
[image: image1]

[image: image1]

Vorwort

Arduino bezeichnet eine aus Hard- und Software bestehende Plattform für das „Physical Computing“.

Mit Physical Computing wird die Reaktion von Systemen aus Hard- und Software auf Ereignisse der realen (analogen) Welt bzw. die Einwirkung auf diese beschrieben. Neben der Einflussnahme über Hard- und Software auf die Umgebung steht die Mensch-Maschine-Interaktion im Vordergrund.

Sensoren erfassen die meist analogen Daten und stellen diese einem Mikrocontroller zur Verfügung. Die Software verknüpft diese Eingangsdaten und erzeugt Ausgangsdaten, die über Aktoren, wie Motoren, Tongeber, Displays u.a.m. auf den betreffenden Prozess bzw. die Umwelt zurückwirken.

Die Arduino Hardware besteht aus einfachen Boards mit einem Atmel AVR Mikrocontroller, der analoge und digitale Ein- und Ausgänge zur Verfügung stellt. Es ist eine große Zahl von Arduino Clones am Markt verfügbar, deren Aufbau und Funktionalität aber weitgehend identisch sind.

Die Programmierung des Arduino Boards erfolgt in Wiring, einer auf C/C++ aufbauenden Programmiersprache. So nimmt es auch nicht weiter Wunder, dass der GNU C/C++ Compiler zum Einsatz kommt.

Die Arduino Entwicklungsumgebung beruht auf Processing (das ist ein Java-Dialekt), die insbesondere Künstlern, Designern, Hobbyisten und anderen Interessierten den Zugang zur Programmierung und zu Mikrocontrollern erleichtern soll.

Das Arduino-Projekt wurde 2006 in der Kategorie Digital Communities mit dem Prix Ars Electronica ausgezeichnet.

Dem Arduino-Team Massimo Banzi, David Cuartielles, Tom Igoe, Gianluca Martino und David Mellis gilt der Dank für diese Initiative und der Community für die Erweiterungen, die als Libraries und Anwendungsbeispiele zur Verfügung gestellt werden.

Die Idee zu dieser Veröffentlichung entstand nach Experimenten mit einem Arduino Duemilanove sowie einem Lilypad Arduino.

An Hand von Programmbeispielen, die in einer Folge von Einzelbeiträgen im Sammelwerk "Messen-Steuern-Regeln mit IBM-kompatiblem PCs" des Interest-Verlags veröffentlicht wurden, war gezeigt worden, wie unter Verwendung eines großen Fundus an Libraries schnell und recht unkompliziert interessante Anwendungen erstellt werden können.

Hier werden diese Einzelbeiträge zusammengefasst, so dass der Leser eine Übersicht über zahlreiche Anwendungen in der Hand hat, die durch eine Vielzahl von Applikationen aus dem Internet erweitert werden kann.

Grundkenntnisse zu den AVR-Mikrocontrollern und zur Programmiersprache C/C++ sind für das Nachvollziehen der Programmbeispiele von Vorteil.

Es sind bereits zahlreiche Bücher zu den Arduino Grundlagen erschienen, die gleichsam elektrotechnische Grundlagen vermitteln. Hierauf wir an dieser Stelle nicht eingegangen.

Angesprochen werden sollen Leser, die bereits erste Erfahrungen mit Mikrocontrollern gesammelt haben und nach einer effektiven Plattform für das Umsetzen eigener Ideen in Hard- und Software suchen.

Sowohl die Arduino Hardware als auch die Arduino Software sind im Sinne von Open Source quelloffen.

Der Sourcecode für die Java Umgebung der Entwicklungsumgebung sowie der GNU C/C++ Compiler unterliegen der GNU General Public License (GPL), während die zur Programmierung des Mikrocontrollers eingesetzten C/C++ Bibliotheken der GNU Lesser General Public License (LGPL) unterliegen.

Die Schaltpläne und CAD-Files für die Hardware unterliegen einer Creative Commons Attribution Share-Alike License (CC).

Altendorf, im Juli 2011Claus Kühnel

Inhalt

1. Lizenzen beim Arduino Projekt

2. Arduino Hardware

2.1 Mikrocontroller Boards

2.2 Shields

2.2.1 Übersicht

2.2.2 Arduino ProtoShield Kit

2.2.3 Adafruit MotorShield

2.2.4 Arduino Ethernet Shield

2.2.5 Arduino SD Card Shield

3. Arduino IDE

3.1 Installation & Inbetriebnahme

3.2 Programmbearbeitung

3.3 Arduino Programmiersprache

4. Arduino Applikationen

4.1 Template

4.2 "Hello World"

4.3 ShiftBrite RGB LEDs

4.4 Adafruit Motor Shield

4.4.1 Installation der Firmware

4.4.2 Ansteuerung von Servos

4.5 Temperaturmessung mit LM75

4.6 Interne analoge IO beim ATmega328

4.6.1 Interner ADC und PWM als DAC

4.6.2 Interner ADC im Free Running Mode

4.6.3 Externer ADC/DAC mit PCF8591

4.7 Debugging Display

4.8 RTC und SD Card Erweiterung

4.9 RFID Reader

5. Netzwerkapplikationen

5.1 Ethernet Shield

5.2 Arduino im Netzwerk

5.3 Hello World

5.4 SHT11 am Embedded Webserver

5.5 Arduino twittert

5.6 Arduino versendet Mail

6. Arduino Interrupts

6.1 Kontakt zur Außenwelt

6.2 Interruptsystem des ATmega328

6.3 Interruptvektortabelle ATmega328

6.4 External Interrupts INT0 und INT1

6.4.1 Register für Interrupts INT0 und INT1

6.4.2 Programmbeispiel zu den Interrupts INTx

6.5 Pin Changed Interrupts PCINTx

6.5.1 Register für Interrupts PCINTx

6.5.2 Programmbeispiel zu PCINTx Interrupts

6.6 Timerinterupts

6.6.1 Register für Timer2

6.6.2 Register für Timer1

6.6.3 Programmbeispiel zu Timer2

6.6.4 Programmbeispiel zu Timer1

6.7 Watchdog

6.7.1 Watchdog Register

6.7.2 Programmbeispiel Watchdog Interrupt

6.8 Analog Comparator

6.8.1 Register für den Analog Comparator

6.8.2 Programmbeispiel Analog Comparator

6.9 Analog/Digital-Umsetzer

6.9.1 Register des AD-Umsetzers

6.9.2 Programmbeispiele zu AD-Umsetzung

6.9.2.1. Softwaregetriggerte AD-Umsetzung

6.9.2.2. Free-Running AD-Umsetzung

6.9.2.3. Timmergetriggerte AD-Umsetzung

6.10 Zusammenfassung

7. Arduino Software Release Notes

8. Referenzen

9. Index

1. Lizenzen beim Arduino Projekt

Wie im Vorwort erwähnt, müssen wir uns beim Arduino Projekt mit den Lizenzen GPL, LGPL und CC auseinandersetzen. Allen Lizenzen gemeinsam ist der Schutz der Urheber.

Die in Tabelle 1 gezeigte Zusammenstellung zeigt vereinfacht die einzelnen Lizenzbestimmungen:

	Lizenz

	Lizenbestimmungen

	[image: image1]
	Das Programm darf ohne jede Einschränkung für jeden Zweck genutzt werden. Kommerzielle Nutzung ist hierbei ausdrücklich erlaubt.

Kopien des Programms dürfen verteilt werden, wobei der Quellcode mit verteilt oder dem Empfänger des Programms auf Anfrage zur Verfügung gestellt werden muss. Dem Empfänger müssen dieselben Freiheiten gewährt werden.

Das Programm darf den eigenen Bedürfnissen angepasst werden. Veränderte Versionen des Programms dürfen nur unter den o.a. Bedingungen vertrieben werden, wobei dem Empfänger des Programms der Quellcode der veränderten Version verfügbar gemacht werden muss.

Lizenztext der GNU GENERAL PUBLIC LICENSE unter http://www.gnu.Org/licenses/gpl-3.0.html

	[image: image1]

	Im Gegensatz zur GPL dürfen alle Programme, welche LGPL-Ii-zenzierte Software nur extern benutzen, zum Beispiel als Programmbibliothek, ihre eigene Lizenz behalten. Damit eignet sich die LGPL besonders als Lizenz für Bibliotheken, deren Benutzung man auch Programmierern proprietärer Programme erlauben will.

Soll die unter der LGPL lizenzierte Software dagegen fest in ein anderes Programm eingebunden werden, muss auch das andere Programm unter der LGPL bzw. einer kompatiblen Lizenz stehen.

Lizenztext der GNU LESSER GENERAL PUBLIC LICENSE unter http://www.gnu.Org/licenses/lgpl-3.0.html

	[image: image1]

	Creative Commons (CC) ist eine Non-Profit-Organisation, die in Form vorgefertigter Lizenzverträge eine Hilfestellung für die Veröffentlichung und Verbreitung digitaler Medieninhalte anbietet.

Ganz konkret bietet CC sechs verschiedene Standard-Lizenzverträge an, die bei der Verbreitung kreativer Inhalte genutzt werden können, um die rechtlichen Bedingungen festzulegen (siehe Tabelle 2).

Lizenzbeschreibungen unter http://creativecommons.org/licenses

[image: image1]

[image: image1]

Tabelle 1 Übersicht zu Lizenzen der Free Software Foundation und Creative Commons

	[image: image1]

	Symbol

	Lizenbedingungen

	[image: image1]
	Namensnennung

	[image: image1]
	Namensnennung – Keine Bearbeitung

	[image: image1]
	Namensnennung – Nicht Kommerziell

	[image: image1]
	Namensnennung – Nicht Kommerziell – Keine Bearbeitung

	[image: image1]
	Namensnennung – Nicht Kommerziell - Weitergabe unter gleichen Bedingungen

	[image: image1]
	Namensnennung - Weitergabe unter gleichen Bedingungen

[image: image1]

Tabelle 2 Creative Commons Lizenzen (Arduino schattiert)

Die im Rahmen dieses Buches vorgestellten Programmbeispiele unterliegen alle der GPL und können unter den genannten Bedingungen beliebig weiterverwendet werden.

2. Arduino Hardware

2.1 Mikrocontroller Boards

Das Arduino Board gibt es in verschiedenen Versionen. Das gegenwärtige Basic Board ist Arduino Uno, dessen Kern ein ATmega328 von Atmel ist.

Der Übersicht halber werden hier nur solche Arduino Boards kurz vorgestellt, die zusammen mit den sogenannten Shields als Peripherieerweiterung (shieldcompatible) eingesetzt werden können. Eine komplette Übersicht zu den Arduino Boards ist unter http://arduino.cc/en/Main/Hardware zu finden.

Die folgenden Abbildungen zeigen eine Auswahl verschiedener Shield-kompatibler Arduino Boards.

[image: Abbildung 1 Arduino Uno]

Abbildung 1 Arduino Uno

[image: Abbildung 2 Arduino Duemilanove]

Abbildung 2 Arduino Duemilanove

[image: Abbildung 3 Arduino Mega 2560]

Abbildung 3 Arduino Mega 2560

Der in Abbildung 1 gezeigte Arduino Uno ist die letzte Revision der Arduino Basic Boards. Der Arduino Uno unterscheidet sich von seinen Vorgängern durch das USB-RS232-Interface. An Stelle des FTDI USB-to-Serial Driver Chips kommt hier ein Atmega8U2 zum Einsatz, der als USB-to-Serial Converter programmiert ist. Uno weist auf die kommende Version 1.0 der Arduino Software hin. Diese Kombination wird in Zukunft als Referenz dienen.

Der in Abbildung 2 gezeigte Arduino Duemilanove (Arduino 2009) ist bis auf das besagte USB-Interface identisch zum Arduino Uno.

Wem die durch den ATmega328 gegebenen Ressourcen nicht ausreichend sind, der kann sich dem auf dem ATmega2560 aufbauenden Arduino Mega 2560 zuwenden. Abbildung 3 zeigt das um einige Anschlüsse erweiterte Board des Arduino Mega 2560, welches aber dennoch zu den meisten Arduino Shields kompatibel ist.

Neben den originalen Arduino Boards gibt es eine zunehmende Zahl von Arduino Clones. Google hilft nach Eingabe von „arduino compatible board“ diese zu finden. Außerdem findet man unter http://en.wikipedia.org/wiki/Arduino#Clones eine Zusammenstellung zahlreicher Arduino Clones (shield-compatible; bootloader-compatible) gelistet.

Im Folgenden werden wir uns auf die Betrachtung des Arduino Duemilanove als repräsentatives Beispiel beschränken. Der Aufbau des Arduino Duemilanove mit seinen Schnittstellen war bereits in Abbildung 2 gezeigt.

An der Oberkante des Arduino Duemilanove Boards befinden sich zwei achtpolige Buchsenleisten, die den Zugang zu den digitalen I/O Pins 0-13, zur analogen Referenzspannung AREF und zu Ground GND ermöglichen.

An der Unterkante sind zwei sechspolige Buchsenleisten zur Kontaktierung der sechs analogen Eingänge Analog In 0-5, sowie der Versorgungsspannungen und Reset. Die Zuordnung der Anschlüsse des Arduino Duemilanove zu den Pins des ATmega328 (und den Alternativfunktionen) zeigen die folgenden Tabellen:

	I/O

	0

	1

	2

	3

	4

	5

	6

	7

	AVR

	PD0

	PD1

	PD2

	PD3

	PD4

	PD5

	PD6

	PD7

	RxD

	TxD

	INT0

	INT1

	T0

	T1

	AIN0

	SCK

	OC2B

	OC0B

	OC0A

[image: image1]

	I/O

	8

	9

	10

	11

	12

	13

	AVR

	PB0

	PB1

	PB2

	PB3

	PB4

	PB5

	ICP1

	OC1A

	OC1B

	OC2A

	MISO

	SCK

	SS

	MOSI

[image: image1]

	Analog In

	0

	1

	2

	3

	4

	5

	AVR

	PC0

	PC1

	PC2

	PC3

	PC4

	PC5

	ADC0

	ADC1

	ADC2

	ADC3

	ADC4

	ADC5

	SDA

	SCL

[image: image1]

Das Schaltbild des Arduino Duemilanove zeigt Abbildung 4. Der Schaltungsteil oben links sorgt dafür, dass bei fehlender Spannung VIN die Betriebsspannung von +5 V DC über USB erzeugt wird. Bei Verbindung des Arduino Duemilanove mit dem PC über USB ist also keine weitere Versorgungsspannung erforderlich.

Der Schaltungsteil unten links bildet das USB-RS232-Interface unter Verwendung des Bausteins FT232 von FTDI (http://www.ftdichip.com).

Der Mikrocontroller ATmega168 bzw. ATmega328 wird über einen externen Quarz mit einer Taktfrequenz von 16 MHz versorgt.

Die an Pin 13 angeschlossene LED arbeitet gegen GND, so dass sie durch einen Hi-Pegel an Pin 13 eingeschaltet wird.

Alle weiteren Eigenschaften können dem 448-seitigen Datenblatt zu den ATmega168 bzw. ATmega328 entnommen werden, das von der Atmel Website http://www.atmel.com/dyn/resources/prod_documents/doc8161.pdf heruntergeladen werden kann.

[image: Abbildung 4 Schaltbild Arduino 2009]

Abbildung 4 Schaltbild Arduino 2009

2.2 Shields

2.2.1 Übersicht

Als Shields werden Boards bezeichnet, die den Arduino Boards durch Aufstecken als Peripherieerweiterung dienen.

Eine umfangreiche Übersicht zu den Arduino Shields ist unter http://www.arduino.cc/en/Main/ArduinoShields oder auch dem Arduino Wiki Playground unter http://www.arduino.cc/playground/Main/SimilarBoards zu finden.

Tabelle 2 zeigt eine Auswahl solcher Shields. Einigen dieser Shields werden wir bei späteren Anwendungen noch begegnen.

	Shield

	Beschreibung

	Arduino ProtoShield Kit

	Prototyping wird durch kleines Lochrasterfeld, zwei LEDs und zwei Taster (davon 1x Reset) unterstützt.

Anschluss zum BlueSMiRF Socket (Bluetooth Modem) ist vorhanden (http://www.sparkfun.com/commerce/product_info.php? products_id=7914)

	XBee Shield

	Drahtlose Kommunikation mit Zigbee über Xbee Module von MaxStream (http://www.maxstream.net/products/xbee/xbeeoem-rf-module-zigbee.php)

	Motor Control Shield

	Steuerung von DC Motoren und Auslesen von Encodern (http://blushingboy.net/p/motorShieldV3/)

	TellyMate Shield

	Serielle Ansteuerung eines 38x25 Character-Displays auf PAL oder NTSC TV

(http://www.batsocks.co.uk/products/Shields/TellyMate%20Shield.htm)

	Button Shield

	Tastatur mit 32 Tasten

(http://antipastohw.blogspot.com/2009/06/live-footage-of-buttonshield-in-wild.html)

	Adafruit Wave Shield

	Wiedergabe von 22 kHz Audiofiles beliebiger Größe von einer SD Card (http://www.ladyada.net/make/waveshield/)

	Adafruit GPS & Datalogging Shield

	Verbindet ein GPS Modul und kann Ort, Zeit, Datum und Sensordaten auf einer SD Card abspeichern

(http://www.ladyada.net/make/gpsshield/)

	TouchShield Slide

	Widescreen OLED Touch Screen mit 320x240 Pixeln

(http://www.liquidware.com/shop/show/TSL/TouchShield+Slide)

	Battery Shield

	Batterie Pack mit über USB ladbarer Lithium Ionen Batterie ermöglicht Batteriebetrieb eines Arduino für 14-28 Std. (abhängig von der Beschaltung)

http://www.liquidware.com/shop/show/BP/Lithium+BackPack

	6-pack

	Verbindet sechs Schieberegler mit den analogen Eingängen (http://www.freeduino.de/wiki/arduino-6-pack-slider-shield)

	Adafruit Servo/Stepper/DC Motor Shield

	Ansteuerung von zwei Hobby Servos und bis zu zwei Unipolar/Bipolar Schrittmotoren oder vier bi-direktionalen DC Motoren (http://www.ladyada.net/make/mshield/)

	Liquidware InputShield

	Eingabe über zwei Tasten, einen Joystick und einen A-B Selector zur Game- bzw. Robotersteuerung

(http://www.liquidware.com/shop/show/INPT/InputShield)

	Arduino Ethernet Shield

	Verbindet ein Arduino Board über ein Wiznet W5100 Ethernet Chip mit dem Internet. Ein Wiznet W5100 stellt einen IP Stack für die Protokolle TCP und UDP zur Verfügung und unterstützt bis zu vier Socketverbindungen

(http://www.arduino.cc/en/Main/ArduinoEthernetShield)

	Adafruit XPort/Ethernet shield

	Internetverbindung über XPort Modul (Client oder Server, http://www.ladyada.net/make/eshield/)

	RFIDuino

	Lesen und Schreiben von 13.56 MHz ISO-14443A (Mifare) RFID tags - Antenne ist integriert

(http://rfid.marcboon.com/#category2.0)

	SD card shield for Arduino V2.1

	SD Speicherkarten Erweiterung

(http://www.seeedstudio.com/depot/sd-card-shield-for-arduino-v21-p-492.html)

[image: image1]

[image: image1]

Tabelle 2 Arduino Shields (Auswahl)

In den folgenden Abschnitten werden einige ausgewählte Arduino Shields etwas näher vorgestellt. Auf Details wird bei den betreffenden Anwendungsbeispielen eingegangen.

2.2.2 Arduino ProtoShield Kit

Der Aufbau von Versuchsschaltungen wird durch das Arduino Proto-Shield Kit wesentlich vereinfacht. Hierbei handelt es sich um ein Board, welches ein kleines Lochrasterfeld, zwei LEDs und zwei Taster (davon 1x Reset) aufweist. Abbildung 5 zeigt den Aufbau des Arduino Proto-Shields.

Alle Anschlüsse des Arduino Duemilanove sind am Board verfügbar. Ein Anschluss zu einem BlueSMiRF Socket (Bluetooth Modem) ist vorhanden.

[image: Abbildung 5 Arduino ProtoShield]

Abbildung 5 Arduino ProtoShield

2.2.3 Adafruit MotorShield

Mit dem Adafruit Servo/Stepper/DC Motor Shield können zwei Servos, bis zu vier bidirektionale DC- und bis zu zwei Schrittmotoren (unipolar oder bipolar) angesteuert werden.

Abbildung 6 zeigt ein auf einen Arduino Duemilanove aufgestecktes Adafruit Servo/Stepper/DC Motor Shield.

[image: Abbildung 6 Adafruit Servo/Stepper/DC MotorShield]

Abbildung 6 Adafruit Servo/Stepper/DC MotorShield

Die zum Kit gehörenden Motortreiber können bis zu 600 mA pro Motor treiben. Es sind Spitzenströme bis zu 1,2 A möglich.

2.2.4 Arduino Ethernet Shield

Das Arduino Ethernet Shield verbindet ein Arduino Board mit dem Internet. Ein Wiznet W5100 Ethernet Chip stellt einen IP-Stack für TCP und UDP bereit. Es werden bis zu vier Socketverbindungen gleichzeitig unterstützt. Eine Ethernet Library steht zur Verfügung.

Abbildung 7 zeigt das Arduino Ethernet Shield. Der Platz für die nicht unterstützte SD-Card ist hier unbestückt.

[image: Abbildung 7 Arduino Ethernet Shield]

Abbildung 7 Arduino Ethernet Shield

Das Arduino Board verwendet SPI (Pins 10, 11, 12, 13), um mit dem W5100 Chip auf dem Ethernet Shield zu kommunizieren. Diese Pins stehen dann nicht mehr für anderweitige I/O Aufgaben zur Verfügung. Der Ethernetanschluss ist die übliche RJ45 Buchse. Der Resettaster auf dem Shield setzt den W5100 Chip und das Arduino Board zurück.

2.2.5 Arduino SD Card Shield

In Abbildung 8 ist die dritte Version des SD Card Shields von Seeedstudio gezeigt. Zur Spannungsversorgung kann zwischen 3.3V oder einem IO Pin selektiert werden. Eine SD Card Library steht unter http://www.seeedstudio.com/depot/images/product/FileLogger.rar zur Verfügung.

[image: Abbildung 8 Arduino SD Card Shield]

Abbildung 8 Arduino SD Card Shield

3. Arduino IDE

Die Open Source Arduino Entwicklungsumgebung (IDE) vereinfacht das Schreiben von Programmen und das Downloaden auf ein Arduino Board erheblich. Die Arduino IDE läuft unter Windows, Mac OS X und Linux und kann von der Arduino Website http://arduino.cc/en/Main/Software heruntergeladen werden.

3.1 Installation & Inbetriebnahme

Die derzeit (März 2011) aktuelle Arduino IDE für Windows kann in der Version 0022 gratis von der Webseite http://arduino.cc/en/Main/Software als ZIP (85.8 MB) heruntergeladen werden. Die Arduino Software wird von Google Code gehostet (http://arduino.googlecode.com/files/arduino-0022.zip).

Um eine lauffähige Entwicklungsumgebung incl. Targetboard zur Verfügung zu haben, sind die folgenden Schritte notwendig:

	Beschaffung eines Arduino Boards incl. USB-Verbindungkabel zum Entwicklungs-PC

	Download der Arduino Entwicklungsumgebung von der oben angegebenen URL

	Installation des USB-Treibers

	Verbinden des Arduino Boards über USB mit dem Entwicklungs-PC

	Starten der Arduino Entwicklungsumgebung auf dem Entwicklungs-PC

	Compilation und Download eines Programms (z.B. Programmbeispiel "Hello World")

	Überprüfung der Funktion an Hand der blinkenden LED und der Ausgaben am Monitor

Wenn diese Schritte absolviert sind, dann sind alle Vorkehrungen für die Bearbeitung des nächsten Arduino Projektes getroffen. Das erste Projekt ist ja eben mit Erfolg abgeschlossen worden.

Bei den später vorgestellten Applikationsbeispielen werden Programme zu finden sein, die mit den Arduino Software Releases 0018 und 0022 entwickelt wurden. Die Unterschiede der Software Releases sind in Abschnitt 7 ausgewiesen.

Schauen wir uns im Folgenden aber noch die Handhabung der Arduino IDE an.

3.2 Programmbearbeitung

Nach dem Starten der Arduino IDE öffnet sich das in Abbildung 9 gezeigte Fenster, in dem in sogenannten Sketches der Quelltext des Anwenderprogramms eingegeben und editiert werden kann.

[image: Abbildung 9 Sketchfenster der Arduino IDE]

Abbildung 9 Sketchfenster der Arduino IDE

Als erstes wird man nun der IDE und damit dem Compiler den eingesetzten Arduino mitteilen. Wie Abbildung 10 zeigt, wurde hier der Arduino Duemilanove auf Basis eines ATmega328 ausgesucht.

[image: Abbildung 10 Selektion des eingesetzten Arduinos]

Abbildung 10 Selektion des eingesetzten Arduinos

Die serielle Kommunikation erfolgt über das USB-Interface und ein virtuelles COM-Port auf dem PC. Abbildung 11 zeigt die Zuordnung des COM-Ports, womit alle notwendigen Vorkehrungen für die Bearbeitung eines Arduino Projektes getroffen sind.

[image: Abbildung 11 Zuordnung eines virtuellen COM-Ports]

Abbildung 11 Zuordnung eines virtuellen COM-Ports

Nach diesen vorbereitenden Schritten kann mit der Eingabe von Quelltext oder dem Öffnen eines vorhandenen Quelltextes begonnen werden. Abbildung 12 zeigt den Quelltext des Programms „Hello World“ (HelloWorld.pde).

Mit diesem schlichten Programm können wir die korrekte Installation der IDE, des Compiler und der anderen Komponenten der GNU Toolchain sowie die angeschlossene Hardware überprüfen.

[image: Abbildung 12 Editieren von Quelltext und Compiler Output]

Abbildung 12 Editieren von Quelltext und Compiler Output

Aus Abbildung 12 kann auch der allgemeine Programmaufbau entnommen werden. Geladen wurde der Quelltext des Programms HelloWorld.pde, welches später noch mal im Zusammenhang mit dem ProtoShield betrachtet werden wird.

Die zwei Funktionen setup() und loop() bestimmen die Programmstruktur eines jeden Arduino Programms.

In der Funktion setup() werden Initialisierungen vorgenommen und die Funktion loop() stellt die Endlosschleife dar, die die Aktionen des eigentlichen Anwenderprogramms enthält.

Natürlich können außerhalb dieser Routinen weitere Funktionen definiert werden, die dann von setup() und/oder loop() aus aufgerufen werden können.

Hier definiert die Funktion flash() das alternierende Ein-/Ausschalten des als Ausgang deklarierten I/O Pins 13 (PB5).

Im Screenshot nicht mehr sichtbar sind Bestandteile der Funktionen setup() und loop().

Über die serielle Schnittstelle wird der String "Hello World" ausgegeben. Anschließend erfolgt der Aufruf der Funktion flash(), die die an Pin13 angeschlossene LED ein- und ausschaltet. Damit der Ablauf sichtbar bleibt, sorgt die Funktion delay(500) für eine Pause von 500 ms bis zur nächsten Aktion.

Durch ein mit COM7 verbundenes Terminalprogramm kann der ausgegebene String zur Anzeige gebracht werden. Das Terminalprogramm muss dabei auf die passende Baudrate, hier 19200 Baud, eingestellt werden.

Über die Schaltflächen an der Oberkante des Fensters oder die Menüleiste kann der weitere Prozess der Programmbearbeitung gesteuert werden.

Unterhalb des Textfensters wird der aktuelle Programmzustand angezeigt. Das Feld ganz unten ist für Ausgaben des Compilers sowie des Linkers bzw. Downloaders vorgesehen.

Hier wird die Größe des erzeugten Codes mit 1986 von insgesamt 30720 Bytes Programmspeicher ausgegeben. Die verbleibenden 2 KByte des beim ATmega328 verfügbaren Programmspeichers von 32 KByte werden für den Bootloader beansprucht.

3.3 Arduino Programmiersprache

Arduino Programme setzen sich aus drei Komponenten zusammen: structure, values (Variable und Konstanten) und functions. Die Arduino Sprache gründet sich auf C/C++.

Die drei Programmkomponenten sollen hier nur beispielhaft erläutert werden. Tabelle 3 zeigt einige Beispiele für die drei Programmkomponenten. Eine ausführliche Zusammenfassung und Hilfe ist mit der Language Reference auf der Arduino Homepage http://arduino.cc/en/Reference/HomePage gegeben.

	Structures

	Values

	Functions

	void setup()

	true | false

	digitalWrite(pin, value)

	void loop()

	HIGH | LOW

	int analogRead(pin)

	switch case

	unsigned long

	unsigned long pulseIn(pin, value)

	if...else

	boolean

	long random(min, max)

	do...while

	float

	map(value, fromLow, fromHigh, toLow, toHigh)

[image: image1]

Tabelle 3 Komponenten der Arduino Programmiersprache

4. Arduino Applikationen

Dieses Kapitel wird Anwendungsbeispiele unter Verwendung der vorgestellten Shields vorstellen.

In den Quelltexten ist die verwendete Version der Arduino Software angegeben. Bei der Verwendung, Anpassung bzw. Weiterentwicklung der hier vorgestellten Programmbeispiele muss der betreffenden Arduino Version Rechnung getragen werden.

Die versionsbezogenen Änderungen sind auf der Arduino Website und auszugsweise in Abschnitt Arduino Software Release Notes beschrieben und können so auch nachvollzogen werden.

4.1 Template

Um eine weitgehend einheitliche Gestaltung des Quelltextes zu unterstützen, werden wir bei den Programmbeispielen von folgendem Template ausgehen.

//

// Title : Dateibeschreibung

// Author : Author

// Date : yyyy-mm-dd

// Id : programmname.pde

// Version : 00xx

// based on : optional

//

// DISCLAIMER:

// The author is in no way responsible for any problems or

// damage caused by using this code. Use at your own risk.

//

// LICENSE:

// This code is distributed under the GNU Public License

// which can be found at http://www.gnu.org/licenses/gpl.txt

//

const int LED = 13; // LED an Pin13

void setup()

{

}

void loop()

{

}

Listing 1 Template.pde

Im Kopf des Templates ist unter Version die Arduino Version angegeben, mit der das betreffende Programmbeispiel compiliert wurde. Bei Verwendung einer neueren Arduino Version sind gegebenenfalls Änderungen am Quelltext vorzunehmen.

Bei den gelisteten Quelltexten wird es aus drucktechnischen Gründen vor allem bei Kommentarzeilen zu Zeilenumbrüchen kommen. In den meisten Fällen wird man diese Stellen leicht ausmachen können. Es empfiehlt sich aber ohnehin, die Quelltexte nicht abzutippen sondern von der URL https://sourceforge.net/projects/arduinosources/ herunter zu laden.

