
Springer-Lehrbuch104 18 Divergenz und Rotation 

Definition: Rotation eines Vektorfeldes 

6Fz 6 F y , 6 F ,  6Fz 6Fy  rot^ = - - -- - 
6 , ' 6 r  6 2 ' 6 2  6y 

Mit Hilfe des Nabla-Operators V können wir die Rotation des Vektorfeldes F als 
Vektorprodukt von V und F schreiben: 

Wie jedes Vektorprodukt kann man die Rotation auch als Determinante schreiben: 

Das Linienintegral längs des geschlossenen Weges C verschwindet nicht. 

Die Rotationsbildung ordnet einem Vektorfeld 9 wieder ein Vektorfeld zu. Bei der 
Divergenzbildung wurde einem Vektorfeld ein skalares Feld zugeordnet. 

Beispiel 1: In der Abbildung ist ein Längsschnitt durch das Geschwindigkeitsfeld 
einer Flüssigkeitsströmung gezeichnet. Die Geschwindigkeit hat die Richtung der y- 
Achse. Am Grund ( r  = 0) verschwindet die Geschwindigkeit. Die Geschwindigkeit 
nimmt linear mit der Höhe über Grund zu. z 1 

Beispiel 2: Zu berechnen ist die Rotation 
des Vektorfeldes 

Das Geschwindigkeitsfeld ;(X, y, r )  läßt 
sich darstellen als 

;(X, y, z )  = az . e y ; . a  = const 

Die Rotation von 6' ist 

Dieses Vektorfeld ist nicht wirbelfrei, 
was auch anschaulich klar ist. 

-. 
V 

-+o~T -P 4 

rot Ü = (-a, 0, 0) X 
C 

Y 
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Vorwort zur 15. Auflage 

Die Benutzung und Bearbeitung der Leitprogramme, insbesondere der neuen 
Kapitel, ist auf der beiliegenden CD wesentlichverbessert und erleichtert worden. 
Weiter sind dank der Hilfe aufmerksamer Leser noch immer verbliebene Fehler 
entdeckt und jetzt korrigiert. 

Frankfurt am Main, 2008 Klaus Weltner 

Vorwort zur 14. Auflage 

Neben vielen Verbesserungen im Detail sind neu hinzugefügt die bisher noch 
fehlenden Leitprogramme für die Kapitel ,,Divergenz, Rotation und Potenzial", 
,,Fourierreihen", ,,Fourier-Integrale", ,,Laplace-Transformationen" und ,,Wellen- 
gleichungen". 

Damit liegt nunmehr für jedes Kapitel eine Lern- und Arbeitshilfe vor, deren 
Methodik sich für Studienanfanger vielfach bewährt hat. 

Frankfurt am Main, 2007 Klaus Weltner 

Aus dem Vorwort zur 1. Auflage 

Lehrbuch und Leitprogramme ,,Mathematik für Physiker" sind in erster Linie 
für Studienanfänger des ersten und zweiten Semesters geschrieben. Es werden 
diejenigen Mathematikkenntnisse vermitteln, die für das Grundstudium der Ex- 
perimentalphysik benötigt werden. Das Lehrbuch kann unabhängig von den 
Leitprogrammen benutzt werden. Die Leitprogramme sind neuartige Studienhil- 
fen und haben nur Sinn im Zusammenhang mit dem Lehrbuch. Leitprogramme 
eignen sich vor d e m  zur Unterstützung des Selbststudiums, zur Vorbereitung 
des Studiums und als Grundlage für einführende mathematische Ergänzungsver- 
anstaltungen neben der Experimentalphysik-Vorlesung. 

Lehrbuch und Leitprogramme wurden im regulären Studiengang in drei Stu- 
dienjahren verwendet und aufgrund der Erfahrungen und Rückmeldungen der 
Studenten gründlich revidiert. Besonders bei der Entwicklung der Leitprogram- 
me waren die Anregungen der Studenten hilfreich. 

Aus dem Vorwort zur 8. Auflage 

Neu geschrieben ist das Kapitel ,,Gleichungssysteme". Hier stehen jetzt die 
praktischen Eliminationsverfahren im Vordergrund. Auch das Kapitel ,,Matrizenu 
ist erheblich erweitert. 

In einer überarbeiteten und erweiterten Form sind Lehrbuch und Leitpro- 
gramme inzwischen ins Englische übersetzt. 

Frankfurt am Main, 1980 Klaus Weltner 



Aus dem Vorwort zur 10. Auflage 

Die Lehrbücher sind gründlich überarbeitet, erweitert und neu gegliedert wor- 
den. Die Kapitel ,,Vektorenu stehen jetzt am Anfang, weil sie sofort gebraucht 
werden. Aus dem gleichen Grund ist das Kapitel ,,Fehlerrechnung" in den ersten 
Band übernommen. Neu hinzugekommen sind im zweiten Band Einführun- 
gen in die Themen ,,Eigenwertea, ,,Laplace-Transformationen" und ,,Fourier- 
Transformationen". 

In zunehmendem Maße können heute Computerprogramme wie ,,Mathema- 
tica", ,,Derive6', ,,Maple" U. a. genutzt werden, um Gleichungen zu lösen, Um- 
formungen vorzunehmen, Funktionen graphisch darzustellen, zu integrieren und 
vielfdtige Rechnungen auszuführen. Damit wird Mathematik als Hilfsmittel zu- 
gänglicher und handhabbarer. Voraussetzung allerdings bleibt, daßman den Sinn 
der mathematischen Prozeduren verstanden hat, um sie sachgerecht zu nutzen. 
Computer können viel helfen. Eins können sie nicht, das Studium der Mathematik 
ersetzen. 

Lehrbuch und Leitprogramme haben nicht nur Studienanfangern der Physik, 
sondern auch Studienanfangern der Ingenieurwissenschaften und der anderen 
Naturwissenschaften geholfen, die Schwierigkeiten der ersten Semester zu mei- 
stern. Dennoch ist der Titel nicht geändert worden in „Mathematik für Physiker, 
Ingenieure und Naturwissenschaftler". Die für dieses Werk charakteristische 
Verbindung von Lehrbuch und Leitprogramm ist mit dem Titel „Mathematik 
für Physiker" verknüpft und bekannt geworden, und daher wird er beibehalten. 

Frankfurt am Main, 1994 Klaus Weltner 

Vorwort zur 12. Auflage 

Die für Studienanfanger geschriebene „Mathematik für Physiker" wird in Zu- 
kunft vom Springer-Verlag betreut. Erhalten bleibt dabei die Verbindung eines 
akademischen Lehrbuches mit einer detaillierten Studienunterstützung. Diese 
Kombination hat bereits vielen Studienanfangern geholfen, sich die Inhalte des 
Lehrbuches selbständig zu erarbeiten. Dabei haben sie darüber hinaus die Fä- 
higkeit weiter entwickelt, selbständig und autonom anhand von Lehrbüchern zu 
studieren. 

Neu ist, dass die Studienunterstützungen, die ursprünglich als Büchervorlagen, 
nunmehr auf einer CD-ROM angeboten werden. Das erleichtert den Zugriff 
und kommt dem Preis zugute. Weiter sind für die ersten sieben Kapitel - 
ebenfalls auf CD - interaktive Studienunterstützungen entwickelt, mit denen die 
Obungsmöglichkeiten beträchtlich erweitert und an die individuellen Bedürfnisse 
der Studierenden angepaßt werden. Im Sinne eines mathematischen Labors wird 
dabei der Umgang mit den Graphen der wichtigsten Funktionen geübt. 

Hier wird ein neuer Weg für die Nutzung von akademischen Lehrbüchern 
beschritten, dessen Methodik über diesen speziellen Fall hinaus weist. Die elek- 
tronischen Medien helfen dem Studienanfanger, sich neue Inhalte anhand des 
Lehrbuches zu erarbeiten. Das Lehrbuch bleibt dabei in späteren Studienphasen 
und nach dem Studium eine unverzichtbare Informationsquelle, auf die nach 
Bedarf zurückgegriffen wird. Nach meiner Auffassung können damit in Zukunft 
die bedeutsame Rolle akademischer Standardlehrbücher als Informationsquelle 
und Wissensspeicher stabilisiert und gleichzeitig die Lernbedingungen der Stu- 
dienanfänger verbessert werden. 

Frankfurt am Main, 2001 Klaus Weltner 
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13 Funktionen mehrerer Variablen, 
skalare Felder und Vektorfelder 

13.1 Einleitung 

In den meisten Gesetzen der Physik hängt eine physikalische Größe von mehr als 
einer anderen physikalischen Größe ab. 

1. Beispiel: An einem elektrischen Verbraucher mit dem Widerstand R liege die 
Spannung U. 
Wie groß ist der Strom I, der durch den 
Widerstand fließt? 
Nach dem Ohmschen Gesetz gilt 1 

U I =  - 
R 

Die Stärke des elektrischen Stromes hängt also ab von dem Widerstand des Ver- 
brauchers und der Spannung, die am Verbraucher liegt. 

2. Beispiel: Ein Gas ist in einem Zylinder mit dem Volumen V eingeschlossen. 
Der Gasdruck auf die Zylinderwände und den 
Kolben sei p. Das Gas habe die Tempera- 
tur T.'Dann gilt für die Stoffmenge ein Mol2 
des Gases die folgende Beziehung zwischen 
Volumen, Druck und Temperatur: 

pV = R + T  
Dabei bedeutet R die Gaskonstante 

J 
R =  8,31- 

mol . K 

Die obige Gleichung können wir auch schreiben als 

Das heißt aber, der Druck p eines Gases hängt von zwei Größen ab: 
von seinem Volumen V und seiner Temperatur T. Wir sagen auch, p ist eine Funktion 
von V und T und schreiben: 

lHier ist die absolute Temperatur gemeint. Sie wird in Kelvin gemessen. 
21n der Thermodynamik und in der Chemie wird in fast allen theoretischen Betrachtungen 

die Masse oder Stoffmenge in Mol angegeben. Ein Mol enthält 6,02.10~~ Moleküle. 
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13.2 Der Begriff der Funktion mehrerer Variablen 

Wir lösen wir uns jetzt von der physikalischen Bedeutung der Gleichungen und 
betrachten nur den mathematischen und 
geometrischen Sachverhalt. Für die Funk- 
tion zweier Variablen ist folgende Schreib- Y A  
weise üblich 

z = f (X, Y> 

Die Funktion einer Variablen hat die geo- 
metrische Bedeutung einer Kurve in der x- 
y-Ebene. 
Die geometrische Bedeutung einer Funk- * 
tion zweier Variablen ist eine Fläche im 
Raum. 
Das geometrische Bild der Funktion z = f(x,  y) können wir auf zwei Arten gewin- 
nen. 

Ermittlung der Fläche der Funktion z = f(x,  y) - Wertematrix. 
Wir wählen uns einen Punkt P = (X, y) in 
der X-y-Ebene aus. Das ist ein Wertepaar 
der unabhängigen Variablen, Diese beiden 
Werte setzen wir in die gegebene Funktion 
ein z = f (X. Y )  

z = f (2, Y) 
Der dadurch bestimmte Funktionswert z 
wird senkrecht über P' = (X, y) als Punkt , 
im dreidimensionalen Raum aufgetragen. - - - - - -&' 

P 

Dieses Verfahren führen wir systematisch 
für ein Netz von Wertepaaren durch, das 
die X-y-Ebene überdeckt. Der gewohnten 
Wertetabelle bei Funktionen einer Varia- , , , ,  
blen entspricht jetzt bei zwei Variablen * 
eine Wertematrix. 
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Für die Funktion z = 
1 

ist 
1 + x2 + y2 

rechts die Wertematrix angegeben. 

Die Menge aller Wertepaare (X, y), für 
die die Funktion z = f (X, y) defi- 
niert ist, heißt Definitionsbereich. Die Z 

Menge der zugehörigen Funktionswerte 111 

heißt Wertevorrat. Bei der Funktion 
y = f (X) wählten wir einen Wert für 
X und erhielten einen Wert für y gemäß 
der Funktionsgleichung y = f (X). Jetzt 
müssen wir zwei Werte, nämlich je ei- 
nen Wert für X und einen für y wählen, 
um ihn in die Funktion f (X, y) einzu- 3 

setzen. X 

Wenn wir für alle Wertepaare (X, y), für die wir Funktionswerte z berechnen können, 
die berechneten Funktionswerte als Höhe über den Wertepaaren auftragen, erhalten 
wir eine Fläche im dreidimensionalen Raum. 

Ermittlung der Fläche der Funktion z = f (X, y) - Schnittkurven 
Wir betrachten wieder die Funktion r = f (X, y) = *. Dabei dürfen X und y 
alle Werte annehmen, d.h. der Definitionsbereich ist die gesamte X-y-Ebene. Zwei 
Eigenschaften der Funktion können wir leicht ermitteln. 

1. Für X = 0 und y = 0 nimmt der Nenner 1 + x2 + seinen kleinsten Wert 
an. Die Fläche (Funktion) hat dort also ein Maximum. Es ist f (0,O) = 1. 

2. Für X --+ oo oder y + oo wird der Nenner beliebig groß. In großer Entfernung 
vom Koordinatenursprung geht z also gegen Null. 

Diese beiden Eigenschaften reichen zum Skizzieren der Fläche noch nicht aus. Der 
Verlauf von Flächen ist komplexer und schwieriger zu ermitteln als der von Kurven. 
Ein zutreffendes Bild erhalten wir durch ein systematisches Vorgehen, bei dem wir 
die komplexe Aufgabe in leichtere Teilaufgaben auflösen. Der Grundgedanke ist, 
daß wir den Einfluß der beiden Variablen auf den Flächenverlauf getrennt unter- 
suchen, indem wir zunächst einer der beiden Variablen einen festen Wert geben. 
Wir setzen also eine Variable konstant. Wird y konstant gesetzt, bekommen wir die 
Flächenkurven über Parallelen zur x-Achse. Für y = 0 erhält man z.B. die Kurve 
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Dies ist die Schnittkurve zwischen P 

der Fläche z = f (X, y )  
und der %-%-Ebene. 

Y 

X 

Für einen beliebigen y-Wert ( y  = yo) erhält man die Kurve 

Dies ist die Schnittkurve zwi- 
schen der Fläche z = f (X, y )  
und der Ebene parallel zur x- 
z- Ebene, die um den Wert yo 
aus dem Koordinatenursprung in 
Richtung der y-Achse verschoben 
wurde. 
Das Verfahren kann für weitere 
y-Werte wiederholt werden, um 
so ein Bild der Fläche zu gewin- 
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Analog können wir eine zweite 
Gruppe von Kurven angeben, die 
wir erhalten, wenn wir X kon- 
stant lassen. 
Beginnen wir mit X = 0. Dann 
erhalten wir die Funktion 

Für ein beliebiges X = xo erhal- 
ten wir die Funktion 

Bringen wir beide Kurventypen 
in einer Zeichnung zusammen, 
dann erhalten wir das Bild eines 
,,Hügelsu. 

Beide Verfahren, die Fläche zu gewinnen - entweder Aufstellung einer Wertematrix 
oder Bestimmung von Schnittkurven über Parallelen zur X- oder y-Achse - hängen 
zusammen. Die Werte der Matrix in einer Zeile oder in einer Spalte sind jeweils die 
Wertetabellen für die Schnittkurven. 
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Ermittlung der Fläche der Funktion z = f (X, y) - Höhenlinien 

Schließlich können wir ein Bild der Fläche gewinnen, wenn wir Linien gleicher Höhe 
betrachten. 
Linien gleicher Höhe sind Kur- 
ven auf der Fläche, die eine kon- 
stante Entfernung von der x-y- 
Ebene haben. Es sind Schnitt- 
kurven mit einer Ebene parallel 
zur X-y-Ebene in der Höhe zo. 
Die Gleichung der Höhenlinien 
ist zo = f (2, y). Für unser Bei- 
spiel erhalten wir ,------ - - y 
ZO = 1 

Umgeformt: F-M-- 
l + x 2 +  y2' 

xZ + y2 = (P - 1). 
Die Höhenlinien sind in unserem Fall Kreise mit dem Radius /F. Die Funktion 

ist nur für Werte zo < 1 definiert. 

Ermittlung der Funktion zu einer Flache 
Wir können die Problemstellung auch umkehren. Bisher wurde zu einer gegebe- 
nen analytischen Funktion die zugehörige Fläche gesucht. Jetzt suchen wir zu einer 
gegebenen Fläche den zugehörigen Rechenausdruck. 

Eine Kugel mit dem Radius R sei so in das Koordinatensystem gelegt, daß der 
Koordinatenursprung mit dem Kugelmittelpunkt zusammenfällt. Diesmal gehen wir 
von einer bestimmten Fläche aus und suchen die Gleichung für denjenigen Teil der 
Kugeloberfläche, der oberhalb der X-y-Ebene liegt. 

Aus der Skizze lesen wir ab 
(Pythagoras): 

R' = z2 + c2 

Weiter gilt 

c2 = x2 + y 2 

Einsetzen ergibt 

R2 = x2 + Y2 + z2 

Auflösen nach z: 

Die positive Wurzel ergibt die Kugelschale oberhalb der z-y-Ebene. 



13.2 Der Begriff der Funktion mehrerer Variablen 13 

Die negative Wurzel ergibt die Kugelschale unterhalb der X-y-Ebene. 

Definitionsbereich: -R 5 X 5 +R; -R 5 y 5 +R; x2 + y2 5 R2 

Nachdem wir uns eine anschauliche Vorstellung von der Funktion z = f (X, y) mit 
zwei Variablen erarbeitet haben, geben wir abschließend die formale Definition. 

Definition: Eine Zuordnungsvorschrift f (X, y) heißt Funktion zweier Varia- 
blen, wenn jedem Wertepaar (X, y) aus einem Definitionsbereich 
mittels dieser Vorschrift genau ein Wert einer Größe z zugeordnet 
wird. 
Symbolisch: 

f z = f (X, y) oder (X, y) --+ z (13.1) 

Tragen wir die Punkte (X, y, z = f (X, y)) in ein dreidimensionales Koordinatensy- 
stem ein, dann erhalten wir als Graph der Funktion r = f (X, y) über dem Defini- 
tionsbereich D eine Fläche F im dreidimensionalen Raum. 

So wie es Funktionen zweier Variablen gibt, z = f (X, y), die jedem Punkt aus 
einem Bereich der X-y-Ebene einen Wert z zuordnen, kann man Funktionen mit 
drei Variablen definieren. 
Beispiel: U = f (X, y, z) = 2x3 + 32 + 7y 

Eine anschauliche geometrische Bedeutung Iäßt sich im Falle einer Funktion dreier 
Variablen nicht mehr angeben. Dazu benötigte man ein vierdimensionales Koordi- 
natensystem. 

In der Physik spielen derartige Beziehungen allerdings eine große Rolle, wenn eine 
physikalische Größe von den drei Koordinaten des Raumes abhängt. 
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So kann die Temperatur in der Lufthülle der Erde angegeben werden als Funktion 

der geographischen Breite X 

der geographischen Länge y 
der Höhe über Null z 

Definition: Eine Zuordnungsvorschrift f (X, y, z) heißt Funktion dreier Varia- 
blen, wenn jedem Wertesatz (X, y,z) mit dieser Vorschrift genau 
ein Wert einer Größe U zugeordnet wird. 
Symbolisch: 

f 
U =  f (x,y,z) oder (x,y,z) - + U  (13.2) 

13.3 Das skalare Feld 

Im Kapitel 1 ,,Vektorenc', wurde der Begriff skalare G r ö ' e  oder Skalar eingeführt. 
Ein Skalar ist eine Größe, die (bei festgelegter Maßeinheit) schon durch Angabe 
eines Zahlenwertes vollständig beschrieben ist. In diesem Abschnitt werden wir den 
Begriff des skalaren Feldes einführen. 

Die Karte zeigt die Temperatur an einem be- 
stimmten Tag für Europa. Für einige Tem- 
peraturwerte sind Punkte gleicher Tempe- 
ratur durch Linien verbunden, sie heißen 
Isothermen. Jedem Punkt der dargestellten 
Fläche ist hier eine Temperatur zugeordnet. 
Die Temperatur ist ein Skalar. Ist für jeden 
Punkt einer Fläche ein Skalar definiert, so 
nennen wir dies ein skalares Feld. 

Der Begriff kann auf den dreidimensionalen Fall übertragen werden. 

Ein Körper werde an einem Ende erwärmt. 
Dann hat jeder Punkt P im Körper eine be- 
stimmte Temperatur T ,  und diese Tempera- 

T(xH.z) tur hängt vom Ort des Punktes P = (X, y, z) 
ab: 

T = T ( x , y , z ) = T ( P )  

Hier ist jedem Raumpunkt eine bestimmte 
Temperatur zugeordnet. 
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Ein weiteres Beispiel: Der Druck p ist ein Skalar. In einer Flüssigkeit ist der Druck 
eine Funktion der Tiefe. 

p sei die Dichte der als inkompressibel vorausgesetzen Flüssigkeit und z die posi- 
tiv gezählte Tiefe unterhalb der Flüssigkeitsoberfläche. Dann ist der Druck in der 
Flüssigkeit: 

Für jeden Punkt (X, y, z) innerhalb der Flüssigkeit ist der Druck damit definiert 
und angebbar. Der Druck als Funktion des Ortes in der Flüssigkeit ist ein skalares 
Feld. 

Flächen gleichen Druckes, heißen Isobaren. Die Isobaren sind in diesem Fall Paral- 
lelebenen zur Oberfläche der Flüssigkeit. 

Definition: Wird jedem Punkt des Raumes (oder einem Teilraum des dreidi- 
mensionalen Raumes) durch eine eindeutige Vorschrift genau ein 
Wert einer skalaren Größe zugeordnet, dann bilden diese Werte ein 
skalares Feld in diesem Raum. 

(13.3) 

13.4 Das Vektorfeld 

Genau wie den Punkten des Raumes eine skalare Größe zugeordnet werden kann, 
kann man diesen Punkten auch eine vektorielle Größe zuordnen. 

Die Karte zeigt die mittlere Wind- 
geschwindigkeit für Afrika. In be- 
stimmten Gebieten gibt es cha- 
rakteristische und konstante Luft- 
strömungen, die Passate. 

Die Windgeschwindigkeiten sind als 
Pfeile dargestellt. Diese Pfeile sind 
Vektoren. Ihre Länge entspricht 
dem Betrag der Windgeschwindig- 
keit, ihre Richtung gibt die Richtung 
der Luftströmung an. 
Jedem Punkt der dargestellten Fläche ist hier ein Vektor zugeordnet. Der Vektor 
ist also für jeden Punkt definiert. 
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Ist ein Vektor nicht nur für einen Punkt definiert - beispielsweise der Geschwindig- 
keitsvektor für ein Fahrzeug -, sondern für alle Punkte einer Fläche - beispielsweise 
die Windgeschwindigkeiten für alle Punkte Afrikas -, so sprechen wir von einem 
vektoriellen Feld. 

Der Begriff des vektoriellen Feldes oder Vektorfeldes kann auf den dreidimensionalen 
Fall erweitert werden. Die Windgeschwindigkeit ändert sich auch mit der Höhe. Sie 
hängt von den Koordinaten der Ebene (X und y) und von der Höhe (z) ab. Dies führt 
uns zu der folgenden Definition eines Vektorfeldes im dreidimensionalen Raum: 

einen bestimmten Wert annimmt, heißt Vekto_rfeld. 
Jedem Punkt P des Raumes wird ein VektorA zugeordnet. 

Ä(P) = Ä(x,  y, z) (13.4) 

Vektorfelder können empirisch bestimmt und aufgezeichnet werden. Beispiele: Luft- 
strömungen, Wasserströmungen. Sie können auch durch einen analytischen Aus- 
druck gegeben sein. Dann kann das Vektorfeld Punkt für Punkt aus dem Ausdruck 
berechnet und aufgebaut werden. Wie das vor sich geht, werden wir gleich zeigen. 

Der analytische Ausdruck für ein Vektorfeld sei abgekürzt Ä(z, y, z) oder ausführ- 
licher in Komponenten geschrieben: 

Jede Komponente  ist für sich eine F2nktion der Ortskoordinaten. Daraus ergibt sich 
auch das Verfahren, den Vektor A für einen gegebenen Punkt P1 = (XI, yl, zl)  
zu berechnen. Wir ermitteln die X-Komponente A„ indem wir X I ,  yi, zl in die 
Funktion A, einsetzen. Danach wird die y-Komponente ermittelt, indem XI, yl, zi 
in A, eingesetzt werden. Schließlich werden XI ,  yl, zl in A, eingesetzt. 

Damit haben wir die drei Komponenten von Ä für Pl und können den Vektor Ä 
so einzeichnen, daß er im Punkt Pl beginnt. Danach wird das Verfahren für einen 
neuen Punkt P2 wiederholt und punktweise das Vektorfeld aufgebaut. 
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Wir üben das Skizzieren von Vektorfeldern an zweidimensionalen Beispielen. 

1 .  Beispiel: Gegeben sei das Vektorfeld 

Wir berechnen den Vektor Ä für einige Punkte P  = ( X ,  y). Zunächst bestimmen 
wir Ä ( x l ,  y l )  für den Punkt Pi = ( X I ,  y l)  = ( 1 , l ) .  

Dazu setzen wir X = 1 und y  = 1 in die folgenden 

A Funktionen ein: 

I I 

1 % 
Der Vektor ist dann: 

Den Vektor Ä ( 1 , l )  tragen wir im Punkt Pi = ( 1 , l )  in das Koordinatensystem ein. 

Sodann berechnen wir noch den Vektor Ä im Punkt Pz = ( 1 , 2 ) .  Einsetzen der 
Koordinaten X = 1 und y  = 2  in Ä(x, y) gibt in diesem Fall 

2z 
A z ( 1 , 2 )  = d r n  

1 

Für den Punkt ( 1 ,  2) gilt 
1 % 
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In der Tabelle sind noch drei weitere Vektoren berechnet. Tragen wir sie ein, erhalten 
wir folgendes Bild des Vektorfeldes Ä(x,  y): 

2. Beispiel: Ä(z, y, t )  = (0, -X, 0) 
Dies ist ein Vektorfeld im dreidimensionalen Raum. Hier ist 

Aufgrund der speziellen Form von Ä(z, y, X )  versuchen wir uns ein anschauliches 
Bild von dem Vektorfeld zu konstruieren. 

Die Vektoren Ä(x,  y, t )  sind unabhängig von den y- und r-Koordinaten der Raum- 
punkte P = (X, y, 2). 

Alle Vektoren zeigen in die y-Richtung. 
Mit wachsendem X wächst der Betrag. 
Damit 1äRt sich das Vektorfeld bereits 
skizzieren. 

C 

Y 
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13.5 Spezielle Vektorfelder 

13.5.1 D a s  homogeneVektorfe ld  

Betrachten wir das Vektorfeld Ä(x,  y, r )  = (a, 0, 0). Die Komponenten von 
Ä(x,  y, t )  sind 

Der Vektor Ä ist in allen Punkten des Raumes 
gleich, denn er hängt von den Raumkoordi- 
naten nicht ab. Er hat in allen Punkten den 
Betrag 

121 =m= J a 2 + 0 2 + 0 2 = a  / 

:p9 J.: 

X 

Der Vektor Ä zeigt stets in X-Richtung. 

Definition: Ein Vektorfeld, das in allen Raumpunkten des Definitionsbereiches 
des Feldes den gleichen Betrag und die gleiche Richtung hat, heißt 
homogenes Vektorfeld. 

(13.5) 

1. Beispiel: Das elektrische Feld im Innern ei- 
nes Plattenkondensators mit den Ladungen 
Qi und -Qi auf den Platten ist homogen. Das 
elektrische Feld I? hat hier überall die gleiche 
Richtung und den gleichen Betrag. -P 

2. Beispiel: Auf eine Masse m wirktin Erdnähe 
die konstante Gravitationskraft F. Sie ist in 
erster Näherung gegeben durch 
F = mg(0, 0, -1). 

13.5.2 D a s  radialsymmetrische Feld 

Betrachten wir die Gravitationskraft F in der gesamten Umgebung der Erdkugel, 
so beobachten wir folgende zwei Eigenschaften: 
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a) Die Richtung der Kraft auf eine Masse rn zeigt immer zum Erdmittelpunkt. 

b) Der Betrag der Kraft nimmt mit der Entfernung vom Erdmittelpunkt ab. 

Den Zusammenhang beschreibt folgender analytischer Ausdruck: 

Der Betrag dieser Kraft ist 2. Er hängt nur von der Entfernung r vom Koordina- 
r2 

tenursprung ab. 
F  r' 

Die Richtung dieses Vektorfeldes wird gegeben durch den Vektor -. Der Vektor - 
r P 

wird dargestellt durch den Ausdruck 

Wir haben hier einen Einheitsvektor, denn sein Betrag ist 1. 

Der Vektor F =  (X, y, z) ist ein Radialvektor, der nach außen zeigt. Sein Betrag ist: 

Der Vektor F =  (X, y, z) wird für den Punkt 
Pi = (xl, yl, zi)  folgendermaßen gewon- 
nen: 

P hat die Komponenten XI,  yl, zi und be- % = ( ~ 4 ~ ~ 4 ~ ~ 4 )  

ginnt trisch, im P hat Punkt Richtung Pi. Das und bedeutet Betrag des geome- Orts- 1/ /I 1% 

;- 
vektors für den Punkt Pi ,  beginnt aber nicht - - - &'X, Y 

i 
Y4 

im Koordinatenursprung, sondern im Punkt 
Pi .  
Man kann es auch so deuten: Der auf Pi zeigende Ortsvektor ist so in radialer 
Richtung verschoben, da8 er im Punkt Pi beginnt. Im Fall der Gravitationskraft 
ist die Kraft auf den Erdmittelpunkt gerichtet. Daher das negative Vorzeichen beim 
Einheitsvektor. 
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Die Abbildung rechts zeigt das radial- -. r' 
symmetrische Feld F = -C- 4 

r3 
I b d 

\P d 

\ J /  
-0 -g- O- b 

P 
/ I \  

9 

P t S 

Definition: Radialsysmmetrische Vektorfelder sind Vektorfelder J, deren 
Beträge nur von dem Abstand vom Koordinatenursprung abhängen 
und die Richtung eines Radialvektos haben. Radialsymmetrische 
Felder können immer in die Form A (X, y, z )  = . f ( r )  gebracht 
werden. 

(13.6) 

C 
Im Fall der Gravitationskraft ist f (r) = - - 

I-2 ' 

13.5.3 Ringförmiges Vektorfeld 

Ein stromdurchflossener gerader Leiter ist von ringförmigen magnetischen Feldlinien 
umgeben. Die Feldstärke hat eine Richtung senkrecht zum Radius und senkrecht 
zum Leiter, sodaß man auch von einem ringförmigen Vektorfeld spricht. 

Die Größe (oder der Betrag) des Feldstärke- 
vektors 2 hängt nur von dem Abstand ro 
zum Leiter ab, ist also eine Funktion von r o  
allein: 

Die Feldstärke l? können wir - wie jeden 
Vektor - als Produkt aus Betrag und Ein- 
heitsvektor schreiben 
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Wir wollen uns überlegen, von welchen 
Größen Z abhängt. Die magnetischen Feld- 
linien bilden Kreisringe in einer Ebene 
senkrecht zum stromdurchflossenen Leiter. 
Wenn wir ein Koordinatensystem einführen 
wollen, so werden wir am bequemsten zwei 
Achsen in diese Ebene legen und die dritte in 
die Richtung des stromdurchflossenen Lei- 

6; 
ters. 
In der Skizze haben wir die X- und y-Achse 
in die Ebene gelegt. t 
Der Vektor H liegt tangential an den Feldli- 
nienringen, steht also senkrecht auf der Ab- 
standslinie ro. Genau so liegt sein Einheits- 
vektor Z. Seine X-Komponente ist nach der 
Zeichnung - sin a (sie geht vom Fußpunkt 
des Vektors Z in die negative X-Richtung), 
seine y-Komponente ist cosa und seine L- 
Komponente ist 0: 

Y f  
E'=(-sina,  cosa,  0) ----- ----  

E' hängt also nur von a ab. Wir haben damit 
das Vektorfeld H in einen ro- und einen a- 
abhängigen Faktor aufgespalten. s in  n X 

H =  f ( r o ) . ( - s i n a ,  cosa,  0) 



13.2 A Bestimmen Sie die Wertematrix zu der Funktion f (X, y) = x2y + 6. 

B Welche Flächen werden durch die folgenden Funktionen dargestellt? 
Fertigen Sie eine Skizze an! 

13.4 A Teilen Sie die folgenden Ausdrücke ein in skalare Felder, Vektorfelder 
und sonstige Ausdrücke 

mM 
a) m ~ + y ~ + z ~  b) &&+ 
C) d) $ + g + $ = l  e) - m g ~  

B Berechnen Sie das Vektorfeld 

A(x,  Y, 2) = (22, y, x2 + y2 + z 2 )  

an folgenden Punkten 

a) P1 = (O,O, 1) b) P2 = (1,1,1) C) P3 = (1,0,0) 

C Geben Sie an, welche Vektorfelder homogen, welche radialsymmetrisch 
sind und welche zu keinem der beiden Typen gehören. 
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13.4 B Skizzieren Sie die folgenden Vektorfelder: 

a) X(., Y, z) = (O,O, 1) b) &X, Y, 2) = 2 (1,0,1) 

C) &X, Y, 2) = :(X, Y, z) d) &X, Y, 1) = 5 (X, Y, 2) 

Lösungen 

13.1 A Wertematrix 

B a) Die Funktion stellt eine Ebene dar. Die Schnittkurven der Flache sind 

1) mit der X-y-Ebene: y = -?j + 1 

2) mit der X-z-Ebene: z = -X + 2 

3) mit der y-z-Ebene: z = -2y + 2 



b) Die Funktion t = x2 + stellt ein 
Rotationsparaboloid um die x-Achse dar. 
Schnittkurven mit Ebenen parallel zur x- 
Achse sind Parabeln. Schnittkurven mit 
Ebenen parallel zur X-y-Ebene - Höhenli- 
nien - sind Kreise. 

t 
Y 

C) Die Funktion t = 4- stellt ein Halbellipsoid iiber der X-y-Ebene 
dar. 
Die Schnittkurven mit der X-z-Ebene und der y-z-Ebene sind Halbellipsen. 

13.3 A Skalare Felder: a), C) 

Vektorfelder: b), e) 
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13.4 A Homogenes Vektorfeld: 4 ,  f )  

Radialsymmetrisches Vektorfeld: b) , d) , g) 

J 'I' \o 



14 Partielle Ableitung, totales Differen- 
tial und Gradient 

14.1 Die partielle Ableitung 

Die geometrische Bedeutung der Ableitung einer Funktion mit einer Variablen ist 
bekanntlich die Steigung der Tangente an die Funktionskurve. Wir befassen uns nun 
mit dem Problem, Steigungen für Flächen im Raum zu bestimmen. 

In Abschnitt 13.1 hatten wir die Funktion 

Z = 
1 

1 + x2 + y2 

als Beispiel für eine Funktion zweier Varia- 
blen betrachtet. Sie stellt eine Fläche im 
dreidimensionalen Raum dar. 

Setzen wir eine der Variablen konstant, er- 
halten wir eine Schnittkurve der Funktion 
mit einer Ebene. 

Zwei Typen von Schnittkurven der Fläche mit Schnittebenen kennen wir bereits: 

Schnittkurven mit Ebenen parallel zur X-%-Ebene: 
Die Schnittebene habe den Abstand yo 
von der X-%-Ebene. Die Gleichung der 
Schnittkurve erhalten wir, indem wir in 
die Funktionsgleichung den Abstand yo 
einsetzen. 

1 
z (2) = 

1 + x2 + Y; 

In diesem Fall ist z dann nur noch eine 
Funktion von X. 
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Schnittkurven mit Ebenen parallel zur U-z-Ebene: 
Die Schnittebene habe den Abstand xo von 
der pz-Ebene. Die Gleichung der Schnitt- 
kurve erhalten wir, indem wir den Wert xo 
in die Funktionsgleichung einsetzen. In die- 
sem Fall ist z dann nur noch eine Funktion 
von y. 

1 
%(Y)=  l + x ; + y 2  X 

Steigung der Schnittkurven 

Für die Schnittkurven parallel zur X-z-Ebene können wir die Steigung sofort ange- 
ben. Für die Schnittkurve ist y eine Konstante. 
Wir haben also eine Funktion mit einer Va- 
riablen. Die Steigung ist durch die Ablei- 
tung der Funktion z = z (X) nach X gege- 
ben. 

Für diese neue Art der Ableitung benut- 
zen wir statt des Zeichens d das stilisierte 
Zeichen 6 (sprich: ~e l ta ) . '  

6f 62 1 x 

(Sprechweise: Delta f nach Delta X) 

Da y für die Schnittkurve konstant ist - wir könnten auch schreiben yo - erhalten 
wir: 

Diese Operation heißt partielle Ableitung. 

hchenregel: Bei der partiellen Ableitung nach X wird nur nach X differenziert. 
Die Variable y wird dabei als Konstante betrachtet. Beispiel: 

1 -22 

Für die Schnittkurven parallel zur y-z-Ebene können wir ebenfalls die Steigung 
angeben. 

lIn der Literatur sind auch andere Symbole fiir die partielle Ableitung in Gebrauch wie 8 oder 6. 
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Die Steigung dieser Kurven ist nun nicht mehr durch die partielle Ableitung nach 
X gegeben, sondern hier müssen wir die partielle Ableitung nach y bilden. Das ist 
etwas Neues. 

Rechenregel: Bei der partiellen Ableitung nach y wird X als Konstante betrach- 
tet, und nach y wird diffezenziert. Beispiel: 

6f 6% 1 

Funktionen mit drei Variablen lassen sich nicht mehr anschaulich geometrisch im 
dreidimensionalen Raum deuten. Dabei kommen sie häufig vor. Als Beispiel kennen 
wir bereits die Temperatur als Funktion der drei Ortskoordinaten: T = T ( X ,  y, z). 
Für die Funktion f = f ( X ,  y, z) gibt es drei partielle Ableitungen. 

Partielle Ableitung 

nach X 

Partielle Ableitung 

nach y 

Partielle Ableitung 

nach z 

Rechenregel 

alle Variablen außer X werden als 

Konstante betrachtet. Es wird 
nur nach der Variablen X differenziert 

alle Variablen außer y werden 

als Konstante betrachtet. Es wird 
nur nach der Variablen y differenziert. 

alle Variablen auRer z werden als 

Konstante betrachtet. Es wird nur 
nach der Variablen 2 differenziert. 

Beispiel: 
f (X, = 2 x 3 ~  + z2 

- 6f = 
62 

6f - = 2~~ 
6~ 

6f - = 22 
6% 
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Für die partiellen Ableitungen gibt es eine weitere oft benutzte einfache Schreib- 
weise: f ( X ,  y, t) sei eine Funktion von X ,  y und t. Dann benutzt man tiefgestellte 
Indizes und schreibt auch: 

Beispiel: f ( x ,  y,z) = x . y . z  f~ = 

fY = 

fz = 

14.1.1 Mehrfache partielle Ableitung 

Die partiellen Ableitungen sind wieder Funktionen der unabhängigen Variablen 
X, y . . . . Deshalb können wir sie erneut partiell differenzieren. 

X 
Beispiel: Es sei f ( 2 ,  y, z )  = - + 2%. Wir suchen 

Y 

Hier ist die Schreibweise mit dem tiefgestellten Index besonders übersichtlich. 

Reihenfolge: zuerst wird nach y differenziert, dann nach X. Die Indexkette wird von 
rechts nach links abgearbeitet.' 
Wir bilden zuerst die partielle Ableitung nach y für f ( X ,  y, t) = + 22. 

Dann differenzieren wir f, nach X: 

'Bei den meisten in der Physik vorkommenden Funktionen gilt bei mehrfachen partiellen Ablei- 
tungen jZy = f„ .  Es gibt aber auch Funktionen, bei denen die Reihenfolge der Ableitung beachtet 
werden m d  und bei denen gilt jZy # j y z  
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14.2 Das totale Differential 

Funktion zweier Variablen 
1 

Wir betrachten die Funktion z = . Sie stellt eine Fläche im Raum dar. 
1 + x2 + y2 

Auf dieser Fläche gibt es Linien gleicher Hohe z. 
Sehen wir senkrecht von oben 
auf die X-y-Ebene, so erhal- 
ten wir die Projektionen die- 
ser Linien gleicher Höhe auf die 
X-y-Ebene. Diese Projektionen 
heißen Höhenlinien, weil mit ih- 
rer Hilfe auf Landkarten Ge- 
birgszüge dargestellt werden, die 
ja auch Flächen im Raum sind. 
In unserem Fall erhalten wir als 
Höhenlinien eine Reihe von in- 
einanderliegenden Kreisen. Die 
Linien gleicher Höhe sind hier 
Kreise im Raum. 
Wir betrachten jetzt die Linien gleicher Höhe mit äquidistanten Höhenabständen. 
Dann liegen die zugehörigen Höhenlinien in der X-y-Ebene dort am dichtesten, wo 
unser ,,Berga am steilsten ist. 
Die Linie gleicher Höhe ist die Schnittkurve der Ebene z = ci mit der Fläche 

Gleichsetzten ergibt: C - 
1 

l-l+x'+f 

Diese Gleichung ist gleichzeitig die Gleichung für die Höhenlinie in der x-y- 
Ebene. Wir formen diese Gleichung um zu: 

Aus der letzten Beziehung sehen wir, daß wir eine Gleichung für einen Kreis mit 
dem Radius R = 4 5  erhalten haben. Je größer wir die Höhe C. wählen, desto 
kleiner ist der Kreisradius. 

Wir suchen nun die Richtung des steilsten Anstiegs oder Abfalls der Fläche 
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Aus der Zeichnung sieht man, daß der „Bergu in unserem Beispiel offenbar für jeden 
Punkt in radialer Richtung am steilsten abfällt. 

Wir gehen vom Punkt A' in der X-Y-Ebene einmal um die Strecke dr  

3 

a) in beliebiger Richtung dr ;  

--+ 
b) senkrecht zu einer Höhenlinie dr,; 

+ 
C) entlang einer Höhenlinie drh; 

Das entspricht auf der Fläche den We- 
---+ --) -+ 

gen AC, AB, AD. 
-$ 

Für den Weg AD entlang einer Linie 
gleicher Höhe ist 

dz, = 0 

Am stärksten verändert sich die Funk- 
4 

tion z auf dem Weg AB senkrecht zu 
den Linien gleicher Höhe. 
Für alle übrigen Wege gilt 

0 5 dz 5 dza also auch 0 5 dz, < dz, 
Wir stellen uns jetzt die Frage, wie sich die Funktion z = f ( X ,  y) ändert, wenn wir 

-+ 4 

ein Stück dr  in einer beliebigen Richtung dr = (dx, dy) gehen. 

Die Änderung von f ( X ,  y) erhalten wir in zwei Schritten: 

1. Wir gehen um dx in X-Richtung 
(y bleibt dabei konstant) 

2. Wir gehen um dy in y-Richtung 
(X bleibt dabei konstant) 

Der Gesamtweg ist in Vektorschreibweise: 
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1. Schritt: Die Änderung einer 
Funktion mit einer unabhängi- 
gen Variablen war in erster 
Näherung gegeben durch das Dif- 
ferential 

Jetzt haben wir eine Funktion 
zweier Variablen. 
z = f ( X ,  y). Wenn wir in x- 
Richtung um dx fortschreiten 
(y bleibt dabei konstant) erhal- 
ten wir für die Änderung von z: 

2. Schritt: Wenn wir in y- 
Richtung um dy fortschreiten 
(X bleibt dabei konstant) erhal- 
ten wir für die Änderung von z 
den Wert 

Die Gesamtänderung von z er- 
gibt sich als Summe der beiden 
Teiländerungen. Sie heißt totales 
Differential. 

Definition: Das totale Differential der Funktion z = f ( X ,  y) ist die Größe 

6f 6f  d z =  -dx+  -dy 
62 6y 

Das totale Differential ist ein MaB für die Änderung der Funktion 
z = f ( X ,  wenn wir vom Punkt A = ( X ,  y) ein Stück in die 
Richtung dr'= ( dx, dy) gehen. 



34 14 Partielle Ableitune. totales Differential und Gradient 

1. Beispiel: Wir betrachten die Funktion z = x2  
Das totale Differential ist dz = 2xdx  + 2ydy  

2. Beispiel: Wir betrachten die Funktion 

Das totale Differential ist 

Verallgemeinerung auf Funktionen dreier Variablen. 
Im Falle einer Funktion dreier Variablen f ( X ,  y ,  z) verallgemeinert man das totale 
Differential entsprechend zu 

Auch hier ist das totale Differential ein 
Maß für die Änderung der Funktion 
z = f ( X ,  y ,  z ) .  Wenn wir ein Stück in 
die Richtung dT = ( d x ,  d y ,  d z )  gehen, 
ändert sich die Funktion f ( X ,  y ,  z) um 
den durch das totale Differential gege- 
benen Betrag. 

