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Vorwort zur 15. Auflage

Die Benutzung und Bearbeitung der Leitprogramme, insbesondere der neuen
Kapitel, ist auf der beiliegenden CD wesentlich verbessertund erleichtert worden.
Weiter sind dank der Hilfe aufmerksamer Leser noch immer verbliebene Fehler
entdeckt und jetzt korrigiert.

Frankfurt am Main, 2008 Klaus Weltner

Vorwort zur 14. Auflage

Neben vielen Verbesserungen im Detail sind neu hinzugefiigt die bisher noch
fehlenden Leitprogramme fiir die Kapitel ,,Divergenz, Rotation und Potenzial
»Fourierreihen’, ,,Fourier-Integrale®, ,,Laplace-Transformationen® und ,,Wellen-
gleichungen®.

Damit liegt nunmebhr fiir jedes Kapitel eine Lern- und Arbeitshilfe vor, deren
Methodik sich fiir Studienanfinger vielfach bewihrt hat.

Frankfurt am Main, 2007 Klaus Weltner

Aus dem Vorwort zur 1. Auflage

Lehrbuch und Leitprogramme ,,Mathematik fiir Physiker” sind in erster Linie
fir Studienanfinger des ersten und zweiten Semesters geschrieben. Es werden
diejenigen Mathematikkenntnisse vermitteln, die fiir das Grundstudium der Ex-
perimentalphysik benétigt werden. Das Lehrbuch kann unabhingig von den
Leitprogrammen benutzt werden. Die Leitprogramme sind neuartige Studienhil-
fen und haben nur Sinn im Zusammenhang mit dem Lehrbuch. Leitprogramme
eignen sich vor allem zur Unterstiitzung des Selbststudiums, zur Vorbereitung
des Studiums und als Grundlage fiir einfiilhrende mathematische Ergdnzungsver-
anstaltungen neben der Experimentalphysik-Vorlesung.

Lehrbuch und Leitprogramme wurden im reguldren Studiengang in drei Stu-
dienjahren verwendet und aufgrund der Erfahrungen und Riickmeldungen der
Studenten griindlich revidiert. Besonders bei der Entwicklung der Leitprogram-
me waren die Anregungen der Studenten hilfreich.

Aus dem Vorwort zur 8. Auflage

Neu geschrieben ist das Kapitel ,,Gleichungssysteme®. Hier stehen jetzt die
praktischen Eliminationsverfahren im Vordergrund. Auch das Kapitel ,,Matrizen®
ist erheblich erweitert.

In einer iiberarbeiteten und erweiterten Form sind Lehrbuch und Leitpro-
gramme inzwischen ins Englische iibersetzt.

Frankfurt am Main, 1980 Klaus Weltner



Aus dem Vorwort zur 10. Auflage

Die Lehrbiicher sind griindlich iiberarbeitet, erweitert und neu gegliedert wor-
den. Die Kapitel ,,Vektoren* stehen jetzt am Anfang, weil sie sofort gebraucht
werden. Aus dem gleichen Grund ist das Kapitel ,,Fehlerrechnung® in den ersten
Band iibernommen. Neu hinzugekommen sind im zweiten Band Einfithrun-
gen in die Themen ,,Eigenwerte®, ,,Laplace-Transformationen* und ,,Fourier-
Transformationen®.

In zunehmendem Mafle konnen heute Computerprogramme wie ,,Mathema-
tica“, ,,Derive“, ,,Maple* u.a. genutzt werden, um Gleichungen zu l6sen, Um-
formungen vorzunehmen, Funktionen graphisch darzustellen, zu integrieren und
vielfiltige Rechnungen auszufiihren. Damit wird Mathematik als Hilfsmittel zu-
ginglicher und handhabbarer. Voraussetzung allerdings bleibt, da man den Sinn
der mathematischen Prozeduren verstanden hat, um sie sachgerecht zu nutzen.
Computer kénnen viel helfen. Eins kénnen sie nicht, das Studium der Mathematik
ersetzen.

Lehrbuch und Leitprogramme haben nicht nur Studienanfingern der Physik,
sondern auch Studienanfingern der Ingenieurwissenschaften und der anderen
Naturwissenschaften geholfen, die Schwierigkeiten der ersten Semester zu mei-
stern. Dennoch ist der Titel nicht gedndert worden in ,,Mathematik fiir Physiker,
Ingenieure und Naturwissenschaftler. Die fiir dieses Werk charakteristische
Verbindung von Lehrbuch und Leitprogramm ist mit dem Titel ,,Mathematik
fiir Physiker“ verkniipft und bekannt geworden, und daher wird er beibehalten.

Frankfurt am Main, 1994 Klaus Weltner

Vorwort zur 12. Auflage

Die fiir Studienanfinger geschriebene ,,Mathematik fiir Physiker wird in Zu-
kunft vom Springer-Verlag betreut. Erhalten bleibt dabei die Verbindung eines
akademischen Lehrbuches mit einer detaillierten Studienunterstiitzung. Diese
Kombination hat bereits vielen Studienanfingern geholfen, sich die Inhalte des
Lehrbuches selbstindig zu erarbeiten. Dabei haben sie dariiber hinaus die Fi-
higkeit weiter entwickelt, selbstindig und autonom anhand von Lehrbiichern zu
studieren.

Neuist, dass die Studienunterstiitzungen, die urspriinglich als Biicher vorlagen,
nunmehr auf einer CD-ROM angeboten werden. Das erleichtert den Zugriff
und kommt dem Preis zugute. Weiter sind fiir die ersten sieben Kapitel —
ebenfalls auf CD — interaktive Studienunterstiitzungen entwickelt, mit denen die
Ubungsméglichkeiten betrachtlich erweitert und an die individuellen Bediirfnisse
der Studierenden angepaf}t werden. Im Sinne eines mathematischen Labors wird
dabei der Umgang mit den Graphen der wichtigsten Funktionen geiibt.

Hier wird ein neuer Weg fiir die Nutzung von akademischen Lehrbiichern
beschritten, dessen Methodik iiber diesen speziellen Fall hinaus weist. Die elek-
tronischen Medien helfen dem Studienanfinger, sich neue Inhalte anhand des
Lehrbuches zu erarbeiten. Das Lehrbuch bleibt dabei in spiteren Studienphasen
und nach dem Studium eine unverzichtbare Informationsquelle, auf die nach
Bedarf zuriickgegriffen wird. Nach meiner Auffassung kénnen damit in Zukunft
die bedeutsame Rolle akademischer Standardlehrbiicher als Informationsquelle
und Wissensspeicher stabilisiert und gleichzeitig die Lernbedingungen der Stu-
dienanfinger verbessert werden.

Frankfurt am Main, 2001 Klaus Weltner
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13 Funktionen mehrerer Variablen,

skalare Felder und Vektorfelder
13.1 Einleitung

In den meisten Gesetzen der Physik hingt eine physikalische Grofe von mehr als
einer anderen physikalischen Gréfe ab.

1. Beispiel: An einem elektrischen Verbraucher mit dem Widerstand R liege die
Spannung U.
Wie grof8 ist der Strom I, der durch den R
Widerstand fliefit?
Nach dem Ohmschen Gesetz gilt 1
I= R
Die Starke des elektrischen Stromes hangt also ab von dem Widerstand des Ver-
brauchers und der Spannung, die am Verbraucher liegt.

2. Beispiel: Ein Gas ist in einem Zylinder mit dem Volumen V' eingeschlossen.
Der Gasdruck auf die Zylinderwande und den
Kolben sei p. Das Gas habe die Tempera-

tur 7.!Dann gilt fiir die Stoffmenge ein Mol® ﬂ
des Gases die folgende Beziehung zwischen

Volumen, Druck und Temperatur:
pV=R.-T 4
Dabei bedeutet R die Gaskonstante — P vrT p—
p
J
= 1
k=83 mol - K

Die obige Gleichung kénnen wir auch schreiben als

T
p=R-3

Das heif}t aber, der Druck p eines Gases hangt von zwei Grofen ab:
von seinem Volumen V' und seiner Temperatur 7'. Wir sagen auch, p ist eine Funktion

von V und T und schreiben:

p=p(V\T)

1Hier ist die absolute Temperatur gemeint. Sie wird in Kelvin gemessen.
2In der Thermodynamik und in der Chemie wird in fast allen theoretischen Betrachtungen
die Masse oder Stoffmenge in Mol angegeben. Ein Mol enthilt 6,02 - 10> Molekiile.
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13.2 Der Begriff der Funktion mehrerer Variablen

Wir 16sen wir uns jetzt von der physikalischen Bedeutung der Gleichungen und
betrachten nur den mathematischen und
geometrischen Sachverhalt. Fiir die Funk-
tion zweier Variablen ist folgende Schreib- yA
weise iblich

z=f(z,y)
. . . . . y=f)
Die Funktion einer Variablen hat die geo-
metrische Bedeutung einer Kurve in der z-

y-Ebene. /
Die geometrische Bedeutung einer Funk-
tion zweier Variablen ist eine Flache im
Raum.

Das geometrische Bild der Funktion z = f(z,y) konnen wir auf zwei Arten gewin-
nen.

Ermittlung der Fliche der Funktion z = f(x,y) - Wertematriz.
Wir wihlen uns einen Punkt P = (z,y) in

der z-y-Ebene aus. Das ist ein Wertepaar y
der unabhingigen Variablen, Diese beiden

Werte setzen wir in die gegebene Funktion

ein

=Y

I

flx,y)

z=f (.’B ) y)
Der dadurch bestimmte Funktionswert z
wird senkrecht iiber P’ = (z,y) als Punkt
im dreidimensionalen Raum aufgetragen. @ 7 _ _ _ _ _ g

R [ 1Y)

<Y

Dieses Verfahren fithren wir systematisch
fiir ein Netz von Wertepaaren durch, das
die z-y-Ebene iiberdeckt. Der gewohnten
Wertetabelle bei Funktionen einer Varia- Ce-ce-se—ze
blen entspricht jetzt bei zwei Variablen v
eine Wertematrix.

Y
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8

—
N
w

y

1 0

Fiir die Funktion z = m ist 1
rechts die Wertematrix angegeben. 2
3

[»—ﬂ Sl W= )

'5[-— [2,{ [ O [
:l-—- ©l~ o~ o)
o= == 2= Sl

—
[

Die Menge aller Wertepaare (z,y), fiir
die die Funktion z = f(z,y) defi-
niert ist, heit Definitionsbereich. Die
Menge der zugehérigen Funktionswerte
heifit Wertevorrat. Bei der Funktion
y = f(z) wihlten wir einen Wert fiir
z und erhielten einen Wert fiir y gema8
der Funktionsgleichung y = f (). Jetzt

miissen wir zwei Werte, namlich je ei- 1

nen Wert fiir £ und einen fiir y wahlen, 2
Y 3/7/ o« / Nz

um ihn in die Funktion f(z,y) einzu-
setzen. 3
Wenn wir fiir alle Wertepaare (z, y), fiir die wir Funktionswerte z berechnen kénnen,
die berechneten Funktionswerte als Hohe iiber den Wertepaaren auftragen, erhalten
wir eine Flache im dreidimensionalen Raum.

Ermittlung der Fliche der Funktion z = f (z,y) - Schnittkurven

Wir betrachten wieder die Funktion z = f(z,y) = WE‘%W Dabei diirfen = und y
alle Werte annehmen, d.h. der Definitionsbereich ist die gesamte z-y-Ebene. Zwei
Eigenschaften der Funktion kénnen wir leicht ermitteln.

1. Fiir £ = 0 und y = 0 nimmt der Nenner 1+ z2 +y? seinen kleinsten Wert
an. Die Fliche (Funktion) hat dort also ein Maximum. Es ist f(0,0) = 1.

2. Fiir ¢ — oo oder y — oo wird der Nenner beliebig gro88. In grofier Entfernung
vom Koordinatenursprung geht z also gegen Null.

Diese beiden Eigenschaften reichen zum Skizzieren der Flache noch nicht aus. Der
Verlauf von Flichen ist komplexer und schwieriger zu ermitteln als der von Kurven.
Ein zutreffendes Bild erhalten wir durch ein systematisches Vorgehen, bei dem wir
die komplexe Aufgabe in leichtere Teilaufgaben auflésen. Der Grundgedanke ist,
daf wir den EinfluB der beiden Variablen auf den Flachenverlauf getrennt unter-
suchen, indem wir zunichst einer der beiden Variablen einen festen Wert geben.
Wir setzen also eine Variable konstant. Wird y konstant gesetzt, bekommen wir die
Fliachenkurven iiber Parallelen zur z-Achse. Fiir y = 0 erhilt man z.B. die Kurve
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Dies ist die Schnittkurve zwischen A
der Fliche z = f(z,y)
und der z-z-Ebene.

x

Fiir einen beliebigen y-Wert (y = yo) erhélt man die Kurve

(2)=
2(z) = —————
1+y3+ 22
Dies ist die Schnittkurve zwi- )

schen der Fliche z = f(z,y)
und der Ebene parallel zur z-
z-Ebene, die um den Wert yo
aus dem Koordinatenursprung in
Richtung der y-Achse verschoben
wurde.

Das Verfahren kann fiir weitere
y-Werte wiederholt werden, um
so ein Bild der Fliche zu gewin- <
nen.

Yo
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Analog konnen wir eine zweite
Gruppe von Kurven angeben, die
wir erhalten, wenn wir z kon-
stant lassen.

Beginnen wir mit £ = 0. Dann
erhalten wir die Funktion

1
z(y) = W
Fiir ein beliebiges z = z erhal-
ten wir die Funktion

1

‘W= gy ’

Bringen wir beide Kurventypen
in einer Zeichnung zusammen,
dann erhalten wir das Bild eines
»Hiigels“.

z

Beide Verfahren, die Fliche zu gewinnen — entweder Aufstellung einer Wertematrix
oder Bestimmung von Schnittkurven iiber Parallelen zur z- oder y-Achse — hiangen
zusammen. Die Werte der Matrix in einer Zeile oder in einer Spalte sind jeweils die
Wertetabellen fiir die Schnittkurven.



12 13 Funktionen mehrerer Variablen, skalare Felder und Vektorfelder

Ermittlung der Fliche der Funktion z = f(z,y) - Héhenlinien

Schliefilich kénnen wir ein Bild der Flache gewinnen, wenn wir Linten gleicher Héhe
betrachten.

Linien gleicher Héhe sind Kur-

ven auf der Flache, die eine kon- ¥

stante Entfernung von der z-y-

Ebene haben. Es sind Schnitt-

kurven mit einer Ebene parallel

zur z-y-Ebene in der Hohe 2.

Die Gleichung der Héhenlinien

ist zg = f(z,y). Fiir unser Bei-

spiel erhalten wir A ——— = - —-

Z20 = . Umgeformt: -

= (5)

Die Hohenlinien sind in unserem Fall Kreise mit dem Radius y/ — — 1. Die Funktion
20

ist nur fiir Werte 29 < 1 definiert.

Ermittlung der Funktion zu einer Fliche

Wir konnen die Problemstellung auch umkehren. Bisher wurde zu einer gegebe-

nen analytischen Funktion die zugehérige Flache gesucht. Jetzt suchen wir zu einer

gegebenen Fliache den zugehérigen Rechenausdruck.

Eine Kugel mit dem Radius R sei so in das Koordinatensystem gelegt, da8 der
Koordinatenursprung mit dem Kugelmittelpunkt zusammenfillt. Diesmal gehen wir
von einer bestimmten Fliche aus und suchen die Gleichung fiir denjenigen Teil der
Kugeloberflache, der oberhalb der z-y-Ebene liegt.

Aus der Skizze lesen wir ab
(Pythagoras):

R2= 22 4 ¢2
Weiter gilt

i

02=:c2+y2

Einsetzen ergibt
R? =24 4% + 22
Auflésen nach z:

21/2=:i: Rz—xz—yz

Die positive Wurzel ergibt die Kugelschale oberhalb der z-y-Ebene.

R2_z2_y2
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Die negative Wurzel ergibt die Kugelschale unterhalb der z-y-Ebene.
29 = —\/R%2—z2 —y?

Definitionsbereich: —~-R <z < +R; —-R<y<+R; z2+y*<R?

Nachdem wir uns eine anschauliche Vorstellung von der Funktion z = f(z,y) mit
zwei Variablen erarbeitet haben, geben wir abschlieBend die formale Definition.

Definition: Eine Zuordnungsvorschrift f(z,y) heifit Funktion zweier Varia-
blen, wenn jedem Wertepaar (z,y) aus einem Definitionsbereich
mittels dieser Vorschrift genau ein Wert einer Grofle z zugeordnet
wird.

Symbolisch:

z=f(z,y) oder (z,y) L. (13.1)

Tragen wir die Punkte (z,y,z = f(z,y)) in ein dreidimensionales Koordinatensy-
stem ein, dann erhalten wir als Graph der Funktion z = f (z,y) iiber dem Defini-
tionsbereich D eine Fliche F' im dreidimensionalen Raum.

<Y

x
So wie es Funktionen zweier Variablen gibt, z = f(z,y), die jedem Punkt aus
einem Bereich der z-y-Ebene einen Wert z zuordnen, kann man Funktionen mit
drei Variablen definieren.
Beispiel: u = f (z,y,2) =223+ 32+ Ty
Eine anschauliche geometrische Bedeutung 148t sich im Falle einer Funktion dreier
Variablen nicht mehr angeben. Dazu benétigte man ein vierdimensionales Koordi-
natensystem.

In der Physik spielen derartige Beziehungen allerdings eine grofie Rolle, wenn eine
physikalische Gré8e von den drei Koordinaten des Raumes abhangt.
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So kann die Temperatur in der Lufthiille der Erde angegeben werden als Funktion

der geographischen Breite z
der geographischen Linge y
der Hohe iiber Null z

T=T(z,y,2).

Symbolisch:

Definition:  Eine Zuordnungsvorschrift f(z,y,2) heifit Funktion dreier Varia-
blen, wenn jedem Wertesatz (z,y,2) mit dieser Vorschrift genau
ein Wert einer Grofle u zugeordnet wird.

u= f(z,y,2) oder (z,y,2) iu (13.2)

13.3 Das skalare Feld

Im Kapitel 1, Vektoren“, wurde der Begriff skalare Grife oder Skalar eingefiihrt.
Ein Skalar ist eine Grofe, die (bei festgelegter Mafeinheit) schon durch Angabe
eines Zahlenwertes vollstindig beschrieben ist. In diesem Abschnitt werden wir den

Begriff des skalaren Feldes einfiihren.

Die Karte zeigt die Temperatur an einem be-
stimmten Tag fiir Europa. Fiir einige Tem-
peraturwerte sind Punkte gleicher Tempe-
ratur durch Linien verbunden, sie heifien
Isothermen. Jedem Punkt der dargestellten
Fliche ist hier eine Temperatur zugeordnet.
Die Temperatur ist ein Skalar. Ist fiir jeden
Punkt einer Fliche ein Skalar definiert, so
nennen wir dies ein skalares Feld.

Der Begriff kann auf den dreidimensionalen Fall iibertragen werden.

Ein Korper werde an einem Ende erwarmt.
Dann hat jeder Punkt P im Korper eine be-
stimmte Temperatur T, und diese Tempera-
tur hiangt vom Ort des Punktes P = (z, y, #)
ab:

T=T(z,y,2) =T(P)

Hier ist jedem Raumpunkt eine bestimmte
Temperatur zugeordnet.
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Ein weiteres Beispiel: Der Druck p ist ein Skalar. In einer Fliissigkeit ist der Druck
eine Funktion der Tiefe.

p sei die Dichte der als inkompressibel vorausgesetzen Fliissigkeit und z die posi-
tiv gezdhlte Tiefe unterhalb der Fliissigkeitsoberfliche. Dann ist der Druck in der
Fliissigkeit:

p(z,y,2)= z-p-g

Fiir jeden Punkt (z, y, z) innerhalb der Fliissigkeit ist der Druck damit definiert
und angebbar. Der Druck als Funktion des Ortes in der Fliissigkeit ist ein skalares
Feld.

Flachen gleichen Druckes, heilen Isobaren. Die Isobaren sind in diesem Fall Paral-
lelebenen zur Oberfliche der Fliissigkeit.

Definition: =~ Wird jedem Punkt des Raumes (oder einem Teilraum des dreidi-
mensionalen Raumes) durch eine eindeutige Vorschrift genau ein
Wert einer skalaren Grée zugeordnet, dann bilden diese Werte ein
skalares Feld in diesem Raum.

(13.3)

13.4 Das Vektorfeld

Genau wie den Punkten des Raumes eine skalare Grofle zugeordnet werden kann,
kann man diesen Punkten auch eine vektorielle Gréle zuordnen.

Die Karte zeigt die mittlere Wind-
geschwindigkeit fiir Afrika. In be-
stimmten Gebieten gibt es cha-
rakteristische und konstante Luft-
strémungen, die Passate.

Die Windgeschwindigkeiten sind als
Pfeile dargestellt. Diese Pfeile sind
Vektoren. Thre Linge entspricht
dem Betrag der Windgeschwindig-
keit, ihre Richtung gibt die Richtung
der Luftstrémung an.

Jedem Punkt der dargestellten Flache ist hier ein Vektor zugeordnet. Der Vektor
ist also fiir jeden Punkt definiert.
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Ist ein Vektor nicht nur fiir einen Punkt definiert — beispielsweise der Geschwindig-
keitsvektor fiir ein Fahrzeug —, sondern fiir alle Punkte einer Flache — beispielsweise
die Windgeschwindigkeiten fiir alle Punkte Afrikas —, so sprechen wir von einem
vektoriellen Feld.

Der Begriff des vektoriellen Feldes oder Vektorfeldes kann auf den dreidimensionalen
Fall erweitert werden. Die Windgeschwindigkeit dndert sich auch mit der Hohe. Sie
hingt von den Koordinaten der Ebene (z und y) und von der Héhe (z) ab. Dies fiihrt
uns zu der folgenden Definition eines Vektorfeldes im dreidimensionalen Raum:

Definition:  Eine vektorielle Gréfie A, die in jedem Raumpunkt P = (z, 9, 2)
einen bestimmten Wert annimmt, heifit Vektorfeld.
Jedem Punkt P des Raumes wird ein VektorA zugeordnet.

A(P) = A(z,y,72) (13.4)

Vektorfelder kénnen empirisch bestimmt und aufgezeichnet werden. Beispiele: Luft-
stromungen, Wasserstromungen. Sie kénnen auch durch einen analytischen Aus-
druck gegeben sein. Dann kann das Vektorfeld Punkt fiir Punkt aus dem Ausdruck
berechnet und aufgebaut werden. Wie das vor sich geht, werden wir gleich zeigen.

Der analytische Ausdruck fiir ein Vektorfeld sei abgekiirzt A (z, y, z) oder ausfiihr-
licher in Komponenten geschrieben:

A‘(I’ yr Z) = (A.‘l: (:L‘, y» z); Ay (:L‘, y! z); Az (1:, y, z))

Jede Komponente ist fiir sich eine Funktion der Ortskoordinaten. Daraus ergibt sich
auch das Verfahren, den Vektor A fiir einen gegebenen Punkt P, = (z1, v1, z1)
zu berechnen. Wir ermitteln die z-Komponente A;, indem wir 1, 1, z1 in die
Funktion A, einsetzen. Danach wird die y-Komponente ermittelt, indem z,, y;, 21
in Ay eingesetzt werden. Schlieflich werden z1, y1, 21 in A, eingesetzt.

Damit haben wir die drei Komponenten von A fiir P; und kénnen den Vektor A
so einzeichnen, daB er im Punkt P; beginnt. Danach wird das Verfahren fiir einen
neuen Punkt P, wiederholt und punktweise das Vektorfeld aufgebaut.
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Wir iiben das Skizzieren von Vektorfeldern an zweidimensionalen Beispielen.

1. Beispiel: Gegeben sei das Vektorfeld

2

/f(z,y)=(As;Ay)=( Y L 2)

z
N \/zz+y2> - N

Wir berechnen den Vektor A fiir einige Punkte P = (z, y). Zunichst bestimmen
wir A(zy, y1) fiir den Punkt P, = (z3, v1) = (1,1).

Dazu setzen wir £ = 1 und y = 1 in die folgenden
Funktionen ein:

2

y
Ay (2, 9) = ———
(2, 9) T

A _ T
y(x,y)—\/‘zz—Tyz‘

Der Vektor ist dann:

Den Vektor A (1,1) tragen wir im Punkt P; = (1,1) in das Koordinatensystem ein.

Sodann berechnen wir noch den Vektor A im Punkt P, = (1,2). Einsetzen der
Koordinaten ¢ = 1 und y = 2 in A(z, y) gibt in diesem Fall

Y 922
A;(1,2) = ——m—
1) = e
2 ""}/:4\'(4',2) A, (1,2) = 1
. ; \/12-|-2i
y — Fiir den Punkt (1, 2) gilt
A1,2) = (1)

V5
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In der Tabelle sind noch drei weitere Vektoren berechnet. Tragen wir sie ein, erhalten
wir folgendes Bild des Vektorfeldes A (z, y):

P(z,y) | A(e,y) = L2

g (1,0) |(0,1)
e (1,1)
‘ __._é/ (1’ 1) W
. ®1
-2 12 3 x 1,2) NG
- 9,0) _
. (0,3) v (3,0
S p— (0,-3) ©,0) =(3,0)

g

2. Beispiel: A (z, y, 2) = (0, —z, 0)
Dies ist ein Vektorfeld im dreidimensionalen Raum. Hier ist

A, = 0,
Ay = -z
A, = 0

Aufgrund der speziellen Form von fi‘(z, Y, z) versuchen wir uns ein anschauliches
Bild von dem Vektorfeld zu konstruieren.

Die Vektoren A (z, y, z) sind unabhingig von den y- und z-Koordinaten der Raum-
punkte P = (z, y, 2).

Alle Vektoren zeigen in die y-Richtung,. z
Mit wachsendem z wichst der Betrag. 2 A
Damit 148t sich das Vektorfeld bereits < 47:‘—‘-:
skizzieren. < | < | <
MEDIED
< < < <
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13.5 Spezielle Vektorfelder

13.5.1 Das homogene Vektorfeld

Betrachten wir das Vektorfeld A (z, y, z) = (a, 0, 0). Die Komponenten von
A(z, y, 2) sind

Az‘ (1:, Y, z) = a

Ay(z,y,2) = 0 2
A (z,y,2) = 0
Der Vektor A ist in allen Punkten des Raumes

gleich, denn er hingt von den Raumkoordi-

naten nicht ab. Er hat in allen Punkten den =z & rd
Betrag Ao o 7{ ¥
A
‘EI:\/A-A:\/(12+02+02=(Z e //%
X

Der Vektor A zeigt stets in z-Richtung.

Definition:  Ein Vektorfeld, das in allen Raumpunkten des Definitionsbereiches
des Feldes den gleichen Betrag und die gleiche Richtung hat, heifit
homogenes Vektorfeld.

(13.5)
1. Beispiel: Das elektrische Feld im Innern ei-
nes Plattenkondensators mit den Ladungen £
@1 und —@Q; auf den Platten ist homogen. Das Q, |e=o={1-Q,
elektrische Feld E hat hier iiberall die gleiche :-_:
Richtung und den gleichen Betrag. Beng

2. Beispiel: Auf eine Masse m wirkt in Erdnihe
die konstante Gravitationskraft F. Sie ist in
erster Naherung gegeben durch

F =mg(0,0, —-1).

13.5.2 Das radialsymmetrische Feld

Betrachten wir die Gravitationskraft F in der gesamten Umgebung der Erdkugel,
so beobachten wir folgende zwei Eigenschaften:
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a) Die Richtung der Kraft auf eine Masse m zeigt immer zum Erdmittelpunkt.

b) Der Betrag der Kraft nimmt mit der Entfernung vom Erdmittelpunkt ab.

Den Zusammenhang beschreibt folgender analytischer Ausdruck:

= _ (.’t, Y, Z) —
F(z) Y, Z) - _C(EZ + y2 + z2)3/2 -

¢>0, r = |[fl=vVz2+y?+22

Der Betrag dieser Kraft ist ;cf Er hangt nur von der Entfernung r vom Koordina-

7
—C.—
73

tenursprung ab.
Die Richtung dieses Vektorfeldes wird gegeben durch den Vektor ; Der Vektor ;
wird dargestellt durch den Ausdruck

(z, 9, 2)

T Vri+ 2 + 22

Wir haben hier einen Einheitsvektor, denn sein Betrag ist 1.

Sy

Der Vektor 7 = (z, y, z) ist ein Radialvektor, der nach auflen zeigt. Sein Betrag ist:

r=yfri+r2+ri=/z2+y?+ 22

[ )
Der Vektor 7 = (z, y, z) wird fiir den Punkt :
P, = (z1, y1, z1) folgendermafen gewon- ¥
nen:
7 hat die Komponenten z;, y1, z1 und be- / B =(x4,94,24)
ginnt im Punkt P;. Das bedeutet geome- / :z,

vektors fiir den Punkt Pj, beginnt aber nicht e L%y v

im Koordinatenursprung, sondern im Punkt ‘

P;.

Man kann es auch so deuten: Der auf P; zeigende Ortsvektor ist so in radialer
Richtung verschoben, da8 er im Punkt P; beginnt. Im Fall der Gravitationskraft
ist die Kraft auf den Erdmittelpunkt gerichtet. Daher das negative Vorzeichen beim
Einheitsvektor.

trisch, 7 hat Richtung und Betrag des Orts- )
/
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Die Abbildung rechts zeigt das radial-

symmetrische Feld F= —Cis )
r . \ P
N '4
A %
— @) O G a-
/1N
/7 “\
F t LY

Definition:  Radialsysmmetrische Vektorfeller sind Vektorfelder A, deren
Betrédge nur von dem Abstand vom Koordinatenursprung abhéngen
und die Richtung eines Radialvektors haben. Radialsymmetrische
Felder kénnen immer in die Form A (z, y, 2) = &, - f (¢v) gebracht
werden.

(13.6)

Im Fall der Gravitationskraft ist f (r) = —r%'

13.5.3 Ringfdrmiges Vektorfeld

Ein stromdurchflossener gerader Leiter ist von ringférmigen magnetischen Feldlinien
umgeben. Die Feldstirke hat eine Richtung senkrecht zum Radius und senkrecht
zum Leiter, soda man auch von einem ringférmigen Vektorfeld spricht.

Die GréBe (oder der Betrag) des Feldstarke-
vektors H hangt nur von dem Abstand ro
zum Leiter ab, ist also eine Funktion von rg
allein:

|H| = f (ro)

Die Feldstirke H konnen wir — wie jeden ( d—::—’

Vektor — als Produkt aus Betrag und Ein-
heitsvektor schreiben

B=H &=f(r) ¢ %
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Wir wollen uns iiberlegen, von welchen
Groflen € abhangt. Die magnetischen Feld-
linien bilden Kreisringe in einer Ebene
senkrecht zum stromdurchflossenen Leiter.
Wenn wir ein Koordinatensystem einfiihren
wollen, so werden wir am bequemsten zwei
Achsen in diese Ebene legen und die dritte in
die Richtung des stromdurchflossenen Lei-
ters.

In der Skizze haben wir die z- und y-Achse
in die Ebene gelegt.

Der Vektor H liegt tangential an den Feldli-
nienringen, steht also senkrecht auf der Ab-
standslinie ro. Genau so liegt sein Einheits-
vektor €. Seine z-Komponente ist nach der
Zeichnung —sina (sie geht vom FuBipunkt
des Vektors € in die negative z-Richtung),
seine y-Komponente ist cos @ und seine z-
Komponente ist 0:

€=(-sina, cosa, 0)

€ héngt also nur von o ab. Wir haben damit
das Vektorfeld H in einen ry- und einen o-
abhingigen Faktor aufgespalten.

H=f(ro) (—sina, cosa, 0)

y¢
-
e
all
X
ER |
HE7)
-
e
x
vy
cua{ g‘:'é
“““““ "
2 SN
>
sin o x
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13.6 Ubungsaufgaben

13.2 A Bestimmen Sie die Wertematrix zu der Funktion f (z,y) = z%y + 6.

13.4

y |-2|-1] 0] 1

Welche Flachen werden durch die folgenden Funktionen dargestellt?
Fertigen Sie eine Skizze an!

a) z=-z—2y+2 b) z==z?+y?
2 2
) z=/l-5 - &

Teilen Sie die folgenden Ausdriicke ein in skalare Felder, Vektorfelder
und sonstige Ausdriicke

M mM(z,y,2
a') zzry2+zz b) (@492 +23)%72

224y 452
c) Ce~=Hr**= d) §;+yb;+%;-=1 e) —mgé,

Berechnen Sie das Vektorfeld
A(z,y,2) = (22, y,2° + y* + 2?)
an folgenden Punkten

a) P, =(0,0,1) b) P, = (1,1,1) ¢) Ps = (1,0,0)

Geben Sie an, welche Vektorfelder homogen, welche radialsymmetrisch
sind und welche zu keinem der beiden Typen gehéren.

a) a(1,1,0) b) m c) (z,2z,9)
d) (z,9,2) e) z(1,5,2) f) —mge,

z,Y,2
8
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13.4 B Skizzieren Sie die folgenden Vektorfelder:
a) A(z,y,2)=(0,0,1) b) A(z,y,2)=2(1,0,1)

c) /f(:c,y, z) = }(z,y, z) d) /i'(:c,y, z) = ri,(:l:,y, z)

Lésungen

13.1 A Wertematrix

T
y -2|-1f 0} 1
-21-2]14 (6] 4
-1] 2|5 ([6]5
0| 6|6 ]|6]|F6
1 107 (6|7
2 |14 8|6 |8

B a) Die Funktion stellt eine Ebene dar. Die Schnittkurven der Flache sind
1) mit der z-y-Ebene: y = -7 +1
2) mit der z-2-Ebene: z = —z + 2
3) mit der y-z-Ebene: z = —2y +2
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b) Die Funktion z = z? + y? stellt ein
Rotationsparaboloid um die z-Achse dar.
Schnittkurven mit Ebenen parallel zur z-
Achse sind Parabeln. Schnittkurven mit
Ebenen parallel zur z-y-Ebene — Hohenli-
nien - sind Kreise.

c¢) Die Funktion z = /1 — 2 — y;;— stellt ein Halbellipsoid iiber der z-y-Ebene
dar.

Die Schnittkurven mit der z-z-Ebene und der y-z-Ebene sind Halbellipsen.
A

Zz

13.3 A Skalare Felder: a), c¢)
Vektorfelder: b), e)

B a) A(0,0,1)=(0,0,1) b) A(1,1,1)=(1,1,3)
¢) A(1,0,0) = (1,0,1)
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134 A Homogenes Vektorfeld: a), f)
Radialsymmetrisches Vektorfeld: b), d), g)
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14 Partielle Ableitung, totales Differen-

tial und Gradient
14.1 Die partielle Ableitung

Die geometrische Bedeutung der Ableitung einer Funktion mit einer Variablen ist
bekanntlich die Steigung der Tangente an die Funktionskurve. Wir befassen uns nun
mit dem Problem, Steigungen fiir Flachen im Raum zu bestimmen.

In Abschnitt 13.1 hatten wir die Funktion
1
2= ———
1+224y2
als Beispiel fiir eine Funktion zweier Varia-

blen betrachtet. Sie stellt eine Fliche im
dreidimensionalen Raum dar.

Setzen wir eine der Variablen konstant, er-
halten wir eine Schnittkurve der Funktion
mit einer Ebene.

Zwei Typen von Schnittkurven der Fliache mit Schnittebenen kennen wir bereits:

Schnittkurven mit Ebenen parallel zur z-z-Ebene:
Die Schnittebene habe den Abstand yp
von der z-z-Ebene. Die Gleichung der
Schnittkurve erhalten wir, indem wir in
die Funktionsgleichung den Abstand yo
einsetzen.

1

z(z):—_—1—'_:':2-'_?’,g

In diesem Fall ist z dann nur noch eine
Funktion von z.
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Schnittkurven mit Fbenen parallel zur y-z-Fbene:
Die Schnittebene habe den Abstand zg von
der y-z-Ebene. Die Gleichung der Schuitt-
kurve erhalten wir, indem wir den Wert z;
in die Funktionsgleichung einsetzen. In die-
sem Fall ist z dann nur noch eine Funktion
von ¥.

z(y) _ —1_ /xu

1+ 23+ 42 ]

Steigung der Schnitikurven

Fiir die Schnittkurven parallel zur z-z-Ebene kénnen wir die Steigung sofort ange-
ben. Fiir die Schnittkurve ist y eine Konstante.
Wir haben also eine Funktion mit einer Va-
riablen. Die Steigung ist durch die Ablei-
tung der Funktion z = z (z) nach = gege-
ben.

Fiir diese neue Art der Ableitung benut-
zen wir statt des Zeichens d das stilisierte

Zeichen é (sprich: Delta).!

6f 8z _ 6 1
b br bz |l4zi4y?

(Sprechweise: Delta f nach Delta x)
Da y fiir die Schnittkurve konstant ist — wir kénnten auch schreiben yp — erhalten

WIr:

of 2z

bz (1+22+y2)?

Diese Operation heiit partielle Ableitung.

Rechenregel:  Bei der partiellen Ableitung nach z wird nur nach z differenziert.
Die Variable y wird dabei als Konstante betrachtet. Beispiel:

5f 62§ 1 -

bz bx bz \l+224+y?) (14224 y?)2
Fiir die Schnittkurven parallel zur y-z-Ebene konnen wir ebenfalls die Steigung
angeben.

1In der Literatur sind anch andere Symbole fiir dic particlle Ableitung in Gebranch wic & oder .
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Die Steigung dieser Kurven ist nun nicht mehr durch die partielle Ableitung nach
z gegeben, sondern hier miissen wir die partielle Ableitung nach y bilden. Das ist
etwas Neues.

Rechenregel:  Bei der partiellen Ableitung nach y wird « als Konstante betrach-
tet, und nach y wird differenziert. Beispiel:

6f_6z_6< 1 %
by by by \1+x2+y2) T (14 g2 442)?

Funktionen mit drei Variablen lassen sich nicht mehr anschaulich geometrisch im
dreidimensionalen Raum deuten. Dabei kommen sie hiufig vor. Als Beispiel kennen
wir bereits die Temperatur als Funktion der drei Ortskoordinaten: T = T (z, y, 2).
Fiir die Funktion f = f (=, y, z) gibt es drei partielle Ableitungen.

Rechenregel Beispiel:
f(z,y,2) = 223y + 22

, , : 6f 2
Partielle Ableitung | alle Variablen aufler z werden als e 6z°y
nach z Konstante betrachtet. Es wird

nur nach der Variablen « differenziert

. : . 6f 3
Partielle Ableitung | alle Variablen aufer y werden o =2z
nach y als Konstante betrachtet. Es wird

nur nach der Variablen y differenziert.

. . . éf
Partielle Ableitung | alle Variablen aufler z werden als 3= 2z
nach z | Konstante betrachtet. Es wird nur

nach der Variablen z differenziert.
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Fiir die partiellen Ableitungen gibt es eine weitere oft benutzte einfache Schreib-
weise: f (z, y, z) sei eine Funktion von z, y und 2. Dann benutzt man tiefgestellte
Indizes und schreibt auch:

6f Sf 6f
E—fz 6y—fy 6z—fz
L 5f
Beispiel: f(z,y,2) =2z -y -z f,,:E:y'z
fy=%=$ z
__
fz—g—x

14.1.1 Mehrfache partielle Ableitung

Die partiellen Ableitungen sind wieder Funktionen der unabhangigen Variablen
z,y .... Deshalb kénnen wir sie erneut partiell differenzieren.

Beispiel: Es sei f(z,y, z) = z + 2z. Wir suchen
Y

) 6
3z (Ef(%', Y, Z))

Hier ist die Schreibweise mit dem tiefgestellten Index besonders iibersichtlich.

§ (6f\ _ 6, _
ﬁ(@)—afy—fzy

Reihenfolge: zuerst wird nach y differenziert, dann nach z. Die Indexkette wird von
rechts nach links abgearbeitet.!
Wir bilden zuerst die partielle Ableitung nach y fiir f(z, y, 2) = ;1 + 2z.

6f . _ =z
- h=g

Dann differenzieren wir f, nach z:

é 1
E(fy) =foy = "y_z

1Bei den meisten in der Physik vorkommenden Funktionen gilt bei mehrfachen partiellen Ablei-
tungen fry = fvz. Es gibt aber auch Funktionen, bei denen die Reihenfolge der Ableitung beachtet
werden mufl und bei denen gilt fzy # fyz
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14.2 Das totale Differential

Funktion zweier Variablen

1
Wir betrachten die Funktion z = —————. Sie stellt eine Fliache im Raum dar.
1+ 22 4 y?

Auf dieser Flache gibt es Linien gleicher Héhe z.
Sehen wir senkrecht von oben
auf die z-y-Ebene, so erhal-
ten wir die Projektionen die-
ser Linien gleicher Hohe auf die
z-y-Ebene. Diese Projektionen
heiflen Héhenlinien, weil mit ih-
rer Hilfe auf Landkarten Ge-
birgsziige dargestellt werden, die
ja auch Flachen im Raum sind.
In unserem Fall erhalten wir als
Hohenlinien eine Reihe von in-
einanderliegenden Kreisen. Die
Linien gleicher Hohe sind hier
Kreise im Raum.

Wir betrachten jetzt die Linien gleicher Hohe mit dquidistanten Hohenabstanden.
Dann liegen die zugehorigen Hohenlinien in der z-y-Ebene dort am dichtesten, wo
unser ,Berg“ am steilsten ist.

Die Linie gleicher Hohe ist die Schnittkurve der Ebene z = ¢, mit der Fliche

1
z=—
1+x°+y*
. . 1
Gleichsetzten ergibt: ¢, = ———
1+x°+y*

Diese Gleichung ist gleichzeitig die Gleichung fiir die Héhenlinie in der x-y-
Ebene. Wir formen diese Gleichung um zu:

z2 + y2 — i -1
[
Aus der letzten Bezichung sehen wir, da wir eine Gleichung fiir einen Kreis mit
dem Radius R = cl_. — 1 erhalten haben. Je grofer wir die Hohe ¢; wahlen, desto
kleiner ist der Kreisradius.

Wir suchen nun die Richtung des steilsten Anstiegs oder Abfalls der Flache

1
H T
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Aus der Zeichnung sieht man, da§ der ,Berg" in unserem Beispiel offenbar fiir jeden
Punkt in radialer Richtung am steilsten abfallt.

Wir gehen vom Punkt A’ in der z-y-Ebene einmal um die Strecke dr
a) in beliebiger Richtung ﬂ;
—
b) senkrecht zu einer Hohenlinie dr,;
c) entlang einer Hohenlinie drn;

Das entspricht auf der Flache den We-
—_— ——

gen AC, AB, AD.

Fiir den Weg AD entlang einer Linie

gleicher Hohe ist

dzmzo

Am stirksten verdndert sich die Funk-
tion z auf dem Weg AB senkrecht zu
den Linien gleicher Hohe.

Fiir alle iibrigen Wege gilt

0<dz<dzgy alsoauch 0<dz <dzgy

Wir stellen uns jetzt die Frage, wie sich die Funktion z = f (z, y) dndert, wenn wir
ein Stiick dr in einer beliebigen Richtung ar = (dz, dy) gehen.

Die Anderung von f(z, y) erhalten wir in zwei Schritten:

1. Wir gehen um dz in z-Richtung
(y bleibt dabei konstant)

2. Wir gehen um dy in y-Richtung
(z bleibt dabei konstant)

Der Gesamtweg ist in Vektorschreibweise:

N
dr = dzé; + dye,
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1. Schritt: Die Anderung einer
Funktion mit einer unabhéangi-
gen Variablen war in erster
Niherung gegeben durch das Dif-
ferential

dy = idiﬂdm = f'(z)-dz

Jetzt haben wir eine Funktion
zweier Variablen.
z = f(z,y). Wenn wir in z-

Richtung um dz fortschreiten

(v bleibt dabei konstant) erhal-
ten wir fiir die Anderung von z:

6f(z,
dZ(,,) = —f—(k—y) dr

2. Schritt: Wenn wir in y-
Richtung um dy fortschreiten

(z bleibt dabei konstant) erhal-
ten wir fiir die Anderung von z
den Wert

6
dZ(y) = —'—f— dy

by

Die Gesamtanderung von z er-
gibt sich als Summe der beiden
Teilinderungen. Sie heifit totales
Differential.

dz = dzz) + dzyy = 6—f—l dz + 8 dy

bz —6-37

X

<y

Definition: Das totale Differential der Funktion z = f(z, y) ist die GroBe

_of 6f

dz—éxda:-f-&ydy |
Das totale Differential ist ein Ma8 fiir die Anderung der Funktion
z = f(z,y), wenn wir vom Punkt A = (=z, y) ein Stiick in die
Richtung d7 = (dz, dy) gehen.
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1. Beispiel: ~ Wir betrachten die Funktion z = 22 + y?
Das totale Differential ist  dz = 2zdz + 2ydy

2. Beispiel:  Wir betrachten die Funktion

1
[e0= vy
Das totale Differential ist
dz —2z -2y

= ————dr — ———————d

A+22+ 2)2 z (1 +22 +7)2 y
Verallgemeinerung auf Funktionen dreier Variablen.
Im Falle einer Funktion dreier Variablen f (z, y, 2) verallgemeinert man das totale
Differential entsprechend zu

_6f of 6f
df = Edm+6—y-dy+5-dz

Auch hier ist das totale Differential ein
MaB fiir die Anderung der Funktion
z = f(z,y, z). Wenn wir ein Stiick in
die Richtung d7 = (dz, dy, dz) gehen,
andert sich die Funktion f(z, y, z) um
den durch das totale Differential gege-
benen Betrag.

Beispiel: f(z,y,2)=z-y-2
Das totale Differential ist
df =yz-de+zz-dy+zy-dz

14.3 Der Gradient

14.3.1 Gradient bei Funktionen zweier Variablen

Das totale Differential einer Funktion zweier Variablen z = f(z, y) war definiert
alsdz = —Lda:+—Ldy

Behauptung: Das totale Differential 148t sich formal schreiben als Skalarprodukt der
folgenden Vektoren (%é‘, + %-yté'y) und dr. Dabei bezeichnet dr das Wegelement

und ( & + 3 -L ) wird als ein neuer Vektor definiert.
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Diese Behauptung verifizieren wir.

_(6f. L 6f. L
dz = (Ee,+3§ey)~(dze,+dyey)

) R | S | S T S
dz = 52 dzey e,-{-&y dyey~ey+6x dyéy ey+62 dzéy -
dz = gdz:-}-gdy

bz by

Damit ist unsere Behauptung bewiesen. Der neu definierte Vektor heiit Gradient
und wird abgekiirzt grad geschrieben.

Definition: Der Gradient der Funktion z = f (z, y) ist der folgende Vektor:
_ (8 6f \_(8f &f
grad f (2, y) = (61: ¢+ dy ey) - (61:’ Sy

Der Gradient hat zwei anschauliche Eigenschaften:

e Der Gradient steht senkrecht auf den Hohenlinien und zeigt in diejenige Rich-
tung, in der sich die Funktionswerte z = f (z, y) am stirksten andern.

e Der Betrag des Gradienten ist ein Ma8 fiir die Anderung des Funktionswertes
senkrecht zu den Héhenlinien.

Diese beiden Eigenschaften wollen wir jetzt herleiten. Betrachten wir zunichst das
Skalarprodukt

grad f-dz = dz

Legen wir dr in eine der Hohenlinien,
dann gilt dz = 0. Denn eine Hohenlinie
ist die Projektion einer Linie gleicher
Hohe. Bei der Bewegung auf dieser Li-
nie dndert sich z nicht und deshalb muf}
dafiir dz = 0 gelten. Daraus folgt

df = grad f-dr=0

Aus Kapitel 2 wissen wir:
Das Skalarprodukt zweier Vektoren, von denen keiner der Nullvektor ist, verschwin-
det genau dann, wenn die beiden Vektoren senkrecht aufeinander stehen. Da weder

grad f noch dr ein Nullvektor ist, stehen grad f und dr senkrecht aufeinander.
Daraus folgt: Der Gradient steht senkrecht auf der Hohenlinie.

