
erfolgreiche Versuche, authentische und relevante Probleme in den Sachrechen-
unterricht einzubeziehen, wird das Wort Sachrechnen heute oft mit eher unge-
eigneten Textaufgaben in Verbindung gebracht.  

Sachrechnen im Sinne der Auseinandersetzung mit der Umwelt sowie der Be-
schäftigung mit wirklichkeitsbezogenen Aufgaben im Mathematikunterricht hat 
auch heute noch seine Berechtigung und spielt auch im Mathematikunterricht 
eine große Rolle.  

Zur Klarstellung dieser Intention sollte man daher häufig besser von Modellieren 
sprechen. Dieser Begriff deckt allerdings nicht die ganze mögliche Bandbreite 
von sinnvollen Aufgaben mit Realitätsbezug ab. Beispielsweise können einfache 
Sachaufgaben, die man nicht als Modellierungsaufgaben bezeichnen kann, auch 
dem Verständnis von Teilaspekten des Modellierens oder der Motivation die-
nen.  

So sollte der Name Sachrechnen erhalten bleiben, aber in Zukunft stärker mit 
Modellierungstätigkeiten als mit dem Lösen eingekleideter Textaufgaben in 
Verbindung gebracht werden.  
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2.4  Aufgaben zur Wiederholung und Vertiefung 
Ältere Geschichte des Sachrechnens 

Sachaufgaben sind durch einen Bezug zur Realität gekennzeichnet. Informieren 
Sie sich in der Literatur zur Mathematikgeschichte, ob man in der Antike be-
reits Aufgaben findet, die man aus heutiger Sicht zum Sachrechnen zählen wür-
de. 

Literaturhinweise zur Aufgabe: 

 Hofmann, Joseph Ehrenfried: Geschichte der Mathematik. Erster bis dritter Teil, 
2. Auflage, Berlin, 1963. 

 Tropfke, Johannes: Geschichte der Elementarmathematik, Band 1: Arithmetik und 
Algebra, Berlin New ork, 19 0. 

 Cantor, Moritz: Vorlesungen über Geschichte der Mathematik, Erster bis vierter 
Band, dritte Auflage, 1965. 

Neuere Geschichte des Sachrechnens 

Untersuchen Sie die folgende Aufgabe: 

 

Durch das Umsiedlungswerk wurden nach dem Polenfeldzug viele Volks-
deutsche in den deutschen Lebensraum zurückgeführt aus: 

Litauen 50 000, Bessarabien 93 400, Südtirol 185 000, Estland und Lett-
land 75 000, Dobrudscha 14 500, Nord- und Südbuchenland 99 300, 
Galizien und Wolhynien 130 000, Cholmer u. Lubliner Land 32 500, Ge-
neralgouvernement 50 000.  

Das gibt a. viele sechsköpfige Familien für Erbhöfe, b. viele Bauerndörfer 
mit 800 Bewohnern. 

Für das Altreich hat die Volkszählung von (…) mit rd. 68,6 Mill. noch eine 
Bevölkerungsdichte von rd. 146 ergeben; wir vergleichen mit der Bevöl-
kerungsdichte der zurückgewonnenen Gebiete (rd. 108). 

 

1. In welcher Zeit könnten die abgebildeten Sachaufgaben gestellt worden 
sein? 

2. Welche Ziele verfolgen diese Sachaufgaben? 

Systematisches Sachrechnen 

Untersuchen Sie die folgende Aufgabe: 
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Ein Wasserbehälter, der 5 m lang, 4 m breit und 3 m hoch ist, ist bis 1,50 
m unter dem Rand mit Wasser gefüllt. Die Wassermenge soll durch Zu-
fluss auf 40 m³ ansteigen. Um wie viele Zentimeter wird der Wasserspie-
gel steigen? 

 

1. Erklären Sie die Begriffe Simplex und Komplex mit Hilfe der oben gestellten 
Wasserbehälter-Aufgabe. 

2. Lösen Sie die Aufgabe mit Hilfe eines Rechenbaumes. 

3. Erstellen Sie eine weitere Sachaufgabe, deren Lösung auf exakt den glei-
chen Rechenbaum führt. 

4. Welche Funktion des Sachrechnens erfüllt die oben genannte Sachaufgabe 
im Mathematikunterricht in erster Linie? 

5. Welche Schwierigkeiten können bei Schülerinnen und Schülern auftreten, 
wenn sie solche Aufgaben mit Hilfe eines Rechenbaumes lösen sollen. 

6. Beziehen Sie Stellung zu der Auffassung von Breidenbach, dass „die Lö-
sung von umfangreichen Aufgaben auf die Auflösung in mehrere Simplexe 
hinausläuft“. Deshalb ist nach seiner Meinung „das Erkennen eines 
Simplexes der Generalschlüssel, mit dem alle Sachaufgaben gelöst werden 
können und müssen“ (Franke, 2003, S. 15).  

 

 



 

 

3  Modellieren und Problemlösen 

Modellieren und Problemlösen sind in den Bildungsstandards der Kultusminister-
konferenz (KMK, 2004) und in den Kernlehrplänen (Ministerium für Schule 
NRW, 2004) bzw. Bildungsplänen der einzelnen Bundesländer als allgemeine 
mathematische Kompetenzen oder prozessbezogene Kompetenzen in herausgehobener 
Weise benannt.  

Modellieren ist spätestens seit Gründung der ISTRON-Gruppe  im Jahr 1990 
(Förster, Henn, & Meyer, 2000, S. iv) eine sowohl in der Mathematikdidaktik 
als auch in der Schulpraxis vieldiskutierte Kompetenz. Modellierungstätigkeiten 
bilden das Zentrum des modernen Sachrechenunterrichts im Dienste der Um-
welterschließung (Winter, 2003, S. 32).   

Mit Modellieren und Problemlösen verbindet man häufig mathematische 
Kompetenzen, die nicht klar voneinander abgrenzbar sind. Während man prob-
lemlösendes Arbeiten in inner- und außermathematischen Kontexten kennt, ist 
mit Modellieren zwar in der Regel die Arbeit mit Problemen aus der Umwelt 
gemeint. Dennoch ist im Bereich der außermathematischen Kontexte eine 
Trennung der Begriffe schwierig. Daher sollen in den folgenden Abschnitten 
diese Begriffe genauer gefasst werden.  

3.1  Modellieren 
Modellieren und Sachrechnen werden häufig als Gegensätze wahrgenommen. 
Dies ist aber nicht ganz korrekt. Das Modellieren ist sogar – zumindest nach 
unserer Auffassung – der zentrale Teil des Sachrechnens. Sachrechnen be-
schreibt die Auseinandersetzung mit der Umwelt im Mathematikunterricht. 
Dies geschieht am besten durch echte Probleme, die mathematisch bearbeitet 
werden, und nicht nur durch Sachaufgaben mit einem Bezug zur Realität. Viel-
leicht ist die folgende Sichtweise hilfreich, um die beiden Standpunkte zu klä-
ren.  

Werden Anwendungsaufgaben entwickelt, um für bestimmte mathematische 
Inhalte eine Sachaufgabe zu erhalten, so denkt man häufig in Richtung der 
mathematischen Inhalte, und der Anteil der Realität ist dann eher nebensäch-
lich. Bei diesem Verfahren können leicht eingekleidete Textaufgaben entstehen, 
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die dann zum Bereich des Sachrechnens gezählt werden. Geht man aber von 
einem Problem in der Realität aus und beginnt dies mit mathematischen Me-
thoden zu lösen, so steht das Modellieren im Mittelpunkt. Schwieriger ist es 
dann, ein Modellierungsproblem passend für genau die aktuell im Unterricht 
behandelten Inhalte zu finden.  

Dennoch umfasst Sachrechnen beide Richtungen, auch wenn der Modellie-
rungsaspekt im Vordergrund stehen sollte. Wir wollen uns im Folgenden inten-
siver mit dem Modellieren und dem mathematischen Modell beschäftigen. 

Der Modellbildungsprozess im Mathematikunterricht wird meist idealisiert als 
Kreislauf dargestellt. Bevor wir zu einer genaueren Diskussion dieses Kreislaufs 
kommen, wird zunächst der Begriff des Modellierens betrachtet. 

Wir verwenden die Begriffe Modellieren und Modellbilden synonym. Mit Mo-
dellieren wird die Tätigkeit bezeichnet, durch die ein mathematisches Modell zu 
einem Anwendungsproblem aufgestellt und bearbeitet wird (Griesel, 2005, S. 
64). 

3.1.1  Mathematisches Modell 
Da beim Modellieren die Schaffung eines mathematischen Modells stattfindet, 
muss nun genauer der Begriff des mathematischen Modells diskutiert werden. 
Für diesen Begriff finden wir in der Literatur viele Beschreibungen. Vier dieser 
Definitionen eines mathematischen Modells werden hier exemplarisch vorge-
stellt. 

 

Isolierte Wirklichkeit 

Ein Modell ist ein vereinfachendes Bild eines Teils der Welt. Dazu wird der 
zu betrachtende Teil der Wirklichkeit isoliert und seine Verbindungen zur 
Welt kontrolliert. Die Subsysteme des Teils der Wirklichkeit werden durch 
bekannte Teile ersetzt, ohne die Gesamtstruktur zu zerstören. (Ebenhöh, 
1990, S. 6; Leuders & Maaß, 2005, S. 2) 

 

Vereinfachung 

Ein Modell ist eine vereinfachende, nur gewisse, einigermaßen objekti-
vierbare Teilaspekte berücksichtigende Darstellung der Realität. (Henn & 
Maaß, 2003, S. 2) 
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Anwendung von Mathematik 

Ein mathematisches Modell ist eine Darstellung eines Sachverhaltes, auf 
die mathematische Methoden angewandt werden können, um ein ma-
thematisches Resultat zu erhalten. (Zais & Grund, 1991, S. 7) 

 

Entsprechung 

Ein mathematisches Modell ist jede vollständige und konsistente Menge 
von mathematischen Strukturen, die darauf ausgelegt ist, einem anderen 
Gebilde, nämlich seinem Prototyp, zu entsprechen. Dieser Prototyp kann 
ein physikalisches, biologisches, soziales, psychologisches oder konzep-
tionelles Gebilde sein, vielleicht sogar ein anderes mathematisches Mo-
dell.  

(Aris, zitiert nach Davis & Hersh, das Wort Gleichung wurde dabei nach 
dem Vorschlag von Aris durch Struktur ersetzt; Davis & Hersh, 1986, S. 
77) 

 

Ein mathematisches Modell ist also eine isolierte Darstellung der Welt, die ver-
einfacht worden ist, dem ursprünglichen Prototyp entspricht und zur Anwen-
dung von Mathematik geeignet ist. 

Bei der Bildung eines mathematischen Modells wird demnach ein System durch 
ein anderes ersetzt, das leichter beherrschbar ist. Dabei werden Strukturelemen-
te, die für wesentlich gehalten werden, auf das neue System übertragen (Freu-
denthal, 19 , S. 130). 

Die Bearbeitung eines realen Problems mit mathematischen Methoden hat auch 
Grenzen, da die komplexe Realität nicht vollständig in ein mathematisches 
Modell übertragen werden kann. Dies ist sogar im Regelfall gar nicht er-
wünscht. Ein Grund für das Erstellen von Modellen ist die Möglichkeit der 
überschaubaren Verarbeitung der realen Daten. Im Rahmen eines Modellbil-
dungsprozesses wird deshalb nur ein bestimmter Ausschnitt der Wirklichkeit in 
eine mathematische Form gebracht (Henn, 2002, S. 5). Das Modell dient in 
vielen Fällen als Ersatzkonstruktion für die nicht erfassbare Realität, die so 
wenigstens teilweise bearbeitet werden kann (Müller & Wittmann, 19 4, S. 253). 
Auch wenn ein mathematisches Modell die Situation nur partiell darstellt, kann 
es dennoch eine größere Genauigkeit fordern als die reale Situation (Revuz, 
1965, S. 62). 

Die wichtigen Merkmale von mathematischen Modellen sind also die Vereinfa-
chung, die Entsprechung und die mögliche Anwendung mathematischer Me-
thoden. Daraus ergibt sich eine wichtige Eigenschaft von Modellen. Modelle 
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sind nicht eindeutig, da es häufig auf unterschiedliche Weise möglich ist, Ver-
einfachungen vorzunehmen. Wir können aber für Modelle fordern, dass sie in 
sich widerspruchsfrei, richtig und zweckmäßig sein sollen. Mit richtig ist in 
diesem Zusammenhang gemeint, dass wesentliche Beziehungen der realen Situ-
ation im Modell abgebildet werden. Die Zweckmäßigkeit eines Modells kann 
nur mit Hilfe des zu bearbeitenden Problems beurteilt werden. Sie kann bei-
spielsweise durch die Sparsamkeit des verwendeten Modells, aber in einer ande-
ren Situation auch durch den Reichtum der dargestellten Beziehungen zum 
Ausdruck kommen (Neunzert & Rosenberger, 1991, S. 149). Ein neues Prob-
lem erfordert unter Umständen eine neue Modellbildung; auch dann, wenn der 
gleiche Gegenstand betrachtet wird.  

Für das mathematische Modellieren ist also immer eine Situation aus der Reali-
tät der Ausgangspunkt. Die Situation wird dann mit Hilfe eines mathemati-
schen Modells beschrieben und bearbeitet. Diesen gesamten Prozess bezeich-
nen wir im Folgenden als Modellieren. 

Die genaue Beschreibung eines Modellbildungsprozesses wird durch die ver-
schiedenen Arten von Modellen erschwert. Es gibt Modelle, die als Vorbild 
dienen. Sie werden normative Modelle genannt. Außerdem gibt es Modelle, die 
als ‚Nachbild‘ verwendet werden. Sie heißen deskriptive Modelle (Freudenthal, 
19 , S. 12 ). Bei den deskriptiven Modellen lassen sich Eigenschaften von 
Modellen wie vorhersagen, vorschreiben und beschreiben einordnen. Des Weiteren 
können Modelle auch Beobachtungen beeinflussen, Einsichten fördern, 
Axiomatisierung unterstützen, Mathematik fördern und Sachverhalte erklären  
(Davis & Hersh, 19 6, S. ; Henn, 2002, S. 6). 

 

 

Abb. 3.1 Funktionen von Modellen 

Deskriptive Modelle sollen einen Gegenstandsbereich bzw. die Realität nach-
ahmen oder genau abbilden. Dies kann beschreibend oder auch bereits erklä-

Modelle in der 
Mathematik

deskriptive 
Modelle

deterministisch probabilistischexplikativ
ohne 

zusätzliche 
Funktion

normative 
Modelle



3.1  Modellieren   45 

 

rend sein (Winter, 2004, S. 110; Winter, 1994, S. 11). Eine Art von deskriptiven 
Modellen zielt daher darauf, den entsprechenden Ausschnitt aus der Realität 
nicht nur zu beschreiben, sondern auch die inneren Zusammenhänge zu ver-
stehen. Beschreibende Modelle sind häufig wenig aussagekräftig, wenn nicht 
Annahmen über Wirkungszusammenhänge gemacht werden (Körner, 2003, S. 
163). Es ist weiterhin möglich, zwischen solchen beschreibenden Modellen, die 
auf das Verständnis abzielen, und Modellen mit Voraussagecharakter zu unter-
scheiden (Burscheid, 19 0, S. 66). Diese Voraussagen können sowohl vollstän-
dig bestimmt als auch mit bestimmten Wahrscheinlichkeiten behaftet sein. Ins-
gesamt haben wir also deskriptive Modelle, die nur beschreibenden Charakter 
haben; solche, die zusätzlich etwas erklären (explikative deskriptive Modelle), 
und Modelle, die zusätzlich Voraussagen treffen (deterministische und 
probabilistische deskriptive Modelle). 

3.1.2  Auffassungen von Modellieren 
Da das Modellbilden als Prozess der Aufgabenbearbeitung und nicht nur als 
Inhalt der Aufgabenstellung charakterisiert wird, kann unterschieden werden, 
ob dieser Prozess bewusst oder unbewusst stattfindet. Die Reflexion über das 
Modellieren kann dann als Kriterium für das Stattfinden eines Modellbildungs-
prozesses verwendet werden. Diese Auffassung von Modellbildung wird auch 
als enge Auffassung bezeichnet. Sie steht einer allgemeinen oder naiven Auffas-
sung von Modellieren gegenüber. Nach dieser allgemeinen Auffassung kann 
auch schon von einem Modellbildungsprozess gesprochen werden, wenn er 
nicht bewusst geschieht (Fischer & Malle, 19 5, S. 104). Wenn also Schülerin-
nen und Schüler – ohne das Bewusstsein, auf einer höheren mathematischen 
Ebene die Situation zu vereinfachen – realitätsbezogene Aufgaben bearbeiten, 
dann arbeiten sie im Rahmen der allgemeinen Auffassung vom Modellieren. 
Teilweise stecken bereits hinter einfachen Situationen Modellannahmen, die 
dann in einigen Fällen sogar als Realität angesehen werden (Winter, 19 9, S. 
21 ). 

Mit ähnlichen Begriffen zum Modellieren wird teilweise auch etwas anderes 
verbunden. So bezeichnet Griesel mit Modellieren im engeren Sinne das Auf-
stellen des Modells durch idealisierte Abstraktion, ohne damit zwangsläufig die 
Anwendungssituation zu lösen. Werden auch die relevanten Daten ermittelt, so 
spricht er von Modellieren im weiteren Sinne (Griesel, 2005, S. 64). 

3.1.3  Modellbildungskreislauf 
Der gesamte Modellierungsprozess wird häufig idealisiert als Kreislauf darge-
stellt. Mit Idealisierung ist hier gemeint, dass diese Darstellung auch selbst wie-
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der ein Modell ist. Der Kreislaufprozess soll hier an einem einfachen Beispiel 
dargestellt werden. Soll beispielsweise das Volumen des Sandes berechnet wer-
den, das sich in einem Container befindet, so werden zunächst Vereinfachun-
gen vorgenommen. Diese Vereinfachungen können in diesem Beispiel darin 
bestehen, dass man annimmt, der Sand würde gleichmäßig im Container ver-
teilt, sodass die Füllhöhe dann ungefähr der Ladekante entspricht. Ebenso 
könnte man die Materialstärke des Containers vernachlässigen und damit Au-
ßen- und Innenmaße gleichsetzen. Außerdem ist es sinnvoll anzunehmen, dass 
der Container keine Beulen oder andere Unebenheiten besitzt. Beim Übergang 
in die Mathematik kann man den mit Sand gefüllten Teil des Containers mit 
einem Prisma identifizieren, das eine trapezförmige Grundfläche hat. Im Rah-
men dieses Modells werden dann Berechnungen durchgeführt, die zu einer 
mathematischen Lösung führen, die schließlich als das Volumen des Sandes 
interpretiert wird. 

 

 
Abb. 3.2 Als Modellbildungskreislauf idealisierter Lösungsprozess einer Aufgabe 

Etwas abstrakter betrachtet ist die Frage nach dem Sand im Container ein Prob-
lem in der Realität. Dieses Problem wird zunächst auf der Sachebene vereinfacht 
und führt zu einem Modell in der Realität. Dieses bezeichnet man häufig mit Re-
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almodell. Es könnte aber auch konzeptionelles Modell genannt werden (Sonar, 2001, 
S. 21). Nun folgt der Schritt in die Mathematik, zum mathematischen Modell. Mit 
Hilfe dieses Modells wird nun eine mathematische Lösung ermittelt, die schließlich 
wieder auf das reale Problem bezogen werden muss.  

Andere Idealisierungen des Lösungsprozesses dieses Container-Problems sind 
ebenfalls denkbar. So könnte man beispielsweise die Datenbeschaffung noch 
extra ausweisen oder auf den Zwischenschritt bei der Erstellung des mathema-
tischen Modells verzichten. Daher gibt es in der Literatur unterschiedliche 
Kreislaufdarstellungen des Modellierens. Wir stellen nun diese Kreislaufdarstel-
lungen nach der Komplexität vor. 

Einfaches Mathematisieren 

Bei Müller und Wittmann (s. Abb. 3.3) findet man ein Kreislaufmodell des 
Modellierens, bei dem nur ein Schritt von der Situation zum Modell verwendet 
wird.  

 

Abb. 3.3 Modellbildungskreislauf nach Müller/Wittmann (1984, S. 253) 

Winter verwendet ebenfalls nur einen Schritt von der Situation zum Modell 
(Winter, 2003, S. 33). Eine besonders anschauliche Darstellung dieses allgemein 
anerkannten und übersichtlichen Modells des Modellierens stammt von Schupp 
(Schupp, 19 , S. 11). Dieses Modell unterteilt in einer Dimension Mathematik 
und Welt. Dies ist bei Modellen des Modellierens allgemein üblich. Zusätzlich 
wird noch gleichberechtigt zwischen Problem und Lösung in einer zweiten 
Dimension unterschieden (s. Abb. 3.4). Dieses Modell verwenden z. B. auch 
Danckwerts und Vogel (Danckwerts & Vogel, 2001, S. 25). 
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Abb. 3.4 Modellbildungskreislauf nach Schupp (1988, S. 11)  

 

Abb. 3.5 Modellbildungsspirale nach Büchter und Leuders 

Zu den genannten Modellen wird häufig ergänzt, dass der Kreislauf nicht im-
mer vollständig oder mehrfach durchlaufen werden kann. Büchter und Leuders 
stellen diesen mehrfachen Durchlauf des Modellbildungskreislaufs als Modell-
bildungsspirale dar (Büchter & Leuders, 2005, S. 6). Dadurch wird auch die 
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Entwicklung während des Modellbildungsprozesses verdeutlicht. Nach jedem 
Umlauf vergrößert sich die Erfahrung mit dem Problem. Auch hier wird nicht 
zwischen realem Modell und mathematischem Modell unterschieden. Aller-
dings wird in diesem Modell das Präzisieren des Problems als eigener Schritt 
zwischen Realität und Modell formuliert (s. Abb. 3.5).  

Spezielle Kreisläufe gibt es für Teilgebiete der Mathematik. So wird beispiels-
weise in der Stochastik die Modellierung von Axiomensystemen aus Erfahrun-
gen beschrieben (Behnen & Neuhaus, 19 4, S. 9). Für die Verwendung eines 
Dynamischen Geometriesystems verwendet Schumann den folgenden Kreislauf 
(s. Abb. 3.6). 

 
Abb. 3.6 Modellbildungskreislauf mit DGS  (Schumann, 2001, S. 25) 

Genaueres Mathematisieren 

Der bekannteste Modellbildungskreislauf ist bei Blum (19 5, S. 200) beschrie-
ben (s. S. 3 ). Er stellt in gewisser Weise ein Standardmodell des Modellbildens 
für den Unterricht dar. Hier wird für das Erstellen des mathematischen Modells 
noch ein Zwischenschritt eingefügt. Vergleichbar mit dem Container-Problem 
(s. Abb. 3.2) wird hier die Vereinfachung in der Realität, das Reale Modell, noch 
als eigener Schritt betrachtet.  

Dieses Modell wird beispielsweise von Henn (Henn, 1995, S. 56), Humenberger 
und Reichel (Humenberger & Reichel, 1995, S. 35), Kaiser (Kaiser, 19 4, S. 5), 
Maaß (Maaß K. , 2002, S. 11) und Borromeo Ferri (Borromeo Ferri, 2004, S. 
109) verwendet. Maaß führt allerdings noch als Zwischenschritt von den Ma-
thematischen Resultaten bzw. der Mathematischen Lösung zur realen Situation 
bzw. Realität die interpretierte Lösung ein (Maaß K. , 2005, S. 11 ). 
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Abb. 3.7 Modellbildungskreislauf nach Maaß (Maaß K. , 2005, S. 117) 

Komplexes Mathematisieren 

 

Abb. 3.8 Modellbildungskreislauf von Blum und Leiß (Blum & Leiß, 2005, S. 19)   

Ein neueres Modell des Modellierens von Blum und Leiß, das auch von 
Borromeo Ferri verwendet wird, ist unter kognitiven Gesichtspunkten erstellt 
worden (s. Abb. 3. ). Es wurde im Vergleich zum Modell von Blum aus dem 
Jahr 19 5 um das Situationsmodell erweitert (Borromeo Ferri, 2006, S. 92). Die 
Erstellung des mathematischen Modells wird detaillierter betrachtet, und es 
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wird der Prozess des Individuums, welches das Modell erstellt, detaillierter 
dargestellt. Das Situationsmodell beschreibt die mentale Darstellung der Situa-
tion durch das Individuum.  

Auch im Modell von Fischer und Malle (Fischer & Malle, 19 5) wird der Schritt 
von der Situation zum mathematischen Modell detailliert beschrieben. Insbe-
sondere das Einfügen der Datenbeschaffung ist hier interessant und spielt bei 
vielen offenen Aufgaben im Sachrechnen eine Rolle (s. Abb. 3.9). Beispielswei-
se müssen bei den sogenannten Fermi-Aufgaben viele Informationen durch 
Schätzen ermittelt werden.  

 

 
Abb. 3.9 Modellbildungsprozess nach Fischer und Malle (Fischer & Malle, 1985) 

Je nach Zielgruppe, Forschungsgegenstand oder -interesse haben die dargestell-
ten Modelle des Modellierens andere Schwerpunkte. Häufig ist der Zweck der 
dargestellten Modelle des Modellierens unterschiedlich. Insbesondere sind 
normative und deskriptive Modelle des Modellierens zu unterscheiden. So 
könnte ein bestimmtes Modell des Modellierens für die Beschreibung von 
Schülertätigkeiten verwendet werden. Hierzu eignen sich auch sehr komplexe 
Modelle. Ebenso könnte aber im Rahmen einer Lehrerfortbildung zum Model-
lieren ein leicht merkbarer Kreislauf als Unterstützung für den Unterricht vor-
gestellt werden.  
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3.1.4  Teilkompetenzen des Modellierens 
In der Vereinbarung der Kultusministerkonferenz über Bildungsstandards für 
den Mittleren Schulabschluss vom 3. Dezember 2003 (KMK, 2004) bzw. in den 
entsprechenden Lehrplänen der Bundesländer, z. B. im Kernlehrplan Nord-
rhein-Westfalens (Ministerium für Schule NRW, 2004), wird Modellieren als 
eine allgemeine mathematische Kompetenz bzw. als prozessbezogene Kompe-
tenz beschrieben.  

Tabelle 3.1 Teilkompetenzen des Modellierens 

Teilkompetenz  Indikator  

Vereinfachen  Die Schülerinnen und Schüler trennen wichtige und 
unwichtige Informationen einer Realsituation.  

Mathematisieren  Die Schülerinnen und Schüler übersetzen Realsituationen in 
Mathematische Modelle (z. B. Term, Gleichung, Figur, 
Diagramm, Funktion)  

Rechnen  Die Schülerinnen und Schüler arbeiten mit dem 
mathematischen Modell.  

Interpretieren Die Schülerinnen und Schüler beziehen die im Modell 
gewonnenen Informationen auf die Realsituation. 

Validieren Die Schülerinnen und Schüler überprüfen die im Modell 
gewonnenen Informationen an der Realsituation. 
Sie vergleichen und bewerten verschiedene mathematische 
Modelle für eine Realsituation. 

Beurteilen Die Schülerinnen und Schüler beurteilen kritisch das 
verwendete mathematische Modell. 

Realisieren  Die Schülerinnen und Schüler ordnen einem 
mathematischen Modell eine passende Realsituation zu 
bzw. finden zu einem mathematischen Modell eine 
passende Realsituation.  

 

Da aber das Modellieren in den Lehrplänen neben den inhaltsbezogenen Kom-
petenzen wie Algebra, Funktionen, Geometrie und Stochastik sowie neben 
weiteren allgemeinen Kompetenzen wie z. B. Problemlösen und Argumentieren 
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steht, kann das Modellieren nur im Zusammenspiel mit Inhalten und weiteren 
allgemeinen Kompetenzen betrachtet werden. Das Aufteilen des Modellierens 
in Teilkompetenzen bzw. Teilprozesse ist ein möglicher Weg, um die Komple-
xität der Problematik zu reduzieren.   

Es ist sinnvoll, den Blick nicht nur auf die Zwischenschritte während des Mo-
dellierungsprozesses zu richten, sondern ebenso auf die Teilprozesse, die wäh-
rend dieser Schritte (z. B. vom Realmodell zum mathematischen Modell) ablau-
fen. In einigen der oben beschriebenen Modelle des Modellierens, werden auch 
diese Teilprozesse benannt. So finden wir beispielsweise die Prozesse Modellie-
ren (Müller & Wittmann, 19 4, S. 253), Mathematisieren (Büchter & Leuders, 
2005, S. 6) und Vereinfachen (Blum, 19 5, S. 200). Für den zweiten Teil des 
Modellierungskreislaufs werden Interpretieren (Müller & Wittmann, 19 4, S. 
253) und Validieren (Schupp, 19 , S. 11) genannt. Winter  beschreibt als wich-
tigste Prozesse: Situation wahrnehmen, Modell entwerfen, evtl. Daten beschaf-
fen, Datenverarbeitung im Modell, Interpretieren, Bewerten, Transfers versu-
chen (Winter, 2003, S. 33).  

 

 

 

 

 

 

 

 

 

 

 

 
 

Abb. 3.10 Teilkompetenzen im idealisierten Modellbildungskreislauf 

Auch in den Kernlehrplänen von Nordrhein-Westfalen (Ministerium für Schule 
NRW, 2004) werden einige dieser Prozesse als Teilkompetenzen des Modellie-
rens beschrieben. Dort werden beispielsweise das Mathematisieren, das Validie-
ren und das Realisieren explizit genannt. Mit Hilfe von genaueren Beschreibun-
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gen, die wir hier Indikatoren nennen, wird klargestellt, was unter diesen Teil-
kompetenzen zu verstehen ist. Dieses Verfahren kann auch auf andere Modelle 
des Modellierens übertragen werden. Wir erhalten dann eine umfangreiche 
Liste von Teilkompetenzen des Modellierens. 

Abb. 3.10 zeigt, wie sich der Prozess der Modellentwicklung aus Vereinfachen 
und Mathematisieren zusammensetzt. Das Realisieren ist hier genannt, weil es 
auch im Kernlehrplan Nordrhein-Westfalens vorkommt. Diese Kompetenz 
scheint zunächst im Kreislaufprozess unnötig zu sein. Sie ist aber beispielsweise 
bei der Diskussion von Modellen sinnvoll. Einige Autoren (z. B. Schupp) füh-
ren zwischen Interpretieren und Validieren noch einen Zwischenschritt ein. 
Darauf ist hier aus Gründen der Übersichtlichkeit verzichtet worden (Schupp, 
19 , S. 11). 

3.1.5  Einige empirische Untersuchungsergebnisse zum 
Modellieren  

Die Durchführung von Modellierungsaktivitäten im Unterricht ist vielfach un-
tersucht worden. Dabei interessiert beispielsweise, ob sich Einstellungen von 
Lehrenden und Lernenden auf die Modellierungsaktivitäten auswirken und ob 
die Durchführung von Modellierungsaktivitäten Einfluss auf die Einstellungen 
von Lehrenden und Lernenden zum Modellieren hat. Ebenso sind Unter-
richtsmethoden im Zusammenhang mit Modellierungsaufgaben und die tat-
sächliche Arbeit von Schülerinnen und Schülern verglichen mit dem theoreti-
schen Modellierungskreislauf Gegenstand empirischer Forschung. 

Einstellungen von Schülerinnen und Schülern zu Modellierungsaufga-
ben 

Es gibt offenbar relativ festgelegte Einstellungen zu Modellierungsaufgaben bei 
Schülerinnen und Schülern. Maaß hat unterschiedlichste Beliefs in einer Grup-
pe von 35 Lernenden gefunden. Unter Beliefs versteht man Überzeugungen 
und Auffassungen über das Fach Mathematik oder auch das Lehren und Ler-
nen von Mathematik. Maaß hat die Beliefs in  prozessorientierte, schemaorien-
tierte, formalismusorientierte und anwendungsorientierte Beliefs gruppiert. 
Außerdem fand Maaß sogenannte nicht-fachspezifische Beliefs mit kognitivem 
bzw. affektivem Schwerpunkt. Es zeigt sich in dieser Studie, dass Schülerinnen 
und Schüler mit schemaorientierten, formalismusorientierten oder kognitiv 
geprägten, nicht fachspezifischen mathematischen Weltbildern Modellierungs-
beispiele vehement ablehnen, während die anderen Gruppen diesen teilweise 
positiv oder sehr positiv gegenüber stehen (Maaß K. , 2003, S. 51 f.; Maaß K. , 
2005, S. 131 ff.). 
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Befragt man Schülerinnen und Schüler nach geeigneten Anwendungen von 
Mathematik, dann werden wirkliche Modellierungsprobleme selten als brauch-
bare, anwendbare Gebiete genannt. Humenberger untersuchte dies im Rahmen 
einer schriftlichen Befragung von 491 Schülerinnen und Schülern hauptsächlich 
der 11. Klasse. Als brauchbare anwendbare Gebiete der Mathematik wurden 
am häufigsten Wahrscheinlichkeitsrechnung, Prozentrechnung, die Grundre-
chenarten und Extremwertaufgaben genannt. Gleichzeitig wurde erhoben, wie 
beliebt Mathematik im Vergleich zu anderen Schulfächern ist. Dabei wurde 
Mathematik als Lieblingsfach im Vergleich mit anderen Fächern erst an der . 
Stelle genannt. Die Schülerinnen und Schüler, die Mathematik als Lieblingsfach 
wählten, zeigten gleichzeitig höhere Mathematikleistungen (Humenberger, 
199 ). 

Nicht nur gute Leistungen der Schülerinnen und Schüler, sondern auch der 
Unterricht mit Modellierungsaktivitäten kann die Meinung zum Fach Mathema-
tik allgemein günstig beeinflussen. Galbraith und Clatworthy haben in Rahmen 
einer zweijährigen Studie zum Modellieren erhoben, dass die durchgeführten 
Modellierungen die Meinung zum Fach Mathematik deutlich positiv verändert 
haben (Galbraith & Clatworthy, 1990, S. 156). 

Einstellungen von Studierenden und Lehrenden 

Modellierungsprobleme und Anwendungen werden von vielen Lehrerinnen 
und Lehrern grundsätzlich positiv gesehen. Es scheint aber noch großen Ver-
besserungsbedarf zu geben. Humenberger berichtet von einer schriftlichen 
Befragung von 202 Studierenden des Mathematiklehramtes für Gymnasien. 
Diese nannten als für den Mathematikunterricht geeignete außermathematische 
Gebiete am häufigsten Physik-Technik, Wirtschaft-Handel-Finanzen und In-
formatik. Er befragte auch 1 4 Lehrerinnen und Lehrer nach ihrer Position zur 
Anwendungsorientierung. 5  % der Lehrerinnen und Lehrer gaben an, dass 
eine Steigerung der Anwendungsorientierung im Unterricht nötig sei und 5 % 
waren der Meinung, dass mit Hilfe von Anwendungsaufgaben auch neuer ma-
thematischer Lernstoff erarbeitet werden kann. Als wichtige Einflussfaktoren 
für das Ausmaß an Anwendungen im Unterricht wurden der Lehrstoff und die 
Klassensituation angesehen. Fortbildungsangebote und Schulbuchaufgaben 
wurden als verbesserungsbedürftig angesehen (Humenberger, 199 ). 

Wenn Lehrerinnen und Lehrer eine positive Einstellung gegenüber Anwendun-
gen im Mathematikunterricht haben, dann ist dies häufig deshalb der Fall, weil 
sie sich eine höhere Lernmotivation der Schülerinnen und Schüler erhoffen.  
Die aus Sicht des Sachrechnens und Modellierens gewünschte Umwelterschlie-
ßung scheint dagegen für viele Lehrerinnen und Lehrer kein wichtiges Ziel des 
Mathematikunterrichts zu sein. So untersuchte Förster Vorstellungen von Leh-
rerinnen und Lehrern im Rahmen einer qualitativen Studie. Dabei zeigte sich 
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der Trend, dass die Motivation als dominierendes Argument für Anwendungen 
im Vordergrund steht. Daher spielt bei den befragen Lehrerinnen und Lehrern 
die Modellbildung praktisch keine Rolle. Das Fach Mathematik wird in vielen 
Fällen in erster Linie als formalbildend angesehen (Förster, 2002, S. 6 ). 

Lehrerinnen und Lehrer sind in vielen Fällen aber an Möglichkeiten des Einsat-
zes von Modellierungsaufgaben im Mathematikunterrich interessiert. Sie sehen 
noch einen großen Bedarf, mehr über die Modellierungstätigkeiten und An-
wendungsbeispiele im Mathematikunterricht bereits an der Universität zu erfah-
ren. Tietze berichtet von einer Befragung in Niedersachsen. Demnach fordern 
Gymnasiallehrerinnen und Gymnasiallehrer eine stärkere Berücksichtigung von 
Anwendungen der Mathematik in der Hochschulausbildung (Tietze, 19 6, S. 
191 ff.).  

Es scheint schulformspezifische Unterschiede bei Lehrerinnen und Lehrern zur 
Einstellung zu Anwendungen im Mathematikunterricht zu geben. Grigutsch et 
al. haben über 300 Mathematiklehrerinnen und Mathematiklehrer zu ihren Ein-
stellungen befragt. Zwei Drittel der Lehrer attestierten darin der Mathematik 
einen z. T. starken Anwendungsbezug. Nur  % sahen keinen Nutzen in der 
Mathematik. Diese Einstellung war allerdings schulformabhängig. Lehrerinnen 
und Lehrer an Hauptschulen schätzten die Anwendbarkeit von Mathematik 
stärker ein als Lehrerinnen und Lehrer an Realschulen und Gymnasien 
(Grigutsch, Raatz, & Törner, 199 ). 

Präferenzen und Denkstile von Schülerinnen und Schülern bei Model-
lierungsaktivitäten 

Es gibt Schülerinnen und Schüler mit unterschiedlichen Präferenzen für Anwen-
dungen in der Mathematik. Maaß unterscheidet vier Typen von Modellierern 
nach der Einstellung gegenüber der Mathematik bzw. gegenüber Modellie-
rungsbeispielen. Während der desinteressierte Modellierer, der weder gegenüber 
der Mathematik noch gegenüber Modellierungsbeispielen eine positive Einstel-
lung hat, Schwächen in allen Bereichen zeigt, ist es beim reflektierenden Model-
lierer genau umgekehrt. Bei realitätsfernen Modellierern liegt eine Schwäche im 
Bereich der kontextbezogenen Mathematik vor. Sie haben aber eine positive 
Einstellung zur kontextfreien Mathematik. Umgekehrt liegt bei mathematikfer-
nen Modellierern eine Präferenz für den Sachkontext und eine Schwäche beim 
Bilden und Lösen des mathematischen Modells vor (Maaß K. , 2005, S. 135 f.). 

Auch die Denkstile von Schülerinnen und Schülern haben Einfluss auf die Mo-
dellierungsaktivitäten. Borromeo Ferri berichtet, dass Schülerinnen und Schüler 
mit ausgeprägten internen bildlichen Vorstellungen auch extern bildliche Dar-
stellungen anfertigen und einen visuellen Denkstil zeigen. Schülerinnen und 
Schüler mit internen formalen Vorstellungen wurden als eindeutige analytische 
Denker beschrieben. Es ergeben sich die Hypothesen (Borromeo Ferri, 2004, S. 



3.1  Modellieren   57 

 

112), dass bildlich ganzheitliche Denker beim Übersetzen ins mathematische 
Modell eher im realen Kontext argumentieren, während symbolisch-
zergliedernde Denker schnell formal argumentieren (Borromeo Ferri, 2003). 

Die unterschiedlichen Präferenzen und Denkstile der Schülerinnen und Schüler 
müssen im Unterricht berücksichtigt werden. Schülerinnen und Schüler mit 
ablehnender Haltung gegenüber Modellierungsbeispielen können durch weni-
ger komplexe Modelle in Einstiegsaufgaben langsam herangeführt werden, 
während reflektierende Modellierer auch gern komplexe Probleme bearbeiten. 
Ebenso sollten die unterschiedlichen Denkstile der Schülerinnen und Schüler 
im Unterreicht berücksichtigt werden und sowohl für visuell als auch formal 
arbeitende Modellierer Materialien (z. B. Grafiken, Daten etc.) zur Verfügung 
stehen.  

Unterrichtformen für Modellierungsaktivitäten 

Neue Unterrichtsformen können die Arbeit mit anwendungsbezogenen Aufga-
ben erleichtern. So wurden mit verstärkten Schreibaktivitäten im Mathematik-
unterricht gute Erfahrungen bezüglich des Kontextbezugs von Lösungen ge-
macht. Hollenstein stellt eine Unterrichtsform zur Entwicklung von Schreiban-
lässen im Mathematikunterricht dem traditionellen Lösen von Aufgaben gegen-
über (n  42). Dabei wurden in der Experimentalgruppe vergleichsweise weni-
ger häufig mechanisch-assoziative Muster der Problembewältigung angewendet 
und Strategien, die ein Bemühen um Einsicht in den Kontext bedingen, häufi-
ger beobachtet. An nicht adäquaten Lösungen der Kontrollgruppe konnten so 
genannte Kapitänssymptome nachgewiesen werden (Hollenstein, 1996). 

Die Durchführung von Modellierungsaktivitäten kann einen positiven Einfluss 
auf innermathematische Fähigkeiten haben. Gialamas et al. untersuchten 9  
Schülerinnen und Schüler eines 11. Jahrgangs. Sie verglichen die Ergebnisse 
von Unterricht mit Modellierungsaufgaben mit Unterricht ohne Modellierungs-
aufgaben. In einem Abschlusstest zeigte die Experimentalgruppe nicht nur in 
realitätsbezogenen Aufgaben, sondern auch in entsprechenden rein mathemati-
schen Aufgaben signifikant bessere Leistungen (Gialamas, Karaliopoulou, 
Klaoudatos, Matrozos, & Papastavridis, 1999). 

Blum schließt aus verschiedenen Untersuchungen, dass Modellierungskompe-
tenz langfristig und gestuft aufgebaut werden muss. Dabei sollte sich die Auf-
gabenkomplexität begleitet von häufigen Übungs- und Festigungsphasen lang-
sam steigern und die Kontexte systematisch variiert werden. Auch heuristische 
Fähigkeiten müssen parallel aufgebaut werden (Blum, 200 ). 
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Phasen im Modellbildungskreislauf – eine Untersuchung 

Borromeo Ferri beschreibt empirisch gefundene Phasen im Modellbildungs-
kreislauf. Hierbei handelt es sich außer dem Realmodell, dem mathematischen 
Modell, dem mathematischen Resultat und dem realen Resultat noch um die 
mentale Repräsentation der Situation. Dabei werden zwei Aspekte betrachtet: 
Die Vereinfachung der Situation und die individuelle Präferenz im Umgang mit 
dem Problem im Modellbildungsprozess. Dies zeigt, dass die im theoretischen 
Modell aufgestellten Modellierungskreisläufe durch empirisch gewonnene Er-
gebnisse ergänzt und bestätigt werden können. Allerdings sind nicht alle Phasen 
im Modellbildungskreislauf immer deutlich zu unterscheiden. So war es insbe-
sondere bei überbestimmten Modellierungsproblemen schwierig, Realmodell 
und mathematisches Modell zu trennen (Borromeo Ferri, 2006, S. 92). 

3.2  Problemlösen 
Das Problemlösen stellt wie das Modellieren eine allgemeine bzw. prozessbezo-
gene Kompetenz dar. Setzt man einen Modellierungskreislauf voraus, so kann 
man die inhaltbezogenen Kompetenzen im Modellierungskreislauf relativ klar 
lokalisieren. Sie spielen im Schritt vom mathematischen Modell zur mathemati-
schen Lösung eine besondere Rolle. Das Problemlösen dagegen lässt sich nicht 
so exakt in diesem Kreislauf lokalisieren. Es kann prinzipiell in allen Schritten 
eines Modellbildungskreislaufs auftreten.  

Problemlösen wird häufig im Zusammenhang mit Modellieren genannt, da 
Modellierungsaufgaben oder Modellierungsprobleme in der Regel für die Schüle-
rinnen und Schüler nicht mit Standardverfahren bearbeitet werden können, also 
in diesem Sinne auch Probleme sind. Der Begriff des Problemlösens hängt vom 
Verständnis des Begriffs Problem ab.  