Beispiel: f ( X ,  y, z) = X . y . e 

Das totale Differential ist 

14.3 Der Gradient 

14.3.1 Gradient bei Funktionen zweier Variablen 

Das totale Differential einer Funktion zweier Variablen z = f ( X ,  y )  war definiert 
a l s d z =  g d x + $ d y .  

Behauptung: Das totale Differential läf3t sich formal schreiben als Skalarprodukt der 
folgenden Vektoren ( E &  + $er) und d;. Dabei bezeichnet d r  das Wegelement 

und ( E  F. + C,) wird als ein neuer Vektor definiert. 
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Diese Behauptung verifizieren wir. 

Damit ist unsere Behauptung bewiesen. Der neu definierte Vektor heißt Gradient 
und wird abgekürzt grad geschrieben. 

Definition: Der Gradient der Funktion z = f ( X ,  y )  ist der folgende Vektor: 

6f 6f 

Der Gradient hat zwei anschauliche Eigenschaften: 

Der Gradient steht senkrecht auf den Höhenlinien und zeigt in diejenige Rich- 
tung, in der sich die Funktionswerte z = f ( X ,  y )  am stärksten ändern. 

Der Betrag des Gradienten ist ein Maß für die Änderung des Funktionswertes 
senkrecht zu den Höhenlinien. 

Diese beiden Eigenschaften wollen wir jetzt herleiten. Betrachten wir zunächst das 
Skalarprodukt 

+ 
grad f . dz = dz 

Legen wir & in eine der Höhenlinien, 
dann gilt dz = 0. Denn eine Höhenlinie 
ist die Projektion einer Linie gleicher 
Höhe. Bei der Bewegung auf dieser Li- 
nie ändert sich z nicht und deshalb muß 
dafür dz = 0 gelten. Daraus folgt 

df = grad f . & = 0 grad f 

Aus Kapitel 2 wissen wir: 
Das Skalarprodukt zweier Vektoren, von denen keiner der Nullvektor ist, verschwin- 
det genau dann, wenn die beiden Vektoren senkrecht aufeinander stehen. Da weder 

--+ -+ 
grad f noch d r  ein Nullvektor ist, stehen grad f und dr senkrecht aufeinander. 
Daraus folgt: Der  Gradient steht senkrecht auf der Höhenlinie. 

Dieses Ergebnis wollen wir an unserem Beispiel f ( X ,  y )  = 1 
verifizieren. 

1 + x2 + y2 
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2x 
Der Gradient ist: grad f = - 'Y 1. 

[ ( I +  x2 + y2)2 > (1 + x2 + 
Dies ist ein Radialvektor, und der Gradient steht damit senkrecht auf den Höhen- 
linien um den Koordinatenursprung. 

Das Differential df gibt die Änderung des Funktionswertes bei einem Zuwachs der 
Koordinaten X und y um dx und dy an. 

Wir kommen jetzt zur zweiten Eigenschaft des Gradienten. Wir gehen von folgender 
Frage aus: In welcher Richtung ändert sich die Funktion z = f ( X ,  y) bei gleichem 
4 

dr  am meisten? Wir suchen das Maximum von df. Es gilt 
+ + + 

df = grad f . dr = lgrad f 1 ldrl cos a a ist der Winkel zwischen grad f und dr.  
-t 

grad f ist ein Vektor, der senkrecht auf der Höhenlinie steht. Wir lassen jetzt dr 
+ 

verschiedene Richtungen annehmen. Der Betrag von dr sei konstant. Variabel sei 
4 

allein die Richtung von dr und damit cos cy. 

Das Maximum von cos a liegt bei a = 0 mit cos(0) = 1. Dann haben grad f und dT 
die gleiche Richtung. In diesem Fall gibt der Betrag des Gradienten die Änderung 
von df senkrecht zu den Höhenlinien an. 

Wir hatten dieses Ergebnis für unser Beispiel bei der Behandlung des totalen Dif- 
ferentials df bereits anschaulich erhalten. 

Es gibt eine Reihe von Bezeichnungen für den Gradienten von z .  Üblich sind: 

6f 6f . grad f = g r a d z =  - i+  - 3  
62 6y 

grad f = G f 
4 
V wird Nabla-Operator genannt und es gilt formal 

Mit Hilfe des Nabla-Operators läßt sich die Schreibweise oft verkürzen. Der Nabla- 
Operator wird formal so behandelt wie ein Vektor. Die Multiplikation des Nabla- 
Operators mit einer skalaren Größe führt dann zu einem Vektor. 
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14.3.2 Gradient bei Funktionen dreier Variablen 

Gegeben sei eine Funktion der drei Variablen X ,  y und z. Das ist ein skalares Feld 
p = cp ( X ,  y, z) (siehe Abschnitt 13.2) Die Gesamtheit der Raumpunkte, in denen 
das skalare Feld den Wert C annimmt, bildet eine Fläche im Raum. Diese Flächen, auf 
denen der Funktionswert p ( x ,  y, z )  überall den gleichen Wert hat, werden Flächen 
gleichen Niveaus oder Niveauflächen3 genannt. 

Flächen gleichen Niveaus oder Niveauflächen sind festgelegt durch die Bestimmungs- 
gleichung. 

p ( x ,  Y, z) = C = const. 

Diese Beziehung können wir nach t auflösen und erhalten die Gleichung der Ni- 
veaufläche 

Wir wollen jetzt den Begriff des Gradienten auf Funktionen mit drei Veränderlichen 
übertragen. Sinngemäß erhalten wir 

Seine Eigenschaften bleiben erhalten. Nur ist jetzt der Gradient ein Vektor im drei- 
dimensionalen Raum und der Begriff der Höhenlinien muß ersetzt werden durch 
Flächen gleichen Niveaus oder Niveauflächen. Damit besitzt der Gradient bei Funk- 
tionen dreier Veränderlicher folgende anschauliche Eigenschaften: 

Der Gradient steht senkrecht auf Flächen gleichen Funktionswertes. 

Der Betrag des Gradienten ist ein Maß für die Änderung des Funktionswertes 
pro Wegeinheit senkrecht zu den Niveauflächen. 

1. Beispiel: Welche Flächen gleichen Niveaus hat die Funktion 
f ( x ,  y, z ) = - X - y + z ?  

Wir setzen f ( X ,  y, z) = C: 

3Physikalische Beispiele: Temperaturverteilung - Flächen gleichen Niveaus sind Flächen glei- 
cher Temperatur (isothermen); Flächen gleicher potentieller Energie; Flächen gleicher elektrischer 
Spannung. 
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oder umgeformt t 
z = x + y + c  

Zwei Ausschnitte dieser Flächen sind für 
C = 0 und ein positives C rechts skizziert. 
Es sind Ebenen. Die Schnittgerade mit der 
X-z Ebene ist um 45' gegen die x-Achse ge- 
neigt, die Schnittgerade mit der y-z Ebene 
ist um 45' gegen die y-Achse geneigt. J;( 
Berechnen wir den Gradienten von f ( X ,  y, z) und überprüfen wir, ob er senkrecht 
auf dieser Ebene steht. 

grad f ( X ,  Y, z) = (-1, -1 , l )  

Tragen wir diesen Vektor im Punkt (0,0,c) in die letzte Skizze ein, dann steht er 
senkrecht auf der Ebene, die durch z = X + y + C gebildet wird. 

Beweis: Ein beliebiger Vektor d: der in der Ebene liegt, 
kann als Linearkombination der beiden Ein- 
heitsvektoren ; und b  geschrieben werden. ; 
und b  liegen in der Schnittgeraden der r-z- 
Ebene bzw. y-z-Ebene mit der Ebene 
z = X + y + C. Es gilt: 

4 1  - 1  a = -  J 2 ( 1 , 0 , 1 ) ,  b = - ( 0 , 1 , 1 )  
Jz 

und damit k' 

Das Skalarprodukt von dmit grad f muß verschwinden, wenn beide senkrecht aufeinander stehen. 

Also steht grad f senkrecht auf der Ebene e = X + y + C. 

2. Beispiel: Bestimmung der Niveauflächen des skalaren Feldes 

Die Niveauflächen sind durch die Gleichung y ( x ,  y, z) = C definiert. In unserem 
Falle erhalten wir die Niveauflächen aus der Gleichung 

Auflösen nach z liefert die beiden Gleichungen 
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21 = Das ist eine Kugelschale unter der X-Y-Ebene. 

2 = - ( )  - X - y2 Dies die entspr. Hälfte unter der X-pEbene. 

Die Niveauflächen sind also Kugelschalen mit dem Radius R = ,E 
Bilden wir nun den Gradienten von cp: 

A 
grad cp = - 2 - ( X ,  y, z )  

r4 

Dies ist ein Radialvektor, der seinen An- 
fangspunkt auf der Niveaufläche hat. 

Das heißt aber, daß der Vektor grad (o 

senkrecht auf der Niveaufläche steht, weil 
sie eine Kugelschale ist. Damit ist die 
Eigenschaft des Gradienten, daß er senk- 
recht auf den Niveauflächen steht, für un- 
ser Beispiel verifiziert. 
Unserem Beispiel können wir weiterhin entnehmen, daß der Gradient in die Richtung 
der stärksten Änderung von cp zeigt. 

Der Betrag von grad cp = -2 5 ( X ,  y, z )  ist 

A 
(grad cp( = 2 T 

r 

Dies ist ein Maß dafür, wie stark sich die Funktionswerte in radialer Richtung 
ändern. Je  näher wir dem Koordinatenursprung kommen ( r  -+ 0), um so stärker 
ändern sich cp und grad cp . 

Anhand unseres Beispiels haben wir damit folgende Eigenschaften des Gradienten 
verifiziert: 

Der Gradient einer Funktion cp ( X ,  y, z )  ist ein Vektor: 

Der Gradient steht senkrecht auf den Niveauflächen cp = const. Er zeigt in 
die Richtung der größten Veränderung der Funktionswerte 
cp=cp(x, Y,  2).  

Der Betrag des Gradienten ist ein Maß für die Änderung des Funktionswertes 
senkrecht zu den Niveauflächen pro Wegeinheit. 

Das ist eine Kugelschale über der x-y-Ebene.

Das ist eine Kugelschale unter der x-y-Ebene.
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14.1 A Bilden Sie die partiellen Ableitungen nach X,  y und ggf. 
nach z von den Funktionen 

a) f ( x , y ) = s i n x + c o s y  b) f (x,Y) = x2,/= 

C) f (X, y) = e-("'+ya) d) f ( + , y , z ) = z y z + z y + z  

14.1 B Berechnen Sie die Steigung der Tangente in X- und y-Richtung 
für die Fläche z = x2 im Punkt P = (0 , l )  

14.1.1 Berechnen Sie die partiellen Ableitungen f„, fxy ,  fyx und fyy 

der Funktion 

Z = R ~ - X ' -  Y' 

14.2 A Bestimmen Sie die Linien gleicher Höhe, die den Abstand 0 , 5  von 
der X-y-Ebene haben, für die Flächen 

Geben Sie die Funktionsgleichungen der zugehörigen Höhenlinien an. 

14.2 B Berechnen Sie das totale Differential für die Funktionen 

a) z =  ,/- b) z = x2 

14.3.1 Von den skalaren Feldern p (X, y) sind der Gradient 
und die Höhenlinien zu berechnen. cp beschreibt eine Fläche. 

a) p = - X - 2 y + 2  

14.3.2 A Welche Form haben die Niveauflächen der skalaren Felder 

a) p ( x , y , z ) = ( x 2 + y 2 + z 2 ) ~  

b) cp (2, Y, 2) = x2 + y2 

C) cp (x ,y , z )=x+y-32 .  

B Berechnen Sie die Gradienten für diese drei skalaren Felder. 



Lösungen 

14.1 A a) fx = cosx fy = - sin X 

14.1 B Tangente in X-Richtung: 22 

Steigung in X-Richtung im Punkt P: 0 

Tangente in y-Richtung: 2~ 

Steigung in y-Richtung im Punkt P: 2 

Die Höhenlinie ist durch die Beziehung 9 + $ = $ gegeben. 

Dies ist eine Ellipse. 

b) z = 0 , 5 = - X - 2 y + 2  
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14.3.1 a) grad p = (-1, -2) 

Die Höhenlinien sind Geraden mit der Gleichung 

Die Höhenlinien sind Ellipsen, sie erfüllen die Gleichung 

C) g r a d ~ = - * ( x ~ ~ )  Z+~2)3 

Die Höhenlinien sind Kreise mit dem Radius C. 

a 
14.3.2 A a) Die Niveauflächen sind Kugelschalen, sie erfüllen die Gleichung 

C 3  = x2 + y2 + z2 

b) Die Niveauflächen sind Zylinder mit dem Radius c4 und erfüllen 
die Gleichung x2 + y2 = c 

C) Die Niveauflächen sind Ebenen mit der Gleichung 

z = ' + L - C  
3 3 3  

14.3.2 B a) g r a d p  = 3 (x2 + y2 + z2)3 (X, y, Z) 



15 Mehrfachintegrale, 
Koordinatensysteme 

15.1 Mehrfachintegrale als Lösung von Summierungsaufgaben 

In das Koordinatensystem ist ein Quader eingezeichnet. Gesucht ist die Masse M  
des Quaders. Das Volumen des Quaders sei V. Ist die Dichte p im gesamten Volumen 
konstant, läßt sich die Masse angeben: 

Nun gibt es jedoch Fälle, in denen die Dichte p nicht im gesamten Volumen konstant 
ist. Die Dichte ist im Innern der Erdkugel größer als in den Oberflächenbereichen. 
Die Dichte der Luft ist auf der Erdoberfläche am größten und nimmt mit der Höhe 
exponentiell ab. 

Die Dichte kann als empirisch ermit- 
telte dreidimensionale Wertetabelle vorlie- 
gen oder analytisch als Ortsfunktion ange- 
geben sein: 

P = P ( " ,  Y ,  2 )  
I 

Einen Näherungsausdruck für die Masse 
erhalten wir auf folgende Weise: Das Vo- 
lumen V wird in N Zellen zerlegt. Das Vo- 
lumen der i-ten Zelle bezeichnen wir mit 
A  K .  

Wenn wir die Dichte p für die i-te Zelle kennen und als in der Zelle konstant anneh- 
men dürfen, können wir die Masse der Zelle angeben: 

AM; x p ( x i ,  y j ,  z ; ) A z ;  . A y ;  . A z ;  

Die Masse des Quaders mit dem Volumen V erhalten wir näherungsweise durch 
Aufsummieren der Teilmassen A M;. 
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Nun wählen wir die Zellen A immer kleiner und lassen damit N gegen Unendlich 
gehen. Dabei nähert sich der Näherungsausdruck dem exakten Wert. 

Den Grenzwert einer Reihe dieser Art hatten wir im Falle einer Funktion mit einer 
Variablen als Integral bezeichnet. 

Wir erweitern jetzt den Integralbegriff. Unter dem Summenzeichen steht das Pro- 
dukt aus der Dichte und drei Differenzen A l i ,  Ay,, Az;. Beim Grenzübergang gehen 
die Differenzen über in die Differentiale dx, dy und dz. Deshalb benutzt man drei 
Integralsymbole und spricht von einem Mehrfachintegral. Wir schreiben 

N 

M = lim p (X;, y,, z;) Ax; Ay; Az; = 
N-Ca 

i= l  
J J J p ( x i  Y, z)dxdydz 

V 

In Worten: ,,Integral der Funktion p(x ,  y, z) über das Volumen V". Dieses mehr- 
fache Integral - hier ein dreifaches Integral - läßt sich auf die Berechnung von drei 
einfachen bestimmten Integralen zurückführen. 

Es müssen drei Integrationen durchgeführt werden. Dabei wird über jede Variable 
integriert. Bei der Integration sind die für jede Variable gegebenen Integrations- 
grenzen zu beachten. 

Die analytische Berechnung von Mehrfachintegralen wird in den folgenden Abschnit- 
ten gezeigt. Es gibt jedoch auch Fälle, die entweder auf sehr komplizierte Ausdrücke 
führen oder überhaupt nicht lösbar sind. Dann kann das Mehrfachintegral nähe- 
rungsweise über Summenbildungen berechnet werden. Die Summen können durch 
hinreichend feine Einteilung genügend genau gemacht werden. Für den praktisch 
arbeitenden Mathematiker und seine Hilfskräfte war früher die Ausrechnung derar- 
tiger Summen ein gefürchtetes Übel - solange nämlich derartige Summen mit Papier 
und Bleistift berechnet werden mußten. Computer haben die Durchführung derar- 
tiger numerischer Rechnungen entscheidend erleichtert. 

15.2 Mehrfachintegrale mit konstanten Integrationsgrenzen 

Die Ausführung einer mehrfachen Integration ist besonders einfach, wenn alle Inte- 
grationsgrenzen konstant sind. Hier kann die Integration mehrmals hintereinander 
nach den bereits bekannten Regeln ausgeführt werden. Dabei wird über einer Va- 
riablen integriert, während die anderen Variablen als Konstante behandelt werden. 
Die praktische Berechnung von Mehrfachintegralen mit konstanten Grenzen wird so 
auf die mehrfache Berechnung bestimmter Integrale zurückgeführt. 
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Für unser Beispiel - Berechnung der Masse eines Quaders - muß das gesamte Vo- 
lumen abgedeckt werden. Gemäß der Abbildung in 15.1 ist zu integrieren: 

entlang der x-Achse von 0 bis a 
entlang der y-Achse von 0 bis b 
entlang der z-Achse von 0 bis C 

Das Integral wird wie folgt geschrieben: 

inneres Integral 

mittlere; Integral 

äußeres integral 

Das dreifache Integralsymbol bezeichnet folgende Rechenanweisung: 

1. Rechne das innere Integral aus. Dabei werden die Variablen y und z in der Funk- 
tion p (X y z )  als Konstante betrachtet. Dies ist ein bestimmtes Integral mit nur einer 
Variablen X. Das Ergebnis der ersten Integration ist nur noch eine Funktion der Va- 
riablen y und z .  Das Ergebnis wird in das ursprüngliche Integral oben eingesetzt. 

2. Rechne das mattlere Integral aus. Dabei wird die Variable z als Konstante be- 
trachtet. Das Ergebnis wird wieder in das Integral eingesetzt. 

3. Rechne das äuj3ere Integral aus. 

Manchmal schreibt man, um die Übersicht zu erhöhen, Mehrfachintegrale mit Klam- 
mern: 

Die Schreibweise deutet an, daß zunächst das in den Klammern stehende jeweils 
,,innere Integral" auszurechnen ist. Das Ergebnis ist der Integrand für das in der 
nächsten Klammer stehende Integral. Dieses wird fortgesetzt, bis zum Schluß das 
äußere Integral ausgerechnet wird. Bei konstanten Integrationsgrenzen - das soll 
hier immer der Fall sein - kann die Reihenfolge der Integration vertauscht werden. 

Beispiel: Gesucht ist die Masse einer rechteckigen Säule (Grundfläche a . b ,  
Höhe h), bei der die Dichte exponentiell mit der Höhe abnimmt. 
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Physikalisch interessant ist dieses Beispiel für die Berechnung der Masse einer recht- 
eckigen Luftsäule über der Erdoberfläche. Aufgrund der Schwerkraft nimmt die 
Dichte der Luft mit der Höhe exponentiell ab. (Barometrische Höhenformel). po ist 
die Dichte für z = 0 auf der X-y-Ebene. 

Im Falle der barometrischen Höhenformel hat die Konstante im Exponenten die 
Form1 z4 

Die Masse wird über das Mehrfachintegral 1 4  11 
berechnet 

h b a  

Nach der Berechnung des inneren 
Integrals erhalten wir: 

Nach der Berechnung des mittleren 
Integrals erhalten wir: 

MI 
Es bleibt die Berechnung 
des äußeren Integrals: abpo - - - - - - - - - - - - - - 

a 

M = ] a b p o e - a z d . z  

0 

h 
1 e-at = . )PO [-G ] 

0 

ab 
= -po . (1 - e-ah) W 

Cr h 

Mit wachsendem h wächst die Masse nicht beliebig an, sondern nähert sich einem 
Grenzwert. Für kleine h steigt die Funktion praktisch linear mit h.2 

l g  = Gravitationskonstante p,  = Luftdruck für z = 0 
'Dies ergibt sich aus der Potenzreihenentwicklung. Siehe Kapitel 7. 
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15.3 Zerlegung eines Mehrfachintegrals in ein Produkt von 
Integralen 

Es gibt Fälle, in denen sich der Integrand eines Mehrfachintegrals in ein Produkt 
von Funktionen zerlegen läßt, die jeweils nur von einer Variablen abhängen. 

In diesem Fall ist das Mehrfachintegral ein Produkt aus einfachen Integralen. 

Die Berechnung von Mehrfachintegralen ist dann auf die Berechnung einfacher In- 
tegrale zurückgeführt. 

In der Physik führt die Berechnung von Volumen, Masse, Trägheitsmoment, La- 
dungsverteilung und anderen physikalischen Größen auf Mehrfachintegrale. Leider 
sind diese häufig nicht vom einfachen Typ mit konstanten Integrationsgrenzen. Kon- 
stante Integrationsgrenzen erhält man oft, wenn die Variablen X, y und z durch 
geeignete andere Variable ersetzt werden. Das bedeutet, daß ein geeignetes Koor- 
dinatensystem benutzt werden muß, das den speziellen Symmetrien des Problems 
angepaßt ist. Bei Kreissymmetrie sind dies Polarkoordinaten oder Zylinderkoordi- 
nuten. Bei Radialsymmetrien sind Kugelkoordinaten angezeigt. 

15.4 Koordinaten 

15.4.1 Polarkoordinaten 

Einen Punkt P in einer Ebene kann man durch einen Ortsvektor darstellen. In kar- 
tesischen Koordinaten ist der Ortsvektor durch die X- und y-Komponente bestimmt. 
Polarkoordinaten liegen vor, wenn der Ortsvektor durch zwei andere Größen gegeben 
ist: 

Länge r 
Winkel cp mit der x-Achse Y A  

Die Koordinaten beider Systeme lassen 
sich ineinander umrechnen. Die Um- 
rechnungsgleichungen heif3en P 
ll-ansformationsgleichungen und erge- 
ben sich aus der Zeichnung: 

Y 
X = r.coscp 

y = r.sincp 
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Die Darstellung der Polarkoordinaten durch die kartesischen Koordinaten3 ist eben- 
falls aus der Abbildung auf der vorherigen Seite a b z ~ l e s e n . ~  

r = 

t a n p  = Y - 
X 

Flächenelement: 
In kartesischen Koordinaten ist ein 
Flächenelement gegeben durch 

In Polarkoordinaten ergibt sich das 
Flächenelement aus der Abbildung zu 

Zu beachten ist hier, daß das Flächenelement nicht nur von den Differentialen selbst 
abhängt. Dies ist unmittelbar evident, wenn man zwei Flächenelemente mit verschie- 
denem r ,  aber gleichem d p  betrachtet. 

Beispiel: Die Fläche eines Kreises läßt sich jetzt leicht berechnen: 

3Mit der Formel tanrp = Z ist rp noch nicht eindeutig bestimmt. Beispiel: für y = 1 und X = 1 
ist tanrp = 1. Der Winkel rp ist T. Für y = -1 und X = -1 ist der Tangens genau so groß, 
tanrp = 1, der Winkel rp ist aber (? + T ) .  Aus den Koordinaten (X, y) ist jedoch unmittelbar 
abzulesen, in welchem Quadranten der Punkt liegt. Damit ist rp endgültig bestimmt; nämlich zu 
rp = 5. Allgemeine Vorschrift: man md3 den rpWert nehmen, der - in die Gleichung X = T cosrp 
und y = T sinrp eingesetzt - die gegebenen X- und y-Werte liefert. 

'Diese Umrechnung ist bereits bekannt uas dem Kapitel „Komplexe Zahlen". 
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15.4.2 Zylinderkoordinaten 

Zylinderkoordinaten sind Polarkoordinaten, die für den dreidimensionalen Raum 
durch die Angabe einer Höhenkoordinate z ergänzt werden. Die Transformations- 
gleichungen für z und y sind dieselben wie bei Polarkoordinaten. Die z-Koordinate 
geht in sich über. 
Transformationsgleichungen für 
kartesische Koordinaten: t 

X = ro . cos p 

y = ro . sin 
z = Z 

Transformationsgleichungen für 
, / 'Y  - 

Zylinderkoordinaten:5 ro I 

I I' - - - - - - - - - rg = J- / X  Y 

t a n p  = Y - 
X 

Volumenelement in Zylinderkoordinaten: Die Grundfläche des Volumenelementes ist 
das Flächenelement in Polarkoordinaten, 
die Höhe ist gleich d z .  Daraus ergibt sich: 

dV = r o  . d c p d r o . d z  T 
Zylinderkoordinaten erleichtern 
Rechnungen besonders dann, wenn 
folgende Symmetrien vorliegen: 

Zylindersymmetrie 
1; ~~linderkoordinaten hängt die I 

beschreibende Funktion nur vom 
Abstand ro von der %-Achse ab. 
Sie ist unabhängig vom Winkel cp  
und von z:  

f = f (7.0) 

Beispiel: Magnetfeld eines geraden 
stromdurchflossenen Leiters. 

5Dabei muO der pWert genommen werden, der - in X = TO sinv und y = ro cosv eingesetzt - 
wieder den gegebenen X- und y-Wert liefert. 

Zylindersymmetrie:
In Zylinderkoordinaten hängt der 
Betrag der beschreibenden Funktion 
nur vom Abstand r0 von der Sym-
metrieachse ab.
Er ist unabhängig vom Winkel φ. 
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Rotationssymmetrie u m  eine Drehachse: 

In Zylinderkoordinaten darge- 
stellt, hängt die beschreibende 
Funktion nur von den Variablen 
ro und z ab. Sie ist unabhängig 
vom Winkel c p .  

f = f (7-0, z )  

Beispiele: Form von Schachfiguren, 
Magnetfeld einer stromdurchflossenen Spule. 

15.4.3 Kugelkoordinaten 

Für Probleme, bei denen Radialsymmetrie vorliegt, eignen sich Kugelkoordinaten. 
Sie werden in der Geographie benutzt, um die Lage eines Punktes auf der Erdo- 
berfläche anzugeben. Kugelkoordinaten heißen auch räumliche Polarkoordinaten. 
Um die Lage eines Punktes in Kugelkoordinaten zu bestimmen, werden drei Größen 
angegeben. 

Hier muß man bei der Bestimmung der X- und y-Komponente von der Projektion 
ro des Ortsvektors auf die X-y-Ebene ausgehen - ro = rsin 29. Auch die folgenden 
Transformationsgleichungen ergeben sich aus der Abbildung. 

r : Länge des Ortsvektors b, 
29 : Polwinkel - Winkel, den 

der Ortsvektor mit der z- z \  

Achse einschließt 
cp  : Meridian 

COS 29 = 
z 

Jx2 + y2 + z2 

\ 
\ 
\ 
\ 
\ 

- Winkel, den die Projek- 
tion des Ortsvektors auf 
die X-y-Ebene mit der x- 
Achse einschließt /' Y 

/ 
, 

Transformationsgleichungen 

2: = r . s in29-cosp 

­­­Rotationssymmetrie­­­um­­­eine­­­Drehachse:
In Zylinderkooridinaten dargestellt, 
hängt der Betrag der beschreibenden 
Funktion nur von den Variablen r0 und 
z ab und ist unabhängig vom Winkel φ.

ϑ
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Das Vohmenelement hat in Rich- 
tung des Ortsvektors die Dicke dr 
und die Grundfläche dA', erste Ab- 
bildung. 

d V = d A 1 . d r  

dA1 ergibt sich aus der zweiten Abbildung zu 

d A 1 = r . s i n t 9 . d p . r . d t 9  

Das Volumenelement in Kugelkoor- 
dinaten ergibt sich daraus zu 

d v = r 2 . s i n t 9 . d S . d P . d r  

Kugelsymmetrie 
Bei Kugelsymmetrie hängt der Betrag der dargestellten Funktion nur vom Abstand r 
vom Ursprung ab, nicht von den Winkeln 6 und 9. 

Beispiele: Schwerefeld der Erde, Elektrisches Feld einer ruhenden Punktladung, 
Schallwellenintensität bei einer punktförmigen Quelle. 
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Die wichtigsten Eigenschaften von Zylinder- und Kugelkoordinaten sind i n  der fol- 
genden Tabelle noch einmal zusammengefaßt.  In der letzten Spalte steht der Sym- 
metr ie typ,  für den die Darstellung i m  entsprechenden Koordinatensystem geeignet 
ist .  

Koordinaten 

kartesische 

Zylinder 

Kugel 

Volumenelement 

d V  = d x  d y  d z  

d V  = ro . dpdrdz  

d V  = r 2  sin dd29dydr 

Umrechnungsformeln 

X 

Y 
z 

X = ro cos <p 
y = 1-0 sin <p 
z = z  

ro = +J- 
t a n p  = Y - 

2 
z = z  

X = r . s indsincp 
y = r . s indsincp 
z = r . c o s d  

r = + J x 2 +  y2+z2 
z 

COS J0 = 
,/x2 + y2 + z2 
Y t a n d  = - 
X 

geeignet für 
Symmetrie typ 

Klappsymmetrie 
an  einer Achse 

Rotations- 
symmetrie 
Zylinder- 
symmetrie 

Kugelsymmetrie 
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15.5 Anwendungen: Volumen und Trägheitsmoment 

15.5.1 Volumen 

Quader: Die Volumenberechnung für den Quader wird - obwohl das Ergebnis trivial 
ist - aus systematischen Gründen durchgeführt. Das Volumen ist in kartesischen 
Koordinaten: 

Die Integrationsgrenzen sind konstant. Es 
muf3 über jede Variable integriert werden. 
Volumenberechnungen führen auf Dreifach- 
integrale. Als Endergebnis erhalten wir: 

Kugel: Die Berechnung des Kugelvolumens in kartesischen Koordinaten führt zu 
Dreifachintegralen, deren Integrationsgrenzen nicht konstant sind. In kartesischen 
Koordinaten ist die Berechnung jetzt noch nicht durchführbar; sie wird in Abschnitt 
15.6 dargestellt. In Kugelkoordinaten ist das Problem allerdings bereits lösbar. 
Durch die geeignete Wahl des Koordinatensystems erhalten wir konstante Integra- 
tionsgrenzen. Mit dem Volumenelement in Kugelkoordinaten ergibt sich 

Die Integrationsgrenzen ergeben sich aus fol- 
gender Uberlegung: Der Radius r läuft von 
0 bis R. Der Meridian cp  läuft von 0 bis 2a. 
Der Polwinkel d läuft von 0 bis T .  

Die Integrationen können nacheinander in 
jeder beliebigen Reihenfolge durchgeführt 
werden. In jedem Fall ergibt sich das glei- 
che Ergebnis: 
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15.5.2 Trägheitsmoment 

Bei Drehbewegungen hängt die Trägheitswirkung einer Masse von ihrem Abstand 
vom Drehpunkt ab. In den Bewegungsgleichungen für Drehbewegungen wird die 
Masse ersetzt durch eine Größe, die Bägheitsmoment heißt. 

Ein Massenelement d m  hat das 
Trägheitsmoment: 

r ist der senkrechte Abstand zur Dreh- 
achse. Um das Trägheitsmoment eines 
Körpers zu erhalten, wird über das ge- 
samte Volumen integriert. Hier sind Zylin- 
derkoordinaten zweckmäsig. 
Das gesamte Trägheitsmoment ergibt sich dann zu: 1 

@ = 1 dQ = 1 r2 d m  mit d m  = p . d V  ( p  = Dichte) 

V V 

Ist die Dichte p konstant, kann sie vor das Integral gezogen werden. 

Als Beispiel sei das Trägheitsmoment eines Zylinders berechnet. Die Dichte sei kon- 
stant. Drehachse sei die Achse des Zylinders. 

In Zylinderkoordinaten ist das Volumenele- 
ment 

d V  = r d p  d r  d z  

Die Integrationsgrenzen ergeben sich durch 
folgende Überlegung: Der Radius r  läuft 
von 0 bis R; der Winkel cp läuft von 0 bis 
27r. Die Höhe z  läuft von 0 bis h. 
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Dieses Integral läßt sich in das Produkt von drei Einfachintegralen zerlegen oder es 
lassen sich die Integrationen nacheinander durchführen. 

r4ah 
Ergebnis: @ = p T 

Bei der Berechnung von Volumina, Massen- oder Trägheitsmomenten wurde immer 
das gleiche Verfahren angewandt. Es lagen feste Integrationsgrenzen vor, die Be- 
rechnung des Mehrfachintegrals ließ sich schrittweise durchführen. Die Benutzung 
von Polarkoordinaten, Zylinderkoordinaten und Kugelkoordinaten erwies sich dabei 
als vorteilhaft; je nach Symmetrie des Problems. 

15.6 Mehrfachintegrale mit nicht konstanten Integrations- 
grenzen 

Mehrfachintegrale mit konstanten Integrationsgrenzen sind ein Sonderfall. Sind die 
Integrationsgrenzen nicht konstant, sind neue Überlegungen notwendig. Wir führen 
sie arn Beispiel der Flächenberechnung durch. Dieser Fall ist einfacher als die Volu- 
menberechnung. Die Flächenberechnung führt auf Doppelintegrale. 

Zu berechnen sei die schraffierte Fläche. Gehen wir systematisch vor, so ist sie die 
Summe der Flächenelemente innerhalb 
der Begrenzung. 

A = ~ A A  

Daraus gewinnen wir das Mehrfachintegral 
durch den bekannten Grenzübergang zu 

A =  J J ~ A =  J J d r d y  

Das Problem ist, die Begrenzung der Kurve 
zu berücksichtigen. Dafür bestimmen wir y~ 
nacheinander die Grenzen der beiden Inte- 
grale: 
Betrachten wir die Flächenelemente in ei- 
nem Streifen wie in der Abbildung rechts. 
Dies entspricht einer Summierung in y- 
Richtung, also einer Integration über die Va- 
riable y. Die Grenzen für den Streifen sind: 
Untere Grenze: y  = 0 
Obere Grenze: y  = f (X) 

a dx b 

R4
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Die obere Grenze ist hier eine Funktion von X. Setzen wir das in die Formel ein, 
erhalten wir 

Für die Variable X sind die Grenzen konstant 

Untere Grenze: X = a 
Obere Grenze: X = b 

Auch dies können wir einsetzen und erhalten 

Hier ist die Reihenfolge der Integration nun nicht mehr beliebig. Wir müssen zu- 
nächst die Integration des Integrals durchführen, dessen Grenze variabel ist. In 
diesem Fall ist das die Integration über y. Dabei bestimmen wir die Fläche des in 
der obigen Abbildung markierten Streifens mit der Grundlinie dx und der Höhe 
f (X) zu f(x)dx. Wir erhalten nach Ausführung dieser Integration 

Dieses Ergebnis ist uns vertraut. Es ist die bekannte Form des einfachen bestimmten 
Integrals. Wir erkennen, daB das Flächenproblem, systematisch gesehen, zunächst 
auf ein Doppelintegral führt. In der oben vorliegenden Form ist eine Integration 
bereits ausgeführt. Diese Integration hat nämlich bereits die Fläche des Streifens 
mit der Breite d x  und der Höhe f (X) geliefert. 
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Weiteres Beispiel: Berechnung einer Fläche, die von Kurven eingeschlossen wird. 

Die Fläche A in der Abbildung hat folgende Begrenzungen: 

untere Grenze y = x2 
obere Grenze y = 22 

Die Fläche A ergibt sich zu 

Setzen wir die Grenzen ein, so ergibt sich füi 
die Integration über y als untere Grenze X :  

und als obere Grenze 22.  
Für die Variable X ergeben sich aus der 
Schnittpunkten der beiden Kurven dit 
Grenzen 0 und 2.  
In der Reihenfolge der Integrationen müssen wir so vorgehen, daß das Integral mit 
variablen Grenzen zuerst integriert wird. 

Das ergibt ein Integreal mit festen Grenzen: 

A = 1 (2x - x 2 ) d z  
0 

Das hier arn Beispiel gewonnene Verfahren wird auf den allgemeinen Fall übertragen. 
Dabei muß das Mehrfachintegral mindestens für eine Variable feste Grenzen haben. 
Das Mehrfachintegral wird umgeordnet und schrittweise gelöst. Im ersten Schritt 
wird eine Variable gesucht, die nicht in einer der Integrationsgrenzen vorkommt. 
Für diese Variable wird die Integration ausgeführt. Im nächsten Schritt wird diese 
Prozedur wiederholt und so fortgefahren, bis zum Schluß Integrale mit festen Gren- 
zen übrigbleiben. 

Volumenberechnungen führen systematisch zunächst auf Dreifachintegrale. Ist eine 
Integration ausgeführt, bleibt ein Doppelintegral übrig. Nach der nächsten Integra- 
tion bleibt ein einfaches bestimmtes Integral übrig. 

Flächenberechnungen führen systematisch zunächst auf Doppelintegrale. Ist eine 
Integration ausgeführt, ist damit das Doppelintegral auf ein einfaches bestimmtes 
Integral zurückgeführt. 
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15.7 Kreisfläche in kartesischen Koordinaten 

Die Berechnung der Kreisfläche in Polarkoordinaten ist bereits ausgeführt. Hier soll 
gezeigt werden, daß diese Berechnung auch in kartesischen Koordinaten möglich ist. 

Der Radius sei R. Dann ist die Kreisfläche 

Wir bestimmen die Integrationsgrenzen. 
X läuft von -R bis +R 
y hat dann für gegebene Werte von X die 
Grenzen 

untere Grenze yl = -J- 
obere Grenze yz = J-' 

Die Grenzen eingesetzt ergibt 

Wir müssen die Integration zunächst für die Variable mit nicht konstanten Grenzen 
durchführen und daher das Integral umordnen. 

+ R  diF=F 

A = /  I dydx 

Wir erhalten nach der ersten Integration 



15.7 Kreisfläche in kartesischen Koordinaten 59 

Dieses verbleibende Integral wird mit Hilfe der Integraltabelle - Kapitel 6 - gelösk6 

Als Ergebnis erhalten wir wieder die bekannte Formel für den Flächeninhalt des 
Kreises. Hier zeigt sich deutlich die Erleichterung der Rechnungen, wenn geeignete 
Koordinatensysteme gewählt werden. Zur Übung kann der Leser in ähnlicher Weise 
auch das Volumen der Kugel in kartesischen Koordinaten berechnen. Auch diese 
Rechnung ist deutlich schwieriger, als die Berechnung in Kugelkoordinaten. 

6 

a 
arcsin(1) = - wegen sin 

2 

a 
arcsin(-1) = - - wegen 

2 
= –1
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15.2 Integrieren Sie die Mehrfachintegrale 
2 1 

a j j dz dy b) J J z2dzdy 
y =o z=o y =o x=o 

15.3 a)  Ein Punkt hat die kartesischen Koordinaten P = (3,3). 
Geben Sie die Polarkoordinaten an. 

b) Geben Sie die Gleichung für einen Kreis mit Radius R in 
Polarkoordinaten und kartesischen Koordinaten an. 

C) Geben Sie die Gleichung 
für die Spirale in Polar- 
koordinaten an. 

Berechnen Sie das Volumen 
eines Zylinderringes mit den 
Radien Rl und Rz.  

Bestimmen Sie den 
Flächeninhalt eines 
Halbkreises mit Hilfe 
eines Zweifachintegrals. 
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15.5 a) Berechnen Sie den Wert des Intergrals J x2dx d y  
z=o y=z-1 

1 2 1  x+y 
b) Berechnen Sie das Dreifachintegral J J dx d y  dz  

x=o y=o z=o 

Achten Sie auf die Reihenfolge der Integrationen! 

C) Berechnen Sie das Trägheitsmoment 6 einer Kugel mit dem Radius R 
und konstanter Dichte p. Die Drehachse geht durch den Kugel- 
mittelpunkt. Benutzen Sie Kugelkoordinaten. 

Hilfe: 
n 

Das Integral J sin3 ilfdd hat den Wert $. 
0 

Lösungen 

15.2 a) a . b Rechengang: Nach zwei Integrationen ergibt sich 

b 
[ X ] ; .  [yIO = [ a -  01. [b-01 = ab 

d) 12 Rechengang: 

b) kartesische Koordinaten R2 = x2 + 
Polarkoordinaten: R = r  
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15.4 a) V = ?rh ( R i  - RS) Rechengang: Das Volumenelement dV hat in Zy- 
linderkoordinaten die Form dV = r dr dpdz.  

R Zn h Ra Zn h 
V = J J J r d r d p d z  = J r d r  J d p s d z  = r h  (R; - R:) 

R, 0 0 Ri 0 0 

b) A = Rechengang: In ebenen Polarkoordinaten hat das Flächen- 
element d A  die Form d A  = r . dpdr. 

R n  R n 
A =  ~ ~ r . d r . d p =  ~ r d r ~ d p =  $17 

0 0 0 0 

15.5 a) 10; Rechengang: Zuerst muß das Integral mit variablen Grenzen 
berechnet werden. 

7 xZ d y  = x 2 [ y ~ ~ l  = ~ ~ ( 3 .  - + I) = 2x3 + x2 
X - 1  

Somit gilt 

4 
b) 3 Rechengang: Zuerst muß über die Variable z integriert werden, 

weil in den zugehörigen Integrationsgrenzen die Variablen X und 
y vorkommen. 

1 22 z+y 
J J J d x d y d z =  J J J dr dy  d x  

x=o y=o z=O 2=0 ["rY y=o x=o I I 
C) 8 =  ~ R ~ M  Rechengang: 

8 = J r2dV;  Volumenelement dV = r2  sin 6 dr d8 d p  

R n Zu 

= p J J ( r  sin 6)2r2  sin 6 dr d p  d6 
1=0 B=O <p=o 

Dabei ist M = pf7rR3 die Masse der Kugel. 
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16.1 Parameterdarstellung von Kurven 

Die Bewegung eines Massenpunktes rn wird durch die Angabe seines Ortsvektors 
beschrieben. 
Wir betrachten zunächst Bewegungen in der Y A  

X-y-Ebene. Die Spitze des Ortsvektors T(t) 
tastet die Bahnkurve ab, die der Massen- 
punkt durchläuft. Seine Koordinaten X (t) 
und (t)y sind Funktionen der Zeit. 

Y 
0 x( t )  * 

1. Beispiel: Der waagerechte Wurf. 
Beim waagerechten Wurf werde ein Körper mit der Anfangsgeschwindigkeit vox in 
Richtung der x-Achse geworfen. 
Die gleichförmige Bewegung in X-Richtung SA 
und der freie Fall in y-Richtung überlagern 
sich ungestört. Die X- und y-Koordinaten 0 + 
der Bewegung sind also gegeben durch 

X (t) = voz . t 

g 2 y(t)  = -- t  
2 

Der Ortsvektor ist hier 
I 

Die X- und y- Koordinaten hängen von der Variablen „Zeit" ab. Man sagt allgemein, 
der Vektor r (t) hängt von dem Parameter t ab. 

Eine Kurve in der X-y-Ebene war bisher durch eine Funktion y = f (X) gegeben. 
Neu ist jetzt, daß die beiden Variablen X und y als Funktionen einer dritten Größe 
ausgedrückt werden. Eine solche Darstellung nennt man die Parameterdarstellung 
der Kurve. Die Parameterdarstellung ist ein wichtiges Hilfsmittel bei der Beschrei- 
bung von Ortsveränderungen. Die Gleichungen oben sind die Parameterdarstellung 
der Bahnkurve des waagerechten Wurfes. Man kann die Parameterdarstellung in die 
vertraute Form der Bahnkurve überführen, indem der Parameter eliminiert wird. 

y (t)
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Wenn wir die Gleichung X = V„ t nach t auflösen, quadrieren und in die Gleichung 
y = -2 t2  einsetzen, erhalten wir den Ausdruck 

Dieser Ausdruck ist die Funktion nur einer Veränderlichen. Er stellt eine Parabel 
dar, die sogenannte Wurfparabel. 
2. Beispiel: Rotation auf einer Kreisbahn. 
Der Ort eines Punktes kann neben der An- 
gabe der kartesischen Koordinaten X und y 
auch durch die Angabe der Polarkoordina- 
ten r undp beschrieben werden. 
Die beiden Darstellungen sind durch fol- 
gende Transformationsgleichungen mitein- 
ander verknüpft: 

X = r c o s p  O < p < 2 a  
y = r s i n p  

Bei konstantem r sind die X- und die 
y-Koordinaten Funktionen einer dritten 
Größe, des Winkels p. Wir haben eine Pa- 
rameterdarstellung mit p als Parameter. 

Der Ortsvektor des Kreises ist T(p) = (T cos p ,  r sin p). Wir können den Parameter 
p eliminieren. . 

2 . 2  x2 + y2 = r2  cos2 p + r sin p = r 2 

Die Gleichung x2 + = r2 stellt einen Kreis dar. 