4.2 "Hello World"

Das Arduino ProtoShield Kit dient dem unkomplizierten Aufbau von Versuchsschaltungen und kann u.a. vom Elektronikladen (http://elmicro.com/de/sparkfun.html) bezogen werden.

Abbildung 13 zeigt ein mit einem Steckbrett (Breadboard Mini) versehenes ProtoShield aufgesteckt auf ein Arduino Duemilanove.

[image: Abbildung 13...]

Abbildung 13 ProtoShield auf Arduino Duemilanove aufgesteckt

Alle Pins des Arduino Duemilanove werden in den Prototyping Bereich geführt und können da kontaktiert werden. Zusätzlich sind zwei LED und ein Taster auf dem Board vorhanden. Der Reset-Taster ist ebenfalls auf dem Board zugänglich.

Abbildung 14 zeigt das ProtoShield Schema. Dargestellt ist aber nur die Beschaltung der Stifte JC1 bis JC3. Die Stiftleisten auf dem ProtoShield sind ausnahmslos bezeichnet.

[image: Abbildung 14...]

Abbildung 14 ProtoShield Schema

Den in das eben beschriebene Template eingetragenen Quelltext des Programmbeispiels HelloWorld1.pde zeigtListing 2.

//

// Title : HelloWorld

// Author : Claus Kuehnel

// Date : 2010-03-01

// Id : HelloWorld1.pde

// Version : 0018

// based on :

//

// DISCLAIMER:

// The author is in no way responsible for any problems or damage caused by

// using this code. Use at your own risk.

//

// LICENSE:

// This code is distributed under the GNU Public License

// which can be found at http://www.gnu.org/licenses/gpl.txt

//

//

const int LED = 13; // LED an Pin13

void flash() // Toggle LED

{

static boolean output = HIGH;

digitalWrite(LED,output);

output = !output;

}

void setup()

{

Serial.begin(19200);

pinMode(LED, OUTPUT);

}

void loop()

Serial.print("Hello World");

flash();

delay(500);

}

Listing 2 Quelltext HelloWorld1.pde

Die Verwendung des Templates wurde mit dem Programmbeispiel HelloWorld1.pde gezeigt.

4.3 ShiftBrite RGB LEDs

ShiftBrite ist ein lichtstarkes LED Modul mit roter, grüner und blauer LED. Über eine synchrones serielles Interface empfängt das ShiftBrite Modul 10-Bit Helligkeitswerte für jeder der drei Farben.

Eine ausführliche Beschreibung kann von der Website des Herstellers Macetech (http://docs.macetech.com/doku.php/shiftbrite) heruntergeladen werden. Abbildung 15 zeigt den Aufbau eines ShiftBrite RGB LED Moduls.

[image: Abbildung 15...]

Abbildung 15 ShiftBrite RGB LED

Im ShiftBrite Modul kommt der "3-Channel Constant Current LED Driver with Programmable PWM Control" A6281 von Allegro zum Einsatz.

Das Datenblatt des A6281 kann von der Allegro Website über die URL http://www.allegromicro.com/en/Products/Part_Numbers/6281/6281.pdf heruntergeladen werden.

Zur Programmierung ist dem ShiftBrite Modul ein 32-Bit Datenwort seriell zu übergeben. Bit30 unterscheidet zwischen Datenmode (=0) und Configurationsmode (=1).

[image: image1]

Mehrere ShiftBrite Module lassen sich einfach kaskadieren. In Abbildung 16 sind drei ShiftBrite Module kaskadiert. Es müssen also 3 x 32-Bit Daten übergeben werden, bevor der Latchimpuls die Daten in die Ausgaberegister schreibt.

[image: Abbildung 16...]

Abbildung 16 Kaskadierung von drei ShiftBrite Modulen

Listing 3 zeigt ein Programmbeispiel zur Ansteuerung von drei kaskadierten ShiftBrite Modulen. Die Datenpakete werden hier bitweise zusammengestellt und mit SB_SendPaket() über SPI ausgegeben.

const int datapin = 10; // DI

const int latchpin = 11; // LI

const int enablepin = 12; // EI

const int clockpin = 13; // CI

unsigned long SB_CommandPacket;

int SB_CommandMode;

int SB_BlueCommand;

int SB_RedCommand;

int SB_GreenCommand;

void setup() {

pinMode(datapin, OUTPUT);

pinMode(latchpin, OUTPUT);

pinMode(enablepin, OUTPUT);

pinMode(clockpin, OUTPUT);

digitalWrite(latchpin, LOW);

digitalWrite(enablepin, LOW);

}

void SB_SendPacket() {

SB_CommandPacket = SB_CommandMode & B11;

SB_CommandPacket = (SB_CommandPacket << 10) | (SB_BlueCommand & 1023);

SB_CommandPacket = (SB_CommandPacket << 10) | (SB_RedCommand & 1023);

SB_CommandPacket = (SB_CommandPacket << 10) | (SB_GreenCommand & 1023);

shiftOut(datapin, clockpin, MSBFIRST, SB_CommandPacket >> 24);

shiftOut(datapin, clockpin, MSBFIRST, SB_CommandPacket >> 16);

shiftOut(datapin, clockpin, MSBFIRST, SB_CommandPacket >> 8);

shiftOut(datapin, clockpin, MSBFIRST, SB_CommandPacket);

delay(1); // adjustment may be necessary depending on chain length

digitalWrite(latchpin,HIGH); // latch data into registers

delay(1); // adjustment may be necessary depending on chain length

digitalWrite(latchpin,LOW);

}

void loop() {

SB_CommandMode = B01; // Write to current control registers

SB_RedCommand = 127; // Full current

SB_GreenCommand = 127; // Full current

SB_BlueCommand = 127; // Full current

SB_SendPacket();

SB_CommandMode = B00; // Write to PWM control registers

SB_RedCommand = 1023; // Maximum red

SB_GreenCommand = 0; // Minimum green

SB_BlueCommand = 0; // Minimum blue

SB_SendPacket();

delay(250);

SB_CommandMode = B00; // Write to PWM control registers

SB_RedCommand =0; // Minimum red

SB_GreenCommand = 1023; // Maximum green

SB_BlueCommand = 0; // Minimum blue

SB_SendPacket();

delay(250);

SB_CommandMode = B00; // Write to PWM control registers

SB_RedCommand =0; // Minimum red

SB_GreenCommand = 0; // Minimum green

SB_BlueCommand = 1023; // Maximum blue

SB_SendPacket();

delay(250);

}

Listing 3 Quelltext ShiftBrite.pde

Eine wesentliche Vereinfachung ergibt sich durch die Verwendung einer Library, die unter http://www.arduino.cc/playground/Main/ShiftBriteLib zu finden ist. Download und Handhabung der ShiftBrite Library sind an dieser Stelle beschrieben, weshalb hier darauf verzichtet werden soll.

4.4 Adafruit Motor Shield

Mit dem Adafruit Servo/Stepper/DC Motor Shield lassen sich einfache Motorsteuerungen für Servos, Schritt- und DC-Motoren aufbauen.

Die vollständige Dokumentation ist beim Entwickler unter der URL http://www.ladyada.net/make/mshield/ zu finden, während der Bezug direkt über den Webshop des Herstellers Adafruit Industries vorzunehmen ist. Die URL des betreffen den Eintrags ist http://www.adafruit.com/index.php? main_page=index&cPath=17_21. Der Bezug der Baugruppe über diesen Weg gestaltete sich absolut problemlos.

Abbildung 17 zeigt ein Adafruit Servo/Stepper/DC Motor Shield mit angeschlossenen Motoren.

[image: Abbildung 17...]

Abbildung 17 Adafruit Servo/Stepper/DC Motor Shield mit angeschlossenen Motoren

Über die gezeigten Anschlussmöglichkeiten hinaus bietet dieses Shield folgende Ausstattung:

	Anschluss von zwei 5V „Hobby“ Servos

	Vier H-Brücken auf Basis des Bausteins L293D mit 0,6 A Dauerstrom (1,2 A Spitzenstrom für Motorspannungen zwischen 4,5 und 36 V DC

	Ansteuerung von bis zu vier bi-direktionalen DC-Motoren mit 8-Bit Geschwindigkeitsauflösung

	Ansteuerung von bis zu zwei Schrittmotoren (unipolar, bipolar) mit einer oder zwei Wicklungen

4.4.1 Installation der Firmware

Die Firmware zur Ansteuerung von DC- und Schrittmotoren ist in der Library AFMotor zusammengefasst und kann als ZIP-File von der Seite des Entwicklers http://www.ladyada.net/media/mshield/AFMotor-08_12_2009.zip heruntergeladen werden.

Nach dem Download ist der AFMotor Ordner in den Ordner Arduino/libraries auszupacken und abzuspeichern. Damit die Arduino IDE diese Library auch kennt, ist diese über Sketch > Library Import > AFMotor zu importieren.

Gleichermaßen ist für Servos mit der Library ServoTimer1 zu verfahren. Diese Library findet man unter http://www.ladyada.net/media/mshield/ServoTimer1-fixedv13.zip. Das Abspeichern und Importieren der Library ServoTimer1 erfolgt (bis auf den Namen) auf identische Weise.

4.4.2 Ansteuerung von Servos

Durch den Einsatz der Library gestaltet sich die Ansteuerung eines Servos recht einfach. Listing 4 zeigt den Quelltext des Programmbeispiels ServoTest.pde. Ein Servo soll eine Vorwärtsbewegung um 180° vornehmen und anschließend den gleichen Weg zurückdrehen.

Nachdem die Library eingefügt wurde kann eine Instanz servo1 erzeugt werden. Im Setup ist der Servo noch mit einem Pin zur Ansteuerung zu verbinden. Verwendet werden können die PWM-Ausgänge von Timer1 Pin9 (OC1A) und Pin10 (OC1B).

Mit servo1.write(grad) braucht man nun nur noch eine Zahl zwischen 0 und 180 eingeben und man kann den Servo auf den gewünschten Winkel positionieren.

#include <ServoTimer1.h>

// DC hobby servo

ServoTimer1 servo1;

void setup()

{

Serial.begin(19200); // Baudrate 19200 bps

Serial.println("Servo Test...");

servo1.attach(9); // Verbinde Servo mit Servo_1 Anschluss

}

// Test

void loop()

{

int i;

Serial.println("Forward...");

for (i=0; i<180; i++)

{

servo1.write(i); // Bewegung von 0° nach 180° (vorwärts)

delay(5);

}

delay(1000);

Serial.println("Backward...");

for (i=180; i!=0; i--)

{

servo1.write(i); // Bewegung von 180° nach 0° (rückwärts)

delay(5);

}

delay(1000);

}

Listing 4 Quelltext ServoTest.pde

4.5 Temperaturmessung mit LM75

LM75 von National Semiconductors ist eine Familie von Temperatursensoren/Temperaturwatchdogs auf Basis einer BandGap-Referenz, Sigma-Delta-ADC und I2C-Interface [1]. Wir wollen hier den LM75 für die Temperaturmessung einsetzen.

Der LM75 ermöglicht Temperaturmessungen mit einer Auflösung von 9 Bit und einer Genauigkeit von +/- 2 °C im Temperaturbereich von -25 °C bis 100 °C.

Der LM75 wird in einem 8-Pin SOP angeboten (Abbildung 18). Die Handhabung dieser Gehäusebauform bedarf aber einer ruhigen Hand beim Löten der Anschlüsse.

[image: Abbildung 18...]

Abbildung 18 LM75 im 8-PIN SOP

Kann man mit diesen Voraussetzungen nicht dienen, dann bietet sich beispielsweise die Verwendung des myTWI Add-On Temperatursensors an (Abbildung 19). Der myTWI Temperatursensor ist als Add-On ein Teil der TWI-Serie für die myAVR Boards [2]. In der Mitte der Leiterplatte ist der auf einen Adapterprint aufgelötete LM75 zu sehen. Ein Bezug dieses Adapterprint ist beim Lieferanten des myTWI Temperatursensors ebenso möglich.

[image: Abbildung 19...]

Abbildung 19 myAVR TWI Add-On Temperatursensor

Die Gesamtschaltung des myTWI Temperatursensors ist in Abbildung 20 dargestellt. In Abbildung 19 und Abbildung 20 sind Stiftleisten zu sehen, über die einige Konfigurationen vorgenommen werden können. Die beiden TWI-Leitungen (I2C-Leitungen) SDA und SCL müssen mit einem Pull-Up-Widerstand versehen sein. Wenn das nicht an anderer Stelle im System vorgenommen wird, dann sind JP1 und JP2 zu überbrücken. Der LM75 hat drei Adresspins A2-A0, die es erlauben, acht LM75 am gleichen I2C-Bus zu betreiben.

[image: Abbildung 20...]

Abbildung 20 Schema des myTWI Temperatursensors

In Übereinstimmung mit den I2C-Spezifikationen hat auch der LM75 eine 7-Bit Slaveadresse. Die oberen 4 Bit sind intern festgelegt, während die unteren drei Bits durch die Belegung der Adresspins A2-A0 bestimmt werden. Somit ergibt sich je nach Belegung der Bits A2-A0 ein Adressbereich von 0x48 bis 0x4F.

	1

	0

	0

	1

	A2

	A1

	A0

	MSB

	LSB

[image: image1]

Nachdem die Adressierung des LM75 geklärt ist, bleiben noch die Betrachtung der internen Registerstruktur des LM75 und der für die Temperaturmessung erforderliche Registerzugriff.

Wie Abbildung 21 zeigt, besitzt der LM75 intern in vier Register, auf die über ein Pointer Register zugegriffen wird. Nach einem Reset ist automatische das Temperature Register adressiert. Die anderen Register benötigen wir an dieser Stelle nicht.

[image: Abbildung 21...]

Abbildung 21 LM75 Pointer Register

Für das Lesen von LM75 Registern gibt es nun zwei Möglichkeiten. Zeigt das Pointer Register bereits auf das auszulesende Register, dann ist der LM75 nur noch zu adressieren und das betreffende Register auszulesen. Im anderen Fall muss vorher durch eine Schreiboperation das Pointer Register gesetzt werden und der komplette Lesevorgang muss folgen.

Wie bereits erwähnt, zeigt nach einem Reset das Pointer Register bereits auf das von uns bevorzugte Temperature Register und es sind nur noch die zwei Byte Ergebnis der Temperaturmessung abzuholen. Das Format des Temperature Registers zeigt Abbildung 22. Die Repräsentation der Daten zeigt Tabelle 4. Nun ist es an der Zeit dem Arduino das Auslesen des LM75 beizubringen und das Resultat der Temperaturmessung anzuzeigen. Der myTWI Temperatursensor wurde in das Steckbrett des Arduino ProtoShields eingesteckt, während das Arduino ProtoShield in der vorgesehenen Weise mit dem Arduino Duemilanove verbunden wurde (Abbildung 23). Die Verbindungen zwischen dem myTWI Temperatursensor und Arduino sind durch beide Systeme vorgegeben und im Quelltext des Programmbeispiels beschrieben.

[image: Abbildung 22...]

Abbildung 22 LM75 Temperature Register

	Temperatur

	Resultat

	125 °C

	0x0FA

	25 °C

	0x032

	0.5 °C

	0x001

	0 °C

	0x000

	-0.5 °C

	0x1FF

	-25 °C

	0x1CE

	-55 °C

	0x192

[image: image1]

Tabelle 4 Datenformat Temperatur

[image: Abbildung 23...]

Abbildung 23 myTWI Temperatursensor auf dem Arduino ProtoShield/Duemilanove Sandwich

Listing 5 zeigt den Quelltext für das Programmbeispiel myTWI_Temperatursensor.pde in der kompletten Form (incl. Programheader).

//

// Title : Temperaturmessung mit myTWI Temperatursensor &

Arduino

// Author : Claus Kühnel

// Date : 2010-03-04

// Id : myTWI_Temperatursensor.pde

// Version : 0018

// Micro : Arduino 2009 w/ ATmega328

//

// DISCLAIMER:

// The author is in no way responsible for any problems or damage caused by

// using this code. Use at your own risk.

//

// LICENSE:

// This code is distributed under the GNU Public License

// which can be found at http://www.gnu.org/licenses/gpl.txt

//

// Verbindungen myTWI - Arduino

// SCL SDA GND +5V

// myTWI 20 19 14 13

// Arduino A5 A4 GND 5

//

#include <Wire.h>

#define DEBUG 0 // für Debugausgaben auf 1 setzen

#define LM75 (0x90 >> 1) // LM75 7-Bit Adresse

const byte LED = 13;

byte Temp;

unsigned int Temperature;

int Ti;

float Ts, Ta = 23.0;

boolean Overtemp;

unsigned int I2c_read_temperature(byte addr)

{

byte Thi, Tlo;

unsigned int T;

Wire.requestFrom((int) addr,2);

while (Wire.available())

{

Thi = Wire.receive();

Tlo = Wire.receive();

}

T = (Thi<<8)+Tlo;

return T;

}

void setup()

{

pinMode(LED, OUTPUT);

Serial.begin(19200);

Wire.begin();

Serial.println("Temperaturmessung mit LM75");

}

void loop()

{

digitalWrite(LED, 1);

Temperature = I2c_read_temperature(LM75);

digitalWrite(LED, 0);

if (DEBUG)

{

Serial.print("Temperaturwert = 0x");

Serial.println(Temperature, HEX);

}

Temperature = Temperature >> 7;

if (DEBUG)

{

Serial.print("Temperaturwert in 0.5 grd Stufen = 0x");

Serial.println(Temperature, HEX);

}

Ti = Temperature;

if (Ti > 0xFF) Ti = Ti | 0xFF00;

Ts = (float) Ti / 2.0;

Serial.print("Temperatur = ");

Serial.print(Ts);

Serial.println(" grd C");

delay(1000);

}

Listing 5 Quelltext myTWI_Temperatursensor.pde

Das Programm beginnt mit einem Include der Wire Library, die der Kommunikation mit I2C-Devices dient [3].

Mit dem Define DEBUG wird die Ausgabe gesteuert. Während des Debuggings ist eine umfangreichere Datenausgabe wünschenswert, während man sich später mit dem eigentlichen Ergebnis der Temperaturmessung zufrieden geben wird. Durch späteres Ausschalten können da außerdem ein paar Bytes Code gespart werden.

	Debug Mode

	Codegröße

	DEBUG 1

	6190 Bytes

	DEBUG 0

	6010 Bytes

[image: image1]

Mit einem weiteren Define wird die Slaveadresse für den LM75 festgelegt.

In I2C-Anwendungen sind sowohl 7-Bit als auch 8-Bit Slaveadressen gebräuchlich. Die 8-Bit Adresse unterscheidet sich von der 7-Bit Adresse nur durch das Read/Write-Bit auf der Position des LSB. Für den LM75 beträgt die 7-Bit Adresse 0x48 und die 8-Bit Adresse demzufolge 0x90. Um Irrtümern vorzubeugen, wurde das betreffende Define durch das Argument (0x90 >> 1) deutlich gemacht.

Nach der Definition einiger Konstanten und Variablen folgt die Deklaration der Funktion I2c_read_temperature(), die mit Hilfe einiger Funktionen der Wire Library den bereits beschriebenen Lesezugriff auf den LM75 umsetzt. Verwendet werden die folgenden Funktionen:

Wire.begin

Wire.requestFrom(address, quantity)

Wire.available()

byte Wire.receive()

Durch Aufruf von Wire.begin() (später in setup()) wird der Arduino als I2C-Bus-Master initialisiert. Die Adressierung des LM75 sowie das Lesen von zwei Byte wird durch den Aufruf von Wire.requestFrom(LM75, 2) eingeleitet. Die Funktion Wire.available() gibt die Anzahl von Bytes zurück, die mit einem anschließenden Wire.receive() auch wirklich gelesen werden können. Mit zwei Lesezugriffen auf das Temperature Register hat man schließlich das 9-Bit Resultat der Temperaturmessung ausgelesen. Nach dem Zusammensetzen von Hi-Byte und Lo-Byte zu einem 16-Bit Ergebnis steht das Ergebnis dieses Funktionsaufrufs zur Verfügung.

In der Funktion setup() werden die erforderlichen Initialisierungen vorgenommen. Zur Verwendung der an Pin13 des Arduino fest angeschlossenen LED ist Pin13 als Ausgang zu konfigurieren. Die Baudrate der seriellen Schnittstelle wird auf 19200 Baud eingestellt und der I2C-Bus wird in der schon erwähnten Weise initialisiert. Als letzte Aktion erfolgt die Ausgabe der Meldung " Temperaturmessung mit LM75 " über die serielle Schnittstelle.

In der Funktion loop(), die beim Arduino die Hauptschleife des Programms (void main()) darstellt, sind nun die einzelnen Programmaktivitäten zu finden.

Das Einschalten der LED signalisiert den Zugriff auf den LM75, der durch Aufruf der Funktion I2c_read_temperature() die gemessene Temperatur zurückgibt. Danach wird die LED wieder ausgeschaltet. Die LED wird also nur durch ein kurzes Aufblitzen wahrgenommen.

Im Debug Mode wird das Ergebnis der Temperaturmessung als 16-Bit Wert linksbündig ausgegeben. Abbildung 24 zeigt alle Ausgaben im Debug Mode.

Im folgenden Programmschritt wird das Zahlenformat rechtsbündig (Rechtsschieben um sieben Positionen) eingestellt und repräsentiert damit bereits den Wert in 0.5 °C Schrittweite. Nach einer einfachen Gleitkomma-Division durch 2. steht der Temperaturmesswert in °C fest. Dieser Zyklus wiederholt sich nach einer Wartezeit von einer Sekunde.

Abbildung 24 zeigt die Debug-Ausgaben des Programms, die die Berechnung des Temperaturmesswertes nachvollziehen lassen und Abbildung 25 zeigt schließlich die reduzierte Ergebnisanzeige. Die Temperaturänderungen wurden durch Besprühen des LM75 mit Kältespray provoziert.

[image: Abbildung 24...]

Abbildung 24 Debug-Ausgaben

[image: Abbildung 25...]

Abbildung 25 Ergebnisanzeige

4.6 Interne analoge IO beim ATmega328

Die für den Arduino eingesetzten AVR Mikrocontroller (ATmega8, ATmega168, ATmega328, Atmega1280) beinhalten einen sechskanaligen 10-Bit AD-Converter mit massebezogenen Eingängen. Als analoge Ausgabe kann die ebenfalls interne PWM mit nachgeschaltetem Filter eingesetzt werden.

4.6.1 Interner ADC und PWM als DAC

Auf dem Arduino Duemilanove stehen nach Außen hin sechs analoge Eingänge ADC5 bis ADC0 zur Verfügung. Ein Ausschnitt aus dem Blockschaltbild zeigt die gesamte Ausstattung des AD-Umsetzers (Abbildung 26 [4]).

[image: Abbildung 26...]

Abbildung 26 Blockschaltbild des ATmega328 ADU (Ausschnitt)

Werden weniger analoge Eingänge benötigt, dann können die nicht benötigten Analogeingänge auch als GPIO (General Purpose I/O) oder I2C-Bus-Leitungen verwendet werden. Die folgende Tabelle zeigt die Mehrfachbelegungen der Arduino Anschlüsse in diesem Bereich. Bei der Verwendung als digitale IO korrespondieren Analog In 0 – 5 mit I/O 14 – 19.

	Analog In

	0

	1

	2

	3

	4

	5

	I/O

	14

	15

	16

	17

	18

	19

	AVR

	PC0

	PC1

	PC2

	PC3

	PC4

	PC5

	ADC0

	ADC1

	ADC2

	ADC3

	ADC4

	ADC5

	SDA

	SCL

[image: image1]

Die analogen Eingänge sind wie alle anderen Pins auch mit zuschaltbaren Pull-Up-Widerständen versehen. Ein eingeschalteter Pull-Up-Widerstand beeinflusst aber die AD-Umsetzung, weshalb dieser beim Betrieb als analoger Eingang disabled sein muss. Ebenso sind Fehler zu erwarten, wenn der Anschluss vorher als digitaler Ausgang konfiguriert worden war.

Im folgenden Programmbeispiel adda.pde soll durch PWM eine Ausgangsspannung bereitgestellt werden, die durch ein nachgeschaltetes RC-Glied zu einer Gleichspannung geglättet wird. Diese Gleichspannung wird wiederum dem AD-Umsetzer zugeführt und das Ergebnis der AD-Umsetzung sollte dann den Wert des DA-Umsetzers repräsentieren. Abbildung 27 zeigt die betreffende Beschaltung von PWM-Ausgang und analogem Eingang.

[image: Abbildung 27...]

Abbildung 27 AD-DA-Umsetzung mit internen Ressourcen des Arduino

Die PWM Frequenz beträgt beim Arduino ca. 500 Hz. Das RC-Glied (Tiefpass) sollte in der Praxis nach der folgenden Formel dimensioniert werden:

[image: image1]

Wählt man die Zeitkonstante τ zu hoch, dann steigt die Einschwingzeit. Wählt man sie hingegen zu gering, dann ist die Filterwirkung zu gering.

Die gemäß Abbildung 27 gewählte Zeitkonstante von 47 ms liegt eher am unteren Ende, weshalb keine optimale Filterwirkung zu erwarten ist. Zum Nachweis des Prinzips der AD-Umsetzung soll das hier aber genügen.

Im Programmbeispiel adda.pde (Listing 6) wird in einer Endlosschleife mit analogWrite(AOUT, i) ein PWM Wert an I/O 9 gesetzt und dieser gefiltert über den Analogeingang AIN0 dem internen AD-Umsetzer zugeführt und nach eine Wartezeit von 1 sec (delay(1000)) über analogRead(AIN0) vom AD-Umsetzer ausgelesen.

Die restlichen Instruktionen dienen nur der seriellen Ausgabe bzw. der Konfiguration.

Eine Besonderheit gilt es noch zu beachten. Für die PWM wird der 8-Bit Timer1 verwendet, weshalb hier nur Werte zwischen 0 und 255 gesetzt werden können. Der interne AD-Umsetzer weist aber eine Auflösung von 10-Bit auf, weshalb dessen Ergebnisse zwischen 0 und 1024 liegen. Bei der Berechnung der Abweichung ist der Faktor 4 deshalb berücksichtigt (ADC- 4DAC).

const int AOUT = 9; // IO9 ist PWM Ausgang

const int AIN0 = 0; // AIN0 ist Analogeingang

void setup()

{

pinMode(AOUT, OUTPUT); // PWM als Ausgang konfigurieren

Serial.begin(19200);

Serial.println("DAC\tADC\tADC-4DAC");

}

void loop() {

int i, val;

for (i=0; i<256; i+=8)

{

analogWrite(AOUT, i); // PWM wird mit einem Wert zwischen

0 und 255 gesetzt

delay(1000);

Serial.print(i); // DAC Wert ausgeben

Serial.print("\t");

val = analogRead(AIN0); // Resultat der AD-Umsetzung von

Kanal AIN0 lesen

Serial.print(val); // ADC Wert ausgeben

Serial.print("\t");

Serial.println(val - 4*i); // Abweichung berechnen und ausgeben

}

}

Listing 6 Quelltext adda.pde

Nach dem Start des Programms adda.pde kann die Ergebnisausgabe im Monitor betrachtet werden. Abbildung 28 zeigt die serielle Ausgabe der einzelnen Durchläufe. In der dritten Spalte ist die berechnete Abweichung ADC-4DAC dargestellt, die wegen der wenig idealen RC-Filterung hier keine typischen Werte für den internen AD-Umsetzer zeigen kann.

[image: Abbildung 28...]

Abbildung 28 Ausgaben der AD-DA-Umsetzung

4.6.2 Interner ADC im Free Running Mode

Der interne AD-Umsetzer des Arduino kann nicht nur im Single-Conversion Mode sondern auch im Free Running Mode betrieben werden. Für Initialisierung des Free Running Modes und das Auslesen der Resultate der AD-Umsetzung muss man sich aber des direkten Registerzugriffs bedienen.

Für den Betrieb des AD-Umsetzers sind die mehrere Register zuständig. An dieser Stelle kann nur die vorgenommene Initialisierung betrachtet werden. Um alle Optionen zu untersuchen, muss man sich des umfangreichen Datenblatts des ATmega328 bedienen [4].

	

	7

	6

	5

	4

	3

	2

	1

	0

	ADCSRA

	ADEN

	ADSC

	ADATE

	ADIF

	ADIE

	ADPS2

	ADPS1

	ADPS0

[image: image1]

Im Register ADCSRA wird der AD-Umsetzer enabled (ADEN), eine (die erste) AD-Umsetzung gestartet (ADSC) und der für den Free Running Mode notwendige Autotrigger enabled (ADATE). Mit den Bits ADPS2-ADPS0 wird der Prescaler für den ADC-Clock eingestellt.

Um eine maximale Auflösung des AD-Umsetzers zu erreichen, sollte die interne Schaltung mit einem ADC-Clock zwischen 50 und 200 kHz betrieben werden. Werden die Prescalerbits alle gesetzt, dann wird aus dem 16 MHz Systemclock durch einen Teiler von 128 ein ADC-Clock von 125 kHz eingestellt.

Aus dem Timing Diagram (Abbildung 29) kann man sehen, dass nach 13 Taktzyklen die AD-Umsetzung abgeschlossen ist und bei diesem Prescaler somit eine Umsetzzeit von ca. 100 μs erreicht wird.

[image: Abbildung 29...]

Abbildung 29 Timing Diagram Free Running Mode

	

	7

	6

	5

	4

	3

	2

	1

	0

	ADMUX

	REFS1

	REFS0

	ADLAR

	-

	MUX3

	MUX2

	MUX1

	MUX0

[image: image1]

Über das Register ADMUX kann die analoge Referenzspannung (REFS1, REFS0) selektiert werden. Wir arbeiten hier mit AVcc = 5 V als Referenzspannung. Das Datenformat kann linksbündig oder rechtsbündig eingestellt werden (ADLAR) und der Analog-Multiplexer wird über die Bits MUX3-MUX0 eingestellt.

Wie schon aus Abbildung 26 zu ersehen war, sind die analogen Eingänge nicht auf die herausgeführten Eingänge ADC5-ADC0 beschränkt. Für die Inbetriebnahme noch interessant, sind die interne Bandgap-Referenz, der interne Ground und der Temperatursensor. Diese werden im Programmbeispiel auch als bekannte Eingangsspannungen abgefragt.

Das Setup der beiden Register kann am Einfachsten aus dem Quelltext des Programmbeispiels free_running_adc.pde entnommen werden.

