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Vorwort

Dieses Buch behandelt im wesentlichen den Stoff der viersemestrigen vierstündigen
Vorlesung

”
Mathematik für Physiker“wie sie von den Autoren an der Universität

Bayreuth mehrfach gehalten wurde. An einigen Stellen gehen wir über diesen Um-
fang hinaus, einerseits um dem Dozenten eine Auswahlmöglichkeit zu bieten, an-
dererseits um den Gebrauch als Nachschlagewerk zu ermöglichen.

Wir haben uns bemüht, einige neuere Konzepte der Mathematik, die in der Phy-
sik Eingang gefunden haben, einzubeziehen. Es handelt sich zum Beispiel um Dis-
tributionen, Mannigfaltigkeiten und Differentialformen, und funktionalanalytische
Methoden.

Die Darstellung ist zügig gehalten, da die Autoren das dargebotene Material auf
einen Band beschränken wollten. Dennoch werden meist vollständige Herleitungen
der behandelten Sätze gegeben und zahlreiche Beispiele, die einen physikalischen
Hintergrund haben, in ihrem mathematischen Kontext vorgestellt. Soweit dies er-
forderlich ist, stellen wir einem Kapitel eine kurze Einführung in den behandelten
Stoff voraus. Ans Ende eines jeden Kapitels haben wir Übungsaufgaben teils leich-
terer teils schwierigerer Natur gestellt. Das letzte Kapitel enthält dann die Lösung
jeder Aufgabe und, sofern es sich nicht um reine Rechenaufgaben handelt, auch den
vollständigen Lösungsweg.

An dieser Stelle möchten wir Herrn Dipl.-Math. MARTIN KERNER für seine Hilfe
bei der Herstellung des Manuskripts danken. Ohne ihn wäre dieses Werk in der
vorliegenden Form nicht zu Stande gekommen.

Bayreuth, im Mai 2005 Hans Kerner
Wolf von Wahl
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7.9 Euklidische Vektorräume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
7.10 Eigenwerte selbstadjungierter Abbildungen . . . . . . . . . . . . . . . . . . . . 174
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1

Folgen und Reihen

1.1 Grundlegende Begriffe und Bezeichnungen

Wir stellen zunächst einige grundlegende Begriffe und Bezeichnungen zusammen
(eine ausführliche Darstellung findet man in [3]).

Mengen

Der Begriff Menge wird nicht definiert.
Ist A eine Menge und x ein Element von A, so schreibt man x ∈ A. Wenn das
Element x nicht in der Menge A liegt, schreibt man x �∈ A.
Sind A und B Mengen, so heißt A Teilmenge von B, wenn gilt: Ist x ∈ A, so folgt
x ∈ B; man schreibt dann A ⊂ B.
Für beliebige MengenA undB bezeichnet man mitA∩B den Durchschnitt vonA
undB; A∩B besteht aus allen Elementen, die sowohl zu A als auch zu B gehören,
also

A ∩B := {x| x ∈ A, x ∈ B}.
Die Vereinigungsmenge A ∪ B besteht aus allen Elementen, die zu A oder zu B
gehören, also

A ∪B := {x| x ∈ A oder x ∈ B}.
Für MengenX,A,B mit A ⊂ X,B ⊂ X setzt man

A \B := {x ∈ X | x ∈ A, x /∈ B}.

Mit A×B bezeichnet man die Menge aller Paare (a, b) mit a ∈ A, b ∈ B;

A×B := {(a, b)| a ∈ A, b ∈ B}.

Die leere Menge, die kein Element enthält, bezeichnet man mit ∅.



2 1 Folgen und Reihen

Zahlen
Wichtige Mengen sind:

Die Menge N der natürlichen Zahlen 1, 2, 3, ...;
die Menge N0 der natürlichen Zahlen einschliesslich Null 0, 1, 2, 3, ...;
die Menge Z der ganzen Zahlen 0,±1,±2,±3, ...;
die Menge Q der rationalen Zahlen p

q mit p ∈ Z, q ∈ N;
die Menge R der reellen Zahlen, die wir anschließend genauer behandeln werden,
sowie
die Menge C der komplexen Zahlen, die in 1.3.1 definiert wird. Es ist

N ⊂ N0 ⊂ Z ⊂ Q ⊂ R ⊂ C.

Die Menge der positiven reellen Zahlen bezeichnen wir mit R+, die der reellen
Zahlen �= 0 mit R∗ und die komplexen Zahlen �= 0 mit C∗ ; also

R+ := {x ∈ R| x > 0 }, R∗ := {x ∈ R| x �= 0}, C∗ := {z ∈ C| z �= 0}.

Abbildungen
Ein weiterer grundlegender Begriff ist der der Abbildung; auch dieser Begriff wird
nicht näher definiert. Sind A und B Mengen und ist f : A→ B eine Abbildung, so
wird jedem x ∈ A ein Element f(x) ∈ B zugeordnet. Die Menge

Gf = {(x, y) ∈ A×B| y = f(x)}
bezeichnet man als den Graphen von f . Zu jedem x ∈ A existiert genau ein y ∈ B
mit (x, y) ∈ Gf ; nämlich y = f(x).
Ist f : A→ B eine Abbildung, so heißt Bildf := f(A) := {f(x)| x ∈ A} das Bild
von f .
Eine Abbildung f : A→ B heißt surjektiv, wenn f(A) = B ist.
Sie heißt injektiv, wenn aus x, y ∈ A, x �= y, immer f(x) �= f(y) folgt.
Eine Abbildung, die sowohl injektiv als auch surjektiv ist, bezeichnet man als bi-
jektiv.
f : A→ B ist genau dann bijektiv, wenn zu jedem y ∈ B genau ein x ∈ A existiert
mit y = f(x).
Bei einer bijektiven Abildung f : A → B ist die Umkehrabbildung f−1 : B → A
definiert; für y ∈ B ist f−1(y) das x ∈ A mit f(x) = y.
Ist f : A→ B eine beliebige Abbildung, so definiert man das Urbild einer Menge
M ⊂ B durch

−1

f (M) := {x ∈ A| f(x) ∈M}.

Sind A,B,C Mengen und f : A → B, g : B → C Abbildungen, so definiert man
eine Abbildung

g ◦ f : A→ C, x 	→ g(f(x)),
also (g ◦ f)(x) := g(f(x)) für x ∈ A.
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Funktionen
Eine Abbildung f : A→ R einer MengeA in die reellen Zahlen bezeichnet man als
(reelle) Funktion. Häufig hat man eine TeilmengeD ⊂ R und eine aufD definierte
Funktion f : D → R.
Ist f explizit gegeben, etwa f(x) = 2x+ 3, so schreiben wir

f : D → R, x 	→ 2x+ 3.

Wenn f, g reelle Funktionen aufD sind mit f(x) > g(x) für alle x ∈ D, so schrei-
ben wir: f > g.
Entsprechend ist f ≥ g definiert.
Eine Funktion f heißt gerade, wenn f(−x) = f(x) ist; sie heißt ungerade, wenn
f(−x) = −f(x) gilt.
Das Kronecker-Symbol ( LEOPOLD KRONECKER (1823-1891)) ist definiert durch

δij :=
{

1 für i = j
0 für i �= j

In gewissen Situationen, nämlich bei Übergang zum dualen Vektorraum, ist es
zweckmässig, δji an Stelle von δij zu schreiben.

1.2 Die reellen Zahlen

Grundlage der Mathematik sind die reellen und die komplexen Zahlen. Es
dauerte jedoch etwa 2500 Jahre, bis am Ende des 19. Jahrhunderts eine be-
friedigende Definition der reellen Zahlen R gelang. Die Schwierigkeit be-
stand vor allem in der Präzisierung der Lückenlosigkeit der Zahlengeraden,
die man benötigt, um Aussagen wie das Cauchysche Konvergenzkriterium
oder den Zwischenwertsatz zu beweisen. Diese Entwicklung wird in [3]
ausführlich dargestellt. Dort findet man auch eine ausführliche Darstellung
der Geschichte der komplexen Zahlen.
Wir nennen hier die Daten von Mathematikern, die wir noch mehrfach zi-
tieren werden. Zuerst der

”
princeps mathematicorum“

CARL FRIEDRICH GAUSS (1777-1855)
und
BERNHARD BOLZANO (1781-1848)
GEORG CANTOR(1845-1918)
AUGUSTIN LOUIS CAUCHY (1789-1857)
RICHARD DEDEKIND (1831-1916)
LEONHARD EULER (1707-1783)
KARL THEODOR WILHELM WEIERSTRASS (1815-1897).
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Einführung der reellen Zahlen
Man kann die reellen Zahlen definieren, indem man von den natürlichen Zahlen N
ausgeht, diese zum Ring Z der ganzen Zahlen und zum Körper Q der rationalen
Zahlen erweitert; durch Vervollständigung von Q erhält man R.
Eine andere Möglichkeit ist die axiomatische Charakterisierung; dabei wird die
Vollständigkeit durch Intervallschachtegungen oder Dedekindsche Schnitte oder
durch die Existenz des Supremums definiert. Wir schildern letzeren Zugang und
führen die reellen Zahlen R ein als angeordneten Körper, in dem das Vollständigkeits-
axiom gilt. Es gibt bis auf Isomorphie genau einen angeordneten Körper, der
vollständig ist; diesen bezeichnet man als Körper der reellen Zahlen R (vgl. da-
zu [3])
Körperaxiome

Definition 1.2.1 Es sei K eine nichtleere Menge, in der zwei Verknüpfungen +
und · definiert sind. Jedem Paar (x, y), x ∈ K, y ∈ K , wird also ein Element
x+ y ∈ K und ein Element x · y ∈ K zugeordnet.
Die MengeK mit den Verknüpfungen + und · heißt ein Körper, wenn gilt:

x+ (y + z) = (x+ y) + z x · (y · z) = (x · y) · z
x+ y = y + x x · y = y · x

es gibt ein Nullelement 0 ∈ K mit
0 + x = x für alle x ∈ K

es gibt ein Einselement 1 ∈ K, 1 �= 0, mit
1 · x = x für alle x ∈ K

zu x ∈ K existiert ein − x mit
−x+ x = 0

zu x ∈ K, x �= 0, existiert ein x−1 ∈ K mit
x−1x = 1

x · (y + z) = x · y + x · z

Bemerkungen. Man kann beweisen, dass es in einem Körper genau ein Nullelement
0 und genau ein Einselement 1 gibt. Auch das negative Element −x und das inverse
Element x−1 ist eindeutig bestimmt; man setzt y − x := y + (−x) und y

x := x−1y
falls x �= 0.
Aus den Axiomen kann man nun Rechenregeln herleiten, etwa −(−x) = x, (−x) ·
(−y) = x · y; dies soll hier nicht ausgeführt werden.
Anordnungsaxiome

Definition 1.2.2 Ein KörperK heißt angeordnet, wenn eine TeilmengeK+ vonK
vorgegeben ist, so dass gilt:

für jedes x ∈ K ist entweder x ∈ K+ oder − x ∈ K+ oder x = 0
aus x, y ∈ K+ folgt x+ y ∈ K+ und x · y ∈ K+

Statt x ∈ K+ schreiben wir x > 0; dann besagen diese Axiome:
Für jedes x ∈ K ist entweder x > 0 oder −x > 0 oder x = 0;
aus x > 0 und y > 0 folgt x+ y > 0 und x · y > 0.
Sind x, y ∈ K , so setzt man y > x, wenn y−x > 0 ist; y ≥ x bedeutet: y > x oder
y = x. Statt y > x schreibt man auch x < y und statt y ≥ x schreibt man x ≤ y.
Bemerkungen. Man müßte nun Rechenregeln für das Rechnen in angeordneten
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Körpern herleiten. Zum Beispiel “darf man Ungleichungen addieren”, d.h. aus y1 >
x1 und y2 > x2 folgt y1 + y2 > x1 + x2. Darauf wollen wir nicht näher eingehen.

Das Vollständigkeitsaxiom
Um dieses Axiom formulieren zu können, benötigen wir einige Vorbereitungen:

Definition 1.2.3 Ist K ein angeordneter Körper und X eine nicht-leere Teilmenge
von K , so heißt ein Element t ∈ K eine obere Schranke von X , wenn für alle
x ∈ X gilt:

x ≤ t.
X heißt nach oben beschränkt, wenn es zuX eine obere Schranke gibt.
Die kleinste obere Schranke s vonX wird, falls sie existiert, als Supremum vonX
bezeichnet; man schreibt

s = sup X.

s ist also genau dann Supremum vonX , wenn gilt:

(1) Für alle x ∈ X ist x ≤ s (d.h. s ist obere Schranke vonX),
(2) Ist s′ ∈ K und s′ < s, so existiert ein x ∈ X mit s′ < x (d.h. es gibt keine

kleinere obere Schranke).

Analog dazu heißt t ∈ K untere Schranke einer TeilmengeX vonK , wenn für alle
x ∈ X gilt: t ≤ x; die größte untere Schranke bezeichnet man als Infimum von X
und schreibt dafür inf x.
Das Vollständigkeitsaxiom lautet:

Jede nicht-leere nach oben beschränkte TeilmengeX vonK besitzt ein Supremum.

Definition 1.2.4 Ein angeordneter Körper K heißt vollständig, wenn jede nicht-
leere nach oben beschränkte Teilmenge X vonK ein Supremum besitzt.

Man kann zeigen, dass es bis auf Isomorphie genau einen vollständig angeordneten
Körper gibt (vgl. [3]); das bedeutet:
SindK und K̃ vollständig angeordnete Körper, so existiert eine bijektive Abbldung
f : K → K̃ , so dass für alle x, y ∈ K gilt:

f(x+ y) = f(x) + f(y), f(x · y) = f(x) · f(y).

Daher ist es gerechtfertigt, von dem Körper der reellen Zahlen zu sprechen. Nun
können wir definieren:

Definition 1.2.5 Ein vollständig angeordneter Körper heißt Körper der reellen
Zahlen; er wird mit R bezeichnet.

Wir können auf Einzelheiten nicht näher eingehen; eine ausführliche Darstellung
findet man in [3] und [16].
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Es soll noch skizziert werden, wie man die natürlichen Zahlen N, die ganzen Zahlen
Z und die rationalen Zahlen Q als Teilmengen von R erhält:
Die natürlichen Zahlen N bestehen aus den Elementen 1, 1 + 1, 1 + 1 + 1, . . . ;
genauer: es ist 1 ∈ N und wenn n ∈ N gilt, dann ist auch n+ 1 ∈ N. Die Menge N
ist die kleinste Teilmenge von R, die diese beiden Eigenschaften besitzt.
Eine Zahl q ∈ R heißt ganze Zahl, wenn q ∈ N oder −q ∈ N oder q = 0 ist; die
Menge der ganzen Zahlen wird mit Z bezeichnet.
Eine Zahl r ∈ R heißt rational, wenn es ein q ∈ Z und ein p ∈ N gibt mit r = q

p ;
die Menge der rationalen Zahlen bezeichnet man mit Q.
Man kann beweisen, dass Q und auch R \ Q dicht in R ist; in jedem Intervall ]a, b[,
a < b, liegen unendlich viele rationale und auch irrationale Zahlen.

Wir leiten nun aus den Axiomen eine Aussage her, die man als Satz des Archimedes
bezeichnet (ARCHIMEDES (um 285-212)):

Satz 1.2.6 (Satz von Archimedes.) Die Menge N der natürlichen Zahlen ist nicht
nach oben beschränkt: Zu jeder reellen Zahl x existiert also eine natürliche Zahl n
mit n > x.

Beweis. Wir nehmen an, N wäre nach oben beschränkt; dann existiert nach dem
Vollständigkeitsaxiom das Supremum s := sup N. Es ist also n ≤ s für alle n ∈ N.
Weil s− 1 keine obere Schranke von N ist, existiert ein n ∈ N mit s− 1 < n. Dann
folgt s < n+ 1, und wegen n+ 1 ∈ N ist dies ein Widerspruch.
Äquivalent zum Satz von Archimedes ist der Satz von Eudoxos (EUDOXOS, (408 -
355))

Satz 1.2.7 (Satz von Eudoxos) Zu jeder reellen Zahl ε > 0 existiert eine natürliche
Zahl n mit 1

n < ε.

Beweis. Nach dem Satz des Archimedes existiert zu x := 1
ε ein n ∈ N mit n > 1

ε ,
also 1

n < ε. �

Wir bringen noch einige grundlegende Begriffe und Bezeichnungen.
Im angeordneten Körper R kann man den Betrag |x| definieren. Für x ∈ R setzt
man

|x| :=

{
x falls x ≥ 0

−x falls x < 0.

Es gilt:

Satz 1.2.8 (1) Für alle x ∈ R ist |x| ≥ 0 und |x| = 0 gilt genau dann, wenn x = 0
ist.

(2) Für alle x, y ∈ R ist |x · y| = |x| · |y|.
(3) Für alle x, y ∈ R gilt die Dreiecksungleichung

|x+ y| ≤ |x| + |y|.
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Durch |x| wird in R eine Norm im Sinne von 7.9.11 definiert.
Beweis. Wir beweisen die Dreiecksungleichung. Nach Definition von |x| ist x ≤ |x|,
−x ≤ |x| und y ≤ |y|, −y ≤ |y|. Daraus folgt x + y ≤ |x| + |y| und −(x + y) ≤
|x| + |y|, also |x+ y| ≤ |x| + |y|. �

Setzt man in der Dreiecksungleichung y − x an Stelle von y ein, so erhält man
|x+(y−x)| ≤ |x|+|y−x|, also |y|−|x| ≤ |y−x|. Dann ist auch |x|−|y| ≤ |x−y|,
somit ∣∣ |y| − |x| ∣∣ ≤ ∣∣ y − x ∣∣.
Nun kann man den Begriff der ε-Umgebung eines Punktes a ∈ R definieren:

Uε(a) := {x ∈ R| |x− a| < ε}.

Eine Teilmenge U von R heißt Umgebung von a ∈ R, wenn es ein ε > 0 gibt mit
Uε(a) ⊂ U.
Eine TeilmengeX von R heißt offen, wenn zu jedem x ∈ X ein ε > 0 existiert mit
Uε(x) ⊂ X.
Wichtige Teilmengen von R sind die Intervalle. Für a, b ∈ R setzt man

[a, b] := {x ∈ R| a ≤ x ≤ b} ]a, b[:= {x ∈ R| a < x < b}

[a, b[:= {x ∈ R|a ≤ x < b} ]a, b] := {x ∈ R|a < x ≤ b}
[a, b] heißt das abgeschlossene Intervall mit den Randpunkten a, b, das Intervall
]a, b[ bezeichnet man als offenes Intervall. Die Intervalle [a, b[ und ]a, b] heißen
halboffen. Es ist

Uε(a) =]a− ε, a+ ε[.

Die folgenden Mengen bezeichnet man als uneigentliche Intervalle:

[a,+∞[:= {x ∈ R| a ≤ x} ]a,+∞[:= {x ∈ R| a < x}

] −∞, a] := {x ∈ R| x ≤ a} ] −∞, a[:= {x ∈ R| x < a}.

1.3 Die komplexen Zahlen

Die Geschichte der komplexen Zahlen und deren Definition wird eingehend in [3]
dargestellt. Bei der Behandlung vieler mathematischer Probleme erweist es sich als
zweckmäßig, den Körper R der reellen Zahlen zu erweitern zum Körper C der kom-
plexen Zahlen. Zum Beispiel ist es wichtig, die Nullstellen von Polynomen zu be-
stimmen; aber das einfache Beispiel des Polynoms x2 + 1 zeigt, dass es Polynome
gibt, die in R keine Nullstelle besitzen.
Beim Lösen von Gleichungen 2.,3. und 4.Grades treten Wurzeln auf und man
möchte auch Wurzeln aus negativen Zahlen bilden.
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Daher versucht man, R so zu erweitern, dass ein Element i existiert mit i2 = −1.
Der Erweiterungskörper soll aus Elementen der Form x+ iy mit x, y ∈ R bestehen.
Mit diesen Elementen will man so rechnen:

(x+ iy) + (u+ iv) = (x+ u) + i(y + v)
(x + iy) · (u+ iv) = xu+ i(xv + yu) + i2yv

und weil i2 = −1 sein soll, ergibt sich für die Multiplikation

(x+ iy) · (u+ iv) = (xu− yv) + i(xv + yu).

Um die Existenz eines derartigen Körpers C zu beweisen, betrachtet man statt x+iy
das Paar (x, y) reeller Zahlen; dies führt zu folgender Definition:

Definition 1.3.1 Unter dem Körper C der komplexen Zahlen versteht man die
Menge R2 der Paare reeller Zahlen zusammen mit folgenden Verknüpfungen:

(x, y) + (u, v) = (x+ y , u+ v)
(x, y) · (u, v) = (xu − yv , xv + yu).

Man rechnet nach, dass C ein Körper ist. Für alle x, u ∈ R gilt

(x, 0) + (u, 0) = (x+ u, 0), (x, 0) · (u, 0) = (xu, 0).

Identifiziert man die reelle Zahl x = x + i · 0 mit dem Paar (x, 0), so kann man R
als Teilmenge (und Unterkörper) von C auffassen.
Setzt man i := (0, 1), so ist i2 = (0, 1) · (0, 1) = (−1, 0) und da man (−1, 0) mit
−1 identifiziert, ist

i2 = −1.

Für jedes Paar z = (x, y) ∈ R2 ist z = (x, y) = (x, 0) + (0, y) = x + iy, damit
hat man die übliche Schreibweise. Man nennt x den Realteil und y den Imaginärteil
von z und schreibt: Re(x + iy) := x, Im(x+ iy) := y.
Ist z = x+ iy eine komplexe Zahl, so nennt man

z := x− iy

die zu z konjugierte komplexe Zahl. Es gilt Re z = z+z
2 , Imz = z−z

2i .
Man kann leicht zeigen:

Hilfssatz 1.3.2 Für z, w ∈ C gilt

(1) z + w = z + w, z · w = z · w,
(2) z = z,
(3) z ist genau dann reell, wenn z = z ist.
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Den Betrag einer komplexen Zahl z = x+ iy definiert man so:

|z| :=
√
x2 + y2 =

√
zz.

Damit kann man für z = x + iy ∈ C, z �= 0, die Zahl 1
z darstellen (und die

Existenz von 1
z beweisen): man erweitert mit z̄ und erhält im Nenner die reelle Zahl

z · z̄ = |z|2:
1
z

=
z

z · z =
x

x2 + y2
− i

y

x2 + y2
.

Nützlich ist auch die Zahl z∗ := 1
z̄ . In der Abbildung sind diese Zahlen und die

Addition komplexer Zahlen veranschaulicht.

z

w
z + w

z

z̄

z∗

1/z

Für die Veranschaulichung der Multiplikation sind Polarkoordinaten erforderlich.
Jede komplexe Zahl z �= 0 kann man durch

z = r · eiϕ = r(cosϕ+ i · sinϕ)

darstellen; dabei ist r = |z|. Man nennt r, ϕ Polarkoordinaten von z; wenn man ϕ
so wählt, dass 0 ≤ ϕ < 2π gilt, dann ist ϕ eindeutig bestimmt; die Existenz wird in
4.3.19 hergeleitet.
Mit Hilfe von Polarkoordinaten kann man die Multiplikation komplexer Zahlen be-
schreiben: Ist

z = r · eiϕ und w = s · eiψ,

so ist
z · w = (r · s)ei(ϕ+ψ).

Das Produkt zweier komplexer Zahlen erhält man also, indem man die Beträge mul-
tipliziert und die Winkel addiert.
Bei z2 verdoppelt sich der Winkel. Damit kann man sich die Potenzen zn veran-
schaulichen; in der folgenden Abbildung ist dies für |z| > 1, |ζ| = 1, |w| < 1
dargestellt.
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zw

z · w

ϕ

ψ

Beim Wurzelziehen halbiert sich der Winkel; sucht man etwa
√

i, also die Lösungen
von z2 = i, so liegt z auf der Winkelhalbierenden und hat den Betrag 1, also ist
z = ±

√
2

2 (1 + i).

1.4 Folgen

Im Mittelpunkt der Analysis steht der Begriff des Grenzwerts. Bevor wir den Begriff
des Grenzwerts einer Folge definieren, erläutern wir, was man unter einer Folge
versteht.
Man erhält zum Beispiel durch fortgesetztes Halbieren die Folge 1, 1

2 ,
1
4 ,

1
8 , . . .

oder man betrachtet die Folge der Quadratzahlen 1, 4, 9, 16, 25, . . . . Es ist also
jeder natürlichen Zahl n eine reelle oder komplexe Zahl an zugeordnet:

a1, a2, a3, . . . ;

den Begriff der Folge kann man nun so präzisieren:

Definition 1.4.1 Unter einer Folge reeller oder komplexer Zahlen versteht man
eine Abbildung

N → R, n 	→ an, oder N → C, n 	→ an.
Für diese Abbildung schreibt man

(an)n∈N oder (an)n oder (an).

Wir werden auch Folgen a0, a1, a2, ... oder auch a5, a6, .. betrachten. Nun führen
wir den Begriff des Grenzwertes einer Folge ein:

Definition 1.4.2 Eine Folge (an)n komplexer Zahlen heißt konvergent gegen
a ∈ C , wenn es zu jedem reellen ε > 0 eine natürliche Zahl N(ε) gibt, so dass für
alle n ∈ N mit n ≥ N(ε) gilt:

|an − a| < ε.

zw

z2

zw

z2

zw

z2

zw

z2

zw

z2

zw

z2

zw

z2

zw

z2

zw

z2

w2

z3

ζ

z9
w9ζ9
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Man bezeichnet dann a als Grenzwert der Folge (an)n und schreibt:

lim
n→∞ an = a.

Eine Folge (an)n heißt konvergent, wenn es ein a ∈ C gibt, so dass (an)n gegen
a konvergiert. Andernfalls heißt sie divergent. Mit dem Begriff der ε-Umgebung
Uε(a) = {x ∈ C| |x− a| < ε} von a kann man die Konvergenz so formulieren:
(an)n konvergiert genau dann gegen a, wenn es zu jedem ε > 0 ein N(ε) gibt mit

an ∈ Uε(a) für n ≥ N(ε).

Jede beliebige Umgebung von a enthält eine ε-Umgebung; somit gilt lim
n→∞ an = a

genau dann, wenn zu jeder Umgebung U von a ein IndexN(U) ∈ N existiert mit

an ∈ U für n ≥ N(U).

a aa

ε

a− ε a+ ε

an

an

Nun zeigen wir, dass eine Folge höchstens einen Grenzwert besitzt:

Hilfssatz 1.4.3 Wenn die Folge (an)n gegen a und gegen b konvergiert, so folgt
a = b.

Beweis. Wenn a �= b ist, so setzen wir ε := |b−a|
2 ; dann existiert ein N1(ε) und ein

N2(ε) mit

|an − a| < ε für n ≥ N1(ε), |an − b| < ε für n ≥ N2(ε).

Für n = N1(ε)+N2(ε) ist dann |b−a| = |(b−an)+(an−a)| ≤ |bn−a|+|an−a| <
ε+ ε = |b− a|, also wäre |b− a| < |b− a|. �

Nun erläutern wir den Konvergenzbegriff an einigen Beispielen:

Beispiel 1.4.4 Es gilt

lim
n→∞

1
n

= 0.

Zum Beweis verwenden wir den Satz von Eudoxos 1.2.7 : Zu jedem ε > 0 existiert
ein N(ε) ∈ N mit 1

N(ε) < ε. Für n ≥ N(ε) ist dann 0 < 1
n ≤ 1

N(ε) < ε .
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Beispiel 1.4.5 Es ist

lim
n→∞

n+ 1
n

= 1,

denn |n+1
n − 1| = 1

n und nach dem vorhergehenden Beispiel existiert zu ε > 0 ein
N(ε) mit 1

N(ε) < ε; für n ≥ N(ε) ist dann
∣∣n+1

n − 1
∣∣ = 1

n ≤ 1
N(ε) < ε.

Beispiel 1.4.6 Die Folge ((−1)n) ist divergent. Denn aus der Konvergenz würde
folgen, dass ein a ∈ R existiert, so dass es zu ε = 1

2 einN(1
2 ) gibt mit |(−1)n−a| <

ε für alle n ≥ N(1
2 ). Für n ≥ N(1

2 ) wäre dann

2 = |(−1)n+1 − (−1)n| ≤ |(−1)n+1 − a| + |(−1)n − a| < 1
2

+
1
2

= 1.

Beispiel 1.4.7 Wenn man die Folge (an) mit

an :=
8n2 − 2n+ 5
3n2 + 7n+ 1

untersuchen will, wird man vielleicht auf die Idee kommen, an so umzuformen:

an =
8 − 2

n + 5
n2

3 + 7
n + 1

n2

.

Dann wird man vermuten, dass (an) gegen 8
3 konvergiert; es dürfte aber nicht leicht

sein, zu jedem ε > 0 ein N(ε) explizit so anzugeben, dass für n ≥ N(ε) gilt:∣∣∣∣8n2 − 2n+ 5
3n2 + 7n+ 1

− 8
3

∣∣∣∣ < ε.
Es ist daher zweckmäßig, Rechenregeln für Grenzwerte herzuleiten. Es gilt:

Satz 1.4.8 (Rechenregeln) Es seien (an)n und (bn)n konvergente Folgen in C und
c ∈ C. Dann sind auch die Folgen (an + bn)n, (c · an)n, (an · bn)n konvergent und
es gilt:

lim
n→∞(an + bn) = lim

n→∞ an + lim
n→∞ bn

lim
n→∞(c · an) = c · lim

n→∞ an

lim
n→∞(an · bn) = ( lim

n→∞ an) · ( lim
n→∞ bn).

Wenn außerdem lim
n→∞ bn �= 0 ist, dann existiert ein n0 ∈ N mit bn �= 0 für n ≥ n0

und es gilt:

lim
n→∞

an
bn

=
lim

n→∞ an

lim
n→∞ bn

.



1.4 Folgen 13

Beweis. Wir beweisen nur die erste Aussage: Sei a := lim
n→∞ an und b := lim

n→∞ bn.

Dann gibt es zu ε > 0 ein N1( ε
2 ) undN2( ε

2 ) mit

|an − a| < ε
2

für n ≥ N1(
ε

2
), |bn − b| < ε

2
für n ≥ N2(

ε

2
).

Setzt man N(ε) := max{N1( ε
2 ), N2( ε

2 )}, so ist für n ≥ N(ε):

|(an + bn) − (a+ b)| ≤ |an − a| + |bn − b| < ε
2

+
ε

2
= ε

und damit ist gezeigt:
lim

n→∞(an + bn) = a+ b.

�

Insbesondere gilt:

Satz 1.4.9 Eine Folge komplexer Zahlen (zn)n, zn = xn + iyn, konvergiert genau
dann gegen c = a+ ib ∈ C, wenn (xn)n gegen a und (yn)n gegen b konvergiert.

Definition 1.4.10 Eine Folge (an) heißt beschränkt, wenn eine reelle ZahlM exi-
stiert mit

|an| ≤M für alle n ∈ N.

Hilfssatz 1.4.11 Jede konvergente Folge ist beschränkt.

Beweis. Sei (an) konvergent, a := lim
n→∞ an . Dann existiert zu ε = 1 ein Index

N(1) mit |an − a| < 1 für n ≥ N(1), also

|an| < |a| + 1 für n ≥ N(1).

Setzt man
M := max{|a1|, ..., |aN(1)−1|, |a| + 1}

so folgt |an| ≤M für alle n ∈ N. �

Von grundlegender Bedeutung ist der Begriff der Cauchy-Folge (AUGUSTIN CAUCHY

(1789-1857)):

Definition 1.4.12 Eine Folge (an)n in C heißt Cauchy-Folge, wenn es zu jedem
ε > 0 ein N(ε) ∈ N gibt, so dass für alle n, k ∈ N mit n ≥ N(ε), k ≥ N(ε) gilt:

|an − ak| < ε.
Zunächst zeigen wir:

Satz 1.4.13 Jede konvergente Folge ist eine Cauchy-Folge.

Beweis. Wenn (an) gegen a konvergiert , so existiert zu ε > 0 ein N( ε
2 ) ∈ N mit

|an − a| < ε
2 für n ≥ N( ε

2 ). Für n, k ≥ N( ε
2 ) ist dann

|an − ak| ≤ |an − a| + |ak − a| < ε
2

+
ε

2
= ε.

�

Nun behandeln wir Aussagen über reelle Folgen:
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Satz 1.4.14 Es seien (an)n und (bn) konvergente Folgen in R und es gelte an ≤ bn
für alle n ∈ N. Dann ist

lim an ≤ lim bn.

Beweis. Wir setzen a := limn→∞ an und b := limn→∞ bn und nehmen an, es sei
b < a. Zu ε := a−b

2 existiert dann ein n mit |an − a| < ε, |bn − b| < ε.Dann ist
bn < b+ ε = a− ε < an, also bn < an; dies widerspricht der Voraussetzung. �

Daraus folgt

Satz 1.4.15 Sei (xn)n eine konvergente Folge in R und a ≤ xn ≤ b für alle n ∈ N.
Dann gilt

a ≤ lim
n→∞xn ≤ b.

Konvergenzkriterien
Wir leiten zunächst Konvergenzkriterien für reelle Folgen her.
Wir benötigen nun den Begriff der monotonen Folge: Eine reelle Folge (an)n heißt
monoton wachsend, wenn für alle n ∈ N gilt:

an ≤ an+1

also a1 ≤ a2 ≤ a3 ≤ ... ;
sie heißt streng monoton wachsend, wenn für alle n ∈ N gilt:

an < an+1.

Analog heißt (an)n monoton fallend, falls an ≥ an+1 gilt; sie heißt streng monoton
fallend, falls an > an+1 ist (n ∈ N).
Eine Folge heißt monoton, wenn sie monoton wachsend oder monoton fallend ist.
Ist (an)n∈N eine Folge in R oder C und ist (nk)k∈N eine streng monoton wachsende
Folge natürlicher Zahlen, so heißt (ank

)k∈N eine Teilfolge von (an)n.
Ist zum Beispiel nk := 2k, so erhält man die Teilfolge (a2k)k∈N, also die Folge
a2, a4, a6, ... . Es gilt:

Hilfssatz 1.4.16 Jede reelle Folge (an)n enthält eine monotone Teilfolge.

Beweis. Wir nennen ein Folgenglied as eine Spitze, wenn as ≥ an für alle n ≥ s
ist. Wenn es unendlich viele Spitzen as1 , as2 , .. gibt (s1 < s2 < ...), so ist nach
Definition der Spitze

as1 ≥ as2 ≥ as3 ≥ ...
und daher bildet die Folge der Spitzen eine monoton fallende Teilfolge. Wenn es
keine oder nur endlich viele Spitzen gibt, so existiert ein n1 ∈ N, so dass für n ≥ n1

kein an eine Spitze ist. Weil an1 keine Spitze ist, existiert ein n2 ∈ N mit n2 > n1

und an1 < an2 .
Weil an2 keine Spitze ist, gibt es ein n3 mit n3 > n2 und an2 < an3 ; auf diese Weise
erhält man eine streng monoton wachsende Teilfolge an1 < an2 < an3 < ... . �

Nun beweisen wir ein erstes Konvergenzkriterium.
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Satz 1.4.17 Jede beschränkte monotone Folge in R ist konvergent.

Beweis. Wir führen den Beweis für eine monoton wachsende Folge an ≤ an+1.
Nach Voraussetzung ist die Menge {an|n ∈ N} beschränkt; aus dem Vollständigkeits-
axiom folgt, dass das Supremum

s := sup{an|n ∈ N}

existiert. Dann ist an ≤ s für alle n ∈ N. Ist ε > 0 vorgegeben, so ist s − ε keine
obere Schranke von {an|n ∈ N} und daher gibt es ein N ∈ N mit s − ε < aN .
Wegen der Monotonie der Folge ist aN ≤ an für n ≥ N und daher

s− ε < aN ≤ an < s,

also |an − s| < ε für n ≥ N . Somit ist gezeigt: limn→∞ an = s. �

Aus 1.4.16 und 1.4.17 folgt der Satz von Bolzano-Weierstraß(BERNARD BOLZA-
NO(1781-1848), KARL WEIERSTRASS (1815-1897)):

Satz 1.4.18 (Satz von Bolzano-Weierstrass) Jede beschränkte Folge in R enthält
eine konvergente Teilfolge.

Wir behandeln nun wieder Folgen in C und zeigen, dass diese Aussage auch dafür
gilt:

Satz 1.4.19 (Satz von Bolzano-Weierstrass in C) Jede beschränkte Folge in C
enthält eine konvergente Teilfolge.

Beweis. Es sei (zn)neine beschränkte Folge komplexer Zahlen zn = xn + iyn. Die
Folge (xn)n ist ebenfalls beschränkt und enthält somit eine konvergente Teilfolge
(xnk

)k. Wählt man aus der beschränkten Folge (ynk
)k eine konvergente Teilfolge

(ynkj
)j aus, so erhält man eine konvergente Teilfolge (xnkj

+ iynkj
)j von (zn)n.

�

Wenn eine Teilfolge von (zn)n gegen p konvergiert, so heißt p eine Häufungs-
punkt oder auch eine Häufungsstelle von (zn)n; daher heißt dieser Satz auch das
Häufungssstellenprinzip von Bolzano-Weierstrass. Es gilt auch im Rn, aber nicht
mehr im Unendlich-dimensionalen.Wir gehen darauf in 15.6 ein.

Nun können wir das wichtige Cauchysche Konvergenzkriterium beweisen: Jede
Cauchy-Folge ist konvergent:

Satz 1.4.20 (Cauchysches Konvergenzkriterium) Eine (reelle oder komplexe)
Folge ist genau dann konvergent, wenn sie eine Cauchy-Folge ist.

Beweis. Es ist zu zeigen, dass jede Cauchy-Folge (an)n in C konvergent ist.
Zunächst zeigt man, dass jede Cauchy-Folge (an) beschränkt ist. Es gibt nämlich
zu ε = 1 einN(1) mit |an−ak| < 1 für alle n, k ≥ N(1), also ist |an−aN(1)| < 1
oder |an| < |aN(1)| + 1 für n ≥ N(1) und wie im Beweis von 1.4.11 folgt daraus
die Beschränktheit von (an).
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Nach 1.4.19 enthält (an)n eine Teilfolge (ank
)k∈N, die gegen ein a konvergiert. Wir

zeigen, dass die Folge (an) gegen a konvergiert. Sei ε > 0 vorgegeben; dann gibt
es, weil (an) eine Cauchy-Folge ist, ein N( ε

2 ) mit |an − ak| < ε
2 für n, k ≥ N( ε

2 ).
Wegen lim

k→∞
ank

= a gibt es ein k mit nk ≥ N( ε
2 ) und |ank

− a| < ε
2 . Für alle n

mit n ≥ N( ε
2 ) ist dann

|an − a| ≤ |an − ank
| + |ank

− a| < ε
2

+
ε

2
= ε.

Damit ist das Cauchysche Konvergenzkriterium bewiesen. �

Wir behandeln noch ein Beispiel für eine konvergente Folge; dabei ergibt sich, dass
für jede positive reelle Zahl a die Quadratwurzel

√
a existiert.

Beispiel 1.4.21 Sei a > 0; wir geben eine Folge (xn) an, die gegen
√
a konvergiert.

Wir wählen x0 > 0 beliebig, setzen x1 := 1
2 (x0 + a

x0
), x2 := 1

2 (x1 + a
x1

) und,
wenn xn bereits definiert ist, sei

xn+1 :=
1
2
(xn +

a

xn
).

Wir beweisen, dass die Folge (xn) gegen eine positive reelle Zahl b mit

b2 = a

konvergiert. Dazu zeigen wir zuerst die Monotonie: Für alle n ∈ N ist xn > 0 und

x2n − a = 1
4

(
xn−1 + a

xn−1

)2

− a = 1
4

(
x2n−1 + 2a+ a2

x2
n−1

− 4a
)

=

= 1
4

(
x2n−1 − 2a+ a2

x2
n−1

)
= 1

4

(
xn−1 − a

xn−1

)2

≥ 0,

daher x2n − a ≥ 0 und xn − xn+1 = xn − 1
2 (xn + a

xn
) = 1

2xn
(x2n − a) ≥ 0; somit

xn ≥ xn+1.

Die Folge (xn) ist also monoton fallend und somit ist ( a
xn

) monoton wachsend. Aus
a ≤ x2n folgt a

xn
≤ xn, somit

a

x1
≤ ... ≤ a

xn
≤ xn ≤ ... ≤ x1.

Für alle n ∈ N ist 0 < a
x1

≤ xn, daher existiert

b := lim
n→∞xn

und es gilt b > 0. Aus den Rechenregeln 1.4.8 folgt

b = lim
n→∞xn+1 = lim

n→∞
1
2
(xn +

a

xn
) =

1
2
(b +

a

b
),
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somit b = 1
2 (b+ a

b ) also 2b2 = b+ a und b2 = a.
Damit ist gezeigt: Zu jedem a > 0 existiert ein b > 0 mit b2 = a. Die Zahl b ist
eindeutig bestimmt, denn aus c > 0, c2 = a, folgt

0 = b2 − c2 = (b+ c) · (b − c)

und wegen b+ c > 0 ist b− c = 0, also b = c.
Zu a ≥ 0 existiert also genau ein b ≥ 0 mit b2 = a und man definiert nun

√
a := b,

√
a heißt die Quadratwurzel von a.

Dies läßt sich verallgemeinern: Ist k ∈ N und a > 0, so existiert genau ein b > 0
mit bk = a und man setzt k

√
a := b.

1.5 Reihen

Bei der Behandlung mathematischer Probleme stößt man häufig auf Ausdrücke der
Form

a0 + a1 + a2 + . . . ,

etwa

1 +
1
2

+
1
3

+ . . . +
1
n

+ . . . oder 1 +
1
2

+
1
4

+ . . . +
1
2n

+ . . . .

Derartige Ausdrücke bezeichnet man als Reihen (reeller oder komplexer Zahlen) .
Man führt die Theorie der Reihen zurück auf die der Folgen und fasst den Ausdruck
a0 + a1 + a2 + ... auf als Folge der “Partialsummen”

a0, a0 + a1, a0 + a1 + a2, . . .

(Wir betrachten häufig Reihen, die mit a0 beginnen). Dies wird folgendermaßen
präzisiert: Es sei (an)n eine Folge komplexer Zahlen, n ∈ N0, dann heißt

sn :=
n∑

k=0

ak = a0 + a1 + . . .+ an

die zu (an)n gehörende n-te Partialsumme.
Die Folge der Partialsummen (sn)n heißt die durch (an)n gegebene Reihe; man
bezeichnet die Folge (sn)n mit

∞∑
n=0

an.
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Definition 1.5.1 Eine Reihe
∞∑

n=0
an mit an ∈ C heißt konvergent, wenn die Folge

(sn)n konvergiert; den Grenzwert von (sn)n bezeichnet man ebenfalls mit
∞∑

n=0
an:

∞∑
n=0

an := lim
n→∞ sn.

Es gilt also
∞∑

n=0
an = s genau dann, wenn es zu jedem ε > 0 ein N(ε) gibt mit

|a0 + . . .+ an − s| < ε für n ≥ N(ε).

Aus dem Cauchyschen Konvergenzkriterium für Folgen leiten wir nun ein entspre-
chendes Kriterium für Reihen her. Man bezeichnet eine Reihe als Cauchyreihe,
wenn die Folge ihrer Partialsummen eine Cauchyfolge ist.

Satz 1.5.2 (Cauchysches Konvergenzkriterium) Eine Reihe
∞∑

n=0
an komplexer

Zahlen ist genau dann konvergent, wenn es zu jedem ε > 0 ein N(ε) gibt, so dass
für alle n,m ∈ N mit n ≥ m ≥ N(ε) gilt:

|
n∑

k=m

ak| < ε.

Beweis. Die Folge (sn)n ist genau dann konvergent, wenn es zu ε > 0 einN(ε) gibt,
so dass für alle Indizes n,m ≥ N(ε) gilt: |sn − sm| < ε. Für n ≥ m ≥ N(ε) + 1
ist dann |sn − sm−1| < ε und aus

sn − sm−1 =
n∑

k=m

ak

folgt die Behauptung. �

Für n = m ist

n∑
k=n

ak = an und somit ergibt sich

Satz 1.5.3 Wenn die Reihe
∞∑

n=0
an konvergiert, dann gilt lim

n→∞ an = 0.

Aus den Rechenregeln für Folgen erhält man Rechenregeln für Reihen:

Satz 1.5.4 (Rechenregeln) Sind
∞∑

n=0

an und
∞∑

n=0

bn konvergent, und ist c ∈ C, so

sind auch die Reihen
∞∑

n=0
(an + bn) und

∞∑
n=0
can konvergent und

∞∑
n=0

(an + bn) =
∞∑

n=0

an +
∞∑

n=0

bb,

∞∑
n=0

c · an = c ·
∞∑

n=0

an.
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Wir behandeln nun ein besonders wichtiges Beispiel :
Die geometrische Reihe

∞∑
n=0

zn.

Zuerst zeigen wir

Hilfssatz 1.5.5 Ist z ∈ C , |z| < 1, so gilt lim
n→∞ z

n = 0.

Beweis. Es ist |z|n ≥ |z|n+1. Die Folge (|z|n)n ist also monoton fallend und be-
schränkt und daher konvergent. Sei a := lim

n→∞ |z|n. Es gilt

a = lim
n→∞ |z|n = lim

n→∞ |z|n+1 = |z| · lim
n→∞ |z|n = |z| · a

und aus a = |z| · a und |z| < 1 folgt a = 0. �

Nun können wir beweisen:

Satz 1.5.6 (Geometrische Reihe) Für z ∈ C, |z| < 1, konvergiert die geometri-

sche Reihe
∞∑

n=0
zn und es gilt

∞∑
n=0

zn =
1

1 − z .

Für |z| ≥ 1 divergiert
∞∑

n=0
zn.

Beweis. Setzt man sn :=
n∑

k=0

zk, so ist

(1 − z)sn =
n∑

k=0

zk −
n+1∑
k=1

zk = 1 − zn+1.

Für z �= 1 ist daher
n∑

k=0

zk =
1 − zn+1

1 − z
und für |z| < 1 ist lim

n→∞ z
n+1 = 0, also

∞∑
n=0

zn = lim
n→∞ sn = lim

n→∞
1 − zn+1

1 − z =
1

1 − z .

Für |z| ≥ 1 ist |zn| ≥ 1 und daher ist (zn)n keine Nullfolge, also ist nach 1.5.3 die

Reihe
∞∑

n=0
zn für |z| ≥ 1 divergent. �


Wir notieren noch:
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Satz 1.5.7 Für |z| < 1 ist
∞∑

n=1

zn =
z

1 − z .

Beispiel 1.5.8 Setzt man in der geometrischen Reihe z = 1
2 , so ergibt sich

∞∑
n=0

1
2n

= 2

also

1 +
1
2

+
1
4

+
1
8

+ ... = 2

Wir führen nun einen schärferen Konvergenzbegriff ein:

Definition 1.5.9 Eine Reihe
∞∑

n=0
an , an ∈ C, heißt absolut konvergent, wenn

die Reihe
∞∑

n=0
|an| konvergiert.

Aus dem Cauchyschen Konvergenzkriterium ergibt sich, dass jede absolut konver-
gente Reihe auch konvergiert.
Wir geben nun weitere wichtige Konvergenzkriterien an:

Satz 1.5.10 (Majorantenkriterium). Es seien
∞∑

n=0
an und

∞∑
n=0
bn Reihen; wenn für

alle n ∈ N gilt: |an| ≤ bn und wenn
∞∑

n=0
bn konvergiert, dann konvergiert

∞∑
n=0
an

absolut.

Beweis. Zu ε > 0 existiert nach 1.5.2 ein N(ε), so dass für n ≥ m ≥ N(ε) gilt:
|∑n

k=m bk| < ε und aus |∑n
k=m ak| ≤

∑n
k=m |bk| < ε für n ≥ m ≥ N(ε)

folgt mit 1.5.2 die Behauptung. �

Eine Reihe

∞∑
n=0
bn mit den angegebenen Eigenschaften nennt man Majorante zu

∞∑
n=0
an. Daraus ergibt sich ein weiteres Konvergenzkriterium:

Satz 1.5.11 (Quotientenkriterium) Es sei
∞∑

n=0
an eine Reihe mit an �= 0 für alle

n ∈ N. Wenn ein q ∈ R existiert mit 0 < q < 1 und∣∣∣∣an+1

an

∣∣∣∣ ≤ q
für alle n ∈ N, dann konvergiert

∞∑
n=0
an absolut.
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Beweis. Es ist |a1| ≤ |a0| · q, |a2| ≤ |a1| · q ≤ |a0| · q2 und

|an+1| ≤ |an| · q ≤ ... ≤ |a0| · qn+1.

Daher ist |a0| ·
∞∑

n=0
qn eine konvergente Majorante zu

∞∑
n=0
an. �


Wir beweisen noch das Leibnizsche Konvergenzkriterium für alternierende Reihen
(GOTTFRIED WILHELM LEIBNIZ (1646-1716))

a0 − a1 + a2 − a3 + a4 − . . .

Satz 1.5.12 (Leibnizsches Konvergenzkriterium) Es sei (an)n eine monoton fal-
lende Folge in R mit an ≥ 0 für alle n ∈ N0 und lim

n→∞ an = 0. Dann konvergiert

die Reihe ∞∑
n=0

(−1)nan

und es gilt

|
∞∑

n=0

(−1)nan −
k∑

n=0

(−1)nan| ≤ ak+1.

Man kann also den Fehler, der entsteht, wenn man die Reihe bei ak abbricht, durch
ak+1 abschätzen.

Beweis Wir setzen sk :=
k∑

n=0
(−1)nan; dann ist s2k+2 ≥ s2k+1,

s2k+2 − s2k = a2k+2 − a2k+1 ≤ 0; s2k+1 − s2k−1 = −a2k+1 + a2k ≥ 0.

Daher ist

s1 ≤ s3 ≤ . . . ≤ s2k−1 ≤ s2k+1 ≤ s2k+2 ≤ s2k ≤ . . . ≤ s2 ≤ s0.

Die Folgen (s2k+1)k und (s2k)k sind also monoton und beschränkt und daher
konvergent; wegen s2k+2 − s2k+1 = a2k+2 und lim an = 0 konvergieren sie
gegen den gleichen Grenzwert s und s liegt zwischen sk+1 und sk.Daraus folgt
|s− sk| ≤ ak+1. �

Es soll noch kurz die Multiplikation zweier Reihen behandelt werden. Dazu erinnern
wir daran, dass man Summen so ausmultipliziert:

(a0 + a1 + a2 + . . .+ am) · (b0 + b1 + b2 + . . .+ br) =
= a0b0 + (a0b1 + a1b0) + (a0b2 + a1b1 + a2b0) + . . .+ ambr.

Für Reihen gilt der folgende Satz, den wir ohne Beweis angeben (ein Beweis findet
sich in [6],[23]):
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Satz 1.5.13 Die Reihen
∞∑

n=0
an und

∞∑
n=0
bn seien absolut konvergent. Setzt man

cn :=
n∑

k=0

akbn−k = a0bn + a1bn−1 + ...+ anb0,

so konvergiert die Reihe
∞∑

n=0
cn ebenfalls absolut und es gilt:

(
∞∑

n=0

an) · (
∞∑

n=0

bn) =
∞∑

n=0

cn.

Bei Konvergenzuntersuchungen sollte man beachten, dass es das Konvergenzver-
halten einer Folge oder Reihe nicht beeinflußt, wenn man endlich viele Glieder
abändert. Daher kann man zum Beispiel das Quotientenkriterium verallgemeinern:

Wenn zu einer Reihe
∞∑

n=0
an ein q mit 0 < q < 1 und ein m ∈ N existiert mit

an �= 0 für n ≥ m und |an+1
an

| ≤ q für n ≥ m, so konvergiert
∞∑

n=0
an.

Wir erläutern dies an einem Beispiel:

Beispiel 1.5.14 Für z ∈ C, |z| < 1, ist

∞∑
n=1

nzn−1

konvergent. Dies ergibt sich so: Sei 0 < |z| < 1; dann wählt man ein q ∈ R mit
|z| < q < 1. Nun wenden wir das Quotientenkriterium auf an := nzn−1 an. Es ist∣∣∣∣an+1

an

∣∣∣∣ =
n+ 1
n

· |z| = (1 +
1
n

) · |z|.

Weil q
|z| > 1 ist, gibt es einm ∈ N mit

1 +
1
m

≤ q

|z| .

Daher ist für n ≥ m ∣∣∣∣an+1

an

∣∣∣∣ = (1 +
1
n

) · |z| ≤ q

und daraus folgt die Konvergenz von
∞∑

n=1
nzn−1. Den Grenzwert können wir noch

nicht berechnen; in 4.1.3 zeigen wir, dass man konvergente Potenzreihen gliedweise
differenzieren darf. Damit ergibt sich:

∞∑
n=1

nzn−1 =
d
dz

∞∑
n=0

zn =
d
dz

(
1

1 − z
)

=
1

(1 − z)2 .
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Wir behandeln nun weitere wichtige Beispiele. Zunächst eine Definition: Für n ∈ N
setzt man

n! := 1 · 2 · 3 · ... · n
und 0! := 1.

Beispiel 1.5.15 Die Reihe

∞∑
n=0

zn

n!
= 1 + z +

z2

2
+
z3

2 · 3 + ...

konvergiert für alle z ∈ C. Dies beweist man mit dem Quotientenkriterium 1.5.11.
Es sei z ∈ C; z �= 0; setzt man an := zn

n! , so ist∣∣∣∣an+1

an

∣∣∣∣ =
∣∣∣∣ zn+1 · n!
(n+ 1)! · zn

∣∣∣∣ =
|z|
n+ 1

.

Wählt man ein k ∈ N mit k ≥ 2 · |z|, so ist für n ≥ k:∣∣∣∣an+1

an

∣∣∣∣ =
|z|
n+ 1

≤ |z|
k

≤ 1
2

und nach dem Quotientenkriterium konvergiert
∞∑

n=k

zn

n! und daher auch
∞∑

n=0

zn

n! . Die

Reihe
∞∑

n=0

zn

n! heißt die Exponentialreihe, man bezeichnet sie mit ez oder exp(z):

exp(z) := ez :=
∞∑

n=0

zn

n!
.

Die Exponentialfunktion z 	→ ez untersuchen wir in 4.2.

Beispiel 1.5.16 Die sogenannte harmonische Reihe

∞∑
n=1

1
n

ist divergent. Um dies zu zeigen, schätzen wir die Partialsummen sk :=
∑k

n=1
1
n

so ab:

s2 = 1 + 1
2 ,

s4 = s2 + (1
3 + 1

4 ) ≥ s2 + (1
4 + 1

4 ) = s2 + 1
2 = 1 + 2

2 ,
s8 = s4 + (1

5 + ...+ 1
8 ) ≥ s4 + (1

8 + ...+ 1
8 ) = s4 + 1

2 = 1 + 3
2 ,

s16 = s8 + (1
9 + ...+ 1

16 ) ≥ s8 + ( 1
16 + ...+ 1

16 ) = s8 + 1
2 = 1 + 4

2 .
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Auf diese Weise zeigt man

s2k ≥ 1 +
k

2
,

daher ist die Folge (sk) divergent, somit divergiert auch
∞∑

n=1

1
n .

Beispiel 1.5.17 Die alternierende harmonische Reihe

∞∑
n=1

(−1)n−1 1
n

= 1 − 1
2

+
1
3
− 1

4
+ ...

ist nach dem Leibniz-Kriterium 1.5.12 konvergent. Den Grenzwert können wir noch
nicht ausrechnen; in 6.2.10 werden wir zeigen, dass diese Reihe gegen ln 2 konver-
giert.

n

ln 2

sn

1 2 3 4 6 8 10 n

ln 2

sn

1 2 3 4 6 8 10 n

ln 2

sn

1 2 3 4 6 8 10 n

ln 2

sn

1 2 3 4 6 8 10 n

ln 2

sn

1 2 3 4 6 8 10 n

ln 2

sn

1 2 3 4 6 8 10 n

ln 2

sn

1 2 3 4 6 8 10 n

ln 2

sn

1 2 3 4 6 8 10 n

ln 2

sn

1 2 3 4 6 8 10 n

ln 2

sn

1 2 3 4 6 8 10 n

ln 2

sn

1 2 3 4 6 8 10 n

ln 2

sn

1 2 3 4 6 8 10 n

ln 2

sn

1 2 3 4 6 8 10 n

ln 2

sn

1 2 3 4 6 8 10 n

ln 2

sn

1 2 3 4 6 8 10 n

ln 2

sn

1 2 3 4 6 8 10 n

ln 2

sn

1 2 3 4 6 8 10 n

ln 2

sn

1 2 3 4 6 8 10 n

ln 2

sn

1 2 3 4 6 8 10

Beispiel 1.5.18 Die Reihe
∞∑

n=1

1
n2

ist konvergent; um dies zu zeigen, geben wir eine konvergente Majorante an: Für
n ≥ 2 ist

1
n2
<

1
n(n− 1)

und die k-te Partialsumme (k ≥ 2)

sk =
k∑

n=2

1
n(n− 1)

läßt sich folgendermaßen berechnen: Für n ≥ 2 ist

1
n− 1

− 1
n

=
1

n · (n− 1)
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und daher

sk =
k∑

n=2

1
n(n− 1)

=
k∑

n=2

(
1
n− 1

− 1
n

) =
k∑

n=2

1
n− 1

−
k∑

n=2

1
n

= (1 +
1
2

+ ...+
1
k − 1

) − (
1
2

+ ...+
1
k − 1

+
1
k

) = 1 − 1
k
.

Daher ist

lim
k→∞

sk = lim
k→∞

(1 − 1
k

) = 1,

also ∞∑
n=2

1
n(n− 1)

= 1.

Daher ist diese Reihe eine konvergente Majorante von
∞∑

n=1

1
n2 und nach dem Ma-

jorantenkriterium konvergiert
∞∑

n=1

1
n2 . Aus dem Majorantenkriterium folgt weiter,

dass für jedes s ∈ N mit s ≥ 2 die Reihe

∞∑
n=1

1
ns

konvergent ist. Es ist ziemlich schwierig, den Grenzwert von
∞∑

n=1

1
ns zu bestimmen;

für ungerades s ist keine Formel bekannt; für gerades s werden wir in 14.11.9 den
Grenzwert bestimmen.

1.6 Vollständige Induktion

Für jedes n ∈ N sei A(n) eine Aussage. Wenn man zeigen will, dass A(n) für alle
n ∈ N richtig ist, geht man häufig so vor: Man zeigt, dass A(1) richtig ist und dass
aus A(1) die Aussage A(2) folgt. Dann zeigt man: Aus A(2) folgt A(3) “und so
weiter”, d.h. aus A(n) folgt A(n+ 1).
Diese Schlußweise wird präzisiert im Beweisprinzip der vollständigen Induktion:

Satz 1.6.1 (Vollständige Induktion) Für n ∈ N sei A(n) eine Aussage; es gelte:

(1) A(1) ist richtig.
(2) Für alle n ∈ N gelte: wenn A(n) richtig ist, dann auch A(n+ 1);

dann ist A(n) für alle n ∈ N richtig.
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Dieses Beweisprinzip folgt aus einer grundlegenden Eigenschaft der natürlichen
Zahlen: Wenn für eine Teilmenge M von N gilt: 1 ∈ M und aus n ∈ M folgt:
n+ 1 ∈M, so istM = N.
Wir erläutern die vollständige Induktion zunächst an einem einfachen Beispiel; an-
schließend beweisen wir mit Hilfe der vollständigen Induktion den binomischen
Lehrsatz.

Beispiel 1.6.2 Wir beweisen mit vollsständiger Induktion die Formel

1 + 3 + 5 + 7 + 9 + ...+ (2n− 1) = n2.

Für n ∈ N sei A(n) die Aussage

n∑
k=1

(2k − 1) = n2.

Für n = 1 steht auf der linken Seite dieser Formel
1∑

k=1

(2k − 1) = 1 und rechts

12 = 1; also ist A(1) richtig. Nun sei A(n) richtig, also
∑n

k=1(2k − 1) = n2. Zu
zeigen ist, dass auch A(n + 1) richtig ist, nämlich

∑n+1
k=1(2k − 1) = (n + 1)2. Es

gilt:

n+1∑
k=1

(2k − 1) =
n∑

k=1

(2k − 1) + (2(n+ 1) − 1) = = n2 + 2n+ 1 = (n+ 1)2.

Damit ist A(n+ 1) hergeleitet und aus 1.6.1 folgt, dass A(n) für alle n richtig ist.

Um die vollständige Induktion zu erläutern, behandeln wir zuerst den binomischen
Lehrsatz und anschliessend Polynome.

Der binomische Lehrsatz.
Bekannt sind die Formeln

(x+ y)2 = x2 + 2xy + y2

(x+ y)3 = x3 + 3x2y + 3xy2 + y3.

Wir suchen eine allgemeine Formel für (x+ y)n, n ∈ N. Dazu definiert man:

Definition 1.6.3 Für n ∈ N0 und k ∈ N0 mit 0 ≤ k ≤ n sei(
n

k

)
:=

n!
k!(n− k)! =

n · (n− 1) · ... · (n− k + 1)
1 · 2 · ... · k .

Die Zahlen
(
n
k

)
heißen Binomialkoeffizienten.
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Wir zeigen zuerst

Hilfssatz 1.6.4 Für n ∈ N, n ≥ 1 und k = 1, ..., n− 1 gilt(
n

k

)
=
(
n− 1
k − 1

)
+
(
n− 1
k

)
.

Außerdem ist (
n

0

)
= 1,

(
n

n

)
= 1.

Beweis. Es ist(
n− 1
k − 1

)
+
(
n− 1
k

)
=

(n− 1)!
(k − 1)!(n− k)! +

(n− 1)!
k!(n− k − 1)!

=

=
(n− 1)! · k
k!(n− k)! +

(n− 1)! · (n− k)
k!(n− k)! =

(n− 1)!
k!(n− k)! ·(k+n−k) =

n!
k!(n− k)! =

(
n

k

)
.

�

Auf die Bedeutung dieses Hilfssatzes gehen wir später ein. Nun zeigen wir:

Satz 1.6.5 (Binomischer Lehrsatz) Für alle n ∈ N und x, y ∈ C gilt:

(x + y)n =
n∑

k=0

(
n

k

)
xn−kyk

Beweis. Wir führen den Beweis durch vollständige Induktion. Der Induktionsanfang

(x + y)1 =
(

1
0

)
x+

(
1
1

)
y

ist offensichtlich richtig. Nun setzen wir voraus, dass

(x+ y)n−1 =
n−1∑
k=0

(
n− 1
k

)
xn−1−kyk

gilt. Multipliziert man diese Gleichung mit x+ y, so erhält man

(x+ y)n = (x+ y) ·
n−1∑
k=0

(
n−1

k

)
xn−1−kyk =

= x ·
n−1∑
k=0

(
n−1

k

)
xn−1−kyk + y ·

n−1∑
k=0

(
n−1

k

)
xn−1−kyk =

=
n−1∑
k=0

(
n−1

k

)
xn−kyk +

n−1∑
k=0

(
n−1

k

)
xn−(k+1)yk+1 =

=
n−1∑
k=0

(
n−1

k

)
xn−kyk +

n∑
l=1

(
n−1
l−1

)
xn−lyl =

=
(
n−1

0

)
xn +

n−1∑
k=1

[(
n−1

k

)
+

(
n−1
k−1

)]
xn−kyk +

(
n−1
n−1

)
yn.



28 1 Folgen und Reihen

Es ist
(
n−1

0

)
= 1 =

(
n
0

)
und

(
n−1
n−1

)
= 1 =

(
n
n

)
; der erste Summand ist also

(
n
0

)
xn

und der letzte ist
(
n
n

)
yn. Für die in der Mitte stehende Summe ist nach Hilfssatz

1.6.4 (
n− 1
k

)
+
(
n− 1
k − 1

)
=

(
n

k

)
;

und daher ergibt sich

(x+ y)n =
(
n

0

)
xn +

n−1∑
k=1

(
n

k

)
xn−kyk +

(
n

n

)
yn =

n∑
k=0

(
n

k

)
xn−kyk.

Damit ist der binomische Lehrsatz bewiesen. �

Nun soll gezeigt werden, wie man Hilfssatz 1.6.4 zur Berechnung der Binomialko-
effizienten verwenden kann. Wählt man eine natürliche Zahl n > 1 und schreibt die
zu n− 1 gehörenden Binomialkoeffizienten in eine Zeile, so erhält man durch Ad-
dition der nebeneinander stehenden Koeffizienten

(
n−1
k−1

)
+
(
n−1

k

)
den Koeffizienten(

n
k

)
: (

n−1
0

) (
n−1

1

)
...

(
n−1
k−1

) (
n−1

k

)
...

(
n−1
n−1

)
↘ ↙(

n
k

)
Beginnt man mit

(
0
0

)
= 1, so ist die nächste Zeile

(
1
0

)
= 1,

(
1
1

)
= 1, und man erhält

auf diese Weise das Pascalsche Dreieck ( BLAISE PASCAL, (1623-1662)):

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

Die vorletzte Zeile liefert z.B. die Formel

(x+ y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5.

Wir zeigen noch:

Satz 1.6.6 Für n, k ∈ N0 , 0 ≤ k ≤ n gilt:
Die Anzahl der k-elementigen Teilmengen einer n-elementigen Menge ist

(
n
k

)
.

Beweis. Wir beweisen die Aussage durch Induktion über n. Der Induktionsanfang
n = 0 ist klar. Nun sei n ∈ N und die Aussage sei für n−1 richtig. Ist dannM eine
Menge mit n Elemente, so wählen wir ein p ∈M .
Die Anzahl der k-elementigen Teilmengen A ⊂ M mit p /∈ A ist wegen A ⊂
M \ {p} nach Induktionsannahme gleich

(
n−1

k

)
.

Alle k-elementigen Teilmengen A vonM mit p ∈ A erhält man so: man wählt eine
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(k-1)-elementige Teilmenge von M \ {p} und fügt p hinzu; die Anzahl der (k-1)-
elementigen Teilmengen vonM \ {p} ist

(
n−1
k−1

)
.

Die Anzahl aller k-elementigen Teilmengen von M ist also
(
n−1

k

)
+

(
n−1
k−1

)
, und

dies ist nach 1.6.4 gleich
(
n
k

)
. �


Polynome
Ist

p(X) = anXn + an−1X
n−1 + . . .+ a1X + a0

ein Polynom mit Koeffizienten an . . . , a0 ∈ C, und ist an �= 0, so ist gr(p) := n
der Grad von p. Es gilt gr(p · q) = gr(p)gr(q).
Nun zeigen wir :

Satz 1.6.7 Ist p ein Polynom n-ten Grades , n > 1, und ist c eine Nullstelle von p,
so existiert ein Polynom q von Grad (n− 1) mit

p(X) = (X − c)q(X).

Beweis. Zunächst sei p(c) beliebig; wir zeigen, dass p(X)−p(c) durchX−c teilbar
ist. Für den Spezialfall p(X) = Xn ist dies klar: Setzt man g1(X) := 1 und

gn(X) := Xn−1 + cXn−2 + . . .+ cn−2X + cn−1 für n ≥ 2,

so gilt (X − c)gn(X) = Xn − cn.
Ist nun p(X) = anXn + an−1X

n−1 + . . .+ a1X + a0 , so ist

p(X) − p(c) =
n∑

k=1

ak(Xk − ck) = (X − c)
n∑

k=1

akgk(X) = (X − c)q(X)

mit q(X) :=
n∑

k=1

akgk(X).

Falls p(c) = 0 ist, folgt die Aussage des Satzes. �

Die Koeffizienten bk von q(X) = bn−1X

n−1 + bn−2X
n−2 + . . .+ b1X + b0 und

p(c) erhält man folgendermassen: Aus

anX
n + . . .+ a0 − p(c) = (X − c)(bn−1X

n−1 + . . .+ b0)

folgt an = bn−1, an−1 = bn−2 − cbn−1, . . . , a1 = b0 − cb1, a0 − p(c) = −cb0,

also bn−1 = an, bn−2 = an−1 + cbn−1, . . . , b0 = a1 + cb0, p(c) = a0 + cb0

Das Hornersche Schema
Die Berechnung von bn−1, . . . , b0 und p(c) geschieht nach dem Hornerschen Sche-
ma (WILLIAM HORNER (1786-1837)):
Man schreibt die an, . . . , a0 in die erste Zeile; es ist bn−1 = an; dies multipli-
ziert man mit c , addiert es zu an−1 und erhält bn−2. Dann multipliziert man bn−2
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mit c, addiert c · bn−2 zu an−2 und erhält bn−3. Auf diese Weise errechnet man
bn−1, . . . , b0 und zuletzt p(c).

an an−1 an−2 an−3 . . . a1 a0
c · bn−1 c · bn−2 c · bn−3 . . . c · b1 c · b0

bn−1 bn−2 bn−3 bn−4 . . . b0 p(c)

Beispiel 1.6.8 Es sei p(X) = X4 −X3 − 2X − 4 und c = 2 .Man erhält

1 −1 0 −2 −4
2 2 4 4

1 1 2 2 0

Es ergibt sich q(X) = X3 +X2 + 2X + 2.

Daraus folgt:

Satz 1.6.9 Ein Polynom vom Grad n ≥ 1 hat höchstens n Nullstellen.

Beweis. Wir beweisen den Satz mit vollständiger Induktion.
Für n = 1 ist p(X) = a1X+a0 mit a1 �= 0 und dafür ist die Ausssage offensichtlich
richtig. Nun sei n ≥ 2 und der Satz sei für Polynome vom Grad ≤ (n − 1) richtig.
Ist dann p ein Polynom vom Grad n und ist c eine Nullstelle von p, so hat man
p(X) = (X − c)q(X) mit grq = n− 1. Aus p(c′) = 0 und c �= c′ folgt q(c′) = 0.
Weil q höchstens n− 1 Nullstellen hat, folgt: p hat höchstens n Nullstellen. �

In 14.7.3 zeigen wir, dass in C jedes Polynom mindestens eine Nullstelle besitzt;
durch Induktion ergibt sich daraus:

Satz 1.6.10 (Fundamentalsatz der Algebra) Ist

p(X) = anXn + an−1X
n−1 + . . .+ a1X + a0

ein Polynom von Grad n ≥ 1 mit an, . . . , a0 ∈ C; an �= 0, so existieren
c1, . . . , cn ∈ C mit

p(X) = an · (X − c1) · . . . · (X − cn)

Mit paarweise verschiedenen Nullstellen c1 . . . , cm ist

p(X) = an(X − c1)r1 · . . . · (X − cm)rm

dabei ist rk ∈ N die Vielfachheit der Nullstelle ck.
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Beweis Der Induktionsanfang n = 1 ist klar; nun sei n ≥ 2 und der Satz sei für
Polynome vom Grad ≤ n−1 richtig. Ist dann p ein Polynom vom Gradn, so existiert
nach 14.7.3 ein c1 ∈ C mit p(c1) = 0. Dann ist p(X) = (X − c1)q(X) und nach
Induktionsannahme gibt es c2, . . . , cn ∈ C mit q(X) = an ·(X−c2) · . . . ·(X−cn),
also p(X) = an · (X − c1) · (X − c2) · . . . · (X − cn). �

Polynome 3.Grades
Die Nullstellen eines Polynoms 2.Grades aX2+bX+c kann man bekanntlich durch

−b±√
b2 − 4ac

2a

darstellen.
Schon vor 500 Jahren beschäftigten sich Mathematiker wie SCIPIONE DEL FER-
RO (1465-1526), NICOLO TARTAGLIA (1499/1500-1557), GIROLAMO CARDANO

(1501-1576) mit der Lösung von Gleichungen 3. Grades. Dies soll kurz geschildert
werden; eine ausführliche Darstellung findet man in [9].
Zunächst bringt manX3+a2X2+a1X+a0, durch die Substitution X̃ = X+ a2

3 ,
auf die Form

X3 + pX + q.

Nun macht man für die Nullstellen den Ansatz x = u+ v;
es ist x3 = u3 + v3 + 3uv(u+ v) und daher

x3 + px+ q = (u3 + v3 + q) + (3uv + p)(u+ v).

Man sucht nun u, v so, dass

u3 + v3 = −q, 3uv = −p

ist. Es ist (
u3 + v3

2

)2

−
(
u3 − v3

2

)2

= u3v3

also (q
2

)2

−
(
u3 − v3

2

)2

=
(
−p

3

)3

.

Setzt man

d :=
( q

2

)2

+
(p

3

)3

,

so ergibt sich
u3 + v3

2
= − q

2
,

u3 − v3
2

=
√
d.

Daraus rechnet man u, v aus:

u = 3

√
− q

2
+
√
d, v = 3

√
− q

2
−
√
d,
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dabei wählt man die 3.Wurzeln so, dass uv = − p
3 ist. Nun sei � = − 1

2 + 1
2

√
3 eine

3. Einheitswurzel; dann sind die Lösungen von x3 + px+ q = 0 :

u+ v; �u+ �2v, �2u+ �v.

Damit ergibt sich eine Formel, die nach CARDANO benannt ist:

Satz 1.6.11 ( Formel von Cardano ) Die Nullstellen von x3 + px+ q sind

3

√
− q

2
+

√( q
2

)2

+
(p

3

)3

+
3

√
− q

2
−
√(q

2

)2

+
(p

3

)3

;

dabei sind die 3.Wurzeln so zu wählen, dass ihr Produkt − p
3 ist.

Auch für Polynome 4.Grades gibt es eine Formel für die Nullstellen. Dagegen hat
NIELS HENRIK ABEL (1802-1829 )im Jahr 1826 gezeigt, dass man die Nullstellen
eines allgemeinen Polynoms 5. und höheren Grades nicht durch Radikale darstellen
kann.

Beispiel 1.6.12 Wir bringen ein Beispiel, das bereits von RAFFAEL BOMBELLI

(1526-1572) behandelt wurde; es sollen die Nullstellen von

x3 − 15x− 4

berechnet werden.
Es ist

q

2
= −2,

p

3
= −5, d = −121.

Die Formel von Cardano liefert für die Nullstellen

3
√

2 +
√−121 +

3
√

2 −√−121 = 3
√

2 + 11i + 3
√

2 − 11i.

Es ist (2 ± i)3 = 2 ± 11i und daher erhält man eine Nullstelle x1so:

x1 = (2 + i) + (2 − i) = 4.

Die anderen Nullstellen sind nach der Formel von Cardano:
x2 = (2 + i)(− 1

2 + i
2

√
3) + (2 − i)(− 1

2 − i
2

√
3) =

= 1
2 (−2 −√

3 + i(−1 + 2
√

3)) + 1
2 (−2 −√

3 + i(1 − 2
√

3)) = −2 −√
3,

x3 = −2 +
√

3.
(Natürlich kann man, wenn man die Nullstelle x1 = 4 kennt, x2, x3 auch als Null-
stellen von (x3 − 15x− 4) : (x− 4) = x2 + 4x+ 1 ausrechnen.)
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x1 = 4x2 x3
x

1

x3 − 15x− 430

Man erhält also bei Anwendung der Formel von Cardano die drei reellen Nullstellen
nur, wenn man mit komplexen Zahlen wie

√−121 = 11i rechnet. Die Tatsache,
dass man bei der Berechnung reeller Nullstellen komplexe Zahlen benötigt, hat bei
der Einführung komplexer Zahlen eine grosse Rolle gespielt.

Aufgaben

1.1. Zeigen Sie: Für x, y ∈ R gilt:

max(x, y) =
1

2
(x + y + |x − y|); min(x, y) =

1

2
(x + y − |x − y|)

1.2. Zeigen Sie

lim
n→∞

�
1

n
= 0 und lim

n→∞
(
√

n + 1 −√
n) = 0

(Hinweis: (x − y)(x + y) = x2 − y2)

1.3. Sei (an)n eine Folge mit an ∈ {0, 1, 2, ..., 8, 9}; dann heißt
∞�

n=1

an ·10−n ein Dezimal-

bruch; zeigen Sie, dass jeder Dezimalbruch konvergiert.
Sei an = 3 für ungerade n und an = 7 für gerade n; berechnen Sie den zugehörigen Dezi-
malbruch.

1.4. Konvergiert die Reihe
∞�

n=1

n3

3n
?

1.5. Berechnen Sie ∞�
n=2

1

n2 − 1
.

1.6. Zeigen Sie, dass für n ∈ N gilt:

1 + 2 + . . . + n =
1

2
n(n + 1), (1 + 2 + ... + n)2 = 13 + 23 + ... + n3.
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1.7. Zeigen sie für m ∈ N:

m�
n=1

n2 =
1

6
m(m + 1)(2m + 1)

1.8. Zeigen Sie für n ∈ N:
n�

k=1

�
n

k

�
= 2n.

1.9. Geben Sie die folgenden komplexen Zahlen in der Form x + iy mit x, y ∈ R an:

1

3 + 2i
,

1 + i

1 − i
, (

−1 + i
√

3

2
)30.

1.10. Berechnen Sie alle komplexen Nullstellen von x5 − x4 + 2x3 − 2x2 + x − 1

1.11. Bestimmen Sie mit dem Ansatz p(X) = c0 + c1x + c2x(x− 1) + c3x(x− 1)(x− 2)
ein Polynom p mit

p(0) = 2, p(1) = 0, p(2) = −2, p(3) = 2.

1.12. Für n ∈ N sei

an :=

2n�
k=n

1

k
, bn :=

2n�
k=n+1

1

k
, cn :=

n�
k=1

(−1)k+1 · 1

k
.

Zeigen Sie, dass die Folgen (an), (bn), (cn) konvergent sind und den gleichen Grenzwert
L besitzen. ( In Aufgabe 5.7 und Beispiel 6.2.10 wird L berechnet).
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Stetige Funktionen

2.1 Stetigkeit

Nun führen wir den wichtigen Begriff der Stetigkeit ein; dabei geht man aus von
der Vorstellung, dass bei einer stetigen Funktion gilt: “Wenn der Punkt x nahe beim
Punkt a liegt, so ist der Funktionswert f(x) nahe bei f(a)”. Dies wird so präzisiert:

Definition 2.1.1 Es sei D ⊂ R, eine Funktion f : D → R heißt stetig im Punkt
a ∈ D, wenn es zu jedem ε > 0 ein δ > 0 gibt, so dass für alle x ∈ D mit |x−a| < δ
gilt:

|f(x) − f(a)| < ε.
Eine Funktion f : D → R heißt stetig, wenn sie in jedem Punkt a ∈ D stetig ist.

Die Zahl δ hängt also vom Punkt a und von ε ab, daher schreibt man auch δ =
δ(ε, a).
Man nennt diese Definition kurz die ε− δ-Definition der Stetigkeit.

a

f(a)

δ δ

ε
ε

f

Die Stetigkeit einer Funktion kann man auch durch Konvergenz von Folgen aus-
drücken. Die Stetigkeit einer Funktion f im Punkt a wird oft so veranschaulicht:
“Wenn x gegen a strebt, dann strebt f(x) gegen f(a)”. Dies wird im folgenden
Satz präzisiert:

Satz 2.1.2 Eine Funktion f : D → R ist in a ∈ D genau dann stetig, wenn für
jede Folge (xn)n in D, die gegen a konvergiert, die Folge (f(xn))n gegen f(a)
konvergiert.
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Beweis. a) Die Funktion f sei in a stetig und lim
n→∞xn = a, xn ∈ D; zu zeigen

ist: lim
n→∞ f(xn) = f(a). Sei ε > 0; dann existiert ein δ > 0 mit |f(x) − f(a)| < ε

für x ∈ D, |x − a| < δ. Weil (xn)n gegen a konvergiert, existiert ein N ∈ N mit
|xn − a| < δ für n ≥ N. Für alle n ≥ N folgt dann |f(xn) − f(a)| < ε und damit
ist die Behauptung bewiesen.
b) Um die Umkehrung zu beweisen, nehmen wir an, f sei in a unstetig. Dann gibt
es ein ε > 0, so dass zu jedem δn = 1

n , n ∈ N, ein xn ∈ D existiert mit
|xn − a| < 1

n und |f(xn) − f(a)| ≥ ε. Dann konvergiert (xn)n gegen a, aber
(f(xn))n konvergiert nicht gegen f(a). �

Die soeben bewiesene Aussage kann man kürzer formulieren, wenn man den Begriff
des Grenzwerts einer Funktion f in einem Punkt a ∈ D einführt. Wir setzen a ∈ D
voraus, weil es dann immer eine Folge in D gibt, die gegen a konvergiert.

Definition 2.1.3 Es sei D ⊂ R, a ∈ D, c ∈ R. Man sagt, f : D → R be-
sitzt in a den Grenzwert c, wenn für jede Folge (xn)n in D mit lim

n→∞xn = a gilt:

lim
n→∞ f(xn) = c; man schreibt dann

lim
x→a
f(x) = c.

Man kann leicht zeigen

Hilfssatz 2.1.4 Es gilt lim
x→a
f(x) = c genau dann, wenn zu jedem ε > 0 ein δ > 0

existiert, so dass für alle x ∈ D mit |x− a| < δ gilt: |f(x) − c| < ε.
Die Aussage von Satz 2.1.2 kann man nun so formulieren:

Satz 2.1.5 Eine Funktion f : D → R ist in a ∈ D genau dann stetig, wenn gilt:

lim
x→a
f(x) = f(a).

Aus den Rechenregeln für konvergente Folgen und Satz 2.1.2 ergibt sich

Satz 2.1.6 Sind f : D → R und g : D → R stetig, so auch f + g und f · g. Falls
g(x) �= 0 für x ∈ D gilt, ist auch f

g stetig.

Wir bezeichnen den Vektorraum aller aufD stetigen Funktionen mit

C0(D) := {f : D → R| f ist stetig}.
(In 3.1 und Beispiel 7.2.7 behandeln wir den Vektorraum Ck(D) aller k-mal stetig
differenzierbaren Funktionen.)
Unter geeigneten Voraussetzungen kann man Funktionen f und g “ineinander ein-
setzen”, das heißt, man bildet die Funktion x 	→ g(f(x)) :

Definition 2.1.7 Sind D ⊂ R, E ⊂ R, f : D → R und g : E → R und ist
f(D) ⊂ E, so wird die Funktion g ◦ f definiert durch

g ◦ f : D → R, x 	→ g(f(x)).
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Satz 2.1.8 Sind f : D → R und g : E → R stetig und f(D) ⊂ E, so ist auch g ◦ f
stetig.

Beweis. Sei a ∈ D und (xn)n eine Folge in D mit lim
n→∞xn = a. Aus der Stetig-

keit der Funktion f folgt lim
n→∞ f(xn) = f(a) und aus der Stetigkeit von g folgt

lim
n→∞ g(f(xn)) = g(f(a)). �

Beispiel 2.1.9 Ist c ∈ R, so ist die konstante Funktion R → R, x 	→ c, stetig. Um
dies zu beweisen, kann man zu gegebenen ε > 0 immer δ := 1 wählen. Auch die
Funktion R → R, x 	→ x, ist stetig; zu ε > 0 kann man δ := ε wählen. Aus 2.1.6
folgt, dass auch die durch x2, x3, ..., xn, ... gegebenen Funktionen stetig sind.
Ist p(X) = a0+a1X+...+anXn ein Polynom mit reellen Koeffizienten a0, ..., an,
so ist die dadurch definierte Funktion p : R → R, x 	→ p(x), ebenfalls stetig.

Wir zeigen nun: Wenn eine stetige Funktion in einem Punkt x0 positiv ist, so ist sie
in einer ganzen Umgebung von x0 positiv:

Satz 2.1.10 Sei f : D → R in x0 ∈ D stetig und f(x0) > 0. Dann existiert ein
δ > 0, so dass für alle x ∈ D mit |x− x0| < δ gilt: f(x) > 0.

Beweis. Zu ε := 1
2f(x0) > 0 existiert ein δ > 0, so dass für x ∈ D, |x − x0| < δ,

gilt: f(x0) − ε < f(x) < f(x0) + ε, also 0 < 1
2f(x0) < f(x). �


Zur Charakterisierung der Stetigkeit kann man auch den Begriff der Umgebung und
der offenen Menge verwenden. Wir erinnern an den Begriff der ε-Umgebung von
a; für ε > 0 ist Uε(a) = {x ∈ R| |x − a| < ε}; eine Teilmenge U ⊂ R hatten
wir als Umgebung von a bezeichnet, wenn ein ε > 0 existiert mit Uε(a) ⊂ U . Wir
verallgemeinern diesen Begriff:

Definition 2.1.11 Sei D eine beliebige Teilmenge von R; dann heißt U ⊂ D eine
Umgebung von a ∈ D bezüglichD, wenn ein ε > 0 existiert mit

{x ∈ D| |x− a| < ε} ⊂ U.
Eine Teilmenge W ⊂ D heißt offen bezüglich D, wenn es zu jedem w ∈ W ein
ε > 0 gibt mit {x ∈ D| |x− w| < ε} ⊂W.
Es gilt:

Satz 2.1.12 f : D → R ist in a ∈ D genau dann stetig, wenn es zu jeder Umgebung
V von f(a) eine Umgebung U von a bezüglichD gibt mit f(U) ⊂ V.

Ist f : D → R eine Funktion undW ⊂ R, so ist
−1

f (W ) := {x ∈ D| f(x) ∈ W}
das Urbild vonW . Damit können wir 2.1.12 so formulieren:

Satz 2.1.13 f : D → R ist in a ∈ D genau dann stetig, wenn für jede Umgebung

V von f(a) gilt:
−1

f (V ) ist Umgebung von a.

Daraus ergibt sich:

Satz 2.1.14 f : D → R ist genau dann stetig, wenn für jede offene MengeW ⊂ R

gilt:
−1

f (W ) ist offen bezüglichD.
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2.2 Stetige Funktionen auf abgeschlossenen Intervallen

In diesem Abschnitt wird gezeigt, dass jede auf einem abgeschlossenen Intervall
stetige Funktion f : [a, b] → R Maximum und Minimum annimmt; das wichtigste
Ergebnis ist der Zwischenwertsatz: Eine stetige Funktion, die positive und negative
Werte annimmt, besitzt mindestens eine Nullstelle.
Zuerst zeigen wir:

Hilfssatz 2.2.1 Jede stetige Funktion f : [a, b] → R ist beschränkt, d.h. es gibt ein
M ∈ R mit

|f(x)| ≤M für alle x ∈ [a, b].

Beweis. Wenn f nicht beschränkt ist, dann existiert zu jedem n ∈ N ein xn ∈ [a, b]
mit |f(xn)| > n. Die Folge (xn) liegt in [a, b]; sie ist also beschränkt und nach
1.4.19 besitzt sie eine Teilfolge (xnk

)k, die gegen ein c ∈ [a, b] konvergiert. Wegen
der Stetigkeit von f ist lim

k→∞
f(xnk

) = f(c). Nach 1.4.11 ist die Folge (f(xnk
))k

beschränkt, dies widerspricht |f(xnk
)| > nk. �


Satz 2.2.2 Jede stetige Funktion f : [a, b] → R nimmt Maximum und Minimum an,
d.h. es gibt Punkte p, q ∈ [a, b] mit

f(p) ≤ f(x) ≤ f(q) für alle x ∈ [a, b].

Beweis. Es genügt, zu zeigen, dass f das Maximum annimmt; die Existenz des
Minimums ergibt sich durch Übergang zu −f . Das Bild f([a, b]) ist beschränkt,
daher existiert das Supremum

s := sup f([a, b]).

Für n ∈ N ist s− 1
n keine obere Schranke von f([a, b]) daher existiert ein xn ∈ [a, b]

mit s− 1
n < f(xn) ≤ s.Wegen 1.4.19 darf man nach Übergang zu einer Teilfolge

annehmen, dass (xn) gegen ein q ∈ [a, b] konvergiert. Wegen der Stetigkeit von f
ist lim

n→∞ f(xn) = f(q) und aus s− 1
n < f(xn) ≤ s folgt lim

n→∞ f(xn) = s, also ist

f(q) = s und daher f(x) ≤ f(q) für alle x ∈ [a, b]. Damit ist der Satz bewiesen.
�


Nun beweisen wir den Nullstellensatz und den Zwischenwertsatz. Der Nullstellen-
satz besagt, dass eine stetige Funktion f , die an einer Stelle a negativ und an einer
Stelle b positiv ist, dazwischen eine Nullstelle hat, Diese Ausage ist anschaulich
so einleuchtend, dass Mathematiker früherer Jahrhunderte diesen Satz ohne Beweis
verwendet haben. Dass hier die Vollständigkeit von R wesentlich ist, zeigt ein ein-
faches Beispiel:
Die Funktion f : {x ∈ Q| 0 ≤ x ≤ 2} → Q, x 	→ x2 − 2, ist stetig und
f(0) = −2, f(2) = 2 . Es gibt aber keine rationale Zahl x mit x2 = 2 und daher
hat f (im nicht -vollständigen Körper Q) keine Nullstelle.
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Satz 2.2.3 (Nullstellensatz von Bolzano). Sei f : [a, b] → R eine stetige Funktion
und f(a) < 0 < f(b) . Dann existiert ein ξ ∈]a, b[ mit

f(ξ) = 0.

Wir geben für diesen wichtigen Satz zwei Beweise:
1. Beweis. Es sei

M := {x ∈ [a, b]| f(x) < 0}.
Weil R vollständig ist, existiert s := supM. Nach 2.1.10 ist f in einer Umgebung
von a negativ und in einer Umgebung von b positiv und daher ist a < s < b. Wir
zeigen: f(s) = 0. Zuerst nehmen wir an, es sei f(s) < 0. Dann existiert nach
2.1.10 ein δ > 0 mit s+ δ < b, so dass f in [s, s+ δ] negativ ist. Daraus folgt aber
supM ≥ s+ δ. - Nun sei f(s) > 0, dann existiert ein δ > 0 mit a < s− δ, so dass
f in [s−δ, s] positiv ist. Daraus folgt aberM ⊂ [a, s−δ], also wäre supM ≤ s−δ.
Daraus ergibt sich f(s) = 0.
2.Beweis.Diese Beweismethode ermöglicht eine näherungsweise Berechnung einer
Nullstelle ξ von f . Durch sukzessives Halbieren von Intervallen konstruiert man,
beginnend mit [a, b], eine Folge von Intervallen [an, bn] mit folgenden Eigenschaf-
ten:

(1) [an, bn] ⊃ [an+1, bn+1]
(2) bn+1 − an+1 = 1

2 (bn − an) = 2−(n+1) · (b− a),
(3) f(an) ≤ 0, f(bn) > 0.

Man beginnt mit a0 := a, b0 := b, setzt c0 := a0+b0
2 und definiert a1, b1 so:

für f(c0) > 0 sei a1 := a0, b1 := c0,
für f(c0) ≤ 0 sei a1 := c0, b1 := b0.

Ist [an, bn] bereits konstruiert, so setzt man cn := an+bn

2 und definiert an+1, bn+1

so:
für f(cn) > 0 sei an+1 := an, bn+1 := cn,
für f(cn) ≤ 0 sei an+1 := cn, bn+1 := bn.

Dann ist die Folge (an) monoton wachsend, (bn) ist monoton fallend, beide Folgen
sind beschränkt und daher (wegen der Vollständigkeit von R) konvergent. Wegen
(2) haben sie den gleichen Grenzwert, den wir mit ξ bezeichnen. Aus Eigenschaft
(3) und der Stetigkeit von f folgt

f(ξ) = lim
n→∞ f(an) ≤ 0, f(ξ) = lim

n→∞ f(bn) ≥ 0,

somit f(ξ) = 0.
Die Nullstelle ξ liegt in [an, bn]; damit hat man ξ näherungsweise berechnet. �

Eine etwas allgemeinere Aussage ergibt sich unmittelbar.

Satz 2.2.4 (Zwischenwertsatz). Ist f : [a, b] → R stetig und f(a) < f(b), so
existiert zu jeder reellen Zahl w mit f(a) < w < f(b) ein ξ ∈ [a, b] mit

f(ξ) = w.
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Zum Beweis wendet man den Nullstellensatz auf die Funktion g(x) := f(x) − w
an. �

Eine analoge Aussage gilt natürlich, falls f(b) < f(a).

Die vorstehenden Sätze kann man so zusammenfassen:

Satz 2.2.5 Ist D ⊂ R und f : D → R stetig, so ist das Bild jedes in D liegenden
abgeschlossenen Intervalls wieder ein abgeschlossenes Intervall.

Ist nämlich [a, b] ⊂ D so nimmt f auf [a, b] das Minimum m und das Maximum
M an; für alle x ∈ [a, b] ist also m ≤ f(x) ≤ M , somit f([a, b]) ⊂ [m,M ].
Nach dem Zwischenwertsatz nimmt f jeden Wert w ∈ [m,M ] an, daher ist
f([a, b]) = [m,M ].
Aus dem Zwischenwertsatz folgt unmittelbar ein Fixpunktsatz; dabei heißt p Fix-
punkt von f , wenn f(p) = p ist.

Satz 2.2.6 (Fixpunktsatz) Jede stetige Abbildung f : [a, b] → [a, b] besitzt einen
Fixpunkt p ∈ [a, b] .

Beweis. Man setzt h : [a, b] → R, x 	→ f(x) − x. Wegen a ≤ f(x) ≤ b ist
h(a) = f(a) − a ≥ 0 und h(b) = f(b) − b ≤ 0. Nach dem Zwischenwertssatz
existiert ein p ∈ [a, b] mit h(p) = 0, also f(p) = p. �

Gleichmäßige Stetigkeit.
Bei vielen Problemen, z.B. in der Integrationstheorie, benötigt man einen schärferen
Begriff der Stetigkeit. Wenn eine Funktion f : D → R stetig ist, dann bedeutet dies,
dass zu jedem a ∈ D und ε > 0 ein δ > 0 existiert mit |f(x)−f(a)| < ε für x ∈ D,
|x− a| < δ; die Zahl δ hängt also von a und ε ab. Bei der gleichmäßigen Stetigkeit
wird gefordert, dass δ unabhängig vom Punkt a ∈ D gewählt werden kann; man
definiert also:

Definition 2.2.7 Eine Funktion f : D → R heißt gleichmäßig stetig, wenn es zu
jedem ε > 0 ein δ > 0 gibt, so dass für alle x, x′ ∈ D mit |x− x′| < δ gilt:

|f(x) − f(x′)| < ε.

Es ist klar, dass jede gleichmäßig stetige Funktion auch stetig ist. Wir erläutern den
Unterschied zwischen beiden Begriffen am Beispiel einer Funktion, die stetig, aber
nicht gleichmäßig stetig ist.

a q = bp ξ

m

w

M f
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Beispiel 2.2.8 Die Funktion f : R → R, x 	→ x2, ist nicht gleichmäßig stetig.
Wenn nämlich f gleichmäßig stetig wäre, müßte es zu ε = 1 ein geeignetes δ > 0
geben. Wir wählen dann x > 1

δ und setzen x′ := x+ 1
x . Dann ist |x′ − x| = 1

x < δ,
aber f(x′) − f(x) = (x + 1

x)2 − x2 = 2 + 1
x2 > 2.

Nun zeigen wir, dass auf abgeschlossenen Intervallen die beiden Stetigkeitsbegriffe
übereinstimmen:

Satz 2.2.9 Jede auf einem abgeschlossenen Intervall stetige Funktion ist gleich-
mäßig stetig.

Beweis. Wir nehmen an, f : [a, b] → R sei stetig, aber nicht gleichmäßig stetig.
Dann existiert ein ε > 0 mit folgender Eigenschaft: Zu jedem δ = 1

n , n ∈ N, gibt
es Punkte xn, x

′
n ∈ [a, b], so dass |xn − x′n| < 1

n ist, aber |f(xn) − f(x′n)| ≥ ε
für alle n ∈ N. Nach 1.4.19 enthält (xn)n eine konvergente Teilfolge (xnk

)k , deren
Grenzwert wir mit c bezeichnen; aus 1.4.15 folgt c ∈ [a, b]. Wegen |xnk

−x′nk
| < 1

nk

konvergiert (x′nk
)k ebenfalls gegen c. Aus der Stetigkeit von f im Punkt c folgt, dass

die Folgen (f(xnk
))k und (f(x′nk

))k gegen f(c) konvergieren. Daher konvergiert
(f(xnk

) − f(x′nk
))k gegen 0 und dies ergibt einen Widerspruch zu

|f(xnk
) − f(x′nk

)| ≥ ε für alle k ∈ N.

�


Aufgaben

2.1. a) Beweisen Sie die gleichmäßige Stetigkeit der Funktion b : R → R, x �→ |x|.
b) Sei f : R → R stetig; zeigen Sie, dass auch |f | stetig ist.
c) Es sei f : R → R stetig und

f+ : R → R, x �→
�

f(x) falls f(x) ≥ 0
0 falls f(x) < 0.

f− : R → R, x �→
�

0 falls f(x) ≥ 0
−f(x) falls f(x) < 0.

.

Zeigen Sie, dass die Funktionen f+ und f− stetig sind.
d) Die Funktionen f, g : R → R, seien stetig. Zeigen Sie , dass dann auch

max(f, g) : R → R, x �→ max(f(x), g(x)), min(f, g) : R → R, x �→ min(f(x), g(x)),

stetig sind.

2.2. Ist die Funktion R → R, x �→ x3, gleichmässig stetig ?
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Differenzierbare Funktionen

3.1 Differenzierbarkeit

Um den Begriff der Differenzierbarkeit einzuführen, kann man von der Frage aus-
gehen, wie man die Steigung einer Funktion f im Punkt x0 definiert. Für x �= x0 ist
f(x)−f(x0)

x−x0
die Steigung der Geraden durch (x0, f(x0)) und (x, f(x)). Im Grenz-

wert für x→ x0 erhält man die Steigung der Tangente, die man als Steigung von f
in x0 interpretiert und mit f ′(x0) oder df

dx(x0) bezeichnet.
Dies soll nun präzisiert werden. Wir setzen dazu immer voraus, dass es zu jedem
x0 ∈ D eine Folge (xn)n gibt mit xn ∈ D, xn �= x0 für n ∈ N und lim

n→∞xn = x0.
Diese Voraussetzung ist erfüllt, wennD ein Intervall ist.

Definition 3.1.1 Eine Funktion f : D → R heißt in x0 ∈ D differenzierbar, wenn
es eine reelle Zaht f ′(x0) gibt mit folgender Eigenschaft: Zu jedem ε > 0 existiert
ein δ > 0, so dass für alle x ∈ D mit 0 < |x− x0| < δ gilt:∣∣∣∣f(x) − f(x0)x− x0 − f ′(x0)

∣∣∣∣ < ε.
Dies ist gleichbedeutend mit

f ′(x0) = lim
x→x0

f(x) − f(x0)
x− x0 , (x ∈ D,x �= x0);

wir schreiben auch
df
dx

(x0) := f ′(x0).

Die Funktion f heißt differenzierbar, wenn sie in jedem Punkt x0 ∈ D differenzier-
bar ist.

Der Begriff “Differenzierbarkeit” soll noch erläutert und anders formuliert wer-
den. Wir erinnern daran, dass eine Funktion q in x0 genau dann stetig ist, wenn
lim

x→x0
q(x) = q(x0) gilt; daher ergibt sich:
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Satz 3.1.2 Für jede Funktion f : D → R gilt:

(1) Wenn f in x0 ∈ D differenzierbar ist, so ist

q : D → R, x 	→
{

f(x)−f(x0)
x−x0

für x �= x0
f ′(x0) für x = x0

in x0 stetig.
(2) Wenn es eine in x0 ∈ D stetige Funktion q : D → R gibt mit q(x) = f(x)−f(x0)

x−x0
für x �= x0, so ist f in x0 differenzierbar und f ′(x0) = q(x0).

Bemerkung. Man kann diese Aussage so formulieren: f ist genau dann im Punkt
x0 differenzierbar, wenn der Differenzenquotient in den Punkt x0 hinein stetig fort-
setzbar ist; man vergleiche dazu 14.1.5.
Setzt man c := f ′(x0) = q(x0) und ϕ(x) := q(x)− c, so ist ϕ(x) = f(x)−f(x0)

x−x0
− c

oder f(x) − f(x0) = c · (x− x0) + (x− x0)ϕ(x) und man erhält:

Hilfssatz 3.1.3 f : D → R ist in x0 ∈ D genau dann differenzierbar, wenn es ein
c ∈ R und eine Funktion ϕ : D → R gibt mit ϕ(x0) = 0,

f(x) = f(x0) + c · (x− x0) + (x− x0)ϕ(x) für x ∈ D, lim
x→x0

ϕ(x) = 0;

c und ϕ sind eindeutig bestimmt, c = f ′(x0).

Mit ψ(x) := (x− x0) · ϕ(x) erhält man:

Hilfssatz 3.1.4 f : D → R ist in x0 ∈ D genau dann differenzierbar, wenn es ein
c ∈ R und eine Funktion ψ : D → R gibt mit ψ(x0) = 0,

f(x) = f(x0) + c · (x− x0) + ψ(x) für x ∈ D, lim
x→x0

ψ(x)
x− x0 = 0;

c und ψ sind eindeutig bestimmt, c = f ′(x0).

Hier wird die Grundidee der Differentialrechnung, nämlich die Linearisierung, deut-
lich: Man ersetzt f durch die Funktion x 	→ f(x0) + c · (x − x0), deren Graph die
Tangente ist; der “Fehler” ist ψ ; dieser geht für x → x0 so gegen Null, dass sogar
lim

x→x0

ψ(x)
x−x0

= 0 ist.

Nun ergibt sich

Satz 3.1.5 Jede differenzierbare Funktion ist stetig.

Beweis. lim
x→x0

f(x) = f(x0) + lim
x→x0

(c(x − x0) + ψ(x)) = f(x0). �

Wir notieren nun die Rechenregeln für differenzierbare Funktionen :

Satz 3.1.6 Es seien f : D → R und g : D → R differenzierbare Funktionen. Dann
sind auch f + g und f · g differenzierbar und es gilt:

(f + g)′ = f ′ + g′ (1)
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(f · g)′ = f ′g + f · g′ (Produktregel). (2)

Falls g keine Nullstelle hat, ist auch f
g differenzierbar und

(
f

g
)′ =

f ′g − fg′
g2

(Quotientenregel). (3)

Beweis. Wir beweisen die Produktregel (2) und verwenden dazu Hilfssatz 3.1.3: Ist
x0 ∈ D, so gibt es Funktionen ϕ1 : D → R und ϕ2 : D → R mit

f(x) = f(x0) + f ′(x0) · (x − x0) + (x− x0) · ϕ1(x), lim
x→x0

ϕ1(x) = 0,

g(x) = g(x0) + g′(x0) · (x− x0) + (x− x0) · ϕ2(x), lim
x→x0

ϕ2(x) = 0.

Daraus ergibt sich

f(x)·g(x) = f(x0)·g(x0)+(f ′(x0)g(x0) + f(x0) · g′(x0))︸ ︷︷ ︸ ·(x−x0)+(x−x0)·η(x)

mit

η(x) := f(x0)ϕ2(x) + g(x0)ϕ1(x) + f ′(x0)ϕ2(x)(x − x0)+
+g′(x0) · ϕ1(x) · (x− x0) + f ′(x0) · g′(x0) · (x− x0) + ϕ1(x) · ϕ2(x) · (x − x0).

Offensichtlich ist lim
x→x0

η(x) = 0 und aus Hilfssatz 3.1.3 folgt, dass f · g differen-

zierbar ist und

(f · g)′(x0) = f ′(x0) · g(x0) + f(x0) · g′(x0).

Die Quotientenregel (3) beweisen wir in 3.1.10. �

Besonders wichtig ist die Kettenregel; diese gibt an, wie man die Ableitung einer
Funktion (g ◦ f)(x) = g(f(x)) erhält:

Satz 3.1.7 (Kettenregel.) Sind f : D → R und g : E → R differenzierbar und
f(D) ⊂ E, so ist auch g ◦ f : D → R, x 	→ g(f(x)), differenzierbar und es gilt

(g ◦ f)′(x) = g′(f(x)) · f ′(x).

Beweis. Sei x0 ∈ D und y0 := f(x0); nach Hilfssatz 3.1.3 gibt es Funktionen
ϕ1 : D → R und ϕ2 : E → R , so dass für x ∈ D, y ∈ E gilt:

f(x) = f(x0) + f ′(x0) · (x− x0) + (x − x0) · ϕ1(x), lim
x→x0

ϕ1(x) = 0,

g(y) = g(y0) + g′(y0) · (y − y0) + (y − y0) · ϕ2(y), lim
y→y0

ϕ2(y) = 0.

Setzt man y := f(x), so ergibt die 1. Gleichung

y − y0 = f ′(x0) · (x− x0) + (x− x0)ϕ1(x)
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und mit der 2. Gleichung erhält man

g(f(x)) = g(f(x0)) + (g′(f(x0)) · f ′(x0))︸ ︷︷ ︸ ·(x− x0) + (x− x0) · η(x)

wobei wir

η(x) := g′(f(x0)) · ϕ1(x) + f ′(x0) · ϕ2(f(x)) + ϕ2(f(x)) · (f ′(x0) + ϕ1(x))

gesetzt haben. Es ist lim
x→x0

η(x) = 0 und aus Hilfssatz 3.1.3 folgt, dass die Ableitung

von g ◦ f in x0 existiert und gleich g′(f(x0)) · f ′(x0) ist. �

Wenn man für die Ableitung die Leibnizsche Schreibweise dy

dx verwendet, so kann
man sich die Kettenregel leicht merken: Man hat Funktionen y = y(x) und x = x(t)
sowie y = y(t) = y(x(t)); nach der Kettenregel ist

dy
dt

=
dy
dx

· dx
dt
.

Beispiel 3.1.8 Ist c ∈ R und f(x) := c für x ∈ R, so ist offensichtlich f ′(x) = 0.
Für f(x) := x gilt: f ′(x) = 1, denn lim

h→0

f(x+h)−f(x)
h = lim

h→0

h
h = 1.

Für n ∈ N ist
d
dx
xn = n · xn−1.

Dies folgt mit vollständiger Induktion und der Produktregel :

d
dx
xn+1 =

d
dx

(x · xn) = 1 · xn + x · nxn−1 = (n+ 1)xn.

Daraus ergibt sich: Ist p(X) := a0 + a1X + ...+ anXn =
n∑

k=0

akX
k ein Polynom,

so ist die Funktion p : R → R, x 	→ p(x), differenzierbar und

p′(x) = a1 + 2a2x+ ...+ nanxn−1 =
n∑

k=1

kakx
k−1.

In 4.1.3 werden wir beweisen, dass man auch konvergente Potenzreihen gliedweise
differenzieren darf:

d
dx

∞∑
n=0

anx
n =

∞∑
n=1

nanx
n−1.

Daraus folgt dann:

Beispiel 3.1.9 Es ist d
dxex = ex, denn

d
dx

ex =
d
dx

∞∑
n=0

xn

n!
=

∞∑
n=1

nxn−1

n!
=

∞∑
n=1

xn−1

(n− 1)!
= ex.
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Beispiel 3.1.10 Sei D := {x ∈ R|x �= 0} und ϕ : D → R, x 	→ 1
x . Dann ist

ϕ′(x) = − 1
x2 , denn

lim
h→0

1
h

(
1
x+ h

− 1
x

) = lim
h→0

−h
h(x+ h)x

= lim
h→0

−1
(x+ h)x

= − 1
x2
.

Ist g eine differenzierbare Funktion mit g(x) �= 0, so folgt nach der Kettenregel
3.1.7 (mit ϕ(x) = 1

x ):

(
1
g
)′ = (ϕ ◦ g)′ = − 1

g2
g′, also (

1
g
)′ = − g

′

g2
.

Ist f differenzierbar, so ergibt sich nach der Produktregel 3.1.6 (2):

(
f

g
)′ = (f · 1

g
)′ = f ′ · 1

g
+ f · (− g

′

g2
) =
f ′g − g′f
g2

;

damit ist die Quotientenregel 3.1.6(3) bewiesen.

Wir führen noch einige Begriffe ein.

Definition 3.1.11 Eine Funktion f : D → R heißt stetig differenzierbar, wenn
f differenzierbar und f ′ stetig ist. Sie heißt zweimal differenzierbar, wenn f und
auch f ′ differenzierbar sind; man schreibt f ′′ := (f ′)′. Induktiv definiert man die
n-te Ableitung von f durch

f (n) := (f (n−1))′,

man schreibt auch dnf
dxn := f (n). Eine Funktion f heißt n-mal stetig differenzier-

bar, wenn f (n) existiert und stetig ist. Man setzt außerdem f (0) := f.
Für n ∈ N0 und auch n = ∞ bezeichnet man den Vektorraum (siehe 7.2.7) der
n-mal stetig differenzierbaren Funktionen aufD mit Cn(D), also

C0(D) := {f : D → R| f ist stetig},
Cn(D) := {f : D → R| f ist n-mal stetig differenzierbar} , n ∈ N,

C∞(D) := {f : D → R| f ist beliebig oft stetig differenzierbar}.
In 6.2.1 werden wir den Vektorraum Cω(D) der auf einem offenen IntervallD ana-
lytischen Funktionen einführen.

Wir führen hier gleich den Begriff der differenzierbaren Funktionen mit kompaktem
Träger ein. Die Begriffe

”
Kompaktheit “und

”
Träger eine Funktion “behandeln wir

in einer allgemeineren Situation in 9.1.21.

Definition 3.1.12 Eine Funktion f : R → R besitzt kompakten Träger, wenn es
reelle Zahlen a < b gibt mit f(x) = 0 für alle x /∈ [a, b]. Man definiert für n ∈ N0

und n = ∞:

Cn
0 (R) := {f ∈ Cn(R) | f hat kompakten Träger }.
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Wenn man ein Produkt mehrmals differenziert, erhält man:
(f · g)′ = f ′ · g + f · g′
(f · g)′′ = f ′′ · g + 2f ′ · g′ + f · g′′,
(f · g)(3) = f (3) · g + 3f (2) · g′ + 3f · g(2) + g(3).
Dies erinnert an die binomische Formel; analog zum Beweis des binomischen Lehr-
satzes ergibt sich durch Induktion nach n ∈ N:

Satz 3.1.13 (Leibnizsche Regel) Für n-mal differenzierbare Funktionen f, g :
D → R gilt:

(f · g)(n) =
∞∑

k=0

(
n

k

)
f (n−k) · g(k).

3.2 Die Mittelwertsätze der Differentialrechnung

Die Mittelwertsätze, die wir in diesem Abschnitt herleiten, sind für zahlreiche
Anwendungen der Differentialrechnung von zentraler Bedeutung. Wir benötigen
zunächst einige Begriffe und Vorbereitungen.

Definition 3.2.1 Man sagt, eine Funktion f : D → R besitzt in x0 ∈ D ein lokales
Maximum, wenn es ein δ > 0 gibt mit Uδ(x0) ⊂ D und

f(x) ≤ f(x0) für alle x ∈ Uδ(x0);

sie besitzt in x0 ein isoliertes lokales Maximum, wenn gilt:

f(x) < f(x0) für alle x ∈ Uδ(x0), x �= x0.

Entsprechend führt man den Begriff “lokales Minimum” ein: f(x) ≥ f(x0) für
x ∈ Uδ(x0). Man beachte, dass bei einem lokalen Extremum ]x0 − δ, x0 + δ[⊂ D
vorausgesetzt wird; x0 darf also kein Randpunkt von D sein.

Hilfssatz 3.2.2 Wenn f : D → R differenzierbar ist und in x0 ∈ D ein lokales
Maximum oder Minimum besitzt, so gilt f ′(x0) = 0.

Beweis. Wir nehmen an, dass f in x0 ein lokales Maximum besitzt. Dann existiert
ein δ > 0, so dass für alle x ∈ R mit |x−x0| < δ gilt: x ∈ D und f(x)−f(x0) ≤ 0.
Definiert man wie in 3.1.2 die Funktion q : D → R durch

q(x) :=
f(x) − f(x0)
x− x0 für x �= x0, q(x0) := f ′(x0),

so ist q in x0 stetig und für x0 − δ < x < x0 ist q(x) ≥ 0; für x0 < x < x0 + δ
ist q(x) ≤ 0, und nach 2.1.10 folgt daraus: q(x0) = 0, also f ′(x0) = 0. Analog
behandelt man den Fall eines lokalen Minimums. �

Daraus leiten wir den Satz von Rolle her (MICHEL ROLLE (1652-1719)):
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Satz 3.2.3 (Satz von Rolle) Ist f : [a, b] → R stetig und in ]a, b[ differenzierbar
und gilt f(a) = f(b), so existiert ein ξ ∈]a, b[ mit

f ′(ξ) = 0.

Beweis. Nach 2.2.2 nimmt die stetige Funktion f in [a, b] MaximumM und Mini-
mumm an. Wenn die Extremwerte nur in den Randpunkten a, b angenommen wer-
den, so folgt aus f(a) = f(b), dassM = m ist. Dann ist f konstant und f ′(x) = 0
für alle x ∈]a, b[. Andernfalls nimmt f das Maximum oder das Minimum in einem
Punkt ξ ∈]a, b[ an; dann ist nach 3.2.2 f ′(ξ) = 0. �

Nun können wir die beiden Mittelwertsätze beweisen:

Satz 3.2.4 (1. Mittelwertsatz der Differentialrechnung) Wenn f : [a, b] → R
stetig und in ]a, b[ differenzierbar ist, dann existiert ein ξ ∈]a, b[ mit

f(b) − f(a)
b− a = f ′(ξ).

a ξ b

Beweis. Wir definieren h : [a, b] → R durch

h(x) := f(x) − f(b) − f(a)
b− a · (x− a).

Dann ist h(a) = h(b) und die Voraussetzungen des Satzes von Rolle sind erfüllt.
Daher existiert ein ξ ∈]a, b[ mit

0 = h′(ξ) = f ′(ξ) − f(b) − f(a)
b− a

und daraus folgt die Behauptung. �

Satz 3.2.5 (2. Mittelwertsatz der Differentialrechnung). Seien f und g stetige
Funktionen in [a, b], die im offenen Intervall ]a, b[ differenzierbar sind; g′ besitze
keine Nullstelle in ]a, b[. Dann existiert ein ξ ∈]a, b[ mit

f(b) − f(a)
g(b) − g(a) =

f ′(ξ)
g′(ξ)

.
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Beweis. Es ist g(a) �= g(b), denn aus g(a) = g(b) würde nach dem Satz von Rolle
folgen, dass g′ eine Nullstelle hat. Nun setzt man

h(x) := f(x) − f(b) − f(a)
g(b) − g(a) · (g(x) − g(a)).

Wie oben ergibt sich aus h(a) = h(b), dass h′ eine Nullstelle ξ ∈]a, b[ besitzt und
aus

0 = h′(ξ) = f ′(ξ) − f(b) − f(a)
g(b) − g′(a) · g′(ξ)

folgt die Behauptung. �

Wir zeigen nun, wie man diese Sätze anwenden kann; bei den folgenden Aussagen
sei immer f : [a, b] → R eine differenzierbare Funktion.
Aus dem Satz von Rolle erhält man

Satz 3.2.6 Zwischen zwei Nullstellen von f liegt immer eine Nullstelle von f ′. Falls
f n verschiedene Nullstellen besitzt, so hat f ′ mindestens n− 1 Nullstellen.

Satz 3.2.7 Wenn f ′(x) = 0 für alle x ∈ [a, b] ist, dann ist f konstant.

Beweis. Seien x1, x2 ∈ [a, b] und x1 < x2. Dann existiert ein ξ ∈ [x1, x2] mit

f(x2) − f(x1)
x2 − x1 = f ′(ξ) = 0,

also ist f(x1) = f(x2) und daher ist f konstant. �

Definition 3.2.8 Eine Funktion f : D → R heißt monoton wachsend, wenn für
alle x1, x2 ∈ D mit x1 < x2 gilt: f(x1) ≤ f(x2); sie heißt streng monoton
wachsend, falls sogar f(x1) < f(x2) ist.

Analog definiert man monoton fallend (f(x1) ≥ f(x2)) bzw. streng monoton fal-
lend (f(x1) > f(x2)).

Satz 3.2.9 Wenn für alle x ∈ [a, b] gilt: f ′(x) ≥ 0, so ist f monoton wachsend,
falls f ′(x) > 0, so ist f streng monoton wachsend.

Entsprechende Aussagen gelten für “monoton fallend”.
Beweis. Sind x1 < x2 aus [a, b], so existiert nach dem 1. Mittelwertsatz ein
ξ ∈ [x1, x2] mit

f(x2) − f(x1) = f ′(ξ) · (x2 − x1).
Falls f ′ überall positiv ist, ist die rechte Seite dieser Gleichung positiv und daher
f(x2) − f(x1) > 0. Analog beweist man die anderen Aussagen. �

In 3.2.2 wurde gezeigt: Wenn f an einer Stelle x0 ein lokales Extremum besitzt,
dann ist f ′(x0) = 0. Einfache Beispiele zeigen, dass diese Bedingung nicht hin-
reichend ist (etwa f(x) := x3, x0 := 0). Ein hinreichendes Kriterium liefert der
folgende Satz:



3.2 Die Mittelwertsätze der Differentialrechnung 51

Satz 3.2.10 Die Funktion f :]a, b[→ R sei zweimal differenzierbar. Sei x0 ∈]a, b[
und

f ′(x0) = 0, f ′′(x0) < 0.
Dann besitzt f in x0 ein isoliertes lokales Maximum.

Beweis. Man wendet 3.1.2 auf f ′ an Stelle von f an und setzt

q(x) :=
f ′(x) − f ′(x0)
x− x0 für x �= x0, q(x0) := f ′′(x0).

Dann ist q in x0 stetig und q(x0) < 0. Nach 2.1.10 existiert ein δ > 0, so dass
für alle x ∈ R mit 0 < |x − x0| < δ gilt: x ∈]a, b[ und q(x) < 0, also wegen
f ′(x0) = 0 :

f ′(x)
x− x0 < 0.

Für alle x mit x0 < x < x0 + δ ist dann x − x0 > 0, daher f ′(x) < 0 und analog
folgt: f ′(x) > 0 für x0 − δ < x < x0. Nach 3.2.9 ist f in ]x0 − δ, x0] streng
monoton wachsend und in [x0, x0 + δ[ streng monoton fallend. Daraus folgt die
Behauptung. �

Beispiel 3.2.11 (Brechung eines Lichtstrahls) Ein Lichtstrahl laufe von einem
Punkt (0, h) der oberen Halbebene zu einem Punkt (a,−b)der unteren Halbebe-
ne; h, a, b > 0. In der oberen Halbebene sei die Lichtgeschwindigkeit c1, in der
unteren c2. Der Strahl läuft geradlinig von (0, h) zu einem Punkt (x, 0) und dann
zu (a,−b). Nach dem Fermatschen Prinzip (PIERRE DE FERMAT, (1601 - 1665))
durchläuft er den Weg so, dass die Zeit extremal ist.
Die Zeit ist

t(x) =
1
c1

√
x2 + h2 +

1
c2

√
(a− x)2 + b2

und
dt
dx

(x) =
x

c1
√
x2 + h2

− a− x
c2
√

(a− x)2 + b2
.

Aus dt
dx(x) = 0 folgt

sinα
sinβ

=
c1
c2
.

Dies ist das Snelliussche Brechungsgesetz: Das Verhältnis des Sinus des Einfalls-
winkels zum Sinus des Ausfallswinkels ist gleich dem Verhältnis der Lichgeschwin-
digkeiten.

(0, h)

(a,−b)

(x, 0)

α

β



52 3 Differenzierbare Funktionen

Die 2. Ableitung ist

d2t

dx2
(x) =

h2

c1(
√
x2 + h2)3

+
b2

c1(
√

(a− x)2 + b2)3
;

aus d2t
dx2 > 0 und dt

dx(0) < 0, dt
dx(a) > 0 folgt, dass dt

dx in a ≤ x ≤ b monoton
wächst und genau eine Nullstelle besitzt; die Funktion t nimmt dort das Minimum
an.

Beispiel 3.2.12 (Das PLANCKsche Strahlungsgesetz) Das PLANCKsche Strah-
lungsgesetz beschreibt das Emissionsvermögen E eines schwarzen Körpers. Es sei
h die Plancksche Konstante, k die Boltzmannsche Konstante, c die Lichtgeschwin-
digkeit im Vakuum, T die Temperatur und λ die Wellenlänge der Strahlung. Dann
lautet das Plancksche Strahlungsgesetz:

E(λ) =
hc2

λ5
· 1
exp(ch/kTλ) − 1

.

(MAX PLANCK, (1858 - 1947), LUDWIG BOLTZMANN (1844 - 1906))
Es soll gezeigt werden, dass bei fester Temperatur T die Emission E an genau einer
Stelle λm ein Maximum besitzt (man vergleiche dazu [22] und [16]). Wir zeigen
dazu, dass es genau ein λm gibt, so dass E′ links davon positiv und rechts davon
negativ ist. Um die Rechnung zu vereinfachen, setzen wir g := hc2

E , also E = hc2

g .

Wegen ( 1
g )′ = − g′

g2 genügt es, zu untersuchen, an welchen Stellen g′ positiv oder
negativ ist. Es ist

g(λ) := λ5 · (exp( ch
kTλ

) − 1),

g′(λ) = 5λ4(exp( ch
kTλ ) − 1) − λ5 · ch

kTλ2 exp( ch
kTλ ) =

= λ4 ·
(
5(exp( ch

kTλ ) − 1) − ch
kTλ (exp( ch

kTλ )
)
.

Nun setzen wir

x :=
ch

kTλ
und ϕ(x) := xex − 5ex + 5.

Es ist ϕ′(x) = (x − 4)ex, ϕ(0) = 0, ϕ(4) = 5 − e4 < 0, ϕ(5) = 5. Daraus
folgt: In 0 < x < 4 ist ϕ streng monoton fallend und negativ, in x > 4 ist ϕ streng
monoton wachsend und besitzt genau eine Nullstelle xm mit 4 < xm < 5.( Man
rechnet nach, dass xm = 4, 965... ist.) Setzt man λm := ch

kTxm
, so ergibt sich:

Es ist E′(λm) = 0 und E wächst in ]0, λm[ und fällt in ]λm,∞[. Daher nimmt E
an der Stelle λm das Maximum an.
Es ist

λm · T =
ch

kxm
,

dies ist das WIENsche Verschiebungsgesetz(WILHELM WIEN ( 1864 - 1928)):
λm · T ist konstant, mit steigender Temperatur wird die Wellenlänge maximaler
Emission kürzer .
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Wir leiten nun aus dem 2. Mittelwertsatz die Regel von de l’Hospital her (GUIL-
LAUME FRANCOIS ANTOINE DE L’HOSPITAL (1661-1704)). Mit dieser Regel
kann man oft Grenzwerte

lim
x→a

f(x)
g(x)

berechnen, wobei lim
x→a
f(x) = 0 und auch lim

x→a
g(x) = 0 ist. Entsprechendes gilt

auch, wenn lim
x→a
f(x) = ∞ und lim

x→a
g(x) = ∞ ist; kurz zuammengefasst: man

untersucht Grenzwerte der Form 0
0 und ∞

∞ .

Satz 3.2.13 (Regel von de l’Hospital). Seien f :]a, b[→ R und g :]a, b[→ R
differenzierbar, g′ besitze keine Nullstelle; es sei lim

x→a
f(x) = 0 und lim

x→a
g(x) = 0.

Dann gilt: Wenn lim
x→a

f ′(x)
g′(x) existiert, dann existiert auch lim

x→a

f(x)
g(x) und es ist

lim
x→a

f(x)
g(x)

= lim
x→a

f ′(x)
g′(x)

.

Beweis. Wir setzen f(a) := 0; dann ist die Funktion f auf dem halboffenen Intervall
[a, b[ definiert und aus lim

x→a
f(x) = 0 folgt, dass f : [a, b[→ R stetig in a ist. Analog

setzen wir g(a) = 0. Nun sei (xn)n eine Folge in ]a, b[, die gegen a konvergiert.
Nach dem 2. Mittelwertsatz existieren ξn ∈]a, xn[ mit

f(xn) − f(a)
g(xn) − g(a) =

f ′(ξn)
g′(ξn)

.

Es gilt also für alle n ∈ N:
f(xn)
g(xn)

=
f ′(ξn)
g′(ξn)

.

Weil (ξn)n gegen a konvergiert, folgt

lim
n→∞

f(xn)
g(xn)

= lim
n→∞

f ′(ξn)
g′(ξn)

= lim
x→a

f ′(x)
g′(x)

und daraus ergibt sich die Behauptung.
Eine analoge Aussage gilt natürlich für x→ b. �


Wir beweisen nun einen Zwischenwertsatz für f ′, dazu benötigen wir:

Hilfssatz 3.2.14 Ist f : D → R in x0 ∈ D differenzierbar und f ′(x0) > 0, so
existiert ein δ > 0, so dass für x ∈ D gilt:

f(x) < f(x0) falls x0 − δ < x < x0, f(x) > f(x0) falls x0 < x < x0 + δ
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Beweis.Wir definieren q wie in 3.1.2. Aus q(x0) = f ′(x0) > 0 und der Stetigkeit
von q folgt: Es gibt ein δ > 0, so dass für alle x ∈ D mit 0 < |x− x0| < δ gilt:

f(x) − f(x0)
x− x0 > 0.

Ist x < x0, so ist der Nenner des Differenzenquotienten negativ und daher ist
f(x)− f(x0) < 0. Für x > x0 ist der Nenner positiv, somit f(x)− f(x0) > 0. �

Nun können wir zeigen, dass bei jeder differenzierbaren Funktion f für die Ablei-
tung f ′ der Zwischenwertsatz gilt, obwohl f ′ unstetig sein kann.

Satz 3.2.15 (Zwischenwertsatz für f ′) Ist f : [a, b] → R differenzierbar, so exi-
stiert zu jedem w mit f ′(a) < w < f ′(b) (bzw. f ′(b) < w < f ′(a) ) ein ξ ∈ [a, b]
mit

f ′(ξ) = w.

Beweis. Wir dürfen w = 0 annehmen, sonst betrachten wir x 	→ f(x) − w · x.
Sei also f ′(a) < 0 < f ′(b). Die Funktion f ist stetig und nimmt nach 2.2.2 ihr
Minimum an. Nach dem soeben bewiesenen Hilfssatz gibt es ein δ > 0 mit f(x) <
f(a) für a < x < a + δ und f(x) < f(b) für b − δ < x < b. Daher nimmt f das
Minimum nicht in den Randpunkten a oder b, sondern in einem Punkt ξ ∈]a, b[ an
und nach 3.2.2 ist f ′(ξ) = 0. �


Aus dem Zwischenwertsatz für die Ableitung folgt, dass f ′ keine Sprungstelle ha-
ben kann; zum Beispiel existiert zur Funktion h(x) := 0 für x ≤ 0 und h(x) = 1
für x > 0 keine differenzierbare Funktion f mit f ′ = h. Die Unstetigkeit einer
Ableitung kann man sich etwa so vorstellen, wie es bei der oszillierenden Funktion
x2 sin(1/x) der Fall ist; diese wird in 4.3.20 untersucht.

3.3 Die Umkehrfunktion

Eine Funktion f : D → R ordnet jedem x ∈ D ein y = f(x) ∈ R zu. Unter der
Umkehrfunktion f−1 von f versteht man die Funktion, die einem y ∈ R das x ∈ D
zuordnet, für das f(x) = y gilt; es ist also f(f−1(y)) = y. Ist etwa f(x) = 5x− 2,
so setzt man y = 5x−2, bestimmt daraus x = 1

5 (y+2), also ist f−1(y) = 1
5 (y+2).

Um sicherzustellen, dass es zu y ein derartiges x gibt, muß man y ∈ f(D) vor-
aussetzen; um zu erreichen, dass x eindeutig bestimmt ist, setzt man f als injektiv
voraus (Das bedeutet: Aus x1 �= x2 folgt f(x1) �= f(x2)).

a bξa+ δ b− δ

f



3.3 Die Umkehrfunktion 55

Definition 3.3.1 Es sei f : D → R eine Funktion; dann heißt f−1 : E → R
Umkehrfunktion zu f , wenn gilt:

• f ist injektiv,
• E = f(D),
• für alle y ∈ E gilt : f(f−1(y)) = y.

Satz 3.3.2 Zu jeder injektiven Funktion f : D → R existiert genau eine Umkehr-
funktion f−1 : E → R, E = f(D). Für x ∈ D, y ∈ E gilt y = f(x) genau dann,
wenn x = f−1(y) ist. Für alle x ∈ D ist

f−1(f(x)) = x.

Beweis. Zu y ∈ E = f(D) existiert ein x ∈ D mit y = f(x); weil f injektiv ist,
gibt es genau ein derartiges x und man setzt f−1(y) := x. Alle übrigen Aussagen
des Satzes ergeben sich aus der Definition von f−1. �

Der Graph von f ist

Gf = {(x, y) ∈ D × E|y = f(x)}
und der Graph von f−1 ist

Gf−1 = {(y, x) ∈ D × E|x = f−1(y)}.
Nun ist y = f(x) äquivalent zu x = f−1(y) und daher

Gf−1 = {(y, x) ∈ E ×D|y = f(x)};
man erhält also Gf−1 aus Gf durch Spiegelung an der Geraden y = x.
Jede streng monotone Funktion ist injektiv und besitzt daher eine Umkehrfunktion.
Für stetige Funktionen f : I → R auf einem Intervall I gilt auch die Umkehrung;
dabei darf I offen, abgeschlossen, halboffen oder auch uneigentlich sein.

Hilfssatz 3.3.3 Ist f : I → R stetig und injektiv, so ist f streng monoton.

Beweis. Wenn f nicht streng monoton ist, dann gibt es in I Punkte x0, x1, y0, y1
mit

x0 < y0 und f(x0) > f(y0),
x1 < y1 und f(x1) < f(y1).

Für t ∈ [0, 1] setzt man

x(t) := (1 − t)x0 + tx1, y(t) = (1 − t)y0 + ty1.

Dann liegt x(t) zwischen x0 und x1, also x(t) ∈ I und auch y(t) ∈ I.
Aus x0 < y0 und x1 < y1 folgt x(t) < y(t).
Die Funktion
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h : [0, 1] → R, t 	→ f(y(t)) − f(x(t))
ist stetig, h(0) = f(y0)− f(x0) < 0 und h(1) = f(y1)− f(x1) > 0. Daher besitzt
h eine Nullstelle t0, also ist

x(t0) < y(t0), f(x(t0)) = f(y(t0));

dann ist aber f nicht injektiv. �

Nun zeigen wir, dass die Umkehrfunktion einer stetigen Funktion ebenfalls stetig
ist.

Satz 3.3.4 (Satz von der Stetigkeit der Umkehrfunktion). Ist f : I → R injektiv
und stetig , so ist auch f−1 stetig .
Wenn f : I → R streng monoton wachsend ist, dann auch f−1;eine analoge Aus-
sage gilt für monoton fallende Funktionen.

Beweis. Wir beweisen zuerst die zweite Aussage und nehmen an, die Funktion f−1

sei nicht streng monoton wachsend. Dann gibt es in f(I) Punkte mit y1 < y2 und
f−1(y1) ≥ f−1(y2); daraus folgt aber f(f−1(y1) ≥ f(f−1(y2)), also y1 ≥ y2.
Nun sei f injektiv und stetig. Nach dem vorhergehenden Satz ist f streng monoton;
wir behandeln den Fall, dass f streng monoton wachsend ist und zeigen, dass f−1

in jedem Punkt q ∈ f(I) stetig ist.
Es sei q = f(p) und wir nehmen zuerst an, dass p ein innerer Punkt von I ist. Es
sei ε > 0 vorgegeben und [p− ε, p+ ε] ⊂ I . Wir setzen p1 := p− ε ; p2 := p+ ε
und V := [p1, p2]; ausserdem sei q1 := f(p1), q2 := f(p2) und U := [q1, q2].Weil
f streng monoton wachsend ist, gilt q1 < q < q2, und daher ist U eine Umgebung
von q.
Aus p1 ≤ x ≤ p2 folgt q1 ≤ f(x) ≤ q2 . Daher gilt f(V ) ⊂ U und aus dem
Zwischenwertsatz folgt f(V ) = U . Dann ist f−1(U) = V und daraus folgt , dass
f−1 in q stetig ist.
Wenn p ein Randpunkt von I ist, etwa I = [a, b] und p = a, dann betrachtet man zu
vorgegebenem ε > 0 die Intervalle V := [p, p+ ε] ⊂ I und U := [q, f(p+ ε)] . Es
ergibt sich wieder f(V ) = U und daher f−1(U) = V . Daraus folgt die Stetigkeit
von f−1 in q. �

Bemerkung. Man nennt eine Abbildung offen, wenn das Bild jeder offenen Menge
wieder offen ist (vgl.14.8.1). Wir haben gezeigt: Ist I ⊂ R ein offenes Intervall und
f : I → R injektiv und stetig, so ist die Abbildung f offen.

Wir behandeln nun die Frage, wann eine Umkehrfunktion f−1 differenzierbar ist.
Falls f und f−1 differenzierbar sind, können wir die Gleichung f−1(f(x)) = x
nach der Kettenregel differenzieren und erhalten (f−1)′(f(x)) · f ′(x) = 1. Daraus
folgt: Wenn f ′(x) = 0 ist, dann kann f−1 in f(x) nicht differenzierbar sein.

Satz 3.3.5 (Satz von der Differenzierbarkeit der Umkehrfunktion). Die Funkti-
on f : I → R sei injektiv und differenzierbar; für x0 ∈ I gelte f ′(x0) �= 0. Dann
ist f−1 in y0 := f(x0) differenzierbar und
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(f−1)′(y0) =
1

f ′(x0)
.

Beweis. Es sei (yn)n eine Folge in f(I), yn �= y0 für n ∈ N, lim
n→∞ yn = y0. Setzt

man xn := f−1(yn), so ist xn �= x0 und wegen der Stetigkeit von f−1 konvergiert
(xn)n gegen x0. Wegen f ′(x0) �= 0 existiert

lim
n→∞

f−1(yn) − f−1(y0)
yn − y0 = lim

n→∞
xn − x0

f(xn) − f(x0) =
1

f ′(x0)
.

�

Der Satz sagt aus, dass eine auf einem Intervall differenzierbare Funktion mit nir-
gends verschwindender Ableitung ein Diffeomorphismus ist (man vergleiche dazu
Definition 9.3.3).
Man merkt sich diese Formel, wenn man die Umkehrfunktion von y = y(x) in der
Form x = x(y) schreibt; dann ist

dx
dy

=
1
dy
dx

.

Als Beispiel behandeln wir die Funktion n
√
x:

Beispiel 3.3.6 Für alle n ∈ N ist die Funktion R+ → R, x 	→ xn, streng monoton
wachsend und nimmt alle positiven Werte an. Die Ableitung ist n · xn−1 > 0; also
existiert die Umkehrfunktion R+ → R, x 	→ n

√
x. Die Ableitung der Umkehrfunk-

tion ist
d
dx

n
√
x =

1
n( n

√
x)n−1

.

Falls n ungerade ist, ist x 	→ xn sogar auf ganz R streng monoton wachsend und
man hat die Umkehrfunktion R → R, x 	→ n

√
x, die auf ganz R definiert und stetig

ist; sie ist für x �= 0 differenzierbar.

x2

√
x

x3

3
√
x

1

1

1

1
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3.4 Uneigentliche Grenzwerte

In 2.1.3 hatten wir für reelle Zahlen a, c den Limes lim
x→a
f(x) = c definiert. Nun

sollen auch Formeln wie lim
x→0

1
x2 = ∞ oder lim

x→∞
1

1+x2 = 0 behandelt werden; es

ist also a oder c gleich ±∞.

Definition 3.4.1 Ist (an)n eine Folge reeller Zahlen, so definiert man

lim
n→∞ an = +∞,

wenn es zu jedemM > 0 ein N ∈ N gibt mit an > M für n ≥ N.
Ist D ⊂ R, f : D → R und a ∈ D, so definiert man

lim
x→a
f(x) = +∞,

wenn es zu jedemM > 0 ein δ > 0 gibt, so dass für alle x ∈ D mit |x − a| < δ
gilt: f(x) > M .
Man setzt lim

n→∞ an = −∞, falls lim
n→∞(−an) = +∞,

lim
x→a
f(x) = −∞, falls lim

x→a
(−f(x)) = +∞.

Definition 3.4.2 Ist D ⊂ R und [a,∞[⊂ D und f : D → R, c ∈ R, so setzt man
lim

x→∞ f(x) = c, wenn es zu jedem ε > 0 ein R > 0 gibt, so dass |f(x) − c| < ε ist

für alle x ∈ D mit x > R.

Definition 3.4.3 Ist D ⊂ R, [a,∞[⊂ D und f : D → R, so definiert man
lim

x→∞ f(x) = +∞, wenn es zu jedem M > 0 ein R > 0 gibt, so dass für alle

x ∈ D mit x > R gilt: f(x) > M .

Entsprechend definiert man lim
x→−∞ f(x).

Man kann leicht beweisen, dass die de l’Hospitalsche Regel 3.2.13 auch für unei-
gentliche Grenzwerte gilt; Beispiele dazu finden sich in 4.2.11 und 4.2.12.
Wir zeigen:

Satz 3.4.4 Ist

p(X) = Xn + an−1X
n−1 + . . .+ a1X + a0

ein Polynom ungeraden Grades mit reellen Koeffizienten, so gilt:

lim
x→−∞ p(x) = −∞, lim

x→+∞ p(x) = +∞.

Beweis. Für x �= 0 ist

p(x) = xn(1 +
an−1

x
+ . . .+

a0
xn

)

und daraus ergibt sich leicht die Behauptung ( man vergleiche dazu 14.7.2). �

Mit dem Zwischenwertsatz folgt daraus:
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Satz 3.4.5 Ist

p(X) = Xn + an−1X
n−1 + . . .+ a1X + a0

ein Polynom ungeraden Grades (an−1, . . . , a0 ∈ R ) , so besitzt die Funktion

p : R → R, x 	→ p(x),
mindestens eine reelle Nullstelle.

Aufgaben

3.1. Sei a < b < c; die Funktionen f : [a, b] → R und g : [b, c] → R seien differenzierbar
und es gelte f(b) = g(b) und f ′(b) = g′(b). Zeigen Sie, dass

h : [a, c] → R, x �→
�

f(x) für x ∈ [a, b]
g(x) für x ∈]b, c]

in b differenzierbar ist.

3.2. Sei f : R → R stetig; zeigen Sie, dass g : R → R, x �→ x · f(x), im Nullpunkt
differenzierbar ist.

3.3. Eine Funktion f : R → R heißt Lipschitz-stetig, wenn ein L > 0 existiert mit

|f(x) − f(x′)| ≤ L · |x − x′| für alle x, x′ ∈ R.

Zeigen Sie:

a) Ist f differenzierbar und f ′ beschränkt, so ist f Lipschitz-stetig.
b) Jede Lipschitz-stetige Funktion ist gleichmässig stetig.

3.4. Die Funktion f : R → R sei definiert durch f(x) := x4−2x3−5x2+4x+2
x−1

für x �= 1 und
f(1) := −8. Untersuchen Sie, ob f im Punkt x0 = 1 differenzierbar ist.

3.5. Sei

f :] − 1, +1[→ R, x �→ 1

1 − x

berechnen Sie f (k) für k ∈ N.

3.6. Sei

f : R → R, x �→
�

x2 für x ≤ 0
x3 für x > 0

Existiert f ′(0) und f ′′(0) ?

Weitere Aufgaben zur Differentialrechnung finden sich beim nächsten Kapitel, denn dort
stehen uns die elementaren Funktionen zur Verfügung.
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Potenzreihen und elementare Funktionen

4.1 Potenzreihen

Wir behandeln zunächst Potenzreihen in C. Ist (an)n eine Folge komplexer Zahlen
und z0 ∈ C, so heißt

∞∑
n=0

an(z − z0)n

eine Potenzreihe. Wir untersuchen zuerst das Konvergenzverhalten von Potenzrei-
hen; dann zeigen wir, dass man konvergente Potenzreihen gliedweise differenzieren
darf (dazu vergleiche man [21] und [26]). Durch eine Substitution kann man z0 = 0
erreichen; wir behandeln daher häufig Potenzreihen

∞∑
n=0

anz
n.

Zuerst zeigen wir, dass eine Potenzreihe, die in einem Punkt w ∈ C konvergiert,
auch in der offenen Kreisscheibe um 0 mit Radius |w| konvergiert.

Satz 4.1.1 Sei
∞∑

n=0
anz

n eine Potenzreihe und w ∈ C , w �= 0. Wenn
∞∑

n=0
anw

n

konvergent ist, dann sind die folgenden Reihen für alle z ∈ C mit |z| < |w| absolut
konvergent:

∞∑
n=0

anz
n,

∞∑
n=1

nanz
n−1,

∞∑
n=2

(n− 1)nanzn−2.

Beweis. Die Reihe
∞∑

n=0
anw

n konvergiert, daher ist (anwn)n eine Nullfolge; somit

existiert einM > 0 mit |anwn| ≤M für alle n ∈ N0. Sei z ∈ C und |z| < |w|; wir
setzen q := |z|

|w| . Dann ist 0 ≤ q < 1und für alle n ∈ N0 gilt

|anzn| = |anwnqn| ≤M · qn.
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Nach dem Majorantenkriterium konvergiert
∞∑

n=0
anz

n absolut. Für n ≥ 1 ist

|nanzn−1| =
1
|w| · |nanw

nqn−1| ≤ M|w| |nq
n−1|.

Nach 1.5.14 konvergiert
∞∑

n=1
nqn−1 und nach dem Majorantenkriterium ist die Rei-

he
∞∑

n=1
nanz

n−1 absolut konvergent. Wendet man die soeben bewiesene Aussage

auf
∞∑

n=1
nanz

n−1 an, so folgt die absolute Konvergenz von
∞∑

n=2
(n− 1)nanzn−2.

�

Aufgrund dieses Satzes ist es sinnvoll, den Konvergenzradius einer Potenzreihe zu
definieren:

R := sup{|z − z0| |
∞∑

n=0
an(z − z0)nist konvergent}

heißt der Konvergenzradius von
∞∑

n=0
an(z − z0)n; R = ∞ ist zugelassen.

Es gilt: Für |z − z0| < R ist die Potenzreihe konvergent, für |z − z0| > R ist sie
divergent; über die Punkte auf |z − z0| = R kann man keine allgemeine Aussage
machen.

Nun soll gezeigt werden, dass man eine Potenzreihe gliedweise differenzieren darf;
dazu benötigen wir eine Abschätzung für den Abstand zwischen Differenzenquoti-
ent und Differentialquotient, die wir zuerst für f(x) = xn herleiten (vgl. [21]):

Hilfssatz 4.1.2 Sei n ∈ N, n ≥ 2, �, x, x + h ∈ R, |x| ≤ �, |x + h| ≤ �, h �= 0,
dann gilt: ∣∣∣∣(x + h)n − xn

h
− nxn−1

∣∣∣∣ ≤ 1
2
(n− 1)n�n−2 · |h|.

Beweis. Es sei x ∈ R , wir definieren für n ≥ 2

gn : R → R, t 	→ tn−1 + tn−2x+ . . .+ t2xn−3 + txn−2 + xn−1;

dann ist (t− x)gn(t) = tn − xn und daher

gn(t) =
tn − xn

t− x für t �= x; gn(x) = nxn−1

Für |x| ≤ �, |t| ≤ � ist

|g′n(t)| = |(n− 1)tn−2 + (n− 2)tn−3x+ . . .+ 2txn−3 + xn−2| ≤

≤
(
(n− 1) + (n− 2) + . . .+ 2 + 1

)
· �n−2 =

1
2
(n− 1)n · �n−2.

Nun sei t �= x; nach dem Mittelwertsatz existiert ein ξ zwischen x und t mit
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gn(t) − gn(x) = (t− x)g′n(ξ).

Daher ist ∣∣∣∣ tn − xn

t− x − nxn−1

∣∣∣∣ ≤ |t− x| · 1
2
(n− 1)n · �n−2

und mit t = x+ h folgt die Behauptung.
Der Hilfssatz gilt auch für x, x + h ∈ C; an Stelle des Mittelwertsatzes geht man
von der Gleichung gn(t)− gn(x) =

∫ t

x
g′n(s)ds aus und schätzt nun das Integral

nach 14.3.5 ab: | ∫ t

x
g′n(s)ds| ≤ |t− x|12 (n− 1)n�n−2. �


Nun können wir beweisen ( vgl.[21] und [26]):

Satz 4.1.3 Wenn die Potenzreihe
∞∑

n=0
anx

n mit an ∈ R für |x| < r konvergiert,

dann ist die Funktion

f :] − r, r[→ R, x 	→
∞∑

n=0

anx
n

differenzierbar und es gilt:

f ′(x) =
∞∑

n=1

nanx
n−1.

Beweis Es sei |x| < r und es sei ε > 0 vorgegeben; wir wählen dazu � ∈ R mit
|x| < � < r; dann existiert

c :=
∞∑

n=2

(n− 1)n|an|ρn−2.

Nun wählen wir δ > 0 so, dass |x| + δ < � und cδ < ε ist.
Mit dem Hilfssatz ergibt sich für 0 < |h| < δ:∣∣∣∣∣f(x+ h) − f(x)

h
−

∞∑
n=1

nanx
n−1

∣∣∣∣∣ ≤
∞∑

n=2

|an| ·
∣∣∣∣ (x+ h)n − xn

h
− nxn−1

∣∣∣∣ ≤
≤ 1

2

∞∑
n=2

(n− 1)n|an|ρn−2 · |h| < c · |h| < ε.

�

Die Aussage dieses Satzes kann man so formulieren: Man darf konvergente Potenz-
reihen gliedweise differenzieren:

d
dx

(
∞∑

n=0

anx
n) =

∞∑
n=0

d
dx

(anxn).
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Wendet man diese Aussage auf f ′(x) =
∞∑

n=1
nanx

n−1 an, so erhält man:

f ′′(x) =
∞∑

n=2

(n− 1)nanxn−2.

Auf diese Weise ergibt sich

Satz 4.1.4 Wenn
∞∑

n=0
anx

n mit an ∈ R für |x| < r konvergiert, so ist die Funktion

f(x) =
∞∑

n=0
anx

n in ] − r, r[ beliebig oft differenzierbar; für k ∈ N gilt:

f (k)(x) =
∞∑

n=0

(n+ k) · (n+ k − 1) · ... · (n+ 1)an+kx
n;

insbesondere ist

ak =
1
k!
f (k)(0).

4.2 Exponentialfunktion und Logarithmus

In 1.5.15 hatten wir gezeigt, dass die “Exponentialreihe”

∞∑
n=0

zn

n!
= 1 + z +

z2

2!
+
z3

3!
+ ...

für alle z ∈ C konvergiert.
Die Funktion

exp : C → C, z 	→
∞∑

n=0

zn

n!

heißt die Exponentialfunktion.
Die Zahl

e := exp(1) =
∞∑

n=0

1
n!

heißt die Eulersche Zahl; es ist e = 2, 7182818 . . ..
Man schreibt auch ez := exp(z).Wir untersuchen nun die Exponentialfunktion im
Reellen:

Satz 4.2.1 Die Exponentialfunktion exp : R → R ist differenzierbar und

d
dx

exp(x) = exp(x).
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Beweis. Nach 4.1.3 ist

d
dx

∞∑
n=0

xn

n!
=

∞∑
n=1

nxn−1

n!
=

∞∑
n=1

xn−1

(n− 1)!
= exp(x).

�

Satz 4.2.2 (Funktionalgleichung der Exponentialfunktion) Für alle x, y ∈ R
gilt:

exp(x+ y) = exp(x) · exp(y).

Beweis. Für t ∈ R setzt man

f(x) := exp(x) · exp(t− x),
dann ist

f ′(x) = exp(x) · exp(t− x) + exp(x) · (− exp(t− x)) = 0,

daher ist f : R → R konstant, also f(x) = f(0) :

exp(x) exp(t− x) = exp(t)

und für t := x+ y erhält man

exp(x) exp(y) = exp(x+ y).

�

Diese Funktionalgleichung gilt auch in C. Aus der Funktionalgleichung kann man
nun leicht die wichtigsten Aussagen über die Exponentialfunktion herleiten:

Satz 4.2.3 Die Exponentialfunktion ist streng monoton wachsend und nimmt jeden
positiven reellen Wert genau einmal an.

Beweis. Für x ∈ R ist exp(x) · exp(−x) = exp(0) = 1; daher hat die Exponential-
funktion keine Nullstelle und es ist

exp(−x) =
1

exp(x)
.

Es ist exp(0) = 1 > 0; daher nimmt exp(x) keinen negativen Wert an, denn sonst
hätte die Exponentialfunktion nach dem Zwischenwertsatz eine Nullstelle. Es ist
also exp(x) > 0 und daher auch d

dx exp(x) > 0 für x ∈ R und daher ist die
Funktion streng monoton wachsend. Aus der Definition folgt für x > 0:

exp(x) = 1 + x+
x2

2!
+ ... ≥ 1 + x

und daher nimmt exp(x) in [0,∞[ jeden Wert y ≥ 1 an. Wegen exp(−x) = 1
exp(x)

nimmt diese Funktion in ] −∞, 0[ jeden Wert aus ]0, 1[ an. �
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Wir bemerken noch, dass für alle n ∈ N gilt:

exp(n) = e · ... · e (n− mal),

also exp(n) = en, denn es ist exp(1) = e und aus exp(n) = en folgt:

exp(n+ 1) = exp(n) · exp(1) = en · e = en+1.

Wir schreiben nun auch

ex := exp(x) für x ∈ R.

Nun zeigen wir, dass die Exponentialfunktion die einzige differenzierbare Funktion
f mit f ′ = f ist, wenn man noch f(0) = 1 normiert:

Satz 4.2.4 Ist f : R → R differenzierbar und f ′ = f, f(0) = 1, so gilt f(x) = ex

für alle x ∈ R.

Beweis. Sei g(x) := f(x) · e−x; dann ist g′(x) = f ′(x)e−x − f(x)e−x = 0; somit
ist g konstant: g(x) = g(0) = f(0) · e0 = 1 für x ∈ R und daher f(x)e−x = 1 oder
f(x) = ex. �

Nach 4.2.3 ist ex streng monoton wachsend und nimmt jeden positiven reellen Wert
genau einmal an; daher existiert die Umkehrfunktion der Exponentialfunktion:

Definition 4.2.5 Die Umkehrfunktion der Exponentialfunktion heißt Logarithmus
und wird mit

ln : R+ → R

bezeichnet; es gilt also

eln y = y für y ∈ R+, ln(ex) = x für x ∈ R.

ex

lnx
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Satz 4.2.6 Der Logarithmus ln : R+ → R ist eine streng monoton wachsende
differenzierbare Funktion, die jeden reellen Wert genau einmal annimmt; für x > 0
gilt:

d
dx

lnx =
1
x
.

Beweis. Nach dem Satz von der Differenzierbarkeit der Umkehrfunktion 3.3.5 ist
für x > 0

d
dx

lnx =
1

exp(lnx)
=

1
x

;

und daraus ergeben sich alle übrigen Behauptungen . �

Wir bemerken noch, dass für alle x �= 0 gilt:

d
dx

ln |x| =
1
x
,

denn für x < 0 ist (ln |x|)′ = (ln(−x))′ = − 1
−x .

Aus der Funktionalgleichung für die Exponentialfunktion folgt eine Funktionalglei-
chung für den Logarithmus:

Satz 4.2.7 (Funktionalgleichung des Logarithmus) Für alle x, y ∈ R+ gilt:

ln(x · y) = lnx+ ln y.

Beweis. Wir setzen v := lnx und w := ln y; dann ist ev = x und ew = y und es
gilt:

ev+w = ev · ew = x · y,
daher

ln(x · y) = ln(ev+w) = v + w = lnx+ ln y.

�

Mit Hilfe des Logarithmus kann man nun allgemeine Potenzen ar für reelle Zahlen
a, r mit a > 0 definieren.

Definition 4.2.8 Für a, r ∈ R, a > 0, sei

ar := exp(r · ln a).

Für n ∈ N und r = 1
n , a > 0, ist

(a1/n)n = (exp( 1
n ln a))n = exp( 1

n ln a) · ... · exp( 1
n ln a) = exp(n · 1

n ln a) = a,
also

a1/n = n
√
a.

Wir geben noch die Ableitung von ar an, wobei wir zuerst r und dann a als Variable
betrachten:
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Beispiel 4.2.9 Für a > 0 sei

f : R → R, x 	→ ax,
dann ist f ′(x) = d

dx(exp(x ln a)) = exp(x ln a) · ln a = ax ln a, also

d
dx
ax = ax · ln a.

Beispiel 4.2.10 Für r ∈ R sei

g : R+ → R, x 	→ xr,

dann ist g′(x) = d
dx(exp(r lnx)) = exp(r lnx) · r

x = xr · r
x = r · xr−1, also

d
dx
xr = r · xr−1,

damit haben wir die für r ∈ N geltende Formel verallgemeinert.

Die Funktion xx wird in Aufgabe 4.9 behandelt.

Nun untersuchen wir das Verhalten von Exponentialfunktion und Logarithmus für
x→ ∞.
Satz 4.2.11 Für alle n ∈ N gilt

lim
x→∞

ex

xn
= +∞.

Beweis. Für x ≥ 0 ist ex ≥ 1 + x und daher lim
x→∞ ex = +∞. Für n ∈ N erhält man

durch Anwendung der de l’Hospitalschen Regel

lim
x→+∞

ex

xn
= lim

x→∞
ex

nxn−1
= ... = lim

x→∞ ex = +∞.

�

Ähnlich beweist man

Satz 4.2.12 Für jedes a > 0 gilt:

lim
x→+∞

lnx
xa

= 0.

Satz 4.2.11 besagt: Zu jedem n ∈ N undM > 0 existiert ein R > 0 mit

ex

xn
> M für x > R,

also
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ex > M · xn für x > R.

Man interpretiert diese Aussage so: Die Exponentialfunktion wächst schneller als
jede noch so große Potenz von x.
Satz 4.2.12 bedeutet: Zu jedem a > 0 und ε > 0 existiert ein R > 0 mit

| lnx
xa

| < ε für x > R,

daher
lnx < ε · xa für x > R;

der Logarithmus wächst also langsamer als jede Potenz xa mit positivem Exponen-
ten a.

Wir bringen noch ein einfaches Beispiel:

Beispiel 4.2.13 Für c ∈ R sei

fc : R → R, x 	→ ex − c · x.

Wir untersuchen den Verlauf von fc, insbesondere die Anzahl der Nullstellen. Diese
sind die Schnittpunkte der Geraden y = c · x mit y = ex. Man wird erwarten, dass
es für c < 0 genau einen Schnittpunkt gibt; falls c > 0, aber klein ist, dürfte es
keinen Schnittpunkt geben, für grosse c erwartet man zwei Schnittpunkte und bei
einer Grenzlage, wenn y = c · x Tangente ist, einen Schnittpunkt.
Dies rechnen wir nun nach:
Für c < 0 ist fc streng monoton wachsend; wegen lim

x→−∞ fc(x) = −∞; und

lim
x→+∞ fc(x) = +∞ hat fc genau eine Nullstelle.