Dieses Ergebnis wollen wir an unserem Beispiel f (z, y) = 1—4_—% verifizieren.
z Y
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Der Gradient ist: grad f = ad 2y ]

2
- [(1 Y22+ 922 (1 + 22 + y2)2
Dies ist ein Radialvektor, und der Gradient steht damit senkrecht auf den Hohen-
linien um den Koordinatenursprung.

Das Differential df gibt die Anderung des Funktionswertes bei einem Zuwachs der
Koordinaten  und y um dz und dy an.

Wir kommen jetzt zur zweiten Eigenschaft des Gradienten. Wir gehen von folgender
Frage aus: In welcher Richtung indert sich die Funktion z = f (=, y) bei gleichem

dr am meisten? Wir suchen das Maximum von df. Es gilt
df = grad f- dr = |grad f| II;I cosa « ist der Winkel zwischen grad f und dr.

grad f ist ein Vektor, der senkrecht auf der Héhenlinie steht. Wir lassen jetzt dr
verschiedene Richtungen annehmen. Der Betrag von dr sei konstant. Variabel sei
allein die Richtung von dr und damit cos a.

Das Maximum von cos a liegt bei « = 0 mit cos(0) = 1. Dann haben grad f und di
die gleiche Richtung. In diesem Fall gibt der Betrag des Gradienten die Anderung
von df senkrecht zu den Hohenlinien an.

Wir hatten dieses Ergebnis fiir unser Beispiel bei der Behandlung des totalen Dif-
ferentials df bereits anschaulich erhalten.

Es gibt eine Reihe von Bezeichnungen fiir den Gradienten von z. Ublich sind:

grad f =grad z = gi+ ﬁj
bz by
_(&f &f
grad f= (5’ E)

grad f = v f

3 wird Nabla-Operator genannt und es gilt formal

s_(5 ¢
V=\5 Sy
Mit Hilfe des Nabla-Operators 148t sich die Schreibweise oft verkiirzen. Der Nabla-

Operator wird formal so behandelt wie ein Vektor. Die Multiplikation des Nabla-
Operators mit einer skalaren GréBe fiihrt dann zu einem Vektor.
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14.3.2 Gradient bei Funktionen dreier Variablen

Gegeben sei eine Funktion der drei Variablen , y und z. Das ist ein skalares Feld
¢ = p(z,y, z) (siche Abschnitt 13.2) Die Gesamtheit der Raumpunkte, in denen
das skalare Feld den Wert ¢ annimmt, bildet eine Flache im Raum. Diese Flachen, auf
denen der Funktionswert ¢ (z, y, z) iiberall den gleichen Wert hat, werden Flichen
gleichen Niveaus oder Niveauflichen3 genannt.

Flichen gleichen Niveaus oder Niveauflichen sind festgelegt durch die Bestimmungs-
gleichung.

¢(z,y, 2) =c= const.

Diese Beziehung konnen wir nach 2z auflésen und erhalten die Gleichung der Ni-
veaufliche

z=g(z,y)

Wir wollen jetzt den Begriff des Gradienten auf Funktionen mit drei Verdnderlichen
ibertragen. Sinngemaf erhalten wir

6f o6f ¢
gad £ (2,39 = (32, 3. 2L )

Seine Eigenschaften bleiben erhalten. Nur ist jetzt der Gradient ein Vektor im drei-
dimensionalen Raum und der Begriff der Hohenlinien muf ersetzt werden durch
Flachen gleichen Niveaus oder Niveauflaichen. Damit besitzt der Gradient bei Funk-
tionen dreier Veranderlicher folgende anschauliche Eigenschaften:

e Der Gradient steht senkrecht auf Flachen gleichen Funktionswertes.

o Der Betrag des Gradienten ist ein Ma8 fiir die Anderung des Funktionswertes
pro Wegeinheit senkrecht zu den Niveauflichen.

1. Beispiel:  Welche Flachen gleichen Niveaus hat die Funktion
f(za Y, z)=--:c--y+z ?

Wir setzen f(z,y, z) =c:

c=—r—y+z

3Physikalische Beispiele: Temperaturverteilung — Flichen gleichen Niveaus sind Flichen glei-
cher Temperatur (Isothermen); Flichen gleicher potentieller Energie; Flichen gleicher elektrischer
Spannung.
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oder umgeformt

z=z4+y+c

Zwei Ausschnitte dieser Flachen sind fiir
¢ = 0 und ein positives ¢ rechts skizziert.
Es sind Ebenen. Die Schnittgerade mit der
z-z Ebene ist um 45° gegen die z-Achse ge-
neigt, die Schnittgerade mit der y-z Ebene
ist um 45° gegen die y-Achse geneigt.
Berechnen wir den Gradienten von f(z, y, z) und iiberpriifen wir, ob er senkrecht
auf dieser Ebene steht.

grad f(=z,y, z) = (-1,-1,1)

Tragen wir diesen Vektor im Punkt (0,0,c¢) in die letzte Skizze ein, dann steht er
senkrecht auf der Ebene, die durch z = z + y + ¢ gebildet wird.

Beweis: Ein beliebiger Vektor d, der in der Ebene liegt,
kann als Linearkombination der beiden Ein-
heitsvektoren & und & geschrieben werden. @
und b liegen in der Schnittgeraden der z-z-
Ebene bzw. y-2-Ebene mit der Ebene

z=z+ y+ c. Es gilt:

i=—=(1,0,1), b=—=(0,1,1 >

a 2( ) 2( ) Y
und damit

P |

d=ua+>‘b=-\/—§-(u./\,u+/\)

Das Skalarprodukt von d mit grad f muf verschwinden, wenn beide senkrecht aufeinander stehen.

d-grad f = +2)-(-1,-1,1)

1
= 1A1
ﬁ(“ n
1
= —=(-p=-2A A)=0.
ﬁ( p= 2+ p+ X)
Also steht grad f senkrecht auf der Ebene z =z + y + c.

2. Beispiel:  Bestimmung der Niveauflichen des skalaren Feldes

o(z,y, 2) = A _A
r D z2 4+ y2 + 22 r2
Die Niveauflichen sind durch die Gleichung ¢ (z, y, z) = ¢ definiert. In unserem
Falle erhalten wir die Niveauflichen aus der Gleichung

A —
2+ y2 + 22

Auflésen nach z liefert die beiden Gleichungen
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2 = (é) — 22— 2 Das ist eine Kugelschale iiber der x-y-Ebene.
c
A N
29 = -— v z2 — y? Dasist eine Kugelschale unter der x-y-Ebene.

Die Niveauflichen sind also Kugelschalen mit dem Radius R = \/é

Bilden wir nun den Gradienten von ¢:
gra'd p= _2%(:8: Y Z)

Dies ist ein Radialvektor, der seinen An-
fangspunkt auf der Niveaufliche hat.

Das heifit aber, dal der Vektor grad ¢
senkrecht auf der Niveaufliche steht, weil
sie eine Kugelschale ist. Damit ist die
Eigenschaft des Gradienten, daf8 er senk-
recht auf den Niveauflichen steht, fiir un-
ser Beispiel verifiziert.

Unserem Beispiel konnen wir weiterhin entnehmen, da8 der Gradient in die Richtung
der starksten Anderung von ¢ zeigt.

Der Betrag von grad ¢ = —2 TA, (z,y, z) ist

A
lgrad | =2 =5

Dies ist ein Mafl dafiir, wie stark sich die Funktionswerte in radialer Richtung
andern. Je niher wir dem Koordinatenursprung kommen (r — 0), um so stérker
dndern sich ¢ und grad ¢ .

Anhand unseres Beispiels haben wir damit folgende Eigenschaften des Gradienten
verifiziert:

e Der Gradient einer Funktion ¢ (z, y, z) ist ein Vektor:
bp bp by
gra.d p= (Ey Ey E
o Der Gradient steht senkrecht auf den Niveauflichen ¢ = const. Er zeigt in
die Richtung der groften Veranderung der Funktionswerte
p=p(z,y 2).
e Der Betrag des Gradienten ist ein Ma8 fiir die Anderung des Funktionswertes
senkrecht zu den Niveauflichen pro Wegeinheit.
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14.4 Ubungsaufgaben

14.1 A Bilden Sie die partiellen Ableitungen nach z,y und ggf.
nach z von den Funktionen

a) f(z,y) =sinz +cosy b) f(z,y) = 2?\/1-¢?
¢) f(z,y) = e '+ d) f(z,y,2) =zyz+zy+2

14.1 B Berechnen Sie die Steigung der Tangente in z- und y-Richtung
fiir die Fliche z = 22 + y? im Punkt P = (0,1)

14.1.1 Berechnen Sie die partiellen Ableitungen fzz, fzy, fyz und fyy
der Funktion
2= R2—z% 2

14.2 A Bestimmen Sie die Linien gleicher Hohe, die den Abstand 0,5 von
der z-y-Ebene haben, fiir die Flachen

a) z= —-343—”9: b) z=-z-2y+2

Geben Sie die Funktionsgleichungen der zugehorigen Hohenlinien an.

14.2 B Berechnen Sie das totale Differential fiir die Funktionen
a) z=+/1-z2-y? b) z = z2 + y?
_ 1
c) f (-’L‘ Y 2) = Vm

14.3.1 Von den skalaren Feldern ¢ (z,y) sind der Gradient
und die Hohenlinien zu berechnen. ¢ beschreibt eine Flache.

2 2
a) p=—z—2y+2 b) p=/1-F - %

_ 10
)= Ty

14.3.2 A Welche Form haben die Niveauflichen der skalaren Felder
a) ¢(z,y,2)= (2 +y2 +22)%
b) ¢(z,y,2) =2? + ¢
C) ‘P(I,y,z)=$+y—3z

B Berechnen Sie die Gradienten fiir diese drei skalaren Felder.
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Losungen
141 A a) fz=cosz fy = —sinz

141 B

14.1.1

142 A a)z=05=41-22-£

_ A2 _ =z
b) fo=2z\/1-y fy= ﬁ%
C) fz = —228_(22"'92) fy = —2ye"(”'2+yz)

d) fe=yz+y fy=zz+z f:=zy+1

Tangente in z-Richtung: 2z
Steigung in z-Richtung im Punkt P: 0
Tangente in y-Richtung: 2y
Steigung in y-Richtung im Punkt P: 2

foe =2 fyr =0
fay =0 fyy=-2

z2

Die Hohenlinie ist durch die Beziehung % + - = 3 gegeben.
Dies ist eine Ellipse.

b) z=0,0=—x—2y+2 z

Gleichung der Hohenlinie:
y=—-%+%
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— —zdz _ d;
b) dz = 2zdz + 2ydy
- _ 1
C) df = W (:tdl' + ydy + Zdz)
14.3.1 a) gradyp = (-1, -2)
Die Hohenlinien sind Geraden mit der Gleichung
y=-5+1+%
b) gradyp = 1_:;2_"; (2,%)
Die Hohenlinien sind Ellipsen, sie erfiillen die Gleichung
s-1=-5-%
- ____10
¢) gradp= m(%y)
Die Hohenlinien sind Kreise mit dem Radius c.
143.2 A a) Die Niveauflichen sind Kugelschalen, sie erfiillen die aﬁeichung
cd =224y 4 22
b) Die Niveauflichen sind Zylinder mit dem Radius 3 und erfiillen
die Gleichung 22 +y%* = ¢
c) Die Niveauflichen sind Ebenen mit der Gleichung
=g+
1432 B a) gradp=3(z2+y>+22)i (2, y, 2)
b) grady = (2z, 2y, 0) -

gradp = (1,1, -3)
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15 Mehrfachintegrale,
Koordinatensysteme

15.1 Mehrfachintegrale als Lésung von Summierungsaufgaben

In das Koordinatensystem ist ein Quader eingezeichnet. Gesucht ist die Masse M
des Quaders. Das Volumen des Quaders sei V. Ist die Dichte p im gesamten Volumen
konstant, 138t sich die Masse angeben:

M=p-V

Nun gibt es jedoch Fille, in denen die Dichte p nicht im gesamten Volumen konstant
ist. Die Dichte ist im Innern der Erdkugel gréBer als in den Oberflichenbereichen.
Die Dichte der Luft ist auf der Erdoberfliche am gréfiten und nimmt mit der Héhe
exponentiell ab.

Die Dichte kann als empirisch ermit-
telte dreidimensionale Wertetabelle vorlie-
gen oder analytisch als Ortsfunktion ange-

geben sein: :

p=p(z,y, 2) ! v

L c

Einen Niherungsausdruck fiir die Masse av, A"’
erhalten wir auf folgende Weise: Das Vo- ) A2 | _a_ el
lumen V wird in N Zellen zerlegt. Das Vo- L7 A
lumen der i-ten Zelle bezeichnen wir mit s b
AV;.

AVi=Az;- Ay - Az

Wenn wir die Dichte p fiir die ¢-te Zelle kennen und als in der Zelle konstant anneh-
men diirfen, kénnen wir die Masse der Zelle angeben:

AM; = p(zi, yi, zi)) Azi - Ay - Az

Die Masse des Quaders mit dem Volumen V erhalten wir ndherungsweise durch
Aufsummieren der Teilmassen A M;.

N N
M%Z AMi=ZP(In Vi, zi)Azi - Ay - Az

i=1 i=1
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Nun wiahlen wir die Zellen A V; immer kleiner und lassen damit N gegen Unendlich
gehen. Dabei nahert sich der Naherungsausdruck dem exakten Wert.

Den Grenzwert einer Reihe dieser Art hatten wir im Falle einer Funktion mit einer
Variablen als Integral bezeichnet.

Wir erweitern jetzt den Integralbegriff. Unter dem Summenzeichen steht das Pro-
dukt aus der Dichte und drei Differenzen Az;, Ay;, Az;. Beim Grenziibergang gehen
die Differenzen iiber in die Differentiale dz, dy und dz. Deshalb benutzt man drei
Integralsymbole und spricht von einem Mehrfachintegral. Wir schreiben

N

M= lim El p (s, ¥i, zi) Az; Ay; Az = / / / p(z,y, z)dzdydz
1= 14

In Worten: ,Integral der Funktion p(z, y, z) iiber das Volumen V. Dieses mehr-
fache Integral — hier ein dreifaches Integral — 148t sich auf die Berechnung von drei
einfachen bestimmten Integralen zuriickfiihren.

Es miissen drei Integrationen durchgefiihrt werden. Dabei wird iiber jede Variable
integriert. Bei der Integration sind die fiir jede Variable gegebenen Integrations-
grenzen zu beachten.

Die analytische Berechnung von Mehrfachintegralen wird in den folgenden Abschnit-
ten gezeigt. Es gibt jedoch auch Fille, die entweder auf sehr komplizierte Ausdriicke
filhren oder iiberhaupt nicht losbar sind. Dann kann das Mehrfachintegral nihe-
rungsweise iiber Summenbildungen berechnet werden. Die Summen kdnnen durch
hinreichend feine Einteilung geniigend genau gemacht werden. Fiir den praktisch
arbeitenden Mathematiker und seine Hilfskrafte war frither die Ausrechnung derar-
tiger Summen ein gefiirchtetes Ubel - solange nimlich derartige Summen mit Papier
und Bleistift berechnet werden mufiten. Computer haben die Durchfiihrung derar-
tiger numerischer Rechnungen entscheidend erleichtert.

15.2 Mehrfachintegrale mit konstanten Integrationsgrenzen

Die Ausfiithrung einer mehrfachen Integration ist besonders einfach, wenn alle Inte-
grationsgrenzen konstant sind. Hier kann die Integration mehrmals hintereinander
nach den bereits bekannten Regeln ausgefiihrt werden. Dabei wird iiber einer Va-
riablen integriert, wihrend die anderen Variablen als Konstante behandelt werden.
Die praktische Berechnung von Mehrfachintegralen mit konstanten Grenzen wird so
auf die mehrfache Berechnung bestimmter Integrale zuriickgefiihrt.
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Fiir unser Beispiel — Berechnung der Masse eines Quaders — mufl das gesamte Vo-
lumen abgedeckt werden. Geméa8 der Abbildung in 15.1 ist zu integrieren:

entlang der z-Achse von 0 bis a
entlang der y-Achse von 0 bis b
entlang der z-Achse von 0 bis ¢

Das Integral wird wie folgt geschrieben:

c b a

/ / / p(zyz) dr dydz
2=0 y=0 z=0
[ —
inneres Integral

~ 2

mittleres Integral

duferes Integral

Das dreifache Integralsymbol bezeichnet folgende Rechenanweisung:

1. Rechne das innere Integral aus. Dabei werden die Variablen y und z in der Funk-
tion p (z y z) als Konstante betrachtet. Dies ist ein bestimmtes Integral mit nur einer
Variablen z. Das Ergebnis der ersten Integration ist nur noch eine Funktion der Va-
riablen y und z. Das Ergebnis wird in das urspriingliche Integral oben eingesetzt.

2. Rechne das mittlere Integral aus. Dabei wird die Variable z als Konstante be-
trachtet. Das Ergebnis wird wieder in das Integral eingesetzt.

3. Rechne das duflere Integral aus.

Manchmal schreibt man, um die Ubersicht zu erhéhen, Mehrfachintegrale mit Klam-

j[/b (/ap(a:yz)d:z:) dy | dz

0 0 0

Die Schreibweise deutet an, da zunichst das in den Klammern stehende jeweils
pinnere Integral auszurechnen ist. Das Ergebnis ist der Integrand fiir das in der
nichsten Klammer stehende Integral. Dieses wird fortgesetzt, bis zum Schluff das
duflere Integral ausgerechnet wird. Bei konstanten Integrationsgrenzen — das soll
hier immer der Fall sein — kann die Reihenfolge der Integration vertauscht werden.

Beispiel: Gesucht ist die Masse einer rechteckigen Saule (Grundfliche a - b,
Hohe h), bei der die Dichte exponentiell mit der Hohe abnimmt.

az

p=poe”
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Physikalisch interessant ist dieses Beispiel fiir die Berechnung der Masse einer recht-
eckigen Luftsdule iiber der Erdoberfliche. Aufgrund der Schwerkraft nimmt die
Dichte der Luft mit der Hohe exponentiell ab. (Barometrische Hohenformel). po ist

die Dichte fiir z = 0 auf der z-y-Ebene.

Im Falle der barometrischen Hohenformel hat die Konstante im Exponenten die

Form? 2

=P
Po

«a

Die Masse wird iiber das Mehrfachintegral
berechnet

1

]

I

I

I

I

b ]
M:///poe“"d:cdydz :
0 00 ]
|

|

—

a *h
Nach der Berechnung des inneren
Integrals erhalten wir: 1z —>
h b h b Y b
M=/ / poe~%* [z]y dydz = / / poa-e **dydz
00 00
Nach der Berechnung des mittleren
Integrals erhalten wir:
h h
M= / po ae~** [y]g dz = / poabe % dz
0 0
Es bleibt die Berechnung MA
des duBleren Integrals: abpob - - - — - — - = - - — -~
a
h
- /
M = /abpoe ** dz /
/
0 4
1 h
= abpo [—-; e—az] .
ab —ah .
= ; Po - (1 —e ¢ ) 7

Mit wachsendem h wichst die Masse nicht beliebig an, sondern nahert sich einem

Grenzwert. Fiir kleine h steigt die Funktion praktisch linear mit k.2

14 = Gravitationskonstante p, = Luftdruck fiir z = 0
2Dies ergibt sich aus der Potenzreihenentwicklung. Siehe Kapitel 7.
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15.3 Zerlegung eines Mehrfachintegrals in ein Produkt von
Integralen

Es gibt Fille, in denen sich der Integrand eines Mehrfachintegrals in ein Produkt
von Funktionen zerlegen 1a8t, die jeweils nur von einer Variablen abhangen.

f(z,y,2)=9(z) h(y) -m(z)
In diesem Fall ist das Mehrfachintegral ein Produkt aus einfachen Integralen.

!

c ¥ o a' b ¢
/ / / f(z,y, 2)dedydz = / g(z)dz / h(y)dy / m(z)dz
z=c y=b z=a z=a y=b z=c

Die Berechnung von Mehrfachintegralen ist dann auf die Berechnung einfacher In-
tegrale zuriickgefiihrt.

In der Physik fiihrt die Berechnung von Volumen, Masse, Tragheitsmoment, La-
dungsverteilung und anderen physikalischen Groen auf Mehrfachintegrale. Leider
sind diese haufig nicht vom einfachen Typ mit konstanten Integrationsgrenzen. Kon-
stante Integrationsgrenzen erhilt man oft, wenn die Variablen z, y und 2 durch
geeignete andere Variable ersetzt werden. Das bedeutet, da8 ein geeignetes Koor-
dinatensystem benutzt werden muf}, das den speziellen Symmetrien des Problems
angepaft ist. Bei Kreissymmetrie sind dies Polarkoordinaten oder Zylinderkoordi-
naten. Bei Radialsymmetrien sind Kugelkoordinaten angezeigt.

15.4 Koordinaten

15.4.1 Polarkoordinaten

Einen Punkt P in einer Ebene kann man durch einen Ortsvektor darstellen. In kar-
tesischen Koordinaten ist der Ortsvektor durch die z- und y-Komponente bestimmt.
Polarkoordinaten liegen vor, wenn der Ortsvektor durch zwei andere Grofien gegeben
ist:

Ldnge r

Winkel ¢ mit der z-Achse A
Die Koordinaten beider Systeme lassen
sich ineinander umrechnen. Die Um-
rechnungsgleichungen heiflen P
Transformationsgleichungen und erge-
ben sich aus der Zeichnung:

T = T-cosp

X

y = r-sing 4

=Y
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Die Darstellung der Polarkoordinaten durch die kartesischen Koordinaten3 ist eben-
falls aus der Abbildung auf der vorherigen Seite abzulesen.*

r:\/m

tan ¢

y
z

Flichenelement: A
In kartesischen Koordinaten ist ein

Flachenelement gegeben durch .Ey_
dA=dz-dy l<—dz——‘

X
YA
rde
Y
In Polarkoordinaten ergibt sich das . d,)‘
Flachenelement aus der Abbildung zu A4
)
dA=r-dp-dr
“x

Zu beachten ist hier, daB das Flichenelement nicht nur von den Differentialen selbst
abhingt. Dies ist unmittelbar evident, wenn man zwei Flachenelemente mit verschie-
denem r, aber gleichem diy betrachtet.

Beispiel:  Die Fliche eines Kreises 148t sich jetzt leicht berechnen:

R 2x
R2
Az/dAz/ /rdgadr:z.w.-?—:w-nz
r=0 =0

3Mit der Formel tany = i’; ist ¢ noch nicht eindeutig bestimmt. Beispiel: firy=1und z =1
ist tany = 1. Der Winkel ¢ ist §. Fiir y = —1 und ¢ = -1 ist der Tangens genau so gro8,
tang = 1, der Winkel ¢ ist aber (f + 7). Aus den Koordinaten (z, y) ist jedoch unmittelbar
abzulesen, in welchem Quadranten der Punkt liegt. Damit ist ¢ endgiiltig bestimmt; ndmlich zu
¢ = % Allgemeine Vorschrift: man mufl den ¢-Wert nehmen, der — in die Gleichung z = r cos
und y = 7 sin¢ eingesetzt — die gegebenen z- und y-Werte liefert.

4Diese Umrechnung ist bereits bekannt uas dem Kapitel ,, Komplexe Zahlen“.
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15.4.2 Zylinderkoordinaten

Zylinderkoordinaten sind Polarkoordinaten, die fiir den dreidimensionalen Raum
durch die Angabe einer Héhenkoordinate z ergianzt werden. Die Transformations-
gleichungen fiir z und y sind dieselben wie bei Polarkoordinaten. Die z2-Koordinate
geht in sich iiber.
Transformationsgleichungen fiir
kartesische Koordinaten:

= rp-CcOSQp

To - Sin @

z = z

Transformationsgleichungen fiir
Zylinderkoordinaten:®

n = VAT

tanp =

Ny |

z =

Volumenelement in Zylinderkoordinaten: Die Grundfliche des Volumenelementes ist
das Flichenelement in Polarkoordinaten, z av
die Hohe ist gleich dz. Daraus ergibt sich:

dV =rg -dpdrg-dz I—»
| —L Y
Zylinderkoordinaten erleichtern 3 d l ' |
Rechnungen besonders dann, wenn \ ! ! I
folgende Symmetrien vorliegen: P :
x PN
Zylindersymmetrie: N0 49

In Zylinderkoordinaten hingt der
Betrag der beschreibenden Funktion
nur vom Abstand r, von der Sym-
metrieachse ab.

Er ist unabhéngig vom Winkel ¢.

f=f(ro)

A

>

=

>y
> ﬁ(r)

Beispiel: Magnetfeld eines geraden \

NA

stromdurchflossenen Leiters.

r

5Dabei muB der ¢-Wert genommen werden, der — in z = 7¢ siny und y = 7o cos¢ eingesetzt —
wieder den gegebenen z- und y-Wert liefert.
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Rotationssymmetrie um eine Drehachse:
In Zylinderkooridinaten dargestellt,

2
hingt der Betrag der beschreibenden
Funktion nur von den Variablen r, und \ /
z ab und ist unabhiingig vom Winkel . ’u/
]
L,
Nl
: J—"
Beispiele: Form von Schachfiguren, ~

Magnetfeld einer stromdurchflossenen Spule. x /\/7/\
AN

f=f(r01 Z)

15.4.3 Kugelkoordinaten

Fiir Probleme, bei denen Radialsymmetrie vorliegt, eignen sich Kugelkoordinaten.
Sie werden in der Geographie benutzt, um die Lage eines Punktes auf der Erdo-
berfliche anzugeben. Kugelkoordinaten heilen auch rdumliche Polarkoordinaten.
Um die Lage eines Punktes in Kugelkoordinaten zu bestimmen, werden drei Gréfen
angegeben.

r : Lange des Ortsvektors A
9 : Polwinkel — Winkel, den ;
der Ortsvektor mit der 2- N
Achse einschliefit AN
¢ : Meridian AN
— Winkel, den die Projek- pr
tion des Ortsvektors auf P ]
die z-y-Ebene mit der z- : >
Achse einschliefit 1 L7 -y
Transformationsgleichungen 9 o : -7
1

= r-sind-cosp = =0 Z2Lemmmmeememo
= r-sind-singp
z = r-cos?
Hier mufi man bei der Bestimmung der z- und y-Komponente von der Projektion

ro des Ortsvektors auf die z-y-Ebene ausgehen — r¢ = rsind. Auch die folgenden
Transformationsgleichungen ergeben sich aus der Abbildung.

‘/1.2+y2+22

r =
cosd = ot
A /1‘2+y2+22
Yy
t = =
an @ .
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Das Volumenelement hat in Rich-
tung des Ortsvektors die Dicke dr
und die Grundfliche dA’, erste Ab-
bildung.

7

dV =dA’' -dr

dA’ ergibt sich aus der zweiten Abbildung zu

ZA
indd
dA' =7 -sind-dp-r-dd r”w
r

Das Volumenelement in Kugelkoor- 9 /',
dinaten ergibt sich daraus zu

dV =r%.sind-dd-dp-dr

ro

rdp=rsind dg
Kugelsymmetrie
Bei Kugelsymmetrie hingt der Betrag der dargestellten Funktion nur vom Abstand r
vom Ursprung ab, nicht von den Winkeln ¥ und ¢.

f=f(r)

Beispiele: Schwerefeld der Erde, Elektrisches Feld einer ruhenden Punktladung,
Schallwellenintensitit bei einer punktférmigen Quelle.
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Die wichtigsten Eigenschaften von Zylinder- und Kugelkoordinaten sind in der fol-
genden Tabelle noch einmal zusammengefafit. In der letzten Spalte steht der Sym-
metrietyp, fiir den die Darstellung im entsprechenden Koordinatensystem geeignet

ist.
Koordinaten | Umrechnungsformeln | Volumenelement geeignet fiir
Symmetrietyp
kartesische |z dV =dzdyd:z Klappsymmetrie
y an einer Achse
z
Zylinder T =roCcos Rotations-
y=rosing dV =ry - dpdrdz symmetrie
z2=1z Zylinder-
symmetrie
ro = +/z2+y?
Y
t = =
an -
z z
Kugel z =r-sindsinp
y=r-sindsingp dV = r?sin9d¥dpdr | Kugelsymmetrie

Zz=r-cos?

r=4z2 + y? + 22

z
cos = s
4 /z2+y2+z2
tand = ¥

z
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15.5 Anwendungen: Volumen und Trigheitsmoment

15.5.1 Volumen

Quader: Die Volumenberechnung fiir den Quader wird ~ obwohl das Ergebnis trivial
ist — aus systematischen Griinden durchgefiihrt. Das Volumen ist in kartesischen
Koordinaten:

[

z
232 Y2 T2

V=///d:cdydz T~

Z1 91 %1

Die Integrationsgrenzen sind konstant. Es
muB iber jede Variable integriert werden. 2 JU JTS I I
Volumenberechnungen fiihren auf Dreifach- B it s Y
integrale. Als Endergebnis erhalten wir: - ————-

V=(z2—21) (y2 — 1) (22 — 21)

Kugel: Die Berechnung des Kugelvolumens in kartesischen Koordinaten fiihrt zu
Dreifachintegralen, deren Integrationsgrenzen nicht konstant sind. In kartesischen
Koordinaten ist die Berechnung jetzt noch nicht durchfiihrbar; sie wird in Abschnitt
15.6 dargestellt. In Kugelkoordinaten ist das Problem allerdings bereits l6sbar.
Durch die geeignete Wahl des Koordinatensystems erhalten wir konstante Integra-
tionsgrenzen. Mit dem Volumenelement in Kugelkoordinaten ergibt sich

T 27

R
V=///rzsin19d(pdi9dr
00

0

Die Integrationsgrenzen ergeben sich aus fol-
gender Uberlegung: Der Radius r lauft von
0 bis R. Der Meridian ¢ lauft von 0 bis 27.
Der Polwinkel ¥ lauft von 0 bis .

Die Integrationen kénnen nacheinander in
jeder beliebigen Reihenfolge durchgefiihrt
werden. In jedem Fall ergibt sich das glei-
che Ergebnis:

R® 4n 3
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15.5.2 Tragheitsmoment

Bei Drehbewegungen hingt die Tragheitswirkung einer Masse von ihrem Abstand
vom Drehpunkt ab. In den Bewegungsgleichungen fiir Drehbewegungen wird die
Masse ersetzt durch eine Grofle, die Trdgheitsmoment heifit.

Ein Massenelement dm hat das
Tragheitsmoment:

dO = r2dm

r ist der senkrechte Abstand zur Dreh-
achse. Um das Tragheitsmoment eines
Korpers zu erhalten, wird iiber das ge-
samte Volumen integriert. Hier sind Zylin-
derkoordinaten zweckmiBig.

Das gesamte Tragheitsmoment ergibt sich dann zu:

9=/d9=/r2dm mit dm=p-dV (p= Dichte)
v v

o= [[[rrav

Ist die Dichte p konstant, kann sie vor das Integral gezogen werden.

Als Beispiel sei das Triagheitsmoment eines Zylinders berechnet. Die Dichte sei kon-
stant. Drehachse sei die Achse des Zylinders.

o=sf [ [rav

In Zylinderkoordinaten ist das Volumenele-
ment

dV = rdpdrdz

Die Integrationsgrenzen ergeben sich durch
folgende Uberlegung: Der Radius r lauft
von 0 bis R; der Winkel ¢ liuft von 0 bis
2w. Die Hohe z lauft von 0 bis h.

27

h R
9=p///r3'd<p-dr~dz
000
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Dieses Integral 148t sich in das Produkt von drei Einfachintegralen zerlegen oder es
lassen sich die Integrationen nacheinander durchfiihren.
Rirh

2

Ergebnis: © =p

Bei der Berechnung von Volumina, Massen- oder Tragheitsmomenten wurde immer
das gleiche Verfahren angewandt. Es lagen feste Integrationsgrenzen vor, die Be-
rechnung des Mehrfachintegrals lie sich schrittweise durchfithren. Die Benutzung
von Polarkoordinaten, Zylinderkoordinaten und Kugelkoordinaten erwies sich dabei
als vorteilhaft; je nach Symmetrie des Problems.

15.6 Mehrfachintegrale mit nicht konstanten Integrations-
grenzen

Mehrfachintegrale mit konstanten Integrationsgrenzen sind ein Sonderfall. Sind die
Integratlonsgrenzen nicht konstant, sind neue Uberlegungen notwendig. Wir fithren
sie am Beispiel der Flachenberechnung durch. Dieser Fall ist einfacher als die Volu-
menberechnung. Die Flachenberechnung fiithrt auf Doppelintegrale.

Zu berechnen sei die schraffierte Flache. Gehen wir systematisch vor, so ist sie die

Summe der Flachenelemente innerhalb )
der Begrenzung. y =1tx)/

A=Y a4 &

Daraus gewinnen wir das Mehrfachintegral
durch den bekannten Grenziibergang zu -

://M://hdy o : L

Das Problem ist, die Begrenzung der Kurve

zu beriicksichtigen. Dafiir bestimmen wir ”}
nacheinander die Grenzen der beiden Inte-
grale: y= f{x)/
Betrachten wir die Flachenelemente in ei-
nem Streifen wie in der Abbildung rechts.
Dies entspricht einer Summierung in y- Z
Richtung, also einer Integration iiber die Va- -
riable y. Die Grenzen fiir den Streifen sind: —_T/
Untere Grenze: y = 0
Obere Grenze: y = f(z) H—
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Die obere Grenze ist hier eine Funktion von z. Setzen wir das in die Formel ein,
erhalten wir

f(=)
A= //dzdy
y=0

Fiir die Variable z sind die Grenzen konstant.

Untere Grenze: ¢ = a
Obere Grenze: z =10

Auch dies kénnen wir einsetzen und erhalten

b
/ dz dy

Hier ist die Reihenfolge der Integration nun nicht mehr beliebig. Wir miissen zu-
nachst die Integration des Integrals durchfiihren, dessen Grenze variabel ist. In
diesem Fall ist das die Integration iiber y. Dabei bestimmen wir die Flache des in
der obigen Abbildung markierten Streifens mit der Grundlinie dz und der Hohe
f(z) zu f(z)dz. Wir erhalten nach Ausfiihrung dieser Integration

II\,;)\

b

= [r@-0a

b
=/ f(z)d=z

Dieses Ergebnis ist uns vertraut. Es ist die bekannte Form des einfachen bestimmten
Integrals. Wir erkennen, dafl das Flichenproblem, systematisch gesehen, zunéchst
auf ein Doppelintegral fiihrt. In der oben vorliegenden Form ist eine Integration
bereits ausgefiihrt. Diese Integration hat ndmlich bereits die Flache des Streifens
mit der Breite dz und der Hohe f(z) geliefert.
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Weiteres Beispiel: Berechnung einer Fliche, die von Kurven eingeschlossen wird.

Die Fliache A in der Abbildung hat folgende Begrenzungen:

untere Grenze y = z2

obere Grenze y = 2z
Die Fliache A ergibt sich zu

2 2z
A:/ / dz dy

z=0 y=g2

Setzen wir die Grenzen ein, so ergibt sich fii
die Integration iiber y als untere Grenze z*
und als obere Grenze 2z.

Fir die Variable & ergeben sich aus der
Schnittpunkten der beiden Kurven die
Grenzen 0 und 2.

In der Reihenfolge der Integrationen miissen wir so vorgehen, daff das Integral mit
variablen Grenzen zuerst integriert wird.

" J

Das ergibt ein Integreal mit festen Grenzen:
A = /(Zz—zz)d:c

A

I
&
|

| %

A = 4--=1,333

Das hier am Beispiel gewonnene Verfahren wird auf den allgemeinen Fall iibertragen.
Dabei mufl das Mehrfachintegral mindestens fiir eine Variable feste Grenzen haben.
Das Mehrfachintegral wird umgeordnet und schrittweise gelst. Im ersten Schritt
wird eine Variable gesucht, die nicht in einer der Integrationsgrenzen vorkommt.
Fiir diese Variable wird die Integration ausgefiihrt. Im nachsten Schritt wird diese
Prozedur wiederholt und so fortgefahren, bis zum Schiuf Integrale mit festen Gren-
zen iibrigbleiben.

Volumenberechnungen fithren systematisch zunichst auf Dreifachintegrale. Ist eine
Integration ausgefiihrt, bleibt ein Doppelintegral iibrig. Nach der néichsten Integra-
tion bleibt ein einfaches bestimmtes Integral {ibrig.

Flachenberechnungen fithren systematisch zunichst auf Doppelintegrale. Ist eine
Integration ausgefiihrt, ist damit das Doppelintegral auf ein einfaches bestimmtes
Integral zuriickgefiihrt.
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15.7 Kreisflache in kartesischen Koordinaten

Die Berechnung der Kreisfliche in Polarkoordinaten ist bereits ausgefiihrt. Hier soll
gezeigt werden, daf diese Berechnung auch in kartesischen Koordinaten maglich ist.

Der Radius sei R. Dann ist die Kreisfliche

A://dA://dzdy i

Wir bestimmen die Integrationsgrenzen. s
z lauft von —R bis +R
y hat dann fiir gegebene Werte von = die R
Grenzen
untere Grenze y; = —V/ R?—z? ~R L
obere Grenze y; = R2 — g2
Die Grenzen eingesetzt ergibt |
+VR?=z3 4R

A= / / dz dy
y=—VRI=z7 s=-R

Wir miissen die Integration zunéchst fiir die Variable mit nicht konstanten Grenzen
durchfiihren und daher das Integral umordnen.

+R VR3=z7
A= / dydz
¢=-R y=—RI=77

Wir erhalten nach der ersten Integration

+R
A=2/ VR?2 - z2dz
-R
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Dieses verbleibende Integral wird mit Hilfe der Integraltabelle — Kapitel 6 — gelost:®

z R? P
A=2 [5\/122 —z2 4 - arcsin I_i]

-R
A = R? [arcsin(1) — arcsin(~1)] = R*r

Als Ergebnis erhalten wir wieder die bekannte Formel fiir den Flacheninhalt des
Kreises. Hier zeigt sich deutlich die Erleichterung der Rechnungen, wenn geeignete
Koordinatensysteme gewihlt werden. Zur Ubung kann der Leser in dhnlicher Weise
auch das Volumen der Kugel in kartesischen Koordinaten berechnen. Auch diese
Rechnung ist deutlich schwieriger, als die Berechnung in Kugelkoordinaten.

arcsin(1) = % wegen sin (%) =1

arcsin(—~1) = —% wegen sin (— %) =-1
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15.8 Ubungsaufgaben

15.2 Integrieren Sie die Mehrfachintegrale

Ein Punkt hat die kartesischen Koordinaten P = (3, 3).

Geben Sie die Gleichung fiir einen Kreis mit Radius R in

2 1
[ [ zdzdy

y=0z=0

f } n(l+v)dndv

n=1v=2

21

1 'y
[ [ [ e**dzdyd:

z=0y=yo 2=20

Polarkoordinaten und kartesischen Koordinaten an.

b a
a) [ [ dzdy b)
y=0z=0
n n
¢) [ [ sinz-sinydzdy d)
z=0y=0
3 1 2
e) [ [ [ dzdydz f)
,:_%y:-lz:O
153 a)
Geben Sie die Polarkoordinaten an.
b)
c) Geben Sie die Gleichung
fiir die Spirale in Polar-
koordinaten an.
154 a) Berechnen Sie das Volumen
eines Zylinderringes mit den
Radien R; und R,.
b) Bestimmen Sie den

Flacheninhalt eines
Halbkreises mit Hilfe
eines Zweifachintegrals.

<Y
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2

3z
15.5 a) Berechnen Sie den Wert des Intergrals [ [ z2dzdy

b)

z=0y=z-1

1 2z 4y
Berechnen Sie das Dreifachintegral [ [ [ dzdydz

z=0y=02=0

Achten Sie auf die Reihenfolge der Integrationen!

Berechnen Sie das Tragheitsmoment 6 einer Kugel mit dem Radius R
und konstanter Dichte p. Die Drehachse geht durch den Kugel-
mittelpunkt. Benutzen Sie Kugelkoordinaten.

Hilfe:
Das Integral [ sin® 9dv hat den Wert 3.
0

Losungen

152 a) a-b Rechengang: Nach zwei Integrationen ergibt sich

15.3

b)

4)

(218 W) =[a—0]-[b—0] = ab

o N

12 Rechengang:

[ o $limn= o 5] 8], -1

1
S (e =) = 10) -1

r=3-v2 tanp =1 p=1%

kartesische Koordinaten R? = 22 + 32

Polarkoordinaten: R=r

= £
L
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154 a) V =xh(R2- R?) Rechengang: Das Volumenelement dV hat in Zy-
hnderkoordmaten die Form dV = rdr dypdz.

R2rh

V={[[[rdrdedz = frdrqu,ofdz--7rh(R2 R?)
R, 00 R,

b) A= RT’ 7  Rechengang: In ebenen Polarkoordinaten hat das Flichen-
element dA die Form dA =r-dpdr.

R«

A= [[r.dr.dp= frdrfdcp——w
00

155 a) 10% Rechengang: Zuerst mufl das Integral mit variablen Grenzen

berechnet werden.
2 3z 2 3z
J [ zlzdy= [ | [ zldy|dz
z=0y=z-1 =0 |y=z-1

3z
[ 2tdy=2y)3*, = 223z — z + 1) = 223 + z?

z—-1

Somit gilt

; 2 2 z? z® 2 32
f f z2dzr dy = f(2z +a:)dz_[27 3-]0=?f~v10.67

z=0y=z-1
b) % Rechengang: Zuerst mu8 iiber die Variable z integriert werden,
weil in den zugehérigen Integrationsgrenzen die Variablen z und
y vorkommen.
2z z+y 1 2z | z4y
f J [ dzdydz= [ | [ | [ dz|dy|d=z
z=0y=02=0 z=0 |y=0 |2=0
¢) 60=2R'M Rechengang:

6= [pridv; Volumenelement dV = r2 sin 9 dr dd dp

T 27
J [ (rsind)’r?sinddrdpdd
9=0 =0

L=

p

r

@
Foi3 r R® 4 2 p2

II
°“5m

Dabei ist M = p37R® die Masse der Kugel.
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16 Parameterdarstellung, Linienintegral

16.1 Parameterdarstellung von Kurven

Die Bewegung eines Massenpunktes m wird durch die Angabe seines Ortsvektors
beschrieben.

Wir betrachten zunidchst Bewegungen in der A
z-y-Ebene. Die Spitze des Ortsvektors ()
tastet die Bahnkurve ab, die der Massen- YO S~ = = :
punkt durchlauft. Seine Koordinaten z (t) :
und y (t) sind Funktionen der Zeit. e
|
I -
(6] x(t) x

1. Beispiel: Der waagerechte Wurf.
Beim waagerechten Wurf werde ein Kérper mit der Anfangsgeschwindigkeit vo; in
Richtung der z-Achse geworfen. '
Die gleichférmige Bewegung in z-Richtung YA
und der freie Fall in y-Richtung iiberlagern
sich ungestort. Die z- und y-Koordinaten 0 T
der Bewegung sind also gegeben durch |
|
1
|

z(t)=voz -t

== —=—=7

__9,.

Der Ortsvektor ist hier
o 9,2
1) = ( 1, —2t )
7’( ) Vox 2

Die z- und y- Koordinaten hingen von der Variablen ,,Zeit“ ab. Man sagt allgemein,
der Vektor 7 (t) hangt von dem Parameter ¢ ab.

Eine Kurve in der z-y-Ebene war bisher durch eine Funktion y = f(z) gegeben.
Neu ist jetzt, daB die beiden Variablen z und y als Funktionen einer dritten Grofe
ausgedriickt werden. Eine solche Darstellung nennt man die Parameterdarstellung
der Kurve. Die Parameterdarstellung ist ein wichtiges Hilfsmittel bei der Beschrei-
bung von Ortsveranderungen. Die Gleichungen oben sind die Parameterdarstellung
der Bahnkurve des waagerechten Wurfes. Man kann die Parameterdarstellung in die
vertraute Form der Bahnkurve iiberfiihren, indem der Parameter eliminiert wird.
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Wenn wir die Gleichung £ = v,; t nach ¢ auflésen, quadrieren und in die Gleichung

y=-1% t2 einsetzen, erhalten wir den Ausdruck
g 2
= - z
y 202,

Dieser Ausdruck ist die Funktion nur einer Veranderlichen. Er stellt eine Parabel
dar, die sogenannte Wurfparabel.

2. Beispiel: Rotation auf einer Kreisbahn.
Der Ort eines Punktes kann neben der An-
gabe der kartesischen Koordinaten z und y
auch durch die Angabe der Polarkoordina-
ten r undy beschrieben werden.

Die beiden Darstellungen sind durch fol-
gende Transformationsgleichungen mitein-
ander verkniipft:

T =rcosyp 0<p<2r
y=rsing

Bei konstantem r sind die z- und die
y-Koordinaten Funktionen einer dritten
Grofe, des Winkels ¢. Wir haben eine Pa-
rameterdarstellung mit ¢ als Parameter.

Der Ortsvektor des Kreises ist () = (r cosp, rsin¢p). Wir kénnen den Parameter
¢ eliminieren.
22+ y? =r?cos? p + r?sin? p = r?

Die Gleichung z2 + y? = r? stellt einen Kreis dar.

Sonderfall: Kreisbewegung mit konstanter Winkelgeschwindigkeit.
Rotiert der Punkt gleichférmig auf der Kreisbahn, dann wachst der Winkel ¢ linear
mit der Zeit an:

p=w-1

Die GroBe w wird bekanntlich Winkelgeschwindigkeit genannt. w ist analog zur
Geschwindigkeit bei der geradlinigen Bewegung definiert: w = %‘%. Die Einheit der
Winkelgeschwindigkeit ist 1/Sekunde.

Die Parameterdarstellung der Kreisbewegung lautet jetzt:
z (t) = r coswt y(t) = rsinwt

Der Ortsvektor, der die Kreisbahn abtastet, ist:

7(t) = (rcoswt, r sinwt)
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3. Beispiel: Parameterdarstellung der Geradengleichung.
Gegeben sei eine Gerade in der Ebene.

b sei ein Vektor, der in Richtung der Gera-
den zeigt und @ ein konstanter Vektor, der
vom Koordinatenursprung zu einem beliebi-
gen Punkt der Geraden reicht. Der Ortsvek-
tor F(t) =a +b-1 tastet die gesamte Gerade
ab, wenn der Parameter ¢ den Bereich der
reellen Zahlen durchlduft. Fiir die Koordi-
naten z und y gilt

YA

=Y

z(t) = az + byt y(t) = ay + byt

Bisher hatten wir nur Kurven in der Ebene betrachtet. Die Parameterdarstellung
ist besonders hilfreich bei der Darstellung von Kurven im dreidimensionalen Raum.

4. Beispiel: Gerade im Raum.
Das Beispiel 3 148t sich leicht auf den dreidimensionalen Fall erweitern. Die Vektoren
@, b und 7(t) sind jetzt aber rdumliche Vektoren. Die Parameterdarstellung ist

z(t) = ap + byt y(t) = ay + byt z2(@)=a, + bt

5. Beispiel: Schraubenlinie

Ein Punkt bewege sich auf einer Schrauben-
linie. Der Hohengewinn pro Umlauf sei h.
Die Koordinaten des Punktes sind dann

z (t) = rcost

y(t) = rsint

Z(t)=%t /A

Durchlduft der Parameter ¢ den Bereich von t = 0 bis ¢ = 27, ist ein Umlauf
vollendet. Der Punkt P = (z, y, z) lauft auf der Schraubenlinie von A nach B.

Der Ortsvektor der Schraubenlinie ist

; h
208 — L
7(t) = (rcost, rsint, oy )
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6. Beispiel: Kreis im Raum (parallel zur z-y-Ebene)
Ein Kreis mit dem Radius r liege mit dem
Abstand zo parallel zur z-y-Ebene.

Aus der Skizze lesen wir ab

7= 20€; + Tzy

Der Vektor 7y hat

die z-Komponente 2 - €,

die z-Komponente r cos ¢ - €
die y-Komponente rsin g - €.
Der Ortsvektor 7(yp) ist dann

7(p) =rcosy - € + Tsinpéy + 20€;
=(rcosp, rsingp, 2o)

7. Beispiel: Parameterdarstellung einer Hyperbel:
Die Funktionsgleichung £ — y? = 1 stellt eine Hyperbel dar: Die Hyperbel hat eine
Nullstelle bei £ = 1 und sie hat die Asymptoten yg51 = und yu52 = —2.