// ADMUX mit AVCC als VREF

#define ADC0 0x40

#define ADC1 0x41

#define ADC2 0x42

#define ADC3 0x43

#define ADC4 0x44

#define ADC5 0x45

#define TEMPERATURE 0x48

#define BANDGAP 0x4E

#define GND 0x4F

// ADCSRA

#define FREE_RUNNING_MODE ((1<<ADEN) | (1<<ADSC) | (1<<ADATE) | (1<<ADPS2) | (1<<ADPS1) | (1<<ADPS0))

#define PURPOSE "Test of Free Running ADC"

const byte LED = 13;

word adc_value;

void setADC(byte config)

{

ADCSRA &= ~(1<<ADEN); // ADC disbaled

ADMUX = config; // MUX selektiert

ADCSRA = FREE_RUNNING_MODE; // ADC starten

}

word getADC(void)

{

return (ADCL | (ADCH << 8));

}

void printResult(void)

{

digitalWrite(LED, 1); // LED ein

delay(10);

adc_value = getADC();

digitalWrite(LED, 0); // LED aus

Serial.print(adc_value, HEX); // ADC Wert ausgeben

Serial.print("\t");

Serial.print((float) adc_value*5./1024); // Spannungswert berechnen und ausgeben

Serial.println(" V\n");

}

void setup()

{

pinMode(LED, OUTPUT);

Serial.begin(19200);

Serial.println(PURPOSE);

}

void loop()

{

Serial.println("Bandgap-Referenz");

setADC(BANDGAP);

printResult();

delay(1000);

Serial.println("GND");

setADC(GND);

printResult();

delay(1000);

Serial.println("Temperatur");

setADC(TEMPERATURE);

printResult();

delay(1000);

}

Listing 7 Quelltext free_running_adc.pde

In einer Reihe von Defines werden die unterschiedlichen Initialisierungen der ADC-Register festgehalten.

Die Funktion setADC() dient der Konfiguration des Analog-Multiplexers. Bevor der Multiplexer gesetzt oder verändert wird, erfolgt ein Disable des AD-Umsetzers. Nach der Konfiguration wird dann der ADC wieder enabled und die erste AD-Umsetzung gestartet. Nach diesem Start läuft der ADC dann im Free Running Mode, d.h. nach einer AD-Umsetzung wird das Ergebnis der Umsetzung in die Register ADCH und ADCL geschrieben und eine neue Umsetzung gestartet. Die beiden Register können dann, wie in der Funktion getADC() vorgenommen, in der Reihenfolge ADCL gefolgt von ADCH gelesen werden.

In der Hauptschleife loop() werden nacheinander die Eingänge Bandgap Reference, Ground (GND) und Temperatur Sensor abgefragt und ausgegeben. Die Ausgabe des Ergebnisses der AD-Umsetzung erfolgt in der Funktion printResult(). Abbildung 30 zeigt die Ausgaben des Programmbeispiels.

[image: Abbildung 30...]

Abbildung 30 Ausgaben des Programms free_running_adc.pde

4.6.3 Externer ADC/DAC mit PCF8591

Reicht eine Auflösung von 8 Bit für die betreffende messtechnische Fragestellung, dann kann der Einsatz eines Bausteins PCF8591 mit I2C-Bus-Interface eine Alternative darstellen. Durch die wenigen I/Os beim Arduino und deren Mehrfachbelegung kann eine solche Alternative mitunter sehr erwünscht sein [5].

Abbildung 31 zeigt das Blockschema des PCF8591. Es stehen vier analoge Eingänge und zusätzlich ein analoger Ausgang auf dem Baustein zu Verfügung.

[image: Abbildung 31...]

Abbildung 31 Blockschema PCF8591

Zur Vereinfachung der experimentellen Arbeiten ist hier der Einsatz einer I2C-Analogkarte der Fa. Horter&Kalb von Vorteil [6].

Abbildung 32 zeigt den einfachen Aufbau der Baugruppe. Die Konfiguration des Spannungsbereichs der vier Eingangsspannungen erfolgt über JP3. Über Spannungsteiler können Spannungen von 0 - 10V eingelesen werden. Durch JP0 bis JP2 wird die Slaveadresse des I2C-Bausteins festgelegt. Als Referenzspannungsquelle wird ein LM336-2,5 verwendet.

Zur Signalanhebung und Impedanzwandlung wird die Ausgangsspannung des PCF 8591 mit einem Operationsverstärker LM324 angehoben. Zur Leitungskompensation sind die Rückführungen zum Operationsverstärker auf separate Klemmen herausgeführt. Im Schema (Abbildung 33) können diese Einstellungsmöglichkeiten und die Beschaltung des Ausgangsverstärkers nachvollzogen werden.

[image: Abbildung 32...]

Abbildung 32 I2C-Analogkarte (Fa. Horter&Kalb)

[image: Abbildung 33...]

Abbildung 33 Schema der I2C-Analogkarte (Fa. Horter&Kalb)

Das Interface zum Arduino wird durch die beiden I2C-Leitungen SCL und SDA gebildet. Über die Jumper JP2-JP0 (A2–A0 am PCF8591) erfolgt die Adressierung des Bausteins am I2C-Bus, wodurch acht PCF8591 am selben I2C-Bus betrieben werden können.

Für unseren Inbetriebnahmetest wird der Analogeingang AIN0 mit dem Analogausgang Aout+ verbunden, um die Kennlinie des AD-DA-Systems zu erfassen. Außerdem ist Aout+ mit S+ am Stecker ST2 direkt zu brücken.

Der Operationsverstärker muss an einer separaten Versorgungsspannung von 12 V DC betrieben werden, um bei der gegebenen Dimensionierung den Ausgangsspannungsbereich von 0 – 10 V sicher zu stellen. Die 5V-Spannungsversorgung kann vom Arduino aus erfolgen.

Die I2C-Bus-Basisadresse für den PCF8591 ist 0x90 und damit identisch zu der des LM75. Um hier möglichen Adresskonflikten (bei gleichzeitigem Betrieb von LM75 und PCF8591 am gleichen Arduino) aus dem Weg zu gehen, verbinden wir hier die Eingänge A2-A0 über die Jumper JP2-JP0 mit 5 V. Dadurch erhalten wir die Adresse 0x9E für unser Programmbeispiel PCF8591.pde

Die DA- bzw. AD-Umsetzung mit einem PCF8591 setzt die in Abbildung 34 dargestellte Kommunikation zwischen dem Arduino (I2C-Bus-Master) und dem PCF8591 voraus.

[image: Abbildung 34...]

Abbildung 34 I2C-Bus-Kommunikation mit PCF8591

Sowohl DA- als auch AD-Umsetzung beginnen jeweils mit der Adressierung des PCF8591.

Bei der DA-Umsetzung wird als erstes Datenbyte das Controlbyte gesendet, welches den PCF8591 konfiguriert. Im Falle einer DA-Umsetzung ist hier nur das Analog Output Enable Flag zu setzen, wodurch das Controlbyte den Wert 0x40 annimmt. Der restliche Inhalt des Controlbytes ist für die DA-Umsetzung unerheblich, konfiguriert aber das Verhalten des AD-Umsetzers für eine (irgendwann) folgende AD-Umsetzung (Abbildung 35).

Bei der AD-Umsetzung wird wiederum zuerst das Controlbyte gesendet, welches hier die Zuordnung der Eingänge u.a. festlegt, bevor das Ergebnis der AD-Umsetzung gelesen werden kann. Das erste Ergebnisbyte ist dabei das Ergebnis der vorangegangenen AD-Umsetzung und das zweite Ergebnisbyte ist das Ergebnis der gerade ausgelösten AD-Umsetzung.

[image: Abbildung 35...]

Abbildung 35 PCF8591 Control Byte

In unserem in Listing 8 dargestellten Programmbeispiel wollen wir den Ausgangswert des DA-Umsetzers mit Kanal 0 des AD-Umsetzers (als Single-Ended geschaltet) abfragen. Das Controlbyte behält in diesem Fall den Wert 0x40, da alle den AD-Umsetzer betreffenden Bits gleich Null sind. Einige Controlbytes sind als Defines zu Beginn des Programms notiert. Aus Abbildung 35 lassen sich alle weiteren ableiten.

Die Funktionen putDAC() und getADC() widerspiegeln die in Abbildung 34 gezeigten Sequenzen und weisen keine Besonderheiten auf.

In der Endlosschleife des Programmbeispiels wird ein Wert vom DA-Umsetzer ausgegeben und über den AD-Umsetzer zurückgelesen. Bei jedem Schleifendurchlauf wird der auszugebende Wert um Eins erhöht. Die beide Zahlenwerte (DAC, ADC) und deren Differenz werden bei jedem Schleifendurchlauf seriell ausgegeben und können am Monitor verfolgt werden. Idealerweise wären beide Werte identisch. Gemäss Datenblatt des PCF8591 ist aber mit einer Abweichung bei jedem Umsetzer von bis zu +/- 1.5 LSB zu rechnen. Abbildung 36 zeigt die Ausgaben des Programms PCF8591.pde.

// ---

// Verbindungen I2C-Analog - Arduino

// SCL SDA GND +5V

// I2C-Analog ST1-SCL ST1-SDA ST1-GND ST1-5V

// Arduino A5 A4 GND 5

//

#include <Wire.h>

#define PCF8591 (0x9E >> 1) // Deviceadresse = 7 Bit

#define PCF8591_DAC_ENABLE 0x40

#define PCF8591_ADC_CH0 0x40

#define PCF8591_ADC_CH1 0x41

#define PCF8591_ADC_CH2 0x42

#define PCF8591_ADC_CH3 0x43

#define PURPOSE "Test of PCF8591"

const byte LED = 13;

byte adc_value, dac_value=0;

void putDAC(byte dac_value)

{

Wire.beginTransmission(PCF8591);

Wire.send(PCF8591_DAC_ENABLE);

Wire.send(dac_value);

Wire.endTransmission();

}

byte getADC(byte config)

{

Wire.beginTransmission(PCF8591);

Wire.send(config);

Wire.endTransmission();

Wire.requestFrom((int) PCF8591,2);

while (Wire.available())

{

adc_value = Wire.receive();

adc_value = Wire.receive();

}

return adc_value;

}

void setup()

{

pinMode(LED, OUTPUT);

Serial.begin(19200);

Wire.begin();

Serial.println(PURPOSE);

Serial.println("DAC\tADC\tADC-DAC");

}

void loop()

{

putDAC(dac_value); // DAC Wert setzen

digitalWrite(LED, 1); // LED ein

delay(10);

adc_value = getADC(PCF8591_ADC_CH0); // ADC Wert von Kanal0

auslesen

digitalWrite(LED, 0); // LED aus

Serial.print(dac_value, HEX); // DAC Wert ausgeben

Serial.print("\t");

Serial.print(adc_value, HEX); // ADC Wert ausgeben

Serial.print("\t");

Serial.println(dac_value - adc_value); // Abweichung berechnen

und ausgeben

dac_value++;

delay(200);

}

Listing 8 Quelltext PCF8591.pde

[image: Abbildung 36...]

Abbildung 36 Ausgaben des Programms PCF8591.pde

Um die Eigenschaften des PCF8591-AD-DA-Systems zu verdeutlichen, wurde ein kompletter Durchlauf im Terminalprogramm mitgeschnitten und einer Auswertung unterzogen.

Abbildung 37 zeigt die Abweichungen des Wertes des AD-Umsetzers von den Vorgaben des DA-Umsetzers bei der I2C-Analogkarte. Es ist deutlich erkennbar, dass die meisten Werte 2 oder 3 LSB abweichen. Nur bei den Anfangswerten kleiner 3 LSB war auch die Abweichung kleiner, was auf eine Offsetspannung der diesbezüglich nicht abgeglichenen I2C-Analogkarte zurückzuführen ist.

[image: Abbildung 37...]

Abbildung 37 Abweichungen DAC-ADC bei der I2C-Analogkarte

4.7 Debugging Display

Will man die serielle Schnittstelle des Arduino nicht für Debugging-Ausgaben blockieren, dann bietet sich ein zusätzliches serielles LCD für diese Aufgabe an.

LCDs mit seriellem Interface gibt es für den I2C-Bus oder für den direkten Anschluss an einen UART mit TTL-Pegeln. LCDs, die eine komplette RS-232-Schnittstelle mit den entsprechenden Pegeln bereitstellen, sind hier weniger gefragt.

Ein I2C-taugliches LCD wird man vorteilhaft da einsetzen, wo es bereits weitere I2C-Bausteine gibt.

Wir wollen hier ein LCD mit seriellem TTL-Interface ansehen. Zur Übertragung der Anzeigeinformationen wird nur die Transmit-Leitung (Tx), also ein nahezu beliebiger Pin des Arduino, verwendet.

LCDs mit seriellem TTL-Interface gibt es von den verschiedensten Herstellern. Wir verwenden hier das Serial Enabled 16x2 LCD - White on Black 5V (LCD-09395) von SparkFun [7]. Abbildung 38 zeigt das LCD mit den Anschlüssen für VCC, GND und Tx. Das LCD gibt es von Sparkfun mit unterschiedlichen Farben, die hier aber ohne Bedeutung sind.

[image: Abbildung 38...]

Abbildung 38 Serielles LCD von SparkFun

Der auf dem Board befindliche Mikrocontroller verarbeitet den seriellen TTL-Input und sendet die Zeichen an das LCD. Die installierte Firmware stellt eine Reihe von Kommandos zur Verfügung, mit denen z.B. der LCD-Anzeigeninhalt gelöscht, der Cursor positioniert, die Hintergrundbeleuchtung angepasst, das LCD ein- bzw. ausgeschaltet werden können u.a.m. Das LCD ist kompatibel zum weit verbreiteten HD44780.

Die Kommunikation zwischen dem Arduino und dem seriellen LCD erfolgt mit 5V TTL und einer Baudrate von 9600 (default). Die Baudrate kann zwischen 2400 und 38400 Baud eingestellt werden.

Im nachfolgend beschriebenen Programmbeispiel DebugLCD.pde (Listing 9) wird die Library NewSoftSerial verwendet, die einen interrupt-gesteuerten, seriellen Empfang ermöglicht und damit eine dramatische Verbesserung gegenüber der ursprünglichen, im Polling-Mode arbeitenden Library SoftwareSerial bietet. Die Library NewSoftSerial kann von der Website http://arduiniana.org/libraries/NewSoftSerial/ heruntergeladen werden.

Das HD44780-kompatible LCD wird durch zahlreiche Kommandos gesteuert, die im Detail im Datenblatt von Hitachi [8] erläutert werden. Für unsere Zwecke hier reichen die Angaben in den beiden folgenden Tabellen. Tabelle 5 zeigt einen Auszug aus dem Kommandoset des HD44780 LCDs.

	HD44780 commands

	Clear Display

	0x01

	Move cursor right one

	0x14

	Move cursor lel”l one

	0x10

	Scroll right

	OxlC

	Scroll left

	0x18

	Turn visual display on

	OxOC

	Turn visual display off

	0x08

	Underline cursor on

	OxOE

	Underline cursor off

	OxOC

	Blinking box cursor on

	OxOD

	Blinking box cursor off

	OxOC

	Set cursor position

	0x80 +

[image: image1]

Tabelle 5 LCD Kommandos

Damit Daten und Kommandos vom LCD-Controller unterschieden werden können, ist einem Kommando stets das Kommandobyte 0xFE voranzustellen. Zum Löschen des Displayinhalts ist dann beispielsweise die Bytefolge {0xFE} {0x01} zu senden.

Will man bei einem LCD mit 2 Zeilen zu je 16 Zeichen den Cursor an den Beginn der zweiten Zeile positionieren, dann ist die Bytefolge {0xFE} {0xC0} zu senden. Gemäß Tabelle 5 und Tabelle 6 berechnet sich diese Position aus 0x80 + 0x40 (= 64D) zu 0xC0. Im Quelltext des Programmbeispiels DebugLCD.pde (Listing 9) finden wir diese LCD Kommandos wieder.

	16 Character Displays

	Line Number

	Viewahle Cursor Positions

	1

	0-15

	2

	64-79

	3

	16-31

	4

	80-95

[image: image1]

Tabelle 6 Cursorpositionen im darstellbaren Bereich

//

// Title : Debugging LCD with serial interface

// Author : Claus Kühnel

// Date : 2010-05-15

// Id : DebugLCD.pde

// Version : 0018

// Micro : Arduino Duemilanove w/ ATmega328

//

// DISCLAIMER:

// The author is in no way responsible for any problems or damage caused by

// using this code. Use at your own risk.

//

// LICENSE:

// This code is distributed under the GNU Public License

// which can be found at http://www.gnu.org/licenses/gpl.txt

//

// see http://arduiniana.org/libraries/NewSoftSerial/

#include <NewSoftSerial.h>

#define DEBUG 1

unsigned int count = 65530;

const int LED = 13; // LED an Pin13

void flash() // Toggle LED

{

static boolean output = HIGH;

digitalWrite(LED,output);

output = !output;

}

NewSoftSerial mySerial(2, 3); // mySerial(RX, TX, Pol)

void setup()

{

Serial.begin(57600);

Serial.println("Application running...");

// set the data rate for the NewSoftSerial port

mySerial.begin(9600);

mySerial.print(0xFE, BYTE); // Clear Screen

mySerial.print(0x01, BYTE);

delay(5);

if (DEBUG)

{

int ver = NewSoftSerial::library_version();

mySerial.print("DebugLCD");

mySerial.print(0xFE, BYTE); // New Line

mySerial.print(0xC0, BYTE);

mySerial.print("NSS V"); // print version of NewSoftSerial library

mySerial.print(ver);

delay(1500);

mySerial.print(0xFE, BYTE); // Clear Screen

mySerial.print(0x01, BYTE);

delay(5);

}

else

{

mySerial.print("No Debug Info");

}

}

void loop() // run over and over again

{

flash();

if (DEBUG)

{

mySerial.print(0xFE, BYTE); // New Line

mySerial.print(0x81, BYTE);

mySerial.print("Count = ");

if (count < 10000) mySerial.print(" ");

if (count < 1000) mySerial.print(" ");

if (count < 100) mySerial.print(" ");

if (count < 10) mySerial.print(" ");

mySerial.print(count++);

}

delay(250);

}

Listing 9 Quelltext DebugLCD.pde

Die Debugging-Ausgaben werden durch #define DEBUG 1 gesteuert. Setzt man DEBUG auf 0, dann werden die Debugging-Ausgaben unterdrückt.

Die Funktion flash() steht für eine beliebige Funktion, die in der Hauptschleife loop() mindestens aufgerufen wird.

Eine serielle Schnittstelle kann durch NewSoftSerial mySerial(RX, TX, Pol) definiert werden. Mit RX und TX werden die Pins für Receive (Empfangen) und Transmit (Senden) festgelegt. Der Parameter Pol ermöglicht sowohl invertierenden als auch nicht invertierenden Betrieb.

In der Funktion setup() wird die standardmäßige serielle Schnittstelle hier mit 57600 Baud initialisiert, während die zum Debugging-Display mit 9600 Baud eingestellt wird.

Nach dem Löschen des Displayinhalts erfolgt bei aktiviertem Debugging die Ausgabe gemäß Abbildung 39.

[image: Abbildung 39...]

Abbildung 39 Debugging-Ausgabe während Setup

In der Hauptschleife wird die Funktion flash() aufgerufen, die die LED in jedem Zyklus umschaltet und somit zum Blinken bringt. Im Debug Mode wird schließlich eine Countervariable angezeigt und incrementiert (hochgezählt). Diese Ausgabe hat natürlich an sich wenig Sinn, soll aber stellvertretend für eine Debugging-Ausgabe in der Hauptschleife stehen.

4.8 RTC und SD Card Erweiterung

Beim Aufbau von Messsystemen (z.B. Dataloggern) spielen Uhrzeit und externer Speicher eine große Rolle. Das Data Logging Shield von Adafruit [9] vereint beide Funktionen auf einem Shield und bietet des Weiteren noch einen kleinen Prototypenbereich, der für diverse Sensoren genutzt werden kann. Abbildung 40 zeigt ein Adafruit Data Logging Shield auf einen Arduino Duemilanove aufgesteckt.

[image: Abbildung 40...]

Abbildung 40 Adafruit Data Logging Shield

Im Adafruit Data Logging Shield wird der Baustein DS1307 als RTC eingesetzt. Der Baustein DS1307 ist ein I2C-Device und verwendet die Pins AnalogIn 4 (SDA) und AnalogIn 5 (SCL) für die Kommunikation. Die Anwendung des DS1307 wird durch eine RTC Library unterstützt und kann von der Website http://github.com/adafruit/RTClib heruntergeladen werden.

Des Weiteren stellt das Adafruit Data Logging Shield einen Slot für eine SD Card als externes Speichermedium zur Verfügung.

Eine geringe Kapazität an nichtflüchtigem Speicher steht bereits durch das interne EEPROM des ATmega328 zur Verfügung. Allerdings ist es auf 1 KByte beschränkt und nicht mit der Kapazität von heutigen SD Cards zu vergleichen.

SdFat ist eine Library für den ATmega328, welche FAT16 und FAT32 Filesystems auf Standard- und High Capacity SD Cards unterstützt. Die SdFat Library kann von der Website http://code.google.com/p/sdfatlib/ heruntergeladen werden.

SdFat weist die folgenden Merkmale auf:

	Unterstützung von kurzen (8.3) Dateinamen

	Erzeugen, Löschen, Lesen, Schreiben und Anhängen von Dateien

	Zugriff auf Subdirectories, Erzeugen und Löschen von Subdirectories

	Beinhaltet zahlreiche Anwendungsbeispiele

	Eine kleinere FAT16 Library ist verfügbar unter http://code.google.-com/p/fat16lib/

[image: Abbildung 41 SD Card]

Abbildung 41 SD Card

Beim Kauf von SD-Cards (Abbildung 41) sind diese im Allgemeinen mit einem FAT16 oder FAT32 Filesystem vorformatiert.

Kleinere SD Cards mit 8–32 MByte können mit einem FAT12 Filesystem vorformatiert sein. FAT12 wird durch die SdFat Library nicht unterstützt und diese SD Cards müssen dann neu formatiert werden.

Zur Formatierung von SD Cards gibt es ein spezielles Tool für den PC, welches von der Website http://www.sdcard.org/consumers/formatter/ heruntergeladen werden kann.

Das in Listing 10 gezeigte Programmbeispiel DataLogger.pde ist aus den Beispielen der Library abgeleitet und kann als Template für eine Datenlogger-Anwendung dienen.

//

// Title : Datalogger

// Author : Claus Kühnel

// Date : 2010-06-19

// Id : DataLogger.pde

// Version : 0018

// Micro : Arduino Duemilanove w/ ATmega328

//

// DISCLAIMER:

// The author is in no way responsible for any problems or damage caused by

// using this code. Use at your own risk.

//

// LICENSE:

// This code is distributed under the GNU Public License

// which can be found at http://www.gnu.org/licenses/gpl.txt

//

--

//

#include <SdFat.h>

#include <Wire.h>

#include "RTClib.h"

#define LOG_INTERVAL 1000 // mills between entries

#define ECHO_TO_SERIAL 1 // echo data to serial port

#define WAIT_TO_START 0 // Wait for serial input in setup()

#define SYNC_INTERVAL 5000 // mills between calls to sync()

uint32_t syncTime = 0; // time of last sync()

float fData; // data value for logging

// program version

#define VERSION "1.1"

// the digital pins that connect to the LEDs

#define redLEDpin 3

#define greenLEDpin 4

RTC_DS1307 RTC; // define the Real Time Clock object

// The objects to talk to the SD card

Sd2Card card;

SdVolume volume;

SdFile root;

SdFile file;

void error(char *str)

{

Serial.print("error: ");

Serial.println(str);

Serial.println("Program stopped.");

while(1);

}

float get_data(void)

{

float _fdata;

// replace the next line (get random data) by your get data function

_fdata = (float) random(10000)/10;

return _fdata;

}

void setup(void)

{

// Queries an unconnected analog input to get a random init randomSeed(analogRead(0));

Serial.begin(9600);

Serial.println();

Serial.print("Data Logger V");

Serial.println(VERSION);

#if WAIT_TO_START

Serial.println("Type any character to start");

while (!Serial.available());

#endif //WAIT_TO_START

// initialize the SD card

if (!card.init()) error("card.init");

// initialize a FAT volume

if (!volume.init(card)) error("volume.init");

// open root directory

if (!root.openRoot(volume)) error("openRoot");

// create a new file

char name[] = "LOGGER00.CSV";

for (uint8_t i = 0; i < 100; i++) {

name[6] = i/10 + '0';

name[7] = i%10 + '0';

if (file.open(root, name, O_CREAT | O_EXCL | O_WRITE)) break;

}

if (!file.isOpen()) error ("file.create");

Serial.print("Logging to: ");

Serial.println(name);

// write header

file.writeError = 0;

Wire.begin();

if (!RTC.begin()) {

file.println("RTC failed");

#if ECHO_TO_SERIAL

Serial.println("RTC failed");

#endif //ECHO_TO_SERIAL

}

file.println("date, time, data");

#if ECHO_TO_SERIAL

Serial.println("date, time, data");

#endif //ECHO_TO_SERIAL

// attempt to write out the header to the file

if (file.writeError || !file.sync()) {

error("write header");

}

pinMode(redLEDpin, OUTPUT);

pinMode(greenLEDpin, OUTPUT);

}

void loop(void)

{

// clear print error

file.writeError = 0;

// delay for the amount of time we want between readings

delay((LOG_INTERVAL -1) - (millis() % LOG_INTERVAL));

digitalWrite(redLEDpin, HIGH);

// log milliseconds since starting

uint32_t m = millis();

// fetch the time

DateTime now = RTC.now();

// log time

file.print(now.year(), DEC);

file.print("-");

file.print(now.month(), DEC);

file.print("-");

file.print(now.day(), DEC);

file.print(", ");

file.print(now.hour(), DEC);

file.print(":");

file.print(now.minute(), DEC);

file.print(":");

file.print(now.second(), DEC);

#if ECHO_TO_SERIAL

Serial.print(now.year(), DEC);

Serial.print("-");

Serial.print(now.month(), DEC);

Serial.print("-");

Serial.print(now.day(), DEC);

Serial.print(" ");

Serial.print(now.hour(), DEC);

Serial.print(":");

Serial.print(now.minute(), DEC);

Serial.print(":");

Serial.print(now.second(), DEC);

#endif //ECHO_TO_SERIAL

fData = get_data();

file.print(", ");

file.println(fData, 1);

#if ECHO_TO_SERIAL

Serial.print(" ");

Serial.println(fData, 1);

#endif //ECHO_TO_SERIAL

if (file.writeError) error("write data");

digitalWrite(redLEDpin, LOW);

//don't sync too often - requires 2048 bytes of I/O to SD card if ((millis() - syncTime) < SYNC_INTERVAL)

return; syncTime = millis();

// blink LED to show we are syncing data to the card & updating FAT!

digitalWrite(greenLEDpin, HIGH);

if (!file.sync()) error("sync");

digitalWrite(greenLEDpin, LOW);

}

Listing 10 Quelltext DataLogger.pde

Mit den folgenden #defines wird das Programm konfiguriert:

		LOG_INTERVAL

	bezeichnet den Aufruf der Loggingfunktion in ms

		ECHO_TO_SERIAL 1

	sendet Daten zum seriellen Port, wenn 1

		WAIT_TO_START 0

	wartet nicht auf einen Input beim Aufruf von setup(), wenn 0

		SYNC_INTERVAL

	Synchronisationsintervall mit der SD Card in ms

[image: image1]

Beim laufenden Programm zeigen die rote LED den Zugriff auf die RTC und die Funktion get_data() und die grüne LED die Synchronisation mit der SD Card an.

Zu Programmbeginn werden die erforderlichen Objekte definiert. Für die RTC ist das das Objekt RTC und für die SD Card sind es die Objekte card, volume, root und file.

Die Funktion error(char *str) wird im Fehlerfall aufgerufen. Der übergebene String kennzeichnet den Fehler und das Programm geht in eine Endlosschleife ohne Funktion.

Die Funktion get_data() steht stellvertretend für eine beliebige Funktion zur Abfrage von Sensoren oder anderen zu loggenden Daten. Hier wird eine Pseudo-Zufallszahl erzeugt und als Gleitkommazahl zurückgegeben. Damit die die Pseudo-Zufallszahlenfolge mit einem zufälligen Startwert initialisiert wird, erfolgt im setup() die Initialisierung nach Abfrage eines unbeschalteten Analogeingangs in der Form randomSeed(analogRead(0)).

Beim der Verwendung von Pseudo-Zufallszahlen kann es zur anfänglichen Fehlersuche hilfreich sein, diese zufällige Initialisierung auszukommentieren. Dann erhält man nach Programmstart bei mehrmaligem Aufruf der Funktion random() stets die gleiche Zahlenfolge.

Die Initialisierung des Filesystems der SD Card ist eine weitere Funktion im Setup, welche durch Aufruf der Libraryfunktionen card.init(), volume.init(card) und root.openRoot(volume) erfolgt.

Die Loggingdaten werden in CSV-Files auf der SD Card geschrieben, deren Namen nach dem folgenden Muster gebildet werden:

LOGGER00.CSV

LOGGER01.CSV

…

LOGGER99.CSV

Vom Programm wird der jeweils höchste Index gesucht und dieser für das neue File um Eins erhöht. Der höchste Index ist hier 99, dann wird ein Fehler signalisiert. Hat man hinreichend große Speicherkapazität, dann kann dieser Bereich auch durchaus erweitert werden.

Die letzten Aktionen im Setup sind der Aufbau der Kommunikation zur RTC, das Schreiben der Überschrift ins Logfile und die Initialisierung der LED-Ausgänge.

In der Endlosschleife loop() erfolgt die Berechnung der Zeit zwischen zwei Datenerfassungen durch die Funktion delay((LOG_INTERVAL -1) - (millis() % LOG_INTERVAL)). Die Funktion millis() gibt die seit Programmstart vergangene Zeit in ms zurück.

Es schließt sich die Abfrage von Datum und Uhrzeit von der RTC an, die den Abtastzeitpunkt charakterisierend auch anschließend in das Logfile geschrieben werden. Die Funktion get_data() liefert schließlich den zugehörigen Datenwert, der ebenfalls ins Logfile geschrieben wird.

Ist das Synchronisationsintervall erreicht, dann erfolgt das Schreiben der Daten auf die SD Card durch Aufruf der Funktion file.sync(). Die gespeicherten Daten sind im nachfolgend dargestellten Format auf der SD Card abgelegt und können mit jedem Texteditor gelesen oder in eine Tabellenkalkulation übernommen werden.

date, time, data

2010-6-19, 13:1:7, 304.6

2010-6-19, 13:1:8, 541.9

2010-6-19, 13:1:9, 819.9

2010-6-19, 13:1:10, 179.3

2010-6-19, 13:1:11, 249.3

Die RTC-Baustein DS1307 ist auf dem Adafruit Data Logging Shield batteriegepuffert. Einmal eingestellt, sollte die Uhrzeit auch nach einer Unterbrechung der Stromversorgung im Rahmen der gegebenen Genauigkeit verfügbar sein. Dennoch ist die Uhr mindestens einmal zu stellen.

Will man ein aufwendiges Programm zum Einstellen der RTC vermeiden, dann kann man auch einen einfachen Trick der Arduino IDE ausnutzen.

In den Variablen __DATE__ und __TIME__ werden Datum und Zeitpunkt der Compilation des betreffenden Programms festgehalten. Listing 11 zeigt wie diese Informationen zum Setzen von Datum und Uhrzeit der RTC verwendet werden können. Bis auf #define VT100 1 zeigt das Programmbeispiel nichts Neues.