Für c > 0 hat f ′c(x) = ex − c die Nullstelle ln c. Weil f ′c streng monoton wächst,
ist f ′c links von ln c negativ und rechts positiv. Daher hat fc genau im Punkt ln c
ein Minimum. Wegen fc(ln c) = c(1 − ln c) ist fc(ln c) > 0 für 0 < c < e und
fc hat keine Nullstelle. Für c = e gibt es genau eine Nullstelle und für c > e zwei
Nullstellen.

ex − cx

c = e

c > e

0 < c < e

c < 0
ex

e · x

5

1
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4.3 Die trigonometrischen Funktionen

Für z ∈ C definiert man

cos z :=
∞∑

n=0
(−1)n · z2n

(2n)! = 1 − z2

2! + z4

4! − z6

6! + ...,

sin z :=
∞∑

n=0
(−1)n · z2n+1

(2n+1)! = z − z3

3! + z5

5! − z7

7! + ...,

aus dem Quotientenkriterium folgt, dass beide Reihen für z ∈ C konvergieren.
Grundlegend für die Behandlung dieser Funktionen ist die Eulersche Formel

(LEONHARD EULER (1707-1783)):

Satz 4.3.1 (Eulersche Formel) Für alle z ∈ C gilt:

eiz = cos z + i sin z.

und daher

cos z =
1
2
(eiz + e−iz), sin z =

1
2i

(eiz − e−iz).

Beweis. eiz =
∞∑

n=0
in · zn

n! =
∞∑

n=0
i2n · z2n

(2n)! +i
∞∑

n=0
i2n · z2n+1

(2n+1)! = cos z+i sin z. �

Aus der Funktionalgleichung der Exponentialfunktion 4.2.2 leiten wir mit Hilfe der
Eulerschen Formel die Additionstheoreme für cosx und sinx her:

Satz 4.3.2 (Additionstheoreme) Für alle x, y ∈ C gilt:

sin(x+ y) = sinx cos y + cosx sin y

cos(x+ y) = cosx cos y − sinx sin y.

Beweis. cos(x+ y) + i sin(x+ y) = ei(x+y) = eix · eiy =
= (cosx+ i sinx) · (cos y + i sin y) =
= (cosx cos y − sinx sin y) + i(cosx sin y + sinx cos y). �

Auch die Formel von Moivre (ABRAHAM DE MOIVRE (1667-1754)) erhält man
unmittelbar aus der Eulerschen Formel und der Gleichung (eiz)n = einz:

Satz 4.3.3 (Moivresche Formeln) Für alle n ∈ N, z ∈ C gilt:

(cos z + i sin z)n = cosnz + i sinnz.

Beweis. Die linke Seite ist gleich (eiz)n, die rechte ist ei(nz). �

Beispiel 4.3.4 Aus den Moivreschen Formeln kann man leicht Beziehungen zwi-
schen cosnx, sinnx und cosn x, sinn x herleiten. Es ist

cos 2x+ i sin 2x = (cosx+ i sinx)2 = cos2 x+ 2i cosx sinx− sin2 x,
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also
cos 2x = cos2 x− sin2 x, sin 2x = 2 cosx sinx.

Analog erhält man

cos 3x = cos3 x− 3 cosx sin2 x sin 3x = 3 cos2 x sinx− sin3 x.

Nun sollen die trigonometrischen Funktionen im Reellen weiter untersucht werden.
Durch gliedweises Differenzieren der Potenzreihen erhält man:

Satz 4.3.5 Für alle x ∈ R ist

d
dx

sinx = cosx ,
d
dx

cosx = − sinx.

Hilfssatz 4.3.6 Für alle x ∈ R gilt:

(1) sin(−x) = − sinx, cos(−x) = cosx,
(2) (sinx)2 + (cosx)2 = 1,
(3) | sinx| ≤ 1, | cosx| ≤ 1.

Beweis. (1) ergibt sich aus der Definition von sinx und cosx. Um (2) zu beweisen,
setzt man bei cos(x+ y) im Additionstheorem 4.3.2 y = −x; man erhält:

1 = cos 0 = cosx · cos(−x) − sinx · sin(−x) = (cosx)2 + (sinx)2.

Die Aussage (3) folgt aus (2). �

Nun behandeln wir die Nullstellen der trigonometrischen Funktionen und definieren
die Zahl π:

Satz 4.3.7 (Definition von π) Der Cosinus besitzt im Intervall ]0, 2[ genau eine
Nullstelle, die wir mit π

2 bezeichnen.

Beweis. Es ist cos 0 = 1 > 0; wir zeigen: cos 2 < 0; aus dem Zwischenwertsatz
folgt dann die Existenz einer Nullstelle. Es ist

cosx = 1− x
2

2!
+
x4

4!
− x

6

6!
+
x8

8!
− . . . = 1− x

2

2!
(1− x2

3 · 4)− x
6

6!
(1− x2

7 · 8)− . . . .

Für x = 2 sind die in den Klammern stehenden Ausdrücke positiv und man erhält:

cos 2 < 1 − 22

2!
(1 − 22

3 · 4) = −1
3
,

also cos 2 < 0.
Um zu zeigen, dass cosx im Intervall ]0, 2[ streng monoton fällt, betrachtet man

sinx = x− x
3

3!
+
x5

5!
− x

7

7!
+ . . . = x · (1 − x2

2 · 3) +
x5

5!
(1 − x2

6 · 7) + . . .



72 4 Potenzreihen und elementare Funktionen

Für 0 < x < 2 sind alle Summanden positiv, also ist sinx > 0 in ]0, 2[ und

d
dx

cosx = − sinx < 0.

Daher ist der Cosinus in diesem Intervall streng monoton fallend und besitzt somit
genau eine Nullstelle; wir bezeichnen sie mit π

2 ; also cos π
2 = 0 und sin π

2 > 0. �

Die ursprüngliche Definition der Zahl π hängt mit der Bestimmung des Umfangs
U(r) und des Flächeninhalts F (r) eines Kreises vom Radius r zusammen. Schon
ARCHIMEDES (287-212) war bekannt, dass für alle Kreise das Verhältnis von Um-
fang zum Durchmesser und auch das Verhältnis von Flächeninhalt zum Quadrat des
Radius konstant ist; diese beiden Konstanten sind gleich und werden mit π bezeich-
net. Es ist also

U(r)
2r

= π =
F (r)
r2
.

Die ersten zwanzig Dezimalstellen für π lauten:

π = 3, 14159265358979323846 . . .

Die Geschichte der Zahl π wird ausführlich in [3] dargestellt. Wir gehen auf
Flächeninhalt und Umfang des Kreises in 5.4.9 und 9.5.11 ein.

Nun beweisen wir, dass Sinus und Cosinus periodische Funktionen mit der Periode
2π sind:

Satz 4.3.8 Für alle x ∈ R gilt:

(1) sin(x+ π
2 ) = cosx, (2) cos(x+ π

2 ) = − sinx,
(3) sin(x+ π) = − sinx, (4) cos(x+ π) = − cosx
(5) sin(x+ 2π) = sinx, (6) cos(x+ 2π) = cosx

Die Nullstellen von sinx sind k ·π mit k ∈ Z, die Nullstellen von cosx sind k ·π+ π
2 ,

k ∈ Z; es gibt keine weiteren Nullstellen.

Beweis. Nach Definition von π
2 ist cos π

2 = 0 und aus (sin π
2 )2 +(cos π

2 )2 = 1 folgt
sin π

2 = ±1. In 4.3.7 ergab sich sin π
2 > 0, also ist sin π

2 = +1.
Das Additionstheorem 4.3.2 liefert mit y := π

2 die Aussage (1):
sin(x+ π

2 ) = sinx · cos π
2 + cosx · sin π

2 = cosx.
Wenn man (1) differenziert, erhält man (2).
Daraus folgt (3): sin(x+ π) = sin((x+ π

2 ) + π
2 ) = cos(x+ π

2 ) = − sinx;
differenzieren liefert (4).
Nun ergibt sich (5): sin(x+ 2π) = sin((x+ π) + π) = − sin(x+ π) = sinx
und durch differenzieren erhält man (6).
Aus (3) und sin 0 = 0 folgt für k ∈ Z: sin kπ = 0
und aus (2) folgt dann cos(kπ + π

2 ) = 0.
Aus der Definition von π

2 folgt zunächst cosx > 0 in 0 ≤ x < π
2 und daher

cosx > 0 für − π
2
< x <

π

2
, wegen (1) ist dann sinx > 0 für 0 < x < π.
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Aus (3) und (4) folgt

cosx < 0 für
π

2
< x <

3π
2
, sinx < 0 für π < x < 2π.

�


π/2

π/2

π

π

2π

2π

sinx

cosx

1

Wir bringen nun ein einfaches Beispiel für die l’Hospitalsche Regel:

Beispiel 4.3.9 Es ist

lim
x→0

sinx
x

= 1.

Dies folgt aus lim
x→0

sin x
x = lim

x→0

cos x
1 = 1; man kann diese Ausssage auch auch der

Potenzreihe herleiten: sinx
x = 1 − x2

3! + . . . .
In der Abbildung sind die Funktionen sin x

x und sinx sowie 1
x dargestellt.

π x

1

Beispiel 4.3.10 Aus den Additionstheoremen leiten wir Aussagen über Überlage-
rungen von Schwingungen her. Wenn man zwei Saiten eines Musikinstruments , die
fast gleiche Tonhöhe haben, anschlägt, bemerkt man ein An- und Abschwellen des
Tones; es entsteht eine Schwebung. Wir wollen nun das Verhalten einer Summe von
Schwingungen mit der Amplitude 1, also sinω1t + sinω2t untersuchen. Aus den
Additionstheoremen folgt zunächst:

sin(x+ y) + sin(x− y) = 2 · sinx · cos y.
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Nun seien die Schwingungen von zwei Saiten eines Musikinstruments beschrieben
durch sinω1t und sinω2t. Es sei ω1 > ω2 und wir setzen ω := 1

2 (ω1 + ω2) und
ϑ := 1

2 (ω1 − ω2). Durch Überlagerung der beiden Saitenschwingungen ergibt sich
dann

sinω1t+ sinω2t = 2 · sinωt · cosϑt.

Wenn die beiden Frequenzen fast gleich sind, ist ϑ klein und man erhält eine Si-
nusschwingung sinωt mit der Amplitude 2 · cosϑt , also eine Schwebung. In der
Abbildung ist oben ω1 = 11, ω2 = 12, also ϑ = 1; bei der unteren Abbildung ist
ω1 = 11.5, ω2 = 12 und ϑ = 0.5.

Man vergleiche dazu auch die Schwingung bei gekoppelten Pendeln, die wir in Bei-
spiel 8.4.9 untersuchen.

Nachdem wir die Nullstellen von sinx und cosx kennen, können wir Tangens und
Cotangens definieren:

Definition 4.3.11 Tangens und Cotangens sind definiert durch

tg : {x ∈ R| x �= kπ + π
2 für k ∈ Z} → R, x 	→ sin x

cos x ,

cotg : {x ∈ R| x �= kπ für k ∈ Z} → R, x 	→ cos x
sin x .

Wir geben nun die wichtigsten Eigenschaften dieser Funktionen an (dabei soll x
immer im Definitionsbereich liegen):

Satz 4.3.12 Es gilt

d
dx
tgx = 1 + (tg x)2,

d
dx
cotg x = −1 − (cotg x)2.

Beweis. d
dx tgx = d

dx ( sin x
cos x ) = cos x·cos x−sinx·(− sin x)

(cos x)2 = 1+( sin x
cos x )2 = 1+(tgx)2;

analog berechnet man die Ableitung von cotg x. �
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Satz 4.3.13 Es gilt

tg(−x) = −tgx, cotg(−x) = −cotgx,
tg(x+ π) = tgx, cotg(x+ π) = cotgx,
tg(x+ π

2 ) = −tgx, cotg(x+ π
2 ) = −tgx.

Aus dem Verhalten von sinx und cosx und aus d
dx tg x ≥ 1 > 0 ergibt sich:

Satz 4.3.14 Der Tangens ist im Intervall ] − π
2 ,

π
2 [ streng monoton wachsend und

nimmt dort jeden reellen Wert genau einmal ein; die Abbildung

] − π
2
,
π

2
[→ R, x 	→ tgx,

ist also bijektiv.

−π/2 π/2

tgx

Wir behandeln nun die Umkehrfunktionen der trigonometrischen Funktionen. Der
Begriff der Umkehrfunktion ist nur für injektive Funktionen definiert ist. Sinus und
Cosinus sind nicht injektiv; um Umkehrfunktionen definieren zu können, schränkt
man diese Funktionen auf Intervalle ein, die so gewählt sind, dass sie dort streng
monoton sind. Nach 4.3.7 ist der Sinus im abgeschlossenen Intervall [−π

2 ,
π
2 ] streng

monoton wachsend; er nimmt dort jeden Wert aus [−1, 1] genau einmal an. Die
Abbildung

[−π
2
,+
π

2
] → [−1,+1], x 	→ sinx,

ist also bijektiv. Analog gilt: cos | [0, π] → [−1,+1] ist bijektiv; daher können wir
definieren:

Definition 4.3.15 Die Umkehrfunktion von sin |[−π
2 ,+

π
2 ] → R heißt Arcus-Sinus;

man bezeichnet sie mit
arcsin : [−1,+1] → R.

Die Umkehrfunktion von cos | [0, π] → R bezeichnet man mit

arccos : [−1,+1] → R.

Für alle y ∈ [−1,+1] und x ∈ [−π
2 ,+

π
2 ] ist also

sin(arcsin y) = y, arcsin(sinx) = x.
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arcsinx
arccosx

−1 1

π/2

−π/2

−1 1

π/2

π

sinx

cosx

Es gilt:

Satz 4.3.16 Die Funktion

arcsin : [−1,+1] → R

ist stetig und streng monoton wachsend; im offenen Intervall ist sie differenzierbar
und für x ∈] − 1,+1[ gilt:

d
dx

arcsinx =
1√

1 − x2 .

Die Funktion arccos : [−1,+1] → R ist stetig und streng monoton fallend , es gilt:

arccosx =
π

2
− arcsinx

und daher ist für x ∈] − 1,+1[:

d
dx

arccosx = − 1√
1 − x2 .

Beweis. Mit y := arcsinx, ergibt sich

d
dx

arcsinx =
1

cos y
=

1√
1 − (sin y)2

=
1√

1 − x2 .

Nach 4.3.8 ist cos(π
2 − y) = sin y; setzt man y := arcsinx ein, so erhält man

cos(π
2 − y) = x, also π

2 − y = arccosx. �

Der Tangens bildet das offene Intervall ]− π

2 ,+
π
2 [ bijektiv auf R ab; man definiert:

Definition 4.3.17 Die Umkehrfunktion von

tg| ] − π
2
,+
π

2
[→ R

heißt
arctg : R → R.
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π/2

−π/2

arc tg x

Definition 4.3.18 Die Funktion

arctg : R → R

ist streng monoton wachsend und differenzierbar; für x ∈ R ist

d
dx
arctgx =

1
1 + x2

.

Beweis. Es ist d
dx tg y = 1+ (tg y)2; setzt man y := arctg x, so ist ergibt sich

d
dx

arctg x =
1

1 + (tgy)2
=

1
1 + x2

.

�

Wir gehen noch auf Polarkoordinaten ein:

Satz 4.3.19 (Polarkoordinaten.) Zu (x, y) ∈ R2 mit x2 + y2 = 1 existiert genau
ein ϕ mit

x = cosϕ, y = sinϕ, 0 ≤ ϕ < 2π.

Daher kann man jede komplexe Zahl z �= 0 eindeutig darstellen in der Form

z = r · eiϕ = r · (cosϕ+ i sinϕ) mit r = |z|, 0 ≤ ϕ < 2π.

Beweis. Aus x2 +y2 = 1 folgt −1 ≤ x ≤ 1 und daher existiert genau ein ϕ ∈ [0, π]
mit cosϕ = x, nämlich ϕ := arccosx.
Dann ist y = ±

√
1 − cos2 ϕ = ± sinϕ.Wenn y = + sinϕ ist, dann ist die erste

Behauptung bewiesen. Falls y = − sinϕ ist, ersetzt man ϕ durch 2π−ϕ . Dann ist

x = cosϕ = cos(2π−ϕ), y = − sinϕ = sin(2π−ϕ) mit π < (2π−ϕ) < 2π.

Daraus folgt für z ∈ C, z �= 0, r := |z| die Darstellung :

z

r
= cosϕ+ i sinϕ = eiϕ.

�

Mit sinx können wir nun ein Beispiel einer differenzierbaren Funktion f angeben,
bei der f ′ unstetig ist; somit existiert f ′′ nicht:
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Beispiel 4.3.20 Es sei

f : R → R, x 	→
{
x2 · sin 1

x für x �= 0
0 für x = 0

Für x �= 0 ist | sin 1
x | ≤ 1 und daher existiert

f ′(0) = lim
h→0

f(h) − f(0)
h

= lim
h→0
h · sin 1

h
= 0.

Für x �= 0 kann man f ′(x) leicht ausrechnen und es ergibt sich:

f ′(x) =
{

2x · sin 1
x − cos 1

x für x �= 0
0 für x = 0

Im Nullpunkt ist f ′ unstetig, denn es existiert lim
x→0

2x · sin 1
x = 0; wenn f ′ in 0

stetig wäre, würde auch lim
x→0

cos 1
x existieren. Für xn := 1

nπ ist aber lim
n→∞xn = 0

und cos 1
xn

= 1 für gerades n und cos 1
xn

= −1 für ungerades n.

Zum Abschluss gehen wir noch kurz auf die hyperbolischen Funktionen sinhx
und coshx ein; diese sind definiert durch

coshx :=
1
2
(ex + e−x), sinhx :=

1
2
(ex − e−x).

Die Umkehrfunktionen bezeichnet man mit ar cosh x und ar sinh x ; es gilt

ar coshx = ln(x +
√
x2 − 1) für x > 1,

ar sinh x = ln(x+
√
x2 + 1) für alle x ∈ R.

coshx sinhx
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Aufgaben

4.1. Differenzieren Sie folgende Funktionen:

sin2 x, cos2 x, sin(x2), esin x, sin(ex).

4.2. Differenzieren Sie (x > 0): ex · ln x, x2 · ln x, ln x
x2 .

4.3. Die Funktion f : R → R sei differenzierbar und positiv; differenzieren Sie

1

f2
, ef , f · ln f, ff .

4.4. Berechnen Sie folgende Grenzwerte:

a) lim
x→0

ex−1−x
x2 , b) lim

x→0

ex−1+x
x2+1

, c) lim
x→0

sin 1
x

1
x

.

4.5. Beweisen Sie

ar sinh x = ln(x +
�

x2 + 1) für alle x ∈ R.

4.6. Zeigen Sie
∞�

n=1

n

10n
=

10

81

und
1

10
+

1

200
+

1

3000
+

1

40000
+

1

500000
+

1

6000000
+ . . . = ln

10

9

4.7. Untersuchen Sie für x > 0 die Funktion

f(x) := x2 lnx − 1

2
x2.

4.8. Untersuchen Sie die Funktion

f(x) := sin2 x +
1

2
cos 2x.

4.9. Untersuchen Sie den Verlauf von

f :]0,∞[→ R, x �→ xx

und berechnen Sie lim
x→0

xx.

4.10. Sie wollen den Graphen von ln x für x ≥ 1 aufzeichnen; Ihr Blatt ist so lang wie der
Erdumfang, also etwa 40000km, aber nur 4km hoch; als Einheit wählen Sie 1cm. Ist das
Blatt hoch genug ? Um wieviel muss es beim doppelten Erdumfang höher sein ? (Benutzen
Sie ln 2 = 0, 69 . . . und ln 10 = 2, 3 . . .)
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Integration

5.1 Riemannsches Integral

Die Integralrechnung behandelt zwei Problemstellungen:
1) Flächenmessung,
2) Umkehrung der Differentiation.
Wir gehen von der Flächenmessung aus; das zweite Problem, aus einer ge-
gebenen Ableitung f ′ die Funktion f zu rekonstruieren, wird durch den
Hauptsatz gelöst.

Wir behandeln also das Problem, wie man Flächeninhalte definieren und berechnen
kann. Ist etwa f : [a, b] → R eine positive Funktion, so soll der Flächeninhalt von

{(x, y) ∈ R2 : a ≤ x ≤ b, 0 ≤ y ≤ f(x)}
bestimmt werden. Bei dem hier behandelten Riemannschen Integral (BERNHARD

RIEMANN, (1826-1866)) geht man folgendermaßen vor: Man approximiert die
durch f beschriebene “Fläche” jeweils durch endlich viele Rechtecke von “un-
ten” und von “oben”. Wenn bei Verfeinerung der Zerlegungen die “Untersummen”
und “Obersummen” gegen den gleichen Grenzwert streben, ist dieser der gesuchte
Flächeninhalt, den man mit

b∫
a

f(x) dx oder

b∫
a

f dx

bezeichnet. Dies soll nun präzisiert werden:
Ist [a, b] ein abgeschlossenes Intervall, so bezeichnet man ein (m+ 1)-Tupel

Z = (x0, x1, ..., xm) mit a = x0 < x1 < ... < xm−1 < xm = b

als Zerlegung von [a, b].
Nun sei f : [a, b] → R eine beschränkte Funktion; und Z = (x0, ..., xm) eine
Zerlegung von [a, b]. Dann existieren
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mk := inf{f(x) : xk−1 ≤ x ≤ xk} Mk := sup{f(x) : xk−1 ≤ x ≤ xk}
und man definiert die zu Z gehörende Untersumme SZ(f) und die Obersumme
SZ(f) von f durch

SZ(f) :=
m∑

k=1

mk · (xk − xk−1), SZ(f) :=
m∑

k=1

Mk · (xk − xk−1).

a x1 x2 x3 x4 b

Nun sei

m := inf{f(x) : a ≤ x ≤ b}, M := sup{f(x) : a ≤ x ≤ b}.
Für jede Zerlegung Z ist m · (b − a) ≤ SZ(f) ≤ SZ(f) ≤ M · (b − a). Dann
existieren , wenn wir mit Z[a, b] die Menge aller Zerlegungen von [a, b] bezeichnen,

sup{SZ(f)| Z ∈ Z[a, b]} =: U(f), inf{SZ(f)| Z ∈ Z[a, b]} =: O(f).

U(f) heißt das Unterintegral von f und O(f) das Oberintegral. Nun definiert
man:

Definition 5.1.1 Eine beschränkte Funktion f : [a, b] → R heißt Riemann-
integrierbar, wenn das Unterintegral gleich dem Oberintegral ist; man setzt dann

b∫
a

f(x) dx := U(f) = O(f).

Die Menge aller Riemann-integrierbaren Funktionen auf [a, b] bezeichnen wir mit

R([a, b]).

In diesem Abschnitt bezeichnen wir Riemann-integrierbare Funktionen kurz als in-
tegrierbar; in 10.1.10 führen wir Lebesgue-integrierbare Funktionen ein, so dass wir
dann diese beiden Integralbegriffe unterscheiden müssen.
Wir untersuchen nun das Verhalten von Unter- und Obersummen, wenn man die
Zerlegung Z verfeinert. Eine Zerlegung Z ′ heißt feiner als Z , wenn jeder Teilpunkt
von Z auch in Z ′ vorkommt. Es gilt:

Hilfssatz 5.1.2 Ist Z ′ feiner als Z , so gilt:

SZ(f) ≤ SZ′ , SZ(f) ≥ SZ′(f).
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Beweis. Wir beweisen die zweite Ungleichung. Es genügt, den Fall zu behandeln,
dass Z ′ aus Z durch Hinzufügen eines weiteren Teilpunktes x′ entsteht; also

Z = (x0, ..., xk−1, xk, ..., xm), Z ′ = (x0, ..., xk−1, x
′, xk, ..., xm).

Setzt man

M ′ := sup f([xk−1, x
′]), M ′′ := sup f([x′, xk]), Mk = sup f([xk−1, xk]),

so istM ′ ≤Mk undM ′′ ≤Mk. In SZ(f) kommt der SummandMk · (xk −xk−1)
vor, in SZ′(f) hat manM ′ · (x′ − xk−1) +M ′′(xk − x′), alle übrigen Summanden
sind gleich. Aus

M ′ · (x′ − xk−1) +M ′′(xk − x′) ≤Mk(xk − xk−1)

folgt SZ′(f) ≤ SZ(f). �

Nun zeigen wir

Hilfssatz 5.1.3 Sind Z1 und Z2 beliebige Zerlegungen von [a, b], so ist

SZ1
(f) ≤ SZ2(f) und daher U(f) ≤ O(f).

Beweis. Es sei Z die gemeinsame Verfeinerung von Z1 und Z2; die Teilpunkte von
Z sind genau die Punkte, die in Z1 oder Z2 vorkommen. Dann ist

SZ1
(f) ≤ SZ(f) ≤ SZ(f) ≤ SZ2(f).

�

Damit erhalten wir ein wichtiges Kriterium für die Integrierbarkeit einer Funktion.

Satz 5.1.4 (Riemannsches Integrabilitätskriterium) Eine beschränkte Funktion
f : [a, b] → R ist genau dann integrierbar, wenn zu jedem ε > 0 eine Zerlegung Z
von [a, b] existiert mit

SZ(f) − SZ(f) < ε.

Beweis. Wenn f integrierbar ist, dann ist
b∫
a

f(x) dx gleich dem Oberintegral und

auch gleich dem Unterintegral. Zu ε > 0 gibt es daher Zerlegungen Z1 und Z2 mit

b∫
a

f(x) dx− SZ1
(f) <

ε

2
, SZ2(f) −

b∫
a

f(x) dx <
ε

2
.

Für die gemeinsame Verfeinerung Z von Z1 und Z2 ist SZ1
(f) ≤ SZ(f) und

SZ1(f) ≥ SZ(f) und daher

b∫
a

f(x) dx− SZ(f) <
ε

2
, SZ(f) −

b∫
a

f(x) dx <
ε

2
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und somit SZ(f) − SZ(f) < ε.
Nun nehmen wir an, zu jedem ε > 0 existiere ein Z mit SZ(f) − SZ(f) < ε. Es
ist SZ(f) ≤ U(f) ≤ O(f) ≤ SZ(f), daher 0 ≤ O(f) − U(f) < ε. Daraus folgt
O(f) = U(f) und daher ist f integrierbar. �

Folgende Aussagen sind leicht zu beweisen:

Hilfssatz 5.1.5 Sind f : [a, b] → R und g : [a, b] → R integrierbar und c1, c2 ∈ R,
so ist c1f + c2g integrierbar und

b∫
a

(c1f(x) + c2g(x)) dx = c1

b∫
a

f(x) dx+ c2

b∫
a

g(x) dx.

Falls f(x) ≤ g(x) für alle x ∈ [a, b] gilt, folgt

b∫
a

f(x) dx ≤
b∫

a

g(x) dx.

Daraus ergibt sich, dass die Menge R([a, b]) aller Riemann-integrierbaren Funktio-
nen auf [a, b] ein Vektorraum über R ist (man vergleiche dazu 7.2.7); die Abbildung

R([a, b]) → R, f 	→
b∫
a

f(x)dx, ist linear und monoton.

Man kann zeigen, dass das Produkt Riemann-integrierbarer Funktionen wieder
Riemann-integrierbar ist (vgl. [6] und [16]).

Hilfssatz 5.1.6 Ist a < b < c und f : [a, c] → R integrierbar, so gilt:

b∫
a

f(x) dx+

c∫
b

f(x) dx =

c∫
a

f(x) dx.

Setzt man für a < b
a∫

b

f(x) dx := −
b∫

a

f(x) dx,

so gilt zum Beispiel auch

c∫
a

f(x) dx +

b∫
a

f(x) dx =

b∫
a

f(x) dx.

Satz 5.1.7 Jede stetige Funktion f : [a, b] → R ist integrierbar.

Beweis. Wir wenden das Riemannsche Integrabilitätskriterium 5.1.4 an; es sei also
ε > 0 vorgegeben. Weil f gleichmäßig stetig ist, existiert ein δ > 0, so dass aus
x, x′ ∈ [a, b], |x− x′| ≤ δ, folgt: |f(x) − f(x′)| ≤ ε

2(b−a) .
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Wählt man eine Zerlegung Z = (x0, ..., xm) von [a, b] so, dass |xk −xk−1| ≤ δ für
k = 1, ...,m gilt, so istMk −mk ≤ ε

2(b−a) für k = 1, ...,m und daher

SZ(f) − SZ(f) =
m∑

k=1

(Mk −mk) · (xk − xk−1) ≤ ε2 < ε.

Daraus folgt, dass f integrierbar ist. �

Wir zeigen noch:

Satz 5.1.8 Sei f : [a, b] → R stetig, f(x) ≥ 0 für alle x ∈ [a, b]; es existiere ein

p ∈ [a, b] mit f(p) > 0. Dann ist
b∫

a

f(x)dx > 0.

Beweis. Man wählt eine Zerlegung Z so, dass die stetige Funktion f in einem Teil-
intervall [xk−1, xk] ,in dem p liegt, ≥ 1

2f(p) ist . Dann ist SZ(f) > 0 und daraus
folgt die Behauptung. �

Daraus leiten wir nun eine Aussage her, die man in der Variationsrechnung benötigt:

Hilfssatz 5.1.9 (Lemma der Variationsrechnung) Sei f : [a, b] → R stetig; für

jede unendlich oft differenzierbare Funktion ϕ : [a, b] → R sei
b∫

a

f(x)ϕ(x)dx = 0.

Dann folgt f = 0.

Beweis. Wir nehmen an, es existiere ein p ∈ [a, b] mit f(p) �= 0 und behandeln den
Fall f(p) > 0; (sonst gehen wir zu −f über.) Dann gibt es Punkte p1 < p2 in [a, b],
so dass f in [p1, p2] positiv ist. Wie in 13.2.1 gezeigt wird, gibt es eine unendlich
oft differenzierbare Funktion ϕ : [a, b] → R, die in ]p1, p2[ positiv und sonst 0 ist.

Dann ist aber
b∫

a

f(x)ϕ(x)dx > 0. �


Wir geben nun ein Beispiel einer beschränkten Funktion an, die nicht integrierbar
ist.

Beispiel 5.1.10 Es sei

f : [0, 1] → R, x 	→
{

1 falls x ∈ Q
0 falls x /∈ Q

Dann ist f : [0, 1] → R nicht integrierbar, denn in jedem Teilintervall [xk−1, xk]
von [0, 1] gibt es rationale und irrationale Punkte. Daher ist mk = 0 undMk = 1.
Für jede Zerlegung Z von [0, 1] ist dann SZ(f) = 0 und SZ(f) = 0. Somit ist das
Unterintegral gleich Null und das Oberintegral gleich 1.
Man nennt diese Funktion die Dirichlet-Funktion.

Bemerkung. Man kann das Integral auch mit Hilfe Riemannscher Summen einführen.
Ist Z = (x0, ..., xm) eine Zerlegung von [a, b] und sind ξk ∈ [xk−1, xk] beliebige
Punkte, so heißt
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RZ(f) :=
m∑

k=1

f(ξk) · (xk − xk−1)

die zu Z und ξ1, ..., ξm gehörende Riemannsche Summe. Es ist

SZ(f) ≤ RZ(f) ≤ SZ(f).

Wenn f integrierbar ist, dann existiert zu ε > 0 ein Z mit SZ(f)−SZ(f) < ε. Für
jede Wahl der Zwischenpunkte gilt dann

|
b∫

a

f(x) dx−RZ(f)| < ε;

Man kann also das Integral durch Riemannsche Summen approximieren.

5.2 Die Mittelwertsätze der Integralrechnung

Satz 5.2.1 (1. Mittelwertsatz der Integralrechnung) Ist f : [a, b] → R stetig, so
existiert ein ξ ∈ [a, b] mit

b∫
a

f(x) dx = (b− a) · f(ξ).

Beweis. Die stetige Funktion f nimmt das Minimum m und das MaximumM an.
Für jede Zerlegung Z von [a, b] ist

m · (b− a) ≤ Sz(f) ≤
b∫

a

f(x) dx ≤ Sz(f) ≤M · (b− a),

also

m ≤ 1
b− a

b∫
a

f(x) dx ≤M

und nach dem Zwischenwertsatz existiert ein ξ ∈ [a, b] mit

f(ξ) =
1

1 − a

b∫
a

f(x) dx.

�
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Satz 5.2.2 (2. Mittelwertsatz der Integralrechnung) Es seien f : [a, b] → R und
g : [a, b] → R stetige Funktionen und es gelte g(x) > 0 für alle x ∈ [a, b]. Dann
existiert ein ξ ∈ [a, b] mit

b∫
a

f(x)g(x) dx = f(ξ) ·
b∫

a

g(x) dx.

Beweis. Wir bezeichnen wieder mitm das Minimum und mitM das Maximum von
f . Aus

m · g(x) ≤ f(x) · g(x) ≤M · g(x)
folgt

m ·
b∫

a

g(x) dx ≤
b∫

a

f(x) · g(x) dx ≤M ·
b∫

a

g(x) dx.

Setzt man c :=
b∫
a

g(x) dx, so ist c > 0 und

m ≤ 1
c

b∫
a

f(x)g(x) dx ≤M.

Nach dem Zwischenwertsatz existiert ein ξ ∈ [a, b] mit

f(ξ) =
1
c

b∫
a

f(x)g(x) dx

und damit ist der Satz bewiesen. �


5.3 Der Hauptsatz der Differential- und Integralrechnung

Der Hauptsatz stellt eine Beziehung zwischen Differentiation und Integration her;
er besagt, dass man Integration als Umkehrung der Differentiation auffassen kann.

Definition 5.3.1 Es sei f : [a, b] → R eine Funktion. F : [a, b] → R heißt Stamm-
funktion von f , wenn F differenzierbar ist und

F ′ = f.

Wir führen noch folgende Schreibweise ein:

F |ba = F (b) − F (a)

Es gilt:
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Satz 5.3.2 Ist F eine Stammfunktion von f und c ∈ R, so ist auch F + c eine
Stammfunktion von f . Sind F undG Stammfunktionen von f , so istG−F konstant.

Beweis. Die erste Behauptung ist trivial, die zweite folgt aus (G−F )′ = f−f = 0.
�


Satz 5.3.3 (Hauptsatz der Differential- und Integralrechnung)
Ist f : [a, b] → R eine stetige Funktion, so gilt:

1) Die Funktion

F : [a, b] → R, x 	→
x∫
a

f(t) dt,

ist eine Stammfunktion von f .
(2) Wenn G eine Stammfunktion von f ist, dann gilt

b∫
a

f(t) dt = G|ba = G(b) −G(a).

Beweis. (1) Für x, x+ h ∈ [a, b], h �= 0, gilt:

F (x+ h) − F (x)
h

=
1
h

⎛⎝ x+h∫
a

f(t) dt−
x∫

a

f(t) dt

⎞⎠ =
1
h

x+h∫
x

f(t) dt.

Weil f stetig ist, existiert nach dem 1. Mittelwertsatz der Integralrechnung ein ξh
zwischen x und x+ h mit

1
h

x+h∫
x

f(t) dt = f(ξh).

a x x+ hξh b

f(ξh)
f

Es ist lim
h→0
ξh = x und wegen der Stetigkeit von f folgt:

lim
h→0

F (x+ h) − F (x)
h

= lim
h→0
f(ξh) = f(x).
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Damit ist gezeigt, dass F ′(x) existiert und F ′(x) = f(x) ist.
(2) Nach 5.3.2 ist G− F konstant und daher

G(b) −G(a) = F (b) − F (a) =

b∫
a

f(t) dt.

Damit ist der Hauptsatz bewiesen. �

Bemerkungen. Der Hauptsatz besagt insbesondere, dass jede stetige Funktion f ei-
ne Stammfunktion besitzt.
Die Aussage des Hauptsatzes kann man so interpretieren: Integration ist die Um-
kehrung der Differentiation, denn für jede stetige Funktion ist

d
dx

x∫
a

f(t) dt = f(x).

und für jede stetig differenzierbare Funktion f mit f(a) = 0 ist

x∫
a

df
dt

(t) dt = f(x).

Im Anschluss an den Hauptsatz führt man den Begriff des unbestimmten Integrals
ein: Ist f stetig und F eine Stammfunktion von f , so heißt∫

f(x)dx := {F + c| c ∈ R}

das unbestimmte Integral von f ; es ist also die Menge aller Stammfunktionen. Oft
schreibt man dafür kurz ∫

f(x)dx = F + c

oder auch ∫
f(x)dx = F,

allerdings darf man dann aus Gleichungen wie∫
sinx · cosxdx =

1
2

sin2 x ;
∫

sinx · cosxdx = −1
2

cos2 x

keine falschen Schlüsse ziehen.
Wenn wir schreiben: Man berechne

∫
f(x)dx, so ist damit gemeint: Man gebe eine

Stammfunktion von f an.
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5.4 Partielle Integration und Substitutionsregel

Aus der Produktregel (fg)′ = f ′g+ fg′ und der Kettenregel f(g(x))′ = f ′(g(x)) ·
g′(x) leiten wir mit Hilfe des Hauptsatzes Rechenregeln für die Integration her,
nämlich die partielle Integration und die Substitutionsregel.

Satz 5.4.1 (Partielle Integration). Sind f : [a, b] → R und g : [a, b] → R stetig
und sind F,G Stammfunktionen zu f, g so gilt:

b∫
a

f(x)G(x) dx = F ·G|ba −
b∫

a

F (x)g(x) dx.

Beweis. Wegen F ′ = f undG′ = g folgt aus der Produktregel (F ·G)′ = fG+Fg
und mit dem Hauptsatz 5.3.3 erhält man

b∫
a

f(x)G(x) dx +

b∫
a

F (x)g(x) dx = F ·G|ba.

�

Satz 5.4.2 (Substitutionsregel) Sei f : [a, b] → R stetig und g : [a′, b′] → R stetig
differenzierbar, g([a′, b′]) ⊂ [a, b]. Dann gilt:

g(b′)∫
g(a′)

f(y) dy =

b′∫
a′

f(g(x)) · g′(x) dx.

Beweis. Aus dem Hauptsatz 5.3.3 folgt, dass zu f eine Stammfunktion F existiert,
nach der Kettenregel 3.1.7 ist (F ◦ g)′(x) = f(g(x)) · g′(x). Wir wenden zweimal
den Hauptsatz an und erhalten:

b′∫
a′
f(g(x)) · g′(x) dx = F ◦ g|b′a′ = F (g(b′)) − F (g(a′))

g(b′)∫
g(a′)

f(y) dy = F |g(b′)
g(a′) = F (g(b′)) − F (g(a′)).

�

Sezt man f(y) := 1

y , so ergibt sich:

Hilfssatz 5.4.3 Ist g : [a, b] → R stetig differenzierbar und g(x) > 0 für x ∈ [a, b],
so ist

b∫
a

g′(x)
g(x)

dx = ln g|ba.
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Wir können nun weitere Beispiele behandeln:

Beispiel 5.4.4 Für x > 0 berechnen wir
∫

lnxdx durch partielle Integration.
Wir setzen f(x) := 1, G(x) := lnx und wählen F (x) = x; es ist g(x) = 1

x , daher∫
lnxdx = x · lnx−

∫
x · 1
x

dx = x · lnx− x.

Beispiel 5.4.5 Für −π
2 < x <

π
2 berechnen wir

∫
tgxdx. Aus 5.4.2 mit g(x) :=

cosx folgt: ∫
tgxdx = − ln(cosx).

Beispiel 5.4.6 Für −1 < x < 1 berechnen wir
∫

arcsinxdx.
Setzt man f(x) = 1, G(x) = arcsinx sowie F (x) = x, g(x) = 1√

1−x2 , so erhält
man durch partielle Integration∫

arcsinxdx = x · arcsinx−
∫

x√
1 − x2 dx.

Die Substitution y := 1 − x2 liefert∫
x√

1 − x2 dx = −
∫

dy
2
√
y

= −√
y = −

√
1 − x2.

Daher ist x · arcsinx+
√

1 − x2 eine Stammfunktion von arcsinx.

Beispiel 5.4.7 Durch partielle Integration erhält man:∫
arctg xdx = x · arctg x−

∫
x · 1

1 + x2
dx = x · arctg x− 1

2
ln(1 + x2).

Beispiel 5.4.8
∫

sin2 xdx kann man mit partieller Integration behandeln.Eine an-
dere Methode ergibt sich, wenn man aus sin 2x = 2 sinx cosx, cos 2x =
cos2 x− sin2 x = 1 − 2 sin2 x herleitet:

sin2 x =
1 − cos 2x

2
.

Eine Stammfunktion zu sin2 x ist also

1
2
(x− 1

2
sin 2x) =

1
2
(x− sinx cos x).

Analog ergibt sich, dass 1
2 (x+ sinx cosx) eine Stammfunktion zu cos2 x ist.
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Beispiel 5.4.9 Für r > 0 gibt
r∫
0

√
r2 − x2 dx ein Viertel der Fläche des Kreises mit

Radius r an. Mit der Substitution x = r · sin t, t ∈ [0, π
2 ], erhält man

r∫
0

√
r2 − x2 dx =

π/2∫
0

√
r2 − r2 sin2 t · r cos t dt =

= r2
π/2∫
0

cos2 t dt =
r2

2
(t+ sin t cos t)

∣∣∣∣∣∣∣
π/2

0

=
π

4
r2.

Die Fläche des Kreises mit Radius r ist also r2π.

Wir fassen unsere Ergebnisse zusammen und geben zu stetigen Funktionen f eine
Stammfunktion F an:

f F Definitionsbereich

xn 1
n+1x

n+1 n ∈ N

xr 1
r+1x

r+1 r ∈ R, r �= −1, x > 0
1
x ln |x| x �= 0

ex ex

sinx − cosx

cosx sinx
1

1+x2 arctgx
1√

1−x2 arcsinx |x| < 1

lnx x lnx− x x > 0

tgx − ln(cosx) |x| < π
2

arcsinx x arcsinx+
√

1 − x2 |x| < 1

arctgx xarctgx+ 1
2 ln(1 + x2)



5.5 Uneigentliche Integrale 93

5.5 Uneigentliche Integrale

Es sollen nun Integrale wie

∞∫
0

dx
1 + x2

,

1∫
0

dx
x3

behandelt werden. Beim ersten Beispiel wird über ein uneigentliches Intervall in-
tegriert; beim zweiten Beispiel ist die zu integrierende Funktion am Randpunkt 0
nicht definiert.

Definition 5.5.1 Die Funktion f : [a,∞[→ R sei stetig und es existiere

lim
R→∞

R∫
a

f(x) dx; dann setzt man

∞∫
a

f(x) dx := lim
R→∞

R∫
a

f(x) dx

Analog definiert man
a∫

−∞
f(x) dx := lim

R→−∞

a∫
R

f(x) dx.

Definition 5.5.2 Es sei f :]a, b] → R stetig, dann setzt man

b∫
a

f(x) dx := lim
ε→0
ε>0

b∫
a+ε

f(x) dx,

falls dieser Grenzwert existiert ;

für f : [a, b[→ R definiert man
b∫
a

f(x) dx := lim
ε→0
ε>0

b−ε∫
a

f(x) dx.

Definition 5.5.3 Sind a, b reelle Zahlen oder auch a = −∞ oder b = +∞ und ist
f :]a, b[→ R stetig, so wählt man ein c mit a < c < b und setze

b∫
a

f(x) dx :=

c∫
a

f(x) dx+

b∫
c

f(x) dx.

Diese Definitionen sollen nun an Beispielen erläutert werden.

Beispiel 5.5.4 Es sei s ∈ R, dann gilt:

∞∫
1

dx
xs

=
1
s− 1

für s > 1,

1∫
0

dx
xs

=
1

1 − s für s < 1,
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denn für s > 1 ist
R∫
1

x−s dx = 1
1−sx

1−s|R1 und lim
R→∞

1
1−sR

1−s = 0;

für s < 1 gilt
1∫
ε

x−s dx = 1
1−sx

1−s|1ε und lim
ε→0

1
1−sε

1−s = 0 .

Beispiel 5.5.5 Es ist
∞∫
0

dx
1+x2 = lim

R→∞
arctgR = π

2 und
+∞∫
−∞

dx
1+x2 = π.

Eine Beziehung zwischen der Konvergenz einer Reihe und der Existenz eines unei-
gentlichen Integrals liefert folgendes Vergleichskriterium:

Satz 5.5.6 (Vergleichskriterium) Die Funktion f : [1,∞[→ R sei stetig, monoton

fallend und positiv. Dann gilt: Die Reihe
∞∑

n=1
f(n) ist genau dann konvergent, wenn

das uneigentliche Integral
∞∫
1

f(x) dx existiert.

Beweis. Sei N ∈ N; wegen der Monotonie von f ist
N∑

n=2
f(n) die Untersumme für

f |[1, N ] → R zur ZerlegungZ = (1, 2, ..., N−1, N) und
N∑

n=2

f(n−1) =
N−1∑
n=1

f(n)

die Obersumme. Daher gilt

N∑
n=2

f(n) ≤
N∫

1

f(x) dx ≤
N−1∑
n=1

f(n)

und daraus folgt die Behauptung. �

Daraus ergibt sich eine Aussage, die wir für s ∈ N bereits in 1.5.18 bewiesen haben:

Satz 5.5.7 Die Reihe
∞∑

n=1

1
ns ist für alle s ∈ R, s > 1, konvergent und für s ≤ 1

divergent.

Beweis. Die Konvergenz für s > 1 folgt aus dem Vergleichskriterium mit

f(x) := x−s.

Die Divergenz für s ≤ 1 folgt aus der Divergenz von
∞∑

n=1

1
n und 1

n ≤ 1
ns . �


Die für s > 1 definierte Funktion

ζ(s) :=
∞∑

n=1

1
ns

heißt die Riemannsche Zeta-Funktion.

In 14.11.9 werden wir
∞∑

n=1

1
n2s für s ∈ N berechnen.
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Aufgaben

5.1. Man berechne folgende Integrale

a)

1�

0

x4

1 + x5
dx b)

1�

0

x

1 + x4
dx c)

π/2�

0

x2 · sin xdx d)

π/4�

0

cos x − sin x

cos x + sin x
dx

5.2. Zu folgenden Funktionen bestimme man eine Stammfunktion (x > 0):

a) x · ln x, b)
1

x
· ln x c)

1

x2
· ln x d) (ln x)2

5.3. Berechnen Sie

a)
�

(x − 3)dx

(x2 − 6x + 10)2
b)
�

(x − 3)dx

x2 − 6x + 10
c)
�

dx

x2 − 6x + 10
d)
�

xdx

x2 − 6x + 10

5.4. Berechnen Sie den Flächeninhalt der Ellipe:

x2

9
+

y2

4
= 1.

5.5. Es sei

an :=

π/2�

0

sinn xdx.

Drücken Sie an durch an−2 aus und berechnen Sie an für alle geraden und ungeraden n ∈ N.

5.6. Für n ∈ N0 sei

an :=

1�

0

xnex dx,

geben Sie eine Rekursionsformel für an an und berechnen Sie a0, . . . , a3.

5.7. Die Bezeichnungen seien wie in Aufgabe 1.12. Behandeln Sie das Integral

2n�

n

dx

x

stellen Sie bn als eine Untersumme dar und berechnen Sie damit den Grenzwert L von
Aufgabe 1.12.(In 6.2.10 wird L auf andere Weise berechnet.)

5.8. Sie berechnen
∞�

n=1

1
n12 näherungsweise durch die ersten drei Glieder:

1 +
1

212
+

1

312
;

zeigen Sie dass der Fehler < 10−6 ist.



6

Analytische Funktionen

6.1 Gleichmäßige Konvergenz

Es seien fn und f Funktionen aufD und es sei lim
n→∞ fn = f , das heißt, für jedem

Punkt x ∈ D gelte: lim
n→∞ fn(x) = f(x). Dann wird ergeben sich folgende Fragen:

Wenn alle fn stetig bzw. differenzierbar sind, gilt dies auch für die Grenzfunktion ?
Darf man Grenzprozesse vertauschen; gelten also Gleichungen wie

d
dx

lim
n→∞ fn = lim

n→∞
df
dx

oder

b∫
a

lim
n→∞ fn(x) dx = lim

n→∞

b∫
a

fn(x) dx ?

Zuerst zeigen wir an einfachen Beispielen, dass die Grenzfunktion einer Folge ste-
tiger Funktionen nicht stetig zu sein braucht und dass man Limes und Integration
und auch Limes und Differentiation nicht immer vertauschen darf.

Beispiel 6.1.1 Für n ∈ N sei

fn : [0, 1] → R, x 	→ xn;

für jedes x mit 0 ≤ x < 1 gilt nach 1.5.5 lim
n→∞ fn(x) = 0. Es ist lim

n→∞ fn(1) = 1.

Die Folge stetiger (sogar beliebig oft differenzierbarer) Funktionen (fn)n konver-
giert also gegen die unstetige Funktion

f : [0, 1] → R, x 	→
{

0 für 0 ≤ x < 1
1 für x = 1.

Wir wollen das Konvergenzverhalten genauer untersuchen: Es sei etwa ε = 1
10

gewählt; zu x geben wir das kleinsteN mit xN < 1
10 an.

x 0, 5 0, 8 0, 9 0, 99 0, 999
N 4 11 22 230 2301
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Die Konvergenz wird also um so “schlechter”, je näher x bei 1 liegt; sie ist “un-
gleichmäßig.” Dies ist der Grund dafür, dass die Grenzfunktion unstetig ist.
Zum Problem der Vertauschung von Limes und Integration betrachten wir

gn : [0, 2] → R, x 	→

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 für x = 0

n2x für 1
n < x ≤ 2

n

2n− n2x für 1
n < x ≤ 2

n

0 für 2
n < x ≤ 2

Wir zeigen: für jedes x ∈ [0, 2] ist lim
n→∞ gn(x) = 0. Für x = 0 ist dies klar; nun sei

x mit 0 < x ≤ 2 vorgegeben. Wir wählen N ∈ N so, dass N > 2
x ist. Für n ≥ N

ist dann 2
n < x, also gn(x) = 0 und somit lim

n→∞ gn(x) = 0.

Für alle n ∈ N ist die Dreiecksfläche
2∫
0

gn(x)dx = 1 und daher

1 = lim
n→∞

2∫
0

gn(x)dx �=
2∫

0

( lim
n→∞ gn(x))dx = 0.

Die Differentiation untersuchen wir mit der Folge

hn : [0, 2π] → R, x 	→ 1
n

sin(n2x).

Wegen |hn(x)| ≤ 1
n gilt lim

n→∞hn(x) = 0 für alle x ∈ [0, 2π];

es ist h′n(x) = n ·cos(n2x) und diese Folge ist offensichtlich nicht konvergent; zum
Beispiel ist h′n(0) = n.

1

1

xn g2

h1

g4

h2g1 h4

Wir führen nun einen schärferen Konvergenzbegriff ein, nämlich den der gleichmäßi-
gen Konvergenz.
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Definition 6.1.2 Sei D ⊂ R und fn : D → R sowie f : D → R. Die Funktionen-
folge (fn)n heißt gleichmäßig konvergent gegen f , wenn es zu jedem ε > 0 ein
N(ε) ∈ N gibt mit |fn(x) − f(x)| < ε für alle n ≥ N(ε) und alle x ∈ D.
Falls für jedes x ∈ D die Folge (fn(x))n gegen f(x) konvergiert, bezeichnen wir
dies als punktweise Konvergenz. In diesem Fall gibt es zu jedem x ∈ D und ε > 0
ein N(x, ε) ∈ N mit |fn(x) − f(x)| < ε für alle n ≥ N(x, ε). Der Index N(x, ε)
hängt also nicht nur von ε, sondern auch vom Punkt x ab.

Natürlich ist jede gleichmäßig konvergente Folge auch punktweise konvergent.
Gleichmäßige Konvergenz kann man sich so veranschaulichen: Für n ≥ N liegt fn
im ε-Schlauch um f .

a

fn

f

b

ε

ε

Es ist leicht zu sehen, dass die im Beispiel behandelten Folgen (fn)n und (gn)n

nicht gleichmäßig konvergieren; dagegen konvergiert (hn)n gleichmäßig gegen 0.
Nun zeigen wir, dass bei gleichmäßiger Konvergenz stetiger Funktionen die Grenz-
funktion stetig ist und dass man gliedweise integrieren darf.

Satz 6.1.3 (Satz von der Stetigkeit der Grenzfunktion) Wenn die Folge (fn) ste-
tiger Funktionen fn : D → R gleichmäßig gegen f : D → R konvergiert, so ist
auch f stetig.

Beweis. Es ist zu zeigen, dass f in jedem Punkt x0 ∈ D stetig ist. Zu jedem ε > 0
existiert ein N ∈ N mit |fn(x) − f(x)| < ε

3 für n ≥ N und x ∈ D. Weil fN
in x0 stetig ist, existiert eine Umgebung U von x0 mit |fN (x) − fN (x0)| < ε

3 für
x ∈ U ∩D. Dann gilt für x ∈ U ∩D:

|f(x) − f(x0)| ≤ |f(x) − fN (x)| + |fN (x) − fN (x0)| + |fN(x0) − f(x0)| <
< ε

3 + ε
3 + ε

3 = ε.

�

Satz 6.1.4 (Vertauschung von Limes und Integration) Die Folge (fn)n stetiger
Funktionen fn : [a, b] → R konvergiere gleichmäßig gegen f : [a, b] → R. Definiert
man für x ∈ [a, b] Funktionen

Fn(x) :=

x∫
a

fn(t) dt, F (x) :=

x∫
a

f(t) dt,
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so gilt: (Fn)n konvergiert gleichmäßig gegen F ; insbesondere gilt

lim
n→∞

b∫
a

fn(x) dx =

b∫
a

( lim
n→∞ fn(x)) dx.

Beweis. Zu ε > 0 existiert ein N mit |fn(t) − f(t)| < ε für n ≥ N und t ∈ [a, b].
Dann gilt für n ≥ N ; x ∈ [a, b] :

|
x∫

a

fn(t) dx−
x∫

a

f(t) dt| ≤ ε · (x− a) ≤ ε · (b − a)

und daraus folgt die Behauptung. �

Aus diesen beiden Sätzen folgt, dass die im Beispiel 6.1.1 behandelten Folgen (fn)n

und (gn)n nicht gleichmäßig konvergieren. Dagegen ist (hn)n wegen |hn(x)| ≤
1
n gleichmäßig konvergent, trotzdem darf man nicht gliedweise differenzieren. Bei
Vertauschung von Limes und Differentiation benötigt man eine Voraussatzung über
die gleichmäßige Konvergenz der Folge der Ableitungen.

Satz 6.1.5 (Vertauschung von Limes und Differentiation) Es sei (fn)n eine Fol-
ge stetig differenzierbarer Funktionen auf [a, b]. In einem Punkt x0 ∈ [a, b] kon-
vergiere (fn(x0))n; die Folge (f ′n)n sei gleichmäßig konvergent. Dann konvergiert
(fn)n gleichmäßig gegen eine stetig differenzierbare Funktion f und (f ′n) konver-
giert gleichmäßig gegen f ′.

Beweis. Nach Voraussetzung konvergiert (f ′n)n gleichmäßig gegen eine Funktion
g : [a, b] → R, die nach 6.1.3 stetig ist. Es sei c := lim

n→∞ fn(x0). Aus dem Hauptsatz

der Differential- und Integralrechnung folgt

fn(x) = fn(x0) +

x∫
x0

f ′n(t) dt.

Man definiert f(x) := c+
x∫

x0

g(t) dt; dann folgt aus 6.1.4, dass (fn)n gleichmäßig

gegen f konvergiert. Nach dem Hauptsatz ist f ′ = g und damit sind alle Behaup-
tungen bewiesen. �


Diese Aussagen sollen nun auf Reihen von Funktionen übertragen werden. Für jedes

n ∈ N sei fn : D → R eine Funktion, man setzt sn :=
n∑

k=1

fk. Die Reihe
∞∑

n=1
fn

heißt gleichmäßig konvergent, wenn es die Folge der Partialsummen (sn)n ist; die

Grenzfunktion bezeichnet man ebenfalls mit
∞∑

n=1
fn.

Die oben bewiesenen Aussagen fassen wir nun in einem Satz zusammen:
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Satz 6.1.6 Fürn ∈ N sei fn : [a, b] → R stetig. Wenn die Reihe
∞∑

n=1
fn gleichmäßig

konvergiert, dann ist auch die Grenzfunktion
∞∑

n=1
fn stetig und für x ∈ [a, b] gilt:

x∫
a

∞∑
n=1

fn(t) dt =
∞∑

n=1

x∫
a

fn(t) dt.

Wenn alle fn stetig differenzierbar sind und
∞∑

n=1

fn(x0) für ein x0 ∈ [a, b] konver-

giert und wenn außerdem
∞∑

n=1
f ′n gleichmäßig konvergent ist, dann konvergiert auch

∞∑
n=1
fn gleichmäßig und es gilt:

d
dx

∞∑
n=1

fn =
∞∑

n=1

d
dx
fn.

Für gleichmäßige Konvergenz gibt es auch ein Cauchy-Kriterium:

Satz 6.1.7 (Cauchy-Kriterium für gleichmäßige Konvergenz) Es sei (fn)n eine
Folge von Funktionen fn : D → R ; wenn zu jedem ε > 0 ein N(ε) existiert mit
|fn(x) − fk(x)| < ε für alle n, k ≥ N(ε) und alle x ∈ D, dann konvergiert die
Folge (fn)n gleichmäßig.

Beweis. Für jedes x ∈ D ist (fn(x))n eine Cauchy-Folge und daher konvergent;
wir setzen f(x) := lim

n→∞ fn(x). Nun sei ε > 0 vorgegeben; wir wählen N(ε) wie

oben. Für alle n ≥ N(ε) und alle x ∈ D gilt : Für jedes k ∈ N ist

|fn(x) − f(x)| ≤ |fn(x) − fk(x)| + |fk(x) − f(x)|.

Zu x ∈ D kann man k ≥ N(ε) so wählen, dass |fk(x)−f(x)| < ε ist. Daraus folgt

|fn(x) − f(x)| < 2ε für alle n ≥ N(ε) und alle x ∈ D.

�

Daraus leiten wir her:

Satz 6.1.8 (Majorantenkriterium für gleichmäßige Konvergenz.) Es seien
fn : D → R Funktionen und cn reelle Zahlen; für alle n ∈ N und alle x ∈ D sei
|fn(x)| ≤ cn. Dann gilt:

Wenn
∞∑

n=1
cn konvergiert, dann ist die Reihe

∞∑
n=1
fn gleichmäßig konvergent.
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Beweis. Wir setzen sn :=
n∑

j=1

fj und zeigen, dass die Folge (sn)n gleichmäßig

konvergiert. Für n > k und x ∈ D ist

|sn(x) − sk(x)| ≤
n∑

j=k+1

|fj(x)| ≤
n∑

j=k+1

cj .

Weil
∞∑

j=1

cj konvergiert, existiert zu ε > 0 ein N(ε), so dass für n > k ≥ N(ε)

gilt:
n∑

j=k+1

cj < ε . Daher gilt

|sn(x) − sk(x)| < ε für n > k ≥ N(ε) und alle x ∈ D.

Daraus folgt nach dem soeben bewiesenen Kriterium, dass die Folge (sn)n und

damit auch die Reihe
∞∑

n=1
fn gleichmäßig konvergiert. �


Wir merken noch an, dass diese Ausssagen auch für komplexe Funktionen, also
fn : D → C mit D ⊂ C gelten.

6.2 Die Taylorreihe

Wichtige Funktionen, wie ex, sinx, haben wir durch eine Potenzreihe definiert. Nun
soll die Frage behandelt werden, unter welchen Voraussetzungen man eine gegebe-
ne Funktion durch eine Potenzreihe darstellen kann. Eine Funktion, die man um
jeden Punkt in eine Potenzreihe entwickeln kann, bezeichnet man als analytisch;
die Potenzreihe heißt Taylorreihe (BROOK TAYLOR (1685-1731)). Wir betrachten
in diesem Abschnitt Funktionen, die auf einem offenen Intervall I =]a, b[ definiert
sind; dabei darf I auch ein uneigentliches Intervall sein.

Definition 6.2.1 Eine Funktion f : I → R heißt analytisch, wenn es zu jedem

Punkt x0 ∈ I eine Umgebung Uδ(x0) ⊂ I und eine Potenzreihe
∞∑

n=0
an(x − x0)n

gibt, so dass für x ∈ Uδ(x0) gilt:

f(x) =
∞∑

n=0

an(x− x0)n.

Die Menge der in I analytischen Funktionen bezeichnen wir mit

Cω(I).
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Aus 5.1.3 folgt:

Satz 6.2.2 Ist f(x) =
∞∑

n=0
an(x − x0)n in |x − x0| < r, so ist f beliebig oft

differenzierbar und f (n)(x0) = n!an, also

f(x) =
∞∑

n=0

1
n!
f (n)(x0) · (x− x0)n.

Für die weiteren Untersuchungen führen wir den Begriff der Taylorreihe ein; deren
Partialsummen heißen Taylorpolynome.

Definition 6.2.3 Für eine beliebig oft differenzierbare Funktion f : I → R, x0 ∈ I ,
heißt

∞∑
n=0

1
n!
f (n)(x0) · (x− x0)n

die Taylorreihe von f um x0. Für n ∈ N0 heißt

Tn(x) :=
n∑

k=0

1
k!
f (k)(x0) · (x− x0)k

das n-te Taylorpolynom;

Rn+1(x) := f(x) − Tn(x)

heißt das zugehörige Restglied.

(Tn)n ist die Folge der Partialsummen der Taylorreihe; die Taylorreihe um x0 kon-
vergiert für x ∈ I genau dann gegen f(x), wenn gilt:

lim
n→∞Rn(x) = 0.

In der Abbildung sind für die Funktion cosx die Taylorpolynome T2, T4, T6, T8

dargestellt.

T2

T4

T6

T8

cosx
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Wir geben nun ein Beispiel einer beliebig oft differenzierbaren Funktion f an, die
nicht analytisch ist. Bei dieser Funktion konvergiert die Taylorreihe, aber sie kon-
vergiert gegen 0 und nicht gegen f .

Beispiel 6.2.4 Es sei

f : R → R, x 	→
{

exp(− 1
x2 ) für x �= 0

0 für x = 0

Wir zeigen: f ist beliebig oft differenzierbar und für alle n ∈ N gilt f (n)(0) = 0 .
Daraus folgt: Die Taylorreihe von f um 0 ist identisch null; sie stellt also die Funk-
tion f nicht dar und somit ist f nicht analytisch.

1

1

1
1

f

f ′

Die Funktion f ist für x �= 0 positiv; jedoch ist zum Beispiel f(0, 4) < 2 · 10−3

und f(0, 2) < 2 · 10−11 ; daher hat man den Eindruck, dass sie in einer Umgebung
des Nullpunkts identisch veschwindet.
Wir geben zunächst für x �= 0 die ersten drei Ableitungen dieser Funktion an:

f ′(x) =
2
x3

· exp(− 1
x2

), f ′′(x) =
(

4
x6

− 6
x4

)
· exp(− 1

x2
),

f (3)(x) =
(

8
x9

− 36
x7

+
24
x5

)
· exp(− 1

x2
).

Es ist f ′′(
√

2
3 ) = 0 und die Funktion f ′ nimmt im Punkt

√
2
3 = 0, 816 . . . das

Maximum f(
√

2
3 ) = 0, 819 . . . an.

Nun zeigen wir:
f ist beliebig oft differenzierbar ist und für n ∈ N gilt: f (n)(0) = 0
In 4.2.11 wurde für k ∈ N hergeleitet :

lim
x→∞x

−kex = ∞, daher lim
x→∞x

ke−x = 0 und lim
h→0
h−k exp(−h−2) = 0.
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Somit existiert

f ′(0) = lim
h→0

f(h) − f(0)
h

= lim
h→0

1
h

exp(−h−2) = 0.

Nun zeigen wir durch vollständige Induktion, dass für n ∈ N gilt:

f (n)(0) = 0 und f (n)(x) = pn(
1
x

) · exp(−x−2) für x �= 0;

dabei ist pn ein Polynom.
Der Induktionsanfang n = 1 wurde bereits bewiesen; wir nehmen an, die Aussage
sei für ein n richtig; dann ist für x �= 0:

f (n+1)(x) = d
dx

(
pn( 1

x) exp(−x−2)
)

=
(−p′n( 1

x) 1
x2 + 2

x3 pn( 1
x )
)
exp(−x−2) =

= pn+1( 1
x) exp(−x−2) mit pn+1( 1

x) := −p′n( 1
x ) · 1

x2 + 2
x3 pn( 1

x)

Somit ist f (n)(x) eine Linearkombination von x−k exp(−x−2) und daraus folgt:

f (n+1)(0) = lim
h→0

f (n)(h)) − f (n)(0)
h

= lim
h→0

1
h
· pn(

1
h

) · exp(−h−2) = 0.

Damit sind alle Behauptungen bewiesen.

Beispiel 6.2.5 Mit diesen Methoden kann man auch zeigen, dass die Funktion

g : R → R, x 	→
{

exp(− 1
1−x2 ) für |x| < 1

0 für |x| ≥ 1

beliebig oft differenzierbar ist. Man beweist, dass alle Ableitungen in x = ±1 exi-
stieren und gleich 0 sind. Die Taylorreihen um ±1 sind identisch null und stellen
somit die Funktion g nicht dar. Diese Funktion ist unendlich oft differenzierbar und
hat kompakten Träger, nämlich [−1,+1]; es ist also g ∈ C∞

0 (R). Wir werden in
13.2.1 diese Funktion bei der Konstruktion der Teilung der Eins heranziehen. Eine
nicht-identisch verschwindende analytische Funktion mit kompaktem Träger exi-
stiert nicht; dies kann man leicht aus dem Identitätssatz für Potenzreihen 14.7.7
herleiten. Für |x| < 1 ist

g′(x) =
−2x

(x2 − 1)2
·exp(− 1

1 − x2 ), g′′(x) =
6x4 − 2

(x2 − 1)4
·exp(− 1

1 − x2 )
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1

1

1

1

1

5

g

g′

g′′

Nun sollen für das Restglied zwei Darstellungen hergeleitet werden, die eine, nach
Cauchy, durch ein Integral, die andere , nach Lagrange, durch die (n+1)-te Ablei-
tung:

Satz 6.2.6 (Darstellungen des Restgliedes) Sei n ∈ N0 und f : I → R eine
(n+ 1)-mal stetig differenzierbare Funktion. Dann gilt für x0, x ∈ I:

(1) Rn+1(x) =
1
n!

x∫
x0

(x− t)nf (n+1)(t) dt (CAUCHY)

(2) Es gibt ein ξ zwischen x0 und x mit

Rn+1(x) =
1

(n+ 1)!
f (n+1)(ξ) · (x− x0)n+1 (LAGRANGE)
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und daher gilt die Taylorsche Formel:

f(x) =
n∑

k=0

1
k!
f (k)(x0) · (x− x0)k +

1
(n+ 1)!

f (n+1)(ξ) · (x− x0)n+1.

Beweis zu (1). Wir führen den Beweis durch Induktion nach n. Für n = 0 liefert

R1(x) = f(x) − f(x0) =

x∫
x0

f ′(t) dt

die Behauptung. Nun sei n ≥ 1 und die Aussage sei für n− 1 richtig, also

Rn(x) =
1

(n− 1)!

x∫
x0

(x− t)n−1f (n)(t) dt.

Durch partielle Integration erhält man

Rn(x) = − 1
n!

(x− t)nf (n)(t)|xx0
+

1
n!

x∫
x0

(x− t)nf (n+1)(t) dt =

= +
1
n!

(x− x0)nf (n)(x0) +
1
n!

x∫
x0

(x− t)nf (n+1)(t) dt.

Wegen

Rn+1(x) = Rn(x) − 1
n!
f (n)(x0) · (x− x0)n

folgt daraus die Aussage für n.
Beweis zu (2). Nach dem 2. Mittelwertsatz der Integralrechnung 5.2.2 existiert ein
ξ zwischen x0 und x mit

Rn+1(x) =
1
n!

x∫
x0

(x − t)nf (n+1)(t) dt =
1
n!
f (n+1)(ξ)

x∫
x0

(x− t)n dt =

= − 1
n!
f (n+1)(ξ) ·

[
(x− t)n+1

n+ 1

]x

x0

=
1

(n+ 1)!
f (n+1)(ξ) · (x − x0)n+1.

�

Nun geben wir eine Bedingung dafür an, dass die Taylorreihe von f : I → R um
jedes x0 ∈ I auf ganz I gegen f konvergiert.

Satz 6.2.7 Sei f : [a, b] → R beliebig oft differenzierbar; es existiere ein M > 0
und c > 0 mit
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|f (n)(x)| ≤M · cn für n ∈ N0 und x ∈ I.
Dann gilt für x0, x ∈ I :

f(x) =
∞∑

n=0

1
n!
f (n)(x0) · (x− x0)n.

Beweis. Es ist |Rn(x)| = | 1
n!f

(n)(ξ) · (x − x0)n| ≤ 1
n!Mc

n · (b − a)n und aus
lim

n→∞
1
n!c

n(b − a)n = 0 folgt lim
n→∞Rn(x) = 0. �


Mit einer anderen Abschätzung der f (n) erhält man die schwächere Aussage: Die
Taylorreihe um x0 konvergiert in einer Umgebung von x0 gegen f :

Satz 6.2.8 Sei f : I → R beliebig oft differenzierbar ; es existiere M > 0 und
c > 0 mit

|f (n)(x)| ≤ n! ·M · cn für n ∈ N0 und x ∈ I.
Dann ist f analytisch.

Beweis. Sei x0 ∈ I ; wir wählen δ > 0 so, dass δ < 1
c und [x0−δ, x0+δ] ⊂ I ist. Für

|x−x0| ≤ δ gilt dann für das Restglied der Taylorreihe um x0 : |Rn(x)| ≤Mcnδn
und wegen δc < 1 ist lim

n→∞Rn(x) = 0. �

Nun zeigen wir, dass eine Funktion, die durch eine konvergente Potenzreihe gegeben
ist, immer analytisch ist.

Satz 6.2.9 Wenn die Potenzreihe
∞∑

n=a
anx

n für |x| < R konvergiert, dann ist die

Funktion

f :] −R,+R[→ R, x 	→
∞∑

n=0

anx
n,

analytisch.

Beweis. Wir zeigen, dass für die Ableitungen von f Abschätzungen wie in 6.2.8
gelten. Es ist

f (k)(x) =
∞∑

n=k

n(n− 1) · ... · (n− k + 1)anxn−k.

Um diesen Ausdruck abschätzen zu können, verwenden wir die k-te Ableitung der
geometrischen Reihe: Für |x| < 1 ist

∞∑
n=k

n(n− 1) · ... · (n− k + 1)xn−k =
dk

dxk
(

1
1 − x) =

k!
(1 − x)k+1

.

Für reelle Zahlen ρ, r mit 0 < ρ < r < R gilt dann:
∞∑

n=0
anr

n ist konvergent, also

existiert ein M > 0 mit |anrn| ≤ M für n ∈ N0. Wir setzen q := ρ
r , dann ist

0 < q < 1, und für |x| ≤ ρ, n ≥ k, gilt:
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|anxn−k| ≤ |anρn−k| = |anrn| · r−kqn−k ≤ r−kMqn−k.

Daher gilt für |x| ≤ ρ:

|f (k)(x)| ≤ r−kM · k!
(1 − q)k+1

=
M

1 − q · k! · (
1

r(1 − q) )k.

Aus 6.2.8 folgt dann, dass f in ] − ρ,+ρ[ analytisch ist; da dies für jedes ρ mit
0 < ρ < R gilt, folgt: f ist in ] −R,+R[ analytisch. �

Funktionen wie ex, sinx, cosx hatten wir durch Potenzreihen definiert; aus 6.2.9
folgt, dass diese Funktionen analytisch sind.
Bemerkung. Wir werden diesen Satz in 14.6.3 nochmals mit anderen Methoden

erhalten. Wenn die Reihe
∞∑

n=0

anz
n in {x ∈ R| |x| < r} konvergent ist, so kon-

vergiert sie auch in {z ∈ C| |z| < r} und darf gliedweise differenziert werden.
Daher stelt sie dort eine holomorphe Funktion dar. In Satz 14.6.3 ergibt sich, dass
jede holomorphe Funktion analytisch ist.

Wir geben nun weitere Beispiele an:

Beispiel 6.2.10 Für |x| < 1 ist

ln(1 + x) =
∞∑

n=1

(−1)n+1 · x
n

n
= x− x

2

2
+
x3

3
− x

4

4
+ ... .

Diese Reihenentwicklung erhält man aus

1
1 + t

= 1 − t+ t2 − t3 + ...

durch gliedweise Integration:

ln(1 + x) =

x∫
0

dt
1 + t

= x− x
2

2
+ ... für |x| < 1.

Wir zeigen, dass diese Formel auch noch für x = 1 gilt: Für t �= −1 ist nach 1.5.6:

1 − t+ t2 + t3 − ...+ (−t)n−1 =
1 − (−t)n

1 + t
,

also ist

ln 2 =

1∫
0

dt

1 + t
=

1∫
0

(
1 − t+ t2 − ...+ (−t)n−1 +

(−t)n

1 + t

)
dt =

= 1 − 1
2

+
1
3
− 1

4
+ ...+

(−1)n−1

n
+ (−1)n

1∫
0

tn

1 + t
dt.
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Wegen 0 ≤
1∫
0

tn

1+t dt ≤
1∫
0

tn dt = 1
n+1 folgt: lim

n→∞

1∫
0

tn

1+t dt = 0 und damit haben

wir den Grenzwert für die alternierende harmonische Reihe:

ln 2 =
∞∑

n=1

(−1)n+1 · 1
n

= 1 − 1
2

+
1
3
− 1

4
+ ... .

Man vergleiche dazu die Aufgaben 1.12 und 5.7.

Beispiel 6.2.11 Analog erhalten wir die Reihenentwicklung für arc tg x. Es ist arc

tg x =
x∫
0

dt
1+t2 und 1

1+t2 =
∞∑

n=0
(−1)nt2n für |t| < 1. Daraus folgt für |x| < 1:

arc tg x =
∞∑

n=0

(−1)n · x
2n+1

2n+ 1
= x− x

3

3
+
x5

5
− x

7

7
+ . . . .

Wie im vorhergehenden Beispiel zeigt man, dass dies auch für x = 1 und x = −1
gilt. Wir sezten t2 statt t ein und erhalten analog:

π

4
= arc tg 1 =

1∫
0

dt
1 + t2

= 1−1
3
+

1
5
−. . .+(−1)n−1 1

2n− 1
+(−1)n

1∫
0

t2n

1 + t2
dt.

Für 0 ≤ t ≤ 1 ist 1 ≤ 1 + t2 ≤ 2 und daher

1
2(2n+ 1)

≤
1∫

0

t2n

1 + t2
dt ≤ 1

2n+ 1
.

Dieses Restglied geht also für n→ ∞ gegen 0 und wir erhalten

π

4
= 1 − 1

3
+

1
5
− 1

7
+ . . .

Die Abschätzung zeigt aber auch, dass diese Reihe ziemlich langsam konvergiert;
wenn man zum Beispiel π

4 durch 1− 1
3 + . . .+ 1

97 − 1
99 approximiert, liegt der Fehler

zwischen 1
202 und 1

101 .
Die Abbildung mit den Taylorpolynomen T3, . . . , T9 zu arc tgx vermittelt einen
Eindruck von der Konvergenz der Arcustangens-Reihe in |x| ≤ 1 und der Divergenz
in |x| > 1.
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1−1

π/4

T9

T9

T7

T7

T5

T5

T3

T3

arc tgx

arc tgx

Aufgaben

6.1. Geben Sie die Taylorentwicklung von 1+x
1−x

um x0 = 0 an.

6.2. Geben Sie die Taylorentwicklung von 1
1+x+x2+x3+x4+x5 um x0 = 0 an.

6.3. Sei 0 < a < b; geben Sie die Taylorentwicklung von 1
(x+a)(x−b)

um x0 = 0 an.

6.4. Es seien in |x| < 1 die Funktionen

f(x) :=
x(1 + x)

(1 − x)3
und g(x) :=

1

1 − x

gegeben. Zeigen Sie

f(x) = x ·
�

x · g′(x)

�′
,

geben Sie dann die Taylorreihe von f um x0 = 0 an und berechnen Sie
∞�

n=1

n2

2n .

6.5. Geben Sie ( mit Aufgabe 3.5) die Taylorreihen von

1

(1 − x)3
und von

x + x2

(1 − x)3

um x0 = 0 an und vergleichen Sie mit der vorhergehenden Aufgabe.

6.6. Zeigen Sie , dass für |x| ≤ 1
2

gilt:

���� sin x − (x − x3

3!
+ x5

5!
)

���� ≤ 2 · 10−6
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Lineare Algebra

7.1 Gruppen, Ringe, Körper

Wir stellen die zuerst Grundbegriffe über Gruppen, Ringe und Körper zusammen;
anschliessend bringen wir eine Einführung in die Gruppentheorie.

Definition 7.1.1 Eine Gruppe ist ein Paar (G, ◦), bestehend aus einer nichtleeren
Menge G und einer Verknüpfung

G×G→ G, (a, b) 	→ a ◦ b,

mit folgenden Eigenschaften:

Für alle a, b, c ∈ G ist (a ◦ b) ◦ c = a ◦ (b ◦ c)
Es gibt ein e ∈ G, so dass für alle a ∈ Ggilt e ◦ a = a

Zu jedem a ∈ G existiert ein a−1 ∈ G mit a−1 ◦ a = e

(G, ◦) heißt abelsch oder kommutativ, wenn für alle a, b ∈ G gilt: a ◦ b = b ◦ a.
An Stelle von (G, ◦) schreiben wir meistens G und statt a ◦ b schreiben wir ab.
Sind G1 und G2 Gruppen und ist f : G1 → G2 eine Abbildung, so heißt f
(Gruppen-) Homomorphismus wenn für alle a, b ∈ G1 gilt:

f(ab) = f(a)f(b).

Eine Teilmenge U einer Gruppe G heißt Untergruppe von G, wenn sie, versehen
mit der in G definierten Verknüpfung ◦, ebenfalls eine Gruppe ist; dies ist genau
dann der Fall, wenn gilt: (1) e ∈ U , (2) für a, b ∈ U sind ab ∈ U und a−1, b−1 ∈ U.
Man kann leicht zeigen, dass eine nichtleere Teilmenge U von G genau dann eine
Untergruppe ist, wenn für alle a, b ∈ U gilt: ab−1 ∈ U.
Definition 7.1.2 Ein (kommutativer) Ring ist ein Tripel (R,+, ·), bestehend aus
einer nichtleeren Teilmenge R und zwei Verknüpfungen
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R×R→ R, (a, b) 	→ a+ b , R×R→ R, (a, b) 	→ a · b,
so dass gilt (a, b, c ∈ R):

(R,+) ist eine abelsche Gruppe
a · (b · c) = (a · b) · c
a · b = b · a

a · (b+ c) = a · b+ a·

Das neutrale Element von (R,+) bezeichnet man mit 0. R heißt Ring mit Einsele-
ment, wenn ein 1 ∈ R existiert mit 1 �= 0 und 1 · a = a für alle a ∈ R.
Sind R1 und R2 Ringe, so heißt f : R1 → R2 Ringhomomorphismus, wenn für
alle a, b ∈ R1 gilt:

f(a+ b) = f(a) + f(b), f(a · b) = f(a) · f(b).
Ist (R,+, ·) ein Ring, so heißt S ⊂ R ein Unterring, wenn S mit den Ver-
knüpfungen +, · ein Ring ist. Dies ist genau dann der Fall, wenn S nichtleer ist
und für alle a, b ∈ S gilt: a− b ∈ S, a · b ∈ S.
Die Körperaxiome 1.2.1 können wir nun so formulieren:
(K,+, ·) ist ein Körper, wenn gilt:
(K,+, ·) ist ein Ring mit Einselement und (K \ {0}, ·) ist eine abelsche Gruppe.
Seien K1 undK2 Körper; f : K1 → K2 heißt Körperhomomorphismus, wenn f
ein Ringhomomorphismus ist, also f(a+b) = f(a)+f(b), f(ab) = f(a)f(b).

Ist (K,+, ·) ein Körper, so heißt L ⊂ K ein Unterkörper, wenn L mit +, · ein
Körper ist. Dies ist genau dann der Fall, wenn L nichtleer ist und aus a, b ∈ L,
b �= 0 folgt: a− b ∈ L, a · b−1 ∈ L.
Bei Gruppen, Ringen und Körpern bezeichnet man einen bijektiven Homomorphis-
mus als Isomorphismus.

Gruppen
Wir geben eine kurze Einführung in die Gruppentheorie. Es sei immerG eine Grup-
pe. Ist U ⊂ G eine Untergruppe und sind a, b ∈ G, so setzt man

aU := {ax| x ∈ U}, Ua := {xa| x ∈ U}, aUb := {axb| x ∈ U}.
Man bezeichnet aU als Linksnebenklasse. Ist u ∈ U , so ist offensichtlich (au)U =
aU und daher gilt:

aU = bU ist äquivalent zu a−1b ∈ U.
Zwei Linksnebenklassen sind entweder disjunkt oder gleich, denn aus c ∈ (aU) ∩
(bU) folgt c = ax = by mit x, y ∈ U und daher a−1b ∈ U , somit aU = bU .
Eine UntergruppeN ⊂ G heißt Normalteiler, wenn gilt:

aN = Na für alle a ∈ G.
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Dies ist genau dann der Fall, wenn für alle a ∈ G gilt: aNa−1 = N ; dies ist
gleichbedeutend mit axa−1 ∈ N für alle a ∈ G, x ∈ N .
Ist f : G→ G′ ein Gruppenhomomorphismus und e′ ∈ G′ das neutrale Element in
G′, so gilt

Kerf := {x ∈ G| f(x) = e′} ist ein Normalteiler.

IstN ⊂ G ein Normalteiler, so kann man die FaktorgruppeG/N bilden. Die Menge
G/N ist die Menge aller aN, a ∈ G; als Verknüpfung definiert man (aN)·(bN) :=
(ab)N .
Wir zeigen, dass bei einem Normalteiler diese Verknüpfung unabhängig von der
Wahl von a, b ist:
Es ist also zu beweisen: Aus aN = a′N, bN = b′N folgt (ab)N = (a′b′)N.
Aus a′ ∈ aN und b′ ∈ bN = Nb folgt: Es gibt x, y ∈ N mit a′ = ax, b′ = yb.
Dann ist a′b′ = axyb und wegen xyb ∈ Nb = bN gibt es ein z ∈ N mit xyb = bz.
Daraus folgt a′b′ = abz und somit (a′b′)N = (ab)N.
Daher kann man definieren:

Definition 7.1.3 Ist G eine Gruppe und N ein Normalteiler in G, so ist die Menge
G/N aller Linksnebenklassen mit der Verknüpfung

(aN) · (bN) := (ab)N

eine Gruppe; sie heißt die Faktorgruppe von G moduloN .

Wir formulieren dies noch etwas anders: Ist N ⊂ G ein Normalteiler, so nennt
man zwei Elemente a, b ∈ N äquivalent (bezüglich N), wenn a−1b ∈ N ist;
man bezeichnet die zu einem a ∈ G gehörende Äquivalenzklasse mit [a] :=
{b ∈ G| a−1b ∈ N}. Dann ist [a] = aN ; die Verknüpfung ist definiert durch
[a] · [b] = [a · b].
Ein einfaches Beispiel: Wir betrachten die Gruppe (Z,+) und für m ∈ N die Un-

tergruppemZ := {mk|k ∈ Z}. Weil (Z,+) abelsch ist, ist mZ Normalteiler. Die
Faktorgruppe Zm := Z/mZ besteht aus m Elementen.

Endliche Gruppen
Wir bringen nun einige Aussagen über endliche Gruppen.

Definition 7.1.4 Wenn eine Gruppe G nur endlich viele Elemente besitzt, so nennt
man die Anzahl der Elemente von G die Ordnung von G und bezeichnet sie mit
ordG. Ist U eine Untergruppe von G, so nennt man die Anzahl der verschiedenen
Linksnebenklassen aU, a ∈ G, den Index von U in G und bezeichnet ihn mit [G :
U ].

Für endliche Gruppen gilt der wichtige Satz von Lagrange (LAGRANGE (1736 -
1813)):

Satz 7.1.5 (Satz von Lagrange) Ist U eine Untergruppe der endlichen Gruppe G,
so gilt:
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ordG = [G : U ] · ordU.;
insbesondere ist also ordU ein Teiler von ordG.

Beweis. Jede Nebenklasse aU besitzt ordU Elemente, denn die Abbildung U →
aU, x 	→ ax ist bijektiv. Zwei verschiedene Nebenklassen sind immer disjunkt und
G ist die Vereinigung von [G : U ] disjunkten Nebenklassen. Daraus folgt die Be-
hauptung. �

Für a ∈ G nennt man < a >:= {an|n ∈ Z} die von a erzeugt Untergruppe
und setzt ord a := ord < a > . Aus dem Satz von Lagrange folgt, dass die
Ordnung eines Elements immer ein Teiler der Gruppenordnung ist. Eine Gruppe G
heißt zyklisch, wenn es ein a ∈ G gibt mit G =< a >.
Als Beispiel für die Anwendbarkeit des Satzes von Lagrange zeigen wir:

Satz 7.1.6 Jede Gruppe von Primzahlordnung ist zyklisch.

Beweis. Sei p = ordG eine Primzahl. Wir wählen ein a ∈ G, mit a �= e; dann ist
ord < a > ein Teiler von p und > 1; daraus folgt ord < a >= p und daher ist
< a >= G. �

Permutationsgruppen
Wichtige Beispiele von Gruppen sind die Permutationsgruppen, auf die wir etwas
ausführlicher eingehen wollen. Permutationsgruppen benötigen wir bei der Theorie
der Determinanten (7.7).

Definition 7.1.7 Es sei n ∈ N; unter einer Permutation der Menge {1, 2, . . . , n}
versteht man eine bijektive Abbildung

σ : {1, ..., n} → {1, ..., n}.

Sind σ und τ Permutationen von {1, ..., n}, so ist auch die Abbildung

τ ◦ σ : {1, ..., n} → {1, ..., n}, j 	→ τ(σ(j)),

bijektiv, also ist τ ◦ σ eine Permutation.
Die Menge Sn aller Permutationen von {1, ..., n} ist mit dieser Verknüpfung eine
Gruppe, sie heißt Permutationsgruppe.

Für τ ◦ σ schreibt man nur τσ .Für das Rechnen mit Permutationen ist es
zweckmäßig, σ ∈ Sn so zu schreiben:

σ =
(

1 2 3 ... n
σ(1) σ(2) σ(3) ... σ(n)

)
In dieser Schreibweise ist das neutrale Element von Sn die Permutation id =(
1 2 3 ... n
1 2 3 ... n

)
. Zum Beispiel ist

σ =
(

1 2 3 4
3 1 4 2

)
∈ S4
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die Abbildung mit

σ(1) = 3, σ(2) = 1, σ(3) = 4, σ(4) = 2

Setzt man τ =
(

1 2 3 4
2 4 3 1

)
, so istτσ =

(
1 2 3 4
3 2 1 4

)
und στ =

(
1 2 3 4
1 2 4 3

)
.

Für σ ∈ Sn definiert man das Signum von σ durch

sign(σ) :=
∏
i<j

σ(j) − σ(i)
j − i ,

dabei bildet man das Produkt über alle Paare (i, j), i, j = 1, . . . , n mit i < j.
Es ist immer signσ) = ±1. Eine Permutation σ mit sign(σ) = +1 heißt gerade,
andernfalls ungerade. Für σ, τ ∈ Sngilt

sign(στ) = sign(σ)sign(τ).

Ein einfaches Beispiel soll klarmachen, warum das Signum immer ±1ist. Es sei

wieder σ =
(

1 2 3 4
3 1 4 2

)
, dann ist

sign(σ) =
1 − 3
2 − 1

· 4 − 3
3 − 1

· 2 − 3
4 − 1

· 4 − 1
3 − 2

· 2 − 1
4 − 2

· 2 − 4
4 − 3

= −1

(Man soll die Differenzen nicht ausrechnen, sondern feststellen, dass bis auf das
Vorzeichen in Zähler und Nenner die gleichen Differenzen vorkommen.)
Eine Permutation τ heißt Transposition, wenn sie zwei Elemente j,k vertauscht
und die übrigen festläßt; man schreibt dann τ = (j k). Für jede Transposition τ
ist sign(τ) = −1 .
Man kann zeigen (vgl. [4]):

Hilfssatz 7.1.8 Jede Permutation lässt sich als Produkt von Transpositionen dar-
stellen lässt. Eine Permutation σ ist genau dann gerade , wenn sie als Produkt einer
geraden Zahl von Transpositionen darstellbar ist.

Bei unseren Beispiel ist
σ = (1 2)(1 4)(1 3).

In der Matrizenrechnung behandelt man Gruppen, die in der Geometrie und auch in
der Physik wichtig sind:
Die allgemeine lineare GruppeGL(n,K) der invertierbaren Matrizen A ∈ K(n,n),
die orthogonale GruppeO(n) der A ∈ GL(n,K) mit A−1 = At,
die spezielle orthogonale Gruppe SO(n) aller A ∈ O(n) mit detA = 1.
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7.2 Vektorräume

Es bezeichneK immer einen (kommutativen) Körper

Definition 7.2.1 Ein Vektorraum über K ist ein Tripel (V,+, ·), bestehend aus
einer Menge V und zwei Verknüpfungen

V × V → V, (v, w) 	→ v + w, K × V → V, (λ, v) 	→ λv,

mit folgenden Eigenschaften ( v, w ∈ V ; λ, µ ∈ K):

(V,+) ist eine abelsche Gruppe
λ(µv) = (λµ)v

(λ+ µ)v = λv + µv
λ(v + w) = λv + λw

1v = v

Sind V undW Vektorräume über K , so heißt eine Abbildung f : V → W linear
(oder Vektorraum-Homomorphismus), wenn für alle λ, µ ∈ K und v, w ∈ V gilt:

f(λv + µw) = λf(v) + µf(w).

äquivalent dazu :

f(v + w) = f(v) + f(w), f(λv) = λf(v).

Eine bijektive lineare Abbildung f : V → W heißt Isomorphismus, eine lineare
Abbildung f : V → V , also V =W , bezeichnet man als Endomorphismus.
Ist (V,+, ·) ein Vektorraum und U eine nicht-leere Teilmenge von V , so heißt U
Untervektorraum (auch Unterraum oder Teilraum) von V , wenn gilt:

aus u, v ∈ U und λ, µ ∈ K folgt : λu + µv ∈ U.

U ist dann mit den auf U eingeschränkten Verknüpfungen + und · ein Vektorraum.

Hilfssatz 7.2.2 Sind V, W, Y Vektorräume über K und sind f : V → W und
g :W → Y linear, so ist auch g ◦ f : V → Y linear.

Hilfssatz 7.2.3 Wenn f : V → W linear und bijektiv ist, dann ist auch die Um-
kehrabbildung f−1 :W → V linear.

Beweis. Seien λ1, λ2 ∈ K, w1, w2 ∈ W und v1 := f−1(w1), v2 := f−1(w2).
Dann ist
f−1(λ1w1 + λ2w2) = f−1(λ1f(v1) + λ2f(v2)) = f−1(f(λ1v1 + λ2v2)) =
= λ1v1 + λ2v2 = λ1f−1(w1) + λ2f−1(w2). �

Definition 7.2.4 Ist f : V → W linear, so definiert man den Kern von f und das
Bild von f :
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Ker f := {v ∈ V |f(v) = 0}
Bild f := f(V ) = {f(v)|v ∈ V }.

Es ist leicht zu zeigen, dass Kerf ⊂ V und Bildf ⊂W Untervektorräume sind. Wir
beweisen:

Hilfssatz 7.2.5 Eine lineare Abbildung f : V → W ist genau dann injektiv, wenn
Ker f = {0} ist.

Beweis. 1) Sei f injektiv und v ∈ Ker f . Dann ist f(v) = 0 = f(0), also v = 0,
daher Ker f = {0}.
2) Sei Ker f = {0}; für v1, v2 ∈ V sei f(v1) = f(v2); dann ist f(v1 − v2) =
f(v1) − f(v2) = 0, also v1 − v2 ∈ Ker f = {0}, somit v1 − v2 = 0 und daher ist
f injektiv. �

Beispiel 7.2.6 (Der Vektorraum aller n-Tupel) Sei K ein kommutativer Körper
und n ∈ N. Man bezeichnet mit

Kn = K × . . .×K

die Menge aller n-Tupel (x1, ..., xn) von Elementen x1, ..., xn ∈ K . Die Ver-
knüpfungen definiert man komponentenweise:
Für x = (x1, ..., xn), y := (y1, ..., yn) ∈ Kn, λ ∈ K setzt man

(x1, ..., xn) + (y1, ..., yn) := (x1 + y1, ..., xn + yn)
λ(x1, ..., xn) := (λx1, ..., λxn).

Man prüft leicht nach, dass dannKn ein Vektorraum überK ist.

Beispiel 7.2.7 (Der Vektorraum KX aller Abbildungen X → K) Besonders
wichtig ist das folgende Beispiel: Es seiX eine nichtleere Menge und es seiKX die
Menge aller Abbildungen v : X → K . Man definiert für v, w ∈ KX und λ ∈ K

v + w : X → K, x 	→ v(x) + w(x)
λv : X → K, x 	→ λ · v(x),

dann gilt v + w ∈ KX und λv ∈ KX ; es ist leicht zu zeigen, dass KX mit diesen
Verknüpfungen ein Vektorraum überK ist.
Alle interessanten Beispiele von Vektorräumen erhalten wir als Spezialfälle oder als
Untervektorräume eines VektorraumsKX .
Der Vektorraum aller Folgen in K: Man wählt X := N; dann ist v ∈ KN eine
Abbildung v : N → K, also eine Folge. Setzt man an := v(n) für n ∈ N, so ist
(an)n die durch v gegebene Folge in K in der üblichen Schreibweise. Der Vektor-
raumKN ist also der Vektorraum aller Folgen in K .
Der Vekorraum der konvergenten Folgen:In RN hat man die Teilmenge aller
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konvergenten Folgen; sind (an) und (bn) konvergent und ist c ∈ R, so sind auch
(an +bn) und (can) konvergent und daher ist diese Teilmenge ein Untervektorraum
des RN, der Vektorraum aller konvergenten Folgen.
Der Vektorraum Kn: Das vorhergehende Beispiel Kn erhalten wir so: Ist n ∈ N
undX = {1, ..., n}, so kann man v ∈ K{1,...,n} mit (x1, ..., xn) identifizieren, wo-
bei man x1 := v(1), ..., xn := v(n) setzt.K{1,...,n} ist also isomorph zu Kn.
Der Vektorraum C0(I) der stetigen Funktionen. Wir kommen nun zum Vektor-
raum der stetigen Funktionen. Ist etwa X = I ⊂ R ein Intervall, und K = R, so
ist RI der Vektorraum aller reellen Funktionen f : I → R . Sind f und g stetig
und ist c ∈ R ,so sind auch f + g und cf stetig; daher ist die Menge aller stetigen
Funktionen f : I → R, die wir mit C0(I) bezeichnet haben, ein Untervektorraum
von RI ; insbesondere ergibt sich, dass es sich um einen Vektorraum handelt.
Für k ∈ N und k = ∞ haben wir in 3.1.11 definiert:

Ck(I) := {f : I → R| f ist k-mal stetig differenzierbar}

Ck(I) ist ebenfalls ein Untervektorraum von RI . Dies gilt auch für die Menge Cω(I)
der analytischen und die MengeR(I) der Riemann-integrierbaren Funktionen . Man
hat also die Untervektorräume

Cω(I) ⊂ C∞(I) ⊂ Ck(I) ⊂ Ck−1(I) ⊂ . . . ⊂ C0(I) ⊂ R(I) ⊂ RI .

7.3 Basis

Es bezeichne immer V einen Vektorraum über einem (kommutativen) Körper K .
Wir führen nun drei fundamentale Begriffe ein:

• Erzeugendensystem,
• lineare Unabhängigkeit ,
• Basis.

Definition 7.3.1 Vektoren v1, ..., vk ∈ V nennt man ein Erzeugendensystem von
V , wenn es zu jedem v ∈ V Elemente λ1, ..., λk ∈ K gibt mit

v = λ1v1 + ...+ λkvk.

Vektoren v1, ..., vk heißen linear unabhängig, wenn gilt:
Sind λ1, ..., λk ∈ K und ist λ1v1 + ...+ λkvk = 0 , so folgt: λ1 = 0, ..., λk = 0.
Ein n-Tupel (b1, ..., bn) von Vektoren b1, ..., bn aus V heißt eine Basis von V , wenn
gilt:

(1) b1, ..., bn ist ein Erzeugendensystem von V ,
(2) b1, ..., bn sind linear unabhängig.
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Wenn (b1, ..., bn) eine Basis von V ist, dann gibt es wegen (1) zu jedem v ∈ V
Elemente x1, ..., xn ∈ K mit v =

n∑
j=1

xjbj .Aus v =
n∑

j=1

xjbj =
n∑

j=1

yjbj ergibt

sich
n∑

j=1

(xj − yj)bj = 0 und aus (2) folgt xj = yj für j = 1, ..., n. Damit erhält

man folgende Charakterisierung einer Basis:

Satz 7.3.2 (b1, ..., bn) ist genau dann eine Basis von V , wenn jeder Vektor v ∈ V
eindeutig als Linearkombination v = x1b1 + ... + xnbn mit x1, ..., xn ∈ K
darstellbar ist.

Die Koeffizienten x1, ..., xn bezeichnet man als die Koordinaten von v und der
Vektor x := (x1, ..., xn) ∈ Kn heißt der Koordinatenvektor von v bezüglich
(b1, ..., bn). Es gilt:
(b1, ..., bn) ist genau dann eine Basis von V , wenn die Abbildung

h : Kn → V, (x1, ..., xn) 	→ x1b1 + ...+ xnbn

ein Isomorphismus ist. Die Umkehrabbildung h−1 ordnet jedem Vektor v ∈ V den
Koordinatenvektor x = (x1, ..., xn) mit v = x1b1 + ...+ xnbn zu.
In der Matrizenrechnung ist es zweckmäßig, den Koordinatenvektor x als Spalten-
vektor

x =

⎛⎝ x1...
xn

⎞⎠
zu schreiben.

Beispiel 7.3.3 Es sei V := Kn, wir setzen

e1 :=

⎛⎜⎜⎝
1
0
...
0

⎞⎟⎟⎠ , e2 :=

⎛⎜⎜⎝
0
1
...
0

⎞⎟⎟⎠ , . . . , en :=

⎛⎜⎜⎝
0
...
0
1

⎞⎟⎟⎠ .

Dann kann man jeden Vektor x =

⎛⎝ x1...
xn

⎞⎠ ∈ Kn eindeutig darstellen als

x = x1e1 + ...+ xnen

und daher ist (e1, ..., en) eine Basis desKn. Diese Basis bezeichnet man als kano-
nische Basis desKn.

Diese Begriffe sollen nun eingehend behandelt werden.
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Definition 7.3.4 Sind v1, ..., vk ∈ V , so heißt

span(v1, ..., vk) := {λ1v1 + ...+ λkvk| λ1, ..., λk ∈ K}
der von v1, ..., vk aufgespannte Untervektorraum.

Natürlich gilt: v1, ..., vk ist genau dann ein Erzeugendensystem von V , wenn
span(v1, ..., vk) = V ist. Man kann die lineare Unabhängigkeit folgendermaßen
charakterisieren:

Satz 7.3.5 Vektoren v1, ..., vk sind genau dann linear abhängig, wenn ein Index
j ∈ {1, ..., k} existiert mit

vj ∈ span(v1, ..., vj−1, vj+1, ..., vk).

Beweis. Wenn v1, ..., vk linear abhängig sind, dann gibt es λ1, ..., λk ∈ K und ein
j mit λj �= 0 und λ1v1 + ...+ λkvk = 0. Dann ist

vj = −λ−1
j (λ1v1 + ...+ λj−1vj−1 + λj+1vj+1 + ...+ λkvk),

also vj ∈ span(v1, ..., vj−1, vj+1, ..., vk). Die Umkehrung der Aussage ist leicht zu
sehen. �

Nun zeigen wir: Vektoren (v1, ..., vn) sind genau dann eine Basis, wenn v1, ..., vn
ein unverkürzbares Erzeugendensystem ist; das bedeutet: Wenn man aus dem Er-
zeugendensystem einen Vektor wegläßt, erzeugt es V nicht mehr. Analog dazu cha-
rakterisieren wir die Basis (v1, ..., vn) als unverlängerbar linear unabhängig: Wenn
man einen weiteren Vektor v hinzufügt, dann sind v1, ..., vn, v linear abhängig.

Satz 7.3.6 Für v1, ..., vn ∈ V sind folgende Aussagen äquivalent:
(1) (v1, ..., vn) ist eine Basis von V ,
(2) v1, ..., vn ist ein unverkürzbares Erzeugendensystem von V ,
(3) v1, ..., vn sind unverlängerbar linear unabhängig.

Beweis. Nach 7.3.5 ist ein Erzeugendensystem genau dann linear unabhängig, wenn
es unverkürzbar ist; daher sind (1) und (2) äquivalent.
Nun zeigen wir: Aus (1) folgt (3): Es sei (v1, ..., vn) eine Basis. Für jedes v ∈ V
gilt v ∈ span{v1, ..., vn} und nach 7.3.5 sind v1, ..., vn, v linear abhängig. Somit gilt
(3).
Es ist noch zu zeigen: Aus (3) folgt (1). Wenn die Vektoren v1, ..., vn unverlängerbar
linear unabhängig sind, dann gilt für jedes v ∈ V , dass v1, ..., vn, v linear abhängig
sind. Es ist also λ1v1 + ... + λnvn + λv = 0 und nicht alle λi, λ sind null. Aus
λ = 0 würde folgen, dass v1, ..., vn linear abhängig sind. Somit ist λ �= 0 und daher
v = −λ−1(λ1v1 + . . . + λnvn) ∈ span(v1, ..., vn). Dies gilt für jedes v ∈ V und
daher ist (v1, ..., vn) eine Basis. �

Aus diesem Satz folgt, dass man aus einem Erzeugendensystem immer eine Basis
auswählen kann:

Satz 7.3.7 Wenn v1, ..., vk ein Erzeugendensystem von V ist, dann existieren Indi-
zes i1, ..., in ∈ {1, ..., k}, so dass (vi1 , ..., vik

) eine Basis von V ist.
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Beweis. Wenn die Vektoren v1, ..., vk ein Erzeugendensystem bilden und linear
abhängig sind, dann kann man einen Vektor, etwa vk, weglassen und hat dann das
verkürzte Erzeugendensystem v1, ..., vk−1. Dies wiederholt man so lange, bis man
ein unverkürzbares Erzeugendensystem hat; dieses ist eine Basis. �

Wir zeigen nun: Ist (b1, ..., bn) eine Basis und v ein Vektor, dessen k-te Koordinate
nicht verschwindet, so kann man bk durch v ersetzen:

Satz 7.3.8 (Austauschlemma) Es sei (b1, ..., bn) eine Basis von V und

v = λ1b1 + ...+ λkbk + ...+ λnbn, λk �= 0.

Dann ist auch (b1, ..., bk−1, v, bk+1, ..., bn) eine Basis von V .

Beweis. Es ist

bk = v − λ−1
k (λ1b1 + ...+ λk−1bk−1 + λk+1bk+1 + ...+ λnbn),

also bk ∈ span(b1, ..., bk−1, v, bk+1, ..., bn). Daher sind diese Vektoren ein Erzeu-
gendensystem von V . Man rechnet leicht nach, dass sie auch linear unabhängig
sind. �

Daraus ergibt sich der Steinitzsche Austauschsatz (ERNST STEINITZ (1871-1928)):

Satz 7.3.9 (Austauschsatz von Steinitz) Ist (b1, ..., bn) eine Basis von V und sind
a1, ..., ak ∈ V linear unabhängig, so ist k ≤ n und man kann die (b1, ..., bn) so
nummerieren, dass (a1, ..., ak, bk+1, ..., bn) eine Basis von V ist.

Beweis. Es ist a1 = λ1b1 + ...+λnbn und a1 �= 0. Man darf (nach Umnumerierung
der b1, . . . , bn) annehmen, dass λ1 �= 0 ist. Nach 7.3.8 ist dann (a1, b2, ..., bn) eine
Basis. Daher kann man a2 darstellen als a2 = µ1a1 + µ2b2 + ... + µnbn. Aus
µ2 = 0, ..., µn = 0 würde a2 = µ1a1 folgen; dann wären a1, a2, ..., ak linear
abhängig. Nach Umnumerierung der b2, ..., bn dürfen wir µ2 �= 0 annehmen. Nach
7.3.8 ist dann (a1, a2, b3, ..., bn) eine Basis. Wenn man dieses Verfahren fortsetzt,
ergibt sich die Behauptung. �

Daraus folgt, dass je zwei Basen eines Vektorraums die gleiche Anzahl von Elemen-
ten haben:

Satz 7.3.10 Sind (b1, ..., bn) und (b̃1, ..., b̃m) Basen von V , so ist n = m.

Definition 7.3.11 Ein Vektorraum V heißt endlich erzeugt, wenn es endlich viele
v1, ..., vk ∈ V gibt, die ein Erzeugendensystem von V sind.

Aus 7.3.7 folgt, dass jeder endlich erzeugte Vektorraum eine Basis besitzt.
Aus 7.3.9 ergibt sich der folgende Basisergänzungssatz:

Satz 7.3.12 (Basisergänzungssatz) Zu linear unabhängigen Vektoren a1, ..., ak
in einem endlich erzeugten Vektorraum V existieren ak+1, ..., an ∈ V , so dass
(a1, ..., ak, ak+1, ..., an) eine Basis von V ist.
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Wir gehen noch auf den Begriff der Basis bei Vektorräumen ein, die nicht endlich-
erzeugt sind (wir werden diese im nächsten Abschnitt als unendlich-dimensional
bezeichnen):
Es sei V ein Vektorraum über einem Körper K , I eine Menge, die wir als Index-
menge bezeichnen, und I → V, i 	→ vi eine Abbildung; dann heißt (vi)i eine
Familie von Vektoren aus V .

Definition 7.3.13 Eine Familie (vi)i heißt Erzeugendensystem von V , wenn es
zu jedem v ∈ V endlich viele i1, . . . , ik ∈ I und xi1 , . . . , xik

∈ K gibt mit
v = xi1vi1 + . . .+ xik

vik
.

Die Familie (vi)i heißt linear unabhängig, wenn gilt: Sind i1, . . . , ik ∈ I endlich
viele verschiedene Elemente, so sind vi1 , . . . , vik

linear unabhängig.
Eine Familie (vi)i heißt Basis von V , wenn sie ein linear unabhängiges Erzeugen-
densystem von V ist.
Zu jedem v ∈ V gibt es dann endlich viele i1, . . . , ik ∈ I und xi1 , . . . , xik

∈ K mit

v = xi1vi1 + . . .+ xik
vik

und diese Darstellung ist eindeutig.

Man kann (mit Hilfe des Zornschen Lemas) beweisen, dass jeder Vektorraum eine
Basis besitzt ([4] [3]).
In 10.4.11 werden wir in Hilberträumen H den Begriff der Hilbertbasis einführen.
Eine Hilbertbasis ist keine Basis in dem soeben definierten Sinn. Der von einer Hil-
bertbasis aufgespannte Raum ist nicht notwendigH, sondern liegt dicht in H. Daher
werden bei einer Hilbertbasis die Elemente des Raumes durch Reihen dargestellt,
nicht, wie hier, durch Summen endlich vieler Elemente.

Basen und lineare Abbildungen
Wir nehmen nun an, dass in V eine Basis (b1, ..., bn) gegeben ist und behandeln die
Frage, was man über eine lineare Abbildung f : V →W aussagen kann, wenn man
f auf der Basis kennt.
Zunächst ein einfacher Existenz- und Eindeutigkeitssatz:

Satz 7.3.14 Wenn zwei lineare Abbildungen f, g : V → W auf einer Basis
(b1, ..., bn) von V übereinstimmen, dann ist f = g. Zu gegebenen w1, ..., wn ∈ W
existiert genau eine lineare Abbildung f : V →W mit f(bj) = wj für j = 1, ..., n.

Beweis. Die erste Behauptung folgt aus f(
n∑

j=1

xjbj) =
n∑

j=1

xjf(bj). Um die Exi-

stenzaussage zu beweisen, setzt man f(
n∑

j=1

xjbj) :=
n∑

j=1

xjwj . �

Ein Kriterium für Injektivität bzw. Surjektivität erhält man folgendermaßen:

Satz 7.3.15 Ist f : V → W eine lineare Abbildung und (b1, ..., bn) eine Basis von
V , so gilt:

(1) f ist genau dann injektiv, wenn die Bildvektoren f(b1), ..., f(bn) linear un-
abhängig sind.
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(2) f ist genau dann surjektiv, wenn f(b1), ..., f(bn) ein Erzeugendensystem von V
ist.

(3) f ist genau dann bijektiv, wenn (f(b1), ..., f(bn)) eine Basis von V ist.

Beweis. (1) Sei f injektiv und
∑
λjf(bj) = 0. Dann ist f(

∑
λjbj) = 0 und, weil

f injektiv ist, gilt
∑
λjbj = 0, also λ1 = 0, ..., λn = 0. Daher sind f(b1), ..., f(bn)

linear unabhängig.
Nun seien f(b1), ..., f(bn) linear unabhängig. Ist dann v =

∑
λjbj ∈ Ker f , so

folgt
∑
λjf(bj) = f(v) = 0; nach Voraussetzung gilt dann λ1 = 0, ..., λn = 0.

Daraus folgt v = 0, somit Ker f = {0} und daher ist f injektiv.
(2) Die Behauptung folgt aus

f(V ) = {
∑
λjf(bj)|λj ∈ K} = span {f(b1), ..., f(bn)},

(3) folgt aus (1), (2). �


Für die Untersuchung einer linearen Abbildung f : V → W ist es zweckmäßig,
geeignete Basen in V und in W zu wählen, die eine einfache Beschreibung von f
ermöglichen. Dies geschieht im folgenden Satz, den wir wegen seiner Bedeutung
für die weiteren Untersuchungen als Fundamentallemma bezeichnen.

Satz 7.3.16 ( Fundamentallemma ) Zu jeder linearen Abbildung f : V → W
endlich erzeugter Vektorräume V,W gibt es Basen

(v1, ..., vr, u1, ..., ud) von V,
(w1, ..., wr, wr+1, ..., wm) von W

mit folgenden Eigenschaften:

(1) (u1, ..., ud) ist eine Basis von Ker f ,
(2) (w1, ..., wr) ist eine Basis von Bild f ,
(3) es ist f(v1) = w1 . . . , f(vr) = wr.

v1 . . . vr u1 . . . ud

↓ ↓ ↓ ↓
w1 . . . wr 0 . . . 0

Beweis. Man wählt eine Basis (u1, ..., ud) von Ker f und ergänzt diese zu einer
Basis (u1, ..., ud, v1, ..., vr) von V ; dann ist auch (v1, ..., vr, u1, ..., ud) eine Basis
von V . Wir setzen nun w1 := f(v1), . . . , wr := f(vr) und zeigen: (w1, ..., wr) ist

eine Basis von Bild f . Jedes v ∈ V ist darstellbar als v =
r∑

j=1

xjvj+
d∑

i=1

yiui. Wegen

f(ui) = 0 ist f(v) =
∑
j

xjwj und daher ist {w1, ..., wr} ein Erzeugendensystem

von Bild f . Nun sei
r∑

j=1

xjwj = 0; setzt man v :=
∑
xjvj , so ist f(v) = 0, also

v ∈ Ker f , und daher ist v Linearkombination der u1, ..., ud. Die Darstellung von
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v =
∑
xjvj +

∑
yiui als Linearkombination der v1, ..., vr, u1, ..., ud ist eindeutig,

somit sind alle xj = 0 und damit ist gezeigt, dass die Vektoren w1, ..., wr linear
unabhängig sind. Somit ist (w1, ..., wr) eine Basis von Bild f , die man zu einer
Basis (w1, ..., wr, wr+1, ..., wm) vonW ergänzen kann. �

Aus diesem Lemma werden wir folgende Aussagen herleiten:

• Die Dimensionsformel 7.4.7
• Jede Matrix vom Rang r ist äquivalent zu einer Matrix E[r], die aus r Einsen

und sonst 0 besteht (Satz 7.5.21)
• Für jede Matrix gilt rgA = rgAt (Satz 7.5.24).

7.4 Dimension

In 7.3.10 wurde gezeigt, dass je zwei Basen von V gleiche Länge haben; daher ist
folgende Definition sinnvoll:

Definition 7.4.1 Ist V ein endlich erzeugter Vektorraum und (b1, ..., bn) eine Basis,
so setzt man

dimV := n.

Wenn V = {0} der Nullvektorraum ist, setzt man dim V := 0. Falls V nicht endlich
erzeugt ist, setzt man dim V := ∞.

Man kann dies so formulieren:
dimV = n bedeutet: Es gibt n linear unabhängige Vektoren in V und je (n + 1)
Vektoren sind immer linear abhängig.
Die Dimension von V ist die Maximalzahl linear unabhängiger Vektoren.

Beispiel 7.4.2 Ist n ∈ N, so hat man im Vektorraum Kn die kanonische Basis
(e1, ..., en) und daher ist dimKn = n.

Beispiel 7.4.3 Ist KX der in 7.2.7 definierte Vektorraum aller Abbildungen einer
MengeX in K ,so definiert man zu p ∈ X die Abbildung vp ∈ KX durch

vp : X → K,x 	→
{

1 für x = p
0 für x �= p .

Es ist leicht zu zeigen: Wenn {p1, . . . , pn} = X gilt, dann ist vp1 , . . . , vpn ein
Erzeugendensystem vonKX . Sind p1, . . . , pn ∈ X verschiedene Elemente, so sind
vp1 , . . . , vpn ∈ KX linear unabhängig. Ist also X eine Menge, die aus unendlich
vielen Elementen besteht, so gilt:

dimKX = ∞.
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Beispiel 7.4.4 Wir geben noch ein weiteres Beispiel eines unendlich-dimensionalen
Vektorraumes an. Für a, b ∈ R, a < b, sei C0([a, b]) der Vektorraum aller stetigen
Funktionen f : [a, b] → R. Wir zeigen: Ist f nicht-konstant, so gilt für jedes n ∈ N:
Die Potenzen

1, f, f2, , f3, ..., fn

sind linear unabhängig.
Andernfalls gibt es c0, ..., cn ∈ R, die nicht alle 0 sind, mit

c0 + c1f(x) + c2(f(x))2 + ...+ cn(f(x))n = 0

für alle x ∈ [a, b]. Das Polynom p(X) := c0 + c1X + ... + cnXn hat nur endlich
viele Nullstellen und für jedes x ∈ R ist p(f(x)) = 0. Dann kann f nur endlich
viele Werte annehmen; aus dem Zwischenwertsatz folgt aber, daßf unendlich viele
Werte annimmt. Damit ist die Behauptung bewiesen und daraus folgt:

dim C0([a, b]) = ∞.

Satz 7.4.5 Ist V endlich-dimensional und ist U ein Untervektorraum von V , so gilt
dimU ≤ dimV und aus dimU = dimV folgt U = V.

Beweis. Man wählt eine Basis (u1, ..., ud) von U und ergänzt diese zu einer Basis
(u1, ..., ud, vd+1, ..., vn) von V ; aus d = dimU , n = dimV , ergibt sich die Be-
hauptung. �

Nun definiert man den Rang einer linearen Abbildung als die Dimension des Bildes:

Definition 7.4.6 Ist f : V →W linear, so heißt

rg f := dim f(V )

der Rang von f .

Es seien V,W immer endlich-dimensionale Vektorräume. Wir leiten nun aus 7.3.16
die wichtige Dimensionsformel für lineare Abbildungen her.

Satz 7.4.7 (Dimensionsformel für lineare Abbildungen) Für jede lineare Abbil-
dung f : V →W gilt:

dim(Ker f) + dim(Bild f) = dim V,

also

dim(Ker f) + rg f = dimV.

Beweis. Man wählt wie in 7.3.16 eine Basis (v1, ..., vr, u1, ..., ud) in V ; dann ist
dimV = r + d = rgf + dim(Kerf). �

Aus der Dimensionsformel (oder aus 7.3.15)folgt:
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Satz 7.4.8 Wenn f : V → W ein Isomorphismus ist, dann gilt: dimV = dimW.

Als Anwendung der Dimensionsformel beweisen wir eine Aussage, die nur für
endlich-dimensionale Vektorräume richtig ist:

Satz 7.4.9 Es sei V ein endlich-dimensionaler Vektorraum und f : V → V linear.
Dann sind folgende Aussagen äquivalent:

(1) f ist injektiv;
(2) f ist surjektiv;
(3) f ist ein Isomorphismus.

Beweis. Wir zeigen: Aus (1) folgt (2): Wenn f injektiv ist, dann ist dim(Ker f) = 0
und nach der Dimensionsformel ist dim(Bild f ) = dim V , also Bild f = V ; daher
ist f surjektiv.
Nun beweisen wir: Aus (2) folgt (1): Wenn f surjektiv ist, gilt dim (Bild f ) = dimV ,
also dim(Ker f ) = 0 und somit Ker f = {0}. Daher ist f injektiv. - Damit ist der
Satz bewiesen. �

Bemerkung. Bei unendlich-dimensionalen Vektorräumen gilt dieser Satz nicht. So
ist die lineare Abbildung

KN → KN, (x1, x2, . . .) 	→ (0, x1, x2, . . .)

injektiv, aber nicht surjektiv. Dies führt dazu, dass man in der Funktionanalanalysis,
die wir in 15.7 behandeln, zwischen Eigenwerten und Spektralwerten einer linea-
ren Abbildung T : V → V unterscheidet. Ein Element λ ∈ K heißt Eigenwert
von T , wenn es ein v ∈ V, v �= 0, gibt mit Tv = λv. Dies ist genau dann der
Fall, wenn T − λidV nicht injektiv ist, dabei ist idV : V → V, v 	→ v, die identi-
sche Abbildung. Man bezeichnet λ als Spektralwert von T , wenn T − λ · idV kein
Isomorphismus ist. Unser Satz besagt, dass bei endlich-dimensionalen Vektorräum-
en die Begriffe Spektralwert und Eigenwert übereinstimmen. Dagegen gibt es bei
unendlich-dimensionalen Vektorräumen Spektralwerte, die keine Eigenwerte sind.

Wir gehen noch auf Summen, insbesondere direkte Summen, von Untervektorräumen
von V ein.

Definition 7.4.10 Es seien U,U ′ Untervektorräume von V ; dann heißt der Unter-
vektorraum

U + U ′ := {u+ u′|u ∈ U, u′ ∈ U ′}
die Summe von U und U ′. Falls U ∩ U ′ = {0} ist, schreibt man

U ⊕ U ′ := U + U ′

und bezeichnet U ⊕ U ′ als direkte Summe von U und U ′.

Wir geben ohne Beweis die Dimensionsformel für Untervektorräume an:
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Satz 7.4.11 (Dimensionsformel für Untervektorräume ) Sind U,U ′ Untervek-
torräume von V , so gilt:

dim(U + U ′) + dim(U ∩ U ′) = dimU + dimU ′.

Wenn V = U+U ′ gilt, so kann man jedes v ∈ V als v = u+u′ mit u ∈ U , u′ ∈ U ′

darstellen.
Für direkte Summen ist diese Darstellung eindeutig, denn aus v = u+u′ = w+w′

mit u,w ∈ U, u′, w′ ∈ U ′ folgt u − w = w′ − u′ ∈ U ∩ U ′ = {0}, also
u = w, u′ = w′. Somit ergibt sich:

Satz 7.4.12 V = U ⊕ U ′ gilt genau dann, wenn man jedes v ∈ V eindeutig als
v = u+ u′ mit u ∈ U, u′ ∈ U ′, darstellen kann.

Daraus ergibt sich:

Satz 7.4.13 Ist (v1, . . . , vk, vk+1, . . . , vn) eine Basis von V , 1 < k < n, und setzt
man

U := span{v1, . . . , vk}, U ′ := span{vk+1, . . . , vn},
so ist V = U ⊕ U ′.

Daraus kann man herleiten:

Satz 7.4.14 Zu jedem Untervektorraum U eines endlich-dimensionalen Vektorrau-
mes V existiert ein Untervektorraum U ′ mit V = U ⊕ U ′.

Beweis. Man wählt eine Basis (v1, ..., vk) von U und ergänzt sie zu einer Basis
(v1, ..., vk, vk+1, ..., vn) von V ; nun setzt man U ′ := span{vk+1, ..., vn}. �


7.5 Matrizen

In der linearen Algebra spielt die Theorie der linearen Gleichungssysteme eine
große Rolle. In einem Körper K seien Elemente aij ∈ K und bi ∈ K gegeben
(i = 1, ...,m; j = 1, ..., n); gesucht sind x1, ..., xn ∈ K mit

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
am1x1 + am2x2 + · · · + amnxn = bm

Schreibt man die Koeffizienten aij dieses linearen Gleichungssystems als Schema
mitm Zeilen und n Spalten, so erhält man eine (m× n)-Matrix

A =

⎛⎝a11 a12 . . . a1n

. . . . . . . . . . . . . . . .
am1 am2 . . . amn

⎞⎠ .
Setzt man



130 7 Lineare Algebra

x :=

⎛⎜⎝ x1...
xn

⎞⎟⎠ und b :=

⎛⎜⎝ b1...
bm

⎞⎟⎠
und definiert das Produkt der Matrix A mit dem Vektor x durch

A · x :=

⎛⎝a11x1 + . . . + a1nxn

. . . . . . . . . . . . . . . . . . . . .
am1x1 + . . . + amnxn

⎞⎠ ,
so kann man das lineare Gleichungssystem in der Form

A · x = b

schreiben.
Um die Schreibweise zu vereinfachen, schreiben wir oft A = (aij) ∈ K(m,n) und
für einen Spaltenvektor x = (xk) ∈ K(n,1) = Kn.
Wir stellen nun die Grundbegriffe der Matrizenrechnung zusammen:

Definition 7.5.1 Sindm,n ∈ N und aij ∈ K, i = 1, ...,m; j = 1, ..., n, so heißt

A =

⎛⎝a11 a12 . . . a1n

. . . . . . . . . . . . . . . .
am1 am2 . . . amn

⎞⎠
eine (m× n)-Matrix mit Koeffizienten ausK .
Die Menge der (m× n)-Matrizen bezeichnet man mit K(m,n).
Für A = (aij) ∈ K(m,n), B = (bij) ∈ K(m,n), λ ∈ K setzt man

A+B :=

⎛⎝a11 + b11 . . . a1n + b1n

. . . . . . . . . . . . . . . . . . . . . . . . . .
am1 + bm1 . . . amn + bmn

⎞⎠ , λA : =

⎛⎝λa11 . . . λa1n

. . . . . . . . . . . . . . .
λam1 . . . λamn

⎞⎠
Mit diesen Verknüpfungen A + B, λA wird K(m,n) zu einem Vektorraum der Di-
mensionm · n. Das Nullelement ist die Matrix

0 =

⎛⎝0 . . . 0
. . . . . .
0 . . . 0

⎞⎠ ∈ K(m,n).

Für A ∈ K(m,n) und x ∈ Kn definiert man

A · x :=

⎛⎜⎜⎜⎜⎜⎝
n∑

j=1

a1jxj

...
n∑

j=1

amjxj

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎝a11x1 + . . . + a1nxn

. . . . . . . . . . . . . . . . . . . . .
am1x1 + . . . + amnxn

⎞⎠
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Für A ∈ K(m,n), x, y ∈ Kn, λ, µ ∈ K gilt:

A(λx + µy) = λAx + µAy.

Wir wollen A · x noch genauer erläutern; dazu betrachten wir die Spaltenvektoren
aj von A, j = 1, ..., n, also

aj :=

⎛⎜⎝ a1j

...
amj

⎞⎟⎠ ;

für x ∈ Kn ist

Ax =

⎛⎝a11x1 + . . . + a1nxn

. . . . . . . . . . . . . . . . . . . . .
am1x1 + . . . + amnxn

⎞⎠ =
n∑

j=1

xj ·

⎛⎜⎝ a1j

...
amj

⎞⎟⎠ ,
somit

A · x =
n∑

j=1

xjaj .

Der Vektor Ax ist also die Linearkombination der Spalten von A, bei der die Koef-
fizienten die Komponenten x1, ..., xn von x sind.
Insbesondere gilt für die kanonischen Basisvektoren e1, . . . , en ∈ Kn:

A · ej = aj .

Matrizenprodukt
Nun soll für MatrizenA ∈ K(m,n) undB ∈ K(n,r) das MatrizenproduktC := A·B
erklärt werden. Es ist naheliegend, dies spaltenweise zu definieren: Sind b1, . . . , br
die Spalten von B, so soll C = A · B die Matrix mit den Spaltenvektoren
Ab1, . . . , Abrsein. Die k-te Spalte ck von A · B ist also

ck = A

⎛⎜⎝ b1k

...
bnk

⎞⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
n∑

j=1

a1jbjk

...
n∑

j=1

amjbjk

⎞⎟⎟⎟⎟⎟⎠ .

Daher definieren wir das Matrizenprodukt folgendermaßen:

Definition 7.5.2 Für A = (aij) ∈ K(m,n) und B = (bjk) ∈ K(n,r) setzt man

cik :=
n∑

j=1

aijbjk (i = 1, ...,m; k = 1, ..., r);
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dann heißt A · B := (cik) ∈ K(m,r) das Produkt der Matrizen A,B; ausführlich
geschrieben:

⎛⎝a11 . . . a1n

. . . . . . . . . . .
am1 . . . amn

⎞⎠ ·
⎛⎝ b11 . . . b1r

. . . . . . . . . .
bn1 . . . bnr

⎞⎠ : =

⎛⎜⎜⎜⎜⎝
n∑

j=1

a1jbj1 . . .
n∑

j=1

a1jbjr

. . . . . . . . . . . . . . . . . . . . . . . .
n∑

j=1

amjbj1 . . .
n∑

j=1

amjbjr

⎞⎟⎟⎟⎟⎠
Wir stellen das Matrizenprodukt nochmals schematisch dar: Man

”
faltet “die i-te

Zeile von A mit der k-ten Spalte von B und erhält so das Element

cik = ai1b1k + ai2b2k + . . . + ainbnk

von A · B:⎛⎜⎜⎜⎜⎝
. . . . . . . . . . . .

ai1 . . . ain

. . . . . . . . . . . .

⎞⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎝ . . .
b1k

...

bmk

. . .

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎝ . . . . . . . . .. . . cik . . .

. . . . . . . . .

⎞⎠

Man beachte, dass A ·B nur definiert ist, wenn gilt:

Spaltenzahl von A = Zeilenzahl von B.

Es gilt:

Satz 7.5.3 Für A ∈ K(m,n), B ∈ K(n,r), x ∈ Kr gilt:

(A ·B) · x = A · (B · x).
Beweis. Man rechnet dies nach

A(Bx) = A·(
n∑

k=1

bjkxk) = (
n∑

j=1

r∑
k=1

aijbjkxk) = (
r∑

k=1

(
n∑

j=1

aijbjk)xk) = (A·B)·x.

Die Aussage folgt auch so: Es genügt, die Behauptung für x = ek zu beweisen. Nun
ist (A ·B)ek die k-te Spalte von (A ·B), also nach Definition des Matrizenprodukts
gleich Abk; wegen bk = Bek ist (A · B)ek = Abk = A(Bek). �

Für quadratische MatrizenA,B ∈ K(n,n) ist das ProduktA ·B immer definiert; die
Matrix

E =

⎛⎜⎜⎝
1 0 . . . 0
0 1 . . . 0
. . . . . . . . .
0 . . . 0 1

⎞⎟⎟⎠ ∈ K(n,n)

heißt die Einheitsmatrix; ihre Spalten sind e1, ..., en ∈ Kn. Für alle A ∈ K(n,n)

gilt:
E · A = A, A ·E = A.
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Definition 7.5.4 Eine Matrix A ∈ K(n,n) heißt invertierbar, wenn eine Matrix
A−1 ∈ K(n,n) existiert mit A−1 · A = E.

Sind A,B ∈ K(n,n) invertierbare Matrizen, so ist B−1A−1AB = E, also
(AB)−1 = B−1A−1; es ergibt sich:
Die Menge der invertierbaren (n×n)-Matrizen, versehen mit der Matrizenmultipli-
kation, ist eine Gruppe; sie wird mit GL(n,K) bezeichnet.

Matrizen und lineare Abbildungen
Wir behandeln nun die Beziehungen zwischen Matrizen A ∈ K(m,n) und linearen
AbbildungenKn → Km. Jede MatrixA ∈ K(m,n) definiert eine lineare Abbildung
Kn → Km, x 	→ Ax. Wir bezeichnen diese Abbildung ebenfalls mit A, schreiben
also

A : Kn → Km, x 	→ Ax.
Für das Bild dieser Abbildung gilt (mit a1, ..., an bezeichnen wir wieder die Spalten
von A):

Bild A = {Ax|x ∈ Kn} = {x1a1+...+xnan|x1, ..., xn ∈ K} = span{a1, ..., an}.
Definition 7.5.5 rg A:= dim span{a1, ..., an} heißt der Rang der Matrix A.

rg A ist also gleich der Maximalzahl der linear unabhängigen Spaltenvektoren
a1, ..., an von A. �

Wir zeigen nun, dass jede lineare Abbildung f : Kn → Km durch eine Matrix A
gegeben wird.

Satz 7.5.6 Zu jeder linearen Abbildung f : Kn → Km existiert genau eine Matrix
A ∈ K(n,m) mit f(x) = Ax für x ∈ Kn, nämlich A = (f(e1), . . . , f(en)).

Beweis. Für j = 1, ..., n sei aj := f(ej). Definiert man A als die Matrix mit den
Spalten a1, ..., an, so folgt Aej = aj = f(ej), also Ax = f(x) für alle x ∈ Kn

und A ist dadurch eindeutig bestimmt. �

Damit hat man eine Methode gefunden, wie man zu einer Abbildung die zugehörige
Matrix erhalten kann: Die Spalten von A sind die Bilder von e1, . . . , en.

Beispiel 7.5.7 Es soll die Matrix A angegeben werden, die die Drehung der Ebene
um 90o beschreibt. Bezeichnen wir diese Drehung mit f : R2 → R2, so ist

f(e1) = e2, f(e2) = −e1.
Die erste Spalte von A ist also e2 und die zweite ist −e1, somit ist

A =
(

0 −1
1 0

)
die gesuchte Matrix.Bei einer Drehung um einen Winkel α ist die dazugehörende
Matrix (

cosα − sinα
sinα cosα

)
,
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die Abbildung ist (
x1
x2

)
	→

(
x1 cosα− x2 sinα
x1 sinα+ x2 cosα

)
.

Nun seien V undW beliebige endlich-dimensionale Vektorräume. Um jeder linea-
ren Abbildung f : V → W eine Matrix A zuordnen zu können, wählen wir eine
Basis (v1, ..., vn) in V und eine Basis (w1, ..., wm) inW . Dann existieren eindeutig
bestimmte aij ∈ K mit

f(vj) =
m∑

i=1

aijwi (j = 1, ..., n).

Definition 7.5.8 Die durch f(vj) =
n∑

i=1

aijwi definierte MatrixA = (aij) heißt die

zu f : V →W bezüglich der Basen (vj), (wi) gehörende Matrix; wir schreiben

M(f ; (vj), (wi)) := A.

Ist f : V → V ein Endomorphismus, so setzt man

M(f ; (vj)) :=M(f, (vj), (vj)).

Der Spaltenvektor aj von A ∈ K(m,n) ist also der Koordinatenvektor von f(vj)
bezüglich (w1, ..., wm).
Ausführlich geschrieben hat man für A = (aij) die Gleichungen

f(v1) = a11w1 + a21w2 + · · · + am1wm

f(v2) = a12w1 + a22w2 + · · · + am2wm

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
f(vn) = a1nw1 + a2nw2 + · · · + amnwm.

Man beachte, dass die Koeffizienten, die in der ersten Zeile stehen, die erste Spalte
von A bilden.

Es ist leicht zu zeigen:

Satz 7.5.9 rg A = rg f .

Die zu f gehörende Matrix A wird durch folgenden Satz charakterisiert:

Satz 7.5.10 Für A =M(f ; (vj), (wi)) gilt:
Ist x ∈ Kn der Koordinatenvektor von v ∈ V bezüglich (vj), so ist Ax der Koordi-
natenvektor von f(v) bezüglich (wi).
Umgekehrt gilt: Ist A ∈ K(m,n) eine Matrix mit dieser Eigenschaft, so folgt
A =M(f ; (vj), wi).
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Beweis. 1) Aus v =
n∑

j=1

xjvj ∈ V folgt:

f(v) =
∑
i

xjf(vj) =
∑
j

xj

∑
i

aijwi =
∑
i

(
∑
j

aijxj)wi.

2) Sei umgekehrtA eine Matrix mit dieser Eigenschaft. Der Vektor vj hat bezüglich
(v1, ..., vn) den Koordinatenvektor ej ; dann ist Aej = aj der Koordinatenvektor
von f(vj) bezüglich (w1, ..., wm), also A =M(f ; (vj), (wi)). �

Nun seien U, V,W Vektorräume und g : U → V , f : V →W lineare Abbildungen.
Wir zeigen: Sind in U, V,W Basen gewählt und istB die zu g gehörende Matrix und
A die Matrix zu f , so ist die zu f◦g gehörende Matrix gleichA·B.Der Komposition
linearer Abbildungen entspricht also das Matrizenprodukt.

Satz 7.5.11 (Produktregel) gegeben seien Vektorräume U, V, W,
eine Basis (uk) in U , eine Basis (vj) in V und eine Basis (wi) inW .
Sind dann g : U → V und f : V →W lineare Abbildungen, so gilt:

M(f ◦ g; (uk), (wi)) =M(f ; (vj), (wi)) ·M(g; (uk), (vj)).

Beweis. Es sei (jeweils bezüglich der gegebenen Basen) A die Matrix zu f und B
die Matrix zu g. Ist dann u ∈ U und x der Koordinatenvektor zu u, so ist Bx der
Koordinatenvektor zu g(u) undA · (Bx) der Koordinatenvektor zu f(g(u)). Wegen
A · (Bx) = (A · B)x ist A · B die Matrix zu f ◦ g. �

Daraus folgt:

Satz 7.5.12 f : V → W ist genau dann ein Isomorphismus, wenn A invertierbar
ist.

Nun soll untersucht werden, wie sich die zu f gehörende Matrix ändert, wenn man
zu anderen Basen übergeht.
Seien (v1, ..., vn) und (ṽ1, ..., ṽn) Basen von V ; es gibt eindeutig bestimmte tij ∈ K
mit

vj =
n∑

i=1

tij ṽi; j = 1, ..., n.

Definition 7.5.13 Die Matrix T = (tij) ∈ K(n,n) mit vj =
∑
i=1

tij ṽi für j =

1, ..., n heißt die Transformationsmatrix von (vj) zu (ṽj).

Analog gibt es eindeutig bestimmte t̂kl ∈ K mit

ṽl =
n∑

k=1

t̂klvk, l = 1, ..., n,

und es gilt vj =
∑
i

tij(
∑
k

t̂kivk) =
∑
k

(
∑
i

t̂ki ·tij)·vk; daraus folgt
∑
i

t̂ki ·tij = δkj .

Setzt man T̂ := (t̂kl), so gilt T̂ · T = E. Die Transformationsmatrix T von (vj)
zu (ṽj)ist also invertierbar und T̂ = T−1 ist die Transformationsmatrix von (ṽj) zu
(vj).
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Die Transformationsmatrix ergibt sich als Spezialfall der zur Abbildung f = idV
gehörenden Matrix: Ist

idV : V → V, v 	→ v,
die identische Abbildung , so ist T die zu idV gehörende Matrix bezüglich der Basen
(vj), (ṽj):

T = M(idV ; (vj), (ṽj)).

Aus 7.5.10 folgt daher:

Satz 7.5.14 Ist v ∈ V und ist x ∈ Kn der Koordinatenvektor von v bezüglich (vj),
so ist Tx der Koordinatenvektor von v bezüglich (ṽj) .

Man kann dies natürlich auch direkt nachrechnen:

v =
n∑

j=1

xjvj =
n∑

j=1

xj

n∑
i=1

tij ṽi =
n∑

i=1

(
n∑

j=1

tijxj)ṽi.

Aus der Produktregel können wir nun die wichtige Transformationsregel herleiten:

Satz 7.5.15 (Transformationsregel) Es sei f : V → W linear; seien (vj), (ṽj)
Basen in V und T die Transformationsmatrix von (vj) zu (ṽj); weiter seien
(wi), (w̃i) Basen inW und S die Transformationsmatrix von (wi) zu (w̃i).
Ist dann A :=M(f ; (vj), (wi)) und Ã :=M(f ; (ṽj), (w̃i)), so gilt:

Ã = S ·A · T−1.

Beweis. Es ist f = idW ◦ f ◦ idV und

T−1 =M(idV ; (ṽj), (vj)); S =M(idW ; (wi), (w̃i));

und aus der Produktregel folgt:

M(f ; (ṽj), (w̃i)) = M(idW ; (wi), (w̃i)) ·M(f ; (vj), (wi)) ·M(idV ; (ṽj), (vj)),

also
Ã = S ·A · T−1.

�

Ist f : V → V ein Endomorphismus, so ist in diesem Satz V = W und S = T ;
man erhält:

Satz 7.5.16 (Transformationsregel für Endomorphismen). Ist f : V → V linear,
seien (vj) und (ṽj) Basen in V und T die Transformationsmatrix von (vj) zu (ṽj).
Ist dann A :=M(f ; (vj), (vj)) und Ã :=M(f ; (ṽj), (ṽj)), so gilt:

Ã = T ·A · T−1.

Nun sollen diese Aussagen mit Hilfe kommutativer Diagramme übersichtlich dar-
gestellt werden.
Durch Wahl einer Basis (v1, ..., vn) in einem VektorraumV wird ein Isomorphismus
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h : Kn → V, x 	→
n∑

j=1

xjvj ,

gegeben; für v ∈ V ist v =
∑
xjvj mit eindeutig bestimmtem x ∈ Kn;

x = h−1(v) ist der Koordinatenvektor von v. Ist (w1, ..., wm) eine Basis in W ,
so hat man k : Km → W, y 	→ ∑

yiwi; analog sind die durch Wahl einer
Basis bestimmten Abbildungen l, . . . , k̃ definiert. Nun sei eine lineare Abbildung
f : V → W gegeben; es gibt zu k−1 ◦ f ◦ h : Kn → Km genau eine Matrix
A ∈ K(m,n) mit (k−1 ◦ f ◦ h)(x) = A · x für x ∈ Kn. Wenn wir die Abbildung
x 	→ Ax wieder mit A bezeichnen, so gilt also k−1 ◦ f ◦ f = A oder f ◦ h = k ◦A.
Wir stellen dies im Diagramm dar:

Kn A−→ Kn

h
⏐⏐& ⏐⏐& k
V

f−→ W

Ein derartiges Diagramm mit f ◦ h = k ◦A bezeichnet man als kommutativ.
Nun stellen wir die oben hergeleiteten Aussagen durch Diagramme dar; dabei ste-
hen in der 2. Zeile die linearen Abbildungen, in der 1. Zeile die zugehörigen Ma-
trizenabbildungen; die senkrechten Pfeile sind die Koordinatenabbildungen. Diese
Sätze besagen, dass die entsprechenden Diagramme kommutativ sind und umge-
kehrt.

Produktregel:

Kr B−→ Kn A−→ Km⏐⏐&l ⏐⏐&h ⏐⏐&k
U

g−→ V f−→ W
Transformationsregel:

Kn T−1−→ Kn A−→ Km S−→ Km⏐⏐&h̃ ⏐&h ⏐&k ⏐&k̃
V

idV−→ V f−→ W idW−→ W
Transformationsregel für Endomorphismen:

Kn T−1−→ Kn A−→ Kn T−→ Kn⏐⏐&h̃ ⏐&h ⏐&h ⏐&h̃
V

idV−→ V f−→ V idV−→ V



138 7 Lineare Algebra

Beispiel 7.5.17 Es sei V := R2 und

v1 :=
(

1
2

)
, v2 :=

(
3
5

)
und ṽ1 :=

(
1
0

)
, ṽ2 :=

(
0
1

)
.

Dann ist
v1 = 1 · ṽ1 + 2 · ṽ2
v2 = 3 · ṽ1 + 5 · ṽ2

Die Transformationsmatrix T von der Basis (v1, v2) zur kanonischen Basis (ṽ1, ṽ2)
ist also

T =
(

1 3
2 5

)
und es ist T−1 =

(−5 3
3 −1

)
Nun sei

f : R2 −→ R2,

(
x1
x2

)
−→

(−x2
x1

)
Die zu f bezüglich der kanonischen Basis (ṽ1, ṽ2) gehörende Matrix ist

Ã =
(

0 −1
1 0

)
.

nach der Transformationsregel gilt für die zu f bezüglich (v1, v2) gehörende Matrix
A:

A = T−1ÃT =
(

13 34
−5 −13

)
.

Dies bedeutet:

f(v1) = 13 ·
(

1
2

)
− 5 ·

(
3
5

)
=

(−2
1

)
f(v2) = 34 ·

(
1
2

)
− 13 ·

(
3
5

)
=
(−5

3

)
.

Die Transformationsregeln führen zu folgender Definition:

Definition 7.5.18 Zwei Matrizen A,B ∈ K(m,n) heißen äquivalent, wenn es in-
vertierbare Matrizen S ∈ K(m,m) und T ∈ K(n,n) gibt mit

B = S · A · T−1.

A,B ∈ K(n,n) heißen ähnlich, wenn eine invertierbare Matrix T ∈ K(n,n) exi-
stiert mit

B = T · A · T−1.

Es gilt:
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Satz 7.5.19 Zwei Matrizen A,B ∈ K(m,n) sind genau dann äquivalent, wenn sie
zur gleichen linearen Abbildung f : V →W (bezüglich geeigneter Basen) gehören;
dabei ist dimV = n, dimW = m. Äquivalente Matrizen haben gleichen Rang.
Matrizen A,B ∈ K(n,n) sind genau dann ähnlich, wenn sie zum gleichen Endo-
morphismus f : V → V gehören; dimV = n.

Nun bezeichne E[r] ∈ K(m,n) die Matrix E[r] = (εij) mit εii = 1 für i = 1, ..., r;
alle übrigen Elemente sind Null, also

E[r] :=

�
�������

1 0 .. 0 .. 0
0 1 .. 0 .. 0
.. .. .. .. .. ..
0 0 .. 1 .. 0
0 0 .. 0 .. 0
0 .. .. 0 .. 0

�
�������

(in der Hauptdiagonale steht r mal die 1). Es gilt:

Satz 7.5.20 Ist f : V → W linear, r = rg f , und wählt man wie im Fundamental-
lemma 7.3.16 Basen (v1, ..., vr, u1, ..., ud) in V und (w1, ..., wr , ..., wm) in W , so
ist die zu f gehörende Matrix gleich E[r].

Beweis. Für i = 1, ..., r ist f(vi) = wi und für j = 1, ..., d ist f(uj) = 0; daraus
folgt die Behauptung. �

Daraus ergibt sich:

Satz 7.5.21 Jede Matrix A ∈ K(m,n) vom Rang r ist äquivalent zu E[r] ∈ K(m,n)

und daher sind Matrizen A,B ∈ K(m,n) genau dann äquivalent, wenn sie gleichen
Rang haben.

Definition 7.5.22 Ist A = (aij) ∈ K(m,n) und setzt man bij := aji, so heißt

At := (bij) ∈ K(n,m)

die transponierte Matrix; es ist also

A =

⎛⎝a11 a12 · · · a1n

. . . . . . . . . . . . . . . .
am1 am2 · · · amn

⎞⎠ , At =

⎛⎜⎜⎝
a11 · · · am1

a12 · · · am2

. . . . . . . . . . .
a1n · · · amn

⎞⎟⎟⎠
Die Spalten von At sind die Zeilen von A.

Es gilt:

Hilfssatz 7.5.23 Für A ∈ K(m,n) und B ∈ K(n,r) ist

(A ·B)t = BtAt.
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Wenn A,B äquivalent sind, dann auch At, Bt, denn aus B = SAT−1 folgt
Bt = (T−1)tAtSt. Daraus ergibt sich:

Satz 7.5.24 Für A ∈ K(m,n) gilt:

rg At = rg A.

Beweis. Wenn r = rgA gilt, dann ist A äquivalent zu E[r]; daher ist At äquivalent
zu Et

[r] und offensichtlich ist rgEt
[r] = r. �


Es seien a′1, ..., a
′
m die Zeilen von A; dann heißt dim span {a′1, ..., a′m} der Zeilen-

rang von A. Zur Unterscheidung nennt man nun rg A = dim span {a1, ..., an} den
Spaltenrang. Die Zeilen von A sind gleich den Spalten von At und 7.5.24 besagt
daher, dass der Zeilenrang gleich dem Spaltenrang ist.

Elementare Umformungen von Matrizen
Nun definieren wir elementare Umformungen, mit deren Hilfe man den Rang von
Matrizen berechnen kann.

Definition 7.5.25 Unter elementaren Spaltenumformungen von A ∈ K(m,n)

versteht man folgende Umformungen:

(1) Multiplikation einer Spalte von A mit einem λ ∈ K , λ �= 0;
(2) Vertauschung zweier Spalten;
(3) Addition des λ-fachen einer Spalte zu einer davon verschiedenen Spalte.

Analog definiert man elementare Zeilenumformungen.

Satz 7.5.26 Bei elementaren Spalten- und Zeilenumformungen ändert sich der Rang
einer Matrix nicht.

Beweis. Für Spaltenumformungen folgt dies aus

(1) span{..., λaj, ...} = span{..., aj, ...}
(2) span{..., aj, ..., ak, ...} = span{..., ak, ..., aj , ...}
(3) span{..., λak + aj , ..., ak, ...} = span{..., aj, ..., ak, ...}.
Wegen 7.5.24 gilt dies auch für Zeilenumformungen. �

Spaltenumformungen kann man auch erreichen, indem man A von rechts mit einer
der folgenden Matrizen multipliziert:

�
�������

1
. . .

λ
. . .

1

�
�������

,

�
�������������

1
. . .

0 . . . 1
...

...
1 . . . 0

. . .
1

�
�������������

,

�
���������

1
. . . λ

. . .
. . .

1

�
���������
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Bei der ersten Matrix steht das Element λ an der Stelle (j,j) ,
bei der zweiten Matrix ist die j-te Spalte gleich ek und die k-te Spalte ist ej ;
bei der dritten Matrix steht λ an der Stelle (k, j) mit k �= j .
Zeilenumformungen kann man durch Linksmultiplikation mit entsprechenden Ma-
trizen darstellen. Wir zeigen nun, wie man durch elementare Umformungen den
Rang einer Matrix berechnen kann:
Man geht dabei so vor: Wenn nicht alle aij = 0 sind, erreicht man durch Vertau-
schung von Zeilen und Spalten, dass a11 �= 0 ist. Multipliziert man die 1. Zeile oder
Spalte mit a−1

11 , so darf man a11 = 1 annehmen. Nun multipliziert man die 1. Zeile
mit (−a21) und addiert sie zur 2. Zeile; an der Stelle a21 steht dann 0. Auf diese
Weise macht man die weiteren Elemente der 1. Spalte zu 0 und erhält eine Matrix
der Form⎛⎜⎜⎝

1 ∗ · · · ∗
0
...
0 ∗ · · · ∗

⎞⎟⎟⎠ und daraus ergibt sich unmittelbar

⎛⎜⎜⎝
1 0 · · · 0
0 ∗ · · · ∗
...
0 ∗ · · · ∗

⎞⎟⎟⎠ .
Wenn nicht alle weiteren Elemente Null sind, kann man annehmen, dass in der 2.
Zeile und 2. Spalte 1 steht; damit macht man alle anderen Elemente der 2. Spalte
und der 2. Zeile zu null. Das Verfahren endet, wenn die Matrix E[r] erreicht ist,
dabei ist r = rg A.
Wir erläutern das Verfahren an einem einfachen Beispiel.

Beispiel 7.5.27 Es sei

A :=

⎛⎝ 2 −6 4 8
3 −6 3 6

−2 5 −3 −6

⎞⎠
Man macht folgende Umformungen:

�
�

2 −6 4 8
3 −6 3 6

−2 5 −3 −6

�
� →

�
�

1 −3 2 4
3 −6 3 6

−2 5 −3 −6

�
� →

�
�

1 −3 2 4

0 3 −3 −6

−2 5 −3 −6

�
� →

→
�
�

1 −3 2 4
0 3 −3 −6

0 −1 1 2

�
� →

�
�

1 0 0 0
0 3 −3 −6
0 −1 1 2

�
� →

�
�

1 0 0 0

0 1 −1 −2
0 −1 1 −2

�
� →

→
�
�

1 0 0 0
0 1 −1 −2

0 0 0 0

�
� →

�
�

1 0 0 0

0 1 0 0
0 0 0 0

�
�

Somit ist rgA = 2.
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7.6 Lineare Gleichungssysteme

Ein System vonm linearen Gleichungen in n Unbekannten x1, ..., xn

a11x1 + a12x2 + . . . + a1nxn = b1
a21x1 + a22x2 + . . . + a2nxn = b2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
am1x1 + am2x2 + . . . + amnxn = bm

kann man in der FormAx = b schreiben, dabei ist A ∈ K(m,n) eine Matrix mit den
Spalten a1, ..., an ∈ Km und es ist b ∈ Km.
Bei der praktischen Rechnung ist es oft zweckmässig, das Gleichungssystem so zu
schreiben:

a11 a12 . . . a1n b1
a21 a22 . . . a2n b2

. . . . . . . . .
am1 am2 . . . amn bm

Definition 7.6.1 Für A ∈ K(m,n) und b ∈ Km bezeichnet man die Menge aller
Lösungen von Ax = b mit

L(A, b) := {x ∈ Kn|Ax = b}
insbesondere

L(A, 0) := {x ∈ Kn|Ax = 0}.
Die GleichungAx = 0 heißt die zu Ax = b gehörende homogene Gleichung.

Wir wollen zunächst den einfachen Fall von zwei Gleichungen mit zwei Unbekann-
ten durchrechnen.

Beispiel 7.6.2 Ist A ∈ K(2,2), A �= 0, und b ∈ K2, so bedeutet die Gleichung
Ax = b :

a11x1 + a12x2 = b1
a21x1 + a22x2 = b2.

Nun nehmen wir an , x =
(
x1
x2

)
sei eine Lösung . Multipliziert man dann die erste

Gleichung mit a22, die zweite Gleichung mit a12 und subtrahiert, so fällt a12a22x2
weg und man erhält:

(a11a22 − a12a21)x1 = (a22b1 − a12b2).
Analog (durch Multiplikation mit a21, a11 und Subtraktion) ergibt sich

(a11a22 − a12a21)x2 = (a11b2 − a21b1).
Falls a11a22 − a12a21 �= 0 ist, gibt es also höchstens eine Lösung x =

(
x1
x2

)
,

nämlich
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x1 =
a22b1 − a12b2
a11a22 − a12a21 , x2 =

a11b2 − a21b1
a11a22 − a12a21 .

Durch Einsetzen sieht man, dass dies wirklich eine Lösung ist.
Wir werden im nächsten Abschnitt Determinanten einführen; für A ∈ K(2,2) ist
detA = a11a22 − a12a21 und wir haben gezeigt: Wenn detA �= 0 ist, dann gibt es
genau eine Lösung; wir werden diese mit der Cramerschen Regel 7.7.13 nochmals
darstellen.
Nun sei a11a22 − a12a21 = 0 und a22 �= 0 . Setzt man λ := a12

a22
, so ist

a11 = λa21, a12 = λa22, und das Gleichungssystem lautet:

λa21x1 + λa22x2 = b1
a21x1 + a22x2 = b2.

Für b1 �= λb2 ist es offensichtlich unlösbar. Falls b1 = λb2 ist, genügt es, die
Gleichung

a21x1 + a22x2 = b2

zu behandlen. Wenn x eine Lösung ist, dann gilt x2 = (b2/a22) − (a21/a22) · x1
und man kann x1 beliebig wählen. Somit ergibt sich in diesem Fall:

L(A, b) =
{(

0
b2/a22

)
+ c ·

(
1

−(a21/a22)

)
| c ∈ K

}
.

Falls a22 = 0 ist , vertauscht man die Gleichungen oder die Unbekannten und
verfährt analog.
Es hat sich also ergeben:
wenn a11a22 − a12a21 �= 0 ist , gibt es genau eine Lösung,
wenn a11a22 − a12a21 = 0 ist, gibt es entweder keine Lösung, oder, falls K = R
ist, unendlich viele, L(A, b) ist dann eine Gerade.
Dazu noch ein Zahlenbeispiel (K = R):

3x1 + 2x2 = 5
5x1 + 4x2 = 7

3x1 + 2x2 = 5
6x1 + 4x2 = 7

3x1 + 2x2 = 5
6x1 + 4x2 = 10

Das erste Gleichungssystem hat genau eine Lösung, nämlich
(

3
−2

)
, das zweite ist

unlösbar und das dritte hat unendlich viele Lösungen; die Lösungsmenge ist eine
Gerade.

Nun behandeln wir die Fragen:

• Wann ist ein Gleichungssystem lösbar ?
• Wie kann man die Lösungsmenge beschreiben; welche Struktur hat L(A, b) ?

Wir untersuchen zuerst die Lösbarkeit.

Satz 7.6.3 Sei A ∈ K(m,n) und b ∈ Km. Das Gleichungssystem Ax = b ist genau
dann lösbar, wenn gilt:

rg A = rg(A, b)
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dabei ist (A, b) die Matrix mit den Spalten a1, ..., an, b, also

(A, b) :=

⎛⎝a11 · · · a1n b1
. . . . . . . . . . . . . . .
am1 · · · amn bm

⎞⎠ ∈ K(m,n+1).

Beweis. Ax = b bedeutet
∑n

i=1 xiai = b. Es gibt also genau dann ein x ∈ Kn mit
Ax = b, wenn b Linearkombination der a1, ..., an ist, also b ∈ span{a1, ..., an} oder
span{a1, ..., an} = span{a1, ..., an, b}.Dies ist äquivalent zu dim span{a1, ..., an} =
dim span{a1, ..., an, b}, also rg A = rg(A, b). �

Wir untersuchen nun den Lösungsraum L(A, 0) der homogenen Gleichung:

Satz 7.6.4 Ist A ∈ K(m,n) eine Matrix vom Rang r, so ist L(A, 0) ein (n − r)-
dimensionaler Untervektorraum desKn.

Beweis.Die Matrix A definiert eine lineare Abbildung A : Kn → Km. Es ist
L(A, 0) = Ker A und nach der Dimensionsformel 7.4.7 gilt n = dim Ker A+ r.

�

Zur Beschreibung des LösungsraumesL(A, b) der inhomogenen GleichungAx = b
benötigen wir den Begriff des affinen Unterraumes.