Mit Problemen ist häufig ein weites Feld verschiedener Aufgaben- und Prob-
lemtypen gemeint, denn die Bezeichnung Problem oder offenes Problem wird 
nicht einheitlich verwendet (Pehkonen, 2001; Silver, 1995; Graf, 2001). Ein 
Problemlöseprozess kann auch als Weg von einem Anfangszustand zu einem 
Zielzustand beschrieben werden, der durch eine Barriere zunächst verstellt ist 
(Klix, 19 1, S. 641 ff.). 

Einige Autoren unterscheiden die Begriffe offene Aufgabe und offenes Prob-
lem. Die Bezeichnung offenes Problem wird von diesen Autoren verwendet, 
wenn  

 Informationen auf für die Schülerinnen und Schüler neue Weise verknüpft 
werden sollen (Pehkonen, 2001), 
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 die Transformation, d. h. der Weg vom Anfangszustand zum Zielzustand 
der Aufgabe, unklar ist (Wiegand & Blum, 1999), 

 die Transformation keine geläufige Routine ist (Schulz, 2000) oder  

 der Zielzustand nicht eindeutig ist (Schulz, 2000). 

In den anderen Fällen, wenn z. B. lediglich der Anfangszustand nicht genau 
beschrieben ist, verwenden diese Autoren die Bezeichnung offene Aufgabe. 
Wir verwenden einen weiten Aufgabenbegriff, der die offenen Probleme ein-
schließt. Unter Problemlösen wird hier also der Prozess der Lösung von offe-
nen Problemen oder offenen Aufgaben verstanden.  

3.2.1  Modelle des Problemlösens 
Polya entwickelte 1949 in seinem Buch Schule des Denkens einen Katalog heuris-
tischer Fragen, die bei der Bearbeitung von Problemlöseaufgaben helfen sollen. 
Dabei wird der Problemlöseprozess in die folgenden Abschnitte eingeteilt 
(Polya, 1949): 

 Verstehen der Aufgabe 

 Ausdenken eines Planes 

 Ausführen des Planes 

 Rückschau 

Tabelle 3.2 Struktur von Problemlöseprozessen 

Polya Schoenfeld  Garofalo   
und  Cai  

Verstehen der Aufgabe 
 

Lesen 
 

Orientierung 

Ausdenken eines Planes 

Analysieren 

Organisation Exploration 

Planung 

Ausführen des Planes Ausführung Ausführung 

Rückschau 
Verifikation 
Übergang 

Prüfung 
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In der Literatur findet man sehr viele Strukturierungen von Problemlöseprozes-
sen. Exemplarisch ist die Grobstruktur von Problemlöseprozessen von Polya 
(Polya, 1949), Schoenfeld (Schoenfeld, 19 5) und Garofalo (Garofalo & Lester, 
19 5) bzw. Cai (Cai, 1994) in Tabelle 3.2 dargestellt.  

Bezogen auf den Modellierungsprozess, der auch als Problemlöseprozess im 
weiteren Sinne angesehen werden kann, findet das Problemlösen im engeren 
Sinn dann schließlich im Rahmen des mathematischen Modells statt (Büchter & 
Leuders, 2005, S. 30). Wir sehen die gesamte Bearbeitung von Problemen bzw. 
Aufgaben als Problemlöseprozess an und betrachten bereits die Schaffung des 
Modells als Teil eines Problemlöseprozesses. 

3.2.2  Problemlösekreislauf 
Nicht nur Modellbildungsprozesse, sondern auch Problemlöseprozesse können 
als Kreislauf dargestellt werden. Hier sind insbesondere das Finden von Bewei-
sen oder Widerlegungen mit heuristischen Mitteln nach dem Lakatos-Modell (s. 
Abb. 3.11) und die Schritte von Polya zu nennen. 

 

 
Abb. 3.11 Lakatos-Modell (Davis & Hersh, 1986, S. 306) 
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Das Lakatos-Modell ist für das Sachrechnen zwar nur bedingt von Bedeutung, 
da Beweise in der Regel im Rahmen des Sachrechnens nicht geführt werden,  
dennoch zeigt dieses Modell sehr schön die den Modellbildungs-Kreisläufen 
analoge Kreislauf-Struktur von Problemlöseprozessen.  

Entsprechend dem Lakatos-Modell kann auch der Problemlöseprozess nach 
Polya als Kreislauf dargestellt werden (s. Abb. 3.12).  

 
Abb. 3.12 Problemlösekreislauf in Anlehnung an Polya  

Dieser Kreislauf kann bereits Schülerinnen und Schülern in der Sekundarstufe I 
als Hilfe bei Problemlöseaufgaben an die Hand gegeben werden. Wir wählen 
dazu als Beispiel eine Aufgabe, die auch als einfache Modellierungsaufgabe 
angesehen werden könnte. Wir wollen hier aber den Aspekt des Problemlösens 
in den Vordergrund stellen.   

 

Stefan startet um 7:15 Uhr seinen Schulweg. Die Schule ist 2,5 Kilometer 
entfernt. Kurz danach bemerkt seine Mutter, dass er sein Frühstück ver-
gessen hat, und fährt um 7:25 Uhr mit dem Fahrrad hinterher. Stefan 
läuft etwa 100 Meter pro Minute. Die Mutter fährt ca. 250 Meter pro Mi-
nute. Wann bekommt Stefan sein Frühstück? 

 

Der erste Schritt ist das Verstehen der Aufgabe. Hier fragen die Schülerinnen und 
Schüler, was die wesentlichen Informationen sind und was unbekannt ist. Zu 



662  3  Modellieren und Problemlösen 

 

den wesentlichen Informationen gehört die Entfernung der Schule, die Ge-
schwindigkeiten von Stefan und seiner Mutter. Unbekannt dagegen ist die Zeit, 
zu der sich Stefan und seine Mutter treffen. 

Der zweite Schritt im Problemlösekreislauf ist das Ausdenken eines Plans. Der 
Plan kann in diesem Fall darin bestehen, die Informationen des Textes mit 
Hilfe von Termen darzustellen und für die unbekannte Größe eine Variable zu 
verwenden. Die Zeit, die die Mutter mit dem Fahrrad fährt, wird x (in Minuten) 
genannt. Stefan startet zehn Minuten eher, er legt also die Strecke (x  10)  100 
Meter zurück, während seine Mutter x  250 Meter zurücklegt. An der Stelle, wo 
sich Stefan und seine Mutter treffen, haben sie genau die gleiche Strecke zu-
rückgelegt, d. h. der Weg, den Stefan nach 10  x Minuten zurückgelegt hat, 
entspricht dem Weg, den die Mutter in x Minuten zurückgelegt hat. Wir können 
dann beide Terme gleichsetzen und erhalten  

. 

Der nächste Schritt ist das Durchführen des Plans. Dies bedeutet in diesem Fall, 
dass die aufgestellte Gleichung gelöst wird. Dies geschieht durch eine äquiva-
lente Umformung der Gleichung: 

  
  

  
  
  

Stefan und seine Mutter treffen sich also etwa  Minuten nach dem Start der 
Mutter. 

Der vierte und letzte Schritt ist die Rückschau. Hier ist zunächst zu überlegen, 
ob das Ergebnis sinnvoll und plausibel ist. Nach 1  Minuten hat Stefan 1   100 

 1 00 Meter zurückgelegt. Er ist also noch nicht an der Schule angekommen, 
da diese 2500 Meter entfernt ist. In  Minuten kann man auch ca. 1,  Kilometer 
mit dem Fahrrad fahren. Das Ergebnis ist somit sinnvoll. Setzt man das gerun-
dete Ergebnis in beide Terme ein, so erhält man 

  

bzw. 
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Die Probe liefert ein korrektes Ergebnis. Der Antwortsatz könnte lauten: Ste-
fan und seine Mutter treffen sich etwa  Minuten nach dem Start der Mutter. 
Um :32 Uhr bekommt Stefan sein Frühstück.  

Tabelle 3.3 Problemlöseprozess 

Schritt  Fragen  Beispiel  

Verstehen der 
Aufgabe 

Was ist wesentlich? 
Was ist unbekannt? 

Stefan: 100 m/Min; Start 7:15 
Uhr  
Mutter 250 m/Min; Start 7:25 
Uhr 
Entfernung 2,5 km 
Zeit des Treffens ist 
unbekannt. 

Ausdenken eines 
Plans 

Wie kann ich die 
Informationen verarbeiten? 

z. B.: Kann ich Terme 
aufstellen? 

(x + 10) . 
x (in Min.) ist die Zeit nach 
dem Start der Mutter 

Durchführen des 
Plans 

z. B.: Kann ich die Gleichung 
lösen? 

100   
x = 20/3  

  

Rückschau Ist das Ergebnis plausibel? 
Kann man eine Probe 

durchführen? 
Wie lautet der Antwortsatz? 

Das Ergebnis ist plausibel. 
  

Um 7:32 Uhr bekommt Stefan 
sein Frühstück. 

3.2.3 Problemlösestrategien 
Da sich Probleme gerade dadurch auszeichnen, dass man zunächst keinen Lö-
sungsweg zur Verfügung hat, ist es besonders schwierig, Strategien zur Lösung 
von Problemen anzugeben, die für alle Probleme Gültigkeit haben. Dies zeigt 
bereits das Beispiel mit dem Schulweg. Dort wird auf die in der Situation mög-
liche Lösung mit Hilfe einer Gleichung verwiesen. Dies kann aber keine allge-
meine Anweisung zur Lösung von Problemen sein.  

Man kann also nur eine Liste von Möglichkeiten angeben, die helfen könnten, 
ein solches Problem zu lösen. Welche dieser Strategien dann tatsächlich auch 
erfolgreich eingesetzt werden kann, hängt zum einen vom konkreten Problem 
und zum anderen von den Schülerinnen und Schülern ab. Polya hat einige 
grundsätzliche Prinzipien für das Lösen von Problemen zusammengestellt 
(Polya, 1964). Dazu zählen Rationalität, Ökonomie und Durchhalten. Gemeint ist 
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damit, dass Schülerinnen und Schüler nicht ohne Begründungen arbeiten sollen 
und möglichst alle zur Verfügung stehenden Informationen nutzen sollen. Au-
ßerdem soll man nicht zu früh aufgeben.  

Leuders formuliert Problemlösestrategien schülergerecht für die Sekundarstu-
fe I (Leuders, 2003, S. 134). Wir stellen daraus im Folgenden eine Auswahl 
zusammen (s. Tabelle 3.4). Daran wird deutlich, was Problemlösestrategien 
leisten können und wie damit gearbeitet werden kann.  

Tabelle 3.4 Problemlösestrategien 

Name  Erklärung  

Alternativen suchen völlig anderen Ansatz wählen, um das Problem zu lösen 

Analogien bilden Übertragung von einer bekannten Situation auf eine andere 
Situation 

Aufteilen Zerlegen eines Problems in Teilprobleme 

Darstellungswechsel Darstellung von Informationen in einer anderen Form, z. B. 
als Bild, Tabelle oder Formel 

Muster suchen nach Regelmäßigkeiten und Wiederholungen suchen 

Probieren Durchprobieren von möglichen Zahlenwerten und 
Beobachten der Ergebnisse 

Rückwärtsarbeiten ausgehend von einer Lösung zur Problemstellung finden 

Spezialfälle suchen Suchen besonderer Fälle und Ziehen von Rückschlüssen für 
das Problem 

systematisches 
Vergleichen 

Gemeinsamkeiten und Unterschiede von zwei Situationen 
feststellen und daraus Schlüsse ziehen 

Vereinfachen Weglassen von Bedingungen, um das Problem zu reduzieren 

Voraussetzungen 
variieren 

Veränderung der Voraussetzungen, um Auswirkungen zu 
erkunden 

3.2.4 Problemlösen und Modellieren – eine Fallstudie 
Im Rahmen einer Fallstudie wurden Schülerinnen und Schüler bei der Bearbei-
tung von Modellierungsaufgaben beobachtet. Diese Beobachtungen wurden 
unter Problemlöse- und Modellbildungsgesichtspunkten ausgewertet.  

Wir betrachten dazu die gesamte Bearbeitung von Modellierungsproblemen 
sowohl als Problemlöse- wie auch als Modellierungsprozess. So wird beispiels-
weise die Schaffung des Modells nicht nur aus der Sicht des Modellierens, son-
dern auch aus der Sicht eines Planungsprozesses im Rahmen des Problemlö-
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sens angesehen. Sehr grob betrachtet und idealisiert kann man sich Modellbil-
dungs- und Problemlöseprozesse – wie in der folgenden Tabelle parallel darge-
stellt – vorstellen. 

Tabelle 3.5 Modellbildungs- und Problemlöseprozesse 

Modellbbildungsprozess  Problemlöseprozess  

Analysieren Verstehen der Aufgabe 

Vereinfachen Planen  

Mathematisieren 
 

Verstehen der Aufgabe 
Planen 
Ausführen  
Rückschau 

Daten verarbeiten 
 

Ausführen  
Verstehen der Aufgabe 
Planen 
Ausführen  
Rückschau 

Interpretieren  

Validieren Rückschau 

 
Dabei können einzelne Schritte des Modellierens, wie hier das Mathematisieren, 
evtl. einen weiteren Teil-Problemlöseprozess benötigen, der in der Tabelle ein-
gerückt dargestellt ist. 

Für die Untersuchung wurden offene Aufgaben mit Realitätsbezug verwendet. 
Schülerpaare bearbeiteten beispielsweise eine Aufgabe, bei der der Preis für das 
Verputzen eines Hauses mit Hilfe von Fotos der entsprechenden Flächen be-
stimmt werden sollte (Greefrath, 200 , S. 5  f.). Eine mögliche Lösung dieser 
Aufgabe besteht darin, mit Hilfe von Stützpunktvorstellungen Längen oder 
Flächen zu schätzen und auf dieser Grundlage ein Modell für das Haus zu ent-
wickeln, um schließlich den Preis für das Verputzen zu ermitteln.  

Die Arbeit der Schülerinnen und Schüler an den Aufgaben wurde videografiert. 
Um die Lösung der Aufgaben nicht zu beeinflussen, wurden die Schülerinnen 
und Schüler bei der Bearbeitung der Aufgaben lediglich beobachtet.  

Zur Auswertung der Beobachtungen wurden die Videos komplett transkribiert. 
Im Rahmen eines offenen Kodierens mit drei Ratern wurden den einzelnen 
Äußerungen der Schülerinnen und Schülern konzeptuelle Bezeichnungen zuge-
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ordnet, die in mehreren Durchgängen diskutiert und modifiziert wurden. Diese 
Bezeichnungen wurden anschließend zu Kategorien zusammengefasst (Corbin 
& Strauss, 1996, S. 43 ff.). Die entwickelten Kategorien sind: Planung, Daten-
beschaffung, Datenverarbeitung und Kontrolle. Abschnitte, die keiner der ge-
nannten Kategorien zugeteilt werden konnten, wurden einer sog. Restkategorie 
zugeordnet. Diese Restkategorie hat einen maximalen Anteil von 5 % der Ko-
dierungen je Beobachtung. Die Wahl von nur fünf Kategorien ist erfolgt, um 
eine reliable Kodierung der Beobachtungen durch unterschiedliche Rater zu 
ermöglichen. Die im Problemlöseprozess zentralen Kategorien Planung und 
Kontrolle sind dann auf wichtige Bausteine untersucht worden.  

Insbesondere interessieren Bausteine von Planungs- und Kontrollprozessen, 
die von besonderer Bedeutung für die Lösung von Modellierungsaufgaben sind 
und häufiger in den Beobachtungen der Schülerinnen und Schüler vorkommen. 
Wir betrachten die in der Abbildung dargestellten zentralen Bausteine von Pla-
nungs- und Kontrollprozessen (s. Abb. 3.13). 

 

 
Abb. 3.13 Bausteine von Planungs- und Kontrollprozessen 

Es zeigt sich, dass Problemlöse- und Modellierungsprozesse ineinander ver-
schränkt auftreten. So würde ein Planungsprozess zum Problemlösen gezählt 
werden. Innerhalb dieser Planung findet man aber die Entwicklung von Teil-
modellen und häufige Wechsel zwischen Realität und Mathematik. Dies sind 
Phasen, die durch einen Modellbildungsprozess dargestellt werden. Auch die 
Orientierungsphase kann mit dem Situationsmodell des Modellierungskreislaufs 
von Blum und Leiß in Verbindung gebracht werden. Weitere Verschränkungen 
von Problemlöse- und Modellbildungsprozessen findet man bei der Kontrolle. 
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Hier würde der entsprechende Schritt im Modellierungsprozess mit Validieren 
bezeichnet werden und im Problemlöseprozess mit Rückschau. Die gefunde-
nen Bausteine zeigen, dass tatsächlich beide Beschreibungen hier zutreffend 
sind. Es ist also zum einen eine Frage der Sichtweise und zum anderen eine 
Frage des Zwecks, ob jeweils ein Modellbildungs- oder ein Problemlösekreis-
lauf zugrunde gelegt werden. Eine umfassende Beschreibung einiger Probleme 
gelingt nur, wenn beides in den Blick genommen wird (Greefrath, 200 ). 

3.3  Aufgaben zur Wiederholung und Vertiefung 

Modellieren und Problemlösen 

Betrachten Sie die folgende Beispielaufgabe (s. Abb. 3.14).  

 

Der Container soll bis zur Ladekante gefüllt werden. Wie viel Sand passt 
in den Container?  

 

 

 

1. Beschreiben Sie wesentliche Phasen eines Modellierungsprozesses. 

2. Betrachten Sie erneut die oben abgebildete Aufgabe. Notieren Sie mögliche 
Lösungsschritte dieser Aufgabe im Sinne des Modellbildungskreislaufs von 
Blum (Blum, 19 5) bzw. von Fischer und Malle (Fischer & Malle, 19 5). 

3. Beschreiben Sie Unterschiede und Gemeinsamkeiten der beiden Modellie-
rungskreisläufe aus Teil 2 im konkreten Beispiel. Erklären Sie auch die Un-
terschiede der beiden Modelle des Modellierens aus Teil 2 allgemein. 

4. Stellen Sie eine mögliche Aufgabenlösung der Container-Aufgabe als Prob-
lemlöseprozess dar. 
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5. Diskutieren Sie mit Hilfe von 2. und 4. am konkreten Beispiel Gemeinsam-
keiten und Unterschiede von Modellbildungs- und Problemlöseprozessen.  

6. Bestätigen oder widerlegen Sie die folgenden Behauptungen: 
- Problemlösen ist immer auch Modellieren. 
- Modellieren ist immer auch Problemlösen. 



 

 

4  Aufgabentypen beim 
Sachrechnen 

Im Mathematikunterricht allgemein und im Sachrechenunterricht speziell spie-
len Aufgaben eine große Rolle. Die Betrachtung von einzelnen Aufgaben hat 
nicht den Anspruch, einen ausreichenden Blick auf die Gestaltung des Unter-
richts, die Planung eines Schuljahres oder weiterführende didaktische Überle-
gungen zu ersetzen. Aufgaben sind im Prinzip die kleinsten Einheiten für Über-
legungen zum Mathematikunterricht. Sie stellen aber gleichzeitig eine anschauli-
che und allgemein anerkannte Diskussionsgrundlage für Mathematikunterricht 
dar (Büchter & Leuders, 2005, S. ).  

Eine Typisierung von Aufgaben hat unterschiedliche Funktionen. So können 
beispielsweise aus Sicht von Lehrerinnen und Lehrern unter Berücksichtigung 
der  Bildungsstandards (Blum, Drüke-Noe, Hartung, & Köller, 2006) Aufgaben 
im Hinblick auf ihren mathematischen Inhalt, ihren Schwierigkeitsgrad oder auf 
die mögliche Motivation durch ihren Kontext oder ihre Präsentationsform 
strukturiert und gezielt im Unterricht eingesetzt werden. Aufgaben können 
auch genutzt werden, um Lehrenden und Lernenden zu erreichende Kompe-
tenzen, wie beispielsweise das Problemlösen oder das Modellieren, zu verdeut-
lichen. Ebenso werden Aufgaben für Forschungsprojekte klassifiziert (Jordan, 
et al., 200 ). 

Wir stellen hier unterschiedliche Aufgabentypen vor, die abhängig von der Situ-
ation genutzt werden können. Nicht alle Einordnungen sind eindeutig. Aufga-
ben können auch zu mehreren Kategorien gehören oder Mischformen darstel-
len. Außerdem kann die konkrete Unterrichtssituation, die Art der Bearbeitung 
oder die Person des Lernenden über den Aufgabentyp mitentscheiden.  

Eine Klassifikation von Sachaufgaben ist auf Grund der Vielzahl von Aspekten, 
die das Sachrechnen bietet, schwierig. Beispielsweise sind Sachaufgaben häufig 
Textaufgaben, ggf. mit weiteren Informationen wie z. B. Bild, Tabelle etc. Aber 
nicht jede Textaufgabe ist eine Sachaufgabe, wie das folgende Beispiel zeigt.  

 

Das Dreifache einer Zahl ist um 5 kleiner als das Sechsfache der Zahl. Um 
welche Zahl handelt es sich? (Lösung:  x = 5/3) 
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Es handelt sich zwar um eine Textaufgabe. Da aber kein Umwelt- oder Reali-
tätsbezug vorhanden ist, handelt es sich nicht um eine Aufgabe aus dem Be-
reich des Sachrechnens. Eine erste Charakterisierung von Sachaufgaben als 
Textaufgaben ist also nicht erfolgreich. Wir werden im Folgenden unter ande-
rem mathematische, kontextuelle und prozessorientierte Kriterien zur Charak-
terisierung von Sachaufgaben vorstellen. 

4.1  Mathematische Kriterien 

4.1.1  Mathematische Inhalte 
Aufgaben mit Bezug zur Realität können das ganze Spektrum der mathemati-
schen Inhalte der Sekundarstufe I abdecken. Daher ist es sinnvoll, Aufgaben 
nach den in der Sekundarstufe I zu unterrichtenden mathematischen Inhalten 

 Arithmetik und Algebra 

 Geometrie  

 Stochastik 

zu unterteilen. Ähnlich wie beispielsweise in den Kernlehrplänen Nordrhein-
Westfalens für die Sekundarstufe I (Ministerium für Schule NRW, 2004) könnte 
noch ein Inhaltsbereich Funktionen hinzugefügt werden. Diesen Bereich wollen 
wir hier – wie auch Vollrath – zur Algebra zählen (Vollrath, 2003). Bei vielen 
Aufgaben aus Schulbüchern ist die Zuordnung zu diesen Inhaltsbereichen nicht 
schwierig, da die meisten Schulbücher eher inhaltsorientierte Kapitel enthalten.  
 

 
Abb. 4.1 Sachaufgabe zur Stochastik  (Kietzmann, et al., 2004, S. 46) 
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Abb. 4.2 Sachaufgabe zur Arithmetik und Algebra (Herling, Kuhlmann, & Scheele, Ma-
thematik 7, 2008, S. 13) 

 
Abb. 4.3 Sachaufgabe zur Geometrie (Ausschnitt) (Schneider, Stindl, & Schönthaler, 
2006, S. 91) 
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Abb. 4.4 Sachaufgabe zur Geometrie sowie Arithmetik und Algebra (Böer, et al., mathe 
live 9, 2002, S. 169) 

Es gibt auch Aufgabenbeispiele, die inhaltsübergreifend einzuordnen sind. Die 
abgebildete Sachaufgabe zur Kürbispyramide (s. Abb. 4.4) stellt – abhängig von 
der gewählten Lösung – eine Mischform aus Geometrie sowie Arithmetik und 
Algebra dar. Pyramiden zählen zur Geometrie, während die Berechnungen der 
Anzahl zur Arithmetik gehören. Ggf. könnte die Lösung sogar mit algebrai-
schen Mitteln erarbeitet werden.   
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4.1.2 Sachaufgaben und Gleichungen 
Vollrath betrachtet Probleme mit Sachaufgaben im Zusammenhang mit Aufga-
ben zu Gleichungen, die nach seiner Einschätzung bei Schülerinnen und Schü-
lern besonders gefürchtet sind. Die besondere Schwierigkeit bei Aufgaben die-
ses Typs ist das Finden des Ansatzes, also der Gleichung. Hier sieht Vollrath 
(Vollrath, 2003, S. 20  ff.) zwei wesentliche Strategien: 

 Die gesuchte Größe wird mit x bezeichnet, und damit werden Terme zu-
sammengesetzt, die dann zueinander in Relation gesetzt werden.  

 Es werden Relationen erkannt, die dann mit Hilfe von Termen ausgedrückt 
werden.  

Sachaufgaben zu Gleichungen sind häufig nicht sehr realistisch und haben oft 
ausschließlich das Ziel, das Aufstellen und Lösen von Gleichungen zu üben. 
Besonders diese Art von Aufgaben zu Gleichungen kann besonders leicht und 
schnell für den Mathematikunterricht entwickelt werden. Die Aufgaben sollten 
aber einen echten Kontextbezug haben und einen wirklichen Modellbil-
dungsprozess fordern, um Schwierigkeiten im Umgang mit realen Kontexten 
und einem falschen Bild von Mathematik vorzubeugen. Dies stellt allerdings 
höhere Anforderungen an Aufgabenentwicklung und Unterricht.  

4.2  Offene Aufgaben 

4.2.1 Anfangszustand, Transformation und Zielzustand 
Es gibt verschiedene Klassifizierungen von offenen Aufgaben, von denen hier 
nur auf die von Bruder, Büchter & Leuders und Wiegand & Blum hingewiesen 
werden soll (Bruder, 2000; Bruder, 2003; Büchter & Leuders, 2005; Wiegand & 
Blum, 1999; Blum & Wiegand, 2000). Alle diese Klassifizierungen nutzen die 
aus der Problemlösepsychologie bekannte Beschreibung eines Problems durch 
Anfangszustand, Zielzustand und eine Transformation, die den Anfangs- in den Ziel-
zustand überführt (Klix, 19 1).  

Offene Aufgaben werden dabei nach Klarheit von Anfangs- und Zielzustand 
sowie nach Klarheit und Mehrdeutigkeit der Transformation eingeteilt. Die 
oben genannten Autoren kommen dabei zu unterschiedlichen Klassifikationen, 
die hier nicht im Einzelnen diskutiert werden sollen. Wir beziehen uns speziell 
auf die von Wiegand und Blum vorgestellte Typisierung, die sechs Typen unter-
scheidet (s. Tabelle 4.1). 
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Tabelle 4.1 Klassifizierung offener Aufgaben (Wiegand & Blum, 1999) 

Typ  Anfangszustand  Transformation  Zielzustand  

Typ 1 unklar unklar unklar 

Typ 2 unklar unklar klar 

Typ 3 klar unklar unklar 

Typ 4 klar unklar  klar 

Typ 5 klar klar unklar 

Typ 6 klar klar  klar 

 

Bruder unterscheidet acht Aufgabentypen. Sie unterscheidet die Anfangs- und 
Endsituation allerdings durch die Begriffe vorgegeben und nicht vorgegeben. Dies 
führt zu einer etwas anderen Akzentsetzung (s. Tabelle 4.2).  

Tabelle 4.2 Klassifizierung offener Aufgaben (Bruder, 2003) 

Name  Anfangssituation  Transformation  Endsituation  

vollständig gelöste 
Aufgabe vorgegeben vorgegeben vorgegeben 

Grundaufgabe vorgegeben vorgegeben nicht vorgegeben 

Umkehrung einer 
Grundaufgabe nicht vorgegeben vorgegeben vorgegeben 

Bestimmungsaufgabe vorgegeben nicht vorgegeben nicht vorgegeben 

Umkehrung einer 
Bestimmungsaufgabe nicht vorgegeben nicht vorgegeben vorgegeben 

Strategiefindungs- 
oder Begründungs-
aufgabe 

vorgegeben nicht vorgegeben vorgegeben 

Eigenkonstruktionen 
- Anwendungen 
finden 

nicht vorgegeben vorgegeben nicht vorgegeben 

offene 
Aufgabensituationen nicht vorgegeben nicht vorgegeben (nicht 

vorgegeben) 
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Die Tabellen zeigen, dass Blum und Wiegand mit unklar etwas anderes meinen 
als Bruder mit nicht vorgegeben. Blum und Wiegand betrachten die Sicht der Leh-
renden, Bruder die Sicht der Lernenden.  

Vergleicht man beispielsweise Typ 5 aus Tabelle 4.1 mit der Grundaufgabe aus 
Tabelle 4.2, so ist im ersten Fall auch für den Lehrer das Ergebnis der Aufgabe 
unklar. Er kann nicht alle Lösungen kennen, denn es gibt keine eindeutige Lö-
sung. Bei der Grundaufgabe dagegen ist die Lösung der Aufgabe für den Schü-
ler zwar nicht bekannt, die Lösung existiert aber eindeutig, und sie ist dem Leh-
rer bekannt.  

Wir wollen hier die Typisierung aus Tabelle 4.1 noch etwas ausweiten. Man 
erhält dann folgende Liste von Aufgabentypen unter Berücksichtigung der Of-
fenheit von Anfangs- und Zielzustand sowie Transformation. 

Tabelle 4.3 Klassifizierung offener Aufgaben (Greefrath, 2004) 

Typ der offenen Aufgabe  Anfangszustand  Transformation  Zielzustand  

Problemsituation unklar unklar unklar 

unscharfes Problem unklar unklar klar 

Interpretationsproblem klar unklar unklar 

Strategiefindungsproblem klar unklar klar 

Interpretationsaufgabe klar klar unklar 

einfache offene Aufgabe klar klar klar 

Aufgabe erfinden unklar klar unklar 

Anfangssituation erfinden unklar klar klar 

 

Dabei muss zu den einfachen offenen Aufgaben – wie auch bei Wiegand und 
Blum – angemerkt werden, dass hier eine klare, aber mehrdeutige Transforma-
tion gemeint ist, da es sich sonst nicht mehr um eine offene Aufgabe handeln 
würde.  

Als Beispiel wollen wir hier eine Aufgabe vom Typ unscharfes Problem be-
trachten. Dieser Typ umfasst Aufgaben mit unklarer Ausgangssituation, aber 
eindeutiger Fragestellung. In diesem Beispiel (s. Abb. 4.5) ist durch die Fotos 
nur eine unklare Ausgangssituation gegeben, da genaue Informationen zu dem 
Problem nicht vorliegen. Die Fragestellung beschreibt allerdings den Zielzu-
stand klar, da genau benannt ist, was bestimmt werden soll. Die Transformati-
on, also der mögliche Weg zum Erreichen des Zielzustandes, wird ebenfalls 
durch die Aufgabenstellung nur angedeutet und ist somit ebenfalls unklar. 
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Abb. 4.5 Beispielaufgabe: Was kostet das Verputzen dieses Hauses? 

4.2.2 Überbestimmte und unterbestimmte Aufgaben 
Aufgabentexte oder Aufgabenstellungen können Angaben enthalten, die zur 
Lösung der Aufgabe nicht erforderlich sind. In einem solchen Fall spricht man 
von einer überbestimmten Aufgabe. Zech spricht hier von erhöhter Abstraktions-
anforderung (Zech, 199 , S. 32 ). Ein Beispiel für eine solche Aufgabe ist eine 
Frage zu einem Sachtext, aus dem nur einige Informationen zur Lösung der 
Aufgabe verwendet werden müssen. Möglich wäre auch noch der Fall, dass die 
Informationen nicht exakt zueinander passen und je nach Auswahl unterschied-
liche Ergebnisse liefern.    

Ebenso ist der umgekehrte Fall denkbar, bei dem die Aufgaben nicht alle In-
formationen enhalten, die zur Lösung benötigt werden. Das ist beispielsweise 
bei unscharfen Problemen der Fall, bei denen der Anfangszustand unklar ist. In 
solchen Fällen spricht man von einer unterbestimmten Aufgabe. Dann müssen die 
fehlenden Informationen beispielswiese durch Alltagswissen, Schätzen oder 
eine Recherche ermittelt werden.  

4.2.3 Schätzaufgaben  
Bei der Bearbeitung von unterbestimmten Aufgaben spielt häufig das Schätzen 
zur Datenbeschaffung eine große Rolle. Schätzen wird zur Ermittlung von Nä-
herungswerten für reale Daten verwendet. Im Unterschied zum Raten, wobei 
Größen ohne Vergleich mit bekannten Größen ermittelt bzw. erfunden wer-
den, wird beim Schätzen ein gedanklicher Vergleich mit bekannten Größen 
durchgeführt. Solche bekannten Größen sind die Stützpunktvorstellungen der 
Schülerinnen und Schüler. Dazu kann beispielsweise gehören, dass eine Tür in 
der Regel eine Höhe von 2 m oder ein DIN A4-Blatt eine Breite von 21 cm hat.  
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Falls der Schätzwert als Intervall von kleinst- und größtmöglichem Wert be-
stimmt wird, spricht man von Abschätzen. Während beim Schätzen und Ab-
schätzen ein gedanklicher Vergleich vorliegt, wird beim Messen mit Hilfe von 
Messinstrumenten ein direkter Vergleich mit einer festgelegten Einheit durch-
geführt. Das Messen ist daher in den meisten Fällen das genauere Verfahren. 
Allerdings sind nicht alle Größen auch tatsächlich dem Messen zugänglich bzw. 
ist nicht immer ein entsprechendes Messinstrument vorhanden.  

Der Schwierigkeitsgrad einer Schätzaufgabe hängt von verschiedenen Faktoren 
ab. Diese sind zum einen individuelle Faktoren, wie das vorhandene Stütz-
punktwissen der Schülerinnen und Schüler, und zum anderen Faktoren der 
Schätzaufgabe selbst. So spielt die Anzahl der gleichzeitig zu schätzenden Grö-
ßen genauso eine Rolle wie die Darstellung dieser Größen.  

 

Wie viele Kürbisse wachsen auf einem Kürbisfeld? 

Abb. 4.6 Schätzgröße nicht als Foto, sondern nur gedanklich vorhanden 

 
Auf dem Foto ist ein Ausschnitt eines Kürbisfeldes zu sehen. Wie viele 
Kürbisse wachsen auf einem ganzen Kürbisfeld? 

Abb. 4.7 Schätzgröße als Foto vorhanden 
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Bei der zweiten Kürbis-Aufgabe (Abb. 4. ) ist die Schätzgröße als Foto vor-
handen. Die Schätzgrößen in der ersten Kürbis-Aufgabe (Abb. 4.6) sind nicht 
gegenständlich vorhanden, sie existieren zum Zeitpunkt der Aufgabenstellung 
nur gedanklich. Anders wäre das etwa, wenn die Schulklasse zur Bearbeitung 
dieser Aufgabe zu dem Feld mit den Kürbissen gehen würde und dort die 
Überlegungen mit direktem Vergleich unterstützen könnte. Für die Darstellung 
der Schätzgröße gibt es also im Prinzip die Möglichkeiten, dass sie als Gegen-
stand, als Foto oder nur gedanklich vorliegen. Um eine Schätzaufgabe handelt 
es sich aber nur, wenn der Gegenstand oder das Foto nicht zum direkten Mes-
sen benutzt wird bzw. werden kann. 

Die Anzahl der zu schätzenden Größen beeinflusst ebenfalls den Schwierig-
keitsgrad von Schätzaufgaben. In einer einfachen Schätzaufgabe wird nur eine 
Größe gesucht. Die könnte beispielsweise eine Schätzaufgabe zur Länge eines 
Traktoranhängers sein. 

 

Wie lang ist ein Traktoranhänger? 

 

In diesem Beispiel ist nur eine Länge zu schätzen. Dies kann z. B. durch den 
gedanklichen Vergleich mit bekannten Körpermaßen oder der Reifengröße 
geschehen. Der Erfolg solcher Vergleiche hängt vom Stützpunktwissen der 
Schülerinnen und Schüler ab. Eine Schwierigkeit dabei ist, dass nicht alle An-
hänger die gleiche Länge haben. Hier muss also ein Durchschnittswert ermittelt 
werden, wenn der Anhänger nicht gegenständlich oder als Foto vorliegt. In 
einer komplexen Schätzaufgabe wird mit mindestens zwei Größen gearbeitet. Hier 
könnte man an das folgende Beispiel denken. 

 

Wie groß ist die Ladefläche eines Traktoranhängers? 

 

Für diese Aufgabe kann entweder die Fläche durch Vergleich mit einer geeigne-
ten Stützpunktvorstellung (wie z. B. einem Quadratmeter) direkt geschätzt wer-
den, oder es müssen zwei gleichartige Schätzwerte (Länge und Breite) ermittelt 
werden. Je nach Vorgehen handelt es sich also um eine einfache Schätzaufgabe 
oder bereits um eine komplexe Schätzaufgabe. Der Schwierigkeitsgrad erhöht 
sich, wenn weitere Schätzgrößen hinzukommen. 

 

Wie viele Kürbisse passen auf einen Traktoranhänger? 
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Für diese Aufgabe müssen nicht nur die Fläche des Traktoranhängers, sondern 
auch die mögliche Höhe der Ladung sowie die Größe der Kürbisse bekannt 
sein. Das Beispiel kann zu einer Aufgabe mit drei Schätzgrößen ausgebaut wer-
den: 

 

Wie viele Traktoranhänger werden bei der Ernte eines Kürbisfeldes ge-
füllt?   

 

In diesem Abschnitt wurde deutlich, dass die Anzahl der zu schätzenden Grö-
ßen einen Einfluss auf den Schwierigkeitsgrad der Aufgabe hat.  

 

 
Abb. 4.8 Darstellung und Anzahl der Schätzgrößen 

Allerdings ist auch die Darstellung der Schätzgröße für den Schwierigkeitsgrad 
verantwortlich; hier handelt es sich um eine weitere Dimension, die bei Schätz-
aufgaben betrachtet werden kann. Verwenden wir das Aufgabenbeispiel, in dem 
die Anzahl der Traktoranhänger ermittelt werden soll, die für die Ernte eines 
Kürbisfeldes benötigt werden, so können sich sicher viele Schülerinnen und 
Schüler nicht gut vorstellen, wie das konkret abläuft und wie die entsprechen-
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den Größen zueinander in Beziehung stehen. Dazu könnte dann die Angabe 
der Schätzgrößen als Foto (s. Abb. 4.9) eine große Hilfe sein (Bönig, 2003; 
Franke, 2003; Greefrath, 200 ; Greefrath & Leuders, 2009).  

 
Wie viele Traktoranhänger werden bei der Ernte eines Kürbisfeldes ge-
füllt?   

Abb. 4.9 Komplexe Schätzaufgabe mit Schätzgrößen als Foto 

4.2.4 Fermi-Aufgaben 
Fermi-Aufgaben sind im Prinzip unterbestimmte offene Aufgaben mit klarem 
Endzustand aber unklarem Anfangszustand sowie unklarer Transformation, bei 
denen die Datenbeschaffung – meist durch mehrfaches Schätzen – im Vorder-
grund steht. Sie gehen auf den Kernphysiker und Nobelpreisträger Enrico 
Fermi (1901 1954) zurück. Er war für schnelle Abschätzungen von Problemen 
bekannt, für die praktisch keine Daten vorliegen.  

Das klassische Beispiel für eine Fermi-Aufgabe ist die Frage nach der Zahl der 
Klavierstimmer in Chicago. Hier liegen zunächst keine Informationen vor. Man 
kann aber die Größenordnung schrittweise durch sinnvolle Annahmen über die 
Einwohner von Chicago, die Größe eines Haushalts, den Anteil von Haushal-
ten mit Klavier, den Zeitraum zwischen zwei Klavierstimmungen, die Dauer 
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des Klavierstimmens und das Arbeitspensum eines Klavierstimmers auf etwa 
100 schätzen und so die Frage sinnvoll beantworten. Die Antwort wird also 
durch geeignete Auswahl und sinnvolles Schätzen von Zwischenangaben be-
stimmt.  

Fermi-Aufgaben zeichnen sich außer durch ihre Offenheit auch durch Reali-
tätsbezug und eine besondere Zugänglichkeit aus. Sie sind herausfordernd und 
können nicht nur weitere Fragen, sondern auch die Verwendung von Mathema-
tik in der Welt anregen.  

Der Begriff Fermi-Aufgaben wird auch im weiteren Sinne für offene Aufgaben 
verwendet, bei denen die Aufgabenstellung nur aus einer Frage besteht. Wir 
bezeichnen Fermi-Aufgaben wie die Frage nach der Zahl der Klavierstimmer in 
Chicago, die durch Schätzen von Zwischenangaben gelöst werden, als Fermi-
Aufgaben im ursprünglichen Sinne. Es handelt sich bei solchen Aufgaben also 
gleichzeitig auch um komplexe Schätzaufgaben. 

Beim Einsatz von Fermi-Aufgaben im Mathematikunterricht steht weniger das 
Rechnen im Vordergrund als die anderen Schritte im Modellierungskreislauf 
wie das Vereinfachen und das Validieren. Speziell der Umgang mit Ungenauig-
keit, der häufig keinen großen Raum im Mathematikunterricht einnimmt, kann 
mit Hilfe von Fermi-Aufgaben thematisiert werden. So werden durch eine 
Fermi-Aufgabe im ursprünglichen Sinne das Schätzen und die Arbeit mit unge-
nauen Angaben besonders gefördert. Auch das Mathematisieren zu (möglichst 
einfachen) Modellen spielt eine wichtige Rolle. Durch Fermi-Aufgaben im wei-
teren Sinne können außerdem das Recherchieren und Experimentieren sowie 
das Finden verschiedener Wege in den Mittelpunkt gestellt werden. Schülerin-
nen und Schüler lernen außerdem selbst Fragen zu stellen und so mit heuristi-
schen Strategien zu arbeiten. Sie verwenden Alltagswissen und rechnen mit 
Größen.  

Fermi-Aufgaben im weiteren Sinne können entsprechend ihrem Schwerpunkt 
im Umgang mit Daten klassifiziert werden: 

 Schätzen und Überschlagen von Größen und Anzahlen 

 Veranschaulichung gegebener Größen und Anzahlen 

 Schätzen und Überschlagen sowie Veranschaulichen 

 Gewinnen fehlender Daten aus Annahmen Alltagswissen 

 Bestimmen von Daten aus Abbildungen (s. Abb. 4.10) 

 Bestimmen fehlender Daten durch Messung Experiment (s. Abb. 4.11) 

 Recherchieren von Daten 

 experimentelles Überprüfen 



882  4  Aufgabentypen beim Sachrechnen 

 

 
Abb. 4.10 Bestimmen von Daten aus Abbildungen (Büchter, Herget, Leuders, & Müller, 
2006) 

 
Abb. 4.11 Bestimmen fehlender Daten durch Messung/Experiment (Büchter, Herget, 
Leuders, & Müller, 2006) 
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Fermi-Aufgaben im ursprünglichen Sinne finden sich in den Typen Schätzen und 
Überschlagen von Größen und Anzahlen sowie Gewinnen fehlender Daten aus Annah-
men/Alltagswissen. Die Arbeit mit Experimenten und Abbildungen sowie die 
Recherche kann Fermi-Aufgaben im weiteren Sinne zugeordnet werden 
(Büchter, Herget, Leuders, & Müller, 2006; Leuders, 2001, S. 104; Herget & 
Klika, 2003). 

4.3  Kontextuelle und subjektive Kriterien 

4.3.1 Klassische Aufgabentypen 
Traditionell werden Sachaufgaben mit Blick auf die Ernsthaftigkeit des verwen-
deten Kontextes klassifiziert. Diese Einteilung wird häufig auf Aufgaben für die 
Grundschule bezogen, kann aber entsprechend auch für die Sekundarstufe 
verwendet werden.  

Eingekleidete Aufgaben 

Bei eingekleideten Aufgaben handelt es sich um Rechnungen ohne wirklichen 
Realitätsbezug. Der Sachkontext spielt für die Lösung der Aufgaben keine Rolle 
und kann beliebig ausgetauscht werden. Dies birgt die Gefahr, dass der Bezug 
zur Erfahrungswirklichkeit im Mathematikunterricht verloren geht (Schütte, 
1994, S.  ff.). Das Ziel eingekleideter Aufgaben ist die Anwendung und 
Übung von Rechenfertigkeiten. Zu diesem Aufgabentyp zählen auch eingeklei-
dete Knobelaufgaben, wie etwa das folgende Beispiel. 

 

Beispiel für eine eingekleidete Aufgabe 

In einem Stall werden 42 Tiere gezählt. Es sind Pferde und Fliegen. Zu-
sammen haben sie 196 Beine. Wie viele Fliegen und wie viele Pferde sind 
es? 