//

// Title : Setzen von Datum und Uhrzeit bei RTC DS1307

// Author : Claus Kühnel

// Date : 2010-05-29

// Id : DS1307_Setup.pde

// Version : 0018

// Micro : Arduino Duemilanove w/ ATmega328

//

// DISCLAIMER:

// The author is in no way responsible for any problems or damage caused by

// using this code. Use at your own risk.

//

// LICENSE:

// This code is distributed under the GNU Public License

// which can be found at http://www.gnu.org/licenses/gpl.txt

//

--

//

#include <Wire.h>

#include "RTClib.h"

#define VT100 1 // set to 1 for VT100 terminal

RTC_DS1307 RTC;

void setup () {

Serial.begin(9600);

Wire.begin();

RTC.begin();

if (! RTC.isrunning()) Serial.println("RTC is NOT running!");

// following line sets the RTC to the date & time this sketch was compiled

RTC.adjust(DateTime(__DATE__, __TIME__));

}

void loop ()

{

DateTime now = RTC.now();

Serial.print(now.year(), DEC);

Serial.print('-');

Serial.print(now.month(), DEC);

Serial.print('-');

Serial.print(now.day(), DEC);

Serial.print(' ');

Serial.print(now.hour(), DEC);

Serial.print(':');

Serial.print(now.minute(), DEC);

Serial.print(':');

Serial.print(now.second(), DEC);

delay(1000);

#if VT100

Serial.print(27, BYTE);

Serial.print("[1K");

Serial.print(27, BYTE);

Serial.print("[H");

#else

Serial.println();

#endif

}

Listing 11 Quelltext DS1307_Setup.pde

Um die Zeitangaben im Terminalprogramm besser verfolgen zu können, wurden einige VT100-Kommandos zum Löschen von Anzeigeninhalt und Platzierung des Cursors verwendet. Bedingung dafür ist, dass das Terminalprogramm den VT100-Modus beherrscht [10][11].

Das hier verwendete Terminalprogramm PuTTY [12] ist ein SSH und Telnet Client für Windows. Das von Simon Tatham entwickelte Programm steht als Open Source zur Verfügung und kann von www.putty.org heruntergeladen werden. Abbildung 42 zeigt den auf die Anzeige reduzierten Ausschnitt des PuTTY Screens.

[image: Abbildung 42 Terminalausgabe im VT-100 Mode]

Abbildung 42 Terminalausgabe im VT-100 Mode

Wem die vorgestellte Möglichkeit zum Stellen der Uhr zu wenig Flexibilität bietet, der kann auch den UNIX Timestamp für diese Zwecke nutzen.

Seit Unix Version 6 zählt die Unixzeit die vergangenen Sekunden seit dem 1. Januar 1970 00:00 Uhr UTC, wobei Schaltsekunden nicht mitgezählt werden. Zur Berechnung der UNIX Timestamp findet man zahlreiche Online Tools. Abbildung 43 zeigt ein Beispiel [13].

[image: Abbildung43 Unix Timestamp Converter]

Abbildung 43 Unix Timestamp Converter

Mit einem solchen Timestamp Converter kann man Timestamps für beliebige Zeiten erstellen und muss diese nur zum richtigen Zeitpunkt dem RTC des Arduino mitteilen. Das folgende Programmbeispiel DS1307_Setup_1.pde zeigt dafür eine Möglichkeit.

Da das Programm im Wesentlichen der Time Library entnommen und nur leicht angepasst wurde, sollen an dieser Stelle nur die wichtigen Punkte erläutert werden.

In der Hauptschleife des Programms wird bei jedem Durchlauf auf Daten an der seriellen Schnittstelle geschaut. Wurden Daten empfangen, dann wird das Datenpaket durch die Funktion time_t t = processSyncMessage() analysiert und in der Variablen t zurückgegeben. Ist diese Zeit verschieden von 0, dann kann die Zeit des RTC auf diese Zeit eingestellt werden. Abbildung 44 zeigt den Vorgang nach Senden des Strings T1278237263 gemäß Abbildung 43.

//

// Title : Setup DS1307 RTC by UNIX Time String

// Author : Claus Kühnel

// Date : 2010-07-04

// Id : SetupDS1307-1.pde

// Based on : TimeRTCSet from Time Library

// Version : 0018

// Micro : Arduino Duemilanove w/ ATmega328

//

// DISCLAIMER:

// The author is in no way responsible for any problems or damage caused by

// using this code. Use at your own risk.

//

// LICENSE:

// This code is distributed under the GNU Public License

// which can be found at http://www.gnu.org/licenses/gpl.txt

//

//

#include <Time.h>

#include <Wire.h>

#include <DS1307RTC.h> // a basic DS1307 library that returns time as a time_t

// code to process time sync messages from the serial port

#define TIME_MSG_LEN 11 // time sync to PC is T followed by unix time_t

#define TIME_HEADER 'T' // Header tag for serial time sync message

void setup()

{

Serial.begin(9600);

setSyncProvider(RTC.get); // function to get the time from RTC

if(timeStatus()!= timeSet)

Serial.println("Unable to sync with the RTC");

else

Serial.println("RTC has set the system time");

}

void loop()

{

if(Serial.available())

{

time_t t = processSyncMessage();

if(t >0)

{

RTC.set(t); // set the RTC and the system time to the received value

setTime(t);

}

}

digitalClockDisplay();

delay(1000);

}

void digitalClockDisplay(){

// digital clock display of the time

Serial.print(year());

Serial.print("-");

Serial.print(month());

Serial.print("-");

Serial.print(day());

Serial.print(" ");

Serial.print(hour());

printDigits(minute());

printDigits(second());

Serial.println();

}

void printDigits(int digits){

// utility function for digital clock display: prints preceding colon and leading 0

Serial.print(":");

if(digits < 10)

Serial.print('0');

Serial.print(digits);

}

time_t processSyncMessage()

{ // return the time if a valid sync message is received on the serial port.

while(Serial.available() >= TIME_MSG_LEN)

{ // time message consists of a header and ten ascii digits

char c = Serial.read() ;

Serial.print(c);

if(c == TIME_HEADER) {

time_t pctime = 0;

for(int i=0; i < TIME_MSG_LEN -1; i++) {

c = Serial.read();

if(c >= '0' && c <= '9'){

pctime = (10 * pctime) + (c - '0') ; // convert digits to a number

}

}

return pctime;

}

}

return 0;

}

Listing 12 Quelltext DS1307_Setup_1.pde

[image: Abbildung 44 Setzen der RTC durch UNIX Timestamp]

Abbildung 44 Setzen der RTC durch UNIX Timestamp

4.9 RFID Reader

Es gibt zahlreiche Gründe Messsysteme vor unberechtigter Benutzung zu schützen. Eine Möglichkeit hierzu ist der Einsatz von RFID-Transpondern zur kontaktlosen Benutzeridentifikation.

Passive Transponder beziehen die erforderliche Energie aus dem HF-Signal der Basisstation und kommen deshalb ganz ohne eigene Batterie aus, sind sehr robust und vollkommen wartungsfrei.

Derzeit gibt es keinen einheitlichen RFID-Standard, der ein bestimmtes Frequenzband vorschreibt. Es gibt Systeme, die mit Frequenzen von 125 kHz, 13,56 MHz und 866 MHz arbeiten. Die einzelnen Frequenzbänder bieten verschiedene Vorteile in Bezug auf Lesegeschwindigkeit, Reichweite, Preis und Einsatzfähigkeit.

In Bereich von 125 kHz lassen sich kostengünstige Systeme für Benutzeridentifikation, Zugangskontrollen, Wegfahrsperren u.s.w. aufbauen. Die Lesegeschwindigkeit und Reichweite ist relativ gering. Die Preise für die betreffenden Transponder (RFID Tags) sind gering und die Einsatzmöglichkeiten in rauen Umgebungen sind sehr gut.

Abbildung 45 zeigt eine Auswahl unterschiedlicher Ausführungsformen von RFID-Tags.

[image: Abbildung 45 Ausführungsformen von RFID Tags]

Abbildung 45 Ausführungsformen von RFID Tags

Im linken Bild ist eine sogenannter Logi Tag gezeigt, gefolgt von einem Glas Tag, einem Nail Tag (Nagel Tag) sowie einem Keyfob Tag (Schlüsselanhänger).

Basis für die hier eingesetzten RFID Tags ist der Baustein EM4102 von EM Microelectronic [14]. Durch Laserprogrammierung wird der Chip mit einer einzigartigen Seriennummer versehen, die für Identifikationsaufgaben herangezogen werden kann.

Als RFID-Reader setzen wir hier eine OEM-Baugruppe vom Typ OEM-S-R28e-232, Reader,TTL/RS232 von der Fa. R.S.Systems (www.rss-systems.de) ein, die durch die verschiedenen Schnittstellen für die Evaluation und Demonstrationen der RFID Technik in SHORT-RANGE Bereich sowie das Festlegen von Transponder-Leseabständen für ein späteres Projekt u.a.m. besonders geeignet ist [15]. Abbildung 46 zeigt das verwendete RFID Reader Board.

[image: Abbildung 46 RFID Reader Board]

Abbildung 46 RFID Reader Board

Die rote LED signalisiert die anliegende Betriebsspannung (Power On) und die grüne LED blinkt, wenn der RFID Reader von einem RFID Tag im Bereich der Leseentfernung Daten empfängt. Die Daten sind in ein Paket von 10 Byte verpackt.

Da das RFID Reader Board mit 5V gespeist werden kann genügen drei Leitungen (VCC, GND, Tx-Rx) zum Anschluss an einen Arduino. Abbildung 47 zeigt die Verbindung des RFID Reader Boards mit einem Arduino Duemilanove und einem Arduino ProtoShield. Im rechten Bild ist deutlich die OnBoard-Antenne auf der Rückseite des RFID Reader Boards zu erkennen.

[image: Abbildung 47 RFID Reader..]

Abbildung 47 RFID Reader Board mit Arduino ProtoShield/Arduino 2009

In Listing 13 ist ein Programmbeispiel zum Lesen des RFID Reader gezeigt. Es sind wiederum zwei serielle Schnittstellen implementiert. Die Arduino Standardschnittstelle kommuniziert hier mit 57600 Baud mit dem angeschlossenen PC, während die Softwareschnittstelle über das Pin IO2 mit 4800 Baud die Daten vom RFID Reader empfängt.

Die empfangenen Daten werden im Debug Mode zeichenweise ausgegeben und im Normal Mode in der Stringvariablen content abgelegt. Mit dem Inhalt dieser Variablen kann eine Identifikation organisiert werden. Abbildung 48 zeigt die Terminalausgaben im Debug Mode, während Abbildung 49 die Ausgaben im Normal Mode zeigt.

//

// Title : Reading RFID Tags by OEM Module

// Author : Claus Kühnel

// Date : 2010-05-15

// Id : ReadRFID.pde

// Version : 0018

// Micro : Arduino Duemilanove w/ ATmega328

//

// DISCLAIMER:

// The author is in no way responsible for any problems or damage caused by

// using this code. Use at your own risk.

//

// LICENSE:

// This code is distributed under the GNU Public License

// which can be found at http://www.gnu.org/licenses/gpl.txt

//

//

#include <NewSoftSerial.h> // see http://arduiniana.org/libraries/NewSoftSerial/

#define DEBUG 0

const int LED = 13; // LED an Pin13

char i=0;

char c;

char content[] = "%%%%%%%%%%";

void flash() // Toggle LED

{

static boolean output = HIGH;

digitalWrite(LED,output);

output = !output;

}

NewSoftSerial mySerial(2, 3); // mySerial(RX, TX, Pol)

void setup()

{

Serial.begin(57600);

Serial.println("RFID Reader is running...");

// set the data rate for the NewSoftSerial port

mySerial.begin(4800);

}

void loop() // run over and over again

{

flash();

if (mySerial.available())

{

c = (char) mySerial.read();

if (c != ' ')

{

if (DEBUG) Serial.print(c);

content[i] = c;

i++;

if (i==10)

{

if (!DEBUG)

{

Serial.print("Read RFID Content = ");

Serial.print(content);

}

Serial.println();

i=0;

}

}

}

}

Listing 13 Quelltext ReadRFID.pde

[image: Abbildung 48 Terminalausgaben im Debug Mode]

Abbildung 48 Terminalausgaben im Debug Mode

[image: Abbildung 49 Terminalausgaben im Normal Mode]

Abbildung 49 Terminalausgaben im Normal Mode

5. Netzwerkapplikationen

In diesem Abschnit werden weitere Anwendungen vorgestellt, die unter Verwendung des Arduino Ethernet Shields von Sparkfun (DEV-09026) [16] netzwerkfähige Anwendungen möglich machen. Es gibt weitere auf dem Wiznet W5100 Chip [17] basierende Ethernet Shields von Seeed [18] und NKC [19], die alle zum hier eingesetzten Ethernet Shield kompatibel sind.

5.1 Ethernet Shield

Mit dem Arduino Ethernet Shield wird ein Arduino netzwerktauglich und kann so Verbindung mit einem Intranet bzw. dem Internet aufnehmen.

Kern des Arduino Ethernet Shields ist ein Wiznet W5100 Ethernet Chip, welcher einen TCP- bzw. UDP-Stack zur Verfügung stellt.Abbildung 50 zeigt ein Arduino Ethernet Shield aufgesteckt auf einen Arduino 2009.

[image: Abbildung 50 Arduino Ethernet Shield]

Abbildung 50 Arduino Ethernet Shield

Das Arduino Ethernet Shield kann bis zu vier Socket Verbindungen unterstützen. Mit Hilfe der Ethernet Library können netzwerktaugliche Anwendungsprogramme geschrieben werden [20].

In den folgenden Abschnitten werde ich hierzu einige vorstellen. Für eigene Lösungen empfiehlt sich vorab eine Suche im Internet, da solche und ähnliche Anwendungen bereits massenhaft verfügbar sind.

In den ersten Versionen des Arduino Ethernet Shields war der vorgesehen SD-Card Steckplatz noch teilweise unbestückt und wurde von der Ethernet Library nicht unterstützt.

In späteren Versionen wurde ein Mirco-SD Steckplatz vorgesehen. Unterstützt wird dieser bspw. durch die SD Card Library von Bill Greiman [21].

Die Kommunikation zwischen dem Arduino und dem W5100 Ethernet Controller sowie der SD-Card erfolgt über den SPI Bus.

Beim Arduino 2009 stehen damit I/O 11 bis 13 für andere Funktionen nicht zur Verfügung. Darüber hinaus werden I/O 10 als Chip Select für den W5100 und I/O 4 für die SD-Card verwendet.

5.2 Arduino im Netzwerk

Bei den folgenden Betrachtungen wollen wir den Arduino 2009 neben anderen Teilnehmern in einem lokalen Netzwerk gemäß Abbildung 51 einsetzen.

[image: Abbildung 51 Arduino 2009 im Netzwerk]

Abbildung 51 Arduino 2009 im Netzwerk

Alle Netzwerkkomponenten sind mit einem Router verbunden, der gleichzeitig (über ADSL) die Verbindung zum Internet ermöglicht. Die Verbindung ins Internet wollen wir hier nicht betrachten. Die Kommunikation im lokalen Netz ist für die folgenden Betrachtungen erst mal ausreichend.

Hierzu wird der eingesetzte Arduino mit den folgenden Netzwerkparametern versehen:

	IP

	192.168.1.99

	Gateway

	192.168.1.1

	Subnet

	255.255.255.0

[image: image1]

Diese Netzwerkparameter müssen an die Gegebenheiten des jeweiligen Netzwerks angepasst werden.

Der Arduino bringt selbst seine MAC Adresse mit. Diese lautet DE-AD-BE-EF-FE-ED.

Diese Vereinbarungen werden in jedem der folgenden Programmbeispiele im Konfigurationsteil zu finden sein.

5.3 Hello World

Das berühmte "Hello World" soll uns den prinzipiellen Aufbau einer Webserver Anwendung aufzeigen.

Mats Vanselow hat hier schon sehr früh eine Webserver Anwendung vorgestellt, die sich besonders zur Überprüfung der noch neuen Mechanismen eignet. Listing 14 zeigt den Quelltext des Programmbeispiels Webserver.pde.

//

// Title : Webserver

// Author : Claus Kuehnel

// Date : 2011-02-19

// Id: : Webserver.pde

// Version : 0022

// based on : Code by Mats Vanselow - http://www.mats-vanse-low.de

//

// DISCLAIMER:

// The author is in no way responsible for any problems or damage caused by

// using this code. Use at your own risk.

//

// LICENSE:

// This code is distributed under the GNU Public License

// which can be found at http://www.gnu.org/licenses/gpl.txt

//

--

//

#if defined(ARDUINO) && ARDUINO > 18 // for Arduino 0019 or later include SPI

#include <SPI.h>

#endif

#include <Ethernet.h>

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED }; // MAC Address of Arduino Board

byte ip[] = { 192, 168, 1, 99 }; // IP Adresse of Arduino Board

//byte gateway[] = { 10, 0, 0, 1 }; // Gateway (optional)

//byte subnet[] = { 255, 255, 0, 0 }; // Subnet Maske (optional)

Server server = Server(80); // Standard Port for HTTP

void setup()

{

Ethernet.begin(mac, ip);//, gateway, subnet); // init Ethernet

server.begin(); // start server, wait for clients

}

void loop()

{

Client client = server.available(); // Client available?

 if (client) { // Access by user

// send content for HTML page to calling web browser server.print("HTTP/1.0 200 OK\r\nServer: arduino\r\nContent-Type: text/html\r\n\r\n");

server.print("<HTML><HEAD><TITLE>");

server.print("Arduino 2009 Board");

server.print("</TITLE>");

server.print("</HEAD><BODY>");

server.print("Hello World!
");

server.print("This is Arduino V. ");

server.print(ARDUINO);

server.print("
Arduino runs for ");

server.print(millis());

server.print(" ms.</BODY></HTML>");

delay(10); // wait for finishing

client.stop(); // disconnect

}

}

Listing 14 Quelltext Webserver.pde

Da es mit der Arduino Version 0019 einige Anpassungen an der Ethernet Library gegeben hatte, wird zu Beginn des Programms überprüft, ob noch zusätzlich die SPI Library geladen werden muss.

Es folgen die Vereinbarungen zu MAC- und IP-Adressen sowie Gateway und Subnet Maske.

Anschließend wir ein Server erzeugt, der die eingehenden Verbindungen bedient. Der Server nimmt Verbindungen auf dem Standard HTTP Port (Port 80) entgegen.

In der Routine setup() erfolgen schließlich die Initialisierung des Ethernet Controllers und der Start des Servers.

Wenn sich ein Client mit dem Server verbindet und Daten bereit hält, dann können diese in der Hauptschleife loop() gelesen werden. Hier wird auf das Lesen verzichtet und nur auf das Ereignis selbst reagiert, in dem über mehrere Anweisungen server.print() HTML Text an den Webbrowser gesendet wird, der dort eine Webseite aufbaut.Abbildung 52 zeigt die erzeugten Ausgaben im Webbrowser.

Neben den eigentlichen Texten werden auch Daten ausgegeben. Zum einen ist das die Versionsnummer (ARDUINO) und zum anderen die Zeit seit Programmstart millis().

[image: Abbiidung 52 Ausgaben im Webbrowser]

Abbiidung 52 Ausgaben im Webbrowser

5.4 SHT11 am Embedded Webserver

[image: Abbildung 53 SHT21]

Abbildung 53 SHT21

Der Feuchte- und Temperatursensor SHT21 von Sensirion stellt an einem I2C-Interface Messwerte für relative Feuchte (0...100 % r.F.) und Temperatur (-40...+125 °C) zur Verfügung. Abbildung 53 zeigt die kompakte Bauform eines SHT21.

Mit diesem Sensor hat man eine sehr einfache Lösung für einen Sensor, der Umweltdaten erfasst. Darüber hinaus kann es Sinn machen, einen oder auch mehrere solcher Sensoren zur Überwachung der Betriebsbedingungen in einer Gerät unterzubringen.

Die zu erwartenden Genauigkeiten sind im Datenblatt [22] detailliert ausgewiesen. Abbildung 54 zeigt hier die Toleranzen für den SHT21 Temperatursensor. Abbildung 55 zeigt die Toleranzen für den SHT21 Feuchtesensor.

[image: Abbildung 54 Toleranzen SHT21 Temperatur]

Abbildung 54 Toleranzen SHT21 Temperatur

[image: Abbildung 55 Toleranzen SHT21 rel. Feuchte]

Abbildung 55 Toleranzen SHT21 rel. Feuchte

Die Programmierung der Sensorabfrage gestaltet sich mit Hilfe der Library SHT21 (SHT21.h) denkbar einfach. In dieser Library wird die Klasse SHT21 mit der Methode readSensor() definiert. Diese Methode liest über I2C die Werte für relative Feuchte aus und stellt diese als SHT21.humi und SHT21.temp bereit. Listing 15 zeigt den Quelltext des Programmbeispiels SHT21_Webserver.pde.

//

// Title : SHT21 Webserver

// Author : Claus Kuehnel

// Date : 2011-02-19

// Id : SHT21_Webserver.pde

// Version : 0022

// based on : Code by Mats Vanselow - http://www.mats-vanse-low.de

//

// DISCLAIMER:

// The author is in no way responsible for any problems or damage caused by

// using this code. Use at your own risk.

//

--

// LICENSE:

// This code is distributed under the GNU Public License

// which can be found at http://www.gnu.org/licenses/gpl.txt

//

//

#if defined(ARDUINO) && ARDUINO > 18 // for Arduino 0019 or later include SPI

#include <SPI.h>

#endif

#include <Ethernet.h>

#include <Wire.h>

#include <SHT21.h>

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED }; // MAC Address of Arduino Board

byte ip[] = { 192, 168, 1, 99 }; // IP Adresse of Arduino Board

//byte gateway[] = { 192, 168, 1, 1 }; // Gateway (optional)

//byte subnet[] = { 255, 255, 255, 0 }; // Subnet Maske (optional)

char link[]="http://www.ckuehnel.ch/arduino.html"; //link data

Server server = Server(80); // Standard Port for HTTP

void setup()

{

Ethernet.begin(mac, ip);//, gateway, subnet); // init Ethernet

server.begin(); // wait for clients

Wire.begin(); // init I2C interface

}

void loop()

{

Client client = server.available(); // Client available?

if (client)

{ // Access by user

SHT21.readSensor();

// send content for HTML page to calling web browser server.print("HTTP/1.0 200 OK\r\nServer: arduino\r\nContent-Type: text/html\r\n\r\n");

server.print("<HTML><HEAD><TITLE>");

server.print("SHT21");

server.print("</TITLE></HEAD>");

server.print("<meta http-equiv=refresh content=10>"); server.print("<BODY>");

server.print("Environmental Data measured by SHT21

");

server.print("Refresh after about 10 seconds

");

server.print("<table border=0 cellpadding=2 cellspacing=2 width=250><tbody><tr>");

server.print("<td />Humidity (%RH):</td /><td />");

server.print(SHT21.humi);

server.print("</td></tr><tr>");

server.print("<td />Temperature (grd C):</td /><td />");

server.print(SHT21.temp);

server.print("</td></tr></tbody></table>");

server.println("<hr />");

server.print("<a href="); //printing a link

server.print(link);

server.println(">Author's Homepage");

server.print("<hr>Arduino runs for ");

server.print(millis());

server.print(" ms.</BODY></HTML>");

delay(10); // wait for finishing

client.stop(); // disconnect

}

}

Listing 15 Quelltext SHT21_Webserver.pde

Da in der Library SHT21 der Zugriff auf die Sensordaten über den I2C-Bus erfolgt, muss auch die Wire Library (Wire.h) zu Beginn des Programmbeispiels eingebunden werden.

Der Rest des Programms ist dann nahezu identisch zum vorangegangenen Programmbeispiel Webserver.pde.

Zu Beginn der Hauptschleife loop() wird der SHT21 über SHT21.readSensor() abgefragt. Nach dieser Abfrage wird wieder über mehrere Anweisungen server-.print() HTML Text an den Webbrowser gesendet und dort eine Webseite aufbaut. Abbildung 56 zeigt die erzeugten Ausgaben im Webbrowser.

[image: Abbildung 56 Ausgabe der SHT21 Daten]

Abbildung 56 Ausgabe der SHT21 Daten

Drei Besonderheiten sind im HTML-Text dann aber doch noch versteckt. Bei der Art der Ausgabe über server.print() ist das allerdings recht unübersichtlich.

Relative Feuchte und Temperatur (im mittleren Bereich von Abbildung 56) werden in einer Tabelle angezeigt. Um den erforderlichen Quelltext zu erzeugen, verwende ich hier den HTML-Editor NVU [23].

Abbildung 57 zeigt das Erstellen einer (2 x 2) Tabelle in der Normalansicht des Editors NVU. Durch Umschalten in die Quelltextansicht kann man sich dann den Tabellenteil herauskopieren. Listing 16 zeigt das Ergebnis.

[image: Abbildung 57 Erstellen einer Tabelle]

Abbildung 57 Erstellen einer Tabelle

<table border="0" cellpadding="2" cellspacing="2" width="250">

 <tbody>

 <tr>

 <td>AAAAAA</td>

 <td>aaaaaa</td>

 </tr>

 <tr>

 <td>BBBBBB</td>

 <td>bbbbbb</td>

 </tr>

 </tbody>

</table>

Listing 16 HTML-Text für Tabelle

Der Quelltext nach Listing 16 kann nun von Hand in die Anweisungen server.print() konvertiert werden.

Damit der SHT21 nicht nur einmal beim Aufruf durch den Webbrowser abgefragt wird, kann man einen automatischen Refresh der Webseite durch einen Meta-Tag einbauen [9].

Hier erfolgt dieser Refresh im Takt von 10 Sekunden durch die Anweisung <meta http-equiv=refresh content=10>. Abbildung 58 zeigt die Folgeabfrage auf die in Abbildung 56 gezeigte Abfrage. Nur die Luftfeuchtigkeit hat sich hinter dem Komma leicht verändert. An der Laufzeit erkennt man aber die Zeitdifferenz von (nahezu) 10 Sekunden.

[image: Abbildung 58 Folgende Datenausgabe]

Abbildung 58 Folgende Datenausgabe

Als letztes soll noch der ausgegebene Link betrachtet werden. Der hier gewünschte Link Author’s Homepage
 wird in den Daten- und HTML-Teil zerlegt. Die URL wird als Textfeld in der Form char link[]="http://www.ckuehnel.ch/arduino.html"; zu Beginn des Quelltextes deklariert und initialisiert, wo mit dann mit drei Anweisungen server.print() der komplette Link dargestellt werden kann.

Im folgenden Programmbeispiel soll von der Webseite her noch eine Dateneingabe erfolgen. Die Eingabe eine Grenzwertes (Set Temperature Level) erlaubt dem Arduino anhand der mit dem SHT21 gemessenen Temperatur, einen Alarm zu setzen. Abbildung 59 zeigt den Entwurf der zu erstellenden Webseite.

[image: Abbildung 59 Webseite mit Datenein- und Ausgabe (Entwurf)]

Abbildung 59 Webseite mit Datenein- und Ausgabe (Entwurf)

Die Dateneingabe wird über ein Formular vorgenommen. In der hier gezeigten Form ergibt das einen HTML Quelltext in der Form

<form method="get" name="SendData">Set Temperature Level

<input length="4" maxlenght="6" name="TempValue">

<input value=" Submit " type="submit">

</form>

Nach Eingabe eines Temperaturgrenzwertes und dem Drücken des Submit Buttons wird ein String in der Form

GET /?TempValue=123 HTTP/1.1 bzw.

GET /?TempValue=123.4 HTTP/1.1

an den Arduino gesendet. Nach Isolierung des Temperaturgrenzwertes kann eine für den Vergleich mit dem Messwert des SHT21 heranzuziehende Variable gesetzt werden. Das Ergebnis des Vergleichs kann dann die Alertausgabe steuern. Listing 17 zeigt den Quelltext des Programmbeispiels Webserver1.pde.

//

// Title : SHT21 Webserver1

// Author : Claus Kuehnel

// Date : 2011-02-19

// Id : SHT21_Webserver1.pde

// Version : 0022

// based on :

//

// DISCLAIMER:

// The author is in no way responsible for any problems or damage caused by

// using this code. Use at your own risk.

//

// LICENSE:

// This code is distributed under the GNU Public License

// which can be found at http://www.gnu.org/licenses/gpl.txt

//

//

#if defined(ARDUINO) && ARDUINO > 18 // for Arduino 0019 or later include SPI

#include <SPI.h>

#endif

#include <Ethernet.h>

#include <Wire.h>

#include <SHT21.h>

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED }; // MAC Address of Arduino Board

byte ip[] = { 192, 168, 1, 99 }; // IP Adresse des Arduino Boards

//byte gateway[] = { 192, 168, 1, 1 }; // Gateway (optional) //byte subnet[] = { 255, 255, 255, 0 }; // Subnet Maske (optional)

String readString = String(30); //string for fetching data from address

boolean overLimit = false;

int TemperatureLimit = 22;

char link[]="http://www.ckuehnel.ch/arduino.html"; //link data

Server server = Server(80); // Standard Port for HTTP

void setup()

{

Ethernet.begin(mac, ip);//, gateway, subnet); // init Ethernet

server.begin(); // wait for clients

Wire.begin(); // init I2C interface

Serial.begin(19200);

}

void loop()

{

Client client = server.available();// Create a client connection

if (client)

{

while (client.connected())

{

if (client.available())

{

 char c = client.read();

 if (readString.length() < 30) //read char by char HTTP request

{

 readString += c; //store characters to string

}

Serial.print(c); //output chars to serial port

 if (c == '\n') //if HTTP request has ended

{

 Serial.print("\n HTTP Request finished\n\n");

 // **

 int tl = getTemperatureLimit();

 if (tl >= 0) TemperatureLimit = tl;

 Serial.println(TemperatureLimit);

 sendPage();

 readString=""; //clearing string for next read

 client.stop(); //stopping client

 }

 }

 }

 }

}

void sendPage(void)

{

SHT21.readSensor();

// send content for HTML page to calling web browser server.print("HTTP/1.0 200 OK\r\nServer: arduino\r\nCon-tent-Type: text/html\r\n\r\n");

server.print("<HTML><HEAD><TITLE>");

server.print("SHT21");

server.print("</TITLE></HEAD>");

server.print("<meta http-equiv=refresh content=10>");

server.print("<BODY>");

server.print("Environmental Data measured by

SHT21

");

server.print("Refresh after about 10 seconds

");

server.print("<form method=get name=SendData>Set Temperature Level <input length=4 maxlenght=6 name=TempValue> ");

server.print("<input value= Submit type=submit></form>");

server.print("<table border=0 cellpadding=2 cellspacing=2 width=250><tbody><tr>");

server.print("<td />Humidity (%RH):</td /><td />");

server.print(SHT21.humi);

server.print("</td></tr><tr>");

server.print("<td />Temperature (grd C):</td /><td />");

server.print(SHT21.temp);

server.print("</td></tr><tr>");

server.print("<td />TemperatureLimit (grd C):</td /><td />");

server.print(TemperatureLimit);

server.print("</td></tr><tr>");

server.print("<td />Temperature is</td /><td />");

if (SHT21.temp > TemperatureLimit) server.print("over Limit");

else server.print("under Limit");

server.print("</td></tr></tbody></table>");

server.println("<hr />");

//printing a link

server.print("<a href=");

server.print(link);

server.println(">Author's Homepage");

server.print("<hr>Arduino runs for ");

server.print(millis());

server.print(" ms.</BODY></HTML>");

}

int getTemperatureLimit(void)

{

String query;

int result=0;

int pos1 = readString.indexOf('=');

int pos2 = readString.indexOf(' ',pos1);

// Serial.println(pos1);

// Serial.println(pos2);

if (pos1 < 0)

{

 result = -1;

}

else

{

 for(int i = pos1+1; i < pos2; i++) query += readString.char-At(i);

 query += "\0"; Serial.println(query);

 query = query.replace('-', '0'); // only positive value allowed

 for(int i = 0; i < query.length(); i++)

 {

 char c = query.charAt(i);

 if (c == '.') break;

 result *= 10;

 result += c - 0x30;

}

 }

 return result; // return new temperature limit

}

Listing 17 Quelltext SHT21_Webserver1.pde

Alle Ausgaben des Arduinos wurden hier in die Funktion sendPage() verpackt. Es wird hier wiederum eine HTML-Seite aufgebaut und an den Webbrowser gesendet. Abbildung 60 zeigt die geringfügig vom Entwurf (Abbildung 59) abweichende Gestaltung.