Definition 7.6.5 Ist V ein Vektorraum über K , U ⊂ V ein Untervektorraum und
x ∈ V , so heißt

x+ U := {x+ u ∈ V |u ∈ U}
ein affiner Unterrraum von V ; U heißt der zu x+U gehörende Untervektorraum.
Man setzt dim(x+ U) := dimU.

Nun zeigen wir, dass L(A, b) ein (n− r)−dimensionaler affiner Unterraum ist:

Satz 7.6.6 Sei A ∈ K(m,n) eine Matrix vom Rang r und b ∈ Km. Wenn die Glei-
chung Ax = b eine Lösung x̃ besitzt, dann ist L(A, b) ein (n − r)-dimensionaler
affiner Unterraum vonKn, nämlich

L(A, b) = x̃+ L(A, 0).

Beweis. Ist x ∈ L(A, b), so giltA(x̃−x) = b−b = 0, also ist u := x̃−x ∈ L(A, 0)
und x = x̃+ u ∈ x̃+ L(A, 0), somit L(A, b) ⊂ x̃+ L(A, 0). -
Ist u ∈ L(A, 0), so gilt A(x̃ + u) = b + 0, also x̃ + u ∈ L(A, b) und daher
x+ L(A, 0) ⊂ L(A, b). �

Man interpretiert diesen Satz so:

Man erhält die Gesamtheit der Lösungen des inhomogenen Systems da-
durch, dass man zu einer speziellen Lösung der inhomogenen Gleichung
die Gesamtheit der Lösungen des homogenen Systems addiert.

Damit kann man die Lösungsmenge genau beschreiben: Ist x̃ ∈ L(A, b) und hat
man eine Basis (u1, . . . , un−r) des Vektorraums L(A, 0); dann gibt es zu jedem
x ∈ L(A, b) eindeutig bestimmte Koeffizienten c1, . . . , cn−r ∈ K mit
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x = x̃+ c1u1 + . . .+ cn−run−r.

Wir geben noch einige Folgerungen an:

Satz 7.6.7 Wenn A ∈ K(m,n) den Rang m hat, so ist die Gleichung Ax = b für
jedes b ∈ Km lösbar.

Beweis. Aus rgA = dim Bild A = m folgt, dass A : Kn → Km surjektiv ist. �

Satz 7.6.8 Wenn A ∈ K(m,n) den Rang n hat, dann gibt es zu b ∈ Km höchstens
ein x ∈ Kn mit Ax = b.

Beweis. Es ist dim(KerA) = n− rg A = 0, daher ist A : Kn → Km injektiv. �

Satz 7.6.9 FürA ∈ K(n,n) gilt: Das GleichungssystemAx = 0 besitzt genau dann
Lösungen x �= 0, wenn rg A < n ist.

Beweis. Wegen n = dim(KerA) + rgA ist rg A < n gleichbedeutend mit
dim(KerA) > 0. �

Beispiel 7.6.10 Wir behandeln die beiden Gleichungssysteme

x1 +5x2 +4x3 = 1
x2 −x3 +3x4 = 1

x1 +7x2 +2x3 +6x4 = 3

x1 +5x2 +4x3 = 1
x2 −x3 +3x4 = 2

x1 +7x2 +2x3 +6x4 = 3

Wir schreiben diese in Kurzform und machen Zeilenumformungen:

1 5 4 0 1
0 1 −1 3 1
1 7 2 6 3

1 5 4 0 1
0 1 −1 3 1
0 2 −2 6 2

1 5 4 0 1
0 1 −1 3 1
0 0 0 0 0

1 0 9 −15 −4
0 1 −1 3 1
0 0 0 0 0

1 5 4 0 1
0 1 −1 3 2
1 7 2 6 3

1 5 4 0 1
0 1 −1 3 2
0 2 −2 6 2

1 5 4 0 1
0 1 −1 3 2
0 0 0 0 −2

1 0 9 −15 −4
0 1 −1 3 2
0 0 0 0 −2

Daraus ergibt sich: Das 2. Gleichungssystem hat keine Lösung; beim ersten kann
man x3, x4 beliebig wählen und erhält als Lösungsmenge

L(A, b) = {(−4, 1, 0, 0) + c1(−9, 1, 1, 0) + c2(15,−3, 0, 1)| c1, c2 ∈ R}.

(Wir haben die Lösungen als Zeilen geschrieben, bei der Berechnung sollten sie als
Spalten geschrieben werden.)



146 7 Lineare Algebra

7.7 Determinanten

Bei den Determinanten, die von G. W. Leibniz eingeführt wurden, handelt es sich
um einen mathematisch tiefliegenden Begriff.
Eine Determinante haben wir schon bei der Lösung linearer Gleichungssysteme in
Beispiel 7.6.2 erhalten; dort haben wir gezeigt: Wenn a11a22−a12a21 �= 0 ist, dann
besitzt das Gleichungssystem Ax = b genau eine Lösung. Es wird sich ergeben ,
dass a11a22−a12a21 = detA ist; Determinanten kommen also bei der Behandlung
linearer Gleichungssysteme vor.
Eine geometrische Interpretation ist die folgende: Zwei Vektoren a1 =

(
a11
a21

)
, a2 =(

a12
a22

)
des R2 spannen ein Parallelogramm mit dem Flächeninhalt |a11a22 − a12a21|

auf. Bis auf das Vorzeichen ist die Determinante also ein Flächeninhalt. Bei Vertau-
schung von a1, a2 ändert sich das Vorzeichen von detA, so dass man det(a1, a2)
als einen

”
orientierten “Flächeninhalt interpretiert. Im R3 ist det(a1, a2, a3) das mit

Vorzeichen versehene Volumen des von a1, a2, a3 aufgespannten Spats.
Wir definieren eine Determinante als normierte alternierende multilineare Abbil-
dung. Zuerst erläutern wir den Begriff der multilinearen Abbildung:

Definition 7.7.1 Ist V ein Vektorraum überK und n ∈ N, so heißt eine Abbildung

f : V × ...× V → K, (v1, ..., vn) → f(v1, ..., vn),

multilinear, wenn für v1, ..., vn, v, w ∈ V, λ, µ ∈ K , gilt:

f(v1, ..., vi−1, λv + µw, vi+1, ..., vn) =

= λf(v1, ..., vi−1, v, vi+1, ..., vn) + µf(v1, ..., vi−1, w, vi+1, ..., vn).

Für n = 2 nennt man f : V × V → K bilinear, es ist also

f(λv+µw, v2) = λf(v, v2)+µf(w, v2), f(v1, λv+µw) = λf(v1, v)+µf(v1, w).

Nun können wir den Begriff der Determinante definieren. Wir fassen eine Matrix
A ∈ K(n,n) auf als n-Tupel ihrer Spaltenvektoren, also A = (a1, ..., an), d.h. wir
identifizierenK(n,n) mitKn × ...×Kn.

Definition 7.7.2 Sei n ∈ N; eine Abbildung

∆ : K(n,n) → K

heißt Determinante, wenn gilt:

(1) ∆ ist multilinear,
(2) ∆ ist alternierend, d.h. wenn es Indizes i �= j gibt mit ai = aj , so ist

∆(a1, ..., ai, ..., aj , ..., an) = 0,

(3) ∆ ist normiert, d.h.∆(e1, ..., en) = 1.
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Eine Determinante ist also eine multilineare Abbildung mit folgenden Eigenschaf-
ten:
Wenn eine MatrixA ∈ K(n,n) zwei gleiche Spalten hat, dann ist∆(A) = 0; für die
Einheitsmatrix E ist ∆(E) = 1.
Es gilt:

Satz 7.7.3 Wenn∆ eine Determinante ist, so gilt:

∆(a1, ..., ai, ..., ak, ..., an) = −∆(a1, ..., ak, ..., ai, ..., an);

d.h. eine Determinante ändert ihr Vorzeichen, wenn man zwei Spalten vertauscht.

Beweis. Zur Abkürzung schreiben wir ∆(ai, ak) für ∆(a1, ..., ai, ..., ak, ..., an).
Dann ist 0 = ∆(ai + ak, ai + ak) = ∆(ai, ai + ak) +∆(ak, ai + ak) =
= ∆(ai, ai) +∆(ai, ak) +∆(ak, ai) +∆(ak, ak) = ∆(ai, ak) +∆(ak, ai), also
∆(ai, ak) = −∆(ak, ai). �

Man kann jede Permutation σ von {1, ..., n} als Produkt von m Transpositionen
darstellen und es ist sign σ = (−1)m (vgl. dazu 7.1.8); daraus folgt:

Satz 7.7.4 Ist∆ eine Determinante und σ ∈ Sn, so gilt für jedes A ∈ K(n,n):

∆(aσ(1), ..., aσ(n)) = sign(σ) ·∆(a1, ..., an).

Nun zeigen wir

Hilfssatz 7.7.5 Ist∆ : K(n,n) → K eine Determinante, so gilt fürA,B ∈ K(n,n) :

∆(B · A) = ∆(B) · (
∑

σ∈Sn

sign(σ)aσ(1),1 · ... · aσ(n),n).

Beweis. Die erste Spalte der Matrix B ·A ist gleich Ba1 =
∑

i1
ai1,1bi1 daher ist

∆(B ·A) = ∆(Ba1, ..., Ban) =
∑
i1

ai1,1∆(bi1 , Ba2, ..., Ban).

Setzt man nun die weiteren Spalten

Ba2 =
∑
i2

ai2,2bi2 , . . . , Ban =
∑
in

ain,nbin

ein, so ergibt sich:

∆(B ·A) =
∑

i1,...,in

ai1,1 · ... · ain,n∆(bi1 , ..., bin).

Dabei ist über alle n-Tupel (i1, ..., in) von Indizes aus {1, ..., n} zu summieren.
Falls in (i1, ..., in) zwei gleiche Indizes vorkommen, ist ∆(bi1 , ..., bin) = 0. Es
genügt daher, über die n-Tupel zu summieren, bei denen (i1, . . . , in) eine Permuta-
tion ist, also
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σ =
(

1, . . . , n
i1, . . . , in

)
∈ Sn.

Dann erhält man

∆(B ·A) =
∑

σ∈Sn

aσ(1)1 · . . . · aσ(n),n∆(bσ(1), . . . , bσ(n)) =

=
∑

σ∈Sn

sign(σ) · aσ(1),1 · . . . · aσ(n)n ·∆(b1, . . . , bn).

�

Setzt man in diesem HilfssatzB := E ein, so ergibt sich: Es existiert höchstens eine
Determinante, nämlich

∆(A) =
∑

σ∈Sn

sign(σ) · aσ(1),1 · ... · aσ(n),n.

Nun rechnet man nach, dass die so definierte Abbildung eine Determinante ist. Da-
mit erhält man:

Satz 7.7.6 Für jedes n ∈ N existiert genau eine Determinante ∆ : K(n,n) → K ,
nämlich

∆(A) :=
∑

σ∈Sn

sign(σ) · aσ(1),1 · ... · aσ(n),n;

für die Determinante sind folgende Schreibweisen üblich:

detA :=

∣∣∣∣∣∣
a11 ... a1n

. . . . . . . . . .
an1 ... ann

∣∣∣∣∣∣ := ∆(A)

Aus Hilfssatz 7.7.5 folgt

Satz 7.7.7 (Determinantenmultiplikationssatz) Für A,B ∈ K(n,n) gilt:

det(A ·B) = (detA) · (detB).

Daraus ergibt sich:

Satz 7.7.8 Eine Matrix A ∈ K(n,n) ist genau dann invertierbar, wenn det A �= 0
ist; es gilt dann:

detA−1 =
1

det A
.

Beweis. Wenn A invertierbar ist, so gilt nach dem Determinantenmultiplikations-
satz:

(detA−1) · (detA) = det(A−1A) = detE = 1,

insbesondere det A �= 0. - Wenn A nicht invertierbar ist, dann ist rg A < n und die
Spalten a1, ..., an sind linear abhängig. Dann ist etwa a1 = λ2a2 + ...+ λnan und
det(a1, a2, ..., an) = λ2 det(a2, a2, ..., an) + ...+ λn det(an, a2, ..., an) = 0. �

Für n = 2 und n = 3 geben wir nun die Determinante explizit an:
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Beispiel 7.7.9 Die GruppeS2 besteht aus den beiden Elementen
(
1 2
1 2

)
und

(
1 2
2 1

)
und

daher ist
a11 a12
a21 a22

= a11a22 − a21a12.

Beispiel 7.7.10 Die Gruppe S3 besteht aus den 6 Elementen(
1 2 3
1 2 3

)
= (1),

(
1 2 3
1 3 2

)
= (2 3)(

1 2 3
2 1 3

)
= (1 2),

(
1 2 3
2 3 1

)
= (1 2 3)(

1 2 3
3 2 1

)
= (1 3),

(
1 2 3
3 1 2

)
= (1 3 2)

dabei haben wir zuerst die beiden Permutationen σ mit σ(1) = 1, dann die mit
σ(1) = 2 und sodann die mit σ(1) = 3 angegeben. Es ergibt sich:

a11 a12 a13
a21 a22 a23
a31 a32 a33

=
{
a11a22a33 + a12a23a31 + a13a21a32

− a13a22a31 − a11a23a32 − a12a21a33
Diese Determinante kann man nach der Regel von Sarrus (P. F. SARRUS (1798-
1861)) so ausrechnen: Man schreibt die ersten beiden Spalten nochmals dahinter
und bildet die Produkte gemäss den Pfeilrichtungen:

a11 a12 a13 a11 a12

a21 a22 a23 a21 a22

a31 a32 a33 a31 a32

��� ��� ���

��� ������

��� ��� ���

��� ������

Es ist
a11 a12 a13
a21 a22 a23
a31 a32 a33

= a11
a22 a23
a32 a33

− a21 a12 a13a32 a33
+ a31

a12 a13
a22 a23

Dies ist ein Spezialfall des folgenden Laplaceschen Entwicklungssatzes (PIERRE

SIMON MARQUIS DE LAPLACE (1749-1827)):

Satz 7.7.11 ( Laplacescher Entwicklungssatz) Es sei A ∈ K(n,n) und wir be-
zeichnen mit Aij ∈ K(n−1,n−1) die Matrix, die entsteht, wenn man in A die i-te
Zeile und j-te Spalte streicht. Dann gilt für j = 1, ..., n :

det A =
∑
i=1

(−1)i+jaij · det Aij .
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Man bezeichnet diese Formel als Entwicklung nach der j-ten Spalte. Diese Aussage
soll hier nicht bewiesen werden; ein Beweis findet sich in [4]. Für n = 3 haben wir
sie im Beispiel hergeleitet. Aus dem Entwicklungssatz folgt:

Satz 7.7.12 Ist A ∈ K(n,n) eine Dreiecksmatrix, also aij = 0 für i > j, so gilt:

det A = a11 · a22 · . . . · ann.

Beweis durch Induktion nach n: Die Aussage sei für (n − 1) × (n − 1)-Matrizen
richtig. Entwicklung von A nach der ersten Spalte ergibt det A = a11· det A11 und
nach Induktionsannahme ist det A11 = a22 · ... · ann, also

a11 . . . . . . a1n

0 a22 . . . . . .
0 0 a33 . . .
0 . . . 0 ann

= a11 · . . . · ann.

�

Insbesondere gilt für Diagonalmatrizen (aii = λi, aij = 0 für i �= j):

λ1 0
.
.

0 λn

= λ1 · . . . · λn.

Nun zeigen wir, wie man Lösungen linearer Gleichungssysteme mit Hilfe von De-
terminanten angeben kann. Ist A ∈ K(n,n) eine invertierbare Matrix, so besitzt die
Gleichung Ax = b für jedes b ∈ Kn genau eine Lösung, nämlich x = A−1b. Es
gilt die Cramersche Regel (GABRIEL CRAMER (1704-1752)):

Satz 7.7.13 (Cramersche Regel) Ist A ∈ K(n,n), det A �= 0, b ∈ Kn, so erhält
man die Lösung x von Ax = b folgendermaßen: Man ersetzt in der Matrix A die
i-te Spalte ai durch den Vektor b; für i = 1, ..., n ist dann

xi =
det(a1, ..., ai−1, b, ai+1, ..., an)

det(a1, ..., an)
,

also

xi =
1

detA

∣∣∣∣∣∣
a11 . . . b1 . . . a1n

. . . . . . . . . . . . . . . . .
an1 . . . bn . . . ann

∣∣∣∣∣∣
Beweis. Ist x die Lösung von Ax = b, so gilt x1a1 + ...+ xnan = b und daher ist

det(b, a2, ..., an) = det(x1a1 + . . .+ xnan , a2, . . . , an) =
= x1 det(a1, a2, ..., an) + x2 det(a2, a2, ..., an) + . . .+ xn det(an, a2, ..., an) =
= x1 · detA.

Daraus folgt die Behauptung für x1, analog beweist man sie für x2, . . . , xn. �

Für n = 2 haben wir dieses Ergebnis schon in 7.6.2 erhalten.
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Beispiel 7.7.14 Ist A ∈ K(2,2) und det A �= 0, so ist A invertierbar; wir berechnen
A−1 mit der Cramerschen Regel.
Die erste Spalte von A−1 ist die Lösung von Ax =

(
1
0

)
, die zweite Spalte ist die

Lösung von Ax =
(
0
1

)
; nach der Cramerschen Regel sind dies

1
detA

⎛⎜⎝
∣∣∣ 1 a12
0 a22

∣∣∣∣∣∣a11 1
a21 0

∣∣∣
⎞⎟⎠ =

1
detA

(
a22

−a21
)
,

1
detA

⎛⎜⎝
∣∣∣0 a12
1 a22

∣∣∣∣∣∣a11 0
a21 1

∣∣∣
⎞⎟⎠ =

1
detA

(−a12
a11

)
.

Damit erhalten wir(
a11 a12
a21 a22

)−1

=
1

det A
·
(
a22 −a12

−a21 a11

)

Mit dieser Methode kann man auch für A ∈ K(3,3), detA �= 0, die Matrix A−1

ausrechnen. Die erste Spalte von A−1 ist wieder die Lösung von

Ax =

⎛⎝1
0
0

⎞⎠ ,
die erste Komponente davon ist nach der Cramerschen Regel

1
detA

∣∣∣∣∣∣
1 a12 a13
0 a22 a23
0 a32 a33

∣∣∣∣∣∣ =
1

detA

∣∣∣∣a22 a23
a32 a33

∣∣∣∣ .
Auf diese Weise erhält man :

A−1 =
1

detA

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+
∣∣∣∣a22 a23
a32 a33

∣∣∣∣ −
∣∣∣∣a12 a13
a32 a33

∣∣∣∣ +
∣∣∣∣a12 a13
a22 a23

∣∣∣∣
−
∣∣∣∣a21 a23
a31 a33

∣∣∣∣ +
∣∣∣∣a11 a13
a31 a33

∣∣∣∣ −
∣∣∣∣a12 a13
a21 a23

∣∣∣∣
+
∣∣∣∣a21 a22
a31 a32

∣∣∣∣ −
∣∣∣∣a11 a12
a31 a32

∣∣∣∣ +
∣∣∣∣a11 a12
a21 a22

∣∣∣∣

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Beispiel 7.7.15 (
1 2
3 8

)−1

=
1
2

(
8 −2

−3 1

)
.
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7.8 Eigenwerte

Definition 7.8.1 Sei A ∈ K(n,n) eine quadratische Matrix. Ein Element λ ∈ K
heißt Eigenwert von A, wenn ein x ∈ Kn existiert mit

Ax = λx und x �= 0,

der Vektor x heißt ein Eigenvektor von A zum Eigenwert λ.

Eλ := {x ∈ Kn|Ax = λx} = Ker(λE −A)

heißt der Eigenraum von A zu λ.

Eλ ist ein Untervektorraum von Kn und λ ist genau dann Eigenwert von A, wenn
Eλ �= {0} gilt; Eλ \ {0} ist die Menge aller Eigenvektoren zu λ.
Ein Element λ ∈ K ist genau dann Eigenwert von A, wenn (λE − A)x = 0 eine
Lösung x �= 0 besitzt; nach 7.6.9 ist dies genau dann der Fall, wenn rg(λE−A) < n
oder det(λE −A) = 0 gilt. Wir definieren daher:

Definition 7.8.2 Ist A ∈ K(n,n), so heißt

χA(t) := det(t ·E −A) =

∣∣∣∣∣∣∣∣
t− a11 −a12 . . . . . . −a1n

−a21 t− a22 . . . . . . −a2n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−an1 −an2 . . . . . . t− ann

∣∣∣∣∣∣∣∣
das charakteristische Polynom von A, ausserdem bezeichnet man

spA := a11 + . . .+ ann,

als die Spur von A.

χA ist ein Polynom n-ten Grades; das konstante Glied ist χA(0) = det(−A), somit

χA(t) = tn − (a11 + . . .+ ann)tn−1 + . . .+ (−1)n detA,

also
χA(t) = tn − (spA) · tn−1 + . . .+ (−1)n detA.

Für n=2 hat man
χA(t) = t2 − (spA)t+ detA.

Es gilt:

Satz 7.8.3 Die Eigenwerte von A sind genau die Nullstellen von χA.

Aus dem Fundamentalsatz der Algebra folgt, dass jede komplexe MatrixA ∈ C(n,n)

mindestens einen Eigenwert hat. Im Reellen gibt es Polynome, die keine Nullstelle
besitzen, man wird also vermuten, dass es Matrizen A ∈ R(n,n) gibt, die keinen
Eigenwert haben. Jedoch hat jedes reelle Polynom ungeraden Grades mindestens
eine reelle Nullstelle. Wir fassen zusamen:
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Satz 7.8.4 Eine Matrix A ∈ K(n,n) hat höchstens n Eigenwerte.
Jede Matrix A ∈ C(n,n) besitzt mindestens einen (komplexen) Eigenwert.
Ist n ungerade, so hat jede MatrixA ∈ R(n,n) mindestens einen (reellen) Eigenwert.

Bei Dreiecksmatrizen kann man die Eigenwerte sofort angeben:

Beispiel 7.8.5 SeiA = (aij) ∈ K(n,n) eine Dreiecksmatrix, also aij = 0 für i > j.
Bei einer Dreiecksmatrix ist die Determinante gleich dem Produkt der Diagonalele-
mente; also ist

χA(t) = (t− a11) · ... · (t− ann);

das charakteristische Polynom zerfällt somit in Linearfaktoren und die Eigenwerte
von A sind a11, ..., ann.

Nun geben wir eine reelle Matrix an, die keine Eigenwerte besitzt:

Beispiel 7.8.6 Wenn wir eine Matrix A ∈ R(2,2) finden wollen, die keinen Eigen-
wert besitzt, so gehen wir von der geometrischen Interpretation des Eigenvektors
aus: A definiert eine Abbildung A : R2 → R2, x 	→ Ax, und x ∈ R2, x �= 0,
ist Eigenvektor, wenn Ax die

”
gleiche Richtung“wie x besitzt. Bei einer Drehung,

etwa um 900, ändert jeder Vektor x �= 0 seine Richtung. Man darf also vermuten,
dass die Matrix

A :=
(

0 −1
1 0

)
∈ R(2,2),

die diese Drehung beschreibt, keinen Eigenwert hat. Es ist

χA(t) =
∣∣∣∣ t +1
−1 t

∣∣∣∣ = t2 + 1;

dieses Polynom hat keine Nullstelle in R, somit besitzt A ∈ R(2,2) keinen Eigen-
wert.
Fasst man diese Matrix als komplexe Matrix A ∈ C(2,2)auf, so hat sie die beiden
Eigenwerte i,−i, denn es ist χA(t) = (t− i)(t+ i). Wir geben alle Eigenvektoren
an: Für x =

(
x1
x2

) ∈ C2 bedeutet Ax = ix explizit: −x2 = ix1, x1 = ix2, alle

Lösungen dieses Gleichungssystems sind c · (i
1

)
mit c ∈ C und für c �= 0 erhält man

alle Eigenvektoren zu i. Analog sind c·(−i
1

)
, c ∈ C, c �= 0, die Eigenvektoren zu −i.

Die Eigenräume sind Ei = span{(i
1

)} und E−i = span {(−i
1

)}. Die Eigenvektoren(
i
1

)
,
(−i

1

)
bilden eine Basis des C2, es ist C2 = Ei ⊕ E−i.

In 7.5.18 haben wir zwei Matrizen A,B ∈ K(n,n) ähnlich genannt, wenn es eine
invertierbare Matrix T ∈ K(n,n) gibt mit B = T−1AT.
Aus dem Determinantenmultiplikationssatz folgt det(T−1)·det T = det(T−1T ) =
det E = 1 und daher det(T−1AT ) = det(T−1)·det A·det T = det A. Ähnliche
Matrizen haben also gleiche Determinante; man kann zeigen , dass auch das cha-
rakteristische Polynom dasselbe ist:
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Satz 7.8.7 Sind A,B ähnlich, so gilt detA = detB und χA = χB; insbesondere
haben ähnliche Matrizen die gleichen Eigenwerte:
Ist B = T−1AT und ist x ∈ Kn ein Eigenvektor vonB zum Eigenwert λ, so ist Tx
ein Eigenvektor von A zum Eigenwert λ.

Beweis. Aus Bx = λx, x �= 0, folgt Tx �= 0 und A(Tx) = T (Bx) = T (λx) =
λ(Tx). �

Wir wollen nun untersuchen, wann eine Matrix zu einer Dreiecks- oder Diagonal-
matrix ähnlich ist. Eine einfache notwendige Bedingung , von der wir anschliessend
zeigen werden, dass sie auch hinreichend ist,lautet:

Satz 7.8.8 Wenn A zu einer Dreiecksmatrix ähnlich ist, dann zerfällt χA in Linear-
faktoren.

Beweis. Ähnliche Matrizen haben das gleiche charakteristische Polynom und nach
7.8.5 zerfällt das charakteristische Polynom einer Dreiecksmatrix in Linearfaktoren.

�

In 7.5.19 haben wir gezeigt: Ist f : V → V linear und sind A und Ã die zu f
bezüglich verschiedener Basen gehörende Matrizen, so sind A, Ã ähnlich. Wegen
7.8.7 ist folgende Definition sinnvoll:

Definition 7.8.9 Sei f : V → V linear, dimV <∞. Sei (b1, ..., bn) eine Basis von
V und A :=M(f ; (bi)); dann setzt man det f := detA und χf := χA.

Nun können wir auch Eigenwerte linearer Abbildungen f : V → V behandeln:

Definition 7.8.10 Ist f : V → V linear, so heißt λ ∈ K ein Eigenwert von f , wenn
ein v ∈ V existiert mit v �= 0 und f(v) = λv. Der Vektor v heißt dann Eigenvektor
von f zu λ;

Eλ := {v ∈ V |f(v) = λv} = Ker(λ · idV − f)
heißt der Eigenraum von f zu λ.

Ist v =
∑
xibi und y := Ax, so ist f(v) =

∑
yibi. Die Gleichung f(v) = λv

ist also äquivalent zu Ax = λx : Die Eigenwerte von f stimmen mit den Eigen-
werten von A überein, v =

∑
xibi ist genau dann Eigenvektor von f zu λ, wenn x

Eigenvektor von A zu λ ist.
Wir zeigen nun, dass Eigenvektoren zu verschiedenen Eigenwerten immer linear
unabhängig sind.

Satz 7.8.11 Ist f : V → V linear und sind λ1, ..., λk verschiedene Eigenwerte und
v1, ..., vk jeweils zugehörige Eigenvektoren, so sind v1, ..., vk linear unabhängig.

Beweis. Wir beweisen die Aussage durch Induktion nach k. Der Induktionsanfang
k = 1 ist klar, denn es ist v1 �= 0, also ist v1 linear unabhängig. Nun sei k ≥ 2,
und die Aussage sei für k − 1 Vektoren richtig. Es gelte f(vi) = λivi, vi �= 0,

i = 1, ..., k, und es sei
k∑

i=1

civi = 0 mit c1, ..., ck ∈ K . Wir wenden auf diese

Gleichung zuerst f an, dann multiplizieren wir sie mit λk; dies ergibt:
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k∑
i=1

ciλivi = 0,
k∑

i=1

ciλkvi = 0.

Wenn wir diese Gleichungen subtrahieren, dann fällt der letzte Summand ckλkvk

weg und wir erhalten:
k−1∑
i=1

ci(λi − λk)vi = 0. Aus der Induktionsannahme folgt für

i = 1, ..., k − 1 : ci(λi − λk) = 0 und wegen λi �= λk erhält man ci = 0. Aus
ckvk = 0 folgt schließlich ck = 0. �

Nach Satz 7.5.19 sind Matrizen genau dann ähnlich, wenn sie die gleiche lineare
Abbildung beschreiben. Wir definieren daher:

Definition 7.8.12 Eine Matrix A ∈ K(n,n) heißt diagonalisierbar, wenn sie zu ei-
ner Diagonalmatrix ähnlich ist; sie heißt trigonalisierbar, wenn sie zu einer Drei-
ecksmatrix ähnlich ist.
Eine lineare Abbildung f : V → V heißt diagonalisierbar, wenn es eine Basis
(b1, ..., bn) von V gibt, so dass A := M(f ; (bi)) eine Diagonalmatrix ist. Sie heißt
trigonalisierbar, wenn es eine Basis gibt, so dass A eine Dreiecksmatrix ist.

Satz 7.8.13 Eine lineare Abbildung f : V → V ist genau diagonalisierbar, wenn
es eine Basis (b1, ..., bn) von V gibt, die aus Eigenvektoren von f besteht.

Beweis. Nach Definition von A = M(f ; (bi)) ist f(bj) =
n∑

i=1

aijbi.Wenn f(bj) =

λjbj gilt, so folgt ajj = λj und aij = 0 für i �= j; also ist

A =

⎛⎝λ1 0
. . .

0 λn

⎞⎠
eine Diagonalmatrix. Ist umgekehrtA eine Diagonalmatrix, so ist aij = 0 für i �= j
und daher f(bj) = ajjbj; die bj sind also Eigenvektoren. �

Dies liefert nun eine hinreichende Bedingung für die Diagonalisierbarkeit:

Satz 7.8.14 Sei f : V → V linear, n = dimV . Wenn χf n verschiedene Nullstellen
λ1, ..., λn besitzt, dann ist f diagonalisierbar.

Beweis. Für j = 1, ..., n sei bj ein Eigenvektor von f zu λj . Nach 7.8.11 sind
b1, ..., bn linear unabhängig. Dann ist (b1, ..., bn) eine Basis von V aus Eigenvekto-
ren und aus 7.8.13 folgt die Behauptung. �

Wir formulieren diese Aussagen nun für Matrizen:
Nach 7.8.13 ist A genau dann diagonalisierbar, wenn n linear unabhängige Eigen-
vektoren existieren. Wir wollen diese Aussage nochmals erläutern. Diagonalisier-
barkeit von A bedeutet: Es gibt eine invertierbare Matrix T ∈ K(n,n), so dass gilt:

T−1AT =

⎛⎝λ1 0
. . .

0 λn

⎞⎠ =: D.
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Wir bezeichnen die Spalten von T wieder mit t1, ..., tn; die Spalten von D sind
λ1e1, ..., λnen. Die Gleichung T−1AT = D ist äquivalent zu AT = TD oder
Atj = T (λjej), also Atj = λjtj . Die Spalten von T sind also Eigenvektoren von
A.
Wir bringen dazu ein einfaches Beispiel.

Beispiel 7.8.15 Es sei

A =
(

4 1
2 3

)
∈ R(2,2);

dann ist χA(t) = t2 − 7t + 10 = (t − 2)(t − 5) und A hat die Eigenwerte 2
und 5; daher ist A diagonalisierbar.Die Eigenvektoren zum Eigenwert 2 sind die
nichttrivialen Lösungen von (2E−A)x = 0, also von

(−2 −1
−2 −1

)
x = 0. Somit ist

(
1

−2

)
ein Eigenvektor zu 2. Analog zeigt man, daß

(
1
1

)
ein Eigenvektor zu 5 ist. Diese

Eigenvektoren sind linear unabhängig und die daraus gebildete Matrix T :=
(

1 1
−2 1

)
ist invertierbar: T−1 = 1

3

(
1 −1
2 1

)
Es ergibt sich:

T−1AT =
(

2 0
0 5

)
.

Wir geben nun ein Beispiel einer Matrix A an, bei der χA zwar in Linearfaktoren
zerfällt, die aber nicht diagonalisierbar ist.

Beispiel 7.8.16 Sei A :=
(

1 1
0 1

)
∈ R(2,2). Dann ist 1 der einzige Eigenwert der

Dreiecksmatrix A. Wir berechnen die Eigenvektoren aus der Gleichung Ax = x,
also x1 + x2 = x1, x2 = x2. Es folgt x2 = 0 und daher ist der Eigenraum E1 =
span

{(
1
0

)}
. Daher existiert keine Basis des R2, die aus Eigenvektoren vonA besteht

und nach 7.8.12 istA nicht diagonalisierbar. Dies sieht man auch unmittelbar: Wenn
es ein T gibt, so dass T−1AT Diagonalmatrix ist, so stehen in der Diagonale die
Eigenwerte,also 1, also ist T−1AT = E die Einheitsmatrix. Daraus folgt aber A =
TET−1 = E; ein Widerspruch.

Diese Matrix ist nicht diagonalisierbar, weil λ = 1 eine zweifache Nullstelle von
χA ist, aber der Eigenraum E1 nur eindimensional ist. Man wird vermuten, dass
eine Matrix dann diagonalisierbar ist, wenn gilt: Ist λ einem-fache Nullestelle von
χA, so ist dimEλ = m. Dies besagt der folgende Satz:

Satz 7.8.17 Eine Matrix A ∈ K(n,n) ist genau dann diagonalisierbar, wenn das
charakteristische Polynom χA in Linearfaktoren zerfällt und wenn gilt: Ist λ ∈ K
einem-fache Nullstelle von χA, so ist dimEλ = m.

Man bezeichnet dimEλ als geometrische Vielfachheit von λ; wenn λ eine m-fache
Nullstelle von χA ist, nennt man zur Unterscheidungm die algebraische Vielfach-
heit. Dann besagt der Satz: A ist genau dann diagonalisierbar, wenn χA in Line-
arfaktoren zerfällt und bei jedem Eigenwert die geometrische und die algebraische
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Vielfachheit übereinstimmen.
Wir skizzieren die Beweisidee: Es sei

χA(t) = (t− λ1)m1 · ... · (t− λr)mr

mit verschiedenen λ1, ..., λr ∈ K . Man wählt in jedem Eλj eine Basis. Wegen
7.8.11 ist die Menge aller dieser Basisvektoren linear unabhängig. Wenn dimEλj =
mj für j = 1, ..., r gilt, dann besteht diese Menge aus n Elementen und damit hat
man eine Basis vonKn aus Eigenvektoren. Nach 7.8.13 ist dannA diagonalisierbar.
- Wenn dimEλj < mj für ein j gilt, dann gibt es in Kn höchstens (n − 1) linear
unabhängige Vektoren und A ist nicht diagonalisierbar. �

In Satz 7.10.8 werden wir zeigen, dass jede reelle symmetrische Matrix diagonali-
sierbar ist.
Wir behandeln nun die Frage, wann eine Matrix zu einer Dreiecksmatrix ähnlich ist.
Es gilt:

Satz 7.8.18 Eine lineare Abbildung f : V → V , dimV < ∞, ist genau dann
trigonalisierbar, wenn es eine Basis (b1, ..., bn) von V gibt mit

f(bj) ∈ span{b1, ..., bj} für j = 1, ..., n,

also
f(b1) ∈ span{b1}
f(b2) ∈ span{b1, b2}

. . . . . . . . . . . . . . . . . . . . . . . . . . .
f(bn−1) ∈ span{b1, ..., bn−1}

Beweis. Ist A = (aij) die zu f bezüglich einer Basis (b1, ..., bn) gehörende Matrix,
so gilt: f(bj) = a1jb1 + ... + anjbn. A ist genau dann eine Dreiecksmatrix, wenn
aij = 0 für i > j ist, also f(bj) = a1jb1+ ...+ajjbj oder f(bj) ⊂ span{b1, ..., bj}.

�

Das Hauptergebnis über Trigonalisierbarkeit ist der folgende Satz:

Satz 7.8.19 Es sei V ein endlich-dimensionaler Vektorraum über K . Eine lineare
Abbildung f : V → V ist genau dann trigonalisierbar, wenn das charakteristische
Polynom χf überK in Linearfaktoren zerfällt.

Beweis. In 7.8.8 wurde bereits gezeigt, dass χf zerfällt, wenn f trigonalisierbar
ist. Wir zeigen nun mit Induktion nach n = dim V : Wenn χf zerfällt, dann ist f
trigonalisierbar. Für n = 1 ist nichts zu beweisen. Es sei also n > 1 ; der Satz sei
richtig für dimV = n − 1 und es sei χf (t) = (t − λ1) · ... · (t − λn). Wegen
χf (λ1) = 0 existiert ein b1 ∈ V , b1 �= 0, mit f(b1) = λ1b1. Wir ergänzen b1
zu einer Basis (b1, v2, ..., vn) von V ; die zu f bezüglich (b1, v2, ..., vn) gehörende
Matrix ist dann von der Form

A =

⎛⎜⎝
λ1 a12 ... a1n

0
A′

0

⎞⎟⎠mit A′ =

⎛⎝ a22 ... a2n

.....
an2 ... ann

⎞⎠ ∈ K(n−1,n−1).
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Für j = 2, ..., n ist f(vj) = a1jb1 + a2jv2 + ...+ anjvn.
Nun setzen wir U := span{b1},W := span{v2, ..., vn}; dann ist V = U ⊕W . Wir
projizieren V inW , dazu definieren eine lineare Abbildung

q : V →W, c1b1 + c2v2 + ...+ cnvn 	→ c2v2 + ...+ cnvn.

Dann setzen wir
g :W →W,w 	→ q(f(w)).

Für w ∈ W gilt f(w) − g(w) ∈ U , daher ist g(vj) = a2jv2 + ... + anjvn für
j = 2, ..., n. Somit ist die zu g bezüglich (v2, ..., vn) gehörende Matrix gleich A′

und es gilt χA(t) = (t− λ1) · χA′(t); also χA′(t) = (t− λ2) · ... · (t− λn). Nach
Induktionsannahme gibt es eine Basis (b2, ..., bn) vonW , so dass die zu g bezüglich
(b2, ..., bn) gehörende Matrix eine Dreiecksmatrix Ã′ ist. Wegen f(bj)− g(bj) ∈ U
(j = 2, . . . , n) gibt es ã1j ∈ K mit f(bj) − g(bj) = ã1jb1. Daher ist die zu f
bezüglich (b1, b2, ..., bn) gehörende Matrix gleich⎛⎜⎜⎝

λ1, ã12, ..., ã1n

0
... Ã′

0

⎞⎟⎟⎠ ,
also eine Dreiecksmatrix. �

Nach dem Fundamentalsatz der Algebra zerfällt jedes Polynom mit komplexen Ko-
effizienten über C in Linearfaktoren; somit folgt:

Satz 7.8.20 Jede Matrix A ∈ C(n,n) ist trigonalisierbar,

Wir bringen noch ein Beispiel einer Matrix, die trigonalisierbar, aber nicht diagona-
lisierbar ist.

Beispiel 7.8.21 Es sei

A =
(

4 −1
4 0

)
.

Das charakteristische Polynom χA(t) = t2 − 4t+ 4 = (t − 2)2 zerfällt in Linear-
faktoren und daher ist A trigonalisierbar.Die Eigenvektoren sind die nichttrivialen
Lösungen der Gleichung (2E − A)x =

(−2 1
−4 2

)
x = 0, also c

(
1
2

)
mit c ∈ R, c �= 0.

Daher gibt es keine Basis des R2 aus Eigenvektoren undA ist nicht diagonalisierbar.
Eine zuA ähnliche Dreiecksmatrix erhält man so: Man wählt einen Eigenvektor, et-
wa b1 =

(
1
2

)
und ergänzt ihn zu einer Basis (b1, b2); man kann b2 =

(
2
3

)
wählen.Die

Martrix T =
(
1 2
2 3

)
ist invertierbar und T−1 =

(−3 2
2 −1

)
. Man erhält:

T−1AT =
(

2 1
0 2

)
.

( Bei der Dreicksmatrix stehen in der Diagonale die Eigenwerte.)
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7.9 Euklidische Vektorräume

In diesem Abschnitt behandeln wir euklidische Vektorräume, darunter versteht man
Vektorräume V über R, in denen ein Skalarprodukt definiert ist. Wenn ein Skalar-
produkt gegeben ist, dann kann man auch den Begriff der Norm einführen; damit ist
auch eine Metrik geegeben. Mit Hilfe des Skalarprodukts ist auch der Winkel zwi-
schen zwei Vektoren definiert; insbesondere hat man den Begriff der Orthogonalität.

Definition 7.9.1 Unter einem Skalarprodukt auf einem Vektorraum V über R ver-
steht man eine Abbildung

V × V → R, (v, w) 	→< v,w >,

mit folgenden Eigenschaften (λ, µ ∈ R, u, v, w ∈ V )

(1) < λu+ µv,w > = λ < u,w > +µ < v,w >
< w, λu + µv > = λ < w, u > +µ < w, v >

(2) < v,w >=< w, v >
(3) für v �= 0 ist < v, v > > 0.

Ist < , > ein Skalarprodukt in V , so bezeichnet man (V, < , >) oder kurz V als
euklidischen Vektorraum.

Bedingung (1) besagt, dass die Abbildung V × V → R, (v, w) 	→< v,w >, bili-
near ist. Bedingung (2) ist die Symmetrie und (3) bedeutet, dass das Skalarprodukt
positiv definit ist.
Im euklidischen Vektorraum (V,< , >) hat man eine Norm; für v ∈ V setzt man

‖v‖ :=
√
< v, v >. .

Auf den Begriff der Norm und des normierten Raumes gehen wir weiter unten ein.
Wir geben nun drei wichtige Beispiele für euklidische Vektorräume an.

Beispiel 7.9.2 Es sei n ∈ N; im Rn definiert man für x, y ∈ Rn:

< x, y >:= x1y1 + ...+ xnyn.

Man prüft leicht nach, dass dadurch ein Skalarprodukt auf dem Rn definiert wird.
Man bezeichnet es als das kanonische Skalarprodukt auf Rn. Die dadurch defi-
nierte Norm ist

‖x‖ =
√
x21 + ...+ x2n.

Das kanonische Skalarprodukt schreibt man oft folgendermaßen: Man schreibt
x, y ∈ Rn als Spaltenvektoren und faßt sie als einspaltige Matrizen auf. Dann ist
xt eine Matrix, die aus einer Zeile besteht und das Matrizenprodukt xty ist eine
Matrix, die aus einem einzigen Element besteht:

xty = (x1y1 + ....xnyn).
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Nun läßt man auf der rechten Seite die Klammern weg und schreibt

xty = x1y1 + ...+ xnyn =< x, y > .

Beispiel 7.9.3 Eine naheliegende Verallgemeinerung des Rn erhält man, wenn man
als Vektoren nicht n-Tupel (x1, ..., xn), sondern Folgen (x1, x2, ..., xn, ...) betrach-
tet. Um analog wie im vorhergehenden Beispiel ein Skalarprodukt definieren zu

können, betrachtet man nur solche reellen Folgen, bei denen
∞∑

n=1
x2n konvergent ist.

Man definiert also:

l2 :=

{
(xn)n∈N|

∞∑
n=1

x2n ist konvergent

}
.

Mit der komponentenweisen Addition und Multiplikation

(xn) + (yn) := (xn + yn), λ(xn) := (λxn)

ist l2 ein Vektorraum; man setzt für x = (xn)n und y = (yn)n

< x, y >:=
∞∑

n=1

xnyn

und rechnet (mit 7.9.10) nach, dass diese Reihe konvergiert und dass 〈x, y〉 ein Ska-
larprodukt auf l2 ist.

Beispiel 7.9.4 Im Vektorraum C0([a, b]) der auf dem Intervall [a, b] stetigen Funk-
tionen definiert man ein Skalarprodukt durch

< f, g >:=

b∫
a

f(x) · g(x) dx.

Für die dazu gehörende Norm gilt:

‖f‖2 =
∫ b

a

(f(x))2dx.

Definition 7.9.5 Zwei Vektoren v, w eines euklidischen Vektorraums V sind zuein-
ander orthogonal (stehen aufeinander senkrecht), wenn < v,w >= 0 ist. Wir
schreiben dann auch

v⊥w.
Sind U,W Untervektorräume von V und gilt < u,w >= 0 für alle u ∈ U, w ∈ W,
so schreibt man

U ⊥W.



7.9 Euklidische Vektorräume 161

Nun zeigen wir:

Hilfssatz 7.9.6 In einem euklidischen Vektorraum V gilt für v, w ∈ V :

< v,w > =
1
2
(‖v + w‖2 − ‖v‖2 − ‖w‖2

)
.

Beweis. Es ist < v + w, v + w >=< v, v > +2 < v,w > + < w,w >, also

‖v + w‖2 = ‖v‖2 + 2 < v,w > +‖w‖2.

�

Daraus folgt:

Satz 7.9.7 (Satz von Pythagoras) Für v, w ∈ V gilt

v⊥w
genau dann, wenn

‖v + w‖2 = ‖v‖2 + ‖w‖2.

Setzen wir in 7.9.6 −w an Stelle von w ein und addieren beide Gleichungen, so
erhalten wir:

Satz 7.9.8 (Parallelogrammgleichung) Ist V ein euklidischer Vektorraum, so gilt
für v, w ∈ V :

‖v + w‖2 + ‖v − w‖2 = 2‖v‖2 + 2‖w‖2.

Besonders wichtig ist die Cauchy-Schwarzsche Ungleichung, die wir nun herleiten
wollen:

Satz 7.9.9 (Cauchy-Schwarzsche Ungleichung). Ist V ein euklidischer Vektor-
raum, so gilt für alle v, w ∈ V :

| < v,w > | ≤ ‖v‖ · ‖w‖.
Das Gleichheitszeichen gilt genau dann, wenn v, w linear abhängig sind.

Beweis. Für w = 0 oder v = λw ist diese Ungleichung trivialerweise richtig und es
gilt das Gleichheitszeichen. Nun sei w �= 0 und wir definieren einen zu w orthogo-
nalen Vektor u durch

u := v − < v,w >‖w‖2
· w.

Es ist < u,w >= 0 und v = u+ <v,w>
‖w‖2 · w. Aus dem Satz von Pythagoras folgt:

‖v‖2 = ‖u‖2 +
(< v,w >)2

‖w‖4
· ‖w‖2 ≥ (< v,w >)2

‖w‖2

also ‖v‖2 · ‖w‖2 ≥ (< v,w >)2.
Das Gleichheitszeichen gilt genau dann, wenn u = 0 ist; dann sind v, w linear
abhängig. �




162 7 Lineare Algebra

Beispiel 7.9.10 Für den euklidischen Vektorraum Rn, versehen mit dem kanoni-
schen Skalarprodukt, besagt die Cauchy-Schwarzsche Ungleichung:
Für x1, ..., xn, y1, ..., yn ∈ R ist(

n∑
i=1

xiyi

)2

≤
(

n∑
i=1

x2i

)
·
(

n∑
i=1

y2i

)

und für den euklidischen Vektorraum der stetigen Funktionen f, g : [a, b] → R folgt
aus der Cauchy-Schwarzschen Ungleichung⎛⎝ b∫

a

f(x)g(x) dx

⎞⎠2

≤
⎛⎝ b∫

a

(f(x))2 dx

⎞⎠ ·
⎛⎝ b∫

a

g(x))2 dx

⎞⎠ .

Wir gehen jetzt auf normierte Räume ein:

Definition 7.9.11 Unter einer Norm auf einem Vektorraum V über R versteht man
eine Abbildung

V → R, v 	→ ‖v‖,
mit folgenden Eigenschaften:

(1) Für alle v, w ∈ V ist ‖v + w‖ ≤ ‖v‖ + ‖w‖ (Dreiecksungleichung)
(2) Für alle λ ∈ R, v ∈ V ist ‖λv‖ = |λ| · ‖v‖.
(3) Für alle v ∈ V mit v �= 0 ist ‖v‖ > 0.

Das Paar (V, ‖ ‖) heißt normierter Vektorraum oder kurz normierter Raum ;
wir schreiben oft V statt (V, ‖ ‖).
Es gilt:

Satz 7.9.12 Ist (V,< , >) ein euklidischer Vektorraum und setzt man für v ∈ V ,

‖v‖ :=
√
< v, v >

so ist (V, ‖ ‖) ein normierter Raum.

Beweis. Wir zeigen, dass die Dreicksungleichung aus der Cauchy-Schwarzschen
Ungleichung folgt: Für v, w ∈ V ist

‖v + w‖2 = < v + w, v + w >2= ‖v‖2 + 2 < v,w > +‖w‖2 ≤
≤ ‖v‖2 + 2‖v‖ · ‖w‖ + ‖w‖2 = (‖v‖ + ‖w‖)2.

�

Bemerkung. In einem euklidischen Vektorraum V kann man nicht nur die Ortho-
gonalität definieren, sondern allgemein den Winkel zwischen zwei Vektoren. Für
v, w ∈ V, v �= 0, w �= 0, ist nach der Cauchy-Schwarzschen Ungleichung
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∣∣∣∣ ≤ 1,

somit kann man den Winkel zwischen v und w definieren durch

ϕ := arccos
(
< v,w >

‖v‖ · ‖w‖
)
.

Es ist dann
< v,w > = ‖v‖ · ‖w‖ · cosϕ.

Orthonormalbasen
In einem endlich-dimensionalen euklidischen Raum gibt es immer eine Orthonor-
malbasis:

Definition 7.9.13 Eine Basis (b1, ..., bn) von V heißt eine Orthonormalbasis,
wenn für alle i, j gilt:

< bi, bj >= δij .

Es ist also bi⊥bj für i �= j und für alle i gilt ‖bi‖ = 1.

Wir beweisen nun nicht nur die Existenz einer derartigen Basis, sondern geben ein
Verfahren an, wie man aus einer beliebigen Basis eine Orthonormalbasis erhalten
kann:

Satz 7.9.14 (Erhard Schmidtsches Orthonormalisierungsverfahren) Jeder end-
lich-dimensionale euklidische Vektorraum besitzt eine Orthonormalbasis.
Ist (v1, ..., vn) eine Basis des euklidischen Vektorraums V , so erhält eine Orthonor-
malbasis (b1, ..., bn) von V auf folgende Weise: Man setzt

b1 :=
1

‖v1‖ · v1;

b̃2 := v2− < v2, b1 > ·b1 und b2 := 1
‖b̃2‖ · b̃2;

b̃3 := v3− < v3, b1 > ·b1− < v3, b2 > ·b2 und b3 := 1
‖b̃3‖ · b̃3.

Sind b1, ..., bk−1 bereits konstruiert (k ≤ n), so definiert man

b̃k := vk −
k−1∑
i=1

< vk, bi > ·bi und bk :=
1

‖b̃k‖
b̃k.

Beweis. Man rechnet nach, dass b̃k senkrecht auf b1, ..., bk−1 steht. Außerdem ist
b̃k �= 0, denn aus b̃k = 0 würde folgen, dass b1, ..., bk−1, vk linear abhängig sind;
dann sind aber auch v1, ..., vk linear abhängig. �

Mit Orthonormalbasen kann man besonders einfach rechnen: Die Koordinaten xi

eines Vektors v bezüglich einer Orthonormalbasis (b1, . . . , bn) sind die Skalarpro-
dukte< v, bi >:
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Satz 7.9.15 (Rechnen in Orthonormalbasen) Ist (b1, ..., bn) eine Orthonormal-

basis im euklidischen Vektorraum V , so gilt für v =
n∑

i=1

xibi, w =
n∑

i=1

yibi :

v =
n∑

i=1

< v, bi > bi, also xi =< v, bi >

< v,w >=
n∑

i=1

< v, bi > · < w, bi >=
n∑

i=1

xiyi =< x, y >

‖v‖2 =
n∑

i=1

x2i = ‖x‖2

Beweis. Ist v =
n∑

i=1

xibi, so folgt < v, bk >=
∑
i

xi· < bi, bk >= xk. Die weiteren

Aussagen rechnet man leicht nach. �

Das Schmidtsche Orthonaomalisierungsverfahren erläutern wir am Beispiel der
Legendre-Polynome:

Beispiel 7.9.16 (Legendre-Polynome) Wir gehen aus vom Vektorraum Vn der
Polynome vom Grad ≤ n, versehen mit dem Skalarprodukt

< f, g >:=

+1∫
−1

f(x)g(x)dx.

Die Polynome (1, x, x2, ..., xn) bilden eine Basis von Vn , auf die wir das Er-
hard Schmidsche Orthonormalisierungsverfahren anwenden. Mit den Bezeichnun-
gen dieses Satzes setzen wir

vk := xk, k = 0, ..., n

Es ist ‖v0‖2 =
∫ 1

−1
1dx = 2 und somit b0 =

√
1
2 .

Weiter ist b̃1 = v1− < v1, b0 > b0 und wegen < v1, b0 >= 0 erhält man b̃1 = x.

Es ist ‖b̃1‖2 =
∫ 1

−1 x
2dx = 2

3 , also b1 =
√

3
2x.

Bei der Berechung von b2 ergibt sich < v2, b0 >=
√

2
2 und < v2, b1 >= 0; damit

erhält man b̃2 = x2 − 1
3 und b2 =

√
5

2
√

2
(3x2 − 1).

Diese Polynome werden wir in 12.7 als Eigenfunktionen des Legendreschen Diffe-
rentialoperators nochmals behandeln. Für die dort behandelten Polynome Qn und
Ln gilt: b̃n = Qn und bn = Ln; dort geben wir diese Polynome für n = 0, . . . , 5
an.
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Orthgonale Matrizen
In naheliegender Weise kommt man zum Begriff der orthogonalen Abbildung und
der orthogonalen Matrix:
Die linearen Abbildungen, die das Skalarprodukt invariant lassen, bezeichnet man
als orthogonale Abbildungen:

Definition 7.9.17 Eine lineare Abbildung f : V → V eines euklidischen Vektor-
raums heißt orthogonal, wenn für alle v, w ∈ V gilt:

< f(v), f(w) > = < v,w > .

Setzt man v = w, so folgt ‖f(v)‖ = ‖v‖ ; eine derartige Abbilsdung bezeichnet
man als Isometrie. Jede orthogonale Abbildung ist also eine Isometrie. Es gilt auch
die Umkehrung:

Satz 7.9.18 Sei f : V → V eine lineare Abbildung eines euklidischen Vektorraums;
wenn für alle v ∈ V gilt:‖f(v)‖ = ‖v‖, dann ist f orthogonal.

Beweis. In 7.9.6wurde gezeigt, dass man das Skalarprodukt durch Normen aus-
drücken kann:

< v,w > =
1
2
(‖v + w‖2 − ‖v‖2 − ‖w‖2

)
;

daraus folgt: wenn f die Norm invariant lässt, dann auch das Skalarprodukt. �

Bemerkung. Aufgrund dieser Gleichung könnte man vermuten, dass jede Norm
von einem Skalarprodukt induziert wird. Dies ist jedoch nicht der Fall. Man kann
zeigen, dass durch 1

2

(‖v + w‖2 − ‖v‖2 − ‖w‖2
)

genau dann ein Skalarprodukt
definiert wird, wenn die Parallelogrammgleichung 7.9.8 erfüllt ist.

Definition 7.9.19 Eine Matrix T ∈ R(n,n) heißt orthogonal, wenn die Spalten
(t1, ..., tn) von T eine Orthonormalbasis des Rn sind.

Bei der transponierten Matrix T t sind die Zeilen jeweils die Spalten von T und beim
Matrizenprodukt T tT steht an der Stelle(i, j) das Skalarprodukt< ti, tj >. Daher
gilt:

Satz 7.9.20 Eine Matrix T ∈ R(n,n) ist genau dann orthogonal, wenn T tT = E,
also T−1 = T t, gilt.

Eine orthogonale Matrix läßt Skalarprodunkt und Norm unverändert; die zu T
gehörende Abbildung ist also orthogonal.

Satz 7.9.21 Ist T ∈ R(n,n) orthogonal, so ist die Abbildung

T : Rn → Rn, x 	→ Tx,
orthogonal; für x, y ∈ Rn gilt also

< Tx, Ty >=< x, y > , ‖Tx‖ = ‖x‖;
ausserdem ist

det T = ±1.



166 7 Lineare Algebra

Beweis. Es ist< Tx, Ty >= (Tx)t(Ty) = xtT tTy = xty =< x, y > .Mit x = y
ergibt sich die zweite Aussage. Aus T tT = E folgt (detT )2 = detE = 1. �

Man rechnet leicht nach, dass die Menge der orthogonalen Matrizen T ∈ R(n,n)

eine Untergruppe der GL(n,R) ist.

Definition 7.9.22

O(n) := {T ∈ GL(n,R)| T−1 = T t} heißt die orhogonale Gruppe

SO(n) := {T ∈ O(n)| detT = 1} heißt die spezielle orthogonale Gruppe.

Zerlegungssatz und Projektionssatz
Nun behandeln wir folgendes Problem:
Im euklidischen Vektorraum V sei ein Untervektorraum U und ein Element v ∈ V
gegeben; gesucht ist das Element v0 ∈ U , das kleinsten Abstand zu v hat, also

‖v − v0‖ < ‖v − u‖ für alle u ∈ U, u �= v0.
Es ist leicht zu sehen, dass es höchstens ein derartiges v0 gibt. Man kann Beispiele
angeben, bei denen kein v0 mit minimalem Abstand existiert; bei diesen Beispielen
ist U (und natürlich auch V ) unendlich-dimensional. Es müssen also zusätzliche
Voraussetzungen gemacht werden; naheliegend ist, dim V < ∞ vorauszusetzen.
Andererseit hat man bei interessanten Anwendungen Vektorräume von Funktionen,
die unendlichdimensional sind; daher ist es wichtig, auch diesen Fall zu untersu-
chen. Wir werden hier den Fall behandlen, dass dimU < ∞ ist; dimV darf auch
∞ sein. In 10.4.4 werden wir auch dimU = ∞ zulassen; wir setzen dort voraus,
dass U ein abgeschlossener Untervektorraumes in einem Hilbertraum H ist.
Bei den Vorbereitungen benötigen wir keine Dimensionsvoraussetzung. Wir zeigen
zuerst:
Wenn es ein solches v0 gibt, dann ist es charakterisiert durch die Bedingung: v− v0
steht senkrecht auf U .
Wir definieren:

Definition 7.9.23 Ist U ein Untervektorraum von V , so setzt man

U⊥ := {v ∈ V | v⊥u für alle u ∈ U}.
U⊥ ist wieder ein Untervektorraum von V ; es ist U ∩ U⊥ = {0}, denn für jedes
v ∈ U ∩ U⊥ gilt < v, v >= 0 und daher v = 0.

Satz 7.9.24 Es sei U ein Untervektorraum von V und v ∈ V ,v0 ∈ U . Wenn

v − v0 ∈ U⊥

ist, dann gilt

‖v − v0‖ < ‖v − u‖ für alle u ∈ U, u �= v0
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Beweis. Sei v − v0 ∈ U⊥. Dann ist für jedes u ∈ U auch v0 − u ∈ U und daher
(v0 − u)⊥(v − v0). Aus dem Satz von Pythagoras folgt für u �= v0 :

‖v − u‖2 = ‖(v − v0) + (v0 − u)‖2 = ‖v − v0‖2 + ‖v0 − u‖2 > ‖v − v0‖2.

�


v

u

v0

U

Für die umgekehrte Richtung zeigen wir:

Satz 7.9.25 Es sei U ein Untervektorraum von V und v ∈ V ,v0 ∈ U . Wenn gilt

‖v − v0‖ ≤ ‖v − u‖ für alle u ∈ U,

dann ist

v − v0 ∈ U⊥

Beweis. Es sei v − v0 /∈ U⊥ ; wir zeigen, dass dann v0 nicht minimalen Abstand
hat. Aus v − v0 /∈ U⊥ folgt: es gibt ein u ∈ U mit < v − v0, u > �= 0; wir wählen
u so, dass ‖u‖ = 1 ist. Nun setzen wir

λ :=< v − v0, u >

und zeigen ‖v − (v0 + λu)‖ < ‖v − v0‖. Dies folgt aus

‖v − (v0 + λu)‖2 = < (v − v0) − λu , (v − v0) − λu >=
= ‖v − v0‖2 − 2λ < v − v0, u > +λ2‖u‖2 =
= ‖v − v0‖2 − 2λ2 + λ2 = ‖v − v0‖2 − λ2 < ‖v − v0‖2.

�

Damit können wir zeigen:
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Satz 7.9.26 Ist U ein Untervektorraum im euklidischen Vektorraum V , so sind fol-
gende Aussagen äquivalent:
(1)

V = U ⊕ U⊥

(2) Zu jedem v ∈ V existiert ein v0 ∈ U mit

‖v − v0‖ ≤ ‖v − u‖ für alle u ∈ U

Beweis. a) Aus (1) folgt (2): Ist V = U⊕U⊥, so gibt es zu v ∈ V Elemente v0 ∈ U
und v1 ∈ U⊥ mit v = v0 + v1. Dann ist v− v0 = v1 ∈ U⊥ und aus 7.9.24 folgt (2).
b) Aus (2) folgt (1): Zu v ∈ V wählt man v0 ∈ U wie in (2); nach 7.9.25 ist dann
v1 := v − v0 ∈ U⊥; somit ist v = v0 + v1 mit v0 ∈ U, v1 ∈ U⊥. Daher ist
V = U + U⊥; aus U ∩ U⊥ = {0} folgt V = U ⊕ U⊥. �

Um die Beweisidee für die folgenden Sätze klarzumachen, behandeln wir zunächst
den einfachen Fall, nämlich dimV <∞.
Satz 7.9.27 Es sei V ein endlich-dimensionaler euklidischer Vektorraums und U
ein Untervektorraum. Wählt man eine Orthonormalbasis (b1, . . . , bd, ) von U und
ergänzt sie zu einer Orthonormalbasis (b1, . . . , bd, bd+1, . . . , bn) von V , so gilt: Ist
v = x1b1 + . . .+ xdbd + xd+1bd+1 + . . .+ xnbn: so ist

v0 = x1b1 + . . .+ xdbd = < v, b1 > b1 + . . .+ < v, bd > bd

das Element aus U mit minimalem Abstand zu v.

Beweis. Es ist v − v0 = xd+1bd+1 + . . . + xnbn ∈ U⊥ und aus 7.9.24 folgt die
Behauptung. �

Dies liefert die Beweisidee für den Fall : dimU <∞, dabei darf dimV = ∞ sein.
Dann hat man zwar keine (endliche) Basis in V , aber man kann eine Orthonormal-
basis in U wählen und v0 wie oben definieren. Es ergibt sich:

Satz 7.9.28 (Zerlegungsatz) IstU ein endlich-dimensionaler Untervektorraum des
euklidischen Vektorraums V , so gilt:
(1)

V = U ⊕ U⊥

(2) Zu jedem v ∈ V existiert genau ein v0 ∈ U mit ‖v − v0‖ < ‖v − u‖ für alle
u ∈ U, u �= v0.
Ist (b1, ..., bd) eine Orthonormalbasis von U , so ist

v0 =
d∑

i=1

< v, bi > bi.
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Beweis. Man wählt eine Orthonormalbasis (b1, ..., bd) in U und setzt

v0 :=
d∑

i=1

xibi mit xi :=< v, bi > .

Für k = 1, ..., d gilt < v0, bk >=
∑
i

xi < bi, bk >= xk =< v, bk >, daraus

folgt < v − v0, bk >= 0. Somit ist v − v0 ∈ U⊥ und mit 7.9.24 folgt die zweite
Behauptung und aus 7.9.26 die erste. �

Wir führen nun den Begriff der Projektion ein:

Definition 7.9.29 Ist V ein Vektorraum und P : V → V eine lineare Abbildung, so
heißt P Projektion, wenn gilt:

P ◦ P = P,

also P (P (v)) = P (v) für v ∈ V.
Wir schreiben oft Pv an Stelle von P (v). Es gilt:

Satz 7.9.30 Ist V ein Vektorraum und P : V → V eine Projektion, so ist

V = (KerP ) ⊕ (BildP ).

Beweis. Sei v ∈ V und v1 := P (v); dann ist P (v − v1) = P (v) − P (P (v)) = 0,
also v0 := v − v1 ∈ KerP , somit V = (KerP ) + (BildP ).
Ist v ∈ (KerP ) ∩ (BildP ), so existiert ein w ∈ V mit v = P (w) und es folgt
v = P (w) = P (P (w)) = P (v) = 0; somit (KerP ) ∩ (BildP ) = {0}. �

Bei euklidischen Vektorräumen hat man den Begriff der selbstadungierten Abbil-
dung, diese werden wir ausführlich in 7.10 behandeln; P : V → V heißt selbstad-
jungiert, wenn für v, w ∈ V gilt: < Pv,w >=< v, Pw >.

Satz 7.9.31 Eine Projektion P : V → V in einem euklidischen Vektorraum V ist
genau dann selbstadjungiert, wenn gilt:

(KerP ) ⊥ (BildP ).

Beweis. a) Sei P selbstadjungiert und u ∈ KerP , v = Pw ∈ BildP ; dann ist

< u, v >=< u, Pw >=< Pu,w >= 0.

b) Nun sei BildP ⊥ KerP ; und v, w ∈ V ;
für v = v0 + v1 und w = w0 + w1 mit v0, w0 ∈ KerP ; , v1, w1 ∈ BildP ist
< Pv , w >=< v0, w0 +w1 >=< v0, w0 >=< v0 +v1, w0 >=< v , Pw > . �

Definition 7.9.32 Ist V = U ⊕ U⊥ und stellt man v ∈ V dar als v = v0 + v1 mit
v0 ∈ U, v1 ∈ U⊥, so heißt

PU : V → V, v 	→ v0,
die Projektion auf U.
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Für v0 ∈ U ist PUv0 = v0, also PU ◦ PU = PU ; somit ist PU eine Projektion
gemäss 7.9.29. PUv ist das Element aus U , das minimalem Abstand zu v hat. Der
Zerlegungssatz liefert nun folgenden Projektionssatz:

Satz 7.9.33 (Projektionssatz) Ist U ein endlich-dimensionaler Untervektorraum
des euklidischen Vektorraumes V , so ist V = U ⊕ U⊥ und PU ist eine Projekti-
on, deren Bild U und deren Kern U⊥ ist. Die Projektion PU ist selbstadjungiert.

Die Selbstadjungiertheit folgt aus KerPU = U⊥ , BildPU = U .

Fourierpolynome
Wir bringen noch ein Beispiel, das zeigen soll, wie man mit diesen Begriffen der
Linearen Algeba zu Funktionen kommt, die in der Analysis wichtig sind, nämlich
zu den Fourierpolynomen.
Wir gehen aus von folgender Problemstellung: Es sei

f : [−π, π] → R

eine stetige Funktion und m ∈ N. Wie muss man die Koeffizienten a0, ..., bm
wählen, damit das trigonometrische Polynom

sm(x) :=
a0
2

+
m∑

n=1

(an cosnx+ bn sinnx)

die Funktion f am besten approximiert ? Dabei bedeutet beste Approximation: Man
soll die Koeffizienten a0, . . . , bm so wählen, dass das Integral

π∫
−π

(
f(x) − (

a0
2

+
m∑

n=1

(an cosnx+ bn sinnx))

)2

dx

minimal wird.
Mit den soeben bewiesenen Aussagen löst man das Problem. Es sei V der Vektor-
raum aller stetigen Funktionen f : [−π, π] → R, versehen mit dem Skalarprodukt

< f, g >:=

π∫
−π

f(x)g(x)dx.

Man definiert einen endlich-dimensionalen UntervektorraumUm durch

Um := span(1, cosx, sinx, cos 2x, sin 2x, ..., cosmx, sinmx).
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Wir wollen nun den Zerlegungssatz 7.9.28 anwenden; dazu benötigen wir in Um

eine Orthonormalbasis. Zur Vorbereitung zeigen wir:

Satz 7.9.34 Für n, k ∈ N gilt:

π∫
−π

cosnx · sin kxdx = 0

π∫
−π

cosnx · cos kxdx =

π∫
−π

sinnx · sin kxdx =
{

0 falls n �= k
π falls n = k

Beweis.1) Die Funktion cosnx sin kx ist ungerade, daher
π∫

−π

cosnx sin kxdx = 0.

2) Für k �= m ist

d
dx

[
1
2

(
1

k+m sin(k +m)x+ 1
k−m sin(k −m)x

)]
=

= 1
2

(
cos(k +m)x+ cos(k −m)x

)
= cos kx · cosmx

daraus folgt
π∫

−π

cosnx · cos kxdx = 0.

3) Aus cos2 x = 1
2 cos 2x + 1

2 folgt:
π∫

−π

cos2 nxdx =
(

1
4n sin 2nx+ x

2

)∣∣π
−π

= π.

Analog beweist man die übrigen Aussagen. �

Daraus folgt:

Satz 7.9.35 Die Funktionen un : [−π, π] → R seien definiert durch

u0(x) :=
1√
2π
, u2n−1(x) :=

1√
π

cosnx, u2n(x) :=
1√
π

sinnx, (n ∈ N);

dann ist (u0, u1, . . . , u2m) eine Orthonormalbasis in Um.

Aus 7.9.28 ergibt sich: das Polynom

sm :=
2m∑
n=0

< f, un > un

hat minimalen Abstand zu f . Wir wählen als Koeffizienten nun 1√
π
< f, un > und

erhalten die Fourier-Koeffizienten:
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Definition 7.9.36 Die Koeffizienten

an :=
1
π

π∫
−π

f(x) cosnxdx (n ∈ N0) bn :=
1
π

π∫
−π

f(x) sinnxdx (n ∈ N)

heißen die Fourier-Koeffizienten von f . Das Polynom

sm(x) :=
a0
2

+
m∑

n=1

(an cosnx+ bn sinnx),

heißt das m-te Fourierpolynom von f :

Aus 7.9.28 folgt:

Satz 7.9.37 Das Fourier-Polynom sm ist das trigonometrische Polynom, das f
”

im
quadratischen Mittel“am besten approximiert;

π∫
−π

(f(x) − sm(x))2dx

ist minimal.

sm

Funktion f
u

Fourierpolynom

Um = span(1, cosx, ..., sinmx)

In der Theorie der Fourierreihen behandelt man die Frage, wann die Reihe

a0
2

+
∞∑

n=1

(an cosnx+ bn sinnx)

gleich f ist; man vergleiche dazu 10.4.18.
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Das Vektorprodukt
Zum Abschluss behandeln wir noch das Vektorprodukt oder Kreuzprodukt v×w,
das in dem hier behandelten Kontext nur im R3 definiert ist.

Definition 7.9.38 . Für v, w ∈ R3 setzt man

v×w :=(v2w3−v3w2, v3w1−v1w3, v1w2−v2w1)=
(∣∣∣∣ v2 w2

v3 w3

∣∣∣∣, ∣∣∣∣ v3 w3

v1 w1

∣∣∣∣, ∣∣∣∣ v1 w1

v2 w2

∣∣∣∣).
Zuerst zeigen wir:

Satz 7.9.39 Für u, v, w ∈ R3ist

det(u, v, w) =< u, v × w >

Dabei versieht man R3 mit dem kanonischen Skalarprodukt.
Beweis. Nach Beispiel 7.7.15 ist∣∣∣∣∣∣

u1 v1 w1

u2 v2 w2

u3 v3 w3

∣∣∣∣∣∣ = u1

∣∣∣∣ v2 w2

v3 w3

∣∣∣∣ + u2

∣∣∣∣ v3 w3

v1 w1

∣∣∣∣ + u3

∣∣∣∣ v1 w1

v2 w2

∣∣∣∣ =< u, v × w > .

�

Setzt man in det(u, v, w) speziell u = v oder u = w ein, so verschwindet diese
Determinante und man erhält:

Satz 7.9.40 Der Vektor v × w ist orthogonal zu v und zu w.

Durch Nachrechnen ergibt sich ein Satz von Lagrange (JOSEPH LOUIS LAGRANGE

(1736-1813):

Satz 7.9.41 (Lagrange) Für alle v, w ∈ R3 gilt:

‖v × w‖2 + (< v,w >)2 = ‖v‖2‖w‖2.

Damit kann man das Vektorprodukt geometrisch interpretieren: Es sei ϕ der Winkel
zwischen v und w; dieser Winkel ist definiert durch < v,w >= ‖v‖ · ‖w‖ cosϕ;
dann folgt‖v × w‖2 = ‖v‖2‖w‖2(1 − cos2 ϕ) , also

‖v × w‖ = ±‖v‖ · ‖w‖ · sinϕ.

Somit ist ‖v × w‖ der Flächeninhalt des von v und w aufgespannten Parallelo-
gramms und < u, v × w >= det(u, v, w) ist das Volumen des von u, v, w aufge-
spannten Paralllelotops.
Wir erhalten noch:

Satz 7.9.42 Vektoren v, w ∈ R3 sind genau dann linear abhängig, wenn v×w = 0
ist.
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Beweis. Nach der Cauchy-SchwarzschenUngleichung sind v, w genau dann linear
abhängig, wenn (< v,w >)2 = ‖v‖2‖w‖2 ist und dies ist nach dem Satz von
Lagrange äquivalent zu ‖v × w‖2 = 0 oder v × w = 0. �

Nun führen wir den Begriff der positiv orientierten Basis ein, den wir in 13.5 benöti-
gen:

Definition 7.9.43 Eine Basis (b1, . . . , bn) des Rn heißt positiv orientiert, wenn
gilt:

det(b1, . . . , bn) > 0.

Es gilt:

Satz 7.9.44 Wenn v, w ∈ R3 linear unabhängig sind, dann ist (v, w, v × w) eine
positiv orientierte Basis des R3.

Beweis. Nach 7.9.39 ist

det(v, w, v × w) = ‖v × w‖2 > 0.

�

Damit kann man sich v×w so veranschaulichen: Durch v×w ⊥ v und v×w ⊥ w ist
die Richtung von v×w bis auf das Vorzeichen festgelegt; die Länge dieses Vektors
ist der Flächeninhalt des Parallelogramms. Durch die Eigenschaft, dass (v, w, v×w)
positiv orientiert ist, wird v × w eindeutig festgelegt; dies entspricht der bekannten

”
Dreifinger-Regel “.

7.10 Eigenwerte selbstadjungierter Abbildungen

Wir zeigen zuerst, dass eine lineare Abbildung genau dann selbstadjungiert ist, wenn
die zugehörige Matrix symmetrisch ist. Hauptergebnis ist die Aussage, dass bei ei-
ner selbstadjungierten Abbildung immer eine Orthonormalbasis existiert, die aus
Eigenvektoren besteht. Daraus folgt dann, dass jede reelle symmetrische Matrix dia-
gonalisierbar ist.
In diesem Abschnitt sei V immer ein euklidischer Vektorraum; Rn sei immer mit
dem Skalarprodukt< x, y >= x1y1 + ...+ xnyn = xty versehen.

Definition 7.10.1 Eine lineare Abbildung f : V → V heißt selbstadjungiert, wenn
für alle v, w ∈ V gilt:

< f(v), w >=< v, f(w) > .

Eine Matrix A = (aij) ∈ K(n,n) ist symmetrisch, wenn At = A, also aij = aji

gilt.

Wir werden in 7.12.10 den Begriff der adjungierten Abbildung ∗f definieren durch
die Eigenschaft <∗ f(w), v >=< w, f(v) > ; f ist also genau dann selbstadjun-
giert, wenn f =∗ f gilt.
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Beispiel 7.10.2 Ist A ∈ R(n,n), so ist die Abbildung A : Rn → Rn, x 	→ Ax,
genau dann selbstadjungiert, wenn A symmetrisch ist.
Es ist nämlich 〈Ax, y〉 = (Ax)ty = xtAty und 〈x,Ay〉 = xtAy. Somit folgt aus
At = A, dass die Abbildung A selbstadjungiert ist. Wenn umgekehrt A selbstad-
jungiert ist, so folgt: alk = 〈Aek, el〉 = 〈ek, Ael〉 = akl.

Satz 7.10.3 Sei (b1, ..., bn) eine Orthonormalbasis in V und f : V → V eine linea-
re Abbildung; dann gilt: f ist genau dann selbstadjungiert, wenn die zu f gehörende
Matrix A =M(f ; (bj)) symmetrisch ist.

Beweis. Es seien v, w ∈ V Vektoren mit den Koordinatenvektoren x, y ∈ Rn;
dann sind nach Satz 7.5.10Ax,Ay die Koordinatenvektoren von f(v), f(w). Wegen
7.9.15 ist < v,w >=< x, y > und daher ist < f(v), w >=< Ax, y > und auch
< v, f(w) >=< x,Ay > ; daraus ergibt sich die Behauptung. �

Nun zeigen wir, dass eine symmetrische Matrix immer einen reellen Eigenwert be-
sitzt:

Hilfssatz 7.10.4 Ist A ∈ R(n,n) symmetrisch, λ ∈ C und χA(λ) = 0, so folgt
λ ∈ R. Jede symmetrische Matrix besitzt daher mindestens einen reellen Eigenwert.

Beweis. Ist λ ∈ C und χA(λ) = 0, so existiert ein z ∈ Cn mit z �= 0
und Az = λz, also

∑
j

aijzj = λzi, i = 1, ..., n. Übergang zum Konjugiert-

Komplexen liefert
∑
j

aij z̄j = λ̄z̄i. Daraus folgt λ · (
∑
i

ziz̄i) =
∑
i,j

aijzj z̄i und

λ̄(
∑
i

z̄izi) =
∑
i,j

aij z̄jzi =
∑
i,j

ajizj z̄i.

Wegen aij = aji erhält man λ(
∑
i

ziz̄i) = λ̄(
∑
i

ziz̄i), also λ = λ̄ und daher ist λ

reell. Aus dem Fundamentalsatz der Algebra folgt, dass χA eine Nullstelle λ ∈ C
besitzt und diese liegt in R. �

In 7.8.11 haben wir gezeigt, dass Eigenvektoren, die zu verschiedenen Eigenwer-
ten gehören, linear unabhängig sind; bei selbstadjungierten Abbildungen gilt eine
schärfere Aussage: sie stehen aufeinander senkrecht; Eigenräume Eλ, die zu ver-
schiedenen Eigenwerten gehören, sind zueinander orthogonal.

Satz 7.10.5 Ist f : V → V selbstadjungiert, so sind Eigenvektoren, die zu verschie-
denen Eigenwerten von f gehören, zueinander orthogonal:

Eλ ⊥ Eµ für λ �= µ

Beweis. Sei λ �= µ, f(v) = λv, f(w) = µw. Dann ist
λ < v,w >=< λv,w >=< f(v), w >=< v, f(w) >=< v, µw >= µ < v,w >,
also (λ− µ) < v,w >= 0 und daher < v,w >= 0. �

Satz 7.10.6 Ist f : V → V selbstadjungiert und ist U ⊂ V ein Untervektorraum
mit f(U) ⊂ U , so gilt: f(U⊥) ⊂ U⊥.
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Beweis. Sei v ∈ U⊥ und u ∈ U ; wegen f(u) ∈ U ist < v, f(u) >= 0, also
< f(v), u >=< v, f(u) >= 0; daraus folgt f(v) ∈ U⊥. �

Nun können wir das Hauptresultat über selbstadjungierte Abbildungen herleiten.

Satz 7.10.7 Ist V ein n-dimensionaler euklidischer Vektorraum und f : V → V
selbstadjungiert, so existiert eine Orthonormalbasis (b1, ..., bn) von V , die aus Ei-
genvektoren von f besteht.

Beweis durch Induktion nach n. Aus 7.10.4 folgt, dass f mindestens einen Eigen-
wert λ1 ∈ R besitzt. Es existiert also ein b1 ∈ V mit ‖b1‖ = 1 und f(b1) = λ1b1.
Damit ist die Aussage für n = 1 bewiesen. Nun sei n > 1 und wir nehmen an, dass
die Aussage für (n− 1)-dimensionale Vektorräume richtig ist. Nun wählen wir ein
b1 wie oben und setzen U := span{b1}. Dann ist f(U) ⊂ U und nach 7.10.6 ist
auch f(U⊥) ⊂ U⊥. Daher ist die Einschränkung f |U⊥ → U⊥ wohldefiniert und
wieder selbstadjungiert; dimU⊥ = n − 1. Nach Induktionsannahme existiert eine
Orthonormalbasis (b2, ..., bn) von U⊥ aus Eigenvektoren. Dann ist (b1, b2, ..., bn)
eine Orthonormalbasis von V , die aus Eigenvektoren von f besteht. �

Nun erhalten wir die analoge Aussage für symmetrische Matrizen; insbesondere
ergibt sich, dass man jede symmetrische Matrix mit Hilfe einer orthogonalen Ko-
ordinatentransformation auf Diagonalgestalt transformieren kann; man bezeichnet
dies auch als Hauptachsentransformation:

Satz 7.10.8 (Hauptachsentransformation)
Für jede symmetrische Matrix A ∈ R(n,n) gilt:

(1) Es gibt λ1, ..., λn ∈ R mit χA(t) = (t− λ1) · ... · (t− λn).
(2) Es existiert eine orthogonale Matrix T ∈ R(n,n) mit

T−1AT = T tAT =

⎛⎝λ1 0
. . .

0 λn

⎞⎠
(3) Die Spalten t1, ..., tn von T sind Eigenvektoren von A zu λ1, . . . , λn.

Beweis. Die Abbildung A : Rn → Rn, x 	→ Ax, ist selbstadjungiert; daher gibt es
eine Orthonormalbasis (t1, ..., tn) des Rn, die aus Eigenvektoren von A besteht; die
Matrix T mit den Spalten t1, ..., tn ist orthogonal. Seien λ1, ..., λn die zugehörigen
Eigenwerte, also Atj = λjtj . Es ist tj = Tej, also gilt ATej = T (λjej) oder
T−1ATej = λjej . Dies bedeutet, dass die j-te Spalte von T−1AT gleich λjej ist.
Daher ist T−1AT =: D eine Diagonalmatrix; in der Diagonale stehen die λj .
Das charakteristische Polynom von D ist χD(t) = (t − λ1) · ... · (t − λn) und es
gilt χA = χD . �

Kurz zusammengefaßt besagt der soeben bewiesene Satz, dass es zu jeder symme-
trischen Matrix A eine orthogonale Matrix T gibt, so dass T−1AT = T tAT eine
Diagonalmatrix ist; in der Diagonale stehen die Eigenwerte von A und die Spalten
von T sind Eigenvektoren von A.

Wir zeigen die Bedeutung dieses Satzes an zwei Fragestellungen:
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• Wie sieht der Kegelschnitt 5x21 − 4x1x2 + 2x22 = 1 aus ?
• Wie löst man ein

”
gekoppeltes“Differentiagleichungssystem

x′1 = 5x1 − 2x2
x′2 = −2x1 + 2x2.

Die erste Frage behandelt man so (vgl. 7.10.13): Der Kegelschnitt wird durch die

Matrix

(
5 −2

−2 2

)
gegeben; durch eine Hauptachsentransformation diagonali-

siert man diese Matrix. Man erhält

(
6 0
0 1

)
; in den neuen Koordinaten ist der

Kegelschnitt 6y21 + y22 = 1 , also eine Ellipse.
Beim zweiten Problem erhält man durch Hauptachsentransformation das einfachere

”
entkoppelte “System

y′1 = 6y1
y′2 = y2

das leicht zu lösen ist; Rücktransformation liefert die Lösungen des usprünglichen
System (vgl. 8.3.15).

Wir zeigen nun, wie man den Satz von der Hauptachsentransformation auf quadra-
tische Formen anwenden kann; dabei beschränken wir uns auf den Fall n = 2.
Einer symmetrischen Matrix A ∈ R(2,2) ordnet man die Funktion

qA : R2 → R, x 	→< Ax, x >,
zu; man bezeichnet qA als die zu A gehörende quadratische Form. Es ist

qA(x) = xtAx = a11x21 + 2a12x1x2 + a22x22.

Wir untersuchen qA auf der Kreislinie

S1 := {x ∈ R2|x21 + x22 = 1}.
Satz 7.10.9 IstA ∈ R(2,2) eine symmetrische Matrix mit den Eigenwerten λ1 ≤ λ2,
so gilt:

λ1 ≤ xtAx ≤ λ2 für x ∈ S1.

Wenn λ1 < λ2 ist, dann gilt:

λ1 = min qA|S1, λ2 = max qA|S1;

ist t1 ∈ S1 ein Eigenvektor von A zu λ1 und t2 ∈ S1 einer zu λ2, so wird das
Minimum von qA genau an den Stellen ±t1 und das Maximum genau an ±t2 ∈ S1

angenommen.

Beweis. Es gibt eine orthogonale Matrix T mit

T tAT =
(
λ1 0
0 λ2

)
.
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Für x ∈ S1 ist auch y := T tx ∈ S1 und es gilt:

qA(x) = xtAx = ytT tATy = yt
(
λ1 0
0 λ2

)
y = λ1y21 + λ2y22 .

Wegen y21 + y22 = 1 ist qA(x) = (λ2 − λ1)y22 + λ1.
Für λ1 = λ2 folgt dann: qA(x) = λ1 .
Nun sei λ1 < λ2. Dann wird qA minimal genau für y2 = 0, also an der Stelle
y = ±e1 oder x = ±Te1 = ±t1 und der minimale Wert ist λ1.
Das Maximum λ2 wird an den Stellen ±t2 angenommen. �

Damit erhält man folgende Charakterisierung der Eigenwerte einer symmetrischen
Matrix A ∈ R(2,2): Die Eigenwerte sind die Extremalwerte von qA auf S1 und die
Eigenvektoren der Länge 1 sind die Extremalstellen. Wir werden diese Aussagen in
9.4.9 mit Hilfe der Differentialrechnung nochmals herleiten.
Nun kann man qA auf dem ganzen R2 untersuchen. Für das homogene Polynom qA
gilt

qA(cx) = c2qA(x) für c ∈ R.

Ist x ∈ R2, x �= 0, so gilt qA(x) = ‖x‖2qA( x
‖x‖ ).Wegen x

‖x‖ ∈ S1 ergibt sich:

Satz 7.10.10 Ist A ∈ R(2,2) eine symmetrische Matrix mit den Eigenwerten λ1 ≤
λ2, so gilt für alle x ∈ R2:

λ1‖x‖2 ≤ xtAx ≤ λ2‖x‖2

Man definiert nun

Definition 7.10.11 Eine symmetrische Matrix A ∈ R(2,2) heißt positiv definit,
wenn für alle x ∈ R2, x �= 0, gilt: xtAx > 0, also a11x21+2a12x1x2+a22x22 > 0.

Aus 7.10.10 erhält man:

Satz 7.10.12 Eine symmetrische Matrix ist genau dann positiv definit, wenn beide
Eigenwerte positiv sind.

Analoge Aussagen gelten für (n× n)-Matrizen.
Wir erläutern diese Sätze an einem Beispiel:

Beispiel 7.10.13 Sei

A =
(

5 −2
−2 2

)
Dann ist χA(t) = t2 − 7t+ 6 = (t− 6) · (t− 1); die Eigenwerte sind also λ1 = 6
und λ2 = 1 und A ist positiv definit. Eigenvektoren zu λ1 = 6 erhält man als
nichttriviale Lösungen von (6E −A)x = 0, also

x1 + 2x2 = 0
2x1 + 4x2 = 0
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Daraus erhält man zum Eigenwert 6 den Eigenvektor t1 = 1√
5

(
2
−1

) ∈ S1. Analog

berechnet man den Eigenvektor t2 = 1√
5

(
1
2

)
zu λ2 = 1. Wie in 7.10.5 gezeigt

wurde, ist t1⊥t2. Die Matrix

T :=
1√
5

(
2 1

−1 2

)

ist orthogonal und T t ·A ·T =
(

6 0
0 1

)
. Für qA(x) = xtAx = 5x21−4x1x2+2x22

rechnet man nach, daß qA(t1) = 6 und qA(t2) = 1 ist.
Wenn man die durch 5x21 − 4x1x2 + 2x22 = 1 gegebene Niveaumenge von qA
untersuchen will, setzt man y = Tx, also x = T ty, ausführlich geschrieben

x1 =
1√
5
(2y1 + y2) , x2 =

1√
5
(−y1 + 2y2).

Setzt man dies ein, so ergibt sich natürlich 5x21 − 4x1x2 + 2x22 = 6y21 + y22 . Die
Gleichung 6y21+y22 = 1 beschreibt eine Ellipse und somit ist auch die Niveaumenge
{x ∈ R2|xtAx = 1} eine Ellipse. Wir werden dieses Beispiel in 9.4.9 mit Methoden
der Differentialrechung behandeln.

t1

t2

7.11 Unitäre Vektorräume

Wir behandeln nun Vektorräume über dem Körper der komplexen Zahlen , in denen
ein Skalarprodukt erklärt ist.
Im Rn definiert man das Skalarprodukt durch < x, y >= x1y1 + . . . + xnyn.
Bei einer analogen Definition im Cn würde aus < x, x >= 0 nicht immer x = 0
folgen, etwa für x = (1, i) ∈ C2. Ein sinnvolles Skalarprodukt, das man hier als
positiv definite hermitesche Form bezeichnet, erhält man , wenn man für x, y ∈ Cn

setzt:
< x, y >:= x1ȳ1 + . . .+ xnȳn.

Man geht also bei einem (etwa beim zweiten) Faktor zur konjugiert-komplexen Zahl
über. Dann ist
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< x, x >= |x1|2 + . . .+ |xn|2
und aus < x, x >= 0 folgt x = 0.

Dies führt zu folgenden Definitionen:

Definition 7.11.1 Ist V ein Vektorraum über C, so heißt eine Abbildung

V × V → C, (v, w) 	→< v,w >
eine positiv definite Hermitesche Form, wenn für u, v, w ∈ V, λ, µ ∈ C gilt

(1) < λu+ µv,w > = λ < u,w > +µ < v,w >
< u, λv + µw > = λ < u, v > +µ < u,w >

(2) < w, v >= < v,w >
(3) für v �= 0 ist < v, v > > 0.

Eine positiv-definite Hermitesche Form auf einem Vektorraum V über C bezeich-
net man wieder als Skalarprodukt. Ist V ein Vektorraum über C und < , > eine
positiv-definite Hermitesche Form auf V , so heißt (V, < , >) ein unitärer Vektor-
raum oder unitärer Raum. An Stelle von (V, < , >) schreibt man oft V .

Das Skalarprodunkt in einem unitären Raum ist also in der ersten Variablen linear,
aber in der zweiten Variablen antilinear.
Wie in euklidischen Vektorräumen definiert man die Norm und den Abstand

‖x‖ :=
√
< v, v >, d(v, w) := ‖v − w‖.

Wichtige Beispiele sind nun der Cn und der Vektorraum der stetigen komplexwer-
tigen Funktionen.

Beispiel 7.11.2 Im Cn definiert man das kanonische Skalarprodukt

< x, y >:= x1ȳ1 + . . .+ xnȳn = xt · ȳ.
Im Vektorraum der stetigen Funktionen f : [a, b] → C definiert man das Riemann-
Integral so: man zerlegt f in Real- und Imaginärteil f = f1 + i · f2, f1, f2 reell,

und setzt
b∫
a

fdx :=
b∫
a

f1dx + i ·
b∫

a

f2dx, das Skalarprodukt definiert man dann

durch

< f, g >:=

b∫
a

f(x) · g(x)dx.

Auch in unitären Vektorräumen gilt die Cauchy-Schwarz’sche Ungleichung

| < v,w > | ≤ ‖v‖ · ‖w‖.
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Man definiert wieder die Orthogonalität v ⊥ w durch < v,w >= 0 und bezeichnet
eine Basis (b1, . . . , bn) als Orthonormalbasis, wenn < bi, bj >= δij ist.

Es gilt auch die Aussage des Schmidt’schen Orthonormalisierungsverfahrens; daher
besitzt jeder endlich-dimensionale unitäre Raum eine Orthonormalbasis.

An die Stelle der orthogonalen Matrix mit (T t · T = E) tritt nun die unitäre Matrix

mit (T
t · T = E), dabei ist das Konjugiert-komplexe einer Matrix elementweise zu

verstehen:

Definition 7.11.3 Eine Matrix T ∈ C(n,n) heißt unitär,wenn gilt:

T
t · T = E, also T−1 = T

t
;

U(n) := {T ∈ Gl(n,C)| T t
= T−1} heißt die unitäre Gruppe.

Eine Matrix T ist genau dann unitär, wenn ihre Spalten eine Orthonormalbasis des
Cn bilden. Wie in euklidischen Vektorräumen gilt:

Satz 7.11.4 Ist T ∈ C(n,n) eine unitäre Matrix, so gilt für x, y ∈ Cn:

< Tx, Ty > = < x, y >, ‖Tx‖ = ‖x‖.
Beweis.< Tx, Ty,>= (Tx)t(Ty) = xtT tT̄ ȳ = xtȳ =< x, y > . �

Wir behandeln nun selbstadjungierte Abbildungen unitärer Vektorräume:

Definition 7.11.5 Eine lineare Abbildung f : V → V heißt selbstadjungiert, wenn
für x, y ∈ V gilt:

< f(v), w >=< v, f(w) > .

An die Stelle der symmetrischen Matrix, also A = At tritt die hermitesche Matrix:

Definition 7.11.6 Eine Matrix A ∈ C(n,n) heißt hermitesch, wenn gilt:

A = A
t
.

Analog zu 7.10.3 beweist man:

Satz 7.11.7 Ist (b1, . . . , bn) eine Orthonornalbasis im unitären Vektorraum V , so
ist eine lineare Abbildung f : V → V genau dann selbstadjungiert, wenn die
Matrix A :=M(f ; (bj)) hermitesch ist.

Wie bei euklidischen Vektorräumen gilt:

Satz 7.11.8 Ist V ein unitärer Vektorraum und ist λ ∈ C ein Eigenwert der selbst-
adjungierten Abbildung f : V → V , so folgt λ ∈ R.

Beweis. Es existiert ein v ∈ V, v �= 0 mit f(v) = λv; dann ist
λ < v, v >=< f(v), v >=< v, f(v) >= λ̄ < v, v >.
Daraus folgt λ = λ̄ also λ ∈ R. �

Damit ergibt sich der Satz über die Diagonalisierbarkeit:
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Satz 7.11.9 Ist A ∈ C(n,n) eine hermitesche Matrix, so existieren λ1, . . . , λn ∈ R
und eine unitäre Matrix T ∈ C(n,n) mit

χA(t) = (t− λ1) · . . . · (t− λn)

und

T
t
AT =

⎛⎜⎝λ1 . . . 0
. . .

0 . . . λn

⎞⎟⎠ .
Wir behandeln nun unitäre Abbildungen unitärer Vektorräume:

Definition 7.11.10 Eine lineare Abbildung f : V → V heißt unitär, wenn für
x, y ∈ V gilt:

< f(v), f(w) >=< v,w > .

Analog zu 7.9.18 gilt:

Satz 7.11.11 Sei f : V → V linear; wenn für alle v ∈ V gilt:‖f(v)‖ = ‖v‖, so ist
f unitär.

Beweis. Wegen < v,w >= < w, v > ist die Rechnung hier etwas anders als bei
euklidischen Vektorräumen. Man rechnet nach, dass für v, w ∈ V gilt:

< v,w >=
1
4

(‖v + w‖ − ‖v − w‖ + i‖v − iw‖ − ‖v + iw‖) .

Man kann also wieder das Skalarprodukt durch Normen ausdrücken. Daraus folgt:
wenn f die Norm invariant lässt, dann auch das Skalarprodukt. �

Wir fassen die entsprechenden Begriffe bei euklidischen und unitären Vektorräume
zusammen:

euklidischer Vektorraum V über R unitärer Vektorraum V über C

Skalarprodukt mit
< v,w >=< w, v >

Skalarprodukt mit
< v,w >= < w, v >

orthogonale Matrix: T t · T = E unitäre Matrix: T
t · T = E

symmetrische Matrix: A = At hermitesche Matrix: A = A
t

selbstadjungierte Abbildung:
< f(v), w >=< v, f(w) >

selbstadjungierte Abbildung:
< f(v), w >=< v, f(w) >

orthogonale Abbildung:
< f(v), f(w) >=< v,w >

unitäre Abbildung:
< f(v), f(w) >=< v,w >
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7.12 Dualität

Wir erläutern, wie man jedem Vektorraum V den dualen Vektorraum V ∗und jeder
linearen Abbildung f : V → W die duale Abbildung ∗f : W ∗ → V ∗ zuordnen
kann. Ist V endlich-dimensional und (v1, ..., vn) eine Basis in V , so hat man eine
duale Basis (v1, ..., vn) in V ∗.

Definition 7.12.1 Ist V ein Vektorraum überK , so heißt

V ∗ := {ϕ : V → K|ϕ linear}
der zu V duale Vektorraum.

Sind ϕ, ψ ∈ V ∗ und λ ∈ K , so sind die Abbildungen

ϕ+ ψ : V → K, v 	→ ϕ(v) + ψ(v) λϕ : V → K, v 	→ λϕ(v),
linear, somit ϕ + ψ ∈ V ∗, λϕ ∈ V ∗; mit diesen Verknüpfungen ist V ∗ ein Vektor-
raum.

Definition 7.12.2 Ist f : V → W linear, so heißt ∗f : W ∗ → V ∗, ψ 	→ ψ ◦ f , die
zu f duale Abbildung.

(Wir verwenden für die duale Abbildung die Bezeichnung ∗f , denn es ist üblich,
mit f∗ die adjungierte Abbildung zu bezeichnen ; vgl. Definition 7.12.10.)
Für ψ ∈ W ∗ ist ψ ◦ f : V → K linear, also ψ ◦ f ∈ V ∗; man rechnet leicht nach,
dass ∗f linear ist.
Es gilt:

Hilfssatz 7.12.3 Sind g : U → V und f : V →W linear, so gilt: ∗(f ◦g) =∗ g◦∗f.
Dualität bei endlich-dimensionalen Vektorräumen
Nun führen wir den Begriff der dualen Basis ein; dazu erinnern wir an 7.3.14: Ist
(v1, ..., vn) eine Basis von V und sind c1, ..., cn ∈ K beliebige Elemente, so exi-
stiert genau eine lineare Abbildung

ϕ : V → K mit ϕ(vj) = cj , (j = 1, ..., n), nämlich ϕ(
n∑

j=1

xjvj) =
n∑

j=1

xjcj .

Insbesondere gilt für jedes k = 1, ..., n: Es gibt genau eine lineare Abbildung

vk : V → K mit vk(vj) = δkj , nämlich vk(
n∑

j=1

xjvj) = xk,

( mit δkj = 0 für j �= k, und δjj = 1.)
Damit sind Elemente v1, ..., vn ∈ V ∗ definiert und man sieht leicht, dass (v1, ..., vn)
eine Basis von V ∗ ist: Man kann jedes ϕ ∈ V ∗ eindeutig darstellen durch

ϕ =
n∑

j=1

cjv
j mit cj := ϕ(vj).
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Definition 7.12.4 Ist (v1, ..., vn) eine Basis von V , so heißt (v1, ..., vn) die duale
Basis von V ∗.

Daraus folgt:

Satz 7.12.5 Für jeden endlich-dimensionalen Vektorraum V ist dimV ∗ = dim V .

Wir behandeln nun die Frage, durch welche Matrix die duale Abbildung ∗f darge-
stellt wird. Es ergibt sich, dass es die transponierte Matrix ist:
Ist A die Matrix zu einer linearen Abbildung f : V →W bezüglich Basen in V,W ,
so ist At die Matrix zur dualen Abbildung ∗f bezüglich der dualen Basen :

Satz 7.12.6 Ist f : V → W linear, ist (vj) eine Basis in V und (wi) eine Basis in
W und ist A :=M(f ; (vj), (wi)), so gilt:

At =M(∗f ; (wi), (vj)).

Beweis. A = (aij) ist definiert durch f(vj) =
∑
i

aijwi. Ist B = (bkl) die

zu ∗f bezüglich der dualen Basen gehörende Matrix, so ist ∗f(wl) =
∑
k

bklv
k.

Es gilt ∗f(wl)(vj) =
∑
k

bklv
k(vj) = bjl. Wegen ∗f(wl) = wl ◦ f erhält man

∗f(wl)(vj) = wl(f(vj)) = wl(
∑
i

aijwi) =
∑
i

aijw
l(wi) = alj und daraus folgt

bjl = alj , also B = At. �

Nach 7.5.24 ist rg At = rg A und somit folgt:

Satz 7.12.7 Für jede lineare Abbildung f : V →W gilt: rg ∗f = rg f.

Wir untersuchen nun noch das Transformationsverhalten der dualen Basen:
Es sei T = (tij) die Transformationsmatrix der Basis (v1, . . . , vn) von V zu einer
anderen Basis (ṽ1, . . . , ṽn) und T−1 = (t̂kl); die dualen Basen transformieren sich
folgendermassen:

Satz 7.12.8 (Transformation dualer Basen) Für j, k = 1, . . . , , n sei

vj =
n∑

i=1

tij ṽi, ṽk =
n∑

l=1

t̂lkvl;

dann gilt:

vj =
n∑

i=1

t̂ji · ṽi, ṽk =
n∑

l=1

tkl · ṽl

Beweis. Es gibt cij ∈ K mit vj =
n∑

i=1

cij ṽ
i. Dann ist

vj(ṽk) = (
n∑

i=1

cij ṽ
i)(ṽk) =

n∑
i=1

cij(ṽiṽk) = ckj .
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Ausserdem ist vj(ṽk) = vj(
n∑

l=1

t̂lkvl) =
n∑

l=1

t̂lkv
j(vl) = t̂jk. somit ckj = t̂jk .

Analog ergibt sich die zweite Behauptung. �

Bemerkung. Bei Dualitäussagen und vor allem in der Tensorrechnung ist folgende
Summationskonvention zweckmässig:
Über gleichen Indizes, von denen einer oben und der andere unten steht, ist zu
summieren.
Sind etwa xj die Koordinaten von v bezüglich (vj), so schreibt man xj an Stelle
von xj und vereinbart xjvj :=

∑
j

xjvj .

Die Aussage des vorhergehenden Satzes formuliert man dann so:
Ist vj = tij ṽi und ṽk = t̂lkvl , so gilt für die dualen Basen:

vj = t̂ji ṽ
i, ṽk = tkl v

l.

Der Zeilenindex einer Matrix wird nach oben gesetzt, der Spaltenindex nach unten.

Dualität bei endlich-dimensionalen euklidischen Vektorräumen
In euklidischen Vektorräumen ist ein Skalarprodukt gegeben; das Skalarprodukt ist
bilinear, daher definiert jedes v ∈ V eine lineare Abbildung

v∗ : V → R, x 	→< v, x > .

Nun ist es naheliegend, zu fragen, ob man auf diese Weise jede lineare Abbildung
V → R erhält. Für endlich-dimensionales V ist dies leicht zu beweisen; wenn V
ein (unendlich-dimensionaler) Hilbertraum ist, dann wird diese Frage durch den
Darstellungssatz von Riesz-Fréchet 15.2.8 beantwortet.

Satz 7.12.9 Ist V ein endlich-dimensionaler euklidischer Vektorraum, so ist die Ab-
bildung

J : V → V ∗, v 	→ v∗, mit v∗ : V → R, x 	→< v, x >,

ein Isomorphismus.
Zu jedem ϕ ∈ V ∗ existiert daher genau ein v ∈ V mit ϕ(x) = 〈v, x〉 für alle x ∈ V .

Beweis. Aus v∗ = 0 folgt 〈v, x〉 = 0 für alle x ∈ V , insbesondere 〈v, v〉 = 0, also
v = 0. Somit ist die Abbildung J : V → V ∗, v 	→ v∗,injektiv. Wegen dimV =
dimV ∗ ist sie auch surjektiv. �

Wir behandeln nun den Begriff der adjungierten Abbildung f∗:

Definition 7.12.10 Es seien V,W euklidische Vektorräume und f : V → W eine
lineare Abbildung. Eine lineare Abbildung f∗ : W → V heißt adjungiert zu f ,
wenn für alle v ∈ V,w ∈ W gilt:

< f(v), w >=< v, f∗(w), > .
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Wir werden in Satz 15.3.7 zeigen, dass man aus dem Darstellungssatz von Riesz-
Fréchet die Existenz der adjungierten Abbildung für stetige lineare Abbildungen
von Hilberträumen herleiten kann.
Für endlich-dimensionale Vektorräume kann man die adjungierte Abbildung expli-
zit mit Hilfe von Orthonormalbasen angeben und erhält damit für diesen Fall einen
einfachen Existenzbeweis:

Satz 7.12.11 SindV undW endlich-dimensionale euklidische Vektorräume, so exi-
stiert zu jeder linearen Abbildung f : V → W genau eine adjungierte Abbildung
f∗ :W → V.
Ist (v1, . . . , vn) eine Orthonormalbasis in V , so gilt für w ∈W :

f∗(w) =
n∑

j=1

< f(vj), w > vj .

Ist ausserdem (w1, . . . , wm) eine Orthonormalbasis in W und ist A die Matrix zu
f bezüglich (vj), (wi), so ist At die Matrix zu f∗ bezüglich (wi), (vj).

Beweis. Wir nehmen zuerst an, es existiere eine adjungierte Abbildung f∗. Ist dann
w ∈W , so gibt es ck ∈ R mit f∗(w) =

∑
k

ckvk und für j = 1, . . . , n ist

cj =< vj ,
∑

k

ckvk >=< vj , f∗(w) >=< f(vj), w > .

Es gibt also höchstens eine adjungierte Abbildung. Nun ist klar, wie man die Exi-
stenz von f∗ beweist: Man setzt

f∗ :W → V, w 	→
n∑

j=1

< f(vj), w > vj .

Für v =
∑
k

xkvk ∈ V und w ∈W ist dann

< v, f∗(w) >=
∑

k

xk < vk, f
∗(w) >=

∑
k

xk < f(vk), w >=< f(v), w >

und daher ist die so definierte Abbildung f∗ die adjungierte Abbildung zu f .
Ist A = (aij) die Matrix von f bezüglich (vj), (wi), so gilt aij =< f(vj), wi >
und für die Matrix B = (bji) von f∗ bezüglich (wi), (vj) ist

bji =< f∗(wi), vj >=< wi, f(vj) >= aij ,

also B = At. �

Nun sei V =W ; eine lineare Abbildung f : V → V heißt selbstadjungiert, wenn

f∗ = f

ist, also < f(v), w >=< v, f(w) > für v, w ∈ V ; diesen Fall haben wir in 7.10
behandelt.
Wir geben noch ein Beispiel an, bei dem wir den Darstellungssatz 7.12.9 anwenden:
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Beispiel 7.12.12 Es sei V = R3, versehen mit dem kanonischen Skalarprodukt.
Wir wählen v, w ∈ R3; dann ist

R3 → R, u 	→ det(u, v, w)

eine lineare Abbildung, also ein Element aus (R3)∗. Nach 7.12.9 existiert genau ein
z ∈ R3 mit

det(u, v, w) =< z, u > für alle u ∈ R3.

Aus 7.9.39 folgt
z = v × w.

Das Vektorprodukt v × w ist also charakterisiert durch

det(u, v, w) =< v × w, u > für alle u ∈ R3.

7.13 Alternierende Multilinearformen

Die folgenden Begriffe erscheinen zunächst sehr abstrakt und schwer verständ-
lich; wir wollen sie hier auch nicht eingehend erläutern, sondern nur kurz
darstellen. Wir benötigen sie für die Theorie der alternierenden Differenti-
alformen in 11.3. Mit Hilfe der alternierenden Multilinearformen kann man
Differentialformen definieren und es zeigt sich, dass man mit Differential-
formen recht einfach rechnen kann; im Kalkül der Differentialformen las-
sen sich Integralsätze und Aussagen über Vektorfelder übersichtlich und
koordinateninvariant darstellen.

Es sei V ein n-dimensionaler Vektorraum über R und k ∈ N; wir setzen

V k := V × ...× V, (k-mal).

Wir erinnern an den Begriff der multilinearen Abbildung den wir in 7.7.1 eingeführt
hatten:

ω : V k → R

heißt multilinear, wenn für λ, µ ∈ R und v, w ∈ V gilt:

ω(..., λv + µw, ...) = λω(..., v, ...) + µω(..., w, ...).

Nach 7.7.2 heißt ω alternierend, wenn gilt:

Aus 1 ≤ j < l ≤ n und vj = vl folgt ω(..., vj , ..., vl, ...) = 0.

Äquivalent dazu ist die Aussage, dass ω bei Vertauschung zweier Argumente das
Vorzeichen ändert:

ω(..., v, ..., w, ...) = −ω(..., w, ..., v, ...).
Nun definieren wir:
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Definition 7.13.1 Eine multilineare alternierende Abbildung w : V k → R heißt
k-Form auf V . Der Vektorraum aller k-Formen wird mit

ΛkV ∗

bezeichnet. Man setzt noch Λ0V ∗ := R; für k = 1 ist Λ1V ∗ = V ∗.

Für linear abhängige Vektoren v1, ..., vk ist ω(v1, ..., vk) = 0 und daher gilt

ΛkV ∗ = 0 für k > n.

Wichtig ist das äußere Produkt oder Dach-Produkt, das wir zuerst für 1-Formen
erklären:

Definition 7.13.2 Für ϕ1, ..., ϕk ∈ V ∗ und v = (v1, ..., vk) ∈ V k setzt man

(ϕ1 ∧ ... ∧ ϕk)(v1, ..., vk) := det

⎛⎝ ϕ1(v1), ..., ϕ1(vk)
· · ·

ϕk(v1), ..., ϕk(vk)

⎞⎠ .
Nach 7.7.2 ist die Determinante multilinear und alternierend und daher ist

ϕ1 ∧ ... ∧ ϕk : V k → R

eine multilineare alternierende Abbildung, also

ϕ1 ∧ ... ∧ ϕk ∈ ΛkV ∗.

Es gilt:

Satz 7.13.3 Wenn (ϕ1, ..., ϕn) eine Basis von V ∗ ist, dann ist

(ϕi1 ∧ ... ∧ ϕik
| 1 ≤ i1 < ... < ik ≤ n)

eine Basis von ΛkV ∗. Daher ist

dimΛkV ∗ =
(
n

k

)
.

Nun kann man das Dach-Produkt für beliebige k-Formen und l-Formen definie-
ren:

Definition 7.13.4 Sei (ϕ1, ..., ϕn) eine Basis von V ∗; für ω ∈ ΛkV ∗ und σ ∈ ΛlV ∗

hat man eine eindeutige Darstellung

ω =
∑
ai1,...,ik

ϕi1 ∧ ... ∧ ϕik
, σ =

∑
bj1,...,jl

ϕj1 ∧ ... ∧ ϕjl
;

man setzt
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ω ∧ σ :=
∑

(i1,..,ik)

∑
(j1,..,jl)

ai1,...,ik
bj1,...,jl

ϕi1 ∧ ... ∧ ϕik
∧ ϕj1 ∧ ... ∧ ϕjl

(Dabei ist jeweils über alle k-Tupel (i1, . . . , ik) mit 1 ≤ i1 < i2 < . . . < ik ≤ n
und über alle l-Tupel (j1, . . . , jl) mit 1 ≤ j1 < . . . < jl ≤ n zu summieren).
Dadurch wird ein Element

ω ∧ σ ∈ Λk+lV ∗

definiert.

7.14 Tensoren

Bei Deformationen elastischer Körper, etwa bei der Biegung eines Balkens
oder bei Erdbeben, treten Spannungskräfte auf; diese werden bezüglich ei-
nes Koordinatensystems durch Grössen Pij beschrieben, die bei Übergang
zu anderen Koordinnaten ein bestimmtes Transformationsverhalten aufwei-
sen. Derartige Tupel bezeichnet man als Tensoren. Sie treten auch bei der
Beschreibung der Trägheit von Körpern auf.
Tensoren spielen auch in Gebieten der Mathematik eine wichtige Rolle, et-
wa in der Differentialgeometrie; dort hat man Fundamentaltensoren gij und
hij oder auch den Riemannschen Krümmungstensor R m

i jk .

Früher hat man Tensoren definiert als Grössen, die bezüglich einer Basis gegeben
sind und sich bei Übergang zu einer anderen Basis in bestimmter Weise transfor-
mieren, nämlich so wie in 7.14.3. Mit Hilfe der multilinearen Algebra kann man
dies so präzisieren:

Definition 7.14.1 Seien p, q ∈ N0; sei V ein Vektorraum über einem KörperK und
V ∗ der duale Vektorraum. Eine multilineare Abbildung

T : V ∗ × . . .× V ∗︸ ︷︷ ︸
p

×V × . . .× V︸ ︷︷ ︸
q

→ K

heißt p-fach kontravarianter und q-fach kovarianter Tensor ( auf V ); kurz ein
(p, q)-Tensor.

Wir setzen
V ∗ p := V ∗ × . . .× V ∗︸ ︷︷ ︸

p

, V q := V × . . .× V︸ ︷︷ ︸
q

;

ein (p,q)-Tensor ist also eine multilineare Abbildung T : V ∗ p × V q → K .

Definition 7.14.2 Es sei V ein endlich-dimensionaler Vektorraum über K und T
ein (p,q)-Tensor. Ist dann (v1, . . . , vn) eine Basis in V und (v1, . . . , vn) die duale
Basis in V ∗ , so heißen

a
j1,...,jp

i1,...,iq
:= T(vj1 , . . . , vjq , vi1 , . . . , vip)

die Komponenten des Tensors T bezüglich (v1, . . . , vn).
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Nun seien (v1, . . . , vn) und (ṽ1, . . . , ṽn) Basen in V , sei T = (tji ) die Transfor-
mationsmatrix von (v1, . . . , vn) zu (ṽ1, . . . , ṽn) und T−1 = (t̂ki ) ; nach 7.12.8
ist

vi = tji ṽj , ṽk = t̂lkvl, vi = t̂ij ṽ
j ṽj = tjl v

l.

Dabei verwenden wir wieder die Summationskonvention wie in 7.12; z. B. bedeu-

tet tji ṽj =
n∑

j=1

tji ṽj .

Dann transformieren sich die Tensorkomponenten folgendermassen:

Satz 7.14.3 (Transformationsformel) Sei

T : V ∗ × . . .× V ∗︸ ︷︷ ︸
p

×V × . . .× V︸ ︷︷ ︸
q

→ K

ein (p, q)-Tensor, seien

a
j1,...,jp

i1,...,iq
die Komponenten von T bezüglich (v1, . . . , vn),

ã
j1,...,jp

i1,...,iq
die Komponenten von T bezüglich (ṽ1, . . . , ṽn) ;

dann gilt:

ã
j1,...,jp

i1,...,iq
= tj1l1 · . . . · tjp

lp
· t̂k1

i1
· . . . t̂kq

iq
· al1,...,lp

k1,...,kq

Beweis. Man setzt ṽi = t̂ki vk, ṽ
j = tjl v

l ein und erhält:

ã
j1,...,jp

i1,...,iq
= T(ṽj1 , . . . , ṽi1 , . . .) =

= T(tj1l1 v
l1 , . . . , t̂k1

i1
vk1 , . . .) = tj1l1 · . . . · t̂k1

i1
· . . . · T(vl1 , . . . , vk1 , . . .) =

= tj1l1 · . . . · tjp

lp
· t̂k1

i1
· . . . tkq

iq
· al1,...,lp

k1,...,kq
.

�

Addition und Multiplikation von Tensoren

Definition 7.14.4 Seien T und S (p, q)-Tensoren; dann definiert man die Summe
so (u ∈ V ∗p, w ∈ V q) :

T + S : V ∗ p × V q → K, (u,w) 	→ T(u,w) + S(u,w).

Man sieht leicht, dass sich dabei die Komponenten addieren.

Definition 7.14.5 Ist T ein (p, q) -Tensor und S ein (r, s)-Tensor, so definiert man
den Produkttensor T ·S folgendermassen: für u ∈ V ∗p, x ∈ V ∗r, w ∈ V q, w ∈ V s,
sei

T · S : V ∗(p+r) × V (q+s) → K, (u, x;w, y) 	→ T(u,w) · S(x, y)
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Dann ist T·S ein (p+r, q+s)-Tensor; sind aj1,...,jp

i1,...,iq
und bl1,...,ls

k1,...,kr
die Komponenten

von T bzw. S bezüglich einer Basis, so hat T · S die Komponenten

c
j1,...,jp,l1,...,ls
i1,...,iq,k1,...,kr

= a
j1,...,jp

i1,...,iq
· bl1,...,ls

k1,...,kr
.

In den folgenden Beispielen sei immer V ein Vektorraum über R ; für die Basen
(vi), (ṽj) und die Transformationsmatrizen verwenden wir die oben eingeführten
Bezeichnungen.
Ausserdem ist wieder δik = 1 für i = k und = 0 sonst; wir setzen auch δki = 1 für
i = k und = 0 sonst.

Beispiel 7.14.6 Die Elemente von V definieren (1, 0)-Tensoren; die Elemente von
V ∗ sind (0, 1)-Tensoren. Wir beschreiben diese beiden Tensoren:
Sei x ∈ V , x = xkvk; dann ist die Abbildung

x : V ∗ → R, u 	→ u(x)

linear und daher ein (1, 0)-Tensor. Die Komponenten bezüglich (vk) sind

x(vk) = vk(x) = xk.

Geht man zu einer neuen Basis (ṽk) über, so ergibt sich:

x̃k = x(ṽk) = x(tki v
i) = tki x

i.

Nun sei u ∈ V ∗, u = uiv
i, dann ist u : V → R linear, d.h. u ist (0, 1)-Tensor, der

bezüglich (vi) die Komponenten ui besitzt. Übergang zu neuer Basis ergibt

ui = u(vi) = tki ũk, ũk = t̂ikui.

Beispiel 7.14.7 Besonders einfach zu beschreiben ist der (1, 1)-Tensor

T : V ∗ × V → R, (u, x) 	→ u(x).

Für jede Basis (v1, . . . , vn) sind die Komponenten gleich

T(vk, vi) = vk(vi) = δki .

Bei Basiswechsel ändern sich die Komponenten δki nicht.
Für x = xivi ∈ V und u = ukv

k ∈ V ∗ ist

u(x) = ukv
k(xivi) = δki ukx

i = ukv
k.

Beispiel 7.14.8 Die k-Formen aus 7.13.1 sind (0, k)-Tensoren.
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Beispiel 7.14.9 Es sei nun (V,< >) ein endlich-dimensionaler euklidischer Vek-
torraum. Das Skalarprodukt ist ein (0, 2)-Tensor

T : V × V → R, (x, y) 	→< x, y >,
man bezeichnet ihn als sogenannten Fundamentaltensors oder metrischen Tensors.
Die Komponenten von T bezüglich (v1, . . . , vn) sind

gik = T(vi, vk) =< vi, vk > .

Für x = xivi und y = ykvk ist also

T(x, y) = gikxiyk.

Aus der Symmetrie des Skalarprodukts folgt

gik − gki = 0;

die Matrix G := (gik) ist invertierbar und positiv definit; es gilt detG > 0. Wir
benötigen diese Matrix in 13.2, insbesondere 13.2.2, bei der Integration auf Unter-
mannigfaltigen und bezeichnen sie dort als Gramsche Matrix.
Im euklidischen Vektorraum V hat man nach Satz 7.12.9 den Isomorphismus

J : V → V ∗, v 	→ v∗, mit v∗ : V → R, x 	→< v, x > .
Ist (vi) eine Basis in V und (vk) die duale Basis, so ist für x ∈ V :

J(vi)(x) =< vi, x >; also J(vi)(vk) =< vi, vk >= gik.

Daraus folgt
J(vi) = gikvk

und daher ist die zu J bezüglich (vi), (vk) gehörende Matrix gleich G = (gik).
Die Abbildung J ordnet also jedem kontravarianten Vektor x = xkvk ∈ V den ko-
varianten Vektor u = uiv

i ∈ V ∗ mit ui = gikxk zu. Ist die Basis (v1, . . . , vn)
orthonormiert (cartesisch, wie man in diesem Zusammenhang auch sagt), so ist
gik = δik und daher ui = xi.
Wir betrachten nun die inverse Matrix G−1 = (gik); es ist also gmigik = δmk . Für
u = uiv

i ∈ V ∗ ist J−1u = xkvk mit ui = gikxk; daraus folgt

gmiui = gmigikx
k = δmk x

k = xm.

Definieren wir nun den (2, 0)-Tensor

S : V ∗ × V ∗ → R, (u,w) 	→< J−1u, J−1w >,

so ergibt sich: Die Komponenten von S bezüglich (vk) sind

S(vi, vk) = gik.
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Beim euklidischen Vektorraum V identifiziert man gelegentlich V mit V ∗ und un-
terscheidet nicht zwischen kontravarianten und kovarianten Vektoren, sondern nur
zwischen den kovarianten Komponenten uk und den kontravarianten xk = gkiui

bzw. zwischen xk und ui = gikxk . Ist die Basis (v1, . . . , vn) orthonormiert , so ist

ui = xi.

Verjüngung eines Tensors
Seien p, q ∈ N, sei V ein n-dimensionaler Vektorraum über einem KörperK und

T : V ∗ p × V q → K

ein (p,q)-Tensor. Wir schreiben nun

(v, w) ∈ V ∗ p mit v ∈ V ∗, w ∈ V ∗ p−1; (y, z) ∈ V q mit y ∈ V, z ∈ V q−1,

also
T : V ∗ p × V q → K, (v, w , y, z) 	→ T(v, w , y, z)..

Definition 7.14.10 Es sei (v1, . . . , vn) eine Basis in V und (v1, . . . , vn) die zu-
gehörige duale Basis in V ∗. Ist dann T ein (p, q)-Tensor , so heißt

T̂ : V ∗p−1 × V q−1 → K, (w, z) 	→ T(vi, w , vi, z)

die Verjüngung von T über die erste kontravariante Variable u und die erste kova-
riante Variable y.

Nach unserer Summationskonvention ist T̂(w, z) =
n∑

i=1

T(vi, w , vi, z).

Bemerkung Der Wert T̂(w, z) ist unabhängig von der Wahl der Basis, denn der
Übergang zu einer neuen Basis (ṽi) ist durch

ṽi = tki vk, ṽi = t̂ilv
l

gegeben. Dann ist

T(ṽi, w , ṽi, z) = t̂ilt
k
i T(vl, w , vk, z) = δkl T(vl, w , vk, z) = T(vk, w , vk, z).

Aus der Definition von T̂ folgt unmittelbar:

Satz 7.14.11 Sind aj1,...,jp

i1,...,iq
die Komponenten von T bezüglich (v1, . . . , vn), so hat

der über v1 und v1 verjüngte Tensor T̂ die Komponenten

a
i, j2,...,jp

i, i2,...,iq
.
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Man beachte, dass hier wieder
n∑

i=1

zu bilden ist; die Komponenten des (p−1, q−1)-

Tensors T̂ hängen also von j2, . . . , jp, i2, . . . , iq) ab.
Die Verjüngung überm ≤ min(p, q) kontravariante undm kovariante Variable ist
analog definiert.
Unter den Begriff Verjüngung fällt auch die Bildung von Invarianten. Dies sind
Tensoren nullter Stufe, also Konstanten. Es ist zweckmässig, die Verjüngung eines
Tensors durch die Verjüngung seiner Komponenten gemäss 7.14.11 zu beschreiben.

Beispiel 7.14.12 Sei T ein (p, q)-Tensor mit Komponenten aj1,...,jp

i1,...,iq
und es seien

u = (u1, . . . , ip) ∈ V ∗p, x = (x1, . . . , xq). Der Produkttensor (s. Beispiel 7.14.6)
Tu1 . . . upx1 . . . x

q ist ein (p+ q, p+ q)-Tensor mit den Komponenten

a
j1,...,jp

i1,...,iq
u1j1 . . . upjpx

1i1 . . . xqiq .

Durch (p+ q)-fache Verjüngung erhält man den Zahlenwert

T(u, v) = aj1,...,jp

i1,...,iq
uj1 . . . upjpx

1i1 . . . xqiq

als Invariante. Man vergleiche hierzu Beispiel 7.14.9.

Beispiel 7.14.13 (Indexziehen) Sei V euklidisch und T ein (p, q)-Tensor. Wir bil-
den < x, y > T(u, v) als Tensorprodukt mit den Komponenten gika

i1,...,jq

i1,...,iq
und

verjüngen zum Beispiel über k und j1. Dann heißen

b
j2,...,jp

i,i1,...,iq
= gika

k,j2,...,jp

i1,...,iq

(p− 1)-fach kontravariante, (q + 1)-fach kovariante Komponenten von T. Entspre-
chend heißen

b
i,j1,...,jp

i2,...,iq
= gikaj1,...,jp

k,i2,...,iq

(p + 1)-fach kontravariante, (q − 1)-fach kovariante Komponenten von T. Dies
entspricht der Einführung der kovarianten und kontravarianten Komponenten eines
Vektors in 7.14.9. Für die Grössen δki , δik gilt nur bei Verwendung orthonomierter
(cartesischer) Basen gijδik = δjk.

Beispiel 7.14.14 In der Differentialgeometrie hat man den zu einer Fläche gehören-
den Fundamentaltensor mit den Komponenten gik und Riemannsche Krümmungs-
tensoren: den (1, 3)-Tensor mit den Komponenten R m

i jk und den (0, 4)-Tensor
mit Riljk . Multiplikation dieser beiden Tensorem und Verjüngung liefert

Riljk = glmR m
i jk.

Für die umgekehrte Richtung gilt: Ist (gik) die zu (gik) inverse Matrix, so ist

R m
i jk := glmRiljk.
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Definition 7.14.15 . Man definiert εijk folgendermassen: Für i, j, k ∈ {1, 2, 3} sei

εijk :=

⎧⎨⎩
1 falls (i, j, k) eine gerade Permutation ist

−1 falls (i, j, k) eine ungerade Permutation ist
0 falls (i, j, k) keine Permutation ist

,

also

εijk :=

⎧⎨⎩ 1 für (i, j, k) ∈ {(123), (231), (312)}
−1 für (i, j, k) ∈ {(213), (321), (132)}

0 falls (i, j, k) keine Permutation von{1, 2, 3}ist

Wenn (i, j, k) eine Permutation σ ∈ S3 ist, dann ist εijk = sign (σ), andernfalls ist
εijk = 0.

Ist dann (v1, v2, v3) eine Basis in einem dreidimensionalen reellen Vektorraum V ,
so heißt der (0,3)-Tensor mit den Komponenten εijk der ε-Tensor oder der total
antisymmetrische Tensor (vgl. [14]).
Daraus folgt, dass diese Komponenten unabhängig von der Wahl der Basis sind,
wenn wir uns auf die Transformationen T mit detT = 1 beschränken. Die
(n, n)Matrizen T mit det T = 1 bilden eine Untergruppe der Gruppe GL(n,R)
der (n, n)-Matrizen mit nichtverschwindender Determinante. In Aufgabe 13.9 ist
die folgende Formel nützlich:

Satz 7.14.16 Es gilt

3∑
k=1

εijkεlmk = εij1εlm1 + εij2εlm2 + εij3εlm3 = δilδjm − δjlδim.

Zwischen dem ε-Tensor und dem in 7.9.38 eingeführten Vektorprodukt in V = R3

besteht ein enger Zusammenhang; aus der Definition von x × y und 7.14.15 ergibt
sich:

Satz 7.14.17 In V = R3 wählen wir die kanonische Basis e1, e2, e3. Seien x, y ∈
V . Da V euklidisch ist, identifizieren wir V und V ∗. Lassen wir nur die Gruppe
SO(n) der speziellen orthogonalen Matrizen T als Transformationsmatrizen zu, so
stimmen insbesondere die kontravarianten Komponenten xi von x ∈ V immer mit
den kovarianten Komponenten xi überein, und es folgt

(x× y)i = (x× y)i = εijkx
jyk.
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Aufgaben

7.1. Geben Sie bei (1)-(8) alle Lösungen des jeweiligen Gleichungssystems an:

(1) 1 3 −2 4
2 1 −1 −1
0 1 −1 1

(2) 1 1 5 24
2 −1 1 3
3 −1 3 12

(3) 1 3 −1 2 7
−1 −2 2 −3 −5

1 1 −3 4 3

(4) 1 2 3 1
4 5 6 −2
7 8 9 2

(5) 1 2 1 0
−1 −3 −3 −1

2 5 4 1
3 7 5 1

(6) 1 −1 3 8 7
2 −3 1 −1 12

−1 2 −3 −6 −10
3 −5 3 2 21

(7) 1 2 3 20
−2 1 −1 10

3 −1 2 18

(8) 1 2 3 20
−2 1 −1 −10

3 −1 2 18

7.2. Fassen Sie die Matrizen (1)-(10) als Elemente von R(2,2) beziehungsweise R(3,3) auf
und bestimmen Sie alle Eigenwerte, geben Sie zu jedem Eigenwert Eigenvektoren an; unter-
suchen Sie , ob die Matrix diagonalisierbar oder trigonalisierbar ist.

(1)

� −2 −6
−6 7

�
(2)

�
2 2

−2 −3

�

(3)

�
0 1
1 0

�
(4)

�
17 1
−4 13

�

(5)

�
4 1
2 3

�
(6)

�
2 −3
2 1

�

(7)

�
� 3 −1 2

1 1 −4
1 −1 1

�
� (8)

�
� 1 0 3

−1 1 −2
0 0 2

�
�

(9)

�
� 1 0 0

−3 1 3
−1 0 2

�
� (10)

�
� 0 0 1

0 0 0
0 0 0

�
�

7.3. Sei f : V → W linear und seien v1, . . . , vk ∈ V . Zeigen Sie: Wenn f(v1), . . . , f(vk)
linear unabhängig sind, dann auch v1, . . . , vk .
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7.4. Wenden Sie auf die Vektoren �
� 1

1
0

�
� ,

�
� 1

0
0

�
� ,

�
� 0

0
1

�
�

das Schmidtsche Orthonormalisierungsverfahren an (im R3 mit dem kanonischen Skalarpro-
dukt).

7.5. Gegeben sei die lineare Abbildung

f : R2 → R2,

�
x1

x2

�
�→
�

2x1 + x2

−4x1 − 2x2

�
.

Geben Sie jeweils eine Basis von Bild f und Ker f an und beschreiben Sie f ◦ f.

7.6. Sei

f : R2 → R2,

�
x1

x2

�
�→
�

3x1 − 2x2

4x1 − 3x2

�
,

Beschreiben Sie Bild f , Ker f , f ◦ f und f−1.

7.7. Geben Sie jeweils die Matrix A ∈ R(2,2) an, die folgende lineare Abbldung
f : R2 → R2 beschreibt:

(a) Spiegelung am Nullpunkt
(b) Spiegelung an der reellen Achse
(c) Spiegelung an der Winkelhalbierenden x1 = x2.

7.8. Sei A =

�
a11 a12

a21 a22

�
∈ K(2,2) und E =

�
1 0
0 1

�
∈ K(2,2); berechnen Sie die Matrix

A2 − (spA) · A + (detA) · E.

Behandeln Sie mit diesem Ergebnis nochmals Aufgabe 7.6 und Aufgabe 7.7.

7.9. Sei A =

�
a11 a12

a21 a22

�
∈ R(2,2), a12 = a21; es gelte a11 > 0 und det A > 0; zeigen

Sie: A ist positiv definit.
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Differentialgleichungen

8.1 Der Existenz- und Eindeutigkeitssatz

Wir behandeln zunächst Differentialgleichungen der Form

y′ = f(x, y)

und zeigen, dass durch jeden Punkt genau eine Lösung geht.Dabei setzt man unter
anderem voraus , dass die Funktion f : D → R mit D ⊂ R2 stetig ist; wie in
9.1.7 erklärt wird, bedeutet dies, dass zu jedem a ∈ D und jedem ε > 0 ein δ > 0
existiert mit |f(x) − f(a)| < ε für alle x ∈ D mit ||x− a|| < δ.
Eine Differentialgleichung y′ = f(x, y) kann man als Vorgabe eines Richtungs-
feldes interpretieren. In jedem Punkt (x, y) ist eine Richtung f(x, y) vorgegeben;
gesucht wird eine Funktion ϕ, deren Graph die durch f gegebene Richtung hat, also
ϕ′(x) = f(x, ϕ(x)).
In der ersten Abbildung ist das Richtungsfeld zu f(x, y) = y skizziert und die
Lösung durch (0, 1), nämlich ϕ(x) = ex;
die zweiten Abbildung zeigt das Richtungsfeld zu f(x, y) = −y2 und die durch
(1, 1) gehende Lösung ϕ(x) = 1

x (vgl. Beispiel 8.2.3).

Zunächst soll der Begriff der Lösung präzisiert werden.

Definition 8.1.1 Seien I und I ′ beliebige Intervalle in R, sei
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f : I × I ′ → R, (x, y) 	→ f(x, y),

eine Funktion und (x0, y0) ∈ I × I ′. Unter einer Lösung der Differentialgleichung
y′ = f(x, y) durch (x0, y0) versteht man eine differenzierbare Funktion

ϕ : [x0 − δ, x0 + δ] → I ′

( dabei sei δ > 0 und [x0 − δ, x0 + δ] ⊂ I), so dass gilt:

ϕ′(x) = f(x, ϕ(x)) für alle x ∈ [x0 − δ, x0 + δ], und ϕ(x0) = y0.

Nun führen wir die Differentialgleichung auf eine Integralgleichung zurück.

Satz 8.1.2 Ist f : I × I ′ → R stetig, so gilt: Eine stetige Funktion ϕ : I → I ′ ist
genau dann Lösung der Differentialgleichung y′ = f(x, y) durch (x0, y0), wenn für
alle x ∈ I gilt:

ϕ(x) = y0 +

x∫
x0

f(t, ϕ(t)) dt.

Beweis. Wir wenden den Hauptsatz der Differential- und Integralrechnung an:
(1) Ist ϕ eine Lösung durch (x0, y0), so gilt ϕ′(x) = f(x, ϕ(x)) und daher
x∫

x0

f(t, ϕ(t)) dt = ϕ(x) − ϕ(x0) = ϕ(x) − y0.

(2) Aus ϕ(x) = y0 +
x∫

x0

f(t, ϕ(t)) dt folgt ϕ′(x) = f(x, ϕ(x)) und ϕ(x0) = y0.

�

Für die weiteren Untersuchungen ist es zweckmässig, nicht nur die Stetigkeit von f
vorauszusetzen, sondern auch noch eine Lipschitz-Bedingung zu fordern (RUDOLF

LIPSCHITZ (1832-1903)):

Definition 8.1.3 Eine Funktion f : I×I ′ → R genügt einer Lipschitz-Bedingung,
wenn es ein L > 0 gibt, so dass für alle x ∈ I und y, ỹ ∈ I ′ gilt:

|f(x, y) − f(x, ỹ)| ≤ L · |y − ỹ|.

L heißt eine Lipschitz-Konstante zu f . Man sagt, f genügt lokal einer Lipschitz-
Bedingung, wenn es zu jedem Punkte von I × I ′ eine Umgebung gibt, in der f einer
Lipschitz-Bedingung genügt.

In vielen Fällen ist leicht zu sehen, dass ∂f
∂y stetig ist (zur Definition vergleiche man

9.2.1). Daher ist folgende Ausssage nützlich:

Satz 8.1.4 Wenn ∂f
∂y existiert und beschränkt ist, so genügt f einer Lipschitz-

Bedingung. Insbesondere genügt jede Funktion f , die stetig partiell nach der zwei-
ten Variablen y differenzierbar ist, lokal einer Lipschitz-Bedingung.
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Beweis. Nach dem Mittelwertsatz existiert zu x ∈ I, y, ỹ ∈ I ′ ein ξ zwischen y, ỹ
mit

f(x, y) − f(x, ỹ) =
∂f

∂y
(x, ξ) · (y − ỹ).

Daraus folgt die Behauptung. �

Nun können wir zeigen, dass durch jeden Punkt höchstens eine Lösung geht:

Satz 8.1.5 (Eindeutigkeitssatz) Die Funktion f : I×I ′ → R sei stetig und genüge
lokal einer Lipschitz-Bedingung; ϕ : I → I ′ und ψ : I → I ′ seien Lösungen von
y′ = f(x, y) . Es existiere ein x0 ∈ I mit ϕ(x0) = ψ(x0) . Dann gilt ϕ(x) = ψ(x)
für alle x ∈ I .
Beweis. Wir zeigen: Ist x0 ∈ [a, b] ⊂ I , so gilt ϕ(x) = ψ(x) für alle x ∈ [a, b]. Wir
zeigen dies für x0 ≤ x ≤ b; die Aussage für a ≤ x ≤ x0 beweist man analog. Es
sei

T := {x ∈ [x0, b]|ϕ(t) = ψ(t) für alle t ∈ [x0, x]}.
Diese Menge ist wegen x0 ∈ T nichtleer und nach oben beschränkt, daher existiert
s := supT . Weil ϕ und ψ stetig sind, gilt ϕ(s) = ψ(s) =: w. Zu zeigen ist s = b.
Wir nehmen an, es sei s < b. Nun wählen wir δ1 > 0 und ε > 0 so, dass gilt: es ist
s+δ1 < b, f genügt in [s, s+δ1]× [w−ε, w+ε] ⊂ I×I ′ einer Lipschitzbedingung
mit einer Lipschitz-Konstanten L und |ϕ(x) − w| < ε, |ψ(x) − w| < ε für alle
x ∈ [s, s+ δ1]. Dann sei δ so gewählt, dass 0 < δ < δ1 und δ < 1

2L ist. Nun setzen
wir

S := sup{|ϕ(t) − ψ(t)||t ∈ [s, s+ δ]}.
Nach 8.1.2 ist

ϕ(x) = w +

x∫
s

f(t, ϕ(t)) dt, ψ(x) = w +

x∫
s

f(t, ψ(t)) dt.

Für x ∈ [s, s+ δ] gilt dann

|ϕ(x)−ψ(x)| ≤
x∫

s

|f(t, ϕ(t))−f(t, ϕ(t))| dt ≤ L·
x∫

s

|ϕ(t)−ψ(t)| dt ≤ L·S·δ ≤ S
2
.

Daraus folgt S ≤ S
2 , also S = 0. Das bedeutet, dass ϕ und ψ auf [x0, s + δ]

übereinstimmen; dies widerspricht der Definition von s. �


ϕ

ψ

sa x0 b

w

s+ δ



202 8 Differentialgleichungen

Nun beweisen wir den Existenzsatz von Picard-Lindelöf (EMILE PICARD (1856-
1941), ERNST LINDELÖF (1870-1946)):

Satz 8.1.6 (Existenzsatz von Picard-Lindelöf) Sind I, I ′ offene Intervalle und ist
f : I×I ′ → R eine stetige Funktion, die lokal einer Lipschitz-Bedingung genügt, so
existiert durch jeden Punkt (x0, y0) ∈ I×I ′ eine Lösung der Differentialgleichung
y′ = f(x, y) .

Beweis. Wir zeigen, dass es eine stetige Funktion ϕ gibt mit

ϕ(x) = y0 +

x∫
x0

f(t, ϕ(t)) dt.

Diese erhalten wir als Grenzwert einer Folge (ϕn). Wir wählen δ1 > 0 und ε > 0
so, dass f in [x0−δ1, x0 +δ1]× [y0−ε, y0 +ε] ⊂ I×I ′ einer Lipschitz-Bedingung
mit einer Lipschitz-Konstanten L genügt. Weil f stetig ist, existiert einM > 0 mit

|f(x, y)| ≤M für (x, y) ∈ [x0 − δ1, x0 + δ1] × [y0 − ε, y0 + ε].

Nun wählen wir δ > 0 so, dass δ ≤ δ1 und δ ≤ ε
M ist. Auf [x0 − δ, x0 + δ] definiert

man die Folge ϕn : [x0 − δ, x0 + δ] → R durch

ϕ0(x) := y0

ϕ1(x) := y0 +
x∫

x0

f(t, ϕ0(t)) dt

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ϕn+1(x) := y0 +
x∫

x0

f(t, ϕn(t)) dt.

Nun zeigen wir durch vollständige Induktion folgende Aussagen
(n ∈ N0, x ∈ [x0 − δ, x0 + δ]):

(1) |ϕn(x) − y0| ≤ ε; daher ist f(x, ϕn(x)) definiert.

Die Behauptung folgt aus

|ϕn+1(x) − y0| ≤
x∫

x0

|f(t, ϕn(t))| dt ≤ δ ·M ≤ ε.

(2) |ϕn+1(x) − ϕn(x)| ≤ M
(n+1)! · Ln · |x− x0|n+1.

Der Induktionsanfang ergibt sich aus

|ϕ1(x) − ϕ0(x)| = |
x∫

x0

f(t, y0) dt| ≤M · |x− x0|.
Wir zeigen jetzt den Induktionsschritt von n auf n+ 1: Es ist



8.1 Der Existenz- und Eindeutigkeitssatz 203

|ϕn+2(x) − ϕn+1(x)| ≤
x∫

x0

|f(t, ϕn+1(t)) − f(t, ϕn(t))| dt ≤

≤ L ·
x∫

x0

|ϕn+1(t) − ϕn(t)| dt ≤ L · M
(n+1)!L

n ·
x∫

x0

|t− x0|n+1 dt =

= M
(n+2)!L

n+1 · |x− x0|n+2

Nun schreiben wir ϕk = y0 +
∑k

n=1(ϕn − ϕn−1). Die Reihe
∞∑

n=1
(ϕn − ϕn−1)

ist gleichmäßig konvergent, denn M
L

∑∞
n=1

1
n!L

nδn ist eine Majorante. Daher
existiert ϕ := lim

n→∞ϕn und ist stetig; aus

|f(x, ϕn(x)) − f(x, ϕ(x))| ≤ L · |ϕn(x) − ϕ(x)|
folgt, dass auch die Folge (f(x, ϕn(x)))n gleichmäßig gegen f(x, ϕ(x)) konver-
giert. Daher darf man Limes und Integration vertauschen:

ϕ(x) = lim
n→∞ϕn+1(x) = y0 + lim

n→∞

x∫
x0

f(t, ϕn(t)) dt = y0 +

x∫
x0

f(t, ϕ(t)) dt.

Aus 8.1.2 folgt, dass ϕ eine Lösung von y′ = f(x, y) durch (x0, y0) ist. �

Bemerkung. Es handelt sich bei dieser Beweismethode um einen Spezialfall eines
Fixpunktsatzes. Man definiert (in einem geeigneten Raum) den Operator T durch

(Tϕ)(x) := y0 +

x∫
x0

f(t, ϕ(t)) dt.

Wegen 8.1.2 ist ϕ genau dann Lösung von y′ = f(x, y), wenn Tϕ = ϕ ist.
Man sucht also einen Fixpunkt von T . Dazu definiert man eine Folge (ϕn)n durch
ϕn+1 := Tϕn, unter geeigneten Voraussetzungen konvergiert (ϕn) gegen einen
Fixpunkt ϕ.

Aus dem Eindeutigkeitssatz ergibt sich zum Beispiel: Wenn f stetig ist und einer
Lipschitzbedingung genügt und wenn f(x, 0) = 0 für alle x gilt, dann ist y ≡ 0
eine Lösung von y′ = f(x, y) und aus dem Eindeutigkeitssatz folgt: Ist ϕ eine
Lösung von y′ = f(x, y), und besitzt ϕ eine Nullstelle, so ist ϕ identisch Null.
Jede nichttriviale Lösung besitzt keine Nullstelle. Zum Beispiel ist ex Lösung von
y′ = y, daher besitzt die Exponentialfunktion keine Nullstelle.

Wir bringen zum Existenz- und Eindeutigkeitssatz zwei Beispiele:

Beispiel 8.1.7 (zum Eindeutigkeitssatz.) Wir geben ein Beispiel einer Differen-
tialgleichung y′ = f(x, y) an, bei der durch (0, 0) mehrere Lösungen gehen.
Setzt man f(x, y) := 3y2/3, so kann man leicht zeigen, dass f keiner Lipschitz-
Bedingung genügt.Die Differentialgleichung
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y′ = 3y2/3

hat die Lösung y = 0, aber auch ϕ(x) = x3 ist eine Lösung durch (0, 0). Man kann
leicht zeigen, dass es unendlich viele Lösungen durch (0, 0) gibt:
Sei a < 0 < b; man definiert ϕ : R → R durch

ϕ(x) :=

⎧⎨⎩
(x− a)3 für x < a

0 für a ≤ x ≤ b
(x− b)3 für b < x

dann ist ϕ eine Lösung dieser Differentialgleichung durch (0, 0).

Beispiel 8.1.8 (zum Existenzsatz.) Nach dem Existenzsatz gibt es durch (x0, y0)
eine Lösung von y′ = f(x, y) , die in einer Umgebung von x0 definiert ist. Im
allgemeinen gibt es keine Lösungen, die in ganz R definiert sind. Dies sieht man an
der Differentialgleichung

y′ = 1 + y2.

Die Funktion f(x, y) = 1 + y2 ist im ganzen R2 definiert, aber die (eindeutig
bestimmte) Lösung durch (0,0) ist ϕ(x) = tgx, und diese ist nur auf dem Intervall
] − π

2 ,+
π
2 [ definiert.

Wenn man einen Überblick über alle Lösungen einer Differentialgleichung haben
will, benötigt man die allgemeine Lösung (vgl. [12]); diese ist folgendermassen
definiert:

Definition 8.1.9 Wenn f stetig ist und lokal einer Lipschitz-Bedingung genügt, so
geht durch jeden Punkt (x0, y0) genau eine Lösung von y′ = f(x, y). Wir bezeich-
nen nun diese Lösung mit ϕ(x; x0, y0) ; sie heißt die allgemeine Lösung. Es ist
also

d
dx
ϕ(x; x0, y0) = f(x, ϕ(x; x0, y0)), ϕ(x0; x0, y0) = y0.

Wir erläutern dies an einem einfachen Beispiel: Die Lösungen von y′ = y sind
y = c · ex, die Lösung durch (x0, y0) ergibt sich mit c := y0 · e−x0 ; somit ist die
allgemeine Lösung

ϕ(x; x0, y0) = y0 · ex−x0 .

8.2 Einige Lösungsmethoden

Wir geben folgende Lösungsmethoden an:
Trennung der Variablen, Substitution, Variation der Konstanten.

Trennung der Variablen .
Wenn man f darstellen kann als Produkt f(x, y) = g(x) · h(y) mit stetigen Funk-
tionen g, h, dann hat man die Differentialgleichung
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dy
dx

= g(x) · h(y).

Man
”
trennt“ nun die Variablen und schreibt, falls h(y) �= 0 ist, symbolisch

dy
h(y)

= g(x) dx.

Die Gleichung ∫
dy
h(y)

=
∫
g(x) dx

ist dann wieder sinnvoll und bedeutet: Ist H eine Stammfunktion von 1
h und G

eine von g, so ist H(y) = G(x); wegen H ′(y) = 1
h(y) �= 0 kann man diese

Gleichung lokal nach y auflösen und erhält eine Lösung y = H−1(G(x)).Dass
ϕ(x) = H−1(G(x)) eine Lösung ist, rechnet man nach:

Es ist H(ϕ(x)) = G(x), also H ′(ϕ(x))ϕ′(x) = G′(x), somit ϕ′(x)
h(ϕ(x)) = g(x).

Wir bringen dazu einige Beispiele:

Beispiel 8.2.1 Für die Differentialgleichung

y′ =
y

x
, x > 0

ergibt sich dy
y = dx

x , also ln |y| = ln |x|+C und daher y = ±eC · x ; die Lösungen
sind also

y = cx mit c ∈ R

und die Lösung durch (x0, y0), x0 > 0, ist y = y0
x0

· x.
Die allgemeine Lösung ist also

ϕ(x; x0, y0) =
y0
x0

· x, x0 > 0.

Beispiel 8.2.2 Um

y′ = −x
y
, y > 0

zu lösen, schreibt man dy
dx = −x

y ; Trennung der Variablen ergibt y dy = −xdx,
daraus folgt 1

2y
2 = − 1

2x
2 + c und somit y2 + x2 = r2 mit r2 = 2c, also

y =
√
r2 − x2 für |x| < r.

Die allgemeine Lösung ist

ϕ(x; x0, y0) =
√
y20 + x20 − x2,

sie ist definiert in {(x; x0, y0) ∈ R3| y0 > 0, |x| <
√
x20 + y20}.

Wir gehen in 11.5 nochmals auf diese Differentialgleichung ein.
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Beispiel 8.2.3 Wir behandeln die Differentialgleichung

y′ = −y2,

das zugehörige Richtungsfeld haben wir oben skizziert.
Die Funktion f(x, y) = −y2 genügt lokal einer Lipschitz-Bedingung und daher
geht durch jeden Punkt (x0, y0) ∈ R2 genau eine Lösung. Man hat die triviale
Lösung y ≡ 0; daraus folgt, dass alle anderen Lösungen keine Nullstelle besitzen.
Trennung der Variablen liefert −y−2dy = dx und y−1 = x + c; also y = 1

x+c mit
c ∈ R.
Die allgemeine Lösung ist somit

ϕ(x; x0, y0) =
1

x− x0 + (1/y0)
für y0 �= 0; ϕ(x; x0, 0) = 0.

Die Funktion x 	→ 1
x−x0+(1/y0) ist für y0 < 0 in ] −∞, x0 − 1

y0
[ definiert und für

y0 > 0 in ]x0 − 1
y0
,+∞[.

Auch dieses Beispiel zeigt, dass es nicht notwendig Lösungen gibt, die in ganz R
definiert sind, auch wenn f(x, y) in der ganzen Ebene R2 definiert ist.

Substitutionsmethode.
In manchen Fällen kann man eine Differentialgleichung durch eine geeignete Sub-
stitution vereinfachen und dann lösen. Ist etwa

y′ = f(
y

x
),

so setzt man v := y
x , also y = xv und y′ = v + xv′; dann hat man v + xv′ = f(v)

oder
dv
dx

=
f(v) − v
x

;

darauf wendet man Trennung der Variablen an.
Wenn man mit dieser Methode wieder y′ = y

x (x �= 0) behandelt, so hat man
v := y

x , y
′ = v + xv′, also v + xv′ = v oder xv′ = 0, also ist v = c konstant und

y = cx.

Variation der Konstanten.
Sind g, h : [a, b] → R stetige Funktionen, so heißt

y′ = g(x) · y + h(x)

eine lineare Differentialgleichung. Die Differentialgleichung y′ = g · y heißt die
zugehörige homogene Gleichung. Um sie zu lösen, wählt man eine Stammfunktion
G zu g und erhält alle Lösungen in der Form

y = c · eG(x) mit c ∈ R.
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Um eine Lösung der inhomogenen Gleichung y′ = g · y + h zu finden, macht man
den Ansatz

y = c(x) · eG(x),

den man als Variation der Konstanten bezeichnet. Man bestimmt die gesuchte Funk-
tion c : [a, b] → R folgendermaßen: Es ist

y′ = c′eG + cgeG = gy + c′eG.

Es soll y′ = gy + h sein, also c′eG = h oder

c′ = he−G;

c erhält man als Stammfunktion von he−G. Ist ỹ eine Lösung von y′ = g · y+ h, so
ist

{ỹ + ceG|c ∈ R}
die Menge aller Lösungen von y′ = g ·y+h. Es genügt also, eine einzige Lösung der
inhomogenen Gleichung zu finden; dann hat man alle Lösungen dieser Gleichung.
Die Methode der Variation der Konstanten erläutern wir am Beispiel:

Beispiel 8.2.4 Es sei
y′ = y + x.

Die homogene Gleichung y′ = y hat die Lösungen y = cex. Variation der Kon-
stanten erfolgt durch den Ansatz y = c(x)ex, also y′ = c′(x)ex + c(x)ex, dies soll
gleich c(x)ex + x sein; somit folgt c′(x)ex = x oder

c′(x) = x · e−x.

Eine Stammfunktion von xe−x ist c(x) = −(x+ 1)e−x und eine Lösung der inho-
mogenen Gleichung ist somit (−(x + 1)e−x)ex = −(x + 1) . Alle Lösungen von
y′ = y + x sind

ce−x − x− 1, c ∈ R.

Die Methode der Variation der Konstanten erfordert oft längere Rechnungen, denn
man benötigt zuerst eine StammfunktionG von g und dann eine von he−G.
Das Beispiel y′ = y + x kann man einfacher behandeln: Man sucht eine Lösung
durch den Ansatz y = ax + b mit gewissen a, b ∈ R. Dies führt auf die Gleichung
a = (ax+ b) +x; daraus folgt a = b und a = −1 und damit erhält man die Lösung
−x− 1und alle Lösungen sind −x− 1 + ce−x.

Wir bringen nun einige Beispiele, bei denen die Variable als Zeit interpretiert wird;
wie üblich bezeichnen wir sie mit t. Die gesuchte Funktion bezeichnet man oft mit
x = x(t) und für die Ableitung schreibt man ẋ := dx

dt .

Beispiel 8.2.5 (Wachstum und Zerfall) Beim einfachsten Modell für einen Wachs-
tumsprozess einer Bakterienkultur nimmt man an, dass die Zunahme dx proportio-
nal zur Zahl x(t) der zur Zeit t vorhandenen Bakterien und auch proportional zur
Zeitspanne dt ist. Man setzt also an
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dx = axdt

mit einer Wachstumskonstanten a > 0. Dies liefert die Differentialgleichung

ẋ = ax

mit den Lösungen x(t) = ceat, c ∈ R, c = x(0). Der Zerfall einer radioaktiven
Substanz wird durch ẋ = −ax mit der Zerfallskonstanten a > 0 beschrieben. Die
Lösungen sind x(t) = ce−at mit c = x(0). Die Zeit T , zu der die Hälfte der zur
Zeit t = 0 vorhandenden Substanz zerfallen ist, bezeichnet man als Halbwertszeit.
Es ist also ce−aT = 1

2c oder

T =
1
a

ln 2.

Beispiel 8.2.6 (Wachstum und Zuwanderung) Wir nehmen nun an, dass zum
Wachstum mit einer Wachstumskonstanten a > 0 (oder Zerfall für a < 0) noch
eine zeitlich konstante Zuwanderung kommt, die durch eine Konstante b > 0 be-
schrieben wird; für b < 0 hat man eine Auswanderung. Dies führt auf die Differen-
tialgleichung

ẋ = ax+ b;

eine Lösung ist die Konstante − b
a , alle Lösungen sind von der Form − b

a + Ceat.
Zu vorgegebenem Anfangswert c > 0 ist

ϕ(t) = − b
a

+ (c+
b

a
)eat

die Lösung mit ϕ(0) = c. Es ist

ϕ̇(t) = a · (c+ b
a
)eat.

Wir untersuchen den Verlauf von ϕ.
Für a > 0, b > 0, also Wachstum und Zuwanderung, ist ϕ streng monoton wach-
send und lim

t→∞ϕ(t) = +∞; die Population wächst unbegrenzt.

Falls a < 0 und b < 0 ist (Zerfall und Auswanderung), ist ϕ̇(t) < 0 und ϕ ist streng
monoton fallend. Die Funktion ϕ hat eine Nullstelle t0 > 0, nämlich

t0 =
1
a

ln
b
a

c+ b
a

.