 

In der Beispielaufgabe ist nur relevant, dass Pferde vier und Fliegen sechs Beine 
haben. Ansonsten könnte der Kontext beliebig ausgetauscht werden. Außer-
dem hat die Fragestellung keinen wirklichen Realitätsbezug, da es viel leichter 
wäre, die Art der Tiere zu zählen als die Beine und die Anzahl der Tiere. Das 
Ziel ist also eine Lösung durch geschicktes Ausprobieren. Denkbar ist ebenso – 
bezogen auf die Sekundarstufe – das Aufstellen von Gleichungen und deren 
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Lösung. (Radatz & Schipper, 19 3; Krauthausen & Scherer, 200 , S. 4 ff.; 
Franke, 2003, S. 32 ff.)  

Die Problematik der eingekleideten Aufgaben setzt sich auch in die Sekundar-
stufe II fort. Sie wird durch die nun fast überall in Deutschland eingeführten 
zentralen Prüfungen noch verschärft (Henn, 200 , S. 263). So findet man häu-
fig in Abiturprüfungen Aufgabenformulierungen, bei denen sogar die Einklei-
dung an einigen Stellen fehlt. Beispielsweise wird in einer Abituraufgabe zur 
Analysis eine Funktionsgleichung für die Zuflussgeschwindigkeit von Wasser 
angegeben, aber anschließend nicht nach dem in den See geflossenen Volumen, 
sondern nach dem Inhalt der Fläche zwischen Graph und t-Achse gefragt.  

 

Beispielaufgabe aus einer zentralen Abiturprüfung 

Die Zuflussgeschwindigkeit des Wassers in einem Stausee einer Bergregi-
on lässt sich in den ersten 12 Stunden nach sehr starken Regenfällen nä-
herungsweise durch die obige Funktion f, … beschreiben. … 

d) Berechnen Sie den Inhalt der Fläche, die der Graph von f mit der t-
Achse zwischen t = 0 und t = 12 einschließt. Interpretieren Sie das Er-
gebnis im Sachzusammenhang. (Ministerium für Schule NRW, 2007) 

 

Das Fehlen der Einkleidung kann zum einen zeigen, dass die Aufgaben nicht 
ernsthaft im Kontext bearbeitet werden sollen, und zum anderen könnte es als 
Hilfe für die Schülerinnen und Schüler gedacht sein, da so die Übersetzung des 
Kontextes nicht mehr geleistet werden muss. Auch hier besteht die Gefahr, 
dass der Bezug zur Realität im Mathematikunterricht verloren geht. 

Textaufgaben 

Textaufgaben sind typisch für das klassische Sachrechnen. Sie bestehen aus 
Aufgaben in Textform – teilweise auch ergänzt durch ein Bild. Die Sache ist – 
ähnlich wie bei den eingekleideten Aufgaben – austauschbar, und die Realität ist 
häufig sehr vereinfacht dargestellt. Das Ziel ist die Förderung mathematischer 
Fähigkeiten. Daher wird in diesem Zusammenhang auch von Sachrechenaufgaben 
gesprochen (Schütte, 1994, S. 9). Allerdings muss dazu zunächst der Zusam-
menhang zwischen den angegebene Daten im Text erfasst und mathematisch 
dargestellt werden. Von einer Erstellung eines mathematischen Modells kann 
aber auf Grund des fehlenden echten Realitätsbezugs und der vorgegebenen 
Vereinfachungen nicht wirklich gesprochen werden. Dennoch besteht ein 
Hauptproblem für die Schülerinnen und Schüler in der Übersetzung des Textes 
in die entsprechenden mathematischen Objekte, wie z. B. Terme oder Glei-
chungen. Aus diesem Grund ist auch die aus der Modellbildung bekante Be-
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zeichnung Mathematisierung in diesem Zusammenhang üblich (Schütte, 1994, S. 
9). Bei Textaufgaben dominiert das mathematische Problem im Vergleich zu 

den eingekleideten Aufgaben. Ein weiterer Schwerpunkt liegt dann – abhängig 
von der konkreten Aufgabenstellung – in der Interpretation der mathemati-
schen Ergebnisse auf die Sachsituation.  

 

Beispiel für eine Textaufgabe 

Herr Stein bekommt 11 € Stundenlohn. Die monatlichen Abzüge betragen 
363 €. Er erhält daher am Ende des Monats Mai 2035 €. Wie viele Stun-
den hat er im Mai gearbeitet? 

 

Der in der Beispielaufgabe dargestellte Sachverhalt ist zwar möglicherweise real, 
allerdings für Schülerinnen und Schüler nicht wirklich interessant. Vergleichba-
re Textaufgaben werden auch heute noch zu Übungszwecken im Unterricht 
eingesetzt. In den 0er Jahren des letzten Jahrhunderts hat man Textaufgaben 
als die eigentlichen Sachaufgaben angesehen (Maier & Schubert, 19 , S. 12). 

Die ausgiebige Behandlung derartiger Textaufgaben im Mathematikunterricht 
ist stark kritisiert worden. Ein Grund dafür ist der fehlende echte Realitätsbe-
zug. Ein weiterer Grund ist das Verfahren des Einübens mathematischer Sach-
verhalte an gleichartigen Textaufgaben, sodass noch schneller ein echtes Nach-
denken über den verwendeten Kontext überflüssig wird. (Franke, 2003, S. 32 
ff.; Krauthausen & Scherer, 200 , S. 4 ff.; Radatz & Schipper, 19 3)  

Sachprobleme 

Bei Sachproblemen, die auch als Sachaufgaben bezeichnet werden, steht ein 
tatsächliches Problem aus der Umwelt im Vordergrund. Hier wird die Sach-
rechnen-Funktion der Umwelterschließung vermittelt. Dabei werden häufig 
reale Daten vorgegeben, zu denen dann authentische Fragen gestellt werden. 
Die entsprechenden Probleme können auch im projektartigen Unterricht einge-
setzt werden.  

 

Beispiel für ein Sachproblem 

Sonja hat zum Geburtstag ein 21-Gang-Fahrrad bekommen. Kritisch 
fragt sie sich, wie viele Gänge es wohl wirklich hat. Was meint ihr? (Hin-
richs, 2008, S. 164) 
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Da die bearbeitete Sache eine echte Rolle spielt, müssen auch Informationen 
über den entsprechenden Sachverhalt eingeholt und verarbeitet werden. Daher 
ist die Bearbeitung von Sachproblemen auch fachübergreifend bzw. im Idealfall 
sogar fächerverbindend. In diesem Sinne sind die Sachprobleme auch Modellie-
rungsaufgaben gleichzusetzen. (Radatz & Schipper, 19 3; Krauthausen & Sche-
rer, 200 , S. 4 ff.; Franke, 2003, S. 32 ff.; Maier & Schubert, 19 ) 

Im Rahmen des modernen Sachrechens beschäftigt man sich mit Aufgaben, bei 
denen sowohl die Umwelt als auch die Mathematik etwa gleichberechtigt sind. 
Daher ist die klassische Einteilung im Prinzip überflüssig. Dennoch wird diese 
Einteilung noch häufig verwendet – allerdings auch nicht ganz eindeutig (Fran-
ke, 2003, S. 35). 

Tabelle 4.4 Klassische Aufgabentypen 

 eiingekleidete 
Aufgabe  

Textaufgabe  Sachaufgabe  

Schwerpunkt  rechnerisch mathematisch sachbezogen 

Ziel  Anwendung und 
Übung von 

Rechenfertigkeiten 

Förderung 
mathematischer 

Fähigkeiten 

Umwelterschlie-
ßung mit Hilfe von 

Mathematik 

Darstellung  in einfache 
Sachsituationen 

eingekleidet 

in (komplexere) 
Sachsituationen 

eingekleidet 

reale Daten und 
Fakten bzw.  

offene Angaben 

Kontext  kein wirklicher 
Realitätsbezug 

kein wirklicher 
Realitätsbezug 

echter 
Realitätsbezug 

Tätigkeiten  Rechnen Übersetzen, 
Rechnen, 

Interpretieren 

Recherchieren, 
Vereinfachen, 

Mathematisieren, 
Rechnen, 

Interpretieren, 
Validieren 

4.3.2 Abstufungen des Realitätsbezugs 
Der Realitätsbezug von Aufgaben kann außer durch die Charakterisierung als 
Sachaufgabe auch genauer durch Begriffe wie Authentizität, Lebensrelevanz, 
Lebensnähe und Schülerrelevanz gefasst werden. 

Eine authentische Aufgabe ist für Schülerinnen und Schüler glaubwürdig und 
gleichzeitig bezogen auf die Umwelt realistisch. Für Mathematikaufgaben ist 
hier außerdem wichtig, dass sie den Bezug der Mathematik zur Realität echt 
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wiedergeben. Die Authentizität von Aufgaben bedeutet noch nicht, dass Schüle-
rinnen und Schüler die entsprechenden Anwendungen tatsächlich benötigen 
oder dass diese Aufgaben für ihr gegenwärtiges oder zukünftiges Leben wichtig 
sind. 

Eine Aufgabe ist dagegen relevant, wenn Sie als bedeutsam für das gegenwärtige 
oder zukünftige Leben von Schülerinnen und Schülern angesehen wird. Wenn 
eine Aufgabe aus Sicht der Schülerinnen und Schüler bereits gegenwärtig als 
bedeutsam angesehen wird, sprechen wir von Schülerrelevanz. Wird eine Aufgabe 
dagegen erst in zukünftigen Situationen für Schülerinnen und Schüler relevant, 
dann sprechen wir von Lebensrelevanz. Etwas abgeschwächter ist mit Lebensnähe 
lediglich gemeint, dass die entsprechenden Aufgaben mit dem gegenwärtigen 
oder zukünftigen Leben der Schülerinnen und Schüler in Verbindung gebracht 
werden können, aber nicht unbedingt relevant sind (Leuders, 2001, S. 100 ff.). 

4.3.3 Subjektive Kriterien 
Ob eine Aufgabe aus Sicht der Schülerinnen und Schüler als interessant ange-
sehen wird, kann vielfältige Gründe haben. Häufig werden zwar schülerrelevan-
te Aufgaben als interessanter empfunden als nicht authentische Aufgaben, aber 
auch weniger relevante Aufgaben können, wenn sie beispielsweise interessant 
präsentiert sind oder in bestimmter Weise auf die Erfahrungswelt der Schüle-
rinnen und Schüler eingehen, interessant sein. 

Die folgende Beispielaufgabe (s. Abb. 4.12) ist zwar nicht relevant, da Elefanten 
vermutlich selten in randvollen Becken baden, sie wird aber von Schülerinnen 
und Schülern häufig als interessant charakterisiert. 

Ein Grund für den möglicherweise stärkeren Aufforderungscharakter dieser 
Aufgabe ist sicherlich, dass eine solche Aufgabe im Mathematikunterricht eher 
selten bearbeitet wird und viele Schülerinnen und Schüler Elefanten sehr inte-
ressant finden. Es kann also eine Frage des Unterrichtskontextes und des Inhalts 
sein, ob Schülerinnen und Schüler eine Aufgabe interessant finden.  

Schon kleine Unterschiede von Aufgaben können einen Beitrag zu einem er-
höhten Interesse liefern. So ist beispielsweise eine Aufgabe, in der das eigene 
Zimmer der Schülerinnen und Schüler angestrichen werden soll, vermutlich 
interessanter als eine Aufgabe, in der bestimmte Maße eines fiktiven Zimmers 
angegeben sind. Hier wäre dann der Faktor Schülerrelevanz entscheidend.  

Auch die Frage der Aktualität kann eine Rolle spielen. So ist beispielsweise die 
Frage, ob man mit Hilfe der Wahrscheinlichkeitsrechnung auch Aussagen über 
den zukünftigen Fußballweltmeister machen kann (Hußmann & Leuders, 2006) 
kurz vor der Fußballweltmeisterschaft sicher viel interessanter als ein Jahr spä-
ter.  
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Der Elefant soll baden. Wie viel Wasser wird aus einem randvollen Becken 
überlaufen? (Greefrath, 2007, S. 109) 

Abb. 4.12 Aufgabenbeispiel Elefant 

Für Schülerinnen und Schüler kann auch eine Aufgabe interessant sein, die 
nicht im Einklang mit bisherigen Vorstellungen ist. Sie löst dann einen kognitiven 
Konflikt aus, der das Interesse an einer Lösung erhöht. Hierzu zählt beispiels-
weise das Ziegenproblem, in dem es um eine Spielshow geht, bei der ein Kan-
didat ein Auto gewinnen kann. Dazu werden folgende Regeln festgelegt 
(Wikipedia, Ziegenproblem, 2009). 

 Ein Auto und zwei Ziegen werden zufällig auf drei Tore verteilt. 

 Zu Beginn des Spiels sind alle Tore verschlossen, sodass Auto und Ziegen 
nicht sichtbar sind. 

 Der Kandidat wählt ein Tor aus, welches aber vorerst verschlossen bleibt. 

 Hat der Kandidat das Tor mit dem Auto gewählt, dann öffnet der Modera-
tor zufällig ausgewählt eines der beiden anderen Tore, hinter dem sich im-
mer eine Ziege befindet. 

 Hat der Kandidat ein Tor mit einer Ziege gewählt, dann öffnet der Mode-
rator dasjenige der beiden anderen Tore, hinter dem die zweite Ziege steht. 

 Der Moderator bietet dem Kandidaten an, seine Entscheidung zu überden-
ken und das andere, ungeöffnete Tor zu wählen. 
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 Das vom Kandidaten letztlich gewählte Tor wird geöffnet, und er erhält 
das Auto, falls es sich hinter diesem Tor befindet. 

Die Frage ist nun, wie sich der Kandidat entscheiden soll. Tatsächlich ist es 
vorteilhaft für den Kandidaten, das Tor zu wechseln. Dies ist für viele überra-
schend und kann Ausgangspunkt für eine Beschäftigung mit bedingten Wahr-
scheinlichkeiten sein.  

Die Frage, ob eine Aufgabe von Schülerinnen und Schülern subjektiv als interes-
sant angesehen wird, hängt also von Faktoren unterschiedlichster Dimension 
ab. Hier haben wir als Auswahl den kognitiven Konflikt, die Aktualität, die 
Schülerrelevanz, den Inhalt und den Unterrichtskontext vorgestellt.  

4.4  Prozessorientierte Aufgaben 
Aufgaben können auf verschiedene Aspekte fokussieren. Es kann interessant 
sein, nicht nur auf den Inhalt, den Kontextbezug und die Offenheit von Auf-
gaben zu schauen, sondern auch auf den Bearbeitungsprozess. Die Bildungs-
standards und Lehrpläne beschreiben prozessbezogene Kompetenzen, die sich 
in Aufgaben des Sachrechnens widerspiegeln sollten. Der Bearbeitungsprozess 
von Aufgaben hängt zwar von vielen Faktoren und nicht nur von der Aufgabe 
allein ab, aber man kann bei der Erstellung von Aufgaben besonders den Lö-
sungsprozess in den Blick nehmen.  

4.4.1  Lernen, Leisten und Diagnostizieren 
Aufgaben unterscheiden sich häufig abhängig vom Zweck, für den sie erstellt 
worden sind. Es gibt eher offene Aufgabenformate, die für den Lernprozess 
erstellt worden sind. Hier werden häufig nicht alle Informationen vorgegeben, 
und die Schülerinnen und Schüler sollen zunächst eigenständig recherchieren.  

Aufgaben für den Lernprozess können noch dahin gehend unterschieden wer-
den, welche Funktion im Lernprozess sie einnehmen sollen. So können es Auf-
gaben zum Entdecken, zum Systematisieren oder zum Üben sein. Aufgaben 
zum Entdecken sind vom Charakter her in der Regel offener, um unterschiedli-
che Wege zu ermöglichen. Aufgaben zum Systematisieren geben dagegen häu-
fig eine Struktur vor.  

Sind Aufgaben für eine Klassenarbeit konzipiert, so kann es sein, dass Lehre-
rinnen und Lehrer zunächst an möglichst gerechte und einfache Korrekturmög-
lichkeiten denken. Das Ziel ist dann die Feststellung der Leistung. Bei der indi-
viduellen Diagnose dagegen liegen die Interessen von Lehrerinnen und Lehrern 
im Auffinden von Schwächen und Stärken der Schülerinnen und Schüler mit 
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dem Ziel der individuellen Förderung. Diagnoseaufgaben haben insbesondere 
das Ziel herauszufinden, was Schülerinnen und Schüler bereits können (Sche-
rer, 1999, S. 1 0).  

Hier sollten Aufgaben für die Lehrerinnen und Lehrer besonders informativ 
sein und beispielsweise ausreichend Möglichkeiten und Anreize für individuelle 
Erläuterungen und ausführliche Begründungen sowie Nebenrechnungen zur 
Verfügung stehen. So können beispielsweise Aufgaben durch eine systemati-
sche Serie von Veränderungen an den Zahlenwerten, durch Variationen von 
Formulierungen, durch die Veränderung der Darstellungsform oder durch die 
Aufforderung, die Vorgehensweise zu erklären, für die Lehrerinnen und Lehrer 
informativ werden und so eine individuelle Diagnose ermöglichen. Dabei ist es 
stets das Ziel, dass die Schülerinnen und Schüler in möglichst hohem Maße 
Eigenproduktionen erzeugen und auf diese Weise nicht nur deutlich wird, ob 
eine Schülerin oder ein Schüler eine Aufgabe gelöst hat, sondern auch, an wel-
cher Stelle und auf welchem Niveau Schwierigkeiten aufgetreten sind (Sunder-
mann & Selter, 2006, S. 9 ff.; Leuders, 2006). 

Des Weiteren sollten Diagnoseaufgaben im Hinblick auf die zu untersuchende 
Kompetenz oder Teilkompetenz valide sein und diese nicht mit anderen As-
pekten vermischen (Büchter & Leuders, 2005, S. 1 3; Abel, M. et al., 2006). 
Erfordern die Diagnoseaufgaben unterschiedliche Teilkompetenzen gleichzei-
tig, so ist die Analyse von Aufgabenlösungen schwieriger als für Aufgaben, die 
nur eine Teilkompetenz erfordern. 

Eine Möglichkeit, um solche Eigenproduktionen zu motivieren, sind Aufgaben, 
die mit authentischem Material arbeiten und auffordern, vorhandene Wider-
sprüche oder Fehler zu finden und richtig zu stellen.  

 

Schnellfahrer 

Fuhr vor einigen Jahren noch jeder zehnte Autofahrer zu schnell, so ist es 
mittlerweile heute „nur noch“ jeder fünfte. Doch auch fünf Prozent sind 
zu viele, und so wird weiterhin kontrolliert, und die Schnellfahrer haben 
zu zahlen (in: Norderneyer Badezeitung; Herget & Scholz, 1998, S. 32). 

 

Auf diese Weise können auch Lehrende feststellen, ob Schülerinnen und Schü-
ler die Zusammenhänge von Bruch- und Prozentrechnung und deren Anwen-
dung auf reale Situationen verstanden haben (Herget, 2006). 

Insbesondere die Gestaltung von Prüfungsaufgaben mit Anwendungsbezug ist 
problematisch, wenn nicht nur eingekleidete Aufgaben verwendet werden sol-
len. Hier könnte es auch eine Lösung sein, wieder häufiger die Erstellung von 
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Texten über Mathematik in Prüfungen zu verlangen. Beispielsweise könnte in 
einer Prüfungsaufgabe zum Dreisatz auch ein kurzer Text über die Anwen-
dungsmöglichkeiten des Dreisatzes und über Situationen, in denen er nicht 
verwendet werden kann, verlangt werden.  

Dieses Vorgehen ist auch in der Sekundarstufe II noch empfehlenswert. Bei-
spielsweise könnte in einer Prüfung zur Integralrechnung folgende Aufgabe 
gestellt werden. 
 

Beschreibe ein Anwendungsbeispiel, in dem die Integralrechnung ver-
wendet werden kann.  

 
Das Ziel einer solchen Aufgabe ist die Reflexion der Verwendung von Mathe-
matik im Alltag. Dieser Aufgabentyp gibt keinen spezifischen Anwendungsbe-
zug vor, sondern ist – auch in zentralen Prüfungen – flexibel auf den Unterricht 
bezogen (Greefrath, Leuders, & Pallack, 200 ). 

4.4.2 Teilkompetenzen des Modellierens 
Schülerinnen und Schüler können bei der Bearbeitung einer Modellierungsauf-
gabe an vielen Stellen auf Probleme stoßen. Für eine gezielte Förderung oder 
eine genaue Diagnose von Modellierungskompetenzen ist es sinnvoll, Modellie-
rungsaufgaben zu Teilaufgaben zu reduzieren, die Teilschritte des Modellie-
rungskreislaufs besonders in den Blick nehmen. Diesen Teilschritten entspre-
chen die schon angesprochenen Teilkompetenzen des Modellierens (s. S. 52). 

Das Entwickeln von Aufgaben für einzelne Teilkompetenzen des Modellierens 
ist schwierig, da bei der Reduktion von Modellierungsaufgaben auf eine Teil-
kompetenz die Authentizität der Aufgabe verloren gehen kann. Gerade die Au-
thentizität ist aber für Modellierungstätigkeiten eine unverzichtbare Vorausset-
zung. Ob die entsprechende Aufgabe tatsächlich geeignet ist, (nur) auf eine 
Teilkompetenz des Modellierens zu fokussieren, muss jeweils kritisch hinter-
fragt werden. Wird beispielsweise mehr als eine Teilkompetenz angesprochen 
oder ist die Aufgabe keine Modellierungsaufgabe mehr, so kann sie nicht zur 
Diagnose einer bestimmten Teilkompetenz des Modellierens eingesetzt werden. 

Im Folgenden sollen Aufgaben zu Teilkompetenzen des Modellierens vorge-
stellt werden, die durch das Einschränken einer vorhandenen Modellierungs-
aufgabe (s. Abb. 4.13) durch Angabe von weiteren Informationen gewonnen 
wurden. So werden die Schülerinnen und Schüler von bestimmten Tätigkeiten 
im Modellbildungsprozess entlastet und können sich auf eine (oder auch weni-
ge) Teilkompetenz(en) des Modellierens konzentrieren. Dadurch wird eine 
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Diagnose oder Förderung dieser Teilkompetenzen möglich. Diese Vorgehens-
weise stellen wir an einer Modellierungsaufgabe zum Themenbereich Stau vor 
und schränken diese im ersten Beispiel auf das Vereinfachen und im zweiten 
Beispiel auf das Validieren ein.  
 

 
Die Sommerferien beginnen häufig mit vielen Kilometern Stau in 
Deutschland. Im letzten Jahr waren es an einem Tag insgesamt 180 km. 
Wie viele Menschen befanden sich dann vermutlich im Stau? 

Abb. 4.13 Modellierungsaufgabe Stau  

In der Teilkompetenzaufgabe 1 (s. Abb. 4.14) werden Möglichkeiten zur Ver-
einfachung des Problems vorgegeben. Nicht alle angegebenen Möglichkeiten 
sind zur Lösung der Stau-Aufgabe sinnvoll. Bei einigen ist sogar eine Entschei-
dung schwierig, da beispielsweise die Tageszeit auf Grund von Berufspendlern 
schon Einfluss auf die Anzahl der Personen im Auto haben könnte. Deshalb 
wird auch eine Begründung eingefordert. In dieser Aufgabe wird keine Rech-
nung oder weitere Bearbeitung verlangt. Sie zielt allein auf die Wahl geeigneter 
Modellparameter ab. Die Aufgabe ist – obwohl sie deutlich eingeschränkter ist 
als die Modellierungsaufgabe – weiterhin offen, da ja die Wahl einiger Möglich-
keiten auch von den entsprechenden Begründungen abhängt. Außerdem hat die 
Aufgabe durch die Einschränkung nicht ihre Authentizität verloren. Sie ist als 
Diagnose- und Förderaufgabe zur Teilkompetenz Vereinfachen geeignet, weil 
sie sehr gezielt nur diese Kompetenz anspricht und auf Grund der eingeforder-
ten Begründungen viele Informationen über die Gedanken der Schülerinnen 
und Schüler liefert.  

In der Teilkompetenzaufgabe 2 dagegen werden zwei Berechnungsmöglichkei-
ten vorgegeben. Die Schülerinnen und Schüler sollen diese Rechnungen ver-
gleichen und bewerten. Dazu müssen die gegebenen mathematischen Modelle 
analysiert und mit der realen Situation in Beziehung gesetzt werden. Die Schü-
lerinnen und Schüler müssen dazu die entsprechenden Faktoren aus der Rech-
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nung in der Realität deuten und auf Plausibilität überprüfen. Dies spricht die 
Teilkompetenz des Validierens an. Die Bewertung der beiden Rechnungen 
erfordert eine längere Begründung, die hier ermöglicht, dass die Gedanken der 
Schülerinnen und Schüler erfasst werden können (Greefrath, 200 ). 

 

Katja und Toni wollen berechnen, wie viele Menschen sich vermutlich in 
einem Stau der Länge 180 km befinden. Sie haben sich überlegt, welche 
Informationen wichtig sein könnten, und eine Liste von benötigten Infor-
mationen erstellt. Für welche dieser Informationen würdest du dich ent-
scheiden? Begründe!  

 
Fahrzeuglänge 

Wetter 

Art des Fahrzeugs 

Benzinverbrauch 

Bundesland 

Abstand zum nächsten Pkw 

Anzahl der Fahrspuren  

Jahreszeit 

Alter des Fahrers 

Anzahl der Mitfahrer 

Tageszeit 

Wochentag 

Baustellen 

Ferienzeit 

Abb. 4.14 Teilkompetenzaufgabe 1 
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Katja und Toni wollen berechnen, wie viele Menschen sich vermutlich in 
einem Stau der Länge 180 km befinden. Sie gehen davon aus, dass ein 
Fahrzeug 10 m Platz auf der Straße benötigt, und haben sich folgende 
Rechnungen überlegt. 

 
3  18 000  4 = 

3  18 000  2 = 

Vergleiche die beiden Rechnungen und bewerte sie!  

Abb. 4.15 Teilkompetenzaufgabe 2 

4.4.3 Deskriptive und normative Modelle 
Aufgaben zu deskriptiven oder normativen mathematischen Modellen können 
sehr unterschiedlichen Charakter haben. Während es bei deskriptiven Modellen 
im Prinzip darum geht, mathematische Modelle zu verwenden, um realitäts-
bezogene Probleme zu beschreiben und schließlich zu lösen, so geht es bei 
normativen Modellen darum, mathematische Vorschriften zu entwickeln, die in 
bestimmten Situationen für Entscheidungen verwendet werden können.  

Ein Beispiel für eine deskriptive Modellierung wäre die Ermittlung von Materi-
alkosten von selbst hergestellter Marmelade. Dazu müssten die Schülerinnen 
und Schüler zunächst durch die Aufgabe oder durch eine Recherche die Infor-
mationen zusammenstellen, die man in diesem Zusammenhang benötigt. Die 
Kosten können dann auf der Basis entsprechender Annahmen und Berechnun-
gen ermittelt werden (Leuders & Leiß, 2006). 

Ein Beispiel für eine normative Modellierung ist die Verteilung der Heizkosten 
in einem Haus mit mehreren Wohnungen. Dies ist tatsächlich ein reales Prob-
lem, das von Schülerinnen und Schülern in der Sekundarstufe I verstanden und 
bearbeitet werden kann. Einen Unterrichtsvorschlag findet man dazu bei Maaß 
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(Maaß J. , 200 ). Hier können Schülerinnen und Schüler erkennen, dass unter-
schiedliche Modelle gleichberechtigte Lösungen dieses Problems sein können.  

Im ersten Beispiel bei der Preisermittlung der Marmelade wird die Realität mit 
Hilfe von Mathematik beschrieben, beispielsweise wird berechnet, wie schwer 
die Marmelade ist, wie viel Marmelade in ein herkömmliches Glas passt und wie 
teuer die Gläser sind. Im zweiten Beispiel wird die Realität durch die Entschei-
dung für ein bestimmtes mathematisches Modell, beispielsweise die Aufteilung 
der Kosten nach Fläche, Personenzahl oder Verbrauch, erst erschaffen. 

4.5  Aufgaben zur Wiederholung und Vertiefung 

Europapark-Aufgabe 

 

 
Die Eurosat im Europa Park ist eine der schnellsten Indoor-Achterbahnen 
Deutschlands. Der gesamte Streckenverlauf ist in eine silberfarbene Ku-
gel gebaut. Wie viele Fußbälle würden anstelle der Achterbahn in die Ku-
gel passen? 

Abb. 4.16 Aufgabenbeispiel Europapark 
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Untersuchen Sie das Aufgabenbeispiel (s. Abb. 4.16). 

1. Erläutern Sie anhand des Inhalts und der Präsentationsform der Aufgabe, 
ob diese Aufgabe für Schülerinnen und Schüler interessant sein könnte.  

2. Erklären Sie am Beispiel dieser Aufgabe die Begriffe Sachaufgabe und einge-
kleidete Aufgabe. Wie würden Sie diese Aufgabe zuordnen? Wie könnte man 
die Aufgabe verändern, sodass sie anders eingeordnet werden muss?  

3. Lösen Sie die Aufgabe ohne Hilfsmittel (wie beispielsweise das Internet).  

4. Welche Schwierigkeiten können für Schülerinnen und Schüler bei der Auf-
gabenbearbeitung entstehen? Gehen Sie in diesem Zusammenhang auf die 
Frage nach der Genauigkeit der Lösung ein.  

5. Ein mathematisches Modell kann durch Isolierte Wirklichkeit, Vereinfachung, 
Anwendung von Mathematik und Entsprechung (s. 3.1.1) charakterisiert werden. 
Erläutern Sie dies am Beispiel der vorliegenden Aufgabe.  

6. Sie haben verschiedene Modelle des Modellierens (Modellierungskreisläufe) 
kennengelernt. Welches dieser Modelle trifft am besten auf Ihre Lösung 
dieser Aufgabe zu?  

Aufgabentypen 

1. Suchen Sie in Schulbüchern der Sekundarstufe I zwei Sachrechenaufgaben 
zum gleichen mathematischen Inhalt heraus. Eine der beiden Aufgaben soll 
lediglich einen Realitätsbezug besitzen, während die andere Aufgabe zu-
sätzlich noch authentische Materialien verwendet. 

2. Entwickeln Sie zum Themenbereich lineare Funktionen eine eingekleidete 
Aufgabe, eine Textaufgabe und eine Sachaufgabe. 

3. Lösen Sie die folgende Fermi-Aufgabe, und ordnen Sie die Aufgabe in das 
Schema für Schätzaufgaben ein. 

 

Wie viele Kopien werden in unserer Schule in einem Jahr gemacht? 

Projekt 

1. Entwickeln Sie ein Projekt zum Themenbereich „kostbares Wasser“ für die 
Hauptschule. Stellen Sie dar, welche Informationen Schülerinnen und 
Schülern gegeben werden und welche Ziele Sie mit dem Projekt verfolgen.  

2. Welche Eigenschaften kennzeichnen Projektarbeit im Unterschied zu ande-
ren Unterrichtsformen? 
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3. Welche Ziele und Funktionen des Sachrechnens werden durch Projektar-
beit fokussiert? 

Teilkompetenzen des Modellierens 

1. In den Kernlehrplänen der Sekundarstufe I von Nordrhein-Westfalen wird 
das Modellieren als Kompetenz in drei Teilkompetenzen Mathematisieren, 
Validieren und Realisieren unterteilt. Erklären Sie diese drei Teilkompetenzen 
des Modellierens. 

2. Formulieren Sie die oben abgebildete Europapark-Aufgabe so um, dass 
jeweils eine der in a) genannten drei Teilkompetenzen des Modellierens im 
Vordergrund steht. 

3. Könnte man eine allgemeine Rangordnung bezüglich der Wichtigkeit ein-
zelner Teilkompetenzen bei Modellierungsprozessen erstellen? 

4. Erstellen Sie für die Sekundarstufe eine Modellierungsaufgabe zum The-
menfeld Volumenberechnung. Analysieren Sie, welcher Teilkompetenz bzw. 
welchen Teilkompetenzen Ihre Aufgabe in erster Linie anspricht. 

 

 



 

 

5  Ausgewählte Inhaltsbereiche 
des Sachrechnens 

Insbesondere die Klassifizierung von Aufgaben hat gezeigt, dass Sachrechnen 
in allen Bereichen der Schulmathematik eine Rolle spielen kann. Im Prinzip 
können also alle Inhalte in den Sekundarstufen auch realitätsbezogen unterrich-
tet werden. In diesem Kapitel werden einige typische Inhaltsbereiche ausge-
wählt, in denen Aspekte des Sachrechnens eine besondere Rolle spielen.  

Die Inhalte dieses Kapitels sollen auch im Hinblick auf den Modellbil-
dungsprozess betrachtet werden. Dazu verwenden wir einen vereinfachten 
Modellbildungskreislauf, der für diese Zwecke ausreicht. Das soll natürlich 
nicht darüber hinwegtäuschen, dass tatsächliche Modellbildungsprozesse in der 
Regel wesentlich komplexer sind. Hier hat die Betrachtung der Modellbil-
dungsprozesse eher theoretischen und normativen Charakter. 

 

 
AAbb. 5.1 Die „preußische halbe Ruthe“ an der Außenwand des Rathauses in Münster 
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Ein klassischer Inhalt des Sachrechnens ist die Beschäftigung mit Größen. Wir 
wollen uns hier auf die Aspekte von Größen konzentrieren, die in der Sekun-
darstufe eine besondere Rolle spielen.  

5.1  Größen 
Größen begegnen uns an vielen Stellen im Alltag, sind aber gleichzeitig ideali-
sierte mathematische Objekte. Daher stellen Aufgaben, die Größen aus dem 
Alltag beinhalten, in gewisser Weise eine ideale Verbindung zwischen Realität 
und Mathematik dar. Es gibt eine mathematische und eine physikalische Sicht-
weise auf Größen, die im Sachrechenunterricht zusammenfließen. Größen 
eignen sich besonders gut für die Auseinandersetzung mit der Umwelt und 
stellen den Kernbereich des Sachrechnens dar. 

 5.1.1  Grundlagen und ausgewählte Grundgrößen 
Größen dienen der Beschreibung einer bestimmten Eigenschaft realer Objekte. 
Allerdings wird nicht eine beliebige Eigenschaft eines realen Objektes ausge-
wählt, sondern eine objektiv messbare Eigenschaft. Diese existiert aus physika-
lischer Sicht nur dann, wenn es möglich ist, eine eindeutige und reproduzierba-
re Messvorschrift anzugeben. Eine solche Messvorschrift könnte im Beispiel 
der preußischen halben Rute (s. Abb. 5.1) so formuliert werden, dass die Länge 
einer halben Rute dem Abstand der äußeren Begrenzungen des am Rathaus 
angebrachten Prototyps entspricht.   

Für die Rute war allerdings diese Messvorschrift im 19. Jahrhundert nur lokal  
einheitlich. So waren beispielsweise die in Tabelle 5.1 aufgeführten Längen 
einer Rute üblich. 

Tabelle 5.1 Die Länge einer Rute im 19. Jahrhundert (Wikipedia, Rute, 2009) 

Gebiet  Länge einer RRute 

Baden  3 m 

Bremen 4,63 m 

Hessen 3,99 m  

Hildesheim 4,47 m 

Köln  4,60 m 

Preußen  3,766 m 

Schleswig-Holstein 4,58 m 



5.1  Größen   101 

 

 
Abb. 5.2 Tafel an der Außenwand des Rathauses in Münster 

Das Messen einer Größe kann aus physikalischer Sicht direkt oder indirekt 
geschehen. Direktes Messen besteht beispielsweise aus dem Vergleich mit dem 
oben beschriebenen Prototyp der Rute. Indirektes Messen kann auf der Grund-
lage eines Naturgesetzes geschehen. Beispielsweise kann die Temperatur mit 
Hilfe der Längenausdehnung einer Quecksilbersäule im Thermometer gemes-
sen werden.  

Es gibt Grundgrößen und abgeleitete Größen. Die Festlegung kann prinzipiell 
nach Zweckmäßigkeit erfolgen. Durchgesetzt hat sich das 1960 eingeführte 
Internationale Einheitensystem (Système international d’unités) für physikali-
sche Größen. Es beruht auf sieben festgelegten Basiseinheiten zu entsprechen-
den Grundgrößen. Zu den Grundgrößen gehören Länge, Masse, Zeit, Strom-
stärke, thermodynamische Temperatur, Stoffmenge und Lichtstärke (s. Tabelle 
5.2).  

Für den Mathematikunterricht sind von den Grundgrößen in erster Linie Län-
ge, Masse (bzw. Gewicht) und Zeit relevant. Auch die Temperatur wird im 
Mathematikunterricht behandelt, allerdings nicht – wie physikalisch üblich – 



1102  5  Ausgewählte Inhaltsbereiche des Sachrechnens 

 

mit der Einheit Kelvin, sondern gemessen in Grad Celsius (°C). Die Definitio-
nen in der Tabelle zeigen, dass es sowohl Grundgrößen gibt, die direkt, als auch 
solche, die indirekt definiert werden. Beispielsweise wird die Masse durch Ver-
gleich mit einem Prototyp, z. B. mit Hilfe einer Balkenwaage, gemessen, wäh-
rend das Meter nicht als Längenmessung, sondern mit Hilfe einer Zeitmessung 
über die konstante Lichtgeschwindigkeit definiert ist.  

Tabelle 5.2 Ausgewählte Grundgrößen mit der Definition der Grundeinheiten 
(Wikipedia, Internationales Einheitensystem, 2009) 

Größe  Einheit  Definition  

Länge Meter Länge der Strecke, die das Licht im Vakuum während der Dauer 
von 1/299 792 458 Sekunden durchläuft 

Masse Kilogramm entspricht der Masse des Internationalen Kilogrammprototyps 

Zeit Sekunde das 9 192 631 770-fache der Periodendauer der dem Übergang 
zwischen den beiden Hyperfeinstrukturniveaus des Grundzu-
stands von Atomen des Nuklids 133Cs entsprechenden Strah-
lung 

 

Auch sogenannte abgeleitete Größen werden im Mathematikunterricht behan-
delt. Das sind beispielsweise die Fläche (Länge mal Breite), die Geschwindigkeit 
(Weg pro Zeit) oder die Dichte (Masse pro Volumen). Sie setzen sich aus einer 
oder mehrerer Basisgrößen (z. B. im Fall der Fläche und der Geschwindigkeit) 
oder aus Basisgrößen und anderen abgeleiteten Größen (z. B. im Fall der Dich-
te) oder nur aus anderen abgeleiteten Größen zusammen. 

Für jede Größe wird eine Maßeinheit festgelegt. Hier ist zwischen natürlichen 
und willkürlichen Maßeinheiten zu unterscheiden. Eine natürliche Maßeinheit 
ist beispielsweise die Lichtgeschwindigkeit im Vakuum, weil diese unveränder-
lich feststeht. Willkürlich festgelegte Maßeinheiten sind beispielsweise das Me-
ter oder auch die preußische halbe Rute.  

Die Messung erfolgt im Prinzip in drei Schritten. Zunächst muss eine passende 
Maßeinheit ausgewählt werden. Dann werden die entsprechenden Vertreter 
nebeneinandergelegt. Die Einheit wird dazu ggf. vervielfacht oder zerlegt. Zur 
Messung wird die Anzahl der entsprechenden Einheiten oder Untereinheiten 
gezählt (Peter-Koop & Nührenbörger, 200 ). 

Die Angabe einer Größe setzt sich zusammen aus einer (reellen) Maßzahl und 
einer Maßeinheit. Die Größenangabe kann als Produkt aus Maßzahl und Maß-
einheit dargestellt werden, z. B. 4 m für die Länge eines Objektes mit der Maß-
zahl 4 und der Maßeinheit m (Meter).  
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Wenn der Quotient zweier Größenangaben eine reelle Zahl ist, so sind die zu-
gehörigen Größen gleichartig. Die Größenart ist der Oberbegriff für alle Größen, 
für die das möglich ist. Beispielsweise ist die Angabe einer Länge mit 4 m und 
die Angabe einer Breite mit 300 cm gleichartig, da der Quotient 

  

eine reelle Zahl ist. Die Angabe einer Länge mit 4 m und die Angabe einer Flä-
che mit 30 000 cm² ist dagegen nicht gleichartig, da der Quotient 

  

keine reelle Zahl ist, sondern noch die Einheit  enthält.  

Länge und Breite sind also von der gleichen Größenart. Ebenso sind der 
Durchmesser eines Rohres, die Niederschlagshöhe und die Wellenlänge Grö-
ßen der Größenart Länge. Länge und Fläche dagegen sind nicht von der glei-
chen Größenart (Gerthsen, Kneser, & Vogel, 19 9, S. 3 ff.; Kuchling, 19 5). 

5.1.2 Weitere Größen 
Die Größen Anzahl, Temperatur, Gewicht, digitale Speicherkapazität und Geld 
spielen in gewisser Weise – aus unterschiedlichen Gründen – eine Sonderrolle.  

Anzahl 
Die Anzahl benötigt keine Maßeinheit. Es handelt sich im Prinzip um die Na-
türlichen Zahlen . Um eine Konsistenz mit der oben ausgeführten Überle-
gung herzustellen, kann der Anzahl die Einheit 1 zugeordnet werden. Dann ist 
in diesem Fall das Produkt aus Maßzahl (also Anzahl) und Maßeinheit (also 1) 
wieder die Anzahl. 

Temperatur 
Die der Grundgröße Temperatur zugrunde liegende thermodynamische Tem-
peraturskala in Kelvin (K) bezieht sich auf den absoluten Nullpunkt. Da es 
physikalisch betrachtet keine niedrigere Temperatur als den absoluten Null-
punkt geben kann, sind alle Temperaturwerte positiv. Die Kelvin-Skala ist so 
geeicht, dass der Gefrierpunkt von Wasser einer Temperatur von 2 3,16 K 
entspricht. Daher passt die Kelvin-Skala zu den anderen bekannten physikali-
schen Einheiten, die auch positive Maßzahlen haben. Im Alltag und im Mathe-
matikunterricht wird üblicherweise die Temperaturskala in Grad Celsius ver-
wendet. Dies führt zu der Besonderheit, dass auch negative Werte für die Tem-
peratur auftreten. Im Mathematikunterricht wird diese Besonderheit häufig zur 
Einführung der negativen rationalen Zahlen verwendet.  
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Abb. 5.3 Einführung der negativen rationalen Zahlen mit Hilfe der Temperatur (Herling, 
Kuhlmann, & Scheele, 2008, S. 102) 
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Gewicht 
Umgangssprachlich meint man häufig mit Masse und Gewicht das gleiche. 
Physikalisch bezeichnet das Gewicht (oder besser die Gewichtskraft) eines 
Objekts seine nach unten gerichtete Anziehungskraft durch die Gravitation. 
Gemessen wird das Gewicht in der Einheit Newton, also einer Einheit der 
Kraft. Masse dagegen wird in Kilogramm gemessen und kann mit Hilfe der 
Trägheit von Körpern beschrieben werden. Auf der Erde können zwei Massen 
mit Hilfe einer Balkenwaage vergleichen werden. Allgemeiner werden zwei 
Massen als gleich bezeichnet, wenn sie nach einem unelastischen Stoß bei ent-
gegengesetzt gleichen Geschwindigkeiten zur Ruhe kommen. Gewicht wird im 
Mathematikunterricht häufig – physikalisch nicht korrekt – im Sinne von Masse 
verwendet. 

 
Abb. 5.4 Verwendung von Gewicht im Sinne von Masse (Kliemann, Puscher, Segelken, 
Schmidt, & Vernay, 2006, S. 108) 

Digitale Speicherkapazität 

Die digitale Speicherkapazität ist eine relativ neue Größe aus der Informatik 
bzw. der Informationstechnik und wird daher noch selten im Mathematikunter-
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richt behandelt. Sie wird in Bit (b) oder Byte (B) gemessen. Bit ist die Abkür-
zung für binary digit, also Binärziffer. Ein Byte ist die Datenmenge von  Bit. 
Für Bit und Byte können auch die üblichen dezimalen Vielfachen (z. B. Kilo für 
1000) verwendet werden.  Allerdings ist die Verwendung nicht ganz einheitlich, 
da der Faktor 210 teilweise an Stelle von 1000 verwendet wird. Dann entspräche 
1 kB also 1024 B und nicht 1000 B. Hier versucht man durch die Einheit 
KiBiByte (kilo binary) den Unterschied zu verdeutlichen. Dies hat sich aber noch 
nicht durchgesetzt.  