Sonderfall: Kreisbewegung mit konstanter Winkelgeschwindigkeit. 
Rotiert der Punkt gleichförmig auf der Kreisbahn, dann wächst der Winkel p linear 
mit der Zeit an: 

Die Größe W wird bekanntlich Winkelgeschwindigkeit genannt. W ist analog zur 
Geschwindigkeit bei der geradlinigen Bewegung definiert: W = g. Die Einheit der 
Winkelgeschwindigkeit ist l/Sekunde. 

Die Parameterdarstellung der Kreisbewegung lautet jetzt: 

X (t) = r coswt y (t) = r sin wt 

Der Ortsvektor, der die Kreisbahn abtastet, ist: 

T(t) = (rcoswt, r sin wt) 
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3. Beispiel: Parameterdarstellung der Geradengleichung. 
Gegeben sei eine Gerade in der Ebene. 
b sei ein Vektor, der in Richtung der Gera- 
den zeigt und ä ein konstanter Vektor, der YA 
vom Koordinatenursprung zu einem beliebi- 
gen Punkt derGeraden reicht. Der Ortsvek- 
tor I ( t )  = Z+ b . t tastet die gesamte Gerade 
ab, wenn der Parameter t den Bereich der 
reellen Zahlen durchläuft. Für die Koordi- 
naten X und y gilt 

0 
W 

Bisher hatten wir nur Kurven in der Ebene betrachtet. Die Parameterdarstellung 
ist besonders hilfreich bei der Darstellung von Kurven im dreidimensionalen Raum. 

4. Beispiel: Gerade im Raum. 
D? Beispiel 3 läßt sich leicht auf den dreidimensionalen Fall erweitern. Die Vektoren 
ä, b und T(t) sind jetzt aber räumliche Vektoren. Die Parameterdarstellung ist 

X (t) = a, + b,t y (t) = ay + byt z (t) = az + bzt 

5. Beispiel: Schraubenlinie 
Ein Punkt bewege sich auf einer Schrauben- 
linie. Der Höhengewinn pro Umlauf sei h. 
Die Koordinaten des Punktes sind dann 

X (t) = r cost 

(t) = r sin t 

Durchläuft der Parameter t den Bereich von t = 0 bis t = 2a, ist ein Umlauf 
vollendet. Der Punkt P = (X, y, t) läuft auf der Schraubenlinie von A nach B. 

Der Ortsvektor der Schraubenlinie ist 

h 
I ( t ) = ( r c o s t ,  r s in t ,  -t) 

2a 
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6. Beispiel: Kreis im Raum (parallel zur X-y-Ebene) 
Ein Kreis mit dem Radius r liege mit dem . 

Abstand zo parallel zur X-y-Ebene. 
Aus der Skizze lesen wir ab 1 
Der Vektor Fxy hat 
die z-Komponente zo . e'„ 
die X-Komponente r cos cp . 
die y-Komponente r sin cp . Cy. 
Der Ortsvektor F(p) ist dann 

?(V) = r cos cp . + r sin cpFy + ZOG 

= ( r  cos cp, rsin cp, zo) 

7. Beispiel: Parameterdarstellung einer Hyperbel: 
Die Funktionsgleichung x2 - y2 = 1 stellt eine Hyperbel dar: Die Hyperbel hat eine 
Nullstelle bei X = 1 und sie hat die Asymptoten yasi = X und yas2 = -X. 

Eine Parameterdarstellung dieser Hyperbel ist durch die hyperbolischen Funktionen 
möglich. Daher auch der Name hyperbolische Funktionen. 

Beweis durch Verifizierung. Wegen der Be- 
ziehung (cosh - (sinh = 1 kann der 
Paramter cp eliminiert werden und wir er- 
halten die Funktionsgleichung der Hyperbel 
x2 = 1. 
Gegeben sei ein bestimmter Wert cpo des Pa- 
rameters. Damit ist ein Punkt P auf der Hy- 
perbel definiert. Wächst cp von 0 bis CO so 
durchläuft P auf dem oberen Hyperbelast 
- beginnend mit Po(l ,  0) - alle Punkte des 
Graphen. Für negative Werte des Parame- 
ters durchläuft P den unteren Hyperbelast. 
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Die Umkehrfunktion heii3t Areafunktion, p = Ar sinh y. 
Die schraffierte Fläche A in der Abbildung entspricht dem halben Parameterwert 
2A = po. 
Wenn wir die Umkehrfunktion für den Hyperbelsinus bilden, erhalten wir eine Funk- 
tion, die eine geometrische Bedeutung hat, sie bezeichnet die schraffierte Fläche. 
Daher der Name Areafunktion . 

Hyperbelsinus y = sinh p 
Umkehrfunktion p = Ar sinh y 

Gelesen: p entspricht der Fläche (Area), dessen Hyperbelsinus y ist. 

Gemeint ist die vom Ortsvektor P der x-Achse und der Hyperbel eingeschlossene 
Fläche. 
Beweis: Wir berechnen die schraffierte Fläche A. 
Ao = Fläche des Dreiecks = coshipo . sinhipo 
Al = Fläche unterhalb der Hyperbel 
Damit gilt: A = Ao - AI 

Berechnung von Al 

'Po 

A~ = Jsinh p dx 

0 X 

Wir substituieren'dz und integrieren partiell. 

'Po 

A, = Jsinh2 pdp  

0 

'Po 

= [cosh po sinh p O ] p  - 1 cosh2 pdp  
-0 =2Ao 

Umformung des Integrals ergibt2 

'Po 'Po 

sinh2 pdp  = 2Ao - 1 sinh2 pdp  - J d p  

0 0 0 

Zusammenfassung der identischen Integrale führt zur 

2 sinh2 p d p  = 2A1 = 2Ao - po J 0 

po = 2 [Ao - Ai] 

'Substitution: z = cosh ip dx = sinh ipdip 
2~inweis: cosh2 ip - sinh2 ip = 1 cosh2 ip = 1 4- s i d  ip 



8. Beispiel: Parameterdarstellung einer Zykloide: 

Zykloide sind Kurven, die die Bewegungen von Punkten auf Rädern angeben, die 
ohne Schlupf rollen. Hier sei die Zykloide für den Punkt auf dem äußeren Rand 
des Rades mit dem Radius R angegeben. Der Parameter cp ist der Drehwinkel des 
Rades. Die Parameterdarstellung der Zykloide ist: 

16.2 Differentiation eines Vektors nach einem Parameter 

Die Bahnkurve eines Punktes in der Ebene wird beschrieben durch den zeitab- 
hängigen Ortsvektor 

YA 
T(t )  = (X ( t ) ,  Y ( t ) )  = X ( t)& + Y (4% 

Nach einem Zeitintervall At ist der Ortsvek- 
tor 

r'(t + At) = P(t) + AF(t) 

Wir fragen nun nach der Geschwindigkeit 
Ü(t) als dem Maß für die zeitliche Änderung O * 
des Ortsvektors. 
Nach der Abbildung ergibt sie sich als Ortsänderung Ar' pro Zeitänderung At 

~ ( t  + At) - ~ ( t )  y(t + At) - y(t) 
1 At 

In Komponentendarstellung 

AF 
Ü = lim - = lim 

x(t + At) - x(t) y(t + At) - y(t) 
At-0 At At-0 1 At 

Führen wir den Grenzübergang durch, so erhalten wir 
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Die Komponenten der Geschwindigkeit des Punktes sind die Geschwindigkeiten der 
Koordinaten des Punktes. Liegt also ein Vektor T(t) in Komponentenschreibweise 
als Funktion des Parameters Zeit t vor, dann erhalten wir die Geschwindigkeit des 
Vektors, indem jede Komponente einzeln nach t differenziert wird. 

Aus der Herleitung ist ersichtlich, daß der Vektor in die Richtung der Tangente an 
die Bahnkurve zeigt. Er wird er als Geschwindigkeit oder als Geschwindigkeitsvektor 
bezeichnet. 

1. Beispiel: Waagerechter Wurf Der Ortsvektor der Bahnkurve beim waagerechten 
Wurf war 

Die Geschwindigkeit erhalten wir, wenn wir T(t) nach der Zeit differenzieren. 

Ü(t) = = (vox, -gt) 

Die Beschleunigung erhalten wir, wenn wir Ü(t) nach der Zeit differenzieren. 

Das Ergebnis ist bekannt, es liegt die nach unten gerichtete Erdbeschleunigung vor. 

2. Beispiel: Rotation auf einer Kreisbahn 
Der Ortsvektor der kreisförmigen Bahnkurve war 

T(t) = ( r  cos wt, r sin wt) 

Die Ableitung des Ortsvektors nach der Zeit 
ist der Geschwindigkeitsvektor Ü(t). 

d?(t) d 
ü(t) = -=-(rcoswt,rsinwt) 

dt dt 

= 
dt 

Ü(t) = W(-r sinwt, r coswt) 

Der Geschwindigkeitsvektor steht senkrecht auf dem Ortsvektor. 

Beweis: Das Skalarprodukt F .  Ü verschwindet. 

T(t) . Ü(t) = (rcoswt, rsinw (t))(-wr sinwt, wrcoswt) 
= wr2 [- cos wt . sin wt + sin wt . cos wt] = 0 
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Der Geschwindigkeitsvektor zeigt in die Richtung der Tangente der Bahnkurve. Er 
hat den Betrag 

Die Beschleunigung ä( t )  erhalten wir, wenn wir Ü ( t )  nach der Zeit t differenzieren. 

Der Beschleunigungsvektor hat die Richtung von F und zeigt zum Koordinatenur- 
Sprung hin. Der Betrag von ä ist 

Wir können wechselweise mit Hilfe von V = w . r den Bahnradius r oder die Win- 
kelgeschwindigkeit w eliminieren: 

Die Beschleunigung ä wird Zentrzpetalbeschleunigvng genannt. 

Ein Vektor im dreidimensionalen Raum, der in Komponentendarstellung vorliegt, 
wird wie im zweidimensionalen Fall nach einem Parameter differenziert, indem jede 
Komponente einzeln differenziert wird. In Formeln: 

Sind bei Integrationsaufgaben die Komponenten eines Vektors als zeitliche Ablei- 
tungen gegeben, dann darf komponentenweise integriert werden. 

–
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16.3 Das Linienintegral 

Ein Körper werde in einem Kraftfeld auf einer Kurve bewegt. Häufig interessiert 
man sich dafür, welche Arbeit dabei aufzuwenden ist oder gewonnen wird. 

1. Fall: Das Kraftfeld ist homogen. Dann hat 
es in allen Punkten die gleiche Richtung und 
den gleichen Betrag. Der Körper werde um 
den Vektor Z verschoben. 
Dann ist die Arbeit definiert durch das Ska- 
larprodukt von Kraftvektor und Wegvektor: 

Jetzt bestimmen wir die Kraft -W 
für dieses Wegelement . Y 

F (r(ti)) = F (X (ti), Y (ti), (ti)) 

2. Fall: Das Kraftfeld :(X, y, z )  sei ein beliebiges Vektorfeld. Der Weg wird durch 
den Ortsvektor T(t) beschrieben, der in Parameterdarstellung gegeben sei. 

Die Wegenden seien durch die beiden Punkte Pi und P2 festgelegt. 
Um einen Näherungsausdruck 
für die Arbeit zu erhalten, zerle- z 

Um den Arbeitsanteil zu erhalten, bilden wir das Skalarprodukt des Wegelementes 
mit dem Kraftvektor 

gen wir den durchlaufenen Weg 
zunächst in n Wegelemente AT. 
Das i-te Wegelement hat die 
Form 

A 4  = F(ti+i) - F(ti). 

Den Näherungsausdruck für die geleistete Arbeit erhalten wir, wenn wir alle Skalar- 
produkte für den Weg aufsummieren. 

W Fi(xi yb zi) 
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Wählen wir die Wegelemente immer kleiner, d.h. lassen wir ihre Anzahl gegen Un- 
endlich gehen, dann erhalten wir den exakten Ausdruck für die geleistete Arbeit im 
Kraftfeld F (x ,  y, z) auf dem vorgegebenen Weg. 

W = lim F(x  (t), y (ti), z (t;)) . A< 
n-m 

i =O  

Dieses Integral wird Linienintegral genannt. Der Name rührt daher, daß der Inte- 
grationsweg eine Kurve, also eine Linie im Raum, ist. 

16.3.1 Berechnung von speziellen Linienintegralen 

Im allgemeinen Fall ist es schwierig, das Linienintegral auszurechnen. Viele Probleme 
lassen sich jedoch auf leicht berechenbare Spezialfälle zurückführen. Das allgemeine 
Verfahren wird in Abschnitt 16.3.2 beschrieben. 

Homogenes Vektorfeld, beliebiger Weg 

Ein homogenes Vektorfeld läßt sich darstellen durch F = ae', + bZy +C& 

Die Arbeit längs eines Weges von Pi nach P2 ist 

Wegen dT = dxZ, + dyG +dze', und F. d i =  adx + bdy + cdz kann das Linienintegral 
in die folgende Form gebracht werden: 

Für die Integrationsgrenzen müssen wir noch diejenigen Koordinaten einsetzen, die 
den Werten von Pi und P2 entsprechen, also 
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In den Klammern stehen die Differenzen der Koordinaten von End- und Anfangs- 
punkt des Weges. Das Ergebnis entspricht unserem 1. Besipiel. Dje Arbeit W ist das 
Skalarprodukt aus Kraft und gesamter Ortsverschiebung: W = F . Z  Bei homogenen 
Kraftfeldern hängt die Arbeit nur von der resultierenden Ortsverschiebung ab, nicht 
aber von der speziellen Form der Bahnkurve. 
Beispiel: Die Gondel eines Riesenrades mit 
der Masse m werde vom tiefsten auf den 
höchsten Punkt gehoben. Das Gravitations- 
feld ist homogen. Die Gravitationskraft ist: 

1", = -mg& = ( 0 ;  O ;  -mg) 

Die hebende Kraft ist dann F," = mge', = (0,O, mg) 

Nach obiger Formel gilt für die geleistete Ar- 
beit 

W =  m g . 2 R  

Radialsymmetrisches Vektorfeld, radialer Weg 
Die Gravitationskraft, die eine Masse M auf 
eine zweite Masse der Größe m ausübt, hat 
die Form - mMr' 

$=-Y- 
r3 

Oi ist die Gravitationskonstante. 
r' weise von M nach m. 
Wir wollen die Arbeit berechnen, die geleiste 
wird, wenn m von P, in radialer Richtung 
nach P, gebracht wird, 
Die bewegende Kraft F„= -6 hat die gleiche 
Richtung wie T und damit gilt 

Hat Pi die Entfernung rl von M und P2 die Entfernung P rz, dann gilt für das Linien- 
integral bei radialsymmetrischem Feld und einem Weg PiP2 in radialer Richtung 
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Radialsymmetrisches Feld, kreisförmiger Weg 

Bewegt sich die Masse m auf einer Kreisbahn um die Masse M, dann stehen Kraft- 
feld F und Wegelement dlsenkrecht aufeinander. Damit gilt 

Der Wert des Linienintegrals ist für jedes 
Kreisbogenstück Null. In einem radialsym- 
metrischen Feld wird also keine Arbeit auf 
einer kreisförmigen Bahn um das Kraftzen- 
trum geleistet. 
In Formeln: 

Der Kreis in dem Integralzeichen symbolisiert, daß auf einem geschlossenen Weg 
integriert wird. 

Ringförmiges Feld, kreisförmiger Weg 

Um einen stromdurchflossenen Leiter entsteht ein ringförmiges Magnetfeld. Die 
Feldlinien sind Kreise. 
Das Magnetfeld hat für einen sehr langen 
geraden Leiter die Form b 

I 
H = - (- sin p, cos cp, 0) 

2aro 

ro ist der senkrechte Abstand zum Draht. 
Wir wollen jetzt längs einer magnetischen 
Feldlinie mit dem Abstand r o  zum Draht 
integrieren und zwar auf einem vollständi- 
gen Kreis. Den Integrationsweg legen wir in 
die X-y-Ebene. Dies können wir ohne weite- 
res tun, da  das Magnetfeld H nicht von der 
z-Koordinate abhängt. 

Der Integrationsweg ist ein Kreis. Das Linienintegral über einen Kreisumlauf wird 
durch einen Kreis im Integralzeichen gekennzeichnet. 

f H d l  

d l u n d  I? haben hier die gleiche Richtung. Damit wird d l .  H = dr  . H 

f z d ~ =  f H d r =  G f d r  
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Das Integral $ d r  ist gleich dem Umfang des Kreises, also 

Das ergibt eingesetzt 

Das Resultat unserer Rechnung ist ein Spezialfall des allgemeingültigen Satzes: 
Das Linienintegral längs eines geschlossenen Weges im Magnetfeld ist gleich dem 
vom Weg eingeschlossenen Strom. 

16.3.2 Berechnung des Linienintegrals im allgemeinen Fall 

Wir nehmen an, daß die Kurve, auf der entlang das Linienintegral gebildet wird, in 
Parameterdarstellung gegeben sei. Dann schreibt sich der Ortsvektor als 

r ,  = X ( t )  T!, = Y ( t )  T,  = z  ( t )  

Die Ortsverschiebung ist dann 

d x  ( t ) ,  d y  ( t )  und d z  ( t )  sind die Differentiale der Funktionen X ( t ) ,  y  ( t )  und z  (t). 
Sie sind gleich 

d x  d y  d z  
d x  ( t )  = - . dt d y  ( t )  = - . dt d z  ( t )  = - . dt 

dt dt dt 
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Variiert t von t l  nach t2 ,  dann wird die Orts- 7. 

kurve von Pi bis P2 durchlaufen. Um die 
Kraft für jeden Kurvenpunkt zu erhalten, 
setzen wir in den Ausdruck für das Vektor- 
feld die Parameterdarstellung der Ortskurve 
ein. 

F ( x y z )  = Fx(x( t ) ,  y( t ) ,  z(t))ex 
Y + F Y  (2 ( 4 ,  Y (t), (t)) ;Y 

+ F, (X (t), Y (t), (t)) e', 

Dies setzen wir ein in das Linienintegral für die Arbeit W = F .  & und führen das 
Skalarprodukt aus: 

Setzen wir als Grenzen noch t l  und t2,  um auszudrücken, daß die drei Integranden 
nur noch von t abhängen, dann ist das Linienintegral 

Dies ist die Summe dreier gewöhnlicher bestimmter Integrale mit der Integrations- 
variablen t .  

Regel: Gegeben ist ein Vektorfeld F (X, y, z) und ein Weg in Parameterdar- 
Stellung: 

= (X (t 1, Y (t), (t)) 

Das Linienintegral ist dann 

P2 

dx J dr  
W =  J ~ ( x , y , z ) d i =  J F,-dt+ dt F - d t +  F,-dt dt 

P1 t l  t 1 t l  

➔



16.1 A Schiefer Wurf: Beim schiefen Wurf mit dem Winkel a gegenüber der 
horizontalen x-Achse hat ein Körper die Anfangsgeschwindigkeit 
V = (vo . coscr; vo . sin a ) .  Bestimmen Sie die Gleichung der Wurf- 
parabel. 

B Ein Punkt rotiert gleichmäßig in der X - y-Ebene. In 2 sec. durchläuft 
er dreimal die Kreisbahn mit dem Radius R. 
Geben Sie die Parameterdarstellung an. 

C a) Welche Kurve wird beschrieben durch die Parameterdarstellung 
X (t) = t 
~ ( t )  = t  
z (t) = t 

b) Auf welche Kurve führt die folgende Parameterdarstellung: 
x ( t )  = acost  
y (t) = b sin t 

16.2 A Bestimmen Sie den Beschleunigungsvektor ä ( t )  bei der gleich- 
mäßigen Rotation. Die Parameterdarstellung der Geschwindigkeit ist: 
v,(t) = -wr sinwt 
vy (t) = wr C O S W ~  

B Der Ortsvektor eines Massenpunktes ist gegeben durch 
F ( t )  = (R cos wt , Rsin wt, t). Bestimmen Sie die Geschwindigkeit 
des Massenpunktes zur Zeit t = F.  

C Der Beschleunigungsvektor ist beim freien Fall gleich g' = (0,O, -g). 
Wie sieht der Geschwindigkeitsvektor aus, wenn die Geschwindigkeit 
zur Zeit t = 0 gleich Üo = (vo, 0,O) ist? 

16.3.1 A In dem homogenen Kraftfeld F = (2,6,1)N wird ein Körper längs 
der Kurve r'(t) = (To + te',) von dem Punkt T(0) = F. zum 
Punkt r'(2) gebracht. Wie groß ist die aufzuwendende Arbeit? 

B Das radialsymmetrische Kraftfeld sei F = (X, y, z)N. Ein Körper 
werde in diesem Kraftfeld längs der x-Achse vom Koordinaten- 
Ursprung zum Punkt P = (5,0,0) gebracht. Berechnen Sie die 
geleistete Arbeit. 

C Gegeben sei das Vektorfeld Ä(x, y, t) = (z tylZ)  Berechnen Sie ./&73' . - 
das Linienintegral längs des Kreises in der X - y-Ebene mit dem 
Koordinatenursprung als Mittelpunkt. 
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16.3.2 Berechnen Sie für das Vektorfeld Ä(x, y, t) = (0, -z, y) das Linien- 
integral längs der Kurve r(t) = (ficos t ,  cos 2t, $) von t = 0 bis t = f 

Lösungen 

16.1 A Die Wurfparabel ist y = tan cw . X - x2 
2v; cos2 (Y 

B Die Parameterdarstellun~ lautet - 
X (t) = R cos 3 r t  
y(t) = Rsin3r t  

C a) Die Kurve stellt eine Gerade dar. 

b) Eliminieren von t führt auf b2x2 + aZy2 = a2b2 oder + $ = 1 

Die Gleichung stellt eine Ellipse mit den Halbachsen a und b dar. 

16.2 A Der Beschleunigungsvektor Z(t) ergibt sich als Ableitung 
von v' nach t .  
a,(t) = -w2r C O S W ~  

a, (t) = -w2r sin wt oder 
ä(t) = -w2r(cos~t ,  sinwt) 

B Es ist v'(t)= 

ü(t) = = (-Rw sinwt, Rw cos wt, 1) 

V(%) = (0, Rw, 1) 

C Ü(t) wird aus g durch Integration der Komponenten von ij und t 
und Anpassung des erhaltenen Vektors an Co ermittelt. 

v'(t) = (cl, c2, -gt + c3); CI,  cz, c3 Integrationskonstanten 

Daraus folgt: CI = vo, c2 = c3 = 0 

Damit gilt: v'(t) = (vo, 0, -gt) 
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16.3.1 A In einem homogenen Vektorfeld F = (a, b, C) gilt nach 16.3.1 für 
die Arbeit, die bei der Verschiebung von Pi = (zi ,  yl, zl) 
nach P 2  = (22, y2, t2) geleistet wird: 

W = a [zz - 211 + b [YZ - YI] + c [z2 - zl] 

Es ist Pi = (20, YO, 20) und P 2  = (20 + 2, YO, 20) 

Mit F = (2,6,1)N erhalten wir 

W = (2 [xo + 2 - XO] + 6 [yo - yo] + 1 [ZO - zo]}Nm = 4Nm 

B Für F = (X, y, r ) N  und dF = (dz, 0,O) erhalten wir F . dF = zdz 
Das Linienintegral wird damit ein gewöhnliches Integral über z:  

9 4 5 5 
J F . d F = J z d z =  [q0 = y ~ m  
P1 0 

C Vektorfeld und Wegelement stehen senkrecht aufeinander. Deshalb - 
verschwindet das Skalarprodukt Ä . & und das Linienintegral 
hat den Wert Null. 

16.3.2 Das Wegelement dF(t) ist d q t )  = ( - d s i n  t ,  -2 sin 2t, $) dt 

Setzen wir z (t), y (t) und z (t) in das Vektorfeld ein, ergibt sich 
.., 

A (t) = (0, $, cos 2t) 

Das Linienintegral ist damit 

4t . 
7r 

I 
Das Integral über - sin 2t wird durch partielle Integration 

berechnet. Es gilt 

J t 2tdt = Si- - 4"- 4 2 

Damit wird 

2 4 sin 2t t cosat 4 1 . 
I [ q s i n 2 t + - c o s 2 t  a 1 d t =  - 7r[T--] + - [sin 2 t 1 ~  

2 o a  
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17.1 Der Vektorfluß durch eine Fläche 

Durch ein Rohr fließe Wasser. Die Dichte des Wassers sei überall konstant. Die 
Geschwindigkeit der Wasserteilchen sei C. 
Da jedem Wasserteilchen an jedem Ort eine Ge- 
schwindigkeit u' = % zugeordnet werden kann, 
liegt ein Vektorfeld vor. Wir nehmen zunächst an, 
daß Ü überall die gleiche Richtung und den gleichen 
Betrag hat, also ein homogenes Vektorfeld vorliegt. 
Wir legen eine Fläche A senkrecht durch den Was- 
serstrom und fragen nach der Wassermenge, die 
pro Zeitintervall At durch die Fläche A hindurch- 
fließt. Das ist die Wassermenge, die sich in dem 
Quader mit der Grundfläche A und der Tiefe As 
befindet. Die Tiefe As ist durch die Bedingung fest- 
gelegt, daß die Wasserteilchen in der Zeit At vom 
Ende des Quaders die Fläche A erreichen müssen. 
Dann gilt: 

As = V . At 

Das Volumen V des Quaders ist damit : 

Die hindurchfließende Wassermenge AM ist 

Die pro Zeiteinheit durch die Flächeneinheit 
fließende Wassermenge ist dann 

Diese Größe nennen wir Strorndichte I .  Da die Geschwindigkeit ii ein Vektor ist, ist 
die Stromdichte ebenfalls ein Vektor. 

v➞
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Definition: Die Größe I = p . C heißt Stromdichte. Der Betrag der Stromdichte 
I gibt die pro Zeiteinheit durch die Flächeneinheit fließende Was- 
sermenge an. Die Fläche steht senkrecht zur Strömungsgeschwin- 
digkeit C. Der Vektor I zeigt in die Stromrichtung. 

(17.1) 

Durch eine beliebige Fläche A senkrecht zur Stromrichtung fließt dann der Strom 

Wir legen nun eine Fläche A schräg in den Wasserstrom, so daß die Flächennormale 
einen Winkel a mit der Stromrichtung bildet. 
Wir betrachten die Fläche A und ihre Projektion 
Ai auf eine Ebene senkrecht zur Stromrichtung. 
Aus der Abbildung lesen wir ab 

Ai = Acosa 

Damit erhalten wir für den Strom I durch A 

Durch die beliebig in den Stromfluß gelegte Fläche strömt genausoviel Wasser wie 
durch die Projektion Ai.  

Dieser Ausdruck hat eine formale Ähnlichkeit mit einem Skalarprodukt zwischen 
zwei Vektoren I und A. 

Um die Orientierung einer Fläche im Raum zu erfassen, führen wir den neuen Begriff 
des vektoriellen Flächenelementes ein. 

Definition: Unter dem vektoriellen Fljchenelement einer ebenen Fläche A ver- 
stehen wir einen Vektor A der senkrecht auf der Fläche steht und 
dessen Betrag gleich A ist. 

1x1 = A (17.2) 

Das Vorzeichen von Ä rnuß durch_ Konvention festgelegt werden. In unserem Fall ist 
es zweckmäßig, das Vorzeichen A so festzulegen, 
daß A in die Richtung zeigt, in der 
der Strom aus der Fläche austritt. 
Beispiel: Ein Quadrat mit dem Flächeninhalt A 
liege in der X-z-Ebene (s. Abb.). Es hat das vekto- 
rielle Flächenelement : 

A= A(0, 1, 0 )  
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Das Quadrat habe jetzt einen Winkel von & ; 45' zur X-y-Ebene (s. Abb.). Das Flächen- 
element ist 

- A 
-- - A = -(O, 1, 1) Jz 

X 

Wir können den Strom I durch eine beliebige Fläche Ä mit Hilfe des vektoriellen 
Flächenelements als Skalarprodukt schreiben: 

Wir lösen uns jetzt von der physikalischen Bedeutung des Vektorfeldes 7 und defi- 
nieren noch den Begriff des Flusses eines beliebigen Vektorfeldes $(X, y, z) durch 
eine Fläche. 

Definition: Gegeben sei eine ebene Fläche A und ein homogenes Vektorfeld F .  
Das skalare Produkt von F mit dem vektoriellen Flächenelement 
Ä wird dann bezeichnet als 
F/$ des Vektorfeldes F durch die FlGche A. 

F . Ä = Fluß von F durch Ä (17.3) 

17.2 Das Oberflächenintegral 

In der Definition 17.3 hatten wir den Begriff des Flusses eines Vektorfeldes durch 
eine Fläche unter zwei Einschränkungen eingeführt: 

1. das Vektorfeld ist homogen 
2. die Fläche ist eben. 

Diese beiden Einschränkungen wollen wir nun fallen lassen. Wir lassen jetzt also 
beliebige Vektorfelder und gekrümmte Flächen zu. 

Aus Kapitel 13 „Funktionen mehrerer Variablen" wissen wir, daß eine Funktion mit 
zwei Variablen im allgemeinen eine gekrümmte 
Fläche im dreidimensionalen Raum darstellt. 

Beispiel: 
Die Kugelschale oberhalb der X-y-Ebene ist _ _ _ - - - 1 - - - _ _ 5  
gegeben durch die Funktion L---- 

, , ' 
z = + d ~ 2  -22- Y2 
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Wie berechnen wir bei gekrümmten Flächen A und beliebigen Vektorfeldern F den 
Fluß von F durch A? 
Einen Näherungsausdruck erhalten wir fol- 
gendermaßen: 

Wir zerlegen die Fläche A in Teilflächen 
AA; . Sind 
die AA; genügend klein gewählt, können 

-- wir sie als ebene Flächen auffassen und ih- - 
nen ein vektorielles Flächenelement AA; 

--t 

zuordnen mit IAA;l = AA;. Im Bereich 
der kleinen Teilflächen AAi kGnnen wir an- 
nehmen, da8 das Vektorfeld F als homogen 
aufgefaßt werden darf. - 

Der Fluß von F durch AA; ist dann nähe- 
rungsweise gegeben durch 

F(,;, yi, z;) . aA; 
Die Variablen X,  y und z in F haben wir 
mit dem Index i versehen. Das bedeutet, 
daß das Vektorfeld F(x ,  y, z) für einen 
Punkt (xi, y;, z;) auf der Fläche AAi be- 
rechnet wird. 

Einen Näherungsausdruck für den gesamten Fluß von F durch die Fläche A erhalten 
wir durch Addition der Teilflüsse durch die Flächen AAi: 

Durch Verfeinerun5 der Teilflächen AA; erhalten wir einen immer genaueren Wert 
für den Fluß von F durch A. Im Limes n + CO ergibt sich der exakte Wert. Diesen 
Grenzwert nennen wir Oberflächenintegral und notieren ihn 

/B(., y, z) . da = Fluß von F durch A 

A 

Definition: Oberflächenintegral von F(,, y, z) über die Fläche A oder Fluß von 
F durch A: 

/ F . &  n-W lim ~ B ( x ; ,  Z ~ ) . A K  (17.4) 

A i= l  
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Bei Anwendungen hat man oft das Oberflächenintegral über eine geschlossene Fläche 
zu berechnen (d.h. den Fluß eines Vektorfeldes durch eine geschlossene Fläche). 
, 
Definition: Eine geschlossene Fläche zerlegt den Raum derart in zwei 

Teilräume, daß man die Fläche durchstoßen muß, um von einem 
Teilraum in den anderen zu kommen. 

(17.5) 

Beispiele für geschlossene Flächen: 

Oberfläche eines Würfels 
Oberfläche einer Kugel 
Oberfläche eines Ellipsoids 
Oberfläche eines Torus (aufgepumpter Fahrradschlauch) 

Das Oberflächenintegral über eine geschlossene Fläche wird symbolisch mit einem 
Kreis durch das Integralzeichen dargestellt: 

--+ 
Das Vorzeichen des vektorielle~Flächenelementes dA wird, wie gesagt, durch 
Konvention so festgelegt, daß dA von der Oberfläche nach außen zeigt. 

Definition: Fluß von F durch eine geschlossene Fläche 

j ~ . a  
dA zeigt bei geschlossenen Flächen 

von der Oberfläche A nach außen. 

(17.6) 

Der Fluß eines Vektorfeldes durch eine geschlossene Fläche hat im Falle einer Flüssig- 
keitsströmung eine anschauliche Bedeutung. Er gibt an, ob in das von der geschlos- 
senen Fläche begrenzte Volumen mehr hinein als heraus fließt. 

In der Literatur wird diese Notierung nicht einheitlich gehandhabt. So wird gelegentlich 
auf den Kreis durch das Integralsymbol verzichtet und unter dem Integral ein Symbol für die 
Fläche notiert. 
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17.3 Berechnung des Oberflächenintegrals für Spezialfälle 

17.3.1 Der Fluß eines homogenen Feldes durch einen Quader 

Wir betrachten ein homogenes Vektorfeld F  = (F„ Fy, F,). Dabei sind F  und 
damit F„ F„ F, konstant. 

Zur Berechnung des Flusses von 3 durch 
den Quader zerlegen wir das Oberflächen- 
integral in sechs Teilintegrale, die den 
Oberflächenintegralen über die sechs Qua- 
derflächen entsprechen. 
Die sechs Flächenelemente sind gemäß der 
unteren Zeichnung: 

Äl = ab (0, 0, 1) 
Äz = ab(0, 0, -1) 
Ä3 = „(O, 1, 0) 
Ä4 = ac(0, -1, 0) 
Äg = bc(1, 0, 0) 
Ä,j = bc(-1, 0, 0) 

6 - - 
Gesamtfluß = ): F . A~ = 0 

i= l  

Das Oberflächenintegral eines homogene: 
4 Vektorfeldes F durch eine ebene Fläche A 'p? ist gesehen durch das Skalarprodukt von F  

mit A. 

In diesem Spezialfall brauchen wir gar keine 
Integration durchzuführen. Wir können die 

C sechs Teilflüsse direkt berechnen. 
q 

1 ,  
I ' 
1 .  ." F . Ä 1  = ab.F, 

F .  Ä2 = -ab. F, 
U+--- 

*I 

Q C . F ~  , 
Y - - 

F . A 4 = - a c . F y  

F . Ä , =  bc.Fz - - 
F . A 6  =-bc.FZ 

Der Gesamtfluß durch die Quaderoberfläche ist durch die Summe der sechs Teilflüsse 
gegeben: Bilden wir diese Summe mit Hilfe der obigen Ausdrücke, dann zeigt sich, 
daß der Fluß des homogenen Feldes durch einen Quader verschwindet. 

I 

8 % I 
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Regel: Der Fluß eines homogenen Feldes durch eine Quaderoberfläche ver- 
schwindet. 
Es gilt sogar die verallgemeinerte Aussage: 

Der Fluß eines homogenen Feldes F durch eine beliebige geschlossene 
Fläche A verschwindet. 

(17.7) 

Den Beweis der verallgemeinerten Aussage wollen wir hier aufgrund einer Plausibi- 
litätsbetrachtung durchführen. 

Wir approximieren das Volumen, das von der Fläche A eingeschlossen wird, durch 
kleine Quader (Säulen). Davon ist einer gezeichnet. Für jeden Quader verschwindet 
der Fluß eines homogenen Feldes. 
Der Fluß durch diejenigen Quaderflächen, 
die zwei benachbarte Quader begrenzen, 
verschwindet, weil die beiden Flächenele- 
mente gleichen Betrag haben und entge- 
gengesetzt gerichtet sind. Übrig bleiben die 
Beträge der Deck- und Grundflächen der 
Quader, die die Oberfläche des Körpers ap- 
proximieren. 
Da deren Flächenvektoren ebenfalls entge- 
gengesetzt gerichtet sind und den gleichen 
Betrag haben, heben sich diese Beträge auf. 
Also verschwindet der Fluß eines homogenen 
Vektorfeldes durch eine beliebige geschlos- 
sene Fläche. 
Für eine stationäre Wasserströmung ist dieses Resultat anschaulich klar. Das Was- 
ser, das in V hineinfließt, fließt auch wieder heraus. 
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17.3.2 D e r  F luß  eines radialsymmetrischen Feldes durch  eine Kugel- 
oberfläche 

Ein radialsymmetrisches Feld hat die allgemeine Form:' 

F = Zr . f ( r )  

.?,. ist der Einheitsvektor, der in radiale Richtung 
zeigt: 

Wir setzen voraus, daß der Kugelmittelpunkt mit 
dem Koordinatenursprung zusammenfällt. 

4 

Das Flächenelement d A  steht senkrecht auf der Kugeloberfläche, hat also die Rich- 
tung von ?. Das Oberflächenintegral Iäßt sich dadurch vereinfachen: 

Die Integration erfolgt über die Kugeloberfläche mit dem Radius R. Da der Inte- 
grand f ( T )  nur noch von r  abhängt, können wir r  = R  in f ( r )  einsetzen und f ( R )  
als konstanten Faktor aus dem Integral herausziehen. 

Das Ergebnis der Integration der Flächenelemente d A  für die Kugel kennen wir 
bereits. Es ist die Kugeloberfläche. 

Damit haben wir folgende Regel gefunden: 

Regel: Der Fluß eines radialsymmetrischen Feldes F = C$ f ( r )  durch eine Ku- 
geloberfläche mit dem Radius R ist: 

! ~ d ~ = 4 n R ~ f  ( R )  (17.8) 

'Siehe dazu Abschnitt 13.5.2. 
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17.4 Berechnung des Oberflächenintegrals im allgemeinen Fall 

Gegeben sei das Oberflächenintegral 

J F ( ~ ,  I) .da 
A 

Wir können es nach Ausführung des inneren 
Produktes als eine Summe von drei Integra- 
len schreiben: 

Y 

J B (X, y, .) . d a  = [FxdA. + FydAy + F,dA,] 
A ' J  A 

Jetzt müssen wir noch zwei Fragen klären: 

1. Wie sehen die Komponenten dA„ dA,, und dA, des „differentiellenm Flächen- 
--+ 

vektors d A  aus? 

2. Wie berücksichtigen wir bei der Integration den durch die Fläche A vorgege- 
benen Integrationsbereich? 

Beginnen wir mit Frage 1: 
Im Kapitel „VektorrechnungL' wurde gezeigt, daß beliebige Vektoren im dteidimen- 
sionalen Raum als Summe von Vielfachen der drei Einheitsvektoren (Basisvektoren) 
Zx, G, e', dargestellt werden können: 

Was sind nun die Basisvektoren für das Flächenelement Ä? 
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Die Abbildung zeigt drei Einheitsvektoren in Richtung der Flächenelemente: 

Dem Einheitsvektor in X-Richtung ist z.B. ein Quadrat mit der Seitenlänge 1 in der 
y-z-Ebene zugeordnet. 

Die Komponenten A,, Ay und A, eines Flächenvektors Ä sind Flächen in den y-z-, 
X-z- und X-y-Ebenen, und zwar ist 

Ä, die Projektion der Fläche A auf die y-z-Ebene 
Äy die Projektion von A auf die X-z-Ebene 
Äz die Projektion von A auf die X-yEbene 

--+ 
Für die Komponenten dA„ dAy und dA, des differentiellen Flächenelementes dA 
in den drei Koordinatenrichtungen erhalten wir analog zu den obigen Basisvektoren 

dA, = dydz dAY = dxdz dA, = dxdy 

Die Flächen, auf denen die Vektoren senkrecht stehen, sind keine Quadrate mehr 
mit dem Flächeninhalt 1, sondern differentielle Flächen dxdy, dydz bzw. dydz. 
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Damit erhalten wir für das differentielle Flächenelement 

--+ 
dA = (dydz, dxdz, dxdy) 

Jetzt müssen wir noch das Problem der Integrationsbereiche lösen. Unser Oberflächen- 
integral war 

Wir betrachten den dritten Summanden: 

Welchen Bereich haben die X- und y-Werte 
in diesem Ausdruck zu durchlaufen? Es ist 
der Bereich Axy, der durch die Projektion 
der Fläche A in die X-y-Ebene entsteht. Wir 
erhalten ein Doppelintegral: 

I 
I 

der X-y-Ebene beschreibt: 

Analoge Überlegungen führen für den ersten Summanden F,dA, im Oberflächen- 
integral auf den Integrationsbereich Ayz und in dem zweiten Summanden auf A„ . 
Ayz und A„ sind die Projektionen von A in die y-z- bzw. X-%-Ebene. Hier müssen 
wir sinngemäß die Beziehung z = f (X, y) nach X bzw. y auflösen und für X bzw. 
y in die Komponenten von F einsetzen. Aus z = f (X, y) entsteht durch Auflösen 
nach X: X = g (y, z), durch Auflösen nach y: y = h (X, z). 
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Damit haben wir eine allgemeine Methode, Oberflächenintegrale zu berechnen: 

Beispiel: Gegeben ist das nichthomogene 
Vektorfeld F = (0, 0, y). Berechnet werden 
soll der Fluß des Vektors F durch den recht- 
eckigen Bereich in der X-y-Ebene, der festge- 
legt ist durch den Koordinatenursprung und 
die Punkte 

PI = (a,  0, 0) 
P2 = (0, bl 0) 
P3 = (a, b ,  0) 

Damit erhalten wir für das Oberflächenintegral bzw. den Fluß von F durch die 
Fläche A den Ausdruck 

Das bedeutet: Bei Vergrößerungen von A in y-Richtung steigt der Fluß von 9 durch 
A quadratisch; bei Vergrößerungen in X-Richtung linear. 
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17.5 Fluß des elektrischen Feldes einer Punktladung durch 
eine Kugeloberfläche mit Radius R 

Im Koordinatenursprung liege eine punktförmige Ladung Q. Diese Ladung erzeugt 
ein elektrisches Feld. 

mit r = Jx2 + y2 + z2 

Dieses Feld ist radialsymmetrisch. Wir können also die Beziehung (17.8) anwenden: 

Einsetzen von E liefert 

Das bedeutet: Der Fluß des elektrischen Feldes einer Punktladung durch eine Ku- 
geloberfläche ist unabhängig vom Radius R. 

Diese Beziehung gilt nicht nur für Kugelflächen, sondern allgemein für jede geschlos- 
sene Fläche, die die Ladung Q umschließt. Sie heißt Gaufisches Gesetz und ist eine 
der Grundgleichungen, die die elektromagnetischen Erscheinungen beschreiben. 

Dieses Feld ist radialsymmetrisch. Wir können also die Beziehung (17.8) anwenden:
Für den Radius R gilt dann:



17.1 A Ein Quadrat mit Flächeninhalt 4 liege in der 
a) X - y-Ebene b) z - z-Ebene C) y - t-Ebene 
Geben Sie die Flächenelemente an. 

B Geben Sie das vektori- 
elle Flächenelement des 
Rechtecks mit Flächenin- 
halt a . b an. 

C Berechnen Sie den Fluß des Vektorfeldes F(x, y, z) = (5, 3, 0) durch 
die Fläche mit dem Flächenelement 
a ) Ä = ( , , l )  b ) Ä = ( 2 , 0 , 0 )  c ) A = ( O , 3 , 1 )  

17.2 Geben Sie die vektoriellen 
Flächenelemente für den 
nebenstehenden Quader an. 

17.3.1 Berechnen Sie den Fluß des Vektorfeldes F(x, y, z) = (2, 2, 4) 
durch 

a) die Kugeloberfläche mit dem Radius R = 3 (Kugelmittelpunkt 
und Koordinatenursprung fallen zusammen) 

b) den Quader aus Aufgabe 17.2 
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17.3.2 Berechnen Sie den Fluß der Vektorfelder F durch die Kugeloberfläche 
mit Radius R = 2 (Kugelmittelpunkt = Koordinatenursprung) 

Lösungen 

(Z,Y 8.1 a, F(z, Y, Z) = 3zz+y~+zz 

17.4 Berechnen Sie das Oberflächenintegral 
über die Fläche A. Z )  

17.1 A) a) Ä = 4 ( 0 ,  0, 1) b) Ä = 4 ( 0 ,  1, 0) C) Ä = 4 ( 1 ,  0,O) 

-Ä ist in allen drei Fällen ebenfalls eine richtige Lösung. 

Das Vektorfeld F ist 3 

F(,, Y, 2) = (2, Y, 0). 

4 

B) Ä =  %(o, 1, 1) 

C) a ) F . Ä = 5 + 3 = 8  b ) F . Ä = l o  c ) F . Ä = g  

17.2 Ä1 = 6 (0, 0, 1) = - 2 2  

& =  8 ( 0 , 1 , 0 ) = - Ä 4  

Ä, = 12(1 ,0 ,0 )  = -Ä,5 

17.3.1 F = (2, 2, 4) ist ein homogenes Vektorfeld. 

17.3.2 F ( z ,  y, z) ist für a) und b) ein radialsymmetrisches Feld. Regel 17.8 

1 L 

A 

+ 
17.4 Das differentielle Flächenelement ist dA = (dydz, 0, 0). 