Die Population nimmt also ständig ab, zum Zeitpunkt t0 ist sie ausgestorben.
Wenn a, b verschiedene Vorzeichen haben, so kann man nicht ohne genauere Unter-
suchung vorhersagen, ob die Population unbegrenzt wächst oder ausstirbt.
Wir betrachten zuerst den Fall a < 0 und b > 0 (Zerfall und Zuwanderung). Es gilt
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lim
t→∞ϕ(t) = − b

a
> 0.

Die Population strebt in jedem Fall, unabhängig vom Anfangswert c, gegen − b
a .

Falls c < − b
a ist, gilt ϕ̇(t) > 0 und ϕ geht monoton wachsend gegen − b

a . Für
b
a < c ist ϕ̇(t) < 0 und ϕ geht monoton fallend gegen − b

a . Für c = − b
a ist ϕ

natürlich konstant.
Wenn a > 0 und b < 0 ist (also Wachstum und Auswanderung), dann gilt für
0 < c < − b

a : Die Funktion ϕ ist streng monoton fallend und besitzt eine Nullstelle
t0 > 0, die wir oben bereits angegeben haben. Dagegen ist die Funktion ϕ für
c > − b

a streng monoton wachsend und lim
t→∞ϕ(t) = +∞. Nun hängt das Verhalten

der Population also vom Anfangswert c ab: Für c < − b
a nimmt sie ab und stirbt aus,

bei c = − b
a ist sie konstant und für c > − b

a wächst sie unbegrenzt.

Beispiel 8.2.7 (Wachstum bei begrenzter Nahrung) Wir nehmen nun an, dass
eine Bakterienkultur zwar durch Vermehrung anwächst; sie kann jedoch nicht un-
begrenzt wachsen, da die Nahrung jeweils nur für N Bakterien ausreicht. Die Zu-
nahme der Kultur ist dann proportional zur Zahl der vorhandenen Bakterien x, aber
auch zu (N − x) und zur Zeitspanne dt. Damit hat man den Ansatz

dx = ax(N − x) dt,

der zur Differentialgleichung

ẋ = ax(N − x)
führt. Trennung der Variablen liefert

−b/a −b/a

t0

t0a > 0, b > 0 a < 0, b < 0

a < 0, b > 0 a > 0, b < 0
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dx

x(N − x) = a
∫

dt.

Die linke Seite formt man durch Partialbruchzerlegung um:

1
x(N − x) =

1
N

(
1

N − x +
1
x

).

Man erhält dann für 0 < x < N : 1
N (− ln(N − x) + lnx) = at + c1 oder

ln x
N−x = a ·N · t+ c1 und damit

c
x

N − x = eaNt

mit einer Konstanten c > 0. Daraus rechnet man x aus:

x =
N

1 + ce−aNt
.

Diese Funktion ist streng monoton wachsend und es gilt: lim
t→+∞ x(t) = N.

Wählt man etwa als Anfangswert x(0) = N
10 , so ist

x =
N

1 + 9e−aNt
.

N/10

N

8.3 Systeme von Differentialgleichungen

Wir behandeln nun Systeme von Differentialgleichungen; diese sind von der Form

y′1 = f1(x, y1, ..., yn)
. . . . . . . . . . . . . . . . . . . .
y′n = fn(x, y1, ..., yn).

Um die Schreibweise zu vereinfachen, führen wir folgende Bezeichnungen ein:
Es sei U ⊂ Rn+1 offen; die Punkte von U schreiben wir nun in der Form
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(x, y1, ..., yn); außerdem sei y := (y1, ..., yn), also (x, y1, ..., yn) = (x, y). Ei-
ne Abbildung f : U → Rn wird durch n Funktionen f1, ..., fn gegeben, also
f : U → Rn, (x, y) 	→ (f1(x, y), ..., fn(x, y)). Das Differentialgleichungssystem
y′1 = f1(x, y1, ..., yn) , . . . , y′n = fn(x, y1, ..., yn) können wir dann in der Form

y′ = f(x, y)

schreiben.

Definition 8.3.1 Sei U ⊂ Rn+1 offen, f : U → Rn stetig , c = (c1, ..., cn) ∈ Rn;
(x0, c) ∈ U. Eine differenzierbare Abbildung

ϕ : [x0 − ε, x0 + ε] → Rn, x 	→ (ϕ1(x), . . . , ϕn(x)),

heißt Lösung von y′ = f(x, y) durch (x0, c), wenn für alle x ∈ [x0 − ε, x0 + ε]
gilt:

(1) (x, ϕ(x)) ∈ U
(2) ϕ′1(x) = f(x, ϕ1(x) , . . . , ϕn(x)) , . . . , ϕ′n(x) = f(x, ϕ1(x) , . . . , ϕn(x)),
(3) ϕ1(x0) = c1 , . . . , ϕn(x0) = cn.

Analog zu 8.1.3 definiert man

Definition 8.3.2 Eine Abbildung f : U → Rn genügt einer Lipschitz-Bedingung,
wenn ein L > 0 existiert mit

‖f(x, y) − f(x, ỹ‖ ≤ L · ‖y − ỹ‖
für alle (x, y), (x, ỹ) ∈ D (Dabei ist ‖y‖ =

√
y21 + ...+ y2n).

f genügt lokal einer Lipschitz-Bedingung, wenn es zu jedem Punkt von U eine Um-
gebung U ′ ⊂ U gibt, in der f einer Lipschitz-Bedingung genügt.

Ähnlich wie in 8.1.5 und 8.1.6 beweist man:

Satz 8.3.3 (Existenz- und Eindeutigkeitssatz) Es sei U ⊂ Rn+1 offen, die Ab-
bildung f : U → Rn sei stetig und genüge lokal einer Lipschitz-Bedingung. Dann
existiert durch jeden Punkt (x0, c) ∈ U genau eine Lösungϕ : [x0−ε, x0+ε] → Rn

der Differentialgleichung y′ = f(x, y).

Lineare Differentialgleichungssysteme

Es sei I ein offenes Intervall; für i, j = 1, ..., n seien aij : I → R und bi : I → R
stetige Funktionen; setzt man

A(x) =

⎛⎝ a11(x), . . . , a1n(x)
. . . . . . . . .

an1(x), . . . , ann(x)

⎞⎠ , b(x) =

⎛⎝ b1(x). . .
bn(x)

⎞⎠ ,
so ist A : I → Rn2

, x 	→ A(x), eine stetige Matrix und b : I → Rn, x 	→ b(x),
ein stetiger Vektor.
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Dann heißt
y′ = A(x)y + b(x)

ein lineares Differentialgleichungssystem; ausführlich geschrieben lautet es:

y′1 = a11(x)y1+ a12(x)y2+ . . .+ a1n(x)yn+ b1(x)
y′2 = a21(x)y1+ a22(x)y2+ . . .+ a2n(x)yn+ b2(x)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
y′n = an1(x)y1+ an2(x)y2+ . . .+ ann(x)yn+ bn(x)

Es ist leicht zu zeigen, dass die Funktion A(x)y + b(x) einer Lipschitz-Bedingung
genügt; somit geht durch jeden Punkt genau eine Lösung. Man kann beweisen, dass
in diesem Fall die Lösungen auf ganz I existieren. Wir setzen

L(A, b) := {ϕ : I → Rn|ϕ ist differenzierbar und ϕ′ = Aϕ+ b};

L(A, b) ist also die Menge aller Lösungen von y′ = Ay + b und L(A, 0) die
Lösungsmenge des zugehörigen homogenen Gleichungssystems y′ = Ay. Es gilt:

Satz 8.3.4 L(A, b) ist ein affiner Raum und L(A, 0) der zugehörige Vektorraum.Ist
ϕ ∈ L(A, b), so ist

L(A; b) = ϕ+ L(A, 0).

Beweis. Aus ϕ ∈ L(A, b) und ψ ∈ L(A, 0) folgt ϕ + ψ ∈ L(A, b), und aus
ϕ, ϕ̃ ∈ L(A, b) folgt ϕ− ϕ̃ ∈ L(A, 0). Daraus ergibt sich die Behauptung. �

Nun soll L(A, 0) näher untersucht werden. Wir erinnern dazu an den Begriff der
linearen Abhängigkeit: ϕ1, ..., ϕk ∈ L(A, 0) heißen linear abhängig, wenn es
(c1, ..., ck) �= (0, ..., 0) gibt mit c1ϕ1 + ...+ ckϕk = 0, also

c1ϕ1(x) + ...+ ckϕk(x) = 0 für alle x ∈ I.

Elemente ϕ1, ..., ϕk ∈ L(A, 0) sind linear abhängig in einem Punkt x0 ∈ I , wenn
es (c1, ..., ck) �= (0, ..., 0) gibt mit c1ϕ1(x0) + ...+ ckϕk(x0) = 0.
Das homogene System y′ = A(x)y hat die triviale Lösung y ≡ 0, aus dem Eindeu-
tigkeitssatz folgt daher: Ist ϕ ∈ L(A, 0) und besitzt ϕ eine Nullstelle, so ist ϕ ≡ 0.
Es gilt der wichtige Satz

Satz 8.3.5 Elemente ϕ1, .., ϕk ∈ L(A, 0) sind genau dann linear abhängig, wenn
sie in einem Punkt x0 ∈ I linear abhängig sind.

Beweis. Es sei x0 ∈ I, (c1, ..., ck) �= (0, ..., 0) und c1ϕ1(x0) + ...+ ckϕk(x0) = 0.
Wir setzen ψ := c1ϕ1 + ... + ckϕk; dann ist ψ ∈ L(A, 0) und ψ(x0) = 0. Aus
dem Eindeutigkeitssatz 8.1.5 folgt ψ(x) = 0 für alle x ∈ I und damit folgt die
Behauptung. �

Definition 8.3.6 Eine Basis (ϕ1, ..., ϕn) vonL(A, 0) bezeichnet man auch als Fun-
damentalsystem zur Differentialgleichung y′ = A(x) · y.
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Satz 8.3.7 Der Vektorraum L(A, 0) hat die Dimension n. Ein n-Tupel (ϕ1, ..., ϕn)
von Elementen ausL(A, 0) ist genau dann ein Fundamentalsystem, wenn ein x0 ∈ I
existiert, so dass ϕ1(x0), ..., ϕn(x0) linear unabhängig (im Rn) sind.

Beweis. Es sei x0 ∈ I und (ϕ1(x0), ..., ϕn(x0)) eine Basis des Rn. Wir zeigen,
dass jedes ψ ∈ L(A, 0) eindeutig als Linearkombination der ϕ1, ..., ϕn darstellbar
ist. Zu ψ(x0) gibt es nach Voraussetzung genau ein n-Tupel (λ1, ..., λn) ∈ Rn mit
ψ(x0) = λ1ϕ1(x0) + ...+ λnϕn(x0). Aus dem Eindeutigkeitssatz 8.1.5 folgt dann
ψ(x) = λ1ϕ1(x) + ... + λnϕn(x) für alle x ∈ I und damit ist die Behauptung
bewiesen. �

Definition 8.3.8 Es sei (ϕ1, ..., ϕn) ein n-Tupel aus L(A, 0); dann heißt

W := det(ϕ1, ..., ϕn)

die Wronski-Determinante von (ϕ1, ..., ϕn).

Aus 8.3.5 folgt:

Satz 8.3.9 Wenn die Wronski-Determinante W zu (ϕ1, ..., ϕn) eine Nullstelle be-
sitzt, dann ist sie identisch Null. (ϕ1, ..., ϕn) ist genau dann ein Fundamentalsystem
zu y′ = A(x)y, wennW nicht identisch Null ist.

Die Wronski-Determinante genügt einer Differentialgleichung ( die Spur vonA hat-
ten wir definiert durch spA := a11 + ...+ ann ) , es gilt:

Satz 8.3.10 IstW die Wronski-Determinante eines n-Tupels (ϕ1, ..., ϕn) aus
L(A, 0), so gilt:

W ′ = (spA(x)) ·W.
Diese Aussage soll für n = 2 bewiesen werden. Es sei

A =
(
a11 a12
a21 a22

)
, ϕ1 =

(
ϕ11

ϕ21

)
, ϕ2 =

(
ϕ12

ϕ22

)
.

Wegen ϕ1, ϕ2 ∈ L(A, 0) ist ϕ′ij = ai1ϕ1j + ai2ϕ2j für i, j = 1, 2. Daher gilt

W ′ = (ϕ′11ϕ22 − ϕ′12ϕ21) + (ϕ11ϕ
′
22 − ϕ12ϕ

′
21) =

= (a11ϕ11ϕ22 + a12ϕ21ϕ22 − a11ϕ12ϕ21 − a12ϕ22ϕ21) +
+(a21ϕ12ϕ11 + a22ϕ22ϕ11 − a21ϕ11ϕ12 − a22ϕ21ϕ12) =

= (a11 + a22)(ϕ11ϕ22 − ϕ12ϕ21) = (spA) ·W.
�


Somit gilt: Ist S : I → R eine Stammfunktion von sp A , so ist

W = c · eS , c ∈ R.

Daraus folgt wieder, dass W entweder keine Nullstelle besitzt oder identisch ver-
schwindet.
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Wir behandeln nun das inhomogene System

y′ = A(x)y + b(x).

Ist ψ : I → Rn eine (
”
spezielle“) Lösung davon, so ist nach 8.3.4

L(A, b) = ψ + L(A, 0).

Wenn (ϕ1, ..., ϕn) ein Fundamentalsystem zu y′ = A(x)y ist, so kann man jede
Lösung des inhomogenen Systems darstellen in der Form

ψ + c1ϕ1 + ...+ cnϕn,

dabei sind die Konstanten c1, ..., cn ∈ R eindeutig bestimmt. Wir definieren nun die
Matrix

φ := (ϕ1, ..., ϕn),

dann ist φ′ = (ϕ′1, ..., ϕ
′
n) , φ′ = A · φ und c1ϕ1 + ...+ cnϕn = φ · c mit c ∈ Rn.

Eine Lösung ψ der inhomogenen Gleichung kann man wieder durch Variation der
Konstanten finden. Mit einer differenzierbaren Abbildung c : I → Rn hat man den
Ansatz ψ = φ · c. Setzt man ψ′ = φ′ · c + φ · c′ = A · φc + φ · c′ = Aψ + φ · c′.
Daraus folgt φ · c′ = b oder

c′ = φ−1 · b;
daraus kann man c berechnen.

Lineare Differentialgleichgungssysteme mit konstanten Koeffizienten
Nun behandeln wir den Spezialfall, dass A konstant ist, also A ∈ R(n,n). Man
rechnet leicht nach:

Satz 8.3.11 Ist λ ein Eigenwert von A ∈ R(n,n) und v ∈ Rn ein Eigenvektor zu λ,
so ist

ϕ : R → Rn, x 	→ eλx · v,
eine Lösung von y′ = Ay.

Beweis. Aus Av = λv folgt (eλxv)′ = eλxλv = eλxAv = A(eλxv). �

Wenn man eine Basis des Rn hat, die aus Eigenvektoren von A besteht, so gilt:

Satz 8.3.12 Ist (v1, ..., vn) eine Basis des Rn, die aus Eigenvektoren von A besteht
und sind λ1, ..., λn die zugehörigen Eigenwerte, so ist

(eλ1xv1, . . . , eλnxvn)

ein Fundamentalsystem zu y′ = A · y.
Beweis. Für j = 1, ..., n seien die Abbildungen ϕj definiert durch

ϕj : R → Rn, x 	→ eλjxvj ,
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zu zeigen ist, dass (ϕ1, ..., ϕn) ein Fundamentalsystem ist. Nach 10.4.8 sind die ϕj

Lösungen von y′ = Ay. Es ist ϕj(0) = vj , daher sind ϕ1(0), ..., ϕn(0) und nach
10.4.2 auch ϕ1, ..., ϕn linear unabhängig. �

Einen anderen Zugang zu diesen Aussagen erhält man, wenn man die Lösungen von
y′ = Ay und y′ = (T−1AT )y vergleicht:

Satz 8.3.13 Es seien A, T ∈ R(n,n), die Matrix T sei invertierbar, dann gilt:
Wenn ψ eine Lösung von y′ = (T−1AT )y ist,
dann ist Tψ eine Lösung von y′ = Ay.

Beweis. Sei ϕ := Tψ; dann ist ϕ′ = Tψ′ = T (T−1AT )ψ = ATψ = Aϕ. �

Diese Aussage liefert folgende Methode: Um y′ = Ay zu lösen, geht man zu einer

”
einfacheren“ Matrix T−1AT über und löst y′ = (T−1AT )y. Mit jeder Lösung
ψ dieser Gleichung erhält man eine Lösung von y′ = Ay, nämlich Tψ. Unter ei-
ner

”
einfacheren “ Matrix kann man etwa eine Diagonalmatrix oder Dreiecksmatrix

verstehen. In 7.10.8 wurde gezeigt, dass jede symmetrische Matrix diagonalisierbar
ist. Wenn man komplexe Matrizen zuläßt, so ist nach 7.8.20 jede Matrix zu einer
Dreiecksmatrix ähnlich.
Falls A diagonalisierbar ist, existiert ein T mit

T−1AT =

⎛⎝λ1 0
. . .

0 λn

⎞⎠ .
Die Gleichung y′ = T−1ATy ist dann

y′1 = λ1y1, y′2 = λ2y2, ......, y′n = λnyn.

Ein Fundamentalsystem ist

(eλ1x · e1, . . . , eλnx · en).

Nach 8.3.13 sind dann eλjx · tj , Lösungen von y′ = Ay; dabei ist tj der j-te Spal-
tenvektor von T und tj ist Eigenvektor von A; damit hat man wieder 8.3.12.

Falls T−1AT eine Dreiecksmatrix ist, löst man die Gleichungen
”
von unten nach

oben“. Wir erläutern dies für n = 2. Es sei also

T−1AT =
(
a11 a12
0 a22

)
,

dann hat man die Differentialgleichung

y′1 = a11y1 + a12y2,
y′2 = a22y2.

Die Lösungen der 2. Gleichung sind c · ea22x mit c ∈ R; dies setzt man in die 1.
Gleichung ein und löst die inhomogene Gleichung
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y′1 = a11y1 + a12cea22x.

Wir bringen noch einige Beispiele. Dabei bezeichnen wir die Variable mit t, die
gesuchten Funktionen mit x(t), y(t) und die Ableitung mit ẋ := dx

dt .

Beispiel 8.3.14 Gegeben seien zwei Bakterienkulturen, die sich gegenseitig bekämpfen.
Die Anzahl der Bakterien zum Zeitpunkt t sei x(t) bzw. y(t). Die

”
Kampfkraft“

wird ausgedrückt durch positive Konstante, die wir in der Form a2, b2 mit a, b ∈ R,
a �= 0, b �= 0, schreiben. Dann hat man ein Differentialgleichungssystem

ẋ = −a2y,
ẏ = −b2x;

also (
ẋ

ẏ

)
= A

(
x

y

)
mit A :=

(
0 −a2

−b2 0

)
.

Die Eigenwerte von A sind a · b und −a · b; ein Eigenvektor zu a · b ist
(−a

b

)
und ein

Eigenvektor zu −a · b ist
(
a
b

)
. Nach Satz 8.3.12 ist((−a
b

)
· eabt ,

(
a

b

)
· e−abt

)
ein Fundamentalsystem. Nun seien positive Anfangswerte A,B vorgegeben; die
Lösung mit x(0) = A und y(0) = B ist dann

x(t) = aDeabt + aCe−abt

y(t) = −bDeabt + bCe−abt

dabei haben wir

C :=
1
2

(
A

a
+
B

b

)
, D :=

1
2

(
A

a
− B
b

)
gesetzt. Wir unterscheiden nun die Fälle D > 0 und D = 0. Für D > 0, also
A
a >

B
b ist x(t) > 0 für alle t ≥ 0; dagegen besitzt y(t) eine Nullstelle t0 > 0,

nämlich

t0 =
1

2ab
ln
C

D
.

Die zweite Population y(t) ist also zum Zeitpunkt t0 ausgestorben. Aus der Diffe-
rentialgleichung folgt ẋ(t0) = 0; die erste Population x(t) besitzt in t0 ein Mini-
mum. Bei unserer Interpretation ist es nicht sinnvoll, den Verlauf für t > t0, also
y(t) < 0, zu betrachten.
Den Fall D < 0 können wir durch Vertauschung der beiden Funktionen auf den
ersten Fall zurückführen.
Nun sei D = 0, also A

a = B
b = C. Dann ist

x(t) = A · e−abt

y(t) = B · e−abt
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die beiden Populationen sterben nie aus, gehen aber monoton fallend gegen 0; der
Quotient x(t)

y(t) ist konstant.

Beispiel 8.3.15 Wie im vorhergehenden Beispiel betrachten wir zwei Populationen
x(t) und y(t), die sich gegenseitig bekämpfen; außerdem nehmen wir an, dass noch
Vermehrung (oder Zerfall) vorliegt. Wir haben dann ein Differentialgleichungssy-
stem

ẋ = ax − by
ẏ = −bx + cy

Die Konstanten a und c interpretieren wir als Wachstum (oder Zerfall) der Populati-
on x bzw. y; die Konstante b > 0 wird als Intensität des gegenseitigen Bekämpfens
aufgefaßt. Wir nehmen jeweils gleiche

”
Kampfkraft“ an, nicht nur wegen der Chan-

cengleichheit, sondern vor allem, um eine symmetrische MatrixA =
(
a −b

−b c
)

zu

erhalten. Nach 7.10.8 besitztA reelle Eigenwerte und es gibt eine Orthonormalbasis
von Eigenvektoren. Die Eigenwerte sind

a+ c±√
(a− c)2 + 4b2

2
.

Wir behandeln als erstes Beispiel

ẋ = 5x − 2y
ẏ = −2x + 2y

Die Eigenwerte sind 6 und 1; ein Eigenvektor zu 6 ist
(−2

1

)
, einer zu 1 ist

(
1
2

)
und

man erhält die Lösungen

x(t) = −2c1e6t + c2et

y(t) = c1e6t + 2c2et

Wählt man gleiche Anfangswerte, etwa x(0) = y(0) = 5, so ist

x(t) = 2e6t + 3et

y(t) = −e6t + 6et

Die erste Population wächst unbegrenzt, die zweite stirbt zum Zeitpunkt t0 = 1
5 ln 6

aus. Dieses Ergebnis war zu erwarten: Bei gleichen Anfangswerten ist die erste Po-
pulation, die den grösseren Wachstumsfaktor hat, überlegen. Gibt man der zweiten
Population einen hinreichend grossen Startvorteil, etwa x(0) = 2 und y(0) = 9, so
ergibt sich

x(t) = −2e6t + 4et

y(t) = e6t + 8et

Nun stirbt die erste Population bei t0 = 1
5 ln 2 aus.
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8.4 Differentialgleichungen höherer Ordnung

Wir behandeln nun Differentialgleichungen n-ter Ordnung, n ≥ 2, von der Form

y(n) = f(x, y, y′, ..., y(n−1)).

Diese lassen sich zurückführen auf ein System von n Differentialgleichungen 1.
Ordnung. Setzt man nämlich

y1 := y, y2 := y′ , . . . , yn := y(n−1),

so ist
y(n) = f(x, y, y′, . . . , y(n−1))

äquivalent zu

y′1 = y2,
y′2 = y3,
· · · · · ·
y′n−1 = yn,
y′n = f(x, y1, y2, . . . , yn).

Der Existenz- und Eindeutigkeitssatz 8.3.3 für Differentialgleichungssysteme liefert
damit eine entsprechende Aussage für Differentialgleichungen höherer Ordnung.
Wir stellen nun die Definitionen und Sätze zusammen.

Definition 8.4.1 Sei U ⊂ Rn+1 offen, f : U → R eine stetige Funktion und
(x0, c0, c1, . . . , cn−1) ∈ U .
Eine n-mal differenzierbare Funktion ϕ : [x0 − δ, x0 + δ] → R heißt Lösung von

y(n) = f(x, y, y′, . . . , y(n−1))

durch (x0, c0, c1, . . . , cn−1) , wenn für alle x ∈ [x0 − δ, x0 + δ] gilt:

(1) (x, ϕ(x), . . . , ϕ(n−1)(x)) ∈ U,
(2) ϕ(n)(x) = f(x, ϕ(x), ϕ′(x), . . . , ϕ(n−1)(x)),
(3) ϕ(x0) = c0, ϕ′(x0) = c1, . . . , ϕ(n−1)(x0) = cn−1.

Satz 8.4.2 (Existenz- und Eindeutigkeitssatz)Sei U ⊂ Rn+1 offen; wenn die
Funktion f : U → R stetig ist und lokal einer Lipschitz-Bedingung genügt,
dann existiert durch jeden Punkt (x0, c0, . . . , cn−1) ∈ U genau eine Lösung der
Differentialgleichung y(n) = f(x, y, y′, . . . , y(n−1)).

Wir erläutern den Fall n = 2, also

y′′ = f(x, y, y′).

Diese Differentialgleichung ist äquivalent zum System 1. Ordnung
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y′1 = y2,
y′2 = f(x, y1, y2);

das heißt: Ist ϕ eine Lösung von y′′ = f(x, y, y′), so ist
(

ϕ
ϕ′
)

eine Lösung des

Systems. Ist umgekehrt
(
ϕ1
ϕ2

)
eine Lösung des Systems, so löst ϕ1 die Differential-

gleichung y′′ = f(x, y, y′).
Lineare Differentialgleichungen n-ter Ordnung mit Koeffizienten a0, . . . , an−1, b,
die auf einem Intervall I stetig sind, schreiben wir in der Form

y(n) + an−1(x)y(n−1) + . . .+ a1(x)y′ + a0(x)y = b(x).

Die Lösungen sind wieder auf ganz I definiert sind; es gilt:

Satz 8.4.3 Sind a0, ..., an−1, b : I → R stetig, so existiert zu x0 ∈ I und
(c0, ..., cn−1) ∈ Rn genau eine Lösung ϕ : I → R von

y(n) + an−1(x)yn−1 + . . .+ a0(x)y = b(x)

mit ϕ(x0) = c0, ϕ′(x0) = c1, . . . , ϕ(n−1)(x0) = cn−1. Die Menge aller Lösungen
der homogenen Gleichung

y(n) + an−1(x)y(n−1) + . . .+ a0(x)y = 0

ist ein n-dimensionaler Vektorraum.

Analog zu 8.3.8 definiert man: Sindϕ1, ..., ϕn Lösungen der homogenen Gleichung,
so heißt

W :=

∣∣∣∣∣∣∣∣
ϕ1, . . . , ϕn

ϕ′1, . . . , ϕ′n
· · · · · · · · ·
ϕ

(n−1)
1 , . . . , ϕ

(n−1)
n

∣∣∣∣∣∣∣∣
die Wronski-Determinante. WennW eine Nullstelle hat, dann istW ≡ 0. Lösungen
ϕ1, . . . , ϕn sind genau dann linear unabhängig, also ein Fundamentalsystem, wenn
W �= 0 ist.

Lineare Differentialgleichungen n-ter Ordnung mit konstanten Koeffizienten

Wir behandeln nun Differentialgleichungen n-ter Ordnung mit konstanten Koeffizi-
enten a0, ..., an−1; die Lösungen sind nun auf ganz R definiert.
Zunächst versuchen wir mit elementaren Mitteln, Lösungen von

y(n) + an−1y
(n−1) + . . .+ a0y = 0

zu finden. Wir machen den Ansatz y = eλx; die k-te Ableitung dieser Funktion ist
λkeλx und somit erhalten wir
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(λn + an−1λ
n−1 + . . .+ a1λ+ a0)eλx = 0.

Ist also λ eine Nullstelle des Polynoms p(t) := tn + an−1t
n−1 + . . .+ a1t+ a0, so

ist eλx eine Lösung der Differentialgleichung. Nun taucht folgendes Problem auf:
Wenn p merhfache Nullstellen hat, dann erhält man auf diese Weise weniger als n
Lösungen, also kein Fundamentalsystem.
Zur weiteren Behandlung ist es zweckmäßig, den Begriff des (linearen) Differen-
tialoperators einzuführen. Wir schreiben

D :=
d
dx
, Dn :=

dn

dxn
,

und für ein Polynom

p(t) = tn + an−1t
n−1 + . . .+ a1t+ a0

setzen wir
L := p(D) = Dn + an−1D

n−1 + . . .+ a1D + a0.

Dann heißt L ein (linearer) Differentialoperator. Für eine beliebig oft differenzier-
bare Funktion f ist

Df = f ′, Dnf = f (n), L(f) = f (n) + an−1f
(n−1) + . . .+ a1f ′ + a0f ;

die Differentialgleichung

y(n) + an−1y
(n−1) + . . .+ a1y′ + a0y = 0, an−1, . . . a0 ∈ R

kann man dann in der Form

Ly = 0 mit L = p(D)

schreiben. Zum Polynom p′(t) =
n∑

k=1

kakt
k−1, an = 1, gehört der Differentialope-

rator

L1 := p′(D), also L1y = ny(n−1) + (n− 1)an−1y
(n−2) + . . .+ a1y.

Wir zeigen:

Satz 8.4.4 Ist f : R → R beliebig oft differenzierbar, so gilt:

L1(f) = L(xf) − xL(f).

Beweis. Mit xf ist die Funktion x 	→ xf(x) gemeint. Es ist (xf)′ = f + xf ′ und
(xf)′′ = 2f ′ + xf ′′; allgemein gilt für k ∈ N:

(xf)(k) = kf (k−1) + xf (k).

Daraus folgt (an = 1) :
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L(xf) =
n∑

k=0

ak(xf)(k) =
n∑

k=0

ak(kf (k−1) + xf (k)) = L1(f) + xL(f).

�

Nun ergibt sich

Satz 8.4.5 Es sei λ eine r-fache Nullstelle des Polynoms

p(t) = tn + an−1t
n−1 + . . .+ a1t+ a0;

dann sind die Funktionen

eλx, x · eλx, . . . , xr−1eλx

Lösungen der Differentialgleichung y(n) + an−1y
(n−1) + . . .+ a0y = 0.

Beweis. Wir setzen L := p(D) und L1 := p′(D); außerdem sei f(x) = eλx. Dann
ist

L(eλx) =
n∑

k=0

akλ
keλx = p(λ) · eλx.

Wenn λ eine Nullstelle von p ist, folgt L(eλx) = 0. Falls λ zweifache Nullstelle von
p ist, gilt auch p′(λ) = 0, daher L1(eλx) = 0und es folgt

L(xeλx) = L1(eλx) + xL(eλx) = 0.

Bei einer dreifachen Nullstelle betrachtet man p′(D) an Stelle von p(D). Auf diese
Weise erhält man die Behauptung. �

Allgemein gilt:

Satz 8.4.6 Es sei p(t) = tn + an−1t
n−1 + . . .+ a0 und L := p(D). Mit paarweise

verschiedenen λ1, ..., λm gelte

p(t) = (t− λ1)r1 · ... · (t− λm)rm .

Dann bilden die folgenden Funktionen ein Fundamentalsystem zu Ly = 0 :

eλ1x, xeλ1x, . . . , xr1−1eλ1x,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
eλmx, xeλmx, . . . , xrm−1eλmx.

Lineare Differentialgleichungen 2. Ordnung mit konstanten Koeffizienten

Beispiel 8.4.7 Wir behandeln nun noch lineare Differentialgleichungen 2. Ordnung
mit konstanten Koeffizienten; diese schreiben wir nun in der Form

y′′ + 2ay′ + by = 0.
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Diese Differentialgleichung bezeichnet man als Schwingungsgleichung. Sie be-
schreibt die Bewegung eines Körpers der Masse 1, der an einer elastischen Feder
befestigt ist; die rücktreibende Kraft ist by, dabei ist y(x) die Entfernung von der
Ruhelage zur Zeit x. Die Reibung ist proportional zur Geschwindigkeit, also −2ay′.
Wir nehmen nun an, daß

a ≥ 0 und b > 0

ist. Das Polynom p(t) := t2 + 2at+ b hat die Nullstellen

λ1 = −a+
√
a2 − b, λ2 = −a−

√
a2 − b.

Es gilt: Für a2 �= b ist
eλ1x, eλ2x

ein Fundamentalsystem; für a2 = b ist es

e−ax, x · e−ax.

ist. Falls a2 > b ist (
”
große“ Reibung), sind λ1, λ2 reell und negativ, alle Lösungen

c1eλ1x + c2eλ2x, c1, c2 ∈ R

gehen gegen Null. Für a2 = b sind

(c1 + c2x)e−ax, c1, c2 ∈ R,

die Lösungen, die ebenfalls gegen Null gehen. Wenn a2 < b ist (
”
kleine“ Reibung),

dann setzt man ω :=
√
b− a2; dann sind λ1 = −a+iω und λ2 = −a−iω komplex

und man hat zunächst komplexwertige Lösungen

e−ax(c1eiωx + c2e−iωx), c1, c2 ∈ C.

Real- und Imaginärteil davon sind ebenfalls Lösungen. Wegen der Eulerschen For-
mel eiωx = cosωx+ i sinωx sind dann die reellen Lösungen

e−ax(c1 · cosωx+ c2 sinωx), c1, c2 ∈ R.

Wir können (c1, c2) �= (0, 0) annehmen und setzen r :=
√
c21 + c22. Wegen

sin(x + ϑ) = cosx sinϑ+ sinx cosϑ

kann man ϑ so wählen, dass gilt:

c1 · cosωx+ c2 · sinωx = r · sinω(x+ ϑ).

Für a2 < b sind also alle reellen Lösungen von der Form

r · e−ax · sinω(x+ ϑ) mit r ≥ 0, ϑ ∈ R.
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Dies stellt für 0 < a <
√
b eine gedämpfte Schwingung dar, die Amplitude geht

unter dem Einfluß der Reibung gegen 0. Die Wellenlänge ist 2π
ω = 2π√

b−a2 . Für

a = 0 ist die Schwingung ungedämpft und die Wellenlänge gleich 2π√
b
.

Wir geben noch die Lösung ϕ von y′′ + 2ay′ + b = 0 an mit

ϕ(0) = 1, ϕ′(0) = 0

für a2 > b ist ϕ(x) = 1
2w (u · evx + v · e−ux)

mit w :=
√
a2 − b, u := w + a, v := w − a

für a2 = b ist ϕ(x) = (1 + ax) · e−ax

für a2 < b ist ϕ(x) = e−ax · (cosωx + a
ω sinωx) mit ω :=

√
b− a2

a2 > b

a2 = b

a2 < b

Beispiel 8.4.8 (Schwingung eines Pendels) Wir behandeln die Schwingung eines
Pendels mit der Masse m , die an einem Faden der Länge l hängt und beschrei-
ben die Bewegung durch den Auslenkungswinkel ϕ(t) als Funktion der Zeit t. Die
Komponente der an m angreifenden Schwerkraft in Richtung der Bahntangente ist
m · g · sinϕ; dabei ist g die Gravitationskonstante. Der Weg ist lϕ, die Beschleuni-
gung ist also l· ..

ϕ und man erhält die Gleichung

ml
d2ϕ

dt2
+mg sinϕ = 0.

Diese Gleichung kann mit elementaren Methoden nicht gelöst werden. Wir behan-
deln sie noch einmal in Beispiel 11.5.8. Man nimmt nun an, dass die Auslenkung ϕ
so klein ist, dass man sinϕ durch ϕ ersetzen kann. Damit erhält man

d2ϕ

dt2
+
g

l
· ϕ = 0.

Wählt man als Anfangsbedingung ϕ(0) = ε; ϕ̇(0) = 0, so ist die Lösung

ϕ(t) = ε · cosω · t mit ω =
√
g

l

und die Schwingungsdauer ist T = 2π
√

l
g .
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Beispiel 8.4.9 (Gekoppelte Pendel) Wir behandeln nun die Schwingung von ge-
koppelten Pendeln: wir betrachten zwei Pendel mit gleicher Masse m und gleicher
Länge l, die durch eine Feder miteinander verbunden sind.
Im Experiment kann man folgendes beobachten: Zur Zeit t = 0 seien beide Pendel
in der Ruhelage ; versetzt man nun das erst Pendel in eine Schwingung, dann beginnt
auch das zweite Pendel, zuerst mit kleiner Amplitude, zu schwingen. Beim ersten
Pendel wird die Amplitude immer kleiner, bis es ruht; die Amplitude bein zweiten
Pendel wird grösser. Dann wiederholt sich der Vorgang in umgekehrter Richtung.
Die Auslenkungswinkel zur Zeit t bezeichnen wir mit ϕ1(t) und ϕ2(t); die Kon-
stante k gibt die Federkraft an.

Wenn wir wieder sinϕ durch ϕ ersetzen, erhalten wir nun die
”
gekoppelten“ Glei-

chungen
..
ϕ1 = − g

l · ϕ1 + k
ml · (ϕ2 − ϕ1)

..
ϕ2 = − g

l · ϕ2 − k
ml · (ϕ2 − ϕ1)

.

Mit

a :=
g

l
, b :=

k

ml

ergibt sich
..
ϕ1 = −(a+ b) · ϕ1 + b · ϕ2
..
ϕ2 = b · ϕ2 − (a+ b) · ϕ2

.

Die Matrix

A =
(−a− b b

b −a− b
)

hat das charakteristische Polynom ist

χA(λ) = (λ+ a+ b)2 − b2, die Eigenwerte sind λ1 = −a; λ2 = −a− 2b.

Ein Eigenvektor zu −a ist
(
1
1

)
; ein Eigenvektor zu −a − 2b ist

(
1

−1

)
; die daraus

gebildete Transformationsmatrix ist T =
(

1 1
1 −1

)
und T−1 = 1

2

(
1 1
1 −1

)
.

Setzt man
(
ψ1
ψ2

)
:= T−1

(
ϕ1
ϕ2

)
, also

ψ1 =
1
2
(ϕ1 + ϕ2), ψ2 =

1
2
(ϕ1 − ϕ2),

ϕ1

ϕ2
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so erhält man die
”
entkoppelten “Differentialgleichungen

..

ψ1 = λ1ψ1
..

ψ2 = λ2ψ2

Daraus ergibt sich mit

ω1 :=
√
a, ω2 :=

√
a+ 2b

die Lösung
ψ1 = c1 sinω1t + c2 cosω2t
ψ2 = c̃1 sinω1t + c̃2 cosω2t

Aus ϕ1 = ψ1 + ψ2, ϕ2 = ψ1 − ψ2 erhält man dann ϕ1, ϕ2.
Wir geben nun folgende Anfangsbedingungen vor:

ϕ1(0) = 2, ϕ̇1(0) = 0, ϕ2(0) = 0, ϕ̇2(0) = 0.

Die Lösung dazu ist
ϕ1(t) = cosω1t + cosω2t
ϕ2(t) = cosω1t − sinω2t

mit

ω1 =
√
g

l
, ω2 =

√
g

l
+

2k
ml
.

Wie in Beispiel 4.3.10 setzen wir nun

ω :=
1
2
(ω1 + ω2), ϑ :=

1
2
(ω1 − ω2),

dann ist die Lösung
ϕ1(t) = 2 cosωt · cosϑt
ϕ2(t) = −2 sinωt · sinϑt.

Wenn die Federkraft k klein ist, hat man wieder wie in Beispiel 4.3.10 eine Schwe-
bung: Das erste Pendel schwingt zur Zeit t = 0 mit Amplitude 2, während das
zweite ruht; dann wird die Amplitude des ersten Pendels kleiner und die des zwei-
ten nimmt zu; zur Zeit t = π

2ϑ hat das zweite Pendel maximale Amplitude 2 und
das erste ruht.

t

t

ϕ1

ϕ2

π/2ϑ
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Aufgaben

8.1. Berechnen Sie die allgemeine Lösung von y′ = y + x − 1.

8.2. Geben Sie die Lösung von y′ = y + ex

x
mit y(1) = 1 an.

8.3. Geben Sie die allgemeine Lösung von y′ = y + ex an.

8.4. Bestimmen Sie die allgemeine Lösung von y′ = y2 + 1.

8.5. Bakterien vermehren sich gemäss dy = aydt, dabei ist y(t) die Anzahl der Bak-
terien zur Zeit t. Zur Bekämpfung der Bakterien wird ausserdem ein Giftstoff zugeführt;
die dadurch verursachte Abnahme der Bakterienzahl sei proportional y und zu t; also
dy = −btydt. Insgesamt ist also dy = aydt − btydt. Damit ergibt sich die Differenti-
algleichung

dy

dt
= ay − bty;

dabei sind a, b positive reelle Zahlen. Nun sei c > 0; geben Sie die Lösung mit y(0) = c an
und beschreiben Sie deren Verlauf für t ≥ 0. Wachsen die Bakterien unbegrenzt oder sterben
Sie zu einem Zeitpunkt t∗ > 0 aus ?

8.6. Lösen Sie y” + 7y′ + 12y = 0.

8.7. Lösen Sie y” + 2y′ + 5y = 0.

8.8. Lösen Sie y” + 4y′ + 4y = 0.

8.9. Lösen Sie
y′
1 = − y1 − 3

√
3 y2

y′
2 = −3

√
3 y1 + 5 y2

8.10. Lösen Sie
y′
1 = (1 + 1

2

√
3)y1 + 1

2
y2

y′
2 = − 3

2
y1 + (1 − 1

2

√
3)y2

Hinweis: Bestimmen Sie für die zugehörige Matrix A einen Eigenvektor t1 mit ‖t1‖ = 1;
geben Sie dann eine orthogonale Matrix T an, deren erste Spalte t1 ist. Berechnen Sie nun
die Dreiecksmatrix T−1AT .
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Differentialrechnung im Rn

9.1 Metrische Räume

Im nächsten Abschnitt untersuchen wir Funktionen f(x1, . . . , xn) von n reellen Va-
riablen x1, . . . , xn; diese sind in Teilmengen des Rn definiert. Daher benötigen wir
die topologischen Grundbegriffe für den Rn ; darunter versteht man vor allem die
Begriffe Umgebung und offene Menge, ausserdem soll die Konvergenz von Folgen
im Rn und die Stetigkeit von Funktionen im Rn behandelt werden.
Dabei stellt sich die Frage, ob der Satz von Bolzano-Weierstrass, dass jede be-
schränkte Folge in R eine konvergente Teilfolge besitzt, auch im Rn gilt. Bei steti-
gen Funktionen f auf abgeschlossenen Intervallen [a, b] ⊂ R hat man die Aussagen,
dass f Maximum und Minimum annimmt und gleichmässig stetig ist. Wie lässt sich
dies auf Funktionen im Rn übertragen?
Wir behandeln diese Fragen allgemein für metrische Räume, damit können wir die-
se Aussagen auch auf normierte Vektorräume, insbesondere Banach- und Hilbert-
räume, anwenden.

Definition 9.1.1 (Metrischer Raum) Unter einer Metrik d auf einer Menge X
versteht man eine Abbildung

d : X ×X → R

mit folgenden Eigenschaften:
(1) d(x, y) = d(y, x) für x, y ∈ X
(2) d(x, z) ≤ d(x, y) + d(y, z) für x, y, z ∈ X
(3) d(x, y) = 0 gilt genau dann, wenn x = y ist.
Das Paar (X, d) heißt dann metrischer Raum, wir schreiben kurz X statt (X, d).

Ist (X, d) ein metrischer Raum , Y eine beliebige Teilmenge von X und definiert
man dY (x, y) := d(x, y) für x, y ∈ Y , so ist (Y, dY ) wieder ein metrischer Raum;
man kann also jede Teilmenge eines metrischen Raumes wieder als metrischen
Raum, versehen mit der induzierten Metrik, auffassen.
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Beispiel 9.1.2 Im Rn haben wir für x = (x1, ..., xn), y = (y1, ..., yn) ∈ Rn das
kanonische Skalarprodukt

〈x, y〉 = xty = x1y1 + ...+ xnyn

und die Norm

‖x‖ =
√
〈x, x〉 =

√
x21 + ...+ x2n.

Damit definiert man die
”
euklidische “Metrik

d(x, y) := ‖x− y‖ =
√

(x1 − y1)2 + ...+ (xn − yn)2.

Wir denken uns Rn immer mit dieser Metrik versehen.
Allgemein gilt: Ist (V, ‖ ‖) ein normierter Vektorraum über R oder C, so definiert
man durch

d(x, y) := ‖x− y‖
eine Metrik in V .

Umgebungen, offene Mengen
Es sei X immer ein metrischer Raum; wir definieren nun die topologischen Grund-
begriffe Umgebung, offene und abgeschlossene Menge:

Definition 9.1.3 Ist p ∈ X und r ∈ R, r > 0, so setzen wir

Ur(p) := {x ∈ X | d(x, p) < r}.

Nun sei p ∈ X , eine Menge V ⊂ X heißt Umgebung von p, wenn ein r > 0
existiert mit Ur(p) ⊂ V .
Eine TeilmengeW ⊂ X heißt offen, wenn zu jedem x ∈ X ein r > 0 existiert mit
Ur(x) ⊂W.
Eine Menge A ⊂ X heißt abgeschlossen, wenn X�A := {x ∈ X | x �∈ A} offen
ist; zu jedem p /∈ A existiert also ein r > 0 mit A ∩ Ur(p) = ∅.
Ist M ⊂ X eine beliebige Menge, so heißt die Vereinigung aller offenen Mengen

W mit W ⊂M der offene Kern vonM , man bezeichnet ihn mit
o

M . Dies ist also
die grösste offene Menge, die inM enthalten ist. Es gilt:

o

M= {p ∈ X | es gibt ein r > 0 mit Ur(p) ⊂M}.

FürM ⊂ X heißt der Durchschnitt aller abgeschlossenen Mengen A mitM ⊂ A
die abgeschlossene Hülle von M ; sie wird mit M̄ bezeichnet. M̄ ist die kleinste
abgeschlossene Menge, dieM enthält. Es gilt:

M̄ = {p ∈ X | für alle r > 0 ist Ur(p) ∩M �= ∅}.
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IstM ⊂ X , so heißt p ∈ X Randpunkt vonM , wenn für jedes r > 0 gilt:

Ur(p) ∩M �= ∅ und Ur(p) ∩ (X\M) �= ∅.

In jeder Umgebung eines Randpunktes vonM liegen also Punkte, die zuM gehören
und Punkte, die nicht zuM gehören. Die Menge aller Randpunkte vonM bezeich-
net man mit ∂M .
Es gilt

o

M = M \ ∂M, M̄ = M ∪ ∂M.
Eine MengeM ⊂ X heißt dicht inX , wennM = X ist.

Konvergenz, Stetigkeit
Nun übertragen wir die Begriffe

”
Konvergenz “und

”
Stetigkeit “:

Definition 9.1.4 (Cauchy-Folge, Konvergenz) Eine Folge (xk)k, xk ∈ X, heißt
konvergent gegen p ∈ X , wenn zu jedem ε > 0 ein Index N(ε) existiert mit
d(xk, p) < ε für k ≥ N(ε). Man schreibt dann lim

k→∞
xk = p.

Eine Folge (xk)k in X heißt Cauchy-Folge, wenn es zu jedem ε > 0 ein N(ε) gibt
mit d(xk, xl) < ε für k, l ≥ N(ε).

Aus der Definition der abgeschlossenen Menge folgt unmittelbar:

Hilfssatz 9.1.5 Ist A ⊂ X abgeschlossen und ist (xk) eine Folge in A, die gegen
ein p ∈ X konvergiert, so folgt p ∈ A.

Weiter gilt:

Hilfssatz 9.1.6 Wenn M ⊂ X dicht in X ist, dann existiert zu jedem p ∈ X eine
Folge (xk) inM , die gegen p konvergiert.

Definition 9.1.7 (Stetigkeit, gleichmässige Stetigkeit) Seien (X, dX) und (Y, dY )
metrische Räume. Eine Abbildung f : X → Y heißt in p ∈ X stetig, wenn es
zu jedem ε > 0 ein δ > 0 gibt, so dass für alle x ∈ X mit dX(x, p) < δ gilt:
dY (f(x), f(p)) < ε.
f heißt stetig, wenn f in jedem Punkt p ∈ X stetig ist.
f heißt gleichmässig stetig, wenn es zu jedem ε > 0 ein δ > 0 gibt, so dass für alle
x, y ∈ X mit dX(x, y) < δ gilt: dY (f(x), f(y)) < ε.

Nun beweisen wir, dass f genau dann stetig ist, wenn das Urbild jeder offenen
Menge wieder offen ist:

Satz 9.1.8 (Charakterisierung der Stetigkeit) Eine Abbildung f : X → Y ist
genau dann stetig, wenn gilt: IstW ⊂ Y eine offene Menge, so ist auch das Urbild
−1

f (W ) = {x ∈ X | f(x) ∈W} offen.
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Beweis. Sei f stetig undW ⊂ Y offen. Ist dann p ∈
−1

f (W ), so ist q := f(p) ∈ W ;
weil W offen ist, existiert ein ε > 0 mit Uε(q) ⊂ W . Wegen der Stetigkeit von f

gibt es ein δ > 0 mit f(Uδ(p)) ⊂ Uε(q) ⊂ W . Daher ist Uδ(p) ⊂
−1

f (W ) und

damit ist gezeigt, dass
−1

f (W ) offen ist.
Nun sei das Urbild jeder offenen MengeW ⊂ Y offen. Ist dann p ∈ X und ε > 0,

so ist W := Uε(f(p)) offen und daher auch
−1

f (W ). Wegen p ∈
−1

f (W ) existiert

ein δ > 0 mit Uδ(p) ⊂
−1

f (W ). Daraus folgt f(Uδ(p)) ⊂ Uε(f(q)) und damit ist
die Stetigkeit von f in p gezeigt. �

Durch Übergang zum Komplement erhält man eine analoge Charakterisierung der
Stetigkeit durch abgeschlossene Mengen:

Satz 9.1.9 Eine Abbildung f : X → Y ist genau dann stetig, wenn gilt: Ist A ⊂ Y
abgeschlossen , so ist auch

−1

f (A) = {x ∈ X | f(x) ∈ A} abgeschlossen.

Daraus ergibt sich: Ist f : X → R eine stetige Funktion, so ist das Nullstellengebil-
de {x ∈ X | f(x) = 0} abgeschlossen; etwas allgemeiner :

Für jedes c ∈ R ist die Niveaumenge Nc :=
−1

f (c) = {x ∈ X | f(x) = c} abge-
schlossen.

Definition 9.1.10 Eine bijektive Abbildung f : X → Y metrischer Räume heißt
topologische Abbildung oder Homöomorphismus , wenn f und f−1 stetig sind.

Kompaktheit

Definition 9.1.11 Eine Teilmenge K eines metrischen Raumes X heißt kompakt,
wenn gilt: Ist J eine Indexmenge und sind Uj ⊂ X offene Mengen, j ∈ J , mit
K ⊂ ⋃

j∈J Uj , so gibt es endlich viele Indizes j1, .., jk ∈ J mitK ⊂ Uj1 ∪ ...∪Ujk
.

Kurz formuliert man dies so: Eine Familie (Uj)j∈J offener Mengen Uj ⊂ X mit⋃
j∈I Uj ⊃ K bezeichnet man als offene Überdeckung von K;K heißt dann kom-

pakt, wenn jede beliebige offene Überdeckung von K eine endliche Überdeckung
enthält.
Es gilt

Hilfssatz 9.1.12 Jede kompakte TeilmengeK ⊂ X ist abgeschlossen.
IstK kompakt und A ⊂ K abgeschlossen, so ist A kompakt.

Zur Charakterisierung der kompakten Mengen im Rn definiert man:

Definition 9.1.13 Eine MengeB ⊂ Rn heißt beschränkt, wenn einR > 0 existiert
mit ‖x‖ ≤ R für alle x ∈ B.

Es gilt der Satz von Heine-Borel ( HEINRICH EDUARD HEINE (1821-1881), FE-
LIX EDUOARD JUSTIN EMILE BOREL (1871-1956)):
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Satz 9.1.14 (Satz von Heine-Borel) Eine MengeK ⊂ Rn ist genau dann kompakt,
wenn sie beschränkt und abgeschlossen ist.

Einfache Beispiele kompakter Mengen im Rn sind:
abgeschlossene Intervalle [a, b] ⊂ R,
abgeschlossene Quader Q ⊂ Rn,
abgeschlossene Kugeln {x ∈ Rn| x21 + . . .+ x2n ≤ r2},
Sphären {x ∈ Rn| x21 + . . .+ x2n = r2}.
Auf kompakten Mengen gilt:

Satz 9.1.15 (Satz von Bolzano-Weierstrass) Ist K eine kompakte Teilmenge des
metrischen RaumesX , so besitzt jede Folge inK eine konvergente Teilfolge.

Für Folgen im Rn gilt:

Hilfssatz 9.1.16 Für xk = (x1k, ..., xnk) ∈ Rn und a = (a1, ..., an) gilt

lim
k→∞

xk = a genau dann, wenn lim
k→∞

x1k = a1, ..., lim
k→∞

xnk = an ist.

Aus dem Cauchy-Kriterium 1.4.20 für Folgen in R folgt dann:

Satz 9.1.17 Eine Folge im Rn ist genau dann konvergent, wenn sie eine Cauchy-
Folge ist.

Wir behandeln nun Abbildungen auf kompakten Mengen. Man kann zeigen:

Satz 9.1.18 Sind X,Y metrische Räume , ist K ⊂ X kompakt und f : X → Y
stetig, so ist f gleichmässig stetig.

Wie zeigen, dass bei stetigen Abbildungen das Bild kompakter Mengen wieder kom-
pakt ist.

Satz 9.1.19 SindX,Y metrische Räume und ist K ⊂ X kompakt und f : K → Y
stetig, so ist f(K) kompakt.

Beweis. Es sei (Vj)j∈J eine offene Überdeckung von f(K); setzt man

Uj :=
−1

f (Vj),

so ist (Uj)j∈J eine offene Überdeckung vonK . Es gibt endlich viele j1, . . . , jk ∈ J
mitK ⊂ Uj1 ∪ . . . ∪ Ujk

. Dann ist f(K) ⊂ Vj1 ∪ . . . ∪ Vjk
. �


Daraus folgt:

Satz 9.1.20 Ist K ⊂ X kompakt, so ist jede stetige Funktion f : K → R be-
schränkt und nimmt Maximum und Minimum an.

Beweis. Nach dem Satz von Heine-Borel ist die kompakte Menge f(K) beschränkt
und abgeschlossen. Weil R vollständig ist, existiert s := sup f(K); weil f(K)
abgeschlossen ist , gilt s ∈ f(K). Somit nimmt f das Maximum an; analog verfährt
man mit dem Minimum. �

Für viele Fragen der Analysis ist der Begriff der Funktion mit kompaktem Träger
wichtig (vgl. dazu auch 3.1.12):
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Definition 9.1.21 Ist f : Rn → R eine Funktion, so heißt

Trf := {x ∈ Rn| f(x) �= 0}
der Träger von f . Den Vektorraum aller stetigen Funktionen mit kompaktem Träger
bezeichnet man mit C0

0(Rn); also

C0
0(Rn) := {f : Rn → R| f ist stetig und besitzt kompakten Träger}.

Zu jedem p /∈ Trf gibt es also eine Umgebung U von p, in der f identisch ver-
schwindet. Nach dem Satz von Heine-Borel hat f genau dann kompakten Träger,
wenn es ein R > 0 gibt mit f(x) = 0 für ‖x‖ > R.

Zusammenhang
Beim Begriff

”
zusammenhängender metrischer Raum “kann man entweder von der

Vorstellung ausgehen, die wir in 9.5.7 aufgreifen: X ist zusammenhängend, wenn
man je zwei Punkte vonX immer durch eine Kurve verbinden kann; oder man stellt
sich

”
nicht zusammenhängend “so vor: X zerfällt in zwei ( oder mehrere ) Teile.

Wir beginnen mit dieser Interpretation:

Definition 9.1.22 Ein metrischer RaumX heißt zusammenhängend , wenn es kei-
ne offenen Mengen A,B ⊂ X gibt mit folgenden Eigenschaften:

X = A ∪B, A ∩B = ∅, A �= ∅, B �= ∅.
Wichtige Beispiele zusammenhängender Räume sind die Intervalle und Quader:

Beispiel 9.1.23 QuaderQ ⊂ Rn sind zusammenhängend; dabei darfQ abgeschlos-
sen, offen, halboffen und auch uneigentlich sein.

Auf zusammenhängenden metrischen Räumen gilt der Zwischenwertsatz:

Satz 9.1.24 (Zwischenwertsatz) Es sei X ein zusammenhängender metrischer
Raum und f : X → R eine stetige Funktion. Es seien p, q ∈ X und es gelte
f(p) < f(q). Dann gibt es zu jedem w mit f(p) < w < f(q) ein ξ ∈ X mit
f(ξ) = w.

Beweis Wir nehmen an, es existiere einw mit f(p) < w < f(q) und f(x) �= w für
alle x ∈ X . Dann sind A := {x ∈ X | f(x) < w} und B := {x ∈ X | f(x) > w}
offen und es ist A ∩B = ∅. Wegen p ∈ A, q ∈ B sind beide nicht-leer. Weil f den
Wert w nicht annimmt, ist A ∪B = X ; dann ist X nicht zusammenhängend. �

Es gilt:

Satz 9.1.25 Es seien X,Y metrische Räume und f : X → Y stetig und surjektiv.
WennX zusammenhängend ist, dann auch Y .

Beweis Wenn Y nicht zusammenhängend ist, dann gibt es offene Mengen A,B in

Y wie in 9.1.22. Dann setzt man Ã :=
−1

f (A) und B̃ :=
−1

f (B) und prüft leicht
nach, dass auch X nicht zusammenhängend ist. �

Nützlich ist der folgende einfache Hilfssatz:
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Hilfssatz 9.1.26 Ist X zusammenhängend und ist M eine nicht-leere offene und
abgeschlossene Teilmenge vonX , so folgt M = X .

Beweis. Man setzt A := M und B := X \M ; dann sind A,B offen und A �= ∅,
A∪B = X , A∩B = ∅. WeilX zusammenhängend ist, folgtB = ∅, alsoM = X .

�

Daraus ergibt sich folgende Aussage:

Satz 9.1.27 Ist X zusammenhängend und g : X → R eine lokal-konstante Funk-
tion, so ist g konstant; dabei heißt g lokal-konstant, wenn es zu jedem x ∈ X eine
Umgebung U von x gibt, so dass g|U ∩X konstant ist.

Beweis. Wir wählen ein p ∈ X und setzenM := {x ∈ X | g(x) = g(p)}. Dann ist
M offen und abgeschlossen und p ∈ M . Daraus folgtM = X , also g(x) = g(p)
für alle x ∈ X . �


9.2 Differenzierbare Funktionen

Wenn man den Begriff der Differenzierbarkeit für Funktionen f(x1, ..., xn) einführen
will, so ist es naheliegend, dies folgendermaßen auf die Differenzierbarkeit von
Funktionen einer Variablen zurückzuführen:
Für fest gewählte x2, ..., xn ist x1 	→ f(x1, x2, ..., xn) eine Funktion einer Varia-
blen, deren Ableitung man jetzt mit ∂f

∂x1
bezeichnet. Auf diese Weise kommt man

zum Begriff der partiellen Differenzierbarkeit.

Definition 9.2.1 Sei D ⊂ Rn offen und p ∈ D. Eine Funktion f : D → R heißt in
p ∈ D partiell nach xi differenzierbar, wenn

∂f

∂xi
(p) := lim

h→0

f(p1, ..., pi−1, pi + h, pi+1, ..., pn) − f(p)
h

existiert. Die Funktion f heißt partiell differenzierbar, wenn sie in jedem Punkt
vonD partiell nach x1, ..., xn differenzierbar ist. Sie heißt stetig partiell differen-
zierbar, wenn darüber hinaus die ∂f

∂x1
, ..., ∂f

∂xn
stetig sind.

Wir erläutern den Begriff der partiellen Ableitung einem Beispiel, an dem wir zei-
gen, wie man Funktionen von mehreren Variablen untersucht.

Beispiel 9.2.2 Es sei

f : R2 → R, x 	→
{ 2xy

x2+y2 für (x, y) �= (0, 0)
0 für (x, y) = (0, 0)

Es ist leicht zu sehen, dass diese Funktion partiell differenzierbar ist:

Für y �= 0 ist ∂f
∂x (x, y) = 2y(y2−x2)

(x2+y2)2 und für y = 0 ist ∂f
∂x (x, 0) = 0.

Analog gilt ∂f
∂y (x, y) = 2x(x2−y2)

(x2+y2)2 für x �= 0 und ∂f
∂y (0, y) = 0.
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Nun betrachten wir diese Funktion auf den achsenparallelen Geraden:
Für jedes y ∈ R2 ist R → R , x 	→ f(x, y), stetig, denn für y �= 0 ist dies
x 	→ 2xy

x2+y2 ; für y = 0 hat man die stetige Funktion x 	→ 0.
Für festes x ergibt sich wegen der Symmetrie von f ebenso , dass y 	→ f(x, y)
stetig ist. Die Funktion ist also als Funktion von jeweils einer Variablen stetig.
Es ist jedoch leicht zu zeigen, dass f unstetig ist: Für x �= 0 ist f(x, x) = 1; wegen
f(0, 0) = 0 ist f im Nullpunkt unstetig.
Wir untersuchen f noch auf den Geraden y = cx durch den Nullpunkt. Sei c ∈ R,
für x �= 0 ist f(x, cx) = 2c

1+c2 . Auf diesen Geraden ohne (0, 0) ist also f konstant;
damit erhält man die Niveaumengen von f .
In der Abbildung sind die Funktionen x 	→ 2xy

x2+y2 für y = 0.5, y = 1, y = 1.5
eingezeichnet; auserdem sind einige Niveaumengen von f dasrgestellt.

Wir geben den Verlauf der Funktionen x 	→ 2xy
x2+y2 für y �= 0 noch genauer an:

Das Minimum −1 wird im Punkt −y und das Maximum +1 in +y angenommen;
die Steigung im Nullpunkt ist ∂f

∂x (0, y) = 2
y .

Zu jedem ε > 0 und c ∈ R existiert ein x ∈ R mit (x, cx) ∈ Uε(0, 0) und
daher gilt f(Uε(0, 0)) = [−1,+1] für jedes ε > 0. Daraus ergibt sich wieder, dass
f unstetig ist.

Dieses Beispiel zeigt, dass aus der partiellen Differenzierbarkeit noch nicht einmal
die Stetigkeit folgt. Man führt daher einen schärferen Begriff ein; dazu geht man
aus von der in 3.1.3 hergeleiteten Formel

f(x) = f(x0) + c(x− x0) + (x− x0)ϕ(x), lim
x→x0

ϕ(x) = 0

mit c = f ′(x0). Man definiert:

Definition 9.2.3 Sei D ⊂ Rn offen und p ∈ D. Eine Funktion f : D → R heißt
in p ∈ D differenzierbar, wenn es ein c = (c1, ..., cn) ∈ Rn und eine Funktion
ϕ : D → R gibt mit

f(x) = f(p) +
n∑

j=1

cj(xj − pj) + ‖x− p‖ · ϕ(x) für x ∈ D und lim
x→p
ϕ(x) = 0.

Die Funktion f heißt differenzierbar, wenn sie in jedem Punkt vonD differenzier-
bar ist (Man bezeichnet dies auch als

”
totale“ Differenzierbarkeit).

0.5
0

1

0.7

1.5

1
1

0
0.7−0.7−1

−0.7

0
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Setzt man h := x− p und verwendet man das Skalarprodukt

〈c, h〉 =
n∑

j=1

cj(xj − pj),

so kann man dies auch so schreiben:

f(p+ h) = f(p) + 〈c, h〉 + ‖h‖ · ϕ(p+ h), lim
h→0
ϕ(p+ h) = 0.

Setzt man ψ(h) := ‖h‖ · ϕ(p+ h), so lautet die Differenzierbarkeitsbedingung:

f(p+ h) = f(p) + 〈c, h〉 + ψ(h), lim
h→0

ψ(h)
‖h‖ = 0,

dabei ist ψ : U → R in einer offenen Umgebung von 0 ∈ Rn definiert .
Offensichtlich ist jede differenzierbare Funktion stetig.
Um zu zeigen, dass sie auch partiell differenzierbar ist, setzt man h = (h1, 0, ..., 0)
mit h1 �= 0. Dann ist

f(p1 + h1, p2, ..., pn) = f(p) + c1h1 + |h1| · ϕ(p+ h),

also f(p1+h1,...)−f(p)
h1

= c1 + |h1|
h1
ϕ(p + h), und daraus folgt, dass ∂f

∂x1
(p) existiert

und gleich c1 ist. Auf diese Weise ergibt sich:

Satz 9.2.4 Jede differenzierbare Funktion ist partiell differenzierbar und für den in
9.2.3 definierten Vektor c = (c1, ..., cn) gilt: cj = ∂f

∂xj
(p) für j = 1, ..., n.

Definition 9.2.5 Ist f partiell differenzierbar, so heißt

grad f := (
∂f

∂x1
, . . . ,

∂f

∂xn
)

der Gradient von f . Es ist also c = grad f(p).

Wenn man die Differenzierbarkeit einer gegebenen Funktion nachweisen will, ist es
oft recht umständlich, die in der Definition auftretenden Grössen c und ϕ zu unter-
suchen. In vielen Fällen sieht man sofort, dass die partiellen Ableitungen existieren
und stetig sind. Wir leiten nun ein Kriterium für die Differenzierbarkeit her: Wenn
die partiellen Ableitungen existieren und stetig sind, dann ist die Funktion differen-
zierbar.

Satz 9.2.6 Sei D ⊂ Rn offen und f : D → R stetig partiell differenzierbar. Dann
ist f differenzierbar.

Beweis. Zur Vereinfachung führen wir den Beweis für n = 2. Es ist zu zeigen, dass
f in jedem Punkt p ∈ D ⊂ R2 differenzierbar ist. Wir dürfen p = (0, 0) annehmen.
Es gibt ein r > 0 mit Ur(0, 0) ⊂ D; für (x, y) ∈ Ur(0, 0) ist
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f(x, y) = f(0, 0) + (f(x, 0) − f(0, 0)) + (f(x, y) − f(x, 0)).

Wendet man den Mittelwertsatz der Differentialrechnung auf x 	→ f(x, 0) an, so
folgt: Es gibt ein t1 ∈ [0, 1] mit

f(x, 0) − f(0, 0) = x · ∂f
∂x

(t1x, 0).

Analog folgt die Existenz von t2 ∈ [0, 1] mit

f(x, y) − f(x, 0) = y · ∂f
∂y

(x, t2y).

Setzt man

ψ(x, y) := x · (∂f
∂x

(t1x, 0) − ∂f
∂x

(0, 0)) + y(
∂f

∂y
(x, t2y) − ∂f

∂x
(0, 0)),

so ist

f(x, y) = f(0, 0) + x
∂f

∂x
(0, 0) + y

∂f

∂y
(0, 0) + ψ(x, y)

und aus der Stetigkeit der partiellen Ableitungen sowie aus | x
‖(x,y)‖ | ≤ 1 und

| y
‖(x,y)‖ | ≤ 1 folgt: lim

(x,y)→0

ψ(x,y)
‖(x,y)‖ = 0 und daher ist f in 0 differenzierbar. �


Wir behandeln nun partielle Ableitungen höherer Ordnung.

Definition 9.2.7 f heißt zweimal partiell differenzierbar, wenn ∂f
∂xj

für j = 1, . . . , n
existieren und ebenfalls partiell differenzierbar sind; man setzt

fxixj :=
∂2f

∂xi∂xj
:=
∂

∂xi

∂f

∂xj
fxixi :=

∂2f

∂x2i
:=
∂

∂xi

∂f

∂xi
.

f heißt zweimal stetig partiell differenzierbar, wenn alle ∂2f
∂xi∂xj

stetig sind.

Wir beweisen nun den wichtigen Satz von H. A. Schwarz , der besagt, dass man un-
ter geeigneten Voraussetzungen die Reihenfolge der Ableitungen vertauschen darf
(KARL HERMANN AMANDUS SCHWARZ (1843 - 1921 )):

Satz 9.2.8 (Satz von H. A.SCHWARZ) Wenn f zweimal stetig partiell differenzier-
bar ist, dann gilt für i, j = 1, ..., n:

∂2f

∂xi∂xj
=
∂2f

∂xj∂xi
.

Beweis. Wir führen den Beweis für n = 2 und zeigen, dass die Gleichung im Punkt
p = (0, 0) richtig ist. Sei also f in D := {(x, y) ∈ R2| |x| < ε, |y| < ε} definiert
und dort zweimal stetig partiell differenzierbar. Sei |y| < ε, dann wenden wir den
Mittelwertsatz der Differentialrechnung auf x 	→ f(x, y) − f(x, 0) an: Es existiert
ein ξ mit |ξ| < |x| und
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(f(x, y) − f(x, 0)) − (f(0, y) − f(0, 0)) = x
∂f

∂x
(ξ, y) − x∂f

∂x
(ξ, 0).

Für y 	→ ∂f
∂x (ξ, y) liefert der Mittelwertsatz

∂f

∂x
(ξ, y) − ∂f

∂x
(ξ, 0) = y · ∂

∂y

∂f

∂x
(ξ, η) mit |η| < |y|.

Damit ergibt sich:

(f(x, y) − f(x, 0)) − (f(0, y) − f(0, 0)) = xy
∂

∂y

∂f

∂x
(ξ, η).

Analog zeigt man: Zu (x, y) existiert (ξ̃, η̃) mit |ξ̃| < |x|, |η̃| < |y| und

(f(x, y) − f(0, y)) − (f(x, 0) − f(0, 0)) = yx
∂

∂x

∂f

∂y
(ξ̃, η̃).

Für x · y �= 0 folgt daraus

∂

∂y

∂f

∂x
(ξ, η) =

∂

∂x

∂f

∂y
(ξ̃, η̃).

Wenn (x, y) gegen 0, 0) geht, dann auch (ξ, η) und (ξ̃, η̃) und wegen der Stetigkeit
der zweiten partiellen Ableitungen folgt

∂

∂y

∂f

∂x
(0, 0) =

∂

∂x

∂f

∂y
(0, 0).

�

Als weiteres Beispiel für die Untersuchung von Funktionen zweier Variablen be-
handeln noch eine Funktion , die in der Thermodynamik eine Rolle spielt:

Beispiel 9.2.9 (Zur VAN DER WAALschen Gleichung)

Die VAN DER WAALsche Zustandsgleichung für den Druck p, das Volumen v und
die Temperatur T eines Gases lautet (vgl. [22]):(

p+
a

v2

)
(v − b) = RT ;

dabei ist R die alllgemeine Gaskonstante; die positiven Konstanten a, b hängen vom
jeweiligen Gas ab. Für v > b ist dann

p(v, T ) =
RT

v − b −
a

v2
,

∂p

∂v
(v, T ) = − RT

(v − b)2 +
2a
v3
,

∂2p

∂v2
(v, T ) =

2RT
(v − b)3 − 6a

v4
.
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Wir untersuchen die Isothermen v 	→ p(v, T ) und zeigen:
Es gibt eine kritische Temperatur Tk mit folgenden Eigenschaften:
Für T ≥ Tk sind die Isothermen streng monoton fallend.
Für T < Tk gibt es Intervalle, in denen die Isotherme monoton steigt.
Zunächst macht man sich eine Vorstellung vom ungefähren Verlauf der Isothermen:
Für grosse T überwiegt der Summand RT

v−b und die Isothermen sind angenähert mo-
noton fallende Hyperbelstücke. Für alle T gilt: Wenn v nahe beim linken Randpunkt
b ist (v > b), dann ist ∂p

∂v < 0; dies gilt ebenso für sehr grosse v. Dort fallen also
alle Isothermen.
Nun untersuchen wir die Funktion genauer: Die kritische Temperatur findet man so:
Man berechnet einen kritischen Punkt (vk, pk, Tk), in dem sowohl ∂p

∂v als auch ∂2p
∂v2

verschwindet. Zu lösen sind also

RTk

(vk − b)2 =
2a
v3k
,

2RTk

(vk − b)3 =
6a
v4k
.

Der Quotient dieser beiden Gleichungen liefert vk, durch Einsetzen in die erste Glei-
chung erhält man dann Tk und schliesslich pk; es ergibt sich

vk = 3b, Tk =
8a

27Rb
, pk =

a

27b2
.

Für die weitere Rechnung ist es zweckmässig,

ṽ :=
v

vk
, T̃ :=

T

Tk
, p̃ :=

p

pk

zu setzen; wegen v > b ist ṽ > 1
3 . Die VAN DER WAALSsche Gleichung wird dann(
p̃+

3
ṽ2

)
(3ṽ − 1) = 8T̃

und der zugehörige kritische Punkt ist (1, 1, 1). Für ṽ > 1
3 gilt:

p̃(ṽ, T̃ ) =
8T̃

3ṽ − 1
− 3
ṽ2
,
∂p̃

∂ṽ
(ṽ, T̃ ) = − 24T̃

(3ṽ − 1)2
+

6
ṽ3
.

Nun setzt man T̃ = 1 und rechnet aus:

∂p̃

∂ṽ
(ṽ, 1) = − 6

ṽ3(3ṽ − 1)2
(
4ṽ3 − 9ṽ2 + 6ṽ − 1

)
= −6 · (4ṽ − 1)(ṽ − 1)2

ṽ3(3ṽ − 1)2
.

Dies ist = 0 für ṽ = 1 und sonst < 0.
Für T̃ > 1 und ṽ > 1

3 ist dann ∂p̃
∂ṽ (ṽ, T̃ ) < 0.

Nun wählt man ṽ = 1 und T̃ < 1; dann ergibt sich

∂p̃

∂ṽ
(1, T̃ ) = 6(1 − T̃ ) > 0.
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Bei T̃ < 1 gibt es also immer eine Umgebung von ṽ = 1, in der die Isotherme
wächst.
Wir kehren nun zur ursprünglichen Bezeichnung v, p, T zurück; wir haben gezeigt:
Für T ≥ Tk sind alle Isothermen streng monoton fallend; dagegen gibt es bei
Temperaturen T < Tk unterhalb der kritischen Temperatur Tk immer ein Intervall
um vk, in dem die Isotherme streng monoton wächst.
Die physikalische Bedeutung dieser Aussagen ist folgende (vgl. [22]): Oberhalb
der kritischen Temperatur tritt auch bei sehr hohem Druck keine Verflüssigung ein.
Wenn dagegen die Temperatur T kleiner als Tk ist, dann würde in der Nähe von
vk bei einer Verkleinerung des Volumens der Druck sinken. Dies führt zu einer
teilweisen Verflüssigung des Gases.

Differenzierbare Abbildungen

Nun behandeln wir differenzierbare Abbildungen f : D → Rm mit D ⊂ Rn,
ausführlich geschrieben

f : D → Rm, (x1, . . . , xn) 	→
⎛⎝ f1(x1, . . . , xn)

· · · · · ·
fm(x1, . . . , xn)

⎞⎠ .
Definition 9.2.10 SeiD ⊂ Rn offen; eine Abbildung f : D → Rm heißt differen-
zierbar, wenn es die Funktionen fi : D → R sind, i = 1, ...,m. Die Matrix

Jf (x) :=

⎛⎝ ∂f1
∂x1

(x), . . . , ∂f1
∂xn

(x)
· · · · · ·

∂fm

∂x1
(x), . . . , ∂fm

∂xn
(x)

⎞⎠
heißt die Funktionalmatrix oder Jacobi-Matrix von f in x.

vk

pk

Tk

v

p
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Die Zeilen der Funktionalmatrix sind also die Gradienten der fi; für m = 1 ist
Jf = gradf.
Wenn die Funktionen fi in x ∈ D differenzierbar sind, so ist für i = 1, . . . ,m :

fi(x + ξ) = fi(x) +
n∑

j=1

aij · ξj + ψi(ξ)

mit aij = ∂fi

∂xj
(x). Für die Abbildung ψ :=

⎛⎝ ψ1

· · ·
ψm

⎞⎠ ist lim
ξ→0

ψ(ξ)
‖ξ‖ = 0; somit ergibt

sich:

Satz 9.2.11 Eine Abbildung f : D → Rm ist in x ∈ D genau dann differenzierbar,
wenn eine (m×n)-MatrixA = (aij) und eine in einer UmgebungU von 0,U ⊂ Rn,
definierte Abbildung ψ : U → Rm existiert mit

f(x+ ξ) = f(x) +A · ξ + ψ(ξ) für ξ ∈ U und lim
ξ→0

ψ(ξ)
‖ξ‖ = 0.

Dabei ist A = Jf (x) die Jacobi-Matrix von f im Punkt x.

Nun erläutern wir die wichtige Kettenregel, die besagt, dass die Jacobi-Matrix von
f ◦ g gleich dem Produkt zu f und g gehörenden Jacobi-Matrizen ist.

Satz 9.2.12 (Kettenregel) Seien D ⊂ Rk, D̃ ⊂ Rn offen, f : D̃ → Rm und
g : D → Rn differenzierbar und g(D) ⊂ D̃. Dann ist auch f ◦ g differenzierbar
und für x ∈ D gilt:

Jf◦g(x) = Jf (g(x)) · Jg(x).

Wir skizzieren den Beweis, ausführliche Beweise findet man in [7] und [17]. Es sei
x ∈ D, y := g(x), A := Jf (y), B := Jg(x). Dann ist

f(y + η) = f(y) +Aη + ϕ(η)
g(x+ ξ) = g(x) +Bξ + ψ(ξ)

mit lim
η→0

ϕ(η)
‖η‖ = 0, lim

ξ→0

ψ(ξ)
‖ξ‖ = 0.

Setzt man η := g(x+ ξ) − y, dann ist η = Bξ + ψ(ξ), und man erhält

(f ◦ g)(x+ ξ) = f(g(x+ ξ)) = f(y + η) =
= f(g(x)) +A · (Bξ + ψ(ξ)) + ϕ(Bξ + ψ(ξ)) =
= (f ◦ g)(x) + (A ·B)ξ + χ(ξ)

mit χ(ξ) := Aψ(ξ) + ϕ(Bξ + ψ(ξ)). Man beweist nun, dass lim
ξ→0

χ(ξ)
‖ξ‖ = 0 ist ;

daraus folgt die Behauptung. �
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Wir erläutern die Aussage der Kettenregel: Ausführlich geschrieben hat man die
Abbildungen

f(y) =

⎛⎝ f1(y1, . . . , yn)
· · ·

fm(y1, . . . , yn)

⎞⎠ , g(x) =

⎛⎝ g1(x1, . . . , xk)
· · ·

gn(x1, . . . , xk)

⎞⎠
und für h := f ◦ g ist

h(x) =

⎛⎝ f1(g1(x1, . . . , xk), . . . , gn(x1, . . . , xk))
· · · · · ·

fm(g1(x1, . . . , xk), . . . , gn(x1, . . . , xk))

⎞⎠ .
Die Aussage der Kettenregel bedeutet :

Satz 9.2.13 (Kettenregel) Für j = 1, . . . , k, und l = 1, . . . ,m gilt:

∂hl

∂xj
(x1, ..., xk) =

n∑
i=1

∂fl
∂yi

(g1(x1, ..., xk), . . . , gn(x1, ..., xk)) · ∂gi
∂xj

(x1, ..., xk).

Fürm = 1 ist h(x1, . . . , xk) = f(g1(x1, . . . , xk), . . . gn(x1, . . . , xk)) und wegen
Jh = grad h erhält man:

(grad h)(x) = (grad f)(g(x)) · Jg(x)

Fürm = 1, k = 1 hat man:

dh
dx

(x) =
n∑

i=1

∂f

∂yi
(g1(x), ..., gn(x)) · dgi

dx
(x).

Fürm = 1, k = 1 und n = 1 erhält man die Kettenregel für eine Variable:

dh
dx

(x) =
df
dy

(g(x)) · dg
dx

(x).

Wir führen nun den Begriff der Richtungsableitung ein und untersuchen diese mit
Hilfe der Kettenregel.

Definition 9.2.14 Sei D ⊂ Rn, f : D → R eine Funktion, x ∈ D, und v ∈ Rn,
‖v‖ = 1. Unter der Ableitung von f im Punkt x in Richtung v versteht man

Dvf(x) := lim
t→0

f(x+ tv) − f(x)
t

.

Es gilt

Satz 9.2.15 SeiD ⊂ Rn offen und f : D → R differenzierbar; dann gilt

Dvf(x) = 〈v, grad f(x)〉.
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Beweis. Setzt man g(t) := f(x+ tv), so ist Dvf(x) = g′(0) und nach der Ketten-
regel ist mit v = (v1, ..., vn) :

Dvf(x) = g′(0) =
n∑

i=1

∂f

∂xi
(x) · vi.

�

Wegen ‖v‖ = 1 folgt aus der Cauchy-Schwarzschen Ungleichung:

Dvf(x) ≤ ‖grad f(x)‖
und das Gleichheitszeichen gilt genau dann, wenn v in die Richtung des Gradienten
zeigt. In dieser Richtung ist also der Anstieg von f maximal. Etwas ausführlicher:
Ist grad f(x) �= 0 und bezeichnet man mit ϕ den Winkel zwischen v und grad f(x),
so ist

〈v, grad f(x)〉 = ‖v‖ · ‖grad f(x)‖ · cosϕ = ‖grad f(x)‖ · cosϕ,

also
Dvf(x) = ‖grad f(x)‖ · cosϕ.

Die Richtungsableitung wird also maximal für ϕ = 0; somit weist der Gradient in
die Richtung des stärksten Anstiegs von f .
Für c ∈ R ist Nc := {x ∈ D|f(x) = c} die zugehörige Niveaumenge. Ist

γ : ] − ε,+ε[→ Nc, t 	→ (x1(t), ..., xn(t))

eine differenzierbare Kurve, die inNc liegt, so gilt f(γ(t)) = c für alle t ∈]−ε,+ε[
und nach der Kettenregel ist

∑
ν=1

∂f
∂xν

(γ(t))·ẋν (t) = 0.Mit γ̇(t) = (ẋ1(t), ..., ẋn(t))

ergibt sich
〈gradf(γ(t)), γ̇(t)〉 = 0 :

Der Gradient steht senkrecht auf der Niveaumenge. Wenn grad f �= 0 ist, dann
sind die Niveaumengen immer (n-1)-dimensionale Untermannigfaltigkeiten (vgl.
11.1.1).
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Differentiation von Integralen
Wir beweisen noch, dass man unter dem Integral differenzieren darf:

Satz 9.2.16 Die Funktion

f : [a, b] × [c, d] → R, (x, y) 	→ f(x, y)

sei stetig, die partielle Ableitung ∂f
∂y existiere und sei ebenfalls stetig. Dann ist

g : [c, d] → R, y 	→
b∫

a

f(x, y)dx

differenzierbar und

dg
dy

(y) =

b∫
a

∂f

∂y
(x, y)dx,

also

d
dy

b∫
a

f(x, y)dx =

b∫
a

∂f

∂y
(x, y)dx.

Beweis. Es sei p ∈ [c, d] und (yn) eine Folge in [c, d] mit yn �= p für n ∈ N und
lim

n→∞ yn = p. Wir setzen

qn : [a, b] → R, x 	→ f(x, yn) − f(x, p)
yn − p , und q : [a, b] → R, x 	→ ∂f

∂y
(x, p),

und zeigen, dass (qn) gleichmässig gegen q konvergiert. Sei ε > 0 vorgeben . Weil
∂f
∂y gleichmässig stetig ist, existiert ein δ > 0 mit

|∂f
∂y

(x, y) − ∂f
∂y

(x̃, ỹ)| < ε für ‖(x, y) − (x̃, ỹ)‖ < δ.

Es gibt ein N ∈ N mit |yn − p| < δ für n ≥ N . Nach dem Mittelwertsatz der
Differentialrechnung existiert zu n ∈ N und x ∈ [a, b] ein ηn zwischen yn und p
mit qn(x) = ∂f

∂y (x, ηn). Für n ≥ N und alle x ∈ [a, b] ist ‖(x, ηn) − (x, p)‖ < δ
und daher |∂f

∂y (x, ηn) − ∂f
∂y (x, p)| < ε, also |qn(x) − q(x)| < ε. Daher konvergiert

(qn) gleichmässig gegen q und nach 6.1.4 folgt

lim
n→∞

b∫
a

qn(x)dx =

b∫
a

q(x)dx.
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Damit erhalten wir:

lim
n→∞

g(yn)−g(p)
yn−p = lim

n→∞

b∫
a

f(x,yn)−f(x,p)
yn−p dx =

= lim
n→∞

b∫
a

qn(x)dx =
b∫
a

q(x)dx =
b∫

a

∂f
∂y (x, p)dx.

Daraus ergibt sich die Behauptung. �

Wir behandeln nun einen etwas anderen Fall: Es soll ein Integral differenziert wer-
den, bei dem die Variable sowohl als Parameter im Integranden als auch als obere
Grenze auftaucht. Dabei darf man folgendes Ergebnis vermuten: wenn die Variable
x die obere Grenze ist und im Integranden nicht vorkommt, ist die Ableitung der In-
tegrand; wenn die obere Grenze konstant ist, differenziert man unter dem Integral.
In unserem Fall kommen beide Summanden vor:

Satz 9.2.17 Die Funktion

g : [a, b] × [a, b] → R, (x, t) 	→ g(x, t)

sei stetig partiell differenzierbar. Dann ist

d
dx

x∫
a

g(x, t)dt = g(x, x) +

x∫
a

∂g

∂x
(x, t)dt.

Beweis. Wir setzen

h : [a, b] × [a, b] → R, (x, y) 	→
y∫

a

g(x, t)dt.

Nach dem vorhergehenden Satz ist ∂h
∂x (x, y) =

y∫
a

∂g
∂x (x, t)dt und nach dem Haupt-

satz der Differential- und Integralrechnung ist ∂h
∂y (x, y) = g(x, y). Nun setzt man

y = x und berechnet nach der Kettenregel:

dh
dx

(x, x) =
∂h

∂x
(x, x) +

∂h

∂y
(x, x) =

x∫
a

∂g

∂x
(x, t)dt+ g(x, x).

�

In 13.1.1 werden wir diese Aussage noch verallgemeinern.
Wir geben nun eine kurze Einführung in die Variationsrechnung; bei den dort vor-
kommenden Beweisen benötigt man Differentiation unter dem Integralzeichen.
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Variationsrechnung
In der Variationsrechnung behandelt man Extremalprobleme. Bisher hatten wir für
eine Funktion f eine reelle Zahl x gesucht, für die f(x) extremal wird; eine notwen-
dige Bedingung ist f ′(x) = 0. In der Variationsrechung hat man als Variable nicht
mehr x ∈ R, sondern eine Funktion oder eine Kurve ϕ. Man sucht zu etwa zu ge-
gebenen Punkten p, q eine Verbindungskurveϕ mit minimaler Länge (man erwartet
als Lösung, dass ϕ linear ist und die Verbindungsstrecke durchläuft). Ein anderes
Beispiel ist das Problem der DIDO: Wie muss man eine einfach geschlossene Kurve
ϕ der Länge 1 wählen, so dass das von ϕ berandete Gebiet maximalen Flächeninhalt
hat ? (Vermutlich ist das Gebiet ein Kreis.)
In der Physik kommen Variationsprobleme häufig im Zusammenhang mit der La-
grangefunktionL vor; dabei soll ein Integral über L(t, ϕ(t), ϕ′(t)) minimal werden
soll. Daher benützt man die folgenden Bezeichungen:
Es sei I = [a, b] ⊂ R ein Intervall und

L : I × R × R → R, (t, y, p) 	→ L(t, y, p)

zweimal stetig differenzierbar. Weiter seien c, c̃ ∈ R und

M := {ϕ ∈ C2(I)|ϕ(a) = c, ϕ(b) = c̃}, S :M → R, ϕ 	→
b∫

a

L(t, ϕ(t), ϕ′(t))dt.

Gesucht wird eine notwendige Bedingung dafür, dass S(ϕ) minimal wird; diese
Bedingung ist die Euler-Lagrangesche Differentialgleichung:

Satz 9.2.18 (Differentialgleichung von Euler-Lagrange) Wenn es ein ϕ ∈M gibt
mit

S(ϕ) ≤ S(χ) für alle χ ∈M,
dann gilt:

d
dt
∂L

∂p
(t, ϕ(t), ϕ′(t)) − ∂L

∂y
(t, ϕ(t), ϕ′(t)) = 0

Beweis. Die Beweisidee ist folgende: für geignetes η und ε ∈ R betrachtet man
ε 	→ S(ϕ + εη); diese Funktion von ε hat für ε = 0 ein Minimum und daher
verschwindet die Ableitung im Punkt ε = 0 .
Es sei η ∈ C2(I) und η(a) = η(b) = 0. Für alle ε ∈ R ist dann ϕ + εη ∈ M und
daher S(ϕ) ≤ S(ϕ + εη) . Nach 9.2.16 differenziert man unter dem Integral und
erhält (wir schreiben (. . .) für (t, ϕ(t) + εη(t), ϕ′(t) + εη′(t))) :

dS(ϕ+εη)
dε =

b∫
a

∂
∂εL(. . .)dt =

b∫
a

(
∂L
∂y (. . .) · η(t) + ∂L

∂p (. . .) · η′(t)
)
dt.
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Mit partieller Integration ergibt sich

b∫
a

∂L
∂p η

′(t)dt = ∂L
∂p η(t)

∣∣∣b
a
−

b∫
a

η(t) d
dt

(
∂L
∂p

)
dt = −

b∫
a

η(t) d
dt

(
∂L
∂p

)
dt

und daher ist

dS(ϕ+εη)
dε =

b∫
a

(
∂L
∂y (. . .) − d

dt
∂L
∂p (. . .)

)
· η(t)dt.

Für ε = 0 ist dies = 0, also

b∫
a

(
∂L

∂y
(t, ϕ, ϕ′) − d

dt
∂L

∂p
(t, ϕ, ϕ′)

)
· ηdt = 0.

Dies gilt für alle η, und aus dem Lemma der Variationsrechnung 5.1.9 folgt:

∂L

∂y
(t, ϕ, ϕ′) − d

dt
∂L

∂p
(t, ϕ, ϕ′) = 0.

�

Bemerkung. Die Euler-Lagrangeschen Differentialgleichungen gelten auch im n-
dimensionalen Fall. Man hat dann (die genaue Formulierung findet man in [17]):

L : I ×Rn ×Rn → R, (t, y1, . . . , yn, p1, . . . , pn) 	→ L(t, y1, . . . , yn, p1, . . . , pn)

und
ϕ : I → Rn, t 	→ (ϕ1(t), . . . , ϕn(t))

und die Euler-Lagrangeschen Differentialgleichungen lauten:

d

dt
∂L

∂pj
(t, ϕ(t), ϕ′(t)) − ∂L

∂yj
(t, ϕ(t), ϕ′(t)) = 0 (j = 1 . . . , n)

Beispiel 9.2.19 (Das Hamiltonsche Prinzip) Wir untersuchen die Bewegung ei-
nes Massenpunktes mit der Masse m bei einem gegebenen Potential U . Wir be-
schränken uns auf den eindimensionalen Fall.Es sei t die Zeit; die Bewegung des
Massenpunktes werde durch eine Funktion ϕ(t) beschrieben. Es sei T die kineti-
sche Energie undU die zeitunabhängige potentielle Energie. Dann ist die Lagrange-
Funktion L = T − U ; das Hamiltonsche Prinzip besagt, dass das Wirkungsintegral

S(ϕ) =
t0∫
0

L(t, ϕ(t), ϕ̇(t))dt minimal ist. Die kinetische Energie ist T = m
2 ϕ̇

2 und

die Lagrange-Funktion ist L(ϕ, ϕ̇) = m
2 ϕ̇

2 −U(x). Die Eulersche Differentialglei-
chung ist

d
dt

(mϕ̇(t)) +
d
dx
U(ϕ(t)) = 0.

Es ergibt sich
m

..
ϕ= −U ′(x).
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9.3 Implizite Funktionen

Ist eine Funktion f(x, y) gegeben, so stellt sich die Frage, ob man die Gleichung
f(x, y) = 0 nach y auflösen kann. Ist etwa f(x, y) = x2y− 3x+ y, so kann man y
aus der Gleichung x2y − 3x+ y = 0 ausrechnen: y = 3x

x2+1 .

Zu f(x, y) sucht man also eine Funktion g(x), so dass die Gleichung f(x, y) = 0
genau dann gilt, wenn y = g(x) ist; insbesondere ist dann f(x, g(x)) = 0. Man
sagt, durch f(x, y) = 0 sei implizit die Funktion y = g(x) gegeben. Geometrisch
interpretiert: Der Graph von g soll gleich dem Nullstellengebilde von f sein:

{(x, y)| f(x, y) = 0} = {(x, y)| y = g(x)}
Bei den folgenden Beispielen ist leicht zu sehen, dass nicht jedes Nullstellengebilde
ein Graph ist, denn bei einem Graphen Gg gibt es zu jedem x genau ein y mit
(x, y) ∈ Gg .

x · y = 0 x2 − y2 = 0 x3 − y2 = 0 x2 + 2x+ y2 = 0

Man muss natürlich voraussetzen, dass f wirklich von y abhängt; schon das triviale
Beispiel f(x, y) := x2 zeigt, dass man hier nicht nach y auflösen kann. So ist
naheliegend, vorauszusetzen, dass ∂f

∂y nicht verschwindet.

Satz 9.3.1 (Satz über implizite Funktionen ) Seien U, V ⊂ R offene Intervalle ;
die Funktion

f : U × V → R, (x, y) 	→ f(x, y),
sei zweimal stetig partiell differenzierbar; für ein (x0, y0) ∈ U × V gelte

f(x0, y0) = 0 ,
∂f

∂y
(x0, y0) �= 0.

Dann gibt es offene Intervalle U1, V1 mit x0 ∈ U1 ⊂ U , y0 ∈ V1 ⊂ V, und eine
stetig differenzierbare Funktion

g : U1 → V1,
so dass gilt:

{(x, y) ∈ U1 × V1| f(x, y) = 0} = {(x, y) ∈ U1 × V1| y = g(x)}.
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Beweis. Zunächst wählen wir die Intervalle U1, V1 so, dass in U1 ×V1 gilt: ∂f
∂y �= 0.

Nun sei (x, y1), (x, y2) ∈ U1 × V1 und f(x, y1) = 0, f(x, y2) = 0. Wenn
y1 < y2 ist, so folgt aus dem Mittelwertsatz, angewandt auf y 	→ f(x, y), dass
ein η zwischen y1, y2 existiert mit ∂f

∂y (x, η) = 0. Dies widerspricht der Vorausset-

zung ∂f
∂y �= 0.Daher gibt es zu jedem x ∈ U1 höchstens ein y ∈ V1 mit f(x, y) = 0.

Falls eine Funktion g mit den im Satz genannten Eigenschaften existiert, gilt
f(x, g(x)) = 0. Differenziert man diese Gleichung, so erhält man

∂f

∂x
(x, g(x)) +

∂f

∂y
(x, g(x)) · g′(x) = 0

oder

g′(x) = −
∂f
∂x (x, g(x))
∂f
∂y (x, g(x))

.

Die gesuchte Funktion genügt also einer Differentialgleichung. Nach 8.1.6 können
wir U1, V1 so verkleinern, dass die Differentialgleichung

y′ = −
∂f
∂x (x, y)
∂f
∂y (x, y)

eine (stetig differenzierbare) Lösung g : U1 → V1 mit g(x0) = y0 besitzt.
Setzt man h(x) := f(x, g(x)) für x ∈ U1 , so ist

h′(x) =
∂f

∂x
(x, g(x)) +

∂f

∂y
(x, g(x)) · g′(x) = 0

und daher ist h konstant und wegen h(x0) = f(x0, y0) = 0 ist h(x) = 0 für alle
x ∈ U1.
Daraus folgt f(x, g(x)) = 0; es gibt also zu jedem x ∈ U1 genau ein y ∈ V1 mit
f(x, y) = 0, nämlich y = g(x). �

Wir geben ohne Beweis eine Verallgemeinerung dieses Satzes an; Beweise findet
man in [7] und [17].

Satz 9.3.2 (Allgemeiner Satz über implizite Funktionen) Seien U ⊂ Rk, und
V ⊂ Rm offen, sei

f : U × V → Rm, (x, y) 	→ (f1(x, y), . . . , fm(x, y))

stetig partiell differenzierbar; sei (x0, y0) ∈ U × V ein Punkt mit

f(x0, y0) = 0 und det

⎛⎝ ∂f1
∂y1
, . . . , ∂f1

∂ym· · · · · ·
∂fm

∂y1
, . . . , ∂fm

∂ym

⎞⎠ �= 0.

Dann gibt es offene Mengen U1, V1 mit x0 ∈ U1 ⊂ U , y0 ∈ V1 ⊂ V, und eine stetig
partiell differenzierbare Abbildung
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g : U1 → V1
mit

{(x, y) ∈ U1 × V1|f(x, y) = 0} = {(x, y) ∈ U1 × V1|y = g(x)}.
Nun behandeln wir Diffeomorphismen ; der Begriff des Diffeomorphismus spielt in
der Analysis eine vergleichbare Rolle wie der des Isomorphismus von Vektorräumen
in der linearen Algebra.

Definition 9.3.3 Seien U, V ⊂ Rn offene Mengen; eine Abbildung f : U → V
heißt Diffeomorphismus, wenn gilt: f ist bijektiv, f und f−1 sind differenzierbar .

Man bezeichnet f als lokalen Diffeomorphismus, wenn es zu jedem x ∈ U offene
Mengen Ũ , Ṽ gibt mit x ∈ Ũ ⊂ U, f(x) ∈ Ṽ ⊂ V , so dass f |Ũ → Ṽ ein
Diffeomorphismus ist.

Aus der Kettenregel folgt:

Satz 9.3.4 Wenn f : U → V ein Diffeomorphismus ist, dann ist für alle x ∈ U die
Jacobi-Matrix Jf (x) invertierbar; es gilt

(Jf (x))−1 = Jf−1(f(x)).

Beweis. Es ist
Jf (x)) · Jf−1(f(x)) = Jf◦f−1(f(x)) = E,

denn die Jacobi-Matrix der identischen Abbildung f ◦ f−1 : V → V, y 	→ y, ist
die Einheitsmatrix E ∈ R(n,n). �

Nun stellen wir die Frage, ob auch die Umkehrung gilt: Kann man aus der Inver-
tierbarkeit der Jacobi-Matrix schliessen, dass f invertierbar ist ? Dies gilt in der Tat
lokal: Aus 9.3.2 leiten wir das wichtige Theorem über lokale Diffeomorphismen
her. Es besagt: Wenn bei einer differenzierbaren Abbildung f die Jacobi-Matrix in-
vertierbar ist, dann ist f ein lokaler Diffeomorphismus.

Satz 9.3.5 (Satz über lokale Diffeomorphismen ) Es sei U ⊂ Rn offen und
f : U → Rn zweimal stetig differenzierbar. Für ein x0 ∈ U sei

detJf (x0) �= 0.

Dann gibt es offene Mengen V,W ⊂ Rn, x0 ∈ V ⊂ U, so dass f |V → W ein
Diffeomorphismus ist.
Daher gilt: Wenn detJf (x) �= 0 für alle x ∈ U ist, dann ist f ein lokaler Diffeo-
morphismus.

Beweis. Wir setzen y0 := f(x0) und definieren

F : U × Rn → Rn, (x, y) 	→ y − f(x),
also
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F (x1, . . . , xn , y1, . . . , yn) =

⎛⎝ y1 − f1(x1, . . . , xn)
. . . . . . . . .

yn − fn(x1, . . . , xn)

⎞⎠ .
Dann ist F (x0, y0) = 0 und⎛⎝ ∂F1

∂x1
, . . . , ∂F1

∂xn

. . . . . .
∂Fn

∂x1
, . . . ∂Fn

∂xn

⎞⎠ = −Jf ;

im Punkt x0 ist also die Determinante dieser Matrix �= 0. Wir wenden nun den vor-
hergehenden Satz an, wobei wir die Rollen von x und y vertauschen. Die Gleichung
F (x, y) = 0 kann nach x aufgelöst werden: Es gibt offene Mengen W,U1 mit
y0 ∈ W ⊂ Rn, x0 ∈ U1 ⊂ U und eine differenzierbare Abbildung g :W → U1, so
dass für y ∈ W,x ∈ U1 die Gleichung x = g(y) äquivalent zu F (x, y) = 0 , also
äquivalent zu y = f(x) ist. Daher ist g die Umkehrabbildung zu f . �

Polarkoordinaten, Zylinderkoordinaten und Kugelkoordinaten
Wichtige Diffeomorphismen erhält man durch Polarkoordinaten, Zylinderkoordina-
ten und Kugelkoordinaten.

Beispiel 9.3.6 ( Polarkoordinaten ) Unter Polarkoordinaten (r, ϕ) versteht man
wie in 4.3.19

x = r · cosϕ, y = r · sinϕ,
genauer: definiert man offene Mengen U, V im R2 durch

U := R+×]0, 2π[, V := R2 \ {(x, y) ∈ R2| x > 0, y = 0},
so ist die Abbildung

φ : U → V, (r, ϕ) 	→ (r · cosϕ, r · sinϕ)
ein Diffeomorphismus; die Umkehrabbildung ist

φ−1 : V → U, (x, y) 	→ (
√
x2 + y2 , arccos

x√
x2 + y2

);

die Jacobi-Matrix ist

Jφ(r, ϕ) =
(

cosϕ −r · sinϕ
sinϕ r · cosϕ

)
und

det Jφ(r, ϕ) = r.

Wenn man φ als Abbildung φ : {(r, ϕ) ∈ R2| r ≥ 0, 0 ≤ ϕ < 2π} → R2

auffasst, dann ist φ surjektiv. Jedoch ist der Definitionsbereich nicht offen und φ ist
nicht injektiv; das Geradenstück {r = 0} wird in den Nullpunkt abgebildet; auf
{r = 0} verschwindet detJφ.
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Beispiel 9.3.7 ( Zylinderkoordinaten ) Zylinderkoordinaten (r, ϕ, z) führt man
ein durch

x = r · cosϕ, y = r · sinϕ, z = z.

Man setzt
Θ(r, ϕ, z) = (r · cosϕ, r · sinϕ, z).

Die Jacobimatrix ist

JΘ(r, ϑ, ϕ) =

⎛⎝ cosϕ −r · cosϕ 0
sinϕ r · cosϕ 0

0 0 1

⎞⎠
und es ist

detJΘ(r, ϕ, z) = r.

Beispiel 9.3.8 (Kugelkoordinaten ) Unter Kugelkoordinaten (r, ϕ, ϑ) versteht man

x = r · sinϑ · cosϕ, y = r · sinϑ · sinϕ, z = r · cosϑ.

Definiert man im R3 die offenen Mengen

U := {(r, ϑ, ϕ) ∈ R3| r > 0, 0 < ϑ < π, 0 < ϕ < 2π},

V := R3 \ {(x, y, z)| x ≥ 0, y = 0},
so ist

Ψ : U → V, (r, ϑ, ϕ) 	→ (r · sinϑ · cosϕ , r · sinϑ · sinϕ , r · cosϑ)

ein Diffeomorphismus . Die Jacobi-Matrix ist

JΨ (r, ϑ, ϕ) =

⎛⎝ sinϑ cosϕ r · cosϑ cosϕ −r · sinϑ sinϕ
sinϑ sinϕ r · cosϑ sinϕ r · sinϑ cosϕ

cosϑ −r · sinϑ 0

⎞⎠
und

detJΨ (r, ϑ, ϕ) = r2 sinϑ.

Wir wollen nun zeigen, wie man einen beliebigen Differentialoperator auf neue Ko-
ordinaten umrechnet und führen dies exemplarisch aus. Es sei f : R2 → R eine
beliebig oft stetig partiell differenzierbare Funktion. Wir behandeln den Laplace-
Operator

� :=
∂2

∂x2
+
∂2

∂y2
,
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also �f := ∂2f
∂x2 + ∂2f

∂y2 . Für r > 0 sei φ(r, ϕ) = (r cosϕ, r sinϕ) die Polarkoordi-
natenabbildung. Wir wollen nun � in Polarkoordinaten umrechnen, das heißt, wir
suchen einen Differentialoperator �̃ in ∂

∂r ,
∂

∂ϕ mit

(�f) ◦ φ = �̃(f ◦ φ).
Es gilt:

Satz 9.3.9 (Der Laplace-Operator in Polarkoordinaten) Der Laplace-Operator
in Polarkoordinaten ist

�̃ =
∂2

∂r2
+

1
r
· ∂
∂r

+
1
r2

· ∂
2

∂ϕ2

Beweis. Es ist φ(r, ϕ) = (r · cosϕ, r · sinϕ) und

Jφ(r, ϕ) =
(

cosϕ −r sinϕ
sinϕ r cosϕ

)
, (Jφ(r, ϕ))−1 =

(
cosϕ sinϕ

− 1
r sinϕ 1

r cosϕ

)
.

Wir schreiben die Ableitung als Index: fx := ∂
∂xf . Nach der Kettenregel ist

Jf◦φ = (Jf ◦ φ) · Jφ

also ((f ◦ φ)r , (f ◦ φ)ϕ) = (fx ◦ φ, fy ◦ φ) · Jφ

oder (fx ◦ φ, fy ◦ φ) = ((f ◦ φ)r, (f ◦ φ)ϕ) · J−1
φ

Damit erhält man die Gleichungen

(1) fx ◦ φ = (f ◦ φ)r · cosϕ − (f ◦ φ)ϕ · 1
r sinϕ

(2) fy ◦ φ = (f ◦ φ)r · sinϕ + (f ◦ φ)ϕ · 1
r cosϕ.

Nun setzt man in (1) fx an Stelle von f und in (2) fy statt f ein und addiert; damit
ergibt sich

(3) fxx ◦ φ+ fyy ◦ φ =

= (fx ◦ φ)r · cosϕ− (fx ◦ φ)ϕ · 1
r

sinϕ+ (fy ◦ φ)r · sinϕ+ (fy ◦ φ)ϕ · 1
r

cosϕ.

In dieser Gleichung setzt man für fx ◦ φ und fy ◦ φ die rechten Seiten von (1) und
(2) ein und erhält nach längerer, aber einfacher Rechnung:

fxx ◦ φ + fyy ◦ φ =

= cosϕ· ∂
∂r

(
(f ◦ φ)r · cosϕ− (f ◦ φ)ϕ · 1

r sinϕ
)
−

− 1
r sinϕ· ∂

∂ϕ

(
(f ◦ φ)r · cosϕ − (f ◦ φ)ϕ · 1

r sinϕ
)
+

+ sinϕ· ∂
∂r

(
(f ◦ φ)r · sinϕ + (f ◦ φ)ϕ · 1

r cosϕ
)
+

+ 1
r cosϕ· ∂

∂ϕ

(
(f ◦ φ)r · sinϕ + (f ◦ φ)ϕ · 1

r cosϕ
)

=
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= cosϕ ·
(

(f ◦ φ)rr · cosϕ − (f ◦ φ)ϕr · sin ϕ
r + (f ◦ φ)ϕ · sin ϕ

r2

)
−

− sin ϕ
r ·

(
(f ◦ φ)rϕ · cosϕ − (f ◦ φ)r · sinϕ −

− (f ◦ φ)ϕϕ · sin ϕ
r − (f ◦ φ)ϕ · cos ϕ

r

)
+

+ sinϕ ·
(

(f ◦ φ)rr · sinϕ + (f ◦ φ)ϕr · cos ϕ
r − (f ◦ φ)ϕ · cos ϕ

r2

)
+

+ cos ϕ
r ·

(
(f ◦ φ)rϕ · sinϕ + (f ◦ φ)r · cosϕ +

+ (f ◦ φ)ϕϕ · cos ϕ
r − (f ◦ φ)ϕ · sin ϕ

r

)
=

= (f ◦ φ)rr +
1
r
(f ◦ φ)r +

1
r2

(f ◦ φ)ϕϕ,

also

�̃ =
∂2

∂r2
+

1
r

∂

∂r
+

1
r2
∂

∂ϕ2
.

�

Mit dieser Methode kann man auch den Laplace-Operator im R3 in Zylinder- oder
Kugelkoordinaten umrechnen:

Satz 9.3.10 (Laplace-Operator im R3 in Zylinder- und Kugelkoordinaten ) Der
Laplace-Operator

� =
∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2

ist in Zylinderkoordinaten

1
r
· ∂
∂r

(r
∂

∂r
) +

1
r2

· ∂
2

∂ϕ2
+
∂2

∂z2
;

und in Kugelkoordinaten

1
r2

·
(
∂

∂r
(r2 · ∂

∂r
) +

1
sin2 ϑ

· ∂
2

∂ϕ2
+

1
sinϑ

· ∂
∂ϑ

(sinϑ
∂

∂ϑ
)
)
.

9.4 Lokale Extrema

Die Taylorsche Formel
Zunächst zeigen wir, wie man die Taylorsche Formel 6.2.6 auf Funktionen mehrerer
Variablen verallgemeinern kann.
Wir führen dazu einige Bezeichnungen ein: Es sei ν := (ν1, ..., νn) ∈ Nn

0 , dann
setzen wir

|ν| := ν1 + ...+ νn, ν! := ν1! · ... · νn!

und

Dνf :=
∂ν1

∂xν1
1

· · · ∂
νn

∂xνn
n
f.

Außerdem benötigen wir den Begriff der konvexen Menge.
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Definition 9.4.1 Eine Menge D ⊂ Rn heißt konvex, wenn gilt: Sind p, q ∈ D, so
liegt auch die Verbindungsstrecke von p nach q inD; es ist also

(1 − t)p+ tq ∈ D für alle t ∈ [0, 1].

Nun geben wir die Taylorsche Formel an.

Satz 9.4.2 (Taylorsche Formel). Sei D ⊂ Rn offen und konvex, sei k ∈ N und f :
D → R eine (k+ 1)-mal stetig differenzierbare Funktion. Sind dann x, x+ ξ ∈ D,
so existiert ein θ ∈ [0, 1] mit

f(x+ ξ) =
∑

ν
|ν|≤k

1
ν!
Dνf(x) · ξν +

∑
ν

|ν|=k+1

1
ν!
Dνf(x+ θξ) · ξν .

Die Beweisidee besteht darin, dass man auf die Funktion g(t) := f(x + tξ), t ∈
[0, 1], die Taylorformel 6.2.6 anwendet und die Ableitungen g(ν)(t), ν = 0, ..., k+1,
nach der Kettenregel ausrechnet.
Wir geben die Taylorsche Formel für n = 2, x = (0, 0), k = 1 explizit an; es ist

f(ξ1, ξ2) = f(0, 0) + fx(0, 0) · ξ1 + fy(0, 0) · ξ2 +

+
1
2!
fxx(θξ1, θξ2) · ξ21 + fxy(θξ1, θξ2) · ξ1ξ2 +

1
2!
fyy(θξ1, θξ2)ξ22 .

Lokale Extrema

Wenn man bei einer Funktion f(x) einer Variablen die Stellen sucht, an denen
lokale Extrema liegen, dann hat man als notwendige Bedingung f ′(x) = 0. Ist
f ′(x) = 0 und f ′′(x) > 0, so besitzt f dort ein lokales Minimum. Diese Aussa-
gen sollen nun auf Funktionen von n Variablen übertragen werden; wir beschränken
uns auf den Fall n = 2. Es ergibt sich als notwendige Bedingung: grad f = 0. Ist
dies erfüllt und ist zusätzlich die Hesse-Matrix ( ∂2f

∂xi∂xj
) positiv-definit, so liegt ein

lokales Minimum vor. Bei zwei Variablen treten also an Stelle von f ′ und f ′′ der
Gradient und die nach Hesse benannte Matrix der zweiten Ableitungen (LUDWIG

OTTO HESSE (1811-1874)).

Satz 9.4.3 Sei D ⊂ R2 offen und f : D → R partiell differenzierbar. Wenn f in
p ∈ D ein lokales Extremum besitzt, dann ist grad f(p) = 0.

Beweis. Sei p = (x0, y0); die Funktion x 	→ f(x, y0)) hat in x0 ein lokales Extre-
mum, daher ist ∂f

∂x (x0, y0) = 0. Analog folgt ∂f
∂y (p) = 0 �


Definition 9.4.4 Ist f : D → R zweimal stetig partiell differenzierbar, so heißt

Hf :=
(
∂2f

∂xi∂xj

)
=

(
∂2f
∂x2

∂2f
∂y∂x

∂2f
∂x∂y

∂2f
∂y2

)
.

die Hesse-Matrix von f .
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In 7.10.11 hatten wir definiert: Eine symmetrische Matrix A ∈ R(2,2) heißt positiv-
definit, wenn für alle x ∈ Rn, x �= 0, gilt: 〈Ax, x〉 > 0. Nach 7.10.12 ist dies genau
dann der Fall, wenn alle Eigenwerte von A positiv sind. Es gilt:

Satz 9.4.5 SeiD ⊂ R2 offen, f : D → R zweimal stetig partiell differenzierbar. In
einem Punkt p ∈ D sei

grad f(p) = 0 und Hf (p) positiv definit.

Dann besitzt f in p ein isoliertes lokales Minimum, d.h. es gibt eine Umgebung U
von p mit U ⊂ D, so dass für alle x ∈ U , x �= p, gilt: f(x) > f(p).

Beweis. Wir setzen a := grad f(p) und H := Hf (p). Aus der Taylorschen Formel
kann man herleiten, dass für hinreichend kleines ξ ∈ Rn gilt:

f(p+ ξ) = f(p) + 〈a, ξ〉 +
1
2
〈Hξ, ξ〉 + ‖ξ‖2r(ξ),

dabei ist r in einer Umgebung von 0 ∈ R2 definiert und lim
ξ→0
r(ξ) = 0.

Ist λ > 0 der kleinste Eigenwert von H , so gilt nach 7.10.10: 〈Hξ, ξ〉 ≥ λ · ‖ξ‖2.
Es gibt ein δ > 0 mit ‖r(ξ)‖ ≤ 1

4λ für ‖ξ‖ < δ. Für 0 < ‖ξ‖ < δ ist dann

f(p+ ξ) ≥ f(p) +
1
2
λ · ‖ξ‖2 − 1

4
λ‖ξ‖2 > f(p).

�

Beispiel 9.4.6 Sei f(x, y) := x3 +x2 + y2, dann ist grad f(x, y) = (3x2 +2x, 2y)
und

Hf (x, y) =
(

6x+ 2 0
0 2

)
.

Der Gradient verschwindet in den Punkten (0, 0) und (− 2
3 , 0). Die Hesse-Matrix im

Nullpunkt ist
(
2 0
0 2

)
; sie ist positiv definit und daher besitzt f in (0, 0) ein isoliertes

lokales Minimum. Im Punkt (− 2
3 , 0) ist die Hessematrix gleich

(−2 0
0 2

)
; die Funk-

tion x 	→ f(x, 0) = x2 + x3 hat bei x = − 2
3 ein isoliertes lokales Maximum und

y 	→ f(− 2
3 , y) = 4

27 + y2 hat bei y = 0 ein Minimum. Der Punkt (− 2
3 , 0) ist also

ein Sattelpunkt.
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Lokale Extrema unter Nebenbedingungen.
Ist eine Funktion f : R2 → R gegeben, so will man häufig nicht die Extrema von
f in R2 bestimmen, sondern die Extrema von f auf einer Menge {g = 0}, etwa auf
dem Rand des Einheitskreises {x2 + y2 − 1 = 0}. Man sagt kurz: man sucht die
Extrema von f unter der Nebenbedingung g = 0.

Definition 9.4.7 SeiD ⊂ R2 offen, seien f : D → R und g : D → R stetig partiell
differenzierbar;M := {x ∈ D|g(x) = 0}. Man sagt, dass f in einem Punkt p ∈M
ein lokales Maximum unter der Nebenbedingung {g = 0} besitzt, wenn es eine
UmgebungU von p inD gibt mit f(x) ≤ f(p) für alle x ∈M∩U ; in naheliegender
Weise werden die Begriffe

”
lokales Minimum “und

”
lokales Extremum “unter {g =

0} definiert.

−1

−2

0

1

2

g = 0

q

p

In der Abbildung sind Niveaumengen von f und die
”
Kurve “{g = 0} skizziert. Im

Punkt q schneidet {g = 0} die Niveaumenge {f = −1}; in der Nähe von q gibt
es auf {g = 0} Punkte mit f < −1 und Punkte mit f > −1; dort liegt also kein
lokales Extremum. Dagegen berühren sich in p die Kurven {g = 0} und {f = 0};
dort hat man ein lokales Maximum unter der Nebenbedingung {g = 0} . Weil
sich die Kurven berühren, weisen in p die Gradienten von f und g in die gleiche
Richtung. Dies besagt der folgende Satz:

Satz 9.4.8 Für alle x ∈ D sei grad g(x) �= 0. Wenn f in p ∈ M ein lokales
Extremum unter der Nebenbedingung {g = 0} besitzt, dann existiert ein λ ∈ R mit

grad f(p) = λ · grad g(p).

Beweis. Es sei p = (x0, y0). Wir können annehmen, dass gy(p) �= 0 ist. Nach dem
Satz über implizite Funktionen können wir die Umgebung U von p so wählen, dass
eine differenzierbare Funktion ϕ :]x0 − ε, x0 + ε[→ R existiert mit y0 = ϕ(x0),
(x, ϕ(x)) ∈ U und

{(x, y) ∈ U |g(x, y) = 0} = {(x, y) ∈ U |y = ϕ(x)}.
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Für |x− x0| < ε ist g(x, ϕ(x)) = 0 und daher

gx(x, ϕ(x)) + gy(x, ϕ(x)) · ϕ′(x) = 0.

Die Funktion h :]x0 − ε, x0 + ε[→ R, x 	→ f(x, ϕ(x)), besitzt in x0 ein lokales
Extremum, somit ist h′(x0) = 0, also

fx(x0, ϕ(x0)) + fy(x0, ϕ(x0)) · ϕ′(x0) = 0.

Es ist also

fx(p) + fy(p) · ϕ′(x0) = 0
gx(p) + gy(p) · ϕ′(x0) = 0

und mit λ := fy(p)
gy(p) folgt die Behauptung. �


Beispiel 9.4.9 In 7.10.9 haben wir mit Methoden der linearen Algebra die Extrema
einer quadratischen Form qA auf dem Rand des Einheitskreises S1untersucht; wir
behandeln dieses Problem nun mit Methoden der Differentialrechnung und wenden
9.4.8 an. Es sei A ∈ R(2,2) eine symmetrische Matrix und

qA(x1, x2) := xtAx = a11x21 + 2a12x1x2 + a22x22.

Wir setzen g(x1, x2) := x21 + x22 − 1; dann ist S1 = {x ∈ R2| g(x) = 0}. Es sei
x =

(
x1
x2

)
, wir schreiben nun auch die Gradienten als Spaltenvektoren. Es ist

grad qA(x) =
(

2a11x1 + 2a12x2
2a12x1 + 2a22x2

)
= 2Ax und grad g(x) = 2x.

Auf der kompakten Menge S1 nimmt qA in einem Punkt p1 ∈ S1 das Minimum
und in einem p2 ∈ S1 das Maximum an. Daher existieren nach 9.4.8 reelle Zahlen
λj , j = 1, 2, mit grad f(pj) = λj · grad g(pj), also

Apj = λjpj.

Wegen pj ∈ S1 ist pj �= 0, somit sind λ1, λ2 Eigenwerte und p1, p2 Eigenvek-
toren. Wir haben also mit Methoden der Differentialrechnung die Existenz reeller
Eigenwerte der symmetrischen Matrix A ∈ R(2,2) hergeleitet. Es gilt

qA(pj) = ptj(Apj) = ptj(λjpj) = λjp
t
jpj = λj .

Somit ist λ1 das Minimum von qA|S1 und λ2 das Maximum.
Wir behandeln nun mit diesen Methoden das Beispiel 7.10.13: Es sei also

A =
(

5 −2
−2 2

)
.

Dann sind folgende Gleichungen zu lösen:
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5x1 − 2x2 = λx1
−2x1 + 2x2 = λx2
x21 + x22 = 1.

Man erhält die Punkte ± 1√
5

(
2

−1

)
und ± 1√

5

(
1
2

)
; in den ersten beiden Punkten hat qA

den Wert 6, in den anderen den Wert 1.

9.5 Kurven

Definition 9.5.1 Es sei I ⊂ R ein Intervall undX ⊂ Rn, eine stetige Abbildung

γ : I → X, t 	→ (x1(t), . . . , xn(t)),

heißt Kurve inX .

Es ist zweckmässig , γ(t) = (x1(t), . . . , xn(t)) zu schreiben; bei einer Kurve im
R2 schreiben wir auch γ(t) = (x(t), y(t)) und bei einer Kurve in C schreibt man
γ(t) = x(t) + iy(t). Die Kurve heißt stetig oder auch stetig differenzierbar, wenn
die Funktionen x1, . . . , xn die entsprechende Eigenschaft haben. Bei einer differen-
zierbaren Kurve setzt man γ̇(t) := (ẋ1(t) . . . , ẋn(t)); dabei ist ẋj := dxj

dt .
Eine Kurve γ : [a, b] → Rn heißt stückweise stetig differenzierbar, wenn es eine
Zerlegung a = t0 < t1 < . . . < tm = b des Intervalls [a, b] gibt, so dass für
k = 1, . . . ,m jede Kurve γ| [tk−1, tk] → Rn stetig differenzierbar ist.
Derartige Kurven treten als Randkurven eines Rechtecks oder auch eines Halbkrei-
ses auf.

1

6
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Definition 9.5.2 Ist γ : [a, b] → Rn eine stückweise stetig differenzierbare Kurve,
so heißt

Lγ :=

b∫
a

√(
dx1
dt

(t)
)2

+ . . .+
(

dxn

dt
(t)

)2

dt =

b∫
a

‖γ̇(t)‖dt

die Länge von γ.

Definition 9.5.3 Zwei Kurven γ : I → Rn und χ : Ĩ → Rn heißen äquivalent,
wenn es eine stetig differenzierbare bijektive Abbildungϕ : I → Ĩ gibt mit ϕ̇(t) > 0
für t ∈ I und

γ = χ ◦ ϕ,
ϕ heißt Parametertransformation.

Es gilt:

Satz 9.5.4 Wenn zwei stetig differenzierbare Kurven γ und χ äquivalent sind, dann
gilt: Lγ = Lχ.

Beweis. Ist γ = χ ◦ ϕ, so folgt mit der Substitution u = ϕ(t):

Lγ =

b∫
a

‖γ̇(t)‖dt =
b∫

a

‖χ̇(ϕ(t))‖ϕ̇(t)dt =

d∫
c

‖χ̇(u)‖du = Lχ.

�

Nun seien γ und χ zwei Kurven; der Endpunkt von γ sei gleich dem Anfangspunkt
von χ. Dann kann man diese Kurven aneinanderhängen, man durchläuft zuerst γ
und dann χ; auf diese Weise erhält man eine Kurve, die man mit γ + χ bezeichnet.
Durch Übergang zu äquivalenten Kurven kann man annehmen, dass beide in [0, 1]
definiert sind.

Definition 9.5.5 Es seien γ : [0, 1] → Rn und χ : [0, 1] → Rn Kurven mit

γ(1) = χ(0);

dann setzt man

γ + χ : [0, 1] → Rn, t 	→
{
γ(2t) für 0 ≤ t ≤ 1

2
χ(2t− 1) für 1

2 < t ≤ 1

Wenn man eine Kurve γ in der entgegengesetzten Richtung durchläuft, so erhält
man −γ:

Definition 9.5.6 Ist γ : [0, 1] → Rn eine Kurve, so setzt man

−γ : [0, 1] → Rn, t 	→ γ(1 − t).
An Stelle von γ + (−χ) schreibt man γ − χ.
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In einem Gebiet kann man zwei Punkte immer durch eine stückweise stetig diffe-
renzierbare Kurve verbinden :

Satz 9.5.7 Ist G ⊂ Rn ein Gebiet, so existiert zu je zwei Punkten p, q ∈ G eine
stückweise stetig differenzierbare Kurve γ : [a, b] → G mit γ(a) = p, γ(b) = q.

Definition 9.5.8 Eine stetig differenzierbare Kurve γ : I → Rn heißt regulär,
wenn γ̇(t) �= 0 für alle t ∈ I ist; dann heißt

T (t) :=
1

‖γ̇(t)‖ γ̇(t)

der Tangentenvektor zu t ∈ I; man hat also T : I → Rn, t 	→ 1
‖γ̇(t)‖ γ̇(t).

Man sagt, γ ist nach der Bogenlänge parametrisiert, wenn für alle t ∈ I gilt:

‖γ̇(t)‖ = 1.

Bei einer nach der Bogenlänge parametrisierten Kurve γ : [a, b] → Rn ist also
γ̇ = T und Lγ = b− a.
Man kann durch Übergang zu einer äquivalenten Kurve immer die Parametrisierung
nach der Bogenlänge erreichen:

Satz 9.5.9 Zu jeder regulären Kurve γ : [a, b] → Rn existiert eine äquivalente
Kurve χ, die nach der Bogenlänge parametrisiert ist.

Beweis. Für die Abbildung

s : [a, b] → [0, Lγ], t 	→
t∫

a

‖γ̇(x)‖dx

gilt ṡ(t) = ‖γ̇(t)‖ > 0 und s(a) = 0, s(b) = Lγ ; daher ist sie bijektiv .
Ist ϕ : [0, Lγ ] → [a, b], u 	→ ϕ(u), die Umkehrabbildung und setzt man t = ϕ(u),
so gilt nach 3.3.5:

dϕ
du

(u) =
1

‖γ̇(t)‖ .

Nun definiert man χ := γ ◦ ϕ , dann ist

dχ
du

(u) =
d(γ ◦ ϕ)

du
(u) = γ̇(ϕ(u)) · dϕ

du
(u) =

γ̇(t)
‖γ̇(t)‖ .

Daher ist χ äquivalent zu γ und hat Parameter Bogenlänge. �

Der Tangentenvektor einer regulären Kurve hat die Länge 1; die Änderung von T
ist also eine Richtungsänderung; man stellt sich vor, dass diese um so grösser ist, je
mehr die Kurve gekrümmt ist. Dies führt zu folgender Definition:

Definition 9.5.10 Ist γ : I → Rn eine reguläre Kurve mit Parameter Bogenlänge,
so heißt

κ : I → R, t 	→ ‖Ṫ (t)‖,
die Krümmung .
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Beispiel 9.5.11 Wir betrachten den Kreis mit Radius r > 0:

γ : [0, 2π] → R2, t 	→ (r · cos t, r · sin t).
Es ist

γ̇(t) = (−r · sin t, r · cos t) und ‖γ̇(t)‖ = r.

Die Kurve ist regulär, hat aber für r �= 1 nicht Parameter Bogenlänge.

Die Länge ist Lγ =
2π∫
0

r ·dt = 2rπ und es ist s(t) =
t∫
0

r ·dx = r ·t.Die äquivalente

Kurve mit Parameter Bogenlänge ist dann

χ : [0, 2rπ] → R2, s 	→ (r · cos
s

r
, r · sin s

r
)

und man erhält

T (s) = (− sin
s

r
, cos

s

r
), Ṫ (s) = (−1

r
· sin s

r
,−1
r
· sin s

r
), κ(s) =

1
r
.

Beispiel 9.5.12 Für r > 0, h > 0 erhält man die Schraubenlinie

γ : [0, 2π] → R3, t 	→ (r · cos t, r · sin t, h · t).
Es ist

γ̇(t) = (−r · sin t, r · cos t, h), ‖γ̇(t)‖ =
√
r2 + h2, Lγ = 2π

√
r2 + h2.

Wir setzen � :=
√
r2 + h2; die Schraubenlinie mit Parameter Bogenlänge ist

χ : [0, 2π�] → R3, s 	→ (r · cos
s

�
, r · sin s

�
,
h

�
· s);

dann ergibt sich

T (s) = (− r
�

sin
s

�
,
r

�
cos
s

�
,
h

�
), Ṫ (s) = (− r

ρ2
cos
s

�
, − r
�2

sin
s

�
, 0)

die Krümmung ist konstant, nämlich κ(s) = r
r2+h2 .

Beispiel 9.5.13 Wir bringen einige Beispiele von Kurven, die schon vor Jahrhun-
derten eingehend untersucht wurden: die Archimedische Spirale, die Neilsche Para-
bel und die Zykloide, die so definiert sind:

Archimedische Spirale α(t) = (t · cos t , t · sin t)
Neilsche Parabel β(t) = (t2 , t3)

Zykloide γ(t) = (t− sin t , 1 − cos t)
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ArchimedischeSpirale NeilscheParabel

Auf die Zykloide wollen wir ausführlicher eingehen; sie entsteht folgendermassen:
Wenn eine Kreisscheibe vom Radius 1 entlang der x-Achse abrollt, so beschreibt ein
Punkt, der auf dem Kreisrand liegt, eine Zykloide. Falls der Punkt vom Mittelpunkt
des Kreises einen Abstand a hat, wird die Kurve durch

γa(t) = (t− a sin t , 1 − a cos t)

gegeben. Für a < 1 liegt der Punkt im Innern des Kreises, auf einer Speiche des
Rades; für a > 1 liegt er außerhalb.

Zykloide

Zykloide

Zykloide

a = 1

a > 1

a < 1

2π

2

Die Zykloide ist in mehrfacher Hinsicht interessant. Sie wurde von Christian Huy-
gens zur Herstellung eines Pendels verwendet, dessen Schwingungsdauer nicht von
der Amplitude abhängt; daher wird sie auch als Tautochrone bezeichnet. Die Zy-
kloide heißt auch Brachystochrone, also Kurve kürzester Laufzeit. Johann Bernoulli
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stellte 1696 die folgende Aufgabe: Ein Massenpunkt bewegt sich unter dem Ein-
fluss der Schwerkraft auf einer Kurve vom Nullpunkt 0 zu einem tiefer gelegenen
Punkt p. Für welche Kurve ist die Laufzeit am kürzesten ? Die von Bernoulli, New-
ton und Leibniz gefundene Lösung ist eine Zykloide

t 	→ (
c

2
(t− sin t) , − c

2
(1 − cos t)); c > 0

p

0

9.6 Vektorfelder, Divergenz und Rotation

Wir behandeln in diesem Abschnitt Vektorfelder v auf einer offenen Menge U im
Rn. Insbesondere werden Bedingungen hergeleitet, wann v ein Potential h besitzt.

Definition 9.6.1 Eine auf einer offenen Menge U ⊂ Rn definierte stetig partiell
differenzierbare Abbildung

v : U → Rn, x 	→ (v1(x), ..., vn(x)),

heißt Vektorfeld auf U .
Unter einem Potential h von v versteht man eine zweimal stetig partiell differen-
zierbare Funktion h : U → R mit v = grad h, also vi = ∂h

∂xi
für i = 1, ..., n.

Eine notwendige Bedingung für die Existenz eines Potentials ist:

Satz 9.6.2 Wenn v ein Potential h besitzt, dann gilt für i, j = 1, ..., n:

∂vi
∂xj

=
∂vj
∂xi
.

Beweis. Es ist ∂2h
∂xj∂xi

= ∂
∂xj
vi und ∂2h

∂xi∂xj
= ∂

∂xi
vj ; aus ∂2h

∂xj∂xi
= ∂2h

∂xi∂xj
folgt die

Behauptung. �

Nun führen wir den Begriff des Kurvenintegrals von v längs einer Kurve γ ein.
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Definition 9.6.3 Ist v : U → Rn, x 	→ (v1(x), ..., vn(x)), ein Vektorfeld und
γ : [a, b] → U, t 	→ (x1(t), ..., xn(t)), eine stückweise stetig differenzierbare Kurve
in U , so heißt

∫
γ

vds :=

b∫
a

n∑
j=1

vj(γ(t)) · dxj

dt
(t) dt =

b∫
a

< v(γ(t)), γ̇(t) > dt.

das Kurvenintegral von v längs γ.

Es gilt:

Satz 9.6.4 Wenn v ein Potential h besitzt, dann gilt für jede stückweise stetig diffe-
renzierbare Kurve γ in U :∫

γ

v ds = h(γ(b)) − h(γ(a)).

Falls γ geschlossen ist, gilt ∫
γ

v ds = 0.

Beweis. Es ist d
dth(γ(t)) =

n∑
j=1

∂h
∂xj

(γ(t)) · ẋj(t)dt =
n∑

j=1

vj(γ(t)) · ẋj(t) dt und

daher ist
∫
γ

vds = h ◦ γ|ba. �


Nun zeigen wir, dass die in 9.6.2 angegebene Bedingung ∂vi

∂xj
= ∂vj

∂xi
für die Existenz

zwar notwendig, aber nicht hinreichend ist.

Beispiel 9.6.5 In U := R2 \ {(0, 0)} sei

v(x, y) :=
( −y
x2 + y2

,
x

x2 + y2

)
.
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Wir zeigen: Es gilt ∂v1
∂y = ∂v2

∂x , aber v besitzt kein Potential: Es ist

∂

∂y

( −y
x2 + y2

)
=
y2 − x2

(x2 + y2)2
,
∂

∂x

(
x

x2 + y2

)
=
y2 − x2

(x2 + y2)2
.

Nun sei γ : [0, 2π] → U, t 	→ (cos t, sin t),dann ist

∫
γ

vds =

2π∫
0

( − sin t
cos2 t+ sin2 t

· (− sin t) +
cos t

cos2 t+ sin2 t
· cos t

)
dt = 2π.

Wenn v ein Potential besitzen würde, dann wäre nach 9.6.4 dieses Kurvenintegral
gleich 0. Wir gehen in 9.6.16 nochmals auf dieses Beispiel ein.

Man wird vermuten, dass bei diesem Beispiel das
”
Loch“, das U besitzt, eine Rolle

spielt. Gebiete ohne
”
Löcher“ sind zum Beispiel die sternförmigen Gebiete:

Definition 9.6.6 Eine offene Menge U ⊂ Rn heißt sternförmig bezüglich p ∈ D,
wenn für jedes q ∈ U die Verbindungsstrecke von p nach q in U liegt, also

(1 − t)p+ tq ∈ U für alle t ∈ [0, 1].

Die Kurve γ : [0, 1] → Rn, t 	→ (1 − t)p+ tq, durchläuft die Strecke von p nach q
und wir setzen

q∫
p

:=
∫
γ

.

Ist U sternförmig bezüglich 0 und ist v : U → Rn ein Vektorfeld, so gilt nach 9.6.4:
Wenn v ein Potential h besitzt (wir dürfen h(0) = 0 annehmen), so gilt :

h(x) =

x∫
0

vds.

Die Kurve von 0 nach x ∈ U ist γ : [0, 1] → U, t 	→ tx = (tx1, ..., txn), und
daher gilt:

x∫
0

vds =

1∫
0

n∑
j=1

xj · vj(tx) dt.

Nun ist klar, wie man die Existenz eines Potentials auf sternförmigen Gebieten be-
weist. Man definiert h durch diesen Ausdruck und zeigt:

Satz 9.6.7 Ist v : U → Rn ein Vektorfeld auf dem bezüglich 0 sternförmigen Gebiet
U ⊂ Rn und gilt

∂vi
∂xj

=
∂vj
∂xi

für i, j = 1, ..., n,
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so besitzt v ein Potential h : U → R, nämlich

h(x) :=
n∑

j=1

xj

1∫
0

vj(tx) dt.

Beweis. Es gelten die beiden Gleichungen

∂
∂xi

(
n∑

j=1

xjvj(tx)

)
= vi(tx) +

n∑
j=1

xj · ∂vj

∂xi
(tx) · t

∂
∂t

(
tvi(tx)

)
= vi(tx) +

n∑
j=1

t · ∂vi

∂xj
(tx) · xj .

Wegen ∂vi

∂xj
= ∂vj

∂xi
sind die rechten Seiten gleich und es folgt:

(∗) ∂

∂xi

⎛⎝ n∑
j=1

xjvj(tx)

⎞⎠ =
∂

∂t

(
tvi(tx)

)
Nun differenzieren wir nach 9.2.16 unter dem Integral und berücksichtigen (*); da-
mit ergibt sich:

∂h
∂xi

(x) =
1∫
0

∂
∂xi

(
n∑

j=1

xjvj(tx)

)
dt

(∗)
=

1∫
0

∂
∂t

(
tvi(tx)

)
dt =

= tvi(tx)|10 = vi(x)

�

Wir werden diese Aussage im Kalkül der Differentialformen nochmals beweisen
(Satz 11.3.20 und Satz 11.5.5).
Kurz zusammengefaßt besagen die Sätze 9.6.2 und 9.6.7:

Die Bedingung ∂vi

∂xj
= ∂vj

∂xi
ist notwendig für die Existenz eines Potentials,

auf sternförmigen Gebieten ist sie auch hinreichend.

Wir wollen noch erläutern, wie man im Fall n = 2 ein Potential explizit angeben
kann.

Beispiel 9.6.8 Es sei U ⊂ R2 ein offenes Rechteck und v ein Vektorfeld, das wir
jetzt so schreiben:

v : U → R2, (x, y) 	→ (f(x, y), g(x, y)),

es gelte ∂f
∂y = ∂g

∂x . Zuerst bestimmt man eine Stammfunktion F von f bezüglich x,

also eine zweimal stetig differenzierbare Funktion F : U → R mit ∂F
∂x = f . Dann

macht man für das gesuchte Potential h den Ansatz
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h(x, y) = F (x, y) + ϕ(y),

wobei ϕ nur von y abhängen soll. Dann ist ∂h
∂x = ∂F

∂x = f und ϕ soll so gewählt
werden, daß ∂h

∂y = g ist, also g(x, y) = ∂F
∂y (x, y) + ϕ′(y) oder

ϕ′(y) = g(x, y) − ∂F
∂y

(x, y).

Daraus berechnet man ϕ. Der Ausdruck g − ∂F
∂y hängt nur von y und nicht von x

ab, denn es ist

∂

∂x

(
g − ∂F
∂y

)
=
∂g

∂x
− ∂

2F

∂x∂y
=
∂g

∂x
− ∂f
∂y

= 0.

Ist etwa v(x, y) := (2xy, x2 + 2y), so kann man F (x, y) := x2y setzen. Dann ist
ϕ′(y) = (x2 + 2y) − ∂

∂y (x2y) = 2y und man kann ϕ(y) = y2 wählen. Dann ist

h(x, y) = x2y + y2 ein Potential.

Divergenz und Rotation
Bei einem Vektorfeld kann man die Divergenz bilden; man interpretiert sie als Quel-
lenstärke der durch das Vektorfeld gegebenen Strömung. Im R3 hat man auch noch
die Rotation, mit der man die Wirbelstärke eines Vektorfeldes beschreibt.

Definition 9.6.9 Ist U ⊂ Rn offen und v : U → Rn, x 	→ (v1(x), . . . , vn(x)), ein
Vektorfeld, so heißt die Funktion

div v : U → R, x 	→ ∂v1
∂x1

(x) + . . .+
∂vn
∂xn

(x),

die Divergenz von v. Ein Vektorfeld heißt quellenfrei, wenn div v = 0 ist.
Ist U ⊂ R3 offen und v : U → R3, x 	→ (v1(x), v2(x), v3(x)) ein Vektorfeld, so
heißt das durch

rot v :=
(
∂v3
∂x2

− ∂v2
∂x3
,
∂v1
∂x3

− ∂v3
∂x1

,
∂v2
∂x1

− ∂v1
∂x2

)
definierte Vektorfeld rot v : U → R3 die Rotation von v. Ein Vektorfeld heißt
wirbelfrei, wenn rot v = 0 ist.

Es ist zweckmässig, nun zwei Differentialoperatoren einzuführen: den Nabla-Ope-
rator ∇ und den Laplace-Operator �. Mit Hilfe des Nabla-Operators kann man die
Begriffe grad, div, rot einheitlich formulieren (vgl. dazu auch 13.4 und 11.5).

Definition 9.6.10 Man bezeichnet den (symbolischen) Vektor

∇ :=
(
∂

∂x1
, ...,

∂

∂xn

)
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als Nabla-Operator und interpretiert ihn so: Für eine differenzierbare Funktion
f : U → R mit U ⊂ Rn setzt man

∇f :=
(
∂f

∂x1
, ...,

∂f

∂xn

)
= grad f.

Ist v ein Vektorfeld in U ⊂ Rn, so interpretiert man ∇v als Skalarprodukt und setzt

∇v :=
∂v1
∂x1

+ ...+
∂vn
∂xn

= div v.

Im R3 kann man auch das Vektorprodukt bilden: Ist U ⊂ R3 und v : U → R3, so
setzt man setzt

∇× v :=
(
∂v3
∂x2

− ∂v2
∂x3
,
∂v1
∂x3

− ∂v3
∂x1
,
∂v2
∂x1

− ∂v1
∂x2

)
= rot v.

Der Differentialoperator

� :=
∂2

∂x21
+ ...+

∂2

∂x2n

heißt der Laplace-Operator. Es ist also

�f =
∂2f

∂x21
+ ...+

∂2f

∂x2n
.

Eine zweimal stetig differenzierbare Funktion f heißt harmonisch, wenn gilt:

�f =
∂2f

∂x21
+ . . .+

∂2f

∂x2n
= 0.

Harmonische Funktionen werden wir in 14.14 behandeln.

Vektorfelder im R3

Wir wollen zunächst die Bedeutung von div und rot etwas veranschaulichen.

Beispiel 9.6.11 Beim Vektorfeld v(x) := x weisen die Vektoren vom Nullpunkt
weg und vermitteln den Eindruck einer im Nullpunkt liegenden Quelle. Es ist, wie
man leicht nachrechnet:

div v = 3, rot v = 0.

Das Vektorfeld w := (−x2, x1, 0) beschreibt eine Rotation um 0 und es ist

div w = 0, rot w = (0, 0, 2).
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Die Sätze 9.6.2 und 9.6.7 besagen:
Wenn das Vektorfeld v : U → R3 ein Potential besitzt, dann ist rot v = 0.Wenn U
sternförmig ist und rot v = 0 gilt, dann besitzt v ein Potential.

Es gelten folgende Rechenregeln:

Satz 9.6.12 Ist U ⊂ R3 offen , so gilt für jede zweimal stetig differenzierbare Funk-
tion f und jedes Vektorfeld v auf U :

rot (grad f) = 0, also ∇× (∇ f) = 0
div (rot v) = 0, also ∇ (∇× v) = 0
div (grad f) = � f, also ∇ (∇ f) = � f.

Ein Gradientenfeld v = grad f ist also immer wirbelfrei; es ist genau dann quel-
lenfrei, wenn f harmonisch ist.

Diese Aussagen rechnet man leicht nach; man benutzt dabei, dass man die Rei-
henfolge der Ableitungen vertauschen kann. Wir behandeln dies im allgemeineren
Rahmen nochmals in 13.4 und in 11.5.

Wir geben nun weitere Beispiele an:

Beispiel 9.6.13 (Lineare Vektorfelder) Einfache Beispiele liefern die linearen
Vektorfelder. Sei A ∈ R(3,3) und v(x) := Ax. Dann ist

div v = a11 + a22 + a33, rot v = (a32 − a23, a13 − a31, a21 − a12).
Spezielle lineare Vektorfelder erhält man durch das Vektorprodukt: Ist w ∈ R3 und
definiert man v(x) := w × x, so ist

w × x =

⎛⎝ 0 −w3 w2

w3 0 −w1

−w2 w1 0

⎞⎠ x
und daher

div v = 0, rot v = 2w.

Der Vektor w× x steht senkrecht auf w und auf x; dieses Vektorfeld v(x) = w× x
beschreibt eine Drehung um die durch w gegebene Drehachse, man interpretiert
‖w‖ als Winkelgeschwindigkeit.

Eine weitere Klasse von Beispielen sind die folgenden:

Beispiel 9.6.14 Wir behandeln Vektorfelder der Form

v (x) := g(‖x‖) · x,
dabei ist g eine stetig differenzierbare Funktion. Zunächst rechnet man nach:

für r(x) := ‖x‖, x ∈ R3 \ {0}, ist grad r(x) =
x

‖x‖ .
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Nun macht man für das gesuchte Potential h den Ansatz gradh(r) = g(r) · x, also
h′(r) · x

r = g(r) ·x und somit h′(r) = r ·g(r). Wählt man h als Stammfunktion von
r · g(r), so ist die Funktion x 	→ h(‖x‖) ein Potential zum Vektorfeld g(‖x‖) · x.
Damit kann man nun die Vektorfelder

v(x) := ‖x‖k · x für x ∈ R3 \ {0}, k ∈ Z

behandeln. Es ist g(r) = rk und für k �= −2 ist h(r) = rk+2

k+2 ; für k = −2 wählt
man h(r) = ln r. Damit erhält man: Für k ∈ Z und x ∈ R3 \ {0} gilt:

ein Potential zu ‖x‖k · x ist 1
k+2 · ‖x‖k+2, falls k �= −2,

ein Potential zu x
‖x‖2 ist ln ‖x‖.

Insbesondere ist also

grad (1
2‖x‖2) = x, grad (‖x‖) = x

‖x‖ ,
grad (ln ‖x‖) = x

‖x‖2 , grad (− 1
‖x‖) = x

‖x‖3 .

Für alle k ∈ Z und x ∈ R3 \ {0} gilt :

rot (‖x‖k · x) = 0, div (‖x‖k · x) = (k + 3) · ‖x‖k.

Beispiel 9.6.15 Die Sonne mit der MasseM befinde sich im Nullpunkt, ein Planet
mit der Masse 1 sei an der Stelle x. Die Anziehungskraft ist dann g·M

‖x‖2 , dabei ist
g die Gravitationskonstante. Die auf den Planeten wirkende Kraft wird also durch
einen Einheitsvektor − x

‖x‖ multipiziert mit der Anziehungskraft dargestellt. Man
erhält somit das Vektorfeld

v(x) = −gM x

‖x‖3
;

ein Potential dazu ist das Gravitationspotential V (x) = gM
‖x‖ .

Beispiel 9.6.16 Wir gehen nochmals auf das Vektorfeld v(x, y) :=
(

−y
x2+y2 ,

x
x2+y2

)
ein, das wir in 9.6.5 untersucht haben. Nach Satz 9.6.7 besitzt dieses Vektorfeld,
wenn man es auf einer sternförmigen Menge U betrachtet, ein Potential. Setzt man
etwa

U := {(x, y) ∈ R2| x > 0},
so kann man −y

x2+y2 = − y
x2 · 1

1+( y
x )2 schreiben. Eine Stammfunktion bezüglich x ist

arctg y
x und

φ : U → R, (x, y) 	→ arctg
y

x
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ist ein Potential zu v|U .
Die physikalische Bedeutung dieses Vektorfeldes ist folgende: Ein Strom, der in
einem in der z-Achse liegenden Draht fliesst, erzeugt auserhalb des Drahtes, also
in {(x, y, z) ∈ R3| (x, y) �= (0, 0)}, ein Magnetfeld H; bis auf einen konstanten
Faktor ist

H(x, y, z) =
( −y
x2 + y2

,
x

x2 + y2
, 0

)
.

Aufgaben

9.1. Sei

f : R2 → R, (x, y) �→
�

2x2y
x2+y2 für (x, y) �= (0, 0)

0 für (x, y) = (0, 0)

Man untersuche, ob f im Nullpunkt stetig, partiell differenzierbar, stetig partiell differenzier-
bar, (total) differenzierbar ist.

9.2. Untersuchen Sie analog wie in 9.1 die Funktion

f : R2 → R, (x, y) �→
�

2x2y2

x2+y2 für (x, y) �= (0, 0)

0 für (x, y) = (0, 0)

9.3. Sei

f : R2 → R, (x, y) �→
�

xy(x2−4y2)

x2+y2 für (x, y) �= (0, 0)

0 für (x, y) = (0, 0).

Zeigen Sie:
∂

∂y

∂f

∂x
(0, 0) �= ∂

∂x

∂f

∂y
(0, 0)

9.4. Man gebe jeweils ein Potential h zu v an (falls es existiert):

a) v : R2 → R2, (x, y) �→ (2xy , x2 − 3y2)
b) v : R2 → R2, (x, y) �→ (3xy , x2 − 3y2)
c) v : R2 → R2, (x, y) �→ (yexy + ey, xexy + xey)
d) v : R3 → R3, (x, y, z) �→ (2xy + z, x2 + z2, x + 2yz)

9.5. Berechnen Sie die Länge Lγ der Zykloide

γ : [0, 2π] → R2, t �→ ( t − sin t , 1 − cos t ).

(Zeigen Sie:
√

2 − 2 cos t = 2 sin t
2

für 0 ≤ t ≤ 2π.)

9.6. Sei v : R2 → R2, (x, y) �→ (x− y, x + y) ; berechnen Sie
�
γ

vds für folgende Kurven:

a) γ : [0, 2π] → R2, t �→ (r cos t, r sin t).
b) γ : [0, 1] → R2, t �→ (t, t),
c) γ : [0, 1] → R2, t �→ (t, t2).

9.7. Sei v : R2 → R2, (x, y) �→ (3x2 − 3y2 − 3, −6xy). Untersuchen Sie, ob v ein
Potential h besitzt und berechnen Sie

�
γ

vds für die in Aufgabe 9.6 angegebenen Kurven.
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Das Lebesgue-Integral

10.1 Definition des Lebesgue-Integrals in Rn

Das Riemann-Integral
Die Bedeutung der Integration wie wir sie in Kapitel 5 kennengelernt haben, liegt
zum einen im Ausmessen wenigstens teilweise krummlinig berandeter Flächen, zum
anderen in der Umkehrung der Differentiation. Die letzte Operation kann man auch
anders charakterisieren.

∫ b

a f(x)dx wird in einen Ausdruck umgewandelt, der aus
dem

”
Randterm“F (b) − F (a) besteht. Es ist ein wichtiges Anliegen dieses Bu-

ches, beide Gesichtspunkte in mehrdimensionalen Bereichen weiterzuverfolgen.
Beim ersten Gesichtspunkt geht es um Volumenmessung

”
unterhalb des Graphen

einer Funktion“ wie in Kapitel 5. Wir befassen uns zunächst mit diesem geometri-
schen Aspekt. Sei I = {x = (x1, . . . , xn)|a1 ≤ x1 ≤ b1, . . . , an ≤ xn ≤ bn}
ein abgeschlossener Quader des Rn. Wir zerlegen ihn in abgeschlossene Quader
Iν1...νn , ν1 = 1, . . . , N1, . . . , νn = 1, . . . , Nn, deren Konstruktion aus der folgen-
den Skizze klar wird.

Die Iν1...νn überlappen sich also nicht. Legt man das Volumen eines Quaders durch

µ(I) = (b1 − a1) · . . . · (bn − an)

fest, so ist

µ(I) =
N1,...,Nn∑

ν1,...,νn=1

µ(Iν1...νn)
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Das weitere Vorgehen ist nun ganz ähnlich dem in Kapitel 5. Bezeichnen wir die
Zerlegung von I in die Iν1...νn mit Z , so definieren wir für eine beschränkte Funk-
tion f : I → R die Untersumme SZ(f) und die Obersumme SZ(f) durch

SZ(f) =
N1,...,Nn∑

ν1,...,νn=1

mν1...νn µ(Iν1...νn) mit mν1...νn := inf{f(x)| x ∈ Iν1...νn}

und

SZ(f) =
N1,...,Nn∑

ν1,...,νn=1

Mν1...νn µ(Iν1...νn) mitMν1...νn := sup{f(x)| x ∈ Iν1...νn}.

Istm = inf{f(x)| x ∈ I}, M = sup{f(x)| x ∈ I}, so haben wir

mµ(I) ≤ SZ(f) ≤ SZ(f) ≤Mµ(I).

Wenn Z(I) die Menge aller Zerlegungen von I bezeichnet, so existieren wieder das
Unterintegral

U(f) = sup{SZ(f)| Z ∈ Z(I)}
und das Oberintegral

O(f) = inf{SZ(f)| Z ∈ Z(I)}.

Die beschränkte Funktion f : I → R heißt nun wieder (Riemann-) integrierbar,
wenn U(f) = O(f) ist und man setzt∫

I

fdx =
∫

I

f(x)dx = U(f) = O(f).

Das Integral mißt dann wieder das Volumen, das im Rn+1 über I
”
unterhalb“ des

Graphen {(x, f(x))| x ∈ I} liegt, jedoch heben sich Teile, in denen f positiv
ist, mit solchen, in denen f negativ ist, teilweise oder ganz auf. Darauf kommen
wir später im Zusammenhang mit dem Lebesgue-Integral zurück. Durch weitere
Unterteilung der Iν1...νn gewinnt man eine Verfeinerung der Zerlegung Z , es gilt
Hilfssatz 5.1.2 und damit das Riemannsche Integrabilitätskriterium aus Satz 5.1.4.
Wie in Kapitel 5 zeigt man, dass auf dem R-Vektrorraum R(I) der beschränk-
ten Riemann-integrierbaren Funktionen das Riemann-Integral eine positive Line-
arform darstellt (Hilfssatz 5.1.5). Positiv heißt, dass aus f ≤ g, f, g ∈ R(I),
auch

∫
I
f(x)dx ≤ ∫

I
g(x)dx folgt. Wie in 5 zeigt man, dass jede stetige Funktion

f in R(I) liegt. Durch Aufspaltung einer komplexwertigen beschränkten Funkti-
on f : I → C in ihren Real- und Imaginärteil können wir das Riemann-Integral
auch für komplexwertige Funktionen erklären und erhalten so den C-Vektorraum
R(I). Er ist gegen Multiplikationen abgeschlossen, d.h. mit f, g ∈ R(I) ist auch
f · g ∈ R(I).
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Das Lebesgue-Integral
Wir wollen nun den Vektorraum R(I) in einen größeren Raum von Funktio-
nen einbetten. Um die Gründe zu erklären, müssen wir etwas weiter ausholen
und beginnen mit der Frage nach der Vertauschbarkeit des Riemann-Integrals mit
Grenzübergängen. Sei (fν) eine Folge beschränkter Funktionen I → R, die dort
gleichmäßig gegen ein f : I → R konvergiert. Sind die fν ∈ R(I), so ist auch
f ∈ R(I) und

lim
ν→∞

∫
I

fν(x)dx =
∫

I

f(x)dx,

d.h. man darf Grenzwertbildung mit der Integration vertauschen. Die Forderung der
gleichmäßigen Konvergenz ist sehr stark. Will man sie durch eine schwächere, etwa
durch punktweise Konvergenz, ersetzen, so benötigt man Zusatzeigenschaften der
Folge (fν). Insbesondere muß die Grenzfunktion f auch in R(I) liegen. Dies ist
eine Folge der fehlenden Vollständigkeit von R(I), d.h.: Ähnlich wie die Grenz-
wertbildung aus den rationalen Zahlen Q herausführt, tut sie dies bei R(I). Man
wird daher, ähnlich zur Einbettung von Q in den vollständigen Körper der reellen
Zahlen R, R(I) in einen größeren Vektorraum L1(I) einbetten, dessen Elemen-
te wir als die integrierbaren Funktionen bezeichnen werden. L1(I) ist vollständig.
Die Vollständigkeit der Räume integrierbarer Funktionen hat die moderne Analysis
und Funktionalanalysis überhaupt erst ermöglicht. Wir werden dies im Laufe dieses
Kapitels noch sehen, einen ersten Eindruck vermittelt aber bereits 10.4. Unser Aus-
gangspunkt , die Vertauschbarkeit von Grenzübergang und Integration, läßt sich in
L1(I) ebenfalls befriedigender behandeln als in R(I).
Bei der Einführung des Lebesgue-Integrals richten wir uns nach [27], Kap. II.
Wir führen zunächst einige weitere Bezeichnungen ein: Folgende Teilmengen des
Rn bezeichnet man ebenfalls als Quader:

I = {(x1, . . . , xn) ∈ Rn| a1 ≤ x1 < b1, . . . , an ≤ xn < bn}
I = {(x1, . . . , xn) ∈ Rn| a1 < x1 ≤ b1, . . . , an < xn ≤ bn}
I = {(x1, . . . , xn) ∈ Rn| a1 < x1 < b1, . . . , an < xn < bn}

Das Volumen µ(I) eines Quaders wird auch hier definiert durch

µ(I) := (b1 − a1) · . . . · (bn − an).