Eine Parameterdarstellung dieser Hyperbel ist durch die hyperbolischen Funktionen
moglich. Daher auch der Name hyperbolische Funktionen.

z = coshyp y =sinhyp 4

Beweis durch Verifizierung. Wegen der Be- 21— x=coshy
ziehung (cosh ¢)? — (sinh )2 = 1 kann der
Paramter ¢ eliminiert werden und wir er-
halten die Funktionsgleichung der Hyperbel 1
22—y =1.

Gegeben sei ein bestimmter Wert g des Pa-
rameters. Damit ist ein Punkt P auf der Hy-
perbel definiert. Wiachst ¢ von 0 bis co so
durchlduft P auf dem oberen Hyperbelast
- beginnend mit Py(1,0) — alle Punkte des .
Graphen. Fiir negative Werte des Parame-

ters durchlduft P den unteren Hyperbelast.
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Die Umkehrfunktion heifit Areafunktion, ¢ = Arsinhy.

Die schraffierte Flache A in der Abbildung entspricht dem halben Parameterwert
2A = $Yo-

Wenn wir die Umkehrfunktion fiir den Hyperbelsinus bilden, erhalten wir eine Funk-
tion, die eine geometrische Bedeutung hat, sie bezeichnet die schraffierte Flache.
Daher der Name Areafunktion .

Hyperbelsinus y = sinh ¢
Umkehrfunktion ¢ = Arsinhy

Gelesen: ¢ entspricht der Fliche (Area), dessen Hyperbelsinus y ist.

Gemeint ist die vom Ortsvektor P der z-Achse und der Hyperbel eingeschlossene
Flache.

Beweis: Wir berechnen die schraffierte Fliche A.
Ap = Fliche des Dreiecks = %cosh o - sinh g
A; = Fliche unterhalb der Hyperbel

Damit gilt: A = Ap — A,

Berechnung von A;
¥o

A= / sinh ¢ dz
0 x
Wir substituieren!dz und integrieren partiell.
o
A = /sinh2 pdp
0
¥o
= lcosh ©o - sinh goo]‘(’,’:— / cosh? pdyp
=240 0
Umformung des Integrals ergibt?
¥o $o $o
A = / sinh? pdyp = 24, — / sinh? pdyp — / do
° ° —
=po

Zusammenfassung der identischen Integrale fiihrt zur
¥o

2 / sinh?pdp = 24; =240 — po
0
o = 2[Ao— A4
1Substitution: £ = cosh ¢ dz = sinh pdp

2Hinweis: cosh? ¢ — sinh? p = 1 cosh? o =1 + sinh? ¢
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8. Beispiel: Parameterdarstellung einer Zykloide:

Zykloide sind Kurven, die die Bewegungen von Punkten auf Rédern angeben, die
ohne Schlupf rollen. Hier sei die Zykloide fiir den Punkt auf dem Aufleren Rand
des Rades mit dem Radius R angegeben. Der Parameter ¢ ist der Drehwinkel des
Rades. Die Parameterdarstellung der Zykloide ist:

z = R(p — sinyp) y = R(1 — cosp)
YA

i 4 P

a

=Y

0
16.2 Differentiation eines Vektors nach einem Parameter

Die Bahnkurve eines Punktes in der Ebene wird beschrieben durch den zeitab-
hingigen Ortsvektor

o o o YA
F(t) = (@0, ¥ 1) = 2 (0% +y (05, -
4
Nach einem Zeitintervall At ist der Ortsvek- —
tor
r{t + At)

T (t + At) = 7(t) + AF(2)
Wir fragen nun nach der Geschwindigkeit -
7 (t) als dem Ma8 fiir die zeitliche Anderung ~ © x

des Ortsvektors.
Nach der Abbildung ergibt sie sich als Ortsinderung A7 pro Zeitinderung At

AT (s(t+ At —o(t) y(t+ Al — ()
v= lm A = A, ( At ' At

In Komponentendarstellung

L AF z(t + At) — z(t) y(t + At) — y(t)
v = lim lim ( At , At

At—0 At~ At—0

Fiihren wir den Grenziibergang durch, so erhalten wir

1_),_dr"'_ dz dy
Tdt T \ldt’ dt



16.2 Differentiation eines Vektors nach einem Parameter 69

Die Komponenten der Geschwindigkeit des Punktes sind die Geschwindigkeiten der
Koordinaten des Punktes. Liegt also ein Vektor #(t) in Komponentenschreibweise
als Funktion des Parameters Zeit ¢ vor, dann erhalten wir die Geschwindigkeit des
Vektors, indem jede Komponente einzeln nach ¢ differenziert wird.

-

Aus der Herleitung ist ersichtlich, daf der Vektor %:— in die Richtung der Tangente an
die Bahnkurve zeigt. Er wird er als Geschwindigkeit oder als Geschwindigkeitsvektor
bezeichnet.

1. Beispiel: Waagerechter Wurf Der Ortsvektor der Bahnkurve beim waagerechten
Wurf war

7(t) = (vost, —51%)

Die Geschwindigkeit erhalten wir, wenn wir 7(t) nach der Zeit differenzieren.
V(t) = = (voz, —gt)

Die Beschleunigung erhalten wir, wenn wir #(t) nach der Zeit differenzieren.

i) =20 -2 _ o,y

dt dt?

Das Ergebnis ist bekannt, es liegt die nach unten gerichtete Erdbeschleunigung vor.

2. Beispiel: Rotation auf einer Kreisbahn

Der Ortsvektor der kreisférmigen Bahnkurve war A
o
7(t) = (r coswt, rsinwt) B0
Die Ableitung des Ortsvektors nach der Zeit a()
ist der Geschwindigkeitsvektor 7 (t). | o
di(y _ d 1)
- o dr(t) _ .
7)) = FTRlalr” (r coswt, rsinwt)
= (%(r coswt), % (rsin wt))
7(t) = w(—rsinwt, rcoswt)

Der Geschwindigkeitsvektor steht senkrecht auf dem Ortsvektor.

Beweis: Das Skalarprodukt - v verschwindet.

F(t)-7(t) = (rcoswt, rsinw(t))(—wrsinwt, wrcoswt)

= wr?[-coswt -sinwt +sinwt - coswt] = 0
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Der Geschwindigkeitsvektor zeigt in die Richtung der Tangente der Bahnkurve. Er
hat den Betrag

v= |9 =Viz = \/1'2u)2(cos2 wt + sin? wt)

a(t)= = = —w?(r coswt, rsinwt)
= —w’F(t)

Der Beschleunigungsvektor hat die Richtung von 7 und zeigt zum Koordinatenur-
sprung hin. Der Betrag von a ist

|a] = a = w?r

Wir kénnen wechselweise mit Hilfe von v = w - r den Bahnradius r oder die Win-
kelgeschwindigkeit w eliminieren:

a=—=vWw
r

Die Beschleunigung @ wird Zentripetalbeschleunigung genannt.

Ein Vektor im dreidimensionalen Raum, der in Komponentendarstellung vorliegt,
wird wie im zweidimensionalen Fall nach einem Parameter differenziert, indem jede
Komponente einzeln differenziert wird. In Formeln:

7 (t) (z(1), y(1), 2(1))
dr _ (dz dy dz
dt —  \dt’dt’dt
Sind bei Integrationsaufgaben die Komponenten eines Vektors als zeitliche Ablei-
tungen gegeben, dann darf komponentenweise integriert werden.
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16.3 Das Linienintegral

Ein Korper werde in einem Kraftfeld auf einer Kurve bewegt. Haufig interessiert
man sich dafiir, welche Arbeit dabei aufzuwenden ist oder gewonnen wird.

1. Fall: Das Kraftfeld ist homogen. Dann hat "

es in allen Punkten die gleiche Richtung und /'/.

den gleichen Betrag. Der Kérper werde um gy I /;,

den Vektor § verschoben. [~ /f-"'

Dann ist die Arbeit definiert durch das Ska- /}

larprodukt von Kraftvektor und Wegvektor: » -
1

x

W=F.5

2. Fall: Das Kraftfeld FF (z, y, z) sei ein beliebiges Vektorfeld. Der Weg wird durch
den Ortsvektor 7(t) beschrieben, der in Parameterdarstellung gegeben sei.

Die Wegenden seien durch die beiden Punkte P, und P, festgelegt.

Um einen Niherungsausdruck
fiir die Arbeit zu erhalten, zerle- 2A
gen wir den durchlaufenen Weg
zunichst in n Wegelemente Af7.
Das i-te Wegelement hat die
Form

Ar; = F(t.‘.H) - F(t,').

Filxi % 2)

Jetzt bestimmen wir die Kraft
fiir dieses Wegelement.

F(r(t:) = F(z (&), y (), 2 (%))

Um den Arbeitsanteil zu erhalten, bilden wir das Skalarprodukt des Wegelementes
mit dem Kraftvektor

<Y

AW = F(z (&), y (&), z(&)) - Ar;

Den Niaherungsausdruck fiir die geleistete Arbeit erhalten wir, wenn wir alle Skalar-
produkte fiir den Weg aufsummieren.

e8]
Wa ) F((t), y(t:), 2 () - AR
i=0
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Wihlen wir die Wegelemente immer kleiner, d.h. lassen wir ihre Anzahl gegen Un-
endlich gehen, dann erhalten wir den exakten Ausdruck fiir die geleistete Arbeit im
Kraftfeld F(z, y, z) auf dem vorgegebenen Weg.

w o= nlgggl’“(:v ), y(&:), 2 () - A
P,

/f(x, y, z) - dr

P,

w

Dieses Integral wird Linienintegral genannt. Der Name riithrt daher, da§ der Inte-
grationsweg eine Kurve, also eine Linie im Raum, ist.

16.3.1 Berechnung von speziellen Linienintegralen

Im allgemeinen Fall ist es schwierig, das Linienintegral auszurechnen. Viele Probleme
lassen sich jedoch auf leicht berechenbare Spezialfille zuriickfiihren. Das allgemeine
Verfahren wird in Abschnitt 16.3.2 beschrieben.

Homogenes Vektorfeld, belicbiger Weg
Ein homogenes Vektorfeld 138t sich darstellen durch F = aé, + b&y + c&;
Die Arbeit lings eines Weges von P; nach P, ist

P,
W:/ﬁ-df
P,

Wegen d7 = dzé; +dyéy +dzé, und F .d¥ = adz +bdy+cdz kann das Linienintegral
in die folgende Form gebracht werden:

P, P; P,
W:a/dw+b/dy+c/dz
P, P, Py

Fiir die Integrationsgrenzen miissen wir noch diejenigen Koordinaten einsetzen, die
den Werten von P; und P, entsprechen, also

z2 Y3 22
w = a/dx+b/dy+z/dz
z Y1 21

= afza—z1]+b[y2 — 1] + c[z2 — 2]
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In den Klammern stehen die Differenzen der Koordinaten von End- und Anfangs-
punkt des Weges. Das Ergebnis entspricht unserem 1. Besipiel. Die Arbeit W ist das
Skalarprodukt aus Kraft und gesamter Ortsverschiebung: W = F.5. Bei homogenen
Kraftfeldern hangt die Arbeit nur von der resultierenden Ortsverschiebung ab, nicht
aber von der speziellen Form der Bahnkurve. z

P

Beispiel: Die Gondel eines Riesenrades mit
der Masse m werde vom tiefsten auf den
hochsten Punkt gehoben. Das Gravitations-
feld ist homogen. Die Gravitationskraft ist:

<Y

F; = —mge,; = (0; 0; —mg)
Die hebende Kraft ist dann F, = mgé,= (0, 0, mg)

Nach obiger Formel gilt fiir die geleistete Ar-
beit

W= mg- 2R

Radialsymmetrisches Vektorfeld, radialer Weg

Die Gravitationskraft, die eine Masse M auf
eine zweite Masse der Grofle m ausiibt, hat

die Form
=~ mM7 B
F=-7—3 N 2
r l ¥
~ ist die Gravitationskonstante. A /
7 weise von M nach m. ~Nm '
Wir wollen die Arbeit berechnen, die geleiste
— —
wird, wenn m von P in radialer Richtung -
nach P, gebracht wird. . A "
Die bewegende Kraft F, = -F, hat die gleiche
Richtung wie 7 und damit gilt / T \
., Mrd
AW = F.df=F-dr=~2 ra" .
__mMdr
— 7 1'2

Hat P, die Entfernung r; von M und P, die Entfernung r;, dann gilt fiir das Linien-
integral bei radialsymmetrischem Feld und einem Weg P; P; in radialer Richtung

P, P;

P,
=, dr 1 1) 1 1
/Fv‘v-dr_/lﬂv-dr_'ymM/;—2-_—7mM(E—E)_7mM(r—1—T—2)
P,

Pl Pl
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Radialsymmetrisches Feld, kreisformiger Weg

Bewegt sich die Masse m auf einer Kreisbahn um die Masse M, dann stehen Kraft-
feld F' und Wegelement d7 senkrecht aufeinander. Damit gilt

F.dF =0

Der Wert des Linienintegrals ist fiir jedes
Kreisbogenstiick Null. In einem radialsym-
metrischen Feld wird also keine Arbeit auf
einer kreisférmigen Bahn um das Kraftzen-
trum geleistet.

In Formeln:

}{ﬁ.dfzo

Der Kreis in dem Integralzeichen symbolisiert, daB auf einem geschlossenen Weg
integriert wird.

Ringformiges Feld, kreisférmiger Weg

Um einen stromdurchflossenen Leiter entsteht ein ringformiges Magnetfeld. Die
Feldlinien sind Kreise.

Das Magnetfeld hat fiir einen sehr langen

geraden Leiter die Form p

I )
H:er_o(_smgo,cos%O) \ \, l /

ro ist der senkrechte Abstand zum Draht. \'E
Wir wollen jetzt lings einer magnetischen
Feldlinie mit dem Abstand rp zum Draht
integrieren und zwar auf einem vollstindi-
gen Kreis. Den Integrationsweg legen wir in -
die z-y-Ebene. Dies kénnen wir ohne weite- /4

res tun, da das Magnetfeld H nicht von der r \
z-Koordinate abhéngt.

Der Integrationsweg ist ein Kreis. Das Linienintegral iiber einen Kreisumlauf wird
durch einen Kreis im Integralzeichen gekennzeichnet.

f Hdr

d7 und H haben hier die gleiche Richtung. Damit wird d7- H = dr - H

fﬁ-d?:f}{drz I jédr
27!'1"0
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Das Integral § dr ist gleich dem Umfang des Kreises, also

f dr = 27rg

Das ergibt eingesetzt

fﬁd?: I 2rro =1

27ro

Das Resultat unserer Rechnung ist ein Spezialfall des allgemeingiiltigen Satzes:
Das Linienintegral lings eines geschlossenen Weges im Magnetfeld ist gleich dem
vom Weg eingeschlossenen Strom.

16.3.2 Berechnung des Linienintegrals im allgemeinen Fall

Wir nehmen an, da die Kurve, auf der entlang das Linienintegral gebildet wird, in
Parameterdarstellung gegeben sei. Dann schreibt sich der Ortsvektor als

ry =z (1) ry = y(t) r, =2z (1)
(1) = (= (0), (1), 2(0)
Die Ortsverschiebung ist dann
47 (1) = (de (1), dy 2), 42 (1))
dz (t), dy(t) und dz (t) sind die Differentiale der Funktionen z (t), y (t) und z(t).

Sie sind gleich

) = L. wO=La @@=

dt
dz dy dz

dz

7 -dt
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Variiert ¢ von t; nach t3, dann wird die Orts- 24
kurve von P; bis P, durchlaufen. Um die
Kraft fiir jeden Kurvenpunkt zu erhalten,
setzen wir in den Ausdruck fiir das Vektor-
feld die Parameterdarstellung der Ortskurve
ein.

F(zyz) = Fa(z(t),y(t), 2(t)e
+Fy (2 (t), y(2), 2 (1) &
+F: (2 (t), y(2), 2 (1)) &

Dies setzen wir ein in das Linienintegral fiir die Arbeit W = [ F.dr und fiihren das
Skalarprodukt aus:

P,
W= [ R, v, 20) =
P,

P
+ [ BEOv0, :0)-d0
P;

P,

+ [ Ry, :0) )

Py

Setzen wir als Grenzen noch ¢, und t3, um auszudriicken, dafl die drei Integranden
nur noch von ¢ abhéngen, dann ist das Linienintegral

W= / ( )ﬁ+fF(2)ﬁ+]F(Z)ﬂ

t2 t

Dies ist die Surmme dreier gewshnlicher bestimmter Integrale mit der Integrations-
variablen .

Regel: Gegeben ist ein Vektorfeld F(z,y, z) und ein Weg in Parameterdar-
stellung:

)= (z(t) y@®), ()

Das Linienintegral ist dann

P,
W:/ﬁ@%nﬁ_/ a+/ a+/m%a
P,
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16.4 Ubungsaufgaben

16.1 A

16.2 A

Schiefer Wurf: Beim schiefen Wurf mit dem Winkel o gegeniiber der
horizontalen z-Achse hat ein Koérper die Anfangsgeschwindigkeit

v = (vo - cosa; vg - sinar). Bestimmen Sie die Gleichung der Wurf-
parabel.

Ein Punkt rotiert gleichméa8ig in der z — y-Ebene. In 2 sec.- durchlauft
er dreimal die Kreisbahn mit dem Radius R.
Geben Sie die Parameterdarstellung an.

a) Welche Kurve wird beschrieben durch die Parameterdarstellung

z(t)=t
y@t)=t
z(t)=t

b) Auf welche Kurve fiihrt die folgende Parameterdarstellung:
z (t) = acost
y(t) = bsint

Bestimmen Sie den Beschleunigungsvektor @ (t) bei der gleich-
mifligen Rotation. Die Parameterdarstellung der Geschwindigkeit ist:
vz(t) = —wrsinwt

vy (t) = wr coswt

Der Ortsvektor eines Massenpunktes ist gegeben durch
7(t) = (Rcoswt, Rsinwt,t). Bestimmen Sie die Geschwindigkeit
des Massenpunktes zur Zeit ¢t = ":"—"

Der Beschleunigungsvektor ist beim freien Fall gleich § = (0,0, —g).
Wie sieht der Geschwindigkeitsvektor aus, wenn die Geschwindigkeit
zur Zeit t = 0 gleich 9o = (vo, 0, 0) ist?

16.3.1 A In dem homogenen Kraftfeld F = (2,6,1)N wird ein Kérper lings

der Kurve 7 (t) = (7o + t&;) von dem Punkt 7(0) = 7 zum
Punkt 7(2) gebracht. Wie grof§ ist die aufzuwendende Arbeit?

Das radialsymmetrische Kraftfeld sei F = (z,y,z)N. Ein Korper
werde in diesem Kraftfeld 1angs der z-Achse vom Koordinaten-
ursprung zum Punkt P = (5,0,0) gebracht. Berechnen Sie die
geleistete Arbeit.

Gegeben sei das Vektorfeld A(z,y,z) = 7%7"%% Berechnen Sie
z24y342z

das Linienintegral langs des Kreises in der z — y-Ebene mit dem
Koordinatenursprung als Mittelpunkt.
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16.3.2 Berechnen Sie fiir das Vektorfeld A(z,y, z) = (0, ~z,y) das Linien-
integral lings der Kurve 7(t) = (v2cost,cos2t,2) vont =0 bis t = .

Lo6sungen

. . _ g 2
16.1 A Die Wurfparabel ist y = tana -z — Wt
B Die Parameterdarstellung lautet

z(t) = Rcos3nt

y(t) = Rsin3nt
C a) Die Kurve stellt eine Gerade dar. z

.

b) Eliminieren von ¢ fiihrt auf 5222 + a%y? = a?b? oder 27 + g; =1
Die Gleichung stellt eine Ellipse mit den Halbachsen a und b dar.

16.2 A Der Beschleunigungsvektor @ (t) ergibt sich als Ableitung
von ¥ nach ¢.

az(t) = —w?rcoswt
ay(t) = —w?rsinwt oder
@(t) = —w?r(coswt,sinwt)

B Esist 9(t) = d—'}')
o(t) = ii—%—') = (—Rwsinwt, Rw coswt, 1)
7(2) = (0, Rw, 1)

C #(t) wird aus § durch Integration der Komponenten von § und ¢
und Anpassung des erhaltenen Vektors an vy ermittelt.

¥(t) = (c1, c2, —gt +¢3); c1, c2, c3 Integrationskonstanten
6(0) =9 = (00,0,0)
Daraus folgt: ¢c; = vg, c2 =c3=0

Damit gilt: #(t) = (vo, 0, —gt)
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16.3.1 A In einem homogenen Vektorfeld F = (a, b, ) gilt nach 16.3.1 fiir
die Arbeit, die bei der Verschiebung von Py = (z1, ¥y, 21)
nach P, = (z2,y2, 22) geleistet wird:

W=algz— 1] +b[y2 — 1] + c[z2 — 1]

Es ist P, = (zo0, Yo, 20) und Py = (zo + 2, Yo, 20)

Mit F = (2,6,1)N erhalten wir

W ={2[z0 +2— zo] + 6 [yo — yo] + 1 [20 — 20]}Nm = 4Nm

B Fir F = (z,y,z)N und di = (dz,0,0) erhalten wir F.df = zdz
Das Linienintegral wird damit ein gew6hnliches Integral iiber z:

fF dr-—fzdz—[ ]

C Vektorfeld und Wegelement stehen senkrecht aufeinander. Deshalb

verschwindet das Skalarprodukt A - dr und das Linienintegral
hat den Wert Null.

16.3.2 Das Wegelement d(t) ist df(t) = (—v/2sint,—2sin 2¢, ) dt
Setzen wir z (t),y(t) und z(t) in das Vektorfeld ein, ergibt sich
At)= (0,2

Das Linienintegral ist damit

cos 2t)

'y 70

fff-dr"— f [‘—;—t-sm2t+-2—cos2t] dt
0

Das Integral iiber P sin 2t wird durch partielle Integration
berechnet. Es gilt

f tsin 2tdt = s"‘ 2t _ tcos2t
2

Damit wird
j [— sin 2t + 2cos2t] dt = % [%2—': - t_co_zszt_]o + %[sin2t]o%

T4



80

17 Oberflaichenintegrale

17.1 Der Vektorflu3 durch eine Fliche

Durch ein Rohr flieBe Wasser. Die Dichte des Wassers sei iiberall konstant. Die
Geschwindigkeit der Wasserteilchen sei .

Da jedem Wasserteilchen an jedem Ort eine Ge-
schwindigkeit ¥ = ﬁ—f zugeordnet werden kann,
liegt ein Vektorfeld vor. Wir nehmen zunéchst an,
daf ¥ iiberall die gleiche Richtung und den gleichen
Betrag hat, also ein homogenes Vektorfeld vorliegt.
Wir legen eine Flache A senkrecht durch den Was-
serstrom und fragen nach der Wassermenge, die
pro Zeitintervall At durch die Flache A hindurch-
flieBt. Das ist die Wassermenge, die sich in dem
Quader mit der Grundfliche A und der Tiefe As
befindet. Die Tiefe As ist durch die Bedingung fest-
gelegt, da8 die Wasserteilchen in der Zeit At vom
Ende des Quaders die Flache A erreichen miissen.

Dann gilt:

As=v- At

Das Volumen V des Quaders ist damit :

V=A-v-At

Die hindurchflieBende Wassermenge AM ist

AM=p-V =p- AvAt

Die pro Zeiteinheit durch die Flacheneinheit
flieBende Wassermenge ist dann

AM
A-At

:p-T}':j

Diese GréBe nennen wir Stromdichte j. Da die Geschwindigkeit 7 ein Vektor ist, ist
die Stromdichte ebenfalls ein Vektor.



17.1 Der Vektorfluf durch eine Fliche 81

Definition: Die Gréfie j = p- ¥ heifit Stromdichte. Der Betrag der Stromdichte
J gibt die pro Zeiteinheit durch die Flacheneinheit flieBende Was-
sermenge an. Die Flache steht senkrecht zur Strémungsgeschwin-
digkeit 7. Der Vektor j zeigt in die Stromrichtung.

(17.1)

Durch eine beliebige Flache A senkrecht zur Stromrichtung fliet dann der Strom
I=A-ljl=
Wir legen nun eine Flache A schrig in den Wasserstrom, so daf§ die Flachennormale

einen Winkel a mit der Stromrichtung bildet.

Wir betrachten die Fliche A und ihre Projektion
A; auf eine Ebene senkrecht zur Stromrichtung.
Aus der Abbildung lesen wir ab

Aj =Acosa

Damit erhalten wir fiir den Strom I durch A
I=j Aj=jAcosa

Durch die beliebig in den StromfluB gelegte Flache stromt genausoviel Wasser wie

durch die Projektion A;.

Dieser Ausdruck hat eine formale Ahnlichkeit mit einem Skalarprodukt zwischen
zwei Vektoren _7 und A.

Um die Orientierung einer Flache im Raum zu erfassen, filhren wir den neuen Begriff
des vektoriellen Flichenelementes ein.

Definition: Unter dem vektoriellen Flg'chenelement einer ebenen Flache A ver-
stehen wir einen Vektor A der senkrecht auf der Fliache steht und
dessen Betrag gleich A ist.

|A]=A (17.2)

Das Vorzeichen von A mu8 durch Konvention festgelegt werden. In unserem Fall ist
es zweckmaBig, das Vorzeichen Aso festzulegen,
daB A in die Richtung zeigt, in der f

)
der Strom aus der Flache austritt. z
Beispiel: Ein Quadrat mit dem Flacheninhalt A
liege in der z-z-Ebene (s. Abb.). Es hat das vekto- A
rielle Flachenelement: T
v

A=A, 1,0) *
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Das Quadrat habe jetzt einen Winkel von
45° zur z-y-Ebene (s. Abb.). Das Flichen-
element ist

A

A=
V2

(0,1,1)

Wir kénnen den Strom I durch eine beliebige Fliche A mit Hilfe des vektoriellen
Flachenelements als Skalarprodukt schreiben:

I=;~fi‘

Wir 16sen uns jetzt von der physikalischen Bedeutung des Vektorfeldes 7 und defi-
nieren noch den Begriff des Flusses eines beliebigen Vektorfeldes F (z, y, z) durch
eine Flache.

Definition: Gegeben sei eine ebene Fliche A und ein homogenes Vektorfeld F.
Das skalare Produkt von F mit dem vektoriellen Flichenelement
A wird dann bezeichnet als
Fluf des Vektorfeldes F' durch die Fliche A.

F.A = FluB von F durch A (17.3)

17.2 Das Oberflachenintegral

In der Definition 17.3 hatten wir den Begriff des Flusses eines Vektorfeldes durch
eine Flache unter zwei Einschrankungen eingefiihrt:

1. das Vektorfeld ist homogen

2. die Fléche ist eben.
Diese beiden Einschrankungen wollen wir nun fallen lassen. Wir lassen jetzt also
beliebige Vektorfelder und gekriimmte Flachen zu.

Aus Kapitel 13 ,Funktionen mehrerer Variablen“ wissen wir, daf eine Funktion mit
zwei Variablen im allgemeinen eine gekriimmte
Flache im dreidimensionalen Raum darstellt. z I

Beispiel:
Die Kugelschale oberhalb der z-y-Ebene ist
gegeben durch die Funktion

z=+VRI—zZ— 42
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Wie berechnen wir bei gekriimmten Flichen A und beliebigen Vektorfeldern F den
Flu$ von F durch A?

Einen Ndherungsausdruck erhalten wir fol-
gendermafen:

Wir zerlegen die Fliche A in Teilflichen
AA;. Sind
die AA; geniigend klein gewihlt, konnen
wir sie als ebene Fliachen auffassen und ih-
nen ein vektorielles Flachenelement H:
zuordnen mit |A—A—:| = AA;. Im Bereich
der kleinen Teilflichen A A; kénnen wir an-
nehmen, daB das Vektorfeld F* als homogen
aufgefafit werden darf.

Der Flu8 von F durch AA; ist dann néahe-
rungsweise gegeben durch

- —
F(z;, yi, ) - AA;

Die Variablen z, y und z in F haben wir
mit dem Index ¢ versehen. Das bedeutet,
daB das Vektorfeld F(z, y, z) fiir einen
Punkt (z;, yi, 2;) auf der Fliche AA; be-
rechnet wird.

Einen Niherungsausdruck fiir den gesamten Flufl von F durch die Fliiche A erhalten
wir durch Addition der Teilfliisse durch die Flachen A A;:

n

FluB von Fdurch A: =~ EF_"(:B,-, Yi, %) - A7:

i=1

Durch Verfeinerung der Teilflachen AA; erhalten wir einen immer genaueren Wert
fiir den FluB von F' durch A. Im Limes n — oo ergibt sich der exakte Wert. Diesen
Grenzwert nennen wir Oberflichenintegral und notieren ihn

/ﬁ(z, Y, 2) .dA = FluB von F durch A
A

Definition: Oberflichenintegral von F_"(:c, Y, z) dber die Fliche A oder Flu8 von
F durch A:

=1

/F’~JZ=”IH&ZF(I.', Yi, Z.)A/i‘, (174)
A
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Bei Anwendungen hat man oft das Oberflachenintegral iiber eine geschlossene Flache
zu berechnen (d.h. den FluB eines Vektorfeldes durch eine geschlossene Fliche).

Definition: Eine geschlossene Fliche zerlegt den Raum derart in zwei
Teilrdume, da man die Fliche durchstoffien mufl, um von einem
Teilraum in den anderen zu kommen. "

(17.5)

Beispiele fiir geschlossene Flachen:

Oberflaiche eines Wiirfels

Oberfliche einer Kugel

Oberflache eines Ellipsoids

Oberfliche eines Torus (aufgepumpter Fahrradschlauch)

Das Oberflichenintegral iiber eine geschlossene Flache wird symbolisch mit einem
Kreis durch das Integralzeichen dargestellt

Das Vorzeichen des vektoriellen Flichenelementes dA wird, wie gesagt, durch
Konvention so festgelegt, daf3 dA von der Oberfliche nach aufien zeigt.

Definition: Fluf von F durch eine geschlossene Fliche
[Ei

dA zeigt bei geschlossenen Flachen
von der Oberfliche A nach aufien.

(17.6)

Der FluB eines Vektorfeldes durch eine geschlossene Flache hat im Falle einer Fliissig-
keitsstromung eine anschauliche Bedeutung. Er gibt an, ob in das von der geschlos-
senen Flache begrenzte Volumen mehr hinein als heraus fliefit.

1In der Literatur wird diese Notierung nicht einheitlich gehandhabt. So wird gelegentlich
auf den Kreis durch das Integralsymbol verzichtet und unter dem Integral ein Symbol fiir die
Fliche notiert.
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17.3 Berechnung des Oberflichenintegrals fiir Spezialfélle

17.3.1 Der Flufl eines homogenen Feldes durch einen Quader

Wir betrachten ein homogenes Vektorfeld F = (Fy, Fy, F;). Dabei sind F und
damit Fy, Fy, F, konstant.
Zur Berechnung des Flusses von F durch
den Quader zerlegen wir das Oberflichen-
7 integral in sechs Teilintegrale, die den
Oberflachenintegralen iiber die sechs Qua-
derflachen entsprechen.

\ \ Die sechs Fliachenelemente sind gemaf der

unteren Zeichnung;:

Ay =ab(0,0,1)
I Ay =ab(0,0, -1)
P §3=ac(0, 1,0)

Ag=ac(0,-1,0)

As =bc(1,0,0)

Ag =be(-1,0,0)
Das Oberflichenintegral eines homogenen
Vektorfeldes F' durch eine ebene Flache A

Z -
Y ist gegeben durch das Skalarprodukt von F
1 mit A.
! In diesem Spezialfall brauchen wir gar keine
! - e Integration durchzufiihren. Wir kénnen die
: 2; ;‘, sechs Teilfliisse direkt berechnen.
n a7 F.-Ay=—ab-F,
Ai}___ S F. A= ac- Fy
1,' : Y F_‘"/i'.;:—ac-Fy
“ e F.As= bc-F,
FoZo=—be-F,

Der Gesamtflul durch die Quaderoberflache ist durch die Summe der sechs Teilfliisse
gegeben: Bilden wir diese Summe mit Hilfe der obigen Ausdriicke, dann zeigt sich,
daB der Flu88 des homogenen Feldes durch einen Quader verschwindet.

GesamtfluB = Z F. fi‘,- =0

i=1

6
i=
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Regel: Der Flu eines homogenen Feldes durch eine Quaderoberfliche ver-
schwindet.
Es gilt sogar die verallgemeinerte Aussage:

Der Flufl eines homogenen Feldes F durch eine beliebige geschlossene
Fliache A verschwindet.

(17.7)

Den Beweis der verallgemeinerten Aussage wollen wir hier aufgrund einer Plausibi-
litatsbetrachtung durchfiihren.

Wir approximieren das Volumen, das von der Fliche A eingeschlossen wird, durch
kleine Quader (Siulen). Davon ist einer gezeichnet. Fiir jeden Quader verschwindet
der FluB eines homogenen Feldes.

Der FluB durch diejenigen Quaderflichen,
die zwei benachbarte Quader begrenzen,
verschwindet, weil die beiden Flichenele-
mente gleichen Betrag haben und entge-
gengesetat gerichtet sind. Ubrig bleiben die
Betriage der Deck- und Grundflichen der
Quader, die die Oberfliche des Korpers ap-
proximieren.

Da deren Flichenvektoren ebenfalls entge-
gengesetzt gerichtet sind und den gleichen
Betrag haben, heben sich diese Betrige auf.
Also verschwindet der Flufl eines homogenen
Vektorfeldes durch eine beliebige geschlos-
sene Flache.

Fiir eine stationire Wasserstrémung ist dieses Resultat anschaulich klar. Das Was-
ser, das in V hineinflieBt, flieBt auch wieder heraus.
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17.3.2 Der FluBl eines radialsymmetrischen Feldes durch eine Kugel-
oberfliche

Ein radialsymmetrisches Feld hat die allgemeine Form:!

F=¢ . f(r)
€, ist der Einheitsvektor, der in radiale Richtung
zeigt:

P 7

A

Wir setzen voraus, da8 der Kugelmittelpunkt mit
dem Koordinatenursprung zusammenfallt.

Das Flichenelement dA steht senkrecht auf der Kugeloberfliche, hat also die Rich-
tung von . Das Oberflichenintegral 148t sich dadurch vereinfachen:

fﬁﬂ:ff(r)a-ﬂ:}{f(r)a
A A A

Die Integration erfolgt iiber die Kugeloberfliche mit dem Radius R. Da der Inte-
grand f (r) nur noch von r abhingt, kénnen wir r = R in f (r) einsetzen und f (R)
als konstanten Faktor aus dem Integral herausziehen.

ff(r)dA:ff(R)dA:f(R)}{ dA
A A ‘4

Das Ergebnis der Integration der Flichenelemente dA fiir die Kugel kennen wir
bereits. Es ist die Kugeloberfliche.

f dA = 4 R?
A

Damit haben wir folgende Regel gefunden:

Regel: Der FluB eines radialsymmetrischen Feldes F=¢f (r) durch eine Ku-
geloberfliche mit dem Radius R ist:

f F.dA = 47R*f (R) (17.8)

1Sjehe dazu Abschnitt 13.5.2.
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17.4 Berechnung des Oberflichenintegrals im allgemeinen Fall

Gegeben sei das Oberflachenintegral

/}_7“(1‘, Y, z)d_>A
A

Wir konnen es nach Ausfiihrung des inneren
Produktes als eine Summe von drei Integra-
len schreiben:

% _____ s b1

- — *
/ Fo,y 2) dA= / [FodA, + F,dA, + F,dA.]
A A

Jetzt miissen wir noch zwei Fragen klaren:

1. Wie sehen die Komponenten dA;, dA, und dA, des ,differentiellen” Flachen-

vektors d_x:i aus?

2. Wie beriicksichtigen wir bei der Integration den durch die Fliche A vorgege-
benen Integrationsbereich?

Beginnen wir mit Frage 1:

Im Kapitel , Vektorrechnung® wurde gezeigt, daf beliebige Vektoren im dreidimen-
sionalen Raum als Summe von Vielfachen der drei Einheitsvektoren (Basisvektoren)
€z, €y, €, dargestellt werden kénnen:

Was sind nun die Basisvektoren fiir das Flichenelement A?
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Die Abbildung zeigt drei Einheitsvektoren in Richtung der Flachenelemente:

T z
4 4 -
AL y
x —>
el L .
*
K

Dem Einheitsvektor in z-Richtung ist z.B. ein Quadrat mit der Seitenlange 1 in der
y-2-Ebene zugeordnet.

Die Komponenten A;, Ay und A, eines Fliachenvektors A sind Flichen in den y-z-,
z-z- und z-y-Ebenen, und zwar ist

/L die Projektion der Flache A auf die y-2-Ebene
Ay die Projektion von A auf die z-z-Ebene
A, die Projektion von A auf die z-y-Ebene

Fir die Komponenten dA;, dAy, und dA; des differentiellen Flachenelementes dA
in den drei Koordinatenrichtungen erhalten wir analog zu den obigen Basisvektoren

dA; = dydz dAy = dzdz dA; = dzdy
z z z
JKK dz J:Y d';z
dz| —
Zx Y : Lvy dx -
% . dy

Die Flachen, auf denen die Vektoren senkrecht stehen, sind keine Quadrate mehr
mit dem Fliacheninhalt 1, sondern differentielle Flichen dzdy, dydz bzw. dydz.
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Damit erhalten wir fiir das differentielle Flachenelement
dA = (dydz, dzdz, dzdy)

Jetzt miissen wir noch das Problem der Integrationsbereiche 16sen. Unser Oberflachen-
integral war

/ Fdd = / [RdA, + F,dA, + F,dA;]

Wir betrachten den dritten Summanden:
/Fz -dA; = /dezdy
Welchen Bereich haben die z- und y-Werte
in diesem Ausdruck zu durchlaufen? Es ist
z der Bereich Agy, der durch die Projektion
der Fliache A in die z-y-Ebene entsteht. Wir
erhalten ein Doppelintegral:

/ F,(z, y, z)dzdy

- Fiir z setzen wir in F, ((z, y, z) die Bezie-

|
‘{\2):17' Y hung z = f(z, y) ein, die die Flache A iiber

Rxy der z-y-Ebene beschreibt:
FZ (1:, y) f(l?, y))

Analoge Uberlegungen fiihren fiir den ersten Summanden [ FpdA; im Oberflichen-
integral auf den Integrationsbereich Ay, und in dem zweiten Summanden auf Az -
Ay und A;, sind die Projektionen von A in die y-z- bzw. z-z-Ebene. Hier miissen
wir sinngemif die Beziehung z = f(z, y) nach z bzw. y auflésen und fiir z bzw.
y in die Komponenten von F einsetzen. Aus z = f (z,y) entsteht durch Auflésen
nach z: ¢ = g (y, 2), durch Auflésen nach y: y = h(z, 2).
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Damit haben wir eine allgemeine Methode, Oberflichenintegrale zu berechnen:

/F(m, Y, z)d_/i= / Fe(z = g(y, 2),y, 2)dydz
A

A vs

+ / Fy(z, y=h(z, z), z) dzdz
Ags

+ / F.(z,y, z = f (z, y)) dzdy

Ayy
Beispiel: Gegeben ist das nichthomogene
Vektorfeld F = (0, 0, y). Berechnet werden
soll der FluB des Vektors F' durch den recht-
eckigen Bereich in der z-y-Ebene, der festge-
legt ist durch den Koordinatenursprung und
die Punkte

P, =(a,0,0)
P, =(0,0,0)
I%::(a,b,O)

Damit erhalten wir fiir das Oberflichenintegral bzw. den Fluf§ von F durch die
Flache A den Ausdruck

a b
B2
/F-EX:/ /y-d:cdy:a2b

r=0y=0 .

Das bedeutet: Bei Vergrofierungen von A in y-Richtung steigt der Flufl von F durch
A quadratisch; bei Vergro8erungen in z-Richtung linear.
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17.5 FluBl des elektrischen Feldes einer Punktladung durch
eine Kugeloberfliche mit Radius R

Im Koordinatenursprung liege eine punktférmige Ladung Q). Diese Ladung erzeugt
ein elektrisches Feld.

Qé, _ (z, Y, Z)
r24meg r34meg

mit r = /22 + y? + 22

E(z, Y, 2) =

Dieses Feld ist radialsymmetrisch. Wir konnen also die Beziehung (17.8) anwenden:
Fiir den Radius R gilt dann:

fﬁ .34 = 4 R¥ (R)
Einsetzen von E liefert
}{ F.aA=9
€0

Das bedeutet: Der FluB des elektrischen Feldes einer Punktladung durch eine Ku-
geloberflache ist unabhéngig vom Radius R.

Diese Beziehung gilt nicht nur fiir Kugelflichen, sondern allgemein fiir jede geschlos-
sene Fliche, die die Ladung @ umschlieit. Sie heifit Gaufsches Gesetz und ist eine
der Grundgleichungen, die die elektromagnetischen Erscheinungen beschreiben.
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17.6 Ubungsaufgaben

17.1 A Ein Quadrat mit Flicheninhalt 4 liege in der

17.2

17.3.1

a)

a) ¢ — y-Ebene b) z — z-Ebene c) y — z-Ebene
Geben Sie die Flichenelemente an.

Geben Sie das vektori-
elle Flichenelement des
Rechtecks mit Flachenin-
halt a - b an.

Berechnen Sie den FluB8 des Vektorfeldes 13(33, y, z) = (5, 3, 0) durch
die Fliache mit dem Fliachenelement
a) A=(1,1,1) b)A=(2,0,00 c)A=(0,3,1)

Geben Sie die vektoriellen 2
Flichenelemente fiir den
nebenstehenden Quader an. r‘.

| ]
I X g
I el [ ¢
Qr_.--, —)
4
-1
|
|
/J_--_ >
b 2 A\
3
x K.
+

Berechnen Sie den Flufl des Vektorfeldes f(:c, ¥,2)=(2,2,4)
durch

die Kugeloberfliche mit dem Radius R = 3 (Kugelmittelpunkt
und Koordinatenursprung fallen zusammen)

b) den Quader aus Aufgabe 17.2
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17.3.2 Berechnen Sie den FluB der Vektorfelder F* durch die Kugeloberfliche
mit Radius R = 2 (Kugelmittelpunkt = Koordinatenursprung)

a’)ﬁ(z’y’z)z:;ﬁ(.i_’yihi)z_? b)ﬁ(z,y,z):ﬁ%j”%
17.4  Berechnen Sie das Oberflichenintegral
iiber die Flache A. za
Das Vektorfeld F ist 3
F(z,y,2) = (2,9,0).
2
A
1
. .-
12 M

Losungen

171 A) a)A=4(0,0,1) b)A=4(0,1,0) ¢) A=4(1,0,0)
—A ist in allen drei Fillen ebenfalls eine richtige Losung.

-

B) A=22(0,1,1)
C) a)F-A=5+3=8 b)F.-A=10 ¢)F-A=9

172 Ay = 6(0,0,1) = -4,
A3 = 8(0,1,0)=—A,

=12(1,0,0) = — A
17.3.1 F =(2, 2, 4) ist ein homogenes Vektorfeld.

o

fﬁ-ﬂ:Ofﬁr a) und b)
17.3.2 F(z,y, 2) ist fiir a) und b) ein radialsymmetrisches Feld. Regel 17.8
§F.dA=4rR?f(R) mit R=2

a)F(R) =38 =32  §F.dA=4r 3 =127R
— R al — R __ _ _4rR®
b)F(R)= gty §F-dA=anR? lte = b

17.4  Das differentielle Flichenelement ist 44 = (dydz, 0, 0).

. 3 2
fF-H:fz-dydz:fzdz-fdy:%-2:9
0 0
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18 Divergenz und Rotation

18.1 Divergenz eines Vektorfeldes

In Kapitel 17 ,,Oberflichenintegrale“ hatten wir die folgende Fragestellung behan-
delt: Eine geschlossene Fliche A wird von einem Vektorfeld F (z, y, z) durchsetzt.
Gefragt ist nach einem Ma#f dafiir, wie ,stark“ das Vektorfeld F die Flache A von
innen nach aufien — oder von aufen nach innen — durchsetzt. Diese Frage wird durch
das Oberflachenintegral iiber die Fliche A beantwortet

n
- — . - -
fF(z, y, 2)dA = nll‘ngo E 1 F(zi, yi, ) - AA; (18.1)
A 1=

Betrachten wir der Anschaulichkeit wegen ein physikalisches Beispiel. Im Innern
einer geschlossenen Flache befinde sich die elektrische Ladungsdichte p. Die La-

dungsdichte ist definiert als Ladung pro Volumeneinheit, p = —.1

An positiven Ladungen entspringen die Feldlinien des Feldstarkevektors, an den ne-
gativen enden sie. Bei positiven Ladungen sprechen wir deshalb von Quellen des
Feldes, bei negativen Ladungen von Senken.
Beispiel: Umschlieit eine Flache A eine po-
sitive elektrische Ladungsdichte p, dann ist
das Oberflichenintegral des elektrischen Fel-
des iiber die Flache A proportional der ein-
geschlossenen Ladung Q. Es gilt

Fid=9
€o

Dieses Ergebnis hatten wir bereits fiir
eine Punktladung im Inneren einer Kugel-
oberfliche im Abschnitt 17.5 erhalten.

Wir kehren zu unserem Oberflichenintegral (18.1) zuriick und dividieren durch V
1 JOR—
= ¢ F.dA
vt
A

Diesen Ausdruck betrachten wir dann als mittlere Quellendichte im Volumen V.

1Die Behandlung von Punktladungen ist im Rahmen unseres Formalismus nicht méglich, weil
in diesem Fall die Grenzwerte, die wir spater bilden, nicht existieren.
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Uns interessiert nun die Quellendichte in einem bestimmten Punkt P. Dazu bilden
wir den Grenziibergang und lassen V' — 0 gehen. Wir nennen diesen Grenzwert
Divergenz des Vektorfeldes F am Punkt P und bezeichnen ihn mit div F.
.8 .1 =
div F = lim — f F.dA
vaoV
Aw)

Die Divergenz liefert uns eine eindeutige Aussage dariiber, ob der Punkt P zum
Gebiet der Quellen oder Senken gehért. Gilt div F >0, dann liegt in dem Punkt
eine Quelle des Vektorfeldes F vor. Gilt div F < 0, dann liegt dort eine Senke. In
den Punkten mit div F = 0 ist F' quellen- und senkenfrei.

Als nichsten Schritt leiten wir eine praktische Rechenvorschrift zur Bestimmung
der Divergenz her. Dazu betrachten wir einen Quader, dessen Kanten parallel zu
den Koordinatenachsen verlaufen. Die Kantenlingen seien Az, Ay und Az.

Fiir ihn berechnen wir die Divergenz

div A= lim ifﬁ-z}i t: T Fz(xy,2+42)
vaoV ‘

Fiir das Oberflichenintegral bilden wir ei- !

nen Niherungsausdruck. Wir ersetzen das |

Oberflichenintegral durch den Flufi durch 5
-|_°

I

i

h Fyy.2) Fy ,y+4Y,2)
die sechs Quaderflichen, wobei der Flu F A -_—
. 2 -
fiir jede Quaderflache als konstant angenom- Fz(ky,2)
men wird. e ] R g —_.14
- V-4
Die Komponenten von F' zeigen in gleiche s

bzw. entgegengesetzte Richtung wie die ent-
sprechenden vektoriellen Flichenelemente.

1 - = 1
VfF-dAN m—{[ﬁ}(z+ Ax, y, 2) — Fi(z, y, z)] AyAz
+[F!I(x: y+ Ay, Z) - Fy(l‘, Y, Z)] AzAz
+ [Fl(1:1 Y, 2z +AZ’ z) _.Fz(z) Y, Z)]A:CAy}

Fz(l' + A(L', B 2‘) - Fz(z: Y, Z)
Az

+Fy(:c,y+ Ay) z) - Fy(z:y: Z)
Ay

F,(z,yz + Az) — F,(z,y,2)
+
Az
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Wir bilden den limes V — 0 mit Az — 0, Ay — 0, Az — 0 und erhalten als
Grenzwert die Summe der drei partiellen Ableitungen

Definition:  Divergenz des Vektorfeldes F'

dlvF—hm— F.dAd= 6F”+6f‘

Die Divergenz eines Vektorfeldes ist eine skalare Grofie. Die Operation der Diver-
genzbildung ordnet dem Vektorfeld F(z, y, 2) das skalare Feld div F au.

Im Kapitel 14 hatten wir den Nabla-Operator v bereits eingefiihrt. Er war definiert
durch

. (5 66
V= bz’ by’ bz

Mit Hilfe des Nabla-Operators kann die Divergenz des Vektorfeldes formal als Skalar-
produkt von 57 und F' geschrieben werden:

dvF=g F=tf 80 O

by bz

Betrachten wir wieder unser physikalisches Beispiel mit einer gegebenen Ladungs-
dichte p = 3—3-, die die Feldstirke F erzeugt. Es gilt hier, wie bereits gesagt,

}{g.d—'Azg

€0

Q ist die gesamte Ladung, die in dem von der Fliche A eingeschlossenen Volumen V
liegt. Wir dividieren durch das Volumen V und fiihren den Grenziibergang V — 0
durch. Wir erhalten

p(z, y, 2)

div E(z, y, 2) = >
0

Damit haben wir aus der Maxwellschen Gleichung § E.dA = g— in der Integ-

raldarstellung eine Gleichung gewonnen, die die Gréfien E und p fiir jeden Punkt
P (z, y, z) des Raumes verkniipft.

Beispiel 1: Fiir homogene Vektorfelder

verschwindet die Divergenz. ——
V.
_, Ve
Fz,5,2) = (ab,¢) A
div F 5 5 5 VeV =7 y
wF = (8 3 3 Z
o (Sx @+ dy ®)+ oz (C)) =

=0 X
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Beispiel 2: Das Vektorfeld f(z, ¥, z) = (z, y, z) hat die Divergenz 3.

Beispiel 3: Das elektrische Feld einer Kugel mit homogener Ladungsdichte (Gesamt-
ladung @, Kugelradius R) hat auerhalb der Kugeloberfliche die Form

Q (z, 9 2)

E(xy Y, Z) = dnee (\/22 +y2 > 22)3

Im Kugelinnern hat es die Form

7 Q
E(Z‘, Y, Z) = m(zy Y, Z)

AuSlerhalb der Kugeloberfliche verschwindet die Divergenz des elektrischen Feldes:
. 3 (22 4 2 + 22
awi=-2 ), 3 _ 3(=*+¢"+47)

3 5
o | (Ve ) (Vs s
Im Kugelinnern gilt

3Q p

4meg R3 - €0

=0

div E =

Bei homogener Ladungsverteilung ist im Innern der Kugel jeder Punkt eine Quelle
des elektrischen Feldes. Auierhalb der Kugeloberfliche ist das elektrische Feld quellen-
und senkenfrei.

18.2 Integralsatz von Gauf

Durch den Integralsatz von Gauf wird fiir ein beliebiges Vektorfeld das Oberflachen-
integral iiber die Oberfliche eines beliebigen Volumens mit dem Volumenintegral
iber die Divergenz verkniipft.

Ein Volumen V sei von der Fliache A eingeschlossen. Wir zerlegen das Volumen in
n Teilvolumina AV; mit den Oberflichen AA;. Fiir jedes Teilvoluinen AV; kénnen
wir einen Niherungsausdruck fiir die Divergenz des Vektorfeldes F' angeben:

divf(:c.', Yi, z.~) ~ —A—].foa
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Wir multiplizieren mit AV; und bilden die
Summe iiber alle n Teilvolumina

Z div f(m;, Yi, 2i)AV;

i=1

W LR

i=1

Haben wir die AV; als Quader gewihlt, dann ist anschaulich klar, daf8 es zu jeder im
Innern von V gelegenen Quaderflache eine entgegengesetzt orientierte vom Nachbar-
quader gibt. Diese Beitrage heben sich in der Summe iiber die Oberflichenintegrale
auf.

Ubrig bleiben nur die Beitrige von der Oberfliche A. Fiihren wir den Grenziibergang
n — oo und AV; — 0 durch, dann erhalten wir

n—00 £

lim 3" div F - (i, %, 2)AV; =/ div F-dv
i=1 v

und
nan;toF-lei =}{F-ﬂ
A

Zusammengefaflt resultiert daraus der Gauf’sche Integralsatz.

Integralsatz von Gaup:

/divf.dvz }{ F.dA

v A(V)

Der Gaup’sche Integralsatz erlaubt es, ein Volumenintegral tiber die Divergenz eines
Vektorfeldes in ein Oberflichenintegral umzuwandeln.

18.3 Rotation eines Vektorféldes

Es gibt Vektorfelder, bei denen der Wert eines Linienintegrals zwischen zwei Punk-
ten P; und P, vom gewahlten Integrationsweg unabhéngig ist. Beispiele sind das
Gravitationsfeld und das elektrische Feld von Punktladungen. Ist das der Fall, kann
man sich denjenigen Weg wihlen, auf dem die Berechnung des Integrals am einfach-
sten ist. Fiir Felder dieses Typs gilt folgender Satz:
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Satz: Der Wert des Linienintegrals zwischen zwei Punkten P; und P, ist un-
abhingig vom Weg zwischen diesen Punkten, wenn das Linienintegral
fiir jeden geschlossenen Weg C' verschwindet, wenn also gilt

fﬁ.&’:o
C

Beweis: Wir betrachten zwei Wege C; und C2 von P; nach Pz, die in V liegen. Der geschlossene
Weg C fithre lings C; von P; nach P; und zuriick nach P; iiber C;. Nach Voraussetzung gilt

Py P,
- — - — - —
fF s = F-ds+/F ds=0
C Py Py B
c, Ca
Dann gilt
B C
2
P, P,
o — - —
/F~ds=— F.ds
Py Py
c, Cc3

Pg P2
- — - —
F.ds= [ F-ds
Py Py
C1 C3

Damit ist gezeigt, dafl das Linienintegral von P; nach P, auf einem beliebigen Weg dann vom Weg
unabhingig ist, wenn folgende Voraussetzung gegeben ist:

- —
fF~ s=0

Vektorfelder, bei denen das Linienintegral lings jedes geschlossenen Weges ver-
schwindet, heiflen wirbelfrei.

Es gibt nun aber auch Vektorfelder, bei denen das Linienintegral lidngs einer ge-
schlossenen Kurve nicht verschwindet. Der Wert des Linienintegrals zwischen zwei
Punkten ist im allgemeinen vom Weg abhangig, wenn fiir das Vektorfeld F' gilt:

}{ﬁis’;éo
C
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Vektorfelder, bei denen das Linienintegral langs einer geschlossenen Kurve nicht
verschwindet, heilen Wirbelfelder.

Beispiel: Ein sich zeitlich veranderndes Ma-
gnetfeld B erzeugt ein ringformiges elektri-
sches Feld E. Eine Ladung werde von Punkt
P; zum Punkt P; bewegt. Die Arbeit hangt
in diesem Fall, wie man aus der Zeichnung
sieht, vom Weg ab. Die Arbeit langs des We-
ges C| ist positiv, die Arbeit langs des Weges
C3 ist negativ.

Das geschlossene Linienintegral von P; iiber P, nach P; ist die Differenz beider
Arbeitsanteile. Im Falle des Wirbelfeldes ist es deshalb von Null verschieden.

Der Wert des Linienintegrals langs einer geschlossenen Kurve C heifit Zirkulation.
In der Abbildung unten sind drei Vektorfelder F' gezeichnet. Die Zirkulation ist
langs des Kreises fiir das Feld 1 am grofSten und fiir das Feld 3 Null.

Der Wert der Zirkulation ist ein Ma8 fiir die Wirbelstirke in der durch den Inte-
grationsweg C eingeschlossenen Fliche A.2

Die Zirkulation stellt also einen mittleren Wert fiir die Wirbelhaftigkeit in dieser
Flache dar. Damit haben wir noch keine Aussage iiber die Wirbelhaftigkeit in einem
bestimmten Punkt. Um diese zu bestimmen, gehen wir dhnlich vor wie im Abschnitt
17.1. Dort haben wir die lokale Quellendichte, die Divergenz, bestimmt. Wir bilden
hier das Verhiltnis der Zirkulation zur Fliche A, die vom Integrationsweg C' einge-
schlossen wird.

N 2Hijerbei wird die Flache A als eben betrachtet. Diese Voraussetzung treffen wir, um unsere
Uberlegungen zu vereinfachen. Sie schrankt den Giiltigkeitsbereich unserer Aussagen und Folge-
rungen nicht ein, da wir spater die Zirkulation nur im Grenzwert A — 0 betrachten. Eine Folge
nichtebener Flachen A’ wiirde im Grenzwert A’ — 0 das gleiche Resultat liefern.
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Diese Art des Vorgehens fiihrte beim Bestimmen der Divergenz zum Ziel. Hier ist
der Fall etwas komplizierter, denn eine Fliche ist auBler durch die Gré8e noch durch
eine Richtung charakterisiert. Der Wert der Zirkulation ist von der Orientierung der
Fliache A abhangig.

Wir legen die Orientierung der Fliche A durch das vektorielle Flachenelement A
fest und bestimmen den Grenzwert

Wihlen wir als Richtung von A nacheinander die Richtungen der drei Koordinaten-
achsen, dann ergeben sich fiir diesen Grenzwert im allgemeinen drei verschiedene
Werte. Es kann nun bewiesen werden, daB diese drei Werte als Betriage der Kompo-
nenten eines Vektors aufgefait werden kénnen. Der Beweis wird im Anhang dieses
Kapitels gefiihrt.

Dieser Vektor heifit Rotation von F und wird geschrieben rot F.

Die Komponente des Vektors rot Fin Richtung des vektoriellen Flachenelementes
A ist gegeben durch den obigen Grenzwert. Wir bezeichnen nun den Einheitsvektor
in Richtung von A mit Ag. Dann kénnen wir schreiben

rotf“u‘i‘o:}in})% f F-"a—.;
Cc(4)

Ein anschauliches Beispiel fiir die Kennzeichnung eines Vektorfeldes F durch seine
Rotation liefert eine Wasserstromung. Die Wasserstromung wird durch das Ge-
schwindigkeitsfeld ¥'(z, y, 2) beschrieben. Da die Geschwindigkeit iiblicherweise ¥
genannt wird, tritt hier ¥ an die Stelle von F. Wir werfen eine Kugel in die Strémung.
Die Dichte der Kugel sei genau so grof§ wie die Dichte des Wassers, so daf§ die Kugel
in der Wasserstromung schwebt. Gibt es Wirbel in der Strémung, ist rot ¥' nicht iiber-
all Null, dann beginnt die Kugel sich zu drehen. Die Rotationsachse, die natiirlich
ihre Orientierung von Ort zu Ort verindern kann, gibt die Richtung von rot ¥ an.
Die Wirbelgeschwindigkeit in bezug auf die Drehachse ist proportional zum Betrag
von rot ¥.
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Als nichstes leiten wir eine Rechenvorschrift zur Bestimmung des Vektors rot F
her. Wir gehen dabei so vor, daf8 wir die Rotation komponentenweise bestimmen.
Als erstes berechnen wir die z-Komponente.

Die Flache A; wahlen wir als Rechteck in der y-z-Ebene. Es habe die Seitenlidngen

Ay und Az. \
z ay
Az
Az ¢ Ay-Az
—
y
X
Einen Naherungsausdruck fiir das Linienin- 1:;
tegral erhalten wir durch Multiplikation der ) E o3
Rechteckseiten mit den Komponenten von F 1 NG
in Richtung des Integrationsweges (s. Abb.). “ ™ p Fylxyzeaz)
Ay Az
» Fy(xyz)
Y

X

oty F = 1 fﬁ:iz ~ 1 [Fz(r,y+Ay, 2)Az - Fy(z, y, 2) Az

AyAz AyAz
CI
—Fy(z,y, 2+ Az) Ay + Fy (2, v, 2) Ay]
_ Fl(z, y+Ay) z)—FZ(z) Y, z)
= Ay
_Fy(z,y, 2+ Az) = Fy(z, 9, 2)
Az
Im Limes Ay — 0, Az — 0 erhalten wir die Differenz der partiellen Ableitungen
~ OF, OF,
rot, F = 5y -5

Zur Berechnung der y- und der z-Komponenten von rot F legen wir die Fliche
A in die z-z-Ebene bzw. z-y-Ebene und gehen analog vor. Damit erhalten wir die
Rechenvorschrift zur Berechnung der Rotation.
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Definition:  Rotation eines Vektorfeldes

P - (m §F, 6F, &F, 6F, .sF,)

Mit Hilfe des Nabla-Operators 7 kdnnen wir die Rotation des Vektorfeldes F als
Vektorprodukt von 57 und F' schreiben:

rotﬁ:vxf

Wie jedes Vektorprodukt kann man die Rotation auch als Determinante schreiben:

€ € €

p_| L & &
otF =13 5 %
F, F, F,

Die Rotationsbildung ordnet einem Vektorfeld F wieder ein Vektorfeld zu. Bei der
Divergenzbildung wurde einem Vektorfeld ein skalares Feld zugeordnet.
Beispiel 1: In der Abbildung ist ein Langsschnitt durch das Geschwindigkeitsfeld

einer Fliissigkeitsstromung gezeichnet. Die Geschwindigkeit hat die Richtung der y-
Achse. Am Grund (z = 0) verschwindet die Geschwindigkeit. Die Geschwindigkeit

nimmt linear mit der Hohe iiber Grund zu. z4 -
Das Geschwindigkeitsfeld ¥ (z, y, z) 1a8t - v
sich darstellen als >
—_— =
i(z, v, z)=az-éy';.a=const A -
v
Die Rotation von ¥ ist ) - —_—
L
rot ¥ = (—a, 0, 0) X ¢ e

Das Linienintegral langs des geschlossenen Weges C verschwindet nicht.

Beispiel 2: Zu berechnen ist die Rotation
des Vektorfeldes

f(:z:, Y, z)

(_y: z, 0)
ot F = (0,0,2)

z
=
Dieses Vektorfeld ist nicht wirbelfrei, (@@;(ﬂ

was auch anschaulich klar ist.
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Beispiel 3: Wir berechnen rot F fiir ein radialsymmetrisches Feld

F(z,9,2) = (2,92
ot F = (0,0,0)

Dieses radialsymmetrische Feld ist natiirlich wirbelfrei.

18.4 Integralsatz von Stokes

Durch den Integralsatz von Stokes wird fiir ein beliebiges Vektorfeld das Oberfla-
chenintegral iiber diese Fliche mit dem Linienintegral um den Rand dieser beliebig
groflen und beliebig gelegten Flache verkniipft.
Wir betrachten die Fliche A mit der Rand-
kurve C. Die Flache kann naherungsweise
durch n ebene Teilflichen AA'; dargestellt
werden. Die i-te Teilfliche wird durch die
Kurve C; umrandet.

Wir bilden fiir die i-te Teilflaiche AA; das
Linienintegral

C;

Dieser Ausdruck ist ndherungsweise gleich
rot F - AA;.
Wir summieren iiber 7 und erhalten

n n Qb .
Zrotﬁ CAA; = Erot f(:c;, Yi, %) ~A/f,-

=1 i=1
n
- —
~ Z }{ F.ds
':IC,'

In der Summe iiber die Linienintegrale tritt bei den inneren Berandungen jeweils
ein Wegpaar mit entgegengesetzter Richtung auf. Diese inneren Beitrage heben sich
gegenseitig auf, so daf8 nur der Beitrag von den duBleren Wegelementen langs C
iibrigbleibt. Wir fithren den Grenziibergang AA; — 0, n — oo durch und erhalten
den Integralsatz von Stokes.

Integralsatz von Stokes

/rotf-tﬁ: f fE;

A Cc(A)
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Der Integralsatz von Stokes verkniipft das Oberflichenintegral der Rotation des Vek-
torfeldes F iiber eine Flache A mit dem Linienintegral von F' langs der Umrandung C.

Gilt rot F = 0 fiir ein Volumen V, in dem die Fliche A enthalten ist, dann ver-
schwindet die linke Seite und es gilt

F_"~E<;=O
c(4)

Daraus folgt nach dem in Abschnitt 18.3 Gesagten, da8 das Integral in diesem Fall
vom Weg unabhingig ist.

18.5 Potential eines Vektorfeldes

Ein Vektorfeld F (z, y, z) sei wirbelfrei. Dann ist nach Abschnitt 18.3 das Linien-
integral zwischen zwei Punkten Py und P vom Weg unabhéngig, und der Wert des
Linienintegrals hangt nur ab von Py und P. Halten wir P, fest und betrachten P als
verdnderlichen Punkt im Raum, dann ist der Wert des Linienintegrals eine Funktion
von P. Wir nennen diesen Wert das Potential des Vektorfeldes F und bezeichnen
das Potential mit ¢ (P).

P
w(P):/F'Fs' (18.2)
Po
Jedem wirbelfreien Vektorfeld F kann durch diese Vorschrift ein skalares Feld ¢
zugeordnet werden. Das Potential ¢ ist bis auf eine Konstante eindeutig festgelegt.

Die Konstante wird festgelegt durch die Wahl von P;. Wir werden als néchstes
zeigen, dafl zwischen ¢ und F' aus der obigen Zuordnung die Gleichung folgt:

F(z,y,z)=grad o

Dazu erinnern wir uns, dafl wir im Abschnitt 14.3 ,Gradient“ einem skalaren Feld ¢
ein Vektorfeld zugeordnet hatten. Fiir jeden Punkt im Raum sei eine skalare Grofle
¢ gegeben durch ¢ = ¢(z, y, 2z). Aus ¢ kann ein Vektor gewonnen werden, der
Gradient heifit und senkrecht auf den Niveauflichen ¢ = const steht.

_[bp bp bp
grad(p_(&a:’&y’g)

Die Anderung von ¢ bei einer beliebig kleinen Ortsveranderung war gegeben durch

dp = gradyp - ds

Der Betrag des Gradienten ist ein Maf fiir die Anderung des Funktionswertes
pro Wegeinheit senkrecht zu den Niveauflichen.
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Bei grofleren Ortsverdnderungen miissen wir integrieren und erhalten

P
p(P) = /grad<pd—:s'
Po

Das aber entspricht genau dem Ausdruck 18.2, mit dem wir das Potential des Vek-
torfeldes definiert haben. Es gilt die Zuordnung

3 bp bp &
Fern = st = (3,52,)

Einem wirbelfreien Vektorfeld F* kénnen wir also ein skalares Feld ¢ zuordnen gemaf
der Beziehung

P=(z,y,2)
- —

p(e,y, 2)= F.ds
Py

Ist das skalare Feld ¢ (z, y, z) bekannt und suchen wir das zugehérige F(z,y, 2),
kénnen wir uns F durch Gradientenbildung verschaffen

grad ¢
Potential ¢ Vektorfeld F

Die Bedeutung dieser Beziehungen fiir die Physik liegt darin, da§ wir F als Kraft
und ¢ als potentielle Energie interpretieren kénnen. In der Physik wird noch durch
Konvention festgelegt, da8 bei einem gegebenen Kraftfeld F das Potential die Arbeit
ist, die auf dem Weg von Py nach P; gegen das Kraftfeld geleistet wird. Dann muf
das Vorzeichen des Linienintegrals gedndert werden. Damit werden in der Physik
die Beziehungen zwischen einem wirbelfreien Kraftfeld F und seinem Potential ¢
wie folgt definiert

P
p(z,y, 2) = —/fds
Py

F(z, y, z) = —grade

Wirbelfreie Kraftfelder werden als konservative Felder bezeichnet.
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Als Beispiel betrachten wir das Gravitationsfeld einer Masse M, die homogen eine
Kugel mit Radius R ausfiillt. Es gilt aulerhalb der Kugel

(=, 9, 2)

Vit 2 T2

F ist wirbelfrei, wovon sich der Leser zur Ubung selbst iberzeugen kann. Das Po-
tential bestimmt sich durch

F (2,9, z2) = —YM (v ist die Gravitationskonstante)

y, 2) - (dz, dy, dz)

r
p(z, v, Z)=7M/ (=,
E4 ‘/1:2+y2+22

Wenn wir den Integrationsweg speziell in radialer Richtung wéhlen, dann gilt

7.odr= rdr, und das Integral vereinfacht sich zu einem gewdhnlichen Integral, das
zu erstrecken ist von

ro=7\/al+y2+22 Dbis r=\/z2+4+y%+22

r
dr 1 1 1 1
v(z, v, Z)-‘YM/ﬁ——'yM(;—;)_-yM(;o— =)

Das Potential ¢ ist bis auf die additive Konstante % eindeutig bestimmt. Konven-
tionellerweise legt man fest, da die potentielle Energie fiir » — oo Null wird. Mit
dieser Forderung wird ¢ eindeutig, ndmlich

z, Y 2) = ———m——
e(z, 9, 2) e

Bilden wir von ¢ den Gradienten, dann erhalten wir wieder F':

(=, ¥, 2)

VII+ g+ 7

F=—gradp=—-yM
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18.6 Anhang

Wir beweisen die Aussage, daf sich der folgende Grenzwert schreiben 148t als Ska-
larprodukt des vektoriellen Flachenelementes Ay mit einem Vektor rot F.

Ai_r%%ff-?d_—s):.ﬁlorotﬁ
Die Fliche A werde durch das Dreieck in
der nebenstehenden Skizze dargestellt. Die
Orientierung von A ist durch den Vektor A
gegeben. Der geschlossene Weg C umliuft
das Dreieck von A nach B iiber D nach
A. /I,, /Ty und f_l‘z sind die Flachenelemente
auf den Dreiecken, die vom Koordinatenur-
sprung von den Punkten A, B und D ge-
bildet werden. Die Randkurven von Ay, ffy
und A', bezeichnen wir mit Cz, Cy und C,.
Weil die Integrale ldngs der Strecken
OA; OD und OB je zweimal in entgegen-
gesetzter Richtung durchlaufen werden und
sich deshalb gegenseitig aufheben, 148t sich
das Linienintegral iiber C schreiben als

- — - - — - —
fF-ds:f -ds+fF'ds+%F-ds
c c Cy

Cs

z

1 F.ds=1 Fa+idimelfr @
CA) = C, C.
Es gilt
Ag=A-& = Acos(4,é:)
Ay=A.-& = Acos(4é,)
A, =A.8 = Acos(ff,é',)
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Wir ersetzen nun A durch die passenden Ausdriicke:

. 1 - — - . 1 = 57
lim i f F.ds = cos(4, e,)Al:IBO ™ F.ds
Cr) Ce
1 [ =
+ cos(A4, ey)Al:I_IEO a F.ds
Cy
/i‘ AR 1 ﬁ -7
+ cos( ’CZ)A:TOZ -ds
C,

Dieser Ausdruck kann interpretiert werden als das skalare Produkt des Vektors
Ay = ]-%[ = (cos(/i', €z), cos(/f, &), cos(/i‘, €2)) in Richtung von A mit einem Vektor
rot F, der definiert ist durch

11

rot F = lim—l— f~ds, limi -Z;, limi F.ds
A.—0 Az A,~0 Ay A, —0 A,

. . 1 o — - —
Also gilt AI_IH)Z f F.ds=Ay: rot F
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18.7

18.1

Ubungsaufgaben

Berechnen Sie von den Vektorfeldern F die Divergenz. Geben Sie an, wo
Quellen und Senken liegen, bzw. wo das Feld quellen- und senkenfrei ist.

a) f(z, y,2) =(z—a,uy,2)
b) F‘(I, Y, z) :(a,, -z, z2)

18.2 Sind die Vektorfelder wirbelfrei? a) F(z, y, z) = (a, z, b)
b) e, v, 2) = A2,
z4
18.3 Berechnen Sie das Linienintegral § F.ds c
langs des Rechtecks in der ¢
y-z-Ebene mit den Seiten a und b. <$b 1
F ist gegeben durch R
- I y
F(z,y,2)=5(0,y, 2) < 0
z
18.4 Berechnen Sie fiir das Vektorfeld 3 :
F(z, y, 2z) = (0, y, z) das Linien- !
integral lings des Weges C vom !
Punkt (0, 0, 0) zum Punkt (0, 0, 3) !
[}
< 2y
Lésungen
18.1 a) div F =3 Jeder Punkt des Raumes stellt eine Quelle dar.
b) div F = 2z Die Ebene z = 0 ist quellen- und senkenfrei. Im Raum
unter dieser Ebene ist jeder Punkt eine Senke, oberhalb eine Quelle.
18.2 a) rot F =(0, 0, 1) Dies ist ein Wirbelfeld
b) rot F = (0, 0, 0) Das Feld ist wirbelfrei
18.3 Es gilt rot F = (0, 0, 0). Deshalb gilt § 7 - ds = 0
c
18.4 Wegen rot F = (0, 0, 0) ist das Linienintegral unabhingig vom Weg.

Deswegen integrieren wir lings der z-Achse von z =0 bis 2 =3
3

. 3
[F.d5=[(0,y,2)(0,0,dz)= [ zdz =3
C 0 0
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19 Koordinatentransformationen und
Matrizen

Die Wahl des Koordinatensystems, in dem ein physikalisches oder technisches Pro-
blem behandelt wird, bestimmt zu einem betrachtlichen Teil den Schwierigkeitsgrad
und den Aufwand der Rechnung.

Wir untersuchen die Bewegung auf der schiefen Ebene.

Die Kraft im Schwerefeld Fz = mg wirkt
senkrecht nach unten. Diese Kraft zerlegen
wir in eine Komponente parallel zur schiefen
Ebene, die in Bewegungsrichtung zeigt, und
in eine Komponente, die senkrecht auf der
schiefen Ebene steht.

Der Betrag der Komponente in Bewegungs-
richtung F' ist

F = mgsina

Fiir die Wahl des Koordinatensystems bieten sich zwei Beschreibungsweisen an.

a) Wir wihlen die z-Achse horizontal
b) Wir legen die z-Achse parallel zur Richtung der schiefen Ebene, also in die
Bewegungsrichtung.

Das Ergebnis (die Bewegung) hangt nicht von der Wahl des Koordinatensystems
ab. Die Rechnung ist jedoch fiir die Lage b) einfacher.

Fall a): Die Kugel rollt auf der schiefen Ebene. Das ergibt eine Bewegung sowohl in
z- als auch in y-Richtung.

Um die Bewegungsgleichungen fiir die beiden Komponenten der Bewegung zu er-
halten, zerlegen wir die Kraft F' in die z- und y-Komponenten.
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Die Zerlegung liefert fiir die Betridge der Komponenten:
F; = Fcosa=mg -sina - cosa

Fy = Fsina=mg -sina-sino

Die Bewegungsgleichungen erhalten die Form:
mz = F;, =mg -sina - cosa
my =F, =mg -sina -sina

Fall b): Die Bewegung ist auf die z-Richtung beschrankt. Die Kraft in z-Richtung
ist Fy = F = mg - sin . Wir erhalten die Bewegungsgleichungen:

mz = mg -sina

my =20

Diese Gleichungen sind offensichtlich einfacher als die im Falle a).

Durch geschickte Wahl des Koordinatensystems wird oft die Behandlung eines Pro-
blems erleichtert. Manchmal ist es gerade die geeignete Wahl des Koordinatensystems,
die ein Problem iiberhaupt rechnerisch l6sbar macht.

Man iiberlegt sich also, bevor man mit der Rechnung beginnt, welches Koordi-
natensystem fiir das spezielle Problem das geeignetste ist und legt dann dieses fiir
die Rechnung zugrunde. Bei schwierigen Problemen kommt es vor, da man an
irgendeiner Stelle des Rechenganges bemerkt, daB eine andere Wahl des Koordi-
natensystems sinnvoll wird. Man kann nun die Rechnung in dem neuen Koordina-
tensystem erneut beginnen oder die alten Koordinaten in die neuen transformieren.

In diesem Kapitel werden wir uns mit der zweiten Alternative beschaftigen, der
Transformation eines rechtwinkligen Koordinatensystems in ein anderes, ebenfalls
rechtwinkliges. Zwei Transformationen sind besonders wichtig, Translationen und
Drehungen.
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Translationen
Das neue Koordinatensystem wird um K
einen Vektor 7o verschoben, die ent- z*
sprechenden Koordinatenachsen blei- |
|
I
|

ben parallel.

Drehungen

Das neue Koordinatensystem wird um
eine Achse um einen bestimmten Win-
kel ¢ gegeniiber dem alten System ge-
dreht. Z.B. Drehung um die z-Achse um
den Winkel ¢:

x and x’

Die allgemeine Transformation, die ein rechtwinkliges Koordinatensystem in ein
anderes rechtwinkliges System iiberfiihrt, setzt sich zusammen aus einer Translation

und einer Drehung.!

1Eventuell treten noch Spiegelungen auf, die hier nicht erértert werden: Zur Spiegelung siehe
Baule, Die Mathematik des Naturwissenschaftlers und Ingenieurs, Frankfurt /M.
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19.1 Koordinatenverschiebungen - Translationen

Der Punkt P in einem Koordinatensystem habe den Ortsvektor 7 = (z, y, 2). Wir
verschieben jetzt den Ursprung des Koordinatensystems um einen Vektor

7o = (o, Yo, 20). Die dadurch entstehenden Koordinatenachsen bezeichnen wir mit
(z', y', 2'). Welche Koordinaten hat der Punkt in dem neuen Koordinatensystem?

Dem Ortsvektor 7 im
z,y, 2- zZA
Koordinatensystem z+ P
entspricht der Ortsvektor 7/ I
im z’, y’, z'-Koordinaten- |
system. |

]

I

]

|

o

<y

Aus der Abbildung lesen wir ab: TS ~<f —

¥ = fo+7' oder -
-/ - -
= Tr—T7T

Wir kénnen die obige Transformationsformel auch in Koordinatenschreibweise no-
tieren:

' =z-1xo ¥ =y—1 z'=z-2

Damit haben wir bereits die Transformationsformel einer Verschiebung oder Trans-
lation des Systems um einen Vektor 7. Bei einer solchen Transformation bleiben
die entsprechenden Koordinatenachsen parallel.

Regel: Transformationsgleichungen fiir die Verschiebung oder Translation des
Koordinatensystems um einen Vektor 7o = (zo, Yo, 20)-
Der Ortsvektor 7= (z, y, z) geht iiber in den neuen Ortsvektor 7’ nach
der Formel ¥/ = 7 — 7

' =zr—=2o v =y—w 2/ =z—-2

Beispiel: Ein Koordinatensystem werde um den Vektor 7o = (2, —3, 7) verscho-
ben. In welchen Vektor geht der Ortsvektor 7= (5, 2, 3) bei dieser Trans-
formation iiber? '

Nach den Transformationsformeln gilt dann

z'= 5-2 = 3
y'= 2—-(-3) = 5
/= 3-7 = —4

Also ist 7/ = (3, 5, —4)
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An einem weiteren Beispiel wollen wir die Niitzlichkeit einer Koordinatenverschie-
bung verdeutlichen. Eine Kugel mit dem Radius R habe ihren Mittelpunkt nicht im
Koordinatenursprung.

Wir wollen die Gleichung fiir die Punkte auf der Kugeloberfliche herleiten. Der
Kugelmittelpunkt werde durch den Ortsvektor 7 festgelegt:

o = (l’o, Yo, 20)

Der Ortsvektor fiir einen beliebigen Punkt
auf der Kugeloberfliche lautet:

-

1-": ~0+R

Wir 16sen nach R auf:

— A/)

R=F—-‘Q *

Wir bilden das Skalarprodukt R-R, das den konstanten Wert R? hat. Damit erhalten
wir die Gleichung fiir die Kugeloberflache.

R-R = R*=(F-#)
R = (z-20)"+(y— %)+ (z— )’
R? = 1:2—21:zo+1:(2,+y2—2yy0+yg+zz—2zz0+z§
Wir wollen jetzt die entsprechende Gleichung ableiten fiir ein Koordinatensystem,
das durch eine Translation um den Vektor ro entsteht. In diesem Fall hat die Kugel

ihren Mittelpunkt im Koordinatenursprung. Aus der Abbildung unten ersehen wir,
daB in dem neuen z’, y’, z’-Koordinatensystem gilt 2]

R2=z12+yl2+z/2 9

Die Gleichung fiir die Kugeloberflache (o
ist in dem transformierten k
z', y’, z'-Koordinatensystem 3
erheblich einfacher.

<
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19.2 Drehungen

19.2.1 Drehungen im zweidimensionalen Raum
Ein Punkt P hat in einem z-y-Koordinatensystem den Ortsvektor
7= (z,y) = zé; + yéy
Wir drehen jetzt das Koordinatensystem um den Winkel ¢ in eine neue Lage. Die
neuen Koordinatenachsen bezeichnen wir gemaB der Abbildung mit z/ und y’, die

neuen Basisvektoren mit €;’ und &, ’.
Der Ortsvektor # hat dann im neuen Koordinatensystem die Form

1'"=17/€},-'+y'5'y'
A

yéy 4

CyA

>

[ X6,
Den Ubergang vom alten zum neuen Koordinatensystem erhalten wir folgender-
maBen: Wir gehen aus von den Komponenten von 7 im urspriinglichen System.
Diese Komponenten kénnen wir nun ihrerseits in je zwei Komponenten in Richtung
der neuen Achsen zerlegen. Schliefilich fassen wir dann die Anteile in Richtung der
neuen Achsen zusammen. y+

Wir beginnen mit der urspriinglichen
z-Komponente von 7.

Im neuen Koordinatensystem ist die

urspriingliche z-Komponente gemafl

Abbildung rechts gegeben durch:

Téy = £ cO8 P€y — Tsin &y

. [ .
—xsin - x - x
-
_ -
-
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Die urspriingliche y-Komponente ist gemé8 der Abbildung rechts gegeben durch
Y€y = ysin pé; + ycospé,

Wir konnen den Ortsvektor 7 im neuen

Koordinatensystem darstellen, indem  \ _ 4-——————— -
N . . -

wir die obigen Beziehungen fiir zé; und

yéy einsetzen:

F = TE; + Yéy

- .’L'cos(pe;.—:csintpe;
COS(p J
y ey

+ ysin pé; + ycospe,

Wir fassen die Betrdge in den neuen Richtungen ¢ und €}, zusammen:
Ff =  (zcosp+ ysingp)e,
+ (~zsing + ycosp)é,
Die Klammern sind die Koordinaten z’ und y’ in den neuen Richtungen:
" =  zcosp+ysing
y' = —zsinp+ycosyp

Mit Hilfe dieser Formeln kénnen die neuen Koordinaten eines beliebigen Punktes P
aus den alten berechnet werden.

Regel: Transformationsgleichungen fiir die Koordinaten eines Punktes bei der
Drehung eines zweidimensionalen Koordinatensystems um den Winkel ¢

I

= zcosp + ysingp
= —zsinp+ycosyp (19.1)

/
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Beispiel: Ein Punkt habe die Koordina-
ten P = (2,2). Welche Koordinaten hat
der Punkt P nach einer Drehung des Ko-
ordinatensystems um 45°7

Die neuen Koordinaten z’ und y’ lassen
sich iiber die obigen Transformationsglei-
chungen berechnen. Dabei beriicksichti-
gen wir:

- T +2sinT) = 2v2¢”
z' = (2cos4 +2sm4) _2\/§e,

y' = (—2sin§+2cos§) =0

Damit hat der Punkt P in dem um 45° gedrehten Koordinatensystem die Koordi-
naten

P=(2V2,0)

Weil die neue z’-Achse mit dem Vektor r zusammenfillt, verschwindet seine y'-
Komponente.

19.2.2 Mehrfache Drehung

Wir wollen jetzt die Transformationsgleichungen herleiten, die sich ergeben, wenn
wir das Koordinatensystem zuerst um den Winkel ¢ drehen in ein z’, y’-Koordina-

tensystem und danach um einen Winkel 9 in ein z”, y”-Koordinatensystem. Wir
n

suchen den Ubergang von den Koordinaten z, y zu den Koordinaten z”, y

y yf yh y’
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Die Anschauung lat bereits vermuten, da die Drehung um den Winkel ¢ und
danach um den Winkel ¢ durch eine einzige Drehung um den Winkel ¢ + ¢ ersetzt
werden kann. Diese Vermutung trifft zu und wir werden sie durch die analytische
Ableitung der Transformationsgleichungen bestatigen.

Die Transformationsgleichungen fiir die Uberginge z, y — z', y’
und z', y’ — =", y" sind aus dem vorhergehenden Abschnitt — Regel 19.1 — be-
kannt:

z! = =zcosp+ysing y' = —zsinp+ycosyp

z"” = z'cosy+y'siny y" = —z'siny+y’'cosy

Wir setzen in die unteren Gleichungen z’ und y’ aus den oberen Gleichungen ein:

" = (z cos p + ysin p) cos P
+ (—zsinp + ycosp)sin ¢
y" = (z cosp + ysinyp)sin ¢

+ (—zsinp + ycos p) cos P

Wir multiplizieren die Klammern aus, vereinfachen mit Hilfe der Additionstheoreme?

und ordnen nach Betriagen von z und y:

z" z cos(p + ¥) + ysin(p + ¢)
y" = -—zsin(p+9¥)+ycos(p +¢)
Dieses Ergebnis bestitigt unsere Vermutung: Die Hintereinanderausfithrung zweier

Drehungen um die Winkel ¢ und 4 fiihrt zu dem gleichen Resultat wie eine Drehung
um den Winkel ¢ + 9.

Regel: Transformationsgleichungen fiir die aufeinanderfolgende Drehung um die
Winkel ¢ und :

o z cos(p + ¥) + ysin(p + ¥)

y" —zsin(p + ¥) + ycos(p + )

2Benutzt werden die folgenden Additionstheoreme

sin ¢ cos Y + cos ¢ siny
cos pcos Y — sinysiny

sin(y + )
cos(p + )
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19.2.3 Drehungen im dreidimensionalen Raum

In diesem Abschnitt werden wir uns mit Drehungen im dreidimensionalen Raum
befassen. Zunachst wollen wir uns auf solche Drehungen beschranken, bei denen die
Drehung um eine der Koordinatenachsen erfolgt. Dadurch 148t sich unsere Aufgabe
auf bereits bekannte Falle zuriickfiihren.

1. Beispiel: Drehung um die z-Achse, Dreh-
winkel .

Hierbei wird die z-Achse in die z’-Achse
und die y-Achse in die y’-Achse gedreht. Die
z-Achse bleibt erhalten. Das bedeutet, daf§
die z-Koordinaten bei einer Drehung um die
2-Achse erhalten bleiben: z/ = 2.

Die verbleibende Transformation der Koor-
dinaten z, y bei einer Drehung um den Win-
kel ¢ ist bereits bekannt (Regel 19.1):

' = zcosp+ysing

’

y' = —zsinp+ycosyp

Fassen wir diese Formeln mit der fiir die z-Koordinate zusammen, erhalten wir die
Transformationsgleichungen

/

= Z cosp + ysinp
' .
= —Zzsinp -+ ycosyp z,\ 2A
2! = z
\
2. Beispiel: Drehung um die z-Achse, Dreh- \
winkel 9. Bei dieser Drehung bleibt die v
z-Koordinate erhalten. Also \"
' \
z' ==z \ %
Es verbleibt wieder die Drehung eines zwei- = ’ﬁ -

dimensionalen Koordinatensystems. Nur

muf jetzt die z-Koordinate durch y ersetzt A/{B

werden und die y-Koordinate durch z.
xx'

ycosd + zsind

z! = —ysind+ zcosd



122 19 Koordinatentransformationen und Matrizen

Insgesamt ergeben sich damit die Transformationsgleichungen fiir die Drehung des
Koordinatensystems um die z-Achse mit dem Winkel ¥ zu

i = T

i

ycosd + zsind

z! = —ysind+ zcosd

Die Drehung um die y-Achse in dem Drehwinkel ¥ ergibt sich analog.
Damit kénnen wir eine beliebige Drehung im Raum herstellen.

Ein Koordinatensystem kann durch drei aufeinanderfolgende Drehungen um die z,
y und z-Achse in jede beliebige Lage im Raum gebracht werden. Die neuen Koor-
dinaten ergeben sich, wenn die drei Transformationen nacheinander durchgefiihrt
werden. Die Reihenfolge ist beliebig.

Regel: Transformationsgleichungen fir die Drehungen eines dreidimensionalen

Koordinatensystems
Drehachse z-Achse:

z! = z
= y-cosd+z-sind
2/ = —y-sind+2z-cos?

Drehachse y-Achse:

z' = Tcost + zsin
/ - y
z! = —zsiny+zcosy

Drehachse z-Achse:

!

Tcosp +ysiny
y —zsinp +ycosy
2! =z (19.2)

!
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19.3 Matrizenrechnung

Die bisher abgeleiteten Transformationsgleichungen lassen sich iibersichtlicher schrei-
ben, wenn wir den Begriff der Matrix einfithren und dafiir Rechenregeln aufstellen.
Im Abschnitt 19.4 werden wir dann die Transformationsgleichungen in Matrizenform
aufstellen. In Kapitel 20 werden wir Matrizen benutzen, um lineare Gleichungssy-
steme zu l6sen.

Definition: Matriz heiit ein rechteckiges Zahlenschema reeller Zahlen der Art

a1 a2 crr QG
a21 @22 cer QG2n
Am1 AGm2 ‘- Gmn

Die horizontalen Zahlenreihen heilen Zeilen der Matrix.

a1 a2 - Gin
Beispiel: - = e =

Die vertikalen Zahlenreihen heiflen Spalten der Matrix.

Beispiel:

@mp — — -

Eine Matrix hat m Zeilen und n Spalten. Wir nennen sie deshalb eine m x n-Matrix.
Die einzelnen Zahlen heifien Matrixelemente.

Im Folgenden werden wir unsere Betrachtung weitgehend auf quadratische Matrizen
beschranken, bei ihnen ist die Spaltenzahl gleich der Zeilenzahl.

Matrizen werden meist mit deutschen Buchstaben oder mit groflen lateinischen
Buchstaben bezeichnet.

2 .7 C .
A= ( 33 _8 ) ist eine 2 x 2 - Matrix

Wir definieren nun das Produkt eines Vektors mit einer Matrix. Dafiir geben wir
eine Rechenvorschrift anhand eines Beispiels an. Die Matrix sei eine 2 x 2-Matrix.

a a
A= 11 12
az; a2
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Der Vektor sei ¥ = (z, y). Wir kénnen diesen Vektor auch schreiben als 7 =

Y
Der Grund fiir die Benutzung dieser Schreibweise liegt in der iibersichtlichen Dar-
stellung des Produktes eines Vektors mit einer Matrix. Das Produkt A - 7 ist ein

neuer Vektor 7 =
y !

Definition: Das Produkt A -7 einer Matriz A und eines Vektors 7 ist ein neuer
Vektor 7/ mit den Komponenten

M =A.F=( 1 012 Ty _ z! =(a11z+a12y)

az1 Qg2 y y' a1 + a2y
Die Komponenten ' und y’ erhalten wir dadurch, dafl wir Skalarprodukte zwischen
den Zeilen der Matrix A und dem Vektor (;) bilden.

z ' ergibt sich als Skalarprodukt zwischen den ,,Vektoren“ (a1, a12) und (:),

y' ergibt sich als Skalarprodukt von (a2, a22) und (:)

Beispiel:  Wir berechnen A - # = 7/ mit A = ( (15 _i > und 7 = (:)
Es ist

o= ()-(EDO-(%)

Die Verallgemeinerung auf Vektoren im dreidimensionalen Raum und 3 x 3-Matrizen
ergibt

z’ a1 a2 a3 T a11Z + a12y + a13z
A= | y' | =| an a2 a2 y | = | aanz+azny+anz
z! az; as2 ass z a31Z + az2y + aszz

Beispiel:  Zu berechnen ist 7/ = A - 7 mit

1 03
A= 4 -2 0
0 05

Wir erhalten

z! 1 0 3 z z + 3z
=1y |=14 -2 0 y | =] 4 — 2y
z! 0 0 5 z 5z

AbschlieBend wollen wir noch angeben, wie das Produkt A - B = C von Matrizen
zu berechnen ist. Wir beginnen mit dem Produkt von 2 x 2 Matrizen.

Das folgende Schema zeigt, wie das Matrixelement Cy; der Produktmatrix C = A-B
entsteht: Man bildet das ,skalare“ Produkt der zweiten Zeile der Matrix A mit der
zweiten Spalte der Matrix B:
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Ca2 = ag -bia+azp - b

Die anderen Matrixelemente werden entsprechend gebildet.

2. Spalte
( b1y by >
b21 bag
( a11 Q@12 ) ( €11 C12 )
2. Zeile a1 a22 ¢21 €22
Beispiel:  Es ist das Produkt zweier Matrizen zu bilden
5 2 -3 7
A_(O 1) und B—( 1 _1)
_ (5 2 -3 T7T\_/[ -15+2 35-2
C—A'B—(01)( 1—1)‘( 0+1 0—1)
_( -13 33
- 1 -1
Definition:  Produkt von 2 x 2-Matrizen
A:(a“ aw) B:(b“ blz)
a1 as2 b21 b22
Das Produkt wird definiert durch
A-B:C’:(cu Clz)z(au 012)'(511 bu)
€21 €22 az @z ba1 a2

_ [ enbu+aibdn a11b12 + a12b22 )
az1b11 + azba1r  a21b12 + azeba

Die Matrixelemente c;;x (i = 1,2; k = 1,2) der Produktmatrix
C = A - B ergeben sich, indem die i-te Zeile der Matrix A und die
k-te Spalte der Matrix B als Vektoren aufgefafit werden und das
Skalarprodukt zwischen ihnen gebildet wird:

2
cik = (@irr, @i2) - (bak, bax) = Z aijbjk

i=1

Die Erweiterung auf 3 x 3 Matrizen ist inmittelbar einsichtig. Die Matrixelemente

der Produktmatrix C sind das ,Skalarprodukt® der Zeile ¢ der Matrix A und der
Spalte k der Matrix B.
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Beispiel: ~ Gegeben sind die Matrizen

1 00 4 0 5
A=1] 0 2 3 und B= 0 10
0 -3 7 -3 -2 1

Wir berechnen das Produkt A-B = C und benutzen zur Erleichterung
wieder das Schema wie unten angedeutet

4 0 5

0 10

-3 -2 1

1 00 4 0 5 1 00 oo
c={0 2 3]- 0 10}J=|10 2 3 oo
0 -3 7 -3 -2 1 0 -3 7 oo

Vollstandiges Ausmultiplizieren ergibt:

1-4 +0 +0 0 +0 +0 1-5 +0 40
C= 0 +0 -3-3 0 +2-1 -3-2 0 +0 +3-1
0 +0 -7-3 0 -3-1 -7-2 0 +0 +7-1

4 05
C= -9 -4 3
=21 17 7

Das Verfahren kann auf das Produkt einer n x m Matrix mit einer p x n Matrix
erweitert werden. Eine Bedingung gilt: Die Anzahl der Spalten von A muf mit
der Anzahl der Zeilen von B iibereinstimmen. Auch im allgemeinen Fall kann das

angegebene Schema benutzt werden.

Definition:  Produkt einer m x n Matrix mit einer n x p Matrix.
Die Matrixelemente c;; der Produktmatrix C sind definiert als das
Skalarprodukt des i-ten Zeilenvektors der Matrix A und des j-ten

Spaltenvektors der Matrix B:

n
cij = ) airbyj
k=1

Wir wollen noch darauf hinweisen, da8 das Produkt zweier Matrizen nicht kommu-
tativ ist, es gilt i.a. A- B # B - A. Der interessierte Leser kann dies am obigen

Beispiel der 2 x 2-Matrizen leicht verifizieren.

Zum Abschlul wollen wir der Vollstindigkeit halber angeben, wie die Addition
zweier Matrizen und die Multiplikation einer Matrix mit einem Skalar definiert

sind.
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Definition: Addstion von Matrizen

a;y a2 a3 b1 b1z b3
A= axn az a3 und B=| bay by b23

az as; ass b31 b3z bas
Die Summe A + B = C ist definiert als

a1 +b11 ai2+b12 az+di3
A+ B=| a+ba az2+0b22 azz+bas
a3y + b3y asz+b32 asz+bas

Wir addieren die Matrixelemente mit gleichen Indizes.

-3 2 1 3\_[(-25
Beispiel: ( 5 0)+<4 6)_( 9 6)

Definition:  Multiplikation mit einem Skalar
Eine Matrix A wird mit einer skalaren Gréfe ¢ multipliziert, indem
jedes Matrixelement mit ¢ multipliziert wird.

Das Produkt einer 2 x 2-Matrix A mit dem Skalar ¢ lautet dann wie folgt:
A= a;n a2 >
az a2
_ tau talg
tA= ( taz; taz )
Beispiel: A = ( 5 —7 ) t=25

3 2

12,6 —17,5
tA‘( 7,5 5 )
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19.4 Darstellung von Drehungen in Matrizenform

Drehungen im zweidimensionalen Raum:
Die Transformationsgleichungen fiir die Koordinaten
_ ™ bei einer Drehung um den Winkel ¢ hatten wir in

y - - Abschnitt 19.2.1 — Regel 19.2 - abgeleitet. Es war
y\l - "\ z! = rcosp+ysing
- ¢ - I e el
\ » y = rsing + ycosp

Diese Transformationsgleichungen lassen sich unmittelbar als Produkt einer Dreh-
matrix mit dem urspriinglichen Vektor darstellen.

"\ cosp sing \ [z
y') ~ \ —sinp cosp y
Beispiel: ~ Wir drehen unser z-y-Koordinatensystem um den Winkel ¢ = 7.

Dann geht die z-Achse in die y-Achse und die y-Achse in die negative
z-Achse iiber.

Setzen wir in die Drehmatrix fiir ¢ den Wert 3 ein, erhalten wir:

cos% sinZ \ _ 01
—sin§ cos % “\L-10

Die Koordinatentransformation ist damit

z"\ _ 0 1\ /z\_ (v

y') "\ -1 0)\y) \-z
Wir werden jetzt die Matrix fiir eine Gesamtdrehung bestimmen, die sich aus einer
Drehung um den Winkel ¢ und einer Drehung um den Winkel ¥ zusammensetzt.

Nach der ersten Drehung geht (z, y) iiber in (z’,y’). Nach der zweiten Drehung
geht (z',y’) iiber in (z”,y"). Gesucht ist die Matrix fiir den Ubergang

(z,9) — (=", y")
Es gelten (siche Abschnitt 19.2.2)

O-(=E)E o
y')  \ —sinp cosy y
"\ _ cosy siny \ [z’
(y”> B ( —sing cos¢ ) (y’) @

Wir setzen Gleichung (1) in die Gleichung (2) ein und erhalten

und
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"\ _ cosy siny cosp sing z
y") ~ \ —siny cosy —singp cosgp y
Ausmultiplizieren der Matrizen ergibt:

(z”) _ ( coscosp —sinysing  cossinp + sin 1 cos ¢ > (:c)
- Y

y' —sinycosp —cosPsinp —sinsing + cosp cosp

Mit Hilfe der Additionstheoreme fiir die cos- und sin-Funktionen ergibt sich die
Drehmatrix fiir die Gesamtdrehung zu

( cos(p +¥) sin(ip+¥) )
—sin(p + ) cos(p + 9)

Drehungen im dreidimensionalen Raum:

In Abschnitt 19.2.3 hatten wir die Trans-
formationsgleichungen fiir eine Drehung um
den Winkel ¢ mit der z-Achse als Drehachse
hergeleitet. Es war — Regel 19.2:

z' = zcosp + ysinp
y' = —zsinp+ycosy
2/ = z

Daraus erhalten wir die Transformationsgleichung in Matrizenform

z! cosp sing 0 z
y' | =| —sinp cosp 0 y
z! 0 0 1 z

Der Leser iiberlege sich, da8 die Drehmatrix fiir eine Drehung um die y-Achse mit
dem Winkel 9 die Form hat

cosyp 0 siny
0 1 0
—siny 0 cos®y

Schliellich hat die Drehmatrix fiir eine Drehung um die z-Achse um den Winkel ¥
die Form

1 0 0
0 cosd sind
0 —sind cosd

Eine beliebige Drehung 148t sich durch aufeinanderfolgende Drehungen um die z, y
und z-Achse bewirken. In diesem Fall wird die Transformation mit einer Drehung
begonnen, das Ergebnis wird noch einmal transformiert und dieses Ergebnis wird
dann ein drittes Mal transformiert.
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19.5 Spezielle Matrizen

In diesem Abschnitt werden spezielle Matrizen erldutert und definiert. Manche ihrer
Eigenschaften werden ohne vollstindigen Beweis angegeben.

Einheitsmatriz
Die Einheitsmatriz ist eine quadratische Matrix der folgenden Form

1 00
E=|010
0 01

Alle Elemente auf der Hauptdiagonalen sind Eins, alle anderen sind Null.

Multipliziert man eine Matrix A oder einen Vektor # mit der Einheitsmatrix, so
bleiben die Matrix oder der Vektor unveridndert erhalten.

E.A = A
E.F =7

Die Eigenschaft der Einheitsmatrix folgt unmittelbar aus den Regeln der Matrizen-
multiplikation und kann leicht selbst verifiziert werden.

Diagonalmatrizen
Eine Diagonalmatriz ist eine quadratische Matrix, deren Elemente auf der Haupt-
diagonalen # 0 sind, und deren iibrige Elemente gleich Null sind.

a 0 0
D= 0 as?2 0
0 0 ass

Die Einheitsmatrix ist also eine spezielle Diagonalmatrix.

Nullmatriz

Die Nullmatriz ist eine Matrix, bei der simtliche Elemente Null sind. Sie wird mit
0 bezeichnet. Auf folgenden Zusammenhang sei hingewiesen: Aus der Gleichung
A - B = 0 folgt nicht notwendig, dafi entweder A = 0 oder B = 0 ist.

Beispiel:

1 2 2 =1\_(0 0)_ 0
2 4 -1 05/)7\0 0/
Transponierte Matriz
Vertauschen wir die Zeilen und Spalten einer m x n Matrix A, so erhalten wir eine

neue Matrix, die jetzt eine n x m Matrix ist. Diese Matrix heifit transponierte Matriz
oder Transponierte der urspriinglichen Matrix.

Sie wird bezeichnet durch AT oder A.
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Matrix Transponierte Matrix
aip a2
a a a
A= | asy ay AT:(au 021 a31)
12 G2 a3
as1 as2

Aus der ersten Zeile wird die erste Spalte, aus der zweiten Zeile wird die zweite
Spalte etc. Beispiel:

20 0 2 2 6
A= 2 1 -6 AT=10 1 0
6 0 —1 0 -6 -1

Der Leser kann die folgenden Behauptungen leicht selbst beweisen:

Die Transponierte einer transponierten Matrix ergibt wieder die
urspriingliche Matrix.

(AT = 4

Die Transponierte eines Matrizenprodukts ist das Produkt der transponierten
Matrizen.

(A-B)T =BT . AT

Allgemein gilt (A-B-C...2)T =27 ....BT . AT
Orthogonale Matrizen
Eine quadratische Matrix A heifit orthogonal, wenn sie der folgenden Bedingung
geniigt:

A-AT=E (Orthogonalititsbedingung)

Betrachten wir die Gleichung A - AT = E. Wenn wir die Zeilen und Spalten der
Matrizen A und AT als Vektoren auffassen, und ihre Skalarprodukte berechnen,
dann gilt fiir eine orthogonale Matrix A:

Das Skalarprodukt einer Zeile mit sich selbst ist 1.

Das Skalarprodukt einer Zeile mit einer anderen
Zeile ist immer Null.

Was fiir Zeilen gesagt wurde, gilt auch fiir Spalten.

Drehmatrizen sind immer orthogonale Matrizen. Wird eine orthogonale Matrix
A mit zwei Vektoren 7 und § multipliziert, dann bleibt deren Skalarprodukt un-
verandert:

7.5 = (AF) - (45)
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Dies bedeutet, daf8 bei der Transformation Langen und Winkel der Vektoren erhalten
bleiben. Ein System rechtwinklinger Koordinaten wird in ein anderes rechtwinkliges
Koordinatensystem iiberfiihrt. Durch diese Eigenschaft ist der Name orthogonale
Matrix begriindet.

Singulire Matriz

Eine Matrix heifit singuldr, wenn ihre Determinante Null ist. Der Begriff der Deter-
minanten wird im Kapitel 20 erldutert.

Symmetrische Matrizen und schief-symmetrische Matrizen
Eine quadratische Matrix heifft symmetrisch, wenn gilt: a;; = a;;. Dies bedeutet,
dafl die Matrix gleich ihrer Transponierten ist.

A=AT

Eine quadratische Matrix heifit schief-symmetrisch, wenn gilt a;; = —a;;. Fiir schief-
symmetrische Matrizen sind alle Elemente auf der Hauptdiagonalen Null. Es gilt:

A=-AT

Jede quadratische Matrix kann dargestellt werden als die Summe einer symmetri-
schen und einer schief-symmetrischen Matrix.

Beweis: A = %(A + AT) + %(A - AT)
Die erste Klammer ist eine symmetrische Matrix und die zweite Klammer ist eine
schief-symmetrische Matrix.

Beispiel: Die Matrix A wird in eine symmetrische und in eine schief-
symmetrische Matrix zerlegt:

798 29 26
1 8 27
74 69 88

798 15 50 0 14 -24
A= 15 8 48 |+ -14 0 -21
50 48 88 24 21 0

Spur einer Matriz
Die Summe der Elemente auf der Hauptdiagonalen heifit Spur der Matrix A, ab-
gekiirzt Sp(A)

A

Spur: Sp(A) =aj1+az2+as3z...+ann
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19.6 Inverse Matrix

Fiir eine nicht-singulire quadratische Matrix A ist die inverse Matriz A~! durch
folgende Bedingung definiert: Das Produkt der Matrix A mit der inversen Matrix
A~1 ergibt die Einheitsmatrix E.

Die folgenden Gleichungen gelten:
A-A"'=E  (Postmultiplikation mit A~')
A"'.A=E  (Pramultiplikation mit A~')

Die Berechnung der Inversen einer Matrix wird im Kapitel 20 im Abschnitt 20.1.3
beschrieben. Hier geben wir nur ein Beispiel:

20 0 10 0
A= 2 1 -6 Al=| 17 1 -6
6 0 -1 3 0 -1

Der Leser kann selbst verifizieren, daf folgende Gleichungen gelten:
A-A'=A"1 A=F

Eine quadratische Matrix A ist orthogonal, wenn die inverse Matrix A~! gleich der
transponierten Matrix AT ist:

Al =47
Wenn man die Operationen mit Matrizen anhand einfacher Beispiele durchgefiihrt

und verstanden hat, wird man sie spater bei Bedarf mit Hilfe des PC und eines
Algebraprogramms wie Mathematica, Maple, Derive u.a. durchfiihren.
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19.7 Ubungsaufgaben

19.1 Der Scheitelpunkt eines Paraboloids
haben den Abstand 2 vom Koordina-
tenursprung z = 2 + 22 + y%. Geben
Sie diejenige Transformation, die das
Koordinatensystem derart verschiebt,
daB Scheitelpunkt und Koordinatenur- )
sprung zusammenfallen. :

X

19.2.1 Ein zweidimensionales Koordinatensystem wird um den Winkel ¢ = 5 ge-
dreht. Die Transformationsmatrix lautet
V]
2 2
In welchen Vektor 7 wird der Vektor 7= (2, 4) trans-

V£ 1 J formiert?
2 2

19.2.2 Ein dreidimensionales Koordinatensystem wird mit dem Winkel ¢ = 30°
um die z-Achse gedreht. In welchen Vektor 7 geht der Vektor 7= (3, 3, 3)
iber?

19.3 a) Die Matrizen sind zu multiplizieren

01 2 1 00
A= 3 0 4 und B=] 1 1 0 sind zu multiplizieren.
0 01

0 05

b) Zeigen Sie, da8 fiir die beiden Matrizen aus a) die Produkte A - B und
B - A verschieden voneinander sind.

s (1 =2 - [z
c) Berechnen Sie A7 A= ( 5 7 ) F= ( v )

19.4 a) Gegeben sei A = (

1
4
3 0
1 0 3 -8 6 9
b) Gegebensei A= | 2 -3 1 JundA™'=| -3 -1 5 |. &
1 2 2 7 -2 -3
A1

Zeigen Sie, da§ A.

|
w N
SN—
o]
o)
v-r
13
o
=
=
[}
=
2!
(¢}
&
g
Pi
=]
=
(=9
o
N’
~~
b
S
N’
Pﬂ
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Losungen

191 gz'==z y'=y z

L 4 2 1 + 2V3
19.2.1 7= =

19.2.2 Die Transformationsformeln fiir eine Drehung um die z-Achse lauten:
2=z z! =zcosyp+ysing y' = —zsinp+ ycosp

Setzen wir £ = 3, y = 3 und z = 3 ein, erhalten wir
2'=3 2z’ = 3cos30° + 3sin 30° y' = —3sin 30° + 3 cos 30°

,F= (zl, yl’ zl)

01 2 1 00 11 2
193 a) A-B=]| 3 0 4 110}=1320 4
0 05 0 01 0 05
100 01 2 01 2
b) B-A=| 110 3 04})=]131F6
001 005 0 05
also: A-B#B-A
z - 2
<) (5:: + 7y)
r_(1 43
194 a) A —(2 -3 0
1 2
ATYr=14 -3 |=4
3 0
13 0 O
b) A~A‘1—1—1§ 0 13 0 | =F
0 0 13
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20 Lineare Gleichungssysteme und De-
terminanten

20.1 Lineare Gleichungssysteme

In diesem Kapitel werden wir die Lésungen linearer Gleichungssysteme untersuchen.
Zunichst wird eine Methode dargestellt, die in nahezu allen praktischen Fillen be-
nutzt werden kann, die GaufS’sche Eliminationsmethode und ihre Weiterentwicklun-
gen. Die Grundidee ist klar und elementar. Hilfreich ist dabei die Matrix-Schreibweise.

Danach wird das Konzept der Determinante entwickelt und eine zweite Losungs-
methode angegeben, die Cramersche Regel. Das Konzept der Determinante ist vor
allem von theoretischer Bedeutung, denn an der Determinante ist ersichtlich, ob ein
lineares Gleichungssystem eine eindeutige Losung hat.

20.1.1 Gauf3’sches Eliminationsverfahren, schrittweise Elimination der
Variablen

Gegeben sei ein System linearer algebraischer Gleichungen. Zunéchst nehmen wir
an, daf eine eindeutige Losung existiert, und daB die Anzahl der Gleichungen gleich
der Zahl der unbekannten Variablen ist. Gesucht sei die Losung. Betrachten wir ein
System von drei Gleichungen der folgenden Form:

anzy + a2z + @133 =
a1z1 + ar; + a3z = b
a3y + asz2 + azzrz =

Die Grundidee des Gauf’schen Eliminationsverfahrens ist es, die gegebenen Glei-
chungen in die folgende gestaffelte Form zu transformieren:

/ / / —_ /
a;321 + apZy; + azz = by
0 + a5z + ahrs = by
0 + 0 + aj3zs = b

Unterhalb der Diagonale sind alle Koeffizienten a;; Null. Dieses System 14t sich
dann direkt 16sen: Die unterste Gleichung wird aufgeldst nach z3. Die zweite Glei-
chung wird gelost, indem der Wert von z3 eingesetzt wird. Die erste Gleichung kann
nun durch die Wiederholung des Verfahrens gelost werden.

Unser Problem ist, das gegebene lineare Gleichungssystem in das gestaffelte umzu-
formen. Dies wird durch die Methode der schrittweisen Elimination von Variablen
erreicht. Folgende Schritte sind nétig:
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Schritt 1:

Schritt 2:
Schritt 3:

In allen Gleichungen aufler der ersten wird z; eliminiert. Wir multipli-
. . . ., a . . .
zieren die erste Gleichung mit =21 und subtrahieren sie von der zweiten.

ail
Damit ist in der zweiten Gleichung z; eliminiert.
Um auch in der dritten Gleichung z; zu eliminieren, multiplizieren wir

. ., a3 . . .
die erste mit — und subtrahieren sie von der dritten.
a3

In der dritten Gleichung wird in gleicher Weise z; eliminiert.

Bestimmung der Variablen.

Mit der untersten Gleichung ist bereits 23 bestimmt. Diesen Wert setzen
wir in die zweite ein und bestimmen z,. Danach werden z5 und z3 in
die erste eingesetzt und z; bestimmt.

Dieses Verfahren heifit Gaup’sches Eliminationsverfahren. Das Verfahren kann auf
beliebig grofle Gleichungssysteme erweitert werden.

Beispiel:

Schritt 1:

Schritt 2:

Schritt 3:

Zu 16sen sei das folgende lineare Gleichungssystem:

6x, — 12z + 6z3 = 6 (1)
3zy, — bzy + brz = 13 (2)
2zy - 6z, + 0 = -10 (3)

Elimination von z;:

Wir multiplizieren Gleichung (1) mit 2 und ziehen sie von Gleichung (2)
ab. Danach multiplizieren wir Gleichung (1) mit 2 und ziehen sie von
Gleichung (3) ab. Ergebnis:

6y — 12z + 6z3 = 6 (1)
0 + z2 + 223 = 10 2
0 - 229 — 223 = -12 3)

Elimination von z3:

Wir multiplizieren Gleichung (2’) mit 2. Der Koeffizient der Variablen
z in der dritten Gleichung ist negativ. Um die Variable zu eliminieren
miissen wir in diesem Fall addieren. Ergebnis:

6z, — 12z, 4+ 623 = 6 (1)
zo+2x3 = 10 (2”)
22:3 = 8 (3”)

Bestimmung der Variablen z;, z3, 3. Die Gleichung (3”) ergibt
I3 = 4

Schrittweises Einsetzen ergibt

T = 2

Ty = 1
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20.1.2 Gaufl-Jordan Elimination

Gegeben sei ein System von n linearen Gleichungen mit n Variablen. Wir fragen,
ob wir dieses Gleichungssystem durch schrittweise Elimination der Variablen in die
folgende Form bringen kénnen:

x + 0 + 0 + + 0 = ¢
0 + x9g + 0 + + 0 = cg
0 + 0 + x3 + + 0 = c3
0 + 0 + 0 + ... 4+ Xn = Cn

In dieser Form ist das Gleichungssystem bereits die Lésung. Wir erreichen diese
Transformation durch eine Erweiterung des Gaufi’schen Eliminationsverfahrens.
Wihrend bisher bei der schrittweisen Elimination einer Variablen nur die Koeffizi-
enten unterhalb des Diagonalelementes eliminiert wurden, miissen wir nun auch die
Koeffizienten oberhalb des Diagonalelementes eliminieren. Danach ist die verblei-
bende Gleichung noch durch den Koeffizienten des Diagonalelementes a;; zu teilen.
Dieses Verfahren heiit Gau-Jordan’sches Eliminationsverfahren.

Wir demonstrieren es, indem wir das vorhergehende Beispiel benutzen:

6z, — 12z, + 6z3 = 6 (1)
3z, — bz + bzxz = 13 (2)
2z, — 6z + O = -10 (3)

Um die numerischen Rechnungen zu erleichtern, beginnen wir jeden Eliminations-
schritt, indem wir zunichst das Diagonalelement zu Eins machen. Dafiir dividieren
wir die Gleichung durch a;;.

Schritt 1: Wir teilen die erste Gleichung durch a;;. Danach eliminieren wir z; in
den iibrigen Gleichungen.
Zweite Gleichung: Wir subtrahieren das 3-fache der ersten Gleichung.
Dritte Gleichung: Wir subtrahieren das 2-fache der ersten Gleichung:

1 — 229 + r3 = 1 (1)
0 + 2 + 2z3 = 10 (2)
0 — 2z, — 2z3 = -12 3)

Schritt 2: Es braucht nicht geteilt zu werden, da az2 = 1. Unterhalb und oberhalb
der Diagonalen wird z, eliminiert.
Erste Gleichung: Wir addieren das 2-fache der zweiten Gleichung.
Dritte Gleichung: Wir addieren das 2-fache der zweiten Gleichung.

21 1)
10 @)
8 (3

zy + 0 4+ bz3
0 + 2o + 2z3
0 + 0 + 223

o
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Schritt 3: Wir dividieren die dritte Gleichung durch as3 und eliminieren z3 in den
oberen Gleichungen.

zz + 0 4+ 0 1 )

0 + z2 + O 2 2"

0 + 0 + =z3 4 (3"

Damit haben wir die gewiinschte Form und die Lésung des Gleichungssystems ge-
wonnen.

20.1.3 Matrixschreibweise linearer Gleichungssysteme und Bestimmung
der inversen Matrix

Gegeben sei ein System linearer algebraischer Gleichungen:

anz; + a12z2 + ai13r3 =
a1%; + a2 + a3T3 = b
aszzy + as2r2 + aszzrz =

Dieses Gleichungssystem kann formal als Matrizengleichung geschrieben werden.
Die Koeffizienten a;; seien die Elemente einer Matrix A.
Die Matrix A heifit Koeffizienten-Matriz.

a1 @12 @13
A= az a2 aas

aszy as2 ass

# und b sind Spaltenvektoren

z1 b1
I = 2 b= bz
I3 b3

Das lineare Gleichungssystem kann nun als Matrixgleichung geschrieben werden:
A-F=}

Aus Kapitel 19 kennen wir die Matrizenmultiplikation, die Definition der Einheits-
matrix £ und die Definition der inversen Matrix A~!.

Nun sei eine Matrixgleichung gegeben, die ein lineares algebraisches Gleichungs-
system reprisentiert:

A-F=b
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Wir multiplizieren beide Seiten dieser Matrixgleichung von links mit der Inversen
von A:

ATV A F=4"10
Wir erinnern uns, da A~!- A = E und erhalten:
E-§=A"1.%

Diese Gleichung entspricht dem Gleichungssystem nach Durchfiihrung des Gau8-
Jordan’schen Eliminationsverfahrens. Sie ist die Lésung des linearen Gleichungs-
systems in Matrixschreibweise. Allerdings wissen wir im Augenblick nicht, wie die
Inverse A~! der Koeffizientenmatrix A gewonnen wird, um diese Multiplikation aus-
zufithren. Auf der anderen Seite kennen wir mit dem Gauf-Jordan’schen Eliminati-
onsverfahren eine Methode, ein System linearer algebraischer Gleichungen zu l6sen.
Wir fragen uns nach der Beziehung zwischen der Losung des Gleichungssystems und
der Bestimmung der inversen Matrix A~!.

Ohne einen Beweis geben wir die Antwort: Durch die GauB-Jordan Elimination
transformieren wir die Koeffizientenmatrix A in eine Einheitsmatrix £. Wenn wir
alle Operationen gleichzeitig auf eine Einheitsmatrix anwenden, wird diese in die
inverse Matrix A~! transformiert.

In Wirklichkeit gewinnen wir so keine neue Methode, ein System linearer Gleichun-
gen zu l6sen, sondern statt dessen gewinnen wir eine Methode, die Inverse einer
gegebenen Matrix zu berechnen.

Zwischenbemerkung: Eine gegebene n x m Matrix A kann formal erweitert werden
durch eine zusitzliche n x k Matrix B. Auf diese Weise entsteht eine erweiterte
Matrix, die folgendermafen bezeichnet wird: A|B. Zum Beispiel ist die erweiterte
Matriz A|E eine Matrix, deren erster Teil aus A und deren zweiter Teil aus E
besteht.

Regel: Berechnung der Inversen A~! fiir eine gegebene Matrix A:
Die Matrix A wird zunachst durch die Einheitsmatrix E erweitert.
Dann wird das Gauf$-Jordan’sche Eliminationsverfahren durch-
gefithrt, um den Teil A der erweiterten Matrix in eine Einheits-
matrix zu iiberfiithren. Dabei wird automatisch der Teil E der er-
weiterten Matrix in die inverse Matrix A~! transformiert.

Wir zeigen die Berechnung der inversen Matrix von A anhand der Koeffizientenma-
trix eines Beispiels.

2 0 0
A= 2 1 -6
6 0 -1

Zunichst erweitern wir A durch E und erhalten die erweiterte Matrix A|E":
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20 0 100
AE=[21 -6 010
00 1

6 0 -1

Nun fiihren wir die Gau-Jordan Elimination durch, um den Teil A4 in eine Einheits-
matrix umzuwandeln. Dabei fithren wir die im vorhergehenden Abschnitt beschrie-
benen Schritte durch, wenden aber alle Operationen auch auf den zweiten Teil der
erweiterten Matrix an.

Schritt 1: Division der ersten Zeile durch a;; = 2 und Elimination der Elemente
der ersten Spalte unterhalb der Diagonalen:

10 0 1oo
01 -6 -110
00 -1 -3 01

Schritt 2: Die Elemente der zweiten Spalte oberhalb und unterhalb des Diagonal-
elements sind bereits Null.

Schritt 3: Division der dritten Zeile durch az3 = —1 und Elimination des Elements
in der dritten Spalte oberhalb der Diagonalen:

100 Lo o
010 171 -6
00 1 30 -1

Damit ist die Einheitsmatrix E in die inverse Matrix A~! iiberfiihrt.

Lo o
At=117 1 -6
30 -1

Im weiteren benutzen wir die Matrixschreibweise um Schreibarbeit bei der Trans-
formation von Gleichungssystemen zu sparen.

Jede Zeile der Matrixgleichung A - & = b reprisentiert eine lineare algebraische
Gleichung. So ist Gleichung i:

a;121 + @222 + ... + @iy, = b;

Wenn wir diese Gleichung mit einem Faktor multiplizieren miissen, entspricht dies
in der Matrixschreibweise der Multiplikation der Zeile ¢ der Matrizen A und b mit
diesem Faktor.

Nehmen wir an, wir miissen Gleichung ¢ zu Gleichung j addieren. Dann entsteht
eine neue Gleichung j' deren Koeffizienten nun sind

(ai1 + aj1)z1 + (ai2 + aj2)z2 . . . (Gin + Gjn)Tn = b + b;
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In der Matrixschreibweise entspricht dies der Addition korrespondierender Elemente
der Zeile ¢ zur Zeile j und der Addition von b; zu b;. Dies kann verallgemeinert
werden fiir die Addition von Vielfachen einer Gleichung und die Subtraktion von
Vielfachen von Gleichungen.

Folglich kénnen die GauB’sche Elimination und die Gau8-Jordan’sche Elimination
durchgefiihrt werden, indem die Rechnungen mit den Elementen der Koeffizienten-
matrix und dem entsprechenden Element von b ausgefiihrt werden. Wenn wir die
Matrixschreibweise benutzen, ist dies am einfachsten, wenn wir die Koeffizienten-
matrix A mit dem Spaltenvektor b erweitern und diese erweiterte Matrix A|b gemas
dem Gauf’schen oder dem GaufB-Jordan’schen Eliminationsverfahren behandeln.

Dabei wird der erste Teil A in eine Einheitsmatrix iiberfiihrt und die Spalte b wird
in den Spaltenvektor der Losungen transformiert. Dies spart Schreibarbeit und hilft,
Schreibfehler zu vermeiden.

20.1.4 Existenz von Lésungen

Zahl der Variablen

Wir wissen, daf8 aus einer Gleichung nur eine unbekannte Variable bestimmt werden
kann. Wenn wir eine Gleichung mit zwei Variablen haben, ist eine der Variablen frei
wihlbar. Fiir die Bestimmung von zwei Variablen ben6tigen wir zwei Gleichungen.

Um n Variablen zu bestimmen, brauchen wir n Gleichungen. Diese Gleichungen
miissen linear unabhdngig voneinander sein. Eine Gleichung ist linear abhdngig von
einer oder mehreren anderen, wenn sie als eine Summe von Vielfachen der anderen
geschrieben werden kann.

Haben wir n Variablen und nur m linear unabhingige Gleichungen (m < n), kénnen
nur m Variablen bestimmt werden und (n — m) Variablen sind frei wahlbar. Dies
ist verstindlich. In einem System von n Gleichungen kénnen (n — m) Variablen
auf die rechte Seite gebracht werden. Dann verbleiben m Variablen auf der linken
Gleichungsseite. Wenden wir das GauB-Jordan’sche Eliminationsverfahren auf dieses
System an, kénnen Losungen fiir die m Variablen gewonnen werden. Aber diese
Losung enthilt noch die (n —m) Variablen, die vorher auf die rechte Gleichungsseite
gebracht wurden. Also sind diese Variablen frei wahlbare Parameter.

Haben wir mehr Gleichungen als Variablen (m > n) ist das System iiberbestimmt.
Es ist nur dann lésbar, wenn (m — n) Gleichungen linear abhéangig sind.

Ezistenz einer Lisung

Wir betrachten ein System von n linearen Gleichungen und n Variablen. Wenn bei
einem Schritt j des Eliminationsverfahrens der Koeffizient a;; bereits Null ist, muf
diese Gleichung mit einer Gleichung getauscht werden, deren Koeffizient von z;
unterhalb der Diagonale ungleich Null ist. Sind alle Koeffizienten von z; unterhalb
der Diagonale ebenfalls Null, hat das System entweder keine eindeutige Losung oder
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iiberhaupt keine Lésung. In diesem Fall gehen wir einfach zu der nachsten Variablen
iiber und fiihren das Eliminationsverfahren zu Ende.

Das System hat keine eindeutige Lésung, wenn auf der rechten Seite der Gleichung
J der Wert von b; ebenfalls Null ist. Dann ist diese Gleichung linear abhéngig von
den anderen. Der Wert von z; ist dann unbestimmt und frei wahlbar. Tritt dieser
Fall bei r Gleichungen ein, bekommen wir r frei wahlbare Parameter.

Der Sachverhalt ist unmittelbar zu verstehen. Wenn in einer Gleichung alle Koef-
fizienten auf der rechten und auf der linken Seite verschwinden, verschwindet die
Gleichung. Folglich iibertrifft nun die Zahl der Variablen die Zahl der verbleibenden
Gleichungen m = (n —r). Oben ist bereits ausgefiihrt, da8 in diesem Fallr = n—m
Variablen nicht bestimmt werden konnen und somit r frei wahlbare Parameter blei-
ben.

Das Gleichungssystem hat iiberhaupt keine Lésung, wenn auf der rechten Seite der
Zeile j der Wert von b; nicht gleich Null wird. In diesem Fall erhalten wir die
Gleichung

0=2b;

Das ist unmoglich. Infolgedessen enthalt das System der Gleichungen Widerspriiche
und hat iiberhaupt keine Losung.

Beispiel: Gegeben sei ein System linearer Gleichungen.

Wir benutzen die Matrixschreibweise und formen die erweiterte Matrix A|bd um.

4 -8 0 -4 -12 4 -8 0 4 -12
1 13 5. P 12 Ap= 1 13 5 12
2 -2 2 4 8 2 -2 2 4 8
-3 71 7 18 -3 717 18

Schritt 1: Division der ersten Zeile durch a;; und Elimination der Koeffizienten in
der ersten Spalte.
Ziele 2: Subtraktion von Zeile 1
Zeile 3: Subtraktion des 2-fachen der Zeile 1
Zeile 4: Addition des 3-fachen von Zeile 1

1 -2 0 -1 -3
0 33 6 15
0 2 2 6 14
0 11 4 9
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Schritt 2: Division der zweiten Zeile durch az; und Elimination der Koeffizienten
in der zweiten Spalte
Zeile 1: Addition des 2-fachen von Zeile 2
Zeile 3: Subtraktion des 2-fachen von Zeile 2
Zeile 4: Subtraktion von Zeile 2

10 2 3 7
01125
0 00 2 4
000 2 4

Schritt 3: In der dritten Zeile sind der Koeffizient as3 und die Koeffizienten darun-
ter Null. Infolgedessen gehen wir zur vierten Spalte liber. Wir teilen die
vierte Spalte durch a44 und eliminieren die Koeffizienten dariiber.

-0 O O
N O ==

1 0 2
011
0 00
0 00O

In der dritten Zeile sind alle Elemente Null. Infolgedessen hat das System keine
eindeutige Lésung. Der Wert z3 ist frei wahlbar. Die Werte von z; und z; hiangen
von dieser Wahl ab:

2y = 1-2z;3

Ty = 1- T3

z3 = frei wahlbar
T4 = 2

Léosungen eines homogenen Gleichungssystems

Wir betrachten wieder ein System von n linearen Gleichungen und n Variablen. Alle
Konstanten b; auf der rechten Seite des Gleichungssystems seien Null. Dann heifit
das Gleichungssystem homogen. Eine homogenes Gleichungssystem hat zunichst
eine triviale Losung: alle Variablen sind gleich Null. Diese Losung heifit Nullosung.

z; =0 i=1...,n

Es konnen jedoch auch nicht-triviale Losungen existieren. In diesem Fall mu8 min-
destens eine Gleichung linear von den anderen abhingig sein. Folglich ist die Lésung
nicht eindeutig und enth&lt mindestens einen frei wahlbaren Parameter.

Beispiel: ~ Gegeben sei ein homogenes Gleichungssystem

1 4 -1 1 4 -10
4 16 -4 |-£=0 4 16 —4 0 | =Ap
2 -3 1 2 -3 10

Erweiterte Matrix A|b



20.2 Determinanten 145

Schritt 1: Elimination der Koeffizienten in der ersten Spalte ergibt:

1 4 -1 0
0 0 00
0 -1 3 0

Wir sehen, daB8 das System eine nicht-triviale Lésung hat, denn eine Zeile
besteht aus Nullen und ist damit linear abhangig von den anderen.

Schritt 2: Wir tauschen Zeile 2 und Zeile 3 weil azs = 0 und eliminieren den Koef-
fizienten oberhalb der Diagonale in der zweiten Zeile:

10 L0
01 -3 0
00 00

Es bleiben zwei Gleichungen fiir drei Variable iibrig. x5 ist frei wahlbar. Die Losung
der Gleichungen ist dann:

-1 3
=70 2= 1778

Die Lésung ist nicht eindeutig, sie enthélt den frei wahlbaren Parameter z3.

20.2 Determinanten

20.2.1 Einfithrung

Wir fiilhren den Begriff der Determinante anhand eines Spezialfalles ein. Gegeben
sei ein Gleichungssystem von zwei linearen Gleichungen mit zwei Unbekannten z;
und z,. Vorausgesetzt sei, dafl die Koeffizienten reelle Zahlen sind

41121 + a12T2 = by
a121 + azexz = by

Das Gleichungssystem 148t sich in bekannter Weise 16sen. Schreibt man die Losung
vollstandig hin, ergibt sich:

byazz — baapy
331 = —m—mmm-——
@11Q22 — @21Q12

_ baayy —bran
r9= —————
a11Q@22 — @21Q12



146 20 Lineare Gleichungssysteme und Determinanten

Lésungen existieren nur, wenn die Nenner nicht gleich Null sind. Die Nenner werden
durch den Ausdruck ajjas2 — az1a12 gebildet.

Diesen Ausdruck nennt man die 2-reihige Determinante des Gleichungssystems. Die
Determinante schreiben wir:

ailp a2

= @11022 — @12021
a1 a2

Die Determinante mufi man von der zugehérigen Koeffizientenmatrix unterscheiden.
Die Koeffizientenmatrix des Gleichungssystems schreiben wir:

A= ( a1 a2 )
a1 @22
Eine Matrix ist ein Zahlenschema, dem man bestimmte Eigenschaften zugeordnet

hat. Demgegeniiber ist die Determinante eine Zahl. Man kann diese Zahl berechnen,
sobald man die Werte der a;;,a;2... kennt.

Die Determinante einer — quadratischen — Matrix A wird in der Literatur in unter-
schiedlicher Weise geschrieben.

a1 a2

a a
= Det A = Det R ajjazz — @12a2
a1y a2

az1 @22

Die Berechnungsvorschrift gilt fiir die Determinante einer 2 x 2 Matrix. Die Berech-
nung der Determinante einer n X n Matrix kann schrittweise auf die Berechnung der
Determinanten von 2 x 2 Matrizen zuriickgefiihrt werden.

20.2.2 Definition und Eigenschaften der n-reihigen Determinante

Zunichst sei wiederholt, dal die Determinante eine Zahl ist, die durch eine noch zu
erlauternde Rechenvorschrift aus den Koeffizienten gewonnen wird. Auch bei Deter-
minanten sprechen wir von Zeilen und Spalten. Allgemein wird die Determinante
einer quadratischen Matrix von n Zeilen und n Spalten eine n-reihige Determi-
nante genannt. Oft wird n die Ordnung der Determinante genannt. In der iiblichen
Schreibweise einer Determinante stehen die Elemente in derselben Anordnung wie in
der zugehdrigen Matrix. Beim Element a;i bezeichnet der erste Index (7) die Zeile,
der zweite Index (k) die Spalte.

aypy a2 ... Qa1 ... Q1n a a2 ... Qi1 ... Q1n
Det ay G2 ... Gk ... Gip =lay a2 ... GGk ... Gin

An1 GGp2 ... QGpg ... GQpp Anl1 Qnp2 ... QGpg ... Qupn
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Unterdeterminante: Die Unterdeterminante ist fiir jedes a;; definiert. Man erhalt
die Unterdeterminante, wenn man die Zeile ¢ und die Spalte k streicht. Demzufolge
sind die Unterdeterminanten (n — 1)-reihige Determinanten.

Algebraisches Komplement: Das algebraische Komplement A;i ist das Produkt der
Unterdeterminante fiir ag; mit dem Faktor (—1)"+F.

In der Literatur wird das algebraische Komplement auch Adjunkte genannt. Das
unten angegebene Schema zeigt die Berechnung des algebraischen Komplements.

0 Streichen

| r I i 1

| ® HHH
DetA = | %ik —_— i i ik

" M—-F—'-'e Zeile —"Aik =(—‘) “ " I

JI B?—.— it 1
| ° LK I
|
Unterdeterminante algebraisches Komplement

Beispiel:  Berechnung der algebraischen Komplemente A1, A;2 und A3 fiir die

Determinante A:

1 23
Det A=|3 2 1
5 =3 1

2 1 2 1

A = ('—1)1+1 -3 1 = -3 1 =5
31 31

An = (D™ g 5 1|2
3 2 3 2

As = D5 3 5 -3 |= 719

Entwicklung einer Determinante:

Der Wert einer Determinante ist durch die folgende ,, Entwicklungsvorschrift” fest-
gelegt. Die Entwicklung einer Determinante nach einer Zeile erhdlt man, wenn man
jedes Element der Zeile mit seinem algebraischen Komplement multipliziert und die
entstehenden Produkte addiert. In gleicher Weise ist die Entwicklung einer Deter-
minante nach einer Spalte definiert. Die Entwicklung nach verschiedenen Zeilen und
Spalten ergibt immer denselben Wert. Im Rahmen dieses Buches wird die Aussage
nicht bewiesen.
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Beispiel: ~ Die gegebene Determinante soll nach der ersten Zeile entwickelt wer-
den

Det A = = a11A11 + a12412 + a13413

(SR
W NN
— -

Im vorhergehenden Beispiel sind die algebraischen Komplemente be-
reits berechnet worden:

All =5 Alg =2 A13=—19
Dann ergibt die Entwicklung nach der ersten Zeile

Det A=1-5+2-2+3(—19) = —48

Berechnung von Determinanten:
Der Wert einer n-reihigen Determinante ist definiert durch den Wert ihrer Entwick-
lung nach einer beliebigen Zeile oder Spalte.

Entwicklung nach der i-ten Zeile ergibt: Det A = a;14;1 + ai2Aiz + ...+ @indin
Entwicklung nach der k-ten Spalte ergibt: Det A = a1xA1x + asp A2k +. ..+ ank Ank

Durch unsere Entwicklungsvorschrift ist die Berechnung einer Determinante mit n
Zeilen und Spalten auf die Berechnung einer Determinante mit n — 1 Zeilen und
Spalten zuriickgefiihrt. Auf diese (n — 1)-reihigen Determinanten kénnen wir wieder
die Entwicklungsvorschrift anwenden und die Ordnung der noch zu berechnenden
Determinante weiter reduzieren. Nach wiederholter Anwendung der Entwicklungs-
vorschrift erhdlt man schliefllich einen Ausdruck der nur aus 2-reihigen Determinan-
ten besteht.

Auf einen Spezialfall sei hingewiesen: Die Determinante einer Diagonalmatrix ist
durch das Produkt der Diagonalelemente gegeben. Dabei ist vom Vorzeichen abge-
sehen. Dies folgt unmittelbar aus der gegebenen Entwicklungsvorschrift.

aj; O 0o ...... 0

0 agg 0  ...... 0

0 0 agg ... 0 =ajq-ag2-ag3...ann
0 0 0 ...... ann

Determinantenregeln, Umformung von Determinanten

Fir die Umformung von Determinanten werden die Determinantenregeln (1) bis
(7) angegeben. Es ist zweckmiBig, mittels dieser Regeln eine Determinante vor der
eigentlichen Rechnung so umzuformen, da8 die Entwicklung erleichtert wird. Die
Regeln werden meist ohne Beweis mitgeteilt.
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(1) Vertauschung von Zeilen und Spalten dndert den Wert einer Determinante
nicht
Det A = Det AT

Da die Vertauschung von Zeilen und Spalten den Wert einer Determinante nicht
andert, gelten alle Regeln, die im folgenden fiir Zeilen angegeben werden, ebenfalls
fiir Spalten. Darauf wird nicht mehr ausdriicklich hingewiesen. Beispiel:

a1 @12 @13 a11 a2 as
az1 G22 G23 | = | @12 Ga22 ass
asy a3z ass a13 as2 ass

(2) Werden zwei beliebige Zeilen vertauscht, dndert sich das Vorzeichen der De-

terminante.
a1 a12 a3 az1 az2 a3
a1 azz @3 |=—| @11 a2 a3 | (Vertauschung von Zeile 1 und 2)
asy azz2 ass asy as2 ass

(3) Enthalten alle Elemente einer Zeile einen gemeinsamen Faktor k so kann k
als Faktor vor die Determinante gezogen werden.

a a2 a3 a11 a2 a3
Det A = lca21 kagz ka23 =k az; a2 a3
asi asz ass asy as2 ass

Multipliziert man alle Elemente einer Matrix mit einem Faktor k, ist die Determi-
nante der neuen Matrix:

k™ Det A

(4) Sind zwei Zeilen einer Determinanten gleich, hat die Determinante den Wert
Null. Dies gilt auch, wenn zwei Zeilen zueinander proportional sind.

Zieht man den gemeinsamen Proportionalititsfaktor der einen Zeile nach Regel (3) heraus, erhélt
man zwei gleiche Zeilen. Bei der Vertauschung dieser Zeilen geht die Determinante in sich iiber;
andererseits wechselt sie nach (2) ihr Vorzeichen, also gilt Det A = — Det A. Das ist nur mdglich
wenn Det A = 0.

(5) Ist jedes Element einer Zeile als Summe zweier Zahlen dargestellt, kann die
Determinante als Summe von zwei Determinanten geschrieben werden, deren
iibrige Zeilen erhalten bleiben. Beispiel:

a1 +b1 aja+by ajz+ds a;; a2 a3 by b2 b3

az; az2 az3 =|az az2 a3 (+| a2 a2 az3
asi as2 ass asy as2 ass asy asz2 ass
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(6) Eine Determinante dndert ihren Wert nicht, wenn man zu einer Zeile das
Vielfache einer beliebigen anderen addiert.

ay ... Qin a1 +cajy ... @in+cajn

ajy ... Qjn aj1 Qjn

Entwickeln der rechten Seite nach der i-ten Zeile liefert namlich
(ai1dir + ...+ aindin) + ¢ (aj1d51 + ...+ ajndjn)

Die 1. Klammer gibt gerade Det A, die 2. Klammer ist nach Regel (5) gleich Null, womit alles
bewiesen ist.

Aus (6) folgt unmittelbar ein wichtiger Satz: La8t sich eine Zeile einer Determinante
vollstindig als Summe von Vielfachen anderer Zeilen darstellen (Linearkombina-
tion), so hat die Determinante den Wert 0. Auch der UmkehrschluB gilt:

Ist Det A = 0 und keine Zeile (Spalte) = 0, so 148t sich mindestens eine Zeile als
Summe der Vielfachen anderer Zeilen darstellen.

(7) Multipliziert man die Elemente einer Zeile mit den algebraischen Komple-
menten einer anderen Zeile und summiert diese Produkte auf, so erhilt man
Null.

Die Entwicklung der Determinante nach der i-ten Zeile lautet

ai14i1 +ai2Ai2 + ...+ aindin

Ersetzen wir die a1, ..., ain durch die Zahlen a;1,..., a;jn, d.h. durch die Elemente der j-ten Zeile,
dann tritt die j-te Zeile jetzt zweimal auf, denn in der j-ten Zeile stehen die Elemente a;1,...,a;n
ja sowieso. Deshalb ist die neue Determinante nach Regel (4) gleich Null.

Schlufbemerkung: Wenn man die genannten Eigenschaften der Determinanten be-
nutzt, kann jede Determinante so umgeformt werden, da nur die Diagonalelemente
iibrig bleiben. Dann ist der Wert der Determinante — bis auf das Vorzeichen — gleich
dem Produkt der Diagonalelemente. Dieses Verfahren entspricht der Gau8-Jordan-
Elimination. In der Praxis reduziert diese Methode den Rechen- und Schreibauf-
wand erheblich. Im iibrigen reicht es aus, die Elemente unterhalb der Diagonalen zu
eliminieren — das entspricht dem Gauf8’schen Eliminationsverfahren.

Begriindung: Die zusitzliche Elimination der Elemente oberhalb der Diagonalen
andert die Diagonalelemente nicht mehr.

Berechnung 2- und 3-reihiger Determinanten
Die Berechnungsformel fiir 2-reihige Determinanten kann man sich leicht mit Hilfe
des folgenden Schemas merken:
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a a2

-
=

a22

Das Produkt der in der ausgezogenen Linie stehenden Elemente ist positiv. Das
Produkt der in der punktierten Linie stehenden Elemente ist negativ zu nehmen.

In derselben Weise kann man sich ein Schema fiir die Berechnung 3-reihiger De-
terminanten machen; es ergibt sich aus der Entwicklung der Determinante und ist
unter dem Namen Sarrus’sche Regel bekannt:

\ \ \ R ,° L
a1y 412 @13 @411 G012
’ g Pd
’ ’ I’
az1 422 413 421 0422
P ¢ <

4 d L4
,031 1632 ,aaa a31 as2
Vd ‘ l’ /, \ \ \

Fiir mehr als 3-reihige Determinanten gibt es kein dhnliches Schema.

20.2.3 Rang einer Determinante und Rang einer Matrix

Eine n reihige Determinante 148t sich gema8 der Entwicklungsvorschrift auf (n —1)-
reihige Unterdeterminanten zuriickfiihren. Nach (n — 1)maliger Entwicklung kommt
man dann auf 1-reihige Determinanten, némlich die Elemente a;.

Es kann der Fall eintreten, daB alle Unterdeterminanten einer Reihe gleich Null sind.
Dann sind auch alle Unterdeterminanten héherer Reihenzahl gleich Null und mithin
Det A= 0.

Falls mindestens eine r-reihige Unterdeterminante nicht verschwindet, wahrend samt-
liche Determinanten mit grofierer Reihenzahl verschwinden, haben die Determinante
und die zugehérige Matrix den Rang r.

Fiir eine n-reihige Determinante gilt:

ist Det A # 0, so ist r = n;
ist Det A =0, so ist r < n.

Beispiel: Bestimme den Rang der Determinante

Det A =

NI O
OO
B = N =
N O O N

Es ist zweckmiflig, die Determinante unter Ausnutzung der Determinantenregeln
so umzuformen, dal die Berechnung erleichtert wird.

Wir subtrahieren zunachst Zeile 1 und Zeile 3 von Zeile 4. Wir subtrahieren dann
die Halfte der Zeile 2 von Zeile 3 und erhalten
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121 2
2 0 20
Det A=14 9 0 0
0000

Die grofiten verbleibenden Unterdeterminanten haben den Rang 2. Also ist der Rang
der Determinante und der zugehérigen Matrix gleich zwei.

20.2.4 Anwendungsbeispiele fiir die Determinantenschreibweise

Vektorprodukt in Determinantenschreibweise

Fiir das Vektorprodukt hatten wir in Kapitel 2 die Komponentendarstellung ge-
funden:

@ x b =& (agh, — asby) + &y (asbz — agb,) + & (azby — aybz)

Wenn wir die Klammern als 2-reihige Determinanten deuten, konnen wir die rechte
Seite der Gleichung als Entwicklung einer Determinante nach der Zeile (€; €y €;)
auffassen und formal schreiben:

€z € €
ixb=|a; ay a,
bs by b,

Das Volumen eines Parallelepipeds

Wir denken uns das Parallelepiped von den
Vektoren @,5 und & aufgespannt. Aus Kapi-
tel 2 wissen wir, dafl das Vektorprodukt a'xb

“A

die Grundflache liefert. @ x b ist dariiber hin-

aus selbst ein Vektor Z, der senkrecht auf [~ //,’
der Grundfliche steht. Das gesuchte Volu- c 4
men ist also Grundfliche |z] mal Héhe. Die =
Hoéhe ist durch die Projektion von ¢ auf 7 -
gegeben. Das Skalarprodukt ¢ - 7' liefert uns

nun gerade Grundfliche mal Projektion von

¢ auf 7, also das Volumen des Parallelepi-

peds:

-,

V=cz=c-(@xb)
In Komponentenschreibweise:

V = cs(ayb, — asby) + cy(a:b: — azh;) + c.(azby — ayb;)
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Diesen Ausdruck kénnen wir wie das Vektorprodukt als Determinante schreiben:

€z Cy C; a; ay a,
V=|a ay a, [=|b b b,
b: by b, Cz Cy C

Ubrigens erhélt man fiir V eine positive oder negative Zahl, je nachdem, ob die
Vektoren @, b, ¢ im Sinne einer Rechts- oder einer Linksschraube orientiert sind.

20.2.5 Cramersche Regel

Die Cramersche Regel benutzt die Determinanten um lineare Gleichungssysteme zu
16sen. Die Methode ist vor allem theoretisch interessant. In der Praxis ist sie niitzlich
fiir Gleichungssysteme mit zwei oder drei Gleichungen. Wir betrachten das folgende
Gleichungssystem in Matrixschreibweise

a a2 ... Qin

8
Il
o

An1 Qp2 ... Gpn

Wenn die Determinante der Koeffizientenmatrix A ungleich Null ist, hat das System
eine eindeutige Losung.

In der Koeflizientenmatrix kénnen wir die k-te Spalte durch den Spaltenvektor b
ersetzen. Wir bezeichnen diese Matrix dann als A(%),

Die einzelnen Variablen des Gleichungssystems sind gegeben durch den Ausdruck

Det AK)

m (k=1,2,3n)

T =

Dies ist die Cramersche Regel. Wir werden sie nicht beweisen. Obwohl der Beweis
elementar ist, erfordert er doch einen erheblichen Rechen- und Schreibaufwand.

Cramersche Regel:
Gegeben sei ein lineares algebraisches Gleichungssystem

AZ =}
Losung
Det A®)
Tk Det A (k=1,2,3,...,n)

Det A*) wird aus der Determinante der Koeffizientenmatrix gewonnen, indem
die Spalte k durch den Spaltenvektor b ersetzt wird.
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Wenn man die Cramersche Regel zugrunde legt, lassen sich einige Schliisse iiber die
Existenz von Lésungen ziehen, die unmittelbar einleuchtend sind. Sie sind bereits
in Abschnitt 20.1.4 aufgefiihrt.

Nicht-homogene Gleichungssysteme von n Gleichungen:

Ist Det A = 0, so 148t sich die Cramersche Regel nicht anwenden. Das Gleichungs-
system hat entweder eine unendliche Anzahl von Lésungen oder gar keine. In dieser
Situation ist der Begriff des Rangs der Determinante niitzlich.

— Keine Losung existiert, falls der Rang r der Determinante A kleiner als n ist,
und eine der Determinanten Det A(*) einen Rang hat der grofer als r ist.

— Eine unendliche Anzahl von Losungen existiert, falls der Rang r der Determi-
nante A kleiner als n ist und keine der Determinanten A(*) einen Rang hat
der gréBer als r ist.

Homogene lineare Gleichungssysteme (5 =0):

Das homogene lineare Gleichungssystem hat die triviale Losung
:c1=:c2=...=x,.=0.

Eine nicht-triviale Losung existiert nur, falls der Rang r der Matrix A kleiner als n
ist (r < n).

Ein homogenes Gleichungssystem mit m linear unabhingigen Gleichungen und n
Unbekannten hat eine nicht-triviale Losung falls n > m. Die Lésung enthilt (n —m)
willkiirliche Parameter.

Beispiel 1:  Gegeben sei das nichthomogene Gleichungssystem:

1 + 22 + z3 =
3z, + 2z 4+ z3 = 49
52y — 3r3 + =z3 =

In Matrixschreibweise

1 11 z 8
3 21 )| =2 J= 49
5 -3 1 z3 0

Wir berechnen die Determinanten

1 11 8 11

Det A=|3 2 1|=-12, Det AV =|49 2 1|=-156
5 -3 1 0 -3 1
1 8 1 1 1 8

Det AO)=|3 49 1|=-180, Det A® =|3 2 49 [=240
5 0 1 5 -3 0
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Nach der Cramerschen Regel ist die Lésung
1 = 13, Ty = 15, Z3 = -20
Beispiel 2:  Wir betrachten das folgende nichthomogene Gleichungssystem

zy + 2z + 3z3 =
3z, — Tzo + zz3 = 13
4z, + 8z + 12z3 =

In Matrixschreibweise

1 2 3 T 4
3 -7 1 |- z2 =1 13
4 8 12 z3 2

Wir berechnen die Determinante:

1 2 3
Det A=|3 -7 1|=0
4 8 12

Das Gleichungssystem hat entweder keine eindeutige Lésung oder iiberhaupt keine
Lésung. Um hier zu entscheiden, benutzen wir die GauB-Jordan Elimination und
erhalten nach dem ersten Eliminationschritt:

1 2 3 4
0 -13 -8 | -©= 1
0 0 0 —14

Die letzte Gleichung (0 = —14) ist unmdoglich. Das Gleichungssystem ist wider-
spriichlich. Also hat das System iiberhaupt keine Lésung. Wir kommen zum glei-
chen Ergebnis, wenn wir den Rang der Determinante A betrachten. Er ist 2. Da der
Rand von Det A) gleich 3 ist, kann keine Losung existieren.

Beispiel 3:  Wir betrachten das gleiche homogene Gleichungssystem das wir be-
reits in Abschnitt 20.1.5 analysierten.

1 4 -1
4 16 -4 |-£=0
2 -3 1

Die erste und zweite Gleichung unterscheiden sich durch den Faktor 4, also sind die
Gleichungen linear voneinander abhingig. Gemafl der Determinantenregel 4 ergibt
sich:

1 4 -1 1 4 -1
4 16 —4|=]0 0 O0(=0
2 -3 1 2 -3 1
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Also existiert eine nicht-triviale Losung. Wir schreiben die erste und dritte Gleichung
neu hin:

z; + A4z
2zy — 3z

I3

GemiB der Cramerschen Regel erhalten wir nun:

T3 4 1 3
_ —-zr3 -3 _ 1 _ 2 —z3 _ 3
BETT g s 2ETT g
BH BE

Die Losung enthalt einen frei wahlbaren Parameter, namlich z3.
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20.3 Ubungsaufgaben

20.1.2 Losen Sie die folgenden Gleichungen entweder nach dem Gauf’schen Eli-
minationsverfahren oder dem Gauf-Jordan’schen Verfahren.

a) 2r; + =z + 5z3 = =21 b) r - y + 3z = 4
zy + 5z + 2z3 = 19 23z + 2y + 4z = 13
52y + 2z + 3 = 2 11.5z + y + 2z = 6.5
) & + z2 + z3 = 8 d) 12z - 09y + 15z = 24
3z; + 2z + 3 = 49 08z — 05y + 25z = 1.8
52y — 3z + z3 = 0 16zz — 12y + 2z = 3.2

20.1.3 Ermitteln Sie die Inversen der folgenden Matrizen

2 1 0
11 -2 b)(jég)
0 3 —4
20.1.4 Untersuchen Sie die folgenden homogenen Gleichungssysteme und 16sen
Sie sie falls moglich.

a) zy + =z — z3 = 0 b) 22 - 3y + 2z =0
—z; + 3z + z3 = 0 4 + 4y - 2z = 0
o9 + z3 = 0 c - 3y + 1z =0
20.2.2 Berechnen Sie die folgenden Determinanten
1 7 4 12 3 4 0 2
a)‘:g_f | 55 4 3 e 131
5 92 -2 6 25 3 0 0 40
5 35 20 60 5 -1 2 4
4 6 07 -1 0 2 3
-3 0 2 8 21 8 5
D 1010 2 9 00 -4 -2
5 2 01 10 1 4
20.2.3 Bestimmen Sie den Rang r der folgenden Matrizen:
1 4 13 32122
A= 2 -2 -2 0 B=
0 2 0 2 3131
21 21

20.2.5 Uberpriifen Sie, ob die linearen Gleichungssysteme aus der Ubung 20.1.2
eindeutig losbar sind, indem Sie die Determinante der Koeffizientenma-
trix bestimmen.
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Losungen

20.12 a) z;=-1, z2=6, z3=-b
b) Die zweite und dritte Gleichung sind linear abhéngig. Infolgedessen
enthilt die Losung einen frei wahlbaren Parameter, namlich z.

¢ = 21=102 _ =794652
=3 y=—"35

c) = =13, z9 =15, z3 = —20

— 0,42-1,52 — 0,24-1,82
d) z= 0,12 Y=""012

Die erste und die dritte Gleichung sind linear abhéngig.

20.1.3

111

4 2 4

1 1 1 /(7 -8

213 -1 3 b)%(s -4)
3 3 1
8 4 8
3

20.14 a) zy=zy=2z3=0 b) x:—%, y.—.-l—;

20.2.2 a) Regel von Sarrus Det A=0—-15+4-0+8~-6=-9
b) Erste und vierte Zeile sind bis auf den Faktor 5 gleich. Also Det A =0
c) Entwickeln nach der dritten Zeile gibt

3 4 2
Det A=4| 6 1 1|=-4-83=-332
5 -1 4
d) Entwickeln nach der dritten Spalte:
4 6 7
Det A=-2|10 1 2 [=-2-93=-186
5 2 1
e) Entwickeln nach der zweiten Spalte
-1 2 3
Det A=1] 0 —4 -2 {=22
1 1 4
202.3 A) r=2 b)r=3

20.2.5 a) Det A=-104#0 eindeutige Losung
b) Det A=0, es existiert keine eindeutige Losung
c) Det A#0, es existiert eine eindeutige Losung
d) Det A=0, es existiert keine eindeutige Losung
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21 Eigenwerte und Eigenvektoren

21.1 Eigenwerte von 2 x 2 Matrizen

Vorbemerkung: Im Kapitel ,,Koordinatentransformation und Matrizen“ wurde ge-
zeigt, daB eine Matrix mit einem Vektor multipliziert werden kann. Das Ergebnis
ist ein neuer Vektor.

F'=A-F

In Abschnitt 19.4 haben wir davon bereits Gebrauch gemacht, um die Transforma-
tionsformeln fiir die Drehung eines Koordinatensystems darzustellen.

Ein Ortsvektor 7 habe die urspriinglichen Koordinaten z und y. Fiir das um den
Winkel ¢ gedrehte Koordinatensystem hat der Ortsvektor die neuen Koordinaten
z' und y’. Fiir die Umrechnung gelten die Transformationsgleichungen

z'= zcosp+ ysing 2
y'= —zsinp+ycosy Z'R
\
Die Transformationsgleichungen kénnen dann \
als Produkt der Drehmatrix A mit dem Vektor i
r geschrieben werden: \‘P
\ _ -
r’=A-r \ - 4
. . Ve-" ‘P’s —
Die Drehmatrix A ist in diesem Fall y

A= ( cosp sing )
—singy cosgp

Diese Operation kénnen wir uminterpretieren. Wir betrachten das Koordinaten-
system als fest.

Dann ergibt das Produkt der Drehmatrix A
mit dem urspriinglichen Vektor einen neuen
Vektor, der um den Winkel —¢ gedreht ist.
Im speziellen Fall von Drehmatrizen bleibt
der Betrag des Vektors konstant. Das mufi
nicht immer der Fall sein. Multiplizieren
wir eine Matrix mit einem Vektor, so er-
halten wir im allgemeinen Fall einen neuen
Vektor, dessen Richtung und dessen Betrag
verandert sein kann.

zp

~



160 21 Eigenwerte und Eigenvektoren

Eigenwerte von 2 x 2 Matrizen. Wir betrachten zuniachst als Beispiel die Matrix A
und den Vektor 7. Das sei an einem Beispiel erlautert:

_ (0,50 .1
A_(O 2) und r_(l)

Wir multiplizieren die Matrix mit dem Vektor und erhalten

- (310

Die Abbildung zeigt den urspriinglichen Vektor # und den neuen Vektor 7.
Das Resultat der Multiplikation der Matrix A }’jr

mit dem Vektor kann beschrieben werden als 3
Halbierung der z’-Komponente und Verdop-
pelung der y’-Komponente. Dabei verindern
sich natiirlich Richtung und Betrag des Vek-
tors.

| 1 z 3 %
Im allgemeinen Fall haben der neue Vektor 7/ und der urspriingliche Vektor # ver-
schiedene Richtungen. &/}
Es gibt allerdings spezielle Vektoren, deren 3
Richtung sich nicht dndert, wenn sie mit der
Matrix A multipliziert werden. In unserem
Beispiel ist dies fiir die Matrix A der Fall,
wenn der urspriingliche Vektor # entweder nur
in die z-Richtung oder nur in die y-Richtung 11
zeigt. Zeigt 7 nur in die z-Richtung, bleibt >I
auch nach der Multiplikation die Richtung er-
halten. Der Betrag wird allerdings halbiert. T —‘_—

0,5 0 1 0,5 A
(3 $)()- ()0
o 2)\o 0 3k

Zeigt 7 in die y-Richtung, bleibt ebenfalls die 3~
Richtung erhalten. Der Betrag allerdings wird 2
verdoppelt.

(05 0[O0\ _ [0\ . . 1
7=(002) () =)=

=y

:-«V
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In beiden Fillen kénnen wir, statt die Matrizenmultiplikation durchzufiihren, ein-
fach den urspriinglichen Vektor 7 mit einem Skalar multiplizieren. Dies gilt natiirlich
nicht fiir jeden Vektor. Ein Vektor, der seine Richtung bei einer Multiplikation mit
der Matrix A nicht dndert, heit Eigenvektor der Matrix.

Definition:  Eigenvektor und Figenwert
Gegeben seien eine n X n Matrix A und ein Vektor ¥ mit n Kom-
ponenten.
7 heiit Eigenvektor der Matrix, wenn 7/ = A - 7 die gleiche Rich-
tung hat wie 7.
In diesem Fall gilt ¥/ = X - 7, wobei A ein reeller Skalar ist.
A heiit Eigenwert der Matrix A.
Die Falle r = 0 und A = 0 seien ausgeschlossen.

In unserem Fall hat die Matrix A zwei reelle Eigenwerte (A; = 0,5 und Az = 2) und
zwei Eigenvektoren, die durch ihre Richtung charakterisiert sind. Sie konnen einen
beliebigen Betrag haben.

F_ z F_ 0)
1= 0 2= v

Wir wenden uns jetzt folgenden drei Fragen zu:

1. Wieviele reelle Eigenwerte und Eigenvektoren hat eine gegebene Matrix?
2. Hat jede Matrix reelle Eigenwerte und Eigenvektoren?

3. Wie kénnen diese reellen Eigenwerte und Eigenvektoren berechnet werden?

In unseren Beispielen werden wir uns auf 2 x 2 und 3 x 3-Matrizen beschranken.
Bevor wir den allgemeinen Fall behandeln, werden wir ein zweites etwas weniger
triviales Beispiel behandeln.

Beispiel: Fiir die gegebene Matrix A sind die Eigenwerte und Eigenvektoren zu
bestimmen:

A= 1,25 0,75
T\0,75 1,25
In diesem Fall wird das Problem nicht gel6st durch Vektoren, die die Richtung einer
der Achsen haben. Das lafit sich leicht bestitigen. Durch Probieren 148t sich das

Problem nur in sehr miihsamer Weise l6sen. Daher formulieren wir das Problem
um. Wir suchen einen Vektor 7 und eine reele Zahl A derart, da8 gilt

A 7= (21.1)
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Dies entspricht einem System von zwei Gleichungen mit zwei Unbekannten, ndmlich
den z- und y-Komponenten von 7

1,25z 4+ 0,75y = Az
0,75z + 1,25y = Ay

Indem wir die rechte Seite subtrahieren, erhalten wir ein homogenes Gleichungs-
system von zwei linearen Gleichungen:

0
0 (21.2)

(1,25 — M)z + 0, 75y
0,75z + (1,25 — A)y

Die triviale Losung interessiert uns nicht. Gibt es nicht-triviale Losungen? Aus dem
Kapitel 20 wissen wir, daB nicht-triviale Losungen existieren, wenn die Determinante
der Koeffizienten verschwindet. Wir berechnen die Determinante und erhalten

(1,25-2)%-10,752=0 (21.3)

Dies ist eine quadratische Gleichung fiir A und es gibt zwei unterschiedliche reelle
Waurzeln.

=2 A2 =0,5

Diese so berechneten Werte von ) sind die einzigen Kandidaten fiir die Eigenwerte
von A. Um die entsprechenden Eigenvektoren zu erhalten, setzen wir diese Werte
nacheinander in das Gleichungssystem ein, und lésen nach z und y auf:

1
Fiir den Eigenwert )1 ergibt sich der Eigenvektor 7 = (_ 1)

Fiir den Eigenwert A, ergibt sich der Eigenvektor 73 = (i)

A
24

T’

Ty

Y

1 2 3

ro * Iy

_1-

Werden die Eigenvektoren mit einem Skalar multipliziert, bleiben sie Eigenvekto-
ren. Um dieses deutlich zu machen, setzen wir in die urspriingliche Gleichung 21.1
nacheinander die beiden Eigenwerte ein A = A; = 2; A = A3 =0,5.
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Wir erhalten

Y. (1,25 0,75\ (1) _ (2 _, (1
’1“‘41“(0,75 1,25)(1)‘(2 =2
0,75 \ (1) _ (05 _ 1
v ) () = (565) =0s(2)

Wir fassen zusammen. Fiir die Matrix A existieren zwei Eigenwerte und fiir jeden
Eigenwert existiert ein Eigenvektor. Die Eigenwerte haben wir als Losungen der

Gleichung 21.3 erhalten.
Diese Gleichung heiit charakteristische Gleichung der Matrix A.

Eine quadratische Gleichung kann im héchsten Fall zwei reelle Losungen haben. Also
kann eine 2 x 2 Matrix héchstens zwei reelle Eigenwerte haben. Eine quadratische
Gleichung kann aber auch komplexe Lsungen haben. In der Ubungsaufgabe 3 am
Ende des Kapitels wird eine Matrix angegeben, die keine reellen Eigenwerte hat.
Jede 2 x 2 Matrix, die als Drehmatrix eine Drehung um den Winkel ¢ beschreibt,
hat keine reellen Eigenwerte mit Ausnahme der Fille ¢ = 0 und ¢ = 7.

In diesem Buch behandeln wir nur reelle Matrizen und reelle Vektoren. Alle Matri-
xelemente und Vektorkomponenten sind reell. Daher diirfen wir auch keine komple-
xen Skalare benutzen und wir beriicksichtigen nicht komplexe Eigenwerte. Hier soll
nur darauf hingewiesen werden, daB alle Uberlegungen auch auf komplexe Werte
ibertragen werden konnen.

21.2 Bestimmung von Eigenwerten

Um die allgemeine Methode zu finden, Eigenwerte und Eigenvektoren fiir eine ge-
gebene Matrix zu bestimmen, folgen wir den Uberlegungen im vorangegangenen
Abschnitt. Fiir den allgemeinen Fall werden wir jedoch eine etwas abstraktere For-
mulierung benutzen.

Gegeben sei eine n x n Matrix A. Wir suchen die reellen Eigenwerte von A und
fiir jeden Eigenwert den entsprechenden Eigenvektor. A kann bis zu n Eigenwerte
haben.

Die Gleichung 21.1 beschreibt bereits die allgemeine Situation:
AF = AF

Auf der rechten Seite multiplizieren wir jetzt 7 mit der Einheitsmatrix E. Bekannt-
lich andert die Multiplikation mit der Einheitsmatrix den Vektor nicht.

A7 = AET
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Nun subtrahieren wir die rechte Seite, wie wir es im Fall der 2 x 2 Matrix ebenfalls
getan haben.

(A= AE) =0

Wieder erhalten wir ein homogenes lineares Gleichungssystem. Die Bedingung fiir
nicht-triviale Lsungen ist, dafl die folgende Determinante verschwindet

det (A — AE) =0

Satz:  Reelle Eigenwerte der Matrix A sind die Lésungen der charakteristischen
Gleichung:

det(A—X-E) =0

Fiir eine n x n Matrix ist die charakteristische Gleichung ein Polynom des
Rangs n.

Wir wollen hier die charakteristischen Gleichungen fiir 2 x 2 und 3 x 3 Matrizen
angeben:
Gegeben sei die 2 x 2 Matrix:

A= ( a1 a2 )
az az
Die entsprechende charakteristische Gleichung ist dann

A2 - (a11 +az2)A +anay; —azan = 0 (21.4)
3 x 3 Matrix:

a1 @12 a3
a= az1 a22 az3
a3y a3z as3

In diesem Fall ist die charakteristische Gleichung

—X3(a11 + az2 + a33)A? — (a11a22 + a11a33 + azza33
—aj2a21 — @13G31 — G23a32)A +det A = 0 (21.5)

Fiir eine quadratische Matrix einer beliebigen Dimension n beginnt die charakteri-
stische Gleichung, die auch charakteristisches Polynom genannt wird, mit
(=1)"A" + (—=1)*~1A"=1(ay; + az2 + ... + Gnn) und sie endet mit det A.

Der Koeffizient des zweiten Gliedes ist immer die Summe der Matrixelemente ent-
lang der Hauptdiagonalen von A.
Diese Summe heifit, wie bereits im Kapitel 19 erwahnt, Spur von A.

Wenn die reellen Wurzeln der charakteristischen Gleichung bestimmt sind, muf§ man
das homogene Gleichungssystem lésen, um die Eigenvektoren zu bestimmen.
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21.3 Eigenwerte und Eigenvektoren einer 3 x 3 Matrix

In diesem Abschnitt werden wir schrittweise die Eigenwerte und Eigenvektoren einer
3 x 3 Matrix berechnen, damit das Verfahren einsichtig wird. In der spateren Praxis
wird man die Rechnung mit Hilfe des PC durchfiihren und dabei Programme wie
Mathematica, Maple, Derive u.a. benutzen.

21 3
A=11 2 3
3 3 2

1. Schritt: Zunichst bestimmen wir die charakteristische Gleichung.

2-2 1 3
det (A~ \E) = det 1 2-x 3 =23+ 2402 — 65X +42=0
3 3 20-)

2. Schritt: Wir bestimmen die Wurzeln der charakteristischen Gleichung. Dies er-
fordert hier die Losung einer kubischen Gleichung. Dafiir kann man numerische
Methoden benutzen, dafiir gibt es auch bequeme Programme. Wenn man die ex-
plizite Lésung wiinscht, kann man Cardan’s Formel anwenden. Schliellich fiihrt es
in manchen Fillen zum Erfolg, wenn man eine erste Losung A; erraten kann, um
danach das Polynom durch (A — ;) zu teilen. Dann erhalt man eine quadratische
Gleichung.

Hier werden wir den letzten Ansatz benutzen. In unserem Fall ist nicht schwer zu
sehen, daBl \; =1 eine Losung ist. Daher konnen wir den linearen Faktor
(A — 1) herausziehen. Die charakteristische Gleichung kann dann wie folgt geschrie-
ben werden:

“A3 42402 65X +42= (A - 1)(-A2+230—-42) =0
Nun ist es nicht mehr schwer, die verbleibende quadratische Gleichung zu 16sen:

A2 230 +42=0

Die Lésungen sind

23 23\ ? 23 19
Az’a—?:}: (7) —42—?:!:—2—

Damit haben wir drei reelle Eigenwerte der gegebenen Matrix A bestimmt:

/\1=1, A2=2 und /\3221
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3. Schritt: Bestimmung der Eigenvektoren
Fiir jeden Eigenwerte A miissen wir jetzt eine nicht-triviale Losung fiir das jeweilige
homogene Gleichungssystem finden.

(A - /\.-E)r; =0

Die so bestimmten Vektoren sind die Eigenvektoren r; der Matrix A fiir den jewei-
ligen Eigenwerte A;.

Bestimmung des Eigenvektors fiir A = 1.
Zu l6sen ist das folgende Gleichungssystem, das in Matrixschreibweise angegeben
ist.

11 3 1
11 3 w | =0
3 3 19 7

Ausgeschrieben erhalten wir das Gleichungssystem in der Form:

lzy, + 1ly1 + 3z = 0
lzy + 1y + 3z = 0
3z + 3y + 192 = 0

Wir multiplizieren die erste Gleichung mit 3 und ziehen sie von der dritten Gleichung
ab. Dann ergibt sich z; = 0.

Wir setzen 2; in die erste oder zweite Gleichung ein und erhalten z; = —y;. Fiir z;
kann ein beliebiger Wert gewahlt werden. Wahlen wir z; = 1 ergibt sich y; = —1.
Dann erhalten wir den Vektor

()

Damit haben wir einen Eigenvektor von A fiir den Eigenwert A = 1 erhalten. Der
Eigenvektor kann mit einem beliebigen Skalar multipliziert werden.

Bestimmung des Eigenvektors fiir A = 2
In diesem Fall ist folgendes Gleichungssystem zu l6sen:

Oz + ly, + 322 = 0
lzs 4+ Oy + 32, = 0
3z2 + 3y + 182, = 0

Wir brauchen nur die beiden ersten Gleichungen zu beriicksichtigen, die dritte Glei-
chung ist von ihnen linear abhingig. Das sicht man, wenn man die beiden ersten
Gleichungen mit 3 multipliziert und addiert. Dann ergeben sie die dritte Gleichung.
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Damit erhalten wir:
Y2+320=0 To+320=0

Die Lésung ist £2 = ys = —3z2. Eine spezielle Losung erhalten wir, wenn wir
z9 = —1 setzen:

3
Tg = 3
-1

Damit haben wir einen Eigenvektor von A fiir den Eigenwert A = 2 erhalten.
Bestimmung des Eigenvektors fiir A = 21. Es ist das homogene Gleichungssystem
zu l6sen

—1923 + 1y3 + 323 = 0
lzg — 19ys + 323 = 0
3z + 3y3 — lzg = 0

Auch in diesem Fall brauchen wir nur die ersten zwei Gleichungen zu beriicksich-
tigen. Wieder ist die dritte Gleichung linear von den zwei anderen abhangig. Wir
erhalten als Lésung 6z3 = 6ys = 23.

Eine spezielle Losung erhalten wir, wenn wir 23 = 6 setzen:

1
T3 = 1

6

7 ist ein Eigenvektor von A mit dem Eigenwert 21.

Damit ist das Problem geltst, die Eigenwerte und Eigenvektoren fiir die gegebene
Matrix A zu finden.
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21.4 Eigenschaften von Eigenwerten und Eigenvektoren

In dem vorhergehenden Abschnitt war die Matrix A sorgfiltig gewahlt. Es war
eine symmetrische Matrix, d.h. sie ist gleich ihrer Transponierten. Es scheint, da
wir Gliick gehabt haben, dal die Matrix drei reelle Eigenwerte und entsprechende
Eigenvektoren hatte. Dies ist kein Zufall. Es wird dadurch das folgende Theorem
illustriert. Wir werden das Theorem angeben, aber nicht beweisen.

Satz: Eine reelle symmetrische nxn Matrix hat n reelle Eigenwerte. Die entspre-
chenden Eigenvektoren konnen bestimmt werden, und jeder ist orthogonal
zu den anderen.

Da8 fiir unsere Matrix A die Eigenvektoren zueinander orthogonal sind, kann man
leicht bestatigen. Wir brauchen nur ihre inneren Produkte zu bilden. Sie verschwin-
den in jedem Fall.

AbschlieBend kénnen wir jetzt die im ersten Abschnitt gestellten drei Fragen beant-
worten, wenn wir annehmen da8 es sich nicht um singuldre Matrizen handelt.

1. Die Hochstzahl reeller Eigenwerte und Eigenvektor fiir eine gegeben n x n
Matrix ist n. Falls die Matrix symmetrisch ist, wird dieses Maximum erreicht.

2. Nicht alle Matrizen haben reelle Eigenwerte und Eigenvektoren. Eine Fall einer
nicht-symmetrischen Matrix gilt folgendes: Falls n gerade ist, ist es moglich,
daB keine reellen Eigenwerte fiir eine gegebene n x n Matrix existieren.

Falls n ungerade ist, muf8 mindestens ein reeller Eigenwert fiir eine gegebene
Matrix existieren, da die charakteristische Gleichung einen ungeraden Grad
hat.

Eine 2 x 2 Matrix, die eine Drehmatrix ist, hat keinen reellen Eigenwert und
keinen Eigenvektor.

3. Man findet die Eigenwerte, indem man die charakteristische Gleichung 16st.
Eigenvektoren werden bestimmt, indem nicht-triviale spezielle Lésungen des
verbleibenden homogenen linearen Gleichungssystems bestimmt werden. Nicht
zugelassen sind die Werte A = 0 und r = 0.
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21.5 Ubungsaufgaben

13
(b) Zeichne die zwei entsprechenden Eigenvektoren.

1. (a) Finde die Eigenwerte fiir A = ( 42 )

2. Ist es moglich, fiir eine reelle 2 x 2 Matrix einen reellen und einen kom-
plexen Eigenwert zu erhalten?

3. Beweise, dafB keine reellen Eigenwerte fiir die folgende Matrix bestehen

=(21)

4. (a) Finde alle Eigenwerte fiir die folgende Matrix

-1 -1 1
A= -4 2 4
-1 15

Hinweis: Alle Matrixelemente sind ganzzahlig.
(b) Bestimme die entsprechenden Eigenvektoren.

5. In gewissen Fallen ist es schwierig, geeignete Eigenwerte zu finden. Dies
sei am Beispiel gezeigt. Bestimmen Sie die Wurzeln der charakteristi-

schen Gleichung fiir die Matrix A = ( (1) i

Versuchen Sie die entsprechenden Eigenvektoren zu finden.
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Lésungen

1. (a) Die charakteristische Gleichung ist

det (.4;’\ 3E/\)=(4—A)(3—2A)—2=A2—7A+10=0

=2 A2=5

Fiir A = 2 mu$B gel6st werden:

2 2 z1\ _ . . (1
(1 1)(1/1)_0 Losung.rl_(_l)

Fiir A = 5 ist zu lésen:

-1 2 T2\ _ . . _[2
( 1 —9 ) <y2> =0 Lésung: 75 = (_1)

2. Nein. Die charakteristische Gleichung ist ein reelles Polynom vom Grad 2. In
der Algebra wird gezeigt, daB fiir den Fall, da8 z eine komplexe Wurzel ist,
dann die konjugiert komplexe Zahl zu z namlich 2* ebenfalls eine Wurzel
ist. Die charakteristische Gleichung hat entweder zwei komplexe Wurzeln
oder zwei reelle Wurzeln.

3. Die charakteristische Gleichung ist

(3—/\)(1—)\)+4=/\2—4)\+7=0

Es gibt keine reellen Wurzeln, denn die Losungen fiihren auf komplexe Zah-

len /\1,2=2:i:\/4—7
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4. (a) Die charakteristische Gleichung ist
-1-2 -1 1
det -4 2-) 4 == +6X2+41-24=0
-1 1 5-2A
Falls A eine ganzzahlige Wurzel ist, mu8 sie ein Teiler von 24 sein.
/\122, /\2—“’-—2, /\3=6

(b) Fiir A\; = 2 ist zu 15sen

-3z, - vi + 2z = 0 1
— 4zy + 421 = 0 Spezielle Losung:i = -2
-z + y + 3z = 0 1
Fiir Ay = —2 ist zu l6sen
Zy — y2 + 2z = 0 1
—4z; + 4y2 + 4z3 = 0 Spezielle Lésung:7 = | 1
-z + Yy + Tzz = 0 0
Fiir A = 6 ist zu lésen
-Tz3 — y3 + 23 = 0 0
—4z3 — 4y + 423 = 0 mitrz=] 1
-z3 + ys — zz = 0 1

5.0 =1, A=1
Fiir den ersten Eigenwert 148t sich schnell der Eigenvektor angeben.

Fiir A3 sollten wir einen anderen Eigenwert erhalten, der von r; verschieden ist.
Dieser Vektor existiert nicht.
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22 Fourierreihen

22.1 Entwicklung einer periodischen Funktion in eine Fourier-
reihe

Im Kabpitel ,, Taylorreihen“ wurde gezeigt, da8 sich eine beliebig oft differenzierbare
Funktion f (z) in eine unendliche Reihe von Potenzfunktionen z" entwickeln lief:

f(z)= Z anz"

n=0

Der Nutzen einer solchen Darstellung von f(z) liegt in der einfachen Gestalt der
einzelnen Summanden, die sich leicht differenzieren und integrieren lassen. Von be-
sonderem praktischen Interesse sind die Fille, in denen sich die Funktion f (z) durch
wenige Summanden recht genau approximieren 1a8t:

f(:c)zao+a1:c+a2:c2+...+a,,a:"

Wir stellen uns nun die Frage, ob die Entwicklung in eine unendliche Reihe auch
nach anderen Funktionen als Potenzfunktionen moglich ist. So erscheint es durch-
aus plausibel, eine periodische! Funktion f (z) in eine unendliche Reihe periodischer
Funktionen zu entwickeln. Dieser Frage werden wir nachgehen und Lésungen ange-
ben.

Der Einfachheit halber beginnen wir mit Funktionen der Periode 2, d.h. es gilt

f ()= f(z+2m)

Da die Sinusfunktion diese Be-
dingung erfiillt, machen wir den FeA
Ansatz

f(z)= Z Apsin(nz + ¢pp)

n=0

Mit Hilfe der Additionstheoreme L >
kénnen wir umformen, um eine 2m 4 *
Reihe von Sinus- und Kosinus-

funktionen zu erhalten:

1Eine Funktion f (z) hat die Periode T, wenn T der kleinste Wert ist, fiir den gilt
f@)=f(z+T).
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f(=z)= %‘l + Z [an cos (nz) + b, sin (nz)] (22.1)
n=1

Eine derartige Entwicklung ist moglich, und eine solche Reihe heifit Fourierreihe.
Ausgehend von unserem Ansatz bestimmen wir nacheinander die Koeflizienten ag, a,,
und b, fiir eine Funktion mit der Periode 27, wobei wir den Bereich von z = —m
bis z = +m betrachten.

Bestimmung von ao :
Wir integrieren die Funktion und die Fourierreihe iiber eine Periode von — bis +:

n

/ f(z)dz = aom + Z an / cos (nz)dz + Z bn / sin(nz)dz
= n=1 o n=1

-

Beide Summen verschwinden wegen

/ cos(nz)de =0 und / sin(nz)dz =0

- -

Wir erhalten
ap = 1 /’r f(z)dz
°= 7

Bestimmung der ap:

Wir miissen die einzelnen Koeffizienten nacheinander bestimmen. Wir multiplizie-
ren die Funktion und die Fourierreihe (22-1) mit cos(mz) (m =1,2,3,---) und
integrieren iiber eine Periode von —= bis +:

/ f (z) cos (mz) dz = % / cos (mz) dz + ,,Z=:1 an / cos (nz) cos (mz) dz

s - s

Int;éral 1. Summe

+ E b / sin (nz) cos (mz) dz (22.2)

-7

~ )

2. S:mme

Das Integral auf der rechten Seite verschwindet. In der ersten Summe ersetzen wir
unter dem Integral das Produkt cos (nz) - cos (mz) mit Hilfe der Additionstheoreme

cos (nz) cos (mz) = % cos (n +m)z + % cos(n—m)z
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Wir erhalten

]cos (nz) cos (mz)dz = %/rcos{(n +m)z)} dz +% ] cos {(n — m)z)} dz

- - -
~ ) ~ v

1. Int?egra,l 2. In;egral

Das erste Integral auf der rechten Seite verschwindet, weil die Fliche unter jeder
trigonometrischen Funktion fiir eine Periode und damit auch fiir jedes ganzzahlige
Vielfache einer Periode verschwindet. Das zweite Integral verschwindet nur dann
nicht, wenn n = m und damit cos(n — m) =1 ist. In diesem Fall gilt

1 k4
5/cosO-dz=7r

-

Damit haben wir das Resultat

wfallsn=m
/cos(n:l:) cos (mz) dz = { 0fallsn #m

-7

Dies bedeutet, daBl in der 1.Summe von 22.2 nur der Summand mit dem Index
m = n iibrig bleibt.

00 n
Z an /cos (nz)cos(mz)dz =7-a,
n=1 —-—
In der zweiten Sumime ersetzen wir
. 1. 1.
sin(nz) cos (mz) = 3 sin (n+m)z+ 3 sin (n—m)z

Das Integral von —7 bis + iiber diesen trigonometrischen Funktionen verschwindet
fiir alle n und m und auch dann, wenn m = n ist, weil sin(0) = 0.
Damit wird Gleichung (22.2) zu:

/ f (z) - cos(mz)dz = ma, = ma,

Fiir die Koeffizienten a, folgt

a,.=%/f(z)cos(nz)dz, n=12,...
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Bestimmung der by:

Wir bestimmen die einzelnen Koeffizienten wieder nacheinander. Wir multiplizieren
die Funktion und die Fourierreihe mit sin(mz) und integrieren wieder iiber eine
Periode von —7 bis +.

/ f(z)sin(mz)dz = 922 / sin (mz) dz + ,,Z___:l an / cos (nz) sin (mz) dz

s\ 7

Int;éral 1. Summe

o0 s
+ E bn / sin (nz) sin (mz) dz
n=1

-7
~ >

2. Slrmme

Das Integral auf der rechten Seite verschwindet, ebenso die Integrale in der ersten
Summe, wie es bereits bei der Berechnung der Koeffizienten a, gezeigt wurde. In
der zweiten Summe ersetzen wir sin (nz)sin (mz) durch

sin (nz) - sin (mz) = % cos(n —m)z — % cos(n+m)z
Die Integrale verschwinden immer, auBer fiir den Fall n = m, weil cos(n — m) = 1.

[ . . mfallsn=m
sin (nz) - sin (mz) = 0 falls n # m

-7

Wir haben erreicht, daB8 in der Reihe nur ein Summand mit dem Koeffizienten b,
ibrigbleibt, und es gilt

/ f (z)sin(mz) dz = b,
Fiir die Koeffizienten b, folgt
1 Ld
b,.:;r—/ f (z)sin (nz) dz n=123,......

Damit haben wir alle Koeffizienten der Fourierreihe bestimmt. Eine Funktion f (z)
mit der Periode 27 148t sich darstellen als Fourierreihe:
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Fourierreihe fiir Funktionen mit Periode 27

o0
f(z)= 02_0 + Z(a,. cos nz + by, sin nz)

n=1

Die Koeffizienten sind bestimmt durch

ap = %/ f(z)dz
a, = %/ f (z) cos(nz)dz
b = % / f () sin (nz) dz (22.3)

Noch offengeblieben ist bis jetzt die Frage, unter welchen Voraussetzungen die Ent-
wicklung einer Funktion f(z) in eine Fourierreihe moglich ist. Diese Frage wird
durch den Satz von Dirichlet beantwortet:

Satz von Dirichlet: Eine Funktion f (z) habe die Periode 27. Ferner seien f (z) und
f'(z) stiickweise stetig, d.h. weder f(z) noch f’(z) haben Polstellen und beide ha-
ben héchstens endlich viele Unstetigkeitsstellen. Dann konvergiert die Fourrierreihe
an allen Stetigkeitsstellen gegen den Funktionswert f (z). An den Unstetigkeitsstellen?
ist der Wert der Fourrierreihe gleich dem arithmetischen Mittel aus dem links- und
rechtsseitigen Grenzwert der Funktion f (z), d.h. gleich dem Ausdruck

iy AN+ fm, flz - A2)

3 Az >0

Der Beweis dieses Satzes iibersteigt den Rahmen der vorliegenden Darstellung.

22.2 Beispiele fiir Fourierreihen

22.2.1 Symmetriebetrachtungen

Wir kennen bereits gerade und ungerade Funktionen und ihre Symmetrieeigenschaften:
gerade Funktion: f(z) = f(~=z) Beispiel: cos-Funktion
ungerade Funktion: f (z) = —f (—z) Beispiel: sin-Funktion

2 Als Unstetigkeitsstellen sind nur Spriinge zugelassen.
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Gerade Funktionen:

Ist die Funktion f (z) gerade, dann verschwmden die Koeflizienten b,. Denn
f (z) = sin (nz) ist eine ungerade Funktion und das Integral von —m bis +7
iiber eine ungerade Funktion verschwindet. Fiir gerade Funktionen gilt also

f(= )_—+Z @, cos(nz)

Ungerade Funktionen:
Ist die Funktion f (z) ungerade dann verschwinden die Koefizienten a,. Dann gilt

f(z)= E by, sin (nx)
n=1

Es ist unmittelbar evident, da man diese Beziehungen benutzen kann, um die
Rechnung zu erleichtern. Oft geniigt es, die Funktion nach links oder rechts zu
verschieben, um entweder eine gerade oder eine ungerade Funktion zu erhalten.
Manchmal hilft es, den geraden und den ungeraden Anteil der Funktion getrennt
zu betrachten.

22.2.2 Rechteckschwingung, Kippschwingung, Dreieckschwingung

Wir betrachten hier Beispiele fiir Schwingungen. Die Variable ist in diesem Fall die
Zeit und wird daher mit ¢ bezeichnet. Die Periode ist hier immer T = 2.

1. Beispiel: Rechteckschwingung

F (t) ist im Intervall von —x bis + definiert als

=1fir -7 <t < =%
fity=<{ -1fir -I <t < +I
=1fir +5 <t < +7
)
f (2) ist eine gerade Funktion. —— —— —
Deshalb brauchen wir nur die I : : :
Koeffizienten a, zu berech- : e T - 3t »
nen. 1 2 2 21
— 1 1 [ E—

Periode
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Die Integration muSB fiir die einzelnen Intervalle getrennt durchgefiihrt werden.

a = ;lr-/f(t)dt=0

a, = %/f(t)cos(nt)dt:;l? —/cos(nt)dt+

-

[t

cos (nt) dt

(
A e S~

- /cos (nt) dt

x
32

ap, = Esin (T)

Die folgende Abbildung zeigt die drei ersten Fourierkomponenten und die schritt-
weisen Néherungen fiir die Funktion f ().

NS
1
M

~¥

Hinweis: Jede Rechteckfunktion kann durch Verschiebung zu einer geraden oder
ungeraden Funktion gemacht werden.
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2. Beispiel: Kippschwingungen

Die in der Abbildung dargestellte Kippschwingung ist im Intervall von —x bis +7
definiert durch

F)=1

s

L
<

f (t) ist ungerade. Wir brauchen also nur die Koeffizienten b, zu berechnen.

i
t .
b,.=—/—smntdt
r) 7

-7

Das Integral wird durch partielle Integration berechnet.

1 [t 1 7 cosnt
cosn
bn = F [;(— Ccos nt)] . + ﬁ/ n dt
N e’
=0
b, = —1—[7r(—cosn7r—cos(—n7r))]= l(—l)"'H
" w2n ™

Die Reihenentwicklung fiir die Kippschwingung lautet also
2 & n18i0(nt)
ft)= ;"X::l(—l) —

3. Beispiel: Dreieckschwingung
Die periodische Funktion f(t) = f (¢ + 27) sei definiert durch

—tfir -~ <t <0
f@) =
t fiir 0 t

IN
IN
3N

~Y

=T o 4

Periode
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f(2) ist eine gerade Funktion. Damit brauchen nur die Koeffizienten a, berechnet
zu werden.

a = /(—t)dt+ /tdt [2:2]0'+[%;]:=w

L

0
a, = %/(—t) cos (nt)dt + %/ t cos (nt) dt
Zx 0

t 0 1 0 t
= - [E -sm(nt)] LT [;n—z cos "t] . + [;l'—i—l sin ("t)]
N N,

0

=0 =0
+ ! cos (nt) )
mn? 0
1 1 1 1
= gt gz o8 () + o cos (nm) - 2
a, = 2 [cos (n7) — 1]
" T wn?

Die Fourierreihe lautet
e o]

T 2
@) = §+nz=:l-;n—2[cosn1r— 1] cos nt

22.3 Die Fourierreihe fiir Funktionen beliebiger Periode T
Die urspriingliche Formel fiir die Fourierreihe mit der Periode 27 war:
PR
flx)= 70 + Z la cosnx + b sinnx] (22.1)
n=1
Die Funktion f{x) habe nun die beliebige Periode T. Dann kann dieser Fall durch

eine einfache Substitution auf den Fall mit der Periode 27 zuriickgefiihrt weden.

2m

-t
T

Wir setzen die Substitution an zu: x =
Durchliuft t die Werte von —% bis %, 14uft x von -7 bis +7. Wir brauchen also

nur in der Formel oben x durch ZT” - t zu substituieren, um zu erhalten:

n2mn

a, cos—t+ b, s1n”2”t

(t)_7° Z
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Um die Koeffizienten a, und b, zu erhalten, substituieren wir x und dx auch in

den Formeln 22,3 durch x= 2—; ‘t und dx= 2—,{fdt.

Fourierreihe fiir Funktionen mit Periode T
ap ad n2r n2w

Die Koeffizienten sind bestimmt durch

+3
%/ £(t)dt

a =
-%
2 v 2
nsmw
a, = T/f(t)cosTtdt
-3
2 v 2
. naw
bn = T/ _f(t)smTtdt
-z
7

22.4 Fourierreihe in spektraler Darstellung

Die Fourierreihe mit der Periode T kann so umgeformt werden, da man sie wie
folgt schreiben kann:3

f(t)—ég+§:A cos n2—7rt+
K n=1 " T b

Diese Darstellung heifit spekirale Darstellung der Fourierreihe. Ihr Vorteil ist, daB
jede Frequenz durch eine Fourierkomponente und nicht durch zwei Fourierkompo-
nenten dargestellt wird.

Stellt man die Amplituden graphisch auf der Frequenzskala dar, erhélt man das Am-
plitudenspektrum, das auch Fourierspekirum oder Frequenzspekirum genannt wird.

3Die neuen Koeffizienten A, ergeben sich zu Anp = ﬁ';’, + b2. Der Phasenwinkel ¢, ist be-

stimmt durch tan ¢, = ‘—;—:
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n.1

n.9 l 4 n.5 nb ns7 ne8
1

o 1 = ‘ol o
b

Die Abbildung a zeigt das Amplitudenspektrum der Rechteckschwingung, die Ab-
bildung b zeigt das der Kippschwingung.

Die Periode ist in beiden Fallen T' = 2. ¢, ist der Phasenwinkel der n-ten Fourier-
komponente. Analog zum Amplitudenspektrum spricht man vom Phasenspektrum
und stellt die Phasen auf der Frequenzskala dar. Die Ermittlung von Amplituden-
spektrum und Phasenspektrum wird Fourieranalyse oder Frequenzanalyse genannt.

Auch die umgekehrte Operation ist méglich. Sind die Fourierkomponenten einer
Funktion bekannt, kann durch Superposition der einzelnen harmonischen Schwin-
gungen die Funktion gewonnen werden. Darauf beruht die Erzeugung beliebiger
periodischer Signale bei der elektronischen Synthese von Musik oder Sprache. Diese
Operation heifit Fouriersynthese:

Deformation und Rekonstruktion elektrischer Signale. Elektronische Ubertragungs-
systeme verstarken Signale, deformieren sie aber oft auch. Fiir harmonische Schwin-
gungen kann diese Deformation als Funktion der Frequenz leicht bestimmt werden.
Mittels der Fouriersynthese kann diese Deformation dann wieder gliedweise kom-
pensiert und das urspriingliche Signal rekonstruiert werden.
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22.5 Ubungsaufgaben

22.1 Geben Sie die Fourierreihe der Funktion f(¢) an, die im Intervall von
—7 bis 4+ definiert ist durch v
0 fir -7v<t<-%
ft)=4q 1 fir -3<t<%
@A 0 fiir F<tnm
1
4 r—
] ' !
1 ! '
. i H >
= -z L] m 3n 't
2 2 2

22.2 A Berechnen Sie die Fourierreihe der Funktion f(t) = f (¢ + 4x) mit

0 fir -27<t<-—7
f@)=4 1 fir —-w<t<n
0 fir Tm<t<2rm

22.2B Berechnen Sie die Fourierreihe fiir die Funktion

£(t) = -1 fir -7<t<0
)= +1 fir 0<t<7

A

1
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22.3 A Berechnen Sie die Fourierreihe fiir eine Rechteckfunktion, die hier als
zeitlich aufgefaft werden soll. Die Funktion stellt dann einen Rechteckim-
puls der Dauer ¢y dar, der sich mit der Periode T wiederholt.