[image: Abbildung 60 Webseite mit Datenein- und Ausgabe]

Abbildung 60 Webseite mit Datenein- und Ausgabe

Die Auswertung der Eingabe des Temperaturgrenzwertes erfolgt in der Funktion getTemperatureLimit(), die den Temperaturgrenzwert aus dem vom Webbrowser an den Arduino gesendeten Datenstrom isoliert. Die Funktion beschränkt die Eingabe auf positive und ganzzahlige Werte. Wird kein Temperaturgrenzwert in der Eingabe gefunden, dann gibt die Funktion -1 zurück und der Temperaturgrenzwert bleibt unverändert.

Ohne Eingabe eines Temperaturgrenzwertes erfolgt wieder alle 10 Sekunden ein Refresh der Ausgabe einschließlich der Messwertabfrage vom SHT21.

5.5 Arduino twittert

Twitter ist eine Internet Applikation zum Micro-Blogging, bei der ähnlich zum SMS kurze Textnachrichten versendet werden können. Die einzelnen Postings sind privat oder öffentlich zugängig.

Zum Versenden der maximal 140 Zeichen umfassenden Mitteilungen (Tweets) benötigt der Autor (Twitterer) einen Account bei Twitter.com. Der Interessent an diesen Mitteilungen kann diese abonnieren und wird dann als Follower bezeichnet.

Die Anmeldung bei Twitter erfolgt in der üblichen Weise mit Usernamen und Password nach dem ein Account eingerichtet wurde.

Twitter lässt sich nun nicht nur für den Versand von mehr oder minder wichtigen Textmitteilungen verwenden, sondern kann auch zum Versand von Statusmeldungen einer Messeinrichtung o.ä. dienen.

Für unser Beispiel hier sollen die Messdaten des SHT21 in eine Mitteilung verpackt „getwittert“ werden.

Der Versand einer Mitteilung an Twitter gestaltet sich mit Hilfe der Twitter Library [25] sehr einfach. Bei Verwendung der Twitter Library wird der Tweet nicht direkt vom Arduino zu Twitter.com gesendet. Der Tweet wird vom Arduino über eine Website an Twitter weitergeleitet.

Damit die Twitter Zugangsdaten nicht preisgegeben werden müssen, wird das OAuth-Protokoll eingesetzt. Hierzu wird die Username/Password Kombination durch einen Token ersetzt [27].

Die mit der Twitter Library verbundene Anwendung von NeoCat muss Zugang zu Twitter Account bekommen. Über die Twitter Library Website [25] können der Zugang zum Twitter Account erlaubt und der zu benutzende Token generiert werden. Abbildung 61 zeigt, wie die Zugriffserlaubnis erteilt wird. Abbildung 62 zeigt die Ausgabe des erzeugten Tokens, der für die Twitter Authorisierung benötigt wird. Damit die Daten des Autors nicht öffentlich gemacht werden, wurde die Ausgabe nachträglich geschwärzt.

[image: Abbildung 61 Twitter Zugriff erlauben]

Abbildung 61 Twitter Zugriff erlauben

[image: Abbildung 62 Token zum Zugriff auf Twitter]

Abbildung 62 Token zum Zugriff auf Twitter

Im Programmbeispiel SHT21_Twitter.pde (Listing 18) wird mit dem eben generierten Token über Twitter twitter("285...nrc") das erforderliche Twitter Objekt erzeugt.

Die zu versendende Mitteilung wird in der Routine setup() nach Abfrage des Sensors stückweise im String toSend zusammen gestellt. Mit der Funktion twitter.post(toSend) wird schließlich die Mitteilung verschickt.Abbildung 63 zeigt den versendeten Tweet mit den Messdaten des SHT21.

//

// Title : SHT21 Twitter

// Author : Claus Kuehnel

// Date : 2011-02-19

// Id : SHT21_Twitter.pde

// Version : 0022

// based on : Simple Post by NeoCat

(http://www.arduino.cc/playground/Code/TwitterLibrary)

//

// DISCLAIMER:

// The author is in no way responsible for any problems or damage caused by

// using this code. Use at your own risk.

//

// LICENSE:

// This code is distributed under the GNU Public License

// which can be found at http://www.gnu.org/licenses/gpl.txt

//

//

#if defined(ARDUINO) && ARDUINO > 18 // Arduino 0019 or later

#include <SPI.h>

#endif

#include <Ethernet.h>

#include <EthernetDNS.h>

#include <Twitter.h>

#include <Wire.h>

#include <SHT21.h>

// Ethernet Shield Settings

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };

// substitute an address on your own network here byte ip[] = { 192, 168, 1, 99 };

// Your Token to Tweet (get it from http://arduino-tweet.appspot.- com/)

 Twitter twitter("28548x- xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxnrc");

// Message to post

char msg[] = "SHT21 Environmental Data";

char tmp[10];

char toSend[140]; // maximum length of tweet

void setup()

{

delay(1000);

Ethernet.begin(mac, ip);

Serial.begin(19200);

 SHT21.readSensor();

strcat(toSend, msg);

strcat(toSend, "\nTemperature is ");

itoa((int)SHT21.temp, tmp, 10); strcat(toSend, tmp);

strcat(toSend, " grd C\nHumidity is ");

itoa((int)SHT21.humi, tmp, 10); strcat(toSend, tmp);

strcat(toSend, " % r.H.\n");

Serial.print(toSend);

 Serial.println("connecting ...");

if (twitter.post(toSend))

{

// Specify &Serial to output received response to Serial.

// If no output is required, you can just omit the argument,

e.g.

// int status = twitter.wait();

int status = twitter.wait();

if (status = = 200)

{

 Serial.println("OK.");

}

else

{

 Serial.print("failed : code ");

 Serial.println(status);

}

 }

 else Serial.println("connection failed.");

}

void loop()

{

}

Listing 18 Quelltext SHT21_Twitter.pde

[image: Abbildung 63 TwitterMessage]

Abbildung 63 TwitterMessage

5.6 Arduino versendet Mail

Eine andere Möglichkeit, Statusmitteilungen oder Messdaten zu versenden ist die klassische eMail. Hier wird der Zugriff auf einen Mailserver über Telnet verwendet [28][29].

In der Regel wird man sich beim Mailserver mit Username und Password anmelden. Welches Login-Verfahren der Mailserver versteht kann man via Telnet anfragen.

Beim PLAIN-Login sind Username und Password BASE64 enkodiert. Da man dieses wieder leicht dekodieren kann, sollte man das nicht unverschlüsselt auf dem Mail-Standard-Port 25 machen.

Weiterhin benötigt man die IP Adresse des eingesetzten Mailservers, die jedoch sehr einfach aus der betreffenden URL abgeleitet werden kann. Ich habe für den im folgenden betrachteten Mailversand einen Mailserver beim Provider GMX eingerichtet (mail.gmx.ch).

Abbildung 64 zeigt, wie mit Hilfe des aus der Kommandozeile zu startenden Programm nslookup, die IP Adresse zur URL mail.gmx.ch abgefragt werden kann.

[image: Abbildung 64 Abfrage der IP aus einer URL]

Abbildung 64 Abfrage der IP aus einer URL

Bevor wir nun zum eigentlichen Programmbeispiel kommen, soll das Versenden von eMail mit Telnet vom PC aus untersucht werden.

Von der Kommandozeile starten wir Telnet durch den folgenden Aufruf

C:\>telnet mail.gmx.ch 25

Port 25 ist der Port auf dem Mailserver Verbindungen entgegen nehmen. Die vom PC gesendeten Kommandos sowie die jeweils durch einen Statuscode eingeleiteten Antworten des Mailservers sind in Abbildung 65 zu sehen.

[image: Abbildung 65 eMail mit Telnet versenden]

Abbildung 65 eMail mit Telnet versenden

Gibt man anstelle des Kommandos HELO zur Client Identifizierung das Kommando EHLO ein, dann werden noch Informationen zur Art der Authentifizierung geliefert.

Nach dem Kommando AUTH LOGIN fragt der Mailserver nach Usernamen und Password, die im BASE64-Format einzugeben sind. Für die erforderliche Codierung sind im Internet massenhaft Tools zu finden (z.B. [26]).

Sind Username und Password akzeptiert, dann meldet der Mailserver „Go ahead“ und es können die eigentlichen Daten der Mail eingegeben werden. Der Mailtext wird durch <CR><LF>.<CR><LF> abgeschlossen. Anschließend kann die Sitzung durch QUIT beendet werden.

Im Programmbeispiel SHT21_Mail1.pde (Listing 19) sind nun diese Kommandos in gleicher Abfolge implementiert. Den Abschluss der Hauptschleife bildet ein delay(7200000u), wodurch die nächste Statusmeldung erst nach 2 Stunden erfolgen wird.Abbildung 66 zeigt eine vom Arduino empfangene eMail in Outlook.

//

// Title : SHT21 Mail

// Author : Claus Kuehnel

// Date : 2011-02-19

// Id : SHT21_Mail.pde

// Version : 0022

// based on : based on a sample from Spinlock

//

// DISCLAIMER:

// The author is in no way responsible for any problems or damage caused by

// using this code. Use at your own risk.

//

// LICENSE:

// This code is distributed under the GNU Public License

// which can be found at http://www.gnu.org/licenses/gpl.txt

//

//

#if defined(ARDUINO) && ARDUINO > 18 // Arduino 0019 or later

#include <SPI.h>

#endif

#include <Ethernet.h>

#include <Wire.h>

#include <SHT21.h>

// Ethernet Shield Settings

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };

// substitute an address on your own network here

byte ip[] = { 192, 168, 1, 99 };

byte server[] = { 213, 165, 64, 21 }; // GMX Mail server address

// Message to mail

char msg[] = "SHT21 Environmental Data";

char tmp[10];

char toSend[200];

int wait = 200;

Client client(server, 25);

void setup()

{

delay(1000); // allow the router to identify the Arduino before the Arduino connects to the internet

Ethernet.begin(mac, ip);

Serial.begin(19200);

}

void loop()

{

 SHT21.readSensor();

strcpy(toSend,"");

strcat(toSend, msg);

strcat(toSend, "\nTemperature is ");

itoa((int)SHT21.temp, tmp, 10); strcat(toSend, tmp);

strcat(toSend, " grd C\nHumidity is ");

itoa((int)SHT21.humi, tmp, 10); strcat(toSend, tmp);

strcat(toSend, " % r.H.\n");

Serial.print(toSend);

Serial.println("connecting...");

if (client.connect())

{

Serial.println("connected");

client.println("HELO") // say hello

delay(wait); // wait for a response

client.println("AUTH LOGIN"); //Login

delay(wait); // wait for a response

client.println("Y2.........No"); // Username

delay(wait); // wait for a response

client.println("Y2........DE="); // Password

delay(wait); // wait for a response

client.println("MAIL FROM:xxxxx@gmx.ch"); // identify sender delay(wait); /* wait for a response */

client.println("RCPT TO:info@xxxx.ch"); // identify recipient delay(wait); /* wait for a response */

client.println("DATA");

delay(wait); /* wait for a response */

client.println("From: ckuehnel@gmx.ch"); // identify sender

client.println("To: info@ckuehnel.ch"); // identify recipient

client.println("Subject: Environmental Data"); // insert subject

client.println();

client.println(toSend); // insert body

delay(wait);

client.println("."); // terminate connection

delay(wait); // wait for a response

client.println("QUIT"); // quit telnet

delay(wait); // wait for a response

Serial.println("disconnecting.");

client.stop();

}

else Serial.println("connection failed");

 Serial.println("Waiting for next measurement...");

delay(7200000u); // pause for two hours

}

Listing 19 Quelltext SHT21_Mail1.pde

[image: Abbildung 66 Empfangene eMail in Outlook]

Abbildung 66 Empfangene eMail in Outlook

6. Arduino Interrupts

In diesem Abschnitt soll die interruptgesteuerte Programmabarbeitung betrachtet werden, die eine unmittelbare Reaktion auf äußere Ereignisse (Events) ermöglicht.

Gerade beim Messen, Steuern und Regeln von Prozessen ist die Reaktion in zeitlich bestimmten Grenzen erforderlich. Häufig wird hier der wenig bestimmte Begriff der Echtzeitfähigkeit verwendet, der besser als „Rechtzeitfähigkeit“ verstanden werden sollte.

In der Rechentechnik versteht man unter einem Interrupt die Unterbrechung eines laufenden Programms, um ausgelöst durch ein bestimmtes Ereignis eine andere, meist zeitkritische Programmaktion auszuführen.

Das auslösende Ereignis wird Unterbrechungsanforderung (Interrupt Request, IRQ) genannt. Danach wird die Unterbrechungsbehandlungsroutine (Interrupt Service Routine, ISR) ausgeführt. Anschließend wird die Ausführung des Programms nach der Unterbrechungsstelle fortgesetzt [30].

Die interruptgesteuerte Programmabarbeitung ist in Abbildung 67 dargestellt. Der linke Zweig stellt dabei einen konventionellen Programmablauf dar.

[image: Abbildung 67 Interruptgesteuerter Programmablauf]

Abbildung 67 Interruptgesteuerter Programmablauf

Nach dem Start des Programms erfolgt die Initialisierung von Speicherbereichen, Variablen und Peripherie. Anschließend werden, wenn verwendet, die benutzten Interrupts frei gegeben. Nach diesen Initialisierungsschritten tritt das Programm in eine Endlosschleife ein.

Wurden Interrupts frei gegeben, dann kann das zugehörige Ereignis einen Interrupt anfordern und das Programm startet die zugehörige Interrupt Service Routine (ISR).

Die Abarbeitung der Interrupt Service Routine wird durch ein "Return from Interrupt" (reti) abgeschlossen und die Programmabarbeitung wird nach der Unterbrechungsstelle fortgesetzt.

Interrupt Service Routinen sollten kurz gehalten werden, damit die Unterbrechung des Hauptprogramms auf das notwendige Minimum beschränkt wird. Arbeitet man mit mehreren Interrupts, dann könnten durch lange Unterbrechungen der Hauptschleife Interruptanforderungen verloren gehen.

Moderne Mikrocontroller haben heute in der Regel leistungsfähige Interruptsysteme. Wir wollen hier ausgewählte Aspekte des Interruptsystems des im Arduino 2009 eingesetzten ATmega328 näher betrachten.

6.1 Kontakt zur Außenwelt

Bei der Betrachtung des Interruptverhaltens müssen die Anschlüsse des eingesetzten Mikrocontrollers direkt mit einbezogen werden. Ein Nachschlagen im Datenblatt des eingesetzten Mikrocontrollers ist dabei unerlässlich. Die Anschlussbezeichnungen des Arduino 2009 Boards führen da nicht weiter. Abbildung 68 zeigt die Abbildung der ATmega328 Pins auf die Arduino 2009 Anschlüsse.

[image: Abbildung 68 ATmega328 Pins vs. Arduino 2009 Anschlüsse]

Abbildung 68 ATmega328 Pins vs. Arduino 2009 Anschlüsse

6.2 Interruptsystem des ATmega328

Die AVR Mikrocontroller können eine Vielzahl unterschiedlicher Interrupts verarbeiten. Diese Interrupts sowie der Reset haben einen sogenannten Interruptvektor im Programmspeicher.

Jeder Interrupt kann individuell freigegeben werden.

Die Interruptvektoren sind in Form einer Tabelle am unteren Ende des Programmspeichers angeordnet. Verknüpft mit der Position in dieser Tabelle ist die Priorität des jeweiligen Interrupts. Je niedriger die Adresse des Interruptvektors desto höher ist die Priorität.

Wird ein Interrupt angefordert, dann wird das Global Interrupt Enable Bit zurückgesetzt und alle (weiteren) Interrupts sind damit gesperrt (disabled). Das Anwendungsprogramm kann diese Sperre aufheben. Automatisch aufgehoben wird diese Sperre beim Verlassen der betreffenden Interrupt-Serviceroutine (ISR) durch ein "Return from Interrupt" (reti).

Es gibt grundsätzlich zwei unterschiedliche Typen von Interrupts. Der erste Typ wird durch ein Ereignis, welches das betreffende Interrupt-Flag setzt, getriggert. Der Programmzähler wird mit der Adresse des betreffenden Interruptvektors geladen und die zugehörige Interrupt Service Routine wird abgearbeitet. Tritt eine Interruptanforderung auf, wenn der betreffende Interrupt nicht freigegeben ist, dann wird diese Interruptanforderung gespeichert und erst nach Freigabe des Interrupts dann bearbeitet. Gleiches Verhalten gilt auch für den Globalen Interrupt.

Der zweite Typ triggert nur so lange, wie die Bedingung für den Interrupt existiert. Wir eine solche Bedingung vor der Interruptfreigabe beendet, dann geht dieser Interrupt verloren.

Wenn der AVR Mikrocontroller eine ISR beendet hat, dann wird die Programmabarbeitung nach der Unterbrechungsstelle fortgesetzt.

Das Statusregister wird nicht automatisch gesichert, so dass dieser Vorgang manuell vorgenommen werden muss.

6.3 Interruptvektortabelle ATmega328

Tabelle 7 zeigt die Interruptvektortabelle für den ATmega328. Fett markiert sind die Interrupts, die in den nächsten Abschnitten betrachtet werden.

Beim Arduino Projekt kommt der freie C-Compiler AVR-GCC aus der GNU Compiler Collection zum Einsatz. Aus diesem Grund sind in der Spalte rechts außen die Vektorbezeichnungen des AVR-GCC für den ATmega328 gelistet.

	Vector No.

	Program Address

	Source

	Interrupt Definition

	1

	0x00

	RESET

	External Pin, Power-on Reset, Brown-out Reset and Watchdog System Reset

	2

	0x02

	INT0

	External Interrupt Request 0

	3

	0x04

	INT1

	External Interrupt Request 1

	4

	0x06

	PCINT0

	Pin Change Interrupt Request 0

	5

	0x08

	PCINT1

	Pin Change Interrupt Request 1

	6

	0x0A

	PCINT2

	Pin Change Interrupt Request 2

	7

	0x0C

	WDT

	Watchdog Time-out Interrupt

	8

	0x0E

	TIMER2 COMPA

	Timer/Counter2 Compare Match A

	9

	0x10

	TIMER2 COMPB

	Timer/Counter2 Compare Match B

	10

	0x12

	TIMER2 OVF

	Timer/Counter2 Overflow

	11

	0x14

	TIMER1 CAPT

	Timer/Counter1 Capture Event

	12

	0x16

	TIMER1 COMPA

	Timer/Counter1 Compare Match A

	13

	0x18

	TIMER1 COMPB

	Timer/Counter1 Compare Match B

	14

	0x1A

	TIMER1 OVF

	Timer/Counter1 Overflow

	15

	0x1C

	TIMER0 COMPA

	Timer/Counter0 Compare Match A

	16

	0x1E

	TIMER0 COMPB

	Timer/Counter0 Compare Match B

	17

	0x20

	TIMER0 OVF

	Timer/Counter0 Overflow

	18

	0x22

	SPI, STC

	SPI Serial Transfer Complete

	19

	0x24

	USART, RX

	USART Rx Complete

	20

	0x26

	USART, UDRE

	USART, Data Register Empty

	21

	0x28

	USART, TX

	USART, Tx Complete

	22

	0x2A

	ADC

	ADC Conversion Complete

	23

	0x2C

	EE READY

	EEPROM Ready

	24

	0x2E

	ANALOG COMP

	Analog Comparator

	25

	0x30

	TWI

	2-wire Serial Interface

	26

	0x32

	SPM READY

	Store Program Memory Ready

[image: image1]

[image: image1]

Tabelle 7 Interruptvektortabelle ATmega328

6.4 External Interrupts INT0 und INT1

Die Interrupts INT0 und INT1 (INTx) werden bei bestimmten Pegeln an den Pins PD2 bzw. PD3 des ATmega328 (Arduino 2009: Digital IO 2 und 3) angefordert.

6.4.1 Register für Interrupts INT0 und INT1

Die Steuerung des Interruptverhaltens erfolgt über das Register EICRA gemäß Tabelle 8.

[image: image1]

	ISCx1

	ISCx0

	Beschreibung

	0

	0

	Lo an INTx fordert einen Interrupt an (LOW)

	0

	1

	Eine beliebige Pegeländerung an INTx fordert einen Interrupt an (CHANGE)

	1

	0

	Eine fallende Flanke an INTx fordert einen Interrupt an (FALLING)

	1

	1

	Eine steigende Flanke an INTx fordert einen Interrupt an (RISING)

[image: image1]

Tabelle 8 Konfiguration INTx

Die Interrupt Enable Bits befinden sich im Register EIMSK - die Interrupt Flags im Register EIFR.

[image: image1]

6.4.2 Programmbeispiel zu den Interrupts INTx

Für die Behandlung der Interrupts INT0 und INT1 gibt es im Arduino Sprachumfang bereits die Funktionen attachInterrupt(interrupt, function, mode) und detachInterrupt(interrupt, function, mode), die das Registerhandling verbergen.

Im Programmbeispiel ExternalInterrupt.pde (Listing 20) wird die serielle Datenausgabe durch die beiden Interrupts gesteuert.

//

// Title : External Interrupt

// Author : Claus Kuehnel

// Date : 2011-01-29

// Id : ExternalInterrupt.pde

// Version : 0022

// based on :

//

// DISCLAIMER:

// The author is in no way responsible for any problems or damage

caused by

// using this code. Use at your own risk.

//

// LICENSE:

// This code is distributed under the GNU Public License

// which can be found at http://www.gnu.org/licenses/gpl.txt

//

--

//

const int pLED = 13; // LED at Pin13

const int pINT0 = 2; // INT0 at Pin2

const int pINT1 = 3; // INT1 at Pin3

volatile boolean iflag = true;

int idx;

void setup()

{

 Serial.begin(19200);

 pinMode(pLED, OUTPUT);

 pinMode(pINT0, INPUT);

 digitalWrite(pINT0, HIGH); // Pullup active

 pinMode(pINT1, INPUT);

 digitalWrite(pINT1, HIGH); // Pullup active

 attachInterrupt(0, stop_serial, FALLING); // INT0 stops serial

output

 Serial.print("EICRA: "); Serial.println(EICRA, HEX);

 attachInterrupt(1, resume_serial, FALLING); // INT1 resumes

serial output

 Serial.print("EICRA: "); Serial.println(EICRA, HEX);

 Serial.println("Setup finished.");

}

void loop()

{

 if (iflag) Serial.println(idx); // iflag controls serial output

 idx++;

 delay(500);

}

void stop_serial()

{

 iflag = false;

 digitalWrite(pLED, HIGH);

}

void resume_serial()

{

 iflag = true;

 digitalWrite(pLED, LOW);

}

Listing 20 Quelltext ExternalInterrupt.pde

Die Interrupts INT0 und INT1 sind fest mit den beiden Eingängen PD2 und PD3 des ATmega328 (Arduino 2009: Digital IO 2 und 3) verknüpft. Die betreffenden Pins werden also Konstanten vereinbart.

Im der Routine setup() werden diese beiden Pins als Eingang mit PullUp-Widerstand gesetzt. Mit dem Interrupt INT0 wird die Routine stop_serial() verknüpft, mit INT1 resume_serial(). Durch die Initialisierung ist der Global Interrupt bereits enabled, so dass das hier nicht explizit vorgenommen werden muss.

Das Register EICRA zeigt am Ende des Setups den Wert 0x0A, wodurch beide Eingänge auf eine fallende Flanke hin den entsprechenden Interrupt anfordern.

In der Hauptschleife loop() des Programmbeispiels wird ein Index hochgezählt. Die Ausgabe des Indexwertes kann durch INT0 gestoppt und durch INT1 wieder aufgenommen werden. Die angeschlossene LED signalisiert den jeweiligen Zustand.

Abbildung 69 zeigt die Terminalausgaben des Programmbeispiels. Zu Beginn wird die Initialisierung der involvierten Register ausgegeben. Beim Stand des Indexwertes von 4 wurde die Ausgabe unterbrochen. Bei der Fortsetzung der Ausgabe war der Indexwert bereits auf 14 erhöht.

[image: Abbildung 69 Terminalausgabe ExternalInterrupt.pde]

Abbildung 69 Terminalausgabe ExternalInterrupt.pde

6.5 Pin Changed Interrupts PCINTx

Die Interrupts PCIx reagieren auf Änderungen (Pin Changed) der zugeordneten IO Pins. Dem Interrupt PCI2 sind die Eingänge PCINT23 bis PCINT16 zugeordnet. Dem Interrupt PCI1 sind die Eingänge PCINT15 bis PCINT8 zugeordnet und dem Interrupt PCI0 folglich PCINT7 bis PCINT0.

6.5.1 Register für Interrupts PCINTx

Die Steuerung des Interruptverhaltens erfolgt über die Register PCICR und PCMSKx. Die Bits PCIEx sorgen für ein gruppenweises Enable gemäß der oben angegebenen Zuordnung. In den Registern PCMSKx kann dann der einzelne Eingang frei gegeben werden.

[image: image1]

[image: image1]

6.5.2 Programmbeispiel zu PCINTx Interrupts

Von der Funktion her ist das Programmbeispiel PCINT.pde praktisch identisch zum vorangegangenen Programmbeispiel. Den Quelltext des Programmbeispiels zeigt Listing 21.

//

// Title : PCINT

// Author : Claus Kuehnel

// Date : 2011-01-29

// Id : PCINT.pde

// Version : 0022

// based on :

//

// DISCLAIMER:

// The author is in no way responsible for any problems or damage

caused by

// using this code. Use at your own risk.

//

// LICENSE:

// This code is distributed under the GNU Public License

// which can be found at http://www.gnu.org/licenses/gpl.txt

//

--

//

// Definition of interrupt names

#include <avr/io.h>

// ISR interrupt service routine

#include <avr/interrupt.h>

const int pLED = 13; // LED at Pin13

const int pPCINT8 = A0; // PCINT8 at Analog In 0

const int pPCINT9 = A1; // PCINT9 at Analog In 1

volatile boolean iflag = true;

int idx;

// Install the interrupt routine for PCINT

ISR(PCINT1_vect)

{

 if (!(PINC & (1<<PINC0))) // Detects Change at Analog In 0

 {

 iflag = false;

 digitalWrite(pLED, HIGH);

 }

 if (!(PINC & (1<<PINC1))) // Detects Change at Analog In 1

 {

 iflag = true;

 digitalWrite(pLED, LOW);

 }

}

void setup()

{

 Serial.begin(19200);

 pinMode(pLED, OUTPUT);

 digitalWrite(pLED, LOW);

 pinMode(pPCINT8, INPUT);

 digitalWrite(pPCINT8, HIGH); // Pullup active

 pinMode(pPCINT9, INPUT);

 digitalWrite(pPCINT9, HIGH); // Pullup active

 PCICR = 1<<PCIE1; // PCINT8 - PCINT15 enabled

 Serial.print("PCICR: "); Serial.println(PCICR, HEX);

 PCMSK1 |= (1<<PCINT8); // tell pin change mask to listen to

Analog In 0

 Serial.print("PCMSK1: "); Serial.println(PCMSK1, HEX);

 PCMSK1 |= (1<<PCINT9); // tell pin change mask to listen to

Analog In 0

 Serial.print("PCMSK1: "); Serial.println(PCMSK1, HEX);

 sei();

 Serial.println("Setup finished.");

}

void loop()

{

 if (iflag) Serial.println(idx); // iflag controls serial output

 idx++;

 delay(500);

}

Listing 21 Quelltext PCINT.pde

Die Eingänge PC0 (PCINT8) und PC1 (PCINT9) des ATmega328 (Arduino 2009: Analog In 0 und 1) beeinflussen über die zugehörigen Interrupts die Terminalausgabe der Hauptschleife.

Beide Pins werden als Eingang mit aktivem PullUp-Widerstand initialisiert. Beide Eingänge lösen eine Interruptanforderung von PCI1 aus, weshalb diese Gruppe enabled werden muss. Außerdem sind die betreffenden Bits in der Interruptmaske zu setzen.

Die Interrupt Service Routine wird in beiden Fällen angesprungen, deshalb ist in der ISR der Eingang abzufragen, der den Interrupt angefordert hat. Entsprechend werden auch das iflag und die LED gesetzt.

In der Hauptschleife des Programmbeispiels wird wiederum ein Index hochgezählt. Die Ausgabe des Indexwertes kann durch PCINT8 gestoppt und durch PCINT9 wieder aufgenommen werden. Die angeschlossene LED signalisiert den jeweiligen Zustand.

Abbildung 70 zeigt die Terminalausgaben des Programmbeispiels. Zu Beginn wird die Initialisierung der involvierten Register ausgegeben. Beim Stand des Indexwertes von 4 wurde die Ausgabe unterbrochen. Bei der Fortsetzung der Ausgabe war der Indexwert bereits auf 14 erhöht.

[image: Abbildung 70 Terminalausgabe]

Abbildung 70 Terminalausgabe

6.6 Timerinterupts

Der ATmega328 weist drei Timer/Counter auf, die beim Arduino 2009 zur Erzeugung von PWM-Ausgangssignalen verwendet werden. Timer0 und Timer2 sind 8-Bit Timer/Counter. Timer1 ist ein 16-Bit Timer/Counter.

Von Timer0 werden verschiedene Zeiten abgeleitet, die z.B. für Warteschleifen, wie delay(), verwendet werden. Seine Funktion wird hier nicht angetastet.

Kann man auf PWM in seiner Anwendung verzichten, dann können die anderen Timer/Counter auch für weitere Zwecke eingesetzt werden.

In den folgenden Abschnitten werden wir Timer1 und Timer2 für Timerinterrupts zur Bildung einer Zeitbasis verwenden.

Tabelle 9 zeigt die maximale Timerperiode und die Auflösung für beide Timer bei einer Taktfrequenz von 16 MHz, wie sie beim Arduino 2009 zum Einsatz kommt.

	Takterzeugung mit Timer2 bei 16 Mhz

	Prescaler

	1

	8

	32

	64

	128

	256

	1024

	Mix. Timerperiode in ms

	0.016

	0.128

	0.512

	1.024

	2.048

	4.096

	16.384

	Auflösung in ms

	0.063

	0.500

	2.000

	4.000

	8.000

	16.000

	64.000

	

	

	

	

	

	

	

	

	Takterzeugung mit Timer1 bei 16 Mhz

	Prescaler

	1

	8

	32

	64

	128

	256

	1024

	Mix. Timerperiode in ms

	4.098

	32.784

	131.136

	262.272

	524.544

	1049.088

	4196.352

	Auflösung in ms

	0.063

	0.500

	2.000

	4.000

	8.000

	16.000

	64.000

[image: image1]

Tabelle 9 Takterzeugung mit Timer1 und Timer2

Grundsätzlich gilt für beide Timer die Funktion

[image: image1]

wobei sich der Zählbereich für Timer2 auf 0...255 und für Timer1 auf 0...65537 beschränkt.

6.6.1 Register für Timer2

Timer2 kann drei verschiedene Interrupts erzeugen. Im Register TIMSK2 können die beiden Output Compare Match Interrupts über die Bits OCIE2B und OCIE2A sowie der Timer Overflow Interrupt über das Bit TOIE2 freigegeben werden.

[image: image1]

Bei den Output Compare Match Interrupts erfolgt die Interruptanforderung, wenn das Timer Register TCNT2 den Wert des Registers OCR2A bzw. OCR2B erreicht hat. Der Timer Overflow Interrupt erfolgt beim Überlauf des Registers von 0xFF auf 0.

Über die Register TCCR2A und TCCR2B erfolgt die Konfiguration von Timer2 gemäß der Tabellen 10 bis 12.

[image: image1]

	COM2x1

	COM2x0

	Funktion

	0

	0

	Normale Portfunktion, OC2x vom Pin getrennt

	0

	1

	Toggle OC2x beim Output Compare Match Interrupt

	1

	0

	Zurücksetzen von OC2x beim Output Compare Match Interrupt

	1

	1

	Setzen von OC2x beim Output Compare Match Interrupt

[image: image1]

Tabelle 10 Konfiguration von Ausgang OC2A bzw. OC2B

	CS22

	CS21

	CS20

	Funktion

	0

	0

	0

	Timer/Counter gestoppt

	0

	0

	1

	Prescaler = 1

	0

	1

	0

	Prescaler = 8

	0

	1

	1

	Prescaler = 32

	1

	0

	0

	Prescaler = 64

	1

	0

	1

	Prescaler = 128

	1

	1

	0

	Prescaler = 256

	1

	1

	1

	Prescaler = 1024

[image: image1]

Tabelle 11 Auswahl des Prescalers

	WGM22

	WGM21

	WGM20

	Mode

	TOP

	0

	0

	0

	Normal Mode

	0xFF

	0

	1

	0

	CTC Mode

	OCR2A

[image: image1]

Tabelle 12 Einstellung der Betriebsart (Mode) - Auszug

6.6.2 Register für Timer1

Timer1 kann vier verschiedene Interrupts erzeugen. Im Register TIMSK1 können die beiden Output Compare Match Interrupts über die Bits OCIE1B und OCIE1A, der Timer Overflow Interrupt über das Bit TOIE1 und der Input Capture Interrupt über das Bit ICIE1 freigegeben werden. Der Input Capture Interrupt wird hier nicht weiter betrachtet.

[image: image1]

Bei den Output Compare Match Interrupts erfolgt die Interruptanforderung, wenn das Timer Register TCNT1 den Wert des Registers OCR1A bzw. OCR1B erreicht hat. Der Timer Overflow Interrupt erfolgt beim Überlauf des Registers von 0xFFFF auf 0.

Da es sich bei Timer1 um einen 16-Bit Timer/Counter handelt sind auch die Register OCR1A und OCR1B 16-Bit Register.

Über die Register TCCR1A und TCCR1B erfolgt die Konfiguration von Timer1 gemäß der Tabellen 13 bis 15.

[image: image1]

	COM1x1

	COM1x0

	Funktion

	0

	0

	Normale Portfunktion, OC1x vom Pin getrennt

	0

	1

	Toggle OC1x beim Output Compare Match Interrupt

	1

	0

	Zurücksetzen von OC1x beim Output Compare Match Interrupt

	1

	1

	Setzen von OC1x beim Output Compare Match Interrupt

[image: image1]

Tabelle 13 Konfiguration von Ausgang OC1A bzw. OC1B

	CS12

	CS11

	CS10

	Funktion

	0

	0

	0

	Timer/Counter gestoppt

	0

	0

	1

	Prescaler = 1

	0

	1

	0

	Prescaler = 8

	0

	1

	1

	Prescaler = 64

	1

	0

	0

	Prescaler = 256

	1

	0

	1

	Prescaler = 1024

	1

	1

	0

	Externer Takt an T1 (fallende Flanke)

	1

	1

	1

	Externer Takt an T1 (steigende Flanke)

[image: image1]

Tabelle 14 Auswahl von Prescalers oder externerm Takt

	WGM13

	WGM12

	WGM11

	WGM10

	Mode

	Top

	0

	0

	0

	0

	Normal Mode

	0xFFFF

	0

	1

	0

	0

	CTC Mode

	OCR1A

[image: image1]

Tabelle 15 Einstellung der Betriebsart (Mode) - Auszug

6.6.3 Programmbeispiel zu Timer2

Im folgenden Programmbeispiel soll Timer2 einen Takt von 10 ms erzeugen.

Aus Tabelle 9 kann für den Timer2 ein Prescaler von 1024 für eine maximale Timerperiode von ca. 16 ms entnommen werden. Nach 156 Takten ist dann die Zeit von 10 ms erreicht.

Betreibt man Timer2 im CTC Mode und lädt das Output Compare Register mit einem Wert von 0x9C (= 156), dann erhält man nach 10 ms eine Interruptanforderung.

Listing 22 zeigt den Quelltext des Programmbeispiels msecTimer.pde. In der Interrupt Service Routine wird nur die Variable count hochgezählt. Die Auswertung der Variablen count erfolgt in der Hauptschleife.

In der Routine setup() erfolgt die Initialisierung der Register von Timer2 gemäß den bereits behandelten Vorgaben.

In der Hauptschleife loop() erfolgt die Abfrage der Variablen count. Hat diese nach 500 ms den Wert 50 erreicht, dann wird am Terminal ein Zeichen ausgegeben und die LED getoggelt. Das Blinken im Sekundentakt (2 x 500 ms) dient als Indikator für die erwartete Funktion. Abbildung 71 zeigt die Terminalausgabe des Programmbeispiels msecTimer.pde.

//

// Title : msecTimer

// Author : Claus Kuehnel

// Date : 2011-01-30

// Id : msecTimer.pde

// Version : 0022

// based on :

//

// DISCLAIMER:

// The author is in no way responsible for any problems or damage

caused by

// using this code. Use at your own risk.

//

// LICENSE:

// This code is distributed under the GNU Public License

// which can be found at http://www.gnu.org/licenses/gpl.txt

//

--

//

// Definition of interrupt names

#include <avr/io.h>

// ISR interrupt service routine

#include <avr/interrupt.h>

const int pLED = 13; // LED at Pin13

volatile byte count;

// Install the interrupt routine for Timer2 CompareA

ISR(TIMER2_COMPA_vect)

{

 count++;

}

void setup()

{

 byte reload = 0x9C; // reload value for 10 ms timer0 interrupt

 Serial.begin(19200);

 pinMode(pLED, OUTPUT);

 digitalWrite(pLED, LOW);

 TCCR0B = 0; // stop timer0

 OCR2A = reload;

 Serial.print("OCR2A: "); Serial.println(OCR2A, HEX);

 TCCR2A = 1<<WGM21;

 Serial.print("TCCR2A: "); Serial.println(TCCR2A, HEX);

 TCCR2B = (1<<CS22) | (1<<CS21) | (1<<CS20);

 Serial.print("TCCR2B: "); Serial.println(TCCR2B, HEX);

 TIMSK2 = (1<<OCIE2A);

 Serial.print("TIMSK2: "); Serial.println(TIMSK2, HEX);

 sei();

 Serial.println("Setup finished.");

}

void loop()

{

 if (count == 50)

 {

 flash();

 Serial.print(".");

 count = 0;

 }

}

void flash()

{

 static boolean output = HIGH;

 digitalWrite(pLED, output);

 output = !output;

}

Listing 22 Quelltext msecTimer.pde

[image: Abbildung 71 Terminalausgabe msecTimer.pde]

Abbildung 71 Terminalausgabe msecTimer.pde

6.6.4 Programmbeispiel zu Timer1

Im folgenden Programmbeispiel soll Timer1 einen Takt von einer Sekunde erzeugen.

Aus Tabelle 9 kann für den Timer1 ein Prescaler von 256 für eine maximale Timerperiode von ca. 1050 ms entnommen werden. Nach 62500 Takten ist die Zeit von 1 s erreicht.

Betreibt man Timer1 im CTC Mode und lädt das Output Compare Register mit einem Wert von 0xF424 (= 62500), dann erhält man nach 1 s eine Interruptanforderung.

Listing 23 zeigt den Quelltext des Programmbeispiels SecTimer.pde. In der Interrupt Service Routine wird hier die Variable count incrementiert und die LED getoggelt.

In der Routine setup() erfolgt die Initialisierung der Register von Timer1 gemäß den bereits behandelten Vorgaben.

In der Hauptschleife loop() erfolgt im Abstand von jeweils 200 ms die Ausgabe der Variablen count. Nach fünf Ausgaben des gleichen Wertes der Variablen count (5 x 200 ms) wird durch die ISR deren Wert erhöht. Das Blinken im Zwei-Sekunden-Takt (2 x 1 s) dient als Indikator für die erwartete Funktion. Abbildung 72 zeigt die Terminalausgabe des Programmbeispiels SecTimer.pde.

//

// Title : SecTimer

// Author : Claus Kuehnel

// Date : 2011-02-13

// Id : SecTimer.pde

// Version : 0022

// based on :

//

// DISCLAIMER:

// The author is in no way responsible for any problems or damage

caused by

// using this code. Use at your own risk.

//

// LICENSE:

// This code is distributed under the GNU Public License

// which can be found at http://www.gnu.org/licenses/gpl.txt

//

--

//

// Definition of interrupt names

#include <avr/io.h>

// ISR interrupt service routine

#include <avr/interrupt.h>

const int pLED = 13; // LED at Pin13

unsigned int reload = 0xF424; // OCR1A Reload for one second@16

MHz clock & prescaler 256

volatile int count;

// Install the interrupt routine for Timer1 CompareA

ISR(TIMER1_COMPA_vect)

{

 count++;

 flash();

}

void setup()

{

 Serial.begin(19200);

 pinMode(pLED, OUTPUT);

 digitalWrite(pLED, LOW);

 cli();

 TCCR1A = 0;

 TCCR1B = 0; // Stop Timer1

 OCR1A = reload;

 TCCR1B = (1<<WGM12) | (1<<CS12); // CTC Mode Prescaler = 256

 TIMSK1 = (1<<OCIE1A); // Timer1 CompareA Interrupt enable

 sei(); // Global Interrupt enable

 Serial.print("OCR1A: "); Serial.println(OCR1A, HEX);

 Serial.print("TCCR1A: "); Serial.println(TCCR1A, HEX);

 Serial.print("TCCR1B: "); Serial.println(TCCR1B, HEX);

 Serial.print("TIMSK1: "); Serial.println(TIMSK1, HEX);

 Serial.println("Setup finished.");

}

void loop()

{

Serial.println(count); // do anything

delay(200);

}

void flash()

{

static boolean output = HIGH;

digitalWrite(pLED, output); output = !output;

}

Listing 23 Quelltext SecTimer.pde

[image: Abbildung 72 Terminalausgabe SecTimer.pde]

Abbildung 72 Terminalausgabe SecTimer.pde

6.7 Watchdog

Ein Watchdog verhindert nach einem Programmabsturz den Totalausfall eines Mikrocontrollers in dem eine Systemreset oder eine andere Funktion aufgerufen wird.

Die Anwendungssoftware hat vor Ablauf einer bestimmten Zeit den als Timer laufenden Watchdog zurück zu setzen. Ist sie im Fall eines Fehlers dazu nicht in der Lage, dann wird die dem Watchdog zugeordnete Funktion ausgelöst.

Der Watchdog im ATmega328 kann sowohl einen Reset als auch einen Watchdog Interrupt auslösen. Gerade durch letztere Möglichkeit kann der Watchdog hier auch andere Funktionen, wie die eines Systemtimers, ausüben.

Der Watchdog wird von einem separaten On-Chip Oszillator getaktet. Durch einen Prescaler können Time-Outs von 16 ms bis zu 8 s eingestellt werden. Die vom On-Chip Oszillator erzeugte Taktfrequenz ist temperatur- und betriebsspannungsabhängig, so dass die Erwartungen an deren Konstanz in Grenzen bleiben müssen. Für zeitlich präzise Aufgaben ist der Watchdog deshalb weniger geeignet.

Abbildung 73 zeigt das Blockschema des Watchdogs im ATmega328 und die betreffenden Einstellmöglichkeiten.

[image: Abbildung 73 Blockschema Watchdog ATmega328]

Abbildung 73 Blockschema Watchdog ATmega328

6.7.1 Watchdog Register

Der Watchdog wird durch das Register WDTCSR gesteuert. Die Bits WD-P3-WDP0 legen den Time-Out gemäß Tabelle 16 fest. Die Konfiguration des Watchdog erfolgt gemäß Tabelle 17.

[image: image1]

	WDP3

	WDP2

	WDP1

	WDP0

	Watchdog Oscillator Cycles

	Time-Out

	0

	0

	0

	0

	2K

	16 ms

	0

	0

	0

	1

	4K

	32 ms

	0

	0

	1

	0

	8K

	64 ms

	0

	0

	1

	1

	16K

	0.125 s

	0

	1

	0

	0

	32K

	0.250 s

	0

	1

	0

	1

	64K

	0.5 s

	0

	1

	1

	0

	128K

	1s

	0

	1

	1

	1

	256K

	2s

	1

	0

	0

	0

	512K

	4s

	1

	0

	0

	1

	1024K

	8s

[image: image1]

Tabelle 16 Watchdog Time-Out Perioden

	WDTON Fuse

	WDE

	WDIE

	Mode

	Aktion

	1

	0

	0

	Stopp

	keine

	1

	0

	1

	Interrupt

	Interrupt

	1

	1

	0

	System Reset

	System Reset

	1

	1

	1

	Interrupt & System Reset

	Interrupt -> System Reset

	0

	x

	x

	System Reset

	System Reset

[image: image1]

Tabelle 17 Watchdog Konfiguration

6.7.2 Programmbeispiel Watchdog Interrupt

Im Programmbeispiel Watchdog.pde (Listing 24) löst der Watchdog einen Interrupt aus, der die angeschlossene LED toggelt. Der Watchdog Reset, der vor Ablauf der eingestellten Watchdog Periode vom Programm aus erfolgen muss, wird durch das Makro wdt_reset() als Inline Assembler Anweisung definiert. In der Setup Routine setup() wird das Watchdog Register WDTCSR so initialisiert, dass sich eine Watchdog Periode von ca. 1 s ergibt.

In der Hauptschleife wird wieder nur ein Index hochgezählt und ausgegeben, bevor eine Wartezeitschleife delay(1500) abgearbeitet wird. Da durch diese Wartezeit innerhalb der Watchdog Periode kein Watchdog Reset erfolgen kann, bewirkt der zugehörige Interrupt das Toggeln der LED. Wird diese Zeit auf einen Wert unter 1 s reduziert (z.B. delay(500)), dann erfolgt ein Reset des Watchdogs vor Ablauf der Watchdog Periode und der Zustand der LED bleibt unverändert. Abbildung 74 zeigt die Terminalausgaben des Programmbeispiels Watchdog.pde.

//

// Title : Watchdog

// Author : Claus Kuehnel

// Date : 2011-01-30

// Id : WatchDog.pde

// Version : 0022

// based on :

//

// DISCLAIMER:

// The author is in no way responsible for any problems or damage

caused by

// using this code. Use at your own risk.

//

// LICENSE:

// This code is distributed under the GNU Public License

// which can be found at http://www.gnu.org/licenses/gpl.txt

//

--

//

// Definition of interrupt names

#include <avr/io.h>

// ISR interrupt service routine

#include <avr/interrupt.h>

#define wdt_reset() __asm__ __volatile__ ("wdr")

const int pLED = 13; // LED at Pin13

int idx;

// Install the interrupt routine for Watchdog Interrupt

ISR(WDT_vect)

{

 flash();

}

void setup() {

 Serial.begin(19200);

 pinMode(pLED, OUTPUT);

 digitalWrite(pLED, LOW);

 cli();

 wdt_reset();

 WDTCSR |= (1<<WDCE) | (1<<WDE); // Start timed sequence

 WDTCSR = (1<<WDIE) | (1<<WDP2) | (1<<WDP1); // Set new prescaler

= 128K cycles (~1 s)

 sei();

 Serial.print("WDTCSR: "); Serial.println(WDTCSR, HEX);

 Serial.println("Setup finished.");

}

void loop()

{

 Serial.println(idx++); // do anything

 delay(1500); // change argument to 1500 -> watchdog will be

active

 wdt_reset();

}

void flash()

{

 static boolean output = HIGH;

 digitalWrite(pLED, output);

 output = !output;

}

Listing 24 Quelltext Watchdog.pde

[image: Abbildung 74 Terminalausgabe Watchdog.pde]

Abbildung 74 Terminalausgabe Watchdog.pde

6.8 Analog Comparator

Der Analog Comparator vergleicht die Spannungswerte an den Pins PD6 und PD7 (Arduino 2009: Digital IO 6 und 7). Ist die Spannung an PD6 höher als an PD7, dann wird der Ausgang des Comparators gesetzt. Dieser Ausgang kann zur Anforderung eines Interrupts eingesetzt werden. Abbildung 75 zeigt ein Blockschema des Analog Comparators und der diesen umgebenden Schaltungsteile.

[image: Abbildung 75 Analog Comparator Blockschema]

Abbildung 75 Analog Comparator Blockschema

6.8.1 Register für den Analog Comparator

Die Steuerung des Analog Comparators wird im wesentlichen durch das Register ACSR besorgt. Ist das Bit ACME in Register ADCSRB zurückgesetzt, dann wird AIN1 an den Komparator (A-) geschaltet. Das gleiche gilt, wenn ACME in Register ADCSRB und ADEN in ACSR gesetzt sind. Ist ACME gesetzt und ADEN zurückgesetzt, dann wird je nach Belegung der MUX Bits ein ADC-Kanal an den Komparator geschaltet.

[image: image1]

Über das Bit ACD kann der Komparator ausgeschaltet und mit ACBG die Bandgap Referenz an den Komparator (A+) durchgeschaltet werden. Die Bits ACIE und ACIC enablen den Interrupt bzw. das Input Capture. Die Interrupt Konfiguration erfolgt über die Bits ACIS1 und ACIS0 gemäß Tabelle 18.

	ACIS1

	ACIS0

	Interrupt Mode

	0

	0

	Comparator Interrupt bei Änderung (Toggle) an ACO

	0

	1

	Reserviert

	1

	0

	Comparator Interrupt bei fallender Flanke an ACO

	1

	1

	Comparator Interrupt bei steigender Flanke an ACO

[image: image1]

Tabelle 18 Interrupt Konfiguration

6.8.2 Programmbeispiel Analog Comparator

Im Programmbeispiel ACOMP.pde (Listing 25) löst der Analog Comparator einen Interrupt aus, der je nach Status des Comparator Ausgangs ACO das Flag iflag setzt und die angeschlossene LED ein- bzw. ausschaltet.

In der Setup Routine setup() wird der Analog Comparator so initialisiert, dass am Eingang A+ die Bandgap Referenz anliegt und der Eingang A- mit AIN1 verbunden ist.

In der Hauptschleife loop() des Programmbeispiels wird wiederum ein Index hochgezählt. Die Ausgabe des Indexwertes kann durch den Pegel am Pin AIN1 gestoppt bzw. wieder aufgenommen werden. Die angeschlossene LED signalisiert den jeweiligen Zustand.

Abbildung 76 zeigt die Terminalausgaben des Programmbeispiels. Zu Beginn wird die Initialisierung der involvierten Register ausgegeben. Beim Stand des Indexwertes von 5 wurde die Ausgabe unterbrochen. Bei der Fortsetzung der Ausgabe war der Indexwert bereits auf 20 erhöht.

//

// Title : ACOMP

// Author : Claus Kuehnel

// Date : 2011-02-03

// Id : ACOMP.pde

// Version : 0022

// based on :

//

// DISCLAIMER:

// The author is in no way responsible for any problems or damage caused by

// using this code. Use at your own risk.

//

// LICENSE:

// This code is distributed under the GNU Public License

// which can be found at http://www.gnu.org/licenses/gpl.txt

//

--

//

// Definition of interrupt names

#include <avr/io.h>

// ISR interrupt service routine

#include <avr/interrupt.h>

const int pLED = 13; // LED at Pin13

const int pAIN1 = 7; // AIN1 at Pin7

volatile boolean iflag = true;

int idx;

// Install the interrupt routine for ACOMP

ISR(ANALOG_COMP_vect)

{

if (ACSR & (1<<ACO)) // ACO is set?

 {

iflag = false;

digitalWrite(pLED, HIGH);

 }

 else

{

 iflag = true; digitalWrite(pLED, LOW);

}

}

void setup()

{

Serial.begin(19200);

pinMode(pLED, OUTPUT);

digitalWrite(pLED, LOW);

pinMode(pAIN1, INPUT);

cli();

ADCSRA &= ~(1<<ADEN); // ADC disabled

ADCSRB |= ~(1<<ACME); // AMUX enabled

ACSR = (1<<ACBG) | (1<<ACIE); // ACOMP Interrupt enabled

DIDR1 = (1<<AIN1D) | (1<< AIN0D);

sei();

Serial.print("ADCSRA: "); Serial.println(ADCSRA, HEX);

Serial.print("ADCSRB: "); Serial.println(ADCSRB, HEX);

Serial.print("ACSR: "); Serial.println(ACSR, HEX);

Serial.print("DIDR1: "); Serial.println(DIDR1, HEX);

Serial.println("Setup finished.");

}

void loop()

{

if (iflag) Serial.println(idx); // iflag controls serial output idx++;

delay(500);

}

Listing 25 Quelltext ACOMP.pde

[image: Abbildung 76 Terminalausgabe ACOMP.pde]

Abbildung 76 Terminalausgabe ACOMP.pde

6.9 Analog/Digital-Umsetzer

Beim ATmega328 steht ein AD-Umsetzer nach dem Verfahren der sukzessiven Approximation mit 10 Bit Auflösung zur Verfügung.

Die analoge Eingangsspannung wird mit der Ausgangsspannung eines DA-Umsetzers verglichen. Die Ausgangsspannung des DA-Umsetzers wird durch die Steuerlogik sowie eine der Referenzspannungen festgelegt. Die Steuerlogik steuert den DA-Umsetzer bitweise an und das Ausgangssignal des Komparators bestimmt, ob das jeweilige Bit im Ausgaberegister gesetzt oder nicht gesetzt wird. Auf diese Weise nähert sich die Ausgangsspannung des DA-Umsetzers sukzessive dem zu erfassenden analogen Spannungswert.

Dieser Spannungswert darf sich während des Umsetzvorgangs nicht ändern, da sonst ein falscher Inhalt des Ausgaberegisters die Folge wäre. Eine dem Komparator vorgeschaltete Sample&Hold-Schaltung erfüllt diese Forderung.

Die erforderliche Umsetzzeit ist unabhängig von der anliegenden Eingangsspannung und richtet sich nur nach der Auflösung des AD-Umsetzers. Ein 10-Bit AD-Umsetzer benötigt genau zehn Umsetzschritte, deren Zeit durch die Taktung des DA-Umsetzers und die Schaltzeit des Komparators bestimmt wird.

Die Eingangsspannung wird über zwei Multiplexer an den Komparator geführt. Für Kalibrationszwecke können zusätzlich die interne Bandgap-Referenzspannung und das Massepotential an den Komparator geführt werden.

Als analoge Referenzspannung kann eine interne Referenzspannung von 1.1 V oder die analoge Betriebsspannung AVCC herangezogen werden.

Der Eingangsspannungsbereich liegt zwischen 0 V (GND) und der Referenzspannung (-1 LSB).

Abbildung 77 zeigt einen Ausschnitt aus dem Blockschaltbild des AD-Umsetzers.

[image: Abbildung 77 zeigt einen Ausschnitt aus dem Blockschaltbild des AD-Umsetzers.]

Abbildung 77 Blockschema ADC ATmega328 (Ausschnitt)

6.9.1 Register des AD-Umsetzers

Für die Steuerung der AD-Umsetzung sind die Register ADMUX, ADCSRA und ADCSRB zuständig. Das Ergebnis der AD-Umsetzung steht in den Registern ADCH und ADCL.

[image: image1]

Die Bits REFS1 und REFS0 legen die Referenzspannung fest. Nach einem Reset wird eine externe Referenzspannung am Anschluss AVREF erwartet. Tabelle 19 zeigt die Auswahlmöglichkeiten.

	REFS1
	REFS0

	Referenzspannung

	0

	0

	AREF, Interne Referenz abgeschaltet

	0

	1

	AVCC mit externem Kondensator an Pin AREF

	1

	0

	reserviert

	1

	1

	Interne 1.1 V Referenzspannung mit externem Kondensator an Pin AREF

[image: image1]

Tabelle 19 Auswahl der Referenzspannung

Das Bit ADLAR legt fest, ob das Ergebnis der AD-Umsetzung linksbündig (AD-LAR=1, xxxxxxxxxx000000) oder rechtsbündig (ADLAR=0, 000000xxxxxxxxxx) im 16-Bit Ergebnis abgelegt wird.

Die Bits MUX3:0 programmieren den Analogmultiplexer. Nach Reset ist Eingang ADC0 aktiv. Tabelle 20 zeigt die Auswahlmöglichkeiten.

	 MUX3:0

	 Eingang gegen GND

	0000

	ADC0

	0001

	ADC1

	0010

	ADC2

	0011

	ADC3

	0100

	ADC4

	0101

	ADC5

	0110

	ADC6

	0111

	ADC7

	1000

	Temperatursensor

	

	

	1110

	Bandgap-Referenz 1.1 V

	1111

	GND 0 V

[image: image1]

Tabelle 20 Selektion des Eingangskanals

[image: image1]

Das Bit ADEN schaltet den AD-Umsetzer ein. Durch das Setzen von Bit ADSC wird eine AD-Umsetzung gestartet. Das Bit bleibt während der Umsetzung gesetzt und wird nach Ende der Umsetzung durch die Hardware gelöscht.

Das Bit ADATE gibt die im Register ADCSRB einzustellende Autotriggerfunktion frei. ADIF ist das AD-Interruptflag und ADIE das AD-Interrupt Enable Bit.

Die Taktfrequenz der sukzessiven Approximation wird aus der Oszillatorfrequenz abgeleitet und durch einen Prescaler bestimmt, der über die Bits AD-PS2:0 eingestellt wird (Tabelle 21). Um die maximale Auflösung zu erreichen ist eine Frequenz zwischen 50 kHz und 200 kHz optimal.

	ADSP2

	ADSP1

	ADSP0

	Prescaler

	0

	0

	0

	1

	0

	0

	1

	2

	0

	1

	0

	4

	0

	1

	1

	8

	1

	0

	0

	16

	1

	0

	1

	32

	1

	1

	0

	64

	1

	1

	1

	128

[image: image1]

Tabelle 21 Auswahl des Prescalers für die AD-Umsetzung

[image: image1]

Die Bits ADTS2:0 legen die Triggerquelle für die AD-Umsetzung fest, wenn das Bit ADATE im Register ADCSR gesetzt ist. Anderenfalls bleiben sie ohne Einfluss (Tabelle 22).

	ADTS2

	ADTS1

	ADTS0

	Trigger

	0

	0

	0

	Free Running Mode

	0

	0

	1

	Analogkomparator

	0

	1

	0

	Externer Interrupt INT0

	0

	1

	1

	Timer/Counter0 Compare Match A

	1

	0

	0

	Timer/Counter0 Overflow

	1

	0

	1

	Timer/Counter1 Compare Match B

	1

	1

	0

	Timer/Counter1 Overflow

	1

	1

	1

	Timer/Counter1 Capture Event

[image: image1]

Tabelle 22 Auswahl der Triggerquelle der Autotriggerfunktion

6.9.2 Programmbeispiele zu AD-Umsetzung

Wie die Registerbeschreibung gezeigt hat, lässt der AD-Umsetzer des ATmega328 verschiedene Betriebsarten und unterschiedliche Referenzspannungen zu. Außerdem können durch den Analogmultiplexer die verschiedenen analogen Eingänge an den AD-Umsetzer geführt werden.

Für den Test der unterschiedlichen Betriebsarten habe ich als Eingangsspannung immer die interne Bandgap-Referenz verwendet. Auf diese Weise kennt man das zu erwartende Ergebnis und kann sich auf Konfiguration und Initialisierung konzentrieren.

6.9.2.1. Softwaregetriggerte AD-Umsetzung

Beim Arduino steht für die softwaregetriggerte AD-Umsetzung die Instruktion analogRead(analogPin)zur Verfügung.

Durch die Initialisierung ist der AD-Umsetzer bereits enabled und der Prescaler auf 128 eingestellt. Die Taktfrequenz für die AD-Umsetzung beträgt bei einer Oszillatorfrequenz von 16 MHz dann 125 kHz. Nach 80 us ist damit eine AD-Umsetzung abgeschlossen. Die Spannung AVCC dient als Referenzspannung.

Da wir uns hier mit den Interruptbetriebsarten befassen, wird diese Art der AD-Umsetzung im Folgenden nicht weiter betrachtet. Eine ausführliche Beschreibung dieser Betriebsart zur AD-Umsetzung ist unter http://arduino.cc/en/Reference/AnalogRead zu finden.

6.9.2.2. Free-Running AD-Umsetzung

Im Free Running Mode wird nach der Beendigung einer AD-Umsetzung automatisch die nächste gestartet.

Also wollen wir den AD-Umsetzer zur Messung der Bandgap-Referenz in den Free Running Mode versetzen.