Ein wichtiger Begriff der Lebesgue-Theorie ist der der Lebesgue-Nullmenge:

Definition 10.1.1 (Lebesgue-Nullmenge) Eine Menge N ⊂ Rn heißt Lebesgue-
Nullmenge ( oder kurz Nullmenge ), wenn es zu jedem ε > 0 eine Folge von
Quadern (Ik)k∈N gibt mit

N ⊂
∞⋃

k=1

Ik und
∞∑

k=1

µ(Ik) < ε.
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Satz 10.1.2 Die Vereinigung abzählbar vieler Lebesgue-Nullmengen ist wieder eine
Lebesgue-Nullmenge.

Beweis. Für j ∈ N sei Nj eine Lebesgue-Nullmenge und N :=
∞⋃

j=1

Nj . Nun sei

ε > 0 vorgegeben. Weil Nj eine Lebesgue-Nullmenge ist, gibt es Quader Ik,j mit

Nj ⊂
∞⋃

k=1

Ik,j und
∞∑

k=1

µ(Ik,j) <
ε

2j
.

Dann ist

N ⊂
⋃
k,j

Ik,j und
∞∑

j=1

∞∑
k=1

µ(Ik,j) <
∞∑

j=1

ε

2j
= ε.

�
Beispiel 10.1.3 Einpunktige Mengen {p}mit p ∈ Rn sind offensichtlich Lebesgue-
Nullmengen; daher sind auch alle abzählbaren Teilmengen des Rn Lebesgue-
Nullmengen, zum Beispiel Qn. Ebenso sind die Seiten und Kanten von Quadern
Lebesgue-Nullmengen.

Wir kommen nun zum Begriff
”
fast überall“, abgekürzt

”
f. ü.“, das soll bedeuten,

dass etwas bis auf eine Lebesgue-Nullmenge gilt. Dies wird folgendermassen präzi-
siert:

Definition 10.1.4 Es sei I ein Quader und N eine Lebesgue-Nullmenge,N ⊂ I ⊂
Rn. Ist dann f : I\N → R eine Funktion, so sagt man, f sei fast-überall in I
definiert und schreibt:

f : I → R f. ü..

Sind f und g zwei derartige Funktionen, so sagt man

f = g f. ü.,

wenn eine Lebesgue-Nullmenge Ñ in I existiert, so dass f und g in I\Ñ definiert
sind und für alle x ∈ I\Ñ gilt: f(x) = g(x).
Analog ist

f ≤ g f. ü.

definiert.

Definition 10.1.5 Für j ∈ N sei fj : I → R f. ü. definiert. Es existiere eine
Lebesgue-Nullmenge Ñ ∈ I , so das für jedes x ∈ I\Ñ die Folge (fj(x))j kon-
vergiert. Setzt man f(x) := lim

j→∞
fj(x) für x ∈ I\Ñ , so ist f : I → R f. ü. in I
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definiert und man sagt, dass die Folge (fj)j f. ü. in I gegen f konvergiert; dafür
schreibt man auch

f = lim
j→∞

fj f. ü. inI.

Mit Hilfe von Treppenfunktionen kommen wir nun zum Begriff des Lebesgue-
integrierbaren Funktionen.

Definition 10.1.6 (Treppenfunktion) Eine Funktion ϕ : I → R auf einem Quader
I ⊂ Rn heißt Treppenfunktion, wenn es endlich viele Quader I1, . . . , Ir ⊂ I gibt
und c1, . . . , cr ∈ R mit folgenden Eigenschaften:

(1) Für j �= k ist
◦
Ij ∩ ◦

Ik= ∅
(2) auf jedem

◦
Ij ist ϕ konstant: ϕ| ◦

Ij= cj

(3) ausserhalb
r⋃

j=1

Ij ist ϕ = 0.

Man setzt dann ∫
I

ϕdx :=
r∑

j=1

cjµ(Ij)

Definition 10.1.7 Sei f : I → R f. ü. erklärt. Wir setzen

f+(x) = max(f(x), 0) f−(x) = max(−f(x), 0).

Dann ist
f = f+ − f−, |f | = f+ + f−.

f+, f− nennt man auch Positiv- und Negativteil von f .

Definition 10.1.8 Eine Funktion f : I → R heißt meßbar, wenn es eine Folge von
Treppenfunktionen von I in R gibt, die f. ü. in I gegen f konvergiert. Die Menge der
meßbaren Funktionen auf I bezeichnen wir mit

M(I).

Bemerkung. Man kann zeigen, dass eine Funktion f : I → R genau dann meßbar
ist, wenn es f. ü. erklärte g, h : I → R gibt derart, dass f = g − h ist und zu g, h
jeweils eine Folge von Treppenfunktionen (ϕj)j , (ψj)j existiert mit

ϕj ≤ ϕj+1, ψj ≤ ψj+1, lim
j→∞

ϕj = g f.ü., lim
j→∞

ψj = h f.ü.

Man könnte versucht sein, g, h durch f+, f− zu ersetzen, doch ist dies nicht
möglich. Es gelten aber für |f |, f+, f− die folgenden Formeln, wenn wieder
f = g − h ist:
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|f | = max(g, h) − min(g, h), f+ = max(g, h) − h = g − min(g, h),

f− = max(g, h) − g = h− min(g, h).

Da max(ϕj , ψj), min(ϕj , ψj) ebenfalls monotone Folgen von Treppenfunktionen
sind, sind |f |, f+, f− insbesondere meßbar.

Der RaumM(I) der meßbaren Funktionen ist ein Vektorraum, der gegen Maximum-
und Minimumbildung endlich vieler Funktionen, f. ü. Konvergenz und Multiplika-
tion abgeschlossen ist; d.h. diese Operationen führen nicht aus M(I) heraus. Ist
g ∈ M(I) und g(x) �= 0 für x ∈ I , so ist auch 1

g ∈ M(I). M(I) ist sehr groß,
d.h. es ist schwierig, eine Funktion zu konstruieren, die nicht in M(I) liegt. Für
praktische Zwecke ist es völlig ausreichend, davon auszugehen, dass jede Funkti-
on in M(I) liegt. Aus M(I) werden nun die Lebesgue-integrierbaren Funktionen
herausgefiltert.

Definition 10.1.9 Ist f : I → R eine Funktion, so sagt man

f ∈ L+(I),

wenn es eine Folge (ϕj)j von Treppenfunktionen ϕj : I → R gibt mit folgenden
Eigenschaften

(1) ϕj ≤ ϕj+1 f. ü.,
(2) lim

j→∞
ϕj = f f. ü.,

(3) es gibt einM > 0 mit
∫

I
ϕjdx ≤M für alle j ∈ N.

Man setzt dann ∫
I

fdx = lim
j→∞

∫
I

ϕdx.

Kurz zusammengefasst:

Eine Funktion f ist genau dann in L+(I), wenn sie Grenzwert ( f. ü. )
einer monoton wachsenden Folge von Treppenfunktionen mit beschränkter
Integralfolge ist; die Integralfolge konvergiert, weil sie monoton wachsend
und beschränkt ist.

Nun kommen wir zum Grundbegriff dieser Theorie, dem Lebesgue-Integral (HENRI

LEBESGUE (1875-1941))

Definition 10.1.10 Eine Funktion f : I → R heißt Lebesgue-integrierbar, wenn
es Funktionen g, h,∈ L+(I) gibt mit f = g − h; man setzt∫

I

fdx :=
∫

I

gdx−
∫

I

hdx.

Der Wert des Integrals ist unabhängig von der Zerlegung f = g − h.
Die Menge der Lebesgue-integrierbaren Funktionen bezeichnet man mit L(I).
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Man zeigt nun:

Satz 10.1.11 L(I) ist ein Vektorraum; für f1, f2 ∈ L(I), c1, c2 ∈ R haben wir

(1)
∫

I
(c1f1 + c2f2)dx = c1

∫
I
f1dx+ c2

∫
I
f2dx,

(2) aus f1 ≤ f2 f. ü. folgt
∫

I f1dx ≤
∫

I f2dx.

Beispiel 10.1.12 Wie in 5.1.10 sei I = [0, 1] und

f : I → R, x 	→
{

1 falls x ∈ Q
0 falls x /∈ Q

Dann ist f nicht in R(I): Da die irrationalen Zahlen im Intervall [0, 1] dicht liegen,
ist U(f) = 0; ebenso gilt dies von den rationalen Zahlen, so dass O(f) = 1 ist.
Jedoch bilden die rationalen Zahlen eine Nullmenge und f ist daher f. ü. gleich der
Treppenfunktion ϕ ≡ 0. Also ist f ∈ L(I) und

∫
I fdx = 0.

In allen vorhergehenden Betrachtungen dürfen die halboffenen oder offenen Qua-
der I auch uneigentlich sein, d.h. Endpunkte ai, bi dürfen −∞ oder +∞ sein. So
erhalten wir etwa für n = 2 mit I = {−∞ < x1 ≤ b1, a2 < x2 ≤ b2} einen
zur x1-Achse parallelen Halbstreifen der Breite b2 − a2; setzen wir I = {−∞ <
x1 < +∞, a2 < x2 ≤ b2}, so erhalten wir einen Streifen der Breite b2 − a2. Für
beliebiges n ist I = {−∞ < x1 < +∞, . . . ,−∞ < xn < +∞} der ganze Rn.
Damit können wir Funktionen f : I → R auch über unbeschränkte I integrieren.
Ein Vergleich mit den uneigentlichen Riemann-Integralen aus Kapitel 5 drängt sich
auf. Wir gehen im nächsten Abschnitt darauf ein. In diesem Zusammenhang merken
wir noch an:

Satz 10.1.13 I sei eigentlicher oder uneigentlicher Quader. f aus M(I) ist dann
und nur dann aus L(I), wenn |f | es ist.

Beweis. f sei aus L(I). Dann sind nach unserer Bemerkung auch die Funktionen
f+, f− ∈ L(I) . Mit |f | = f+ + f− folgt die erste Richtung. Sein nun |f | ∈ L(I).
Im Rahmen einer erweiterten Theorie kann man den Integralbegriff auf meßbare
Funktionen f ≥ 0 f. ü. ausdehnen, indem man Funktionen, die im bisherigen Sinn
nicht integrierbar sind, als Integral

∫
I
fdx = +∞ zuordnet. Dann gilt weiter (2)

aus 10.1.11 und wir erhalten f+, f− ∈ L(I) und damit f = f+ − f− ∈ L(I). �

Wir stellen noch einige Sätze über L(I) zusammen, die häufig nützlich sind.

Satz 10.1.14 Sei I eigentlich oder uneigentlich. Seien f ∈ L(I), sei f = g f. ü. in
I . Dann ist g ∈ L(I) und ∫

I

f(x)dx =
∫

I

g(x)dx.

Ist f = 0 f. ü. in I , so ist f ∈ L(I) und
∫

I fdx = 0. Sei f ∈ L(I). Dann gibt
es zu f eine Folge von Treppenfunktionen (ϕj) von I in R mit

∫
I
|f − ϕj |dx → 0,

ϕj → f f. ü., j → ∞.
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Die ersten beiden Aussagen folgen aus der Definition von L(I), die dritte können
wir hier nicht beweisen.

Insbesondere kommt es bei der Integration auf Nullmengen nicht an und die Trep-
penfunktionen liegen in L(I) dicht bezüglich der

”
Norm“

∫
I |f |dx.

Definition 10.1.15 Ist D eine beliebige Teilmenge des Rn, f : D → R eine Funk-
tion. Dann liegtD im uneigentlichen Quader Rn und wir setzen

f̃ = f̃D : Rn → R, x→
{
f(x) für x ∈ D,

0 für x ∈ Rn \D.

Man nennt f meßbar bzw. Lebesgue integrierbar über D, wenn f̃ ∈ M(Rn) bzw.
∈ L(Rn) ist, und setzt ∫

D

fdx :=
∫

Rn

f̃dx.

Mit Hilfe der integrierbaren Funktionen können wir beschränkten Mengen ein end-
liches Maß zuordnen.

Definition 10.1.16 Sei D eine beliebige Teilmenge des Rn. D heißt meßbar, wenn
f ≡ 1 überD integrierbar ist, und

µ(D) =
∫

D

1dx ≥ 0

heißt das Lebesgue-Maß der MengeD.

Die Nullmengen, die wir in 10.1.1 eingeführt haben, sind genau die Mengen mit
Maß 0. Es ist klar, dass beschränkte meßbare Mengen ein Maß haben, dass nicht
größer als der Inhalt eines Quaders ist, der sie einschließt. Das Beispiel einer Hy-
perebene im Rn zeigt, dass unbeschränkte sogar das Maß 0 haben können, wenn sie

”
hinreichend dünn“sind. Analog zur Klasse der meßbaren Funktionen ist die Klasse

der meßbaren Mengen sehr groß, so dass wir für praktische Zwecke jede Teilmenge
einer meßbaren Menge und insbesondere jede beschränkte Menge als meßbar anse-
hen können.

Wir merken eine Regel für Integrale und Maße an.

Satz 10.1.17 Seien A,B ⊂ Rn meßbare Mengen. Dann gilt:

(1) Aus A ⊂ B, f ∈ L(B) , f ≥ 0 f. ü. folgt:∫
A

fdx ≤
∫

B

fdx und µ(A) ≤ µ(B).

(2) Wenn A ∩B eine Nullmenge und f ∈ L(A ∪B) ist, dann gilt:∫
A∪B

fdx =
∫

A

fdx+
∫

B

fdx und µ(A ∪B) = µ(A) + µ(B).
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(3) Aus f ∈ L(A), f ≥ 0 f. ü. und
∫

A
fdx = 0 folgt f = 0 f. ü.

Beweis. Wir erklären f̃ wie in 10.1.15 Dann haben wir im ersten Fall f̃A ≤ f̃B f.
ü., woraus die erste Behauptung folgt. Im zweiten Fall ist f̃A + f̃B = f̃A∪B f. ü.
Daraus folgt die zweite Behauptung. Der Beweis der dritten Behauptung ist etwas
schwieriger.Wir setzen

Am :=
{
x|f̃A(x) ≥ 1

m

}
;

dann ist

{x|f̃A(x) > 0} =
∞⋃

m=1

Am

und mit der Meßbarkeit der Am folgt

0 =
∫

Rn

f̃Adx ≥
∫

Rn

f̃Amdx ≥ 1
m
µ(Am).

Also ist µ(Am) = 0 und mit 10.1.2 folgt, dass {x|f̃A(x) > 0} eine Nullmenge
ist. �

Wie in 10.1.13 kann man sich ein wichtiges Kriterium für die Integrierbarkeit einer
Funktion verschaffen.

Satz 10.1.18 Sei D ⊂ Rn, f : D → R, f̃D meßbar, g ∈ L(D), |f | ≤ g. Dann
ist f ∈ L(D). Insbesondere sind mit f, g ∈ L(D) auch max(f, g), min(f, g) aus
L(D).

10.2 Die Sätze von Levi und Lebesgue, der Satz von Fubini

Die Menge aller Treppenfunktionen auf I , I eigentlich oder uneigentlich, wurde
zu L+(I) und dann zu L(I) erweitert, indem man die Grenzwerte von monoto-
nen konvergenten Folgen mit beschränkter Integralfolge hinzunimmt. Nun stellt sich
die Frage, ob man durch einen analogen Prozess die Menge L(I) nochmals erwei-
tern kann. Der folgende Satz von BEPPO LEVI (1875-1961) besagt, dass derartige
Grenzfunktionen bereits in L(I) liegen:

Satz 10.2.1 (Satz von B. Levi) Es sei (fm)m eine Folge von Funktionen fm ∈ L(I)
und es gelte:

(1) fm ≤ fm+1 f. ü.,
(2) es gibt einM > 0 mit

∫
I
fmdx ≤M fürm ∈ N.

Dann existiert ein f ∈ L(I) mit

lim
m→∞ fm = f f. ü. und lim

m→∞

∫
I

fmdx =
∫

I

fdx.
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Satz 10.2.2 (Konvergenzsatz von Lebesgue) Es sei (fm) eine Folge, fm : I → R,
die f. ü. gegen eine Funktion f : I → R konvergiert; es existiere ein g ∈ L(I) mit
|fm| ≤ g fürm ∈ N. Dann gilt

f ∈ L(I) und lim
m→∞

∫
I

fmdx =
∫

I

fdx.

Daraus folgt:

Satz 10.2.3 Es seien
I1 ⊂ I2 ⊂ . . . ⊂ I ⊂ Rn

Intervalle mit
∞⋃

m=1

Im = I Es sei f : I → R eine Funktion und es gelte

(1) für jedesm ∈ N ist f |Im Lebesgue-integrierbar
(2) es gibt einM > 0 mit

∫
I
|fm|dx ≤M für allem ∈ N

Dann gilt

f ∈ L(I) und lim
m→∞

∫
Im

fdx =
∫

I

fdx.

Wir erläutern die Beweisidee: Für f ≥ 0 setzt man

fm : I → R, x→
{
f(x) für x ∈ Im

0 für x /∈ Im
und wendet den Satz von Levi an.

Dass die Lebesgue-Integration eine echte Erweiterung der Riemann-Integration ist,
zeigt zusammen mit Beispiel 10.1.12 der

Satz 10.2.4 Sei I ein abgeschlossener Quader, f ∈ R(I). Dann ist f ∈ L(I) und∫
I

f(x)dx (Riemann) =
∫

I

f(x)dx(Lebesgue) .

Bevor wir den Beweis geben, führen wir eine gebräuchliche Bezeichnungsweise
ein. IstD eine beliebige Teilmenge des Rn, so schreiben wir statt der bereits in 10.1
verwendeten Fortsetzung von f : D → R, x 	−→ 1, durch 0 das Symbol

χD(x) =
{

1 falls x ∈ D
0 falls x /∈ D

und bezeichnen χD als die charakteristische Funktion vonD.

Beweis des Satzes 10.2.4 Sei (Zλ) eine Folge von sukzessiven Verfeinerungen einer
Zerlegung des abgeschlossenen Quaders I mit
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SZλ
(f) strebt monoton wachsend gegen

∫
I
f(x)dx (Riemann), λ→ ∞,

SZλ
(f) strebt monoton fallend gegen

∫
I f(x)dx (Riemann), λ→ ∞,

die nach dem Riemannschen Integrabilitätskriterium existiert; SZλ
(f), SZλ

(f) sind
gleichzeitig die Riemann- und Lebesgue-Integrale über die Treppenfunktion

Φλ(x) =
N1(λ),...,Nn(λ)∑

ν1,...,νn=1

M (λ)
ν1...νn

χ
I
(λ)
ν1...νn

(x),

ϕλ(x) =
N1(λ),...,Nn(λ)∑

ν1,...,νn=1

m(λ)
ν1...νn

χ
I
(λ)
ν1...νn

(x), λ = 1, 2, . . . ,

wenn Zλ bedeutet, dass I in die Quader I(λν1...νn mitM (λ)
ν1...νn ,m(λ)

ν1...νn als Suprema
bzw. Infima von f über diese Quader, zerlegt wird. Dann haben wir Φλ ≥ Φλ+1,
ϕλ ≤ ϕλ+1 und die Folgen (

∫
I φλ(x)dx), (

∫
I ϕλ(x)dx) sind nach unten bzw. oben

beschränkt. Aus Satz 10.2.1 folgt die Existenz von h, h ∈ L(I) mit

h = lim
λ→∞

Φλ f. ü. ,
∫

I hdx = lim
λ→∞

∫
I Φλdx =

∫
I fdx (Riemann)

h = lim
λ→∞

ϕλ f. ü. ,
∫

I hdx = lim
λ→∞

∫
I ϕλdx =

∫
I fdx (Riemann)

Nun ist h ≥ h f. ü., weil Φλ ≥ ϕλ f. ü. ist, und
∫

I
(h− h)dx = 0. Nach 10.1.17 ist

h = h = h f. ü.. Mit

Φλ ≥ f ≥ ϕλ und Φλ ≥ h ≥ ϕλ, Φλ → h, ϕλ → h, λ→ ∞ f. ü.

folgt f = h f. ü.. Satz 10.1.14 zeigt f ∈ L(I),∫
I

fdx (Riemann) =
∫

I

fdx (Lebesgue).

�

Mit dem Lebesgue-Integral haben wir das Riemann-Integral auf den größtmöglichen
Bereich von Funktionen fortgesetzt, über dem noch sinnvoll Integration betrieben
werden kann. Als Kandidaten für einen Test auf Integrierbarkeit stehen mit den
meßbaren Funktionen praktisch alle Funktionen zur Verfügung.

Beispiel 10.2.5 Sei I =]0, 1[, f : I → R, x 	−→ 1
xλ · 1

(1−x)µ mit Exponenten

λ, µ, 0 ≤ λ, µ < 1. Dann ist f ∈ L(I), denn sei Im =] 1
m , 1 − 1

m [,m ≥ 3, so ist∫ 1− 1
m

1
m

1
xλ(1 − x)µ

dx =
∫ 1

2

1
m

1
xλ(1 − x)µ

dx+
∫ 1− 1

m

1
2

1
xλ(1 − x)µ

dx ≤



284 10 Das Lebesgue-Integral

≤ 2µ

(1 − λ)21−λ
+

2
(1 − µ)21−µ

=:M

und die Behauptung folgt aus 10.2.3 durch Grenzübergang m → ∞. Ist jedoch
einer der Exponenten λ, µ größer oder gleich 1, so ist f /∈ L(I). Dagegen ist
f : [a,+∞[→ R, x 	−→ 1

xλ für λ > 1 in L([a,+∞), a > 0, aber für
λ ≤ 1 nicht mehr in L([a,+∞)). f(x) = 1

x trennt also gerade die folgenden
Bereiche: Die Funktionen, die etwa auf ]0,+∞[ erklärt, auf jedem Intervall [a, b],
0 < a < b < +∞ beschränkt sind, bei Null schwächer anwachsen als 1

x und für
x → +∞ schwächer oder wie 1

x abfallen, sind zwar aus L(]0, a[) für alle a > 0,
aber in keinem L(]a,+∞[), a > 0. Man sagt, sie sind bei Null integrierbar, aber
nicht im Unendlichen. Wachsen die Funktionen bei Null stärker oder wie 1

x und fal-
len sie im Unendlichen schneller ab als 1

x , so sind die Verhältnisse umgekehrt. Die
Funktionen des Beispiels werden häufig als Majoranten im Sinn von 10.2.2 benutzt,
um Funktionen auf Integrierbarkeit zu testen.

Wir befassen und nun mit Methoden zur Berechnung mehrfacher Integrale und brin-
gen den Satz von Fubini (GUIDO FUBINI (1879-1943)):

Satz 10.2.6 (Satz von Fubini) Gegeben seien Quader

I1 ⊂ Rp, I2 ⊂ Rq, I := I1 × I2 ⊂ Rn, n := p+ q,

und eine Lebesgue-integrierbare Funktion

f : I1 × I2 → R, (x, y) 	−→ f(x, y).
Dann gilt:

(1) Es existiert eine Lebesgue-Nullmenge N ⊂ I2, so dass für alle y ∈ I2\N die
Funktion

I1 → R, x 	−→ f(x, y),
Lebesgue-integrierbar ist,

(2) Die fast-überall auf I2 definierte Funktion

g : I2 → R, y 	−→
∫

I1

f(x, y)dx,

ist Lebesgue-integrierbar,
(3) es ist ∫

I2

g(y)dy =
∫

I

fd(x, y),

also ∫
I2

(∫
I1

f(x, y)dx
)

dy =
∫

I

fd(x, y),

analog gilt ∫
I1

(∫
I2

f(x, y)dy
)

dx =
∫

I

fd(x, y).
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Der Satz besagt für p = q = 1 und n = 2, dass man das Integral von f(x, y) über
ein Rechteck I = [a, b] × [c, d] so ausrechnen kann:
Man integriert bei festem y zuerst nach der Variablen x (nach (1) ist das fast
immer möglich), man bildet also

∫ b

a f(x, y)dx. Das Ergebnis hängt von y ab
und nun integriert man nach y ((2) besagt, dass dieses Integral existiert), dann

erhält man
∫ d

c

(∫ b

a f(x, y)dx
)

dy. Nach (3) ist dies gleich dem gesuchten Integral∫
I
f(x, y)d(x, y). Man darf auch zuerst nach y und dann nach x integrieren.

Oft weiß man nicht, dass f : I = I1 × I2 → R über I1 × I2 integrierbar ist und
möchte durch Ausführung einer iterierten Integration auf die Integrierbarkeit über
I1×I2 und damit die Vertauschbarkeit der Reihenfolge der Integrationen schließen.
Hier ist der folgende Satz von Tonelli (LEONIDA TONELLI (1885-1946)) nützlich.

Satz 10.2.7 (Satz von Tonelli) Sei f : I = I1 × I2 → R eine Funktion, die f. ü.
≥ 0 ist. Sei f(x, .) für fast alle x ∈ I1 aus L(I2). Die f. ü. in I1 erklärte Funktion∫

I2
f(x, y)dy sei aus L(I1). Dann ist f ∈ L(I1 × I2) und∫

I

fd(x, y) =
∫

I1

(∫
I2

f(x, y)dy
)

dx =
∫

I2

(∫
I1

f(x, y)dx
)

dy

Dasselbe gilt, wenn f(., y) für fast alle y ∈ I2 aus L(I1) und
∫

I1
f(x, y)dy aus

L(I2) ist.

Beispiel 10.2.8 Sei I1 = I2 =]0, 1[, f(x, y) = 1
x+y2 . Dann ist

∫ 1

0

(∫ 1

0
1

x+y2 dy
)

dx =
∫ 1

0
1
x

(∫ 1

0
1

1+( y√
x
)2 dy

)
dx =

=
∫ 1

0
1
x

√
x arctan 1√

x
dx

und nach Beispiel 10.2.5 ist f ∈ L(I1 × I2). Dagegen ist f(x, y) = 1
x2+y2 nicht in

L(I1 × I2), weil sonst das iterierte Integral∫ 1

0

(∫ 1

0

1
x2 + y2

dy
)

dx =
∫ 1

0

1
x2
x arctan

1
x

dx

endlich ausfallen würde. M. a. W., die Funktion 1
x2+y2 wächst zu schnell an, um

noch integrierbar zu sein.

Aus der Substitutionsregel 5.4.2 wissen wir schon bei einer Variablen, dass die
Einführung neuer Variablen bei der Auswertung von Integralen oft hilfreich ist. Für
Lebesgue-Integrale im Rn trifft dies ebenfalls zu, doch muß man sich auf umkehrbar
stetig differenzierbare Variablensubstitutionen beschränken. Es gilt

Satz 10.2.9 (Transformationsformel) Seien U ⊂ Rn, V ⊂ Rn offen; die Ab-
bildung g : U → V sei bijektiv, g und g−1 seien stetig differenzierbar. Ist dann
f ∈ L(V ), so ist f ◦ g · | detJg| aus L(U) und umgekehrt. In diesem Fall ist



286 10 Das Lebesgue-Integral∫
V

f(y)dy =
∫

U

(f ◦ g) · | detJg|dx.

Da g−1 stetig differenzierbar in U ist, folgt sofort detJg �= 0 in U . Durch eine
Variablentransformation g versucht man oft, eine krumm berandete Menge V auf
einen Quader U abzubilden, da man nach dem Satz 10.2.6 von Fubini ein Integral
über einen Quader durch sukzessive Integration über Intervalle ausführen kann. Bei
der Integration über Intervalle hat man eventuell die Möglichkeit, auf Kenntnisse
aus Kapitel 5 zurückzugreifen (z.B. Fundamentalsatz der Differential- und Integral-
rechnung).

Beispiel 10.2.10 a) Wir führen wie in 9.3.6 Polarkoordinaten in der Ebene ein:

g : R2 → R2, (r, ϕ) 	−→ (r cosϕ, r sinϕ).

Dann ist detJg = r. Sei V = {(x, y) : x2 + y2 < 1, x > 0, y > 0}, U = {(r, ϕ) :
0 < r < 1, 0 < ϕ < π

2 }. Dann genügt g den Voraussetzungen des Satzes 10.2.9.

Mit f(x, y) =
√

1 − x2 − y2 folgt∫
V
f(x, y)d(x, y) =

∫
U
f(r cosϕ, r sinϕ)rd(r, ϕ) =

∫
U

√
1 − r2rd(r, ϕ) =

= π
2

∫ 1

0

√
1 − r2rdr = π

4

∫ 1

0

√
σdσ = π

6 ,

wobei wir die eindimensionale Substitutionsregel mit σ = 1− r2 verwendet haben.
b) Wir berechnen das Lebesgue-Maß (Volumen) der dreidimensionalen Kugel. Wir
führen Kugelkoordinaten ein:

g : R3 → R3, (r, ϕ, ϑ) 	−→ (r sinϑ cosϕ, r sinϑ sinϕ, r cosϑ),

0 ≤ r, 0 ≤ ϕ ≤ 2π, 0 ≤ ϑ ≤ π. Sei V = {(x, y, z) : x2 + y2 + z2 < 1, x �= 0
oder y �= 0}, U = {(r, ϕ, ϑ) : 0 < r < 1, 0 < ϕ < 2π, 0 < ϑ < π}. Bis auf
die Nullmenge {x = 0, y = 0} der z-Achse ist V die offene Einheitskugel K1(0)
um 0 des R3. g : U → V genügt den Voraussetzungen des Satzes 10.2.9 Es ist
detJg = r2 sinϑ, und wir erhalten für das Kugelvolumen

µ(K1(0)) = µ(V ) =
∫

V

d(x, y, z) =

=
∫ π

0

(∫ 2π

0

(∫ 1

0

r2 sinϑdr
)

dϕ
)

dϑ =
4π
3
.

Wir integrieren nun die Funktion f, f(x, y, z) = 1/
√
x2 + y2 + z2)λ für λ > 0

über V . Diese Funktion wächst bei Annäherung an den Nullpunkt. Wir erhalten aus
Satz 10.2.9 die Formel∫

V

1√
x2 + y2 + z2

λ
dxdydz = 4π

∫ 1

0

1
rλ−2

dr.



10.2 Die Sätze von Levi und Lebesgue, der Satz von Fubini 287

Nach 10.2.5 ist genau dann aus L(V ), wenn λ < 3 ist.
c) Im Fall n = 1 seien U, V offene Intervalle, f ∈ R(U); dann folgt aus 10.2.9∫

V

f(y)dy =
∫

U

f ◦ g(x)|g′(x)|dx

Ist V =]a, b[, U =]a′, b′[, so ergibt sich also∫
V
f(y)dy =

∫
V
f(y)dy =

∫ b

a
f(y)dy =

∫
U
f(g(x)) · |g′(x)|dx =

=
∫

U f(g(x))|g′(x)|dx =
∫ b′

a′ f(g(x))|g′(x)|dx.
Dies ist die aus Satz 5.4.2 bekannte Substitutionsregel, falls g sogar auf [a′, b′] stetig
differenzierbar und g′ �= 0 in ]a′, b′[ ist. Die letzte Voraussetzung wird jedoch in
einer Dimension nicht benötigt.

Nun vergleichen wir das in 5.5 eingeführte uneigentliche Riemann-Integral mit dem
Lebesgue-Integral.

Satz 10.2.11 Sei I ein eigentliches oder uneigentliches Intervall. Sei f : I → R
stetig. Es existiere das uneigentliche Riemann-Integral

∫
I
f(x)dx. Existiert auch∫

I |f |dx als uneigentliches Riemann Integral, so ist f ∈ L(I) und uneigentliches
Riemann-Integral und Lebesgue-Integral von f stimmen überein.

Beweis Sei etwa I =]0,∞[, Im =] 1
m ,m[,m ∈ N. Dann ist∫

Im

f(x)dx (Riemann) =
∫

Im

f(x)dx (Lebesgue)

nach Satz 10.2.4. Wegen |fχIm | ≤ |f | ist
∫

Im
|f |dx ≤ M =

∫
I |f |dx(Riemann)

und Satz 10.2.3 liefert die Behauptung. �

Beispiel 10.2.12 Uneigentliche Riemann-Integrierbarkeit und Lebesgue-Integrier-
barkeit fallen also auseinander, wenn |f | nicht in L(I) ist. Sei f(x) = sin x

x , x > 0,
I =]0,+∞[. Dann ist∫ ∞

0

sinx
x

dx =
∞∑

ν=0

∫ (ν+1)π

νπ

1
x

sinxdx

und die letzte Reihe konvergiert nach Satz 1.5.12. Dagegen ist die Reihe

∞∑
ν=0

∫ (ν+1)π

νπ

1
x
| sinx|dx divergent und daher |f | /∈ L(I).

Bei der uneigentlichen Riemann-Integrierbarkeit dürfen sich also positive Berge und
negative Täler ausgleichen.

Wie wir in 5.1 bereits erwähnt haben, ist für einen kompakten Quader I mit
f, g ∈ R(I) auch f ·g ∈ R(I). Dies gilt schon nicht mehr für uneigentlich Riemann-
integrierbare Funktionen über einen Intervall und erst recht nicht für Lebesgue-
integrierbare Funktionen (s. 10.2.5).
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10.3 Die Banachräume Lp(I)

Wir definieren nun einen Raum Lp(I), der die die in 10.1 angekündigte Einbettung
von R(I) in einen vollständigen Raum integrierbarer Funktionen, aus dem also die
Grenzwertbildung nicht herausführt, liefert.
Zuerst definieren wir für p ≥ 1 den Raum Lp(I) der messbaren Funktionen f , bei
denen |f |p Lebesgue-integrierbar ist. Durch Übergang zu einem Quotientenraum
Lp(I)/N erhalten wir den Vektorraum Lp(I).

Definition 10.3.1 Für p ∈ R, p ≥ 1 setzt man

Lp(I) := {f ∈M(I)| |f |p ∈ L(I)}
und definiert für f ∈ Lp(I)

||f ||p :=
(∫

I

|f |pdx
) 1

p

Es gilt:

Satz 10.3.2 Lp(I) ist ein Vektorraum; für f, g ∈ Lp(I) und c ∈ R gilt:

(1) ||c · f ||p = |c| · ||f ||p,
(2) ||f + g||p ≤ ||f ||p + ||g||p,
(3) ||f ||p = 0 ist äquivalent zu f = 0 f. ü.

Beweis. (1) ist klar, (2) können wir hier nicht zeigen, (3) folgt aus 10.1.14 und
10.1.17 (3). �

Damit hat man in Lp(I) eine

”
Pseudonorm “definiert: bei einer Norm folgt aus

||f || = 0, dass f = 0 ist.
Nun identifiziert man zwei Funktionen, f, g ∈ Lp(I), wenn f = g f. ü. gilt; genauer:
Man setzt N (I) := {f = 0 f. ü.} und bezeichnet Funktionen f, g ∈ Lp(I) als
äquivalent, wenn gilt:f − g ∈ N (I). Die Menge der Äquivalenzklassen bezeichnet
man als den Quotientenraum

Lp(I) := Lp(I)/N (I).

Mit den Elementen aus Lp(I) rechnet man einfach, indem man mit den Repräsen-
tanten f ∈ Lp(I) einer Äquivalenzklasse aus Lp(I) rechnet. Ein Repräsentant be-
stimmt eindeutig die Äquivalenzklasse, in der er liegt, und alle Operationen, die wir
bisher mit meß- oder integrierbaren Funktionen eingeführt haben, sind von der Aus-
wahl der Repräsentanten einer Äquivalenzklasse unabhängig. Da wir also statt mit
den Äquivalenzklassen mit ihren Repräsentanten wie bisher rechnen, sprechen wir
von den Elementen von Lp(I) ebenfalls als Funktionen.
Lp(I) ist ein Vektorraum und || ||pinduziert eine Norm in Lp(I), die wir ebenfalls
mit || ||p bezeichnen. Somit ist (Lp(I), || ||p) oder kurz Lp(I) ein normierter Raum
(vgl. 7.9.1), in dem die Begriffe Konvergenz und Cauchy-Folge definiert sind:
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Eine Folge (fj) mit fj ∈ Lp(I) für j ∈ N ist konvergent gegen f ∈ Lp(I), wenn
zu jedem ε > 0 ein N ∈ N existiert mit ||fj − f ||p < ε für j ≥ N .

Eine Folge (fj) in Lp(I) heißt Cauchy-Folge, wenn zu jedem ε > 0 ein N ∈ N
existiert mit ||fj − fk||p < ε für j, k ≥ N .

Damit kommen wir zum Begriff des Banachraumes (STEFAN BANACH , (1892-
1945)):

Definition 10.3.3 Ein normierter Raum über R oder C heißt vollständig oder ein
Banachraum, wenn in ihm jede Cauchy-Folge konvergent ist.

Es gilt der wichtige Satz

Satz 10.3.4 (Satz von Riesz-Fischer) Für jedes p ∈ R, p ≥ 1 ist Lp(I) ein Ba-
nachraum.

Beweise findet man in [17], [19], [25].
Die Produktbildung in den Banachräumen Lp(I) behandelt

Satz 10.3.5 Für p, q ∈ R, p > 1, q > 1 mit

1
p

+
1
q

= 1

gilt: Aus f ∈ Lp(I) und g ∈ Lq(I) folgt:

f · g ∈ L1(I) und ||f · g||1 ≤ ||f ||p · ||g||q.
Wir bemerken noch, dass L1(I) = L(I) ist.

Was bedeutet nun die Konvergenz in Lp(I) für die punktweise Konvergenz der be-
teiligten Funktionen fj? Diese naheliegende Frage beantwortet

Satz 10.3.6 Die Folge (fj) konvergiere für ein p ≥ 1 in Lp(I) gegen f . Dann gibt
es eine Teilfolge (fjν ) von (fj), die fast überall in I gegen f konvergiert.

Ist I uneigentlich, also in wenigstens einer Richtung unendlich ausgedehnt, so muß
ein f ∈ Lp(I) im Unendlichen gegen Null streben. Auf eine Präzision verzichten
wir hier.

Ersetzt man I durch eine Teilmenge D des Rn, so gelten entsprechende Aussa-
gen. Jedoch ergibt sich bei unbeschränkem D mit χD /∈ L1(D), d.h. D hat das
Mass +∞,wie man auch sagt, ein wichtiger Unterschied. Ist D beschränkt und
f ∈ Lp(D) für ein p > 1, so folgt aus Satz 10.3.5, dass∫

D

|f |p′
dx =

∫
|f |p′ · 1dx ≤ (

∫
D

|f |pdx) p′
p µ(D)1−

p′
p , 1 ≤ p′ ≤ p;

ist. Also ist Lp′(D) ⊂ Lp(D). Für unbeschränktes D wird diese Inklusion im all-
gemeinen falsch.
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10.4 Hilberträume, Fourierreihen

Eine wichtige Rolle in der Funktionalanalysis spielen neben den Banachrümen die
Hilberträume. Ein Hilbertraum H ist ein Banachraum, dessen Norm durch ein Ska-
larprodukt definiert ist ( DAVID HILBERT (1862-1943)). Durch das Skalarprodukt
ist im Hilbertraum eine zusätzliche Struktur gegeben, insbesondere hat man den Be-
griff der Orthogonalität.

Definition 10.4.1 Ein euklidischer Vektorraum (H, < , >), der, versehen mit der
Norm

||x|| :=
√
< x, x >

vollständig ist, heißt Hilbertraum. Man bezeichnet einen unitären Vektorraum H,
der bezüglich der durch das Skalarprodukt definierten Norm vollständig ist, als
komplexen Hilbertraum.

Ein einfaches Beispiel eines Hilbertraum ist der Rn, versehen mit dem kanonischen
Skalarprodukt

< x, y >= x1y1 + . . .+ xnyn.

Versieht man den Cn mit dem Skalarprodukt

< x, y >= x1ȳ1 + . . .+ xnȳn,

so erhält man einen komplexen Hilbertraum.
Das für die Analysis wichtige Beispiel ist der L2(I).

Satz 10.4.2 Für jeden Quader I ⊂ Rn ist L2(I) ein Hilbertraum.

Beweis. Aus Satz 10.3.5 folgt mit p = q = 2 : Sind f, g ∈ L2(I) , so ist f · g ∈
L1(I) = L(I) , also ist f · g Lebesgue-integrierbar und man kann definieren:

< f, g >:=
∫

I

f · g dx.

Die durch dieses Skalarprodukt definierte Norm ist

||f || =
(∫

I

f2dx
) 1

2

= ||f ||2.

Nach Satz 10.3.4 ist L2(I) vollständig, also ein Hilbertraum. �

In einem normierten Vektorraum ist der Begriff der Konvergenz definiert. Im Hil-
bertraum L2(I) bedeutet dies: Eine Folge (fn) konvergiert gegen f , wenn zu jedem
ε > 0 ein N existiert mit∫

I

(f(x) − fn(x))2dx < ε für n ≥ N.

Daher bezeichnet man den in L2(I) definierten Konvergenzbegriff als
”

Konvergenz
im quadratischen Mittel “.
Wir zeigen nun, dass das Skalarprodukt stetig in beiden Faktoren ist:
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Satz 10.4.3 (Stetigkeit des Skalarprodukts) In einem euklidischen Vektorraum
gilt:
(1) Wenn die Folgen (vn) und (wn) konvergieren, dann ist

< lim
n→∞ vn, lim

n→∞wn > = lim
n→∞ < vn, wn >,

(2) wenn die Reihe
∞∑

n=1
vn, konvergiert, dann ist

<

∞∑
n=1

vn, , w >=
∞∑

n=1

< vn, w > .

Beweis. Nach der Cauchy-Schwarzschen Ungleichung ist

| < vn, wn > − < v,w > | = | < vn, wn − w > + < vn − v, w > | ≤
≤ ‖vn‖ · ‖wn − w‖ + ‖vn − v‖ · ‖w‖,

daraus folgt (1) und , wenn man dies auf die Folge der Partialsummen der Reihe
anwendet, ergibt sich (2). �

Zerlegungssatz und Projektionssatz
Wir verallgemeinern nun 7.9.28 auf unendlich-dimensionale Untervektorräume, die
jedoch abgeschlossen sein müssen; damit erhalten wir dann den Zerlegungssatz und
den Projektionssatz für Hilberträume.
Wir zeigen zuerst: Zu einem abgeschlossenen Unterraum U und jedem f ∈ H
existiert ein Element kleinsten Abstandes in folgendem Sinn:

Satz 10.4.4 Sei U ein abgeschlossener Unterraum des Hilbertraumes H. Dann exi-
stiert zu jedem f ∈ H ein f0 ∈ U mit

‖f − f0‖ ≤ ‖f − g‖ für alle g ∈ U .
Beweis. Sei δ := inf

g∈U
‖f − g‖. Zu n ∈ N existiert ein gn ∈ U mit

δ − 1
n
< ‖f − gn‖ ≤ δ.

Wir zeigen, dass (gn) eine Cauchy-Folge ist. In der Parallelogrammgleichung 7.9.8

‖v + w‖2 + ‖v − w‖2 = 2‖v‖2 + 2‖w‖2

setzen wir
v := f − gn, w := f − gm.

Es ist
v − w = gm − gn, v + w = 2(f − gn + gm

2
),

und aus gn+gm

2 ∈ U folgt ‖f − gn+gm

2 ‖2 ≥ δ2; damit erhalten wir
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‖gm − gn‖2 = 2‖f − gn‖2 + 2‖f − gm‖2 − 4‖f − gn+gm

2 ‖2 ≤
≤ 2‖f − gn‖2 + 2‖f − gm‖2 − 4δ2

.

Daher ist (gn) eine Cauchyfolge. Aus der Vollständigkeit von H folgt, dass (gn)
gegen ein f0 konvergiert; aus der Abgeschlossenheit von U folgt f0 ∈ U und es gilt
δ = ‖f0 − f‖. �

Für 10.4.4 genügen bereits die folgenden Voraussetzungen: H ist ein euklidischer
(oder unitärer) Vektorraum, U ⊂ H ist Untervektorraum und U ist vollständig.
Zusammen mit 7.9.26 ergibt sich:

Satz 10.4.5 (Zerlegungssatz) Ist U ein abgeschlossener Unterraum des Hilbert-
raumes H, so gilt

H = U ⊕ U⊥

Damit hat man die in 7.9.32 eingeführte Projektion von H auf U , für die sich wie in
7.9.33 ergibt:

Satz 10.4.6 (Projektionssatz) Sei H ein Hilbertraum , U ⊂ H ein abgeschlossener
Unterraum ; dann ist

PU : H → H, f 	→ f0 für f = f0 + f1 mit f0 ∈ U , f1 ∈ (U)⊥,

eine Projektion; PU ist selbstadjungiert.

Hilbertbasen
Wir betrachten nun Orthonormalfolgen und Hilbertbasen im Hilbertraum H.

Definition 10.4.7 Eine Folge (bn)n∈N in H heißt Orthonormalfolge, wenn für alle
n,m ∈ N gilt

< bn, bm >= δnm.

Wenn man in einem Hilbertraum H eine Orthonormalfolge (bn)n∈N hat, so ist die

Frage naheliegend, wann eine Reihe
∞∑

n=1
xnbn konvergiert. Dazu beweisen wir zu-

erst einen Satz des Pythagoras:

Satz 10.4.8 Seien b1, . . . , bn ∈ H und es gelte < bi, bj >= 0 für i �= j. Dann ist

‖b1 + . . .+ bn‖2 = ‖b1‖2 + . . .+ ‖bn‖2.

Beweis. ‖b1 + . . .+ bn‖2 =<
n∑

i=1

bi,
n∑

j=1

bj >= ‖b1‖2 + . . .+ ‖bn‖2. �

Daraus ergibt sich:

Satz 10.4.9 Ist (bn)n∈N eine Orthonormalfolge in H, so gilt:

∞∑
n=1

xnbn ist genau dann konvergent, wenn
∞∑

n=1

x2n konvergiert.
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Beweis. Nach dem Satz von Pythagoras gilt für k ≤ m: ‖
m∑

n=k

xnbn‖2 =
m∑

n=k

x2n .

Daher ist
∞∑

n=1
xnbn genau dann eine Cauchyreihe, wenn

∞∑
n=1
x2n eine ist. Weil H und

R vollständig sind, folgt daraus die Behauptung. �

Bei Orthonormalfolgen hat man die Besselsche Ungleichung, die bei einer Hilbert-
basis, die wir anschliessend behandeln, zur Besselschen Gleichung wird.

Satz 10.4.10 ( Besselsche Ungleichung) Ist (bn) eine Orthonormalfolge in H, so
gilt für alle f ∈ H:

∞∑
n=1

(< f, bn >)2 ≤ ‖f‖2

Beweis. Für N ∈ N ist

0 ≤ < f−
N∑

n=1
< f, bn > bn, f−

N∑
n=1
< f, bn > bn >= ‖f‖2 −

N∑
n=1

(< f, bn >)2,

also
N∑

n=1

(< f, bn >)2 ≤ ‖f‖2

und daraus folgt die Konvergenz der Reihe
∞∑

n=1
(< f, bn >)2 und die Besselsche

Ungleichung. �

Definition 10.4.11 Eine Hilbert-Basis in H ist eine Folge (bn)n∈N in H mit folgen-
den Eigenschaften:

(1) Für allem,n ∈ H ist < bm, bn >= δmn (Orthonormalität),
(2) ist f ∈ H und gilt < f, bn >= 0 für alle n ∈ N so folgt f = 0.

Mit Bedingung (2) erreicht man, dass die Folge (bn)
”
maximal “oder

”
unverlänger-

bar“ist: Wenn es nämlich ein f �= 0 gibt mit < f, bn >= 0 für alle n, so ist auch
( 1
‖f‖f, b1, b2, . . .) eine Orthonormalfolge.

Eine Hilbertbasis bezeichnet man auch als vollständiges Orthornormalsystem, ab-
gekürzt VONS.
Nun beweisen wir eine wichtige Charakterisierung der Hilbertbasis:

Satz 10.4.12 (Charakterisierung der Hilbert-Basis) Es sei (bn)n∈N eine Ortho-
normalfolge im Hilbertraum H. Dann sind folgende Aussagen äquivalent:
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(1) (bn)n∈N ist eine Hilbert-Basis in H,

(2) für M := span{bn|n ∈ N} ist M = H,

(3) für jedes f ∈ H gilt f =
∞∑

n=1
< f, bn > ·bn,

(4) für alle f, g ∈ H gilt die Parsevalsche Gleichung

< f, g > =
∞∑

n=1
< f, bn > · < g, bn >

(5) für jedes f ∈ H gilt die Besselsche Gleichung

||f ||2 =
∞∑

n=1
(< f, bn >)2

Beweis. Wir zeigen :
Aus(1) folgt(3). Sei also (bn) eine Hilbert-Basis und f ∈ H. Nach der Besselschen

Ungleichung 10.4.10 konvergiert
∞∑

n=1
(< f, bn >)2. Aus 10.4.9 folgt, dass auch

∞∑
n=1

< f, bn > bn =: g

konvergiert. Nun ist wegen der Stetigkeit des Skalarprodukts fürm ∈ N

< f − g, bm > = < f, bm > −∑∞
n=1 < f, bn >< bn, bm >=

= < f, bm > − < f, bm >= 0,

und, da (bn) eine Hilbert-Basis ist, folgt f = g.
Aus (3) folgt (1) ist klar.
Aus (3) folgt (4) wegen der Stetigkeit des Skalarprodukt;
Aus (4) folgt (5) mit f = g.
Aus (5) folgt (1): aus < f, bn >= 0 und (5) folgt ‖f‖2 = 0 und somit f = 0.

Aus (3) folgt (2): für f ∈ H ist f =
∞∑

n=1
< f, bn > bn , also f ∈ M, somit

M = H.
Aus (2) folgt (1): Wir zeigen: wenn (bn) keine Hilbertbasis ist, dann ist M �= H.
Wenn (bn) keine Hilbertbasis ist, dann existiert ein f ∈ H mit ‖f‖ = 1 und f ⊥ bn
für alle n. Für jedes g ∈ M ist f ⊥ g und daher ‖f − g‖2 = ‖f‖2 + ‖g‖2 ≥ 1;
daraus folgt f /∈ M; somit M �= H.
Damit ist der Satz bewiesen. �
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Damit wurde insbesondere gezeigt:

Satz 10.4.13 Ist (bn)n∈N eine Hilbertbasis im Hilbertraum H, so kann man jedes
Element f ∈ H in eine Reihe

f =
∞∑

n=1

< f, bn > bn

entwickeln, die man als (verallgemeinerte ) Fourierreihe bezeichnet; es gilt die Bes-

selsche Gleichung ‖f‖2 =
∞∑

n=1
(< f, bn >)2.

Beispiel 10.4.14 Wie in 7.9.3 sei l2 der euklidische Vektorraum

l2 := {(xn)n∈N|
∞∑

n=1

x2n konvergiert}

mit dem Skalarprodukt< (xn), (yn) >:=
∞∑

n=1
xnyn.Man kann zeigen, dass l2 ein

Hilbertraum ist. Setzt man bn := (0, . . . , 0, 1 , 0, . . .) , so ist (bn) eine Hilbert-
Basis in l2.

Wir beweisen nun, dass es bis auf Isomorphie nur einen Hilbertraum mit (abzählba-
rer) Hilbertbasis (bn)n∈N gibt, nämlich l2:

Satz 10.4.15 Sei H ein Hilbertraum mit einer Hilbertbasis (bn)n∈N. Dann ist H
Hilbertraum - isomorph zu l2 ; die Abbildung

Φ : l2 → H, (xn)n 	→
∞∑

n=1

xn · bn

ist ein Hilbertraum-Isomorphismus, d.h. es gilt:

(1) Φ ist ein Vektorraum-Isomorphismus,
(2) < x, y >l2 = < Φx,Φy >H für x, y ∈ l2
Beweis. Nach 10.4.8 ist Φ sinnvoll definiert. Die Umkehrabbildung ist wegen
10.4.12

Φ−1 : H → l2, f 	→ (< f, bn >).

Die zweite Aussage folgt aus der Parsevalschen Gleichung. �

Fourierreihen
Es wurde soeben gezeigt, dass man bei einer Hilbertbasis (bn) in H jedes f ∈ H
als Reihe f =

∞∑
n=1
< f, bn > bn darstellen kann. Wir behandeln nun die klassi-

schen Fourierreihen, nämlich die Entwicklung nach den trigonometrischen Funk-
tionen cosnx, sinnx; diese Funktionen bilden bei geeigneter Normierung eine
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Hilbertbasis.
Wir hatten in 7.9.36 bereits Fourierpolynome behandelt und zu einer Funktion f die
Fourierkoeffizienten definiert:

a0 :=
1
π

∫ π

−π

fdx, an :=
1
π

∫ π

−π

f(x) cosnxdx , bn :=
1
π

∫ π

−π

f(x) sinnxdx.

Man nennt die mit diesen Koeffizienten gebildete Reihe

a0
2

+
∞∑

n=1

(an cosnx+ bn sinnx)

die Fourierreihe von f .
Auf die Geschichte der Fourierreihen können wir hier nur kurz eingehen; sie wird in
[18] und [23] geschildert. Mit Hilfe dieser Reihen wurde das Problem der schwin-
genden Saite u.a von Daniel Bernoulli, Euler und Fourier behandelt. Die Frage,
unter welchen Voraussetzungen die Fourierreihe von f gegen f konvergiert, führte
zur Klärung grundsätzlicher Fragen:
Die Präzisierung des Funktionsbegriffs durch Dirichlet, des Integralbegriffs durch
Riemann und die Verallgemeinerung des Riemann-Integrals durch Lebesgue.
Es zeigte sich, dass Aussagen über punktweise oder gleichmäßige Konvergenz der
Fourierreihe nur unter speziellen und oft komplizierten Voraussetzungen gelten. Da-
gegen sind im Rahmen der Lebesgue-Theorie allgemeine Aussagen möglich. Bei
der Konvergenzuntersuchung der Fourierreihe unterscheidet man verschiedene Kon-
vergenzbegriffe:

• punktweise Konvergenz
• gleichmäßige Konvergenz
• Konvergenz bezüglich der in L2([−π, π]) definierten Norm, also

”
im Quadrat-

mittel “.

Auf die umfangreichen und schwierigen Untersuchungen zur punktweisen oder
gleichmäßigen Konvergenz können wir hier nicht eingehen (man vergleiche dazu
[17],[18],[23]); wir bringen daraus zwei Beipiele. Über punktweise Konvergenz
hat man etwa die Aussage:

Satz 10.4.16 (Punktweise Konvergenz der Fourierreihe) Sei f : [−π, π] → R
von beschränkter Variation und f(−π) = f(π); f werde periodisch auf R fortge-
setzt und die Fortsetzung ebenfalls mit f bezeichnet. Wenn f in einem Punkt x ∈ R
stetig ist, dann konvergiert die Fourierreihe in x gegen f(x).

Dabei heißt f von beschränkter Variation, wenn es einM > 0 gibt, so dass für jede
Zerlegung −π = x0 < x1 < . . . < xk−1 < xk = π gilt

k∑
j=1

|f(xj) − f(xj1)| ≤M.

Unter ziemlich einschneidenden Voraussetzungen gibt es Aussagen über gleichmäßi-
ge Konvergenz, zum Beispiel
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Satz 10.4.17 (Gleichmäßige Konvergenz der Fourierreihe) Wenn eine Funktion
f : [−π, π] → R mit f(−π) = f(π) stetig und stückweise stetig differenzierbar ist,
dann konvergiert die Fourierreihe der periodischen Fortsetzung von f gleichmäßig
gegen f .

Im Hilbertraum L2([−π, π]) ist die Theorie der Fourierreihen ganz einfach: Für
jedes f ∈ L2([−π, π]) konvergiert die Fourierreihe von f gegen f ; natürlich
bezüglich der in L2([−π, π]) gegeben Norm, also im Quadratmittel:

Satz 10.4.18 ( Fourierentwicklung ) In L2([−π, π]) definieren wir Funktionen
un : [−π, π] → R durch

u0(x) :=
1√
2π
, u2n−1(x) :=

1√
π

cosnx, u2n(x) :=
1√
π

sinnx, (n ∈ N).

Dann gilt:
Im Hilbertraum L2([−π, π]) ist (un)n∈N0 eine Hilbert-Basis.
Für jedes f ∈ L2([−π, π]) gilt daher

f =
∞∑

n=0

cnun mit cn =< f, un >,

also

f =
a0
2

+
∞∑

n=1

(an cosnx+ bn sinnx)

Bei der Behandlung der Fourierpolynome haben wir in 7.9.35 bereits gezeigt, dass
(un) eine Orthonormalfolge ist; einen Beweis für die Vollständigkeit der Folge (un)
findet man in [17].
Die Gleichung f =

∑∞
n=0 cnun darf nicht so interpretiert werden, dass für gewis-

se x diese Reihe reeller Zahlen gegen f(x) konvergiert. Die Konvergenz der auf
der rechten Seite stehenden Fourierreihe ist natürlich bezüglich der in L2([−π, π])
definierten Norm gemeint, also

”
Konvergenz im Quadratmittel “; das bedeutet: Zu

jedem ε > 0 existiert ein N ∈ N mit

∫ π

−π

(
f(x) −

(
a0
2

+
m∑

n=1

(an cosnx+ bn sinnx)

))2

dx < ε fürm ≥ N.

Nach 10.3.6 konvergiert lediglich eine Teilfolge der Folge der Partialsummen f. ü.
gegen f . Es war lange Zeit ein offenes Problem ob die Folge der Partialsummen
selbst f. ü. gegen f konvergiert bis diese Frage bejahend beantwortet wurde.
Da es sich bei der in den den Sätzen 10.4.16 und 10.4.17 geforderten Periodizitäts-
bedingung f(−π) = f(π) um eine punktweise Eigenschaft handelt, spielt sie in
Satz 10.4.18 keine Rolle. Dieser Satz handelt nämlich nur von der L2-Konvergenz
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der Fourierreihe. Es ist offensichtlich, dass wegen Satz 10.4.12, (3), die Vollständig-
keit des Hilbertraums L2([−π, π]) von entscheidender Bedeutung für des allgemei-
nen Satz 10.4.18 ist.

Wir schildern nun ein Problem, bei dessen Behandlung Fourierreihen eine wesent-
liche Rolle spielen. Dabei wollen wir die Bedeutung der Fourierentwicklung auf-
zeigen; auf genaue Begründungen, insbesondere Konvergenzbeweise, können wir
nicht eingehen.

Beispiel 10.4.19 (Temperaturverteilung auf einer kreisförmigen Platte) Gege-
ben sei eine Substanz mit der Dichte ϑ, dem Wärmeleitvermögen k und der spezi-
fischen Wärme c. Für die Temperatur T = T (x, y, z, t) an der Stelle (x, y, z) ∈ R3

zur Zeit t gilt die Wärmeleitungsgleichung

∆T =
ϑc

k

∂T

∂t
.

Wenn die Temperatur unabhängig von der Zeit ist, erhält man die Potentialgleichung

�T = 0.

Wir betrachten nun das ebene Problem: Auf dem Rand ∂E einer kreisförmigen
Platte Ē = {(x, y) ∈ R2| x2 + y2 ≤ 1} sei eine zeitunabhängige Temperatur
� : ∂E → R vorgegeben. Gesucht ist die Temperaturverteilung im Innern dieser
Kreisscheibe, also eine stetige Funktion T : Ē → R, die in E harmonisch ist
und für die T = � auf ∂E gilt. Behandelt man das Problem in Polarkoordinaten
x = r · cosϕ; y = r · sinϕ, so ist die Randtemperatur � gegeben durch eine
beliebig oft differenzierbare 2π-periodische Funktion � : R → R, gesucht wird eine
in {(r, ϕ) ∈ R2| {0 ≤ r ≤ 1} stetige Funktion T = T (r, ϕ) mit

T (1, ϕ) = �(ϕ),

die für 0 ≤ r < 1 beliebig oft stetig differenzierbar ist und der auf Polarkoordinalen
umgeschriebenen Gleichung �T = 0 genügt. Diese Gleichung lautet nach 9.3.9

∂2T

∂r2
+

1
r
· ∂T
∂r

+
1
r2

· ∂
2T

∂ϕ2
= 0.

Nun machen wir den Ansatz

T (r, ϕ) = v(r) · w(ϕ);

mit v′ := dv
dr ,

·
w:= dw

dϕ erhalten wir

v′′w +
1
r
· v′w +

1
r2

· v ··
w= 0.

Für alle r, ϕ ist dann
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r2v′′(r) + rv′(r)
v(r)

= −
··
w (ϕ)
w(ϕ)

.

Daher ist dieser Ausdruck konstant =: λ und man erhält

r2v′′ + rv′ − λv = 0,
··
w +λw = 0.

Die 2. Gleichung ergibt w(ϕ) = c1 cos
√
λϕ + c2 sin

√
λϕ. Die Funktion w soll

die Periode 2π haben; daraus folgt
√
λ ∈ N0, also λ = n2 mit n ∈ N0. Die 1.

Gleichung ist dann
r2v′′ + rv′ − n2v = 0;

sie hat die Lösungen
v(r) = C1r

n + C2r
−n.

Die Funktion v soll auch in 0 definiert sein, also

v(r) = Crn, C ∈ R, n ∈ N0.

Damit hat man Lösungen

rn(an cosnϕ+ bn sinnϕ).

Um eine Lösung T zu finden, die auf ∂E gleich � ist, macht man für T den Ansatz

T (r, ϕ) =
A0

2
+

∞∑
n=1

rn(An cosnϕ+Bn sinnϕ).

Die KoeffizientenAn, Bn bestimmt man dann so:
Man entwickelt die Randwertfunktion � nach 10.4.18 in ihre Fourierreihe:

�(ϕ) =
a0
2

+
∞∑

n=1

(an cosnϕ+ bn sinnϕ),

setzt An := an, Bn := bn und

T (r, ϕ) :=
a0
2

+
∞∑

n=1

rn(an cosnϕ+ bn sinnϕ).

Dann genügt T für r < 1 der Potentialgleichung und es ist T (1, ϕ) = �(ϕ).

Wir erläutern dies noch an einem einfachen Spezialfall:

Beispiel 10.4.20 Auf dem Rand der kreisförmigen PlatteE sei die zeitlich konstan-
te Temperaturverteilung

∂E → R, (x, y) 	→ 100x2

vorgegeben; in Polarkoordinaten ist also



300 10 Das Lebesgue-Integral

�(ϕ) = 100 cos2 ϕ.

Wegen cos2ϕ = 2 cos2 ϕ− 1 hat man für � die Fourierentwicklung

�(ϕ) = 100 cos2 ϕ = 50 + 50 cos 2ϕ.

Damit erhält man
T (r, ϕ) = 50 + 50 r2 cos 2ϕ.

In (x, y) - Koordinaten ergibt sich :

T (x, y) = 50(x2 − y2 + 1);

diese Funktion ist offensichtlich harmonisch und auf dem Kreisrand x2 + y2 = 1
ist T (x, y) = 100x2. Die Isothermen {(x, y) ∈ E| T (x, y) = c} für 0 ≤ c ≤ 100
sind die Hyperbelstücke {(x, y) ∈ E| x2 − y2 = c

50 − 1}.
0◦

25◦
50◦

75◦

100◦100◦

0◦

Um diese Methode zu verdeutlichen, behandeln wir noch eine weitere Randtempe-
ratur:
Wir geben uns nun

�̃(x, y) := 100x3

vor, in Polarkoordinaten ist also �̃(ϕ) = 100 cos3 ϕ.
Wegen 4 cos3 ϕ = 3 cosϕ+ cos 3ϕ hat man die Fourierentwicklung

�(ϕ) = 100 cos3 ϕ = 75 cosϕ+ 25 cos 3ϕ

und erhält die Temperaturverteilung

T̃ (r, ϕ) = 75r cosϕ+ 25r3 cos 3ϕ.

Wir gehen auf dieses Beispiel nochmals in 14.14.10 ein.

Komplexe Hilberträume
Die Theorie der Hilberträume lässt sich analog auch für komplexe Vektorräume
durchführen. Für viele Anwendungen ist dies sogar zweckmässig, z. B. hat man
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aufgrund des Fundamentalsatzes der Algebra die Existenz von Eigenwerten.

Wir hatten schon in 10.1 erwähnt, dass man das Riemann-Integral auf komplexwer-
tige Funktionen f : I → C erweitert, indem man f = f1 + i · f2 mit reellen
f1, f2 in Real-und Imaginärteil zerlegt und f als Rieman-integrierbar bezeichnet,
wenn die Funktionen f1, f2 es sind ; man setzt dann

∫
I

fdx =
∫
I

f1dx + i
∫
I

f2dx.

Wir verfahren jetzt genauso wie bei der Einführung der Räume Lp(D), p ≥ 1, und
erhalten so den Banachraum der Äquivalenzklassen komplexwertiger Funktionen
f : D → C mit endlicher Norm

‖f‖p =

⎛⎝∫
D

|f |pdx
⎞⎠1/p

,

den wir nun mit
LC

p (D)

bezeichnen. Die Sätze 10.3.2, 10.3.4, 10.3.5,10.3.6 gelten unverändert; Definition
10.3.3 bezieht sich natürlich auch auf normierte Räume über C.
Entsprechend 10.4.2 ist der komplexe BanachraumLC

2 (D) ein Hilbertraum mit dem
Skalarprodukt

< f , g >=
∫
D

f ḡ dx.

Den Begriff 10.4.11der Hilbert-Basis übernehmen wir wörtlich für komplexe Hil-
berträume. Die Charakterisierung der Hilbert-Basis durch Satz 10.4.12 gilt auch für
komplexe Hilberträume ; nur die Parsevalsche Gleichung lautet jetzt

< f, g > =
∞∑

n=1

< f, bn > ·< g, bn >

und es gilt unverändert

‖f‖2 =
∞∑

n=1

| < f, bn > |2.

Es gilt:

Satz 10.4.21 Definiert man im komplexen HilbertraumLC
2 ([−π, π]) die Funktionen

bn : [−π, π] → C, x 	→ 1√
2π

· einx, n ∈ Z,

so ist (bn)n∈Z eine Hilbertbasis.
Daher gilt für jede komplexwertige Funktion f ∈ LC

2 ([−π, π]) die Entwicklung
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f =
∞∑

n=−∞
cneinx mit cn :=

1
2π

π∫
−π

f(x) · e−inx dx.

Beweis. Die Orthonormalität folgt hier ganz leicht aus

< bk, bl >=
1
2π

π∫
−π

eikx · e−ilxdx = δkl.

Aus den Eulerschen Gleichungen einx = cosnx + i sinnx und der in 10.4.18
erwähnten Vollständigkeit der (un) folgt die Vollständigkeit der (bk). �

Man beachte, dass bei dem zu einx gehörenden Koeffizienten cn unter dem Integral
nun der Faktor e−inx steht.

Definiert man die an, bn wie oben, so gilt für n ∈ N:

a0 = 2c0, an = cn + c−n, bn = i(cn − c−n)
c0 = a0

2 , cn = 1
2 (an − ibn), c−n = 1

2 (an + ibn)

und es ist
a0
2

+
∞∑

n=1

(an cosnx+ bn sinnx) =
∞∑

n=−∞
cneinx.

10.5 Fourier-Transformation und Faltung

Die Fourier-Transformation ist das kontinuierliche Analogon zur Fourier-Reihe. Wir
schildern die Ideen dazu und skizieren die wichtigsten Beweisschritte; auf genaue
Begründungen gehen wir nicht ein.
Für f ∈ H = LC

2 ([−π, π]) hat man die Fourierreihe

f(x) =
1√
2π

·
∞∑

n=−∞
ĉn · einx mit ĉn =

1√
2π

π∫
−π

f(x) · e−inx dx.

Von der Fourierreihe zur Fourier-Transformierten kommt man nun so: Statt n ∈ Z
schreibt man ξ ∈ R, statt ĉn schreibt man f̂(ξ) und an Stelle des Summenzeichens∑
n

ein Integral
∫

dξ. Dann ist

f(x) =
1√
2π

+∞∫
−∞
f̂(ξ) · e+iξxdξ, f̂(ξ) =

1√
2π

+∞∫
−∞
f(ξ) · e−iξηdη

und man bezeichnet f̂ als die Fourier-Transformierte von f . Genauer verfahren wir
folgendermassen:
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Definition 10.5.1 Sei f ∈ L1(R). Dann definieren wir

f̂ : R → C, ξ 	→ 1√
2π

+∞∫
−∞

e−iξxf(x)dx;

f̂ heißt die Fourier-Transformierte von f .

Die Fourier-Transformierte f̂ ist beschränkt, denn es ist

|f(ξ)| ≤ 1√
2π

+∞∫
−∞

|f(x)| dx < +∞.

f̂ ist auch stetig: Sei ξn ∈ R, und lim
n→∞ ξn = ξ; dann ist

f̂(ξn) − f̂(ξ) =
1√
2π

+∞∫
−∞

(
e−iξnx − e−iξx

) · f(x)dx;
da für x ∈ R

lim
n→∞

(
e−iξnx − e−iξx

) · f(x) = 0 und | (e−iξnx − e−iξx
) · f(x)| ≤ 2|f(x)|,

folgt mit dem Satz von Lebesgue 10.2.2:

lim f̂(ξn) = f̂(ξ).

�

Nun notieren wir den wichtigen Satz von der Umkehrformel:

Satz 10.5.2 ( Umkehrformel)Sei f ∈ L1(R) und es sei auch f̂ ∈ L1(R); dann gilt

f(x) =
1√
2π

+∞∫
−∞

e+iξxf̂(ξ)d ξ.

Definition 10.5.3 Die Abbildung

f 	→
⎛⎝ x 	→ 1√

2π

+∞∫
−∞
e+ixξ · f(ξ)d ξ

⎞⎠
heißt Umkehrabbildung zur Fourier-Transformation oder inverse Fourier-Trans-
formation.
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Wenn z.B. f ∈ C∞
0 (R) ist, dann ist f̂ ∈ L1(R). Es gelten jedoch auch schärfere

Aussagen.
Differenzieren wir die Fourierreihe f(x) =

∑
n ĉneinx formal, so hat man

f ′(x) =
+∞∑

n=−∞
i · n · ĉn · einx.

Ersetzen wir wieder ĉn durch f̂(ξ), so entsteht

Satz 10.5.4 (Algebraisierung der Differentiation) Sei f : R → C stetig differen-
zierbar mit kompakten Träger. Dann gilt

f̂ ′ (ξ) = i · ξ · f̂(ξ).

Beweis. Es ist f ′ ∈ L1(R), also

f̂ ′ (ξ) = 1√
2π

·
+∞∫
−∞
e−iξx · f ′(x)dx =

= 1√
2π

[
e−iξxf(x)

]x=b

x=a
− 1√

2π
·

+∞∫
−∞

(−iξ) e−iξx · f(x)dx =

= iξ · 1√
2π

·
+∞∫
−∞

e−iξx · f(x)dx.

�

Satz 10.5.5 (Umkehrung von Satz 10.5.4) Sei x · f(x) ∈ L1(R) (mit x · f(x)
meinen wir die Funktion x 	→ x · f(x)). Dann ist f̂ differenzierbar und

i · (f̂ )′ = x̂ · f(x)

Beweis. Formal ist

d
dξ
f̂(ξ) =

1√
2π

+∞∫
−∞

d
dξ

e−iξxf(x)dx =
1√
2π

(−i)

+∞∫
−∞

e−iξx · x · f(x)dx =

=
1
i
· x̂ · f(x) .

Mit Bildung des Differenzenquotienten und Anwendung des Satzes von Lebesgue
10.2.2 macht man daraus leicht einen strengen Beweis. �

Für die Multiplikation zweier absolut konvergenter Reihen gilt bekanntlich die
Cauchysche Formel 1.5.13∑

m

am ·
∑

l

bl =
∑

n

cn mit cn =
∑

k

ak · bn−k.
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Hat man zwei Funktionen f, g ∈ L1(R), ersetzt man die Reihen durch Integration
von −∞ bis +∞, k durch die Variable t und n durch x, also n− k durch x− t, so
entsteht∫ +∞

−∞
f(x)dx ·

∫ +∞

−∞
g(x)dx =

∫ +∞

−∞

∫ +∞

−∞
(f(t)g(x− t)dt)dx,

wie man mit dem Satz 10.2.7 von Tonelli leicht verifiziert.

Definition 10.5.6 (Faltung) Seien f, g ∈ L1(R). Dann ist t 	→ f(t) · g(x − t) für
fast alle x ∈ R aus L1(R). Also ist die Funktion

(f ∗ g)(x) :=

+∞∫
−∞
f(t)g(x− t)dt

für fast alle x ∈ R wohldefiniert. Sie heißt Faltung von f und g.

Aus der Formel für das Produkt der Integrale sieht man sofort:

f ∗ g ∈ L1(R), ‖f ∗ g‖L1(R) ≤ ‖f‖L1(R) ‖g‖L1(R).

Wenden wir die Formel für das Reihenprodukt auf Fourierreihen an mit den Fourier-
koeffizienten an von f und bn von g und nehmen wir die Fourierreihen als absolut
konvergent an, so entsteht für die Fourierkoeffizienten cn des Produkts h := f · g:

cn = (
√

2π)−1 ·
+∞∑

k=−∞
ak · bn−k.

Ersetzen wir ak durch f̂(t), bn−k durch ĝ(x − t) und die Reihe durch Integration,
so entsteht

f̂ · g = (
√

2π)−1 · f̂ ∗ ĝ.
Bezeichnen wir die Umkehrabbildung zur Fouriertransformation mit ·̌ (s. Satz
10.5.2), so folgt

����
f · g = (

√
2π)−1 f̂ ∗ ĝ für f̂ , ĝ ∈ L1(R).

Dies ist, wie aus f̌ = f̂ folgt, nur eine Umformulierung von

Satz 10.5.7 Seien f, g ∈ L1(R). Dann ist

f̂ ∗ g =
√

2π · f̂ · ĝ.

Beweis. Es ist f ∗ g ∈ L1(R) wie eben gezeigt; mit dem Satz 10.2.7 von Tonelli (∗)
erhält man
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̂(f ∗ g) (ξ) = 1√
2π

+∞∫
−∞

+∞∫
−∞
f(t)g(x− t)dt · e−iξxdx

(∗)
=

=
+∞∫
−∞

(
1√
2π

+∞∫
−∞
g(x− t) · e−i(x−t)ξdx

)
f(t)e−itξdt =

= ĝ(ξ)
+∞∫
−∞
f(t)e−itξdt =

√
2πĝ(ξ)f̂(ξ)

�

Aufgaben

10.1. Zeigen Sie: Eine kompakte Menge K ⊂ Rn ist genau dann eine Nullmenge, wenn es
zu jedem ε > 0 endlich viele (offene oder abgeschlossene)beschränkte Quader I1, . . . , Ik

gibt mit

K ⊂
k�

j=1

Ij und
k�

j=1

µ(Ij) < ε.

10.2. Auf R2 sei f gegeben durch

f(x, y) :=

�
1

sin x·sin y
für x �= kπ, y �= kπ, k ∈ Z, x oder y irrational

0 sonst

Ist f auf ]0, π[×]0, π[ integrierbar ? Ist f auf ]δ, π− δ[×]δ, π− δ[ integrierbar (0 < δ < π)?

10.3. a) Sei f : [0,∞[→ R stetig. Zeigen Sie für alle R > 0:

�
{x∈Rn| ‖x‖≤R}

f(‖x‖)dx = nen

R�
0

f(r)rn−1dr,

wobei

en =

�
{x∈Rn| ‖x‖≤1}

dx

das Volumen der n-dimensionalen Eingheitskugel ist.
Hinweis: Differenzieren Sie beide Seiten der Behauptung bezüglich R.
b) Berechnen Sie für R > 0 die Integrale

�
{(x,y)∈R2| x2+y2≤R2}

e−(x2+y2)d(x, y) und
�
R2

e−(x2+y2)d(x, y).

Verwenden Sie dieses Resultat und den Satz von Fubini, um
�
R

e−x2
dx

zu berechnen.
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10.4. Es sei 0 < r < R. Durch Rotation des in der xy-Ebene liegenden Kreises (x −R)2 +
z2 ≤ r2 um die z-Achse entsteht im R3 der Torus T . Man berechne das Trägheitsmoment
von T um die z-Achse, d.h. man berechne�

T

(x2 + y2)d(x, y, z).

10.5. Ist S ⊂ R3 beschränkt, so ist der Schwerpunkt z = (z1, z2, z3) ∈ R3 von S gegeben
durch

zj =
1

µ(S)

�

S

xjdx, j = 1, 2, 3.

Man berechne den Schwerpunkt
a) der Halbkugel {(x, y, z) ∈ R3| x2 + y2 + z2 ≤ 1, z ≥ 0},
b) des Tetraeders {(x, y, z) ∈ R3| x + y + z ≤ 1, x ≥ 0, y ≥ 0, z ≥ 0}.
10.6. a) Sei a < b und f : [a, b] → R stetig. Der Graph von f werde um die z-Achse rotiert.
Berechnen Sie das Volumen des so entstehenden Rotationskörpers.

a

b

x

y

z

f

Welcher Körper ergibt sich für f(x) = x, 0 ≤ x ≤ 1 ? Welches Volumen hat er ?

b) Das Volumen der Einheitskreisscheibe in der Ebene ist π. Stellen Sie eine Ellipse mit den
Halbachsen a und b als Bild der Einheitskreisscheibe unter einer linearen Abbildung dar und
berechnen Sie dann das Volumen dieser Ellipse.

10.7. a) Seien I ⊂ R ein beschränktes Intervall, p, q ≥ 1, p ≤ q; f ∈ Lq(I). Zeigen Sie:
Dann ist f ∈ Lp(I) und es gilt

µ(I)−1/p‖f‖p ≤ µ(I)−1/q‖f‖q .

b) Geben Sie Funktionen f, g : R → R an mit

f ∈ L1(R) \ L2(R), und g ∈ L2(R] \ L1(R).

c) Sei I ein beliebiges Intervall, r, p, q ≥ 1, 1
r

= 1
p

+ 1
q
. Ferner seien f ∈ Lp(I), g ∈

Lq(I). Zeigen Sie: Dann ist f · g ∈ Lr(I) und es gilt: ‖f · g‖r ≤ ‖f‖p · ‖g‖q.
d) Sei I ⊂ R ein beliebiges Intervall, r, p, q ≥ 1, p ≤ q ≤ r. Ferner sei f ∈ Lp(I)∩Lr(I).
Zeigen Sie: Dann ist f ∈ Lq(I). Ist λ ∈ R so gewählt, dass 1

q
= λ

p
+ 1−λ

r
ist, so ist

λ ∈ [0, 1] und
‖f‖q ≤ ‖f‖λ

p · ‖f‖1−λ
r .

Hinweis: Verwenden Sie die Höldersche Ungleichung.
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10.8. Bestimmen Sie die Fourier-Reihen der folgenden auf ] − π, π] erklärten und 2π-
periodisch fortgesetzten Funktionen :

a) f(x) = x b) g(x) =

��
�

h für x ∈]0, π[
0 für x = 0, x = π
−h für x ∈] − π, 0[

(h > 0)

10.9. a) Seien fn, gn, f, g ∈ L2([a, b]); lim
n→∞

fn = f, lim
n→∞

gn = g in L2([a, b]).Zeigen

Sie:
lim

n→∞
< fn, gn > = < f, g > .

b) f ∈ L2([−π, π]) sei reell und besitze die Fourier-Koeffizienten a0, a1, . . . , b1, b2, . . . .
Zeigen Sie die Parseval-Relation:

+π�
−π

|f(x)|2dx = π

�
a2
0

2
+

∞�
n=1

�
a2

n + b2
n

��
.

c) Benutzen Sie die Parseval-Relation und die Fourier-Reihe der 2π-periodischen Funktion
f(x) = x3 für x ∈] − π, π], um

∞�
n=1

1

n6

zu berechnen. Verwenden Sie dabei

∞�
n=1

1

n2
=

π2

6
,

∞�
n=1

1

n4
=

π4

90

und vergleichen Sie mit 14.11.9.

10.10. Sei H ein Hilbertraum über C, f ∈ H und ϕ1, . . . , ϕN ∈ H orthonormiert. Zeigen
Sie:

a) ‖f −
N�

k=1

fkϕk‖2 = ‖f‖2 −
�
k=1

|fk|2,

wobei fk =< f, ϕk > die Fourierkoeffizienten sind.
b) Sind c1, . . . , cN ∈ C beliebig, so ist

‖f −
N�

k=1

ckϕk‖2 = ‖f‖2 −
N�

k=1

|fk| +
N�

k=1

|fk − ck|2.

10.11. Auf dem Rand ∂E des Einheitskreises sei die zeitlich konstante Temperatur

� : ∂E → R, (x, y) �→ 100 · x4

vorgegeben; bestimmen Sie die Temperaturverteilung T : E → R.

10.12. Sei H ein Hilbertraum über C,fj , f ∈ H. Zeigen Sie:
a) lim

j→∞
fj = f in H gilt genau dann, wenn lim

j→∞
‖fj‖ = ‖f‖ und wenn für alle g ∈ H gilt:

lim
j→∞

< fj , g >=< f, g > .

b) Für alle g ∈ H gelte lim
j→∞

< fj , g >=< f, g > . Dann folgt:
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‖f‖ ≤ lim inf
j→∞

‖fj‖,

wenn lim inf
j→∞

‖fj‖ endlich ist.

10.13. Sei −∞ < a < b < +∞ und

χ[a,b] :=

�
1 für a ≤ x ≤ b
0 sonst

die charakteristische Funktion des Intervalls [a, b]. Dann ist χ[a,b] ∈ L1(R). Man berechne
die Fouriertransformierte von χ[a,b].

10.14. Mit der vorhergehenden Aufgabe zeige man:

a) χ̂[a,b] ∈ L2([a, b])

b) Für b ∈ R existiert

lim
ε→∞,ε>0

�
�

−ε�
−∞

eiξb − 1

ξ2
dξ +

+∞�
ε

eiξb − 1

ξ2
dξ

�
�

und hängt nur von |b| ab.

10.15. Sei χ = χ[0,1] : R → R die charakteristische Funktion des Einheitsintervalls. Be-
rechnen Sie explizit

χ ∗ χ(x) =

�

R

χ(x − y)χ(y)dy und (χ ∗ χ) ∗ χ.
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Untermannigfaltigkeiten und Differentialformen

11.1 Untermannigfaltigkeiten

Untermannigfaltigkeiten sind “glatte“ Teilmengen M ⊂ Rn, die man lokal als
Nullstellengebilde differenzierbarer Funktionen darstellen kann. Man setzt vor-
aus, dass die Gradienten dieser Funktionen linear unabhängig sind. Dann ist das
Nullstellengebilde glatt, d.h. es sieht lokal aus wie eine offene Menge im Rk mit
k ≤ n. Insbesondere können wir uns Untermannigfaltigkeiten des R3 als ge-
krümmte Flächenstücke im R3 vorstellen, z. B. als die Oberfläche einer Kugel oder
eines Ellipsoids. Sie haben die Dimension 2, da sie mit zwei unabhängig variieren-
den Parametern beschrieben werden können, im Falle der Kugel etwa die Winkel
ϕ, ϑ der Kugelkoordinaten. Solche Beschreibungen gelten in der Regel aber nur
für kleine Stücke der Fläche. Ein anderes Beispiel sind ebene Kurven, bei denen
man bei senkrechter Tangente vom Kurvenparameter x zum Kurvenparameter y
übergehen muss. Sie sind eindimensionale Untermannigfaltigkeiten des R2.

Definition 11.1.1 Eine Teilmenge M des Rn heißt eine k-dimensionale Unter-
mannigfaltigkeit, wenn es zu jedem Punkt p ∈ M eine offene Umgebung U von
p im Rn und unendlich oft differenzierbare Funktionen

f1, . . . , fn−k : U → R

gibt mit folgenden Eigenschaften:

(1) M ∩ U = {x ∈ U |f1(x) = 0, . . . , fn−k(x) = 0},
(2) rg Jf1,...,fn−k

(x) = n− k für alle x ∈ U ,
d.h. die Gradienten grad f1,. . . ,grad fn−k sind in jedem Punkt linear un-
abhängig.

Wir geben zwei wichtige Beispiele an: Ebenen und Graphen.

Beispiel 11.1.2 (Ebenen) Für 0 ≤ d ≤ n sei

Ed := {(x1, . . . , xn) ∈ Rn| xd+1 = 0, . . . , xn = 0}.
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Ed ist eine d-dimensionale Untermannigfaltigkeit des Rn , man bezeichnet Ed als
d-dimensionale Ebene.
Für d = 0 hat man E0 = {0}, für d = n ist En = Rn.

Beispiel 11.1.3 (Graphen) Es sei V ⊂ Rk offen und g : V → Rm eine differen-
zierbare Abbildung. Dann ist der Graph

Gg := {(x, y) ∈ V × Rm| y = g(x)}
eine k-dimensionale Untermannigfaltigkeit des Rk+m . Dies soll noch etwas erläutert
werden: Für x = (x1, . . . , xk) ∈ V ist g(x) = (g1(x), . . . , gm(x)); die Gleichung
y = g(x) bedeutet: y1 = g1(x1, . . . , xk), . . . , ym = gm(x1, . . . , xk). Setzt man

f1(x1, .., xk; y1, .., ym) := g1(x1, .., xk) − y1,
. . . . . . . . . . . . .

fm(x1, .., xk; y1, .., ym) := gm(x1, .., xk) − ym,
so ist

Gg = {(x, y) ∈ V × Rm|f1(x, y) = 0, . . . , fm(x, y) = 0},
grad f1 = ( ∂g1

∂x1
, . . . , ∂g1

∂xk
, −1, 0, . . . , 0),

. . . . . . . . . . . . . . . . .
grad fm = ( ∂gm

∂x1
, . . . , ∂gm

∂xk
, 0, 0, . . . , −1)

und diese Gradienten sind linear unabhängig.

Diese beiden Beispiele sind deswegen wichtig, weil man zeigen kann, dass jede
UntermannigfaltigkeitM lokal ein GraphGg ist und in geeigneten Koordinaten als
Ebene Ek dargestellt werden kann.
Die grundlegenden Aussagen über k-dimensionale UntermannigfaltigkeitenM sind:

• M ist lokal ein Graph,
• M ist, nach einer Koordinatentransformation, lokal eine Ebene Ek,
• M ist lokal diffeomorph äquivalent zu einer offenen Menge des Rk; es gibt

Karten und einen Atlas zuM .

Wir wollen dies zunächst für den Spezialfall einer (n−1)-dimensionalen Unterman-
nigfaltigkeitM ⊂ Rn erläutern, für diesen Fall skizzieren wir auch die Beweise.
Eine (n − 1)-dimensionale Untermannigfaltigkeit M ⊂ Rn bezeichnet man als
Hyperfläche. Zu jedem p ∈ M gibt es also eine in einer Umgebung U von p diffe-
renzierbare Funktion f : U → R mit

M ∩ U = {x ∈ U |f(x) = 0} und gradf(x) �= 0 für x ∈ U.
Satz 11.1.4 Ist M ⊂ Rn eine Hyperfläche, so existiert zu jedem p ∈ M nach
Umnumerierung der Koordinaten eine offene Umgebung V × I ⊂ U von p mit of-
fenen Mengen V ⊂ Rn−1, I ⊂ R und eine unendlich oft differenzierbare Funktion
g : V → I , so dass gilt

M ∩ (V × I) = {(x1, . . . , xm) ∈ (V × I)| g(x1, . . . , xn−1) = xn}.
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Beweis. Es sei M ∩U = {x ∈ U |f(x) = 0}. Wegen grad f(p) �= 0 kann man die
Koordinaten so umnumerieren, dass ∂f

∂xn
�= 0 in U gilt. Nach dem Satz über implizi-

te Funktionen 9.3.2 existiert eine Umgebung V ×I ⊂ Uvon p und eine differenzier-
bare Funktion g : V → I, V ⊂ Rn−1,I ⊂ R so dass für (x1, ..., xn) ∈ V × I die
Gleichungen f(x1, ..., xn−1, xn) = 0 und xn = g(x1, ..., xn−1) äquivalent sind.

�

Wir erinnern an den in 9.3.3 eingeführten Begriff des Diffeomorphismus (h ist bi-
jektiv , h und h−1 sind differenzierbar) und zeigen:

Satz 11.1.5 IstM ⊂ Rn eine Hyperfläche, so existiert zu jedem Punkt p ∈M eine
offene Umgebung U von p, eine offene Menge Ũ ⊂ Rn und ein Diffeomorphismus
h : U → Ũ mit

h(M ∩ U) = En−1 ∩ Ũ .
Beweis. Wie oben sei g : V → I . Wir setzen

h : V × R → Rn, (x1, ..., xn) 	→ (x1, ..., xn−1, xn − g(x1, ..., xn−1)).

Dann ist h ein Diffeomorphismus auf eine offene Menge Ũ ⊂ Rn; die Umkehrab-
bildung ist (x1, ..., xn) 	→ (x1, ..., xn−1, xn + g(x1, ..., xn−1)) . Für x ∈ V × I gilt
x ∈ M genau dann, wenn xn = g(x1, ..., xn−1) ist; dies ist gleichbedeutend mit
h(x) ∈ En−1. �

Daraus folgt:

Satz 11.1.6 IstM ⊂ Rn eine Hyperfläche, so existiert zu jedem Punkt p ∈M eine
bezüglich M offene Umgebung W von p, eine offene Menge V ⊂ Rn−1 und ein
Diffeomorphismus ϕ : V →W.
Beweis. Mit den Bezeichnungen von 11.1.4 setzen wirW :=M ∩ (V × I) und

ϕ : V →W, (x1, ..., xn−1) 	→ (x1, ..., xn−1, g(x1, ..., xn−1)).

ϕ ist ein Diffeomorphismus, die Umkehrabbildung ist

ϕ−1 :W → V, (x1, ..., xn−1, xn) 	→ (x1, ..., xn−1).

�


x

g(x)

U {f = 0}

V

M

ϕ

W

x1, ..., xn−1

xn
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Wir geben nun die allgemeinen Ausagen für k-dimensionale Untermannigfaltigkei-
ten an:

Satz 11.1.7 Ist M ⊂ Rn eine k-dimensionale Untermannigfaltigkeit und p ∈ M ,
so gilt:

(1) Nach Umnumerierung der Koordinaten existiert eine Umgebung U = V × V ′

von p mit offenen Mengen V ⊂ Rk, V ′ ⊂ Rn−k, und eine differenzierbare
Abbildung g : V → V ′ , so dass gilt:

M ∩ U = {(x, y) ∈ V × V ′| y = g(x) }.

(2) Es gibt eine in Rn offene Umgebung U von p und eine offene Umgebung Ũ von
0 ∈ Rn und einen Diffeomorphismus h : U → Ũ mit h(p) = 0 und

h(M ∩ U) = {(t1, ..., tn) ∈ Ũ | tk+1 = 0, ..., tn = 0 } = Ek ∩ Ũ .

(3) Es gibt eine bezüglich M offene Umgebung W von p und eine offene Menge
V ⊂ Rk und einen Diffeomorphismus ϕ : V →W.

Definition 11.1.8 Unter einer Karte von M um p ∈ M versteht man einen Dif-
feomorphismus ϕ : V → W einer offenen Menge V ⊂ Rk auf eine in M offene
UmgebungW von p.
Eine Familie von Karten (ϕi : Vi → Wi)i∈J mit

⋃
i∈J

Wi = M heißt Atlas vonM ;

dabei ist J eine beliebige Indexmenge.

Aus 11.1.7 (3) kann man folgern:

Satz 11.1.9 Zu jeder UntermannigfaltigkeitM des Rn existiert ein Atlas.

Die Wi werden sich in der Regel überlappen, so dass für Wi ∩Wj (i �= j) zwei
Abbildungen

ϕi : ϕ−1
i (Wi ∩Wj) →Wi ∩Wj

ϕj : ϕ−1
j (Wi ∩Wj) →Wi ∩Wj

zur Verfügung stehen, dieWi∩Wj als offene Menge des Rk beschreiben. Die damit
auftretenden Probleme werden uns noch in 13.5 beschäftigen. Sie werden durch die
Wechselabbildungen

ϕ−1
j ◦ ϕi : ϕ−1

i (Wi ∩Wj) → ϕ−1
j (Wi ∩Wj)

charakterisiert, die also den Übergang von einer Karte zu einer anderen darstellen.
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Wi Wj

Vi

Vj

M

ϕ−1
j

ϕi

ϕ−1
j ◦ ϕi

Das System der Abbildungen ϕi heißt lokales Koordinatensystem vonM . Es ist

x(i) = ϕ−1
i (w), x(i) = (x(i)1 , . . . , x

(i)
k ) = ϕ(−1)

i (w), x(i) ∈ Vi, w ∈Wi.

Die x(j)(ϕi(x(i)) = ϕ−1
j ◦ ϕi beschreiben also den Übergang von einem lokalen

Koordinatensystem zu einem anderen.
Wir erläutern diese Aussagen am Beispiel der Kugeloberfläche S2:

Beispiel 11.1.10 (Die Sphäre S2) Es sei

S2 := {x ∈ R3|x21 + x22 + x23 = 1}.

Setzt man f(x) := x21 + x22 + x23 − 1, so ist

S2 = {x ∈ R3|f(x) = 0} und grad f(x) = 2 · (x1, x2, x3) = 2x;

in R3 \ {0} ist grad f(x) �= 0 und daher ist S2 eine zweidimensionale Unterman-
nigfaltigkeit des R3. Nun sei p := (0, 0, 1) der

”
Nordpol“ von S2.

Zuerst lösen wir die Gleichung f(x1, x2, x3) = 0 in einer Umgebung von p nach
x3 auf. Wir setzen

V := {(x1, x2) ∈ R2|x21 + x22 < 1}, g : V → R+, (x1, x2) 	→
√

1 − x21 − x22.

In U := V ×R+ gilt x21 + x22 + x23 = 1 genau dann, wenn x3 =
√

1 − x21 − x22 ist,
also

S2 ∩ U = {(x1, x2, x3) ∈ U |x3 =
√

1 − x21 − x22}.
Dies ist die Aussage von Satz 11.1.4: S2 ist in U der Graph von g.

Nun setzen wir

h : V × R → R3, (x1, x2, x3) 	→ (x1, x2, x3 −
√

1 − x21 − x22).
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Für x ∈ S2 ∩ U ist x21 + x22 + x23 = 1 und x3 > 0, also
√

1 − x21 − x22 = x3 und
daher h(x) ∈ E2; somit

h(S2 ∩ U) = E2 ∩ Ũ mit Ũ := {x ∈ R3| x21 + x22 + x23 < 1};
dies besagt Satz 11.1.5: Nach der Koordinatentransformation h ist S2 ein offener
Teil der Ebene E2.
Eine Karte um p = (0, 0, 1) erhält man so:
Es seiW+ := S2 ∩ {x ∈ R3|x3 > 0} die obere Halbkugel und

ϕ+ : V → W+, (x1, x2) 	→ (x1, x2,
√

1 − x21 − x22).

Dann ist ϕ+ eine Karte wie in Satz 11.1.6; die Abbildung ϕ+ bildet den offe-
nen Einheitskreis auf die obere Halbkugel ab, die Umkehrabbildung von ϕ+ ist
(x1, x2,

√
1 − x21 − x22) 	→ (x1, x2).

Offenbar sind jetzt weitere Karten zur Überdeckung von S2 nötig. Zunächst para-
metrisieren wir die untere Halbkugel, indem wirW− := S2 ∩ {x ∈ R3|x3 < 0},

ϕ− : V →W−, (x1, x2) 	→ (x1, x2,−
√

1 − x21 − x22).

einführen. Jetzt ist der Äquator noch nicht erfasst. Wir überdecken ihn mit den Kar-
ten

V1 := {(ϑ, ϕ) ∈ R2| π
4 < ϑ <

3π
4 , 0 < ϕ < 2π},

ϕ1(ϑ, ϕ) := (cosϕ sinϑ, sinϕ sinϑ, cosϑ),
W1 := ϕ1(V1),

V2 := {(ϑ, ϕ) ∈ R2| π
4 < ϑ <

3π
4 , −π

4 < ϕ <
π
4 },

ϕ2(ϑ, ϕ) := (cosϕ sinϑ, sinϕ sinϑ, cosϑ),
W2 := ϕ2(V2).

Dazu bemerken wir, dass eine Ausdehnung der Karten ϕ+, ϕ− nicht möglich ist,
da die Ableitungen von ϕ+, ϕ− in Richtung Äquator singulär werden. ϕ1(V1) stellt
einen Streifen um den Äquator dar, der jedoch bei ϕ = 0 bzw. ϕ = 2π geschlitzt
ist, so dass wir zur endgültigen Übedeckung ϕ2 benötigen. Generell tritt die hier
beschriebene Schwierigkeit bei der Überdeckung geschlossener räumlicher Gebilde
schon bei geschlossenen Kurven in der Ebene auf; da V offen und ϕ eine toploo-
gische Abbildung ist, benötigen wir etwa für einen Atlas der Kreislinie wenigstens
zwei Karten, denn V ist nicht kompakt und die Kreislinie ist kompakt.

Der Tangentialraum TpM
Ziel ist es, den Begriff der Tangente an eine Kurve zu veralgemeinern. Wir zeigen,
dass eine k-dimensionale UntermannigfaltigkeitM in jedem Punkt p ∈ M einen
Tangentialraum TpM besitzt; TpM ist ein k-dimensionaler Vektorraum.
Dazu erinnern wir an den Begriff des Tangentenvektors einer Kurve:
Ist Iε =] − ε,+ε[ und α : Iε → Rn, t 	→ (x1(t), ..., xn(t)), eine Kurve im Rn, so
heißt α̇(0) := (ẋ1(0), ..., ẋn(0)) der Tangentenvektor zu t = 0.
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Wir definieren nun TpM so: Man betrachtet alle Kurven α : Iε → M , die auf M
liegen und durch p gehen , und definiert TpM als die Menge aller Vektoren α̇(0).

Definition 11.1.11 Es sei M eine k-dimensionale Untermannigfaltigkeit des Rn

und p ∈M . Dann heißt

TpM := {v ∈ Rn|es gibt eine Kurve α : Iε →M mit α(0) = p und α̇(0) = v}
der Tangentialraum vonM in p.

NpM := (TpM)⊥

heißt der Normalenraum vonM in p. Es ist also Rn = (TpM) ⊕ (NpM).

FürM = Rn ist TpRn = Rn für alle p ∈ Rn, denn zu jedem v ∈ Rn existiert ein α
mit α̇(0) = v. Man wählt α : R → Rn, t 	→ p+ tv, dann ist α eine Kurve auf Rn

mit α(0) = p und α̇(0) = v. - Natürlich ist NpRn = {0}.
Nun sei

M ∩ U = {x ∈ U |f1(x) = 0, ..., fn−k(x) = 0};
und es sei

ϕ : V → W, (t1, ..., tk) 	→ ϕ(t1, ..., tk)

eine Karte mit ϕ(0) = p.
Wir zeigen , wie man TpM undNpM durch f1, ..., fn−k und ϕ beschreiben kann.

Satz 11.1.12 TpM ist ein k-dimensionaler Vektorraum,

(
∂ϕ

∂t1
(0), . . . ,

∂ϕ

∂tk
(0)) ist eine Basis vonTpM.

NpM ist ein (n− k)-dimensionaler Vektorraum,

(grad f1(p), . . . , gradfn−k(p)) ist eine Basis von NpM.

Beweis. Wir setzen

T1 := span{ ∂ϕ
∂t1

(0), ...,
∂ϕ

∂tk
(0)}, T2 := span{gradf1(p), ..., gradfn−k(p)}

und zeigen:
T1 ⊂ TpM ⊂ T⊥

2 .

Sei v ∈ T1, also v =
k∑

j=1

cj
∂ϕ
∂tj

(0). Dann ist α : Iε → M, t 	→ ϕ(c1t, ..., ckt) eine

Kurve aufM (dabei wählt man ε > 0 so, dass für |t| < ε gilt: (c1t, ..., ckt) ∈ V ).

Es ist α̇(0) =
k∑

j=1

∂ϕj

∂tj
(0) · cj = v, somit T1 ⊂ TpM .

Nun sei α̇(0) ∈ TpM ; dabei ist α : Iε →M, t 	→ (x1(t), ..., xn(t)), eine Kurve auf
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M mit α(0) = p. Aus α(t) ∈M folgt fl(α(t)) = 0 für t ∈ Iε, l = 1, ..., n− k und

daher
n∑

i=1

∂fl

∂xi
(α(t)) · ẋi(t) = 0 und mit t = 0 folgt daraus 〈 grad fl(p), α̇(0)〉 = 0.

Daraus folgt α̇(0) ∈ T⊥
2 und damit TpM ⊂ T⊥

2 .

Offensichtlich sind T1 und T⊥
2 Vektorräume der Dimension k; aus T1 ⊂ T⊥

2 folgt
T1 = T⊥

2 und daher T1 = TpM = T⊥
2 .

Somit ist TpM ein k-dimensionaler Vektorraum, ( ∂ϕ
∂t1

(0), ..., ∂ϕ
∂tk

(0)) ist Basis von
T1 = TpM.
Aus TpM = T⊥

2 folgt NpM = (TpM)⊥ = T2 und somit ist NpM ein (n − k)-
dimensionaler Vektorraum mit Basis (grad f1(p), ...,grad fn−k(p)). �

Wir erläutern diese Aussagen wieder am Beispiel der S2:

Beispiel 11.1.13 Mit den Bezeichnungen von 11.1.10 erhält man den Tangential-
raum TpS2 im Nordpol p = (0, 0, 1) so: Es ist

∂

∂t1

√
1 − t21 − t22 =

−t1√
1 − t21 − t22

,
∂

∂t2

√
1 − t21 − t22 =

−t2√
1 − t21 − t22

,

also
∂ϕ

∂t1
(0) = (1, 0, 0),

∂ϕ

∂t2
(0) = (0, 1, 0),

daher ist
TpS2 = span{(1, 0, 0), (0, 1, 0)} = {x ∈ R3|x3 = 0}.

Außerdem gilt grad f(p) = (0, 0, 2), also ist

NpS2 = span{(0, 0, 2)} = {x ∈ R3|x1 = 0, x2 = 0}.

Wir betrachten nun den in 11.1.10 konstruierten Atlas von S2 . In jedem Punkt
p ∈ S2 haben wir eine Basis des R3, die aus dem Normalenvektor p = (x1, x2, x3)
und den jeweiligen Tangentialvektoren in p besteht. Wir wollen zeigen, dass ihre
Orientierung in jedem p dieselbe ist.
In ϕ+(V ) haben wir

det

⎛⎝⎛⎝x1x2
x3

⎞⎠ , ∂ϕ+

∂t1
,
∂ϕ+

∂t2

⎞⎠ =
1√

1 − x21 − x22
> 0 t1 = x1, t2 = x2,

in ϕ−(V ) haben wir

det

⎛⎝⎛⎝x1x2
x3

⎞⎠ , ∂ϕ−
∂t1
,
∂ϕ−
∂t2

⎞⎠ =
1√

1 − x21 − x22
> 0 t1 = x1, t2 = x2.

Weiter ist
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det

⎛⎝⎛⎝ cosϕ sinϑ
sinϕ sinϑ
cosϑ

⎞⎠ , ∂ϕ1

∂ϑ
,
∂ϕ1

∂ϕ

⎞⎠ = sinϑ > 0,

det

⎛⎝⎛⎝ cosϕ sinϑ
sinϕ sinϑ
cosϑ

⎞⎠ , ∂ϕ2

∂ϑ
,
∂ϕ2

∂ϕ

⎞⎠ = sinϑ > 0.

Man sagt auch, dass S2 einen positiv orientierten Atlas trägt (vgl.13.5.3 ). Die Frage
der Orientierung einer Mannigfaltigkeit spielt bei den Integralsätzen in 13.5 eine
wichtige Rolle.

11.2 Das Differential

Die Grundidee der Differentialrechnung ist die Linearisierung; man ersetzt
eine in x0 differenzierbare Funktion f : [a, b] → R durch die lineare
Funktion x 	→ f(x0) + f ′(x0) · (x − x0), deren Graph die Tangente an
den Graphen von f ist. Dies wird nun ganz allgemein durchgeführt. Ist
f : M → M̃ eine differenzierbare Abbildung zwischen differenzierbaren
Untermannigfaltigkeiten , so linearisiert man nicht nur die Abbildung f ,
sondern auch die Mannigfaltigkeiten M und M̃ : Etwas ausführlicher: Ist
p ∈ M so ersetzt man M durch den Tangentialvektorraum TpM und M̃
durch Tf(p)M̃ ; die Abbildung f ersetzt man durch eine lineare Abbildung
df(p) : TpM → Tp̃M̃ , die man als das Differential von f in p bezeichnet.

In diesem Abschnitt sei immerM ⊂ Rn eine k-dimensionale und M̃ ⊂ Rm eine
l-dimensionale Untermannigfaltigkeit.
Insbesondere ist jede offene Menge U ⊂ Rn eine n-dimensionale Untermannigfal-
tigkeit des Rn mit der einzigen Karte ϕ = idU : U → U und dem Tangentialraum
TpU = Rn.

Definition 11.2.1 Eine Abbildung f : M → M̃ heißt differenzierbar, wenn es
zu jedem p ∈ M eine offene Umgebung U von p im Rn und eine differenzierbare
Abbildung F : U → Rm gibt mit F (x) = f(x) für alle x ∈M ∩ U.
Nun kommen wir zur Definition des Differentials df(p). Die Idee dazu ist folgende:
Ein Element von TpM ist von der Form α̇(0), dabei ist α eine Kurve auf M mit
α(0) = 0. Nun betrachtet man die Bildkurve α̃ := f ◦ α, die auf M̃ liegt und durch
p̃ = f(p) geht, und ordnet dem Tangentenvektor α̇(0) den Vektor ˙̃α(0) zu.

Definition 11.2.2 Sei f : M → M̃ differenzierbar, p ∈ M, und p̃ := f(p). Zu
v ∈ TpM wählt man eine Kurve α : Iε →M mit α(0) = p und α̇(0) = v und setzt
α̃ := f ◦ α. Dann heißt die Abbildung

df(p) : TpM → Tp̃M̃, α̇(0) 	→ ˙̃α(0),

das Differential von f in p.
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p p̃

0

f

df(p)

M M̃

TpM Tp̃M̃
α

Wir zeigen nun, dass die Abbildung df(p) durch die Multiplikation mit der Jacobi-
Matrix JF (p) beschrieben werden kann; dabei ist F wir in 11.2.1 gewählt. Insbe-
sondere ergibt sich, dass die Definition des Differentials sinnvoll ist (nämlich un-
abhängig von der Wahl von α); außerdem folgt, dass die Abbildung df(p) linear
ist.

Satz 11.2.3 Die Abbildung df(p) : TpM → Tp̃M̃ ist linear; für alle v ∈ TpM
gilt:

df(p)(v) = JF (p) · v.
Beweis. Ist α wie in 11.2.2 gewählt und

F = (F1, . . . , Fm),
∂F

∂xj
:= (
∂F1

∂xj
, . . . ,

∂Fm

∂xj
),

so gilt d
dtf(α(t)) = d

dtF (α(t)) =
n∑

j=1

∂F
∂xj

(α(t)) · ẋj(t) und für t = 0 ergibt sich:

df(p)(v) = ˙̃α(0) =
n∑

j=1

∂F

∂xj
(p) · ẋj(0) = JF (p) · v.

�

Wir behandeln nun wichtige Spezialfälle:

• M̃ = R:

Ist f : M → R eine differenzierbare Funktion und p ∈ M, p̃ := f(p), so ist
Tp̃R = R und

df(p) : TpM → R

ist linear; somit ist df(p) ein Element des zu TpM dualen Vektorraumes (vgl.7.12.1):

df(p) ∈ (TpM)∗.

• M = U ⊂ Rn offen , M̃ = Rm:
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Für p ∈ U ist TpU = Rn ; ist f : U → Rm eine differenzierbare Abbildung , so ist

df(p) : Rn → Rm, v 	→ Jf (p) · v.

Bezeichnet man die durch die Matrix Jf (p) definierte Abbildung ebenfalls mit
Jf (p), so gilt :

df(p) = Jf (p).

• M = U ⊂ Rn offen,M̃ = R

Nun sei U ⊂ Rn offen und f : U → R differenzierbar; für p ∈ U ist dann

df(p) : Rn → R, v 	→
n∑

j=1

∂f

∂xj
(p) · vj

also
df(p)(v) = 〈grad f(p), v〉.

Für j = 1, ..., n bezeichnen wir nun die
”
Koordinatenfunktionen“

Rn → R, (x1, ..., xn) 	→ xj ,

ebenfalls mit xj ; dann ist
dxj(p)(v) = vj

und für v ∈ Rn ist df(p)v =
n∑

j=1

∂f
∂xj

(p)dxj(p)v, also

df(p) =
n∑

j=1

∂f

∂xj
(p) · dxj(p).

• M = I ⊂ R, M̃ = R:

Für n = 1 ist U = I ein offenes Intervall , für eine differenzierbare Funktion
f : I → R ist

df(p) = f ′(p) · dx(p);

dabei bezeichnet x die Funktion R → R, x 	→ x, und es ist dx(p) : R → R,
v 	→ v. Ist (e1, ..., en) die kanonische Basis des Rn, so gilt dxj(p)(ek) = δjk,
daher ist (dx1(p), ...,dxn(p)) die zu (e1, ..., en) duale Basis von (Rn)∗ = (TpU)∗

(man vergleiche dazu 7.12.4).
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11.3 Differentialformen

Jede Untermannigfaltigkeit wird im Kleinen durch Karten eines Atlanten
beschrieben. Offenbar gibt es mannigfache Möglichkeiten, eine Unterma-
nigfaltigkeit durch ein lokales Koordinatensystem zu beschreiben. Von In-
teresse sind diejenigen Eigenschaften einer Untermanigfaltigkeit, die nicht
von der Auswahl des Atlanten (vgl. 11.1.8) abhängen. Zum Beispiel wollen
wir über eine UntermannigfaltigkeitM oder Teilmengen A ⊂ M integrie-
ren und das Integral über A in ein Integral über den Rand ∂A, den A in
M hat, verwandeln (Satz von Stokes). Ein Beispiel ist eine Teilmenge A
einer Fläche M des R3, die in der Fläche von einer Kurve ∂A berandet
wird Das Ergebnis soll natürlich nicht von der Auswahl des lokalen Koor-
dinatensystems abhängen. Ein geeignetes Hilfsmittel zur Erreichung dieses
Ziels stellen die sogenanten Differentialformen dar, die wir jetzt einführen
wollen.
Wir benötigen dazu den Begriff des dualen Vektorraumes, den wir in 7.12
behandelt haben, und vor allem den Vektorraum ΛkV ∗ der k-Formen aus
7.13.

Wir bezeichnen mit U ⊂ Rn immer eine offene Menge, p ∈ U , und schreiben für
den zu TpU dualen Vektorraum

T ∗
pU := (TpU)∗.

Es sei
T ∗U :=

⋃
p∈U

T ∗
pU.

Definition 11.3.1 Eine Abbildung

ω : U → T ∗U mit ω(p) ∈ T ∗
pU für p ∈ U

heißt Differentialform 1. Ordnung (oder Pfaffsche Form) auf U .

Hilfssatz 11.3.2 Setzt man dxj : Rn → T ∗Rn, p 	→ dxj(p) für j = 1, ..., n, so
sind dx1, ...,dxn Differentialformen 1. Ordnung auf Rn und (dx1(p), ...,dxn(p))
ist eine Basis von T ∗

pU . Daher gibt es eindeutig bestimmte f1(p), ..., fn(p) ∈ R mit

ω(p) =
n∑

j=1

fj(p) · dxj(p).

Es gilt also: Jede Differentialform 1. Ordnung ω auf U läßt sich darstellen als

ω =
n∑

j=1

fj dxj

mit Funktionen fj : U → R, die eindeutig bestimmt sind.
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Nun können wir definieren:

Definition 11.3.3 Eine Differentialform ω =
n∑

j=1

fj dxj auf U heißt differenzier-

bar, wenn die Funktionen f1, ..., fn beliebig oft differenzierbar sind. Mit Ω1U be-
zeichnet man die Menge aller differenzierbaren Differentialformen 1.Ordnung auf
U .

Definition 11.3.4 Ist f : U → R beliebig oft differenzierbar, so heißt

df :=
n∑

j=1

∂f

∂xj
· dxj

das totale Differential von f ; es ist df ∈ Ω1U .

In 7.13.1 hatten wir für einen Vektorraum V den Vektorraum ΛkV ∗ aller k-Formen
auf V definiert. Wir setzen nun V := TpU und definieren mit Hilfe von ΛkT ∗

pU
Differentialformen höherer Ordnung. Es sei

ΛkT ∗U :=
⋃
p∈U

ΛkT ∗
pU.

Definition 11.3.5 Eine Abbildung

ω : U → ΛkT ∗U mit ω(p) ∈ ΛkT ∗
pU für p ∈ U

heißt Differentialform der Ordnung k auf U . �

Durch

dxi1 ∧ ... ∧ dxik
: Rn → ΛkT ∗Rn, p 	→ dxi1 (p) ∧ ... ∧ dxik

(p),

sind Differentialformen k-ter Ordnung auf Rn definiert.
Es gilt ( vgl.7.13.3):

Satz 11.3.6 Jede Differentialform ω der Ordnung k auf U ist eindeutig darstellbar
als

ω =
∑
fi1,...,ik

dxi1 ∧ ... ∧ dxik

mit Funktionen fi1,...,ik
: U → R. Dabei ist über alle k-Tupel (i1, ..., ik) natürlicher

Zahlen mit 1 ≤ i1 < i2 < ... < ik ≤ n zu summieren.

Definition 11.3.7 Eine Differentialform ω der Ordnung k heißt differenzierbar,
wenn die fi1,...,ik

beliebig oft differenzierbar sind; die Menge der differenzierbaren
Differentialformen der Ordnung k auf U bezeichnen wir mit

ΩkU.
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Für das Rechnen mit Differentialformen sind zwei Operationen wichtig, nämlich
• das Dachprodukt ω ∧ σ
• die Ableitung dω.

Definition 11.3.8 (Dachprodukt) Für

ω =
∑
fi1,...,ik

dxi1 ∧ ... ∧ dxik
∈ ΩkU,

σ =
∑
gj1,...,jl

dxj1 ∧ ... ∧ dxjl
∈ ΩlU

setzt man

ω ∧ σ :=
∑∑

fi1,...,ik
gj1,...jl

dxi1 ∧ ... ∧ dxik
∧ dxj1 ∧ ... ∧ dxjl

∈ Ωk+lU,

dabei ist über alle k − Tupel (i1, ..., ik) mit 1 ≤ i1 < i2 < . . . < ik ≤ n und über
alle l − Tupel (j1, . . . , jl) mit 1 ≤ j1 < j2 < ... < jl ≤ n zu summieren.

Es ist leicht zu zeigen, dass für ω, ω̃ ∈ ΩkU, σ ∈ ΩlU , τ ∈ ΩmU gilt:

(ω + ω̃) ∧ σ = ω ∧ σ + ω̃ ∧ σ, ω ∧ (σ ∧ τ) = (ω ∧ σ) ∧ τ.
Es gilt folgende Rechenregel:

Hilfssatz 11.3.9 Für ω ∈ ΩkU und σ ∈ ΩlU gilt:

ω ∧ σ = (−1)k·lσ ∧ ω.
Die Ableitung dω einer Differentialform ω definiert man so:

Definition 11.3.10 (Ableitung.) Für

ω =
∑
fi1,...,ik

dxi1 ∧ ... ∧ dxik

setzt man
dω =

∑
dfi1,...,ik

∧ dxi1 ∧ ... ∧ dxik
,

also

dω =
∑

i1,...,ik

n∑
ν=1

∂fi1,...,ik

∂xν
dxν ∧ dxi1 ∧ ... ∧ dxik

.

Es gelten die Rechenregeln:

Hilfssatz 11.3.11 Für ω, ω̃ ∈ ΩkU, σ ∈ ΩlU, c1, c2 ∈ R ist

d(c1ω + c2ω̃) = c1dω + c2dω̃, d(ω ∧ σ) = (dω) ∧ σ + (−1)kω ∧ dσ.

Beispiel 11.3.12 Ist ω =
∑
fi1,...,ik

dxi1 ∧...∧dxik
und sind alle fi1,...,ik

konstant,
so ist dω = 0; insbesondere gilt immer

d(dxi1 ∧ ... ∧ dxik
) = 0.
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Nun berechnen wir die Ableitung von 1-Formen:

Hilfssatz 11.3.13 Für ω =
∑
fjdxj ∈ Ω1U ist

dω =
∑

1≤i<j≤n

(
∂fj
∂xi

− ∂fi
∂xj

)
dxi ∧ dxj .

Beweis. Es ist dω =
∑
j

∑
i

∂fj

∂xi
dxi ∧ dxj , dabei ist über alle Paare (i, j) zu sum-

mieren, i, j ∈ {1, ..., n}. Wegen dxi ∧ dxi = 0 kann man die Paare mit i = j
weglassen. Wenn i > j ist, vertauscht man i mit j, dann ist der zu diesem Paar
gehörende Summand gleich

∂fi
∂xj

dxj ∧ dxi = − ∂fi
∂xj

dxi ∧ dxj

und man summiert nur über Paare (i, j) mit i < j. �

Nun ergibt sich:

Hilfssatz 11.3.14 Für f ∈ Ω0U ist d(df) = 0.

Beweis. Es ist df =
∑
j

∂f
∂xj

dxj und

d(df) =
∑
i<j

(
∂

∂xi
(
∂f

∂xj
) − ∂

∂xj
(
∂f

∂xi
)
)

dxi ∧ dxj = 0.

�

Damit erhält man die grundlegende Aussage:

Satz 11.3.15 Für jedes ω ∈ ΩkU, k ≥ 0, ist

d(dω) = 0.

Beweis. Für ω =
∑
fi1,...,ik

dxi1 ∧ ... ∧ dxik
ist nach 11.3.11:

d(dω) = d
( ∑

(dfi1,...,ik
) ∧ dxi1 ∧ ... ∧ dxik

)
=

=
∑

(d(dfi1,...,ik
)) ∧ dxi1 ∧ ... ∧ dxik

−∑
(dfi1,...,ik

) ∧ d(dxi1 ∧ ... ∧ dxik
).

Wegen 11.3.14 verschwindet der erste Summand und wegen 11.3.12 der zweite. �

Die Aussage dieses Satzes formulieren wir kurz so: Es ist immer

d ◦ d = 0.

Nun soll für Differentialformen ω und Abbildungen ϕ die Differentialform ω ◦ ϕ
definiert werden. Damit beschreiben wir das Verhalten von Differentialformen bei
Koordinatentransformatonen.
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Definition 11.3.16 Es seien U ⊂ Rn und Ũ ⊂ Rm offen, und

ϕ : Ũ → U, y 	→ (ϕ1(y), ..., ϕn(y)),

beliebig oft differenzierbar. Für

ω =
∑
fi1,...,ik

dxi1 ∧ ... ∧ dxik
∈ ΩkU

setzt man
ω ◦ ϕ :=

∑
(fi1,...,ik

◦ ϕ)dϕi1 ∧ ... ∧ dϕik
.

Es gilt :

Hilfssatz 11.3.17 Es seien U1 ⊂ Rl, U2 ⊂ Rm, U3 ⊂ Rn offene Mengen und
ψ : U1 → U2 und ϕ : U2 → U3 differenzierbare Abbildungen; dann gilt:

(ω ◦ ϕ) ◦ ψ = ω ◦ (ϕ ◦ ψ), d(ω ◦ ϕ) = (dω) ◦ ϕ.

Die erste Formel zeigt die Assoziativität des Ausdrucks ω ◦ ϕ bei mehrfachen Ko-
ordinatentransformationen. Eine Anwendung werden wir am Ende dieses Kapitels
kennen lernen. Die zweite Formel zeigt, dass d seine Bedeutung bei Koordinaten-
transformationen behält. d ist, wie man sagt, invariant bei Koordinatentransforma-
tionen.

Beispiel 11.3.18 Es seien Ũ , U ⊂ R2offen, ϕ : Ũ → U, t 	→ (ϕ1(t), ϕ2(t)),
beliebig oft differenzierbar und ω = fdx1 ∧ dx2 ∈ Ω2U ; dann gilt

ω ◦ ϕ = (f ◦ ϕ)
(
∂ϕ1

∂t1
dt1 +

∂ϕ1

∂t2
dt2

)
∧
(
∂ϕ2

∂t1
dt1 +

∂ϕ2

∂t2
dt2

)
=

= (f ◦ ϕ) ·
(
∂ϕ1

∂t1
· ∂ϕ2

∂t2
− ∂ϕ1

∂t2
· ∂ϕ2

∂t1

)
dt1 ∧ dt2 =

= (f ◦ ϕ) · detJϕ · dt1 ∧ dt2;

dabei ist Jϕ die Jacobi-Matrix von ϕ.

Diese Aussage gilt allgemein für n-Formen im Rn:

Satz 11.3.19 Es seien Ũ , U ⊂ Rn offen, ϕ : Ũ → U eine beliebig oft differenzier-
bare Abbildung und ω = f · dx1 ∧ ... ∧ dxn ∈ ΩnU . Dann gilt :

ω ◦ ϕ = (f ◦ ϕ) · det Jϕ · dt1 ∧ ... ∧ dtn.

Nun behandeln wir die Frage, wann es zu einer Differentialform ω eine Differen-
tialform τ gibt mit dτ = ω. Aus d ◦ d = 0 folgt die notwendige Bedingung
dω = d(dτ) = 0. Wir zeigen, dass diese Bedingung für sternförmige Gebiete auch
hinreichend ist. Diese fundamentale Aussage ist das Poincarésche Lemma (HENRI

POINCARÉ (1854-1912) ).
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Satz 11.3.20 (Poincarésches Lemma). Ist U ⊂ Rn offen und sternförmig,k ∈ N,
so existiert zu jedem ω ∈ ΩkU mit dω = 0 ein τ ∈ Ωk−1U , so dass gilt:

dτ = ω.

Beweis. (Vgl. dazu [8].) Es sei

ω =
∑
fi1,...,ik

dxi1 ∧ ... ∧ dxik
.

Wir dürfen annehmen, dass U sternförmig bezüglich 0 ist; daher ist die Abbildung

ϕ : [0, 1]× U → U, (t, x) 	→ tx,
wohldefiniert. Es ist ϕν(tx) = txν und dϕν = xνdt+t dxν für ν = 1, ..., n. Setzen
wir f̃i := fi ◦ ϕ, so ist

σ := ω ◦ ϕ =
∑

i1,..,ik

f̃i1,...,ik
· (xi1dt+ tdxi1) ∧ ... ∧ (xik

dt+ t dxik
).

Wenn man die rechte Seite ausmultipliziert und zuerst die Summanden zusammen-
faßt, die kein dt enthalten, dann die Summanden, in denen der Faktor dt vorkommt,
so ergibt sich: Es gibt differenzierbare Funktionen gj1,..,jk−1 : [0, 1] × U → R, mit

σ =
∑

i1,..,ik

tkf̃i1,..,ik
dxi1 ∧ ...∧dxik

+
∑

j1,..,jk−1

gj1,..,jk−1 dt∧dxj1 ∧ ...∧dxjk−1 .

Aus dω = 0 und d(ω ◦ ϕ) = (dω) ◦ ϕ folgt dσ = 0, also

0 = dσ =
∑

i1,..,ik

∂
∂t (t

kf̃i1,..,ik
)dt ∧ dxi1 ∧ ... ∧ dxik

+

+
∑

i1,..,ik

∑n
ν=1

∂
∂xν

(tkf̃i1,..,ik
) dxν ∧ dxi1 ∧ ... ∧ dxik

+

+
∑

j1,..,jk−1

∑n
ν=1

∂gj1,..,jk−1
∂xν

dxν ∧ dt ∧ dxj1 ∧ ... ∧ dxjk−1 .

Daraus folgt die Gleichung

(∗)
∑

j1,...,jk−1

∑n
ν=1

∂gj1,..,jk−1
∂xν

dt ∧ dxν ∧ dxj1 ∧ ... ∧ dxjk−1 =

=
∑

i1,..,ik

∂
∂t (t

kf̃i1,..,ik
)dt ∧ dxi1 ∧ ... ∧ dxik

Nun definieren wir Funktionen

Gj1,..,jk−1 : U → R, x 	→
1∫

0

gj1,..,jk−1(t, x) dt,

und setzen

τ :=
∑
Gj1,...,jk−1 dxj1 ∧ ... ∧ dxjk−1 ∈ Ωk−1U.
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Bei der Berechnung von d τ vertauschen zunächst nach Satz 9.2.16 Differentiation
und Integration und berücksichtigen dann (*):

dτ =
∑

j1,..,jk−1

∑n
ν=1

∂Gj1,..,jk−1
∂xν

dxν ∧ dxj1 ∧ .. ∧ dxjk−1 =

=
1∫
0

∑
j1,..,jk−1

∑n
ν=1(

∂gj1 ,..,jk−1
∂xν

dt) ∧ dxν ∧ dxj1 ∧ ... ∧ dxjk−1

(∗)
=

=
∑

i1,..,ik

1∫
0

( ∂
∂t (t

kf̃i1,..,ik
) dt) ∧ dxi1 ∧ ... ∧ dxik

=

=
∑

i1,..,ik
[tkf̃i1,..,ik

]t=1
t=0 dxi1 ∧ ... ∧ dxik

=

=
∑

i1,..,ik
fi1,..,ik

dxi1 ∧ ... ∧ dxik
= ω.

Man vergleiche diesen Beweis mit dem von 9.6.7. �


11.4 Differentialformen und Vektorfelder im R3

Wir zeigen nun, wie man Aussagen über Vektorfelder im R3 in die Sprache der
Differentialformen übersetzen kann. Mit dem Lemma von Poincaré 11.3.20 ziehen
wir daraus wichtige Konsequenzen für Vektorfelder. Ein Vektorfeld v = (v1, v2, v3)
im R3 kann man als 1-Form

ω = v1dx1 + v2dx2 + v3dx3

auffassen und umgekehrt definiert jede 1-Form ein Vektorfeld. Man kann aber v
auch als 2-Form

σ = v1dx2 ∧ dx3 + v2dx3 ∧ dx1 + v3dx1 ∧ dx2

auffassen und umgekehrt. Eine Funktion f ist eine 0-Form, liefert aber auch die
3-Form

f dx1 ∧ dx2 ∧ dx3.

Im Kalkül der Differentialformen lassen sich die Operatoren grad, rot, div , die wir
in 9.6.9 eingeführt haben, einheitlich durch den Ableitungsoperator d ausdrücken.
Formeln wie rot grad = 0 und div rot = 0 sind äquivalent zu d ◦ d = 0. Die Aussa-
gen über die Existenz eines Potentials oder eines Vektorpotentials folgen aus dem
Poincaréschen Lemma.
Dies soll nun ausgeführt werden. Zur Vereinfachung der Schreibweise definieren
wir:

Definition 11.4.1 Wir setzen

ds := (dx1, dx2, dx3)
dF := (dx2 ∧ dx3, dx3 ∧ dx1, dx1 ∧ dx2)
dV := dx1 ∧ dx2 ∧ dx3.
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Ist U ⊂ R3 und v : U → R3, x 	→ (v1(x), v2(x), v3(x)), so definiert man in
Analogie zum Skalarprodukt:

v ds := v1dx1 + v2dx2 + v3dx3,
v dF := v1dx2 ∧ dx3 + v2dx3 ∧ dx1 + v3dx1 ∧ dx2.

Man kann also jede 1-Form als vds und jede 2-Form als wdF darstellen In 7.9.38
hatten wir für Vektoren v, w ∈ R3 das Vektorprodukt v × w definiert. Wir zeigen
nun, dass dem Vektorprodukt das Dachprodukt entspricht. Es bezeichne U ⊂ R3

immer eine offene Menge, v,w seien Vektorfelder in U .

Satz 11.4.2 Für ω := v ds und σ := w ds gilt:

ω ∧ σ = (v × w)dF.

Der Beweis ergibt sich durch Ausmultiplizieren von

(v1dx1 + v2dx2 + v3dx3) ∧ (w1dx1 + w2dx2 + w3dx3).

�

Die Übersetzung vom Kalkül der Vektorfelder in den der Differentialformen erfolgt
nun so:

Satz 11.4.3 SeiU ⊂ R3 offen, f ∈ Ω0U, ω = v ds ∈ Ω1U, σ = w dF ∈ Ω2U,
dann gilt:

df = (grad f) ds,
d(v ds) = (rot v) dF,
d(w dF) = (div w) dV

Beweis.

(1) df =
∑3

j=1
∂f
∂xj

dxj = (grad f) ds
(2) dω = (dv1) ∧ dx1 + (dv2) ∧ dx2 + (dv3) ∧ dx3 =

=
(

∂v1
∂x1

dx1 + ∂v1
∂x2

dx2 + ∂v1
∂x3

dx3
)
∧ dx1 + ... =

= ∂v1
∂x1

dx1 ∧ dx1 + ∂v1
∂x2

dx2 ∧ dx1 + ∂v1
∂x3

dx3 ∧ dx1 + ... =

=
(

∂v3
∂x2

− ∂v2
∂x3

)
dx2 ∧ dx3 +

(
∂v1
∂x3

− ∂v3
∂x1

)
dx3 ∧ dx1 + (. . .) dx1 ∧ dx2 =

= (rot v) dF
(3) dσ =

(
∂w1
∂x1

dx1 + ∂w1
∂x2

dx2 + ∂w1
∂x3

dx3
)
∧ dx2 ∧ dx3 + ... =

=
(

∂w1
∂x1

+ ∂w2
∂x2

+ ∂w3
∂x3

)
dx1 ∧ dx2 ∧ dx3 = (div w) dV.

�

Wir bezeichnen wieder mit C∞U die Menge der beliebig oft differenzierbaren Funk-
tionen auf U , also C∞U = Ω0U , und mit FU die Menge der Vektorfelder auf U ;
dann hat man Isomorphismen
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C∞U → Ω0U, f 	→ f ;
FU → Ω1U, v 	→ v ds
FU → Ω2U, w 	→ w dF

C∞U → Ω3U, h 	→ h dV

Die Aussage des vorhergehenden Satzes stellen wir nun im folgenden kommutativen
Diagramm dar; dabei sind die senkrechten Pfeile die soeben definierten Isomorphis-
men:

C∞U
grad−→ FU rot−→ FU div−→ C∞U

↓ ↓ ↓ ↓
Ω0U

d−→ Ω1U
d−→ Ω2U

d−→ Ω3U

Aus d ◦ d = 0 folgt:

Satz 11.4.4 Ist U ⊂ R3 offen, so gilt für jede beliebig oft differenzierbare Funktion
f : U → R :

rot(grad f) = 0

und für jedes Vektorfeld v : U → R3 ist

div(rot v) = 0.

Beweis.

1) Es ist 0 = d(df) = d((grad f)ds) = rot(grad f)dF, also rot(grad f) = 0.
2) Für ω := vds ist 0 = d(dω) = d((rotv)dF) = div(rotv) dV , daher
div(rotv) = 0. �


Das Lemma von Poincaré 11.3.20 liefert für sternförmiges U :

Satz 11.4.5 Ist U ⊂ R3 offen und sternförmig, so gilt:

(1) Zu jedem Vektorfeld v : U → R3 mit rot v = 0 existiert ein Potential
h : U → R, also

grad h = v.

(2) Zu jedem Vektorfeld w : U → R3 mit div w = 0 existiert ein Vektorfeld
v : U → R3 mit

rot v = w,

man bezeichnet v als Vektorpotential zu w.

Beweis.

(1) Wir setzen ω := vds ; nach Voraussetzung ist dω = (rotv) dF = 0 und aus
dem Lemma von Poincaré folgt, dass eine 0-Form f auf U existiert mit df = ω,
also (grad f) ds = v ds und somit grad f = v.
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(2) Nun ordnen wir dem Vektorfeld w die 2-Form σ := w dF zu.
Es ist dσ = (div w) dV = 0 und daher existiert nach dem Lemma von Poincaré
eine 1-Form τ = v ds mit dτ = σ, also (rotv) dF = wdF, somit rot v = w.

�

Beispiel 11.4.6 (Maxwellsche Gleichungen und Differentialformen)Es sei E die
elektische Feldstärke und H die magnetische Feldstärke ; im Vakuum lauten dann
die Maxwellschen Gleichungen (bei geeigneter Normierung ):

rot E = −∂H
∂t , div E = 0

rot H = ∂E
∂t , div H = 0.

Die Punkte des R3 bezeichnen wir mit x = (x1, x2, x3) und mit t die Zeit. Wie in
[15] definieren wir 2-Formen im R4:

Ω := Eds ∧ dt+ HdF , Ψ := −Hds ∧ dt + EdF.

Es ist
dΩ = ( rot E + ∂H

∂t )dF ∧ dt + (div E)dV,

dΨ = (−rot H + ∂E
∂t )dF ∧ dt + (div H)dV.

Die Maxwellschen Gleichungen sind daher äquivalent zu

dΩ = 0. dΨ = 0.

Für jede Koordinatentransformationϕ ist

d(Ω ◦ ϕ) = dΩ ◦ ϕ, d(Ψ ◦ ϕ) = dΨ ◦ ϕ,
daher ist dΩ = 0, dΨ = 0 die koordinatenunabhängige Formulierung der
Maxwellschen Gleichungen.
Nach dem Lemma von Poincaré existiert in jedem sternförmigen Gebiet des R4 eine
1-Form Ads + adt mit d(Ads + adt) = Ω, also

(rot A)dF +
∂A
∂t

dt ∧ ds + (grad a)ds ∧ dt = Eds ∧ dt+ HdF.

Damit ist gezeigt: Es gibt ein Vektorfeld A (= magnetisches Vektorpotential) und
eine beliebig oft differenzierbare Funktion a (= skalares Potential) mit

rot A = H
grad a− ∂A

∂t = E.

Wendet man diese Überlegungen auf Ψ an, so folgt die Existenz eines Vektorfeldes
B (= elektrisches Vektorpotential) und einer Funktion b ( = skalares Potential) mit

rot B = E
grad b− ∂B

∂t = H.
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Verlangen wir von A, a noch, dass die
”
Eichbedingung “

∂a

∂t
− divA = 0

gilt, so führt uns das wegen

rot rotA = −�A + grad div A

auf die Schwingungsgleichung

−� A +
∂2A
∂t2

= 0.

Entsprechend fogt aus
∂b

∂t
− divB = 0

die Beziehung

−� B +
∂2B
∂t2

= 0.

Wie erfüllen wir nun die Eichbedingung ? Wir zeigen dies für Ω. Statt des Paares
(a,A) betrachten wir ein Paar (aneu,Aneu) = (a + ϕ, A + grad Φ) mit noch
unbekannten Funktionen ϕ, Φ. Dann gilt zunächst rot Aneu = H, und wir erhalten
weiter aus der Eichbedingung die Forderung

∂ϕ

∂t
−�Φ = −∂a

∂t
+ div A,

während die Gleichung für das skalare Potential

grad ϕ− ∂
∂t

grad Φ =
∂A
∂t

− grad a+ E

liefert. Mit ∂2ϕ
∂t2 −�∂Φ

∂t = −∂2a
∂t2 + div ∂A

∂t folgt

∂2ϕ

∂t2
−�ϕ = −∂

2a

∂t2
+ �a.

Bestimmt man hieraus ϕ , so kann man Φ aus

∂ϕ

∂t
−�Φ = −∂a

∂t
+ div A

ermitteln.
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11.5 Differentialformen und Differentialgleichungen

In 8.2.2 hatten wir die Differentialgleichung dy
dx = −x

y betrachtet und dabei y > 0
vorausgesetzt; als Lösungen erhielten wir Halbkreise y =

√
r2 − x2, |x| < r.

Im Kalkül der Differentialformen können wir dy
dx = −x

y umformulieren zur Glei-
chung xdx+ydy = 0. Definiert man nun die Differentialformω := xdx+ydy und
schreibt diese Differentialgleichung in der Form ω = 0, so ist nicht nur die Voraus-
setzung y > 0 unnötig; es ist auch naheliegend, nicht mehr eine Lösungsfunktion
y(x) zu suchen, sondern Funktionen x(t), y(t) , die diese Gleichung lösen. Man
sucht also Lösungskurven γ(t) = (x(t), y(t)). Für xdx + ydy = 0 erhält man nun
als Lösungskurven Kreise x(t) = r · cos t, y(t) = r · sin t.
Wir betrachten nun allgemein eine Differentialgleichung

dy
dx

= −f(x, y)
g(x, y)

und schreiben sie in der Form

f(x, y)dx+ g(x, y)dy = 0;

dabei setzt man voraus, dass (f(x, y), g(x, y)) �= (0, 0) ist. Nun definieren wir die
Differentialform 1. Ordnung

ω := fdx+ gdy

und bezeichnen Funktionen x(t), y(t) als Lösung , wenn

f(x(t), y(t))ẋ(t) + g(x(t), y(t)ẏ(t) = 0

ist. Dies soll nun präzisiert werden. Wir führen dazu einige Begriffe ein:

Definition 11.5.1 Eine Differentialform ω = fdx + gdy ∈ Ω1U heißt regulär,
wenn die Funktionen f, g keine gemeinsame Nullstelle in U haben.

Definition 11.5.2 Es sei U ⊂ R2 offen und ω = fdx + gdy ∈ Ω1U eine reguläre
Differentialform. Eine (stetig differenzierbare) reguläre Kurve

γ : [a, b] → U, t 	→ (x(t), y(t)),

heißt Lösung der Differentialgleichung ω = 0, wenn gilt:

ω ◦ γ = 0,

also

f(x(t), y(t)) · dx
dt

(t) + g(x(t), y(t)) · dy
dt

(t) = 0 für alle t ∈ [a, b]
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Eine Lösungskurve kann man oft folgendermassen finden: Wenn es eine Funktion
h mit dh = ω gibt, dann sind Lösungen Niveaumengen von h:

Satz 11.5.3 Wenn zu ω = fdx + gdy ∈ Ω1U eine beliebig oft differenzierbare
Funktion h : U → R mit dh = ω existiert, dann gilt: Eine reguläre Kurve
γ : [a, b] → U ist genau dann eine Lösungskurve zu ω = 0, wenn h ◦ γ konstant ist;
γ[a, b] liegt also in einer Niveaumenge von h.

Beweis Es ist hx = f und hy = g , daher

d
dth(x(t), y(t)) = hx(x(t), y(t))ẋ(t) + hy(x(t), y(t))ẏ(t) =

= f(γ(t))ẋ(t) + g(γ(t))ẏ(t)

und daraus folgt die Behauptung. �

Wenn ein derartiges h existiert, kann man also Lösungskurven dadurch erhalten,
dass man die Gleichung h(x, y) = c nach y oder x auflöst.
Bei unserem Beispiel ω = xdx + ydy kann man h(x, y) = 1

2 (x2 + y2) wählen;
Lösungskurven liegen dann auf x2 + y2 = c.

Definition 11.5.4 Eine Differentialform ω = fdx+ gdy ∈ Ω1Uheißt exakt, wenn
dω = 0 also fy = gx gilt.
Sie heißt total, wenn eine beliebig oft differenzierbare Funktion h : U → R existiert
mit dh = ω.

Aus d ◦ d = 0 und dem Lemma von Poincaré folgt:

Satz 11.5.5 Jede totale Differentialform ω ∈ Ω1U ist exakt; wenn U sternförmig
ist, gilt auch die Umkehrung.

Wenn ω nicht exakt ist, hilft gelegentlich das Auffinden eines Eulerschen Multipli-
kators.

Eulerscher Multiplikator

Definition 11.5.6 Eine beliebig oft differenzierbare und nirgends verschwindende
Funktion µ : U → R heißt Eulerscher Multiplikator (integrierender Faktor) der
Differentialgleichung ω = 0, wenn d(µω) = 0 ist.

µω = 0 hat dieselben Lösungskurven wie ω = 0. Man kann beweisen, dass es zu
einer regulären Differentialform lokal immer einen Eulerschen Multiplikator µ gibt
(vgl. [12]).

Beispiel 11.5.7 Es sei

ω = 2ydx+ xdy ∈ Ω1(R2 \ {0})

dann ist dω = −dx ∧ dy �= 0 und wir suchen einen Eulerschen Mukltiplikator µ,
also d(µω) = 0. Es soll also gelten:

(2yµ)y = (xµ)x oder 2µ+ 2yµy = µ+ xµx.
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Man kann demnach µ(x, y) = x (in R2\{0}) wählen; dann ist xω = 2xydx+x2dy
exakt. Setzt man h(x, y) := x2y, so gilt dh = µω und die Lösungen von ω = 0
erhält man durch x2y = c.

Ganz allgemein kann man ebene autonome Systeme ( das sind Systeme mit zwei
Komponenten, bei denen die Variable t auf der rechten Seite explizit nicht vor-
kommt),

(1) ẋ =
dx
dt

= g(x, y), ẏ =
dy
dt

= −f(x, y)
mit (f, g) �= (0, 0), in der Form

ω = fdx+ gdy = 0

mit der 1-Form ω schreiben. Da über den Kurvenparameter bei ebenen autono-
men Systemen nichts festgelegt ist, wird man nach einer parameterunabhängigen
Schreibweise für solche Systeme suchen. Sie ist durch ω = 0 gegeben und hat den
Vorteil, dass man unsere Resultate 11.3.17 über das Transformationsverhalten von
Differentialformen anwenden kann, wenn man den Kurvenparameter wechselt.
Häufig nimmt man den Polarwinkel t. Setzt man

(x, y) = (r · cos t, r · sin t) = (ϕ1(t, r), ϕ2(t, r)) = ϕ(t, r),

so folgt aus ω ◦ γ = 0 mit der ersten Relation in 11.3.17 die Beziehung

(ω ◦ ϕ) ◦ ϕ−1 ◦ γ = ω ◦ γ = 0.

ϕ−1 ◦ γ ist die Lösungskurve in Polakoordinaten. Für ω ◦ ϕ folgt mit 11.3.17 die
Gleichung

r(−f ◦ϕ(t, r) sin t+g◦ϕ(t, r) cos t)dt+(f ◦ϕ(t, r) cos t+g◦ϕ(t, r) sin t)dr = 0.

Ist f ◦ϕ(t, r) cos t+g ◦ϕ(t, r) sin t �= 0, so erhalten wir für r in Abhängigkeit vom
Polarwinkel t die Differentialgleichung

dr
dt

= r · f ◦ ϕ(t, r) sin t− g ◦ ϕ(t, r) cos t
f ◦ ϕ(t, r) cos t+ g ◦ ϕ(t, r) sin t

und diese ist die häufig verwendete Umschreibung von (1) auf Polarkoordinaten.
Als Richtungsfeld zu fdx + gdy = 0 definiert man nun in jedem Punkt (x, y) die
zum Vektor (f(x, y), g(x, y)) senkrechte Richtung.
Aus der letzten Gleichung kann man wegen (f, g) �= (0, 0) auf das System (1), aber
auch auf dy

dx = − f
g oder dx

dy = − g
f schliessen, je nachdem , ob f �= 0 oder g �= 0

ist. Dies bedeutet, dass wir x oder y als Kurvenparameter verwenden. Wird also
g = 0 und die Kurventangente an (x, y(x)) mit dy

dx = − f
g senkrecht, so muss man,

wie schon zu Beginn dieses Kapitels erwähnt, y als Kurvenparameter einführen oder
einen ganz anderen Kurvenparameter wie den Polarwinkel bei der bereits erwähnten
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Kreisgleichung dy
dx = −x

y .
Das Auffinden von h wie in 11.5.4 ermöglicht es uns, das System (1) in die Hamil-
tonsche Form

ẋ = hy(x, y)
ẏ = −hx(x, y)

zu bringen. h heißt Hamiltonsche Funktion. Die Vorteile sollen am nächsten Bei-
spiel erläutert werden.

Beispiel 11.5.8 Die Schwingungen des mathematischen Pendels (ohne Reibung)
werden durch ··

x= − sinx

beschrieben, wobei x die Auslenkung aus der Ruhelage x = 0, ẋ = 0 ist (man ver-
gleiche hierzu Beispiel 8.4.8.) Gehen wir wie üblich durch x, y = ẋ zum autonomen
ebenen System

(2) ẋ = y
ẏ = − sinx

im sogenannten Phasenraum der x, y über, so sehen wir, dass

h(x, y) =
1
2
y2 + 1 − cosx

Hamilton-Funktion ist. Interessant bei (2) ist die Stabilität des Ruhepunktes, oder
wie man auch sagt, der Gleichgewichtslage (0, 0), die also als Nullstelle der rechten
Seite von (2) erklärt ist. Die Lösungen von (2) sind die Störungen dieser Gleichge-
wichtslage und die Niveaulinien von h. In (0, 0) hat h ein lokales Minimum. Die
Niveaulinien in der Nähe des Nullpunkts sind demnach geschlossene Kurven, die
sich bei kleiner werdenden Startwerten auf (0, 0) zusammenziehen. Also ist (0, 0)
stabil. Da die Störungen in der Nähe von (0, 0) periodisch sind, nennt man (0, 0)
ein Zentrum.

Aufgaben

11.1. Zeigen Sie: Für a > 0, b > 0 ist M := {(a · cos t, b · sin t) ∈ R2| 0 ≤ t ≤ 2π}
eine Untermannigfaltigkeit des R2. Geben Sie einen Atlas an.

11.2. Sei M := {(x1, x2, x3) ∈ R3| x3 = x2
1x2}.

a) Zeigen Sie, dass M eine 2-dimensionale Untermannigfaltigkeit des R3 ist.
b) Geben Sie eine Karte ϕ.R2 → M an.
c) Geben Sie für p = (0, 0, 0) eine Basis von TpM und von NpM an.

11.3. Zeigen Sie, dass die folgenden Mengen keine eindimensionalen Untermannigfaltigkei-
ten des R2 sind:
a) das Achsenkreuz {(x, y) ∈ R2| xy = 0},

b) die Neil’sche Parabel {(x, y) ∈ R2| x3 = y2}.
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11.4. Sei

f(x, y) := x+a1x
2+a2xy+a3y

2+a4x
3, g(x, y) := y+b1x

2+b2xy+b3y
2+b4y

3.

a) Geben Sie Bedingungen an a1, . . . , b4 an, unter denen es eine Funktion h mit

hx = f, hy = g

gibt. Hinweis: Beispiel 9.6.8
b) Zeigen Sie: Wenn es eine Funktion h wie unter a) gibt, dann sind die Lösungen von ω =
fdx + gdy = 0 in der Nähe des Nullpunkts geschlossene Kurven, die um den Nullpunkt
laufen. Benutzen Sie eine geometrische Überlegung wie in Beispiel 11.5.8.

11.5. a) Stellen Sie die Differentialgleichung für den Eulerschen Multiplikator µ auf.
b) Finden Sie einen Eulerschen Multiplikator zu

9x2ydx + 4xy2dy = 0.

11.6. Geben Sie zur Differentialform ω ein τ mit dτ = ω an, falls es existiert:

a) ω = 3x2y2dx + 2x3ydy ∈ Ω1(R2)
b) ω = (y3 + 4)dx − (x5 + 1)dy ∈ Ω1(R2)
c) ω = 2zdy ∧ dz + exdz ∧ dx − 3y2dx ∧ dy ∈ Ω2(R3)
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Distributionen und Greensche Funktion

12.1 Distributionen

Bei der Behandlung mancher physikalischer Probleme ist es zweckmäßig,
anzunehmen, dass eine Masse oder Ladung in einem Punkt konzentriert
ist. Wenn man annimmt, dass die Masse der Größe 1 im Nullpunkt liegt,
dann müßte die Massendichte beschrieben werden durch eine von Dirac
(PAUL ADRIEN MAURICE DIRAC, 1902-1984 ) eingeführte

”
Funktion“δ,

die ausserhalb des Nullpunktes verschwindet und in 0 so groß ist, dass das
Gesamtintegral gleich 1 ist.
Dirac schreibt dazu im Jahr 1927:

”
We shall use the symbol δ(x) to denote this function, i.e. δ(x) is defined

by

δ(x) = 0 when x �= 0, and

∞∫
−∞
δ(x) = 1.

Strictly , of course, δ(x) is not a proper function of x, but can be regarded
only as a limit of a certain sequence of functions. “

Nun soll der Funktionsbegriff so verallgemeinert werden, dass man derar-
tige Massen- und Ladungsverteilungen beschreiben kann. Dies führt zum
Begriff der Distribution; insbesondere kann man dann die Diracsche δ-
Distribution definieren. Die Theorie der Distributionen wurde vor allem von
LAURENT SCHWARTZ (1915-2002) entwickelt.

Wesentlich bei der Einführung von Distributionen ist deren Definitionsbereich. Ei-
ne Distribution ist nicht etwa auf reellen Zahlen definiert, sondern auf der Menge
C∞
0 (R) der unendlich oft differenzierbaren Funktionen ϕ : R → R, die kompakten

Träger besitzen. Diese Funktionen bezeichnet man als Testfunktionen.
In 9.1.21 hatten wir für eine Funktion ϕ : R → R den Träger von ϕ definiert durch
Tr(ϕ) := {x ∈ R|ϕ(x) �= 0}. Zu jedem x /∈ Tr(ϕ) gibt es also eine Umgebung,
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in der ϕ ≡ 0 ist. Der Träger Tr(ϕ) ist genau dann kompakt, wenn es ein Intervall
[a, b], a, b ∈ R, gibt mit Tr(ϕ) ⊂]a, b[, also ϕ(x) = 0 für x /∈ [a, b].
Entscheidend für die Einführung von Distributionen ist der Vektorraum C∞

0 (R).
Dieser Vektorraum wird mit einem sehr starken Konvergenzbegriff versehen, man
fordert nämlich gleichmäßige Konvergenz nicht nur der Funktionen, sondern auch
aller Ableitungen. Den mit diesem Konvergenzbegriff versehenen Vektorraum
C∞
0 (R) bezeichnen wir nun mit D.

Definition 12.1.1 D := C∞
0 (R) = {ϕ ∈ C∞(R)| Tr(ϕ) ist kompakt} heißt der

Vektorraum aller Testfunktionen, versehen mit folgendem Konvergenzbegriff: Eine
Folge (ϕn)n∈N in D heißt konvergent gegen ϕ ∈ D, wenn gilt:

(1) Es gibt ein Intervall [a, b] mit Tr(ϕn) ⊂ [a, b] für alle n ∈ N.

(2) Für jedes k ∈ N0 konvergiert die Folge (ϕ(k)
n )n∈N gleichmäßig gegen ϕ(k).

Definition 12.1.2 Eine Distribution ist eine stetige lineare Abbildung

T : D → R;

es gilt also:

(1) Für ϕ, ψ ∈ D und λ, µ ∈ R ist T (λϕ+ µψ) = λT (ϕ) + µT (ψ).
(2) Ist (ϕn)n∈N eine Folge in D, die gegen ϕ konvergiert , so konvergiert T (ϕn)

gegen T (ϕ) (in R)

Die Menge der Distributionen bezeichnen wir mit D′; es ist also

D′ = {T : D → R|T stetig und linear}.
Wir schreiben auch Tϕ statt T (ϕ).
Als erstes Beispiel geben wir die Dirac-Distribution δ an; dass es sich bei den fol-
genden Beispielen wirklich um Distributionen handelt, prüft man leicht nach.

Definition 12.1.3 Die Distribution

δ : D → R, ϕ 	→ ϕ(0),

heißt die Dirac-Distribution.

Wir werden diese Distribution noch veranschaulichen und als Grenzwert von Funk-
tionen darstellen.
Zunächst gehen wir auf die Frage ein, auf welche Weise jede stetige (bzw. integrier-
bare) Funktion f : R → R als Distribution aufgefaßt werden kann. Es gilt:

Satz 12.1.4 Ist f : R → R stetig, so ist

Tf : D → R, ϕ 	→
+∞∫

−∞
f · ϕdx,

eine Distribution. Ist außerdem g : R → R stetig und Tf = Tg, so folgt f = g.
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Man hat also eine injektive lineare Abbildung

C0(R) → D′, f 	→ Tf .

Wenn man f ∈ C0(R) mit Tf ∈ D′ identifiziert, so kann man C0(R) als Untervek-
torraum von D′ auffassen; in diesem Sinne ist eine Distribution eine verallgemei-
nerte Funktion und

C0(R) ⊂ D′.

Man kann diese Aussage verallgemeinern: Ist f : R → R lokal-integrierbar (d.h.

für jedes Intervall [a, b] existiere
b∫
a

f dx), so wird durch Tf(ϕ) :=
+∞∫
−∞
fϕ dx eine

Distribution erklärt.
Bei den hier auftretenden Integralen

∫∞
−∞ fϕdx ist zu beachten, dass ϕ kompak-

ten Träger hat; man kann also a < b so wählen, dass für x ≤ a und x ≥ b gilt:
ϕ(x) = 0. Es ist also

∫∞
−∞ fϕdx =

∫ b

a
fϕdx. Entsprechend gilt: weil ϕ kompakten

Träger hat, ist fϕ|∞−∞ = 0, denn es ist fϕ|∞−∞ = f(b)ϕ(b) − f(a)ϕ(a) = 0.

Wir definieren nun die Ableitung einer Distribution; Distributionen sind immer be-
liebig oft differenzierbar:

Definition 12.1.5 Ist T eine Distribution, so heißt

T ′ : D → R, ϕ 	→ −T (ϕ′),

die Ableitung von T ; für n ∈ N ist

T (n)(ϕ) = (−1)nT (ϕ(n)).

Diese Definition wird gerechtfertigt durch folgende Aussage:

Satz 12.1.6 Wenn f : R → R stetig differenzierbar ist, dann gilt: (Tf )′ = Tf ′ .

Beweis. Für ϕ ∈ D ist

(Tf )′(ϕ) = −Tf(ϕ′) = −
+∞∫
−∞
fϕ′ dx = −fϕ|∞−∞ +

+∞∫
−∞
f ′ϕ dx = Tf ′(ϕ). �


Definition 12.1.7 Ist f ∈ C∞(R) und T ∈ D′, so setzt man (f · T )(ϕ) := T (f ·ϕ)
für ϕ ∈ D; dann ist f · T eine Distribution.

Satz 12.1.8 (Produktregel) Es gilt:

(f · T )′ = f ′T + fT ′.

Beweis. Für ϕ ∈ D ist (fT )′(ϕ) = −(fT )(ϕ′) = −T (fϕ′) und
(f ′T +fT ′)(ϕ) = T (f ′ϕ)−T ((fϕ)′) = T (f ′ϕ)−T (f ′ϕ)−T (fϕ′) = −T (fϕ′).

�
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Nun definieren wir für eine Folge (Tn)n∈N von Distributionen den Grenzwert

lim
n→∞Tn.

Definition 12.1.9 Eine Folge (Tn)n∈N von Distributionen Tn heißt konvergent ge-
gen T ∈ D′, wenn für jedes ϕ ∈ D gilt:

lim
n→∞Tn(ϕ) = T (ϕ).