-. --+ 3 2 

S F . d A = J z . d y d z = S z d z . S d y =  ; . 2 = 9  
0 0 

V 



18 Divergenz und Rotation 

18.1 Divergenz eines Vektorfeldes 

In Kapitel 17 „Oberflächenintegrale" hatten wir die folgende Fragestellung behan- 
delt: Eine geschlossene Fläche A wird von einem Vektorfeld F ( x ,  y, z )  durchsetzt. 
Gefragt ist nach einem Maß dafür, wie „stark" das Vektorfeld F die Fläche A von 
innen nach außen - oder von außen nach innen - durchsetzt. Diese Frage wird durch 
das Oberflächenintegral über die Fläche A beantwortet 

4 f $ ( X ,  Y ,  z ) d A =  lim C Q ( x i ,  yi, i i ) ~ Ä i  
n-+m 

A i= l  

Betrachten wir der Anschaulichkeit wegen ein physikalisches Beispiel. Im Innern 
einer geschlossenen Fläche befinde sich die elektrische Ladungsdichte p. Die La- 

dQ dungsdichte ist definiert als Ladung pro Volumeneinheit, p = -.' 
IIV 

An positiven Ladungen entspringen die Feldlinien des ~eldstärkevektors, an den ne- 
gativen enden sie. Bei positiven Ladungen sprechen wir deshalb von Quellen des 
Feldes, bei negativen Ladungen von Senken. 
Beispiel: Umschließt eine Fläche A eine po- 
sitive elektrische Ladungsdichte p, dann ist 
das Oberflächenintegral des elektrischen Fel- 
des über die Fläche A proportional der ein- 
geschlossenen Ladung Q .  Es gilt -- Q JE"= G 

Dieses Ergebnis hatten wir bereits für 
eine Punktladung im Inneren einer Kugel- 
oberfläche im Abschnitt 17.5 erhalten. 

Wir kehren zu unserem Oberflächenintegral (18.1) zurück und dividieren durch V 

A 

Diesen Ausdruck betrachten wir dann als mittlere Quellendichte im Volumen V. 

'Die Behandlung von Punktladungen ist im Rahmen unseres Formalismus nicht möglich, weil 
in diesem Fali die Grenzwerte, die wir später bilden, nicht existieren. 
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Uns interessiert nun die Quellendichte in einem bestimmten Punkt P. Dazu bilden 
wir den Grenzübergang und lassen V -, 0 gehen. Wir nennen diesen Grenzwert 
Divergenz des Vektorfeldes F am Punkt P und bezeichnen ihn mit div F. 

1 
div F =  lim - f F.da 

V-0 V 

Die Divergenz liefert uns eine eindeutige Aussage-darüber, ob der Punkt P zum 
Gebiet der Quellen oder Senken gehört. Gilt $iv F > 0, dann liegt in dem Punkt 
eine Quelle des Vektorfeldes F vor. Gilt div F < 0, dann liegt dort eine Senke. In 
den Punkten mit div F = 0 ist F quellen- und senkenfrei. 

Als nächsten Schritt leiten wir eine praktische Rechenvorschrift zur Bestimmung 
der Divergenz her. Dazu betrachten wir einen Quader, dessen Kanten parallel zu 
den Koordinatenachsen verlaufen. Die Kantenlängen seien Ax, Ay und Az. 
Für ihn berechnen wir die Divergenz 

4 1 
div A =  V - o  lim - / B A  V 

Für das Oberflächenintegral bilden wir ei- 
nen Näherungsausdruck. Wir ersetzen das 
Oberflächenintegral durch den Fluß durch_ 
die sechs Quaderflächen, wobei der Fluß F 
für jede Quaderfläche als konstant angenom- 
men wird. 

Die Komponenten von F zeigen in gleiche 
bzw. entgegengesetzte Richtung wie die ent- AY 

sprechenden vektoriellen Flächenelemente. 
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Wir bilden den limes V + 0 mit Ax -+ 0, Ay + 0, A z  + 0 und erhalten als 
Grenzwert die Summe der drei partiellen Ableitungen 

Definition: Divergenz des Vektorfeldes F 

1 6Fz 6Fy 6Fz 
div ~ = ~ r n ~ / f ~ ~ = - + - + -  61 6y 62 

Die Divergenz eines Vektorfeldes ist eine skalare Größe. Die Opera5on der Diver- 
genzbildung ordnet dem Vektorfeld F(x ,  y, z )  das skalare Feld div F zu. 

Im Kapitel 14 hatten wir den NablaiOperator G bereits eingeführt. Er war definiert 
durch 

Mit Hilfe des Nabla-O~erators kann die Divergenz des Vektorfeldes formal als Skalar- 
produkt von V und F geschrieben werden: 

Betrachten wir wieder unser physi_kalisches Beispiel mit einer gegebenen Ladungs- 
dichte p = %, die die Feldstärke E erzeugt. Es gilt hier, wie bereits gesagt, 

Q ist die gesamte Ladung, die in dem von der Fläche A eingeschlossenen Volumen V 
liegt. Wir dividieren durch das Volumen V und führen den Grenzübergang V + 0 
durch. Wir erhalten 

div E(x ,  y, z) = P(., Y, 2) 
60 

Damit haben wir aus der Maxwellschen Gleichung $2 dd = $ in der Integ- 
raldarstellung eine Gleichung gewonnen, die die Größen .I? und p für jeden Punkt 
P (X, y, z) des Raumes verknüpft. 

Beispiel 1: Für homogene Vektorfelder '1 - 
verschwindet die Divergenz. 

F(z, Y1 2) = (U, b,  C) 

d i v F  = 

= 0 
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Beispiel 2: Das Vektorfeld F(x ,  y, z) = (X, y, z) hat die Divergenz 3. 

Beispiel 3: Das elektrische Feld einer Kugel mit homogener Ladungsdichte (Gesamt- 
ladung Q, Kugelradius R) hat außerhalb der Kugeloberfläche die Form 

Im Kugelinnern hat es die Form 

Außerhalb der Kugeloberfläche verschwindet die Divergenz des elektrischen Feldes: 

- div E =  G \+(  = U  

J x 2 + y 2 + z 2 ) 3  ( J x 2 + y 2 + z 2 j 5 1  

Im Kugelinnern gilt 

- 3Q - P  - div E = - - 
4m0R3 EO 

Bei homogener Ladungsverteilung ist im Innern der Kugel jeder Punkt eine Quelle 
des elektrischen Feldes. Außerhalb der Kugeloberfläche ist das elektrische Feld quellen- 
und senkenfrei. 

18.2 Integralsatz von Gauß 

Durch den Integralsatz von Gauß wird für ein beliebiges Vektorfeld das Oberflächen- 
integral über die Oberfläche eines beliebigen Volumens mit dem Volumenintegral 
über die Divergenz verknüpft. 

Ein Volumen V sei von der Fläche A eingeschlossen. Wir zerlegen das Volumen in 
n Teilvolumina AK mit den Oberflächen AA;. Für jedes Teilvolumen AK können 
wir einen Näherungsausdruck für die Divergenz des Vektorfeldes F angeben: 

1 
div8(xi,  B, z,) % - f F dA 

AK 
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Wir multiplizieren mit AK und bilden die 
Summe über alle n Teilvolumina 

div F ( x i  , y; , z;)AK 
i=l 

Haben wir die AK als Quader gewählt, dann ist anschaulich klar, daß es zu jeder im 
Innern von V gelegenen Quaderfläche eine entgegengesetzt orientierte vom Nachbar- 
quader gibt. Diese Beiträge heben sich in der Summe über die Oberflächenintegrale 
auf. 

Übrig bleiben nur die Beiträge von der Oberfläche A. Führen wir den Grenzübergang 
n -, CO und A& -+ 0 durch, dann erhalten wir 

lim div 8 . ( x i ,  yi ,  z i)AK = div F . dV 
n-W i=l  V J 

und 

Zusammengefaßt resultiert daraus der Gaup'sche Integralsatz. 

Integralsatz von Gaup: 

1 d i v F . d ~ =  / 8 . d  

V 

Der Gaup'sche Integralsatz erlaubt es, ein Volumenintegral über die Divergenz eines 
Vektorfeldes in ein Oberflächenintegral umzuwandeln. 

18.3 Rotation eines Vektorfeldes 

Es gibt Vektorfelder, bei denen der Wert eines Linienintegrals zwischen zwei Punk- 
ten Pi und Pz vom gewählten Integrationsweg unabhängig ist. Beispiele sind das 
Gravitationsfeld und das elektrische Feld von Punktladungen. Ist das der Fall, kann 
man sich denjenigen Weg wählen, auf dem die Berechnung des Integrals am einfach- 
sten ist. Für Felder dieses Typs gilt folgender Satz: 
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Satz: Der Wert des Linienintegrals zwischen zwei Punkten PI und Pz ist un- 
abhängig vom Weg zwischen diesen Punkten, wenn das Linienintegral 
für jeden geschlossenen Weg C verschwindet, wenn also gilt 

f F ' .S=O 

C 

Beweis: Wir betrachten zwei Wege Cl und Cz von P1 nach Pz, die in V liegen. Der geschlossene 
Weg C führe längs Cl von P1 nach Pz und zurück nach P1 über C2. Nach Voraussetzung gilt 

Dann gilt: 

Bei der Umkehr der integrationsrichtung ändert sich das Vorzeichen. Also gilt: 

Damit ist gezeigt, dai3 das Linienintegral von PI nach Pz auf einem beliebigen Weg dann vom Weg 
unabhängig ist, wenn folgende Voraussetzung gegeben ist: 

Vektorfelder, bei denen das Linienintegral längs jedes geschlossenen Weges ver- 
schwindet, heißen wirbeifrei. 

Es gibt nun aber auch Vektorfelder, bei denen das Linienintegral längs einer ge- 
schlossenen Kurve nicht verschwindet. Der Wert des Linienintegrals zwischen zwei 
Punkten ist im allgemeinen vom Weg abhängig, wenn für das Vektorfeld F gilt: 
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Vektorfelder, bei denen das Linienintegral längs einer geschlossenen Kurve nicht 
verschwindet, heißen Wirbelfelder. 
Beispiel: Ein sich zeitlich veränderndes Ma- 
gnetfeld B erzeugt ein ringförmiges elektri- 
sches Feld E. Eine Ladung werde von Punkt 
Pl zum Punkt Pz bewegt. Die Arbeit hängt 0 in diesem Fall, wie man aus der Zeichnung -d 
sieht, vom Weg ab. Die Arbeit längs des We- 
ges Cl ist positiv, die Arbeit längs des Weges 
C2 ist negativ. PI 

Das geschlossene Linienintegral von Pi über P2 nach Pi ist die Differenz beider 
Arbeitsanteile. Im Falle des Wirbelfeldes ist es deshalb von Null verschieden. 

Der Wert des Linienintegrals längs einer geschloss~nen Kurve C heißt Zirkulation. 
In der Abbildung unten sind drei Vektorfelder F gezeichnet. Die Zirkulation ist 
längs des Kreises für das Feld 1 am größten und für das Feld 3 Null. 

Der Wert der Zirkulation ist ein Maß für die Wirbelstärke in der durch den Inte- 
grationsweg C eingeschlossenen Fläche A.' 

Die Zirkulation stellt also einen mittleren Wert für die Wirbelhaftigkeit in dieser 
Fläche dar. Damit haben wir noch keine Aussage über die Wirbelhaftigkeit in einem 
bestimmten Punkt. Um diese zu bestimmen, gehen wir ähnlich vor wie im Abschnitt 
17.1. Dort haben wir die lokale Quellendichte, die Divergenz, bestimmt. Wir bilden 
hier das Verhältnis der Zirkulation zur Fläche A, die vom Integrationsweg C einge- 
schlossen wird. 

'Hierbei wird die Fläche A als eben betrachtet. Diese Voraussetzung treffen wir, um unsere 
Überlegungen zu vereinfachen. Sie schränkt den Gültigkeitsbereich unserer Aussagen und Folge- 
rungen nicht ein, da wir später die Zirkulation nur im Grenzwert A + 0 betrachten. Eine Folge 
nichtebener Flächen A ' würde im Grenzwert A ' + 0 das gleiche Resultat liefern. 
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Diese Art des Vorgehens führte beim Bestimmen der Divergenz zum Ziel. Hier ist 
der Fall etwas komplizierter, denn eine Fläche ist außer durch die Größe noch durch 
eine Richtung charakterisiert. Der Wert der Zirkulation ist von der Orientierung der 
Fläche A abhängig. 

Wir legen die Orientierung der Fläche A durch das vektorielle Flächenelement Ä 
fest und bestimmen den Grenzwert 

Wählen wir als Richtung von Ä nacheinander die Richtungen der drei Koordinaten- 
achsen, dann ergeben sich für diesen Grenzwert im allgemeinen drei verschiedene 
Werte. Es kann nun bewiesen werden, daß diese drei Werte als Beträge der Kompo- 
nenten eines Vektors aufgefaßt werden können. Der Beweis wird im Anhang dieses 
Kapitels geführt. 

Dieser Vektor heißt Rotation von F und wird geschrieben rot F .  
Die Komponente des Vektors rot 2 in Richtung des vektoriellen Flächenelementes 
Ä ist gegeben durch denobigen Grenzwert. Wir bezeichnen nun den Einheitsvektor 
in Richtung von A mit Ao. Dann können wir schreiben 

Ein anschauliches Beispiel für die Kennzeichnung eines Vektorfeldes F durch seine 
Rotation liefert eine Wasserströmung. Die Wasserströmung wird durch das Ge- 
schwindigkeitsfeld ;(X, y, z )  beschrieben. Da die Geschwindigkeit üblicherweise Ü 

genannt wird, tritt hier Ü an die Stelle von F .  Wir werfen eine Kugel in die Strömung. 
Die Dichte der Kugel sei genau so groß wie die Dichte des Wassers, so daß die Kugel 
in der Wasserströmung schwebt. Gibt es Wirbel in der Strömung, ist rot Ünicht über- 
all Null, dann beginnt die Kugel sich zu drehen. Die Rotationsachse, die natürlich 
ihre Orientierung von Ort zu Ort verändern kann, gibt die Richtung von rot Ü an. 
Die Wirbelgeschwindigkeit in bezug auf die Drehachse ist proportional zum Betrag 
von rot C. 



18.3 Rotation eines Vektorfeldes 103 

Als nächstes leiten wir eine Rechenvorschrift zur Bestimmung des Vektors rot F 
her. Wir gehen dabei so vor, daß wir die Rotation komponentenweise bestimmen. 
Als erstes berechnen wir die X-Komponente. 

Die Fläche A, wählen wir als Rechteck in der y-z-Ebene. Es habe die Seitenlängen 
Ay und A t .  

1 
r o t z F =  - f F . d :  AyAz ' [F.(x, Y + AY, Z) A r  - F,(., y, Z) A i  AyAi  

C, 

- - 
U 

Einen Näherungsausdruck für das Linienin- >t - 2 
tegral erhalten wir durch Multiplikation der A X 

-Fy(x, Y, i + A l )  Ay + Fy (X, Y, 2) AY] 

Fz(x, Y + AY, 2) - F.(X,  Y, 2) 
AY 

- FY(x, Y, z + A t )  - Fy(x, Y, z) 
Az 1 

Im Limes Ay 4 0,  Az -+ 0 erhalten wir die Differenz der partiellen Ableitungen 

Rechteckseiten mit den Komponenten von F 
in Richtung des Integrationsweges (s. Abb.). 

Zur Berechnung der y- und der i-Komponenten von rot F legen wir die Fläche 
A in die X-z-Ebene bzw. X-y-Ebene und gehen analog vor. Damit erhalten wir die 
Rechenvorschrift zur Berechnung der Rotation. 

X- - 
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Definition: Rotation eines Vektorfeldes 

6Fz 6 F y , 6 F ,  6Fz 6Fy  rot^ = - - -- - 
6 , ' 6 r  6 2 ' 6 2  6y 

Mit Hilfe des Nabla-Operators V können wir die Rotation des Vektorfeldes F als 
Vektorprodukt von V und F schreiben: 

Wie jedes Vektorprodukt kann man die Rotation auch als Determinante schreiben: 

Das Linienintegral längs des geschlossenen Weges C verschwindet nicht. 

Die Rotationsbildung ordnet einem Vektorfeld 9 wieder ein Vektorfeld zu. Bei der 
Divergenzbildung wurde einem Vektorfeld ein skalares Feld zugeordnet. 

Beispiel 1: In der Abbildung ist ein Längsschnitt durch das Geschwindigkeitsfeld 
einer Flüssigkeitsströmung gezeichnet. Die Geschwindigkeit hat die Richtung der y- 
Achse. Am Grund ( r  = 0) verschwindet die Geschwindigkeit. Die Geschwindigkeit 
nimmt linear mit der Höhe über Grund zu. z 1 

Beispiel 2: Zu berechnen ist die Rotation 
des Vektorfeldes 

Das Geschwindigkeitsfeld ;(X, y, r )  läßt 
sich darstellen als 

;(X, y, z )  = az . e y ; . a  = const 

Die Rotation von 6' ist 

Dieses Vektorfeld ist nicht wirbelfrei, 
was auch anschaulich klar ist. 

-. 
V 

-+o~T -P 4 

rot Ü = (-a, 0, 0) X 
C 

Y 

∇
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Beispiel 3: Wir berechnen rot F für ein radialsymmetrisches Feld 

F ( x , y , z )  = ( ~ , Y , z )  

r o t F  = (0, 0, 0) 

Dieses radialsymmetrische Feld ist natürlich wirbelfrei. 

18.4 Integralsatz von Stokes 

Durch den Integralsatz von Stokes wird für ein beliebiges Vektorfeld das Oberflä- 
chenintegral über diese Fläche mit dem Linienintegral um den Rand dieser beliebig 
großen und beliebig gelegten Fläche verknüpft. 
Wir betrachten die Fläche A mit der Rand- 
kurve C.  Die Fläche kann näherungsweise 
durch n ebene Teilflächen AÄ, dargestellt 
werden. Die i-te Teilfläche wird durch die 
Kurve C, umrandet. 
Wir bilden für die i-te Teilfläche AA, das 
Linienintegral 

C, 

C ,  

Dies? Au_sdruck ist näherungsweise gleich 
rot F .  AA;. 
Wir summieren über i und erhalten 

n n 

C rotF . AÄ; = C rot "X;, Y;, zi) . AÄ; 
i=l i=l 

i=1 

In der Summe über die Linienintegrale tritt bei den inneren Berandungen jeweils 
ein Wegpaar mit entgegengesetzter Richtung auf. Diese inneren Beiträge heben sich 
gegenseitig auf, so daß nur der Beitrag von den äußeren Wegelementen längs C 
übrigbleibt. Wir führen den Grenzübergang AA; + 0, n + oo durch und erhalten 
den Integralsatz von Stokes. 

Integralsatz von Stokes 

- + 
/ r o t ~ . d ~ =  f 8.z 
A C ( A )  
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Der Integ~alsatz von Stokes verknüpft das Oberflächenintegral der Rotation des Vek- 
torfeldes F über eine Fläche A mit dem Linienintegral von F längs der Umrandung C. 

Gilt rot F = 0 für ein Volumen V, in dem die Fläche A enthalten ist, dann ver- 
schwindet die linke Seite und es gilt 

Daraus folgt nach dem in Abschnitt 18.3 Gesagten, daß das Integral in diesem Fall 
vom Weg unabhängig ist. 

18.5 Potential eines Vektorfeldes 

Ein Vektorfeld F(x, y, z )  sei wirbelfrei. Dann ist nach Abschnitt 18.3 das Linien- 
integral zwischen zwei Punkten Po und P vom Weg unabhängig, und der Wert des 
Linienintegrals hängt nur ab von Po und P. Halten wir Po fest und betrachten P als 
veränderlichen Punkt im Raum, dann ist der Wert des Linieninteg~als eine Funktion 
von P. Wir nennen diesen Wert das Pofential des Vektorfeldes F und bezeichnen 
das Potential mit cp (P). 

Jedem wirbelfreien Vektorfeld F kann durch diese Vorschrift ein skalares Feld cp 
zugeordnet werden. Das Potential cp ist bis auf eine Konstante eindeutig festgelegt. 
Die Konstante wird festgelegt durch die Wahl von Po. Wir werden als nächstes 
zeigen, daß zwischen cp und F aus der obigen Zuordnung die Gleichung folgt: 

F(x, y, z) = grad cp 

Dazu erinnern wir uns, daß wir im Abschnitt 14.3 „Gradientc' einem skalaren Feld cp 
ein Vektorfeld zugeordnet hatten. Für jeden Punkt im Raum sei eine skalare Größe 
cp gegeben durch cp = cp(x, y, z). Aus cp kann ein Vektor gewonnen werden, der 
Gradient heißt und senkrecht auf den Niveauflächen cp = const steht. 

grad cp = ($, g, E) 
Die Änderung von cp bei einer beliebig kleinen Ortsveränderung war gegeben durch 

+ 
dcp = gradcp . ds 

Der Betrag des Gradienten ist ein Maß für die Änderung des Funktionswertes 
pro Wegeinheit senkrecht zu den Niveauflächen.
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Bei größeren Ortsveränderungen müssen wir integrieren und erhalten 

Das aber entspricht genau dem Ausdruck 18.2, mit dem wir das Potential des Vek- 
torfeldes definiert haben. Es gilt die Zuordnung 

Einem wirbelfreien Vektorfeld F können wir also ein skalares Feld cp zuordnen gemäß 
der Beziehung 

Ist das skalare Feld cp(z, y, z) bekannt und suchen wir das zugehörige $(X, y, z ) ,  

können wir uns F durch Gradientenbildung verschaffen 

Potential co Vektorfeld F 

Die Bedeutung dieser Beziehungen für die Physik liegt darin, daß wir F als Kraft 
und cp als potentielle Energie interpretieren können. In der  Physik wird noch durch 
Konvention festgelegt, daß bei einem gegebenen Kraftfeld F das Potential die Arbeit 
ist, die auf dem Weg von Po nach Pi gegen das Kraftfeld geleistet wird. Dann muß 
das Vorzeichen des Linienintegrals geändert werden. Damit werden in der Physik 
die Beziehungen zwischen einem wirbelfreien Kraftfeld F und seinem Potential cp 
wie folgt definiert 

Wirbelfreie Kraftfelder werden als konservative Felder bezeichnet.
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Als Beispiel betrachten wir das Gravitationsfeld einer Masse M ,  die homogen eine 
Kugel mit Radius R ausfüllt. Es gilt außerhalb der Kugel 

@(X,  Y, Z )  = -TM (7 ist die Gravitationskonstante) Jrn3 
ist wirbelfrei, wovon sich der Leser zur Übung selbst überzeugen kann. Das Po- 

tential bestimmt sich durch 

Wenn wir den Integrationsweg speziell in radialer Richtung wählen, dann gilt 
+ 

F .  dr = r dr,  und das Integral vereinfacht sich zu einem gewöhnlichen Integral, das 
zu erstrecken ist von 

r, = 4- bis r = J- 

Das Potential 9 ist bis auf die additive Konstante F eindeutig bestimmt. Konven- 
tionellerweise legt man fest, daß die potentielle Energie für r -, m Null wird. Mit 
dieser Forderung wird cp eindeutig, nämlich 

Bilden wir von p den Gradienten, dann erhalten wir wieder F: 
4 

F = - grad <p = -7M (X, Y, 2 )  

d x 2  + y2 + zz3 
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18.6 Anhang 

Wir beweisen die Aussage, daß sich der folgen* Grenzwert schreiben l q t  als Ska- 
larprodukt des vektoriellen Flächenelementes Ao mit einem Vektor rot F. 

Die Fläche A werde durch das Dreieck in z b  

der nebenstehenden Skizze dargestellt. Die 
Orientierung von A ist durch den Vektor A 
gegeben. Der geschlossene Weg C umläuft 
das _Dreieck von_ A nach B über D nach 
A.  Am Ay und A, sind die Flächenelemente 
auf den Dreiecken, die vom Koordinatenur- 
Sprung von den Punkten A, B und _D ge- 4: 
bildet werden. Die Randkurven von Am AY e 
und Ä, bezeichnen wir mit C„ C, und C,. Y 
Weil die Integrale längs der Strecken -- 
OA; OD und OB je zweimal in entgegen- 
gesetzter Richtung durchlaufen werden und 
sich deshalb gegenseitig aufheben, läßt sich 
das Linienintegral über C schreiben als 

1 
Wir setzen diese Beziehung ein in lim - f F .  db: 

A+O A 

Es gilt 
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Wir ersetzen nun A durch die passenden Ausdrücke: 

1 - --+ 1 
im - f F .  da = cos(Ä, G )  iim - f F'. 88 

1-0 A A,-0 Ax 

1 + cos(Ä, z,) iim - f B . f 
Ag-0 Ay 

C, 

1 
+ c o s ( ~ ,  E+,> iim - / F .  z 

A.+O Al 
C' 

Dieser Ausdruck kann interpretiert werden als das skalare Produkt des Vektors 
Äo = f$ = (cos(Ä, G ) ,  cos(Ä, ZY), cos(Ä, Zz)) in Richtung von Ä mit einem Vektor 

rot 2, der definiert ist durch 

iim L / F f  iim L f F . 6 ,  iim L / F h )  
A,+O Ax A,+O Ay A.+O Al 

C, C, C. 

F .  f = Äo . rot F 
A-0 A 



18.1 Berechnen Sie von den Vektorfeldern F die Divergenz. Geben Sie an, wo 
Que_llen und Senken liegen, bzw. wo das Feld quellen- und senkenfrei ist. 
a) F  (X, Y, 2) = (3: - Q, Y, z) 

b) ?(X, y, z) =(a ,  -X, z2) 

18.2 Sind die Vektorfelder wirbelfrei? a) &X, y, z) = (a, X, 6) 
b) Y, 2) = 

18.3 Berechnen Sie das Linienintegral $ F .  ds 

längs des Rechtecks in der 

y-%-Ebene mit den Seiten a und b. 
F ist gegeben durch 

F(,, Y, 2) = 5(0, Y, r )  

18.4 Berechnen Sie für das Vektorfeld 
F(x ,  y, z) = (0, y, z) das Linien- 
integral längs des Weges C vom 
Punkt (0, 0, 0) zum Punkt (0, 0, 3) 

I 

Lösungen 

18.1 a) div F = 3 Jeder Punkt des Raumes stellt eine Quelle dar. 

b) div F = 22 Die Ebene z = 0 ist quellen- und senkenfrei. Im Raum 
unter dieser Ebene ist jeder Punkt eine Senke, oberhalb eine Quelle. 

18.2 a) rot F = (0, 0, 1) Dies ist ein Wirbelfeld 

b) rot F = (0, 0, 0) Das Feld ist wirbelfrei 

d + 
18.3 Es gilt rot F = (0, 0, 0). Deshalb gilt $ F .  ds = 0 

C 

18.4 Wegen rot F = (0, 0, 0) ist das Linienintegral unabhängig vom Weg. 
Deswegen integrieren wir längs der z-Achse von r = 0 bis z = 3 

+ 3 3 
9 J F . ds = J(O, y, z) . (0, 0, dz) = J zdz = T 

C 0 0 
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Matrizen 

Die Wahl des Koordinatensystems, in dem ein physikalisches oder technisches Pro- 
blem behandelt wird, bestimmt zu einem beträchtlichen Teil den Schwierigkeitsgrad 
und den Aufwand der Rechnung. 

W i r  untersuchen dae Bewegung auf der schiefen Ebene. 

Die Kraft im Schwerefeld F G  = m i  wirkt 
senkrecht nach unten. Diese Kraft zerlegen 
wir in eine Komponente parallel zur schiefen 
Ebene, die in Bewegungsrichtung zeigt, und 
in eine Komponente, die senkrecht auf der 
schiefen Ebene steht. 
Der Betrag der Komponente in Bewegungs- 
richtung F ist 

F = mg sin cr 

Für die Wahl des Koordinatensystems bieten sich zwei Beschreibungsweisen an. 

a) Wir wählen die x-Achse horizontal 
b) Wir legen die x-Achse parallel zur Richtung der schiefen Ebene, also in die 

Bewegungsrichtung . 

Das Ergebnis (die Bewegung) hängt nicht von der Wahl des Koordinatensystems 
ab. Die Rechnung ist jedoch für die Lage b) einfacher. 

Fall a): Die Kugel rollt auf der schiefen Ebene. Das ergibt eine Bewegung sowohl in 
X- als auch in y-Richtung. 

Um die Bewegungsgleichungen+für die beiden Komponenten der Bewegung zu er- 
halten, zerlegen wir die Kraft F in die z- und y-Komponenten. 



Die Zerlegung liefert für die Beträge der Komponenten: 

F, = F c o s a  = mg .s incr.cosa 

Fall b): Die Bewegung ist auf die X-Richtung beschränkt. Die Kraft in X-Richtung 
ist F, = F = mg . sin a .  Wir erhalten die Bewegungsgleichungen: 

Diese Gleichungen sind offensichtlich einfacher als die im Falle a). 

Durch geschickte Wahl des Koordinatensystems wird oft die Behandlung eines Pro- 
blems erleichtert. Manchmal ist es gerade die geeignete Wahl des Koordinatensystems, 
die ein Problem überhaupt rechnerisch lösbar macht. 

Man überlegt sich also, bevor man mit der Rechnung beginnt, welches Koordi- 
natensystem für das spezielle Problem das geeignetste ist und legt dann dieses für 
die Rechnung zugrunde. Bei schwierigen Problemen kommt es vor, da13 man an 
irgendeiner Stelle des Rechenganges bemerkt, daß eine andere Wahl des Koordi- 
natensystems sinnvoll wird. Man kann nun die Rechnung in dem neuen Koordina- 
tensystem erneut beginnen oder die alten Koordinaten in die neuen transformieren. 

In diesem Kapitel werden wir uns mit der zweiten Alternative beschäftigen, der 
Transformation eines rechtwinkligen Koordinatensystems in ein anderes, ebenfalls 
rechtwinkliges. Zwei Transformationen sind besonders wichtig, Translationen und 
Drehungen. 
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Translationen 
Das neue Koordinatensystem wird um 
einen Vektor T. verschoben, die ent- zt 
sprechenden Koordinatenachsen blei- I 
ben parallel. I 

I 

Drehungen 

Das neue Koordinatensystem wird um 
eine Achse um einen bestimmten Win- 
kel p gegenüber dem alten System ge- 
dreht. Z.B. Drehung um die x-Achse um 
den Winkel p: 

Die allgemeine Transformation, die ein rechtwinkliges Koordinatensystem in ein 
anderes rechtwinkliges System überführt, setzt sich zusammen aus einer Translation 
und einer Drehung.' 

'Eventuell treten noch Spiegelungen auf, die hier nicht erörtert werden: Zur Spiegelung siehe 
Baule, Die Mathematik des Naturwissenschaftlers und Ingenieurs, Frankfurt/M. 
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19.1 Koordinatenverschiebungen - Translationen 

Der Punkt P in einem Koordinatensystem habe den Ortsvektor T =  (X, y, z). Wir 
verschieben jetzt den Ursprung des Koordinatensystems um einen Vektor 
T. = (xo, yo, zo). Die dadurch entstehenden Koordinatenachsen bezeichnen wir mit 
(X', y', z'). Welche Koordinaten hat der Punkt in dem neuen Koordinatensystem? 

Dem Ortsvektor T im 
X ,  Y, z- 2 4  

Koordinatensystem 
entspricht der Ortsvektor T' 
im X ', y ', z '-Koordinaten- 
system. 

3 
Aus der Abbildung lesen wir ab: 

Y 
/ 

T = T. + T' oder +- ' 
T' = T-T. 

Wir können die obige Transformationsforme1 auch in Koordinatenschreibweise no- 
tieren: 

Damit haben wir bereits die Transformationsforme1 einer Verschiebung oder Trans- 
lation des Systems um einen Vektor Fo. Bei einer solchen Transformation bleiben 
die entsprechenden Koordinatenachsen parallel. 

Regel: Transformationsgleichungen für die Verschiebung oder Translation des 
Koordinatensystems um einen Vektor T. = (xo, y ~ ,  zo). 
Der Ortsvektor T =  (X, y, z) geht über in den neuen Ortsvektor r' nach 
der Formel T' = T- T. 

x l = x - 2 0  y ' = y - y 0  z t = z - z o  
- 

Beispiel: Ein Koordinatensystem werde um den Vektor T. = (2, -3, 7) verscho- 
ben. In welchen Vektor geht der Ortsvektor T = (5, 2, 3) bei dieser Trans- 
formation über? 
Nach den Transformationsformeln gilt dann 

Also ist T' = (3, 5, -4) 
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An einem weiteren Beispiel wollen wir die Nützlichkeit einer Koordinatenverschie- 
bung verdeutlichen. Eine Kugel mit dem Radius R habe ihren Mittelpunkt nicht im 
Koordinatenursprung. 

Wir wollen die Gleichung für die Punkte auf der Kugeloberfläche herleiten. Der 
Kugelmittelpunkt werde durch den Ortsvektor T. festgelegt: 

T0 = (xo, YO> 20) 

Der Ortsvektor für einen beliebigen Punkt 
auf der Kugeloberfläche lautet: 

-. 
T = T O + R  

Wir lösen nach 2 auf: 

R = T - T ~  X 

Wir bilden das Skalarprodukt R.R, das den konstanten Wert R2 hat. Damit erhalten 
wir die Gleichung für die Kugeloberfläche. 

Wir wollen jetzt die entsprechende Gleichung ableiten für ein Koordinatensystem, 
das durch eine Translation um den Vektor ro entsteht. In diesem Fall hat die Kugel 
ihren Mittelpunkt im Koordinatenursprung. Aus der Abbildung unten ersehen wir, 
daß in dem neuen X', y ', z'-Koordinatensystem gilt "t 

R~ = x i 2 +  y '2+z '2  

Die Gleichung für die Kugeloberfläche 
ist in dem transformierten 
X ', y ', z '-Koordinatensystem 
erheblich einfacher. 

X 
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19.2 Drehungen 

19.2.1 Drehungen i m  zweidimensionalen Raum 

Ein Punkt P hat in einem X-y-Koordinatensystem den Ortsvektor 

Wir drehen jetzt das Koordinatensystem um den Winkel (o in eine neue Lage. Die 
neuen Koordinatenachsen bezeichnen wir gemäß der Abbildung mit X ' und y', die 
neuen Basisvektoren mit C, ' und G '. 
Der Ortsvektor ?hat  dann im neuen Koordinatensystem die Form 

Den Übergang vom alten zum neuen Koordinatensystem erhalten wir folgender- 
maßen: Wir gehen aus von den Komponenten von ? im ursprünglichen System. 
Diese Komponenten können wir nun ihrerseits in je zwei Komponenten in Richtung 
der neuen Achsen zerlegen. Schließlich fassen wir dann die Anteile in Richtung der 
neuen Achsen zusammen. 

Wir beginnen mit der ursprünglichen Y 

X-Komponente von F. 
Im neuen Koordinatensystem ist die 
ursprüngliche X-Komponente gemäß 
Abbildung rechts gegeben durch: 

xe', = X cos cpZ2 - X sin pZi 
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Die ursprüngliche y-Komponente ist gemäs der Abbildung rechts gegeben durch 

= y sin cpZL + y cos cpZb 

Wir können den Ortsvektor F im neuen 
Koordinatensystem darstellen, indem 
wir die obigen Beziehungen für xe', und 
yG einsetzen: 

T = xZz + yZY 
- - X cos cpZ2 - X sin cpe'i 

+ y sin cpZi + y cos cpZi 

Wir fassen die Beträge in den neuen Richtungen und Zi zusammen: 

F = (X cos cp + sin 

+ (-z sin cp + y cos p)Zi 

Die Klammern sind die Koordinaten X ' und y in den neuen Richtungen: 

X I  = xcoscp+ ysincp 
= -xsincp+ycoscp 

Mit Hilfe dieser Formeln können die neuen Koordinaten eines beliebigen Punktes P 
aus den alten berechnet werden. 

Regel: Transformationsgleichungen für die Koordinaten eines Punktes bei der 
Drehung eines zweidimensionalen Koordinatensystems um den Winkel cp 

x1  = z c o s ~ + y s i n c p  

y1 = -xsincp+ycoscp (19.1) 
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Beispiel: Ein Punkt habe die Koordina- 
ten P = (2,2) .  Welche Koordinaten hat 
der Punkt P nach einer Drehung des K e  
ordinatensystems um 45O? 
Die neuen Koordinaten X ' und y ' lassen 
sich über die obigen Transformationsglei- 
chungen berechnen. Dabei berücksichti- 
gen wir: 

7r . 7 r  1 
cos - = sin - = - 

4  4  JS 

Damit hat der Punkt P in dem um 45' gedrehten Koordinatensystem die Koordi- 
naten 

Weil die neue X'-Achse mit dem Vektor r zusammenfällt, verschwindet seine Y'- 
Komponente. 

19.2.2 Mehrfache Drehung 

Wir wollen jetzt die Transformationsgleichungen herleiten, die sich ergeben, wenn 
wir das Koordinatensystem zuerst um den Winkel p drehen in ein X', Y'-Koordina- 
tensystem und danach um einen Winkel S, in ein X", yf'-Koordinatensystem. Wir 
suchen den Übergang von den Koordinaten X ,  y zu den Koordinaten X", y". 



120 19 Koordinatentransformationen und Matrizen 

Die Anschauung läßt bereits vermuten, daß die Drehung um den Winkel cp und 
danach um den Winkel S> durch eine einzige Drehung um den Winkel cp + 4 ersetzt 
werden kann. Diese Vermutung trifft zu und wir werden sie durch die analytische 
Ableitung der Transformationsgleichungen bestätigen. 

Die Transformationsgleichungen für die Übergänge X ,  y -r X ', y ' 
und X', y1 -r X", y" sind aus dem vorhergehenden Abschnitt - Regel 19.1 - be- 
kannt: 

Wir setzen in die unteren Gleichungen X '  und y ' aus den oberen Gleichungen ein: 

X "  = (~coscp+~sincp)cos$ 

+ (-X sin cp + y cos cp) sin $ 
= (~coscp+~sincp)sin1C, 

+(-xsincp+ ycoscp)cos1C> 

Wir multiplizieren die Klammern aus, vereinfachen mit Hilfe der Additionstheoreme2 
und ordnen nach Beträgen von X und y: 

Dieses Ergebnis bestätigt unsere Vermutung: Die Hintereinanderausführung zweier 
Drehungen um die Winkel cp und $ führt zu dem gleichen Resultat wie eine Drehung 
um den Winkel cp + 4 .  

Regel: Transformationsgleichungen für die aufeinanderfolgende Drehung um die 
Winkel cp und $: 

X " = X cos(cp + 4 )  + y sin(cp + 4)  
yll = -xsin(cp+$)+ycos(cp+$) 

'Benutzt werden die folgenden Additionstheoreme 

sin(rp + $) = sin rp cos $ + cos <p sin $ 

cos(ip + $) = cos rp cos $ - sin rp sin $ 
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19.2.3 Drehungen  im dreidimensionalen Raum 

In diesem Abschnitt werden wir uns mit Drehungen im dreidimensionalen Raum 
befassen. Zunächst wollen wir uns auf solche Drehungen beschränken, bei denen die 
Drehung um eine der Koordinatenachsen erfolgt. Dadurch Iäßt sich unsere Aufgabe 
auf bereits bekannte Fälle zurückführen. 

1. Beispiel: Drehung um die z-Achse, Dreh- 
winkel cp. 
Hierbei wird die x-Achse in die X'-Achse 
und die y-Achse in die y '-Achse gedreht. Die 
z-Achse bleibt erhalten. Das bedeutet, daß 
die %-Koordinaten bei einer Drehung um die 
z-Achse erhalten bleiben: z' = t .  

Die verbleibende Transformation der Koor- 
dinaten X ,  y bei einer Drehung um den Win- 
kel p ist bereits bekannt (Regel 19.1): 

Fassen wir diese Formeln mit der für die z-Koordinate zusammen, erhalten wir die 
Transformationsgleichungen 

X '  = xcosp  + ys inp  

= -xsinp+ycoscp 
z '  = Z Z')t 

2. Beispiel: Drehung um die x-Achse, Dreh- 
winkel 29. Bei dieser Drehung bleibt die 
X-Koordinate erhalten. Also 

x l = x  

Es verbleibt wieder die Drehung eines zwei- 
dimensionalen Koordinatensystems. Nur 
muß jetzt die X-Koordinate durch y ersetzt 
werden und die y-Koordinate durch z. 
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Insgesamt ergeben sich damit die Transformationsgleichungen für die Drehung des 
Koordinatensystems um die x-Achse mit dem Winkel 29 zu 

Die Drehung um die y-Achse in dem Drehwinkel 29 ergibt sich analog. 
Damit können wir eine beliebige Drehung im Raum herstellen. 

Ein Koordinatensystem kann durch drei aufeinanderfolgende Drehungen um die X, 
y und %-Achse in jede beliebige Lage im Raum gebracht werden. Die neuen Koor- 
dinaten ergeben sich, wenn die drei Transformationen nacheinander durchgeführt 
werden. Die Reihenfolge ist beliebig. 

Regel: fiansformationsgleichungen für die Drehungen eines dreidimensionalen 
Koordinatensystems 
Drehachse x-Achse: 

X '  = X 

= y ~cos29+z~sin29 

z '  = -y.sin29+z.cos29 

Drehachse y-Achse: 

X '  = xcos11, + zsinII, 
y '  = Y 

z' = -zsin$+zcosll ,  

Drehachse %-Achse: 

X '  = xcoscp+ y sincp 

= -xsincp+ycoscp 
2 '  = z (19.2) 
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19.3 Matrizenrechnung 

Die bisher abgeleiteten Transformationsgleichungen lassen sich übersichtlicher schrei- 
ben, wenn wir den Begriff der Matrix einführen und dafür Rechenregeln aufstellen. 
Im Abschnitt 19.4 werden wir dann die Transformationsgleichungen in Matrizenform 
aufstellen. In Kapitel 20 werden wir Matrizen benutzen, um lineare Gleichungssy- 
steme zu lösen. 

Definition: Matrix heißt ein rechteckiges Zahlenschema reeller Zahlen der Art 

a11 a12 ... 

aml am2 . " amn 

Die horizontalen Zahlenreihen heißen Zeilen der Matrix. 

a11 a12 . . .  
Beispiel: - - . . .  - 

- - .. .  - 
aln ) 

Die vertikalen Zahlenreihen heißen Spalten der Matrix. 

all - - - 

a21 - - - 
Beispiel: 

Eine Matrix hat m Zeilen und n Spalten. Wir nennen sie deshalb eine m X n-Matrix. 
Die einzelnen Zahlen heißen Matrixelemente. 

Im Folgenden werden wir unsere Betrachtung weitgehend auf quadratische Matrizen 
beschränken, bei ihnen ist die Spaltenzahl gleich der Zeilenzahl. 

Matrizen werden meist mit deutschen Buchstaben oder mit großen lateinischen 
Buchstaben bezeichnet. 

A =  ( - 7  ) ist eine2 x 2 -  Matrix 33 -8 

Wir definieren nun das Produkt eines Vektors mit einer Matrix. Dafür geben wir 
eine Rechenvorschrift anhand eines Beispiels an. Die Matrix sei eine 2 X 2-Matrix. 
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Der Vektor sei T =  (X, y). Wir können diesen Vektor auch schreiben als F =  . (3 
Der Grund für die Benutzung dieser Schreibweise liegt in der übersichtlichen Dar- 
stellung des Produktes eines Vektors mit einer Matrix. Das Produkt A . T ist ein 

neuer Vektor F = 

Definition: Das Produkt A . T einer Matrix A und eines Vektors T ist ein neuer 
Vektor T' mit den Komponenten 

( a;: z;; ) (;) = (;:) ( a l lx  + a12y 
azlx + az2Y 

Die Komponenten X ' und y ' erhalten wir dadurch, daß wir Skalarprodukte zwischen 
den Zeilen der Matrix A und dem Vektor (G) bilden. 
X '  ergibt sich als Skalarprodukt zwischen den „Vektoren6' (a l i ,  a12) und (G),  
y' ergibt sich als Skalarprodukt von (aZ1, aZz) und (G). 

1 -3 
Beispiel: Wir berechnen A . F = T' mit A = ( 6  4 ) U n d i = ( ; )  

Es ist 

Die Verallgemeinerung auf Vektoren im dreidimensionalen Raum und 3 X 3-Matrizen 
ergibt 

Beispiel: Zu berechnen ist T' = A . F mit 

Wir erhalten 

Abschließend wollen wir noch angeben, wie das Produkt A . B = C von Matrizen 
zu berechnen ist. Wir beginnen mit dem Produkt von 2 X 2 Matrizen. 

Das folgende Schema zeigt, wie das Matrixelement CZ2 der Produktmatrix C = A.B 
entsteht: Man bildet das ,,skalare" Produkt der zweiten Zeile der Matrix A mit der 
zweiten Spalte der Matrix B: 
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Die anderen Matrixelemente werden entsprechend gebildet. 