Über das Register ADMUX werden die Referenzspannung und der Eingangskanal selektiert. Beim Register ADCSRA werden die Bits ADEN, ADATE und ADIE gesetzt, was eine interruptgesteuerte Autotriggerfunktion festlegt. Mit den Bits ADTSx im Register ADCSRB wird die gewünschte Interruptquelle ausgewählt.

Für den Free-Running Mode gelten die Defaultwerte nach Reset (ADTS2:0 = 000), weshalb man sich hierum eigentlich nicht mehr kümmern müsste. Die Interruptquelle ist der Interrupt ADC Conversion Complete, der durch das Interruptflag ADIF signalisiert wird.

Ein erstes Ergebnis liegt mit dem Start der zweiten AD-Umsetzung in den Registern ADCH und ADCL bereit. Die zweite und jede weitere AD-Umsetzung wird durch die Interruptanforderung (ADIF) am Ende der vorangegangenen AD-Umsetzung gestartet. Nur die erste AD-Umsetzung ist wie gehabt durch Setzen des Bits ADS zu starten.

Listing 26 zeigt den Quelltext des Programmbeispiels adc2s.pde.

//

// Title : ADC2s

// Author : Claus Kuehnel

// Date : 2011-02-05

// Id : ADC2s.pde

// Version : 0022

// based on :

//

// DISCLAIMER:

// The author is in no way responsible for any problems or damage caused by

// using this code. Use at your own risk.

//

// LICENSE:

// This code is distributed under the GNU Public License

// which can be found at http://www.gnu.org/licenses/gpl.txt

//

--

//

// Definition of interrupt names

#include <avr/io.h>

// ISR interrupt service routine

#include <avr/interrupt.h>

#define ADC0 0

#define TEMP 0b1000

#define VBG 0b1110

const int pLED = 13; // LED at Pin13

const float VACC = 5.12; // measured on my Arduino

volatile unsigned int ADC_result;

float voltage;

ISR(ADC_vect)

{

ADC_result = ADC;

}

void setup()

{

Serial.begin(19200);

pinMode(pLED, OUTPUT);

digitalWrite(pLED, LOW);

cli();

ADMUX = (0<<REFS1) | (1<<REFS0); // AVCC is reference

ADMUX |= VBG; // VBG selected

ADCSRA |= (1<<ADEN) | (1<<ADATE) | (1<<ADIE); // ADC enabled, prescaler unchanged

ADCSRB = 0; // Free Running Mode

ADCSRA |= (1<<ADSC);

sei();

Serial.println("ADC Configuration for Free Running Mode");

Serial.print("ADMUX: "); Serial.println(ADMUX, HEX);

Serial.print("ADCSRA: "); Serial.println(ADCSRA, HEX);

Serial.print("ADCSRB: "); Serial.println(ADCSRB, HEX);

Serial.print("DIDR0: "); Serial.println(DIDR0, HEX);

delay(1000);

Serial.println("ADC free running...");

}

void loop()

{

cli();

ADC_result = ADC; sei();

Serial.print("ADC: "); Serial.print(ADC_result,HEX);

voltage = ADC_result* VACC/1024;

Serial.print("\tVoltage: "); Serial.print(voltage,3);

Serial.println(" V");

delay(1000);

}

Listing 26 Quelltext ADC2s.pde

Da im Free Running Mode die AD-Umsetzung fortlaufend erfolgt, sorgt die ISR nur für das Abspeichern des Resultats der AD-Umsetzung in der Variablen ADC_result.

Die Initialisierung des AD-Umsetzers erfolgt durch direktes Beschreiben der Register ADMUX, ADCSRA und ADCSRB in der Routine setup(). Der Start der ersten AD-Umsetzung erfolgt durch das Setzen des Bits ADSC am Ende der Initialisierung.

In der Hauptschleife loop() wird schließlich das Ergebnis der letzten AD-Umsetzung durch Abfrage der Variablen ADC_result ermittelt und im Sekundentakt als Hexadezimalzahl und berechnetem Spannungswert über die serielle Schnittstelle ausgegeben. Abbildung 78 zeigt die Terminalausgaben des Programms ADC2s.pde.

[image: Abbildung 78 Terminalausgabe ADC2s.pde]

Abbildung 78 Terminalausgabe ADC2s.pde

6.9.2.3. Timmergetriggerte AD-Umsetzung

In vielen Anwendungen der Messwerterfassung ist eine zeitlich äquidistante Abtastung gefordert. Mit der Autotriggerfunktion des hier betrachteten AD-Umsetzers sind dafür alle Möglichkeiten gegeben.

Im folgenden Programmbeispiel soll der AD-Umsetzer Messwerte exakt im Sekundentakt erfassen.

Um einen Sekundentakt zu erzeugen, muss der 16-Bit Timer1 eingesetzt werden. Der Zählbereich von Timer0 umfasst nur 8 Bit und ist damit nicht ausreichend. Gemäß Tabelle 7 kann der Timer/Counter1 Overflow als Triggerereignis dienen.

Der Sekundentakt soll also den AD-Umsetzer triggern. Das Auslesen der Resultate ist nach Ende der Umsetzung möglich. Hier wird der ADC Interrupt verwendet, um ein Flag zu setzen, welches in der Hauptschleife ausgewertet wird. Liegt eine neues Resultat einer AD-Umsetzung vor, dann wird es gelesen und über die serielle Schnittstelle auch ausgegeben.

Anderenfalls werden im Takt vom 100 ms Punkte ausgegeben, die die Aktivität zwischen den Umsetzungen kennzeichnen sollen. Abbildung 79 zeigt die Ausgaben des Programms adc3s.pde.

[image: image1]

Abbildung 79 Terminalausgabe ADC3s.pde

Das Programm ADC3s.pde ist mit dem Programm ADC2s.pde vergleichbar, nur dass hier mit zwei Interrupt (Timer1 Overflow, ADC) gearbeitet wird. Listing 27 zeigt den Quelltext des Programmbeispiels ADC3s.pde.

//

// Title : ADC3s

// Author : Claus Kuehnel

// Date : 2011-02-05

// Id : ADC3s.pde

// Version : 0022

// based on :

//

// DISCLAIMER:

// The author is in no way responsible for any problems or damage caused by

// using this code. Use at your own risk.

//

// LICENSE:

// This code is distributed under the GNU Public License

// which can be found at http://www.gnu.org/licenses/gpl.txt

//

--

//

// Definition of interrupt names

#include <avr/io.h>

// ISR interrupt service routine

#include <avr/interrupt.h>

#define ADC0 0

#define TEMP 0b1000

#define VBG 0b1110

const int pLED = 13; // LED at Pin13

const float VACC = 5.12; // measured on my Arduino

unsigned int reload = 0xFFFF - 0xF424; // TCNT1 Reload for one second@16 MHz clock & prescaler 256

volatile unsigned int ADC_result;

volatile boolean ADC_flag = false;

float voltage;

// Install the interrupt routine for Timer1 Overflow

ISR(TIMER1_OVF_vect)

{

TCNT1 = reload;

}

// Install the interrupt routine for ADC Interrupt

ISR(ADC_vect)

{

ADC_flag = true;

flash();

}

void setup()

{

Serial.begin(19200);

pinMode(pLED, OUTPUT);

digitalWrite(pLED, LOW);

cli();

TCCR1A = 0;

TCCR1B = 0; // Stop Timer1

TCNT1 = reload;

TCCR1B = (1<<CS12); // Normal Mode, Prescaler = 256

TIMSK1 = (1<<TOIE1); // Timer1 Overflow Interrupt enable

ADMUX = (0<<REFS1) | (1<<REFS0); // AVCC is reference

ADMUX |= VBG; // VBG selected

ADCSRA |= (1<<ADEN) | (1<<ADATE) | (1<<ADIE); // ADC enabled, prescaler unchanged

ADCSRB = (1<<ADTS2) | (1<< ADTS1); // Triggered by Timer/Counter1 Overflow

ADCSRA |= (1<<ADSC);

sei();

Serial.println("Timer1 Configuration");

Serial.print("TCCR1A: "); Serial.println(TCCR1A, HEX);

Serial.print("TCCR1B: "); Serial.println(TCCR1B, HEX);

Serial.print("TIMSK1: "); Serial.println(TIMSK1, HEX);

Serial.println("ADC Configuration for Timer triggered Mode");

Serial.print("ADMUX: "); Serial.println(ADMUX, HEX);

Serial.print("ADCSRA: "); Serial.println(ADCSRA, HEX);

Serial.print("ADCSRB: "); Serial.println(ADCSRB, HEX);

Serial.print("DIDR0: "); Serial.println(DIDR0, HEX);

Serial.println("Setup finished.");

delay(1000);

Serial.println("ADC Timer triggered...");

}

void loop()

{

if (ADC_flag)

{

cli();

ADC_result = ADC;

sei();

Serial.println();

Serial.print("ADC: "); Serial.print(ADC_result,HEX);

voltage = ADC_result* VACC/1024;

Serial.print("\tVoltage: "); Serial.print(voltage,3); Serial.println(" V");

ADC_flag = false;

}

else

{

Serial.print(".");

delay(100);

}

}

void flash()

{

static boolean output = HIGH;

 digitalWrite(pLED, output);

output = !output;

}

Listing 27 Quelltext ADC3s.pde

Zur Triggerung der AD-Umsetzung wird hier der Timer1 Overflow Interrupt verwendet. Damit der Overflow genau nach einer Sekunde eintritt, wird das Register TCNT1 mit dem Wert 0x0BDB (= 0xFFFF - 0xF424) vorgeladen. Nach 0xF424 Takten erfolgt dann der Overflow. In der Timer-ISR erfolgt nur das erneute Laden des Reload-Wertes für den nächsten Zyklus.

Der ADC Interrupt setzt nur das ADC_flag und toggelt die angeschlossene LED.

Die Initialisierung der Register des AD-Umsetzers unterscheidet sich nur bezüglich der ausgewählten Autotrigger-Interruptquelle.

Die Konfiguration von Timer1 erfolgt ganz konventionell, nur dass das Register TCNT1 mit dem Reload-Wert vorgeladen werden.

Nach Freigabe der Interrupts kann die erste AD-Umsetzung gestartet werden und das Programm tritt in die Hauptschleife loop() ein.

In dieser Hauptschleife wird das in der ADC-ISR Adcinterrupt gesetzte ADC_flag abgefragt, um entweder eine neues Resultat einer AD-Umsetzung auszulesen, formatiert über die serielle Schnittstelle auszugeben und das Flag zurückzusetzen oder einen “.” auszugeben und anschließend 10 ms zu warten.

6.10 Zusammenfassung

In diesem Abschnitt wurde versucht, etwas hinter die Kulissen der Arduino Umgebung zu blicken. An Hand verschiedener Programmbeispiele mit Interrupts wurde gezeigt, wie auch auf Registerebene auf die Ressourcen des eingesetzten Mikrocontrollers zugegriffen werden kann.

Die Terminalausgaben zeigen hier zu Beginn stets die nach den Initialisierungen zurück gelesenen Werte der Konfigurationsregister. Die vorgenommenen Initialisierungen können so einfacher nachvollzogen werden. In einem echten Anwendungsprogramm wird man darauf sicher verzichten.

7. Arduino Software Release Notes

Im hier vorliegenden Text sind Programmbeispiele vorgestellt worden, die über einen längeren Zeitraum und dadurch mit unterschiedlichen Arduino Software Releases (V. 0018 resp. V. 0022) entwickelt worden.

Die hier gelisteten Release Notes wurden von der Webseite http://arduino.cc/en/Main/ReleaseNotes heruntergeladen, um die Unterschiede zu dokumentieren.

ARDUINO 0022 - 2010.12.24

[core / libraries]

* Adding an SD card library based on sdfatlib by Bill Greiman and the MemoryCard library by Philip Lindsay (follower) for SparkFun.

http://arduino.cc/en/Reference/SD

* Added character manipulation macros (from Wiring): isAlphaNumeric(),

isAlpha(), isAscii(), isWhitespace(), isControl(), isDigit(), isGraph(),

isLowerCase(), isPrintable(), isPunct(), isSpace(), isUpperCase(),

isHexadecimalDigit(), toAscii(), toLowerCase(), toLowerCase().

http://code.google.com/p/arduino/issues/detail?id=418

* Added String.toInt() function.

* Refactoring core to use register-based, not CPU-based, #ifdefs.

Patch by Mark Sproul.

http://code.google.com/p/arduino/issues/detail?id=307

http://code.google.com/p/arduino/issues/detail?id=315

http://code.google.com/p/arduino/issues/detail?id=316

http://code.google.com/p/arduino/issues/detail?id=323

http://code.google.com/p/arduino/issues/detail?id=324

http://code.google.com/p/arduino/issues/detail?id=340

* Modification of serial baud rate calculation to match bootloader and 8U2 firmware at 57600 baud.

http://code.google.com/p/arduino/issues/detail?id=394

* Fixed bug in tone() function.

http://code.google.com/p/arduino/issues/detail?id=361

* Fixed SPI.setClockDivider() function.

http://code.google.com/p/arduino/issues/detail?id=365

* Fixed EEPROM library on Mega 2560.

http://code.google.com/p/arduino/issues/detail?id=381

* Hardware serial receive interrupt optimization.

http://code.google.com/p/arduino/issues/detail?id=391

* Applying the timeout parameter of pulseIn() during measurement of the pulse, not just while waiting for it.

[environment]

* Fixed problem with copy as html and angle brackets.

http://code.google.com/p/arduino/issues/detail?id=29

* Showing serial port selection dialog if serial port not found on upload.

* Remembering serial monitor window size and line ending selection.

http://code.google.com/p/arduino/issues/detail?id=96

http://code.google.com/p/arduino/issues/detail?id=330

* Replaced oro.jar regular expressions with java.regex ones (patch by Eberhard Fahle and Christian Maglie).

http://code.google.com/p/arduino/issues/detail?id=171

* Building the user sketch before the core or libraries, so errors appear faster. Patch by William Westfield and Paul Stoffregen.

http://code.google.com/p/arduino/issues/detail?id=393

* Setting application icon under Windows.

ARDUINO 0021 - 2010.10.02

* Modifying VID / PID combination in 8U2 firmwares.

* Fixing analogWrite() bug on pins 9 and 10 (Arduino Uno).

* Patched RXTX to include /dev/ttyACM* on Linux.

ARDUINO 0020 - 2010.09.27

* Added support for the Arduino Uno and Arduino Mega 2560.

* Including ATmega8U2 firmware used by Uno and Mega 2560.

* Including source code to optiboot bootloader used by the Uno.

* Including source code to the stk500v2 bootloader used by Mega 2560.

* New application icon (by ToDo).

ARDUINO 0019 - 2010.09.03

[core / libraries]

* Revised Ethernet library (by Christian Maglie). This depends on the new SPI library, so existing sketches will need: #include <SPI.h> added to the top of their code.

* Added an SPI library (by Christian Maglie).

http://code.google.com/p/arduino/issues/detail?id=240

* Added aliases for the analog input pins: A0, A1, etc.

http://code.google.com/p/arduino/issues/detail?id=244

* Added a String class.

* Added a shiftIn() function (from Wiring).

http://code.google.com/p/arduino/issues/detail?id=280

* Updated version of Firmata supports Mega and capability querying.

* More accurate delay() function from BenF.

http://code.google.com/p/arduino/issues/detail?id=237

* Re-enabling PWM after tone() ends.

http://code.google.com/p/arduino/issues/detail?id=228

* Added Serial.peek() method.

http://code.google.com/p/arduino/issues/detail?id=270

* Added Stream base class to Serial object (w/ available(), read() and the write(), print(), and println() functions from the Print class).

http://code.google.com/p/arduino/issues/detail?id=60

* Disabling interrupts while digitalWrite() and pinMode() write to pins.

http://code.google.com/p/arduino/issues/detail?id=146

* Replacing INTERNAL analog reference with INTERNAL1V1 AND INTERNAL2V56 on

the Arduino Mega. http://code.google.com/p/arduino/issues/detail?id=194

[environment]

* Added Arduino Fio to the boards menu.

* Added Arduino Pro and Pro Mini (5V / 16 MHz) to the boards menu.

http://code.google.com/p/arduino/issues/detail?id=81

* Synchronized with the Processing 1.1 code base, bringing various changes.

* Modified the parsing of avr-gcc / avr-g++ output and error messages.

* Toggling RTS on upload for auto-reset with FTDI cables on Linux.

http://code.google.com/p/arduino/issues/detail?id=309

* Adding control over scrolling in serial monitor.

http://code.google.com/p/arduino/issues/detail?id=97

* Added drop-down for selecting line endings to the serial monitor.

http://code.google.com/p/arduino/issues/detail?id=119

* Fixed problem with tabs of the same name but different extensions.

http://code.google.com/p/arduino/issues/detail?id=191

* Allowing third-party hardware platforms to reference programmers defined in other platforms. http://code.google.com/p/arduino/issues/detail?id=283

[examples]

* Re-organized and numbered for easier access and better progression.

ARDUINO 0018 - 2010.01.29

[core / libraries]

* Added tone() and noTone() functions for frequency generation.

* Added Serial.end() command.

* Added precision parameter for printing of floats / doubles.

* Incorporated latest version of Firmata.

* Fixed bug w/ disabling use of the RW pin in the LiquidCrystal library.

* No longer disabling interrupts in delayMicroseconds().

* Fixed bug w/ micros() returning incorrect values from within an interrupt.

* Fixed bug that broke use of analog inputs 8-15 on the Mega.

[environment]

* Synchronized with the Processing 1.0.9 code base, bringing various fixes, including to a bug causing saving to fail when closing the last sketch.

* Added support for third-party hardware in the SKETCHBOOK/hardware folder, mirroring the current structure of the hardware folder in Arduino.

* Added Ctrl-Shift-M / Command-Shift-M shortcut for serial monitor.

* Hold down shift when pressing the Verify / Compile or Upload toolbar buttons to generate verbose output (including command lines).

* Moving build (on upload) from the applet/ sub-folder of the sketch to a temporary directory (fixing problems with uploading examples from within the Mac OS X disk image or a Linux application directory).

* Fixed bug the prevented the inclusion of .cpp and .h (or .c and .h) files of the same name in a sketch.

* Improved the Mac OS X disk image (.dmg): added a shortcut to the Applications folder, a background image with arrow, and new FTDI drivers.

8. Referenzen

[1] LM75 Digital Temperature Sensor and Thermal Watchdog with Two-Wire Interface

www.national.com/ds/LM/LM75.pdf

[2] myAVR - Das System zum Lernen und Experimentieren

http://shop.myavr.de/index.php?sp=docs/flyer_myavr.pdf

[3] Wire Library

http://www.arduino.cc/en/Reference/Wire

[4] 8-bit AVR Microcontroller with 4/8/16/32K Bytes In-System Programmable Flash

http://www.atmel.com/dyn/resources/prod_documents/8271.pdf

[5] PCF8591 8-bit A/D and D/A converter

http://www.nxp.com/acrobat_download/datasheets/PCF8591_6.pdf

[6] I2C-Analogkarte

http://www.horter.de/i2c/i2c-analog-u/analog-u_1.html

[7] Enabled 16x2 LCD - White on Black 5V

http://www.sparkfun.com/commerce/product_info.php?products_id=9395

[8] HD44780 Datasheet

http://www.sparkfun.com/datasheets/LCD/HD44780.pdf

[9] Adafruit Data logging shield for Arduino

http://www.ladyada.net/make/logshield/

[10] VT 100

http://de.wikipedia.org/wiki/VT100

[11] VT100 Command Set

http://braun-home.net/michael/info/misc/VT100_commands.htm

[12] PuTTY

http://www.putty.org/

[13] UNIX Timestamp Converter

http://www.gaijin.at/olsutc.php

[14] EM 4102 - Read Only Contactless Identification Device

http://www.emmicroelectronic.com/webfiles/Product/RFID/DS/EM4102_DS.pdf

[15] OEM-SR28e-232, Reader,TTL/RS232 Datasheet

http://www.rss-systems.de/d0a1239be51301b07/d0a123993d0a51b09/d0a12399df0b08205/d 0a123993c0721001.htm

[16] Arduino Ethernet Shield von Sparkfun (DEV-09026)

http://www.sparkfun.com/commerce/product_info.php? products_id=9026

[17] Wiznet W5100

http://www.wiznet.co.kr/Sub_Modules/en/product/Product_Detail.asp?cate1=5&cate2=7&cate3=26&pid=1011

[18] Wiznet Ethernet Shield von Seeed

http://www.seeedstudio.com/depot/wiznet-ethernet-shield-w5100-p-518.html?cPath=35

[19] Arduino Ethernet-Shield Bausatz für Mega/Duemilanove/Diecimila (NKC)

http://www.watterott.com/de/NKC-Ethernet-Shield

[20] SC Card Library

http://code.google.com/p/sdfatlib/

[21] Arduino Ethernet Library

http://arduino.cc/en/Reference/Ethernet

[22] Datenblatt SHT21

http://www.sensirion.com/de/pdf/product_information/Datasheet-humidity-sensor-SHT21.pdf

[23] NVU - Open Source WYSIWYG HTML Editor

http://net2.com/nvu/

[24] Automatische Weiterleitung zu anderer Adresse (Forwarding)

http://de.selfhtml.org/html/kopfdaten/meta.htm#weiterleitung

[25] Twitter Library

http://www.arduino.cc/playground/Code/TwitterLibrary

[26] Base64 Codier-/Decodier-Tool

http://www.patshaping.de/projekte/kleinkram/base64.php

[27] OAuth

http://de.wikipedia.org/wiki/OAuth

[28] How to Send Email Using Telnet

http://www.wikihow.com/Send-Email-Using-Telnet

[29] Email versenden per Telnet

http://www.nerd2nerd.org/services/email/email-versenden-per-telnet

[30] Interrupt - Beschreibung gemäß Wikipedia

http://de.wikipedia.org/wiki/Interrupt

9. Index

AD-Converter →

AD-Umsetzer →

AD-Umsetzung

Free Running Mode →, →

softwaregetriggert →

timmergetriggert →

Analog Comparator →

Arduino

Clones →

Duemilanove →

im Netzwerk →

MAC Adresse →

Mega 2560 →

Software Release →

Software Releases →

Uno →

ARDUINO 0018 →

ARDUINO 0019 →

ARDUINO 0020 →

ARDUINO 0021 →

ARDUINO 0022 →

Arduino Duemilanove

Anschlüsse →

Schaltbild →

Arduino Entwicklungsumgebung →

Arduino IDE

Initialisierung →

Überprüfung der Installation →

AUTH LOGIN →

BASE64 →

COM-Port →

CSV-Files →

DS1307 →

EHLO →

eMail →

Funktion

card.init() →

delay() →, →, →

error(char *str) →

file.sync() →

flash() →

get_data() →

getTemperatureLimit() →

I2c_read_temperature() →

loop() →

millis() →

randomSeed(analogRead(0)) →

readSensor() →

resume_serial() →

root.openRoot(volume) →

sendPage() →

server.print() →, →

servo1.write(grad) →

setup() →

stop_serial() →

twitter.post(toSend) →

volume.init(card) →

wdt_reset() →

Wire.available() →

Wire.begin() →

Wire.receive() →

Wire.requestFrom(LM75, 2) →

Global Interrupt Enable →

GMX →

HELO →

HTML-Editor NVU →

I2C-Analogkarte →

I2C-Bus →, →

I2C-Bus

Slaveadresse →

Interrupt Request →

Interrupt Service Routine →

Interrupts

INT0, INT1 →

PCIx →

Timer1 Overflow →

Timerinterrupts →

Interruptvektor →

Interruptvektortabelle →

IRQ →

ISR →

LCD →

Kommandos →

LED Modul →

Libraries

AFMotor →

Ethernet →

FAT16 →

SD Card Library →

SdFat →

ServoTimer1 →

ShiftBrite →

SHT21 →

Twitter →

Wire →, →

Link →

Lizenzen →

LM75 →

Register →

Mailserver →

Meta-Tag →

Multiplexer →

myTWI Add-On Temperatursensor →

nslookup →

OAuth-Protokoll →

PCF8591 →

Eigenschaften des AD-DA-Systems →

Physical Computing →

Processing →

Programmabarbeitung

interruptgesteuerte →

Programmstruktur →

PuTTY →

PWM →

PWM Frequenz →

Quelltexte

ACOMP.pde →

ADC2s.pde →

ADC3s.pde →

adda.pde →

DataLogger.pde →

DebugLCD.pde →

DS1307_Setup_1.pde →

DS1307_Setup.pde →

ExternalInterrupt.pde →

free_running_adc.pde →

HelloWorld1.pde →

msecTimer.pde →

myTWI_Temperatursensor.pde →

PCF8591.pde →

PCINT.pde →

ReadRFID.pde →

SecTimer.pde →

ServoTest.pde →

ShiftBrite.pde →

SHT21_Mail1.pde →

SHT21_Twitter.pde →

SHT21_Webserver.pde →

SHT21_Webserver1.pde →

Template.pde →

Watchdog.pde →

Webserver.pde →

Referenzspannung →, →

Refresh der Webseite →

Register

ACSR →

ADCH →

ADCL →

ADCSRA →

ADCSRB →, →

ADMUX →

EICRA →

EIFR →

EIMSK →

PCICR →

PCIEx →

PCMSKx →

TCCR1A →

TCCR1B →

TCCR2A →

TCNT1 →

TIMSK1 →

WDTCSR →

Return from Interrupt →

RFID →

RFID Tags →

RFID-Reader →

RFID-Standard →

RTC →

SD Card →

Servo Ansteuerung →

Shields →

Adafruit Servo/Stepper/DC Motor Shield →, →

Data Logging Shield →

Ethernet Shield →

ProtoShield →, →

SD Card Shield →

Übersicht →

ShiftBrite RGB LED →

SHT21 →

Sketch →

Software Releases →

Tabelle

in HTML erstellen →

Telnet →

Temperaturmessung →

Template →

Tiefpass →

Timer1 →

Timer2 →

Timerperiode →

Triggerquelle →

Tweets →

Twitter →

Twitter Account →

Twitterer →

UNIX Timestamp →

VT100-Mode →

Watchdog →

Webserver →

Wiring →

Wiznet W5100 Ethernet Chip →

__DATE__ →

__TIME__ →

Die Deutsche Bibliothek – CIP-Einheitsaufnahme

Ein Titeldatensatz für diese Publikation ist bei

Der Deutschen Bibliothek erhältlich.

© 2011 Skript Verlag Kühnel, CH-8852 Altendorf

Dieses Buch und die beschriebenen Schaltungen, Verfahren und Programme wurden sorgfältig erstellt und getestet. Trotzdem können Fehler und Irrtümer nicht ausgeschlossen werden.

Verlag und Autor sind dankbar für Hinweise auf Fehler, übernehmen jedoch keinerlei Verantwortung für die uneingeschränkte Richtigkeit und Anwendbarkeit des Buchinhalts. Jegliche juristische Verantwortung und Haftung wird ausgeschlossen.

Die Informationen im vorliegenden Buch werden ohne Rücksicht auf einen eventuellen Patentschutz veröffentlicht. Alle in diesem Buch vorkommenden Marken- und Handelsnamen sind Eigentum ihrer jeweiligen Besitzer und unterliegen den einschlägigen gesetzlichen Bestimmungen. Das Fehlen einer gesonderten Kennzeichnung bedeutet nicht, dass es sich dabei um einen freien Namen handelt.

Dieses Buch ist als Ganzes und in Teilen urheberrechtlich geschützt.

Jede Verwertung ohne schriftliche Genehmigung des Verlags ist unzulässig und strafbar. Dies gilt insbesondere für Vervielfältigungen jeder Art, Übersetzungen, Mikroverfilmungen und für die Einspeicherung in elektronische Systeme.

Alle Rechte vorbehalten. All rights reserved.

ISBN 978-3-844891-34-8

OEBPS/images/f0025-01.jpg
© Holloworld | Arduino 0022
Fio @ s Tok Folp

©® bIEEE

const int LED = 13; £/ 12D @ Panl3

flashi)
aurpat = BIGH:
(1D, oucpur) ;
oucput = toutput;

0

5 200)
(e, ovreuT) 5

OEBPS/page-template.xpgt

OEBPS/images/f0077-01.jpg
RFID Reader

o10415:73;
o10415:73;

25 running

OEBPS/images/f0077-02.jpg
BEX]

1>
Read
Read
Read
Read
Read
Read
Read
Read
Read

Reader is rumning.
1D 0104157
1D 01041575
1D 0663
1D 10663
1D 01061
1D 1061
RFID Content = 010415

RFID Content = 010415
RFID Content = 010415

57600 baud v

OEBPS/images/f0092-01.jpg
[0 szt

€ 5 C | © 192168199 Tempae=26 Y
1) i board [PO sord 520 (B] temege StorCerer.,. » (] Woters Leeasien

Envirommental Data measured by SHT21
Rofrosh after abont 10 seconds

Set Temperatuce Level |

Eunidity P4RED 2723
Temperatue (d O 2572
TempecanureLini (erd C) 26
Temperane is under Livit
uthor's Homepage

Asdring runs For 103953 ras

OEBPS/images/t0114-01.jpg
WGM22 WGM21 WGM20 Mode

Normal Mode | 0xFF

OEBPS/images/f0111-01.jpg
Setup finished

v
(] Autoscrol o line ending 19200 baud

OEBPS/images/t0037-01.jpg
["Tolo 1 azf[ar] a0

MSB LsB

OEBPS/images/t0066-01.jpg
« LOG_INTERVAL
« ECHO_TO_SERIAL 1
« WAIT_TO_START 0

o SYNC INTERVAL

bezeichnet den Aufruf der Loggingfunktion in ms
sendet Daten zum seriellen Port, wenn 1

wartet nicht auf einen Input beim Aufruf von
setup(), wenn 0

Synchronisationsintervall mit der SD Card in ms

OEBPS/images/f0060-01.jpg

OEBPS/images/f0083-01.jpg
AT (°C)
130‘)

_ maximal tolerance.
i typical tolerance
+20
=15

=10
+05
+00

4 20 0 20 4 6 8 10 120
Temperature (°C)

OEBPS/images/f0083-02.jpg
ARH [%RH)
=10

maximal toerance|
&8 — — — typical tolerance
16
4
R T T T T T 1=
+0

0 10 20 4 50 6 0 %0 100

70 80 50 0
Relative Humidity (%RH)

OEBPS/images/f0102-01.jpg
Digta 100

Digtal 104

Digtal 105

Digtal 108

[RESED 1 GINT19)
27,
(PGINTI7TD) PD1 W3 26 PC3 (ADGIPCINT 1)
¢ J
(PCINT19/0G2BINT1) PDI M 5 24 1 PCT (ADG1/POINTS)
as
veed7 220 6ND
da 21 [arer
(PCNTeXTAL1TOSCH) PB6 |9 201 avee
(PINT7XTALZITOSCE) PR7 L] 10 10 PaS (SCKIPOINTS)
1" 16 jmppa
? 17 fu pes (o
s 16 P2 (S5
1o 15 fmpBt

Aonan's

Digital 109

OEBPS/images/f0031-02.jpg

OEBPS/images/f0031-01.jpg
[EEEEEEC e EfeEel [=T=] = T
[[e \[|| S e[|

OEBPS/images/f0125-02.jpg
Bit 7 6 5 4 3 2 1 0

(x8) [= [AcME [- [- [- [ADTs2]| ADTS1 | ADTSO |ADCSRB
ReadWite R RW R R R RW RW RW
intabwert 0 0 0 0 0 0 0 0
it 7 5 5 4 3 2 1 0

0x30 (0x50) | ACD | ACBG | ACO | ACI | ACE | ACKC | ACIS1 | ACISO | ACSR
ReadWite RW RW R RW RW RW RW RW

Initalwert o 0 il o 0 0 o 0

OEBPS/images/f0125-01.jpg

OEBPS/images/f0074-01.jpg

OEBPS/images/f0043-01.jpg
COMVERSIONLOGIC

SHMPLE & HOLD
COMPARATOR

1087 DAC

ADCUULTIPLEYEF
cuTPLT

W

OEBPS/images/t0046-01.jpg
7 6 4 3 2 1 0

ADCSRA | ADEN | ADSC | ADATE | ADIF | ADIE | ADPS2 | ADPS1 | ADPsO

OEBPS/images/f0022-01.jpg
skotch_mar20a | Arduino 0022
it shelch Toos Heb

OEBPS/images/f0131-02.jpg
it 7 6 5 3 2 1 0
78 [- [AME] - | - - [AnTs2 [ADTs1 [ADTS0 |ADCSRB

ReadWite R RW R R R RW RW RW

Intalwert 0 o 23 0 0 0 0 0

OEBPS/images/f0114-02.jpg
it 7 6 5 4 3 2 1 0
(0x60) [COMIAT[COM1AO[COMIBI[COMIBO] - | - | WGM11 [WGM10 |TCCR1A
ReadWite RW RW RW RW R R RW RW
nitabwert 0 0 0 0 0 0 0 0
Bit 7 5 5 4 0
(1) [IeNCt [IcesT | - \weMla\wewz\ Cs12 | CS11 | CS10 |TCCR2B
ReadWite W W R RW RW RW RW

Initialwert o 0 0 o o 0 0 0

OEBPS/images/f0114-01.jpg
Bit 7 6 5 4 3 2 1 0
o) [T v TS s oo [oer] s
Read/Write: R R R R RW RW RW
Initialwert 0 0 0 0 0 0)

OEBPS/images/f0131-01.jpg
it 7 6 5 4 3 2 1 0
(0x7A) [ADEN | ADSC | ADATE | ADF | ADIE | ADPS2 | ADPS1 | ADPSO |ADCSRA
ReadWite RW RW R RW RW RW RW RW
néabwert | 0 o o 0 0 0 0 0

OEBPS/images/f0088-01.jpg
L szt

€ 2cC ekt fArdur w A
[AdinoBord [FOXBsard 520 [B) femsga StorCerser G » [Wekere Leseasichen

Eavirommental Data measured by SHT2 1

Set Temperatuce Level

Fuudiy (% RH) 35
Tempecature °C) 22
et e

Author's Homepage

Ardinoruns for 1234567 ms

OEBPS/images/9783907857168.jpg
ARDUINO

Arduino

Hard-und Soffware
Open Source Plattform

Claus Kiihnel

OEBPS/images/f0042-02.jpg
B

[————— =
e

50 3xa

50 3xa
w0 yxa
00 ma
50 wa
00 wa
00 sxa
00 3xa
50 3a

Teuperatur

15200550

OEBPS/images/f0036-02.jpg

OEBPS/images/f0042-01.jpg
<] comrr BEE
[B
Err— =

Texperaturuers in 0.8 grd Stufen

resperatur = 1300 gra
Tewperaturuers = 0820

oxzz

o

15200 baud

OEBPS/images/f0036-01.jpg

OEBPS/images/f0057-01.jpg

OEBPS/images/f0019-01.jpg

OEBPS/images/f0128-01.jpg
Setup finished.

m

v
] Aukoscrol MNolne endng (v

OEBPS/images/t0103-01.jpg
© e N s W N

0x00

0x02
0x04
0x06
0x08
0x0A
0x0C
0x0E
ox10
ox12
x4
0x16
ox18
0x1A

RESET

INTO
INT1

PCINTO

PCINT1

PCINT2

wpT

TIMER2 COMPA
TIMER2 COMPB
TTIMER2 OVF
TIMER1 CAPT
TIMER1 COMPA
TIMER1 COMPB

TIMER1 OVF

Interrupt Definition

External Pin, Power-on Reset, Brown-out Reset and Watch-
dog System Reset

External Interrupt Request 0
External Interrupt Request 1
Pin Ghange Interrupt Request 0
Pin Change Interrupt Request 1
Pin Ghange Interrupt Request 2

Watchdog Time-out Interrupt

eriCounter2 Compare Match A
Timer/Counter2 Compare Match B
[Timer/Counter2 Overflow
Timer/Counter Capture Event

imer/Counter1 Compare Match A

Timer/Counter1 Compare Match B

imer/Counter1 Overflow

OEBPS/images/f0011-02.jpg
S TR

OEBPS/images/f0011-01.jpg

OEBPS/images/f0120-01.jpg
%)

ocRiA: Fazd

TccRia: ©
TccmiE: ©
proveey

Setup finished.
o

\\»E

[7] Autoseral

>

OEBPS/images/t0112-01.jpg
Takterzeugung mit Timer2 bei 16 Mhz

Prescaler 1 8 32 64 128 256 1024
Mix. Timerperiode in ms. 0.016 0128 0512 1.024 2048 4.09% 16.384
Aufidsung in ms 0.063 0.500 2.000 4.000 8.000 16.000 64.000
Prescaler 8 32 64 128 256 1024
Mix. Timerperiode in ms. 4. 098 32784 131136 262272 524.544 1049.088 4196.352

Aufldsung in ms 0063 0500 2000 4000 8000 16000 64.000

OEBPS/images/f0023-01.jpg
' sketch_mar20n | Arduinn 0022

§S][=1] %]

(e oS [T b

a

Sensetor
ot
S Pt

[y —

Srgeunschatin

>

e
g

Arduino Duomnlznoee o N] ATrog: 225

Srdine Diecinla, Dusianove, or e] ATregaLE5

ArduinoFro orFro M (51, 1612)] ATreas 25
S Bro orBro M (5, 15,<)] ATegatss
ArduineFro orFro M (3.3, 8 WHG) w ATrecai2e
Ardun Bra orBra M G52, WHG) w ATracalss
Ardino G or cdr] ATre3s16
Arduno i or o wf ATregac

- — 57

OEBPS/images/t0080-01.jpg
P 192.168.1.99
Gateway 192.168.1.1
Subnet 9255 255 255 0

OEBPS/images/f0056-01.jpg

OEBPS/images/f0079-01.jpg
Arduino 2008 mit

Ethemet Shield DSL Router mit
imLAN

LAN- 8 WLAN

Desktop PC im LAN

Notebook im WLA

NAS Server im LAN

OEBPS/images/f0136-01.jpg
Tinerl Configuration
TeCRL

TecmB: 4

provEny

ADC Configuration for Timer triggered Mode

DA Voltage: 1.090 ¥

B

OEBPS/images/f0113-01.jpg
Bit 0

7 5 5 4 1
(0xB0) [COM2A1] COM2AD | cOM251[COM2B0 [T 1=] WGM21 | WGM20 | TCCR2A
ReadWite RW RW RW RW RW AW

Initialwert 0 0 0 0 0 0 0 0

OEBPS/images/f0085-01.jpg
st
€ > C 192168192 % A

[) avdinoBosrd [FoxBoardG20 ™ |] Wekere Lesezeichen

Envirommental Data measured by SHT21
Refiesh after about 10 seconds

Humidity (YoREH) 26.37
Temperature (grd C): 24.24

Author's Homepage
Arduino runs for 184502 ms.

OEBPS/images/t0016-01.jpg
Shield

Beschreibung

Prototyping wird durch kleines Lochrasterfeld, zwei LEDs und

Arduino 2wei Taster (davon 1x Reset) unterstutzt

ProtoShield | Anschluss zum BlueSMiRF Socket (Bluetooth Modem) ist vor-

Kit handen (http://www.sparkfun.com/commerce/product_info.php?
products_id=7914)
Drahtlose Kommunikation mit Zigbee ber Xbee Module von

XBee Shield (http:/A
oem-rf-module-zigbee.php)

Motor

s Steuerung von DC Motoren und Auslesen von Encodern
(http://blushingboy.net/p/motorShieldV3/)

Shield
Serielle Ansteuerung eines 38x25 Character-Displays auf PAL

TellyMate [oder NTSC TV

Shield (http://www.batsocks.co.uk/products/Shields/TellyMate%20S-
hield.htm)

Bison: Tastatur mit 32 Tasten

Shield (http: blogspot.com/2(footage-of-but:
tonshield-in-wild.htmi)

Adafruit Wiedergabe von 22 kHz Audiofiles beliebiger GroRe von einer

Wave Shield [SD Card (http://www.ladyada.net/make/waveshield/)

Adafruit GPS |Verbindet ein GPS Modul und kann Ort, Zeit, Datum und Sens-

& Datalog- |ordaten auf einer SD Card abspeichern

ging Shield | (http://www.ladyada.net/make/gpsshield/)

TouchShield |Widescreen OLED Touch Screen mit 320x240 Pixeln

Slide (http:/fwwy TSLIT: lide)
Batterie Pack mit iber USB ladbarer Lithium lonen Batterie er-

Battery maglicht Batteriebetrieb eines Arduino fur 14-28 Std. (abhangig

Shield von der Beschaltung)
http://www_liquidware.com/shop/show/BP/Lithium+BackPack

Sondic Verbindet sechs Schieberegler mit den analogen Eingangen

i (http://www.freeduino.de/wiki/arduino-6-pack-slider-shield)
Adafruit
Sero/Step. | ANSteuerung von zwei Hobby Servos und bis zu zwei

per/DC Motor
Shield

Unipolar/Bipolar Schrittmotoren oder vier bi- DC
Motoren (http://www.ladyada.net/make/mshield/)

Liquidware
InputShield

Eingabe uber zwei Tasten, einen Joystick und einen A-B Selec-
tor zur Game- bzw. Robotersteuerung
(http:/Awwy

OEBPS/images/f0014-01.jpg
LUELR

OEBPS/images/t0058-01.jpg
HD44780 Commands

Clear Display

Move cursor

Move cursor left one
Seroll right
Scroll left

Underline cursor on

Underline cursor off

Blinking box cursor on

Blinking box curs

Set cursor pos

0O
080
050D
050C
0x80 +

OEBPS/images/f0037-01.jpg
Product ID Rogister (LM75A Only)

P7 P6 Ps [P4 | P3 | P2 [P1_ | Po
0 0 o [o | o] Register Select
P2 P1 Po Rogistor

0 0 0__|Temperature (Read only) (Power-up default)

o 2 T Configurat :

0 1 0 |Tive: (ReadWirite)

0 i 1 |Tos (Read/Write)

1 1 1

OEBPS/images/f0062-01.jpg
Saisk 2’

OEBPS/images/t0058-02.jpg
haracter Di

play

Viewable Cursor Positions

1 015

64-79

3 16-31

80-95

OEBPS/images/f0100-01.jpg
Datei Bearbeten Anscht Erfigen Fomaf Edras Altionen 2

§ Cjuantwotten |) wetereten | X | & ~ | 8] addto Evernote

von: . ch Geserdats Keine Angabe
i

co
Betreff: Environmental Data
SHT2! Environmental Data

Temperature is 24 grd C
Eumidity is 25 % c 5

OEBPS/images/f0108-02.jpg
it 7 6 5 4 2 1 0
oes) [[PciE2 [pcier | pcieo | peicr
ReadWite R R R R R RW RW RW
Intialwert 0 o 0 0 0 o o 0

OEBPS/images/f0051-02.jpg

OEBPS/images/f0051-01.jpg
eV dOSPa
»

OEBPS/images/f0108-01.jpg
[Autoscrol

v
Nolne ending [w] [19200baud (]

OEBPS/images/f0028-01.jpg

OEBPS/images/f0045-01.jpg
(10..1000)
r=R-C="""

Loy

OEBPS/images/f0020-01.jpg

OEBPS/images/f0093-01.jpg
© © titer.com sV herbeoa i _tcken=sa DT T w B A

Ry

¢

) btz () ness et & [watsre oot

An application would like to connect to your
account
T appi

S soucuat other then chuehnal

Allow Arduino aceess?

OEBPS/images/t0115-01.jpg
COM1x1 COM1x0 Funktion

Normale Portfunktion, OC1x vom Pin getrennt

0 1 | Toggle OC1x beim Output Compare Match Interrupt

1 0 | Zuracksetzen von OC1x beim Output Compare Match Interrupt

Setzen von OC1x beim Output Compare Match Interrupt

OEBPS/images/t0115-02.jpg
0 Timer/Counter gestoppt

0 0 1 |Prescaler=1

0 1 0 |Prescaler=38

0 1 1 |Prescaler = 64

1 0 0 |Prescaler = 256

1 0 1 |Prescaler = 1024

1 1 0 |Extemer Takt an T1 (fallende Flanke)
Externer Takt an T1 (steigende Flanke)

OEBPS/images/t0044-01.jpg

OEBPS/images/t0115-03.jpg
WGM13 WGM12 WGM11 WGM10 Mode
Normal Mode OxFFFF

CTC Mode OCR1A

OEBPS/images/t0132-01.jpg

OEBPS/images/title.jpg
Claus Kuhnel

Arduino

Hard- und Software Open Source Plattform

OEBPS/images/t0038-01.jpg

OEBPS/images/f0082-01.jpg
[0 Ao 2009 Baerd
€. C | ©1v2168199 | X

[Arduno Board) FOX Board 620 > O Wetere Lesezeichen

Hello World!
This is Arduino V. 22
Arduino runs for 15860 ms

OEBPS/images/f0082-02.jpg

OEBPS/images/t0013-03.jpg
Analog In 0 1 2 3 4 5
PCO | PC1 | PC2 | PC3 | PC4 PC5

AVR ADC4 | ADCH

ADCO | ADC1 | ADC2 | ADC3

OEBPS/images/f0105-02.jpg
Bit

0

0x1D (03D) |

[Tt

Read/Write
Initialwert

Bit

RIW

[INTo] Emsk
RW
0

0x1C (0x3C) |

1
[T

0
[INTFo | EIFR

ReadWrite
[o—

RW
0

RW
0

OEBPS/images/t0013-01.jpg
w o il 5 6
PDO | PD1_| PD2 PD4 | PD5 | PD6

AR [2yp [70 | INTO -

OEBPS/images/f0105-01.jpg
4 3 2 1 0
@69 [= [= [= [= Tisc11]Iscto | Isco1 | ISCoo | EICRA
R R R R RW RW RW RW
Wicdhwort O 0 0 0 § 0 o 0

OEBPS/images/t0013-02.jpg
o 8 9 10 11

. PB1 PB2 PB3
AVR OC1B_| OC2A
ICP1 | OC1A vos | MIsO SCcK

OEBPS/images/t0126-01.jpg
Acist

ACISO Interrupt Mode

0 0 | Comparator Interrupt bei Anderung (Toggle) an ACO

0 1 |Reservien

1 0 | Comparator Interrupt bei fallender Flanke an ACO
Comparator Interrupt bei steigender Flanke an ACO

OEBPS/images/f0050-01.jpg
AouT+]

o
TERFACE

PCFas0t

AC DA
REcETER|

successive
APFRONMATION
REGISTERLOGIC

OEBPS/images/f0109-01.jpg
Bit 7 6 5 4

2 1 0
[PciF2 T PeiF1 | PCIFo | PCIFR

oxBEas) [= [= [= [=
ReadWite R R R R R RW RW RW
nitialwert 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
(0x6D) [PCINT23 [PCINT22 [PCINT21 | PCINT20 | PCINT19 [PCINT8 | PCINTA7 | PCINTI6 | PCM S K2
ReadWite RW RW RW RW RW RW RW RW

initawert 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
(0x5C) ‘PCIN‘HS‘PCVNTM‘PCIN‘HZ&‘PCVNTQ‘PCNTM‘PCINTW‘ PCINTY | PCINTS | PCMSK1
ReadMWite RW RW RW RW RW

Initialwert o 0 0 o 0 o 0 0

OEBPS/images/f0096-01.jpg
e freme

€ X | © twitcercom L3R Y
O ot () rorsnmd s (8] enegestercenier . > £ were ezt

ren? | Ubersetzen

3 eoe st ket g«

What's happening?

ine @Mortione Retweets~ Seorhes - Lists

Warcon auf serbe. tittor com.

OEBPS/images/t0047-01.jpg
7 3 4 3 2 1 0

Apmux | REFS1 | REFSO [ADLAR MUX3 | Mux2 | Muxi [muxo

OEBPS/images/f0073-01.jpg
@ =\0

OEBPS/images/f0029-01.jpg

OEBPS/images/f0044-01.jpg

OEBPS/images/t0009-01.jpg
Lizenz

Lizenzbestimmungen
Das Programm darf ohne jede Einschrankung fr jeden Zweck =
nutzt werden. Nutzung ist hierbei

laubt.

Kopien des Programms drfen verteilt werden, wobei der Quellco-
de mit verteilt oder dem Empfanger des Programms auf Anfrage
2ur Verfigung gestelt werden muss. Dem Empfanger missen die-
selben Freiheiten gewahrt werden.

Das Programm darf den eigenen Bed(rfnissen angepasst werden.
Veranderte Versionen des Programms darfen nur unter den o.a.
Bedingungen vertrieben werden, wobei dem Empfanger des Pro-
gramms der Quellcode der veranderten Version verfigbar ge-
macht werden muss,

Lizenztext der GNU GENERAL PUBLIC LICENSE unter
http:/Awww.gnu.orgflicenses/gpl-3.0.html

Im Gegensatz zur GPL durfen alle Programme, welche LGPL-li-
zenzierte Software nur extern benutzen, zum Beispiel als Pro-
grammbibliothek, inre eigene Lizenz behalten. Damit eignet sich
die LGPL besonders als Lizenz fur Bibliotheken, deren Benutzung
man auch Programmierern proprietarer Programme erlauben wil

Soll die unter der LGPL lizenzierte Software dagegen fest in ein
anderes Programm eingebunden werden, muss auch das andere
Programm unter der LGPL bzw. einer kompatiblen Lizenz stehen.

Lizenztext der GNU LESSER GENERAL PUBLIC LICENSE unter
http://www.gnu.orgllicenses/igpl-3.0.htmi

OEBPS/images/f0012-01.jpg

OEBPS/images/f0087-01.jpg
SR snar
€ 9 C 0192168192 % A

[Avduine Bosrd [FOX Board 620 » | (3 wettere Lesezeichen
Environmental Data measured by SHT21

Refiesh after about 10 seconds

Humidity (%REH). 26.22
Temperature (grd C): 24.24

Author's Homepage

Arduino runs for 194839 s

OEBPS/images/f0009-01.jpg
I1GFL

OEBPS/images/f0035-01.jpg

OEBPS/images/t0104-01.jpg
TIMERO COMPA | Timer/Counterd Compare Match A
TIMERO COMPB | Timer/Counterd Compare Match B
TIMEROOVF [Timer/Counterd Overfiow
SPI,STC SPI Serial Transfer Complete
USART, RX USART Rx Gomplete

USART, UDRE | USART, Data Register Empty
USART, TX USART, Tx Complete

ADC ADC Conversion Complete
EE READY EEPROM Ready
ANALOG COMP | Analog Comparator

™wi 2-wire Serial Interface
SPMREADY | Store Program Memory Ready

OEBPS/images/t0010-02.jpg
ocreative

n
' Namensnennung

n
T N= Namensnennung - Keine Bearbeitung

Namensnennung - Nicht Kommerziell

3 Namensnennung - Nicht Kommerziell - Keine Bearbei-
PN/ | tung

0)) | Namensnennung - Nicht Kommerziell - Weitergabe un-
ter gleichen Bedingungen

G) Namensnennung - Weitergabe unter gleichen Bedin-
gungen

OEBPS/images/f0129-02.jpg
sit 7 6 5 4
(©C) [ReFs1 [ReEFs0 [ADLAR [- | MUX3 | MUX2 | MUX1 \ MUX0_| ADMUX
ReadWite RW RW R R RW RW RW RW
Intalwert 0 0 0 o o 0 0

OEBPS/images/f0129-01.jpg
S s oo
EONPERAOR

AncwuTASKER
ity

OEBPS/images/f0121-02.jpg
it 7 6 5 4 3 2 1 0
(0x60) [WDF | WDEE | WDP3 | WDCE | WDE | WDP2 | WDPT1 | WDPO |WDTCSR
ReadWite R RW RW RW RW RW RW RW
Intalwert 0 o 0 0 0 0 0 3

OEBPS/images/t0010-01.jpg
Creauve Camimons (0G) et i Non Proﬁl -Organisation, die in
U die Versf-
lemllchung und Vemrenung dlgnaler ‘Meclerinhake anbistet

Ganz konkret bietet CC sechs verschiedene Standard-Lizenzver-
trage an, die bei der Verbreitung kreativer Inhalte genutzt werden
konnen, um die rechtiichen Bedingungen festzulegen (siehe Ta-
belle 2).

Li unter

OEBPS/images/f0121-01.jpg
TRTER0S

INTERRUPT

OEBPS/images/f0135-01.jpg
!
100 Contiguracion for Trae Rumming Hods [A]
e

apcspa: EF
ApcsRE: 0
bIpRo: o
ADC free running.
D8 Voltage: 1.085 ¥
DS Voltage: 1.085 ¥
DS Voltage: 1.088 ¥
: D8 Voltage: 1.080 V
: D3 Voltage: 1.085 V

v
Nolne endig [(15200 baud v

OEBPS/images/t0113-02.jpg
Timer/Counter gestoppt

0

0 0 Prescaler = 1

0 1 Prescaler = 8

0 1 Prescaler = 32
1 0 Prescaler = 64
1 0 Prescaler = 128

Prescaler = 256

Prescaler = 1024

OEBPS/images/f0053-01.jpg
|
1

N0
a0
an
an
cranne 1
AN
L ANALOGUE OUTPUT ENABLE FLAG:

(andlogue oulput active 1) .

OEBPS/images/f0070-01.jpg
® Datumund zet: [2om0]v], [09[w]:[s4[v]: []]

OEBPS/images/f0047-01.jpg
Ovte purmber iBlal 4l sl el 7l 6] ol w0 ul
DG cloo LY L LT

R Convran: AT O pracnter

OEBPS/images/f0009-02.jpg

OEBPS/images/t0130-01.jpg
REFS1 REFSO

Referenzspannung

0 0 |AREF, Inteme Referenz abgeschaltet
0 1 |AVCC mit externem Kondensator an Pin AREF
1 0 |reserviert

mit externem

Interne 1.1V
AREF

OEBPS/images/f0078-01.jpg

OEBPS/images/t0130-02.jpg
MUX3:0 Eingang gegen GND

0000 ADCO
0001 ADC1

0010 ADC2

0011 ADC3

0100 ADC4

0101 ADC5

0110 ADCS

o111 ADCT

1000 Temperatursensor
1110 Bandgap-Referenz 1.1 V
111 GND OV

OEBPS/images/t0113-01.jpg
COM2x1 COM2x0 Funktion

Normale Portfunktion, OC2x vom Pin getrennt

0 1 | Toggle OC2x beim Output Compare Match Interrupt

1 0 | Zurucksetzen von OC2x beim Output Compare Match Interrupt

Setzen von OC2x beim Output Compare Match Interrupt

OEBPS/images/f0124-01.jpg
I

wDTCSR: 46 ~
Setup finished.
o

[

1
2
3

=
Dlasoscal aineevig [¥]

OEBPS/images/f0075-01.jpg

OEBPS/images/t0026-01.jpg
Structures
void setup()
void loop()
switch case
if..else

do...while

unsigned long
boolean

float

Functions
digitalWrite(pin, value)
int analogRead (pin)

unsigned long pulseln(pin, value)
long random (min, max)

map(value, fromLow, fromHigh, toLow,
toHigh)

OEBPS/images/f0010-08.jpg

OEBPS/images/f0052-01.jpg
PCFES91 DA-Umsezung

PCFES91 AD-Umsezung

5 Adiress 0[A] Control Byt AT DABfe TATS]
s LIRS Comd B
51 Adiress 17AT ADBre AT ADBye TATS]

OEBPS/images/f0046-01.jpg
<) com7 BEE

[15200 b2~

OEBPS/images/f0094-01.jpg
[Ivestlteery fon &rduine) 3 Tweet ivary for Ardumo

€ - C |O ardiiro-tweetappspot.com/access_tokerPoaut tokern=saDiwT g | A

1) Ak ard [PO 3o G20 (B TogsStorCrtor . T Rp—

Four accouttis oreated suzcessfils

§ Your token : 26 S

‘Putthis token into yous sketcl

OEBPS/images/f0117-01.jpg
Setup finished.

v
[Autoscrol (19200 baud [w]

OEBPS/images/t0131-01.jpg
ADSP2 ADSP1 ADSP0 Prescaler

OEBPS/images/f0010-04.jpg

OEBPS/images/f0010-05.jpg

OEBPS/images/f0018-01.jpg

OEBPS/images/f0010-06.jpg

OEBPS/images/f0018-02.jpg

OEBPS/images/f0033-01.jpg

OEBPS/images/f0010-07.jpg

OEBPS/images/f0010-01.jpg

OEBPS/images/f0010-02.jpg

OEBPS/images/f0010-03.jpg

OEBPS/images/f0049-01.jpg
1) comt7 EEE
] Send

Tasz of Fres humning A0

[Bandgap-Re ferens

=3
o oo v
Temperavur

0w

[Bandgap-Re ferens
&

15200 b~

OEBPS/images/f0024-01.jpg
@ skotch_mar20a | Arduino 0022
st [Taoh] s

e

Ao Frtl Erey
Archive Stetch

FxErcouing s Rebad
seralMaritor

Srprnsa

Bozrd »
Seralpart ¥ v conr
Burn Boatheder ’

OEBPS/images/f0097-01.jpg
[C:\WINDOWS\system32\cmd. exe

t\snsTookup mail.gmx.ch
resolveri.dyndns internatquide. com
216.146.35.35

lyicht autorizierte antwort:

mad et
Qaressesi- 213.165.64.20, 213.165.64.21
aliases: mail.gmc.ch

OEBPS/images/f0097-02.jpg
B Telnet mail gnx.ch
20 maiT. gue.net GHY et Tservices ESTP {rpdss
250 mail, gux.nt GHX Mailservices {np05SH

auth Togin
531 vafenshius
e

334 JeFzc3dvange

235 2.7.0 Go ahead (’mDOSS)
137 1030 kgl
RAR

Fect &
250 2.1.5 ok {np0ss)

554 Plesse start nail jrauc.
Das ist eine Telnet Mail

250 pail queves far delivery.
211 Closing comaction. Good bye.

Werhindung zu Host verloren.
Driicken Sie =ine belishige Taste, un den vorgang fortzusetzen.

‘ |

OEBPS/images/f0055-01.jpg
) com7 el
T e

Tesz of peRRSSL
bac c

e acac
3 " 1
s 3 2
s ‘ 3

20 ke

OEBPS/images/f0072-01.jpg
(|

201111 12:00:12 =
201111 12:00:13

201111 12:00:14
201111 12:00:15
01111 22700015

man v

OEBPS/images/f0112-01.jpg
(feu* T)

Count=
Prescaler

OEBPS/images/f0112-02.jpg

OEBPS/images/t0006-01.jpg
Altendorf, im Juli 2011 Claus Kihnel

OEBPS/images/f0038-02.jpg

OEBPS/images/t0040-01.jpg
Debug Mode Codegréifie

DEBUG 1 6190 Bytes
DEBUG 0 6010 Bytes

OEBPS/images/t0122-01.jpg
WDP3 WDP2 WDP1 WDPO Time-Out

Watchdog
Oscillator Cycles

OEBPS/images/t0122-02.jpg
Stopp

keine

Interrupt

Interrupt

System Reset

System Reset

Interrupt & System Reset

Interrupt -> System Reset

System Reset

System Reset

OEBPS/images/f0086-01.jpg
& Unbenannt - Nvu

Detel esboiten Anstht Enficen Fumel Tabele Exres Hife

BEX]

/. % B @ b B - O O

A 1 &
[Sfun_Spiden publern. Voschw 7ol unk Gofk Tabok Fomur Rachiahedn
Hormaer Text [v]/®™ |rA|BIU

GeineKlsse) [[verisle rete[v] | @

B (Unberornt) | ®
I n I o

AE P Te— 5
E -

2 5 o

3| TzeEER bEBbED

A = o

) womal | 3l Hr-rags | 5 queltext | < vorscas |

hay> ctabies cthodys <> <t

OEBPS/images/f0061-01.jpg

OEBPS/images/f0038-01.jpg
[

o7

D15 | D14 | D13 | D12 | Di1 | Dio [D9
MSB | Bt7 | Bite | Bits | Bit4 | Bt3 | Bt2 | Bit1 | LSB

[
X

OEBPS/images/f0069-01.jpg
P COMS5 - PuTTY

OEBPS/images/t0105-01.jpg
ISCx1 ISCx0 Beschreibung

0 0 |Loan INTx fordert einen Interrupt an (LOW)

0 1 |Eine beliebige Pegelanderung an INTx fordert einen Interrupt an
(CHANGE)

1 0 | Eine fallende Flanke an INTx fordert einen Interrupt an (FALLING)

Eine steigende Flanke an INTx fordert einen Interrupt an (RISING)

OEBPS/images/f0030-01.jpg

OEBPS/images/t0017-01.jpg
Verbindet ein Arduino Board tber ein Wiznet W5100 Ethernet

Arduino Chip mit dem Internet. Ein Wiznet W5100 stellt sinen IP Stack
Ethemet [fur die Protokolle TCP und UDP zur Verfugung und unterstiitzt
Shield bis 2u vier Socketverbindungen

(http/jwww arduino cofen/Main/ArduinoEtheretShield)
Adatriit Intemetverbindung tber XPort Modul (Client oder Server,
XPort/Ether-

hitp//www ladyada netimake/eshield)
net shield

Lesen und Schreiben von 13.56 MHz ISO-14443A (Mifare)
RFIDuN0 |RFID tags - Antenne ist integriert

(httpr/irfid marcboon com/#category2.0)
SDcard |SD Speicherkarten Erwsiterung
Shield for Ar- | (http/fwww. d-shield-for-ard
duino V21 |no-v21-p-492 html)

OEBPS/images/f0101-01.jpg
Start StartisR

Iniialisierung Programmkbrper
reti
Interuptireigabe

Programmkarper