Eine Reihe
∞∑

n=0
Tn von Distributionen Tn heißt konvergent, wenn die Folge der Par-

tialsummen konvergiert.

Bei Distributionen darf man Limes und Ableitung vertauschen:

Satz 12.1.10 Aus lim
n→∞Tn = T folgt: lim

n→∞ T
′
n = T ′.

Für eine konvergente Reihe
∞∑

n=0
Tn gilt: (

∞∑
n=0
Tn)′ =

∞∑
n=0

(Tn)′.

Beweis. Aus lim
n→∞Tn(ϕ) = T (ϕ) für alle ϕ ∈ D folgt lim

n→∞Tn(ϕ′) = T (ϕ′)

und daher ist lim
n→∞T

′
n(ϕ) = T ′(ϕ). �


Wir gehen nun auf die Diracsche δ-Distribution ein.
An einem einfachen Beispiel können wir uns δ veranschaulichen.

Beispiel 12.1.11 Wir definieren die Folge

fn : R → R, x 	→
⎧⎨⎩

n
2 für |x| ≤ 1

n

0 für |x| > 1
n

Die unter dem Graphen von fn liegende Fläche ist immer gleich 1 und der Träger
zieht sich auf den Nullpunkt zusammen; man wird also vermuten:

lim
n→∞Tfn = δ.

Dies ist leicht zu beweisen: Für ϕ ∈ D ist Tfn(ϕ) =
+ 1

n∫
− 1

n

n
2 ϕ dx und aus dem

Mittelwertsatz der Integralrechnung folgt: es existiert ein ξn ∈ [− 1
n ,+

1
n ] mit

Tfn(ϕ) = ϕ(ξn); daher ist lim
n→∞Tfn(ϕ) = lim

n→∞ϕ(ξn) = ϕ(0) = δ(ϕ).

Weitere Beispiele zur Veranschaulichung von δ erhält man mit folgendem Satz:

Satz 12.1.12 Es seien (an)n und (bn)n Folgen reeller Zahlen mit an < 0 < bn und
lim

n→∞ an = 0, lim
n→∞ bn = 0.

Für n ∈ N sei fn : R → R stetig, fn ≥ 0, T r(fn) ⊂ [an, bn] und
+∞∫
−∞
fn dx = 1.

Dann gilt:
lim

n→∞Tfn = δ.
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Beweis. Für ϕ ∈ D ist Tfn(ϕ) =
bn∫

an

fn · ϕ dx; aus dem 2. Mittelwertsatz der

Integralrechnung folgt: es existiert ein ξn ∈ [an, bn] mit

Tfn(ϕ) = ϕ(ξn) ·
bn∫

an

fn dx = ϕ(ξn).

Daher ist lim
n→∞Tfn(ϕ) = ϕ(0) = δ(ϕ). �


Wir bringen nun weitere Beispiele von Distributionen, die Heaviside-Distribution
(OLIVER HEAVISIDE (1850-1925)) und die Dipol-Distribution:

Definition 12.1.13 Die Funktion

h : R → R, x 	→
{

0 für x < 0
1 für x ≥ 0

heißt Heaviside-Funktion; die DistributionH := Th heißt Heaviside-Distribution;
es ist also

H(ϕ) =
∫ ∞

0

ϕdx.

Die Distribution
Tdipol : D → R, ϕ 	→ ϕ′(0),

heißt Dipol-Distribution.

Satz 12.1.14 Es gilt

H ′ = δ, δ′ = −Tdipol.

Beweis. Für ϕ ∈ D ist H ′(ϕ) = −Th(ϕ′) = −
∞∫
0

ϕ′(x) dx = ϕ(0) = δ(ϕ) und

Tdipol(ϕ) = ϕ′(0) = −δ′(ϕ). �

Beispiel 12.1.15 Folgen von Funktionen, die, aufgefasst als Distributionen, gegen
δ konvergieren, erhält man so: Wennn δ eine Funktion wäre, dann müsste die
Heaviside-Funktion h eine Stammfunktion dazu sein. Nun glättet man h in einer
Umgebung des Nullpunktes zu einer stetig differenzierbaren Funktion und bildet da-
von die Ableitung; diese approximiert dann δ. Dies wird nun präzisiert: Für n ∈ N
sei

hn; R → R stetig differenzierbar, hn(x) = h(x) für |x| ≥ 1
n
.

Dann liegt der Träger von h′n in [− 1
n ,+

1
n ] und es gilt

+∞∫
−∞
h′n(x)dx = h(

1
n

) − h(− 1
n

) = 1,
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also folgt nach Satz 12.1.12
lim

n→∞Th′
n

= δ.

Wählt man die hn zweimal stetig differenzierbar, so kann man auch die Dipol-
Distribution interpretieren: Wegen T ′

h′
n

= Th′′
n

und δ′ = −Tdipol ergibt sich:

lim
n→∞ Th′′

n
= −Tdipol.

Eine solche Folge (hn) kann man so erhalten: man konstruiert eine (zweimal) stetig
differenzierbare Funktion h1 : R → R mit h1(x) = 0 für x ≤ −1 und h(x) = 1 für
x ≥ 1. Dann setzt man

hn(x) := h1(nx).

In der Abbildung ist für |x| ≤ 1:

h1(x) = 1
16 · (3x5 − 10x3 + 15x+ 8

)
,

h′1(x) = 15
16 · (x + 1)2(x− 1)2, h′′1 = 15

4 · x(x + 1)(x− 1).

−1 +1

h1 h′1 h′′1

Heaviside Dirac −Dipol

Wir behandeln nun ein Beispiel einer unendlich oft differenzierbaren Funktion mit
kompaktem Träger:

Beispiel 12.1.16 Es sei

f : R → R, x 	→
{

exp
(

1
x2−1

)
für |x| < 1

0 sonst

Ähnlich wie in 6.2.4 zeigt man, dass f unendlich oft differenzierbar ist; es gilt

f ′ : R → R, x 	→
{

−2x
(x2−1)2 · exp

(
1

x2−1

)
für |x| < 1

0 sonst

Wir haben damit ein Beispiel für eine nicht-identisch verschwindende Funktion
f ∈ C∞

0 (R). Der Träger von f und auch der von f ′ ist [−1,+1]; für ε > 0 ist der
Träger von f(x

ε ) gleich [−ε,+ε]. Wir können damit eine Folge unendlich oft diffe-
renzierbarer Funktionen angeben, die als Distributionenfolge gegen δ konvergiert.

Dazu wählen wir c ∈ R so, dass
+1∫
−1

c · f(x) dx = 1 ist und setzen g(x) := c · f(x)
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und gn(x) := n · g(nx). Dann ist Tr gn ⊂ [− 1
n ,+

1
n ] und

+∞∫
−∞
gn(x)dx = 1,

daher gilt:
lim

n→∞Tgn = δ, lim
n→∞ Tg′

n
= −Tdipol.

1

1

1

1

g

g′

g2

g′2

g3

g′3

Für eine stetig differenzierbare Funktion f hatten wir gezeigt, dass (Tf )′ = Tf ′

gilt; nun beweisen wir: Wenn f im Nullpunkt eine Sprungstelle der Sprunghöhe s
besitzt, dann gilt: (Tf )′ = Tf ′ + s · δ. Die Sprungstelle liefert den Summanden s · δ,
also

”
Sprunghöhe mal Dirac “.

Satz 12.1.17 Seien f1 :] −∞, 0] → R und f2 : [0,+∞[→ R stetig differenzierbar,
sei

f : R → R, x 	→
{
f1(x) für x ≤ 0
f2(x) für x > 0

und s := f2(0) − f1(0). Dann gilt:

(Tf)′ = Tf ′ + s · δ.

s
f1

f2

0

Beweis. Sei ϕ ∈ D ; durch partielle Integration erhält man:
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T ′
f (ϕ) = −Tf(ϕ′) = −

0∫
−∞
f1ϕ

′ dx−
∞∫
0

f2ϕ
′ dx =

= −f1ϕ|0−∞ +
0∫

−∞
f ′1ϕ dx− f2ϕ|∞0 +

∞∫
0

f2ϕ dx =

= (f2(0) − f1(0))ϕ(0) + Tf ′(ϕ) = s · δ(ϕ) + Tf ′(ϕ).

�

Bemerkung Die Funktion f ′ ist im Nullpunkt nicht erklärt, der Beweis zeigt aber,
dass Tf ′ sinnvoll definiert ist.
Die Faltung T ∗ ϕ
In 10.5.6 haben wir die Faltung für Funktionen f : R → R und g : R → R definiert
durch

f ∗ g : R → R, x 	→
+∞∫

−∞
f(t)g(x− t) dt.

Wir wollen nun die Faltung für Distributionen einführen.
Zuächst setzen wir für x ∈ R

g[x] : R → R, t 	→ g(x− t),

dann können wir die Faltung so schreiben:

(f ∗ g)(x) =

+∞∫
−∞
f(t)g[x](t)dt.

Nun definieren wir:

Definition 12.1.18 Ist T ∈ D′ eine Distribution ϕ ∈ D eine Testfunktion so defi-
niert man die Faltung T ∗ ϕ durch

T ∗ ϕ : R → R, x 	→ T (ϕ[x]),

Die Definition wird motiviert durch den Satz:

Satz 12.1.19 Ist f : R → R stetig, so gilt für alle ϕ ∈ D: Tf ∗ ϕ = f ∗ ϕ.

Beweis. (Tf ∗ ϕ)(x) = Tf(ϕ[x]) =
+∞∫
−∞
f(t)ϕ[x](t) dt = (f ∗ ϕ)(x). �


Wir zeigen noch, dass δ das
”
neutrale Element“ bezüglich der Verknüpfung ∗ ist.

Satz 12.1.20 Für alle ϕ ∈ D ist

δ ∗ ϕ = ϕ.

Beweis. (δ ∗ ϕ)(x) = δ(ϕ[x]) = ϕ[x](0) = ϕ(x). �
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Distributionen im Rn

Es soll noch skizziert werden, wie man Distributionen im Rn definiert.
Man bezeichnet mit C∞

0 (Rn) die Menge aller beliebig oft stetig partiell differen-
zierbaren Funktionen ϕ : Rn → R, die kompakten Träger besitzen; zu ϕ existiert
also ein r > 0 mit ϕ(x) = 0 für ‖x‖ > r. Versehen wir C∞

0 (Rn) mit dem Konver-
genzbegriff aus 12.1.1, so entsteht D(Rn):

Eine Folge (ϕj)j in D(Rn) heißt konvergent gegen ϕ ∈ D(Rn) , wenn gilt:
(1) Es gibt eine kompakte MengeK ⊂ Rn mit Tr(ϕj) ⊂ K für alle j ∈ N.
(2) Für alle ν = (ν1, .., νn) ∈ Nn

0 konvergiert (Dνϕj)j gleichmäßig gegen Dνϕ;
dabei setzt man wieder

Dνϕ =
∂ν1+..+νnϕ

∂ν1x1 · .. · ∂νnxn
.

Eine im Sinne von 12.1.1 stetige lineare Abbildung

T : D(Rn) → R

heißt Distribution im Rn.
Die partielle Ableitung von T wird definiert durch

∂T

∂xj
(ϕ) := −T (

∂ϕ

∂xj
).

Dann ist ∂2T
∂x2

1
(ϕ) = T (∂2ϕ

∂x2
1
) und für den Laplace-Operator � := ∂2

∂x2
1

+ .. + ∂2

∂x2
n

gilt:
(�T )(ϕ) = T (�ϕ)

Der Raum C∞
0 (U)

Es sei U ⊂ Rn eine offene Menge und C∞
0 (U) der Vektorraum aller unendlich oft

stetig differenzierbaren ϕ : U → R, die kompakten Träger Trϕ ⊂ U besitzen. Es
gibt sehr viele solche Funktionen. Sie bilden für jedes p ≥ 1 einen Untervektorraum
von Lp(U), der in Lp(U) dicht liegt:

Satz 12.1.21 (Dichtesatz) Für jedes p liegt der Raum C∞
0 (U) dicht in Lp(U); das

bedeutet: Zu jedem ε > 0 und zu jedem f ∈ Lp(U) existiert ein ϕ ∈ C∞
0 (U) mit

‖f − ϕ‖p < ε.

Der Satz wird in [30] bewiesen. Im folgenden Beispiel zeigen wir, wie man Funk-
tionen aus C∞

0 (U) für die offene Einheitskugel konstruieren kann.

Beispiel 12.1.22 Sei 0 < r < 1 ,

ϕ(x) :=
{

exp(− 1
r2−‖x‖2 ) für 0 ≤ ‖x‖2 < r

0 sonst
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Dann ist zunächst ϕ stetig und hat kompakten TrägerKr(0) ⊂ K1(0). Anwendung
der Kettenregel und Berücksichtigung der Eigenschaft von exp(− 1

r2−‖x‖2 ) , für
‖x‖ → r, ‖x‖ < r, schneller auf Null abzufallen als irgendeine rationale Funktion
dort unendlich werden kann, zeigt (wie in 6.2.4): ϕ ∈ C∞

0 (K1(0)).

12.2 Distributionen und Differentialgleichungen

Es sei
Ly := y(n) + cn−1y

(n−1) + ...+ c1y′ + c0y

ein linearer Differentialoperator mit konstanten Koeffizienten. Wir behandeln nun
Differentialgleichungen wie LT = δ. Man hat also auf der rechten Seite nicht eine
Funktion, sondern eine Distribution und auch als Lösung ist nicht eine Funktion,
sondern eine Distribution T gesucht. Lösungen von LT = δ spielen eine wichtige
Rolle; sie heißen Grundlösungen.

Definition 12.2.1 Eine Distribution T heißt Grundlösung zum Differentialopera-
tor L, wenn gilt:

LT = δ.

Nun ergeben sich zwei Fragen:
• (1) Wozu benötigt man eine Grundlösung ?
• (2) Wie findet man eine Grundlösung ?

Wir gehen zunächst auf die erste Frage ein; zur Vorbereitung benötigen wir:

Satz 12.2.2 Ist T ∈ D′ und ϕ ∈ D, so ist u := T ∗ ϕ differenzierbar und es gilt:

u′ = T ′ ∗ ϕ.
Wir skizzieren den Beweis dazu: Es sei wieder ϕ[x](t) := ϕ(t − x). Für h �= 0 ist
dann der Differenzenquotient

u(x+ h) − u(x)
h

= T (
ϕ[x+h] − ϕ[x]

h
).

Es ist
ϕ[x+h](t) − ϕ[x](t)

h
= −ϕ[x](t− h) − ϕ[x](t)

−h
und dies geht für h→ 0 gegen −ϕ′[x](t). Nun beweist man die schärfere Aussage:
Ist (hn)n eine Folge mit hn �= 0 und lim

n→∞hn = 0, so konvergiert die Folge

( 1
hn

(ϕ[x+hn] − ϕ[x]))n in D gegen die Funktion −ϕ′[x].
Daraus folgt dann wegen der Stetigkeit von T :

lim
n→∞

1
hn

(u(x+ hn) − u(x)) = T (−ϕ′[x]) = T ′(ϕ[x]) = (T ′ ∗ ϕ)(x),

also existiert u′(x) und es gilt: u′ = T ′ ∗ ϕ. �

Daraus folgt



12.2 Distributionen und Differentialgleichungen 349

Satz 12.2.3 Ist T eine Distribution und ϕ ∈ D, so ist T ∗ ϕ beliebig oft differen-
zierbar und für jeden linearen Differentialoperator L mit konstanten Koeffizienten
gilt:

L(T ∗ ϕ) = (LT ) ∗ ϕ.
Daraus ergibt sich:

Satz 12.2.4 Ist T eine Grundlösung zu L, so gilt für jedes ρ ∈ D:

L(T ∗ ρ) = ρ.

Beweis. L(T ∗ ρ) = (LT ) ∗ ρ = δ ∗ ρ = ρ. �

Mit diesem Satz ist die erste Frage beantwortet:
Wenn man zu L eine Grundlösung T hat, so kann man für jedes ρ ∈ D eine Lösung
u von Lu = ρ angeben: es ist u = T ∗ ρ. Man erhält also eine Lösung einer
inhomogenen Differentialgleichung Lu = � dadurch, dass man eine Grundlösung
T mit der auf der rechten Seite stehenden Funktion � faltet.
Nun behandeln wir die zweite Frage: Wie findet man eine Grundlösung ?
Die Idee erläutern wir für den Spezialfall eines Differentialoperators 2. Ordnung
mit konstanten Koeffizienten, also Ly = y′′ + c1y′ + c0y. Man setzt eine Lösung
f von Ly = 0 mit der trivialen Lösung so zu einer Funktion g zusammen, dass g
im Nullpunkt einen Knick von 45o besitzt. Dann existiert g′ für x �= 0 und hat in 0
einen Sprung der Höhe 1. Wendet man nun L auf die Distribution Tg an, so kommt
nach 12.1.17 der Summand δ dazu; daher ist die zu g gehörende Distribution Tg

eine Grundlösung zu L.

Satz 12.2.5 (Konstruktion einer Grundlösung ) Eine Grundlösung zum Differen-
tialoperator

L = Dn + cn−1D
n−1 + ...+ c1D + c0 mit c0, ..., cn−1 ∈ R

erhält man folgendermaßen: Es sei f : R → R die Lösung von

Lf = 0 mit f(0) = 0, f ′(0) = 0, . . . , f (n−2)(0) = 0, f (n−1)(0) = 1.

Definiert man

g : R → R, x 	→
{

0 für x < 0
f(x) für x ≥ 0

so ist Tg eine Grundlösung zu L, also

LTg = δ.

Bemerkung. Die Bedingung an f ist so zu interpretieren:
Für n = 1 bedeutet sie f(0) = 1
für n = 2 hat man f(0) = 0, f ′(0) = 1.
Beweis. Wir führen den Beweis für n = 2; es ist also L = D2 + c1D + c0.
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0
f

g

Wir wenden 12.1.17 an: Weil g im Nullpunkt stetig ist, gilt (Tg)′ = Tg′ .Die Funkti-
on g′ hat in 0 einen Sprung der Höhe 1 und daher ist (Tg′)′ = Tg′′ + δ; somit ergibt
sich (Tg)′′ = Tg′′ + δ. Daher gilt

LTg = c0Tg + c1(Tg)′ + (Tg)′′ = c0Tg + c1Tg′ + Tg′′ + δ

Für x �= 0 ist c0g(x) + c1g′(x) + g′′(x) = 0, daher ist c0Tg + c1Tg′ +Tg′′ = 0 und
somit LTg = δ. �

Beispiel 12.2.6 Es sei L := D2 + 1. Die Lösung von

f ′′ + f = 0 mit f(0) = 0, f ′(0) = 1

ist f(x) = sinx. Es sei g : R → R definiert durch g(x) := 0 für x ≤ 0 und
g(x) := sinx für x > 0. Dann ist g′(x) = 0 für x < 0 und g′(x) = cosx für x > 0.
Weiter gilt g′′(x) = 0 für x < 0 und g′′(x) = − sinx für x > 0.
Es ist (Tg)′′ + Tg = δ; die Distribution Tg ist eine Grundlösung zu L = D2 + 1.

g g′ g′′

Wir behalten wir die obigen Bezeichnungen bei und fassen die Sätze 12.2.4 und
12.2.5 zusammen. Man beachte, dass bei dieser Formulierung der Begriff der Dis-
tribution nicht mehr vorkommt:

Satz 12.2.7 Es sei � ∈ D; definiert man die Funktion u : R → R durch

u(x) :=

x∫
−∞
f(x− t)ρ(t) dt

so gilt Lu = ρ.

Beweis. Setzt man u := Tg ∗ ρ = g ∗ ρ, so gilt Lu = ρ. Es ist g(x− t) = f(x− t)
für t ≤ x und g(x− t) = 0 für t > x. Daher ist

u(x) = (g ∗ ρ)(x) =

+∞∫
−∞
g(x− t)ρ(t) dt =

x∫
−∞
f(x− t)ρ(t) dt.
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�

Wir formulieren diese Aussage noch etwas anders und kommen zu einer Greenschen
FunktionG zu L; in 12.4 werden wir Greensche Funktionen eingehend behandeln.

Satz 12.2.8 Definiert man die FunktionG : R2 → R durch

G(x, ξ) :=
{

0 für ξ > x
f(x− ξ) für ξ ≤ x

so gilt: Ist � ∈ D und setzt man

u(x) :=

+∞∫
−∞
G(x, ξ)ρ(ξ) dξ,

so gilt Lu = ρ.

12.3 Differentialgleichungen auf abgeschlossenen Intervallen

In vorhergehenden Abschnitt haben wir DifferentialgleichungenLy = ρ mit ρ ∈ D
behandelt; die rechte Seite ist also eine in R definierte unendlich oft differenzier-
bare Funktion mit kompaktem Träger. In vielen wichtigen Fällen ist aber die auf
der rechten Seite stehende Funktion nicht in D; zum Beispiel gilt dies für die soge-
nannten elementaren Funktionen, etwa Polynome, ex, sinx. Wir zeigen nun, dass
entsprechende Aussagen auch dann gelten, wenn ρ eine auf einem abgeschlossenen
Intervall [a, b] stetige Funktion ist. Man geht aus von der Formel in 12.2.7 und zeigt:
Wählt man f wie in 12.2.5 und setzt man

u(x) :=

x∫
a

f(x− t)ρ(t) dt

so gilt Lu = ρ.

Satz 12.3.1 Es sei

L = Dn + cn−1D
n−1 + ...+ c1D + c0

ein Differentialoperator mit konstanten Koeffizienten und f : R → R die Lösung
von

Lf = 0 mit f(0) = 0, f ′(0) = 0, . . . , f (n−2)(0) = 0, f (n−1)(0) = 1.

Ist dann ρ : [a, b] → R eine stetige Funktion und definiert man

u : [a, b] → R, x 	→
x∫

a

f(x− t)ρ(t) dt,
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so ist

Lu = ρ und u(a) = 0, u′(a) = 0, . . . , u(n−1)(a) = 0.

Beweis. Wir erläutern den Beweis wieder für n = 2 , also für L = D2 + c1D + c0.
Wir verwenden nun 9.2.17; daraus folgt wegen f(0) = 0, f ′(0) = 1:

u′(x) =

x∫
a

f ′(x − t)ρ(t) dt + f(0)ρ(x) =

x∫
a

f ′(x− t)ρ(t) dt,

u′′(x) =

x∫
a

f ′′(x − t)ρ(t) dt + f ′(0)ρ(x) =

x∫
a

f ′′(x − t)ρ(t) dt + ρ(x).

Daraus ergibt sich

(Lu)(x) =

x∫
a

(
c0f(x− t) + c1f ′(x− t) + f ′′(x− t)

)
· ρ(t) dt + ρ(x) = ρ(x),

denn es ist
c0f(x− t) + c1f ′(x− t) + f ′′(x− t) = 0.

An dieser Stelle benützt man, dass die Koeffizienten des Differentialoperators kon-
stant sind; andernfalls hätte man hier c0(x)f(x− t) + c1(x)f ′(x− t) + f ′′(x− t)
und dies ist nicht notwendig gleich 0. �

Beispiel 12.3.2 Es sei L := 1 + D2 und � : [0, 2π] → R, x 	→ x. Die Lösung f
von y′′ + y = 0 mit f(0) = 0 und f ′(0) = 1 ist f(x) = sinx. Die Lösung u von
y′′ + y = x mit u(0) = 0, u′(0) = 0 ist also

u(x) =
x∫
0

t sin(x− t)dt = [t cos(x− t) + sin(x− t)]t=x
t=0 = x− sinx.

Man erhält somit
u(x) = x− sinx,

es ist u′(x) = 1−cosx, u′′(x) = sinx, also u+u′′ = x und u(0) = 0, u′(0) = 0.

x

u
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12.4 Greensche Funktion

Wir behandeln den Begriff der Greenschen Funktion (GEORGE GREEN, 1793-1841)
für Differentialoperatoren

L = a0(x) + a1(x)D +D2

mit auf [a, b] stetigen Funktionen a0, a1. Es soll eine Funktion G auf [a, b] × [a, b]
konstruiert werden, so dass man für jede stetige Funktion � : [a, b] → R eine Lösung
u von Lu = � in der Form

u(x) =

b∫
a

G(x, t)ρ(t) dt

angeben kann.
Wir führen zunächst einige Bezeichnungen ein. Es sei

Q := [a, b] × [a, b], Ql := {(x, t) ∈ Q| x ≤ t}, Qr := {(x, t) ∈ Q|x ≥ t}.

Ql

Qr

x

t

Für eine Funktion
G : Q→ R, (x, t) 	→ G(x, t),

setzen wir
Gl := G|Ql, Gr := G|Qr.

Definition 12.4.1 Es sei
L = a0 + a1D +D2

ein Differentialoperator 2. Ordnung mit stetigen Koeffizienten a0, a1 : [a, b] → R.
Eine Funktion

G : Q→ R, (x, t) 	→ G(x, t)

heißt eine Greensche Funktion zu L, wenn gilt:

(1) G ist stetig.
(2) G� undGr sind zweimal stetig partiell nach x differenzierbar.
(3) Für jedes t ∈ [a, b] gilt:

a0(x)G�(x, t) + a1(x)
∂G�

∂x
(x, t) +

∂2G�

∂x2
(x, t) = 0 für x ∈ [a, t].

a0(x)Gr(x, t) + a1(x)
∂Gr

∂x
(x, t) +

∂2Gr

∂x2
(x, t) = 0 für x ∈ [t, b].
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(4) Für alle x ∈ [a, b] gilt:

∂Gr

∂x
(x, x) − ∂G

�

∂x
(x, x) = 1.

Die Bedingung (1) besagt, dass Gr und G� auf der Diagonale zusammenpassen,
also G�(x, x) = Gr(x, x); nach (4) ist dort ein Knick. Die Bedingung (3) bedeutet:
LG� = 0 und LGr = 0, dabei ist Differentiation nach der Variablen x gemeint.

Falls L konstante Koeffizienten hat, kann man eine Greensche Funktion G zu L
leicht angeben:

Satz 12.4.2 Ist L = c0 + c1D + D2 ein Differentialoperator mit konstanten
Koeffizienten c0, c1 ∈ R und wählt man g wie in 12.2.5, so ist G(x, t) := g(x − t)
eine Greensche Funktion zu L.

In diesem Fall kann man also

G� = 0 Gr(x, t) = f(x− t)
wählen ; dabei ist

Lf = 0, f(0) = 0, f ′(0) = 1.

Wir zeigen nun, dass man mit Hilfe einer Greenschen Funktion G zu L für jede

stetige Funktion ρ : [a, b] → R eine Lösung u von Lu = � sofort angeben kann.

Satz 12.4.3 Ist L = a0 + a1D +D2 ein Differentialoperator mit stetigen Koeffizi-
enten a0 : [a, b] → R, a1 : [a, b] → R, und ist G eine Greensche Funktion zu L,
so gilt für jede stetige Funktion ρ : [a, b] → R: Setzt man

u : [a, b] → R, x 	→
b∫

a

G(x, t)ρ(t) dt,

so ist u zweimal differenzierbar und

Lu = ρ.

Beweis. Wir schreiben Gr
x an Stelle von ∂Gr

∂x . Bei der Berechnung von u′ und u′′

benützen wir 9.2.17; mit (1) und (4) aus der Definition vonG ergibt sich:

u(x) =

x∫
a

Gr(x, t)ρ(t) dt−
x∫

b

G�(x, t)ρ(t) dt

u′(x) =
x∫
a

Gr
x(x, t)ρ(t) dt+Gr(x, x)ρ(x) −

x∫
b

G�
x(x, t)ρ(t) dt−G�(x, x)ρ(x) =

(1)
=

x∫
a

Gr
x(x, t)ρ(t) dt−

x∫
b

G�
x(x, t)ρ(t) dt,
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u′′(x) =
x∫
a

Gr
xx(x, t)ρ(t) dt + Gr

x(x, x)ρ(x)−

−
x∫
a

G�
xx(x, t)ρ(t) dt − G�

x(x, x)ρ(x) =

(4)
=

x∫
a

Gr
xx(x, t)ρ(t) dt−

x∫
a

G�
xx(x, t)ρ(t) dt+ ρ(x).

Daraus folgt mit (3):

Lu(x) =

x∫
a

LGr(x, t)ρ(t)dt −
x∫

a

LG�(x, t)ρ(t) dt + ρ(x)
(3)
= ρ(x).

�

Nun zeigen wir, wie man eine Greensche Funktion konstruieren kann. Die Idee da-
zu ist folgende: G�(·, t) und Gr(·, t) sind ( bei festem t als Funktionen von
x ) Lösungen von Ly = 0. Wählt man ein Lösungsfundamentalsystem (η1, η2)
zu Ly = 0, so sind G� und Gr Linearkombinationen von η1, η2, wobei die Ko-
effizienten von t abhängen. Wählt man diese Koeffizienten stetig und so, dass
G�(x, x) = Gr(x, x) undGr

x(x, x)−G�
x(x, x) = 1 ist, dann erhält man eine Green-

sche Funktion.

Satz 12.4.4 (Konstruktion einer Greenschen Funktion). Es sei

L = a0 + a1D +D2

ein Differentialoperator mit stetigen Koeffizienten a0, a1 : [a, b] → R; dann existiert
eine Greensche FunktionG zu L. Diese erhält man so:
Man wählt ein Lösungsfundamentalsystem (η1, η2) von Ly = 0 und stetige Funk-
tionen

�1, �2, r1, r2 : [a, b] → R

mit
(1) (r1 − �1)η1 + (r2 − �2)η2 = 0
(2) (r1 − �1)η′1 + (r2 − �2)η′2 = 1.

Setzt man
G�(x, t) := �1(t)η1(x) + �2(t)η2(x),

Gr(x, t) := r1(t)η1(x) + r2(t)η2(x),

so ist die dadurch definierte Funktion G eine Greensche Funktion zu L. Auf diese
Weise erhält man jede Greensche Funktion zu L.

Beweis. Man wählt ein Lösungsfundamentalsystem (η1, η2) von Ly = 0. Dann hat
die Wronski-Determinante

W := η1η′2 − η2η′1
keine Nullstelle. Setzt man

�1 = 0, �2 = 0, r1 = − η2
W
, r2 = +

η1
W
,
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so sind die Bedingungen (1), (2) des Satzes erfüllt und man rechnet nach , dass man
mit

G�(x, t) = 0, Gr(x, t) =
1
W (x)

(−η2(t)η1(x) + η1(t)η2(x))

eine Greensche FunktionG zu L erhält.
Für t ∈ [a, b] ist x 	→ Gr(x, t) die Lösung y von Ly = 0 mit y(t) = 0, y′(t) = 1.

�

Beispiel 12.4.5 Wir betrachten auf [0, 2π] den Differentialoperator L := 1 + D2;
setzt man

η1(x) := cosx, η2(x) := sinx,

so ist (η1, η2) ein Lösungsfundamentalsystem zu Ly = y + y′′ = 0.
Es istW (x) = 1 und r1(x) = − sinx, r2(x) = cosx. Durch

G�(x, t) = 0 Gr(x, t) = − sin t · cosx+ cos t · sinx = sin(x− t)

wird eine Greensche FunktionG zu L gegeben.

x

t

π

π/2

π

0

Beispiel 12.4.6 Sei L := D2; dann setzt man

η1(x) = 1, η2(x) = x

und hat damit ein Lösungsfundamentalsystem zu Ly = 0. Eine Greensche Funktion
erhält man durch

G�(x, t) = 0 Gr(x, t) = x− t.

Schlußbemerkungen.
Wenn

L = a0(x) + a1(x)D + ...+ an(x)Dn

ein Differentialoperator n-ter Ordnung mit auf [a, b] stetigen Koeffizienten ist,
an(x) �= 0 für x ∈ [a, b], dann definiert man den Begriff der Greenschen Funk-
tion G : Q→ R zu L so
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(1) G, ∂G
∂x , ...,

∂n−2G
∂xn−2 existieren und sind stetig.

(2) Für jedes t ∈ [a, b] sind x 	→ G�(x, t) und x 	→ Gr(x, t) n-mal stetig diffe-
renzierbar.

(3) Für jedes t ∈ [a, b] ist LG�(·, t) = 0 in [t, b] und LGr(·, t) = 0 in [a, t].
(4) ∂n−1Gr

∂xn−1 (x, x) − ∂n−1G�

∂xn−1 (x, x) = 1
an(x) für x ∈ [a, b].

Für n = 1 ist dies so zu interpretieren: Bedingung (1) ist leer und Bedingung (4)
besagt:

Gr(x, x) −G�(x, x) =
1
a1(x)

;

für n = 1 ist die Funktion G also unstetig.

Setzt man

L̃ :=
1
an
L =

a0
an

+
a1
an
D + . . .+Dn,

so gilt: Ist G̃ eine Greensche Funktion zu L̃, so istG := 1
an
G̃ eine Greensche Funk-

tion zu L; es genügt also, den normierten Differentialoperator L̃ zu behandeln.

12.5 Randwertprobleme

Es sei wieder
L = a0(x) + a1(x)D +D2

ein Differentialoperator 2. Ordnung mit stetigen Koeffizienten a0, a1 : [a, b] → R;
weiter sei gegeben eine stetige Funktion ρ : [a, b] → R. Gesucht ist eine zweimal
stetig differenzierbare Funktion u : [a, b] → R mit

Lu = ρ, u(a) = 0, u(b) = 0.

Dann nennt man u eine Lösung dieses (inhomogenen) Randwertproblems.
Beim homogenen Randwertproblem sucht man eine Funktion u mit

Lu = 0, u(a) = 0, u(b) = 0.

Die Problematik soll an einem einfachen Beispiel verdeutlicht werden:
Für L := 1 +D2 sind alle Lösungen von Lu = 0 von der Form c1 cosx+ c2 sinx,
sie sind also 2π-periodisch. Betrachtet man das Randwertproblem auf dem Intervall
[0, 2π], so gilt: Wenn eine dieser Funktionen in 0 verschwindet, dann auch im Punkt
2π. Das Problem Lu = 0, u(0) = 0, u(2π) = 0, hat unendlich viele Lösungen,
nämlich u(x) = c · sinx mit c ∈ R.
Betrachtet man dagegen dieses Randwertproblem auf dem Intervall [0, π

2 ], so gibt
es nur die triviale Lösung u = 0.
Es ist naheliegend, ein Randwertproblem mit Hilfe einer Greenschen Funktion G
zu lösen; dabei wird die Funktion G so gewählt, dass sie in den Randpunkten ver-
schwindet, also G(a, t) = 0, G(b, t) = 0 für alle t ∈ [a, b].
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Definition 12.5.1 Eine Greensche FunktionG zu L mit

G(a, t) = 0 und G(b, t) = 0 für alle t ∈ [a, b]

nennen wir Greensche Funktion zum Randwertproblem.

Satz 12.5.2 Wenn das homogene Randwertproblem nur die triviale Lösung besitzt,
so gibt es dazu genau eine Greensche FunktionG. Ist ρ : [a, b] → R stetig und setzt
man

u : [a, b] → R, x 	→
b∫

a

G(x, t)ρ(t) dt,

so gilt Lu = ρ, u(a) = 0, u(b) = 0.

Beweis. Wir beweisen zuerst die Existenz von G. Man wählt Lösungen η1, η2 von
Ly = 0 mit

η1(a) = 0, η′1(a) = 1, η2(b) = 0, η′2(b) = 1.

Dann sind η1, η2 linear unabhängig, andernfalls wäre η1 = c · η2 mit c ∈ R. Daraus
folgt aber η1(b) = 0 und dann wäre nach Voraussetzung η1 = 0. Somit besitzt die
Wronski-DeterminanteW := η1η′2 − η2η′1 keine Nullstelle in [a, b]. Nun setzt man

r1 := 0, r2 :=
η1
W
, l1 :=

η2
W
, l2 := 0.

Dann wird durch

Gl(x, t) =
η2(t)
W (t)

· η1(x), Gr(x, t) =
η1(t)
W (t)

· η2(x),

eine Greensche FunktionG zum Randwertproblem gegeben.

Nach 12.4.3 ist dann Lu = ρ; wegen G(a, t) = 0 ist u(a) =
b∫
a

G(a, t)ρ(t) dt = 0,

analog u(b) = 0. Weil das homogene Problem nur die triviale Lösung besitzt, ist
jedes inhomogene Problem eindeutig lösbar.
Nun zeigen wir noch, dass G eindeutig bestimmt ist. Ist G̃ eine weitere derartige

Funktion, so gilt für jedes ρ: Die Funktion ũ(x) :=
b∫
a

G̃(x, t)ρ(t) dt ist ebenfalls

Lösung. Daher ist u = ũ und somit
b∫

a

(G̃(x, t) −G(x, t)) · ρ(t) dt = 0 für jedes ρ.

Aus 5.1.9 folgt G = G̃. �

Beispiel 12.5.3 Wir betrachten das zum Intervall [0, π

2 ] und L = 1+D2 gehörende
Randwertproblem. Es ist η1(x) = sinx, η2(x) = − cosx, W (x) = 1. Damit
ergibt sich

Gl(x, t) = − cos t · sinx Gr(x, t) = − sin t · cosx.
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Beispiel 12.5.4 Es sei L := D2 auf [0, 1]. Dann ist η1(x) = x, η2(x) = x− 1 und

Gl(x, t) = (t− 1) · x Gr(x, t) = t · (x − 1).

Schlußbemerkung.Wenn das durch [a, b] und L gegebene homogene Randwert-
problem nur die triviale Lösung besitzt, so hat jedes inhomogene Randwertproblem
höchstens eine Lösung. Satz 12.5.2 besagt: Lu = ρ, u(b) = 0, u(b) = 0 gilt genau

dann, wenn u(x) =
b∫

a

G(x, t)ρ(t) dt ist. Das bedeutet:

Die Differentialgleichung

a0(x) + a1(x)u′(x) + u′′(x) = �(x), u(a) = 0, u(b) = 0

ist äquivalent zu

u(x) =

b∫
a

G(x, t)ρ(t) dt.

Sei D(L) := {u ∈ C2([a, b])| u(a) = u(b) = 0}; dann haben wir eine lineare
Abbildung

L : D(L) → C0([a, b]), u 	→ Lu,
mit folgenden Eigenschaften: L ist auf einem Teilraum von C0([a, b]) erklärt. Ist L
injektiv, so ist L surjektiv. Die zu L gehörende inverse Abbildung

G : C0([a, b]) → D(L)

ist durch

(G�)(x) :=

b∫
a

G(x, t)�(t)dt

gegeben. Obwohl die zu Grunde liegenden Vektorräume nicht endlich-dimensional
sind, haben wir für die Abbildung L ein Ergebnis, das dem Satz 7.4.9 der linearen
Algebra entspricht. Auch in Kapitel 15 werden wir auf diesen Gedanken zurück-
kommen.

t = π/16

t = π/8

t = π/4

t = 3π/8

t = 7π/16
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12.6 Differentialoperatoren vom Sturm-Liouville-Typ

Nun seien
a0, a1, a2 : [a, b] → R

stetig differenzierbare Funktionen; wir behandeln Differentialoperatoren

L = a0(x) + a1(x)D + a2(x)D2

Durch das Integral definieren wir das Skalarprodukt für die auf [a, b] stetigen Funk-
tionen:

< f, g >:=

b∫
a

f(x)g(x) dx.

Nun soll die Frage behandelt werden, wann L selbstadjungiert ist, also

〈Lf, g〉 = 〈f, Lg〉.
Man modifiziert die Fragestellung und betrachtet nur solche Funktionen, die in den
Randpunkten a, b verschwinden. Dann ergibt sich: Wenn

a1 = a′2

ist, dann gilt : 〈Lf, g〉 = 〈f, Lg〉. Der Differentialoperator ist dann von der Form L

L = q(x) + p′(x)D + p(x)D2;

derartige Operatoren bezeichnet man als Differentialoperatoren vom Sturm-Liouville-
Typ; dabei wird noch p > 0 vorausgesetzt;(RUDOLF STURM (1841-1919),JOSEPH

LIOUVILLE (1809 - 1882)).

Wir präzisieren zuerst die benötigten Begriffe:

Definition 12.6.1 Es seien p, q : [a, b] → R stetig differenzierbare Funktionen und
p(x) > 0 für alle x ∈ [a, b]. Dann heißt

L := q + p′D + pD2

ein Differentialoperator vom Sturm-Liouville-Typ; also

Ly = qy + p′y′ + py′′ = qy + (py′)′.

Zur Vorbereitung beweisen wir (dabei wird p(x) > 0 nicht vorausgesetzt):

Satz 12.6.2 Seien p, q : [a, b] → R stetig differenzierbar,

L := q + p′D + pD2,

dann gilt für alle zweimal stetig differenzierbaren Funktionen f, g : [a, b] → R:
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(1) f · (Lg) − g · (Lf) =
(
p ·

∣∣∣∣ f gf ′ g′
∣∣∣∣)′

;

(2) < f,Lg > − < Lf, g >=
[
p ·

∣∣∣∣ f gf ′ g′
∣∣∣∣]b

a

;

(3) wenn f(a) = f(b) = g(a) = g(b) = 0 ist, dann folgt < Lf, g >=< f,Lg >;

(4) wenn p(a) = p(b) = 0 ist, dann folgt ebenfalls < Lf, g >=< f,Lg > .

Beweis. Es ist (∗) (py′)′ = Ly − qy und daher(
p ·

∣∣∣∣ f gf ′ g′
∣∣∣∣)′

= (f(pg′) − g(pf ′))′ = f ′(pg′) + f(pg′)′ − g′(pf ′) − g(pf ′)′ =

= f(pg′)′ − g(pf ′)′ (∗)
= f(Lg − qg) − g(Lf − qf) = f(Lg) − g(Lf).

Damit ist (1) bewiesen. Durch Integration folgt (2); daraus ergeben sich (3) und
(4). �

Nun sei L = q + p′D + pD2 ein Sturm-Liouville-Operator, wir setzen jetzt also
p(x) > 0 voraus. Um die Ergebnisse von 12.5 anwenden zu können, betrachten wir

L̃ :=
1
p
L =

q

p
+
p′

p
D +D2.

Für den normierten Operator L̃ haben wir in 12.5 gezeigt, dass zum Randwertpro-
blem genau eine Greensche Funktion G̃ existiert.Dann ist

G(x, t) :=
G̃(x, t)
p(t)

die zu L gehörende Greensche Funktion ist. Es gilt:

Satz 12.6.3 Wenn das zum Sturm-Liouville-OperatorL = q+p′D+pD2 gehörende
homogene Randwertproblem Ly = 0, y(a) = y(b) = 0 nur die triviale Lösung
besitzt, dann existiert zu diesem Randwertproblem genau eine Greensche Funktion
G und diese ist symmetrisch, d.h. für alle x, t ∈ [a, b] ist

G(x, t) = G(t, x).

Beweis. Nach 12.5.2 existiert genau eine Greensche FunktionG, die man so erhält:
Man wählt η1, η2 mit Lη1 = 0, η1(a) = 0, η′1(a) = 1 und Lη2 = 0, η2(b) = 0,
η′2(b) = 1. Setzt manW := η1η′2 − η2η′1, so ist

Gl(x, t) =
η2(t)η1(x)
p(t)W (t)

, Gr(x, t) =
η1(t)η2(x)
p(t)W (t)

.

Wir zeigen, dass für einen Sturm-Liouville-Operator der Nenner p ·W konstant ist.
Aus 12.6.2 folgt (wegen Lη1 = Lη2 = 0):
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(pW )′ = f · (Lη2) − g · (Lη1) = 0,

daher ist c := p ·W konstant. Für a ≤ x < t ≤ b ist dann

G(x, t) = Gl(x, t) =
1
c
η2(t)η1(x), G(t, x) = Gr(t, x) =

1
c
η1(x)η2(t),

also G(x, t) = G(t, x) für x < t. Analog behandelt man den Fall x > t. �

Man vergleiche dazu 12.5.3; dort ist pW = 1 und die dort angegebene Greensche
Funktion ist symmetrisch.
Mit Hilfe der Greenschen Funktion behandeln wir nun Eigenwertprobleme.

Definition 12.6.4 Eine reelle Zahl λ heißt Eigenwert zum Randwertproblem,
wenn es eine nicht-identisch verschwindende zweimal stetig differenzierbare Funk-
tion u : [a, b] → R gibt mit

Lu+ λu = 0, u(a) = 0, u(b) = 0.

Die Funktion u heißt Eigenfunktion zum Eigenwert λ.

(Man beachte, dass die Eigenwertgleichung, anders als in der linearen Algebra, hier
Lu = −λu ist.)

Zum Beispiel besitzt ein homogenes Randwertproblem genau dann eine nichttrivia-
le Lösung, wenn 0 ein Eigenwert ist. Es gilt

Satz 12.6.5 Ist L ein Sturm-Liouville-Operator auf [a, b] und sind λ1 �= λ2 Eigen-
werte zum Randwertproblem und u1, u2 Eigenfunktionen zu λ1, λ2, so gilt:

〈u1, u2〉 = 0.

Beweis Die Eigenfunktionenu1, u2 verschwinden in a, b und daher gilt nach 12.6.2:

< Lu1, u2 >=< u1, Lu2 > .

Daraus folgt nach 7.10.5〈u1, u2〉 = 0. �

Die Lösung eines Eigenwertproblems läßt sich mit Hilfe der Greenschen Funktion
auf eine Integralgleichung zurückführen:

Satz 12.6.6 Es sei 0 kein Eigenwert des zu L auf [a, b] gehörenden Sturm-Liou-
villeschen Eigenwertproblems. Ist dann G die Greensche Funktion, so ist u genau
dann Eigenfunktion zum Eigenwert λ, wenn gilt:

b∫
a

G(x, t)u(t) dt = − 1
λ
u(x).
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Beweis. Für u(a) = u(b) = 0 gilt

Lu = ρ genau dann, wenn

b∫
a

G(x, t)ρ(t) dt = u(x).

Mit ρ := −λu folgt die Behauptung. �

Wir zeigen noch:

Satz 12.6.7 Ist L = q + p′D + pD2 ein Sturm-Liouville-Operator auf [a, b] mit
q(x) ≤ 0 für alle x ∈ [a, b] und ist λ ∈ R ein Eigenwert, so gilt: λ > 0.

Beweis. Ist u eine Eigenfunktion zu λ, so ist Lu = −λu und daher

λ · ‖u‖2 = 〈λu, u〉 = −〈Lu, u〉 = −
b∫
a

(qu + (pu′)′)u dx =

= −
b∫
a

qu2 dx−
b∫

a

(pu′)′u dx.

Partielle Integration ergibt

b∫
a

(pu′)′u dx = pu′u|ba −
b∫
a

pu′u′ dx = −
b∫
a

p(u′)2 dx < 0.

Daraus folgt λ · ‖u‖2 > −
b∫

a

qu2 dx ≥ 0 und daher λ > 0. �

Aus der Umformung der Sturm-Liouville-Eigenwertaufgabe in das Eigenwertpro-
blem für eine Integralgleichung folgt, wie in 15.10.5 gezeigt wird:

Satz 12.6.8 1. Sei λ ein Eigenwert zu L. Dann bilden die Eigenfunktionen zu λ
einen endlich-dimensionalen Teilraum von

D(L) = {u ∈ C2([a, b])| u(a) = u(b) = 0}.

Seine Dimension eλ heißt die (geometrische) Vielfachheit von λ.
Die Eigenwerte von L bilden eine Folge λ1, λ2, . . . , die sich in der Form

λ1 ≤ λ2 ≤ λ3 ≤ . . .

anordnen lässt. Wir denken uns jeden Eigenwert so oft angeführt, wie seine endliche
Vielfachheit eλ angibt. Dann gilt

lim
n→∞λn = +∞.

Zu den Eigenwerten λn gibt es in L2([a, b]) eine Hilbertbasis vn ∈ D(L) von Ei-
genfunktionen zu λn. Jedes beliebige f ∈ L2([a, b]) erlaubt also eine Fourierent-
wicklung
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(∗) f =
∞∑

n=1

< f, vn > vn

nach den Eigenfunktionen von L.
Ist f : [a, b] → R stetig differenzierbar und nimmt f die Randbedingungen

f(a) = f(b) = 0

an, so konvergiert die Reihe (∗) gleichmässig in [a, b].

Beispiel 12.6.9 (Die schwingende Saite) Wir betrachten eine schwingende elasti-
sche Saite der Länge l . Der Elastizitätsmodul der Saite sei p(x) > 0 und die Mas-
sendichte r(x) sei r ≡ 1. Für die Auslenkung u(x, t) der Saite an der Stelle x zur
Zeit t gilt die partielle Differentialgleichung (x ∈ [0, l], t ≥ 0):

∂

∂x

(
p(x) · ∂u

∂x
(x, t)

)
=
∂2u

∂t2
(x, t);

kurz
(p(x)ux(x, t))x = utt(x, t) (Schwingungsgleichung.)

Die Saite sei an ihren Endpunkten fest eingespannt, d.h..

u(0, t) = u(l, t) = 0, t ≥ 0.

Die Anfangsbedingungen für Ort und Geschwindigkeit der Saite zur Zeit t = 0
seien vorgeschrieben:

u(x, 0) = f(x), ut(x, 0) = g(x), x ∈ [0, l].

Es sind also gegeben: Zweimal stetig differenzierbare Funktionen

p, f, g : [0, l] → R, mit p > 0, f(0) = g(0) = f(l) = g(l) = 0;

gesucht wird eine zweimal stetig differenzierbare Funktion

u : [0, l] × [0,∞[→ R, (x, t) 	→ u(x, t)
mit

(1) (p(x)ux(x, t))x = utt(x, t)
(2) u(0, t) = 0, u(l, t) = 0 für t ≥ 0
(3) u(x, 0) = f(x), ut(x, 0) = g(x) für x ∈ [0, l]

0 l x

u(x, t)
Zeit t
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Als Ansatz wählen wir wieder den Separationsansatz

u(x, t) = v(x) · w(t)

und setzen u′ := ∂u
∂x , u̇ := ∂u

∂t . Dann folgt

(p(x) · v′(x))′ · w(t) =
..
w (t) · (v(x)).

Für alle x, t ist also
(p(x) · v′(x))′
v(x)

=
..
w (t)
w(t)

;

die linke Seite hängt nur von x, die rechte nur von t ab; daher ist dies konstant
=: −λ und damit erhält man die Gleichungen

(pv′)′ + λv = 0,
..
w +λw = 0.

Setzt man

Lv =
d
dx

(p
d
dx
v),

so ergibt sich:

(4)
Lv

v
=

..
w

w
= −λ.

Damit hat man (mit q = 0) ein Sturm-Liouvillle-EigenwertproblemLv + λv = 0 .
Die Funktion v soll die Randbedingungen (2) realisieren. Wir setzen also

D(L) = {y ∈ C2([0, 1])| y(0) = 0, y(l) = 0}

und verlangen v ∈ D(L).
Aus Lv + λv = 0 folgt: λ ist Eigenwert zu L . Insbesondere gilt nach 12.6.7 : Die
Eigenwerte λ1, λ2, . . . zu L positiv.
Aus (4) folgt dann für w:

wn(t) = An cos
√
λnt+Bn sin

√
λnt

mit Konstanten An, Bn.
Ist dann vn Eigenfunktion von L zum Eigenwert λn, so gewinnen wir eine parti-
kuläre Lösung

vn(x)(An cos
√
λnt+Bn sin

√
λnt)

von (1), die bereits die Randbedingungen (2) realisiert. Die v1, v2, . . . bilden nach
12.6.8 eine Hilbertbasis. Bei genügender Konvergenz wird man die allgemeine
Lösung von (1) mit den Randbedingungen (2) in der Form

(5)
∞∑

n=1

vn(x)
(
An cos

√
λnt + Bb sin

√
λnt

)
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gewinnen. Wegen vn ∈ DL realisiert u die Randbedingungen (2). Wir müssen uns
nun noch um die Anfangsbedingungen (3) kümmern. Die Fourierentwicklungen von
f und g lauten

(6) f =
∞∑

n=1

anvn mit an =< f, vn >, g =
∞∑

n=1

bnvn mit bn =< g, vn > .

Koeffizientenvergleich mit (5) für t = 0 liefert An = an; Koeffizientenvergleich
mit der nach t differenzierten Reihe (5) ergibt, wenn man t = 0 setzt: Bn = bn√

λn
.

Mit den Fourierkoeffizienten an, bn aus (6 ) folgt als Lösung des Problems ( 1) (2 )
( 3):

u(x, t) =
∞∑

n=1

vn(x)
(
an cos

√
λnt +

bn√
λn

sin
√
λnt

)
Die Randbedingungen (2) heißen

”
fest-fest “. Ist z.B. ein Ende fest (etwa x = 0),

das andere Ende frei und schreibt man ut(l, t) = 0 vor, so lässt sich dieses Problem
ebenso behandeln, indem man in DL die Koeffizienten

c1 = 1, c2 = 0, d1 = 0, d2 = 1

setzt. Diese Randbedingung heißt
”
fest-frei“.

Wir behandeln noch den Spezialfall des konstanten Elastizitätsmoduls:
Es sei a > 0 und es gelte p(x) = a2 für alle x. Die Differentialgleichung ist dann

a2 · ∂
2u

∂x2
=
∂2u

∂t2
,

also
a2v′′ + λv = 0,

..
w +λw = 0.

Wenn man zusätzliche Voraussetzungen an f, g macht, kann man die Lösung sehr
einfach darstellen.
Wir setzen voraus, dass es zweimal stetig differenzierbare ungerade Funktionen
f̃ , g̃ : R → R gibt, die periodisch mit der Periode 2l sind und auf [0, l] mit f

bzw. g übereinstimmen. Wegen v(0) = 0 ist v(x) = c · sin
√

λ
a x und aus v(l) = 0

folgt
√

λ
a · l = nπ mit n ∈ N; also

√
λn = aπn

l . Somit hat man Lösungen

vn(x) = cn · sin nπ
l x; man wählt cn so, dass ‖vn‖ = 1 ist.Dann ist cn =

√
2
l .

Nun entwickelt man f̃ und g̃ in die üblichen Fourierreihen; bei einer ungeraden
Funktion ist die Fourierreihe eine Sinusreihe. Man erhält

f̃(x) =

√
2
l
·

∞∑
n=1

an sin
nπ

l
x, g̃(x) =

√
2
l
·

∞∑
n=1

bn sin
nπ

l
x
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mit den Koeffizienten an, bn aus (6). Über [0, l] sind dies also die Entwicklungen
(6).
Setzt man An := an, Bn := l

nπabn , so ist die Lösung

u(x, t) =

√
2
l
·

∞∑
n=1

(
an · cos

nπa

l
t+
bnl

nπa
sin
nπa

l
t
)
· sin nπ

l
x.

Wegen sinα · cosβ = 1
2 (sin(α+ β) + sin(α− β)) gilt:√

2
l ·

∞∑
n=1
an cos nπa

l t · sin nπ
l x =

= 1
2

√
2
l ·

∞∑
n=1
an

(
(sin nπ

l (x + at) + sin nπ
l (x− at)

)
=

= 1
2 (f̃(x+ at) + f̃(x− at)).

Analog folgt aus sinα sinβ = − 1
2 (cos(α+ β) − cos(α − β)):√

2
l
·

∞∑
n=1

bnl

nπa
sin
nπa

l
t · sin nπ

l
x =

1
2
(G̃(x+ at) − G̃(x+ at))

mit

G̃(x) := −
∞∑

n=1

bnl

nπ
cos
nπ

l
x;

es ist G̃′ = g̃ .
Bei konstantem Elastizitätsmodul a2 erhält man somit, unter den genannten zusätz-
lichen Voraussetzungen , eine Lösung u zu Anfangsbedingungen f, g so:
Man wählt eine Stammfunktion G̃ von g̃ und setzt

u(x, t) =
1
2
(f̃(x+ at) + f̃(x− at)) +

1
2a

(G̃(x+ at) − G̃(x− at)).

Wir bringen dazu zwei einfache Beispiele:

Beispiel 12.6.10 Zunächst sei l := π und f(x) := sinx, g(x) := 0 für x ∈ [0, l].
der Elastzitätsmodul sei konstant p(x) = a2. Dann ist f̃ = sinx für x ∈ R und
G̃ = 0. Damit ergibt sich

u(x, t) =
1
2

(
sin(x+ at) + sin(x− at)

)
= sinx · cos at.

Für jede Zeit t hat man also eine Sinuskurve mit der Amplitude cos at. Zur Zeit
t = 0 ist also die Amplitude 1; bei t = π

2a ist sie 0 und wird dann negativ und ist
bei t = 2π

a wieder in der Anfangslage. Bei zunehmendem a wird die Schwingung
also schneller.
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1

0 π x

u(x, t)

Beispiel 12.6.11 Nun sei f = 0; g(x) = sinx ; wir wählen wieder p(x) = a2 und
l = π.
Dann ist G̃(x) = − cosx und

u(x, t) =
1
2a

(
− cos(x + at) + sin(x+ at)

)
=

1
a

sinx · sinat.

Die Saite schwingt nun mit der Amplitude 1
a sin at; bei grösserem a wird die

Schwingung schneller und die maximale Amplitude kleiner.

12.7 Die Legendresche Differentialgleichung

Wenn man die Poissonsche Gleichung auf Polarkoordinaten r, ϕ, ϑ transformiert
und einen Separationsansatz macht, kommt man für cosϑ = x zur Legendreschen
Differentialgleichung

(1 − x2)y′′ − 2xy′ + λy = 0.

Man sucht Lösungen, die im abgeschlossenen Intervall [−1,+1] definiert sind, denn
die Lösungen des ursprünglichen Problems sollen für alle ϑ definiert sein.
Für p(x) := 1 − x2 und q(x) = 0 hat man

(1 − x2)y′′ − 2xy′ + λy = qy + p′y′ + py′′ + λy;

der DifferentialoperatorLy := p′y′ + py′′ mit p(x) = 1−x2 ist jedoch auf dem In-
tervall [−1,+1] nicht vom Sturm-Liouville-Typ, denn p verschwindet in den Rand-
punkten. Es soll nun untersucht werden, welche Aussagen aus 12.6 auch noch in
diesem Fall gelten.

Definition 12.7.1 Der Differentialoperator

L := −2xD + (1 − x2)D2

heißt der Legendresche Differentialoperator.
Ein λ ∈ R heißt Eigenwert zu L, wenn es eine nicht-identisch verschwindende
zweimal stetig differenzierbare Funktion u : [−1,+1] → R gibt mit

Lu+ λu = 0;

u heißt dann Eigenfunktion zu λ.
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Man beachte, dass u im abgeschlossenen Intervall [−1,+1] definiert sein soll; Rand-
bedingungen werden nicht gefordert. Die Gleichung Lu+ λu = 0 bedeutet

(1 − x2)u′′ − 2xu′ + λu = 0

oder
((1 − x2)u′)′ + λu = 0.

Wir zeigen zuerst , dass L selbstadjungiert ist; dabei definieren wir das Skalarpro-
dukt durch

〈f, g〉 :=

+1∫
−1

fg dx.

Satz 12.7.2 Sind f, g : [−1,+1] → R zweimal stetig differenzierbar, so gilt:

〈Lf, g〉 = 〈f, Lg〉.

Beweis. Für p(x) = 1 − x2 gilt p(−1) = p(1) = 0 und aus 12.6.2 (4) folgt die
Behauptung. �

Satz 12.7.3 Sind u1, u2 Eigenfunktionen zu verschiedenen Eigenwerten λ1, λ2 von
L, so gilt

〈u1, u2〉 = 0.

Beweis. Wie in 12.6.5 folgt dies aus 〈Lu1, u2〉 = 〈u1, Lu2〉. �

Um Eigenfunktionen zu finden, machen wir einen Potenzreihenansatz

y =
∞∑

n=0

anx
n,

dann ist

y′ =
∞∑

n=1

nanx
n−1, y′′ =

∞∑
n=2

n(n− 1)anxn−2 =
∞∑

n=0

(n+ 2)(n+ 1)an+2x
n.

Setzt man dies in die DifferentialgleichungLy + λy = 0 ein, so erhält man:

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n −

∞∑
n=2

n(n− 1)anxn − 2
∞∑

n=1

nanx
n +λ

∞∑
n=0

anx
n = 0.

Koeffizientenvergleich liefert für n ≥ 2:

(n+ 2)(n+ 1)an+2 − n(n− 1)an − 2nan + λan = 0.

Damit erhält man die Rekursionsformel:
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an+2 =
n(n+ 1) − λ

(n+ 1)(n+ 2)
· an.

Man rechnet leicht nach, dass diese auch für n = 0 und n = 1 gilt.
Wenn die an �= 0 sind, dann folgt aus der Rekursionsformel, daß an+2

an
gegen 1

geht. Dann ist aber
∞∑

n=0
anx

n für x = 1 divergent. Eigenfunktionen, die in [−1,+1]

definiert sind, erhält man also nur, wenn die Folge der an abbricht; dies ist der Fall,
wenn λ = m(m + 1) mit m ∈ N0 ist. Dann folgt aus der Rekursionsformel, dass
am+2 = 0 ist, ebenso am+4, am+6,... .
Falls m gerade ist, setzt man a0 := 1 und a1 := 0; dann verschwinden alle an mit
ungeradem Index n und für gerade n ist an = 0 falls n ≥ m+ 2.
Für ungeradesm wählt man a0 := 0 und a1 := 1. Auf diese Weise erhält man zu
λm = m(m+ 1) Eigenfunktionen pm, die Polynomem-ten Grades sind. Für jedes
m ∈ N0 berechnet man die Koeffizienten an von pm rekursiv durch

an+2 =
n(n+ 1) −m(m+ 1)

(n+ 1)(n+ 2)
· an;

(die an hängen natürlich vonm ab). Wir geben unten die Polynome p0, ..., p5 an.
Für jedes cm ∈ R, cm �= 0, ist auch cmpm Eigenfunktion zum Eigenwertm(m+1).
Durch entsprechende Wahl von cm ”

normiert“ man die Eigenfunktionen auf drei
Arten:

(1) Man wählt Qm = cmpm so, dass gilt: Qm(x) = xm + ... ;

(2) man setzt Lm := 1
‖Qm‖Qm; somit ist ‖Lm‖ = 1, also

+1∫
−1

(Lm(x))2 dx = 1;

(3) man wählt Pm = c̃mpm so, dass gilt: Pm(1) = 1 .

(Die Normierung nach (3) ist möglich, weil pm(1) �= 0 ist; denn aus pm(1) = 0
und der Differentialgleichung mit x = 1 folgt p′m(1) = 0, dann wäre pm ≡ 0).
Man bezeichnet die Polynome Pm als Legendre-Polynome.
Wir geben nun diese Polynome fürm = 0, . . . , 5 an:

m pm Qm Lm Pm

0 1 1
�

1
2

1

1 x x
�

3
2
x x

2 1 − 3x2 x2 − 1
3

1
2

�
5
2
(3x2 − 1) 3

2
x2 − 1

2

3 x − 5
3
x3 x3 − 3

5
x 1

2

�
7
2
(5x3 − 3x) 5

2
x3 − 3

2
x

4 1 − 10x2 + 35
3

x4 x4 − 6
7
x2 + 3

35
1
8

�
9
2
(35x4 − 30x2 + 3) 35

8
x4 − 15

4
x2 + 3

8

5 x − 14
3

x3 + 21
5

x5 x5 − 70
63

x3 + 1
63

x 1
8

�
11
2

(63x5 − 70x3 − 15x) 63
8

x5 − 35
4

x4 + 15
8

x
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2mm!
dm

dxm
(x2 − 1)m.

Man kann zeigen:

‖Pm‖2 =
2

2m+ 1
und Lm =

√
m+

1
2
Pm.

Es gilt:

Satz 12.7.4 Die Lm bilden ein Orthonormalsystem; d.h. für alle n,m ∈ N0 ist

〈Ln, Lm〉 = δnm.

Beweis. Die Lm sind Eigenfunktionen zum · (m+ 1); die Behauptung folgt damit
aus 12.7.3. �

In 7.9.16 hatten wir das Orthonormalisierungsverfahren auf die Polynome

1, x, x2, . . . , xn

angewandt und dabei Polynome b̃n und bn erhalten. Wir zeigen nun:

Satz 12.7.5 Für alle n ∈ N0 gilt: b̃n = Qn und bn = Ln.

Beweis. Ln und bn liegen in span{1, x, ..., xn} und stehen senkrecht auf dem Un-
terraum span(1, x, . . . , xn−1). Daraus folgt bn = ±Ln. Aus bn = xn + . . . und
Qn(x) = xn + . . . folgt b̃n = Qn und somit bn = Ln. �

Wir wollen noch untersuchen, welche Konsequenten sich aus derartigen Orthogo-
nalitätsvoraussetzungen ergeben.

Satz 12.7.6 Es sei p ein Polynom n-ten Grades, das orthogonal zu 1, x, ..., xn−1

ist. Dann gilt: p hat im offenen Intervall ] − 1,+1[ genau n (einfache) Nullstellen.

Beweis. Es seien c1, ..., cr die in ]−1,+1[ liegenden Nullstellen ungerader Ordnung
von p, 0 ≤ r ≤ n. Zu zeigen ist: r = n. Setzt man q(x) := (x − c1) · ... · (x − cr),
so hat p · q in ] − 1,+1[ nur Nullstellen gerader Ordnung. Daher ist p · q außerhalb

der Nullstellen überall positiv oder überall negativ und somit
+1∫
−1

p · q dx �= 0. Nun

nehmen wir an, es sei r < n. Dann ist q ein Polynom vom Grad ≤ n − 1. Aus der

Voraussetzung folgt, dass p orthogonal zu q ist also
+1∫
−1

pq dx = 0. �

Daraus folgt:

−1

P1

1

P2 P3 P4 P5

Ohne Beweis geben wir die Formel von Rodrigues an:

Pm(x) =
1
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Satz 12.7.7 Jedes Legendre-PolynomPn besitzt in ]−1,+1[ genau n einfache Null-
stellen.

Die PolynomeQn kann man durch eine Extremaleigenschaft charakterisieren:

Satz 12.7.8 Für alle Polynome n-ten Grades q(x) = xn + ...+ a1x+ a0 gilt

‖q‖ ≥ ‖Qn‖,

also
+1∫

−1

(q(x))2 dx ≥
+1∫

−1

(Qn(x))2 dx;

das Gleichheitszeichen gilt genau dann, wenn q = Qn ist.

Beweis. Zu jedem q gibt es c0, ..., cn−1 ∈ R mit

q = Qn + cn−1Qn−1 + ...+ c0Q0.

Wegen 〈Qj , Qk〉 = 0 für j �= k gilt

‖q‖2 = 〈q, q〉 = ‖Qn‖2 + c2n−1‖Qn−1‖2 + ...+ c20‖Q0‖2 ≥ ‖Qn‖2.

Das Gleichheitszeichen gilt genau dann, wenn alle cn−1 = ... = c0 = 0 sind, also
q = Qn. �


Aufgaben

12.1. (Es gibt genug Testfunktionen.) Sei f : R → R über jedem kompakten Intervall I
quadratintegrierbar; sei auch g ∈ L2(I) für jedes Intervall I und es gelte Tg = Tf . Zeigen
Sie: f = g f. ü.

12.2. Sei (Tn) die zu den Summen

Sn :=
k=n�

k=−n

1√
2π

eikx

gehörende Folge von Distributionen. Zeigen Sie: (Tn) ist konvergent und

lim
n→∞

Tn(ϕ) =

+∞�
k=−∞

�ϕ(k),

wenn �ϕ die Fouriertransformierte von ϕ beduetet.
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12.3. Für Distributionen T ∈ D′(Rn) und Funktionen a ∈ C∞(Rn) erklären wir wie für
n = 1 die Distribution aT durch

aT (ϕ) := T (aϕ), ϕ ∈ D(Rn).

Für die Differentiation von aT gilt wie in 12.1.8 die Produktregel.
Sei ν = (ν1, . . . , νn) ∈ Nn

0 , |ν| = ν1 + . . . + νn, und

L =
�
|ν|≤k

aνDν

ein Differentialoperator mit Koeffizientenfunktionen aν ∈ C∞(Rn). Zeigen Sie für ϕ ∈ D:

LT (ϕ) = T

�
��

|ν|≤k

(−1)|ν|Dν(aνϕ)

�
� .

12.4. Bestimmen Sie eine Greensche Funktion G zum Sturm-Liouville-Operator

Lu := u′′ − λu, λ > 0,

in [−1, +1] mit Dirichlet-Randwerten G(−1, ξ) = G(1, ξ) = 0 für ξ ∈ [−1, +1]. Kann
man etwas über das Vorzeichen von G aussagen ?
Hinweis: Verwenden Sie ohne Beweis:

sinh(a + b) sinh(c + d) − sinh(a + c) sinh(b + d) = sinh(a − d) sinh(c − b).

12.5. Sei L ein Sturm-Liouville-Operator auf [a, b]. Sei λ ein Eigenwert. Zeigen Sie:

λ ≥ q0 = min
x∈[a,b]

(−q(x)).

12.6. Seien p, q1, q2 : [a, b] → R, p sei stetig differenzierbar, p > 0; q1, q2 seien stetig. Es
gelte q1 > q2 auf ]a, b[.Seien u1, u2 zweimal stetig differenzierbare Lösungen von

−
�

p(x)u′
j(x)

�′
+ qj(x)uj(x) = 0, j = 1, 2.

Zeigen Sie: Ist u1(x) > 0 auf [a, b] und u1(a) = u1(b) = 0, so hat u2 wenigstens eine
Nullstelle in ]a, b[.
Hinweis: Multiplizieren Sie die Differentialgleichung für u1 mit u2 und umgekehrt und inte-
grieren Sie partiell.
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Integralsätze

13.1 Stokes scher und Gauß scher Integralsatz im R2

Die Beweise für die Integralsätze von Gauß und Stokes sind ziemlich schwierig. Um
die Ideen klar zu machen, soll hier zunächst ein Integralsatz für spezielle MengenA
im R2 möglichst elementar hergeleitet werden. Danach erläutern wir das Konzept
dieses Kapitels.
Es seien I = [a, b] und I ′ = [a′, b′] Intervalle in R und ϕ, ψ : I → I ′ stetig
differenzierbare Funktionen mit ϕ(x) ≤ ψ(x) für x ∈ I . Weiter sei

A := {(x, y) ∈ R2|a ≤ x ≤ b, ϕ(x) ≤ y ≤ ψ(x)}.
Die Kurven, die den Rand ∂A von A durchlaufen, sind:

γ1 : [ϕ(a), ψ(a)] → R2, t 	→ (a, t), γ2 : [a, b] → R2, t 	→ (t, ϕ(t)),
γ3 : [ϕ(b), ψ(b)] → R2, t 	→ (b, t), γ4 : [a, b] → R2, t 	→ (t, ψ(t)).

−γ1 γ3

γ2

−γ4

a b

a′

b′

ϕ

ψ

A

Wir durchlaufen die Kurven so, dass A
”
links“ liegt, wir setzen also∫

∂A

:= −
∫
γ1

+
∫
γ2

+
∫
γ3

−
∫
γ4

.

Für die weitere Berechnung benötigen wir eine Verallgemeinerung von 9.2.17:
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Satz 13.1.1 Es sei g : I × I ′ → R stetig differenzierbar; dann gilt:

d
dx

ψ(x)∫
ϕ(x)

g(x, t) dt =

ψ(x)∫
ϕ(x)

∂g

∂x
(x, t) dt +

(
g(x, ψ(x)) ·ψ′(x)−g(x, ϕ(x)) ·ϕ′(x)

)
.

Beweis. Es sei h : I × I ′ × I ′ → R, (x, v, w) 	→
w∫
v

g(x, t)dt; dann ist

∂h

∂x
(x, v, w) =

w∫
v

∂g

∂x
(x, t) dt,

∂h

∂w
(x, v, w) = g(x,w),

∂h

∂v
(x, v, w) = −g(x, v).

Nun setzt man v = ϕ(x), w = ϕ(x), und berechnet dh
dx(x, ϕ(x), ψ(x)) nach der

Kettenregel; daraus ergibt sich die Behauptung. �

Nun beweisen wir für derartige Mengen A ⊂ R2,

A = {(x, y) ∈ R2|a ≤ x ≤ b, ϕ(x) ≤ y ≤ ψ(x)}
einen Integralsatz:

Satz 13.1.2 (Stokes scher Integralsatz im R2) Die Funktionen f, g : I × I ′ → R
seien stetig differenzierbar; dann gilt:∫

∂A

f dx+ g dy =
∫
A

(
∂g

∂x
− ∂f
∂y

) dxdy.

Beweis.a) Wir berechnen zuerst das Integral über ∂f
∂y und f : Es ist

∫
A

∂f

∂y
dxdy =

b∫
a

⎛⎜⎝ ψ(x)∫
ϕ(x)

∂f

∂y
dy

⎞⎟⎠ dx =

b∫
a

(f(x, ψ(x)) − f(x, ϕ(x))) dx.

Bei der Berechnung von
∫

∂A

f dx ist zu beachten, dass die erste Komponente der

Kurven γ1 und γ3 konstant ist, daher ist
∫
γ1

f dx = 0 und
∫
γ3

f dx = 0. Somit ist

∫
∂A

f dx =
∫
γ2

f dx−
∫
γ4

f dx =

b∫
a

f(t, ϕ(t)) dt−
b∫

a

f(t, ψ(t)) dt

und daraus folgt:

−
∫

∂A

f dx = −
∫
A

∂f

∂y
dxdy.
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b) Nun integrieren wir ∂g
∂x und g. Dazu benötigen wir 13.1.1 und erhalten damit

∫
A

∂g
∂x dxdy =

b∫
a

(
ψ(x)∫
ϕ(x)

∂g
∂x dy

)
dx =

=
b∫

a

(
d
dx

ψ(x)∫
ϕ(x)

g(x, t) dt

)
dx−

b∫
a

(g(x, ψ(x))ψ′(x) − g(x, ϕ(x))ϕ′(x)) dx.

Den ersten Summanden der rechten Seite rechnet man aus:

b∫
a

(
d
dx

ψ(x)∫
ϕ(x)

g(x, t) dt

)
dx =

[
ψ(x)∫
ϕ(x)

g(x, t) dt

]x=b

x=a

=

=
ψ(b)∫
ϕ(b)

g(b, t) dt−
ψ(a)∫
ϕ(a)

g(a, t) dt =
∫
γ3

g dy − ∫
γ1

g dy.

Der zweite Summand ist:

−
b∫

a

(g(x, ψ(x)) · ψ′(x) − g(x, ϕ(x))ϕ′(x)) dx = −
∫
γ4

g dy +
∫
γ2

g dy.

Insgesamt ergibt sich somit:∫
∂A

g dy =
∫
A

∂g

∂x
dxdy = .

�

∂g
∂x − ∂f

∂y wird auch als (zweidimensionale) Rotation des Vektorfeldes v = (f, g)
bezeichnet, die also im R3 eine skalare Grösse ist. Demnach nimmt 13.1.2 die Form∫

A

rot v dxdy =
∫

∂A

f dx+ g dy

an. Ersetzen wir (f, g) durch (−g, f), so folgt∫
A

div v dxdy =
∫

∂A

(−gdx+ fdy).

Bezeichnen wir wieder mit γ1, . . . , γ4 die Kurven, die ∂A durchlaufen, und setzen
γ := −γ1 + γ2 + γ3 − γ4, so ist∫

∂A

(−gdx+ fdy) =
∫

−γ1

+
∫
γ2

+
∫
γ3

+
∫

−γ4

=
∫
γ

(−gdx+ fdy)
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Wir haben ∫
−γ1

=

ψ(a)∫
ϕ(a)

(
g

−ẋ√
ẋ2 + ẏ2

+ f
−ẏ√
ẋ2 + ẏ2

)√
ẋ2 + ẏ2dt

∫
γ2

=

b∫
a

(
g

−ẋ√
ẋ2 + ẏ2

+ f
−ẏ√
ẋ2 + ẏ2

)√
ẋ2 + ẏ2dt

u. s. w. Nun ist

(
ẏ√

ẋ2+ẏ2
, −ẋ√

ẋ2+ẏ2

)
der jeweils auf −γ1, γ2, γ3, γ4 senkrecht ste-

hende, ins Äussere von A weisende Vektor der Länge 1, d.h. die äussere Normale
ν. Führen wir noch die Bogenlänge s als Kurvenparameter ein und bezeichnen mit
Lγ die Länge von γ, so folgt

∫
A

div v dxdy =

Lγ∫
0

< v, ν > ds,

und dies ist der Satz von Gauß in der Ebene, in der also 13.1.2 die beiden wichtigen
Integralsätze umfasst. Wie wir in diesem Kapitel noch sehen werden, ist dies im
dreidimensionalen Raum nicht ohne weiteres der Fall.

Wie bereits in 11.3 angesprochen und aus 13.1.2 sofort ersichtlich, besteht die
Grundidee der Integralsätze darin, ein Integral über eine Menge A in ein solches
über ihren Rand ∂A zu verwandeln.Wir wollen dies auch für Teilmengen A von
k-dimensionalen Untermannigfaltigkeiten M des Rn durchführen. Mit dem Rand
∂A ist dann der Rand von A inM gemeint. Ist also A zum Beispiel eine Teilmenge
einer möglicherweise gekrümmten Fläche des R3 , so ist ∂A eine Flächenkurve, die
A berandet. Aus 13.1.2 sehen wir auch, dass es auf die Durchlaufungsrichtung der
A berandenden Kurve relativ zuA ankomt. Insbesondere hat dieA berandende Kur-
ve bis auf die Eckpunkte einen ins Äussere von A weisenden Normalenvektor. Man
sagt, ∂A sei bezüglich der äusseren Normalen von A orientiert. Diese Orientierung
von ∂A passt gerade mit der Verwendung der üblichen cartesischen Koordinaten
im R2 und damit in A in 13.1.2 zusammen. Generell brauchen wir für Integralsätze
auf Mannigfaltigkeiten den Begriff der Orientierung von Mannigfaltigkeiten, auf
den wir in diesem Kapitel eingehen. Unsere Ergebnisse sollen von der Auswahl des
lokalen Koordinatensystems vonM unabhängig sein, solange wir die Orientierung
vonM beachten. Das geeignete Hilfsmittel zur Formulierung der Integralsätze sind,
wie schon in 11.3 angesprochen, Differentialformen.
Wollen wir lediglich stetige Funktionen über Mannigfaltigkeiten integrieren oder k-
dimensionale Volumina von Untermannigfaltigkeiten (zum Beispiel Flächeninhalte)
ausmessen, wird der Begriff der Orientierung entbehrlich. Auch hier sind unsere
Resultate unabhängig von der Auswahl der Karte, d.h. des lokalen Koordinatensy-
stems. Wir führen das Integral

∫
A

fdS für stetige Funktionen f und Teilmengen
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A vonM ein. Da die klassischen Integralsätze oft mit Hilfe des
”
Flächen- oder k-

dimensionalen Volumenelements dS “der MannigfaltigkeitM formuliert werden,
gehen wir auf diesen Zugang ein. Die Frage der Orientierung muss dabei gesondert
geklärt werden.
Für dieses Kapitel wird nur das Riemann-Integral, wie es in 10.1 eingeführt wurde,
benötigt.

13.2 Integration auf Untermannigfaltigkeiten

Die Integration auf einer UntermannigfaltigkeitM ist nicht ganz einfach zu defi-
nieren. Man benötigt neue Begriffe wie

”
Teilung der Eins“ und die zu einer Karte

gehörende
”
Gramsche Determinante“ g. Wir schildern die Idee dazu: Es sei A eine

kompakte Teilmenge vonM und f : A→ R eine stetige Funktion. Es soll ein Inte-
gral von f über A bezüglichM definiert werden, das man mit

∫
A

f dS bezeichnet.

Wenn es eine Karte ϕ : W → V mit A ⊂ V gibt, dann bildet man die zu ϕ
gehörende Gramsche Determinante g : W → R. Von der Funktion f : A→ R geht
man über zu der auf Ã := ϕ̃−1(A) definierten Funktion f ◦ ϕ, multipliziert diese
mit

√
g und integriert über die Menge Ã inW ⊂ Rk; man setzt also∫

A

f dS :=
∫
Ã

(f ◦ ϕ)√g dt.

Durch den Faktor
√
g erreicht man, dass diese Definition unabhängig von der Wahl

der Karte ist.
Wenn A so groß ist, dass es nicht in einem einzigen Kartengebiet V liegt, dann
wählt man eine geeignete Teilung der Eins: Darunter versteht man Funktionen ηk
mit

∑
k

ηk = 1, die man so wählt, dass jedes ηk seinen Träger in einem Kartengebiet

Vk hat, also außerhalb Vk verschwindet. Dann definiert man das Integral von ηkf
über A durch Integration über A ∩ Vk. Wegen f =

∑
k

ηkf kann man auch
∫
A

f dS

sinnvoll definieren; man setzt
∫
A

f dS :=
∑
k

∫
A

(ηkf) dS . Dies soll nun durchgeführt

werden:

Teilung der Eins.
In 9.1.21 haben wir für f : Rn → R den Träger Tr f := {x ∈ Rn|f(x) �= 0}
definiert.
Wir erläutern die Teilung der Eins zunächst in R. In 6.2.5 haben wir die Funktion

g : R → R, t 	→
{

exp(− 1
1−t2 ) für |t| < 1

0 für |t| ≥ 1

untersucht. Sie ist ist beliebig oft differenzierbar und es ist Tr g = [−1,+1]. Für
k ∈ Z definiert man gk(t) := g(t−k); dann ist Tr gk = [k−1, k+1]. Nun setzt man
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s :=
∑
k∈Z

gk; dabei gibt es keine Konvergenzprobleme, denn auf jedem kompakten

Intervall sind nur endlich viele der gk von Null verschieden. Daher ist die Funktion
s : R → R beliebig oft differenzierbar und positiv. Setzt man ηk := gk

s , so ist∑
k∈Z

ηk(x) = 1 für alle x ∈ R und Tr ηk = [k − 1, k − 1].

Man kann nun die Träger noch verkleinern: Für ε > 0 setzt man ηk,ε(t) := ηk( t
ε),

dann ist ∑
k

ηk,ε = 1 und Tr ηk,ε = [εk − ε, εk + ε].

−ε ε

Diese Konstruktion kann man in naheliegender Weise auch im Rn durchführen. Mit
derartigen Methoden kann man dann folgenden Satz herleiten:

Satz 13.2.1 (Teilung der Eins). Zu jeder UntermannigfaltigkeitM des Rn existiert
eine Folge beliebig oft differenzierbarer Funktionen ηk : Rn → R mit folgenden
Eigenschaften:

(1) Auf jeder kompakten Teilmenge des Rn sind nur endlich viele der ηk nicht iden-
tisch 0

(2) Für alle x ∈ Rn ist
∞∑

k=1

ηk(x) = 1.

(3) Zu jedem k ∈ N existiert eine Karte ϕk :Wk → Vk mitM ∩ (Tr ηk) ⊂ Vk.

Integration aufM

Nun behandeln wir die Integration auf einer UntermannigfaltigkeitM des Rn: Es
sei

ϕ :W → V, (t1, ..., tk) 	→ (ϕ1(t), ..., ϕn(t))

eine Karte vonM , die Jacobi-Matrix von ϕ sei Jϕ, also

Jϕ =

⎛⎝ ∂ϕ1
∂t1
, ..., ∂ϕ1

∂tk

...
∂ϕn

∂t1
, ..., ∂ϕn

∂tk

⎞⎠ .
Die MatrixG := J t

ϕ · Jϕ heißt die Gramsche Matrix, ihre Elemente sind

gij =
n∑

ν=1

∂ϕν

∂ti
· ∂ϕν

∂tj
.

Die Determinante
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g := det G

heißt die Gramsche Determinante zur Karte ϕ von M ( man vergleiche dazu
7.14.9 ).

Definition 13.2.2 Es sei A eine kompakte Teilmenge vonM und f : A → V eine
Funktion. Wenn es eine Karte ϕ :W → V gibt mit A ⊂ V , so setzt man∫

A

f dS :=
∫

ϕ−1(A)

(f ◦ ϕ)√g dt

(falls das Integral auf der rechten Seite existiert).

Wir zeigen nun, dass dies unabhängig von der Wahl der Karte ist:

Satz 13.2.3 (Invarianzsatz.) Seien ϕ : W → V und ϕ̃: W̃ → V Karten von M ,
sei A ⊂ V kompakt und f : A→ R stetig; dann gilt:∫

ϕ−1(A)

(f ◦ ϕ)√g dt =
∫

ϕ̃−1(A)

(f ◦ ϕ̃)
√
g̃ dt̃,

dabei ist g̃ die Gramsche Determinante zu ϕ̃.

Beweis. Es sei τ := ϕ−1 ◦ ϕ̃, also ϕ̃ = ϕ ◦ τ . Nun sei t̃ ∈ W̃ , t := τ(t̃) ∈ W ; nach
der Kettenregel ist

Jϕ̃(t̃) = Jϕ(t) · Jτ (t̃).

Daraus folgt für die Gramsche Matrix G̃ von ϕ̃:

G̃(t̃) = (Jϕ̃(t̃))t · Jϕ̃(t̃) = (Jτ (t̃))t(Jϕ(t))tJϕ(t)Jτ (t̃) = (Jτ (t̃))tG(t)Jτ (t̃)

und daher g̃(t̃) = (det Jτ (t̃)2 · g(t), also
√
g̃(t̃) = |detJτ (t̃)| ·√g(t).

Daraus ergibt sich∫
ϕ̃−1(A)

(f ◦ ϕ̃)
√
g̃dt̃ =

∫
ϕ̃−1(A)

(f ◦ ϕ ◦ τ)
√
g(τ(t̃)) · |detJτ (t̃)|dt̃

und nach der Transformationsformel 10.2.9 ist dies gleich∫
ϕ−1(A)

(f ◦ ϕ)√gdt.

�

Damit ist

∫
A

fdS sinnvoll definiert, falls A in einer Kartenumgebung V enthalten

ist. Andernfalls wählt man eine Teilung der Eins
∑

k ηk = 1, bei der jeder Träger
Tr(ηk) in einer Kartenumgebung Vk enthalten ist. Ist dann f : A → R eine
Funktion, so ist f =

∑
k ηkf und für jede Funktion ηkf ist
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A

ηkfdS =
∫

A∩Vk

ηkfdS

definiert. Nun setzt man ∫
A

fdS :=
∑

k

∫
A

ηkfdS

und überlegt sich, dass dies unabhängig von der Wahl der Teilung der Eins ist.

Wir geben nun
√
g für wichtige Spezialfälle an:

Beispiel 13.2.4 Es sei I ein offenes Intervall in R und ψ : I → R eine beliebig oft
differenzierbare Funktion. Dann ist

M := {(x, y) ∈ I × R | y = ψ(x)}

eine eindimensionale Untermannigfaltigkeit des R2; M ist der Graph von ψ. Eine
Karte zuM ist

ϕ : I →M, t 	→ (t, ψ(t)).

Die Jacobi-Matrix ist

Jϕ =
(

1
ψ′

)
undG ist die 1 × 1-MatrixG = (1 + (ψ′)2); daher ist

√
g =

√
1 + (ψ′)2.

Allgemein gilt eine Aussage, die wir bei der Integration über den Rand ∂A benötigen:

Satz 13.2.5 Sei W ⊂ Rn−1 offen, ψ : W → R eine beliebig oft differenzierbare
Funktion und

M := {(x1, . . . , xn−1, xn) ∈W × R| xn = ψ(x1, . . . , xn−1)}

der Graph von ψ. Dann ist

ϕ :W →M, t 	→ (t, ψ(T ));

eine Karte zuM und es gilt:

√
g =

√
1 + ‖gradψ‖2.
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13.3 Der Gaußsche Integralsatz im Rn

Wir beweisen nun einen Integralsatz für kompakte Mengen A im Rn, die einen
glatten Rand ∂A besitzen; ∂A ist eine (n-1)-dimensionale Untermannigfaltigkeit.

Definition 13.3.1 Eine kompakte MengeA ⊂ Rn hat glatten Rand ∂A, wenn es zu
jedem Punkt p ∈ ∂A eine offene UmgebungU von p und eine stetig differenzierbare
Funktion � : U → R gibt mit

A ∩ U = {x ∈ U |�(x) ≤ 0} und grad �(x) �= 0 für alle x ∈ U.

Der Vektor

ν(x) :=
grad �(x)

‖grad �(x)‖
heißt die äussere Normale von ∂A.

Man kann zeigen, das

∂A ∩ U = {x ∈ U |�(x) = 0}

ist; daher ist ∂A eine (n-1)-dimensionale Untermanngifaltigkeit. Ausserdem gilt: Zu
jedem x ∈ ∂A ein existiert ein ε > 0 mit

x+ tν(x) �∈ A für 0 < t < ε;

der Vektor ν(x) zeigt also in das Äussere von A.
Entsprechend 13.5.5 beinhaltet der Begriff des glatten Randes die zu cartesischen
Koordinaten in A passende Orientierung von ∂A.
Wir führen nun folgende Bezeichnungen ein: Es sei

W = {(x1, . . . , xn−1) ∈ Rn−1|a1 < x1 < b1, . . . , an−1 < xn−1 < bn−1}

ein offener Quader im Rn−1 und I =]a, b[ ein offenes Intervall sowie U = W × I .
Zur Abkürzung setzen wir w := (x1, . . . , xn−1) und schreiben nun die Punkte
x ∈ U =W × I in der Form x = (w, xn) mit w ∈ W,xn ∈ I .
Wenn A glatten Rand hat, dann kann man wegen grad �(x) �= 0 nach Umnumerie-
rung der Koordinaten annehmen, dass ∂�

∂xn
(x) �= 0 ist. Mit dem Satz über implizite

Funktionen zeigt man dann:

Satz 13.3.2 Wenn A glatten Rand ∂A hat, dann existiert nach Umnumerierung der
Kordinaten zu jedem Punkt p ∈ ∂A eine Umgebung U = W × I und eine stetig
differenzierbare Funktion ψ :W → I ,so dass gilt:

A ∩ U = {x ∈ U |xn ≤ ψ(w)}, ∂A ∩ U = {x ∈ U |xn = ψ(w)}.

(Es kann auch A ∩ U = {x ∈ U |xn ≥ ψ(w)} sein; wir behandeln nur den obigen
Fall und nehmen an, dass A in U durch xn ≤ ψ(w) und ∂A durch xn = ψ(w)
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beschrieben wird.)
Man kann dann �(w, xn) = xn − ψ(w) wählen; es ist

grad � = (− ∂ψ
∂x1
, . . . , − ∂ψ

∂xn−1
, 1) und ‖grad �‖2 = 1 + ‖grad ψ‖2.

Zu U hat man die Karte

ϕ :W → ∂A ∩ U, t 	→ (t, ψ(t))

und die Gramsche Determinante g dazu ist g = 1+‖grad ψ‖2. Die äussere Normale
ist

ν(w, xn) =
1√
g(w)

(−grad ψ(w), 1)

und mit ν = (ν1, . . . , νn) ist

νj(w, xn) = − 1√
g(w)

· ∂ψ
∂xj

(w) für j = 1, . . . , n− 1 und νn(w, xn) =
1√
g(w)

.

Wir behalten diese Bezeichnungen bei und zeigen:

Satz 13.3.3 Es sei f : U → R eine stetig differenzierbare Funktion mit kompaktem
Träger. Dann gilt für j = 1, . . . , n:∫

A∩U

∂f

∂xj
dx =

∫
∂A∩U

f · νjdS.

Beweis. Weil f kompakten Träger hat, dürfen wir annehmen, dass f auf dem Rand
von U definiert und dort gleich 0 ist. Es ist

∫
A∩U

∂f

∂xj
dx =

b1∫
a1

· · ·
bn−1∫

an−1

ψ(w)∫
an

∂f

∂xj
dx1 · . . . · dxn.

Für j = n kann man dieses Integral so ausrechnen: Weil (w, an) auf dem Rand von

U liegt, ist f(w, an) = 0 und daher
∫ ψ(w)

an

∂f
∂xn

dxn = f(w,ψ(w)) . Daraus folgt∫
A∩U

∂f

∂xn
dx =

∫
W

f(w,ψ(w))dw.

Das Integral von f · νn über ∂A ∩ U ist definiert durch:∫
∂A∩U

f · νn · dS =
∫
W

((f · νn) ◦ ϕ) · √gdt =
∫
W

(f ◦ ϕ)(t)dt =
∫
W

f(w,ψ(w))dt.

Daraus ergibt sich:
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A∩U

∂f

∂xn
dx =

∫
∂A∩U

f · νndS.

Damit ist die Behauptung für j = n bewiesen.
Nun sei j = 1, ..., n− 1. Aus 13.1.1 folgt:

ψ(w)∫
an

∂f

∂xj
(w, xn)dxn =

⎛⎜⎝ d

dxj

ψ(w)∫
an

f(w, xn)dxn

⎞⎟⎠− f(w,ψ(w)) · ∂ψ
∂xj

(w).

Wir integrieren den ersten Summanden der rechten Seite zuerst nach xj :

bj∫
aj

⎛⎜⎝ d
dxj

ψ(w)∫
an

f(w, xn)

⎞⎟⎠ dxj =

ψ(w)∫
an

f(.., xj , .., xn)dxn

∣∣∣∣∣∣∣
xj=bj

xj=aj

.

Weil f auf dem Rand vonA verschwindet, ist f(.., bj , ..) = 0 und f(.., aj, ..) = 0
und daher ist dieses Integral gleich 0. Damit ergibt sich:∫

A∩U

∂f

∂xj
dx = −

∫
W

f(w,ψ(w)) · ∂ψ
∂xj

(w)dw.

Wegen
√
g · νj = − ∂ψ

∂xj
ist∫

W

f(w,ψ(w))
∂ψ

∂xj
(w)dw = −

∫
W

f(w,ψ(w))·νj (w)·
√
g(w)dw = −

∫
∂A∩U

f ·νjdS.

Also gilt auch für j = 1, . . . , n− 1 :∫
A∩U

∂f

∂xj
dx =

∫
∂A∩U

f · νj · dS.

�

Wir benötigen noch eine einfache Aussage:

Hilfssatz 13.3.4 Es sei Ū = {x ∈ Rn|a1 ≤ x1 ≤ b1, ..., an ≤ xn ≤ bn} ein
abgeschlossener Quader und f : Ū → R eine stetig differenzierbare Funktion, die
auf dem Rand ∂U verschwindet. Dann gilt für j = 1, ..., n:∫

Ū

∂f

∂xj
dx = 0.

Beweis. Die Behauptung folgt aus
∫ bj

aj

∂f
∂xj

dxj = f(.., bj , ..)− f(.., aj, ..) = 0. �

Nun leiten wir mit Hilfe einer Teilung der Eins eine globale Version von 13.3.3 her:
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Satz 13.3.5 Es sei U ⊂ Rn offen , f : U → R eine stetig differenzierbare Funktion
und A ⊂ U kompakt mit glattem Rand ∂A. Dann gilt für j = 1, ..., n:∫

A

∂f

∂xj
dx =

∫
∂A

f · νj · dS.

Beweis. Wir überdeckenA so mit offenen Quadern Uk, so dass gilt:

(1) Uk ⊂ o

A, also ∂A ∩ Uk = ∅
oder
(2) ∂A ∩ Uk kann wie in 13.3.2 durch xn = ψ(w) beschrieben werden.

U1

U2

A

∂A

Dann wählen wir eine Teilung der Eins
∑

k ηk = 1 mit Tr ηk ⊂ Uk. und zeigen ,
dass in beiden Fällen gilt:

(∗)
∫

A∩Uk

∂

∂xj
(ηkf)dx =

∫
∂A∩Uk

(ηkf) · νj · dS.

Im Fall (2) folgt dies aus 13.3.3. Im Fall (1) sind beide Integrale null, denn wegen
∂A ∩ U = ∅ verschwindet das Integral auf der rechten Seite; links hat man∫

A∩Uk

∂

∂xj
(ηkf)dx =

∫
Uk

∂

∂xj
(ηkf)dx,

und dies ist nach 13.3.4 gleich 0.
Nun folgt:∫

A

∂f

∂xi
dx =

∑
k

∫
A

∂

∂xj
(ηkf)dx =

∑
k

∫
A∩Uk

∂

∂xj
(ηkf)dx

(∗)
=

=
∑

k

∫
∂A∩Uk

(ηkf) · νj · dS =
∫

∂A∩Uk

(ηkf) · νj · dS =
∫

∂A

f · νj · dS.

�

Wir schreiben nun
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dS := ν · dS.
Für ein Vektorfeld v = (v1, ..., vn) interpretiert man v · dS als Skalarprodukt, also

v · dS = (v1ν1 + ...+ vnνn) · dS.

Mit diesen Bezeichnungen gilt dann

Satz 13.3.6 (Gaußscher Integralsatz im Rn) Es sei U ⊂ Rn offen, v : U → Rn

ein stetig differenzierbares Vektorfeld und A ⊂ U eine kompakte Teilmenge mit
glattem Rand. Dann gilt: ∫

A

div v dx =
∫

∂A

v · dS.

Beweis. Es ist div v =
∑n

j=1
dvj

dxj
. Wendet man den soeben bewiesenen Satz auf

f = vj an, so erhält man
∫
A

∂vj

∂xj
dx =

∫
∂A

vj · νj · dS. Summation über j = 1, ..., n

liefert die Behauptung. �

Das Integral über das Quellenfeld von v ist also gleich dem gesamten Fluss von v
durch die berandende Fläche.

13.4 Die Greensche Formel

Wir leiten nun Folgerungen aus dam Gaußschen Integralsatz her.Dazu sind einige
Bezeichnungen zweckmässig: Für ein Vektorfeld v = (v1, ..., vn) setzen wir

∫
A

v · dx :=

⎛⎝∫
A

v1dx, ...,
∫
A

vndx

⎞⎠ .
Das Integral über das n-Tupel (v1, ..., vn) ist also komponentenweise zu verstehen;
man erhält ein n-Tupel von Integralen.
In Definition 9.6.10 haben wir den Nabla-Operator ∇ und den Laplace-Operator
� definiert:

∇ :=
(
∂

∂x1
, ...,

∂

∂xn

)
, � :=

∂2

∂x21
+ ...+

∂2

∂x2n
.

Für eine zweimal stetig differenzierbare Funktion f ist also

∇f :=
(
∂f

∂x1
, ...,

∂f

∂xn

)
= grad f , �f =

∂2f

∂x21
+ ...+

∂2f

∂x2n
.

Für ein Vektorfeld v ist
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∇v :=
∂v1
∂x1

+ ...+
∂vn
∂xn

= div v.

Im R3 kann man auch das Vektorprodukt bilden und setzt

∇× v := rot v.

Bei den folgenden Aussagen sei immer U ⊂ Rn offen, f ,g und v seien stetig diffe-
renzierbar in U und A ⊂ U sei kompakt mit glattem Rand.
Zuerst formulieren wir 13.3.5 neu und fassen die n Gleichungen dieses Satzes zu-
sammen:

Satz 13.4.1 Es gilt: ∫
A

(∇f) · dx =
∫

∂A

f · dS.

Folgende Aussagen rechnet man leicht nach:

Satz 13.4.2 Es gilt:
(1) ∇(∇f)) = �f
(2) ∇(f · g) = g∇f + f∇g
(3) ∇(f∇g) = (∇f)(∇g) + f�g.
Die Aussage (1) schreibt man kurz

∇ ∇ = �,

bei (3) bedeutet (∇f)(∇g) das Skalarprodukt
∑n

j=1
∂f
∂xj

· ∂g
∂xj
. In Analogie zur

Regel der partiellen Integration
∫ b

a fg
′dx = fg

∣∣b
a
− ∫ b

a f
′gdx gilt:

Satz 13.4.3 (Partielle Integration) Es gilt:∫
A

f∇gdx =
∫

∂A

f · gdS −
∫
A

g∇fdx.

Beweis. Man wendet 13.4.1 auf f · g an und erhält:∫
∂A

(f · g)dS =
∫
A

∇(f · g)dx =
∫
A

g∇fdx+
∫
A

f∇gdx.

�

Eine weitere Formel für partielle Integration erhält man aus dem Satz von Gauß:

Satz 13.4.4 (Partielle Integration) Es gilt:∫
A

(∇f)(∇g)dx =
∫

∂A

f∇gdS−
∫
A

f�gdx.
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Beweis. Man wendet den Satz von Gauß 13.3.6 auf v := f∇g an und berücksichtigt
div v = ∇(f∇g) = (∇f)(∇g) + f�g. �

Daraus leiten wir die Formel von Green her:

Satz 13.4.5 (Greensche Formel) Es gilt:∫
A

(f�g − g�f)dx =
∫

∂A

(f∇g − g∇f)dS.

Beweis. Es ist ∫
A

(∇f)(∇g)dx =
∫

∂A

f∇gdS−
∫

A

f�gdx

und durch Vertauschung von f und g ergibt sich:∫
A

(∇g)(∇f)dx =
∫

∂A

g∇fdS−
∫
A

g�fdx.

Daraus folgt die Behauptung. �

Setzt man g = 1, so erhält man:

Satz 13.4.6 Es gilt: ∫
A

�fdx =
∫

∂A

∇fdS.

Eine Funktion g heißt harmonisch ( man vergleiche dazu 9.6.10), wenn �g = 0 ist.
Somit gilt:

Satz 13.4.7 Wenn g harmonisch ist, dann gilt:∫
A

g�fdx =
∫

∂A

(g∇f − f∇g)dS.

In 9.2.14 hatten wir den Begriff der Richtungsableitung eingeführt. Die Ableitung
von f in Richtung ν ist

Dνf =< ν, gradf >= (∇f) · ν.

Wegen dS = νdS können wir die Greensche Formel so schreiben:

Satz 13.4.8 (Greensche Formel) Es gilt:∫
A

(f�g − g�f)dx =
∫

∂A

(fDνg − gDνf)dS.
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13.5 Der Satz von Stokes

In diesem Abschnitt leiten wir einen allgemeinen Stokes’schen Integralsatz für Dif-
ferentialformen her. Der Satz von Stokes erhält im Kalkül der Differentialformen
die einfache Formulierung: ∫

∂A

ω =
∫
A

dω.

Wir benötigen dazu den Begriff der Integration von Differentialformen über glatte
Ränder ∂A, allgemein: Integration von Differentialformen über orientierte Unter-
mannigfaltigkeiten.
Es bezeichne wieder U ⊂ Rn eine offene Menge und A ⊂ U eine kompakte Teil-
menge mit glattem Rand ∂A. Zunächst definiert man:

Definition 13.5.1 Für ω = fdx1 ∧ ... ∧ dxn ∈ Ωn(U) setzt man∫
A

ω :=
∫
A

fdx1 · ... · dxn

Kurz zusammengefasst: Integration einer n-Form im Rn definiert man, indem man
dx1 ∧ ... ∧ dxn durch dx1 · ... · dxn ersetzt: ∧ weglassen.
Integration über orientierte Untermannigfaltigkeiten wird mit Hilfe von Karten de-
finiert; dazu benötigt man , analog zu 13.2.3, Invarianz-Aussagen, aus denen folgt,
dass die Definition unahhängig von der Wahl der Karte ist.

Satz 13.5.2 (Invarianzlemma) Seien U und Ũ offen im Rn, sei

τ : Ũ → U, (t1, ..., tn) 	→ τ(t1, ..., tn) ein Diffeomorphismus mit detJτ > 0.

Ist dann A ⊂ U und Ã :=
−1
τ (A), so gilt für ω ∈ ΩnU :∫

A

ω =
∫
Ã

ω ◦ τ.

Beweis.Nach 11.3.19 ist für ω = fdx1 ∧ ... ∧ dxn:

ω ◦ τ = (f ◦ τ) · detJτdtt ∧ ... ∧ dtn.

Die Substitutionsregel 10.2.9 besagt∫
A

fdx =
∫
Ã

(f ◦ τ) · | detJτ | · dt

und wegen detJτ > 0 ergibt sich:
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A

ω =
∫
A

fdx =
∫
Ã

(f ◦ τ) det Jτdt =
∫
Ã

ω ◦ τ.

�

Dies führt zu folgenden Definitionen (man vergleiche dazu 11.1.8):

Definition 13.5.3 Ein Diffeomorphismus τ heißt orientierungstreu, wenn gilt:

detJτ > 0.

Ist (ϕi : Wi → Vi)i∈I ein Atlas einer Untermanigfaltigkeit M , so heißen zwei
Karten ϕi :Wi → Vi und ϕj : Wj → Vj gleichorientiert, wenn die Abbildung

ϕ−1
j ◦ ϕi : ϕ−1

i (Wi ∩Wj) → ϕ−1
j (Wi ∩Wj)

orientierungstreu ist, also detJϕ−1
j ◦ϕi

> 0.

Ein Atlas heißt orientiert, wenn je zwei Karten gleichorientiert sind.
M heißt orientierbar, wenn es aufM einen orientierten Atlas gibt.

Es gilt:

Satz 13.5.4 (Invarianzsatz) Sind ϕ : W → V und ψ : W̃ → V gleichorientierte
Karten einer k-dimensionalen UntermanigfaltigkeitM ⊂ Rn und ist U ⊂ Rn offen,
A ⊂ V ⊂ U , so gilt für ω ∈ ΩkU :∫

−1
ϕ (A)

ω ◦ ϕ =
∫

−1
ψ (A)

ω ◦ ψ.

Beweis. Es sei τ := ψ−1◦ϕ; dann ist (ω◦ψ)◦τ = ω◦ϕ und aus dem Invarianzlemma
folgt die Behauptung. �

Nun seiM eine orientierte k-dimensionale Untermannigfaltigkeit im Rn, U ⊂ Rn

offen,A ⊂ M ∩ U kompakt und ω ∈ ΩkU ; dann kann man
∫

A
ω folgendermassen

definieren:
Wenn es eine Karte ϕ :W → V gibt mitA ⊂ V , so setzt man

∫
A
ω :=

∫
−1
ϕ (A)

ω◦ϕ.
Nach dem Invarianzsatz ist dies unabhängig von der Wahl der Karte. Andernfalls
wählt man eine Teilung der Eins

∑
k ηk = 1, so dass für jedes k eine Karte ϕk :

Wk → Vk existiert mit Tr(ηk) ⊂ Vk.
Es sei Ak := A ∩ Tr(ηk); dann istAk ⊂ Vk und daher ist Integration über Ak

definiert. Nun setzen wir
∫
A

ηkω :=
∫

Ak

ηkω und definieren

∫
A

ω :=
∑

k

∫
A

ηkω.

Man beachte, dass auf einer k-dimensionalen orientierten Untermannigfaltigkeit nur
die Integration von k-Formen definiert ist.
Wir benötigen vor allem Integration über glatte Ränder ∂A . Mit Hilfe des Norma-
lenfeldes ν kann man die (n-1)-dimensionale Untermannigfaltigkeit ∂A orientieren:



392 13 Integralsätze

Satz 13.5.5 Es sei A ⊂ Rn kompakt mit glattem Rand ∂A und ν das Vektorfeld der
äusseren Normalen. Dann existiert ein Atlas (ϕi)i∈I von ∂A, so dass für alle i ∈ I
gilt:

det(ν ◦ ϕi,
∂ϕi

∂t1
, ...,

∂ϕi

∂tn−1
) > 0

und dieser Atlas ist orientiert. Diese Orientierung von ∂A bezeichnet man als Ori-
entierung bezüglich der äusseren Normalen.

Beweisidee. Man wählt zuerst einen beliebigen Atlas. Falls für ein i ∈ I die oben-
stehende Determinante negativ ist, ersetzt man die in einem geeigneten Quader de-
finierte Karte ϕi(t1, ..., tn−1) durch die Karte ϕi(t1, ..., tn−2,−tn−1); dadurch er-
reicht man , dass sie positiv ist. Nun zeigt man, dass zwei Karten, bei denen diese
Determinante positiv ist, immer gleichorientiert sind. �

Nun vergleichen wir Integration von Differentialformen und von Vektorfeldern:

Satz 13.5.6 Es sei U ⊂ Rn offen, A ⊂ U kompakt mit glattem Rand ∂A und

ω =
n∑

j=1

(−1)j+1vjdx1 ∧ .. ∧ dxj−1 ∧ dxj+1 ∧ .. ∧ dxn ∈ Ωn−1U.

Mit v := (v1, ..., vn) gilt dann: ∫
∂A

ω =
∫

∂A

vdS.

Beweis. Zur Vereinfachung schildern wir den Beweis für n = 3. Es sei

ϕ :W → ∂A ∩ U, (t1, t2) 	→ (t1, t2, ψ(t1, t2))

eine Karte zu ∂A; dann ist∫
∂A∩U

vdS =
∫

−1
ϕ (∂A)

(v ◦ ϕ)√g · (ν ◦ ϕ)dt

mit
√
g · (ν ◦ϕ) = (− ∂ψ

∂t1
,− ∂ψ

∂t2
, 1). Nun geben wir das Integral auf der linken Seite

an:Es ist ϕ = (ϕ1, ϕ2, ϕ3) mit

ϕ1(t1, t2) = t1, ϕ2(t1, t2) = t2, ϕ3(t1, t2) = ψ(t1, t2).

Daher ist

dϕ2 ∧ dϕ3 = dt2 ∧ ( ∂ψ
∂t1

dt1 + ∂ψ
∂t2

dt2) = − ∂ψ
∂t1

dt1 ∧ dt2
dϕ3 ∧ dϕ1 = ( ∂ψ

∂t1
dt1 + ∂ψ

∂t2
dt2) ∧ dt1 = − ∂ψ

∂t2
dt1 ∧ dt2

dϕ1 ∧ dϕ2 = dt1 ∧ dt2.
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Daraus folgt

ω ◦ ϕ =
(

(v1 ◦ ϕ) · (− ∂ψ
∂t1

) + (v2 ◦ ϕ)(− ∂ψ
∂t2

) + (v3 ◦ ϕ)
)

dt1 ∧ dt2 =

= ((v ◦ ϕ) · √g · (ν ◦ ϕ))dt1 ∧ dt2.

Daraus ergibt sich die Behauptung. �

Nun können wir den Satz von Stokes für Differentialformen herleiten:

Satz 13.5.7 (Satz von Stokes)Es sei U ⊂ Rn offen, A ⊂ U kompakt mit glattem
Rand ∂A und ω ∈ Ωn−1U ; dann gilt:∫

A

dω =
∫

∂A

ω.

Beweis. Es ist
∫

∂A

ω =
∫

∂A

vdS und es gilt dω = (div v)dx1 ∧ ... ∧ dxn, also∫
A

dω =
∫
A

div vdx. Nach dem Integralsatz von Gauß ist
∫

∂A

vdS =
∫
A

div vdx.

Daraus folgt die Behauptung. �

Wir geben ohne Beweis eine Verallgemeinerung an: IstM eine k-dimensionale ori-
entierte Untermannigfaltigkeit , so kann man mit Hilfe von Karten für A ⊂ M
definieren, wann A glatten Rand ∂A hat; genauer verfahren wir wie folgt:
Sei p ∈M und ϕ eine zugehörige Karte und p = ϕ(c). Die Funktionalmatrix Jϕ(c)
ist eine n× k-Matrix. Die Vektoren ∂ϕ

∂t1
(c), . . . , ∂ϕ

∂tk
(c) bilden eine Basis von TpM .

Demnach ist
Jϕ(c) : Rk → TpM

ein Isomorphismus. Irgendeine Basis von TpM heißt positiv orientiert, wenn sie
unter der Funktionalmatrix Jϕ(c) Bild einer positiv orientierten Basis des Rk ist
( man vergleiche dazu 7.9.43). Insbesondere ist die Basis ∂ϕ

∂t1
, . . . , ∂ϕ

∂tk
positiv

orientiert, da ∂ϕ
∂tj

= Jϕ(c)ej ist ; dabei sind e1, . . . , ek die Einheitsvektoren des Rk.
FürA ⊂M ist ∂A die Menge der Randpunkte vonA inM . Ist also zum BeispielM
eine Fläche im R3, so ist A eine kompakte Teilmenge, die von einer Flächenkurve
∂A berandet wird. ∂A ist demnach im allgemeinen Fall eine (k-1)-dimensionale
Untermannigfaltigkeit vonM . Für eine Karte ψ von ∂A liegen also ∂ψ

∂tt
, . . . , ∂ψ

∂tk−1

im Tangentialraum an A. Wir fordern, dass in ∂A ein inM \A, also in das Äussere
von A inM weisender Vektor n der Länge 1 existiert (äussere Normale), der

• 1. im Tangentialraum an A liegt,
• 2. orthogonal zu ∂ψ

∂t1
, . . . , ∂ψ

∂tk−1
ist.

Entsprechend 13.5.5 sagen wir, dass ∂A bezüglich der äusseren Normalen orientiert
ist oder glatten Rand hat, wenn auf ∂A die Vektoren n ◦ ψ, ∂ψ

∂tt
, . . . , ∂ψ

∂tk−1
eine

positiv orientierte Basis des jeweiligen Tangentialraums an M bilden. Also hängt
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diese Definition mit dem Atlas von M zusammen. Ein wichtiges Beispiel werden
wir gleich kennen lernern.

Satz 13.5.8 (Allgemeiner Satz von Stokes) Ist M eine k-dimensionale orientier-
te Untermannigfaltigkeit, die in einer offenen Menge U des Rn liegt, ist A ⊂ M
kompakt mit glattem Rand, so gilt für ω ∈ Ωk−1U :∫

A

dω =
∫

∂A

ω.

Daraus ergibt sich:

Satz 13.5.9 (Spezieller Satz von Stokes) Es sei M eine zweidimensionale orien-
tierte Untermannigfaltigkeit des R3 und A ⊂ M eine kompakte Teilmenge vonM
mit glattem Rand ∂A.Ist dann U ⊂ R3 offen, A ⊂ U, und ist

v : U → R3

ein Vektorfeld, so gilt: ∫
A

rot v dS =
∫

∂A

vds

Beweis. Man definiert durch ω := vds eine 1-Form in U ; dann ist dω = rotvdS
und aus dem allgemeinen Satz von Stokes folgt die Behauptung. �

Wir erläutern den speziellen Satz von Stokes 13.5.9, indem wir ihn in eine oft in
Lehrbüchern zu findende Form umschreiben und auf die Frage der Orientierung
eingehen. Als orientierte Untermanigfaltigkeit hat M ein stetiges Normalenfeld ν
und wir erhalten ∫

A

rotv dS = ±
∫
A

rotv · νdS.

M braucht nicht notwendig ein Volumen zu beranden. Also gilt: Neben ν steht
auch −ν als Normalenfeld zur Verfügung. ∂A können wir uns als geschlosse-
ne Flächenkurve mit der Einfachheit halber ein und demselben Kurvenparameter
t, a ≤ t ≤ b, und Tangentenvektor t vorstellen. n ist die nach aussen weisende
Normale an ∂A im Tangentialraum anM . Sei n, t in ∂A positiv orientierte Basis
des Tangentialraums anM . Dann haben wir mit

∫
∂A

v · ds =

b∫
a

v · tdt

entweder ∫
A

rotv · νdS =

b∫
a

v · tdt falls det(ν,n, t) > 0,
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oder

−
∫
A

rotv · νdS =

b∫
a

v · tdt falls det(ν,n, t) < 0.

Die Vektoren ν,n, t müssen also eine positiv orientierte Basis des R3 bilden.

A

M

t

ν

n

In diesem Satz wird also das Wirbelfeld von v mit dem Integral von v über die A
berandende Kurve ∂A verknüpft, der Zirkulation von v über ∂A. Offenbar kommt
es nur auf diese Kurve und nicht auf die in ∂A eingespannte Fläche an.

Nun ordnen wir Satz 13.5.7 dem allgemeinen Satz von Stokes 13.5.8 unter und dis-
kutieren den Zugewinn aus Satz 13.5.8 gegenüber Formulierungen wie dem Gauß
schen Integralsatz im Rn 13.3.6 oder dem speziellen Satz von Stokes 13.5.9. Ver-
sehen wir U wie in 13.5.7 mit der trivialen Karte ϕ = idU : U → U , so ist U
Mannigfaltigkeit der Dimension n. Sie ist orientiert. ϕ hat die Einheitsmatrix als
Funktionalmatrix. Die Tangentialvektoren sind die Einheitsvektoren des Rn. Die
Voraussetzung

”
glatter Rand “in 13.5.7 garantiert also die Anwendbarkeit des Sat-

zes 13.5.8 und unsere Erörterungen zeigen, dass es sich um einen einfachen Fall
handelt. Die Formulierung in der Sprache der Differentialformen lässt sofort er-
kennen, dass Satz 13.5.8 sowohl bei Koordinatentransformationen des umgebenden
Raumes als auch bei Einführung neuer lokaler Koordinaten seine Gültigkeit behält,
sofern die Orientierungen der Atlanten vonM und ∂A sich nicht ändern. Führen wir
etwa in U durch x = Φ(y) mit positiver Funktionaldeterminante neue Koordinaten
y ein, so haben wir, wenn Φ−1(∂A) = ∂Φ(∂A) der Rand von Φ−1(A) in Φ−1(M)
ist, die Beziehungen∫
∂A

ω =
∫
A

dω =
∫

Φ−1(A)

dω◦Φ =
∫

Φ−1(A)

d(ω◦Φ) =
∫

∂Φ−1(A)

ω◦Φ =
∫

Φ−1(∂A)

ω ◦Φ.

Dabei haben wir den Satz von Stokes, die Invarianzeigenschaften 13.5.4 und 11.3.17,
wieder den Satz von Stokes und dann unsere Annahme benutzt. Satz 13.5.8 ist
die invariante Formulierung des Satzes von Stokes. Weil sie invariant ist, erkennt
man sofort, dass zum Beweis nur eine möglichst einfache Koordinatenbeschreibung
herangezogen zu werden braucht. Das haben wir bei 13.5.7 ausgenutzt, indem wir
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auf den Gaußśchen Integralsatz im Rn 13.3.6 zurückgegriffen haben. Generell sind
Rechnungen mit der äusseren Ableitung d und transformierten Differentialformen
einfacher als mit div, rot, grad und ihren Umschreibungen auf neue Koordinaten.

Aufgaben

13.1. Sei Q := [0, 1]×[0, 1]; berechnen Sie direkt und durch Integration über Q das folgende
Integral:

�
∂Q

y2dx + x3ydy.

13.2. Sei A := {(x, y) ∈ R2| 1 ≤ x ≤ 2, x ≤ y ≤ x2}; berechnen Sie direkt und durch

Integration über A das Integral
�

∂A

x2

y
dx.

13.3. Sei Q := [0, 1] × [0, π]; berechnen Sie
�
Q

y · sin(xy)dxdy.

13.4. Sei A ⊂ R2 der im ersten Quadranten liegende Teil der Einheitskreisscheibe; berech-
nen Sie

�
A

xy · dxdy direkt und durch Transformation auf Polarkoordinaten.

13.5. Berechnen Sie den Flächeninhalt von {(x, y) ∈ R2| 0 ≤ x ≤ 1, x3 ≤ y ≤ x2}.
13.6. Sei M := {(x1, x2, x3) ∈ R3| x3 = x2

1x2},
ω := dx3 ∧ dx1 + x2

1dx1 ∧ dx2

und A := {(x1, x2, x3) ∈ M | x2
1 + x2

2 ≤ 1}. Berechnen Sie
�
A

ω.

Es liege im folgenden die Situation des Satzes 13.5.9 (Spezieller Satz von Stokes) vor. Seien
(Ti, ϕi, Vi) die Karten von M , für die wir einfach (T, ϕ, V ) schreiben. Als Normalenvektor
nehmen wir

ν(t) = ν(ϕ(t)) =
1�

g(ϕ(t))
·
�

∂ϕ

∂t1
× ∂ϕ

∂t2

�
,

so dass M positiv orientiert ist. v ist wie in Satz 13.5.9.

13.7. a) Zeigen Sie für a, b, c ∈ R3:

a × (b × c) = < a, c > b− < a, b > c.

b) ν × v ist Tangentialfeld an M . Berechnen Sie mit a) den Vektor ν × v als Linearkombi-
nation von ∂ϕ

∂t1
und ∂ϕ

∂t2
.

13.8. Sei a(t) ein stetig differenzierbares Tangentialfeld auf M , d.h.

a(t) = a1(t)
∂ϕ

∂t1
+ a2(t)

∂ϕ

∂t2
.

Zeigen Sie, dass es immer ein stetig differenzierbares Tangentialfeld v auf M gibt mit

a(t) = ν(t) × v(t).

Hinweis: Benutzen Sie 11.6 a).
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13.9. a) Für ein Tangentialfeld

a(t) = a1(t)
∂ϕ

∂t1
+ a2(t)

∂ϕ

∂t2

heißt

Div a :=
1√
g

�
∂

∂t1
(
√

ga1) +
∂

∂t2
(
√

ga2)

�

die Flächendivergenz von a. Berechnen Sie Div (ν × v) für ν × v aus 11.6 b).
b) Berechnen Sie < rot v, ν > und zeigen Sie

< rotv, ν > = −Div(ν × v).

Hinweis: In Teil b) lässst sich der sogenannte ε-Tensor anwenden, insbesondere Satz 7.14.17
und Satz 7.14.16.

13.10. Sei a ein Tangentialfeld auf M , sei n wie in der Abbildung zum speziellen Satz von
Stokes und s die Bogenlänge auf ∂A; weiter sei |∂A| die Länge der geschlossenen Kurve
∂A. Zeigen Sie

�
A

( Div a) dS =

|∂A|�
0

< a , n > ds.

Hinweis: Benutzen Sie zunächst Aufgabe 13.8 für die Darstellung a = ν × v. Von v
dürfen Sie voraussetzen, dass v sich zu einem stetig differenzierbaren Vektorfeld v : U →
R3, M ⊂ U ⊂ R3, U offen, fortsetzen lässt. Dann kann man Aufgabe 13.9 b) und Satz
13.5.9 anwenden.
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Funktionentheorie

14.1 Holomorphe Funktionen

In der Funktionentheorie befassen wir uns mit komplexwertigen Funktio-
nen einer komplexen Variablen z. Von besonderem Interesse sind die nach
z (komplex) differenzierbaren sogenannten holomorphen Funktionen. Sie
sind durch ihr Verhalten im Kleinen vollständig bestimmt und gestatten um
jeden Punkt ihres Definitionsbereiches eine Potenzreihenentwicklung. In
Kapitel 4 hatten wir bereits wichtige elementare Funktionen durch Potenz-
reihenentwicklung als holomorphe Funktionen gewonen. Wir gehen auf ei-
nige der zahlreichen Anwendungen ein wie etwa Berechnung von unei-
gentlichen Integralen, Berechnung des Hauptwertes von Integralen, ebene
Strömungen und Randwertprobleme harmonischer Funktionen.

Wir erinnern zuerst an Grundbegriffe für die komplexen Zahlen C:
Ist z = x+iy ∈ C mit x, y ∈ R, so heißt x der Realteil und y der Imaginärteil von z;
wir schreiben x = Re(z), y = Im (z). Die konjugiert komplexe Zahl ist z̄ = x− iy,
also Re(z) = z+z̄

2 und Im (z) = z−z̄
2i . Der Betrag ist |z| =

√
x2 + y2 =

√
z · z̄.

Für z0 ∈ C und r ∈ R, r > 0, ist Ur(z0) = {z ∈ C| |z − z0| < r} die offene
Kreisscheibe um z0 mit Radius r und Ūr(z0) = {z ∈ C| |z − z0| ≤ r} ist die
abgeschlossene Kreisscheibe; mit ∂Ur(z0) = {z ∈ C| |z − z0| = r} bezeichnet
man den Rand.
Eine Menge D ⊂ C heißt offen, wenn es zu jedem z0 ∈ D ein r > 0 gibt mit
Ur(z0) ⊂ D.
Eine Menge A ⊂ C heißt abgeschlossen, wenn C \ A = {z ∈ C|z �∈ A} offen ist.
Die abgeschlossene Hülle vonX ist X̄ = {z ∈ C|Ur(z) ∩X �= ∅ für alle r > 0}.
Definition 14.1.1 Es sei D ⊂ C offen; ist f : D → C eine Funktion, c ∈ C, und
p ∈ D̄,so schreibt man

lim
z→p
f(z) = c,

wenn es zu jedem ε > 0 ein δ > 0 gibt, so dass für alle z ∈ D mit |z − p| < δ gilt:
|f(z) − c| < ε.
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Für p ∈ D und f : D \ {p} → C schreibt man

lim
z→p
f(z) = ∞,

wenn zu jedemM > 0 ein δ > 0 existiert, so dass für alle z ∈ D mit 0 < |z−p| < δ
gilt: |f(z)| > M.
Ist f : C → C eine Funktion, so dass zu jedem M > 0 ein R > 0 existiert mit
|f(z)| > M für |z| > R, so schreibt man

lim
z→∞ f(z) = ∞.

Eine Funktion f : D → C ist in z0 ∈ D genau dann stetig, wenn lim
z→z0

f(z) = f(z0)

ist.

Mit Einführung der komplexen Zahlen haben wir R2 zu einem Körper C gemacht, in
dem wir zusätzlich über offene Mengen (dieselben wie im R2) und den Grenzwert-
begriff verfügen. Damit können wir ausser der Stetigkeit komplexwertiger Funk-
tionen durch Bildung des Differenzenquotienten die Grundbegriffe der Funktionen-
theorie: komplexe Differenzierbarkeit und Holomorphie einführen.

Definition 14.1.2 Es sei D ⊂ C offen; eine Funktion f : D → C heißt in z0 ∈ D
komplex differenzierbar, wenn es eine komplexe Zahl f ′(z0) gibt mit folgender
Eigenschaft: Zu jedem ε > 0 existiert ein δ > 0, so dass für alle z ∈ D mit
0 < |z − z0| < δ gilt: ∣∣∣∣f(z) − f(z0)z − z0 − f ′(z0)

∣∣∣∣ < ε,
also

lim
z→z0

f(z) − f(z0)
z − z0 = f ′(z0).

Wenn f in jedem Punkt z0 ∈ D komplex differenzierbar ist, dann heißt f holo-
morph.

Wie im Reellen gilt (man vergleiche 3.1.2):

Satz 14.1.3 Ist f : D → C eine Funktion, so gilt:

(1) Wenn f in z0 ∈ D komplex differenzierbar ist, so ist die Funktion

q : D → C, z 	→
{ f(z)−f(z0)

z−z0
falls z �= z0,

f ′(z0) falls z = z0

in z0 stetig

(2) Wenn es eine in z0 ∈ D stetige Funktion q : D → C gibt mit q(z) = f(z)−f(z0)
z−z0

für z �= z0, so ist f in z0 komplex differenzierbar und f ′(z0) = q(z0).
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Setzt man c = f ′(z0) und ϕ(z) = q(z) − c , so erhält man:

Satz 14.1.4 Es sei D ⊂ C offen ; eine Funktion f : D → C ist in z0 ∈ D genau
dann komplex differenzierbar, wenn es ein c ∈ C und eine Funktion ϕ : D → C
gibt mit

f(z) = f(z0) + c · (z − z0) + (z − z0) · ϕ(z) für z ∈ D und lim
z→z0

ϕ(z) = 0.

Es ist naheliegend, den Begriff der Fortsetzbarkeit einer Funktion einzuführen:

Definition 14.1.5 Es sei z0 ∈ D ⊂ C und f : D \ {z0} → C sei eine stetige bzw.
holomorphe Funktion. f heißt stetig bzw. holomorph in den Punkt z0 fortsetzbar,
wenn ein c ∈ C existiert, so dass die Funktion

f̃ : D → C, z 	→
{
f(z) für z �= z0
c für z = z0

,

stetig bzw. holomorph ist.

Eine Funktion ist also in z0 genau dann komplex differenzierbar, wenn der Diffe-
renzenquotient f(z)−f(z0)

z−z0
stetig in z0 fortsetzbar ist.

Die Menge der in D holomorphen Funktionen bezeichnet man mit

O(D).

Für f, g ∈ O(D) ist auch f + g, f · g ∈ O(D) und für die Ableitung gelten die
üblichen Rechenregeln.

Die wichtigsten holomorphen Funktionen sind die Potenzreihen.Wir zeigen analog
zu 4.1.3, dass jede konvergente Potenzreihe holomorph ist und gliedweise differen-
ziert werden darf. Anders als im Reellen gilt jedoch hier auch die Umkehrung : In
14.6.2 werden wir beweisen, dass man jede holomorphe Funktion lokal durch eine
Potenzreihe darstellen kann.

Satz 14.1.6 Die Potenzreihe
∞∑

n=0
anz

n mit an ∈ C sei in D := {z ∈ C| |z| < r}
konvergent. Dann ist die Funktion

f : D → C, z 	→
∞∑

n=0

anz
n

holomorph und es gilt:

f ′(z) =
∞∑

n=1

nanz
n−1.
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Beweis. Man kann den Beweis wie bei 4.1.3 führen.
Wir geben noch einen anderen Beweis, bei dem wir Aussagen über gleichmäßige
Konvergenz heranziehen, die uns bei 4.1.3 noch nicht zur Verfügung standen ( man
vergleiche dazu R. REMMERT [26] ).
Es sei |w| < r ; es ist zu zeigen, dass f inw komplex differenzierbar ist. Wir wählen
� mit |w| < � < r und definieren in |z| ≤ � :

q(z) :=

⎧⎨⎩
f(z)−f(w)

z−w falls z �= w
∞∑

n=1
nanw

n−1 falls z = w

Zu beweisen ist lim
z→w
q(z) = q(w), also die Stetigkeit von q in w. Setzt man

g1(z) := 1 und

gn(z) := zn−1 + zn−2w + . . .+ zwn−2 + wn−1 für n > 1,

so ist
(z − w)gn(z) = zn − wn und gn(w) = nwn−1.

Für |z| ≤ � gilt:

q(z) =
∞∑

n=1

angn(z)

und
|gn(z)| ≤ n�n−1.

Somit ist
∞∑

n=1
n|an|�n−1 eine konvergente Majorante zu

∞∑
n=1
angn. Nach dem Ma-

jorantenkriterium 6.1.8 konvergiert diese Reihe dort gleichmäßig gegen q und daher
ist q in |z| ≤ � stetig. �

Beispiel 14.1.7 Aus diesem Satz folgt, dass die Exponentialfunktion

exp : C → C, z 	→
∞∑

n=0

zn

n!

holomorph und (ez)′ = ez ist. Oft schreiben wir ez = exp(z) ;für z = x + iy ist
ez = ex · eiy = ex(cos y + i sin y).
Wir wollen nun die dadurch gegebene Abbildung näher beschreiben:
Bei festem y0 ∈ R ist das Bild der Geraden {x + iy ∈ C| x ∈ R, y = y0} ein von
0 im Winkel y0 ausgehender Halbstrahl ohne Nullpunkt.
Wählt man ein x0 ∈ R, so wird die Strecke {x+ iy ∈ C| x = x0, 0 ≤ y < 2π}
durch die Exponentialfunktion auf die Kreislinie um 0 mit Radius ex0 abgebildet;
für x0 < 0 ist der Radius < 1 und für x0 > 0 ist er > 1.

Die Abbildung

{x+ iy ∈ C|x ∈ R, 0 ≤ y < 2π} → C∗, z 	→ ez,

ist bijektiv.
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πi

2πi

2πi

exp

exp

0

0

14.2 Die Cauchy-Riemannschen Differentialgleichungen

Es sollen nun die Beziehungen zwischen komplexer und reeller Differenzierbarkeit
untersucht werden. IstD ⊂ C offen und f : D → C, so fassen wirD ⊂ R2 auf und
setzen

u : D → R, (x, y) 	→ Ref(x+ iy), v : D → R, (x, y) 	→ Imf(x+ iy).

Dann ist f(x+ iy) = u(x, y) + iv(x, y) und wir schreiben kurz

f = u+ iv.

Es gilt:

Satz 14.2.1 (Cauchy-Riemannsche Differentialgleichungen) Eine Funktion
f = u + iv ist genau dann holomorph, wenn die Funktionen u, v (total) differen-
zierbar sind und wenn gilt:

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v
∂x
.
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Diese Differentialgleichungen nennt man die Cauchy-Riemannschen Differential-
gleichungen.
Beweis. Wir beweisen die Aussagen für jedes z0 ∈ D und nehmen z0 = 0 an.

(1) Es sei f inD holomorph, dann ist

f(z) = f(0) + c · z + z · ϕ(z), lim
z→0
ϕ(z) = 0.

Zerlegung in Real- und Imaginärteil liefert:

z = x+ iy, f = u+ iv, ϕ = α+ iβ, c = a+ ib.

Damit folgt:

u(x, y)+iv(x, y) = (u(0)+iv(0))+(a+ib)(x+iy)+(x+iy)(α(x, y)+iβ(x, y))

und somit (in abgekürzter Schreibweise):

u = u(0) + (ax − by) + (xα− yβ)
v = v(0) + (bx+ ay) + (xβ + yα)

Wir setzen

Φ(x, y) :=
xα− yβ√
x2 + y2

und Ψ(x, y) :=
xβ + yα√
x2 + y2

.

Wegen | x√
x2+y2

| ≤ 1 , | y√
x2+y2

| ≤ 1 ist |Φ| ≤ |α| + |β| und daher gilt Φ→ 0 und

ebenso Ψ → 0. Aus

u(x, y) = u(0) + (ax− by) +
√
x2 + y2 · Φ(x, y)

v(x, y) = v(0) + (bx+ ay) +
√
x2 + y2 · Ψ(x, y)

folgt die Differenzierbarkeit von u, v in 0 und

ux(0) = a, uy(0) = −b
vx(0) = b, vy(0) = a,

also ux = vy, uy = −vx.
(2) Nun seien u, v differenzierbar und die Cauchy-Riemanschen Differentialglei-
chungen seien erfüllt. Mit

a := ux(0) = vy(0) , b := −uy(0) = vx(0)

ist dann

u(x, y) = u(0) + (ax− by) +
√
x2 + y2ϕ1(x, y), lim

(x,y)→0
ϕ1(x, y) = 0,

v(x, y) = v(0) + (bx+ ay) +
√
x2 + y2ϕ2(x, y), lim

(x,y)→0
ϕ2(x, y) = 0.
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Daher ist :

f(z) = u(x, y) + iv(x, y) = f(0) + (a+ ib)z + |z| · (ϕ1(x, y) + iϕ2(x, y))

und daraus folgt, dass f in z0 = 0 holomorph ist und

f ′(0) = a+ ib = ux(0) + ivx(0) =
1
i
(ivy(0) + uy(0)).

�

Wir formulieren die Aussage über f ′(0) noch als Satz:

Satz 14.2.2 Wenn f = u+ iv holomorph ist, dann gilt

f ′ = ux + ivx =
1
i
(uy + ivy) = ux − iuy = vy + ivx.

Beispiel 14.2.3 Es sei f : C → C, z 	→ z2 also f(z) = (x2 − y2) + 2ixy, somit
u(x, y) = x2 − y2, v(x, y) = 2xy und daher

ux(x, y) = 2x = vy(x, y), uy(x, y) = −2y = −vx(x, y);

f ist holomorph.

Beispiel 14.2.4 Es sei f(z) := 1
2 (z+ z̄) = x . Dann ist u(x, y) = x, v(x, y) = 0.

Die Cauchy-Riemannschen Differentialgleichungen sind offensichtlich nicht erfüllt;
f ist nicht holomorph. Dies sieht man auch direkt: Für reelles h �= 0 ist der Diffe-
renzenquotient f(h)−f(0)

h = h
h = 1 und f(ih)−f(0)

ih = 0: daher existiert der Limes
des Differenzenquotienten für h→ 0 nicht.

14.3 Kurvenintegrale

Es sei immer D eine offene Menge in C und γ : [a, b] → D, t 	→ x(t) + iy(t),
eine stückweise stetig differenzierbare Kurve in D; die Ableitung nach t ist γ̇(t) =

ẋ(t) + iẏ(t) und die Länge von γ ist Lγ :=
b∫

a

|γ̇(t)|dt (vgl.9.5.1).

Definition 14.3.1 Ist f : D → C eine stetige Funktion und γ : [a, b] → D eine
stückweise stetig differenzierbare Kurve in D, so heißt∫

γ

f(z)dz :=

b∫
a

f(γ(t))γ̇(t)dt

das Kurvenintegral von f längs γ; ausführlich geschrieben:∫
γ

f(z)dz :=
b∫
a

(
u(x(t), y(t)) · ẋ(t) − v(x(t), y(t)) · ẏ(t)

)
dt +

+i
b∫

a

(
u(x(t), y(t)) · ẏ(t) + v(x(t), y(t)) · ẋ(t)

)
dt
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Natürlich heißt eine holomorphe Funktion F Stammfunktion von f , wenn F ′ = f
ist. Es gilt:

Satz 14.3.2 Ist f : D → C stetig und F : D → C eine Stammfunktion von f , so
gilt für jede stückweise stetig differenzierbare Kurve γ : [a, b] → D:∫

γ

f(z)dz = F (γ(b)) − F (γ(a))

und für jede geschlossene Kurve γ in D ist∫
γ

f(z)dz = 0.

Beweis. Es ist d
dtF ◦ γ(t) = F ′(γ(t)) · γ̇(t) = f(γ(t)) · γ̇(t) und daraus folgt∫

γ f(z)dz = F ◦ γ|ba. �

Wir führen nun einige Bezeichnungen für Kurvenintegrale ein:
Die Kurve γ : [0, 1] → C, t 	→ z1 + t(z2 − z1) durchläuft die Strecke von z1 nach
z2 und wir setzen

z2∫
z1

:=
∫
γ

.

Ist Q eine achsenparalleles Rechteck mit den Eckpunkten z1, z2, z3, z4,die wir so
durchlaufen, dass Q links liegt, so setzen wir∫

∂Q

:=

z2∫
z1

+

z3∫
z2

+

z4∫
z3

+

z1∫
z4

.

Mit γ : [0, 1] → C, t 	→ z0 + r · e2πit definieren wir∫
|z−z0|=r

:=
∫
γ

Beispiel 14.3.3 Für r > 0 gilt: ∫
|z|=r

dz
z

= 2πi,

denn es ist
∫

|z|=r

dz
z =

1∫
0

2πire2πit

re2πit dt = 2πi.Dieses Integral ist �= 0 und daher besitzt

C \ {0} → C, z 	→ 1
z

keine Stammfunktion.
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Ein Gebiet ist eine offene zusammenhängende Menge (9.1.22); in einem Gebiet
kann man zwei Punkte immer durch eine stückweise stetig differenzierbare Kurve
verbinden. Wir zeigen:

Satz 14.3.4 Ist f : D → C im GebietD ⊂ C stetig und sind F und G Stammfunk-
tionen von f , so ist F −G konstant.

Beweis. Es seien z1, z2 ∈ D; man wählt eine Verbindungskurve γ in D von z1
nach z2. Dann ist F (z2) − F (z1) =

∫
γ f(z)dz = G(z2) −G(z1) und daraus folgt

(G− F )(z1) = (G− F )(z2). �

Satz 14.3.5 Ist f : D → C stetig und |f(z)| ≤M für z ∈ D, so gilt für jede Kurve
γ in D: ∣∣∣∣∣∣

∫
γ

f(z)dz

∣∣∣∣∣∣ ≤M · Lγ .

Beweis. | ∫γ f(z)dz| = | ∫ b

a f(γ(t))γ̇(t)dt| ≤M · ∫ b

a |γ̇(t)|dt =MLγ . �

Wir benötigen noch Aussagen über die Vertauschung von Grenzprozessen. Dazu
führen wir folgenden Begriff ein:

Definition 14.3.6 Eine Folge (fn)n von Funktionen fn : D → C heißt kompakt
konvergent gegen f : D → C, wenn sie auf jeder kompakten Teilmenge K ⊂ D
gleichmäßig gegen f konvergiert;
es gibt also zu jedem ε > 0 und jedem kompakten K ⊂ D einen Index N , so dass
für alle n ≥ N und alle z ∈ K gilt: |fn(z) − f(z)| < ε.
Eine Reihe

∑
n fn heißt kompakt konvergent, wenn dies für die Folge der Partial-

summen gilt.

Es gilt:

Satz 14.3.7 (Vertauschung von Limes und Integration) Wenn die Folge (fn)n

stetiger Funktionen fn : D → C kompakt gegen f : D → C konvergiert, so gilt für
jede stückweise stetig differenzierbare Kurve γ inD:

lim
n→∞

∫
γ

fn(z)dz =
∫
γ

f(z)dz

und für eine kompakt konvergente Reihe stetiger Funktionen ist

∞∑
n=1

∫
γ

fn(z)dz =
∫
γ

(
∞∑

n=1

fn(z))dz.

Beweis. Weil γ([a, b]) kompakt ist, gibt es zu jedem ε > 0 ein N , so dass für
z ∈ γ(|a, b]) und n ≥ N gilt:|fn(z) − f(z)| < ε. Dann folgt:
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∫
γ

fn(z)dz −
∫
γ

f(z)dz

∣∣∣∣∣∣ ≤
∫
γ

|fn(z) − f(z)|dz ≤ ε · Lγ .

Daraus folgt die Behauptung. �

In der Funktionentheorie ist der Begriff der kompakten Konvergenz wichtig, denn
konvergente Potenzreihen sind kompakt konvergent:

Satz 14.3.8 Wenn die Potenzreihe
∞∑

n=0
anz

n in |z| < r konvergiert, so ist sie dort

kompakt konvergent.

Beweis. Zu jeder kompakten MengeK ⊂ Ur(0) existiert ein � < r mitK ⊂ U�(0);

für z ∈ K ist dann
∞∑

n=0
|an|�n eine konvergente Majorante zu

∞∑
n=0
anz

n und aus

dem Majorantenkriterium 6.1.8 folgt die gleichmäßige Konvergenz. �


14.4 Stammfunktionen

In diesem Abschnit zeigen wir, dass jede in einer offenen Kreisscheibe holomorphe
Funktion eine Stammfunktion besitzt. Zunächst beweisen wir:

Satz 14.4.1 Es sei D := {z ∈ C| |z − z0| < r} eine offene Kreisscheibe und
f : D → C eine stetige Funktion. Für jedes achsenparallele RechteckQ ⊂ D gelte∫

∂Q

f(z)dz = 0.

Dann existiert eine holomorphe Funktion F : D → C mit F ′ = f.

Beweis. Wir dürfen z0 = 0 annehmen. Für z = x+ iy ∈ D setzen wir

F (z) :=

x∫
0

f(ζ)dζ +

x+iy∫
x

f(ζ)dζ.

Es sei Q das Rechteck mit den Ecken 0, x, x+ iy, iy; weil

x∫
0

f(ζ)dζ +

x+iy∫
x

f(ζ)dζ +

iy∫
x+iy

f(ζ)dζ +

0∫
iy

f(ζ)dζ =
∫

∂Q

f(ζ)dζ = 0

ist, gilt:

F (z) =

iy∫
0

f(ζ)dζ +

x+iy∫
iy

f(ζ)dζ.
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Es sei f = u + iv und F = U + iV ; wir berechnen nun Ux. Sei z = x + iy ∈ D,
h ∈ R, h �= 0 und z + h ∈ D. Dann gilt

F (z + h) − F (z) =

x+h+iy∫
x+iy

f(ζ)dζ =

1∫
0

(
u(x+ th, y) + iv(x + th, y)

)
· h · dt.

Der Übergang zum Realteil liefert

U(x+ h, y) − U(x, y) = h ·
1∫

0

u(x+ th, y)dt.

Nach dem Mittelwertsatz der Integralrechnung existiert ein ϑ mit 0 ≤ ϑ ≤ 1 , so
dass gilt:

1∫
0

u(x+ th, y)dt = u(x+ ϑh, y).

Daraus folgt:

lim
h→0

U(x+ h, y) − U(x, y)
h

= lim
h→0
u(x+ ϑh, y) = u(x, y).

Daher existiert Ux und aus Ux = u folgt, das Ux stetig ist. Analog berechnet man
die anderen partiellen Ableitungen von U, V. Es ergibt sich:

Ux = u, Uy = −v
Vx = v, Vy = u.

Daher sind U, V stetig partiell differenzierbar und die Cauchy-Riemannschen Dif-
ferentialgleichungen sind erfüllt. Somit ist F = U + iV holomorph und es gilt
F ′ = Ux + iVx = u+ iv = f. �

Nun beweisen wir eine Aussage, die man als das Integrallemma von Goursat be-
zeichnet (EDOUARD GOURSAT (1858 - 1936)):

Satz 14.4.2 (Integrallemma von Goursat) Es sei D offen und f : D → C holo-
morph. Dann gilt für jedes achsenparallele RechteckQ ⊂ D∫

∂Q

f(z)dz = 0.

Beweis. Durch Halbieren der Seiten teilen wir Q in vier Teilrechtecke Q1, ..., Q4.
Es ist ∫

∂Q

f(z)dz =
∫

∂Q1
f(z)dz + ...+

∫
∂Q4
f(z)dz.

Unter den Teilrechtecken Q1, ..., Q4 kann man eines, das wir nun mit Q1 bezeich-
nen, so auswählen, dass gilt:
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∂Q1

f(z)dz
∣∣∣∣ ≥ 1

4

∣∣∣∣∫
∂Q

f(z)dz
∣∣∣∣ .

Nun teilt man Q1 in vier Teilrechtecke und wählt unter diesen ein Q2 so, dass gilt:∣∣∣∣∫
∂Q2

f(z)dz
∣∣∣∣ ≥ 1

4

∣∣∣∣∫
∂Q1

f(z)dz
∣∣∣∣ .

Auf diese Weise erhält man eine Folge von Rechtecken

Q ⊃ Q1 ⊃ Q2 ⊃ ... ⊃ Qm ⊃ ...

mit ∣∣∣∣∫
∂Qm

f(z)dz
∣∣∣∣ ≥ 1

4m

∣∣∣∣∫
∂Q

f(z)dz
∣∣∣∣ .

Bezeichnet man mit L(∂Q) den Umfang vonQ, so gilt :

L(∂Qm) = 2−mL(∂Q).

Für jedes m ∈ N wählt man nun einen Punkt qm ∈ Qm; dann ist (qm)m eine
Cauchyfolge, die gegen einen Punkt q ∈ Q konvergiert. Nun sei ε > 0 vorgegeben.
Weil f holomorph ist, existiert ein δ > 0 und ein ϕ : D → C , so dass für
z ∈ Uδ(q) ⊂ D gilt:

f(z) = f(q) + (z − q)f ′(q) + (z − q)ϕ(z) und |ϕ(z)| < ε.

Nun wählen wirm so gross, dass Qm ⊂ Uδ(q) ist, dann gilt:∫
∂Qm

f(z)dz =
∫

∂Qm

(
f(q) + f ′(q)(z − q)

)
dz +

∫
∂Qm

(z − q)ϕ(z)dz.

Die Funktion z 	→ f(q)+f ′(q)(z−q) hat eine Stammfunktion und daher verschwin-
det der erste Summand auf der rechten Seite. Für z ∈ Qm ist |z − q| ≤ L(∂Qm)
und |ϕ(z)| < ε, daher ergibt sich∣∣∣∣∫

∂Qm

f(z)dz
∣∣∣∣ =

∣∣∣∣∫
∂Qm

(z − q)ϕ(z)dz
∣∣∣∣ ≤ L(∂Qm) · ε · L(∂Qm).

Daraus folgt:
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∣∣∣ ≤ 4m

∣∣∣∫∂Qm
f(z)dz

∣∣∣ ≤ 4m · ε · L(∂Qm)2 =

= 4m · ε ·
(
2−m · L(∂Q)

)2

= ε · L(∂Q)2.

Dies gilt für jedes ε > 0, somit folgt∫
∂Q

f(z)dz = 0.

�

Aus 14.4.1 und 14.4.2 folgt:

Satz 14.4.3 Ist D ⊂ C eine offene Kreisscheibe, so existiert zu jeder holomorphen
Funktion f : D → C eine Stammfunktion F : D → C.

Wir benötigen eine Verallgemeinerung des Integrallemmas :

Satz 14.4.4 ( Verallgemeinertes Integrallemma ) Es seiD ⊂ C eine offene Kreis-
scheibe, p ∈ D. Ist dann η : D → C eine stetige Funktion, die inD\{p} holomorph
ist, so gilt für jedes achsenparallele RechteckQ ⊂ D∫

∂Q

η(z)dz = 0

und daher besitzt η eine Stammfunktion.

Beweis. Es sei Q ein achsenparalleles Rechteck in D mit p ∈ Q.Wenn p kein Eck-
punkt von Q ist, dann unterteilen wir Q in Teilrechtecke, in denen p Eckpunkt ist.

p

p

Es genügt, die Aussage für jedes Teilrechteck zu beweisen. Somit dürfen wir an-
nehmen, dass p Eckpunkt von Q ist.Nun unterteilen wir Q in vier Teilrechtecke
R1, .., R4 so, dass p ∈ R1 gilt und R1 ein Quadrat mit Seitenlänge ε > 0 ist.

p ε

ε R1 R2

R3R4

Für j = 2, 3, 4 ist
∫

∂Rj

η(z)dz = 0, denn dort ist η holomorph. In Q ist die stetige

Funktion η beschränkt: |η(z)| ≤M für z ∈ Q. Dann folgt:
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∂Q

η(z)dz
∣∣∣∣ =

∣∣∣∣ ∫
∂R1

η(z)dz
∣∣∣∣ ≤ 4εM.

Daher ist dieses Integral gleich 0. �


14.5 Der Cauchysche Integralsatz

In 14.3.1 hatten wir
∫
γ

f(z)dz für stückweise stetig differenzierbare Kurven γ und

stetige Funktionen f definiert. Im Zusammenhang mit Homotopien kommen nun
stetige Kurven vor und wir benötigen Kurvenintegrale für Kurven γ, die nicht not-
wendig differenzierbar, sondern lediglich stetig sind ; die Funktion f wird nun als
holomorph vorausgesetzt.

Satz 14.5.1 Es sei f : D → C eine holomorphe Funktion in D ⊂ C und
γ : [a, b] → D eine (stetige) Kurve; p := γ(a), q := γ(b).
Dann gibt es eine Zerlegung a = t0 < t1 < ... < tm−1 < tm = b, offene Kreis-
scheibenKj in D und holomorphe Funktionen Fj : Kj → C, (j = 1, . . . ,m) mit
folgenden Eigenschaften:

(1) γ([tj−1, tj]) ⊂ Kj (j = 1, . . . ,m)
(2) (Fj)′ = f inKj (j = 1, . . . ,m)
(3) Fj−1 = Fj in Kj−1 ∩Kj (j = 2, . . . ,m)

und es gilt:

• Fm(q) − F1(p) ist unabhängig von der Wahl der tj ,Kj , Fj

• falls γ stückweise stetig differenzierbar ist, gilt:
∫
γ

f(z)dz = Fm(q) − F1(p).

p

q

z1

z2

z3

a t1 t2 t3 b

γ

K1
K2

K3

K4

Wir geben einige Beweisideen dazu an, ein ausführlicher Beweis findet sich in [1].
Man überdeckt γ([a, b]) durch endlich viele offene Kreisscheiben und wählt dazu
die Punkte tj so, dass (1) erfüllt ist. In jeder Kreisscheibe Kj gibt es eine Stamm-
funktion Fj zu f |Kj . In dem Gebiet K1 ∩ K2 ist F2 − F1 konstant. Man addiert
nun zu F2 eine geeignete Konstante, so dass F1 = F2 inK1 ∩K2 ist.Analog ändert
man F3 so ab, dass F2 = F3 inK2 ∩K3 ist. Auf diese Weise erreicht man, dass (3)
erfüllt ist.
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Nun definiert man durch F̃ (t) := Fj(γ(t)) für tj−1 ≤ t ≤ tj eine Funkti-
on F̃ : [a, b] → C und zeigt: Wählt man andere tj ,Kj, Fj und erhält so ein
G̃ : [a, b] → C, so ist F̃ − G̃ lokal-konstant. Dies folgt aus der Tatsache, dass in
einer Umgebung jedes Punktes t ∈ [a, b]gilt: Es ist F̃ = F ◦γ und G̃ = G◦γ, dabei
sind F und G Stammfunktionen von f in einer Umgebung von γ(t). Nach 14.3.4
ist F̃ − G̃ konstant und daher ist

Fm(γ(b)) − F1(γ(a)) = F̃ (b) − F̃ (a)

unabhängig von der Wahl der tj ,Kj , Fj .
Nun sei γ stückweise stetig differenzierbar. Wir setzen zj := γ(tj) und

γj : [tj−1, tj ] → D, t 	→ γ(t).
Dann ist

∫
γj

f(ζ)dζ = Fj(zj) − Fj(zj−1) und daher

∫
γ

f(ζ)dζ =
∑

j

(Fj(zj) − Fj(zj−1)) = Fm(γ(b)) − F1(γ(a)).

Dies ermöglicht folgende Definition:

Definition 14.5.2 Ist γ eine stetige Kurve, so definiert man∫
γ

f(z)dz := Fm(γ(b)) − F1(γ(a)).

Nun führen wir den Begriff der Homotopie ein.

Definition 14.5.3 Zwei (stetige) Kurven

γ : [a, b] → D, χ : [a, b] → D mit γ(a) = χ(a) =: p, γ(b) = χ(b) =: q

heißen in D homotop, wenn es eine stetige Abbildung

h : [a, b] × [0, 1] → D
gibt mit folgenden Eigenschaften:

h(a, s) = p , h(b, s) = q für alle s ∈ [0, 1]
h(t, 0) = γ(t) , h(t, 1) = χ(t) für alle t ∈ [a, b].

Die Abbildung h heißt Homotopie von γ nach χ.

Eine Homotopie h kann man sich so veranschaulichen:
Für jedes s ∈ [0, 1] ist

γs : [a, b] → D, t 	→ h(t, s)
eine Kurve von p nach q und es ist γ0 = γ und γ1 = χ.
Eine Homotopie ist also eine Kurvenschar (γs)s, durch die γ in χ deformiert wird;
dabei verlaufen alle Kurven in D und haben gleichen Anfangspunkt p und gleichen
Endpunkt q.
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a b
0

1

h

t

s

γ

χ D
p

q

Nun beweisen wir einen der wichtigsten Sätze der Funktionentheorie, den Cauchy-
schen Integralsatz.

Satz 14.5.4 (Cauchyscher Integralsatz ).Es sei D ⊂ C offen, f : D → C eine
holomorhpe Funktion und γ, χ zwei inD homotope Kurven. Dann gilt:∫

γ

f(z)dz =
∫
χ

f(z)dz.

Beweis. Ist h eine Homotopie von γ nach χ, so setzt man für s ∈ [0, 1] wieder :

γs : [a, b] → D, t 	→ h(t, s).
Nun sei s0 ∈ [0, 1]; zur Kurve γs0 wählt man tj ,Kj , Fj wie in 14.5.1. Dann gibt es
ein ε > 0, so dass für alle s ∈ [0, 1] mit |s− s0| < ε und alle j gilt:

γs([tj−1, tj ]) ⊂ Kj.

Daher ist ∫
γs

f(z)dz = Fm(q) − F1(p) =
∫

γs0

f(z)dz

Nun betrachten wir die Funktion

g : [0, 1] → C, s 	→
∫
γs

f(z)dz.

Wie soeben gezeigt wurde, ist sie lokal-konstant, also nach 9.1.27 konstant. Daraus
folgt g(0) = g(1), und wegen γ0 = γ, γ1 = χ ergibt sich∫

γ

f(z)dz = g(0) = g(1) =
∫
χ

f(z)dz.