]

—t,—

I T
0 fir -f <t < -8
f@)=< 1 fir -% <t < 4%
0 fir +% < t < +3

22.3 B Berechnen Sie die Fourierreihe fiir eine Variante der Aufgabe 22.2 B

-1 fir #® <t < 0
&)= - t
1 fir 0 <t < 3
)
1
-t
— to —

Losungen

22.1 f(t) ist eine gerade Funktion, d.h. die Koeffizienten b, sind Null.

1 L
aoz;/f(t)dtzl

+

A

1 /. ar . nm
= — (sin — — sin(——
n

a, = % ] cos(nt)dt = ﬁ[sin(nt)] - 2 2 )

4
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Damit ist die Losung

f@® =z + Z ~sm -5 cos(nt)

n—l

Da fiir gerade n der Term sin Z* 2 Null ist, also a, = 0, kann die
Fourierreihe auch wie folgt geschrieben werden:

f@)= % Z = )n— cos(2n — 1)t

22.2 A Fiir die Periode 27 ist fiir diese Funktion in der Ubungsaufgabe 22.1 die
Fourierreihe berechnet worden. Analog erhalten wir

1 ()™t @n-1),
f(t)—§ E -1 > 3

n 1

22.2B f(t) ist ungerade, deshalb verschwinden alle Koeffizienten a,.

0 L1
/f(t) sin(nt)dt = ——/sm(nt)dt+ b/sin(nt)dt

= ﬁ(l — cos(—nm)) — W—In-(cos(nw) -1)

=%_2%ﬁ=%(1-(-1)")

2 [e o]
f®) = = (- (-h)sinn-t
n=1

Die Glieder fiir ungerade n verschwinden. Daher kann die Fourierreihe
auch wie folgt geschrieben werden:

(o]

4 1
FO=+23 57

k=0

sin(2n + 1)¢
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2to 2 . Tl1rto

224A ap= T a -

f(t)— +E— n’ll'to 'cos2mrt
B Die Funktion ist ungerade, daher sind alle a, = 0

2
= 22- /( 1)sin —tdt+/sm ?-Etdt
0

b =ﬁ (1 - cosmn) =ﬁ 1-1nm
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23 Fourier-Integrale
und Fourier-Transformationen

23.1 Ubergang von der Fourierreihe zum Fourier-Integral

Im vorhergehenden Kapitel , Fourierreihen“ wurde gezeigt, dal man eine beliebige
periodische Funktion mit der Periode T' darstellen kann als Summe trigonometri-
scher Funktionen mit Vielfachen der Periode T

Unser Problem sei jetzt die Darstellung einer nicht-periodischen Funktion. Nicht-
periodische Funktionen treten in Physik und Technik oft auf als nicht-periodische
zeitlich begrenzte Signale. Da dieser Anwendungsbereich hier im Vordergrund steht,
bezeichnen wir in diesem Kapitel die Variable durchweg mit t. Das einfachste Bei-
spiel ist eine Rechteckfunktion, also ein Signal der Dauer ¢o. Wir fragen uns, ob ein
derartiges nicht-periodisches Signal ebenfalls als Uberlagerung von Einzelschwin-
gungen dargestellt werden kann. |

-t

e t, ]

-4—-—.————""——-——-——————

Die Fourierreihe fiir eine Rechteckfunktion, also ein periodisches Signal der Dauer
t, und der Periode T, ist bereits in der Ubungsaufgabe 22.3 A des vorigen Kapitels
und im Leitprogramm berechnet worden:

_ 1o N2 . awtg 2rni
f(t) = T‘F; nr 'SIDTCOST

Der Periodendauer T entspricht eine Schwingung mit der Grundfrequenz wp. Die
Frequenzen der einzelnen Summanden sind dann gegeben durch
2w
= =n.22 23.1
w=nwy=n- (23.1)
Im Hinblick auf spatere Uberlegungen muf noch folgender Umstand beachtet wer-
den. Bei der Fourierreihe werden diskrete Glieder aufsummiert. Dabei erh6ht sich
die Laufzahl n von Glied zu Glied um An = 1. Damit kénnen wir die Fourierreihe
wie folgt schreiben:

f(t)*ﬁ)-+il-si w2 . coswitn ' (23.2)
T T Apn TYY TR '

Wir kommen zur Darstellung eines einzelnen Signals, wenn wir von der obigen
Fourierreihe ausgehen, die Dauer des Signals o beibehalten und die Perioden-
dauer T, also die Abstinde der Signale voneinander, iiber alle Grenzen wachsen
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lassen. Dann entfernen sich die angrenzenden Signale beliebig weit und wir miifiten
dann die Darstellung eines einzelnen nicht-periodischen Signals erhalten.

Bei einem Grenziibergang beginnt die Summe mit beliebig kleinen Frequenzen wyg
und die Frequenzen liegen beliebig dicht beieinander. In der Summe mufl daher
noch die Laufzahldifferenz An durch die Frequenzdifferenz Aw substituiert werden.
Gema8 der Gleichung 23.1 gilt folgende Beziehung

27 . _ T
Aw = -:FAn, nach An aufgelost: An= 27rAw

Dies setzen wir in die Fourierreihe (23.2) ein und erhalten
@)= Z smw 2 coswt - Aw

Jetzt konnen wir den Grenziibergang T — oo durchfiihren. Aus der Summe wird
ein Integral, das Fourier-Integral

o]

_ 2 . 1t
(@) _/w-w -sinw coswitdw
0

Wir konnen das Fourier-Integral auch in folgender Form schreiben

[e o]
_ . _2 . b
)= /A(w) coswtdw mit A(w)= o sinws
0

Der Ausdruck A(w) heiBt Amplitudenspektrum. Bei unserer Rechteckfunktion han-
delt es sich um eine gerade Funktion. Daher tritt im Fourier-Integral nur der Kosinus
auf. In diesem Fall spricht man von Fourier-Kosinustransformation.

Was wir eben formal abgeleitet haben, sei an einer Zeichnung verdeutlicht. Die Ab-
bildung zeigt fiir ein Rechtecksignal der Dauer ¢, = 1 die Fourier-Koeffizienten fiir
folgende Perioden T' = 2, T'= 4, T = 8 sowie das kontinuierliche Amplitudenspek-
trum A(w). Man sieht, da8 mit wachsendem T die Frequenz wq der Grundschwin-
gung immer kleiner wird. Mit Anniherung an den Fall des isolierten Einzelsignals
treten immer mehr Glieder der Fourierreihe auf. Die Frequenzabstinde zwischen den
Gliedern gehen hier von Reihe zu Reihe jeweils auf die Halfte zuriick. Die Fourier-
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reihe wird dem kontinuierlichen Amplitudenspektrum &hnlicher.

0,5 0,5
a, T=2 a, T=4
l o ] 11 1 r . -
N L R T N
0,5% 05 {AW)
a, T=8
'llllllv"IT - 13300 r—— ) - ()

Beim Fourier-Integral ergibt sich die nicht-periodische Funktion f(t) als Uberla-
gerung unendlich vieler Einzelschwingungen, deren Einzelamplituden zwar gegen 0
streben, deren Verteilungsdichte aber durch das Amplitudenspektrum gegeben ist.
Die Summe der Amplituden, die auf ein Frequenzintervall Aw entfallen, behalten
einen endlichen Wert. Zwar bereitet es der Vorstellung zunéchst eine gewisse Schwie-
rigkeit, daB sich auBerhalb des Signals alle Schwingungen gegenseitig aufheben und
nur innerhalb der Signaldauer zu einem endlichen Signalwert aufsummieren, doch
gilt dies ja bereits naherungsweise fiir die Fourierreihen, die wir als Ubergang zum
nicht-periodischen Fall betrachtet haben.

Unsere theoretischen Uberlegungen haben eine praktische Bedeutung. Die korrekte
Ubertragung elektrischer Signale durch Ubertragungssysteme setat voraus, da har-
monische Schwingungen beliebiger Frequenz in genau der gleichen Weise iibertragen,
also entweder in genau der gleichen Weise verstirkt oder geschwicht werden. Das
heifit, die Ubertragungseigenschaften fiir harmonische Schwingungen diirfen nicht
von der Frequenz abhingen. Dies ist immer nur nadherungsweise der Fall. Schwie-
rigkeiten treten vor allem bei sehr niedrigen oder sehr hohen Frequenzen auf. Bei
einem Rechtecksignal als Eingangssignal ist das Ausgangsignal an den Ecken abge-
rundet und leicht verformt. Dies beruht auf der technischen Unméglichkeit, Signale
beliebig hoher Frequenz zu iibertragen.
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23.2 Fourier-Transformationen

23.2.1 Fourier-Kosinustransformation

Was anhand der Rechteckfunktion demonstriert und abgeleitet wurde, ist allge-
mein giiltig. Jede gerade nichi-periodische Funktion 148t sich darstellen als Fourier-
Integral der folgenden Form

Fourier-Kosinustransformation fiir gerade nicht-periodische Funktionen

+o00
£(t) = / Aw) cos(wt)dw
0

Amplitudenspektrum
i
Alw) = p / f(2) - cos(wt)dt (23.3)
—00

Wir verifizieren dies fiir das Amplitudenspektrum unserer Rechteckfunktion:

400
A(w):%/f(t)cos(wt)dt = Jl;[sinwt]t;'i 7

23.2.2 Fourier-Sinustransformation

Fiir ungerade periodische Funktionen verschwinden in der Fourierreihe die a,, und es
verbleiben die by, also die Sinusfunktionen. Dementsprechend lassen sich ungerade
nicht-periodische Funktionen durch eine Fourier-Sinustransformation darstellen

Fourier-Sinustransformation fiir ungerade nicht-periodische Funktionen

+00
f(@t) = | B(w)sinwtdw
/

Amplitudenspektrum

+00
B(w) = % / F(t)sin wtdt (23.4)
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Beispiel: In der Ubungsaufgabe 23.3 wird der Ubergang von der Fourierreihe zur
Fourier-Transformation fiir die folgende ungerade Funktion durchgefiihrt:

-1 fir -%<t<0
)=

+1 fir 0<t<ie A

o t

- to""l

Wir erhalten das Amplitudenspektrum, wenn wir das Integral in Gleichung 23.4
abschnittsweise 16sen:

2 t,
B(w) = pt [1 - cosw;]

Die Abbildung zeigt die Fourier-Koeffizienten fiir 4o = 1 und T = 2to, T = 4t,
T = 8ty sowie das kontinuierliche Amplitudenspektrum.

b, T=2

Y

-+

o'sl
Loy, " IJrHII-..zHL.

™

0,5 05
b, T-8 8
w - v v T ()
T ™

Im allgemeinen Fall, wenn man es weder mit einer geraden noch mit einer unge-
raden nicht-periodischen Funktion zu tun hat, und es nicht méglich ist, durch eine
Koordinatentransformation zu einer geraden oder ungeraden Funktion zu kommen,
mufl man beide Anteile beriicksichtigen. Dann erhilt man die allgemeine Fourier-
Transformation
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Allgemeine Fourier-Transformation

400

f@) = / [A(w) - cos(wt) + B(w) ~sin(wt)] dw

0

Amplitudenspektrum

A(w):% / £(£) cos(wt)dt B(w):% / £(£) sin(wt)dt

Bestimmte Konvergenzbedingungen miissen beachtet werden. Die Fourier-Transforma-
tion ist nur méglich fiir nicht-periodische Funktionen, die ganz oder stiickweise inte-
grierbar sind. Weiter miissen sie im Unendlichen verschwinden. Das heifit, sie miissen
integrierbar sein

/lf(t)]dt<oo

Diese Bedingungen sind in der Praxis gegeben. Dort handelt es sich in der Regel
um endliche und damit begrenzte zeitliche Signale oder Verldufe. Die Bestimmung
des Amplitudenspektrums fiir empirisch gegebene Funktionen wird heute mit dem
Rechner durchgefiihrt.

23.2.3 Komplexe Darstellung der Fourier-Transformation

Unter Benutzung der komplexen Zahlen 148t sich die Fourier-Transformation ele-
ganter formulieren. Eine gegebene nicht-periodische Funktion f(t) ist als Fourier-
Integral darzustellen durch

Fourier-Transformation in komplexer Darstellung
+o00
() = / Fw)etdw
—00

Die Amplitudenfunktion F(w) ist eine komplexe Funktion:

+o00
F(w) = % / @) - ety

Die Amplitudenfunktion unterscheidet sich um den Faktor % von den entsprechen-

den Amplitudenspektren der Fourier-Kosinus- und Fourier-Sinustransformation.
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Die Amplitudenfunktion ist nur halb so grof§ wie vorher, weil bei der komplexen
Darstellung das Fourier-Integral von —oo bis 400 erstreckt wird, wahrend es vorher
von 0 bis oo erstreckt wurde.!

Die komplexe Amplitudenfunktion 148t sich trennen in eine Funktion A(w) die den
Absolutwert angibt und in eine Funktion vom Typ e~*#(“), die die Phasenlage an-
gibt.

F(w) = A(w) - e~
Die Funktion A(w) ist das bereits bekannte kontinuierliche Amplitudenspektrum, die
Funktion e~**(*) heiBt kontinuierliches Phasenspektrum.?

Beispiel: Wir berechnen erneut das Amplitudenspektrum fiir die Rechteckfunktion
der Dauer tg. Dabei gehen wir von der Lage aus, die wir bei der Fourierkosinustrans-
formation voraussetzten. Dann erhalten wir die Amplitudenfunktion

w2r Tl

L -sin wt—o
wm 2

Wie bereits erwahnt, miissen wir den halben Wert des Amplitudenspektrums der
Fourier-Kosinustransformation erhalten. Das ist hier der Fall.

+
F(w)= % / 1.e"™vidt = —L[ "“"]-*"%l 1 [—ei“’% - e"'wlno‘]
#

1Hinweis: Die Schreibweise der Fourier-Transformation wird nicht einheitlich gehandhabt. Fol-
gende gleichwertige Notierungen sind iiblich

+o0 X +o0
a) f(t) = lF(w) L etiwt gy, F(w) = ;l £(8)- et
b) f(t) = —‘[ F(w) - etivt gy, F(w) = lf(t) e—iwt gy
c) f(t) =

w e+|wt w w 'e—iwt
“_lp() o F)= 2= [ 10 emivsa

2Die komplexe Funktion F(w) habe den Realteil ReF(w) und den Imaginirteil /mF(w). Dann
erhalten wir das kontinuierliche Amplitudenspektrum durch

Aw) = \/{ReF(w))z + (ImF(w))?
Den Phasenwinkel, das kontinuierliche Phasenspektrum, erhalten wir durch

ImF(w)
ReF(w)

@(w) = arctan
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23.3 Verschiebungssatz

Wir berechnen das Amplitudenspektrum fiir die Rechteckfunktion in einer beliebi-
gen Lage. Beliebige Lage bedeutet, dal die Funktion um die Zeit ¢; verschoben ist.
In diesem Fall erhalten wir die Amplitudenfunktion

+32+t
_ 1 —iwt gy _ 1 —iwty [ —iwlp iwiﬂ-]
F(w)_2—1r et = oon € eI — e
-%+t,

1 . to it
= — .sinw—-e”“T
wm 2

Das Amplitudenspektrum der Rechteckfunktion hat sich nicht verindert, es ist:

_ S S,
| F(w) |= A(w) = o sinws

Das Amplitudenspektrum der Rechteckfunktion ist unabhdingig von der Lage. Das
hier fiir den speziellen Fall erhaltene Ergebnis gilt allgemein. Wird eine Funktion
um die Zeit t; verschoben, bleibt das Amplitudenspektrum erhalten. Die Amplitu-
denfunktion wird mit dem folgenden Faktor multipliziert:

e—twt;

Dieser Zusammenhang wird Verschiebungssatz genannt.

Verschiebungssatz: Das Amplitudenspektrum bleibt erhalten, wenn eine Funk-
tion um die Zeit ¢; verschoben wird.
Die Amplitudenfunktion der verschobenen Funktion ist ge-
geben durch:

F(f(t —t1)] = F (f(t)) -e*"

23.4 Diskrete Fourier-Transformation, Abtasttheorem

Ohne Beweis sei mitgeteilt, daB eine Fourier-Transformation auch durchgefiihrt wer-
den kann, wenn statt der Funktion f(t) diskrete Werte dieser Funktion bekannt
sind. Das ist beispielsweise der Fall, wenn die Funktionswerte in gleichen zeitlichen
Abstinden gemessen — abgetastet — wurden. Das ist in der Mefipraxis haufig der
Fall, wenn es um die Messung beliebiger physikalischer Gréfen geht. Oft liegen die
Meflergebnisse dann in Form von Mefiwerten, also als Zahlenfolge vor. So kann eine
Tonaufzeichnung derart erfolgen, da in kleinen zeitlichen Abstdnden der Schall-
_druck gemessen wird, die Mefwerte werden automatisch digitalisiert, um dann von
Rechnern weiter verarbeitet zu werden. Aus den Abtastwerten lafit sich die ur-
spriingliche Funktion f(t) rekonstruieren.
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Dabei gibt es allerdings eine Randbedingung: Wenn im Zeittakt At abgetastet wird,
ist die Abtastfrequenz gegeben durch

27
“Abtast = Ay

Das Amplitudenspektrum der Funktion sei A(w). Eine vollstindige Rekonstruktion
der Funktion f(t) aus den Abtastwerten ist nur dann moglich, wenn die Abtast-
frequenz mindestens doppelt so grof ist wie die gré8te im Amplitudenspektrum
vorkommende Frequenz.

Dieser Sachverhalt ist von Shannon gefunden und heifit ihm zu Ehren Shannonsches
Abtasttheorem.

wmax < 2 WAptast

23.5 Fourier-Transformation der Gauf3schen Funktion

Ohne Beweis sei weiter mitgeteilt, dal es eine Funktion gibt, deren Amplituden-
spektrum mathematisch gesehen durch den gleichen Funktionstyp dargestellt wird
wie die Ausgangsfunktion. Es handelt sich um die Gau$-Funktion, die uns bereits
mehrfach begegnet ist.

2
P

)= 7=

Zu dieser Funktion gehort die Amplitudenfunktion

Fw)= —=-e~%

1
7a

Es gelten also folgende Beziehungen

) = TF(w)e"w*dw—T /w -5 g,

Fw) = +/°°f(t)e""‘”dt L / §t =it gy

Hingewiesen sei wieder auf die physikalische Bedeutung. Wenn der Parameter a grof
ist, handelt es sich um ein im Zeitbereich schmales Signal. In diesem Fall bekommen
wir im Frequenzbereich ein breites Amplitudenspektrum. Ist demgegeniiber a klein,
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handelt es sich um ein im Zeitbereich breites Signal. Das Amplitudenspektrum im

Frequenzbereich ist dann schmal.

as=2
-1 ; 2
14
a=05
T - v = W
-2 -1 Al 1 2

fo

Dieser Zusammenhang gilt allgemein. Zur Demonstration seien hier noch die Am-
plitudenspektren fiir ein alternierendes Rechtecksignal dargestellt, dessen Breite im
Zeitbereich variiert. Auch hier gilt: Einem im Zeitbereich engen Signal entspricht

ein im Frequenzbereich breites Amplitudenspektrum.

N

3

05
> - )
05
w
T
1
05
p w
A

3Fiir dieses alternierende Rechtecksignal ist die Fourier-Sinustransformation im Abschnitt 23.2.2

berechnet worden.
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23.6 Ubungsaufgaben

23.1.2 A In der Ubungsaufgabe 22.3 im vorigen Kapitel ist die Fourierreihe fiir
die folgende periodische Funktion berechnet worden:

-1 fir -L <t < 0
f®) =
1 fiir 0 <t < L

Berechnen Sie nun die Fourierreihe fiir die Funktion

(0 fir - <t < -%
-1 fir =% <t < 0
f() =<
1 fiir 0 <t < &
" T
| 0 fiir %Stfi

B Fiihren Sie den Grenziibergang durch fiir ' — oo und geben Sie das
Amplitudenspektrum an.

C Skizzieren Sie die Frequenzspektren fiir die Fourierreihe fiir to = 1 und
T = 2tg, t = 4ty und t = 8t, sowie das Amplitudenspektrum des Fourier-
Integrals.

23.2.3 A Fiihren Sie die Fourier-Transformation in komplexer Darstellung fiir
die obige Funktion durch und berechnen Sie Amplitudenfunktion und

Amplitudenspektrum

-1 fir -8 <t <0
f@®) =

1 fiir 0 <t< %

23.2.3 B Skizzieren Sie Funktion und Amplitudenspektrum der obigen Aufgabe
fﬁrt():l,to=2,t0=4.

23.2.3 C Bestimmen Sie die Amplitudenfunktion und das Amplitudenspektrum
fiir die Funktion aus der vorigen Aufgabe in beliebiger Lage ;.

-1 fir H-% <t < t
@) =

1 fiir th <t < th+l
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Losungen

931 A b, = > [l—cos '”'t"]
nmw

T
(o]
f@®) = 2"2_:1-71-; [1 — cos n;to] -sinﬁgTﬂ
B Wir substituieren mit w = nwp = n2% F und An = Aw Az“;rT

Damit erhalten wir nach dem Grenziibergang

ft) = % 70% [1 — cos (wgﬁ)] - sinwidw

—o0
Aw) = l [1 - cosw%o]

C Die Sklzzen finden Sie in Abschnitt 23.2.2.

23.2.2A. F(w) = ;7'1_—w- (1 - cos(_g%)) = _1__ (1 -—cosw%]-) .e'%

W

Aw) = p <1 - coswtzo)

Hinweis: Das Amplitudenspektrum in komplexer Darstellung ist um den
Faktor % kleiner als bei der Fourier-Sinustransformation.

23.2.3 B Die Skizzen finden Sie in Abschnitt 23.5.

x

23.2.3 CF(U)) = i (1 —_ cosw.t_o) . e"ij . e—iwizl
mw 2
1 to
Aw) = o (1 — cosw 2)

Hinweis: Das Amplitudenspektrum bleibt bei der Verschiebung der Funk-
tion erhalten.
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24 Laplace-Transformationen

24.1 Integral-Transformationen, Laplace-Transformationen

24.1.1 Integral-Transformation

Im vorhergehenden Kapitel haben wir die Fourier-Transformation kennengelernt.
Dabei wurde aus einer gegebenen Funktion durch eine bestimmte Rechenvorschrift
— das Fourier-Integral — eine neue Funktion gewonnen, die Amplitudenfunktion. Aus
der Amplitudenfunktion lief sich durch eine weitere Rechenvorschrift die urspriing-
liche Funktion zuriickgewinnen.

Derartige Umformungen heiien Integral-Transformationen. Die Fourier-Transforma-
tion ist eine spezielle Form. Die Fourier-Transformationen waren niitzlich, weil mit
ihrer Hilfe die spektrale Zusammensetzung gegebener Signale analysiert werden
konnten. Die in diesem Kapitel zu erlauternde Laplace-Transformation ist ebenfalls
eine Integral-Transformation. Sie ist niitzlich, weil mit ihrer Hilfe mathematische
Probleme lésbar werden, die sonst nicht oder schwer zu behandeln wiren.

Zur Bezeichnungsweise: Die urspriingliche Funktion heifit Originalfunktion. Die durch
die Transformation gewonnene Funktion heifit Bildfunktion. Die Originalfunktion ist

im Originalbereich definiert, die Bildfunktion ist im Bildbereich definiert. Die Re-

chenvorschrift, die aus der Originalfunktion eine Bildfunktion erzeugt, wird Operator
genannt. Die inverse Rechenvorschrift, die aus der Bildfunktion die Originalfunktion

herstellt, heifit inverser Operator. Da es sich bei den Operatoren hier um Integrale

handelt, heifien derartige Umformungen Integral-Transformationen.

Der franzosische Mathematiker P.S. de Laplace fiihrte die nach ihm benannte Integral-
Transformation etwa 1780 ein, um Differentialgleichungen leichter zu 16sen. Die
Losung erfolgt bei dieser Methode in drei Schritten.

1. Schritt: Die Differentialgleichung wird Term fiir Term transformiert. Dadurch
erhdlt man im Bildbereich eine neue Gleichung, die im Fall der Laplace-Transforma-
tionen oft eine algebraische Gleichung ist.

2. Schritt: Die Gleichung der Bildfunktion wird gel6st. Damit erhilt man eine Losung
im Bildbereich.

3. Schritt: Die Losung wird durch eine inverse Transformation in den Originalbe
reich zuriick transformiert Dadurch erhilt man die Losung der urspriinglichen
Differentialgleichung.

Das Verfahren wird hier an einfachen Beispielen erlautert. In der Praxis benutzt man
meist Tabellen, in denen die Transformationen géngiger Originalfunktionen und die
inversen Transformationen gangiger Bildfunktionen enthalten sind. Eine derartige
Tabelle steht am Ende dieses Kapitels. Wie bereits wiederholt gesagt, es gibt auch
Computerprogramme, auf die man in diesem Fall zuriickgreifen kann.
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Die Methode der Laplace-Transformationen ist besonders niitzlich bei der Lésung
von Differentialgleichungen, deren Randbedingungen gegeben sind. Laplace-Trans-
formationen werden beim Studium elektrischer Netze, mechanischer Schwingungen
bei StoBvorgangen in der Akustik und bei der Analyse von Kontrollsystemen ange-
wandt.

Wir beschrianken uns hier auf eine Einfiihrung in die Technik, um Differentialglei-
chungen erster und zweiter Ordnung mit konstanten Koeffizienten zu lésen.

24.1.2 Die Laplace-Transformation

Die Laplace-Transformation wird durch die folgende Rechenvorschrift, das Laplace-
Integral, definiert. Die Laplace-Transformierte ist die Bildfunktion und wird durch
das Symbol £ bezeichnet. Die Ahnlichkeit mit der Fourier-Transformation ist un-
mittelbar ersichtlich.

Definition: ~ Laplace-Integral. Die Laplace-Transformierte £ [f (¢)], die Bild-
funktion einer Originalfunktion f (t), ist fiir Werte ¢ > 0 definiert
als:

Clf () = / ="t £ (t)dt = F (s)

Um die Bildfunktion zu erhalten, mu8 also die gegebene Originalfunktion f(¢) mit
dem Term e~*' multipliziert und in den Grenzen ¢t = 0 bis ¢ = co integriert werden.
Dabei kann s eine komplexe Zahl sein, deren Realteil positiv und hinreichend grof8
sein muf}, um dafiir zu sorgen, dafl das Integral konvergent ist. Der Wert des Integrals
héngt von s ab. Daher ist die Laplace-Transformierte F(s) eine Funktion von s.

Hinweis: Bei der Fourier-Transformation war s imaginar.

24.1.3 Die Riicktransformation

Soll aus der Laplace-Transformierten F'(s) die Originalfunktion f (t) bestimmt wer-
den, nennen wir dies die inverse Laplace-Transformation oder kurz inverse Trans-
formation, Riicktransformation oder Umkehrintegral. Sie wird bezeichnet durch das

Symbol L1



24.2 Laplace-Transformation von Standardfunktionen und allgemeine Regeln 201

Definition: Inverse Laplace-Transformation, Umkehrintegral, Ricktransforma-
tion. Sie erzeugt aus der Bildfunktion die Originalfunktion

£ [F(s)) = £(2)

c4i00
- 1 st
LR = 5 / F(s) - e*'ds

Die Durchfithrung der inversen Laplace-Tranformation setzt Kenntnisse der
Funktionentheorie voraus, die in diesem Buch nicht behandelt werden. Daher
werden wir die explizite Riicktransformation nicht durchfiihren. Das stort fiir
unsere Praxis nicht, denn in der Regel wird die inverse Laplace-Transformati-
on immer anhand von Tabellen durchgefiihrt. In diesen Tabellen sind zu den
gingigen Funktionen die im Bildbereich auftreten, die entsprechenden Original-
funktionen aufgelistet. Wir werden bei den Anwendungen auf die Tabelle am
Ende des Kapitels auf Seite 214 zuriickgreifen.

24.2 Laplace-Transformation von Standardfunktionen und all-
gemeine Regeln

In diesem Abschnitt werden zunichst die Laplace-Transformationen fiir eine Reihe

von Funktionen bestimmt, die oft bei physikalischen und technischen Problemen
auftreten. Bei der Integration wird die Grofle s als Konstante betrachtet.

24.2.1 Laplace-Transformation einer Konstanten

f@)=¢C

oo oo —st700
F(S)=/Ce“"dt=C/e‘"=C[e——-—] -¢
0 0

-8 0

24.2.2 Laplace-Transformation einer Exponentialfunktion

f(t)=¢e* a reell oder komplex.

3 3 —(s—a)t 1
F(s) = / ettestd = / =Gt gy = [ L
0

4 ( Mo §—a

Das Integral konvergiert nur fiir den Fall, daB8 der Realteil von a kleiner als s ist.
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24.2.3 Laplace-Transformation trigonometrischer Funktionen

Um diese Transformationen durchzufithren, benutzen wir die gerade gewonnene
Transformation von Exponentialfunktionen. Wir stellen die Sinusfunktion als Diffe-
renz zweier Exponentialfunktionen dar (Eulersche Formel):

. 1. . .
f(t) =sinwt = (e — ™)
2i
Die Exponentialfunktionen kénnen wir bereits transformieren und erhalten:

. 1 1 1 w
L(sinwt) = F(s) = ﬁ(s—iw ) = are

T st iw

Die Laplace-Transformierte der Kosinusfunktion wird in der gleichen Weise gewon-
nen:

f(t) = coswt= %(eiwt_'_e_,'wt)
S
FO = o

24.2.4 Laplace-Transformation einer linearen Funktion

Wir betrachten die Gerade durch den Koordinatenursprung
@) Ct
o] o0
—-st —st c
F(s) = /Cte dt:C/te dt=—
0 0

S

Beweis: Das Integral kann durch partielle Integration gelost werden

— _ — i—at = _1_00 —st __q
L[C-t]=F(s)=C [se ] +s/e dt)—.‘;2
0

0

Der erste Term verschwindet. Wenn ¢ gegen co geht, fillt der Faktor e stirker ab,
als t anwichst.

Um aber die allgemeine Geradengleichung und weitere Funktionen zu transfor-
mieren, miissen einige Sitze genannt und begriindet werden, die es uns erlauben,
die Liste der Transformierten zu vervollstindigen.

24.2.5 Verschiebungssatz

Wird eine Originalfunktion auf der ¢-Achse nach rechts verschoben, wird die Bild-
funktion mit dem Term e~** multipliziert.
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Verschiebungssatz: Fiir eine im Originalbereich um a nach rechts verschobene
Funktion gilt:

L[f(t—a)=e""-F(s)

Beweis:
400
LIf(t—a) = / f(t —a) - e=*dt

Wir substituieren: r =t —a t=71+4a

400 400
L[f(t—a)] = / f(r)-e~*T+)dr = ¢ / F(r)-e *Tdr=e"%-F(s)

Hinweis: Den gleichen Verschiebungssatz hatten wir bereits beim Fourier-Integral
kennengelernt.

24.2.6 Dampfungssatz

Wird eine Bildfunktion auf der s-Achse um a nach links verschoben, so wird die
Originalfunktion mit dem Faktor e~ multipliziert.

Dampfungssatz: Gegeben seien eine Funktion f(t) und ihre Transformierte F'(s),
sowie eine reelle oder komplexe Zahl a. In diesem Fall gilt

F(s+a)= L[ - f(t)]

Beweis: Wir berechnen die Laplace-Transformierte der Funktion g (t) = e~% f (¢).
[o o] [oo]
/ e~*te=tf (t) dt = / e+t £ (1) dt = F(s +a)
0 )

Praktische Bedeutung: Wir suchen die Laplace-Transformierte der exponentiell ge-
dampften Funktion g(t) = e~ f(t) und kennen bereits die Transformierte von f(t),
namlich £[f(t)] = F(s). Dann geniigt es, in der Transformierten s durch (s + a) zu
ersetzen. Daher der Name Dampfungssatz.

Beispiel: Transformierte der exponentiell gedimpften Schwingung.

ft)=e ¥ sinwt
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Da die Transformierte der Sinusfunktion bekannt ist, erhalten wir mit Hilfe des
Dampfungssatzes unmittelbar

w
(s+a)? + w?

Das gleiche gilt fiir die exponentiell gedimpfte Kosinusfunktion

F(s)=

F(t)=e*coswt

Mit Hilfe der bekannten Transformierten der Kosinusfunktion ergibt der Damp-
fungssatz

s+a
(s+a)?+w?

Beispiel: Wir suchen die Laplace-Transformierte der Funktion f (t) = 3e~% cos 10t.

F(s)=

a = +9H, w=10 )
_ 5+5 _ 3(s+5)
F6) = 3Gy~ 771055155

24.2.7 Linearititssatz

Linearitatssatz: Die Originalfunktion sei die Summe zweier Funktionen

fFO=h@®)+9()

Die Bildfunktion ist die Summe der einzelnen Bildfunktionen

LI®) + 9 ()] = LB (O)] + Ll (1)

Der Satz ist unmittelbar evident. Das Integral einer Summe ist gleich der Summe
der Integrale.

Beispiel: Wir suchen die Bildfunktion fiir f(t) = —6sinw(t) + ¢.
Bereits gezeigt wurden folgende Zusammenhénge

w

ﬁ[smwt] = m

zm:mg:%

Damit ist die Lésung fiir unser Beispiel

—6w

1
+;§=F(S)
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24.2.8 Laplace-Transformation von Ableitungen

Ableitungen im Originalbereich
Erste Ableitung einer Funktion
Wir suchen die Transformierte der ersten Ableitung einer Funktion.

f(t)] /*” fdt_/ —st.fldt

Wir integrieren partiell:

[errar= (17 - [ 10 (st =1 @) +5- (o)

0

Dieses Resultat ist giiltig fiir alle Funktionen, fiir die gilt e~*f (t) — 0 falls t — oo.

Hinweise fir die Notierung: Fiir den Wert der Funktion f(t) und aller ihrer Ablei-
tungen an der Stelle ¢t = 0 benutzen wir hinfort in diesem Kapitel die Notierung
f(0) = fo, £'(0) = f o und sinngemas8 fiir die hoheren Ableitungen f*(0) =

Laplace-Transformierte der ersten Ableitung einer Funktion f (t)

£gr0] =5 Fo -5

fo = f(0) ist der Wert der Funktion fiir ¢t = 0, also der Anfangswert oder die
Anfangsbedingung.

Laplace-Transformation der zweiten Ableitung
Wir gehen wieder von der Definitionsgleichung aus und l6sen das Integral durch
partielle Integration.

(o] o]

C[f"(t)]:/e_"f"dt = [f'e_"t];o-i-s/e_"f'dt
0 0
= —fo—sfo+s’ F(s)

Laplace-Tranformierte der zweiten Ableitung.
Dabei ist f{ der Wert der ersten Ableitung fiir ¢ = 0.

LIf" ()] = s*F(s)— sfo— fo

Wenn man den etwas miihseligen Prozef wiederholt, kann man fiir die dritte Ablei-
tung zeigen, daB gilt:
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LIF" ()] = ssF(s) —s2fo— sfo—fo

£t ist der Wert der zweiten Ableitung fiir ¢ = 0. Der Vollstandigkeit halber geben
wir noch den allgemeinen Fall an.

Laplace-Tranformation von Ableitungen im Originalbereich

L [f(n)(t)] =s".F(s)— nilsn—-i—lféi)

1=0

Ableitungen im Bildbereich

Satz: Laplace-Transformierte der Bildfunktion F'(s):
Gegeben seien die Bildfunktion F(s) und die Originalfunktion f (t).
Die Transformierte der Ableitung der Bildfunktion ist dann:

L IFE) = L5

Wir fiilhren den Beweis durch Verifikation und erinnern daran, daf unter dem In-
tegralzeichen nach dem Parameter s differenziert werden kann, wenn dieser fiir die
Integration als Konstante betrachtet werden darf.

dis[F(s)] - ;; ( / e f (1) dt) - / e=*te £ (t)dt = —L[tf (2)]

0 0

Die praktische Bedeutung dieses Satzes liegt vor allem in der Umkehr. Wenn man
eine Funktion f(t) und ihre Transformierte F(s) kennt, kann man unmittelbar die
Laplace-Transformierte von Produkten der Form ¢ - f(t) angeben. In diesem Fall gilt

LRIO) = 3 [F()] (24.1)

Wir zeigen diese Anwendung fiir die trigonometrische Funktion mit linear anstei-
gender Amplitude, die angefachte Schwingung:

f(t) =tsinwt

Die Tranformierte der Sinusfunktion ist bereits bekannt zu

w

L [sinwt] = F(S) = m

Dann ist unter Benutzung des obigen Satzes die Transformierte von tsinw ¢:

. d w 2ws
Lltsinwt] = T (32 +w2) = Tl = F(s)
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In gleicher Weise kann die Transformierte gefunden werden fiir ¢ cosw ¢:

d s 52 — w?
Lltcoswt] = - (sz+w2) = T = F(s)

24.2.9 Laplace-Transformation von Potenzen

Gegeben sei die Originalfunktion f(t) = t", wobei n positiv und ganzzahlig sein
soll. Wir nennen zunéchst das Ergebnis:

oo
—styn Tl!
0

Beweis: Wir konnen die Originalfunktion als Produkt schreiben:
fy=t-t"

Bereits gezeigt wurde folgender Zusammenhang:
f=t Fe)=4

Jetzt benutzen wir die Beziehung (24.1) und erhalten

o) = (- L o)) (e =
ds s s s

Zum Beispiel ist fiir f(t) =t* F(s) = %.
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24.3 Losung von linearen Differentialgleichungen mit kon-
stanten Koeffizienten

Zu l6sen sei die folgende inhomogene Differentialgleichung zweiter Ordnung mit
konstanten Koeffizienten
d’y . dy

W+AE+By=f(t)

Die Anfangsbedingungen seien in folgender Form gegeben:

dy

Y=1% -‘E—yo firt=0

1. Schritt: Wir fithren die Laplace-Transformation aus und multiplizieren die Glei-
chung mit dem Ausdruck e~** und integrieren jeden Term von 0 bis oco.

(o]

(o] (o] [e <]
/y”e'“dt+/A-y'e_"dt+/Boye"“dt=/f(t)-e""dt
0 0 0 0

Durch diese Operation ersetzen wir jeden Term der Differentialgleichung durch seine
Laplace-Transformierte. Dabei erhalten wir dann eine algebraische Gleichung fiir
den Parameter s.

s’F(s) — syo — yo + A(sF(s) — wo) + BF(s) = L[f(t)]
2. Schritt: Diese Gleichung kann nach F'(s) aufgelost werden:
Lf#)] + syo + Ayo +y5
s2+ As+ B

3. Schritt: Riicktransformation. Unsere Aufgabe ist nun, die inverse Transfor-
mation zu finden. F(s)mufl gegebenfalls umgeformt werden, um eine Form zu
erhalten, fiir die die Inverse anhand der Tabelle gefunden werden kann. Dies sei
anhand von Beispielen erldutert:

F(s) =

Beispiel 1: Zu losen sei die Differentialgleichung: y'+ 4y = e~2t.
Als Anfangsbedingungen seien gegeben: ¢t = 0, yo = 5.

1. Schritt: Wir fiihren die Laplace-Transformation durch.

1

sF(s)—yo+4F(s) = PO

2. Schritt: Wir l6sen die Gleichung nach F(s) auf und erhalten

5 1

F(s) = s+4 + (s+4)(s+2)
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3. Schritt: Aus der Tabelle entnehmen wir die inverse Transformation. Konstante
Faktoren bleiben. Die Lésung ist also

‘ 1 _ 9 _
y(t)=§e 2t+§e 4t

Beispiel 2: Zu l6sen sei die Differentialgleichung " 4+ 5y'+ 4y = 0.
Als Anfangsbedingungen seien gegeben: t =0, yo =0, yg = 3.

1. Schritt: Wir fiihren die Laplace-Transformation durch.

‘[i"] £[sy'] £l4y]

-~ N ~ -
°F(s) —syo—yo+5(sF(s)—yo)+4F(s)=0

Wir setzen die Anfangsbedingungen ein: s? F(s) — 3 + 5sF(s) + 4F(s).
2. Schritt: Wir 16sen auf nach F(s)

3 3 1 1
s2+65+4 (s+4)(s+1) (s+1) (s+4)

F(s) =

3. Schritt: Riicktransformation. Wir entnehmen der Tabelle:

y=et—e

Beispiel 3: Zu l6sen sei die Gleichung y” + 8y’ + 17y = 0.
Anfangsbedingungen: t =0, 1y =0, yg=3.

1. Schritt: Wir fiihren die Laplace-transformation durch.
s’F(s) — 3+ 8sF(s) + 17F(s) =0

2. Schritt: Wir 16sen nach F(s) auf und formen so um, da8 ein fiir die Benutzung
der Tabelle geeigneter Term entsteht:

3 3

FO) = a8t~ GrarT D)

3. Schritt: Riicktransformation. Wir entnehmen der Tabelle

y=3e ¥sint
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Beispiel 4: Zu 16sen sei die Gleichung y” + 6y = t.
Die Anfangsbedingungen seient =0, y =0und yg=1.

1. Schritt: Wir fithren die Laplace-Transformation durch
9 1
s°F(s)—14+6F(s) = =

Wir formen um und erhalten

14 s2
o)

1
F(s)(s®>+6)= s_2+1=
2. Schritt: Wir 18sen nach F(s) auf

s2+1 1 + 1
s2(s24+6) s24+6  s%(s2+6)

F(s) =

3. Schritt: Riicktransformation. Aus der Tabelle entnehmen wir die Losung, die wir
in folgender Form schreiben kénnen:

1. 5 1 . 1 5 .
=t4 = — =-(t+—
Yy t 6 \/_sm \/Et ( \/_sm \/é_t)

24.4 Lésung von simultanen Differentialgleichungen mit kon-
stanten Koeffizienten

Hiufig begegnen uns in Wissenschaft und Technik Systeme, die durch simultane
Differentialgleichungen beschrieben werden. Beispiele dafiir sind elektrische Netze,
die aus zwei Kreisen bestehen, gekoppelte Pendel u.a. Derartige Systeme lassen sich
mit Hilfe der Laplace-Transformation 16sen.

Wir betrachten zwei Funktionen der unabhingigen Variablen ¢: z(t) und y(t). Ihre
Transformierten werden bezeichnet durch £[z] und L[y]. Wir gehen davon aus, dal
die unabhingige Variable die Zeit ist und bezeichnen die Ableitungen durch Punkte.

Beispiel 1: Gegeben sei das sirﬁultane Gleichungssystem

1
0

3t + 2z + gy
z + 4y + 3y

Die Anfangsbedingungen seient =0, o = 0 und yo = 0.
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1. Schritt: Wir fithren die Laplace-Transformation fiir beide Gleichungen durch

3(sLlz] — zo) + 2L[x) + 5Ly — w0 = %
sLlz] —zo +4(sL[y) — wo) +3L[y] = 0

Wenn wir die Anfangsbedingungen einsetzen, erhalten wir ein System von zwei
linearen Gleichungen fiir die zwei Unbekannten £[z] und L[y].

Bs+2)C[z] + sL[y)
sClz] + (4s5+3)L[y]

(=12 L

2. Schritt: Wir 16sen das aus zwei Gleichungen bestehende System nach L[z] auf

(45 + 3) 1 1 1 3

Llz] = sGs+1)(11s+86) 25 5(s+1) 10(s+6/11)

3. Schritt: Riicktransformation. Wir erhalten unter Benutzung der Tabelle fiir z:

3 _s6
-t eTn1

10

P
~2 5

Losen wir nach L[y] auf, erhalten wir

= -1 11 1 )
= G+ D1s+6) 5\s+1 s+6/11
Die Losung fiir y ist

1
y= g(e-—t _ e-—6t/11)

Beispiel 2: Zu 16sen sei das folgende Gleichungssystem

E+20 -y =

z+y+2y = 0
Die Anfangsbedingungen seient =0,zo=1und o=y =y =0
1. Schritt: Wir fithren die Laplace-Transformation durch.

(s +2)L[z] - sLly] = —1— + szo = i— +s

sClz] + (5*+2)Ly]=z0=1

2. Schritt: Wir losen das Gleichungssystem nach L[z] auf

st 4452 +2 1 s s
Lel= oD+ ~ % T3 +D T 621 0
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3. Schritt: Unter Benutzung der Tabelle erhalten wir dann die Losung fiir z:

z—1+1cost+1cos2t
~273 6

Fiir die Laplace-Transformierte von y haben wir

1 1/ 1 1
Lly] = (52 +1)(s + 9) = §(s2+1 B s2+4)

Hier ist die Lésung unter Benutzung der Tabelle

1.
y= -sint — = sin2t

3 6
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Tabelle der Laplace-Transformationen

f(®) LIf#)] = F(s)

c :

t =

12 %

t" (n=0,1,2,3,..) 2

st 4

sinwt ;ﬁ".,_z

coswt ;’n‘-ﬁ

tsinwt z;%y;

t coswt (;’;_,,%";55

sinhwt P

cosh wt o s 1

tsinhwt (,—z%_%yf

t coshwt ,’:_‘:': 3

e2t 5(t) F(s+a)

" (t) (~1 £ F (o)

!_532 f F(s)ds wenn lim (f( )> existiert

sinwt tan

IZ0 SF(s) = fo

F(t) $2F(s) - sfo — £

0 SF(s) — 5o~ o1~ 1§
n-1

L5 PP - L1010
i=

[ f £

;k €% cos(wt + ) ,T";%u—, ;ink;—:w-
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Tabelle der inversen Laplace-Transformationen

F(s) L7F(s)] = £(2)
c
I’y C
1
2 t
1 t2
= —
1 tn—l
s" (n—1)!

1 eat
s—a

1 tn—l eat

(s—a)" (n—1)!

1 1 at bt
—_— e —e
(s—a)(s—0b) a—b( )

s 1 at bt
—_— ae® —be
G=aE-b) a—8¢ )
4T Lsinwt
.9’-{8-(4-.'2 coswi
$3-w?3 ﬁsinhwt
ToT cosh wt

1 1 at o;
G=a)yFw? Se¥ sinwt
(,TZ}&_T e coswt
R,z_l,_ﬁ; u—)l—,(l — coswt)
,—a(,—;lt,,m s (wt — sinwt)
m m%(sin wt — wt coswt
m 7’; sinwt

7 (sinwt + wt coswt)

s 2 2 1
m{mﬁ, wi # Wy m(coswlt - COS wgt)
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24.5 Ubungsaufgaben

242 A

243 A

244 A

Bestimmen Sie die Laplace-Transformierten — die Bildfunktionen
F(s) - fiir die folgenden Originalfunktionen

a) 313 b) 5e~2t c) 4cos 3t d) sin®¢

Bestimmen Sie die Originalfunktionen fiir die unten gegebenen Bild-
funktionen unter Benutzung der Tabelle:

1 1 2
2) 452+ 1 b) s(s+4) °) s(s2+9)
6 1 4
9 1-s? °) s2(s2 +1) b s(s2 — 6s +8)

Lésen Sie die folgenden Differentialgleichungen

a) ¥ + 5y + 4y = 0 (Anfangsbedingungen: yo = 0,y = 2 fiir t = 0)
b) § + 9y = sin 2t (Anfangsbedingungen: yo = 1,30 = —1 fiir t = 0)
¢) ¥+ 2y = cost (Anfangsbedingungen: yo =1 fiir t =0

Gegeben sei die Differentialgleichung § — 3y + 2y = 4

und die Randbedingungen firt =0: y=2,% =3

Zeigen Sie zunichst, dafl die Laplace-Transformierte folgende Form hat

252 —3s+4
Fo) = e -9

Bestimmen Sie nun y(t) durch Riicktransformation (Tabelle benutzen).

Gegeben sei die Differentialgleichung §j+ = +t+1
Die Anfangsbedingungen seien fir t =0: yo=0, =0, % =0

Bestimmen Sie die Funktion y(t).

Lésen Sie die folgenden simultanen Differentialgleichungen
y+2c+y—z=25

2y + z = 25¢!

Anfangsbedingungen: yo = 0,20 =25 fiir t = 0
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B Lésen Sie die simultanen Differentialgleichungen

4z —gy+z=1
4z —4y—y=0

Anfangsbedingungen: zo = 0,yo =0 fiirt =0

Ein elektrischer Kreis bestehe aus einem Kondensator C' einer Spule L
in Reihenschaltung. Es wird eine Spannung Up sin wt angelegt. Wenn
C die Ladung auf dem Kondensator ist, zeigen sie, dafl folgendes gilt:

w w

—_ Uo
Ll = L(w? -1)LC [82 +1/IC $*+w

Bestimmen Sie nun Q(t) fiir folgende Werte C = 50 x 10~°F,
L=0,1H, w=500rad/s, Us=2V und Qo= Qo=0.
Dies sind die Anfangsbedingungen ¢ = 0.

2], WwC<1

Losungen
242 A a)3 b) ;35

24.3

244

4s

°) 753 d) sty

a) 1 sin 3t b) (1 —e*)
c) 2(1 — cos 3t) d) —6sinht
e) t—sint f) Jet — e

y = 25 — 9¢* + 5tet — 16e~t/4
y=et/6 _g-t/2, z=1-L(e 6 4 ¢~t2)

Q = 4+ 10~%(1.12sin 447t — sin 500t)’
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25 Die Wellengleichungen

Unter einer Welle verstehen wir die rdumliche Ausbreitung einer physikalischen
GroBe. Der Begriff Welle ist vom Sonderfall der Wasserwelle abgeleitet. Dort ist die
physikalische Gré8e die Hohe eines beliebigen Punktes der Wasseroberflache.

Bei einer Schallwelle durchlaufen Druckschwankungen der Luft den Raum. Bei fe-
sten, elastischen Kérpern kénnen Deformationen den Kérper durchlaufen. Bei elek-
tromagnetischen Wellen breiten sich der elektrische Feldvektor E und der Vektor B
des Magnetfeldes aus.

25.1 Wellenfunktionen

Harmonische Welle

Obwohl der Wellenbegriff von dem Phianomen der Wasserwelle abgeleitet ist, werden
wir hier zunichst Seilwellen betrachten. Wasserwellen sind zwar sehr anschaulich,
doch sind sie in Wirklichkeit schwerer zu verstehen als Seilwellen.

In diesem Abschnitt wird die mathematische Beschreibung von Wellen entwickelt.
Spater wird gezeigt, wie Seilwellen physikalisch entstehen.

Wir betrachten ein Seil. Es sei rechts an ei-
nem weit entfernten Punkt befestigt.! S
Das Seil sei fest gespannt.

Das freie Ende werde harmonisch auf und
ab bewegt. Infolgedessen breitet sich nach
rechts eine Storung aus.

Fiir die weitere Betrachtung legen wir ein
zweidimensionales Koordinatensystem zu-
grunde, bei dem die z-Achse mit der Ruhe-
lage des Seils zusammenfillt. Die Ablenkung
eines Punktes des Seils von der Ruhelage er-
folge in y-Richtung.

Die allgemeine Funktion f(z,t), die die
Auslenkung des Seiles an einem beliebigen
Ort z zu einer beliebigen Zeit ¢ angibt, nen-
nen wir Wellenfunktion.

1Wir setzen damit voraus, daf8 das Seil praktisch unendlich lang ist. Damit schlieflen wir Refle-
xionen am eingespannten Ende aus.
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Eine Welle wird beschrieben durch folgende Gréfen:
Wellenlinge X\ ist der Abstand zweier benachbarter Maxima, Minima, oder der
doppelte Abstand zweier Nullstellen.

Schwingungsdauer T ist die Dauer einer Schwingung an einem konstanten Ort.
Frequenz v ist die Zahl der Schwingungen pro Sekunde an einem konstanten Ort.
Es gilt die Beziehung v = %

Wellengeschwindigkeit v ist die Geschwindigkeit, mit der sich eine ausgezeichnete
Stelle der Welle wie ein Maximum, ein Minimum oder eine Nullstelle in z-Richtung
bewegt. Da wir das Argument einer trigonometrischen Funktion Phase nennen, spre-
chen wir auch von Phasengeschwindigkeit.

f(x
Ein Maximum bewegt sich in einer Se- ok
kunde um v Wellenlangen nach rechts. Da- _\ /\
her gilt fiir Wellengeschwindigkeit, Frequenz -
und Wellenldnge die Beziehung U N
| | |
. A—ste— A
v:u-/\odervz%‘i}- (25.1) T2 27

Kreisfrequenz w oder Winkelgeschwindigkeit
ist gegeben durch die Beziehung w = 27v.

Nach dieser Vorbereitung stellen wir die f(X9)
Wellenfunktion auf. Der Anfangspunkt des

v
Seiles bewege sich gemaf der harmonischen : /\
Funktion T
M x
£(0,t) = Acos(wt + po) |\/ \
!
|
1

Wir setzen den Phasenwinkel ¢o = 0. Dann ¢(xt)
liegt zur Zeit t = 0 ein Maximum am Ort

z = 0 vor. Das Maximum laufe mit der Ge- / " N /\
schwindigkeit v nach rechts. Nach der Zeit 1
t befindet es sich an dem Ort ¢ = . t. Es xmvet \/ \‘

erreicht den Ort z also zur Zeit t = >

Fiir das nach rechts laufende Maximum mufl das Argument der Kosinusfunktion
konstant bleiben. Wir kompensieren dazu den anwachsenden Ausdruck wt, indem

wir den Ausdruck w= abziehen. Damit bleibt dann das Argument, also die Phase,

konstant. SchlieBlichvbezeichnen wir noch die Phase fiir ¢ = 0 und z = 0 mit .
Damit erhalten wir die Wellenfunktion

f(z,t)=A-cos (wt—%+<po)
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Wir kénnen das Argument der Wellenfunktion umformen und zwei gleichwertige
Darstellungen der Wellenfunktion erhalten?

Wellenfunktion:

f(z,t) = Acos(wt— 2? - )

f(z,t) = Acosgl\lr-(vt—:c—(pl)

Bisher haben wir eine nach rechts laufende Welle betrachtet. Eine nach links lau-
fende Welle erhalten wir, wenn wir z durch —z ersetzen. Daraus ergibt sich fiir die
nach links laufende Welle die Wellenfunktion

f (=, t):Acosg/\I(vt+z—<p1)

Kugelwellen

In der Physik treten hiufig raumliche Wellenphdnomene auf, die sich von einem
Ursprung aus nach allen Seiten hin ausbreiten. Hier muf} beriicksichtigt werden, daf§
die Amplitude der Welle mit wachsendem Abstand abnimmt. Schallwellen kénnen
durch den Schalldruck p beschrieben werden. p ist die Druckdifferenz gegeniiber dem
Luftdruck der ruhenden Luft. In der Umgebung einer harmonischen Schallwelle wird
die Amplitudenfunktion fiir den Luftdruck durch die folgende Funktion dargestellt.

_ (b _2mr
p=(E) cos(wt - 5= —¢)

r ist der Abstand vom Wellenzentrum.

25.2 Die Wellengleichung

Die Beschreibung von Wellen haben wir dadurch gewonnen, da wir die Wellen-
funktion den von uns vorausgesetzen Eigenschaften der Wellen anpaS8ten.

Einen anderen Zugang gewinnen wir, wenn wir die Entstehungsbedingungen fiir
Wellen untersuchen. Um mit einem Minimum an physikalischen Voraussetzungen
auszukommen, betrachten wir wieder Seilwellen.

Das Seil wird durch eine Kraft Fy gespannt. Die Funktion f(z,t) beschreibt die
Auslenkung eines Seilelements dS aus der Gleichgewichtslage am Ort z zur Zeit .

2Im ersten Fall benutzen wir die Gleichung 25.1. Im zweiten Fall ziehen wir den Ausdruck 27"
vor die Klammer und setzen weiter ¢; = 2_A”_<p_
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Die zur Ruhelage riicktreibende Kraft Fy auf das Seilelement ist

dF, = Fy(z+dz)— Fy(z)
Fy [sin(o + da) — sin a]

Wir beschrianken uns auf kleine Winkel o
und setzen sina &~ a sowie tana & a

dFy = Foda (25.2)
Fiir die Steigung o gilt:

6f

— =tana X«

oz
Fiir das Differential de gilt schliellich

o 82f

Damit wirkt auf das Seilelement die Kraft
82 f

dFy = F0-6—z—2 .

dz

f(X,t) <

S ——
dx  X+0kx

b

Die Masse des Seilelementes der Lange d z und der Massendichte p ist pd z. Damit
erhilt das Bewegungsgesetz — Kraft = Masse mal Beschleunigung — die Form

82 f

Die Bewegungsgleichung fiir das Seilstiick ist daher mit 25.2 und 25.3

82f 82f

57 = g

dFy = pdz - 5

dz oder

5

8 _Fo &f
p bx?

Hier haben wir einen neuen Typ von Gleichungen erhalten. Links steht die zweite
Ableitung nach der Zeit, rechts steht die zweite Ableitung nach dem Ort. Gleichun-
gen, in denen Differentialquotienten auftraten, nannten wir Differentialgleichungen.
Hier treten partielle Ableitungen auf, und dementsprechend heifit dieser Typ von
Differentialgleichungen partielle Differentialgleichung.

Die partielle Differentialgleichung einer Funktion f (z, t) des folgenden Typs heifit

Wellengleichung®
&f _ 2 & f
6t2 7 7 fx2

3In der Fachliteratur wird oft die dreidimensionale Gleichung als Wellengleichung bezeichnet.

18585 8f 8
v2 512 T 52 ' §y2 | §22
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Unsere Uberlegungen am Seil haben uns iiber einen speziellen Fall zu diesem Typ
gefithrt. Die Gleichung ist hier fiir das spezielle Beispiel der Seilschwingung und
Seilwelle hergeleitet. In ihrer allgemeinen Form tritt sie in verschiedenen Bereichen
der Physik auf — und immer weifl man dann, dafl dort Wellenphdnomene zu erwarten
sind.*

Das Lésen von partiellen Differentialgleichungen ist eines der schwierigsten Pro-
bleme der mathematischen Physik. Hier gibt es kein dem Exponentialansatz ver-
gleichbares Verfahren, das bei gewissen Typen gewo6hnlicher Differentialgleichungen
die allgemeine Losung liefert.

Aus der allgemeinen Losung gewdhnlicher Differentialgleichungen konnten durch
Anpassen an Randbedingungen partikuldre Losungen bestimmt werden.

Bei partiellen Differentialgleichungen gibt es keine allgemeine Lésung, sondern nur
partikulare Losungen. Deshalb haben die Randbedingungen bei partiellen Diffe-
rentialgleichungen einen tiefgreifenden Einfluff auf das Losungsverfahren. Da die
Losungsverfahren sehr kompliziert und aufwendig sind, werden wir uns im wesent-
lichen auf das Verifizieren von Lésungen beschrinken und die Lésung nur fiir die
beidseitig eingespannte Saite explizit herleiten.

Die Wellengleichung hat eine Vielzahl von Losungen. Welche Losung gewahlt wer-
den mu$, ergibt sich aus den jeweiligen Randbedingungen des Problems. Wir kénnen
zunéchst zeigen, dal jede Funktion der folgenden Form eine Losung der Wellenglei-
chung ist:

flz,t)=f(vt—xz)

Dabei kann f eine beliebige Funktion sein, die nur zweimal nach z und zweimal
nach t differenzierbar sein mu8.

Beweis: Wir bezeichnen z = (v - t — z) und bilden die Ableitungen:

§f _&f

_——= —_— v

6t 6z

821 _ 81
5t2 T 622

Analog gilt:

825 _ 84
§z2 ~ 622

4Historische Bemerkung: Maxwell beschrieb den Zusammenhang zwischen elektrischen und
magnetischen Feldern durch Differentialgleichungen, die in der Form der Wellengleichung geschrie-
ben werden konnten. Das 16ste die Suche nach elektromagnetischen Wellen aus, die dann von
H.Hertz 1888 experimentell erzeugt und nachgewiesen wurden.
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Wir setzen das letzte Ergebnis in die vorletzte Gleichung ein und erhalten damit die Wellenglei-
chung

2 2
&f _ 2584

§t2 §z2
Das heifit, jede Funktion der Gestalt f (z, t) = f (vt — z) erfiillt die Wellengleichung.

Weiterhin kann man sich durch die gleiche Ableitung davon iiberzeugen, da8 auch die
Funktion g (vt + ) eine Losung der Wellengleichung ist. Diese Funktion beschreibt
eine nach links laufende Welle. Die Wellengleichung wird also sowohl fiir nach rechts
laufende wie fiir nach links laufende Wellen erfiillt.

Beispiel: Die folgende Funktion beschreibt einen einzelnen nach rechts laufenden
Wellenberg, es ist eine nach rechts laufende Gaufsche Glockenkurve:

fl (:L‘, t) = Ag- e—(ut—.—p):
Die zweite Funktion beschreibt einen nach links laufenden Wellenberg:
f2 (z’ t) - AO . e—(v“f-z)ﬂ

Stehende Wellen (beidseitig eingespannte Saite)

Hier soll ein Verfahren angegeben werden, das wenigstens in einigen wichtigen Féllen
das Auffinden spezieller Losungen der partiellen Differentialgleichung gestattet. Wir
gehen wieder aus von der Wellengleichung, die wir fiir die Saite aufgestellt haben:

8% f o 6%f . . Fo
W—-‘U w mit v —7‘

Wir nehmen nun an, dafl die Lésungsfunktion f (z, t) als Produkt zweier Funktionen
g (z) und h (t) geschrieben werden kann:

f(z,t)=g(z)-h(t)

Diesen Ansatz nennen wir Produktansatz. Das Losungsverfahren wird Trennung der
Variablen genannt. Wir bilden die zweifachen partiellen Ableitungen und setzen sie
in die Wellengleichung ein:

g(z)h(t) =v2g"(z)- h(t)
Wir kénnen umformen

1 ht) _ ¢"(2)
v2 h(t) g(z)
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Durch diese Umformung haben wir erreicht, daB rechts und links Funktionen jeweils
nur einer Variablen stehen. Diese Beziehung mu8 fiir alle z und alle ¢ aus dem
Definitionsbereich der beiden Funktionen erfiillt sein. Deshalb kdnnen beide Seiten
nur gleich einer Konstanten sein, die wir mit k¥ bezeichnen. Damit erhalten wir die
beiden Gleichungen

h(t) = k-v?h (1) 9" (2)=kg(2)

Die Konstante k¥ kann sowohl positiv als auch negativ sein. Fiir positive k erhalten
wir als eine der unabhingigen Losungen fiir die erste Gleichung die Funktion

h(t) = e'VF?

Dies bedeutet, daf§ die Funktion mit der Zeit exponentiell anwachst. Diese Losung
ist physikalisch nicht sinnvoll. Wir suchen jetzt eine Losung fiir negative k. Dann
konnen wir setzen —k = K, wobei K nun positiv ist.

Damit erhalten wir die beiden Differentialgleichungen
h(t)+ Kv*h(t) 0
9"(2)+ Kg(z) 0

Die allgemeinen Losungen dieser Differentialgleichungen (siche Kapitel 9) haben die
Form

h(t) = Acos(vWK t) + Bsin(vWK t)
g(z) = C cos(VK z) + Dsin(VK z)
Als Losung f (z, t) ergibt sich

f(z,t)=h(t) g(2)

Diese Loésung muBl den Randbedingungen geniigen, die fiir die Schwingungen der
beidseitig eingespannten Saite gelten (die Saite habe die Lange L):

f0,t)=0 und F(L,t)=0

Diese Randbedingungen sind aquivalent den Forderungen an die ortsabhingige
Funktion

g(0)=0 und g(L)=0
Aus g (0) = 0 folgt C' = 0. Aus g (L) = 0 folgt

sin(VK L) =0 daraus folgt VKL=nn (n = ganze Zahl)
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Es gibt also beliebig viele Lésungen zu den vorgegebenen Randbedingungen mit
VALURY
K" - ( L )

Die zu K, gehérende Losungsfunktion lautet jetzt

fa(z,t) = hn(t)gn ()
= (An cos(i—)—EP— t) + B, sin(? t)) sin(% z)

Die zu der Ortsfunktion gehérende Integrationskonstante haben wir in die Konstan-
ten A, und B, hineingezogen. Die beiden Zeitfunktionen kénnen wir noch zusam-
menfassen und schreiben

vrn . TN
fa(z,t)=Chn cos(—L—t —¥n) sm(T z)

Als wichtigstes Ergebnis unserer Uberlegungen haben wir erhalten, da8 die einge-
spannte Saite nicht mit beliebiger Kreisfrequenz w schwingen kann, sondern nur mit
den Frequenzen

_vmn

wn = T
Die Schwingungsformen fiir n = 1,
n = 2 und n = 3 sind in der Abbildung ge-
zeichnet. Wir nennen sie Grundschwingung,
erste Oberschwingung, zweite Oberschwin-
gung und so fort.

Die Kreisfrequenz der Grundschwingung
folgt aus dem obigen A (t):

!
or _ /\/\‘3
L~ “

Die Frequenzen der Oberschwingungen ergeben sich als ganzzahlige Vielfache der
Frequenz der Grundschwingung.

|

(

Die Konstante v ist die Wellenausbreitungsgeschwindigkeit in der gespannten Saite.
Damit ist die Frequenz festgelegt. Wir erhalten damit als allgemeine Losung der
stehenden Wellen:

fn (2, t) = Cy cos(nwit — <p,.)sin(% z)

Diese Schwingungsform wird als stehende Welle bezeichnet.
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Zur Vertiefung betrachten wir die zweite Oberschwingung mit n = 3. Jeder Punkt
der Saite fiihrt eine harmonische Schwingung aus mit der Frequenz 3w und der
Amplitude

Cssin(3 % z)

Die Punkte z; = i mit ¢ =0, 1, 2, 3 befinden sich in Ruhe.

Sie heilen Knoten oder Schwingungsknoten der stehenden Welle.

Die Punkte z; = -1 L mit j = 1, 2, 3 schwingen mit der Maximalamplitude.
Sie heifen Bduche oder Schwingungsbduche der stehenden Welle.

Die reale Schwingung einer Saite kann je nach Anregungsbedingungen eine belie-
bige Uberlagerung der Grund- und Oberschwingungen sein. Als allgemeine Losung
erhalten wir dafiir den Ausdruck

f(z, t)= i Ch, cos(nw;t — @) -sin(n%z)

n=1

Die Koeffizienten C,, und die Phasen ¢, werden durch vorgegebene Anfangswerte
festgelegt. Interessant ist vor allem, dafl die Funktion f (z, t) als unendliche Reihe
von Kosinus- bzw. Sinusfunktionen dargestellt werden kann.

Zusammenhang stehender Wellen mit laufenden Wellen
Den folgenden Ausdruck fiir eine Schwingung der stehenden Welle kénnen wir mit
Hilfe der Additionstheoreme umformen.’

fn (2, ) = Cy cos(nwt — py,) sin(n%z)
Setzen wir weiter 8 = %71 z und a = nwt — @,, so erhalten wir
nmw nw
T TRt

Diese Umformung zeigt eine iiberraschendes Ergebnis. Wir finden, da8 sich die ste-
henden Wellen als Uberlagerung einer nach rechts laufenden und einer nach links
laufenden Welle mit jeweils gleicher Amplitude darstellen lassen.

fa(z, t)= % {sin(nwt + — =z — p5) + sin(nwt —

5Die Additionstheoreme fiir die Winkelfunktionen lauten bekanntlich
sin(a + 8)

sinfa — ) = sinacosfB — cosasinf

sinacos B + cosasin 8

Wir addieren beide Gleichungen und dividieren durch 2:

sinacosf = % [sin(a + B) + sin(a — B)]
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25.3 Ubungsaufgaben

25.1 Zwei als unendlich lang gedachte Seile werden am linken Ende mit
der Amplitude A und der Frequenz v erregt. Geben Sie die Wellen-
funktion an fiir
Seila) A =0,5m; v=>5s"1 A=1,2m
Seilb) A =0,2m; v=20,8"1; A=4,0m
Ist die Wellengeschwindigkeit fiir beide Seile gleich?

25.2 A Verifizieren Sie da8 die Funktion f (z,t) = e~(1-2)” die Wellen-
glelchung T = v L erfiillt.

§z3

25.2 B Die gespannte Saite einer Gitarre hat eine Lange von 80 cm. Die
Wellengeschwindigkeit v ist 100 m/s. Geben Sie die Grund-
frequenz der Saite an.

25.3 a) Geben Sie fiir die Saite der Gitarre mit der Lange L = 80 cm und
der Wellengeschwindigkeit 100 m/s die Gleichung fiir die Grund-
schwingung und die dritte Oberschwingung an. Die Amplitude der
Grundschwingung betragt 2 cm, die der 3. Oberschwingung 1 cm.

b) An welchen Stellen befinden sich Knoten?
¢) An welchen Stellen befinden sich Schwingungsbéuche?

= -
z=0 z = 80cm
Losungen
25.1 Es gibt mehrere gleichwertige Darstellungen, die sich ineinander

iiberfithren lassen

Seil a) f(z,t) = 21"2’
f(z,t)=0, 5cos21r(5t -5 —f1)m

Seil b) f(z,t) = 0,2 cos 2m(2 - 0,8 t—2+p1)m

Die Wellengeschwindigkeiten sind nicht gleich:

v = 6 m/s v =3,2m/s
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252 A
B
25.3 a)

b)

of _ —(vt-7)?
i 2v (vt — z)e

62
-572£ = —21;2@_("1"5)2 + (2v)2(—vt _ x)2e-—(ut—x)’

62
BS o 9et=oF L 4ot - 2)? =

bz
2 03F 8 f
Also gllt 3?2— =7 m
. . 1000s~1
Die Grundfrequenz ist v = % = 16 = 620571

fi(z,t) = 2 cos(27 - 625t — ;) - sin (%) cm

f3(z,t) = 1-cos(3 - 27 - 625t — ¢3) - sin (%) cm

Knoten der Grundschwingung:

Tk, = 0 Tk, = 80 cm
Knoten der 3. Oberschwingung
80
zE, =0 Tk, = 3 om
2.8

T, = 30cm z, = 80 cm
Schwingungsbauche
Grundschwingung zp = 40 cm
3. Oberschwingung z3, = 5 cm

zp, =40 cm

Tp, = %80 cm




228 Anhang

Anhang
Partialbruchzerlegung
Die Partialbruchzerlegung hilft bei der Umformung von Bildfunktionen, die bei

Laplace-Transformationen auftreten, sowie bei der Integration von Briichen.
Wir betrachten Briiche, bei denen sowohl Zihler wie Nenner Polynome sind:

=p(x)_amx"‘+am_l-x"“1 + v ta .x+a

f(x)

q(x)_ b -x +b  ~x" 4. +b - x+b

Es seien m und n ganze Zahlen, und sowohl a, und b  seien ungleich 0.
Derartige Funktionen heifien gebrochenrationale Funktionen.

Ist n > m spricht man von echt gebrochenrationalen Funktionen.

Ist m > n, so spricht man von unecht gebrochen rationalen Funktionen.
Letztere kann man durch Polynomdivision in ein Polynom und eine echt gebro-
chenrationale Funktion umwandeln.

Beispiel:

x3{1=x4:(x3+1)=x_(x3f-1)

Im Folgenden betrachten wir nur echt gebrochenrationale Funktionen.

Ein Fundamentaltheorem der Algebra besagt, dass eine rationale Funktion in ein
Produkt von Linearfunktionen aufgelost werden kann.

qx)=b, - x"+b,  *x" "+ . +b cx+b=b (x-x) " (x-x_) ccrrrrnn. (x-x)

Die x_ sind die reellen oder komplexen Nullstellen der Funktion g(x).
1. Fall: Die Nullstellen sind reell und einfach.

Die echt gebrochenrationale Funktion kann in eine Summe von Partialbriichen
zerlegt werden, deren Nenner jeweils einer der Linearfaktoren ist.

) = ax"+a, X"+, tacxta, A B +
b, x"+b, - x" 4. +b x+b, (x-x) (x-x )
C M
(x-x ) (x - x,

Die Bestimmung der Zihler erfolgt nach der Methode des Koeffizientenvergleichs.
Dazu wird die Summe der Partialbriiche auf den Hauptnenner gebracht. Damit
ist die urspriingliche Funktion wieder hergestellt und die Faktoren der einzelnen
Potenzen von x im Zihler miissen gleich sein. Ein Vergleich dieser Faktoren ergibt
Bestimmungsgleichungen fiir die A, B, C, ... M
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Beispiel:

3x+5
F(x) = ——"——
) x*-2x-8

Die quadratische Gleichung im Nenner hat zwei Nullstellen: x = -2 und x,=4.

Damit setzen wir die Partialbruchzerlegung an und bringen die Partialbriiche
wieder auf den Hauptnenner:

3x-5 __A + B _ Ax-4A+Bx+2B
x+2) (x-4) x+2 x-4 (x+2)(x-4)
Jetzt fassen wir die Potenzen von x zusammen.

3x-5 _x(A+B)+(2B-4A)
(x+2):-(x-4) (x+2)-(x-4)

Da beide Zihler gleich sein miissen, erhalten wir: 3x - 5 = x(A + B) + (2B - 4A)
Dies muss fiir alle x gelten. Das bedeutet, dass die Faktoren fiir jede Potenz von
x auf beiden Seiten gleich sein miissen. Also erhalten wir zwei Bestimmungsglei-
chungen fiir A und B

3=A+B -5=(2B - 44)

Wir 16sen auf und erhalten: A = % und B = %

2. Fall: Die Nullstellen sind reell und teilweise mehrfach, also teilweise von der
Form (x - x.)".

In diesem Fall werden den mehrfachen Nullstellen Partialbriiche in der folgenden
Form zugeordnet.

x.: einfache Nullstelle -4

j X - X

A’ A
x.: zweifache Nullstelle - LI 2 5
i (x-x

j x;lxj ( A ,) A
X n-fache Nullstelle e %t o xj) T ssssoseons . xj)"
Beispiel:
f(x) = 1

xX*-3x*+4

Der Nenner hat die Nullstellen x, = x, =2 und x, = -1
Die Partialbruchzerlegung ist dann wie folgt anzusetzen:

B B
f(x — 1 1 A 1 + 2

Xo30+4 (x+)(x-2¢ x+1 x-2 @ (x-2y

Die Bestimmung der Zihler der Partialbriiche erfolgt in gleicher Weise durch die
oben erlduterte Methode des Koeffizientenvergleichs:

1 _A(x—2)2+B1'(x+l)'(x—2)+Bz(x+1)
(x+1)(x-2)? (x+ 1) (x - 2)?
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Wir multiplizieren aus, fassen nach Potenzen von x zusammen und betrachten
nur die Zihler

1=x[A+B,] + x[-4A - 2B, + B,] + [4A - 2B, + B,]

Koeffizientenvergleich fiir Potenzen von x

Fiir x 0=A+B,
Fiir x': 0=-4A-B +B,
Fiir x% 1=4A-2B +B,
1 1 1
Daraus folgt: A = 9 B, = ) B, = 3

Die Partialbruchzerlegung fiithrt zu dem Ergebnis:

_ 1 1 11
SO = i D a2 9 D) T3 o2 9 x_2)

3. Fall: Die Nullstelle ist komplex.

In diesem Fall tritt im Nenner der gebrochen rationalen Funktion ein Ausdruck
der folgenden Form auf: (x> + ax + b) .

Die quadratische Gleichung hat zwei konjugiert komplexe Losungen, denen zwei
konjugiert komplexe Nullstellen entsprechen. Der Nenner kann nicht mehr in
reelle Linearfaktoren aufgeteilt werden. In diesem Fall kann der Bruch in Partial-
briiche zerlegt werden, wenn man ansetzt:

1 _ 141'.7(?+142
(x*+ax+b) (x*+ax+b)

Die Bestimmung von A, und A, erfolgt in bekannter Weise durch Koeffizienten-
vergleich
Beispiel:

2x2 - 13x + 20 A le + B2 Ax? - 4xA + 5A + le2 + Bzx
x(x? - 4x +5) X (x*+4x+5) x(x? - 4x + 5)

Koeffizientenvergleich: Wir betrachten nur die Zihler und Vergleichen die Fak-
toren fiir jede Potenz von x

2x* - 13x+20=x*(A + B)) + x(-4A + B)) + 5A

Fiir x* 2=A+B,

Fiir x"; ~13=-4A+B,

Fiir x° 20=5A

Daraus folgt: A = 4 B =-2 B,=3

Damit ist die Partialbruchzerlegung auch fiir diesen Fall gelost.
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Sachwortverzeichnis®

Ableitung I-I-112, I-114

— héhere 1-125

— mehrfache II-30

— partielle II-28

Abszisse 1-19
Abweichungsquadrat 1-272
Abzidhlmethoden 1-247
Addition von

— komplexen Zahlen I-185

— Matrizen II-127

— Vektoren I-116
Additionstheoreme

— trigonometrische Funktionen I-74, I-77
— Wahrscheinlichkeiten 1-242, I-265
Adjunkte II-147

AuBeres Produkt I-42ff
Algebraisches Komplement II-147
Amplitude I-67, I-72

— -nspektrum II-181, II-188
Anfangsbedingung 1-221
Ankathete I-71

Anordnung, mégliche I-247
Areafunktion 1-98, II-67
Arbeit, mechanische 1-37, I-155
Arcusfunktion I1-96

Argument einer

— Funktion I-55

— komplexen Zahl 1-183
Asymptote I-61

Ausgleichs-

— gerade 1-282

— kurve 1-281

Basis

— Potenzen 1-83

— vektor II-117
Beschleunigung 1-145

— -svektor II-70

Betrag eines Vektors 1-15, I-29f
— einer komplexen Zahl I1-187
Bewegungsgleichung 1I-112
Bildfunktion II-199

Binomial-

— koeffizient 1-249

— verteilung 1-259fF
Bogenmafi I-63

Cramersche Regel 1I-153

Dampfungssatz 1I-203

Definitionsbereich I-54, II-9

Determinante II-145fF

— Entwicklung II-147

— Hauptdiagonale II-148

— Rang II-151

— Spalte II-146

~— Zeile II-146

— -nregeln  II-148

Diagonalmatrizen II-130

Differential I-114, I-116

— totales II-27f, II-31f

— -gleichungen

— — allgemeine Losung I-206f

— — homogene 1-204, I-207, 1-213

— — inhomogene 1-204, I-213

— — Losungsfunktion I-210f

— — lineare 1-204

— — lineare mit konstanten Koeffizienten
11-208

— — nichtlineare 1-204

— — Ordnung 1-203f

— — partielle, II-221

— — partikuldre Lésung I-206

— — spezielle Losung 1-206

— — 1. Ordnung I-209f

— — homogene 1. Ordnung 1-213

— — inhomogene 1. Ordnung 1-213

— — 2. Ordnung I-209f

— -quotient I-114f

Differentiation

— nach Parameter II-68

— Regeln I-117ff

— — Tabelle 1-129

Differenz

~— komplexe Zahlen I-185

— -enquotient 1-113

— vektor I-17f, I-27

Dirichlet, Satz von 1I-176

Distributivgesetz I-40

Divergenz

— Integrale I-154
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— Zahlenfolgen 1-106

ODas Sachwortverzeichnis ist fiir beide Binde zusammengefafit. Die erste Zahl gibt den Band an,

die zweite die Seite.
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Entwicklung einer Funktion 1-163
Ereignis 1-238

— statistisch unabhingiges
— unmogliches 1-239, 1-243
—raum [-238, I-239
Eulersche

— Formel 1-189, I-191

— Zahl 1-84, 1I-105
Experiment 1-238, I-264
Exponent 1-82, I-86
Exponential-

— ansatz 1-206

— funktion I-84, I-99, I-122, I-172
— Entwicklung in Potenzreihe I-167

1-245

Fakultit 1-248

Fehler

— Abschitzung bei Reihen 1-171

-— -balken 1-256

— systematischer 1-270

— von Mittelwerten I-275

— zufilliger 1-270

— fortpflanzung 1-280

Feld, elektrisches I1-92

— konservatives II-107

— radialsymmetrisches II-19f, II-73f, II-
87, 11-92

— ringférmiges II-74

— skalares II-7, II-14

— vektorielles 1I-16

Fitting 1-282

Fliche

— geschlossene 1I-84

— orientierte II-81

— -berechnung 1-143f
Flichenelement II-48

— differentielles 1I-90

— vektorielles 1I-84
Flachenproblem I-136
Flichenvektor II-86, II-89
Flichenfunktion I-138f
Folge I-103f

— Null- I-104

— Zahlen- 1-104

— Grenzwert 1-104
Fourier-

— analyse II-182

— integral II-188ff

— reihe II-173f

— — Koeffizienten 1I-176, II-181
— — spektrale Darstellung 1I-181
— synthese II-182

— transformation II-190f
Frequenz 1-69

— -spektrum II-181
Funktion I-53, 1-294

— gerade I-71, I1-176

— hyperbolische 1I-66

— inverse 1-94f

— mehrerer Variablen II-7ff
— mittelbare 1-99

— monoton steigende 1-94
— periodische 1-66, II-172
— stetige 1-108

— ungerade I-71, II-176
— unstetige I-109

— -sterm I-55

Galtonsches Brett 1-259

Gaus-

— -Jordan Elimination II-138, II-141, II-
155

— sches Eliminationsverfahren II-136

— sche Glockenkurve I-177, 11-196

— sches Gesetz 11-92

— scher Integralsatz 11-99

— Normalverteilungskurve 1-278

— Zahlenebene I-186

Gegen-
— kathete I-65
— vektor I-17
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Geometrische Hyperbel II-66

— Addition I-16 Hyperbolische Funktionen I-92f

— Reihe 1-169 Hyperbolischer

— Subtraktion I-18 — Kosinus 1-92

Gleichungen — Sinus 1-92

— charakteristische  I-209f — Kotangens 1-93

— — Matrix 1I-163 — Tangens 1-93

Gleichungssystem Hypotenuse I-65

— lineares 1I-136

— — abhingiges 1I-142

— — unabhingiges 1I-142

— — homogenes 1I-144, II-154

— — inhomogenes  1I-144, I1-154
Gradient II-27, II-34, 1I-37, II-39, 1I-108
Gravitationskraft II-19
Giiltigkeitsbereich 1-168

Gerade 1-134

— Gleichung I-57

— Parameterdarstellung II-65

— Steigung 1-58

Geschwindigkeit 1-115, I-145

Gewicht von Mewerten 1-279
Gradmaf$i 1-63

Graph I-56

Gravitation I-256

— -sfeld 1-155

Grenziibergang 1-107, I-119

Grenzwert I-103f, I-137
— -bildung I1-107

— Funktion I-106

— Reihe I-111

— Zahlenfolge I1-104
Grenzfall, aperiodischer
Grundgesamtheit 1-273
Grundintegral 1-146

1-228

Hauptdiagonale einer Matrix II-130
Hauptsatz der Differentialgleichung und In-
tegralrechnung 1-139
Hiufigkeit, relative 1-241, I-272
Halbwertzeit 1-85
harmonischer Oszillator
— gedimpfter 1-226
— getriebener 1-228
— ungeddmpfter 1-224
Hebelgesetz 1-42, I-46
Hilfsfunktion 1-148
Hochzahl 1-82, I-88
Hohen-
— formel, barometrische 1-256, II-46
— linjie II-31, II-35

I-224

Imaginirteil 1-184, I-188f
Integral
— &dufleres 1I-45

~— bestimmtes I-136f

— inneres II-45

— mehrfaches II-43ff

— Oberlichen- II-80ff

— Produkt II-47

— Rechenregeln 1-150

— unbestimmtes I-145f

— uneigentliches [-153

— Tabelle 1-157
Integralrechnung

— Hauptsatz 1-138

— Mittelwertsatz 1-153
Integralsatz von Gau§ II-98
Integrand I-137

Integration

— gliedweise I-164

— partielle 1-149, I-156

— iiber Potenzreihenentwicklung I-177
— durch Substitution 1-147, I-156
— Grenze 1-137, I-150

— Konstante 1-205, I-213, 1-219
— Regeln, Tabelle der 1-156

— Variable I-137

Interpolation I-57
Intervallgrenze 1-138

Isobaren II-15

Kettenregel 1-119f, 1-148
Kippschwingungen II-179
Koeffizienten-Matrix II-139
Kombination 1-249
Kommutativgesetz 1-17, I-40
Komplexe Zahl 1-183f, I-190
— Argument 1-187

— Betrag 1-187

— Division 1-193

— Exponentialform 1-189
— Imagindrteil 1-184

— Multiplikation I-193
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— Periodizitit 1-195

— Potenz 1-194

— Realteil 1-184

— Schreibweise mit Winkelfunktionen I-
187

— Wurzel 1-194

Komponente I-20

— -ndarstellung von Vektoren I-22

Konfidenzintervall I-278

konjugiert komplexe Zahl

Konvergenz

— Integral 1-154

— Zahlenfolge I-104

— -bereich einer Potenzreihe 1-168

— -radius I-168

Koordinatensystem I-13

— Drehung II-114, II-117f

— — Matrizenform II-128

— — mehrfache II-119

— kartesisches 1-20

Koordinatentransformation

— Verschiebung II-115

Korrelation 1-285

— -skoeffizient 1-285

Kosinus-

— funktion 1-143

—satz I-40

Kotangens I-73

Kraft-

—feld II-71

— komponente 1-38

Kreis II-64

— -bewegung 11-64, I1-69

— -fliche II-58

— frequenz 1-69

Kugelkoordinaten II-50

Kugelschale II-12, II-39

Kurvenschar 1-135

1-184, I-190

I1-112

Laplace-Transformationen II-199ff
— Tabelle 1I-213

Ladungsdichte II-95

Laufzahl I1-110

Limes I-107

Linearitdtssatz 1I-204
Linearkombination II-38, II-150
Linien

— gleicher Héhe II-12, II-31

— -integral II-63, II-71, 1I-72, I1-99
Lésung einer Differentialgleichung
— allgemeine [-205

— partikulire I1-206

— spezielle 1-206

Logarithmus I-86fF

— dekadischer I-89

— natiirlicher I-89
Logarithmusfunktion 1-91, I-99
Luftdruck I-174

MaBeinheit 1-39

Mathematisches Modell 1-53

Matrix 1I-112, I1-123f

— -elemente I1-123, 11-125

— inverse  II-133, II-139, II-140

— orthogonale 1I-131

— quadratische II-146

— Rang II-151

— schiefsymmetrische 1I-132

— singuldre II-132

— Spalte 1I-123

— Spur  II-132

— symmetrische II-132 .

— -gleichung II-139

— Zeile 1I-123

Matrizenmultiplikation II-139

Matrizenrechnung II-123ff

— erweiterte 1I-140

Maximum einer Funktion I-126f

— lokales I-126

Median 1-271

Mehrfachintegral II-44

— konstante Integrationsgrenzen II-44

— nicht konstante Integrationsgrenzen II-
55

Menge 1-292

— Durchschnitt 1-293

— Vereinigung 1-293

Meridian II-50

Meffehler 1-237, I-277

Mefigenauigkeit 1-270

Methode der kleinsten Quadrate I-281

Minimum einer Funktion I-126f

— lokales 1-126

Mittelbare Funktion I-124

Mittelwert 1-257, I-271f

— arithmetischer 1-257, I-271

— beste Schitzung [-274

— diskreten Zufallsvariablen I1-258

— Fehler I-275

— — mittlerer

— gewogener

1-276
1-279
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— kontinuierliche Zufallsvariable I-258, I-
262

— Stichprobe 1-276

Mittelwertsatz der Integralrechnung 1-153

Momentangeschwindigkeit 1-115

Nabla-Operator

Naherung 1-164

— -sfunktion I-173

— -polynom 1-169

— — n-ten Grades

— — Tabelle I-176

Newtonsche Bewegungsgleichung 1-202, I-
222, 1-228

Niveauflichen II-37, II-39

Normalverteilung 1-259f, I-277

— Mittelwert [-262f

— Streuung [-264

Normierungsbedingung fiir Wahrscheinlich-
keiten 1-243, I-262

Nullfolge I-104

Nullmatrix II-130

Nullstelle I-61

Nullvektor I-18, I-28

Nulllésung 1I-144

11-36, 11-97, 11-104

1-169

Oberflichenintegral 1I1-80ff, 11-95
Obersumme 1-137

Ordinate I-19

Originalfunktion II-199
Ortsvektor 1-22, 1-43, I1-63, II-115
Oszillator

— gedampfter 1-226

— getriebener 1-228

— harmonischer 1-224

— ungeddmpfter 1-224

Parabel 1-61
Parallelverschiebung I-14
Parameter I1-191

— -darstellung II-63

— — Gerade II-65

— — Hyperbel 11-66

— — Kreis II-66

— — Kreisbewegung 11-64, 11-69
— — Schraubenlinie II-65
— — Zykloide I1-68
Partialbruchzerlegung 1I-228
Partielle

— Ableitung 1I-27

— Integration 1-149
Periode 1-66

— Funktion 1-66

— komplexe Zahl 1-195
Periodizitit [-195

Permutation 1-247f, I-265

Phase 1I-218

— trigonometrischen Funktion I-72
— -ngeschwindigkeit 1I-218
Polarkoordinaten II-47

Polwinkel II-50

Pole einer Funktion I-60
Polynom 1-173

— charakteristisches  I1-164
Postmultiplikation II-133
Potential II-106

Potenz 1-82f

— Basis [-82

— Exponent 1-82

Potenzreihe I-163ff

— Koeffizienten 1-166

— unendliche I1-163
Pramultiplikation II-133

Produkt

— dufleres 1-44
— kartesisches
— inneres I-38
— komplexe Zahlen I-185, I-193
— matrix II-125

— -Moment-Korrelation 1-286
— -regel I-118

Projektion I-19f, I-38
Punktverschiebung I-13

1-294

Quadrant I-19

Quadratische Gleichung 1-295
Quelle eines Feldes I1I-95

— ndichte II-95

Quotient komplexer Zahlen 1-185
Quotientenregel 1-118, I-124

Radialvektor
Radiant 1-64
Radikand 1-184, I-211

Randbedingung 1-135, I-206, 1-221, 1-223
Randwertprobleme 1-221, 1-222

Realteil 1-184, 1-188, I-190, I-192, I-210
Rang e. Matrix, Determinante II — 151
Regressionsgerade 1 - 283
Regressionskoeffizient 1 -283

Reihe I-109

— geometrische I-111, I-163

— unendliche I-110

I1-20
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Relation 1-294

Relative Hiufigkeit I1-272

Resonanzfrequenz 1-230

Restglied von Lagrange 1-171

Resultante I-17

Richtung I-13

Rotation eines Vektorfeldes 1I-95, 11-99, II-
102

Rotationssymmetrie II-50

Riicksubstitution I-148

Sarrussche Regel 1I-151

Sattelpunkt I-127

Schnitt

— ebenen II-27

— kurven II-9, I1-28

Schraubenlinie II-65

Schwingung

— angefachte 1-192

— erzwungene [-231

— gedampfte 1-192, I-231

— Grund- II-224

— Ober- 1I-224

— — ungedampfte 1-231

— -sbauch 1I-225

— -sdauer II-218

— -sknoten 1I-225

Seilwelle 1I1-220

Sekante I1-112

— Steigung 1-113

Sinusfunktion I1-64, I-71, I-170

— Amplitude I-67

— Entwicklung in Potenzreihe I-167
— Periode I-68
— Phase I-70
Senke eines Feldes
Skalar 1-13, I-15
— -produkt I-37
— — Komponentendarstellung 1-41
Spaltenvektoren II-139

Stamm

— -funktion 1-134, I-145

— integral 1-146

Standardabweichung 1-272, I-276, I-278
— beste Schitzung der 1-274
stationdre Losung 1-229
statistisch unabhangiges Ereignis
Steigung 1-112, I-125

— Gerade 1-58

— Funktion 1-112

I1-95

1-245

— Stelle, charakteristische einer Funktion
1-60, 1-126

Stetigkeit 1-108

Stichprobe I-273

— Fehler 1-276, I-278

Stokes Integralsatz von II-105

Streuung 1-264, I-272

Stromdichte II-81

Substitution I1-147, I-148, I-151

Summe

— komplexe Zahlen 1-185

— geometrischen Reihe I-111

— Vektor I-17, I-26

— Zeichen 1-110

Summenregel 1-117

Superposition 1-74, I-75

Tangens 1-73

Tangente 1-112, I-116
— Steigung  I-112
Tangentenproblem I-115
Taylorreihe 1-163, II-172
— Entwicklung in eine
Tragheitsmoment II-53
Transformationsgleichung
— komplexe Zahlen I-187

— Koordinatensysteme II-47f, II-120
Translationen II-114

Transponierte Matrix 1I-130
Trigonometrische Funktionen I-63ff

I-168f

Umkehr-

— funktion 1-94, II-67

— integral II-201
Unterdeterminante II-147, II-151

Variable

— abhéngige 1-55

— Separation 1-202f

— unabhingige I-55, I-117
Varianz 1-271ff
— beste Schitzung
— erklarte 1-286
— des Mittelwertes
Variation I-250

— der Konstanten I-211ff
Vektor 1-13, I-16

— Addition I-16

— Betrag 1-29

— Differenz 1-27

Vektorfeld II-15f, I1-82, I1I-95

1-274

I-276



237

Sachwortverzeichnis

— homogenes 1I-19, II-85, I1I-97
— inhomogenes II-91
— ringférmiges II-21

— wirbelfreies 1I-107
— Divergenz  II-96
— Rotation II-102

Vektorfluf II-80

— gebundener 1-22

— Multiplikation

~— — Skalar 1-28

— Subtraktion I-17
Vektorprodukt I-37ff, 1I-152
Verbindungsvektor 1-29
Verschiebungssatz II- 202
Verbund-

— ereignis  1-244f

— -wahrscheinlichkeit 1-244, I-265
Vereinigungsmenge 1-242
Verifizierungsprinzip 1-145
Verschiebungsvektor 1-14
Verteilung, kontinuierliche I-276
Vertrauensintervall 1-278, I-279
Volumen II-53
Volumenelement in

— Kugelkoordinaten II-51

— Polarkoordinaten I-48

— Zylinderkoordinaten II-49

Wachstum I-84

Wahrscheinlichkeit 1-238, 1-242, 1-264

— klassische Definition 1-240

— statistische Definition 1-240f

— Normierungsbedingung 1-243
Wabhrscheinlichkeitsdichte 1-255f, I-277
Wahrscheinlichkeitsverteilung 1-256, I-262
— diskrete 1-252

— kontinuierliche 1-252, 1-254

Welle
— harmonische 1I-217
— Kugel- 1I-219

— stehende 1I-222

Wellenfunktion II-217f
Wellengeschwindigkeit I1-218
Wellengleichung 1I-220
Wellenlinge 1I-218

Wendepunkt I-127

Werte-

— bereich I-54

— matrix II-8

— paar [I-54

— vorrat I-54, I1-9

Winkel 1-63

Winkelfunktion I1-63
Winkelgeschwindigkeit II-64, I1-218
Wirbel-

—feld II-101

— freiheit II-100
Wirkungslinie 1-22
Wurf, waagerechter 1I-63, 11-69
Zahl

— imagindre I-183

— konjugiert komplexe I-184
— reelle 1-183

Zahlenebene

— Gaufische 1-186
Zahlenfolge 1-103, I-109

— divergente 1-106

— Grenzwert 1-104

— konvergente 1-106
Zentripetalbeschleunigung 1I-70
Zerfallskonstante I-85
Zufallsexperiment 1-238, I-254
Zufallsfehler 1-270, I-271, 1-277
Zufallsvariable

— diskrete 1-252

— kontinuierliche 1-257
Zylinderkoordinaten II-49
Zylindersymmetrie II-49
Zykloide II-68