2.  Spalte 

2 .  Zeile 

Beispiel: Es ist das Produkt zweier Matrizen zu bilden 

A = ( E  :) und B = ( - 3  1 - 1  7, 

Definition: Produkt von 2 X 2-Matrizen 

A  = ( ::: ::; ) B = ( ;;; ;;; ) 
Das Produkt wird definiert durch 

A  - B = C = ( e;: ; ) = ( 1;: ::; ) . ( :;: ;;; ) 
= ( a i ib i i  + a12b21 allb12 + a12b22 

azlbi i  + a22b21 a21b12 + a22b22 1 
Die Matrixelemente c;k (i = 1 , 2 ;  k = 1 , 2 )  der Produktmatrix 
C = A  . B ergeben sich, indem die i-te Zeile der Matrix A und die 
k-te Spalte der Matrix B als Vektoren aufgefaßt werden und das 
Skalarprodukt zwischen ihnen gebildet wird: 

2 

Cik = (ai i  5 aiz)  . (bik,  b z k )  = aijbjk 

j=l 

Die Erweiterung auf 3 X 3 Matrizen ist inmittelbar einsichtig. Die Matrixelemente 
der Produktmatrix C sind das „Skalarprodukt" der Zeile i der Matrix A  und der 
Spalte k der Matrix B. 
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Beispiel: Gegeben sind die Matrizen 

0  0  4 0 5  
A =  ( i  2 3 )  und B = (  0  1 0 )  

0  -3 7 -3 -2 1 

Wir berechnen das Produkt A.B = C und benutzen zur Erleichterung 
wieder das Schema wie unten angedeutet 

Vollständiges Ausmultiplizieren ergibt: 

Das Verfahren kann auf das Produkt einer n X m Matrix mit einer p X n Matrix 
erweitert werden. Eine Bedingung gilt: Die Anzahl der Spalten von A muß mit 
der Anzahl der Zeilen von B übereinstimmen. Auch im allgemeinen Fall kann das 
angegebene Schema benutzt werden. 

Definition: Produkt einer m X n Matrix mit einer n x p Matrix. 
Die Matrixelemente c i j  der Produktmatrix C sind definiert als das 
Skalarprodukt des i-ten Zeilenvektors der Matrix A und des j-ten 
Spaltenvektors der Matrix B: 

n 

C ,  = aikbkj 
k = l  

Wir wollen noch darauf hinweisen, da% das Produkt zweier Matrizen nicht kommu- 
tativ ist, es gilt i.a. A . B # B . A. Der interessierte Leser kann dies am obigen 
Beispiel der 2 X 2-Matrizen leicht verifizieren. 

Zum Abschluß wollen wir der Vollständigkeit halber angeben, wie die Addition 
zweier Matrizen und die Multiplikation einer Matrix mit einem Skalar definiert 
sind. 
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Definition: Addition von Matrizen 

a12 a13 6 1 2  613 

A  = ( l:: a.2 U23 ) und B = ( b.2 bZ3 ) 
a31 a32 a33 b31 b32 b33 

Die Summe A  + B = C ist definiert als 

all + bll a12 + bl2 U13 + b13 

a21+ b21 a22 + b22 a23 + b23 

a3l + b31 a32 + b32 a33 + b33 

Wir addieren die Matrixelemente mit gleichen Indizes. 

Beispiel: ( -: ) + ( ) = ( -: ) 

Definition: Multiplikation mit einem Skalar 
Eine Matrix A  wird mit einer skalaren Größe t multipliziert, indem 
jedes Matrixelement mit t multipliziert wird. 

Das Produkt einer 2 X 2-Matrix A  mit dem Skalar t lautet dann wie folgt: 

Beispiel: A = ( i  -;), t = 2 , 5  
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19.4 Darstellung von Drehungen in Matrizenform 

Drehungen im zweidimensionalen Raum: 
Die Transformationsgleichungen für die Koordinaten 

, * bei einer Drehung um den Winkel cp hatten wir in 
Abschnitt 19.2.1 - Regel 19.2 - abgeleitet. Es war 

X '  = xcoscp+ysincp 
y' = -xsincp+ycoscp 

Diese Transformationsgleichungen lassen sich unmittelbar als Produkt einer Dreh- 
matrix mit dem ursprünglichen Vektor darstellen. 

Beispiel: Wir drehen unser X-y-Koordinatensystem um den Winkel cp = ;. 
Dann geht die x-Achse in die y-Achse und die y-Achse in die negative 
x-Achse über. 

Setzen wir in die Drehmatrix für cp den Wert $ ein, erhalten wir: 

C O  sin"=( 0 1 )  
- sin ; cos 5 -1 0 

Die Koordinatentransformation ist damit 

Wir werden jetzt die Matrix für eine Gesamtdrehung bestimmen, die sich aus einer 
Drehung um den Winkel cp und einer Drehung um den Winkel II, zusammensetzt. 

Nach der ersten Drehung geht (X, y) über in (X', Y'). Nach der zweiten Drehung 
geht (X', y') über in (X", Y"). Gesucht ist die Matrix für den Übergang 
(X, Y) + (X ' I ,  y10. 
Es gelten (siehe Abschnitt 19.2.2) 

- sin cp coscp (1) 

und 

Wir setzen Gleichung (1) in die Gleichung (2) ein und erhalten 
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cos S, sinS, COS cp (i::) = ( -sin+ C O S ~  ) ( -sincp ::F) (i) 
Ausmultiplizieren der Matrizen ergibt: 

cos S, cos cp - sin S, sin cp cos S, sin cp + sin S, cos cp 
= ( -sin~,cosy-cosjisincp - s i n ~ s i n ~ + c o a ~ c o s c p )  ( Y )  

Mit Hilfe der Additionstheoreme für die cos  und sin-Funktionen ergibt sich die 
Drehmatrix für die Gesamtdrehung zu 

Drehungen i m  dreidimensionalen Raum: 

In Abschnitt 19.2.3 hatten wir die Trans- 
formationsgleichungen für eine Drehung um 
den Winkel cp mit der 2-Achse als Drehachse 
hergeleitet. Es war - Regel 19.2: 

xcoscp+ ysincp 
y1 = -X sin cp + y cos cp 

z1  = t 

Daraus erhalten wir die Transformationsgleichung in Matrizenform 

cos cp sin cp ( i )  = ( s i n c p  0 coscp 0 0) 1 (Y) 
Der Leser überlege sich, daß die Drehmatrix für eine Drehung um die y-Achse mit 
dem Winkel S, die Form hat ( CO;* ; 

- sin S, 0 cos S, 

Schließlich hat die Drehmatrix für eine Drehung um die x-Achse um den Winkel 29 
die Form 

1 0  
0 cos 0 sinI9 
0 - sinb cos I9 

Eine beliebige Drehung läßt sich durch aufeinanderfolgende Drehungen um die X,  y 
und z-Achse bewirken. In diesem Fall wird die Transformation mit einer Drehung 
begonnen, das Ergebnis wird noch einmal transformiert und dieses Ergebnis wird 
dann ein drittes Mal transformiert. 
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19.5 Spezielle Matrizen 

In diesem Abschnitt werden spezielle Matrizen erläutert und definiert. Manche ihrer 
Eigenschaften werden ohne vollständigen Beweis angegeben. 

Einheitsmatrix 
Die Einheitsmatrix ist eine quadratische Matrix der folgenden Form 

Alle Elemente auf der Hauptdiagonalen sind Eins, alle anderen sind Null. 

Multipliziert man eine Matrix A oder einen Vektor F mit der Einheitsmatrix, so 
bleiben die Matrix oder der Vektor unverändert erhalten. 

Die Eigenschaft der Einheitsmatrix folgt unmittelbar aus den Regeln der Matrizen- 
multiplikation und kann leicht selbst verifiziert werden. 

Diagonalmatrizen 
Eine Diagonalmatrix ist eine quadratische Matrix, deren Elemente auf der Haupt- 
diagonalen # 0 sind, und deren übrige Elemente gleich Null sind. 

Die Einheitsmatrix ist also eine spezielle Diagonalmatrix. 

Nullmatrix 
Die Nullmatrix ist eine Matrix, bei der sämtliche Elemente Null sind. Sie wird mit 
0 bezeichnet. Auf folgenden Zusammenhang sei hingewiesen: Aus der Gleichung 
A . B = 0 folgt nicht notwendig, daß entweder A = 0 oder B = 0 ist. 

Beispiel: 

Bansponierte Matrix 
Vertauschen wir die Zeilen lind Spalten einer m X n Matrix A, so erhalten wir eine 
neue Matrix, die jetzt eine n X m Matrix ist. Diese Matrix heißt transponierte Matrix 
oder Thnsponierle der ursprünglichen Matrix. 

Sie wird bezeichnet durch AT oder 2. 
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Matrix Transponierte Matrix 

A~ = ( Qll Q21 Q31 

a12 a22 a32 ) 
Aus der ersten Zeile wird die erste Spalte, aus der zweiten Zeile wird die zweite 
Spalte etc. Beispiel: 

Der Leser kann die folgenden Behauptungen leicht selbst beweisen: 

Die Transponierte einer transponierten Matrix ergibt wieder die 
ursprüngliche Matrix. 

 AT)^ = A 

Die Transponierte eines Matrizenprodukts ist das Produkt der transponierten 
Matrizen. 

Allgemein gilt ( A  . B . C .  . . z)* = ,TT . . . . BT . AT 
Orthogonale Matrizen 
Eine quadratische Matrix A heißt orthogonal, wenn sie der folgenden Bedingung 
genügt: 

A . A~ = E (Orthogonalitätsbedingung) 

Betrachten wir die Gleichung A . AT = E.  Wenn wir die Zeilen und Spalten der 
Matrizen A und AT als Vektoren auffassen, und ihre Skalarprodukte berechnen, 
dann gilt für eine orthogonale Matrix A: 

Das Skalarprodukt einer Zeile mit sich selbst ist 1. 

Das Skalarprodukt einer Zeile mit einer anderen 
Zeile ist immer Null. 

Was für Zeilen gesagt wurde, gilt auch für Spalten. 

Drehmatrizen sind immer orthogonale Matrizen. Wird eine orthogonale Matrix 
A mit zwei Vektoren F und $multipliziert, dann bleibt deren Skalarprodukt un- 
verändert: 
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Dies bedeutet, daß bei der Transformation Längen und Winkel der Vektoren erhalten 
bleiben. Ein System rechtwinklinger Koordinaten wird in ein anderes rechtwinkliges 
Koordinatensystem überführt. Durch diese Eigenschaft ist der Name orthogonale 
Matrix begründet. 

Singuläre Matrix 
Eine Matrix heißt singulär, wenn ihre Determinante Null ist. Der Begriff der Deter- 
minanten wird im Kapitel 20 erläutert. 

Symmetrische Matrizen und schief-symmetrische Matrizen 
Eine quadratische Matrix heißt symmetrisch, wenn gilt: aij = a,;. Dies bedeutet, 
daß die Matrix gleich ihrer Transponierten ist. 

Eine quadratische Matrix heißt schief-symmetrisch, wenn gilt aij = -aj i .  Für schief- 
symmetrische Matrizen sind alle Elemente auf der Hauptdiagonalen Null. Es gilt: 

Jede quadratische Matrix kann dargestellt werden als die Summe einer symmetri- 
schen und einer schief-symmetrischen Matrix. 

Beweis: A = $ ( A  + A T )  + i ( A  - AT) 

Die erste Klammer ist eine symmetrische Matrix und die zweite Klammer ist eine 
schief-symmetrische Matrix. 

Beispiel: Die Matrix A wird in eine symmetrische und in eine schief- 
symmetrische Matrix zerlegt: 

Spur einer Matrix 
Die Summe der Elemente auf der Hauptdiagonalen heißt Spur der Matrix A,  ab- 
gekürzt Sp(A) 

Spur: Sp(A) = ai i  + aaa + a s ~  . . . + a„ 
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19.6 Inverse Matrix 

Für eine nicht-singuläre quadratische Matrix A ist die inverse Matrix A-' durch 
folgende Bedingung definiert: Das Produkt der Matrix A mit der inversen Matrix 
A-' ergibt die Einheitsmatrix E. 

Die folgenden Gleichungen gelten: 

A . A-' = E (Postmultiplikation mit A-') 

A-' . A = E (Prämultiplikation mit A-') 

Die Berechnung der Inversen einer Matrix wird im Kapitel 20 im Abschnitt 20.1.3 
beschrieben. Hier geben wir nur ein Beispiel: 

Der Leser kann selbst verifizieren, daß folgende Gleichungen gelten: 

Eine quadratische Matrix A ist orthogonal, wenn die inverse Matrix A-' gleich der 
transponierten Matrix AT ist: 

Wenn man die Operationen mit Matrizen anhand einfacher Beispiele durchgeführt 
und verstanden hat, wird man sie später bei Bedarf mit Hilfe des PC und eines 
Algebraprogramms wie Mathematica, Maple, Derive u.a. durchführen. 
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19.7 Übungsaufgaben 

19.1 Der Scheitelpunkt eines Paraboloids 
haben den Abstand 2 vom Koordina- 
tenursprung r = 2 + x2 + Geben 
Sie diejenige Transformation, die das 
Koordinatensystem derart verschiebt, 
daß Scheitelpunkt und Koordinatenur- 
sprung zusammenfallen. 

19.2.1 Ein zweidimensionales Koordinatensystem wird um den Winkel p = 5 ge- 
dreht. Die Transformationsmatrix lautet 

In welchen Vektor Fwird der Vektor T=  (2, 4) trans- 

19.2.2 Ein dreidimensionales Koordinatensystem wird mit dem Winkel p = 30' 
um die r-Achse gedreht. In welchen Vektor ? geht der Vektor T=  (3, 3, 3) 
über? 

19.3 a) Die Matrizen sind zu multiplizieren 

0 1 2  1 0 0  
sind zu multiplizieren. 

b) Zeigen Sie, daß für die beiden Matrizen aus a) die Produkte A . B und 
B . A verschieden voneinander sind. 

C) Berechnen Sie AT. A = ( i  -:) F = ( ; )  

19.4 a) Gegeben sei A = Berechnen Sie a) AT und b) (AT)T 

6 

7 -2 -3 

Zeigen Sie, daß A . A-' = E. 



Lösungen 

19.2.2 Die Transformationsformeln für eine Drehung um die z-Achse lauten: 
z l = z  x'=xcoscp+ysincp Y'=-xsincp+ycoscp 

Setzen wir X = 3, y = 3 und z = 3 ein, erhalten wir 

also: A . B # B . A 



20 Lineare Gleichungssysteme und De- 
terminanten 

20.1 Lineare Gleichungssysteme 

In diesem Kapitel werden wir die Lösungen linearer Gleichungssysteme untersuchen. 
Zunächst wird eine Methode dargestellt, die in nahezu allen praktischen Fällen be- 
nutzt werden kann, die Gauß'sche Eliminationsmethode und ihre Weiterentwicklun- 
gen. Die Grundidee ist klar und elementar. Hilfreich ist dabei die Matrix-Schreibweise. 

Danach wird das Konzept der Determinante entwickelt und eine zweite Lösungs- 
methode angegeben, die Cramersche Regel. Das Konzept der Determinante ist vor 
allem von theoretischer Bedeutung, denn an der Determinante ist ersichtlich, ob ein 
lineares Gleichungssystem eine eindeutige Lösung hat. 

20.1.1 Gauß'sches Eliminationsverfahren, schrittweise Elimination d e r  
Variablen 

Gegeben sei ein System linearer algebraischer Gleichungen. Zunächst nehmen wir 
an, daß eine eindeutige Lösung existiert, und daß die Anzahl der Gleichungen gleich 
der Zahl der unbekannten Variablen ist. Gesucht sei die Lösung. Betrachten wir ein 
System von drei Gleichungen der folgenden Form: 

Die Grundidee des Gauß'schen Eliminationsverfahrens ist es, die gegebenen Glei- 
chungen in die folgende gestaffelte Form zu transformieren: 

Unterhalb der Diagonale sind alle Koeffizienten aij Null. Dieses System läßt sich 
dann direkt lösen: Die unterste Gleichung wird aufgelöst nach 13. Die zweite Glei- 
chung wird gelöst, indem der Wert von x3 eingesetzt wird. Die erste Gleichung kann 
nun durch die Wiederholung des Verfahrens gelöst werden. 

Unser Problem ist, das gegebene lineare Gleichungssystem in das gestaffelte umzu- 
formen. Dies wird durch die Methode der schrittweisen Elimination von Variablen 
erreicht. Folgende Schritte sind nötig: 
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Schritt 1: In allen Gleichungen außer der ersten wird XI eliminiert. Wir multipli- 
a21 zieren die erste Gleichung mit - und subtrahieren sie von der zweiten. 
all 

Damit ist in der zweiten Gleichung XI eliminiert. 
Um auch in der dritten Gleichung 21 zu eliminieren, multiplizieren wir 

a31 die erste mit - und subtrahieren sie von der dritten. 
U11 

Schritt 2: In der dritten Gleichung wird in gleicher Weise x2 eliminiert. 

Schritt 3: Bestimmung der Variablen. 
Mit der untersten Gleichung ist bereits 23 bestimmt. Diesen Wert setzen 
wir in die zweite ein und bestimmen 22. Danach werden 22 und 23 in 
die erste eingesetzt und xl bestimmt. 

Dieses Verfahren heißt Gauj3'sches Eliminationsverfahren. Das Verfahren kann auf 
beliebig große Gleichungssysteme erweitert werden. 

Beispiel: Zu lösen sei das folgende lineare Gleichungssystem: 

Schritt 1: Elimination von xl : 
Wir multiplizieren Gleichung (1) mit und ziehen sie von Gleichung (2) 
ab. Danach multiplizieren wir Gleichung (1) mit und ziehen sie von 
Gleichung (3) ab. Ergebnis: 

Schritt 2: Elimination von 22: 
Wir multiplizieren Gleichung (2') mit 2. Der Koeffizient der Variablen 
22 in der dritten Gleichung ist negativ. Um die Variable zu eliminieren 
müssen wir in diesem Fall addieren. Ergebnis: 

Schritt 3: Bestimmung der Variablen XI, 12, 23. Die Gleichung (3") ergibt 
23 = 4 
Schrittweises Einsetzen ergibt 
22 = 2 
21 = 1 
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20.1.2 Gauß-Jordan Elimination 

Gegeben sei ein System von n linearen Gleichungen mit n Variablen. Wir fragen, 
ob wir dieses Gleichungssystem durch schrittweise Elimination der Variablen in die 
folgende Form bringen können: 

In dieser Form ist das Gleichungssystem bereits die Lösung. Wir erreichen diese 
Transformation durch eine Erweiterung des Gauß'schen Eliminationsverfahrens. 
Während bisher bei der schrittweisen Elimination einer Variablen nur die Koeffizi- 
enten unterhalb des Diagonalelementes eliminiert wurden, müssen wir nun auch die 
Koeffizienten oberhalb des Diagonalelementes eliminieren. Danach ist die verblei- 
bende Gleichung noch durch den Koeffizienten des Diagonalelementes ajj zu teilen. 
Dieses Verfahren heißt GaußJordanlsches Eliminationsverfahren. 

Wir demonstrieren es, indem wir das vorhergehende Beispiel benutzen: 

Um die numerischen Rechnungen zu erleichtern, beginnen wir jeden Eliminations- 
schritt, indem wir zunächst das Diagonalelement zu Eins machen. Dafür dividieren 
wir die Gleichung durch a j j .  

Schritt 1: Wir teilen die erste Gleichung durch all. Danach eliminieren wir xl in 
den übrigen Gleichungen. 
Zweite Gleichung: Wir subtrahieren das 3-fache der ersten Gleichung. 
Dritte Gleichung: Wir subtrahieren das 2-fache der ersten Gleichung: 

Schritt 2: Es braucht nicht geteilt zu werden, da a22 = 1. Unterhalb und oberhalb 
der Diagonalen wird xz eliminiert. 
Erste Gleichung: Wir addieren das 2-fache der zweiten Gleichung. 
Dritte Gleichung: Wir addieren das 2-fache der zweiten Gleichung. 
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Schritt 3: Wir dividieren die dritte Gleichung durch a33 und eliminieren 23 in den 
oberen Gleichungen. 

Damit haben wir die gewünschte Form und die Lösung des Gleichungssystems ge- 
wonnen. 

20.1.3 Matrixschreibweise linearer Gleichungssysteme u n d  Bestimmung 
der inversen Mat r ix  

Gegeben sei ein System linearer algebraischer Gleichungen: 

Dieses Gleichungssystem kann formal als Matrizengleichung geschrieben werden. 
Die Koeffizienten aij seien die Elemente einer Matrix A. 
Die Matrix A heißt Koefizienlen-Matrix. 

5 und b sind Spaltenvektoren 

Das lineare Gleichungssystem kann nun als Matrixgleichung geschrieben werden: 

Aus Kapitel 19 kennen wir die Matrizenmultiplikation, die Definition der Einheits- 
matrix E und die Definition der inversen Matrix A-'. 

Nun sei eine Matrixgleichung gegeben, die ein lineares algebraisches Gleichungs- 
system repräsentiert: 



140 20 Lineare Gleichunessvsteme und Determinanten 

Wir multiplizieren beide Seiten dieser Matrixgleichung von links mit der Inversen 
von A: 

Wir erinnern uns, daß A-' . A = E und erhalten: 

Diese Gleichung entspricht dem Gleichungssystem nach Durchführung des Gauß- 
Jordan'schen Eliminationsverfahrens. Sie ist die Lösung des linearen Gleichungs- 
systems in Matrixschreibweise. Allerdings wissen wir im Augenblick nicht, wie die 
Inverse A-' der Koeffizientenmatrix A gewonnen wird, um diese Multiplikation aus- 
zuführen. Auf der anderen Seite kennen wir mit dem Gauß-Jordan'schen Eliminati- 
onsverfahren eine Methode, ein System linearer algebraischer Gleichungen zu lösen. 
Wir fragen uns nach der Beziehung zwischen der Lösung des Gleichungssystems und 
der Bestimmung der inversen Matrix A-' . 

Ohne einen Beweis geben wir die Antwort: Durch die Gauß-Jordan Elimination 
transformieren wir die Koeffizientenmatrix A in eine Einheitsmatrix E. Wenn wir 
alle Operationen gleichzeitig auf eine Einheitsmatrix anwenden, wird diese in die 
inverse Matrix A-' transformiert. 

In Wirklichkeit gewinnen wir so keine neue Methode, ein System linearer Gleichun- 
gen zu lösen, sondern statt dessen gewinnen wir eine Methode, die Inverse einer 
gegebenen Matrix zu berechnen. 

Zwischenbemerkung: Eine gegebene n X m Matrix A kann formal erweitert werden 
durch eine zusätzliche n X k Matrix B. Auf diese Weise entsteht eine erweiterte 
Matrix, die folgendermaßen bezeichnet wird: AIB. Zum Beispiel ist die erweiterte 
Matrix AIE eine Matrix, deren erster Teil aus A und deren zweiter Teil aus E 
besteht. 

Die Matrix A wird zunächst durch die Einheitsmatrix E erweitert. 
Dann wird das GaußJordan'sche Eliminationsverfahren durch- 
geführt, um den Teil A der erweiterten Matrix in eine Einheits- 
matrix zu überführen. Dabei wird automatisch der Teil E der er- 

Wir zeigen die Berechnung der inversen Matrix von A anhand der Koeffizientenma- 
trix eines Beispiels. 

Zunächst erweitern wir A durch E und erhalten die erweiterte Matrix AIE: 
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Nun führen wir die GaußJordan Elimination durch, um den Teil A in eine Einheits- 
matrix umzuwandeln. Dabei führen wir die im vorhergehenden Abschnitt beschrie- 
benen Schritte durch, wenden aber alle Operationen auch auf den zweiten Teil der 
erweiterten Matrix an. 

Schritt 1: Division der ersten Zeile durch ail = 2  und Elimination der Elemente 
der ersten Spalte unterhalb der Diagonalen: 

1 0  o 4 0 0  
0 1 - 6  - 1 1 0 )  
0 0 - 1  - 3 0 1  

Schritt 2: Die Elemente der zweiten Spalte oberhalb und unterhalb des Diagonal- 
elements sind bereits Null. 

Schritt 3: Division der dritten Zeile durch a33 = -1 und Elimination des Elements 
in der dritten Spalte oberhalb der Diagonalen: 

Damit ist die Einheitsmatrix E in die inverse Matrix A-I überführt. 

Im weiteren benutzen wir die Matrixschreibweise um Schreibarbeit bei der Trans- 
formation von Gleichungssystemen zu sparen. 

Jede Zeile der Matrixgleichung A . P = b repräsentiert eine lineare algebraische 
Gleichung. So ist Gleichung i: 

Wenn wir diese Gleichung mit einem Faktor multiplizieren müssen, entspricht dies 
in der Matrixschreibweise der Multiplikation der Zeile i der Matrizen A und b mit 
diesem Faktor. 

Nehmen wir an, wir müssen Gleichung i zu Gleichung j addieren. Dann entsteht 
eine neue Gleichung j' deren Koeffizienten nun sind 
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In der Matrixschreibweise entspricht dies der Addition korrespondierender Elemente 
der Zeile i zur Zeile j und der Addition von bi zu b j .  Dies kann verallgemeinert 
werden für die Addition von Vielfachen einer Gleichung und die Subtraktion von 
Vielfachen von Gleichungen. 

Folglich können die Gauß'sche Elimination und die Gauß-Jordan'sche Elimination 
durchgeführt werden, indem die Rechnungen mit den Elementen der Koeffizienten- 
matrix und dem entsprechenden Element von b ausgeführt werden. Wenn wir die 
Matrixschreibweise benutzen, ist dies am einfachsten, wenn wir die Koeffizienten- 
matrix A mit dem Spaltenvektor b erweitern und diese erweiterte Matrix Alb gemäl3 
dem Gauß'schen oder dem Gauß-Jordan'schen Elirninationsverfahren behandeln. 

Dabei wird der erste Teil A in eine Einheitsmatrix überführt und die Spalte b wird 
in den Spaltenvektor der Lösungen transformiert. Dies spart Schreibarbeit und hilft, 
Schreibfehler zu vermeiden. 

20.1.4 Existenz von Lösungen 

Zahl der Variablen 

Wir wissen, daß aus einer Gleichung nur eine unbekannte Variable bestimmt werden 
kann. Wenn wir eine Gleichung mit zwei Variablen haben, ist eine der Variablen frei 
wählbar. Für die Bestimmung von zwei Variablen benötigen wir zwei Gleichungen. 

Um n Variablen zu bestimmen, brauchen wir n Gleichungen. Diese Gleichungen 
müssen linear unabhängig voneinander sein. Eine Gleichung ist linear abhängig von 
einer oder mehreren anderen, wenn sie als eine Summe von Vielfachen der anderen 
geschrieben werden kann. 

Haben wir n Variablen und nur m linear unabhängige Gleichungen ( m  < n) ,  können 
nur m Variablen bestimmt werden und (n  - m )  Variablen sind frei wählbar. Dies 
ist verständlich. In einem System von n Gleichungen können (n  - m )  Variablen 
auf die rechte Seite gebracht werden. Dann verbleiben m Variablen auf der linken 
Gleichungsseite. Wenden wir das Gauß-Jordan'sche Eliminationsverfahren auf dieses 
System an, können Lösungen für die m Variablen gewonnen werden. Aber diese 
Lösung enthält noch die (n - m )  Variablen, die vorher auf die rechte Gleichungsseite 
gebracht wurden. Also sind diese Variablen frei wählbare Parameter. 

Haben wir mehr Gleichungen als Variablen ( m  > n) ist das System überbestimmt. 
Es ist nur dann lösbar, wenn (m - n) Gleichungen linear abhängig sind. 

Existenz einer Lösung 

Wir betrachten ein System von n linearen Gleichungen und n Variablen. Wenn bei 
einem Schritt j des Eliminationsverfahrens der Koeffizient ajj  bereits Null ist, muß 
diese Gleichung mit einer Gleichung getauscht werden, deren Koeffizient von xj 
unterhalb der Diagonale ungleich Null ist. Sind alle Koeffizienten von xj unterhalb 
der Diagonale ebenfalls Null, hat das System entweder keine eindeutige Lösung oder 
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überhaupt keine Lösung. In diesem Fall gehen wir einfach zu der nächsten Variablen 
über und führen das Eliminationsverfahren zu Ende. 

Das System hat keine eindeutige Lösung, wenn auf der rechten Seite der Gleichung 
j der Wert von b j  ebenfalls Null ist. Dann ist diese Gleichung linear abhängig von 
den anderen. Der Wert von X ,  ist dann unbestimmt und frei wählbar. Tritt dieser 
Fall bei r Gleichungen ein, bekommen wir r frei wählbare Parameter. 

Der Sachverhalt ist unmittelbar zu verstehen. Wenn in einer Gleichung alle Koef- 
fizienten auf der rechten und auf der linken Seite verschwinden, verschwindet die 
Gleichung. Folglich übertrifft nun die Zahl der Variablen die Zahl der verbleibenden 
Gleichungen m = (n - r ) .  Oben ist bereits ausgeführt, da% in diesem Fall r = n - m 
Variablen nicht bestimmt werden können und somit r frei wählbare Parameter blei- 
ben. 

Das Gleichungssystem hat überhaupt keine Lösung, wenn auf der rechten Seite der 
Zeile j der Wert von 6 ,  nicht gleich Null wird. In diesem Fall erhalten wir die 
Gleichung 

Das ist unmöglich. Infolgedessen enthält das System der Gleichungen Widersprüche 
und hat überhaupt keine Lösung. 

Beispiel: Gegeben sei ein System linearer Gleichungen. 

Wir benutzen die Matrixschreibweise und formen die erweiterte Matrix A l b  um 

Schritt 1: Division der ersten Zeile durch all  und Elimination der Koeffizienten in 
der ersten Spalte. 
Ziele 2: Subtraktion von Zeile 1 
Zeile 3: Subtraktion des 2-fachen der Zeile 1 
Zeile 4: Addition des 3-fachen von Zeile 1 
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Schritt 2: Division der zweiten Zeile durch azz und Elimination der Koeffizienten 
in der zweiten Spalte 
Zeile 1: Addition des 2-fachen von Zeile 2 
Zeile 3: Subtraktion des 2-fachen von Zeile 2 
Zeile 4: Subtraktion von Zeile 2 

Schritt 3: In der dritten Zeile sind der Koeffizient a33 und die Koeffizienten darun- 
ter Null. Infolgedessen gehen wir zur vierten Spalte über. Wir teilen die 
vierte Spalte durch a44 und eliminieren die Koeffizienten darüber. 

In der dritten Zeile sind alle Elemente Null. Infolgedessen hat das System keine 
eindeutige Lösung. Der Wert x3 ist frei wählbar. Die Werte von XI und x2 hängen 
von dieser Wahl ab: 

X2 = 1 - 23 
23 = frei wählbar 

Lösungen eines homogenen Gleichungssystems 

Wir betrachten wieder ein System von n linearen Gleichungen und n Variablen. Alle 
Konstanten bj auf der rechten Seite des Gleichungssystems seien Null. Dann heißt 
das Gleichungssystem homogen. Eine homogenes Gleichungssystem hat zunächst 
eine triviale Lösung: alle Variablen sind gleich Null. Diese Lösung heißt Nullösung. 

Es können jedoch auch nicht-triviale Lösungen existieren. In diesem Fall muß min- 
destens eine Gleichung linear von den anderen abhängig sein. Folglich ist die Lösung 
nicht eindeutig und enthält mindestens einen frei wählbaren Parameter. 

Beispiel: Gegeben sei ein homogenes Gleichungssystem 

Erweiterte Matrix Alb 
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Schritt 1: Elimination der Koeffizienten in der ersten Spalte ergibt: 

Wir sehen, daß das System eine nicht-triviale Lösung hat, denn eine Zeile 
besteht aus Nullen und ist damit linear abhängig von den anderen. 

Schritt 2: Wir tauschen Zeile 2 und Zeile 3 weil a22 = 0 und eliminieren den Koef- 
fizienten oberhalb der Diagonale in der zweiten Zeile: 

Es bleiben zwei Gleichungen für drei Variable übrig. x3 ist frei wählbar. Die Lösung 
der Gleichungen ist dann: 

Die Lösung ist nicht eindeutig, sie enthält den frei wählbaren Parameter x3. 

20.2 Determinanten 

20.2.1 Einführung 

Wir führen den Begriff der Determinante anhand eines Spezialfalles ein. Gegeben 
sei ein Gleichungssystem von zwei linearen Gleichungen mit zwei Unbekannten XI 
und 22. Vorausgesetzt sei, daß die Koeffizienten reelle Zahlen sind 

Das Gleichungssystem läßt sich in bekannter Weise lösen. Schreibt man die Lösung 
vollständig hin, ergibt sich: 
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Lösungen existieren nur, wenn die Nenner nicht gleich Null sind. Die Nenner werden 
durch den Ausdruck a11a22 - azla12 gebildet. 

Diesen Ausdruck nennt man die 2-reihige Determinante des Gleichungssystems. Die 
Determinante schreiben wir: 

Die Determinante muß man von der zugehörigen Koeffizientenmatrix unterscheiden. 
Die Koeffizientenmatrix des Gleichungssystems schreiben wir: 

Eine Matrix ist ein Zahlenschema, dem man bestimmte Eigenschaften zugeordnet 
hat. Demgegenüber ist die Determinante eine Zahl. Man kann diese Zahl berechnen, 
sobald man die Werte der a l l ,  al2. .  . kennt. 

Die Determinante einer - quadratischen - Matrix A wird in der Literatur in unter- 
schiedlicher Weise geschrieben. 

Die Berechnungsvorschrift gilt für die Determinante einer 2 X 2 Matrix. Die Berech- 
nung der Determinante einer n X n Matrix kann schrittweise auf die Berechnung der 
Determinanten von 2 X 2 Matrizen zurückgeführt werden. 

20.2.2 Definition und Eigenschaften der n-reihigen Determinante 

Zunächst sei wiederholt, daß die Determinante eine Zahl ist, die durch eine noch zu 
erläuternde Rechenvorschrift aus den Koeffizienten gewonnen wird. Auch bei Deter- 
minanten sprechen wir von Zeilen und Spalten. Allgemein wird die Determinante 
einer quadratischen Matrix von n Zeilen und n Spalten eine n-reihige Determi- 
nante genannt. Oft wird n die Ordnung der Determinante genannt. In der üblichen 
Schreibweise einer Determinante stehen die Elemente in derselben Anordnung wie in 
der zugehörigen Matrix. Beim Element a;k bezeichnet der erste Index ( i )  die Zeile, 
der zweite Index (k) die Spalte. 
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Unterdeterminante: Die Unterdeterminante ist für jedes a;k definiert. Man erhält 
die Unterdeterminante, wenn man die Zeile i und die Spalte k streicht. Demzufolge 
sind die Unterdeterminanten (n - 1)-reihige Determinanten. 

Algebraisches Komplement: Das algebraische Komplement Aik ist das Produkt der 
Unterdeterminante für a;k mit dem Faktor (-l)i+k. 

In der Literatur wird das algebraische Komplement auch Adjunkte genannt. Das 
unten angegebene Schema zeigt die Berechnung des algebraischen Komplements. 

Dei , i-te Zeile 

Unterdeterminante algebraisches Komplement 

Beispiel: Berechnung der algebraischen Komplemente All, Alz und A13 für die 
Determinante A: 

Entwicklung einer Determinante: 
Der Wert einer Determinante ist durch die folgende „Entwicklungsvorschrift" fest- 
gelegt. Die Entwicklung einer Determinante nach einer Zeile erhält man, wenn man 
jedes Element der Zeile mit seinem algebraischen Komplement multipliziert und die 
entstehenden Produkte addiert. In gleicher Weise ist die Entwicklung einer Deter- 
minante nach einer Spalte definiert. Die Entwicklung nach verschiedenen Zeilen und 
Spalten ergibt immer denselben Wert. Im Rahmen dieses Buches wird die Aussage 
nicht bewiesen. 
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Beispiel: Die gegebene Determinante soll nach der ersten Zeile entwickelt wer- 
den 

Im vorhergehenden Beispiel sind die algebraischen Komplemente be- 
reits berechnet worden: 

Dann ergibt die Entwicklung nach der ersten Zeile 

Berechnung von Determinanten: 
Der Wert einer n-reihigen Determinante ist definiert durch den Wert ihrer Entwick- 
lung nach einer beliebigen Zeile oder Spalte. 

Entwicklung nach der i-ten Zeile ergibt: Det A = ailAil  + ai2Ai2 + .. .  + ainAin 

Entwicklung nach der k-ten spalte ergibt: Det A = alkAlk  + a2kAzk + . . .  + ankAnk 

Durch unsere Entwicklungsvorschrift ist die Berechnung einer Determinante mit n 
Zeilen und Spalten auf die Berechnung einer Determinante mit n - 1 Zeilen und 
Spalten zurückgeführt. Auf diese (n - 1)-reihigen Determinanten können wir wieder 
die Entwicklungsvorschrift anwenden und die Ordnung der noch zu berechnenden 
Determinante weiter reduzieren. Nach wiederholter Anwendung der Entwicklungs- 
vorschrift erhält man schließlich einen Ausdruck der nur aus 2-reihigen Determinan- 
ten besteht. 

Auf einen Spezialfall sei hingewiesen: Die Determinante einer Diagonalmatrix ist 
durch das Produkt der Diagonalelemente gegeben. Dabei ist vom Vorzeichen abge- 
sehen. Dies folgt unmittelbar aus der gegebenen Entwicklungsvorschrift. 

Determinantenregeln, Umformung von Determinanten 
Für die Umformung von Determinanten werden die Determinantenregeln (1) bis 
(7) angegeben. Es ist zweckmäßig, mittels dieser Regeln eine Determinante vor der 
eigentlichen Rechnung so umzuformen, daß die Entwicklung erleichtert wird. Die 
Regeln werden meist ohne Beweis mitgeteilt. 
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(1) Vertauschung von Zeilen und Spalten ändert den Wert einer Determinante 
nicht 
Det A = Det AT 

Da die Vertauschung von Zeilen und Spalten den Wert einer Determinante nicht 
ändert, gelten alle Regeln, die im folgenden für Zeilen angegeben werden, ebenfalls 
für Spalten. Darauf wird nicht mehr ausdrücklich hingewiesen. Beispiel: 

(2) Werden zwei beliebige Zeilen vertauscht, ändert sich das Vorzeichen der De- 
terminante. 

al l  a12 als  a21 a22 Q23 1 a21 a22  Q23 1 = - 1 ail  a als  1 (Vertauschung von Zeile 1 und 1) 
a31 U32 a33 a31 a32 a33 

(3) Enthalten alle Elemente einer Zeile einen gemeinsamen Faktor k so kann k 
als Faktor vor die Determinante gezogen werden. 

Multipliziert man & Elemente einer Matrix mit einem Faktor k ,  ist die Determi- 
nante der neuen Matrix: 

Det A = 

kn Det A 

al i  a12 U13 Q I I  ~ 1 2  a13 

Lazl kazz kaZ3 = k a21 a22 ~ 2 3  

a31 a32 033 1 I 031 I32 U33 / 

(4) Sind zwei Zeilen einer Determinanten gleich, hat die Determinante den Wert 
Null. Dies gilt auch, wenn zwei Zeilen zueinander proportional sind. 

Zieht man den gemeinsamen Proportionalitätsfaktor der einen Zeile nach Regel (3) heraus, erhält 
man zwei gleiche Zeilen. Bei der Vertauschung dieser Zeilen geht die Determinante in sich über; 
andererseits wechselt sie nach (2) ihr Vorzeichen, also gilt Det A = - Det A. Das ist nur möglich 
wenn Det A = 0. 

(5) Ist jedes Element einer Zeile als Summe zweier Zahlen dargestellt, kann die 
Determinante als Summe von zwei Determinanten geschrieben werden, deren 
übrige Zeilen erhalten bleiben. Beispiel: 
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( 6 )  Eine Determinante ändert ihren Wert nicht, wenn man zu einer Zeile das 
Vielfache einer beliebigen anderen addiert. 

Entwickeln der rechten Seite nach der i-ten Zeile liefert nämlich 

Die 1. Klammer gibt gerade Det A, die 2. Klammer ist nach Regel (5) gleich N d ,  womit d e s  

bewiesen ist. 

Aus (6) folgt unmittelbar ein wichtiger Satz: Läßt sich eine Zeile einer Determinante 
vollständig als Summe von Vielfachen anderer Zeilen darstellen (Linearkombina- 
tion), so hat die Determinante den Wert 0. Auch der Umkehrschluß gilt: 
Ist Det A = 0 und keine Zeile (Spalte) = 0, so 1 s t  sich mindestens eine Zeile als 
Summe der Vielfachen anderer Zeilen darstellen. 

(7) Multipliziert man die Elemente einer Zeile mit den algebraischen Komple- 
menten einer anderen Zeile und summiert diese Produkte auf, so erhält man 
Null. 

Die Entwicklung der Determinante nach der i-ten Zeile lautet 

Ersetzen wir die ail, . . . , ai, durch die Zahlen all , .  . . , aln, d.h. durch die Elemente der j-ten Zeile, 

dann tritt die j-te Zeile jetzt zweimal auf, denn in der j-ten Zeile stehen die Elemente aj i , .  . . , a,, 
ja sowieso. Deshalb ist die neue Determinante nach Regel (4) gleich N d .  

Schluj?bemerkung: Wenn man die genannten Eigenschaften der Determinanten be- 
nutzt, kann jede Determinante so umgeformt werden, daß nur die Diagonalelemente 
übrig bleiben. Dann ist der Wert der Determinante - bis auf das Vorzeichen - gleich 
dem Produkt der Diagonalelemente. Dieses Verfahren entspricht der GaußJordan- 
Elimination. In der Praxis reduziert diese Methode den Rechen- und Schreibauf- 
wand erheblich. Im übrigen reicht es aus, die Elemente unterhalb der Diagonalen zu 
eliminieren - das entspricht dem Gauß'schen Eliminationsverfahren. 

Begründung: Die zusätzliche Elimination der Elemente oberhalb der Diagonalen 
ändert die Diagonalelemente nicht mehr. 

Berechnung 2- und Preihiger Delerminanten 
Die Berechnungsformel für 2-reihige Determinanten kann man sich leicht mit Hilfe 
des folgenden Schemas merken: 
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Das Produkt der in der ausgezogenen Linie stehenden Elemente ist positiv. Das 
Produkt der in der punktierten Linie stehenden Elemente ist negativ zu nehmen. 

In derselben Weise kann man sich ein Schema für die Berechnung 3-reihiger De- 
terminanten machen; es ergibt sich aus der Entwicklung der Determinante und ist 
unter dem Namen Sarrus'sche Reuel bekannt: 

Für mehr als 3-reihige Determinanten gibt es kein ähnliches Schema. 

20.2.3 Rang einer Determinante und Rang einer Matrix 

Eine n reihige Determinante läßt sich gemäß der Entwicklungsvorschrift auf (n - 1)- 
reihige Unterdeterminanten zurückführen. Nach (n - 1)maliger Entwicklung kommt 
man dann auf 1-reihige Determinanten, nämlich die Elemente a,k. 

Es kann der Fall eintreten, daß alle Unterdeterminanten einer Reihe gleich Null sind. 
Dann sind auch alle Unterdeterminanten höherer Reihenzahl gleich Null und mithin 
Det A = 0. 

Falls mindestens eine r-reihige Unterdeterminante nicht verschwindet, während sämt- 
liche Determinanten mit größerer Reihenzahl verschwinden, haben die Determinante 
und die zugehörige Matrix den Rang r.  

Für eine n-reihige Determinante gilt: 

ist Det A # 0, so ist r = n; 
ist Det A = 0, so ist r < n. 

Beispiel: Bestimme den Rang der Determinante 

Es ist zweckmäßig, die Determinante unter Ausnutzung der Determinantenregeln 
so umzuformen, daß die Berechnung erleichtert wird. 

Wir subtrahieren zunächst Zeile 1 und Zeile 3 von Zeile 4. Wir subtrahieren dann 
die Hälfte der Zeile 2 von Zeile 3 und erhalten 

Det A = 

1 2 1 2  
2 0 2 0  
1 0 1 0  
2 2 2 2  
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Det A = 1 ;  0 0 01 

Die größten verbleibenden Unterdeterminanten haben den Rang 2. Also ist der Rang 
der Determinante und der zugehörigen Matrix gleich zwei. 

20.2.4 Anwendungsbeispiele für d i e  Determinantenschreibweise 

Vektorprodukt in De2erminantenschreibweise 

Für das Vektorprodukt hatten wir in Kapitel 2 die Komponentendarstellung ge- 
funden: 

Wenn wir die Klammern als 2-reihige Determinanten deuten, können wir die rechte 
Seite der Gleichung als Entwicklung einer Determinante nach der Zeile (G Zy C,) 
auffassen und formal schreiben: 

Das Volumen eines Parallelepipeds 
Wir denken yns  das Parallelepiped von den 
Vektoren ä, b und C aufgespannt. Aus Kapi; 4 
te12 wissen wir, daß das Vektorprodukt ä x  b 
die Grundfläche liefert. Z X b ist darüber hin- 
aus selbst ein Vektor 2, der senkrecht auf 
der Grundfläche steht. Das gesuchte Volu- 
men ist also Grundfläche IZI mal Höhe. Die 
Höhe ist durch die Projektion von C auf Z 
gegeben. Das Skalarprodukt C. Z liefert uns 
nun gerade Grundfläche mal Projektion von 
Z auf Z, also das Volumen des Parallelepi- 
peds: 

In Komponentenschreibweise: 
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Diesen Ausdruck können wir wie das Vektorprodukt als Determinante schreiben: 

Übrigens erhiglt man für V eine positive oder negative Zahl, je nachdem, ob die 
Vektoren ä, b ,  Cim Sinne einer Rechts- oder einer Linksschraube orientiert sind. 

20.2.5 Cramersche Regel 

Die Cramersche Regel benutzt die Determinanten um lineare Gleichungssysteme zu 
lösen. Die Methode ist vor allem theoretisch interessant. In der Praxis ist sie nützlich 
für Gleichungssysteme mit zwei oder drei Gleichungen. Wir betrachten das folgende 
Gleichungssystem in Matrixschreibweise 

Wenn die Determinante der Koeffizientenmatrix A  ungleich Null ist, hat das System 
eine eindeutige Lösung. 

In der Koeffizientenrnatrix können wir die k-te Spalte durch den Spaltenvektor b 
ersetzen. Wir bezeichnen diese Matrix dann als ~ ( ~ 1 .  

Die einzelnen Variablen des Gleichungssystems sind gegeben durch den Ausdruck 

Det A ( ~ )  
xk = - (k = 1, 2, 3 . . . n )  

Det A 

Dies ist die Cramersche Regel. Wir werden sie nicht beweisen. Obwohl der Beweis 
elementar ist, erfordert er doch einen erheblichen Rechen- und Schreibaufwand. 

Cramersche Regel: 
Gegeben sei ein lineares algebraisches Gleichungssystem 

-. 
AZ= b 

Lösung: 

Det A ( ~ )  
X k  = - 

Det A 
( k =  1, 2, 3 , . . . ,  n) 

Det A ( ~ )  wird aus der Determinante $er Koeffizientenmatrix gewonnen, indem 
die Spalte k  durch den Spaltenvektor b ersetzt wird. 
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Wenn man die Cramersche Regel zugrunde legt, lassen sich einige Schlüsse über die 
Existenz von Lösungen ziehen, die unmittelbar einleuchtend sind. Sie sind bereits 
in Abschnitt 20.1.4 aufgeführt. 

Nicht-homogene Gleichungssysteme von n Gleichungen: 

Ist Det A = 0, so läßt sich die Cramersche Regel nicht anwenden. Das Gleichungs- 
System hat entweder eine unendliche Anzahl von Lösungen oder gar keine. In dieser 
Situation ist der Begriff des Rangs der Determinante nützlich. 

- Keine Lösung existiert, falls der Rang T der Determinante A  kleiner als n ist, 
und eine der Determinanten Det A ( ~ )  einen Rang hat der größer als T ist. 

- Eine unendliche Anzahl von Lösungen existiert, falls der Rang r der Determi- 
nante A  kleiner als n ist und keine der Determinanten A ( ~ )  einen Rang hat 
der größer als r ist. 

4 

Homogene lineare Gleichungssysteme ( b  = 0): 

Das homogene lineare Gleichungssystem hat die triviale Lösung 
x 1 = x 2 =  . . .  =x,,=O. 

Eine nicht-triviale Lösung existiert nur, falls der Rang r der Matrix A  kleiner als n 
ist ( r  < n) .  

Ein homogenes Gleichungssystem mit m linear unabhängigen Gleichungen und n 
Unbekannten hat eine nicht-triviale Lösung falls n > m. Die Lösung enthält (n - m) 
willkürliche Parameter. 

Beispiel 1: Gegeben sei das nichthomogene Gleichungssystem: 

In Matrixschreibweise 

Wir berechnen die Determinanten 

1 
= -180, Det A ( ~ )  = 
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Nach der Cramerschen Regel ist die Lösung 

Beispiel 2: Wir betrachten das folgende nichthomogene Gleichungssystem 

In Matrixschreibweise 

Wir berechnen die Determinante: 

Das Gleichungssystem hat entweder keine eindeutige Lösung oder überhaupt keine 
Lösung. Um hier zu entscheiden, benutzen wir die GaußJordan Elimination und 
erhalten nach dem ersten Eliminationschritt: 

Die letzte Gleichung (0 = -14) ist unmöglich. Das Gleichungssystem ist wider- 
sprüchlich. Also hat das System überhaupt keine Lösung. Wir kommen zum glei- 
chen Ergebnis, wenn wir den Rang der Determinante A betrachten. Er ist 2. Da der 
Rand von Det A ( ~ )  gleich 3 ist, kann keine Lösung existieren. 

Beispiel 3: Wir betrachten das gleiche homogene Gleichungssystem das wir be- 
reits in Abschnitt 20.1.5 analysierten. 

Die erste und zweite Gleichung unterscheiden sich durch den Faktor 4, also sind die 
Gleichungen linear voneinander abhängig. Gemäß der Determinantenregel 4 ergibt 
sich: 
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Also existiert eine nicht-triviale Lösung. Wir schreiben die erste und dritte Gleichung 
neu hin: 

G e m a  der Cramerschen Regel erhalten wir nun: 

Die Lösung enthält einen frei wählbaren Parameter, nämlich 23. 



20.1.2 Lösen Sie die folgenden Gleichungen entweder nach dem Gauß'schen Eli- 
minationsverfahren oder dem GaußJordan'schen Verfahren. 

20.1.3 Ermitteln Sie die Inversen der folgenden Matrizen 

20.1.4 Untersuchen Sie die folgenden homogenen Gleichungssysteme und lösen 
Sie sie falls möglich. 

20.2.2 Berechnen Sie die folgenden Determinanten 

20.2.3 Bestimmen Sie den Rang r der folgenden Matrizen: 

20.2.5 Überprüfen Sie, ob die linearen Gleichungssysteme aus der Übung 20.1.2 
eindeutig lösbar sind, indem Sie die Determinante der Koeffizientenma- 
trix bestimmen. 
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Lösungen 

20.1.2 a) XI = -1, 2 2  = 6, 2 3  = -5 

b) Die zweite und dritte Gleichung sind linear abhängig. Infolgedessen 
enthält die Lösung einen frei wählbaren Parameter, nämlich z .  

- 21-102 -79+65z 
25 > Y =  25 

C) 21 = 13, 2 2  = 15, 2 3  = -20 
0 42-1 52 0 24-1,8z 

d) = ' 0,12' ' Y = ' 0,12 

Die erste und die dritte Gleichung sind linear abhängig. 

20.2.2 a) Regel von Sarrus Det A = 0 - 15 + 4 - 0 + 8 - 6 = -9 

b) Erste und vierte Zeile sind bis auf den Faktor 5 gleich. Also Det A  = 0 

C) Entwickeln nach der dritten Zeile gibt 

D A :  5 -1  : I = - 4 . 8 3 ~ 4 3 2  4 

d) Entwickeln nach der dritten Spalte: 

4 6 7  
Det A = -2 10 1 2 = - 2 . 9 3  = -186 1 5 2 1 1  

e) Entwickeln nach der zweiten Spalte 

- 1  2 

20.2.5 a) Det A  = -104 # 0 eindeutige Lösung 
b) Det A = 0, es existiert keine eindeutige Lösung 
C) Det A  # 0, es existiert eine eindeutige Lösung 
d) Det A  = 0, es existiert keine eindeutige Lösung 
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21.1 Eigenwerte von 2 X 2 Matrizen 

Vorbemerkung: Im Kapitel ,,Koordinatentransformation und Matrizen" wurde ge- 
zeigt, daß eine Matrix mit einem Vektor multipliziert werden kann. Das Ergebnis 
ist ein neuer Vektor. 

In Abschnitt 19.4 haben wir davon bereits Gebrauch gemaxht, um die Transforma- 
tionsformeln für die Drehung eines Koordinatensystems darzustellen. 
Ein Ortsvektor T habe die ursprünglichen Koordinaten X und y. Für das um den 
Winkel cp gedrehte Koordinatensystem hat der Ortsvektor die neuen Koordinaten 
X '  und y '. Für die Umrechnung gelten die Transformationsgleichungen 

2:' xcoscp+ ysincp 
y ' =  -xsincp+ycoscp 

Die Transformationsgleichungen können dann 
als Produkt der Drehmatrix A mit dem Vektor 
r geschrieben werden: 

r 1 = A . r  \\k \ R / - --'P 
Die Drehmatrix A ist in diesem Fall Y 

- sin cp cos cp 

Diese Operation können wir uminterpretieren. Wir betrachten das Koordinaten- 
system als fest. 
Dann ergibt das Produkt der Drehmatrix A 

z 

mit dem ursprünglichen Vektor einen neuen 
Vektor, der um den Winkel -cp gedreht ist. 
Im speziellen Fall von Drehmatrizen bleibt 
der Betrag des Vektors konstant. Das muß 
nicht immer der Fall sein. Multiplizieren 
wir eine Matrix mit einem Vektor, so er- 
halten wir im allgemeinen Fall einen neuen 
Vektor, dessen Richtung und dessen Betrag Y 

verändert sein kann. 
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Eigenwerte von 2 X 2 Matrizen. Wir betrachten zunächst als Beispiel die Matrix A 
und den Vektor T. Das sei an einem Beispiel erläutert: 

0 5  0 
A ) und I=(:) 

Wir multiplizieren die Matrix mit dem Vektor und erhalten 

Die Abbildung zeigt den ursprünglichen Vektor T und den neuen Vektor I'. 
Das Resultat der Multiplikation der Matrix A y4 
mit dem Vektor kann beschrieben werden als 3. 
Halbierung der X'-Komponente und Verdop- 
pelung der y '-Komponente. Dabei verändern 
sich natürlich Richtung und Betrag des Vek- 2- 

tors. 

1 2 3 J  

Zeigt P in die y-Richtung, bleibt ebenfalls die 
Richtung erhalten. Der Betrag allerdings wird 
verdoppelt. 

Im allgemeinen Fall haben der neue Vektor I' und der ursprüngliche Vektor T ver- 
schiedene Richtungen. YA 
Es gibt allerdings spezielle Vektoren, deren 3. 

Richtung sich nicht ändert, wenn sie mit der 
Matrix A multipliziert werden. In unserem 

2. 
Beispiel ist dies für die Matrix A der Fall, 
wenn der ursprüngliche Vektor Ientweder nur 
in die X-Richtung oder nur in die y-Richtung i. 

zeigt. Zeigt T nur in die X-Richtung, bleibt 
auch nach der Multiplikation die Richtung er- 
halten. Der Betrag wird allerdings halbiert. 

-I - 
:,i _ , - 1 -  2 3 +; 
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In beiden Fällen können wir, statt die Matrizenmultiplikation durchzuführen, ein- 
fach den ursprünglichen Vektor Tmit einem Skalar multiplizieren. Dies gilt natürlich 
nicht für jeden Vektor. Ein Vektor, der seine Richtung bei einer Multiplikation mit 
der Matrix A nicht ändert, heißt Eigenvektor der Matrix. 

Definition: Eigenvektor und Eigenwert 
Gegeben seien eine n X n Matrix A und ein Vektor T mit n Kom- 
ponenten. 
F heißt Eigenvektor der Matrix, wenn T' = A . F die gleiche Rich- 
tung hat wie T. 
In diesem Fall gilt F' = X . T, wobei X ein reeller Skalar ist. 
X heißt Eigenwert der Matrix A. 
Die Fälle r = 0 und X = 0 seien ausgeschlossen. 

In unserem Fall hat die Matrix A zwei reelle Eigenwerte (Xl = 0 ,5  und X2 = 2) und 
zwei Eigenvektoren, die durch ihre Richtung charakterisiert sind. Sie können einen 
beliebigen Betrag haben. 

Wir wenden uns jetzt folgenden drei Fragen zu: 

1. Wieviele reelle Eigenwerte und Eigenvektoren hat eine gegebene Matrix? 

2. Hat jede Matrix reelle Eigenwerte und Eigenvektoren? 

3. Wie können diese reellen Eigenwerte und Eigenvektoren berechnet werden? 

In unseren Beispielen werden wir uns auf 2 X 2 und 3 X 3-Matrizen beschränken. 
Bevor wir den allgemeinen Fall behandeln, werden wir ein zweites etwas weniger 
triviales Beispiel behandeln. 

Beispiel: Für die gegebene Matrix A sind die Eigenwerte und Eigenvektoren zu 
bestimmen: 

In diesem Fall wird das Problem nicht gelöst durch Vektoren, die die Richtung einer 
der Achsen haben. Das läßt sich leicht bestätigen. Durch Probieren läßt sich das 
Problem nur in sehr mühsamer Weise lösen. Daher formulieren wir das Problem 
um. Wir suchen einen Vektor T und eine reele Zahl X derart, daß gilt 
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Dies entspricht einem System von zwei Gleichungen mit zwei Unbekannten, nämlich 
den X-  und y-Komponenten von T: 

Indem wir die rechte Seite subtrahieren, erhalten wir ein homogenes Gleichungs- 
system von zwei linearen Gleichungen: 

Die triviale Lösung interessiert uns nicht. Gibt es nicht-triviale Lösungen? Aus dem 
Kapitel 20 wissen wir, daß nicht-triviale Lösungen existieren, wenn die Determinante 
der Koeffizienten verschwindet. Wir berechnen die Determinante und erhalten 

Dies ist eine quadratische Gleichung für X und es gibt zwei unterschiedliche reelle 
Wurzeln. 

Diese so berechneten Werte von X sind die einzigen Kandidaten für die Eigenwerte 
von X. Um die entsprechenden Eigenvektoren zu erhalten, setzen wir diese Werte 
nacheinander in das Gleichungssystem ein, und lösen nach X und y auf: 

Für den Eigenwert Xi ergibt sich der Eigenvektor Tl = 

Für den Eigenwert Xz ergibt sich der Eigenvektor 6 = 

Werden die Eigenvektoren mit einem Skalar multipliziert, bleiben sie Eigenvekto- 
ren. Um dieses deutlich zu machen, setzen wir in die ursprüngliche Gleichung 21.1 
nacheinander die beiden Eigenwerte ein X = Xi = 2; X = X2 = 0,5 .  
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Wir erhalten 

Wir fassen zusammen. Für die Matrix A existieren zwei Eigenwerte und für jeden 
Eigenwert existiert ein Eigenvektor. Die Eigenwerte haben wir als Lösungen der 
Gleichung 21.3 erhalten. 
Diese Gleichung heißt charakteristische Gleichung der Matrix A. 

Eine quadratische Gleichung kann im höchsten Fall zwei reelle Lösungen haben. Also 
kann eine 2 X 2 Matrix höchstens zwei reelle Eigenwerte haben. Eine quadratische 
Gleichung kann aber auch komplexe Lösungen haben. In der Ubungsaufgabe 3 am 
Ende des Kapitels wird eine Matrix angegeben, die keine reellen Eigenwerte hat. 
Jede 2 X 2 Matrix, die als Drehmatrix eine Drehung um den Winkel cp beschreibt, 
hat keine reellen Eigenwerte mit Ausnahme der Fälle (o = 0 und cp = a. 

In diesem Buch behandeln wir nur reelle Matrizen und reelle Vektoren. Alle Matri- 
xelemente und Vektorkomponenten sind reell. Daher dürfen wir auch keine komple- 
xen Skalare benutzen und wir berücksichtigen nicht komplexe Eigenwerte. Hier soll 
nur darauf hingewiesen werden, daß alle Überlegungen auch auf komplexe Werte 
übertragen werden können. 

21.2 Bestimmung von Eigenwerten 

Um die allgemeine Methode zu finden, Eigenwerte und Eigenvektoren für eine ge- 
gebene Matrix zu bestimmen, folgen wir den Überlegungen im vorangegangenen 
Abschnitt. Für den allgemeinen Fall werden wir jedoch eine etwas abstraktere For- 
mulierung benutzen. 

Gegeben sei eine n X n Matrix A. Wir suchen die reellen Eigenwerte von A und 
für jeden Eigenwert den entsprechenden Eigenvektor. A kann bis zu n Eigenwerte 
haben. 

Die Gleichung 21.1 beschreibt bereits die allgemeine Situation: 

Auf der rechten Seite multiplizieren wir jetzt ?mit der Einheitsmatrix E. Bekannt- 
lich ändert die Multiplikation mit der Einheitsmatrix den Vektor nicht. 
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Nun subtrahieren wir die rechte Seite, wie wir es im Fall der 2 X 2 Matrix ebenfalls 
getan haben. 

Wieder erhalten wir ein homogenes lineares Gleichungssystem. Die Bedingung für 
nicht-triviale Lösungen ist, daß die folgende Determinante verschwindet 

det ( A  - XE) = 0 

Satz: Reelle Eigenwerte der Matrix A sind die Lösungen der charakteristischen 
Gleichung: 

det(A - X .  E )  = 0 

Für eine n X n Matrix ist die charakteristische Gleichung ein Polynom des 
Rangs n. 

Wir wollen hier die charakteristischen Gleichungen für 2 X 2 und 3 X 3 Matrizen 
angeben: 
Gegeben sei die 2 X 2 Matrix: 

Die entsprechende charakteristische Gleichung ist dann 

X 2  - (a1l-t  azz)X + aiiazz - alzazl = 0 

3 X 3 Matrix: 

In diesem Fall ist die charakteristische Gleichung 

- ~ ~ ( a ~ ~  + a22 + a33)X2 - (alla22 + alla33 + a22a33 
- aizazi - alsa31 - a23a32)X + det A = 0 (21.5) 

Für eine quadratische Matrix einer beliebigen Dimension n beginnt die charakteri- 
stische Gleichung, die auch charakteristisches Polynom genannt wird, mit 
(-l)"Xn + (- l)"-lX"-l(all  + a22 + . . . + U „ )  und sie endet mit det A.  

Der Koeffizient des zweiten Gliedes ist immer die Summe der Matrixelemente ent- 
lang der Hauptdiagonalen von A. 
Diese Summe heifJt, wie bereits im Kapitel 19 erwähnt, Spur von A. 

Wenn die reellen Wurzeln der charakteristischen Gleichung bestimmt sind, muß man 
das homogene Gleichungssystem lösen, um die Eigenvektoren zu bestimmen. 
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21.3 Eigenwerte und Eigenvektoren einer 3 X 3 Matrix 

In diesem Abschnitt werden wir schrittweise die Eigenwerte und Eigenvektoren einer 
3  X 3  Matrix berechnen, damit das Verfahren einsichtig wird. In der späteren Praxis 
wird man die Rechnung mit Hilfe des PC durchführen und dabei Programme wie 
Mathematica, Maple, Derive u.a. benutzen. 

1. Schritt: Zunächst bestimmen wir die charakteristische Gleichung. 

2 - X  1 
det (A - XE) = det ( 1 2  - X  ! )  = -X3 + 24X2 - 65. + 42 = 0  

3  3  20-X 

2. Schritt: Wir bestimmen die Wurzeln der charakteristischen Gleichung. Dies er- 
fordert hier die Lösung einer kubischen Gleichung. Dafür kann man numerische 
Methoden benutzen, dafür gibt es auch bequeme Programme. Wenn man die ex- 
plizite Lösung wünscht, kann man Cardan's Formel anwenden. Schließlich führt es 
in manchen Fällen zum Erfolg, wenn man eine erste Lösung Xi erraten kann, um 
danach das Polynom durch (X - Xi) zu teilen. Dann erhält man eine quadratische 
Gleichung. 

Hier werden wir den letzten Ansatz benutzen. In unserem Fall ist nicht schwer zu 
sehen, daß Xi = 1 eine Lösung ist. Daher können wir den linearen Faktor 
(X - 1) herausziehen. Die charakteristische Gleichung kann dann wie folgt geschrie- 
ben werden: 

Nun ist es nicht mehr schwer, die verbleibende quadratische Gleichung zu lösen: 

Die Lösungen sind 

Damit haben wir drei reelle Eigenwerte der gegebenen Matrix A  bestimmt: 

X l = l ,  X 2 = 2  und X 3 = 2 1  
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3. Schritt: Bestimmung der Eigenvektoren 
Für jeden Eigenwerte X müssen wir jetzt eine nicht-triviale Lösung für das jeweilige 
homogene Gleichungssystem finden. 

Die so bestimmten Vektoren sind die Eigenvektoren r; der Matrix A für den jewei- 
ligen Eigenwerte X i .  

Bestimmung des Eigenvektors für X = 1. 
Zu lösen ist das folgende Gleichungssystem, das in Matrixschreibweise angegeben 
ist. 

Ausgeschrieben erhalten wir das Gleichungssystem in der Form: 

Wir multiplizieren die erste Gleichung mit 3 und ziehen sie von der dritten Gleichung 
ab. Dann ergibt sich zl = 0. 

Wir setzen zl in die erste oder zweite Gleichung ein und erhalten xl = -yl. Für xl  
kann ein beliebiger Wert gewählt werden. Wählen wir zi = 1 ergibt sich yl = -1. 
Dann erhalten wir den Vektor 

Damit haben wir einen Eigenvektor von A für den Eigenwert X = 1 erhalten. Der 
Eigenvektor kann mit einem beliebigen Skalar multipliziert werden. 

Bestimmung des Eigenvektors für X = 2 
In diesem Fall ist folgendes Gleichungssystem zu lösen: 

Wir brauchen nur die beiden ersten Gleichungen zu berücksichtigen, die dritte Glei- 
chung ist von ihnen linear abhängig. Das sieht man, wenn man die beiden ersten 
Gleichungen mit 3 multipliziert und addiert. Dann ergeben sie die dritte Gleichung. 
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Damit erhalten wir: 

Die Lösung ist xz = y2 = -3z2 Eine spezielle Lösung erhalten wir, wenn wir 
22 = -1 setzen: 

Damit haben wir einen Eigenvektor von A für den Eigenwert X = 2 erhalten. 
Bestimmung des Eigenvektors für X = 21. Es ist das homogene Gleichungssystem 
zu lösen 

Auch in diesem Fall brauchen wir nur die ersten zwei Gleichungen zu berücksich- 
tigen. Wieder ist die dritte Gleichung linear von den zwei anderen abhängig. Wir 
erhalten als Lösung 6x3 = 6 ~ 3  = 23. 

Eine spezielle Lösung erhalten wir, wenn wir 23 = 6 setzen: 

T ist ein Eigenvektor von A mit dem Eigenwert 21. 

Damit ist das Problem gelöst, die Eigenwerte und Eigenvektoren für die gegebene 
Matrix A zu finden. 
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21.4 Eigenschaften von Eigenwerten und Eigenvektoren 

In dem vorhergehenden Abschnitt war die Matrix A sorgfältig gewählt. Es war 
eine symmetrische Matrix, d.h. sie ist gleich ihrer Transponierten. Es scheint, daß 
wir Glück gehabt haben, daß die Matrix drei reelle Eigenwerte und entsprechende 
Eigenvektoren hatte. Dies ist kein Zufall. Es wird dadurch das folgende Theorem 
illustriert. Wir werden das Theorem angeben, aber nicht beweisen. 

Satz: Eine reelle symmetrische n x n  Matrix hat n  reelle Eigenwerte. Die entspre- 
chenden Eigenvektoren können bestimmt werden, und jeder ist orthogonal 
zu den anderen. 

Daß für unsere Matrix A die Eigenvektoren zueinander orthogonal sind, kann man 
leicht bestätigen. Wir brauchen nur ihre inneren Produkte zu bilden. Sie verschwin- 
den in jedem Fall. 

Abschließend können wir jetzt die im ersten Abschnitt gestellten drei Fragen beant- 
worten, wenn wir annehmen daß es sich nicht um singuläre Matrizen handelt. 

1. Die Höchstzahl reeller Eigenwerte und Eigenvektor für eine gegeben n  X n  
Matrix ist n .  Falls die Matrix symmetrisch ist, wird dieses Maximum erreicht. 

2. Nicht alle Matrizen haben reelle Eigenwerte und Eigenvektoren. Eine Fall einer 
nicht-symmetrischen Matrix gilt folgendes: Falls n  gerade ist, ist es möglich, 
da5 keine reellen Eigenwerte für eine gegebene n  X n  Matrix existieren. 
Falls n  ungerade ist, muß mindestens ein reeller Eigenwert für eine gegebene 
Matrix existieren, da die charakteristische Gleichung einen ungeraden Grad 
hat. 
Eine 2 X 2 Matrix, die eine Drehmatrix ist, hat keinen reellen Eigenwert und 
keinen Eigenvektor . 

3. Man findet die Eigenwerte, indem man die charakteristische Gleichung löst. 
Eigenvektoren werden bestimmt, indem nicht-triviale spezielle Lösungen des 
verbleibenden homogenen linearen Gleichungssystems bestimmt werden. Nicht 
zugelassen sind die Werte X = 0 und r = 0. 



1. (a) Finde die Eigenwerte für A = 

(b) Zeichne die zwei entsprechenden Eigenvektoren. 

2. Ist es möglich, für eine reelle 2 X 2 Matrix einen reellen und einen kom- 
plexen Eigenwert zu erhalten? 

3. Beweise, da% keine reellen Eigenwerte für die folgende Matrix bestehen 

A = (  -2 2, 1 

4. (a) Finde alle Eigenwerte für die folgende Matrix 

Hinweis: Alle Matrixelemente sind ganzzahlig. 
(b) Bestimme die entsprechenden Eigenvektoren. 

5. In gewissen Fällen ist es schwierig, geeignete Eigenwerte zu finden. Dies 
sei am Beispiel gezeigt. Bestimmen Sie die Wurzeln der charakteristi- 

schen Gleichung für die Matrix A = 

Versuchen Sie die entsprechenden Eigenvektoren zu finden. 
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Lösungen 

1. (a) Die charakteristische Gleichung ist 

det ( - X ) = (4 - X)(3 - 21) - 2 = X2 - 7X + 10 = 0 1 3 - X  

Für X = 2 muß gelöst werden: 

( ) (i:) = o Lösung: il = (-Il) 

Für X = 5 ist zu lösen: 

( - -; ) ( )  = 0 
Lösung: 12 = (-21) 

2. Nein. Die charakteristische Gleichung ist ein reelles Polynom vom Grad 2. In 
der Algebra wird gezeigt, daß für den Fall, daß t eine komplexe Wurzel ist, 
dann die konjugiert komplexe Zahl zu z nämlich z* ebenfalls eine Wurzel 
ist. Die charakteristische Gleichung hat entweder zwei komplexe Wurzeln 
oder zwei reelle Wurzeln. 

3. Die charakteristische Gleichung ist 

Es gibt keine reellen Wurzeln, denn die Lösungen führen auf komplexe Zah- 
len Xl,z = 2 it: m 



4. (a) Die charakteristische Gleichung ist 

det ( : i X  211X ) - " + 6 X 2 + 4 X - 2 4 = 0  
1 5 - X  

Falls A eine ganzzahlige Wurzel ist, muß sie ein Teiler von 24 sein. 

(b) Für Al = 2 ist zu lösen 

-321 - Y I  + zl = 0 
- 4x1 + 4t.i = 0 Spezielle Lösung:Fl = 

- X i  yl + 3t.l = 0 ( -! ) 
Für X z  = -2 ist zu lösen 

X 2  - Y2 + z2 = 0 
-422 + 4 ~ 2  + 422 = 0 Spezielle Lösung:F2 = 

- 2 2  + Y2 + 722 = 0 

Für X = 6 ist zu lösen 

-7X3 - Y3 + 23 = 0 
-4% - 4 ~ 3  + 4 t3  = 0 mit P3 = 

-23 $ Y3 - 23 = 0 

5. X1 = 1,  X 2  = 1 

Für den ersten Eigenwert läßt sich schnell der Eigenvektor angeben. 

Für X 2  sollten wir einen anderen Eigenwert erhalten, der von rl verschieden ist. 
Dieser Vektor existiert nicht. 



22 Fourierreihen 

22.1 Entwicklung einer periodischen Funktion in eine Fourier- 
reihe 

Im Kapitel „Taylorreihen" wurde gezeigt, daß sich eine beliebig oft differenzierbare 
Funktion f (X) in eine unendliche Reihe von Potenzfunktionen zn entwickeln ließ: 

Der Nutzen einer solchen Darstellung von f (X) liegt in der einfachen Gestalt der 
einzelnen Summanden, die sich leicht differenzieren und integrieren lassen. Von be- 
sonderem praktischen Interesse sind die Fälle, in denen sich die Funktion f (X) durch 
wenige Summanden recht genau approximieren Iäßt: 

Wir stellen uns nun die Frage, ob die Entwicklung in eine unendliche Reihe auch 
nach anderen Funktionen als Potenzfunktionen möglich ist. So erscheint es durch- 
aus plausibel, eine periodische1 Funktion f (X) in eine unendliche Reihe periodischer 
Funktionen zu entwickeln. Dieser Frage werden wir nachgehen und Lösungen ange- 
ben. 

Der Einfachheit halber beginnen wir mit Funktionen der Periode 2a, d.h. es gilt 

Da die Sinusfunktion diese Be- 
dingung erfüllt, machen wir den f (44 I l 

Ansatz 

W 

f (X) = An sin(nx + ~ n )  
n=O 

Mit Hilfe der Additionstheoreme I I 

2 n 4n I können wir umformen, um eine 
Reihe von Sinus- und Kosinus- 
funktionen zu erhalten: 

'Eine Funktion f ( X )  hat die Periode T ,  wenn T der kleinste Wert ist, für den gilt 
f ( x ) = f ( x + T ) .  
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W 
ao 

f ( X )  = - + [an COS ( n x )  + bn sin ( n x ) ]  
2  

(22.1) 
n=l 

Eine derartige Entwicklung ist möglich, und eine solche Reihe heißt Fourtemihe. 
Ausgehend von unserem Ansatz bestimmen wir nacheinander die Koeffizienten ao , an 
und bn für eine Funktion mit der Periode 27r, wobei wir den Bereich von X = -T 

bis X = +T betrachten. 

Bestimmung von ao : 
Wir integrieren die Funktion und die Fourierreihe über eine Periode von -7r bis +T: 

n w n  1 f ( x )  d z  = a o r  + an J cos ( n x )  d x  + 
- n n=l - n n=l - n 

Beide Summen verschwinden wegen 

J cos ( n x )  d x  = 0 und sin ( n x )  d x  = 0 I 
Wir erhalten 

ao = - j ( x ) d x  
7r 
-U 

Bestimmung der an: 
Wir müssen die einzelnen Koeffizienten nacheinander bestimmen. Wir multiplizie- 
ren die Funktion und die Fourierreihe (22-1) mit cos ( m x )  (m  = 1, 2 ,  3 ,  . . .) und 
integrieren über eine Periode von -T bis +T: 

n n 
W *  1 f ( X )  cos ( m x )  d x  = 2 1 cos ( m x )  d x  + an 1 COS ( n x )  cos ( m x )  d x  

2  
- n -n n=l 

/ -' + 
Integral 1. Summe 

+ 2 bn j sin ( n x )  cos ( m ~ )  d ~  (22.2) 
n=l 
\ 4 

V 

2. Summe 

Das Integral auf der rechten Seite verschwindet. In der ersten Summe ersetzen wir 
unter dem Integral das Produkt cos ( n x )  . cos ( m x )  mit Hilfe der Additionstheoreme 

1  1 
cos ( n x )  cos ( m x )  = - cos ( n  + m ) x  + - cos ( n  - m )  z 

2  2  
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Wir erhalten 

cos (nx)  cos (mx)  dx = cos { (n  + m )  X ) )  dx cos { ( n  - m )  X ) )  dx 
- n -T 
\ i + / \ 

1. Integral 2. Integral 

Das erste Integral auf der rechten Seite verschwindet, weil die Fläche unter jeder 
trigonometrischen Funktion für eine Periode und damit auch für jedes ganzzahlige 
Vielfache einer Periode verschwindet. Das zweite Integral verschwindet nur dann 
nicht, wenn n = m und damit cos(n - m )  = 1 ist. In diesem Fall gilt 

Damit haben wir das Resultat 
T 

l ?r falls n = m 
cos (nx)  cos (mx)  dx = 0 falls n # m 

Dies bedeutet, daß in der 1.Summe von 22.2 nur der Summand mit dem Index 
m = n übrig bleibt. 

In der zweiten Summe ersetzen wir 

1 .  1 
sin(nx) cos (mx)  = - sin ( n  + m) X + - sin ( n  - m )  X 

2  2  

Das Integral von -T bis +T über diesen trigonometrischen Funktionen verschwindet 
für alle n und m und auch dann, wenn m = n ist, weil sin(0) = 0. 
Damit wird Gleichung (22.2) zu: 

i f ( X )  . cos (mx)  dx = T a ,  = Tan 

-T 

Für die Koeffizienten an folgt 

an = / f ( X )  cos (nx)  dz,  
T .  
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Bestimmung der b,: 
Wir bestimmen die einzelnen Koeffizienten wieder nacheinander. Wir multiplizieren 
die Funktion und die Fourierreihe mit sin(mx) und integrieren wieder über eine 
Periode von -T bis +T. 

j f (X) sin (mx) dx = - sin (mx) dx + an cos (nx) sin (mx) dx 
2 

-* -* 
" i n=l  

V' " 4 

Integral 1. Summe 

+ 2 bn j sin (nx) sin (mx) dx 
n=l -, 

2. Summe 

Das Integral auf der rechten Seite verschwindet, ebenso die Integrale in der ersten 
Summe, wie es bereits bei der Berechnung der Koeffizienten an gezeigt wurde. In 
der zweiten Summe ersetzen wir sin (nx) sin (mx) durch 

1 1 
sin (nx) . sin (mx) = - cos (n - m) X - - cos (n + m) X 

2 2 

Die Integrale verschwinden immer, außer für den Fall n = m, weil cos(n - m) = 1. 

i { 
7r falls n = m 

sin (nx) . sin (mx) = 0 falls n # m 

Wir haben erreicht, daß in der Reihe nur ein Summand mit dem Koeffizienten bn 
übrigbleibt, und es gilt 

J f (X) sin (mx) dx = nb, 

Für die Koeffizienten b, folgt 

n  

bn = / f (X) sin (nx) dx n = l , 2 , 3  ,...... 
7r 

-* 

Damit haben wir alle Koeffizienten der Fourierreihe bestimmt. Eine Funktion f (X) 
mit der Periode 2n läßt sich darstellen als Fourierreihe: 



176 22 Fourierreihen 

Fourierreihe für Funktionen mit Periode 2a 
03 

f (z) = - + x ( a n  cos n x  + bn sin n x )  
2 

n=l  

Die Koeffizienten sind bestimmt durch 
* 

U. = I j  f ( x ) d x  
a 
- * 

- I j ( X )  cos (.X) d x  a n  - a 
-* 

- I j f  ( X )  sin ( n x )  d x  bn - I r  
( 2 2 . 3 )  

-* 

Noch offengeblieben ist bis jetzt die Frage, unter welchen Voraussetzungen die Ent- 
wicklung einer Funktion f ( X )  in eine Fourierreihe möglich ist. Diese Frage wird 
durch den Satz von Dirichlet beantwortet: 

Satz von Dirichlet: Eine Funktion f  ( X )  habe die Periode 2a. Ferner seien f  ( X )  und 
f  ' ( X )  stückweise stetig, d.h. weder f  ( X )  noch f  ' ( X )  haben Polstellen und beide ha- 
ben höchstens endlich viele Unstetigkeitsstellen. Dann konvergiert die Fourrierreihe 
an allen Stetigkeitsstellen gegen den Funktionswert f ( X ) .  An den Unstetigkeitsstellen2 
ist der Wert der Fourrierreihe gleich dem arithmetischen Mittel aus dem links- und 
rechtsseitigen Grenzwert der Funktion f ( X ) ,  d.h. gleich dem Ausdruck 

lim f ( X  + A x )  + L!zO f  ( X  - A x )  
Az-0 

2 
A x  > 0 

Der Beweis dieses Satzes übersteigt den Rahmen der vorliegenden Darstellung. 

22.2 Beispiele für Fourierreihen 

22.2.1 Symmetriebetrachtungen 

Wir kennen bereits gerade und ungerade Funktionen und ihre Symmetrieeigenschaften: 

gerade Funktion: f  ( X )  = f  ( - X )  Beispiel: cos-Funktion 

ungerade Funktion: f  ( X )  = - f  ( - X )  Beispiel: sin-Funktion 

2Als Unstetigkeitssteiien sind nur Sprünge zugelassen. 
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Gerade Funktionen: 
Ist die Funktion f ( X )  gerade, dann verschwinden die Koeffizienten b,. Denn 
f ( X )  = sin (nx) ist eine ungerade Funktion und das Integral von -T bis +T 
über eine ungerade Funktion verschwindet. Für gerade Funktionen gilt also 

-- 
f ( X )  = $ + C an cos ( n r )  

n=l 

Ungerade Funktionen: 
Ist die Funktion f ( X )  ungerade dann verschwinden die Koefizienten an .  Dann gilt 

f ( X )  = bn sin ( n x )  

Es ist unmittelbar evident, daß man diese Beziehungen benutzen kann, um die 
Rechnung zu erleichtern. Oft genügt es, die Funktion nach links oder rechts zu 
verschieben, um entweder eine gerade oder eine ungerade Funktion zu erhalten. 
Manchmal hilft es, den geraden und den ungeraden Anteil der Funktion getrennt 
zu betrachten. 

22.2.2 Rechteckschwingung, Kippschwingung, Dreieckschwingung 

Wir betrachten hier Beispiele für Schwingungen. Die Variable ist in diesem Fall die 
Zeit und wird daher mit t bezeichnet. Die Periode ist hier immer T = 27r. 
1. Beispiel: Rechteckschwingung 
f ( t )  ist im Intervall von -7r bis +T definiert als 

f ( t )  ist eine gerade Funktion. 
Deshalb brauchen wir nur die I 
Koeffizienten an zu berech- 
nen. 2 1  

I I I 
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Die Integration muß für die einzelnen Intervalle getrennt durchgeführt werden. 

ao = 1 J f ( t )  dt = o 
71 

Die Fourierreihe der Rechteckschwingung mit der Periode 27~ lautet: 

O 0 4  
f ( t )  = C - sin (Y) . cos nt 

n=l  
nr  

Die folgende Abbildung zeigt die drei ersten Fourierkomponenten und die schritt- 
weisen Näherungen für die Funktion f ( t ) .  

Hinweis: Jede Rechteckfunktion kann durch Verschiebung zu einer geraden oder 
ungeraden Funktion gemacht werden. 
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2. Beispiel: Kippschwingungen 

Die in der Abbildung dargestellte Kippschwingung ist im Intervall von -T bis +T 

definiert durch 

f (t) ist ungerade. Wir brauchen also nur die Koeffizienten bn zu berechnen. 

Das Integral wird durch partielle Integration berechnet. 

cos nt 

- * 

Die Reihenentwicklung für die Kippschwingung lautet also 

2 O0 sin(nt) 
f (t) = ; C(-l )n+i-  

n = l  
n 

3. Beispiel: Dreieckschwingung 
Die periodische Funktion f (t) = f (t + 277) sei definiert durch 

-t für -T 5 t 5 0 
f (t) = 

t f ü r  O s t  < T  
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f (t) ist eine gerade Funktion. Damit brauchen nur die Koeffizienten an berechnet 
zu werden. 

- / (-t) cos (nt) cit + - t cos (nt) an - a U - n 1 o 

= - [L a n  . sin(nt)] O - [L cos ,t] + [L *in <nt>] , an2  a n  
L- - 

- 1 -- 1 1 1 + - cos (na) + - cos (na) - - 
an2 an2 an2 an2 

2 
an = - [cos (na) - 11 

an2 

Die Fourierreihe lautet 

a O0 2 
f (t) = - + C - [ c o s n a -  llcosnt 

2 n=l  
an2 

22.3 Die Fourierreihe für Funktionen beliebiger Periode T 

Die ursprüngliche Formel für die Fourierreihe mit der Periode 277 war: 
" 

2 [aficosnx + bxsinnx] f(x) + „ (22.1) 

Die Funktion f(x) habe nun die beliebige Periode T. Dann kann dieser Fall durch 
eine einfache Substitution auf den Fall mit der Periode 2 n  zurückgeführt weden. 

2rr Wir setzen die Substitution an zu: x = - . t 
T 

T T  Durchlauft t die Werte von - - bis -, läuft x von - n  bis +n. Wir brauchen also 
2 2 

nur in der Formel oben x durch z. t zu substituieren, um zu erhalten: 
T 



22.4 Fourierreihe in spektraler Darstellung 181 

Um die Koeffizienten a,  und b, zu erhalten, substituieren wir x und dx auch in 

2Tt 2Tt den Formeln 22,3 durch X = - . t und dx = -dt.  
T T 

Fourierreihe für Funktionen mit Periode T 
W 

f ( t ) =  7 + [an COS ( F t  ) + bn sin ( T t  )] (22.5) 
n=l 

Die Koeffizienten sind bestimmt durch 

+T 
a o  = 5 J f (t) dt T 

- 5 
+5 

n2n 
an = S J f(t)cos-tdt 

T 
- 5 
+ 5 

n2n 
bn = $ 1  f(t)sin-tdt 

T 
- 5 

22.4 Fourierreihe in spektraler Darstellung 

Die Fourierreihe mit der Periode T kann so umgeformt werden, daf3 man sie wie 
folgt schreiben kann:3 

Ao 
00 

f(t) = T + CA* cos ( n g t  + P.) 
n=l  

Diese Darstellung heißt spektrale Darstellung der Fourierreihe. Ihr Vorteil ist, daß 
jede Frequenz durch eine Fourierkomponente und nicht durch zwei Fourierkompo- 
nenten dargestellt wird. 

Stellt man die Amplituden graphisch auf der Frequenzskala dar, erhält man das Am- 
plitudenspektrum, das auch Fourierspektrum oder Frequenzspektrum genannt wird. 

3 ~ i e  neum Koeffizienten An ergeben sich zu An = $ 6 .  Der Phasenwinkel Qn ist be- 
stimmt durch t a n ~ , ,  = 
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Die Abbildung a zeigt das Amplitudenspektrum der Rechteckschwingung, die Ab- 
bildung b zeigt das der Kippschwingung. 

Die Periode ist in beiden Fällen T = 27r. p, ist der Phasenwinkel der n-ten Fourier- 
komponente. Analog zum Amplitudenspektrum spricht man vom Phasenspektrum 
und stellt die Phasen auf der Frequenzskala dar. Die Ermittlung von Amplituden- 
spektrum und Phasenspektrum wird Fourieranalyse oder Frequenzanalyse genannt. 

Auch die umgekehrte Operation ist möglich. Sind die Fourierkomponenten einer 
Funktion bekannt, kann durch Superposition der einzelnen harmonischen Schwin- 
gungen die Funktion gewonnen werden. Darauf beruht die Erzeugung beliebiger 
periodischer Signale bei der elektronischen Synthese von Musik oder Sprache. Diese 
Operation heißt Fouriersynthese: 

Deformation und Rekonstruktion elektrischer Signale. Elektronische Übertragungs- 
systeme verstärken Signale, deformieren sie aber oft auch. Für harmonische Schwin- 
gungen kann diese Deformation als Funktion der Frequenz leicht bestimmt werden. 
Mittels der Fouriersynthese kann diese Deformation dann wieder gliedweise kom- 
pensiert und das ursprüngliche Signal rekonstruiert werden. 

1 1



22.1 Geben Sie die Fourierreihe der Funktion f ( t )  an, die im Intervall von 
-7 bis +T definiert ist durch 

0  für - a < t < - ;  
1 für - $ S i ! < $  

'"I 0 für $ l t s a  

22.2 A Berechnen Sie die Fourierreihe der Funktion f ( t )  = f (t + 417) mit 

0 für -2a  5 t  < -a 

1  für - a < t < a  

0 für a 5 t  < 2 a  

22.2 B Berechnen Sie die Fourierreihe für die Funktion 

-1 für - a < t < O  

1  für , < , < I  
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22.3 A Berechnen Sie die Fourierreihe für eine Rechteckfunktion, die hier als 
zeitlich aufgefaßt werden soll. Die Funktion stellt dann einen Rechteckim- 
puls der Dauer to  dar, der sich mit der Periode T wiederholt. 

A 

0 f ü r  -; < t < -9 

f ( t )  = 1 f ü r  -9 < t < ++ 
T 0 f ü r  ++ 5 t 5 + T  

22.3 B Berechnen Sie die Fourierreihe für eine Variante der Aufgabe 22.2 B 

-1 f ü r  % 5 t 5 0 

A 

Lösungen 

22.1 f (t) ist eine gerade Funktion, d.h. die Koeffizienten b, sind Null. 

I - 
1 1 1  n a  n a  

cos(nt)dt = - [sin(nt)] -I  = (sin - - sin(--)) 
n nn - 2 2 - - 
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Damit ist die Lösung 

1 0 0 2  n r  
f (t) = 5 + X in i n  7 . cos(nt) 

n=l 

Da für gerade n der Term sin Null ist, also a, = 0, kann die 
Fourierreihe auch wie folgt geschrieben werden: 

22.2 A Für die Periode 2 r  ist für diese Funktion in der Übungsaufgabe 22.1 die 
Fourierreihe berechnet worden. Analog erhalten wir 

1 2 (-I)"-' (2n-1) fW=-+-C2, cos - 2 t 
17n=l  

22.2 B f (t) ist ungerade, deshalb verschwinden alle Koeffizienten an. 

' J  1 1 
b, = - f (t) sin(nt)dt = -- / sin(nt)& + - J sin(nt)& 

r n ?F 

Die Glieder für ungerade n verschwinden. Daher kann die Fourierreihe 
auch wie folgt geschrieben werden: 
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B Die Funktion ist ungerade, daher sind alle an = 0 

bn = ​  2 ___ πn ​ (1 – cosπn) = ​  2 ___ πn ​ (1 – (–1)n)



23 Fourier-Integrale 
und Fourier-Transformationen 

23.1 Übergang von der Fourierreihe zum Fourier-Integral 

Im vorhergehenden Kapitel ,,FourierreihenN wurde gezeigt, da3 man eine beliebige 
periodische Funktion mit der Periode T darstellen kann als Summe trigonometri- 
scher Funktionen mit Vielfachen der Periode T. 
Unser Problem sei jetzt die Darstellung einer nicht-periodischen Funktion. Nicht- 
periodische Funktionen treten in Physik und Technik oft auf als nicht-periodische 
zeitlich begrenzte Signale. Da dieser Anwendungsbereich hier im Vordergrund steht, 
bezeichnen wir in diesem Kapitel die Variable durchweg mit t .  Das einfachste Bei- 
spiel ist eine Rechteckfunktion, also ein Signal der Dauer to. Wir fragen uns, ob ein 
derartiges nicht-periodisches Signal ebenfalls als Uberlagerung von Einzelschwin- 
gungen dargestellt werden kann. 

Die Fourierreihe für eine Rechteckfunktion, also ein periodisches Signal der Dauer 
t, und der Periode T, ist bereits in der Übungsaufgabe 22.3 A des vorigen Kapitels 
und im Leitprogramm berechnet worden: 

to 2 n r t o  21nt 
f ( t )  = T + C - sin - cos - 

n = l  
T T 

Der Periodendauer T entspricht eine Schwingung mit der Grundfrequenz wo. Die 
Frequenzen der einzelnen Summanden sind dann gegeben durch 

Im Hinblick auf spätere Überlegungen muS noch folgender Umstand beachtet wer- 
den. Bei der Fourierreihe werden diskrete Glieder aufsummiert. Dabei erhöht sich 
die Laufzahl n von Glied zu Glied um An = 1. Damit können wir die Fourierreihe 
wie folgt schreiben: 

to 2 to 
f(t) = T + , . sin w - . coswtAn 

n = l  
2 

Wir kommen zur Darstellung eines einzelnen Signals, wenn wir von der obigen 
Fourierreihe ausgehen, die Dauer des Signals to  beibehalten und die Perioden- 
dauer T, also die Abstände der Signale voneinander, über alle Grenzen wachsen 
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lassen. Dann entfernen sich die angrenzenden Signale beliebig weit und wir müßten 
dann die Darstellung eines einzelnen nicht-periodischen Signals erhalten. 

Bei einem Grenzübergang beginnt die Summe mit beliebig kleinen Frequenzen wo 
und die Frequenzen liegen beliebig dicht beieinander. In der Summe muß daher 
noch die Laufzahldifferenz An durch die Frequenzdifferenz Aw substituiert werden. 
G e m S  der Gleichung 23.1 gilt folgende Beziehung 

27r T 
AW = -An, nach An aufgelöst: An = -Aw 

T 2a 

Dies setzen wir in die Fourierreihe (23.2) ein und erhalten 

Jetzt können wir den Grenzübergang T -+ ca durchführen. Aus der Summe wird 
ein Integral, das Fourier-Integral 

Wir können das Fourier-Integral auch in folgender Form schreiben 

m 
2 . to 

f(t)  =  JA(^) coswtdw mit A(W) = - sinw- 
7rW 2 

0 

Der Ausdruck A(w) heißt Amplitudenspektrum. Bei unserer Rechteckfunktion han- 
delt es sich um eine gerade Funktion. Daher tritt im Fourier-Integral nur der Kosinus 
auf. In diesem Fall spricht man von FourEer-Kosinustransformation. 

Was wir eben formal abgeleitet haben, sei an einer Zeichnung verdeutlicht. Die Ab- 
bildung zeigt für ein Rechtecksignal der Dauer to = 1 die Fourier-Koeffizienten für 
folgende Perioden T = 2, T = 4, T = 8 sowie das kontinuierliche Amplitudenspek- 
trum A(w). Man sieht, daß mit wachsendem T die Frequenz wo der Grundschwin- 
gung immer kleiner wird. Mit Annäherung an den Fall des isolierten Einzelsignals 
treten immer mehr Glieder der Fourierreihe auf. Die Frequenzabstände zwischen den 
Gliedern gehen hier von Reihe zu Reihe jeweils auf die Hälfte zurück. Die Fourier- 
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reihe wird dem kontinuierlichen Amplitudenspektrum ähnlicher. 

Beim Fourier-Integral ergibt sich die nicht-periodische Funktion f(t) als Überla- 
gerung unendlich vieler Einzelschwingungen, deren Einzelamplituden zwar gegen 0 
streben, deren Verteilungsdichte aber durch das Amplitudenspektrum gegeben ist. 
Die Summe der Amplituden, die auf ein Frequenzintervall Aw entfallen, behalten 
einen endlichen Wert. Zwar bereitet es der Vorstellung zunächst eine gewisse Schwie- 
rigkeit, daß sich außerhalb des Signals alle Schwingungen gegenseitig aufheben und 
nur innerhalb der Signaldauer zu einem endlichen Signalwert aufsummieren, doch 
gilt dies ja bereits näherungsweise für die Fourierreihen, die wir als Übergang zum 
nicht-periodischen Fall betrachtet haben. 

Unsere theoretischen Überlegungen haben eine praktische Bedeutung. Die korrekte 
Übertragung elektrischer Signale durch Übertragungssysteme setzt voraus, daß har- 
monische Schwingungen beliebiger Frequenz in genau der gleichen Weise übertragen, 
also entweder in genau der gleichen Weise verstärkt oder geschwächt werden. Das 
heißt, die Übertragungseigenschaften für harmonische Schwingungen dürfen nicht 
von der Frequenz abhängen. Dies ist immer nur näherungsweise der Fall. Schwie- 
rigkeiten treten vor allem bei sehr niedrigen oder sehr hohen Frequenzen auf. Bei 
einem Rechtecksignal als Eingangssignal ist das Ausgangsignal an den Ecken abge- 
rundet und leicht verformt. Dies beruht auf der technischen Unmöglichkeit, Signale 
beliebig hoher Frequenz zu übertragen. 
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23.2 Fourier-Transformationen 

23.2.1 Fourier-Kosinustransformation 

Was anhand der Rechteckfunktion demonstriert und abgeleitet wurde, ist allge- 
mein gültig. Jede gerade nicht-periodische Funktion läßt sich darstellen als Fourier- 
Integral der folgenden Form 

Fourier-Kosinustransformation für gerade nicht-periodische Funktionen 

+m 

f(t) = J A ( W ) C O S ( W ~ ) ~ W  
0 

Amplitudenspektrum 

+W 

A(w) = L / f (t) . cos(w1)dt (23.3) 
Ir - m 

Wir verifizieren dies für das Amplitudenspektrum unserer Rechteckfunktion: 

2 = - t 0 s inw-  
W Ir 2 

23.2.2 Fourier- Sinustransformation 

Für ungerade periodische Funktionen verschwinden in der Fourierreihe die an und es 
verbleiben die b„ also die Sinusfunktionen. Dementsprechend lassen sich ungerade 
nicht-periodische Funktionen durch eine Fourier-Sinustransforrnation darstellen 

Fourier-Sinustransformation für ungerade nicht-periodische Funktionen 

+W 

f (t) = J B(w) sinwtdw 
0 

Amplitudenspektrum 

B(w) = Ir /f(t) sin wtdt 
-W 
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Beispiel: In der Übungsaufgabe 23.3 wird der Übergang von der Fourierreihe zur 
Fourier-Transformation für die folgende ungerade Funktion durchgeführt: 

-1 für - % s t < O  
f (t) = 

+l für 0 < t  < 2 

Wir erhalten das Amplitudenspektrum, wenn wir das Integral in Gleichung 23.4 
abschnittsweise lösen: 

Die Abbildung zeigt die Fourier-Koeffizienten für to = 1 und T = 2to, T = 4to, 
T = 8to sowie das kontinuierliche Amplitudenspektrum. 

Im allgemeinen Fall, wenn man es weder mit einer geraden noch mit einer unge- 
raden nicht-periodischen Funktion zu tun hat, und es nicht möglich ist, durch eine 
Koordinatentransformation zu einer geraden oder ungeraden Funktion zu kommen, 
muß man beide Anteile berücksichtigen. Dann erhält man die allgemeine Fourier- 
Transformation 
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Allgemeine Fourier-Transformation 

+W 

f ( t )  = / b ( w )  . cos(u1) + B(u) sin(wt)] du 

0 

Amplitudenspektrum 

W 

A(u) = 1 1 f (t) cos(wt)dt B(u) = 1 J f (t) sin(wt)dt 
7r 7r 

- W  - W  

Bestimmte K~nver~entbedingungen müssen beachtet werden. Die Fourier-Transforma- 
tion ist nur möglich für nicht-periodische Funktionen, die ganz oder stückweise inte- 
grierbar sind. Weiter müssen sie im Unendlichen verschwinden. Das heißt, sie müssen 
integrierbar sein 

Diese Bedingungen sind in der Praxis gegeben. Dort handelt es sich in der Regel 
um endliche und damit begrenzte zeitliche Signale oder Verläufe. Die Bestimmung 
des Amplitudenspektrums für empirisch gegebene Funktionen wird heute mit dem 
Rechner durchgeführt. 

23.2.3 Komplexe Darstellung der Fourier-Transformation 

Unter Benutzung der komplexen Zahlen läßt sich die Fourier-Transformation ele- 
ganter formulieren. Eine gegebene nicht-periodische Funktion f (t) ist als Fourier- 
Integral darzustellen durch 

Fourier-Transformation in komplexer Darstellung 

+W 1 f (t) = 1 F'(u)eiUtdw 

- W  

Die Amplitudenfunktion F(w) ist eine komplexe Funktion: 

Die Amplitudenfunktion unterscheidet sich um den Faktor von den entsprechen- 
den Amplitudenspektren der Fourier-Kosinus- und Fourier-Sinustransformation. 



23.2 Fourier-Transformationen 193 

Die Amplitudenfunktion ist nur halb so groß wie vorher, weil bei der komplexen 
Darstellung das Fourier-Integral von -W bis +oo erstreckt wird, während es vorher 
von 0 bis oo erstreckt wurde.' 
Die komplexe Amplitudenfunktion läßt sich trennen in eine Funktion A(w) die den 
Absolutwert angibt und in eine Funktion vom Typ e-i'+'(W). die die Phasenlage an- 
gibt. 

F(w)  = A(w) . e-i'+'(W) 

Die Funktion A(w)  ist das bereits bekannte kontinuierliche Amplitudenspektrum, die 
Funktion e-" '+ '(~) heißt kontinuierliches P h a ~ e n s ~ e k t r u m . ~  

Beispiel: Wir berechnen erneut das Amplitudenspektrum für die Rechteckfunktion 
der Dauer to. Dabei gehen wir von der Lage aus, die wir bei der Fourierkosinustrans- 
formation voraussetzten. Dann erhalten wir die Amplitudenfunktion 

- - 1 
- sin $) 
w a  

Wie bereits erwähnt, müssen wir den halben Wert des Amplitudenspektrums der 
Fourier-Kosinustransformation erhalten. Das ist hier der Fall. 

'Hinweis: Die Schreibweise der Fourier-Transformation wird nicht einheitlich gehandhabt. Fol- 
gende gleichwertige Notierungen sind üblich 

t m  

b) f (t) = $1 ~ ( w )  . etiwtdw F (w)  = 

+- + W  
1 ~ ( w ) .  etiwtdw F ( w )  = f (t) . e-'wt dt 

'Die komplexe Funktion F(w) habe den Realteil ReF(w) und den Imaginärteil ImF(w). Dann 
erhalten wir das kontinuierliche Amplitudenspektrum durch 

Den Phasenwinkel, das kontinuierliche Phasenspektrum, erhalten wir durch 
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23.3 Verschiebungssatz 

Wir berechnen das Amplitudenspektrum für die Rechteckfunktion in einer beliebi- 
gen Lage. Beliebige Lage bedeutet, daß die Funktion um die Zeit t i  verschoben ist. 
In diesem Fall erhalten wir die Amplitudenfunktion 

Das Amplitudenspektrum der Rechteckfunktion hat sich nicht verändert, es ist: 

1 to I F(w)  I= A(w) = - sinw- 
W 17 2 

Das Amplitudenspektrum der Rechteckfunktion ist unabhängig von der Lage. Das 
hier für den speziellen Fall erhaltene Ergebnis gilt allgemein. Wird eine Funktion 
um die Zeit t l  verschoben, bleibt das Amplitudenspektrum erhalten. Die Amplitu- 
denfunktion wird mit dem folgenden Faktor multipliziert: 

Dieser Zusammenhang wird Verschiebungssatz genannt. 

Verschiebungssatz: Das Amplitudenspektrum bleibt erhalten, wenn eine Funk- 
tion um die Zeit t i  verschoben wird. 
Die Amplitudenfunktion der verschobenen Funktion ist ge- 
geben durch: 

F [ ( f ( t  - t l ) ]  = F ( f ( t ) )  . e-iWtl 

23.4 Diskrete Fourier-Transformation, Abtasttheorem 

Ohne Beweis sei mitgeteilt, daß eine Fourier-Transformation auch durchgeführt wer- 
den kann, wenn statt der Funktion f ( t )  diskrete Werte dieser Funktion bekannt 
sind. Das ist beispielsweise der Fall, wenn die Funktionswerte in gleichen zeitlichen 
Abständen gemessen - abgetastet - wurden. Das ist in der Meßpraxis häufig der 
Fall, wenn es um die Messung beliebiger physikalischer Größen geht. Oft liegen die 
Meßergebnisse dann in Form von Meßwerten, also als Zahlenfolge vor. So kann eine 
Tonaufzeichnung derart erfolgen, daß in kleinen zeitlichen Abständen der Schall- 
druck gemessen wird, die Meßwerte werden automatisch digitalisiert, um dann von 
Rechnern weiter verarbeitet zu werden. Aus den Abtastwerten läßt sich die ur- 
sprüngliche Funktion f  ( t )  rekonstruieren. 
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Dabei gibt es allerdings eine Randbedingung: Wenn im Zeittakt At abgetastet wird, 
ist die Abtastfrequenz gegeben durch 

Das Amplitudenspektrum der Funktion sei A(w). Eine vollständige Rekonstruktion 
der Funktion f ( t )  aus den Abtastwerten ist nur dann möglich, wenn die Abtast- 
frequenz mindestens doppelt so groß ist wie die größte im Amplitudenspektrum 
vorkommende Frequenz. 

Dieser Sachverhalt ist von Shannon gefunden und heißt ihm zu Ehren Shannonsches 
Abtadtheorem. 

23.5 Fourier-Transformation der Gaußschen Funktion 

Ohne Beweis sei weiter mitgeteilt, daß es eine Funktion gibt, deren Amplituden- 
Spektrum mathematisch gesehen durch den gleichen Funktionstyp dargestellt wird 
wie die Ausgangsfunktion. Es handelt sich um die GaußFunktion, die uns bereits 
mehrfach begegnet ist. 

Zu dieser Funktion gehört die Amplitudenfunktion 

Es gelten also folgende Beziehungen 

Hingewiesen sei wieder auf die physikalische Bedeutung. Wenn der Parameter a groß 
ist, handelt es sich um ein im Zeitbereich schmales Signal. In diesem Fall bekommen 
wir im Frequenzbereich ein breites Amplitudenspektrum. Ist demgegenüber a klein, 
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handelt es sich um ein im Zeitbereich breites Signal. Das Amplitudenspektrum im 
Frequenzbereich ist dann schmal. 

Dieser Zusammenhang gilt allgemein. Zur Demonstration seien hier noch die Am- 
plitudenspektren für ein alternierendes Rechtecksignal dargestellt, dessen Breite im 
Zeitbereich variiert. Auch hier gilt: Einem im Zeitbereich engen Signal entspricht 
ein im Frequenzbereich breites ~ m ~ l i t u d e n s ~ e k t r u m . ~  

3Für dieses alternierende Rechtedrsignalist die Fourier-Sinustransformationim Abschnitt 23.2.2 
berechnet worden. 



23.1.2 A In der Übungsaufgabe 22.3 im vorigen Kapitel ist die Fourierreihe für 
die folgende periodische Funktion berechnet worden: 

-1 für -$ < t  < 0  
f ( t )  = 

l f ü r  O < t < $  

Berechnen Sie nun die Fourierreihe für die Funktion 

-- < t < - 2  

-1 für -2 5 t  < 0 
f ( t )  = 

l f ü r  O s t <  % 

B Führen Sie den Grenzübergang durch für T + co und geben Sie das 
Amplitudenspektrum an. 

C Skizzieren Sie die Frequenzspektren für die Fourierreihe für to = 1 und 
T = 2to,  t  = 4to und t  = 8to sowie das Amplitudenspektrum des Fourier- 
Integrals. 

23.2.3 A Führen Sie die Fourier-Transformation in komplexer Darstellung für 
die obige Funktion durch und berechnen Sie Amplitudenfunktion und 
Amplitudenspektrum 

-1 für -% < t  < 0  
f 0 )  = 

l f ü r  O < t < $  

23.2.3 B Skizzieren Sie Funktion und Amplitudenspektrum der obigen Aufgabe 
für to = 1, to = 2, to = 4. 

23.2.3 C Bestimmen Sie die Amplitudenfunktion und das Amplitudenspektrum 
für die Funktion aus der vorigen Aufgabe in beliebiger Lage t i .  

-1 für tl - % < t  < ti 
f ( t )  = 

1 für t l  < t  < t i + %  
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Lösungen 

2 O 0 1  n 2 ~ t  
t ( t ) = - ~ -  [i-cos*] .sinT- 

n=i 
n T 

B Wir substituieren mit W = nwo = n$ und An = " = wo 2n ' 

Damit erhalten wir nach dem Grenzübergang 
+m 

f(t) = 1 [ I -  cos (W :)] . sin wtdw 

- m 

A(w) = [1 - W ;I 7rW 

C Die Skizzen finden Sie in Abschnitt 23.2.2. 

Hinweis: Das Amplitudenspektrum in komplexer Darstellung ist um den 
Faktor % kleiner als bei der Fourier-Sinustransformation. 

23.2.3 B Die Skizzen finden Sie in Abschnitt 23.5.  

Hinweis: Das Amplitudenspektrum bleibt bei der Verschiebung der Funk- 
tion erhalten. 
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24.1 Integral-Transformationen, Laplace-Transformationen 

24.1.1 Integral-Tranformation 

Im vorhergehenden Kapitel haben wir die Fourier-Transformation kennengelernt. 
Dabei wurde aus einer gegebenen Funktion durch eine bestimmte Rechenvorschrift 
- das Fourier-Integral - eine neue Funktion gewonnen, die Amplitudenfunktion. Aus 
der Amplitudenfunktion ließ sich durch eine weitere Rechenvorschrift die ursprüng- 
liche Funktion zurückgewinnen. 

Derartige Umformungen heißen Integral-Dansformationen. Die Fourier-Transforma- 
tion ist eine spezielle Form. Die Fourier-Transformationen waren nützlich, weil mit 
ihrer Hilfe die spektrale Zusammensetzung gegebener Signale analysiert werden 
konnten. Die in diesem Kapitel zu erläuternde Laplace-Transformation ist ebenfalls 
eine Integral-Transformation. Sie ist nützlich, weil mit ihrer Hilfe mathematische 
Probleme lösbar werden, die sonst nicht oder schwer zu behandeln wären. 

Zur Bezeichnungsweise: Die ursprüngliche Funktion heißt Originalfunktion. Die durch 
die Transformation gewonnene Funktion heißt Bildfunktion. Die Originalfunktion ist 
im Originalbereich definiert, die Bildfunktion ist im Bildbereich definiert. Die Re- 
chenvorschrift, die aus der Originalfunktion eine Bildfunktion erzeugt, wird Operator 
genannt. Die inverse Rechenvorschrift, die aus der Bildfunktion die Originalfunktion 
herstellt, heißt inverser Operator. Da es sich bei den Operatoren hier um Integrale 
handelt, heißen derartige Umformungen Integral-Transformationen. 

Der französische Mathematiker P.S. de Laplace führte die nach ihm benannte Integral- 
Transformation etwa 1780 ein, um Differentialgleichungen leichter zu lösen. Die 
Lösung erfolgt bei dieser Methode in drei Schritten. 
1. Schritt: Die Differentialgleichung wird Term für Term transformiert. Dadurch 
erhält man im Bildbereich eine neue Gleichung, die im Fall der Laplace-Transforma- 
tionen oft eine algebraische Gleichung ist. 
2. Schritt: Die Gleichung der Bildfunktion wird gelöst. Damit erhält man eine Lösung 
im Bildbereich. 

Das Verfahren wird hier an einfachen Beispielen erläutert. In der Praxis benutzt man 
meist Tabellen, in denen die Transformationen gängiger Originalfunktionen und die 
inversen Transformationen gängiger Bildfunktionen enthalten sind. Eine derartige 
Tabelle steht am Ende dieses Kapitels. Wie bereits wiederholt gesagt, es gibt auch 
Computerprogramme, auf die man in diesem Fall zurückgreifen kann. 

Integral-Transformation

3. Schritt: Die Lösung wird durch eine inverse Transformation in den Originalbe
reich zurück transformiert Dadurch erhält man die Lösung der ursprünglichen 
Differentialgleichung.
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Die Methode der Laplace-Transformationen ist besonders nützlich bei der Lösung 
von Differentialgleichungen, deren Randbedingungen gegeben sind. Laplace-Trans- 
formationen werden beim Studium elektrischer Netze, mechanischer Schwingungen 
bei Stoßvorgängen in der Akustik und bei der Analyse von Kontrollsystemen ange- 
wandt. 

Wir beschränken uns hier auf eine Einführung in die Technik, um Differentialglei- 
chungen erster und zweiter Ordnung mit konstanten Koeffizienten zu lösen. 

24.1.2 Die Laplace-Transformation 

Die Laplace-Transformation wird durch die folgende Rechenvorschrift, das Laplace- 
Integral, definiert. Die Laplace-Transformierte ist die Bildfunktion und wird durch 
das Symbol L bezeichnet. Die Ähnlichkeit mit der Fourier-Transformation ist un- 
mittelbar ersichtlich. 

Definition: Laplace-Integral. Die Laplace-Transformierte L [ f  ( t ) ] ,  die Bild- 
funktion einer Originalfunktion f ( t ) ,  ist für Werte t > 0 definiert 
als: 

00 

~ [ j  ( t ) ]  = Je-" ( t ) d t  = F ( s )  

0 

Um die Bildfunktion zu erhalten, muß also die gegebene Originalfunktion f ( t )  mit 
dem Term e-s t  multipliziert und in den Grenzen t = 0 bis t = CO integriert werden. 
Dabei kann s eine komplexe Zahl sein, deren Realteil positiv und hinreichend groß 
sein muß, um dafür zu sorgen, daß das Integral konvergent ist. Der Wert des Integrals 
hängt von s ab. Daher ist die Laplace-Transformierte F ( s )  eine Funktion von s .  

Hinweis: Bei der Fourier-Transformation war s imaginär. 

24.1.3 Die Rücktransformation 

Soll aus der Laplace-Transformierten F ( s )  die Originalfunktion f ( t )  bestimmt wer- 
den, nennen wir dies die inverse Laplace-Transformation oder kurz inverse Trans- 
formation, Rücktransformation oder Umkehrintegral. Sie wird bezeichnet durch das 
Symbol L-'. 
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Definition: Inverse Laplace-Tkansformation, Umkehrintegral, Rücktransforma- 
tion. Sie erzeugt aus der Bildfunktion die Originalfunktion 

L-' [F(s)l = f ( t )  

c+im 1 F(s)  . e"ds L-' [F(s)]  = 2n; 
C-im 

Die Durchführung der inversen Laplace-Tranformation setzt Kenntnisse der 
Funktionentheorie voraus, die in diesem Buch nicht behandelt werden. Daher 
werden wir die explizite Rücktransformation nicht durchführen. Das stört für 
unsere Praxis nicht, denn in der Regel wird die inverse Laplace-Transformati- 
on immer anhand von Tabellen durchgeführt. In diesen Tabellen sind zu den 
gängigen Funktionen die im Bildbereich auftreten, die entsprechenden Original- 
funktionen aufgelistet. Wir werden bei den Anwendungen auf die Tabelle am 
Ende des Kapitels auf Seite 214 zurückgreifen. 

24.2 Laplace-Transformation von Standardfunktionen und all- 
gemeine Regeln 

In diesem Abschnitt werden zunächst die Laplace-Transformationen für eine Reihe 
von Funktionen bestimmt, die oft bei physikalischen und technischen Problemen 
auftreten. Bei der Integration wird die Größe s als Konstante betrachtet. 

24.2.1 Laplace-Transformation einer Konstanten 

24.2.2 Laplace-Transformation einer Exponentialfunktion 

f ( t )  = eot a reell oder komplex. 

Das Integral konvergiert nur für den Fall, da% der Realteil von a kleiner als s ist. 
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24.2.3 Laplace-Transformation trigonometrischer Funktionen 

Um diese Transformationen durchzuführen, benutzen wir die gerade gewonnene 
Transformation von Exponentialfunktionen. Wir stellen die Sinusfunktion als Diffe- 
renz zweier Exponentialfunktionen dar (Eulersche Formel): 

1 .  
f (t) = sinw t = -(eIwt - 

2i e-iwt) 

Die Exponentialfunktionen können wir bereits transformieren und erhalten: 

1 1  1  W 
C(sinwt) = F($) = - (- - -) = -- 

2i s-zw s+ iw s 2 + w 2  

Die Laplace-Transformierte der Kosinusfunktion wird in der gleichen Weise gewon- 
nen: 

1  
f (t) = cos W t = -(eiwt + e-iwt 

2 ) 
S 

F(s) = - 
s2 + w2 

24.2.4 Laplace-Transformation einer linearen Funktion 

Wir betrachten die Gerade durch den Koordinatenursprung 

Beweis: Das Integral kann durch partielle Integration gelöst werden 

Der erste Term verschwindet. Wenn t gegen cc geht, fallt der Faktor e-" stärker ab, 
als t anwächst. 
Um aber die allgemeine Geradengleichung und weitere Funktionen zu transfor- 
mieren, müssen einige Sätze genannt und begründet werden, die es uns erlauben, 
die Liste der Transformierten zu vervollständigen. 

24.2.5 Verschiebungssatz 

Wird eine Originalfunktion auf der t-Achse nach rechts verschoben, wird die Bild- 
funktion mit dem Term e-"# multipliziert. 
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Verschiebungssatz: Für eine im Originalbereich um a  nach rechts verschobene 
Funktion gilt: 

C  [ f ( t  - a)]  = e-"" . F ( s )  

Beweis: 

+m 

C [ f ( t  - a)]  = J f(t - U ) .  e-"dt 

Wir substituieren: T = t  - a  t  = T + a  

Hinweis: Den gleichen Verschiebungssatz hatten wir bereits beim Fourier-Integral 
kennengelernt. 

24.2.6 Dämpfungssatz 

Wird eine Bildfunktion auf der s-Achse um a  nach links verschoben, so wird die 
Originalfunktion mit dem Faktor e-"' multipliziert. 

Dämpfungssatz: Gegeben seien eine Funktion f (t) und ihre Transformierte F ( s ) ,  
sowie eine reelle oder komplexe Zahl a .  In diesem Fall gilt 

F ( s  + a)  = C  [e-"' . f ( t ) ]  

Beweis: Wir berechnen die Laplace-Transformierte der Funktion g  ( t )  = e-a' f  ( t ) .  

Praktische Bedeutung: Wir suchen die Laplace-Transformierte der exponentiell ge- 
dämpften Funktion g( t )  = e -a t .  f  ( t )  und kennen bereits die Transformierte von f ( t ) ,  
nämlich L  [ f ( t ) ]  = F ( s ) .  Dann genügt es, in der Transformierten s  durch ( s  + a)  zu 
ersetzen. Daher der Name Dämpfungssatz. 

Beispiel: Transformierte der exponentiell gedämpften Schwingung. 

f  ( t )  = e-at sin w t  
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Da die Transformierte der Sinusfunktion bekannt ist, erhalten wir mit Hilfe des 
Dämpfungssatzes unmittelbar 

W 
F (s)  = 

(s + Q ) ~  +w2  

Das gleiche gilt für die exponentiell gedämpfte Kosinusfunktion 

f ( t )  = e-at cos w  t  

Mit Hilfe der bekannten Transformierten der Kosinusfunktion ergibt der Dämp- 
fungssatz 

Beispiel: Wir suchen die Laplace-Transformierte der Funktion f ( t )  = 3e-5t cos 10t.  

24.2.7 Linearitätssatz 

Linearitätssatz: Die Originalfunktion sei die Summe zweier Funktionen 

f ( t )  = h ( t )  + 5J ( t )  

Die Bildfunktion ist die Summe der einzelnen Bildfunktionen 

N t )  + g (t)l  = L[h (91 + L[g (t)l  

Der Satz ist unmittelbar evident. Das Integral einer Summe ist gleich der Summe 
der Integrale. 

Beispiel: Wir suchen die Bildfunktion für f ( t )  = -6 sin w(t )  + t .  

Bereits gezeigt wurden folgende Zusammenhänge 

W 
L[sin wt] = - 

s2 + w2 

Damit ist die Lösung für unser Beispiel 
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24.2.8 Laplace-Transformation von Ableitungen 

Ableitungen im Originalbereich 
Erste Ableitung einer Funktion 
Wir suchen die Transformierte der ersten Ableitung einer Funktion. 

Wir integrieren partiell: 

m W / e-" ' d t  = [eq8'f ( t ) ]  - / ( t )  . (-se"')dt = - f ( 0 )  + s . F ( s )  

0 0 

Dieses Resultat ist gültig für alle Funktionen, für die gilt e-t f ( t )  + 0 falls t + m. 

Hinweise für die Notierung: Für den Wert der Funktion f ( t )  und aller ihrer Ablei- 
tungen an der Stelle t = 0 benutzen wir hinfort in diesem Kapitel die Notierung 
f ( 0 )  = fo, f '(0) = f und sinngemäß für die höheren Ableitungen fn (0 )  = f 

Laplace-Transformierte der ersten Ableitung einer Funktion f ( t )  

L -f ( t )  = S .  F ( s )  - fo I 
fo = f ( 0 )  ist der Wert der Funktion für t = 0,  also der Anfangswert oder die 
Anfangsbedingung. 

Laplace-nansformation der zweiten Ableitung 
Wir gehen wieder von der Definitionsgleichung aus und lösen das Integral durch 
partielle Integration. 

Laplace-Tranformierte der zweiten Ableitung. 
Dabei ist f der Wert der ersten Ableitung für t = 0. 

L [ f U ( t ) ]  = s 2 ~ ( s ) - s f o -  f h  

Wenn man den etwas mühseligen Prozeß wiederholt, kann man für die dritte Ablei- 
tung zeigen, da% gilt: 
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L [ f  '"(t)] = s 3 ~ ( s )  - s2 f0 - s f 6 - f{ 

f{ ist der Wert der zweiten Ableitung für t = 0. Der Vollständigkeit halber geben 
wir noch den allgemeinen Fall an. 

Laplace-Tranformation von Ableitungen im Originalbereich 

n-1 

L [/  (n'(t)] = sn . ~ ( ~ 1 -  C Sn-i-1 fo ( i )  

i=O 

Ableitungen im Bildbereich 

Satz: Laplace-Transformierte der Bildfunktion F(s): 
Gegeben seien die Bildfunktion F(s) und die Originalfunktion f (2). 
Die Transformierte der Ableitung der Bildfunktion ist dann: 

d 
- [Fts)l = -L ::t f (t)l ds 

Wir führen den Beweis durch Verifikation und erinnern daran, daß unter dem In- 
tegralzeichen nach dem Parameter s differenziert werden kann, wenn dieser für die 
Integration als Konstante betrachtet werden darf. 

d 
- [ L ( )  ds = ds ( [ e s f  ( )  = - p S t t  f ( t )  dt = -sf (t)]  

0 

Die praktische Bedeutung dieses Satzes liegt vor allem in der Umkehr. Wenn man 
eine Funktion f ( t )  und ihre Transformierte F(s) kennt, kann man unmittelbar die 
Laplace-Transformierte von Produkten der Form t . f(t) angeben. In diesem Fall gilt 

Wir zeigen diese Anwendung für die trigonometrische Funktion mit linear anstei- 
gender Amplitude, die angefachte Schwingung: 

f ( t )  = t sin W t 

Die Tranforrnierte der Sinusfunktion ist bereits bekannt zu 

W 
L [sinwt] = F(s)  = - 

s2 + W 2  

Dann ist unter Benutzung des obigen Satzes die Transformierte von t sinw t :  

F
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In gleicher Weise kann die Transformierte gefunden werden für t  cos w t :  

24.2.9 Laplace-Transformation von Potenzen 

Gegeben sei die Originalfunktion f ( t )  = t n ,  wobei n positiv und ganzzahlig sein 
soll. Wir nennen zunächst das Ergebnis: 

M 

Beweis: Wir können die Originalfunktion als Produkt schreiben: 

f ( t )  = t  . tn-' 

Bereits gezeigt wurde folgender Zusammenhang: 

Jetzt benutzen wir die Beziehung (24.1) und erhalten 

dn-1 1  1 n! 
F ( s )  = (- l ln-'  -- = ( - I )* - I ( -2 ) ( -3 ) .  . . ( -n) -  = - 

dsn-l s2 sn+l 

Zum Beispiel ist für f ( t )  = t 2  F ( s )  = 5. 
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24.3 Lösung von linearen Differentialgleichungen mit kon- 
stanten Koeffizienten 

Zu lösen sei die folgende inhomogene Differentialgleichung zweiter Ordnung mit 
konstanten Koeffizienten 

Die Anfangsbedingungen seien in folgender Form gegeben: 

dy - = YIJ' für t = 0 dt 

1. Schritt: Wir führen die Laplace-'Ikansformation aus und multiplizieren die Glei- 
chung mit dem Ausdruck e-at und integrieren jeden Term von 0 bis CO. 

Durch diese Operation ersetzen wir jeden Term der Differentialgleichung durch seine 
Laplace-Transformierte. Dabei erhalten wir dann eine algebraische Gleichung für 
den Parameter s .  

2. Schritt: Diese Gleichung kann nach F ( s )  aufgelöst werden: 

F ( s )  = ,C [f (t)l + S Y o  + AYO + Y o 
s 2 + A s + B  

3. Schritt: Rücktransformation. Unsere Aufgabe ist nun, die inverse Transfor- 
mation zu finden. F(s)mui3 gegebenfalls umgeformt werden, um eine Form zu 
erhalten, für die die Inverse anhand der Tabelle gefunden werden kann. Dies sei 
anhand von Beispielen erläutert: 

Beispiel 1: Zu lösen sei die Differentialgleichung: yl+ 4y = e-2 t .  
Als Anfangsbedingungen seien gegeben: t = 0, yo = 5 .  

1 .  Schritt: Wir führen die Laplace-Transformation durch. 

2. Schritt: Wir lösen die Gleichung nach F ( s )  auf und erhalten 
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3. Schritt: Aus der Tabelle entnehmen wir die inverse Transformation. Konstante 
Faktoren bleiben. Die Lösung ist also 

1  - 2 ,  9 
y  ( t )  = Se + Se-4' 

Beispiel 2: Zu lösen sei die Differentialgleichung yl1 + 5y1+ 4 y  = 0. 
Als Anfangsbedingungen seien gegeben: t  = 0, yo = 0, y  = 3.  

1. Schritt: Wir führen die Laplace-Tkansformation durch. 

C.[Y )I] '1 4 4 ~ 1  
I''* 

s 2 F ( s )  - ~ Y o  - Y o + 5 ( s F ( s )  - yo) + 4 F ( s )  = 0 

Wir setzen die Anfangsbedingungen ein: s 2 F ( s )  - 3  + 5 s F ( s )  + 4 F ( s ) .  

2. Schritt: Wir lösen auf nach F ( s )  

3 .  Schritt: Rücktransformation. Wir entnehmen der Tabelle: 

Beispiel 3:  Zu lösen sei die Gleichung yl1 + 8 y 1  + 17y = 0 .  

Anfangsbedingungen: t  = 0, yo = 0,  y  = 3.  

1 .  Schritt: Wir führen die Laplace-'lkansformation durch. 

2. Schritt: Wir lösen nach F ( s )  auf und formen so um, daß ein für die Benutzung 
der Tabelle geeigneter Term entsteht: 

F ( s )  = 3  - 3  
s2 + 8 s  + 17 - ( ( s  + 4 ) 2  + 1)  

3. Schritt: Rücktransformation. Wir entnehmen der Tabelle 

y  = 3e-4t sin t  
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Beispiel 4: Zu lösen sei die Gleichung y" + 6 y  = t .  
Die Anfangsbedingungen seien t = 0, yo = 0 und yh = 1. 

1. Schritt: Wir führen die Laplace-Transformation durch 

Wir formen um und erhalten 

2. Schritt: Wir lösen nach F ( s )  auf 

3. Schritt: Rücktransformation. Aus der Tabelle entnehmen wir die Lösung, die wir 
in folgender Form schreiben können: 

24.4 Lösung von simultanen Differentialgleichungen mit kon- 
stanten Koeffizienten 

Häufig begegnen uns in Wissenschaft und Technik Systeme, die durch simultane 
Differentialgleichungen beschrieben werden. Beispiele dafür sind elektrische Netze, 
die aus zwei Kreisen bestehen, gekoppelte Pendel u.a. Derartige Systeme lassen sich 
mit Hilfe der Laplace-Transformation lösen. 

Wir betrachten zwei Funktionen der unabhängigen Variablen t :  x ( t )  und y ( t ) .  Ihre 
Transformierten werden bezeichnet durch L [ x ]  und L [ y ] .  Wir gehen davon aus, daß 
die unabhängige Variable die Zeit ist und bezeichnen die Ableitungen durch Punkte. 

Beispiel 1: Gegeben sei das simultane Gleichungssystem 

Die Anfangsbedingungen seien t  = 0, xo = 0 und yo = 0. 
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1. Schritt: Wir führen die Laplace-Transformation für beide Gleichungen durch 

1 
3 ( s L [ x ]  - xo) + 2 L [ z ]  + sC[y ]  - yo = - 

S 

s L [ x ]  - X 0  + 4 ( s L [ y ]  - yo) + 3 t [ y ]  = 0 

Wenn wir die Anfangsbedingungen einsetzen, erhalten wir ein System von zwei 
linearen Gleichungen für die zwei Unbekannten L [ x ]  und L [ y ] .  

2 .  Schritt: Wir lösen das aus zwei Gleichungen bestehende System nach C [ x ]  auf 

3 .  Schritt: Rücktransformation. Wir erhalten unter Benutzung der Tabelle für X :  

Lösen wir nach t [ y ]  auf, erhalten wir 

Die Lösung für y ist 

Beispiel 2: Zu lösen sei das folgende Gleichungssystem 

x + 2 x - y  = 1 

x + y + 2 y  = 0 

Die Anfangsbedingungen seien t = 0, xo = 1 und xo = yo = yo = 0 

1. Schritt: Wir führen die Laplace-Transformation durch. 

1 1 
( s 2  + 2 ) L [ x ]  - sL[y ]  = ; + sxo = ; + s  

s t  [ X ]  + ( s 2  + 2 ) t  [y] = X 0  = 1 

2 .  Schritt: Wir lösen das Gleichungssystem nach L [ x ]  auf 



3. Schritt: Unter Benutzung der Tabelle erhalten wir dann die Lösung für X: 

Für die Laplace-Transformierte von y haben wir 

Hier ist die Lösung unter Benutzung der Tabelle 
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Tabelle der Laplace-Transformationen 

sin wt  

cos wt  

t  sin wt  

t cos wt 

sinhwt 

cosh wt  

t  sinh wt  

t cosh wt  

e-<lt f  ( t )  

t n f  ( t )  
00 

t-r o (f r)) existiert F ( s ) d s ,  wenn lim - 
S 

n-1 d' 
sn F ( s )  - E s n - ' - '  - f ( t )  (0 

i = O  
dti 

EM 

k e i o  h e ie  
g-,-iw + sin a+iw 
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Tabelle der inversen Laplace-Transformationen 

F ( s )  C - l [ F ( s ) l  = f ( t )  

- 
S 

1 - 
s2 
1 - 

s3 
1 - 

sn 
1 - 

s - a  
1 

( S  - a)" 

1 
( S  - O)(S - b) 

s 
( S  - O)(S - b) 

1 -(eat - ebt)  
a - b  

1 
-(aeat -beb t )  
a - b  

$ sin w t  

cos wt 

$ sinh wt 

cosh wt 

l e a t  W sin w t  

eat cos wt 

$(l  - cos w t )  

&(wt - sin w t )  

&(sin wt - wt cos wt 

& sin wt 

&(sin wt + wt cos w t )  



24.2 A Bestimmen Sie die Laplace-Transformierten - die Bildfunktionen 
F(s)  - für die folgenden Originalfunktionen 
a) i t 3  b) C) 4 cos 3t d) sin2 t 

B Bestimmen Sie die Originalfunktionen für die unten gegebenen Bild- 
funktionen unter Benutzung der Tabelle: 

24.3 A Lösen Sie die folgenden Differentialgleichungen 

a) y + 5 y  + 4 y  = 0 (Anfangsbedingungen: yo = 0, io = 2 für t = 0) 

b) y + 9y = sin2t (Anfangsbedingungen: yo = 1, yo = -1 für t = 0) 

C) y + 2 y  = cost (Anfangsbedingungen: yo = 1 für t = 0 

B Gegeben sei die Differentialgleichung y - 3Y + 2 y  = 4 
und die Randbedingungen für t = 0: yo = 2 ,  yo = 3 

Zeigen Sie zunächst, daß die Laplace-Transformierte folgende Form hat 

Bestimmen Sie nun y(t) durch Rücktransformation (Tabelle benutzen). 

C Gegeben sei die Differentialgleichung y + y = et + t + 1 

Die Anfangsbedingungen seien für t = 0: yo = 0, yo = 0, Co = 0 
Bestimmen Sie die Funktion y(t). 

24.4 A Lösen Sie die folgenden simultanen Differentialgleichungen 

y + 2 E + y - x = 2 5  

2 y  + X = 25et 

Anfangsbedingungen: yo = 0, xo = 25 für t = 0 
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B Lösen Sie die simultanen Differentialgleichungen 

Anfangsbedingungen: xo = 0, yo = 0 für t = 0 

C Ein elektrischer Kreis bestehe aus einem Kondensator C einer Spule L 
in Reihenschaltung. Es wird eine Spannung U. sinwt angelegt. Wenn 
C die Ladung auf dem Kondensator ist, zeigen sie, dai3 folgendes gilt: 

Bestimmen Sie nun Q(t) für folgende Werte C = 50 X 10-6F, 
L = 0, l H ,  W = 500 rad/s, U. = 2V und Qo = QO = 0. 
Dies sind die Anfangsbedingungen t = 0. 

Lösungen 

B a) 3 sin i t  b) +(I - e-4t 1 
C) (1 - cos 3t) d) -6 sin ht 

e) t - sint f)  i e 4 f  - e2t 

24.3 A a) y = s(e-' - e-4t) b) y = 6 sin 2t - & sin 3t + cos 3t 

C) y =  $ s i n t + $ c ~ s t + ~ e ~ ~  

C Q = 4 + 10-4(1.12 sin447t - sin 500t) 



25 Die Wellengleichungen 

Unter einer Welle verstehen wir die räumliche Ausbreitung einer physikalischen 
Größe. Der Begriff Welle ist vom Sonderfall der Wasserwelle abgeleitet. Dort ist die 
physikalische Größe die Höhe eines beliebigen Punktes der Wasseroberfläche. 

Bei einer Schallwelle durchlaufen Druckschwankungen der Luft den Raum. Bei fe- 
sten, elastischen Körpern können Deformationen den Körper durchlaufen. Bei elek; 
tromagnetischen Wellen breiten sich der elektrische Feldvektor E und der Vektor B 
des Magnetfeldes aus. 

25.1 Wellenfunktionen 

Harmonische Welle 
Obwohl der Wellenbegriff von dem Phänomen der Wasserwelle abgeleitet ist, werden 
wir hier zunächst Seilwellen betrachten. Wasserwellen sind zwar sehr anschaulich, 
doch sind sie in Wirklichkeit schwerer zu verstehen als Seilwellen. 

In diesem Abschnitt wird die mathematische Beschreibung von Wellen entwickelt. 
Später wird gezeigt, wie Seilwellen physikalisch entstehen. 
Wir betrachten ein Seil. Es sei rechts an ei- 
nem weit entfernten Punkt befestigt.' 
Das Seil sei fest gespannt. 
Das freie Ende werde harmonisch auf und 
ab bewegt. Infolgedessen breitet sich nach 
rechts eine Störung aus. 
Für die weitere Betrachtung legen wir ein 
zweidimensionales Koordinatensystem zu- 
grunde, bei dem die x-Achse mit der Ruhe- 
lage des Seils zusammenfällt. Die Ablenkung 
eines Punktes des Seils von der Ruhelage er- 
folge in y-Richtung. 

Die allgemeine Funktion f (X, t),  die die 
Auslenkung des Seiles an einem beliebigen 
Ort X zu einer beliebigen Zeit t angibt, nen- 
nen wir Wellenfunktion. 

Wir setzen damit voraus, da13 das Seil praktisch unendlich lang ist. Damit schliehn wir Refle- 
xionen a m  eingespannten Ende aus. 
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Eine Welle wird beschrieben durch folgende Größen: 
Wellenlänge X ist der Abstand zweier benachbarter Maxima, Minima, oder der 
doppelte Abstand zweier Nullstellen. 

Schwingungsdauer T ist die Dauer einer Schwingung an einem konstanten Ort. 

Frequenz U ist die Zahl der Schwingungen pro Sekunde an einem konstanten Ort. 

Es gilt die Beziehung U = $ 
Wellengeschwindigkeit V ist die Geschwindigkeit, mit der sich eine ausgezeichnete 
Stelle der Welle wie ein Maximum, ein Minimum oder eine Nullstelle in X-Richtung 
bewegt. Da wir das Argument einer trigonometrischen Funktion Phase nennen, spre- 
chen wir auch von Phasengeschwindigkeit. 

f(X, t 
Ein Maximum bewegt sich in einer Se- 
kunde um U Wellenlängen nach rechts. Da- 
her gilt für Wellengeschwindigkeit, Frequenz 
und Wellenlänge die Beziehung 

X . W  
v = v . X o d e r v = -  (25.1)  

2?r 

Kreisfrequenz w oder Winkelgeschwindigkeit 
ist gegeben durch die Beziehung W = 27ru. 
Nach dieser Vorbereitung stellen wir die f (W  
Wellenfunktion auf. Der Anfangspunkt des 
Seiles bewege sich gemäß der harmonischen 
Funktion 

f (0, t )  = A cos(w t + PO) 
Wir setzen den Phasenwinkel 90 = 0. Dann f(x,t) 
liegt zur Zeit t = 0 ein Maximum am Ort 
X = 0 vor. Das Maximum laufe mit der Ge- 
schwindigkeit V nach rechts. Nach der Zeit 
t befindet es sich an dem Ort X = vXG t .  ES 
erreicht den Ort X also zur Zeit t = -. 

V 

Für das nach rechts laufende Maximum muß das Argument der Kosinusfunktion 
konstant bleiben. Wir kompensieren dazu den anwachsenden Ausdruck wt, indem 

X 
wir den Ausdruck W -  abziehen. Damit bleibt dann das Argument, also die Phase, 

V 
konstant. Schließlich bezeichnen wir noch die Phase für t = 0 und X = 0 mit PO. 
Damit erhalten wir die Wellenfunktion 
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Wir können das Argument der Wellenfunktion umformen und zwei gleichwertige 
Darstellungen der Wellenfunktion erhalten2 

Wellenfunktion: 

2sx 
f (X, t )  = Acos(wt - - - cp) 

X 
2 s  

f ( x , t )  = Acos-(vt-X-cpi) 
X 

Bisher haben wir eine nach rechts laufende Welle betrachtet. Eine nach links lau- 
fende Welle erhalten wir, wenn wir X durch -X ersetzen. Daraus ergibt sich für die 
nach links laufende Welle die Wellenfunktion 

Kugelwellen 
In der Physik treten häufig räumliche Wellenphänomene auf, die sich von einem 
Ursprung aus nach allen Seiten hin ausbreiten. Hier muß berücksichtigt werden, da8 
die Amplitude der Welle mit wachsendem Abstand abnimmt. Schallwellen können 
durch den Schalldruck p beschrieben werden. p ist die Druckdifferenz gegenüber dem 
Luftdruck der ruhenden Luft. In der Umgebung einer harmonischen Schallwelle wird 
die Amplitudenfunktion für den Luftdruck durch die folgende Funktion dargestellt. 

PO 2sr  p = (;) cos(wt - - - cp) 
X 

r ist der Abstand vom Wellenzentrum. 

25.2 Die Wellengleichung 

Die Beschreibung von Wellen haben wir dadurch gewonnen, daß wir die Wellen- 
funktion den von uns vorausgesetzen Eigenschaften der Wellen anpaßten. 

Einen anderen Zugang gewinnen wir, wenn wir die Entstehungsbedingungen für 
Wellen untersuchen. Um mit einem Minimum an physikalischen Voraussetzungen 
auszukommen, betrachten wir wieder Seilwellen. 

Das Seil wird durch eine Kraft F. gespannt. Die Funktion f (X, t )  beschreibt die 
Auslenkung eines Seilelements dS aus der Gleichgewichtslage am Ort X zur Zeit t. 

21m ersten Faii benutzen wir die Gleichung 25.1. Im zweiten Faii ziehen wir den Ausdruck 
vor die Klammer und setzen weiter ql = &q. 
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Die zur Ruhelage rücktreibende Kraft F, auf das Seilelement ist 

dF, = F, ( X  + dx)  - F, ( X )  

= F. [sin(a + d a )  - sin a ]  

Wir beschränken uns auf kleine Winkel a f(x,t) a+ dcc 
und setzen sin a M a sowie tan a M a 

dF, = Foda (25.2) 

Für die Steigung a gilt: 

6 f  - - - t a n a w a  
62 

Für das Differential d a  gilt schließlich 

b2 f  6a 
da= - d x =  d x  (25.3) 

62 6x2 

Damit wirkt auf das Seilelement die Kraft 
X Jx x+dx X 

b2f  dF, = Fo- . dz 
6x2 

Die Masse des Seilelementes der Länge d x  und der Massendichte p ist pd X .  Damit 
erhält das Bewegungsgesetz - Kraft = Masse mal Beschleunigung - die Form 

Die Bewegungsgleichung für das Seilstück ist daher mit 25.2 und 25.3 

b2f 6 2 f  b2 f F. b2 f 
dFy = pdx . - = FOT dx oder - = - - 

6t2 6x 6t2 p 6x2 

Hier haben wir einen neuen Typ von Gleichungen erhalten. Links steht die zweite 
Ableitung nach der Zeit, rechts steht die zweite Ableitung nach dem Ort. Gleichun- 
gen, in denen Differentialquotienten auftraten, nannten wir Differentialgleichungen. 
Hier treten partielle Ableitungen auf, und dementsprechend heißt dieser Typ von 
Differentialgleichungen partielle Differentialgleichung. 

Die partielle Differentialgleichung einer Funktion f ( X ,  t )  des folgenden Typs heißt 
Wellengleichung3 

In der Fachliteratur wird oft die dreidimensionale Gleichung als Weiiengleichung bezeichnet. 
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Unsere Überlegungen am Seil haben uns über einen speziellen Fall zu diesem Typ 
geführt. Die Gleichung ist hier für das spezielle Beispiel der Seilschwingung und 
Seilwelle hergeleitet. In ihrer allgemeinen Form tritt sie in verschiedenen Bereichen 
der Physik auf - und immer weiß man dann, daß dort Wellenphänomene zu erwarten 
sind.4 

Das Lösen von partiellen Differentialgleichungen ist eines der schwierigsten Pro- 
bleme der mathematischen Physik. Hier gibt es kein dem Exponentialansatz ver- 
gleichbares Verfahren, das bei gewissen Typen gewöhnlicher Differentialgleichungen 
die allgemeine Lösung liefert. 

Aus der allgemeinen Lösung gewöhnlicher Differentialgleichungen konnten durch 
Anpassen an Randbedingungen partikuläre Lösungen bestimmt werden. 

Bei partiellen Differentialgleichungen gibt es keine allgemeine Lösung, sondern nur 
partikuläre Lösungen. Deshalb haben die Randbedingungen bei partiellen Diffe- 
rentialgleichungen einen tiefgreifenden Einfluß auf das Lösungsverfahren. Da die 
Lösungsverfahren sehr kompliziert und aufwendig sind, werden wir uns im wesent- 
lichen auf das Verifizieren von Lösungen beschränken und die Lösung nur für die 
beidseitig eingespannte Saite explizit herleiten. 

Die Wellengleichung hat eine Vielzahl von Lösungen. Welche Lösung gewählt wer- 
den muß, ergibt sich aus den jeweiligen Randbedingungen des Problems. Wir können 
zunächst zeigen, daß jede Funktion der folgenden Form eine Lösung der Wellenglei- 
chung ist:' 

Dabei kann f eine beliebige Funktion sein, die nur zweimal nach X und zweimal 
nach t differenzierbar sein muß. 
Beweis: Wir bezeichnen t = ( V  . t - X) und bilden die Ableitungen: 

Analog gilt: 

'Historische Bemerkung: Maxwell beschrieb den Zusammenhang zwischen elektrischen und 
magnetischen Feldern durch Differentialgleichungen, die in der Form der Wellengleichung geschrie 
ben werden konnten. Das löste die Suche nach elektromagnetischen Welien aus, die dann von 
H.Hertz 1888 experimentell erzeugt und nachgewiesen wurden. 
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Wir setzen das letzte Ergebnis in die vorletzte Gleichung ein und erhalten damit die Wellenglei- 
Aung 

Das heißt, jede Funktion der Gestalt f (X, t) = f (vt - X) erfüllt die Wellengleichung. 

Weiterhin kann man sich durch die gleiche Ableitung davon überzeugen, daß auch die 
Funktion g ( v t  + X )  eine Lösung der Wellengleichung ist. Diese Funktion beschreibt 
eine nach links laufende Welle. Die Wellengleichung wird also sowohl für nach rechts 
laufende wie für nach links laufende Wellen erfüllt. 

Beispiel: Die folgende Funktion beschreibt einen einzelnen nach rechts laufenden 
Wellenberg, es ist eine nach rechts laufende Gaußsche Glockenkurve: 

Die zweite Funktion beschreibt einen nach links laufenden Wellenberg: 

Stehende Wel len  (beidseitig eingespannte Saite)  
Hier soll ein Verfahren angegeben werden, das wenigstens in einigen wichtigen Fällen 
das Auffinden spezieller Lösungen der partiellen Differentialgleichung gestattet. Wir 
gehen wieder aus von der Wellengleichung, die wir für die Saite aufgestellt haben: 

Fo mit v 2  = - 
P 

Wir nehmen nun an, daß die Lösungsfunktion f ( X ,  t )  als Produkt zweier Funktionen 
g ( X )  und h ( t )  geschrieben werden kann: 

Diesen Ansatz nennen wir Produktansatz. Das Lösungsverfahren wird Trennung der  
Variablen genannt. Wir bilden die zweifachen partiellen Ableitungen und setzen sie 
in die Wellengleichung ein: 

g ( X )  h ( t )  = v 2  g " ( X )  . h ( t )  

Wir können umformen 
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Durch diese Umformung haben wir erreicht, daß rechts und links Funktionen jeweils 
nur einer Variablen stehen. Diese Beziehung muß für alle X und alle t aus dem 
Definitionsbereich der beiden Funktionen erfüllt sein. Deshalb können beide Seiten 
nur gleich einer Konstanten sein, die wir mit k bezeichnen. Damit erhalten wir die 
beiden Gleichungen 

Die Konstante k kann sowohl positiv als auch negativ sein. Für positive k erhalten 
wir als eine der unabhängigen Lösungen für die erste Gleichung die Funktion 

h (t) = 2 J k . t  

Dies bedeutet, daß die Funktion mit der Zeit exponentiell anwächst. Diese Lösung 
ist physikalisch nicht sinnvoll. Wir suchen jetzt eine Lösung für negative k. Dann 
können wir setzen -k = K, wobei K nun positiv ist. 

Damit erhalten wir die beiden Differentialgleichungen 

Die allgemeinen Lösungen dieser Differentialgleichungen (siehe Kapitel 9) haben die 
Form 

h (t) = A cos(vfi t)  + B sin(vf i t )  

Als Lösung f (X, t)  ergibt sich 

Diese Lösung muß den Randbedingungen genügen, die für die Schwingungen der 
beidseitig eingespannten Saite gelten (die Saite habe die Länge L): 

f ( O , t ) = O  und f ( L , t ) = O  

Diese Randbedingungen sind äquivalent den Forderungen an die ortsabhängige 
Funktion 

g(0) = 0 und g (L) = 0 

Aus g (0) = 0 folgt C = 0. Aus g (L) = 0 folgt 

s i n ( f i  L) = 0 daraus folgt fi L = n?r (n = ganze Zahl ) 
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Es gibt also beliebig viele Lösungen zu den vorgegebenen Randbedingungen mit 

Die zu Kn gehörende Lösungsfunktion lautet jetzt 

fn (2, t )  = hn (t)gn (X) 
van v?rn an = (An cos(- t )  + B,, sin(- t)) sin(- X) 
L L L 

Die zu der Ortsfunktion gehörende Integrationskonstante haben wir in die Konstan- 
ten An und B, hineingezogen. Die beiden Zeitfunktionen können wir noch zusam- 
menfassen und schreiben 

Als wichtigstes Ergebnis unserer Überlegungen haben wir erhalten, da6 die einge- 
spannte Saite nicht mit beliebiger Kreisfrequenz W schwingen kann, sondern nur mit 
den Frequenzen 

van 
W n  = - 

L 
n= 

Die Schwingungsformen für n = 1, 
n = 2 und n = 3 sind in der Abbildung ge- 

I 
Y 4  

zeichnet. Wir nennen sie Grundschwingung, I 

erste Oberschwingung, zweite Oberschwin- 
1 

gung und so fort. 
Die Kreisfrequenz der Grundschwingung I-I I 

folgt aus dem obigen h (t): I 

v a  
I=W1 

Die Frequenzen der Oberschwingungen ergeben sich als ganzzahlige Vielfache der 
Frequenz der Grundschwingung. 

Die Konstante V ist die Wellenausbreitungsgeschwindigkeit in der gespannten Saite. 
Damit ist die Frequenz festgelegt. Wir erhalten damit als allgemeine Lösung der 
stehenden Wellen: 

Diese Schwingungsform wird als stehende Welle bezeichnet. 
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Zur Vertiefung betrachten wir die zweite Oberschwingung mit n = 3. Jeder Punkt 
der Saite führt eine harmonische Schwingung aus mit der Frequenz 3w und der 
Amplitude 

Die Punkte X - iL mit i = 0, 1 ,  2, 3 befinden sich in Ruhe. "-3 
Sie heißen Knoten oder Schwingungsknoten der stehenden Welle. 

2 j -  1 
Die Punkte X, = - L mit j = 1, 2, 3 schwingen mit der Maximalamplitude. 

3 . 2  
Sie heißen Bäuche oder Schwingungsbäuche der stehenden Welle. 

Die reale Schwingung einer Saite kann je nach Anregungsbedingungen eine belie- 
bige Überlagerung der Grund- und Oberschwingungen sein. Als allgemeine Lösung 
erhalten wir dafür den Ausdruck 

Die Koeffizienten C, und die Phasen cp, werden durch vorgegebene Anfangswerte 
festgelegt. Interessant ist vor allem, daß die Funktion f (X, t )  als unendliche Reihe 
von Kosinus- bzw. Sinusfunktionen dargestellt werden kann. 

Zusammenhang stehender Wellen mit laufenden Wellen 
Den folgenden Ausdruck für eine Schwingung der stehenden Welle können wir mit 
Hilfe der Additionstheoreme ~mforrnen.~ 

nr 
Setzen wir weiter ß = - X  und (Y = nwt - cp,, so erhalten wir 

L 

Diese Umformung zeigt eine überraschendes Ergebnis. Wir finden, daß sich die ste- 
henden Wellen als Überlagerung einer nach rechts laufenden und einer nach links 
laufenden Welle mit jeweils gleicher Amplitude darstellen lassen. 

5Die Additionstheoreme für die Winkeifunktionen lauten bekanntlich 

sin(a + ß) = sin a cos ß + cos a sin ß 

sin(a - ß) = sin a cos ß - cos a sin ß 

Wir addieren beide Gleichungen und dividieren durch 2: 

1 .  sin a cos ß = - [SI,(, + ß) + sin(a - P ) ]  
2 
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25.1 Zwei als unendlich lang gedachte Seile werden am linken Ende mit 
der Amplitude A und der Frequenz V erregt. Geben Sie die Wellen- 
funktion an für 

Seil a) A = 0,5m; Y = 5s-l; A =  1 , 2 m  
Seilb) A = 0 , 2 m ;  v=0 ,8s - l ;  A = 4 , O m  
Ist die Wellengeschwindigkeit für beide Seile gleich? 

25.2 A Verifizieren Sie, daß die Funktion f (x,t)  = e-(vt -z)a die Wellen- 

gleichung $& = vz & erfüllt. 

25.2 B Die gespannte Saite einer Gitarre hat eine Länge von 80 Cm. Die 
Wellengeschwindigkeit V ist 100 m/s. Geben Sie die Grund- 
frequenz der Saite an. 

25.3 a) Geben Sie für die Saite der Gitarre mit der Länge L = 80 cm und 
der Wellengeschwindigkeit 100 m/s die Gleichung für die Grund- 
schwingung und die dritte Oberschwingung an. Die Amplitude der 
Grundschwingung beträgt 2 cm, die der 3. Oberschwingung 1 Cm. 

b) An welchen Stellen befinden sich Knoten? 
C) An welchen Stellen befinden sich Schwingungsbäuche? 

Lösungen 

25.1 Es gibt mehrere gleichwertige Darstellungen, die sich ineinander 
überführen lassen 

Seil a) f (x,t) = 0,5 . cos(2a . 5  . t - - pl )  m 182 

f (x,t)  = O15cos2a(5t - - pl)  m 182 

Seil b) f ( ~ , t ) = 0 , 2 c o s 2 ~ ( 2 ~ . 0 , 8 . t  - q + p l )  m 

Die Wellengeschwindigkeiten sind nicht gleich: 

V ,  = 6 m/s vb = 3,2 m/s 



6f 25.2 A - = -2v (vt - x)e'(Vt-x)2 
6t 

b2f h2f 
Also gilt - = v2- 

6t2 6x2 

V 100os-~ 
Die Grundfrequenz ist vi = - = - = 620s-I 

2L 1 , 6  

25.3 a) f l(x, t)  = 2 .  cos(2a + 625t - 91) sin 

f3(x,t) = 1. cos(3 .27r. 6251 - < p ~ )  . sin (z) cm 

b) Knoten der Grundschwingung: 

xkl = 0 xka = 80 cm 

Knoten der 3. Oberschwingung 

Xk,  = 0 
80 

xk, = - cm 
3 

2 .80  
Xk3  = - 

3 
cm xg, = 80 cm 

C) Schwingungsbäuche 
Grundschwingung X* = 40 cm 

80 
3. Oberschwingung X*, = - cm 

6 
xb2 = 40 cm 
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Anhang 
Partialbruchzerlegung 

Die Partialbriichzerlegung hilft bei der Umformung von Bildf~inktionen, die bei 
Laylace-Transformationen auftreten, sowie bei der Integration von Brüchen. 
Wir betrachten Brüche, bei denen sowohl Zähler wie Nenner Polynome sind: 

Im Folgenden betrachten wir nur echt gebrochenrationale Funktionen. 

Ein Fundamentaltheorem der Algebra besagt, dass eine rationale Funktion in ein 
Produkt von Linearfunktionen aufgelöst werden kann. 

Die X?, sind die reellen oder komplexen Nullstellen der Funktion q(x). 

1. Fall: Die N~illstellen sind reell und einfach. 
Die echt gebrochenrationale Funktion kann in eine Stimme von Partialbrüchen 
zerlegt werden, deren Nenner jeweils einer der Linearfaktoren ist. 

Die Bestimmung der Zähler erfolgt nach der Methode des Koeffizientenvergleichs. 
Dazu wird die Summe der Partialbriiche auf den Hauptnenner gebracht. Damit 
ist die urspriingliche Funktion wieder hergestellt und die Faktoren der einzelnen 
Potenzen von x im Zähler müssen gleich sein. Ein Vergleich dieser Faktoren ergibt 
Bestimmungsgleichungen für die A, B, C, ... M 

Es seien m und n ganze Zahlen, und sowohl a0 und b0 seien ungleich 0.
Derartige Funktionen heißen gebrochenrationale Funktionen.
Ist n > m spricht man von echt gebrochenrationalen Funktionen.
Ist m > n, so spricht man von unecht gebrochen rationalen Funktionen.
Letztere kann man durch Polynomdivision in ein Polynom und eine echt gebro-
chenrationale Funktion umwandeln.
Beispiel:
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Beispiel: 

Die quadratische Gleichung im Nenner hat zwei Nullstellen: X ,  = -2 und X, = 4 .  

Damit setzen wir die Partialbruchzerlegung an und bringen die Partialbrüche 
wieder auf den Hauptnenner: 

Jetzt fassen wir die Potenzen von x zusammen. 

Da beide Zähler gleich sein müssen, erhalten wir: 3x - 5 = x(A + B) + (2B - 4A) 
Dies muss für alle x gelten. Das bedeutet, dass die Faktoren für jede Potenz von 
x auf beiden Seiten gleich sein müssen. Also erhalten wir zwei Bestimmungsglei- 
chungen für A und B 

11 7 Wir lösen auf und erhalten: A = - und B = - 
6 6 

2. Fall: Die Nullstellen sind reell und teilweise mehrfach, also teilweise von der 
Form ( X  - X ) " .  

In diesem da11 werden den mehrfachen Nullstellen Partialbrüche in der folgenden 
Form zugeordnet. 
X, : einfache Nullstelle A +- 

X - X  

X, : zweifache Nullstelle A, I A 2  +- + --- 
X - X .  

( X  - X , ) ~  
A ' A2 

x : n-fache Nullstelle +L+- .......... AI, 
I X - 7  ( X - x . ) ~  ( X  - X.)" 

I I 

Beispiel: 

Der Nenner hat die Nullstellen X ,  = x2 = 2 und x3 = -1 
Die Partialbruchzerlegung ist dann wie folgt anzusetzen: 

Die Bestimmung der Zähler der Partialbrüche erfolgt in gleicher Weise durch die 
oben erläuterte Methode des Koeffizientenvergleichs: 
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Wir multiplizieren aus, fassen nach Potenzen von x zusammen und betrachten 
nur die Zähler

1= x2 [A + B1] + x[–4A – 2B1 + B2] + [4A – 2B1 + B2]

Koeffizientenvergleich für Potenzen von x

Für x2:  0 = A + B1

Für x1:  0 = –4A – B1 + B2

Für x0:  1 = 4A – 2B1 + B2

Daraus folgt: A = 1__
9 B1 = – 1__

9   B2 = 1__
3

Die Partialbruchzerlegung führt zu dem Ergebnis:

f(x) = 1____________  
(x + 1)(x – 2)2  = 1_________

9 . (x + 1)
 + 1_________

3 . (x – 2)
 – 1_________

9 . (x – 2)2

3. Fall: Die Nullstelle ist komplex.
In diesem Fall tritt im Nenner der gebrochen rationalen Funktion ein Ausdruck 
der folgenden Form auf: (x2 + ax + b) . 
Die quadratische Gleichung hat zwei konjugiert komplexe Lösungen, denen zwei 
konjugiert komplexe Nullstellen entsprechen. Der Nenner kann nicht mehr in 
reelle Linearfaktoren aufgeteilt werden. In diesem Fall kann der Bruch in Partial-
brüche zerlegt werden, wenn man ansetzt: 

1___________
(x2 + ax + b)

 = 
A1

․ x + A2___________
(x2 + ax +b)

Die Bestimmung von A1 und A2 erfolgt in bekannter Weise durch Koeffizienten-
vergleich
Beispiel: 

f(x) = 2x2 – 13x + 20  _____________  
x(x2 – 4x +5)

 = A__
x  + 

B1x + B2___________
(x2 + 4x + 5)

 = 
Ax2 – 4xA + 5A + B1x

2 + B2x   ________________________  
x(x2 – 4x + 5)

Koeffizientenvergleich: Wir betrachten nur die Zähler und Vergleichen die Fak-
toren für jede Potenz von x

2x2 – 13x + 20 = x2(A + B1) + x(–4A + B2) + 5A

Für x2:       2 = A + B1

Für x1:  –13 = –4A + B2

Für x0:    20 = 5A

Daraus folgt: A = 4 B1 = –2  B2 = 3 
Damit ist die Partialbruchzerlegung auch für diesen Fall gelöst.
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-- lineare 1-204 
-- lineare mit konstanten Koeffizienten 

11-208 
-- nichtlineare 1-204 
-- Ordnung I-203f 
-- partielle, 11-221 
-- partikuläre Lösung 1-206 
-- spezielle Lösung 1-206 
-- 1. Ordnung I-209f 
-- homogene 1. Ordnung 1-213 
-- inhomogene 1. Ordnung 1-213 
-- 2. Ordnung I-209f 
- -quotient I-114f 
Differentiation 
- nach Parameter 11-68 
- Regeln I-117ff 
-- Tabelle 1-129 
Differenz 
- komplexe Zahlen 1-185 
- -enquotient 1-113 
- vektor I-17f, 1-27 
Dirichlet, Satz von 11-176 
Distributivgesetz 1-40 
Divergenz 
- Integrale 1-154 
- Vektorfeldes 11-95 
- Zahlenfolgen 1-106 

zusammengefaßt. Die erste Zahl gibt den Band an, 
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Dreh- 
- bewegung 1-48 
- matrix 11-131 
- moment 1-42, 1-43 
Drehung 
- Koordinatensystem 11-114, 11-117 
- mehrfache 11-119 
- Matrizenform 11-128, 11-159 
Dreieckschwingung 11-179 

Eigen- 
- wert 11-159f 
- vektor 11-16lf 
Einheits- 
- kreis 1-63 
- matrix 11-130, 11-139 
- vektor 1-23 
Elementar- 
- ereignis 1-238, 1-245, 1-265 
- fehler 1-277 
Elimination der Variablen 11-136 
Entwicklung einer Funktion 1-163 
Ereignis 1-238 
- statistisch unabhängiges 1-245 
- unmögliches 1-239, 1-243 
- raum 1-238, 1-239 
Eulersche 
- Formel 1-189, 1-191 
- Zahl 1-84, 1-105 
Experiment 1-238, 1-264 
Exponent 1-82, 1-86 
Exponential- 
- ansatz 1-206 
- funktion 1-84, 1-99, 1-122, 1-172 
- Entwicklung in Potenzreihe 1-167 

Fakultät 1-248 
Fehler 
- Abschätzung bei Reihen 1-171 
- -balken 1-256 
- systematischer 1-270 
- von Mittelwerten 1-275 
- zufälliger 1-270 
- fortpflanzung 1-280 
Feld, elektrisches 11-92 
- konservatives 11-107 
- radialsymmetrisches 11-lgf, 11-73f, 

87, 11-92 
- ringförmiges 11-74 
- skalares 11-7, 11-14 
- vektorielles 11-16 

Fitting 1-282 
Fläche 
- geschlossene 11-84 
- orientierte 11-81 
- -berechnung I-143f 
Flächenelement 11-48 
- differentielles 11-90 
- vektorielles 11-84 
Flächenproblem 1-136 
Flächenvektor 11-86, 11-89 
Flächenfunktion I-138f 
Folge I-103f 
- Null- 1-104 
- Zahlen- 1-104 
- Grenzwert 1-104 
Fourier- 
- analyse 11-182 
- integral 11-188ff 
- reihe 11-173f 
-- Koeffizienten 11-176, 11-181 
-- spektrale Darstellung 11-181 
- synthese 11-182 
- transformation 11-19Of 
Frequenz 1-69 
- -spektrum 11-181 
Funktion 1-53, 1-294 
- gerade 1-71, 11-176 
- hyperbolische 11-66 
- inverse I-94f 
- mehrerer Variablen 11-7ff 
- mittelbare 1-99 
- monoton steigende 1-94 
- periodische 1-66, 11-172 
- stetige 1-108 
- ungerade 1-71, 11-176 
- unstetige 1-109 
- -sterm 1-55 

Galtonsches Brett 1-259 
Gau& 
- -Jordan Elimination 11-138, 11-141, II- 

155 
- sches Eliminationsverfahren 11-136 
- sche Glockenkurve 1-177, 11-196 
- sches Gesetz 11-92 
- scher Integralsatz 11-99 

11- - Normalverteilungskurve 1-278 
- Zahlenebene 1-186 
Gegen- 
- kathete 1-65 
- vektor 1-17 
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Geometrische 
- Addition 1-16 
- Reihe 1-169 
- Subtraktion 1-18 
Gleichungen 
- charakteristische I-209f 
-- Matrix 11-163 
Gleichungssystem 
- lineares 11-136 
-- abhängiges 11-142 
-- unabhängiges 11-142 
-- homogenes 11-144, 11-154 
-- inhomogenes 11-144, 11-154 
Gradient 11-27, 11-34, 11-37, 11-39, 11-108 
Gravitationskraft 11-19 
Gültigkeitsbereich 1-168 
Gerade 1-134 
- Gleichung 1-57 
- Parameterdarstellung 11-65 
- Steigung 1-58 
Geschwindigkeit 1-115, 1-145 
Gewicht von Meßwerten 1-279 
Gradmaß 1-63 
Graph 1-56 
Gravitation 1-256 
- -sfeld 1-155 
Grenzübergang I-107,I-119 
Grenzwert I-103f, 1-137 
- -bildung 1-107 
- Funktion 1-106 
- Reihe 1-111 
- Zahlenfolge 1-104 
Grenzfall, aperiodischer 1-228 
Grundgesamtheit 1-273 
Grundintegral 1-146 

Hauptdiagonale einer Matrix 11-130 
Hauptsatz der Differentialgleichung und In- 

tegralrechnung 1-139 
Häufigkeit, relative 1-241, 1-272 
Halbwertzeit 1-85 
harmonischer Oszillator 1-224 
- gedämpfter 1-226 
- getriebener 1-228 
- ungedämpfter 1-224 
Hebelgesetz 1-42, 1-46 
Hilfsfunktion 1-148 
Hochzahl 1-82, 1-88 
Höhen- 
- formel, barometrische 1-256, 11-46 
- linie 11-31, 11-35 

Hyperbel 11-66 
Hyperbolische Funktionen I-92f 
Hyperbolischer 
- Kosinus 1-92 
- Sinus 1-92 
- Kotangens 1-93 
- Tangens 1-93 
Hypotenuse 1-65 

Imaginärteil 1-184, I-188f 
Integral 
- äußeres 11-45 
- bestimmtes I-136f 
- inneres 11-45 
- mehrfaches 11-43ff 
- Oberlächen- 11-80ff 
- Produkt 11-47 
- Rechenregeln 1-150 
- unbestimmtes I-145f 
- uneigentliches 1-153 
- TabeUe 1-157 
Integralrechnung 
- Hauptsatz 1-138 
- Mittelwertsatz 1-153 
Integralsatz von Gauß 11-98 
Integrand 1-137 
Integration 
- gliedweise 1-164 
- partielle 1-149, 1-156 
- über Potenzreihenentwicklung 1-177 
- durch Substitution 1-147, 1-156 
- Grenze 1-137, 1-150 
- Konstante 1-205, 1-213, 1-219 
- Regeln, Tabelle der 1-156 
- Variable 1-137 
Interpolation 1-57 
Intervallgrenze 1-138 
Isobaren 11-15 

Kettenregel I-119f, 1-148 
Kippschwingungen 11-179 
Koeffizienten-Matrix 11-139 
Kombination 1-249 
Kommutativgesetz 1-17, 1-40 
Komplexe Zahl I-183f, 1-190 
- Argument 1-187 
- Betrag 1-187 
- Division 1-193 
- Exponentialform 1-189 
- Imaginärteil 1-184 
- Multiplikation 1-193 
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- Periodizität 1-195 
- Potenz 1-194 
- Realteil 1-184 
- Schreibweise mit Winkelfunktionen 

187 
- Wurzel 1-194 
Komponente 1-20 
- -ndarstellung von Vektoren 1-22 
Konfidenzintervall 1-278 
konjugiert komplexe Zahl 1-184, 1-190 
Konvergenz 
- Integral 1-154 
- Zahlenfolge 1-104 
- -bereich einer Potenzreihe 1-168 
- -radius 1-168 
Koordinatensystem 1-13 
- Drehung 11-114, 11-117f 
-- Matrizenform 11-128 
-- mehrfache 11-119 
- kartesisches 1-20 
Koordinatentransformation 11-112 
- Verschiebung 11-115 
Korrelation 1-285 
- -skoeffizient 1-285 
Kosinus- 
- funktion 1-143 
- satz 1-40 
Kotangens 1-73 
Kraft- 
- feld 11-71 
- komponente 1-38 
Kreis 11-64 
- -bewegung 11-64, 11-69 
- -flache 11-58 
- frequenz 1-69 
Kugelkoordinaten 11-50 
Kugelschale 11-12, 11-39 
Kurvenschar 1-135 

Laplace-Transformationen 11-199ff 
- Tabelle 11-213 
Ladungsdichte 11-95 
Laufzahl 1-110 
Limes 1-107 
Linearitätssatz 11-204 
Linearkombination 11-38, 11-150 
Linien 
- gleicher Höhe 11-12, 11-31 
- -integral 11-63, 11-71, 11-72, 11-99 
Losung einer Differentialgleichung 
- allgemeine 1-205 

- partikuläre 1-206 
- spezielle 1-206 
Logarithmus I-86ff 

I- - dekadischer 1-89 
- natürlicher 1-89 
Logarithmusfunktion 1-91, 1-99 
Luftdruck 1-174 

Maßeinheit 1-39 
Mathematisches Modell 1-53 
Matrix 11-112, 11-123f 
- -elemente 11-123, 11-125 
- inverse 11-133, 11-139, 11-140 
- orthogonale 11-131 
- quadratische 11-146 
-Rang 11-151 
- schiefsymmetrische 11-132 
- singuläre 11-132 
- Spalte 11-123 
- Spur 11-132 
- symmetrische 11-132 
- -gleichung 11-139 
- Zeile 11-123 
Matrizenmultiplikation 11-139 
Matrizenrechnung 11-123ff 
- erweiterte 11-140 
Maximum einer Funktion I-126f 
- lokales 1-126 
Median 1-271 
Mehrfachintegral 11-44 
- konstante Integrationsgrenzen 11-44 
- nicht konstante Integrationsgrenzen II- 

55 
Menge 1-292 
- Durchschnitt 1-293 
- Vereinigung 1-293 
Meridian 11-50 
Meßfehler 1-237, 1-277 
Meßgenauigkeit 1-270 
Methode der kleinsten Quadrate 1-281 
Minimum einer Funktion I-126f 
- lokales 1-126 
Mittelbare Funktion 1-124 
Mittelwert 1-257, I-271f 
- arithmetischer 1-257, 1-271 
- beste Schätzung 1-274 
- diskreten Zufallsvariablen 1-258 
- Fehler 1-275 
-- mittlerer 1-276 
- gewogener 1-279 
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- kontinuierliche Zufaiisvariable 1-258, I- 
262 

- Stichprobe 1-276 
Mittelwertsatz der Integralrechnung 1-153 
Momentangeschwindigkeit 1-115 

Nabla-Operator 11-36, 11-97, 11-104 
Näherung 1-164 
- -sfunktion 1-173 
- -polynom 1-169 
-- n-ten Grades 1-169 
-- Tabelle 1-176 
Newtonsche Bewegungsgleichung 1-202, I- 

222, 1-228 
Niveauflächen 11-37, 11-39 
Normalverteilung I-259f, 1-277 
- Mittelwert I-262f 
- Streuung 1-264 
Normierungsbedingung für Wahrscheinlich- 

keiten 1-243, 1-262 
Nullfolge 1-104 
Nullmatrix 11-130 
Nullstelle 1-61 
Nullvektor 1-18, 1-28 
Nulllösung 11-144 

Oberflächenintegral 11-80ff, 11-95 
Obersumme 1-137 
Ordinate 1-19 
Originalfunktion 11-199 
Ortsvektor 1-22, 1-43, 11-63, 11-115 
Oszillator 
- gedämpfter 1-226 
- getriebener 1-228 
- harmonischer 1-224 
- ungedämpfter 1-224 

Parabel 1-61 
Parallelverschiebung 1-14 
Parameter 1-191 
- -darstellung 11-63 
-- Gerade 11-65 
-- Hyperbel 11-66 
-- Kreis 11-66 
-- Kreisbewegung 11-64, 11-69 
-- Schraubenlinie 11-65 
-- Zykloide 11-68 

Partielle 
- Ableitung 11-27 
- Integration 1-149 
Periode 1-66 

- Funktion 1-66 
- komplexe Zahl 1-195 
Periodizität 1-195 
Permutation I-247f, 1-265 
Phase 11-218 
- trigonometrischen Funktion 1-72 
- -ngeschwindigkeit 11-218 
Polarkoordinaten 11-47 
PoIwinkel 11-50 
Pole einer Funktion 1-60 
Polynom 1-173 
- charakteristisches 11-164 
Postmultiplikation 11-133 
Potential 11-106 
Potenz I-82f 
- Basis 1-82 
- Exponent 1-82 
Potenzreihe I-163ff 
- Koeffizienten 1-166 
- unendliche 1-163 
Prämultiplikation 11-133 
Produkt 
- äußeres 1-44 
- kartesisches 1-294 
- inneres 1-38 
- komplexe Zahlen 1-185, 1-193 
- matrix 11-125 
- -Moment-Korrelation 1-286 
- -rege1 1-118 
Projektion I-19f, 1-38 
Punktverschiebung 1-13 

Quadrant 1-19 
Quadratische Gleichung 1-295 
Quelle eines Feldes 11-95 
- ndichte 11-95 
Quotient komplexer Zahlen 1-185 
Quotientenregel 1-118, 1-124 

Radialvektor 11-20 
Radiant 1-64 
Radikand 1-184, 1-211 
Randbedingung 1-135, 1-206, 1-221, 1-223 
Randwertprobleme 1-221, 1-222 
Realteil 1-184, 1-188, 1-190, 1-192, 1-210 
Rang e. Matrix, Determinante I1 - 15 1 
Regressionsgerade I - 283 
Regressionskoeffizient I - 283 
Reihe 1-109 
- geometrische 1-111, 1-163 
- unendliche 1-110 
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Relation 1-294 
Relative Häufigkeit 1-272 
Resonanzfrequenz 1-230 
Restglied von Lagrange 1-171 
Resultante 1-17 
Richtung 1-13 
Rotation eines Vektorfeldes 11-95,II-99, II- 

102 
Rotationssymmetrie 11-50 
Rücksubstitution 1-148 

Sarrussche Regel 11-151 
Sattelpunkt 1-127 
Schnitt 
- ebenen 11-27 
- kurven 11-9, 11-28 
Schraubenlinie 11-65 
Schwingung 
- angefachte 1-192 
- erzwungene 1-231 
- gedämpfte 1-192, 1-231 
- Grund- 11-224 
- Ober- 11-224 
-- ungedämpfte 1-231 
- -sbauch 11-225 
- -sdauer 11-218 
- -sknoten 11-225 
Seilwelle 11-220 
Sekante 1-112 
- Steigung 1-113 
Sinusfunktiou 1-64, 1-71, 1-170 
- Amplitude 1-67 
- Entwicklung in Potenzreihe 1-167 
- Periode 1-68 
- Phase 1-70 
Senke eines Feldes 11-95 
Skalar 1-13, 1-15 
- -produkt 1-37 
-- Komponentendarstellung 1-41 
Spaltenvektoren 11-139 
Stamm 
- -funktion 1-134, 1-145 
- integral 1-146 
Standardabweichung 1-272, 1-276, 1-278 
- beste Schätzung der 1-274 
stationäre Lösung 1-229 
statistisch unabhängiges Ereignis 1-245 
Steigung 1-112, 1-125 
- Gerade 1-58 
- Funktion 1-112 

- Stelle, charakteristische einer Fiinktion 
1-60, 1-126 

Stetigkeit 1-108 
Stichprobe 1-273 
- Fehler 1-276, 1-278 
Stokes Integralsatz von 11-105 
Streuung 1-264, 1-272 
Stromdichte 11-81 
Substitution 1-147, 1-148, 1-151 
Summe 
- komplexe Zahlen 1-185 
- geometrischen Reihe 1-111 
- Vektor 1-17, 1-26 
- Zeichen 1-110 
Summenregel 1-117 
Superposition 1-74, 1-75 

Tangens 1-73 
Tangente 1-112, 1-116 
- Steigung 1-112 
Tangentenproblem 1-115 
Taylorreihe 1-163, 11-172 
- Entwicklung in eine I-168f 
Trägheitsmoment 11-53 
Transformationsgleichung 
- komplexe Zahlen 1-187 
- Koordinatensysteme 11-47f, 11-120 
Translationen 11-114 
Transponierte Matrix 11-130 
Trigonometrische Funktionen I-63ff 

Umkehr- 
- funktion 1-94, 11-67 
- integral 11-201 
Unterdeterminante 11-147, 11-151 

Variable 
- abhängige 1-55 
- Separation I-202f 
- unabhängige I-55,I-117 
Varianz I-271ff 
- beste Schätzung 1-274 
- erklärte 1-286 
- des Mittelwertes 1-276 
Variation 1-250 
- der Konstanten I-2llff 
Vektor 1-13, 1-16 
- Addition 1-16 
- Betrag 1-29 
- Differenz 1-27 
Vektorfeld 11-15f, 11-82, 11-95 
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- homogenes 11-19, 11-85, 11-97 
- inhomogenes 11-91 
- ringförmiges 11-21 
- wirbelfreies 11-107 
- Divergenz 11-96 
- Rotation 11-102 
Vektorfluß 11-80 
- gebundener 1-22 
- Multiplikation 
-- Skalar 1-28 
- Subtraktion 1-17 
Vektorprodukt I-37ff, 11-152 
Verbindungsvektor 1-29 
Verschiebungssatz 11- 202 
Verbund- 
- ereignis I-244f 
- -wahrscheinlichkeit 1-244, 1-265 
Vereinigungsmenge 1-242 
Verifizierungsprinzip 1-145 
Verschiebungsvektor 1-14 
Verteilung, kontinuierliche 1-276 
Vertrauensintervall 1-278, 1-279 
Volumen 11-53 
Volumenelement in 
- Kugelkoordinaten 11-51 
- Polarkoordinaten 1-48 
- Zylinderkoordinaten 11-49 

Wachstum 1-84 
Wahrscheinlichkeit 1-238, 1-242, 1-264 
- klassische Definition 1-240 
- statistische Definition I-240f 
- Normierungsbedingung 1-243 
Wahrscheinlichkeitsdichte I-255f, 1-277 
Wahrscheinlichkeitsverteilung 1-256, 1-262 
- diskrete 1-252 
- kontinuierliche 1-252, 1-254 
Welle 
- harmonische 11-217 
- Kugel- 11-219 
- stehende 11-222 

Wellenfunktion 11-217f 
Wellengeschwindigkeit 11-218 
Wellengleichung 11-220 
Wellenlänge 11-218 
Wendepunkt 1-127 
Werte- 
- bereich 1-54 
- matrix 11-8 
- paar 1-54 
- vorrat 1-54, 11-9 
Winkel 1-63 
Winkelfunktion 1-63 
Winkelgeschwindigkeit 11-64, 11-218 
Wirbel- 
- feld 11-101 
- freiheit 11-100 
Wirkungslinie 1-22 
Wurf, waagerechter 11-63, 11-69 

Zahl 
- imaginäre 1-183 
- konjugiert komplexe 1-184 
- reelle 1-183 
Zahlenebene 
- Gaußsche 1-186 
Zahlenfolge 1-103, 1-109 
- divergente 1-106 
- Grenzwert 1-104 
- konvergente 1-106 
Zentripetalbeschleunigung 11-70 
Zerfallskonstante 1-85 
Zufallsexperiment 1-238, 1-254 
Zufallsfehler 1-270, 1-271, 1-277 
Zufallsvariable 
- diskrete 1-252 
- kontinuierliche 1-257 
Zylinderkoordinaten 11-49 
Zylindersymmetrie 11-49 
Zykloide 11-68 
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