�

Es ist zweckmässig, noch einen anderen Begriff der Homotopie einzuführen:
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Definition 14.5.5 Es sei D ⊂ C und es seien γ : [a, b] → D und χ : [a, b] → D
zwei geschlossene Kurven. Man nennt γ, χ homotop in D als geschlossene Kur-
ven, wenn es eine stetige Abbildung h : [a, b] × [0, 1] → D gibt mit

h(a, s) = h(b, s) für alle s ∈ [0, 1]
h(t, 0) = γ(t), h(t, 1) = χ(t) für alle t ∈ [a, b].

Für jedes s ∈ [0, 1] ist γs : [a, b] → D, t 	→ h(t, s), eine geschlossene Kurve und
γ0 = γ und γ1 = χ. Im Unterschied zur vorhergehenden Definition brauchen die
Anfangspunkte γs(a) und die Endpunkte γs(b) nicht mehr fest zu sein.

Beispiel 14.5.6 Es sei 0 < r < R und

γ : [0, 2π] → C∗, t 	→ r · eit, χ : [0, 2π] → C∗, t 	→ R · eit.

Dann sind γ, χ in C∗ als geschlossene Kurven homotop; eine Homotopie ist

h : [0, 2π]× [0, 1] → C∗, (t, s) 	→ (r + s(R− r)) · eit.

Der Cauchysche Integralsatz gilt auch für diesen Homotopiebegriff:

Satz 14.5.7 (Cauchyscher Integralsatz für geschlossene Kurven )Ist f : D → C
eine holomorphe Funktion und sind γ und χ homotop inD als geschlossene Kurven,
so gilt: ∫

γ

f(z)dz =
∫
χ

f(z)dz.

Beweis. Ist h eine Homotopie wie in 14.5.5, so definieren wir für s ∈ [0, 1]

αs : [0, 1] → D, t 	→ h(a, st),
eine Kurve von αs(0) = γ0(a) nach αs(1) = γs(a). Daher kann man definieren
(man vergleiche dazu 9.5.5 und 9.5.6):

βs := (αs + γs) + (−αs).

Dann ist βs eine geschlossene Kurve mit Anfangs- und Endpunkt γ(a) und man
prüft nach, dass β0, β1 homotop im Sinne von 14.5.2 sind. Aus dem Cauchyschen
Integralsatz 14.5.4 folgt

∫
β0
f(z)dz =

∫
β1
f(z)dz .Weil sich die Integrale über αs

und −αs wegheben, ergibt sich
∫

γ0
f(z)dz =

∫
γ1
f(z)dz. �


Definition 14.5.8 Eine geschlossene Kurve γ inD heißt homotop zu einem Punkt
p ∈ D, wenn γ und η als geschlossene Kurven in D homotop sind, wobei η die
konstante Kurve η : [a, b] → D, t 	→ p ist.
Kurven, die zu einem Punkt homotop sind, bezeichnet man als nullhomotop.
Ein Gebiet G ⊂ C heißt einfach-zusammenhängend, wenn jede geschlossene

Kurve in G nullhomotop ist.



416 14 Funktionentheorie

Es gilt:

Satz 14.5.9 Ist f : D → C holomorph und γ eine inD nullhomotope geschlossene
Kurve, so gilt: ∫

γ

f(z)dz = 0.

Beweis. Die Kurve γ ist homotop zu einer konstanten Kurve η; aus 14.5.7 folgt dann∫
γ
f(z)dz =

∫
η
f(z)dz und wegen η̇ = 0 ist

∫
η
f(z)dz =

∫ b

a
f(η(t))η̇(t)dt = 0.

�

In einem einfach-zusammenhängenden Gebiet hängt das Kurvenintegral nur von
Anfangs- und Endpunkt der Kurve ab:

Satz 14.5.10 Es sei G ein einfach-zusammenhängendes Gebiet und f : G → C
eine holomorphe Funktion. Sind dann γ : [a, b] → G und χ : [a, b] → G Kurven
mit γ(a) = χ(a) , γ(b) = χ(b), so gilt:∫

γ

f(z)dz =
∫
χ

f(z)dz

und für jede geschlossene Kurve ω in G ist∫
ω

f(z)dz = 0.

Beweis. Aus dem vorhergehenden Satz folgt
∫

ω
f(z)dz = 0 für jede geschlossene

Kurve ω. Setzt man ω = γ + (−χ), so ist diese Kurve geschlossen und es ergibt
sich:

∫
γ
f(z)dz − ∫

χ
f(z)dz =

∫
ω
f(z)dz = 0. �


Nun können wir 14.4.3 verallgemeinern:

Satz 14.5.11 In einem einfach-zusammenhängenden GebietG existiert zu jeder ho-
lomorphen Funktion f : G→ C eine Stammfunktion F : G→ C.

Beweis. Wir wählen ein p ∈ G ; zu z ∈ G gibt es eine Kurve γz in G von p nach
z und wir setzen F (z) :=

∫
γz
f(z)dz. Diese Definition ist sinnvoll, dann dieses

Integral hängt nicht von der Wahl der Kurve ab. Nun sei z0 ∈ G. Wir wählen r > 0
so, dass Ur(z0) ⊂ G ist. Für z ∈ Ur(z0) setzen wir z − z0 =: h+ ik mit h, k ∈ R.
Dann ist

F (z) = F (z0) +

z0+h∫
z0

f(z)dz +

z0+h+ik∫
z0+h

f(z)dz

und in 14.4.1 wurde gezeigt, dass die Ableitung davon gleich f(z) ist. �

Wir zeigen noch:

Satz 14.5.12 Jedes sternförmige Gebiet ist einfach-zusammenhängend.
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Beweis. G ist nach 9.6.6 sternförmig bezüglich p ∈ G, wenn für jedes z ∈ G die
Verbindungsstrecke von p nach z in G liegt. Nun sei γ : [a, b] → G eine geschlos-
sene Kurve in G; dann liegt die Strecke von p nach γ(t) in G und wir definieren

h : [a, b] × [0, 1] → G, (t, s) 	→ p+ (1 − s)(γ(t) − p).

Wegen γ(a) = γ(b) ist h(a, s) = h(b, s) für s ∈ [0, 1].Weiter ist h(t, 0) = γ(t) und
h(t, 1) = p. Daraus folgt, dass γ homotop zum Punkt p ist. �

Nun können wir ein wichtiges Integral berechnen:

Satz 14.5.13 Es gilt:∫
|z−z0|=r

dz
z − a =

{
2πi für |a− z0| < r
0 für |a− z0| > r

Beweis. Die Substitution ζ := z − a ergibt
∫

|z−z0|=r

dz
z−a =

∫
|ζ−(z0−a)|=r

dζ
ζ . Daher

genügt es, das Integral
∫

|z−z0|=r

dz
z für |z0| < r und für |z0| > r zu berechnen.

Es sei |z0| > r, also |z0| = r + 2ε mit ε > 0. Dann ist die Funktion z 	→ 1
z in der

offenen Kreisscheibe Ur+ε(z0) holomorph und daher
∫

|z−z0|=r

dz
z = 0.

Nun sei |z0| < r; in diesem Fall verschieben wir die Kreislinie um z0 in C∗ bei
unverändertem Radius r in die Kreislinie um 0. Wir zeigen also, dass die Kurven

γ : [0, 2π] → C∗, t 	→ z0 + r · eit, χ : [0, 2π] → C∗, t 	→ r · eit

als geschlossene Kurven in C∗ homotop sind. Für t ∈ [0, 2π], s ∈ [0, 1] setzen wir :

h(t, s) := s · z0 + r · eit.

Es ist h(t, s) �= 0 , denn sonst wäre sz0 = −reit und daher |s| · |z0| = |r|;
dies ist wegen |s| ≤ 1, |z0| < r unmöglich. Somit ist h : [0, 2π] × [0, 1] → C∗

eine Homotopie von χ nach γ in C∗. Aus dem Cauchyschen Integralsatz folgt∫
|z−z0|=r

dz
z =

∫
|z|=r

dz
z und nach 14.3.3 ist dies gleich 2πi. �


14.6 Die Cauchysche Integralformel

Eine der wichtigsten Formeln der Funktionentheorie ist die Cauchysche Integralfor-
mel, die wir nun herleiten:

Satz 14.6.1 (Cauchysche Integralformel ) Es sei D ⊂ C offen, f : D → C eine
holomorphe Funktion und {z ∈ C| |z − z0| ≤ r} ⊂ D. Dann gilt für |z − z0| < r:
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f(z) =
1

2πi

∫
|ζ−z0|=r

f(ζ)
ζ − z dζ.

Beweis. Es sei z ∈ Ur(z0); wir definieren

q : D → C, ζ 	→
{

f(ζ)−f(z)
ζ−z falls ζ �= z
f ′(z) falls ζ = z

Dann ist q in D \ {z} holomorph und in z stetig. Aus 14.4.4 folgt, dass q eine
Stammfunktion besitzt und daher ist∫

|ζ−z0|=r

q(ζ)dζ = 0.

Mit 14.5.13 folgt daraus:

0 =
∫

|ζ−z0|=r

q(ζ)dζ =
∫

|ζ−z0|=r

f(ζ)
ζ − zdζ − f(z) ·

∫
|ζ−z0|=r

dζ
ζ − z︸ ︷︷ ︸

2πi

.

�

Daraus ergibt sich, wenn wir diese Bezeichnungen beibehalten:

Satz 14.6.2 (Mittelwerteigenschaft holomorpher Funktionen)

f(z0) =
1
2π

2π∫
0

f(z0 + reit)dt.

Der Funktionswert im Mittelpunkt ist also der Mittelwert der Funktionswerte auf
dem Kreisrand.

Beweis.

f(z0) =
1

2πi

∫
|ζ−z0|=r

f(ζ)
ζ − z0 dζ =

1
2πi

2π∫
0

f(z0 + reit)
reit

· rieitdt.

�

Aus der Cauchyschen Integralformel kann man nun herleiten:

• Jede holomorphe Funktion f kann man in eine Potenzreihe entwickeln ;
• jede Funktion, die einmal komplex differenzierbar ist, ist beliebig oft differen-

zierbar.
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Satz 14.6.3 (Potenzreihenentwicklung holomorpher Funktionen ) Es seiD ⊂ C
offen und {z ∈ C| |z − z0| ≤ r} ⊂ D. Ist dann f : D → C eine holomorphe
Funktion und setzt man für n ∈ N0

an :=
1

2πi

∫
|ζ−z0|=r

f(ζ)
(ζ − z0)n+1

dζ,

so gilt für |z − z0| < r:

f(z) =
∞∑

n=0

an(z − z0)n.

Daher ist f beliebig oft komplex differenzierbar, für n ∈ N0 ist

f (n)(z0) = n! · an =
n!
2πi

∫
|ζ−z0|=r

f(ζ)
(ζ − z0)n+1

dζ.

Beweis.Wir können z0 = 0 annehmen und wählen R ∈ R so, dass gilt: R > r
und {z ∈ C| |z| ≤ R} ⊂ D . Nun sei z mit |z| < r gegeben; wir wählen � mit
|z| < � < r < R. Nach der Cauchyschen Integralformel gilt

f(z) =
1

2πi

∫
|ζ|=r

f(ζ)
ζ − zdζ

und wir entwickeln 1
ζ−z in eine geometrische Reihe:

1
ζ − z =

1
ζ
· 1
1 − (z/ζ)

=
1
ζ

·
∞∑

n=0

(
z

ζ
)n.

Für � < |ζ| < R ist | zζ | ≤ |z|
� < 1. Nach dem Majorantenkriterium für gleichmäßi-

ge Konvergenz 6.1.8 konvergiert diese geometrische Reihe bei festem z als Funktion
von ζ gleichmäßig in {ζ ∈ C| |� < |ζ| < R} und nach 14.3.7 darf man gliedweise
integrieren. Man erhält:

f(z) = 1
2πi

∫
|ζ|=r

f(ζ)
ζ−z dζ = 1

2πi

∫
|ζ|=r

f(ζ)
ζ

∞∑
n=0

( z
ζ )ndζ =

=
∞∑

n=0

(
1

2πi

∫
|ζ|=�

f(ζ)
ζn+1 dζ

)
zn =

∞∑
n=0
anz

n.

Weil man Potenzreihen gliedweise differenzieren darf, folgt daraus: Jede holomor-
phe Funktion ist beliebig oft komplex differenzierbar. �

Daraus leiten wir nun die Cauchyschen Integralformeln für die Ableitungen her:
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Satz 14.6.4 (Cauchysche Integralformeln für die Ableitungen ) Es sei D ⊂ C
offen und {z ∈ C| |z − z0| ≤ r} ⊂ D. Ist dann f : D → C eine holomorphe
Funktion, so gilt für |z − z0| < r und n ∈ N0:

f (n)(z) =
n!
2πi

∫
|ζ−z0|=r

f(ζ)
(ζ − z)n+1

dζ.

Beweis. Wir nehmen z0 = 0 an. Es sei also |z| < r; wir wählen ε > 0 so, dass
|z| + ε < r ist. Zunächst integrieren wir über die Kreislinie |ζ − z| = ε; dann ist

f (n)(z) =
n!
2πi

∫
|ζ−z|=ε

f(ζ)
(ζ − z)n+1

dζ.

Nun zeigen wir, dass diese Kreislinie in D \ {z} homotop zu |ζ| = r ist: Es seien

γ : [0, 2π] → D \ {z}, t 	→ z + ε · eit, χ : [0, 2π] → D \ {z}, t→ r · eit.

Für t ∈ [0, 2π], s ∈ [0, 1] setzt man

h(t, s) := (1 − s)γ(t) + sχ(t) = (1 − s)z + ((1 − s)ε+ sr)eit.

Man rechnet leicht nach, dass |h(t, s)| ≤ r und h(t, s) �= z ist. Somit ist

h : [0, 2π]× [0, 1] → D \ {z}
eine Homotopie in D \ {z} von γ nachχ. Die Funktion ζ 	→ f(ζ)

ζ−z ist in D \ {z}
holomorph und daher gilt:

n!
2πi

∫
|ζ|=r

f(ζ)
(ζ − z)(n+1)

dζ =
n!
2πi

∫
|ζ−z|=ε

f(ζ)
(ζ − z)n+1

dζ = f (n)(z).

�

Unter den Voraussetzungen dieses Satzes gilt:

Satz 14.6.5 (Cauchysche Abschätzung für die Koeffizienten ) Es existiere ein
M > 0 mit |f(z)| ≤M für |z − z0| = r ; dann gilt für alle n ∈ N0:

|an| ≤ M
rn
.

Beweis.

|an| =

∣∣∣∣∣∣∣
1

2πi

∫
|ζ−z0|=r

f(ζ)
(ζ − z0)n+1

dζ

∣∣∣∣∣∣∣ ≤ (2πr)
1
2π

· M
rn+1

=
M

rn
.

�
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14.7 Fundamentalsätze der Funktionentheorie

Wir bringen als Folgerungen aus dem Cauchyschen Integralsatz den Satz von
Liouville, den Fundamentalsatz der Algebra, den Satz von Morera und den Iden-
titätsssatz.
Wir beginnen mit dem Satz von Liouville (JOSEPH LIOUVILLE (1809- 1882)):

Satz 14.7.1 (Satz von Liouville) Jede beschränkte holomorphe Funktion

f : C → C

ist konstant.

Eine Funktion, die in der ganzen komplexen Ebene holomorph ist, bezeichnet man
auch als ganze Funktion; dann lautet der Satz von Liouville:

Jede beschränkte ganze Funktion ist konstant.

Beweis. Es sei |f(z)| ≤ M für z ∈ C. Man entwickelt f in eine Potenzreihe

f(z) =
∞∑

n=0
anz

n . Diese konvergiert für alle z ∈ C und nach 14.6.5 gilt für jedes

r > 0 und n ∈ N0:

|an| ≤ M
rn
.

Daraus folgt an = 0 für n = 1, 2, 3... ; also ist f(z) = a0. �

Der Fundamentalsatz der Algebra
Wir kommen nun zum Fundamentalsatz der Algebra; dieser besagt:

Jedes Polynom mit komplexen Koeffizienten besitzt in C eine Nullstelle; es
zerfällt über C in Linearfaktoren.

Die Geschichte des Fundamentalsatzes der Algebra wird in [3] ausführlich darge-
stelle; allein Gauß publizierte vier Beweise; den ersten 1799 in seiner Doktorarbeit,
den vierten Beweis zu seinem Goldenen Doktorjubiläum 1849.
Zur Vorbereitung zeigen wir:

Hilfssatz 14.7.2 Es sei p(z) := zn + an−1z
n−1 + ... + a1z + a0 ein Polynom,

n ≥ 1; an−1, ..., a0 ∈ C. Dann gilt

lim
z→∞ p(z) = ∞.

Insbesondere ist p nicht-konstant.

Beweis. Für z �= 0 ist

p(z) = zn · (1 +
an−1

z
+ ...+

a0
zn

).

Es existiert ein r > 1,so dass für |z| ≥ r gilt:
|an−1

z + ...+ a0
zn | ≤ 1

2 , also |1 + an−1
z + ...+ a0

zn | ≥ 1
2 und daher |p(z)| ≥ 1

2 · |z|n.
Daraus folgt die Behauptung. �
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Satz 14.7.3 (Fundamentalsatz der Algebra ) Jedes Polynom

p(z) = anzn + an−1z
n−1 + ...+ a1z + a0

mit an, ..., a0 ∈ C, an �= 0, n ≥ 1, besitzt in C eine Nullstelle.
Es gibt c1, .., cn ∈ C mit

p(z) = an(z − c1) · ... · (z − cn).

Jedes Polynom zerfällt also über C in Linearfaktoren.

Beweis. Wenn p keine Nullstelle besitzt, dann ist die Funktion f := 1
p in C holo-

morph. Es gibt ein r > 0 mit |p(z)| ≥ 1 für |z| ≥ r, also |f(z)| ≤ 1 in |z| ≥ r. In
der abgeschlossenen Kreisscheibe |z| ≤ r ist f beschränkt, somit ist f : C → C be-
schränkt und nach dem Satz von Liouville konstant. Dann ist aber auch p konstant.
Die zweite Behauptung folgt aus 1.6.10. �

Wir haben gezeigt, dass für jede holomorphe Funktion F auch F ′ holomorph ist;
daher gilt:

Satz 14.7.4 Jede Funktion f : D → C, die eine Stammfunktion besitzt, ist holo-
morph.

Daraus folgt mit 14.4.1der Satz von Morera (GIACINTO MORERA (1856-1909)):

Satz 14.7.5 (Satz von Morera ) Wenn f : D → C stetig ist und wenn für jedes
achsenparallele RechteckQ ⊂ D gilt :∫

∂Q

f(z)dz = 0,

dann ist f holomorph.

Mit 14.4.4 folgt daraus:

Satz 14.7.6 Wenn die Funktion η : G → C in G \ {p} holomorph und in p stetig
ist, so ist sie in ganz G holomorph.

Wir werden diesen Satz in 14.8.5 verallgemeinern; es genügt, die Beschränktheit
von η in p vorauszusetzen.
Nun beweisen wir den Identitätssatz, der besagt: wenn zwei in einem Gebiet holo-
morphe Funktionen auf einer Punktfolge, die gegen einen Punkt des Gebietes kon-
vergiert, übereinstimmen,dann sind sie gleich. Zur Vorbereitung zeigen wir:

Satz 14.7.7 (Identitätssatz für Potenzreihen ) Es sei f(z) =
∞∑

n=0
anz

n in |z| < r
konvergent. Es existiere eine Folge (zk)k mit 0 < |zk| < r, lim

k→∞
zk = 0 und

f(zk) = 0 für alle k ∈ N0.
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Dann folgt

an = 0 für alle n ∈ N0 und daher f = 0.

Beweis. Wir nehmen an, es existiere ein m ∈ N0 mit am �= 0. Dann wählen wir m
minimal, also an = 0 für n < m und am �= 0 . Somit ist

f(z) = amzm +am+1z
m+1+ ... = zm ·g(z) mit g(z) := am +am+1z+ ....

Aus 0 = f(zk) = zmk g(zk) folgt g(zk) = 0 für k ∈ N0. Weil (zk)k gegen 0
konvergiert, ist g(0) = 0; dies steht im Widerspruch zu g(0) = am �= 0. �

Satz 14.7.8 (Identitätssatz ) Die Funktion f : G→ C sei im GebietG holomorph;
es existiere ein p ∈ G und eine Folge (zk)k in G mit lim

k→∞
zk = p ,zk �= p und

f(zk) = 0 für k ∈ N0. Dann ist f(z) = 0 für alle z ∈ G.

Beweis. Wir setzen

M := {z ∈ G| f (n)(z) = 0 für alle n ∈ N0}.

Man kann f um p in eine Potenzreihe entwickeln; nach dem Identitätssatz für Po-
tenzreihen ist f in einer Umgebung von p identisch 0; daraus folgt p ∈M und somit
istM �= ∅.
Die MengeM ist abgeschlossen, weil die f (n) stetig sind.
Wir zeigen, dassM auch offen ist: Ist q ∈ M , so entwickeln wir f in eine Potenz-
reihe um q; deren Koeffizienten sind 1

n!f
(n)(q) = 0. Daher verschwindet f in einer

offenen Umgebung U von q und es gilt U ⊂M .
Weil G zusammenhängend ist, folgtM = G. �


p
zk

f
CG

Daraus ergibt sich:

Satz 14.7.9 (Identitätssatz) Die Funktionen f und g seien im GebietG holomorph.
Es existiere ein p ∈ G und eine Folge (zk)k in G mit lim

k→∞
zk = p, zk �= p und

f(zk) = g(zk) für k ∈ N0. Dann folgt f = g.
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14.8 Der Satz von der offenen Abbildung und das
Maximumprinzip

In der reellen Analysis ist es ein wichtiges Problem, die Maxima einer Funktion zu
bestimmen. Im Komplexen tritt diese Fragestellung nicht auf, denn es gilt: Wenn ei-
ne in einem Gebiet holomorphe Funktion ihr Maximum annimmt, so ist sie konstant.
Dieses Maximumprinzip leiten wir aus dem Satz von der offenen Abbildung her:
Wir zeigen, dass bei einer in einem Gebiet G holomorphen und nicht-konstanten
Funktion das Bild jeder offenen Menge wieder offen ist.

Definition 14.8.1 Eine Abbildung f : G → C heißt offen, wenn für jede offene
Menge V ⊂ G das Bild f(V ) offen ist.

Zuerst zeigen wir (vgl. [26]):

Satz 14.8.2 Es sei f : D → C eine holomorphe Funktion in der offenen Menge
D ⊂ C; seiK := {z ∈ C| |z − z0| ≤ r} ⊂ D, also ∂K = {z ∈ C| |z − z0| = r}.
Wir setzen:

M := max{|f(z)| | z ∈ ∂K},
m := min{|f(z)| | z ∈ ∂K},
d := min{|f(z)− f(z0)| | z ∈ ∂K}.

Dann gilt:
(1) |f(z0)| ≤M
(2) Wenn |f(z0)| < m ist, dann hat f inK eine Nullstelle.
(3) Zu jedem w ∈ C mit |w − f(z0)| < d

2 existiert ein v ∈ K mit f(v) = w.

mM
f(∂K)

d

f

∂K

D

0

f(z0)

z0

Beweis. (1) Diese Aussage folgt aus den Cauchyschen Koeffizientenabschätzungen
für a0 = f(z0).
(2) Wenn f in K keine Nullstelle hat, dann ist 1

f in einer Umgebung von K holo-

morph und Aussage (1), angewandt auf 1
f liefert | 1

f(z0)
| ≤ 1

m , also |f(z0)| ≥ m.

(3) Wenn |w − f(z0)| < d
2 ist, dann gilt für alle z ∈ ∂K :

|f(z) − w| ≥ |f(z) − f(z0)| − |f(z0) − w| > d2 > |f(z0) − w|.
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Daraus folgt |f(z0)−w| < min{|f(z)−w| |z ∈ ∂K} . Setzt man g(z) := f(z)−w,
so ist

|g(z0)| < min{|g(z)| | z ∈ ∂K}
und aus (2) ergibt sich, dass g eine Nullstelle v ∈K hat; somit ist f(v) = w. �

Nun folgt:

Satz 14.8.3 (Satz von der offenen Abbildung ) Ist G ein Gebiet und f : G → C
eine nicht-konstante holomorphe Funktion, so ist f eine offene Abbildung.

Beweis. Es sei V ⊂ G eine offene Menge und w0 ∈ f(V ). Dann existiert ein
z0 ∈ V mit f(z0) = w0.Aus dem Identitätssatz folgt, dass man eine abgeschlossene
Kreisscheibe K um z0 in V so wählen kann, dass f den Wert w0 auf ∂K nicht
annimmt. Dann ist im vorhergehenden Satz d > 0 und

{w ∈ C| |w − w0| < d2} ⊂ f(K) ⊂ f(V ).

Daraus folgt, dass f(V ) offen ist. �

Damit erhält man:

Satz 14.8.4 (Satz von der Gebietstreue ) Ist G ein Gebiet und f : G → C eine
nicht-konstante holomorphe Funktion, so ist auch f(G) ein Gebiet.

Beweis. Bei einer stetigen Abbildung ist das Bild f(G) einer zusamenhängenden
MengeG wieder zusammenhängend; ausserdem ist f(G) offen, also ein Gebiet.

�

Aus dem Satz von der offenen Abbildung ergibt sich nun das Maximumprinzip:

Satz 14.8.5 (Maximumprinzip ) Es sei G ⊂ C ein Gebiet und f : G → C eine
holomorphe Funktion. Wenn es einen Punkt z0 ∈ G gibt mit

|f(z)| ≤ |f(z0)| für alle z ∈ G,

dann ist f konstant.

f(z0)

f(G)
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Beweis. Aus der Voraussetzung folgt, dass es keine Kreisscheibe um f(z0)gibt , die
in f(G) enthalten ist. Daher ist f(G) nicht offen und somit ist f konstant. �

Man kann diesen Satz auch so formulieren:

Satz 14.8.6 (Maximumprinzip ) Es sei G ein Gebiet und f : G → C eine holo-
morphe Funktion. Wenn es eine Kreisscheibe Ur(z0) ⊂ G gibt,r > 0, mit

|f(z)| ≤ |f(z0)| für alle z ∈ Ur(z0),

dann ist f konstant.

Beweis. Nach dem vorhergehenden Satz ist f in Ur(z0) konstant und aus dem Iden-
titätssatz folgt, dass dann f in G konstant ist. �

Aus dem Satz von der offenen Abbildung kann man leicht weitere Aussagen herlei-
ten:
Wenn |f | konstant ist oder wenn f nur reelle Werte annimmt oder wenn etwa
3u + 7v = 5 ist, so ist f konstant; dies folgt daraus, dass eine Kreislinie oder
eine Gerade keine nicht-leere offene Menge enthält.
Unmittelbar aus der folgenden Abbildung ergibt sich auch ein Maximumprinzip
(und auch ein Minimumprinzip ) für u, v:

Satz 14.8.7 Sei f : G→ C im Gebiet holomorph, f = u+iv; es existiere ein Punkt
(x0, y0) ∈ G mit u(x, y) ≤ u(x0, y0) für alle (x, y) ∈ G. Dann ist u konstant.

(Eine analoge Aussage gilt, wenn u(x, y) ≥ u(x0, y0) ist.)

f(z0)

u(x0, y0)

f(G)

Aus dem Satz von der offenen Abbildung leiten wir noch einen Identitätssatz für
den Realteil u von f her:

Satz 14.8.8 Es sei f : G → C im Gebiet G holomorph; f = u + iv. Wenn u in
einer nicht-leeren offenen Menge U ⊂ G verschwindet, dann ist u = 0.

Beweis. f(U) liegt in der imaginären Achse und ist daher nicht offen. Somit ist f
und daher auch u konstant. �
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14.9 Laurentreihen

In 14.6.3 haben wir gezeigt, dass man jede in einer offenen Kreisscheibe

{z ∈ C| |z − z0| < r}
holomorphe Funktion eine Potenzreihe

a0 + a1(z − z0) + a2(z − z0)2 + . . . . . .

entwickeln kann.
Nun beweisen wir, dass man jede in einem Kreisring

{z ∈ C| r < |z − z0| < R}
holomorphe Funktion in eine Laurentreihe entwickeln kann (HERMANN LAU-
RENT (1841-1908)); diese ist von der Form

. . . . . .+
a−2

(z − z0)2 +
a−1

z − z0 + a0 + a1(z − z0) + a2(z − z0)2 + . . . . . . .

Analog zu 14.6.1 leiten wir zuerst eine Integralformel her und erhalten dann wie in
14.6.3 die Laurententwicklung.

Satz 14.9.1 (Cauchysche Integralformel für Kreisringe ) Es sei D ⊂ C offen,
0 ≤ r < R und {z ∈ C| r ≤ |z − z0| ≤ R} ⊂ D. Ist dann f : D → C eine
holomorphe Funktion, so gilt für r < |z − z0| < R:

f(z) =
1

2πi

∫
|ζ−z0|=R

f(ζ)
ζ − zdζ − 1

2πi

∫
|ζ−z0|=r

f(ζ)
ζ − zdζ.

Beweis.Wir nehmen z0 = 0 an und definieren wie in 14.6.1 für z ∈ D die Funktion
q : D → C durch

q(ζ) :=
f(ζ) − f(z)
ζ − z falls ζ �= z, q(z) := f ′(z).

Nach 14.4.4 ist q holomorph und aus dem Cauchyschen Integralsatz folgt∫
|ζ|=r

q(ζ)dζ =
∫

|ζ|=R

q(ζ)dζ,

also gilt wegen 14.5.10∫
|ζ|=r

f(ζ)
ζ − zdζ − f(z) ·

∫
|ζ|=r

dζ
ζ − z︸ ︷︷ ︸
0

=
∫

|ζ|=R

f(ζ)
ζ − zdζ − f(z) ·

∫
|ζ|=R

dζ
ζ − z︸ ︷︷ ︸

2πi

.

Daraus folgt die Behauptung. �
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Satz 14.9.2 (Laurententwicklung in Kreisringen ) Sei D ⊂ C offen, 0 ≤ r < R,
und {z ∈ C| r ≤ |z − z0| ≤ R} ⊂ D . Ist dann f : D → C eine holomorphe
Funktion und setzt man für r ≤ � ≤ R und n ∈ Z

an :=
1

2πi

∫
|ζ−z0|=�

f(ζ)
(ζ − z0)n+1

dζ,

so gilt für r < |z − z0| < R:

f(z) =
+∞∑

n=−∞
an(z − z0)n.

Die Koeffizienten an sind eindeutig bestimmt.

z0
r R

z

D

Beweis. Der Beweis verläuft wie in 14.6.3; insbesondere die Vertauschung von Inte-
gration und Reihenentwicklung begründet man analog. Wir nehmen wieder z0 = 0
an. Es sei z ∈ C mit r < |z| < R , dann ist

f(z) = 1
2πi

∫
|ζ|=R

f(ζ)
ζ−z dζ − 1

2πi

∫
|ζ|=r

f(ζ)
ζ−z dζ.

Beim Integral über |ζ| = R ist |z| < R = |ζ|, also |z|
|ζ| < 1 und man entwickelt

wieder nach Potenzen von z
ζ ; setzen wir an := 1

2πi

∫
|ζ|=R

f(ζ)
ζn+1 dζ, so erhalten wir:

1
2πi

∫
|ζ|=R

f(ζ)
ζ−z dζ = 1

2πi

∫
|ζ|=R

f(ζ) · 1
ζ · 1

1− z
ζ
dζ =

∞∑
n=0
anz

n.

Beim Integral über |ζ| = r ist |ζ| = r < |z|, also |ζ|
|z| < 1, und man entwickelt nun

nach Potenzen von ζ
z ; wir setzen jetzt an := 1

2πi

∫
|ζ|=r

f(ζ)
ζn+1 dζ und es ergibt sich:

− 1
2πi

∫
|ζ|=r

f(ζ)
ζ−z dζ = 1

2πi

∫
|ζ|=r

f(ζ) · 1
z · 1

1− ζ
z

dζ =

=
∞∑

m=0

(
1

2πi

∫
|ζ|=r

f(ζ) · ζmdζ
)

1
zm+1 =

−1∑
n=−∞

(
1

2πi

∫
|ζ|=r

f(ζ)
ζn+1 dζ

)
zn =

−1∑
n=−∞

anz
n.
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Berücksichtigt man bei an noch, dass für r ≤ � ≤ R der Wert des Integrals∫
|ζ|=�

f(ζ)
ζn+1 dζ unabhängig von � ist, so folgt die Behauptung. �


Mit Hilfe der Laurententwicklung kann man nun die isolierten Singularitäten klas-
sifizieren.

Definition 14.9.3 Es sei D ⊂ C offen, z0 ∈ D, und f : D \ {z0} → C eine
holomorphe Funktion mit der Laurententwicklung

f(z) =
+∞∑

n=−∞
an(z − z0)n.

Man definiert:

(1) f hat in z0 eine hebbare Singularität, wenn für alle n < 0 gilt: an = 0;
(2) f hat in z0 einen Pol der Ordnung k ∈ N,wenn gilt: a−k �= 0 und an = 0

für alle n < −k;
(3) f hat in z0 eine wesentliche Singularität, wenn es unendlich viele Indizes gibt

mit n < 0 und an �= 0.

Wir erläutern die Definition an einfachen Beispielen:
(1) Die Funktion

sin z
z

= 1 − z
2

3!
+
z4

5!
− . . .

hat in 0 eine hebbare Singultarität.
(2) Die Funktion

ez − 1
z3

=
1
z2

+
1

2!z
+

1
3!

+
z

4!
+ . . .

hat einen Pol zweiter Ordnung in 0.
(3) Die Funktion

exp(
1
z2

) = . . . . . .+
1

3!z6
+

1
2!z4

+
1

1!z2
+ 1

hat eine wesentliche Singularität.
In 14.1.5 hatten wir den Begriff der holomorphen Fortsetzbarkeit eingeführt. Wenn
f in z0 eine hebbare Singularität besitzt, so hat f in einer punktierten Kreisscheibe
0 < |z − z0| < r die Laurententwicklung

f(z) =
∞∑

n=0

an(z − z0)n;

setzt man f(z0) := a0, so ist f auch in z0 holomorph.
In 14.7.7 haben wir gezeigt, dass eine Funktion, die in einem Punkt z0 stetig und
in allen anderen Punkten holomorph ist, auch in z0 holomorph ist. Nun können wir
beweisen, dass es genügt, die Beschränktheit von f bei z0 vorauszusetzen: Dies ist
die Aussage des Riemannschen Hebbarkeitssatzes :
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Satz 14.9.4 (Riemannscher Hebbarkeitssatz) Es sei D ⊂ C offen, z0 ∈ D ; die
Funktion f : D \ {z0} → C sei holomorph und bei z0 beschränkt; d.h. es existiere
eine Umgebung Ur(z0) ⊂ D und ein M > 0, so dass für 0 < |z − z0| < r gilt:
|f(z)| ≤M . Dann ist f nach z0 holomorph fortsetzbar.

Beweis.Wir nehmen wieder z0 = 0 an; in 0 < |z| < r gilt die Laurententwicklung

f(z) =
+∞∑

n=−∞
anz

n. Für jedes � mit 0 < � < r ist dann |an| ≤ M
�n . Ist n ≤ −1,

so folgt mit �→ 0, dass an = 0 ist. Daher hat f in 0 eine hebbare Singularität. �

Nun geben wir eine Charakterisierung der isolierten Singularitäten durch das Ver-
halten von f in der Nähe von z0 an; es sei also immer f : D \ {z0} → C eine
holomorphe Funktion.
Aus dem Riemannschen Hebbarkeitssatz folgt:

Satz 14.9.5 (Charakterisierung der hebbaren Singularitäten ) Äquivalent sind:
(1) f hat in z0 eine hebbare Singularität,
(2) Es gibt ein r > 0,so dass f in Ur(z0) \ {z0} beschränkt ist,
(3) f ist nach z0 holomorph fortsetzbar.

Es gilt:

Satz 14.9.6 (Charakterisierung der Pole ) Äquivalent sind:

(1) f hat in z0 einen Pol,
(2) es gibt ein k > 0, so dass gilt:

z 	→ (z − z0)kf(z) hat in z0 eine hebbare Singularität,
z 	→ (z − z0)k−1f(z) hat in z0 keine hebbare Singularität,

(3) lim
z→z0

f(z) = ∞.

Beweis. Sei z0 = 0 und f besitze die Laurententwicklung f(z) =
+∞∑

n=−∞
anz

n.

Aus (1) folgt( 2): Wenn f einen Pol der Ordnung k > 0 hat, dann ist a−k �= 0 und

f(z) =
a−k

zk
+ . . . , zkf(z) = a−k + . . . , zk−1f(z) =

a−k

z
+ . . . ;

daraus ergibt sich Aussage (2).
Aus (2) folgt (3): Wenn die Funktion g(z) := zkf(z) in 0 holomorph ist und
zk−1f(z) nicht, dann ist an = 0 für n < −k und a−k �= 0. Daraus folgt
g(0) = a−k �= 0; es gibt dann eine Umgebung Ur(0),in der |g(z)| > c > 0
ist. Somit gilt |f(z)| > c

|z|k für 0 < |z| < r und daraus folgt (3).
Den Rest des Beweises bringen wir nach dem nächsten Satz. �

Satz 14.9.7 (Satz von Casorati-Weierstrass; Charakterisierung der wesentli-
chen Singularitäten ) Die Funktion f hat in z0 genau dann eine wesentliche Sin-
gularität, wenn es zu jedem c ∈ C , jedem ε > 0 und jedem δ > 0 ein z ∈ D gibt
mit
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0 < |z − z0| < δ und |f(z) − c| < ε.
Man kann den Satz so formulieren:

Die Funktion kommt in jeder beliebig kleinen Umgebung einer wesentli-
chen Singularität jedem beliebigen Wert beliebig nahe.

Äquivalent dazu ist die Aussage:

Ist z0 eine wesentliche Singularität von f , so ist für jedes δ > 0 mit
Uδ(z0) ⊂ D die abgeschlossene Hülle von f(Uδ(z0) \ {z0}) gleich C;
das Bild jeder punktierten Umgebung von z0 ist dicht in C.

Beweis. (a) Wenn es ein c ∈ C, ein ε > 0 und ein δ > 0 gibt mit |f(z)−c| ≥ ε für
alle 0 < |z − z0| < δ, dann ist g(z) := 1

f(z)−c in 0 < |z − z0| < δ holomorph und

besitzt wegen |g(z)| ≤ 1
ε in z0 eine hebbare Singularität. Dann hat aber f(z) =

1
g(z) + c in z0 eine hebbare Singularität (falls g(z0) �= 0 ist) oder einen Pol (falls
g(z0) = 0).
(b) Wir nehmen nun an, zu jedem c ∈ C, ε > 0, δ > 0 existiere ein derartiges
z .Wenn f in z0 eine hebbare Singulatität besitzt, dann ist f in einer Umgebung von
z0 beschränkt; falls z0 Polstelle ist, gilt lim

z→z0
f(z) = ∞. Beides widerspricht der

Voraussetzung und daher handelt es sich um eine wesentliche Singularität. �

Wir vervollständigen nun den Beweis von 14.9.6: Aus lim

z→z0
f(z) = ∞ folgt: f hat

in z0 keine hebbare Singularität hat und nach dem Satz von Casorati-Weierstrass
auch keine wesentliche Singularität; also besitzt f dort einen Pol. �


Beispiel 14.9.8 (Die Bernoullischen Zahlen ) Wir untersuchen die Funktion

f : {z ∈ C| z �= 2nπi;n ∈ Z} → C, z 	→ z

ez − 1
.

Der Nenner

ez − 1 = z +
z2

2!
+ . . .

hat in z = 0 und wegen der Periodizität der Exponentialfunktion in den Punkten
2nπi, n ∈ Z, eine Nullstelle 1.Ordnung. Somit hat f in z = 2nπi, n ∈ Z, n �= 0,
jeweils einen Pol 1. Ordnung; im Nullpunkt ist eine hebbare Singularität. Setzt man
f(0) = 1, so ist f in einer Umgebung des Nullpunkts holomorph. Daher kann man
f in |z| < 2π in eine Taylorreihe entwickeln, für die wir mit noch zu bestimmenden
Koeffizienten Bn den Ansatz

f(z) =
∞∑

n=0

Bn

n!
zn

machen. Die Bn heißen die Bernoullischen Zahlen (JAKOB BERNOULLI (1654 -
1705). Wir berechnen sie aus
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n=0

Bn

n!
· zn

)
·
( ∞∑

k=0

zk

(k + 1)!

)
= 1

also (
B0 +B1z +

B2

2!
z2 + . . .

)
·
(

1 +
z

2!
+
z2

3!
+ . . .

)
= 1.

Daraus ergibt sich
B0 = 1

1
2!B0 + B1 = 0

1
3!B0 + 1

2!B1 + 1
2!B2 = 0

und die allgemeine Gleichung für n ≥ 2 ist:

1
n!

· B0

0!
+

1
(n− 1)!

· B1

1!
+

1
(n− 2)!

· B2

2!
+ . . .+

1
1!

· Bn−1

(n− 1)!
= 0.

Multipliziert man diese Gleichung mit n!, so erhält man die Rekursionsformel:(
n

0

)
B0 +

(
n

1

)
B1 +

(
n

2

)
B2 + . . .+

(
n

n− 1

)
Bn−1 = 0.

Es ist B0 = 1 und für n = 2, 3, 4 ist:

2B1 + 1 = 0
3B2 + 3B1 + 1 = 0

4B3 + 6B2 + 4B1 + 1 = 0.

Auf diese Weise berechnet man die Bernoullischen Zahlen. In 14.11.9 ergibt sich,
dass für ungerade n ∈ N mit n ≥ 3 gilt: Bn = 0 . Es ist also B0 = 1, B1 = − 1

2
und aus der Rekursionformel erhält man:

B2 =
1
6
, B4 = − 1

30
, B6 =

1
42
, B8 = − 1

30
, B10 =

5
66
, B12 = − 691

2730
.

Wir behandeln die Bernoullischen Zahlen nochmals in 14.11.9.

14.10 Logarithmus und Umlaufzahl

Den Logarithmus definiert man im Reellen entweder als Umkehrfunktion der Ex-
ponentialfunktion oder als Stammfunktion von R+ → R, x 	→ 1

x . Im Komplexen
ist die Exponentialfunktion C → C, z 	→ ez, nicht injektiv, besitzt also kein Um-
kehrfunktion; daher kann man den Logarithmus im Komplexen nicht ohne weite-
res als Umkehrfunktion der Exponentialfunktion definieren. Auch die Definition als
Stammfunktion von 1

z bereitet Schwierigkeiten, denn die Funktion C∗ → C, z 	→ 1
z

hat nach 14.3.3 keine Stammfunktion.
Auf einem sternförmigen GebietGmit 0 /∈ G hat 1

z jedoch eine Stammfunktion und
so ist es naheliegend, die Existenz eines Logarithmus auf diesem Wege zu zeigen.
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Definition 14.10.1 Eine in einem Gebiet G ⊂ C holomorphe Funktion L : G→ C
heißt Logarithmusfunktion (oder Zweig des Logarithmus), wenn für alle z ∈ G
gilt:

exp(L(z)) = z.

Natürlich ist dann 0 /∈ G, denn es ist z = eL(z) �= 0. Zur Vorbereitung zeigen wir:

Satz 14.10.2 Ist G ⊂ C ein Gebiet mit 0 /∈ G, so gilt:

(1) Wenn L : G → C eine Logarithmusfunktion ist, dann gilt L′(z) = 1
z für alle

z ∈ G.
(2) Wenn F : G → C holomorph ist und F ′(z) = 1

z gilt, dann existiert ein c ∈ C
so dass L(z) := F (z) − c eine Logarithmusfunktion ist.

Beweis. (1) Aus exp(L(z)) = z folgt: L′(z)(exp(L(z)) = 1, also L′(z) = 1
z .

(2) Aus F ′(z) = 1
z folgt: (z · e−F (z))′ = e−F (z) − z · F ′(z) · e−F (z) = 0;

daher ist z · e−F (z) =: C konstant. Wählt man c ∈ C so, dass e−c = C ist, so folgt
z · e−F (z) = e−c oder z = eF (z)−c. �

Daraus ergibt sich:

Satz 14.10.3 (Existenz einer Logarithmusfunktion ) Ist G ⊂ C sternförmig und
0 /∈ G, so gilt:

(1) Es gibt eine Logarithmusfunktion L : G→ C ,
(2) Sind L und L̃ Logarithmusfunktionen in G, so existiert ein n ∈ Z, so dass für

alle z ∈ G gilt:
L(z) − L̃(z) = 2πin,

(3) Für jede Logarithmusfunktion L gilt: Ist z = |z|eiϕ(z) ∈ G, so ist

L(z) = ln |z| + iϕ(z) und daher ReL(z) = ln |z|.

Beweis. (1) Auf dem sternförmigen Gebiet G hat 1
z eine Stammfunktion; aus dem

vorhergehenden Satz folgt dann die Existenz einer Logarithmusfunktion.
(2) Es ist exp(L(z) − L̃(z)) = z · 1

z = 1 daher ist 1
2πi(L(z) − L̃(z)) ∈ Z: Diese

Funktion ist stetig und ganzzahlig, also konstant gleich n ∈ Z.
(3) Es gibt reelle Funktionen u, ϕ in G mit L(z) = u(z) + i · ϕ(z).
Aus z = eL(z) = eu(z) · eiϕ(z) und |eiϕ(z)| = 1 folgt |z| = eu(z), also u(z) = ln |z|
und somit L(z) = ln |z| + i · ϕ(z). �

Beispiel 14.10.4 Das Gebiet

C− = C \ {x+ iy ∈ C | x ≤ 0, y = 0}
ist sternförmig bezüglich 1. Jedes z ∈ C− lässt sich eindeutig in Polarkoordinaten
z = |z|eiϕ(z) mit −π < ϕ(z) < +π darstellen; die Funktion

L : C− → C, z 	→ ln |z| + iϕ(z)

ist eine Logarithmusfunktion; für x ∈ R+ ist L(x) = lnx.
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Wir kommen nun zum Begriff der Umlaufzahl I(γ, c); diese gibt an, wie oft eine
geschlossene Kurve γ den Punkt c ∈ C umläuft.

Definition 14.10.5 Es sei γ : [a, b] → C eine (stetige) geschlossene Kurve und
c ∈ C mit c /∈ γ([a, b]). Dann heißt

I(γ, c) :=
1

2πi

∫
γ

dz
z − c

die Umlaufzahl von γ um c.

Die Umlaufzahl ist immer eine ganze Zahl:

Satz 14.10.6 Es gilt I(γ, c) ∈ Z.

Beweis. Wir dürfen c = 0 annehmen und verwenden die Bezeichnungen von 14.5.1.
Das Kurvenintegral

∫
γ

dz
z ist nach 14.5.2 so definiert: Man wählt eine Zerlegung

a = t0 < t1 < . . . < tm = b und offene Kreisscheiben Kj ⊂ C∗ und in Kj

Stammfunktionen Lj von 1
z ; die Lj sind also Logarithmusfunktionen und es gilt

Lj(z) = ln |z| + iϕj(z). Mit p = γ(a) = γ(b) = q ist nach 14.10.3 :

I(γ, 0) =
1

2πi

∫
γ

dz
z

=
1

2πi
(Lm(p) − L1(p)) ∈ Z.

�

Damit erhält man eine anschauliche Interpretation der Umlaufzahl:
Setzt man γj := γ|[tj−1, tj ] und zj = γ(tj), so ist∫

γj

dz
z

= Lj(zj) − Lj(zj−1) = (ln |zj | − ln |zj−1|) + i(ϕj(zj) − ϕj(zj−1)).

Nun definiert man Winkel αj := ϕj(zj) − ϕj(zj−1), dann ergibt sich:

I(γ, 0) =
1

2πi

∑
j

(ln |zj| − ln |zj−1|) +
1
2π

∑
j

αj .

Weil γ geschlossen ist, verschwindet der erste Summand und man erhält:

I(γ, 0) =
1
2π

∑
j

αj .
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p zj−1

zj

0
αj

Kj−1

Kj

Kj+1

Nützlich zur Berechnung der Umlaufzahl ist folgender Satz:

Satz 14.10.7 In jedem GebietG ⊂ C\γ([a, b]) ist G→ C, z 	→ I(γ, z) konstant.
Ist γ eine Kurve im sternförmigen Gebiet G , so gilt für alle z /∈ G: I(γ, z) = 0 .

Beweis. Die FunktionG→ C, z 	→ I(γ, z), ist stetig und ganzzahlig, also konstant.
Ist G sternförmig und z /∈ G, so ist ζ 	→ 1

ζ−z in G holomorph und besitzt eine
Stammfunktion; daher ist das Integral über die geschlossene Kurve γ gleich null.

�

Wir beweisen nun eine allgemeine Cauchysche Integralformel mit Umlaufzahl:

Satz 14.10.8 (Cauchysche Integralformel mit Umlaufzahl ) Es sei f : G → C
eine im Gebiet G holomorphe Funktion und γ : [a, b] → G eine in G nullhomotope
geschlossene Kurve. Dann gilt für z ∈ G \ γ([a, b]):

I(γ, z) · f(z) =
1

2πi

∫
γ

f(ζ)
ζ − zdζ

Beweis. Wir definieren für z ∈ G \ γ([a, b]) wieder die Funktion q : G→ C,

q(ζ) :=
f(ζ) − f(z)
ζ − z falls ζ �= z, q(z) := f ′(z).

Dann ist q holomorph in G und das Kurvenintegral über die nullhomotope Kurve γ
ist null:

0 =
∫
γ

q(ζ)dζ =
∫
γ

f(ζ)
ζ − zdζ − f(z)

∫
dζ
ζ − z =

∫
γ

f(ζ)
ζ − zdζ − f(z)·2πi·I(γ, z).

�

Beispiel 14.10.9 (Die Bedeutung der Umlaufzahl bei ebenen autonomen Syste-
men gewöhnlicher Differentialgleichungen )
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Wir betrachten die Gleichung

ω = f(x, y)dx + g(x, y)dy = 0

aus 11.5 oder äquivalent das autonome System

ẋ = g(x, y)
ẏ = −f(x, y),

das die Gleichgewichtslage (0, 0) besitze, d.h. f(0, 0) = g(0, 0). In einer punktier-
ten Umgebung U(0, 0) \ {(0, 0)} sei die charakteristische Funktion des Systems

G(x, y) = −f(x, y)x− g(x, y)y �= 0.

Wir interessieren uns für die Frage, ob eine in U(0, 0) \ {(0, 0)} verlaufende ge-
schlossene Lösungskurve γ(t) = (x(t), y(t)), a ≤ t ≤ b, den Punkt (0, 0) umläuft.
Für eine bejahende Antwort müssen wir I(γ, 0) �= 0 zeigen. Es ist (wir schreiben
kurz x statt x(t) und auch f statt f(x(t), y(t)))

I(γ, 0) = 1
2πi

b∫
a

1
x2(t)+y2(t) (ẋ(t) + iẏ(t))(x(t) − iy(t)dt =

= 1
2πi

b∫
a

1
x2+y2 (g − if))(x− iy)dt =

= 1
2πi

b∫
a

1
x2+y2

(
(gx− fy)) + i(−fx− gy))dt.

Da die stetige Funktion −fx−gy
x2+y2 : [a, b] → R nach unserer Annahme beständig �= 0

ist, ist I(γ, 0) �= 0 und γ umläuft (0, 0). Die AnnahmeG �= 0 inU(0, 0)\{(0, 0)} ist
übrigens im Beispiel 11.5.8 erfüllt. Ausserdem zeigt die Transformation von ω = 0
auf Polarkoordinaten in 11.5, dass im Fall G �= 0 die Transformation von ω = 0
auf Polarkoordinaten (t, r) eine wohldefinierte Differentialgleichung der Form
r′ = .... liefert, da der Nenner f(r cos t, r sin t) cos t + g(r cos t, r sin t) sin t in
[0, 2π] nie verschwindet.

14.11 Der Residuensatz

Wir kommen nun zu einem der wichtigsten Sätze der Funktionentheorie; dem Resi-
duensatz. Dieser ist für theoretische Überlegungen wichtig, er ermöglicht aber auch
die Berechnung vieler Integrale.
Zur Vorbereitung zeigen wir, dass man eine holomorphe Funktion f : D\{z0} → C
immer zerlegen kann in einen Summanden, der in ganz D holomorph ist und in
einen in C \ {z0} holomorphen Anteil.

Satz 14.11.1 Ist f : D \ {z0} → C holomorph, so existieren holomorphe Funktio-
nen
g : D → C und h : C \ {z0} → C mit

f = g + h in D \ {z0}.
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Beweis. Es sei z0 = 0; wir wählen r > 0 so, dass Ur(0) ⊂ D ist und entwickeln f
um 0 in eine in 0 < |z| < r konvergente Laurentreihe:

f(z) =
∞∑

n=0

anz
n +

−∞∑
n=−1

anz
n =

∞∑
n=0

anz
n +

∞∑
n=1

a−n(
1
z
)n.

Die Reihe
∞∑

n=1
a−n(1

z )n konvergiert für 0 < |z| < r ; nach 4.1.1 konvergiert sie

dann für alle z �= 0. Somit wird durch

h : C \ {0} → C, z 	→
−∞∑

n=−1

anz
n

eine holomorphe Funktion definiert. Setzt man g(z) := f(z)−h(z) für z ∈ D\{0},

so gilt g(z) =
∞∑

n=0
anzn für 0 < |z| < r . Definiert man g(0) := a0, so ist g in

ganzD holomorph und in D \ {0} gilt g = f − h. �


Wenn man dieses Verfahren iteriert, so erhält man:

Satz 14.11.2 Ist f : D \ {z1, . . . , zm} → C holomorph, so gibt es holomorphe
Funktionen

g : D → C und hk = C \ {zk} → C, k = 1, . . . ,m

mit
f = g + h1 + . . .+ hm in D \ {z1, . . . , zm}.

Nun kommen wir zum Begriff des Residuums:

Definition 14.11.3 Ist f : D\{z0} → C holomorph und f(z) =
+∞∑

n=−∞
an(z−z0)n

die Laurentreihe in 0 < |z − z0| < r, so heißt

Resz0f := a−1

das Residuum von f in z0; für 0 < � < r gilt :

Resfz0 =
1

2πi

∫
|ζ−z0|=�

f(ζ)dζ.

Satz 14.11.4 (Residuensatz ) Es sei G ⊂ C ein Gebiet, es seien z1, . . . , zm paar-
weise verschiedene Punkte in G und G̃ := G \ {z1, . . . , zm}. Ist dann f : G̃ → C
eine holomorphe Funktion und γ : [a, b] → G̃ eine geschlossene Kurve in G̃, die in
G nullhomotop ist, so gilt:∫

γ

f(z)dz = 2πi
m∑

k=1

I(γ, zk) · Reszk
f.
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Beweis. Wie oben ist f = g + h1 + . . .+ hm mit holomorphen Funktionen

g : G→ C, hk : C \ {zk} → C; k = 1, . . . ,m.

Im Punkt zk sind die Funktionen

g, h1 , .., hk−1, hk+1, .., hm

holomorph und daher ist
Reszk

hk = Reszk
f.

Ist hk(z) =
∑
n
c
(k)
n (z− zk)n die Laurententwicklung von hk in 0 < |z− zk| , so

gilt also c(k)
−1 = Reszk

f . In C \ {zk} besitzen die Funktionen z 	→ (z − zk)n für
n �= −1 Stammfunktionen und daher ist

∫
γ

(z − zk)ndz = 0 für n �= −1 . Somit

folgt:∫
γ

hk(z)dz =
+∞∑

n=−∞
c(k)
n

∫
γ

(z−zk)ndz = c(k)
−1

∫
γ

dz
z − zk = 2πi·I(γ, zk)·Reszk

f.

In G ist g holomorph und γ nullhomotop, also
∫
γ

g(z)dz = 0. Somit ergibt sich:

∫
γ

f(z)dz =
∫
γ

g(z)dz +
m∑

k=1

∫
γ

hk(z)dz = 0 + 2πi ·
m∑

k=1

I(γ, zk)Reszk
f.

�

Beispiel 14.11.5 Wir berechnen

∫
|z|=1

sin z
z4 dz. Es ist sin z

z4 = 1
z3 − 1

3!z + z
5! − . . . ;

daher ist das Residuum dieser Funktion in 0 gleich − 1
3! , somit∫

|z|=1

sin z
z4

dz = 2πi · (− 1
3!

) = −πi
3
.

Bei der Berechnung von
∫

|z|=1

sin z
zn dz für ungerade n ∈ N kann man so schliessen:

In der Entwicklung von sin z
zn kommen nur gerade Potenzen von z vor, daher ist das

Residuum gleich 0, somit
∫

|z|=1

sin z
zn dz = 0 für ungerade n ∈ N.

Wir zeigen nun, wie man in vielen Fällen das Residuum einfach berechnen kann.

Satz 14.11.6 Wenn f in z0 einen Pol 1.Ordnung hat, dann ist

Resz0f = lim
z→z0

(z − z0)f(z).
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Beweis. Die Behauptung folgt aus (z − z0)f(z) = a−1 + a0(z − z0) + . . . . �

Satz 14.11.7 Wenn f in z0 einen Pol der Ordnung k > 0 hat, dann ist die Funktion
g(z) := (z − z0)kf(z) in z0 holomorph und

Resz0f =
1

(k − 1)!
g(k−1)(z0).

Beweis. Wir nehmen z0 = 0 an ; es ist f(z) = a−k

zk + . . .+ a−1
z + . . . mit a−k �= 0

und g(z) = a−k + . . .+ a−1z
k−1 + . . . , daher g(k−1)(0) = (k − 1)!a−1. �


Satz 14.11.8 Die Funktionen g und h seien in z0 holomorph und h besitze in z0
eine Nullstelle 1.Ordnung; dann gilt:

Resz0

g

h
=
g(z0)
h′(z0)

.

Beweis. Sei z0 = 0 und g(z) = a0 + a1z + . . . , h(z) = b1z + . . . .; b1 �= 0. Dann
ist nach 14.11.6:

Resz0

g

h
= lim

z→z0
z · a0 + a1z + . . .

b1z + . . .
=
a0
b1
.

�


Beispiel 14.11.9 (Die Bernoullischen Zahlen und
∞∑

n=1

1
n2s ) In 14.9.8 haben wir

die Funktion z
ez−1 untersucht und die Taylorentwicklung

z

ez − 1
=

∞∑
n=0

Bn

n!
zn für |z| < 2π

hergeleitet; dabei sind Bn die Bernoullischen Zahlen. Nun berechnen nun wir für
s ∈ N die Residuen von

hs : {z ∈ C| z �= 2nπi, n ∈ Z} → C, z 	→ 1
zs(ez − 1)

und leiten damit eine Formel für ∞∑
n=1

1
n2s

her. Die Laurententwicklung von hs um 0 ist

hs(z) =
1
zs+1

∞∑
n=0

Bn

n!
zn =

B0

zs+1
+ . . .+

Bs

s!
· 1
z

+ . . .

und daher ist
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Res0 hs =
Bs

s!
Für die Berechnung des Residuums von hs in den Punkten 2nπi mit n �= 0 setzen
wir ez = ez−2nπi ein:

hs(z) = 1
zs(ez−1) = 1

zs(ez−2nπi−1) = 1
zs

∞∑
n=0

Bk

k! · (z − 2nπi)k−1 =

= 1
zs · B0

z−2nπi + 1
zs ·B1 + . . . .

Nach 14.11.6 ist

Res2nπi hs = lim
z→2nπi

(z − 2nπi) · hs(z) =
B0

(2nπi)s
=

1
(2nπi)s

.

Damit sind alle Residuen von hs für s ∈ N berechnet.
Nun berechnen wir das Kurvenintegral von h2s über die Kreislinie mit dem Radius
(2m+ 1)π, zeigen, dass es fürm → ∞ verschwindet und erhalten so eine Formel
für

∑
1

n2s .
Es sei m ∈ N, der Kreis |ζ| = (2m+ 1)π geht durch keine Singurarität; im Innern
dieses Kreises liegen die Polstellen 2nπi mit −m ≤ n ≤ m. Aus dem Residuensatz
folgt:

1
2πi

∫
|ζ|=(2m+1)π

h2s(ζ)dζ =
B2s

(2s)!
+

m∑
n=1

1
(2nπi)2s

+
−m∑

n=−1

1
(2nπi)2s

=

=
B2s

(2s)!
+ 2

m∑
n=1

1
(2nπi)2s

=
B2s

(2s)!
+

2
(2πi)2s

·
m∑

n=1

1
n2s
.

Nun schätzen wir das Integral ab: Wir setzen z = x+iy und behandeln zuerst 1
ez−1 .

Für x ≤ −1 ist |ez − 1| ≥ 1− |ez| = 1− ex ≥ 1− e−1 = e−1
e , also | 1

ez−1 | ≤ e
e−1 .

Für x ≥ 1 ist |ez − 1| ≥ |ez| − 1 = ex − 1 ≥ e − 1 also | 1
ez−1 | ≤ 1

e−1 .
Damit haben wir gezeigt:

| 1
ez − 1

| ≤ e
e − 1

für |x| ≥ 1.

In der kompakten Menge V := {z ∈ C| |z| ≥ 1, |x| ≤ 1, |y| ≤ π} hat 1
ez−1

keine Singularitäten, ist also dort beschränkt; es gibt einM ∈ R, so dass für z ∈ V
gilt:| 1

ez−1 | ≤ M ; wir wählen M ≥ e
e−1 . Zusammen mit der für |x| ≥ 1 hergelei-

teten Abschätzung ergibt sich: Setzt man W := {z ∈ C| |z| ≥ 1, |y| ≤ π}, so
ist

| 1
ez − 1

| ≤M für z ∈W.
Diese Funktion ist also in dem gelochten Streifen W beschränkt und die gleiche
Abschätzung gilt in jedem um 2nπi, n ∈ Z, verschobenen Streifen.
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Für n ∈ Z sei Kn := {z ∈ C| |z − 2nπi| < 1} die Kreisscheibe um 2nπi mit
Radius 1; es ist

| 1
ez − 1

| ≤M für alle z ∈ C \
⋃
n∈Z

Kn.

Die Kreislinie |ζ| = (2m + 1)π liegt in dieser Menge und sie hat die Länge
2π · (2m+ 1)π; damit ergibt sich:∣∣ 1

2πi

∫
|ζ|=(2m+1)π

h2s(ζ)dζ
∣∣ ≤ ∣∣ 1

2πi

∫
|ζ|=(2m+1)π

dζ
ζ2s·(eζ−1)

∣∣ ≤
≤ (2m+ 1)π · M

((2m+1))2s .

(2s)!
+

2
(2πi)2s

·
∞∑

n=1

1
n2s

= 0

und daraus folgt:

ζ(2s) =
∞∑

n=1

1
n2s

= (−1)s−1 · 22s−1π2s

(2s)!
·B2s.

Bernoullische Zahlen haben wir mit der in 14.9.8 hergeleiteten Rekursionsformel
berechnet; so erhält man:

∞∑
n=1

1
n2 = π2

6

∞∑
n=1

1
n4 = π4

90

∞∑
n=1

1
n6 = π6

945

∞∑
n=1

1
n8 = π8

9540

∞∑
n=1

1
n10 = π10

93555

∞∑
n=1

1
n12 = 691

638512875π
12

W

2πi

4πi

6πi

−4πi

−6πi

|ζ| = (2m+ 1)π

−2πi

Daher geht dieses Integral fürm→ ∞ gegen 0 und man erhält für s ∈ N:

B2s
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Es ist uns keine Formel für die Berechnung von
∞∑

n=1

1
n2s+1 bekannt. Berechnet man

wie oben das Integral über h2s+1, so fallen auf der rechten Seite die beiden Summen
weg und man erhält:

1
2πi

∫
|ζ|=(2m+1)π

h2s+1(ζ)dζ = B2s+1
(2s+1)! +

m∑
n=1

1
(2nπi)2s+1 +

−m∑
n=−1

1
(2nπi)2s+1 =

= B2s+1
(2s+1)! .

Diese Methode liefert also keine Aussage über
∞∑

n=1

1
n2s+1 ; weil das Integral für

m→ ∞ gegen 0 geht, ergibt sich aus dieser Gleichung:

B2s+1 = 0 für s ∈ N.

14.12 Folgerungen aus dem Residuensatz

Vorbemerkung. Ist f : D → C holomorph und besitzt f in z1, . . . , zr Nullstellen
der Ordnung n1, . . . , nr so bezeichnet man mit

N := n1 + . . .+ nr

die Anzahl der Nullstellen.
Analog definiert man für eine holomorphe Funktion f : D \ {w1, . . . , ws} → C die
in w1, . . . , ws Pole der Ordnungm1, . . . ,ms hat, die Anzahl der Polstellen durch

P := m1 + . . .+ms.

Aus dem Residuensatz leiten wir her:

Satz 14.12.1 (Satz über die Null- und Polstellen) Es sei Ur(z0) ⊂ G ⊂ C und es
seien z1, , . . . , zs ∈ Ur(z0); die Funktion f : G \ {z1, . . . , zs} → C sei holomorph
und besitze in z1, . . . , zs Pole; sie besitze auf ∂Ur(z0) keine Nullstelle. Ist dann N
die Anzahl der Nullstellen und P die Anzahl der Polstellen von f in Ur(z0), so gilt:

1
2πi

∫
|z−z0|=r

f ′(z)
f(z)

dz = N − P.

Beweis. f besitze in p eine n-fache Nullstelle; wir berechnen das Residuum von
f ′
f in p. Es gibt eine in p holomorphe Funktion h mit f(z) = (z − p)nh(z) und

h(p) �= 0 .Dann ist f ′(z) = n(z − p)n−1h(z) + (z − p)nh′(z) und
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f ′(z)
f(z)

=
n

z − p +
h′(z)
h(z)

.

Weil h′
h in p holomorph ist, erhält man als Residuum :

Resp
f ′

f
= n.

Bei einer n-fachen Polstelle schliesst man analog mit −n statt n. Mit dem Residu-
ensatz ergibt sich die Behauptung. �

Wenn f keine Pole hat, so ergibt sich, wenn man diesen Satz auf z 	→ f(z) − w
anwendet:

Satz 14.12.2 Es sei f : G → C holomorph und Ur(z0) ⊂ G; sei w ∈ C und sei
f(z) �= w für z ∈ ∂Ur(z0). Dann gilt für die Anzahl Nw der w-Stellen von f in
Ur(z0):

Nw =
1

2πi

∫
|z−z0|=r

f ′(z)
f(z) − wdz.

Wir zeigen nun, wie man mit Hilfe des Residuensatzes uneigentliche reelle Integrale
berechnen kann:

Beispiel 14.12.3 Wir berechnen

+∞∫
−∞

dx
x2 − 2x+ 2

.

Es ist p(z) := z2 − 2z + 2 = (z − (1 + i)) · (z − (1 − i)) und das Residuum von
1

p(z) im Punkt 1 + i ist 1
2i .Wir berechnen nun zuerst das Integral über den Rand des

oberen Halbkreises mit Radius r: Es sei

γr : [0, π] → C, t 	→ r · eit;

für r > 2 liegt der Punkt 1 + i im oberen Halbkreis mit Radius r und nach dem
Residuensatz gilt: :

(*)

+r∫
−r

dz
p(z)

+
∫
γr

dz
p(z)

= 2πi · 1
2i

= π.

Für r → ∞ geht das erste Integral gegen das zu berechnende uneigentliche Integral;
wir zeigen, dass das Integral über γr gegen 0 geht.
Für z �= 0 ist

p(z) = z2 · (1 − 2
z

+
2
z2

),
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Es gibt ein R > 2 mit |1 − 2
z + 2

z2 | ≥ 1
2 für |z| ≥ R und für |z| ≥ r ≥ R > 2 ist

dann ∣∣∣∣ 1
p(z)

∣∣∣∣ ≤ 2
r2
.

Daher ist ∣∣∣∣∣∣
∫
γr

dz
p(z)

∣∣∣∣∣∣ ≤ πr · 2
r2

=
2π
r
.

Für r → ∞ folgt nun aus der Gleichung (*):

+∞∫
−∞

dx
x2 − 2x+ 2

= π.

Im folgenden Satz schätzt man p
q analog durch const.

r2 ab und erhält:

Satz 14.12.4 Seien p, q Polynome mit grq ≥ grp+2; q besitze keine reelle Nulstel-
le. Sind dann z1, . . . , zm die in der oberen Halbebene liegenden Singularitäten von
p
q , so gilt:

+∞∫
−∞

p(x)
q(x)

dx = 2πi
m∑

j=1

Reszj

p

q
.

Der Cauchysche Hauptwert
Der Cauchysche Hauptwert ist in einer allgemeinen Situation folgendermassen er-
klärt: Es sei X ⊂ Rn, p ∈ X, und f : X \ {p} → R eine stetige Funktion; man
entfernt nun eine ε-Kugel um p, integriert über den Rest und lässt ε gegen 0 gehen;
dann heißt

P
∫
X

f(x)dx = lim
ε→0

∫
X\Uε(p)

f(x)dx

der Cauchysche Hauptwert (falls dieser Grenzwert existiert.)
Mit dem Cauchyschen Hauptwert kann man dem Integral

∫
X

f(x)dx einen Sinn

geben, wenn f weder Lebesgue- noch (im eindimensionalen Fall ) uneigentlich
Riemann-integrierbar ist.
Wir behandeln hier den eindimensionalen Fall und zeigen, wie man mit funktionen-
theoretischen Methoden den Cauchyschen Haupwert berechnen kann.

Definition 14.12.5 Es sei [a, b] ⊂ R, p ∈]a, b[ und f : [a, b]\{p} → R eine stetige
Funktion. Dann heißt

P
b∫

a

f(x)dx = lim
ε→0

⎛⎝ p−ε∫
a

f(x)dx +

b∫
p+ε

f(x)dx

⎞⎠
der Cauchysche Hauptwert.



14.12 Folgerungen aus dem Residuensatz 445

Zunächst ein einfaches Beispiel:

Beispiel 14.12.6 Das uneigentliche Integral
+1∫
−1

dx
x = lim

ε1→0

−ε1∫
−1

dx
x + lim

ε2→0

+1∫
ε2

dx
x exi-

stiert wegen
∫ 1

ε
dx
x = − ln ε nicht.

Dagegen existiert der Cauchysche Hauptwert

P
+1∫

−1

dx
x

= lim
ε→0

⎛⎝ −ε∫
−1

dx
x

+

1∫
ε

dx
x

⎞⎠ ,
denn 1

x ist eine ungerade Funktion und daher ist für 0 < ε < 1:
−ε∫
−1

dx
x +

+1∫
ε

dx
x = 0.

Daraus folgt

P
+1∫

−1

dx
x

= 0.

Nun gehen wir von folgender Situation aus:
Wir nehmen p = 0 an; es sei a < 0 < b und D eine offene Teilmenge von C
und es gelte [a, b] ⊂ D; weiter sei f : D \ {0} → C holomorph.Wir berechnen
den Cauchyschen Hauptwert dadurch, dass wir den durch den singulären Punkt 0
gehenden Integrationsweg von a nach b ersetzen durch Kurven, die 0 umgehen.
Es sei r > 0, {z ∈ C| |z| ≤ r} ⊂ D und a < −r < 0 < r < b. Wir betrachten die
beiden Halbkreise

αr : [0, π] → C, t 	→ r · eit, βr : [π, 2π] → C, t 	→ r · eit.

Für 0 < ε < r ist dann nach dem Cauchyschen Integralsatz:

(1)

−ε∫
−r

f(x)dx −
∫
αε

f(z)dz +

r∫
ε

f(x)dx +
∫
αr

f(z)dz = 0,

also

(2)

−r∫
a

f(x)dx−
∫
αr

f(z)dz+

b∫
r

f(x)dx =

−ε∫
a

f(x)dx−
∫
αε

f(z)dz+

b∫
ε

f(x)dx.

Daher ist folgende Definition unabhängig von der Wahl von ε:

R
b∫

a

f(z)dz :=

−ε∫
a

f(x)dx −
∫
αε

f(z)dz +

b∫
ε

f(x)dx,
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dabei umgehen wir den singulären Punkt p = 0 so, dass er rechts vom Integrations-
weg liegt. Wenn wir diesen Punkt links liegen lassen, definieren wir :

L
b∫

a

f(z)dz :=

−ε∫
a

f(x)dx +
∫
βε

f(z)dz +

b∫
ε

f(x)dx.

Aus dem Residuensatz folgt

(3) L
b∫

a

f(z)dz −R
b∫

a

f(z)dz =
∫

|z|=ε

f(z)dz = 2πi · Res0f.

−r −ε ε r

αr

βr

αε

a bp

Unter geeigneten Voraussetzungen kann man den Cauchyschen Hauptwert mit dem
Residuensatz berechnen:

Satz 14.12.7 Sei [a, b] ⊂ D ⊂ C, a < p < b. Die Funktion f : D \ {p} → C
sei holomorph und besitze in p einen Pol 1.Ordnung. Dann existiert der Cauchysche
Hauptwert und es gilt:

P
b∫

a

f(x)dx = 1
2

(
L

b∫
a

f(z)dz + R
b∫

a

f(z)dz

)
=

= R
b∫

a

f(z)dz + πi ·Respf = L
b∫
a

f(z)dz − πi ·Respf.

Beweis. Wir nehmen wieder p = 0 an; es ist

−ε∫
a

f(x)dx+

b∫
ε

f(x)dx = R
b∫

a

f(z)dz +
∫
αε

f(z)dz.

Nach Voraussetzung ist f(z) = a−1
z + a0 + a1z + . . . in einer Umgebung

von |z| ≤ r. Setzt man g(z) := f(z) − a−1
z , so ist g dort holomorph, also

beschränkt; somit |g(z| ≤ M und daher | ∫
αε

g(z)dz| ≤ πMε. Ausserdem ist
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αε

a−1
z dz = a−1

π∫
0

ε·i·eit
ε·eit dt = iπa−1 und daher lim

ε→0

∫
αε

f(z)dz = π · i · a−1. Daraus

folgt:

P
b∫

a

f(x)dx = R
b∫

a

f(z)dz + π · i · a−1.

Die anderen Aussagen ergeben sich aus (3). �

Beispiel 14.12.8 Wir berechnen

P
+∞∫

−∞

dx
x3 − 1

.

Mit � := −1+i
√

3
2 , �2 = −1−i

√
3

2 ist x3 − 1 = (x − 1)(x− �)(x − �2) und nach
14.11.6 ist

Res1
1

x3 − 1
= lim

x→1

x− 1
(x − 1)(x− �)(x− �2) =

1
(1 − �)(1 − �2) =

1
3
,

Res�
1

x3 − 1
=

1
(�− 1)(ρ− ρ2) = −1

6
+
i

6

√
3.

Wie in 14.12.4 zeigt man R
+∞∫
−∞

dx
x3−1 = 2πi · Res�

1
x3−1 und nach 14.12.7 ergibt

sich:

P
+∞∫

−∞

dx
x3 − 1

= 2πi
(

Res�
1

x3 − 1
+

1
2

Res1
1

x3 − 1

)
= −π

3

√
3.

Auf diese Weise zeigt man:

Satz 14.12.9 Seien p, q Polynome mit grq ≥ grp+ 2 und f := p
q . Die Funktion

f besitze auf der reellen Achse nur Polstellen 1. Ordnung x1, . . . , xk; sind dann
z1, . . . , zm die in der oberen Halbebene liegenden Singularitäten von f , so existiert
der Cauchysche Hauptwert und es gilt:

P
+∞∫

−∞

p(x)
q(x)

dx = 2πi ·
⎛⎝ m∑

j=1

Reszj

p

q
+

1
2
·

k∑
i=1

Resxi

p

q

⎞⎠ .
Wir bringen noch ein Beispiel:



448 14 Funktionentheorie

Beispiel 14.12.10 (Die Distribition P 1
x ) Es sei ϕ ∈ D, dann ist also ϕ : R → R

eine beliebig oft differenzierbare Funktion und es existiert ein R > 0 mit ϕ(x) = 0
für |x| ≥ R. Wir berechnen

P
+∞∫

−∞

ϕ(x)
x

dx.

Wir definieren q : R → R durch
q(x) := ϕ(x)−ϕ(0)

x für x �= 0 und q(0) := ϕ′(0).

Weil ϕ differenzierbar ist, ist q stetig ; nach Beispiel 14.12.6 gilt:
−ε∫
−R

dx
x +

R∫
ε

dx
x = 0;

damit ergibt sich, dass der folgende Cauchysche Hauptwert existiert:

P
+∞∫
−∞

ϕ(x)
x dx = P

R∫
−R

(
q(x) + ϕ(0)

x

)
dx =

= lim
ε→0

(
−ε∫
−R

q(x)dx +
R∫
ε

q(x)dx

)
+ ϕ(0) lim

ε→0

(
−ε∫
−R

dx
x +

R∫
ε

dx
x

)
=

=
R∫

−R

q(x)dx.

Man zeigt nun, dass durch

P 1
x

: D → R, ϕ 	→ P
+∞∫

−∞

ϕ(x)
x

dx

eine Distribution definiert wird. In der Quantenmechanik definiert man im Zusam-
menhang mit der Dirac-Distribution δ die Distributionen

δ+ :=
1
2
δ +

1
2πi

P 1
x
, δ− :=

1
2
δ − 1

2πi
P 1
x
.

14.13 Konforme Abbildungen, Strömungen

Konforme Abbildungen
Wir untersuchen zuerst, welche Eigenschaften eine durch eine holomorphe Funktion
gegebene Abbildung hat; wir zeigen, dass sie lokal eine Drehung darstellt; insbeson-
dere ist sie winkeltreu.

Satz 14.13.1 Es sei f : D → C holomorph, z0 ∈ D und f ′(z0) = r · eiϕ �= 0 . Ist
dann γ : [−ε,+ε] → D eine reguläre differenzierbare Kurve mit γ(0) = z0 und
γ̇(0) = s · eiα, so gilt für die Bildkurve γ̃ := f ◦ γ:

˙̃γ(0) = (rs) · ei(α+ϕ).
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0
f

z0 f(z0))
γ

ϕ

−ε +ε
α α

Beweis. Nach der Kettenregel ist ˙̃γ(0) = f ′(z0) · γ̇(0) = (rs) · ei(α+ϕ). �

Bei jeder regulären Kurve durch z0 wird also die Tangente um den gleichen Winkel
ϕ gedreht; daher folgt:

Satz 14.13.2 Ist f : D → C holomorph,z0 ∈ D und f ′(z0) �= 0,so gilt: Sind
γ1, γ2 reguläre Kurven durch z0, die sich im Winkel α schneiden, so schneiden sich
die Bildkurven f ◦ γ1 und f ◦ γ2 ebenfalls im Winkel α.

Eine derartige Abbildung bezeichnet man als winkeltreu oderkonform.
Daraus ergibt sich:

Satz 14.13.3 Ist f = u+iv holomorph und verschwindet f ′ nirgends, so schneiden
sich u(x, y) = c1 und v(x, y) = c2 orthogonal.

Beispiel 14.13.4 In C∗ betrachten wir f(z) := z2 = (x2 − y2) + 2ixy dann ist
u = x2 − y2, v = 2xy. Die Hyperbeln x2 − y2 = c1 und xy = c2 schneiden
einander orthogonal.

Beispiel 14.13.5 Für z �= 0 sei f(z) := 1
z = z̄

z·z̄ = x
x2+y2 + i · −y

x2+y2 . Die Ni-

veaulinien x = c1(x2 + y2) und y = c2(x2 + y2) sind Kreise, die sich orthogonal
schneiden.

Strömungen
Man kann Strömungen durch holomorphe Funktionen beschreiben. Wir gehen aus
vom Vektorfeld einer ebenen Strömung

v : G→ R2; (x, y) 	→ (p(x, y), q(x, y))

in einem Gebiet G ⊂ R2, das wir als sternförmig vorausssetzen. Die Funktionen
p, q seien beliebig oft stetig differenzierbar. Von der Strömung nehmen wir an, dass
sie quellenfrei und wirbelfrei ist. Wir setzen also voraus:

(1) px + qy = 0, (2) py − qx = 0.

Die erste Bedingung bedeutet div v = 0, die zweite Bedingung kann man als
Verschwinden der Rotation deuten. Nach 9.6.7 gibt es wegen (2) zu v = (p, q) ein
Potential u : G → R und aus (1) folgt, dass das Vektorfeld (−q, p) ein Potential
v : G→ R besitzt. Es gilt also:

ux = p, uy = q und vx = −q, vy = p.
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Nun fassen wir G ⊂ C auf und setzen f := u + iv. Wegen ux = p = vy und
vx = −q = −uy sind die Cauchy-Riemannschen Differentialgleichungen erfüllt
und daher ist f : G→ C holomorph. Es gilt

f ′ = ux + ivx = p− iq.

Wir schreiben (p, q) = p+ iq, dann ist

f̄ ′ = p+ iq = v.

Die Niveaumengen {(x, y) ∈ G| u(x, y) = c} mit c ∈ R deutet man als Potenti-
allinien und {(x, y) ∈ G| v(x, y) = c} als Stromlinien der durch v = f̄ ′ gebenen
Strömung.
Zu jedem quellen- und wirbelfreien Vektorfeld v in einem sternförmigen Gebiet gibt
es also eine holomorphe Funktion f = u + iv mit f̄ ′ = v und die Niveaumengen
von u, v liefern die Strom- und Potentiallinien.

Wenn man umgekehrt von einer in einem ( nicht notwendig sternförmigen ) Ge-
biet G ⊂ C holomorphen Funktion f : G → C mit f = u + iv ausgeht, so erhält
man durch v := f̄ ′ das Vektorfeld einer Strömung , bei der man die Potential-
linien u(x, y) = const. und die Stromlinien v(x, y) = const. bereits kennt. Wir
bringen dazu einige Beispiele.

Beispiel 14.13.6 Sei f(z) := z2, also u = x2 − y2 , v = 2xy.
Dann ist das zugehörige Vektorfeld

v(z) = f̄ ′(z) = 2 · z̄ oder v(x, y) = (2x,−2y).

Die Stromlinien sind die Hyperbeln

2xy = const.,

die Potentiallinien sind die dazu orthogonalen Hyperbeln

x2 − y2 = const.

Es ist |f̄ ′(z)| = 2|z|, die Strömung ist also für grosse z schnell, in der Nähe des
Nullpunkts ist sie langsam.
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Beispiel 14.13.7 Für f(z) := z ist f̄ ′(z) = 1, und v(x, y) = (1, 0). Die Strom-
linien y = const. verlaufen waagrecht, man hat eine gleichmäßige Strömung mit
Geschwindigkeit 1.

Beispiel 14.13.8 Das Gebiet

C− := C \ {x+ iy ∈ C| x ≤ 0, y = 0}
ist sternförmig und nach 14.10.3 und 14.10.4 ist dort eine (holomorphe) Logarith-
musfunktion

L(z) = ln |z| + iϕ(z)

definiert. Für z ∈ C− ist z = |z| · eiϕ(z) und das zugehörige Vektorfeld ist

L̄′(z) =
1
z̄

=
1
r
e+iϕ(z)

mit r = |z|. Die Stromlinien sind die vom Nullpunkt ausgehenden Halbstrahlen (oh-
ne 0) ϕ(z) = const. Die Äquipotentiallinien sind die Kreislinien ln |z| = const.,
also |z| = const., soweit sie in C− liegen. Es ist |L̄′(z)| = 1

r ; in der Nähe des
Nullpunkt ist also die Geschwindigkeit sehr gross, sie nimmt nach aussen ab. Das
Vektorfeld L̄′ beschreibt die von einer im Nullpunkt liegenden Quelle ausgehende
Strömung. Dies widerspricht nicht unserer Voraussetzung der Quellenfreiheit, denn
der Nullpunkt liegt nicht im Gebiet C−.
Wenn man einen Wirbel erhalten will, dividiert man die FunktionL durch i, dadurch
vertauscht man Stromlinien und Potentiallinien: Für
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f(z) := −iL(z) = ϕ(z) − i · ln |z|
ist das zugehörige Vektorfeld f̄ ′(z) = i

z̄ und die Stromlinien sind die in C− liegen-
den Kreislinien |z| = const.Man erhält einen Wirbel um 0.
Man kann diese Beispiele miteinander kombinieren; die Funktion f(z) = z be-
schreibt die Strömung eines Flusses mit konstanter Geschwindigkeit, L(z) liefert
eine Quelle. Durch die in C− holomorphe Funktion z + L(z) erhält man dann die
Strömung eines Flusses , in dem eine Quelle liegt. Die gleichmäßige Strömung des
Flusses 14.13.7 überlagert sich mit der von der Quelle ausgehenden Strömung (vgl.
dazu [28]).

Biholomorphe Abbildungen

Definition 14.13.9 Seien D, D̃ offen Mengen in C; eine Abbildung f : D → D̃
heißt biholomorph, wenn f bijektiv ist und f und f−1 holomorph sind .

Zunächst erläutern wir gebrochen lineare Transformationen: Dies sind Abbildun-
gen von der Form

z 	→ az + b
cz + d

.

Aus w = az+b
cz+d rechnet man aus: z = −dw+b

cw−a . Wir setzen c �= 0 voraus; ausserdem

soll diese Abbildung nicht-konstant sei, daher verlangen wir

∣∣∣∣a bc d
∣∣∣∣ �= 0. Zunächst

ist auch noch z �= − d
c vorauszusetzen.Es ist naheliegend, − d

c 	→ ∞ zu setzen.
Man erweitert die komplexe Ebene durch Hinzunahme eines Punktes, den man mit
∞ bezeichnet, zur Riemannschen Zahlenkugel; man setzt

Ĉ := C ∪ {∞}.
Die Interpretation von Ĉ als Zahlenkugel dürfte bekannt sein: Man legt eine Kugel
S vom Durchmesser 1 auf die komplexe Ebene und projiziert vom Nordpol N aus
auf die Ebene.

x

N

Φ(x)
C

Damit kann man S \ {N} mit C identifizieren; ausserden identifiziert man noch N
mit ∞. Wir setzen also

S := {x ∈ R3| x21 + x22 + (x3 − 1
2
)2 =

1
4
} = {x ∈ R| x21 + x22 + x3(x3 − 1) = 0}

undN := (0, 0, 1). Die Projektion von S \ {N} in die komplexe Ebene C ist
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Φ : S \ {N} → C, (x1, x2, x3) 	→ x1 + ix2
1 − x3 ;

die Umkehrabbildung ist

Φ−1 : C → S \ {N}, x+ iy 	→ 1
x2 + y2 + 1

· (x , y , x2 + y2).

Setzt man noch Φ(N) := ∞, so hat man eine bijektive Abbildung

Φ : S → Ĉ.

Nun definiert man die durch az+b
cz+d gegebene Abbildung so:

Es seien a, b, c, d ∈ C, c �= 0,
∣∣∣∣a bc d

∣∣∣∣ �= 0, dann definiert man

f : Ĉ → Ĉ, z 	→
⎧⎨⎩

az+b
cz+d für z �= ∞, z �= − d

c

∞ für z = − d
c

a
c für z = ∞

Die Umkehrabbildung ist

f−1 : Ĉ → Ĉ, w 	→
⎧⎨⎩

−dw+b
cw−a für w �= ∞, w �= a

c

∞ für w = a
c

− d
c für w = ∞

Eine derartige Abbildung kann man immer zerlegen in Abbildungen z 	→ az + b
und z 	→ 1

z ;
man setzt f1(z) := cz + d und f2(z) := 1

z sowie f3(z) := bc−ad
c z + a

c , dann ist

f3 ◦ f2 ◦ f1(z) =
az + b
cz + d

.

Damit kann man leicht zeigen, dass bei gebrochen linearen Abbildungen Kreise
und Geraden wieder in solche übergehen; man interpretiert dabei Geraden als Krei-
se durch ∞. Für Abbildungen z 	→ az + b ist dies klar; es genügt, die Aussage für
die Abbildung z 	→ 1

z zu beweisen.
Die Abbildung z 	→ 1

z , ist reell geschrieben: (x, y) 	→ ( x
x2+y2 ,− y

x2+y2 ). Die Men-

ge A(x2 + y2) + Bx + Cy + D = 0 ist für A �= 0 ein Kreis und für A = 0 eine
Gerade ( durch 0 falls D = 0) . Man setzt x = u

u2−v2 , y = − v
u2+v2 und erhält als

Bild A+Bu− Cv +D(u2 + v2) = 0, also wieder einen Kreis ( falls D �= 0)oder
eine Gerade ( fallsD = 0 ).

Beispiel 14.13.10 Wir geben eine biholomorphe Abbildung der oberen Halbebene
H = {x + iy ∈ C| y > 0} auf den Einheitskreis E := {z ∈ C| |z| < 1} an und
zeigen:

Φ : H → E, z 	→ z − i
z + i



454 14 Funktionentheorie

ist biholomorph, die Umkehrabbildung ist

Φ−1 : E → H,w 	→ −i · w + 1
w − 1

.

Es sei z ∈ H ; zu zeigen ist
∣∣∣z−i
z+i

∣∣∣ < 1 oder |z − i| < |z + i|. Das ist anschaulich

klar: die Punkte der oberen Halbebene liegen näher bei i als bei −i. Wir rechnen
dies nach: Für z = x+ iy ∈ C ist

|z + i|2 − |z − i|2 =
(
x2 + (y + 1)2

)
−
(
x2 + (y − 1)2

)
= 4y,

also gilt

|z − i|
|z + i|

⎧⎨⎩
< 1 für y > 0
= 1 für y = 0
> 1 für y < 0

Damit ist alles bewiesen.

Beispiel 14.13.11 Wir behandeln nun die biholomorphen Abbildungen E → E
des Einheitskreises und zeigen: Für ζ ∈ E ist

Φ : E → E, z 	→ z − ζ
1 − ζ̄z

biholomorph , die Umkehrabbildung ist

Φ−1 : E → E,w 	→ w + ζ
1 + ζ̄w

.

Aus ζ ∈ E und z ∈ E folgt nämlich der Reihe nach:

(1 − |z|2)(1 − |ζ|2) > 0

|z|2 + |ζ|2 < 1 + |ζ|2|z|2
|z|2 + |ζ|2 − (ζz̄ + ζ̄z) < 1 + |ζ|2|z|2 − (ζz̄ + ζ̄z)

(z − ζ)(z̄ − ζ̄) < (1 − ζ̄z)(1 − ζz̄)
und daher |Φ(z)| < 1. Ebenso gilt

∣∣∣ w+ζ
1+ζ̄w

∣∣∣ < 1 für |w| < 1 und daraus folgt die

Behauptung.
Es gibt also zu jedem ζ ∈ E eine biholomorphe Abbildung Φ : E → E mit
Φ(ζ) = 0.
Daraus fogt: Zu ζ1, ζ2 ∈ E existiert eine biholomorphe Abbildung Φ : E → E mit
Φ(ζ1) = ζ2. Man kann beweisen, dass alle biholomorphen Abbildungen E → E
gegeben sind durch:

E → E, z 	→ eiα z − ζ
1 − ζ̄z mit α ∈ R, ζ ∈ E.
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14.14 Harmonische Funktionen

Die Theorie der harmonischen Funktionen steht in engem Zusammenhang
mit der Theorie der holomorphen Funktionen, denn es gilt: Wenn f = u+iv
holomorph ist, dann sind u, v harmonisch; umgekehrt ist auf sternförmigen
Gebieten jede harmonische Funktion Realteil einer holomorphen Funkti-
on. Dies ermöglicht es, aus Aussagen über holomorphe Funktionen Sätze
über harmonische Funktionen herzuleiten. Insbesondere ergibt sich, dass
harmonische Funktionen beliebig oft differenzierbar und sogar analytisch
sind. Ausserdem gilt die Mittelwerteigenschaft, das Maximumprinzip und
ein Identitätssatz.

Den Begriff der harmonischen Funktion hatten wir bereits in 9.6.10 eingeführt:

Sei D ⊂ R2 offen ; eine zweimal stetig differenzierbare Funktion

h : D → R, (x, y) 	→ h(x, y),

heißt harmonisch, wenn gilt:

�h :=
∂2h

∂x2
+
∂2h

∂y2
= 0.

Für eine holomorphe Funktion f = u + iv haben wir gezeigt, dass sie lokal durch
eine Potenzreihe dargestelt werden kann. Daher sind u und v beliebig oft stetig
differenzierbar. Aus den Cauchy-Riemannschen Differentialgleichungen folgt:

Satz 14.14.1 Ist f = u+ iv holomorph, so sind u und v harmonisch.

Beweis. Aus ux = vy und uy = −vx folgt: uxx = vyx = vxy = −uyy, also
uxx + uyy = 0. Analog zeigt man die Aussage für v. �

Nun behandeln wir die Frage, wann eine harmonische Funktion h Realteil einer
holomorphen Funktion f ist.

Satz 14.14.2 Wenn das Gebiet G sternförmig ist, dann existiert zu jeder harmoni-
schen Funktion h : G→ R eine holomorphe Funktion f : G→ C mit Ref = h.

Beweis. Für das Vektorfeld (−hy, hx) gilt (−hy)y = (hx)x; aus 9.6.7 folgt, dass
es dazu ein Potential v : G → R gibt; es ist also vx = −hy, vy = hx. Nun
setzen wir f := h+ iv; dann sind die Cauchy-Riemannschen Differentialgleichung
hx = vy , hy = −vx erfüllt und aus 14.2.1 folgt, dass f holomorph ist. �

Weil jede harmonische Funktion lokal Realteil einer holomorphen Funktion ist, er-
gibt sich, dass sie analytisch ist:

Satz 14.14.3 Jede harmonische Funktion ist analytisch, insbesondere ist sie belie-
big oft differenzierbar.

Weiter ergibt sich:
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Satz 14.14.4 (Mittelwerteigenschaft harmonischer Funktionen) Ist h : G → R
harmonisch und {z ∈ C| |z − z0| ≤ r} ⊂ G, so gilt:

h(z0) =
1
2π

2π∫
0

h(z0 + reit)dt.

Beweis. Es gibt eine in einer Umgebung dieser Kreisscheibe holomorphe Funktion
f , deren Realteil h ist. Die Mittelwertformel 14.6.2 für f liefert durch Übergang
zum Realteil die analoge Formel für h. �

Aus dem Identitätssatz für holomorphe Funktionen 14.7.8 leiten wir her:

Satz 14.14.5 (Identitätssatz für harmonische Funktionen.) Ist h : G → R im
GebietG harmonisch und verschwindet h auf einer nichtleeren offenen Menge U ⊂
G, so ist h identisch null.

Beweis. Es sei M :={p ∈ G| es gibt eine Umgebung V ⊂ G von p mit h|V = 0}.
Dann ist M nicht-leer und offen. Nun sei q ∈ M̄ ∩ G und wir wählen eine offene
KreisscheibeW ⊂ G um q. InW ist h Realteil einer holomorphen Funktion und h
verschwindet in der nicht-leeren offenen MengeW ∩M . Aus 14.8.6 folgt h|W = 0,
also p ∈M . Weil G zusammenhängend ist, folgtM = G und somit h = 0 in G.

�

Nun können wir beweisen:

Satz 14.14.6 (Maximum- und Minimumprinzip für harmonische Funktionen.)
Die Funktion h : G→ R sei im GebietG ⊂ R2 harmonisch. Wenn ein (x0, y0) ∈ G
existiert mit

h(x, y) ≤ h(x0, y0) für alle (x, y) ∈ G,
so ist h konstant; eine analoge Aussage gilt, wenn h(x, y) ≥ h(x0, y0) ist.

Beweis. Wir wählen eine offene Kreisscheibe U ⊂ G um (x0, y0). In U ist h Real-
teil einer holomorphen Funktion; aus 14.8.8 folgt, dass h in U konstant ist und aus
dem Identitätssatz ergibt sich, dass h in G konstant ist. �

Daraus ergibt sich:

Satz 14.14.7 Ist G ⊂ R2 ein beschränktes Gebiet und ist h : Ḡ → R stetig, h|G
harmonisch und h|∂G = 0, so ist h identisch null.

Beweis. Weil G beschränkt ist, ist Ḡ kompakt und die stetige Funktion h nimmt
in einem Punkt (x0, y0) ∈ Ḡ das Maximum an. Wäre h(x0, y0) > 0 , dann folgt
(x0, y0) ∈ G und nach dem Maximumprinzip ist h in G und daher auch in Ḡ kon-
stant; dies ist wegen h(x0, y0) > 0 und h|∂G = 0 unmöglich. Wenn h(x0, y0) < 0
ist, schliesst man analog. �

In diesem Zusammenhang behandeln wir das
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Dirichlet-Problem: Gegeben sei ein Gebiet G ⊂ R2 und eine stetige Funktion
� : ∂G→ R,
gesucht ist eine Funktion h : Ḡ→ R mit folgenden Eigenschaften:

(1) in Ḡ ist h stetig
(2) in G ist h harmonisch,
(3) auf ∂G gilt h = �.

Aus 14.14.7 folgt, dass das Dirichlet-Problem auf einem beschränktem Gebiet
höchstens eine Lösung hat.

Wir zeigen zunächst:

Hilfssatz 14.14.8 Wenn g : G1 → G2 holomorph und h : G2 → R harmonisch ist,
dann ist auch h ◦ g harmonisch.

Beweis. Lokal existiert eine holomorphe Funktion f mit Ref = h; dann ist f ◦ g
holomorph und daher ist h ◦ g = Re(f ◦ g) harmonisch. �

Damit kann man in manchen Fällen ein Dirichlet-Problem für ein Gebiet G1

folgendermassen lösen: Man geht mit einer geeigneten holomorphen Abbildung
g : G1 → G2 zu einem

”
einfacheren “Gebiet G2 über, löst dort das Dirichlet-

Problem durch eine Funktion h und erhält mit h ◦ g eine Lösung auf G1.
Wir erläutern dies an einem Beispiel:

Beispiel 14.14.9 Es sei

Ḡ := {(x, y) ∈ R2| x ≥ 0, y ≥ 0};

wir suchen eine nicht identisch verschwindende stetige Funktion h : Ḡ→ R, die in
G harmonisch ist und auf dem Rand verschwindet. Zuerst lösen wir ein einfacheres
Problem, nämlich das analoge Problem für die abgeschlossene obere Halbebene

H̄ := {(x, y) ∈ R2| y ≥ 0}.

Offensichtlich ist die Funktion

h̃(x, y) := y = Im(z)

eine Lösung. Durch
g : Ḡ→ H̄, z 	→ z2

wird G holomorph auf H und ∂G auf ∂H abgebildet. Die Funktion h := h̃ ◦ g ist
harmonisch und löst das Problem fürG; man erhält also

h(x, y) = Im(z2) = 2xy.

Die Niveaumengen von h sind Hyperbeln.
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z2 Im

G H R

0 0 0

Mit dieser Methode kann man leicht weitere Beispiele behandeln; etwa das Pro-
blem für das durch den 45◦-Winkel gegebene Gebiet {(x, y) ∈ R2| 0 ≤ x ≤ y};
als Abbildung wählt man nun z 	→ z4.Man kann sich leicht vorstellen, wie die Ni-
veaumengen aussehen werden: Die Hyperbeln des vorhergehenden Problems wer-
den so deformiert, dass sie in den halbierten Winkelraum hineinpassen. Man erhält
als Lösung

Im(z4) = 4x3y − 4xy3 = 4xy(x+ y)(x− y).

Beispiel 14.14.10 (Temperaturverteilung auf Ē) Wir gehen nochmals auf die in
10.4.20 behandelte Temperaturverteilung auf der kreisförmigen Platte Ē ein. Ge-
sucht ist also eine stetige Funktion T : Ē → R, die in E harmonisch ist und
auf dem Rand ∂E mit der vorgegebenen (zeitlich konstanten) Temperaturverteilung
�(x, y) = 100x2 übereinstimmt. Nach 14.14.2 ist T Realteil einer holomorphen
Funktion f . Bei der Vorgabe von 100x2 ist es naheliegend, f als Polynom 2. Grades
anzusetzen.
Daher berechnen wir zunächst Re(z2) = x2 − y2 auf dem Rand ∂E; dort ist
x2 − y2 = x2 − (1 − x2) = 2x2 − 1. Nun setzen wir

f(z) := 50z2 + 50;

dann istRef(x+iy) = 50(x2−y2)+50, auf ∂E ist dies gleich 100x2.Die Funktion
T (x, y) := Ref(x+iy) ist als Realteil einer holomorphen Funktion harmonisch und
hat die vorgegebenen Randwerte. Die Lösung dieses Dirichlet-Problems ist somit

T (x, y) = Re (50z2 + 50) = 50(x2 − y2) + 50.

Bei der Behandlung der Randtemperatur 100x3 wird man vermuten, dass die
gesuchte Temperaturverteilung T̃ Realteil eines Polynoms f̃ dritten Grades ist.
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Man geht nun aus von Rez3 = x3 − 3xy2; auf x2 + y2 = 1 ist Rez3 gleich
x3 − 3x(1 − x2) = 4x3 − 3x. Nun setzt man f̃(z) := 25z3 + 75z und hat die
Lösung

T̃ (x, y) := Re (25z3 + 75z) = 25x(x2 − 3y2 + 3);

diese hatten wir in 10.4.20 in Polarkoordinaten angegeben.

14.15 Die Poissonsche Integralformel

Wir beginnen mit einem Beispiel einer harmonischen Funktion:

Beispiel 14.15.1 Es sei

u : R2 \ {(1, 0)} → R, (x, y) 	→ 1 − (x2 + y2)
(x − 1)2 + y2

.

Wir zeigen: Diese Funktion ist harmonisch, denn sie ist Realteil einer holomorphen
Funktion:
Für z = x+ iy �= 1 ist nämlich

1 + z
1 − z =

(1 + z)(1 − z̄)
(1 − z)(1 − z̄) =

1 − zz̄ + z − z̄
|1 − z|2 =

1 − |z|2
|1 − z|2 + i

2y
|1 − z|2

und daher

u(z) = Re
1 + z
1 − z =

1 − |z|2
|1 − z|2 .

Wir untersuchen die Niveaumengen: Für c ∈ R ist u(x, y) = c äquivalent zu

(c+ 1)x2 − 2cx+ cy2 = 1 − c.
Die Niveaumengen sind also Kreislinien, die alle durch den singulären Punkt (1, 0)
gehen und den Mittelpunkt auf der x-Achse haben. Durch z 	→ 1+z

1−z wird der Ein-
heitskreis E biholomorph auf die rechte Halbebene {x+ iy ∈ C| x > 0} abgebildet
( vgl.14.13.10). Wenn die Singularität der Funktion nicht im Punkt 1, sondern in

einem Punkt ζ mit |ζ| = 1 liegen soll, ersetzt man z durch z
ζ und erhält 1−|z|2

|ζ−z|2 .

Definition 14.15.2 Sei ζ ∈ C, |ζ| = 1, dann heißt die Funktion

P (ζ, z) := Re
ζ + z
ζ − z =

1 − |z|2
|ζ − z|2

der zum Einheitskreis E gehörende Poisson-Kern.

Für die folgenden Untersuchungen ist es zweckmässig, wieder die Bezeichnung
z∗ = 1

z̄ zu verwenden:
Für z = r · eiϕ �= 0 ist z∗ := 1

z̄ = 1
r · eiϕ. Man erhält z∗ , indem man z am

Einheitskreis spiegelt.
Wir benötigen eine einfache Rechnung:
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Hilfssatz 14.15.3 Für z �= 0, |ζ| = 1, ζ �= z, gilt:

ζ

ζ − z − ζ

ζ − z∗ =
1 − |z|2
|ζ − z|2 .

Beweis.Wir beweisen die Ausssage zuerst für ζ = 1: Es ist

1
1 − z −

1
1 − z∗ =

1
1 − z +

z̄

1 − z̄ =
1 − z̄ + z̄ − zz̄
(1 − z)(1 − z̄) =

1 − |z|2
|1 − z|2 .

Setzt man nun z
ζ an Stelle von z ein und berücksichtigt |ζ| = 1, also ζ∗ = ζ, so

erhält man die Behauptung. �

Nun sei D eine offene Menge in R2, die wir auch als Teilmenge von C auffassen;
es sei wieder E := {z ∈ C| |z| < 1} und Ē := {z ∈ C| |z| ≤ 1}; wir zeigen:

Satz 14.15.4 (Poissonsche Integralformel) Ist h : D → R eine harmonische
Funktion und Ē ⊂ D , so gilt für z = r · eit ∈ E:

h(z) =
1
2π

2π∫
0

h(eiϑ) · P (eiϑ, z)dϑ =
1
2π

2π∫
0

h(eiϑ) · 1 − |z|2
|eiϑ − z|2 dϑ,

also

h(r · eit) =
1
2π

2π∫
0

h(eiϑ)
1 − r2

1 − 2r cos(ϑ− t) + r2
dϑ.

Beweis. Man wählt R > 1 so, dass UR(0) ⊂ D ist; dann existiert eine in UR(0)
holomorphe Funktion f mit Ref = h. Für |z| < 1 ist |z∗| > 1, daher

f(z) =
1

2πi

∫
|ζ|=1

f(ζ
ζ − zdζ,

1
2πi

∫
|ζ|=1

f(ζ)
ζ − z∗ dζ = 0.

Mit dem vorhergehenden Hilfssatz erhält man , wenn man ζ = eiϑ setzt:

f(z) = 1
2πi

∫
|ζ|=1

f(ζ)
ζ−z dζ − 1

2πi

∫
|ζ|=1

f(ζ)
ζ−z∗ dζ =

= 1
2π

∫
|ζ|=1

f(ζ) · 1−|z|2
|ζ−z|2 · dζ

iζ = 1
2π

2π∫
0

f(eiϑ) · P (eiϑ, z)dϑ.

Der Übergang zum Realteil liefert die Integralformel für h = Ref .
Die letzte Behauptung rechnet man nach:

|eiϑ − z|2 = (eiϑ − r · eit) · (e−iϑ − r · e−it) =
= 1 − r · (ei(ϑ−t) − e−i(ϑ−t)) − r2 = 1 − 2r cos(ϑ− t) − r2.
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�

Mit der Poissonschen Integralformel stellt man also die Funktionswerte von h durch
die Werte dar, die h auf dem Rand ∂E annimmt. Es ist naheliegend, mit Hilfe des
Poisson-Kerns P das Dirichlet-Problem für den Einheitskreis zu lösen:

Satz 14.15.5 (Lösung des Dirichlet-Problems für den Einheitskreis ) Ist

� : ∂E → R

eine stetige Funktion und setzt man

h : Ē → R, z 	→
⎧⎨⎩ 1

2π

2π∫
0

�(eiϑ) · 1−|z|2
|eiϑ−z|2 · dϑ für z ∈ E

�(z) für z ∈ ∂E
so ist h Lösung des Dirichlet-Problems für den Einheitskreis E zu �, d.h. die Funkti-
on h ist auf dem abgeschlossenen Einheitskreis stetig, in E harmonisch und auf ∂E
ist h = �.

Dass h in E harmonisch ist, ist klar, denn z 	→ P (ζ, z) ist harmonisch und man
darf unter den Integral differenzieren. Auf den ziemlich schwierigen Nachweis der
Stetigkeit von h in den Randpunkten verzichten wir; einen Beweis findet man in [8].

Die Poisson-Gleichung
Wir behandeln nun das Poisson-Problem: Zu vorgegebener Funktion � sucht man
eine Funktion u mit

∆u = � .

Man rechnet leicht nach (vgl. dazu auch Beispiel 9.6.14), dass für

h : R2 \ {0} → R, x 	→ ln ‖x‖,

gilt

grad h(x) =
x

‖x‖2
, ∆ h(x) = 0.

Nun ergibt sich die Lösung des Poisson-Problems für Funktionen �mit kompaktem
Träger:

Satz 14.15.6 (Poisson-Gleichung ) Ist � : R2 → R eine zweimal stetig differen-
zierbare Funktion mit kompaktem Träger und setzt man

u : R2 → R, x 	→ 1
2π

∫
R2

ln ‖x− ξ‖ · �(ξ)dξ,

so ist u zweimal stetig differenzierbar und es gilt:

∆u = �.
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Der Satz wird in [8] bewiesen. Wir skizzieren die wichtigsten Beweisschritte, um
die Bedeutug der Greenschen Formel hervorzuheben. Mit t := ξ − x ist

u(x) =
1

2πi

∫
R2

ln ‖t‖ · �(t+ x)dt.

Man darf unter dem Integral differenzieren und daher gilt für∆ := ∂2

∂x2
1

+ ∂2

∂x2
2

:

(∗) ∆u(x) =
1

2πi

∫
R2

ln ‖t‖ ·∆�(t+ x)dt.

Zu x ∈ R2 wählt man nunR′ > 0 so, dass �(x+ t) = 0 für ‖t‖ ≥ R′ ist. Nun wählt
man R > R′, setzt für 0 < ε < R

Aε := {t ∈ R2| ε ≤ ‖t‖ ≤ R}
und berechnet das Integral (*) durch

∫
R2

· · · = lim
ε→0

∫
Aε

· · · . Aus der Greeenschen

Formel 13.4.7 und 13.4.8 folgt∫
Aε

ln ‖t‖ ·∆�(x+ t)dt =
∫

∂Aε

(
ln ‖t‖ ∂

∂ν
�(x+ t) − �(x+ t)

∂

∂ν
ln ‖t‖

)
dS.

Bei der Integration über ∂Aε ist zu beachten, dass der Integrand auf ‖t‖ = R ver-
schwindet; bei der Integration über ‖t‖ = ε ist die äussere Normale bezüglich Aε

gleich − t
‖t‖ . Beim ersten Summanden∫

∂Aε

ln ‖t‖ · ∂
∂ν
�(x + t)dS

kann man das Integral durch ε ln ε abschätzen und dies geht für ε → 0 gegen null.
Beim zweiten Summanden rechnet man aus

lim
ε→0

∫
∂Aε

�(x+ t) · ∂
∂ν ln ‖t‖dS = − lim

ε→0

∫
‖t‖=ε

�(x+t)
‖t‖ dS =

= − lim
ε→0

2π∫
0

�(x1 + ε · cosϕ, x2 + ε · sinϕ)dϕ = −2π · �(x).

Daraus folgt:
∆u(x) = �(x).

�

Mit der Gleichung (*) ergibt sich:

Satz 14.15.7 Ist � : R2 → R eine zweimal stetig differenzierbare Funktion mit
kompaktem Träger, so gilt für x ∈ R2:

�(x) =
1
2π

∫
R2

ln ‖x− ξ‖ ·∆�(ξ)dξ.
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Übersetzt man dies in den Kalkül der Distributionen, so ergibt sich:

Satz 14.15.8 (Grundlösung zu∆ ) Setzt man

h : R2 \ {0} → R, t 	→ 1
2π

ln ‖t‖,

so ist die Distribution Th eine Grundlösung zu ∆, also

∆Th = δ.

Beweis. Ist ϕ : R2 → R eine beliebig oft stetig differenzierbare Funktion mit
kompaktem Träger, so gilt nach dem soeben bewiesenen Satz

ϕ(0) =
∫
R2

h(t)∆ϕ(t) dt.

Es ist also δ(ϕ) = ϕ(0) = Th(∆ϕ) = (∆Th)(ϕ) , also δ = ∆Th. �

Für ϕ ∈ D(R2) erhält man eine Lösung der Poisson-Gleichung Lu = ϕ durch

u(x) =
1
2π

∫
R2

ln ‖x− t‖ · ϕ(t) dt;

also
u = Th ∗ ϕ = h ∗ ϕ.

Greensche Funktion zu ∆
Wir behandeln nun die Greensche Funktion zum Differentialoperator

∆ =
∂2

∂x21
+
∂2

∂x22

In 12.4.1 und 12.5.1 hatten wir den Begriff der Greenschen Funktion zu einem Dif-
ferentialoperatorL = a0 +a1 d

dx + d2

dx2 definiert. Nun führen den Begriff der Green-
schen Funktion zum Differentialoperator∆ ein, die auf dem Rand eines gegebenen
GebietesD ⊂ R2 verschwindet; wir fassen dabei auchD ⊂ C auf und identifizieren
(x, y) mit z = x+ iy und (ξ, η) mit ζ = ξ + iη.

Definition 14.15.9 Es sei D ⊂ R2 ein Gebiet; eine Funktion

G : {(z, ζ) ∈ D̄ ×D| z �= ζ} → R

heißt Greensche Funktion zu ∆ und D, wenn für alle ζ ∈ D gilt:

(1) G( · , ζ) : D̄ \ {ζ} → R, z 	→ G(z, ζ), ist stetig und inD \ {ζ} harmonisch,
(2) G(z, ζ) = 0 für z ∈ ∂D,
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(3) es gibt eine harmonische Funktion h( · , ζ) : D → R, z 	→ h(z, ζ), so dass für
z ∈ D \ {ζ} gilt:

G(z, ζ) = − 1
2π

ln |z − ζ| + h(z, ζ).

Bemerkungen. Die Bedingung (1) bedeutet, dassG in z �= ζ der Differentialglei-
chung ∆G(·, ζ) = 0 genügt; (2) ist die Randbedingung und (3) besagt, dass G in
z = ζ eine logarithmische Singularität hat: die Funktion

z 	→ G(z, ζ) +
1
2π

ln |z − ζ|

ist in den Punkt ζ hinein harmonisch fortsetzbar.

Es ist zweckmässig, zu G eine Funktion H einzuführen, deren Definitionsbereich
ganz D̄ ×D ist: Es sei

H : D̄ ×D → R, (z, ζ) 	→
{
h(z, ζ) für z ∈ D
1
2π ln |z − ζ| für z ∈ ∂D

Es gilt für jedes ζ ∈ D:

(1) H(·, ζ) ist stetig in D̄ und harmonisch inD,
(2) G(z, ζ) = H(z, ζ) − 1

2π ln |z − ζ| für z ∈ D \ {ζ}.
Wenn man zeigen kann, dass es (genau) ein H gibt, gilt entsprechendes auch fürG.
Damit ergibt sich;

Satz 14.15.10 Auf einem beschränktem GebietD gibt es höchstens eine Greensche
FunktionG zu ∆. Wenn im beschränktem GebietD jedes Dirichlet-Problem lösbar
ist (z.B. wennD glatten Rand hat), dann existiert genau eine Greensche Funktion.

Beweis. Für ζ ∈ D ist z 	→ H(z, ζ) Lösung des Dirichlet-Problems zur Randwert-
funktion �(z) = 1

2π ln |z − ζ|. Daraus folgt die Behauptung. �

Es gilt nun:

Satz 14.15.11 Es seiD ein beschränktes Gebiet mit glattem Rand undG die Green-
sche Funktion zu∆ undD ; dann gilt:
Ist ϕ : D̄ → R stetig und in D beliebig oft differenzierbar, so gilt: Setzt man

u : D̄ → R, z 	→ −
∫
D̄

G(z, ζ)ϕ(ζ)dζ,

so ist u stetig, inD beliebig oft differenzierbar und es gilt:

∆u = ϕ in D und u = 0 auf ∂D.
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Beim Beweis dieser Aussage differenziert man wieder unter dem Integral , weil H
harmonisch ist, erhält man:

�u = − ∫̄
D

�G(z, ζ)ϕ(ζ)dζ = − ∫̄
D

�
(
H(z, ζ) − 1

2π ln|z − ζ|
)
· ϕ(ζ)dζ =

= 1
2π

∫̄
D

∆(ln|z − ζ|) · ϕ(ζ)dζ.

Wie in 14.15.6 ergibt sich daraus die Behauptung.

Wir wollen nun die Greensche FunktionG zu∆ zum Einheitskreis E angeben.
Offensichtlich ist

G(z, 0) =
1
2π

ln |z|,
denn diese Funktion hat im Nullpunkt eine logarithmische Singularität und ver-
schwindet für |z| = 1. Die Abbildung

E → E , z 	→ z − ζ
1 − ζ z

ist biholomorph und bildet ∂E auf ∂E ab ; ausserdem gilt ζ 	→ 0. Daher ist

G(z, ζ) :=
1
2π

ln
∣∣∣∣ z − ζ1 − ζ z

∣∣∣∣
die gesuchte Funktion.

Satz 14.15.12 (Greensche Funktion zu ∆ und E) Die Greensche Funktion zu ∆
zum Einheitskreis E ist (mit ζ∗ = 1/ ζ ):

G(z, ζ) = − 1
2π

ln
∣∣∣∣ z − ζ1 − ζ z

∣∣∣∣ = − 1
2π

ln |z − ζ| + (
1
2π

ln |z − ζ∗| + 1
2π

ln |ζ|).

Es ist

H(z, ζ) =
1
2π

ln |z − ζ∗| + 1
2π

ln |ζ|.
Die in der Definition der Greenschen Funktion vorkommende Funktion h ist also in
diesem Beispiel

h(z, ζ) =
1
2π

ln |z − ζ∗| + 1
2π

ln |ζ|,
wegen |ζ∗| > 1 ist z 	→ h(z, ζ) im Einheitskreis harmonisch.
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Aufgaben

14.1. Geben Sie zu vorgegebenem Realteil u eine holomorphe Funktion f : C → C an:

a) u(x, y) = 2xy + x b) u(x, y) = 2xy + x2 c) u(x, y) = x2 − y2 − y

14.2. Bestimmen Sie bei den folgenden Funktionen den Typ der isolierten Singulatität im
Nullpunkt:

a)
z2

ez − 1 − z
b) z · sin 1

z
c)

1

sin z
d)

1

sin 1
z

14.3. Berechnen Sie folgende Integrale (r > 0):

a)
�

|z|=r

|z|dz b)
�

|z|=r

|z|
z

dz c)
�

|z|=2

dz
z2−4z+3

d)
�

|z|=5

dz
z2−4z+3

e)
�

|z|=1

z2+7z4−98z7

z9 dz f)
�

|z|=3

�
z2+5
z−2

�2

dz

14.4. Berechnen Sie: a)
+∞�
−∞

xdx
x4+1

, b)
+∞�
−∞

x2dx
x4+1

, c)
+∞�
−∞

x3dx
x4+1

.

14.5. Sei D ⊂ C und sei γ : [0, 1] → D eine Kurve. Zeigen Sie, dass (−γ) + γ in D null-
homotop ist. (Hinweis: Eine Homotopie erhält man, wenn man auf γ immer früher umkehrt.)

14.6. a) Zeigen Sie:
Es gibt keine holomorphe Funktion f : C → C mit (f(z))2 = z für alle z ∈ C .
b) Gibt es eine holomorphe Funktion f : C∗ → C mit (f(z))2 = z für z ∈ C∗ ?.

14.7. Zeigen Sie: Jede positive harmonische Funktion h : R2 → R ist konstant.

14.8. Seien b, c ∈ R und d := 4c − b2 > 0. Berechnen Sie

a)
�

|z|=r

dz

z2 + bz + c
für r �= √

c, b)

+∞�
−∞

dx

x2 + bx + c
.

14.9. Berechnen Sie (mit der Substitution z = eit) :
2π�
0

dt
2+sin t

.
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Einführung in die Funktionalanalysis

15.1 Zielsetzungen. Einführende Bemerkungen

Das Ziel dieses Abschnitts ist die Untersuchung linearer Abbildungen, sogenannter
linearer Operatoren, in Vektorräumen unendlicher Dimension. Solche Vektorräume,
die für die Anwendungen interessant sind, werden durch Funktionenräume geliefert,
etwa L2([a, b]) oder L2(Ω), Ω ⊂ Rn offen. Diese Räume hatten wir in 10.3.4 ken-
nengelernt. Dabei handelt es sich um Hilberträume, die in 10.4 behandelt wurden.
Die linearen Abbildungen, die uns in erster Linie interessieren, sind Differentialope-
ratoren wie sie etwa in 12.6 (Sturm-Liouville-Operatoren oder ∆) eingeführt wur-
den. Wie schon in der linearen Algebra ist das Spektrum eines linearen Operators
Hauptgegenstand unserer Untersuchungen. Eine charakteristische Schwierigkeit bei
Differentialoperatoren besteht darin, dass sie, im Gegensatz zu den Abbildungen
der linearen Algebra, nicht auf dem ganzen zu Grunde liegenden Funktionenraum
erklärt sind. Wir umgehen diese Schwierigkeit, indem wir mit der zum Differential-
operator gehörenden inversen Abbildung arbeiten, vgl. 12.6. Dazu brauchen wir die
Greenschen Funktionen, auf deren Konstruktion wir in 12.4, 14.15.10 einige Mühe
verwandt haben. Was man mit dem Spektrum eines Differentialoperators anfangen
kann, haben wir bei der Lösung der Wellengleichung in 12.6.9 gesehen (Gleichung
der schwingenden Saite).

Es bereitet keine Mühe, den Begriff des Spektrums im etwas allgemeineren Rahmen
des Banachraums einzuführen und einige einfache Konsequenzen zu ziehen. Daher
gehen wir diesen Weg. Gegenüber dem Hilbertraum weist der Banachraum eine
weniger reichhaltige Struktur auf, da es sich bei ihm zwar um einen vollständigen
normierten Vektorraum handelt, jedoch das Skalarprodukt und damit der Begriff
der Orthogonalität fehlt. Charakteristische Beispiele für Banachräume sind etwa
C0([a, b]), C1([a, b]), C2([a, b]), . . . (vgl. Beispiel 15.7.1).
Primär arbeiten wir jedoch in Hilberträumen H über C mit Skalarprodukt < , >,
etwa L2([a, b]) oder L2(Ω), die zudem stets eine Hilbert-Basis ϕ1, ϕ2, ... (man
bezeichnet sie auch als vollständiges Orthonormalsystem (VONS))besitzen. Daher
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läßt sich jedes f ∈ H in eine Fourier-Reihe

f =
∞∑

k=1

fkϕk

mit den Fourier-Koeffizienten fk =< f, ϕk > entwickeln. S. hierzu 10.4.21.
Ist M ⊂ H ein abgeschlossener Teilraum von H, so ist

H = M⊕M⊥

mit einer eindeutig bestimmten Zerlegung

H � u = u1 + u2, u1 ∈ M, u2 ∈ M⊥

(Satz von der orthogonalen Projektion 10.4.6).

Das aus 7.9.14 bekannte Orthogonalisierungsverfahren von E. Schmidt läßt sich
auf Hilberträume H übertragen. Damit erhält man Orthonormalfolgen und unter
geeigneten Voraussetzungen eine Hilbertbasis.

15.2 Beschränkte lineare Funktionale

Definition 15.2.1 Seien V,W ein normierte Vektorräume; eine lineare Abbildung
A : V →W heißt beschränkt, wenn ein c > 0 existiert mit

‖A(f)‖ ≤ c‖f‖ für alle f ∈ V.
Statt A(f) schreiben wir auch Af . Für eine lineare Abbildung A definieren wir
weiter

‖A‖ = sup
f∈V \{0}

‖Af‖
‖f‖ = sup

‖g‖=1

‖Ag‖.

‖A‖ = +∞ ist zugelassen.

A ist genau dann beschränkt, wenn ‖A‖ <∞ ist.
Zunächst beweisen wir eine einfache Aussage:

Satz 15.2.2 Seien V,W normierte Vektorräume und A : V → W eine lineare
Abildung. Die Abbildung A ist genau dann stetig, wenn A beschränkt ist.

Beweis. a) Sei A beschränkt: ‖Ax‖ ≤ c‖x‖ für x ∈ V . Zu v ∈ V und ε > 0 wählt
man δ := ε

2c . Aus ‖x − v‖ < δ folgt dann :‖Ax − Av‖ ≤ c‖x − v‖ ≤ cδ < ε.
Daher ist A in v stetig.
b) Sei A stetig (in 0); dann existiert zu ε = 1 ein δ > 0 mit ‖Ay‖ < 1 für ‖y‖ < δ.
Ist x ∈ V , x �= 0, so setzt man y := δ

2‖x‖x. Dann ist ‖Ay‖ < 1, also ‖Ax‖ < 2
δ ‖x‖

und mit c := 2
δ folgt, dass A beschränkt ist. �
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Wir zeigen nun : Ist V ein endlichdimensionaler Vektorraum über C mit Norm ‖.‖
und (b1, ..., bn) eine Basis von V , so konvergiert eine Folge (vk)k in der Norm
genau dann gegen v ∈ V, wenn die Koeffizienten in den Basisdarstellungen dies
tun. Damit folgt, dass jede lineare Abbildung A : V → C von selbst stetig ist. Im
unendlichdimensionalen Fall liegen die Verhältnisse jedoch anders, wie wir noch in
15.6 genauer sehen werden. Die Stetigkeit von A ist eine besondere Eigenschaft .
Wir zeigen zuerst ( vgl. dazu [18]):

Hilfssatz 15.2.3 Ist V ein normierter Vektorraum und sind b1, . . . , bn ∈ V linear
unahhängig, so gibt es ein c > 0, so dass für alle x1, . . . , xn ∈ R gilt:

n∑
j=1

|xj | ≤ c · ‖
n∑

j=1

xjbj‖.

Beweis. Die MengeM := {x ∈ Rn|
n∑

j=1

|xj | = 1} im Rn ist kompakt und daher

nimmt die stetige Funktion M → R, x 	→ ‖
n∑

j=1

xjbj‖, das Minimum m ≥ 0 an.

Weil die b1, . . . , bn linear unahhängig sind, istm > 0; also

‖
n∑

j=0

xjbj‖ ≥ m > 0 für
n∑

j=1

|xj | = 1.

Sei nun x ∈ Rn, x �= 0, und s :=
n∑

j=1

|xj |. Dann ist
n∑

j=1

|xj

s | = 1 und daher

‖
n∑

j=1

xj

s
bj‖ ≥ m;

setzt man c := 1
m , so folgt

s ≤ c · ‖
n∑

j=1

xjbj‖.

�

Der Hilfssatz besagt: Ist (b1, . . . , bn) eine Basis von V , so existiert ein c > 0, so

dass für v =
n∑

j=1

xjbj gilt:

n∑
j=1

|xj | ≤ c · ‖v‖.

Daraus folgt, dass bei endlich-dimensionalen normierten Vektorräumen Konvergenz
gleichbedeutend mit komponentenweiser Konvergenz ist:
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Satz 15.2.4 Sei V ein endlich-dimensionaler normierter Vektorraum, sei (vk)k∈N)
eine Folge in V und v ∈ V . Ist dann (b1, . . . , bn) irgend eine Basis in V, und ist

vk =
n∑

j=1

x
(k)
j bj, v =

n∑
j=1

xjbj , so gilt

lim
k→∞

vk = v genau dann, wenn lim
k→∞

x
(k)
j = xj (j = 1, . . . , n).

Beweis. Aus lim
k→∞

vk = v und

n∑
j=1

|x(k)
j − xj | ≤ c · ‖vk − v‖

folgt
lim

k→∞
x

(k)
j = xj , (j = 1, . . . , n).

Die umgekehrte Richtung rechnet man leicht nach. �

Daraus ergibt sich:

Satz 15.2.5 Ist V ein endlich-dimensionaler normierter Vektorraum, so ist V ein
Banachraum und jede lineare Abbildung V →W in einen normierten Vektorrraum
W ist stetig.

Beweis. a) Es sei(vk)k eine Cauchy-Folge in V . Wir wählen eine Basis (b1, . . . , bn)
in V ; für k,m ∈ N ist (mit den Bezeichnungen des vorhergehenden Satzes )

n∑
j=1

|x(k)
j − x(m)

j | ≤ c · ‖vk − vm‖.

Daher ist jede Folge (x(k)
j )k eine Cauchy-Folge, die wegen der Vollständigkeit von

R gegen ein xj konvergiert. Somit konvergiert (vk)k gegen
n∑

j=1

xjbj .

b) Sei A : V → W linear; wir wählen wieder eine Basis (b1, . . . , bn) in V ; es gibt
ein r > 0 mit

‖Ab1‖ ≤ r, . . . , ‖Abn‖ ≤ r.
Für v =

n∑
j=1

xjbj ∈ V ist dann nach 15.2.3

‖Av‖ = ‖
n∑

j=1

xj(Abj)‖ ≤ r ·
n∑

j=1

|xj | ≤ r · c · ‖
n∑

j=1

xjbj‖ = r · c · ‖v‖;

daher ist A beschränkt. �

Wir gehen nun auf normierte Vektorräume, vor allem Hilberträume, die auch un-
endliche Dimension haben dürfen, ein.
Zuerst geben wir ein einfaches Beispiel für eine unbeschränkte, also unstetige linea-
re Abbildung an:
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Beispiel 15.2.6 Es sei I := [0, 2π] und V := C∞(I) mit der Supremumsnorm

‖f‖I := sup
x∈I

|f(x)| für f ∈ V.

Wie in Beispiel 6.1.1 sei für n ∈ N

hn : I → R, x 	→ 1
n

sin(n2x).

Es ist

‖hn‖I =
1
n
, ‖ d

dx
hn‖I = n;

daher konvergiert (hn) gegen 0, aber (h′n) nicht. Somit ist die lineare Abbildung

d
dx

: V → V, f 	→ d
dx
f

unstetig.

Wir behandeln nun komplexe Hilberträume H und lineare Abbildungen H → C,
die man in der Funktionalanalysis auch Funktionale nennt.

Definition 15.2.7 Eine lineare Abbildung A : H → C bezeichnet man auch als
lineares Funktional.

Ein Beispiel für ein stetiges oder beschränktes lineares Funktional in einem Hilber-
traum H erhält man, indem man zu einem festen Element g ∈ H die Abbildung A
durch

Af =< f, g >, f ∈ H,
festsetzt. Nach Cauchy-Schwarz ist | < f, g > | ≤ ‖g‖ ‖f‖ und somit ‖A‖ ≤ ‖g‖.
Der folgende Darstellungssatz von Riesz-Fréchet (FRIGYES (FRIEDRICH) RIESZ

(1880 -1956 ), RENÉ MAURICE FRÉCHET (1878-1973)) zeigt, dass man damit
auch alle stetigen linearen Funktionale erfaßt hat.

Satz 15.2.8 (Darstellungssatz von Riesz-Fréchet) SeiA ein beschränktes lineares
Funktional im komplexen Hilbertraum H. Dann gibt es genau ein g ∈ H mit

Af =< f, g > für alle f ∈ H.

g heißt das erzeugende Element von A; es ist ist ‖A‖ = ‖g‖.
Beweis. Es ist leicht zu sehen, dass es höchstens ein derartiges g gibt: Wenn auch
g1 diese Eigenschaft hat, dann gilt < f, g − g1 >= 0 für alle f ∈ H; setzt man
f := g − g1 ein, so folgt< g − g1, g − g1 >= 0, und daher ist g − g1 = 0.
Nun zeigen wir die Existenz von g und dürfen A �= 0, also KerA �= H annehmen.
Weil A stetig ist, ist Ker A abgeschlossen und aus dem Zerlegungssatz 10.4.5 folgt

H = (Ker A) ⊕ (Ker A)⊥.
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Daher existiert ein h ∈ (Ker A)⊥ mit ‖h‖ = 1. Nun setzen wir c := A(h) . Dann
gilt für jedes f ∈ H:

A
(
c · f − A(f) · h) = c · A(f) −A(f) ·A(h) = 0,

also ist c · f − A(f) · h ∈ Ker A.Wegen h ∈ (KerA)⊥ folgt:

0 = < c·f−A(f)·h , h > = < c·f , h > −A(f) < h, h > = < f, c̄·h > −A(f),

somit A(f) = < f, c̄ · h >; nun setzt man g := c̄ · h .
Aus der Cauchy-Schwarzschen Ungleichung | < f, g > | ≤ ‖f‖ · ‖g‖ folgt, wie
schon oben erwähnt, ‖A‖ ≤ ‖g‖; aus Ag =< g, g >, also |Ag|

‖g‖ = ‖g‖, folgt
‖A‖ = ‖g‖. �

Beispiel 15.2.9 Sei H = LC

2 (Rn) undA ein stetiges lineares Funktional. Dann gibt
es also genau ein g ∈ LC

2 (Rn) derart, dass

Af =
∫

Rn

f ḡ dx

ist für alle f ∈ LC
2 (Rn).

In 7.12 hatten wir zu einem Vektorraum V den Dualraum V ∗ aller linearen Ab-
bildungen V → R eingeführt. Bei einem Hilbertraum H betrachtet man nun den
Vektorraum H′ der stetigen oder beschränkten linearen Funktionale, der durch
15.2.1 normiert ist. Die Abbildung J , erklärt durch

A 	→ g = erzeugendes Element von A,

bildet H nach 15.2.8 normtreu auf H′ ab. Es ist

J(A1 +A2) = J(A1) + J(A2), J(λA) = λ̄J(A), λ ∈ C.

J ist also nur fastlinear, oder wie man sagt, antilinear. Auf Grund der eben ein-
geführten Abbildung J identifiziert man meist H mit seinem Dualraum und sagt, H
sei zu sich selbst dual.

15.3 Lineare Operatoren in H, die Fourier-Transformation

Nah verwandt mit den linearen Funktionalen in H sind die linearen Operatoren in
H. Sie bilden einen Teilraum von H oder ganz H in H ab. Insbesondere brauchen
Sie also nicht im ganzen Hilbertraum erklärt zu sein und ihr Wertebereich wird im
allgemeinen unendliche Dimension besitzen. Näheres wird aus den Beispielen klar.
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Definition 15.3.1 Sei H ein Hilbertraum, D ein Teilraum von H mit D �= {0}. Ein
linearer Operator (lineare Transformation) T in H ist eine lineare Abbildung

T : D → H,

D = D(T ) heißt Definitionsbereich von T , T (D(T )) = R(T ) heißt Wertebereich
von T .

Wie man sofort sieht, ist R(T ) ebenfalls ein Teilraum von H.
Wir bringen einige Beispiele:

Beispiel 15.3.2 Sei H = L2([a, b]), D = C0([a, b]). Sei K : [a, b] × [a, b] → C
stetig, etwa die Greensche Funktion zu einem Sturm-Liouville Operator wie in 12.6.
Dann ist für f ∈ D das Bild von f unter T erklärt durch

(Tf)(x) =

b∫
a

K(x, y)f(y) dy.

T f ist offenbar stetig, also insbesondere aus L2([a, b]), und T ist linear.

Beispiel 15.3.3 Sei H = L2(Ω), Ω ⊂ Rn offen und beschränkt. Sei D = H. Sei
K ∈ L2(Ω × Ω). Nach dem Satz von Fubini 10.2.6 ist für fast alle x ∈ Ω die
FunktionK(x, .) aus L2(Ω). Für f ∈ L2(Ω) ist somit die Funktion

(Tf)(x) =
∫
Ω

K(x, y)f(y) dy (1)

wohldefiniert. Wegen∫
Ω

∫
Ω

|K(x, y)| |f(y)| dy dx ≤ (µ(Ω)
∫
Ω

∫
Ω

|K(x, y)|2 dxdy)
1
2 ‖f‖L2(Ω)

ist nach dem Satz von Tonelli 10.2.7 die Funktion Tf aus L1(Ω). Darüberhinaus
gilt

|Tf(x)|2 = |
∫
Ω

K(x, y)f(y) dy|2 ≤
∫
Ω

|K(x, y)|2 dy‖f‖2
L2(Ω)

und durch Integration beider Seiten über Ω folgt

‖Tf‖L2(Ω) ≤ ‖K‖L2(Ω×Ω)‖f‖L2(Ω). (2)

Insbesondere ist Tf ∈ L2(Ω) und wir haben mit (1) einen auf ganz H erklärten li-
nearen Operator in H definiert. T heißt Integraloperator vom Hilbert-Schmidtschen
Typ,K Hilbert-Schmidt Kern. Auch Kerne vom Hilbert-Schmidt Typ sind uns schon
begegnet. SeiΩ = E der offene Einheitskreis der komplexen Ebene, also des R2. In
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14.15.10 hatten wir die Greensche Funktion G zu ∆ konstruiert. In der komplexen
Schreibweise war

G(z, ζ) =
1
2π

log
∣∣∣∣ z − ζ1 − z̄ζ

∣∣∣∣ ,
so dass jetzt für x das Symbol z und für y das Symbol ζ stehen. Ihre Integrierbar-

keitseigenschaften ist wegen |1 − z̄ζ| ≥ |z − ζ|, ln
∣∣∣ z−ζ
1−z̄ζ

∣∣∣ ≤ c ∣∣∣ 1
z−ζ

∣∣∣1/2

in E × E
mit einer von z, ζ unabhängigen Konstante, also (ζ = ξ + iη)∫

E

|G(z, ζ)|2 dξ dη ≤ c, z ∈ E,

mit einer von z unabhängigen Konstante (vgl.10.2.9 und 10.2.10.) Demnach ist der
Integraloperator

(Gf)(z) =
∫
E

(G(z, ζ))f(ζ) dξ dη

vom Hilbert-Schmidtschen Typ. Er invertiert −∆ unter der Randbedingung u(z) =
0, z ∈ ∂E (s. Satz 14.15.10). Offenbar ist der Integraloperator des ersten Beispiels
insbesondere vom Hilbert-Schmidtschen Typ, präziser: Mit Hilfe unserer Erkennt-
nisse aus dem gegenwärtigen Beispiel können wir ihn auf ganzL2([a, b]) fortsetzen.
Wir werden in Satz 15.3.5 sehen, dass die beschränkte Fortsetzung auf eine und nur
eine Weise geschehen kann und somit T durch Festlegung auf den stetigen Funktio-
nen C0([a, b]) bereits völlig bestimmt ist.

Beispiel 15.3.4 Sei H = L2([a, b]). Sei

D = D(L) = {u|u ∈ C2([a, b]) u(a) = 0, u(b) = 0}

Sei weiter
Lf = (pf ′)′ + qf, f ∈ D(L)

mit Koeffizientenfunktionen p ∈ C1([a, b]), p > 0, q ∈ C0([a, b]), so dass L der
aus 12.6 bekannte Sturm-Liouville Operator ist. Offenbar ist L linearer Operator in
H.

Wir wollen nun die angeführten Beispiele darauf untersuchen, ob sie beschränkte
Operatoren liefern.
Zu Beispiel 15.3.2: Es ist H = L2([a, b]) und für f ∈ D(T ) ist

‖Tf‖ ≤ √
b− a‖Tf‖C0([a,b]) ≤

√
b− a sup

x,y∈[a,b]

|K(x, y)| · ‖f‖L1([a,b]) ≤
≤ (b − a) sup

x,y∈[a,b]

|K(x, y)| · ‖f‖.
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Demnach ist T beschränkt und außerdem folgt ‖T ‖ ≤ sup
x,y∈[a,b]

|K(x, y)| · (b− a).

Zu Beispiel 15.3.3: Hier haben wir bereits gezeigt, dass T beschränkt ist und, dass

‖T ‖ ≤ ‖K‖L2(Ω×Ω)

gilt. Natürlich erlauben die Rechnungen zu diesem Beispiel auch den Schluß, dass
der Operator T aus Beispiel 15.3.2 beschränkt ist. Da die Argumentation im zweiten
Beispiel etwas subtiler als im ersten ist, erhält man für das erste Beispiel auch mehr,
nämlich die Schranke

‖T ‖ ≤ ‖K‖L2(]a,b[×]a,b[) ≤ sup
x,y∈[a,b]

|K(x, y)| · (b− a),

die also schärfer als die vorhin gewonnene ist.
Zu Beispiel 15.3.4: Differentialoperatoren sind grundsätzlich nicht beschränkt, also
nach 15.2.2 auch nicht stetig. Invertieren wir jedoch den Operator L, so erhalten
wir nach 12.6 einen Operator gemäß Beispiel 15.3.2. K ist dann die Greensche
Funktion. Dass Differentialoperatoren nicht beschränkt sind, sehen wir am Beispiel
des Sturm-Liouville-OperatorsL mit

Lf = f ′′, für f ∈ D(L) = {u ∈ C2([0, π])| u(a) = u(b) = 0}.
Für die Eigenfunktionen sinkx, k ∈ N, zu den Eigenwerten k2 gilt also

‖L sinkx‖L2( ]0,π[ )

‖ sinkx‖L2( ]0,π[ )
= k2,

so dass L nicht beschränkt sein kann.
Wir erinnern zunächst an den Begriff des dichten Teilraums aus 9.1. Offenbar liegt,
wie die Beispiele 15.3.2 und 15.3.3 zeigen, in der Auswahl des Definitionsbereiches
D(T ) eine gewisse Willkür. Falls T beschränkt und D(T ) dichter Teilraum von
H ist, ist diese Willkür nur scheinbar. Man kennt dann in Wahrheit den Operator
T sogar auf ganz H. Dies zeigt

Satz 15.3.5 (Fortsetzung durch Abschließung) Sei T ein beschänkter linearer
Operator in H mit Definitionsbereich D(T );D(T ) sei dichter Teilraum von H .
Dann hat T eine und nur eine beschränkte Fortsetzung T̄ auf H. Es ist ‖T ‖ = ‖T̄‖.
Beweis. Wir setzen D := D(T ).Weil T beschränkt ist, existiert ein c > 0 mit

‖Tx‖ ≤ c · ‖x‖ für alle x ∈ D.
Nun sei x ∈ H; wegen D = H existiert eine Folge (xn) in D, die gegen x konver-
giert. Wegen

‖Txn − Txm‖ ≤ c‖xn − xm‖
ist (Txn) eine Cauchyfolge , die also gegen ein Element T̄ (x) ∈ H konvergiert.
Ist auch (x′n) eine Folge in D, die gegen x konvergiert, so ist lim(xn − x′n) = 0
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und daher auch lim(Txn − Tx′n) = 0. Somit ist die Definition T̄ x := limTxn

unabhängig von der Wahl der Folge (xn) und wir haben eine Abbildung T̄ : H → H
sinnvoll definiert, die auf D mit T übereinstimmt.
Wir zeigen: T̄ ist linear:
Zu x, y ∈ H wählt man Folgen (xn), (yn) in D, die gegen x bzw. y konvergieren.
Dann ist

T̄ (λx+µy) = limT (λxn +µyn) = λ limT (xn)+µ limT (yn) = λT̄ (x)+µT̄ (y).

Aus ‖Txn‖ ≤ ‖T ‖ · ‖xn‖ für xn ∈ D folgt |T̄ (x)| ≤ ‖T ‖ · ‖x‖ für x ∈ H.
Daraus folgt ‖T̄‖ = ‖T ‖.
Weil es zu jedem x ∈ H eine Folge (xn) in D gibt, die gegen x konvergiert, ist die
stetige Fortsetzung von T auf H eindeutig bestimmt. �

Beispiel 15.3.6 In 10.5 hatten wir die Fourier-Transformierte einer Funktion

(Tf)(x) =
1√
2π

∫
R

e−ixyf(y) dy

für f ∈ L1(R), also insbesondere für f ∈ C∞
0 (R) erklärt. Aus dem Dichtesatz

12.1.21 wissen wir schon, dass C∞
0 (R) dichter Teilraum von L2(R) ist. Man kann

nun zeigen, dass
‖Tf‖L2(R) = ‖f‖L2(R), f ∈ C∞

0 (R)

gilt. Daher erlaubt T nach Satz 15.3.5 eine und nur eine beschränkte Fortsetzung T̄
auf L2(R), die offenbar zudem noch die Eigenschaft

‖T̄ f‖L2(R) = ‖f‖L2(R)

besitzt. T̄ erhält also die Norm von L2(R). Jedoch kann man T̄ f, f ∈ L2(R), nicht
mehr so einfach hinschreiben wie oben, da |eix.f(.)| nicht mehr über R integrierbar
zu sein braucht, wenn f ”nur” aus L2(R) ist, vgl. das Ende von 10.3. Erklären wir
die n-dimensionale Fourier-Transformierte einer Funktion durch

(Tf)(x) =
1

(
√

2π)n

∫
Rn

e−i<x,y>f(y) dy

zunächst für f ∈ L1(Rn), also insbesondere für f ∈ C∞
0 (Rn), so gelten zum Fall

n = 1 völlig analoge Aussagen, also z.B.

T (f ∗ g) = Tf · Tg mit f, g ∈ L1(Rn),

f ∗ g(x) =
∫
R

f(x− y)g(y) dy

und
‖T̄ f‖L2(Rn) = ‖f‖L2(Rn), f ∈ L2(Rn).

Hierzu siehe auch die Aufgaben 15.2-15.5.
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Zum Auffinden weiterer Eigenschaften der Fourier-Transformierten ist es günstig,
den Begriff des zu einem in H erklärten beschränkten Operator T adjungierten Ope-
rators T ∗ heranzuziehen; aus der linearen Algebra 7.12.10 ist bereits der Begriff der
adjungierten Abbildung bekannt:

Satz 15.3.7 Sei H ein Hilbertraum und T ein beschränkter Operator in H mit
D(T ) = H. Dann gibt es einen und nur einen Operator T ∗ in H mit D(T ∗) = H
und

< Tx, y >=< x, T ∗y >, x, y ∈ H.
T ∗ ist beschränkt, es gilt ‖T ∗‖ = ‖T ‖. T ∗ heißt die Adjungierte zu T oder der zu
T adjungierte Operator. Außerdem gilt

T ∗∗ = (T ∗)∗ = T.

Beweis: Wir beschränken uns auf die Hauptidee des Beweises. Sie besteht in der
Anwendung von Satz 15.2.8 (Satz von Riesz-Fréchet). Sei y ∈ H fest aber beliebig.
Dann ist

Ayx :=< Tx, y >

wegen |Ayx| ≤ ‖Tx‖ ‖y‖ ≤ ‖T ‖ ‖y‖ ‖x‖ ein beschränktes lineares Funktional in
H mit ‖Ay‖ ≤ ‖T ‖ ‖y‖.Also existiert genau ein y∗ ∈ H mit

Ayx =< Tx, y >=< x, y∗ > .

T ∗ ist dann erklärt als die Abbildung y 	→ y∗. �

Das entscheidende Kennzeichen der Adjungierten ist es also, dass man mit ihrer
Hilfe T vom ersten Faktor im H-Skalarprodukt auf den zweiten abwälzt. Vermöge
partieller Integration läßt sich dies auch mit (unbeschränkten) Differentialoperato-
ren tun. Genauere Erläuterungen liefern die folgenden Beispiele.

Beispiel 15.3.8 Sei H = L2(Ω), Ω ⊂ Rn offen und beschränkt, K ein Hilbert-
Schmidt Kern, also aus L2(Ω ×Ω). Vermöge∫

Ω

(
∫
Ω

K(x, y)f(y) dy) g(x) dx =
∫
Ω

f(y)
∫
Ω

K(x, y)g(x) dx dy

ist der zu einem IntegraloperatorT vom Hilbert-Schmidtschen Typ adjungierte Ope-
rator T ∗ durch

(T ∗g)(y) =
∫
Ω

K(x, y) g(x) dx, g ∈ H,

gegeben und somit selbst vom Hilbert-Schmidtschen Typ.

Beispiel 15.3.9 Die Fourier-Transformierte T in H = L2(Rn) besitzt nach Satz
15.3.7 eine (und nur eine) Adjungierte T ∗. Sie ist auch beschränkt. Wählen wir in
5. f, g ∈ C∞

0 (Rn), so lassen sich wörtlich dieselben Rechnungen mit K(x, y) =
1

(
√

2π)
e−ix·y ausführen und wir erkennen, dass
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< Tf, g >=
∫
Rn

f(y)
1

(
√

2π)n

∫
Rn

ei<x,y>g(x) dxdy

ist. Gleichzeitig gilt
< Tf, g >=< f, T ∗g >

Da C∞
0 (Rn) nach 12.1.21 dichter Teilraum von H ist, folgt, indem wir ein be-

liebiges f ∈ H durch C∞
0 (Rn)-Funktionen approximieren, mit der Stetigkeit des

Skalarprodukts (s. 10.4.3), dass

< f,
1

(
√

2π)n

∫
Rn

ei<·,xg(x) dx− T ∗g >= 0,

also

(T ∗g)(y) =
1

(
√

2π)n

∫
Rn

ei<y,x>g(x) dx, g ∈ C∞
0 (Rn),

ist, sofern wir nur schon wissen, dass (1/(
√

2π)n)
∫

Rn

ei<.,x>g(x) dx in L2(Rn)

liegt. Wegen

1
(
√

2π)n

∫
Rn

ei<y,x>g(x) dx =
1

(
√

2π)n

∫
Rn

e−i<y,x>ḡ(x) dx = T ḡ(y)

ist dies tatsächlich der Fall. Nutzen wir wieder aus, dass C∞
0 (Rn) dichter Teilraum

von H ist, so folgt aus (15.3.5,15.3.7) noch

‖T ∗g‖ = ‖T ḡ‖ = ‖T ḡ‖ = ‖g‖, g ∈ H,
so dass also auch T ∗ die Norm erhält. Auf Grund der Umkehrformel 10.5.2 wird
man vermuten, dass T ∗ der zu T inverse Operator ist. Auf diesen Zusammenhang
gehen wir im folgenden Paragraphen ein.

Beispiel 15.3.10 Betrachten wir Differentialoperatoren

L. =
∑
|α|≤k

bα(x)Dα

der Ordnung k mit unendlich oft stetig differenzierbaren reellen Koeffizientenfunk-
tionen bα in H = L2(Rn) und setzen wir D(L) = C∞

0 (Rn). Der Operator

T ∗. =
∑
|α|≤k

(−1)|α|Dα(bα(x).)

heißt der adjungierte Operator und ist formal dadurch gekennzeichnet, dass im
L2(Rn)-Skalarprodukt< , > gilt

< Lϕ,ψ >=< ϕ,L∗ψ >, ϕ, ψ ∈ C∞
0 (Rn).

Auf eine mathematische Präzisierung des Begriffs der Adjungierten für nicht überall
erklärte Operatoren müssen wir hier verzichten.
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Definition 15.3.11 : Sei H ein linearer Operator in H mit Definitionsbereich
D(H). D(H) sei dichter Teilraum des Hilbertraums H. Für alle f, g ∈ D(H) sei

< Hf, g >=< f,Hg > .

Dann heißt H hermitesch. Ist D(H) = H , so bezeichnet man H als selbstadjun-
giert.

Bemerkung. Ist H hermitesch mit D(H) = H, so ist H beschränkt.

Beispiele:

Beispiel 15.3.12 Die Sturm-Liouville Operatoren aus Beispiel 15.3.4 sind hermi-
tesch; L aus Beispiel 15.3.10 ist hermitesch, wenn für alle Multiindizes ρ ∈ Rn mit
|ρ| ≤ k gilt: ∑

α,α≥ρ,
|α|≤k

(−1)|α|
(
α

ρ

)
Dα−ρbα(x) = bρ(x), x ∈ Rn :

es ist D(L) = D(L∗) = C∞
0 (Rn). So ist ∆ hermitesch.

Beispiel 15.3.13 Der Projektor

PU : H → U
auf einen abgeschlossenen Teilraum U eines Hilbertraums (s. 10.4.6) ist hermitesch
mit D(PU ) = H. Für weitere Beispiele s. den Anfang von 15.9, 15.10.1 und die
Beispiele 15.10.5 und 15.10.6.

15.4 Die Inverse eines linearen Operators

Wir erklären zunächst den Begriff der Inversen eines linearen Operators

Definition 15.4.1 : Sei H ein Hilbertraum, T ein linearer Operator in H mit Defi-
nitionsbereich D(T ) und Wertebereich R(T ). Die Abbildung T : D(T ) → R(T )
sei bijektiv. Die inverse Abbildung T−1 : R(T ) → D(T ) heißt der zu T inverse
Operator T−1.

Es ist leicht zu sehen, dass T−1 linearer Operator in H ist mit D(T−1) = R(T ),
R(T−1) = D(T ).

Beispiel 15.4.2 Sei L Sturm-Liouville Operator in H = L2([a, b]) mit Definitions-
bereich D(L) (s. 12.6) Das Problem Lu = 0 besitze in D(L) nur die Lösung u ≡ 0.
Dann hatten wir in 12.6.6 den inversen Operator L−1 konstruiert.

Der folgende Satz bringt ein notwendiges und hinreichendes Kriterium dafür, dass
der Operator T eine in ganz H erklärte beschränkte Inverse besitzt.
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Satz 15.4.3 (Kriterium von Toeplitz): Sei T ein beschränkter linearer Operator im
Hilbertraum H. Dann hat T genau dann einen in H erklärten beschränkten inversen
Operator T−1 (insbesondere ist dann D(T−1) = R(T ) = H), wenn gilt:
1) Es gibt ein d > 0 derart, dass ‖Tx‖ ≥ d‖x‖ ist, x ∈ H.
2) Ist T ∗x = 0, so folgt x = 0.

Beispiel 15.4.4 Man sieht aus Beispiel 15.3.9 sofort, dass die Fourier-Transformierte
T in L2(Rn) eine überall erklärte beschränkte Inverse hat.

Beispiel 15.4.5 Der Operator T : l2 → l2, (an) 	→ (bn) mit b1 = 0, bn = an−1

für n ≥ 2, genügt zwar der Bedingung 1) des Satzes von Toeplitz, aber nicht der

Bedingung 2). Offenbar ist R(T )
⊂
�= H = l2 und T kann keine überall erklärte

beschränkte Inverse besitzen.

Die Begriffe des linearen Operators und der inversen Abbildung lassen sich leicht
auf Banachräume übertragen. Wir gehen darauf in 15.7 ein. Ein Satz 15.4.3 ver-
gleichbares Kriterium steht jedoch nicht zur Verfügung, da der Begriff der Adjun-
gierten im Raum selbst ein Skalarprodukt, also einen Hilbertraum benötigt.

15.5 Unitäre Operatoren

Aus der linearen Algebra ist der Begriff der unitären Matrix U bekannt ( Definiti-
on 7.11.3) Eine Matrix U = (uik) mit komplexen Koeffizienten heißt unitär genau
dann, wenn ihre Adjungierte mit der Inversen von U zusammenfällt. Beschränkt
man sich auf reelle n× n-Matrizen, so erhält man die orthogonalen Matrizen. Ihre
Realisierung im Rn als lineare Abbildungen sind die Drehungen, die alle Abstände
und also auch das (euklidische) Skalarprodukt im Rn ungeändert lassen. Entspre-
chendes gilt für die unitären Matrizen im Hilbertraum Cn. Wir wollen den Begriff
der unitären Abbildung auf Hilberträume übertragen und insbesondere erkennen,
dass die Fouriertransformierte unitär ist in H = L2(Rn). Da die unitären Abbil-
dungen das Skalarprodukt in H invariant lassen, kann man einen Sachverhalt in H
ebenso gut in der Sprache der Bilder unter einer unitären Abbildung beschreiben.
Bei der Fouriertransformation spricht man dann vom Fourierbild irgendeiner zu un-
tersuchenden Beziehung in L2(Rn). Nun zu

Definition 15.5.1 Sei H ein Hilbertraum. Ein in H erklärter linearer Operator U
heißt unitär, wenn er
1) isometrisch ist, d.h. ‖Ux‖ = ‖x‖ und damit < Ux,Uy >=< x, y >, x, y ∈ H,
gilt,
2) surjektiv ist.