Tabelle 5.3  Ausgewählte Größenarten in der Sekundarstufe I 

Größenart  Einheiten  Vertreter  Zusammenhang  

Länge m, cm, mm, km, 
… 

Stäbe, Autos, Personen, 
… 

Grundgröße 

Fläche m², cm², mm², 
km², … 

Fliesen, Grundstücke, 
… 

Länge Länge 

Volumen m³, l, ml, hl 
(=100 l), … 

Gläser, 
Milchpackungen, 

Kannen, Badewannen, 
… 

Länge³ 

Masse g, kg, mg, t, … Lebensmittel (Käse, 
Fleisch), Personen,… 

Grundgröße 

Zeit s, min, h, ms, … 100-m-Lauf, 
Schulstunde, … 

Grundgröße 

Frequenz  Hz, 1/s, … Musik, Martinshorn, … 1/Zeit 

Temperatur K, °C, °F, … Backofen, 
Außentemperatur, … 

Grundgröße 

Dichte kg/m3, kg/l, 
g/m3, … 

Steine, Federn, Sand, … Masse/Volumen 

Geschwindigkeit m/s, km/h, mph, 
… 

100-m-Läufer Länge 
(Strecke)/Zeit 

Winkel 1 rad = 1 Dreieck, Rampe, Tisch, 
… 

dimensionslos 

Anzahl 1 Äpfel, Schüler, Autos, 
… 

dimensionslos 

Geld €, $, … Münzen, Geldscheine, 
Überweisungen, … 

ökonomische 
Einheit 

digitale Speicher-
kapazität 

Bit, Byte Festplatte, USB-Stick, 
… 

informatische 
Einheit 
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Geld 
Geld wird nicht als physikalische, sondern als ökonomische Größe verwendet. 
Hier gibt es keine eindeutige und reproduzierbare Messvorschrift, um den 
Geldwert eines bestimmten Gegenstandes zu bestimmen. Ansonsten wird die 
Größe Geld analog zu den physikalischen Größen mit Maßzahl und Maßeinheit 
(z. B. Euro) verwendet. In diesem Zusammenhang muss noch zwischen Bar-
geld und Buchgeld unterschieden werden, da Bargeld nicht in beliebig kleinen 
Beträgen existiert, sondern durch die kleinste Einheit 1 Eurocent begrenzt wird. 
Buchgeld dagegen kann theoretisch in beliebig kleinen Beträgen auftreten.  

5.1.3 Größen als mathematisches Modell 
Bei Größen handelt es sich um idealisierte Eigenschaften von realen Objekten. 
Der Übergang vom Arbeiten mit realen Objekten zum Rechnen mit Größen im 
Mathematikunterricht kann daher als Modellbildungsprozess angesehen wer-
den.  
 

 
Abb. 5.5 Größen als mathematisches Modell 

Bei vielen im Mathematikunterricht verwendeten Aufgaben im Zusammenhang 
mit Größen sind ein oder mehrere reale Objekte der Ausgangspunkt. Die Ob-
jekte werden zunächst auf der realen Ebene vereinfacht, da nur eine oder weni-
ge idealisierte Eigenschaften der Objekte betrachtet werden. Diese Eigenschaf-
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ten können beispielsweise die Länge oder das Gewicht dieser Objekte sein (s. 
Abb. 5.5).  

Bei der mathematischen Bearbeitung der idealisierten Eigenschaften als Maß-
zahl mit Einheit spielt die konkrete Konstellation dieser Eigenschaften am rea-
len Objekt dann keine Rolle mehr. Beispielsweise müssen für die Addition von 
zwei Längen aus mathematischer Sicht keine besonderen Bedingungen erfüllt 
sein. In der Realität dagegen ist die Addition von zwei Längen im Prinzip nur 
sinnvoll, wenn die entsprechenden Objekte hintereinander liegen und damit ein 
neues Objekt mit der entsprechenden Länge entsteht.  

Das mathematische Modell Größe ist unabhängig vom jeweiligen Vertreter, also 
dem konkreten realen Objekt mit der betrachteten Eigenschaft. Die nach der 
mathematischen Bearbeitung einer oder mehrerer Größen erhaltenen Ergebnis-
se, beispielsweise die Summe von zwei Längen oder die Fläche (als Produkt von 
zwei Längen), werden schließlich in der konkreten Situation als Eigenschaft 
eines bestimmten Vertreters interpretiert. An dieser Stelle schließt sich dann der 
Modellierungskreislauf bei der Arbeit mit Größen. 

Die einzelnen Schritte in diesem Modellierungsprozess sind nicht eindeutig 
bestimmt. Jedes Objekt besitzt mehrere Eigenschaften, die jeweils betrachtet 
werden können, und zu jedem Objekt gibt es – sogar für dieselbe Eigenschaft – 
unterschiedliche Darstellungen als Größe. Dies zeigt auch schon die Tafel für 
die preußische halbe Rute am Rathaus von Münster. So kann die halbe Rute 
etwa mit 12 Fuß oder 144 Zoll bezeichnet werden (s. Abb. 5.2). Auch die In-
terpretation von mathematischen Lösungen in der Realität ist nicht eindeutig, 
da es unterschiedliche Objekte mit den entsprechenden Eigenschaften geben 
kann. 

Aus mathematischer Sicht ist es interessant, nicht die Vielfalt der Vertreter und 
deren Eigenschaften, sondern gemeinsame Eigenschaften aller Größen zu be-
trachten. Dies rechtfertigt die Verwendung des Begriffs Modell und die Be-
schreibung der Größen als Modellbildungsprozess sowie die gemeinsame Be-
zeichnung Größen. 

Aus didaktischer Sicht sind für das Modell Größe zwei Bereiche interessant. 
Zum einen wollen wir die Erstellung des mathematischen Modells mit den 
zugehörigen mathematischen Hintergründen und zum anderen die Arbeit im 
Modell Größe genauer betrachten. 

5.1.4 Mathematisieren von Größen 
Bei der Erstellung des mathematischen Modells Größe werden Vereinfachun-
gen durchgeführt, durch die mehreren Objekten die gleiche Größe zugeschrie-
ben wird. In der Regel gibt es immer mehrere unterschiedliche reale Objekte 
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für dieselbe Größe. Beispielsweise gibt es sehr viele Gegenstände mit gleichem 
Rauminhalt oder auch viele unterschiedliche Situationen, in denen Objekte die 
gleiche Geschwindigkeit haben. Das Volumen ist dann die gemeinsame Eigen-
schaft aller Objekte mit gleichem Rauminhalt und die Geschwindigkeit die 
gemeinsame Eigenschaft aller Situationen, die gleich schnell ablaufen. 

 

 
Abb. 5.6 Bildung disjunkter Klassen 

Wir fassen also alle Objekte mit gleichem Volumen – unabhängig von ihren 
sonstigen Eigenschaften – zu einer Klasse von Objekten zusammen, die ma-
thematisch gleich behandelt werden kann. Bezüglich dieser Größe, also hier des 
Volumens, kann ein bestimmtes Objekte nur genau zu einer Klasse gehören. 
Zu einer Größe kann es selbstverständlich unendlich viele Klassen geben, da im 
Beispiel des Volumens zu jeder reellen Zahl eine Klasse von Objekten existie-
ren kann, deren Größe genau den Wert der gewählten Maßzahl hat. Beispiels-
weise gibt es Körper mit dem Rauminhalt 2 m³, aber auch 2,01 m³ und  m³. 
Nicht alle Größen können beliebige reelle Werte annehmen. Die Anzahl hat 
beispielsweise nur positive ganzzahlige Werte.  

Diese Aufteilung in disjunkte Klassen, die sich aus der Realität ergibt, definiert 
aus mathematischer Sicht eine Äquivalenzrelation (siehe z. B. Scheid und 
Schwarz 200 , S. 105). Es liegt daher die Beschreibung von Größen mit Hilfe 
einer Äquivalenzrelation nahe, die eine solche Zerlegung induziert. Eine Äqui-
valenzrelation ist transitiv, symmetrisch und reflexiv. Wir betrachten diese Ei-
genschaften am Beispiel des Vergleichs von Flächeninhalten. 
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Vergleicht man drei Fenster bezüglich ihres Flächeninhalts und stellt fest, dass 
das erste Fenster den gleichen Flächeninhalt wie das zweite Fenster hat und das 
zweite Fenster den gleichen Flächeninhalt wie das dritte Fenster, dann weiß 
man auch, dass das erste Fenster den gleichen Flächeninhalt wie das dritte 
Fenster hat (Transitivität). Alle drei genannten Fenster würden also bezüglich 
des Flächeninhalts zu einer Klasse gehören.  

 
Abb. 5.7 Transitivität am Beispiel des Flächeninhalts von Fenstern 

Ebenso klar ist, dass beim Vergleich von zwei Fenstern aus der Kenntnis, dass 
das erste Fenster den gleichen Flächeninhalt hat wie das zweite Fenster, dies 
auch umgekehrt gilt (Symmetrie). Außerdem hat ein Fenster den gleichen Flä-
cheninhalt wie es selbst (Reflexivität). Diese Eigenschaft ist allerdings so offen-
sichtlich, dass sie häufig nicht als eigene Aussage wahrgenommen wird. Kurz 
zusammengefasst gelten folgende Eigenschaften für eine Äquivalenzrelation R 
auf der Menge A der Größen:  

 Reflexiv, wenn aRa für alle Größen a gilt. 

 Symmetrisch, wenn aus aRb stets bRa folgt. 

 Transitiv, wenn aus aRb und bRc stets aRc folgt. 

Dabei ist A die Menge aller in Frage kommenden Vertreter einer Größe und die 
Relation R eine Teilmenge des kartesischen Produkts A  A (Scheid & 
Schwarz, 200 , S. 104); im Beispiel mit den Fenstern ist die zugehörige Relation 
„… hat den gleichen Flächeninhalt wie …“. 

Die drei oben dargestellten Fenster sind bezüglich ihres Flächeninhalts in einer 
Äquivalenzklasse – zusammen mit allen Objekten gleichen Flächeninhalts. Bei-
spielsweise gehört auch das folgende Fenster (Abb. 5. ) zu dieser Äquiva-
lenzklasse. 
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Abb. 5.8 Beispiel für ein flächengleiches Fenster 

Außer diesen Fenstern sind alle anderen Objekte mit gleicher Fläche in dersel-
ben Klasse und werden alle mit der gleichen Größe, z. B. 12 m², bezeichnet. 
Außer dieser Klasse gibt es unendlich viele andere Klassen mit jeweils vielen 
unterschiedlichen Objekten. Jedes Objekt kann bezüglich der Fläche aber nur 
in einer dieser Klassen sein.  

Die drei Eigenschaften einer Äquivalenzrelation sind hier am Beispiel des Flä-
cheninhalts beschrieben worden und gelten allgemein für den Mathematisie-
rungsprozess bei Größen. Aus didaktischer Sicht erscheint es zentral, nicht die 
Eigenschaften der Äquivalenzrelation in den Vordergrund zu stellen, sondern 
die Aufteilung in disjunkte Klassen von Objekten zu thematisieren, die die 
Äquivalenzrelation bewirkt. Die Aufteilung in disjunkte Klassen verdeutlicht 
auch die Vereinfachungsschritte bei der Erstellung des mathematischen Mo-
dells Größe. Der Modellbildungsprozess bei Größen kann mathematisch also 
mit Hilfe der disjunkten Einteilung von ausgewählten Eigenschaften in Klassen 
beschrieben werden.  

5.1.5 Größen im Unterricht 
Häufig werden für die Einführung von Größen sogenannte Stufenmodelle be-
nutzt. Dabei wird das Rechnen mit Größen in mehreren Schritten erarbeitet, 
und insbesondere die standardisierten Maßeinheiten werden erst nach umfang-
reichen Erfahrungen mit exemplarischen Objekten und selbstgewählten Maß-
einheiten verwendet. Eine Schwierigkeit dabei ist allerdings, die Vorerfahrungen 
der Kinder adäquat aufzugreifen. Beispielsweise sind standardisierte Maßeinhei-
ten wie Meter und Stunde häufig bereits vor der Behandlung der entsprechen-
den Größen im Unterricht bekannt. Es ist daher nicht sinnvoll dieses Wissen zu 
ignorieren und die Schülerinnen und Schüler zunächst mit unterschiedlichen 
selbstgewählten Einheiten arbeiten zu lassen, um schließlich die – schon be-
kannten – standardisierten Maßeinheiten nacherfinden zu lassen. So ist es kaum 
möglich, in jedem Fall eine festgelegte Stufenfolge einzuhalten, sondern es kann 
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nur im Einzelfall entschieden werden, welche Erfahrungsmöglichkeiten noch 
angeboten werden müssen.  

Außerdem wird bei derartigen Stufenmodellen auf die Besonderheiten der ein-
zelnen Größen nicht eingegangen. Dies ist speziell in der Sekundarstufe interes-
sant, da hier die Anzahl der Größenarten höher ist als in der Primarstufe. Die 
Problematik der Einführung von Größen ist sehr vielfältig und muss daher  
immer an die eigene Lerngruppe angepasst werden (Franke, 2003, S. 201 ff.; 
Picker, 19 ; Radatz & Schipper, 19 3, S. 125; Ruwisch, 2003; Krauthausen & 
Scherer, 200 , S. 106). 

 

 
Abb. 5.9 Verfeinerung von Längen (Affolter, et al., 2003, S. 20) 

In der Primarstufe werden fast alle im Mathematikunterricht zu behandelnden 
Größenarten bereits eingeführt. In der Sekundarstufe liegt der Schwerpunkt der 
Arbeit mit Größen eher in der Verfeinerung und Vergröberung der bereits 
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bekannten Maßeinheiten und im Rechnen mit Größen. Im gezeigten Beispiel (s. 
Abb. 5.9) wird die Größenart Länge verfeinert. In diesem Beispiel werden aller-
dings keine neuen Einheiten, sondern es wird die Dezimalschreibweise einge-
führt.   

In der Sekundarstufe wird – außer der Verwendung unterschiedlicher Maßein-
heiten für eine Größenart – verstärkt der gleichzeitige Umgang mit unterschied-
lichen Größenarten thematisiert.  

 

 
Abb. 5.10 Umgang mit unterschiedlichen Größenarten (Affolter, et al., 2004, S. 5) 

Ebenso wird in der Sekundarstufe die Berechnung der abgeleiteten Größen 
fortgesetzt. Beispielsweise wird die Fläche nicht nur für Rechtecke mit ganzzah-
ligen Längen, sondern auch für beliebige Rechtecke, Dreiecke und Kreise ein-
geführt. 

Nur wenige neue Größen spielen im Mathematikunterricht der Sekundarstufe 
eine Rolle. In vielen Schulbüchern findet man Sachaufgaben zu den Größenar-
ten Geschwindigkeit und Dichte. Diese Größen werden häufig nicht systematisch 
eingeführt, sondern als bekannt vorausgesetzt oder durch die Angabe einer 
entsprechenden Formel erklärt. 
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Abb. 5.11 Aufgabe zur Geschwindigkeit (Herling, Kuhlmann, & Scheele, 2008, S. 31) 

 

 
Abb. 5.12 Aufgabe zur Erkundung der Dichte (Affolter, et al., 2003, S. 60) 
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Trotz der aufgeführten Vorbehalte möchten wir hier die in Stufenmodellen 
beschriebenen Schritte in den Modellbildungskreislauf zu Größen einordnen (s. 
Abb. 5.13).  

 

 
Abb. 5.13 Einordnung des Stufenmodells im Modellbildungskreislauf 

Für die in der Sekundarstufe neu eingeführten Größen liegen häufig nur sehr 
unvollständige Vorerfahrungen vor, da es sich um zusammengesetzte Größen 
handelt, deren Messung beispielsweise nicht immer einfach möglich ist.    

Typische Schritte in didaktischen Stufenmodellen zur Behandlung von Größen 
sind:  

1. Erfahrungen in Sachsituationen sammeln 

2. Direkter Vergleich von Objekten 

3. Indirekter Vergleich von Objekten 
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4. Stützpunkt-Vorstellungen erwerben und Umrechnen von Maßeinheiten 

5. Arbeiten mit Größen  

(Franke, 2003; Radatz & Schipper, 19 3; Krauthausen & Scherer, 200 , S. 106) 

Wir wollen dies im Folgenden an der Größe Geschwindigkeit erläutern. Diese 
Größe wird in der Regel erst in der Sekundarstufe I thematisiert und tritt häufi-
ger in Sachaufgaben unterschiedlicher Jahrgänge auf. Sie wird allerdings selten 
im Mathematikunterricht systematisch eingeführt. Für die Einführung des 
Grenzwertkonzepts in der Sekundarstufe II ist ein sicheres Verständnis der 
Größe Geschwindigkeit allerdings häufig Voraussetzung.  

Erfahrungen sammeln 
Schülerinnen und Schüler haben Vorerfahrungen zur Größe Geschwindigkeit. 
Sie wissen beispielsweise, dass man mit dem Fahrrad normalerweise schneller 
unterwegs ist als zu Fuß. Im ersten Schritt können diese Erfahrungen gesam-
melt werden. Dazu kann eine Tabelle angelegt werden, in der bewegte Körper 
und Informationen über die jeweilige Geschwindigkeit zusammengetragen 
werden. Um über Geschwindigkeit ins Gespräch zu kommen, eignet sich auch 
ein Spielzeugauto, das man auf einem schräg gestellten Brett herunterfahren 
lässt. Ebenso sind Schülerinnen und Schülern häufig Angaben zu Geschwin-
digkeiten bekannt. Diese können ebenfalls gesammelt und strukturiert werden. 
In dieser Stufe wird immer mit den konkreten Objekten gearbeitet bzw. über 
konkrete Situationen gesprochen. 

Direkter Vergleich 
Aufbauend auf den Erfahrungen können im zweiten Schritt Objekte direkt 
verglichen werden. Bei der Geschwindigkeit als zusammengesetzte Größe ist 
eine Besonderheit zu beachten. Da die Geschwindigkeit von der Strecke, also 
der Größenart Länge, und der Zeitdifferenz, also der Größenart Zeit, abhängt, 
kann sie nur direkt verglichen werden, wenn die beobachteten Gegenstände zur 
gleichen Zeit am gleichen Ort sind. Beispielweise kann die Geschwindigkeit 
von zwei Spielzeugautos vergleichen werden, wenn sie die gleiche Strecke 
gleichzeitig durchfahren. Am Ende der Strecke kann direkt festgestellt werden, 
welches Spielzeugauto eine höhere (Durchschnitts-)Geschwindigkeit hat. Eben-
falls möglich ist der Vergleich von Fahrradgeschwindigkeiten auf dem Schul-
hof. Dazu wird eine bestimmte Strecke gekennzeichnet, die von den Schülerin-
nen und Schülern durchfahren wird. Dazu ist es allerdings nötig, dass beide 
(oder mehrere) Fahrräder zum gleichen Zeitpunkt den Startpunkt durchfahren.  
Auf dieser Stufe werden die Objekte bzw. Situationen vereinfacht, und es wird 
nur noch ihre Geschwindigkeit betrachtet. Allerdings ist es nötig, die Objekte 
noch gleichzeitig an einem bestimmten Ort zu betrachten, um die Geschwin-
digkeiten vergleichen zu können. Es handelt sich hier um eine Arbeit mit kon-
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kreten Objekten. Die Vereinfachung besteht darin, dass nicht zu beachtende 
Eigenschaften wie beispielsweise das Volumen der Objekte bereits ignoriert 
werden.  

Indirekter Vergleich 

Die Schwierigkeit beim direkten Vergleich von Geschwindigkeiten, dass die 
Startlinie zum gleichen Zeitpunkt überschritten werden muss, motiviert den 
indirekten Vergleich von Geschwindigkeiten. In den unterschiedlichen Stufen-
modellen wird dieser Schritt in der Regel unterteilt in den indirekten Vergleich 
mit Hilfe willkürlicher bzw. selbstgewählter Maßeinheiten und den indirekten 
Vergleich mit Hilfe standardisierter Maßeinheiten. Diese Unterscheidung ist im 
Fall einer abgeleiteten Größe wie der Geschwindigkeit nur in begrenztem Um-
fang sinnvoll. Verwendet man eine beliebige, aber fest gewählte Strecke und 
vergleicht Zeiten, die Fahrräder oder Spielzeugautos für diese Strecke benöti-
gen, so hat die Geschwindigkeit tatsächlich eine selbstgewählte Einheit, in der 
allerdings schon eine standardisierte Maßeinheit (Sekunde) vorkommt. Hier 
wäre es ja nicht sinnvoll, die schon bekannten standardisierten Maßeinheiten zu 
ignorieren. Vergleicht man die zurückgelegten Strecken bei gleichen Zeitinter-
vallen, so werden beide Größen, die für die Geschwindigkeit benötigt werden, 
mit standardisierten Maßeinheiten gemessen.  

 

   
Abb. 5.14 Bewegungssensor EA-2 der Firma Casio 

Ein indirekter Vergleich von Geschwindigkeiten wäre ebenso mit Hilfe von 
Messinstrumenten möglich, die die Geschwindigkeit direkt anzeigen. Dazu ist 
die Verwendung von Tachometern, die an vielen Fahrrädern vorhanden sind, 
ebenso möglich wie der Einsatz einer Laserpistole, die von der Polizei für die 
Geschwindigkeitsmessung verwendet wird. Für einige grafikfähige Taschen-
rechner gibt es auch Bewegungssensoren, die die Geschwindigkeit direkt auf-
zeichnen können (s. Abb. 5.14). Wenn die entsprechenden Taschenrechner im 
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Mathematikunterricht ohnehin eingesetzt werden, dann können auf diese Weise 
auch Messungen durchgeführt werden.  

In dieser Stufe wird die Vereinfachung der Objekte konsequent weitergedacht. 
Die Eigenschaft Geschwindigkeit der Objekte kann unabhängig von Ort und 
Zeit festgestellt werden. Dennoch müssen konkrete Messungen an den realen 
Objekten durchgeführt werden.  

Vorstellungen und Umrechnen 

Der Aufbau von Stützpunktvorstellungen zur Geschwindigkeit ist wegen der 
beiden gleichzeitig zu berücksichtigenden Größen unterschiedlicher Art schwie-
riger als beispielsweise bei Längen oder Volumina. Die eigenen Versuche der 
Schülerinnen und Schüler können dazu beitragen, einen Fundus an Repräsen-
tanten anzulegen. Für höhere Geschwindigkeiten muss allerdings auf eine Re-
cherche, z. B. im Internet oder Lexikon, zurückgegriffen werden. In der Tabelle 
sind einige Beispiele für solche Repräsentanten aufgeführt. Dabei wurden die 
Geschwindigkeiten in zwei Maßeinheiten angegeben und jeweils auf glatte Wer-
te gerundet. 

Tabelle 5.4  Repräsentanten (Stützpunktvorstellungen) für Geschwindigkeiten 

Repräsentant  Geschwindigkeit  in m/s  Geschwindigkeit  in km/h  

Schnecke 0,002 m/s 0,007 km/h 

Fußgänger 1,5 m/s 5 km/h 

Radfahrer 6 m/s 20 km/h 

Auto im Wohngebiet 8 m/s 30 km/h 

100-m-Läufer 10 m/s 36 km/h 

Auto in Ortschaft 15 m/s 50 km/h 

Auto auf der Landstraße 30 m/s 100 km/h 

Orkan 33 m/s 120 km/h 

Auto auf der Autobahn 35 m/s 130 km/h 

ICE 80 m/s 280 km/h 

Verkehrsflugzeug 250 m/s 900 km/h 

Schallgeschwindigkeit 340 m/s 1200 km/h 

Lichtgeschwindigkeit 300 000 000 m/s 1 100 000 000 km/h 

Die bekanntesten Einheiten für Geschwindigkeit sind km h und m s. Zur 
Verdeutlichung der Schreibweise und Bewusstmachung, dass die Zeit jeweils im 
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Nenner steht, sollten die Maßeinheiten zur Einführung besser in Bruchstrich-
schreibweise notiert werden. Das unterstützt auch das Umrechnen zur Vergrö-
berung und Verfeinerung der Einheiten. Das Umrechnen von Maßeinheiten 
der Geschwindigkeit ist auf Grund der Unterschiede in der Umrechnung von 
Längen und Zeiten schwieriger als bei anderen zusammengesetzten Größenar-
ten. Während bei Längen mit dezimalen Vielfachen und Teilen gearbeitet wird, 
verwendet man bei Zeiten unterschiedliche Vielfache. 
 

 
Abb. 5.15 Stützpunktvorstellungen zu Längen und Gewichten (Kliemann, Puscher, 
Segelken, Schmidt, & Vernay, 2006, S. 88) 

Tabelle 5.5  Dezimale Vielfache und Teile für Längen 

Faktor  Vorsatz  Zeichen  Faktor  Vorsatz  Zeichen  

101 Deka da 10-1 Dezi d 

102 Hekto h 10-2 Zenti c 

103 Kilo k 10-3 Milli m 

106 Mega M 10-6 Mikro  

109 Giga G 10-9 Nano n 

1012 Tera T 10-12 Piko p 

1015 Peta P 10-15 Femto f 

1018 Exa E 10-18 Atto a 
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Tabelle 5.6  Zeiteinheiten 

Jahr  Monat  Woche  Tag  Stunde  Minute   Sekunde  

1 12 ca. 52 365  
366 

8760  
8784 

525 600  
527 040 

31 536 000 
31 622 400 

 1 ca. 4  28 
29 
30  
31 

672 
696 
720 
744 

40 320 
41 760 
43 200 
44 640 

2 419 200  
2 505 600 
2 592 000 
2 678 400 

  1 7 168 10 080 604 800 

   1 24 1440 86 400 

    1 60 3600 

     1 60 

 

Während die Zeiteinheiten Woche, Tag, Stunde, Minute und Sekunde konstan-
te – aber unterschiedliche – Umrechnungsfaktoren haben, ist dies bei Jahr, 
Monat, Woche und Tag nicht der Fall, da durch die Schaltjahrregelung  nicht 
immer gleich viele Tage zu einem Jahr gezählt werden. Die Schaltjahrregelung 
besagt, dass ein Schalttag eingefügt wird, wenn die Jahreszahl durch vier teilbar 
ist, außer in vollen Jahrhunderten, die nicht durch 400 teilbar sind. Dies hat 
dann auch Auswirkungen auf die Anzahl der Wochen. Für die Umrechnung der 
Geschwindigkeitseinheiten km h und m s wird nur der eindeutige Faktor 3600 
von Stunden und Sekunden verwenden. Die Umrechnung für die Längen- und 
Zeiteinheiten sollte bereits sicher beherrscht werden. Dann kann etwa durch 
die folgende Rechnung die Umrechnung der beiden bekannten Einheiten für 
die Geschwindigkeit vorgenommen werden. 

  

bzw. 

  

Die Messung der Größe Geschwindigkeit hängt auf Grund der Zusammenset-
zung der Größe aus Länge und Zeit von zwei Messungen ab.  
 

Arbeiten mit Größen 

Im idealisierten Modellbildungskreislauf findet die Arbeit mit Größen im Be-
reich der Mathematik statt. Bei der Arbeit im mathematischen Modell kommen 
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praktisch aber auch Rückgriffe auf die reale Ebene vor, da die Operationen der 
disjunkten Klassen mit Hilfe entsprechender Operationen der Vertreter selbst 
erklärt werden.  

 

 
Abb. 5.16 Arbeit mit Klassen von Vertretern 

Für die Arbeit mit Größen kann man zunächst den Vergleich von zwei Größen 
nennen. Im Beispiel der Geschwindigkeit könnte es interessant sein, ob zwei 
Fahrräder die gleiche Geschwindigkeit haben. Hier ist zuerst zu klären, ob es 
sich um eine momentane Geschwindigkeit oder um eine durchschnittliche Ge-
schwindigkeit handeln soll. Es ist durchaus möglich, dass ein Fahrradfahrer mit 
einer niedrigeren Durchschnittsgeschwindigkeit (über einen längeren Zeitraum 
ausgewertet) zu einem bestimmten Zeitpunkt eine höhere momentane Ge-
schwindigkeit hat als ein anderer Fahrradfahrer, der eine höhere Durchschnitts-
geschwindigkeit fährt. Dabei können nun die Geschwindigkeiten der Objekte 
auf Grund der entsprechenden Maßzahlen vergleichen werden, ohne die kon-
kreten Objekte direkt zu verwenden. Dies ist noch ein Abstraktionsschritt mehr 
als der indirekte Vergleich mit Hilfe von Messungen konkreter Objekte. Den-
noch wird man zur Veranschaulichung und zur Validierung immer wieder die 
konkreten Vertreter in den Blick nehmen. Dies wird auch in der Abbildung zur 
Arbeit mit Klassen von Vertretern deutlich. 

Außer dem Vergleich von Größen kann komplexer mit Größen operiert wer-
den, beispielsweise können die Geschwindigkeit eines Flusses und des in Fließ-
richtung fahrenden Bootes addiert werden. Diese Operationen können auch 
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ausgeführt werden, ohne dass die entsprechenden Vertreter diese Aktion tat-
sächlich ausführen.  

Das Rechnen mit Größen spielt auch im Rahmen der Bruchrechnung eine 
wichtige Rolle. Hier wird es zur Veranschaulichung und Motivation der Additi-
on und Subtraktion von Brüchen im Rahmen des Größenkonzepts verwendet. 
Für die Multiplikation dagegen kann nur die Multiplikation einer Größe mit 
einer Zahl betrachtet werden, da sonst die Größenart verlassen wird (Padberg, 
2009, S. 14). 

5.1.6  Mathematische Vertiefung 
Wir betrachten noch einmal das Beispiel der Größenart Länge. Länge, Breite 
und Höhe gehören alle zur Größenart Länge. Allgemein haben wir die Größen 
als eine Größenart bezeichnet, deren Quotient eine reelle Zahl ist.  

Wir wollen im Folgenden die mathematischen Eigenschaften einer Größenart 
genauer untersuchen. Dazu kann ein entsprechendes Objekt, nämlich ein Grö-
ßenbereich, definiert werden. Ein Größenbereich wird als eine bestimmte alge-
braische Struktur definiert, in der addiert und verglichen werden kann und die 
die üblichen im Mathematikunterricht behandelten Größen sinnvoll zusam-
menfasst.  

 

Definition Größenbereich 

Eine Menge G mit Elementen a, b, c, …, für die eine innere Verknüpfung 
+, die wir Addition nennen, und eine strenge Ordnungsrelation <, die wir 
Kleinerrelation nennen, erklärt sind, heißt Größenbereich genau dann, 
wenn für beliebige a, b, c  G gilt: 

Assoziativgesetz der Addition: , 

Kommutativgesetz der Addition: , 

Trichotomiegesetz: Für  gilt stets genau einer der drei Fälle  
.  

Lösbarkeitsgesetz:  ist lösbar mit  genau dann, wenn . 

Der Größenbereich wird durch die Menge G, die Addition und die Kleiner-
relation festgelegt. Schreibweise:  

 

Die Definition des Größenbereichs stellt sicher, dass man Größen eines Grö-
ßenbereichs addieren und vergleichen kann.  
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Es handelt sich hier, bezogen auf die bekannten Strukturen Gruppe und Ring, 
um eine neue algebraische Struktur. Ein Größenbereich ist beispielsweise auf 
Grund des Lösbarkeitsgesetzes keine Gruppe, da in einer Gruppe eine entspre-
chende Gleichung immer (eindeutig) lösbar wäre.  

Das Lösbarkeitsgesetz ist ebenfalls ein Grund dafür, warum eine der bekannten 
Größen aus mathematischer Sicht keinen Größenbereich darstellt. Die Tempe-
ratur – gemessen in Grad Celsius (°C) – kann auch negative Werte haben. Dies 
ist nicht im Einklang mit dem Lösbarkeitsgesetz, da beispielsweise die Glei-
chung °C  x  5°C lösbar ist mit x  2°C. Nach dem Lösbarkeitsgesetz ist 
eine solche Gleichung a + x = b aber genau dann lösbar, wenn a < b gelten 
würde. Dies ist hier nicht der Fall, da   5 ist. Wird die Temperatur, wie in der 
Physik üblich, in Kelvin angegeben, so tritt dieses Problem nicht auf. Des Wei-
teren ist es in einigen Fällen üblich, manchen Größen – beispielsweise der Ge-
schwindigkeit – negative Absolutbeträge zuzuordnen, um eine entgegengesetzte 
Richtung zum Ausdruck zu bringen. Auch dies passt nicht mit dem Lösbar-
keitsgesetz zusammen.  

Die Definition des Größenbereichs schließt die Menge  der natürlichen Zah-
len (ohne Null), die Menge  der positiven rationalen Zahlen und die Menge 

 der positiven reellen Zahlen ein.  

Man kann Größen mit natürlichen Zahlen multiplizieren. Dies wird mit Hilfe 
der Addition rekursiv definiert.  

 

Definition Multiplikation 

Für jedes a  G sei , und wenn  schon definiert ist,  
 für alle natürlichen Zahlen .  

 

Die Multiplikation von zwei Größen führt allerdings (mit Ausnahme der Grö-
ßen mit der Einheit 1) aus der Größenart heraus. Beispielsweise erhält man 
durch Multiplikation von zwei Längen die Größenart Fläche.   

Die Division von Größen durch natürliche Zahlen ist nicht in allen Fällen un-
eingeschränkt möglich. Beispielsweise ist es bei der Größe Geld – zumindest 
bezogen auf das Bargeld – nicht möglich, beliebig zu dividieren und wieder ein 
durch Bargeld darstellbares Ergebnis zu erhalten. So ist zum Beispiel 1 € : 200 

 0,005 €  0,5 ct. Eine solche Münze gibt es aber nicht. Ebenso ist die Divisi-
on von Anzahlen, die auf nicht-ganze Zahlen führt, ein Beispiel für eine nicht 
ausführbare Division von Größen. Falls aber die Division doch uneinge-
schränkt möglich ist, spricht man von einem Größenbereich mit Teilbarkeitsei-
genschaft. 
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Definition Teilbarkeitseigenschaft 

Der Größenbereich  hat die Teilbarkeitseigenschaft genau dann, 
wenn es zu jedem  und  stets ein  gibt, sodass . 

 

Beispielsweise haben die Längen und Temperaturen die Teilbarkeitseigenschaft. 
In diesen Größenbereichen kann durch beliebige natürliche Zahlen dividiert 
werden.  

Eine weitere Frage ist, ob sich in einem Größenbereich eine gegebene Größe 
uneingeschränkt messen lässt. Das Messen ist der Vergleich mit der bekannten 
Einheit. Aus mathematischer Sicht wäre Messen mit einer gegebenen Einheit 
ein Vorgang, bei dem die Größe als Vielfaches einer Einheit geschrieben wer-
den kann. Wenn in einem Größenbereich das Messen uneingeschränkt möglich 
sein soll, dann muss zu zwei beliebigen Größen eine Einheit existieren, sodass 
beide Größen als Vielfache dieser Einheit geschrieben werden können.  

 

Definition Kommensurabilität 

Ein Größenbereich  heißt kommensurabel, wenn es zu zwei belie-
bigen Größen  und  eine Einheit  gibt, sodass gilt:  und 

 mit .  

 

Wenn zwei Größen kommensurabel sind, dann ist die eine Größe als Produkt 
der anderen Größe mit einer positiven rationalen Zahl darstellbar. In einem 
solchen Fall gilt nämlich 

   und    

für zwei Elemente g, h G und zwei natürliche Zahlen m, n . Gilt umge-
kehrt für zwei beliebige Elemente g, h G und zwei natürliche Zahlen m, n , 
die Gleichung 

 ,  

so könnte man 1/n  als Einheit wählen und damit g messen. Umgekehrt 
könnte man auch 1/m  als Einheit wählen und damit h messen. In einem 
solchen Größenbereich ist die Division ohne Einschränkungen möglich. Au-
ßerdem ist der Quotient der beiden Größen g und h eine rationale Zahl, also 
auch eine reelle Zahl. Die Größen gehören damit zur gleichen Größenart.  
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Die Größen Anzahl und (Bar-)Geld sind beispielsweise kommensurabel.  Im 
Fall von Euro kann als Einheit immer 1 ct gewählt werden; in vielen Beispielen 
ist auch eine andere Wahl möglich. Die Länge dagegen ist nicht kommensura-
bel, da beispielsweise ein Kreis mit dem Durchmesser 1 m einen Umfang von 
 m hat und  keine rationale Zahl ist (Picker, 19 ; Strehl, 19 9, S. 46 ff.). 

5.2  Zuordnungen von Größen 
Die Behandlung von Zuordnungen und speziell funktionalen Zusammenhän-
gen gehört nicht prinzipiell zum Sachrechnen. Sehr häufig werden aber Zuord-
nungen von zwei Größen (z. B. Strecke und Geschwindigkeit) im Mathematik-
unterricht betrachtet. 

 

 
Abb. 5.17 Zuordnung von zwei Größen (Affolter, et al., 2004, S. 7) 
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Umgekehrt ist es auch sehr gut möglich, mit Hilfe des Zusammenhangs von 
zwei Größen den Begriff der Funktion zu verdeutlichen (s. Abb. 5.1 ). Die 
Gegenstände des Sachrechnens und zentrale Bereiche des Mathematikunter-
richts der Sekundarstufe können sich hier wechselseitig ergänzen.  

 

 

 
Abb. 5.18 Einführung von Funktionen mit Hilfe von Größen (Kietzmann, et al., 2004) 

 
Abb. 5.19 Zuordnungen als Mittel zur Umwelterschließung (Affolter, et al., 2006, S. 39) 

Die Zuordnungen sind damit eine Fortführung des Inhaltes Größen in der 
Sekundarstufe. Gerade bei der Behandlung von Zuordnungen wird deutlich, 
dass fast alle mathematischen Inhalte mit Hilfe von Realitätsbezügen motiviert 
oder bearbeitet werden können und umgekehrt die Umwelt mit Hilfe von Ma-
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thematik erschlossen und verstanden werden kann (s. Abb. 5.19). Man findet 
daher eine große Bandbreite von Unterrichtsmaterialien mit kaum vorhande-
nem bis sehr ernst genommenem Realitätsbezug. Diese Thematik ist im Zu-
sammenhang mit den Funktionen des Sachrechnens bereits diskutiert worden. 

5.2.1  Zuordnungen und Funktionen 

Hintergrund 

Bevor auf spezielle Funktionstypen oder Eigenschaften von Funktionen einge-
gangen wird, soll hier zunächst der allgemeine Begriff der Zuordnung von zwei 
oder auch mehr Größen betrachtet werden. Eine Funktion kann dann als Spe-
zialfall einer Zuordnung angesehen werden. Gerade aus Sicht des Sachrechnens 
ist dieser allgemeinere Zugang sinnvoll, da nicht alle Beziehungen von Größen 
als funktionale Zusammenhänge modelliert werden können.  

 

Zuordnung 

Eine Zuordnung ist eine Menge von Paaren (x;y) mit x,y aus einer Menge  
V, bei denen die Reihenfolge der Zahlen x und y unterschieden wird. Bei 
solchen sogenannten geordneten Paaren sind (x;y) und (y;x) verschiedene 
Zahlenpaare. 

 

Eine Zuordnung muss nicht eindeutig sein. So können mehrere Paare  
(x, a), (x, b), … mit a b existieren, die einem x-Wert unterschiedliche y-Werte 
zuordnen. Eine eindeutige Zuordnung dagegen wird als Funktion bezeichnet.  

 

Funktion 

Eine Funktion f ordnet jedem Element x einer Definitionsmenge D genau 
ein Element y einer Zielmenge Z zu.  

Schreibweise:  mit  bzw. . 

 

Wie bereits die Definition zeigt, beschränkt man sich bei der Einführung von 
Funktionen als Zuordnung von Größen sehr häufig auf die Termdarstellung. 
Die klassische Einteilung der Schulmathematik in lineare, quadratische, trigo-
nometrische (z. B. Sinusfunktion) und Exponentialfunktionen beruht auch auf 
der Betrachtung der Struktur der Funktionsterme.  
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Tabelle 5.7 Typisierung von Funktionen nach Funktionstermen 

Name  Funktionsterm  

lineare Funktion  

quadratische Funktion  

Sinusfunktion  

Exponentialfunktion  

Gerade bei der Betrachtung von Zuordnungen von Größen wäre es in einigen 
Zusammenhängen sicherlich hilfreich, Funktionen nach Wachstumseigenschaf-
ten (z. B. monoton wachsend) oder Eigenschaften der Funktionalgleichung 
(z. B. additiv) einzuteilen. 

 

Monoton wachsende und fallende Funktionen 

Eine Funktion  heißt monoton wachsend in D, wenn für je zwei 
Elemente  der Definitionsmenge D mit  gilt: . 

Eine Funktion  heißt monoton fallend in D, wenn für je zwei Ele-
mente  der Definitionsmenge D mit  gilt: . 

 

Additive und multiplikative Funktionen 

Eine Funktion  heißt additiv in D, wenn für je zwei Elemente  
der Definitionsmenge D gilt: . 

Eine Funktion  heißt multiplikativ in D, wenn für je zwei Elemente 
 der Definitionsmenge D gilt: . 

 

Die Funktionalgleichungen von additiven und multiplikativen Funktionen wer-
den hier nur exemplarisch ausgewählt. Es gibt weitere Eigenschaften von Funk-
tionen, die mit Hilfe von Funktionalgleichungen ausgedrückt werden können.  

Ein Beispiel für eine monoton wachsende Funktion ist f(x) = x3, da für beliebi-
ge x1  x2 stets auch x13  x23 gilt. Ein Beispiel für eine monoton fallende Funk-
tion ist f(x) = 7x. Eine additive Funktion ist beispielsweise f(x) = 3x und eine 
multiplikative Funktion f(x) = x (Vollrath, 2003, S. 123). 
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Modellierung 

Der Funktionsbegriff stellt ein gleichermaßen spezielles und flexibles mathema-
tisches Modell dar. Es ist mit Blick auf allgemeine Zuordnungen speziell und 
bezogen auf die unterschiedlichen Funktionstypen flexibel. Der Funktionsbe-
griff kann im Rahmen des Sachrechnens ausgehend von anwendungsorientier-
ten Zuordnungen von Größen entwickelt werden.  

Der Schritt von der anwendungsorientierten Zuordnung von Größen zum 
fachwissenschaftlichen Funktionsbegriff sollte nicht zu schnell vollzogen wer-
den. Anderenfalls besteht die Gefahr, dass Schülerinnen und Schüler den Funk-
tionsbegriff nicht auf der Basis der Zuordnung von Größen und mit unter-
schiedlichen Darstellungsformen wie Graph, Tabelle, Beschreibung und Term 
aufbauen können, sondern nur einen eingeengten Blick auf dieses für die 
Schulmathematik zentrale mathematische Modell bekommen. 

Der Funktionsbegriff spielt in den Bildungsstandards und Lehrplänen für die 
Sekundarstufe der einzelnen Bundesländer eine sehr zentrale Rolle. Der funkti-
onale Zusammenhang ist beispielsweise als Leitidee in den Bildungsstandards 
für den mittleren Bildungsabschluss der Kultusministerkonferenz zu finden 
(KMK, 2004, S. 11). Die allgemeineren Zuordnungen dagegen werden häufig 
nur am Rande erwähnt, in den Bildungsstandards beispielsweise als ein Unter-
punkt im Zusammenhang mit möglichen mathematischen Modellen und in den 
Kernlehrplänen Nordrhein-Westfalens an einigen Stellen im Sinne von Funkti-
onen (Ministerium für Schule NRW, 2004).  

Der zu schnelle Übergang von allgemeinen Zuordnungen zum Funktionsbe-
griff, also zu den üblicherweise zuerst behandelten linearen Funktionen, kann 
den Blick für andere Klassen von Funktionen einschränken. In der Realität 
spielen viele unterschiedliche Funktionenklassen eine Rolle, ebenso wie auch 
Zuordnungen und funktionale Zusammenhänge, die nicht durch eine einfach 
darzustellende Funktionsgleichung beschrieben werden können. Daher ist es 
hilfreich, zunächst eine breite Palette von möglichen Zuordnungen kennenzu-
lernen. Da dies in der Jahrgangstufe , in der üblicherweise in diesen Inhaltsbe-
reich eingeführt wird, nicht in der Termdarstellung möglich ist, sollten die 
Schülerinnen und Schüler in dieser Phase verstärkt mit Graphen, Beschreibun-
gen und Tabellen arbeiten. Dann sind beispielsweise auch stückweise definierte 
Funktionsgraphen problemlos darstellbar.  

Sehr häufig wird im Mathematikunterricht mit Hilfe von Funktionen model-
liert. Die Modellbildung ist dabei natürlich abhängig von den vorhandenen 
„mathematischen Werkzeugen“, also den Funktionenklassen, die den Schüle-
rinnen und Schülern bekannt sind. Bis zur Klassenstufe  sind dies in der Regel 
nur lineare Funktionen. Daher liegt die Modellierung häufig auf der Hand. Eine 
wirkliche Wahl eines mathematischen Modells kann auf diese Weise häufig 
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nicht stattfinden. Es kann sogar nicht einmal von einer Wahl der Funktionsart, 
sondern lediglich von der Bestimmung der Parameter der linearen Funktion  
gesprochen werden. Ein entsprechender Modellierungskreislauf mit vorgegebe-
nem linearem Modell verdeutlicht dies (s. Abb. 5.20). 

 

 
Abb. 5.20 Lineare Funktionen als mathematisches Modell 

Der im Kreislauf dargestellte Vereinfachungsschritt zur Eigenschaft Linearität 
liegt allerdings auf der Hand. Wenn keine anderen Modelle zur Verfügung ste-
hen, ist daher die Vereinfachung keine besondere Leistung. Bei der Bearbeitung 
von Problemen, denen ein derartiger enger Modellbildungsprozess zugrunde 
liegt, besteht die Gefahr, dass die Vereinfachung sowie die Mathematisierung 
der Sache nicht gerecht wird und – aus Mangel an alternativen realen Modellen 
– von linearen Zusammenhängen ausgegangen werden muss.  

Bei Modellbildungsprozessen sollte aber die Wahl des Modells möglichst offen 
sein und die Diskussion der Vereinfachung der Realsituation Alternativen bie-
ten. Modellierungsaufgaben mit vorgegebenem Modell sind daher kritisch zu 
sehen. Um zu vermeiden, dass im Mathematikunterricht Modelle nur als Funk-
tionsterm wahrgenommen werden, können unterschiedliche Darstellungsfor-
men von Funktionen immerhin eine größere Vielfalt von Bearbeitungsschritten 
liefern.  
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Darstellungsformen 

Das Einführen von funktionalen Abhängigkeiten mit Hilfe von Graphen erfüllt 
mehrere Zielsetzungen. Zum einen werden nichttriviale Zusammenhänge von 
unterschiedlichen Größenarten untersucht, und zum anderen werden die ma-
thematischen Methoden bereitgestellt, solche Zusammenhänge von Größen 
mathematisch zu beschreiben und zu untersuchen. Dazu können unterschiedli-
che Darstellungsformen verwendet werden.  

 

 
Abb. 5.21 Zeichnen und Interpretieren (Kietzmann, et al., 2004, S. 94) 

Abb. 5.22 zeigt, dass es mit den vier Darstellungsformen für Funktionen zwölf 
unterschiedliche Tätigkeiten gibt, wenn Darstellungen ineinander überführt 
werden sollen. Im Mathematikunterricht findet man besonders häufig das Be-
rechnen von Tabellenwerten aus Funktionstermen mit anschließendem Skizzie-
ren von Funktionsgraphen. Seltener dagegen findet man das Arbeiten mit Ta-
bellen und Graphen oder beispielsweise das Zeichnen von Graphen aus gege-
benen Situationen, wie etwa im abgebildeten Schulbuchbeispiel (s. Abb. 5.21). 
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 nach  Situation  Tabelle   Graph  Term  

von   

Situation  Ausmessen Zeichnen Mathematisieren 

Tabelle Ablesen  Einzeichnen Anpassen 

Graph Interpretieren Ablesen  Anpassen 

Term Realisieren Berechnen Skizzieren  

Abb. 5.22 Mögliche Wechsel von Darstellungsformen (Swan, 1982) 

Wir wollen diese allgemeineren Überlegungen zu Zuordnungen von Größenbe-
reichen nun an speziellen Funktionenklassen konkretisieren.  

5.2.2  Proportionalität  

Definition und charakteristische Eigenschaften 

Die Eigenschaft Proportionalität einer auf den positiven rationalen Zahlen  
definierten Funktion f :  lässt sich mathematisch durch die Bedingung  

 für alle  (5.1) 

definieren. Diese Eigenschaft bezeichnet man auch als Vervielfachungseigenschaft 
(Fricke, 19 , S. 111). 

Proportionale Zusammenhänge können, zusätzlich zur in der Definition ge-
wählten algebraischen Darstellung, auch sprachlich, tabellarisch und grafisch 
dargestellt werden. So kann beispielsweise bei einer Zugfahrt mit konstanter 
Geschwindigkeit der proportionale Zusammenhang der Größen Länge (d. h. 
der zurückgelegten Strecke) und Zeit auch sprachlich formuliert werden. 

  

Beispiel Proportionalität 

Der Zug legt in gleichen Zeiten gleiche Strecken zurück. In drei Minuten 
legt er 10 km zurück. In doppelter Zeit wird auch die doppelte Strecke 
zurückgelegt, in dreifacher Zeit die dreifache Strecke und so weiter.  
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Ebenso ist eine Tabelle oder ein Graph zur Darstellung dieses Sachverhalts 
möglich. Die tabellarische Darstellung orientiert sich hier am Text. Sie beginnt 
mit dem im Text genannten Wert. Weitere Wertepaare werden wie im Text 
beschrieben erzeugt. Anschließend wird die Tabelle noch weiter fortgesetzt.  

Tabelle 5.9 Zeit und zurückgelegte Strecke eines Zuges 

Zeit (in Minuten)  zuurückgelegte Strecke (in km) 

3 10 

6 20 

9 30 

12 40 

… … 

60 200 

… … 

 

Die folgende grafische Darstellung beruht auf den Daten der Tabelle. Die Art 
der Darstellung ermöglicht direkt auch ein Ablesen von Zwischenwerten und 
somit die Ergänzung bzw. Fortsetzung der Tabelle.  
 

 
Abb. 5.23 Zeit (x-Achse) und zurückgelegte Strecke (y-Achse) eines Zuges  

Auf der Basis der eingangs zitierten Definition gibt es unterschiedliche Eigen-
schaften, die im Zusammenhang mit der Proportionalität in den Vordergrund 
gestellt werden können. Die erste dieser Eigenschaften ist die Verhältnisgleichheit. 



1134  5  Ausgewählte Inhaltsbereiche des Sachrechnens 

 

Die Verhältnisgleichheit bringt zum Ausdruck, dass der Quotient von zwei  
x-Werten dem Quotient der zugeordneten Funktionswerte entspricht, d. h.  

. 

Die Eigenschaft (5.2) lässt sich für x2 = c 1 mit Hilfe der Definition (5.1) 
ableiten:  

. 

Ebenso kann man auch die Quotientengleichheit (Fricke, 19 , S. 112) aus der 
Verhältnisgleichheit ableiten. Sie besagt, dass der Quotient aus Funktionswert 
und entsprechendem x-Wert jeweils konstant ist, d. h.  

 const. 

für alle . Dies folgt aus der Verhältnisgleichheit für x1 = x und x2  1: 

. 

Diese Rechnung zeigt auch, dass der konstante Faktor gleich dem Funktions-
wert an der Stelle 1 ist. Daraus lässt sich eine Funktionsgleichung ableiten. Wenn 
für den konstanten Faktor f(1)  a gesetzt wird, erhalten wir  

. (5.2) 

Alternativ sieht man mit Hilfe von (5.1) mit c = x, dass gilt 

.

Der Proportionalitätsfaktor a ist gleich dem Funktionswert an der Stelle 1.  

Eine weitere Eigenschaft ist die Additivität oder Summeneigenschaft (Fricke, 19 , 
S. 111), die nun aus der Funktionsgleichung (5.2) gefolgert werden kann. Es gilt 

, 

denn es ist 

. 

Außerdem gilt für proportionale Zuordnungen die sogenannte Mittelwertseigen-
schaft (Fricke, 19 , S. 112) 

, 
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d. h. dem Mittelwert von zwei Größen oder Zahlen wird der Mittelwert der 
entsprechenden Funktionswerte zugeordnet. Dies folgt beispielsweise mit Hilfe 
der Definition (5.1) für c  1 2 und der Additivität, denn 

, 

oder direkt mit Hilfe der Funktionsgleichung (5.2) 

. 

Diese Eigenschaft gilt allerdings nicht nur für proportionale Funktionen, son-
der auch allgemein für lineare Funktionen  mit , 
denn 

. 

An proportionalen Funktionen können also auch Eigenschaften erkannt wer-
den, die in allgemeineren Zusammenhängen gelten und nicht nur typisch für 
proportionale Funktionen sind. (Vollrath, 2003, S. 126 ff.)  

Die oben beschriebenen Zusammenhänge können in Tabellenform zusammen-
gefasst werden. Dabei benutzen wir die oben verwendeten Bezeichnungen.  

Tabelle 5.10 Proportionalität von zwei Größen 

Größe 1  Größe 2  

  

  

Bezogen auf das Beispiel des mit konstanter Geschwindigkeit bewegten Zuges, 
kann man mit Hilfe der ersten drei Zeilen der entsprechenden Tabelle 5.9 die 
oben dargestellten Eigenschaften konkret veranschaulichen.  

Tabelle 5.11 Eigenschaften von proportionalen Zuordnungen am Beispiel Zug 

Eigenschaft  Beispiel  

Verhältnisgleichheit  

Quotientengleichheit  

Funktionsgleichung  
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Additivität  

Mittelwertseigenschaft 

 

Modellierung 

Häufig werden proportionale Zuordnungen im Zusammenhang mit Modellie-
rungen des Kontextes Einkaufen verwendet, da viele Preise in bestimmten Be-
reichen proportional zur Anzahl oder Menge der Waren sind. Eventuelle An-
gebote oder Rabatte werden häufig in dieser Phase ignoriert, was bei einer 
ernsthaften Betrachtung des Kontextes bei Schülerinnen und Schülern zu 
Schwierigkeiten führen kann.  

 

 
Abb. 5.24 Beispielaufgabe zur Proportionalität (Herling, Kuhlmann, & Scheele, 2008, S. 
13) 

In der Beispielaufgabe (s. Abb. 5.24) wird die Proportionalität von Menge und 
Preis vorausgesetzt, obwohl überhaupt nicht klar ist, ob es für die 6er-Packung 
gegebenenfalls einen Rabatt oder ein anderes Preismodell gibt und ob es über-
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haupt möglich ist, die Stifte in jeder Stückzahl zu kaufen. Hier wird also weni-
ger der Kontext als das mathematische Modell der Proportionalität in den Vor-
dergrund gestellt. Dies ist bei den vielen Aufgaben zu proportionalen Zuord-
nungen der Fall, da das Modell in den meisten Kontexten außerhalb bestimm-
ter Intervalle an Grenzen stößt. Dies ist auch beim eingangs angeführten Zu-
sammenhang von zurückgelegter Strecke und Zeit eines Zuges der Fall. Aus 
mathematischer Sicht handelt es sich also um ein normatives Modell, während 
im Kontext in der Regel das deskriptive Modell einschließlich seiner Grenzen 
im Vordergrund steht (s. S. 44).  

 

 

 

 

 

 

 

 

 

 

 

 

 
Abb. 5.25 Proportionalität im Einkaufskontext 

Um den dadurch entstehenden gedanklichen Konflikt der Schülerinnen und 
Schüler zu lösen, muss explizit die Vereinfachung des Einkaufsproblems durch 
den Verzicht auf Rabatte und die Abgabe beliebiger Mengen in bestimmten 
Bereichen deutlich gemacht und diskutiert werden (s. Abb. 5.25). Dann kann 
die Modellierung als proportionale Zuordnung sinnvoll sein. Es handelt sich 
aber um ein Modell, das die Realität nur in bestimmten Grenzen abbildet. 

Ein anderer Ansatz, zu einer sinnvollen Modellbildung zu kommen, ist, die 
Schülerinnen und Schüler auf der Basis eines Experiments das mathematische 
Modell der Proportionalität selbst entdecken zu lassen. Ein geeignetes Beispiel 
ist die Untersuchung des Gewichts von Münzen. Dazu wiegen die Schülerinnen 
und Schüler einige Münzstapel und können dann die Frage beantworten, wie 

 
 
 
 
 
 

Realität 

Waren zum 
Verkauf 

Mathematik 

Vereinfachen 

M
athem

atisieren 

In
te

rp
re

tie
re

n 

Rechnen 

beliebige Mengen 
u. keine Rabatte  

proportionale 
Zuordnung 

Lösung 



1138  5  Ausgewählte Inhaltsbereiche des Sachrechnens 

 

schwer ein sehr hoher Münzstapel sein würde. Die Modellierung wird dann von 
den Schülerinnen und Schülern selbst entwickelt und verwendet. Auch Wech-
selkurse können sinnvoll mit proportionalen Zuordnungen modelliert werden. 
(Affolter, et al., 2004, S. 10 f.) 

 
Abb. 5.26 Proportionalität von Anzahl und Höhe (Affolter, et al., 2004, S. 10) 

Zur Bearbeitung von proportionalen Zuordnungen im Unterricht sollte die 
entsprechende Modellierung thematisiert werden. Des Weiteren sind bei der 
Proportionalität die Vielfalt der mathematischen Eigenschaften wie Verhältnis-
gleichheit, Quotientengleichheit, Funktionsgleichung, Additivität und Mittel-
wertseigenschaft sowie die unterschiedlichen Darstellungsformen als Text, 
Tabelle, Graph und Term zu thematisieren.  

5.2.3 Dreisatz 
Viele klassische Sachaufgaben können mit dem sogenannten Dreisatz gelöst 
werden. Hierbei handelt es sich um ein Verfahren zur Lösung von Aufgaben 
mit proportionalen Zuordnungen. Der Dreisatz taucht bereits in den Rechen-
büchern von Adam Ries auf. Dort spielt die Methode des Dreisatzes (regula 
detri oder regula de tribus), dem beispielsweise im Rechenbuch mit dem Titel 
Rechnung auf Linien und Federn insgesamt 190 Sachaufgaben gewidmet sind, eine 
zentrale Rolle (Ries, 1522). Dreisatz ist anwendbar auf Aufgaben, für die die 
Proportionalität vorausgesetzt wird und ein Wertepaar gegeben ist. Von einem 
anderen Wertepaar ist ein Wert gesucht. Eine (nicht sehr authentische) Aufgabe 
zu diesem Themenbereich könnte dann etwa wie folgt formuliert sein (s. Abb. 
5.2 ). 

Die klassische Dreisatzrechnung, die sich in der im Folgenden dargestellten 
Form etwa in der ersten Hälfte des 19. Jahrhunderts entwickelt hat (Vollrath, 
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2003, S. 149), würde dann so aufgestellt, dass die gesuchte Größe, in diesem 
Fall die Zeit, auf der rechten Seite steht. 

 

Ein mit konstanter Geschwindigkeit fahrender Zug benötigt für 40 km 12 
Minuten. Wie viel Zeit benötigt er für 75 km? 

Abb. 5.27 Beispielaufgabe zum Dreisatz 

In der ersten Zeile wird das bekannte Wertepaar (40 km; 12 Minuten) verwen-
det. In der zweiten Zeile wird auf der Basis der vorausgesetzten Proportionali-
tät die Zeit für 1 km berechnet und in der dritten Zeile wird dann die gesuchte 
Zeit für 5 km bestimmt. 

 Für 40 km benötigt der Zug 12 Minuten. 

 Für 1 km benötigt der Zug 12 : 40 Minuten  0,3 Minuten. 

 Für 5 km benötigt der Zug 12 : 40  5 Minuten  22,5 Minuten. 

Vor der Verwendung des Dreisatzes in dieser Form wurde aus den drei gege-
benen Daten (40 km in 12 Min; 5 km) direkt die Rechnung 12  : 40  5  22,5 
durchgeführt. Diese Methode erscheint zwar einfacher, es besteht allerdings die 
Gefahr, dass sie unverstanden ausgeführt wird und von Schülerinnen und Schü-
lern dann nicht geeignet auf andersartige Probleme wie antiproportionale oder 
nicht proportionale Zuordnungen angepasst werden kann.  

Ebenso bekannt wie die Berechnung mit Hilfe von drei Zeilen ist die Verwen-
dung des Dreisatzes im Rahmen einer Tabelle. Diese Darstellung der Berech-
nung kann ggf. noch durch Pfeile, die den Faktor angeben mit dem die Zeilen 
jeweils multipliziert werden, unterstützt werden. 

Tabelle 5.12 Dreisatzrechnung 

Strecke  Zeit  

40 km 12 Minuten 

1 km 0,3 Minuten 

75 km 22,5 Minuten 

Der Vorteil der Dreisatzrechnung ist ihre Übersichtlichkeit. Der Nachteil ist, 
dass eine relativ einfache Rechnung aufwändiger als nötig durchgeführt wird. 
Ebenso denkbar wäre es, eine der Eigenschaften der proportionalen Zuord-
nungen auszuwählen und damit den fehlenden Wert zu bestimmen. Beispiels-
weise könnte mit Hilfe der Quotientengleichheit und einer anschließenden 
Gleichungsumformung 
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die Zeit berechnet werden oder auch mit Hilfe der Funktionsgleichung die Zeit 
direkt bestimmt werden: 

 . 

(Fricke, 19 , S. 122) Analoge Betrachtungen sind für antiproportionale Zu-
ordnungen mit Dreisatz möglich (Vollrath, 2003, S. 126 ff.).  

Didaktisch ist anzumerken, dass dieses Verfahren leicht erlernbar ist, allerdings 
zu einem automatisierten Algorithmus werden kann. Problematisch ist eben-
falls, dass die Proportionalität des Sachproblems in der Regel nicht in Frage 
gestellt wird und somit keine Modellbildung mehr stattfindet, sondern nur eine 
Anwendung eines Verfahrens für ein gegebenes Modell. Dazu ist es auch not-
wendig, zunächst zu diskutieren, ob die proportionale Zuordnung überhaupt 
das geeignete Modell ist. Es müssen entsprechend viele Beispiele im Unterricht 
vorkommen, bei denen das dann nicht der Fall ist. Ebenso muss der Fehlvor-
stellung entgegengewirkt werden, dass es nur entweder proportionale oder anti-
proportionale Zuordnungen gibt. Hier gibt es in einigen Schulbüchern bereits 
Beispiele, die dieser Vorstellung entgegenwirken. Solche Beispiele sind etwa 
(Herling, Kuhlmann, & Scheele, 200 , S. 32): 

 Vier Musiker spielen ein Musikstück in 4 Minuten und 40 Sekunden. Benö-
tigen drei Musiker für das Musikstück mehr Zeit? 

 Ein einjähriges Kind hat eine Körpergröße von 5 cm. Kannst Du berech-
nen, wie groß das Kind mit zwei Jahren sein wird? 

 In Lauras Klasse sind im . Jahrgang insgesamt 14 Mädchen. Kannst Du 
berechnen, wie viele Mädchen die Klasse im . Jahrgang haben wird? 

Sachaufgaben zu proportionalen Zuordnungen sollten sich nicht auf die bloße 
Übersetzung von Texten in Dreisatztabellen beschränken.  

Die hier dargestellte Reihenfolge, ausgehend vom allgemeinen Zuordnungs- 
bzw. Funktionsbegriff über proportionale Zuordnungen zum Dreisatz zu ge-
langen, ist nach aktuellem Stand der übliche Weg in Klassenstufe . Auf dieser 
Basis soll der Unterricht des Dreisatzes deutlich über die korrekte Anwendung 
hinausgehen und in den Kontext der Funktionen eingebunden werden. Insbe-
sondere soll jeweils das verwendete mathematische Modell kritisch hinterfragt 
werden (Führer, 200 ). 

Humenberger schlägt vor, Aufgaben mit überflüssigen oder fehlenden Angaben 
zu verwenden. Eine Beispielaufgabe, die in diesen Zusammenhang verwendet 
werden kann, ist in der folgenden Abbildung (s. Abb. 5.2 ) dargestellt. Im Zu-



5.2  Zuordnungen von Größen   141 

 

sammenhang mit dieser Aufgabe können unterschiedliche Fragen gestellt wer-
den, für die jeweils nicht alle im Text vorhandenen Angaben benötig werden. 

 

Ein Arbeitnehmer fährt mit dem Fahrrad zur Arbeit. Er fährt die 3 km lan-
ge Strecke normalerweise mit einer mittleren Geschwindigkeit von 15 
km/h. Dieses Mal hatte er jedoch Pech, denn nach 1 km platzte der 
Schlauch eines Reifens, und er brauchte um 20 Minuten länger, weil er ab 
dieser Stelle das Rad schieben musste. In der Arbeitsstätte konnte er 
glücklicherweise den Schaden beheben und abends ungehindert nach 
Hause fahren. (Humenberger, 1995) 

Abb. 5.28 Beispielaufgabe zum Dreisatz mit überflüssigen Angaben 

 
Wie groß müsste wohl ein entsprechendes Denkmal sein, wenn es Ade-
nauer „von Kopf bis Fuß“ in demselben Maßstab darstellen soll? (Herget, 
Jahnke, & Kroll, 2001) 

Abb. 5.29 Beispielaufgabe zum Dreisatz mit fehlenden Angaben 

Interessante Fragen zur Beispielaufgabe zum Dreisatz mit überflüssigen Anga-
ben könnten die Folgenden sein: 

 Wie viel km ist er insgesamt mehr gefahren als gegangen? 
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 Welche Daten sind für die erste Frage überflüssig? 

 Wie lange braucht er mit dem Fahrrad normalerweise für die Strecke? 

 Wie lange (zeitlich) musste er das Rad schieben? 

 Welche mittlere Geschwindigkeit hatte er beim Schieben? 

Nicht alle diese Aufgabenteile benötigen eine Dreisatzrechnung, aber insgesamt 
können bei den aufgeführten Fragestellungen zwei Mal sinnvoll Dreisatzrech-
nungen durchgeführt werden. Dazu muss in jedem Fall genau überlegt werden, 
was gegeben und gesucht ist und ob der Dreisatz ein sinnvolles Verfahren zur 
Lösung des Problems ist. In diesem Beispiel ist durch die überflüssigen Anga-
ben gewährleistet, dass Schülerinnen und Schüler ernsthaft die Wahl eines pro-
portionalen oder antiproportionalen mathematischen Modells treffen müssen.  

Ein weiteres Beispiel für eine Aufgabe, die den Dreisatz verwendet, bei der aber 
nicht alle notwendigen Informationen eindeutig gegeben sind, hat Herget er-
stellt. Hier handelt es sich um eine Fermi-Aufgabe im weiteren Sinne (s. Abb. 
5.29). Diese Aufgabe kann ebenfalls mit dem Dreisatz bearbeitet werden, aller-
dings müssen vorher mit Hilfe des Fotos Daten ermittelt werden, die nicht 
eindeutig sind. Es ist also gleichzeig auch – wie solche Fermi-Aufgaben generell 
– eine offene Aufgabe mit unklarem Anfangszustand (Humenberger, 2003). 

5.2.4  Antiproportionalität 

Definition, Darstellungsmöglichkeiten und charakteristische Eigen-
schaften 

Die Antiproportionalität einer auf den positiven rationalen Zahlen  definier-
ten Funktion f : lässt sich analog zur Definition der Proportionalität 
durch die folgende Bedingung beschreiben 

 für alle . (5.3) 

Hier sind ebenfalls sprachliche, tabellarische und grafische Darstellungen mög-
lich. So kann beispielsweise für eine Zugfahrt auf einer bestimmten Strecke mit 
konstanter Geschwindigkeit der antiproportionale Zusammenhang der Größen 
Geschwindigkeit und Zeit auch sprachlich formuliert werden. 

  

Je schneller der Zug fährt, desto weniger Zeit wird (für eine konstante 
Strecke) benötigt. Bei einer Geschwindigkeit von 50 km/h benötigt der 
Zug (für eine Strecke von 100 km) zwei Stunden. Mit doppelter Ge-
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schwindigkeit wird die halbe Zeit benötigt, bei dreifacher Geschwindig-
keit ein Drittel der Zeit und so weiter.  

 

Auch dieser Sachverhalt kann mit Hilfe einer Tabelle (s. Tabelle 5.13) oder 
eines Graphen (s. Abb. 5.30) dargestellt werden.  

Tabelle 5.13 Geschwindigkeit und benötigte Zeit eines Zuges 

Geschwindigkeit (in km/h)  Zeit (in Minuten)  

50 120 

100 60 

150 40 

200 30 

250 24 

… … 

 

 
Abb. 5.30 Geschwindigkeit (x-Achse) und Zeit (y-Achse) für einen Zug  
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Für antiproportionale Zuordnungen lassen sich der proportionalen Zuordnung 
entsprechende Eigenschaften ableiten. Die erste dieser Eigenschaften ist die 
umgekehrte Verhältnisgleichheit, d. h.  

. 

Diese Eigenschaft lässt sich für x2 = c 1 mit Hilfe der Definition (5.3) zeigen:  

. 

Ebenso kann man auch die Produktgleichheit (Fricke, 19 , S. 13 ) ableiten. Sie 
besagt, dass das Produkt   

 const. 

für alle x  gilt. Dies folgt aus der umgekehrten Verhältnisgleichheit für x1 = 
x und x2  1: 

. 

Diese Rechnung zeigt auch, dass der konstante Faktor gleich dem Funktions-
wert an der Stelle 1 ist. Daraus lässt sich nun auch eine Funktionsgleichung ablei-
ten. Wenn für den konstanten Faktor f(1) = a gesetzt wird, erhalten wir  

. 

Alternativ sieht man mit Hilfe von (5.3) mit c = x, dass gilt 

 .

Der Antiproportionalitätsfaktor a ist also gleich dem Funktionswert an der 
Stelle 1 (Vollrath, 2003, S. 126 ff.).  

Diese Zusammenhänge können in Tabellenform zusammengefasst werden. 
Dabei benutzen wir ebenfalls die oben verwendeten Bezeichnungen.  

Tabelle 5.14 Antiproportionalität von zwei Größen 

Größe 1  Größe 2  
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Bezogen auf das Beispiel des auf einer festen Strecke betrachteten Zuges kann 
man mit Hilfe der ersten zwei Zeilen der entsprechenden Tabelle 5.13 die oben 
dargestellten Eigenschaften konkret veranschaulichen.  

Tabelle 5.15 Eigenschaften von antiproportionalen Zuordnungen am Beispiel Zug 

Eigenschaft  Beispiel  

Umgekehrte 
Verhältnisgleichheit  

Produktgleichheit 
 min 

Funktionsgleichung  

Additivität und Mittelwertseigenschaft gelten für antiproportionale Zuordnun-
gen nicht (siehe Aufgabe S. 199). 

Modellierung 

 
Abb. 5.31 Beispielaufgabe zur Antiproportionalität (Schröder, Wurl, & Wynands, 2000, 
S. 7) 

Häufig werden antiproportionale Zuordnungen im Zusammenhang mit Model-
lierungen des Kontextes Zeit verwendet, da beispielsweise Fahrzeit und Ge-
schwindigkeit oder auch Arbeitszeit und Leistung in bestimmten Bereichen 
antiproportional sind. Bereiche, in denen die Antiproportionalität nicht gilt, 
werden häufig bei der Einführung von antiproportionalen Zuordnungen igno-
riert, was bei einer ernsthaften Betrachtung des Kontextes bei Schülerinnen und 
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Schülern zu Schwierigkeiten führen kann. Häufig kommt man in Bereiche, in 
denen beispielsweise die Geschwindigkeit nicht über einen langen Zeitraum als 
konstant angenommen werden kann oder die Anzahl der Arbeiter so groß wird, 
dass sie sich gegenseitig behindern. Als Beispiel für eine antiproportionale Zu-
ordnung betrachten wir eine Schulbuchaufgabe, in der der Zusammenhang von 
Zeit und Leistung von Baggern vorgegeben ist (s. Abb. 5.31).  

Tabelle 5.16 Leistung und Zeit  

Leistung  Zeit  

100 %  12 Tage 

1 %  12 Tage  100 = 1200 Tage  

150 %  12 Tage  100 / 150 = 8 Tage 

In der erwarteten Lösung dieser Aufgabe geht man von der Vereinfachung aus, 
dass ein Bagger einen Fahrer braucht und jeden Tag die gleiche Leistung er-
bracht wird. Außerdem muss die Baustelle so beschaffen sein, dass sich zwei 
Bagger nicht behindern. Die beiden Bagger und die entsprechenden Arbeiter 
werden also unabhängig voneinander und auch gleichmäßig in ihrer jeweiligen 
Leistung gesehen. Dann kann man von einer antiproportionalen Zuordnung 
ausgehen und beispielsweise mit Hilfe des Dreisatzes die Zeit berechnen, die 
bei einer Leistung von 1½ großen Baggern benötigt würde (s. Tabelle 5.16).  

Die übliche Dreisatzrechnung ist hier kritisch zu hinterfragen, da die in der 
zweiten Zeile berechnete Anzahl der Arbeitstage für einen Bagger mit 1%iger 
Leistung keine reale Entsprechung hat. Hier wäre es realistischer zu fragen, wie 
lange ein kleiner Bagger mit halber Tagesleistung benötigen würde. Auch dann 
könnte man im dritten Schritt auf 150% schließen.  

 

 



5.2  Zuordnungen von Größen   147 

 

Abb. 5.32 Aufgabenlösung einer Schülerin  

Die Schülerin macht für Ihre Lösung aber andere Modellierungsschritte, als in 
einer Musterlösung zu erwarten sind. Sie macht Annahmen, die auch einen 
realen Hintergrund haben; beispielsweise geht sie davon aus, dass das Vorhan-
densein eines Chefs die Arbeit beschleunigen kann. Solche Punkte sieht das 
mathematische antiproportionale Modell nicht vor. Daher kommt die Schülerin 
zu der Aussage, dass bei Anwesenheit des Chefs das Ziel erreicht werden kann, 
auch wenn die mathematische Lösung ergibt, dass die Arbeiter es nicht schaf-
fen können. Die in der Aufgabe eigentlich gewünschte Rechnung hat sie nicht 
durchgeführt. Für die Schülerin war auf Grund des gegebenen Kontextes nicht 
klar, dass ein mathematisches Modell gesucht wird. 

Die Lösung der Schülerin ist interessant. Im Mathematikunterricht wünscht 
man sich aber häufig eine Lösung mit mathematischen Methoden. Dazu könnte 
im Unterricht stärker die Vereinfachung der realen Situationen diskutiert wer-
den. Dann kann die Modellierung als antiproportionale Zuordnung besser in 
die Realität eingeordnet werden. Es muss immer deutlich werden, dass es sich 
um ein mathematisches Modell handelt, das die Realität nur in bestimmten 
Grenzen abbildet. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Abb. 5.33 Antiproportionalität im Kontext Arbeitszeit 
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5.2.5  Kombination proportionaler und antiproportiona-
ler Zuordnungen 

Die mathematischen Überlegungen zur Proportionalität und Antiproportionali-
tät lassen bereits die Vielfalt erahnen, die reale Sachkontexte im Zusammen-
hang mit proportionalen und antiproportionalen Zuordnungen bieten können. 
Mathematisch ist außerdem eine Verkettung von beiden Zuordnungsarten 
möglich. Allerdings sind authentische Anwendungskontexte hierzu schwierig zu 
finden. Eine typische Sachaufgabe aus diesem Themenfeld ist im folgenden 
Kasten angeführt.  

 

Im Hiltruper Freibad benötigt man 5 Stunden, um mit 3 Pumpen ein Be-
cken von 1200 m³ Volumen halb zu füllen. Wie lange dauert es, wenn 4 
Pumpen eingesetzt werden und das Becken ganz gefüllt werden soll? 

 

In diesem Fall sind Zeit und Pumpenanzahl antiproportional, Zeit und Volu-
men dagegen (direkt) proportional. Insgesamt ist der Quotient aus Volumen V 
und Pumpenanzahl p proportional zur Zeit Z, also  

.  

Damit lässt sich die gesuchte Zeit berechnen, wenn die Proportionalitätskon-
stante bekannt ist. Also setzten wir 

  

und berechnen damit  

, 

also werden mit 4 Pumpen für 1200 m³ ,5 Stunden benötigt. Eine alternative 
Berechnungsmethode, die der des Dreisatzes ähnelt, verwendet die entspre-
chend formulierten Beziehungen. Dabei wird jeweils nur eine Größe verändert, 
während die andere konstant bleibt. 

 Für 600 m³ benötigen 3 Pumpen 5 Stunden. 

 Für 1 m³ benötigen 3 Pumpen  Stunden   Stunden. 

 Für 1200 m³ benötigen 3 Pumpen  Stunden  10 Stunden.  

 Für 1200 m³ benötigt 1 Pumpe   Stunden  30 Stunden. 



5.2  Zuordnungen von Größen   149 

 

 Für 1200 m³ benötigen 4 Pumpen   Stunden  ,5 Stunden. 

Die mittlere Zeile ist hier gleichzeitig die letzte Zeile der ersten (proportionalen) 
Dreisatzrechnung und die erste Zeile der zweiten (antiproportionalen) Dreisatz-
rechnung. 

Dieses Beispiel zeigt, dass es im Prinzip drei Fälle für solche Verkettungen von 
(Anti-)Proportionalitäten gibt. Entweder liegen zwei proportionale oder zwei 
antiproportionale Beziehungen vor, oder es ist – wie im obigen Beispiel – eine 
proportionale und eine antiproportionale Zuordnung gegeben. In allen Fällen 
kann eine gemeinsame Proportionalitätskonstante – im Beispiel oben war es 

 – ermittelt werden (Vollrath, 2003, S. 126 ff.). 

 

Beispiel elektrischer Widerstand 

In einem Experiment wurde der elektrische Widerstand eines Drahtes un-
tersucht. Dabei wurden die Querschnittsfläche und die Länge des Drahtes 
verändert.  

 
Die erste Messung wurde für eine Querschnittsfläche von 0,2 mm², die 
zweite für eine Länge von 0,25 m durchgeführt. 

Finde einen Zusammenhang zwischen Widerstand und Querschnittsfläche 
sowie Widerstand und Leiterlänge.  

Wie kann der Widerstand aus Querschnittsfläche und Leiterlänge direkt 
berechnet werden? 

Abb. 5.34 Beispielaufgabe zum elektrischen Widerstand 

Im Mathematikunterricht spielen solche Überlegungen allerdings weniger eine 
Rolle als im Physikunterricht, wo bei der experimentellen Bestätigung von Na-
turgesetzen – wie zum Beispiel des elektrischen Widerstands eines Leiters mit 
Querschnittsfläche A und Länge l – häufig mehrere Proportionalitäten gleich-
zeitig betrachtet werden müssen. Diese physikalischen Gesetze stellen auch 
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einen sinnvollen Kontext für einen experimentellen Zugang zu Problemen dar, 
die mit Hilfe von verketteten proportionalen und antiproportionalen Zuord-
nungen modelliert werden können (s. Abb. 5.34).  

Das Beispiel zeigt einen nahezu proportionalen Zusammenhang von Wider-
stand und Länge sowie einen annähernd antiproportionalen Zusammenhang 
von Widerstand und Querschnittsfläche. Insgesamt ist der Quotient aus Länge l 
und Querschnittsfläche A proportional zum elektrischen Widerstand R, also  

.  

Als Proportionalitätskonstante erhalten wir  

. 

Die Messwerte entsprechen nicht exakt dem jeweiligen mathematischen Mo-
dell. So können die entsprechenden Idealisierungen diskutiert und validiert 
werden. Dazu werden die im Modell gewonnenen Daten mit den realen Mess-
werten verglichen. 

Tabelle 5.17 Leiterlänge und Widerstand 

Länge   
(in Meter m)  0,30 m 0,60 m 0,90 m 1,20 m 1,50 m 

Widerstand   
(in Ohm )  2,7  5,3  8,0  10,0  13,3  

Modellwert  
(in Ohm ) 

2,7  5,4  8,1  10,8  13,5  

Tabelle 5.18 Querschnittsfläche und Widerstand 

Querschnittsfläche  
(in Quadratmillimeter mm²) 0,2 mm² 0,4 mm² 0,6 mm² 0,8 mm² 1,0 mm² 

Widerstand  
(in Ohm ) 2,2  1,1  0,74  0,59  0,45  

Modellwert 
(in Ohm ) 2,3 1,1 0,8 0,6 0,5 

 

Für das Verständnis des Modells von proportionalen und antiproportionalen 
Zusammenhängen sind zu Beginn des Lernprozesses sicherlich inhaltliche und 
numerische Überlegungen zielführender als algebraische Betrachtungen.  
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5.2.6 Prozent- und Zinsrechnung 
Die Prozent- und die Zinsrechnung gehören zu den klassischen Gebieten des 
Sachrechnens. Sie beschäftigen sich einerseits mit Größen, und andererseits 
spielen Rechnungen mit Prozent- und Zinsangaben im täglichen Leben eine 
wichtige Rolle.  

Grundlagen der Prozentrechnung  

Größen werden häufig mit Hilfe von Prozentangaben verglichen oder einge-
ordnet. Die Prozentrechnung kann mathematisch in zwei Zusammenhängen 
gesehen werden. Zum einen kann die Prozentrechnung als ein Teil der Bruch-
rechnung und zum anderen als ein Spezialfall der Dreisatzrechnung aufgefasst 
werden (Strehl, 19 9, S. 119 f.).  

Die üblichen Bezeichnungen im Zusammenhang mit der Prozentrechnung sind 
Grundwert G, Prozentwert W und Prozentsatz p. Mit der Prozentangabe p% wird der 
Bruch p 100 bezeichnet. Der Prozentsatz p gibt an, wie viele Hundertstel des 
Grundwertes die Prozentangabe beträgt. Dabei sind Grundwert und Prozent-
wert jeweils von derselben Größenart. Der Prozentsatz dagegen ist eine reelle 
Zahl. Die Bezeichnung für den Prozentsatz ist nicht einheitlich. Man findet 
auch die Angabe p% mit der Bezeichnung Prozentsatz (Fricke, 19 , S. 162). 

Die Berechnung eines Prozentsatzes kann im Sinne der Bruchrechnung als das 
Finden einer Bruchzahl mit dem Nenner 100 aufgefasst werden. Der Zähler 
dieses Bruchs ist dann der gesuchte Prozentsatz. Sind beispielsweise drei von 
vier Gewichtsanteilen eines Lebensmittels Zucker, so sind dies  

.  

Prozentangaben drücken also Anteile oder Mengenverhältnisse aus, die ebenso 
durch Brüche dargestellt werden können. Die Angabe als Prozentsatz erleich-
tert durch den gleichen Nenner allerdings den Vergleich. Sind etwa bei einem 
anderen Lebensmittel nur  

  

des Gewichts Zucker, so kann dies durch die Darstellung als Prozentsatz sofort 
vergleichen werden, während bei der Angabe der beiden Brüche 

bzw.  

in der Regel noch weiterführende Überlegungen notwendig sind. Noch deutli-
cher wird der Vorteil durch die Angabe von Prozentsätzen bei weiteren Ver-
gleichen. Als Nachteil kann gesehen werden, dass Prozentangaben für Brüche, 
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deren Nenner sich nicht auf Hundertstel erweitern lassen, sinnvoll gerundet 
werden müssen.  

Im ersten Beispiel war der Gewichtsanteil 3 der Prozentwert, der Gewichtsan-
teil 4 der Grundwert und 5 der Prozentsatz. Es gilt also der Zusammenhang 

. 

Diese Formel gibt den allgemeinen Zusammenhang von Prozentwert W, 
Grundwert G und Prozentsatz p an. Sie kann auch entsprechend nach W oder 
G aufgelöst werden. Dann erhält man die bekannten Zusammenhänge 

 und 

. 

Diese drei Formeln für p%, G und W stehen im Prinzip für die drei Standard-
Aufgabentypen der Prozentrechnung. Die Schwierigkeit für die Schülerinnen 
und Schüler ist dabei in der Regel nicht die Verwendung derartiger Formeln, 
sondern die Zuordnung der Angaben in der Aufgabe zu den entsprechenden 
Bezeichnungen.  

Der Prozentsatz kann auch als Resultat einer proportionalen Zuordnung aufge-
fasst werden. Dabei wird dem Grundwert die Prozentangabe 1  100% zuge-
ordnet. Die Prozentangabe p% entspricht dann dem Prozentwert W.   

 
Abb. 5.35 Proportionale Zuordnung der Prozentrechnung 
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Diese Zuordnung bildet von der entsprechenden Größe, in der Grundwert und 
Prozentwert angegeben sind, in die Menge der positiven reellen Zahlen, also die 
Prozentangabe, ab. Dem Grundwert wird die Zahl 1, d. h. 100%, zugeordnet. 
Dem Prozentwert entspricht dann die Prozentangabe p%. 

Tabelle 5.19 Prozentrechnung als Spezialfall des Dreisatzes  

Größe  zuugeordnete Prozentangabe 

Grundwert G  

1   

Prozentwert W  

 

Betrachten wir als Beispiel den Grundwert G  360  und den Prozentwert W  
162, dann wird dem Grundwert die Prozentangabe 100% zugeordnet. Mit Hilfe 
des Dreisatzes wird zunächst die zugeordnete Prozentangabe für die Maßzahl 1 
und schließlich die Prozentangabe für den Prozentwert 162 berechnet. Der 
zugehörige Prozentsatz ist in diesem Beispiel p  45.  

Tabelle 5.20 Beispiel für Prozentrechnung 

Größe  zuugeordnete Prozentangabe 

G = 360  

1    

W = 162  

 

Hier ist noch zu bemerken, dass Grundwert und Prozentwert jeweils die gleiche 
Größenart haben und damit der Quotient die Einheit 1 hat. 

Prozentrechnung im Unterricht 

Die konkrete Behandlung der Prozentrechnung im Unterricht kann sich an den 
beiden oben genannten mathematischen Zusammenhängen orientieren; das 
heißt, sie kann zum einen an die Bruchrechnung und zum anderen an die Drei-
satzrechnung anknüpfen.  

Zur Einführung der Prozentrechnung ist hier einerseits ein eher innermathema-
tischer Zugang mit Hilfe unterschiedlicher Darstellungen von Bruchzahlen 
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denkbar. So können die Darstellungen einer Zahl als Kreisdiagramm, als Bruch 
bzw. Dezimalbruch und als Prozentangabe miteinander in Beziehung gesetzt 
werden (s. Abb. 5.36). Dann wird der enge Zusammenhang zwischen Dezimal-
bruchdarstellung und Prozentangabe deutlich.  

 

 
Abb. 5.36 Einführung der Prozentrechnung mit Hilfe unterschiedlicher Bruchdarstel-
lungen (Affolter, et al., 2004, S. 45) 

Andererseits bietet sich zur Einführung der Prozentrechnung an, den besseren 
Vergleich von Anteilen durch Prozentangaben im Sachkontext herauszustellen. 
Dazu kann beispielsweise der Kontext Ernährung verwendet werden, in dem die 
Inhaltsstoffe von Nahrungsmitteln verglichen werden (s. Abb. 5.3 ).  

Ein alternativer Zugang zur Prozentrechnung führt über die Auswertung von 
realen Daten. So kann etwa in der Jahrgangstufe eine Umfrage im Umfeld der 
Schülerinnen und Schüler über das Alter, die Geschwister, den Wohnort (bzw. 
Stadtteil), etc. durchgeführt werden. In der Auswertung werden dann die Klas-
sen (mit unterschiedlicher Anzahl von Lernenden) miteinander verglichen.  

Bei der konkreten Berechnung dieser Anteile wird dann häufig die Dreisatz-
rechnung in Form von Tabellen verwendet. So wird zur Einführung also in der 
Regel auf die Bruchrechnung zurückgegriffen, während zur Arbeit mit Prozent-
angaben häufig die Dreisatzrechnung verwendet wird.  

In beiden Zusammenhängen wird meist auf vielfältige Darstellungsformen 
gesetzt, um diese Vernetzungen mit den bereits bekannten mathematischen 
Gebieten zu verdeutlichen. Dies geschieht bei der Einführung wie in Abb. 5.36 
durch die unterschiedlichen Möglichkeiten der Darstellung von Bruchzahlen.  
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Bei der Bearbeitung von Sachkontexten können außer dem Dreisatz und den 
oben genannten Formeln für die Prozentrechnung auch grafische Zugänge 
angeboten werden. So können beispielsweise die entsprechenden Skalen für die 
betrachtete Größe und die Prozentangabe nebeneinander dargestellt werden (s. 
Abb. 5.3 ). Das Beispiel zeigt den Fall, dass der Grundwert 360 beträgt und der 
Prozentwert berechnet werden soll.  

 

  
Abb. 5.37 Einführung der Prozentrechnung zum Vergleich von Anteilen (Herling, 
Kuhlmann, & Scheele, 2008, S. 47) 

 

 
Abb. 5.38 Zahlenstrahlen für die Prozentrechnung (Böer, et al., 2007, S. 99) 

Alternativ zur Darstellung auf zwei untereinander gezeichneten Zahlenstrahlen, 
die so skaliert sind, dass der Grundwert dem Prozentwert 100 entspricht, kön-
nen diese Skalen auch in einem Koordinatensystem dargestellt werden. Die 
Ursprungsgerade durch den Punkt (100|360) zu 100 Prozent und dem Grund-
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wert (im Beispiel G  360) gibt dann die Prozentsätze zu den entsprechenden 
Prozentwerten W auf der y-Achse an (s. Abb. 5.39). 

 

 
Abb. 5.39 Koordinatensystem für die Prozentrechnung 

Im Koordinatensystem für die Prozentrechnung wurde die Prozentskala auf die 
x-Achse gelegt. Dies ist natürlich eine willkürliche Festlegung. Sie hat den Vor-
teil, dass der Graph der proportionalen Zuordnung aus dem Grundwert sehr 
einfach abzuleiten ist. Ein geeignetes Gitter im Hintergrund ermöglicht das 
Ablesen von Zwischenwerten. 

 

 
Abb. 5.40 Unterschiedliche Lösungswege bei der Prozentrechnung (Böer, et al., 2007, 
S. 98) 
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Insgesamt bieten sich für die Bearbeitung von Aufgaben zur Prozentrechnung 
also drei unterschiedliche Lösungswege an: der grafische Zugang, der Dreisatz 
und die Formel (s. Abb. 5.40).  

Zur Unterstützung kann auch sehr gut ein Tabellenkalkulationsprogramm ver-
wendet werden. Darin können die Schülerinnen und Schüler beispielsweise die 
drei Grundaufgaben der Prozentrechnung in einem Tabellenblatt programmie-
ren, um das Verständnis der Formeln zu vertiefen.  

Man interessiert sich allerdings nicht immer für die drei Grundaufgaben, bei-
spielsweise also für die Berechnung des Prozentsatzes bei gegebenem Grund-
wert und Prozentwert. Es gibt auch Situationen, in denen etwa die Differenz 
von Grundwert und Prozentwert gesucht wird. 

Ein Kontext für die Prozentrechnung 

Ein typisches Anwendungsgebiet der Prozentrechnung ist der Kontext Preise. 
Hier interessiert man sich für Rabatte und Steuern. Die Schülerinnen und Schü-
ler lernen so auch die im Alltag gebräuchlichen Begriffe Rabatt, Skonto und 
Mehrwertsteuer kennen. In einigen Schulbüchern werden diese Begriffe explizit 
erklärt (s. Abb. 5.41). 

 

 
Abb. 5.41 Begriffe im Zusammenhang mit Prozentrechnung (Böer, et al., 2007, S. 104)  

So kann beispielsweise die im Preis enthaltene Mehrwertsteuer berechnet oder 
der Endpreis unter Berücksichtigung von Rabatt oder Skonto ermittelt werden. 
Die Mehrwertsteuerangabe p% bezieht sich auf den Preis ohne Mehrwertsteuer. 
Ist also der Endpreis inklusive Mehrwertsteuer angegeben, so entspricht dieser 
(100 p)% bzw. der Summe aus Grundwert und Prozentwert G+W. Interessiert 
man sich für den Preis ohne Mehrwertsteuer, also den Grundwert G, so kann 
die folgende Rechnung durchgeführt werden: 

. 
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Die hier notierte Formel ist zwar für den Unterricht nicht unbedingt hilfreich, 
macht aber deutlich, dass es häufig einfache Berechnungsmöglichkeiten für 
bestimmte Probleme gibt – nämlich dass der Preis incl. Mehrwertsteuer durch 
1,19 dividiert wird, um den Preis ohne Mehrwertsteuer zu erhalten – während 
dies mit Hilfe der typischen Dreisatzrechnung eine Tabelle und drei Bearbei-
tungsschritte erfordert. Dies wird in der folgenden Tabelle am Beispiel p  19 
durchgeführt.  

Tabelle 5.21 Dreisatzrechnung im Kontext Preise  

Prozentangabe  Größe  

 G+W 

1%   

100%   

 

Der Vorteil der Berechnung mit Hilfe der Tabelle im Rahmen des Dreisatzes ist 
aber, dass die Zuordnung von Prozentwert und Prozentangabe deutlicher wird 
als bei der Verwendung entsprechender Formeln. Der Aufwand ist auch des-
halb vergleichbar, da die Formeln ebenfalls umgeformt werden müssen. Dies 
würde nur entfallen, wenn die Schülerinnen und Schüler alle Formeln der Pro-
zentrechnung auswendig lernen würden. Es ist jedoch kein sinnvolles Ziel des 
Mathematikunterrichts, äquivalente Formeln auswendig zu lernen. Hier sollten 
schon die entsprechenden Umformungen ausgeführt werden können. Auch die 
grafischen Lösungsmöglichkeiten mit Hilfe von Zahlenstrahlen oder Koordina-
tensystem können in Betracht gezogen werden.  

Dagegen interessiert man sich im Fall einer Rechnung, die abzüglich p% Skonto 
bezahlt werden soll, für den Grundwert abzüglich des Prozentwertes: 

.  

Eine Schwierigkeit von Schülerinnen und Schülern ist häufig die korrekte Zu-
ordnung von Grundwert und Prozentwert aus den gegeben Größen. Der Pro-
zentsatz kann auf Grund der dimensionslosen Angaben normalerweise nicht 
verwechselt werden. Schwieriger ist die Identifizierung von Grundwert und 
Prozentwert. Speziell können – wie im Beispiel der Mehrwertsteuer – Summen 
oder Differenzen von Grundwert und Prozentwert auftreten. Hier können 
grafische Darstellungen des Sachverhalts und Tabellen zur Berechnung eine 
Hilfe für die Schülerinnen und Schüler darstellen (Strehl, 19 9, S. 119 ff.). 
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Zinsrechnung 

Die Zinsrechnung kann als Spezialfall der Prozentrechnung behandelt werden. 
Dabei gibt es zwei Punkte zu beachten. Zum einen ist die betrachtete Größe in 
allen Fällen das Geld, und zum anderen kommt ein Zeitfaktor dazu, da der 
Prozentsatz im Kontext der Zinsrechnung für eine bestimmte Zeit, in der Regel 
für ein Jahr, gilt.  

Auf Grund der Besonderheiten verwendet man auch spezielle Bezeichnungen. 
Der Grundwert wird nun mit Kapital K bezeichnet. Der Prozentwert heißt Zin-
sen Z, und der Prozentsatz wird mit Zinssatz p bezeichnet. Der Zinssatz und die 
Zinsen werden üblicherweise auf ein Jahr bezogen.  

Werden die Zinsen für kürzere Zeiträume als ein Jahr berechnet, so wird mit 
den entsprechenden Faktoren multipliziert. Beispielsweise gilt für die Zinsen 
nach T Tagen: 

 

Wird die Zeit in Monaten M angegeben, so verwendet man die Formel 

 

Es ist in den Banken üblich, bei einem Jahr mit 12 Monaten und 30 Tagen pro 
Monat zu rechnen.  

Hier ist es ebenso wie bei der Prozentrechnung möglich, die entsprechenden 
Formeln umzustellen oder mit dem Dreisatz zu arbeiten. 

Für die Zinsrechnung kommt noch ein weiterer interessanter Aspekt hinzu. 
Werden die Zinsen am Ende des Jahres dem Konto gutgeschrieben, so werden 
sie im folgenden Jahr zum Kapital gezählt und auch verzinst. Man spricht dann 
von Zinseszins. Dieser Effekt kann sehr gut mit Hilfe eines Tabellenkalkula-
tionsprogramms veranschaulicht werden. Vergleicht man eine einfache Verzin-
sung mit Zinseszinsen, so stellen sich nach einiger Zeit deutliche Unterschiede 
heraus. Bei der einfachen Verzinsung werden die Zinsen zwar addiert, aller-
dings wird nur das ursprüngliche Kapital zur Berechnung der Zinsen zugrunde 
gelegt (s. Abb. 5.42).  

Während sich in dieser Modellrechnung das Startkapital bei der einfachen Ver-
zinsung nach 34 Jahren verdoppelt, so geschieht dies bei der Zinseszinsrech-
nung bereits nach 24 Jahren. 

Diese numerischen Überlegungen können dann zu den algebraischen Formeln 
überleiten, da bei der Implementierung der Formeln in der Tabellenkalkulation 
bereits vorbereitende Überlegungen nötig sind (s. Abb. 5.43). 
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Abb. 5.42 Vergleich unterschiedlicher Verzinsungen 

 
Abb. 5.43 Formeln in der Tabellenkalkulation 

Für die Berechnung des Kapitals Kn nach n Jahren bei einfacher Verzinsung mit 
dem Zinssatz p und dem Startkapital K0 erhalten wir eine lineare Funktion in 
Abhängigkeit von der Zeit n in Jahren 

. 

Für die Berechnung des Kapitals Kn nach n Jahren unter Berücksichtigung des 
Zinseszins mit dem Zinssatz p und dem Startkapital K0 erhalten wir eine expo-
nentielle Funktion in Abhängigkeit von der Zeit n in Jahren 
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, 

denn nach einem Jahr erhöht sich das Kapital auf 

, 

nach zwei Jahren auf  

,  

usw. So erhält man sukzessiv die Formel für das Kapital nach n Jahren. 

Schwieriger wird der allerdings realistischere Fall, dass nicht nur der Zinseszins 
für ein einmal angelegtes Kapital berechnet werden soll, sondern regelmäßig, 
beispielsweise monatlich, ein bestimmter Betrag angelegt wird, der mit einem 
bestimmten Zinssatz p jährlich verzinst wird. Die folgende Tabelle zeigt ein 
Beispiel für das erste Jahr mit einer monatlichen Rate von 100,- € und einer 
jährlichen Verzinsung mit p = 3 (s. Tabelle 5.22). 

Tabelle 5.22 Beispieltabelle Ratensparen  

Monate  Einzahlung  Kontostand  Zinsen  

1       100,00 €          100,00 €     0,25 €  

2       100,00 €          200,00 €     0,50 €  

3       100,00 €          300,00 €     0,75 €  

4       100,00 €          400,00 €     1,00 €  

5       100,00 €          500,00 €     1,25 €  

6       100,00 €          600,00 €     1,50 €  

7       100,00 €          700,00 €     1,75 €  

8       100,00 €          800,00 €     2,00 €  

9       100,00 €          900,00 €     2,25 €  

10       100,00 €      1.000,00 €     2,50 €  

11       100,00 €      1.100,00 €     2,75 €  

12       100,00 €      1.200,00 €     3,00 €  

1       100,00 €      1.319,50 €     3,30 €  

2       100,00 €      1.419,50 €     3,55 €  

3       100,00 €      1.519,50 €     3,80 €  

4       100,00 €      1.619,50 €     4,05 €  
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5       100,00 €      1.719,50 €     4,30 €  

6       100,00 €      1.819,50 €     4,55 €  

7       100,00 €      1.919,50 €     4,80 €  

8       100,00 €      2.019,50 €     5,05 €  

9       100,00 €      2.119,50 €     5,30 €  

10       100,00 €      2.219,50 €     5,55 €  

11       100,00 €      2.319,50 €     5,80 €  

12       100,00 €      2.419,50 €     6,05 €  

      2.475,59 €   

 

Die Daten dieser Tabelle könnten mit Hilfe von Formeln berechnet werden. 
Hier erscheint allerdings die numerische Lösung sinnvoller, da eine entspre-
chende Tabelle in einem Tabellenkalkulationsprogramm ähnlich flexibel wie 
eine Formel verwendet werden kann und deutlich übersichtlicher ist. An ähnli-
chen Beispielen können auch die Auswirkungen von vierteljährlichen oder jähr-
lichen Zinsen oder die Auswirkungen der Veränderung des Zinssatzes sowie 
der monatlichen Rate untersucht werden.  

Die Schülerinnen und Schüler bekommen auf diese Weise ein Werkzeug, mit 
dem vergleichbare Probleme im Alltag, die später auf sie zukommen, bearbeitet 
werden können.  

Die Motivation der Zinsrechnung ist häufig problematisch, da die Schülerinnen 
und Schüler in der Mitte der Sekundarstufe I, in der die Zinsrechnung themati-
siert wird, die Relevanz für ihr späteres Leben häufig noch nicht erkennen. Bei 
Ratenkaufangeboten mit angegebener Rate und angegebenem Barpreis, die für 
Schülerinnen und Schüler evtl. relevant sind, benötigt man im Alltag in der 
Regel keine Zinsrechnung, um die Ratenzahlung mit dem Barkauf zu verglei-
chen, da der effektive Jahreszins als Vergleichswert angegeben wird. Die Kon-
trolle des angegebenen effektiven Jahreszinses ist allerdings schulmathematisch 
kaum zu leisten. Die Zinsrechnung greift außerdem auf die Prozentrechnung 
zurück, deren Bearbeitung dann meist einige Zeit zurückliegt. Dies kann zu 
weiteren Schwierigkeiten führen (Strehl, 19 9, S. 13  ff.). 

5.2.7 Lineare Modelle 
Lineare Funktionen sind in der Regel die erste Funktionenklasse, die Schülerin-
nen und Schüler in der Sekundarstufe I kennenlernen.  
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Lineare Funktion 

Eine lineare Funktion ist eine Funktion der Form  mit  
bzw.  ). 

 

Um Verwechslungen mit homogenen linearen Funktionen (Proportionalitäten), d.h. 
Funktionen  mit 

 ), 

vorzubeugen, nennt man lineare Funktionen auch allgemeine lineare Funktionen. 
Bei linearen Funktionen handelt es sich also um reelle Polynome erster Ord-
nung. Allgemein ist ein reelles Polynom bzw. eine Polynomfunktion eine Funk-
tion  der Form  

.  

Der Graph einer allgemeinen linearen Funktion ist eine Gerade, die nicht not-
wendig durch den Ursprung des Koordinatensystems führt. 

Lineare Funktionen sind – wie im Prinzip alle in der Schule behandelten Funk-
tionen – stetig. Viele reale Probleme sind allerding nicht stetig, wenn beispiels-
weise die Preise für Briefe in Abhängigkeit von der Masse betrachtet werden. 
Diese Funktion macht Preissprünge für bestimmte Werte, und es kann daher 
keine stetige Funktion zur Beschreibung dieses Problems angegeben werden. 

 
Abb. 5.44 Einkaufsmodell 

Man kann aber wie Vollrath einige spezielle stückweise definierte mathemati-
sche Modelle angeben, die in vielen Situationen eine geeignete Beschreibung 
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darstellen (Vollrath, 2003, S. 154 f.). Dazu fassen wir im Folgenden die typi-
schen Preismodelle, die lineare Funktionen beinhalten, zusammen. Es handelt 
sich dabei um das klassische Einkaufsmodell, das Flatrate-Modell, das Strom-
modell, das Parkhausmodell und das Heizölmodell.  

Das klassische Einkaufsmodell (s. Abb. 5.44) geht davon aus, dass beliebige 
Mengen möglich sind und Rabatte nicht vorkommen. Wir erhalten dann eine 
proportionale lineare Funktion.  
 

 
Abb. 5.45 Flatrate-Modell 

Das Flatrate-Modell (s. Abb. 5.45), das durch Preisangebote für Mobil- und 
Festnetztelefone bekannt geworden ist, geht davon aus, dass (in einer bestimm-
ten Zeit) eine beliebige Datenmenge übertragen werden kann. Wir erhalten eine 
lineare Funktion, deren Graph zur x-Achse parallel ist. 

 

 
Abb. 5.46 Strommodell 
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Bei der Berechnung von Kosten für den Stromverbrauch ist es üblich, dass es 
einen Grundpreis und einen verbrauchsabhängigen Preis gibt. Der Preisverlauf 
im Strommodell kann beschrieben werden durch eine allgemeine lineare Funk-
tion, deren Graph nicht durch den Ursprung des Koordinatensystems geht.  

 

  
Abb. 5.47 Parkhausmodell 

Das Parkhausmodell geht davon aus, dass der Preis sich nach gewissen Zeitab-
ständen erhöht und dann für immer gleiche Zeitdauern konstant bleibt. Ggf. ist 
der Preis für die erste Stunde anders als für weitere Stunden. Nach sehr vielen 
Stunden gibt es möglicherweise Rabatte, die hier vernachlässigt werden. Dies 
ergibt eine Treppenfunktion, deren erste Stufe ggf. eine andere Höhe hat. Hier 
könnte im Prinzip auch das eingangs erwähnte Beispiel für den Preis von Brie-
fen in Abhängigkeit von der Masse eingeordnet werden. 

 

 
Abb. 5.48 Heizölmodell 
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Das Heizölmodell geht auch von einer proportionalen Zuordnung von Menge 
und Preis aus, berücksichtigt aber Rabatte. An einigen Stellen setzt also eine 
neue proportionale Zuordnung an. Für eine sinnvolle Fortsetzung an den 
Übergangsstellen setzen wir voraus, dass man für eine geringere Menge nicht 
mehr bezahlen muss als für eine größere Menge. 

5.2.8 Wachstums- und Abnahmemodelle 
Bereits die Überlegungen zur einfachen Verzinsung und zum Zinseszins haben 
gezeigt, dass es unterschiedliche Wachstumsarten gibt. Ebenso werden Wachs-
tumsprozesse in der Natur wie Bakterien- oder Pflanzenwachstum häufig ma-
thematisch modelliert. Analog dazu gibt es Abnahmeprozesse wie Abkühlung 
und radioaktiver Zerfall, die häufig ebenfalls mit Hilfe von Funktionen model-
liert werden. Dazu gibt es unterschiedliche Modelle, die im Folgenden an Bei-
spielen vorgestellt werden sollen. 

Beispiel: Bakterienwachstum 

Bakterien wachsen in einer Bakterienkultur in unterschiedlichen Phasen. In 
einer dieser Phasen vermehren sich die Bakterien sehr schnell, bis schließlich 
die Nährstoffe erschöpft sind und sich Stoffwechselprodukte im Nährmedium 
angesammelt haben.  

 

 
Abb. 5.49 Diagramm zum Bakterienwachstum 

y = 80,172e0,5983x
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In dieser Phase der schnellen Vermehrung können beispielsweise folgende 
Daten ermittelt werden (s. Tabelle 5.23). Stellt man diese Daten in einem Dia-
gramm dar, so kann man erkennen, dass sich das Bakterienwachstum gut durch 
eine Exponentialfunktion beschreiben lässt (s. Abb. 5.49).  

Tabelle 5.23 Bakterienwachstum (Freudigmann, et al., 2000) 

Zeit in 
Stunden 

0 1 2 3 4 5 

Bakterienzahl 
in Mio 

80,0 145,9 266,4 482,4 875,7 1597,8 

 

Schaut man auf die Daten des Bakterienwachstums, so stellt man fest, dass der 
Quotient benachbarter Werte konstant ist.  

Tabelle 5.24 Bakterienwachstum 

Zeit in Stunden 0 1 2 3 4 5 

Bakterienzahl in 
Mio 80,0 145,9 266,4 482,4 875,7 1597,8 

Quotient 
benachbarter 

Werte      

 

Wenn das Wachstum der Bakterien im Laufe der Zeit durch eine Wachstums-
funktion mit dem Term f(t) beschrieben wird, dann gilt in diesem Beispiel der 
Zusammenhang 

  

Betrachten wir diese Situation allgemeiner, so gehen wir im Fall des dargestell-
ten Bakterienwachstums davon aus, dass das Wachstum rascher erfolgt, wenn 
mehr Bakterien vorhanden sind. Da es sich um eine Bakterienkultur handelt, 
können weitere Wechselwirkungen, z. B. mit der Außenwelt, im Modell ver-
nachlässigt werden. Die Zunahme f(t+h) f(t) wird also proportional zum vor-
handenen Bestand f(t) und zur verstrichenen Zeit h angenommen. Wir erhalten 
damit für kleine h die Modellannahme: 
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Diese Gleichung kann diskret oder kontinuierlich bearbeitet werden. Wir be-
schäftigen uns hier zunächst mit der diskreten Bearbeitung (Hinrichs, 200 , S. 
26  ff.). Dazu ist die Darstellung  

  

hilfreich. Hier wird deutlich, dass bei festem Zeitschritt h der jeweils folgende 
Funktionswert nach Kenntnis des Parameters c ermittelt werden kann. Ebenso 
ist noch ein Startwert, z. B. zur Zeit t  0, vorauszusetzen. 

 

 
Abb. 5.50 Diskretes Wachstumsmodell für das Bakterienwachstum 

Der Modellwert wird in der abgebildeten Excel-Tabelle jeweils mit Hilfe der 
Formel  

  

berechnet. Der Parameter c wird dabei mit Hilfe des Schiebereglers (siehe Hin-
weis S. 235) so modifiziert, dass die Summe der quadratischen Abweichungen 
vom gegebenen Wert minimal wird. Dies ist in dem Beispiel für c  0, 2 der 
Fall. Auf diese Weise erhält man ein diskretes numerisches Modell für das Bak-
terienwachstum mit der Modellannahme, dass die Bakterien in jedem Zeit-
schritt um ein c-faches des aktuellen Bestandes zunehmen. Dieses Modell er-
möglicht sowohl die Berechnung von Zwischenwerten als auch eine Prognose 
des Bakterienwachstums unter der Voraussetzung, dass die Modellannahmen 
weiter gelten. Der jeweils nächste Wert wird unter Verwendung des Parameters 
c rekursiv berechnet. Die verwendete Modellannahme ist also nicht nur im 
Kontext des Bakterienwachstums plausibel, sondern liefert auch für die gege-
benen Daten passende Werte.  

Möchte man die Gleichung  
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kontinuierlich bearbeiten, so dividiert man diese Gleichung durch h und erhält 
eine Form, die für differenzierbare Funktionen f mit Hilfe der Differenzialrech-
nung weiter bearbeitet werden kann. 

.  

Auf der linken Seite der Gleichung steht dann ein Differenzenquotient der 
Funktion f an der Stelle t. Ein Grenzprozess für h  0 führt zu der Gleichung 

 . 

Bei dieser Gleichung handelt es sich um eine Differenzialgleichung erster Ord-
nung, da außer der Funktion f auch die erste Ableitung der Funktion f in der 
Gleichung auftritt. Die Funktion des Typs  

  

löst diese Differenzialgleichung, da für die Ableitung  

  

gilt. Alternativ kann diese Differenzialgleichung auch mit Hilfe des Verfahrens 
der Trennung der Variablen gelöst werden. Stellt man sich die Frage, ob die 
Funktionen des Typs  

  

die einzigen Funktionen sind, die diese Differenzialgleichung lösen, dann kann 
man eine weitere Lösung g(t) annehmen, die ebenfalls die Differenzialgleichung 
erfüllt: 

  . 

Mit der Quotientenregel erhält man dann 

  

.

Die beiden Lösungen f(t) und g(t) können sich also nur um eine multiplikative 
Konstante unterscheiden. Der ursprünglich aus den gegebenen Daten berech-
nete Quotient kann nach Kenntnis der Lösungsfunktion genauer betrachtet 
werden. 
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Es zeigt sich also, dass der Logarithmus des entsprechenden Quotienten  

  

der Wachstumskonstanten c der Bakterienkultur entspricht.  

 

 
Abb. 5.51 Kontinuierliches Wachstumsmodell für das Bakterienwachstum 

Der Modellwert wird in der abgebildeten Excel-Tabelle im kontinuierlichen 
Wachstumsmodell jeweils mit Hilfe der Formel  

  

berechnet. Der Parameter c wird dabei mit Hilfe des Schiebereglers so modifi-
ziert, dass die Summe der quadratischen Abweichungen vom gegebenen Wert 
minimal wird. Dies ist in dem Beispiel für c  0,60 der Fall. Auf diese Weise 
erhält man ein kontinuierliches Modell für das Bakterienwachstum mit der Mo-
dellannahme, dass die Bakterien in jedem Zeitpunkt um ein c-faches des aktuel-
len Bestandes zunehmen. Dieses Modell ermöglicht sowohl die Berechnung 
von Zwischenwerten als auch eine Prognose des Bakterienwachstums unter der 
Voraussetzung, dass die Modellannahmen weiter gelten. Bei der Berechnung 
einzelner Werte werden die jeweilige Zeit, der Startwert und der Parameter c 
verwendet.  

Exponentielles Wachstum wird durch den Funktionstyp  
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beschrieben. Dabei ist a der Anfangsbestand zur Zeit t  0 und die positive 
Konstante c  die Wachstumskonstante. Charakteristisch für das exponentielle 
Wachstum ist die Verdoppelungszeit, also die Zeit T, für die gilt: 

. 

Für die Funktion des exponentiellen Wachstums 

  

folgt damit die Bedingung: 

  bzw.  

Nach entsprechender Vereinfachung  

  

erhalten wir für die Verdoppelungszeit T die Gleichung: 

 . 

Die Verdoppelungszeit ist unabhängig vom Zeitpunkt t und daher konstant. Sie 
kann somit als charakteristisch für den Wachstumsprozess angesehen werden.  

Für Abnahmeprozesse kann ebenfalls dieser Funktionstyp gewählt werden. Die 
Kontante c ist dann negativ und heißt Zerfallskonstante. Bei Abnahmefunktionen 
spricht man von der – im Zusammenhang mit Radioaktivität bekannten – 
Halbwertszeit, also von der Zeit, für die gilt:  

.  

Wie bei der Verdoppelungszeit erhält man für die Halbwertszeit den Zusam-
menhang  

. 

Wir können also für das exponentielle Wachstum Folgendes festhalten: 

 

Exponentielles Wachstum 

Wir gehen von einem geschlossenen System aus, bei dem das Wachstum 
proportional zum Bestand ist. Charakteristisch ist die Wachstumskon-
stante c. Alternativ kann auch die Verdoppelungszeit T angegeben wer-
den. Exponentielles Wachstum wird mit Hilfe von Wachstumsfunktionen 
des Typs  beschrieben. 
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Mit einem geschlossenen System sind hier zwei Aspekte gemeint. Zum einen 
wird davon ausgegangen, dass weder Lebewesen hinzukommen noch abwan-
dern, und zum anderen, dass es keine Wechselwirkung mit anderen Populatio-
nen gibt, d. h. insbesondere keine Feinde innerhalb des Systems existieren.  

Beispiel: Abkühlen von Kaffee 

Tabelle 5.25 Abkühlen von Kaffee 

Zeit in Minuten  Temperatur in Grad  

0 70,0 

2 57,5 

4 49,5 

6 42,7 

8 36,9 

10 32,0 

12 27,9 

14 24,4 

 

Beim Abkühlen von Kaffee handelt es sich nicht um einen Wachstumsprozess, 
sondern um einen Abnahmeprozess. Wir haben im Fall des exponentiellen 
Wachstums der Bakterien gesehen, dass Abnahmeprozesse mit den gleichen 
mathematischen Modellen beschrieben werden können wie Wachstumsprozes-
se; mit dem Unterschied, dass der entsprechende Parameter ein anderes Vor-
zeichen hat. Wir wählen daher als zweites Bespiel einen Temperaturabnahme-
prozess mit einem charakteristischen Verhalten. Typische Messwerte eines 
solchen Abkühlungsvorgangs sind in der Tabelle (s. Tabelle 5.25) dargestellt. 

Wir können also vereinfacht von folgendem Zusammenhang ausgehen: 

  

Dabei ist c die Konstante, die den Abkühlvorgang beschreibt und S die Tempe-
ratur der Außenluft. Auch hier sind wieder eine diskrete und eine kontinuierli-
che Bearbeitung des Problems möglich. Wir betrachten zunächst eine diskrete 
Modellierung des Problems.  
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Abb. 5.52 Diskretes Modell der beschränkten Abnahme 

In der Tabelle wurden die gegeben Daten mit den durch die Formel  

  

berechneten Modellwerten verglichen. Als Startwert wurde 0 °C verwendet.  
Als Maß für die mathematische Passung der Modellwerte wurde die Summe der 
quadratischen Abweichungen berechnet. Die Konstante c  0,163 wurde expe-
rimentell mit Hilfe des Schiebereglers gefunden. Alternativ kann auch der Sol-
ver von Excel genutzt werden. Die verwendete Modellannahme ist also nicht 
nur im Kontext des abkühlenden Kaffees plausibel, sondern liefert auch für die 
gegebenen Daten passende Werte.  

Es ist aber ebenso eine kontinuierliche Modellierung möglich. Dazu wird die 
Gleichung  

  

entsprechend umgeformt, und man erhält eine Form, die für differenzierbare 
Funktionen f mit Hilfe der Differenzialrechnung weiter bearbeitet werden kann. 

.  

Auf der linken Seite der Gleichung steht dann ein Differenzenquotient der 
Funktion f an der Stelle t. Ein Grenzprozess für h  0 führt zu der Gleichung 

 . 
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Diese Differenzialgleichung der beschränkten Abnahme wird von Funktionen 
des Typs 

  

gelöst, denn für die Ableitung der Funktion f gilt:  

 

 

 

 

. 

Wir können also für die beschränkte exponentielle Abnahme Folgendes festhal-
ten.  

 

Beschränkte exponentielle Abnahme 

Wir gehen von einem geschlossenen System aus, bei dem die Abnahme 
proportional zur Differenz von Grenzwert S und Bestand ist. Charakteris-
tisch ist die sogenannte Zerfallskonstante c. 

Beschränkte exponentielle Abnahme wird mit Hilfe von Funktionen des 
Typs  beschrieben. 

 

Mit einem geschlossenen System ist in diesem Beispiel gemeint, dass keine wei-
teren Temperatureinflüsse als die Außentemperatur auftreten.  

Beispiel Hefewachstum  

Das Wachstum einer Hefekultur wurde bereits 1913 genauer untersucht und 
dokumentiert (Carlson, 1913). Die entsprechenden Daten sind in der folgenden 
Tabelle (s. Tabelle 5.26) dargestellt. 

Stellt man die ersten Daten der Tabelle in einem Koordinatensystem dar, so 
kann man ein nahezu exponentielles Wachstum vermuten (s. Abb. 5.53).  

Notiert man allerdings alle vorhandenen Daten im Koordinatensystem, so wird 
deutlich, dass das Hefewachstum im Laufe der Zeit abnimmt und nicht der 
Annahme eines zum Bestand proportionalen Wachstums genügt. Das Hefe-
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wachstum kann also nicht durch eine exponentielle Wachstumsfunktion be-
schrieben werden (s. Abb. 5.54).  

Tabelle 5.26 Hefewachstum 

Zeit (in Stunden)  Hefemenge (in mg)  Zeit (in Stunden)  Hefemenge (in mg)  

0 9,6 10 513,3 

1 18,3 11 559,7 

2 29 12 594,8 

3 47,2 13 629,4 

4 71,1 14 640,8 

5 119,1 15 651,1 

6 174,6 16 655,9 

7 257,3 17 659,6 

8 350,7 18 661,8 

9 441   

 

 
Abb. 5.53 Hefewachstum in den ersten 7 Stunden 

Bei genauerer Analyse stellt man fest, dass das Hefewachstum von Anfang an 
nicht zum Bestand proportional ist, sondern zunehmend verlangsamt wird. Der 
für das exponentielle Wachstum charakteristische Quotient  
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ist auch in den ersten sieben Stunden nicht konstant. 

 

 
Abb. 5.54 Hefewachstum in den ersten 18 Stunden 

Wir stellen daher nun weitergehende Modellannahmen auf als beim exponenti-
ellen Wachstum. Dabei gehen wir immer noch von einem geschlossenen Sys-
tem mit einer Wachstumskonstanten c aus. Allerdings unterstellen wir gleichzei-
tig eine Verlangsamung des Wachstums, da der im Laufe des Prozesses entste-
hende Alkohol das Hefewachstum bremst. Die Situation kann zunächst durch 
die folgende Gleichung beschrieben werden: 

.   

Dabei beschreibt der zusätzliche Term s  die Verlangsamung des Wachs-
tums. Der Faktor s wird auch als Sterberate bezeichnet. Dieses Modell wäre aber, 
verglichen mit dem exponentiellen Wachstum, kein neues Modell, wenn c und s 
beide konstant sind. In diesem Fall könnten c und s zu einer neuen Wachstums-
konstanten c s zusammengefasst werden. Geht man davon aus, dass die Sterbe-
rate s auch vom Bestand f(t) abhängt, was im Fall des vermuteten Zusammen-
hangs von Alkoholproduktion und Hefewachstum durchaus plausibel ist, dann 
handelt es sich um ein neues Modell. Wir wollen hier die Annahme, dass die 
Sterberate s proportional zum Bestand ist, voraussetzen. So erhalten wir das 
sogenannte logistische Modell 
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mit der Wachstumskonstanten c und dem Behinderungsfaktor d. Auch in diesem 
Beispiel kann man diskret und kontinuierlich weiterarbeiten. Zunächst wollen 
wir die diskrete Form bearbeiten.  

Berechnen wir nun optimale Konstanten c und d, so können wir die gegebenen 
Daten recht gut approximieren. Für einen Startwert f(0)  15 und die Parame-
terwerte c  0,56 und d  0,000 6 erhalten wir die folgenden Modellwerte 
(Auswahl). 

Tabelle 5.27 Berechnete Modellwerte und Daten im Vergleich (Auswahl) 

Zeit  Modellwertee Daten  

0 15 10 

1 23 18 

5 123 119 

10 512 513 

15 649 651 

18 652 662 

 

 
Abb. 5.55 Diskretes logistisches Wachstumsmodell von Hefe 

Die passenden Parameterwerte können durch Experimentieren mit den Schie-
bereglern in Excel gefunden werden; allerdings ist dies nun erheblich schwieri-
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ger als beim exponentiellen Wachstum, da wir nicht nur einen Wert, sondern 
zwei Parameter und den Startwert variiert haben. Lässt man den Startwert fest, 
was in gewisser Weise sinnvoll ist, ist die Anpassung an die Daten schlechter. 
Alternativ zur experimentellen Arbeit mit den Schiebereglern kann die Anpas-
sung mit Hilfe des Solver-Add-In von Excel automatisiert werden.  

Die Grafik zeigt die Anpassung der Modellwerte an die gegebenen Daten. Es 
ist aber ebenso eine kontinuierliche Modellierung möglich. Dazu wird die Glei-
chung  

  

entsprechend umgeformt, und man erhält eine Form, die für differenzierbare 
Funktionen f mit Hilfe der Differenzialrechnung weiter bearbeitet werden kann. 

.  

Auf der linken Seite der Gleichung steht dann ein Differenzenquotient der 
Funktion f an der Stelle t. Ein Grenzprozess für h  0 führt zu der Gleichung 

 . 

Diese Differenzialgleichung des logistischen Wachstums wird von Funktionen 
des Typs 

    

gelöst. Im folgenden Exkurs wird eine mögliche Bestimmung der Lösungsfunk-
tion dargestellt (Bronstein & Semendjajew, 19 9, S. 41  ff.).  

 

Exkurs 

Die Lösung der Differenzialgleichung  

  

kann mit Hilfe des Verfahrens der Trennung der Variablen gefunden wer-
den. Der Ansatz  

  

liefert mit Hilfe der Partialbruchzerlegung  

.  
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Die Integrale auf beiden Seiten können gelöst werden. Nach Multiplikati-
on mit d erhalten wir  

.  

Die linke Seite kann zusammengefasst werden, und nach Anwendung der 
Exponentialfunktion erhalten wir  

.  

Wir bilden nun den Kehrwert auf beiden Seiten  

 ,  

bestimmen die Konstante C‘‘  mit 

  

und lösen die Gleichung nach f(t) auf. Dann erhalten wir für die Wachs-
tumsfunktion 

  . 

 

 
Abb. 5.56 Abweichungen der Modellwerte von den Daten  

Mit Excel können auch für dieses kontinuierliche Modell des logistischen 
Wachstums die Parameter angepasst werden. Verwendet man als Startwert den 
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gegebenen Wert für t  0, so erhält man für die Parameter c  0,54 und d  
0,000 1. Diese Anpassung kann mit Hilfe der Schieberegler für die entspre-
chenden Parameter oder mit Hilfe des Solver-Add-In von Excel durchgeführt 
werden (s. Abb. 5.56).  

Es zeigt sich hier, dass das kontinuierliche Modell besser an die Daten ange-
passt werden kann als das diskrete Modell. In jedem Fall können wir für das 
logistische Wachstum Folgendes festhalten.  

 

Logistisches Wachstum 

Wir gehen von einem geschlossenen System aus, bei dem das Wachstum 
und gleichzeitig die Sterberate proportional zum Bestand sind.  

Charakteristisch sind die Wachstumskonstante c und der Behinderungs-
faktor d. Logistisches Wachstum wird mit Hilfe von Wachstumsfunktionen 
des Typs 

 

beschrieben. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Abb. 5.57 Modellierung des Hefewachstums 
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Betrachtet man die Modellierung des Beispiels Hefekultur, so werden zwei 
wesentliche Annahmen zur Bildung des mathematischen Modells der logisti-
schen Wachstumsfunktion gemacht. Dies ist zum einen die Annahme, dass es 
keine Wechselwirkungen zwischen Hefekultur und Außenwelt gibt, und zum 
anderen, dass das Wachstum und die Sterberate proportional zum Bestand sind 
(Kohorst & Portscheller, 1999; Hinrichs, 200 ). 

Weitere Modelle 

Wachstums- und Abnahmeprozesse können auch mit Hilfe weiterer Funktions-
typen, wie z. B. linearen Funktionen und Potenzfunktionen, modelliert werden. 
Auch Arcustangensfunktionen findet man in der Literatur zur Beschreibung 
von Wachstumsprozessen (Winter, 1994, S. 336). Wir wollen hier kurz auf line-
are Funktionen und Potenzfunktionen eingehen.  

Lineare Funktionen des Typs 

 

genügen der Differenzialgleichung 

  

Die Wachstumsgeschwindigkeit ist also konstant. Betrachtet man in diesem Fall 
die Verdoppelungszeit, also die Zeit T, für die gilt: 

, 

dann folgt für das lineare Wachstum die Bedingung: 

 . 

Nach entsprechender Vereinfachung erhalten wir für die Verdoppelungszeit T 
die Gleichung: 

 

Die Verdoppelungszeit ist also anders als bei Exponentialfunktionen abhängig 
von der Zeit t. Je mehr Zeit seit Beginn des Prozesses vergangen ist, umso län-
ger dauert es, bis sich der gegenwärtige Bestand verdoppelt hat. 

Potenzfunktionen des Typs 

 

genügen der Gleichung  

.
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In diesem Fall ist die Wachstumsgeschwindigkeit proportional zum Bestand 
und antiproportional zur Zeit. Auch hier ist – wie zu erwarten – die Verdoppe-
lungszeit nicht konstant, sondern zeitabhängig (Winter, 1994). 

5.3  Optimierungsprobleme 
 

 

 

 

 

 

 

 

 

 

 

 
Abb. 5.58 Optimierungsprobleme an unterschiedlichen Stellen im Modellierungspro-
zess 

Eine interessante Klasse von Sachaufgaben und Modellierungsproblemen stel-
len Optimierungen dar. Optimierungsprobleme sind sehr vielschichtig und 
können mit den unterschiedlichsten mathematischen Methoden bearbeitet wer-
den. In vielen Fällen wird zur Lösung eines Optimierungsproblems zunächst 
eine Realsituation in ein mathematisches Modell übersetzt. Dieses – in der Re-
gel deskriptive – Modell wird anschließend mit mathematischen Methoden, 
z. B. mit der Differenzialrechnung, bearbeitet. Dann findet die Optimierung 
mit Hilfe des bereits erstellten mathematischen Modells statt. Es gibt aber auch 
Fälle, bei denen der Modellbildungsprozess mit dem Optimierungsprozess 
zusammenfällt. Dann ist die Optimierung im Prinzip mit dem erstellten ma-
thematischen Modell abgeschlossen. Die dann folgende Arbeit im optimierten 
Modell dient der Berechnung konkreter Ergebnisse. 

Im Folgenden werden typische Bereiche für Optimierungen im Sachrechen-
unterricht vorgestellt, bei denen reale Probleme und mathematische Modelle 
eine wichtige Rolle spielen. 
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5.3.1 Funktionale Modelle 

Optimierung mit Funktionen 

Im Mathematikunterricht werden Optimierungsprobleme häufig mit Hilfe von 
funktionalen mathematischen Modellen bearbeitet. Ein Beispiel ist das bekann-
te Problem, die Maße einer materialminimierten Konservendose zu bestimmen. 
So haben beispielsweise die abgebildeten Dosen bei annähernd gleichem Vo-
lumen einen unterschiedlichen Materialverbrauch.  

 

  
Abb. 5.59 Dosen mit gleichem Volumen und unterschiedlichem Materialverbrauch 

In diesem Beispiel kann man für eine als Zylinder modellierte Dose eine Funk-
tion aufstellen, die den Materialbedarf M(r) für ein Volumen von 330 ml in 
Abhängigkeit vom Dosenradius näherungsweise beschreibt:  

 

Als Vereinfachung für dieses Modell wird angenommen, dass Schweißnähte 
und kleinere Kanten vernachlässigt werden können. Ebenso wird vorausge-
setzt, dass die Dose ein Volumen von  r2  h = 330, d. h. eine Höhe von 

   

hat. Mit Hilfe der Differenzialrechnung können dann Werte für Radius und 
Höhe der Dose bestimmt werden, die einem Zylinder mit minimaler Oberflä-
che bei gegebenem Volumen entspricht, die also einen minimalen Materialver-
brauch aufweist. In diesem Beispiel sind das für den Radius etwa 3,  cm und 
für die Höhe der Dose etwa ,5 cm. Die Erdnussdose ist daher in Bezug auf 
den Materialverbrauch nahezu optimal. Viele Optimierungsprobleme, die mit 
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funktionalen Modellen bearbeitet werden können, werden im Prinzip auf diese 
Weise gelöst.  

Zuerst werden Vereinfachungen in der Realität gemacht, beispielsweise die 
Dose als Zylinder aufgefasst. Anschließend wird die gesuchte Größe, hier das 
Volumen, als Funktionsgleichung ausgedrückt. Dazu müssen in der Regel noch 
sogenannte Nebenbedingungen – wie im Beispiel der Zusammenhang von 
Radius und Höhe durch das gegebene Volumen – verwendet werden, damit die 
Funktion mit nur einer Variablen geschrieben werden kann. Dann wird dieses 
funktionale Modell mit Hilfe der Differenzialrechnung untersucht. Für die voll-
ständige Untersuchung ist auch noch die Betrachtung von Randstellen und des 
Definitionsbereichs nötig.  

Es gibt auch Optimierungsprobleme mit Funktionen, die auf quadratische 
Funktionen führen und damit ohne Differenzialrechnung mit den Mitteln der 
Sekundarstufe I gelöst werden können oder die mit Hilfe von numerischen 
Verfahren aus der Sekundarstufe I bearbeitet werden können (s. Abb. 5.60).  

 

Abb. 5.60 Optimierungsproblem für die Sekundarstufe I (Böer, et al., 2003, S. 79) 

Grundsätzlich ist aber diese Art von Optimierungsproblemen stark funktional 
geprägt und insbesondere im Mathematikunterricht der Oberstufe weit verbrei-
tet. So könnte der Eindruck entstehen, dass fast alle mathematischen Optimie-
rungsprobleme von dieser Art sind und mit Hilfe von Funktionen gelöst wer-
den können. Es gibt aber auch Optimierungsprobleme, bei denen die Funktion 
selbst das optimierte Objekt ist. 
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Optimierung von Funktionen 

Wenn man bestimmte Daten zur Verfügung hat, die weiter bearbeitet werden 
sollen, dann sind häufig Funktionen selbst die zu optimierenden Objekte. Die 
Frage ist dann, welcher Funktionstyp und welche spezielle Funktionsgleichung 
die gegeben Daten am besten beschreiben. Mit einem solchen funktionalen 
Modell können dann beispielsweise Voraussagen über den weiteren Verlauf des 
beobachteten Prozesses oder Aussagen über den potenziellen Verlauf zwischen 
zwei Messpunkten gemacht werden.  

Ein typisches Problem zur Optimierung von Funktionen soll im Folgenden 
vorgestellt werden. Gegeben ist ein Datensatz zu einem in den Boden eingelas-
senen Öltank, bei dem die Peilstabhöhe für ein bestimmtes Tankvolumen be-
kannt ist (s. Abb. 5.61).  

 

Von einem in den Boden eingelassenen Öltank sind folgende Daten be-
kannt: 

 
Zur Bestimmung genauer Zwischenwerte des Tankvolumens soll eine 
Funktionsgleichung ermittelt werden, die den Zusammenhang von Tank-
volumen und Peilstabhöhe optimal beschreibt. 

Abb. 5.61 Aufgabenbeispiel Öltank 

Diese Tabelle ist aber für den praktischen Gebrauch nicht genau genug. Zur 
Verbesserung der Situation soll eine Funktionsgleichung ermittelt werden, die 
die Daten optimal beschreibt. Hier ist die Funktion einerseits das Ziel des Op-
timierens und andererseits gleichzeitig das mathematische Modell. Bei einem 
solchen Optimierungsproblem muss zunächst entschieden werden, welcher 
Funktionstyp die größten Erfolgsaussichten für eine optimale Anpassung bietet. 

Diese Entscheidung kann sowohl deskriptiv als auch explikativ getroffen wer-
den. Wenn ein rein deskriptives Modell gewählt wird, dann würde auf der Basis 
der bekannten Funktionstypen entschieden, welcher am besten zu dem Prob-
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lem passt. In der Schulmathematik können beispielsweise die folgenden Funk-
tionstypen als mathematische Modelle verwendet werden:  

 lineare Funktionen 

 quadratische Funktionen 

  ganzrationale Funktionen  

 Potenzfunktionen 

  Exponentialfunktionen 

 Logarithmusfunktionen 

In diesem Fall würde etwa eine ganzrationale Funktion dritten Grades die Da-
ten recht gut beschreiben (s. Abb. 5.62). 

 

 
Abb. 5.62 Deskriptiv optimierte ganzrationale Funktion dritten Grades 

Die Berechnung der entsprechenden Funktionsparameter geschieht am besten 
mit einem Computeralgebrasystem. Dort sind Funktionsanpassungen für die in 
der Schule üblicherweise verwendeten Funktionstypen in der Regel implemen-
tiert. Für die optimale Anpassung von Funktionen an Messwerte können unter-
schiedliche Modelle diskutiert werden. Üblicherweise verwendet man die Sum-
me der quadratischen Abweichungen in y-Richtung (Greefrath, 2009). 
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Zusätzlich zum Finden eines geeigneten optimierten deskriptiven Modells kann 
der Wunsch aufkommen, den Zusammenhang von Peilstabhöhe und Tankvo-
lumen wirklich zu verstehen. Wenn das Modell auch dieses leistet, spricht man 
von einer explikativen Modellierung. Um diesen Zusammenhang anzugeben, 
muss die Form des Tanks bekannt sein. Da dieser im gegebenen Beispiel im 
Boden versenkt ist, können Modellannahmen weiterhelfen. Eine mögliche Mo-
dellannahme ist, dass der Tank ein liegender Zylinder (mit Radius r und Länge 
l) ist. Dann könnte die Abhängigkeit von Peilstabhöhe und Volumen mit Hilfe 
der folgenden Überlegung bestimmt werden (s. Abb. 5.63). 

 

 
Abb. 5.63 Seitenansicht eines zylinderförmigen Tanks 

Im unteren Teil des Tanks gilt nach dem Satz des Pythagoras für die Länge x: 

 . 

Daher kann die Querschnittsfläche in der Füllhöhe h mit der Formel   

  

beschrieben werden. Aus Symmetriegründen gilt diese Formel auch für den 
oberen Teil des Tanks. Integrieren wir (z. B. mit Hilfe eines Computeralgebra-
systems) diese Fläche nun nach der Höhe h, so erhalten wir das Volumen des 
bis zur jeweiligen Höhe H gefüllten Tanks.  

. 

Dieses funktionale Modell ist zunächst erheblich unübersichtlicher als das rein 
deskriptive Modell. In dieses Modell sind bereits Informationen über den Tank 
eingeflossen. Überprüft man die Ergebnisse dieses Modell nun numerisch, stellt 
sich heraus, dass es weiter verbessert werden muss. Einerseits müsste das Ge-
samtvolumen des vollgefüllten Tanks bei einer Peilstabhöhe von 15  mm dem 
Gesamtvolumen 5000 l entsprechen. Andererseits müsste der Radius der hal-
ben maximalen Peilstabhöhe, also etwa 94 mm, entsprechen. Die Länge des 
Tanks ergibt sich dann aus der Formel für das Volumen als 252  mm. Rechnet 
man nun mit diesen Daten, so ergibt sich die folgende Tabelle: 
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Tabelle 5.28 Werte für das explikative Zylindermodell 

Tankvolumen  Peilstabhöhe  

1028 l 411mm 

2016 l 672 mm 

2987 l 915 mm 

3976 l 1176 mm 

5007 l 1587 mm 

 

Diese Werte sind zwar relativ genau, verglichen mit dem nur deskriptiven Mo-
dell allerdings schlechter. Die entsprechende Modellannahme war also offenbar 
nicht optimal. Viele Tanks entsprechen nämlich nicht genau einem Zylinder, 
sondern haben gewölbte Seiten. Berücksichtigt man auch noch die gewölbten 
Seiten, so erhält man mit einer entsprechenden Rechnung folgende Werte: 

Tabelle 5.29 Werte für das explikative Zylindermodell mit gewölbten Seiten 

Tankvolumen  Peilstabhöhe  

999 l 411mm 

2002 l 672 mm 

2998 l 915 mm 

4001 l 1176 mm 

5000 l 1587 mm 

 

Bei der Frage der Genauigkeit des Modells ist zu beachten, dass bei einer ange-
nommenen Ablesegenauigkeit des Peilstabs von 1 cm die Genauigkeit der Vo-
lumenangabe im mittleren Bereich des Tanks in der Größenordnung von 40 
Litern liegt.  

Dieses Beispiel hat gezeigt, dass auch die Funktion selbst das Ziel der Optimie-
rung sein kann. Dazu können entweder die Daten mit Hilfe einer Regression 
(deskriptiv) angepasst werden, oder es kann durch zusätzliche Modellannahmen 
ein – den Sachverhalt erklärendes – optimales Modell gefunden werden (Greef-
rath, 200 ). 

Es gibt jedoch auch andersartige Optimierungsprobleme, die nicht mit Hilfe 
von Funktionen und Differenzialrechnung bearbeitet werden. Dazu gehört die 
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Klasse der Wegoptimierungsprobleme. So sind beispielsweise die Suche nach 
dem schnellsten Weg mit der U-Bahn in einem U-Bahn-Netz oder nach dem 
besten Weg für einen Briefzusteller in einem Stadtteil derartige Probleme. Diese 
Probleme sind sogenannte kombinatorische Optimierungsprobleme (Hußmann 
& Lutz-Westphal, 200 ), bei denen die Menge der zulässigen Lösungen nicht 
kontinuierlich (wie z. B. der Radius der Konservendose), sondern diskret ist. 
Bei solchen Problemen verwendet man als mathematisches Modell häufig einen 
Graphen, also ein Gebilde aus Ecken und Kanten, bei dem jede Kante zwei 
Ecken verbindet.  

5.3.2 Diskrete Modelle 

Optimierung mit Graphen 

Wir betrachten als Beispiel ein Wohngebiet, in dem der optimale Weg für einen 
Briefzusteller gesucht wird, d. h. alle Straßen sollen genau einmal abgelaufen 
werden. Die Straßen in diesem Wohngebiet können in diesem Beispiel durch 
den folgenden Graphen veranschaulicht werden (s. Abb. 5.64). 

 

 
Abb. 5.64 Graph eines Wohngebiets 

Man kann aber einen gegebenen Graphen nur dann ohne abzusetzen zeichnen 
und dabei jede Kante genau einmal durchlaufen, wenn alle Ecken eine gerade 
Ordnung besitzen oder genau zwei Ecken von ungerader Ordnung sind. Die 
Ordnung einer Ecke ist dabei die Zahl der Kantenenden, die die Ecke treffen. 
Falls genau zwei Ecken eine ungerade Ordnung besitzen, ist die eine Anfangs-
punkt und die andere Endpunkt eines solchen Weges (Nitzsche, 2005, S. 25).  

Es kann also in diesem Beispiel keinen Weg geben, bei dem der Briefzusteller 
jeden Weg genau einmal durchläuft, da in diesem Zustellgebiet nicht an jeder 
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Kreuzung 4, 6 oder  Straßen zusammentreffen. Daher stellt sich für den Brief-
zusteller die Frage, welche Straßen er doppelt gehen soll. Man sucht nun im 
zugehörigen Graphen – also im zugehörigen deskriptiven Modell des Stadtteils 
– an Ecken mit ungerader Ordnung nach Möglichkeiten durch Einfügen von 
möglichst wenigen Kanten alle Eckenordnungen so zu verändern, dass sie ge-
rade sind. Ein Beispiel für eine mögliche Briefzustellertour in diesem Wohnge-
biet zeigt die folgende Abbildung (s. Abb. 5.65).  

 
Abb. 5.65 Eine mögliche Briefzustellertour in diesem Wohngebiet 

Optimierung von Graphen 

Ein zweites Beispiel für ein Optimierungsproblem ist der Bau eines Stromnet-
zes. Auch dieses Problem kann als Graph modelliert werden. Dabei entspre-
chen die Ecken den Verzweigungen oder den Abnehmern des Netzes und die 
Kanten den Leitungen. Hier ist nicht ein erstellter Graph, sondern bereits die 
Struktur des Graphen bei der Erstellung zu optimieren. Zwar liegt bei derarti-
gen Problemen die Lage einiger Ecken in der Regel fest, allerdings können 
zusätzliche Ecken, also Stellen an denen Verzweigungen des Netzes gebaut 
werden, frei gewählt werden. Betrachten wir als einfachstes Beispiel ein geplan-
tes Netz bestehend aus einer Quelle und zwei Verbrauchern, also drei zu ver-
bindenden Punkten, so kann unter bestimmten Bedingungen durch Einfügen 
eines weiteren Punktes die Gesamtlänge des Netzes reduziert werden. 

Zur Lösung dieses Problems kann man den Steinerpunkt verwenden. Der Stei-
nerpunkt ist der Punkt, von dem die Summe der Entfernungen zu den Ecken 
eines Dreiecks (  ABC) minimal ist. Überschreitet allerdings ein Winkel des 
Dreiecks 120°, so liegt der Steinerpunkt außerhalb des Dreiecks. In diesem Fall 
ist einer der Eckpunkte des Dreiecks der gesuchte optimale Punkt. Für drei 
gegebene Punkte kann der Steinerpunkt mit Hilfe des Umkreises des gleichsei-
tigen Dreiecks ACX auf der längsten Seite des Dreiecks aus den gegebenen 



5.3  Optimierungsprobleme   191 

 

Punkten A, B und C konstruiert werden. Der Steinerpunkt ist der Schnittpunkt 
P des Umkreises mit der Verbindungsstrecke von B und X. Die Entfernung 

entspricht der Länge des kürzesten Netzes zwischen den drei gegebenen 
Punkten A, B und C. Dies kann mit Hilfe des Satzes von Ptolemäus bewiesen 
werden (Fricke, 19 4, S. 24 ff.).   

 
Abb. 5.66 Konstruktion des Steinerpunktes 

Sind mehr als drei Punkte gegeben, kann mit Hilfe des Melzak-Algorithmus 
gearbeitet werden. Beim Melzak-Algorithmus werden Mehrpunkt-Probleme in 
kleinere Einheiten aufgeteilt. Sind zum Beispiel 3 Punkte für sich abspaltbar, 
wird in diesem Dreieck der Steinerpunkt konstruiert und in diesem Teil das 
Problem bereits reduziert. So lässt sich etwa ein -Punkte-Problem auf ein 5- 
und ein 3-Punkteproblem aufteilen. Der Verbindungspunkt der beiden Teil-
probleme wird dabei doppelt gezählt.  

Die 5 Punkte werden mit einem Steinernetz verbunden, wobei immer 2 Punkte 
auf einen Punkt reduziert werden. Dazu wird, im Beispiel etwa für die Punkte B 
und C, ein gleichseitiges Dreieck auf der Strecke BC konstruiert. Mit Hilfe des 
Umkreises dieses Dreiecks wird wie oben beschrieben der Steinerpunkt kon-
struiert. Der Punkt X kann nun als Ersatzpunkt für B und C verwendet werden 
und steht für die Konstruktion weiterer gleichseitiger Dreiecke zur Verfügung. 
Diese Ersatzpunkte werden dann verbunden, wodurch sich die Verzweigungen 
des Netzes ergeben. Zum Schluss werden alle Ausgangspunkte mit diesen Ver-
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zweigungen verbunden. Diese Konstruktionen können sehr gut mit einem dy-
namischen Geometrieprogramm (z. B. Euklid) durchgeführt und veranschau-
licht werden. Die beste Lösung des Problems lässt sich allerdings bei diesem 
Verfahren nicht vorhersagen, daher müssen alle Möglichkeiten getestet werden, 
den kürzesten Baum zu finden. Dieses Beispiel verdeutlicht, dass auch geomet-
rische Inhalte in den Bereich des Sachrechnens fallen können, da sie in diesem 
Beispiel zur Lösung des realen Problems beitragen (Bern & Graham, 1996). 

 

 
 
Abb. 5.67 Beispiel für den Melzak-Algorithmus (Bern & Graham, 1996) 

Die beiden Beispiele zeigen, wie kombinatorische Optimierung und Modellbil-
dung zusammenhängen können. Im ersten Beispiel mit dem Weg des Briefzu-
stellers wurde durch Reduktion auf wesentliche Informationen ein deskriptives 
Modell des Stadtteils entwickelt. An diesem Modell wurde dann das Optimie-
rungsproblem gelöst. Dazu wurden weitere Kanten, entsprechend den Wegen 
des Briefträgers, so eingefügt, dass der Gesamtweg optimal ist. Im Beispiel des 
optimalen Stromnetzes fand die Optimierung noch während der Modellent-
wicklung statt. Dazu wurden zusätzliche Ecken in den Graphen an optimalen 
Stellen eingefügt. Hierzu wurde also ein deskriptives Modell, das die Verbrau-
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cher eines Stromnetzes beschreibt, entsprechend weiterentwickelt, indem weite-
re Ecken eingefügt wurden. Dieses neue Modell wird dann für den Bau des 
Stromnetzes als Vorlage verwendet. Dieser Optimierungsprozess zeigt daher 
deskriptive und normative Anteile der Modellierung. Ein solches Wechselspiel 
zwischen deskriptiver und normativer Modellierung kann als doppelte Modellbil-
dung (Winter, 1991) bezeichnet werden (Greefrath, 200 ). 

Optimierung mit Tabellen  

Optimierungsprobleme können auch mit anderen mathematischen Werkzeugen 
als Funktionen und Graphen bearbeitet werden. Ein bekanntes Beispiel ist die 
Suche nach der optimalen Tankstelle in einem Grenzgebiet mit unter-
schiedlichen Kraftstoffpreisen (Blum & Leiß, 2005).  

Im konkreten Beispiel wird für zwei Autofahrer und eine Autofahrerin, die in 
Deutschland grenznah zu Tschechien und Österreich wohnen, untersucht, an 
welchem Ort das Tanken am günstigsten ist. Für die Modellierung muss zu-
nächst nach geeigneten Faktoren zur Vereinfachung des Problems gesucht 
werden. Eine mögliche Liste solcher Faktoren könnte sein: 

 Benzinpreise in Deutschland und im Ausland 

 Entfernung zu den jeweiligen Tankstellen 

 Tankvolumen 

 Verbrauch pro 100 km 

Diese Liste kann im Prinzip weiter fortgesetzt werden. Dies hängt davon ab, 
wie detailliert und komplex das Modell werden soll. Ebenso ist es beispielsweise 
denkbar, die Höchstgrenze für Reservekanister, die Verschleißkosten oder die 
benötigte Zeit für die Tankfahrt in das Modell aufzunehmen. Weitere Punkte 
wie Umweltbelastung und Unfallrisiko können ebenfalls in das Modell einbezo-
gen werden. Bei der Bildung des mathematischen Modells ist nun zu entschei-
den, welche Faktoren tatsächlich berücksichtigt werden sollen.  

 

 
Abb. 5.68 Tabelle zur Optimierung  

Ein mögliches Modell berücksichtigt die vier oben genannten Punkte. Konkret 
gehen wir von einem Durchschnittsverbrauch von ,9 l pro 100 km aus. Damit 
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werden dann die Tankkosten und die Benzinkosten für die Tankfahrt berech-
net. Als optimal wird der Ort der Tankstelle angesehen, bei dem die Summe der 
Tankkosten und der Benzinkosten für die Tankfahrt am niedrigsten ist. Die 
vorstehende Tabelle zeigt eine solche Berechnung. Die so bestimmten Gesamt-
kosten können nun verglichen und die in diesem Modell optimale Tankstelle 
kann anschließend ausgewählt werden. 

Für unterschiedliche Durchschnittsverbrauchswerte muss die Tabelle entspre-
chend angepasst werden. Die Verwendung der Tabellenkalkulation ist hier sehr 
hilfreich, da die entsprechenden Rechnungen alle gleichartig sind und für unter-
schiedliche Durchschnittsverbräuche wiederholt werden müssen. Die Optimie-
rung besteht hier aus der Auswertung der entsprechenden Spalte der Tabelle 
für unterschiedliche Annahmen.   

Die Ergebnisse verändern sich schließlich, wenn die Zeit, die durch eine längere 
Fahrt zur günstigsten Tankstelle verloren geht, mit in die Rechnung einbezogen 
wird. Einen ähnlichen Einfluss hätte die Berücksichtigung der Verschleiß-
kosten. Dies ist in der folgenden Abbildung dargestellt. 

 

 
Abb. 5.69 Tabelle zur Optimierung mit Berücksichtigung der Verschleißkosten 

Aber auch diese Modellierung umfasst noch längst nicht alle relevanten Fakto-
ren. So führen die Einbeziehung von Abschreibungskosten, aber auch die Mög-
lichkeit, einen Reservekanister zu füllen, zu neuen Modellierungen und verän-
dern dann auch den Ort der optimalen Tankstelle. 

Dieses Beispiel zeigt einen starken normativen Charakter des Optimierens mit 
Hilfe von mathematischen Modellen. Der Ort der optimalen Tankstelle hängt 
davon ab, welche Faktoren das gewählte Modell berücksichtigt und wie diese 
gewichtet werden (Greefrath & Laakmann, 200 ). 

5.3.3 Optimieren und Modellieren 
Man kann viele Optimierungsprobleme auch mit dem Computer bearbeiten. 
Dann vergrößert sich auch die Anzahl an alternativen Lösungsmöglichkeiten 
noch weiter. Mit dem Computer können viele Probleme, die sonst mit Funkti-
onen bearbeitet werden, auch numerisch mit Hilfe eines Tabellenkalkulations-
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programms oder geometrisch mit Hilfe einer dynamischen Geometriesoftware 
bearbeitet werden. So ist es möglich, dass sich auch die Art des verwendeten 
Modells verändert und beispielsweise ein kontinuierliches Problem nicht mit 
Hilfe von Funktionen, sondern numerisch oder grafisch gelöst wird.  

Die Beispiele zeigen die Vielfältigkeit von Optimierungsproblemen mit realem 
Hintergrund. Optimierungsprobleme im Unterricht sollten daher nicht auf die 
Behandlung von deskriptiven funktionalen Modellen, wie das Beispiel der Kon-
servendose, beschränkt werden, die mit Hilfe der Differenzialrechnung opti-
miert werden. Optimierungsprobleme sind einerseits häufig für Schülerinnen 
und Schüler sehr motivierend und andererseits unter dem Aspekt der Umwelt-
erschließung sehr interessant für das Sachrechnen. Sie reichen von funktionalen 
über grafische bis zu diskreten numerischen Modellen. Die Optimierung kann 
nach oder während der Modellerstellung stattfinden, und es gibt deskriptive 
und normative Modellierungen.  

 

 
Abb. 5.70 Vielfalt von Optimierungsproblemen 

5.4  Probleme aus Statistik und Stochastik  
Aufgaben aus Statistik und Stochastik gehen in vielen Fällen von einem Prob-
lem in der Realität aus und beschäftigen sich mit Modellierungsprozessen im 
Zusammenhang mit Daten.  

Auch im Rahmen der Bildungsstandards im Fach Mathematik für den Mittleren 
Bildungsabschluss (KMK, 2004) wird die Leitidee Daten und Zufall besonders 
herausgestellt. Im Rahmen dieser Leitidee sollen Schülerinnen und Schüler ins-
besondere  

 statistische Erhebungen planen und auswerten,  

 Zufallserscheinungen in alltäglichen Situationen beschreiben sowie 
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 Wahrscheinlichkeiten bei Zufallsexperimenten bestimmen. 

Hier kann man zwei Bereiche unterscheiden. Der erste Bereich betrifft Model-
lierungen mit realen Daten im Rahmen einer Datenanalyse, und der zweite 
Bereich beschäftigt sich mit Modellierungen mit Hilfe von Wahrscheinlichkei-
ten und Wahrscheinlichkeitsverteilungen.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Abb. 5.71 Datenanalyse als stochastischer Modellierungskreislauf (Eichler & Vogel, 
2009, S. 132) 

Betrachten wir hier etwa das Beispiel des Hefewachstums (S. 1 4), dann ent-
spricht die Situation der realen Hefekultur, die beobachtet wird. Diese Situation 
wird um unwesentlich scheinende Aspekte reduziert, und es wird lediglich die 
Hefemenge in Abhängigkeit von der Zeit betrachtet. Weitere Eigenschaften, 
wie etwa die Art der Ausbreitung, werden vernachlässigt. Im Mathematisie-
rungsschritt werden die Daten der Hefemenge in Abhängigkeit von der Zeit in 
ein mathematisches Modell übersetzt. Dies kann im ersten Schritt ein exponen-
tielles Wachstum oder im zweiten Schritt ein logistisches Wachstumsmodell 
sein. Dabei wird ein Muster in den Wachstumsdaten gesucht, und gleichzeitig 
werden Informationen reduziert. Denn beispielsweise bei der Verwendung 
eines exponentiellen Wachstumsmodells werden nicht mehr alle gesammelten 
Daten, sondern nur noch die geeigneten Parameter weiter verwendet.  

In Fall der Wahrscheinlichkeitsbetrachtungen ist ebenfalls eine Beschreibung 
als Modellierungskreislauf sinnvoll. Nach der Analyse der Daten erfolgt dann 
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im Mathematisierungsschritt der Übergang zum Modell. In der Schule wird 
dazu sehr häufig die Binomialverteilung verwendet. Mit Hilfe des Modells und 
der vorhandenen Daten wird dann die Realsituation simuliert. So können die 
Ergebnisse der Simulation mit dem Modell mit der Realität verglichen und so 
interpretiert und validiert werden  (Eichler & Vogel, 2009).  

Im Verlauf der gesamten Sekundarstufe werden immer wieder Inhalte aus Sta-
tistik und Stochastik im Unterricht behandelt. Einige Beispiele zur Datenanaly-
se sind bereits in den Abschnitten 5.2.  und 5.3 behandelt worden. Im Rahmen 
der Statistik werden ebenso Mittelwerte und Streuungen berechnet sowie Dia-
gramme interpretiert. 

Auch der Wahrscheinlichkeitsbegriff wird meist in realen Kontexten präsen-
tiert. Hier verwendet man in der Sekundarstufe I häufig Glücksspiele, wie bei-
spielsweise den Würfelwurf (s. Abb. 5. 2) oder Lottoprobleme.  

 
Abb. 5.72 Beispielaufgabe zum Würfelwurf (Kietzmann, et al., 2004, S. 44) 

Ebenso kann der mehrfache Würfelwurf thematisiert werden (s. Abb. 5. 3). Er 
wird im Unterricht mit Hilfe von Baumdiagrammen dargestellt. Zur Vorberei-
tung der Laplace-Wahrscheinlichkeit werden im Unterricht kombinatorische 
Probleme thematisiert. Auch hier können Kontexte aus der Realität verwendet 
werden. Ein Beispiel zeigt die folgende Abbildung (s. Abb. 5. 4).  

 

 
Abb. 5.73 Wahrscheinlichkeiten von zwei Würfen 
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Abb. 5.74 Beispielaufgabe zur Kombinatorik (Koullen, 1993) 

Die Beispiele zeigen, dass Aufgaben aus Statistik und Stochastik mit Realitäts-
bezug an vielen Stellen des Unterrichts auftreten. Auch in diesem Inhaltsbe-
reich sind die Funktionen des Sachrechnens vielfältig. Während bei einigen 
Aufgaben der Sachkontext eher eingekleidet ist, gibt es auch – beispielsweise 
bei der Datenanalyse – umfangreiche Modellierungsaufgaben. 

5.5 Aufgaben zur Wiederholung und Vertiefung 
Geschwindigkeit 

Es ist möglich, dass ein Fahrradfahrer mit einer niedrigeren Durchschnittsge-
schwindigkeit zu einem bestimmten Zeitpunkt eine höhere momentane Ge-
schwindigkeit hat als ein anderer Fahrradfahrer, der eine höhere Durchschnitts-
geschwindigkeit fährt. Zeichnen Sie ein Zeit-Weg-Diagramm für zwei Fahrrad-
fahrer, auf das dies zutrifft.  

Eigenschaften von Funktionen 

Zeigen Sie mit Hilfe der Definitionen, dass Folgendes gilt: 

1.  ist eine wachsende Funktion. 

2.  ist eine fallende Funktion. 
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3.  ist eine additive Funktion. 

4.  ist eine multiplikative Funktion. 

Proportionale und antiproportionale Zuordnungen 

Gegeben ist der Graph einer proportionalen Zuordnung.  

 

 
Abb. 5.75 Graph einer proportionalen Zuordnung 

1. Erläutern Sie anschaulich mit Hilfe des Graphen die Eigenschaften Ver-
hältnisgleichheit, Quotientengleichheit, Additivität und die Mittelwertsei-
genschaft.  

2. Zeigen Sie mit Hilfe eines selbstgewählten Beispiels, dass die Additivität 
und die Mittelwertseigenschaft für antiproportionale Zuordnungen nicht 
gelten.  

Wachstumsfunktionen 

Das Hefewachstum kann alternativ durch eine Gleichung der Form  
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beschrieben werden.  

1. Stellen Sie Gemeinsamkeiten und Unterschiede zur Gleichung des expo-
nentiellen Wachstums dar. 

2. Stellen Sie Gemeinsamkeiten und Unterschiede zur Gleichung des be-
schränkten Wachstums dar. 

3. Interpretieren Sie die Konstanten k und S im Sachzusammenhang des He-
fewachstums. 

4. Notieren Sie eine passende Differenzialgleichung zur kontinuierlichen Mo-
dellierung des Hefewachstums 

5. Finden Sie mit Hilfe der bekannten Lösungsfunktion der Differenzialglei-
chung 

 

eine Lösungsfunktion für die Gleichung aus 4. in Abhängigkeit von den Pa-
rametern k und S.  

Allometrisches Wachstum 

1. Recherchieren Sie den Begriff „allometrisches Wachstum“. 

2. Finden Sie ein Beispiel für einen Wachstumsprozess, der durch eine Po-
tenzfunktion beschrieben werden kann, und stellen Sie die Annahmen für 
dieses Wachstumsmodell dar. 

3. Berechnen Sie die „Verdoppelungszeit“ im Fall des Wachstumsansatzes mit 
Potenzfunktionen.  

 

 



 

 

6 Spezielle Aspekte des 
Sachrechnens 

6.1  Schwierigkeiten und Lösungshilfen 

6.1.1  Schwierigkeiten beim Unterrichten von Anwen-
dungsbezügen 

Anwendungsbezogene Aufgaben werden aus vielfältigen Gründen nicht so 
intensiv im Unterricht eingesetzt, wie das wünschenswert ist. Beispielsweise 
treten organisatorische, persönliche und materialbezogene Hindernisse auf.  

Häufig benötigen Modellierungs- oder Sachaufgaben eine längere Bearbei-
tungszeit, als dies in einer Schulstunde möglich ist. Für derartige Aufgaben 
müssen unter Umständen eine umfangreiche Recherche oder Experimente 
durchgeführt werden. Hier ist projektartiges Arbeiten vorteilhaft, wenn es or-
ganisatorisch möglich ist. Ebenfalls ist es schwierig, entsprechend umfangreiche 
Aufgaben in Prüfungen zu verwenden. Dies hat wieder Rückwirkungen auf den 
tatsächlichen Einsatz im Unterricht und die Motivation der Schülerinnen und 
Schüler.  

Die Verwendung von Aufgaben mit außermathematischen Kontexten stellt 
Schülerinnen und Schüler sowie Lehrerinnen und Lehrer vor neue Herausfor-
derungen. Möglicherweise sind hier persönliche Vorbehalte gegen anspruchs-
volle und zusätzliche Tätigkeiten (wie beispielsweise die Vereinfachung und 
Übersetzung in das mathematische Modell) im Mathematikunterricht vorhan-
den. Auch für die Lehrenden bedeutet anwendungsbezogener Mathematikun-
terricht mehr Vorbereitungsaufwand. 

Für den Unterricht gibt es heutzutage vielfältige Materialien, um Realitätsbezü-
ge einzubeziehen. Exemplarisch sei hier die Schriftenreihe der ISTRON-
Gruppe (Schriftenreihe der ISTRON-Gruppe) genannt. Dennoch sind Sach- 
und Modellierungsaufgaben in viele Schulbücher noch nicht so integriert, dass 
auf weitere Materialien, die erst aufwändig gesucht werden müssen, verzichtet 
werden könnte (Blum, 1996, S. 31 f.). 
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Eine Möglichkeit besteht darin, passende Anwendungs- oder Modellierungs-
aufgaben und Projekte selbst zu erstellen. Hierzu gibt es vielfältige Ansätze wie 
beispielsweise das Öffnen (Dockhorn, 2000) oder Variieren (Schupp, 2000) von 
Schulbuchaufgaben und das Erstellen von eigenem Material (Greefrath, 2009).    

Eine Schwierigkeit bei Aufgaben mit Sachkontext bzw. Modellierungsaufgaben 
ist die Frage der Beurteilung von Schülerarbeiten. Katja Maaß regt an, nicht nur 
die mathematische Bearbeitung, sondern auch den Modellierungsprozess in die 
Beurteilung mit einzubeziehen. Sie schlägt vor, die Bildung des Realmodells, die 
Interpretation der Lösung, die kritische Reflexion, die Dokumentation und die 
Art des Vorgehens zusätzlich zur mathematischen Bearbeitung in die Beurtei-
lung einzubeziehen. Ein Beurteilungsschema könnte etwa wie folgt aussehen:  

Tabelle 6.1 Bewertung von Modellierungsaufgaben (Maaß K. , 2007, S. 40)  

Bereich  Aspekte  Anteil   

Bildung des Realmodells 
 

sinnvolle Annahmen 
angemessene Vereinfachung 

20 % 

mathematische Bearbeitung Mathematisierung der Größen und Beziehungen 
mathematische Notation 
heuristische Strategien 
Korrektheit der Lösung 

25 % 

Interpretation der Lösung Realitätsbezug der Interpretation 
Korrektheit der Interpretation 

10 % 

kritische Reflexion Berücksichtigung aller Aspekte 
inhaltliche Tiefe 
Hinzunahme von Vergleichswerten 

20 % 

Dokumentation  und 
Vorgehen 

schrittweise Dokumentation  
globale Planung  
zielgerichtetes Vorgehen  

25 % 

6.1.2 Schwierigkeiten beim Bearbeiten von Modellie-
rungsaufgaben 

Auch die Schülerinnen und Schüler können im anwendungsorientieren Unter-
richt in vielen Fällen auf Schwierigkeiten stoßen. Insbesondere bei der Bearbei-
tung von Modellierungsaufgaben können an vielen Stellen Probleme auftreten, 
die hier am Modellierungskreislauf verdeutlicht werden sollen (s. Abb. 6.1).  
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Abb. 6.1 Mögliche Schwierigkeiten bei Modellierungsaufgaben (vgl. Maaß K. , 2004, S. 
160 f.)  

In den beiden ersten Schritten des idealisierten Modellierungskreislaufs werden 
das Realmodell und das mathematische Modell aufgestellt. Hier kann es vor-
kommen, dass falsche Annahmen in das Modell eingehen oder die Realsituation 
unangemessen vereinfacht wird. Schülerinnen und Schülern fehlt häufig Stütz-
punktwissen, z. B. bezüglich Längen und Anzahlen. Außerdem werden Werte 
oft nicht kritisch hinterfragt, sondern einfach übernommen. Bei diesen Schwie-
rigkeiten kommt dem Aufgabentext bzw. der Darstellung des Problems eine 
besondere Rolle zu. Durch eine klare Darstellung kann häufig das Verständnis 
des Problems positiv beeinflusst werden. 

Beim Übertragen des Realmodells in das mathematische Modell können eben-
falls Probleme auftreten. Sie hängen unter anderem von den zur Verfügung 
stehenden mathematischen Modellen ab. Hier können beispielsweise falsche 
Symbole und Algorithmen ausgewählt werden oder Fehler in Formeln gemacht 
werden.  

Auch bei der Arbeit im mathematischen Modell können Probleme auftreten. 
Gerade bei Modellierungsaufgaben finden Schülerinnen und Schüler aber häu-
fig die Rechenfehler selbstständig, wenn dazu entsprechend Gelegenheit gebo-
ten wird.  
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Das Interpretieren und Validieren von Ergebnissen des mathematisches Mo-
dells wird häufig nicht ernst genug genommen. Schülerinnen und Schülern 
fehlen zum Teil Kontrollkompetenzen; speziell im Bereich von Plausibilitätsbe-
trachtungen. 

Insbesondere die Validierung muss genauer in den Blick genommen werden. 
Maull und Berry haben am Beispiel der Abkühlung von Tee das Modellierungs-
verhalten von vier Schülergruppen untersucht. Dabei zeigten drei Gruppen 
einen experimentellen Zugang zu diesem Problem. Sie verwendeten allerdings 
wenig Zeit für die Betrachtung der Komplexität des Sachkontextes. Außerdem 
wurde der Modellierungskreislauf nicht vollständig durchlaufen, da keine Refle-
xion des Modells stattfand. Eine Gruppe verwendete unreflektiert ein mathe-
matisches Modell für dieses Problem. In allen Fällen war auffällig, dass keine 
Validierung stattfand (Maull & Berry, 2001). 

Während die genannten Schwierigkeiten konkret einzelnen Punkten im Model-
lierungskreislauf zugeordnet werden können, gibt es auch Fehler, die den gan-
zen Modellierungsprozess betreffen. So kann es vorkommen, dass Schülerinnen 
und Schüler den Überblick verlieren und ihren Lösungsplan nicht weiter ver-
folgen können oder keinen Bezug zur Mathematik herstellen, um das Problem 
weiter zu bearbeiten. Ebenfalls problematisch ist, wenn Schülerinnen und Schü-
ler ihre Bearbeitung nicht darstellen können. Dann ist eine Beurteilung ihrer 
Leistungen kaum möglich (Maaß K. , 2004, S. 160 f.).  

Es gibt unterschiedliche Möglichkeiten, diesen Schwierigkeiten von Schülerin-
nen und Schülern mit Modellierungsaufgaben zu begegnen. Einerseits gibt es 
Lösungspläne speziell für Modellierungsaufgaben (s. Abschnitt 6.2), und ande-
rerseits ermöglichen Aufgaben zu Teilkompetenzen des Modellierens (s. Ab-
schnitt 4.4.2) gezielt den Umgang mit Schwierigkeiten an bestimmten Stellen im 
Modellierungskreislauf, wie beispielsweise dem Validieren. Des Weiteren kann 
das Bewusstmachen des Modellierungsprozesses durch entsprechende Kreis-
laufdarstellungen Fehlern, die den ganzen Modellierungskreislauf betreffen, 
vorbeugen.  

6.1.3 Lösungshilfen beim Sachrechnen 
Der Einsatz von anwendungsbezogenen Aufgaben kann nicht nur mit Schwie-
rigkeiten verbunden sein, sondern ermöglicht auch, Lösungshilfen – wie oben 
schon angedeutet – speziell für anwendungsbezogene Aufgaben zu formulie-
ren.  

Man unterscheidet unterschiedliche Arten von Hilfen. So können Hilfen bei-
spielsweise dazu dienen, Schülerinnen und Schüler zur Weiterarbeit zu motivie-
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ren, ihnen mitzuteilen ob ihre Lösungen oder ihre Strategie erfolgreich sind. 
Ebenso können inhaltliche Hinweise zur Lösung der Aufgabe gegeben werden.  

 

 
Abb. 6.2 Wie sucht man die Lösung? (Polya, 1949) 
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Es sind also folgende Kategorien von Hilfen zu unterscheiden:  

 Motivationshilfen 

 Rückmeldungshilfen 

 allgemeine strategische Hilfen 

 inhaltsorientierte strategische Hilfen 

 inhaltliche Hilfen  

Innerhalb jeder Kategorie kann man noch zwischen direkten und indirekten Hil-
fen unterscheiden. Bei direkten Hilfen wird speziell eine Schülerin oder ein 
Schüler, eine konkrete Stelle in der Aufgabenbearbeitung oder ein konkreter 
mathematischer Inhalt angesprochen. Bei indirekten Hilfen dagegen wird die 
ganze Klasse, die Aufgabenbearbeitung als Ganzes oder ein weniger konkreter 
mathematischer Inhalt angesprochen (Zech, 199 , S. 315 ff.). 

Viele Lösungspläne in der Literatur sind sehr umfangreich. Beispielsweise füllt 
eine Handlungsorientierung zum Lösen von Sachaufgaben für die Sekundarstu-
fe I ein ganze Buchseite (Zech, 199 , S. 339). Sie besteht aus 15 Punkten, die 
teilweise noch durch mehrere Fragen konkretisiert werden. Die Schwierigkeit 
bei derartigen umfangreichen Lösungsplänen ist, dass sie einerseits ein eher 
starres Schema für die Bearbeitung festlegen und andererseits kaum ohne Noti-
zen von Schülerinnen und Schülern beherrscht werden können. In der Praxis 
scheinen sich eher kürzere Lösungspläne durchzusetzen, die aus etwa vier 
Schritten mit wenigen Unterpunkten bestehen und flexibel eingesetzt werden 
können. 

Die im Folgenden aufgeführten Lösungspläne gehören in der Mehrzahl zu den 
indirekten allgemeinen strategischen Hilfen, da sie zwar auf allgemeine fachli-
che Problemlöse- und Modellierungsmethoden hinweisen, aber keine konkreten 
und auf den Inhalt der Aufgabe bezogenen Hilfestellungen geben.  

Außerdem gibt es viele spezielle, also inhaltliche und inhaltsorientierte strategi-
sche Hilfen für bestimmte Gebiete des mathematischen Unterrichts. So findet 
man auch spezielle Hinweise zum Ermitteln des mathematischen Ansatzes, 
d. h. zum Entwickeln des mathematischen Modells. Hier spielen Heuristiken 
wie Vorwärts- und Rückwärtsarbeiten und inhaltliche Hinweise zum Aufstellen 
von Gleichungen eine zentrale Rolle (Zech, 199 , S. 341). 

Ein sehr bekannter Lösungsplan für Problemlöseaufgaben stammt von Polya 
(s. Tabelle 6.2). Er hat sich Mitte des 20. Jahrhunderts mit Problemlöseprozes-
sen in der Mathematik beschäftigt. Genauer ist der Lösungsplan von Polya auf 
der inneren Umschlagseite seines Buches. Dieser besteht aus weiteren detaillier-
ten Fragen (s. Abb. 6.2).  
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Tabelle 6.2 Lösungsplan für Problemlöseaufgaben (Polya, 1949) 

1 Verstehen der 
Aufgabe 

Du musst die Aufgabe 
verstehen. 

Was ist unbekannt? 
Was ist gegeben? 
Wie lautet die Bedingung? 
(…) 

2 Ausdenken 
eines Plans 

Suche den Zusammenhang 
zwischen den Daten und der 
Unbekannten. 
Du musst vielleicht 
Hilfsaufgaben betrachten (…) 
Du musst schließlich einen Plan 
der Lösung erhalten. 

Hast Du dieselbe Aufgabe in 
einer wenig verschiedenen 
Form gesehen? 
Versuche zuerst eine 
verwandte Aufgabe zu lösen. 
Hast Du alle Daten benutzt? 
(…) 

3 Ausführen des 
Plans 

Führe Deinen Plan aus. Wenn Du Deinen Plan der 
Lösung durchführst, so 
kontrolliere jeden Schritt. 
Kannst Du deutlich sehen, dass 
der Schritt richtig ist? 

4 Rückschau Prüfe die erhaltene Lösung. Kannst Du das Resultat 
kontrollieren? 
Kannst Du das Resultat auf 
verschiedene Weise ableiten? 
Kannst Du die Methode für 
irgendeine andere Aufgabe 
gebrauchen? 

 

Es gibt auch spezielle Lösungshilfen zu bestimmten Problemlöse-Strategien. 
Der Vorteil ist, dass diese Hilfen konkreter ausfallen können, da sie auf eine 
bestimmte Strategie fokussieren. Der Nachteil ist allerdings, dass sie nicht mehr 
in allen Fällen eingesetzt werden können, sondern nur dann, wenn die spezielle 
Strategie auch weiterhilft.  

Zum Üben bestimmter Strategien kann dieses Vorgehen durchaus sinnvoll sein. 
Beispielsweise findet man für die Problemlöse-Strategie Tabelle anlegen folgende 
Lösungshilfen, die mit Hilfe eines Beispielproblems erklärt werden (s. Abb. 
6.3). 

Auch für Modellierungsaufgaben wurden Lösungspläne entwickelt. Blum ver-
wendet im Rahmen des DISUM-Projekts einen Lösungsplan für die Schülerin-
nen und Schüler, der sich an einem vereinfachten Modellbildungskreislauf ori-
entiert (s. Tabelle 6.3). 
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„Problem: Jedes Jahr zum Geburtstag bekommt Peter 50 € von seinen 
Großeltern. Er hat das Geld immer in seinem Zimmer aufbewahrt und 
bisher nichts davon ausgegeben. Heute ist sein 12. Geburtstag. Er möch-
te sein gesamtes Geld zur Bank bringen und ein Konto eröffnen, das 
jährlich 2,1% Zinsen einbringt. Wenn Peter sein Geburtstagsgeld weiterhin 
jedes Jahr einzahlt, wie viel Geld ist dann nach 3 Jahren auf seinem Kon-
to? 

 

Verstehen 

1.  Welche Informationen sind gegeben? 

 

Planen 

2.  Kannst Du eine Tabelle anlegen, die Dir hilft, das Problem zu lösen? 

3.  Wenn ja, wie würde sie aussehen? 

 

Lösen 

4.  Welche Rechenschritte führst Du beim Ausfüllen der Tabelle durch? 

5.  Wie viel Geld ist nach 3 Jahren auf Peters Konto? 

 

Überdenken 

6.  Scheint Deine Antwort sinnvoll zu sein?“ (Bolzen, 2007) 

Abb. 6.3 Beispielaufgabe zur Problemlösestrategie Tabelle anlegen 

Tabelle 6.3 Lösungsplan für Modellierungsaufgaben (Blum, 2006) 

1 Aufgabe 
verstehen 

Was ist gegeben, was ist 
gesucht? 

Text genau lesen 
Situation genau vorstellen 
Skizze anfertigen 

2 Modell 
erstellen 

Welche mathematischen 
Beziehungen kann ich 
aufstellen? 

evtl. Annahmen treffen, 
z. B. Gleichung aufstellen oder 
Dreieck einzeichnen 

3 Mathematik 
benutzen 

Wie kann ich die Aufgabe 
mathematisch lösen? 

z. B. Gleichung ausrechnen oder 
Pythagoras anwenden 
mathematisches Ergebnis 
aufschreiben 
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4 Ergebnis 
erklären 

Wie lautet mein 
Endergebnis?  
Ist es sinnvoll? 

mathematisches Ergebnis runden 
und auf die Aufgaben beziehen - 
evtl. zurück zu 1 
Antwort hinschreiben 

 

Er umfasst vier Schritte, die Aufgabe verstehen, Modell erstellen, Mathematik benutzen 
und Ergebnis erklären genannt werden. Jeder Schritt wird für die Schülerinnen 
und Schüler mit einer Frage und einigen erklärenden Punkten erläutert.  

Im Schritt 3 dieses Lösungsplans wird die Allgemeinheit der strategischen Hilfe 
zugunsten inhaltsorientierter Hinweise verlassen. Es handelt sich daher wegen 
des Hinweises Gleichung ausrechnen oder Pythagoras anwenden – zumindest bei Auf-
gaben, für die das relevant ist – um eine inhaltsorientierte strategische Hilfe.  

Auch für die in Kapitel 5 diskutierten Optimierungsprobleme mit Funktionen 
kann man inhaltsorientierte strategische Hilfen angeben. Diese könnten etwa 
die folgenden Punkte beinhalten: 

1. Notiere Ausgangsgrößen und gesuchte Größen und verwende geeignete 
Bezeichnungen. 

2. Erstelle eine Skizze der gegebenen Situation. 

3. Stelle mit Hilfe der Größen aus 1. eine Zielfunktion auf. 

4. Formuliere geeignete Nebenbedingungen. 

5. Verwende die Nebenbedingungen, sodass eine Zielfunktion in Abhängig-
keit von nur einer Ausgangsgröße entsteht. 

6. Bestimme mit Hilfe der Differenzialrechnung die Maxima bzw. Minima der 
Zielfunktion. 

. Überprüfe den Definitionsbereich und die Ränder des Definitionsbereichs. 

. Formuliere eine Antwort für das gegebene Problem. 

 

Ähnliche Vorschläge findet man häufig auch in Schulbüchern für die Sekundar-
stufe II (s. Abb. 6.4). Hier ist die Inhaltsorientierung deutlich stärker als beim 
Lösungsplan für Modellierungsaufgaben aus Tabelle 6.3, da eine Verwendung 
für Probleme aus einem anderen Gebiet praktisch ausgeschlossen ist, während 
dies durch leichte Veränderungen am Lösungsplan für Modellierungsaufgaben 
möglich wäre.  
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Abb. 6.4 Strategie für das Lösen von Extremwertproblemen im Schulbuch (Brandt & 
Reinelt, 2007, S. 93) 

Die Schrittfolge zeigt, dass häufig sehr gleichartige Probleme in der Schule 
bearbeitet werden. So besteht die Gefahr, dass nicht mehr die Probleme selbst, 
sondern das Schema zur Lösung der Probleme in den Mittelpunkt gestellt wird.  

Auch für Aufgaben zum Dreisatz kann man inhaltsbezogene strategische Hil-
fen angeben. Dies könnte etwa wie folgt aussehen (Herling, Kuhlmann, & 
Scheele, 200 , S. 2 ): 

1. Überlege, ob für die Größen der Zusammenhang „je mehr – desto mehr“ 
oder „je mehr – desto weniger“ vorliegt. 

2. Überlege im ersten Fall, ob auch dem Doppelten das Doppelte, dem Drei-
fachen das Dreifache, … oder im anderen Fall dem Doppelten die Hälfte, 
dem Dreifachen ein Drittel, … zugeordnet wird. 

3. Ist die Zuordnung proportional bzw. antiproportional, dann verwende eine 
Tabelle zur Berechnung der gesuchten Größe. 

4. Notiere einen Antwortsatz. 

Dieses Schema setzt nicht nur proportionale und antiproportionale Zuordnun-
gen voraus, sondern prüft im ersten und zweiten Schritt, ob es sich tatsächlich 
um Zuordnungen handelt, die mit der Dreisatztabelle bearbeitet werden kön-
nen. Allerdings fehlen Alternativen für den Fall, dass sich andere Zusammen-
hänge herausstellen. 

Eine wichtige Aufgabenklasse im Sachrechnen sind offene Aufgaben bzw. spe-
ziell Fermi-Aufgaben. Für diese Aufgaben haben Büchter und Leuders strategi-
sche Hilfen entwickelt, die auch auf andere Aufgabentypen übertragbar sind.  

Für Schülerinnen und Schüler, die bei der Bearbeitung von Fermi-Aufgaben 
Schwierigkeiten haben, können die nachfolgend aufgeführten heuristischen 
Strategien eine Unterstützung sein.  

 Suche zuerst alle Daten zusammen, die mit dem Problem zu tun haben.  

 Welche Zahlen und Größen sind gesucht?  
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 Überlege, was Du aus den bekannten Daten berechnen kannst. (Vorwärts-
rechnen)  

 Überlege, was Du kennen musst, um eine gesuchte Größe berechnen zu 
können. (Rückwärtsrechnen)  

 Schätze die Zahlen und Werte, die nicht bekannt sind.  

 Frage beim Schätzen nach dem größten und dem kleinsten vernünftigen 
Wert.  

 Überprüfe das Ergebnis dahingehend, ob es sinnvoll und logisch ist. Ist es 
vielleicht zu groß oder zu klein?  

 Kontrolliere durch Verwenden größerer und kleinerer Werte. 

 Überlege vor dem Rechnen, welche Auswirkung größere oder kleinere 
Werte auf das Ergebnis haben – wird es dann größer oder kleiner?  

(Büchter & Leuders, 2005, S. 161). Diese Hilfen sind zunächst für Fermi-
Aufgaben konzipiert, können aber auch für verwandte Aufgaben mit Schätz- 
oder Modellierungsanteilen verwendet werden. Im Prinzip handelt es sich um 
allgemeine strategische Hilfen, die allerdings sehr konkret gefasst sind.  

6.2  Üben im Sachrechnen 
Die Festigung von Kompetenzen ist nur durch entsprechendes Üben möglich. 
Dabei sind außer der Festigung von Routinen auch beispielsweise das Anwen-
den des Gelernten auf ähnliche Situationen und das Vernetzen Ziele des Übens 
(Wynands, 2006). Ebenso können durch Übungsphasen Selbstregulationskom-
petenzen, Selbstbewusstsein und Kreativität gefördert werden (Büchter & 
Leuders, 2005, S. 143). 

Zum Üben eigenen sich im Prinzip alle vorgestellten Aufgabentypen; allerdings 
sollte auf eine gewisse Vielfalt Wert gelegt werden. Besonders interessant für 
Schülerinnen und Schüler sind Aufgabentypen, die auch in Diagnose- oder 
Leistungstests eine Rolle spielen. Fasst man das Lernen nach Winter (Winter, 
19 4) als gelenkte Entdeckung auf, so bedeutet dies für das Üben, dass es sich um 
die entsprechende Fortsetzung des entdeckenden Lernens handelt, die auch 
kreativ sein sollte. Winter formuliert für das Üben einige Prinzipien, von denen 
im Zusammenhang mit dem Sachrechnen besonders das Prinzip des sachorientier-
ten Übens zu nennen ist. Das Ziel dieses Prinzips ist es, im Zusammenhang mit 
Übungen auch gleichzeitig das Wissen über die Umwelt zu erweitern. Weitere 
Prinzipien sind die des reflektierenden und operativen Übens. Sie besagen, dass 
beim Einüben einer Fähigkeit auch Reflexionen und vielfältige Variationen der 
Operationen ausgeführt werden sollten (Büchter & Leuders, 2005, S. 144 ff.). 
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Wichtig ist, dass sich durch wiederholte Übungsaufgaben gleichen Typs nicht 
ein automatisiertes Üben ohne Nachdenken entwickelt, bei dem Kontexte und 
Rechenverfahren nicht mehr hinterfragt werden. Diese Entwicklung wird im 
Rahmen des Sachrechnens besonders durch eingekleidete und einfache Text-
aufgaben begünstigt.  

 

 
Abb. 6.5 Beispiel für eine Aufgabe mit wiederholten Übungen (Koullen, 1993) 

Die abgebildete Aufgabe dient dazu, die Berechnung der Mantelfläche eines 
Zylinders am Beispiel einer Konservendose zu üben. Dabei wird berücksichtigt, 
dass das Etikett verklebt werden muss. Allerdings werden die Schülerinnen und 
Schüler ab der zweiten Teilaufgabe nicht mehr über den Kontext Dose nach-
denken, sondern nur noch mechanisch den gleichen Algorithmus ausführen wie 
im ersten Aufgabenteil. Ein solches mechanisches Ausführen von Fertigkeiten 
kann zum einen die Schülerinnen und Schüler von Routinetätigkeiten entlasten 
und das Nachdenken über schwierige Probleme ermöglichen, kann aber auch 
beim Fehlen von anderen Fragen das Gegenteil bewirken (Leuders, 2006). 

Es ist daher wünschenswert, dass Übungsaufgaben zum Sachrechnen auch Re-
flexionen und Entdeckungen ermöglichen. Als Möglichkeit solche Reflexions-
anlässe bei herkömmlichen Aufgabensammlungen zu schaffen, schlägt Leuders 
vor, zusätzliche Fragen zu mehreren Aufgaben gleichzeitig zu stellen (Leuders, 
2006). Einige Beispiele für diese Fragen sind: 

 Stelle die Aufgaben zunächst in Gruppen zusammen. Welche Aufgaben 
sehen ähnlich aus? 
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 Suche die Aufgaben heraus, die Du bereits lösen kannst. Wieso sind sie 
einfacher? 

Insgesamt können Schülerinnen und Schüler zu vielfältigen Tätigkeiten beim 
Üben mit herkömmlichen Aufgabensammlungen aufgefordert werden. Dazu 
zählen die begründete Auswahl einiger Aufgaben oder die Veränderung der 
Reihenfolge sowie die Bildung von Aufgabengruppen oder das Ergänzen durch 
eigene Beispiele. Ebenso sind die Reflexion der eigenen Vorgehensweise oder 
der eigenen Schwierigkeiten und die Kommunikation über Besonderheiten 
wichtige Beiträge zum sinnvollen Üben (Leuders, 2006). 

Im Folgenden ist eine Liste von typischen Übungsaufgaben zu Zuordnungen 
aufgeführt (Aits, et al., 2006, S. 196). Mögliche reflektierende Fragen in diesem 
Zusammenhang sind etwa: Fällt eine Aufgabe heraus? Warum? Ebenso denkbar ist 
der Arbeitsauftrag Denk dir eine Aufgabe aus, die man so nicht lösen kann! Begründe! 
Auch sinnvoll ist das kritische Hinterfragen des erwarteten proportionalen Zu-
sammenhangs. Beispielsweise könnte es nämlich Mengenrabatt oder Grund-
preise geben.  

 

Ein Heft kostet 0,56 €. Wie viel € kosten 8 Hefte? 

Eine Tube Klebstoff kostet 1,53 €. Wie viel € kosten 3 Tuben? 

Eine Packung Bleistifte kostet 2,53 €. Wie viel € kosten 3 Packungen? 

Für 2 kg Äpfel zahlt Herr Brandt 3,60 €. Wie teuer sind 5 kg der gleichen 
Sorte? 

Die beiden Batterien in einem Walkman reichen für eine Spielzeit von 7 
Stunden. Wie lange reicht eine Viererpackung mit den entsprechenden 
Batterien? 

Akkus sind umweltfreundlicher als Batterien, da man sie wieder aufladen 
kann. Eine Viererpackung Akkus kostet 9,90 €. Wie teuer sind 12 Akkus, 
die so abgepackt sind? 

Ein Mieter muss für 20 m³ Wasser einschließlich Nebenkosten 42,20 € 
bezahlen. Wie viel zahlt ein anderer Hausbewohner für 22 m³ Wasser? 

Für ein dreizeiliges Inserat in einer Werbezeitung werden 9 € berechnet. 
Was kostet ein Inserat für 5 (7, 9) Zeilen in dieser Zeitung? 

 

Bei diesem Ausschnitt handelt es sich nur um einen Teil der auf dieser Seite 
(Aits, et al., 2006, S. 196) tatsächlich abgedruckten Aufgaben. Die hohe Anzahl 
kann sicherlich auch die Auswahl von geeigneten Aufgaben für den Unterricht 
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ermöglichen, sie bietet aber die Gefahr des gedankenlosen Abarbeitens von 
Sachaufgaben.  

6.3  Der Umgang mit der Ungenauigkeit 
Felix Klein hat zwei Bereiche der Mathematik charakterisiert und diese beiden 
Bereiche Präzisionsmathematik und Approximationsmathematik genannt. Dabei hat 
er Wert darauf gelegt, dass diese beiden Gebiete als gleichberechtigte Gesichter 
der Mathematik gesehen werden (Blankenagel, 19 5, S. 11). Speziell im Zu-
sammenhang mit realitätsbezogenen Aufgaben spielt die Frage des Umgangs 
mit der Ungenauigkeit, also die Approximationsmathematik, eine große Rolle.  

 

 
Abb. 6.6 Schulbuchbeispiel Überschlagen (Kliemann, Puscher, Segelken, Schmidt, & 
Vernay, 2006, S. 58) 

In Schulbüchern findet man zum Umgang mit der Ungenauigkeit häufig zu 
Beginn der Sekundarstufe I Aufgabenbeispiele zum Runden, Überschlagen und 
Schätzen, die allerdings später oft nicht mehr aufgegriffen werden.  

Es gibt außer innermathematischen Aspekten des Umgangs mit Daten, wie 
beispielsweise Runden, auch kontextbezogene Aspekte wie das Schätzen. Be-
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trachtet man den Umgang mit Daten  im  Modellierungskreislauf, so kommt 
der Umgang mit der Ungenauigkeit in allen Schritten des Modellierungskreis-
laufs vor. Zum einen werden Daten im Bereich der Erstellung des Modells 
beschafft und zum anderen im Bereich der Arbeit im mathematischen Modell 
verarbeitet. Anschließend werden die Ergebnisse interpretiert und kontrolliert. 
In allen Bereichen gibt es unterschiedliche, typische Tätigkeiten beim Umgang 
mit der Ungenauigkeit.  

 
Abb. 6.7 Schulbuchbeispiel zum Schätzen (Emde, Kliemann, Pelzer, Schäfer, & Schmidt, 
1998, S. 88) 

Die Beschaffung von Daten aus der Realität kann unterschiedlich realisiert 
werden. Sie kann beispielsweise durch Schätzen geschehen. Beim Schätzen findet 
– anders als beim Raten – ein gedanklicher Vergleich mit bekannten Größen 
statt. Diese bekannten Größen können, abhängig von sogenanntem Stütz-
punktwissen, beispielsweise der Inhalt einer Milchpackung oder die Breite einer 
Tür sein. Beim Raten dagegen werden die Werte ohne Anhaltspunkte gefunden. 
Legt man beim Schätzen zusätzlich ein mögliches Maximum und Minimum des 
Schätzwertes fest, so wird dies auch mit dem Begriff Abschätzen bezeichnet.  

Auch durch Messen ist die Beschaffung von Daten möglich. Während beim 
Schätzen und Abschätzen ein gedanklicher Vergleich vorliegt, wird beim Mes-
sen mit Hilfe von Messinstrumenten ein direkter Vergleich mit einer festgeleg-
ten Einheit durchgeführt. Messungen sind in der Regel durch den Messprozess 
einer Ungenauigkeit unterworfen. Wenn beispielsweise ein Messbecher eine 
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Einteilung in der Einheit Milliliter besitzt, so wird der Wert beim Ablesen prak-
tisch in dieser Größenordnung gerundet.  

 

 
Abb. 6.8 Umgang mit der Ungenauigkeit im Modellierungskreislauf  

Handelt es sich um eine Anzahl von Objekten, kann mit Hilfe von Abzählen ein 
Wert bestimmt werden. Dies kann ggf. unter Verwendung einer geschickten 
Systematik geschehen. 

Auch bei der Datenverarbeitung muss man mit der Ungenauigkeit umgehen. 
Beim Runden wird mit Hilfe bestimmter Regeln ein Ergebnis ermittelt. Diese 
Regeln können einerseits vorher festgelegt sein (z. B. Aufrunden für die Ziffern 
5, 6, , , 9; Abrunden für die Ziffern 1, 2, 3, 4) oder andererseits aus der realen 
Situation abgeleitet werden. So würde bei einer Aufgabe, in der die Anzahl der 
Taxis berechnet werden soll, die für 13 Personen benötigt werden, das Ergebnis 
in jedem Fall aufgerundet werden, da alle Personen befördert werden sollen. 
Allerdings ist die Rundung im Sachkontext nicht in allen Fällen eindeutig. Wird 
beispielsweise die Höhe eines Berges gerundet, muss man sich fragen, ob Mess-
genauigkeit und Schneehöhe eine Rundung auf Meter überhaupt sinnvoll er-
scheinen lassen. Hier kann man abhängig vom jeweiligen Kontext zu unter-
schiedlichen Einschätzungen kommen.  

Beim Rechnen mit ungenauen Daten spielt die Fehlerfortpflanzung, also die Frage, 
wie sich die Ungenauigkeit durch die Rechenoperationen verändert, eine wich-
tige Rolle. In einfachen Fällen kann man die Fehlerfortpflanzung algebraisch, 

 

 

 Datenbeschaffung: 
Schätzen, 

Abschätzen, Messen 
Abzählen 

Datenverarbeitung: 
Runden, 

Fehlerfortpflanzung 

reales Objekt  

 

 

 

reales Modell 

mathematisches 
Modell Lösung 

Interpretieren, 
Kontrollieren: 
Überschlagen, 

Runden 
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grafisch und numerisch veranschaulichen. Wir wollen im Folgenden die Additi-
on und die Multiplikation von zwei fehlerbehafteten Größen betrachten.  

 

 
Abb. 6.9 Beispiel zur Messgenauigkeit von Zeiten (Affolter, et al., 2006, S. 32) 

Algebraisch kann die Fehlerfortpflanzung für die Addition wie folgt gesehen 
werden: Werden zwei ungenau bekannte Größen, beispielsweise die Länge x 
und die Länge y, addiert, und gehen wir davon aus, dass die Länge x um höchs-
tens l vom tatsächlichen Wert l abweicht sowie die Länge y um höchstens b 
von b, dann bewegt sich der Wert x der ersten Länge zwischen l  l und l + l 
und der Wert y der zweiten Länge zwischen b  b und b + b. Es gelten also 
für die beiden Größen die Ungleichungen 

  

und 
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. 

l ist der absolute Fehler der Länge l, und b ist der absolute Fehler der Länge 
b. Für die Summe x + y der beiden Größen gilt dann die Ungleichung 

   

bzw. 

   

Die Summe weicht also höchstens um l + b vom tatsächlichen Wert l + b ab. 
Insgesamt kann festgehalten werden, dass sich im Fall der Addition die absolu-
ten Fehler addieren. Für die Praxis kann man daraus die folgende Regel ablei-
ten: 

 

Bei der Summe von Dezimalzahlen werden nur so viele Stellen nach dem 
Komma angegeben, wie der ungenaueste Summand aufweist (Blankena-
gel, 1994, S. 136). 

Beispiel: 13,1 m + 0,032 m  13,1 m 

 

Bei Werten ohne Nachkommastellen kann die Regel sinngemäß für die Stellen 
vor dem Komma angewendet werden. Ein analoges Beispiel wäre etwa:  

13 100 m  32 m  13 100 m.  

Dies gilt unter der Voraussetzung, dass der erste Summand tatsächlich nur bis 
zur Hunderter-Stelle genau angegeben werden kann.  

Betrachtet man die Multiplikation von zwei Größen, dann kann der Fehler des 
Produkts wie folgt eingegrenzt werden. 

   

bzw. 

 und 

.  

Wir gehen bei dieser Betrachtung davon aus, dass die absoluten Fehler klein 
gegenüber den Näherungswerten sind und damit auch das Produkt der beiden 
Fehler l b vernachlässigt werden kann.  
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In diesem Fall ist es sinnvoll, die relativen Fehler zu betrachten. Der relative 
Fehler der Größe l ist l/l, und der relative Fehler der Größe b ist b/b. Der 
maximale relative Fehler des Produkts beträgt dann ungefähr  

.  

Der relative Fehler des Produkts entspricht somit ungefähr der Summe der 
beiden relativen Fehler. Bei Dezimalzahlen sind die relativen Fehler durch die 
Anzahl der zuverlässigen Ziffern bestimmt. Daraus kann man auch für die 
Multiplikation von Dezimalzahlen eine Regel ableiten: 

 

In Produkten von Näherungswerten werden nur so viele Dezimalziffern 
angegeben, wie der ungenaueste Wert aufweist (Blankenagel, 1994, S. 
137). 

Beispiel: 13,1 m  0,032 m  0,42 m² 

 

In dem Beispiel hat der erste Faktor drei und der zweite Faktor zwei zuverlässi-
ge Ziffern. Das Produkt wird dementsprechend auf zwei zuverlässige Ziffern 
gerundet. Entsprechende Aussagen über Fehler sind auch für die Subtraktion 
und die Division möglich (Blankenagel, 1994, S. 136 f.). 

Für den Fall, dass es sich bei den Größen um Längen handelt, kann man die 
Fehlerfortpflanzung bei der Addition und der Multiplikation auch grafisch dar-
stellen. Wir verwenden hier aus Gründen der Übersichtlichkeit nur die maxima-
le Abweichung nach oben. Bei der Addition wird in der Abbildung deutlich, 
dass sich die absoluten Fehler addieren. 

 
Abb. 6.10 Fehlerfortpflanzung bei der Addition 

Bei der Multiplikation von Längen erhalten wir eine Fläche. Daher kann dieser 
Fall mit Hilfe eines Rechtecks veranschaulicht werden. Die Grafik – für den 
Fall der Abweichung nach oben – zeigt außer den Fehler-Rechtecken mit den 
Flächen b  l und l  b, dass das Produkt l  b hier tatsächlich vernachläs-
sigt werden kann.  
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Abb. 6.11 Fehlerfortpflanzung bei der Multiplikation 

Die Summe der Flächen der beiden äußeren Rechtecke entspricht ungefähr 
dem maximalen Fehler im Fall der Multiplikation.  

Numerisch kann man Fehler mit Hilfe der Doppelrechnung bearbeiten (Blankena-
gel, 19 5, S. 56 ff.). Wir betrachten dazu als Beispiel die Längen l  100 cm mit 

l  5 cm und b  50 cm mit b  3 cm. Dann gilt für die Addition:  

. 

Im Fall der Multiplikation gilt: 

. 

 
Abb. 6.12 Fragezeichenrechnung  
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Etwas einfacher für Schülerinnen und Schüler ist die sogenannte Fragezeichen-
rechnung. Dabei werden die mit Fehlern behafteten Ziffern durch Fragezeichen 
ersetzt. Dann wird die Rechnung schriftlich durchgeführt. Die Fragezeichen im 
Ergebnis signalisieren, an welcher Stelle etwa das Ergebnis ungenau ist (s. Abb. 
6.12).  

Nach diesem Ausblick auf die Fehlerfortpflanzung kommen wir noch einmal 
auf die Tätigkeiten mit ungenauen Werten im Modellbildungskreislauf zurück.  

Hat man nun ein Ergebnis erhalten, so muss dies noch interpretiert und kon-
trolliert werden. Hierzu muss das Ergebnis sinnvoll gerundet werden. Dies 
betrifft wiederum das Runden im Sachkontext. Zum Zweiten ist durch Über-
schlagen, also vereinfachtes Rechnen mit gerundeten Daten, eine Kontrolle des 
Ergebnisses möglich.  

Alle diese Tätigkeiten im Umgang mit ungenauen Werten können in der Se-
kundarstufe an vielen Stellen erarbeitet werden. Die folgende Tabelle zeigt ei-
nen Vorschlag für eine Reihenfolge der entsprechenden Inhalte und eine Ver-
teilung auf die Sekundarstufen. 

Tabelle 6.4 Umgang mit der Ungenauigkeit im Unterricht der Sekundarstufen (Greef-
rath & Leuders, 2009, S. 4) 

Inhalt  Voraussetzung  

zweckabhängiges und sinnvolles Runden in Sachzusam-
menhängen 

Größen mit Dezimal-
komma 

Genauigkeit der Addition im Stellenwertsystem, 
Genauigkeit der Multiplikation mit grafischer Darstellung 

Dezimalzahlen, 
Flächeninhalt 

schriftliche Division mit sachbezogenem Runden, 
reflektierter Umgang mit Taschenrechnerzahlen, 
Doppelrechnung mit Zahlen 

periodische 
Dezimalzahlen 

Doppelrechnung mit Variablen,  
Fehlerfortpflanzung bei der Multiplikation und in anderen 
funktionalen Zusammenhängen 

reelle Zahlen, 
Approximation, 
Intervallschachtelung, 
Variablen 

Approximation von Funktionen Ableitung, Potenzreihen 

 

Die Approximation von Funktionen ist erst in der Sekundarstufe II vorgese-
hen. Die anderen Inhalte können bereits in der Sekundarstufe I bearbeitet wer-
den (Greefrath & Leuders, 2009). 
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6.4  Computereinsatz im Sachrechnen  
Das Sachrechnen hat sich nicht zuletzt durch die Existenz von Computern mit 
entsprechenden digitalen Werkzeugen in den letzten Jahren verändert. Der 
Schwerpunkt hat sich stärker in Richtung von anwendungsbezogenen Aufga-
ben und Modellierungsproblemen verschoben.  

Hier kann der Computer oder ein entsprechend ausgestatteter grafikfähiger 
Taschenrechner ein sinnvolles Werkzeug zur Unterstützung von Lehrenden 
und Lernenden sein. Im Folgenden wird ein Überblick über unterschiedliche 
Einsatzmöglichkeiten von Computern im Sachrechnen gegeben.  

Computer können im Unterricht unterschiedlichste Aufgaben übernehmen. 
Eine dieser Aufgaben ist das Experimentieren. Die folgende Aufgabe regt bei-
spielsweise dazu an, den Computer als Experimentierwerkzeug zu verwenden.  

 

Hunde-Problem 

Tim Pennings beobachtete bei einem Strandspaziergang mit seinem 
Hund ein seltsames Phänomen. Mehrmals warf er einen Ball ins Wasser, 
sodass Elvis diesen zurückholen musste. Elvis sprintete jedoch nicht di-
rekt ins Wasser, sondern lief ein Stück am Meer entlang, bevor er ins 
Wasser tauchte. Sucht Erklärungen! (Hußmann & Leuders, 2007) 

 

 
Abb. 6.13 DGS-Modell des Hunde-Problems 

Diese Aufgabe kann auf unterschiedliche Weise mit dem Computer bearbeitet 
werden. Beispielsweise kann man mit Hilfe einer dynamischen Geometriesoft-
ware (DGS) die Situation in ein Modell übertragen und darin experimentieren. 
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Mit Hilfe dieses DGS-Modells (s. Abb. 6.13) können Schülerinnen und Schüler 
experimentell die Stelle finden, an der der Hund optimalerweise ins Wasser 
springen sollte. Es ist bei diesem Problem ebenso möglich, mit Hilfe einer Ta-
bellenkalkulation (TK) zu arbeiten und dieses Problem mit einem numerischen 
Modell zu bearbeiten (s. Abb. 6.14).  

Eine sehr ähnliche Tätigkeit wie das Experimentieren ist das Simulieren von 
Realsituationen mit dem Computer. Dabei werden Experimente an einem Mo-
dell durchgeführt, wenn die Realsituation zu komplex ist. Während das oben 
beschriebene Hunde-Problem gerade noch in der Realität ausprobiert werden 
kann, so wären beispielsweise Voraussagen über die Population einer bestimm-
ten Tierart bei unterschiedlichen Umweltbedingungen nur mit Hilfe einer Simu-
lation möglich.  

Nach Experiment oder Simulation kann über mathematische Begründungen für 
die gewonnene Lösung nachgedacht werden. Auch dazu ist ein Computeralgeb-
rasystem ein geeignetes Hilfsmittel (Henn, 2004). 

 

 
Abb. 6.14 TK-Modell des Hunde-Problems 
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Computer können außerdem die Aufgabe des Visualisierens im Unterricht über-
nehmen. Beispielsweise können gegebene Daten mit Hilfe einer Computeral-
gebra- oder einer Statistikanwendung in einem Koordinatensystem dargestellt 
werden (s. Abb. 6.15 u. Abb. 6.16).  

 

Eine Datei wird in 38 Sekunden aus dem Internet auf dem eigenen Com-
puter gespeichert. Dabei wird zu einigen Zeitpunkten die Übertragungs-
rate notiert (siehe Abbildungen und Tabelle). 

 

   
Download nach 5,3 Sek.                     Download nach 18,4 Sek. 

 

 

Abb. 6.15 Aufgabenbeispiel Download  

 
Abb. 6.16 Visualisierung der Daten zur Download-Aufgabe 
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Eine verbreitete Verwendung von Computeralgebrasystemen ist die Berechnung 
von numerischen oder algebraischen Ergebnissen, die Schülerinnen und Schü-
ler ohne Computer nicht oder nicht in angemessener Zeit erhalten können. Ein 
Beispiel ist die Berechnung von optimalen komplexen Verpackungsproblemen 
wie etwa einer Milchverpackung (Böer, 1993). Wird dieses Problem mit Hilfe 
von Funktionsgleichungen und der Differenzialrechnung bearbeitet, so kommt 
man leicht auf gebrochen-rationale Funktionen, bei denen die Nullstellen der 
ersten Ableitung mit Methoden der Schulmathematik nicht mehr zu bestimmen 
sind. Ein Beispiel für eine solche Berechnung ist in der folgenden Abbildung zu 
sehen (s. Abb. 6.1 ).  
 

 
Abb. 6.17 Rechnen mit komplexen Termen 

In den Bereich der Berechnungen mit dem Computer gehört auch das Finden 
von algebraischen Darstellungen aus gegebenen Informationen. Wenn bei-
spielsweise eine Funktionsgleichung aus vorhandenen Daten ermittelt wird, 
wird der Computer ebenfalls als Rechenwerkzeug verwendet. Dieses sogenann-
te Algebraisieren ist dadurch charakterisiert, dass reale Daten in den Computer 
eingegeben werden und der Rechner eine algebraische Darstellung liefert. 

 

Bei einem Flug mit einem Ballon liegt der Start in der Höhe 0 m, die Lan-
dung erfolgt 2 Stunden später auf einer Anhöhe, die 40 m höher als der 
Start liegt. 40 min befindet sich der Ballon im Steigflug, danach sinkt er 
etwas, um nach 1,5 Stunden die maximale Höhe 2000 m zu erreichen. 
Bestimme eine […] Funktion, die die Flughöhe in Abhängigkeit von der 
Flugdauer beschreibt. […] (Freudigmann, et al., 2000) 

Abb. 6.18 Schulbuchaufgabe zur Funktionsbestimmung 

Das Kontrollieren ist ebenfalls eine sinnvolle Funktion des Computers bei Lern-
prozessen im Sachrechnen. So können Computer etwa bei der Bestimmung 
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von Funktionen zu gegebenen Eigenschaften auf unterschiedliche Weise Kon-
trollprozesse unterstützen. Wird beispielsweise eine Funktionsgleichung mit 
bestimmten Bedingungen gesucht (s. Abb. 6.1 ), so kann das entsprechende 
Ergebnis – unabhängig davon, ob es mit oder ohne Computer bestimmt wor-
den ist – sowohl durch algebraisches Nachvollziehen der Rechnungen mit Hilfe 
eines Computeralgebrasystems als auch durch grafische oder numerische Ver-
fahren kontrolliert werden (s. Abb. 6.19 u. Abb. 6.20). 

 

 
Abb. 6.19 Kontrolle mit Hilfe des Graphen 

Verwendet man im Mathematikunterricht nicht nur grafikfähige Taschenrech-
ner, sondern Computer mit Internetanschluss, so können diese auch zum Re-
cherchieren von Informationen, beispielsweise im Zusammenhang mit Anwen-
dungskontexten, verwendet werden.  

Computer können im Mathematikunterricht wichtige und vielfältige Aufgaben 
übernehmen. Allerdings ersetzen sie nicht das Verstehen der mathematischen 
Ideen. Ein wichtiges Konzept im Mathematikunterricht der Oberstufe ist bei-
spielsweise der Grenzwert. Der Grenzwertprozess ist einerseits bei der Einfüh-
rung der Ableitung und andererseits bei der Einführung des Integrals die zen-
trale Idee.  

Denkt man an die Einführung der Ableitung am Beispiel der Steigung einer 
Tangente in einem Punkt eines Funktionsgraphen, so können Computer zwar 
numerisch vor dem Grenzwertprozess in nahezu beliebiger Genauigkeit die 
entsprechenden Werte von Sekanten in der Nähe dieses Punktes berechnen 
und auf der anderen Seite nach Durchführung des Grenzwertprozesses algebra-
isch auch Grenzwert und Ableitung ermitteln. Die Idee des Grenzwertes selbst 
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muss aber von den Schülerinnen und Schülern – auch ohne Computer – ver-
standen werden.  

 

 
Abb. 6.20 Numerische Kontrolle des Funktionsterms mit einem Computerprogramm 

Mit Computern kann allerdings dieses Verständnis unterstützt werden, da sie 
durch das Experimentieren, Visualisieren und Berechnen von Beispielen Hilfe-
stellungen geben können. Hier ist sicherlich eine Erkundungsphase mit dem 
Computer eine wichtige Hilfe für ein tiefgreifendes Verständnis dieses zentralen 
Konzepts. Dennoch bedarf es eines gedanklichen – quasi computerfreien – 
Schritts von einer Sekante mit sehr nahe beieinanderliegenden Punkten zu einer 
Tangente. Dieser gedankliche Schritt kann aber durch den Einsatz von Compu-
tern erleichtert und besonders durch experimentellen und visualisierenden Ein-
satz verkleinert werden.  

Computereinsatz und Modellieren  

Die unterschiedlichen Funktionen des Rechners im Mathematikunterricht 
kommen bei anwendungsbezogenen Aufgaben an unterschiedlichen Stellen im 
Modellbildungskreislauf zum Tragen. So sind Kontrollprozesse in der Regel im 
letzten Schritt des Modellbildungskreislaufs anzusiedeln. Die Berechnungen 
finden mit Hilfe des erstellen mathematischen Modells statt, das beispielsweise 
in der Analysis in der Regel eine Funktion ist.  
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Abb. 6.21 Integration des Computers in den Modellierungskreislauf 

Die Bearbeitung realitätsnaher Aufgaben mit einem Computeralgebrasystem 
erfordert zwei Übersetzungsprozesse. Zunächst muss der Aufgabentext ver-
standen und in die Sprache der Mathematik übersetzt werden. Der Computeral-
gebrasystem-Rechner kann jedoch erst angewendet werden, wenn die mathe-
matischen Ausdrücke in die Sprache des Rechners übersetzt worden sind. Die 
Ergebnisse des Rechners müssen dann wieder in die Sprache der Mathematik 
zurücktransformiert werden. Schließlich kann dann die Aufgabe gelöst werden, 
wenn die mathematischen Ergebnisse auf diese reale Situation bezogen werden. 
Dieser weitere Schritt im Modellierungskreislauf kann zu unterschiedlichen 
Schwierigkeiten führen. So muss beispielsweise in Prüfungen darauf geachtet 
werden, dass die verwendeten Computeralgebrasysteme auch vergleichbare 
Funktionalitäten besitzen und die Handhabung sowie die Rechenzeit für be-
stimmte Probleme nicht zu Vorteilen führen können. Auch die durch den Ein-
satz von Computeralgebrasystemen bedingte größere Lösungsvielfalt von Auf-
gaben muss sowohl im Unterricht als auch in Prüfungen berücksichtigt werden. 

6.5  Aufgaben zur Wiederholung und Vertiefung 
Ungenauigkeit 

1. Vergleichen Sie das „Schätzen“ und das „Runden“ miteinander. 

2. Geben Sie Aufgaben aus dem Mathematikunterricht an, in denen das 
Schätzen oder das Runden enthalten ist. 

3. Erklären Sie, inwieweit eine Auseinandersetzung mit ungenauen bzw. feh-
lerbehafteten Werten für Schülerinnen und Schüler wichtig ist. 
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Fehlerrechnung 

Gegeben ist ein Tisch mit Länge a und Breite b. Die gemessenen Werte wei-
chen um a bzw. b von den tatsächlichen Werten ab. Rechnet man mit diesen 
gemessenen Werten den Flächeninhalt aus, so weicht der errechnete Flächenin-
halt um A von dem tatsächlichen Flächeninhalt A ab. 

1. Begründen Sie, wieso bei einer Messung Fehler entstehen können. 

2. Zeigen Sie, wie sich die Fehler a und b auf den absoluten Fehler A 
auswirken. 

3. Bestimmen Sie den relativen Fehler für die obige Tischplatte. 

4. Welcher Vorteil besteht darin, nicht den absoluten Fehler, sondern den 
relativen Fehler einer Messung zu betrachten? 

5. Der Tisch sei nun 126,  cm lang und 9 ,5 cm breit. Gemessen wird für die 
Länge 125 cm und für die Breite 95 cm. Bestimmen Sie den absoluten und 
den relativen Fehler, die bei der Berechnung der Tischfläche entstehen. 

6. Berechnen Sie den relativen und den absoluten Fehler für die Geschwin-
digkeit eines Schwimmers, der für eine 400 m-Strecke (gemessen mit einer 
Genauigkeit von einem Zentimeter) die Zeit 4:52,34 (gemessen mit einer 
Genauigkeit von einer Hundertstel Sekunde) benötigt. Vergleichen Sie die 
relativen Fehler vom Ergebnis und den gegebenen Werten, und formulie-
ren Sie eine Regel für die Division von ungenau gegebenen Werten. 



 

 

A Anhang 

A.1 Beispielklausur  
AAufgabe 1 
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Der Colonius in Köln wurde im Jahr 1981 erbaut und galt zu dieser Zeit 
als eines der technisch modernsten Gebäude weltweit. 1992 wurde die 
Spitze des Turmes aus Modernisierungsgründen um eine 14m lange rot-
weiße Antenne verlängert. Wie viele Treppenstufen hätte eine Treppe, die 
bis in die Spitze des Turmes führt? 

 

1. Bestimmen Sie eine mögliche Lösung der Aufgabe. Erklären Sie ihre Ar-
beitsschritte! 

2. Diskutieren Sie auf der Basis der bekannten Eigenschaften von Aufgaben-
typen, weshalb diese Sachaufgabe Schülerinnen und Schüler ansprechen 
könnte. 

3. Stellen Sie einen idealisierten Lösungsprozess dieser Aufgabe mit dem Mo-
dellierungskreislauf von Blum dar. Erklären Sie, weshalb man von idealisiert 
spricht. 

4. Worin unterscheiden sich die Modellierungskreisläufe von Blum und 
Borromeo Ferri? 

5. Kann die Colonius-Aufgabe als Schätzaufgabe eingestuft werden? Falls ja, um 
welche Art von Schätzaufgabe handelt es sich? 

 

Aufgabe 2 

1. Nennen und erklären Sie die von Heinrich Winter eingeführten Funktionen 
des Sachrechnens. 

2. Welche dieser Funktionen steht bei der Colonius-Aufgabe (siehe Aufgabe 
1) im Vordergrund? 

3. Gegeben sind die unten abgedruckten Sachaufgaben. Ordnen Sie die Auf-
gaben den klassischen Aufgabentypen eingekleidete Aufgabe, Textaufgabe oder 
Sachproblem zu. 

(1) Peter möchte sich einen DVD-Rekorder für 255 € kaufen. 189 € hat er 
schon gespart. 

(2) Das Ehepaar Klein und ihr 11-jähriger Sohn wollen im August am 
Meer Urlaub machen. Mehr als 1500 € stehen nicht zur Verfügung. 

(3) Bei Erdarbeiten für den Straßenbau benötigen 6 Bagger 12 Tage. Nach 
3 Tagen fallen 2 Bagger aus. Um wie viele Tage verzögern sich die Erdar-
beiten? 
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(4) Klaus will sich ein Mofa kaufen. Für ihn kommen nur noch eine Honda 
Silver oder eine Zündapp 2000  in Frage. Bei seiner Entscheidung will er 
neben den Anschaffungskosten auch die laufenden Kosten in Betracht 
ziehen. 

 

Aufgabe 3 

1. Skizzieren Sie die Stufen im didaktischen Stufenmodell zur Behandlung 
von Längen. 

2. Ordnen Sie die folgende Aufgabe in das Stufenmodell von Aufgabenteil 1. 
ein. 

 
Abb. A.1 Aufgabenbeispiel (Fuchs, Hissnauer, Käpnick, Peterßen, & von Witzleben, 
2004) 

Aufgabe 4 
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Abb. A.2 Aufgabenbeispiel (Büchter, Herget, Leuders, & Müller, 2006) 

1. Erklären Sie den Begriff Fermi-Aufgabe. 

2. Zur eindeutigen Klassifizierung von Sachaufgaben wird vorgeschlagen, sie 
wie folgt einzuteilen: Modellierungsaufgabe, Problemlöseaufgabe, Fermi-Aufgabe, 
Schätzaufgabe. Beurteilen Sie am Beispiel der obigen Aufgabe, ob sich Sach-
aufgaben auf diese Weise sinnvoll klassifizieren lassen. 

3. Geben Sie zwei Kategoriensysteme für Sachaufgaben mit ihren jeweiligen 
Ausprägungen an.  

4. Das Modellieren wird in den Lehrplänen des Landes Nordrhein-Westfalen 
durch die drei Teilkompetenzen Mathematisieren, Realisieren und Validieren 
ausgewiesen. Erklären Sie die drei Kompetenzen mit Hilfe der obigen Bei-
spielaufgabe.  

5. Geben Sie zwei weitere Teilkompetenzen an, die durch das Modellieren 
gefördert werden, und erklären Sie diese an geeigneten Beispielen.  

 

Aufgabe 5 

Die Firma Leipzig ist bekannt für ihre Raufasertapeten. Auf der Verpackung ist 
angegeben, dass eine Rolle 60 cm breit und ca. 10,50 m lang ist. Das bedeutet: 
Die Länge der Rolle schwankt zwischen 10,45 m und 10,55 m. 

1. Schätzen Sie den absoluten Fehler der Tapetenfläche auf einer Rolle mit 
Hilfe einer Doppelrechnung und mit Hilfe einer Fragezeichenrechnung. 

2. Bestimmen Sie allgemein den relativen Fehler der Tapetenfläche auf einer 
Rolle mit fester Breite und fehlerbehafteter Länge. 

 

Aufgabe 6 

1. Geben Sie zwei Definitionen von Sachrechnen an, und begründen Sie, wel-
cher Definition Sie sich anschließen würden.  

 

Wilhelm von Humboldt schrieb in seinen Ideen zu einem Versuch, die 
Gränzen der Wirksamkeit des Staates zu bestimmen: „Der wahre Zweck 
des Menschen [. . .] ist die höchste und proportionirlichste Bildung seiner 
Kräfte zu einem Ganzen. Zu dieser Bildung ist Freiheit die erste und un-
erläßliche Bedingung. Allein außer der Freiheit erfordert die Entwicklung 
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der menschlichen Kräfte noch etwas andres, obgleich mit der Freiheit eng 
verbundenes, Mannigfaltigkeit der Situationen.“ 

 

2. Beurteilen Sie, ob Humboldt ein Befürworter oder Gegner von Sachaufga-
ben im Schulunterricht gewesen wäre.  

A.2 Schieberegler in Excel 
Zum Einfügen eines Schiebereglers (bzw. einer Bildlaufleiste) in Excel 200  
klicken Sie auf die Schaltfläche Microsoft Office (oben links) und anschließend auf 
Excel-Optionen. 

Aktivieren Sie ggf. in der Kategorie Häufig verwendet unter Die am häufigsten ver-
wendeten Optionen bei der Arbeit mit Excel das Kontrollkästchen Registerkarte 'Ent-
wicklertools' in der Multifunktionsleiste anzeigen, und klicken Sie dann auf OK. 

Klicken Sie auf der Registerkarte Entwicklertools in der Gruppe Steuerelemente auf 
Einfügen, und klicken Sie dann unter Formularsteuerelemente auf Bildlaufleiste. 

Die Bildlaufleiste kann nun auf dem Tabellenblatt an einer beliebigen Stelle 
platziert werden und mit der rechten Maustaste eingestellt werden. 
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