Ist U unitär, so ist U bijektiv, U−1 existiert und ist in ganz H erklärt. Aus <
Ux,Uy >=< x, y > folgt < x′, y′ >=< U−1x′, U−1y′ >, wenn wir x′ = Ux,
y′ = Uy setzen. Also ist auch U−1 unitär und man sieht auch leicht, dass die
unitären Operatoren eine Gruppe bilden.
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Satz 15.5.2 SeiU ein beschränkter linearer Operator im HilbertraumH mit D(U) =
H. U ist genau dann unitär, wenn

U(U∗) = (U∗)U = Id

gilt.

Beweis: SeiU unitär, also< f, g >=< Uf,Ug >=< U∗Uf, g > undU∗U = Id.
U−1 ist ebenfalls unitär, also < f,U∗g >=< Uf, g > = < U−1Uf, U−1g >
= < f,U−1g > und U∗ = U−1. Damit folgt U(U∗) = Id. Ist nun umgekehrt
U(U∗) = (U∗)U = Id, so folgt < U∗f, U∗g > = < UU∗f, g > = < f, g > und
< Uf,Ug >=< U∗Uf, g >) = < f, g >. U und U∗ sind also isometrisch. Nach
Satz 15.4.3 (Kriterium von Toeplitz) ist U∗ der zu U inverse Operator und es ist
D(U−1) = R(U) = H. �

Beispiel 15.5.3 Die Fouriertransformierte in L2(Rn). Nach Beispiel 15.4.4 besitzt
die Fouriertransformierte T eine in ganz H erklärte beschränkte Inverse T−1. Nach
10.5.2 und 10.5.3 stimmen T−1 und T ∗ auf dem dichten Teilraum C∞

0 (Rn) von
L2(Rn) überein. Nach Satz 15.3.5 stimmen T−1 und T ∗ überhaupt überein. Also
ist nach Satz 15.5.2 die Fouriertransformierte T unitär. Nun haben wir in 10.5.2
den Satz über die Inversion der Fouriertransformation nur für n = 1 formuliert
und auch nicht bewiesen. Man kommt auch ohne diesen Satz aus, wenn man aus
Beispiel 15.3.9 die Information ‖T ∗g‖ = ‖g‖ verwendet. Wie in 7.11.11 gezeigt
wurde, folgt daraus< T ∗g, T ∗f >=< f, g >. Dann ist

< Tf, T g > = < T ∗Tf, g >,
< T ∗f, T ∗g > = < TT ∗f, g >,

f, g ∈ L2(Rn) und mit Satz 15.5.2 folgt, dass die Fouriertransformierte unitär ist.

Beispiel 15.5.4 Wir suchen Lösungen der Schrödinger-Gleichung

∂tu(t, x) − i∆u(t, x) = 0, t ≥ 0, x ∈ Rn,

u(0, x) = u0(x),

die in L2(Rn) liegen. Die Schrödinger-Gleichung wird für jedes t ≥ 0 Fourier-
transformiert und die Fouriertransformierte wie in 10.5 mit .̂ bezeichnet. Dann folgt

∂tû(t, ξ) + i|ξ|2û(t, ξ) = 0, û(t, ξ) = e−i|ξ|2tû0(ξ)

so dass wir die Lösung im Fourierbild gewonnen haben (Variable ξ). Übrigens ist
der Multiplikationsoperator e−i|ξ|2t in L2(Rn) unitär, also auch der durch

T−1(e−i|ξ|2tf̂(ξ)) =: eit∆f, f ∈ L2(Rn)

in L2(Rn) erklärte Operator eit∆.
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15.6 Schwache Konvergenz

Im endlichdimensionalen unitären Raum Cn gilt das Häufungsstellenprinzip von
Bolzano-Weierstraß . Ist der Hilbertraum unendlichdimensional, so ist dies nicht
mehr der Fall. Wir bringen ein Beispiel: Sei l2 der bereits eingeführte Folgenraum.
Für ein Element x = (xp) ist ‖x‖ erklärt durch

‖x‖2 =
∞∑

p=1

|xp|2.

Sei (x(k)) mit x(k) = (x(k)
p ) eine Folge in l2 mit ‖x(k)‖ ≤ c, k = 1, 2, ... . Wir

sagen, dass die Folge (x(k)) schwach (in L2) gegen ein x∗ = (x∗p) ∈ l2 konvergiert,
wenn

x(k)
p → x∗p, k → ∞.

Die schwache Konvergenz ist also duch die komponentenweise Konvergenz erklärt
(Komponenten bezüglich der Hilbertbasis x(k) = (δpk), k = 1, 2, ...). Man sieht
sofort, dass auch ‖x∗‖ ≤ c ist. In Cn war die komponententweise Konvergenz einer
Folge äquivalent zur Konvergenz in der Norm. Nun ist es anders. Die Hilbertbasis
(δpk), k = 1, 2, ..., konvergiert nach dieser Definition schwach gegen Null, obwohl
‖(δpk)‖ = 1 ist.
Der Wert des Begriffs der schwachen Konvergenz besteht darin, dass sich mit sei-
ner Hilfe das Häufungsstellenprinzip von Bolzano-Weierstraß wenigstens teilweise
in den unendlichdimensionalen Raum hinüberretten läßt. Im Fall des allgemeinen
Hilbertraums H geben wir die

Definition 15.6.1 Sei H ein Hilbertraum. Sei (xn) eine Folge aus H. Man sagt,
(xn) konvergiert für n → ∞ schwach gegen ein x∗ ∈ H (in Zeichen xn ⇀ x

∗,
n→ ∞), wenn

< xn, y >→< x∗, y >, n→ ∞, y ∈ H.
Man kann zeigen, dass jede schwach konvergente Folge (xn) beschränkt ist, d.h.
‖xn‖ ≤ c, n ∈ N.
Wenn es ihn gibt, ist der schwache limes offenbar eindeutig bestimmt. Wir knüpfen
an an unsere Bemerkung über Orthonormalsysteme in l2. Sei {ϕ1, ϕ2, ...} ein
abzählbar unendliches Orthonormalsystem, insbesondere ist also ‖ϕn‖ = 1, n =
1, 2, ... . Für y ∈ H ist dann zufolge der Besselschen Ungleichung 10.4.10

∞∑
i=1

| < y, ϕi > |2 ≤ ‖y‖2.

Insbesondere folgt lim
n→∞ < ϕn, y >= 0, y ∈ H. Damit erhalten wir ϕn ⇀ 0,

n→ ∞.
Das wichtigste Resultat im Zusammenhang mit dem Begriff der schwachen Kon-
vergenz ist das folgende Substitut für das Häufungsstellenprinzip von Bolzano-
Weierstraß in Räumen endlicher Dimension.
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Satz 15.6.2 Sei H ein Hilbertraum, sei (xn) eine beschränkte Folge in H, d.h.
‖xn‖ ≤ c, n = 1, 2, ... . Dann gibt es eine Teilfolge (xnj ) von (xn), die schwach ge-
gen ein x∗ ∈ H konvergiert. Es ist ‖x∗‖ ≤ c mit der bereits eingeführten Schranke
c.

Ein Beweis dieses wichtigen Satzes geht über den Rahmen unserer Darstellung hin-
aus. Jedoch erkennt man aus< xnj , x

∗ >→ ‖x∗‖2, j → ∞, und | < xnj , x
∗ > | ≤

c‖x∗‖ sofort, dass ‖x∗‖ ≤ c ist. Insbesondere führt also die schwache Konvergenz
aus der (abgeschlossenen) Kugel {x| ‖x‖ ≤ c} in H nicht hinaus. Wir verweisen
auf [18].
Aus 10.4.3 kennen wir bereits die Stetigkeit des Skalarprodukts (x, y) in einem
Hilbertraum H bei (starker) Konvergenz der Faktoren in H, d.h.

xn → x in H, n→ ∞, yn → y in H, n→ ∞ impliziert

< xn, yn >→< x, y >, n→ ∞.
Diese Aussage können wir mit Hilfe des Begriffs der schwachen Konvergenz
verschärfen:

Satz 15.6.3 Sei H ein Hilbertraum, sei xn ⇀ x, n → ∞, yn → y, n → ∞. Dann
gilt < xn, yn >→< x, y >, n→ ∞. Für die Konvergenz des Skalarprodukts ist es
also hinreichend, wenn ein Faktor schwach in H konvergiert und der andere stark.

Die gewöhnliche (Norm-)Konvergenz in H bezeichnet man, um den Unterschied
zur schwachen Konvergenz hervorzuheben, auch als starke Konvergenz.

15.7 Das Spektrum eines Operators in einem Banachraum

Wir erinnern zunächst an den grundlegenden Begriff des Banachraums B (Definiti-
on 10.3.3):
B ist ein normierter Vektorraum über R oder C, der vollständig ist; d.h. jede Cauchy-
folge in B ist konvergent.

Beispiele für Banachräume sind nach Satz 10.3.4 die Räume Lp(I). Offenbar
hat ein Hilbertraum gegenüber dem Banachraum eine zusätzliche Struktureigen-
schaft, nämlich ein Skalarprodukt. Als weitere typische Beispiele für Banachräume
erwähnen wir die Räume Ck(I) der k-mal stetig differenzierbaren Funktionen:

Beispiel 15.7.1 Sei I = [a, b] ⊂ R; dann ist C0(I), versehen mit der Maximum-
norm

‖f‖I := max
x∈I

|f(x)|

ein Banachraum. Dies folgt so: Ist (fj) eine Cauchyfolge bezüglich der Norm ‖ ‖I ,
so konvergiert sie nach Satz 6.1.7 gleichmässig gegen eine Funktion f , die nach
Satz 6.1.3 stetig ist.
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Wir betrachten nun den Vektorraum C1(I) der stetig differenzierbaren Funktionen.
Wenn wir C1(I) wie oben mit der Maxixmumnorm ‖ ‖I versehen, so erhalten wir
keinen Banachraum. Denn es gibt gleichmässig konvergente Folgen stetig differen-
zierbarer Funktionen, deren Grenzfunktion nicht differenzierbar ist. Wir wählen nun
als Norm

‖f‖ = max
x∈I

|f(x)| + max
x∈I

|f ′(x)| = ‖f‖I + ‖f ′‖I .

Wenn eine Folge (fj) bezüglich dieser Norm konvergiert, so konvergieren (fj) und
(f ′j) gleichmässig gegen ein f : I → R und nach Satz 6.1.5 ist f stetig differenzier-
bar. Daher ist C1(I) mit dieser Norm ein Banachraum.
Dies lässt sich leicht verallgemeinern: Ist k ≥ 1, so definiert man in Ck(I) eine
Norm durch

‖f‖ := ‖f‖I + ‖f ′‖I + . . .+ ‖f (k)‖I ;

man kann analog zeigen, dass Ck(I), versehen mit dieser Norm, ein Banachraum
ist.

Wir geben noch ein weiteres Beispiel an:

Beispiel 15.7.2 Es sei D ⊂ Rn; dann ist

B := {f : D → C| fstetig und beschränkt}

mit
‖f‖ := sup

x∈D
|f(x)|

ein Banachraum.

Wir machen im folgenden Gebrauch von einem tiefliegenden Satz von Banach, dem
Satz von der inversen Abbildung, der in [18], [19], [25] bewiesen wird:

Satz 15.7.3 (Satz von Banach) Sei T : B → B ein beschränkter linearer Operator
in B. T sei bijektiv. Dann ist die inverse Abbildung T−1 ein stetiger linearer Ope-
rator in B mit Definitionsbereich D(T−1) = B, mit anderen Worten: T ist genau
dann bijektiv, wenn T homöomorph ist.

Bei Erfülltsein der Voraussetzungen dieses Satzes sprechen wir auch davon, dass T
beschränkt invertierbar ist.

Definition 15.7.4 Die Menge der in B erklärten beschränkten linearen Operatoren
wird mit L(B) bezeichnet.

Beispiel 15.7.5 Ein Beispiel für einen Operator T ∈ L(C0([a, b])) erhält man so:
Man wählt einen KernK ∈ C0(I × I) und setzt

T : C0(I) → C0(I), f 	→
⎛⎝x 	→ b∫

a

K(x, y)f(y) dy

⎞⎠ .
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Man erhält ‖T ‖ ≤ (b− a) max
(x,y)∈[a,b]×[a,b]

|K(x, y)|. S. hierzu auch Beispiel 15.3.2.

Es gilt sogar T (L2([a, b])) ⊂ C0([a, b]).

Wir leiten nun Kriterien her, wann ein Operator T ∈ L(B) invertierbar ist.
Für S, T ∈ L(B) sind ST := S ◦ T und T n := T ◦ . . . ◦ T , n ∈ N, durch
Hintereinanderausführung der Abbildungen erklärt. Es ist ST ∈ L(B), T n ∈ L(B),
‖ST ‖ ≤ ‖S‖ ‖T ‖, ‖T n‖ ≤ ‖T ‖n. Wir setzen T 0 = I , dabei ist I : B → B, x 	→ x,
die Identität.

Mit einer Methode, die an die geometrische Reihe
∞∑

n=0
xn = 1

1−x für |x| < 1

erinnert, zeigen wir:

Hilfssatz 15.7.6 Sei T ∈ L(B). Ist ‖T ‖ < 1, so ist I − T beschränkt invertierbar
und

‖(I − T )−1‖ ≤ 1
1 − ‖T ‖ .

Beweis:Sei x ∈ B, N,M ∈ N, M + 1 ≤ N ; die Reihe

∞∑
n=0

T nx, x ∈ B,

ist wegen ‖T ‖ < 1,

‖
N∑

n=M+1

T nx‖ ≤
N∑

n=M+1

‖T ‖n‖x‖

konvergent in B. Aus

(I − T )
N∑

n=0

T nx = (I − TN+1x)

folgt mit N → ∞ die Behauptung. �

Daraus ergibt sich: Wenn ein Operator in der Nähe eines invertierbaren Operators
liegt, ist er ebenfalls invertierbar.

Hilfssatz 15.7.7 Seien S, T ∈ L(B), sei S beschränkt invertierbar. Sei

‖S − T ‖ < 1
‖S−1‖ .

Dann ist auch T beschränkt invertierbar.

Beweis. Sei Q = (S − T )S−1, also ‖Q‖ < 1. Nach dem vorhergehenden Hilfssatz
ist I − Q beschränkt invertierbar. Mit Q = I − TS−1 folgt TS−1 = I − Q,
T = (I −Q)S, T−1 = S−1(I −Q)−1. �

Wir kommen nun zum Begriff des Spektrums:
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Definition 15.7.8 Für T ∈ L(B) definiert man:

Spektrum σ(T ) = {λ ∈ C | T − λI nicht bijektiv}
Punktspektrum σP (T ) = {λ ∈ C | T − λI nicht injektiv},
komtinuierliches Spektrum σC(T ) = {λ ∈ σ(T ) \ σP (T )| (T − λI)(B) = B},
Restspektrum σR(T ) = {λ ∈ C | T − λI injektiv,R(T − λI) �= B}
λ ∈ σ(T ) bezeichnet man als Spektralwert; dann ist T − λI nicht bijektiv.
Für λ ∈ σP (T ) ist T −λI nicht injektiv; es gibt also ein x �= 0 mit Tx = λx; somit
ist σP (T ) die Menge aller Eigenwerte.
Für λ ∈ σC(T ) gilt: T − λI ist injektiv, nicht surjektiv, aber das Bild R(T − λI)
ist dicht in B.
Ist λ �∈ σ(T ), so heißt (T − λI)−1 die Resolvente von T an der Stelle λ ∈ C.

Offensichtlich gilt:

Satz 15.7.9 Sei T ∈ L(B). Dann ist σ(T ) disjunkte Vereinigung

σ(T ) = σP (T ) ∪ σC(T ) ∪ σR(T ).

Nun zeigen wir:

Satz 15.7.10 Sei T ∈ L(B). Dann ist σ(T ) kompakt. Es gilt

σ(T ) ⊂ {z|z ∈ C, |z| ≤ ‖T ‖}.

0
‖T‖

σC(T )

σP (T )

σR(T )

Beweis. Wir zeigen zunächst, dass σ(T ) abgeschlossen ist. Sei λ0 �∈ σ(T ). Sei
S = T −λ0I.Also ist S beschränkt invertierbar. Für alle λmit |λ−λ0| < 1/‖S−1‖
gilt

‖T − λ0I − (T − λI)‖ = |λ− λ0| < 1/‖S−1‖,
so dass nach Hilfssatz 15.7.7 der Operator T − λI beschränkt invertierbar ist,
|λ − λ0| < 1/‖S−1‖. Also ist C − σ(T ) offen. Sei nun λ ∈ C, |λ| > ‖T ‖.
S = −λI ist beschränkt invertierbar, S−1 = − 1

λI, 1/‖S−1‖ = |λ|. Es ist
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‖S − (T − λI)‖ = ‖T ‖ < |λ| = 1/‖S−1‖. Mit Hilfssatz 15.7.7 folgt: T − λI
ist beschränkt invertierbar, also ist λ �∈ σ(T ). Insbesondere ist σ(T ) beschränkt und
abgeschlossen, also kompakt. �

Aus dem Satz von Banach 15.7.3 folgt, dass (T − λI)−1 in der offenen Menge C \
σ(T ) beschränkter Operator ist. Man kann dort (T−λI)−1 sogar in eine Potenzreihe
entwickeln.

Beispiel 15.7.11 Im ersten Beispiel betrachten wir den unitären Raum Cn, der
vermöge< z, ζ >= z1ζ1 + ... + znζn, ‖z‖ = |z|1/2 = (z, z)1/2, z = (z1, ..., zn),
ζ = (ζ1, ..., ζn) zu einem Hilbertraum H wird. Sei A eine n × n-Matrix mit den
Eigenwerten λ1, ..., λn. Dann ist durch x 	→ Ax ein Operator T ∈ L(H) gegeben,
für den gilt:

σ(T ) = σP (T ) = {λ1, ..., λn}, σC(T ) = σR(T ) = ∅.

Dies liegt daran, dass im vorliegenden Fall aus der Injektivität von T − λI auch die
Surjektivität folgt.

Beispiel 15.7.12 Im zweiten Beispiel wählen wir den Hilbertraum H = L2([a, b])
und definieren ein Element T ∈ L(H) durch

(Tf)(x) =

b∫
a

K(x, y)f(y) dy

mit K ∈ C0([a, b] × [a, b]) oder K ∈ L2([a, b] × [a, b]) (vgl. hierzu die ersten
beiden Beispiele in 15.3). λ ∈ C ist dann und nur dann Eigenwert von T , wenn es
ein f ∈ H − {0} gibt mit

λf(x) =

b∫
a

K(x, y)f(y) dy

f.ü. in (a, b).

Beispiel 15.7.13 Im dritten Beispiel befassen wir uns mit dem in 10.4.14 ein-
geführten Hilbertraum H = l2. Wir definieren wie in Beispiel 15.4.5 ein Element
T ∈ L(H) durch die Vorschrift

T : l2 → l2, (x1, x2, ...) 	→ (0, x1, x2, ...)

T = T − 0 · I ist injektiv, aber nicht surjektiv. Also ist 0 ∈ σ(T ). Offenbar ist
0 �∈ σP (T ). 0 ist auch nicht in σC(T ), da

‖(1, 0, 0, ...)− (0, x1, x2, ...)‖ ≥ 1

ist für alle (x1, x2, ...) ∈ l2. Also ist 0 in σR(T ).
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Wir beschließen diesen Paragraphen mit dem

Satz 15.7.14 Sei B ein Banachraum endlicher Dimension. Sei T ∈ L(B). Dann ist

σ(T ) = σP (T ), σC(T ) = σR(T ) = ∅.

Beweis. Wenn T − λI injektiv ist, so ist dim(T − λI)(B) = dimB und daher
(T −λI)(B) = B. Somit ist T−λI surjektiv, also ist T −λI beschränkt invertierbar
(vgl. dazu Satz 7.4.9). �


15.8 Kompakte Operatoren

Definition 15.8.1 Ein stetiger linearer Operator T : B → B heißt kompakt (voll-
stetig), wenn für jede beschränkte Folge (xn) in B gilt: (Txn) enthält eine konver-
gente Teilfolge.
Eine Teilmenge M ⊂ B ist kompakt, wenn sie abgeschlossen ist und jede Folge
aus M eine konvergente Teilfolge besitzt (deren limes dann in M liegt). M heißt
präkompakt, wenn M kompakt ist.

Hilfssatz 15.8.2 Sei E = {x|x ∈ B, ‖x‖ ≤ 1}. Ein stetiger linearer Operator
T : B → B ist genau dann kompakt, wenn T (E) kompakt ist.

Beweis. Sei T (E) nicht kompakt, also T (E) nicht präkompakt. Dann existiert eine
Folge (yn), yn ∈ T (E), n ∈ N, die keinen Häufungspunkt besitzt. Wegen yn =
Txn, xn ∈ E, n ∈ N, ist dann T nicht kompakt. Also folgt aus der Kompaktheit
von T die Kompaktheit von T (E).
Sei T (E) kompakt. Sei (xn) eine beschränkte Folge aus B. Dann ist ‖xn‖ ≤ M,
n ∈ N, x′n = 1

M xn ∈ E, n ∈ N (o.E. seiM > 0). (Tx′n) hat einen Häufungspunkt

in T (E). Es gibt also eine Teilfolge (x′nk
) mit Tx′nk

→ y′, k → ∞, in B. Also folgt
Txnk

→M · y′, k→ ∞, in B. �

Beispiel 15.8.3 Der Operator T : l2 → l2, x 	→ x, ist nicht kompakt. Sei xn =
(0, ..., 0, 1, 0, ...), dabei steht 1 an der n-ten Stelle. (xn) hat keinen Häufungspunkt,
weil ‖xn − xm‖l2 =

√
2, n �= m, n,m ∈ N, ist.

Hilfssatz 15.8.4 SeiK : [a, b] × [a, b] → C stetig. Dann ist

T : L2([a, b]) → L2([a, b]), f 	→
b∫

a

K(·, s)f(s) ds

kompakter Operator in H = L2([a, b]).

Beweis. Sei (fn) eine Folge in L2([a, b]) mit ‖fn‖L2([a,b]) ≤ M , n ∈ N. Dann
gilt (vgl. Beispiel 15.3.2): Tfn ∈ C0([a, b]), max |Tfn| ≤ const·M , n ∈ N. Die
Folge (Tfn) enthält, wie man zeigen kann, eine gleichmässig in [a, b] konvergente
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Teilfolge (Tfnj).Es ist C0([a, b]) ⊂ L2([a, b]), ‖f‖L2([a,b]) ≤ c ·max |f | mit einer
von f ∈ C0([a, b]) unabhängigen Konstante. Also konvergiert (Tfnj) in L2([a, b]).

�

Wir ersetzen jetzt den Banachraum B durch einen Hilbertraum H. Wir zeigen:

Hilfssatz 15.8.5 Sei T : H → H ein kompakter Operator und Eλ = Ker(T − λI);
dann gilt:

dimEλ <∞ für λ �= 0

Beweis. Wenn Eλ nicht von endlicher Dimension wäre, so existierte eine Folge
(xn), xn ∈ Eλ, n ∈ N, derart, dass jeweils endlich viele der x1, x2, ... linear un-
abhängig sind. Das Schmidtsche Orthogonalisierungsverfahren (s. 7.9.14) liefert ei-
ne Folge (bn) mit bn ∈ Eλ, n ∈ N, bn ⊥ bm, n �= m, ‖bn‖ = 1, n ∈ N. Wir haben
Tbn = λbn, und für n �= m ist

‖Tbn − Tbm‖ = |λ| ‖bn − bm‖ = |λ|
√
< bn − bm, bn − bm > = |λ|

√
2.

Also enthält (Tbn) keine konvergente Teilfolge, obwohl die Folge (bn) beschränkt
ist. �

Satz 15.8.6 Sei H ein Hilbertraum, T : H → H ein kompakter linearer Operator.
Sei ε > 0. Dann gibt es nur endlich viele linear unabhängige Eigenvektoren von T ,
die zu Eigenwerten λ mit |λ| ≥ ε gehören.

Beweis. Seien x1, x2, ... ∈ H, je endlich viele seien linear unabhängig, es sei
Txn = λnxn. Wir wollen zeigen: λn → 0, n → ∞. Das Schmidtsche Ortho-
normalisierungsverfahren liefert e1, e2, ..., die paarweise orthogonal sind und die
Eigenschaft ‖en‖ = 1 haben. Diese sind aber im allgemeinen keine Eigenvektoren.
Wir zeigen zunächst

(T − λnI)en ⊥ en.
en liegt im C-Vektorraum, der von x1, ..., xn aufgespannt wird, also gibt es cν ∈ C
mit

en =
n∑

ν=1

cνxν .

Sei yn := (T − λnI)en, also

yn =
∑n

ν=1(cνTxν − λncνxν) =
∑n

ν=1 cν(λν − λn)xν ,

so dass yn im C-Vektorraum liegt, der von x1, ..., xn−1 aufgespannt wird. Da nach
dem Schmidtschen Orthogonalisierungsverfahren en senkrecht auf diesem Vektor-
raum steht, ist in der Tat (T − λnI)en ⊥ en. Also folgt

λn =< Ten, en > .
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Da die e1, e2, ... ein Orthonormalsystem bilden, folgt aus der Besselschen Unglei-

chung (s. 10.4.10) die Konvergenz der Reihe
∞∑

n=1
(< x, en >)2 für x ∈ H und daher

0 = lim
n→∞ < x, en > für x ∈ H.

Wir zeigen jetzt, dass lim
n→∞ ‖Ten‖ = 0 ist. Nehmen wir an, dass die ‖Ten‖ nicht

gegen 0 konvergieren. Wegen der Kompaktheit von T existiert eine Teilfolge (enk
)

von (en) derart, dass Tenk
→ f, k → ∞, in H mit f �= 0 (Man wähle eine Teilfolge

aus (Ten) aus, deren Normen von Null weg nach unten beschränkt sind). Dann ist

‖f‖2 =< lim
k→∞

Tenk
, f >= lim

k→∞
< Tenk

, f >= lim
k→∞

< enk
,∗ Tf >= 0

wie eben gezeigt. Dies ist ein Widerspruch, also lim
n→∞ ‖Ten‖ → 0. Zuletzt zeigen

wir: |λn| ≤ ‖Ten‖, n ∈ N. Aus der schon bewiesenen Relation λn =< Ten, en >
folgt

|λn| = | < Ten, en > | ≤ ‖Ten‖ ‖en‖ = ‖Ten‖.
Aus |λn| ≤ ‖Ten‖, und ‖Ten‖ → 0, n→ ∞, folgt der Satz. �

Daraus ergibt sich

Satz 15.8.7 Sei H ein Hilbertraum, T : H → H ein kompakter linearer Operator
in H. Dann hat T entweder keinen Eigenwert oder endlich viele Eigenwerte oder
die Eigenwerte bilden eine Nullfolge.

Beispiel 15.8.8 Sei H = l2. Wir definieren einen Operator T ∈ L(H) durch

(x1, x2, ...) 	→ (0, x1,
1
2
x2,

1
3
x3, ...).

Zunächst ist T kompakt. Sei nämlich (x(n)) eine Folge in l2 mit ‖x(n)‖ ≤ M ,

n ∈ N. Mit x(n) = (x(n)
1 , x

(n)
2 , ...), n ∈ N folgt aus Satz 15.6.2: Es gibt eine

Teilfolge (x(nk)) von (x(n)) derart, dass x(nk) ⇀ x∗, k → ∞. Dann ist ‖x∗‖ ≤M
und x(nk)

j → x∗j , j ∈ N, k → ∞, s. 15.6. Wegen

‖Tx(nk) − Tx∗‖2 ≤
N∑

j=1

|x(nk)
j − x∗j |2 +

1
N2

+∞∑
j=N+1

|x(nk)
j − x∗j |2 ≤

≤
N∑

j=1

|x(nk)
j − x∗j |2 +

1
N2

2M2

folgt: Tx(nk) → Tx∗, k → ∞. Sei Tx = λx. Falls λ = 0 ist, folgt x1 = 0,
1
2x2 = 0, ..., also x = 0. Also ist 0 kein Eigenwert. Sei λ �= 0. Dann ist λx1 = 0,
also x1 = 0, x1 = λx2, also x2 = 0, 1

2x2 = λx3, also x3 = 0 usw., also x = 0.
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Also ist σP (T ) = φ. Andererseits ist 0 ∈ σ(T ), weil T = T − 0 · I nicht surjektiv
ist. Sei λ �= 0, S = T − λI . Also ist

Sx = (0 − λx1, x1 − λx2, x22 − λx3, ..., xn

n
− λxn+1, ...).

Sei
y = (y1, y2, y3, ..., yn+1, ...)

aus l2 beliebig. Sei x1 = − 1
λy1, ..., xn+1 = − 1

λ(yn+1 − xn

n ), ... . Wir zeigen:
(x1, x2, ...) ∈ l2. Der Beweis geht so: Es ist

|xn+1| ≤ 1
|λ| |yn+1| + 1

|λ|
|xn|

n

daher

|xn+1|2 ≤ 2
|λ|2 |yn+1|2 + 2

|λ|2
|xn|2
n2 ,∑N

n=1 |xn+1|2 ≤ 2
|λ|2

∑N
n=1 |yn+1|2 + 2

|λ|2
∑N

n=1
|xn|2
n2 ,∑N−1

n=2 (1 − 2
|λ|2

1
(n+1)2) )|xn+1|2 ≤ 2

|λ|2
∑N

n=1 |yn+1|2 + 2
|λ|2 |x1|2;

für 2 + [ 2
|λ| ] ≤ n ≤ N − 1 folgt (1 − 2

|λ|2
1

(n+1)2 ) ≥ 1/2,

N∑
n=2+[ 2

|λ| ]

|xn+1|2 ≤ 4
|λ|2 (‖y‖2 + |x1|2).

Insbesondere ist S surjektiv. Wie schon bewiesen, ist S injektiv. Also haben wir
σ(T ) = {0}. 0 liegt nicht in σC(T ), weil ‖(1, 0, 0, ...)− Tx‖ ≥ 1, x ∈ H.

15.9 Selbstadjungierte beschränkte und selbstadjungierte
kompakte Operatoren in einem Hilbertraum

Der Begriff des hermiteschen Operatores wurde in Definition 15.3.11 eingeführt.
Ein besonders einfaches Beispiel ist eine lineare Abbildung A : Cn → Cn,
gegeben durch die Matrix A = (aik) mit aik = aki. Mit dem Skalarprodukt
< x, y >=

∑n
k=1 xiyi ist der unitäre Raum Cn ein Hilbertraum. Andere Bei-

spiele sind die Integraloperatoren aus Beispiel 15.3.3, wenn K(x, y) = K(y, x)
ist. Hierunter fallen die Inversen zu Sturm-Liouville-Operatoren und zu −∆, da
die Greensche Funktion symmetrisch ist. Die genannten Operatoren sind alle be-
schränkt; für unbeschränkte s. Beispiel 15.3.12. Wir wollen in Zukunft die in einem
Hilbertraum H überall erklärten hermiteschen Operatoren auch als (beschränkte)
selbstadjungierte Operatoren bezeichnen. Jeder in H erklärte hermitesche Operator
ist, wie man zeigen kann, beschränkt. Wenn λ ∈ C Eigenwert eines selbstadjun-
gierten Operators T ist, so haben wir mit x �= 0 jedenfalls < Tx, x >= λ‖x‖2 und
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< Tx, x >=< x, Tx >= λ‖x‖2. Also ist λ = λ und somit fällt jeder Eigenwert
eines selbstadjungierten Operators reell aus (vgl. 7.10.4).
Wie in Satz 7.10.5 gezeigt wurde, gilt für die Eigenräume eines selbstadjungierten
Operators :

Eλ ⊥ Eµ falls λ �= µ.
Den nächsten Hilfssatz beweisen wir nicht, Beweise findet man in [18] und [19].

Hilfssatz 15.9.1 Sei T ein beschränkter selbstadjungierter Operator in einem Hilbert-
raum H. Sei c > 0, sei

| < Tx, x > | ≤ c‖x‖2, x ∈ H.
Dann ist ‖T ‖ ≤ c.
Die Besonderheit des Hilfssatzes besteht darin, dass nicht

| < Tx, y > | ≤ c‖x‖ ‖y‖ für x, y ∈ H
gefordert wird, woraus sofort ‖T ‖ ≤ c folgt, sondern nur | < Tx, x > | ≤ c‖x‖2,
x ∈ H, woraus ‖T ‖ ≤ c mit Hilfe der Selbstadjungiertheit von T geschlossen wer-
den muß. Für jeden Eigenwertλ gilt nach Satz 15.7.3: |λ| ≤ ‖T ‖.Der folgende Satz
zeigt eine Extremaleigenschaft der Eigenwerte für kompaktes selbstadjungiertes T :

Satz 15.9.2 Sei T ∈ L(H) selbstadjungiert und kompakt. Dann ist ‖T ‖ oder −‖T ‖
ein Eigenwert von T .

Beweis. Ohne Einschränkung sei T nicht der Nulloperator. Sei 0 < c < ‖T ‖. Dann
kann gemäß Hilfssatz 15.9.1 nicht für alle x ∈ H \ {0} die Ungleichung

| < Tx, x > | ≤ c‖x‖2

gelten. Also existiert zu cn = ‖T ‖ − 1
n , n ∈ N, ein xn ∈ H mit ‖xn‖ = 1 und

‖T ‖ − 1
n
≤ | < Txn, xn > |.

Es gilt
| < Txn, xn > | ≤ ‖Txn‖ ‖xn‖ ≤ ‖T ‖,

also
lim

n→∞ | < Txn, xn > | = ‖T ‖.

Nach Übergang zu einer Teilfolge von (< Txn, xn >), die wir ohne Einschränkung
auch wieder mit (< Txn, xn >) bezeichnen, haben wir

lim
n→∞ < Txn, xn >= λ

mit λ = ‖T ‖ oder λ = −‖T ‖. Weil T kompakt ist, können wir die Teilfolge von
(< Txn, xn >) so wählen, dass
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y = lim
n→∞Txn

existiert. Dann ist

0 ≤ ‖Txn − λxn‖2 =< Txn − λxn, Txn − λxn >=
= ‖Txn‖2 − 2λ < Txn, xn > +λ2 ≤
≤ ‖T ‖2 + λ2 − 2λ < Txn, xn >= 2λ2 − 2λ < Txn, xn > .

Wegen lim
n→∞ < Txn, xn >= λ folgt

lim
n→∞ ‖Txn − λxn‖ = 0,

also

lim
n→∞ λxn = y, lim

n→∞xn = x, x =
1
λ
y.

Wir haben
Tx = T ( lim

n→∞xn) = lim
n→∞ Txn = y = λx

und x �= 0. �

Insbesondere reicht σ(T ) an den Rand des Kreises mit dem Radius ‖T ‖ heran.
In Wahrheit ist σ(T ) ⊂ R, was wir in Satz 15.9.4 zeigen. Satz 15.9.2 vermittelt
folgendes Verfahren zur Konstruktion der Eigenwerte, das wir hier nicht in allen
Einzelheiten darstellen können: Sei T ∈ L(H) kompakt und selbstadjungiert, T sei
nicht der Nulloperator.
1. Schritt: Man bestimmt u1 ∈ H mit ‖u1‖ = 1 und

| < Tu1, u1 > | = max{| < Tx, x > | |x ∈ H, ‖x‖ = 1}.
Dann ist Tu1 = λ1u1 mit |λ1| = max{| < Tx, x > | |x ∈ H, ‖x‖ = 1} = ‖T ‖.
2. Schritt: M1 = {λu1|λ ∈ C} sei der von u1 aufgespannte abgeschlossene
Teilraum von H. Sei H1 = M⊥

1 . Dann ist T (H1) ⊂ H1, denn für x ∈ H1 ist
< Tx, u1 >=< x, Tu1 >= λ1 < x, u1 >= 0. T ist also aus L(H1), kompakt und
selbstadjungiert. Falls H1 �= {0} ist, erhalten wir mit der Methode aus dem ersten
Schritt einen Eigenwert λ2 mit |λ1| ≥ |λ2|. - Auf diese Weise fährt man fort. Wir
können nun das Hauptergebnis dieses Paragraphen formulieren, nämlich

Satz 15.9.3 (Spektralsatz für kompakte selbstadjungierte Operatoren)
Sei T ∈ L(H) kompakt und selbstadjungiert. Sei T nicht der Nulloperator. Dann
hat T endlich viele oder abzählbar unendlich viele Eigenwerte λn �= 0, 1 ≤ n ≤ N
oder n ∈ N, die sich in der Form

‖T ‖ = |λ1| ≥ |λ2| ≥ ... ≥ |λN | bzw. ‖T ‖ = |λ1| ≥ |λ2| ≥ |λ3| ≥ ...

anordnen lassen. Jeder Eigenwert wird so oft notiert, wie seine endliche Vielfachheit
angibt. Es gibt ein Orthonormalsystem {u1, ..., uN} bzw. {u1, u2, ...} in H mit

Tun = λnun,
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so dass sich jedes x ∈ H eindeutig darstellen lässt als

x =
N∑

n=1

anun + x0 bzw. x =
∞∑

n=1

anun + x0

mit an = (x, un), x0 ∈ Ker T. Es istKer T = 〈u1, u2, ...〉⊥,

Tx =
N∑

n=1

λnanun bzw. Tx =
∞∑

n=1

λnanun.

Wenn es abzählbar unendlich viele Eigenwerte λn �= 0 gibt, dann ist lim
n→∞λn = 0.

IstKer T = {0}, so bilden die u1, u2, ... eine Hilbertbasis.

Beweis. Wir befassen uns mit dem Fall abzählbar unendlich vieler Eigenwerte λn �=
0. Diese werden wie vorher erläutert konstruiert. Zunächst haben wir λ1 mit |λ1| =
‖T ‖, dann λ2 mit |λ1| ≥ |λ2| usw. Sei kn = dimEλn , die Größe dimEλn ist nach
Hilfssatz 15.8.5 endlich. Wir denken uns λn kn-mal hingeschrieben. InEλn wählen
wir eine Orthonormalbasis {u(n)

1 , ..., u
(n)
kn

} aus Eigenvektoren zum Eigenwert λn.
Weil Eigenvektoren zu verschiedenen Eigenwerten zueinander orthogonal sind, sind
die u1, u2, ... mit

u1 = u(1)1 , ..., uk1 = u(1)k1
,

uk1+1 = u(2)1 , ..., uk1+k2 = u(2)k2
,

. . . . . .

ein Orthonormalsystem. Sei H̃1 der Hilbertraum, der aus dem Abschluß aller end-
lichen Linearkombinationen der u1, u2, ... besteht. In H̃1 bildet {u1, u2, ...} nach
10.4.12 eine Hilbertbasis und wir haben nach dem Zerlegungssatz 10.4.5 die ortho-
gonale Zerlegung

H = H̃1 ⊕ H̃⊥
1 .

Sei x ∈ H̃⊥
1 . Wegen < Tx, un >= µ̃ < x, un >= 0, n ∈ N (µ̃ ist eine der Zahlen

λ1, λ2, ...) folgt T (H̃⊥
1 ) ⊂ H̃⊥

1 . Damit ist T0 : H̃⊥
1 → H̃⊥

1 , x 	→ Tx, aus L(H̃⊥
1 ),

kompakt und selbstadjungiert. Wenn T0 nicht der Nulloperator ist, so hat T0 einen
Eigenwert �= 0, etwa µ. Also existiert ein x �= 0, x ∈ H̃⊥

1 mit T0x = µx. Ist µ
eine der Zahlen λ1, λ2, ..., so folgt: x ∈ H̃1, also wegen H̃1 ∩ H̃⊥

1 = {0} jedenfalls
x = 0. Nun sei µ keine der Zahlen λ1, λ2, ... . Aus Satz 15.8.7 folgt: lim

n→∞ λn = 0.

Also gibt es einen Index j mit |λj | ≥ |µ| ≥ |λj+1|. Wir beziehen uns auf das vor
diesem Satz erläuterte Verfahren zur Konstruktion der Eigenwerte λ1, λ2, ... . Es ist
H0 = H,

|λj | = max{| < Ty, y > | |y ∈ Hj−1, ‖y‖ = 1},
H = M1 + M2 + ...+ Mj−1 + Hj−1
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mit paarweise orthogonalen abgeschlossenen Teilräumen M1, ...,Mj−1,Hj−1. Ist
x �= 0 das vorhin eingeführte Element aus H mit Tx = µx, so haben wir

x =
j−1∑
k=1

xk + hj−1 mit xk ∈ Mk, 1 ≤ k ≤ j − 1, hj−1 ∈ Hj−1.

Aus der Orthogonalität der Eigenräume folgt < x, xk >= 0, 1 ≤ k ≤ j − 1,
und nach Konstruktion ist < hj−1, xk >= 0, 1 ≤ k ≤ j − 1. Also ist xk = 0,
1 ≤ k ≤ j − 1, x = hj−1 ∈ Hj−1. Wir haben die Zerlegung

Hj−1 = Mj + Hj

in paarweise orthogonale Unterräume Mj,Hj . Also ist

x = xj + hj , xj ∈ Mj, hj ∈ Hj ,

Tx = λjxj + Thj = µx = µxj + µhj .

Aus Thj ∈ Hj folgt λjxj = µxj , Thj = µhj , also µ = λj , im Widerspruch zu
unserer Annahme. Wie eben gezeigt, ist dann x = 0. Also hat T0 keinen von Null
verschiedenen Eigenwert. Also ist nach Satz 15.9.2 jedenfalls T0 der Nulloperator.
Also ist H̃⊥

1 ⊂ Ker T . Wir haben

x =
∞∑

n=1

anun + x0

mit x0 ∈ H̃⊥
1 , also

Tx =
∞∑

n=1

λnanun.

Nun müssen wir noch zeigen: Ker T ⊂ H̃⊥
1 . Sei nämlich Tx = 0; für n ∈ N ist

dann < Tx, un >= 0, also < x, Tun >= λn < x, un >= 0, und wegen λn �= 0
folgt < x, un >= 0. Somit ist x ∈ H̃⊥

1 . Satz 15.9.3 ist bewiesen. �

Konsequenzen aus den Erörterungen dieses Paragraphen sind:

Satz 15.9.4 Sei T ∈ L(H) und selbstadjungiert. Dann ist σ(T ) ⊂ R.

Beweis.Sei z ∈ C. Wir haben

‖(T − zI)f‖ ≥ |Im z| (T − zI)∗ = T − zI.
Ist Im z �= 0, so ist |Imz| > 0 und aus (T − zI)∗f = 0 folgt f = 0. Satz 15.4.3
von Toeplitz zeigt, dass für Im z �= 0 der Operator T − zI beschränkt invertierbar
ist. �

Vom Spektrum eines kompkten selbstadjungierten Operators können wir und dem-
nach folgendes Bild machen:

‖T‖−‖T‖ 0

σ(T )
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Satz 15.9.5 Sei T ∈ L(H) kompakt und selbstadjungiert. Sei 0 �= σP (T ). Es gebe
unendlich viele Eigenwerte λ1, λ2, . . . von T . Dann ist 0 ∈ σC(T ).

Beweis. Aus Satz 15.9.3 folgt,: lim
n→∞ λn = 0. Aus Satz 15.7.9 entnehmen wir, dass

0 ∈ σ(T ) liegt. R(T ) ist dichter Teilraum von H, da die Eigenvektoren u1, u2, . . .
zu λ1, λ2, . . . in R(T ) liegen und nach Satz 15.9.3 eine Hilbertbasis bilden. �

Die naheliegende Frage ist, ob genau σ(T ) = {0, λ1, λ2, ...} ist. Wir beantworten
sie bejahend im nächsten Paragraphen, falls T ein Integraloperator ist. Doch wird
von dieser speziellen Gestalt von T kein wesentlicher Gebrauch gemacht, so dass
die Aussage allgemein gilt.

15.10 Integralgleichungen

Im folgenden sei
K : [a, b] × [a, b] → C

stetig. Sei H = L2([a, b]) und T der kompakte Operator in H, der gegeben ist durch

Tf(x) =

b∫
a

K(x, y)f(y) dy, f ∈ H

(s. hierzu auch Hilfssatz 15.8.4).

Hilfssatz 15.10.1 Sei

K(s, t) = K(t, s) für a ≤ s, t ≤ b.

Dann ist T hermitesch oder selbstadjungiert in H = L2([a, b]).

Beweis: Wir verweisen auf Beispiel 15.3.8.

Satz 15.10.2 Sei g ∈ H = L2([a, b]) und K(s, t) = K(t, s). Sei λ ∈ C \ {0}.
Dann gilt für die Integralgleichung

(∗) f(s) = λ

b∫
a

K(s, t)f(t) dt+ g(s)

1. Wenn 1/λ kein Eigenwert von T ist, dann besitzt (*) für jedes g ∈ H
genau eine Lösung.

2. Wenn 1/λ ein Eigenwert von T ist, dann ist (*) genau dann lösbar, wenn
g ∈ E⊥

1/λ ist. In diesem Fall gibt es unendlich viele Lösungen.
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Dies wird in der Physik gelegentlich als die Fredholmsche Alternative bezeichnet
(IVAR FREDHOLM (1866-1927)).
Beweis. Wegen

Tf(s) =

b∫
a

K(s, t)f(t) dt

haben wir f = λTf+g oder (I−λT )f = g oder (−λ) ·(T −λ−1I)f = g zu lösen.
Nach dem Spektralsatz 15.9.3 haben wir (o.E. habe T unendlich viele Eigenwerte
λ1, λ2, ... �= 0)

g =
∞∑

n=1

bnun + g0

mit bn =< g, un >, g0 ∈ Ker T . Für f setzen wir an

f =
∞∑

n=1

anun + f0

mit an =< f, un >, f0 ∈ Ker T . Also ist
∞∑

n=1

(an − λλnan)un + f0 =
∞∑

n=1

bnun + g0

oder f0 = g0, (1 − λλn)an = bn für eine Lösung f . Diese beiden Gleichungen
heißen im folgenden “Ansatz”. Sei λ−1 �= λn, n ∈ N, d.h. λ−1 ist kein Eigen-
wert von T (aus dem Beweis von Satz 15.9.3 folgt, dass das von uns beschriebene
Konstruktionsverfahren alle von Null verschiedenen Eigenwerte liefert). Wir setzen
also

f0 := g0, an :=
bn

1 − λλn
=

1
λ

bn
1
λ − λn

, f :=
∞∑

n=1

bn
1 − λλn

un + g0,

und haben zu zeigen, dass die letzte Reihe konvergiert. Wegen lim
n→∞λn = 0 ist

| 1
1−λλn

| ≤ 2, n ≥ n0. Daher ist

∞∑
n=1

| bn
1 − λλn

|2 ≤ const ·
∞∑

n=1

|bn|2 < +∞.

Es ist

f − λTf =
∞∑

n=1

(1 − λλn)
bn

1 − λλn
un + g0 = g.

Aus dem Ansatz folgt die Eindeutigkeit. Sei jetzt λ−1 ein Eigenwert, d.h. λ−1 =
λm = ... = λm+k für ein k ∈ N ∪ {0} und λ−1 von allen anderen Eigenwerten
verschieden. Falls (*) lösbar ist, so folgt aus dem Ansatz bm = ... = bm+k = 0,
also ist g ∈ E⊥

1/λ. Sei umgekehrt g ∈ E⊥
1/λ, so sind wegen bn = (g, un), n ∈ N,

jedenfalls bm = ... = bm+k = 0 und man kann dann am, ..., am+k beliebig wählen
und die anderen an wie im Ansatz ausrechnen. �




498 15 Einführung in die Funktionalanalysis

Satz 15.10.3 Für den IntegralkernK gilt für jedes t ∈ [a, b] die in H = L2([a, b])
konvergente Entwicklung

K(. , t) =
∞∑

n=1

λnun(t)un

Beweis: MitK = K(. , t), t fest aber beliebig ∈ [a, b] und f ∈ H haben wir

< f,K >=

b∫
a

f(s)K(s, t) ds =

b∫
a

K(t, s)f(s) ds = Tf(t).

Für f ∈ Ker T ist also < f,K >= 0, alsoK ∈ (Ker T )⊥. Aus Satz 15.9.3 folgt

K(., t) =
∞∑

n=1

an(t)un

mit an(t) =< K(., t), un >= (Tun)(t) = λnun(t) (Man beachte: un ∈
C0([a, b])). �

Zum Abschluß des ersten Teils dieses Paragraphen formulieren wir die Fredholm-
sche Alternative für den IntegralkernK:

Satz 15.10.4 Sei λ ∈ C \ {0}. Es mögen die Voraussetzungen von Satz 15.10.2
erfüllt sein. Entweder besitzt die Gleichung

f − λ
b∫

a

K(., t)f(t) dt = g (1)

für jedes g ∈ H = L2([a, b]) genau eine Lösung oder die homogene Gleichung

f − λ
b∫

a

K(., t)f(t) dt = 0 (2)

besitzt eine nichttriviale Lösung.

Beweis: Wenn λ−1 kein Eigenwert von T ist, ist nach Satz 15.10.2 die Gleichung (1)
eindeutig lösbar. Dann hat (2) nur die Nullösung. Hat (2) eine nichttriviale Lösung,
ist λ−1 Eigenwert von T . Für g ∈ E1/λ − {0} ist nach Satz 15.10.2 die Gleichung
(1) nicht lösbar. �

Beispiel 15.10.5 Sei −∞ < a < b < +∞, seien p ∈ C1([a, b]), p > 0,
q ∈ C0([a, b]) und reell. Sei Lu = +(pu′)′ + qu in D(L) = {u|u ∈ C2([a, b]),
u(a) = u(b) = 0} erklärt. Lu = 0 habe nur die Lösung u = 0 in D(L),
so dass nach 12.6 Lu = f ∈ C0([a, b]) eindeutig lösbar in D(L) ist. Es ist
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u(s) =
b∫

a

G(s, t)f(t) dt, G = Greensche Funktion mit G ∈ C0([a, b] × [a, b]), G

hat nur reelle Werte. Symmetrie: G(s, t) = G(t, s). Der Kern genügt also den Vor-

aussetzungen des Satzes 15.10.2 und den OperatorGmitGf(s) =
b∫
a

G(s, t)f(t) dt

setzt man durch Abschließung auf H = L2([a, b]) fort (Satz 15.3.5). Dann entsteht

Tf(s) = Gf(s) =

b∫
a

G(s, t)f(t) dt, f ∈ L2([a, b]),

T (L2([a, b]) ⊂ C0([a, b]).

T ist kompakt, selbstadjungiert in H = L2([a, b]). λ ∈ R \ {0} ist Eigenwert von L
d.u.n.d., wenn 1

λ (vermöge u = λTu) Eigenwert von T ist. Insbesondere steht die

ganze abstrakte Theorie aus 15.9, 15.10 zur Verfügung. Ist nun
b∫

a

G(s, t)f(t) dt = 0

für ein stetiges f , so folgt sofort f ≡ 0. Ist Tf = 0 für ein f ∈ L2([a, b]), so ist
0 =< Tf, u >=< f, Tw > für alle stetigen w. Also ist < f, u >= 0, u ∈ D(L).
D(L) ist dichter Teilraum von L2([a, b]), da schon C∞

0 ([a, b]) dies ist. Also ist f =
0 . Damit folgt:

0 �∈ σP (T ), Ker T = {0}.
Jede Funktion aus L2([a, b]) ist nach Eigenfunktionen von L (oder T ) in eine Fou-
rierreihe entwickelbar. Nach Satz 15.9.3 gibt es unendlich viele Eigenwerte

1/λ1, 1/λ2, ... von T,
1
λi

→ 0, i→ ∞,

da L2([a, b]) unendliche Dimension hat. Aus dem Konstruktionsverfahren zur Lö-
sung des inhomogenen Problems im Beweis des Satzes 15.10.2 folgt

σ(T ) ⊆ {0} ∪ { 1
λ1
,

1
λ2
, ...}. (3)

Da σ(T ) kompakt und R(T ) ⊃ D(L) dicht sind, folgt 0 ∈ σC(T ) und die Gleich-
heit in (3). λ1, λ2, ... sind genau die Eigenwerte von L. Sie haben endliche Viel-
fachheit (Genauer kann man noch zeigen: λi → +∞ für i→ ∞). Man sagt “L hat
diskretes Spektrum”. Insbesondere folgt Satz 12.6.8

Beispiel 15.10.6 Seien [a, b] = [0, π],H,D(L) wie im vorigen Beispiel,

Lu = u′′.

Aus −u′′ = λu, u ∈ D(L) − {0}, folgt, λ > 0, s. 12.6.7. Nun ist

u(x) = A sin
√
λx+B cos

√
λx
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die allgemeine Lösung von −u′′ = λu (A,B konstant).

u(0) = 0 impliziert B = 0,

u(π) = 0 impliziert sin
√
λπ = 0, also√

λ = k, λ = k2.

Die Eigenwerte sind genau die Zahlen k2, k ∈ N. 1 ist der kleinste Eigenwert.
Also ist max

u�=0

|(Tu,u)|
‖u‖2 = 1 nach Satz 15.9.2. Sei w ∈ D(L). Entwicklung nach den

normierten Eigenfunktionen ϕk(x) =
√

2
π sinkx liefert zunächst für die Lösung

von −w′′ = f durch Koeffizientenvergleich der Fourierreihen links und rechts

w =
∞∑

k=1

1
k2
fkϕk

wenn fk die Fourierkoeffizienten von f sind. Seien wk die Fourierkoeffizienten von
w. Dann setzen wir

u = (−L)
1
2w :=

∞∑
k=1

kwkϕk.

Die Reihe rechts konvergiert in H, da aus w ∈ D(L), −Lw =
∑∞

k=1 k
2wkϕk,

sogar
∞∑

k=1

k4|wk|2 < +∞

folgt. Es ist

T (−L)
1
2w = (−L)−1(−L)

1
2w =

∞∑
k=1

1
k
wkϕk,

< T (−L)
1
2w, (−L)

1
2w >=< Tu, u >= ‖w‖2,

‖(−L)
1
2w‖2 = ‖u‖2 =< −Lw,w >= ‖w′‖2.

Insgesamt folgt
1 · ‖w‖2 ≤ ‖w′‖2, w ∈ D(L)

mit 1 = kleinster Eigenwert von L als bestmöglicher Konstante. Das Gleichheitszei-
chen tritt nur für w ≡ 0 und die Eigenfunktionen von L zum Eigenwert 1 ein.
Für Hilbert-Schmidt Kerne K mit K(x, y) = K(y, x) lassen sich zu den Sätzen
15.10.2 und 15.10.3 analoge Sätze beweisen, da der zugehörige Integralopera-
tor kompakt und selbstadjungiert ist. Die Selbstadjungiertheit folgt aus 15.3.3und
15.3.8 5. Die Kompaktheit folgt aus Aufgabe 15.9.
Betrachten wir die zur Einheitskreisscheibe E der Ebene und Randwerten 0
gehörende Greensche Funktion. Sie stellt nach Beispiel 15.3.3 einen Hilbert-Schmidt
Kern dar, für den K(x, y) = K(y, x) gilt. Daher gelten für den Operator ∆ un-
ter Null-Randbedingungen auf ∂E Aussagen, die denen aus Beispiel 15.10.5 für
Lu = u′′ entsprechen. Insbesondere hat ∆ diskretes Spektrum.
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15.11 Die allgemeine Fredholmsche Alternative im Hilbertraum

Im vorigen Paragraphen hatten wir uns in Satz 15.10.4 mit der sogenannten Fred-
holmschen Alternative für kompakte selbstadjungierte Operatoren beschäftigt. In
der Physik spielen auch nicht-selbstadjungierte Eigenwertprobleme eine Rolle. Sie
treten zum Beispiel in der Hydrodynamik auf und lassen sich dann oft als Ei-
genwertprobleme für Differentialoperatoren höherer Ordnung formulieren. Den ab-
strakten Satz, der gleich folgt, werden wir daher an Hand gewöhnlicher Differen-
tialoperatoren höherer Ordnung erläutern.

Satz 15.11.1 (Fredholmsche Alternative) Es sei T ein kompakter Operator im
Hilbertraum H; dann ist T ∗ ebenfalls kompakt; für λ ∈ C \ {0}ist

(I − λT )∗ = I − λT ∗,
dim Ker(I − λT ) = dim Ker(I − λT )∗ = dim Ker(I − λT ∗) < +∞

und es gilt:

• Ist dim Ker(I − λT ) = 0, so hat I − λT eine in H erklärte beschränkte
Inverse.

• Ist dim Ker(I −λT ) �= 0, so hat zu vorgegebenem y ∈ H die Gleichung
(I − λT )x = y genau dann eine Lösung, wenn y ∈ (Ker(I − λT )∗)⊥ ist.

Über die Eigenwerte µ = 1
λ von T geben Satz 15.8.6 bzw. Satz 15.8.7 Auskunft.

Aus Satz 15.11.1 folgt, dass σ(T ) ∩ (C \ {0}) nur aus Eigenwerten besteht. Da T
kompakt ist, kann T nicht beschränkt invertierbar sein. In diesem Fall erhielten wir
nämlich ‖Tx‖ ≥ c‖x‖ mit einer positiven Konstanten c. Einsetzen beispielsweise
einer Hilbertbasis ϕ1, ϕ2, ... zeigt, dass (Tϕn) keine Cauchy-Folge enthält, also T
nicht kompakt ist (s. Beweis des Hilfssatzes 15.8.5). Also erhalten wir

σ(T ) = {µ|µ ∈ C, µ Eigenwert von T } ∪ {0}.
Diese Zerlegung ist nicht notwendig disjunkt, da 0 Eigenwert sein kann, aber nicht
sein muß. 0 kann als Häufungspunkt von Eigenwerten auftreten ohne selbst Eigen-
wert zu sein. Für ein Beispiel verweisen wir auf 15.10.5. Für uns ist der Fall von
besonderem Interesse, dass σc(T ) = {0} ist, da er bei Differentialoperatoren auf-
tritt. In 12.4
hatten wir für

Lu = a2u′′ + a1u′ + a0u, u ∈ D(L)
ai ∈ C0([a, b]), i = 0, 1, 2, a2(x) �= 0, x ∈ [a, b]

die Greensche Funktion konstruiert, obwohl die Koeffizientenfunktionen nur stetig
waren. Seien die Randbedingungen durch

D(L) = {u ∈ C2([a, b])| u(a) = 0, u(b) = 0}
festgelegt. Aus Lu = 0, u ∈ D(L), sollte u = 0 folgen. Das folgende Beispiel
stellt eine Erweiterung dieser Theorie dar.
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Beispiel 15.11.2 Seim ∈ N, seien a0, ..., a2m ∈ C0([a, b]), a2m > 0 in [a, b],

Lu =
2m∑
ν=0

aν(x)u(ν) für

u ∈ D(L) = {u ∈ C2m([a, b])| u(a) = u′(a) = ... = u(m−1)(a) =
= u(b) = u′(b) = ... = u(m−1)(b) = 0}.

Aus u = 0, u ∈ D(L), folge u = 0. Mit Hilfe eines Fundamentalsystems konstruiert
man ähnlich wie in 12.4.6 die zugehörige Greensche Funktion, d.h. invertiertL, und
erhält

L−1f(x) =

b∫
a

G(x, y)f(y) dy

für die Lösung von Lu = f ∈ C0([a, b]), u ∈ D(L). G = L−1 wird durch Ab-
schließung (s. 15.3.5) zu einem Operator G fortgesetzt. In welchem Sinn es sich
dabei noch um die Inverse von L handelt, kann hier nicht im einzelnen erörtert
werden. L muß dazu auf Ḣ2m,2(Ω) = {u|u ∈ C2m−1([a, b]), die Distributions-
ableitung u(2m) liegt in L2((a, b)), u(a) = u′(a) = ... = u(m−1)(a) = u(b) =
u′(b) = ... = u(m−1)(b) = 0} fortgesetzt werden. Diese Fortsetzung bezeichnen
wir mit L und wir haben dann in

L
−1
f(x) =

b∫
a

G(x, y)f(y) dy, f ∈ L2([a, b])

die beschränkte Inverse zu L. Nach Beispiel 15.3.8 ist durch

(L
−1

)∗f(x) =

b∫
a

G(x, y)f(y) dy, f ∈ L2([a, b])

der adjungierte Operator gegeben. Wie wir hier nicht zeigen können, ist

(L
∗
)−1 = (L

−1
)∗.

Obwohl wir also die Adjungierte zuL oderL im Sinne von Beispiel 15.3.10 konkret
gar nicht bilden können, da die Koeffizienten von L nur stetige Funktionen sind, ist
es doch möglich, über die Greensche Funktion zuL die Inverse zuL

∗
in die Hand zu

bekommen. Die Adjungierte L
∗

selbst steht uns nur abstrakt zur Verfügung. Wegen

(L
−1 − λ)∗ = (L

−1
)∗ − λ = (L

∗
)−1 − λ

ist, wenn wir mit σ(L
−1

) die konjugierten Zahlen aus σ(L
−1

) meinen,

σ(L
−1

) = σ((L
−1

)∗) = σ((L
∗
)−1).
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Setzen wir Gf(x) =
b∫

a

G(x, y)f(y) dy, f ∈ L2([a, b]), so sind die Eigenwerte von

L genau die komplexen Zahlen λ �= 0, für die es ein f ∈ C0([a, b]) \ {0} gibt mit

f − (−1)mλGf = 0, also Lf − (−1)mλf = 0.

Wie in 12.6 weichen wir von der linearen Algebra ab und nehmen Lu = (−1)mλu
als Eigenwertgleichung. Gibt es Eigenwerte? Die Antwort ist bejahend, es gibt
sogar abzählbar unendlich viele, aber auch nicht mehr (s. Satz 15.8.6). Da aus

Gu = L
−1
u = 0 folgt, dass u = 0 ist, und Ḣ2m,2(Ω) in L2([a, b]) dicht liegt,

ist σc(L
−1

) = {0}.

Aufgaben

15.1. Sei H := L2([−1, 1]); zeigen Sie:
a) Ist f ∈ H gerade und g ∈ H ungerade, so gilt: < f, g >= 0.
b) Sei M := {f ∈ H| fgerade}. Dann ist M ein abgeschlossener Teilraum und in der
Zerlegung H = M⊕M⊥ ist

(PMf)(x) =
1

2
(f(x) + f(−x))f. ü.,

also

f(x) =
1

2
(f(x) + f(−x)) +

1

2
(f(x) − f(−x)).

(Zerlegung von f in geraden und ungeraden Anteil.)

15.2. Seien χ̂[a,b], �χ[c,d] die Fouriertransformierten der charakteristischen Funktionen
χ[a,b], χ[c,d], die in Aufgabe 10.13 untersucht wurden; P �

bezeichne den in 14.12.5 defi-
nierten Cauchychen Hauptwert. Zeigen Sie für b ∈ R:
a)

< χ̂[a,b], χ̂[c,d] > =

= 1
2π

�
P

∞�
−∞

e−iξ(b−d)−1
ξ2 dξ − P

∞�
−∞

e−iξ(b−c)−1
ξ2 dξ−

− P
∞�

−∞
e−iξ(a−d)−1

ξ2 dξ + P
∞�

−∞
e−iξ(a−c)−1

ξ2 dξ

�
b) Zeigen Sie

P
∞�

−∞

eiξb − 1

ξ2
dξ = −|b|π.

Hinweis: Integrieren Sie (eiz − 1)/z2 über die Kurve γε,R der folgenden Figur:

−R −ε ε R

γε,R
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Wenden Sie den Cauchyschen Integralsatz an und lassen Sie R → ∞ streben. Zeigen Sie
dann

P
+∞�

−∞

eiξb − 1

ξ2
dξ = |b|P

+∞�

−∞

eiξ − 1

ξ2
dξ.

15.3. a) Zeigen Sie mit Aufgabe 15.2:

< χ̂[a,b], χ̂[c,d] > = < χ[a,b], χ[c,d] >

b) Sei jetzt die Fouriertransformation einer Funktion f mit Tf bezeichnet. Seien

(1) fi =
N�

k=1

c
(i)
k χ

[a
(i)
k

,b
(i)
k

]
, i = 1, 2

zwei Treppenfunktionen. Zeigen Sie mit a):

< Tf1, T f2 >=< f1, f2 > .

c) Betrachten Sie die Fouriertransformation T auf den Treppenfunktionen. Existiert die Ab-
schliessung ?

15.4. a) Seien I = {x ∈ Rn| aj ≤ xj ≤ bj , j = 1, . . . , n}und I1, I2 abgeschlossene
Quader des Rn. Zeigen Sie für die Fouriertransformation

TχI(x) =
1√
2π

n

�

Rn

e−i<x,y>χIdy

die Gleichung
< TχI1 , TχI2 >=< χI1 , χI2 > .

Hinweis: es ist

χI(x) =

n�
j=1

χ[aj ,bj ](xj).

b) Seien

fi =

Ni�
k=1

c
(i)
k χ

I
(i)
k

, i = 1, 2

zwei Treppenfunktionen. Zeigen Sie

< Tf1, T f2 >=< f1, f2 > .

15.5. Nach Aufgabe 15.4 kann man mit der gleichen Argumentation wie in Aufgabe 15.3
die Fouriertransformation T in L2(R

n] abschliessen und erhält T̄ . Sei f ∈ L2(R
n) und

f(x) = 0 für fast alle x ausserhalb eines abgeschlossenen QuadersI . Zeigen Sie

(T̄ f)(x) =
1

(
√

2π)n

�

Rn

e−i<x,y>f(y)dy.

Hinweis. Approximieren Sie f durch Treppenfunktionen tk, die ausserhalb I verschwinden,
und verwenden Sie Satz 10.3.6.
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15.6. Sei T : H → H ein beschränkter, überall erklärter linearer Operator im Hilbertraum
H. Sei xn ⇀ x, j → ∞ in H. Zeigen Sie: Txn ⇀ Tx, j → ∞.

15.7. Sei U unitärer Opeerator im Hilbertraum H und λ ein Spektralwert. Zeigen Sie, dass
dann |λ| = 1 ist.

15.8. Zeigen Sie:
̂

exp

�
−x2

2

�
(ξ) = exp

�
− ξ2

2

�
,

1 ist also Eigenwert der Fouriertransformierten.
Hinweis: Differenzieren Sie die linke Seite nach ξ.

15.9. In 15.2.1 wurde die Norm ‖T‖ eines linearen Operators T , in 15.7.4 der C-Vektorraum
L(H) der in H erklärten beschränkten linearen Operatoren T : H → H eingeführt. Benutzen
Sie in dieser Aufgabe die folgende Aussage: Ist (Vj) eine Folge aus L(H), ist V ∈ L(H),
sind die Vj kompakt und

‖Vj − V ‖ → 0, j → ∞,

so ist auch V kompakt. Sie dürfen weiter voraussetzen, dass man jedes K ∈ L2(]a, b[×]a, b[)
durch stetige Funktionen Kj : [a, b] × [a, b] → C in L2(]a, b[×]a, b[) approximieren kann.
Zeigen Sie: Der zu K gehörende Integraloperator vom Hilbert-Schmidtschen Typ ist kom-
pakt.
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Lösungen

1.1 Für x ≥ y istmax(x, y) = x und 1
2 (x+y+ |x−y|) = 1

2 (x+y+(x−y)) = x;
bei y > x vertauscht man x, y. Die Aussage fürmin(x, y) beweist man analog.

1.2 Zu ε > 0 wählt manN ∈ N so, dass 1
N < ε

2 ist. Für n ≥ N ist dann
√

1
n < ε.

Aus
√
n+ 1−√

n = (
√

n+1−√
n)(

√
n+1+

√
n)√

n+1+
√

n
= 1√

n+1+
√

n
< 1

2
√

n
folgt die zweite

Behauptung.

1.3 9 ·
∞∑

n=1
( 1
10 )n ist eine konvergente Majorante zum Dezimalbruch. -

Es ist 0, 373737 . . .= 37
∞∑

n=1
( 1
100 )n = 37 · 1/100

1−(1/100) = 37
99 .

1.4 Die Reihe konvergiert nach dem Quotientenkriterium: Sei an := n3

3n ; für n ≥ 4
ist
an+1
an

= 1
3 · (1 + 1

n )3 < 2
3 .

1.5 Für k ≥ 2 ist sk :=
k∑

n=2

1
n2−1 = 1

2

k∑
n=2

(
1

n−1 − 1
n+1

)
= 1

2 (1 + 1
2 − 1

k − 1
k+1 ),

daher ist
∞∑

n=2

1
n2−1 = 3

4 .

1.6 Beweis mit vollständiger Induktion; der Induktionsanfang n = 1 ist jeweils
klar.
a) Sei 1 + 2 + . . .+ n = 1

2n(n+ 1); dann folgt
1+2+ . . . n+(n+1) = 1

2n(n+1)+(n+1) = (n+1)(n
2 +1) = 1

2 (n+1)(n+2).

b) Nun sei (1 + 2 + . . .+ n)2 = 13 + 23 + . . .+ n3, dann folgt
(1+2+. . .+n+(n+1))2 = (1+2+. . .+n)2+2(1+2+. . .+n)(n+1)+(n+1)2 =
= (1 + 2 + . . .+ n)2 + 2 · 1

2n(n+ 1)(n+ 1) + (n+ 1)2 =
= (1 + 2 + . . .+ n)2 + (n+ 1)2(n+ 1) = 13 + 23 + . . .+ n3 + (n+ 1)3.
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1.7 Der Induktionsanfang fürm = 1 ist: 1 = 1
6 · 1 · 2 · 3.

Induktionsschritt: Sei die Aussage für einm richtig, dann folgt:
m+1∑
n=1
n2 = 1

6m(m+1)(2m+1)+(m+1)2 = (m+1)1
6

(
m(2m+1)+6(m+1)

)
=

= 1
6 (m+ 1)

(
2m2 +m+ 6m+ 6

)
= 1

6 (m+ 1)(m+ 2)(2m+ 3).

1.8 Die Behauptung folgt aus dem binomischen Lehrsatz 1.6.5 mitx = y = 1.

1.9
1

3+2i = 3−2i
(3+2i)(3−2i) = 3

13 − 2
13 i,

1+i
1−i = (1+i)(1+i)

(1−i)(1+i) = i,

sei � := −1+i
√

3
2 , dann ist �3 = 1

8

(
− 1 + 3i

√
3 + 9 − 3i

√
3
)

= 1 , daher

�30 = 1. -
Es ist x3 − 1 = (x− 1)(x2 + x+ 1) und x2 + x+ 1 hat die Nullstellen � und −�,
daher �3 = 1.

1.10 Für p(x) = x5 − x4 + 2x3 − 2x2 + x− 1 ist p(1) = 0; mit dem Hornerschen
Schema rechnet man aus: p(x) : (x− 1) = x4 + 2x2 + 1 = (x2 + 1)2. Daher hat p
die Nullstellen 1; i; ;−i und es ist p(x) = (x− 1)(x− i)2(x + i)2.

1.11 p(x) = 2 − 2x+ x(x− 1)(x− 2) = x3 − 3x2 + 2

1.12 Es ist bn = an − 1
n und

an − an+1 = 1
n − 1

2n+1 − 1
2n+2 > 0, bn+1 − bn = 1

2n+1 + 1
2n+2 − 1

n+1 > 0,

also
b1 < . . . < bn < bn+1 < an+1 < an . . . < a1.

Daher konvergieren (an)n und (bn)n und zwar gegen den gleichen Grenzwert, den
wir mit L bezeichnen. Es ist

c2n = 1 − 1
2 + 1

3 − 1
4 + . . .+ 1

2n−1 − 1
2n =

= (1 + 1
2 + 1

3 + 1
4 + . . .+ 1

2n−1 + 1
2n ) −2 (1

2 + 1
4 + 1

6 + . . .+ 1
2n ) =

= (1 + 1
2 + 1

3 + 1
4 + . . .+ 1

2n−1 + 1
2n ) − (1 + 1

2 + 1
3 + . . . + 1

n ) =
= 1

n+1 + 1
n+2 + . . . + 1

2n−1 + 1
2n = bn

Es ist also c2n = bn und wegen c2n+1 = c2n + 1
2n+1 = bn + 1

2n+1 existiert

lim
n→∞ cn = lim

n→∞ bn = L.

2.1 a) Zu ε > 0 wählt man δ = ε. Aus |x− x′| < δ, folgt dann:
|b(x) − b(x′)| = ||x| − |x′|| ≤ |x− x′| < δ = ε.
b) Die Funktion b(x) := |x| ist stetig, daher auch b ◦ f = |f |.
c)Aus f+ = 1

2 (f + |f |) und f− = − 1
2 (f −|f |) folgt die Stetigkeit von f+ und f−.

d) Nach Aufgabe 1.1ist max(f, g) = 1
2 (f + g + |f − g|), also stetig; analog folgt
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die Stetigkeit vonmin(f, g).

2.2 Wir nehmen an, f(x) = x3 sei gleichmäßig stetig. Dann existiert zu ε = 1 ein
geeignetes δ > 0.Nun wählt man x > 1

δ und x > 1 und setzt x′ := x+ 1
x . Dann ist

|x′ − x| < δ, aber |f(x′) − f(x)| = (x + 1
x )3 − x3 > 3x > 3. Somit ist x3 nicht

gleichmäßig stetig.

3.1 Sei ε > 0; man wählt δ > 0 so, dass für 0 < |x− b| < δ gilt:∣∣∣f(x)−f(b)
x−b − f ′(b)

∣∣∣ < ε falls a ≤ x < b;
∣∣∣g(x)−g(b)

x−b − g′(b)
∣∣∣ < ε falls b < x ≤ c.

Für x ∈ [a, c], 0 < |x − b| < δ ist dann wegen f(b) = g(b) = h(b) und f ′(b) =
g′(b): ∣∣∣∣h(x) − h(b)x− b − f ′(b)

∣∣∣∣ < ε
und daher existiert h′(b) und es gilt h′(b) = f ′(b).

3.2 Es existiert g′(0) = lim
h→0

g(h)−g(0)
h = lim

h→0

h·f(h)
h = lim

h→0
f(h) = f(0).

3.3 a) Sei |f ′(x)| ≤ M für x ∈ R. Zu x, x′ ∈ R, x < x′ existiert ein ξ zwischen x

und x′ mit f(x′)−f(x)
x′−x = f ′(ξ) und daher ist |f(x) − f(x′)| ≤M |x′ − x|.

b) Zu ε > 0 wählt man δ := ε
L ; aus |x− x′| < δ folgt |f(x) − f(x′)| < L · δ < ε.

3.4 Es ist (x4 − 2x3 − 5x2 + 4x+ 2) : (x− 1) = x3 − x2 − 6x− 2 und daher
ist f in x = 1 differenzierbar.

3.5 Wenn man die ersten Ableitungen von f ausrechnet, kommt man zu der Ver-
mutung :

f (k)(x) =
k!

(1 − x)k+1

und beweist sie mit vollständiger Induktion: Der Induktionsanfang k = 0 ist klar;
nun sei die Formel für ein k richtig; dann ist

f (k+1)(x) = (k! (1 − x)−k−1)′ = k!(k + 1)(1 − x)−k−2 =
(k + 1)!

(1 − x)k+2
.

3.6 Für 0 < |h| < 1 ist | f(h)−f(0)
h | ≤ |h| und daher ist f ′(0) = 0.( Dies folgt auch

aus 3.1.) Somit ist

f ′(x) =
{

2x für x ≤ 0
3x2 für x > 0

Wegen
f ′(h) − f ′(0)

h
=

{
2 für h < 0
3h für h > 0
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existiert f”(0) nicht.

4.1 2 sinx cosx, −2 cosx sinx, 2x cos(x2), cosx · esin x, cos(ex).

4.2 ex lnx+ 1
x · ex, 2x lnx+ x, 1−2 ln x

x3

4.3 − 2f ′

f3 , f
′ef , f ′ · (1 + ln f), f ′ · (1 + ln f)ff

4.4 a) Wendet man die l’Hospitalsche Regel zweimal an so erhält man 1
2 ,

b) Wendet man die l’Hospitalsche Regel zweimal an, so erhält man das falsche Re-
sultat 1

2 : Der Zähler geht gegen 0 und der Nenner gegen 1, also ist die l’Hospitalsche
Regel ist nicht anwendbar. Der richtige Grenzwert ist 0.

c) Wegen
∣∣∣ sin 1

x
1
x

∣∣∣ = |x · sin 1
x | ≤ |x| ist der Grenzwert 0.

4.5 Für x ∈ R setzt man y := ar sinhx, also x = sinh y; mit w := ey ist dann
x = 1

2 (w − 1
w ). Daraus folgt w2 − 2xw − 1 = 0; daher w = x±√

x2 + 1. Wegen
w = ey > 0 ist w = x+

√
x2 + 1, also ey = x+

√
x2 + 1 und daher

ar sinh x = y = ln(x+
√
x2 + 1).

4.6 a) f(x) :=
∞∑

n=1
nxn = x ·

∞∑
n=1
nxn−1 = x · d

dx

(
1

1−x

)
= x

(1−x)2 , also

∞∑
n=1

n
10n = f( 1

10 ) = 10
81 .

b) Gemeint ist natürlich
∞∑

n=1

1
n·10n . Wir untersuchen also in |x| < 1 die Funktion

f(x) :=
∞∑

n=1

xn

n ; es ist f ′(x) =
∞∑

n=1
xn−1 = 1

1−x . Für g(x) := − ln(1 − x) ist

g′(x) = 1
1−x = f ′(x) und wegen f(0) = 0 = g(0) ist f(x) = g(x) , also (vgl.

6.2.10)
∞∑

n=1

xn

n
= − ln(1 − x)

und somit
∞∑

n=1

1
n10n = f( 1

10 ) = ln 10
9 .

4.7 Es ist f ′(x) = 2x lnx und f ′′(x) = 2(1 + lnx). In ]0, e−1[ ist f ′′ < 0 und f ′

streng monoton fallend ; in ]e−1[ ist f ′′ > 0 und f ′ steigend.

Es gilt f ′′(1
e ) = 0 und f ′(1

e ) = − 2
e sowie f ′(−1) = 0. Somit ist f ′ < 0 in ]0, 1[

und f ′ > 0 in ]1,∞[. Daher fällt f in ]0, 1[ und steigt in ]1,∞[; in x = 1 hat f das
Minimum f(1) = − 1

2 ; die einzige Nullstelle von f ist
√

e = 1, 648 . . ..

4.8 Es ist nach 4.3.4 cos 2x = 1 − 2 sin2 x und daher ist f konstant: f(x) = 1
2 für

x ∈ R.
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4.9 f(x) = xx = exp(x ln x), f ′(x) = (ln x+ 1) · xx, f ′(1
e ) = 0.

In ]0, 1e [ ist f ′ < 0, also f streng monoton fallend; in ]1e ,∞[ ist f ′ > 0 und f wächst
streng monoton.
In 1

e nimmt f also das Minimum exp(− 1
e ) an.

Es ist lim
x→0
x · lnx = lim

x→0

ln x
1/x = lim

x→0

1/x
−1/x2 = 0 und wegen der Stetigkeit der

Exponentialfunktion folgt:

lim
x→0
xx = lim

x→0
exp(x ln x) = 1.

1

1 x

f(x) = xx

f ′

4.10 Es ist ln(4 · 109) = 2 · ln 2 + 9 · ln 10 = 22, 1 . . . ; es reicht also, wenn das
Blatt etwa 22, 2cm hoch ist.
Beim doppelten Erdumfang hat man hat man ln(2 · 4 · 109) = ln 2 + ln(4 · 109);
es kommt also der Summand ln 2 dazu und das Blatt muss um 0, 69cm, also etwa
7mm, höher sein.
Man kann sich damit nicht nur das langsame Wachstum von lnx, sondern auch
das schnelle Wachstum von ex veranschaulichen: bei x = 22, 1 ist ex gleich dem
Erdumfang, geht man 7mm weiter, ist es der doppelte Erdumfang.

5.1 a)
1∫
0

x4

1+x5 dx = 1
5 (ln(1 + x5))

∣∣∣1
0

= 1
5 ln 2

b)
1∫
0

x
1+x4 dx = 1

2

1∫
0

dy
1+y2 = 1

2arctgy
∣∣∣1
0

= π
8 mit y = x2

c) Zweimalige partielle Integration ergibt :
∫
x2 sinxdx = −x2 cosx+

∫
2x cosxdx

= −x2 cosx + 2x sinx +
∫

2 sinxdx = 2x sinx − (x2 − 2) cosx. Daher ist
π/2∫
0

x2 sinxdx = π − 2

d)
π/4∫
0

cos x−sinx
cos x+sinxdx =

√
2∫

1

dy
y = 1

2 ln 2 mit y = cosx+ sinx.
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5.2 a) Partielle Integration:
∫
x lnxdx = x2

2 lnx− ∫
x2

2
1
xdx = 1

2x
2(lnx− 1

2 )
b)

∫
1
x lnxdx = 1

2 (lnx)2

c) Partielle Integration:
∫

1
x2 ln xdx = − 1

x lnx+
∫

dx
x2 = − 1

x(1 + lnx)
d) Substitution y = lnx und zweimalige partielle Integration liefert:∫
(ln x)2dx =

∫
y2 · eydy = (y2 − 2y + 2) · ey = x ·

(
(lnx)2 − 2 lnx+ 2

)
.

5.3 Für den Nenner gilt: x2 − 6x+ 10 = (x− 3)2 + 1 > 0.
a)

∫
x−3

(x2−6x+10)2 dx = 1
2

∫ dy
y2 = − 1

2y
−1 = − 1

2 · 1
x2−6x+10 mit der Substitution

y := x2 − 6x+ 10
b)

∫
x−3

x2−6x+10dx = 1
2 ln(x2 − 6x+ 10)

c)
∫

dx
(x−3)2+1 = arctg(x − 3),

d)
∫

xdx
x2−6x+10 =

∫
x−3

x2−6x+10+3·∫ dx
x2−6x+10 = 1

2 ln(x2−6x+10)+3·arctg(x−3).

5.4 Für 0 ≤ x ≤ 3 ist y = 2 ·√1 − (x2/9) und mit x = 3 · sin t ergibt sich 1
8 der

gesuchten Fläche:

3∫
0

√
1 − x2

9 dx =
π/2∫
0

√
1 − 9 sin2 t

9 · 3 cos tdt = 3
π/2∫
0

cos2 tdt =

= 3
2 (t+ sin t cos t)

∣∣∣π/2

0
= 3

4π

und die Ellipsenfläche ist 6π.

5.5

an =
π/2∫
0

sinx · sinn−1 xdx =

= − cosx · sinn−1 x
∣∣∣π/2

0
+

π/2∫
0

cos2 x · (n− 1) · sinn−2 xdx =

= 0 + (n− 1)
π/2∫
0

(1 − sin2 x) · sinn−2 xdx = (n− 1)an−2 − (n− 1)an

und daher

an =
n− 1
n
an−2.

Es ist a0 =
π/2∫
0

dx = π
2 , a1 =

π/2∫
0

sinxdx = 1, somit

a2n =
2n− 1

2n
· 2n− 3
2n− 2

· . . . · 3
4
· 1
2
· π
2
, a2n+1 =

2n
2n+ 1

· 2n− 2
2n− 1

· . . . · 4
5
· 2
3
.

5.6 an =
1∫
0

xnexdx = xnex
∣∣∣1
0
− n

1∫
0

xn−1exdx , daher an = e − n · an−1.

Man erhält :
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a0 = e− 1, a1 = 1, a2 = e− 2, a3 = 6 − 2e.

5.7 Es ist
2n∫

n

dx

x
= ln(2n) − lnn = ln 2.

Wählt man zum Intervall [n, 2n] die Zerlegung Z = (n, n+ 1, . . . , 2n− 1, 2n), so
ist bn = SZ < ln 2 und an = ( 1

n + . . .+ 1
2n−1 ) + 1

2n = S̄Z + 1
2n > S̄Z > ln 2.

Damit hat man bn < ln 2 < an und daraus folgt L = ln 2.

5.8 Sei s > 1 undN,R ∈ N, N < R, dann ist
R∑

n=N+1

n−s eine Untersumme zum

Integral
R∫
N

x−sdx = 1
s−1 ( 1

Ns−1 − 1
Rs−1 ). Daher ist

∞∑
n=N+1

1
ns

≤ 1
s− 1

· 1
Ns−1

.

Daraus folgt mit s = 12 und N = 3:

∞∑
n=4

1
n12

≤ 1
11

· 1
311

=
1

1948617
< 10−6,

man hat also mit den drei Gliedern 1+2−12+3−12 diese Reihe bis auf einen Fehler
< 10−6 berechnet. Es ist 1 + 2−12 + 3−12 = 1, 00024602 . . . und nach 14.11.9 ist
∞∑

n=1
n−12 = 1, 00024608 . . . .

6.1 1+x
1−x = 1

1−x + x
1−x =

∞∑
n=0
xn +

∞∑
n=1
xn = 1 + 2 ·

∞∑
n=1
xn für |x| < 1.

6.2 1
1+x+x2+x3+x4+x5 = 1−x

1−x6 =
∞∑

n=0
x6n −

∞∑
n=0
x6n+1 =

= 1 − x+ x6 − x7 + x12 − x13 + . . . .

6.3 Es ist 1
a−x = 1

a
1

1−(x/a) =
∞∑

n=0

xn

an+1 und daher gilt für |x| < a:
1

(x−a)(x−b) = 1
a−b

(
1

x−a − 1
x−b

)
= 1

a−b

∞∑
n=0

(
a−(n+1) − b−(n+1)

)
xn.

6.4 Für |x| < 1 gilt : x · (xg′(x))′ = x( x
(1−x)2 )′ = x(1+x)

(1−x)3 = f(x) und daher

f(x) = x ·
(
x ·

∞∑
n=1

nxn−1
)′

= x ·
( ∞∑

n=1

nxn
)′

= x ·
∞∑

n=1

n2xn−1 =
∞∑

n=1

n2xn.

Daraus folgt
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∞∑
n=1

n2

2n
= f(

1
2
) = 6

.

6.5 Sei g(x) := 1
1−x , für |x| < 1 gilt (vgl. Aufgabe 3.5):

2
(1−x)3 = g′′(x) =

( ∞∑
n=0
xn

)′′
=

∞∑
n=2
n(n− 1)xn−2

und daher

x+x2

(1−x)3 = 1
2

( ∞∑
n=2
n(n− 1)xn−1 +

∞∑
n=2
n(n− 1)xn

)
=

= 1
2

(
x+

∞∑
n=2

(n+ 1)nxn +
∞∑

n=2
(n− 1)nxn

)
=

∞∑
n=1
n2xn.

6.6 Nach der Taylorschen Formel 6.2.6 existiert ein ξ mit

sinx− (x− x
3

3!
+
x5

5!
) =

x7

7!
· (− sin ξ)

und aus |x|7
7! · | − sin ξ| ≤ 1

27·7! = 1
645120 < 2 · 10−6 folgt die Behauptung.

7.1 Wir schreiben die Lösungen als Zeilenvektoren, bei der Rechnung sollen sie
unbedingt als Spalten geschrieben werden.

(1) {(−1, 3, 2)}
(2) {(9, 15, 0) + c(−2,−3, 1)| c ∈ R}
(3) {(1, 2, 0, 0) + c1(−4, 1,−1, 0) + c2(5,−1, 0,−1)| c1, c2 ∈ R}
(4) unlösbar
(5) {(7,−5, 3) + c(3,−2, 1)| c ∈ R}
(6) {(1,−3, 1, 0) + c(1, 2, 3,−1)| c ∈ R}
(7) unlösbar
(8) {(8, 6, 0) + c(−1,−1, 1)| c ∈ R}

7.2 Wir geben zuerst das charakteristische Polynom χA an, dann die Eigenwerte
EW und schliesslich zu jedem Eigenwert einen Eigenvektor EV, die Eigenvektoren
schreiben wir in Zeilenform, beim Matrizenkalkül müssen sie als Spalten geschrie-
ben werden. In den letzten beiden Spalten geben wir an, ob die Matrix diagonali-
sierbar (d) oder trigonalisierbar (t) ist.
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χA EW EV d t

(1) t2 − 5t − 50 = (t − 10)(t + 5) 10; −5 (1,−2); (2, 1) + +

(2) t2 + t − 2 = (t + 2)(t − 1) 1; −2 (−2, 1); (1,−2) + +

(3) t2 − 1 = (t − 1)(t + 1) 1; −1 (1, 1); (1,−1) + +

(4) t2 − 30t + 125 = (t − 15)2 15 (1,−2) − +

(5) t2 − 7t + 10 = (t − 5)(t − 2) 2; 5 (1,−2); (1, 1) + +

(6) t2 − 3t + 8 = (t − 3
2
)2 + 23

4
> 0 − −

(7) t3 − 5t2 + 2t + 8 = (t + 1)(t − 2)(t − 4) −1; 2; 4 (0, 2, 1); (1, 1, 0); (−5, 1,−2) + +

(8) t3 − 4t2 + 5t − 2 = (t − 1)2(t − 2) 1; 2 (0, 1, 0); (3,−5, 1) − +

(9) t3 − 4t2 + 5t − 2 = (t − 1)2(t − 2) 1; 2 (1, 0, 1); (1, 1, 1); (0, 3, 1) + +

(10) t3 0 (1, 0, 0); (0, 1, 0) − +

Die Matrix (6) hat keine Eigenwerte und ist daher nicht trigonalisierbar. Alle an-
deren Matrizen sind trigonalisierbar, weil χA zerfällt. Bei (4),(8),(10) gibt es keine
Basis aus Eigenwerten; diese Matrizen sind nicht diagonalisierbar. Die Matrizen (1),
(2), (3),(5), (7), (9) sind diagonalisierbar.Bei den Matrizen (1) und (3) sieht man dies
ohne Rechnung, denn sind sind symmetrisch und besitzen daher eine Orthonormal-
basis aus Eigenvektoren.

7.3 Aus
∑

j λjvj = 0 folgt
∑

j λjf(vj) = 0 und nach Voraussetzung ergibt
sich daraus λ1 = 0, . . . , λk = 0.

7.4 Es ergibt sich

1√
2

⎛⎝1
1
0

⎞⎠ , 1√
2

⎛⎝ 1
−1

0

⎞⎠ ,
⎛⎝ 0

0
1

⎞⎠
7.5 Die zu f gehörende Matrix ist A =

(
2 1

−4 −2

)
; daraus folgt, dass

(
1

−2

)
eine

Basis von Bild f und, wie man leicht nachrechnet, auch von Ker f ist. Daher ist
Bild f = Ker f und somit f ◦ f = 0.

7.6 Die zugehörige Matrix ist A =
(

3 −2
4 −3

)
; sie ist offensichtlich invertierbar,

nach 7.7.14 ist A−1 =
(

3 −2
4 −3

)
= A. Daher ist f ein Isomorphismus, also Bild f

=R2 und Ker f={0}. Es ist A · A = E, also (f ◦ f)(x) = x und daher f−1 = f .

7.7

(a) es ist f(e1) = −e2, f(e2) = −e1; also A =
(−1 0

0 −1

)
(b) es ist f(e1) = e1, f(e2) = −e2; also A =

(
1 0
0 −1

)
(c) es ist f(e1) = e2; f(e2) = e1; also A =

(
0 1
1 0

)
.
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7.8

A2 − (spA)A + (detA)E =

=

�
a2
11 + a12a21 a11a12 + a12a22

a21a11 + a22a21 a21a12 + a2
22

�
−
�

a2
11 + a11a22 a11a12 + a22a12

a11a21 + a22a21 a11a22 + a2
22

�
+

+

�
a11a22 − a12a21 0

0 a11a22 + a12a21

�
=

�
0 0
0 0

� .

Dies ist ein Spezialfall des Satzes von Hamilton-Cayley:
Für A ∈ K(n,n) ist immer χA(A) = 0.
Ist A ∈ K(2,2) eine Matrix mit spA = 0, so folgt aus diesem Satz:
A2 = −(detA)E.
In 7.5 ist spA = 0 und detA = 0, somit erhält man :A2 = 0.
In 7.6 ist spA = 0 und detA = −1, also folgt A2 = E.

7.9 Es ist a11a22 − a212 = detA > 0, daher a11a22 > 0 und wegen a11 > 0 folgt
a22 > 0. Für die Eigenwerte λ1, λ2 von A gilt dann λ1 + λ2 = a11 + a22 > 0 und
λ1λ2 = detA > 0. Aus λ1λ2 > 0 folgt, dass beide Eigenwerte positiv oder beide
negativ sind. Wegen λ1 + λ2 > 0 sind beide positiv.

8.1 Die Substitution v := y+x liefert v′ = v, also v = cex und damit y = cex−x.
Die allgemeine Lösung ist y = (y0 + x0)ex−x0 − x.

8.2 Die homogene Gleichung y′ = y hat die Lösung y = cx . Variation der
Konstanten liefert mit dem Ansatz y = c(x)y die Gleichung c′(x)ex + c(x)ex =
c(x)ex + ex

x , also c′(x) = 1
x und damit c(x) = lnx. Die inhomogene Gleichung hat

also die Lösungen y = ex(c+ lnx) und die Lösung mit y(1) = 1 ist ex(1 + lnx).

8.3 Die Lösungen von y′ = y sind y = cex und mit dem Ansatz y = c(x)ex erhält
man c′(x) = 1, also c(x) = x.Die Lösungen sind y = (x+c)ex und die allgemeine
Lösung ist (x− x0 + y0 · e−x0)ex.

8.4 Trennung der Variablen ergibt dy
1+y2 = dx, also arctg y = x + c und damit

y = tg(x+ c). Die allgemeine Lösung ist dann

ϕ(x) = tg(x− x0 + arctg y0).

Wegen |arctg y0| < π
2 gibt es ein δ > 0 mit |δ + arctg y0| < π

2 und daher ist ϕ(x)
in |x− x0| < δ definiert.

8.5 Trennung der Variablen dy
y = (a− bt)dt liefert die Lösung

y(t) = c · exp(at− 1
2
bt2).

Es ist

ẏ(t) = (a− bt) · c · exp(at− 1
2
bt2)
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und ẏ(a
b ) = 0. Sei t0 := a

b ; für 0 ≤ t < t0 ist ẏ(t) > 0; für t0 < t ist ẏ(t) < 0. Die
Bakterienkultur wächst also bis zum Zeitpunkt t0 an, hat bei t0 den Maximalwert
y(t0); dann fällt sie streng monoton, es ist y(2t0) = c, sie hat also bei 2t0 wieder
den Anfangswert und geht für t→ ∞ gegen 0; für alle t ist y(t) > 0.( Den Verlauf
von exp(at − 1

2bt
2) kann man sich leicht vorstellen, wenn man zuerst die Parabel

at− 1
2bt

2 skizziert. )

3
−3

√
3 5

)
.

Es ist χA(t) = t2 − 4t − 32 = (t − 8)(t + 4). Man berechnet einen auf Länge
1 normierten Eigenvektor t1 zu 8 und einen normierten Eigenvektor t2 zu −4. Die
Matrix T mit den Spalten t1, t2 ist orthogonal; man erhält etwa

T =
( − 1

2
1
2

√
3

1
2

√
3 1

2

)
.

Dann ist

T−1AT =
(

8 0
0 −4

)
und

ỹ′1 = 8ỹ1
ỹ2

′ = −4ỹ2

hat die Lösung

ỹ = c1 · e8x ·
(

1
0

)
+ c2 · e−4x ·

(
0
1

)
.

Dann ist y = T ỹ die Lösung von y′ = Ay und man erhält

y = c1 · e8x ·
( − 1

2
1
2

√
3

)
+ c2 · e−4x ·

(
1
2

√
3

1
2

)
, c1, c2 ∈ R.

8.10 Sei

A =
(

1 + 1
2

√
3 1

2

− 3
2 1 − 1

2

√
3

)
,

c

t

y

t0 2t0

8.6 c1e−3x + c2e−4x

8.7 e−x(c1 cos 2x+ c2 sin 2x)

8.8 (c1 + c2x)e−2x

8.9 Sei

A :=
( −1 −3

√



518 16 Lösungen

dann ist

χA(t) = t2 − 2t+ 1 = (t− 1)2 und t1 =
1
2

(−1√
3

)
ist ein Eigenvektor.

Man wählt den Vektor t2 so, dass die Matrix T mit den Spalten t1, t2 orthogonal ist,
etwa

T =
1
2

(−1 −√
3√

3 −1

)
.

Dann ist

T−1AT =
(

1 2
0 1

)
.

Man löst nun
ỹ1

′ = ỹ1 + 2ỹ2
ỹ2

′ = ỹ2,

aus der 2.Gleichung folgt ỹ2 = c2ex , dann ist die 1.Gleichung ỹ1
′ = ỹ1 + 2c2ex

und deren Lösung ist ỹ1 = c1ex + 2c2(x+ 1)ex . Somit ist

ỹ = c1ex
(

1
0

)
+ c2ex

(
2x+ 1

1

)
.

Dann ist y = T ỹ Lösung von y′ = Ay, also

y = c1 · ex ·
( − 1

2
1
2

√
3

)
+ c2 · ex ·

(−x− 1 − 1
2

√
3

(x+ 1)
√

3 − 1
2

)
, c1, c2 ∈ R.

9.1 Aus 0 ≤ (|x| − |y|)2 = x2 + y2 − 2|xy| folgt | 2xy
x2+y2 | ≤ 1 für (x, y) �= (0, 0)

und daher ist |f(x, y)| ≤ |x|für alle x ; daraus folgt die Stetigkeit von f in 0.
Man sieht unmittelbar, dass fx(0, 0) = 0 und fy(0, 0) = 0 ist. Für (x, y) �= (0, 0)ist

fx(x, y) =
4xy3

(x2 + y2)2
, fy(x, y) =

2x4 − 2x2y2

(x2 + y2)2
.

Aus fx(x, x) = 1 und fy(x, 2x) = − 6
25 für x �= 0 folgt, dass fx und fy im

Nullpunkt unstetig sind.
Wenn f in 0 (total) differenzierbar ist, dann geht die Funktion ϕ(x, y) := f(x,y)√

x2+y2

gegen 0; für x > 0 ist aber ϕ(x, x) = 1√
2

und daher ist f nicht differenzierbar.

9.2 Es ist fx(0, 0) = 0 und fy(0, 0) = 0 und für (x, y) �= (0, 0) ist

fx(x, y) =
4xy4

(x2 + y2)2
, fy(x, y) =

4x4y
(x2 + y2)2

.

Für y �= 0 ist |fx(x, y)| = 4x
((x/y)2+1)2 | ≤ 4|x| und daraus folgt, dass fx im Null-

punkt stetig ist.
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Durch Vertauschung von x, y erhält man die Stetigkeit von fy .
Somit ist f stetig partiell differenzierbar, daher ist f stetig und auch (total) differen-
zierbar.

9.3 Man rechnet aus: ∂f
∂x (0, 0) = 0, ∂f

∂y (0, 0) = 0 und für (x, y) �= (0, 0) ist:

∂f

∂x
(x, y) =

x4y + 7x2y3 − 4y5

(x2 + y2)2
,

∂f

∂y
(x, y) =

x5 − 13x3y2 − 4xy4

(x2 + y2)2
.

Daraus ergibt sich:

∂
∂y

∂f
∂x (0, 0) = lim

h→0

1
h

∂f
∂x (0, h) = lim

h→0

1
h

(−4h5)
h4 = −4,

∂
∂x

∂f
∂y (0, 0) = lim

h→0

1
h

∂f
∂y (h, 0) = lim

h→0

1
h

h5

h4 = 1.

9.4

a) h(x, y) = x2 − y3
b) es gibt kein Potential
c) h(x, y) = exy + xey

d) h(x, y, z) = x2y + xz + yz2.

9.5 Aus cos 2t = cos2 t− sin2 t = 1− 2 sin2 t folgt 4(sin t
2 )2 = 2− 2 cos t und

für 0 ≤ t ≤ 2π ergibt sich: 2 sin t
2 =

√
2 − 2 cos t . Daher ist

Lγ =
2π∫
0

√
(1 − cos t)2 + sin2 tdt =

2π∫
0

√
2 − 2 cos tdt =

= 2
2π∫
0

sin t
2dt = −4 cos t

2

∣∣∣2π

0
= 8.

9.6 a)

∫
γ

vds =
2π∫
0

(
(r cos t− r sin t)(−r sin t) + (r cos t+ r sin t)(r cos t)

)
dt = 2πr2.

b)
∫
γ

vds =
1∫
0

(
(t− t) + (t+ t)

)
dt = 1.

c)
∫
γ

vds =
1∫
0

(
(t− t2) + (t+ t2)(2t)

)
dt = 4

3 .

9.7 h(x, y) = x3 − 3xy2 − 3x . a) Das Integral ist 0, weil ein Potential existiert.
b)c) Beide Integrale sind gleich h(1, 1) − h(0, 0) = −5.

10.1 Wenn das Kriterium gilt, dann istK trivialerweise eine Nullmenge. Sei nunK
eine kompakte Nullmenge und ε > 0 beliebig. Dann existieren Quader Ij , j ∈ N,
mit
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K ⊂
∞⋃

j=1

Ij ,
∞∑

j=1

µ(Ij) <
ε

2
.

Die Ij können offen, halboffen oder abgeschlossen sein. Vergrössern wir die Kanten
um δj > 0 und nennen den so erhaltenen offenen Quader I ′j , so ist Īj ⊂ I ′j . Wählen
wir δj so klein, dass

µ(I ′j) − µ(Ij) < 2−j ε

2
ist, so erhalten wir

K ⊂
∞⋃

j=1

I ′j ,
∞∑

j=1

µ(I ′j) =
∞∑

j=1

µ(Ij) +
∞∑

j=1

(µ(I ′j) − µ(Ij)) < ε.

Weil K kompakt ist, können wir endlich viele I ′j auswählen, die das Kriterium
erfüllen.

10.2 f ist auf ]0, π[×]0, π[ nicht integrierbar. Wäre f integrierbar,so wäre nach
10.2.6 die Funktion 1

sin x über ]0, π[ integrierbar. Nach 10.2.2 ist dann

π∫
0

1
sinx

dx = lim
ε→0,ε>0

π−ε∫
ε

1
sinx

dx.

Es ist aber
π−ε∫
ε

1
sinx

dx = 2 ·
π/2∫
ε

1
sinx

dx, 0 < ε < π/2.

Wegen sinx ≤ x auf [0, π/2] folgt:

π−ε∫
ε

1
sinx

dx ≥ 2 ·
π/2∫
ε

dx
x

dx = 2 · (ln(π/2) − ln ε) → ∞ für ε→ 0.

Die Funktion f ist auf ]δ, π−δ[×]δ, π−δ[ integrierbar, da f dort fast überall mit der
auf ]δ, π−δ[×]δ, π−δ[ Riemann-integrierbaren Funktion 1

sin x·sin y übereinstimmt.

10.3 a) Sei

F (R) :=
∫

‖x‖≤R

f(‖x‖)dx, G(R) := nen

R∫
0

f(r)fn−1dr

und �R,R+h = {R < ‖x‖ < R + h} für h > 0. Dann ist, falls F ′ und die
Grenzwerte existieren;

(1) F ′(R) = ( lim
h→0

1
h

∫
�R,R+h

(f(‖x‖) − f(R))dx) + f(R) lim
h→0

1
h

∫
�R,R+h

dx.
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Nach der Transformationsformel ist∫
‖x‖≤R

dx = Rnen.

Da f in jeden abgeschlossenen Intervall gleichmäßig stetig ist, existiert zu ε > 0
ein δ > 0 derart, dass

|f(‖x‖) − f(R)| ≤ ε

nRn−1en
auf R ≤ ‖x‖ ≤ R+ h, 0 ≤ h < δ,

ist. Also ist
1
h |

∫
�R,R+h

(f(‖x‖) − f(R))dx| ≤ ε
nRn−1

1
hen · ((R + h)n −Rn) =

= ε
hnRn−1 (nRn−1h+

(
n
2

)
Rn−2h2 + . . .).

Damit verschwindet der erste Grenzwert in (1).
Für den zweiten erhält man f(R)nRn−1en. Für die Differenzenquotienten, die mit
der Grundmenge {R− h < ‖x‖ < R} gebildet werden, ergibt sich dasselbe Ergeb-
nis. Offenbar ist ebenfalls

G′(R) = f(R)nRn−1en.

Mir F (0) = G(0) folgt die erste Behauptung.
b) Es ist ∫

{x2+y2≤R2}

e−(x2+y2)d(x, y) = 2π

R∫
0

e−r2
rdr = π(1 − e−R2

);

∫
R2

e−(x2+y2)d(x, y) = π.

Der Satz von Fubini liefert∫
R2

e−(x2+y2)d(x, y) = (
∫
R

e−x2
dx)2,

also ∫
R

e−x2
dx =

√
π.

10.4 Wir wählen geeignete Koordinaten, nämlich ϕ ∈ [0, 2π[, ϑ ∈ [0, 2π[, � ∈
[0, r]; dabei ist ϕ ein Winkel in der xz-Ebene und ϑ ein Winkel in der xy-Ebene.
Mit diesen ist ⎛⎝xy

z

⎞⎠ =

⎛⎝ (R+ �) cosϕ cosϑ
(R + �) cosϕ sinϑ

� sinϕ

⎞⎠ = : Φ(ϕ, ϑ, �).
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ϕ

R

�

−R x

z

r ϑ

y

x

z

Φ bildet [0, 2π[×[0, 2π[×[0, r] auf T ab.
Wir definieren nun die Menge

M =

��
�

�
�

(R + �) cos ϑ,
(R + �) sin ϑ,

0

�
� | 0 ≤ ϑ < 2π, 0 ≤ � < r

��
	 ∪

∪
��
�

�
�

R + � cos ϕ,
0

� sin ϕ

�
� | 0 ≤ ϕ < 2π, 0 ≤ � < r

��
	∪

∪
��
�

�
�

(R cos ϑ
R sin ϑ

0

�
� |0 ≤ ϑ < 2π,

��
	 ∪

∪
��
�

�
�

(R + r cos ϕ) cos ϑ
(R + r cos ϕ) sin ϑ

r sin ϕ

�
� | 0 ≤ ϕ < 2π, 0 ≤ ϑ < 2π

��
	

und setzen
U := ]0, 2π[×]0, 2π[×]0, r[ V :=

o

T \M.
Da die letzte Menge beiM bereits den Rand von T darstellt, kann sie fortgelassen
werden. Φ bildet U auf V ab. V ist offen. Φ : U → V ist auch injektiv: es sei

�1 sinϕ1 = �2 sinϕ2

(R + �1 cosϕ1) cosϑ1 = (R + �2 cosϕ2) cosϑ2

(R+ �1 cosϕ1) sinϑ1 = (R+ �2 cosϕ2) sinϑ2

Sind cosϑ1 �= 0, cosϑ2 �= 0, so folgt tanϑ1 = tanϑ2 und ϑ1 = ϑ2 oder ϑ1 =
ϑ2 ± π. Im letzten Fall ist cosϑ1 = − cosϑ2. Daraus folgt

�1 cosϕ1 = �2 cosϕ2

�1 sinϕ1 = �2 sinϕ2

also �1 = �2, ϕ1 = ϕ2 und damit ϑ1 = ϑ2. Ist cosϑ1 = 0, so auch cosϑ2

und insbesondere cotϑ1 = cotϑ2. Dieselbe Argumentation wie eben liefert die
Gleichheit. Wegen

JΦ(ϕ, ϑ, �) =

⎛⎝−� sinϕ cosϑ −(R+ � cosϕ) sinϑ cosϕ cosϑ
−� sinϕ sinϑ −(R+ � cosϕ) cosϑ cosϕ sinϑ
� cosϕ 0 sinϕ

⎞⎠
ist
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| detJΦ(ϕ, ϑ, �)| = �(R + � cosϕ) �= 0

in U =]0, 2π[×]0, 2π[×]0, r[. Also ist Φ : U → V ein Diffeomorphismus. Bis auf
eine Nullmenge ist V = T . Damit folgt unter Benutzung der Transformationsformel

∫
T

(x2 + y2)d(x, y, z) =
2π∫
0

2π∫
0

r∫
0

(R+ � cosϕ)3�d�dϕdϑ =

= 2π
r∫
0

2π∫
0

(R3 + 3R�2 cos2 ϕ)dϕd� = 2πRr2(R2 + 3
4r

2).

10.5 Es ist µ(S) = 2
3π.

Wir führen Kugelkoordinaten ein:⎛⎝xy
z

⎞⎠ =

⎛⎝ r sinϑ cosϕ
r sinϑ sinϕ
r cosϑ

⎞⎠ =: Φ(ϕ, ϑ, r), 0 ≤ ϕ < 2π, 0 ≤ ϑ ≤ π, r ≥ 0.

Dann ist
| detJ(ϕ, ϑ, r)| = r2 sinϑ

und Φ bildet die offene Menge U :=]0, 2π[×]0, π
2 [×]0, 1[ bijektiv auf die folgen-

dermassen definierte offene Menge V ab: Es sei

M := {(r sinϑ, 0, r cosϑ)| 0 ≤ r ≤ 1, 0 ≤ ϑ ≤ π
2 } ∪ {(0, 0, r)| 0 ≤ r ≤ 1}∪

∪ {(r cosϕ, r sinϕ, 0)| 0 ≤ ϕ < 2π, 0 ≤ r ≤ 1}∪
∪ {(sinϑ cosϕ, sinϑ sinϕ, cosϑ)| 0 ≤ ϕ < 2π, 0 ≤ ϑ ≤ π

2 }.

Nun sei K+ die abgeschlossene obere Halbkugel und V :=
o

K+ \M . Dann ist Φ :
U → V ein Diffeomorphismus. V füllt die obere Halbkugel bis auf eine Nullmenge
aus. Es folgt mit der Transformationsformel:

z1 =
3
2π

1∫
0

π/2∫
0

2π∫
0

r sinϑ cosϕr2 sinϑdϕdϑdr = 0,

z2 =
3
2π

1∫
0

π/2∫
0

2π∫
0

r sinϑ sinϕr2 sinϑdϕdϑdr = 0,

z3 =
3
2π

1∫
0

π/2∫
0

2π∫
0

r cosϑ sinϑdϕdϑdr =
3
8
.

b) µ(S) =
1∫
0

1−x∫
0

1−x−y∫
0

dzdydx = 1
6 ,

z1 = 6
∫
S

xd(x, y, z) = 6
1∫
0

1−x∫
0

1−x−y∫
0

dzdydx = 1
4 . Ebenso folgt z2 = z3 = 1

4 .
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x

z

y

10.6 a) Zu berechnen ist das Volumen von

K = {(x, y, z) ∈ R3| a ≤ z ≤ b, x2 + y2 ≤ (f(z))2}.
Nach dem Satz von Fubini ist

µ(K) =

b∫
a

⎛⎜⎝ ∫
{x2+y2≤(f(z))2}

dxdy

⎞⎟⎠ dz = π

b∫
a

(f(z))2dz.

Für f(x) = x 0 ≤ x ≤ 1, ergibt sich ein Kegel mit dem Inhalt π/3.

b) Wir nehmen die lineare AbbildungA =
(
a 0
0 b

)(
x
y

)
, die die offene Einheits-

kreisscheibe E umkehrbar stetig differenzierbar aus das Innere der Ellipse mit den
Halbachsen a und b abbildet. Die Transformationsformel liefert: das Volumen dieser
Ellipse ist πab.

10.7 a) Sei p < q. Aus der Hölderschen Ungleichung folgt:∫
I

|f |pdx =
∫
I

1 · |f |pdx ≤ µ(I)(q−p)/q · ‖f‖p
q.

Hieraus folgt a)
b) Sei

f(x) =
{

1/
√|x| für |x| ≤ 1, x �= 0,

0 sonst

dann ist f ∈ L1(R), da f sowohl bei Null als auch im Unendlichen integrierbar ist.
f ist jedoch nicht aus L2(R), da 1

|x| nicht bei Null integrierbar ist. g(x) = 1
1+|x|

ist aus L2(R), da
(

1
1+|x|

)2

bei Null und im Unendlichen integrierbar ist. 1
1+|x| ist

jedoch nicht im Unendlichen integrierbar, also ist g nicht in L1(R).
c) Es ist r < p, r < q, 1 = r

p + r
q . Die Höldersche Ungleichung liefert

∫
I

|f |r|g|rdx ≤
⎛⎝∫

I

|f |pdx
⎞⎠r/p ⎛⎝∫

I

|g|qdx
⎞⎠r/q

.

d) λ ∈ [0, 1] folgt aus 1
p ≥ 1

q ≥ 1
r . Für λ = 0 oder λ = 1 ist nichts zu zeigen. Sei

also 0 < λ < 1. Auf f̃ := |f |λ, g̃ := |f |1−λ können wir wegen 1
q = 1

p/λ + 1
r/(1−λ)

Teil c) anwenden.
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10.8 a) f ist ungerade, also an = 0 für n ∈ N0.

bn =
1
π

+π∫
−π

x · sinnxdx =
2
n

(−1)n+1

durch partielle Integration. Also

f(x) = 2
∞∑

n=1

(−1)n+1

n
sinnx.

b) g ist ungerade, also an = 0 für n ∈ N0.

bn = 1
π

+π∫
−π

g(x) sin nxdx = 1
π

0∫
−π

(−h) sinnxdx+ 1
π

π∫
0

h sinnxdx =

= 2h
nπ (1 − (−1)n) =

{
0 falls n gerade
4h
nπ falls n ungerade

10.9 a) | < fn, gn > − < f, g > | ≤ | < fn − f, gn > | + | < f, gn − g > | ≤
‖fn − f‖ · ‖gn‖ + ‖f‖ · ‖gn − g‖.
Wegen ‖gn − g‖ ≥ | ‖gn‖ − ‖g‖ | ist (‖gn‖) als konvergente Folge beschränkt.
Daraus folgt die Behauptung.
b) Mit a) und der Orthonormalität der un in 10.4.18 folgt

+π∫
−π

|f(x)|2dx = < f, f >=
∞∑

n,l=1

analπδnl +
∞∑

n,l=1

bnblπδnl + πa2
0

2 =

= π
[ ∞∑

n=1
(a2n + b2n) + a2

0
2

]
c) f ist ungerade, also an = 0 für n ∈ N0. Durch wiederholte partielle Integration
folgt

bn =
1
π

+π∫
−π

x3 · sinnxdx = (−1)n

(
12
n3

− 2π2

n

)
),

indem man die Potenz x3 sukzessive erniedrigt. Damit liefert b) die Gleichung

2
7
π7 =

+π∫
−π

x6dx = π
∞∑

n=1

(
12
n3

− 2π2

n

)
= π

∞∑
n=1

(
144
n6

− 48π2

n4
+

4π4

n2

)
.

Einsetzen der gegebenen Werte für die Reihen über 1
n2 und 1

n4 liefert

∞∑
n=1

1
n6

=
π6

945
.

10.10 Wir benutzen ‖f‖2 =< f, f > und erhalten
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a) ‖f −
N∑

k=1

fkϕk‖2 =

= ‖f‖2 −
N∑

k=1

f̄k < f, ϕk > −
N∑

k=1

fk < ϕk, f > +
N∑

k,l=1

fkf̄l < ϕk, ϕl >=

= ‖f‖2 − 2
N∑

k=1

|fk|2 +
N∑

k=1

|fk|2.

b) ‖f −
N∑

k=1

ckϕk‖2 = ‖F +G‖2 mit F := f −
N∑

k=1

fkϕk, G :=
N∑

k=1

(fk − ck)ϕk.

Wir haben

< F +G,F +G >= ‖F‖2 + 2Re < F,G > +‖G‖2 =

= ‖f‖2 −
n∑

k=1

|fk|2 +
N∑

k=1

|ck − fk|2 + 2Re < f −
N∑

k=1

fkϕk ,

N∑
k=1

(fk − ck)ϕk > .

Mit

< f −
N∑

k=1

fkϕk ,

N∑
k=1

(fk − ck)ϕk >=
N∑

k=1

fk(fk − ck) −
N∑

k=1

fk(fk − ck) = 0

folgt die Behauptung.

10.11 Wir müssen nur die Fourierreihe von 100x4| ∂E bestimmen. Mit x4| ∂R =
cos4 ϕ und cos2 ϕ = 1

2 (1 + cos 2ϕ) folgt: cos4 ϕ = 1
4 + 1

2 cos 2ϕ + 1
4 cos2 2ϕ =

1
4 + 1

2 cos 2ϕ+ 1
4 (1

2 (1 + cos 4ϕ) = 3
8 + 1

2 cos 2ϕ+ 1
8 cos 4ϕ.

Die Fourierentwicklung von 100 cos4 ϕ ist daher

100 cos4 ϕ =
75
2

+ 50 cos2ϕ+
25
2

cos 4ϕ

und die Temperaturverteilung auf Ē ist in Polarkoordinaten

T (r, ϕ) =
75
2

+ 50r2 cos 2ϕ+
25
2
r4 cos 4ϕ.

Mit der Methode von 14.14.10 berechnet man zuerst Rez4 und Rez2 : Auf ∂E
ist Rez4 = 8x4 − 8x2 + 1 und Rez2 = 2x2 − 1. Damit errechnet man: Setzt man
f(z) := 25

2 (z4 + 4z2 + 3) und

T (x, y) := Ref(x+ iy) =
25
2

(x4 − 6x2y2 + y4 + 4x2 − 4y2 + 3),

so ist T als Realteil von f harmonisch und auf ∂E ist T (x, y) = 100x4.

10.12 a) Es gelte das Kriterium. Dann ist

‖fj − f‖2 = ‖fj‖2 − 2Re < fj, f > +‖f‖2 → 0, j → ∞.
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Ist umgekehrt lim
j→∞

fj = f in H, so folgt aus ‖fj − f‖ ≥ | ‖fj‖ − ‖f‖ |, dass

lim ‖fj‖ = ‖f‖ gilt. Aus der Ungleichung von Cauchy-Schwarz ergibt sich

| < fj, g > − < f, g > | ≤ ‖fj − g‖ · ‖g‖
und daraus die Behauptung.
b) Wir wählen g = f . Dann folgt

| < fj , f > −‖f‖2| → 0.

Mit | < fj, f > −‖f2‖ | ≥ ∣∣ | < fj , f > | − ‖f‖2
∣∣ erhalten wir für ‖f‖ > 0,

dass es zu jedem ε > 0 ein N = N(ε) gibt, so dass für j ≥ N gilt:

‖f‖2 < ε‖f‖ + | < f, fj > | ≤ ε‖f‖ + ‖f‖ · ‖fj‖.
Wir wählen eine Teilfolge (fjk

) mit ‖fjk
‖ → lim inf

j→∞
‖fj‖ und dividieren durch

‖f‖. Für ‖f‖ = 0 ist nichts zu zeigen.

10.13 χ[a,b] ∈ L1(R) ist klar. Wir haben

χ̂[a,b](ξ) = 1√
2π

+∞∫
−∞

e−iξxχ[a,b](x)dx = 1√
2π

b∫
a

e−iξxdx =

=

{
− 1√

2π·iξ
(
e−iξb − e−iξa

)
für ξ �= 0

1√
2π

(b − a) für ξ = 0

10.14 a) | e−iξb−e−iξa

ξ | ist um 0 und damit auf R beschränkt. Damit ist χ̂[a,b] bei 0
quadratintegrierbar. Wegen

|e
−iξb − e−iξa

ξ2
| ≤ 2

|ξ|2

ist χ̂[a,b] auch im Unendlichen quadratintegrierbar.
b) Es ist

−ε∫
−∞

eiξb−1
ξ2 dξ +

+∞∫
ε

eiξb−1
ξ2 dξ =

=
−ε∫

−∞

(
cos ξb−1

ξ2 + i sin ξb−1
ξ2

)
dξ +

+∞∫
ε

(
cos iξb−1

ξ2 + i sin ξb
ξ2

)
dξ.

Da sin ξb ungerade ist, ist

−ε∫
−∞

sin ξb
ξ2

dξ +

+∞∫
+ε

sin ξb
ξ2

dξ = 0.

Die Reihe für cos ξb−1 beginnt mit der Potenz ξ2b2 und enthält nur gerade Potenzen
von ξb . Falls die Limiten der Aufgabe existieren, hängen sie also nur von |b| ab.



528 16 Lösungen

Da cos ξb−1
ξ2 bei Null beschränkt ist und wegen des Faktors 1

ξ2 im Unendlichen

integrierbar ist, ist sogar cos ξb−1
ξ2 aus L1(R).

10.15 Es ist

χ(x− y) =
{

1 für 0 ≤ x− y ≤ 1
0 sonst

also

χ(x− y) =
{

1 für y ≤ x und y ≥ x− 1
0 sonst

,

und mit z = x− y ergibt sich

χ ∗ χ(x) =

1∫
0

χ(x− y)dy = −
x−1∫
x

χ(z)dz =

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0
x∫
0

dz

1∫
x−1

zdz2

0

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 für x ≤ 0

x für 0 ≤ x ≤ 1

2 − x für 1 ≤ x ≤ 2

0 für x ≥ 2

Somit folgt

(χ∗χ)∗χ(x) =

+∞∫
−∞

(χ∗χ)(x−y)χ(y)dy =

1∫
0

(χ∗χ)(x−y)dy =

x∫
x−1

(χ∗χ)(z)dz =

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
z∫
0

zdz

1∫
x−1

zdz +
x∫
1

zdz

2∫
x−1

dz

0

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 für x ≤ 0

1
2x

2 für 0 ≤ x ≤ 1

−x2 + 3x− 3
2 für 1 ≤ x ≤ 2

1
2x

2 − 3x+ 9
2 für 2 ≤ x ≤ 3

0 für x ≥ 3

1 2 1 2 3

χ ∗ χ χ ∗ χ ∗ χ

x

y

x

y

1 1
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Hinweis: χ ∗ χ ∗ . . . ∗ χ liefert die aus der Numerik bekannten B-Splines.

11.1 Wir setzenM ′ := {(x, y) ∈ R2| (x
a )2 + (y

b )2 = 1}. Es sei
f(x, y) := (x

a )2 + (y
b )2 − 1, in R2 \ {(0, 0)} ist grad f �= 0 und daher istM ′ eine

eindimensionale Untermannigfaltigkeit des R2. Nun zeigen wir:M = M ′. Wegen
(a cos t

a )2 + ( b·sin t
b )2 = 1 istM ⊂M ′.

Nach 4.3.19 existiert zu (x, y) ∈ M ′ ein t ∈ [0, 2π] mit x
a = cos t und y

b = sin t;
daraus folgtM ′ ⊂M .
Einen Atlas kann man so erhalten: Sei ϕ(t) := (a cos t, b sin t); ein Atlas ist z.B.

(T1 =] − π, π[, ϕ, ϕ(] − π, π[)), (T2 =]0, 2π[, ϕ, ϕ (]0, 2π[)).

11.2 a)M ist das Nullstellengebilde von f(x1, x2, x3) := x3 − x21x2 ;
es ist grad f(x1, x2, x3) = (−2x1x2, −x21, 1) und dieser Gradient verschwindet
nirgends.
b)ϕ(t1, t2) := (t1, t2, t21t2).
c) Es ist grad f(0, 0, 0) = (0, 0, 1) und dieser Vektor ist eine Basis von NpM .
Weiter ist ∂ϕ

∂t1
(t) = (1, 0, 2t1t2) , ∂ϕ

∂t2
(t) = (0, 1, t21) und ((1, 0, 0), (0, 1, 0)) ist

eine Basis von TpM .

11.3 WennM eine eindimensionale Untermannigfaltigkeit des R2 mit (0, 0) ∈ M
ist, dann gibt es eine offene Umgebung U = I × I ′ von (0, 0) und
(1) eine beliebig oft differenzierbare Funktion g : I → I ′ mit
M ∩ U = {(x, y) ∈ U |y = g(x)} oder
(2) eine beliebig oft differenzierbare Funktion h : I ′ → I mit
M ∩ U = {(x, y) ∈ U |x = h(y)}.
a) Im Fall (1) ist x · g(x) = 0 für x ∈ I und für x �= 0 ist dann g(x) = 0. Wegen der
Stetigkeit von g folgt g(x) = 0 für alle x ∈ I . Dann wäre aberM ∩ U = {y = 0};
ein Widerspruch. Im Fall (2) schliesst man analog.
b) Im Fall (1) ist x3 = (g(x))2 ≥ 0 für x ∈ I , aber für x < 0 ist x3 < 0.
Im Fall (2) ist y2 = (h(y))3, also h(0) = 0. Zweimaliges Differenzieren liefert

h(y) ·
(
6h′(y))2 + 3h(y)h”(y)

)
= 2; aber für y = 0 verschwindet die linke Seite.

11.4 a) Wie in Beispiel 9.6.8 erhalten wir

h = 1
2x

2 + 1
3a1x

3 + 1
2a2x

2y + a3xy2 + a4 x4

4 + ϕ(y) =
= 1

2y
2 + b1x2y + 1

2b2xy
2 + 1

3b3y
3 + b4 y4

4 ,

woraus folgt:

b1 =
1
2
a2, b2 = 2a3.

b) Die Taylorentwicklung von h um (0, 0) lautet

h(x, y) = h(0, 0) + x2 + y2 + Terme höherer Ordnung.
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Ohne Einschränkung sei h(0, 0) = 0. Der Graph von h im R3 ist demnach in der
Nähe des Nullpunkts ein

”
Krater “mit Minimum in (0, 0), aus dem die Hyperebenen

z = c die Niveaulinien als geschlossene Wanderwege herausschneiden.

11.5 a) Aus
(µf)y = µfy + µyf = (µg)x = µgx + µxg

folgt
µ(fy − gx) = µxg − µyf.

b) Aus a) folgt
µx4xy2 − µy9x2y = µ(9x2 − 4y2).

Hieraus entnimmt man den Ansatz

µx =
1
x
µ, µy = −1

y
µ, µ = exp(−(lnx+ ln y)),

also

µ = +
1
xy

für xy �= 0.

11.6

a) τ = x3y2

b) τ existiert nicht, denn dω �= 0.
c) τ = y3dx− z2dy − exdz.

12.1 Wir haben für irgendein Intervall I
∫
I

(f − g)ϕdx = 0, ϕ ∈ C∞
0 (I). Sei

h ∈ L2(I). Nach Satz 12.1.21 existiert eine Folge (ϕn) in C∞
0 (I) mit ϕn → h in

L2(I). Also ist
∫
I

(f − g)hdx = 0 für alle h ∈ L2(I). Damit folgt f = g f. ü.

12.2 Fürm ∈ N und ϕ ∈ C∞
0 (Rn) ist

(ξ2m + 1)ϕ̂(ξ) = 1√
2π

+∞∫
−∞

(ξ2m + 1)e−iξxϕ(x)dx =

= 1√
2π

(
+∞∫
−∞

(−1)m dm

dx2m (e−iξx)ϕ(x)dx +
+∞∫
−∞

e−iξxϕ(x)dx

)
=

= 1√
2π

(
+∞∫
−∞

e−iξx d2m

dx2mϕ(x)dx +
+∞∫
−∞

e−iξxϕ(x)dx

)
.

Insbesondere fällt ϕ̂ für |ξ| → ∞ schneller als jede Potenz von 1/|ξ| ab. Also

konvergiert
+∞∑

k=−∞
ϕ̂(k). Daher ist mit Tn := TSn :

Tn(ϕ) = 1√
2π

+∞∫
−∞

n∑
k=−n

eikxϕ(x)dx =
n∑

k=−n

1√
2π

+∞∫
−∞

e−ikxϕ(x)dx =
n∑

k=−n

ϕ̂(k),
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woraus die Behauptung folgt.

12.3 Für ϕ ∈ D ist

LT (ϕ) =
∑

|j|≤k

aj(DjT )(ϕ) =
∑

|j|≤k

(DjT )(ajϕ) =

=
∑

|j|≤k

T ((−1)|j|Dj(ajϕ)) = T

( ∑
|j|≤k

(−1)|j|Dj(ajϕ)

)
.

12.4 Ein Fundamentalsystem zu Lu = 0 wird durch e
√

λx, e−
√

λx gebildet. Wir
bestimmen

η1(x) = Ae
√

λx +Be−
√

λx mit η1(−1) = 0, η′1(−1) = 1;
η2(x) = Ãe

√
λx + B̃e−

√
λx mit η2(+1) = 0, η′2(+1) = 1;

und erhalten

A =
e
√

λ

2
√
λ
, B = −e−

√
λ

2
√
λ
, Ã =

e−
√

λ

2
√
λ
, B̃ = − e

√
λ

2
√
λ
.

Damit ergibt sich

η1η
′
2 − η2η′1 = 1

2
√

λ
(e2

√
λ − e−2

√
λ)

η2(t)η1(x) = (Ãe
√

λt + B̃e−
√

λt) · (Ae
√

λx +Be−
√

λx),
η1(t)η2(x) = (Ae

√
λt +Be−

√
λt) · (Ãe

√
λx + B̃e−

√
λx),

woraus mit dem Hinweis folgt:

Gl(x, t) = −1√
λ sinh(2

√
λ)

sinh(
√
λ(1 + x)) · sinh(

√
λ(1 − t))

Gr(x, t) = −1√
λ sinh(2

√
λ)

sinh(
√
λ(1 − x)) · sinh(

√
λ(1 + t)).

Die Greensche Funktion ist also negativ in ] − 1,+1[×]− 1,+1[.

12.5 Wir haben für eine Eigenfunktion u ∈ D(L) zum Eigenwert λ:

λu = −qu− (pu′)′

λ‖u‖2 =
b∫

a

(−q)|u|2dx+
b∫
a

p|u′|2d > ∫
(−q)|u|2dx ≥ q0‖u‖2.

Mit ‖u‖2 > 0 folgt die Behauptung.

12.6 Es ist

0 =
b∫
a

[q1u1 − (pu′1)
′]u2dx =

b∫
a

q1u1u2dx+
b∫

a

pu′1u
′
2dx− [pu′1u2]

b
a .

Andererseits gilt
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0 =
b∫
a

[q2u2 − (pu′2)
′]u1dx =

b∫
a

q2u1u2dx+
b∫

a

pu′1u
′
2dx− [pu′2u1]

b
a .

Wegen u1(a) = u1(b) = 0 ist [pu′2u1]
b
a = 0. Damit folgt

0 =

b∫
a

(q1 − q2)u1u2dx+ p(a)u′1(a)u
′
2(a) − p(b)u′1(b)u′2(b).

Annahme: u2 hat keine Nullstelle in ]a, b[. Ohne Einschränkung sei u2 > 0 in ]a, b[.
Dann sind u2(a) ≥ 0, u2(b) ≥ 0.Wegen u1(a) = u1(b) = 0, u1 > 0 in ]a, b[ sind
u′1(a) ≥ 0, u′1(b) ≤ 0. Damit ist

0 <

b∫
a

(q1 − q2)u1u2dx+ p(a)u′1(a)u
′
2(a) − p(b)u′1(b)u′2(b),

und dies ist ein Widerspruch.

13.1 Es ist
∫

∂Q

y2dx+ x3ydy = 0 +
1∫
0

tdt−
1∫
0

dt+ 0 = − 1
2 und∫

∂Q

y2dx+ x3ydy =
∫
Q

(3x2y − 2y)dxdy = − 1
2 .

13.2 a) Es ist
∫

∂A

=
∫
γ1

+
∫
γ2

− ∫
γ3

mit γ1 : [1, 2] → R2, t 	→ (t, t),

γ2 : [2, 4] → R2, t 	→ (2, t), γ3 : [1, 2] → R2, t 	→ (t, t2).

Daher ist
∫

∂A

x2

y dx =
2∫
1

t2

t dt+ 0 −
2∫
1

t2

t2 dt =
1
2 .

b) Nach Gauss ist
∫

∂A

x2

y dx = − ∫
A

∂
∂y

(
x2

y

)
dxdy = +

∫
A

x2

y2 dxdy =

=
2∫
1

x2∫
x

x2

y2 dxdy =
2∫
1

x2

(
x2∫
x

dy
y2

)
dx =

2∫
1

x2
[
− 1

y

]x2

x
dx =

2∫
1

(x− 1)dx = 1
2 .

13.3
∫
Q

y · sin(xy)dxdy =
π∫
0

( 1∫
0

y · sin(xy)dx
)
dy =

π∫
0

[− cos(xy)]10 dy =

=
π∫
0

(− cos y + 1)dy = [− sin y + y]π0 = π.

13.4 a) direkt:
∫
A

xydxdy =
1∫
0

(√
1−x2∫
0

xydx

)
dy =

1∫
0

x
2 · [x2]y=

√
1−x2

y=0
dx =

1∫
0

x
2 · (1 − x2)dx = 1

8 .

b) mit Polarkoordinaten x = r · cosϕ, y = r · sinϕ ergibt sich:
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∫
A

xydxdy =
1∫
0

π/2∫
0

r cosϕ · r sinϕ · r · dϕdr = 1
2

1∫
0

r3
[
sin2 ϕ

]ϕ=π/2

ϕ=0
dr =

1
2

1∫
0

r3dr = 1
8 .

13.5
1∫
0

x2∫
x3

dydx =
1∫
0

(x2 − x3)dx = 1
12 .

13.6 Eine Karte zuM ist ϕ : R2 →M, (t1, t2) 	→ (t1, t2, t21t2).
Es ist ω ◦ϕ = (2t1t2dt1 + t21dt2)∧dt1 + t21dt1∧dt2 = (−t21 + t21)dt1∧dt2 = 0 ;
somit ergibt sich

∫
A

ω =
∫

ϕ−1(A)

ω ◦ ϕ = 0.

13.7 a) Sind e1, e2, e3 die drei Einheitsvektoren des R3 , so ist

a× (b× c) = (a2(b1c2 − b2c1) − a3(b3c1 − b1c3)) e1 +
+ (a3(b2c3 − b3c2) − a1(b1c2 − b2c1)) e2 +
+ (a1(b3c1 − b1c3) − a2(b2c3 − b3c2)) e3.

Vergleich mit < a, c > b− < a, b > c zeigt die Behauptung.
b) ν × v ist orthogonal zu ν und daher tangential. Nach a) ist

1√
g

(
( ∂ϕ

∂t1
× ∂ϕ

∂t2
) × v

)
= − 1√

g

(
v × ( ∂ϕ

∂t1
× ∂ϕ

∂t2
)
)

=

= − 1√
g

(〈
v, ∂ϕ

∂t2

〉
· ∂ϕ

∂t1
−
〈
v, ∂ϕ

∂t1

〉
· ∂ϕ

∂t2

)
.

13.8 Nach Aufgabe 13.7 a) leistet v(t) := a(t) × ν(t) das Gewünschte.

13.9 a) Aus Aufgabe 13.7 b) folgt:

Div (ν × v) = 1√
g

(
∂

∂t1
(− < v, ∂ϕ

∂t2
>) + ∂

∂t2
< v, ∂ϕ

∂t1
>
)

=

= 1√
g

(
− < ∂v

∂t1
, ∂ϕ

∂t2
> + < ∂v

∂t2
, ∂ϕ

∂t1
>
)
.

b) < rot v,ν >= 1√
g

〈
( ∂ϕ

∂t1
× ∂ϕ

∂t2
), rot v

〉
,

∂ϕ
∂t1

× ∂ϕ
∂t2

=
3∑

i,j,k=1

εijk
∂ϕi

∂t1
· ∂ϕj

∂t2
ek,

rot v =
3∑

l,m,k=1

εlmk
∂vm

∂xl
ek,

√
g < rot v,ν > =

3∑
i,j,l,m=1

(
3∑

k=1

εijkεlmk

)
· ∂ϕi

∂t1

∂ϕj

∂t2
∂vm

∂xl
=

=
3∑

i,j,l,m=1

(δilδjm − δjlδim) · ∂ϕi

∂t1

∂ϕj

∂t2
∂vm

∂xl
=

=
3∑

i,j=1

(
∂ϕi

∂t1

∂ϕj

∂t2

∂vj

∂xi
− ∂ϕi

∂t1

∂ϕj

∂t2
∂vi

∂xj

)
,
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Div (ν × v) =
1√
g

3∑
i,j=1

(
−∂vj
∂xi

∂ϕi

∂t1

∂ϕj

∂t2
+
∂vj
∂xi

∂ϕi

∂t2

∂ϕj

∂t1

)
,

also
Div (ν × v) = − < rot v, ν , > .

13.10 Wir benützen Aufgabe 13.8 und Aufgabe 13.7 sowie Satz 7.9.39 und erhalten:∫
A

(Div a) dS =
∫
A

Div (ν × v)dS = − ∫
A

< rot v,ν > dS = − ∫
∂A

v · dt =

= −
|∂A|∫
0

< v, t
‖t‖ > ds =

|∂A|∫
0

< ν × a, t
‖t‖ > ds =

=
|∂A|∫
0

det( a, t
‖t‖ ,ν) ds =

|∂A|∫
0

< a,n > ds.

14.1

a) f(z) = −iz2 + z
b) uxx(x, y) + uyy(x, y) = 2 �= 0, daher existiert kein f .
c) f(z) = z2 + iz

14.2 a) hebbar, b) wesentliche Singularität, c) Pol 1. Ordnung,
d) sin 1

z hat Nullstellen in 1
nπ , n ∈ Z, in 0 liegt also keine isolierte Singularität.

14.3 a)
∫

|z|=r

|z|dz =
2π∫
0

rir · eitdt = 0.

b)
∫

|z|=r

|z|
z dz =

2π∫
0

r
r·eit ri · eitdt = 2rπi.

c) d) Es ist z2−4z+3 = (z−1)(z−3); das Residuum in z = 1 ist lim
z→1

z−1
z2−4z+3 =

lim
z→1

1
z−3 = − 1

2 . Analog ergibt sich: Das Residuum in z = 3 ist 1
2 . Daher ist das

Integral c) gleich −πi und d) ist 0.
e) Das Residuum von z−7 + 7z−5 − 98z−2 ist 0 , daher auch das Integral .

f) Mit w = z − 2 ergibt sich
(

z2−5
z−2

)2

= ...−8w+...
w2 , somit ist das Residuum gleich

−8 und das Integral ist gleich −16πi.

14.4 Man berechnet diese Integrale mit 14.12.4. a) Die in der oberen Halbebene ge-
legenen Polstellen von z

z4+1 sind z1 = 1+i√
2

und z2 = −1+i√
2

. Mit p(z) := z, q(z) :=

z4 + 1 erhält man nach 14.11.8 : Resz1
p
q = p(z1)

q′(z1) = 1
4z2

1
= − i

4 und Resz2
p
q = i

4 ;
somit ist das Integral = 0.

b)Nun setzt man p := z2 und erhält:Resz1
p
q = z2

1
4z3

1
= 1

4z1
=

√
2

8 (1 − i) und

Resz2
p
q =

√
2

8 (−1 − i); somit ist das Integral gleich 1
2π

√
2.

c) Dieses Integral existiert nicht, denn es ist
R∫
0

x3dx
x4+1 = 1

4 ln(R4 + 1).
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14.5 Eine Homotopie von γ zu p := γ(0) ist

h(t, s) :=
{

γ(2t · (1 − s)) für 0 ≤ t ≤ 1
2

γ((2 − 2t) · (1 − s)) für 1
2 < t ≤ 1

Für jedes s ∈ [0, 1] läuft die Kurve t 	→ h(t, s) von p bis zum Punkt γ(1 − s) und
dann zurück nach p; für s = 1

2 kehrt sie auf halbem Weg um; für s = 9
10 kehrt sie

bereits bei γ( 1
10 ) um.

14.6 a) f hat in 0 eine Nullstelle einer Ordnung k > 1; dann hat f2 eine Nullstelle
der Ordnung 2k �= 1 . Oder : aus (f(z))2 = z folgt f(0) = 0 und 2f(z) ·f ′(z) = 1;
für z = 0 ein Widerspruch.
b) nein: denn aus (f(z))2 = z für z ∈ C∗ folgt: für 0 < |z| < 1 ist |f(z)|2 =
|z|2 ≤ 1, dann hat f in 0 eine hebbare Singularität und dies widerspricht a).

14.7 Zu h existiert eine holomorphe Funktion f : C → C mit Ref = h; dann ist
f : C → H eine Abbildung in die obere Halbebene H . Es gibt eine biholomorphe
AbbildungΦ : H → E. Die Abbildung Φ◦f : C → E ist nach Liouville konstant,
also auch f und somit auch h.

14.8 a) Das Polynom p(z) = z2 + bz + c hat die Nullstellen z1 = −b+i
√

d
2 und

z2 = −b−i
√

d
2 ; es ist |z1| = |z2| =

√
c. Für r <

√
c ist 1

p in |z| < r holomorph und
das Integral ist 0.
Für r >

√
c ist

∫
|z|=r

dz
p(z) = 2πi(Resz1

1
p +Resz2

1
p ). Es ist Resz1

1
p = 1

z1−z2
= 1

i
√

d

und Resz2
1
p = 1

z2−z1
. Daher ist

∫
|z|=r

dz
p(z) = 0.

b) Es ist
+∞∫
−∞

dx
p(x) = 2πiResz1

1
p = 2π√

d
.

14.9 Mit z = eit ist sin t = 1
2i (z − 1

z ) und
2π∫
0

dt
2+sin t =

∫
|z|=1

1
2+ 1

2i (z− 1
z )

· dz
iz =

∫
|z|=1

2dz
4iz+z2−1 .

Das Polynom p(z) = z2 + 4iz − 1 hat die Nullstellen z1 = i · (−2 +
√

3); z2 =
i · (−2 − √

3); es ist |z1| < 1 < |z2| und Resz1
1
p = 1

z1−z2
= 1

2i
√

3
. Mit dem

Residuensatz ergibt sich dann:
2π∫
0

dt
2+sin t = 2 · ∫

|z|=1

dz
p(z) = 2π√

3
.

15.1 a ) Mit der Substitution y = −x erhält man:

1∫
−1

f(x)g(x)dx = −
1∫

−1

f(−y)g(−y)dy = −
1∫

−1

f(y)g(y)dy
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b) Sei fn → f in H, fngerade. Dann gibt es eine Teilfolge (fnj ) von (fn) mit
fnj → f f. ü. in ] − 1, 1[. Also ist f gerade. Offenbar ist

{1
2
(f(x) − f(−x))| f ∈ H} ⊂ M ⊂ {1

2
(g(x) + g(−x)) = g(x)| g ∈ M}.

Daher gilt das Gleichheitszeichen. Der
”
Anteil “PMf von f in M ist eindeutig

bestimmt. 1
2 (f(x)−f(−x)) ist ungerade und daher orthogonal zu 1

2 (f(x)+f(−x)).
Daraus folgt die Behauptung.

15.2 a) Wir haben nach den Aufgaben 10.13 und 10.14

< χ̂[a,b], χ̂[c,d] > = 1
2π

+∞∫
−∞

1
ξ2

(
e−iξb − e−iξa

) (
eiξd − eiξc

)
dξ =

= 1
2π

(
P

+∞∫
−∞

1
ξ2

(
e−iξ(b−d) − 1

)
dξ − . . .

)
.

b) Nach dem Cauchyschen Integralsatz ist∫
γε,R

1
z2

(
eiz − 1

)
= 0;

weiter ist

lim
R→∞

∫
|z|=R,Imz≥0

1
z2

(
eiz − 1

)
dz = 0

lim
ε→∞

∫
|z|=R,Imz≥0,neg.or.

1
z2

(
eiz − 1

)
dz = i lim

ε→0

∫
|z|=ε,...

1
z
dz = π.

Damit folgt

P
+∞∫

−∞

eiξ − 1
ξ2

dξ = −π.

Aus Aufgabe 10.13 folgt

P
+∞∫

−∞

eiξb − 1
ξ2

dξ = P
+∞∫

−∞

cos ξ|b| − 1
ξ2

dξ.

Die Variablensubstitution η = |b|ξ liefert die Behauptung.

15.3 a) Aus der vorhergehenden Aufgabe 15.2 folgt

< χ̂[a,b], χ̂[c,d] >= −1
2
(|b− d| − |b− d| − |a− d| + |a− c| = I(a, b, c, d).
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Dieser Ausdruck ist gerade < χ[a,b], χ[c,d] > .
b) folgt aus a)
c) Zu zeigen ist, dass die Treppenfunktionen (1) in L2(R) dicht liegen. Zunächst ist

R =
∞⋃

k=1

[−k,+k].

Nach Satz 10.2.2 (Konvergenzsatz von Lebesgue) haben wir in L2(R)

f · χ[−k,k] → f, k → ∞.
Wir können uns daher auf f ∈ L2(R) beschränken, die ausserhalb eines Interfalls
[a, b] f. ü. verschwinden. Nach 10.1.8 gibt es eine Folge (tj) von Treppenfunktionen,
die f. ü. gegen f konvergieren. Wir können annehmen, dass sie ausserhalb [a, b]
verschwinden. Sei k ∈ N und

fk(x) :=

⎧⎨⎩
k falls f(x) ≥ k
f(x) falls −k ≤ f(x) ≤ k
−k falls f(x) ≤ −k

Dann sind auch die tjk Treppenfunktionen und

tjk → fk f. ü. inR, j → ∞,
tjk = 0 ausserhalb [a, b].

Wir haben die Majoranten

|fk| ≤ |f |, k ∈ N, in [a, b]

|tjk| ≤ k in [a, b]

und
fk, tjk = 0

ausserhalb [a, b]. Weiter erhalten wir fk → f f. ü. R. Aus 10.2.2 (Konvergenzsatz
von Lebesgue) folgt

‖fk − f‖L2(R) → 0, k→ ∞.
Ebenso haben wir

‖tjk − fk‖L2(R) → 0, j → ∞
für jedes k ∈ N. Damit folgt die Dichtheit der Treppenfunktionen in L2(R); die
Treppenfunktionen bilden einen C-Vektorraum. Wir können also T abschliessen.

15.4 Es seien [a(1)j , b
(1)
j ], [a(2)j , b

(2)
j ] die Kanten von I1, I2, j = 1, . . . , n; aus dem

Satz von Fubini folgt

< TχI1
, TχI2

>L2(R) =
n∏

j=1

< Tχ
[a(1)

j
,b

(1)
j

]
, Tχ

[a(2)
j

,b
(2)
j

]
>L2(R)

(∗)
=

=
n∏

j=1

< χ
[a

(1)
j ,b

(1)
j ]
, χ

[a
(2)
j ,b

(2)
j ]
>L2(R)=< χI1 , χI2 >L2(R)
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(*) nach der vorhergehenden Aufgabe 15.3.
b) folgt aus a).

15.5 Sei also (tj) eine Folge von Treppenfunktionen, die ausserhalb I verschwinden
und in L2(R) gegen f konvergieren. Dann ist∣∣∣∣ 1

(
√

2π)n

(∫
Rn

e−i<x,y>f(y)dy − ∫
Rn

e−i<x,y>tj(y)dy
)∣∣∣∣ ≤

≤ 1
(
√

2π)n

(∫
Q

|f(y) − tj(y)|dy
)

≤ 1
(
√

2π)n
µ(Q)‖f − tj‖L2(Rn .

Insbesondere ist die Konvergenz gleichmäßig in x ∈ Rn. Nach 10.3.6 konvergiert
eine Teilfolge (Tji) f. ü. in Rn gegen T̄ f .

15.6
< Txn, g >=< xn,

∗ Tg >→ (x,∗ Tg >=< Tx, g > .

nach 15.3.7

15.7 Sei |λ| < 1. Dann ist

‖(U − λ)x‖ ≥ (1 − |λ|)‖x‖, ‖(U∗ − λ̄)x‖ ≥ (1 − |λ|)‖x‖.
Nach 15.4.3 besitzt U − λ eine überall erklärte beschränkte Inverse. Für |λ| > 1
folgt

‖(U − λ)x‖ ≥ (|λ| − 1)‖x‖, ‖(U∗ − λ̄)x‖ ≥ (|λ| − 1)‖x‖
und U − λ hat ebenfalls nach 15.4.3 eine überall erklärte beschränkte Inverse.

15.8 Mit

F (ξ) :=
1√
2π

+∞∫
−∞

e−iξx · e−x2/2dx

folgt:

√
2πF ′(ξ) = i

+∞∫
−∞

e−iξx · (−xe−x2/2)dx = i
+∞∫
−∞

e−iξx · d
dx(e−x2/2)dx =

= −ξ ·
+∞∫
−∞

e−iξx · e−x2/2dx = −ξ√2πF (ξ).

Also ist F (ξ) = F (0) ·e−ξ2/2.Aus der Lösung zu Aufgabe 10.3 b) wissen wir, dass
F (0) = 1 ist.

15.9 Sei also Kj → K in L2(]a, b[×]a, b[), K stetig in [a, b] × [a, b]. Nach 15.8.4
sind IntegraloperatorenKj kompakt. K − Kj ist auch vom Hilbert-Schmidtschen
Typ. Also ist nach Beispiel 15.3.3

‖K −Kj‖ ≤ ‖K −Kj‖L2(]a,b[×]a,b[).

Daraus folgt die Behauptung.
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- gleichmäßige , 98
- kompakte, 407
- punktweise , 98
- schwache, 482
- von Potenzreihen, 61

Konvergenzradius, 62
Koordinaten, 121
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- unitäre , 181

Maximum
- isoliertes lokales , 48
- lokales , 48

Maximumprinzip, 425
Maxwellsche Gleichungen, 332
meßbar, 277
Metrik, 227
Mittelwertsatz

- der Differentialrechnung, 49
- der Integralrechnung, 86

Moivresche Formeln, 70
monoton, 14
Morera, 422
multilinear, 146



544 Sachverzeichnis

Nabla-Operator, 268
Neilsche Parabel, 261
Norm, 162
Normale

- äussere, 383
Normalenraum, 317
Normalteiler, 115
normierter Raum, 162
nullhomotop, 415
Nullmenge, 276
Nullstellensatz, 39

obere Schranke, 5
Oberintegral, 82
Obersumme, 82
offen, 228
offene Abbildung, 424
Operator

- hermitescher, 491
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Pascalsches Dreieck, 28
Permutationen, 116
Pfaffsche Form, 322
Picard, 202
Planck, 53
Poincaré, 327
Poincarésches Lemma, 327
Poisson, 460
Poisson-Gleichung, 463
Poisson-Problem, 461
Poissonsche Integralformel, 460
Pol, 429
Polarkoordinaten, 9, 77
Polynome, 29
positiv definit, 159, 178

positiv orientiert, 174
Potential, 263

- Existenzsatz, 265
Potentiallinien, 450
Potenzreihenentwicklung, 419
Produktregel, 45, 135
Projektion, 169
Projektionssatz, 170, 292
Pythagoras, 161

Quelle, 452
Quotientenkriterium, 21
Quotientenregel, 45

Rand, 229
Randwertproblem, 358
Realteil, 8
reelle Zahlen, 4, 5
Reihe

- alternierende harmonische, 110
- harmonische, 23

Residuensatz, 438
Residuum, 437
Restglied, 107
Richtungsableitung, 241
Riemann, 81
Riemann-integrierbar, 82
Riemannsche Zahlenkugel, 452
Riemannscher Hebbarkeitssatz, 430
Riemannsches Integrabilitatskriterium, 83
Rodrigues, 371
Rotation, 267, 330

Satz
- von Stokes, 393, 394
- über implizite Funktionen, 248
- Fundamentalsatz der Algebra, 422
- von Bolzano-Weierstrass, 15
- von Casorati-Weierstrass, 431
- von der Differenzierbarkeit der

Umkehrfunktion, 57
- von der offenen Abbildung, 425
- von der Stetigkeit der Grenzfunktion, 99
- von der Stetigkeit der Umkehrfunktion,

56
- von Fubini, 284
- von Lebesgue, 282
- von Levi, 281
- von Liouville, 421
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- von Morera, 422
- von Riesz-Fischer, 289
- von Riesz-Fréchet, 471
- von Rolle, 49
- von Tonelli, 285

Schrödinger-Gleichung, 481
Schraubenlinie, 261
Schwartz, 339
selbstadjungiert, 174, 181
Singularität

- hebbare, 429
- isolierte, 429
- wesentliche, 429

Sinus, 70
Skalarprodukt, 159
Spektralsatz, 494
Spektralwert, 486
Spektrum, 486
spezielle orthogonale Gruppe, 166
Spur, 152
Stammfunktion, 87
sternförmig, 265
stetig, 229
stetig differenzierbar, 47
stetig fortsetzbar, 401
Stetigkeit, 35

- gleichmäß ige, 40
Stokes scher Integralsatz, 376
Strömungen, 450
Stromlinien, 450
Sturm-Liouville, 360
Substitutionsmethode, 206
Substitutionsregel, 90
Summationskonvention, 190
Supremum, 5
surjektiv, 2

Tangens, 74
Tangentenvektor, 260
Tangentialraum, 317
Tautochrone, 263
Taylorpolynom, 103
Taylorreihe, 103
Taylorsche Formel, 254
Teilraum, 118
Teilung der Eins, 380
Tensor, 189

- Transformationsformel, 190
- Verjüngung, 193

-Komponenten, 190
Testfunkion, 340
Toeplitz, 480
Tonelli, 285
topologische Abbildung, 230
Träger, 340
Transformationsformel, 286
Transformationsmatrix, 135
Transformationsregel, 136

- für Endomorphismen, 136
Trennung der Variablen, 205
Treppenfunktion, 277
trigonalisierbar, 155

Umgebung, 7, 228
Umkehrabbildung, 2
Umkehrfunktion, 55
Umlaufzahl, 434
unbestimmtes Integral, 89
uneigentliches Integral, 93
ungerade Funktion, 3
unitäre Abbildung, 182
unitärer Raum, 180
Unterintegral, 82
Untermannigfaltigkeit, 311
Unterraum, 118
Untersumme, 82
Untervektorraum, 118
Urbild, 2

Variation der Konstanten, 207
Vektorfeld, 263
Vektorprodukt, 173
Vektorraum, 118
Vereinigungsmenge, 1
Vergleichskriterium, 94
Verjüngung eines Tensors, 193
vollständig, 5
vollständige Induktion, 25

Weierstrass, 3, 15
Wirbel, 452
Wronski-Determinante, 213, 219

Zerlegungssatz, 169, 292
zusammenhängend, 232
Zwischenwertsatz, 40, 232
Zwischenwertsatz für f ′, 54
Zykloide, 261
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Dvf , 241
Eλ, 154
GL(n, K), 133
Jf , 240
L(A, b), 142
L(I), L+(I), 278, 279
Lγ , 259
Lp(I), 288, 289
LC

p(D), 301
M(I), 277
M(f ; (vj), (wi)), 134
NpM , 317
O(n), SO(n), 166
S2, 316
T ∗ ϕ, 346
T ∗, 477
TpM , 317
Tdipol, 343
Ur(p), 228
V ∗, 183
dω, 324
df , 320
ΛkV ∗, 188
ΩkU , 324
z̄, z∗, 8
χA, 152
χD, 282
δ, 340
δij , δ

j
i , 3

det A,∆(A), 147, 148�

∂A

, 375

κ, 261

lim, 11, 36, 58
Ck, C∞, Cω , 47, 102, 120
Ck
0 , 48, 232

D′, 340
O(D), 401
R(I), 84, 120, 274
∇, 268
N, Z, Q, R, C, 2

M,
o

M , 228
∂M , 229
⊥, 160
π, 71√

g, 381
�, 268
ν , 383
∧, 188, 324
ζ(s), 94, 441
∗f , 183
f∗, 186
l2, 160, 295
spA, 152
v × w, 173

∂
∂xi

, 233

Ĉ, 452
P 1

x
, 448

P �
, 445

R, 5
σ(T ), 486

f−1,
−1

f , 2
g ◦ f , 2
Bild f , 119
grad f , 235
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Ker f , 119
div, rot, 267, 330

f. ü., 276
Tr(ϕ), 340

Druck und Bindung:  Strauss GmbH, Mörlenbach



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice




