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Vorwort

Dieses Buch behandelt im wesentlichen den Stoff der viersemestrigen vierstiindigen
Vorlesung ,Mathematik fiir Physiker“wie sie von den Autoren an der Universitat
Bayreuth mehrfach gehalten wurde. An einigen Stellen gehen wir liber diesen Um-
fang hinaus, einerseits um dem Dozenten eine Auswahlmoglichkeit zu bieten, an-
dererseits um den Gebrauch als Nachschlagewerk zu ermoglichen.

Wir haben uns bemiiht, einige neuere Konzepte der Mathematik, die in der Phy-
sik Eingang gefunden haben, einzubeziehen. Es handelt sich zum Beispiel um Dis-
tributionen, Mannigfaltigkeiten und Differentialformen, und funktionalanalytische
Methoden.

Die Darstellung ist ziigig gehalten, da die Autoren das dargebotene Material auf
einen Band beschranken wollten. Dennoch werden meist vollstandige Herleitungen
der behandelten Satze gegeben und zahlreiche Beispiele, die einen physikalischen
Hintergrund haben, in ihrem mathematischen Kontext vorgestellt. Soweit dies er-
forderlich ist, stellen wir einem Kapitel eine kurze Einfiihrung in den behandelten
Stoff voraus. Ans Ende eines jeden Kapitels haben wir Ubungsaufgaben teils leich-
terer teils schwierigerer Natur gestellt. Das letzte Kapitel enthalt dann die Losung
jeder Aufgabe und, sofern es sich nicht um reine Rechenaufgaben handelt, auch den
vollstandigen Losungsweg.

An dieser Stelle mochten wir Herrn Dipl.-Math. MARTIN KERNER fiir seine Hilfe
bei der Herstellung des Manuskripts danken. Ohne ihn ware dieses Werk in der
vorliegenden Form nicht zu Stande gekommen.

Bayreuth, im Mai 2005 Hans Kerner
‘Wolf von Wahl
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1

Folgen und Reihen

1.1 Grundlegende Begriffe und Bezeichnungen

Wir stellen zunachst einige grundlegende Begriffe und Bezeichnungen zusammen
(eine ausfiihrliche Darstellung findet man in [3]).

Mengen

Der Begriff Menge wird nicht definiert.
Ist A eine Menge und x ein Element von A, so schreibt man x € A. Wenn das
Element z nicht in der Menge A liegt, schreibt man x ¢ A.
Sind A und B Mengen, so heifit A Teilmenge von B, wenn gilt: Ist x € A, so folgt
x € B; man schreibt dann A C B.
Fiir beliebige Mengen A und B bezeichnet man mit AN B den Durchschnitt von A
und B; AN B besteht aus allen Elementen, die sowohl zu A als auch zu B gehoren,
also

ANB:={z|z € A, x € B}.

Die Vereinigungsmenge A U B besteht aus allen Elementen, die zu A oder zu B
gehoren, also
AUB :={z|z € Aoderz € B}.

Fiir Mengen X, A, Bmit A C X, B C X setzt man
A\B = {zeX|ze€ Az ¢ B}.

Mit A x B bezeichnet man die Menge aller Paare (a,b) mita € A, b € B;
Ax B:={(a,b)|a € A, be B}.

Die leere Menge, die kein Element enthilt, bezeichnet man mit ().
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Zahlen
Wichtige Mengen sind:

Die Menge N der natiirlichen Zahlen 1,2,3,...;

die Menge Ny der natiirlichen Zahlen einschliesslich Null 0,1,2,3,...;

die Menge Z der ganzen Zahlen 0,+1,+£2,+3,...;

die Menge Q der rationalen Zahlen Z mitp € Z, q € N;

die Menge R der reellen Zahlen, die wir anschlieBend genauer behandeln werden,
sowie

die Menge C der komplexen Zahlen, die in 1.3.1 definiert wird. Es ist

NcNoczZcQcRcC.

Die Menge der positiven reellen Zahlen bezeichnen wir mit RT, die der reellen
Zahlen # 0 mit R* und die komplexen Zahlen # 0 mit C* ; also

Rt = {zeRlz>0}, R* := {zeR|lz#£0}, C* := {z€C|z+#0}.

Abbildungen

Ein weiterer grundlegender Begriff ist der der Abbildung; auch dieser Begriff wird
nicht ndher definiert. Sind A und B Mengen und ist f : A — B eine Abbildung, so
wird jedem x € A ein Element f(z) € B zugeordnet. Die Menge

Gr={(z,y) €e Ax Bly= f(z)}

bezeichnet man als den Graphen von f. Zu jedem z € A existiert genau ein y € B
mit (z,y) € Gy; ndmlich y = f(z).

Ist f : A — B eine Abbildung, so heift Bildf := f(A) := {f(z)| « € A} das Bild
von f.

Eine Abbildung f : A — B heift surjektiv, wenn f(A) = B ist.

Sie heifit injektiv, wenn aus =,y € A, x # y, immer f(x) # f(y) folgt.

Eine Abbildung, die sowohl injektiv als auch surjektiv ist, bezeichnet man als bi-
jektiv.

f + A — B ist genau dann bijektiv, wenn zu jedem y € B genau ein z € A existiert
mity = f(x).

Bei einer bijektiven Abildung f : A — B ist die Umkehrabbildung f~! : B — A
definiert; fiiry € Bist f~(y) das x € Amit f(z) = y.

Ist f : A — B eine beliebige Abbildung, so definiert man das Urbild einer Menge
M C B durch

f (M) :={xzec Al f(z) e M}.

Sind A, B,C Mengenund f : A — B, g : B — C Abbildungen, so definiert man
eine Abbildung

gof: A—=C, x—yg(f(z)),
also (g o f)(z) :==g(f(x)) firz € A.
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Funktionen

Eine Abbildung f : A — R einer Menge A in die reellen Zahlen bezeichnet man als
(reelle) Funktion. Haufig hat man eine Teilmenge D C R und eine auf D definierte
Funktion f : D — R.

Ist f explizit gegeben, etwa f(x) = 22 + 3, so schreiben wir

f:D—->R, zw— 243

Wenn f, g reelle Funktionen auf D sind mit f(z) > g(z) fir alle z € D, so schrei-
ben wir: f > g.

Entsprechend ist f > ¢ definiert.

Eine Funktion f heiBt gerade, wenn f(—x) = f(z) ist; sie heift ungerade, wenn
f(=z) = —f(z) gilt.

Das Kronecker-Symbol ( LEOPOLD KRONECKER (1823-1891)) ist definiert durch

5. 1 fir i=
VT 00 fir i# )

In gewissen Situationen, namlich bei Ubergang zum dualen Vektorraum, ist es
zweckmissig, 5f an Stelle von d;; zu schreiben.

1.2 Die reellen Zahlen

Grundlage der Mathematik sind die reellen und die komplexen Zahlen. Es
dauerte jedoch etwa 2500 Jahre, bis am Ende des 19. Jahrhunderts eine be-
friedigende Definition der reellen Zahlen R gelang. Die Schwierigkeit be-
stand vor allem in der Prazisierung der Liickenlosigkeit der Zahlengeraden,
die man benotigt, um Aussagen wie das Cauchysche Konvergenzkriterium
oder den Zwischenwertsatz zu beweisen. Diese Entwicklung wird in [3]
ausfiihrlich dargestellt. Dort findet man auch eine ausfiihrliche Darstellung
der Geschichte der komplexen Zahlen.

Wir nennen hier die Daten von Mathematikern, die wir noch mehrfach zi-
tieren werden. Zuerst der ,,princeps mathematicorum®

CARL FRIEDRICH GAUSS (1777-1855)

und

BERNHARD BOLZANO (1781-1848)

GEORG CANTOR(1845-1918)

AUGUSTIN Louis CAUCHY (1789-1857)

RICHARD DEDEKIND (1831-1916)

LEONHARD EULER (1707-1783)

KARL THEODOR WILHELM WEIERSTRASS (1815-1897).
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Einfiihrung der reellen Zahlen

Man kann die reellen Zahlen definieren, indem man von den natiirlichen Zahlen N
ausgeht, diese zum Ring Z der ganzen Zahlen und zum Korper Q der rationalen
Zahlen erweitert; durch Vervollstandigung von Q erhalt man R.

Eine andere Moglichkeit ist die axiomatische Charakterisierung; dabei wird die
Vollstandigkeit durch Intervallschachtegungen oder Dedekindsche Schnitte oder
durch die Existenz des Supremums definiert. Wir schildern letzeren Zugang und
fiihren die reellen Zahlen R ein als angeordneten Korper, in dem das Vollstandigkeits-
axiom gilt. Es gibt bis auf Isomorphie genau einen angeordneten Korper, der
vollstandig ist; diesen bezeichnet man als Korper der reellen Zahlen R (vgl. da-
zu [3])

Korperaxiome

Definition 1.2.1 Es sei K eine nichtleere Menge, in der zwei Verkniipfungen -+
und - definiert sind. Jedem Paar (x,y), v € K,y € K, wird also ein Element
z +y € K und ein Element x -y € K zugeordnet.

Die Menge K mit den Verkniipfungen + und - heifit ein Korper, wenn gilt:

r+y+z)=(@+y +2 z-(y-2)=(r-y) 2
r+y=y—+zx rT-Yy=y-x
es gibt ein Nullelement 0 € K mit  es gibt ein Einselement 1 € K, 1 # 0, mit
O+x=2z fiirallex e K l-x=a fiirallex e K
wx € K existiert ein —x mit zux € K, x # 0, existiert ein x=' € K mit
—x+z=0 rlr =1

z-(y+z) =z y+z-z

Bemerkungen. Man kann beweisen, dass es in einem Korper genau ein Nullelement
0 und genau ein Einselement 1 gibt. Auch das negative Element —z und das inverse
Element 2~ ist eindeutig bestimmt; man setzt y — x := y + (—z) und ¥ := 2~ 'y
falls = # 0.

Aus den Axiomen kann man nun Rechenregeln herleiten, etwa —(—z) = z, (—x) -
(—y) = x - y; dies soll hier nicht ausgefiihrt werden.

Anordnungsaxiome

Definition 1.2.2 Ein Korper K heifit angeordnet, wenn eine Teilmenge K+ von K
vorgegeben ist, so dass gilt:

fiir jedes x € K ist entweder € KV oder —x € KT oder v =0
aus x,y € K% folgt v+ye Kt und x-ye Kt

Statt z € KT schreiben wir z > 0; dann besagen diese Axiome:

Fiir jedes x € K ist entweder z > 0 oder —z > 0 oder z = 0;

ausz >0undy > 0folgtz+y >0undx -y > 0.

Sind z,y € K, sosetztmany > z, wenny —x > 0 ist; y > x bedeutet: y > x oder
y = x. Statt y > x schreibt man auch x < y und statt y > x schreibt man z < y.
Bemerkungen. Man miifite nun Rechenregeln fiir das Rechnen in angeordneten
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Korpern herleiten. Zum Beispiel “darf man Ungleichungen addieren”, d.h. aus y; >
x1 und yo > x9 folgt y; + y2 > x1 + x2. Darauf wollen wir nicht naher eingehen.

Das Vollstindigkeitsaxiom
Um dieses Axiom formulieren zu konnen, benotigen wir einige Vorbereitungen:

Definition 1.2.3 Ist K ein angeordneter Korper und X eine nicht-leere Teilmenge
von K, so heifit ein Element t € K eine obere Schranke von X, wenn fiir alle
r e X gilt:

xr < t.

X heifit nach oben beschrinkt, wenn es zu X eine obere Schranke gibt.
Die kleinste obere Schranke s von X wird, falls sie existiert, als Supremum von X
bezeichnet; man schreibt

s =sup X.

s ist also genau dann Supremum von X, wenn gilt:

(1) Fiiralle x € X ist x < s (d.h. s ist obere Schranke von X),
Q) Ist s € K und s’ < s, so existiert ein x € X mit s’ < x (d.h. es gibt keine
kleinere obere Schranke).

Analog dazu heifit t € K untere Schranke einer Teilmenge X von K, wenn fiir alle
r € X gilt: t < x; die groBte untere Schranke bezeichnet man als Infimum von X
und schreibt dafiir inf z.

Das Vollstindigkeitsaxiom lautet:

Jede nicht-leere nach oben beschrinkte Teilmenge X von K besitzt ein Supremum.

Definition 1.2.4 Ein angeordneter Korper K heifst vollstindig, wenn jede nicht-
leere nach oben beschrinkte Teilmenge X von K ein Supremum besitzt.

Man kann zeigen, dass es bis auf Isomorphie genau einen vollstandig angeordneten
Korper gibt (vgl. [3]); das bedeutet:

Sind K und K vollstandig angeordnete Korper, so existiert eine bijektive Abbldung
fK— K, so dass fiir alle x,y € K gilt:

flx+y) = flz)+ f(y), flx-y) = f(x)- f(y)

Daher ist es gerechtfertigt, von dem Korper der reellen Zahlen zu sprechen. Nun
konnen wir definieren:

Definition 1.2.5 Ein volistindig angeordneter Korper heifit Korper der reellen
Zahlen; er wird mit R bezeichnet.

Wir konnen auf Einzelheiten nicht naher eingehen; eine ausfiihrliche Darstellung
findet man in [3] und [16].
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Es soll noch skizziert werden, wie man die natiirlichen Zahlen N, die ganzen Zahlen
Z und die rationalen Zahlen QQ als Teilmengen von R erhilt:

Die natiirlichen Zahlen N bestehen aus den Elementen 1, 1+ 1, 14+1+4+1,...;
genauer: es ist 1 € N und wenn n € N gilt, dann ist auch n + 1 € N. Die Menge N
ist die kleinste Teilmenge von R, die diese beiden Eigenschaften besitzt.

Eine Zahl ¢ € R heifit ganze Zahl, wenn ¢ € N oder —¢g € N oder ¢ = 0 ist; die
Menge der ganzen Zahlen wird mit Z bezeichnet.

Eine Zahl r € R heil3t rational, wenn es ein ¢ € Z und ein p € N gibt mit r = ;’);
die Menge der rationalen Zahlen bezeichnet man mit Q.

Man kann beweisen, dass Q und auch R \ Q dicht in R ist; in jedem Intervall ]a, b],
a < b, liegen unendlich viele rationale und auch irrationale Zahlen.

Wir leiten nun aus den Axiomen eine Aussage her, die man als Satz des Archimedes
bezeichnet (ARCHIMEDES (um 285-212)):

Satz 1.2.6 (Satz von Archimedes.) Die Menge N der natiirlichen Zahlen ist nicht
nach oben beschrdinkt: Zu jeder reellen Zahl x existiert also eine natiirliche Zahl n
mitn > x.

Beweis. Wir nehmen an, N ware nach oben beschriankt; dann existiert nach dem
Vollstandigkeitsaxiom das Supremum s := sup N. Es ist alson < s fiir alle n € N.
Weil s — 1 keine obere Schranke von N ist, existiert ein n € N mit s — 1 < n. Dann
folgt s < n + 1,und wegen n + 1 € N ist dies ein Widerspruch.

Aquivalent zum Satz von Archimedes ist der Satz von Eudoxos (EUD0OXO0S, (408 -
355))

Satz 1.2.7 (Satz von Eudoxos) Zu jeder reellen Zahl ¢ > 0 existiert eine natiirliche
Zahl n mit TlL <e.

Beweis. Nach dem Satz des Archimedes existiert zu x := 3: einn € Nmitn > i,
also Tll < e. O

Wir bringen noch einige grundlegende Begriffe und Bezeichnungen.
Im angeordneten Korper R kann man den Betrag |z| definieren. Fiir © € R setzt

man
z fallsz >0
|| :=
—x falls x < 0.
Es gilt:

Satz 1.2.8 (1) Fiir alle x € R ist |x| > 0 und |x| = 0 gilt genau dann, wenn x = 0
ist.

(2) Fiiralle z,y € Rist |z - y| = |z| - |y|.

(3) Fiir alle x,y € R gilt die Dreiecksungleichung

|z +y| < |z + |yl.
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Durch |z| wird in R eine Norm im Sinne von 7.9.11 definiert.

Beweis. Wir beweisen die Dreiecksungleichung. Nach Definition von |z|istz < |z,
—z < |z|undy < |y|, —y < |y|. Daraus folgt  + y < |z| + |y| und —(z + y) <
| + [yl, also | + y| < [z + |yl. 0
Setzt man in der Dreiecksungleichung y — = an Stelle von y ein, so erhalt man
-+ (y—)| < al+ly—a], also [y| - 2| < [y—z|. Dannistauch || ly| < |z g,
somit

ol = Il | <]y -z |.

Nun kann man den Begriff der e-Umgebung eines Punktes a € R definieren:
Ue(a) :={z e R| |z —a| < e}

Eine Teilmenge U von R heiit Umgebung von a € R, wenn es ein € > 0 gibt mit
Us(a) CU.

Eine Teilmenge X von R heift offen, wenn zu jedem x € X ein € > 0 existiert mit
U:(z) C X.

Wichtige Teilmengen von R sind die Intervalle. Fiir a, b € R setzt man

[a,0] :={z € Rla<z<b} la,b:={x € Rl a < x < b}

[a,b[:={x € Rla <z < b} la,b] := {z € Rla < x < b}

[a, b] heiBt das abgeschlossene Intervall mit den Randpunkten a, b, das Intervall
]a, b] bezeichnet man als offenes Intervall. Die Intervalle [a,b[ und ]a, b] heifien
halboffen. Es ist

Us(a) =la —e,a+ €.

Die folgenden Mengen bezeichnet man als uneigentliche Intervalle:
[a,+oo[:={z € R|a < x} la,+oo[:={z € R|a < x}

| —o00,a] :={z eR|z <a} | —o0,al={z e Rl z < a}.

1.3 Die komplexen Zahlen

Die Geschichte der komplexen Zahlen und deren Definition wird eingehend in [3]
dargestellt. Bei der Behandlung vieler mathematischer Probleme erweist es sich als
zweckmaBig, den Korper R der reellen Zahlen zu erweitern zum Korper C der kom-
plexen Zahlen. Zum Beispiel ist es wichtig, die Nullstellen von Polynomen zu be-
stimmen; aber das einfache Beispiel des Polynoms 2 + 1 zeigt, dass es Polynome
gibt, die in R keine Nullstelle besitzen.

Beim Losen von Gleichungen 2.,3. und 4.Grades treten Wurzeln auf und man
mochte auch Wurzeln aus negativen Zahlen bilden.
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Daher versucht man, R so zu erweitern, dass ein Element i existiert mit i2 = —1.
Der Erweiterungskorper soll aus Elementen der Form x + iy mit x, y € R bestehen.
Mit diesen Elementen will man so rechnen:

(x+iy) + (u+iv) = (z 4+ u) +i(y +v)
(z +1y) - (u+iv) = zu + i(zv + yu) + i2yv

und weil i2 = —1 sein soll, ergibt sich fiir die Multiplikation
(z+1y) - (u+iv) = (zu — yv) +i(zv + yu).

Um die Existenz eines derartigen Korpers C zu beweisen, betrachtet man statt x -+ iy
das Paar (z, y) reeller Zahlen; dies fiihrt zu folgender Definition:

Definition 1.3.1 Unter dem Korper C der komplexen Zahlen versteht man die
Menge R? der Paare reeller Zahlen zusammen mit folgenden Verkniipfungen.:

(z,y) + (w,v)= (x+y , u+tv)
(z,y) - (u,v) = (zu—yv, v+ yu).

Man rechnet nach, dass C ein Korper ist. Fiir alle z, u € R gilt
(2,0) + (u,0) = (x + u,0), (2,0) - (u,0) = (zu,0).

Identifiziert man die reelle Zahl x = x + i - 0 mit dem Paar (z,0), so kann man R
als Teilmenge (und Unterkorper) von C auffassen.
Setzt man i := (0, 1), soist i> = (0,1)-(0,1) = (—1,0) und da man (—1,0) mit
—1 identifiziert, ist

i?=-1.

Fiir jedes Paar z = (z,y) € R?ist z = (z,y) = (z,0) + (0,y) = z + iy, damit
hat man die libliche Schreibweise. Man nennt = den Realteil und y den Imaginarteil
von z und schreibt: Re(x + iy) := z, Im(z + iy) :=y.

Ist z = x + iy eine komplexe Zahl, so nennt man

zi=x—1ly

z—z

die zu z konjugierte komplexe Zahl. Es gilt Re z = Z'gz, Imz = %7,

Man kann leicht zeigen:
Hilfssatz 1.3.2 Fiir z,w € C gilt

(l)z+tw=z+w, z -w=z- w,
(2) z =z,
(3) z ist genau dann reell, wenn z = z ist.
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Den Betrag einer komplexen Zahl z = z + iy definiert man so:
2] i= V22 + 92 = Vzz.

Damit kann man fir z = z + iy € C, z # 0, die Zahl i darstellen (und die
Existenz von i beweisen): man erweitert mit zZ und erhalt im Nenner die reelle Zahl
2z =|z|%

1 z x Ly

= i .
2 z-z  xz4+y? x4 g2

Niitzlich ist auch die Zahl z* := é In der Abbildung sind diese Zahlen und die
Addition komplexer Zahlen veranschaulicht.

Fiir die Veranschaulichung der Multiplikation sind Polarkoordinaten erforderlich.
Jede komplexe Zahl z # 0 kann man durch

z=r-¢e¥ =1r(cosp+i-siny)

darstellen; dabei ist 7 = |z|. Man nennt r, ¢ Polarkoordinaten von z; wenn man ¢
so wahlt, dass 0 < ¢ < 27 gilt, dann ist ¢ eindeutig bestimmt; die Existenz wird in
4.3.19 hergeleitet.
Mit Hilfe von Polarkoordinaten kann man die Multiplikation komplexer Zahlen be-
schreiben: Ist

z=r-e¥ und w=s-e"¥,

so ist _
zow = (r-s)elPtY),

Das Produkt zweier komplexer Zahlen erhalt man also, indem man die Betrage mul-
tipliziert und die Winkel addiert.

Bei 22 verdoppelt sich der Winkel. Damit kann man sich die Potenzen 2" veran-
schaulichen; in der folgenden Abbildung ist dies fiir |z] > 1, |(| = 1, |w| < 1
dargestellt.
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Z-w

Beim Wurzelziehen halbiert sich der Winkel; sucht man etwa /i, also die Losungen
von z2 = i, so liegt z auf der Winkelhalbierenden und hat den Betrag 1, also ist

2= +V2(1+1).

1.4 Folgen

Im Mittelpunkt der Analysis steht der Begriff des Grenzwerts. Bevor wir den Begriff
des Grenzwerts einer Folge definieren, erlautern wir, was man unter einer Folge
versteht.

Man erhilt zum Beispiel durch fortgesetztes Halbieren die Folge 1, 1, 5, &,...
oder man betrachtet die Folge der Quadratzahlen 1, 4, 9, 16, 25,... . Esist also
jeder natiirlichen Zahl n eine reelle oder komplexe Zahl a,, zugeordnet:

ai, a2, as, ...;

den Begriff der Folge kann man nun so prazisieren:

Definition 1.4.1 Unter einer Folge reeller oder komplexer Zahlen versteht man
eine Abbildung

N—R, n+—a,, oder N—C, n— a,.
Fiir diese Abbildung schreibt man
(an)nen oder  (an)n, oder (ay).

Wir werden auch Folgen ag, a;, as, ... oder auch as, ag, .. betrachten. Nun fiihren
wir den Begriff des Grenzwertes einer Folge ein:

Definition 1.4.2 Eine Folge (ay,), komplexer Zahlen heifit konvergent gegen
a € C, wenn es zu jedem reellen € > 0 eine natiirliche Zahl N (¢) gibt, so dass fiir
allen € Nmitn > N(e) gilt:

lan, —a| < e.
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Man bezeichnet dann a als Grenzwert der Folge (a,, ), und schreibt:

lim a, = a.
n—oo

Eine Folge (a,, ), heift konvergent, wenn es ein a € C gibt, so dass (a,, ), gegen
a konvergiert. Andernfalls heifit sie divergent. Mit dem Begriff der e-Umgebung
Us(a) = {x € C| |z — a| < e} von a kann man die Konvergenz so formulieren:
(an)n konvergiert genau dann gegen a, wenn es zu jedem € > 0 ein N () gibt mit

an, € Ue(a) fiirn > N(e).

Jede beliebige Umgebung von a enthalt eine e-Umgebung; somit gilt lim a, = a

n—oo

genau dann, wenn zu jeder Umgebung U von a ein Index N (U) € N existiert mit

an, € U firn > N(U).

| an |

Nun zeigen wir, dass eine Folge hochstens einen Grenzwert besitzt:

Hilfssatz 1.4.3 Wenn die Folge (a,,), gegen a und gegen b konvergiert, so folgt
a=b.

Beweis. Wenn a # b ist, so setzen wir € := |b;“| ; dann existiert ein N1 () und ein
N3 (e) mit

lan, —a| < efirn > Nyi(e), |an,—0b| <efirn > Na(e).

Fiirn = Ny (g)+Nz(e) istdann [b—a| = |(b—ap)+(an—a)| < |bp—a|+|an—a| <
e+e=|b—al,alsowire |b—a| < |b—al. O
Nun erlautern wir den Konvergenzbegriff an einigen Beispielen:

Beispiel 1.4.4 Es gilt

lim =0.
n—oo N,
Zum Beweis verwenden wir den Satz von Eudoxos 1.2.7 : Zu jedem € > 0 existiert

ein N(¢) € Nmit i <e. Firn > N(e)istdann0 < | < o) <e.
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Beispiel 1.4.5 Es ist
. o n+1
lim =

n—oo M

1

)

denn |™** — 1| = ! und nach dem vorhergehenden Beispiel existiert zu ¢ > 0 ein

N (&) mit N%E) < e fiirn > N(g)istdann "1 — 1| = ! < N%E) <e.

Beispiel 1.4.6 Die Folge ((—1)") ist divergent. Denn aus der Konvergenz wiirde
folgen, dass ein a € R existiert, so dasseszue = } ein N (4 ) gibtmit |(—1)"—al| <
e firalle n > N (). Fiirn > N(}) wire dann

n n n n 1 1
2 = (=) = DM S |EDT —al (=D —al < = 1

Beispiel 1.4.7 Wenn man die Folge (a,,) mit

8n2—2n+5
Ay 1=
" 324+ Tn+1
untersuchen will, wird man vielleicht auf die Idee kommen, a,, so umzuformen:

2 5
p— 8 — n + n?2

n = 7 1
3+ n + n?

Dann wird man vermuten, dass (a,,) gegen 2 konvergiert; es duirfte aber nicht leicht
sein, zu jedem £ > 0 ein N (g) explizit so anzugeben, dass fiir n > N (¢) gilt:

8n2—2n+5_8
n2+Tm+1 3

Es ist daher zweckmaBig, Rechenregeln fiir Grenzwerte herzuleiten. Es gilt:

Satz 1.4.8 (Rechenregeln) Es seien (ay,)y, und (by)n konvergente Folgen in C und
¢ € C. Dann sind auch die Folgen (an + bp)n, (¢ an)n, (an - by)n konvergent und
es gilt:

lim (an, + b,) = lim a, + lim b,

n—oo n—oo n—o0

lim (¢-a,) =c- lim a,

lim (an - b,) = (lim ay,)- (lim by,).

Wenn aufierdem lim b,, # 0 ist, dann existiert ein ng € N mit b, # 0 fiir n > ng
n—oo

und es gilt:
lim
lim aﬂ, __ Nn—0o0 an
n—oo by, lim b,

n—0oo
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Beweis. Wir beweisen nur die erste Aussage: Sei a := lim a, und b := lim b,.
Dann gibt es zu € > 0 ein Ny(5) und No(5) mit
lan — af < ; fiir . > Nl(;), b, — b| < ; fiir . > NQ(;).

Setzt man N (g) := max{N1(5), Na(5)}, so ist fiir n > N(e):
[(@n+ba) = (a+b)| < lan —al + b —b| < S+ =<

und damit ist gezeigt:
lim (@ +b,) =a+b.

n—oo
O
Insbesondere gilt:

Satz 1.4.9 Eine Folge komplexer Zahlen (z,)n, zn = Tn + 1Yn, konvergiert genau
dann gegen ¢ = a + ib € C, wenn (x,,),, gegen a und (yyn)., gegen b konvergiert.

Definition 1.4.10 Eine Folge (a,,) heifit beschrinkt, wenn eine reelle Zahl M exi-
stiert mit
lan| < M fiir alle n € N.

Hilfssatz 1.4.11 Jede konvergente Folge ist beschrdnkt.

Beweis. Sei (ay,) konvergent, a := lim a, . Dann existiert zu € = 1 ein Index

n—oo

N(1) mit |a, —a|] <1 firn > N(1), also
lan| < la| + 1 firn > N(1).
Setzt man
M := max{|ai], ..., |[an)-1], la] + 1}

so folgt |a,| < M fiirallen € N. O
Von grundlegender Bedeutung ist der Begriff der Cauchy-Folge (AUGUSTIN CAUCHY
(1789-1857)):

Definition 1.4.12 FEine Folge (a,)n in C heifst Cauchy-Folge, wenn es zu jedem
e > 0ein N(e) € N gibt, so dass fiir alle n, k € Nmitn > N(e), k > N(e) gilt:

lan — ag| < e.
Zunachst zeigen wir:

Satz 1.4.13 Jede konvergente Folge ist eine Cauchy-Folge.

Beweis. Wenn (a,,) gegen a konvergiert , so existiert zu ¢ > 0 ein N(5) € N mit
lan —a| < § fiirn > N(5). Firn, k > N(3) ist dann

e €
|an—ak|§|an—a|+|ak—a\<2+2:€.

Nun behandeln wir Aussagen tiber reelle Folgen:
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Satz 1.4.14 Es seien (a,, )y, und (b,,) konvergente Folgen in R und es gelte a,, < b,
fiir alle n € N. Dann ist

lim a,, < limb,,.
Beweis. Wir setzen a := lim,, .o @, und b := lim,,_, -, b,, und nehmen an, es sei
b < a.Zue := °;° existiert dann ein n mit |a,, — a| < &, |b, — b| < e.Dann ist
b, <b+e=a—¢e<ay,alsob, < a,;dies widerspricht der Voraussetzung. 0O
Daraus folgt

Satz 1.4.15 Sei (x,),, eine konvergente Folge in R und a < x,, < b fiir alle n € N.
Dann gilt
a < lim z, <b.

n—oo

Konvergenzkriterien

Wir leiten zunachst Konvergenzkriterien fiir reelle Folgen her.

Wir benétigen nun den Begriff der monotonen Folge: Eine reelle Folge (a., ), heifit
monoton wachsend, wenn fur alle n € N gilt:

an, S Ap+1

alsoa; <as <ag < ...
sie hei}t streng monoton wachsend, wenn fiir alle n € N gilt:

ap < Ap41-

Analog heif3t (ay,),, monoton fallend, falls a,, > an+1 gilt; sie heifit streng monoton
fallend, falls a,, > an+1 ist (n € N).

Eine Folge heifit monoton, wenn sie monoton wachsend oder monoton fallend ist.
Ist (a, )nen eine Folge in R oder C und ist (ng )ren eine streng monoton wachsende
Folge natiirlicher Zahlen, so heifit (ay,, )ken eine Teilfolge von (ay,)y,.

Ist zum Beispiel ny, := 2k, so erhilt man die Teilfolge (a2 )ren, also die Folge
as, a4, ag, ... . Bs gilt:

Hilfssatz 1.4.16 Jede reelle Folge (a.,)y, enthdilt eine monotone Teilfolge.

Beweis. Wir nennen ein Folgenglied a eine Spitze, wenn as > a,, fir allen > s
ist. Wenn es unendlich viele Spitzen as,, as,,.. gibt (s; < s2 < ...), so ist nach
Definition der Spitze

As; 2 Qsy 2 Ogy 2 -

und daher bildet die Folge der Spitzen eine monoton fallende Teilfolge. Wenn es
keine oder nur endlich viele Spitzen gibt, so existiert ein ny € N, so dass fiirn > n;
kein a,, eine Spitze ist. Weil a,,, keine Spitze ist, existiert ein ng € N mit ng > ny
und a,, < p,.

Weil a,,, keine Spitze ist, gibt es ein ng mitn3 > no und a,, < an,; auf diese Weise
erhalt man eine streng monoton wachsende Teilfolge a,,, < ap, < any < .... O
Nun beweisen wir ein erstes Konvergenzkriterium.
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Satz 1.4.17 Jede beschrdinkte monotone Folge in R ist konvergent.

Beweis. Wir fithren den Beweis fiir eine monoton wachsende Folge a,, < a,41.
Nach Voraussetzung ist die Menge {a,,|n € N} beschrénkt; aus dem Vollstindigkeits-
axiom folgt, dass das Supremum

s := sup{a,|n € N}

existiert. Dann ist a,, < s fur alle n € N. Ist ¢ > 0 vorgegeben, so ist s — ¢ keine
obere Schranke von {a,|n € N} und daher gibtesein N € Nmit s — ¢ < an.
Wegen der Monotonie der Folge ist ay < a,, fiir n > N und daher

s—e<any <ap<s,

also |a,, — s| < e firn > N. Somit ist gezeigt: lim,, o a,, = s. m]
Aus 1.4.16 und 1.4.17 folgt der Satz von Bolzano-WeierstraB(BERNARD BOLZA-
NO(1781-1848), KARL WEIERSTRASS (1815-1897)):

Satz 1.4.18 (Satz von Bolzano-Weierstrass) Jede beschrdnkte Folge in R enthdlt
eine konvergente Teilfolge.

Wir behandeln nun wieder Folgen in C und zeigen, dass diese Aussage auch dafiir
gilt:

Satz 1.4.19 (Satz von Bolzano-Weierstrass in C) Jede beschrinkte Folge in C
enthdlt eine konvergente Teilfolge.

Beweis. Es sei (2, ), eine beschrankte Folge komplexer Zahlen z,, = x,, + iy,,. Die
Folge (zy,), ist ebenfalls beschrinkt und enthlt somit eine konvergente Teilfolge
(zn, )k Wahlt man aus der beschrénkten Folge (y,, )i eine konvergente Teilfolge
(yn K ); aus, so erhélt man eine konvergente Teilfolge (5, x; T Y, )j von (2p)n.

O
Wenn eine Teilfolge von (z,), gegen p konvergiert, so heift p eine Haufungs-
punkt oder auch eine Haufungsstelle von (z, ),; daher heiBt dieser Satz auch das
Haufungssstellenprinzip von Bolzano-Weierstrass. Es gilt auch im R"”, aber nicht
mehr im Unendlich-dimensionalen.Wir gehen darauf in 15.6 ein.

Nun konnen wir das wichtige Cauchysche Konvergenzkriterium beweisen: Jede
Cauchy-Folge ist konvergent:

Satz 1.4.20 (Cauchysches Konvergenzkriterium) Eine (reelle oder komplexe)
Folge ist genau dann konvergent, wenn sie eine Cauchy-Folge ist.

Beweis. Es ist zu zeigen, dass jede Cauchy-Folge (a,), in C konvergent ist.
Zunichst zeigt man, dass jede Cauchy-Folge (a,,) beschrénkt ist. Es gibt ndmlich
zue = lein N(1) mit|a, —ay| < 1firallen,k > N (1), alsoist [a, —ay )| < 1
oder |a,| < |ay()| + 1 fiirn > N(1) und wie im Beweis von 1.4.11 folgt daraus
die Beschrianktheit von (a,,).
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Nach 1.4.19 enthilt (a,, ), eine Teilfolge (an,, )ken, die gegen ein a konvergiert. Wir
zeigen, dass die Folge (a,,) gegen a konvergiert. Sei ¢ > 0 vorgegeben; dann gibt
es, weil (a,, ) eine Cauchy-Folge ist, ein N (3) mit [a,, — ax| < § firn,k > N(3).
Wegen kllngo an, = a gibtesein k mit ny > N(5) und |a,, —a| < 3. Fir alle n

2
mit n > N(5) ist dann
e €
lan, — a| < |an, — an,| + |an, —al < 2—|—2 =e.

Damit ist das Cauchysche Konvergenzkriterium bewiesen. a
Wir behandeln noch ein Beispiel fiir eine konvergente Folge; dabei ergibt sich, dass
fiir jede positive reelle Zahl a die Quadratwurzel \/a existiert.

Beispiel 1.4.21 Seia > 0; wir geben eine Folge (z,,) an, die gegen 1/a konvergiert.
Wir wihlen 2y > 0 beliebig, setzen x; := %(xo + t”o), To 1= %(m + ;11) und,
wenn z,, bereits definiert ist, sei

1 a
Tn41 = 9 (xn + )

n

Wir beweisen, dass die Folge (z,,) gegen eine positive reelle Zahl b mit
bV =a

konvergiert. Dazu zeigen wir zuerst die Monotonie: Fiir alle n € Nist z,, > 0 und

2
2 _1 a _1(.2 a® —
xn—a—4<xn,1—|— ) —a—4<xn71—|—2a+ziil—4a)—

Tn—1
1 2 a? 1 a 2
4 (xn—l —2a+ 3”121—1) =4 <$7,,_1 - mn_l) 20,
daher 22 —a > O0und 2, — Tpi1 = Ty — 5 (Tn + o) = 2;,1 (22 — a) > 0; somit
Tn Z Tn41-

Die Folge (,,) ist also monoton fallend und somit ist (* ) monoton wachsend. Aus
a< xf, folgt Ta < &, somit

a a
<...< <z, <..< 2.
T Tn

Firallen € Nist 0 < 3?1 < z,, daher existiert

b:= lim x,
n—oo

und es gilt b > 0. Aus den Rechenregeln 1.4.8 folgt

. .1 a 1 a
b= lim z,y; = lim 2(x7,+x )= 2(b—|—b),

n—oo n—oo n
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somitb = 1 (b+ ¢)also 26 = b+ a und b = a.
Damit ist gezeigt: Zu jedem a > 0 existiert ein b > 0 mit b> = a. Die Zahl b ist
eindeutig bestimmt, denn aus ¢ > 0, 2 =aq, folgt

0=0"-c=(b+c) (b—2c)

und wegen b+ ¢ > 0istb — ¢ =0, also b = c.
Zu a > 0 existiert also genau ein b > 0 mit b2 = a und man definiert nun

Vva :=b,

V/a heiBt die Quadratwurzel von a.
Dies 1aBt sich verallgemeinern: Ist £ € N und a > 0, so existiert genau ein b > 0
mit b¥ = @ und man setzt {/a := b.

1.5 Reihen

Bei der Behandlung mathematischer Probleme stofit man haufig auf Ausdriicke der
Form
ag+ay+as+...,

etwa

1+1+1+ +1+ d 1+1+1+ +1+

oder

2 3 n 2 4 2n

Derartige Ausdriicke bezeichnet man als Reihen (reeller oder komplexer Zahlen) .
Man fiihrt die Theorie der Reihen zuriick auf die der Folgen und fasst den Ausdruck
aop + a1 + as + ... auf als Folge der “Partialsummen”

ap, ap-+ai, aop+al+ag,

(Wir betrachten haufig Reihen, die mit ag beginnen). Dies wird folgendermalien
prazisiert: Es sei (ay,),, eine Folge komplexer Zahlen, n € Ny, dann heifit

n
Sp = g ap=ao+ay+...+ay
k=0

die zu (ay, ), gehorende n-te Partialsumme.
Die Folge der Partialsummen (s;,),, heiBt die durch (a,,), gegebene Reihe; man
bezeichnet die Folge (s, ), mit

>

n=0
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o0
Definition 1.5.1 Eine Reihe Y a,, mit a,, € C heifit konvergent, wenn die Folge
n=0

(oo}
(Sn)n konvergiert; den Grenzwert von (s, )y, bezeichnet man ebenfalls mit >, ay,:
n=0

o0

E ay ;= lim s,.
n—oo

n=0

Es giltalso ) a,, = s genau dann, wenn es zu jedem ¢ > 0 ein N (¢) gibt mit
n=0

lag + ...+ an — 8| < efirn > N(e).
Aus dem Cauchyschen Konvergenzkriterium fiir Folgen leiten wir nun ein entspre-

chendes Kriterium fiir Reihen her. Man bezeichnet eine Reihe als Cauchyreihe,
wenn die Folge ihrer Partialsummen eine Cauchyfolge ist.

o0

Satz 1.5.2 (Cauchysches Konvergenzkriterium) Eine Reihe . a, komplexer
n=0

Zahlen ist genau dann konvergent, wenn es zu jedem € > 0 ein N () gibt, so dass

fiiralle n,m € Nmitn >m > N(¢) gilt:

n
‘ Z ak\ <E.
k=m

Beweis. Die Folge (s, ), ist genau dann konvergent, wenn es zu e > 0 ein N () gibt,
so dass fiir alle Indizes n, m > N(¢) gilt: |s, — s;| < €. Firn >m > N(¢) + 1
ist dann |s,, — $;—1| < € und aus

n
Sn — Sm—1 = § ag

k=m
folgt die Behauptung. a

Fir n = mist Y ax = a, und somit ergibt sich
k=n

o0
Satz 1.5.3 Wenn die Reihe Y, a,, konvergiert, dann gilt  lim a,, = 0.
"L:O n—oo

Aus den Rechenregeln fiir Folgen erhilt man Rechenregeln fiir Reihen:

Satz 1.5.4 (Rechenregeln) Sind > a, und > by, konvergent, und ist ¢ € C, so

n=0 n=0
(oo} o0
sind auch die Reihen _, (ay, + b,) und " ca,, konvergent und
n=0 n=0

(oo}

Z(an‘i‘bn)zzan"'z:bb, ZC'CL":C'ZG%.
n=0 n=0 n=0 n=0

n=0



1.5 Reihen 19

Wir behandeln nun ein besonders wichtiges Beispiel :
Die geometrische Reihe

>

n=0

Zuerst zeigen wir

Hilfssatz 1.5.5 Ist z € C,

z| <1, so gilt lim z™ = 0.
n—oo

Beweis. Es ist [2|® > |z|"!. Die Folge (|z|"),, ist also monoton fallend und be-
schrinkt und daher konvergent. Sei a := lim |z|™. Es gilt
n—oo

a= lim |z|" = lim |2|""™ = |z| lim [2|" = |2] - @
n— oo n— 00 n—oo
und aus ¢ = |z| - a und |z| < 1 folgta = 0. O

Nun konnen wir beweisen:
Satz 1.5.6 (Geometrische Reihe) Fiir z € C,
sche Reihe > 2" und es gilt

n=0

z| < 1, konvergiert die geometri-

o0
n=0 -z
o0
Fiir |z| > 1 divergiert > z™.
n=0

n
Beweis. Setzt man s, := > 2, so ist
=0

n+1

(1—2)sn :sz—z,zk =1-— 2"
k=0 k=1
Fiir z # 1 ist daher

ZZk_ 1—=2

2 1 — zntl
k=0

und fiir 2| < 1ist lim z"*! =0, also
n—oo

> 1
" . . 1=t 1
E z" = lim s, = lim = .
0 n— oo n—oo 1 —Z ]_ —Z
n—

Fiir |z| > 1ist|2™| > 1 und daher ist (2™),, keine Nullfolge, also ist nach 1.5.3 die
Reihe > 2" fiir |z| > 1 divergent. O

n=0
Wir notieren noch:
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Satz 1.5.7 Fiir |z| < 1ist
(oo}
Sr=7
— 1-=2

Beispiel 1.5.8 Setzt man in der geometrischen Reihe z = 1

5> SO ergibt sich

also L1 1
1 =2
+2+4+8+

Wir fiihren nun einen scharferen Konvergenzbegriff ein:

oo
Definition 1.5.9 Eine Reihe > a, , a, € C, heifit absolut konvergent, wenn

n=0
(o]
die Reihe " |ay| konvergiert.
n=0

Aus dem Cauchyschen Konvergenzkriterium ergibt sich, dass jede absolut konver-
gente Reihe auch konvergiert.
Wir geben nun weitere wichtige Konvergenzkriterien an:

Satz 1.5.10 (Majorantenkriterium). Es seien » , a, und Y b, Reihen; wenn fiir
n=0 n=0

alle n € N gilt: |ay| < by, und wenn Z by, konvergiert, dann konvergiert Z an
n=0 n=0
absolut.

Beweis. Zu ¢ > 0 existiert nach 1.5.2 ein N (¢), so dass fiir n > m > N(e) gilt:
> bkl <e undaus |>7_ ar| < DF_, |bk| <e fir n>m > N(e)

folgt mit 1.5.2 die Behauptung. a
o0
Eine Reihe ) b, mit den angegebenen Eigenschaften nennt man Majorante zu
- n=0
>~ ay,. Daraus ergibt sich ein weiteres Konvergenzkriterium:
n=0

Satz 1.5.11 (Quotientenkriterium) Es sei Z ay, eine Reihe mit a,, # 0 fiir alle

n € N. Wenn ein q € R existiert mit 0 < q < 1 und

Ap+1
Qn

<gq

oo
fiir alle n € N, dann konvergiert >, a,, absolut.
n=0
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Beweis. Es ist |a1| < |ao| - ¢, |az| < |a1]-q < |ao| - ¢* und

lant1| < lanl-q < ... <lag|-¢" ™.

oo} &)
Daher ist |ag| - Y ¢™ eine konvergente Majorante zu Y ay,. |
n=0 n=0
Wir beweisen noch das Leibnizsche Konvergenzkriterium fiir alternierende Reihen

(GOTTFRIED WILHELM LEIBNIZ (1646-1716))

ag—a;+ag—as+aqg— ...

Satz 1.5.12 (Leibnizsches Konvergenzkriterium) Es sei (a,,),, eine monoton fal-
lende Folge in R mit a,, > 0 fiir alle n € Ng und lim a,, = 0. Dann konvergiert

n—oo
die Reihe
oo
S,
n=0
und es gilt
o) k
S = Y1) ] < ar
n=0 n=0

Man kann also den Fehler, der entsteht, wenn man die Reihe bei a;. abbricht, durch
ak+1 abschditzen.

k
Beweis Wir setzen s := > (—1)"a,; dannist sog+o > Sok+1,
n=0
Sogt2 — Sok = A2k42 — G2p+1 < 05 Sopa1 — Sok—1 = —Q2p41 + azx > 0.

Dabher ist
s1 <83 < .. < Sop—1 < Soppr1 < Sopr2 Ssop < ... <82 < sp.

Die Folgen (s2x+1)x und (sor)g sind also monoton und beschrinkt und daher

konvergent; wegen Sopto — Sop+1 = G242 und lima, = 0 konvergieren sie
gegen den gleichen Grenzwert s und s liegt zwischen s;y; und s.Daraus folgt
ls — sk| < agta. a

Es soll noch kurz die Multiplikation zweier Reihen behandelt werden. Dazu erinnern
wir daran, dass man Summen so ausmultipliziert:

(ao+ar+as+...+am) (bo+by+ba+...+b) =
= agbp + (apb1 + a1bo) + (aobz + a1by + a2bg) + ... + amb,.

Fiir Reihen gilt der folgende Satz, den wir ohne Beweis angeben (ein Beweis findet
sich in [6],[23]):
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o0 o0
Satz 1.5.13 Die Reihen Y, a, und Y by, seien absolut konvergent. Setzt man
n=0 n=0

n

Cp = Zakbn—k = aObn +arbp_1+ ...+ anb07
k=0

o0
so konvergiert die Reihe ., c,, ebenfalls absolut und es gilt:

n=0
O an) O ba) =D e
n=0 n=0 n=0

Bei Konvergenzuntersuchungen sollte man beachten, dass es das Konvergenzver-
halten einer Folge oder Reihe nicht beeinfluflit, wenn man endlich viele Glieder
abandert. Daher kann man zum Beispiel das Quotientenkriterium verallgemeinern:

o0
Wenn zu einer Reihe > a, ein ¢ mit 0 < ¢ < 1 und ein m € N existiert mit
n=0

oo
a, # 0 firn > m und \a:;“ | < ¢ fiirn > m, so konvergiert »_ a,.

n=0
Wir erlautern dies an einem Beispiel:

Beispiel 1.5.14 Fiir z € C, |z| < 1, ist

[eS)
E nznfl
n=1

konvergent. Dies ergibt sich so: Sei 0 < |z| < 1; dann wihlt man ein ¢ € R mit
|2] < ¢ < 1. Nun wenden wir das Quotientenkriterium auf a,, :== n2""! an. Es ist

Ap+1
Qn,

n+1 1
= . = ]_ . .
= )

Weil |Z| > 1ist, gibt es ein m € N mit

Daher ist fir n > m
Ap+1

1
— 1_|_ . <
an, ( n) ‘Z‘ =4

o0
und daraus folgt die Konvergenz von Y. nz"~!. Den Grenzwert konnen wir noch
n=1
nicht berechnen; in 4.1.3 zeigen wir, dass man konvergente Potenzreihen gliedweise

differenzieren darf. Damit ergibt sich:

= d & d 1 1
n—1 __ n __ _
an _dzzz Cdz (1—2)_(1—2)2'

n=1 n=0
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Wir behandeln nun weitere wichtige Beispiele. Zunachst eine Definition: Firn € N
setzt man
nl:=1-2-3-...-n

und 0! := 1.
Beispiel 1.5.15 Die Reihe

iz"_1+z+z2+ “ 4
n! 2 2.3 77
n=0
konvergiert fiir alle z € C. Dies beweist man mit dem Quotientenkriterium 1.5.11.
Essei z € C; z # 0; setzt man a,, := #,, so ist

nl!’

e

An+1 _ _ |Z|
an (n+1)-27| n+1
Waihlt man ein k € Nmitk > 2 - |z|, soist firn > k:
Ant1| _ || < |z < 1
an n+1— k = 2

x n x n .
und nach dem Quotientenkriterium konvergiert » 5 *, und daher auch ) * . Die
n=k n=0
oo}

Reihe ) fl " heiBt die Exponentialreihe, man bezeichnet sie mit e* oder exp(z):
n=0

o0 Zn
exp(z) :=€® := Z

n!’
n=0

Die Exponentialfunktion z +— e® untersuchen wir in 4.2.

Beispiel 1.5.16 Die sogenannte harmonische Reihe
>,
n=1 n

ist divergent. Um dies zu zeigen, schitzen wir die Partialsummen s :=
so ab:

k 1
n=1n
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Auf diese Weise zeigt man

>1 k
Sok +
2k 27

daher ist die Folge (sj) divergent, somit divergiert auch Tll
n=1

Beispiel 1.5.17 Die alternierende harmonische Reihe
ist nach dem Leibniz-Kriterium 1.5.12 konvergent. Den Grenzwert konnen wir noch

nicht ausrechnen; in 6.2.10 werden wir zeigen, dass diese Reihe gegen In 2 konver-
giert.

Sn .
1n2'—————————————:——.——.——:——,——.———.——.——.———.——.——2——.——'
1 2 3 4 6 8 10 n
Beispiel 1.5.18 Die Reihe
>,
2
n:ln

ist konvergent; um dies zu zeigen, geben wir eine konvergente Majorante an: Fiir
n > 2ist

1 - 1

n? n(n-—1)
und die k-te Partialsumme (k > 2)

k

1
Skzzn(n—l)

n=2
1aBt sich folgendermaf3en berechnen: Fir n > 2 ist

1 1 1

n—1 n n-(n-1)
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und daher
k Kk Kk Kk
1 1 1 1 1
sk_;n(n—l) Z:(n—l_n) 7Z:zn—l_z:;n
1 1 1 1 1
=(1 =1-
T D e O ST R
Daher ist 1
frnon = i (=) =
also
DI
— n(n—1)

1

2 und nach dem Ma-

o0
Daher ist diese Reihe eine konvergente Majorante von »_
n=1

&)
jorantenkriterium konvergiert n12. Aus dem Majorantenkriterium folgt weiter,

n=1
dass fiir jedes s € N mit s > 2 die Reihe
>
n=1 n®

1

o0
konvergent ist. Es ist ziemlich schwierig, den Grenzwert von » s ZU bestimmen;

n=1
fiir ungerades s ist keine Formel bekannt; fiir gerades s werden wir in 14.11.9 den

Grenzwert bestimmen.

1.6 Vollstindige Induktion

Fiir jedes n € N sei A(n) eine Aussage. Wenn man zeigen will, dass A(n) fiir alle
n € N richtig ist, geht man haufig so vor: Man zeigt, dass A(1) richtig ist und dass
aus A(1) die Aussage A(2) folgt. Dann zeigt man: Aus A(2) folgt A(3) “und so
weiter”, d.h. aus A(n) folgt A(n + 1).

Diese Schluweise wird prazisiert im Beweisprinzip der vollstandigen Induktion:

Satz 1.6.1 (Vollstindige Induktion) Fiir n € N sei A(n) eine Aussage; es gelte:

(1) A(1) ist richtig.
(2) Fiir alle n € N gelte: wenn A(n) richtig ist, dann auch A(n + 1);

dann ist A(n) fiir alle n € N richtig.
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Dieses Beweisprinzip folgt aus einer grundlegenden Eigenschaft der natiirlichen
Zahlen: Wenn fiir eine Teilmenge M von N gilt: 1 € M und aus n € M folgt:
n+1e M,soist M =N.

Wir erlautern die vollstandige Induktion zunachst an einem einfachen Beispiel; an-
schlieBend beweisen wir mit Hilfe der vollstindigen Induktion den binomischen
Lehrsatz.

Beispiel 1.6.2 Wir beweisen mit vollsstandiger Induktion die Formel
1+34+54+7+9+...+(2n—1)=n%

Fiir n € N sei A(n) die Aussage

n

> (2k—1)=n

k=1

1

Fiir n = 1 steht auf der linken Seite dieser Formel > (2k — 1) = 1 und rechts
k=1

12 = 1; also ist A(1) richtig. Nun sei A(n) richtig, also >_;_,(2k — 1) = n?. Zu

zeigen ist, dass auch A(n + 1) richtig ist, ndmlich Zz;l(% —1)=(n+1)2 Es

gilt:

n+1

> 2k—1) =

k=1

k-1 +2n+1)—-1)==n’+2n+1=(n+1)>%

M=

o>~
Il
-

Damit ist A(n + 1) hergeleitet und aus 1.6.1 folgt, dass A(n) fiir alle n richtig ist.

Um die vollstandige Induktion zu erlautern, behandeln wir zuerst den binomischen
Lehrsatz und anschliessend Polynome.

Der binomische Lehrsatz.
Bekannt sind die Formeln

(z+y)* = 2® + 22y + o
(z +y)? =23 + 322y + 32y + 4>,
Wir suchen eine allgemeine Formel fiir (x 4 y)™, n € N. Dazu definiert man:

Definition 1.6.3 Fiirn € Ng und k € Ng mit 0 < k < n sei

<n> o n! o n-(n—=1)-..-(n—k+1)
k)T K-k 12k

Die Zahlen () heiffen Binomialkoeffizienten.
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Wir zeigen zuerst

Hilfssatz 1.6.4 Fiirn e NNn>1lundk=1,...n—1 gilt
n\ (n-1 n n—1
k) \k-1 k)
()1 ()-
0 n
Beweis. Es ist
n—1 . n—1\ (n—1)! . (n—=1!
k-1 E ) (k=D!n—k)! kln—k-1!

_(n—l)!.k (n—l)!.(n_k)_ (n—l)! - al B
Kl — k) * kl(n —k)! o ]g!(n_k)!'(k+”_k) = = <

Auflerdem ist

Auf die Bedeutung dieses Hilfssatzes gehen wir spater ein. Nun zeigen wir:

Satz 1.6.5 (Binomischer Lehrsatz) Fiir alle n € N und x,y € C gilt:
(x+y)" = I;) (Z) " RyP

Beweis. Wir fiihren den Beweis durch vollstindige Induktion. Der Induktionsanfang

(z+y)' = (é)aH— G)y

ist offensichtlich richtig. Nun setzen wir voraus, dass

n—1 = n—1 n—1—k, k
()"t =3 0, )y

k=0

gilt. Multipliziert man diese Gleichung mit x + y, so erhélt man

@ty = (+y)- X (R =

3‘
-
3
L

" y* + y- (n;l)mn—l—kyk —

i

|

=o
bl
I
(=)

i
L

(n;l)xn—(k+1)yk+1

i

|

=]
Eod
I
(=)

I
—~
3
> | E
=
~— ~—r ~—
S
S
|
x~
<
N
+

(i) =

oty G

I
]
—~
3
=
N
&
3
-
Nad
=
+
NE!

=~
I
=

|
—
3
S |
—_
~
8
3
_|_
L —
—
3
= |
—_
~
+
—
lk‘ﬁN
»—\»‘—A»—A
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Es ist ("51) =1= (g) und (:;j) =1= (Z), der erste Summand ist also (g)x”

und der letzte ist (Z) y™. Fir die in der Mitte stehende Summe ist nach Hilfssatz

1.6.4
n—1 n n—1\ (n\
k k—1) \k)’
und daher ergibt sich

(+y)" = (8)33” +:§ (Z)x”’“y’“ + (Z) y" = Zn: (Z)x”kyk

k=0

Damit ist der binomische Lehrsatz bewiesen. O
Nun soll gezeigt werden, wie man Hilfssatz 1.6.4 zur Berechnung der Binomialko-
effizienten verwenden kann. Wahlt man eine natiirliche Zahl n > 1 und schreibt die
zu n — 1 gehorenden Binomialkoeffizienten in eine Zeile, so erhalt man durch Ad-
dition der nebeneinander stehenden Koeffizienten (Z:}) + (”;1) den Koeffizienten
(Z) 1 1 1 1 1
(") (7)) - G2 () - GD)
N
()

Beginnt man mit (8) = 1, so ist die nachste Zeile (é) =1, (}) = 1, und man erhalt
auf diese Weise das Pascalsche Dreieck ( BLAISE PASCAL, (1623-1662)):

1 6 15 20 15 6 1

Die vorletzte Zeile liefert z.B. die Formel
(z +y)° = 2° + baty + 102%y? + 1022y + Say® + o/°.

Wir zeigen noch:

Satz 1.6.6 Fiir n,k € Ny, 0 < k <n gilt:
Die Anzahl der k-elementigen Teilmengen einer n-elementigen Menge ist (Z) .

Beweis. Wir beweisen die Aussage durch Induktion tiber n. Der Induktionsanfang
n = 0 ist klar. Nun sei 7 € N und die Aussage sei fiir n — 1 richtig. Ist dann M eine
Menge mit n Elemente, so wahlen wir ein p € M.

Die Anzahl der k-elementigen Teilmengen A C M mit p ¢ A ist wegen A C
M \ {p} nach Induktionsannahme gleich (", ").

k
Alle k-elementigen Teilmengen A von M mit p € A erhélt man so: man wihlt eine
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(k-1)-elementige Teilmenge von M \ {p} und fiigt p hinzu; die Anzahl der (k-1)-

elementigen Teilmengen von M \ {p} ist (}_1).

Die Anzahl aller k-elementigen Teilmengen von M ist also (";1) + (Zj), und
dies ist nach 1.6.4 gleich (7). 0
Polynome

Ist

P(X) =an X"+ an 1 X" T4+ X 4 ap

ein Polynom mit Koeffizienten a,, ...,ag € C, und ist a,, # 0, so ist gr(p) := n

der Grad von p. Es gilt gr(p - q¢) = gr(p)gr(q).
Nun zeigen wir :

Satz 1.6.7 Ist p ein Polynom n-ten Grades , n > 1, und ist c eine Nullstelle von p,
so existiert ein Polynom q von Grad (n — 1) mit

p(X) = (X = )g(X).

Beweis. Zunichst sei p(c) beliebig; wir zeigen, dass p(X ) —p(c¢) durch X —c teilbar
ist. Fiir den Spezialfall p(X) = X" ist dies klar: Setzt man ¢;(X) := 1 und

Gn(X) = X" e X2 p A f M fiirn > 2,
so gilt (X — ¢)gn(X) = X™ — ™.
Istnun p(X) = ap, X"+ ap 1 X" 1 +...+a1X +ag , soist

p(X) = p() = 3 an(XF — ) = (X =) 3 argn(X) = (X — ¢)q(X)
k=1 k=1

mit  g(X) =Y argr(X).
k=1

Falls p(c) = 0 ist, folgt die Aussage des Satzes. O
Die Koeffizienten by, von q(X) = b, 1 X" 1 +b, o X" 2+ ... +b X +by und
p(c) erhilt man folgendermassen: Aus

an X"+ ... +ag—p(c) = (X =) (b1 X"+ ...+ bp)

folgt a, = bp_1, apn—1 =bp_o — cbp_1, ..., a1 = by — cb1, ag — p(c) = —cby,
also b,_1=an,bp_2=apn_1+cbyp_1,...,by=aj+ cby, p(c) = ag + cby
Das Hornersche Schema

Die Berechnung von b,,_1, . . ., bg und p(c) geschieht nach dem Hornerschen Sche-
ma (WILLIAM HORNER (1786-1837)):

Man schreibt die a,,...,ap in die erste Zeile; es ist b,_1 = ay,; dies multipli-

ziert man mit c , addiert es zu a,,_; und erhalt b,,_o. Dann multipliziert man b,,_o
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mit ¢, addiert ¢ - b,,_2 zu a,,—o und erhalt b,,_3. Auf diese Weise errechnet man
bn—1,...,bo und zuletzt p(c).

Qp an—1 Ap—2 an—3 e ay ao
C'bn_l C'b7,,_2 C'b7,,_3 C'b1 C'bo
bnfl bn72 bnf?) bn74 e bO p(C)

Beispiel 1.6.8 Essei p(X) = X*— X3 —2X — 4 und ¢ = 2.Man erhilt

Es ergibt sich ¢(X) = X3 + X2 + 2X +2.

Daraus folgt:
Satz 1.6.9 Ein Polynom vom Grad n > 1 hat hochstens n Nullstellen.

Beweis. Wir beweisen den Satz mit vollstandiger Induktion.

Firn = listp(X) = a1 X +ap mita; # 0 und dafiir ist die Ausssage offensichtlich
richtig. Nun sei n > 2 und der Satz sei fiir Polynome vom Grad < (n — 1) richtig.
Ist dann p ein Polynom vom Grad n und ist ¢ eine Nullstelle von p, so hat man
p(X) = (X — ¢)g(X) mit grg = n — 1. Aus p(c’) = 0 und ¢ # ¢’ folgt ¢(c’) = 0.
Weil ¢ hochstens n — 1 Nullstellen hat, folgt: p hat hochstens n Nullstellen. a

In 14.7.3 zeigen wir, dass in C jedes Polynom mindestens eine Nullstelle besitzt;
durch Induktion ergibt sich daraus:

Satz 1.6.10 (Fundamentalsatz der Algebra) /st
p(X) = a’n,Xn + an—anil + R alX —+ ago

ein Polynom von Grad n > 1 mit ay,...,a9 € C; a, # 0, so existieren
C1y...,cn € Cmit

p(X) = an- (X —c1) .. (X —cpn)
Mit paarweise verschiedenen Nullstellen c1 . . ., cp, ist
P(X) = an(X —c)™ oo (X — )™

dabei ist i, € N die Vielfachheit der Nullstelle cy,.
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Beweis Der Induktionsanfang n = 1 ist klar; nun sei n > 2 und der Satz sei fiir
Polynome vom Grad < n—1richtig. Ist dann p ein Polynom vom Grad n, so existiert
nach 14.7.3 ein ¢; € C mit p(¢q) = 0. Dann ist p(X) = (X — ¢1)¢(X) und nach
Induktionsannahme gibtes ¢z, ..., ¢, € Cmit¢(X) = an- (X —c2)-...- (X —cp),

alsop(X)=an- (X —c1) - (X —ca)-...- (X —cp). O
Polynome 3.Grades
Die Nullstellen eines Polynoms 2.Grades a.X 2+ b.X +c kann man bekanntlich durch
—b+ Vb2 — dac
2a

darstellen.
Schon vor 500 Jahren beschaftigten sich Mathematiker wie SCIPIONE DEL FER-
RO (1465-1526), NICOLO TARTAGLIA (1499/1500-1557), GIROLAMO CARDANO
(1501-1576) mit der Losung von Gleichungen 3. Grades. Dies soll kurz geschildert
werden; eine ausfiihrliche Darstellung findet man in [9].
Zunachst bringt man X34a2X%4+a1X +ap, durchdie Substitution X=X+ “32 ,
auf die Form

X3 4+ pX +q.

Nun macht man fiir die Nullstellen den Ansatz z = u + v;
esist 22 = u3 + v® + 3uv(u + v) und daher

23+ pr+q=(u?+v*+q) + Buv+p)(u+v).

Man sucht nun u, v so, dass

u? 4 0% = —q, 3uv = —p
ist. Es ist ) )
ud + 03 B ud — v — B
2 2
also
g\ 2 ud — 3\ 2 P\ 3
(2) a ( 2 ) B (_3>
Setzt man

so ergibt sich
ud 403 q ud —v \/ d
2 2’ 2 '
Daraus rechnet man wu, v aus:
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dabei wahlt man die 3.Wurzeln so, dass uv = —g ist. Nun sei o = —% + %\/ 3 eine
3. Einheitswurzel; dann sind die Losungen von 22 + pz +¢ = 0 :

U+ v; Qu+Q2’U, Q2U+Q’U.

Damit ergibt sich eine Formel, die nach CARDANO benannt ist:

Satz 1.6.11 ( Formel von Cardano ) Die Nulistellen von 23 + px + ¢ sind

s q q\? (p3 s_q_\/(q2 (p?’.
ey - ey
dabei sind die 3.Wurzeln so zu wdhlen, dass ihr Produkt —g ist.

Auch fiir Polynome 4.Grades gibt es eine Formel fiir die Nullstellen. Dagegen hat
NIELS HENRIK ABEL (1802-1829 )im Jahr 1826 gezeigt, dass man die Nullstellen
eines allgemeinen Polynoms 5. und hoheren Grades nicht durch Radikale darstellen
kann.

Beispiel 1.6.12 Wir bringen ein Beispiel, das bereits von RAFFAEL BOMBELLI
(1526-1572) behandelt wurde; es sollen die Nullstellen von

23— 150 — 4
berechnet werden.
Es ist q »
= -2, =-5, d=-121.
2 3

Die Formel von Cardano liefert fiir die Nullstellen

{”/2 +v-121+ §/2 — V=121 = V24 11i + V2 — 11i.
Esist (2 4-1)3 = 2 4 11i und daher erhilt man eine Nullstelle x1so:
r1=02+1)+((2-1) =4

Die anderen Nullstellen sind nach der Formel von Cardano:

1= @+D)(~ )+ 4V3) + (2 -D)(—) — ;V3) =

= 12— V3+i(-1+2V3)) + L (-2 - V3 +i(1 —2v3)) = -2 — V3,

T3 =—2++/3.

(Natiirlich kann man, wenn man die Nullstelle 1 = 4 kennt, x5, x3 auch als Null-
stellen von (23 — 152 — 4) : (z — 4) = 2% + 42 + 1 ausrechnen.)
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30+ 1‘3 — 152 — 4
t t t g t t t >
T2 x3 1 1 =4

Man erhalt also bei Anwendung der Formel von Cardano die drei reellen Nullstellen
nur, wenn man mit komplexen Zahlen wie \/—121 = 11i rechnet. Die Tatsache,
dass man bei der Berechnung reeller Nullstellen komplexe Zahlen benotigt, hat bei
der Einfithrung komplexer Zahlen eine grosse Rolle gespielt.

Aufgaben

1.1. Zeigen Sie: Fir z,y € R gilt:
1 . 1
max(z,y) = , (@ +y+|z —yl); min(z,y) =, (z+y—|z—y])

1.2. Zeigen Sie
lim ! =0und lim (Vn+1—+/n)=0
n n—oo

n— oo

(Hinweis: (z — y)(z +y) = z° — y?)

1.3. Sei (an)n eine Folge mita, € {0, 1,2, ...,8,9}; dann heift > an-10~" ein Dezimal-
n=1

bruch; zeigen Sie, dass jeder Dezimalbruch konvergiert.
Sei a, = 3 fiir ungerade n und a,, = 7 fiir gerade n; berechnen Sie den zugehorigen Dezi-
malbruch.

1.4. Konvergiert die Reihe

3
—

1.5. Berechnen Sie

1.6. Zeigen Sie, dass fir n € N gilt:

1
142+ +n= n(n+1), A+24 .. 4+n)?=1"+2>+ .. +n°
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1.7. Zeigen sie fiir m € N:

ZnQ = ém(m—i— 1)(2m +1)

n=1
n n .
k=1

1.9. Geben Sie die folgenden komplexen Zahlen in der Form x + iy mit z,y € R an:

1.8. Zeigen Sie firn € N:

1 141

—1+i\/3)30
3+ 2’ 1—4’ :

€y

1.10. Berechnen Sie alle komplexen Nullstellen von z° — z? + 223 — 222 + 2 — 1

1.11. Bestimmen Sie mit dem Ansatz p(X) = co + c12 + cox(z — 1) + csz(z — 1) (z — 2)
ein Polynom p mit

1.12. Fiir n € N sei

o < 1 b, = = 1 . . 1 k+1 1
an.—zk, e Z & Cn .—Z(— ) o
k=n k=n+1 k=1

Zeigen Sie, dass die Folgen (ar), (bn), (cn) konvergent sind und den gleichen Grenzwert
L besitzen. ( In Aufgabe 5.7 und Beispiel 6.2.10 wird L berechnet).
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Stetige Funktionen

2.1 Stetigkeit

Nun fiihren wir den wichtigen Begriff der Stetigkeit ein; dabei geht man aus von
der Vorstellung, dass bei einer stetigen Funktion gilt: “Wenn der Punkt = nahe beim
Punkt a liegt, so ist der Funktionswert f(x) nahe bei f(a)”. Dies wird so prézisiert:

Definition 2.1.1 Es sei D C R, eine Funktion f : D — R heifit stetig im Punkt
a € D, wenn es zu jedeme > 0 ein 6 > 0 gibt, so dass fiiralle ¢ € D mit|x—a| < §
gilt:

[f(z) — fla)] <e.

Eine Funktion f : D — R heift stetig, wenn sie in jedem Punkt a € D stetig ist.

Die Zahl § hingt also vom Punkt ¢ und von ¢ ab, daher schreibt man auch § =

o(g,a).
Man nennt diese Definition kurz die € — d-Definition der Stetigkeit.
f

-6 ----------- :- ===

fla) 7 - !

___________ --1-

L} L}

L} L}

L} L}

L} L}

L} L}

1 0]0

a

Die Stetigkeit einer Funktion kann man auch durch Konvergenz von Folgen aus-
driicken. Die Stetigkeit einer Funktion f im Punkt a wird oft so veranschaulicht:
“Wenn = gegen a strebt, dann strebt f(x) gegen f(a)”. Dies wird im folgenden
Satz prazisiert:

Satz 2.1.2 Eine Funktion f : D — Ristin a € D genau dann stetig, wenn fiir
jede Folge (), in D, die gegen a konvergiert, die Folge (f(xy))n gegen f(a)
konvergiert.
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Beweis. a) Die Funktion f sei in a stetig und lim x, = a, , € D; zu zeigen

ist: lim f(x,) = f(a). Sei € > 0; dann existiert ein 6 > 0 mit | f(x) — f(a)] < e
firz € D, |z —al < J. Weil (z,,),, gegen a konvergiert, existiert ein N € N mit
|z, — a|] < § firn > N. Firallen > N folgtdann | f(z,,) — f(a)| < & und damit
ist die Behauptung bewiesen.

b) Um die Umkehrung zu beweisen, nehmen wir an, f sei in a unstetig. Dann gibt

es ein € > 0, so dass zu jedem ¢, = :L, n € N,ein xz, € D existiert mit
|z, —al < } und |f(z,) — f(a)| > e. Dann konvergiert (z,), gegen a, aber
(f(zn))n konvergiert nicht gegen f(a). O

Die soeben bewiesene Aussage kann man kiirzer formulieren, wenn man den Begriff
des Grenzwerts einer Funktion f in einem Punkt a € D einfiihrt. Wir setzen a € D
voraus, weil es dann immer eine Folge in D gibt, die gegen a konvergiert.

Definition 2.1.3 Es sei D C R, a € D, ¢ € R. Man sagt, f : D — R be-
sitzt in a den Grenzwert ¢, wenn fiir jede Folge (xy,)y, in D mit lim z, = a gilt:

n—0oo

lim f(x,) = c; man schreibt dann

n—oo

lim f(z) =c.

z—a
Man kann leicht zeigen

Hilfssatz 2.1.4 Es gilt lim f(x) = ¢ genau dann, wenn zu jedem e > 0 ein 6 > 0
existiert, so dass fiir allz;ae D mit |x —a| < 0 gilt: |f(x) —¢| <e.

Die Aussage von Satz 2.1.2 kann man nun so formulieren:

Satz 2.1.5 Eine Funktion f : D — R istin a € D genau dann stetig, wenn gilt:

lim f(x) = f(a).

Aus den Rechenregeln fiir konvergente Folgen und Satz 2.1.2 ergibt sich

Satz 2.1.6 Sind f : D — Rund g : D — R stetig, so auch f + g und f - g. Falls
g(z) # 0 fiir x € D gilt, ist auch g stetig.

Wir bezeichnen den Vektorraum aller auf D stetigen Funktionen mit
C’(D) := {f : D — R| fist stetig}.

(In 3.1 und Beispiel 7.2.7 behandeln wir den Vektorraum C*(D) aller k-mal stetig
differenzierbaren Funktionen.)

Unter geeigneten Voraussetzungen kann man Funktionen f und g “ineinander ein-
setzen”, das heift, man bildet die Funktion z — g(f(z)) :

Definition 2.1.7 Sind D C R, E C R, f : D — Rund g : E — R und ist
f(D) C E, so wird die Funktion g o f definiert durch

gof:D—R, z— g(f(x))
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Satz2.1.8 Sind f : D — Rund g : E — R stetigund f(D) C E, soistauch go f
stetig.

Beweis. Sei a € D und (z,,), eine Folge in D mit lim x,, = a. Aus der Stetig-

keit der Funktion f folgt lim f(z,) = f(a) und aus der Stetigkeit von g folgt
Tim g(f(zn)) = 9(f(a))- 0

Beispiel 2.1.9 Ist ¢ € R, so ist die konstante Funktion R — R, z + ¢, stetig. Um
dies zu beweisen, kann man zu gegebenen ¢ > 0 immer ¢ := 1 wihlen. Auch die
Funktion R — R, x — x, ist stetig; zu € > 0 kann man § := ¢ wahlen. Aus 2.1.6
folgt, dass auch die durch 22, 3, ..., ", ... gegebenen Funktionen stetig sind.
Ist p(X) = ap+a1 X +...4+a, X ™ ein Polynom mit reellen Koeffizienten ag, ..., a,
so ist die dadurch definierte Funktion p : R — R, z +— p(z), ebenfalls stetig.

Wir zeigen nun: Wenn eine stetige Funktion in einem Punkt x( positiv ist, so ist sie
in einer ganzen Umgebung von z( positiv:

Satz2.1.10 Sei f : D — Rin xzg € D stetig und f(xo) > 0. Dann existiert ein
d > 0, so dass fiir alle x € D mit |x — xo| < 0 gilt: f(x) > 0.

Beweis. Zu ¢ := | f(z0) > 0 existiert ein § > 0, so dass firz € D, |z — 29| < 6,
gilt: f(z0) — e < f(z) < f(mo) +e,also 0< 3 f(z) < flz). a
Zur Charakterisierung der Stetigkeit kann man auch den Begriff der Umgebung und
der offenen Menge verwenden. Wir erinnern an den Begriff der e-Umgebung von
a; fire > 0ist Us(a) = {z € R| |r — a| < €}; eine Teilmenge U C R hatten
wir als Umgebung von a bezeichnet, wenn ein € > 0 existiert mit U (a) C U. Wir
verallgemeinern diesen Begriff:

Definition 2.1.11 Sei D eine beliebige Teilmenge von R; dann heifit U C D eine
Umgebung von a € D beziiglich D, wenn ein € > 0 existiert mit

{reD|lx—al<e} CU.

Eine Teilmenge W C D heifit offen beziiglich D, wenn es zu jedem w € W ein
e>0gibtmit {x € D| |x —w| <e} CW.

Es gilt:

Satz2.1.12 f: D — Ristina € D genau dann stetig, wenn es zu jeder Umgebung
V von f(a) eine Umgebung U von a beziiglich D gibt mit f(U) C V.

Ist f : D — R eine Funktion und W C R, so ist }1 (W):={z € D| f(x) e W}
das Urbild von W. Damit konnen wir 2.1.12 so formulieren:

Satz2.1.13 f: D — Ristin a € D genau dann stetig, wenn fiir jede Umgebung
V von f(a) gilt: }1 (V') ist Umgebung von a.

Daraus ergibt sich:

Satz 2.1.14 f : D — R ist genau dann stetig, wenn fiir jede offene Menge W C R
gilt: }1 (W) ist offen beziiglich D.
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2.2 Stetige Funktionen auf abgeschlossenen Intervallen

In diesem Abschnitt wird gezeigt, dass jede auf einem abgeschlossenen Intervall
stetige Funktion f : [a,b] — R Maximum und Minimum annimmt; das wichtigste
Ergebnis ist der Zwischenwertsatz: Eine stetige Funktion, die positive und negative
Werte annimmt, besitzt mindestens eine Nullstelle.

Zuerst zeigen wir:

Hilfssatz 2.2.1 Jede stetige Funktion f : [a,b] — R ist beschrdnkt, d.h. es gibt ein
M € R mit
|f(z)| < M fiiralle x € [a,b].

Beweis. Wenn f nicht beschrénkt ist, dann existiert zu jedem n € N ein z,, € [a, D]
mit | f(xy,)| > n. Die Folge (z,,) liegt in [a, b]; sie ist also beschrankt und nach
1.4.19 besitzt sie eine Teilfolge (x, )k, die gegen ein ¢ € [a, b] konvergiert. Wegen
der Stetigkeit von f ist kllngo f(zpn,) = f(c). Nach 1.4.11 ist die Folge (f(xn, )k

beschrénkt, dies widerspricht | f (@, )| > ng. O

Satz 2.2.2 Jede stetige Funktion f : [a,b] — R nimmt Maximum und Minimum an,
d.h. es gibt Punkte p, q € [a, b] mit

f(p) < f(z) < f(q) fiir alle z € [a, b].

Beweis. Es geniigt, zu zeigen, dass f das Maximum annimmt; die Existenz des
Minimums ergibt sich durch Ubergang zu — f. Das Bild f([a,b]) ist beschrinkt,
daher existiert das Supremum

s :=sup f([a,b]).

Fiirn € Nists— | keine obere Schranke von f ([a, b]) daher existiert ein 2, € [a, b]
mit s — 711 < f(zn) < s. Wegen 1.4.19 darf man nach Ubergang zu einer Teilfolge
annehmen, dass (x,,) gegen ein ¢ € [a, b] konvergiert. Wegen der Stetigkeit von f
ist lim f(z,)= f(¢)undauss — ! < f(z,) < sfolgt lim f(x,) = s, also ist
f(q) = sund daher f(z) < f(q) fiir alle = € [a, b]. Damit ist der Satz bewiesen.

O

Nun beweisen wir den Nullstellensatz und den Zwischenwertsatz. Der Nullstellen-
satz besagt, dass eine stetige Funktion f, die an einer Stelle a negativ und an einer
Stelle b positiv ist, dazwischen eine Nullstelle hat, Diese Ausage ist anschaulich
so einleuchtend, dass Mathematiker friiherer Jahrhunderte diesen Satz ohne Beweis
verwendet haben. Dass hier die Vollstandigkeit von R wesentlich ist, zeigt ein ein-
faches Beispiel:

Die Funktion f : {z € Q] 0 < 2 < 2} — Q, z — 2% — 2, ist stetig und
f(0) = —2, f(2) = 2. Es gibt aber keine rationale Zahl z mit 2> = 2 und daher
hat f (im nicht -vollstandigen Korper Q) keine Nullstelle.
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Satz 2.2.3 (Nullstellensatz von Bolzano). Sei f : [a,b] — R eine stetige Funktion
und f(a) < 0 < f(b). Dann existiert ein § €)a, b mit

f(&) =0.

Wir geben fiir diesen wichtigen Satz zwei Beweise:
1. Beweis. Es sei
M = {z € [a,b]] f(z) <0}.

Weil R vollstandig ist, existiert s := sup M. Nach 2.1.10 ist f in einer Umgebung
von ¢ negativ und in einer Umgebung von b positiv und daher ist a < s < b. Wir
zeigen: f(s) = 0. Zuerst nehmen wir an, es sei f(s) < 0. Dann existiert nach
2.1.10ein 6 > 0 mit s+ < b, sodass f in [s, s + ] negativ ist. Daraus folgt aber
sup M > s+4.-Nunsei f(s) > 0, dann existiert ein § > 0 mita < s — J, so dass
fin [s—4, s] positiv ist. Daraus folgt aber M C [a, s — ], also wire sup M < s—94.
Daraus ergibt sich f(s) = 0.

2.Beweis.Diese Beweismethode ermdglicht eine naherungsweise Berechnung einer
Nullstelle £ von f. Durch sukzessives Halbieren von Intervallen konstruiert man,
beginnend mit [a, b], eine Folge von Intervallen [a,,, b,,] mit folgenden Eigenschaf-
ten:

(1) [anvbn] D) [an—&-labn—&-l}
(2) b1 = ang1 = 3(bn —ap) =27V (b —a),
(3) flan) <0, f(bn) > 0.

Man beginnt mit ag := a, by := b, setzt ¢ := QU‘QH’O und definiert ay, by so:

fiir f(co) > 0 sei aj := ap, by := co,
fiir f(co) <0 seiaj :=co, by :=by.

Ist [ay, by] bereits konstruiert, so setzt man ¢, := “"$*" und definiert a,11,bn41
so:

fiir f(c,) >0sei any1 = an, b1 = Cn,

fiir f(c,) <0sei any1:=cn, bni1 := by.

Dann ist die Folge (a,,) monoton wachsend, (b,,) ist monoton fallend, beide Folgen
sind beschrankt und daher (wegen der Vollstandigkeit von R) konvergent. Wegen
(2) haben sie den gleichen Grenzwert, den wir mit £ bezeichnen. Aus Eigenschaft
(3) und der Stetigkeit von f folgt

J(€) = lm flan) <0, f(§) = lim f(b) >0,

n—oo

somit f (&) = 0.
Die Nullstelle & liegt in [ay,, b, ]; damit hat man £ naherungsweise berechnet. a

Eine etwas allgemeinere Aussage ergibt sich unmittelbar.

Satz 2.2.4 (Zwischenwertsatz). Ist f : [a,b] — R stetig und f(a) < f(b), so
existiert zu jeder reellen Zahl w mit f(a) < w < f(b) ein & € [a,b] mit

f(&) =w.
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Zum Beweis wendet man den Nullstellensatz auf die Funktion g(z) := f(z) — w
an. a
Eine analoge Aussage gilt natiirlich, falls f(b) < f(a).

My f

SR ——

a b 3 q=>b
Die vorstehenden Sitze kann man so zusammenfassen:

Satz2.2.5 Ist D C Rund f : D — R stetig, so ist das Bild jedes in D liegenden
abgeschlossenen Intervalls wieder ein abgeschlossenes Intervall.

Ist ndmlich [a,b] C D so nimmt f auf [a,b] das Minimum m und das Maximum
M an; fir alle ¢ € [a,b] ist also m < f(z) < M, somit f([a,b]) C [m, M].
Nach dem Zwischenwertsatz nimmt f jeden Wert w € [m, M| an, daher ist
f([a,b]) = [m, M].

Aus dem Zwischenwertsatz folgt unmittelbar ein Fixpunktsatz; dabei heilit p Fix-
punkt von f, wenn f(p) =p ist.

Satz 2.2.6 (Fixpunktsatz) Jede stetige Abbildung f : [a,b] — [a,b] besitzt einen
Fixpunkt p € [a,b] .

Beweis. Man setzt h : [a,b] — R,z — f(z) — 2. Wegen a < f(z) < bist
h(a) = f(a) —a > 0und h(b) = f(b) — b < 0. Nach dem Zwischenwertssatz
existiert ein p € [a, b] mit h(p) = 0, also f(p) = p. O

GleichmaébBige Stetigkeit.

Bei vielen Problemen, z.B. in der Integrationstheorie, benotigt man einen schirferen
Begriff der Stetigkeit. Wenn eine Funktion f : D — R stetig ist, dann bedeutet dies,
dass zujedema € Dunde > Oeind > 0 existiert mit | f(z) — f(a)| < e firx € D,
|z — a] < J; die Zahl 6 hingt also von a und £ ab. Bei der gleichméafBigen Stetigkeit
wird gefordert, dass § unabhangig vom Punkt ¢ € D gewahlt werden kann; man
definiert also:

Definition 2.2.7 Eine Funktion f : D — R heifst gleichmdfig stetig, wenn es zu
jedem e > 0 ein § > 0 gibt, so dass fiir alle x,2' € D mit |x — x'| < ¢ gilt:

[f(x) = f@")] <e.

Es ist klar, dass jede gleichmaBig stetige Funktion auch stetig ist. Wir erlautern den
Unterschied zwischen beiden Begriffen am Beispiel einer Funktion, die stetig, aber
nicht gleichmaBig stetig ist.
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Beispiel 2.2.8 Die Funktion f : R — R, 2 +— 2, ist nicht gleichmiBig stetig.
Wenn néamlich f gleichmaBig stetig wire, miiite es zu € = 1 ein geeignetes § > 0
geben. Wir wihlen dann 2 > ; und setzen ' := x + ; Dann ist [z’ — x| = i <6,
aber f(z/) — f(z) = (z+ })* -2 =2+ ), >2.

Nun zeigen wir, dass auf abgeschlossenen Intervallen die beiden Stetigkeitsbegriffe
ibereinstimmen:

Satz 2.2.9 Jede auf einem abgeschlossenen Intervall stetige Funktion ist gleich-
mdfig stetig.

Beweis. Wir nehmen an, f : [a,b] — R sei stetig, aber nicht gleichméBig stetig.
Dann existiert ein € > 0 mit folgender Eigenschaft: Zu jedem § = }L, n € N, gibt
es Punkte z,,, 2], € [a,b], so dass |z, — 2| < ! ist, aber |f(z,) — f(a})] > €
fir alle n € N. Nach 1.4.19 enthilt (z,,),, eine konvergente Teilfolge (x,, ), deren
Grenzwert wir mit c bezeichnen; aus 1.4.15 folgt ¢ € [a, b]. Wegen |z, —x;,, | < nlk
konvergiert (2, ) ebenfalls gegen c. Aus der Stetigkeit von f im Punkt c folgt, dass

die Folgen (f(xn,))r und (f(z,, ))x gegen f(c) konvergieren. Daher konvergiert
(f(zn,) — f(27,,))r gegen 0 und dies ergibt einen Widerspruch zu

|f(zn,,) — f(z;,, )| > € firalle k € N.

Aufgaben

2.1. a) Beweisen Sie die gleichmaBige Stetigkeit der Funktion b: R — R,z — |x|.
b) Sei f : R — R stetig; zeigen Sie, dass auch |f| stetig ist.
c)Essei f : R — R stetig und

f(z) falls f(z) >0
0 falls f(z) <O.

0 falls f(z)>0

f+:]R—>]R,a?'—>{ f(z) falls f(z) <0. "

T R=>Rz— { _
Zeigen Sie, dass die Funktionen f1 und f~ stetig sind.

d) Die Funktionen f, g : R — R, seien stetig. Zeigen Sie , dass dann auch

max(f,g) : R — R,z — max(f(z),g(x)), min(f,g):R — R,z — min(f(z),g(z)),
stetig sind.

2.2. Ist die Funktion R — R, 2 +— x>, gleichmiissig stetig ?
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Differenzierbare Funktionen

3.1 Differenzierbarkeit

Um den Begriff der Differenzierbarkeit einzufiihren, kann man von der Frage aus-

gehen wie man die Steigung einer Funktion f im Punkt z¢ definiert. Fiir x # x( ist
(“2 (@) die Steigung der Geraden durch (zo, f(xo)) und (z, f(z)). Im Grenz-

wert fur x — xp erhalt man die Stelgung der Tangente, die man als Steigung von f

in z¢ interpretiert und mit f’(z0) oder ¢ O (o) bezeichnet.

Dies soll nun prazisiert werden. Wir setzen dazu immer voraus, dass es zu jedem

xo € D eine Folge (x,,), gibt mit x,, € D, x,, # x¢ firn € Nund lim z, = xo.

n—oo

Diese Voraussetzung ist erfiillt, wenn D ein Intervall ist.

Definition 3.1.1 Eine Funktion f : D — R heifst in xo € D differenzierbar, wenn
es eine reelle Zaht f'(x) gibt mit folgender Eigenschaft: Zu jedem ¢ > 0 existiert
ein & > 0, so dass fiir alle x € D mit 0 < |z — zo| < § gilt:

f(x)_f(l'o) _f/(xo) < e
T — X0
Dies ist gleichbedeutend mit
Fwo) = tim T IO e ),
T—Io Tr — X

wir schreiben auch

U (a0) 1= f'(a0)

dx 0 . 0)-

Die Funktion f heifst differenzierbar, wenn sie in jedem Punkt xo € D differenzier-
bar ist.

Der Begriff “Differenzierbarkeit” soll noch erlautert und anders formuliert wer-
den. Wir erinnern daran, dass eine Funktion ¢ in x¢ genau dann stetig ist, wenn
lim ¢(z) = q(xo) gilt; daher ergibt sich:

Tr—T0
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Satz 3.1.2 Fiir jede Funktion f : D — R gilt:

(1) Wenn f in xo € D differenzierbar ist, so ist

q: D—R z+— { f(wﬁ:ﬁixo) fl;i}’ X 75 Zo

f'(xo)  fiirx =xo
in xq Sstetig.
(2) Wenn es eine in xo € D stetige Funktion q : D — R gibt mit q(x) = f
fiir x # x0, so ist f in xq differenzierbar und f'(xo) = q(xo).

(z)—f(zo)

r—Io

Bemerkung. Man kann diese Aussage so formulieren: f ist genau dann im Punkt
x( differenzierbar, wenn der Differenzenquotient in den Punkt 2 hinein stetig fort-
setzbar ist; man vergleiche dazu 14.1.5.

Setzt man ¢ := f'(z9) = q(zo) und p(z) := q(z) — ¢, so ist p(x)
oder f(z) — f(xo) = ¢ (x — xo) + (z — xo)p(z) und man erhilt:

_ F@)—f(zo) _

r—xo

c

Hilfssatz 3.1.3 f : D — Ristin x¢g € D genau dann differenzierbar, wenn es ein
¢ € R und eine Funktion o : D — R gibt mit p(xy) = 0,

f(@) = fzo) + ¢ (z —w0) + (2 —wo)p(x) fiir z€ D, lim p(x) = 0;

T—T0

c und  sind eindeutig bestimmt, ¢ = f'(x).
Mit ¢ (z) := (z — xg) - ¢(x) erhélt man:

Hilfssatz 3.1.4 f : D — Ristin x¢g € D genau dann differenzierbar, wenn es ein
¢ € R und eine Funktion v : D — R gibt mit ¥(x¢) = 0,

F@) = F(wo) +¢- (o —30) + ¥(z) fir zeD,  lim @

T—To T — T

c und v sind eindeutig bestimmt, ¢ = f'(x).

Hier wird die Grundidee der Differentialrechnung, namlich die Linearisierung, deut-
lich: Man ersetzt f durch die Funktion z — f(xg) + ¢ - (x — xg), deren Graph die
Tangente ist; der “Fehler” ist 1) ; dieser geht fiir z — x so gegen Null, dass sogar
lim Y = 0ist.

T—x0

Nun ergibt sich

Satz 3.1.5 Jede differenzierbare Funktion ist stetig.

Beweis. lim f(x) = f(zo) + lim (c(z — zo) + ¥ (z)) = f(z0). O
Wir notigrgrf Dnun die Rechenregi?rlIlgﬁr differenzierbare Funktionen :

Satz 3.1.6 Es seien f : D — R und g : D — R differenzierbare Funktionen. Dann
sind auch f + g und f - g differenzierbar und es gilt:

(f+9)'=1f+4d ey
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(f-9=Ffg+f-g  (Produktregel). (2)
Falls g keine Nullstelle hat, ist auch ch differenzierbar und
’ /
(Z:)’ = f gg2 19 (Quotientenregel). 3)

Beweis. Wir beweisen die Produktregel (2) und verwenden dazu Hilfssatz 3.1.3: Ist
o € D, so gibt es Funktionen 1 : D — Rund 3 : D — R mit

f@@) = f(zo) + f'(@0) - (z = wo) + (z —0) - pr(w),  lim ¢y (z) =0,

T—T0

g9(x) = g(x0) + g'(20) - (x — w0) + (x — 20) - pa(x), lim @a(x) = 0.

r—xo

Daraus ergibt sich

f@)-g(z) = f(@o)-g(wo)+(f'(xo)g(wo) + f(0) - g'(w0)) -(w—0)+(x—0)-n(2)

mit
n(x) = f(zo)p2(z) + g(wo)p1(z) + f'(20)p2(x)(x — x0)+
+9'(w0) - p1(x) - ( — 20) + f'(w0) - ' (20) - (x — w0) + p1(2) - Pa(x) - (x — 20).

Offensichtlich ist lim 7(z) = 0 und aus Hilfssatz 3.1.3 folgt, dass f - g differen-

Tr—T0

zierbar ist und

(f - 9) (z0) = f'(x0) - g(w0) + f(x0) - ¢’ (x0).

Die Quotientenregel (3) beweisen wir in 3.1.10. a
Besonders wichtig ist die Kettenregel; diese gibt an, wie man die Ableitung einer
Funktion (go f)(z) = g(f(z)) erhilt:

Satz 3.1.7 (Kettenregel.) Sind f : D — R und g : E — R differenzierbar und
f(D)C E,soistauchgo f: D — R, x— g(f(x)), differenzierbar und es gilt

(go f)(z) =g'(f(z) - f'(x).

Beweis. Sei 9 € D und yo := f(z0); nach Hilfssatz 3.1.3 gibt es Funktionen
p1:D—-Rundps: EF— R,sodassfirx € D,y € F gilt:

f(@) = f(zo) + f'(x0) - (x — w0) + (x — 20) - p1(2), Jim () =0,
9(y) = 9(yo) +9'(wo) - (v —y0) + (¥ — o) - P2(v), Jm 2(y) =0

Setzt man y := f(z), so ergibt die 1. Gleichung

y—yo = f'(20) - (x — x0) + (x — o)1 ()
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und mit der 2. Gleichung erhalt man

9(f(2)) = 9(f(z0)) + (g'(f(w0)) - ['(w0)) -(& = o) + (& — wo) - (=)

~~ -

wobei wir

n(x) = g'(f(20)) - pr(x) + (o) - p2(f () + @2(f(2)) - (f'(x0) + 1(2))
gesetzt haben. Esist lim 7(z) = 0 und aus Hilfssatz 3.1.3 folgt, dass die Ableitung
r—x0

von g o f in x existiert und gleich ¢'(f (o)) - f/(xo) ist. O
Wenn man fiir die Ableitung die Leibnizsche Schreibweise gz verwendet, so kann
man sich die Kettenregel leicht merken: Man hat Funktioneny = y(x) und x = z(t)
sowie y = y(t) = y(x(t)); nach der Kettenregel ist

dy dy dz
dt  da dt’

Beispiel 3.1.8 Istc € Rund f(x) := cfiir z € R, so ist offensichtlich f/(z) = 0.
Fir f(z) := x gilt: f'(z) = 1, denn }1]13%) f(m"’h}z_f('t) =lim " =1.

h—0
Firn € Nist
d n n—1
2t =mn-z" .
dx
Dies folgt mit vollstandiger Induktion und der Produktregel :
d d
dxx”H = da:(x ") =1-2"+z-naz"" ' = (n+1)z".

Daraus ergibt sich: Ist p(X) := ag + a1 X + ... +a, X" = 3 a, X" ein Polynom,
k=0
so ist die Funktion p : R — R, z — p(x), differenzierbar und

n
p'(x) = ay + 2007 + ... + nayz" "t = Z kapz" 1.
k=1

In 4.1.3 werden wir beweisen, dass man auch konvergente Potenzreihen gliedweise

differenzieren darf:
o0 o0
d n n—1
q g anpx” = g Nnapx .
T
n=0 n=1

Daraus folgt dann:
Beispiel 3.1.9 Esist ;! e” = e, denn

n—

d , d o > nan! = gnl "
e’ = = = = e".
PORED DR DI
dz dz &= n! = nl — (n—1)!
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Beispiel 3.1.10 Sei D := {z € R|z # O}und ¢ : D — R, z +— !. Dann ist
¢ (x) = — 1, denn
1( 1 1) I —h I -1 1
im — )= lim = lim =— .
h—0h z+h x° h—0h(x+h)x 0 (z+h)z x?

Ist g eine differenzierbare Funktion mit g(x) # 0, so folgt nach der Kettenregel
3.1.7 (mit p(z) = 1):

1, / 1, 1, g/
=(pog) =— _g, also =—".
( g) (pog) r ( g) e
Ist f differenzierbar, so ergibt sich nach der Produktregel 3.1.6 (2):
Iy 1, .1 g, _flg—df
= f . = f . —+ f (= — ;
( g) ( g) g ( g2) 5

damit ist die Quotientenregel 3.1.6(3) bewiesen.

Wir fiihren noch einige Begriffe ein.

Definition 3.1.11 Eine Funktion f : D — R heifit stetig differenzierbar, wenn
f differenzierbar und f' stetig ist. Sie heif3t zweimal differenzierbar, wenn f und
auch f' differenzierbar sind; man schreibt f" := (f')'. Induktiv definiert man die
n-te Ableitung von f durch

f = (femVY,

man schreibt auch g:f := "), Eine Funktion f heift n-mal stetig differenzier-
bar, wenn f(") existiert und stetig ist. Man setzt auferdem f(©) = f.

Fiir n € Ng und auch n = oo bezeichnet man den Vektorraum (siehe 7.2.7) der
n-mal stetig differenzierbaren Funktionen auf D mit C™(D), also

CO(D) :={f: D — R| fiststetig},
C*"(D):={f:D —R| fistn-mal stetig differenzierbar} , n € N,
C>®(D):={f:D —R| fistbeliebig oft stetig differenzierbar}.

In 6.2.1 werden wir den Vektorraum C* (D) der auf einem offenen Intervall D ana-
lytischen Funktionen einfiihren.

Wir fiihren hier gleich den Begriff der differenzierbaren Funktionen mit kompaktem
Trager ein. Die Begriffe ,, Kompaktheit “und ,,Trager eine Funktion “behandeln wir
in einer allgemeineren Situation in 9.1.21.

Definition 3.1.12 Eine Funktion f : R — R besitzt kompakten Trager, wenn es
reelle Zahlen a < b gibt mit f(x) = 0 fiir alle © ¢ [a, b]. Man definiert fiir n € Ny
und n = oo:

CJ(R) := {f €C*(R) | f hat kompakten Triiger }.
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Wenn man ein Produkt mehrmals differenziert, erhalt man:
(f9)=1-9+f4

(f9)' =f" g+2f" g +f 3",

(f-9)® =fO.g43f@ . g +3f. g3 4 ¢,

Dies erinnert an die binomische Formel; analog zum Beweis des binomischen Lehr-
satzes ergibt sich durch Induktion nach n € N:

Satz 3.1.13 (Leibnizsche Regel) Fiir n-mal differenzierbare Funktionen f, g :

D — R gilt:
o0 n
o™ = <k> FOR) g0,

k=0

3.2 Die Mittelwertsiitze der Differentialrechnung

Die Mittelwertsatze, die wir in diesem Abschnitt herleiten, sind fiir zahlreiche
Anwendungen der Differentialrechnung von zentraler Bedeutung. Wir benotigen
zunachst einige Begriffe und Vorbereitungen.

Definition 3.2.1 Man sagt, eine Funktion f : D — R besitzt in xqg € D ein lokales
Maximum, wenn es ein § > 0 gibt mit Us(xo) C D und

f(x) < f(xo) fiiralle x € Us(xo);

sie besitzt in x ein isoliertes lokales Maximum, wenn gilt:

flz) < f(zo) fiiralle x € Us(xo),x # 0.

Entsprechend fiithrt man den Begriff “lokales Minimum” ein: f(xz) > f(xo) fir
x € Us(x). Man beachte, dass bei einem lokalen Extremum |z¢ — 0, ¢ + §[C D
vorausgesetzt wird; z( darf also kein Randpunkt von D sein.

Hilfssatz 3.2.2 Wenn f : D — R differenzierbar ist und in vy € D ein lokales
Maximum oder Minimum besitzt, so gilt f'(xq) = 0.

Beweis. Wir nehmen an, dass f in z( ein lokales Maximum besitzt. Dann existiert
eind > 0, sodass firalle x € R mit |z —xo| < 0 gilt: x € D und f(z)— f(z¢) < 0.
Definiert man wie in 3.1.2 die Funktion ¢ : D — R durch

f(@) = f(xo)

T — 2o fir x # o, q(xo) := f/(fo),

q(x) :=
s0 ist ¢ in xg stetig und fir zp — § < & < xg ist () > 0;firzg < x < 29+ 6
ist g(x) < 0, und nach 2.1.10 folgt daraus: g(x¢) = 0, also f'(x¢) = 0. Analog
behandelt man den Fall eines lokalen Minimumes. O
Daraus leiten wir den Satz von Rolle her (MICHEL ROLLE (1652-1719)):
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Satz 3.2.3 (Satz von Rolle) Ist [ : [a,b] — R stetig und in |a, b differenzierbar
und gilt f(a) = f(b), so existiert ein £ €]a, b] mit

f'(€) =o0.

Beweis. Nach 2.2.2 nimmt die stetige Funktion f in [a, b] Maximum M und Mini-
mum m an. Wenn die Extremwerte nur in den Randpunkten a, b angenommen wer-
den, so folgt aus f(a) = f(b), dass M = m ist. Dann ist f konstant und f'(x) = 0
fiir alle  €]a, b[. Andernfalls nimmt f das Maximum oder das Minimum in einem
Punkt £ €]a, b[ an; dann ist nach 3.2.2 f'(£) = 0. O
Nun konnen wir die beiden Mittelwertsatze beweisen:

Satz 3.2.4 (1. Mittelwertsatz der Differentialrechnung) Wenn f : [a,b] — R
stetig und in |a, b| differenzierbar ist, dann existiert ein £ €)a, b[ mit

Beweis. Wir definieren 4 : [a, b] — R durch

hz) = f(z) f(bl)):i(a) Nz —a).

Dann ist A(a) = h(b) und die Voraussetzungen des Satzes von Rolle sind erfiillt.
Daher existiert ein  €]a, b[ mit

und daraus folgt die Behauptung. O

Satz 3.2.5 (2. Mittelwertsatz der Differentialrechnung). Seien f und g stetige
Funktionen in [a,b], die im offenen Intervall |a,b| differenzierbar sind; g’ besiize
keine Nullstelle in |a,bl. Dann existiert ein & €|a, b[ mit
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Beweis. Es ist g(a) # g(b), denn aus g(a) = g(b) wiirde nach dem Satz von Rolle
folgen, dass ¢’ eine Nullstelle hat. Nun setzt man

ba) = f2) T =) g(a) ~ gta)
Wie oben ergibt sich aus h(a) = h(b), dass A’ eine Nullstelle & €]a, b besitzt und
0=1©=r© - 1571 10

folgt die Behauptung. a
Wir zeigen nun, wie man diese Siatze anwenden kann; bei den folgenden Aussagen
sei immer f : [a, b] — R eine differenzierbare Funktion.

Aus dem Satz von Rolle erhalt man

Satz 3.2.6 Zwischen zwei Nullstellen von f liegt immer eine Nullstelle von f’. Falls
f m verschiedene Nullstellen besitzt, so hat ' mindestens n — 1 Nullstellen.

Satz 3.2.7 Wenn f'(x) = 0 fiir alle x € [a, ] ist, dann ist f konstant.

Beweis. Seien 21, x5 € [a,b] und 21 < x9. Dann existiert ein £ € [, x2] mit

f(x2) — f(21)

T2 — X1

=f'(§) =0,

alsoist f(x1) = f(x2) und daher ist f konstant. O

Definition 3.2.8 Eine Funktion f : D — R heif3t monoton wachsend, wenn fiir
alle x1,x9 € D mit x1 < x2 gilt: f(x1) < f(x2); sie heifit streng monoton
wachsend, falls sogar f(x1) < f(x2) ist.

Analog definiert man monoton fallend (f(z1) > f(x2)) bzw. streng monoton fal-
lend (f(z1) > f(z2)).

Satz 3.2.9 Wenn fiir alle x € [a,b] gilt: f'(x) > 0, so ist f monoton wachsend,
falls f'(x) > 0, so ist f streng monoton wachsend.

Entsprechende Aussagen gelten fiir “monoton fallend”.
Beweis. Sind 7 < x2 aus [a,b], so existiert nach dem 1. Mittelwertsatz ein
& € [x1, 2] mit

fla2) = f(x1) = f'(€) - (w2 — x1).

Falls f’ tberall positiv ist, ist die rechte Seite dieser Gleichung positiv und daher
f(z2) — f(z1) > 0. Analog beweist man die anderen Aussagen. O
In 3.2.2 wurde gezeigt: Wenn f an einer Stelle z( ein lokales Extremum besitzt,
dann ist f'(zg) = 0. Einfache Beispiele zeigen, dass diese Bedingung nicht hin-
reichend ist (etwa f(x) := 23, zo := 0). Ein hinreichendes Kriterium liefert der
folgende Satz:
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Satz 3.2.10 Die Funktion f :]a,b[— R sei zweimal differenzierbar. Sei x¢ €|a, b
und

f'(x0) =0, f"(x0) <0.
Dann besitzt f in xg ein isoliertes lokales Maximum.

Beweis. Man wendet 3.1.2 auf f’ an Stelle von f an und setzt

") — f'(x )
gw) =TT i g0, g(a0) = o).

r — 2o
Dann ist ¢ in xq stetig und g(xp) < 0. Nach 2.1.10 existiert ein 6 > 0, so dass
firallex € Rmit 0 < |z — zo| < § gilt:  €]a,b[ und ¢(z) < 0, also wegen

f/(x()) = 0 .
f'(x)

Tr — X0
Fiir alle x mit xg < z < xg + § ist dann  — xy > 0, daher f’(z) < 0 und analog
folgt: f/(x) > 0 firzp — 0 < = < xo. Nach 3.2.9 ist f in Jxg — §, o] streng
monoton wachsend und in [zg, 2o + [ streng monoton fallend. Daraus folgt die
Behauptung. a

< 0.

Beispiel 3.2.11 (Brechung eines Lichtstrahls) Ein Lichtstrahl laufe von einem
Punkt (0, ) der oberen Halbebene zu einem Punkt (a, —b)der unteren Halbebe-
ne; h,a,b > 0. In der oberen Halbebene sei die Lichtgeschwindigkeit c;, in der
unteren co. Der Strahl lduft geradlinig von (0, ) zu einem Punkt (2, 0) und dann
zu (a, —b). Nach dem Fermatschen Prinzip (PIERRE DE FERMAT, (1601 - 1665))
durchlauft er den Weg so, dass die Zeit extremal ist.

Die Zeit ist . 1
ta) = Va2 +h?+ Ve —x)2 + b2
C1 C2
und
dt ) x a—x
x) = — )
dz ava?+h?  cexv/(a—x)% + b2
Aus §f (z) = 0 folgt
sin o _a
sinf ¢y

Dies ist das Snelliussche Brechungsgesetz: Das Verhaltnis des Sinus des Einfalls-
winkels zum Sinus des Ausfallswinkels ist gleich dem Verhaltnis der Lichgeschwin-
digkeiten.

(0, 7)

/

(a, _b)
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Die 2. Ableitung ist
d2¢ h2 b2
o (7) = + ;
dz a(Va2+h2)3  c(y/(a—x)% +b2)3
aus 3;5 > 0 und g; (0) < 0, gi (a) > 0 folgt, dass g; ina < z < b monoton

wachst und genau eine Nullstelle besitzt; die Funktion ¢ nimmt dort das Minimum
an.

Beispiel 3.2.12 (Das PLANCKsche Strahlungsgesetz) Das PLANCKsche Strah-
lungsgesetz beschreibt das Emissionsvermogen F eines schwarzen Korpers. Es sei
h die Plancksche Konstante, k& die Boltzmannsche Konstante, ¢ die Lichtgeschwin-
digkeit im Vakuum, 7" die Temperatur und A die Wellenlange der Strahlung. Dann
lautet das Plancksche Strahlungsgesetz:

hc? 1

A5 exp(ch/kTA) —1°

(MAX PLANCK, (1858 - 1947), LUDWIG BOLTZMANN (1844 - 1906))

Es soll gezeigt werden, dass bei fester Temperatur 7" die Emission £ an genau einer
Stelle A\, ein Maximum besitzt (man vergleiche dazu [22] und [16]). Wir zeigen
dazu, dass es genau ein )\, gibt, so dass E’ links davon positiv und rechts davon
negativ ist. Um die Rechnung zu vereinfachen, setzen wir g := hg ,also F = hf .

E() =

Wegen (;)/ = — 32 geniigt es, zu untersuchen, an welchen Stellen ¢’ positiv oder
negativ ist. Es ist

9O =N (e )~ 1),

g\ = 5)\4(6531’(&’&) —1) =A% k’;"};ﬁ exp(k(?)\) =
=\ (5(6531’( kqub,\) - 1) - chh}\ (e;vp( kpqiL,\))
Nun setzen wir

x = kcjff)\ und  ¢(z) = xe® — 5e® + 5.
Esist ¢/ (z) = (z —4)e®, ¢(0) =0, p(4) =5—e* <0, ¢(5) = 5. Daraus
folgt: In 0 < x < 4 ist ¢ streng monoton fallend und negativ, in x > 4 ist ¢ streng
monoton wachsend und besitzt genau eine Nullstelle z,,, mit 4 < x,, < 5.( Man
rechnet nach, dass x,, = 4, 965... ist.) Setzt man \,, := M‘f;‘m , so ergibt sich:
Esist E'()\;,) = 0 und E wichst in ]0, A, [ und fallt in |\, oo[. Daher nimmt E
an der Stelle )\,,, das Maximum an.

Es ist
ch

- kl‘771,’

dies ist das WIENsche Verschiebungsgesetz(WILHELM WIEN ( 1864 - 1928)):
Am - T ist konstant, mit steigender Temperatur wird die Wellenlange maximaler
Emission kiirzer .

Am - T
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Wir leiten nun aus dem 2. Mittelwertsatz die Regel von de 1’Hospital her (GUIL-
LAUME FRANCOIS ANTOINE DE L’HOSPITAL (1661-1704)). Mit dieser Regel
kann man oft Grenzwerte

1
berechnen, wobei lim f(z) = 0 und auch lim g(x) = 0 ist. Entsprechendes gilt
auch, wenn lim f (.‘237&: oo und lim g(x) T:_moo ist; kurz zuammengefasst: man
untersucht Gwreslzwerte der Form éagnd o

Satz 3.2.13 (Regel von de I’Hospital). Seien [ :|a,b[— R und g :]a,b[— R
differenzierbar, ' besitze keine Nullstelle; es sei lim f(x) = 0 und lim g(x) = 0.

f(=@)

Dann gilt: Wenn lim F®@) oxistiert, dann existiert auch lim und es ist
z—a 9 () (x)

tim T®)

T—a g(x T—a g’(x) ’

Beweis. Wir setzen f(a) := 0; dann ist die Funktion f auf dem halboffenen Intervall
[a, b] definiert und aus lim f(z) = 0 folgt, dass [ : [a, b[— R stetig in a ist. Analog
setzen wir g(a) = 0. Nun sei (z,), eine Folge in ]a, b[, die gegen a konvergiert.
Nach dem 2. Mittelwertsatz existieren &,, €|a, [ mit

f(@n) = fla) _ f'(n)

g(xn) —gla) — g'(&n)

Es gilt also fiir alle n € N:
flan) _ f'(&n)
9(n) g'(6n)’

Weil (&), gegen a konvergiert, folgt

! !/
n—o0 g(xn) n—oo g'(§n)  a—a g'(x)
und daraus ergibt sich die Behauptung.
Eine analoge Aussage gilt nattirlich fiir z — . O

Wir beweisen nun einen Zwischenwertsatz fiir f/, dazu bendtigen wir:

Hilfssatz 3.2.14 Ist f : D — R in xo € D differenzierbar und f'(xq) > 0, so
existiert ein § > 0, so dass fiir x € D gilt:

f(x) < f(xo) falls xg — 0 < x < xo, f(x) > f(xo) fallsxg <x <2x0+9
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Beweis.Wir definieren ¢ wie in 3.1.2. Aus ¢(z¢) = f'(xo) > 0 und der Stetigkeit
von ¢ folgt: Es gibtein § > 0, so dass firalle z € D mit 0 < |z — xo| < J gilt:

f(@) = f(xo)

r — X9

> 0.

Ist © < x¢, so ist der Nenner des Differenzenquotienten negativ und daher ist
f(x)— f(zo) < 0. Fir x > x ist der Nenner positiv, somit f(x) — f(zo) > 0. O
Nun konnen wir zeigen, dass bei jeder differenzierbaren Funktion f fiir die Ablei-
tung f’ der Zwischenwertsatz gilt, obwohl f’ unstetig sein kann.

Satz 3.2.15 (Zwischenwertsatz fiir f') Ist f : [a,b] — R differenzierbar, so exi-
stiert zu jedem w mit f'(a) < w < f'(b) (bzw. f'(b) <w < f'(a) ) ein & € [a, V]
mit
f1(§) = w.

Beweis. Wir diirfen w = 0 annehmen, sonst betrachten wir x — f(z) —w - .
Sei also f/(a) < 0 < f'(b). Die Funktion f ist stetig und nimmt nach 2.2.2 ihr
Minimum an. Nach dem soeben bewiesenen Hilfssatz gibt es ein ¢ > 0 mit f(z) <
fla)fira <z <a+dund f(z) < f(b) fiir b — 6 < & < b. Daher nimmt f das
Minimum nicht in den Randpunkten @ oder b, sondern in einem Punkt ¢ €]a, b[ an
und nach 3.2.2 ist f'(£) = 0. O

lagrs € b—5 b

Aus dem Zwischenwertsatz fiir die Ableitung folgt, dass f’ keine Sprungstelle ha-
ben kann; zum Beispiel existiert zur Funktion A(x) := 0 fir z < 0 und h(z) = 1
fir x > 0 keine differenzierbare Funktion f mit f* = h. Die Unstetigkeit einer
Ableitung kann man sich etwa so vorstellen, wie es bei der oszillierenden Funktion
22 sin(1/x) der Fall ist; diese wird in 4.3.20 untersucht.

3.3 Die Umkehrfunktion

Eine Funktion f : D — R ordnet jedem = € D einy = f(x) € R zu. Unter der
Umkehrfunktion f~! von f versteht man die Funktion, die einem y € R das x € D
zuordnet, fiir das f(z) = y gilt; es ist also f(f~1(y)) = y. Istetwa f(z) = 5z — 2,
so setzt man y = 5z —2, bestimmt daraus z = | (y+2), alsoist f 7 (y) = } (y+2).
Um sicherzustellen, dass es zu y ein derartiges = gibt, muBl man y € f(D) vor-
aussetzen; um zu erreichen, dass x eindeutig bestimmt ist, setzt man f als injektiv
voraus (Das bedeutet: Aus 1 # x5 folgt f(z1) # f(x2)).
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Definition 3.3.1 Es sei f : D — R eine Funktion; dann heifpt f~' : E — R
Umkehrfunktion zu f, wenn gilt:

o | istinjektiv,
. E=f(D),
o fiiralle yc E gilt: f(f~(y)) = y.

Satz 3.3.2 Zu jeder injektiven Funktion f : D — R existiert genau eine Umkehr-
funktion f~': E — R, E = f(D). Fiirx € D,y € E gilty = f(z) genau dann,
wenn x = f~1(y) ist. Fiir alle x € D ist

TS @) ==

Beweis. Zuy € E = f(D) existiert ein x € D mit y = f(x); weil f injektiv ist,
gibt es genau ein derartiges x und man setzt f~1(y) := x. Alle iibrigen Aussagen
des Satzes ergeben sich aus der Definition von f~1. O
Der Graph von f ist

Gy ={(z,y) € D x Ely = f(z)}

und der Graph von f~! ist

Gr = {(y.2) € D x Blr = [ (y)}.

Nun ist y = f(x) dquivalent zu z = f~*(y) und daher

G-+ ={(y,x) € Ex Dly = f(z)};

man erhilt also G y—1 aus Gy durch Spiegelung an der Geraden y = .

Jede streng monotone Funktion ist injektiv und besitzt daher eine Umkehrfunktion.
Fiir stetige Funktionen f : I — R auf einem Intervall I gilt auch die Umkehrung;
dabei darf I offen, abgeschlossen, halboffen oder auch uneigentlich sein.

Hilfssatz 3.3.3 Ist f : [ — R stetig und injektiv, so ist f streng monoton.
Beweis. Wenn f nicht streng monoton ist, dann gibt es in I Punkte zg, x1, Yo, y1
mit
zo < yo und f(zo) > f(yo),
z1 <y und f(z1) < f(y1)-
Fiir t € [0, 1] setzt man
z(t) = (1 — t)zg + taq, y(t) =1 —1t)yo + ty1.

Dann liegt x(t) zwischen g und x1, also z:(¢) € I und auch y(t) € I.
Aus zg < yo und 1 < y; folgt z(t) < y(t).
Die Funktion
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h:[0,1] =R, ¢t f(y(t)) — fz(t))

ist stetig, h(0) = f(yo) — f(xo) < Ound h(1) = f(y1) — f(z1) > 0. Daher besitzt
h eine Nullstelle ¢, also ist

z(to) <ylto), [f(z(to)) = f(y(to));

dann ist aber f nicht injektiv. O
Nun zeigen wir, dass die Umkehrfunktion einer stetigen Funktion ebenfalls stetig
ist.

Satz 3.3.4 (Satz von der Stetigkeit der Umkehrfunktion). Ist f : I — R injektiv
und stetig , so ist auch f~! stetig .

Wenn f : I — R streng monoton wachsend ist, dann auch f~';eine analoge Aus-
sage gilt fiir monoton fallende Funktionen.

Beweis. Wir beweisen zuerst die zweite Aussage und nehmen an, die Funktion f -1
sei nicht streng monoton wachsend. Dann gibt es in f(I) Punkte mit y; < y2 und
F7Hy1) > f~(y2); daraus folgt aber f(f~'(y1) > f(f~"(y2)), also y1 > .
Nun sei f injektiv und stetig. Nach dem vorhergehenden Satz ist f streng monoton;
wir behandeln den Fall, dass f streng monoton wachsend ist und zeigen, dass f -1
in jedem Punkt g € f(I) stetig ist.

Es sei ¢ = f(p) und wir nehmen zuerst an, dass p ein innerer Punkt von I ist. Es
seie > 0 vorgegebenund [p —e,p+¢] C I. Wirsetzenp; :=p—¢c;pa:=p+¢
und V' := [p1, p2]; ausserdem sei q1 := f(p1), g2 := f(p2) und U := [q1, q2]. Weil
f streng monoton wachsend ist, gilt g1 < ¢ < g2, und daher ist U eine Umgebung
von q.

Aus p1 < a < po folgt g1 < f(z) < g2 . Daher gilt f(V) C U und aus dem
Zwischenwertsatz folgt f(V) = U. Dann ist f~}(U) = V und daraus folgt , dass
f~1in ¢ stetig ist.

Wenn p ein Randpunkt von [ ist, etwa [ = [a, b] und p = a, dann betrachtet man zu
vorgegebenem e > 0 die Intervalle V := [p,p+¢] C Tund U := [q, f(p+¢)] . Es
ergibt sich wieder f(V) = U und daher f~}(U) = V . Daraus folgt die Stetigkeit
von f~lingq. 0

Bemerkung. Man nennt eine Abbildung offen, wenn das Bild jeder offenen Menge
wieder offen ist (vgl.14.8.1). Wir haben gezeigt: Ist I C R ein offenes Intervall und
f : I — Rinjektiv und stetig, so ist die Abbildung f offen.

Wir behandeln nun die Frage, wann eine Umkehrfunktion f —1 differenzierbar ist.
Falls f und f~! differenzierbar sind, konnen wir die Gleichung f~1(f(z)) = =
nach der Kettenregel differenzieren und erhalten (f~1)'(f(z)) - f'(x) = 1. Daraus
folgt: Wenn f’(z) = 0 ist, dann kann f~! in f(z) nicht differenzierbar sein.

Satz 3.3.5 (Satz von der Differenzierbarkeit der Umkehrfunktion). Die Funkti-
on [ : I — R sei injektiv und differenzierbar; fiir xo € I gelte f'(xo) # 0. Dann
ist f~Yinyo := f(x0) differenzierbar und
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1
f'(@o)
Beweis. Es sei (y,, ), eine Folge in f(I), y, # yo firn € N, lim y, = yo. Setzt
n—oo

(f71) (o) =

man z,, := f~1(yy), soist x,, # xo und wegen der Stetigkeit von f ! konvergiert
(@n)n gegen xo. Wegen f'(zo) # 0 existiert
Ty — X0 1

i @) =) _ _
n—o0 Yn = Yo n—oc f(wn) = fxo)  f'(w0)

O
Der Satz sagt aus, dass eine auf einem Intervall differenzierbare Funktion mit nir-
gends verschwindender Ableitung ein Diffeomorphismus ist (man vergleiche dazu
Definition 9.3.3).
Man merkt sich diese Formel, wenn man die Umkehrfunktion von y = y(z) in der
Form = = z(y) schreibt; dann ist

dz 1
= .-
dy g

Als Beispiel behandeln wir die Funktion {/z:

Beispiel 3.3.6 Fiir alle n € N ist die Funktion R™ — R, z +— z", streng monoton
wachsend und nimmt alle positiven Werte an. Die Ableitung ist n - z"~! > 0; also
existiert die Umkehrfunktion RT™ — R, z +— {/z. Die Ableitung der Umkehrfunk-

tion ist
d 1

Va = .
dl. \/ n( n :L.)nfl
Falls n ungerade ist, ist z — 2™ sogar auf ganz R streng monoton wachsend und

man hat die Umkehrfunktion R — R, 2 — {/z, die auf ganz R definiert und stetig
ist; sie ist fiir « # 0 differenzierbar.

$2 .1'3
/o /
1 -~ Vz 1. ,——'3‘\/5
,’7 s
i T~
L
-7
/
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3.4 Uneigentliche Grenzwerte

In 2.1.3 hatten wir fiir reelle Zahlen a, ¢ den Limes lim f(x) = c definiert. Nun

sollen auch Formeln wie lim ;2 = oo oder lim , Jrle = 0 behandelt werden; es

x—0 xTr—00

ist also a oder c gleich +o0.

Definition 3.4.1 Ist (ay,),, eine Folge reeller Zahlen, so definiert man

lim a, = +o0,
n—oo

wenn es zu jedem M > 0 ein N € N gibt mit a,, > M fiirn > N.
Ist DCR, f: D — Runda € D, so definiert man

lim f(z) = +o0,

r—a

wenn es zu jedem M > 0 ein 6 > 0 gibt, so dass fiir alle x € D mit |z — a| < §
gilt: f(x) > M.
Man setzt lim a, = —oo, falls lim (—a,) = o0,

n—oo

lim f(z) = —oo, falls lim (— f(x)) = +oo.

Definition 3.4.2 Ist D C R und [a,00[C Dund f : D — R, ¢ € R, so setzt man
lim f(z) = ¢ wenn es zu jedem ¢ > 0 ein R > 0 gibt, so dass |f(x) — c| < € ist

ﬁ'ir allex € D mitx > R.

Definition3.4.3 Ist D C R, [a,00[C D und f : D — R, so definiert man
lim f(x) = +oo, wenn es zu jedem M > 0 ein R > 0 gibt, so dass fiir alle

x € Dmitx > Rgilt: f(x) > M.
Entsprechend definiert man lim_ f(x).

Man kann leicht beweisen, dass die de 1I’Hospitalsche Regel 3.2.13 auch fiir unei-
gentliche Grenzwerte gilt; Beispiele dazu finden sich in 4.2.11 und 4.2.12.
Wir zeigen:

Satz 3.4.4 Ist
p(X) = X" + an—lX"_l + ...+ alX + ap
ein Polynom ungeraden Grades mit reellen Koeffizienten, so gilt:

lim p(z) = —o0, lim p(z) = +oo.

T——00 r——+00

Beweis. Fiir x # 0 ist

Gnp—1 ago
=z"(1 e
ple) =21+ 4
und daraus ergibt sich leicht die Behauptung ( man vergleiche dazu 14.7.2). a

Mit dem Zwischenwertsatz folgt daraus:



3.4 Uneigentliche Grenzwerte 59

Satz 3.4.5 Ist
p(X)=X"+ A1 X" '+ a1 X +a
ein Polynom ungeraden Grades (an,—1, . ..,a9 € R ), so besitzt die Funktion
p:R— Rz~ px),

mindestens eine reelle Nullstelle.

Aufgaben

3.1. Seia < b < ¢; die Funktionen f : [a,b] — Rund g : [b,¢] — R seien differenzierbar
und es gelte f(b) = g(b) und f'(b) = g’(b). Zeigen Sie, dass

) f(z) firz € [a,b]
hila,d — Rz {g(m) fiir z €]b, ]
in b differenzierbar ist.

3.2.Sei f : R — R stetig; zeigen Sie, dass g : R — R, z +— z - f(z), im Nullpunkt
differenzierbar ist.

3.3. Eine Funktion f : R — R heif3t Lipschitz-stetig, wenn ein L > 0 existiert mit
[f(z) — f(@)| < L-|x—2|firallex, 2’ € R.
Zeigen Sie:

a) Ist f differenzierbar und f’ beschrinkt, so ist f Lipschitz-stetig.
b) Jede Lipschitz-stetige Funktion ist gleichmaissig stetig.

3.4. Die Funktion f : R — R sei definiert durch f(z) ;= = ~22° 52" +4242 fis oo £ ] ypd

x—1
f(1) := —8. Untersuchen Sie, ob f im Punkt xg = 1 differenzierbar ist.
3.5. Sei
fl1-1,+1-Rz+—
1—x
berechnen Sie £ fiir k € N.
3.6. Sei )
T fir z<0
f'R_)R’mH{a,ﬁ fir >0

Existiert f'(0) und f”(0) ?

Weitere Aufgaben zur Differentialrechnung finden sich beim nachsten Kapitel, denn dort
stehen uns die elementaren Funktionen zur Verfiigung.
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Potenzreihen und elementare Funktionen

4.1 Potenzreihen

Wir behandeln zunéchst Potenzreihen in C. Ist (a,, ), eine Folge komplexer Zahlen

und zg € C, so heifit
oo
Z an(z — 20)"
n=0

eine Potenzreihe. Wir untersuchen zuerst das Konvergenzverhalten von Potenzrei-
hen; dann zeigen wir, dass man konvergente Potenzreihen gliedweise differenzieren
darf (dazu vergleiche man [21] und [26]). Durch eine Substitution kann man zy = 0
erreichen; wir behandeln daher haufig Potenzreihen

Zuerst zeigen wir, dass eine Potenzreihe, die in einem Punkt w € C konvergiert,
auch in der offenen Kreisscheibe um 0 mit Radius |w| konvergiert.

Satz 4.1.1 Sei Z anz" eine Potenzreihe und w € C, w # 0. Wenn Z anpw
n=0
konvergent ist, dann sind die folgenden Reihen fiir alle z € C mit |z| < \w\ absolut

konvergent:

oo o0 oo
g anz"™, E na,z" ", g (n — Dnayz""
n=0 n=1 n=2

oo

Beweis. Die Reihe ) a,w" konvergiert, daher ist (a,w™),, eine Nullfolge; somit
n=0

existiert ein M > 0 mit |a,w™| < M fiiralle n € Ny. Sei z € Cund |z| < |w|; wir

setzen q := “j‘ .Dannist 0 < ¢ < lund fiir alle n € Ny gilt

|anz™| = |lapw™q"| < M - q".
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o0
Nach dem Majorantenkriterium konvergiert > a,z™ absolut. Fiir n > 1 ist
n=0

Zn71| — nfl‘

1 _ M
‘na" "LU‘ ' ‘na"wnqn 1| < |’LU| |TLq

Nach 1.5.14 konvergiert > ng"~! und nach dem Majorantenkriterium ist die Rei-
n=1

o0
he Y na,z""! absolut konvergent. Wendet man die soeben bewiesene Aussage

n=1
o0 oo
auf " na,z""1 an, so folgt die absolute Konvergenz von 3~ (n — 1)na, 2" 2.
n=1 n=2

O
Aufgrund dieses Satzes ist es sinnvoll, den Konvergenzradius einer Potenzreihe zu
definieren:

R :=sup{|z — 20| | D an(z — 20)"ist konvergent}

n=0

o0
heift der Konvergenzradius von ) a,(z — 29)"; R = oo ist zugelassen.

n=0
Es gilt: Fiir |z — 20| < R ist die Potenzreihe konvergent, fiir |z — 29| > R ist sie
divergent; tiber die Punkte auf |z — zp| = R kann man keine allgemeine Aussage
machen.

Nun soll gezeigt werden, dass man eine Potenzreihe gliedweise differenzieren darf;
dazu benotigen wir eine Abschitzung fiir den Abstand zwischen Differenzenquoti-
ent und Differentialquotient, die wir zuerst fiir f(x) = «™ herleiten (vgl. [21]):

Hilfssatz 4.1.2 Sein € Nyn > 2, p,x,2 + h € R, |z| < o,|z + h| < o,h # 0,
dann gilt:

LR — g 1
(.r zl e na—1 < Q(n _ l)ngn_2 . |h‘
Beweis. Es sei € R, wir definieren fir n > 2

gn R Rt —t" P4t 20+ 422" 3 a2 42"
dannist (t — z)g,(t) = t" — z™ und daher
tn — pn

n—1

fiir t # x; gn(x) = nx
Fir |z| < o, |t| < pist
g ()] = |(n = 1)t" 2+ (n—2)t" Bz + ...+ 22" 3 "2 <

< ((n—1)+(n—2)+...+2—|—1)-97"_2:;(n—1)n-gn_2.

Nun sei ¢t # x; nach dem Mittelwertsatz existiert ein £ zwischen = und ¢ mit
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gn(t) - gn(x) = (t - 1’)9;(5)

Daher ist
tn—an 1
t—i — nz" 7 <t -2 Z(n—l)n-g)”*2

und mit t = x + h folgt die Behauptung.
Der Hilfssatz gilt auch fiir z, + h € C; an Stelle des Mittelwertsatzes geht man
von der Gleichung g, (t) — f g, (s)ds aus und schitzt nun das Integral

nach 14.3.5ab: | [ g/ (s ds\ < |t — x| (n—1)ne" 2. 0
Nun konnen wir beweisen ( vgl.[21] und [26]):

oo}

Satz 4.1.3 Wenn die Potenzreihe Y, anx™ mit a, € R fiir |x| < r konvergiert,
n=0

dann ist die Funktion

fi=-rr—R, z— Zanx"
n=0

differenzierbar und es gilt:

oo
= E na,z" !
n=1

Beweis Es sei || < 7 und es sei ¢ > 0 vorgegeben; wir wihlen dazu ¢ € R mit
|z| < o < r; dann existiert

(oo}

c:= Z(n — Dnlay,|p" 2

n=2

Nun wihlen wir 6 > 0 so, dass |z]| + ¢ < pund ¢d < ¢ ist.
Mit dem Hilfssatz ergibt sich fiir 0 < |h| < §:

f(f—i-h Zna 21 <Z‘a"‘

oo
< ; S (0 — Dnfanlo™2 b < c-|h] < e
n=2
O
Die Aussage dieses Satzes kann man so formulieren: Man darf konvergente Potenz-
reihen gliedweise differenzieren:
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o0
Wendet man diese Aussage auf f'(z) = > na,z"~! an, so erhilt man:
n=1

oo

' (x) = Z(n — Dna,z" 2

n=2

Auf diese Weise ergibt sich

oo
Satz 4.1.4 Wenn Y a,z™ mit a,, € R fiir |x| < r konvergiert, so ist die Funktion

n=0
f(x) = > ana™in] — r,r| beliebig oft differenzierbar; fiir k € N gilt:
n=0
n=0

insbesondere ist

ar = fP0).

4.2 Exponentialfunktion und Logarithmus

In 1.5.15 hatten wir gezeigt, dass die “Exponentialreihe”

ooz”_l 22 28
Zn! =142+, + o o
n=0

fiir alle z € C konvergiert.
Die Funktion

90271,
exp:C—C, ZHZn'

n=0
heifit die Exponentialfunktion.
Die Zahl -
1
e:=exp(l) = Z ol
n=0

heilt die Eulersche Zahl; es ist e = 2,7182818....
Man schreibt auch e* := exp(z). Wir untersuchen nun die Exponentialfunktion im
Reellen:

Satz 4.2.1 Die Exponentialfunktion exp : R — R ist differenzierbar und

da exp(x) = exp(x).
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Beweis. Nach 4.1.3 ist

o0 -1

d &z > na ! "
da Z:O nl Z:l DY (n—1) ~ P

n=1
O
Satz 4.2.2 (Funktionalgleichung der Exponentialfunktion) Fiir alle z,y € R
gilt:
exp(z + y) = exp(z) - exp(y).

Beweis. Fiir t € R setzt man

f(@) == exp(z) - exp(t — ),

dann ist
f'(@) = exp(a) - explt — z) + exp(z) - (— exp(t — z)) =0,
daher ist f : R — R konstant, also f(z) = f(0) :
exp(z) exp(t — x) = exp(t)
und fiir ¢ := x + y erhalt man

exp(z) exp(y) = exp(z + y).

O
Diese Funktionalgleichung gilt auch in C. Aus der Funktionalgleichung kann man
nun leicht die wichtigsten Aussagen tiber die Exponentialfunktion herleiten:

Satz 4.2.3 Die Exponentialfunktion ist streng monoton wachsend und nimmt jeden
positiven reellen Wert genau einmal an.

Beweis. Fiir z € Rist exp(x) - exp(—2) = exp(0) = 1; daher hat die Exponential-
funktion keine Nullstelle und es ist

1

exp(—z) = exp(z)’

Es ist exp(0) = 1 > 0; daher nimmt exp(x) keinen negativen Wert an, denn sonst
hatte die Exponentialfunktion nach dem Zwischenwertsatz eine Nullstelle. Es ist
also exp(z) > 0 und daher auch ! exp(z) > 0 fiir z € R und daher ist die
Funktion streng monoton wachsend. Aus der Definition folgt fir z > 0:

2
exp(z) =14z + :; +.>214z
1
exp(z)
nimmt diese Funktion in | — oo, 0[ jeden Wert aus |0, 1] an. |

und daher nimmt exp(z) in [0, oo jeden Wert y > 1 an. Wegen exp(—z) =
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Wir bemerken noch, dass fiir alle n € N gilt:
exp(n) =e-...-e (n— mal),

also exp(n) = e”, denn es ist exp(1) = e und aus exp(n) = e” folgt:

exp(n+ 1) = exp(n) - exp(1) = " - e = "1,

Wir schreiben nun auch
e’ :=exp(z) fir x € R.
Nun zeigen wir, dass die Exponentialfunktion die einzige differenzierbare Funktion

f mit f" = fist, wenn man noch f(0) = 1 normiert:

Satz 4.2.4 Ist f : R — R differenzierbar und f' = f, f(0) = 1, so gilt f(x) = *
fiir alle z € R.

Beweis. Sei g(z) := f(z) - e *;dannist ¢'(x) = f/(x)e™™ — f(x)e™* = 0; somit
ist g konstant: g(x) = g(0) = £(0)-e® = 1 fiir x € R und daher f(z)e~% = 1 oder
flx) =e". O
Nach 4.2.3 ist e” streng monoton wachsend und nimmt jeden positiven reellen Wert
genau einmal an; daher existiert die Umkehrfunktion der Exponentialfunktion:

Definition 4.2.5 Die Umkehrfunktion der Exponentialfunktion heifit Logarithmus
und wird mit
In:RT—=R

bezeichnet; es gilt also

e =y fiir ye R, In(e®) =z fiir x € R.
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Satz 4.2.6 Der Logarithmus In : RT — R ist eine streng monoton wachsende
differenzierbare Funktion, die jeden reellen Wert genau einmal annimmt; fiir x > 0
gilt:

d

1 =

gg P2
Beweis. Nach dem Satz von der Differenzierbarkeit der Umkehrfunktion 3.3.5 ist
firz >0

1 1 1

nr= =

dz exp(lnz) 2’

und daraus ergeben sich alle iibrigen Behauptungen . O

Wir bemerken noch, dass fiir alle z # 0 gilt:

1
In|z|= ",
x

dz
denn fiir z < 0ist (In|z|)’ = (In(—2))’ = — .
Aus der Funktionalgleichung fiir die Exponentialfunktion folgt eine Funktionalglei-
chung fiir den Logarithmus:

Satz 4.2.7 (Funktionalgleichung des Logarithmus) Fiir alle x,y ¢ R gilt:
In(z-y)=Inz+Iny.

Beweis. Wir setzen v := Inz und w := Iny; dann ist e’ = z und e = y und es
gilt:

e?)+U) — ev . ew =2z,

daher

v+w)

In(x - y) = In(e =v+w=Inz+Iny.

O
Mit Hilfe des Logarithmus kann man nun allgemeine Potenzen a” fiir reelle Zahlen
a,r mit a > 0 definieren.

Definition 4.2.8 Fiira,r € R, a > 0, sei

a” :=exp(r-1lna).
Firn € Nundr = }L,a>0,ist
(a*/™)" = (exp(} Ina))" = exp(} Ina) - ... exp(} Ina) = exp(n- ! Ina) = a,
also
al/™ = Y.

Wir geben noch die Ableitung von a” an, wobei wir zuerst 7 und dann ¢ als Variable
betrachten:
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Beispiel 4.2.9 Fiir a > 0 sei
fR—>R, x— d*

dannist f'(z) = { (exp(zIna)) = exp(zlna) - Ina = a®Ina, also

d
a®=a" -Ina.

dx

Beispiel 4.2.10 Fiir r € R sei

g: Rt =R, 2 2"

)

dannist g'(z) = ! (exp(rlnz)) = exp(rlnz) -7 =2"- " =r 2" also

damit haben wir die fiir » € N geltende Formel verallgemeinert.

Die Funktion x* wird in Aufgabe 4.9 behandelt.

Nun untersuchen wir das Verhalten von Exponentialfunktion und Logarithmus fiir
T — 00.

Satz 4.2.11 Fiir allen € N gilt

xT
.oe
lim = +o00.
z—o0 ™

Beweis. Fiir x > 0 ist e* > 1 + z und daher lim e* = +o0. Fiir n € N erhilt man
durch Anwendung der de 1’Hospitalschen Régel

. e . e .
lim = lim = ...= lim € = +oc0.
r—+oo T T—00 ’n,x”fl T— 00

Ahnlich beweist man

Satz 4.2.12 Fiir jedes a > 0 gilt:

. Inz
lim =0.
z—+oo g%

Satz 4.2.11 besagt: Zu jedem n € N und M > 0 existiert ein R > 0 mit

e.’ﬂ
> M fir z > R,
1-77,

also
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e” > M- z" fir x > R.

Man interpretiert diese Aussage so: Die Exponentialfunktion wachst schneller als
jede noch so grofie Potenz von z.
Satz 4.2.12 bedeutet: Zu jedem a > 0 und £ > 0 existiert ein R > 0 mit

Inx ..
|| <e firz>R,
x

daher
Inzx <e-z® fir z > R;

der Logarithmus wachst also langsamer als jede Potenz z® mit positivem Exponen-
ten a.

Wir bringen noch ein einfaches Beispiel:

Beispiel 4.2.13 Fiir c € R sei
ferR>Rz—e*—c- .

Wir untersuchen den Verlauf von f., insbesondere die Anzahl der Nullstellen. Diese
sind die Schnittpunkte der Geraden y = ¢ - x mit y = e¢”. Man wird erwarten, dass
es fiir ¢ < 0 genau einen Schnittpunkt gibt; falls ¢ > 0, aber klein ist, diirfte es
keinen Schnittpunkt geben, fiir grosse ¢ erwartet man zwei Schnittpunkte und bei
einer Grenzlage, wenn y = c - « Tangente ist, einen Schnittpunkt.

Dies rechnen wir nun nach:

Fir ¢ < 0 ist f. streng monoton wachsend; wegen qcli)mOO fe(x) = —o0; und

1i1}_1 fe(x) = 400 hat f. genau eine Nullstelle.

Fiir ¢ > 0 hat f/(z) = e — ¢ die Nullstelle In c¢. Weil f/ streng monoton wichst,
ist f! links von In ¢ negativ und rechts positiv. Daher hat f, genau im Punkt In ¢
ein Minimum. Wegen f.(Inc¢) = ¢(1 — Inc¢) ist fe(Inc) > 0 fir 0 < ¢ < e und
fc hat keine Nullstelle. Fiir ¢ = e gibt es genau eine Nullstelle und fiir ¢ > e zwei
Nullstellen.

= c<0
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4.3 Die trigonometrischen Funktionen

Fiir z € C definiert man

) 2n 2 4 6

CoS 2z := ZO(—l)”- (;")! =1-%5+%5 &t
ne

. S 2n41 3 5 7

sinz := ZO(—l)”- (§n+1)! =z—5 +5 =5t
n=

aus dem Quotientenkriterium folgt, dass beide Reihen fiir z € C konvergieren.
Grundlegend fiir die Behandlung dieser Funktionen ist die Eulersche Formel
(LEONHARD EULER (1707-1783)):

Satz 4.3.1 (Eulersche Formel) Fiir alle z € C gilt:

e'? = cosz +isinz.

und daher
1 (eiz 4 efiz) sin 2z (eiz efiz)
cosz = = _ )
2 ’ 2i

2+1

5 i n z C
Beweis. e'* Zl Zl 2n,+121 *(mp1y = Cosz+isinz. 0O

Aus der Funktlonalglelchung der Exponentlalfunktlon 4.2.2 leiten wir mit Hilfe der
Eulerschen Formel die Additionstheoreme fiir cos x und sin x her:

Satz 4.3.2 (Additionstheoreme) Fiir alle x,y € C gilt:
sin(z +y) = sinxzcosy + cosxsiny

cos(z +y) = coszcosy — sinzsiny.

Beweis. cos(z + y) + isin(z + y) = e!(@+t¥) = ¢l* . oV =

= (cosz +isinz) - (cosy +isiny) =

= (coszcosy — sinzsiny) + i(cosx siny + sinx cos y). O
Auch die Formel von Moivre (ABRAHAM DE MOIVRE (1667-1754)) erhalt man
unmittelbar aus der Eulerschen Formel und der Gleichung (e'*)" = ei"*:

Satz 4.3.3 (Moivresche Formeln) Fiir allen € N, z € C gilt:
(cosz 4 isin z)"™ = cosnz + isinnz.

Beweis. Die linke Seite ist gleich (¢'#)", die rechte ist e!("2). O

Beispiel 4.3.4 Aus den Moivreschen Formeln kann man leicht Beziehungen zwi-
schen cos nx, sinnz und cos™ x, sin” x herleiten. Es ist

cos 2x + isin 2z = (cosx + isinz)? = cos® z 4 2icoszsinx — sin”
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also
cos 2z = cos? & — sin? x, sin2xz = 2coszxsinz.
Analog erhilt man
_ 3 2 . _ 2 . .. 3
cos3x = cos®x — 3cosxsin” x sin3x = 3 cos” xsinx — sin” x.

Nun sollen die trigonometrischen Funktionen im Reellen weiter untersucht werden.
Durch gliedweises Differenzieren der Potenzreihen erhalt man:

Satz 4.3.5 Fiir alle x € R ist

sinx = cosz, cosr = —sinz.
dx dx

Hilfssatz 4.3.6 Fiir alle x € R gilt:

(1) sin(—x) = —sinx, cos(—x) = cosx,
(2) (sinz)? + (cosx)? = 1,
(3) |sinz| <1, |cosz| < 1.

Beweis. (1) ergibt sich aus der Definition von sin z und cos z. Um (2) zu beweisen,
setzt man bei cos(z + y) im Additionstheorem 4.3.2 y = —x; man erhilt:

1 =cos0 = cosz - cos(—x) — sinx - sin(—x) = (cosx)? + (sinz)>
Die Aussage (3) folgt aus (2). O
Nun behandeln wir die Nullstellen der trigonometrischen Funktionen und definieren
die Zahl 7:

Satz 4.3.7 (Definition von ) Der Cosinus besitzt im Intervall |0, 2[ genau eine
Nullstelle, die wir mit g bezeichnen.

Beweis. Es ist cos0 = 1 > 0; wir zeigen: cos2 < 0; aus dem Zwischenwertsatz
folgt dann die Existenz einer Nullstelle. Es ist

2 4 $‘6 $‘8 $‘2 $2 .TG $2

oz
cosm=1—2!—|—4! _6!+8! —...:1—2!(1—3_4)—6!(1—7_8)—....

Fiir x = 2 sind die in den Klammern stehenden Ausdriicke positiv und man erhalt:

cos2 < 1—

also cos2 < 0.
Um zu zeigen, dass cos « im Intervall |0, 2] streng monoton féllt, betrachtet man

=4
2 2 27 x? x° x?

sinz =x — 31 + 5T +...=x~(1—2.3)—|—
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Fir 0 < « < 2 sind alle Summanden positiv, also ist sinz > 0 in 0, 2[ und

cosx = —sinz < 0.
dx

Daher ist der Cosinus in diesem Intervall streng monoton fallend und besitzt somit
genau eine Nullstelle; wir bezeichnen sie mit J;alsocos 3 =Oundsin§ > 0. O
Die urspriingliche Definition der Zahl 7 hangt mit der Bestimmung des Umfangs
U(r) und des Flacheninhalts F'(r) eines Kreises vom Radius r zusammen. Schon
ARCHIMEDES (287-212) war bekannt, dass fiir alle Kreise das Verhaltnis von Um-
fang zum Durchmesser und auch das Verhaltnis von Flacheninhalt zum Quadrat des
Radius konstant ist; diese beiden Konstanten sind gleich und werden mit 7 bezeich-
net. Es ist also

Die ersten zwanzig Dezimalstellen fiir 7 lauten:
T = 3,14159265358979323846 . . .

Die Geschichte der Zahl m wird ausfiihrlich in [3] dargestellt. Wir gehen auf
Flacheninhalt und Umfang des Kreises in 5.4.9 und 9.5.11 ein.

Nun beweisen wir, dass Sinus und Cosinus periodische Funktionen mit der Periode
27 sind:

Satz 4.3.8 Fiir alle x € R gilt:

(1) sin(x+7) = cosz, (2) cos(x+ 3) = —sinux,
(3) sin(x +7m) = —sinz, (4) cos(zx+7m) = —cosz
(5) sin(x +27) = sinz, (6) cos(x +2m) = cosw

Die Nullstellen von sin x sind k-7 mit k € Z, die Nullstellen von cos x sind k -7+ 72“,
k € Z; es gibt keine weiteren Nullstellen.

Beweis. Nach Definition von 7 ist cos 5 = O und aus (sin 5 )%+ (cos 5 )? = 1 folgt
sin g = +1.In 4.3.7 ergab sich sin g > (), also ist sin g = +1.

Das Additionstheorem 4.3.2 liefert mit y := 7 die Aussage (1):

sin(z + 5) =sinz -cos § 4 cosx - sin § = cosx.

Wenn man (1) differenziert, erhalt man (2).

Daraus folgt (3): sin(x + ) = sin((z + 5) + 5) = cos(z + 3 ) = —sinuz;
differenzieren liefert (4).

Nun ergibt sich (5): sin(z + 27) = sin((z + 7) + 7) = —sin(z + 7) = sinz
und durch differenzieren erhalt man (6).

Aus (3) und sin0 = 0 folgt fiir k € Z: sinkm =0

und aus (2) folgt dann cos(km + 7) = 0.

Aus der Definition von g folgt zunachstcosz > 0in 0 <z < g und daher

.. us T
cosz > 0 fir —y <zr<

5’ wegen (1) istdann sinz >0 fir 0 < z < 7.
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Aus (3) und (4) folgt

. T 3m . ..
cosx<0fur2<x< sinz <0 firm < x < 27.

N S
\_/ 7r/27r\/2

™

4 Ccos T

/N AN /\ .
S N NS

Wir bringen nun ein einfaches Beispiel fiir die I"Hospitalsche Regel:

Beispiel 4.3.9 Es ist
. sinx
lim =1.
z—0 I

sinx cosx

= lim
z—0

Dies folgt aus lin% = 1; man kann diese Ausssage auch auch der

Potenzreihe herleiten: 5% =1 — ; +.
In der Abbildung sind dle Funktionen % ¢ und sin x sowie dargestellt

A

HV

Beispiel 4.3.10 Aus den Additionstheoremen leiten wir Aussagen iiber Uberlage-
rungen von Schwingungen her. Wenn man zwei Saiten eines Musikinstruments , die
fast gleiche Tonhohe haben, anschlagt, bemerkt man ein An- und Abschwellen des
Tones; es entsteht eine Schwebung. Wir wollen nun das Verhalten einer Summe von
Schwingungen mit der Amplitude 1, also sinw;t + sinwst untersuchen. Aus den
Additionstheoremen folgt zunachst:

sin(z +y) + sin(x —y) = 2-sinz - cosy.
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Nun seien die Schwingungen von zwei Saiten eines Musikinstruments beschrieben
durch sinwit und sin wgt.“Es sei wy > wy und wir setzen w = %(wl + wo) und
9= ; (w1 — wa). Durch Uberlagerung der beiden Saitenschwingungen ergibt sich
dann

sinwit + sinwst = 2 -sinwt - cos Vt.

Wenn die beiden Frequenzen fast gleich sind, ist ¢ klein und man erhilt eine Si-
nusschwingung sin wt mit der Amplitude 2 - cost, also eine Schwebung. In der
Abbildung ist oben w; = 11, wy = 12, also ¥ = 1; bei der unteren Abbildung ist
wi = 11.5, we = 12und ¥ = 0.5.

Man vergleiche dazu auch die Schwingung bei gekoppelten Pendeln, die wir in Bei-
spiel 8.4.9 untersuchen.

Nachdem wir die Nullstellen von sin x und cos z kennen, konnen wir Tangens und
Cotangens definieren:

Definition 4.3.11 Tangens und Cotangens sind definiert durch
tg:{z eR|z #kn+ 7 fiirk € Z} =R, x 507

coszx’

cotg: {x eR|z #£krnfirkeZ} >R, 1z ¢

sinx *
Wir geben nun die wichtigsten Eigenschaften dieser Funktionen an (dabei soll z
immer im Definitionsbereich liegen):

Satz 4.3.12 Es gilt

d d
dxtga: =1+ (tgz)?, dxCOtg r=—1— (cotg x).

. d d /sing sz-cos x—sin - (— si .
Beweis. a tg.’b _ dT(Zg;:) _ cosz COS‘(TCO?;)‘Z( 51nw) — 1_’_(23;’;)2 — 1+(tg$)27

analog berechnet man die Ableitung von cotg x. a
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Satz 4.3.13 Es gilt

tg(—x) = —tgz, cotg(—x) = —cotgz,
tg(x +m) = tgx, cotg(rx+m)= -colgx,
tg(x 4+ 75) = —tgz, cotg(x+7)= —tgx.

Aus dem Verhalten von sin z und cos x und aus ddm tg x > 1 > 0 ergibt sich:

Satz 4.3.14 Der Tangens ist im Intervall | — 7, 7| streng monoton wachsend und

nimmt dort jeden reellen Wert genau einmal ein; die Abbildung
T

}_272[

) 1))
i

Wir behandeln nun die Umkehrfunktionen der trigonometrischen Funktionen. Der
Begriff der Umkehrfunktion ist nur fiir injektive Funktionen definiert ist. Sinus und
Cosinus sind nicht injektiv; um Umkehrfunktionen definieren zu konnen, schrankt
man diese Funktionen auf Intervalle ein, die so gewahlt sind, dass sie dort streng
monoton sind. Nach 4.3.7 ist der Sinus im abgeschlossenen Intervall [— 7, 7] streng
monoton wachsend; er nimmt dort jeden Wert aus [—1, 1] genau einmal an. Die
Abbildung

— R, z — tgx,

ist also bijektiv.

[_72T’+72T] — [-1,41], z — sinz,

ist also bijektiv. Analog gilt: cos | [0, 7] — [—1, +1] ist bijektiv; daher konnen wir
definieren:

Definition 4.3.15 Die Umkehrfunktion von sin |[— 7, + 7] — R heifit Arcus-Sinus;
man bezeichnet sie mit
arcsin : [—1,+1] — R.

Die Umkehrfunktion von cos| [0, 7] — R bezeichnet man mit
arccos : [—1,+1] — R.
Firalle y € [-1,4+1]und z € [- 7,4 7] ist also

sin(arcsiny) = y, arcsin(sinz) = x.
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s
arccosx
arcsin x
/2
7 sinz
} } } N
-1 1 -1 N
’/ \\
—7/2 cosx

Es gilt:
Satz 4.3.16 Die Funktion
arcsin: [-1,+1] = R
ist stetig und streng monoton wachsend; im offenen Intervall ist sie differenzierbar

und fiir x €] — 1, +1] gilt:

. 1
arcsinz = )
dx V1 — x2

Die Funktion arccos : [—1,+1] — R ist stetig und streng monoton fallend , es gilt:
7T .
arccosx = , —arcsing

und daher ist fiir v €] — 1, +1][:

1
arccosT = — .
dz V1 — 22
Beweis. Mit y := arcsin x, ergibt sich
. 1 1 1
arcsinz = = = .

cosy  /1—(siny)2 V1-—a?
Nach 4.3.8 ist cos(], — y) = siny; setzt man y := arcsinz ein, so erhilt man
cos(f —y) = x,also § —y = arccosz. O

Der Tangens bildet das offene Intervall | — 7, 47 [ bijektiv auf R ab; man definiert:
Definition 4.3.17 Die Umkehrfunktion von

T +W[—>R

t —
gl 5ty

heift
arctg : R — R.
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/21 arctg x

“r /24

Definition 4.3.18 Die Funktion
arctg : R —- R

ist streng monoton wachsend und differenzierbar; fiir v € R ist

arctgr =

dz 1+ 22"

Beweis. Es ist d‘i tg y = 1+ (tg y)?; setzt man y := arctg x, so ist ergibt sich

1 1
arctg xr = = .
Az 1+ (tgy)? 1+ a2

Wir gehen noch auf Polarkoordinaten ein:

Satz 4.3.19 (Polarkoordinaten.) Zu (x,y) € R? mit 2% + y* = 1 existiert genau
ein p mit
T =cosp, Yy =singp, 0 < p<2m.

Daher kann man jede komplexe Zahl z # 0 eindeutig darstellen in der Form
z=r-e¢% =1 (cosp+ising) mit r=|z], 0<¢<2r.
Beweis. Aus 22 +y? = 1 folgt —1 < z < 1 und daher existiert genau ein ¢ € [0, 7]

mit cos ¢ = z, namlich ¢ := arccos z.

Dann ist y = :I:\/l —cos2 ¢ = +sinp.Wenn y = + sin ¢ ist, dann ist die erste
Behauptung bewiesen. Falls y = — sin ¢ ist, ersetzt man ¢ durch 27 — ¢ . Dann ist
x =cosp =cos(2mr—yp), y=—sinp=sin(2r—p) mit 7 < (27—¢) < 2.
Daraus folgt fiir z € C, z # 0, r := |2| die Darstellung :

z - .. _ iy
=cosp+isinp =e7".
r

a

Mit sin x konnen wir nun ein Beispiel einer differenzierbaren Funktion f angeben,
bei der f’ unstetig ist; somit existiert f” nicht:
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Beispiel 4.3.20 Es sei

z?-sin!  fir 2 #0
f.R—>]R,m»—>{ 0  firz=0

Fiir z # 0 ist | sin | | < 1 und daher existiert

£(0) — 1 1) 1(0)

= limh~sin1 =0.
h—0 h h—0

h
Fir x # 0 kann man f’(x) leicht ausrechnen und es ergibt sich:

2¢-sin! —cos! fir x £0
Play = { By e 7

0 fir x =0

Im Nullpunkt ist f’ unstetig, denn es existiert lim 2z - sin ! = 0; wenn f’ in 0
x—0 x

1
T

existieren. Fiir z,, := ! istaber lim x, =0

n— o0
1

Tn

stetig ware, wiirde auch lim cos
x—0

1
Tn

und cos =~ = 1 fiir gerades n und cos = = —1 fiir ungerades n.

Zum Abschluss gehen wir noch kurz auf die hyperbolischen Funktionen sinh x
und cosh x ein; diese sind definiert durch

1 1
coshz := 2(6”7 +e™ ), sinhz := 2(6”7 —e 7).
Die Umkehrfunktionen bezeichnet man mit ar cosh x und ar sinh x ; es gilt
arcoshr = In(z + /22 — 1) firz > 1,

ar sinh z = In(z 4+ Va2 + 1) firallez € R.

coshx sinh x
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Aufgaben

4.1. Differenzieren Sie folgende Funktionen:

sin® cos® z, sin(z?), e, sin(e”).
Inx

4.2. Differenzieren Sie (z > 0): € -Inuxz, z2-Inz, ny.

4.3. Die Funktion f : R — R sei differenzierbar und positiv; differenzieren Sie

R S S N

12
4.4. Berechnen Sie folgende Grenzwerte:
" " in 1
. T_1_g . er —1+z . sin
a) lim ° b) lim c) lim .
) z—0 x2 ) 0 2+l 7 ) z—0 i

4.5. Beweisen Sie
arsinhz = In(z + /22 + 1) firalle 2 € R.
4.6. Zeigen Sie

< n 10
;mn - 81

P AL UU R A SR M L
10 200 ' 3000 ' 40000 ' 500000 ' 6000000 T 9

und

4.7. Untersuchen Sie fiir x > 0 die Funktion
2 ]- 2

f(z) =2 "Inx — N

4.8. Untersuchen Sie die Funktion
.2 1
f(x) :=sin"z + 9 cos 2.

4.9. Untersuchen Sie den Verlauf von

f:0,00[— R, z +— 2"

und berechnen Sie lim z*.

T—

79

4.10. Sie wollen den Graphen von In « fiir x > 1 aufzeichnen; Ihr Blatt ist so lang wie der
Erdumfang, also etwa 40000km, aber nur 4km hoch; als Einheit wahlen Sie 1cm. Ist das
Blatt hoch genug ? Um wieviel muss es beim doppelten Erdumfang hoher sein ? (Benutzen

Sieln2=0,69...undIn10 = 2,3...)
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Integration

5.1 Riemannsches Integral

Die Integralrechnung behandelt zwei Problemstellungen:

1) Flachenmessung,

2) Umkehrung der Differentiation.

Wir gehen von der Flichenmessung aus; das zweite Problem, aus einer ge-
gebenen Ableitung f’ die Funktion f zu rekonstruieren, wird durch den
Hauptsatz gelost.

Wir behandeln also das Problem, wie man Flacheninhalte definieren und berechnen
kann. Ist etwa f : [a,b] — R eine positive Funktion, so soll der Flicheninhalt von

{(m,y)eRzzagang,Ogygf(x)}

bestimmt werden. Bei dem hier behandelten Riemannschen Integral (BERNHARD
RIEMANN, (1826-1866)) geht man folgendermafBlen vor: Man approximiert die
durch f beschriebene “Flache” jeweils durch endlich viele Rechtecke von “un-
ten” und von “oben”. Wenn bei Verfeinerung der Zerlegungen die “Untersummen”
und “Obersummen” gegen den gleichen Grenzwert streben, ist dieser der gesuchte
Flacheninhalt, den man mit

/bf(x)dx oder /bfdas

bezeichnet. Dies soll nun prazisiert werden:
Ist [a, b] ein abgeschlossenes Intervall, so bezeichnet man ein (m + 1)-Tupel

Z = (x0,Z1, ey Tpp) Mita =9 < 1 < . < Type1 < Ty = b

als Zerlegung von [a, b].
Nun sei f : [a,b] — R eine beschrinkte Funktion; und Z = (zo, ..., 2y, ) eine
Zerlegung von [a, b]. Dann existieren
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myg = inf{f(x) : zp_1 <z <z} My, :=sup{f(z) : 2p—1 <z < a3}

und man definiert die zu Z gehdrende Untersumme S ,(f) und die Obersumme
Sz(f) von f durch

S4(f) ::ka'(-rk_-rk—l), Sz(f) ::ZMk-(xk—xk_l).
k=1

a I ) r3 T4 b
Nun sei
m:=inf{f(z) : a <z < b}, M :=sup{f(z) :a <z < b}.

Fiir jede Zerlegung Z ist m - (b —a) < S,(f) < Sz(f) < M - (b — a). Dann
existieren , wenn wir mit Z[a, b] die Menge aller Zerlegungen von [a, b] bezeichnen,

sup{S;(f)| Z € Z[a,b]} = U(f),  nf{Sz(f)| Z € Zla,b]} =: O(f).

U(f) heit das Unterintegral von f und O(f) das Oberintegral. Nun definiert
man:

Definition 5.1.1 Eine beschrinkte Funktion f : [a,b] — R heift Riemann-
integrierbar, wenn das Unterintegral gleich dem Oberintegral ist; man setzt dann

b
/ f(@)da = U(f) = O(f).

Die Menge aller Riemann-integrierbaren Funktionen auf [a, b] bezeichnen wir mit
R([a, b)).

In diesem Abschnitt bezeichnen wir Riemann-integrierbare Funktionen kurz als in-
tegrierbar; in 10.1.10 fiihren wir Lebesgue-integrierbare Funktionen ein, so dass wir
dann diese beiden Integralbegriffe unterscheiden miissen.

Wir untersuchen nun das Verhalten von Unter- und Obersummen, wenn man die
Zerlegung Z verfeinert. Eine Zerlegung Z’ heiBt feiner als Z, wenn jeder Teilpunkt
von Z auch in Z’ vorkommit. Es gilt:

Hilfssatz 5.1.2 Ist Z' feiner als Z, so gilt:

Sz(f) <8z, Sz(f) = Sz/(f).
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Beweis. Wir beweisen die zweite Ungleichung. Es gentigt, den Fall zu behandeln,
dass Z' aus Z durch Hinzufiigen eines weiteren Teilpunktes 2’ entsteht; also

Z = (T0y ooy Tk 1y Ther ooy T )y L' = (0 ooy Tho1, T, Thoy ovey Ty
Setzt man
M = Supf([xkflaxl])a M" = supf([x/,xk]), My, :Supf([xkflaxk}%

soist M’ < My, und M < My. In Sz(f) kommt der Summand My, - (xy — xg—1)
vor, in Sz (f) hatman M’ - (' — xy_1) + M"(x), — '), alle librigen Summanden
sind gleich. Aus

M’ (2 —ap_q) + M (x), — 2') < Mp(ap — 25-1)

folgt Sz (f) < Sz(f). 0

Nun zeigen wir

Hilfssatz 5.1.3 Sind Z, und Z5 beliebige Zerlegungen von [a, ], so ist
Sz,(f) < 82,(f) unddaher U(f) < O(f).

Beweis. Es sei Z die gemeinsame Verfeinerung von Z; und Zs; die Teilpunkte von
Z sind genau die Punkte, die in Z; oder Z5 vorkommen. Dann ist

Sz,(f) < 8z(f) £52(f) < Sz(f)

O
Damit erhalten wir ein wichtiges Kriterium fir die Integrierbarkeit einer Funktion.

Satz 5.1.4 (Riemannsches Integrabilititskriterium) Eine beschrdnkte Funktion
f : [a,b] — R ist genau dann integrierbar, wenn zu jedem € > 0 eine Zerlegung Z
von [a, b] existiert mit

Sz(f) =95z(f) <e.

b
Beweis. Wenn f integrierbar ist, dann ist | f(z)dz gleich dem Oberintegral und

auch gleich dem Unterintegral. Zu € > 0 gibt es daher Zerlegungen Z; und Z3 mit

b b
[H@dr =5, <5 Salh- [ @<,

Fiir die gemeinsame Verfeinerung Z von Z; und Z ist S, (f) < S(f) und
Sz, (f) > Sz (f) und daher

b b
13

[rmar-s.n<5 san- [raac<]

a a
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und somit Sz (f) — S, (f) <e.

Nun nehmen wir an, zu jedem ¢ > 0 existiere ein Z mit Sz(f) — S,(f) < €. Es
ist S;(f) SU(f) < O(f) < Sz(f),daher 0 < O(f) —U(f) < e. Daraus folgt
O(f) =U(f) und daher ist f integrierbar. O
Folgende Aussagen sind leicht zu beweisen:

Hilfssatz 5.1.5 Sind f : [a,b] — Rund g : [a,b] — R integrierbar und c1,c3 € R,
so ist 1 f + cog integrierbar und

b

/b(clf(a:) +e2g9(z))da = ¢ /bf(a:) da:—|—cz/g(x) dz.

a

Falls f(z) < g(z) fiir alle x € [a,b] gilt, folgt

/bf(ff) dz < /bg(ff) dz.

a

Daraus ergibt sich, dass die Menge R ([a, b]) aller Riemann-integrierbaren Funktio-
nen auf [a, b] ein Vektorraum iiber R ist (man vergleiche dazu 7.2.7); die Abbildung

b
R([a,b])) — R, f — [ f(z)dz, ist linear und monoton.

Man kann zeigen, dass das Produkt Riemann-integrierbarer Funktionen wieder
Riemann-integrierbar ist (vgl. [6] und [16]).

Hilfssatz 5.1.6 Ista < b < cund [ : [a,c] — R integrierbar, so gilt:

b c c
[t@ s+ [ra@ar= [ 1@
a b a
Setzt man fira < b
a b
/f(x) dz = —/f(x) d,
b a

so gilt zum Beispiel auch

/f(x)dx+/bf(x)dx:/bf(x)dx.

Satz 5.1.7 Jede stetige Funktion f : [a,b] — R ist integrierbar.

Beweis. Wir wenden das Riemannsche Integrabilititskriterium 5.1.4 an; es sei also
€ > 0 vorgegeben. Weil f gleichmaBig stetig ist, existiert ein § > 0, so dass aus
z, 7' € [a,0], [z — 2’| <6, folgt: [f(z) — f(2")] < 50,7 -
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Wihlt man eine Zerlegung Z = (xq, ..., T, ) von [a, b] so, dass |z — z5—1| < 6 fiir
k=1,..,mgilt, soist My —my < 2(};6—@) fir k =1, ..., m und daher
m €
S2(f) = S7(f) = Y (My —mi) - (ax —we-1) < | <.
k=1

Daraus folgt, dass f integrierbar ist. a
Wir zeigen noch:

Satz 5.1.8 Sei f : [a,b] — R stetig, f(x) > 0 fiir alle x € [a,b]; es existiere ein
b

p € [a,b] mit f(p) > 0. Dann ist [ f(x)dz > 0.

Beweis. Man wihlt eine Zerlegung Z so, dass die stetige Funktion f in einem Teil-
intervall [z;_1, 2] .in dem p liegt, > 1 f(p) ist. Dannist Sz(f) > 0 und daraus

folgt die Behauptung. O
Daraus leiten wir nun eine Aussage her, die man in der Variationsrechnung benotigt:

Hilfssatz 5.1.9 (Lemma der Variationsrechnung) Sei f : [a,b] — R stetig; fiir
b

jede unendlich oft differenzierbare Funktion ¢ : [a,b] — R sei [ f(z)p(x)dz = 0.

Dann folgt f = 0.

Beweis. Wir nehmen an, es existiere ein p € [a, b] mit f(p) # 0 und behandeln den
Fall f(p) > 0; (sonst gehen wir zu — f iiber.) Dann gibt es Punkte p; < ps in [a, b],
so dass f in [py, po| positiv ist. Wie in 13.2.1 gezeigt wird, gibt es eine unendlich
oft differenzierbare Funktion ¢ : [a,b] — R, die in ]p1, p2[ positiv und sonst O ist.

b
Dann ist aber [ f(z)p(z)dz > 0. |

Wir geben nun ein Beispiel einer beschrankten Funktion an, die nicht integrierbar
ist.

Beispiel 5.1.10 Es sei

) 1 falls 2€Q
f.[o,l}HR,xH{o falls ¢ Q

Dann ist f : [0,1] — R nicht integrierbar, denn in jedem Teilintervall [xj_1, k]
von [0, 1] gibt es rationale und irrationale Punkte. Daher ist my = 0 und M, = 1.
Fiir jede Zerlegung Z von [0, 1] ist dann S ;(f) = 0 und Sz(f) = 0. Somit ist das
Unterintegral gleich Null und das Oberintegral gleich 1.

Man nennt diese Funktion die Dirichlet-Funktion.

Bemerkung. Man kann das Integral auch mit Hilfe Riemannscher Summen einfiihren.
Ist Z = (xo, ..., Ty) eine Zerlegung von [a,b] und sind &, € [zk—_1,x)] beliebige
Punkte, so heif3t
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m

Ry(f) == (&) - (wk — k1)
k=1
die zu Z und &, ..., &, gehorende Riemannsche Summe. Es ist

Sz(f) < Rz(f) <Sz(f).

Wenn f integrierbar ist, dann existiert zu € > 0 ein Z mit Sz (f) — S ;(f) < e. Fiir
jede Wahl der Zwischenpunkte gilt dann

b
\/f(w) dz — Ry(f)] < =

Man kann also das Integral durch Riemannsche Summen approximieren.

5.2 Die Mittelwertsitze der Integralrechnung

Satz 5.2.1 (1. Mittelwertsatz der Integralrechnung) Ist f : [a,b] — R stetig, so
existiert ein € € [a, b] mit

b
/ f@)de = (b—a) - F(E).

Beweis. Die stetige Funktion f nimmt das Minimum m und das Maximum M an.
Fiir jede Zerlegung Z von [a, b] ist

b

me(b-a) < S.(0) < [ fle)de < S.(H) < M- (b= a)

a

also

“b—-a

b
m< © /f(a:)dng

und nach dem Zwischenwertsatz existiert ein £ € [a, b] mit

fe= " / f(z) da.
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Satz 5.2.2 (2. Mittelwertsatz der Integralrechnung) Es seien f : [a,b] — R und
g : [a,b] — R stetige Funktionen und es gelte g(x) > 0 fiir alle x € [a,b]. Dann
existiert ein & € [a, b] mit

/b f@)g(e)de = £(0) - [ g(a) d.

a

Beweis. Wir bezeichnen wieder mit m das Minimum und mit M das Maximum von
f. Aus

g(x) < f(z) - g(x) <M - g(z)

mjg dm</f e [

Setzt man ¢ := fg ) dx, soist ¢ > 0 und
a

folgt

m < /f x)dx < M.

Nach dem Zwischenwertsatz existiert ein £ € [a, b] mit

und damit ist der Satz bewiesen. O

5.3 Der Hauptsatz der Differential- und Integralrechnung

Der Hauptsatz stellt eine Beziehung zwischen Differentiation und Integration her;
er besagt, dass man Integration als Umkehrung der Differentiation auffassen kann.

Definition 5.3.1 Es sei f : [a,b] — R eine Funktion. F : [a,b] — R heif3t Stamm-
funktion von f, wenn F differenzierbar ist und

F' =f.
Wir fiithren noch folgende Schreibweise ein:
Fl, = F(b) — F(a)

Es gilt:
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Satz 5.3.2 Ist F' eine Stammfunktion von f und ¢ € R, so ist auch F + c eine
Stammfunktion von f. Sind F und G Stammfunktionen von f, so ist G — I konstant.

Beweis. Die erste Behauptung ist trivial, die zweite folgtaus (G—F) = f— f = 0.
O

Satz 5.3.3 (Hauptsatz der Differential- und Integralrechnung)
Ist f:]a,b] — R eine stetige Funktion, so gilt:

1) Die Funktion

F:la,b] — R, foTf(t) dt,

ist eine Stammfunktion von f.
(2) Wenn G eine Stammfunktion von f ist, dann gilt

fbf(t) dt = G, = G(b) — G(a).

a

Beweis. (1) Fir z,x + h € [a,b], h # 0, gilt:

ath T z+h
F(:r+h})l—F(x) :; /f(t)dt—/f(t)dt :}l / £(t)dt.

Weil f stetig ist, existiert nach dem 1. Mittelwertsatz der Integralrechnung ein &,
zwischen x und z + h mit

x+h

y [ =)

f(&n)

R

a ‘rfh $+h b

Es ist }llin% &n, = x und wegen der Stetigkeit von f folgt:

lim

F(z+h) — F(x)
h—0 h

= lim f(&n) = f(2).
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Damit ist gezeigt, dass F’(x) existiert und F'(z) = f(x) ist.
(2) Nach 5.3.2 ist G — F konstant und daher

Damit ist der Hauptsatz bewiesen. O

Bemerkungen. Der Hauptsatz besagt insbesondere, dass jede stetige Funktion f ei-
ne Stammfunktion besitzt.

Die Aussage des Hauptsatzes kann man so interpretieren: Integration ist die Um-
kehrung der Differentiation, denn fiir jede stetige Funktion ist

N ECEE )

und fiir jede stetig differenzierbare Funktion f mit f(a) = 0 ist

() dt = f(o).

a

Im Anschluss an den Hauptsatz fiihrt man den Begriff des unbestimmten Integrals
ein: Ist f stetig und F' eine Stammfunktion von f, so heifit

/f(x)da: = {F+cceR}

das unbestimmte Integral von f; es ist also die Menge aller Stammfunktionen. Oft
schreibt man dafiir kurz

/f(x)da: =F+c
oder auch
[ t@as =

allerdings darf man dann aus Gleichungen wie

. 1.5 . 1 5
sinzx - cosxdx = 2SIH Tr SIHZ'COSIdx‘:—ZCOS T

keine falschen Schliisse ziehen.
Wenn wir schreiben: Man berechne [ f(z)dz, so ist damit gemeint: Man gebe eine
Stammfunktion von f an.
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5.4 Partielle Integration und Substitutionsregel

Aus der Produktregel (fg)’ = f'g+ f¢' und der Kettenregel f(g(z)) = f'(g(x)) -
g’ (x) leiten wir mit Hilfe des Hauptsatzes Rechenregeln fiir die Integration her,
namlich die partielle Integration und die Substitutionsregel.

Satz 5.4.1 (Partielle Integration). Sind f : [a,b] — R und g : [a,b] — R stetig
und sind F, G Stammfunktionen zu f, g so gilt:

/f z)dz =F -G} - /F (z) d.

Beweis. Wegen F' = fund G’ = g folgt aus der Produktregel (F-G) = fG+Fyg
und mit dem Hauptsatz 5.3.3 erhalt man

b

b
/f(:r)G(x) dx—l—/F(w)g(m) de = F -G

a

O

Satz 5.4.2 (Substitutionsregel) Sei f : [a,b] — R stetig und g : [a’,b'] — R stetig
differenzierbar, g([a’,b']) C [a,b]. Dann gilt:

9(¥) o
[ tway= [ 1) -g@ .

g(a’)

Beweis. Aus dem Hauptsatz 5.3.3 folgt, dass zu f eine Stammfunktion F’ existiert,
nach der Kettenregel 3.1.7 ist (Fog)'(z) = f(g(x))-¢'(x). Wir wenden zweimal
den Hauptsatz an und erhalten:

[ Flg(@)) - ¢ (@) de = F o gll, = F(g(t)) — F(g(a))

Sezt man f(y) := 21!, so ergibt sich:

Hilfssatz 5.4.3 Ist g : [a,b] — R stetig differenzierbar und g(x) > 0 fiir x € [a,b],

S0 ist ,
/
/g (z) dz =Ing|’.
g9(z)
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Wir konnen nun weitere Beispiele behandeln:

Beispiel 5.4.4 Fiir > 0 berechnen wir [ Inz dz durch partielle Integration.
Wir setzen f(z) := 1, G() := Inz und wihlen F(z) = x; esist g(z) = |, daher

1
/lnmd$:$~lnm—/ﬂc~xdxzx-lnx—m.

Beispiel 5.4.5 Fiir —7 < xz < [ berechnen wir [tgzdz. Aus 5.4.2 mit g(x) :=
cos x folgt:

/tgx dz = —In(cos z).

Beispiel 5.4.6 Fiir —1 < = < 1 berechnen wir [ arcsinz dz.
Setzt man f(z) = 1, G(z) = arcsinx sowie F(x) = z, g(x) = Y
man durch partielle Integration

. . X
arcsinx dx = x - arcsinx — dx.
V1 — g2

Die Substitution y := 1 — 22 liefert

/\/liﬂdx:_/;?y:_\/y:—\/l—a:2.

Daher ist z - arcsin z + v/1 — 22 eine Stammfunktion von arcsin z.

lizQ, so erhalt

Beispiel 5.4.7 Durch partielle Integration erhalt man:

1 1
/arctgxda::a:-arctgx—/x~ 1422 da::a:-arctga:—an(1+x2).

Beispiel 5.4.8 [ sin? z dz kann man mit partieller Integration behandeln.Eine an-
dere Methode ergibt sich, wenn man aus sin2z = 2sinzcosz, cos2x =

cos? x —sin? z = 1 — 2sin? z herleitet:

. 9 1 —cos2x
sin”z =
2
Eine Stammfunktion zu sin? z ist also
1 1 1
(x — _sin2z) = _(x —sinz cosx).

2 2 2

2

Analog ergibt sich, dass % (z + sinx cos ) eine Stammfunktion zu cos® z ist.
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Beispiel 5.4.9 Fiir r > 0 gibt [ /r2 — 22 dz ein Viertel der Fliche des Kreises mit
0

Radius r an. Mit der Substitution = = r-sint, ¢ € [0, 7], erhilt man

r /2
/\/T2—£2d.7j=/\/7“2—7“2S1112t'7“003tdt=
0 0

/2 /2
2 2 r? T o
=r /cos tdt = 2(t+sintcost) =,
0 0

Die Fliche des Kreises mit Radius r ist also 2.

Wir fassen unsere Ergebnisse zusammen und geben zu stetigen Funktionen f eine

Stammfunktion F’ an:

f F Definitionsbereich
n 1 n+1
x i1 ® neN
1 4l
" E reRr#—-1,z>0
1
- In |x| x#0
e’ e’
sinx —CcosT
coszT sin x
! arctgx
1+x2 g
1 .
1o arcsinz x| <1
Inz rlnr —z x>0
3 T
tgx —In(cos z) lz| < 3
arcsinz zarcsinz + /1 — 22 lz] <1

arctgr  zarctgz + 3 In(1 + 2?)
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5.5 Uneigentliche Integrale

Es sollen nun Integrale wie

o) 1

/ dx /da:
1422’ x3

0 0

behandelt werden. Beim ersten Beispiel wird liber ein uneigentliches Intervall in-
tegriert; beim zweiten Beispiel ist die zu integrierende Funktion am Randpunkt O
nicht definiert.

Definition 5.5.1 Die Funktion f : [a, oo[— R sei stetig und es existiere

R
lim [ f(z)dx; dann setzt man
R—oo

R—o0

7f(x)da: = lim /Rf(x)da:

Analog definiertman [ f(z)dz := Rlim [ f(z)da.
0 ——ocop

Definition 5.5.2 Es sei f :]a, b] — R stetig, dann setzt man

b

b
[ @ i=tim [ s da.

>0
€ a+te

falls dieser Grenzwert existiert ;

fiir f : [a, b[— R definiert man fbf(a:) dz := lim bfsf(as) dz.

e>0 @

Definition 5.5.3 Sind a, b reelle Zahlen oder auch a = —oo oder b = +00 und ist
f :]a, b|— R stetig, so wahlt man ein ¢ mit a < ¢ < b und setze

/bf(a;)dx ::/Cf(a;) dx+/bf(a:)dx.

Diese Definitionen sollen nun an Beispielen erlautert werden.

Beispiel 5.5.4 Es sei s € R, dann gilt:
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R

denn fiirs > list [z7%dz = ! 2'7%|f und lim ' R'7%=0;
1

1-s R—o0
1

fir s < 1 gilt fg;—s de = 1 xl—s|1
1>

: 1 1—-s __
1—s - und ;li% 1-€ =0.

Beispiel 5.5.5 Esist [ {7, = lim arctghR = ] und f e =
0 —oo

Eine Beziehung zwischen der Konvergenz einer Reihe und der Existenz eines unei-
gentlichen Integrals liefert folgendes Vergleichskriterium:

Satz 5.5.6 (Vergleichskriterium) Die Funktion f : [1, co[— R sei stetig, monoton
o0

fallend und positiv. Dann gilt: Die Reihe »_, f(n) ist genau dann konvergent, wenn
n=1

o0
das uneigentliche Integral [ f(z)du existiert.
1

N
Beweis. Sei N € N; wegen der Monotonie von f ist Y f(n) die Untersumme fiir

n=2
N N-1
fI[1, N] = R zur Zerlegung Z = (1,2,..., N—1,N)und > f(n—1)= > f(n)
n=2 n=1
die Obersumme. Daher gilt
N N-1
OEN BICEYED S¥I
n=2 1 n=1
und daraus folgt die Behauptung. a
Daraus ergibt sich eine Aussage, die wir fiir s € N bereits in 1.5.18 bewiesen haben:
Satz 5.5.7 Die Reihe nl ist fiir alle s € R, s > 1, konvergent und fiir s < 1
n=1

divergent.

Beweis. Die Konvergenz fiir s > 1 folgt aus dem Vergleichskriterium mit
f(z) :=a7%.

Die Divergenz fiir s < 1 folgt aus der Divergenz von 71, und
n=1

Die fiir s > 1 definierte Funktion
_ f: 1
-
heiflit die Riemannsche Zeta Funktion.

In 14.11.9 werden wir Z 5. fir s € N berechnen.
n=1



5.5 Uneigentliche Integrale 95
Aufgaben
5.1. Man berechne folgende Integrale
x/ 7/4
a)/1+ 5d:v b)/1+ , dz c)/ -sinz dx d)/zzzilzzidx
5.2. Zu folgenden Funktionen bestimme man eine Stammfunktion (z > 0):

a) xz-Inuz, b) 1‘lnzp ) 12‘lnw d) (lnav)2
T x

5.3. Berechnen Sie

a)/ (@ )/ )/ )/ vdu
(z? — 6:10—1—10 x? — 6 +10 x? — 6:10—1—10 2 — 6z + 10

5.4. Berechnen Sie den Fliacheninhalt der Ellipe:

2 2
z Y
=1
9 + 4
5.5. Es sei
/2

an = / sin” z dx.
0
Driicken Sie a,, durch a,,—2 aus und berechnen Sie a, fiir alle geraden und ungeraden n € N.

5.6. Fir n € Ny sei
1

Qp = /;t"ez dz,

0
geben Sie eine Rekursionsformel fiir a,, an und berechnen Sie ao, . . ., as.
5.7. Die Bezeichnungen seien wie in Aufgabe 1.12. Behandeln Sie das Integral
2n
/ dz
x

stellen Sie b,, als eine Untersumme dar und berechnen Sie damit den Grenzwert L von
Aufgabe 1.12.(In 6.2.10 wird L auf andere Weise berechnet.)

o0
5.8. Sie berechnen > nh naherungsweise durch die ersten drei Glieder:
n=1

1 I
1+212+312 ’

zeigen Sie dass der Fehler < 107° ist
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Analytische Funktionen

6.1 GleichmiBige Konvergenz

Es seien f,, und f Funktionen auf D undessei lim f, = f,dasheilt, fiir jedem
Punkt z € D gelte: lim f,(x) = f(z). Dann wird ergeben sich folgende Fragen:
Wenn alle f,, stetig bzw. differenzierbar sind, gilt dies auch fiir die Grenzfunktion ?
Darf man Grenzprozesse vertauschen; gelten also Gleichungen wie
b b
: . df . .
lim f, = lim oder lim f,(z)de = lim [ fu(z)dz?

a a

Zuerst zeigen wir an einfachen Beispielen, dass die Grenzfunktion einer Folge ste-
tiger Funktionen nicht stetig zu sein braucht und dass man Limes und Integration
und auch Limes und Differentiation nicht immer vertauschen darf.

Beispiel 6.1.1 Firn € N sei
fn: [071]_)]1%1 x = a

fir jedes  mit 0 < < 1 giltnach 1.5.5 lim f,(z) = 0. Esist lim f,(1) = 1.

Die Folge stetiger (sogar beliebig oft differenzierbarer) Funktionen ( f,), konver-
giert also gegen die unstetige Funktion

0 fir 0<z<l1
f'[O’”_’R’””H{1 fiir o= 1.

Wir wollen das Konvergenzverhalten genauer untersuchen: Es sei etwa ¢ = |,

gewihlt; zu = geben wir das kleinste N mit 2V < 110 an.

z 0,5 0,8 0,9 0,9 0,999
N 4 11 22 230 2301
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Die Konvergenz wird also um so “schlechter”, je naher x bei 1 liegt; sie ist “un
gleichmalig.” Dies ist der Grund dafiir, dass die Grenzfunktion unstetig ist.
Zum Problem der Vertauschung von Limes und Integration betrachten wir

0 fir =0
n2x fﬁri<x§i
97,:[0,2]—>R,$|—> 2 .. 1 2
2n — nx furn<x§n
0 fir 2 <z <2

Wir zeigen: fiir jedes z € [0,2] ist lim g¢,(x) = 0. Fir z = 0 ist dies klar; nun sei

 mit 0 < z < 2 vorgegeben. Wir wahlen N € N so, dass N > i ist. Firn > N
istdann 2 < z, also g,,(z) = 0 und somit lim gn(z) = 0.

Fiir alle n € N ist die Dreiecksflache f gn(z)dz = 1 und daher

1= lim [ gn(z dx;é/ hmgn )dz = 0.

n—oo
Die Differentiation untersuchen wir mit der Folge
1.,
hy :[0,27] = R,z —  sin(n“z).
n

Wegen |y, (z)| < ! gilt lim h,(2) = 0 fiir alle 2 € [0, 27];

esist h/,(x) = n-cos(n?

Beispiel ist hl,(0) = n.

x) und diese Folge ist offensichtlich nicht konvergent; zum

g4

g1

Wir fithren nun einen scharferen Konvergenzbegriff ein, namlich den der gleichmali-
gen Konvergenz.
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Definition 6.1.2 Sei D C R und f,, : D — R sowie f : D — R. Die Funktionen-
folge (fn)n heift gleichmiBig konvergent gegen f, wenn es zu jedem € > 0 ein
N(e) € N gibt mit | fp(x) — f(x)| < e fiir allen > N () und alle x € D.

Falls fiir jedes x € D die Folge (f,(x))n gegen f(x) konvergiert, bezeichnen wir
dies als punktweise Konvergenz. In diesem Fall gibt es zu jedem x € D und e > 0
ein N(z,e) € Nmit |f,(x) — f(x)| < € fiirallen > N(x,¢). Der Index N(z,¢)
héingt also nicht nur von g, sondern auch vom Punkt x ab.

Natiirlich ist jede gleichmaBig konvergente Folge auch punktweise konvergent.

GleichmiBige Konvergenz kann man sich so veranschaulichen: Fiirn > N liegt f,
im e-Schlauch um f.

Es ist leicht zu sehen, dass die im Beispiel behandelten Folgen (f,), und (g, )n
nicht gleichmiBig konvergieren; dagegen konvergiert (h,, ), gleichmdBig gegen 0.
Nun zeigen wir, dass bei gleichmaBiger Konvergenz stetiger Funktionen die Grenz-
funktion stetig ist und dass man gliedweise integrieren darf.

Satz 6.1.3 (Satz von der Stetigkeit der Grenzfunktion) Wenn die Folge (f,,) ste-

tiger Funktionen f, : D — R gleichmdfig gegen f : D — R konvergiert, so ist
auch f stetig.

Beweis. Es ist zu zeigen, dass f in jedem Punkt 2oy € D stetig ist. Zu jedem £ > 0
existiert ein N € N mit |f,(z) — f(z)] < 5 firn > Nund 2z € D. Weil fy
in g stetig ist, existiert eine Umgebung U von x¢ mit |fx (z) — fn(zo)| < § fiir
z e UND.Danngilt firx € UN D:

|f (@) = f(zo)| < |f(z) — fn(@)] + [fn(2) — fn(m0)| + [fn(20) — fl70)| <
< 5 + 3 + 3 =e.
O

Satz 6.1.4 (Vertauschung von Limes und Integration) Die Folge (f, ), stetiger
Funktionen f,, : [a,b] — R konvergiere gleichmdifiig gegen f : [a,b] — R. Definiert
man fiir © € [a,b] Funktionen

Fo(z) ::/fn(t) dt,  F() ::/f(t)dt,
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so gilt: (Fy,)y, konvergiert gleichmdifSig gegen F'; insbesondere gilt

b b
nlin;o fnlz) de = /(nlin;o fn(z)) da.

a

Beweis. Zu € > 0 existiert ein N mit | f,,(t) — f(¢)] < e firn > N und ¢ € [a, b].
Dann gilt fiirn > N; x € [a, )] :

|/fn(t)dx—/f(t)dt\§5-(x—a)§5~(b—a)

und daraus folgt die Behauptung. a
Aus diesen beiden Satzen folgt, dass die im Beispiel 6.1.1 behandelten Folgen ( f,, ),
und (gp), nicht gleichméBig konvergieren. Dagegen ist (hy,), wegen |h,(z)] <
711 gleichmaBig konvergent, trotzdem darf man nicht gliedweise differenzieren. Bei
Vertauschung von Limes und Differentiation benotigt man eine Voraussatzung tiber
die gleichmaBige Konvergenz der Folge der Ableitungen.

Satz 6.1.5 (Vertauschung von Limes und Differentiation) Es sei (f,,), eine Fol-
ge stetig differenzierbarer Funktionen auf [a,b]. In einem Punkt xo € |a,b] kon-
vergiere (fn(xo))n, die Folge (f])n sei gleichmdfig konvergent. Dann konvergiert
(fn)n gleichmdpig gegen eine stetig differenzierbare Funktion f und (f) konver-
giert gleichmdifig gegen f'.

Beweis. Nach Voraussetzung konvergiert (f ), gleichmiRig gegen eine Funktion
g : [a,b] — R, die nach 6.1.3 stetig ist. Es sei ¢ := lim f,,(zo). Aus dem Hauptsatz

der Differential- und Integralrechnung folgt

fn(@) = falzo) + / f(t) dt.

Man definiert f(z) := ¢+ [ g(t) dt; dann folgt aus 6.1.4, dass (f,),, gleichmiBig

o
gegen f konvergiert. Nach dem Hauptsatz ist f/ = g und damit sind alle Behaup-
tungen bewiesen. a

Diese Aussagen sollen nun auf Reihen von Funktionen tibertragen werden. Fiir jedes
n € Nsei f, : D — R eine Funktion, man setzt s,, := Zn: f1. Die Reihe i fn
heiflit gleichmaBig konvergent, wenn es die Folge der Partlgllsummen (Sn)n insT;ldie
Grenzfunktion bezeichnet man ebenfalls mit i fn-

n=1
Die oben bewiesenen Aussagen fassen wir nun in einem Satz zusammen:
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o0

Satz 6.1.6 Fiirn € Nsei f, : [a,b] — R stetig. Wenn die Reihe >, f,, gleichmdfig
n=1

(o]
konvergiert, dann ist auch die Grenzfunktion f,, stetig und fiir x € [a, ] gilt:

n=1
jifn(t) dt = ia/wfn(t) dt.

Wenn alle f,, stetig differenzierbar sind und >, fn(x0) fiir ein xo € [a, b] konver-

n=1

o0
giert und wenn auflerdem Y f! gleichmdifig konvergent ist, dann konvergiert auch
n=1

> fn gleichmdfig und es gilt:

n=1

d & = d
dx;fn:;dxf"'

Fiir gleichmaBige Konvergenz gibt es auch ein Cauchy-Kriterium:

Satz 6.1.7 (Cauchy-Kriterium fiir gleichméBige Konvergenz) Es sei (f,,), eine
Folge von Funktionen f, : D — R ; wenn zu jedem € > 0 ein N () existiert mit
|fr(x) — fr(x)| < € fiir alle n,k > N(e) und alle x € D, dann konvergiert die
Folge (fn)n gleichmdfig.

Beweis. Fiir jedes € D ist (f,(z)), eine Cauchy-Folge und daher konvergent;
wir setzen f(z) := lim f,(z). Nun sei € > 0 vorgegeben; wir wihlen N (g) wie
oben. Fiir alle n > N(g) und alle x € D gilt : Fiir jedes k € N ist

[fu(@) = f(@)] < [falz) = fu(@)] + |fr(z) = f(2)]-

Zuz € D kannman k > N (e) so wihlen, dass | f(x) — f(x)| < € ist. Daraus folgt

|fn(x) — f(z)| < 2¢ firallen > N(¢) undalle z € D.

Daraus leiten wir her:

Satz 6.1.8 (Majorantenkriterium fiir gleichmifBige Konvergenz.) Es seien

fn : D — R Funktionen und c,, reelle Zahlen; fiir alle n € N und alle x € D sei
| fn(2)| < ¢pn. Dann gilt:

Wenn Y ¢, konvergiert, dann ist die Reihe Y, f,, gleichmdfig konvergent.

n=1 n=1
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Beweis. Wir setzen s, := ). f; und zeigen, dass die Folge (s,), gleichmiBig
=1
konvergiert. Fir n > k und x € D ist

n

[sn(2) —se(@)| < Y [fi@)] < Y e

j=k+1 j=k+1

Weil > ¢; konvergiert, existiert zu ¢ > 0 ein N(¢), so dass firn > k > N(e)

j=1
n

gilt: Y ¢; <e.Daher gilt
j=ht1

[sn(x) — sk(x)] <e fir n>k> N(e) undalle x € D.

Daraus folgt nach dem soeben bewiesenen Kriterium, dass die Folge (s;,), und

damit auch die Reihe Y f,, gleichmiBig konvergiert. O
n=1
Wir merken noch an, dass diese Ausssagen auch fiir komplexe Funktionen, also

fn: D — C mit D C C gelten.

6.2 Die Taylorreihe

Wichtige Funktionen, wie e”, sin x, haben wir durch eine Potenzreihe definiert. Nun
soll die Frage behandelt werden, unter welchen Voraussetzungen man eine gegebe-
ne Funktion durch eine Potenzreihe darstellen kann. Eine Funktion, die man um
jeden Punkt in eine Potenzreihe entwickeln kann, bezeichnet man als analytisch;
die Potenzreihe heif3t Taylorreihe (BROOK TAYLOR (1685-1731)). Wir betrachten
in diesem Abschnitt Funktionen, die auf einem offenen Intervall I =]a, b[ definiert
sind; dabei darf I auch ein uneigentliches Intervall sein.

Definition 6.2.1 Eine Funktion f : I — R heifit analytisch, wenn es zu jedem

Punkt xog € I eine Umgebung Us(xo) C I und eine Potenzreihe >, an(x — o)™
n=0
gibt, so dass fiir x € Us(xo) gilt:

flx) = Z an(x — x0)™.
n=0

Die Menge der in I analytischen Funktionen bezeichnen wir mit

e (I).
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Aus 5.1.3 folgt:

Satz 6.2.2 Ist f(x) = > an(x — xo)" in |x — x| < 7, so ist [ beliebig oft
n=0

differenzierbar und f) (xq) = nla,, also
F@) =3 L) (o a0
B — n! 0 0/

Fiir die weiteren Untersuchungen fiihren wir den Begriff der Taylorreihe ein; deren
Partialsummen heiflen Taylorpolynome.

Definition 6.2.3 Fiir eine beliebig oft differenzierbare Funktion f : I — R, xg € I,
heif3t

oo

S P G0) (o - o)

n=0

die Taylorreihe von f um xq. Fiirn € Ny heifit
“ 1
Th(x) == kz k!f(k) (x0) - (& — 2o)"
=0

das n-te Taylorpolynom;
R (z) = f(x) = Tn(z)

heifit das zugehorige Restglied.

(T},)n ist die Folge der Partialsummen der Taylorreihe; die Taylorreihe um z( kon-
vergiert fiir © € I genau dann gegen f(x), wenn gilt:

lim R,(z)=0.

n—oo

In der Abbildung sind fiir die Funktion cos x die Taylorpolynome 75, Ty, Ty, T3
dargestellt.
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Wir geben nun ein Beispiel einer beliebig oft differenzierbaren Funktion f an, die
nicht analytisch ist. Bei dieser Funktion konvergiert die Taylorreihe, aber sie kon-
vergiert gegen 0 und nicht gegen f.

Beispiel 6.2.4 Es sei

) exp(— ) fiirz #0
f‘R_’R’xH{o fiir z =0

Wir zeigen: f ist beliebig oft differenzierbar und fiir alle n € N gilt £(™)(0) =0 .
Daraus folgt: Die Taylorreihe von f um 0 ist identisch null; sie stellt also die Funk-
tion f nicht dar und somit ist f nicht analytisch.

Die Funktion f ist fiir  # 0 positiv; jedoch ist zum Beispiel f(0,4) < 2-1073
und f(0,2) < 2-10~*! ; daher hat man den Eindruck, dass sie in einer Umgebung
des Nullpunkts identisch veschwindet.

Wir geben zunéchst fiir z # 0 die ersten drei Ableitungen dieser Funktion an:

f/(x) — ;3 ~exp(—x12), f//(l') = (;6 - 54) .eXp(_.Z‘lz)7
FO@ = (o) el )

Es ist f’/(\/g) = 0 und die Funktion f’ nimmt im Punkt \/g = 0,816... das
Maximum f(\/g) =0,819...an.

Nun zeigen wir:
f ist beliebig oft differenzierbar ist und fiir n € N gilt: ™) (0) = 0
In 4.2.11 wurde fiir £ € N hergeleitet :

lim 2 %¢® = 0o, daher lim zFe™ =0 und }llir% h=F exp(—=h~%) = 0.

xr—00 Tr— 00
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Somit existiert

f'(0) = }%ig%) ) ; 1) = }IIEI%) ;L exp(=h™%) = 0.

Nun zeigen wir durch vollstandige Induktion, dass fiir n € N gilt:
F0)=0 und f"(z) =pa( )-exp(=2™") fir z#0;

dabei ist p,, ein Polynom.
Der Induktionsanfang n = 1 wurde bereits bewiesen; wir nehmen an, die Aussage
sei fiir ein n richtig; dann ist fiir x # 0:

Fr @) = & (pa( L exp(-272) = (<ph(2) 2 + Zpa(L)) exp(—a2) =

= pn+1(i)eXP(_$72) mit pn+1(i) = _p/n(i) : _rlz + 33pn(qlp)

Somit ist f(™)(x) eine Linearkombination von 2% exp(—z~2) und daraus folgt:

. . — -2 —
h—0 h h—0 h ) -exp(=h77) = 0.

Damit sind alle Behauptungen bewiesen.

Beispiel 6.2.5 Mit diesen Methoden kann man auch zeigen, dass die Funktion

_ exp(—,1.) fir |[z]<1
g'R_’R’xH{o fir |z >1
beliebig oft differenzierbar ist. Man beweist, dass alle Ableitungen in x = +1 exi-
stieren und gleich 0 sind. Die Taylorreihen um =£1 sind identisch null und stellen
somit die Funktion g nicht dar. Diese Funktion ist unendlich oft differenzierbar und
hat kompakten Triger, ndmlich [—1, +1]; es ist also g € C3°(R). Wir werden in
13.2.1 diese Funktion bei der Konstruktion der Teilung der Eins heranziehen. Eine
nicht-identisch verschwindende analytische Funktion mit kompaktem Trager exi-
stiert nicht; dies kann man leicht aus dem Identitatssatz fiir Potenzreihen 14.7.7
herleiten. Fir || < 1 ist

—2z 1 6zt — 2 1
! _ A _ " _ . _
g ($) - ((E2 _ 1)2 exp( 1— 1’2 )7 g (x) (1'2 _ 1)4 eXp( 1— (E2)
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1_.
gl
i
5“ gI/
\/’\j 1

Nun sollen fiir das Restglied zwei Darstellungen hergeleitet werden, die eine, nach
Cauchy, durch ein Integral, die andere , nach Lagrange, durch die (n+1)-te Ablei-
tung:

Satz 6.2.6 (Darstellungen des Restgliedes) Sei n € Ng und f : I — R eine
(n + 1)-mal stetig differenzierbare Funktion. Dann gilt fiir o,z € I:

x

1) Raenl@ = [0 d Caveny)

o
(2) Es gibt ein & zwischen xo und x mit

1

Bnga(z) = (n+1)

'f(n+1)(£) Az — xo)" Tt (LAGRANGE)
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und daher gilt die Taylorsche Formel:

1

1

D) (= wo)"
Beweis zu (1). Wir filhren den Beweis durch Induktion nach n. Fiir n = 0 liefert
Ra(o) = f(a) = flan) = [ £1(0) e
o

die Behauptung. Nun sei n > 1 und die Aussage sei fiir n — 1 richtig, also

x

T — n—1 r(n) )
) f=ortoa a

0

1
Bn(z) = (n—1

Durch partielle Integration erhalt man

x

R,(z) = ol (z — )" ™ (1) z o+ 71! /(ac D () dt =

Zo

Wegen
1
Rut1(x) = Ry(2) — n,f(") (o) - (x — 20)"
folgt daraus die Aussage fiir n.
Beweis zu (2). Nach dem 2. Mittelwertsatz der Integralrechnung 5.2.2 existiert ein
& zwischen xp und x mit

Ruii@)= | / (z — )" f D (1) dt =

Zxo xo

—— I |

n!

(x — )"+t

n+1 ];0: ( 1 !f(n+1)(£)'($—x0)"+1.

n+1)

O
Nun geben wir eine Bedingung dafiir an, dass die Taylorreihe von f : I — R um
jedes zg € I auf ganz I gegen f konvergiert.

Satz 6.2.7 Sei f : [a,b] — R beliebig oft differenzierbar; es existiere ein M > 0
und ¢ > 0 mit
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f™(z)| < M- fiir neNy und z€l.

Dann gilt fiir vo,x € I :

oo

1
f(x) = Z n,f(n)(xo) “(x —x0)".
n=0
Beweis. Es ist |R,,(z)| = |} f™(&) - (z — 20)"| < ,Mc™ - (b— a)" und aus
lim ! ¢"(b—a)" =0folgt lim R,(x)=0. O

Mit einer anderen Abschitzung der f(™ erhilt man die schwichere Aussage: Die
Taylorreihe um xy konvergiert in einer Umgebung von xy gegen f:

Satz 6.2.8 Sei f : I — R beliebig oft differenzierbar ; es existiere M > 0 und
c > 0 mit

|f™M (@) <n!-M-c¢"  fir neNy und z€l.
Dann ist f analytisch.

Beweis. Sei xg € I ; wir wihlend > 0so,dass § < i und [z¢—§, 29+6] C [ ist. Fiir
| —xo| < d gilt dann fiir das Restglied der Taylorreihe um xg : |Ry,(z)| < Mc™o"
und wegen dc < 1ist lim R,(x) = 0. O
Nun zeigen wir, dass eine Funktion, die durch eine konvergente Potenzreihe gegeben
ist, immer analytisch ist.

o0
Satz 6.2.9 Wenn die Potenzreihe ) anx™ fiir |x| < R konvergiert, dann ist die
n=a

Funktion -
fi]—-R,+R—R, z+— Z anz",
n=0
analytisch.

Beweis. Wir zeigen, dass fiir die Ableitungen von f Abschitzungen wie in 6.2.8
gelten. Es ist

(oo}

f(k)(ﬂj) = Z TL(TL — 1) R (TL — k4t 1)Cl7,,37"_k_

n==k

Um diesen Ausdruck abschatzen zu konnen, verwenden wir die k-te Ableitung der
geometrischen Reihe: Fiir |z| < 1 ist

> d¢ 1 k!
— . . — n—k = =
;n(n D-.-(n—k+ 1)z dx’“(l—x) (1— )kt

o0

Fiir reelle Zahlen p,r mit 0 < p < r < R giltdann: ) a,r™ ist konvergent, also
n=0

existiert ein M > 0 mit |a,r"| < M fiir n € No. Wir setzen ¢ := ”, dann ist

0 < ¢ < 1,undfir |z| < p,n >k, gilt:
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|anxn7k‘ < |anpn7k| — |an,r,n‘ _,r,fkqnfk < Tkoqnfk.

Daher gilt fiir |z| < p:

k! M 1
B ()| <r kM- — k. k.
7o < (L—ghktt  1-g¢ (7"(1—(1))
Aus 6.2.8 folgt dann, dass f in | — p, +p[ analytisch ist; da dies fiir jedes p mit
0 < p < Rgilt, folgt: f istin ] — R, +R[ analytisch. O

Funktionen wie e*, sin x, cos x hatten wir durch Potenzreihen definiert; aus 6.2.9
folgt, dass diese Funktionen analytisch sind.
Bemerkung. Wir werden diesen Satz in 14.6.3 nochmals mit anderen Methoden

o0
erhalten. Wenn die Reihe Y a,2™ in {z € R| |z| < r} konvergent ist, so kon-

n=0
vergiert sie auch in {z € C| |z| < r} und darf gliedweise differenziert werden.
Daher stelt sie dort eine holomorphe Funktion dar. In Satz 14.6.3 ergibt sich, dass
jede holomorphe Funktion analytisch ist.

Wir geben nun weitere Beispiele an:

Beispiel 6.2.10 Fiir |z| < 1 ist

0 xn $2 $3 $4
In(l+z)=> (1) L T
n=1

Diese Reihenentwicklung erhalt man aus
=1—t+2 -+ ...
14+t * *
durch gliedweise Integration:

x

dt 2
ln(l—i—a:):/l_'_t:x—a; + ... fiir [z| < 1.
0

Wir zeigen, dass diese Formel auch noch fiir z = 1 gilt: Fiir t # —1 ist nach 1.5.6:

_ 1— (=)
1—t+t2 43—+ ()" L=
T + (=) 1+t 7
also ist
1

1
dt (="
In2 = = 1-— 2 (=)t =
n /1+t /( t+t + (—t) +1+t>dt
0

0
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1 1 1
Wegen 0 < [ f:t dt < [trdt = "_1~_1 folgt: lim [ f:t dt = 0 und damit haben
0 0 n—oo g

wir den Grenzwert fur die alternierende harmonische Reihe:

bl 1 1 1 1
1n2:Z(—1)”+1-n:1—2—1-3—4—1—....

n=1

Man vergleiche dazu die Aufgaben 1.12 und 5.7.

Belsplel 6.2.11 Analog erhalten wir die Reihenentwicklung fiir arc tg . Es ist arc

o0
tgx = f heund | Ly = 37 (=1)"2" fiir [t| < 1. Daraus folgt fiir [z] < 1:

n=0
0 22n+1 G I S ¢
tg x = -1 =z - —
e ;( T e A T R
Wie im vorhergehenden Beispiel zeigt man, dass dies auch firx = lund z = —1
gilt. Wir sezten ¢2 statt ¢ ein und erhalten analog:
1 1 IR
77 t 11 e
—arctgl = =1- — (=)t
g e /1+t2 gty =D 2n—1 /1+t2
0 0
Fir0 <t < 1listl <1+ ¢2 < 2und daher
1
/ t2n 1
<
2n +1) 1+ t2 T 2n+41
0

Dieses Restglied geht also fiir n — co gegen 0 und wir erhalten

Die Abschatzung zeigt aber auch, dass diese Reihe ziemlich langsam konvergiert;
wenn man zum Beispiel 7} durch 1— :1,’ +...+ 917 — 919 approximiert, liegt der Fehler
zwischen 202 und 131

Die Abbildung mit den Taylorpolynomen 73, ..., Ty zu arc tgx vermittelt einen
Eindruck von der Konvergenz der Arcustangens-Reihe in |z| < 1 und der Divergenz

in |z| > 1.



6.2 Die Taylorreihe 111

Ty 1+ T}
1

Aufgaben

6.1. Geben Sie die Taylorentwicklung von ™% um x¢ = 0 an.

1—x

. . . 1 —
6.2. Geben Sie die Taylorentwicklung von Itota?4adpotpes UM Zo = 0an

6.3. Sei 0 < a < b; geben Sie die Taylorentwicklung von (= +a)1(sz) um xo = 0 an.

6.4. Es seien in |z| < 1 die Funktionen

flz) = (1 +2) und g(z) =

(1-2)3 1—z

gegeben. Zeigen Sie
/
f@)=a(s:4@)

geben Sie dann die Taylorreihe von f um z¢ = 0 an und berechnen Sie gf
n=1

6.5. Geben Sie ( mit Aufgabe 3.5) die Taylorreihen von

! und von o+’
(1—x)3 (1—a)3

um zo = 0 an und vergleichen Sie mit der vorhergehenden Aufgabe.

6.6. Zeigen Sic , dass fiir |z < 1 gilt: |sinz — (z— % + %) <2-107
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Lineare Algebra

7.1 Gruppen, Ringe, Korper

Wir stellen die zuerst Grundbegriffe iiber Gruppen, Ringe und Korper zusammen;
anschliessend bringen wir eine Einfithrung in die Gruppentheorie.

Definition 7.1.1 Eine Gruppe ist ein Paar (G, o), bestehend aus einer nichtleeren
Menge G und einer Verkniipfung

GxG—G,(a,b)—aob,
mit folgenden Eigenschaften:

Fiir alle a,b,c € G ist (aob)oc=ao(boc)
Es gibt ein e € G, so dass fiir alle a € Ggilt eoa=a
Zu jedem a € G existiert ein a~' € G mit a "oa=e

(G, o) heifit abelsch oder kommutativ, wenn fiir alle a,b € G gilt: ao b = b o a.

An Stelle von (G, o) schreiben wir meistens G und statt a o b schreiben wir ab.
Sind Gy und Gy Gruppen und ist f : Gy — Go eine Abbildung, so heifit f
(Gruppen-) Homomorphismus wenn fiir alle a,b € G4 gilt:

flab) = f(a)f(b).

Eine Teilmenge U einer Gruppe G heifst Untergruppe von G, wenn sie, versehen
mit der in G definierten Verkniipfung o, ebenfalls eine Gruppe ist; dies ist genau
dann der Fall, wenn gilt: (1)e € U, (2) fiira,b € U sindab € Uunda= ", b~ € U.

Man kann leicht zeigen, dass eine nichtleere Teilmenge U von GG genau dann eine
Untergruppe ist, wenn fiir alle a, b € U gilt: ab~! € U.

Definition 7.1.2 Ein (kommutativer) Ring ist ein Tripel (R, +,-), bestehend aus
einer nichtleeren Teilmenge R und zwei Verkniipfungen
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RxR— R,(a,b)—a+b, RxR— R,(a,b)—a-b,
so dass gilt (a,b,c € R):

(R,+) ist eine abelsche Gruppe
a-(b-c)y=(a-b)-c
a-b=b-a
a-(b+c)=a-b+a

Das neutrale Element von (R, +) bezeichnet man mit 0. R heift Ring mit Einsele-
ment, wenn ein 1 € R existiertmit 1 2 0und 1-a = a fliralle a € R.

Sind R; und Rs Ringe, so heibt f : Ry — R Ringhomomorphismus, wenn fiir
alle a,b € R; gilt:

flat+b)=fla)+ f(b),  fla-b) = f(a)- f(b).

Ist (R,+,-) ein Ring, so heiBt S C R ein Unterring, wenn S mit den Ver-
kniipfungen +, - ein Ring ist. Dies ist genau dann der Fall, wenn S nichtleer ist
und fiiralle a,b € Sgilta—be S,a-beS.

Die Korperaxiome 1.2.1 konnen wir nun so formulieren:

(K, +, ) ist ein Korper, wenn gilt:

(K, +, ) ist ein Ring mit Einselement und (K \ {0}, -) ist eine abelsche Gruppe.
Seien K7 und Ko Korper; f : K1 — K5 heifit Kérperhomomorphismus, wenn f
ein Ringhomomorphismusist, also  f(a+0b) = f(a)+f(b), f(ab) = f(a)f(b).

Ist (K, +,-) ein Korper, so heift L C K ein Unterkorper, wenn L mit +, - ein
Korper ist. Dies ist genau dann der Fall, wenn L nichtleer ist und aus a,b € L,
b#0folgt:a—be La-b~1 € L.

Bei Gruppen, Ringen und Korpern bezeichnet man einen bijektiven Homomorphis-
mus als Isomorphismus.

Gruppen
Wir geben eine kurze Einfiihrung in die Gruppentheorie. Es sei immer G eine Grup-
pe. Ist U C G eine Untergruppe und sind a, b € G, so setzt man

aU :={az| z € U}, Ua:={za|xz €U}, aUb:={azxblz e U}.

Man bezeichnet aU als Linksnebenklasse. Ist u € U, so ist offensichtlich (au)U =
aU und daher gilt:

aU = bU ist dquivalentzu o~ 'b € U.

Zwei Linksnebenklassen sind entweder disjunkt oder gleich, denn aus ¢ € (aU) N
(bU) folgt ¢ = ax = by mit 2,y € U und daher a=1b € U, somit aU = bU.
Eine Untergruppe N C G heifit Normalteiler, wenn gilt:

aN = Na firallea e G.
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Dies ist genau dann der Fall, wenn fiir alle a € G gilt: aNa™! = N; dies ist
gleichbedeutend mit aza~! € N firallea € G,z € N.
Ist f : G — G’ ein Gruppenhomomorphismus und e’ € G’ das neutrale Element in
G, so gilt

Kerf :={x € G| f(z) = €'} ist ein Normalteiler.

Ist N C G ein Normalteiler, so kann man die Faktorgruppe G /N bilden. Die Menge
G/N istdie Menge aller aN, a € G; als Verkniipfung definiert man (aN)-(bN) :=
(ab)N.

Wir zeigen, dass bei einem Normalteiler diese Verkniipfung unabhangig von der
Wahl von a, b ist:

Es ist also zu beweisen: Aus aN = a’N, bN = b'N folgt (ab)N = (a’V’')N.
Ausa’ € aNund b’ € bN = Nb folgt: Es gibt z,y € N mit o’ = az, b’ = yb.
Dannist a’b’ = azybund wegen zyb € Nb = DN gibtes ein z € N mit zyb = bz.
Daraus folgt a’b’ = abz und somit (a’b’')N = (ab)N.

Daher kann man definieren:

Definition 7.1.3 Ist G eine Gruppe und N ein Normalteiler in G, so ist die Menge
G/N aller Linksnebenklassen mit der Verkniipfung

(aN)- (bN) := (ab)N

eine Gruppe; sie heifit die Faktorgruppe von G modulo N.

Wir formulieren dies noch etwas anders: Ist N C G ein Normalteiler, so nennt
man zwei Elemente a,b € N Aaquivalent (beziiglich N), wenn a~lb € N ist;
man bezeichnet die zu einem a € G gehorende Aquivalenzklasse mit [a] :=
{b € G| a='b € N}. Dann ist [a] = aN; die Verkniipfung ist definiert durch
[a] - [b] = [a - b].

Ein einfaches Beispiel: Wir betrachten die Gruppe (Z, +) und fiir m € N die Un-
tergruppe mZ = {mklk € Z}. Weil (Z,+) abelsch ist, ist mZ Normalteiler. Die
Faktorgruppe Z,,, := 7Z/mZ besteht aus m Elementen.

Endliche Gruppen
Wir bringen nun einige Aussagen tiber endliche Gruppen.

Definition 7.1.4 Wenn eine Gruppe G nur endlich viele Elemente besitzt, so nennt
man die Anzahl der Elemente von G die Ordnung von G und bezeichnet sie mit
ordG. Ist U eine Untergruppe von G, so nennt man die Anzahl der verschiedenen
Linksnebenklassen aU, a € G, den Index von U in G und bezeichnet ihn mit [G :
Ul.

Fiir endliche Gruppen gilt der wichtige Satz von Lagrange (LAGRANGE (1736 -
1813)):

Satz 7.1.5 (Satz von Lagrange) Ist U eine Untergruppe der endlichen Gruppe G,
so gilt:
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ordG = [G:U]-ordU,;
insbesondere ist also ordU ein Teiler von ordG.

Beweis. Jede Nebenklasse aU besitzt ordU Elemente, denn die Abbildung U —
aU, x — az ist bijektiv. Zwei verschiedene Nebenklassen sind immer disjunkt und
G ist die Vereinigung von [G : U] disjunkten Nebenklassen. Daraus folgt die Be-

hauptung. a
Fir a € G nennt man < a >:= {a"|n € Z} die von a erzeugt Untergruppe
und setzt ord a := ord < a > . Aus dem Satz von Lagrange folgt, dass die

Ordnung eines Elements immer ein Teiler der Gruppenordnung ist. Eine Gruppe G
heiflt zyklisch, wenn es ein a € G gibt mit G =< a >.
Als Beispiel fiir die Anwendbarkeit des Satzes von Lagrange zeigen wir:

Satz 7.1.6 Jede Gruppe von Primzahlordnung ist zyklisch.

Beweis. Sei p = ordG eine Primzahl. Wir wahlen ein ¢ € G, mit a # e; dann ist
ord < a > ein Teiler von p und > 1; daraus folgt ord < a >= p und daher ist
<a>=0G. O

Permutationsgruppen

Wichtige Beispiele von Gruppen sind die Permutationsgruppen, auf die wir etwas
ausfiihrlicher eingehen wollen. Permutationsgruppen benotigen wir bei der Theorie
der Determinanten (7.7).

Definition 7.1.7 Es sei n € N; unter einer Permutation der Menge {1,2,...,n}
versteht man eine bijektive Abbildung

o:{l,...,n} —{1,..,n}.
Sind o und T Permutationen von {1, ...,n}, so ist auch die Abbildung
Too:{l,...,n} = {1,...,n},j— 7(c(j)),

bijektiv, also ist T o o eine Permutation.
Die Menge S,, aller Permutationen von {1, ...,n} ist mit dieser Verkniipfung eine
Gruppe, sie heif3t Permutationsgruppe.

Fir 7 o o schreibt man nur 70 .Fir das Rechnen mit Permutationen ist es
zweckmiBig, o € S, so zu schreiben:

o= (0(11) 0(22) 0?3) 0?”))

In dieser Schreibweise ist das neutrale Element von S,, die Permutation id =

G 3 g ). Zum Beispiel ist
1234
7= (3 14 2) € S
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die Abbildung mit
o(1)=3,0(2)=1, 0(3) =4, c(4) =2

Setzt (1234 iro— (1234 yngor— (1234
clzt man 7 = 2431 , SOIStTO = 39214 und ot = 1243)"

Fiir 0 € S,, definiert man das Signum von o durch

sign(o) := H o(j) = J(i),

L1 | — 1
1<J J

dabei bildet man das Produkt iber alle Paare (i,5),4,7 = 1,...,n miti < j.
Es ist immer signo) = +1. Eine Permutation o mit sign(c) = +1 heifit gerade,
andernfalls ungerade. Fiir o, 7 € S, gilt

sign(o7) = sign(o)sign(7).

Ein einfaches Beispiel soll klarmachen, warum das Signum immer +1ist. Es sei

. 1234 .
wieder o = (3 1 42>,dann1st

. 1-3 4-3 2—-3 4-—-1 2—-1 2—4 1

SEn(0) =y 3 1T4-1 3-2 4-2 4.3
(Man soll die Differenzen nicht ausrechnen, sondern feststellen, dass bis auf das
Vorzeichen in Zahler und Nenner die gleichen Differenzen vorkommen.)
Eine Permutation 7 heilit Transposition, wenn sie zwei Elemente j,k vertauscht
und die tibrigen festlaBt; man schreibt dann 7 = (j k). Fiir jede Transposition 7
istsign(r) = —1.
Man kann zeigen (vgl. [4]):

Hilfssatz 7.1.8 Jede Permutation ldsst sich als Produkt von Transpositionen dar-
stellen ldsst. Eine Permutation o ist genau dann gerade , wenn sie als Produkt einer
geraden Zahl von Transpositionen darstellbar ist.

Bei unseren Beispiel ist
o = (12)(14)(13).

In der Matrizenrechnung behandelt man Gruppen, die in der Geometrie und auch in
der Physik wichtig sind:

Die allgemeine lineare Gruppe G L(n, K) der invertierbaren Matrizen A € K (™),
die orthogonale Gruppe O(n) der A € GL(n, K) mit A~! = A?,

die spezielle orthogonale Gruppe SO(n) aller A € O(n) mit det A = 1.
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7.2 Vektorriaume

Es bezeichne K immer einen (kommutativen) Korper
Definition 7.2.1 Ein Vektorraum iiber K ist ein Tripel (V,+,-), bestehend aus
einer Menge V' und zwei Verkniipfungen
VXV -V, (v,w)—v+w, KxV =V, (\v)— A,
mit folgenden Eigenschaften (v,w € V; A\, u € K):

(V,+) ist eine abelsche Gruppe
AMpw) = (Ap)v
A+ p)v = v+ po
Av+w) = v+ dw
lv=w
Sind V' und W Vektorrdume iiber K, so heifit eine Abbildung f : V — W linear
(oder Vektorraum-Homomorphismus), wenn fiir alle \, u € K und v,w € V gilt:

fw +pw) = Af(v) + pf (w).

dquivalent dazu :

flot+w) =fv)+ flw), f(h)=Af(v).

Eine bijektive lineare Abbildung f : V. — W heifst Isomorphismus, eine lineare
Abbildung f : V — V, also V = W, bezeichnet man als Endomorphismus.

Ist (V,+,) ein Vektorraum und U eine nicht-leere Teilmenge von V, so heifst U
Untervektorraum (auch Unterraum oder Teilraum) von V, wenn gilt:

ausu,v € Uund A\, p € K folgt: Au+ pv e U.

U ist dann mit den auf U eingeschrinkten Verkniipfungen + und - ein Vektorraum.

Hilfssatz 7.2.2 Sind V, W, Y Vektorrdume iiber K und sind f : V — W und
g : W — Y linear, so istauch go f : V — Ylinear.

Hilfssatz 7.2.3 Wenn f : V. — W linear und bijektiv ist, dann ist auch die Um-
kehrabbildung f~ : W — V linear.

Beweis. Seien \1,\2 € K, wi,wy € Wund vy := f~1(wy), va := f~1(wo).
Dann ist

FH w1 4+ Aaws) = f7H A f(v1) + Aaf(v2)) = fHF(Mivr + Aaw2)) =

= A1 4 Aovg = A fH(wr) + Ao f T H(w2). U

Definition 7.2.4 Ist f : V. — W linear, so definiert man den Kern von f und das
Bild von f:
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Ker f :=={v e V|f(v) =0}
Bild f .= f(V)={f(v)lve V}

Es ist leicht zu zeigen, dass Kerf C V und Bildf C W Untervektorrdume sind. Wir
beweisen:

Hilfssatz 7.2.5 Eine lineare Abbildung f : V' — W ist genau dann injektiv, wenn
Ker f = {0} ist.

Beweis. 1) Sei f injektiv und v € Ker f. Dann ist f(v) = 0 = f(0), alsov = 0,
daher Ker f = {0}.

2) Sei Ker f = {0}; fiir v;,v2 € V sei f(v1) = f(ve); dannist f(vq1 — v2) =
f(v1) — f(v2) = 0, also v1 — v2 € Ker f = {0}, somit v; — vo = 0 und daher ist
f injektiv. a

Beispiel 7.2.6 (Der Vektorraum aller n-Tupel) Sei K ein kommutativer Korper
und n € N. Man bezeichnet mit

K'=Kx...xK

die Menge aller n-Tupel (z1, ..., z,) von Elementen z1,...,z, € K . Die Ver-
kniipfungen definiert man komponentenweise:
Firz = (x1,...,Zn), ¥ := (Y1, .-, Yn) € K™, X\ € K setzt man

((E], ceey IE»,L) + (ylv 7yn) = (1'1 + Y1,y Ty + yn)
Mz, ooy @) 1= (A1, ooy AZp).

Man priift leicht nach, dass dann K™ ein Vektorraum uiber K ist.

Beispiel 7.2.7 (Der Vektorraum K aller Abbildungen X — K) Besonders
wichtig ist das folgende Beispiel: Es sei X eine nichtleere Menge und es sei K~ die
Menge aller Abbildungen v : X — K. Man definiert fiir v,w € KX und A € K

v+w: X — K, z— v(z) +w(x)
w:X - K, z— X o(z),

dann gilt v + w € KX und W € KX, esist leicht zu zeigen, dass KX mit diesen
Verkniipfungen ein Vektorraum iiber K ist.

Alle interessanten Beispiele von Vektorraumen erhalten wir als Spezialfalle oder als
Untervektorriume eines Vektorraums K.

Der Vektorraum aller Folgen in K: Man wihlt X := N; dannist v € K N eine
Abbildung v : N — K, also eine Folge. Setzt man a,, := v(n) fir n € N, so ist
(an)n die durch v gegebene Folge in K in der tiblichen Schreibweise. Der Vektor-
raum K™ ist also der Vektorraum aller Folgen in K.

Der Vekorraum der konvergenten Folgen:In R hat man die Teilmenge aller
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konvergenten Folgen; sind (a,,) und (b,,) konvergent und ist ¢ € R, so sind auch
(an +by) und (ca,) konvergent und daher ist diese Teilmenge ein Untervektorraum
des RY, der Vektorraum aller konvergenten Folgen.

Der Vektorraum K": Das vorhergehende Beispiel K™ erhalten wir so: Ist n € N
und X = {1,...,n}, so kann man v € K{L-"} mit (zy, ..., ,,) identifizieren, wo-
bei man 2 := v(1), ..., z, := v(n) setzt. K 11"} ist also isomorph zu K™.

Der Vektorraum C°(I) der stetigen Funktionen. Wir kommen nun zum Vektor-
raum der stetigen Funktionen. Ist etwa X = I C R ein Intervall, und K = R, so
ist R’ der Vektorraum aller reellen Funktionen f : I — R . Sind f und g stetig
und ist ¢ € R ,so sind auch f + g und cf stetig; daher ist die Menge aller stetigen
Funktionen f : I — R, die wir mit C°(I) bezeichnet haben, ein Untervektorraum
von RY; insbesondere ergibt sich, dass es sich um einen Vektorraum handelt.

Fir k£ € Nund k = oo haben wir in 3.1.11 definiert:

CF(I):={f: I —R| f istk-mal stetig differenzierbar}

C*(I) ist ebenfalls ein Untervektorraum von R’. Dies gilt auch fiir die Menge C (1)
der analytischen und die Menge R(I) der Riemann-integrierbaren Funktionen . Man
hat also die Untervektorraume

co(Iycex(I)cck)yccktI)c ... cc’(I) c R(I) c RE.

7.3 Basis

Es bezeichne immer V' einen Vektorraum tiber einem (kommutativen) Korper K.
Wir flihren nun drei fundamentale Begriffe ein:

e Erzeugendensystem,
e lineare Unabhangigkeit ,
e Basis.

Definition 7.3.1 Vektoren vy, ...,v;, € V nennt man ein Erzeugendensystem von
V, wenn es zu jedem v € V Elemente \1, ..., \;, € K gibt mit

V= AU1 + ... + ApVk-

Vektoren vy, ..., vy, heifen linear unabhéngig, wenn gilt:

Sind M1, ...\ € Kundist \v1 + ... + Agvp, =0, so folgt: A1 =0, ..., A\, = 0.
Ein n-Tupel (by, ..., by,) von Vektoren by, ..., b, aus V heifit eine Basis von V, wenn
gilt:

(1) by, ..., by, ist ein Erzeugendensystem von 'V,
(2) bi,..., by, sind linear unabhdngig.
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Wenn (by, ..., b,) eine Basis von V 1st dann gibt es Wegen (1) zu Jedem veV

Elemente z1,...,2, € K mitv = Z xjbj. Aus v = Z xjb; Z y;b; ergibt
j=1

sich Z( —y;)b; = 0 und aus (2) folgt x; = y; fiir j = 1, ..., n. Damit erhilt
J=
man folgende Charakterisierung einer Basis:

Satz7.3.2 (b1, ...,by,) ist genau dann eine Basis von V, wenn jeder Vektor v € V

eindeutig als Linearkombination v = x1by + ... + xpb, mit 1,...,x, € K
darstellbar ist.

Die Koeffizienten x4, ..., x,, bezeichnet man als die Koordinaten von v und der
Vektor z := (z1,...,2,) € K™ heifit der Koordinatenvektor von v beziiglich
(b1, ...,bp). Es gilt:

(b1, ..., by,) ist genau dann eine Basis von V, wenn die Abbildung

h: K" =V, (z1,....,x,) — x1b1 + ... + zpby,

ein Isomorphismus ist. Die Umkehrabbildung 4! ordnet jedem Vektor v € V' den
Koordinatenvektor z = (z1, ..., ) mit v = x1b1 + ... + 2, by, zu.
In der Matrizenrechnung ist es zweckmafBig, den Koordinatenvektor x als Spalten-

vektor
T1

Tn

zu schreiben.

Beispiel 7.3.3 Essei V := K", wir setzen

1 0 0

0 1 :

er:=1| .|, e =1 .1],..., en:i=1]"

! : ? : 0

0 0 1
T1

Dann kann man jeden Vektorz = | : | € K™ eindeutig darstellen als

Tn

r=2x1€1 + ...+ Tnen

und daher ist (eq, ..., €, ) eine Basis des K. Diese Basis bezeichnet man als kano-
nische Basis des K™.

Diese Begriffe sollen nun eingehend behandelt werden.
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Definition 7.3.4 Sind vy, ...,v, € V, so heifit
span(vy, ..., v) = {1 + oo + Avg] A,y Ap € K}

dervon vy, ..., vi, aufgespannte Untervektorraum.

Natiirlich gilt: vy, ..., v, ist genau dann ein Erzeugendensystem von V, wenn
span(vy, ...,v;) = V ist. Man kann die lineare Unabhingigkeit folgendermafien
charakterisieren:

Satz 7.3.5 Vektoren vy, ..., vy sind genau dann linear abhdngig, wenn ein Index
Jj € {1,...,k} existiert mit

Vj € SPan(vi, ..., Vj—1, V41, -, V).

Beweis. Wenn vy, ..., vi linear abhangig sind, dann gibt es A1, ..., Ay € K und ein
Jmit A; # 0und A\jv1 + ... + Agv, = 0. Dann ist

v = —)\j_l(Alvl + o No1vjm A v AkVk),

also v; € span(vi, ..., Vj—1,Vj+1, ..., U ). Die Umkehrung der Aussage ist leicht zu
sehen. O
Nun zeigen wir: Vektoren (v, ..., v,,) sind genau dann eine Basis, wenn vy, ..., v,
ein unverkiirzbares Erzeugendensystem ist; das bedeutet: Wenn man aus dem Er-
zeugendensystem einen Vektor weglafit, erzeugt es V' nicht mehr. Analog dazu cha-
rakterisieren wir die Basis (v1, ..., v,,) als unverldngerbar linear unabhéngig: Wenn
man einen weiteren Vektor v hinzufiigt, dann sind vy, ..., v,,, v linear abhingig.

Satz 7.3.6 Fiir v, ...,v, € V sind folgende Aussagen dquivalent:
(1) (v1, ..., vy) ist eine Basis von 'V,

(2) v, ..., vy ist ein unverkiirzbares Erzeugendensystem von 'V,
(3) v1, ..., v, sind unverlingerbar linear unabhdngig.

Beweis. Nach 7.3.5 ist ein Erzeugendensystem genau dann linear unabhéngig, wenn
es unverkirzbar ist; daher sind (1) und (2) aquivalent.

Nun zeigen wir: Aus (1) folgt (3): Es sei (v1, ..., v, ) eine Basis. Fiir jedes v € V
gilt v € span{vy, ..., v, } und nach 7.3.5 sind vy, ..., v, v linear abhingig. Somit gilt
3).

Es ist noch zu zeigen: Aus (3) folgt (1). Wenn die Vektoren v, ..., v,, unverlangerbar
linear unabhangig sind, dann gilt fiir jedes v € V, dass vy, ..., v, v linear abhdngig
sind. Es ist also A\jvy + ... + A\,v, + Av = 0 und nicht alle \;, A sind null. Aus
A = 0 wiirde folgen, dass vy, ..., v, linear abhangig sind. Somit ist A # 0 und daher
v =AM\ + ...+ A\v,) € span(vy, ..., v,,). Dies gilt fiir jedes v € V und
daher ist (v1, ..., v,,) eine Basis. O
Aus diesem Satz folgt, dass man aus einem Erzeugendensystem immer eine Basis
auswahlen kann:

Satz 7.3.7 Wenn v, ..., v ein Erzeugendensystem von'V ist, dann existieren Indi-
28 01, ey iy € {1,..., k}, s0 dass (v, , ..., v;,,) eine Basis von V ist.
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Beweis. Wenn die Vektoren vy, ..., v; ein Erzeugendensystem bilden und linear
abhangig sind, dann kann man einen Vektor, etwa v, weglassen und hat dann das
verkiirzte Erzeugendensystem vy, ..., vi—1. Dies wiederholt man so lange, bis man
ein unverkiirzbares Erzeugendensystem hat; dieses ist eine Basis. a
Wir zeigen nun: Ist (by, ..., by,) eine Basis und v ein Vektor, dessen k-te Koordinate
nicht verschwindet, so kann man b;, durch v ersetzen:

Satz 7.3.8 (Austauschlemma) Es sei (b1, ..., b,,) eine Basis von'V und
v=Ab1+ ... + b + ... + Anbpn, A #O.

Dann ist auch (b, ..., bg—1,v,bg41, ..., by) eine Basis von V.

Beweis. Es ist
b, =v — )\;1(/\1()1 + oo+ Apm1bp—1 + /\k+1bk+1 + ...+ )\leﬁ)7

also by € span(by, ..., bg_1,v,bgt1, ..., by). Daher sind diese Vektoren ein Erzeu-
gendensystem von V. Man rechnet leicht nach, dass sie auch linear unabhangig
sind. a
Daraus ergibt sich der Steinitzsche Austauschsatz (ERNST STEINITZ (1871-1928)):

Satz 7.3.9 (Austauschsatz von Steinitz) Ist (by, ..., b,,) eine Basis von V und sind
a1,...,ax € V linear unabhdingig, so ist k < n und man kann die (b1, ...,b,) so
nummerieren, dass (a1, ..., Gk, bg11, ..., by ) eine Basis von'V ist.

Beweis. Esist a; = A1b1 + ...+ A\ by, und a1 # 0. Man darf (nach Umnumerierung
der by, ...,b,) annehmen, dass A\; # 0 ist. Nach 7.3.8 ist dann (ay, ba, ..., b, ) eine
Basis. Daher kann man a9 darstellen als as = pya; + pebs + ... + ppby,. Aus
pe = 0,..,u, = 0 wirde as = pja; folgen; dann waren ay, aq, ..., a linear
abhéngig. Nach Umnumerierung der bo, ..., b,, diirfen wir 2 # 0 annehmen. Nach
7.3.8 ist dann (ay, a9, bs, ..., by,) eine Basis. Wenn man dieses Verfahren fortsetzt,
ergibt sich die Behauptung. a
Daraus folgt, dass je zwei Basen eines Vektorraums die gleiche Anzahl von Elemen-
ten haben:

Satz 7.3.10 Sind (by, ..., b,,) und (131, ey Bm) Basen von V| so ist n = m.

Definition 7.3.11 Ein Vektorraum V heifit endlich erzeugt, wenn es endlich viele
V1, ...,V € V gibt, die ein Erzeugendensystem von V sind.

Aus 7.3.7 folgt, dass jeder endlich erzeugte Vektorraum eine Basis besitzt.
Aus 7.3.9 ergibt sich der folgende Basiserganzungssatz:

Satz 7.3.12 (Basiserginzungssatz) Zu linear unabhdngigen Vektoren aq, ...,ay
in einem endlich erzeugten Vektorraum V existieren ay41,...,a, € V, so dass
(a1, ..y Qky Akt 1, ---, Gp,) eine Basis von'V ist.
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Wir gehen noch auf den Begriff der Basis bei Vektorraumen ein, die nicht endlich-
erzeugt sind (wir werden diese im nachsten Abschnitt als unendlich-dimensional
bezeichnen):

Es sei V' ein Vektorraum iiber einem Korper K, I eine Menge, die wir als Index-
menge bezeichnen, und I — V, i — v; eine Abbildung; dann heiBt (v;); eine
Familie von Vektoren aus V.

Definition 7.3.13 Eine Familie (v;); heifit Erzeugendensystem von V, wenn es

zu jedem v € V endlich viele i1,...,1, € I und x;,,...,z;, € K gibt mit
V=24,V .+ T, 0

Die Familie (v;); heifit linear unabhdngig, wenn gilt: Sind i1, ... ,i, € I endlich
viele verschiedene Elemente, so sind v, , . .. ,v;, linear unabhdngig.

Eine Familie (v;); heifst Basis von V, wenn sie ein linear unabhiingiges Erzeugen-
densystem von 'V ist.
Zu jedem v € V gibt es dann endlich viele i1, ... i, € T und x;,,...,x;, € K mit

V=X,0 oo+ X, 05,
und diese Darstellung ist eindeutig.

Man kann (mit Hilfe des Zornschen Lemas) beweisen, dass jeder Vektorraum eine
Basis besitzt ([4] [3]).

In 10.4.11 werden wir in Hilbertraumen H den Begriff der Hilbertbasis einfiihren.
Eine Hilbertbasis ist keine Basis in dem soeben definierten Sinn. Der von einer Hil-
bertbasis aufgespannte Raum ist nicht notwendig H, sondern liegt dicht in . Daher
werden bei einer Hilbertbasis die Elemente des Raumes durch Reihen dargestellt,
nicht, wie hier, durch Summen endlich vieler Elemente.

Basen und lineare Abbildungen

Wir nehmen nun an, dass in V' eine Basis (b1, ..., b, ) gegeben ist und behandeln die
Frage, was man iiber eine lineare Abbildung f : V' — W aussagen kann, wenn man
f auf der Basis kennt.

Zunachst ein einfacher Existenz- und Eindeutigkeitssatz:

Satz 7.3.14 Wenn zwei lineare Abbildungen f,g : V. — W auf einer Basis
(b1, ..., by) von V iibereinstimmen, dann ist f = g. Zu gegebenen wq, ..., w, € W
existiert genau eine lineare Abbildung f : V. — W mit f(b;) = w; fiirj =1, ...,n.
Beweis. Die erste Behauptung folgt aus f( Y x;b;) = > x;f(b;). Um die Exi-
=1

J

Jj=1
n n

stenzaussage zu beweisen, setzt man f( > z;b;) := > z;w;. O
i—1 j=1

Ein Kriterium fiir Injektivitat bzw. Surjektivitat erhalt man folgendermalen:

Satz 7.3.15 Ist f : V. — W eine lineare Abbildung und (by, ..., b,,) eine Basis von
V, so gilt:

(1) [ ist genau dann injektiv, wenn die Bildvektoren f(b1),..., f(by,) linear un-
abhdngig sind.
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(2) f ist genau dann surjektiv, wenn f(b1), ..., f(bn) ein Erzeugendensystem von V
ist.
(3) f ist genau dann bijektiv, wenn (f(b1), ..., f(by)) eine Basis von 'V ist.

Beweis. (1) Sei f injektivund > A; f(b;) = 0. Dannist (> A;b;) = 0 und, weil
f injektiv ist, gilt >~ A;b; = 0, also Ay =0, ..., A, = 0. Daher sind f(b1), ..., f(b,)
linear unabhangig.

Nun seien f(b1), ..., f(bn) linear unabhingig. Ist dann v = >~ A;b; € Ker f, so
folgt >~ \; f(b;) = f(v) = 0; nach Voraussetzung gilt dann Ay = 0,..., A, = 0.
Daraus folgt v = 0, somit Ker f = {0} und daher ist f injektiv.

(2) Die Behauptung folgt aus

FV) =D Nf0)IA € K} = span {f(b1), ..., f(bn)},
(3) folgt aus (1), (2). a

Fiir die Untersuchung einer linearen Abbildung f : V' — W ist es zweckmiBig,
geeignete Basen in V und in W zu wihlen, die eine einfache Beschreibung von f
ermoglichen. Dies geschieht im folgenden Satz, den wir wegen seiner Bedeutung
fiir die weiteren Untersuchungen als Fundamentallemma bezeichnen.

Satz 7.3.16 ( Fundamentallemma ) Zu jeder linearen Abbildung f : V — W
endlich erzeugter Vektorrdume V, W gibt es Basen

(U1, ey Uy UL, ey Ug) von V,
(W1, ey Wyy Wrg1y ooy W) von W

mit folgenden Eigenschaften:

(1) (uq,...,uq) ist eine Basis von Ker f,
(2) (wn,...,w,) ist eine Basis von Bild f,
(3) esist f(v1) =w1 ..., f(vr) = wy.

U1 (3 (5% Uqg
! 1 1 l
w1 Wy 0 0

Beweis. Man wihlt eine Basis (u1,...,uq) von Ker f und erginzt diese zu einer
Basis (u1, ..., ug, v1, ..., v) von V; dann ist auch (vy, ..., vy, u1, ..., uq) eine Basis
von V. Wir setzen nun wy := f(v1),...,w, := f(v,) und zeigen: (w1, ..., w,) ist

r d
eine Basis von Bild f.Jedes v € V istdarstellbaralsv = > z;v,+ Y y;u,;. Wegen
j=1 i=1
f(u;) = 0ist f(v) = > xjw; und daher ist {w1, ..., w, } ein Erzeugendensystem
J

I
von Bild f. Nunsei ) xzjw; = 0; setzt man v := ) z;v;, so ist f(v) = 0, also
j=1
v € Ker f, und daher ist v Linearkombination der w1, ..., u4. Die Darstellung von
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v =Y x;vj + > y;u; als Linearkombination der v1, ..., Uy, U1, ..., uq ist eindeutig,
somit sind alle z; = 0 und damit ist gezeigt, dass die Vektoren wy, ..., w, linear
unabhéngig sind. Somit ist (w1, ..., w,) eine Basis von Bild f, die man zu einer
Basis (w1, ..., Wy, Wyt1, ..., Wy, ) von W ergénzen kann. O
Aus diesem Lemma werden wir folgende Aussagen herleiten:

Die Dimensionsformel 7.4.7
Jede Matrix vom Rang r ist dquivalent zu einer Matrix Ej,, die aus r Einsen
und sonst 0 besteht (Satz 7.5.21)

e Fiir jede Matrix gilt rgA = rgA? (Satz 7.5.24).

7.4 Dimension

In 7.3.10 wurde gezeigt, dass je zwei Basen von V' gleiche Lange haben; daher ist
folgende Definition sinnvoll:

Definition 7.4.1 Ist V ein endlich erzeugter Vektorraum und (by, ..., by,) eine Basis,

so setzt man
dimV :=n.

Wenn V' = {0} der Nullvektorraum ist, setzt man dim V' := 0. Falls V nicht endlich
erzeugt ist, setzt man dim'V' := oo.

Man kann dies so formulieren:

dim V' = n bedeutet: Es gibt n linear unabhingige Vektoren in V und je (n + 1)
Vektoren sind immer linear abhangig.

Die Dimension von V ist die Maximalzahl linear unabhangiger Vektoren.

Beispiel 7.4.2 Ist n € N, so hat man im Vektorraum K" die kanonische Basis
(e1, ..., €,) und daher ist dim K™ = n.

Beispiel 7.4.3 Ist KX der in 7.2.7 definierte Vektorraum aller Abbildungen einer
Menge X in K ,so definiert man zu p € X die Abbildung v, € K durch

1 fir z=p
vp.X—>K,:cn—>{O fiir 2 £ p
Es ist leicht zu zeigen: Wenn {p1,...,p,} = X gilt, dann ist v,,,...,v,, ein
Erzeugendensystem von KX . Sind p1, ..., p, € X verschiedene Elemente, so sind
Upyy---,Up, € KX linear unabhiingig. Ist also X eine Menge, die aus unendlich
vielen Elementen besteht, so gilt:

dim KX = oo.
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Beispiel 7.4.4 Wir geben noch ein weiteres Beispiel eines unendlich-dimensionalen
Vektorraumes an. Fiir a,b € R, a < b, sei C%([a,b]) der Vektorraum aller stetigen
Funktionen f : [a, b] — R. Wir zeigen: Ist f nicht-konstant, so gilt fiir jedes n € N:
Die Potenzen

]‘7f7f2’7f37"'7fn

sind linear unabhangig.
Andernfalls gibt es ¢, ..., ¢, € R, die nicht alle 0 sind, mit

co+erf(@)+ea(f(x)?+ ... Fen(f()" =0

fiir alle x € [a, b]. Das Polynom p(X) := ¢y + c1X + ... + ¢, X" hat nur endlich
viele Nullstellen und fiir jedes € R ist p(f(z)) = 0. Dann kann f nur endlich
viele Werte annehmen; aus dem Zwischenwertsatz folgt aber, dal f unendlich viele
Werte annimmt. Damit ist die Behauptung bewiesen und daraus folgt:

dim C%([a, b]) = oo.

Satz 7.4.5 Ist V endlich-dimensional und ist U ein Untervektorraum von 'V, so gilt
dimU < dimV wund aus dimU = dim V folgt U = V.

Beweis. Man wihlt eine Basis (u1, ..., uq) von U und ergénzt diese zu einer Basis
(U1, eeey Udy Vdgls -5 Un) Von Vi aus d = dimU, n = dim V, ergibt sich die Be-
hauptung. a
Nun definiert man den Rang einer linearen Abbildung als die Dimension des Bildes:

Definition 7.4.6 Ist f : V — W linear, so heifit

rg f:=dim f(V)
der Rang von f.

Es seien V, W immer endlich-dimensionale Vektorraume. Wir leiten nun aus 7.3.16
die wichtige Dimensionsformel fiir lineare Abbildungen her.

Satz 7.4.7 (Dimensionsformel fiir lineare Abbildungen) Fiir jede lineare Abbil-
dung f -V — W gilt:

dim(Ker f) + dim(Bild f) = dimV,
also
dim(Ker f)+rg f = dim V.
Beweis. Man wihlt wie in 7.3.16 eine Basis (vy, ..., vy, U1, ..., uq) in V ; dann ist

dimV =r+d=rgf + dim(Kerf). O
Aus der Dimensionsformel (oder aus 7.3.15)folgt:
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Satz 7.4.8 Wenn f : V. — W ein Isomorphismus ist, dann gilt: dimV = dimW.

Als Anwendung der Dimensionsformel beweisen wir eine Aussage, die nur fir
endlich-dimensionale Vektorraume richtig ist:

Satz 7.4.9 Es sei V ein endlich-dimensionaler Vektorraum und f : V — V linear.
Dann sind folgende Aussagen dquivalent:

(1) f ist injektiv;
(2) f ist surjektiv,
(3) f ist ein Isomorphismus.

Beweis. Wir zeigen: Aus (1) folgt (2): Wenn f injektiv ist, dann ist dim(Ker f) =0
und nach der Dimensionsformel ist dim(Bild f) = dim V, also Bild f = V ; daher
ist f surjektiv.

Nun beweisen wir: Aus (2) folgt (1): Wenn f surjektiv ist, gilt dim (Bild f)=dim V,
also dim(Ker f) = 0 und somit Ker f = {0}. Daher ist f injektiv. - Damit ist der
Satz bewiesen. ad
Bemerkung. Bei unendlich-dimensionalen Vektorraumen gilt dieser Satz nicht. So
ist die lineare Abbildung

KN — KN, (1’1,1’2,...) = (0,1’1,1’2,...)

injektiv, aber nicht surjektiv. Dies fiihrt dazu, dass man in der Funktionanalanalysis,
die wir in 15.7 behandeln, zwischen Eigenwerten und Spektralwerten einer linea-
ren Abbildung 7' : V' — V unterscheidet. Ein Element A € K heifit Eigenwert
von T, wenn es ein v € V,v # 0, gibt mit Tv = Av. Dies ist genau dann der
Fall, wenn T' — Aidy nicht injektiv ist, dabei ist idy : V' — V,v +— v, die identi-
sche Abbildung. Man bezeichnet A als Spektralwert von 7', wenn T' — X - idy kein
Isomorphismus ist. Unser Satz besagt, dass bei endlich-dimensionalen Vektorraum-
en die Begriffe Spektralwert und Eigenwert tibereinstimmen. Dagegen gibt es bei
unendlich-dimensionalen Vektorrdumen Spektralwerte, die keine Eigenwerte sind.

Wir gehen noch auf Summen, insbesondere direkte Summen, von Untervektorraumen
von V ein.

Definition 7.4.10 Es seien U, U’ Untervektorriume von V; dann heif3t der Unter-
vektorraum

U+U ={u+d|ueU v eU'}
die Summe von U und U’. Falls U N U’ = {0} ist, schreibt man
UaU :=U+U’

und bezeichnet U @ U’ als direkte Summe von U und U’.

Wir geben ohne Beweis die Dimensionsformel fiir Untervektorraume an:
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Satz 7.4.11 (Dimensionsformel fiir Untervektorriaume ) Sind U, U’ Untervek-
torrdume von 'V, so gilt:

dim(U + U') + dim(U N U’) = dim U + dim U".

Wenn V' = U + U’ gilt, so kann man jedesv € V alsv = u+u' mitu € U, v € U’
darstellen.

Flir direkte Summen ist diese Darstellung eindeutig, denn aus v = u + v’ = w+ w’
mit u,w € U, v/ ,w' € U folgtu —w = w' —u € UNU = {0}, also
u=w, v = w'. Somit ergibt sich:

Satz7.412 V = U & U’ gilt genau dann, wenn man jedes v € V eindeutig als
v=u+u mituec U v €U darstellen kann.

Daraus ergibt sich:

Satz 7.4.13 Ist (v1,...,V%, Vkt1,---,VUn) eine Basisvon V, 1 < k < n, und setzt
man
U = span{vy,...,vx}, U = span{vgi1,..., 00},

soistV=Uo®U'.
Daraus kann man herleiten:

Satz 7.4.14 Zu jedem Untervektorraum U eines endlich-dimensionalen Vektorrau-
mes V existiert ein Untervektorraum U’ mit V =U @ U’.

Beweis. Man wihlt eine Basis (vy,...,v;) von U und ergénzt sie zu einer Basis
(V15 «eey Uy U1, - Uy ) von V' nun setzt man U’ := span{viy1, ..., Up - O

7.5 Matrizen

In der linearen Algebra spielt die Theorie der linearen Gleichungssysteme eine
groBe Rolle. In einem Korper K seien Elemente a;; € K und b; € K gegeben
(¢=1,..,m;j=1,..,n); gesucht sind z1, ..., z, € K mit

a11%1 + a12%2 + -+ a1pTp = by
a21T1 + ageTe + -+ + a2, = bo

Am1T1 + GmaTa + - + GmnTn = by

Schreibt man die Koeffizienten a;; dieses linearen Gleichungssystems als Schema
mit m Zeilen und n Spalten, so erhélt man eine (m x n)-Matrix

ai; a2 ... Qain

Setzt man
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Am1T1 + ... + QmnTn
so kann man das lineare Gleichungssystem in der Form
A-z=b

schreiben.

Um die Schreibweise zu vereinfachen, schreiben wir oft A = (a;;) € K (m.n) und
fiir einen Spaltenvektor x = (z3) € K™ = K™,

Wir stellen nun die Grundbegriffe der Matrizenrechnung zusammen:

Definition 7.5.1 Sind m,n € Nunda;; € K,i=1,...,m;j = 1,...,n, so heifit

eine (m x n)-Matrix mit Koeffizienten aus K.
Die Menge der (m x n)-Matrizen bezeichnet man mit K (™™,
Fiir A = (a;;) € K™, B = (b;;) € K™ X\ € K setzt man
a1 +bi1 ... aip + bin A1 ... Aain

am1 + bml ces Qmp t+ bmn Aa/ml v Aamn

Mit diesen Verkniipfungen A + B, \A wird K(™"™) zu einem Vektorraum der Di-
mension m - n. Das Nullelement ist die Matrix

Fiir A €¢ KU ynd x € K" definiert man

n
Y. a1;;
i=1

n Am1T1 + ... + GmnTn,
> QT
Jj=1
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FirAe K™, zye K" \pueK gilt:
Az + py) = Nz + pAy.

Wir wollen A - & noch genauer erldutern; dazu betrachten wir die Spaltenvektoren
ajvonA,j=1,..n,also

alj
a =1 |
amj
firz € K™ ist
a11T1 + ...+ a1y n aij
Az = .o = Z Zj- ,
Am1T1 + ... + QmnTn j=1 Umj

somit

n
A-x= E xja;.
=1

Der Vektor Az ist also die Linearkombination der Spalten von A, bei der die Koef-
fizienten die Komponenten z1, ..., ,, von x sind.

Insbesondere gilt fiir die kanonischen Basisvektoren ey, ..., e, € K™
A- ej = G,j.
Matrizenprodukt
Nun soll fiir Matrizen A € K™ und B € K(™") das Matrizenprodukt C' := A-B
erklart werden. Es ist naheliegend, dies spaltenweise zu definieren: Sind b4, . . ., b,

die Spalten von B, so soll C = A - B die Matrix mit den Spaltenvektoren
Abq, ..., Ab.sein. Die k-te Spalte ¢ von A - B ist also

n
> aijbjk
b1k j=1

s
>~
M=

amjbjk

j=1
Daher definieren wir das Matrizenprodukt folgendermaf3en:

Definition 7.5.2 Fiir A = (a;;) € K™ und B = (bjz) € K"™") setzt man

Cik ‘= Zaijbjk (l S ]., ceey T k= ]., ...,7‘);
j=1
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dann heift A - B := (cit,) € K"™") das Produkt der Matrizen A, B; ausfiihrlich
geschrieben:

a11 a1n b11 b1, j=1 j=1
n n
am1 Amn bnl bm" Z
am;bj1 > Amgbjr
i=1 i=1

Wir stellen das Matrizenprodukt nochmals schematisch dar: Man ,faltet “die i-te
Zeile von A mit der k-ten Spalte von B und erhilt so das Element

Cik = Qi1big + agpbap + ... + ainbnk
von A - B:

b1k

............ bmk:
Man beachte, dass A - B nur definiert ist, wenn gilt:
Spaltenzahl von A = Zeilenzahl von B.
Es gilt:
Satz7.5.3 Fiir Ac K" Be K" ¢ e K" gilt:
(A-B)-z = A-(B-x).

Beweis. Man rechnet dies nach
-

ijkxk Z aijbrTr) Z Zaw ik)Tk) = (A-B)-x.

j=1k=1 k=1 j=1

Die Aussage folgt auch so: Es geniigt, die Behauptung fiir x = e zu beweisen. Nun
ist (A - B)ey, die k-te Spalte von (A - B), also nach Definition des Matrizenprodukts
gleich Aby; wegen by, = Bey, ist (A - B)ey, = Aby, = A(Bey,). O
Fiir quadratische Matrizen A, B € K (n,1) ist das Produkt A - B immer definiert; die
Matrix

10...0
oot 0] g
0...01

heiflt die Einheitsmatrix; ihre Spalten sind e, ...,e,, € K™ Firalle A € K (n,n)
gilt:
E-A=A, A-E=A.
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Definition 7.5.4 Eine Matrix A € K™ heif3t invertierbar, wenn eine Matrix
A~1 e K existiert mit A~ - A = E.

Sind A,B € K™ invertierbare Matrizen, so ist B~1A"1AB = E, also
(AB)~! = B71A~1; es ergibt sich:

Die Menge der invertierbaren (n x n)-Matrizen, versehen mit der Matrizenmultipli-
kation, ist eine Gruppe; sie wird mit GL(n, K) bezeichnet.

Matrizen und lineare Abbildungen
Wir behandeln nun die Beziehungen zwischen Matrizen A € K (™™ und linearen
Abbildungen K™ — K™, Jede Matrix A € K ("™ definiert eine lineare Abbildung
K™ — K™, x — Ax. Wir bezeichnen diese Abbildung ebenfalls mit A, schreiben
also

A: K" - K™, x> Ax.

Fiir das Bild dieser Abbildung gilt (mit a;, ..., a, bezeichnen wir wieder die Spalten
von A):
Bild A = {Az|x € K"} = {z1a1+...+xpan|T1, ..., 2 € K} = span{aq, ..., an}.

Definition 7.5.5 rg A:= dim span{ay, ..., a, } heifit der Rang der Matrix A.

rg A ist also gleich der Maximalzahl der linear unabhingigen Spaltenvektoren
ai,...,a, von A. ad
Wir zeigen nun, dass jede lineare Abbildung f : K™ — K™ durch eine Matrix A
gegeben wird.

Satz 7.5.6 Zu jeder linearen Abbildung f : K™ — K™ existiert genau eine Matrix
A€ K™ mit f(x) = Az fiirxz € K", namlich A = (f(e1),...,f(en)).

Beweis. Fiir j = 1,...,n sei a; := f(e;). Definiert man A als die Matrix mit den
Spalten @y, ..., an, so folgt Ae; = a; = f(e;), also Az = f(x) firalle x € K"

und A ist dadurch eindeutig bestimmt. O
Damit hat man eine Methode gefunden, wie man zu einer Abbildung die zugehorige
Matrix erhalten kann: Die Spalten von A sind die Bilder von ey, . .., e,.

Beispiel 7.5.7 Es soll die Matrix A angegeben werden, die die Drehung der Ebene
um 90° beschreibt. Bezeichnen wir diese Drehung mit f : R? — R2, so ist

fle1) = e2, fle2) = —er.

Die erste Spalte von A ist also e und die zweite ist —ey, somit ist

()

die gesuchte Matrix.Bei einer Drehung um einen Winkel « ist die dazugehorende

Matrix
cosa — sin o
sinaw cosa )’
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X1 T COSy — T Sin «
— . .
X9 X1 SIn @ + Lo COS v

die Abbildung ist

Nun seien V' und W beliebige endlich-dimensionale Vektorraume. Um jeder linea-
ren Abbildung f : V' — W eine Matrix A zuordnen zu kdnnen, wéhlen wir eine
Basis (v1, ..., v, ) in V und eine Basis (w1, ..., w,,) in W. Dann existieren eindeutig
bestimmte a;; € K mit

m

flv;) = Zaijﬂh‘ (j=1,..,n).
i=1

Definition 7.5.8 Die durch f(v;) = > a;;w; definierte Matrix A = (a;;) heifit die
i=1

zu f : V — W beziiglich der Basen (v;), (w;) gehdrende Matrix; wir schreiben

M(f; (v5), (wi)) := A.

Ist f :' V — V ein Endomorphismus, so setzt man

M(f; () := M(f, (v5), (v5))-

Der Spaltenvektor a; von A € K (™™ ist also der Koordinatenvektor von f(v;)
beziiglich (w1, ..., wy,).
Ausfiihrlich geschrieben hat man fiir A = (a;;) die Gleichungen

flv1) = annwi + a1we + -+ + amiwWm
f(v2) = arow1 + agows + -+ - + AmawWm

fvn) = a1pwi + azpwa + -+ + G W

Man beachte, dass die Koeffizienten, die in der ersten Zeile stehen, die erste Spalte
von A bilden.

Es ist leicht zu zeigen:
Satz7.59 rg A=rg f.
Die zu f gehorende Matrix A wird durch folgenden Satz charakterisiert:

Satz 7.5.10 Fiir A = M(f; (v;), (w;)) gilt:

Ist © € K™ der Koordinatenvektor von v € V beziiglich (v;), so ist Ax der Koordi-
natenvektor von f(v) beziiglich (w;).

Umgekehrt gilt: Ist A € K™™) eine Matrix mit dieser Eigenschaft, so folgt
A= M(f; (v7),w;).
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Beweis. 1) Ausv = Zn: zjv; € V folgt:
j=1
f) =2 f(v;) = > w5 3 aijws = 32 (3 aijz;)wi.

2) Sei umgekehrt A einé Matrix mit dieser Ei;{enschaft. Der Vektor v; hat beziiglich
(vi,...,v,) den Koordinatenvektor e;; dann ist Ae; = a; der Koordinatenvektor
von f(v;) beziiglich (wy, ..., wn), also A = M (f; (vj), (w;)). O
Nun seien U, V, W Vektorraumeund g : U — V, f : V' — W lineare Abbildungen.
Wir zeigen: Sind in U, V, W Basen gewihlt und ist B die zu g gehorende Matrix und
A die Matrix zu f, soistdie zu fog gehorende Matrix gleich A-B. Der Komposition
linearer Abbildungen entspricht also das Matrizenprodukt.

Satz 7.5.11 (Produktregel) gegeben seien Vektorrdume U, V, W,
eine Basis (uy) in U, eine Basis (vj) in'V und eine Basis (w;) in W.
Sinddann g : U — V und f : V. — W lineare Abbildungen, so gilt:

M(f o g; (ur), (wi)) = M(f;(v;), (wi)) - M(g; (ur), (v5))-

Beweis. Es sei (jeweils beziiglich der gegebenen Basen) A die Matrix zu f und B
die Matrix zu g. Ist dann v € U und x der Koordinatenvektor zu u, so ist Bz der
Koordinatenvektor zu g(u) und A - (Bx) der Koordinatenvektor zu f(g(u)). Wegen
A-(Bx)=(A- B)zist A- B die Matrix zu f o g. O
Daraus folgt:

Satz7.5.12 f : V — W ist genau dann ein Isomorphismus, wenn A invertierbar
ist.

Nun soll untersucht werden, wie sich die zu f gehorende Matrix dndert, wenn man
zu anderen Basen tibergeht.

Seien (v1, ..., v, ) und (91, ..., ¥, ) Basen von V; es gibt eindeutig bestimmte ¢,; € K
mit

n
v = E tijf}i; ] = 1, ey N
i=1

Definition 7.5.13 Die Matrix T = (t;;) € Kn) i vj = >ty fiir j =
i=1
1, ..., n heifit die Transformationsmatrix von (v;) zu (9;).

Analog gibt es eindeutig bestimmte ¢; € K mit

n
U = E kUK, l=1,..,n,
k=1

undes giltv; = t;;(>° trive) = SO fki~tij)-vk; daraus folthfki-tij = Op;.

Setzt man 7' := (fy;), so gilt T - T = E. Die Transformationsmatrix 7' von (v;)
zu (;)ist also invertierbar und 7' = 7'~ ! ist die Transformationsmatrix von (7;) zu

(vj)-
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Die Transformationsmatrix ergibt sich als Spezialfall der zur Abbildung f = idy
gehorenden Matrix: Ist
idy 1V — Vv,

die identische Abbildung, so ist T’ die zu idy gehorende Matrix beziiglich der Basen
(v5), (95): . i
T = M(idy; (vj), (7))

Aus 7.5.10 folgt daher:

Satz 7.5.14 Istv € V und ist x € K™ der Koordinatenvektor von v beziiglich (v;),
so ist Tx der Koordinatenvektor von v beziiglich (0;) .

Man kann dies natiirlich auch direkt nachrechnen:
n n n n n

v=3 wv; = > xi Y bl = Y (D tizy)vi.
j=1 j=1 ~i=1

i=1 j=1
Aus der Produktregel konnen wir nun die wichtige Transformationsregel herleiten:

Satz 7.5.15 (Transformationsregel) Es sei f : V. — W linear; seien (v;), (0;)
Basen in 'V und T die Transformationsmatrix von (v;) zu (0;); weiter seien
(w;), (w;) Basen in W und S die Transformationsmatrix von (w;) zu (W;).

Ist dann A == M(f; (vj), (w;)) und A := M(f; (), (@;)), so gilt:

A=S-A-T7"
Beweis. Es ist f = idy o f o idy und
T = Midys (3), (v7)); S = M(idw; (), (@,));
und aus der Produktregel folgt:

M(f;(05), (i) = M(idw; (wi), (wi)) - M(f; (vs), (wi)) - M(idv; (05), (v5)),

A=S8-A-T7
O

Ist f : V — V ein Endomorphismus, so ist in diesem Satz V' = W und S = T,
man erhalt:

Satz 7.5.16 (Transformationsregel fiir Endomorphismen). Ist f : V' — V linear,
seien (v;) und (0;) Basen in' V und T die Transformationsmatrix von (vj) zu (0;).
Istdann A := M(f; (vj), (vj)) und A := M(f; (9;), (9;)), so gilt:

A=T-A- T

Nun sollen diese Aussagen mit Hilfe kommutativer Diagramme tibersichtlich dar-
gestellt werden.
Durch Wahl einer Basis (v, ..., v, ) in einem Vektorraum V' wird ein Isomorphismus
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n
. n
h: K" —YV, :r»—>§ TV,
Jj=1

gegeben; fiir v € V ist v = ) xjv; mit eindeutig bestimmtem =z € K";
x = h~!(v) ist der Koordinatenvektor von v. Ist (wy, ..., w,,) eine Basis in W,
so hat man k¥ : K™ — W,y — > y;w;; analog sind die durch Wahl einer
Basis bestimmten Abbildungen [, ..., k definiert. Nun sei eine lineare Abbildung
f:V — W gegeben; es gibt zu k= o foh : K™ — K™ genau eine Matrix
A€ K™ mit (k= o foh)(z) = A- x fiirz € K. Wenn wir die Abbildung
x +— Ax wieder mit A bezeichnen, so giltalso ko fo f = Aoder foh = ko A.
Wir stellen dies im Diagramm dar:

A

Kn A gn
hl lk
v Low

Ein derartiges Diagramm mit f o h = k o A bezeichnet man als kommutativ.

Nun stellen wir die oben hergeleiteten Aussagen durch Diagramme dar; dabei ste-
hen in der 2. Zeile die linearen Abbildungen, in der 1. Zeile die zugehorigen Ma-
trizenabbildungen; die senkrechten Pfeile sind die Koordinatenabbildungen. Diese

Satze besagen, dass die entsprechenden Diagramme kommutativ sind und umge-
kehrt.

Produktregel:
KT i K™ i> Km

[
v -Lv Lw
Transformationsregel:
K I g A g 5 gem
| Y

v vy Loy Ay
Transformationsregel fiir Endomorphismen:

K I g A g I g
| Y 7

v vy Ly dvy
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Beispiel 7.5.17 Es sei V := R? und

o (o (= () ()

v =101 +2-09
Vo =301 +5-Usy

Dann ist

Die Transformationsmatrix 7" von der Basis (v, v3) zur kanonischen Basis (91, 92)

ist also
(1 3 . 1 (-5 3
T = <2 5) undesist T~ = < 3 _1>

. T . —T2
par e (2 — ()

T2
Die zu f beziiglich der kanonischen Basis (1, U2) gehdrende Matrix ist

P 0 -1
i(0 1)
nach der Transformationsregel gilt fiir die zu f beziiglich (v1, v2) gehorende Matrix

A:
1 (13 34
A=T AT_<_5 _13>.

f(or) =13 (%) - @) - <_12>
f(v2) =34 (i) - @) B <_35>’

Die Transformationsregeln fiihren zu folgender Definition:

Nun sei

Dies bedeutet:

Definition 7.5.18 Zwei Matrizen A, B € K("™"™ heifien dquivalent, wenn es in-
vertierbare Matrizen S € K™™) ynd T € K" gibt mit

B=S-A-T7%

A, B € K" pheifien dhnlich, wenn eine invertierbare Matrix T € K (™) exi-
stiert mit
B=T-A-T™"

Es gilt:
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Satz 7.5.19 Zwei Matrizen A, B € K"™™) sind genau dann diquivalent, wenn sie
zur gleichen linearen Abbildung f : V- — W (beziiglich geeigneter Basen) gehoren;
dabei ist dim V' = n, dim W = m. Aquivalente Matrizen haben gleichen Rang.
Matrizen A, B € K" sind genau dann ihnlich, wenn sie zum gleichen Endo-
morphismus f : V. — V gehoren; dimV = n.

Nun bezeichne Ej, € K () die Matrix B = (ey) mitey; = 1fiird = 1,...,7;
alle iibrigen Elemente sind Null, also

10 .0 0
01 .0 0
Erp=1¢9 0 . 1 0
00 . 0
0 .. . 0 0

(in der Hauptdiagonale steht » mal die 1). Es gilt:

Satz 7.5.20 Ist f : V — W linear, r = rg f, und wihlt man wie im Fundamental-
lemma 7.3.16 Basen (v1, ..., Up, U1, ..., uq) in V und (w1, ..., Wy, ..., wp,) in W, so
ist die zu f gehdrende Matrix gleich F,;.

Beweis. Firi = 1,...,rist f(v;) = w; und fiir j = 1,...,d ist f(u;) = 0; daraus
folgt die Behauptung. O
Daraus ergibt sich:

Satz 7.5.21 Jede Matrix A € K ™™ vom Rang r ist dquivalent zu Ep) € K (mn)
und daher sind Matrizen A, B € K" genau dann dquivalent, wenn sie gleichen
Rang haben.

Definition 7.5.22 Ist A = (a;;) € KM yund setzt man bij 1= aji, so heifit
A= (by) € K(mm)

die transponierte Matrix; es ist also

ail -+ mi
ail ai2 ---Qin a1y - Qo
A= o, , Al = "
At Qo amn ) |
QA1in * Amn

Die Spalten von At sind die Zeilen von A.
Es gilt:
Hilfssatz 7.5.23 Fiir A € K" und B € K™") ist

(A-B)' = B'A.
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Wenn A, B iquivalent sind, dann auch A*, BY, denn aus B = SAT~! folgt
Bt = (T~1)!A*S*. Daraus ergibt sich:

Satz 7.5.24 Fiir A € K(™") gijls:
rg At = rg A.

Beweis. Wenn = rgA gilt, dann ist A dquivalent zu Ej,j; daher ist A" dquivalent
zu Efr] und offensichtlich ist rgEfr] =r. 0
Es seien af, ..., a],, die Zeilen von A; dann heiBt dim span {a}, ..., a,, } der Zeilen-
rang von A. Zur Unterscheidung nennt man nun rg A = dim span {ay, ..., a, } den
Spaltenrang. Die Zeilen von A sind gleich den Spalten von A® und 7.5.24 besagt
daher, dass der Zeilenrang gleich dem Spaltenrang ist.

Elementare Umformungen von Matrizen
Nun definieren wir elementare Umformungen, mit deren Hilfe man den Rang von
Matrizen berechnen kann.

Definition 7.5.25 Unter elementaren Spaltenumformungen von A € K(™")
versteht man folgende Umformungen:

(1) Multiplikation einer Spalte von A mit einem A € K, A # 0;
(2) Vertauschung zweier Spalten,
(3) Addition des \-fachen einer Spalte zu einer davon verschiedenen Spalte.

Analog definiert man elementare Zeilenumformungen.

Satz 7.5.26 Bei elementaren Spalten- und Zeilenumformungen dndert sich der Rang
einer Matrix nicht.

Beweis. Fiir Spaltenumformungen folgt dies aus

(1) span{..., Aa;, ...} = span{..., a;, ...}
(2) span{...,a;, ..., ak, ...} =span{..., ax, ..., a;, ...}
(3) span{..., Aay + a;, ..., ag, ...} = span{...,aj, ..., ag, ...}.

Wegen 7.5.24 gilt dies auch fiir Zeilenumformungen. ad
Spaltenumformungen kann man auch erreichen, indem man A von rechts mit einer
der folgenden Matrizen multipliziert:

1
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Bei der ersten Matrix steht das Element A an der Stelle (j,j) ,

bei der zweiten Matrix ist die j-te Spalte gleich ej und die k-te Spalte ist e;;

bei der dritten Matrix steht A an der Stelle (k, j) mit k # j .

Zeilenumformungen kann man durch Linksmultiplikation mit entsprechenden Ma-
trizen darstellen. Wir zeigen nun, wie man durch elementare Umformungen den
Rang einer Matrix berechnen kann:

Man geht dabei so vor: Wenn nicht alle a;; = 0 sind, erreicht man durch Vertau-
schung von Zeilen und Spalten, dass a1; # 0 ist. Multipliziert man die 1. Zeile oder
Spalte mit al_ll, so darf man a1; = 1 annehmen. Nun multipliziert man die 1. Zeile
mit (—agq) und addiert sie zur 2. Zeile; an der Stelle as; steht dann 0. Auf diese
Weise macht man die weiteren Elemente der 1. Spalte zu 0 und erhalt eine Matrix
der Form

1 % * 1 0 0

0 0 = *
und daraus ergibt sich unmittelbar .

0 * - % 0 * -+ =%

Wenn nicht alle weiteren Elemente Null sind, kann man annehmen, dass in der 2.
Zeile und 2. Spalte 1 steht; damit macht man alle anderen Elemente der 2. Spalte
und der 2. Zeile zu null. Das Verfahren endet, wenn die Matrix E[T] erreicht ist,
dabei ist r =g A.

Wir erlautern das Verfahren an einem einfachen Beispiel.

Beispiel 7.5.27 Es sei

1 0 0 O
— 01 —-1-2 —
0-1 1-2

Somit ist rgA = 2.
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7.6 Lineare Gleichungssysteme

Ein System von m linearen Gleichungen in n Unbekannten x1, ..., T,

a11r1 + aaxe + ...+ a1pxn, = b1
as1T1 + asexs + ...+ aspx, = bo

Am1T1 + AmoTs + ... + ATy = by

kann man in der Form Az = b schreiben, dabei ist A € K ("™ eine Matrix mit den
Spalten ay, ...,a, € K™ undesistb € K.

Bei der praktischen Rechnung ist es oft zweckmassig, das Gleichungssystem so zu
schreiben:

ail ai12 .o Q1p b1
a1 G22 ... 02y ba
am1 Gm2 ... Gmn bm

Definition 7.6.1 Fiir A € K™ und b € K™ bezeichnet man die Menge aller
Losungen von Ax = b mit

L(Ab) :={z € K"|Az = b}

insbesondere
L(A,0) :={z € K"|Az = 0}.

Die Gleichung Ax = 0 heifit die zu Ax = b gehdrende homogene Gleichung.

Wir wollen zunachst den einfachen Fall von zwei Gleichungen mit zwei Unbekann-
ten durchrechnen.

Beispiel 7.6.2 Ist A € K(z,z)’ A #0,und b € K2, so bedeutet die Gleichung
Arx =1b:

a1171 + ai2x2 = by

a2121 + axx2 = bs.

Nun nehmen wir an , x = (;;) sei eine Losung . Multipliziert man dann die erste

Gleichung mit a2, die zweite Gleichung mit a1 und subtrahiert, so fallt aj2a202
weg und man erhalt:

(a11a22 - a12a21)$1 = (azzbl - a12bz)~
Analog (durch Multiplikation mit as1, @11 und Subtraktion) ergibt sich

(a11a22 — a12a21)T2 = (a11bs — az by).

Falls aj1a20 — ajpag;  # O ist, gibt es also hochstens eine Losung z = (‘z;),
namlich
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a22b1 — a12b2 a11b2 — az1b1
r1 = , To = .
11022 — 12021 11022 — 12021
Durch Einsetzen sieht man, dass dies wirklich eine Losung ist.
Wir werden im nichsten Abschnitt Determinanten einfithren; fir A € K(22) ist
det A = aj1a22 — aj2a21 und wir haben gezeigt: Wenn det A # 0 ist, dann gibt es
genau eine Losung; wir werden diese mit der Cramerschen Regel 7.7.13 nochmals
darstellen.
Nun sei aj1a22 — a12a21 = 0 und agy # 0. Setzt man A\ := Ziz , SO ist
a1l = Aag1, a2 = Aage, und das Gleichungssystem lautet:

Aa2121 + Aagezs = by
a21%1 + Q22T = ba.

Fir by # Aby ist es offensichtlich unlosbar. Falls by = Abs ist, geniigt es, die
Gleichung
a2171 + a22w2 = by

zu behandlen. Wenn x eine Losung ist, dann gilt zo = (ba/a22) — (a21/a22) - 1
und man kann z; beliebig wahlen. Somit ergibt sich in diesem Fall:

La.b = {<b2/0a22> e <—(a211/a22)> e K}'

Falls ago = 0 ist , vertauscht man die Gleichungen oder die Unbekannten und
verfahrt analog.

Es hat sich also ergeben:

wenn ajiase — a12a21 # 0ist, gibt es genau eine Losung,

wenn ajiags — ajsaz; = 0 ist, gibt es entweder keine Losung, oder, falls K = R
ist, unendlich viele, L(A,b) ist dann eine Gerade.

Dazu noch ein Zahlenbeispiel (K = R):

31 + 220 =5 31 + 229 =5 31 + 229 =5
Bry + 4a0 =7 6x1 +4x9 =7 6x1 + 4x9 = 10

Das erste Gleichungssystem hat genau eine Losung, namlich (f’z), das zweite ist
unlosbar und das dritte hat unendlich viele Losungen; die Losungsmenge ist eine
Gerade.

Nun behandeln wir die Fragen:

e Wann ist ein Gleichungssystem losbar ?
e Wie kann man die Losungsmenge beschreiben; welche Struktur hat L(A, b) ?

Wir untersuchen zuerst die Losbarkeit.
Satz 7.6.3 Sei A € K(™™ und b € K™. Das Gleichungssystem Ax = b ist genau

dann losbar, wenn gilt:

rg A =rg(A,Db)
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dabei ist (A, b) die Matrix mit den Spalten a, ..., an, b, also

Beweis. Az = bbedeutet Y ;" | x;a; = b. Es gibt also genau dann ein z € K™ mit
Az = b, wenn b Linearkombination der a1, ..., a,, ist, also b € span{ay, ..., a, } oder
span{ay, ..., an} = span{as, ..., an, b}. Diesist dquivalent zu dim span{ay, ..., a,}
dim span{ai,...,an,b},alsorg A =rg(A,b). O
Wir untersuchen nun den Losungsraum L (A4, 0) der homogenen Gleichung:

Satz7.6.4 Ist A € K(™") eine Matrix vom Rang r, so ist L(A,0) ein (n — r)-
dimensionaler Untervektorraum des K™.

Beweis.Die Matrix A definiert eine lineare Abbildung A : K" — K™. Es ist
L(A,0) = Ker A und nach der Dimensionsformel 7.4.7 gilt n = dim Ker A + r.

O
Zur Beschreibung des Losungsraumes L(A, b) der inhomogenen Gleichung Az = b
benotigen wir den Begriff des affinen Unterraumes.

Definition 7.6.5 Ist V ein Vektorraum iiber K, U C V ein Untervektorraum und
x €V, so heift
x+U:={z+ueVjueU}

ein affiner Unterrraum von V; U heifst der zu x + U gehdrende Untervektorraum.
Man setzt dim(x + U) := dim U.

Nun zeigen wir, dass L(A, b) ein (n — r)—dimensionaler affiner Unterraum ist:

Satz 7.6.6 Sei A € K (™™ eine Matrix vom Rang r und b € K™. Wenn die Glei-
chung Ax = b eine Losung T besitzt, dann ist L(A,b) ein (n — r)-dimensionaler
affiner Unterraum von K", ndmlich

L(A,b) = & + L(A,0).

Beweis. Ist x € L(A,b),sogilt A(Z—x) =b—b=0,alsoistu :=Z—z € L(A,0)
undz =%+ u €2+ L(A,0), somit L(A,b) C 2+ L(A,0). -

Ist u € L(A,0), so gilt A(Z +u) = b+ 0, also & + u € L(A,b) und daher
o+ L(A,0) C L(A,b). 0
Man interpretiert diesen Satz so:

Man erhalt die Gesamtheit der Losungen des inhomogenen Systems da-
durch, dass man zu einer speziellen Losung der inhomogenen Gleichung
die Gesamtheit der Losungen des homogenen Systems addiert.

Damit kann man die Losungsmenge genau beschreiben: Ist & € L(A,b) und hat
man eine Basis (u1,...,un—,) des Vektorraums L(A,0); dann gibt es zu jedem
x € L(A,b) eindeutig bestimmte Koeffizienten ¢y, ..., ¢,—, € K mit
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r=+cur+...+ Coerlip_p.

Wir geben noch einige Folgerungen an:

Satz 7.6.7 Wenn A € K(™™) den Rang m hat, so ist die Gleichung Ax = b fiir
jedes b € K™ losbar:

Beweis. Aus 7gA = dim Bild A = m folgt, dass A : K™ — K™ surjektivist. 0O

Satz 7.6.8 Wenn A € K(™™) den Rang n hat, dann gibt es zu b € K™ hochstens
einz € K" mit Az = b.

Beweis. Es ist dim(KerA) =n—rg A =0, daherist A : K™ — K™ injektiv. O

Satz 7.6.9 Fiir A € K™ gilt: Das Gleichungssystem Az = 0 besitzt genau dann
Losungen x # 0, wenn rg A < n ist.

Beweis. Wegen n = dim(KerA) + rgA ist rg A < n gleichbedeutend mit
dim(KerA) > 0. O

Beispiel 7.6.10 Wir behandeln die beiden Gleichungssysteme

x1 +5xo +4x3 =1 x1 +5xo +4x3 =1
T2 —x3 +3rx4 =1 xro —x3 +3T4 =2
x1 +7x2 +2x3 +624 = 3 x1 +T7x2 +2x3 +624 = 3

Wir schreiben diese in Kurzform und machen Zeilenumformungen:

15 4 0 1 15 4 0 1
01-1 3 1 0 1-1 3 2
17 2 6 3 17 2 6 3
15 4 0 1 15 4 0 1
01-1 3 1 0 1-1 3 2
0 2-2 6 2 0 2-2 6 2
15 4 0 1 15 4 0 1
01-1 3 1 0 1-1 3 2
00 0 0 O 00 0 0 -2
10 9-15 —4 1 0 9-15 —4
01-1 3 1 0 1-1 3 2
00 0 O O 00 0 0 =2

Daraus ergibt sich: Das 2. Gleichungssystem hat keine Losung; beim ersten kann
man z3, x4 beliebig wahlen und erhalt als Losungsmenge

L(A,b) = {(—4,1,0,0) + ¢1(—9,1,1,0) + (15, —3,0,1)| ¢1, ¢ € R}.

(Wir haben die Losungen als Zeilen geschrieben, bei der Berechnung sollten sie als
Spalten geschrieben werden.)
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7.7 Determinanten

Bei den Determinanten, die von G. W. Leibniz eingefiihrt wurden, handelt es sich
um einen mathematisch tiefliegenden Begriff.

Eine Determinante haben wir schon bei der Losung linearer Gleichungssysteme in
Beispiel 7.6.2 erhalten; dort haben wir gezeigt: Wenn aq1a22 — a12a21 # 0 ist, dann
besitzt das Gleichungssystem Az = b genau eine Losung. Es wird sich ergeben ,
dass a11a90 — aj2a01 = det A ist; Determinanten kommen also bei der Behandlung
linearer Gleichungssysteme vor.

Eine geometrische Interpretation ist die folgende: Zwei Vektoren a; = (Z;i), ag =

(Zi) des R? spannen ein Parallelogramm mit dem Flécheninhalt |a11a22 — a12a91|

auf. Bis auf das Vorzeichen ist die Determinante also ein Flacheninhalt. Bei Vertau-
schung von a1, as dndert sich das Vorzeichen von det A, so dass man det(ay, as)
als einen ,orientierten “Flacheninhalt interpretiert. Im R3 ist det(a1, as, ag) das mit
Vorzeichen versehene Volumen des von a1, az, a3 aufgespannten Spats.

Wir definieren eine Determinante als normierte alternierende multilineare Abbil-
dung. Zuerst erlautern wir den Begriff der multilinearen Abbildung:

Definition 7.7.1 Ist V ein Vektorraum iiber K und n € N, so heifit eine Abbildung
f:Vx..xV =K, (v1,..,0,) = f(v1,.,00),
multilinear, wenn fiir vy, ...,v,, v,w € V, A\, u € K, gilt:
Fory ey o1, A0+ pw, Vg1, ey ) =
= AS(V1, ey Vi 1,0, Vi1 ooy Un) A+ S f (V1,5 0y Vim 1, W, Vg1 ooy Up )
Fiirn =2 nenntman f : V x V — K bilinear, es ist also
JFQvtpw, va) = Af (v, v2)+f (w,v2), f (01, dotpw) = Af (v, v)+pf (v, w).

Nun konnen wir den Begriff der Determinante definieren. Wir fassen eine Matrix
A € K" auf als n-Tupel ihrer Spaltenvektoren, also A = (a1, ..., ay), d.h. wir
identifizieren K (™™ mit K™ x ... x K.

Definition 7.7.2 Sein € N; eine Abbildung
A: K™ K

heifst Determinante, wenn gilt:

(1) A ist multilinear,
(2) A ist alternierend, d.h. wenn es Indizes © # j gibt mit a; = a;, so ist

Aar, ey Giy ooy @y ooy ) = 0,

(3) A ist normiert, d.h. A(eq, ...,e,) = 1.
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Eine Determinante ist also eine multilineare Abbildung mit folgenden Eigenschaf-
ten:

Wenn eine Matrix A € K (™) zwei gleiche Spalten hat, dann ist A(A) = 0; fiir die
Einheitsmatrix F ist A(E) = 1.

Es gilt:

Satz 7.7.3 Wenn A eine Determinante ist, so gilt:
A(A1y ey Ay ooy gy ey Q) = —A(A1y ooy gy vy Ay ooy )

d.h. eine Determinante dndert ihr Vorzeichen, wenn man zwei Spalten vertauscht.

Beweis. Zur Abkiirzung schreiben wir A(a;, ay) fir A(ay, ..., ai, ..., Gy .., Gp).
Dann ist 0 = A(a; + ag, a; + ar) = A(as, a; + ag) + Alag, a; + a) =

= A(a;,a;) + Alas, a) + Alag, a;) + Alag, ar) = Ala;, ar) + Alak, a;), also
Alag, a) = —A(ag, a;). |
Man kann jede Permutation o von {1,...,n} als Produkt von m Transpositionen
darstellen und es ist sign o = (—1)™ (vgl. dazu 7.1.8); daraus folgt:

Satz 7.7.4 Ist A eine Determinante und o € S, so gilt fiir jedes A € K(™™):
Alag(1)s - Ag(n)) = sign(o) - A(ai, ..., an).

Nun zeigen wir
Hilfssatz 7.7.5 Ist A : K(™") — K eine Determinante, so gilt fiir A, B € K" .
A(B-A)=A(B)- (> sign(0)ag(1)1 - o(n)n)-
og€Sy
Beweis. Die erste Spalte der Matrix B - A ist gleich Ba; = ), a;, 1b;, daher ist
A(B-A) = A(Bay, ..., Ban) = Y _ a;, 14A(bi,, Bay, ..., Bay,).
i1
Setzt man nun die weiteren Spalten
BCLQ = Z aiZ,gbiz, ey Ban = Z aimnbi"
i2 in
ein, so ergibt sich:
A(B . A) = Z ail,l st aimnA(bil, ,b,n)
U1 yeenyln

Dabei ist iiber alle n-Tupel (i1, ...,%,) von Indizes aus {1,...,n} zu summieren.
Falls in (41, ...,4,) zwei gleiche Indizes vorkommen, ist A(b;,,...,b;, ) = 0. Es
geniigt daher, iiber die n-Tupel zu summieren, bei denen (i1, . . . , i, ) eine Permuta-
tion ist, also



148 7 Lineare Algebra
o=1|." T € S,.
<21, cee zn> "
Dann erhalt man

A(B ! A) = Z;S‘ Ao(1)1 " - " aa(n),nA(brT(l)a ceey brr(n)) =
oES,

= > sign(0) - ap(1),1 - Ao(nyn - A(b1, ..., bp).
og€eSy

O
Setzt man in diesem Hilfssatz B := F ein, so ergibt sich: Es existiert hochstens eine
Determinante, namlich

A(A) = Z SigIl(U) *Qg(1),1 " -+ " Gg(n),n-

ocES,

Nun rechnet man nach, dass die so definierte Abbildung eine Determinante ist. Da-
mit erhalt man:

Satz 7.7.6 Fiir jedes n. € N existiert genau eine Determinante A : K(™™) — K,
némlich

A(A) = Z SIgn(0) - Ag(1),1 * -+ * Go(n),n
oSy

fiir die Determinante sind folgende Schreibweisen iiblich:

Aus Hilfssatz 7.7.5 folgt
Satz 7.7.7 (Determinantenmultiplikationssatz) Fiir A, B € K (™" gilt:

det(A - B) = (det A) - (det B).

Daraus ergibt sich:

Satz 7.7.8 Eine Matrix A € K™ jst genau dann invertierbar, wenn det A # 0
ist; es gilt dann: .
-1
det A7 = det A°
Beweis. Wenn A invertierbar ist, so gilt nach dem Determinantenmultiplikations-
satz:
(det A7) - (det A) = det(A™1A) = det E = 1,

insbesondere det A # 0. - Wenn A nicht invertierbar ist, dann ist rg A < n und die
Spalten a1, ..., a,, sind linear abhdngig. Dann ist etwa a1 = Asas + ... + Apa, und
det(ay, ag, ..., an) = A2 det(az, as, ..., an) + ... + Ay, det(ap, ag, ...,a,) =0. O
Fir n = 2 und n = 3 geben wir nun die Determinante explizit an:
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Beispiel 7.7.9 Die Gruppe S besteht aus den beiden Elementen G g) und (; f) und
daher ist

ML a9y — agiar
a1 a22

Beispiel 7.7.10 Die Gruppe S5 besteht aus den 6 Elementen
123 123
(123) = (), (132) = (23)
(75) =(12), (G351 =(123)

(331) =(13), (313)=(132)

dabei haben wir zuerst die beiden Permutationen o mit (1) = 1, dann die mit
o(1) = 2 und sodann die mit o(1) = 3 angegeben. Es ergibt sich:

11022033 + 12023031 + 413021032

a1 a2 a3 =
— 13022031 — 411023032 — 12021433

ail ai2 ai3 {

as1 asz ass
Diese Determinante kann man nach der Regel von Sarrus (P. F. SARRUS (1798-
1861)) so ausrechnen: Man schreibt die ersten beiden Spalten nochmals dahinter

und bildet die Produkte gemass den Pfeilrichtungen:

a1 a12 a13 a1 a12

NoX X /S

a21 a22 a23 a21 a22

oKX XN

a3 a32 a33 a3y a32

Es ist
a11 a12 a13
_ 22 23 @12 @13 @12 @13
a21 22 G23 = ai1 — a21 asi
a32 as3 as2 ass a22 a23
a31 a32 433

Dies ist ein Spezialfall des folgenden Laplaceschen Entwicklungssatzes (PIERRE
SIMON MARQUIS DE LAPLACE (1749-1827)):

Satz 7.7.11 ( Laplacescher Entwicklungssatz) Es sei A € K™ und wir be-
zeichnen mit A;; € K=1n=1) gic Matrix, die entsteht, wenn man in A die i-te
Zeile und j-te Spalte streicht. Dann gilt fiir j = 1,...,n :

det A = Z(—l)iJrjaij - det Aij.
i=1
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Man bezeichnet diese Formel als Entwicklung nach der j-ten Spalte. Diese Aussage
soll hier nicht bewiesen werden; ein Beweis findet sich in [4]. Fiir n = 3 haben wir
sie im Beispiel hergeleitet. Aus dem Entwicklungssatz folgt:

Satz 7.7.12 Ist A € K ("™ eine Dreiecksmatrix, also a;; = 0 fiiri > j, so gilt:
det A:a11-a22-...~am.

Beweis durch Induktion nach n: Die Aussage sei fiir (n — 1) x (n — 1)-Matrizen
richtig. Entwicklung von A nach der ersten Spalte ergibt det A = a11- det A;; und

nach Induktionsannahme ist det A11 = a9s - ... - Ay, alSO
a11 - .. A1n
0 azg ... ... a a
0 0 ass — U111 .- nn-
0 .0 apn
O
Insbesondere gilt fiir Diagonalmatrizen (a;; = i, a;; = 0 fiir i # j):
A1 0
=AM ..." A
0 An

Nun zeigen wir, wie man Losungen linearer Gleichungssysteme mit Hilfe von De-
terminanten angeben kann. Ist A € K (n,1) eine invertierbare Matrix, so besitzt die
Gleichung Az = b fiir jedes b € K" genau eine Losung, nimlich x = A~'b. Es
gilt die Cramersche Regel (GABRIEL CRAMER (1704-1752)):

Satz 7.7.13 (Cramersche Regel) Ist A € K(™™) det A # 0,b € K™, so erhiilt
man die Losung x von Ax = b folgendermafien: Man ersetzt in der Matrix A die
i-te Spalte a; durch den Vektor b; fiiri = 1, ...,n ist dann

e — det(al, ...,ai,l,b, Ai+1, ...7an)
i =

det(ay,...,an) ’
also
1 aii . by A1n
Ti = e
‘T det A b
nl n - Ann

Beweis. Ist = die Losung von Ax = b, so gilt z1a1 + ... + T,a, = bund daher ist

det(b, ag, ...,an) = det(x1a1 + ... + Tpay , a2,...,a,) =
= 1 det(ar, ag, ..., an) + x2 det(ag, ag, ...,an) + . .. + z, det(an, ag, ..., an) =
= z1 - det A.

Daraus folgt die Behauptung fiir 1, analog beweist man sie fiir zo, ..., Z,. a
Fiir n = 2 haben wir dieses Ergebnis schon in 7.6.2 erhalten.
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Beispiel 7.7.14 Ist A € K22 und det A # 0, so ist A invertierbar; wir berechnen
A~! mit der Cramerschen Regel.
Die erste Spalte von A~ ist die Losung von Az = ((1)) , die zweite Spalte ist die

Losung von Az = ((1)); nach der Cramerschen Regel sind dies

‘1 a1z ‘0 a2

1 0 a2 o 1 a22 1 1 a2 B 1 _a12

detA | |an 1] | detA\—a21 )’ detA | |an o] | detA ain )’
az1 0 az; 1

Damit erhalten wir
-1
ain a2 _ 1 [ an —ap
a1 Q22 det A —as1 al
Mit dieser Methode kann man auch fir A € K®3) det A # 0, die Matrix A1
ausrechnen. Die erste Spalte von A~! ist wieder die Losung von
1
Ax=| 0],
0

die erste Komponente davon ist nach der Cramerschen Regel

1 ai12 al
! 0 a a22 _ b ojam oz
det A 0 det A |az2 as3
as2  as3
Auf diese Weise erhalt man :
a2 a3 a2  ai3 a2  ai13
+ - +
as2  ass asz  as3 azy Q23
Q1o 1 _|a21 azs 4| s _|az a3
det A asy  ass asy  ass az1  a23
a1 a2 ai; a2 ai; a2
+ - +
asy  as2 asy  as2 a1 G2

Beispiel 7.7.15

G5 = )



152 7 Lineare Algebra
7.8 Eigenwerte

Definition 7.8.1 Sei A € K (™™ eine quadratische Matrix. Ein Element X € K
heifst Eigenwert von A, wenn ein x € K™ existiert mit

Ax =Xz und x #0,
der Vektor x heift ein Eigenvektor von A zum Eigenwert \.

Ey :={x € K"|Az = Az} = Ker(A\E — A)
heifit der Eigenraum von A zu \.
FE) ist ein Untervektorraum von K™ und A ist genau dann Eigenwert von A, wenn
E\ # {0} gilt; E \ {0} ist die Menge aller Eigenvektoren zu A.
Ein Element A € K ist genau dann Eigenwert von A, wenn (AE — A)z = 0 eine

Losung x # 0 besitzt; nach 7.6.9 ist dies genau dann der Fall, wenn rg(AE—A) < n
oder det(AE — A) = 0 gilt. Wir definieren daher:

Definition 7.8.2 Ist A € K(™™) so heifit

t— a1 —a12 ... —a1n

— t—ag ...... —
xa(t) =det(t-E—A)=| 422 @2n
—Qan1 —Ap2 e t— ann

das charakteristische Polynom von A, ausserdem bezeichnet man
spA:=ai1+...+ ann,

als die Spur von A.
X 4 ist ein Polynom n-ten Grades; das konstante Glied ist x 4(0) = det(—A), somit
xalt) =t" — (a1 + ...+ ap )" . 4+ (—=1)"det A,
also
xa(t) =t" — (spA) - t" 71 4.+ (—1)"det A.

Fiir n=2 hat man

xa(t) =t? — (sp A)t + det A.
Es gilt:
Satz 7.8.3 Die Eigenwerte von A sind genau die Nullstellen von x 4.
Aus dem Fundamentalsatz der Algebra folgt, dass jede komplexe Matrix A € C(™™)
mindestens einen Eigenwert hat. Im Reellen gibt es Polynome, die keine Nullstelle
besitzen, man wird also vermuten, dass es Matrizen A € R(mn) gibt, die keinen

Eigenwert haben. Jedoch hat jedes reelle Polynom ungeraden Grades mindestens
eine reelle Nullstelle. Wir fassen zusamen:
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Satz 7.8.4 Eine Matrix A € K(™™) hat hichstens n Eigenwerte.
Jede Matrix A € C"™"™) besitzt mindestens einen (komplexen) Eigenwert.
Ist n ungerade, so hat jede Matrix A € R"™) mindestens einen (reellen) Eigenwert.

Bei Dreiecksmatrizen kann man die Eigenwerte sofort angeben:

Beispiel 7.8.5 Sei A = (a;;) € K (n,7) eine Dreiecksmatrix, also a;; = 0fiire > j.
Bei einer Dreiecksmatrix ist die Determinante gleich dem Produkt der Diagonalele-
mente; also ist

xa(t) =t —a11) . (t — Qnn);

das charakteristische Polynom zerfallt somit in Linearfaktoren und die Eigenwerte
von A sind aq1, ..., Gnp.

Nun geben wir eine reelle Matrix an, die keine Eigenwerte besitzt:

Beispiel 7.8.6 Wenn wir eine Matrix A € R(>?) finden wollen, die keinen Eigen-
wert besitzt, so gehen wir von der geometrischen Interpretation des Eigenvektors
aus: A definiert eine Abbildung A : R? - R?, 2z +— Az,undz € R%, z # 0,
ist Eigenvektor, wenn Az die ,,gleiche Richtung“wie x besitzt. Bei einer Drehung,
etwa um 90°, dndert jeder Vektor x # 0 seine Richtung. Man darf also vermuten,

dass die Matrix
_(0-1 R(2:2)
A= (1 0) S s

die diese Drehung beschreibt, keinen Eigenwert hat. Es ist

t +1
XA(t):‘_l ; ‘:t2+1;

dieses Polynom hat keine Nullstelle in R, somit besitzt A € R(>?) keinen Eigen-
wert.

Fasst man diese Matrix als komplexe Matrix A € (C(Q’Q)auf, so hat sie die beiden
Eigenwerte ¢, —i, denn es ist x4 (t) = (¢t — ¢)(¢t + ¢). Wir geben alle Eigenvektoren
an: Fiir z = (J!) € C? bedeutet Az = iz explizit: —xy = iz1, 1 = ixy, alle
Losungen dieses Gleichungssystems sind c - (i) mit ¢ € C und fiir ¢ # 0 erhilt man
alle Eigenvektoren zu 7. Analog sind c- (_17), ¢ € C, ¢ # 0, die Eigenvektoren zu —i.
Die Eigenrdume sind E; = span{(!)} und E_; = span {(7')}. Die Eigenvektoren

%), (7% bilden eine Basis des C2, esist C2 = E; & E_;.
1) U1

In 7.5.18 haben wir zwei Matrizen A, B € K™ jhnlich genannt, wenn es eine
invertierbare Matrix T € K (™) gibt mit B = T~ AT.

Aus dem Determinantenmultiplikationssatz folgt det(7~1)-det T = det(T~'T) =
det E = 1und daher det(T~'AT) = det(T~')-det A-det T' = det A. Ahnliche
Matrizen haben also gleiche Determinante; man kann zeigen , dass auch das cha-
rakteristische Polynom dasselbe ist:
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Satz 7.8.7 Sind A, B dhnlich, so gilt det A = det B und x4 = X, insbesondere
haben dhnliche Matrizen die gleichen Eigenwerte:

Ist B=T"YAT und ist x € K" ein Eigenvektor von B zum Eigenwert \, so ist Tx
ein Eigenvektor von A zum Eigenwert \.

Beweis. Aus Bx = Az, x # 0, folgt Tx # 0 und A(Tz) = T(Bx) = T(\x) =
MTz). O
Wir wollen nun untersuchen, wann eine Matrix zu einer Dreiecks- oder Diagonal-
matrix ahnlich ist. Eine einfache notwendige Bedingung , von der wir anschliessend
zeigen werden, dass sie auch hinreichend ist,lautet:

Satz 7.8.8 Wenn A zu einer Dreiecksmatrix dhnlich ist, dann zerfillt x s in Linear-
faktoren.

Beweis. Ahnliche Matrizen haben das gleiche charakteristische Polynom und nach
7.8.5 zerfallt das charakteristische Polynom einer Dreiecksmatrix in Linearfaktoren.

O
In 7.5.19 haben wir gezeigt: Ist f : V' — V linear und sind A und A die zu f
beziiglich verschiedener Basen gehorende Matrizen, so sind A, A dhnlich. Wegen
7.8.7 ist folgende Definition sinnvoll:

Definition 7.8.9 Sei f : V — V linear, dim'V < oc. Sei (b1, ..., by,) eine Basis von
Vund A := M(f; (b;)); dann setzt man det f := det A und x5 := xa.

Nun konnen wir auch Eigenwerte linearer Abbildungen f : V' — V behandeln:

Definition 7.8.10 Ist f : V — V linear, so heifit A € K ein Eigenwert von f, wenn
einv € V existiert mit v # 0 und f(v) = M. Der Vektor v heifit dann Eigenvektor
von f zu A;

Ey:={veV|f(v) =} =Ker(A-idy — f)

heifit der Eigenraum von f zu \.

Istv = > a;b; und y := Az, soist f(v) = > y;b;. Die Gleichung f(v) = Av
ist also dquivalent zu Az = Az : Die Eigenwerte von f stimmen mit den Eigen-
werten von A Uiberein, v = Y x;b; ist genau dann Eigenvektor von f zu A, wenn x
Eigenvektor von A zu A ist.

Wir zeigen nun, dass Eigenvektoren zu verschiedenen Eigenwerten immer linear
unabhangig sind.

Satz 7.8.11 Ist f : V — V linear und sind \1, ..., A\ verschiedene Eigenwerte und
V1, ..., Vg jeweils zugehorige Eigenvektoren, so sind v1, ..., vy linear unabhdngig.

Beweis. Wir beweisen die Aussage durch Induktion nach k. Der Induktionsanfang
k = 1 ist klar, denn es ist v; # 0, also ist v; linear unabhéngig. Nun sei k& > 2,
und die Aussage sei fiir & — 1 Vektoren richtig. Es gelte f(v;) = A\v;, v; # 0,
E
i =1,..,k und es sei > c;v; = 0 mit ¢q,...,c,; € K. Wir wenden auf diese
i=1
Gleichung zuerst f an, dann multiplizieren wir sie mit Ag; dies ergibt:
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k k
Zcz)\ivi = 0, Zci)\kvi =0.
i=1 =1

Wenn wir diese Gleichungen subtrahieren, dann fallt der letzte Summand c A, vy,
k—1

weg und wir erhalten: Y ¢;(\; — Ai)v; = 0. Aus der Induktionsannahme folgt fiir
i=1

i=1,..,k—1:¢ (A — Ag) = 0und wegen \; # A\ erhélt man ¢; = 0. Aus
cxv = 0 folgt schlieBlich ¢, = 0. O
Nach Satz 7.5.19 sind Matrizen genau dann dhnlich, wenn sie die gleiche lineare
Abbildung beschreiben. Wir definieren daher:

Definition 7.8.12 Eine Matrix A € K("™) heif3t diagonalisierbar, wenn sie zu ei-
ner Diagonalmatrix dhnlich ist; sie heif3t trigonalisierbar, wenn sie zu einer Drei-
ecksmatrix dhnlich ist.

Eine lineare Abbildung f : V. — V heifit diagonalisierbar, wenn es eine Basis
(b1, ...,bp) von V gibt, so dass A :== M (f; (b;)) eine Diagonalmatrix ist. Sie heifst
trigonalisierbar, wenn es eine Basis gibt, so dass A eine Dreiecksmatrix ist.

Satz 7.8.13 Eine lineare Abbildung f : V — V ist genau diagonalisierbar, wenn
es eine Basis (b1, ..., by,) von V gibt, die aus Eigenvektoren von f besteht.

Beweis. Nach Definition von A = M(f; (b;)) ist f(b;) = > ai;b;. Wenn f(b;) =
i=1
A;b; gilt, so folgt a;; = A; und a;; = 0 fiir ¢ # j; also ist
A1 0
A= .
0 An
eine Diagonalmatrix. Ist umgekehrt A eine Diagonalmatrix, so ist a;; = O fiir i # j

und daher f(b;) = a;;b;; die b; sind also Eigenvektoren. O
Dies liefert nun eine hinreichende Bedingung fiir die Diagonalisierbarkeit:

Satz7.8.14 Sei f : V — V linear, n = dim V. Wenn x ¢ n verschiedene Nullstellen
A1, ..., A\p besitzt, dann ist [ diagonalisierbar.

Beweis. Fiir j = 1,...,n sei b; ein Eigenvektor von f zu A;. Nach 7.8.11 sind
b1, ..., b, linear unabhéngig. Dann ist (b1, ..., b, ) eine Basis von V' aus Eigenvekto-
ren und aus 7.8.13 folgt die Behauptung. a

Wir formulieren diese Aussagen nun fiir Matrizen:

Nach 7.8.13 ist A genau dann diagonalisierbar, wenn n linear unabhingige Eigen-
vektoren existieren. Wir wollen diese Aussage nochmals erldutern. Diagonalisier-
barkeit von A bedeutet: Es gibt eine invertierbare Matrix T € K ("’”), so dass gilt:

A 0
T AT = =:D.
0 An
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Wir bezeichnen die Spalten von 7' wieder mit ¢y, ..., t,; die Spalten von D sind
A€, ..., A\nen. Die Gleichung T"'AT = D ist aquivalent zu AT = T D oder
At; = T'()jej), also At; = Ajt;. Die Spalten von T sind also Eigenvektoren von
A.

Wir bringen dazu ein einfaches Beispiel.

Beispiel 7.8.15 Es sei

_ (41 (2,2).
A_<2 3>ER ;

dann ist xa(t) = t> — 7t + 10 = (¢t — 2)(t — 5) und A hat die Eigenwerte 2
und 5; daher ist A diagonalisierbar.Die Eigenvektoren zum Eigenwert 2 sind die
nichttrivialen Losungen von (2E — A)z = 0, also von (~2 ~})x = 0. Somitist(_},)
ein Eigenvektor zu 2. Analog zeigt man, daB(;) ein Eigenvektor zu 5 ist. Diese
Eigenvektoren sind linear unabhéingig und die daraus gebildete Matrix T := (', )
ist invertierbar: T~! = ! (1, 7]) Es ergibt sich:

3
i (20
rtar= (3 9).

Wir geben nun ein Beispiel einer Matrix A an, bei der y 4 zwar in Linearfaktoren
zerfallt, die aber nicht diagonalisierbar ist.

11
0 1
Dreiecksmatrix A. Wir berechnen die Eigenvektoren aus der Gleichung Ax = z,
also z1 + x9 = x1, x2 = x9. Es folgt x5 = 0 und daher ist der Eigenraum F; =
span{ () }. Daher existiert keine Basis des R, die aus Eigenvektoren von A besteht
und nach 7.8.12 ist A nicht diagonalisierbar. Dies sieht man auch unmittelbar: Wenn
es ein T gibt, so dass T~ ' AT Diagonalmatrix ist, so stehen in der Diagonale die
Eigenwerte,also 1, also ist T-1AT = FE die Einheitsmatrix. Daraus folgt aber A =
TET-! = E;ein Widerspruch.

Beispiel 7.8.16 Sei A := € R(>2)_ Dann ist 1 der einzige Eigenwert der

Diese Matrix ist nicht diagonalisierbar, weil A = 1 eine zweifache Nullstelle von
X A ist, aber der Eigenraum E; nur eindimensional ist. Man wird vermuten, dass
eine Matrix dann diagonalisierbar ist, wenn gilt: Ist A eine m-fache Nullestelle von
X A, 80 ist dim E\ = m. Dies besagt der folgende Satz:

Satz 7.8.17 Eine Matrix A € K™ ist genau dann diagonalisierbar, wenn das
charakteristische Polynom x 4 in Linearfaktoren zerfillt und wenn gilt: Ist A € K
eine m-fache Nullstelle von x 4, so ist dim Ey = m.

Man bezeichnet dim E als geometrische Vielfachheit von \; wenn \ eine m-fache
Nullstelle von Y 4 ist, nennt man zur Unterscheidung m die algebraische Vielfach-
heit. Dann besagt der Satz: A ist genau dann diagonalisierbar, wenn X 4 in Line-
arfaktoren zerfallt und bei jedem Eigenwert die geometrische und die algebraische
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Vielfachheit iibereinstimmen.
Wir skizzieren die Beweisidee: Es sei

XA(t) = (t — )\1)"11 . (t _ )\T)mr

mit verschiedenen Ay, ..., A, € K. Man wihlt in jedem FE), eine Basis. Wegen
7.8.11 ist die Menge aller dieser Basisvektoren linear unabhéngig. Wenn dim E); =
m; fur j = 1, ..., r gilt, dann besteht diese Menge aus n Elementen und damit hat
man eine Basis von K" aus Eigenvektoren. Nach 7.8.13 ist dann A diagonalisierbar.
- Wenn dim Ey; < mj fiir ein j gilt, dann gibt es in K™ hochstens (n — 1) linear
unabhingige Vektoren und A ist nicht diagonalisierbar. O
In Satz 7.10.8 werden wir zeigen, dass jede reelle symmetrische Matrix diagonali-
sierbar ist.

Wir behandeln nun die Frage, wann eine Matrix zu einer Dreiecksmatrix dhnlich ist.
Es gilt:

Satz 7.8.18 FEine lineare Abbildung f : 'V — V, dimV < oo, ist genau dann
trigonalisierbar, wenn es eine Basis (by, ..., by,) von V gibt mit

f(bj) € span{b,...,b;} fiir j=1,...,n,

also
f(by) € span{b;}
f(b2) € span{by, b2}

f(bp—1) € span{by,...;bp_1}

Beweis. Ist A = (a,;) die zu f beziiglich einer Basis (b1, ..., b,) gehdrende Matrix,
so gilt: f(b;) = a1;61 + ... + anjb,. A ist genau dann eine Dreiecksmatrix, wenn
a;j = 0fiiri > jist, also f(b;) = a1;b1+...4+a;;b; oder f(b;) C span{by, ..., b;}.

O

Das Hauptergebnis iiber Trigonalisierbarkeit ist der folgende Satz:

Satz 7.8.19 Es sei V ein endlich-dimensionaler Vektorraum iiber K. Eine lineare
Abbildung f :V — V ist genau dann trigonalisierbar, wenn das charakteristische
Polynom x s iiber K in Linearfaktoren zerfillt.

Beweis. In 7.8.8 wurde bereits gezeigt, dass xs zerfillt, wenn f trigonalisierbar
ist. Wir zeigen nun mit Induktion nach n = dim V' : Wenn x; zerfillt, dann ist f
trigonalisierbar. Fiir n = 1 ist nichts zu beweisen. Es sei also n > 1 ; der Satz sei
richtig fiir dimV = n — 1 und es sei x;(¢t) = (¢t — A1) - ... - (t — Ap). Wegen
Xf(A1) = O existiert ein by € V, by # 0, mit f(b1) = A1b1. Wir ergénzen b,
zu einer Basis (b1, va, ..., v,) von V; die zu f beziiglich (by,ve, ..., v, ) gehdrende
Matrix ist dann von der Form

)\1 ai2 e Q1p
0 a922 agn

A= A mit A/ =1 ... c K("—l,n—l).

0 an2 v Ann
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Fir j = 2,...,nist f(v;) = a1;b1 + agjva + ... + anjvn.
Nun setzen wir U := span{b1 }, W := span{va, ..., v, }; dannist V. =U @& W. Wir
projizieren V' in W, dazu definieren eine lineare Abbildung

q:V =W, c1b1 + cova + ... + crvn — CoUz + ... + CrU,.

Dann setzen wir
g: W = Ww q(f(w)).

Fir w € W gilt f(w) — g(w) € U, daher ist g(v;) = ag;v2 + ... + an;v, fiir
j = 2,...,n. Somit ist die zu g beziiglich (vs, ..., v,) gehorende Matrix gleich A’
und es gilt x4(t) = (t — A1) - xa(t); also xa:(t) = (t — A2) - ... - (t — \p). Nach
Induktionsannahme gibt es eine Basis (ba, ..., b, ) von W, so dass die zu g beziiglich
(b2, ..., b,) gehorende Matrix eine Dreiecksmatrix A’ ist. Wegen f(b;) — g(b;) € U
(j = 2,...,n) gibtes @1; € K mit f(b;) — g(b;) = @ijb1. Daher ist die zu f
beziiglich (b1, ba, ..., b, ) gehorende Matrix gleich

>\17 Z7’127 (XX} dln
0

A/

also eine Dreiecksmatrix. O
Nach dem Fundamentalsatz der Algebra zerfallt jedes Polynom mit komplexen Ko-
effizienten iiber C in Linearfaktoren; somit folgt:

Satz 7.8.20 Jede Matrix A € C™™) ist trigonalisierbar,

Wir bringen noch ein Beispiel einer Matrix, die trigonalisierbar, aber nicht diagona-
lisierbar ist.

Beispiel 7.8.21 Es sei

a=(37)-

Das charakteristische Polynom x 4 (t) = t? — 4t + 4 = (t — 2)? zerfillt in Linear-
faktoren und daher ist A trigonalisierbar.Die Eigenvektoren sind die nichttrivialen
Losungen der Gleichung (2E — A)z = (Z7 1)z = 0, also ¢(}) mitc € R, ¢ # 0.
Daher gibt es keine Basis des R? aus Eigenvektoren und A ist nicht diagonalisierbar.
Eine zu A dhnliche Dreiecksmatrix erhélt man so: Man wihlt einen Eigenvektor, et-
wab; = (;) und ergénzt ihn zu einer Basis (b1, b2); man kann by = (g) wahlen.Die

Martrix T = (} 2) ist invertierbar und 7! = (3®_?). Man erhilt:

i (21
rar= ().

( Bei der Dreicksmatrix stehen in der Diagonale die Eigenwerte.)
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7.9 Euklidische Vektorriume

In diesem Abschnitt behandeln wir euklidische Vektorraume, darunter versteht man
Vektorraume V' tiber R, in denen ein Skalarprodukt definiert ist. Wenn ein Skalar-
produkt gegeben ist, dann kann man auch den Begriff der Norm einfiihren; damit ist
auch eine Metrik geegeben. Mit Hilfe des Skalarprodukts ist auch der Winkel zwi-
schen zwei Vektoren definiert; insbesondere hat man den Begriff der Orthogonalitat.

Definition 7.9.1 Unter einem Skalarprodukt auf einem Vektorraum V iiber R ver-
steht man eine Abbildung

VXV oR, (v,w) —<vw>,

mit folgenden Eigenschaften (A, u € R, u,v,w € V)

(1) <A pv,w>= A< u,w > Fpu < v,w >
<w, 4 pv >= A< w,u>+p <w,v >
(2) <v,w >=< W, v >

(3) fiirv#0ist  <v,v> > 0.

Ist <, > ein Skalarprodukt in V, so bezeichnet man (V, < , >) oder kurz V als
euklidischen Vektorraum.

Bedingung (1) besagt, dass die Abbildung V' x V — R, (v,w) —< v,w >, bili-
near ist. Bedingung (2) ist die Symmetrie und (3) bedeutet, dass das Skalarprodukt
positiv definit ist.

Im euklidischen Vektorraum (V, < , >) hat man eine Norm; fiir v € V' setzt man

loll ==/ < v,v > .
Auf den Begriff der Norm und des normierten Raumes gehen wir weiter unten ein.
Wir geben nun drei wichtige Beispiele fiir euklidische Vektorraume an.

Beispiel 7.9.2 Es sei n € N; im R™ definiert man fiir z,y € R™:
<z,y >i=T1y1 + ... + TpYn-

Man priift leicht nach, dass dadurch ein Skalarprodukt auf dem R™ definiert wird.
Man bezeichnet es als das kanonische Skalarprodukt auf R". Die dadurch defi-
nierte Norm ist

llz|| = /22 + ... + 22.
Das kanonische Skalarprodukt schreibt man oft folgendermafen: Man schreibt
x,y € R™ als Spaltenvektoren und faf3t sie als einspaltige Matrizen auf. Dann ist

a2t eine Matrix, die aus einer Zeile besteht und das Matrizenprodukt 'y ist eine
Matrix, die aus einem einzigen Element besteht:

xty = (xlyl + xnyn)
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Nun 1at man auf der rechten Seite die Klammern weg und schreibt

a:ty =T1Y1 + ... T TpYn =< T,y >.

Beispiel 7.9.3 Eine naheliegende Verallgemeinerung des R™ erhalt man, wenn man
als Vektoren nicht n-Tupel (21, ..., 5, ), sondern Folgen (z1, z2, ..., T, ...) betrach-
tet. Um analog wie im vorhergehenden Beispiel ein Skalarprodukt definieren zu
konnen, betrachtet man nur solche reellen Folgen, bei denen x% konvergent ist.

n=1
Man definiert also:

Iy := {(xn)n€N| Z z2 ist konvergent} .

n=1

Mit der komponentenweisen Addition und Multiplikation

(Tn) + (Yn) == (@0 + Yn)s  Mzn) = (Azy)

ist lo ein Vektorraum; man setzt fir v = (z,,), und y = (Yn)n

o0
<xT,y>:= Z TnYn

n=1
und rechnet (mit 7.9.10) nach, dass diese Reihe konvergiert und dass (z, y) ein Ska-
larprodukt auf [ ist.

Beispiel 7.9.4 Im Vektorraum C°([a, b]) der auf dem Intervall [a, b] stetigen Funk-
tionen definiert man ein Skalarprodukt durch

b
<= [ 1) (o) da.
Fiir die dazu gehorende Norm gilt:

b
1] = / (f(x)2da.

Definition 7.9.5 Zwei Vektoren v, w eines euklidischen Vektorraums V sind zuein-
ander orthogonal (stehen aufeinander senkrecht), wenn < v,w >= 0 ist. Wir
schreiben dann auch

vlw.

Sind U, W Untervektorriume von 'V und gilt < u,w >= 0 fiiralleuw € U, w € W,
so schreibt man
UulLw.
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Nun zeigen wir:

Hilfssatz 7.9.6 In einem euklidischen Vektorraum V' gilt fiir v,w € V:
1
<viw>= (fo+wll* =[] = wl?).

Beweis. Esist < v+ w,v+w >=<v,v>+2 < v,w >+ < w,w >, also

lv +wl* = vl +2 < v,w > +[|w]|*.

Daraus folgt:
Satz 7.9.7 (Satz von Pythagoras) Fiir v,w € V gilt

vlw

genau dann, wenn
o+ wl|* = [|v]|* + [Jwl|>.

Setzen wir in 7.9.6 —w an Stelle von w ein und addieren beide Gleichungen, so
erhalten wir:

Satz 7.9.8 (Parallelogrammgleichung) Ist V' ein euklidischer Vektorraum, so gilt
firv,weV:

lv+wl? + [lo — w]* = 2||v]* + 2[Jw]*.

Besonders wichtig ist die Cauchy-Schwarzsche Ungleichung, die wir nun herleiten
wollen:

Satz 7.9.9 (Cauchy-Schwarzsche Ungleichung). Ist V ein euklidischer Vektor-
raum, so gilt fiir alle v,w € V:

| <v,w > [ <ol - fJw]-

Das Gleichheitszeichen gilt genau dann, wenn v, w linear abhdngig sind.

Beweis. Fiir w = 0 oder v = Aw ist diese Ungleichung trivialerweise richtig und es
gilt das Gleichheitszeichen. Nun sei w # 0 und wir definieren einen zu w orthogo-
nalen Vektor v durch

<v,w >
U=V — - w.

[[w][?
Esist < u,w >=0undv =u+ 575 - w. Aus dem Satz von Pythagoras folgt:
(<v,w>)? e (< v,w >)?

lol® = flull® + >
[[wll* [[wl|?

also [[o2 - [|w]]? > (< v,w >)2.
Das Gleichheitszeichen gilt genau dann, wenn u = 0 ist; dann sind v, w linear
abhangig. O
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Beispiel 7.9.10 Fiir den euklidischen Vektorraum R"™, versehen mit dem kanoni-
schen Skalarprodukt, besagt die Cauchy-Schwarzsche Ungleichung:
Firxy,...,2n,y1, ..., Yn € Rist

(&) = (54) (8

und fiir den euklidischen Vektorraum der stetigen Funktionen f, g : [a,b] — R folgt
aus der Cauchy-Schwarzschen Ungleichung

2 b b

/b f@g)ds | < | [(f@)de) - | [ o) de

a a

Wir gehen jetzt auf normierte Raume ein:

Definition 7.9.11 Unter einer Norm auf einem Vektorraum V iiber R versteht man
eine Abbildung
V= Ru— vl

mit folgenden Eigenschaften:

(1) Fiir alle v,w € V ist ||[v + w| < ||v|| + |w|| (Dreiecksungleichung)
(2) Fiiralle N € R, v € Vist || o] = |A] - ||v]).
(3) Fiiralle v € V mitv # 0 ist ||v|| > 0.

Das Paar (V|| ||) heif3t normierter Vektorraum oder kurz normierter Raum ;
wir schreiben oft V' statt (V|| |)).

Es gilt:

Satz 7.9.12 Ist (V, < , >) ein euklidischer Vektorraum und setzt man fiirv € V,
vl := v/ <v,v>

so ist (V, || ||) ein normierter Raum.

Beweis. Wir zeigen, dass die Dreicksungleichung aus der Cauchy-Schwarzschen
Ungleichung folgt: Fiir v, w € V ist

lo4+w|? = <v+w,v+w>2=||v]|2+2 < v,w > +|w|?* <
[ol? + 2[}oll - lwll + l[wl* = (o]l + [[w]])?.

IN

O
Bemerkung. In einem euklidischen Vektorraum V' kann man nicht nur die Ortho-
gonalitat definieren, sondern allgemein den Winkel zwischen zwei Vektoren. Fiir
v,w €V, v#0, w0, ist nach der Cauchy-Schwarzschen Ungleichung
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<v,w > <1,
[[of] - flwl]

somit kann man den Winkel zwischen v und w definieren durch

<< v, w >>
= arccos )
l[v[l - fJawll

Es ist dann
<v,w>= [ - [lwll - cosp.

Orthonormalbasen
In einem endlich-dimensionalen euklidischen Raum gibt es immer eine Orthonor-
malbasis:

Definition 7.9.13 Eine Basis (b1,...,b,) von V heifit eine Orthonormalbasis,
wenn fiir alle 1, j gilt:
< bi,bj >= (57;j.

Es ist also b; Lb; fiir i # j und fiir alle i gilt ||b;| = 1.

Wir beweisen nun nicht nur die Existenz einer derartigen Basis, sondern geben ein
Verfahren an, wie man aus einer beliebigen Basis eine Orthonormalbasis erhalten
kann:

Satz 7.9.14 (Erhard Schmidtsches Orthonormalisierungsverfahren) Jeder end-
lich-dimensionale euklidische Vektorraum besitzt eine Orthonormalbasis.

Ist (v1, ..., vy,) eine Basis des euklidischen Vektorraums V', so erhdlt eine Orthonor-
malbasis (by, ..., b,) von V auf folgende Weise: Man setzt

1
by = U1
[[va ]
52 = — < Ug,bl > by und by = ”El I . 52;
~ 2 ~
b3 :=v3— <ws3,by > -b1— < Ug,bg > by und b3 := ”513” - bs.
Sind by, ..., b1 bereits konstruiert (k < n), so definiert man
_ k-1 1 .
b == v — Z < vp, by > -b; und by = i ku.
k

i=1

]}eweis. Man rechpet nach, dass Bk senkrecht auf by, ..., bp_1 steht. AuBlerdem ist
b # 0, denn aus by, = 0 wiirde folgen, dass by, ..., by_1, v linear abhingig sind,;

dann sind aber auch v, ..., v; linear abhangig. O
Mit Orthonormalbasen kann man besonders einfach rechnen: Die Koordinaten x;
eines Vektors v beziiglich einer Orthonormalbasis (b, ..., b,) sind die Skalarpro-

dukte < v, b; >:
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Satz 7.9.15 (Rechnen in Orthonormalbasen) Ist (b1, ...,b,) eine Orthonormal-

basis im euklidischen Vektorraum 'V, so gilt fiir v =Y, x;b;, w =
i=1

n
Yibs -
=1

1=

n
v:Z<v,b,; >b;, also x; =<wv,b; >

i=1

n n
< wv,w >:Z<v,bi > - < w,b; >:inyi =<z,y>
i=1 i=1
n

loll* =" af = |lz)?

i=1

n
Beweis. Ist v = > x;b;, so folgt < v, b, >= > x;- < b;, b, >= xy. Die weiteren
i=1 i
Aussagen rechnet man leicht nach. ad
Das Schmidtsche Orthonaomalisierungsverfahren erlautern wir am Beispiel der

Legendre-Polynome:

Beispiel 7.9.16 (Legendre-Polynome) Wir gehen aus vom Vektorraum V,, der
Polynome vom Grad < n, versehen mit dem Skalarprodukt

+1
<fg>i= [ faglade
21

Die Polynome (1, ,2?,...,2") bilden eine Basis von V,, , auf die wir das Er-
hard Schmidsche Orthonormalisierungsverfahren anwenden. Mit den Bezeichnun-
gen dieses Satzes setzen wir

Es ist |Jvg|? = fil 1dz = 2 und somit by = \/%

Weiter ist l~)1 = v;— < v1,bg > bg und wegen < vy, by >= 0 erhalt man l~)1 =z.
Es ist ||by |2 = fil 2?dz = 2, also by = \/ga:

Bei der Berechung von by ergibt sich < wvq, by >= ‘22 und < vz, b; >= 0; damit

erhilt man by = 22 — 5 und by = 2‘\//52 (3z% - 1).

Diese Polynome werden wir in 12.7 als Eigenfunktionen des Legendreschen Diffe-
rentialoperators nochmals behandeln. Fiir die dort behandelten Polynome (), und

L, gilt: b, = @Q, und b,, = L,; dort geben wir diese Polynome fiirn = 0,...,5
an.
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Orthgonale Matrizen

In naheliegender Weise kommt man zum Begriff der orthogonalen Abbildung und
der orthogonalen Matrix:

Die linearen Abbildungen, die das Skalarprodukt invariant lassen, bezeichnet man
als orthogonale Abbildungen:

Definition 7.9.17 Eine lineare Abbildung f : V — V eines euklidischen Vektor-
raums heif3t orthogonal, wenn fiir alle v,w € 'V gilt:
< f(w), f(w) >=<v,w>.

Setzt man v = w, so folgt || f(v)|| = ||v|| ; eine derartige Abbilsdung bezeichnet
man als Isometrie. Jede orthogonale Abbildung ist also eine Isometrie. Es gilt auch
die Umkehrung:

Satz 7.9.18 Sei f : V — V eine lineare Abbildung eines euklidischen Vektorraums;
wenn fiir alle v € V gilt:|| f(v)|| = ||v]|, dann ist f orthogonal.

Beweis. In 7.9.6wurde gezeigt, dass man das Skalarprodukt durch Normen aus-
driicken kann:

1
<vw>= (Jo+wl—|v]* = Jwl?);
daraus folgt: wenn f die Norm invariant lasst, dann auch das Skalarprodukt. a

Bemerkung. Aufgrund dieser Gleichung konnte man vermuten, dass jede Norm
von einem Skalarprodukt induziert wird. Dies ist jedoch nicht der Fall. Man kann

zeigen, dass durch  (||v 4+ w||* — [|[v]|? — [|w]||*) genau dann ein Skalarprodukt

definiert wird, wenn die Parallelogrammgleichung 7.9.8 erfillt ist.

Definition 7.9.19 Eine Matrix T € R™) heif3t orthogonal, wenn die Spalten
(t1,...,tn) von T eine Orthonormalbasis des R™ sind.

Bei der transponierten Matrix T sind die Zeilen jeweils die Spalten von 7 und beim
Matrizenprodukt 77" steht an der Stelle(4, j) das Skalarprodukt < ¢;,¢; >. Daher
gilt:

Satz 7.9.20 Eine Matrix T € R("™) gt genau dann orthogonal, wenn T'T = E,
also T—1 =T?, gilt.

Eine orthogonale Matrix 1at Skalarprodunkt und Norm unverandert; die zu T’
gehorende Abbildung ist also orthogonal.

Satz 7.9.21 Ist T € RU™ orthogonal, so ist die Abbildung
T:R" - R" z+— Ta,
orthogonal; fiir x,y € R™ gilt also
<Tz,Ty>=<xz,y> , ITz|| = ||=||;

ausserdem ist
detT = +1.
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Beweis. Esist < Tz, Ty >= (Tz)'(Ty) = 2!'T"Ty = 2'y =< z,y > .Mitz =y
ergibt sich die zweite Aussage. Aus T'T = FE folgt (det T)? = det E = 1. O
Man rechnet leicht nach, dass die Menge der orthogonalen Matrizen 7' € R("™)
eine Untergruppe der GL(n, R) ist.

Definition 7.9.22
O(n) :={T € GL(n,R)| T =T%} heifit die orhogonale Gruppe

SO(n) :={T € O(n)| detT =1} heifit die spezielle orthogonale Gruppe.

Zerlegungssatz und Projektionssatz

Nun behandeln wir folgendes Problem:

Im euklidischen Vektorraum V' sei ein Untervektorraum U und ein Elementv € V'
gegeben; gesucht ist das Element vy € U, das kleinsten Abstand zu v hat, also

lv—wvo| < |lv—wu| firalle ue U, u#vo.

Es ist leicht zu sehen, dass es hochstens ein derartiges vy gibt. Man kann Beispiele
angeben, bei denen kein vy mit minimalem Abstand existiert; bei diesen Beispielen
ist U (und natiirlich auch V) unendlich-dimensional. Es miissen also zusatzliche
Voraussetzungen gemacht werden; naheliegend ist, dim V' < oo vorauszusetzen.
Andererseit hat man bei interessanten Anwendungen Vektorraume von Funktionen,
die unendlichdimensional sind; daher ist es wichtig, auch diesen Fall zu untersu-
chen. Wir werden hier den Fall behandlen, dass dim U < oo ist; dim V' darf auch
oo sein. In 10.4.4 werden wir auch dim U = oo zulassen; wir setzen dort voraus,
dass U ein abgeschlossener Untervektorraumes in einem Hilbertraum H ist.

Bei den Vorbereitungen benotigen wir keine Dimensionsvoraussetzung. Wir zeigen
zuerst:

Wenn es ein solches vg gibt, dann ist es charakterisiert durch die Bedingung: v — vg
steht senkrecht auf U'.

Wir definieren:

Definition 7.9.23 Ist U ein Untervektorraum von V., so setzt man
Ut :={veV|vlu fiiralleuc U}.

U+ ist wieder ein Untervektorraum von V; es ist U N UL = {0}, denn fiir jedes
v € UNU* gilt < v,v >= 0und daher v = 0.

Satz 7.9.24 Es sei U ein Untervektorraum von' V undv € V,vg € U. Wenn
v—vy €U +
ist, dann gilt

lv—vol < |lv—u| fiiralle weU,u#uvo
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Beweis. Sei v — vy € U~. Dann ist fiir jedes u € U auch vy — u € U und daher
(vo — u) L (v — vg). Aus dem Satz von Pythagoras folgt fiir u # v :

lv—ull* = [[(v = v0) + (vo = w)l|* = lv—vol* + [lvo — ul|* > [[v —vo*.

Fiir die umgekehrte Richtung zeigen wir:

Satz 7.9.25 Es sei U ein Untervektorraum von'V und v € V,vg € U. Wenn gilt
lv —wol < |lv—wu| fiiralle weU,
dann ist
v — g € U+
Beweis. Es sei v — vg ¢ UL wir zeigen, dass dann vg nicht minimalen Abstand
hat. Aus v —vg ¢ U+ folgt: es gibtein u € U mit < v — v, u ># 0; wir wihlen
u 80, dass ||u|| = 1 ist. Nun setzen wir
A=< v—ug,u >
und zeigen ||v — (vo + Au)|| < ||v — vo||. Dies folgt aus

lv = (vo + Aw)|®

< (v—w9) —Au, (v—19) — Au >=
lv—wo? = 2X < v —wvo,u > +A?||ul|® =
= [|v —vol|? = 2A2 + A2 = |lv — vp||? = A% < |jv — wo |2

O
Damit konnen wir zeigen:
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Satz 7.9.26 Ist U ein Untervektorraum im euklidischen Vektorraum 'V, so sind fol-
gende Aussagen dquivalent:

(1)
V=UaU*

(2)  Zujedemv €V existiert ein vg € U mit

lv—wvol < |lv—ul| firalle weU

Beweis. a) Aus (1) folgt 2):Ist V =U @ U+, so gibteszuv € V Elemente vg € U
und v; € U+ mitv = vg +v;. Dannist v — vy = v; € U~ und aus 7.9.24 folgt (2).
b) Aus (2) folgt (1): Zu v € V wahlt man vy € U wie in (2); nach 7.9.25 ist dann
v = v — vy € Ul; somitist v = vy + vy mit vg € U, v1 € U~L. Daher ist
V=U+UYausUNUL ={0}folgtV =Ua U*. O
Um die Beweisidee fiir die folgenden Sétze klarzumachen, behandeln wir zunachst
den einfachen Fall, namlich dim V' < oo.

Satz 7.9.27 Es sei V ein endlich-dimensionaler euklidischer Vektorraums und U
ein Untervektorraum. Wihlt man eine Orthonormalbasis (by, ..., by, ) von U und
ergdnzt sie zu einer Orthonormalbasis (by, . .., bg, bas1,...,bn) von'V, so gilt: Ist
v=x1by1 + ... +x4bg + l'd+lbd+1 + ...+ by, s0 ist

vg = T1b1+ ...+ xgbg =< v,by >b1+ ...+ <wv,bg > by

das Element aus U mit minimalem Abstand zu v.

Beweis. Esist v —vg = xg+1b441 + ... + xpby € U+ und aus 7.9.24 folgt die
Behauptung. a
Dies liefert die Beweisidee fir den Fall : dim U < oo, dabei darf dim V' = oo sein.
Dann hat man zwar keine (endliche) Basis in V', aber man kann eine Orthonormal-
basis in U wahlen und vy wie oben definieren. Es ergibt sich:

Satz 7.9.28 (Zerlegungsatz) Ist U ein endlich-dimensionaler Untervektorraum des
euklidischen Vektorraums V, so gilt:

(1)
V=UaU"
(2) Zu jedem v € V existiert genau ein vy € U mit ||v — vo|| < ||v — ul|| fiir alle

u € U, u# v.
Ist (by, ..., by) eine Orthonormalbasis von U, so ist

d
Vo :Z<’U,bi > b;.
i=1
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Beweis. Man wihlt eine Orthonormalbasis (b1, ..., bg) in U und setzt
d
Vo = inbi mit x; (=< v,b; > .
i=1

Fir k = 1,....d gilt < vg,br >= Y x; < b, by, >= x, =< v,b, >, daraus
7

folgt < v — vg, by >= 0. Somit ist v — vy € U+ und mit 7.9.24 folgt die zweite
Behauptung und aus 7.9.26 die erste. a
Wir fiithren nun den Begriff der Projektion ein:

Definition 7.9.29 Ist V ein Vektorraumund P : V' — V eine lineare Abbildung, so
heif3t P Projektion, wenn gilt:

PoP=P,
also P(P(v)) = P(v) fiirv e V.
Wir schreiben oft Pv an Stelle von P(v). Es gilt:
Satz 7.9.30 Ist V ein Vektorraum und P : V — V eine Projektion, so ist
V = (KerP) @ (BildP).

Beweis. Sei v € V und v; := P(v); dannist P(v — v;) = P(v) — P(P(v)) = 0,
also vg :=v — v € KerP, somit V = (KerP) + (BildP).

Ist v € (KerP) N (BildP), so existiert ein w € V mit v = P(w) und es folgt
v = P(w) = P(P(w)) = P(v) = 0; somit (KerP) N (BildP) = {0}. O
Bei euklidischen Vektorraumen hat man den Begriff der selbstadungierten Abbil-
dung, diese werden wir ausfiihrlich in 7.10 behandeln; P : V' — V heif3t selbstad-
jungiert, wenn fir v, w € V gilt: < Pv,w >=< v, Pw >.

Satz 7.9.31 Eine Projektion P : V. — V in einem euklidischen Vektorraum V ist
genau dann selbstadjungiert, wenn gilt:

(KerP) L (BildP).
Beweis. a) Sei P selbstadjungiert und v € KerP, v = Pw € BildP; dann ist
<u,v>=< u, Pw>=< Pu,w >=0.

b) Nun sei BildP 1 KerP;undv,w € V,
fiir v =v9+v; und w = wo + w1 Mit vg,wg € KerP;, vy,w; € BildP ist
< Pv,w >=< vg,wg+w; >=< vg,wy >=<vg+vi,wg >=<v, Pw>. 0O

Definition 7.9.32 Ist V = U & U~ und stellt man v € V dar als v = vy + v, mit
vo € U,v1 € UL, so heifit

Py V=V, vy,

die Projektion auf U.
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Fir vy € U ist Pyvy = vy, also Py o Py = Py; somit ist Py eine Projektion
gemass 7.9.29. Py ist das Element aus U, das minimalem Abstand zu v hat. Der
Zerlegungssatz liefert nun folgenden Projektionssatz:

Satz 7.9.33 (Projektionssatz) Ist U ein endlich-dimensionaler Untervektorraum
des euklidischen Vektorraumes V, so ist V.= U @ U~ und Py ist eine Projekti-
on, deren Bild U und deren Kern U~ ist. Die Projektion Py ist selbstadjungiert.

Die Selbstadjungiertheit folgt aus KerPy = U+, BildPy = U.

Fourierpolynome

Wir bringen noch ein Beispiel, das zeigen soll, wie man mit diesen Begriffen der
Linearen Algeba zu Funktionen kommt, die in der Analysis wichtig sind, namlich
zu den Fourierpolynomen.

Wir gehen aus von folgender Problemstellung: Es sei

fiol-ma =R
eine stetige Funktion und m € N. Wie muss man die Koeffizienten ag, ..., by,

wahlen, damit das trigonometrische Polynom

m

+ Z(a" cos nx + by, sinnx)

n=1

ao

Sm(x) = 5

die Funktion f am besten approximiert ? Dabei bedeutet beste Approximation: Man

soll die Koeffizienten ayg, . . ., b,,, so wahlen, dass das Integral
s m 2
/ (f(m) - (ao + Z(an cosnx + by, sin nm))) dz
2 n=1

—Tr

minimal wird.
Mit den soeben bewiesenen Aussagen 10st man das Problem. Es sei V' der Vektor-
raum aller stetigen Funktionen f : [—7, 7] — R, versehen mit dem Skalarprodukt

<= / f(@)g(x)da.

Man definiert einen endlich-dimensionalen Untervektorraum U,,, durch

U, := span(1, cos z, sin x, cos 2, sin 2z, ..., cos mx, sin mx).
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Wir wollen nun den Zerlegungssatz 7.9.28 anwenden; dazu benotigen wir in U,
eine Orthonormalbasis. Zur Vorbereitung zeigen wir:

Satz 7.9.34 Fiirn,k € N gilt:
/ cosnx - sinkxdr =0

—T

cosnx - coskxdx = | sinnx -sinkzdr = 0 falls n#k
™ falls n=k

—T —T

s
Beweis. 1) Die Funktion cos nx sin kx ist ungerade, daher f cosnz sin kxdx = 0.
-

2) Fiir k # m ist

013 (kim sin(k +m)z + !, sin(k — m)xﬂ =

d
= (cos(k +m)x + cos(k —m)x ) = coskx - cosma

daraus folgt

/ cosnx - cos kxdx = 0.

—T

3) Aus cos? r = %Cos 2z + ; folgt: [ cos® nzdr = (41n sin 2nx + “2”)|T_r7r = 7.

Analog beweist man die iibrigen Aussagen. O
Daraus folgt:

Satz 7.9.35 Die Funktionen u,, : [—m, 7] — R seien definiert durch

1
up(x) = Jon

1 1
,  Ugp—1(x) = J cosnx, Ugp(x) = Jr sinnz, (ne€N);

dann ist (ug, u1, . . ., Usm) eine Orthonormalbasis in Up,.

Aus 7.9.28 ergibt sich: das Polynom

2m
Sm ::Z<f,un>un

n=0

1

Jn < f,un >und

hat minimalen Abstand zu f. Wir wahlen als Koeffizienten nun
erhalten die Fourier-Koeffizienten:
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Definition 7.9.36 Die Koeffizienten

Q= 71r /f(x) cosnzdz (n € Np) by = 711_ /f(;v) sinnzdz (n € N)

—Tr

heifien die Fourier-Koeffizienten von f. Das Polynom

m
Sm(x) = a20 + Z(an cosnx + by, sinnx),
n=1

heifit das m-te Fourierpolynom von f:

Aus 7.9.28 folgt:

Satz 7.9.37 Das Fourier-Polynom s, ist das trigonometrische Polynom, das f ,jim
quadratischen Mittel“am besten approximiert;

™

(@) = sn(w)Pda

—Tr

ist minimal.

~-~—o
-
~-~—o
-<

Funktion f

Fourierpolynom

U, = span(l,cosz, ..., sinmz)

In der Theorie der Fourierreihen behandelt man die Frage, wann die Reihe
a (o]
20 + Z:l(a" cosnx + by, sin nx)

gleich f ist; man vergleiche dazu 10.4.18.
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Das Vektorprodukt
Zum Abschluss behandeln wir noch das Vektorprodukt oder Kreuzprodukt v x w,
das in dem hier behandelten Kontext nur im R? definiert ist.

Definition 7.9.38 . Fiir v, w € R3 setzt man

V2 w2
U3 w3

U3 w3
U1 wy

U1 wy
V2 w2

) 9

VX W= (VaW3—V3Wa, V3W1 — V1 W3, V] Wo — VoW1 ) = (

)

Zuerst zeigen wir:

Satz 7.9.39 Fiir u,v,w € R3ist
det(u, v, w) =< u,v X w >

Dabei versieht man R? mit dem kanonischen Skalarprodukt.
Beweis. Nach Beispiel 7.7.15 ist

U1 U1 Wi
V2 W2 U3 w3 U1 w1

U2 V2 W2 | = U1 =< u, v Xw>.
U3 w3 U1 w1 V2 W2

u3 vz w3

O
Setzt man in det(u, v, w) speziell u = v oder u = w ein, so verschwindet diese
Determinante und man erhalt:

Satz 7.9.40 Der Vektor v x w ist orthogonal zu v und zu w.

Durch Nachrechnen ergibt sich ein Satz von Lagrange (JOSEPH LOUIS LAGRANGE
(1736-1813):

Satz 7.9.41 (Lagrange) Fiir alle v, w € R? gilt:
[o x wl® + (< v,w >)? = [v]|*|w]|*.

Damit kann man das Vektorprodukt geometrisch interpretieren: Es sei o der Winkel
zwischen v und w; dieser Winkel ist definiert durch < v,w >= ||v|| - [|w]| cos ¢;
dann folgt||v x w||? = ||v||?||w||*(1 — cos? p) , also

[ox wlf = o]l - [Jwl] - sin .

Somit ist ||v x w]|| der Fldcheninhalt des von v und w aufgespannten Parallelo-
gramms und < u,v X w >= det(u, v, w) ist das Volumen des von u, v, w aufge-
spannten Paralllelotops.

Wir erhalten noch:

Satz 7.9.42 Vektoren v, w € R3 sind genau dann linear abhiingig, wenn v x w = 0
ist.
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Beweis. Nach der Cauchy-SchwarzschenUngleichung sind v, w genau dann linear
abhingig, wenn (< v,w >)° = |lv||2||w||? ist und dies ist nach dem Satz von
Lagrange dquivalent zu ||v x w||? = 0 oder v x w = 0. O
Nun fithren wir den Begriff der positiv orientierten Basis ein, den wir in 13.5 benoti-
gen:

Definition 7.9.43 Eine Basis (b1,...,b,) des R™ heifit positiv orientiert, wenn
gilt:
det(b1,...,b,) > 0.

Es gilt:

Satz 7.9.44 Wenn v,w € R® linear unabhiingig sind, dann ist (v,w,v x w) eine
positiv orientierte Basis des R3.

Beweis. Nach 7.9.39 ist
det(v, w,v x w) = ||v x w||* > 0.

O
Damit kann man sich v X w so veranschaulichen: Durch v xw L vundvxw L wist
die Richtung von v x w bis auf das Vorzeichen festgelegt; die Lange dieses Vektors
ist der Flacheninhalt des Parallelogramms. Durch die Eigenschaft, dass (v, w, v xw)
positiv orientiert ist, wird v X w eindeutig festgelegt; dies entspricht der bekannten
,Dreifinger-Regel .

7.10 Eigenwerte selbstadjungierter Abbildungen

Wir zeigen zuerst, dass eine lineare Abbildung genau dann selbstadjungiert ist, wenn
die zugehorige Matrix symmetrisch ist. Hauptergebnis ist die Aussage, dass bei ei-
ner selbstadjungierten Abbildung immer eine Orthonormalbasis existiert, die aus
Eigenvektoren besteht. Daraus folgt dann, dass jede reelle symmetrische Matrix dia-
gonalisierbar ist.

In diesem Abschnitt sei V' immer ein euklidischer Vektorraum; R"™ sei immer mit
dem Skalarprodukt < z,y >= x1y1 + ... + Ty, = z'y versehen.

Definition 7.10.1 Eine lineare Abbildung f : V' — V heift selbstadjungiert, wenn
fiir alle v, w € 'V gilt:

< fw),w >=<wv, f(w) >.
Eine Matrix A = (a;;) € K™ ist symmetrisch, wenn A® = A, also a;; = aj;
gilt.

Wir werden in 7.12.10 den Begriff der adjungierten Abbildung * f definieren durch
die Eigenschaft <* f(w),v >=< w, f(v) > ; f ist also genau dann selbstadjun-
giert, wenn f =* f gilt.
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Beispiel 7.10.2 Ist A € R(™"™) so ist die Abbildung A : R* — R", z — Az,
genau dann selbstadjungiert, wenn A symmetrisch ist.

Es ist namlich (Ax,y) = (Ax)'y = 2' Aty und (x, Ay) = x' Ay. Somit folgt aus
A? = A, dass die Abbildung A selbstadjungiert ist. Wenn umgekehrt A selbstad-
jungiert ist, so folgt: a;x = (Aeg, ;) = (e, Ae;) = ag.

Satz 7.10.3 Sei (b, ..., by,) eine Orthonormalbasis in V und f : V. — V eine linea-
re Abbildung; dann gilt: f ist genau dann selbstadjungiert, wenn die zu f gehiorende
Matrix A = M (f; (b;)) symmetrisch ist.

Beweis. Es seien v,w € V Vektoren mit den Koordinatenvektoren z,y € R";
dann sind nach Satz 7.5.10 Az, Ay die Koordinatenvektorenvon f(v), f(w). Wegen
7.9.15ist < v,w >=< x,y > und daherist < f(v),w >=< Az,y > und auch
<, f(w) >=< z, Ay > ; daraus ergibt sich die Behauptung. 0
Nun zeigen wir, dass eine symmetrische Matrix immer einen reellen Eigenwert be-
sitzt:

Hilfssatz 7.10.4 Ist A € R"™) symmetrisch, \ € C und x4(\) = 0, so folgt
A € R. Jede symmetrische Matrix besitzt daher mindestens einen reellen Eigenwert.

Beweis. Ist A € C und xa(A) = 0, so existiert ein z € C" mit z # 0
und Az = Az, also ) a;jz; = Az, ¢ = 1,...,n. Ubergang zum Konjugiert-
J

Komplexen liefert > a;;Z; = A%;. Daraus folgt A - (3" 2:%) = > a;j2;% und
J i

i,
)\(Z Zizi) = Zaijszi = Zajizjii.
1 1,] 2,7

Wegen a;; = aj; erhilt man A(3>" 2:2;) = A(Y 2:%), also A = X und daher ist A

reell. Aus dem Fundamentalsatz der Algebra folgt, dass x 4 eine Nullstelle A € C
besitzt und diese liegt in R. O
In 7.8.11 haben wir gezeigt, dass Eigenvektoren, die zu verschiedenen Eigenwer-
ten gehoren, linear unabhangig sind; bei selbstadjungierten Abbildungen gilt eine
scharfere Aussage: sie stehen aufeinander senkrecht; Eigenraume E), die zu ver-
schiedenen Eigenwerten gehoren, sind zueinander orthogonal.

Satz 7.10.5 Ist f : V — V selbstadjungiert, so sind Eigenvektoren, die zu verschie-
denen Eigenwerten von f gehdren, zueinander orthogonal:

E\x L E, fir\#p

Beweis. Sei A # u, f(v) = Av, f(w) = pw. Dann ist
A< v,w>=< v, w >=< f(v),w >=<v, f(w) >=< v, pw >= p < v,w >,
also (A — p) < v,w >= 0 und daher < v,w >=0. O

Satz7.10.6 Ist f : V — V selbstadjungiert und ist U C V ein Untervektorraum
mit f(U) C U, so gilt: f(U+) C U+,
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Beweis. Sei v € UL und u € U; wegen f(u) € U ist < v, f(u) >= 0, also
< f(v),u >=< v, f(u) >= 0; daraus folgt f(v) € U+L. O
Nun konnen wir das Hauptresultat iiber selbstadjungierte Abbildungen herleiten.

Satz 7.10.7 Ist V ein n-dimensionaler euklidischer Vektorraum und f 'V — V
selbstadjungiert, so existiert eine Orthonormalbasis (b, ...,b,) von V, die aus Ei-
genvektoren von f besteht.

Beweis durch Induktion nach n. Aus 7.10.4 folgt, dass f mindestens einen Eigen-
wert A1 € R besitzt. Es existiert also ein by € V mit ||by|| = 1 und f(b1) = Ab1.
Damit ist die Aussage fiir n = 1 bewiesen. Nun sei n > 1 und wir nehmen an, dass
die Aussage fiir (n — 1)-dimensionale Vektorraume richtig ist. Nun wéhlen wir ein
by wie oben und setzen U := span{b; }. Dann ist f(U) C U und nach 7.10.6 ist
auch f(U1) C U*L. Daher ist die Einschrinkung f|U+ — U wohldefiniert und
wieder selbstadjungiert; dim U = n — 1. Nach Induktionsannahme existiert eine
Orthonormalbasis (bs, ..., b,) von U~ aus Eigenvektoren. Dann ist (b, bo, ..., b,)
eine Orthonormalbasis von V/, die aus Eigenvektoren von f besteht. a
Nun erhalten wir die analoge Aussage fiir symmetrische Matrizen; insbesondere
ergibt sich, dass man jede symmetrische Matrix mit Hilfe einer orthogonalen Ko-
ordinatentransformation auf Diagonalgestalt transformieren kann; man bezeichnet
dies auch als Hauptachsentransformation:

Satz 7.10.8 (Hauptachsentransformation)
Fiir jede symmetrische Matrix A € R(™™) gilt:

(1) Es gibt M\, ...;\p € Rmit xa(t)=({E— A1) .- (t— M)
(2) Es existiert eine orthogonale Matrix T € R("™) mit
A1 0
T AT = T'AT =
0 An
(3) Die Spaltenty, ..., t, von T sind Eigenvektorenvon A zu \1, ..., An.

Beweis. Die Abbildung A : R® — R™, x — Auz, ist selbstadjungiert; daher gibt es
eine Orthonormalbasis (t1, ..., t,,) des R™, die aus Eigenvektoren von A besteht; die
Matrix T mit den Spalten ¢4, ..., t,, ist orthogonal. Seien A1, ..., A, die zugehorigen
Eigenwerte, also At; = A;t;. Esist t; = Tej, also gilt ATe; = T'(\je;) oder
T~1ATe; = \je;. Dies bedeutet, dass die j-te Spalte von T~ AT gleich \je; ist.
Daher ist T~' AT =: D eine Diagonalmatrix; in der Diagonale stehen die ;.

Das charakteristische Polynom von D ist xp(t) = (t — A1) - ... - (¢ — A,) und es
gilt xa = xp. O
Kurz zusammengefal3t besagt der soeben bewiesene Satz, dass es zu jeder symme-
trischen Matrix A eine orthogonale Matrix T gibt, so dass T~'AT = T*AT eine
Diagonalmatrix ist; in der Diagonale stehen die Eigenwerte von A und die Spalten
von T sind Eigenvektoren von A.

Wir zeigen die Bedeutung dieses Satzes an zwei Fragestellungen:
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o Wie sieht der Kegelschnitt 527 — 4zy2o + 223 =1 aus ?
e Wie lost man ein ,,gekoppeltes”Differentiagleichungssystem

xf = brp — 219
xh = =2z + 2z,.
Die erste Frage behandelt man so (vgl. 7.10.13): Der Kegelschnitt wird durch die

Matrix (_g _§> gegeben; durch eine Hauptachsentransformation diagonali-

. . . .. 6 0\ . . .
siert man diese Matrix. Man erhalt ( 0 1 >; in den neuen Koordinaten ist der

Kegelschnitt 6y? + y2 = 1, also eine Ellipse.
Beim zweiten Problem erhalt man durch Hauptachsentransformation das einfachere
»entkoppelte “System

y1 =6y

Yy = Y2
das leicht zu losen ist; Riicktransformation liefert die Losungen des uspriinglichen
System (vgl. 8.3.15).

Wir zeigen nun, wie man den Satz von der Hauptachsentransformation auf quadra-
tische Formen anwenden kann; dabei beschranken wir uns auf den Fall n = 2.
Einer symmetrischen Matrix A € R(?:?) ordnet man die Funktion

ga R? S Rz —< Az, z >,
zu; man bezeichnet g4 als die zu A gehorende quadratische Form. Es ist
qa(r) = 2" Az = aux? + 2a192122 + a22x§.
Wir untersuchen ¢4 auf der Kreislinie
Sy = {r € R?|z? + 2% =1}.

Satz 7.10.9 Ist A € R gine symmetrische Matrix mit den Eigenwerten A\1 < Ao,
so gilt:
AN < a2tAx < Ny fiirz € 8.

Wenn \y < Ag ist, dann gilt:
A1 = min ¢4lSi, A2 = max qa|Si;

ist t1 € Sy ein Eigenvektor von A zu A\ und to € Sy einer zu M, so wird das
Minimum von qa genau an den Stellen +t1 und das Maximum genau an +t, € Sq
angenommen.

Beweis. Es gibt eine orthogonale Matrix 7" mit

tam (A0
TAT_(O Ao )
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Fir z € Sy istauch y := Tz € S und es gilt:

A0
qa(z) = 2" Ax = y'T" ATy = o' < 0 >\2> Y =Myi + Aoy

Wegen y7 +y5 =1 ist ga(z) = (A2 — M)ys + A1
Fiir A\; = Ag folgt dann: g4 (z) = A .
Nun sei A\; < Ag. Dann wird g4 minimal genau fiir yo = 0, also an der Stelle
y = *+ej oder x = £Te; = +¢1 und der minimale Wert ist A;.
Das Maximum Ay wird an den Stellen +t2 angenommen. O
Damit erhalt man folgende Charakterisierung der Eigenwerte einer symmetrischen
Matrix A € R(2:2): Die Eigenwerte sind die Extremalwerte von g4 auf .S; und die
Eigenvektoren der Lange 1 sind die Extremalstellen. Wir werden diese Aussagen in
9.4.9 mit Hilfe der Differentialrechnung nochmals herleiten.
Nun kann man ¢4 auf dem ganzen R? untersuchen. Fiir das homogene Polynom ¢4
gilt

qalcr) = c*qa(x) fiirc e R.

Istz € R?, x # 0, s0 gilt ga () = ||x]|?qa( [w)- Wegen | 7, € Sy ergibt sich:

Satz 7.10.10 Ist A € R32) eine symmetrische Matrix mit den Eigenwerten \; <
o, so gilt fiir alle v € R?:

Mlz]]* < atAz < Aofx|?
Man definiert nun

Definition 7.10.11 Eine symmetrische Matrix A € R(Z22) heifit positiv definit,
wenn fiir alle v € R?, x # 0, gilt: ' Ax > 0, also a1123+2a122172+ag23 > 0.

Aus 7.10.10 erhalt man:

Satz 7.10.12 Eine symmetrische Matrix ist genau dann positiv definit, wenn beide
Eigenwerte positiv sind.

Analoge Aussagen gelten fiir (n x n)-Matrizen.
Wir erlautern diese Sétze an einem Beispiel:

=(= )

Dann ist x4 (t) =t — Tt + 6 = (t — 6) - (t — 1); die Eigenwerte sind also A\; = 6
und A2 = 1 und A ist positiv definit. Eigenvektoren zu A\; = 6 erhdlt man als
nichttriviale Losungen von (6 E — A)z = 0, also

Beispiel 7.10.13 Sei

1 + 222 =0
2x1 + 4x9 =0
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Daraus erhalt man zum Eigenwert 6 den Eigenvektor ¢; = \}5 (_21) € S1. Analog

berechnet man den Eigenvektor t5 = \}5 (;) zu Ao = 1. Wie in 7.10.5 gezeigt
wurde, ist t1 L t9. Die Matrix
1 2 1
()

6
0
rechnet man nach, daB g4 (¢1) = 6 und ga(t2) =1 ist.

Wenn man die durch 527 — 4x122 + 223 = 1 gegebene Niveaumenge von g4
untersuchen will, setzt man y = 7'z, also x = 1'%y, ausfiihrlich geschrieben

ist orthogonalund 7*- A-T = ( (1)> .Fiir g4(z) = 2 Az = 52?3 — dx129 + 223

1 1
T = \/5(21/1 +y2) . T2 = \/5(—y1+2y2).

Setzt man dies ein, so ergibt sich natiirlich 52 — 4x129 + 223 = 6y} + y3. Die
Gleichung 6y7+y3 = 1 beschreibt eine Ellipse und somit ist auch die Niveaumenge
{z € R?|z' Az = 1} eine Ellipse. Wir werden dieses Beispiel in 9.4.9 mit Methoden
der Differentialrechung behandeln.

ta

/

tq

7.11 Unitare Vektorriume

Wir behandeln nun Vektorraume tiber dem Korper der komplexen Zahlen , in denen
ein Skalarprodukt erklart ist.

Im R™ definiert man das Skalarprodukt durch < z,y >= x1y1 + ... + TpYn-
Bei einer analogen Definition im C™ wiirde aus < z,x >= 0 nicht immer z = 0
folgen, etwa fir = (1,i) € C2. Ein sinnvolles Skalarprodukt, das man hier als
positiv definite hermitesche Form bezeichnet, erhdlt man , wenn man fiir z,y € C"
setzt:

<z, Yy>=T1Y1+ ... +TnYn-

Man geht also bei einem (etwa beim zweiten) Faktor zur konjugiert-komplexen Zahl
iiber. Dann ist
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<z, x>= >+ ..+ |2,

und aus < z,x >= 0 folgtx = 0.

Dies fiihrt zu folgenden Definitionen:

Definition 7.11.1 Ist V ein Vektorraum iiber C, so heifsit eine Abbildung
VxV—=C, (v,w) —»<v,w>

eine positiv definite Hermitesche Form, wenn fiir u,v,w € V, A\, u € C gilt

(1) <A pv,w>= A<u,w>+p<v,w >
<UNF pw >= A< u,v>+p<u,w>
(2) <w,v >=<v,w >

(3) firv#0ist  <wv,u> > 0.

Eine positiv-definite Hermitesche Form auf einem Vektorraum V iiber C bezeich-
net man wieder als Skalarprodukt. Ist V' ein Vektorraum iiber C und < , > eine
positiv-definite Hermitesche Form auf'V, so heifsit (V, <, >) ein unitérer Vektor-
raum oder unitirer Raum. An Stelle von (V, <, >) schreibt man oft V.

Das Skalarprodunkt in einem unitaren Raum ist also in der ersten Variablen linear,
aber in der zweiten Variablen antilinear.
Wie in euklidischen Vektorraumen definiert man die Norm und den Abstand

lz] == V< v,v >, d(v,w) == |lv—w||.

Wichtige Beispiele sind nun der C™ und der Vektorraum der stetigen komplexwer-
tigen Funktionen.

Beispiel 7.11.2 Im C" definiert man das kanonische Skalarprodukt
<z,Y>=x1Y1+ ...+ Tnln =zt Y.

Im Vektorraum der stetigen Funktionen f : [a,b] — C definiert man das Riemann-
Integral so: man zerlegt f in Real- und Imaginarteil f = f1 + i- fo, f1, foreell,

b b b

und setzt [ fdx := [ fide + i- [ foda, das Skalarprodukt definiert man dann
a a a

durch

b
< g = / f(@) - g(a)da.

Auch in unitaren Vektorraumen gilt die Cauchy-Schwarz’sche Ungleichung

| <v,w>| <ol - [w].
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Man definiert wieder die Orthogonalitat v L w durch < v,w >= 0 und bezeichnet
eine Basis (b1, . .., by,) als Orthonormalbasis, wenn < b;, b; >= d;; ist.

Es gilt auch die Aussage des Schmidt’schen Orthonormalisierungsverfahrens; daher
besitzt jeder endlich-dimensionale unitdre Raum eine Orthonormalbasis.

An die Stelle der orthogonalen Matrix mit (7% - T' = E) tritt nun die unitére Matrix

mit (7" - T = E), dabei ist das Konjugiert-komplexe einer Matrix elementweise zu
verstehen:

Definition 7.11.3 Eine Matrix T € C"™") heifit unitér,wenn gilt:

T''T = E,  also T =T"

U(n) :={T € Gl(n,C)| T = T heifst die unitire Gruppe.

Eine Matrix 7T ist genau dann unitar, wenn ihre Spalten eine Orthonormalbasis des
C™ bilden. Wie in euklidischen Vektorraumen gilt:

Satz 7.11.4 Ist T € C""™) eine unitire Matrix, so gilt fiir x,y € C":
<Tx,Ty>=<wzy>  |Tz||=z].
Beweis.< Tx, Ty, >= (Tx) (Ty) = 2'T'Ty = x'y =< 2,y > . ]

Wir behandeln nun selbstadjungierte Abbildungen unitirer Vektorraume:

Definition 7.11.5 Eine lineare Abbildung f : V' — V heifst selbstadjungiert, wenn
fiirz,y €'V gilt:
< fw),w >=<wv, f(w) >.

An die Stelle der symmetrischen Matrix, also A = A? tritt die hermitesche Matrix:
Definition 7.11.6 Eine Matrix A € C™™) heifit hermitesch, wenn gilt:

t

A=A
Analog zu 7.10.3 beweist man:

Satz 7.11.7 Ist (by,...,b,) eine Orthonornalbasis im unitiren Vektorraum V, so
ist eine lineare Abbildung f : V. — V genau dann selbstadjungiert, wenn die
Matrix A := M(f; (b;)) hermitesch ist.

Wie bei euklidischen Vektorraumen gilt:

Satz 7.11.8 Ist V ein unitdrer Vektorraum und ist A € C ein Eigenwert der selbst-
adjungierten Abbildung f : V. — V, so folgt A € R.

Beweis. Es existiert ein v € V, v # 0 mit f(v) = Av; dann ist

A< vv>=< f(v),v >=<v, f(v) >= X< v,V >.

Daraus folgt A = X also A € R. O
Damit ergibt sich der Satz iiber die Diagonalisierbarkeit:
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Satz 7.11.9 Ist A € C™™) eine hermitesche Matrix, so existieren A1, ..., \, € R
und eine unitire Matrix T € C™) mit

xa®)=@E—X)-...-(t—\p)
und
A ... 0
T'AT = _
0 ...\,

Wir behandeln nun unitire Abbildungen unitarer Vektorraume:

Definition 7.11.10 Eine lineare Abbildung f : V — V heifit unitar, wenn fiir
z,y €V gilt:
< f(v), flw) >=<v,w > .

Analog zu 7.9.18 gilt:

Satz 7.11.11 Sei f : V — V linear; wenn fiir alle v € V gilt:|| f (v)]| = ||v
[ unitdr.

, SO ist

Beweis. Wegen < v, w >= < w,v > ist die Rechnung hier etwas anders als bei
euklidischen Vektorraumen. Man rechnet nach, dass fiir v, w € V gilt:

1 . . .
<vw>= (fo+w]-lv-wl+ilv—iw] - v +iw]).

Man kann also wieder das Skalarprodukt durch Normen ausdriicken. Daraus folgt:
wenn f die Norm invariant lasst, dann auch das Skalarprodukt. a
Wir fassen die entsprechenden Begriffe bei euklidischen und unitaren Vektorraume
zusammen:

euklidischer Vektorraum V iiber R unitirer Vektorraum V iiber C

Skalarprodukt mit Skalarprodukt mit
<v,w >=<w,v > <v,w>=<w,v >

orthogonale Matrix: 7T%-T =F unitire Matrix: T -T = E

symmetrische Matrix: A = At hermitesche Matrix: A = A’
selbstadjungierte Abbildung: selbstadjungierte Abbildung:
< fv),w >=<wv, f(w) > < fv),w >=<wv, f(w) >
orthogonale Abbildung: unitare Abbildung:

< f(v), f(w) >=< v,w > < f(v), flw) >=<v,w >
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7.12 Dualitit

Wir erlautern, wie man jedem Vektorraum V' den dualen Vektorraum V *und jeder
linearen Abbildung f : V' — W die duale Abbildung *f : W* — V* zuordnen
kann. Ist V' endlich-dimensional und (v, ..., v, ) eine Basis in V, so hat man eine
duale Basis (v, ...,v™) in V*.

Definition 7.12.1 Ist V ein Vektorraum iiber K, so heift
V' i={¢:V — K|p linear}

der zu V duale Vektorraum.

Sind p,1 € V* und X € K, so sind die Abbildungen

e+ Vo Kuve o) +9@) Ap:V — Kv— Ap(v),

linear, somit p + ¢ € V*, A\p € V*; mit diesen Verkniipfungen ist V* ein Vektor-
raum.

Definition 7.12.2 Ist f : V — W linear, so heifit *f : W* — V* ¢ — 1 o f, die
zu f duale Abbildung.

(Wir verwenden fiir die duale Abbildung die Bezeichnung * f, denn es ist iiblich,
mit f* die adjungierte Abbildung zu bezeichnen ; vgl. Definition 7.12.10.)

Firy € W*isty o f: V — K linear, also ¢ o f € V*; man rechnet leicht nach,
dass * f linear ist.

Es gilt:

Hilfssatz 7.12.3 Sindg: U — V und f : V. — W linear, so gilt: *(fog) =* go* f.

Dualitit bei endlich-dimensionalen Vektorrdumen

Nun fithren wir den Begriff der dualen Basis ein; dazu erinnern wir an 7.3.14: Ist
(v1, ..., vy,) eine Basis von V und sind ¢4, ..., ¢, € K beliebige Elemente, so exi-
stiert genau eine lineare Abbildung

n
p: V=K mit ¢v;)=c;, (j=1,...,n),ndmlich ¢ Zm]v] Zasjcj.

Insbesondere gilt fiir jedes k£ = 1, ..., n: Es gibt genau eine lineare Abbildung
namlich vk(z zjv;j) = Tk,
j=1

0"V - K omit oF(v;) = 6?,
(mit 6% = 0 fiir j # k, und 67 = 1.)
Damit sind Elemente v, ..., v™ € V* definiert und man sieht leicht, dass (v*, ..., v™)
eine Basis von V* ist: Man kann jedes ¢ € V* eindeutig darstellen durch

n
Y= chvj mit ¢; = p(v;).
j=1
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Definition 7.12.4 Ist (v1, ...,v,,) eine Basis von V, so heifit (vl,...,v") die duale
Basis von V'*.

Daraus folgt:
Satz 7.12.5 Fiir jeden endlich-dimensionalen Vektorraum V ist dim V* = dim V.

Wir behandeln nun die Frage, durch welche Matrix die duale Abbildung * f darge-
stellt wird. Es ergibt sich, dass es die transponierte Matrix ist:

Ist A die Matrix zu einer linearen Abbildung f : V' — W beziiglich Basen in V, W,
so ist A? die Matrix zur dualen Abbildung * f beziiglich der dualen Basen :

Satz 7.12.6 Ist f : V' — W linear, ist (v;) eine Basis in V und (w;) eine Basis in
W ound ist A := M(f; (vj), (w;)), so gilt:

AY = M( fi (w'), (7))
Beweis. A = (a;;) ist definiert durch f(v;) = Zai]‘wi. Ist B = (by) die
zu * f beziiglich der dualen Basen gehorende Matrixz, so ist *f(w!) = Y bt
Es gilt *f(w!)(vj) = Y bv*(v;) = bj. Wegen *f(w') = w! o f erlféilt man
*f(wh)(v;) = wl(f(vj)]; = wl(z a;jw;) = Zaijwl(wi) = ay; und daraus folgt

bji = ay;, also B = A'. O
Nach 7.5.24 ist rg A* = rg A und somit folgt:

Satz 7.12.7 Fiir jede lineare Abbildung f : V. — W gilt: rg * f = rg f.

Wir untersuchen nun noch das Transformationsverhalten der dualen Basen:

Es sei T' = (t;;) die Transformationsmatrix der Basis (v1, ..., v,) von V zu einer
anderen Basis (v7, . ..,7,) und T~! = (f4); die dualen Basen transformieren sich
folgendermassen:

Satz 7.12.8 (Transformation dualer Basen) Fiir j,k =1,...,,n sei

n n
v; = g tij s, U = E Likv;
i=1 =1

dann gilt:
n n
o= e = 0
= 1=1

Beweis. Es gibt ¢;; € K mitv? = ) ¢;;0". Dann ist
i=1

Wi () = (_:il i) (T) = f;l i (F58) = cn,.
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. . n ~ n ~ . ~ ~
Ausserdem ist v/ (T) = 07 () tyw) = Y tiv? (v1) = tjg. somit cp; = tjp.
=1 =1
Analog ergibt sich die zweite Behauptung. O

Bemerkung. Bei Dualitaussagen und vor allem in der Tensorrechnung ist folgende
Summationskonvention zweckmassig:

Uber gleichen Indizes, von denen einer oben und der andere unten steht, ist zu
summieren.

Sind etwa x; die Koordinaten von v beziiglich (v;), so schreibt man 27 an Stelle
von z; und vereinbart 27 v; := Y zlv;.

J
Die Aussage des vorhergehenden Satzes formuliert man dann so:
Istv; = t}f;,; und v, = tﬁgvl , so gilt fiir die dualen Basen:

i i ~k _ 4k 1
v =T, ot =t
Der Zeilenindex einer Matrix wird nach oben gesetzt, der Spaltenindex nach unten.

Dualitiit bei endlich-dimensionalen euklidischen Vektorridumen
In euklidischen Vektorraumen ist ein Skalarprodukt gegeben; das Skalarprodukt ist
bilinear, daher definiert jedes v € V eine lineare Abbildung

vV o Rr—<v,x>.

Nun ist es naheliegend, zu fragen, ob man auf diese Weise jede lineare Abbildung
V' — R erhalt. Fur endlich-dimensionales V' ist dies leicht zu beweisen; wenn V'
ein (unendlich-dimensionaler) Hilbertraum ist, dann wird diese Frage durch den
Darstellungssatz von Riesz-Fréchet 15.2.8 beantwortet.

Satz 7.12.9 IstV ein endlich-dimensionaler euklidischer Vektorraum, so ist die Ab-
bildung

J:V—=V5v—0v", mt v':V-osRzr—<uvz>,

ein Isomorphismus.
Zu jedem ¢ € V* existiert daher genau einv € V mit p(z) = (v, x) fiirallex € V.

Beweis. Aus v* = 0 folgt (v, z) = 0 fiir alle = € V, insbesondere (v, v) = 0, also
v = 0. Somit ist die Abbildung J : V' — V* v +— v* injektiv. Wegen dim V' =
dim V'* ist sie auch surjektiv. O
Wir behandeln nun den Begriff der adjungierten Abbildung f*:

Definition 7.12.10 Es seien V, W euklidische Vektorrdume und f : V — W eine
lineare Abbildung. Eine lineare Abbildung f* : W — V heifit adjungiert zu f,
wenn fiir allev € V,w € W gilt:

< f(v),w >=< v, f(w),>.



186 7 Lineare Algebra

Wir werden in Satz 15.3.7 zeigen, dass man aus dem Darstellungssatz von Riesz-
Fréchet die Existenz der adjungierten Abbildung fiir stetige lineare Abbildungen
von Hilbertraumen herleiten kann.

Fiir endlich-dimensionale Vektorraume kann man die adjungierte Abbildung expli-
zit mit Hilfe von Orthonormalbasen angeben und erhalt damit fiir diesen Fall einen
einfachen Existenzbeweis:

Satz 7.12.11 SindV und W endlich-dimensionale euklidische Vektorrdume, so exi-
stiert zu jeder linearen Abbildung f : V. — W genau eine adjungierte Abbildung
W=V

Ist (v1, ..., vy) eine Orthonormalbasis in V, so gilt fiirw € W:

f(w) = Z < f(vy),w > vj.

Jj=1

Ist ausserdem (w1, . .., wy,) eine Orthonormalbasis in W und ist A die Matrix zu
[ beziiglich (v;), (w;), so ist A* die Matrix zu f* beziiglich (w;), (v;).

Beweis. Wir nehmen zuerst an, es existiere eine adjungierte Abbildung f*. Ist dann
w € W, so gibtes ¢, € Rmit f*(w) = cpvp und fiir j = 1,...,nist
k

¢ =< vj,chvk >=<vj, f(w) >=< f(v;),w > .
k

Es gibt also hochstens eine adjungierte Abbildung. Nun ist klar, wie man die Exi-
stenz von f* beweist: Man setzt

f*:W—>V,wl—>Z<f(vj),w>vj.
j=1

Firv = > axvr € V und w € W ist dann
k

<w, f*(w) >= Zwk < 'Ukrvf*(w) >= Zl'k: < f(vk:)vw >=< f(’U),’w >
k k

und daher ist die so definierte Abbildung f* die adjungierte Abbildung zu f.
Ist A = (ai;) die Matrix von f beziiglich (v;), (w;), so gilt a;; =< f(v;), w; >
und fiir die Matrix B = (b;;) von f* beziiglich (w;), (v;) ist

bji =< [ (wi), v; >=<wi, f(vj) >= aij,
also B = A'. 0
Nun sei V' = W; eine lineare Abbildung f : V' — V heilt selbstadjungiert, wenn

fr=r

ist, also < f(v),w >=< v, f(w) > fir v,w € V; diesen Fall haben wir in 7.10

behandelt.
Wir geben noch ein Beispiel an, bei dem wir den Darstellungssatz 7.12.9 anwenden:
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Beispiel 7.12.12 Es sei V = R3, versehen mit dem kanonischen Skalarprodukt.
Wir wahlen v, w € R3; dann ist

R?® — R, u +— det(u, v, w)

eine lineare Abbildung, also ein Element aus (R?)*. Nach 7.12.9 existiert genau ein
z € R3 mit
det(u,v,w) =< z,u> fiiralle u € R3.

Aus 7.9.39 folgt
z=v X w.

Das Vektorprodukt v x w ist also charakterisiert durch

det(u,v,w) =< v x w,u > firalle wu € R3.

7.13 Alternierende Multilinearformen

Die folgenden Begriffe erscheinen zunachst sehr abstrakt und schwer verstand-
lich; wir wollen sie hier auch nicht eingehend erlautern, sondern nur kurz
darstellen. Wir benotigen sie fiir die Theorie der alternierenden Differenti-
alformen in 11.3. Mit Hilfe der alternierenden Multilinearformen kann man
Differentialformen definieren und es zeigt sich, dass man mit Differential-
formen recht einfach rechnen kann; im Kalkiil der Differentialformen las-
sen sich Integralsiatze und Aussagen uiber Vektorfelder libersichtlich und
koordinateninvariant darstellen.

Es sei V ein n-dimensionaler Vektorraum liber R und k € N; wir setzen
VE.:=V x..xV, (k-mal).

Wir erinnern an den Begriff der multilinearen Abbildung den wir in 7.7.1 eingefiihrt
hatten:
w:VF SR

heifit multilinear, wenn fiir A\, 4 € Rund v,w € V gilt:
Wiy W+ pw, ) = Aw(eey v, o) + pw(eo, w, .20,
Nach 7.7.2 heif3t w alternierend, wenn gilt:
Aus 1 <j<l<n und v; =v folgt w(..,v,...,v...) =0.

Aquivalent dazu ist die Aussage, dass w bei Vertauschung zweier Argumente das
Vorzeichen andert:

Wy ¥y ey w, ) = =W (e, W,y ey U, 1L).

Nun definieren wir:
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Definition 7.13.1 Eine multilineare alternierende Abbildung w : V¥ — R heifst
k-Form auf V. Der Vektorraum aller k-Formen wird mit

ARy
bezeichnet. Man setzt noch A°V* := R, fiir k = 1 ist A'V* = V*.
Fiir linear abhéngige Vektoren vy, ..., vg ist w(v1, ..., vk ) = 0 und daher gilt
AFV* =0 fiir k > n.

Wichtig ist das aulere Produkt oder Dach-Produkt, das wir zuerst fiir 1-Formen
erkléren:

Definition 7.13.2 Fiir 1, ..., 05 € V* und v = (v1, ...,vx) € V* setzt man

1(v1), s 1 (Vi)
(o1 A oo Ai) (v, .y k) == det
wk(vl)""’@k(vk)

Nach 7.7.2 ist die Determinante multilinear und alternierend und daher ist
gpl/\.../\<pk:Vk—>R

eine multilineare alternierende Abbildung, also
V1A AR € ARV,

Es gilt:

Satz 7.13.3 Wenn (¢1, ..., vn) eine Basis von V* ist, dann ist
(piy AN Ny, |1 <4y <o <i <n)

eine Basis von A*V*. Daher ist

im AFVe = (7).
dim A"V (k)

Nun kann man das Dach-Produkt fiir beliebige 4£-Formen und /-Formen definie-
ren:

Definition 7.13.4 Sei (¢1, ..., o) eine Basis von V*; fiirw € A*V* und o € A'V*
hat man eine eindeutige Darstellung

w= Zail,...,ik@il Ao N iy o= ijl,---,jz%@jl ARRVAY 2R

man setzt
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wAo = Z Z iy ooy byt Pin N o N @i Ny N N @y
(ila“aik) (jl"'a.jl)
(Dabei ist jeweils iiber alle k-Tupel (i1, ...,i) mit 1 < i3 <ig < ... <1i <n
und iiber alle I-Tupel (j1,...,5) mit 1 < j; < ... < ji < n zu summieren).

Dadurch wird ein Element
wAoe ARy

definiert.

7.14 Tensoren

Bei Deformationen elastischer Korper, etwa bei der Biegung eines Balkens
oder bei Erdbeben, treten Spannungskrafte auf; diese werden beziiglich ei-
nes Koordinatensystems durch Grossen F;; beschrieben, die bei ﬁbergang
zu anderen Koordinnaten ein bestimmtes Transformationsverhalten aufwei-
sen. Derartige Tupel bezeichnet man als Tensoren. Sie treten auch bei der
Beschreibung der Tragheit von Korpern auf.

Tensoren spielen auch in Gebieten der Mathematik eine wichtige Rolle, et-
wa in der Differentialgeometrie; dort hat man Fundamentaltensoren g;; und

h;; oder auch den Riemannschen Krimmungstensor R, ™, .

Friither hat man Tensoren definiert als Grossen, die beziiglich einer Basis gegeben
sind und sich bei Ubergang zu einer anderen Basis in bestimmter Weise transfor-
mieren, namlich so wie in 7.14.3. Mit Hilfe der multilinearen Algebra kann man
dies so prazisieren:

Definition 7.14.1 Seien p,q € Ny, sei V ein Vektorraum iiber einem Korper K und
V'* der duale Vektorraum. Eine multilineare Abbildung
T:V'x..xV*'xVx...xV->K
~ ~ s~ ~ -
P q
heifit p-fach kontravarianter und q-fach kovarianter Tensor ( auf V); kurz ein
(p, q)-Tensor.

Wir setzen
VP .=V*x...x V" Vi=Vx...xV;
- -

~ 4 ~ 4
p q

ein (p,q)-Tensor ist also eine multilineare Abbildung T : V*P x VI — K.
Definition 7.14.2 Es sei V ein endlich-dimensionaler Vektorraum iiber K und T

ein (p,q)-Tensor. Ist dann (v1, ... ,v,) eine Basis in V und (v, ..., v") die duale
Basis in V* , so heiflen

J1s--Jp —— 1 j .
a, = T v vy v,)

die Komponenten des Tensors T beziiglich (v, . .., vy).
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Nun seien (v1,...,vy,) und (v1,...,v,) Basen in V, sei T = (¢]) die Transfor-
mationsmatrix von (vi,...,v,) zu (¥1,...,%,) und T~ = (¥) ; nach 7.12.8
ist

v; = t1v;, oy, = thuy, vt = A;f)j = tfvl.

Dabei verwenden wir wieder die Summationskonvention wie in 7.12; z. B. bedeu-
. n .
e i
tet t0; = thﬂy-
j=
Dann transformieren sich die Tensorkomponenten folgendermassen:

Satz 7.14.3 (Transformationsformel) Sei

T:VXx.. XxXVxVx..xV-=K
- - - -~

~ ~
P q
ein (p, q)-Tensor, seien
FIOR -
i die Komponentenvon T beziiglich (v1,...,vy,),
i1edn e - - .
;0 die Komponenten von T beziiglich (V1,...,Un) ;
dann gilt:
~Jisndp . 4J1 L4 Fk tkg Lyl
S T A T 7 2

Beweis. Man setzt 0; = fka, o = tfvl ein und erhalt:

~Jlsendp T ~ _

@, =T, ..., 0yy...) =
_ Ji,,l ok _ 41 oky l _
=T ot V) = 8 T Uy, ) =
_ 4J1 Jp | Fki | kq . ly,.lp
=t ... ‘tlp G tiq A,y

O
Addition und Multiplikation von Tensoren

Definition 7.14.4 Seien T und S (p, q)-Tensoren; dann definiert man die Summe
so(ue VP weVi):
T+S: VP xV!I— K, (u,w) — T(u,w) + S(u, w).

Man sieht leicht, dass sich dabei die Komponenten addieren.

Definition 7.14.5 Ist T ein (p, q) -Tensor und S ein (r, s)-Tensor, so definiert man
den Produkttensor T - S folgendermassen: fiir u € VP x € V" w e Vi, w € V?,
sei

T-S: vt vt L K (u, 2w, y) — T(u,w)-S(x,y)
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1 1 .ol jla"'7jp l1yeuyls .
Dannist T-S ein (p+7, ¢+s)-Tensor; sind ;" ”;” und by die Komponenten

von T bzw. S beziiglich einer Basis, so hat T - S die Komponenten

J1seendpsliseenls ajl,---,jp . bll,...,lS
i17~"ai(15k15"'5k7‘ - 115--45q kiyeonket

In den folgenden Beispielen sei immer V' ein Vektorraum iiber R ; fiir die Basen
(vi), (;) und die Transformationsmatrizen verwenden wir die oben eingefiihrten
Bezeichnungen.

Ausserdem ist wieder §;, = 1 fiir i = k£ und = 0 sonst; wir setzen auch 5f = 1 fiir
1 = kund = 0 sonst.

Beispiel 7.14.6 Die Elemente von V' definieren (1, 0)-Tensoren; die Elemente von
V* sind (0, 1)-Tensoren. Wir beschreiben diese beiden Tensoren:
Seiz € V, & = 2¥wvy,; dann ist die Abbildung

x: V' = Ru— u(x)
linear und daher ein (1, 0)-Tensor. Die Komponenten beziiglich (v ) sind
z(vF) = o (z) = 2.
Geht man zu einer neuen Basis (7, ) liber, so ergibt sich:
= z(o%) = z(tho’) = that

Nunseiu € V¥, u = u;vt, dannistu : V — R linear, d.h. u ist (0, 1)-Tensor, der
beziiglich (v*) die Komponenten u; besitzt. Ubergang zu neuer Basis ergibt

K~ - 0
u; = u(v;) = t; g, g = tpu;.

Beispiel 7.14.7 Besonders einfach zu beschreiben ist der (1, 1)-Tensor
T: V'xV =R, (u,z) — u(z).
Fiir jede Basis (v1, . .., v, ) sind die Komponenten gleich
Tk, v) = v*(v;) = oF.

Bei Basiswechsel dndern sich die Komponenten 6F nicht.
Fiir z = z'v; € V und u = uiv® € V* ist

u(z) = upv® (z'v;) = 6Fupa’ = upo®.

Beispiel 7.14.8 Die k-Formen aus 7.13.1 sind (0, k)-Tensoren.
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Beispiel 7.14.9 Es sei nun (V, < >) ein endlich-dimensionaler euklidischer Vek-
torraum. Das Skalarprodukt ist ein (0, 2)-Tensor

T: VXV >R, (2,y) —<x,y>,

man bezeichnet ihn als sogenannten Fundamentaltensors oder metrischen Tensors.
Die Komponenten von T beziiglich (v1, ..., v,) sind

gir = T(vi,vg) =< v;, v > .
Fiir z = x'v; und y = y*vy, ist also
T(z,y) = gna'y".
Aus der Symmetrie des Skalarprodukts folgt
gik — gki = 0;

die Matrix G := (g;) ist invertierbar und positiv definit; es gilt det G > 0. Wir
benotigen diese Matrix in 13.2, insbesondere 13.2.2, bei der Integration auf Unter-
mannigfaltigen und bezeichnen sie dort als Gramsche Matrix.

Im euklidischen Vektorraum V' hat man nach Satz 7.12.9 den Isomorphismus

J: V=V v—0v", mt v':V-Rzrz—<uvz>.
Ist (v;) eine Basis in V und (v*) die duale Basis, so ist fiir = € V:
J(w)(z) =< v,z >; also J(v;)(vg) =< v, vk >= gik.

Daraus folgt

J(vi) = garv*
und daher ist die zu .J beziiglich (v;), (v*) gehorende Matrix gleich G = (g;z).
Die Abbildung J ordnet also jedem kontravarianten Vektor = z*v; € V den ko-
varianten Vektor v = u;v" € V* mit u; = gikxk zu. Ist die Basis (v1,...,v,)
orthonormiert (cartesisch, wie man in diesem Zusammenhang auch sagt), so ist
Gik = 0;3, und daher u; = z*.
Wir betrachten nun die inverse Matrix G~! = (g

;esistalso g
u = uv' € V*ist J~ u = 2Fvy, mit u; = g;x"; daraus folgt

ik) migik — 6]7;1 Fiir

gmzu7 — gmigik$k — 6]7¢n$k — ™.
Definieren wir nun den (2, 0)-Tensor
S:V*xV* =R, (u,w) —< J tu, Jlw >,

so ergibt sich: Die Komponenten von S beziiglich (v*) sind

S(v',v") = g™*.
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Beim euklidischen Vektorraum V' identifiziert man gelegentlich V' mit V* und un-
terscheidet nicht zwischen kontravarianten und kovarianten Vektoren, sondern nur
zwischen den kovarianten Komponenten u;, und den kontravarianten b = gkiui
bzw. zwischen 2* und u; = g;x". Ist die Basis (v1, ..., v, ) orthonormiert , so ist

u; = a2

Verjiingung eines Tensors
Seien p, g € N, sei V' ein n-dimensionaler Vektorraum iiber einem Korper K und

T:V'PxV!I— K
ein (p,q)-Tensor. Wir schreiben nun
(v,w) €V*Pmitv € V*, we VPl (y,2)eVimitycV, zc VI
also
T: VP xVI-S K, (v,w, y,z)— T(v,w, y,z2).
Definition 7.14.10 Es sei (v1,...,v,) eine Basis in V und (v',... v") die zu-
gehorige duale Basis in V*. Ist dann T ein (p, q)-Tensor , so heifit

T (,2) e T, 02

die Verjiingung von T iiber die erste kontravariante Variable u und die erste kova-

riante Variable .
n

Nach unserer Summationskonvention ist 'T'(w, 2) =S T, w, v;,2).
i=1
Bemerkung Der Wert 'T'(w, z) ist unabhingig von der Wahl der Basis, denn der
Ubergang zu einer neuen Basis (%) ist durch
v = thuy, ot = it

gegeben. Dann ist

T('Ui, w, f}iv Z) = i;t?T(Ul, w, 'U]C,Z) = 6lkT(Ulﬂ w, Uk,Z) = T(Ukaw ’ 'Uk;,Z)«

Aus der Definition von T folgt unmittelbar:

Satz 7.14.11 Sind afllf; die Komponenten von T beziiglich (vy,...,v,), so hat

der iiber v' und vy verjiingte Tensor T die Komponenten

1y J2,0p

a. P
1y 1250050
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n
Man beachte, dass hier wieder > zu bilden ist; die Komponentendes (p—1, ¢—1)-
i=1

Tensors T hingen also von jo, .. ., jp, 92,...,14) ab.

Die Verjiingung liber m < min(p, q) kontravariante und m kovariante Variable ist
analog definiert.

Unter den Begriff Verjiingung fallt auch die Bildung von Invarianten. Dies sind
Tensoren nullter Stufe, also Konstanten. Es ist zweckmaissig, die Verjingung eines
Tensors durch die Verjiingung seiner Komponenten gemass 7.14.11 zu beschreiben.

Beispiel 7.14.12 Sei T ein (p, ¢)-Tensor mit Komponenten afllf: und es seien

u= (uy,...,ip) € V*, 2 = (z!,...,2%). Der Produkttensor (s. Beispiel 7.14.6)
Tug ... upxy...x%istein (p + ¢, p + g)-Tensor mit den Komponenten

J1se-sdp ac”l 29t

Wiy sooyig Wljy - - - Upgp

Durch (p + ¢)-fache Verjiingung erhélt man den Zahlenwert

_ e, S TH diq
T(u,v) = a3, ilug, o oupj ™

als Invariante. Man vergleiche hierzu Beispiel 7.14.9.

Beispiel 7.14.13 (Indexziehen) Sei V' euklidisch und T ein (p, ¢)-Tensor. Wir bil-

115-+30q

’Ll,...,iq und

den < z,y > T(u,v) als Tensorprodukt mit den Komponenten g;.a
verjiingen zum Beispiel iiber £ und j;. Dann heilen

J2sendp k\j2,e0p

ulf; = 9ikQ4y i, '
(p — 1)-fach kontravariante, (¢ + 1)-fach kovariante Komponenten von T. Entspre-
chend heiflen S S

)15 dp ik J15ee00]

b e =9,

(p + 1)-fach kontravariante, (¢ — 1)-fach kovariante Komponenten von T. Dies
entspricht der Einfiihrung der kovarianten und kontravarianten Komponenten eines
Vektors in 7.14.9. Fiir die Grossen §¥, 8, gilt nur bei Verwendung orthonomierter

(cartesischer) Basen g;; 5,2 = k-

Beispiel 7.14.14 In der Differentialgeometrie hat man den zu einer Flache gehoren-
den Fundamentaltensor mit den Komponenten g;;, und Riemannsche Kriimmungs-
tensoren: den (1, 3)-Tensor mit den Komponenten R;™;; und den (0, 4)-Tensor
mit R . Multiplikation dieser beiden Tensorem und Verjlingung liefert

Rijk = gimR; "
Fiir die umgekehrte Richtung gilt: Ist (¢°*) die zu (g, ) inverse Matrix, so ist

m ._ _lm
ik =9 Rk
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Definition 7.14.15 . Man definiert ;i folgendermassen: Fiir i, j, k € {1,2, 3} sei

1 falls (i,j,k) eine gerade Permutation ist
gijk =4 —1  falls (i,j,k) eine ungerade Permutation ist ,
0 falls (i,j,k) keine Permutation ist

also

L fiir (i,5,k) € {(123),(231), (312)}
Eijk = -1 ﬁ’” (ivja k) € {(213)a (321)7 (132)}
0  falls (i,4, k) keine Permutation von{1, 2, 3}ist

Wenn (i, j, k) eine Permutation o € Ss ist, dann ist €51, = sign (o), andernfalls ist
€ijk =0.

Ist dann (v, v9,v3) eine Basis in einem dreidimensionalen reellen Vektorraum V/,
so heift der (0,3)-Tensor mit den Komponenten ¢;;; der e-Tensor oder der total
antisymmetrische Tensor (vgl. [14]).

Daraus folgt, dass diese Komponenten unabhangig von der Wahl der Basis sind,
wenn wir uns auf die Transformationen 7' mit det’7" = 1 beschranken. Die
(n,n)Matrizen T mit det T = 1 bilden eine Untergruppe der Gruppe GL(n,R)
der (n,n)-Matrizen mit nichtverschwindender Determinante. In Aufgabe 13.9 ist
die folgende Formel niitzlich:

Satz 7.14.16 Es gilt

3
E €ijkElmk = €ij1€Im1 + €ij2€im2 + €ij3€1m3 = 0it0jm — 0j10im.-
k=1

Zwischen dem e-Tensor und dem in 7.9.38 eingefiihrten Vektorproduktin V' = R3
besteht ein enger Zusammenhang; aus der Definition von = X y und 7.14.15 ergibt
sich:

Satz 7.14.17 In V. = R3 widhlen wir die kanonische Basis e1, e2, es. Seien x,y €
V. Da V euklidisch ist, identifizieren wir V und V*. Lassen wir nur die Gruppe
SO(n) der speziellen orthogonalen Matrizen T als Transformationsmatrizen zu, so
stimmen insbesondere die kontravarianten Komponenten =* von x € V immer mit
den kovarianten Komponenten x; tiberein, und es folgt

(x xy)" = (z x y)i = eua’y”.
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Aufgaben

7.1. Geben Sie bei (1)-(8) alle Losungen des jeweiligen Gleichungssystems an:

(1) 13-2 4 (2) 1 1524
2 1 —1-1 2-11 3
01-1 1 3-13 12
(3) 1 3-1 2 7 (4) 123 1
-1-2 2-3-5 45 6-2
1 1-3 4 3 789 2
(5) 1 2 1 0 (6) 1-1 3 8 7
-1-3-3-1 2-3 1-1 12
2 5 4 1 -1 2-3-6-10
37 5 1 3-5 3 2 21
(7) 1 2 3 20 (8) 1 2 3 20
—2 1-1 10 —2 1-1-10
3-1 2 18 3-1 2 18

7.2. Fassen Sie die Matrizen (1)-(10) als Elemente von R(Z2 beziehungsweise RG3) quf
und bestimmen Sie alle Eigenwerte, geben Sie zu jedem Eigenwert Eigenvektoren an; unter-
suchen Sie , ob die Matrix diagonalisierbar oder trigonalisierbar ist.

w (%) o (2 2)

1 0 0 0 0 1
-3 1 3 (10) 00 0
-1 0 2 0 0 0

(9)

@ (9 4) @ (5 4)
o (53) o (3 7)
3 -1 2 1 0 3
(7) (1 1 -4 (8) 11 -2
1 -1 1 0 0 2

7.3. Sei f : V. — W linear und seien v1, . ..,v; € V. Zeigen Sie: Wenn f(v1),..., f(vk)
linear unabhangig sind, dann auch vy, ..., v.
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7.4. Wenden Sie auf die Vektoren

1 1 0
LI, pof,
0 1

das Schmidtsche Orthonormalisierungsverfahren an (im R® mit dem kanonischen Skalarpro-
dukt).

7.5. Gegeben sei die lineare Abbildung

L2 2 T 21 + =2
FiR HR,(u)H(_%_m).

Geben Sie jeweils eine Basis von Bild f und Ker f an und beschreiben Sie f o f.

. 2 2 X1 3$1—2$2
f'R _)R’ (xz)'_)<4331—3332)’

Beschreiben Sie Bild f, Ker f, fo fund f~'.

7.6. Sei

7.7. Geben Sie jeweils die Matrix A € R?) an, die folgende lineare Abbldung
f : R? — R? beschreibt:

(a) Spiegelung am Nullpunkt
(b) Spiegelung an der reellen Achse
(c) Spiegelung an der Winkelhalbierenden 1 = x2.

78.Sci A= (122 c gD yap = (1 YY) e K@, berechnen Sie die Matrix
a1 a22 0 1
A® — (spA)-A + (detA)-E.

Behandeln Sie mit diesem Ergebnis nochmals Aufgabe 7.6 und Aufgabe 7.7.

7.9.Sei A = (ZH 212> € R®? q15 = ag; es gelte ayx > 0und det A > 0; zeigen
21 (22

Sie: A ist positiv definit.
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Differentialgleichungen

8.1 Der Existenz- und Eindeutigkeitssatz

Wir behandeln zunachst Differentialgleichungen der Form

y/ = f(%y)

und zeigen, dass durch jeden Punkt genau eine Losung geht.Dabei setzt man unter
anderem voraus , dass die Funktion f : D — R mit D C R2 stetig ist; wie in
9.1.7 erklart wird, bedeutet dies, dass zu jedem a € D und jedeme > OQeind > 0
existiert mit | f(z) — f(a)| < e firallez € D mit ||z — a|| < J.

Eine Differentialgleichung 4’ = f(z,y) kann man als Vorgabe eines Richtungs-
feldes interpretieren. In jedem Punkt (x,y) ist eine Richtung f(x,y) vorgegeben;
gesucht wird eine Funktion ¢, deren Graph die durch f gegebene Richtung hat, also
¢ (2) = f(x, o).

In der ersten Abbildung ist das Richtungsfeld zu f(z,y) = y skizziert und die
Losung durch (0, 1), ndmlich p(z) = e%;

die zweiten Abbildung zeigt das Richtungsfeld zu f(z,y) = —y? und die durch
(1,1) gehende Losung o(z) = ! (vgl. Beispiel 8.2.3).

/5

!

A e ———
J A e
J A e

!
i
\
N\
~

NN
N

/

VO LRGN
27/ PN
VO E RN
VO E RN

~7f
~7F 1\

Zunachst soll der Begriff der Losung prazisiert werden.

Definition 8.1.1 Seien I und I’ beliebige Intervalle in R, sei



200 8 Difterentialgleichungen

[IxI =R, (z,y) — f(z,y),

eine Funktion und (xo,yo0) € I x I'. Unter einer Losung der Differentialgleichung
y' = f(x,y) durch (xq,yo) versteht man eine differenzierbare Funktion

o:lwg—bxo+06] =TI
( dabeisei § >0 und [xg — d,z0 + 0] C I), so dass gilt:
o'(x) = f(x,o(x)) fiiralle x € [xg — 6,20 + 6], und (zo) = yo.

Nun fiihren wir die Differentialgleichung auf eine Integralgleichung zuriick.

Satz 8.1.2 Ist f : I x I' — R stetig, so gilt: Eine stetige Funktion o : I — I’ ist
genau dann Losung der Differentialgleichung y' = f(x,y) durch (zo, yo), wenn fiir
alle x € I gilt:

o(x) = yo + / f(t, (1)) dt.

Beweis. Wir wenden den Hauptsatz der Differential- und Integralrechnung an:
(1) Ist ¢ eine Losung durch (xq, yo), so gilt ¢’ () = f(x, p(z)) und daher

[ Ft o) dt = o(z) — (x0) = () — yo.

@) Aus p(e) = yo + | F(t. (1)) dt folgt ¢/ (x) = £, p()) und () = 30.

O
Fiir die weiteren Untersuchungen ist es zweckmassig, nicht nur die Stetigkeit von f
vorauszusetzen, sondern auch noch eine Lipschitz-Bedingung zu fordern (RUDOLF
LipscHITZ (1832-1903)):

Definition 8.1.3 Eine Funktion f : I x I' — R geniigt einer Lipschitz-Bedingung,
wenn es ein L > 0 gibt, so dass fiir alle x € T und y, 3 € I’ gilt:

[f(z,y) = fla, ) < L- [y — 9.

L heifit eine Lipschitz-Konstante zu f. Man sagt, | geniigt lokal einer Lipschitz-
Bedingung, wenn es zu jedem Punkte von I x I' eine Umgebung gibt, in der f einer
Lipschitz-Bedingung geniigt.

In vielen Fillen ist leicht zu sehen, dass % stetig ist (zur Definition vergleiche man
9.2.1). Daher ist folgende Ausssage niitzlich:

Satz 8.1.4 Wenn gi existiert und beschrinkt ist, so geniigt f einer Lipschitz-

Bedingung. Insbesondere geniigt jede Funktion f, die stetig partiell nach der zwei-
ten Variablen y differenzierbar ist, lokal einer Lipschitz-Bedingung.
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Beweis. Nach dem Mittelwertsatz existiert zu z € I, y,§ € I’ ein £ zwischen v, §
mit

o) = £25) = ) (2.6 (- D)

Daraus folgt die Behauptung. a
Nun konnen wir zeigen, dass durch jeden Punkt hochstens eine Losung geht:

Satz 8.1.5 (Eindeutigkeitssatz) Die Funktion f : I x I' — R sei stetig und geniige
lokal einer Lipschitz-Bedingung; ¢ : I — I' und v : I — I’ seien Losungen von
y' = f(x,y) . Es existiere ein xo € I mit p(xg) = ¥(xo) . Dann gilt p(x) = ¥ (x)
fiiralle x € I.

Beweis. Wir zeigen: Ist 2o € [a,b] C I, so gilt o(z) = 9 (z) fir alle z € [a, b]. Wir
zeigen dies fiir xg < x < b; die Aussage fiir a < = < x(y beweist man analog. Es
sei

T :={x € [z0, b]|p(t) = () firalle t € [zg,x]}.

Diese Menge ist wegen xg € T nichtleer und nach oben beschrankt, daher existiert
s :=supT. Weil ¢ und 1) stetig sind, gilt ¢(s) = ¥ (s) =: w. Zu zeigen ist s = b.
Wir nehmen an, es sei s < b. Nun wihlen wir 47 > 0 und € > 0 so, dass gilt: es ist
s+01 < b, f geniigtin [s, s+01] X [w—e,w+e] C I x I’ einer Lipschitzbedingung
mit einer Lipschitz-Konstanten L und |¢(z) — w| < ¢, |¢¥(z) — w| < ¢ fir alle
x € [s,s+ d1]. Dann sei § so gewihlt, dass 0 < § < §; und § < 21L ist. Nun setzen
wir
$ = supf{ip(t) — YOIt € [s,5 + 0]}

Nach 8.1.2 ist

pla) =w+ /f(t»w(t)) dt,  P(x) =w+ /f(t,w(t)) dt.

Fiir z € [s, s + §] gilt dann

e < [ 17 eO)-1te@)l < L [ lpo-vld <15 <.

Daraus folgt S < *2, also S = 0. Das bedeutet, dass ¢ und 1 auf [zg,s + J]

tibereinstimmen; dies widerspricht der Definition von s. O
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Nun beweisen wir den Existenzsatz von Picard-Lindelof (EMILE PICARD (1856-
1941), ERNST LINDELOF (1870-1946)):

Satz 8.1.6 (Existenzsatz von Picard-Lindelof) Sind I, I’ offene Intervalle und ist
f : IxI' — R eine stetige Funktion, die lokal einer Lipschitz-Bedingung geniigt, so
existiert durch jeden Punkt (xo,yo) € I xI' eine Losung der Differentialgleichung
v =flz,y).

Beweis. Wir zeigen, dass es eine stetige Funktion  gibt mit
o) =0+ [ Flt.ote) at.
o

Diese erhalten wir als Grenzwert einer Folge (¢,,). Wir wihlen §; > Ound e > 0
so, dass f in [zg — 01,20+ 1] X [yo — €, yo+¢] C I x I’ einer Lipschitz-Bedingung
mit einer Lipschitz-Konstanten L geniigt. Weil f stetig ist, existiert ein M > 0 mit

|f(z,y)| < M fiir (x,y) € [xo — 61,20 + 1] X [yo — €, 90 + €].

Nun wihlen wir § > 0 so, dass § < d; und § < 7, ist. Auf [z — §, zo + ] definiert
man die Folge ¢, : [z — J, z¢ + 6] — R durch

vo() = yo i
e1(x) :==yo+ [ f(t,eo(t)) dt

Nun zeigen wir durch vollstandige Induktion folgende Aussagen
(n € Ng, z € [xg — 9, 20 + 0]):

(1) |en(z) — yo| < e; daherist f(x, p,(x)) definiert.

Die Behauptung folgt aus

ona(o) — wol < [ It alt)] dt <821 <.

Zo

?2)  |ent1(z) — pn(x)] < (nﬂ‘r/fl)! L™ | — mg |
Der Induktionsanfang ergibt sich aus

lo1(x) = po(@)| = | [ f(t,yo) dt| < M - |z — |-
o
Wir zeigen jetzt den Induktionsschritt von n auf n + 1: Es ist
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far2(@) = @usr @) < [ 1F(E para (1)) = Fltpu()] dt <

SL- Jlonn(®) = en(®l dt < Lo (1), L7 f\t—m L ar

— M Ln+1 |J,‘ _ m0|n+2

- (n+2)!
k o0
Nun schreiben wir ¢, = yo + >, _;(¥n — @n—1). Die Reihe 3 (¢n — ©n—1)
n=1
ist gleichmiBig konvergent, denn Zn 1 i, L™d™ ist eine Majorante. Daher

existiert ¢ := lim ¢,, und ist stetig; aus
n—oo

[f (@, on(2)) = flz, 0(2))] < L-|pn(z) — @()]

folgt, dass auch die Folge (f(x, ¢, (z)))n gleichméBig gegen f(z, p(x)) konver-
giert. Daher darf man Limes und Integration vertauschen:

n—oo

p(a) = lim pn(@) =vo+ im [ F(t.on(®) dt=po+ [ 110

Aus 8.1.2 folgt, dass ¢ eine Losung von ' = f(x,y) durch (xg, yo) ist. O
Bemerkung. Es handelt sich bei dieser Beweismethode um einen Spezialfall eines
Fixpunktsatzes. Man definiert (in einem geeigneten Raum) den Operator 7' durch

(T)(x) = o + / F(t (1)) dt

Wegen 8.1.2 ist ¢ genau dann Losung von y' = f(z,y), wenn T = ¢ ist.
Man sucht also einen Fixpunkt von 7'. Dazu definiert man eine Folge (., ), durch
¢n+1 := Tp,, unter geeigneten Voraussetzungen konvergiert (,,) gegen einen
Fixpunkt ¢.

Aus dem Eindeutigkeitssatz ergibt sich zum Beispiel: Wenn f stetig ist und einer
Lipschitzbedingung geniigt und wenn f(z,0) = 0 fiir alle = gilt, dann ist y = 0
eine Losung von 3y’ = f(x,y) und aus dem Eindeutigkeitssatz folgt: Ist ¢ eine
Losung von y' = f(z,y), und besitzt ¢ eine Nullstelle, so ist ¢ identisch Null.
Jede nichttriviale Losung besitzt keine Nullstelle. Zum Beispiel ist e® Losung von
y' =y, daher besitzt die Exponentialfunktion keine Nullstelle.

Wir bringen zum Existenz- und Eindeutigkeitssatz zwei Beispiele:

Beispiel 8.1.7 (zum Eindeutigkeitssatz.) Wir geben ein Beispiel einer Differen-
tialgleichung 4y’ = f(x,y) an, bei der durch (0,0) mehrere Losungen gehen.
Setzt man f(z,%y) := 3y*/3, so kann man leicht zeigen, dass f keiner Lipschitz-
Bedingung gentigt.Die Differentialgleichung
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y/ — 3y2/3

hat die Losung y = 0, aber auch ¢(z) = 23 ist eine Losung durch (0, 0). Man kann
leicht zeigen, dass es unendlich viele Losungen durch (0, 0) gibt:

Sei a < 0 < b; man definiert ¢ : R — R durch

(x —a)® fir z<a
o(z) = 0 fir a<z<b
(x —b)3 fir b<ax

dann ist ¢ eine Losung dieser Differentialgleichung durch (0, 0).

Beispiel 8.1.8 (zum Existenzsatz.) Nach dem Existenzsatz gibt es durch (zg, yo)
eine Losung von 3’ = f(x,y) , die in einer Umgebung von z definiert ist. Im
allgemeinen gibt es keine Losungen, die in ganz R definiert sind. Dies sieht man an
der Differentialgleichung

y =1+ yz.

Die Funktion f(z,y) = 1 + y? ist im ganzen R? definiert, aber die (eindeutig
bestimmte) Losung durch (0,0) ist ¢(x) = tgz, und diese ist nur auf dem Intervall

] = 7,47 [ definiert.

Wenn man einen Uberblick iiber alle Losungen einer Differentialgleichung haben
will, benotigt man die allgemeine Losung (vgl. [12]); diese ist folgendermassen
definiert:

Definition 8.1.9 Wenn f stetig ist und lokal einer Lipschitz-Bedingung geniigt, so
geht durch jeden Punkt (o, yo) genau eine Losung vony' = f(x,y). Wir bezeich-
nen nun diese Losung mit @(x; xo,yo) ; sie heift die allgemeine Losung. Es ist
also

dx@(w; zo,y0) = f(x, (z; x0,90)), ¢(wo; T0,Y0) = Yo-

Wir erldutern dies an einem einfachen Beispiel: Die Losungen von ¢/ = y sind
y = c- €%, die Losung durch (zg, yo) ergibt sich mit ¢ := yp - €7%°; somit ist die
allgemeine Losung

Zo

o(x; 20,Y0) = Yo - €

8.2 Einige Losungsmethoden

Wir geben folgende Losungsmethoden an:
Trennung der Variablen, Substitution, Variation der Konstanten.

Trennung der Variablen .
Wenn man f darstellen kann als Produkt f(x,y) = g(x) - h(y) mit stetigen Funk-
tionen g, h, dann hat man die Differentialgleichung
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dy
= - h(y).
4 = 9@) - hly)
Man , trennt nun die Variablen und schreibt, falls h(y) # 0 ist, symbolisch
dy
= g(x)dx
)~
Die Gleichung
dy /
= [ g(z)dx
n) ~ ]I

ist dann wieder sinnvoll und bedeutet: Ist H eine Stammfunktion von }1L und G
eine von g, so ist H(y) = G(x); wegen H'(y) = h(ly) # 0 kann man diese
Gleichung lokal nach y auflésen und erhilt eine Losung y = H~!(G(x)).Dass
¢(z) = H-Y(G(x)) eine Losung ist, rechnet man nach:

Esist H(p(x)) = G(z), also H'(¢(z))¢' () = G'(x), somit hf;(('”))) = g(x).

Wir bringen dazu einige Beispiele:

Beispiel 8.2.1 Fiir die Differentialgleichung

dy:

ergibt sich Y

sind also

4r “also In |y| = In |z| + C und daher y = +e® - 2 ; die Losungen

y=cxrmitc € R

und die Losung durch (zg, y0), zo > 0,isty = 'Zg - .
Die allgemeine Losung ist also

Yo
(x5 zo,y0) = ~x, o> 0.
To

Beispiel 8.2.2 Um

/!

X
y=— ,y>0
y

zu 10sen, schreibt man SZ = —; ; Trennung der Variablen ergibt y dy = —x dz,
daraus folgt yy* = — )22 + c und somit y? + 22 = 7% mit r* = 2c, also

y = /r? — a2 fiir [z| < r.
Die allgemeine Losung ist
o(@; x0,y0) = \/v3 + a3 — 22,

sie ist definiert in {(z; z0,90) € R?| yo > 0, |z| < /22 + 32}
Wir gehen in 11.5 nochmals auf diese Differentialgleichung ein.
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Beispiel 8.2.3 Wir behandeln die Differentialgleichung

das zugehorige Richtungsfeld haben wir oben skizziert.

Die Funktion f(x,y) = —y? geniigt lokal einer Lipschitz-Bedingung und daher
geht durch jeden Punkt (z9,10) € R? genau eine Losung. Man hat die triviale
Losung y = 0; daraus folgt, dass alle anderen Losungen keine Nullstelle besitzen.
Trennung der Variablen liefert —y~2dy = dzundy~' = z + c; also y = zi_c mit
ceR.

Die allgemeine Losung ist somit

1

fu 0; ; £9,0) = 0.
z — 20 + (1/30) tir g # (x5 20,0)

<P(1U§ fﬂo,yo) =

Die Funktion z + yist fiir yo < 0in] — 00,20 — . [ definiert und fiir

x*woj(l/ Yo
Yo >0 in]l‘o — ;O,—FOO[.
Auch dieses Beispiel zeigt, dass es nicht notwendig Losungen gibt, die in ganz R
definiert sind, auch wenn f(x, ) in der ganzen Ebene R? definiert ist.

Substitutionsmethode.
In manchen Fillen kann man eine Differentialgleichung durch eine geeignete Sub-
stitution vereinfachen und dann 16sen. Ist etwa

y=f@%

so setzt man v := Y, also y = zv und ¢’ = v + 2v'; dann hat man v + 20" = f(v)

oder
dv _ f(v)—wv

dz x
darauf wendet man Trennung der Variablen an.
Wenn man mit dieser Methode wieder y' = ¥ (z # 0) behandelt, so hat man
v:="Y 9y =wv+ v, alsov+ xv’ = voder zv’ = 0, also ist v = ¢ konstant und
y = cx.

Variation der Konstanten.
Sind g, h : [a, b] — R stetige Funktionen, so heiBt

Y =g(x)-y+ h(z)

eine lineare Differentialgleichung. Die Differentialgleichung 3’ = ¢ - y heiBt die
zugehorige homogene Gleichung. Um sie zu 10sen, wihlt man eine Stammfunktion
G zu ¢ und erhilt alle Losungen in der Form

y=c-e@ miteeR.
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Um eine Losung der inhomogenen Gleichung 4’ = g - y + h zu finden, macht man
den Ansatz

y = c(z) - eG@)
den man als Variation der Konstanten bezeichnet. Man bestimmt die gesuchte Funk-
tion ¢ : [a, b] — R folgendermaBen: Es ist

y' = e + cge€ = gy + 'eC.
Es soll i’ = gy + h sein, also ¢’e® = h oder
¢ =he ¢,

c erhiilt man als Stammfunktion von he ™. Ist §j eine Losung von ' = g -y + h, so
ist

{§ + ce®lc € R}
die Menge aller Losungen von ¢y’ = g-y+h. Es genligt also, eine einzige Losung der
inhomogenen Gleichung zu finden; dann hat man alle Losungen dieser Gleichung.
Die Methode der Variation der Konstanten erlautern wir am Beispiel:

Beispiel 8.2.4 Es sei
y =y -+

Die homogene Gleichung y’ = y hat die Losungen y = ce®. Variation der Kon-
stanten erfolgt durch den Ansatz y = ¢(x)e®, also iy’ = ¢/(z)e® + ¢(x)e”, dies soll
gleich ¢(x)e® + x sein; somit folgt ¢’ (x)e* = x oder
dz)=z-e "

Eine Stammfunktion von ze™* ist ¢(x) = —(x 4+ 1)e~* und eine Losung der inho-
mogenen Gleichung ist somit (—(z + 1)e™*)e® = —(x + 1) . Alle Losungen von
y =y + x sind

ce ™ —x—1, ceR.

Die Methode der Variation der Konstanten erfordert oft langere Rechnungen, denn
man bendtigt zuerst eine Stammfunktion G von g und dann eine von he™¢.

Das Beispiel ¥’ = y + = kann man einfacher behandeln: Man sucht eine Losung
durch den Ansatz y = ax + b mit gewissen a, b € R. Dies fiihrt auf die Gleichung
a = (ax + b) + x; daraus folgt @ = b und @ = —1 und damit erhilt man die Losung

—2 — lund alle Losungen sind —x — 1 4+ ce™".

Wir bringen nun einige Beispiele, bei denen die Variable als Zeit interpretiert wird;
wie Ublich bezeichnen wir sie mit ¢. Die gesuchte Funktion bezeichnet man oft mit

2 = z(t) und fiir die Ableitung schreibt man & := fif.

Beispiel 8.2.5 (Wachstum und Zerfall) Beim einfachsten Modell fiir einen Wachs-
tumsprozess einer Bakterienkultur nimmt man an, dass die Zunahme dx proportio-
nal zur Zahl z(t) der zur Zeit ¢ vorhandenen Bakterien und auch proportional zur
Zeitspanne dt ist. Man setzt also an
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der =axdt
mit einer Wachstumskonstanten a > 0. Dies liefert die Differentialgleichung
T = ax

mit den Losungen x(t) = ce™, ¢ € R, ¢ = x(0). Der Zerfall einer radioaktiven
Substanz wird durch & = —ax mit der Zerfallskonstanten a > 0 beschrieben. Die
Losungen sind z(t) = ce™% mit ¢ = (0). Die Zeit T, zu der die Hilfte der zur
Zeit t = 0 vorhandenden Substanz zerfallen ist, bezeichnet man als Halbwertszeit.

Esistalso ce™*T = ] c oder

Beispiel 8.2.6 (Wachstum und Zuwanderung) Wir nehmen nun an, dass zum
Wachstum mit einer Wachstumskonstanten a > 0 (oder Zerfall fiir ¢ < 0) noch
eine zeitlich konstante Zuwanderung kommt, die durch eine Konstante b > 0 be-
schrieben wird; fiir b < 0 hat man eine Auswanderung. Dies fiihrt auf die Differen-
tialgleichung

T = ax + b;

eine Losung ist die Konstante —Z , alle Losungen sind von der Form —2 + Ce.
Zu vorgegebenem Anfangswert ¢ > 0 ist

b b
pt) == +(c+ e
die Losung mit ¢(0) = c¢. Es ist
. b at
bty =a- (et e

Wir untersuchen den Verlauf von ¢.
Fira > 0, b > 0, also Wachstum und Zuwanderung, ist ¢ streng monoton wach-
send und tlim p(t) = +o0; die Population wichst unbegrenzt.

—00

Falls ¢ < 0 und b < 0 ist (Zerfall und Auswanderung), ist (¢) < 0 und ¢ ist streng
monoton fallend. Die Funktion ¢ hat eine Nullstelle 5 > 0, namlich

b
to = In @ -

a c+ .

Die Population nimmt also standig ab, zum Zeitpunkt ¢ ist sie ausgestorben.
Wenn a, b verschiedene Vorzeichen haben, so kann man nicht ohne genauere Unter-
suchung vorhersagen, ob die Population unbegrenzt wachst oder ausstirbt.

Wir betrachten zuerst den Fall a < 0 und b > 0 (Zerfall und Zuwanderung). Es gilt
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t—oo

lim o(t) = b > 0.
a

Die Population strebt in jedem Fall, unabhangig vom Anfangswert ¢, gegen — Z
Falls ¢ < —2 ist, gilt p(¢) > 0 und ¢ geht monoton wachsend gegen —2. Fiir
2 < cist ¢(t) < 0 und ¢ geht monoton fallend gegen —Z. Fiir ¢ = —Z ist ¢
natlirlich konstant.

Wenn @ > 0 und b < O ist (also Wachstum und Auswanderung), dann gilt fiir
0<e< — Z: Die Funktion ¢ ist streng monoton fallend und besitzt eine Nullstelle
to > 0, die wir oben bereits angegeben haben. Dagegen ist die Funktion ¢ fiir
c> — 2 streng monoton wachsend und flirrolo ©(t) = +oo. Nun héngt das Verhalten

der Population also vom Anfangswert c ab: Fiir ¢ < — Z nimmt sie ab und stirbt aus,
beic = —Z ist sie konstant und fiir ¢ > — Z wachst sie unbegrenzt.

/

a>0,b>0 a<0,b<0 to

///
\

—b/a

a<0,b>0 a>0,b<0 to
| |

Beispiel 8.2.7 (Wachstum bei begrenzter Nahrung) Wir nehmen nun an, dass
eine Bakterienkultur zwar durch Vermehrung anwéchst; sie kann jedoch nicht un-
begrenzt wachsen, da die Nahrung jeweils nur fiir N Bakterien ausreicht. Die Zu-
nahme der Kultur ist dann proportional zur Zahl der vorhandenen Bakterien x, aber
auch zu (N — z) und zur Zeitspanne d¢. Damit hat man den Ansatz

dz = ax(N — ) dt,
der zur Differentialgleichung
& =ax(N — )

fiihrt. Trennung der Variablen liefert
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/x(]\(fiaiw) :a/dt.

Die linke Seite formt man durch Partialbruchzerlegung um:

1 1 1 1

(N —z) :N(N—x—'_as)’

Man erhilt dann fiir 0 < z < N: A (—In(N —2) +Inz) = at + ¢; oder
In y* =a-N-t+c unddamit

x
c — eaNit

N —=x
mit einer Konstanten ¢ > 0. Daraus rechnet man x aus:

N
T 4 cemant”

Diese Funktion ist streng monoton wachsend und es gilt: . lir+n x(t) = N.
——+00

Wiihlt man etwa als Anfangswert 2(0) = 17, soist
B N
T T 14 gemant”
Ne¢e----"-"-"“"-"-"---oo - — —
N/10

8.3 Systeme von Differentialgleichungen
Wir behandeln nun Systeme von Differentialgleichungen; diese sind von der Form

yll = fl('ra Y1, ~-~7y7l)

y’I/’L = fn(xa Y1, 7yn)

Um die Schreibweise zu vereinfachen, filhren wir folgende Bezeichnungen ein:
Es sei U < R™t! offen; die Punkte von U schreiben wir nun in der Form
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(z,91, .-y Yn); auBerdem sei y := (y1,...,Yn), also (z,y1,...,yn) = (z,y). Ei-
ne Abbildung f : U — R™ wird durch n Funktionen fi,..., f,, gegeben, also
f:U—=R" (z,y) — (fi(z,y), ..., fn(z,y)). Das Differentialgleichungssystem
v = fil@,yiy e Yn) ey Yo = fu(x,y1, ..., Yn) kOnnen wir dann in der Form

Y = flz,y)
schreiben.

Definition 8.3.1 Sei U C R"! offen, f : U — R" stetig, ¢ = (c1,...,cn) € R™;
(z0,¢) € U. Eine differenzierbare Abbildung

P [J"O —&,%0 + 6] - an T = ((,01(%‘), e ,(Pn(x)),
heift Losung von ¢/ = f(z,y) durch (zq, ), wenn fiir alle x € [xg — €, zo + €]
gilt:

(1) (z,0(x) €U

2) (@) = flz,01(2) .. on() .0 n(@) = fz,01(2) .0 on(2)),
(3)  pi(wo) =c1,..., pnlz0) =cCn.

Analog zu 8.1.3 definiert man

Definition 8.3.2 FEine Abbildung f : U — R"™ geniigt einer Lipschitz-Bedingung,
wenn ein L > 0 existiert mit

1f(@,y) = flz, gl < L-[ly — gl

fiir alle (z,y), (z,§) € D (Dabei ist ||y|| = \/y3 + ... +y2).
f geniigt lokal einer Lipschitz-Bedingung, wenn es zu jedem Punkt von U eine Um-
gebung U’ C U gibt, in der | einer Lipschitz-Bedingung geniigt.

Ahnlich wie in 8.1.5 und 8.1.6 beweist man:

Satz 8.3.3 (Existenz- und Eindeutigkeitssatz) Es sei U C Rt offen, die Ab-
bildung f : U — R" sei stetig und geniige lokal einer Lipschitz-Bedingung. Dann
existiert durch jeden Punkt (xo,c) € U genau eine Losung ¢ : [xg—e, xo+€] — R™
der Differentialgleichung y' = f(z,y).

Lineare Differentialgleichungssysteme

Es sei I ein offenes Intervall; fiiri,j = 1,...,nseiena;; : I — Rundb; : I — R
stetige Funktionen; setzt man

soist A: I — R, 2 A(z), eine stetige Matrix und b : I — R"™, z — b(z),
ein stetiger Vektor.
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Dann heif3t
Y = A(z)y + b(x)

ein lineares Differentialgleichungssystem; ausfiihrlich geschrieben lautet es:

yp = an(@)yit+ a(@)yet ...+ arn(@)yn+ bi(x)
Yy = a21(2)y1+ ag2(x)ye+ ...+ agn(@)yn+ b2(z)

yr = an1(@)y1+ an2(X)yo+ ...+ ann(T)yn+ bn(z)

Es ist leicht zu zeigen, dass die Funktion A(z)y + b(x) einer Lipschitz-Bedingung
gentigt; somit geht durch jeden Punkt genau eine Losung. Man kann beweisen, dass
in diesem Fall die Losungen auf ganz I existieren. Wir setzen

L(A,b) := {¢: I — R"|yp ist differenzierbar und ¢’ = Ay + b};

L(A,b) ist also die Menge aller Losungen von 3y’ = Ay + b und L(A,0) die
Losungsmenge des zugehorigen homogenen Gleichungssystems y' = Ay. Es gilt:

Satz 8.3.4 L(A,b) ist ein affiner Raum und L(A, 0) der zugehorige Vektorraum.Ist
p € L(A,b), so ist

L(A;b) = o+ L(A,0).

Beweis. Aus ¢ € L(A,b) und ¢v € L(A,0) folgt ¢ + ¢p € L(A,b), und aus
p,p € L(A,b) folgt ¢ — @ € L(A,0). Daraus ergibt sich die Behauptung. O
Nun soll L(A,0) néher untersucht werden. Wir erinnern dazu an den Begriff der
linearen Abhéngigkeit: ¢1,...,0r € L(A,0) heifen linear abhingig, wenn es
(c1y.eyc) #(0,...,0) gibt mit c101 + ... + crpr = 0, also

crp1(z) + ... Feppr(x) =0 firallex € 1.

Elemente ¢, ..., pr € L(A,0) sind linear abhingig in einem Punkt zy € I, wenn
es (c1,-.,cx) # (0, ...,0) gibt mit ¢101 () + ... + crr(xo) = 0.

Das homogene System y’ = A(z)y hat die triviale Losung y = 0, aus dem Eindeu-
tigkeitssatz folgt daher: Ist ¢ € L(A,0) und besitzt ¢ eine Nullstelle, so ist ¢ = 0.
Es gilt der wichtige Satz

Satz 8.3.5 Elemente @1, .., or € L(A,0) sind genau dann linear abhiingig, wenn
sie in einem Punkt xo € I linear abhdngig sind.

Beweis. Es sei 2 € I, (c1,...,ck) # (0,...,0) und c191(z0) + ... + ckpr(zo) = 0.
Wir setzen ¢ := c101 + ... + ckpg; dann ist ¥ € L(A,0) und ¢(z9) = 0. Aus
dem Eindeutigkeitssatz 8.1.5 folgt ¢)(x) = 0 fiir alle x € I und damit folgt die
Behauptung. a

Definition 8.3.6 Eine Basis (1, ..., o) von L(A, 0) bezeichnet man auch als Fun-
damentalsystem zur Differentialgleichung y' = A(z) - y.
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Satz 8.3.7 Der Vektorraum L(A,0) hat die Dimension n. Ein n-Tupel (o1, ..., p,)
von Elementen aus L(A, 0) ist genau dann ein Fundamentalsystem, wenn ein xo € 1
existiert, so dass p1(xq), ..., on(x0) linear unabhdngig (im R™) sind.

Beweis. Es sei 29 € I und (¢1(20), ..., ¥n(20)) eine Basis des R™. Wir zeigen,
dass jedes 1 € L(A,0) eindeutig als Linearkombination der ¢1, ..., ¢, darstellbar
ist. Zu ¥ (x) gibt es nach Voraussetzung genau ein n-Tupel (A1, ..., Ap,) € R™ mit
U(xo) = A1 (x0) + .- + Ann(x0). Aus dem Eindeutigkeitssatz 8.1.5 folgt dann
Y(x) = Me1(z) + ... + Appn(x) fiir alle x € T und damit ist die Behauptung
bewiesen. O

Definition 8.3.8 Es sei (¢1, ..., on) ein n-Tupel aus L(A,0); dann heifit
W = det(p1, ..., on)

die Wronski-Determinante von (o1, ..., ©5,).

Aus 8.3.5 folgt:

Satz 8.3.9 Wenn die Wronski-Determinante W zu (1, ..., ¢r) eine Nullstelle be-
sitzt, dann ist sie identisch Null. (1, ..., vy, ist genau dann ein Fundamentalsystem
wy = A(x)y, wenn W nicht identisch Null ist.

Die Wronski-Determinante geniigt einer Differentialgleichung ( die Spur von A hat-
ten wir definiert durch spA := ai1 + ... + ann ) , s gilt:

Satz 8.3.10 Ist W die Wronski-Determinante eines n-Tupels (1, ..., pr) aus
L(A,0), so gilt:
W' = (spA(z)) - W.

Diese Aussage soll fiir n = 2 bewiesen werden. Es sei

aip a2 ®11 P12
_A = 5 = 5 = .
(021 azz) 1 (@21) 72 (@22)
Wegen @1, 2 € L(A,0) ist ¢; = aj1p1; + aizpa; fiiri, j = 1,2. Daher gilt

W' = (Ph1p22 = P12021) + (P11930 — P12h) =
= (Cl11<,011<,022 + a12(21p22 — a11P12921 — 6124,0229021) +
+(a21<,012<,011 + ag2p22$11 — 2111912 — a22<p21<p12) =
= (a11 + a22)(p11022 — P12021) = (spA) - W.

Somit gilt: Ist S : I — R eine Stammfunktion von sp A , so ist
W=c-e% ceR.

Daraus folgt wieder, dass W entweder keine Nullstelle besitzt oder identisch ver-
schwindet.
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Wir behandeln nun das inhomogene System
y' = A(z)y + b(z).
Iste : I — R” eine (,,spezielle”) Losung davon, so ist nach 8.3.4
L(A,b) =4+ L(A,0).

Wenn (i1, ..., ¢, ) ein Fundamentalsystem zu ' = A(x)y ist, so kann man jede
Losung des inhomogenen Systems darstellen in der Form

Y+ 11+ .o+ Cnn,

dabei sind die Konstanten cy, ..., ¢,, € R eindeutig bestimmt. Wir definieren nun die
Matrix
¢ = (@h ) QOH)a

dannist ¢’ = (¢, ...,¢)) , ¢ =A-dundcip1 + ... + cpiop = ¢ - cmitc € R™.
Eine Losung % der inhomogenen Gleichung kann man wieder durch Variation der
Konstanten finden. Mit einer differenzierbaren Abbildung ¢ : I — R™ hat man den
Ansatz = ¢ -c. Setztman)' = ¢’ -c+ ¢ =A-¢pc+¢- =AY+ ¢-C.
Daraus folgt ¢ - ¢’ = b oder

daraus kann man ¢ berechnen.

Lineare Differentialgleichgungssysteme mit konstanten Koeffizienten
Nun behandeln wir den Spezialfall, dass A konstant ist, also A € R(M™") Man
rechnet leicht nach:

Satz 8.3.11 Ist \ ein Eigenwert von A € R("™ und v € R™ ein Eigenvektor zu ),

S0 ist

©:R—=R" z— e 0,

eine Losung von y' = Ay.

Beweis. Aus Av = \v folgt (e’*v)’ = e\ = M Av = A(eMv). O
Wenn man eine Basis des R™ hat, die aus Eigenvektoren von A besteht, so gilt:

Satz 8.3.12 Ist (vy, ..., vy,) eine Basis des R™, die aus Eigenvektoren von A besteht
und sind A1, ..., A, die zugehorigen Eigenwerte, so ist

(e/\lzvla R e)\nIUn)

ein Fundamentalsystemzu y' = A - y.

Beweis. Fiir j = 1, ..., n seien die Abbildungen ¢; definiert durch

;R —=R" 2 %,
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zu zeigen ist, dass (1, ..., ¢y, ) ein Fundamentalsystem ist. Nach 10.4.8 sind die ¢;
Losungen von y' = Ay. Es ist ;(0) = v;, daher sind ¢1(0), ..., ¥, (0) und nach
10.4.2 auch ¢, ..., @, linear unabhéangig. O
Einen anderen Zugang zu diesen Aussagen erhalt man, wenn man die Losungen von
y' = Ayund y' = (T~1AT)y vergleicht:

Satz 8.3.13 Es seien A, T € R die Matrix T sei invertierbar, dann gilt:
Wenn 1) eine Losung von y' = (T~ AT )y ist,
dann ist T eine Losung von y' = Ay.

Beweis. Sei ¢ := T; danniist ¢’ = T’ = T(T AT )y = AT = Aep. ]
Diese Aussage liefert folgende Methode: Um 4 = Ay zu 16sen, geht man zu einer
,einfacheren* Matrix T~*AT iiber und 16st y' = (T~'AT)y. Mit jeder Losung
1) dieser Gleichung erhilt man eine Losung von 3’ = Ay, namlich 7). Unter ei-
ner ,.einfacheren “ Matrix kann man etwa eine Diagonalmatrix oder Dreiecksmatrix
verstehen. In 7.10.8 wurde gezeigt, dass jede symmetrische Matrix diagonalisierbar
ist. Wenn man komplexe Matrizen zulalit, so ist nach 7.8.20 jede Matrix zu einer
Dreiecksmatrix ahnlich.

Falls A diagonalisierbar ist, existiert ein 7" mit

A1 0
T 'AT =
0 An
Die Gleichung 3y’ = T~1 ATy ist dann
Vi =My, Yo =Aayz, e » Yn = AnYn.
Ein Fundamentalsystem ist
(€M eq, ..., M7 ey).

Nach 8.3.13 sind dann e*i? - t;, Losungen von ¢y’ = Ay; dabei ist ¢; der j-te Spal-
tenvektor von 7" und ¢; ist Eigenvektor von A; damit hat man wieder 8.3.12.

Falls T—' AT eine Dreiecksmatrix ist, 16st man die Gleichungen ,,von unten nach
oben®. Wir erlautern dies fiir n = 2. Es sei also

T=1AT = air a2
0 axn)/’
dann hat man die Differentialgleichung

Yl = a11y1 + a2y,
?Jé a22Y2-

Die Losungen der 2. Gleichung sind ¢ - €%?? mit ¢ € R; dies setzt man in die 1.
Gleichung ein und 16st die inhomogene Gleichung
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!
Y1 = a11y1 + arpce*?”.

Wir bringen noch einige Beispiele. Dabei bezeichnen wir die Variable mit ¢, die

gesuchten Funktionen mit x(t), y(¢) und die Ableitung mit & := 7.

Beispiel 8.3.14 Gegeben seien zwei Bakterienkulturen, die sich gegenseitig bekampfen.
Die Anzahl der Bakterien zum Zeitpunkt ¢ sei x(t) bzw. y(t). Die , Kampfkraft”
wird ausgedriickt durch positive Konstante, die wir in der Form a2, b*> mit a, b € R,

a # 0, b # 0, schreiben. Dann hat man ein Differentialgleichungssystem

T = _a2y7
j = —bz;

() m o (57)

Die Eigenwerte von A sind a - b und —a - b; ein Eigenvektor zu a - b ist (j)“) und ein
Eigenvektor zu —a - b ist (‘;) Nach Satz 8.3.12 ist

(G G)e)

ein Fundamentalsystem. Nun seien positive Anfangswerte A, B vorgegeben; die
Losung mit 2(0) = A und y(0) = B ist dann

also

z(t) = aDe®t + aCe~abt
y(t) = —bDe®t 4 pCe—abt

1/A B 1/A B
C = D = —
2 (a T ) ’ 2 (a b)
gesetzt. Wir unterscheiden nun die Falle D > O und D = 0. Fir D > 0, also
A > Bistz(t) > 0 fiir alle t > 0; dagegen besitzt y(t) eine Nullstelle ¢, > 0,

a
namlich

dabei haben wir

Die zweite Population y(¢) ist also zum Zeitpunkt ¢, ausgestorben. Aus der Diffe-
rentialgleichung folgt #(t9) = 0; die erste Population x(¢) besitzt in ¢y ein Mini-
mum. Bei unserer Interpretation ist es nicht sinnvoll, den Verlauf fiir ¢ > ¢, also
y(t) < 0, zu betrachten.

Den Fall D < 0 konnen wir durch Vertauschung der beiden Funktionen auf den
ersten Fall zurtickfiihren.

Nun sei D = 0, also ‘;‘ = ]}f = (. Dann ist

z(t) = A-e
y(t) =B-c "
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die beiden Populationen sterben nie aus, gehen aber monoton fallend gegen 0; der
Quotient ng; ist konstant.
Beispiel 8.3.15 Wie im vorhergehenden Beispiel betrachten wir zwei Populationen
x(t) und y(t), die sich gegenseitig bekdmpfen; auBerdem nehmen wir an, dass noch
Vermehrung (oder Zerfall) vorliegt. Wir haben dann ein Differentialgleichungssy-
stem

= azr — by

y=—bxr + cy

Die Konstanten a und c interpretieren wir als Wachstum (oder Zerfall) der Populati-
on x bzw. y; die Konstante b > 0 wird als Intensitit des gegenseitigen Bekampfens
aufgefafit. Wir nehmen jeweils gleiche ,,Kampfkraft“ an, nicht nur wegen der Chan-

a—b
-b ¢
erhalten. Nach 7.10.8 besitzt A reelle Eigenwerte und es gibt eine Orthonormalbasis
von Eigenvektoren. Die Eigenwerte sind

cengleichheit, sondern vor allem, um eine symmetrische Matrix A = zZu

a+c+/(a—c)?+4b2

2
Wir behandeln als erstes Beispiel
T = bHxr—2y
y=—2x+ 2y

Die Eigenwerte sind 6 und 1; ein Eigenvektor zu 6 ist (), einer zu 1 ist (})und
man erhalt die Losungen

z(t) = —2c1e% + el
y(t) = 165 + 2cqet

Wihlt man gleiche Anfangswerte, etwa 2:(0) = y(0) = 5, so ist

z(t) = 2e% + et
y(t) = —ebt + 6et

Die erste Population wichst unbegrenzt, die zweite stirbt zum Zeitpunkt ¢y = é In6
aus. Dieses Ergebnis war zu erwarten: Bei gleichen Anfangswerten ist die erste Po-
pulation, die den grosseren Wachstumsfaktor hat, liberlegen. Gibt man der zweiten
Population einen hinreichend grossen Startvorteil, etwa z(0) = 2 und y(0) = 9, so
ergibt sich

x(t) = —2e5 + 4et

y(t) = % + 8et

Nun stirbt die erste Population bei ty = é In 2 aus.
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8.4 Differentialgleichungen hoherer Ordnung

Wir behandeln nun Differentialgleichungen n-ter Ordnung, n > 2, von der Form

y™ = fla,y, 9y y™ D).

Diese lassen sich zuriickfiihren auf ein System von n Differentialgleichungen 1.
Ordnung. Setzt man namlich

=y, =y ..., ya=y"Y,
SO ist
y(n) = f('r’ y? y/’ ) y(nil))

aquivalent zu

Y1 = Y2,

Yo = Y3,

!
Yn—1 = Yn,

y’I/’L = f($>y17y27~~;yn)~

Der Existenz- und Eindeutigkeitssatz 8.3.3 fiir Differentialgleichungssysteme liefert
damit eine entsprechende Aussage fiir Differentialgleichungen hoherer Ordnung.
Wir stellen nun die Definitionen und Satze zusammen.

Definition 8.4.1 Sei U C R"*™! offen, f : U — R eine stetige Funktion und
(z0,c0,C1,--+,Cn_1) € U.
Eine n-mal differenzierbare Funktion ¢ : [xg — 0, ¢ + 6] — R heif3t Losung von

(n) (nfl))

y :f('r’y7y/""’y

durch (xg,co,¢1,...,cn—1), wenn fiir alle © € [xg — 6,20 + 9] gilt:

(1) (z,0(),...,o" V(z)) €U,
2) oM(z) = flz,0(x),¢ (@),...,0""D(z)),
(3)  p(xo) =co, ¢ (w0)=c1, ..., " V(20)=cn1.

Satz 8.4.2 (Existenz- und Eindeutigkeitssatz)Sei U C R"™!' offen; wenn die
Funktion f : U — R stetig ist und lokal einer Lipschitz-Bedingung geniigt,
dann existiert durch jeden Punkt (xo,co,...,cn—1) € U genau eine Losung der
Differentialgleichung y™ = f(z,y,%/,...,y™ ).

Wir erlautern den Fall n = 2, also
v = f(x,y,9).

Diese Differentialgleichung ist aquivalent zum System 1. Ordnung
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i =2,
Yo = f(z,y1,2);

das heiBt: Ist ¢ eine Losung von y” = f(z,y,y’), so ist (%) eine Losung des

!
Systems. Ist umgekehrt (i;) eine Losung des Systems, so 10st (1 die Differential-

gleichung y" = f(z,y,y").
Lineare Differentialgleichungen n-ter Ordnung mit Koeffizienten ay, ..., a,—1, b,
die auf einem Intervall [ stetig sind, schreiben wir in der Form

y(") + an_l(x)y(”fl) +...+a(x)y + ag(x)y = b(x).

Die Losungen sind wieder auf ganz I definiert sind; es gilt:

Satz 8.4.3 Sind aq,...,an_1,b : I — R stetig, so existiert zu o € I und
(coy .oy Cn—1) € R™ genau eine Losung ¢ : I — R von

y(") +an_1(x)y" .. Fag(x)y = b(x)

mit p(z0) = co, ' (x0) = c1, ..., "D (20) = ¢n_1. Die Menge aller Losungen
der homogenen Gleichung

y(") + an,l(a:)y(”*l) +...F+ap(x)y=0

ist ein n-dimensionaler Vektorraum.

Analog zu 8.3.8 definiert man: Sind ¢, ..., ¢, Losungen der homogenen Gleichung,
so heift

®1, ceey Pn
/ /
we=|T
n—1 n—1
. NN b
die Wronski-Determinante. Wenn W eine Nullstelle hat, dann ist W = 0. Losungen
©1, ..., pn sind genau dann linear unabhangig, also ein Fundamentalsystem, wenn
W £ 0 ist.

Lineare Differentialgleichungen n-ter Ordnung mit konstanten Koeffizienten

Wir behandeln nun Differentialgleichungen n-ter Ordnung mit konstanten Koeffizi-
enten ag, ..., a,—1; die Losungen sind nun auf ganz R definiert.
Zunachst versuchen wir mit elementaren Mitteln, Losungen von

Y™ + a1y Y 4+ agy =0

zu finden. Wir machen den Ansatz y = e die k-te Ableitung dieser Funktion ist
MreA® und somit erhalten wir
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(A" + D Lt SIS E R R ao)e)“” =0.

Ist also A eine Nullstelle des Polynoms p(t) := "™ + p_1t" Y+ ... +ait+ao, s0
ist e* eine Losung der Differentialgleichung. Nun taucht folgendes Problem auf:
Wenn p merhfache Nullstellen hat, dann erhalt man auf diese Weise weniger als n
Losungen, also kein Fundamentalsystem.

Zur weiteren Behandlung ist es zweckmaBig, den Begriff des (linearen) Differen-
tialoperators einzufiihren. Wir schreiben

d dn
D = D" .=
dz’ dan’

und fiir ein Polynom
p(t) =t" + an_1t" P+ ...+ ait+ao

setzen wir
L:=pD)=D"4a, D" ' 4+...+a1D + ayp.

Dann heifit L ein (linearer) Differentialoperator. Fiir eine beliebig oft differenzier-
bare Funktion f ist

Df=f, Df=f" L()=f"tanaf"V 4 taf +aof;
die Differentialgleichung

y™ +a,_1y™ Y 4y +agy =0, an-1,...a9 € R
kann man dann in der Form

Ly =0mit L = p(D)

n
schreiben. Zum Polynom p/(t) = kapt*~', a, = 1, gehort der Differentialope-

k=1
rator

Ly :=p'(D), also Liy=ny™ Y+ n-Dan_1y" 2 +...+ay.

Wir zeigen:

Satz 8.4.4 Ist f : R — R beliebig oft differenzierbar; so gilt:

Li(f) = L(zf) — xL(f).

Beweis. Mit x f ist die Funktion x — z f(z) gemeint. Es ist (zf)" = f + zf’ und
(zf)" =2f + xf"; allgemein gilt fiir k € N:

(xf)(k) = kfmD o),

Daraus folgt (a,, = 1) :
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n n

L(zf) = Zak(l"f)(k) = Zak(kf(kfl) +af®) = Li(f) + 2L(f).

k=0 k=0

Nun ergibt sich
Satz 8.4.5 Es sei \ eine r-fache Nullstelle des Polynoms

p(t) =t"+ n_1t" . 4 art+ ao;
dann sind die Funktionen

e)\ac7 x_e)\ac7 71'7"_16)‘36

Lisungen der Differentialgleichung y™ + an_1y™ Y + ... + agy = 0.

Beweis. Wir setzen L := p(D) und L := p'(D); auBerdem sei f(z) = e*. Dann
ist

L(e*) = Zak/\ke)‘x =p(\) - e,
k=0
Wenn ) eine Nullstelle von p ist, folgt L(e**) = 0. Falls A zweifache Nullstelle von
pist, gilt auch p’(\) = 0, daher L (e**) = Ound es folgt
L(ze*®) = L1(e*) + 2L(e*®) = 0.

Bei einer dreifachen Nullstelle betrachtet man p’(D) an Stelle von p(D). Auf diese
Weise erhalt man die Behauptung. O
Allgemein gilt:

Satz 8.4.6 Esseip(t) =t" +a, 1t" ' +...+ag und L := p(D). Mit paarweise
verschiedenen \1, ..., A\, gelte

PE) = (t = AD)™ oo (= Am)"

Dann bilden die folgenden Funktionen ein Fundamentalsystem zu Ly = 0 :

Lineare Differentialgleichungen 2. Ordnung mit konstanten Koeffizienten

Beispiel 8.4.7 Wir behandeln nun noch lineare Differentialgleichungen 2. Ordnung
mit konstanten Koeffizienten; diese schreiben wir nun in der Form

y" + 2ay’ + by = 0.
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Diese Differentialgleichung bezeichnet man als Schwingungsgleichung. Sie be-
schreibt die Bewegung eines Korpers der Masse 1, der an einer elastischen Feder
befestigt ist; die riicktreibende Kraft ist by, dabei ist y(x) die Entfernung von der
Ruhelage zur Zeit x. Die Reibung ist proportional zur Geschwindigkeit, also —2ay’.
Wir nehmen nun an, daf

a>0undb >0

ist. Das Polynom p(t) := t? + 2at + b hat die Nullstellen
A1 :—a+\/a2—b, )\gz—a—\/a2—b.

Es gilt: Fiir a? # b ist

ist. Falls a? > b ist (,,groBe Reibung), sind A1, Ao reell und negativ, alle Losungen

c1eM7 4 c0e™% ) ¢y e €R
gehen gegen Null. Fiir a? = bsind

(c1 + com)e™ " ¢1,c0 € R,
die Losungen, die ebenfalls gegen Null gehen. Wenn a? < b ist (,kleine** Reibung),
dann setzt man w := v/b — a2; dannsind \; = —a+iwund Ao = —a —iw komplex
und man hat zunachst komplexwertige Losungen

e_“z(cleiwx + cze_i‘“), c1,co € C.

Real- und Imaginarteil davon sind ebenfalls Losungen. Wegen der Eulerschen For-
mel e™® = coswz + i sinwz sind dann die reellen Losungen

“¥(¢1 - coswx + cosinwr), cq, co € R.

e
Wir konnen (cy, c2) # (0,0) annehmen und setzen r := \/c? 4 c3. Wegen
sin(z + ¥) = coszsin ¥ + sinx cos ¥
kann man 9 so wihlen, dass gilt:
€1 - CoSwWT + ¢o - sinwzx =71 - sinw(x + 9).

Fiir a® < b sind also alle reellen Losungen von der Form

r-e . sinw(z+9) mitr >0, 9 € R.
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Dies stellt fiir 0 < a < /b eine gedimpfte Schwingung dar, dle Amphtude geht

unter dem EinfluB der Reibung gegen 0. Die Wellenlinge ist 7 = \/b "2 Fur

a = 0 ist die Schwingung ungedampft und die Wellenlange glelch T
Wir geben noch die Losung ¢ von 3" + 2ay’ + b = 0 an mit

e(0)=1, ¢'(0)=0

fir a® > b ist  @(z) =, (u-e’ +v-e"7)
mit w:=+vVa2—b ui=w+a, vi=w—a
fir a> =10 ist @(z) = (1+ax)-e %

fir a> <b ist @(z) =e . (coswz + °sinwz) mit w:=vb— a?

Beispiel 8.4.8 (Schwingung eines Pendels) Wir behandeln die Schwingung eines
Pendels mit der Masse m , die an einem Faden der Lange ! hangt und beschrei-
ben die Bewegung durch den Auslenkungswinkel ¢(t) als Funktion der Zeit ¢. Die
Komponente der an m angreifenden Schwerkraft in Richtung der Bahntangente ist
m - g - sin (; dabei ist g die Gravitationskonstante. Der Weg ist [, die Beschleuni-
gung ist also /- ¥ und man erhalt die Gleichung

d2

ml dt;p + mgsing = 0.

Diese Gleichung kann mit elementaren Methoden nicht gelost werden. Wir behan-
deln sie noch einmal in Beispiel 11.5.8. Man nimmt nun an, dass die Auslenkung ¢
so klein ist, dass man sin ¢ durch ¢ ersetzen kann. Damit erhélt man

¢ g

a T =Y

Wihlt man als Anfangsbedingung ¢(0) = €; ¢(0) = 0, so ist die Losung

g

p(t) =¢c-cosw-t mit w:\/l

und die Schwingungsdauerist 7' = 27r\/é.
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Beispiel 8.4.9 (Gekoppelte Pendel) Wir behandeln nun die Schwingung von ge-
koppelten Pendeln: wir betrachten zwei Pendel mit gleicher Masse m und gleicher
Lange [, die durch eine Feder miteinander verbunden sind.

Im Experiment kann man folgendes beobachten: Zur Zeit ¢ = 0 seien beide Pendel
in der Ruhelage ; versetzt man nun das erst Pendel in eine Schwingung, dann beginnt
auch das zweite Pendel, zuerst mit kleiner Amplitude, zu schwingen. Beim ersten
Pendel wird die Amplitude immer kleiner, bis es ruht; die Amplitude bein zweiten
Pendel wird grosser. Dann wiederholt sich der Vorgang in umgekehrter Richtung.
Die Auslenkungswinkel zur Zeit ¢ bezeichnen wir mit ¢4 (¢) und 4 (¢); die Kon-
stante k gibt die Federkraft an.

Wenn wir wieder sin ¢ durch ¢ ersetzen, erhalten wir nun die ,,gekoppelten Glei-
chungen

o1 = =901 + 5 (p2— 1)

Go = =902 — K (p2—p1)
Mit L

g
a.—l, b:= i

ergibt sich

p1 = —(a+b) o1 + b2

P2 = bogr — (a+b) w2’
Die Matrix

—a—0b b
A_< b —a—b>

hat das charakteristische Polynom ist

xa(\) = (A +a+b)* —b* die Eigenwerte sind A\ = —a; Ay = —a — 2b.

Ein Eigenvektor zu —a ist (}), ein Eigenvektor zu —a — 2b ist (711) ; die daraus

gebildete Transformationsmatrix ist 7' = <1 _i) und 771 = % <1 _}) .

Setzt man (wl) = Tfl(z‘; ), also

1
P2 2

1 1
(%01 + %02)7 ¢2 = 2(901 - %02)a

=,
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so erhalt man die ,,entkoppelten “Differentialgleichungen

P =

Yy = A2tha

Daraus ergibt sich mit
wi = +Va, ws:=+Va+2b

die Losung

Y1 = cisinwit + cocoswat

Yo = ¢1sinwit + ¢ coswat
Aus @1 = Y1 + Y2, wa = Y1 — o erhalt man dann @1, @s.
Wir geben nun folgende Anfangsbedingungen vor:

©1(0) =2, ¢1(0) =0, 2(0) =0, ¢¥2(0)=0.

Die Losung dazu ist
= coswit + coswot
= coswit — sinwst

/g /g 2k
M_%’ ”_%+mr

Wie in Beispiel 4.3.10 setzen wir nun

S
[y
—
~
= =

mit

1
w = 2(w1 +wy), U= 2(w1 — wa),

dann ist die Losung
p1(t) = 2coswt - cosVt
pa(t) = —2sinwt - sindt.

225

Wenn die Federkraft & klein ist, hat man wieder wie in Beispiel 4.3.10 eine Schwe-
bung: Das erste Pendel schwingt zur Zeit ¢ = 0 mit Amplitude 2, wahrend das
zweite ruht; dann wird die Amplitude des ersten Pendels kleiner und die des zwei-
ten nimmt zu; zur Zeit ¢t = 2’;9 hat das zweite Pendel maximale Amplitude 2 und

das erste ruht.

©1 4
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Aufgaben

8.1. Berechnen Sie die allgemeine Losung von ' =y +z — 1.
8.2. Geben Sie die Losung von y' =y + ° mity(1) = 1 an.
8.3. Geben Sie die allgemeine Losung von y' = y +e® an.
8.4. Bestimmen Sie die allgemeine Losung von 3" = 2 + 1.

8.5. Bakterien vermehren sich gemiss dy = aydt, dabei ist y(¢) die Anzahl der Bak-
terien zur Zeit ¢. Zur Bekampfung der Bakterien wird ausserdem ein Giftstoff zugefiihrt;
die dadurch verursachte Abnahme der Bakterienzahl sei proportional y und zu t; also

dy = —btydt. Insgesamt ist also dy = aydt — btydt. Damit ergibt sich die Differenti-
algleichung
dy
= — bty;
dt ay Y;

dabei sind a, b positive reelle Zahlen. Nun sei ¢ > 0; geben Sie die Losung mit y(0) = c an
und beschreiben Sie deren Verlauf fiir £ > 0. Wachsen die Bakterien unbegrenzt oder sterben
Sie zu einem Zeitpunkt ¢* > 0 aus ?

8.6. Losen Sie y” + Ty’ + 12y = 0.

8.7. Losen Sie y” + 2y' + 5y = 0.

8.8. Losen Sie y” + 4y’ + 4y = 0.

8.9. Losen Sie
yi =—y — 3V3y
vh = =3V3y1 + 5y

8.10. Losen Sie

v = (1+ 3V3)y + 3 Y2
vo =  —sy; + (1=13V3)pe
Hinweis: Bestimmen Sie fiir die zugehorige Matrix A einen Eigenvektor ¢; mit ||¢1| = 1;

geben Sie dann eine orthogonale Matrix 7" an, deren erste Spalte ¢; ist. Berechnen Sie nun
die Dreiecksmatrix 7' AT



9

Differentialrechnung im R"

9.1 Metrische Riaume

Im néchsten Abschnitt untersuchen wir Funktionen f(z1, ..., z,) vonn reellen Va-
riablen x1, . .., x,; diese sind in Teilmengen des R definiert. Daher benotigen wir
die topologischen Grundbegriffe fiir den R” ; darunter versteht man vor allem die
Begriffe Umgebung und offene Menge, ausserdem soll die Konvergenz von Folgen
im R™ und die Stetigkeit von Funktionen im R™ behandelt werden.

Dabei stellt sich die Frage, ob der Satz von Bolzano-Weierstrass, dass jede be-
schrankte Folge in R eine konvergente Teilfolge besitzt, auch im R™ gilt. Bei steti-
gen Funktionen f auf abgeschlossenen Intervallen [a, b] C R hat man die Aussagen,
dass f Maximum und Minimum annimmt und gleichmassig stetig ist. Wie lasst sich
dies auf Funktionen im R"™ iibertragen?

Wir behandeln diese Fragen allgemein fiir metrische Rdume, damit konnen wir die-
se Aussagen auch auf normierte Vektorraume, insbesondere Banach- und Hilbert-
raume, anwenden.

Definition 9.1.1 (Metrischer Raum) Unter einer Metrik d auf einer Menge X
versteht man eine Abbildung

d: X xX—R

mit folgenden Eigenschaften:

(1) d(z,y) = d(y,x)  firz,ye X

(2) d(x,2) < d(x,y) +d(y,2)  firz,y,z€X

(3) d(z,y) =0 gilt genau dann, wenn © =y ist.

Das Paar (X, d) heiffit dann metrischer Raum, wir schreiben kurz X statt (X, d).

Ist (X, d) ein metrischer Raum , Y eine beliebige Teilmenge von X und definiert
man dy (z,y) := d(z,y) fir z,y € Y, so ist (Y, dy ) wieder ein metrischer Raum;
man kann also jede Teilmenge eines metrischen Raumes wieder als metrischen
Raum, versehen mit der induzierten Metrik, auffassen.
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Beispiel 9.1.2 Im R™ haben wir fir x = (21, ...,2,), ¥y = (Y1,..,Yn) € R™ das
kanonische Skalarprodukt

(z,y) =o'y = 2191 + .. + Tpyn

und die Norm
loll = V(@) = Ja? + .. 22,

Damit definiert man die ,,euklidische “Metrik

d(z,y) =z —yll = V(@1 — y1)% + . + (20 — yn)%.

Wir denken uns R™ immer mit dieser Metrik versehen.
Allgemein gilt: Ist (V|| ||) ein normierter Vektorraum iiber R oder C, so definiert
man durch

d(z,y) = ||z — y|
eine Metrik in V.

Umgebungen, offene Mengen
Es sei X immer ein metrischer Raum; wir definieren nun die topologischen Grund-
begriffe Umgebung, offene und abgeschlossene Menge:

Definition 9.1.3 Istp € X undr € R, r > 0, so setzen wir

U,(p) :={z € X|d(z,p) <r}.

Nun sei p € X, eine Menge V. C X heifst Umgebung von p, wenn ein r > 0
existiert mit U, (p) C V.

Eine Teilmenge W C X heifit offen, wenn zu jedem v € X ein r > 0 existiert mit
U-(z) CW.

Eine Menge A C X heifit abgeschlossen, wenn X\ A := {z € X| x & A} offen
ist; zu jedem p ¢ A existiert also einr > 0 mit ANU,(p) = 0.

Ist M C X eine beliebige Menge, so heifit die Vereinigung aller offenen Mengen

W mit W C M der offene Kern von M, man bezeichnet ihn mit ]\(;[ . Dies ist also
die grosste offene Menge, die in M enthalten ist. Es gilt:

M= {p € X|esgibteinr > 0 mit U,(p) C M}.

Fur M C X heiBt der Durchschnitt aller abgeschlossenen Mengen A mit M C A
die abgeschlossene Hiille von M ; sie wird mit M bezeichnet. M ist die kleinste
abgeschlossene Menge, die M enthalt. Es gilt:

M = {p € X|fiiralle r > 0ist U,(p) N M # 0}.
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Ist M C X , so heifit p € X Randpunkt von M, wenn fiir jedes r > 0 gilt:
UpNM=#0 und  U.(p)N(X\M) # 0.

In jeder Umgebung eines Randpunktes von M liegen also Punkte, die zu M gehoren
und Punkte, die nicht zu M gehoren. Die Menge aller Randpunkte von M bezeich-
net man mit O M.
Es gilt

M= M\OM, M = MUOM.
Eine Menge M C X heiflit dicht in X, wenn M = X ist.

Konvergenz, Stetigkeit
Nun tibertragen wir die Begriffe ,,Konvergenz “und ,,Stetigkeit “:

Definition 9.1.4 (Cauchy-Folge, Konvergenz) Eine Folge (xi)i, x, € X, heifst
konvergent gegen p € X, wenn zu jedem € > 0 ein Index N(g) existiert mit
d(xy,p) < efiirk > N(e). Man schreibt dann klim xp = p.

Eine Folge (x1)1 in X heifit Cauchy-Folge, wenn es zu jedem € > 0 ein N () gibt
mit d(xg, x;) < € fiirk,l > N(e).

Aus der Definition der abgeschlossenen Menge folgt unmittelbar:

Hilfssatz 9.1.5 Ist A C X abgeschlossen und ist (z) eine Folge in A, die gegen
einp € X konvergiert, so folgt p € A.

Weiter gilt:

Hilfssatz 9.1.6 Wenn M C X dicht in X ist, dann existiert zu jedem p € X eine
Folge (x) in M, die gegen p konvergiert.

Definition 9.1.7 (Stetigkeit, gleichméssige Stetigkeit) Seien (X, dx ) und (Y, dy)
metrische Rdaume. Eine Abbildung f : X — Y heifitin p € X stetig, wenn es
zu jedem ¢ > 0 ein 6 > 0 gibt, so dass fiir alle v € X mit dx(z,p) < ¢ gilt:

dy (f(z), f(p)) <e.
[ heifit stetig, wenn f in jedem Punkt p € X stetig ist.
f heift gleichmiissig stetig, wenn es zu jedem ¢ > 0 ein 6 > 0 gibt, so dass fiir alle

x,y € X mitdx(z,y) <9 gilt: dy (f(z), f(y)) < e.

Nun beweisen wir, dass f genau dann stetig ist, wenn das Urbild jeder offenen
Menge wieder offen ist:

Satz 9.1.8 (Charakterisierung der Stetigkeit) Eine Abbildung f : X — Y ist
genau dann stetig, wenn gilt: Ist W C Y eine offene Menge, so ist auch das Urbild

7 (W) = {2 € X| f(z) € W} offen.



230 9 Differentialrechnung im R™

-1
Beweis. Sei f stetigund W C Y offen. Istdannp € f (W), soistq := f(p) € W,
weil W offen ist, existiert ein ¢ > 0 mit U.(q) C W. Wegen der Stetigkeit von f

-1
gibt es ein 6 > 0 mit f(Us(p)) C U:(q) C W. Daher ist Us(p) C f (W) und

-1
damit ist gezeigt, dass f (W) offen ist.
Nun sei das Urbild jeder offenen Menge W C Y offen. Istdannp € X und e > 0,

-1 -1
so ist W := U.(f(p)) offen und daher auch f (W). Wegen p € f (W) existiert

—1

ein & > 0 mit Us(p) C f (W). Daraus folgt f(Us(p)) C Us(f(q)) und damit ist
die Stetigkeit von f in p gezeigt. a
Durch Ubergang zum Komplement erhilt man eine analoge Charakterisierung der
Stetigkeit durch abgeschlossene Mengen:

Satz 9.1.9 Eine Abbildung f : X — Y ist genau dann stetig, wenn gilt: Ist A C'Y
~1
abgeschlossen , so ist auch f (A) ={x € X| f(z) € A} abgeschlossen.

Daraus ergibt sich: Ist f : X — R eine stetige Funktion, so ist das Nullstellengebil-
de {x € X| f(x) = 0} abgeschlossen; etwas allgemeiner :

~1
Fiir jedes ¢ € R ist die Niveaumenge N, := f (¢) = {x € X| f(x) = c} abge-
schlossen.

Definition 9.1.10 Eine bijektive Abbildung f : X — Y metrischer Rdume heifit
topologische Abbildung oder Homéomorphismus , wenn f und f~" stetig sind.

Kompaktheit

Definition 9.1.11 FEine Teilmenge K eines metrischen Raumes X heif3st kompakt,
wenn gilt: Ist J eine Indexmenge und sind U; C X offene Mengen, j  J, mit
K C U,es Uy, so gibt es endlich viele Indizes ju, .., jx € J mit K C Uj, U...UUj,.

Kurz formuliert man dies so: Eine Familie (U;) e, offener Mengen U; C X mit
U er Uj O K bezeichnet man als offene Uberdeckung von K; K heifit dann kom-

pakt, wenn jede beliebige offene Uberdeckung von K eine endliche Uberdeckung
enthalt.
Es gilt

Hilfssatz 9.1.12 Jede kompakte Teilmenge K C X ist abgeschlossen.
Ist K kompakt und A C K abgeschlossen, so ist A kompakt.

Zur Charakterisierung der kompakten Mengen im R™ definiert man:

Definition 9.1.13 Eine Menge B C R™ heifit beschriankt, wenn ein R > 0 existiert
mit ||z|| < R fiir alle x € B.

Es gilt der Satz von Heine-Borel ( HEINRICH EDUARD HEINE (1821-1881), FE-
LIX EDUOARD JUSTIN EMILE BOREL (1871-1956)):
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Satz 9.1.14 (Satz von Heine-Borel) Eine Menge K C R"™ ist genau dann kompakt,
wenn sie beschrinkt und abgeschlossen ist.

Einfache Beispiele kompakter Mengen im R" sind:

abgeschlossene Intervalle [a,b] C R,

abgeschlossene Quader ) C R”,

abgeschlossene Kugeln {z € R"| 22 + ...+ 22 < r?},

Sphiren {z € R"| 2z} + ...+ 22 =r?}.

Auf kompakten Mengen gilt:

Satz 9.1.15 (Satz von Bolzano-Weierstrass) Ist K eine kompakte Teilmenge des

metrischen Raumes X, so besitzt jede Folge in K eine konvergente Teilfolge.

Fir Folgen im R" gilt:

Hilfssatz 9.1.16 Fiir x;, = (21, ..., Tnk) € R" und a = (aq, ..., ay,) gilt
lim zp = a genau dann, wenn lim i = aq,..., lim z,, = a, ist.

Aus dem Cauchy-Kriterium 1.4.20 fiir Folgen in R folgt dann:

Satz 9.1.17 Eine Folge im R" ist genau dann konvergent, wenn sie eine Cauchy-
Folge ist.

Wir behandeln nun Abbildungen auf kompakten Mengen. Man kann zeigen:

Satz 9.1.18 Sind X,Y metrische Riume , ist K C X kompakt und f : X — Y
stetig, so ist [ gleichmdissig stetig.

Wie zeigen, dass bei stetigen Abbildungen das Bild kompakter Mengen wieder kom-
pakt ist.

Satz 9.1.19 Sind X,Y metrische Ridume und ist K C X kompaktund f : K —'Y
stetig, so ist f(K) kompakt.

Beweis. Es sei (V) e s eine offene Uberdeckung von f(K); setzt man

Uj ::_fl (VJ)7

soist (Uj) e eine offene Uberdeckung von K. Es gibt endlich viele ji,...,5x € J
mit K C Uj; U...UUj,.Dannist f(K)C V;, U...UVj,. |
Daraus folgt:

Satz 9.1.20 Ist K C X kompakt, so ist jede stetige Funktion f : K — R be-
schrdnkt und nimmt Maximum und Minimum an.

Beweis. Nach dem Satz von Heine-Borel ist die kompakte Menge f(K ) beschrankt
und abgeschlossen. Weil R vollstindig ist, existiert s := sup f(K); weil f(K)
abgeschlossen ist, gilt s € f(K). Somit nimmt f das Maximum an; analog verfahrt
man mit dem Minimum. O

Fir viele Fragen der Analysis ist der Begriff der Funktion mit kompaktem Trager
wichtig (vgl. dazu auch 3.1.12):
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Definition 9.1.21 Ist f : R™ — R eine Funktion, so heifit

Trf:={zeR| f(z)# 0}

der Trager von f. Den Vektorraum aller stetigen Funktionen mit kompaktem Triiger
bezeichnet man mit C§(R™); also

COR™) := {f:R" — R| f ist stetig und besitzt kompakten Triger}.

Zu jedem p ¢ Trf gibt es also eine Umgebung U von p, in der f identisch ver-
schwindet. Nach dem Satz von Heine-Borel hat f genau dann kompakten Trager,
wenn es ein R > 0 gibt mit f(z) = 0 fiir ||z|| > R.

Zusammenhang

Beim Begriff , zusammenhingender metrischer Raum “kann man entweder von der
Vorstellung ausgehen, die wir in 9.5.7 aufgreifen: X ist zusammenhangend, wenn
man je zwei Punkte von X immer durch eine Kurve verbinden kann; oder man stellt
sich ,,nicht zusammenhangend “so vor: X zerfallt in zwei ( oder mehrere ) Teile.
Wir beginnen mit dieser Interpretation:

Definition 9.1.22 FEin metrischer Raum X heifit znsammenhéngend , wenn es kei-
ne offenen Mengen A, B C X gibt mit folgenden Eigenschaften:

X=AUB, AnB=0, A#0, B#.

Wichtige Beispiele zusammenhangender Raume sind die Intervalle und Quader:

Beispiel 9.1.23 Quader () C R” sind zusammenhingend; dabei darf () abgeschlos-
sen, offen, halboffen und auch uneigentlich sein.

Auf zusammenhangenden metrischen Raumen gilt der Zwischenwertsatz:

Satz 9.1.24 (Zwischenwertsatz) Es sei X ein zusammenhdngender metrischer
Raum und f : X — R eine stetige Funktion. Es seien p,q € X und es gelte
f(p) < f(q). Dann gibt es zu jedem w mit f(p) < w < f(q) ein & € X mit
f(&) = w.

Beweis Wir nehmen an, es existiere ein w mit f(p) < w < f(¢) und f(x) # w fiir
allex € X.Dannsind A := {z € X| f(z) < w}und B := {z € X| f(z) > w}
offen und esist AN B = (). Wegenp € A, q € B sind beide nicht-leer. Weil f den
Wert w nicht annimmt, ist A U B = X; dann ist X nicht zusammenhéingend. O
Es gilt:

Satz 9.1.25 Es seien X,Y metrische Riume und f : X — Y stetig und surjektiv.
Wenn X zusammenhdngend ist, dann auch 'Y .

Beweis Wenn Y nicht zusammenhéngend ist, dann gibt es offene Mengen A, B in

| -1
Y wie in 9.1.22. Dann setzt man A := f (A) und B := f (B) und priift leicht
nach, dass auch X nicht zusammenhangend ist. a
Niitzlich ist der folgende einfache Hilfssatz:



9.2 Differenzierbare Funktionen 233

Hilfssatz 9.1.26 Ist X zusammenhdngend und ist M eine nicht-leere offene und
abgeschlossene Teilmenge von X, so folgt M = X.

Beweis. Man setzt A := M und B := X \ M; dann sind A, B offen und A # 0,
AUB = X, ANB = (. Weil X zusammenhéngend ist, folgt B = (), also M = X.

O
Daraus ergibt sich folgende Aussage:

Satz 9.1.27 Ist X zusammenhingend und g : X — R eine lokal-konstante Funk-
tion, so ist g konstant; dabei heifst g lokal-konstant, wenn es zu jedem x € X eine
Umgebung U von x gibt, so dass g|U N X konstant ist.

Beweis. Wir wihlen ein p € X und setzen M := {x € X| g(x) = g(p)}. Dann ist
M offen und abgeschlossen und p € M. Daraus folgt M = X, also g(x) = g(p)
firallex € X. a

9.2 Differenzierbare Funktionen

Wenn man den Begriff der Differenzierbarkeit fiir Funktionen f(x1, ..., x,,) einfiihren
will, so ist es naheliegend, dies folgendermalen auf die Differenzierbarkeit von
Funktionen einer Variablen zuriickzufiihren:

Fiir fest gewahlte xo, ..., x,, ist 1 +— f(x1,x9, ..., z,) eine Funktion einer Varia-
blen, deren Ableitung man jetzt mit g /" bezeichnet. Auf diese Weise kommt man

zum Begriff der partiellen Differenzierbarkeit.

Definition 9.2.1 Sei D C R" offen und p € D. Eine Funktion f : D — R heifitin
p € D partiell nach z; differenzierbar, wenn

of .. f1,espim1,0i F Ry Div1y e Pn) — (D)

existiert. Die Funktion f heifit partiell differenzierbar, wenn sie in jedem Punkt
von D partiell nach x1, ..., x,, differenzierbar ist. Sie heifit stetig partiell differen-
zierbar, wenn dariiber hinaus die gwfl s ey aif stetig sind.

Wir erlautern den Begriff der partiellen Ableitung einem Beispiel, an dem wir zei-
gen, wie man Funktionen von mehreren Variablen untersucht.

Beispiel 9.2.2 Es sei

2xy .
f . R2 _ R, T — z24y2 fur ($7y) 7é (Oa 0)
0 fir (x,y) =

Es ist leicht zu sehen, dass diese Funktion partiell differenzierbar ist:

Fiiry # 0ist 57 (z,y) = 2%, 7)) undfiiry = 0ist 97 (2,0) = 0.
2_ .2 ..
Analog gilt gi (z,y) = Q(Z(Qﬁyz,y)z) fiir x # 0 und g£ (0,4) = 0.
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Nun betrachten wir diese Funktion auf den achsenparallelen Geraden:

Fiir jedes y € RZistR — R, = — f(z,y), stetig, denn fiir y # 0 ist dies
3 by fiir y = 0 hat man dle stetige Funktion x — 0.

Fiir festes x ergibt sich wegen der Symmetrie von f ebenso , dass y — f(z,y)
stetig ist. Die Funktion ist also als Funktion von jeweils einer Variablen stetig.

Es ist jedoch leicht zu zeigen, dass f unstetig ist: Fiir x # 0 ist f(z,z) = 1; wegen
f£(0,0) = 0ist f im Nullpunkt unstetig.

Wir untersuchen f noch auf den Geraden y = cz durch den Nullpunkt. Sei ¢ € R,
firx #0ist f(z,cx) = 1+ °, . Auf diesen Geraden ohne (0, 0) ist also f konstant;
damit erhilt man die Niveaumengen von f.

In der Abbildung sind die Funktionen = +— 2+ , firy =05, y=1, y =15
eingezeichnet; auserdem sind einige N iveaumengen von f dasrgestellt.

T —

0
1 ,/*/\\\-. = - _107 0.7
/AR —0.7 0.7
0 0
o S 051 15
S/
T

Wir geben den Verlauf der Funktionen z +— 2 + , fiir y # 0 noch genauer an:

Das Minimum —1 wird im Punkt —y und das Max1mum +1 in +y angenommen;
die Steigung im Nullpunkt ist gi 0,y) = 5

Zu jedem ¢ > 0 und ¢ € R existiert ein x € R mit (x,cx) € U:(0,0) und
daher gilt f(U.(0,0)) = [—1, +1] fiir jedes £ > 0. Daraus ergibt sich wieder, dass
f unstetig ist.

Dieses Beispiel zeigt, dass aus der partiellen Differenzierbarkeit noch nicht einmal
die Stetigkeit folgt. Man fiihrt daher einen scharferen Begriff ein; dazu geht man
aus von der in 3.1.3 hergeleiteten Formel

f(@) = f(xo) + c(z — 20) + (z — 20)p(x),  lim p(z) =0

r—x0

mit ¢ = f’(xg). Man definiert:

Definition 9.2.3 Sei D C R" offen und p € D. Eine Funktion f : D — R heifit
in p € D differenzierbar, wenn es ein ¢ = (¢, ...,¢,) € R™ und eine Funktion
p: D — R gibt mit

—|-ch —pj) + |l —p|| - o(z) fiir € D und lim ¢(x) = 0.
j=1

T—p

Die Funktion f heift differenzierbar, wenn sie in jedem Punkt von D differenzier-
bar ist (Man bezeichnet dies auch als ,totale” Differenzierbarkeit).
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Setzt man h := = — p und verwendet man das Skalarprodukt

n
h) = E ¢z
j=1
so kann man dies auch so schreiben:

flp+h) = f(p) + (e, k) + bl - o(p+h),  lim o(p+h) = 0.

Setzt man ¢ (h) := ||h|| - ¢(p + h), so lautet die Differenzierbarkeitsbedingung:

Flo-+0) = Fp) + (e i), fim ) =

0,

dabei ist ¢ : U — R in einer offenen Umgebung von 0 € R™ definiert .
Offensichtlich ist jede differenzierbare Funktion stetig.

Um zu zeigen, dass sie auch partiell differenzierbar ist, setzt man A = (hq,0, ...,0)
mit Ay # 0. Dann ist

f(pl + h17p27 7pn) = f(p) + Clhl + |h1| : QO(p + h)a

also (p1+h1h =@ ) 4 ‘hll ©(p + h), und daraus folgt, dass o (p) existiert

und gleich c¢; ist. Auf diese Welse ergibt sich:

Satz 9.2.4 Jede differenzierbare Funktion ist partzell dlﬁ‘erenzzerbar und fur den in
9.2.3 definierten Vektor c = (c1, ..., ¢ gilt: ¢; = ax I (p) fiirj =1,.

Definition 9.2.5 Ist f partiell differenzierbar, so heif3t

of af

gradf::(axl, T o

)

der Gradient von f. Es ist also ¢ = grad f(p).

Wenn man die Differenzierbarkeit einer gegebenen Funktion nachweisen will, ist es
oft recht umstandlich, die in der Definition auftretenden Grossen c und ¢ zu unter-
suchen. In vielen Fallen sieht man sofort, dass die partiellen Ableitungen existieren
und stetig sind. Wir leiten nun ein Kriterium fiir die Differenzierbarkeit her: Wenn
die partiellen Ableitungen existieren und stetig sind, dann ist die Funktion differen-
zierbar.

Satz 9.2.6 Sei D C R” offen und f : D — R stetig partiell differenzierbar. Dann
ist f differenzierbar.

Beweis. Zur Vereinfachung fiihren wir den Beweis fiir n = 2. Es ist zu zeigen, dass
f in jedem Punkt p € D C R? differenzierbar ist. Wir diirfen p = (0, 0) annehmen.
Es gibt ein » > 0 mit U,.(0,0) C D; fiir (x,y) € U,(0,0) ist
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f(a,y) = £(0,0) + (f(2,0) = f(0,0)) + (f(z,y) — f(x,0)).

Wendet man den Mittelwertsatz der Differentialrechnung auf x +— f(x,0) an, so
folgt: Es gibtein ¢; € [0, 1] mit

of

f(x,0)— £(0,0) =x - o (t1z,0).

Analog folgt die Existenz von t5 € [0, 1] mit

fa) = £@0) =y o 2.ty

Setzt man
. of of of of
so ist of of
Flo.w) = F0.0) + w7 (0.0) 5 (0.0) + ()
und aus der Stetigkeit der partiellen Ableitungen sowie aus ‘H(Ixy)\l‘ < 1 und
| 2| < Tfolgt: lim %% = 0und daherist f in 0 differenzierbar. O
Il ()] (z,y)—0 1@

Wir behandeln nun partielle Ableitungen hoherer Ordnung.

Definition 9.2.7 f heifst zweimal partiell differenzierbar, wenn g f? firj=1,....n
existieren und ebenfalls partiell differenzierbar sind; man setzt
0% f 0 of 0*f o af
fxq‘,x_j : = fﬂfq’m = =

- 8%8% o &vz &vj 8:52 o ((91'2 ((91'2

1
[ heifit zweimal stetig partiell differenzierbar, wenn alle 8323]; stetig sind.

10T j
Wir beweisen nun den wichtigen Satz von H. A. Schwarz , der besagt, dass man un-
ter geeigneten Voraussetzungen die Reihenfolge der Ableitungen vertauschen darf
(KARL HERMANN AMANDUS SCHWARZ (1843 - 1921)):

Satz 9.2.8 (Satz von H. A.SCHWARZ) Wenn f zweimal stetig partiell differenzier-
bar ist, dann gilt fiiri,j =1, ...,n:

o2 f o2 f

Bxiaxj o 8%8@

Beweis. Wir fiihren den Beweis fiir n = 2 und zeigen, dass die Gleichung im Punkt
p = (0,0) richtig ist. Sei also f in D := {(x,y) € R?||z| < &, |y| < €} definiert
und dort zweimal stetig partiell differenzierbar. Sei |y| < e, dann wenden wir den
Mittelwertsatz der Differentialrechnung auf = — f(z,y) — f(x,0) an: Es existiert
ein £ mit |¢] < || und
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(F(@9) — F(@.0)) ~ (7(0.9) 0,00 =20 (€.5) ~ 207 (€,0).

Flir y — gﬁ (€, y) liefert der Mittelwertsatz

f f

P T

of

B B B
5 &Y~ 5 (§,0):y~8y8x(£,n) mit 7| < |y|.

Damit ergibt sich:

(e - F2.0) = (10) - F0.0) =2y T €.0)

Analog zeigt man: Zu (z, y) existiert (£,7) mit |€| < ||, |7] < |y| und

(e = F0.9)) = (F(@.0) = F0.0) =y ) T €.

Fiir z - y # 0 folgt daraus

o of B -

Wenn (x,y) gegen 0,0) geht, dann auch (£,7) und (£, 7) und wegen der Stetigkeit
der zweiten partiellen Ableitungen folgt

0 of 0 of

O

Als weiteres Beispiel fiir die Untersuchung von Funktionen zweier Variablen be-
handeln noch eine Funktion , die in der Thermodynamik eine Rolle spielt:

Beispiel 9.2.9 (Zur VAN DER WAALschen Gleichung)

Die VAN DER WAALsche Zustandsgleichung fiir den Druck p, das Volumen v und
die Temperatur T eines Gases lautet (vgl. [22]):

(p+52>(v—b):RT;

dabei ist R die alllgemeine Gaskonstante; die positiven Konstanten a, b hangen vom
jeweiligen Gas ab. Fiir v > b ist dann

RT a
p(v’T)_'U—b_’U2’
dp RT 2a 0*p 2RT 6a
T) = — T) = -
v ©.T) (v —b)? R Ov? (v, T) (v="0)3 vt
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Wir untersuchen die Isothermen v — p(v, T') und zeigen:

Es gibt eine kritische Temperatur 7} mit folgenden Eigenschaften:

Fir T' > Ty, sind die Isothermen streng monoton fallend.

Fir T' < T}, gibt es Intervalle, in denen die Isotherme monoton steigt.

Zunachst macht man sich eine Vorstellung vom ungefahren Verlauf der Isothermen:
Fiir grosse 7' iiberwiegt der Summand 5_7; und die Isothermen sind angenahert mo-
noton fallende Hyperbelstiicke. Fiir alle T' gilt: Wenn v nahe beim linken Randpunkt
bist (v > b), dann ist gz < 0; dies gilt ebenso fiir sehr grosse v. Dort fallen also
alle Isothermen.

Nun untersuchen wir die Funktion genauer: Die kritische Temperatur findet man so:
Man berechnet einen kritischen Punkt (v, pi, Tk ), in dem sowohl g’; als auch gz’;
verschwindet. Zu 16sen sind also

RT3, 2a 2RTy, 6a

(v —b)2 v}’ (v, — D)3 v}

Der Quotient dieser beiden Gleichungen liefert vy, durch Einsetzen in die erste Glei-
chung erhélt man dann T} und schliesslich py; es ergibt sich

8a a

—3bh, T, = = .
Ve =30 Tk = oo pye PET g

Fiir die weitere Rechnung ist es zweckmassig,

- T
V=, T:=_, p = p
Vg Ty Dk

zu setzen; wegen v > bist v > :1,’ Die VAN DER WAALSsche Gleichung wird dann
_ 3 - o
P+ s (30—1)=8T

und der zugehorige kritische Punkt ist (1,1, 1). Fir v > :15 gilt:

- 8T 3 0, - 24T 6
T) = - T)=— .
POT)I =05 1 =50 9p D= T (g1 F g

Nun setzt man 7' = 1 und rechnet aus:

op 6

. 6 (40— 1)(0 — 1)2
05" = “as 1)

45% — 972 6~—1)=— f
(” vy 53(30 — 1)2

DiesNist = 0 fur ¥ = 1 und sonst < 0.~

Fiir 7' > Lund ¢ > } istdann 97 (,7) < 0.

Nun wihltman ¥ = 1und T’ < 1; dann ergibt sich
op

a@(lj) =6(1—1T) > 0.
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Bei T < 1 gibt es also immer eine Umgebung von v = 1, in der die Isotherme
wachst.

Wir kehren nun zur urspriinglichen Bezeichnung v, p, T' zurtick; wir haben gezeigt:
Fir T' > T} sind alle Isothermen streng monoton fallend; dagegen gibt es bei
Temperaturen T' < T}, unterhalb der kritischen Temperatur T} immer ein Intervall
um vy, in dem die Isotherme streng monoton wachst.

Die physikalische Bedeutung dieser Aussagen ist folgende (vgl. [22]): Oberhalb
der kritischen Temperatur tritt auch bei sehr hohem Druck keine Verfliissigung ein.
Wenn dagegen die Temperatur 7" kleiner als T}, ist, dann wiirde in der Nahe von
vy, bei einer Verkleinerung des Volumens der Druck sinken. Dies fiihrt zu einer
teilweisen Verflussigung des Gases.

Pk

Vi 7()
Differenzierbare Abbildungen

Nun behandeln wir differenzierbare Abbildungen f : D — R™ mit D C R”,
ausfiihrlich geschrieben

f:D—=>R™ (x1,...,2n)— | -
Definition 9.2.10 Sei D C R" offen; eine Abbildung f : D — R™ heift differen-

zierbar, wenn es die Funktionen f; : D — R sind, i = 1, ..., m. Die Matrix

0N (z),..., 90 ()

J( ) Oz ’ Oz,
f :L' :: ......
Ofm Ofm
8{;1 (),..., a_ﬁn (x)

heifit die Funktionalmatrix oder Jacobi-Matrix von f in .
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Die Zeilen der Funktionalmatrix sind also die Gradienten der f;; fir m = 1 ist

Jy = gradf.
Wenn die Funktionen f; in x € D differenzierbar sind, so ist fiir: = 1,...,m :
file +€) = filz) + Y _aij - & +vi(€)
j=1
(4
mit a;; = gg; (z). Fiir die Abbildung ¢ := | --- | ist hm ”g” = 0; somit ergibt
wm,
sich:

Satz 9.2.11 Eine Abbildung f : D — R™ istin x € D genau dann differenzierbar,
wenn eine (mxn)-Matrix A = (a;;) und eine in einer Umgebung U von 0, U C R™,
definierte Abbildung 1 : U — R™ existiert mit

v _,

flx4+8 =flx)+A-E+9(&) firE €U und hm "

Dabei ist A = J¢(x) die Jacobi-Matrix von f im Punkt z.

Nun erlautern wir die wichtige Kettenregel, die besagt, dass die Jacobi-Matrix von
f o g gleich dem Produkt zu f und g gehorenden Jacobi-Matrizen ist.

Satz 9.2.12 (Kettenregel) Seien D C R*, D C R" offen, f : D — R™ und
g : D — R" differenzierbar und g(D) C D. Dann ist auch f o g differenzierbar
und fiir x € D gilt:

Jrog(x) = Jf(g(2)) - Jo ().

Wir skizzieren den Beweis, ausfiihrliche Beweise findet man in [7] und [17]. Es sei
z €D,y :=g(x), A:= J¢(y), B := Jy(x). Dann ist

fly+n) = fly)+ An+e(n)
g(x+8&) =g(x) + B+ 4(§)
() _ 0.

mit hm “ﬁ(’ﬁ) =0, lim

=0 Il
Setzt man 7 := g(:v +&) — y,dannist n = B + (&), und man erhalt

(fog)x+&) = flglz+&) = fly+n) =
= flg(x)) + A (BE+ () +(BE+ () =
= (fog)(z) + (A-B)E+x(E)
mit x(§) = AY(§) + (B + (€)). Man beweist nun, dass hm H(ﬁg\l) = 0ist;
daraus folgt die Behauptung. a
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Wir erlautern die Aussage der Kettenregel: Ausfiihrlich geschrieben hat man die
Abbildungen

filyr, - yn) g1(z1, ..., 2k)
fly) = ; 9(z) =
fm(y17~-~,yn) gn(l'lwu,xk)

und fir h := f o gist

filgr(zy, .o mk), oo gn(®n, ooy 7))
h(zy=1( .

fm(gl($17"'7xk)7""gn(x:l?""xk))
Die Aussage der Kettenregel bedeutet :
Satz 9.2.13 (Kettenregel) Fiir j =1,... . k,undl =1,...,m gilt:
Ohy O g

. (1, .y p) = 2 oy, (g1(T1y s k) oo oy gn(T1y ey k) - o, (T1y ey k).

Firm = 1list h(zy,...,2x) = f(g1(x1,. .., 2k),-- - gn(x1,...,2x)) und wegen
Jp = grad h erhilt man:

(grad h)(z) = (grad f)(g(x)) - Jy(x)

Fiir m = 1, £ = 1 hat man:

@ =3 (010 )

Firm = 1, k = 1 und n = 1 erhalt man die Kettenregel fiir eine Variable:

dh df dg
L@ = o) @),

Wir fithren nun den Begriff der Richtungsableitung ein und untersuchen diese mit
Hilfe der Kettenregel.
Definition 9.2.14 Sei D C R”, f : D — R eine Funktion, x € D, und v € R™,
|lv]] = 1. Unter der Ableitung von f im Punkt = in Richtung v versteht man
t —
D, f(x) :=lim fa+tv) f(a;)
t—0 t
Es gilt
Satz 9.2.15 Sei D C R” offen und f : D — R differenzierbar; dann gilt

Dy f(z) = (v, grad f(z)).
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Beweis. Setzt man g(t) := f(x + tv), soist D, f(z) = ¢’(0) und nach der Ketten-
regel ist mit v = (v, ..., vp) :

Do) =g 0) =3 o7 (@) v

Wegen ||v|| = 1 folgt aus der Cauchy-Schwarzschen Ungleichung:
Dy f(z) < |grad f(z)]|

und das Gleichheitszeichen gilt genau dann, wenn v in die Richtung des Gradienten
zeigt. In dieser Richtung ist also der Anstieg von f maximal. Etwas ausfiihrlicher:
Ist grad f(x) # 0 und bezeichnet man mit ¢ den Winkel zwischen v und grad f(x),
so ist

(v, grad f(z)) = [|v] - [[grad f(z)]|| - cos ¢ = |[grad f(z)]| - cos ¢,
also
D, f(x) = |lgrad f()] - cos p.
Die Richtungsableitung wird also maximal fiir ¢ = 0; somit weist der Gradient in

die Richtung des starksten Anstiegs von f.
Fir c € Rist N, := {z € D|f(z) = ¢} die zugehorige Niveaumenge. Ist

I } -5 +5[_> Neyt = (21(t), oy 2n(t))
eine differenzierbare Kurve, die in N, liegt, so gilt f(y(t)) = cfiirallet €] —e, +¢|
und nach der Kettenregel ist > gf (v(#))-z, (t) = 0. Mit¥(t) = (£1(t), ..., Tn(t))
v=1 v
ergibt sich
(gradf(v(t)),¥(t)) = 0:
Der Gradient steht senkrecht auf der Niveaumenge. Wenn grad f # 0 ist, dann

sind die Niveaumengen immer (n-1)-dimensionale Untermannigfaltigkeiten (vgl.
11.1.1).
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Differentiation von Integralen
Wir beweisen noch, dass man unter dem Integral differenzieren darf:

Satz 9.2.16 Die Funktion

f:[avb] X [C,d] =R, (z,y) = f(x,y)

sei stetig, die partielle Ableitung gi existiere und sei ebenfalls stetig. Dann ist

b
g:le,d — Ry /f(w,y)dw

differenzierbar und

also

b b
o [ fewie = [T

Beweis. Es sei p € [c,d] und (y,,) eine Folge in [¢, d] mit y,, # p fir n € N und
lim y, = p. Wir setzen
o

n—

i lat] > B oo O TIED g g o D )

Yn — P

und zeigen, dass (g, ) gleichmissig gegen ¢ konvergiert. Sei ¢ > 0 vorgeben . Weil
gf; gleichmassig stetig ist, existiert ein § > 0 mit

of of

oy (@) — o @B < fir |(e.y) - @9 <8

Es gibt ein N € N mit |y, — p| < 0 fiir n > N . Nach dem Mittelwertsatz der
Differentialrechnung existiert zu n € N und x € [a, b] ein 7, zwischen y,, und p
mit g, (x) = gf; (x,my,). Firn > N und alle z € [a,b] ist |[(z,n,) — (x,p)] < &
und daher \(35 (x,mn) — gi (x,p)| < €, also |gn(z) — q(x)| < €. Daher konvergiert
(gn) gleichmissig gegen ¢ und nach 6.1.4 folgt

n—oo

b b
lim [ gn(z)dz = /q(x)dx.



244 9 Differentialrechnung im R™

Damit erhalten wir:

lim 9W»)=9(®) _ im f f(=, yn) f @0) 4 —
n—oo Yn—P n—00 7 -
b b b oy
= lim [ an(e = [q(x)dz = [ 3! (z,p)de.
Daraus ergibt sich die Behauptung. a

Wir behandeln nun einen etwas anderen Fall: Es soll ein Integral differenziert wer-
den, bei dem die Variable sowohl als Parameter im Integranden als auch als obere
Grenze auftaucht. Dabei darf man folgendes Ergebnis vermuten: wenn die Variable
z die obere Grenze ist und im Integranden nicht vorkommt, ist die Ableitung der In-
tegrand; wenn die obere Grenze konstant ist, differenziert man unter dem Integral.
In unserem Fall kommen beide Summanden vor:

Satz 9.2.17 Die Funktion
g: [avb] X [avb] — R, ('rvt) = g(x,t)

sei stetig partiell differenzierbar. Dann ist

dx/g(m,t)dt = g(x,x) + /ax(ax,t)dt

a

Beweis. Wir setzen

h:la,b] x [a,b] = R, (x,y) — /g(az,t)dt.

y
Nach dem vorhergehenden Satz ist gh (z,y)= [ g (z,t)dt und nach dem Haupt-

satz der Differential- und Integralrechnung ist g (z,y) = g(x,y). Nun setzt man

y = x und berechnet nach der Kettenregel:

dh, o oh, [ dg
) = )+ ) = [ 0wt 4 glaa)

O
In 13.1.1 werden wir diese Aussage noch verallgemeinern.
Wir geben nun eine kurze Einfithrung in die Variationsrechnung; bei den dort vor-
kommenden Beweisen benotigt man Differentiation unter dem Integralzeichen.
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Variationsrechnung

In der Variationsrechnung behandelt man Extremalprobleme. Bisher hatten wir fiir
eine Funktion f eine reelle Zahl x gesucht, fiir die f(x) extremal wird; eine notwen-
dige Bedingung ist f’(x) = 0. In der Variationsrechung hat man als Variable nicht
mehr z € R, sondern eine Funktion oder eine Kurve . Man sucht zu etwa zu ge-
gebenen Punkten p, ¢ eine Verbindungskurve ¢ mit minimaler Lange (man erwartet
als Losung, dass ¢ linear ist und die Verbindungsstrecke durchlauft). Ein anderes
Beispiel ist das Problem der DIDO: Wie muss man eine einfach geschlossene Kurve
o der Lange 1 wahlen, so dass das von ¢ berandete Gebiet maximalen Flacheninhalt
hat ? (Vermutlich ist das Gebiet ein Kreis.)

In der Physik kommen Variationsprobleme haufig im Zusammenhang mit der La-
grangefunktion L vor; dabei soll ein Integral tiber L(¢, ©(t), ' (t)) minimal werden
soll. Daher bentitzt man die folgenden Bezeichungen:

Es sei I = [a,b] C R ein Intervall und

L:IxRxR— R, (t,y,p) — L(t,y,p)

zweimal stetig differenzierbar. Weiter seien ¢, ¢ € R und

M={peC(Dlp(a)=c, pb)=c}, S:M—-Rp— /L(taw(t)»@'(t))dt.

Gesucht wird eine notwendige Bedingung dafiir, dass S(p) minimal wird; diese
Bedingung ist die Euler-Lagrangesche Differentialgleichung:

Satz 9.2.18 (Differentialgleichung von Euler-Lagrange) Wenn es ein ¢ € M gibt
mit
S(e) < S(x) fiiralle x € M,

dann gilt:

((;t gﬁ(t,w(t),w’(t)) - ZL(t,w(t),w’(t)) =0

Beweis. Die Beweisidee ist folgende: fiir geignetes 77 und € € R betrachtet man
e — S(¢ + en); diese Funktion von ¢ hat fir ¢ = 0 ein Minimum und daher
verschwindet die Ableitung im Punkte = 0.

Es sein € C%(I) und n(a) = n(b) = 0. Fiiralle ¢ € Ristdann ¢ +en € M und
daher S(p) < S(p + en) . Nach 9.2.16 differenziert man unter dem Integral und
erhalt (wir schreiben (...) fir (¢, ¢(¢) +en(t), ¢’ (¢) +en'(t))) :

b b
dseren = [ L(gdt = [ (3500 - n0)+ 90 - (0)dr
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Mit partieller Integration ergibt sich

st = o] — [od (95) at=— [ (25) at

8 —o

und daher ist

b
ds
Gren = J(GEC.) = L3EC) (.
Fir e = 0 ist dies = 0, also
b

oL , d oL ,
top, @) — t, o, -ndt = 0.
/(ay( 29~ gt op | @@)) U
a
Dies gilt fiir alle 77, und aus dem Lemma der Variationsrechnung 5.1.9 folgt:

oL . daL o
O

Bemerkung. Die Euler-Lagrangeschen Differentialgleichungen gelten auch im n-
dimensionalen Fall. Man hat dann (die genaue Formulierung findet man in [17]):

LZIXR”XR”—)R,(t, ylv"'aynvplv"'apn)'_)L(tv y17~-~7y717p17~-~7pn)

und
@: 1 =Rt (p1(t),..., en(t))
und die Euler-Lagrangeschen Differentialgleichungen lauten:

jt gpLj (t: (1), ¢'(1)) — SL (L), d(t) =0  (G=1...,n)

Yj

Beispiel 9.2.19 (Das Hamiltonsche Prinzip) Wir untersuchen die Bewegung ei-
nes Massenpunktes mit der Masse m bei einem gegebenen Potential U. Wir be-
schranken uns auf den eindimensionalen Fall.Es sei ¢ die Zeit; die Bewegung des
Massenpunktes werde durch eine Funktion ¢(t) beschrieben. Es sei T die kineti-
sche Energie und U die zeitunabhangige potentielle Energie. Dann ist die Lagrange-
Funktion L = T' — U; das Hamiltonsche Prinzip besagt, dass das Wirkungsintegral

to
S(p) = [ L(t, ¢(t), ¢(t))dt minimal ist. Die kinetische Energie ist T = " ¢>? und
0

die Lagrange-Funktion ist L(¢, ¢) = "7 ¢? — U(x). Die Eulersche Differentialglei-
chung ist

Es ergibt sich
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9.3 Implizite Funktionen

Ist eine Funktion f(x,y) gegeben, so stellt sich die Frage, ob man die Gleichung
f(x,y) = 0 nach y auflosen kann. Ist etwa f(z,y) = 2%y — 3z + y, so kann man y
aus der Gleichung 2%y — 3z 4 y = 0 ausrechnen: y = _J% .

Zu f(x,y) sucht man also eine Funktion g(z), so dass die Gleichung f(z,y) = 0
genau dann gilt, wenn y = g(x) ist; insbesondere ist dann f(x,g(z)) = 0. Man
sagt, durch f(x,y) = 0 sei implizit die Funktion y = g(z) gegeben. Geometrisch
interpretiert: Der Graph von g soll gleich dem Nullstellengebilde von f sein:

{(z,9)] f(z,y) =0} = {(z,9)]y = g(x)}

Bei den folgenden Beispielen ist leicht zu sehen, dass nicht jedes Nullstellengebilde
ein Graph ist, denn bei einem Graphen G, gibt es zu jedem x genau ein y mit
(z,y) € Gy.

\
\{/ ‘

z-y=0 22 —y2 =0 > —y2=0 22422 +92=0

Man muss natiirlich voraussetzen, dass f wirklich von y abhingt; schon das triviale
Beispiel f(x,y) := 22 zeigt, dass man hier nicht nach y auflésen kann. So ist
naheliegend, vorauszusetzen, dass gi nicht verschwindet.

Satz 9.3.1 (Satz iiber implizite Funktionen ) Seien U,V C R offene Intervalle ;
die Funktion
[UXV =R, (z,y) = f(z,y),

sei zweimal stetig partiell differenzierbar; fiir ein (xq,y0) € U X V gelte

oF (w0,%0) # 0.

faow) =0 o

Dann gibt es offene Intervalle U1,V mit xo € Uy C U, yo € V1 C V, und eine
stetig differenzierbare Funktion

g: U1 — V1,
so dass gilt:

{(z,y) e Ut x V| f(z,y) = 0} = {(z,y) € Ur x V1| y = g(2)}.
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Beweis. Zunachst wahlen wir die Intervalle Uy, V; so, dass in U; x V; gilt: gch # 0.
Nun sei (z,y1), (z,y2) € Uy x Vi und f(z,y1) = 0, f(x,y2) = 0. Wenn
y1 < yo ist, so folgt aus dem Mittelwertsatz, angewandt auf y — f(z,y), dass
ein 7 zwischen y1, y2 existiert mit gi (z,m) = 0. Dies widerspricht der Vorausset-

zung gi # 0. Daher gibt es zu jedem = € U7 hochstens einy € V4 mit f(z,y) = 0.
Falls eine Funktion g mit den im Satz genannten Eigenschaften existiert, gilt
f(x,g(x)) = 0. Differenziert man diese Gleichung, so erhilt man

o gl + o gt g ) =0
oder 8f( @)
'(z) = — 0z D INE))
SO =00 o))

Die gesuchte Funktion gentigt also einer Differentialgleichung. Nach 8.1.6 konnen
wir U1, V7 so verkleinern, dass die Differentialgleichung

eine (stetig differenzierbare) Losung g : U3 — V4 mit g(zg) = yo besitzt.
Setzt man h(z) := f(x,g(x)) firxz € Uy , so ist

_of of

/
W (z) ox oy

(z,9(x) + . (z,9(z)) - ¢'(x) =0

und daher ist & konstant und wegen h(zo) = f(zo,yo0) = 01ist h(z) = 0 fiir alle
x € Uj.

Daraus folgt f(z, g(x)) = 0; es gibt also zu jedem = € U; genau ein y € V; mit
f(z,y) =0, nimlich y = g(x). O
Wir geben ohne Beweis eine Verallgemeinerung dieses Satzes an; Beweise findet
man in [7] und [17].

Satz 9.3.2 (Allgemeiner Satz iiber implizite Funktionen) Seien U C R*, und
V C R™ offen, sei

f:UX V_}Rmv (1’,y)'—> (fl(xay)v"'afm(xay))

stetig partiell differenzierbar; sei (xo,yo) € U x V ein Punkt mit

af1 9f1
](' 0 d d t 8y1 rrr 8ym 0
T — un et oo )
( OvyO) of ofm #
By1 7" Oym

Dann gibt es offene Mengen Uy, Vi mit xg € Uy C U, yg € V1 C V, und eine stetig
partiell differenzierbare Abbildung
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g: U — W
mit
{(z,y) € Uy x W[ f(2,y) = 0} = {(2,y) € Ur x Vily = g()}.

Nun behandeln wir Diffeomorphismen ; der Begriff des Diffeomorphismus spielt in
der Analysis eine vergleichbare Rolle wie der des Isomorphismus von Vektorraumen
in der linearen Algebra.

Definition 9.3.3 Seien U,V C R” offene Mengen; eine Abbildung f : U — V
heif3t Diffeomorphismus, wenn gilt: f ist bijektiv, f und f~' sind differenzierbar .

Man bezeichnet f als lokalen Diffeomorphismus, wenn es zu jedem x € U offene

Mengen U,V gibt mit z € U C U, f(x) € V C V, so dass f[U — V ein
Diffeomorphismus ist.

Aus der Kettenregel folgt:

Satz 9.3.4 Wenn f : U — V ein Diffeomorphismus ist, dann ist fiir alle x € U die
Jacobi-Matrix Jy(x) invertierbar; es gilt

(@)™t = Jp-a(f(x)).

Beweis. Es ist
Jp(@)) - Jp-1(f(2)) = Jpop-1(f(2)) = E,

denn die Jacobi-Matrix der identischen Abbildung fo f~!:V — V,y s y, ist
die Einheitsmatrix £ € R(™™). u]
Nun stellen wir die Frage, ob auch die Umkehrung gilt: Kann man aus der Inver-
tierbarkeit der Jacobi-Matrix schliessen, dass f invertierbar ist ? Dies gilt in der Tat
lokal: Aus 9.3.2 leiten wir das wichtige Theorem tiber lokale Diffeomorphismen
her. Es besagt: Wenn bei einer differenzierbaren Abbildung f die Jacobi-Matrix in-
vertierbar ist, dann ist f ein lokaler Diffeomorphismus.

Satz 9.3.5 (Satz iiber lokale Diffeomorphismen ) Es sei U C R"™ offen und
f: U — R" zweimal stetig differenzierbar. Fiir ein xo € U sei

det J¢(x0) # 0.

Dann gibt es offene Mengen V,\W C R", zo € V C U, sodass f|[V — W ein
Diffeomorphismus ist.

Dabher gilt: Wenn det Jy(x) # 0 fiir alle x € U ist, dann ist f ein lokaler Diffeo-
morphismus.

Beweis. Wir setzen yo := f(x¢) und definieren
FUXR“_)an (‘T,y)’_} y_f(x)a

also
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y1 — fi(zr, ..o 2n)
F(£13"'3$n7y15-~-7yn) e

Dann ist F(zg,y0) =0 und

OF; OF,
Oxy’ " Oxy
...... = —Jy;
OF, OFy,
OJx1? " Oxn

im Punkt xq ist also die Determinante dieser Matrix # 0. Wir wenden nun den vor-
hergehenden Satz an, wobei wir die Rollen von = und y vertauschen. Die Gleichung
F(z,y) = 0 kann nach z aufgelost werden: Es gibt offene Mengen W, U; mit
yo € W C R", 2y € Uy C U und eine differenzierbare Abbildung g : W — Uy, so
dass fir y € W,z € U; die Gleichung x = ¢(y) dquivalent zu F(z,y) = 0, also
dquivalent zu y = f(x) ist. Daher ist g die Umkehrabbildung zu f . O

Polarkoordinaten, Zylinderkoordinaten und Kugelkoordinaten
Wichtige Diffeomorphismen erhélt man durch Polarkoordinaten, Zylinderkoordina-
ten und Kugelkoordinaten.

Beispiel 9.3.6 ( Polarkoordinaten ) Unter Polarkoordinaten (7, ) versteht man
wie in 4.3.19
r=r-Ccosp, Y=r1-sinep,

genauer: definiert man offene Mengen U, V im R? durch
U=Rxj0.2n),  V:=F\{(z,y) €B|z >0,y =0},
so ist die Abbildung
@:U—=V,(r,p)— (r-cosep, r-sinp)

ein Diffeomorphismus; die Umkehrabbildung ist

xT

¢V = U, (z,y) — (Va2 +y?, arccos s
Vat+y

5
die Jacobi-Matrix ist

_[cosp  —r-sing
Jo(r ) = <sin<p r-cosgp)

und
det Jy(r, ) = 1.

Wenn man ¢ als Abbildung ¢ : {(r,p) € R} r > 0,0 < ¢ < 27} — R?
auffasst, dann ist ¢ surjektiv. Jedoch ist der Definitionsbereich nicht offen und ¢ ist
nicht injektiv; das Geradenstiick {r = 0} wird in den Nullpunkt abgebildet; auf
{r =0} verschwindet det Jy.



9.3 Implizite Funktionen 251

Beispiel 9.3.7 ( Zylinderkoordinaten ) Zylinderkoordinaten (r, ¢, z) fiihrt man
ein durch
xT=r-cosp, y=r-sing, z=2z.

Man setzt
O(r,p,2) = (r-cose, r-sinp, z).

Die Jacobimatrix ist

cosgp —r-cosep 0
Jo(r,9,¢) = | sing r-cose 0
0 0 1

und es ist
det Jo(r,p,z) = .

Beispiel 9.3.8 (Kugelkoordinaten ) Unter Kugelkoordinaten (r, i, ) versteht man
r=r7-sind-cosp, y=r-sind-siny, z=r-cosv.

Definiert man im R? die offenen Mengen
U:={(rd,¢) eR® r>0 0<d<m 0<¢p<2r},

V:=R3 \ {(%‘,y72’)|$207 yZO},

SO ist
U:.U—-V, (r,d,¢)— (r-sind-cosp, r-sind -sinp, r-cosd)

ein Diffeomorphismus . Die Jacobi-Matrix ist

sin ¥ cos r - cos v cos —r-sindsin g
Ju(r,9,p) = | sindsiny r - cosvsin r-sind cos
cos v —7r - sind 0

und
det Jy (r,9, @) = r*sin .

Wir wollen nun zeigen, wie man einen beliebigen Differentialoperator auf neue Ko-
ordinaten umrechnet und fiihren dies exemplarisch aus. Es sei f : R? — R eine
beliebig oft stetig partiell differenzierbare Funktion. Wir behandeln den Laplace-
Operator

0? 0?

o= Ox? + oy?’
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also Af := gi{ + gzg. Fiir 7 > 0 sei ¢(r, p) = (r cos ¢, 7 sin ¢) die Polarkoordi-

natenabbildung. Wir wollen nun A in Polarkoordinaten umrechnen, das heif3it, wir

suchen einen Differentialoperator A in 88 , 88 mit
T’ Op

(Af)od = A(fog).
Es gilt:

Satz 9.3.9 (Der Laplace-Operator in Polarkoordinaten) Der Laplace-Operator
in Polarkoordinaten ist

A 82+1_8+1_82
Cor2 o Or 1?2 9p?

Beweis. Es ist ¢(r,¢) = (r - cosp, r - siny) und

J¢<r,so>:(c°s*" ""W), <J¢<w>>-1:< 0089 IS”“").

sin ¢ 7 COS —,sinp - cosy
Wir schreiben die Ableitung als Index: f, := 8‘1 f - Nach der Kettenregel ist

Jrop = (Jrog) Jy
also (fod)r (fod)y) = (food, fyod) Jy
oder (food, fyod) = ((fod)m (fod)y)-J,"

Damit erhalt man die Gleichungen

(1) fzop = (fOQS)T'COSSO_(fOQS)@‘iSinSO
(2)  fyod = (fod) -sing + (fod),- | cose.

Nun setzt man in (1) f; an Stelle von f undin (2) f, statt f ein und addiert; damit
ergibt sich

(3) fxzo¢+fyyo¢:

= (fzogb)r s COSp — (fm O¢)go : i sing + (fy o¢)r -sing0+(fyoqz5)¢ : i Cos .

In dieser Gleichung setzt man fiir f, o ¢ und f, o ¢ die rechten Seiten von (1) und
(2) ein und erhalt nach langerer, aber einfacher Rechnung:

fra 0@ + fyyo¢ =

—~
&‘_;
o
<
~
3
<
B
AN
_|_
—~~
&‘_;
o
<
~
AY)
Q
o
wn
AN
N—
Il
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= COS<P'((fO¢)m~-Cos<p—(fo¢)w~sm“" + (fod)y .Smw)_
—S”;‘/’-((f0¢)r¢~c0mp (fod), sinp —
_(foqﬁ)sw'smw (fod)s- COW)
+Sin<,0-((fo¢)rr.smgo + (fod)r- % — (fod), .comp) n
+Cof<p'((f0¢)w~bln<p+(fo¢)r cos p +
+ (Fo Bpp - ¥ (fo¢)¢-“““")
1
= (fo@)r+ r(f ®)r + 2(f0¢)soso’

also

A 32+15+1 0
Cor2  ror 2o’

O
Mit dieser Methode kann man auch den Laplace-Operator im R? in Zylinder- oder
Kugelkoordinaten umrechnen:

Satz 9.3.10 (Laplace-Operator im R? in Zylinder- und Kugelkoordinaten ) Der

Laplace-Operator
0? 02 02
A =
0x? * Oy? + 022

ist in Zylinderkoordinaten
1_5(T8)+1. 0? +32.
r Or> Or’ 2 9p?2 022’
und in Kugelkoordinaten
1 0,6, 0 1 02 1 a . 0
' (ar(’" o) T 02 s 819(511“98190 '

r2

9.4 Lokale Extrema

Die Taylorsche Formel
Zunachst zeigen wir, wie man die Taylorsche Formel 6.2.6 auf Funktionen mehrerer
Variablen verallgemeinern kann.

Wir fiihren dazu einige Bezeichnungen ein: Es sei v := (v1,...,v,,) € Njj, dann
setzen wir
v i=v1+ ot vm, V=0l
und Y o
1 n
DUf = o
Ox] oxy'

Auflerdem benotigen wir den Begriff der konvexen Menge.
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Definition 9.4.1 Eine Menge D C R"™ heifit konvex, wenn gilt: Sind p,q € D, so
liegt auch die Verbindungsstrecke von p nach q in D; es ist also

(1—t)p+tq e D fiirallet € [0,1].

Nun geben wir die Taylorsche Formel an.

Satz 9.4.2 (Taylorsche Formel). Sei D C R" offen und konvex, sei k € N und f :
D — R eine (k + 1)-mal stetig differenzierbare Funktion. Sind dann x,x + £ € D,
so existiert ein 0 € [0, 1] mit

fat =Y D@ e+ Y Do) ¢

v
lv|<k lv|=k+1

Die Beweisidee besteht darin, dass man auf die Funktion g(t) := f(x + t£),t €
[0, 1], die Taylorformel 6.2.6 anwendet und die Ableitungen g(*)(t), v = 0, ..., k+1,
nach der Kettenregel ausrechnet.

Wir geben die Taylorsche Formel fiir n = 2, z = (0,0), k = 1 explizit an; es ist

b Feal060,06) € + oy (061,66) - 6182 + ) Fuu (661,668,

Lokale Extrema

Wenn man bei einer Funktion f(x) einer Variablen die Stellen sucht, an denen
lokale Extrema liegen, dann hat man als notwendige Bedingung f’(x) = 0. Ist
f'(x) = 0und f”(x) > 0, so besitzt f dort ein lokales Minimum. Diese Aussa-
gen sollen nun auf Funktionen von n Variablen uibertragen werden; wir beschranken
uns auf den Fall n = 2. Es ergibt sich als notwendige Bedingung: grad f = 0. Ist

2
dies erfiillt und ist zusétzlich die Hesse-Matrix ( 88 8fx ) positiv-definit, so liegt ein
J

lokales Minimum vor. Bei zwei Variablen treten also an Stelle von f/ und f” der
Gradient und die nach Hesse benannte Matrix der zweiten Ableitungen (LUDWIG
OTTO HESSE (1811-1874)).

Satz 9.4.3 Sei D C R? offen und f : D — R partiell differenzierbar. Wenn f in
p € D ein lokales Extremum besitzt, dann ist grad f(p) = 0.

Beweis. Sei p = (x0, yo); die Funktion x — f(x,yo)) hat in xo ein lokales Extre-
mum, daher ist g£ (z0,yo) = 0. Analog folgt gi (p)=0 O

Definition 9.4.4 Ist f : D — R zweimal stetig partiell differenzierbar, so heif3t
8%f  9%f
Hf A < 82](’ > _ ( 82w2 8y28:c>
’ . . o°f o°f :
61‘7‘8333 Oxdy 0Oy?

die Hesse-Matrix von f.
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In 7.10.11 hatten wir definiert: Eine symmetrische Matrix A € R(>2) heiBt positiv-
definit, wenn fiir alle z € R™, x # 0, gilt: (Az, 2) > 0. Nach 7.10.12 ist dies genau
dann der Fall, wenn alle Eigenwerte von A positiv sind. Es gilt:

Satz 9.4.5 Sei D C R? offen, f : D — R zweimal stetig partiell differenzierbar. In
einem Punkt p € D sei

grad f(p) =0 und Hy(p) positiv definit.
Dann besitzt f in p ein isoliertes lokales Minimum, d.h. es gibt eine Umgebung U
von pmit U C D, so dass fiir alle x € U, x # p, gilt: f(z) > f(p).

Beweis. Wir setzen a := grad f(p) und H := Hy(p). Aus der Taylorschen Formel
kann man herleiten, dass fiir hinreichend kleines £ € R™ gilt:

1
Flp+€) = F0) +{0,6) + , (HE &) + €lPr(€),
dabei ist r in einer Umgebung von 0 € R? definiert und %in%) r(&) = 0.

Ist A > 0 der kleinste Eigenwert von H, so gilt nach 7.10.10: (H¢, &) > X - ||€]]2.
Es gibt ein § > 0 mit [|r(&)[| < L fiir [|¢]| < 6. Fiir 0 < ||| < & ist dann

Flo+€) > 1)+ Il — el > f).
O

Beispiel 9.4.6 Sei f(z,y) := 23+ 22 + 52, dann ist grad f(z,y) = (322 + 2z, 2y)
und
6x+2 0
e = (%07 )).

Der Gradient verschwindet in den Punkten (0,0) und (-3, 0). Die Hesse-Matrix im
Nullpunkt ist ((2) g); sie ist positiv definit und daher besitzt f in (0,0) ein isoliertes
lokales Minimum. Im Punkt (— g, 0) ist die Hessematrix gleich (62 20); die Funk-
tion z — f(x,0) = 2 + 2 hat bei = — ein isoliertes lokales Maximum und
y f(—3,y) = o +y* hatbei y = 0 ein Minimum. Der Punkt (— 3, 0) ist also
ein Sattelpunkt.

S
)

b
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Lokale Extrema unter Nebenbedingungen.

Ist eine Funktion f : R? — R gegeben, so will man hiufig nicht die Extrema von
f in R? bestimmen, sondern die Extrema von f auf einer Menge {g = 0}, etwa auf
dem Rand des Einheitskreises {z% + y* — 1 = 0}. Man sagt kurz: man sucht die
Extrema von f unter der Nebenbedingung g = 0.

Definition 9.4.7 Sei D C R? offen, seien f : D — Rund g : D — R stetig partiell
differenzierbar; M := {x € D|g(x) = 0}. Man sagt, dass f in einem Punktp € M
ein lokales Maximum unter der Nebenbedingung {g = 0} besitzt, wenn es eine
Umgebung U von p in D gibt mit f(x) < f(p) fiiralle x € MNU; in naheliegender
Weise werden die Begriffe ,lokales Minimum “und ,lokales Extremum “unter {g =
0} definiert.

In der Abbildung sind Niveaumengen von f und die ,.Kurve “{g = 0} skizziert. Im
Punkt ¢ schneidet {g = 0} die Niveaumenge {f = —1}; in der Nihe von ¢ gibt
es auf {g = 0} Punkte mit f < —1 und Punkte mit f > —1; dort liegt also kein
lokales Extremum. Dagegen bertihren sich in p die Kurven {g = 0} und {f = 0};
dort hat man ein lokales Maximum unter der Nebenbedingung {g = 0} . Weil
sich die Kurven beriihren, weisen in p die Gradienten von f und ¢ in die gleiche
Richtung. Dies besagt der folgende Satz:

Satz 9.4.8 Fiir alle x € D sei grad g(z) # 0. Wenn f inp € M ein lokales

Extremum unter der Nebenbedingung {g = 0} besitzt, dann existiert ein A € R mit

grad f(p) = A - grad g(p).

Beweis. Es sei p = (¢, yo). Wir konnen annehmen, dass g, (p) # 0 ist. Nach dem
Satz liber implizite Funktionen konnen wir die Umgebung U von p so wahlen, dass
eine differenzierbare Funktion ¢ :Jxg — €, z¢ + £[— R existiert mit yo = ¢(x0),
(z,¢(z)) € U und

{(z,y) € Ulg(z,y) =0} = {(z,y) € Uly = ¢()}.
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Fiir |z — zo| < € ist g(z, ¢(x)) = 0 und daher

Die Funktion h :Jzg — €,20 + ¢[— R, 2 — f(z, p(x)), besitzt in z( ein lokales
Extremum, somit ist ' (o) = 0, also

fa(@o, o(w0)) + fy(zo, ¢(x0)) - ¢'(x0) = 0.

Es ist also
fa(p) + fy(p) - ¢ (20) = 0
92(p) + gy (p) - ¢'(20) = 0
und mit A := 5 ; g ; folgt die Behauptung. a

Beispiel 9.4.9 In 7.10.9 haben wir mit Methoden der linearen Algebra die Extrema
einer quadratischen Form g4 auf dem Rand des Einheitskreises Suntersucht; wir
behandeln dieses Problem nun mit Methoden der Differentialrechnung und wenden
9.4.8 an. Es sei A € R(?:2) eine symmetrische Matrix und

et _ 2 2
ga(ry, x2) = ' Ax = a1127 + 20122122 + ag275.

Wir setzen g(z1,22) := 23 + 23 — 1; dann ist S; = {z € R?| g(x) = 0}. Es sei
T = (f ;), wir schreiben nun auch die Gradienten als Spaltenvektoren. Es ist

201121 + 2a1222
2a12x1 + 209079

grad ga(x) = ( ) = 2Ax und grad g(z) = 2.

Auf der kompakten Menge S; nimmt ¢4 in einem Punkt p; € S; das Minimum
und in einem p, € S; das Maximum an. Daher existieren nach 9.4.8 reelle Zahlen
Aj,j=1,2,mitgrad f(p;) = A; - grad g(p;), also

Apj = )\jpj.

Wegen p; € S ist p; # 0, somit sind A1, Ao Eigenwerte und p;, p» Eigenvek-
toren. Wir haben also mit Methoden der Differentialrechnung die Existenz reeller
Eigenwerte der symmetrischen Matrix A € R(>2) hergeleitet. Es gilt

qa(pj) = pi(Ap;) = pi(Aips) = Niplp; = Aj.

Somit ist A; das Minimum von ¢ 4|57 und A2 das Maximum.
Wir behandeln nun mit diesen Methoden das Beispiel 7.10.13: Es sei also

i (37,

Dann sind folgende Gleichungen zu 16sen:
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51‘1 — 2.132 = )\Il
—2x1 + 229 = Ao
2?4+ 22 = 1.
Man erhilt die Punkte + \}5 (721) und + \}5 (;) : in den ersten beiden Punkten hat g 4
den Wert 6, in den anderen den Wert 1.

9.5 Kurven

Definition 9.5.1 Es sei I C R ein Intervall und X C R", eine stetige Abbildung
vl — X t— (21(t),...,z,(t)),
heif3t Kurve in X.

Es ist zweckmassig , y(t) = (z1(t),...,2n(t)) zu schreiben; bei einer Kurve im
R? schreiben wir auch (t) = (z(t),y(t)) und bei einer Kurve in C schreibt man
~v(t) = x(t) + ty(t). Die Kurve heift stetig oder auch stetig differenzierbar, wenn
die Funktionen 1, . . ., ,, die entsprechende Eigenschaft haben. Bei einer differen-
zierbaren Kurve setzt man §(t) := (21 (t) ..., 2% (t)); dabeiist &; := d(ftj .

Eine Kurve v : [a,b] — R™ heiBt stiickweise stetig differenzierbar, wenn es eine
Zerlegung a = tg < t; < ... < t, = b des Intervalls [a, b] gibt, so dass fiir
k=1,...,mjede Kurve v| [tx_1, tx] — R™ stetig differenzierbar ist.

Derartige Kurven treten als Randkurven eines Rechtecks oder auch eines Halbkrei-
ses auf.
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Definition 9.5.2 Ist v : [a,b] — R"™ eine stiickweise stetig differenzierbare Kurve,

so heif3t
/ ¢ o) s () - / ey at

die Lange von 7.

Definition 9.5.3 Zwei Kurven v : I — R™ und x : I > R» heifien dquivalent,
wenn es eine stetig differenzierbare bijektive Abbildung v : I — I gibt mit p(t) > 0
fiirt € I und

7= X069
 heif3t Parametertransformation.
Es gilt:

Satz 9.5.4 Wenn zwei stetig differenzierbare Kurven ~y und x dquivalent sind, dann
gilt: L, = L.

Beweis. Ist 7 = x o ¢, so folgt mit der Substitution u = ¢(t):

/ ()t = / (@)l p(0)dt = / I%(w)du = L
O

Nun seien v und x zwei Kurven; der Endpunkt von + sei gleich dem Anfangspunkt
von x. Dann kann man diese Kurven aneinanderhangen, man durchlauft zuerst -y
und dann y; auf diese Weise erhalt man eine Kurve, die man mit v + y bezeichnet.
Durch Ubergang zu dquivalenten Kurven kann man annehmen, dass beide in [0,1]
definiert sind.

Definition 9.5.5 Es seien~y : [0,1] — R™ und x : [0, 1] — R™ Kurven mit

(1) = x(0);

dann setzt man

.. 1
w+x:[0,1]—>R",tH{7(2t) fiir :

0
.. 1
x(2t—=1)  fir

<t<
<t<

Wenn man eine Kurve v in der entgegengesetzten Richtung durchlauft, so erhalt
man —v:
Definition 9.5.6 Ist v : [0,1] — R™ eine Kurve, so setzt man

—v:[0,1] = R, t — (1 —¢t).

An Stelle von vy + (—x) schreibt man v — x.
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In einem Gebiet kann man zwei Punkte immer durch eine stiickweise stetig diffe-
renzierbare Kurve verbinden :

Satz 9.5.7 Ist G C R"” ein Gebiet, so existiert zu je zwei Punkten p,q € G eine
stiickweise stetig differenzierbare Kurve 7y : [a,b] — G mit y(a) = p, v(b) = q.

Definition 9.5.8 Eine stetig differenzierbare Kurve v : I — R" heifit regulir,
wenn ¥(t) # 0 fiir alle t € I ist; dann heif3t

1
T(t):= .
@l
der Tangentenvektor zu t € I; man hat also T : I — R",t +— Iw(lt)\l F(t).
Man sagt, v ist nach der Bogenlinge parametrisiert, wenn fiir alle t € I gilt:

@l = 1.

Bei einer nach der Bogenldnge parametrisierten Kurve v : [a,b] — R™ ist also
4 =Tund L, =b— a.

Man kann durch Ubergang zu einer fquivalenten Kurve immer die Parametrisierung
nach der Bogenlange erreichen:

y(t)

Satz 9.5.9 Zu jeder reguliren Kurve v : [a,b] — R"™ existiert eine dquivalente
Kurve x, die nach der Bogenldnge parametrisiert ist.

Beweis. Fiir die Abbildung

52 [ab] — [0, L), t e / () dz

gilt $(¢) = ||¥(¢)]| > 0 und s(a) =0, s(b) = L; daher ist sie bijektiv .
Ist o : [0,L,] — [a,b],u — ¢(u), die Umkehrabbildung und setzt man t = ¢(u),
so gilt nach 3.3.5:

de (u) = 1

du @I

Nun definiert man x := 7 o ¢, dann ist

N = 1w =500 - Py = 1

du' T du du' T AN

Daher ist x aquivalent zu v und hat Parameter Bogenlange. a
Der Tangentenvektor einer reguliren Kurve hat die Linge 1; die Anderung von T'
ist also eine Richtungsanderung; man stellt sich vor, dass diese um so grosser ist, je
mehr die Kurve gekriimmt ist. Dies fiihrt zu folgender Definition:

Definition 9.5.10 Ist v : I — R" eine reguldre Kurve mit Parameter Bogenlinge,
so heifit )
k:IT =Rt ||T@)],

die Kriimmung .
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Beispiel 9.5.11 Wir betrachten den Kreis mit Radius » > 0:
v :[0,27] = R% t s (r - cost,r - sint).

Es ist
A(t) = (—r - sint,r-cost) und |[|4(t)]] =7

Die Kurve ist regular hat aber fiir 7 # 1 nicht Parameter Bogenlange.
Die Linge ist L, = f r-dt = 2rm und es ist s( f r-dz = r-t. Die dquivalente
0

Kurve mit Parameter Bogenlange ist dann
S .S
X :[0,2r7] — R? s+ (r-cos ,r-sin’ )
r r

und man erhalt

Beispiel 9.5.12 Fiir > 0, A > 0 erhilt man die Schraubenlinie

v :10,2n] — R3 ¢+ (r - cost, r-sint, h-t).

4(t) = (—r-sint,r-cost,h), |(t)] = V12 +h2, L, =217+ h2.

Wir setzen o := /12 + h2: die Schraubenlinie mit Parameter Bogenlange ist

h
XI[O,Q?TQ}—>R3,S|—>(T~COSS,T'Sins, - 8);
0 0
dann ergibt sich
T(s)= (- sin ®, "eos*, M), Ts) = ( " sin®, 0)
s)=(— sin , cos , ), s)=(— ,cos , — _sin ,
o 00 00 P20 0o

die Kriimmung ist konstant, namlich x(s) = Tzi B2

Beispiel 9.5.13 Wir bringen einige Beispiele von Kurven, die schon vor Jahrhun-
derten eingehend untersucht wurden: die Archimedische Spirale, die Neilsche Para-
bel und die Zykloide, die so definiert sind:

Archimedische Spirale at) = (t-cost, t-sint)
Neilsche Parabel Bt) = (£, t3)
Zykloide ~v(t) = (t —sint, 1 — cost)
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A A

).
N

v

/

ArchimedischeSpirale NeilscheParabel

Auf die Zykloide wollen wir ausfiihrlicher eingehen; sie entsteht folgendermassen:
Wenn eine Kreisscheibe vom Radius 1 entlang der x-Achse abrollt, so beschreibt ein
Punkt, der auf dem Kreisrand liegt, eine Zykloide. Falls der Punkt vom Mittelpunkt
des Kreises einen Abstand a hat, wird die Kurve durch

Ya(t) = (t —asint, 1 —acost)

gegeben. Fir a < 1 liegt der Punkt im Innern des Kreises, auf einer Speiche des
Rades; fiir a > 1 liegt er auflerhalb.

A

2m  Zykloide a=1

U Zykloide U a>1 ]

Zykloide a<l1

Die Zykloide ist in mehrfacher Hinsicht interessant. Sie wurde von Christian Huy-
gens zur Herstellung eines Pendels verwendet, dessen Schwingungsdauer nicht von
der Amplitude abhingt; daher wird sie auch als Tautochrone bezeichnet. Die Zy-
kloide heilit auch Brachystochrone, also Kurve kiirzester Laufzeit. Johann Bernoulli
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stellte 1696 die folgende Aufgabe: Ein Massenpunkt bewegt sich unter dem Ein-
fluss der Schwerkraft auf einer Kurve vom Nullpunkt O zu einem tiefer gelegenen
Punkt p. Fiir welche Kurve ist die Laufzeit am kiirzesten ? Die von Bernoulli, New-
ton und Leibniz gefundene Losung ist eine Zykloide

c

t— (;(t—sint) '~

(1 — cost)); c>0

9.6 Vektorfelder, Divergenz und Rotation
Wir behandeln in diesem Abschnitt Vektorfelder v auf einer offenen Menge U im
R™. Insbesondere werden Bedingungen hergeleitet, wann v ein Potential h besitzt.

Definition 9.6.1 Eine auf einer offenen Menge U C R™ definierte stetig partiell
differenzierbare Abbildung

v:U — Rn, xTr — ('Ul((E), ...,'Un(fﬂ)),

heifit Vektorfeld auf U.
Unter einem Potential h von v versteht man eine zweimal stetig partiell differen-
zierbare Funktion h : U — R mit v = grad h, also v; = gﬂ? firi=1,...,n.

Eine notwendige Bedingung fiir die Existenz eines Potentials ist:

Satz 9.6.2 Wenn v ein Potential h besitzt, dann gilt fiiri,j =1, ...,n:

81}1 o a'l)j
81‘]‘ 81‘1
Beweis. Esist .97 = 9 y,und ;9" = 2 yiaus ;20 = 9t folotdie
. Oz;0m; — Oz Vi Oz;0x; — 0z; V30 AUS 9g00, = Ow,0m; 108
Behauptung. O

Nun fithren wir den Begriff des Kurvenintegrals von v langs einer Kurve +y ein.
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Definition 9.6.3 Ist v : U — R",z — (v1(x),...,v,(x)), ein Vektorfeld und
v:la,b] = U, t (x1(t), ..., s (t)), eine stiickweise stetig differenzierbare Kurve
in U, so heift

b n b
/vds ::/Zvj(’y(t))-d(ij (t) dt:/<v(7(t)), 4(t) > dt.

v a J=1
das Kurvenintegral von v lings ~.
Es gilt:

Satz 9.6.4 Wenn v ein Potential h besitzt, dann gilt fiir jede stiickweise stetig diffe-
renzierbare Kurve v in U:

[ v as=her) - hir(@).

Y

Falls ~ geschlossen ist, gilt

/vds:().

v

Beweis. Esist {\h(y(t)) = Z 59;’_ (y(t)) - &;(t)dt = > vj(y(¢)) - &;(t) dt und
=1 " j=1
daherist [vds = ho~[b. i

5
Nun zeigen wir, dass die in 9.6.2 angegebene Bedingung 357 =

zwar notwendig, aber nicht hinreichend ist.

gZ’ fiir die Existenz
Beispiel 9.6.5 In U := R?\ {(0,0)} sei

V($7y) = Y ) N .
.’E2 + y2 .’E2 + y2

A

®
*

A3
y AN
\If4
Ve

> «

-
P
/5;

>
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%’il = %”2 , aber v besitzt kein Potential: Es ist
y z

0 —y B y? — 22 0 x B y? — 22
oy \z2+y?2) (224y?)? Oz \22+y?) (22+y»)?

Nun sei v : [0,27] — U, t +— (cost,sint),dann ist

Wir zeigen: Es gilt

27
—sint cost
/vds:/ .o - (—sint) + . o, -cost| dt = 2m.
cos?t +sin“t cos?t +sin“ t
v 0

Wenn v ein Potential besitzen wiirde, dann ware nach 9.6.4 dieses Kurvenintegral
gleich 0. Wir gehen in 9.6.16 nochmals auf dieses Beispiel ein.

Man wird vermuten, dass bei diesem Beispiel das ,,Loch“, das U besitzt, eine Rolle
spielt. Gebiete ohne ,,Locher* sind zum Beispiel die sternformigen Gebiete:

Definition 9.6.6 Eine offene Menge U C R™ heifst sternformig beziiglichp € D,
wenn fiir jedes q € U die Verbindungsstrecke von p nach q in U liegt, also

(I1-t)p+tqeU firallet € [0,1].

Die Kurve v : [0,1] — R™, ¢ — (1 — t)p + tq, durchlduft die Strecke von p nach ¢

und wir setzen
q
p ¥

Ist U sternformig beziiglich O und ist v : U — R"™ ein Vektorfeld, so gilt nach 9.6.4:
Wenn v ein Potential i besitzt (wir diirfen 2(0) = 0 annehmen), so gilt :

x

h(z) = / vds.

0

Die Kurve von O nach z € U ist v : [0,1] — U,t — tx = (tx1,...,tx,), und

daher gilt:
T 1

/vds = /ij -, (tz) dt.
0 0 J=t

Nun ist klar, wie man die Existenz eines Potentials auf sternformigen Gebieten be-
weist. Man definiert h durch diesen Ausdruck und zeigt:

Satz 9.6.7 Istv : U — R"™ ein Vektorfeld auf dem beziiglich 0 sternformigen Gebiet
U C R" und gilt

Vg .
= fiir 1,7 =1,...,n,
"y
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so besitzt v ein Potential h : U — R, ndmlich
n 1
h(z) = ij /vj (tx) dt.
0

Jj=1

Beweis. Es gelten die beiden Gleichungen

zj - g;; (tz) - t

e

1

o, (é%%‘(@) = vi(tzr) +

gt (tvi(m)) = v;(tz) +

J

t - g;)y (tz) - z;.

e

j=1

Wegen gz? = g? sind die rechten Seiten gleich und es folgt:
Z 5 Lq

(%) aii zn:xjvj(tar) :ii(tvi(tx))

Nun differenzieren wir nach 9.2.16 unter dem Integral und berticksichtigen (*); da-
mit ergibt sich:

1 n 1
(%)
gfi (z) = J 8% (Z asjvj(ta:)> dt = ofgt (tw(tm)) dt =

Il
~+
&
—~
o~
8
~—
o

Il
<
N
—~
8
~

Wir werden diese Aussage im Kalkiil der Differentialformen nochmals beweisen
(Satz 11.3.20 und Satz 11.5.5).
Kurz zusammengefafit besagen die Satze 9.6.2 und 9.6.7:

Die Bedingung gz? = g;’: ist notwendig fiir die Existenz eines Potentials,
Z ;5 i

auf sternformigen Gebieten ist sie auch hinreichend.
Wir wollen noch erldutern, wie man im Fall n = 2 ein Potential explizit angeben
kann.

Beispiel 9.6.8 Es sei U C R? ein offenes Rechteck und v ein Vektorfeld, das wir
jetzt so schreiben:

v:U— R2, (l',y) = (f(xay)hg(xay))’

es gelte gi = gi . Zuerst bestimmt man eine Stammfunktion F' von f beziiglich z,

also eine zweimal stetig differenzierbare Funktion ' : U — R mit ‘?95 = f. Dann
macht man fiir das gesuchte Potential h den Ansatz



9.6 Vektorfelder, Divergenz und Rotation 267

h(z,y) = F(z,y) + ¢(y),

wobei ¢ nur von y abhangen soll. Dann ist g_}; = %_’; = f und ¢ soll so gewahlt

werden, daR gZ = g ist, also g(z,y) = %‘Z (x,y) + ¢ (y) oder

¢ ) = slo) = (@)

Daraus berechnet man ¢. Der Ausdruck g — %5 hangt nur von y und nicht von x
ab, denn es ist

8( 8F> dg 0°F 9g Of

or \7 dy or Jxdy ~or dy

Ist etwa v(z,y) := (2zy, 2% + 2y), so kann man F(z,y) := 2%y setzen. Dann ist
o' (y) = (2 +2y) — (,)ay(aﬂy) = 2y und man kann o(y) = y? wihlen. Dann ist
h(x,y) = 2%y + y? ein Potential.

Divergenz und Rotation

Bei einem Vektorfeld kann man die Divergenz bilden; man interpretiert sie als Quel-
lenstirke der durch das Vektorfeld gegebenen Stromung. Im R? hat man auch noch
die Rotation, mit der man die Wirbelstarke eines Vektorfeldes beschreibt.

Definition 9.6.9 Ist U C R" offenund v : U — R™, x — (vi(x),...,v,(x)), ein
Vektorfeld, so heifit die Funktion

6’01

. Ovy,
81'1

(z) + oz,

divv:U—R, x+— (z),
die Divergenz von v. Ein Vektorfeld heif3t quellenfrei, wenn div v =0 ist.
IstU C R3 offenund v : U — R3, 2 — (v1(x),v2(x),v3()) ein Vektorfeld, so

heifst das durch
( 81}3 81}2 8’01 8’03 8’02 81}1 )
rotv :=

83:2 81’3 ’ 81’3 31’1 ’ 83:1 B 83:2
definierte Vektorfeld rot v : U — R? die Rotation von v. Ein Vektorfeld heifst
wirbelfrei, wenn rot v =10 ist.

Es ist zweckmassig, nun zwei Differentialoperatoren einzufiihren: den Nabla-Ope-
rator V und den Laplace-Operator A. Mit Hilfe des Nabla-Operators kann man die
Begriffe grad, div, rot einheitlich formulieren (vgl. dazu auch 13.4 und 11.5).

Definition 9.6.10 Man bezeichnet den (symbolischen) Vektor

0 0
Vi (o)
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als Nabla-Operator und interpretiert ihn so: Fiir eine differenzierbare Funktion
f:U—=RmitU C R™ setzt man

Vf:z(af 3f>: grad f.

ox1’ 7 Oxy,
Ist v ein Vektorfeld in U C R", so interpretiert man Vv als Skalarprodukt und setzt

ov Ovy, .
Vv = C=d .
A% Oz + ...+ . WV
Im R3 kann man auch das Vektorprodukt bilden: Ist U C R? und v : U — R3, so
setzt man setzt

<8v3 8@2 8@1 8v3 8v2 8v1>
V Xxv:= _

8$2 6x3’ 6x3 8$17 8$1 8$2

= rotv.
Der Differentialoperator
82 32

o2 T T oy

n

AN =

heifit der Laplace-Operator. Es ist also

o2 f o2 f
BF = paz o pg2

Eine zweimal stetig differenzierbare Funktion f heifst harmonisch, wenn gilt:

o2 f o2 f
Af = pa2 t et o =0

Harmonische Funktionen werden wir in 14.14 behandeln.

Vektorfelder im R?
Wir wollen zunachst die Bedeutung von div und rot etwas veranschaulichen.

Beispiel 9.6.11 Beim Vektorfeld v(z) := 2 weisen die Vektoren vom Nullpunkt
weg und vermitteln den Eindruck einer im Nullpunkt liegenden Quelle. Es ist, wie
man leicht nachrechnet:

divv = 3, rot v = 0.
Das Vektorfeld w := (—x2, z1,0) beschreibt eine Rotation um 0 und es ist

div w =0, rotw = (0,0, 2).
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Die Satze 9.6.2 und 9.6.7 besagen:
Wenn das Vektorfeld v : U — R3 ein Potential besitzt, dann ist rot v = 0. Wenn U
sternformig ist und rot v = 0 gilt, dann besitzt v ein Potential.

Es gelten folgende Rechenregeln:

Satz 9.6.12 Ist U C R? offen, so gilt fiir jede zweimal stetig differenzierbare Funk-
tion f und jedes Vektorfeld v auf U :

rot (grad f) = 0, also Vx (Vf)= 0

div (rotv) = 0, also  V(Vxv)= 0

div (grad f) =N f, also VIV =AFf
Ein Gradientenfeld v = grad f ist also immer wirbelfrei; es ist genau dann quel-
lenfrei, wenn f harmonisch ist.

Diese Aussagen rechnet man leicht nach; man benutzt dabei, dass man die Rei-
henfolge der Ableitungen vertauschen kann. Wir behandeln dies im allgemeineren
Rahmen nochmals in 13.4 und in 11.5.

Wir geben nun weitere Beispiele an:

Beispiel 9.6.13 (Lineare Vektorfelder) Einfache Beispiele liefern die linearen
Vektorfelder. Sei A € R®3) und v(z) := Az. Dann ist

div v = a11 + a2 + ass, rot v = (asz — a3, a13 — asi, a1 — G12).

Spezielle lineare Vektorfelder erhilt man durch das Vektorprodukt: Ist w € R3 und
definiert man v(z) := w X x, so ist

0 —Wws3 w2
w X xr = w3 0 —wy | ©
— W2 w1 0
und daher
div v =0, rot v = 2w.

Der Vektor w x z steht senkrecht auf w und auf x; dieses Vektorfeld v(z) = w x
beschreibt eine Drehung um die durch w gegebene Drehachse, man interpretiert
|lw|| als Winkelgeschwindigkeit.

Eine weitere Klasse von Beispielen sind die folgenden:
Beispiel 9.6.14 Wir behandeln Vektorfelder der Form
v (z) = g((lz])) - @,

dabei ist g eine stetig differenzierbare Funktion. Zunachst rechnet man nach:

fir r(z):=|z||, ze€ R3 \ {0}, ist gradr(z)= Hi”
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Nun macht man fiir das gesuchte Potential & den Ansatz grad h(r) = g(r) - z, also
h'(r)- ¥ = g(r) -z und somit &' (r) = r-g(r). Wihlt man h als Stammfunktion von
r - g(r), so ist die Funktion 2 — h(||z||) ein Potential zum Vektorfeld g(||z||) - .
Damit kann man nun die Vektorfelder

v(z) = |z|F-2 firz e R®\ {0}, k€ Z

behandeln. Es ist g(r) = r* und fiir k # —2 ist h(r) = ’;:_:22, fir k = —2 wibhlt

man h(r) = In r. Damit erhilt man: Fiir k € Z und z € R3 \ {0} gilt:

1 .

ein Potential zu  ||z||¥ - > st |lz||*+2, falls &k # —2,

k+2
ein Potential zu TR In ||z]|.
Insbesondere ist also
grad (Jall?) = =, grad (lef) = 7.
grad (Infz]) =%, grad (=) = .-
Firalle k € Z und z € R3 \ {0} gilt :
rot ([lz]|* - z) = 0, div ([|z[|* - ) = (k +3) - [|=[|*.

Beispiel 9.6.15 Die Sonne mit der Masse M befinde sich im Nullpunkt, ein Planet
mit der Masse 1 sei an der Stelle z. Die Anziehungskraft ist dann ﬁ;‘\ﬁ, dabei ist
g die Gravitationskonstante. Die auf den Planeten wirkende Kraft wird also durch
einen Einheitsvektor — H;H multipiziert mit der Anziehungskraft dargestellt. Man
erhalt somit das Vektorfeld

T

v(z) = —gM :
[

ein Potential dazu ist das Gravitationspotential V' (x) = ﬁ%

Beispiel 9.6.16 Wir gehen nochmals auf das Vektorfeld v(x, y) := (xzjrny , xZ—T-yQ )

ein, das wir in 9.6.5 untersucht haben. Nach Satz 9.6.7 besitzt dieses Vektorfeld,
wenn man es auf einer sternformigen Menge U betrachtet, ein Potential. Setzt man
etwa

U= {(z,y) € R?| z > 0},

sokannman , Y Y. 1t (1y )2 schreiben. Eine Stammfunktion beztiglich x ist

224y2 g2
arctg? und

¢:U—-R, (z,y) — arctg ¥
x
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ist ein Potential zu v|U.

Die physikalische Bedeutung dieses Vektorfeldes ist folgende: Ein Strom, der in
einem in der z-Achse liegenden Draht fliesst, erzeugt auserhalb des Drahtes, also
in {(z,y,2) € R (z,y) # (0,0)}, ein Magnetfeld H; bis auf einen konstanten

Faktor ist
—y T
H ) = ) ) 0].
O )
Aufgaben
9.1. Sei

B2 L Ew o g (zy) #(0,0)
AR {3 fir (2.9) = (0.0)

Man untersuche, ob f im Nullpunkt stetig, partiell differenzierbar, stetig partiell differenzier-
bar, (total) differenzierbar ist.

9.2. Untersuchen Sie analog wie in 9.1 die Funktion

202y?

f : R2 — R (x y) — 2442 fiir (xvy) # (070)
T 0 fir (z,y) = (0,0)
9.3. Sei L.
PR R () e 4 e i (zy) #(0,0)
o 0 fiir (,y) = (0,0)
Zeigen Sie:
o of 0 of
oy aI(O, ) # o ay(o»o)

9.4. Man gebe jeweils ein Potential h zu v an (falls es existiert):

) v:R? SR (z,y) o (22, ¥ - 3y°)

b) VZR2_}R2? (:E,y)i—>(3xy, 1‘2—3?/2)

) v:R? = R? (z,y) — (ye +eY, ze™ + ze¥)

d)  v:R* =R (z,y,2) — (2zy + 2z, 22 + 2%, z + 2y2)
9.5. Berechnen Sie die Lange L. der Zykloide

v:[0,2n] = R, t s (t —sint, 1 —cost).

(Zeigen Sie: /2 — 2 cost = 2sin } fiir 0 < ¢ < 27.)

9.6. Seiv : R* — R? (z,y) — (z —y, T +y);berechnen Sie [ vds fiir folgende Kurven:
Y

a) v:[0,21] = R? tws (rcost,rsint).
b) v:[0,1] —R? tws (¢, t),
¢) v:[0,1] — Rt (¢, t7).

9.7.Sei v : R? — R? (z,y) — (3% — 3y® — 3, —6zy). Untersuchen Sie, ob v ein
Potential h besitzt und berechnen Sie [ vds fiir die in Aufgabe 9.6 angegebenen Kurven.
v
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Das Lebesgue-Integral

10.1 Definition des Lebesgue-Integrals in R™

Das Riemann-Integral

Die Bedeutung der Integration wie wir sie in Kapitel 5 kennengelernt haben, liegt
zum einen im Ausmessen wenigstens teilweise krummlinig berandeter Flachen, zum
anderen in der Umkehrung der Differentiation. Die letzte Operation kann man auch
anders charakterisieren. | ; f(x)dz wird in einen Ausdruck umgewandelt, der aus
dem ,Randterm“F(b) — F(a) besteht. Es ist ein wichtiges Anliegen dieses Bu-
ches, beide Gesichtspunkte in mehrdimensionalen Bereichen weiterzuverfolgen.
Beim ersten Gesichtspunkt geht es um Volumenmessung ,unterhalb des Graphen
einer Funktion™ wie in Kapitel 5. Wir befassen uns zunachst mit diesem geometri-

schen Aspekt. Sei I = {z = (21,...,2n)]a1 < 21 < b1,...,an < xp < by}
ein abgeschlossener Quader des R™. Wir zerlegen ihn in abgeschlossene Quader
Ly . v,,vi=1,...,Ny,...,v, =1,..., N,, deren Konstruktion aus der folgen-

den Skizze klar wird.

Die I,, ..., uberlappen sich also nicht. Legt man das Volumen eines Quaders durch
p(I) = (by —ar) ... (b — an)

fest, so ist
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Das weitere Vorgehen ist nun ganz dhnlich dem in Kapitel 5. Bezeichnen wir die
Zerlegung von [ in die [,,, ., mit Z, so definieren wir fiir eine beschrankte Funk-
tion f : I — R die Untersumme S ;(f) und die Obersumme Sz (f) durch

Ni,....,Nn
S,(f)= Z Mouy..vm WLy p,) mitmy, = inf{f(x)|x € I, .,}

V1 Un=1

Sz(f) = Z My, .y Ly 0,) it My, o, i=sup{f(z)|z € I, ., }

ViyeoyVn=1

Istm = inf{f(z)| x € I}, M = sup{f(z)| « € I}, so haben wir

mu(l) < Sz(f) <Sz(f) < Mu(I).

Wenn Z(I) die Menge aller Zerlegungen von I bezeichnet, so existieren wieder das
Unterintegral

U(f) = sup{S5(f)| Z € 2(I)}
und das Oberintegral

O(f) = inf{Sz ()| Z € Z(I)}.

Die beschrankte Funktion f : I — R heifit nun wieder (Riemann-) integrierbar,
wenn U(f) = O(f) istund man setzt

/I fda = / f(z)dz = U(f) = O(f).

Das Integral mif3t dann wieder das Volumen, das im R™*! {iber I ,unterhalb des
Graphen {(x, f(x))| = € I} liegt, jedoch heben sich Teile, in denen f positiv
ist, mit solchen, in denen f negativ ist, teilweise oder ganz auf. Darauf kommen
wir spater im Zusammenhang mit dem Lebesgue-Integral zuriick. Durch weitere
Unterteilung der [,, . gewinnt man eine Verfeinerung der Zerlegung Z, es gilt
Hilfssatz 5.1.2 und damit das Riemannsche Integrabilitatskriterium aus Satz 5.1.4.
Wie in Kapitel 5 zeigt man, dass auf dem R-Vektrorraum R(I) der beschrink-
ten Riemann-integrierbaren Funktionen das Riemann-Integral eine positive Line-
arform darstellt (Hilfssatz 5.1.5). Positiv heifit, dass aus f < g, f,g € R(I),
auch [, f ; flr)dr < [, 9( 7 9(x)dz folgt. Wie in 5 zeigt man, dass jede stetige Funktion
fin R(I ) hegt Durch Aufspaltung einer komplexwertigen beschrankten Funkti-
on f : I — C in ihren Real- und Imaginarteil konnen wir das Riemann-Integral
auch fiir komplexwertige Funktionen erkliren und erhalten so den C-Vektorraum
R(I). Er ist gegen Multiplikationen abgeschlossen, d.h. mit f,g € R(I) ist auch

f-g€RU).
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Das Lebesgue-Integral
Wir wollen nun den Vektorraum R(I) in einen groBeren Raum von Funktio-
nen einbetten. Um die Griinde zu erkliaren, missen wir etwas weiter ausholen
und beginnen mit der Frage nach der Vertauschbarkeit des Riemann-Integrals mit
Grenziibergédngen. Sei (f,,) eine Folge beschrankter Funktionen I — R, die dort
gleichmiBig gegen ein f : I — R konvergiert. Sind die f, € R(I), so ist auch
f€R(I)und

lim [ f,(2)dz = /f(x)da:,

V—00 I I
d.h. man darf Grenzwertbildung mit der Integration vertauschen. Die Forderung der
gleichmaBigen Konvergenz ist sehr stark. Will man sie durch eine schwachere, etwa
durch punktweise Konvergenz, ersetzen, so benotigt man Zusatzeigenschaften der
Folge (f,). Insbesondere muf} die Grenzfunktion f auch in R(I) liegen. Dies ist
eine Folge der fehlenden Vollstindigkeit von R(I), d.h.: Ahnlich wie die Grenz-
wertbildung aus den rationalen Zahlen Q herausfiihrt, tut sie dies bei R(I). Man
wird daher, dhnlich zur Einbettung von Q in den vollstandigen Korper der reellen
Zahlen R, R(I) in einen groBeren Vektorraum L, () einbetten, dessen Elemen-
te wir als die integrierbaren Funktionen bezeichnen werden. L1 (I) ist vollsténdig.
Die Vollstiandigkeit der Raume integrierbarer Funktionen hat die moderne Analysis
und Funktionalanalysis liberhaupt erst ermoglicht. Wir werden dies im Laufe dieses
Kapitels noch sehen, einen ersten Eindruck vermittelt aber bereits 10.4. Unser Aus-
gangspunkt , die Vertauschbarkeit von Grenziibergang und Integration, 1aft sich in
L1 (I) ebenfalls befriedigender behandeln als in R(I).
Bei der Einfiihrung des Lebesgue-Integrals richten wir uns nach [27], Kap. II.
Wir fithren zunachst einige weitere Bezeichnungen ein: Folgende Teilmengen des
R"™ bezeichnet man ebenfalls als Quader:

I = {(z1,...,2n) €ER a1 <z1 <b1,..., ap < zp < by}
I = {(z1,...,2n) ER a1 <1 <by,..., ap < zp <b,}
I = {(z1,...,20) ER" a1 <1 <b1,..., ap < zp < by}

Das Volumen p(I) eines Quaders wird auch hier definiert durch
wl):=(br—a1) ... (bp —ay).

Ein wichtiger Begriff der Lebesgue-Theorie ist der der Lebesgue-Nullmenge:

Definition 10.1.1 (Lebesgue-Nullmenge) Eine Menge N C R"™ heifst Lebesgue-
Nullmenge ( oder kurz Nullmenge ), wenn es zu jedem ¢ > 0 eine Folge von
Quadern (Ii)ken gibt mit

N C U I, und Zu([k) <e.
k=1 k=1
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Satz 10.1.2 Die Vereinigung abzdhlbar vieler Lebesgue-Nullmengen ist wieder eine
Lebesgue-Nullmenge.

oo

Beweis. Fiir j € N sei IV; eine Lebesgue-Nullmenge und NV := U N;. Nun sei
j=1

€ > 0 vorgegeben. Weil N; eine Lebesgue-Nullmenge ist, gibt es Quader I, ; mit

o0 o0 €
Nj C U Ik,j und ZM(IICJ) < 9"
k=1 k=1

Dann ist

O

Beispiel 10.1.3 Einpunktige Mengen {p} mit p € R™ sind offensichtlich Lebesgue-
Nullmengen; daher sind auch alle abzdhlbaren Teilmengen des R"™ Lebesgue-
Nullmengen, zum Beispiel Q™. Ebenso sind die Seiten und Kanten von Quadern
Lebesgue-Nullmengen.

Wir kommen nun zum Begriff ,fast tiberall, abgekiirzt ,f. i.“, das soll bedeuten,
dass etwas bis auf eine Lebesgue-Nullmenge gilt. Dies wird folgendermassen prazi-
siert:

Definition 10.1.4 Es sei I ein Quader und N eine Lebesgue-Nullmenge, N C I C
R™ Ist dann f : I\N — R eine Funktion, so sagt man, | sei fast-iiberall in I
definiert und schreibt:

f:I—Rfii.

Sind f und g zwei derartige Funktionen, so sagt man

=g fi,
wenn eine Lebesgue-Nullmenge N in I existiert, so dass fundginl \]v definiert
sind und fiir alle x € I\N gilt: f(x) = g(z).
Analog ist

f<g fii

definiert.

Definition 10.1.5 Fiir j € N sei f; : I — R f ii. definiert. Es existiere eine

Lebesgue-Nullmenge N € I, so das fiir jedes x € I\N die Folge (f;(x)); kon-

vergiert. Setzt man f(x) := lim f;(x) fiirx € I\N, soist f : I — Rf ii. in I
j—»OO
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definiert und man sagt, dass die Folge (f;); f. ii. in I gegen f konvergiert; dafiir
schreibt man auch

f= lim f; fi.inl.
j—o0
Mit Hilfe von Treppenfunktionen kommen wir nun zum Begriff des Lebesgue-
integrierbaren Funktionen.

Definition 10.1.6 (Treppenfunktion) Eine Funktion ¢ : I — R auf einem Quader
I C R™ heifit Treppenfunktion, wenn es endlich viele Quader I, ..., 1. C I gibt
und cy, . .., c. € Rmitfolgenden Eigenschaften:

(1) Fiirj # kst I; 0 [y=10

(2) auf jedem }j ist  konstant: | ;j: cj

(3) ausserhalb U I ist o = 0.

Jj=1

Man setzt dann

/goda: = ch,u(fj)
I =

Definition 10.1.7 Sei f : I — R . ii. erkldrt. Wir setzen

fH(z) = max(f(2),0)  f~(2) = max(—f(z),0).
Dann ist
f=r—=, fl=f"+f".
fT, f~ nennt man auch Positiv- und Negativteil von f.

Definition 10.1.8 Eine Funktion f : I — R heifit meBbar, wenn es eine Folge von
Treppenfunktionen von I in R gibt, die f. ii. in I gegen f konvergiert. Die Menge der
mefibaren Funktionen auf I bezeichnen wir mit

M(I).

Bemerkung. Man kann zeigen, dass eine Funktion f : I — R genau dann meBbar
ist, wenn es f. . erklarte g, h : I — R gibt derart, dass f = g — histund zu g, h
jeweils eine Folge von Treppenfunktionen (¢;);, (1;); existiert mit

©j < @j+1, Vi < Yjp, lim g =g foi., lim ¢; = h f.a.
j—o0 j—o0
Man konnte versucht sein, g, h durch fT, f~ zu ersetzen, doch ist dies nicht

moglich. Es gelten aber fur |f|, f*, f~ die folgenden Formeln, wenn wieder
f=g—hist
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|f‘ = max(gvh) - min(gvh)a er = max(g,h) —h= g— min(gvh)a

[~ =max(g,h) — g =h —min(g, h).

Da max(¢j, 1), min(p;, ;) ebenfalls monotone Folgen von Treppenfunktionen
sind, sind | f|, fT, f~ insbesondere meBbar.

Der Raum M (I) der meBbaren Funktionen ist ein Vektorraum, der gegen Maximum-
und Minimumbildung endlich vieler Funktionen, f. ii. Konvergenz und Multiplika-
tion abgeschlossen ist; d.h. diese Operationen fiihren nicht aus M (I) heraus. Ist
g € M(I)und g(x) # O fiir z € I, so ist auch ; € M(I). M(I) ist sehr groB,
d.h. es ist schwierig, eine Funktion zu konstruieren, die nicht in M (I) liegt. Fiir
praktische Zwecke ist es vollig ausreichend, davon auszugehen, dass jede Funkti-
on in M (I) liegt. Aus M (I) werden nun die Lebesgue-integrierbaren Funktionen
herausgefiltert.

Definition 10.1.9 Ist f : [ — R eine Funktion, so sagt man
feLt (),

wenn es eine Folge (p;); von Treppenfunktionen p; : I — R gibt mit folgenden
Eigenschaften

(1) ¢ < it f i,
(2) lim @; = f f.ii.,
j—00
(3) es gibt ein M > 0 mit [, ¢;dx < M fiir alle j € N.

Man setzt dann
/ fdx = lim | ¢dz.
I I

Jj—oo
Kurz zusammengefasst:

Eine Funktion f ist genau dann in L*(I), wenn sie Grenzwert ( f. ii. )
einer monoton wachsenden Folge von Treppenfunktionen mit beschrankter
Integralfolge ist; die Integralfolge konvergiert, weil sie monoton wachsend
und beschrankt ist.

Nun kommen wir zum Grundbegriff dieser Theorie, dem Lebesgue-Integral (HENRI
LEBESGUE (1875-1941))

Definition 10.1.10 Eine Funktion f : I — R heifst Lebesgue-integrierbar, wenn
es Funktionen g, h,€ L™ (I) gibt mit f = g — h; man setzt

/Ifdac :z/lgdac—/lhdm.

Der Wert des Integrals ist unabhdngig von der Zerlegung f = g — h.
Die Menge der Lebesgue-integrierbaren Funktionen bezeichnet man mit L(I).
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Man zeigt nun:
Satz 10.1.11 L(I) ist ein Vektorraum; fiir f1, fo € L(I),c1,c2 € R haben wir

(1) fI(lel + Cgfg)dl‘ =cC1 fI frdx + co fl fodx,
(2) aus f1 < fo f.ii. folgt [ frdx < [} fodz.

Beispiel 10.1.12 Wie in 5.1.10 sei I = [0, 1] und

. 1 falls z€Q
fiI—R, ”H{ 0 falls 2¢Q
Dann ist f nicht in R(I): Da die irrationalen Zahlen im Intervall [0, 1] dicht liegen,
ist U(f) = 0; ebenso gilt dies von den rationalen Zahlen, so dass O(f) = 1 ist.
Jedoch bilden die rationalen Zahlen eine Nullmenge und f ist daher f. ii. gleich der
Treppenfunktion ¢ = 0. Also ist f € L(I) und [, fdz = 0.

In allen vorhergehenden Betrachtungen diirfen die halboffenen oder offenen Qua-
der I auch uneigentlich sein, d.h. Endpunkte a;, b; diirfen —oo oder +oco sein. So
erhalten wir etwa firn = 2 mit 7 = {—oc0 < 21 < b1,a2 < x2 < be} einen
zur z1-Achse parallelen Halbstreifen der Breite bo — as; setzen wir I = {—o0 <
1 < 400,a2 < x2 < by}, so erhalten wir einen Streifen der Breite by — as. Fiir
beliebiges n ist [ = {—o0 < 21 < +00,...,—00 < T, < 400} der ganze R™.
Damit konnen wir Funktionen f : I — R auch iiber unbeschrinkte I integrieren.
Ein Vergleich mit den uneigentlichen Riemann-Integralen aus Kapitel 5 drangt sich
auf. Wir gehen im nachsten Abschnitt darauf ein. In diesem Zusammenhang merken
wir noch an:

Satz 10.1.13 1 sei eigentlicher oder uneigentlicher Quader. f aus M(I) ist dann
und nur dann aus L(I), wenn |f| es ist.

Beweis. f sei aus L([/). Dann sind nach unserer Bemerkung auch die Funktionen
[t f-eL(I).Mit|f| = f* + f~ folgt die erste Richtung. Sein nun | f| € L(I).
Im Rahmen einer erweiterten Theorie kann man den Integralbegriff auf meBbare
Funktionen f > 0 f. ii. ausdehnen, indem man Funktionen, die im bisherigen Sinn
nicht integrierbar sind, als Integral [ ; fdz = 400 zuordnet. Dann gilt weiter (2)
aus 10.1.11 und wir erhalten f*, f~ € L(I) unddamit f = f* — f~ € L(I). O
Wir stellen noch einige Sétze iiber L(I) zusammen, die haufig niitzlich sind.

Satz 10.1.14 Sei I eigentlich oder uneigentlich. Seien f € L(I), sei f = g f. ii. in

I. Dann ist g € L(I) und
/If(a:)dx = /Ig(:r)dx.

Ist f =0fii.inl soist f € L(I)und [, fdz = 0. Sei f € L(I). Dann gibt
es zu f eine Folge von Treppenfunktionen (¢;) von I in R mit [, |f — ¢;|dz — 0,
g5 = [ fit j — oc.
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Die ersten beiden Aussagen folgen aus der Definition von L([), die dritte kdnnen
wir hier nicht beweisen.

Insbesondere kommt es bei der Integration auf Nullmengen nicht an und die Trep-
penfunktionen liegen in L(I) dicht beziiglich der ,Norm* [, | f|dz.

Definition 10.1.15 Ist D eine beliebige Teilmenge des R™, f : D — R eine Funk-
tion. Dann liegt D im uneigentlichen Quader R™ und wir setzen

F_ 7o .gpn f(z) fiir z € D,
f=ip:R _’R’m_’{ 0 fiirz € R*\ D.

Man nennt f mefibar bzw. Lebesgue integrierbar iiber D, wenn f € M(R™) bzw.

€ L(R™) ist, und setzt
/ fdx = / fdx.
D n

Mit Hilfe der integrierbaren Funktionen konnen wir beschrankten Mengen ein end-
liches MaB zuordnen.

Definition 10.1.16 Sei D eine beliebige Teilmenge des R™. D heifit mef3bar, wenn
f = liiber D integrierbar ist, und

w(D) = /Dldac >0

heif3t das Lebesgue-Maf3 der Menge D.

Die Nullmengen, die wir in 10.1.1 eingefiihrt haben, sind genau die Mengen mit
MaB 0. Es ist klar, dass beschriankte mef3bare Mengen ein Mal} haben, dass nicht
grofler als der Inhalt eines Quaders ist, der sie einschlieit. Das Beispiel einer Hy-
perebene im R™ zeigt, dass unbeschrankte sogar das Maf} 0 haben konnen, wenn sie
Hhinreichend diinn“sind. Analog zur Klasse der mef3baren Funktionen ist die Klasse
der mefbaren Mengen sehr grof3, so dass wir fiir praktische Zwecke jede Teilmenge
einer meBbaren Menge und insbesondere jede beschrankte Menge als mefBbar anse-
hen konnen.

Wir merken eine Regel fiir Integrale und Maf3e an.
Satz 10.1.17 Seien A, B C R™ mefibare Mengen. Dann gilt:
(1) Aus AC B, feL(B), f>0f i folgt:

[ o< [ fae wnd pa) < ().
A B
(2) Wenn A N B eine Nullmenge und f € L(A U B) ist, dann gilt:

fdacz/fdac—!—/ fdz und u(AUB) = u(A)+ u(B).
AUB A B
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(3) Aus f € L(A), f >0 fii.und [, fdz =0 folgt f=0 fii.

Beweis. Wir erklaren fwie in 10.1.15 Dann haben wir im ersten Fall ]74 < fB f.
Ui., woraus die erste Behauptung folgt. Im zweiten Fall ist f4 + fg = faup f. U.
Daraus folgt die zweite Behauptung. Der Beweis der dritten Behauptung ist etwas

schwieriger. Wir setzen
~ 1
A= {alfato > | 1
m

dann ist

{elfa(@) > 0} = | An
m=1

und mit der MeBbarkeit der A,, folgt

- . 1
0= / fadz > fa, dx > mu(Am),

Rn

Also ist (A,,) = 0 und mit 10.1.2 folgt, dass {J;\fA(m) > 0} eine Nullmenge
ist. O
Wie in 10.1.13 kann man sich ein wichtiges Kriterium fiir die Integrierbarkeit einer
Funktion verschaffen.

Satz10.1.18 Sei D C R", f : D — R, fp mefbar, g € L(D), |f| < g. Dann
ist f € L(D). Insbesondere sind mit f,g € L(D) auch max(f,g), min(f, g) aus
L(D).

10.2 Die Sétze von Levi und Lebesgue, der Satz von Fubini

Die Menge aller Treppenfunktionen auf I, I eigentlich oder uneigentlich, wurde
zu L (I) und dann zu L(I) erweitert, indem man die Grenzwerte von monoto-
nen konvergenten Folgen mit beschrankter Integralfolge hinzunimmt. Nun stellt sich
die Frage, ob man durch einen analogen Prozess die Menge L(I) nochmals erwei-
tern kann. Der folgende Satz von BEPPO LEVI (1875-1961) besagt, dass derartige
Grenzfunktionen bereits in L(I) liegen:

Satz 10.2.1 (Satz von B. Levi) Es sei (f.,)m eine Folge von Funktionen f,, € L(I)
und es gelte:

(]) fm S fm+1 f u,
(2) es gibt ein M > 0 mit [, frndx < M fiirm € N.

Dann existiert ein f € L(I) mit

lim f,, = ff ii. und lim /fmdx:/fdx.
m—0o0 I I
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Satz 10.2.2 (Konvergenzsatz von Lebesgue) Es sei ( f,,) eine Folge, f, : [ — R,
die f. ii. gegen eine Funktion f : I — R konvergiert; es existiere ein g € L(I) mit
| fm| < g fiir m € N. Dann gilt

f€L({)und lim /fmdac:/fdac.

Daraus folgt:
Satz 10.2.3 Es seien
Lclhc...cICR"”

o)
Intervalle mit U I, =1Essei f: I — R eine Funktion und es gelte

m=1

(1) fiir jedes m € N ist f|I,, Lebesgue-integrierbar
(2) es gibt ein M > 0 mit [, |fm|dz < M fiir alle m € N

Dann gilt
feL(I)und lim fdx = /fdx

m—00

Wir erlautern die Beweisidee: Fiir f > 0 setzt man

) f(x) fir z €I,
fmI—)R,ZL'—){ 0 fijrxgé]m

und wendet den Satz von Levi an.

Dass die Lebesgue-Integration eine echte Erweiterung der Riemann-Integration ist,
zeigt zusammen mit Beispiel 10.1.12 der

Satz 10.2.4 Sei I ein abgeschlossener Quader, f € R(I). Dann ist f € L(I) und

/f(x)dx (Riemann) :/f(:r)dx(Lebesgue).
I I

Bevor wir den Beweis geben, fiihren wir eine gebrauchliche Bezeichnungsweise
ein. Ist D eine beliebige Teilmenge des R™, so schreiben wir statt der bereits in 10.1
verwendeten Fortsetzung von f : D — R, z —— 1, durch 0 das Symbol

(@) = 1 falls zeD
XD =0 falls z¢D

und bezeichnen y p als die charakteristische Funktion von D.

Beweis des Satzes 10.2.4 Sei (7)) eine Folge von sukzessiven Verfeinerungen einer
Zerlegung des abgeschlossenen Quaders I mit
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Sz, (f) strebt monoton wachsend gegen I f ; f(z)dz (Riemann), \ — oo,

Sz,(f) strebt monoton fallend gegen [, f(x)dx (Riemann), A — oo,

die nach dem Riemannschen Integrabilitétskriterium existiert; S ;, (f), Sz, (f) sind
gleichzeitig die Riemann- und Lebesgue-Integrale tiber die Treppenfunktion

N1(>‘)"~~5Nn(>‘)
Dy (x) = Z Mlgf\‘)..ljn XI'Si\) (J")v

cUn

V1 Un=1

Ni(N),..o, N (N)
oa@) = > mY L (@), A=1,2,..,

1-Vn
Vl,...,Un=1

wenn Z) bedeutet, dass [ in die Quader /, 51\_“% mit M, V(I\ _)_A,,n, m(u’l\) als Suprema
bzw. Infima von f liber diese Quader zerlegt wird. Dann haben wir 45,\ > Dy,
©x < @at1 und die Folgen ( [, ¢x(x)dz), ([, ¢(x)dx) sind nach unten bzw. oben
beschrankt. Aus Satz 10.2.1 folgt d1e Ex1stenz von h, h € L(I) mit

h = )\lim Oy fii., [, hde = )\lim [; @rdax = [; fda (Riemann)
h = )\lim oxfi., [, hdx = )\lim J; eada = [; fda (Riemann)

Nunist A > h f. ., weil @y > ¢, f. U. ist, und fl(h — h)dz = 0. Nach 10.1.17 ist
h =h = hf . Mit

Dr>f>paund Py > h >y, Py — h, oy — h, A —ocof. i

folgt f = h f.u.. Satz 10.1.14 zeigt f € L(I),

/ fdz (Riemann) = / fdx (Lebesgue).
I I

O
Mit dem Lebesgue-Integral haben wir das Riemann-Integral auf den groStmoglichen
Bereich von Funktionen fortgesetzt, iiber dem noch sinnvoll Integration betrieben
werden kann. Als Kandidaten fiir einen Test auf Integrierbarkeit stehen mit den
mefbaren Funktionen praktisch alle Funktionen zur Verfiigung.
Beispiel 10.2.5 Sei I =|0,1[, f : I — R, z — m& " 11,)” mit Exponenten
A, 0 < A p < 1.Dannist f € L(I), dennsei I,, =] 1, 1— 1 [, m >3, s0ist

1

/172 1 1 _/2 1 1 +/1$L 1 b <
1 (1 — z)+ =L (1 — z)H * 1 M1 — z)r =

m
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< 2" 2 M

SN2 -t
und die Behauptung folgt aus 10.2.3 durch Grenziibergang m — oo. Ist jedoch
einer der Exponenten A, 1 groBer oder gleich 1, so ist f ¢ L(I). Dagegen ist
f i la,+oo[— R, z — z& fir A\ > 1 in L([a,+00), a > 0, aber fir
A < 1 nicht mehr in L([a, +00)). f(z) = ! trennt also gerade die folgenden
Bereiche: Die Funktionen, die etwa auf ]0, +-o0[ erkldrt, auf jedem Intervall [a, ],
0 < a < b < 400 beschrankt sind, bei Null schwacher anwachsen als ; und fir
x — 400 schwacher oder wie i abfallen, sind zwar aus L(]0, a[) fiir alle a > 0,
aber in keinem L(]a, +00[), a > 0. Man sagt, sie sind bei Null integrierbar, aber
nicht im Unendlichen. Wachsen die Funktionen bei Null starker oder wie i und fal-
len sie im Unendlichen schneller ab als :lv, so sind die Verhaltnisse umgekehrt. Die
Funktionen des Beispiels werden haufig als Majoranten im Sinn von 10.2.2 benutzt,

um Funktionen auf Integrierbarkeit zu testen.

Wir befassen und nun mit Methoden zur Berechnung mehrfacher Integrale und brin-
gen den Satz von Fubini (GUIDO FUBINI (1879-1943)):

Satz 10.2.6 (Satz von Fubini) Gegeben seien Quader
I CRP, Ib,CRY [:=1 xIh CR" n:=p+yq,
und eine Lebesgue-integrierbare Funktion
f:h xIy =R, (z,y) — f(z,y).
Dann gilt:

(1) Es existiert eine Lebesgue-Nullmenge N C I, so dass fiir alle y € I,\N die
Funktion
L - R, z+— f(z,y),

Lebesgue-integrierbar ist,
(2) Die fast-tiberall auf I definierte Funktion

g:lo =R, y— f(x,y)dx,
I

ist Lebesgue-integrierbar,

(3) es ist
dy = d ,
/129(11) Yy /If (z,9)
also
| ([ st ) as= [ sace).
Iz I I
analog gilt

/I1 </12 f(x,y)dy> dz = /Ifd(x’y)'
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Der Satz besagt fiir p = ¢ = 1 und n = 2, dass man das Integral von f(z,y) tiber
ein Rechteck I = [a, b] X [c, d] so ausrechnen kann:
Man integriert bei festem y zuerst nach der Variablen = (nach (1) ist das fast

immer moglich), man bildet also f; f(x,y)dx. Das Ergebnis hingt von y ab
und nun integriert man nach y ((2) besagt, dass dieses Integral existiert), dann

erhalt man fcd ( f; f(z, y)dx) dy. Nach (3) ist dies gleich dem gesuchten Integral

J; f(z,y)d(z,y). Man darf auch zuerst nach y und dann nach z integrieren.

Oft weil man nicht, dass f : I = I; x [y — Riiber I; x I, integrierbar ist und
mochte durch Ausfiihrung einer iterierten Integration auf die Integrierbarkeit iiber
I, x I und damit die Vertauschbarkeit der Reihenfolge der Integrationen schlie3en.
Hier ist der folgende Satz von Tonelli (LEONIDA TONELLI (1885-1946)) niitzlich.

Satz 10.2.7 (Satz von Tonelli) Sei f : I = I; x Is — R eine Funktion, die f. ii.
> 0ist. Sei f(x,.) fiir fast alle x € I; aus L(I3). Die f. ii. in I erkldirte Funktion
sz f(x,y)dy sei aus L(Iy). Dannist f € L(I; x I5) und

[rawn= [ ( [ f(a:,y>dy> a [ ( [ faphie) dy

Dasselbe gilt, wenn f(.,y) fiir fast alle y € Iy aus L(I;) und fll flx,y)dy aus
L(I) ist.

Beispiel 10.2.8 Sei I, = I, =0, 1[, f(z,y) = , .. Dann st

101 1 1
o (fo z+1y2dy> dz = J, . (fo 1+(1¢'ym)2dy> dz =
1 1
= [, »V/xarctan Jadz

und nach Beispiel 10.2.5ist f € L(I; x I). Dagegenist f(x,y) =
L(I; x I), weil sonst das iterierte Integral

Lot 1 1
/ / 9 ,dy dac:/ ,rarctan dz
0 0o T°+Y 0o T x

endlich ausfallen wiirde. M. a. W., die Funktion mzj_yz wachst zu schnell an, um
noch integrierbar zu sein.

1 . .
224 y? nicht in

Aus der Substitutionsregel 5.4.2 wissen wir schon bei einer Variablen, dass die
Einfiihrung neuer Variablen bei der Auswertung von Integralen oft hilfreich ist. Fiir
Lebesgue-Integrale im R™ trifft dies ebenfalls zu, doch mufl man sich auf umkehrbar
stetig differenzierbare Variablensubstitutionen beschranken. Es gilt

Satz 10.2.9 (Transformationsformel) Seien U C R", V' C R" offen; die Ab-
bildung g : U — V sei bijektiv, g und g~' seien stetig differenzierbar. Ist dann
feL(V) soist fog-|detJy| aus L(U) und umgekehrt. In diesem Fall ist
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/Vf(y)dyz/U(fog)~|deth\dx.

Da g~ ! stetig differenzierbar in U ist, folgt sofort det .J, # 0 in U. Durch eine
Variablentransformation g versucht man oft, eine krumm berandete Menge V' auf
einen Quader U abzubilden, da man nach dem Satz 10.2.6 von Fubini ein Integral
iiber einen Quader durch sukzessive Integration iiber Intervalle ausfiihren kann. Bei
der Integration tber Intervalle hat man eventuell die Moglichkeit, auf Kenntnisse
aus Kapitel 5 zurlickzugreifen (z.B. Fundamentalsatz der Differential- und Integral-
rechnung).

Beispiel 10.2.10 a) Wir fiihren wie in 9.3.6 Polarkoordinaten in der Ebene ein:
g:R* = R? (r,¢) — (rcosp,rsinp).

Dannistdet J, = 7. Sei V = {(z,y) : 2> + y*> < 1,2 > 0,y > 0}, U = {(r,¢) :
0 <r < 1,0 < < 7} Dann geniigt g den Voraussetzungen des Satzes 10.2.9.

Mit f(z,y) = /1 — 22 — y2 folgt

Jy f@y)d@y) = [, f rcosc,o,rsnuprdrgo Jo V1 =r2rd(r, ) =
=5 Jy Vi-rirdr =7 [] Vodo = T,

wobei wir die eindimensionale Substitutionsregel mit o = 1 — r2 verwendet haben.
b) Wir berechnen das Lebesgue-Mal} (Volumen) der dreidimensionalen Kugel. Wir
fiihren Kugelkoordinaten ein:

g:R3 = R3, (r,¢,9) — (rsind cos o, rsin ¥ sin @, r cos 9),

0<r0<p<2r,0<Id<mSeiV ={(n,y,2): 22 +y?>+22 < 1,2 #0
odery # 0} U = {(r,p,¥) : 0 <r <1,0 < ¢ < 2m,0 < ¢ < 7}. Bis auf
die Nullmenge {z = 0,y = 0} der z-Achse ist V die offene Einheitskugel K (0)
um 0 des R3. g : U — V geniigt den Voraussetzungen des Satzes 10.2.9 Es ist
det J; = 72 sin ¥, und wir erhalten fiir das Kugelvolumen

(I (0)) = p(V) = /V d(e,y,2) =

T 2w 1
= / (/ (/ 2 sim?dr) d<p> dd = 47T.
0 0 0 3

Wir integrieren nun die Funktion f, f(x,y,2) = 1/y/22 + y2 4 22)* fir A > 0
tiber V. Diese Funktion wachst bei Annaherung an den Nullpunkt. Wir erhalten aus
Satz 10.2.9 die Formel

1 |
y dedydz = 47 \_odr
v \/332 +y2 + 22 o T
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Nach 10.2.5 ist genau dann aus L(V'), wenn A < 3 ist.
¢) Im Fall n = 1 seien U, V offene Intervalle, f € R(U); dann folgt aus 10.2.9

/V fly)dy = /U f 0 9(@)lg'(x)]dz

Ist V =]a, b[, U =]a’, ¥[, so ergibt sich also

Jo fw)dy = [, f( dy—ff = Ju I ()Idx:
= [y f( )\dl‘ f f (z)|dz.

Dies ist die aus Satz 5.4.2 bekannte Substitutionsregel, falls g sogar auf [a/, b'] stetig
differenzierbar und ¢’ # 0 in ]a’, b'[ ist. Die letzte Voraussetzung wird jedoch in
einer Dimension nicht benotigt.

Nun vergleichen wir das in 5.5 eingefiihrte uneigentliche Riemann-Integral mit dem
Lebesgue-Integral.

Satz 10.2.11 Sei I ein eigentliches oder uneigentliches Intervall Sei f : 1 — R
stetig. Es existiere das uneigentliche Riemann-Integral [, f ; f(zx)dax. Existiert auch
J; |f|dz als uneigentliches Riemann Integral, so ist f € L( ) und uneigentliches
Riemann-Integral und Lebesgue-Integral von f stimmen iiberein.

Beweis Sei etwa I =0, oo, I, =] !,

m[, m € N. Dann ist

/Im f(z)dz (Riemann) = /Im f(z)dx (Lebesgue)

nach Satz 10.2.4. Wegen |fxy,,| < |f|ist [, |f|ldz < M = [, |f|dz(Riemann)
und Satz 10.2.3 liefert die Behauptung. ' a

Beispiel 10.2.12 Uneigentliche Riemann-Integrierbarkeit und Lebesgue-Integrier-
barkeit fallen also auseinander, wenn | f| nichtin L([) ist. Sei f(z) = "%, 2 > 0,
I =0, 4+o0[. Dann ist

> sin ac (w+1)m
Z sm xzdx
v

und die letzte Reihe konvergiert nach Satz 1.5.12. Dagegen ist die Reihe
(1/+1)7r
Z / | sin z|dz divergent und daher |f| ¢ L(I).

Bei der uneigentlichen Riemann-Integrierbarkeit diirfen sich also positive Berge und
negative Téler ausgleichen.

Wie wir in 5.1 bereits erwahnt haben, ist flir einen kompakten Quader I mit
fyg € R(I)auch f-g € R(I). Dies gilt schon nicht mehr fiir uneigentlich Riemann-
integrierbare Funktionen iiber einen Intervall und erst recht nicht fiir Lebesgue-
integrierbare Funktionen (s. 10.2.5).
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10.3 Die Banachriume L, (I)

Wir definieren nun einen Raum L, (I), der die die in 10.1 angekiindigte Einbettung
von R(I) in einen vollstindigen Raum integrierbarer Funktionen, aus dem also die
Grenzwertbildung nicht herausfiihrt, liefert.

Zuerst definieren wir fiir p > 1 den Raum £, (I) der messbaren Funktionen f, bei
denen |f|P Lebesgue-integrierbar ist. Durch Ubergang zu einem Quotientenraum
L,(I)/N erhalten wir den Vektorraum Ly, (I).

Definition 10.3.1 Fiirp € R, p > 1 setzt man
Lp(I):={feMUI)||f["e€ L)}

und definiert fiir f € L,(I)

11l = ( / fl”dw> ”
Es gilt:

Satz 10.3.2 L, (1) ist ein Vektorraum; fiir f,g € L,(I) und c € R gilt:

(D lle - fllp = lel - [ llp
) IIf +gllp < I£llp + 19l
(3) || f]lp = 0 ist dquivalent zu f = 0 f. ii.

Beweis. (1) ist klar, (2) konnen wir hier nicht zeigen, (3) folgt aus 10.1.14 und
10.1.17 (3). O
Damit hat man in £,(I) eine ,Pseudonorm “definiert: bei einer Norm folgt aus
[|f|| =0, dass f = 0O ist.

Nun identifiziert man zwei Funktionen, f, g € £,(I), wenn f = g f. ii. gilt; genauer:
Man setzt N'(I) := {f = 0f. 1.} und bezeichnet Funktionen f,g € L,(I) als
dquivalent, wenn gilt: f — g € N/ (I). Die Menge der Aquivalenzklassen bezeichnet
man als den Quotientenraum

Lyp(I) := Lp(I) /N (I).

Mit den Elementen aus L, (]) rechnet man einfach, indem man mit den Reprisen-
tanten f € £,(I) einer Aquivalenzklasse aus L, (I) rechnet. Ein Reprisentant be-
stimmt eindeutig die Aquivalenzklasse, in der er liegt, und alle Operationen, die wir
bisher mit mef3- oder integrierbaren Funktionen eingefiihrt haben, sind von der Aus-
wahl der Reprisentanten einer Aquivalenzklasse unabhingig. Da wir also statt mit
den Aquivalenzklassen mit ihren Reprisentanten wie bisher rechnen, sprechen wir
von den Elementen von Ly, (I) ebenfalls als Funktionen.

L,(I) ist ein Vektorraum und || ||pinduziert eine Norm in L, (), die wir ebenfalls
mit || ||, bezeichnen. Somit ist (L, (I), || ||) oder kurz L,,(I) ein normierter Raum
(vgl. 7.9.1), in dem die Begriffe Konvergenz und Cauchy-Folge definiert sind:
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Eine Folge (f;) mit f; € L,([) fiir j € N ist konvergent gegen f € L,(I), wenn
zujedeme > 0 ein N € N existiert mit || f; — f||, < e fiirj > N.

Eine Folge (f;) in L,(I) heifit Cauchy-Folge, wenn zu jedem ¢ > Oein N € N
existiert mit || f; — fx||p < e fiirj,k > N.

Damit kommen wir zum Begriff des Banachraumes (STEFAN BANACH , (1892-
1945)):

Definition 10.3.3 Ein normierter Raum iiber R oder C heifst vollstindig oder ein
Banachraum, wenn in ihm jede Cauchy-Folge konvergent ist.

Es gilt der wichtige Satz

Satz 10.3.4 (Satz von Riesz-Fischer) Fiir jedes p € R, p > 1 ist L,(I) ein Ba-
nachraum.

Beweise findet man in [17], [19], [25].
Die Produktbildung in den Banachrdumen L, (I) behandelt
Satz 10.3.5 Fiirp,q e R, p>1,q > 1 mit
1 1
+ =1
P q

gilt: Aus f € L,(I) und g € Ly(I) folgt:

frgeLi(I) und ||f-glly <|Ifllp-lgllq-
Wir bemerken noch, dass L1 (I) = L(I) ist.

Was bedeutet nun die Konvergenz in L, (I) fiir die punktweise Konvergenz der be-
teiligten Funktionen f;? Diese naheliegende Frage beantwortet

Satz 10.3.6 Die Folge (f;) konvergiere fiir ein p > 1 in L,(I) gegen f. Dann gibt
es eine Teilfolge (f;,) von (f;), die fast iiberall in I gegen f konvergiert.

Ist I uneigentlich, also in wenigstens einer Richtung unendlich ausgedehnt, so muf3
ein f € LP(I) im Unendlichen gegen Null streben. Auf eine Prézision verzichten
wir hier.

Ersetzt man I durch eine Teilmenge D des R, so gelten entsprechende Aussa-
gen. Jedoch ergibt sich bei unbeschrinkem D mit xp ¢ L1(D), d.h. D hat das
Mass +o0o,wie man auch sagt, ein wichtiger Unterschied. Ist D beschrankt und
f € Ly(D) fiirein p > 1, so folgt aus Satz 10.3.5, dass

/If\pdx—/lf\p 1z < /\fl”dx (D)4 1<y <p

ist. Also ist L, (D) C L, (D). Fiir unbeschréinktes D wird diese Inklusion im all-
gemeinen falsch.
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10.4 Hilbertraume, Fourierreihen

Eine wichtige Rolle in der Funktionalanalysis spielen neben den Banachriimen die
Hilbertraume. Ein Hilbertraum 7 ist ein Banachraum, dessen Norm durch ein Ska-
larprodukt definiert ist ( DAVID HILBERT (1862-1943)). Durch das Skalarprodukt
ist im Hilbertraum eine zusatzliche Struktur gegeben, insbesondere hat man den Be-
griff der Orthogonalitat.

Definition 10.4.1 Ein euklidischer Vektorraum (H,< , >), der, versehen mit der
Norm
l|z|] :== V< z,z >

vollstindig ist, heifst Hilbertraum. Man bezeichnet einen unitiren Vektorraum 'H,
der beziiglich der durch das Skalarprodukt definierten Norm vollstindig ist, als
komplexen Hilbertraum.

Ein einfaches Beispiel eines Hilbertraum ist der R”, versehen mit dem kanonischen
Skalarprodukt
<T,Yy>=T1Y1+ ...+ TpYn.

Versieht man den C™ mit dem Skalarprodukt
<z,y>=z1Y1+ ...+ Tpln,

so erhalt man einen komplexen Hilbertraum.
Das fiir die Analysis wichtige Beispiel ist der Ly (7).

Satz 10.4.2 Fiir jeden Quader I C R" ist Lo(I) ein Hilbertraum.

Beweis. Aus Satz 10.3.5 folgt mit p = ¢ =2 :Sind f,g € Lo(I) ,s0ist f-g €
Li(I) = L(I) , also ist f - g Lebesgue-integrierbar und man kann definieren:

<f,g>::/1f-gdx.

Die durch dieses Skalarprodukt definierte Norm ist

17l = (/fdw> — 11l

Nach Satz 10.3.4 ist Lo (I) vollstéindig, also ein Hilbertraum. m|
In einem normierten Vektorraum ist der Begriff der Konvergenz definiert. Im Hil-
bertraum Lo (I) bedeutet dies: Eine Folge ( f,,) konvergiert gegen f, wenn zu jedem
€ > 0ein N existiert mit

/(f(év) — fo(z))?dz <e fiirn > N.
7
Daher bezeichnet man den in Lo (1) definierten Konvergenzbegriff als ,,Konvergenz

im quadratischen Mittel “.
Wir zeigen nun, dass das Skalarprodukt stetig in beiden Faktoren ist:
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Satz 10.4.3 (Stetigkeit des Skalarprodukts) In einem euklidischen Vektorraum
gilt:
(1) Wenn die Folgen (vy,) und (w,,) konvergieren, dann ist

< lim v,, lim w, > = lim <uv,,w, >,
n—oo

n—oo n—oo

oo
(2) wenn die Reihe Y vy, konvergiert, dann ist
n=1

(o] (o]
<D s wS=Y <y, w >
n=1 n=1

Beweis. Nach der Cauchy-Schwarzschen Ungleichung ist

| < Upywp > —<v,w>|=|<vp,w, —w>+ <v, —v,w>|<
< Mlvnll - lJwn — w|| + lvn = o[ - [Jw]],

daraus folgt (1) und , wenn man dies auf die Folge der Partialsummen der Reihe
anwendet, ergibt sich (2). a

Zerlegungssatz und Projektionssatz

Wir verallgemeinern nun 7.9.28 auf unendlich-dimensionale Untervektorraume, die
jedoch abgeschlossen sein miissen; damit erhalten wir dann den Zerlegungssatz und
den Projektionssatz fiir Hilbertraume.

Wir zeigen zuerst: Zu einem abgeschlossenen Unterraum U und jedem f € H
existiert ein Element kleinsten Abstandes in folgendem Sinn:

Satz 10.4.4 Seild ein abgeschlossener Unterraum des Hilbertraumes H. Dann exi-
stiert zu jedem f € H ein fy € U mit

If = foll < If =gl fiiralle g € U.

Beweis. Sei 6 := in£ Ilf — gll. Zun € N existiert ein g,, € U mit
ge

1
o — <Hf_gn||§6
n

Wir zeigen, dass (g,,) eine Cauchy-Folge ist. In der Parallelogrammgleichung 7.9.8
[o+w]? +[lv — w|]* = 2[|v]|* + 2[[w]?
setzen wir
v:=f— gn, w:=f — gm.

Es ist n
In + gm
(f - )

2 )

undaus 9™ e U folgt ||f — 99 (|2 > §2; damit erhalten wir

UV —W=¢Ggm — Gn, v+w =2
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2f = gnl® +201f = gml? =4l f = 5 * <

Hgm_gn||2 = 9 5 5
< 2f —gnll* +2[f — gml® — 40

Daher ist (g,,) eine Cauchyfolge. Aus der Vollstindigkeit von H folgt, dass (gy,)
gegen ein f konvergiert; aus der Abgeschlossenheit von U folgt fo € U und es gilt

6=1fo—fl- O
Fiir 10.4.4 geniigen bereits die folgenden Voraussetzungen: H ist ein euklidischer
(oder unitérer) Vektorraum, U/ C H ist Untervektorraum und I/ ist vollstandig.
Zusammen mit 7.9.26 ergibt sich:

Satz 10.4.5 (Zerlegungssatz) Ist U ein abgeschlossener Unterraum des Hilbert-
raumes H, so gilt

H=UDU"

Damit hat man die in 7.9.32 eingefiihrte Projektion von H auf U, fiir die sich wie in
7.9.33 ergibt:

Satz 10.4.6 (Projektionssatz) Sei H ein Hilbertraum , U C 'H ein abgeschlossener
Unterraum ; dann ist

Pu:H—H, ffo fiir f=fo+fi mit focl, fr e U)",

eine Projektion; Py ist selbstadjungiert.

Hilbertbasen
Wir betrachten nun Orthonormalfolgen und Hilbertbasen im Hilbertraum .

Definition 10.4.7 Eine Folge (b,,)ncn in H heifit Orthonormalfolge, wenn fiir alle
n,m € N gilt
< bna bm >= 6nm~

Wenn man in einem Hilbertraum H eine Orthonormalfolge (b,,),cn hat, so ist die

(o)
Frage naheliegend, wann eine Reihe > x,,b,, konvergiert. Dazu beweisen wir zu-
n=1
erst einen Satz des Pythagoras:

Satz 10.4.8 Seien by, ..., b, € H und es gelte < b;,b; >= 0 fiir i # j. Dann ist

b1+ - b|* = 111 4+ ([,

Beweis. ||b1 + ...+ b, |2 =< 3 b,
i=1

1=

n
by >= bl + ... + [|bnl|?. O
=1

J
Daraus ergibt sich:

Satz 10.4.9 Ist (b, )nen eine Orthonormalfolge in 'H, so gilt:

(o] o0

. 2 .
g Tpby  ist genau dann konvergent, wenn g x, konvergiert.
n=1

n=1
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Beweis. Nach dem Satz von Pythagoras gilt fiir & < m: || Z Tpbp|? = Y 22

Dabher ist Z 2nby, genau dann eine Cauchyreihe, wenn Y 22 eine ist. Weil H und
n=1 n=1

R vollstandig sind, folgt daraus die Behauptung. a

Bei Orthonormalfolgen hat man die Besselsche Ungleichung, die bei einer Hilbert-
basis, die wir anschliessend behandeln, zur Besselschen Gleichung wird.

Satz 10.4.10 ( Besselsche Ungleichung) Ist (b,,) eine Orthonormalfolge in 'H, so
gilt fiir alle f € 'H.:

oo

(< fibn =) < ISP

n=1

Beweis. Fir V € N ist

0< < f— Z<f,b > by, f— Z<f7b > by >= || fII> - gﬁ(<f7bn>)2,

n=1

also

2

Z<f7b >)2 < ||fI17

&)
und daraus folgt die Konvergenz der Reihe > (< f,b, >)? und die Besselsche
n=1

Ungleichung. a

Definition 10.4.11 Eine Hilbert-Basis in H ist eine Folge (b, )nen in H mit folgen-
den Eigenschaften:

(1) Fiir alle m,n € H ist < by, by, >= 0mn (Orthonormalitiit),
(2) ist f € Hund gilt < f, b, >= 0 fiir alle n € N so folgt f = 0.

Mit Bedingung (2) erreicht man, dass die Folge (b,,) ,,naximal “oder ,,unverlanger-
bar““ist: Wenn es namlich ein f # 0 gibt mit < f, b, >= 0 fiir alle n, so ist auch
(H}H f,b1,b2,...) eine Orthonormalfolge.

Eine Hilbertbasis bezeichnet man auch als vollstindiges Orthornormalsystem, ab-
gekiirzt VONS.

Nun beweisen wir eine wichtige Charakterisierung der Hilbertbasis:

Satz 10.4.12 (Charakterisierung der Hilbert-Basis) Es sei (b,,)ncn eine Ortho-
normalfolge im Hilbertraum H. Dann sind folgende Aussagen dquivalent:
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(1) (bn)nen st eine Hilbert-Basis in H,

(2) fir M = span{b,|n € N} ist M ="H,
(oo}

(3) fiirjedes f € H gilt  f = > < f by > by,
n=1

(4) fiiralle f,g € H gilt die Parsevalsche Gleichung

<fag>: Z <fabn>'<gvbn>

n=1

(5) fiir jedes f € H gilt die Besselsche Gleichung

A2 = S (< f,bn >)?

n=1
Beweis. Wir zeigen :
Aus(1) folgt(3). Sei also (b,,) eine Hilbert-Basis und f € H. Nach der Besselschen
Ungleichung 10.4.10 konvergiert > (< f, b, >)2. Aus 10.4.9 folgt, dass auch

n=1
Z < fibp>by, =t g
n=1
konvergiert. Nun ist wegen der Stetigkeit des Skalarprodukts fiir m € N

<F=gbm>=<fiby >=> " < fby >< by, by, >=
< fibm > — < f,bm >=0,

und, da (b,,) eine Hilbert-Basis ist, folgt f = g.

Aus (3) folgt (1) ist klar.

Aus (3) folgt (4) wegen der Stetigkeit des Skalarprodukt;

Aus (4) folgt (5) mit f = g.

Aus (5) folgt (1): aus < f, b, >= 0 und (5) folgt || f||* = 0 und somit f = 0.

Aus (3) folgt (2): fir f € Hist f = Y. < f,by > by, also f € M, somit

n=1
M=H.
Aus (2) folgt (1): Wir zeigen: wenn (b,,) keine Hilbertbasis ist, dann ist M # H.
Wenn (b,,) keine Hilbertbasis ist, dann existiert ein f € H mit || f|| = 1und f L b,
fiir alle n. Fiir jedes g € M ist f L g und daher ||f — g|> = ||f]> + |lg]*> > 1;
daraus folgt f ¢ M; somit M # H.
Damit ist der Satz bewiesen. a
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Damit wurde insbesondere gezeigt:

Satz 10.4.13 Ist (b,)nen eine Hilbertbasis im Hilbertraum H, so kann man jedes
Element f € H in eine Reihe

f:i<fabn>bn

n=1
entwickeln, die man als (verallgemeinerte ) Fourierreihe bezeichnet; es gilt die Bes-

selsche Gleichung ||f]|> = . (< f,bn >)2.

n=1
Beispiel 10.4.14 Wie in 7.9.3 sei l5 der euklidische Vektorraum

lo := {(zn)nen| Z x2 konvergiert}

n=1

&)

mit dem Skalarprodukt < (), (yn) >:= > TnYn. Man kann zeigen, dass [ ein

n=1
Hilbertraum ist. Setzt man b,, := (0,...,0, 1,0,...) , soist (b,) eine Hilbert-
Basis in 5.

Wir beweisen nun, dass es bis auf Isomorphie nur einen Hilbertraum mit (abzdhlba-
rer) Hilbertbasis (b, )nen gibt, ndmlich y:

Satz 10.4.15 Sei H ein Hilbertraum mit einer Hilbertbasis (b, )nen. Dann ist H
Hilbertraum - isomorph zu ls ; die Abbildung

G ly—H, (Tn)n— D Tn by

n=1
ist ein Hilbertraum-Isomorphismus, d.h. es gilt:
(1) D ist ein Vektorraum-Isomorphismus,
(2) <z y >, =< Qx, Py >y fiirx,y € ls

Beweis. Nach 10.4.8 ist @ sinnvoll definiert. Die Umkehrabbildung ist wegen
10.4.12
¢71 :H_7127f’_} (< fabn >)

Die zweite Aussage folgt aus der Parsevalschen Gleichung. O

Fourierreihen

Es wurde soeben gezeigt, dass man bei einer Hilbertbasis (b,,) in H jedes f € H
o0

als Reihe f = > < f,b, > b, darstellen kann. Wir behandeln nun die klassi-
n=1

schen Fourierreihen, namlich die Entwicklung nach den trigonometrischen Funk-

tionen cosnx, sinnx; diese Funktionen bilden bei geeigneter Normierung eine
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Hilbertbasis.
Wir hatten in 7.9.36 bereits Fourierpolynome behandelt und zu einer Funktion f die
Fourierkoeffizienten definiert:

T 1 1

ap = fdz, a,:= f(x)cosnzdx , b, = f(x)sinnzdx.
- T

—Tr —Tr

Man nennt die mit diesen Koeffizienten gebildete Reihe

oo

ap .

5 + nz_:l(an cos nx + by, sin nx)
die Fourierreihe von f.
Auf die Geschichte der Fourierreihen konnen wir hier nur kurz eingehen; sie wird in
[18] und [23] geschildert. Mit Hilfe dieser Reihen wurde das Problem der schwin-
genden Saite u.a von Daniel Bernoulli, Euler und Fourier behandelt. Die Frage,
unter welchen Voraussetzungen die Fourierreihe von f gegen f konvergiert, fiihrte
zur Klarung grundsatzlicher Fragen:
Die Prazisierung des Funktionsbegriffs durch Dirichlet, des Integralbegriffs durch
Riemann und die Verallgemeinerung des Riemann-Integrals durch Lebesgue.
Es zeigte sich, dass Aussagen iiber punktweise oder gleichmaflige Konvergenz der
Fourierreihe nur unter speziellen und oft komplizierten Voraussetzungen gelten. Da-
gegen sind im Rahmen der Lebesgue-Theorie allgemeine Aussagen moglich. Bei
der Konvergenzuntersuchung der Fourierreihe unterscheidet man verschiedene Kon-
vergenzbegriffe:

punktweise Konvergenz

gleichmaBige Konvergenz

Konvergenz beziiglich der in Lo ([—m, 71]) definierten Norm, also ,,im Quadrat-
mittel .

Auf die umfangreichen und schwierigen Untersuchungen zur punktweisen oder
gleichmalligen Konvergenz konnen wir hier nicht eingehen (man vergleiche dazu
[17],[18],[23]); wir bringen daraus zwei Beipiele. Uber punktweise Konvergenz
hat man etwa die Aussage:

Satz 10.4.16 (Punktweise Konvergenz der Fourierreihe) Sei f : [-7,7] — R
von beschrinkter Variation und f(—m) = f(w); f werde periodisch auf R fortge-
setzt und die Fortsetzung ebenfalls mit f bezeichnet. Wenn f in einem Punkt x € R
stetig ist, dann konvergiert die Fourierreihe in x gegen f(x).

Dabei heilit f von beschrankter Variation, wenn es ein M > 0 gibt, so dass fiir jede
Zerlegung —m =x9 < 1 < ... < Tp—1 < xf = 7 gilt

k
D If(a)) = flaj)| < M.

Unter ziemlich einschneidenden Voraussetzungen gibt es Aussagen iiber gleichmBi-
ge Konvergenz, zum Beispiel
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Satz 10.4.17 (GleichméiBige Konvergenz der Fourierreihe) Wenn eine Funktion
[ [—m, 7] = Rmit f(—m) = f(r) stetig und stiickweise stetig differenzierbar ist,
dann konvergiert die Fourierreihe der periodischen Fortsetzung von f gleichmdifiig
gegen f.

Im Hilbertraum Lo([—m,7]) ist die Theorie der Fourierreihen ganz einfach: Fiir
jedes f € Lo([—m,7]) konvergiert die Fourierreihe von f gegen f; natiirlich
beziiglich der in Lo ([—7, 7]) gegeben Norm, also im Quadratmittel:

Satz 10.4.18 ( Fourierentwicklung ) In Lo([—m,w|) definieren wir Funktionen
Up : [—m, 7] = R durch

1 1 1
Uon—1(x) := cosnx, Ugy(x) = Jr

up(x) = ,

o(z) Jor J
Dann gilt:
Im Hilbertraum Lo([—m, 7)) ist (up)nen, eine Hilbert-Basis.
Fiir jedes f € Lo([—m,w|) gilt daher

sinnx, (n€N).

o]
f= chun mit ¢, =< f,up >,

n=0

also
a (o]
f= 20 + E,l(an cos nx + by, sin nx)

Bei der Behandlung der Fourierpolynome haben wir in 7.9.35 bereits gezeigt, dass
(uy,) eine Orthonormalfolge ist; einen Beweis fiir die Vollstandigkeit der Folge (u,,)
findet man in [17].

Die Gleichung f = >"°7 , ¢,u, darf nicht so interpretiert werden, dass fiir gewis-
se x diese Reihe reeller Zahlen gegen f(z) konvergiert. Die Konvergenz der auf
der rechten Seite stehenden Fourierreihe ist natiirlich beziiglich der in Lo ([—, 7])
definierten Norm gemeint, also ,,Konvergenz im Quadratmittel “; das bedeutet: Zu
jedem e > 0 existiert ein N € N mit

m 2
/ <f(ﬂc)— (C;O +Z(ancosnx+bnsinnx)>> dr <e firm> N.
n=1

—T

Nach 10.3.6 konvergiert lediglich eine Teilfolge der Folge der Partialsummen f. .
gegen f. Es war lange Zeit ein offenes Problem ob die Folge der Partialsummen
selbst f. ii. gegen f konvergiert bis diese Frage bejahend beantwortet wurde.

Da es sich bei der in den den Satzen 10.4.16 und 10.4.17 geforderten Periodizitats-
bedingung f(—m) = f(m) um eine punktweise Eigenschaft handelt, spielt sie in
Satz 10.4.18 keine Rolle. Dieser Satz handelt namlich nur von der Lo-Konvergenz
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der Fourierreihe. Es ist offensichtlich, dass wegen Satz 10.4.12, (3), die Vollstandig-
keit des Hilbertraums Lo([—, 7]) von entscheidender Bedeutung fiir des allgemei-
nen Satz 10.4.18 ist.

Wir schildern nun ein Problem, bei dessen Behandlung Fourierreihen eine wesent-
liche Rolle spielen. Dabei wollen wir die Bedeutung der Fourierentwicklung auf-
zeigen; auf genaue Begriindungen, insbesondere Konvergenzbeweise, konnen wir
nicht eingehen.

Beispiel 10.4.19 (Temperaturverteilung auf einer kreisformigen Platte) Gege-
ben sei eine Substanz mit der Dichte ¢, dem Wirmeleitvermogen & und der spezi-
fischen Wirme c. Fiir die Temperatur T = T'(z, y, 2,t) an der Stelle (z,y, z) € R3
zur Zeit t gilt die Warmeleitungsgleichung

Ye 0T
AT = .
k Ot

Wenn die Temperatur unabhéangig von der Zeit ist, erhalt man die Potentialgleichung
AT = 0.

Wir betrachten nun das ebene Problem: Auf dem Rand OF einer kreisformigen
Platte £ = {(z,y) € R?| 22 + y? < 1} sei eine zeitunabhiingige Temperatur
o : OF — R vorgegeben. Gesucht ist die Temperaturverteilung im Innern dieser
Kreisscheibe, also eine stetige Funktion 7" : E — R, die in E harmonisch ist
und fiir die ' = p auf F gilt. Behandelt man das Problem in Polarkoordinaten
T = r-cosyp; y = r-siny, so ist die Randtemperatur ¢ gegeben durch eine
beliebig oft differenzierbare 27-periodische Funktion o : R — R, gesucht wird eine
in {(r,¢) € R?| {0 < r < 1} stetige Funktion T' = T'(r, ¢) mit

die fiir 0 < r < 1 beliebig oft stetig differenzierbar ist und der auf Polarkoordinalen
umgeschriebenen Gleichung AT = 0 geniigt. Diese Gleichung lautet nach 9.3.9

PT 1 9T 1 9T

o+ = 0.
or2 r Or 1?2 9?2
Nun machen wir den Ansatz
T'(r,p) =v(r) - w(p);
mit v’ ;= gﬁ , wi= g‘; erhalten wir
1 ! 1
vw + vw+ v w= 0
r r

Fiir alle r,  ist dann
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20" (r) + ' (r) _ib (p)

v(r)  w(p)’
Dabher ist dieser Ausdruck konstant =: A und man erhalt

r2" 4’ —d=0, w+lw=0.

Die 2. Gleichung ergibt w(p) = c1 cos VA + ¢z sin v/ Ap. Die Funktion w soll
die Periode 27 haben; daraus folgt Ve Np, also A = n? mit n € Ny. Die 1.

Gleichung ist dann

2, .1 2

" + v’ —nfv = 0;

sie hat die Losungen
v(r) = Cyr"™ + Cor™ ™.

Die Funktion v soll auch in O definiert sein, also
v(r)=Cr", CeR,neN,.
Damit hat man Losungen
r" (a, cos ny + by, sin nyp).

Um eine Losung 7" zu finden, die auf OF gleich g ist, macht man fiir 7" den Ansatz

A (o]
T(r,p) = 20 + Z r" (A, cosny + By, sinng).

n=1

Die Koeffizienten A,,, B,, bestimmt man dann so:
Man entwickelt die Randwertfunktion p nach 10.4.18 in ihre Fourierreihe:

00
ao

o(p) = 5 + Z(an cosny + by, sinnyp),

n=1

setzt A,, := a,,, B, := b, und

o0
T(r,p) = 6120 + Z r"(ay cosng + by, sinnep).

n=1
Dann geniigt T fiir » < 1 der Potentialgleichung und es ist 7'(1, ¢) = o(¢).
Wir erlautern dies noch an einem einfachen Spezialfall:

Beispiel 10.4.20 Auf dem Rand der kreisformigen Platte E sei die zeitlich konstan-
te Temperaturverteilung

OE — R, (z,y) — 10022

vorgegeben; in Polarkoordinaten ist also
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o() = 100 cos? .
Wegen cos2p = 2 cos? ¢ — 1 hat man fiir ¢ die Fourierentwicklung
o(¢) = 100 cos® p = 50 + 50 cos 2.

Damit erhalt man
T(r, ) = 50 + 50 1% cos 2.

In (z,y) - Koordinaten ergibt sich :
T(z,y) =50(2* — y* +1);

diese Funktion ist offensichtlich harmonisch und auf dem Kreisrand 2% + ¢ = 1
ist T(z,y) = 100z Die Isothermen {(z,y) € E| T(x,y) = ¢} fiir 0 < ¢ < 100
sind die Hyperbelstiicke {(z,y) € E| 2* —y* = § — 1}.
v 25°
50°

75°

100° 100°

OO

Um diese Methode zu verdeutlichen, behandeln wir noch eine weitere Randtempe-
ratur:
Wir geben uns nun

o(z,y) := 1002>

vor, in Polarkoordinaten ist also g() = 100 cos® ¢.
Wegen 4 cos® ¢ = 3 cos ¢ + cos 3¢ hat man die Fourierentwicklung

o(p) =100 cos® p = 75 cos p + 25 cos 3¢
und erhalt die Temperaturverteilung
T(r, @) = 751 cos ¢ + 251° cos 3.
Wir gehen auf dieses Beispiel nochmals in 14.14.10 ein.
Komplexe Hilbertraume

Die Theorie der Hilbertraume lésst sich analog auch fiir komplexe Vektorraume
durchfiihren. Fiir viele Anwendungen ist dies sogar zweckmassig, z. B. hat man
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aufgrund des Fundamentalsatzes der Algebra die Existenz von Eigenwerten.

Wir hatten schon in 10.1 erwahnt, dass man das Riemann-Integral auf komplexwer-

tige Funktionen f : I — C erweitert, indem man f = f; + i- fo mit reellen

f1, fo in Real-und Imaginarteil zerlegt und f als Rieman-integrierbar bezeichnet,

wenn die Funktionen f1, f; es sind ; man setzt dann [ fdz = [ fidz +1i [ fode.
1 1

1
Wir verfahren jetzt genauso wie bei der Einfiihrung der Riume L,(D), p>1,und
erhalten so den Banachraum der Aquivalenzklassen komplexwertiger Funktionen
f+ D — C mit endlicher Norm

1/p
1l = / e |
D

den wir nun mit
Ly(D)

bezeichnen. Die Satze 10.3.2, 10.3.4, 10.3.5,10.3.6 gelten unverandert; Definition
10.3.3 bezieht sich natiirlich auch auf normierte Raume iiber C.

Entsprechend 10.4.2 ist der komplexe Banachraum LS (D) ein Hilbertraum mit dem
Skalarprodukt

<f,g>= [ fgdx
/

Den Begriff 10.4.11der Hilbert-Basis iibernehmen wir wortlich fiir komplexe Hil-
bertraume. Die Charakterisierung der Hilbert-Basis durch Satz 10.4.12 gilt auch fiir
komplexe Hilbertraume ; nur die Parsevalsche Gleichung lautet jetzt

oo
<fg>= Y <[by>-<gby>
n=1

und es gilt unverdndert
o0
IFIP = D 1< fibu>
n=1

Es gilt:

Satz 10.4.21 Definiert man im komplexen Hilbertraum LS ([—m, 1]) die Funktionen

by : [-m, 7] = C, z — -elne n €7z,

\/271'

50 ist (by)nez eine Hilbertbasis.
Daher gilt fiir jede komplexwertige Funktion f € LS ([—=,7]) die Entwicklung
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n—=—oo

o) ™
. 1 .
f = 2 : el mit ¢ = o /f(x) ce~inT Qg

Beweis. Die Orthonormalitat folgt hier ganz leicht aus

™

1 . .
< b, by >= / eF? el qy = 6.
27
Aus den Eulerschen Gleichungen € = cosnz + i sinnz und der in 10.4.18
erwihnten Vollstandigkeit der (u,,) folgt die Vollstandigkeit der (by,). O

Man beachte, dass bei dem zu e'™® gehorenden Koeffizienten c,, unter dem Integral
nun der Faktor e™'"? steht.

Definiert man die a,,, b,, wie oben, so gilt fiirn € N:

ag = 2007 ap = Cp + C_p, b, = 1(Cn - Cfn)
__a 1 : _ 1 :
Co = 207 Cp = 2(an - lbn)a Cn = 2(an + 1bn)
und es ist
oo oo
ap . inx
5 + E (an cosnz + by, sinnz) = E cpe'™".
n=1 n=—oo

10.5 Fourier-Transformation und Faltung

Die Fourier-Transformation ist das kontinuierliche Analogon zur Fourier-Reihe. Wir
schildern die Ideen dazu und skizieren die wichtigsten Beweisschritte; auf genaue
Begriindungen gehen wir nicht ein.
Fiir f € H = LS ([, n]) hat man die Fourierreihe

1 oo

. 17 .
T) = . Cp - €™ mit ¢, = z)-e " d.
@= o | 1@

Von der Fourierreihe zur Fourier-Transformierten kommt man nun so: Statt n € Z

schreibt man £ € R, statt ¢,, schreibt man f(€) und an Stelle des Summenzeichens
> ein Integral [ d€. Dann ist

—+oo —+oo
_ 1 Fre | atita TreN 1 L a—ig
F)= e | T R FCR

und man bezeichnet f als die Fourier-Transformierte von f. Genauer verfahren wir
folgendermassen:
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Definition 10.5.1 Sei f € L1(R). Dann definieren wir
1 +oo
A:R—MC, — /e*ig"” x)dz;
f 3 o f(x)

fheiﬂt die Fourier-Transformierte von f.

Die Fourier-Transformierte fist beschrankt, denn es ist
+oo
1
< )| dx < +4o0.
e, [ 1)
hade o}

fist auch stetig: Sei &, € R, und lim &, = &; dannist

+oo
~ ~

flen =Fer =, [ 7 =) flaja

— 00
dafirz e R

lim (e7n® —e®7) . f(2) =0  und | (e7E" —e ) f(a)] < 2| f(2)],

n— oo

folgt mit dem Satz von Lebesgue 10.2.2:

~

lim f(&n) = f(§)-

O
Nun notieren wir den wichtigen Satz von der Umkehrformel:

Satz 10.5.2 ( Umkehrformel)Sei f € Li(R) und es sei auch fe L1 (R); dann gilt

+oo
_ 1 +ikx 7
f(z) = m/ e Fe)d.
Definition 10.5.3 Die Abbildung
1 e
— — +izg
e m/ HTE L f(e)de

heifit Umkehrabbildung zur Fourier-Transformation oder inverse Fourier-Trans-
formation.
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Wenn z.B. f € C§°(R) ist, dann ist fe L;i(R). Es gelten jedoch auch schirfere
Aussagen.
Differenzieren wir die Fourierreihe f(z) = > ¢,e™* formal, so hat man

+oo
fl(x) = Z i-n-¢,- e,

n=—oo

o~

Ersetzen wir wieder ¢,, durch f(£), so entsteht
Satz 10.5.4 (Algebraisierung der Differentiation) Sei f : R — C stetig differen-
zierbar mit kompakten Triger. Dann gilt
fr€) =1i-&- f(8).
Beweis. Es ist /' € L1(R), also
ey 1 +oo )
FO= b [ e fayda =

+oo

= A e @) = b [ (i) e f(a)dy =

+oo . -
=i- \/1% < [ eT%T. f(x)da.
O

Satz 10.5.5 (Umkehrung von Satz 10.5.4) Sei z - f(z) € L1(R) (mitz - f(x)
meinen wir die Funktion x — x - f(x)). Dann ist f differenzierbar und

—

i-(f) = z f(x)

Beweis. Formal ist

d 1 +o0 d 1 +oo
iy _ —iéx _ : —iéx _
= e x)dz = —i e cx - f(r)de =
wfO= | e r@a= | §@)
1 —
=, T flx).
Mit Bildung des Differenzenquotienten und Anwendung des Satzes von Lebesgue
10.2.2 macht man daraus leicht einen strengen Beweis. ad

Fiir die Multiplikation zweier absolut konvergenter Reihen gilt bekanntlich die
Cauchysche Formel 1.5.13

Zam -Zbl = ch mit cn:Zak-bn,k.
m l n k
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Hat man zwei Funktionen f,g € L;(R), ersetzt man die Reihen durch Integration
von —oo bis +00, k durch die Variable ¢ und n durch z, also n — k& durch x — ¢, so
entsteht

/J:O flz)dx - /+OO /+OO /+OO g(z — t)dt)dz,

wie man mit dem Satz 10.2.7 von Tonelli leicht verifiziert.

Definition 10.5.6 (Faltung) Seien f,g € L1(R). Dann ist t — f(t) - g(x — t) fiir
fast alle x € R aus L1 (R). Also ist die Funktion

+oo
(f * 9)(x) = / f(Hg(x — )t

fiir fast alle x € R wohldefiniert. Sie heift Faltung von f und g.

Aus der Formel fiir das Produkt der Integrale sieht man sofort:

frgeliR), [f*gle,® < Ifle.® l9llz.m)

Wenden wir die Formel fiir das Reihenprodukt auf Fourierreihen an mit den Fourier-
koeffizienten a,, von f und b,, von g und nehmen wir die Fourierreihen als absolut
konvergent an, so entsteht fiir die Fourierkoeffizienten c,, des Produkts h := f - g:

(vV2m)~ Z ak - bn—k.

k=—o00

Ersetzen wir ay, durch f(t), byt durch g(x — ) und die Reihe durch Integration,
so entsteht

= (V2m) ™' f % G

Bezeichnen wir die Umkehrabbildung zur Fouriertransformationmit  *  (s. Satz
10.5.2), so folgt

\/ R
f-g=K2m)"1 fxg fir f g€ Li(R).

Dies ist, wie aus f = f folgt, nur eine Umformulierung von

Satz 10.5.7 Seien f,g € L1(R). Dann ist

—

f*xg = \/271']?@\

Beweis. Es ist f x g € L1 (R) wie eben gezeigt; mit dem Satz 10.2.7 von Tonelli (*)
erhalt man



306 10 Das Lebesgue-Integral

o — 400 +o0

Fra)©= b [ | fgle—bdt-e e 2

— 00 —O0

+o0 +o0
J (@ [ gl@—1)- e—i“—”ﬁdx) f(t)e e dt =

59 _Jrfoof(t)e*“idt — V2rg(€)f(€)

Aufgaben

10.1. Zeigen Sie: Eine kompakte Menge K C R" ist genau dann eine Nullmenge, wenn es
zu jedem € > 0 endlich viele (offene oder abgeschlossene)beschrinkte Quader I, ..., I

gibt mit
k k
KclJL wd > uI)<e
j=1 j=1

10.2. Auf R? sei f gegeben durch

1

L flir x # km,y # km,k € Z,x oder y irrational
f.y) = { snsiny # kmy #

sonst
Ist f auf |0, w[x]0, 7| integrierbar ? Ist f auf |0, m — §[x]d, w — d] integrierbar (0 < 6 < m)?

10.3. a) Sei f : [0, co[— R stetig. Zeigen Sie fiir alle R > 0:

R
flxlds = ne, [ £y
0

{z€R"| |lz||<R}
wobei
en = dz
{zeRn| ||| <1}

das Volumen der n-dimensionalen Eingheitskugel ist.
Hinweis: Differenzieren Sie beide Seiten der Behauptung beziiglich R.
b) Berechnen Sie fiir R > 0 die Integrale
e—(12+y2)d(myy) und /e_(z2+y2)d($yy).

{(z,y)eR?| 22 +y2<R2} R2
Verwenden Sie dieses Resultat und den Satz von Fubini, um

_12
/e dx

R

zu berechnen.
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10.4. Es sei 0 < r < R. Durch Rotation des in der xy-Ebene liegenden Kreises (z — R)? +
2% < r? um die z-Achse entsteht im R® der Torus 7. Man berechne das Trigheitsmoment
von 1" um die z-Achse, d.h. man berechne

/(a:2 + y*)d(z,y, 2).

T

10.5. Ist S C R beschriinkt, so ist der Schwerpunkt z = (21, 22, 23) € R® von S gegeben
durch L
zj = () /:Bjdx, 7 =123
5
Man berechne den Schwerpunkt
a) der Halbkugel  {(z,y,2) € R} 2® +¢*> + 2% <1, 2 > 0},
b) des Tetraeders  {(x,y,2) ER3|z+y+2<1, >0,y >0,z > 0}.

10.6. a) Sei a < bund f : [a, b] — R stetig. Der Graph von f werde um die z-Achse rotiert.
Berechnen Sie das Volumen des so entstehenden Rotationskorpers.

T
Welcher Kérper ergibt sich fiir f(z) =z, 0 < 2 <1 ? Welches Volumen hat er ?

b) Das Volumen der Einheitskreisscheibe in der Ebene ist 7. Stellen Sie eine Ellipse mit den
Halbachsen a und b als Bild der Einheitskreisscheibe unter einer linearen Abbildung dar und
berechnen Sie dann das Volumen dieser Ellipse.

10.7. a) Seien I C R ein beschréanktes Intervall, p,q > 1, p < ¢; f € Lq(I). Zeigen Sie:
Dann ist f € Ly(I) und es gilt

w7l < w7 f g

b) Geben Sie Funktionen f, g : R — R an mit

fe L1(R) \ LQ(R), und g e LQ(R} \ L1(R)

¢) Sei I ein beliebiges Intervall, r,p,q > 1, ! = ! 4+ ! Fernerseien f € L,(I), g €

Ly (I). Zeigen Sie: Dann ist f - g € L.(I) und es gilt:p Hf?gHr < flle - Nlglla-
d) Sei I C R ein beliebiges Intervall, r,p,q > 1, p < g < r.Fernersei f € L,(I)N L,(I).
Zeigen Sie: Dann st f € Lg(I). Ist X € R so gewihlt, dass | = » + ' ist, so ist
€ [0,1] und

1£lla < WA - A1

Hinweis: Verwenden Sie die Holdersche Ungleichung.
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10.8. Bestimmen Sie die Fourier-Reihen der folgenden auf | — 7, 7] erklarten und 27-
periodisch fortgesetzten Funktionen :

h fir =z €]0, 7|
a) f(z) == b) g(z) = ¢0 fir z=0,z=m (h>0)
—h fir z€]—m0]

10.9. a) Seien fn, gn, f,9 € L2([a,b]); lim f, = f, lim g, =g in L2([a,b]).Zeigen
Sie:
Iim < fo,gn >=<f,g>.

b) f € La([—m,n]) sei reell und besitze die Fourier-Koeffizienten ao, a1, ..., b1,be,... .
Zeigen Sie die Parseval-Relation:

—+7
/ F@)Pde = =

¢) Benutzen Sie die Parseval-Relation und die Fourier-Reihe der 27-periodischen Funktion
f(z) = 2* firz €] — 7, 7], um

— 1

D s

n=1

a% - 2 2
5 +n; (a? +b2)

zu berechnen. Verwenden Sie dabei
n:1n2_ 67 n:1n4_90

und vergleichen Sie mit 14.11.9.

10.10. Sei H ein Hilbertraum iiber C, f € H und ¢1,...,on € H orthonormiert. Zeigen

Sie: Ny
2) 15 =D fronll® = IIFI1* =D 1l
k=1 k=1

wobei fi =< f, pr > die Fourierkoeffizienten sind.
b) Sind c1,...,cn € C beliebig, so ist

N

N N
If - ZczcﬂﬂkHQ = IfII* - Z | fiel +Z | fr — el
k=1

k=1 k=1
10.11. Auf dem Rand OF des Einheitskreises sei die zeitlich konstante Temperatur
0:0E — R, (z,y) — 100 - z*
vorgegeben; bestimmen Sie die Temperaturverteilung 7" : £ — R.

10.12. Sei H ein Hilbertraum iiber C,f;, f € H. Zeigen Sie:
a) lim f; = fin M gilt genau dann, wenn lim || f;|| = || f|| und wenn fiir alle g € H gilt:
J— o0 Jj—00

lll’Il < fjvg >=< f7g> .

j—o0

b) Fiir alle g € H gelte lim < f;,g >=< f,g > . Dann folgt:
j—o0
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IF] < lim_inf || f511,
wenn lim inf ||f;|| endlich ist.
j—o00

10.13. Sei —0o0 < a < b < +oo und

_J1 fir a<xz<b
X[a8 "= 10 sonst

die charakteristische Funktion des Intervalls [a, b]. Dann ist x[q 5 € L1(R). Man berechne
die Fouriertransformierte von (4 4]

10.14. Mit der vorhergehenden Aufgabe zeige man:
a) )A([a,b] € LQ([G,, b])

b) Fir b € R existiert

—€

—+o0
) ei{b_l ei{b_l
A\ [ e e [

\— 00 €

und héngt nur von |b| ab.

10.15. Sei x = X[o,1) : R — R die charakteristische Funktion des Einheitsintervalls. Be-
rechnen Sie explizit

X * x(x) :/x(w—y)x(y)dy und (X *x) * X
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Untermannigfaltigkeiten und Differentialformen

11.1 Untermannigfaltigkeiten

Untermannigfaltigkeiten sind “glatte” Teilmengen M C R", die man lokal als
Nullstellengebilde differenzierbarer Funktionen darstellen kann. Man setzt vor-
aus, dass die Gradienten dieser Funktionen linear unabhangig sind. Dann ist das
Nullstellengebilde glatt, d.h. es sieht lokal aus wie eine offene Menge im R” mit
k < n. Insbesondere konnen wir uns Untermannigfaltigkeiten des R? als ge-
kriimmte Flachenstiicke im R? vorstellen, z. B. als die Oberflache einer Kugel oder
eines Ellipsoids. Sie haben die Dimension 2, da sie mit zwei unabhangig variieren-
den Parametern beschrieben werden konnen, im Falle der Kugel etwa die Winkel
, Y der Kugelkoordinaten. Solche Beschreibungen gelten in der Regel aber nur
fur kleine Stiicke der Flache. Ein anderes Beispiel sind ebene Kurven, bei denen
man bei senkrechter Tangente vom Kurvenparameter = zum Kurvenparameter y
iibergehen muss. Sie sind eindimensionale Untermannigfaltigkeiten des R2.

Definition 11.1.1 Eine Teilmenge M des R™ heifit eine k-dimensionale Unter-
mannigfaltigkeit, wenn es zu jedem Punkt p € M eine offene Umgebung U von
p im R™ und unendlich oft differenzierbare Funktionen

fi,ooosfoek:U—R

gibt mit folgenden Eigenschaften:

(HMNU={zeUlfi(x) =0,..., fnr(z) =0},

(2)rg g, fo_(®) =n—k fiiralle x € U,
d.h. die Gradienten grad fi,...,grad f,_x sind in jedem Punkt linear un-
abhdingig.

Wir geben zwei wichtige Beispiele an: Ebenen und Graphen.

Beispiel 11.1.2 (Ebenen) Fiir 0 < d < n sei

E;:={(z1,...,2n) ER"| 2441 =0,...,2, =0}.



312 11 Untermannigfaltigkeiten und Differentialformen

E; ist eine d-dimensionale Untermannigfaltigkeit des R™ , man bezeichnet E, als
d-dimensionale Ebene.
Fiir d = 0 hat man Ey = {0}, fird = n ist E,, = R".

Beispiel 11.1.3 (Graphen) Es sei V C R offenund g : V — R™ eine differen-
zierbare Abbildung. Dann ist der Graph
Gy :=A{(z,y) e VxR"|y = g(x)}

eine k-dimensionale Untermannigfaltigkeit des R**™ . Dies soll noch etwas erliutert
werden: Fir ¢ = (z1,...,2,) € Vistg(z) = (¢1(2), ..., gm(x)); die Gleichung
y = g(x) bedeutet: y1 = g1(x1,-.-,Tk);s - Ym = gm(21, ..., Tk). Setzt man

f1($17~~,$k§ ylv“aym) = 91($17~~,$k)—y17

SO ist
Gy ={(z,y) € VX R™|fi(z,y) =0,..., fm(z,y) =0},
grad fi :(351,...,35;, ~1,0,..., 0),
gradfm:(%i’;’,...,%i’z, 0,0,...,—1)

und diese Gradienten sind linear unabhangig.

Diese beiden Beispiele sind deswegen wichtig, weil man zeigen kann, dass jede
Untermannigfaltigkeit M/ lokal ein Graph G ist und in geeigneten Koordinaten als
Ebene Ej, dargestellt werden kann.

Die grundlegenden Aussagen tiber k-dimensionale Untermannigfaltigkeiten M sind:

e M ist lokal ein Graph,

e M ist, nach einer Koordinatentransformation, lokal eine Ebene Ey,

e M ist lokal diffeomorph dquivalent zu einer offenen Menge des R¥; es gibt
Karten und einen Atlas zu M.

Wir wollen dies zunéchst fiir den Spezialfall einer (n— 1)-dimensionalen Unterman-
nigfaltigkeit M C R™ erlautern, fiir diesen Fall skizzieren wir auch die Beweise.
Eine (n — 1)-dimensionale Untermannigfaltigkeit M C R™ bezeichnet man als
Hyperfliche. Zu jedem p € M gibt es also eine in einer Umgebung U von p diffe-
renzierbare Funktion f : U — R mit

MNU={xe€U|f(x) =0} und gradf(z)#0 fir z €U.

Satz 11.1.4 Ist M C R" eine Hyperfliche, so existiert zu jedem p € M nach
Umnumerierung der Koordinaten eine offene Umgebung V x I C U von p mit of-
fenen Mengen V.C R* 1, I C R und eine unendlich oft differenzierbare Funktion
g:V — I, sodass gilt

MOV xI)={(x1,...,2m) €V xI)| glx1,...,Tn-1) = Tn}.
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Beweis. Essei M NU = {x € U|f(x) = 0}. Wegen grad f(p) # 0 kann man die
Koordinaten so umnumerieren, dass ' # 0in U gilt. Nach dem Satz iiber implizi-
te Funktionen 9.3.2 existiert eine Umgebung V' x I C Uvon p und eine differenzier-
bare Funktiong : V — I,V C R 1T c R so dass fiir (21, ., 2pn) €V x I die
Gleichungen f(z1, ..., Tp—1, %) = 0und x,, = g(x1, ..., ,—1) aquivalent sind.

O
Wir erinnern an den in 9.3.3 eingefiihrten Begriff des Diffeomorphismus (A ist bi-
jektiv , b und h~" sind differenzierbar) und zeigen:

Satz 11.1.5 Ist M C R"™ eine Hyperfliiche, so existiert zu jedem Punkt p € M eine
offene Umgebung U von p, eine offene Menge U C R" und ein Diffeomorphismus
h:U — U mit ~

h(MNU)=E,_1NU.

Beweis. Wie oben sei g : V' — I. Wir setzen
h:VXR—=R" (X1, Tn) — (T1y ey 1, T, — G(T15 eey Tp1))-

Dann ist h ein Diffeomorphismus auf eine offene Menge UcC R™; die Umkehrab-
bildung ist (z1, ..., Tn) — (T1, .o, Tn—1,Tn + g(z1, ..., Tp—1)) . Firz € V x I gilt
x € M genau dann, wenn z,, = g(x1,...,x,—1) ist; dies ist gleichbedeutend mit
h(l’) ek, 1. ]
Daraus folgt:

Satz 11.1.6 Ist M C R"™ eine Hyperfliiche, so existiert zu jedem Punkt p € M eine
beziiglich M offene Umgebung W von p, eine offene Menge V. C R" ™1 und ein
Diffeomorphismus p : V. — W.

Beweis. Mit den Bezeichnungen von 11.1.4 setzen wir W := M N (V x I) und
0: VoW, (x1,...;Tn-1) = (T1, o, Tn—1, (X1, ooy Tp—1))-
 ist ein Diffeomorphismus, die Umkehrabbildung ist

oW =V, (T1, ey Te1, T) = (L1, ey Tp—1)-

> L1505 Tn—1
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Wir geben nun die allgemeinen Ausagen fiir k-dimensionale Untermannigfaltigkei-
ten an:

Satz 11.1.7 Ist M C R" eine k-dimensionale Untermannigfaltigkeit und p € M,
so gilt:

(1) Nach Umnumerierung der Koordinaten existiert eine Umgebung U =V x V'
von p mit offenen Mengen V. C R*, V! € R™* und eine differenzierbare
Abbildung g : V — V', so dass gilt:

MU ={(z,y) € VxV'| y=g(z) }.

(2) Es gibt eine in R" offene Umgebung U von p und eine offene Umgebung U von
0 € R™ und einen Diffeomorphismus h : U — U mit h(p) = 0 und

R(MNU) = {(t1,..;ty) €U| thg1 =0,...tn, =0} = ExNU.

(3) Es gibt eine beziiglich M offene Umgebung W von p und eine offene Menge
V' C RF und einen Diffeomorphismus o : V. — W.

Definition 11.1.8 Unter einer Karte von M um p € M versteht man einen Dif-
feomorphismus o : V. — W einer offenen Menge V. C RF auf eine in M offene
Umgebung W von p.

Eine Familie von Karten (@; : V; — W;)iey mit |J W; = M heifir Atlas von M,
ieJ
dabei ist J eine beliebige Indexmenge.

Aus 11.1.7 (3) kann man folgern:
Satz 11.1.9 Zu jeder Untermannigfaltigkeit M des R"™ existiert ein Atlas.

Die W; werden sich in der Regel iiberlappen, so dass fiir W; N W; (i # j) zwei

Abbildungen
wi o (WinW;) — WinW;

Py goj_l(Wi ﬂWj) — W;nW;

zur Verfiigung stehen, die W; NW; als offene Menge des R¥ beschreiben. Die damit
auftretenden Probleme werden uns noch in 13.5 beschaftigen. Sie werden durch die
Wechselabbildungen

p;logit i t(Win W) — o (Wi N W)

charakterisiert, die also den Ubergang von einer Karte zu einer anderen darstellen.
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' O

Das System der Abbildungen (; heif3t lokales Koordinatensystem von M. Es ist

29 = o7 (W), 2@ = @) = o (W), 2D e Vi, we W

Die () (p;(2) = %—1 o ¢; beschreiben also den Ubergang von einem lokalen
Koordinatensystem zu einem anderen.
Wir erldutern diese Aussagen am Beispiel der Kugeloberfliache So:

Beispiel 11.1.10 (Die Sphére S;) Es sei
Sy = {zx € R3|2? + 23 + 23 = 1}.
Setzt man f(z) := 2% + 23 + 23 — 1, so ist
Sy = {2z € R®|f(x) =0} und grad f(z) =2 (z1, 2, 13) = 21;
in R3 \ {0} ist grad f(x) # 0 und daher ist S eine zweidimensionale Unterman-
nigfaltigkeit des R3. Nun sei p := (0,0, 1) der ,,Nordpol* von S5.

Zuerst 16sen wir die Gleichung f(x1,x2,x3) = 0 in einer Umgebung von p nach
x3 auf. Wir setzen

V= {(21,22) € R¥2? + 23 <1}, ¢:V —=R", (21,29) \/l—xl — 3.

InU :=V x R giltz} + 23 + 3 = 1 genau dann, wenn z3 = /1 — 23 — 23 ist,
also
SoNU = {(z1,12,73) € Ulxg = \/1—x%—x§}.

Dies ist die Aussage von Satz 11.1.4: Sy istin U der Graph von g.
Nun setzen wir

h:V xR —R3 (x1,22,23) — (21,22, 23 — \/l—x%—xg).
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Fiirx € Sy N U ist 23 + 23 + 23 = 1 und 23 > 0, also /1 — 2% — 23 = x5 und
daher h(z) € Ey; somit

hWSoNU) = EonU mit U :={zeR3a?+a2+22 <1}

dies besagt Satz 11.1.5: Nach der Koordinatentransformation h ist Se ein offener
Teil der Ebene Es.

Eine Karte um p = (0, 0, 1) erhilt man so:

Es sei Wy := Sy N {z € R3|z3 > 0} die obere Halbkugel und

oy V= Wi, (21,72) — (71,22, \/1 — a3 —a3).

Dann ist ¢ eine Karte wie in Satz 11.1.6; die Abbildung ¢, bildet den offe-
nen Einheitskreis auf die obere Halbkugel ab, die Umkehrabbildung von ¢ ist
(21,2, \/1 — 22 — 23) — (21, 72). )

Offenbar sind jetzt weitere Karten zur Uberdeckung von S notig. Zunichst para-
metrisieren wir die untere Halbkugel, indem wir W_ := S N {x € R3|a:3 < 0},

oV —o>W_, (21,22) — (xl,;vg,—\/l —x? — 23).

einfiihren. Jetzt ist der Aquator noch nicht erfasst. Wir iiberdecken ihn mit den Kar-
ten

Vi={(0,p) eR?| T <9 <37, 0<¢p<2r},

v1(9, @) := (cospsind, sinpsind, cosd),

Wi =1 (V1),

Va:={(0,0) €R?| ] < <7, -] <p< T}
w2(9, @) := (cos psind, sinpsind, cosd),
Wy = pa(Va).

Dazu bemerken wir, dass eine Ausdehnung der Karten ¢, ¢_ nicht moglich ist,
da die Ableitungen von ¢, , _ in Richtung Aquator singulir werden. ¢ (V1) stellt
einen Streifen um den Aquator dar, der jedoch bei ¢ = 0 bzw. ¢ = 27 geschlitzt
ist, so dass wir zur endgiiltigen Ubedeckung o benétigen. Generell tritt die hier
beschriebene Schwierigkeit bei der Uberdeckung geschlossener rdumlicher Gebilde
schon bei geschlossenen Kurven in der Ebene auf; da V' offen und ¢ eine toploo-
gische Abbildung ist, benotigen wir etwa fiir einen Atlas der Kreislinie wenigstens
zwei Karten, denn V' ist nicht kompakt und die Kreislinie ist kompakt.

Der Tangentialraum ), M

Ziel ist es, den Begriff der Tangente an eine Kurve zu veralgemeinern. Wir zeigen,
dass eine k-dimensionale Untermannigfaltigkeit M in jedem Punkt p € M einen
Tangentialraum 7, M besitzt; T}, M ist ein k-dimensionaler Vektorraum.

Dazu erinnern wir an den Begriff des Tangentenvektors einer Kurve:

IstI. =] —e,+e[und o : I — R", t — (z1(t), ..., 2 (t)), eine Kurve im R™, so
heiBt &(0) := (£1(0), ..., £,(0)) der Tangentenvektor zu ¢ = 0.



11.1 Untermannigfaltigkeiten 317

Wir definieren nun 7}, M so: Man betrachtet alle Kurven o : I, — M, die auf M
liegen und durch p gehen , und definiert 7, M als die Menge aller Vektoren ¢(0).
Definition 11.1.11 Es sei M eine k-dimensionale Untermannigfaltigkeit des R™
und p € M. Dann heif3it

T,M = {v € R"|es gibt eine Kurve o : I — M mit a(0) = p und &(0) = v}
der Tangentialraum von M in p.

N, M := (T,M)*

heifst der Normalenraum von M in p. Es ist also R" = (T, M) @ (Np,M).

Fir M = R ist T,R™ = R" fiir alle p € R", denn zu jedem v € R™ existiert ein v
mit ¢(0) = v. Man wihlt & : R — R™, ¢ — p + tv, dann ist « eine Kurve auf R™
mit a(0) = p und &(0) = v. - Natiirlich ist N,R™ = {0}.
Nun sei

MAU = {2 € Ulfi(2) = 0, fa_i(x) = O};

und es sei
P V- W/? (tlv 7tk) = @(tla "'7tk)

eine Karte mit ¢(0) = p.
Wir zeigen , wie man 7, M und N, M durch fi, ..., f,—1 und ¢ beschreiben kann.

Satz 11.1.12 T, M ist ein k-dimensionaler Vektorraum,

Oy Oy

(o O

(0)) ist eine Basis vonT,, M.

N, M ist ein (n — k)-dimensionaler Vektorraum,
(grad f1(p), ..., gradf,_i(p)) ist eine Basis von NpM.

Beweis. Wir setzen

9

0
T = span{af1 0), ..., Ot

(0)}, T, := span{gradfi(p),...,gradfn_r(p)}

und zeigen:
Ty C T,M C T5".
Seiv € Ty, alsov = Z cj (O) Dannist « : I, — M,t — @(cit, ..., cxt) eine
Kurve auf M (dabei wahlt man ¢ > 0 so, dass fir [t| < e gilt: (c1t, ..., cxt) € V).
k
Esista(0) = Y 977 (0) - ¢; = v, somit Ty C T, M,

j=1
Nun sei &(0) € T,M; dabeiist o : I — M, t — (x1(t), ..., zn(t)), eine Kurve auf
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M mit a(0) = p. Aus a(t) € M folgt fi(a(t)) =0firt € I.,l=1,...,n — kund
daher ) gf (a(t)) - #;(t) = 0 und mit ¢ = 0 folgt daraus ( grad f;(p), &(0)) = 0.
1

i

1=

Daraus folgt ¢v(0) € T und damit T,M C Ts".

Offensichtlich sind 77 und 7. 2L Vektorraume der Dimension k; aus 77 C T2L folgt
Ty = Ts" und daher Ty = T,M = Ts".

Somit ist 7}, M ein k-dimensionaler Vektorraum, (gff 0), ..., g:i (0)) ist Basis von
Ty = T, M.

Aus T,M = T3 folgt N,M = (T,M)+ = T, und somit ist N,M ein (n — k)-
dimensionaler Vektorraum mit Basis (grad f1(p), ...,grad fr—x(p)). O

Wir erlautern diese Aussagen wieder am Beispiel der S5:

Beispiel 11.1.13 Mit den Bezeichnungen von 11.1.10 erhélt man den Tangential-
raum 7},S2 im Nordpol p = (0,0, 1) so: Es ist

0 —t 0 —to
1—12—2 = , 1—t3—13 = ;
8n\/ /S - 8bx/ /S -
also 9 9
¥ ¥
0) =(1,0,0), 0)=1(0,1,0),
o ©=(L0.0) F(0)=(0.10
daher ist

T,S = span{(1,0,0),(0,1,0)} = {x € R*|a3 = 0}.
AuBerdem gilt grad f(p) = (0,0, 2), also ist

N, S = span{(0,0,2)} = {x € R*|z; =0, 25 = 0}.

Wir betrachten nun den in 11.1.10 konstruierten Atlas von Ss . In jedem Punkt
p € Sy haben wir eine Basis des R3, die aus dem Normalenvektor p = (x1,22,23)
und den jeweiligen Tangentialvektoren in p besteht. Wir wollen zeigen, dass ihre
Orientierung in jedem p dieselbe ist.

In 4 (V') haben wir

TN Bpy 8 1
det o |, 8@+’ a(er = s o >0 t1 = x1,t2 = x2,
s 11~ Ola V1—a}—a3

in ¢_ (V') haben wir

TLY 9p_ 0 1
det T2 |, (‘;0_’ (‘;0_ = ) y > 0 t1 = x1,to = xo.
s t1 7 Ots V1 —a? -z}

Weiter ist
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cos @ sin ¥ o 9

det sinpsind |, 8?917 (;01 =sind > 0,
cosv ¥
cos psind

det sinpsind |, 889?92’ 8502 =sind > 0.
cosv ¥

Man sagt auch, dass Ss einen positiv orientierten Atlas tragt (vgl.13.5.3 ). Die Frage
der Orientierung einer Mannigfaltigkeit spielt bei den Integralsiatzen in 13.5 eine
wichtige Rolle.

11.2 Das Differential

Die Grundidee der Differentialrechnung ist die Linearisierung; man ersetzt
eine in xz( differenzierbare Funktion f : [a,b] — R durch die lineare
Funktion z — f(z9) + f'(x0) - (x — o), deren Graph die Tangente an
den Graphen von f ist. Dies wird nun ganz allgemein durchgefiihrt. Ist
f: M — M eine differenzierbare Abbildung zwischen differenzierbaren
Untermannigfaltigkeiten , so linearisiert man nicht nur die Abbildung f,
sondern auch die Mannigfaltigkeiten M und M: Etwas ausfiihrlicher: Ist
p € M so ersetzt man M durch den Tangentialvektorraum 7}, M und M
durch T’ (p)M ; die Abbildung f ersetzt man durch eine lineare Abbildung

df(p) : T,M — TZ;M , die man als das Differential von f in p bezeichnet.

In diesem Abschnitt sei immer M C R™ eine k-dimensionale und M C R™ eine
[-dimensionale Untermannigfaltigkeit.

Insbesondere ist jede offene Menge U C R" eine n-dimensionale Untermannigfal-
tigkeit des R™ mit der einzigen Karte ¢ = ¢dyy : U — U und dem Tangentialraum
T,U =R".

Definition 11.2.1 Eine Abbildung f : M — M heif3t differenzierbar, wenn es
zu jedem p € M eine offene Umgebung U von p im R" und eine differenzierbare
Abbildung F : U — R™ gibt mit F(x) = f(x) fiirallex € M NU.

Nun kommen wir zur Definition des Differentials d f (p). Die Idee dazu ist folgende:
Ein Element von T, M ist von der Form &(0), dabei ist o eine Kurve auf M mit
«(0) = 0. Nun betrachtet man die Bildkurve & := f o «, die auf M liegt und durch
p = f(p) geht, und ordnet dem Tangentenvektor ¢(0) den Vektor &(0) zu.

Definition 11.2.2 Sei f : M — M differenzierbar, p € M, und p := f(p). Zu
v € T, M wdhlt man eine Kurve o : I. — M mit a(0) = p und &(0) = v und setzt
a := f o a. Dann heifit die Abbildung

df(p) : T,M — TzM, &(0) — &(0),

das Differential von f in p.
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Wir zeigen nun, dass die Abbildung d f(p) durch die Multiplikation mit der Jacobi-
Matrix Jr(p) beschrieben werden kann; dabei ist F' wir in 11.2.1 gewihlt. Insbe-
sondere ergibt sich, dass die Definition des Differentials sinnvoll ist (ndmlich un-
abhingig von der Wahl von «); auBerdem folgt, dass die Abbildung d f(p) linear
ist.

Satz 11.2.3 Die Abbildung df(p) : T,M — TsM ist linear; fiir alle v € T,M
gilt:
df(p)(v) = Je(p) - v.

Beweis. Ist  wie in 11.2.2 gewahlt und

OF _ OF,  OF,

F:(F177Fm)7 833-7 :(61']7’8-r_7)7

n

so gilt (‘ft (a(t)) = ;tF(a(t)) = 21 gfj (a(t)) - ©;(t) und fiir £ = 0 ergibt sich:

) =0 =3 2 ) 450) = Te(p) v

ij
Wir behandeln nun wichtige Spezialfalle:
o M=R:

Ist f : M — R eine differenzierbare Funktion und p € M, p := f(p), so ist
T;R = R und
df(p) : T,M — R

ist linear; somit ist d f (p) ein Element des zu T, M dualen Vektorraumes (vgl.7.12.1):
df(p) € (T,M)".

e M =U C R"offen, M = R™:
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Fiir p € Uist T,U = R" ;ist f : U — R™ eine differenzierbare Abbildung , so ist
df(p) : R* = R™, v Js(p) - v.

Bezeichnet man die durch die Matrix J¢(p) definierte Abbildung ebenfalls mit
J¢(p), so gilt :
df(p) = J5(p)-

e M =U C R"offen, M =R

Nun sei U C R” offenund f : U — R differenzierbar; fiir p € U ist dann

also
df(p)(v) = (grad f(p),v).

Fiir j = 1, ..., n bezeichnen wir nun die ,,Koordinatenfunktionen‘
n
R" = R, (21, ..., xn) — z;,

ebenfalls mit z;; dann ist
dz;(p)(v) = v,

und fiirv € R™istdf(p)v = > gj (p)dz;(p)v, also

e M=ICR,M=R:
Firn = 1ist U = I ein offenes Intervall , fiir eine differenzierbare Funktion

f:I—Rist
df(p) = f'(p) - dz(p);
v — v. Ist (eq, ..., e,) die kanonische Basis des R", so gilt dz;(p)(ex

daher ist (dz1 (p), .., dx, (p)) die zu (eq, ..., €,,) duale Basis von (R")*
(man vergleiche dazu 7.12.4).

jk s

dabei bezeichnet z die Funktion R — R, x — z, und es ist dz(p) : R — R,
) =
= (LU)"



322 11 Untermannigfaltigkeiten und Differentialformen

11.3 Differentialformen

Jede Untermannigfaltigkeit wird im Kleinen durch Karten eines Atlanten
beschrieben. Offenbar gibt es mannigfache Moglichkeiten, eine Unterma-
nigfaltigkeit durch ein lokales Koordinatensystem zu beschreiben. Von In-
teresse sind diejenigen Eigenschaften einer Untermanigfaltigkeit, die nicht
von der Auswahl des Atlanten (vgl. 11.1.8) abhangen. Zum Beispiel wollen
wir liber eine Untermannigfaltigkeit M oder Teilmengen A C M integrie-
ren und das Integral iiber A in ein Integral iiber den Rand 0 A, den A in
M hat, verwandeln (Satz von Stokes). Ein Beispiel ist eine Teilmenge A
einer Fliche M des R3, die in der Fliche von einer Kurve A berandet
wird Das Ergebnis soll natiirlich nicht von der Auswahl des lokalen Koor-
dinatensystems abhédngen. Ein geeignetes Hilfsmittel zur Erreichung dieses
Ziels stellen die sogenanten Differentialformen dar, die wir jetzt einfithren
wollen.

Wir benotigen dazu den Begriff des dualen Vektorraumes, den wir in 7.12
behandelt haben, und vor allem den Vektorraum A*V* der k-Formen aus
7.13.

Wir bezeichnen mit U C R" immer eine offene Menge, p € U, und schreiben fiir
den zu T}, U dualen Vektorraum

T;U = (TL,U)".
Es sei
= J v
peU

Definition 11.3.1 Eine Abbildung
w:U—=T'U mit wp)eT,U firpeU

heifit Differentialform 1. Ordnung (oder Pfaffsche Form) auf U.

Hilfssatz 11.3.2 Setzt man dx; : R — T*R", p — dz;(p) fiir j = 1,...,n, so
sind dx1, ..., dx,, Differentialformen 1. Ordnung auf R™ und (dz1(p), ...,dz,(p))
ist eine Basis von T,;U. Daher gibt es eindeutig bestimmte f1(p), ..., fn(p) € R mit

Z fi(p) - dxj(p

Es gilt also: Jede Differentialform 1. Ordnung w auf U ldfst sich darstellen als

w = Z fj diL’j
j=1

mit Funktionen f; : U — R, die eindeutig bestimmt sind.
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Nun konnen wir definieren:
Definition 11.3.3 Eine Differentialform w = Z fj dx; auf U heifst differenzier-

bar, wenn die Funktionen f, ..., f, beliebig oft dlﬁ‘erenzlerbar sind. Mit 2'U be-
zeichnet man die Menge aller differenzierbaren Differentialformen 1.0rdnung auf

U.
Definition 11.3.4 Ist f : U — R beliebig oft differenzierbar, so heifit

df = of

J
o0x;
j=1 "7

das totale Differential von f; es ist df € Q2'U.

In 7.13.1 hatten wir fiir einen Vektorraum V' den Vektorraum A*V* aller k-Formen
auf V' definiert. Wir setzen nun V' := T,U und definieren mit Hilfe von A*T*U
Differentialformen hoherer Ordnung. Es sei

ATV = | ) AFTU
peU

Definition 11.3.5 Eine Abbildung
w:U = A*T*U  mit  w(p) € AkT;U fir peU

heifit Differentialform der Ordnung & auf U. O
Durch

dzg, Ao Adag, i R™ — AFT*R™ ps day, (p) A ... Ada, (p),

sind Differentialformen k-ter Ordnung auf R"™ definiert.
Es gilt ( vgl.7.13.3):

Satz 11.3.6 Jede Differentialform w der Ordnung k auf U ist eindeutig darstellbar
als

w= Zf““ dx;, A ... Adwx,

mit Funktionen f;, .. ;. : U — R. Dabei ist iiber alle k-Tupel (i1, ..., ;) natiirlicher
Zahlen mit 1 < 44 < 22 < ... <1 <nzu summieren.

Definition 11.3.7 Eine Differentialform w der Ordnung k heift differenzierbar,
wenn die f;, .. ;, beliebig oft differenzierbar sind; die Menge der differenzierbaren
Differentialformen der Ordnung k auf U bezeichnen wir mit

k.
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Fiir das Rechnen mit Differentialformen sind zwei Operationen wichtig, namlich
° das Dachprodukt w Ao
° die Ableitung dw.

Definition 11.3.8 (Dachprodukt) Fiir
w = anw dxi, A...Adx;, € QkU,
o= Zgjl,---,jz dzj, A ... Adzj, € QU
setzt man
wAo = Z Z firroinGin,idesy Ao Adag, Aday, Ao Adxy, € M,

dabei ist iiber alle k — Tupel (i1, ...,i5) mit 1 < iy < is < ... < i < nundiiber
allel — Tupel (j1,...,5) mit1 < j1 < jo < ... < ji < n zu summieren.

Es ist leicht zu zeigen, dass fiir w, & € 2FU, o € Q'U, 7 € Q™U gilt:
(WwWH+O)ANo=wAo+& Ao, WA(CAT)=(wAOo)AT.
Es gilt folgende Rechenregel:
Hilfssatz 11.3.9 Fiirw € 2*U und o € 2'U gilt:
who= (Do Aw.
Die Ableitung dw einer Differentialform w definiert man so:

Definition 11.3.10 (Ableitung.) Fiir

w = Z fil,...,ikdxh VANAN d.i?lk

setzt man
dw =Y " dfi,, i, Adzi, A Ada,,

also

dw = _ Z Z afg%yﬂk dz, Adx;, A ... Adxs,.

1,0k V=1
Es gelten die Rechenregeln:
Hilfssatz 11.3.11 Fiir w,& € 2FU, 0 € 2'U, ¢1, ¢ € Rist
d(ciw + c2w) = c1dw + c2dw, dwA o) = (dw) Ao+ (1) w A do.

Beispiel 11.3.12 Istw = ) fi, ;. dz;, A...Adwz;, undsind alle f;, _;, konstant,
s0 ist dw = 0; insbesondere gilt immer

d(dzi; A ... Adzy,) =0.
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Nun berechnen wir die Ableitung von 1-Formen:
Hilfssatz 11.3.13 Fiirw =Y fjdx; € Q'U ist
af; _ 9fi
do= Y (mi - pu ) dwi
1<i<j<n

Beweis. Es ist dw = )" gi “dx; A dx;, dabei ist liber alle Paare (¢, ) zu sum-
i

mieren, 4,5 € {1,...,n}. Wegen dz; A de; = 0 kann man die Paare mit i = j
weglassen. Wenn ¢ > j ist, vertauscht man ¢ mit j, dann ist der zu diesem Paar
gehorende Summand gleich

8fl dl‘j A dl‘l = — 8f7

dz; Adx;
8xj (Ej ¢ J

und man summiert nur tiber Paare (4, j) mit¢ < j. O
Nun ergibt sich:

Hilfssatz 11.3.14 Fiir f € 2°U ist d(df) = 0.
Beweis. Esistdf =) gg, dz; und
j J

d(df)zZ( 0 (af) 0 (af)> da; Adz; = 0.

i<s 8xi 3$j _a(Ej 8:51»

Damit erhalt man die grundlegende Aussage:

Satz 11.3.15 Fiir jedes w € U k>0, ist
d(dw) = 0.
Beweis. Fiir w = Y fi,,.. i, dzi; A ... Adz;, istnach 11.3.11:

d(dw) = d( Z(dfil,m,ik) /\dl’i1 A ... /\dxik ) =
=>(d(dfiy,...0)) Adaiy Ao Adrg, — D (A Siy ) Ad(da, A Aday,).

Wegen 11.3.14 verschwindet der erste Summand und wegen 11.3.12 der zweite. O
Die Aussage dieses Satzes formulieren wir kurz so: Es ist immer

dod=0.

Nun soll fiir Differentialformen w und Abbildungen ¢ die Differentialform w o ¢
definiert werden. Damit beschreiben wir das Verhalten von Differentialformen bei
Koordinatentransformatonen.
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Definition 11.3.16 Es seien U C R™ und U C R™ offen, und

e:U—=U, y— (01(y), - n(y)),

beliebig oft differenzierbar. Fiir
w = Zfil7~~~7ikd$il VANAN dxlk € QkU

setzt man
wop:i= Z(fuvk o p)dpi, A ... Ady;,.

Es gilt :

Hilfssatz 11.3.17 Es seien U; C Rl, Us C R™, Us C R™ offene Mengen und
v Uy — Us und ¢ : Uy — Us differenzierbare Abbildungen; dann gilt:

(wop)op=wo(poy),  dwop)=(dw)oe.

Die erste Formel zeigt die Assoziativitat des Ausdrucks w o ¢ bei mehrfachen Ko-
ordinatentransformationen. Eine Anwendung werden wir am Ende dieses Kapitels
kennen lernen. Die zweite Formel zeigt, dass d seine Bedeutung bei Koordinaten-
transformationen behalt. d ist, wie man sagt, invariant bei Koordinatentransforma-
tionen.

Beispiel 11.3.18 Es seien U,U C R2offen, ¢ : U — U, t — (p1(t), p2(t)),
beliebig oft differenzierbar und w = fdz; A dzo € £22U; dann gilt

0 0 0 0

- 8@1 6@2 6@1 6@2 -
=(foy) (8151 oty " oty or, ) Adle=
= (foyp) -det J, - dty A dtg;

dabei ist .J,, die Jacobi-Matrix von ¢.

Diese Aussage gilt allgemein fiir n-Formen im R™:

Satz 11.3.19 Es seien U, U C R" offen, o : U — U eine beliebig oft differenzier-
bare Abbildung und w = f - dxqy A ... Ndxy, € 27U. Dann gilt :

wop=_(fop) -detJ, -dt; A... A dt,.

Nun behandeln wir die Frage, wann es zu einer Differentialform w eine Differen-
tialform 7 gibt mit d7 = w. Aus d o d = 0 folgt die notwendige Bedingung
dw = d(dr) = 0. Wir zeigen, dass diese Bedingung fiir sternformige Gebiete auch
hinreichend ist. Diese fundamentale Aussage ist das Poincarésche Lemma (HENRI
POINCARE (1854-1912)).
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Satz 11.3.20 (Poincarésches Lemma). Ist U C R" offen und sternférmig,k € N,
so existiert zu jedem w € Q2FU mit dw =0 ein T € Q* U, so dass gilt:

dr = w.

Beweis. (Vgl. dazu [8].) Es sei

w= Zfil,---,ikdxil Ao ANda,
Wir diirfen annehmen, dass U sternformig beztiglich 0 ist; daher ist die Abbildung
0:[0,1] xU — U, (t,z) — tz,
wohldefiniert. Es ist o, (tz) = tx, und dp, = z,dt+tdw, firv = 1, ..., n. Setzen
wir f; := f; o p, soist
oi=wop= Z Firiin - (@ dt +tda;)) A o A (2, dt + tday,).
01yl

Wenn man die rechte Seite ausmultipliziert und zuerst die Summanden zusammen-
faft, die kein dt enthalten, dann die Summanden, in denen der Faktor d¢ vorkommt,
so ergibt sich: Es gibt differenzierbare Funktionen g;, .. j, , : [0,1] x U — R, mit

o= Y t*fi aodvi, A Adz D g, dEAd, A Ad,
i1,k Jir-dk—1
Aus dw = 0 und d(w o ¢) = (dw) o ¢ folgt do = 0, also
0=do= Y, . 5@ fi i)dtAde, A Ada+
+ D i Sy aiy (t* fir i) Ay Adag, A Ada, +

8 . N
+ Zjl’”’jk_l Zﬁzl 9.715;’:"’*1 dx, ANdt A dl‘jl VAN dl‘jkfl.

Daraus folgt die Gleichung

0g; p
Sy S TR A day Ada, A Ada, =

(+) P

= Zil,..,ik gt (tkﬁh_,ik)dt N dl‘il VAR dl‘lk

Nun definieren wir Funktionen

1
Gir,jra U= R, = /gjlv--»jk'—l(t’ ) dt,
0

und setzen

T = ZGjla---a.jk—l dxj, A..oAdxy,_, € 1y,
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Bei der Berechnung von d 7 vertauschen zunachst nach Satz 9.2.16 Differentiation
und Integration und berticksichtigen dann (*):

n OGi, i,y
dr = Zjlijk—l ZV:I oz, dz, A dle AR d‘rjk—l

—

*

1

a . .
S S (PP At A day Adag, A Aday, =
0

N

v=1 ox

1 ~
Zil,..,ik Of(gf/(tkfil’w’ik) dt) Adxi, A ... Adxg,

= Zil,..,ik [tkfila-wik}iié dxil N N dxlk
= Zh,..,ik fi1,..,1?kdxi1 A A dl‘ik = W.

Man vergleiche diesen Beweis mit dem von 9.6.7. a

11.4 Differentialformen und Vektorfelder im R3

Wir zeigen nun, wie man Aussagen iiber Vektorfelder im R? in die Sprache der
Differentialformen tibersetzen kann. Mit dem Lemma von Poincaré 11.3.20 ziehen
wir daraus wichtige Konsequenzen fiir Vektorfelder. Ein Vektorfeld v = (v, va, v3)
im R? kann man als 1-Form

w = v1dx1 + vodxs + vzdzs

auffassen und umgekehrt definiert jede 1-Form ein Vektorfeld. Man kann aber v
auch als 2-Form

o = vidag A dxs + vadas Aday + v3dey A das

auffassen und umgekehrt. Eine Funktion f ist eine 0-Form, liefert aber auch die
3-Form
f dzy A dao Ades.

Im Kalkiil der Differentialformen lassen sich die Operatoren grad, rot, div , die wir
in 9.6.9 eingefiihrt haben, einheitlich durch den Ableitungsoperator d ausdriicken.
Formeln wie rot grad = 0 und div rot = 0 sind dquivalent zu d o d = 0. Die Aussa-
gen uber die Existenz eines Potentials oder eines Vektorpotentials folgen aus dem
Poincaréschen Lemma.

Dies soll nun ausgefiihrt werden. Zur Vereinfachung der Schreibweise definieren
wir:

Definition 11.4.1 Wir setzen
ds := (dz1,dxe, dzs)

dF := (dxs A dxs,dzs A dzy,dzy A dxs)
dV :=dxi Adzo A das.
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IstU C Rundv : U — R3 2 — (vi(z),v2(z),v3(z)), so definiert man in
Analogie zum Skalarprodukt:

vds := vidxy + vodas + v3daxs,

vdF := vidas Adxg + vodzs A day 4+ vaday A das.
Man kann also jede 1-Form als vds und jede 2-Form als wdF darstellen In 7.9.38
hatten wir fiir Vektoren v,w € R? das Vektorprodukt v x w definiert. Wir zeigen

nun, dass dem Vektorprodukt das Dachprodukt entspricht. Es bezeichne U C R3
immer eine offene Menge, v, w seien Vektorfelder in U.

Satz 11.4.2 Fiirw := vds und o := wds gilt:
wAo=(vxw)dF.
Der Beweis ergibt sich durch Ausmultiplizieren von
(n1dzq 4 vadzg 4+ vsdas) A (wrdzy + wedze + wadas).

O
Die Ubersetzung vom Kalkiil der Vektorfelder in den der Differentialformen erfolgt
nun so:

Satz 11.4.3 SeiU C R3 offen, f € 2°U, w=vds € 2'U, o0 = wdF € 22U,
dann gilt:

df = (grad f)ds,
d(vds) = (rot v)dF,
d(wdF) = (div w)dV

Beweis.

(H df = ZJ 1 8;1: dz; = (grad f) ds
(2) dw = (dvy) A dxl + (dvz) A dzg + (dvs) Adas =

= gggi dz; + 8;1 dzs + 5 8”1 dxs) ANdzy + .
= v1 dzy Ada + v1 dl’g/\dxl -l— v1 d.’Eg/\dl’l + ...=
= (g;z — 81}2) dxo Adxs + (61}1 — 81}3) dxs /\d.’El -l—( ) dzq ANdas =

= (rot v) dF
(3) do = ?;;11 dl‘l + 811)1 dl‘ + 8w1 dl‘g) /\dl‘g /\dl‘g +...=
= (Gu1 4 s 3‘”3) dzy A das A das = (div w) dV.

O
Wir bezeichnen wieder mit C*°U die Menge der beliebig oft differenzierbaren Funk-
tionen auf U, also C®°U = °U, und mit FU die Menge der Vektorfelder auf U;
dann hat man Isomorphismen
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C®U — U, f — f;
FU — Q'U, v — vds
FU — U, w+— wdF

C®U — 23U, h + hdV

Die Aussage des vorhergehenden Satzes stellen wir nun im folgenden kommutativen
Diagramm dar; dabei sind die senkrechten Pfeile die soeben definierten Isomorphis-
men:

grad
—

ceU % Fu M Fu 2 ey
! ! ! !
U L owv L o02u L 3
Aus dod = 0 folgt:

Satz 11.4.4 Ist U C R offen, so gilt fiir jede beliebig oft differenzierbare Funktion
f:U—-R:
rot(grad f) =0

und fiir jedes Vektorfeld v : U — R ist
div(rot v) = 0.

Beweis.

1) Esist0=d(df) = d((grad f)ds) = rot(grad f)dF, also rot(grad f) = 0.
2) Firw := vds ist 0 = d(dw) = d((rotv)dF) = div(rotv)dV, daher
div(rotv) = 0. O

Das Lemma von Poincaré 11.3.20 liefert fiir sternformiges U

Satz 11.4.5 Ist U C R offen und sternformig, so gilt:

(1) Zu jedem Vektorfeld v : U — R3 mit rot v.= 0 existiert ein Potential
h:U — R, also
grad h =v.

(2) Zu jedem Vektorfeld w : U — R3 mit div w = 0 existiert ein Vektorfeld
v:U — R? mit
rot v =w,

man bezeichnet v als Vektorpotential zu w.
Beweis.

(1) Wir setzen w := vds ; nach Voraussetzung ist dw = (rot v) dF = 0 und aus
dem Lemma von Poincaré folgt, dass eine 0-Form f auf U existiert mitd f = w,
also (grad f)ds = v ds und somit grad f = v.



11.4 Differentialformen und Vektorfelder im R® 331

(2) Nun ordnen wir dem Vektorfeld w die 2-Form ¢ := w dF zu.
Esistdo = (div w)dV = 0 und daher existiert nach dem Lemma von Poincaré
eine 1-Form 7 = vds mit d7 = o, also (rot v) dF = wdF, somit rot v = w.
O

Beispiel 11.4.6 (Maxwellsche Gleichungen und Differentialformen)Es sei E die
elektische Feldstarke und H die magnetische Feldstarke ; im Vakuum lauten dann
die Maxwellschen Gleichungen (bei geeigneter Normierung ):

rot E = -9 divE =0
rotH= 9% divH = 0.

Die Punkte des R? bezeichnen wir mit z = (1,22, 23) und mit ¢ die Zeit. Wie in
[15] definieren wir 2-Formen im R*:

2 .= Eds Adt + HdF , ¥ := -Hds Adt + EdF.

Es ist
d2 = (rotE + ZdF Adt + (div E)dV,

d¥ = (—rotH + 22)dF Adt + (div H)dV.
Die Maxwellschen Gleichungen sind daher aquivalent zu
df? = 0. dv = 0.
Fiir jede Koordinatentransformation ¢ ist
d(20¢p)=dR o v, dWoy)=d¥ o o,

daher ist df2 = 0, d¥ = 0 die koordinatenunabhingige Formulierung der
Maxwellschen Gleichungen.

Nach dem Lemma von Poincaré existiert in jedem sternformigen Gebiet des R* eine
1-Form Ads + adt mit d(Ads + adt) = {2, also

A
(rot A)dF + 0”('% dt A ds + (grad a)ds A dt = Eds A dt + HdAF.

Damit ist gezeigt: Es gibt ein Vektorfeld A (= magnetisches Vektorpotential) und
eine beliebig oft differenzierbare Funktion a (= skalares Potential) mit

rot A=H

grad a — % = E.

Wendet man diese Uberlegungen auf ¥ an, so folgt die Existenz eines Vektorfeldes
B (= elektrisches Vektorpotential) und einer Funktion b ( = skalares Potential) mit

rot B=E
0B _
grad b — %) = H.
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Verlangen wir von A, a noch, dass die ,,Eichbedingung

gj — divA =0

gilt, so fiihrt uns das wegen

rotrotA = —AA + grad div A

auf die Schwingungsgleichung

0?A
AN A = 0.
T oo
Entsprechend fogt aus
0b
ot divB =0
die Beziehung
0’B
-AB = 0.
T o

Wie erfiillen wir nun die Eichbedingung ? Wir zeigen dies fiir {2. Statt des Paares
(a, A) betrachten wir ein Paar (aney, Anew) = (@ + ¢, A + grad @) mit noch
unbekannten Funktionen ¢, ¢. Dann gilt zunachst rot A,,.,, = H, und wir erhalten
weiter aus der Eichbedingung die Forderung

9% pp = —a‘tLerivA,

ot 7

wahrend die Gleichung fiir das skalare Potential

0 0A
grad ¢ — atgrad b = ot grada + E
liefert. Mit 9. — A9P — _ 2% 4 diy 9A folgt
toalt 0%a
—Np= — Aa.
gz TP T T T

Bestimmt man hieraus ¢ , so kann man & aus

Op ~_ Oa )
8t—A@— 8t+de

ermitteln.
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11.5 Differentialformen und Differentialgleichungen

In 8.2.2 hatten wir die Differentialgleichung dy = Z betrachtet und dabei y > 0
vorausgesetzt; als Losungen erhielten wir Halbkreise y = v/r2 — 22, |z < r.
Im Kalkiil der Differentialformen konnen wir Sy = —* umformulieren zur Glei-

chung xdz + ydy = 0. Definiert man nun die leferentlalform w := xdx + ydy und
schreibt diese Differentialgleichung in der Form w = 0, so ist nicht nur die Voraus-
setzung y > 0 unnotig; es ist auch naheliegend, nicht mehr eine Losungsfunktion
y(z) zu suchen, sondern Funktionen z(t),y(t) , die diese Gleichung 16sen. Man
sucht also Losungskurven v(t) = (z(t), y(t)). Fir zdx 4+ ydy = 0 erhdlt man nun
als Losungskurven Kreise x(t) = r - cost, y(t) =r - sint.

Wir betrachten nun allgemein eine Differentialgleichung

dy  f(z,y)

dx g(z,y)

und schreiben sie in der Form

f(z,y)dx + g(z,y)dy = 0;

dabei setzt man voraus, dass (f(z,v),g(x,y)) # (0,0) ist. Nun definieren wir die
Differentialform 1. Ordnung

w:= fdz + gdy

und bezeichnen Funktionen x(t), y(¢) als Losung , wenn

f(@),y(0)2(t) + g(=(t), y(H)y(t) = 0
ist. Dies soll nun prazisiert werden. Wir fithren dazu einige Begriffe ein:

Definition 11.5.1 Eine Differentialform w = fdx + gdy € 2'U heift reguliir,
wenn die Funktionen f, g keine gemeinsame Nullstelle in U haben.

Definition 11.5.2 Es sei U C R? offen und w = fdx + gdy € QU eine reguliire
Differentialform. Eine (stetig differenzierbare) regulire Kurve

v la,b] = Ut = (2(2), y(t)),
heifit Losung der Differentialgleichung w = 0, wenn gilt:
wory =0,

also

dx dy

Fa®),5(0) - 5 )+ g@0),y(0) - @) =0 fiiralle € [a,)
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Eine Losungskurve kann man oft folgendermassen finden: Wenn es eine Funktion
h mit dh = w gibt, dann sind Losungen Niveaumengen von h:

Satz 11.5.3 Wenn zu w = fdx + gdy € 02U eine beliebig oft differenzierbare
Funktion h : U — R mit dh = w existiert, dann gilt: Eine regulire Kurve
v : [a,b] — U ist genau dann eine Losungskurve zu w = 0, wenn h o~y konstant ist;
vla, b] liegt also in einer Niveaumenge von h.

Beweis Es ist b, = f und hy, = g, daher

Sth(x(t),y(t)) ha (2(2), y(2))E (1) + hy (2(t), y(2))y(t) =
) + 9 (®)i (1)

und daraus folgt die Behauptung. a
Wenn ein derartiges h existiert, kann man also Losungskurven dadurch erhalten,
dass man die Gleichung h(x,y) = ¢ nach y oder = auflost.

Bei unserem Beispiel w = zdz + ydy kann man h(z,y) = }(2* + y*) wihlen;
Losungskurven liegen dann auf 22 + 2 = c.

Definition 11.5.4 Eine Differentialform w = fdz + gdy € 2'Uheif3t exakt, wenn
dw = 0 also f, = g, gilt.

Sie heifst total, wenn eine beliebig oft differenzierbare Funktion h : U — R existiert
mit dh = w.

Aus d o d = 0 und dem Lemma von Poincaré folgt:

Satz 11.5.5 Jede totale Differentialform w € U ist exakt; wenn U sternformig
ist, gilt auch die Umkehrung.

Wenn w nicht exakt ist, hilft gelegentlich das Auffinden eines Eulerschen Multipli-
kators.

Eulerscher Multiplikator

Definition 11.5.6 FEine beliebig oft differenzierbare und nirgends verschwindende
Funktion j : U — R heifst Eulerscher Multiplikator (integrierender Faktor) der
Differentialgleichung w = 0, wenn d(uw) = 0 ist.

pw = 0 hat dieselben Losungskurven wie w = 0. Man kann beweisen, dass es zu
einer regularen Differentialform lokal immer einen Eulerschen Multiplikator p gibt

(vgl. [12]).
Beispiel 11.5.7 Es sei

w = 2ydz 4 zdy € 21 (R?\ {0})

dann ist dw = —dx A dy # 0 und wir suchen einen Eulerschen Mukltiplikator g,
also d(pw) = 0. Es soll also gelten:

(2yp)y = (zp)e  oder 2+ 2ypy = p+ Tpy.
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Man kann demnach y(z,y) = z (in R?\ {0}) wihlen; dann ist 2w = 2zydz+23dy
exakt. Setzt man h(z,y) := 22y, so gilt dh = pw und die Losungen von w = 0
erhilt man durch 22y = c.

Ganz allgemein kann man ebene autonome Systeme ( das sind Systeme mit zwei
Komponenten, bei denen die Variable ¢ auf der rechten Seite explizit nicht vor-

kommt),
dx dy

mit (f, g) # (0,0), in der Form
w=fdz+4+gdy=0

mit der 1-Form w schreiben. Da iiber den Kurvenparameter bei ebenen autono-
men Systemen nichts festgelegt ist, wird man nach einer parameterunabhangigen
Schreibweise fiir solche Systeme suchen. Sie ist durch w = 0 gegeben und hat den
Vorteil, dass man unsere Resultate 11.3.17 liber das Transformationsverhalten von
Differentialformen anwenden kann, wenn man den Kurvenparameter wechselt.
Haufig nimmt man den Polarwinkel ¢. Setzt man

(z,y) = (r-cost,r-sint) = (p1(t,7),p2(t, 7)) = @(t,7),
so folgt aus w o v = 0 mit der ersten Relation in 11.3.17 die Beziehung

(wop)op toy=woy=0.
¢~ 1 o ist die Losungskurve in Polakoordinaten. Fiir w o ¢ folgt mit 11.3.17 die
Gleichung

r(—fop(t,r)sint+gop(t,r)cost)dt+(fop(t,r)cost+gop(t,r)sint)dr = 0.

Ist fo(t,r)cost+ gop(t,r)sint # 0, so erhalten wir fiir 7 in Abhéngigkeit vom
Polarwinkel ¢ die Differentialgleichung
dr fo(t,r)sint —gop(t,r)cost

’r' .
dt fowp(t,r)cost+gop(t,r)sint

und diese ist die haufig verwendete Umschreibung von (1) auf Polarkoordinaten.
Als Richtungsfeld zu fdz + gdy = 0 definiert man nun in jedem Punkt (z,y) die
zum Vektor (f(z,y), g(x,y)) senkrechte Richtung.

Aus der letzten Gleichung kann man wegen (f, g) # (0, 0) auf das System (1), aber
auch auf gg = —/ oder gx = _? schliessen, je nachdem , ob f # 0 oder g # 0
ist. Dies bedeutet, dass wir x oder y als Kurvenparameter verwenden. Wird also
¢ = 0 und die Kurventangente an (x, y(z)) mit SZ = —J; senkrecht, so muss man,
wie schon zu Beginn dieses Kapitels erwahnt, y als Kurvenparameter einfithren oder

einen ganz anderen Kurvenparameter wie den Polarwinkel bei der bereits erwahnten
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Kreisgleichung " dy — =

Das Auffinden von h Wley in 11.5.4 ermoglicht es uns, das System (1) in die Hamil-
tonsche Form

z = hy (.T, y)

Y= _hx(xa y)

zu bringen. h heifit Hamiltonsche Funktion. Die Vorteile sollen am nachsten Bei-
spiel erlautert werden.

Beispiel 11.5.8 Die Schwingungen des mathematischen Pendels (ohne Reibung)
werden durch )
Tr= —sinx

beschrieben, wobei x die Auslenkung aus der Ruhelage = 0, £ = 0 ist (man ver-
gleiche hierzu Beispiel 8.4.8.) Gehen wir wie liblich durch z, y = & zum autonomen
ebenen System

T= y
(2) Yy = —sinx

im sogenannten Phasenraum der x, y iiber, so sehen wir, dass

1
y?+1—cosx

h(l’,y) = 9

Hamilton-Funktion ist. Interessant bei (2) ist die Stabilitit des Ruhepunktes, oder
wie man auch sagt, der Gleichgewichtslage (0, 0), die also als Nullstelle der rechten
Seite von (2) erklart ist. Die Losungen von (2) sind die Storungen dieser Gleichge-
wichtslage und die Niveaulinien von h. In (0, 0) hat i ein lokales Minimum. Die
Niveaulinien in der Ndhe des Nullpunkts sind demnach geschlossene Kurven, die
sich bei kleiner werdenden Startwerten auf (0, 0) zusammenziehen. Also ist (0, 0)
stabil. Da die Storungen in der Nihe von (0, 0) periodisch sind, nennt man (0, 0)
ein Zentrum.

Aufgaben

11.1. Zeigen Sie: Fiira > 0, b > 0ist M := {(a-cost, b-sint) € R*| 0 <t < 27}
eine Untermannigfaltigkeit des R?. Geben Sie einen Atlas an.

11.2. Sei M := {(z1, %2, 23) € R?| 23 = 2iz2}.

a) Zeigen Sie, dass M eine 2-dimensionale Untermannigfaltigkeit des R? ist.
b) Geben Sie eine Karte .R? — M an.

¢) Geben Sie fiir p = (0, 0, 0) eine Basis von T, M und von N, M an.

11.3. Zeigen Sie, dass die folgenden Mengen keine eindimensionalen Untermannigfaltigkei-
ten des R? sind:

a) das Achsenkreuz {(z,y) € R?| zy = 0},

b) die Neil’sche Parabel {(x,y) € R?*| z® = ¢?}.
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11.4. Sei
flz,y) = r4aiz? +a2xy+a3y2 —|—a4w3, g(z,y) = y+b1w2 +b2xy+b3y2 —|—b4y3.
a) Geben Sie Bedingungen an a1, . . ., bs an, unter denen es eine Funktion A mit
he =f, hy=g

gibt. Hinweis: Beispiel 9.6.8

b) Zeigen Sie: Wenn es eine Funktion h wie unter a) gibt, dann sind die Losungen von w =
fdx + gdy = 0 in der Nahe des Nullpunkts geschlossene Kurven, die um den Nullpunkt
laufen. Benutzen Sie eine geometrische Uberlegung wie in Beispiel 11.5.8.

11.5. a) Stellen Sie die Differentialgleichung fiir den Eulerschen Multiplikator p auf.
b) Finden Sie einen Eulerschen Multiplikator zu

9z ydx 4 4zy’dy = 0.

11.6. Geben Sie zur Differentialform w ein 7 mit d7 = w an, falls es existiert:
a) w = 3zy’dx + 2x3ydy € 21 (R?)

b) w = (y* +4)dzx — (z® + 1)dy € N'(R?)

¢) w = 2zdy Adz + e*dz Adx — 3yPdx A dy € 2%(R?)



12

Distributionen und Greensche Funktion

12.1 Distributionen

Bei der Behandlung mancher physikalischer Probleme ist es zweckmaBig,
anzunehmen, dass eine Masse oder Ladung in einem Punkt konzentriert
ist. Wenn man annimmt, dass die Masse der GrofSe 1 im Nullpunkt liegt,
dann mifite die Massendichte beschrieben werden durch eine von Dirac
(PAUL ADRIEN MAURICE DIRAC, 1902-1984 ) eingefiihrte ,,Funktion*d,
die ausserhalb des Nullpunktes verschwindet und in 0 so grof ist, dass das
Gesamtintegral gleich 1 ist.

Dirac schreibt dazu im Jahr 1927:

,,We shall use the symbol () to denote this function, i.e. §(x) is defined
by

0(xr) =0 whenz #0, and /6(33) = 1.

Strictly , of course, d(x) is not a proper function of z, but can be regarded
only as a limit of a certain sequence of functions.

Nun soll der Funktionsbegriff so verallgemeinert werden, dass man derar-
tige Massen- und Ladungsverteilungen beschreiben kann. Dies fiihrt zum
Begriff der Distribution; insbesondere kann man dann die Diracsche §-
Distribution definieren. Die Theorie der Distributionen wurde vor allem von
LAURENT SCHWARTZ (1915-2002) entwickelt.

Wesentlich bei der Einfiihrung von Distributionen ist deren Definitionsbereich. Ei-
ne Distribution ist nicht etwa auf reellen Zahlen definiert, sondern auf der Menge
C&°(R) der unendlich oft differenzierbaren Funktionen ¢ : R — R, die kompakten
Trager besitzen. Diese Funktionen bezeichnet man als Testfunktionen.

In 9.1.21 hatten wir fiir eine Funktion ¢ : R — R den Triger von ¢ definiert durch
Tr(p) = {z € R|lp(x) # 0}. Zu jedem = ¢ Tr(p) gibt es also eine Umgebung,
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in der ¢ = 0 ist. Der Trager T'r(y) ist genau dann kompakt, wenn es ein Intervall
[a,b], a,b € R, gibt mit Tr(¢) Cla, b, also p(z) = 0 fir x ¢ [a, b].

Entscheidend fiir die Einfiihrung von Distributionen ist der Vektorraum C§°(R).
Dieser Vektorraum wird mit einem sehr starken Konvergenzbegriff versehen, man
fordert namlich gleichmaBige Konvergenz nicht nur der Funktionen, sondern auch
aller Ableitungen. Den mit diesem Konvergenzbegriff versehenen Vektorraum
C§° (R) bezeichnen wir nun mit D.

Definition 12.1.1 D := CP(R) = {p € C*(R)| Tr(y) ist kompakt} heifit der
Vektorraum aller Testfunktionen, versehen mit folgendem Konvergenzbegriff: Eine
Folge (pn )nen in D heifit konvergent gegen ¢ € D, wenn gilt:

(1) Es gibt ein Intervall [a,b] mit Tr(py,,) C [a, b fiir allen € N.
(2) Fiir jedes k € Ny konvergiert die Folge (cp%k))neN gleichmiifig gegen o).

Definition 12.1.2 FEine Distribution ist eine stetige lineare Abbildung
T:D — R,

es gilt also:

(1) Fiir o, € Dund X\, pp € Rist T(Ap + pp) = AT () + puT' ().

(2) Ist (on)nen eine Folge in D, die gegen ¢ konvergiert , so konvergiert T'(¢y,)
gegenT(p) (inR)

Die Menge der Distributionen bezeichnen wir mit D'; es ist also

D' = {T : D — R|T stetig und linear}.

Wir schreiben auch Ty statt T'(¢).
Als erstes Beispiel geben wir die Dirac-Distribution § an; dass es sich bei den fol-
genden Beispielen wirklich um Distributionen handelt, priift man leicht nach.

Definition 12.1.3 Die Distribution
0:D—-R, p— ¢(0),
heift die Dirac-Distribution.

Wir werden diese Distribution noch veranschaulichen und als Grenzwert von Funk-
tionen darstellen.

Zunachst gehen wir auf die Frage ein, auf welche Weise jede stetige (bzw. integrier-
bare) Funktion f : R — R als Distribution aufgefa3t werden kann. Es gilt:

Satz 12.1.4 Ist f : R — R stetig, so ist

+oo
T :D—=R, pr— /f-(pdx,

— 00

eine Distribution. Ist aufferdem g : R — R stetig und Ty = Ty, so folgt f = g.
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Man hat also eine injektive lineare Abbildung
C'(R) — D', f v Ty.

Wenn man f € C°(R) mit T € D’ identifiziert, so kann man C°(R) als Untervek-
torraum von D’ auffassen; in diesem Sinne ist eine Distribution eine verallgemei-
nerte Funktion und

C°(R) c D'

Man kann diese Aussage verallgemeinern: Ist f : R — R lokal- integrierbar (d.h.
b

fiir jedes Intervall [a, b] existiere f f dz), so wird durch Ty (¢ f feo dz eine
—o0

Distribution erklart.

Bei den hier auftretenden Integralen ffooo feda ist zu beachten, dass ¢ kompak-

ten Trager hat; man kann also a < b so wahlen, dass fir x < a und x > b gilt:
o(x) = 0.Bsistalso [ fodr = fab fodz. Entsprechend gilt: weil ¢ kompakten
Triger hat, ist fo|*,, = 0, denn es ist f|* = f(b)e(b) — f(a)p(a) = 0.

Wir definieren nun die Ableitung einer Distribution; Distributionen sind immer be-
liebig oft differenzierbar:

Definition 12.1.5 Ist T eine Distribution, so heift
T/ :D — Ra ["Zans _T(Sol)v
die Ableitung von T'; fiir n € N ist

T () = (~=1)"T(™).
Diese Definition wird gerechtfertigt durch folgende Aussage:
Satz 12.1.6 Wenn f : R — R stetig differenzierbar ist, dann gilt: (Ty)" = Ty.
Beweis. Fiir p € D ist

400 +oo
(TP (@) = T =~ [ f¢/de=—fol=o+ | fode=Tp(p). O

Definition 12.1.7 Ist f € C*°(R) und T € D', so setzt man (f - T)(¢) :=T(f - ¢)
fiir o € D; dann ist f - T eine Distribution.

Satz 12.1.8 (Produktregel) Es gilt:
(f-T) = f'T+ T

Beweis. Fiir o € Dist (fT) () = —(fT)(¢")

- —T(f¢') und
(f'T+IT) (@) =T(f'0)=T((fe)) =T(f

Fo)—T(F'o)~T(f¢) = ~T(f¢).
O
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Nun definieren wir fiir eine Folge (77, )nen von Distributionen den Grenzwert

lim T,,.

n—oo

Definition 12.1.9 Eine Folge (T},)nen von Distributionen T,, heifit konvergent ge-
genT € D', wenn fiir jedes p € D gilt:

lim T5,(p) = T(p)-

n—0o0

o0
Eine Reihe Y T, von Distributionen T, heifit konvergent, wenn die Folge der Par-
n=0
tialsummen konvergiert.

Bei Distributionen darf man Limes und Ableitung vertauschen:
Satz 12.1.10 Aus lim T,, = T folgt: lim T, =T".
n—oo

n—oo

(o) o0 (o)
Fiir eine konvergente Reihe > T, gilt: (Y. T,,) = > (Tn).
n=0 n=0

n=0
Beweis. Aus lim T),(p) = T(p) fiiralle ¢ € D folgt lim T,,(¢’) = T(¢')
n— o0 n—oo
und daher ist lim T! () =T (p). O

Wir gehen nun auf die Diracsche §-Distribution ein.
An einem einfachen Beispiel konnen wir uns § veranschaulichen.

Beispiel 12.1.11 Wir definieren die Folge

noofir e < L
fmiR->Rz—

0 fir |zf>]

Die unter dem Graphen von f,, liegende Fliche ist immer gleich 1und der Trager
zieht sich auf den Nullpunkt zusammen; man wird also vermuten:

nILH;O Ty, = 6.
+ 1
Dies ist leicht zu beweisen: Fiir ¢ € D ist T}, (p) = 5 ¢ dx und aus dem
_1
Mittelwertsatz der Integralrechnung folgt: es existiert ein &, € [— TlL,—i—TlL] mit

Ty, () = plEn); daherist lim Ty, () = lim p(&,) = 9(0) = 5(p)

Weitere Beispiele zur Veranschaulichung von ¢ erhalt man mit folgendem Satz:

Satz 12.1.12 Es seien (ay, )y, und (by,),, Folgen reeller Zahlen mit a,, < 0 < by, und

lim a, =0, hm b, = 0.
n— 00

+oo
Fiirn € N sei f, : R — Rstetig, fn, > 0, Tr(fn) C |an,by| und [ frdz = 1.

Dann gilt:
lim Tfn =9.

n—oo
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2%
Beweis. Fir ¢ € D ist Ty, (¢) = [ fn - ¢ da; aus dem 2. Mittelwertsatz der

Integralrechnung folgt: es existiert ein &, € [ay, by] mit

brn

Daher ist lim T}, (¢) = ¢(0) = §(¢p). O
n—oo

Wir bringen nun weitere Beispiele von Distributionen, die Heaviside-Distribution

(OLIVER HEAVISIDE (1850-1925)) und die Dipol-Distribution:

Definition 12.1.13 Die Funktion

0 fir x<0

h:R—>R,x»—>{1 fiir x>0

heif3t Heaviside-Funktion, die Distribution H := T}, heifst Heaviside-Distribution,
es ist also

H) = [ oo

Die Distribution
Tdipol :D— Ra P = (p/(O)’

heif3t Dipol-Distribution.
Satz 12.1.14 Es gilt

H' =9, 8" = —Tiipor-

Beweis. Fiir p € Dist H' (¢) = —Ti(¢') = — [ ¢'(z) dz = ¢(0) = §(¢) und
0
Taipot (#) = #'(0) = =0"(e0). O

Beispiel 12.1.15 Folgen von Funktionen, die, aufgefasst als Distributionen, gegen
0 konvergieren, erhilt man so: Wennn ¢ eine Funktion wire, dann miisste die
Heaviside-Funktion h eine Stammfunktion dazu sein. Nun glattet man h in einer
Umgebung des Nullpunktes zu einer stetig differenzierbaren Funktion und bildet da-
von die Ableitung; diese approximiert dann §. Dies wird nun prézisiert: Fiir n € N
sei

1
hn;R — R stetig differenzierbar, h,,(z) = h(z) fir |z| >
n

1

Dann liegt der Tréger von A, in [— !, +!] und es gilt
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also folgt nach Satz 12.1.12
lim Th;, = 0.

n—oo

Wihlt man die h,, zweimal stetig differenzierbar, so kann man auch die Dipol-

Distribution interpretieren: Wegen T}’L, = Ty und 0" = —Tuyipor ergibt sich:
lim Th;{ = _Tdipol-
n—oo

Eine solche Folge (h,,) kann man so erhalten: man konstruiert eine (zweimal) stetig
differenzierbare Funktion hy : R — Rmit hy(z) = 0 firx < —1 und h(x) = 1 fiir
x > 1. Dann setzt man

b (x) := hy(nz).

In der Abbildung ist fir |z| < 1:
hi(z) = s+ (3% — 1023 + 152 + 8),
M@) = B @t 12@ 1% B = a1 —1).

16
hy Ry i
) 11
Heaviside Dirac —Dipol

Wir behandeln nun ein Beispiel einer unendlich oft differenzierbaren Funktion mit
kompaktem Trager:

Beispiel 12.1.16 Es sei

FIRR, 2 exp(zil) fir |z| <1
0 sonst

Ahnlich wie in 6.2.4 zeigt man, dass f unendlich oft differenzierbar ist; es gilt

—2x 1 ..
f/ :R_)R7 T — (z271)2 'eXp <I271) fur |,CL'| < 1
0 sonst

Wir haben damit ein Beispiel fiir eine nicht-identisch verschwindende Funktion
f € C°(R). Der Triager von f und auch der von f’ ist [—1, +1]; fiir e > 0 ist der
Triger von f(?) gleich [—¢, +¢]. Wir konnen damit eine Folge unendlich oft diffe-

renzierbarer Funktionen angeben, die als Distributionenfolge gegen ¢ konvergiert.
+1

Dazu wihlen wir ¢ € R so, dass [ ¢- f(z) dz = 1istund setzen g(z) := ¢ f(x)
-1
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+oo
und g,,(z) = n-g(nz). Dannist Tr g, C [=},+']und [ gn(z)dz = 1,
daher gilt: -
lim Ty, =9, lim Ty = —Tyipor-

SR I (E

1 / / /
g 9o gs
I\/l

Fiir eine stetig differenzierbare Funktion f hatten wir gezeigt, dass (T)" = Ty
gilt; nun beweisen wir: Wenn f im Nullpunkt eine Sprungstelle der Sprunghohe s
besitzt, dann gilt: (1)’ = Ty + s - 6. Die Sprungstelle liefert den Summanden s - 6,
also ,,Sprunghohe mal Dirac “.

Satz 12.1.17 Seien f1 :] — 00,0] — R und f5 : [0, +00[— R stetig differenzierbar,

sei
| f@)  fir @ <0
f.RHR,xH{f;@) fir 150
und s := f2(0) — f1(0). Dann gilt:
(Tf)/ =Tp +s5-0.

f2

fi S\/\
/\/l

Beweis. Sei ¢ € D ; durch partielle Integration erhalt man:
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0 %)
Ti(p) = —Ty(¢") = — f fig' dw — f fop' do =

= —f19|% o + f flo dz — foplf +ff2s0dff—
= (f2(0) — f1(0 )) 0) +Tp () = s 5( )+ T ().

O
Bemerkung Die Funktion f’ ist im Nullpunkt nicht erklirt, der Beweis zeigt aber,
dass Ty sinnvoll definiert ist.
Die Faltung T" *
In 10.5.6 haben wir die Faltung fiir Funktionen f : R — Rund g : R — R definiert
durch

[*9:R—>R, x— /f(t)g(x—t)dt.

Wir wollen nun die Faltung fiir Distributionen einfiihren.
Zuachst setzen wir fir z € R

giz] - R =R, t g(x—1),

dann konnen wir die Faltung so schreiben:
(f*9)( / f@)g

Definition 12.1.18 Ist T' € D’ eine Distribution ¢ € D eine Testfunktion so defi-
niert man die Faltung T x ¢ durch

Nun definieren wir:

Txp:R—=R, zT(pp),

Die Definition wird motiviert durch den Satz:

Satz 12.1.19 Ist f : R — R stetig, so gilt fiir alle p € D: Tf* @ = f * .

Beweis. (T » o) (x) = f F®)p (t) dt = (£ % 0) (). 0

Wir zeigen noch, dass § das ,,neutrale Element“ beziiglich der Verkniipfung x ist.

Satz 12.1.20 Fiir alle ¢ € D ist
§x = .

Beweis. (6 * ¢)(2) = 6(¢[2]) = ] (0) = (). =



12.1 Distributionen 347

Distributionen im R"

Es soll noch skizziert werden, wie man Distributionen im R” definiert.

Man bezeichnet mit C§°(R™) die Menge aller beliebig oft stetig partiell differen-
zierbaren Funktionen ¢ : R” — R, die kompakten Trager besitzen; zu ¢ existiert
also ein 7 > 0 mit ¢(x) = O fiir ||x|| > r. Versehen wir C5°(R™) mit dem Konver-
genzbegriff aus 12.1.1, so entsteht D(R™):

Eine Folge (¢;); in D(R™) heifit konvergent gegen ¢ € D(R™) , wenn gilt:

(1) Es gibt eine kompakte Menge K C R™ mit T'r(yp;) C K fiiralle j € N.

(2) Fir alle v = (11, ..,v,) € Njj konvergiert (D"¢;); gleichmiBig gegen D" ;
dabei setzt man wieder

oYL +..+vn ©

DYy = .
14 oixy - .- Onxy,

Eine im Sinne von 12.1.1 stetige lineare Abbildung
T:DR") - R

heift Distribution im R™.
Die partielle Ableitung von T" wird definiert durch

oT . Oy
(9)=-T(57

).
Dann ist gi}; () = T(gif) und fiir den Laplace-Operator A := 88;2 + ..+ 0‘?;
1 T1 7 n
gilt:
(AT)(p) = T(Dop)

Der Raum Ci° (U)

Es sei U C R™ eine offene Menge und C3°(U) der Vektorraum aller unendlich oft
stetig differenzierbaren ¢ : U — R, die kompakten Trager T'r C U besitzen. Es
gibt sehr viele solche Funktionen. Sie bilden fiir jedes p > 1 einen Untervektorraum
von L, (U), der in L,(U) dicht liegt:

Satz 12.1.21 (Dichtesatz) Fiir jedes p liegt der Raum C3°(U) dicht in L,(U); das
bedeutet: Zu jedem € > 0 und zu jedem f € L,(U) existiert ein p € C3°(U) mit

If = ¢llp <e.

Der Satz wird in [30] bewiesen. Im folgenden Beispiel zeigen wir, wie man Funk-
tionen aus C3° (U) fiir die offene Einheitskugel konstruieren kann.

Beispiel 12.1.22 Sei0 <r <1,

1 = 2
exp(—,2_)» fir 0 < Jjz]|* <7
o) ::{0 . e

sonst
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Dann ist zunéchst ¢ stetig und hat kompakten Trager K,.(0) C K1(0). Anwendung
der Kettenregel und Berticksichtigung der Eigenschaft von exp(— TQ_h_tHQ) , fur
llz|| — =, ||=|]| < r, schneller auf Null abzufallen als irgendeine rationale Funktion
dort unendlich werden kann, zeigt (wie in 6.2.4): ¢ € C§°(K1(0)).

12.2 Distributionen und Differentialgleichungen

Es sei

Ly :=y™ + e,y Y+ ey + coy
ein linearer Differentialoperator mit konstanten Koeffizienten. Wir behandeln nun
Differentialgleichungen wie LT" = §. Man hat also auf der rechten Seite nicht eine
Funktion, sondern eine Distribution und auch als Losung ist nicht eine Funktion,
sondern eine Distribution 7" gesucht. Losungen von LT = § spielen eine wichtige
Rolle; sie heilen Grundlosungen.

Definition 12.2.1 FEine Distribution T heifst Grundlosung zum Differentialopera-
tor L, wenn gilt:
LT =5.

Nun ergeben sich zwei Fragen:
e (1) Wozu benotigt man eine Grundlosung ?
e (2) Wie findet man eine Grundlosung ?

Wir gehen zunachst auf die erste Frage ein; zur Vorbereitung benotigen wir:

Satz 12.2.2 Ist T € D' und ¢ € D, so ist u := T x ¢ differenzierbar und es gilt:

u =T % .
Wir skizzieren den Beweis dazu: Es sei wieder ¢, (t) := ¢(t — ). Fiir b # 0 ist
dann der Differenzenquotient

u(xz + h) — u(x)

Plath] ~ Ple]
. .

=T
( h
Es ist

Plen) () = @) et —h) = ep)

h —h
und dies geht fiir h — 0 gegen —cp’[ ](t). Nun beweist man die scharfere Aussage:

x

Ist (hy), eine Folge mit h,, # 0 und lim A, = 0, so konvergiert die Folge

(hln (Plathn] — Plz]))n in D gegen die Funktion _‘szy
Daraus folgt dann wegen der Stetigkeit von 7"

lim hl (u(z + hy) —u(z)) = T(-@ft]) =T'(pp)) = (T" x ) (x),

n—0oo n

also existiert v’(x) und es gilt: v’ = T’ x . O
Daraus folgt
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Satz 12.2.3 Ist T eine Distribution und ¢ € D, so ist T x ¢ beliebig oft differen-
zierbar und fiir jeden linearen Differentialoperator L mit konstanten Koeffizienten
gilt:

L(T x ) = (LT) * ¢.

Daraus ergibt sich:

Satz 12.2.4 Ist T eine Grundlosung zu L, so gilt fiir jedes p € D:
L(T * p) = p.

Beweis. L(T xp) = (LT)xp=0d%p=p. O
Mit diesem Satz ist die erste Frage beantwortet:

Wenn man zu L eine Grundlosung 7" hat, so kann man fiir jedes p € D eine Losung
u von Lu = p angeben: es ist u = T * p. Man erhalt also eine Losung einer
inhomogenen Differentialgleichung Lu = p dadurch, dass man eine Grundlosung
T mit der auf der rechten Seite stehenden Funktion o faltet.

Nun behandeln wir die zweite Frage: Wie findet man eine Grundlosung ?

Die Idee erlautern wir fiir den Spezialfall eines Differentialoperators 2. Ordnung
mit konstanten Koeffizienten, also Ly = y” + c13’ + coy. Man setzt eine Losung
f von Ly = 0 mit der trivialen Losung so zu einer Funktion g zusammen, dass g
im Nullpunkt einen Knick von 45° besitzt. Dann existiert ¢’ fiir  # 0 und hat in 0
einen Sprung der Hohe 1. Wendet man nun L auf die Distribution T}, an, so kommt
nach 12.1.17 der Summand ¢ dazu; daher ist die zu g gehorende Distribution T},
eine Grundlosung zu L.

Satz 12.2.5 (Konstruktion einer Grundlosung ) Eine Grundlosung zum Differen-
tialoperator

L=D"+c¢,_1D" '+ .. 4c1D+cy mit cg,....,cn_1 €ER
erhdlt man folgendermaflen: Es sei f : R — R die Losung von
Lf=0 mit f(0)=0, f(0)=0, ..., f"2(0) =0, f"D(0)=1.

Definiert man
0 fiir <0

9:R—>R,xn—>{f(x) fir >0

so ist Ty eine Grundlosung zu L, also

LT, = 6.
Bemerkung. Die Bedingung an f ist so zu interpretieren:
Fiir n = 1 bedeutet sie f(0) =1

fir n = 2 hat man f(0) =0, f'(0) = 1.
Beweis. Wir fiihren den Beweis fiir n = 2; es ist also L = D? 4+ ¢1.D + ¢o.
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g

Wir wenden 12.1.17 an: Weil g im Nullpunkt stetig ist, gilt (T,;)’ = T,. Die Funkti-
on ¢’ hat in 0 einen Sprung der Hohe 1 und daher ist (T,/)" = T,» + &; somit ergibt
sich (Ty)"” = Ty + 6. Daher gilt

LTg = C()Tg + Cl(Tg)/ + (Tg)// = Cng + Cngl + Tg// + (5

Fiir z # 0ist cog(z) + c19'(x) + ¢” (z) = 0, daherist coTy + 1Ty + Ty = 0 und
somit LT, = 0. O

Beispiel 12.2.6 Es sei L := D? + 1. Die Losung von
f'+f=0 mit f(0)=0, f/(0)=1

ist f(x) = sinx. Es sei g : R — R definiert durch g(z) := 0 fiir x < 0 und
g(x) :=sinz firx > 0. Dannist ¢’(z) = 0 firz < Ound ¢'(z) = cosx firz > 0.
Weiter gilt ¢ (z) = 0 firz < Ound ¢”(z) = —sinz fir z > 0.

Esist (T,)" + T, = 6; die Distribution 7}, ist eine Grundlosung zu L = D? + 1.

I~ K~ A

| N \\; \\/’

Wir behalten wir die obigen Bezeichnungen bei und fassen die Satze 12.2.4 und
12.2.5 zusammen. Man beachte, dass bei dieser Formulierung der Begriff der Dis-
tribution nicht mehr vorkommt:

Satz 12.2.7 Es sei o € D; definiert man die Funktion u : R — R durch
u(x) := / fl@—=1t)p(t)de

so gilt Lu = p.

Beweis. Setzt man u := T, % p = g * p, so gilt Lu = p. Esist g(x —t) = f(z — )
firt <z und g(z —¢t) = 0 fiir t > . Daher ist

+oo

u(@) = (g p)() = / o — t)p(t) dt = / f( — tp(t) dt.

— 00
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O
Wir formulieren diese Aussage noch etwas anders und kommen zu einer Greenschen
Funktion G zu L; in 12.4 werden wir Greensche Funktionen eingehend behandeln.

Satz 12.2.8 Definiert man die Funktion G : R? — R durch

o 0 fiir &>z
G“”’g)“{f(x—s) fiir €<

so gilt: Ist o € D und setzt man

+oo
ulz) = / G, €)p(€) de,

so gilt Lu = p.

12.3 Differentialgleichungen auf abgeschlossenen Intervallen

In vorhergehenden Abschnitt haben wir Differentialgleichungen Ly = p mit p € D
behandelt; die rechte Seite ist also eine in R definierte unendlich oft differenzier-
bare Funktion mit kompaktem Trager. In vielen wichtigen Fallen ist aber die auf
der rechten Seite stehende Funktion nicht in D; zum Beispiel gilt dies fiir die soge-
nannten elementaren Funktionen, etwa Polynome, e*, sin z. Wir zeigen nun, dass
entsprechende Aussagen auch dann gelten, wenn p eine auf einem abgeschlossenen
Intervall [a, b] stetige Funktion ist. Man geht aus von der Formel in 12.2.7 und zeigt:
Wihlt man f wie in 12.2.5 und setzt man

u(x) == /f(a: —t)p(t) dt

so gilt Lu = p.
Satz 12.3.1 Es sei
L=D"+4c¢, 1 D" '+ .. +c1D+c

ein Differentialoperator mit konstanten Koeffizienten und f : R — R die Losung
von

Lf=0 mit f(0)=0, f(0)=0,...,f"20)=0, f*D0)=1.

Ist dann p : [a,b] — R eine stetige Funktion und definiert man

u:[a7b]—>R,x»—>/f(x—t)p(t) dt,
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50 ist
Lu=p und u(a)=0, v'(a)=0,...,u" D(a)=0.

Beweis. Wir erlidutern den Beweis wieder fiir n = 2, also fiir L = D? + ¢; D + ¢p.
Wir verwenden nun 9.2.17; daraus folgt wegen f(0) =0, f'(0) =1

/fm—t t)ydt + f(0 /fa:—t
/f” t)dt + f'(0 /f” t)dt + p(z).

Daraus ergibt sich

x

(@) = [ (wfe =0+ af(e—1)+ /'@ =0) o) dt + p(o) = o)

a

denn es ist
cof(x—t)+eif'(@—t)+ f'(x—t)=0.

An dieser Stelle beniitzt man, dass die Koeffizienten des Differentialoperators kon-
stant sind; andernfalls hétte man hier co(x)f(x —t) +c1(x)f'(x —t) + f(x — 1)
und dies ist nicht notwendig gleich 0. a

Beispiel 12.3.2 Es sei L := 1+ D? und ¢ : [0,27] — R,x — x. Die Losung f
von y” +y = 0 mit f(0) = 0und f/(0) = 1ist f(z) = sinz. Die Losung u von
y" +y = mitu(0) = 0, u/(0) = 0 ist also

u(z) = [tsin(z —t)dt = [t cos(z — t) + sin(z — t)] —, = —sinz.
0
Man erhalt somit

u(z) =z —sinz,

esist u'(x) =1—coszx, v”(x) = sinz, alsou+u” = zund u(0) = 0, «'(0) = 0.
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12.4 Greensche Funktion

Wir behandeln den Begriff der Greenschen Funktion (GEORGE GREEN, 1793-1841)
fur Differentialoperatoren

L = ao(z) + ai(z)D + D?

mit auf [a, b] stetigen Funktionen ag, a;. Es soll eine Funktion G auf [a, b] x [a, ]
konstruiert werden, so dass man fiir jede stetige Funktion g : [a, b] — R eine Losung
u von Lu = g in der Form

b
u(z) = / Gla, )p(t) dt

angeben kann.
Wir fiithren zunachst einige Bezeichnungen ein. Es sei

Q = [a,b] x [a,b], Ql ={(z,t) €Qlz <t}, Q :={(z,1) € Qlz >t}
ty

Ql
Qr

Fir eine Funktion
G:Q —R, (z,t) — G(x,1),
setzen wir
G'=G|Q,, G :=Gq|Q".
Definition 12.4.1 Es sei
L =ag+ a1 D+ D?

ein Differentialoperator 2. Ordnung mit stetigen Koeffizienten ag,a; : [a,b] — R.
Eine Funktion

G:Q—R, (z,t) — G(z,1)
heifit eine Greensche Funktion zu L, wenn gilt:

(1) G ist stetig.
(2) G und G" sind zweimal stetig partiell nach x differenzierbar.
(3)  Fiir jedest € [a,b)] gilt:

oG* 0?G*
ao(x)GE (2, 1) + ay(x) P (z,t) + 92 (x,t) =0 fiir « € [a,t].

T 2
ap(z)G" (x,t) + a1 (z) 6;; (x,t) + 6852 (z,t) =0 fiir x € [t,b].
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(4)  Fiir alle x € [a,b] gilt:
IG" 0G*
— =1.
o (@2) = 7 (@)

Die Bedingung (1) besagt, dass G” und G auf der Diagonale zusammenpassen,
also G*(z,z) = G"(x, x); nach (4) ist dort ein Knick. Die Bedingung (3) bedeutet:
LG* = 0und LG"™ = 0, dabei ist Differentiation nach der Variablen 2 gemeint.

Falls L konstante Koeffizienten hat, kann man eine Greensche Funktion G zu L
leicht angeben:

Satz 12.4.2 Ist L = co + c1D + D? ein Differentialoperator mit konstanten
Koeffizienten cg,c; € R und wahlt man g wie in 12.2.5, so ist G(x,t) = g(x — t)
eine Greensche Funktion zu L.

In diesem Fall kann man also
G'=0 G(z,t)= f(z—1)

wabhlen ; dabei ist
Lf=0, f(0)=0, f(0) =

Wir zeigen nun, dass man mit Hilfe einer Greenschen Funktion G zu L fiir jede

stetige Funktion p : [a, b] — R eine Losung u von Lu = g sofort angeben kann.

Satz 12.4.3 Ist L = ag + a1 D + D? ein Differentialoperator mit stetigen Koeffizi-
enten ay : [a,b] — R, aj : [a,b] — R, und ist G eine Greensche Funktion zu L,
so gilt fiir jede stetige Funktion p : [a,b] — R: Setzt man

w:la,b] = Rz — /G(x,t)p(t) dt,

so ist u zweimal differenzierbar und

Lu=p

Beweis. Wir schreiben GG, an Stelle von a . Bei der Berechnung von u’ und u”
beniitzen wir 9.2.17; mit (1) und (4) aus der Definition von G ergibt sich:

= "(x — e
@—/G(waﬁ /G(JMU&

x

o (2, )p(t) dt + G (2, x)p(x) — bfGﬁ(w,t)p(t) dt — G, 2)p(z) =

GT
G e, p(t) dt — [ Gz, (1) dt,
b

@

QH&Q%&;



12.4 Greensche Funktion 355
u'(x) = fG p(t)dt + G&(x,z)p(x)—

~ [ G (e () dt — G, x)pla) =

2 fGZm(w,t fG p(t) At + p(z).
Daraus folgt ;ﬁt 3):
Lu(z) = / LG™ (&, )p(t)dt — / LG (2, p(t) dt + p(z) 2 pla).

O
Nun zeigen wir, wie man eine Greensche Funktion konstruieren kann. Die Idee da-
zu ist folgende: G*(-,t) und G"(,t) sind ( bei festem ¢ als Funktionen von
x ) Losungen von Ly = 0. Wahlt man ein Losungsfundamentalsystem (71, 72)
zu Ly = 0, so sind G' und G" Linearkombinationen von 71, N2, wobei die Ko-
effizienten von ¢ abhangen. Wahlt man diese Koeffizienten stetig und so, dass
G(z,7) = G"(z,x) und G%(x, z) — G* (x, z) = 1ist, dann erhiilt man eine Green-
sche Funktion.

Satz 12.4.4 (Konstruktion einer Greenschen Funktion). Es sei
L=ay+aD+ D?

ein Differentialoperator mit stetigen Koeffizienten ag, ay : [a, b] — R; dann existiert
eine Greensche Funktion G zu L. Diese erhdlt man so:
Man wiihlt ein Losungsfundamentalsystem (n1,12) von Ly = 0 und stetige Funk-
tionen
Kl, EQ, r1,Tro [CL, b] — R

mit

(1) (r1 = Li)m + (r2 = L2)n2 = 0

(2 (=) +(re —l2)my = 1.

Setzt man
G (x,t) = L1 (t)m (z) + La(t)m2 (),
G"(z,t) == ri(t)m(z) + r2(t)n2(2),

so ist die dadurch definierte Funktion G eine Greensche Funktion zu L. Auf diese
Weise erhdlt man jede Greensche Funktion zu L.

Beweis. Man wihlt ein Losungsfundamentalsystem (71, 72) von Ly = 0. Dann hat
die Wronski-Determinante

W = mny — mem)

keine Nullstelle. Setzt man
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so sind die Bedingungen (1), (2) des Satzes erfiillt und man rechnet nach , dass man
mit 1
Gt =0, @lot) = CmOm ) + b))
eine Greensche Funktion G zu L erhalt.

Firt € [a,b] ist x — G"(z,t) die Losung y von Ly = 0 mit y(¢) = 0, ¢'(t) = 1.
O

Beispiel 12.4.5 Wir betrachten auf [0, 27| den Differentialoperator L := 1 + D?;
setzt man
m(z) := cosz, n2(z) = sinz,

so ist (1, 72) ein Losungsfundamentalsystem zu Ly = y + 3" = 0.
Esist W(x) = 1und r(z) = —sinz, ro(z) = coszx. Durch

Gz, t) =0 G"(z,t) = —sint - cosx + cost - sinz = sin(z — t)

wird eine Greensche Funktion G zu L gegeben.

t

/2

Beispiel 12.4.6 Sei L := D?; dann setzt man

m) =1, m(r) =z

und hat damit ein Losungsfundamentalsystem zu Ly = 0. Eine Greensche Funktion
erhalt man durch
G*(z,t) =0 G (z,t) =x —t.

SchluBbemerkungen.
Wenn
L =ao(z) +a1(z)D + ... + ap(x) D"

ein Differentialoperator n-ter Ordnung mit auf [a,b] stetigen Koeffizienten ist,
an(z) # 0 fir z € [a,b], dann definiert man den Begriff der Greenschen Funk-
tionG:Q — Rzu L so
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1 G, %f, e %;2_(5 existieren und sind stetig.

(2)  Fiir jedes t € [a,b] sind x — G*(z,t) und x +— G"(x,t) n-mal stetig diffe-
renzierbar.

(3) Fiirjedest € [a,b] ist LG(-,t) = O'in [t,b] und LG"(-,) = 0 in [a, ].

@ o (z,7) — et (z,2)= | ) fir z € [a,b].

Oxn—1 Oxn—1 n(z

Fiir n = 1 ist dies so zu interpretieren: Bedingung (1) ist leer und Bedingung (4)
besagt:

G"(z,z) — Ge(nj,x) = :

a1 ()
fiir n = 1 ist die Funktion G also unstetig.

Setzt man 1
L= L="4""py . 4D
an, an, An,
so gilt: Ist G eine Greensche Funktion zu I~/, soistG = al G eine Greensche Funk-

tion zu L; es genligt also, den normierten Differentialoperator L zu behandeln.

12.5 Randwertprobleme

Es sei wieder
L = ag(x) + a1 (x)D + D?

ein Differentialoperator 2. Ordnung mit stetigen Koeffizienten ag, a; : [a,b] — R;
weiter sei gegeben eine stetige Funktion p : [a,b] — R. Gesucht ist eine zweimal
stetig differenzierbare Funktion v : [a, b] — R mit

Lu = p, u(a) =0, u(b) =0.

Dann nennt man w eine Losung dieses (inhomogenen) Randwertproblems.
Beim homogenen Randwertproblem sucht man eine Funktion u mit

Lu=0, u(a) =0, u(b) =0.

Die Problematik soll an einem einfachen Beispiel verdeutlicht werden:

Fiir L := 1+ D? sind alle Losungen von Lu = 0 von der Form ¢; cosz + ce sinz,
sie sind also 2m-periodisch. Betrachtet man das Randwertproblem auf dem Intervall
[0, 27], so gilt: Wenn eine dieser Funktionen in 0 verschwindet, dann auch im Punkt
27. Das Problem Lu = 0, u(0) = 0, w(27) = 0, hat unendlich viele Losungen,
namlich u(z) = ¢-sinz mitc € R.

Betrachtet man dagegen dieses Randwertproblem auf dem Intervall [0, 7], so gibt
es nur die triviale Losung u = 0.

Es ist naheliegend, ein Randwertproblem mit Hilfe einer Greenschen Funktion G
zu 10sen; dabei wird die Funktion G so gewihlt, dass sie in den Randpunkten ver-
schwindet, also G(a,t) = 0, G(b,t) = 0 firalle ¢ € [a, ).
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Definition 12.5.1 Eine Greensche Funktion G zu L mit
G(a,t) =0 und G(b,t) =0 fiirallet € [a,b]
nennen wir Greensche Funktion zum Randwertproblem.
Satz 12.5.2 Wenn das homogene Randwertproblem nur die triviale Losung besitzt,

so gibt es dazu genau eine Greensche Funktion G. Ist p : [a,b] — R stetig und setzt
man

w:la,b] > R, z+— /G(m,t)p(t) dt,

so gilt Lu = p, u(a) = 0, u(b) = 0.
Beweis. Wir beweisen zuerst die Existenz von G. Man wahlt Losungen 71, 72 von
Ly = 0 mit

m(a) =0, mna)=1, () =0, n(b)=1

Dann sind 7y, 72 linear unabhangig, andernfalls ware 17; = ¢ - 12 mit ¢ € R. Daraus
folgt aber 71 (b) = 0 und dann wire nach Voraussetzung 7; = 0. Somit besitzt die
Wronski-Determinante W := nyn45 — 12n) keine Nullstelle in [a, b]. Nun setzt man

m
W’

72

l1 = W,

ry =0, 7rg:= Iy := 0.

Dann wird durch

Glat) = o) mo). 6w = W (o)

eine Greensche Funktion G zum Randwertproblem gegeben.
Nach 12.4.3 ist dann Lu = p; wegen G(a,t) = O ist u(a fG (a,t)p(t) dt =0,

analog u(b) = 0. Weil das homogene Problem nur die tr1v1ale Losung besitzt, ist
jedes inhomogene Problem eindeutig 1osbar. R
Nun zeigen wir noch, dass G eindeutig bestimmt ist. Ist G eine weitere derartige

@‘

Funktion, so gilt fiir jedes p: Die Funktion @(z f ) dt ist ebenfalls

b
Losung. Daher ist v = @ und somit [(G(x,t) — G(z,t)) - p(t) dt = 0 fiir jedes p.

a

Aus 5.1.9 folgt G = G. O
Beispiel 12.5.3 Wir betrachten das zum Intervall [0, 7] und L = 1+ D? gehorende
Randwertproblem. Es ist 71 (z) = sinz, 1n2(x) = —cosx, W(x) = 1. Damit
ergibt sich

GY(x,t) = —cost -sinz G"(xz,t) = —sint - cosx.
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t= 777/16\/

t:37r/8\/

t=m/4

t=m/8 \Y/
N —

t:ﬂ/IG\-///:

Beispiel 12.5.4 Es sei L := D? auf [0, 1]. Dann ist 71 () = @, n2(z) = x — 1 und
Gz, t)=(t—1)-z G'(z,t) =t (z—1).

SchluBbemerkung.Wenn das durch [a,b] und L gegebene homogene Randwert-
problem nur die triviale Losung besitzt, so hat jedes inhomogene Randwertproblem
hochstens eine Losung. Satz 12.5.2 besagt: Lu = p, u(b) = 0, u(b) = 0 gilt genau

b
dann, wenn u(z) = [ G(x,t)p(t) dt ist. Das bedeutet:
Die Differentialgleichung

ao(z) + a1 (2)u'(z) + v (z) = o(x),  u(a) =0, u(d)=0

ist aquivalent zu

Sei D(L) = {u € C?*([a,b])| u(a) = u(b) = 0}; dann haben wir eine lineare
Abbildung

L:D(L) — C°([a,b]), u+ Lu,
mit folgenden Eigenschaften: L ist auf einem Teilraum von C°([a, b]) erklrt. Ist L
injektiv, so ist L surjektiv. Die zu L gehorende inverse Abbildung

G : C%[a,b]) — D(L)
ist durch

b
www:/bmwww

gegeben. Obwohl die zu Grunde liegenden Vektorraume nicht endlich-dimensional
sind, haben wir fiir die Abbildung L ein Ergebnis, das dem Satz 7.4.9 der linearen
Algebra entspricht. Auch in Kapitel 15 werden wir auf diesen Gedanken zuriick-
kommen.
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12.6 Differentialoperatoren vom Sturm-Liouville-Typ

Nun seien
ag,a1,az : [a,b] = R

stetig differenzierbare Funktionen; wir behandeln Differentialoperatoren
L = ao(z) + a1(z)D + ay(x)D?

Durch das Integral definieren wir das Skalarprodukt fiir die auf [a, b] stetigen Funk-
tionen:

b
<fig = / f(@)g(z) da.

Nun soll die Frage behandelt werden, wann L selbstadjungiert ist, also

<Lf7 g> = <fa Lg>'

Man modifiziert die Fragestellung und betrachtet nur solche Funktionen, die in den
Randpunkten a, b verschwinden. Dann ergibt sich: Wenn

a; = ay
ist, dann gilt : (L f, g} = (f, Lg). Der Differentialoperator ist dann von der Form L
L = q(z) +p'(x)D + p(z) D*;

derartige Operatoren bezeichnet man als Differentialoperatoren vom Sturm-Liouville-
Typ; dabei wird noch p > 0 vorausgesetzt;(RUDOLF STURM (1841-1919),JOSEPH
LIOUVILLE (1809 - 1882)).

Wir prazisieren zuerst die benotigten Begriffe:

Definition 12.6.1 Es seien p, q : [a,b] — R stetig differenzierbare Funktionen und
p(x) > 0 fiir alle x € [a, b]. Dann heifit

L:=q+p'D+pD?
ein Differentialoperator vom Sturm-Liouville-Typ, also
Ly=qy+py +py" =aqy+(py').
Zur Vorbereitung beweisen wir (dabei wird p(x) > 0 nicht vorausgesetzt):

Satz 12.6.2 Seienp,q : [a,b] — R stetig differenzierbar,
L:=q+p'D+pD?

dann gilt fiir alle zweimal stetig differenzierbaren Funktionen f, g : [a,b] — R:
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!/
fyg ) .
] b
a

(])f'(Lg)_g'(Lf): (p' fg
[y
(3) wenn f(a) = f(b) = g(a) = g(b) = 0ist, dann folgt < Lf,g >=< f,Lg >;

(2)<f7Lg>_<Lf7g>: l:p f/g/

(4) wenn p(a) = p(b) = 0 ist, dann folgt ebenfalls < Lf,g >=< f,Lg > .
Beweis. Esist (x) (py’)’ = Ly — qy und daher

(p- J{,j ) = (f(pg") —gpf") = f'(pg") + fpg") — g'(pf') —g9(pf') =

= fg) — gof') 2 F(Lg—ag) — g(Lf — af) = f(Lg) — g(Lf).

Damit ist (1) bewiesen. Durch Integration folgt (2); daraus ergeben sich (3) und
4. O

Nun sei L = ¢ + p'D + pD? ein Sturm-Liouville-Operator, wir setzen jetzt also
p(z) > 0 voraus. Um die Ergebnisse von 12.5 anwenden zu kénnen, betrachten wir

.1 /
i=1="4"pyp*
P pp

Fiir den normierten Operator L haben wir in 12.5 gezeigt, dass zum Randwertpro-
blem genau eine Greensche Funktion G existiert.Dann ist

G(z,1)
p(t)

die zu L gehorende Greensche Funktion ist. Es gilt:

G(z,t) ==

Satz 12.6.3 Wenn das zum Sturm-Liouville-Operator L = q+p' D4+pD? gehérende
homogene Randwertproblem Ly = 0, y(a) = y(b) = 0 nur die triviale Losung
besitzt, dann existiert zu diesem Randwertproblem genau eine Greensche Funktion
G und diese ist symmetrisch, d.h. fiir alle x,t € [a,b] ist

G(z,t) = G(t, x).

Beweis. Nach 12.5.2 existiert genau eine Greensche Funktion G, die man so erhalt:
Man wihlt 71,72 mit Ln; = 0, n1(a) = 0, nj(a) = 1 und Ly = 0, n2(b) = 0,
n5(b) = 1. Setzt man W := myn} — n2n, so ist

o mOmE) o mm()
Ceb=vowe = pmwe

Wir zeigen, dass fiir einen Sturm-Liouville-Operator der Nenner p - W konstant ist.
Aus 12.6.2 folgt (wegen Ly = Lny = 0):
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(W) = f-(Ln2) —g-(Lm) =0,

daher ist ¢ := p - W konstant. Fiira < z <t < bist dann

Gla,t) = Gast) = Lm(tim(e),  Gltn) = G(62) = _m()m(0),

also G(z,t) = G(t, z) fir x < t. Analog behandelt man den Fall z > t¢. O
Man vergleiche dazu 12.5.3; dort ist pW = 1 und die dort angegebene Greensche
Funktion ist symmetrisch.

Mit Hilfe der Greenschen Funktion behandeln wir nun Eigenwertprobleme.

Definition 12.6.4 Eine reelle Zahl )\ heifit Eigenwert zum Randwertproblem,
wenn es eine nicht-identisch verschwindende zweimal stetig differenzierbare Funk-
tion u : [a,b] — R gibt mit

Lu+ =0, u(a) =0, u(b)=0.

Die Funktion u heif3t Eigenfunktion zum Eigenwert \.

(Man beachte, dass die Eigenwertgleichung, anders als in der linearen Algebra, hier
Lu = —)Duist.)

Zum Beispiel besitzt ein homogenes Randwertproblem genau dann eine nichttrivia-

le Losung, wenn 0 ein Eigenwert ist. Es gilt

Satz 12.6.5 Ist L ein Sturm-Liouville-Operator auf [a, b] und sind Ay # Az Eigen-
werte zum Randwertproblem und u1, us Eigenfunktionen zu \1, A, so gilt:

<U1, ’LL2> =0.
Beweis Die Eigenfunktionen w1, us verschwinden in a, b und daher gilt nach 12.6.2:
< Luy,us >=< uy, Lus > .

Daraus folgt nach 7.10.5(u1, ug) = 0. m|
Die Losung eines Eigenwertproblems 1af3t sich mit Hilfe der Greenschen Funktion
auf eine Integralgleichung zuriickfiihren:

Satz 12.6.6 Es sei 0 kein Eigenwert des zu L auf [a,b] gehorenden Sturm-Liou-
villeschen Eigenwertproblems. Ist dann G die Greensche Funktion, so ist u genau
dann Eigenfunktion zum Eigenwert \, wenn gilt:
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Beweis. Fiir u(a) = u(b) = 0 gilt

b
Lu=p genaudann, wenn /G(ac7 t)p(t) dt = u(x).

a

Mit p := —Au folgt die Behauptung. ad
Wir zeigen noch:

Satz 12.6.7 Ist L = q + p'D + pD? ein Sturm-Liouville-Operator auf [a, b] mit
q(z) < 0 fiir alle x € [a,b] und ist X € R ein Eigenwert, so gilt: X\ > 0.

Beweis. Ist u eine Eigenfunktion zu A, so ist Lu = —Au und daher

b
Al = v, u) = —=(Lu,u) = = [(qu + (pu))u do =

a
b

b
— [qu* dz — [(pu/) u da.

a

Partielle Integration ergibt
b b b
[(pv')udx = pu'ul’ — [ pu'v’ dz = — [p(u’)* dz < 0.

b
Daraus folgt A - ||ul|? > — [ qu? dz > 0 und daher A > 0. O

Aus der Umformung der Sturm-Liouville-Eigenwertaufgabe in das Eigenwertpro-
blem fiir eine Integralgleichung folgt, wie in 15.10.5 gezeigt wird:

Satz 12.6.8 1. Sei A ein Eigenwert zu L. Dann bilden die Eigenfunktionen zu A\
einen endlich-dimensionalen Teilraum von

D(L) = {u € C*([a,b))| u(a) = u(b) = 0}.

Seine Dimension e, heifit die (geometrische) Vielfachheit von \.
Die Eigenwerte von L bilden eine Folge \1, )z, . . ., die sich in der Form

M <A<

anordnen ldsst. Wir denken uns jeden Eigenwert so oft angefiihrt, wie seine endliche
Vielfachheit e, angibt. Dann gilt

lim A\, = +oo.
Zu den Eigenwerten X, gibt es in La([a,b]) eine Hilbertbasis v,, € D(L) von Ei-
genfunktionen zu \,. Jedes beliebige f € Lo([a,b]) erlaubt also eine Fourierent-
wicklung
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(+) f=> <fuon>uv,

n=1
nach den Eigenfunktionen von L.
Ist f : [a,b] — R stetig differenzierbar und nimmt f die Randbedingungen

fla) = f(b) =0
an, so konvergiert die Reihe () gleichmdissig in [a, b].

Beispiel 12.6.9 (Die schwingende Saite) Wir betrachten eine schwingende elasti-
sche Saite der Léange [ . Der Elastizititsmodul der Saite sei p(x) > 0 und die Mas-
sendichte r(x) sei r = 1. Fiir die Auslenkung u(z,t) der Saite an der Stelle = zur
Zeit t gilt die partielle Differentialgleichung (x € [0,1], t > 0):

o (W*?ZM) = Oty

kurz
(p(x)ug(x,t))e = uw(x,t) (Schwingungsgleichung.)

Die Saite sei an ihren Endpunkten fest eingespannt, d.h..
u(0,t) =wu(l,t) =0, t>0.

Die Anfangsbedingungen fiir Ort und Geschwindigkeit der Saite zur Zeit ¢ = 0
seien vorgeschrieben:

u(z,0) = f(z), wu(z,0)=g(x), xe€]l0,l].

Es sind also gegeben: Zweimal stetig differenzierbare Funktionen

p, frg9: 0] =R, mit p>0, f(0)=g(0)=f()=g()=0;

gesucht wird eine zweimal stetig differenzierbare Funktion

w: [0,1] x [0,00[— R, (x,t) — u(x,t)

2 = 0 fir ¢t >0
(3) u(z,0) = f(x), u(z,0)=g(x) firze]|0,]]

Zeit t
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Als Ansatz wahlen wir wieder den Separationsansatz

u(z,t) = v(z) - w(t)

_ Ou - . Ou

/. .
und setzen u’ := g%, 4 := %y. Dann folgt

Fiir alle z, ¢ ist also

(p(z) -v'(2))" _ w (),

v(z) Cow(t)’

die linke Seite hangt nur von z, die rechte nur von ¢ ab; daher ist dies konstant
=: —\ und damit erhalt man die Gleichungen

(pv') + Av =0, w +Aw = 0.

Setzt man 4 1
L =
V= e gt
so ergibt sich:
Lv w
4 = =-A
(4) o T w

Damit hat man (mit ¢ = 0) ein Sturm-Liouvillle-Eigenwertproblem Lv + Av =0 .
Die Funktion v soll die Randbedingungen (2) realisieren. Wir setzen also

D(L) = {y € €*([0,1])| y(0) = 0, y(1) = 0}

und verlangen v € D(L).

Aus Lv + dv = 0 folgt: \ ist Eigenwert zu L . Insbesondere gilt nach 12.6.7 : Die
Eigenwerte A1, A, ... zu L positiv.

Aus (4) folgt dann fiir w:

wp(t) = A, cos \/)\nt + B,, sin \/)\nt

mit Konstanten A,,, B,,.
Ist dann v,, Eigenfunktion von L zum Eigenwert \,, so gewinnen wir eine parti-
kuléare Losung

v () (A, cos \//\7,,25 + B,, sin \//\7,,15)

von (1), die bereits die Randbedingungen (2) realisiert. Die v1, ve, ... bilden nach
12.6.8 eine Hilbertbasis. Bei geniigender Konvergenz wird man die allgemeine
Losung von (1) mit den Randbedingungen (2) in der Form

(5) i Up () (An cos \/Ant + Bysin \/)\nt>

n=1
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gewinnen. Wegen v,, € Dy, realisiert © die Randbedingungen (2). Wir mussen uns
nun noch um die Anfangsbedingungen (3) kiimmern. Die Fourierentwicklungen von
f und g lauten

oo oo
6) f = Z anUy mit a, =< fv, >, g = Z bV, mit b, =< g, v, >

n=1 n=1

Koeffizientenvergleich mit (5) fiir ¢ = 0 liefert A,, = a,; Koeffizientenvergleich
mit der nach ¢ differenzierten Reihe (5) ergibt, wenn man ¢t = 0 setzt: B, = \;’:\L
Mit den Fourierkoeffizienten a,,, b,, aus (6 ) folgt als Losung des Problems ( 1) (2)

(3):

t) = i vp () (an cos \//\nt + sin \/)\"t)
n=1

bn
\/)\71,
Die Randbedingungen (2) heiflen ,,fest-fest “. Ist z.B. ein Ende fest (etwa z = 0),

das andere Ende frei und schreibt man ([, ¢) = 0 vor, so lésst sich dieses Problem
ebenso behandeln, indem man in Dy, die Koeffizienten

C1 = 1,62 :O,dl :O,dg =1
setzt. Diese Randbedingung heil3t , fest-frei®.

Wir behandeln noch den Spezialfall des konstanten Elastizititsmoduls:
Es sei a > 0 und es gelte p(x) = a? fiir alle . Die Differentialgleichung ist dann
5 0% 0%u
a” - = )
Ox? ot?
also
a*v" 4+ v =0, W +Aw = 0.

Wenn man zusitzliche Voraussetzungen an f, g macht, kann man die Losung sehr
einfach darstellen.

Wir setzen voraus, dass es zweimal stetig differenzierbare ungerade Funktionen
f, § : R — R gibt, die periodisch mit der Periode 2! sind und auf [0,] mit f

bzw. g libereinstimmen. Wegen v(0) = 0 ist v(z) = ¢ - sin \//\x und aus v(l) =0
folgt ‘f‘ -l = nm mit n € Njalso v/A, = “7". Somit hat man Losungen
U (T) = ¢, - sin " x; man wiihlt ¢, so, dass [|v,,[| = 1 ist.Dann ist ¢, = \/%

Nun entwickelt man f und g in die Ublichen Fourierreihen; bei einer ungeraden
Funktion ist die Fourierreihe eine Sinusreihe. Man erhalt

= \/? ~Zansinnl7rx, g(x) = \/? -ansinn;rx
n=1 n=1
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mit den Koeffizienten a,,, b,, aus (6). Uber [0,1] sind dies also die Entwicklungen
(6).

Setzt man A,, := a,,, B, := mlm by, , so ist die Losung

2 & nmwa bl . nma .onm
u(z,t) = \/l ~7;(an-cos ; t—|—mm sin— t) sin @
Wegen sina - cosf = j(sin(a + 3) + sin(a — 3)) gilt:

o0
2 CMTA Y iy T
\/l- §1anCOb ptesin ' =
n=

= ;\/? . i::l an((sin " (x +at) +sin " (aj—at)) =
é(f(x—kat)—kf(x—at)).

Analog folgt aus sinasin f = — % (cos(a + 3) — cos(a — B3)):

2 X b, . nma . nw 1 - ~
\/Z~Z sin t-sin x—Q(G(x+at)—G(;v+at))

‘= nma l
mit
~ byl T
G(z) :=— " ;
(z) Z R
n=1
esist G/ = g.

Bei konstantem Elastizititsmodul a? erhilt man somit, unter den genannten zZusatz-
lichen Voraussetzungen , eine Losung u zu Anfangsbedingungen f, g so:
Man wabhlt eine Stammfunktion G von g und setzt

u(x,t) = ;(f(g; +at) + f(x — at)) + ;a (G(z + at) — G(z — at)).

Wir bringen dazu zwei einfache Beispiele:

Beispiel 12.6.10 Zunichst sei [ := 7 und f(x) := sinz, g(x) := 0 firz € [0,1].
der Elastzitatsmodul sei konstant p(z) = a®. Dann ist f = sinz fir z € R und
G = 0. Damit ergibt sich

1
u(z,t) = 5 (sin(m + at) + sin(x — at)) = ginz - cos at.

Fiir jede Zeit ¢t hat man also eine Sinuskurve mit der Amplitude cos at. Zur Zeit
t = 0 ist also die Amplitude 1; bei ¢ = J ist sie 0 und wird dann negativ und ist
beit = 2; wieder in der Anfangslage. Bei zunehmendem a wird die Schwingung

also schneller.
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u(z,t)
1_

Beispiel 12.6.11 Nun sei f = 0; g(z) = sinz ; wir wihlen wieder p(z) = a? und
l=m.
Dann ist G(z) = — cos und

1 . 1. .
u(z,t) = - ( —cos(x + at) + sin(z + at)) = sinz-sin at.

Die Saite schwingt nun mit der Amplitude ;sin at; bei grosserem a wird die
Schwingung schneller und die maximale Amplitude kleiner.

12.7 Die Legendresche Differentialgleichung

Wenn man die Poissonsche Gleichung auf Polarkoordinaten r, ¢, 9 transformiert
und einen Separationsansatz macht, kommt man fiir cos = x zur Legendreschen
Differentialgleichung

(1 —2?)y" — 2zy’ + My = 0.
Man sucht Losungen, die im abgeschlossenen Intervall [—1, +1] definiert sind, denn
die Losungen des urspriinglichen Problems sollen fiir alle ¢ definiert sein.
Fiir p(z) := 1 — 22 und ¢(z) = 0 hat man

(1—a2?)y" =22y + ly=qu+ 'y +py" + \y;

der Differentialoperator Ly := p'y’ + py"” mit p(x) = 1 — 2% ist jedoch auf dem In-
tervall [—1, +1] nicht vom Sturm-Liouville-Typ, denn p verschwindet in den Rand-
punkten. Es soll nun untersucht werden, welche Aussagen aus 12.6 auch noch in
diesem Fall gelten.

Definition 12.7.1 Der Differentialoperator
L:= —2zD + (1 — 2?)D?

heifit der Legendresche Differentialoperator.
Ein A € R heifit Eigenwert zu L, wenn es eine nicht-identisch verschwindende
zweimal stetig differenzierbare Funktion v : [—1,+1] — R gibt mit

Lu+ Au = 0;

u heifit dann Eigenfunktion zu \.
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Man beachte, dass u im abgeschlossenen Intervall [—1, 4-1] definiert sein soll; Rand-
bedingungen werden nicht gefordert. Die Gleichung Lu + Au = 0 bedeutet

(1 —2®)u" — 2zu’ + Au =0

oder
(1 —2®)u') 4+ M= 0.

Wir zeigen zuerst , dass L selbstadjungiert ist; dabei definieren wir das Skalarpro-
dukt durch

Satz 12.7.2 Sind f,g : [-1,41] — R zweimal stetig differenzierbar, so gilt:

(Lf,g) = ([ Lg).

Beweis. Fiir p(z) = 1 — 22 gilt p(—1) = p(1) = 0 und aus 12.6.2 (4) folgt die
Behauptung. O

Satz 12.7.3 Sind u1, us Eigenfunktionen zu verschiedenen Eigenwerten \1, As von
L, so gilt
<U1, UQ> =0.

Beweis. Wie in 12.6.5 folgt dies aus (Luy, us) = (u1, Lus). ]
Um Eigenfunktionen zu finden, machen wir einen Potenzreihenansatz

o0
E n
y = anx bl
n=0

dann ist

oo

Z n(n —1)apz"? = Z(n +2)(n+1)ant22™.
n=2 n=0

00

/ n—1 "

Yy = E nanx - -, Y
n=1

Setzt man dies in die Differentialgleichung Ly + Ay = 0 ein, so erhalt man:

i(n +2)(n+1)apyoa™ — i n(n —1)apz™ —2 i nanpx"™ + A i anz” = 0.
n=0 n=2 n=1 n=0

Koeffizientenvergleich liefert fiir n > 2:
(n+2)(n+1)apt2 — n(n — L)ay, — 2na, + Aa, = 0.

Damit erhalt man die Rekursionsformel:
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nn+1)—A
Onta = Q.
2T+ 1)(n+2)
Man rechnet leicht nach, dass diese auch fiirn = O und n = 1 gilt.
Wenn die a,, # 0 sind, dann folgt aus der Rekursionsformel, dafl az“ gegen 1

o0
geht. Dann ist aber Y a,z™ fir x = 1 divergent. Eigenfunktionen, die in [—1, +1]
definiert sind, erh'eil? rr;)an also nur, wenn die Folge der a,, abbricht; dies ist der Fall,
wenn A = m(m + 1) mit m € Ny ist. Dann folgt aus der Rekursionsformel, dass
G2 = 0 1ist, ebenso a4, Ay+6s.-- -
Falls m gerade ist, setzt man ag := 1 und a; := 0; dann verschwinden alle a,, mit
ungeradem Index n und fiir gerade n ist a,, = 0 fallsn > m + 2.
Fiir ungerades m wahlt man ag := 0 und a; := 1. Auf diese Weise erhilt man zu
Am = m(m + 1) Eigenfunktionen p,,, die Polynome m-ten Grades sind. Fiir jedes
m € Ny berechnet man die Koeffizienten a,, von p,, rekursiv durch

nn+1)—m(m+1)
Unp+2 = *Qn;
2 (n+1)(n+2)
(die a,, hangen natiirlich von m ab). Wir geben unten die Polynome po, ..., p5 an.
Fiir jedes ¢, € R, ¢, # 0, ist auch ¢, p,,, Eigenfunktion zum Eigenwert m(m+1).
Durch entsprechende Wahl von ¢,, ,,normiert* man die Eigenfunktionen auf drei
Arten:

(1) Man wihlt Q,,, = ¢;pm, so, dass gilt:  Qp,(z) = 2™ + ... ;
+1
(2) man setzt Ly, := HleH Qm; somitist ||Ly,|| = 1,also [ (L (2))?dz = 1;
’ 1
(3) man wihlt P,, = C;,pim 50, dass gilt: P, (1) = 1.

(Die Normierung nach (3) ist moglich, weil p,,,(1) # 0 ist; denn aus p,,(1) = 0
und der Differentialgleichung mit z = 1 folgt p/ (1) = 0, dann wire p,,, = 0).
Man bezeichnet die Polynome P, als Legendre-Polynome.

Wir geben nun diese Polynome firm = 0,...,5 an:

8

4 11022+ ¥t gt 0224 2 ;\/3(35z4 — 3022 +3) gt 15,243

(632° — 702% — 15z) %3a® — 3g4 4 g
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E \V \\V/ /NH/ %v[ HDJ

Ohne Beweis geben wir die Formel von Rodrigues an:

1 am
P, (x) = 2_m.
(z) 2mm! dz™ (@ )
Man kann zeigen:
| P = und L —\/m+1P

Es gilt:
Satz 12.7.4 Die L, bilden ein Orthonormalsystem; d.h. fiir alle n, m € Ny ist

Beweis. Die L, sind Eigenfunktionen zu m - (m + 1); die Behauptung folgt damit
aus 12.7.3. O

In 7.9.16 hatten wir das Orthonormalisierungsverfahren auf die Polynome
1,z,2%, ...,

angewandt und dabei Polynome by, und b,, erhalten. Wir zeigen nun:
Satz 12.7.5 Fiir alle n € Ny gilt: b, = Q,, und b, = Ly,.

Beweis. L,, und b, liegen in span{1, z, ..., 2™} und stehen senkrecht auf dem Un-
terraum span(1,x, ..., 2"~ 1). Daraus folgt b, = +L,. Aus b, = 2" + ... und
Qn(x) = 2™+ ... folgt by = Q,, und somit b, = L,,. ]
Wir wollen noch untersuchen, welche Konsequenten sich aus derartigen Orthogo-
nalitatsvoraussetzungen ergeben.

Satz 12.7.6 Es sei p ein Polynom n-ten Grades, das orthogonal zu 1,x, ..., 2" "

ist. Dann gilt: p hat im offenen Intervall | — 1, +1[ genau n (einfache) Nullstellen.

Beweis. Es seien ¢y, ..., ¢, die in | — 1, +1[ liegenden Nullstellen ungerader Ordnung

von p, 0 < r < n.Zu zeigen ist: = n. Setzt man ¢(z) := (r —¢1) - ... - (x — ¢r),

sohatp-¢in] — 1,+1[ nur Nullstellen gerader Ordnung. Daher ist p - ¢ auBerhalb
+1

der Nullstellen iiberall positiv oder iiberall negativ und somit [ p- ¢ dz # 0. Nun
-1

nehmen wir an, es sei 7 < n. Dann ist ¢ ein Polynom vom Grad < n — 1. Aus der
+1

Voraussetzung folgt, dass p orthogonal zu q ist also f pgdzx = 0. a
-1

Daraus folgt:
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Satz 12.7.7 Jedes Legendre-Polynom P, besitzt in | —1, +1[ genau n einfache Null-
stellen.

Die Polynome @,, kann man durch eine Extremaleigenschaft charakterisieren:

Satz 12.7.8 Fiir alle Polynome n-ten Grades q(x) = ™ + ... + a1x + ao gilt

gl = 1Qnll,
also
+1 +1
(¢(x))? do > [ (Qu(x))? dz;
Jurez |

das Gleichheitszeichen gilt genau dann, wenn q = @Q,, ist.

Beweis. Zu jedem ¢ gibtes cg, ..., c,—1 € R mit
q= Qn + Cnlenfl + ...+ COQ0~
Wegen (Q;, Qr) = 0 fiir j # k gilt

lall* = (g, @) = 1Qull* + ;1 1Qn-1]1? + ... + c5lQolI* = Qnll*.

Das Gleichheitszeichen gilt genau dann, wenn alle ¢,,—1 = ... = ¢ = 0 sind, also
q= Qn O
Aufgaben

12.1. (Es gibt genug Testfunktionen.) Sei f : R — R iiber jedem kompakten Intervall
quadratintegrierbar; sei auch g € Lo(I) fiir jedes Intervall I und es gelte Ty = Ty. Zeigen
Sie: f =g f. 1.

12.2. Sei (7},) die zu den Summen

gehorende Folge von Distributionen. Zeigen Sie: (T7,) ist konvergent und
“+oo
lim To(p)= ) (k)
k=—oc0

wenn @ die Fouriertransformierte von ¢ beduetet.
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12.3. Fur Distributionen 7' € D’(R™) und Funktionen a € C*(R™) erkldren wir wie fiir
n = 1 die Distribution a7’ durch

aT(p):=T(ap), ¢ € DR").

Fiir die Differentiation von a7’ gilt wie in 12.1.8 die Produktregel.
Seiv= (vi,...,vn) ENg, [v|=v1+... 4+ Vn,und

L= Z a, D¥
\

v|<k

ein Differentialoperator mit Koeffizientenfunktionen a,, € C*°(R"). Zeigen Sie fiir € D:

1) =7 | 3 (1" D" (@)

lv|<k
12.4. Bestimmen Sie eine Greensche Funktion G zum Sturm-Liouville-Operator
Lu:=v"— X, X>0,

in [—1, +1] mit Dirichlet-Randwerten G(—1,¢§) = G(1,§) = 0 fir £ € [—1,+1]. Kann
man etwas liber das Vorzeichen von G aussagen ?
Hinweis: Verwenden Sie ohne Beweis:

sinh(a + b) sinh(c¢ + d) — sinh(a + ¢) sinh(b + d) = sinh(a — d) sinh(c — b).
12.5. Sei L ein Sturm-Liouville-Operator auf [a, b]. Sei A ein Eigenwert. Zeigen Sie:

A>qo= min (—q(x)).
z€[a,b]

12.6. Seien p, q1, 2 : [a,b] — R, p sei stetig differenzierbar, p > 0; ¢, g2 seien stetig. Es

gelte g1 > g2 auf ]a, b[.Seien w1, us zweimal stetig differenzierbare Losungen von

~(rer) e =0, =12

Zeigen Sie: Ist ui(z) > 0 auf [a,b] und u1(a) = u1(b) = 0, so hat uz wenigstens eine
Nullstelle in ]a, b[.
Hinweis: Multiplizieren Sie die Differentialgleichung fiir u; mit w2 und umgekehrt und inte-
grieren Sie partiell.
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Integralsitze

13.1 Stokes scher und GauB scher Integralsatz im R?2

Die Beweise fiir die Integralsatze von Gauf3 und Stokes sind ziemlich schwierig. Um
die Ideen klar zu machen, soll hier zunéchst ein Integralsatz fiir spezielle Mengen A
im R? moglichst elementar hergeleitet werden. Danach erliutern wir das Konzept
dieses Kapitels.

Es seien I = [a,b] und I’ = [d/,¥] Intervalle in R und ¢,¢ : I — I’ stetig
differenzierbare Funktionen mit ¢(z) < v(x) fiir z € I. Weiter sei

A={(z,y) eER*a<a <b, p(z) <y < ()}
Die Kurven, die den Rand A von A durchlaufen, sind:
7t pla),d(a)] = R? t (at),  y2:a,b] = R? t (Lo
ER [@(b)ﬂb(b)] - R2v t— (bv t)v V4t [avb} - R27 t— (t»¢(t))~

b/-

Wir durchlaufen die Kurven so, dass A ,links* liegt, wir setzen also
[~]]]
0A a1 Y2 Y3 Y4

Fir die weitere Berechnung benotigen wir eine Verallgemeinerung von 9.2.17:
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Satz 13.1.1 Esseig: I x I' — R stetig differenzierbar; dann gilt:

Y(z) ¥(x)
[ o= [ e+ (i) @) -gop) ¢ @).
»(x) e(z)

Beweis. Essei h: I x I' x I' > R, (z,v,w) — [ g(x,t)dt; dann ist

w

oh [ dg oh B oh o
ax(xvv7w)_/ax(x7t) dt? aw(xvv7w)_g(x7w)7 a’l)(m’v’w)_ g(ﬂ?,’U)-

Nun setzt man v = ¢(z), w = ¢(z), und berechnet 9" (z, (), ¥ (x)) nach der
Kettenregel; daraus ergibt sich die Behauptung. a
Nun beweisen wir fiir derartige Mengen A C R?,

A={(z,y) eR*la<z<b, o(x) <y <Y(z)}

einen Integralsatz:

Satz 13.1.2 (Stokes scher Integralsatz im R?) Die Funktionen f,g : I x I' — R
seien stetig differenzierbar, dann gilt:

_ [,99 Of
/fdx+gdy—/(ax ay)dxdy.
A

0A

Beweis.a) Wir berechnen zuerst das Integral iiber gi und f: Es ist

b [ ¥(x) b
af _ af T = €T xT)) — T T T
A/aydxdy—a/ (/) o) v | d —a/(f( (@) — f(z, p(2))) da.

Bei der Berechnung von [ fdx ist zu beachten, dass die erste Komponente der

0A
Kurven v, und 73 konstant ist, daherist [ fdz = Ound [ fdz = 0. Somit ist
71 3

/fdx:/fdx—/fdx:/bf@,so(t)) dt—/bfu,w(t)) dt
A 72 Y4 a a

und daraus folgt:
—/fdx:—/af dx dy.
dy

0A A
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b) Nun integrieren wir gz und g. Dazu benotigen wir 13.1.1 und erhalten damit

fggdxdy—f<f ggdy> dz =
»

a (ft

b »(x) b
f( [ g(@,t) dt> dz — [(9(z, () () — g(z, ()¢’ (z)) dz.

o(z) a

Den ersten Summanden der rechten Seite rechnet man aus:

b P(x) w(x) x=b
J’(d‘l I glz,t) dt) dzr = l [ g(z,t) dt] -

a o(z) (2) z=a
¥(b) ¥(a)

= [ gb,t)ydt— [ g(a,t)dt = [gdy— [ gdy.
©(b) v(a) 3 n

Der zweite Summand ist:

b

- / 9z, (x)) - ¥/(2) — (. p(@))¢ (&) dz = — / gdy + / gdy.

a

Insgesamt ergibt sich somit:

/gdy:/agdxdyz.
Oz

A A

O

gi — gjj wird auch als (zweidimensionale) Rotation des Vektorfeldes v = (f, g)

bezeichnet, die also im R? eine skalare Grosse ist. Demnach nimmt 13.1.2 die Form
/rotvdxdy: /fdx+gdy
A oA
an. Ersetzen wir (f, g) durch (—g, f), so folgt
/div vdzdy = /(—gdx + fdy).
A DA

Bezeichnen wir wieder mit 71, .. ., y4 die Kurven, die 9 A durchlaufen, und setzen
Y= =71+ Y2+ 3 — 74, SO ist

/( gdz + fdy) = /////gdm+fdy

—7 Y2 3 —74
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‘Wir haben
P(a)

/ ( \/xQ e \/x;—i—y > \/x2 + 2dt

71 ¢(a)

b
—& —y
= 24 g2dt
/ a/<g\/j:2+g) \/x2+y>\/x !

u. s. w. Nun ist ( ) der jeweils auf —v1, 2, v3, v4 senkrecht ste-

—x
NE 2+y T a2y
hende, ins Aussere von A weisende Vektor der Lange 1, d.h. die dussere Normale
v. Fithren wir noch die Bogenlange s als Kurvenparameter ein und bezeichnen mit

L., die Lange von v, so folgt

L’Y
/divvdxdy:/<v, v >ds,
A 0

und dies ist der Satz von GauB} in der Ebene, in der also 13.1.2 die beiden wichtigen
Integralsatze umfasst. Wie wir in diesem Kapitel noch sehen werden, ist dies im
dreidimensionalen Raum nicht ohne weiteres der Fall.

Wie bereits in 11.3 angesprochen und aus 13.1.2 sofort ersichtlich, besteht die
Grundidee der Integralsitze darin, ein Integral iiber eine Menge A in ein solches
tiber ihren Rand 0A zu verwandeln.Wir wollen dies auch fiir Teilmengen A von
k-dimensionalen Untermannigfaltigkeiten M des R™ durchfiihren. Mit dem Rand
OA ist dann der Rand von A in M gemeint. Ist also A zum Beispiel eine Teilmenge
einer moglicherweise gekrimmten Flache des R? |, so ist A eine Flichenkurve, die
A berandet. Aus 13.1.2 sehen wir auch, dass es auf die Durchlaufungsrichtung der
A berandenden Kurve relativ zu A ankomt. Insbesondere hat die A berandende Kur-
ve bis auf die Eckpunkte einen ins Aussere von A weisenden Normalenvektor. Man
sagt, 0 A sei beziiglich der dusseren Normalen von A orientiert. Diese Orientierung
von JA passt gerade mit der Verwendung der iiblichen cartesischen Koordinaten
im R? und damit in A in 13.1.2 zusammen. Generell brauchen wir fiir Integralsitze
auf Mannigfaltigkeiten den Begriff der Orientierung von Mannigfaltigkeiten, auf
den wir in diesem Kapitel eingehen. Unsere Ergebnisse sollen von der Auswahl des
lokalen Koordinatensystems von M unabhangig sein, solange wir die Orientierung
von M beachten. Das geeignete Hilfsmittel zur Formulierung der Integralsatze sind,
wie schon in 11.3 angesprochen, Differentialformen.

Wollen wir lediglich stetige Funktionen tiber Mannigfaltigkeiten integrieren oder k-
dimensionale Volumina von Untermannigfaltigkeiten (zum Beispiel Flacheninhalte)
ausmessen, wird der Begriff der Orientierung entbehrlich. Auch hier sind unsere
Resultate unabhiangig von der Auswahl der Karte, d.h. des lokalen Koordinatensy-
stems. Wir fithren das Integral [ fdS fiir stetige Funktionen f und Teilmengen

A
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A von M ein. Da die klassischen Integralsitze oft mit Hilfe des ,,Fldchen- oder k-
dimensionalen Volumenelements dS “der Mannigfaltigkeit M/ formuliert werden,
gehen wir auf diesen Zugang ein. Die Frage der Orientierung muss dabei gesondert
geklart werden.

Fiir dieses Kapitel wird nur das Riemann-Integral, wie es in 10.1 eingefiihrt wurde,
benotigt.

13.2 Integration auf Untermannigfaltigkeiten

Die Integration auf einer Untermannigfaltigkeit M ist nicht ganz einfach zu defi-
nieren. Man benotigt neue Begriffe wie ,,Teilung der Eins* und die zu einer Karte
gehorende ,,Gramsche Determinante™ g. Wir schildern die Idee dazu: Es sei A eine
kompakte Teilmenge von M und f : A — R eine stetige Funktion. Es soll ein Inte-
gral von f liber A beziiglich M definiert werden, das man mit | f d.S bezeichnet.

Wenn es eine Karte ¢ : W — V mit A C V gibt, dann l?ildet man die zu ¢
gehorende Gramsche Determinante g : W — R. Von der Funktion f : A — R geht
man iiber zu der auf A := = ¢~ !(A) definierten Funktion f o o, multipliziert diese
mit /g und integriert iber die Menge Ain W C R¥; man setzt also

A/de - A/(fowwgdt.

Durch den Faktor ,/g erreicht man, dass diese Definition unabhéngig von der Wahl
der Karte ist.

Wenn A so grof ist, dass es nicht in einem einzigen Kartengebiet V' liegt, dann
wahlt man eine geeignete Teilung der Eins: Darunter versteht man Funktionen 7y,
mit Y 7 = 1, die man so wihlt, dass jedes n;, seinen Triger in einem Kartengebiet

k
Vi hat, also auBierhalb V, verschwindet. Dann definiert man das Integral von 7y f
iiber A durch Integration iiber A N V;,. Wegen f = Z M, f kann man auch f fds

sinnvoll definieren; man setzt f fds = Z f N f) dS Dies soll nun durchgefuhrt

werden:

Teilung der Eins.

In 9.1.21 haben wir fir f : R” — R den Triger Tr f := {x € R?|f(x) # 0}
definiert.

Wir erlautern die Teilung der Eins zunachst in R. In 6.2.5 haben wir die Funktion

1 .
) exp(—, ) fir [t] < 1
g.R—>R,t»—>{ 0 fiir 1) > 1

untersucht. Sie ist ist beliebig oft differenzierbar und es ist Tr g = [—1, +1]. Fiir

k € Z definiert man gy (¢) := g(t—k); dannist Tr g = [k—1, k+1]. Nun setzt man
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s:= Y gx; dabei gibt es keine Konvergenzprobleme, denn auf jedem kompakten
kEZ
Intervall sind nur endlich viele der g von Null verschieden. Daher ist die Funktion

s : R — R beliebig oft differenzierbar und positiv. Setzt man 7 := 9%, so ist

s ?

an(a:) =1firalle z € Rund Tro, = [k — 1,k — 1].
kez

Man kann nun die Tréger noch verkleinern: Fiir ¢ > 0 setzt man 7y, . (t) := (),
dann ist
me =1 und Trog.=[ck—e,ek+e]
k

e Wa Do VYo Walau

—€ g

Diese Konstruktion kann man in naheliegender Weise auch im R™ durchfiihren. Mit
derartigen Methoden kann man dann folgenden Satz herleiten:

Satz 13.2.1 (Teilung der Eins). Zu jeder Untermannigfaltigkeit M des R™ existiert
eine Folge beliebig oft differenzierbarer Funktionen ny : R™ — R mit folgenden
Eigenschaften:

(1) Auf jeder kompakten Teilmenge des R™ sind nur endlich viele der ny, nicht iden-
tisch 0

(2) Fiir alle x € R™ ist Y ni(z) = 1.
k=1
(3) Zu jedem k € N existiert eine Karte oy, : Wi, — Vi, mit M 0 (Tr ny,) C Vi.

Integration auf M

Nun behandeln wir die Integration auf einer Untermannigfaltigkeit M des R™: Es
sei

W =V, (tr, s ty) = (01(8); - n(1))

eine Karte von M, die Jacobi-Matrix von ¢ sei J,,, also

Op1 91
8t1 ? ot 8tk

J, =
? Opn Opn
8t1 ? R 8tk

Die Matrix G := J; - J,, heiBt die Gramsche Matrix, ihre Elemente sind

o . dpy ) dpy
Yi= 2 gt oty

v=1

Die Determinante
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g :=detG

heiit die Gramsche Determinante zur Karte ¢ von M ( man vergleiche dazu
7.14.9).

Definition 13.2.2 Es sei A eine kompakte Teilmenge von M und f : A — V eine
Funktion. Wenn es eine Karte o : W — V gibt mit A C 'V, so setzt man

[ras= [ oo

A p1H(A)
(falls das Integral auf der rechten Seite existiert).

Wir zeigen nun, dass dies unabhangig von der Wahl der Karte ist:

Satz 13.2.3 (Invarianzsatz.) Seien ¢ : W — V und ¢: W — V Karten von M,
sei A C V kompakt und f : A — R stetig; dann gilt:

[ Geovsu= [ (tepvad
p=1(A) ¢=1(4)
dabei ist g die Gramsche Determinante zu (.

1

Beweis. Es sei 7 := o1 0@, also p = po7. Nunseit € W, t := 7(f) € W; nach

der Kettenregel ist . ~
J5(E) = Jo(t) - T2 (B).

Daraus folgt fiir die Gramsche Matrix G von G}

und daher  §(#) = (det J,(£)2 - g(t), also  \/§(f) = |detJ ()] - \/g(t).
Daraus ergibt sich

(ot = [ (Fo0on/o(r(®) - ldeto(D)dE

¢ (A) ¢71(A)

und nach der Transformationsformel 10.2.9 ist dies gleich

RN
»1(A)
O
Damit ist [ fdS sinnvoll definiert, falls A in einer Kartenumgebung V' enthalten
A

ist. Andernfalls wihlt man eine Teilung der Eins ), 7, = 1, bei der jeder Triger
Tr(n,) in einer Kartenumgebung Vj, enthalten ist. Ist dann f : A — R eine
Funktion, so ist f = >, 7 f und fiir jede Funktion 7, f ist
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[usas= [ mras

A ANV,

definiert. Nun setzt man
/de ::Z/nkfds
A koA

und uiberlegt sich, dass dies unabhangig von der Wahl der Teilung der Eins ist.

Wir geben nun /g fiir wichtige Spezialfalle an:

Beispiel 13.2.4 Es sei [ ein offenes Intervall in R und ¢ : I — R eine beliebig oft
differenzierbare Funktion. Dann ist

M :={(z,y) € I xR |y =1¢(x)}

eine eindimensionale Untermannigfaltigkeit des R?; M ist der Graph von . Eine
Karte zu M ist
oI — M, t— (t,9(t)).

()
)i

und G ist die 1 x 1-Matrix G = (1 + (¢)?); daher ist

Vo= 1+ WP

Die Jacobi-Matrix ist

Allgemein gilt eine Aussage, die wir bei der Integration iiber den Rand 0 A benétigen:

Satz 13.2.5 Sei W C R" ! offen, v : W — R eine beliebig oft differenzierbare
Funktion und

M= {(x1,...,Zn_1,%,) EW X R| z, = P(x1,...,2n_1)}
der Graph von 1. Dann ist
o: W — M, t— t,¢(T));
eine Karte zu M und es gilt:

V9 = V14 |grady|.
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13.3 Der Gaufische Integralsatz im R™

Wir beweisen nun einen Integralsatz fiir kompakte Mengen A im R”, die einen
glatten Rand O A besitzen; J A ist eine (n-1)-dimensionale Untermannigfaltigkeit.

Definition 13.3.1 Eine kompakte Menge A C R™ hat glatten Rand 0 A, wenn es zu
Jjedem Punkt p € OA eine offene Umgebung U von p und eine stetig differenzierbare
Funktion o:U — R gibt mit

ANU = {x € Ulo(x) <0} und grad o(z) # 0 fiir alle x € U.

Der Vektor 4 ( )
grad o(x
vr) .=
@)= | grad o(a)]

heifst die dussere Normale von 0 A.

Man kann zeigen, das
0ANU = {z € Ulo(z) =0}

ist; daher ist 0 A eine (n-1)-dimensionale Untermanngifaltigkeit. Ausserdem gilt: Zu
jedem x € O A ein existiert ein € > 0 mit

r+tv(z)gA fir 0<t<eg

der Vektor v(z) zeigt also in das Aussere von A.

Entsprechend 13.5.5 beinhaltet der Begriff des glatten Randes die zu cartesischen
Koordinaten in A passende Orientierung von 0 A.

Wir fiihren nun folgende Bezeichnungen ein: Es sei

W = {(1’1,. . .,!Enfl) S R”71|a1 <x1<by, ..., Q-1 <Tp_1< bnfl}

ein offener Quader im R"~! und I =]a, b[ ein offenes Intervall sowie U = W x I.
Zur Abkiirzung setzen wir w := (21,...,Z,—1) und schreiben nun die Punkte
x €U =W x [inderForm z = (w,z,) mitw € Wz, € I.

Wenn A glatten Rand hat, dann kann man wegen grad o(x) # 0 nach Umnumerie-
rung der Koordinaten annehmen, dass 0‘1&; (z) # 0 ist. Mit dem Satz liber implizite
Funktionen zeigt man dann:

Satz 13.3.2 Wenn A glatten Rand O A hat, dann existiert nach Umnumerierung der
Kordinaten zu jedem Punkt p € OA eine Umgebung U = W x I und eine stetig
differenzierbare Funktion 1y : W — I ,so dass gilt:

ANU ={z e Ulz, <P(w)}, OANU ={z € Ulz, = Y(w)}.

(Es kann auch ANU = {z € Ulx, > ¢(w)} sein; wir behandeln nur den obigen
Fall und nehmen an, dass A in U durch z,, < t(w) und 0A durch z,, = ¢(w)



384 13 Integralsitze

beschrieben wird.)
Man kann dann o(w, x,,) = x,, — ¥ (w) wihlen; es ist

oY oY

oot =g 1) undgrad ol = 1+ lgrad

grad o = (-

Zu U hat man die Karte
p: W —=0ANU, t— (t, (1))

und die Gramsche Determinante g dazu ist g = 1+ ||grad +||. Die dussere Normale
ist

(—grad ¢(w), 1)

v(w,z,) =

1
Vo)

und mitv = (v,...,vy) ist

1 G, L 1
vi(w,x,) = — \/g(w) . afj (w) firj=1,...,n—1und v, (w,z,) = \/g(w)

Wir behalten diese Bezeichnungen bei und zeigen:

Satz 13.3.3 Es sei f : U — R eine stetig differenzierbare Funktion mit kompaktem
Triger. Dann gilt fiir j = 1,...,n

/axjdx— / f-vdS.

ANU OANU

Beweis. Weil f kompakten Trager hat, diirfen wir annehmen, dass f auf dem Rand
von U definiert und dort gleich 0 ist. Es ist

bp—1 P(w)

af _
637] —/ / / 6x]dx1 ..o-dag,.

ANU an—1 Qn

Fiir j = n kann man dieses Integral so ausrechnen: Weil (w, a,,) auf dem Rand von
U liegt, ist f(w, an) = 0 und daher f;/)(w) 88;; dz, = f(w,(w)) . Daraus folgt

7]
o o= [ fw ()
w

Das Integral von f - v, liber 0A N U ist definiert durch:

ANU

[ rovas = / (F-m)o) - Vodt = [(Foedt= [ flw wiw)a.

OANU w w

Daraus ergibt sich:



13.3 Der GauBische Integralsatz im R"™ 385

[P a= [ roas

ANU OANU

Damit ist die Behauptung fiir j = n bewiesen.
Nunseij =1,...,n— 1. Aus 13.1.1 folgt:

P(w) P (w)
[ of e = | 2 / Flw, en)dan | = Fw,b(w)-

an

O

Ba:j (w)

Wir integrieren den ersten Summanden der rechten Seite zuerst nach x;:

by d P(w) B (w) zj=b;
" " o Tj=a;

Weil f auf dem Rand von A verschwindet,ist f(..,b;,..) =0 und f(..,a;,..) =0
und daher ist dieses Integral gleich 0. Damit ergibt sich:

[ obde == [ sty 7wy
w

ANU

Wegen /g - v; = _gi ist

[ #v) 5 wdeo = = [ vt )i = = [ a8
w

w OANU

Also giltauchfirj=1,....,.n—1:

[ 2o [ g

ANU OANU

O
Wir benotigen noch eine einfache Aussage:

Hilfssatz 13.3.4 Es sei U = {2 € R"|a; < 71 < by,...,an, < 2, < by} ein

abgeschlossener Quader und f : U — R eine stetig differenzierbare Funktion, die
auf dem Rand OU verschwindet. Dann gilt fiir j = 1,....,n

of 4
81‘3
U
Beweis. Die Behauptung folgt aus f J af dz; = f(..,b;,.)— f(.,a4,..)=0. O
Nun leiten wir mit Hilfe einer Tellung der Elns eine globale Version von 13.3.3 her:
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Satz 13.3.5 Essei U C R" offen, f : U — R eine stetig differenzierbare Funktion
und A C U kompakt mit glattem Rand OA. Dann gilt fiir j = 1,...,n

af B A
oz dr = /f v; -dS.
A A

Beweis. Wir liberdecken A so mit offenen Quadern Uy, so dass gilt:
(1)  UxCA, also JANU, =0

oder
(2)  OANU kann wie in 13.3.2 durch z,, = ¢»(w) beschrieben werden.

]

Us

0A

A

Ur

Dann wahlen wir eine Teilung der Eins Zk N = 1 mit Tr gy C Ug. und zeigen ,
dass in beiden Fallen gilt:

0
6 [ g mhae= [ )y
ANUyg ! OANU,,

Im Fall (2) folgt dies aus 13.3.3. Im Fall (1) sind beide Integrale null, denn wegen
OANU = P verschwindet das Integral auf der rechten Seite; links hat man

/8 (nk.f)d /8 (ne.f)d

ANUy

und dies ist nach 13.3.4 gleich 0.
Nun folgt:

axl Z/a (nf)d =Z / aij (e f)dz
=X / (wf)-vj-dS = / (nkf)'Vj'dSZ/f'Vj'dS.
0A

k 9anu, dANU,,

Wir schreiben nun
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dS :=wv-dSs.
Fiir ein Vektorfeld v = (v1, ..., v,,) interpretiert man v - dS als Skalarprodukt, also
v-dS = (viv1 + ... + vpvy) - dS.

Mit diesen Bezeichnungen gilt dann

Satz 13.3.6 (GauBscher Integralsatz im R™) Es sei U C R" offen, v : U — R"
ein stetig differenzierbares Vektorfeld und A C U eine kompakte Teilmenge mit

glattem Rand. Dann gilt:
/divvdxz/v-ds.
A

dA
Beweis. Es ist div v = Z;’:l g:-’_ . Wendet man den soeben bewiesenen Satz auf
J
J = vj an, so erhélt man [ g:-’_ dz = [ v;-v;-dS. Summationiber j =1,...,n
A 0A
liefert die Behauptung. O

Das Integral tiber das Quellenfeld von v ist also gleich dem gesamten Fluss von v
durch die berandende Flache.

13.4 Die Greensche Formel

Wir leiten nun Folgerungen aus dam Gauf3schen Integralsatz her.Dazu sind einige
Bezeichnungen zweckmassig: Fiir ein Vektorfeld v = (vy, ..., v, ) setzen wir

/v-dx = /vldx,...7/vndx

A A A

Das Integral iiber das n-Tupel (v1, ..., v, ) ist also komponentenweise zu verstehen;
man erhalt ein n-Tupel von Integralen.

In Definition 9.6.10 haben wir den Nabla-Operator V und den Laplace-Operator
A definiert:

0 0 0? o?
Ve (Lonil ) o= B

n
Fiir eine zweimal stetig differenzierbare Funktion f ist also

_(9F of \ _ _ >*f
Vf:= (81‘1""’835")_ grad f Af = 8x%+...+6$2.

n

Fir ein Vektorfeld v ist
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ovy Ovy, )
Vv = = d .
A% Oz + ...+ . 1V

Im R? kann man auch das Vektorprodukt bilden und setzt
V xXv:=rotv.

Bei den folgenden Aussagen sei immer U C R" offen, f,g und v seien stetig diffe-
renzierbar in U und A C U sei kompakt mit glattem Rand.
Zuerst formulieren wir 13.3.5 neu und fassen die n Gleichungen dieses Satzes zu-

sammen:
/(Vf)-dx :lf-ds.

A

Satz 13.4.1 Es gilt:

Folgende Aussagen rechnet man leicht nach:

Satz 13.4.2 Es gilt:

(1) V(V) =Af

(2) V(f-g9) =gVf+fVg

(3) V(fVg) = (Vf)(Vg) + fAg.

Die Aussage (1) schreibt man kurz

VV = A,

bei (3) bedeutet (Vf)(Vg) das Skalarprodukt > i1 aq« : aq« . In Analogie zur
Regel der partiellen Integration fa fg'de = f g’a — fa f'gdx gilt:
Satz 13.4.3 (Partielle Integration) Es gilz:

/ngdx:/fgdS—/gidx.
A DA A

Beweis. Man wendet 13.4.1 auf f - g an und erhalt:

/(f'g)dsZ/V(f~g)dx:/gidx+/ngdx.
A A A

0A

O
Eine weitere Formel fiir partielle Integration erhalt man aus dem Satz von Gauf:

Satz 13.4.4 (Partielle Integration) Es gilz:

/ (VF)(Vg)da = / FVgdS — / FAgda.
0A A

A
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Beweis. Man wendet den Satz von GauB 13.3.6 auf v := Vg an und beriicksichtigt
divv = V(fVg) = (V})(Vg) + fAg. 0
Daraus leiten wir die Formel von Green her:

Satz 13.4.5 (Greensche Formel) Es gilt:

/(ng —gAf)dz = /(ng — gV £)dS.

A 0A

Beweis. Es ist

A/ (Vf)(Vg)da :l FVgdS — /A fAgds

und durch Vertauschung von f und g ergibt sich:

/ (Vg)(Vf)dz = / gV FdS — / g/ fdu.

A 0A A

Daraus folgt die Behauptung. O
Setzt man g = 1, so erhalt man:

Satz 13.4.6 Es gilt:
/Afdxz /Vde.
A A

Eine Funktion g heifit harmonisch ( man vergleiche dazu 9.6.10), wenn Ag = 0 ist.
Somit gilt:

Satz 13.4.7 Wenn g harmonisch ist, dann gilt:
[onsas= [gvs-svgps.
A oA

In 9.2.14 hatten wir den Begriff der Richtungsableitung eingefiihrt. Die Ableitung
von f in Richtung v ist

D,f =<wv,gradf >=(Vf)- v.

Wegen dS = vdS konnen wir die Greensche Formel so schreiben:

Satz 13.4.8 (Greensche Formel) Es gilz:

/ (fg — gAf)da = / (/Dug — 9Dw )5,

A 0A
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13.5 Der Satz von Stokes

In diesem Abschnitt leiten wir einen allgemeinen Stokes’schen Integralsatz fiir Dif-
ferentialformen her. Der Satz von Stokes erhalt im Kalkiil der Differentialformen

die einfache Formulierung:
/ w = / dw.
A

0A

Wir benotigen dazu den Begriff der Integration von Differentialformen iiber glatte
Riander 0A, allgemein: Integration von Differentialformen iiber orientierte Unter-
mannigfaltigkeiten.

Es bezeichne wieder U C R" eine offene Menge und A C U eine kompakte Teil-
menge mit glattem Rand 0 A. Zunichst definiert man:

Definition 13.5.1 Fiirw = fdzi A ... Adz, € 27(U) setzt man

/w = /fdxl - dag,
A A

Kurz zusammengefasst: Integration einer n-Form im R”™ definiert man, indem man
dxy A ... Adzy, durch dz; - ... - dx), ersetzt: A weglassen.

Integration iiber orientierte Untermannigfaltigkeiten wird mit Hilfe von Karten de-
finiert; dazu benotigt man , analog zu 13.2.3, Invarianz-Aussagen, aus denen folgt,
dass die Definition unahhingig von der Wahl der Karte ist.

Satz 13.5.2 (Invarianzlemma) Seien U und U offen im R"™, sei

7:U = U, (t1, ..., tn) — 7(t1, ..., tn,) ein Diffeomorphismus mit det J, > 0.

Istdann AC Uund A =7 (A), so gilt fiirw € Q"U:

Beweis.Nach 11.3.19 ist fir w = fdx; A ... Adxy,:
woT=(for) -detJ dt;y A ... Adi,.

Die Substitutionsregel 10.2.9 besagt

/fdx:/(foq-)-|detJT\~dt

A A

und wegen det J,; > 0 ergibt sich:
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A/w:A/fdx:/(fOT)detJTdt:/wor

A A

Dies fiihrt zu folgenden Definitionen (man vergleiche dazu 11.1.8):

Definition 13.5.3 Ein Diffeomorphismus T heifit orientierungstreu, wenn gilt:
det J; > 0.

Ist (i : W; — Vi)ier ein Atlas einer Untermanigfaltigkeit M , so heifSen zwei
Karten ¢; : W; — Vi und @; : W; — V; gleichorientiert, wenn die Abbildung

p; 0w 1o {(Win W) — o) H(W N W)

orientierungstreu ist, also det J =164, > 0.

J
Ein Atlas heifit orientiert, wenn je zwei Karten gleichorientiert sind.
M heif3t orientierbar, wenn es auf M einen orientierten Atlas gibt.

Es gilt:

Satz 13.5.4 (Invarianzsatz) Sind ¢ : W — V und 1) : W — V gleichorientierte
Karten einer k-dimensionalen Untermanigfaltigkeit M C R"™ und ist U C R" offen,
ACV cU, so gilt fiirw € 2FU:

/ wop = / wo.

—1 —1

# (A) ¥ (A)
Beweis. Es sei 7 := 1)~ toyp; dann ist (wot))oT = woyp und aus dem Invarianzlemma
folgt die Behauptung. d
Nun sei M eine orientierte k-dimensionale Untermannigfaltigkeit im R", U C R"
offen,A C M N U kompakt und w € Q% dann kann man f QW folgendermassen
definieren:
Wenn es eine Karte p : W — V gibt mitA C V/, so setzt man wa = fil(A wo .

)

Nach dem Invarianzsatz ist dies unabhangig von der Wahl der Karte. Andernfalls
wihlt man eine Teilung der Eins ), n, = 1, so dass fiir jedes k eine Karte ¢y, :
Wy — Vi existiert mit Tr(nx) C V.

Es sei Ay := A N Tr(n); dann istA;, C Vi und daher ist Integration tiber Ay

definiert. Nun setzen wir [ niw := | npw und definieren
A Ap

/Wi:%:!Ukw~

A

Man beachte, dass auf einer k-dimensionalen orientierten Untermannigfaltigkeit nur
die Integration von k-Formen definiert ist.

Wir benétigen vor allem Integration liber glatte Rander 0A . Mit Hilfe des Norma-
lenfeldes v kann man die (n-1)-dimensionale Untermannigfaltigkeit 0 A orientieren:
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Satz 13.5.5 Essei A C R™ kompakt mit glattem Rand O A und v das Vektorfeld der
dusseren Normalen. Dann existiert ein Atlas (p;);cr von OA, so dass fiir alle i € 1
gilt:

8(,07; 6%
Oty Oty

und dieser Atlas ist orientiert. Diese Orientierung von 0 A bezeichnet man als Ori-
entierung beziiglich der dusseren Normalen.

det(v o p;, ) >0

Beweisidee. Man wahlt zuerst einen beliebigen Atlas. Falls fiir ein ¢ € I die oben-
stehende Determinante negativ ist, ersetzt man die in einem geeigneten Quader de-
finierte Karte ;(t1, ..., t,—1) durch die Karte ¢;(¢1, ..., tn—2, —tn—1); dadurch er-
reicht man , dass sie positiv ist. Nun zeigt man, dass zwei Karten, bei denen diese
Determinante positiv ist, immer gleichorientiert sind. a

Nun vergleichen wir Integration von Differentialformen und von Vektorfeldern:

Satz 13.5.6 Es sei U C R" offen, A C U kompakt mit glattem Rand O A und
w = Z(—l)j+1vjdl'1 VANAN dxj,1 AN dxj+1 A..ANdz, € oo
j=1
Mit v := (v1, ..., v,) gilt dann:

[o=[vas.

A DA
Beweis. Zur Vereinfachung schildern wir den Beweis fiir n = 3. Es sei

p: W = 9ANU, (t1,t2) — (t1,t2,%(t1,t2))

eine Karte zu 9 A; dann ist

vas= [ (veuls o)
OANU ?Fl(aA)

mit \/g- (Vo) = (— gﬁi ,— g;i ,1). Nun geben wir das Integral auf der linken Seite

an:Es ist ¢ = (1, p2, p3) mit
pi(ti,ta) = t1, a(t1,t2) = to, @3(ti,t2) = Y(t1,t2).
Daher ist

d(pg N d(pg = dis A (gtf dt, + gtd; dtz)
dps Adgpy = (50 dty + 5 dtz) Adty
dpy Adpy = dt1 A dts.

—~ %;ﬁ dty A dts
~ oty dtq A dig
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Daraus folgt

o

wow = ((row) o0+ Gaow)- )1+ o0 dis nats =

=((voy)- V- (v o ))dty Adts.

Daraus ergibt sich die Behauptung. O
Nun konnen wir den Satz von Stokes fir Differentialformen herleiten:

Satz 13.5.7 (Satz von Stokes)Es sei U C R"™ offen, A C U kompakt mit glattem
Rand OA und w € Q" 'U; dann gilt:

/dw:/w.
A 9A

Beweis. Es ist [ w = [ vdS und es gilt dw = (divv)dz; A ... A dzy, also

9A 5A
Jdw = [divvdz. Nach dem Integralsatz von GauB ist [ vdS = [ divvdz.
A A oA A
Daraus folgt die Behauptung. a

Wir geben ohne Beweis eine Verallgemeinerung an: Ist M eine k-dimensionale ori-
entierte Untermannigfaltigkeit , so kann man mit Hilfe von Karten fir A € M
definieren, wann A glatten Rand 0 A hat; genauer verfahren wir wie folgt:
Sei p € M und ¢ eine zugehorige Karte und p = ¢(c). Die Funktionalmatrix J,,(c)
ist eine n x k-Matrix. Die Vektoren gfl (©),..., gg‘; (¢) bilden eine Basis von T}, M.
Demnach ist

Jo(c) : RF = T,M

ein Isomorphismus. Irgendeine Basis von T}, M heil3t positiv orientiert, wenn sie
unter der Funktionalmatrix .J,,(c) Bild einer positiv orientierten Basis des R¥ ist

( man vergleiche dazu 7.9.43). Insbesondere ist die Basis g;‘i e gti positiv
orientiert, da gf = Jw(c)ej ist ; dabei sind eq, . . ., e, die Einheitsvektoren des RF.
J

Fiir A C M ist 0A die Menge der Randpunkte von A in M. Ist also zum Beispiel M
eine Fliche im R?, so ist A eine kompakte Teilmenge, die von einer Flachenkurve
OA berandet wird. A ist demnach im allgemeinen Fall eine (k-1)-dimensionale

Untermannigfaltigkeit von M. Fiir eine Karte ¢ von 0 A liegen also gi’ e atail

im Tangentialraum an A. Wir fordern, dass in dA ein in M \ A, also in das Aussere
von A in M weisender Vektor n der Linge 1 existiert (dussere Normale), der

e 1.im Tangentialraum an A liegt,
o

e 2. orthogonal zu gﬁ S Bty ist.

Entsprechend 13.5.5 sagen wir, dass 0 A beziiglich der dusseren Normalen orientiert

ist oder glatten Rand hat, wenn auf 0A die Vektoren n o 1, g;f: e ag:{l eine

positiv orientierte Basis des jeweiligen Tangentialraums an M bilden. Also hangt
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diese Definition mit dem Atlas von M zusammen. Ein wichtiges Beispiel werden
wir gleich kennen lernern.

Satz 13.5.8 (Allgemeiner Satz von Stokes) Ist M eine k-dimensionale orientier-
te Untermannigfaltigkeit, die in einer offenen Menge U des R™ liegt, ist A C M
kompakt mit glattem Rand, so gilt fiir v € Q21U

A/dw:/w.

O0A
Daraus ergibt sich:

Satz 13.5.9 (Spezieller Satz von Stokes) Es sei M eine zweidimensionale orien-
tierte Untermannigfaltigkeit des R® und A C M eine kompakte Teilmenge von M
mit glattem Rand O A.Ist dann U C R® offen, A C U, und ist

v:U —R?
ein Vektorfeld, so gilt:
/’I“OtVdS = /VdS
A A

Beweis. Man definiert durch w := vds eine 1-Form in U; dann ist dw = rot vdS
und aus dem allgemeinen Satz von Stokes folgt die Behauptung. a
Wir erlautern den speziellen Satz von Stokes 13.5.9, indem wir ihn in eine oft in
Lehrbiichern zu findende Form umschreiben und auf die Frage der Orientierung
eingehen. Als orientierte Untermanigfaltigkeit hat M ein stetiges Normalenfeld v
und wir erhalten

/rotvdS = :I:/rotv - vdS.
A A

M braucht nicht notwendig ein Volumen zu beranden. Also gilt: Neben v steht
auch —v als Normalenfeld zur Verfiigung. 0A konnen wir uns als geschlosse-
ne Flachenkurve mit der Einfachheit halber ein und demselben Kurvenparameter
t, a <t < b, und Tangentenvektor t vorstellen. n ist die nach aussen weisende
Normale an 0A im Tangentialraum an M. Sei n, t in A positiv orientierte Basis
des Tangentialraums an M . Dann haben wir mit

b
/v~ds = /v~tdt

0A

entweder
b

/mtv -vdS = /v -tdt falls det(v,n,t) > 0,

A a
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oder
b

—/rotv -vdS = /v~tdt falls det(v,n,t) < 0.
A a

Die Vektoren v, n, t miissen also eine positiv orientierte Basis des R? bilden.

In diesem Satz wird also das Wirbelfeld von v mit dem Integral von v tiber die A
berandende Kurve 0 A verkniipft, der Zirkulation von v tiber d A. Offenbar kommt
es nur auf diese Kurve und nicht auf die in 0 A eingespannte Flache an.

Nun ordnen wir Satz 13.5.7 dem allgemeinen Satz von Stokes 13.5.8 unter und dis-
kutieren den Zugewinn aus Satz 13.5.8 gegeniiber Formulierungen wie dem Gauf}
schen Integralsatz im R™ 13.3.6 oder dem speziellen Satz von Stokes 13.5.9. Ver-
sehen wir U wie in 13.5.7 mit der trivialen Karte ¢ = idy : U — U, so ist U
Mannigfaltigkeit der Dimension n. Sie ist orientiert. ¢ hat die Einheitsmatrix als
Funktionalmatrix. Die Tangentialvektoren sind die Einheitsvektoren des R™. Die
Voraussetzung ,.glatter Rand “in 13.5.7 garantiert also die Anwendbarkeit des Sat-
zes 13.5.8 und unsere Erorterungen zeigen, dass es sich um einen einfachen Fall
handelt. Die Formulierung in der Sprache der Differentialformen lasst sofort er-
kennen, dass Satz 13.5.8 sowohl bei Koordinatentransformationen des umgebenden
Raumes als auch bei Einfithrung neuer lokaler Koordinaten seine Giiltigkeit behalt,
sofern die Orientierungen der Atlanten von M und 0 A sich nicht andern. Fithren wir
etwa in U durch x = &(y) mit positiver Funktionaldeterminante neue Koordinaten
y ein, so haben wir, wenn ®~1(9A) = 9P(DA) der Rand von d~1(A) in &~ (M)
ist, die Beziehungen

/w:/dw: / dwo® = / d(wo®) = / wod = / wod.
A

OA B-1(A) B-1(A) db—1(A) B-1(0A)

Dabei haben wir den Satz von Stokes, die Invarianzeigenschaften 13.5.4und 11.3.17,
wieder den Satz von Stokes und dann unsere Annahme benutzt. Satz 13.5.8 ist
die invariante Formulierung des Satzes von Stokes. Weil sie invariant ist, erkennt
man sofort, dass zum Beweis nur eine moglichst einfache Koordinatenbeschreibung
herangezogen zu werden braucht. Das haben wir bei 13.5.7 ausgenutzt, indem wir
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auf den GauB3$chen Integralsatz im R™ 13.3.6 zuriickgegriffen haben. Generell sind
Rechnungen mit der dusseren Ableitung d und transformierten Differentialformen
einfacher als mit div, rot, grad und ihren Umschreibungen auf neue Koordinaten.

Aufgaben

13.1. Sei Q := [0, 1] X [0, 1]; berechnen Sie direkt und durch Integration iiber ) das folgende
Integral: [ y*dz + z°ydy.
0Q

13.2. Sei A := {(x,y) € R*| 1 < x < 2, < y < ?}; berechnen Sie direkt und durch
Integration tiber A das Integral [ z; dz.
OA

13.3. Sei Q := [0, 1] x [0, m]; berechnen Sie [y - sin(zy)dzdy.
Q

13.4. Sei A C R? der im ersten Quadranten liegende Teil der Einheitskreisscheibe; berech-
nen Sie 1{ zy - dzdy direkt und durch Transformation auf Polarkoordinaten.
13.5. Berechnen Sie den Flicheninhalt von {(z,y) € R*| 0 <z < 1, 2° <y < 22}
13.6. Sei M := {(x1, %2, 73) € R?| 23 = zixs},
w :=dxs ANdx1 + xfd:ﬁ A dxa
und A := {(z1, 22, 23) € M| 27 + x3 < 1}. Berechnen Sie [ w.
A

Es liege im folgenden die Situation des Satzes 13.5.9 (Spezieller Satz von Stokes) vor. Seien
(T3, @i, Vi) die Karten von M, fiir die wir einfach (T, ¢, V') schreiben. Als Normalenvektor

nehmen wir . 5 5
Y _ (0¢  Op
v(t) = v(g(t) wmwﬂ>(&1xw)’

so dass M positiv orientiert ist. v ist wie in Satz 13.5.9.
13.7. a) Zeigen Sie fiir a, b, c € R3:
ax (bxc) =<a,c>b—<a,b>c
b) v x v ist Tangentialfeld an M. Berechnen Sie mit a) den Vektor v X v als Linearkombi-

: Dy Op
nation von 5.~ und Dty

13.8. Sei a(t) ein stetig differenzierbares Tangentialfeld auf M, d.h.

Op Op
oty Ota’

Zeigen Sie, dass es immer ein stetig differenzierbares Tangentialfeld v auf M gibt mit

at) = ai()oF +as(t)

a(t) = v(t) x v(t).

Hinweis: Benutzen Sie 11.6 a).
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13.9. a) Fiir ein Tangentialfeld

Oy

a(t) = ax(t) o

+ az(?)

heil3t

Div a := \/lg (8?1 (vga1) + 8(?2 (\/ga2)>

die Flichendivergenz von a. Berechnen Sie Div (v X v) fir v X v aus 11.6 b).
b) Berechnen Sie < rot v, > und zeigen Sie

<rotv,v > = —Div(v x v).

Hinweis: In Teil b) lassst sich der sogenannte e-Tensor anwenden, insbesondere Satz 7.14.17
und Satz 7.14.16.

13.10. Sei a ein Tangentialfeld auf M, sei n wie in der Abbildung zum speziellen Satz von
Stokes und s die Bogenldnge auf 9 A; weiter sei |0A| die Lange der geschlossenen Kurve
0A. Zeigen Sie

[0A]|
/(Diva)dS = / <a,n> ds.
A 0
Hinweis: Benutzen Sie zunichst Aufgabe 13.8 fiir die Darstellung a = v X v. Von v

diirfen Sie voraussetzen, dass v sich zu einem stetig differenzierbaren Vektorfeld v : U —
R3, M C U C R3,U offen, fortsetzen lisst. Dann kann man Aufgabe 13.9 b) und Satz
13.5.9 anwenden.
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Funktionentheorie

14.1 Holomorphe Funktionen

In der Funktionentheorie befassen wir uns mit komplexwertigen Funktio-
nen einer komplexen Variablen z. Von besonderem Interesse sind die nach
z (komplex) differenzierbaren sogenannten holomorphen Funktionen. Sie
sind durch ihr Verhalten im Kleinen vollstandig bestimmt und gestatten um
jeden Punkt ihres Definitionsbereiches eine Potenzreihenentwicklung. In
Kapitel 4 hatten wir bereits wichtige elementare Funktionen durch Potenz-
reihenentwicklung als holomorphe Funktionen gewonen. Wir gehen auf ei-
nige der zahlreichen Anwendungen ein wie etwa Berechnung von unei-
gentlichen Integralen, Berechnung des Hauptwertes von Integralen, ebene
Stromungen und Randwertprobleme harmonischer Funktionen.

Wir erinnern zuerst an Grundbegriffe fiir die komplexen Zahlen C:

Ist z = z+iy € Cmitz,y € R, so heifit x der Realteil und y der Imaginarteil von z;
wir schreiben © = Re(z),y = Im (z). Die konjugiert komplexe Zahl ist Z = x — iy,
also Re(z) = *17 und Im (2) = #;°. Der Betrag ist 2| = /22 + y2 = V/z - Z.
Firzo € Cundr € R, > 0, ist U.(20) = {# € C| |z — 20| < r} die offene
Kreisscheibe um z mit Radius 7 und U,.(20) = {z € C| |z — 29| < r} ist die
abgeschlossene Kreisscheibe; mit OU,(z9) = {z € C| |z — 29| = r} bezeichnet
man den Rand.

Eine Menge D C C heifit offen, wenn es zu jedem zo € D ein r > 0 gibt mit
UT(Z()) c D.

Eine Menge A C C heiBt abgeschlossen, wenn C \ A = {z € C|z ¢ A} offen ist.
Die abgeschlossene Hiille von X ist X = {z € C|U,(z) N X # 0 fiir alle » > 0}.

Deﬁllition 14.1.1 Es sei D C C offen, ist f : D — C eine Funktion, ¢ € C, und
p € D,so schreibt man
lim f(z) = ¢,

z—p

wenn es zu jedem € > 0 ein § > 0 gibt, so dass fiir alle z € D mit |z — p| < 0 gilt:

[f(z) =l <e.
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Fiirp € Dund f : D\ {p} — C schreibt man

lim f(z) = oo,

z—p
wenn zu jedem M > 0 ein 6 > 0 existiert, so dass fiir alle z € D mit0 < |z—p| <
gilt: | f(2)| > M.
Ist f : C — C eine Funktion, so dass zu jedem M > 0 ein R > 0 existiert mit
|f(2)| > M fiir |z| > R, so schreibt man

lim f(z) = oo.

ZzZ—00

Eine Funktion f : D — Cistin zg € D genau dann stetig, wenn lim f(z) = f(z0)

) zZ—20
ist.

Mit Einfiihrung der komplexen Zahlen haben wir R? zu einem Korper C gemacht, in
dem wir zusitzlich iiber offene Mengen (dieselben wie im R?) und den Grenzwert-
begriff verfiigen. Damit konnen wir ausser der Stetigkeit komplexwertiger Funk-
tionen durch Bildung des Differenzenquotienten die Grundbegriffe der Funktionen-
theorie: komplexe Differenzierbarkeit und Holomorphie einfiihren.

Definition 14.1.2 Es sei D C C offen; eine Funktion f : D — C heifit in zg € D
komplex differenzierbar, wenn es eine komplexe Zahl f'(z2y) gibt mit folgender
Eigenschaft: Zu jedem € > 0 existiert ein § > 0, so dass fiir alle z € D mit
0 < |z — 2| < gilt:

T )| <
also
lim f(Z) - f(ZO) — f/(20)~

zZ—2z0 zZ— 20

Wenn f in jedem Punkt zy € D komplex differenzierbar ist, dann heifst { holo-
morph.

Wie im Reellen gilt (man vergleiche 3.1.2):
Satz 14.1.3 Ist f : D — C eine Funktion, so gilt:

(1) Wenn f in zg € D komplex differenzierbar ist, so ist die Funktion

q:D—C, z— f(Z;:iCEEZO) Jalls z 7 zo,
’ f(z0)  falls z = 2

in 2o stetig

(2) Wenn es eine in zg € D stetige Funktion q : D — C gibt mit q(z) = F(x)-4(z0)
fiir z # 20, so ist f in zg komplex differenzierbar und f'(z9) = q(z0).
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Setzt man ¢ = f’(z0) und p(z) = ¢q(z) — ¢, so erhélt man:

Satz 14.1.4 Es sei D C C offen ; eine Funktion f : D — C istin zyg € D genau
dann komplex differenzierbar, wenn es ein ¢ € C und eine Funktion ¢ : D — C
gibt mit

f(z)=f(z0) + ¢ (z—20) + (2 — 20) - p(2) fiir z€ D und lim p(z) =0.

z—20

Es ist naheliegend, den Begriff der Fortsetzbarkeit einer Funktion einzufiihren:

Definition 14.1.5 Es sei zo € D C Cund f : D \ {20} — C sei eine stetige bzw.
holomorphe Funktion. f heif3t stetig bzw. holomorph in den Punkt z fortsetzbar,
wenn ein ¢ € C existiert, so dass die Funktion

fiD—>(C,z»—>{f(Z) fiir z # zo

c fir z=2%

b

stetig bzw. holomorph ist.

Eine Funktion ist also in zy genau dann komplex differenzierbar, wenn der Diffe-
renzenquotient (’2:5 (20) gtetig in zo fortsetzbar ist.

Die Menge der in D holomorphen Funktionen bezeichnet man mit
O(D).

Fir f,g € O(D) istauch f +g,f- g € O(D) und fiir die Ableitung gelten die
tiblichen Rechenregeln.

Die wichtigsten holomorphen Funktionen sind die Potenzreihen.Wir zeigen analog
zu 4.1.3, dass jede konvergente Potenzreihe holomorph ist und gliedweise differen-
ziert werden darf. Anders als im Reellen gilt jedoch hier auch die Umkehrung : In
14.6.2 werden wir beweisen, dass man jede holomorphe Funktion lokal durch eine
Potenzreihe darstellen kann.

o0

Satz 14.1.6 Die Potenzreihe Y, anz" mita, € Cseiin D := {z € C||z| <r}
n=0

konvergent. Dann ist die Funktion

o0
f:D—C, z+— E anz"
n=0

holomorph und es gilt:

oo
fl(z)= Z nanz" L.
n=1
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Beweis. Man kann den Beweis wie bei 4.1.3 fiihren.
Wir geben noch einen anderen Beweis, bei dem wir Aussagen liber gleichmaflige
Konvergenz heranziehen, die uns bei 4.1.3 noch nicht zur Verfiigung standen ( man
vergleiche dazu R. REMMERT [26] ).
Es sei |w| < r; esist zu zeigen, dass f in w komplex differenzierbar ist. Wir wihlen
o mit |w| < g < r und definieren in |z| < p:

Fz)—fw) falls 2 # w

z—w

alz) = 3 na,w™ "t falls z =w

n=1

Zu beweisen ist lim ¢(z) = g(w), also die Stetigkeit von ¢ in w. Setzt man

zZ—w

g1(2) := 1 und
gn(2) i=2"" 42" 2w b 2w ™ fiirn > 1,

SO ist

n n—1

(z—w)gn(z) =2" —w"™ und g¢g,(w)=nw

Fiir |z] < p gilt:

Q(Z) = Z a"gn(z)
n=1

und
gn(2)] < ne" .
o0 o0
Somitist Y n|a,|0" ! eine konvergente Majorante zu Y. a,,g,. Nach dem Ma-
n=1 n=1
jorantenkriterium 6.1.8 konvergiert diese Reihe dort gleichmafig gegen ¢ und daher

ist ¢ in |z] < p stetig. O
Beispiel 14.1.7 Aus diesem Satz folgt, dass die Exponentialfunktion

ZTL

exp.(C—>(C,z|—>"z::0n!
holomorph und (e*)" = e* ist. Oft schreiben wir e* = exp(z) ;fir z = = + iy ist
e® =e% el = e%(cosy +isiny).
Wir wollen nun die dadurch gegebene Abbildung naher beschreiben:
Bei festem yo € R ist das Bild der Geraden {z + iy € C| z € R, y = yo} ein von
0 im Winkel ¥ ausgehender Halbstrahl ohne Nullpunkt.
Wihlt man ein z¢ € R, so wird die Strecke {x + iy € C| x = xp, 0 < y < 27}
durch die Exponentialfunktion auf die Kreislinie um 0 mit Radius e®° abgebildet;
fir zg < 0 ist der Radius < 1 und fiir g > Oister > 1.

Die Abbildung
{r+iyeClzreR, 0<y<2r} - C* 2z €

ist bijektiv.



14.2 Die Cauchy-Riemannschen Differentialgleichungen 403

27
_______ - .
T |
|
N s
_______________ N | ,
A 1 '
_______________ N | s
N s
S | 7
_______________ e N
N ’
0 Xp_ N
-— — —
bl 21N
’ N
s N
7 | N
é | N
’ \
4 | N
é N
’ ! \
|
27 |
[
[
[
[
[
[
[ I
[ P \\\
[N .7 N
[ ’ -—- \\
[ / - ~ \
/ e N
[ / 7 \ \
[ i / \ \
[ exp | i \ \
11 —_— \ | } |
0 ! ‘\ / ,'
\ /
\ \\ , /
\ ~ s /
\ ~__-- /
N ’
~ 7

14.2 Die Cauchy-Riemannschen Differentialgleichungen

Es sollen nun die Beziehungen zwischen komplexer und reeller Differenzierbarkeit
untersucht werden. Ist D C C offenund f : D — C, so fassen wir D C R? auf und
setzen

u:D — R, (z,y) — Ref(x +1iy), v:D—R, (z,y)+— Imf(x+iy).
Dann ist f(x + iy) = u(x,y) + iv(z, y) und wir schreiben kurz
f=u+1iv.
Es gilt:

Satz 14.2.1 (Cauchy-Riemannsche Differentialgleichungen) Eine Funktion
f = u + iv ist genau dann holomorph, wenn die Funktionen u,v (total) differen-
zierbar sind und wenn gilt:

ou Ov ou ov

ox Oy ’ Oy ox’
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Diese Differentialgleichungen nennt man die Cauchy-Riemannschen Differential-
gleichungen.

Beweis. Wir beweisen die Aussagen fiir jedes zp € D und nehmen zp = 0 an.

(1) Es sei f in D holomorph, dann ist

F(2) = F0) 4 ezt 2 (), Jimp(z) =0,
Zerlegung in Real- und Imaginarteil liefert:
z=x+1y, f=u+iv, p=a-+1if, c=a+ib.
Damit folgt:
u(,y) +iv(a,y) = (w(0) +10(0)) + (a+1b) (@ +iy) + (+iy)(ale, y) +1B(z,y)
und somit (in abgekiirzter Schreibweise):

u=u(0) + (ax — by) + (za —yp)

v =v(0) + (bx + ay) + (2B + ya)
Wir setzen
_zftya
B \/xQ +y2

,| < 1ist|@] < |af + |B| und daher gilt & — 0 und
y

&(x,y) = za —yp und  V(z,y):

B \/x2—|—y2

Wegen |\/T§+y2\ <1, |\/T3+
ebenso ¥ — 0. Aus

u(z,y) = u(0) + (ax — by) + \/xQ +y? - P(x,y)
v(z,y) = v(0) + (bz + ay) + \/x2 +y? ¥ (z,y)

folgt die Differenzierbarkeit von u, v in 0 und

uz(0) = a, uy(0) = —b
'U:c(o) = b7 Uy(o) = a,
also u; = vy, Uy = —Vg.

(2) Nun seien u, v differenzierbar und die Cauchy-Riemanschen Differentialglei-
chungen seien erfiillt. Mit

a:=uz(0) =vy(0) , b:=—uy(0) =v;(0)
ist dann

’LL(.’E, y) = U(O) + (ax - by) + \/xQ + y2§01(x7 y)v lim O‘pl(xa y) = 07

(z,y)—

v(z,y) = v(0) + (bz + ay) + /2% + y2¢2(2,y), ( lir)n sz(m, y) = 0.
T,y)—
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Daher ist :
f(2) = u(z,y) +iv(z, y) = f0) + (a +1b)z + [2] - (pr(2,y) +ip2(2,y))

und daraus folgt, dass f in zgp = 0 holomorph ist und

F/(0) = a+ib = ua(0) + vy (0) = 1(1%(0) + 1,y (0)).

Wir formulieren die Aussage iiber f/(0) noch als Satz:

Satz 14.2.2 Wenn f = u + tv holomorph ist, dann gilt
1
J=ugtivg = | (uy+1ivy) = up —iuy = vy + iv,.
i

Beispiel 14.2.3 Essei f : C — C,z +— 22 also f(z) = (2% — y?) + 2izy, somit
u(x,y) = 2?2 — g2, v(x,y) = 2zy und daher

uz(z,y) =2z = vy(z,y),  uy(z,y) = -2y = —ve(,y);
f ist holomorph.

Beispiel 14.2.4 Essei f(2):= j(z+2) =« .Damnist u(z,y) = z,v(z,y) = 0.
Die Cauchy-Riemannschen Differentialgleichungen sind offensichtlich nicht erfiillt;
f ist nicht holomorph. Dies sieht man auch direkt: Fiir reelles i # 0 ist der Diffe-
renzenquotient f (h);f © = Z = 1und’ (ih)i;f () = 0: daher existiert der Limes
des Differenzenquotienten fiir & — 0 nicht.

14.3 Kurvenintegrale

Es sei immer D eine offene Menge in C und v : [a,b] — D,t — z(t) + iy(t),
eine stiickweise stetig differenzierbare Kurve in D; die Ableitung nach ¢ ist 4(t) =

b
#(t) + iy(t) und die Lange von yist L. := [ |§(¢)|d¢t (vgl.9.5.1).

Definition 14.3.1 Isr f : D — C eine stetige Funktion und v : [a,b] — D eine
stiickweise stetig differenzierbare Kurve in D, so heifst

b
[ ez = [ i
0% a
das Kurvenintegral von f lings ~; ausfiihrlich geschrieben:
[ f(z)dz = [ (u
0% a

b
(2(8), y(1)) - (1) = o (t), y(1)) - 5(1) )t +
b
+i [ (ula(t), y(0)

) 9(t) + v(a(t), y(1) - (1) )t
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Natiirlich heiBt eine holomorphe Funktion F' Stammfunktion von f, wenn F’ = f
ist. Es gilt:

Satz 14.3.2 Ist f : D — C stetig und F' : D — C eine Stammfunktion von f, so
gilt fiir jede stiickweise stetig differenzierbare Kurve ~y : [a,b] — D:

/ f(2)dz = F(y(b) - F(7(a))

und fiir jede geschlossene Kurve ~y in D ist

/f(z)dz = 0.

Beweis. Es ist {\F o y(t) = F'(y(t)) - %(t) = f(y(t)) - ¥(t) und daraus folgt

[ f(z)dz = Forl. 0
Wir flihren nun einige Bezeichnungen fiir Kurvenintegrale ein:
Die Kurve v : [0,1] — C, t + z1 4+ t(22 — #1) durchléuft die Strecke von z1 nach

29 und wir setzen
Z2
z1 Y

Ist @ eine achsenparalleles Rechteck mit den Eckpunkten z1, 2o, z3, 24,die wir so
durchlaufen, dass @ links liegt, so setzen wir

zZ2 zZ3 Z4 zZ1
(-] )
oQ z1 z2 23 Z4
Mity: [0,1] — C, ¢+ zo + r - €™ definieren wir

[

|z—zo|=r

Beispiel 14.3.3 Fir r > 0 gilt:

re2mwit

1 .
dennesist [ 4= = [ 277 4y = 27i. Dieses Integral ist # 0 und daher besitzt
0

|z|=r
1
C\{0} =C, z—
z

keine Stammfunktion.
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Ein Gebiet ist eine offene zusammenhangende Menge (9.1.22); in einem Gebiet
kann man zwei Punkte immer durch eine stiickweise stetig differenzierbare Kurve
verbinden. Wir zeigen:

Satz 14.3.4 Ist f : D — C im Gebiet D C C stetig und sind F und G Stammfunk-
tionen von f, so ist F — G konstant.

Beweis. Es seien zq, 20 € D man wahlt eine Verbindungskurve v in D von 2

nach z5. Dann ist F'(z3) — f f(2)dz = G(22) — G(z1) und daraus folgt
(G—=F)(z1) = (G- F)(z ) O
Satz 14.3.5 Ist f : D — C stetig und | f(z)| < M fiir z € D, so gilt fiir jede Kurve
~vin D:

/f(z)dz <ML,

Beweis.\f7 f(z)dz| = |f fly (t)dt] < M - f |y(t)|dt = |

Wir benotigen noch Aussagen iiber die Vertauschung von Grenzprozessen. Dazu
fiihren wir folgenden Begriff ein:

Definition 14.3.6 Eine Folge (f,), von Funktionen f, : D — C heifit kompakt
konvergent gegen f : D — C, wenn sie auf jeder kompakten Teilmenge K C D
gleichmdflig gegen f konvergiert;

es gibt also zu jedem € > 0 und jedem kompakten K C D einen Index N, so dass
fiirallen > N und alle z € K gilt: |fn(z) — f(2)] <e.

Eine Reihe ), fn heifit kompakt konvergent, wenn dies fiir die Folge der Partial-
summen gilt.

Es gilt:

Satz 14.3.7 (Vertauschung von Limes und Integration) Wenn die Folge (f,)n
stetiger Funktionen f,, : D — C kompakt gegen f : D — C konvergiert, so gilt fiir
Jjede stiickweise stetig differenzierbare Kurve v in D:

lim [ fn(z dz-/f

n—oo

und fiir eine kompakt konvergente Reihe stetiger Funktionen ist

oo

> [ 51z = [(3 sutea

5 5 n=1

Beweis. Weil v([a, b]) kompakt ist, gibt es zu jedem ¢ > 0 ein N, so dass fiir
z € ¥(Ja,b]) und n > N gilt:| f,,(z) — f(2)| < e. Dann folgt:
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/fn(z)dz—/ z)dz </|f,, 2)dz<e-L,.
]

Daraus folgt die Behauptung. ad
In der Funktionentheorie ist der Begriff der kompakten Konvergenz wichtig, denn
konvergente Potenzreihen sind kompakt konvergent:

Satz 14.3.8 Wenn die Potenzreihe i anz™ in |z| < r konvergiert, so ist sie dort
kompakt konvergent. =

Beweis. Zu jeder kompakten Menge K C U, (0) existiert ein p < r mit K’ C U,(0);
fir z € K ist dann i |an|o™ eine konvergente Majorante zu ioj a,z"™ und aus

=0 n=0
dem Majorantenknterlum 6.1.8 folgt die gleichmafige Konvergenz. a

14.4 Stammfunktionen
In diesem Abschnit zeigen wir, dass jede in einer offenen Kreisscheibe holomorphe
Funktion eine Stammfunktion besitzt. Zunachst beweisen wir:

Satz 14.4.1 Es sei D := {z € C| |z — zo| < r} eine offene Kreisscheibe und
[+ D — C eine stetige Funktion. Fiir jedes achsenparallele Rechteck QQ C D gelte

f(z)dz =
oQ
Dann existiert eine holomorphe Funktion F' : D — C mit F' = f.

Beweis. Wir diirfen zp = 0 annehmen. Fiir z = = + iy € D setzen wir

Es sei ) das Rechteck mit den Ecken 0, z, z + iy, iy; weil

/If(C)dC+7y dc+/f dc+/f =/8Qf(C)dC=0
0 z o+iy

ist, gilt:

/f Od¢ + / F(Q)dC.
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Essei f = u+ivund F' = U 4+ iV; wir berechnen nun U,. Sei z = x + iy € D,
he€R,h#0und z+ h € D. Dann gilt

r+h+iy

F(z+h)— / (¢ :/(u(x+th,y)+iv(x+th,y))~h~dt.

iy

Der Ubergang zum Realteil liefert

1
Uz + h,y) — /ux+thy
0

Nach dem Mittelwertsatz der Integralrechnung existiert ein ¢ mit 0 < 4 < 1, so
dass gilt:

1
/u (z + th,y)dt = u(z + Vh,y).
0

Daraus folgt:

Daher existiert U,, und aus U, = u folgt, das U, stetig ist. Analog berechnet man
die anderen partiellen Ableitungen von U, V. Es ergibt sich:

Uz = u, Uy=—v
Ve =, Vy = u.

Daher sind U, V stetig partiell differenzierbar und die Cauchy-Riemannschen Dif-
ferentialgleichungen sind erfiillt. Somit ist /' = U + iV holomorph und es gilt

=U,+iV, =u+iv=f. O
Nun beweisen wir eine Aussage, die man als das Integrallemma von Goursat be-
zeichnet (EDOUARD GOURSAT (1858 - 1936)):

Satz 14.4.2 (Integrallemma von Goursat) Es sei D offen und f : D — C holo-
morph. Dann gilt fiir jedes achsenparallele Rechteck QQ C D

f(z)dz =
9Q

Beweis. Durch Halbieren der Seiten teilen wir @ in vier Teilrechtecke Q', ..., Q*.
Es ist

/ fdz= [ fe)dzd ot [ f2)dz
oQ Q! oQ*

Unter den Teilrechtecken Q', ..., Q* kann man eines, das wir nun mit Q; bezeich-
nen, so auswahlen, dass gilt:
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f(z)dz
0Q1

(z)dz].

1
>
— 4

f
0Q

Nun teilt man @), in vier Teilrechtecke und wahlt unter diesen ein ()5 so, dass gilt:

1
> .

f(z)dz
0Q2

f(z)dz
0Q

Auf diese Weise erhalt man eine Folge von Rechtecken

QDOQ1DQ2D...0Qm D ...

(z)dz

1
[ s >4mLéquxu

Bezeichnet man mit L(0Q) den Umfang von @), so gilt :
L(0Qm) = 27™L(0Q).

Fiir jedes m € N wihlt man nun einen Punkt ¢, € Q,,; dann ist (¢, )., eine
Cauchyfolge, die gegen einen Punkt g € @ konvergiert. Nun sei € > 0 vorgegeben.
Weil f holomorph ist, existiert ein § > 0 und ein ¢ : D — C , so dass fiir
z € Us(q) C D gilt:

fE) =)+ (E-a)f @+ (- ap(z) und [p(z)] <e.

Nun wihlen wir m so gross, dass @, C Us(q) ist, dann gilt:

[ see= [ (t0+ @G -a)it [ e apea

Die Funktion z — f(q)+f’(¢)(z—q) hat eine Stammfunktion und daher verschwin-
det der erste Summand auf der rechten Seite. Fiir z € Q,, ist |z — ¢| < L(0Qm)
und |p(z)| < €, daher ergibt sich

f(2)dz AQ(Z—ww@Mz

0Qm

< L(an) cE L(an)~

Daraus folgt:
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fog (2)42] < 47| [y, F(2)dz] <47 -2 L(0Qm)? =
—4m e (2—7" : L(8Q))2 = L(0Q)>.

Dies gilt fiir jedes € > 0, somit folgt

f(z)dz=0.
0Q
Aus 14.4.1 und 14.4.2 folgt:

Satz 14.4.3 Ist D C C eine offene Kreisscheibe, so existiert zu jeder holomorphen
Funktion f : D — C eine Stammfunktion F' : D — C.

Wir benotigen eine Verallgemeinerung des Integrallemmas :

Satz 14.4.4 ( Verallgemeinertes Integrallemma ) Es sei D C C eine offene Kreis-
scheibe, p € D. Istdannn : D — C eine stetige Funktion, die in D\ {p} holomorph
ist, so gilt fiir jedes achsenparallele Rechteck QQ C D

/(’)Q n(z)dz =0

und daher besitzt 1) eine Stammfunktion.

Beweis. Es sei () ein achsenparalleles Rechteck in D mit p € ).Wenn p kein Eck-
punkt von @ ist, dann unterteilen wir () in Teilrechtecke, in denen p Eckpunkt ist.

p

Es geniigt, die Aussage fiir jedes Teilrechteck zu beweisen. Somit diirfen wir an-
nehmen, dass p Eckpunkt von () ist.Nun unterteilen wir ) in vier Teilrechtecke
Ry, .., R4 s0,dass p € R; giltund R; ein Quadrat mit Seitenlange € > 0 ist.

Ry Rs
3 Rl R2
p €

Fir j = 2,3,4ist | n(z)dz = 0, denn dort ist 7 holomorph. In Q ist die stetige
Funktion 7 beschréinkt: |n(z)| < M fiir z € Q. Dann folgt:
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]| o

Daher ist dieses Integral gleich 0. a

< 4eM.

14.5 Der Cauchysche Integralsatz

In 14.3.1 hatten wir [ f(z)dz fiir stickweise stetig differenzierbare Kurven ~ und

b
stetige Funktionen f definiert. Im Zusammenhang mit Homotopien kommen nun
stetige Kurven vor und wir benotigen Kurvenintegrale fiir Kurven +, die nicht not-
wendig differenzierbar, sondern lediglich stetig sind ; die Funktion f wird nun als
holomorph vorausgesetzt.

Satz 14.5.1 Es sei f : D — C eine holomorphe Funktion in D C C und
v : [a,b] — D eine (stetige) Kurve; p := v(a), q := ~(b).

Dann gibt es eine Zerlegung a = ty < t1 < ... < typ—1 < t;,, = b, offene Kreis-
scheiben K ; in D und holomorphe Funktionen F; : K; — C, (j =1,...,m) mit
folgenden Eigenschaften:

(D Aty 4) CcK; (G=1,...,m)
(2) (Fj)/:f inKj (]:1,7m)
(3) ijlej in KjflﬂKj (j:2,7m)

und es gilt:

o F(q) — Fi(p) ist unabhingig von der Wahl der t;, K;, F);
e falls y stiickweise stetig differenzierbar ist, gilt: [ f(z)dz = Fp,(q) — F1(p).

Wir geben einige Beweisideen dazu an, ein ausfiihrlicher Beweis findet sich in [1].
Man iiberdeckt y([a, b]) durch endlich viele offene Kreisscheiben und wihlt dazu
die Punkte ¢; so, dass (1) erfiillt ist. In jeder Kreisscheibe K; gibt es eine Stamm-
funktion F; zu f|K. In dem Gebiet Ky N K ist F» — F; konstant. Man addiert
nun zu F; eine geeignete Konstante, so dass F; = F5 in K1 N K> ist. Analog andert
man F3 so ab, dass F5 = F3 in K5 N K3 ist. Auf diese Weise erreicht man, dass (3)
erfiillt ist.
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Nun definiert man durch F(t) := Fj(v(t)) fiir tj ; < t < t; eine Funkti-
on F : [a,b] — C und zeigt: Wihlt man andere ¢;, K, F; und erhilt so ein
G : [a,b] — C, so ist F — G lokal-konstant. Dies folgt aus der Tatsache, dass in
einer Umgebung jedes Punktes ¢ € [a, b]gilt: Es ist F = F oy und G = G oy, dabei
sind F' und G Stammfunktionen von f in einer Umgebung von ~(¢). Nach 14.3.4
ist F' — G konstant und daher ist

Fn(1(b)) = Fi(v(a)) = F(b) — F(a)

unabhingig von der Wahl der ¢;, K;, F}.
Nun sei 7 stiickweise stetig differenzierbar. Wir setzen z; := (t;) und

vjo- [tjfl,tj] - D,t g ’y(t).
Dann ist [ f(¢)d¢ = Fj(zj) — F;(zj—1) und daher

[ 108 = S5~ Br(e-0) = Fay0) = B2 (@),

Dies ermoglicht folgende Definition:

Definition 14.5.2 Ist vy eine stetige Kurve, so definiert man

/ f(2)dz == Fr((8)) - Fi(v(a))-

Nun fiihren wir den Begriff der Homotopie ein.

Definition 14.5.3 Zwei (stetige) Kurven
v:[a,b] = D, x:la,b] =D mit v(a)=x(a)=:p, ~(b)=x(b)=:q
heifien in D homotop, wenn es eine stetige Abbildung
h:la,b] x[0,1] — D
gibt mit folgenden Eigenschaften:

h(a,s)=p , h(bs)=q fiir alle s € [0,1]
h(t,0) =~(t), h(t,1) = x(t) firallet € [a,b].

Die Abbildung h heif3t Homotopie von -y nach x.

Eine Homotopie i kann man sich so veranschaulichen:
Fiir jedes s € [0, 1] ist
vs : |a,b] = D, t — h(t,s)

eine Kurve von p nach g und es ist yg = yund y; = x.

Eine Homotopie ist also eine Kurvenschar (s)s, durch die v in x deformiert wird;
dabei verlaufen alle Kurven in D und haben gleichen Anfangspunkt p und gleichen
Endpunkt q.
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Nun beweisen wir einen der wichtigsten Satze der Funktionentheorie, den Cauchy-
schen Integralsatz.

Satz 14.5.4 (Cauchyscher Integralsatz ).Es sei D C C offen, f : D — C eine
holomorhpe Funktion und vy, x zwei in D homotope Kurven. Dann gilt:

/f(z)dz = /f(z)dz

Beweis. Ist /1 eine Homotopie von 7y nach , so setzt man fiir s € [0, 1] wieder :
s i |a,b] = D,t — h(t, s).

Nun sei sg € [0, 1]; zur Kurve 75, wihlt man ¢;, K;, F; wie in 14.5.1. Dann gibt es
ein e > 0, so dass fiir alle s € [0, 1] mit |s — sp| < € und alle j gilt:

7([% 1,t ])CK

[ 1)z = Futa) - Filo) = [ 52

Nun betrachten wir die Funktion

Dabher ist

g:10,1] = C,s— /f(z)dz

Wie soeben gezeigt wurde, ist sie lokal-konstant, also nach 9.1.27 konstant. Daraus
folgt g(0) = ¢g(1), und wegen vo = ~y,y1 = X ergibt sich

/f )z = 9(0 /f

Es ist zweckmassig, noch einen anderen Begriff der Homotopie einzufiihren:
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Definition 14.5.5 Es sei D C C und es seien vy : [a,b] — D und x : [a,b] — D
zwei geschlossene Kurven. Man nennt v, x homotop in D als geschlossene Kur-
ven, wenn es eine stetige Abbildung h : [a,b] x [0,1] — D gibt mit

h(a,s) = h(b,s) fiiralles € ]0,1]
h(t,0) = ~v(t),h(t,1) = x(t) fiirallet € [a,b].

Fiir jedes s € [0,1] istys : [a,b] — D,t — h(t,s), eine geschlossene Kurve und
Y0 = vy und 73 = x. Im Unterschied zur vorhergehenden Definition brauchen die
Anfangspunkte ¥4 (a) und die Endpunkte ~(b) nicht mehr fest zu sein.

Beispiel 14.5.6 Essei 0 < r < Rund
v:[0,27] — C*,t 1 - e, x:[0,27] = C*,t+— R-e'.
Dann sind ~, x in C* als geschlossene Kurven homotop; eine Homotopie ist

h:[0,27] x [0,1] — C*, (t,5) — (r +s(R—7)) - e

Der Cauchysche Integralsatz gilt auch fiir diesen Homotopiebegriff:

Satz 14.5.7 (Cauchyscher Integralsatz fiir geschlossene Kurven )Ist f : D — C
eine holomorphe Funktion und sind v und x homotop in D als geschlossene Kurven,

so gilt:
/f(z)dz = /f(z)dz

Beweis. Ist i eine Homotopie wie in 14.5.5, so definieren wir fiir s € [0, 1]
as : [0,1] = D, ¢t — h(a, st),

eine Kurve von as(0) = ~o(a) nach a4(1) = 7,(a). Daher kann man definieren
(man vergleiche dazu 9.5.5 und 9.5.6):

55 = (as + '75) + (_as)'

Dann ist §, eine geschlossene Kurve mit Anfangs- und Endpunkt v(a) und man
priift nach, dass 3y, 41 homotop im Sinne von 14.5.2 sind. Aus dem Cauchyschen
Integralsatz 14.5.4 folgt [, f(2)dz = [ 5, f(2)dz . Weil sich die Integrale iiber o,

und —a,; wegheben, ergibt sich fyo f(z)dz = f% f(z)dz. |

Definition 14.5.8 Eine geschlossene Kurve v in D heifst homotop zu einem Punkt
p € D, wenn ~y und n als geschlossene Kurven in D homotop sind, wobei 1 die
konstante Kurve 1 : [a,b] — D, t — p ist.
Kurven, die zu einem Punkt homotop sind, bezeichnet man als nullhomotop.

Ein Gebiet G C C heif3t einfach-zusammenhéngend, wenn jede geschlossene
Kurve in G nullhomotop ist.
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Es gilt:
Satz 14.5.9 Ist f : D — C holomorph und y eine in D nullhomotope geschlossene

Kurve, so gilt:
/f(z)dz = 0.
5

Beweis. Die Kurve 7y ist homotop zu einer konstanten Kurve 7; aus 14.5.7 folgt dann

. . b .

fv f(z)dz = fn f(2)dz und wegen 7 = 0 ist fn f(z)dz =[] f(n(t))n(t)dt = 0.D
In einem einfach-zusammenhangenden Gebiet hiangt das Kurvenintegral nur von
Anfangs- und Endpunkt der Kurve ab:

Satz 14.5.10 Es sei G ein einfach-zusammenhdingendes Gebiet und f : G — C
eine holomorphe Funktion. Sind dann vy : [a,b] — G und x : [a,b] — G Kurven

mit y(a) = x(a) , v(b) = x(b), so gilt:

/f(z)dz:/f(z)dz

und fiir jede geschlossene Kurve w in G ist

/f(z)dz = 0.

Beweis. Aus dem vorhergehenden Satz folgt fw f(2)dz = 0 fiir jede geschlossene
Kurve w. Setzt man w = 7 + (—x), so ist diese Kurve geschlossen und es ergibt
sich: fv f(z)dz — fx f(z)dz = [ f(z)dz =0. 0

Nun konnen wir 14.4.3 verallgemeinern:

Satz 14.5.11 In einem einfach-zusammenhdngenden Gebiet G existiert zu jeder ho-
lomorphen Funktion f : G — C eine Stammfunktion F : G — C.

Beweis. Wir wihlen ein p € G ; zu z € G gibt es eine Kurve v, in G von p nach
z und wir setzen F'(z) := f,yz f(2)dz. Diese Definition ist sinnvoll, dann dieses
Integral hangt nicht von der Wahl der Kurve ab. Nun sei zg € G. Wir wahlen r > 0
so, dass U,-(z9) C G ist. Fir z € U,.(29) setzen wir z — zg =: h + ik mit h, k € R.
Dann ist

zoth zo+h+ik
FE) =Feo)+ [ s [ fed:
2o zo+h
und in 14.4.1 wurde gezeigt, dass die Ableitung davon gleich f(z) ist. a

Wir zeigen noch:

Satz 14.5.12 Jedes sternformige Gebiet ist einfach-zusammenhdngend.
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Beweis. GG ist nach 9.6.6 sternformig beziiglich p € G, wenn fiir jedes z € G die
Verbindungsstrecke von p nach z in G liegt. Nun sei v : [a,b] — G eine geschlos-
sene Kurve in G; dann liegt die Strecke von p nach () in G und wir definieren

h:la,b] x [0,1] — G, (t,5) = p+ (1 = s)(y(t) — ).

Wegen y(a) = v(b) ist h(a, s) = h(b, s) fir s € [0, 1].Weiter ist h(t,0) = ~(¢) und
h(t,1) = p. Daraus folgt, dass v homotop zum Punkt p ist. O
Nun konnen wir ein wichtiges Integral berechnen:

Satz 14.5.13 Es gilt:

dz 2w fiir la—z| <r
z—a |0 fiir la — 2| >r

|z—zo|=r
Beweis. Die Substitution ¢ := z — aergibt [ 4% = i ¢ Daher
|z—z0|=r [¢=(z0—a)|=r
. d .. ..
geniigt es, das Integral| Ik ‘ 7 fiir |z0| < r undfiir |29| > r zu berechnen.
z—zo|l=r

Es sei |29| > 7, also |zo| = r 4 2¢ mit & > 0. Dann ist die Funktion z — ! in der
offenen Kreisscheibe U, 1. (z) holomorph und daher [ dz — ),

4
|z—zo|=r

Nun sei |z9| < 7; in diesem Fall verschieben wir die Kreislinie um zo in C* bei
unverandertem Radius r in die Kreislinie um 0. Wir zeigen also, dass die Kurven

y:00,27] = C*, t— zg4+1-€f, x:[0,27] = C*, t+sr-e'
als geschlossene Kurven in C* homotop sind. Fiir t € [0, 27], s € [0, 1] setzen wir :

h(t,s) :=s- 29 +1-e".
Es ist h(t,s) # 0, denn sonst wire sz = —rel’ und daher [s| - |20] = |r|;
dies ist wegen |s| < 1,|z9| < r unmdglich. Somit ist & : [0,27] x [0,1] — C*
eine Homotopie von x nach v in C*. Aus dem Cauchyschen Integralsatz folgt
42 = [ 9= und nach 14.3.3 ist dies gleich 27i. ]

|z—z0|=r |z|=r

14.6 Die Cauchysche Integralformel
Eine der wichtigsten Formeln der Funktionentheorie ist die Cauchysche Integralfor-
mel, die wir nun herleiten:

Satz 14.6.1 (Cauchysche Integralformel ) Es sei D C C offen, f : D — C eine
holomorphe Funktion und {z € C| |z — zo| < r} C D. Dann gilt fiir |z — zo| < r:
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f(z)= 1. / g(_g)zdg.

[(—z0|=r

Beweis. Es sei z € U, (2¢); wir definieren

TOZID falls ¢ # 2

q:D_}C’CH{ Fi(z)  falls =z

Dann ist ¢ in D \ {z} holomorph und in z stetig. Aus 14.4.4 folgt, dass ¢ eine
Stammfunktion besitzt und daher ist

/ ¢(¢)d¢ = 0.

[(—z0|=r

Mit 14.5.13 folgt daraus:

0= / q(¢)d¢ = / Cf(_ozdé“—f(Z)' / gd—cz’

[(—z0|=" [{—zo|=T [{—zo|=T
- ~ -~
27i

Daraus ergibt sich, wenn wir diese Bezeichnungen beibehalten:

Satz 14.6.2 (Mittelwerteigenschaft holomorpher Funktionen)

27

! /f(zo + relt)dt.

21
0

f(z0) =

Der Funktionswert im Mittelpunkt ist also der Mittelwert der Funktionswerte auf
dem Kreisrand.

Beweis.
27
1 QO .1 [ flotret)
1(z0) 27i / ¢ — 2o ¢ = 2’7Ti/ reit rie”dt.
[(—z0|=T 0

Aus der Cauchyschen Integralformel kann man nun herleiten:

e Jede holomorphe Funktion f kann man in eine Potenzreihe entwickeln ;
e jede Funktion, die einmal komplex differenzierbar ist, ist beliebig oft differen-
zierbar.
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Satz 14.6.3 (Potenzreihenentwicklung holomorpher Funktionen ) Es sei D C C
offen und {z € C| |z — 29| < r} C D. Istdann f : D — C eine holomorphe
Funktion und setzt man fiir n € Ny

1 f(<)
=, / (C—ZO)anC’

[(—z0|=r

so gilt fiir |z — zo| < r:

z) = Z an(z — 20)"

n=0

Daher ist f beliebig oft komplex differenzierbar, fiir n € Ny ist

|
IO Go) = ntean = / (¢ e

271 — 20)
[¢—20|=r

Beweis.Wir konnen zy = 0 annehmen und wahlen R € R so, dass gilt: R > r
und {z € C| |z| < R} C D . Nun sei z mit |z| < r gegeben; wir wihlen ¢ mit
|z| < 0 < r < R.Nach der Cauchyschen Integralformel gilt

_ 1 f©)
)= o / C_ng
I¢|=r

und wir entwickeln Ciz in eine geometrische Reihe:

11
¢-z ¢ 1—(Z/C C Z

Fiir o < [¢| < Rist \Z| < ‘z‘ < 1. Nach dem Majorantenkriterium fiir gleichmaBi-
ge Konvergenz 6.1.8 konvergiert diese geometrische Reihe bei festem 2 als Funktion
von ¢ gleichméBig in {¢ € C| |¢ < |¢| < R} und nach 14.3.7 darf man gliedweise
integrieren. Man erhalt:

_27” f deC—Qm j‘ f(C ijo( )ndC_

ICl=r

_ . FO 4e) sn = 3 n
= Z (gm f Gsad() 2" = Zoanz
n=

n=0

Weil man Potenzreihen gliedweise differenzieren darf, folgt daraus: Jede holomor-
phe Funktion ist beliebig oft komplex differenzierbar. O
Daraus leiten wir nun die Cauchyschen Integralformeln fiir die Ableitungen her:
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Satz 14.6.4 (Cauchysche Integralformeln fiir die Ableitungen ) Es sei D C C
offen und {z € C| |z — z9| < r} C D.Istdann f : D — C eine holomorphe
Funktion, so gilt fiir |z — zo| < r und n € Ny:

oy = / (Ci‘(zc))mdg

[(—zo|=r

Beweis. Wir nehmen zo = 0 an. Es sei also |z| < r; wir wihlen & > 0 so, dass
|z| + € < r ist. Zunéchst integrieren wir Uiber die Kreislinie | — z| = ¢; dann ist

n! f(©)
2mi (¢ — 2z)ntl
[¢—2l=e

F™(z) = dc.

Nun zeigen wir, dass diese Kreislinie in D \ {z} homotop zu |¢| = r ist: Es seien
y:00,27] = D\ {z},t > 2z +¢-e", x:[0,27] = D\ {z},t — r-e'.
Fiirt € [0,27], s € [0, 1] setzt man
h(t,s) = (1= s)y(t) +sx(t) = (1 = 8)z + (1 = s)e + sr)e'’.
Man rechnet leicht nach, dass |h(t, s)| < r und h(t, s) # z ist. Somit ist
h: 0,27 x [0,1] — D\ {z}

eine Homotopie in D \ {z} von « nachy. Die Funktion ¢ — é(fz) istin D \ {z}
holomorph und daher gilt:

n! f(Q) n! £(0) .
2m / (¢ = ) 9 o / (¢ - nn 96 =TT,
[¢l=r |¢—z|=¢

O
Unter den Voraussetzungen dieses Satzes gilt:

Satz 14.6.5 (Cauchysche Abschiitzung fiir die Koeffizienten ) Es existiere ein
M >0mit |f(2)| <M fiir |z— zo|=r dann gilt fiir alle n € No:

M

lan| < .

,r-n

Beweis.
1 §i@) 1 M M
= acl < (2 : -
jan] 2mi / (¢ — zp)t! ¢ = 7T7’)27r rntl o pn
[(—z0|=T
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14.7 Fundamentalsitze der Funktionentheorie

Wir bringen als Folgerungen aus dem Cauchyschen Integralsatz den Satz von
Liouville, den Fundamentalsatz der Algebra, den Satz von Morera und den Iden-
titatsssatz.

Wir beginnen mit dem Satz von Liouville (JOSEPH LIOUVILLE (1809- 1882)):

Satz 14.7.1 (Satz von Liouville) Jede beschrdankte holomorphe Funktion
f:C—-C
ist konstant.

Eine Funktion, die in der ganzen komplexen Ebene holomorph ist, bezeichnet man
auch als ganze Funktion; dann lautet der Satz von Liouville:

Jede beschrankte ganze Funktion ist konstant.
Beweis. Es sei |f(z)] < M fir z € C. Man entwickelt f in eine Potenzreihe
f(z) = > anz™ . Diese konvergiert fiir alle z € C und nach 14.6.5 gilt fiir jedes
n=0

r > 0undn € Ng:

M

lan| < .

rrn
Daraus folgt a,, = 0 firn = 1,2, 3... ; also ist f(z) = ag. m]
Der Fundamentalsatz der Algebra

Wir kommen nun zum Fundamentalsatz der Algebra; dieser besagt:

Jedes Polynom mit komplexen Koeffizienten besitzt in C eine Nullstelle; es
zerfallt iber C in Linearfaktoren.

Die Geschichte des Fundamentalsatzes der Algebra wird in [3] ausfiihrlich darge-
stelle; allein GauB3 publizierte vier Beweise; den ersten 1799 in seiner Doktorarbeit,
den vierten Beweis zu seinem Goldenen Doktorjubilaum 1849.

Zur Vorbereitung zeigen wir:

Hilfssatz 14.7.2 Es sei p(z) := 2" + an,_12"" + ... + a1z + ag ein Polynom,
n>1; ap—1,...,a9 € C. Dann gilt

lim p(z) = oo.

ZzZ—00
Insbesondere ist p nicht-konstant.

Beweis. Fiir z # 0 ist

Ap—1 ag
z)=2z"-(1+ + .+ .
px) =" 1+ ™ o
Es existiert ein r > 1,s0 dass fiir |z] > r gilt:

“”Z’l +..+ 8 < ! also |1+ a"z’l +..+ 8> % und daher |p(2)| > % -zl
Daraus folgt die Behauptung. O
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Satz 14.7.3 (Fundamentalsatz der Algebra ) Jedes Polynom
p(z) = anz™ + 12" 1+ ... +taiz+ag

mit Qp,...,a0 € C, a, #0, n > 1, besitzt in C eine Nullstelle.
Es gibt cq, .., ¢, € C mit

p(z)=an(z—c1) ... (2 —cp).

Jedes Polynom zerfillt also iiber C in Linearfaktoren.

Beweis. Wenn p keine Nullstelle besitzt, dann ist die Funktion f := 117 in C holo-
morph. Es gibt ein » > 0 mit |p(z)| > 1 fiir [z| > 7, also |f(z)| < lin|z| > 7. In
der abgeschlossenen Kreisscheibe |z| < 7 ist f beschrinkt, somitist f : C — C be-
schrankt und nach dem Satz von Liouville konstant. Dann ist aber auch p konstant.
Die zweite Behauptung folgt aus 1.6.10. a

Wir haben gezeigt, dass fiir jede holomorphe Funktion F' auch F’ holomorph ist;
daher gilt:

Satz 14.7.4 Jede Funktion f : D — C, die eine Stammfunktion besitzt, ist holo-
morph.

Daraus folgt mit 14.4.1der Satz von Morera (GIACINTO MORERA (1856-1909)):

Satz 14.7.5 (Satz von Morera ) Wenn f : D — C stetig ist und wenn fiir jedes
achsenparallele Rechteck QQ C D gilt :

[ faz=o.
oQ

dann ist f holomorph.
Mit 14.4.4 folgt daraus:

Satz 14.7.6 Wenn die Funktionn : G — C in G \ {p} holomorph und in p stetig
ist, so ist sie in ganz G holomorph.

Wir werden diesen Satz in 14.8.5 verallgemeinern; es genligt, die Beschranktheit
von 7 in p vorauszusetzen.

Nun beweisen wir den Identitatssatz, der besagt: wenn zwei in einem Gebiet holo-
morphe Funktionen auf einer Punktfolge, die gegen einen Punkt des Gebietes kon-
vergiert, libereinstimmen,dann sind sie gleich. Zur Vorbereitung zeigen wir:

Satz 14.7.7 (Identitéitssatz fiir Potenzreihen ) Es sei f(2) = > a,z"in|z| <r
n=0

konvergent. Es existiere eine Folge (zy), mit 0 < |z| < r, klim 2 = 0 und
— 00

f(zk) =0 fiiralle k € No.
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Dann folgt
an =0 fiirallen € Ny und daher f = 0.

Beweis. Wir nehmen an, es existiere ein m € Ny mit a,, # 0. Dann wahlen wir m
minimal, also a,, = 0 fiirn < m und a,, # 0. Somit ist

m

f(z) = Cl7r:,2'm+6l7r:,+12m+1+~-~ = 2"-g(z) mit g(z):=antamprz+....

Aus 0 = f(zr) = 27'g(z) folgt g(z;) = 0 fir & € No. Weil (z;), gegen 0
konvergiert, ist g(0) = 0; dies steht im Widerspruch zu g(0) = a,, # 0. O

Satz 14.7.8 (Identitétssatz ) Die Funktion f : G — C sei im Gebiet G holomorph;
es existiere ein p € G und eine Folge (zx)x in G mit klim 2k = D ,zk £ pund

f(zr) = 0 fiir k € No. Dann ist f(z) = 0 fiir alle z € G.

Beweis. Wir setzen
M:={zeG| f™(z)=0 firalle n e Np}.

Man kann f um p in eine Potenzreihe entwickeln; nach dem Identitatssatz fiir Po-
tenzreihen ist f in einer Umgebung von p identisch 0; daraus folgt p € M und somit
ist M # 0.

Die Menge M ist abgeschlossen, weil die f(™) stetig sind.

Wir zeigen, dass M auch offen ist: Ist ¢ € M, so entwickeln wir f in eine Potenz-
reihe um ¢; deren Koeffizienten sind 71! fi (¢) = 0. Daher verschwindet f in einer
offenen Umgebung U von qund es gilt U C M.

Weil G zusammenhingend ist, folgt M = G. a

Daraus ergibt sich:

Satz 14.7.9 (Identitétssatz) Die Funktionen f und g seien im Gebiet G holomorph.
Es existiere ein p € G und eine Folge (zi )i in G mit klim Zk = P, 2k # pund
—00

f(zk) = g(zx) fiir k € No. Dann folgt f = g.
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14.8 Der Satz von der offenen Abbildung und das
Maximumprinzip

In der reellen Analysis ist es ein wichtiges Problem, die Maxima einer Funktion zu
bestimmen. Im Komplexen tritt diese Fragestellung nicht auf, denn es gilt: Wenn ei-
ne in einem Gebiet holomorphe Funktion ihr Maximum annimmt, so ist sie konstant.
Dieses Maximumprinzip leiten wir aus dem Satz von der offenen Abbildung her:
Wir zeigen, dass bei einer in einem Gebiet G holomorphen und nicht-konstanten
Funktion das Bild jeder offenen Menge wieder offen ist.

Definition 14.8.1 Eine Abbildung f : G — C heifit offen, wenn fiir jede offene
Menge V' C G das Bild (V') offen ist.

Zuerst zeigen wir (vgl. [26]):

Satz 14.8.2 Es sei f : D — C eine holomorphe Funktion in der offenen Menge
DcCC;sei K:={z€C||z—2]|<r}CD,also 0K ={z€C||z—z|=r}
Wir setzen:

M := max{|f(z)| | z € 0K},
m = min{|f()| | > € 9K},
d = min{|f(z) — [(z0)] | 2 € OK}.

Dann gilt:

(1) If() <M

(2) Wenn | f(zo)| < m ist, dann hat f in K eine Nullstelle.

(3) Zu jedem w € C mit |w — f(z0)| < & existiert einv € K mit f(v) = w.

Beweis. (1) Diese Aussage folgt aus den Cauchyschen Koeffizientenabschiatzungen
fiir ag = f(Zo)
(2) Wenn f in K keine Nullstelle hat, dann ist ]10 in einer Umgebung von K holo-

morph und Aussage (1), angewandt auf } liefert |f(io)| < o also |f(z0)| > m.

m’

(3) Wenn |w — f(z0)] < g ist, dann gilt fiir alle z € K :

) —wl 2 1£(2) — F(z0)] — | F(0) — ] >

9 > |f(z0) — w].
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Daraus folgt |f(z0)—w| < min{|f(z)—w| |z € IK}.Setzt man g(z) := f(z)—w,
so ist
l9(20)| <minflg(2)| | z € 0K}

und aus (2) ergibt sich, dass g eine Nullstelle v €K hat; somit ist f(v) = w. O
Nun folgt:

Satz 14.8.3 (Satz von der offenen Abbildung ) Ist G ein Gebiet und f : G — C
eine nicht-konstante holomorphe Funktion, so ist [ eine offene Abbildung.

Beweis. Es sei V' C G eine offene Menge und wy € f(V'). Dann existiert ein
20 € V mit f(z9) = wp. Aus dem Identititssatz folgt, dass man eine abgeschlossene
Kreisscheibe K um zg in V' so wahlen kann, dass f den Wert wy auf K nicht
annimmt. Dann ist im vorhergehenden Satz d > 0 und

d
{weClw—wo| <} CfK)Cf(V)
Daraus folgt, dass f (V') offen ist. O

Damit erhalt man:

Satz 14.8.4 (Satz von der Gebietstreue ) Ist G ein Gebiet und f : G — C eine
nicht-konstante holomorphe Funktion, so ist auch f(G) ein Gebiet.

Beweis. Bei einer stetigen Abbildung ist das Bild f(G) einer zusamenhéngenden
Menge G wieder zusammenhéngend; ausserdem ist f(G) offen, also ein Gebiet.
O

Aus dem Satz von der offenen Abbildung ergibt sich nun das Maximumprinzip:

Satz 14.8.5 (Maximumprinzip ) Es sei G C C ein Gebiet und f : G — C eine
holomorphe Funktion. Wenn es einen Punkt zg € G gibt mit

|f(2)| < |f(z0)| fiiralle z € G,

dann ist f konstant.
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Beweis. Aus der Voraussetzung folgt, dass es keine Kreisscheibe um f(z)gibt, die
in f(G) enthalten ist. Daher ist f(G) nicht offen und somit ist f konstant. O
Man kann diesen Satz auch so formulieren:

Satz 14.8.6 (Maximumprinzip ) Es sei G ein Gebiet und f : G — C eine holo-
morphe Funktion. Wenn es eine Kreisscheibe U,.(zg) C G gibt,r > 0, mit

[ <1f(z0)|  fiiralle z € Uy (20),

dann ist f konstant.

Beweis. Nach dem vorhergehenden Satz ist f in U,.(2() konstant und aus dem Iden-
titatssatz folgt, dass dann f in G konstant ist. O

Aus dem Satz von der offenen Abbildung kann man leicht weitere Aussagen herlei-
ten:

Wenn |f| konstant ist oder wenn f nur reelle Werte annimmt oder wenn etwa
3u + Tv = 5 ist, so ist f konstant; dies folgt daraus, dass eine Kreislinie oder
eine Gerade keine nicht-leere offene Menge enthalt.

Unmittelbar aus der folgenden Abbildung ergibt sich auch ein Maximumprinzip
(und auch ein Minimumprinzip ) fiir w, v:

Satz 14.8.7 Sei f : G — Cim Gebiet holomorph, f = u+1iv; es existiere ein Punkt
(zo,v0) € Gmitu(z,y) < u(zo,yo) fiiralle (x,y) € G. Dann ist u konstant.

(Eine analoge Aussage gilt, wenn u(z,y) > u(zo, yo) ist.)

4 [

If(Zo)

u(woayo)

—

|
|
|
|
|
|
|
|
* >
|
|
|
|
|
|

Aus dem Satz von der offenen Abbildung leiten wir noch einen Identitatssatz fiir
den Realteil u von f her:

Satz 14.8.8 Es sei f : G — C im Gebiet G holomorph; f = u + iv. Wenn u in
einer nicht-leeren offenen Menge U C G verschwindet, dann ist u = 0.

Beweis. f(U) liegt in der imaginédren Achse und ist daher nicht offen. Somit ist f
und daher auch v konstant. O
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14.9 Laurentreihen

In 14.6.3 haben wir gezeigt, dass man jede in einer offenen Kreisscheibe
{z€C||z— 2] <7}
holomorphe Funktion eine Potenzreihe
ap+ a1(z — 20) + az(z — 20)2 + ..

entwickeln kann.
Nun beweisen wir, dass man jede in einem Kreisring
{zeC|r<|z— 2| <R}
holomorphe Funktion in eine Laurentreihe entwickeln kann (HERMANN LAU-
RENT (1841-1908)); diese ist von der Form

a_o a_—1
(z—20)2  z—2

+ao+ai(z—20) fag(z—20)>+.......

Analog zu 14.6.1 leiten wir zuerst eine Integralformel her und erhalten dann wie in
14.6.3 die Laurententwicklung.

Satz 14.9.1 (Cauchysche Integralformel fiir Kreisringe ) Es sei D C C offen,
0<r<Rund{z € C|r <|z—2]| <R} CD.Istdann f : D — C eine
holomorphe Funktion, so gilt fiir r < |z — zo| < R:

1 [ . 1 f(©)
2mi / ¢ — de 2mi / ¢ — de'
[(—z0|=R [{—zo|=T

Beweis.Wir nehmen zy = 0 an und definieren wie in 14.6.1 fiir z € D die Funktion
q: D — Cdurch

_ f(C):ﬁ(Z) falls ¢ # 2, q(2) = f'(2).

Nach 14.4.4 ist g holomorph und aus dem Cauchyschen Integralsatz folgt

[ a0ic= [ a0
I¢l=r I¢l=R
also gilt wegen 14.5.10
f(Q) _ f(Q)
[ f Eem e ] S
I¢l=r ICI—T I¢I=R \C\ R
O 271'1

Daraus folgt die Behauptung. O
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Satz 14.9.2 (Laurententwicklung in Kreisringen ) Sei D C C offen, 0 < r < R,
und {z € C|r < |z — 2| < R} C D.lIstdann f : D — C eine holomorphe
Funktion und setzt man fiirr < o < Rundn € Z

1 f(<)
=, / (¢ =zt dg,

[¢—zol=¢
so gilt fiirr < |z — zp| < R:
—+oo
F2)= D an(z—20)"
n=—oo

Die Koeffizienten a,, sind eindeutig bestimmt.

Beweis. Der Beweis verlauft wie in 14.6.3; insbesondere die Vertauschung von Inte-
gration und Reihenentwicklung begriindet man analog. Wir nehmen wieder zp = 0
an. Es sei z € Cmitr < |z| < R, dann ist

fz) = o ! C)dc o ! C)dc

(=R ICIZT

Beim Integral iiber || = R ist |z2] < R = ||, also }Z} < 1 und man entwickelt

1

wieder nach Potenzen von 7; setzen wir a, 1= ,__

¢ Ik Cnﬂ ) d¢, so erhalten wir:

[C|=R
fQOqc = 1 Ll g = S gam
27r1 f ¢ = 2mi f f(() ¢ 12 ¢ Zanz
[C|=R n=0

Beim Integral iiber |{| = 7 ist |(| = 7 < |z|, also IEI < 1 und man entwickelt nun

1

nach Potenzen von i; wir setzen jetzt a, 1= o ;

i €n+1 ) d¢ und es ergibt sich:

- 271'1 f f(c dC 271'1 f f C dC =
I< \—7" [¢|=r z
—1

00 —1
= Z (gﬂi f f(C)'Cde)Zerl: Z (zm gn+1d<) = Z anz™.

m=0 [¢|=r n=—00 [¢|=r n=-—00
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Berticksichtigt man bei a, noch, dass fir r < o < R der Wert des Integrals
i Cfl(ﬁ)l d( unabhangig von p ist, so folgt die Behauptung. O

I¢l=e

Mit Hilfe der Laurententwicklung kann man nun die isolierten Singularitaten klas-

sifizieren.

Definition 14.9.3 Es sei D C C offen, zo € D, und f : D\ {20} — C eine
holomorphe Funktion mit der Laurententwicklung

—+o00

f(z) = Z an(z — 20)".

n—=—oo

Man definiert:

(1) f hat in zy eine hebbare Singularitét, wenn fiir alle n < 0 gilt: a,, = 0;

(2) f hat in zy einen Pol der Ordnung k € N,wenn gilt: a_; #0 und a, =0
fiiralle n < —k;

(3) f hat in zy eine wesentliche Singularitit, wenn es unendlich viele Indizes gibt
mit n<0 und a, #0.

Wir erlautern die Definition an einfachen Beispielen:

(1) Die Funktion
sinz:1_22+z4_
z 31 5 T

hat in O eine hebbare Singultaritat.
(2) Die Funktion

e*—1 1 1 1

23 :z2+2!z+3!+4!+

hat einen Pol zweiter Ordnung in 0.
(3) Die Funktion

1 1 1 1

exp(z2) T + 3126 + 224 + 1122 +1

hat eine wesentliche Singularitat.

In 14.1.5 hatten wir den Begriff der holomorphen Fortsetzbarkeit eingefiihrt. Wenn
f in zg eine hebbare Singularitit besitzt, so hat f in einer punktierten Kreisscheibe
0 < |z — #o| < r die Laurententwicklung

F2) =3 an(z — 200"
n=0

setzt man f(zo) := ag, so ist f auch in zp holomorph.

In 14.7.7 haben wir gezeigt, dass eine Funktion, die in einem Punkt z( stetig und
in allen anderen Punkten holomorph ist, auch in zy holomorph ist. Nun konnen wir
beweisen, dass es geniigt, die Beschranktheit von f bei zy vorauszusetzen: Dies ist
die Aussage des Riemannschen Hebbarkeitssatzes :
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Satz 14.9.4 (Riemannscher Hebbarkeitssatz) Es sei D C C offen, zo € D, die
Funktion f: D\ {z0} — C sei holomorph und bei zo beschrinkt; d.h. es existiere
eine Umgebung U, (z9) C D und ein M > 0, so dass fiir 0 < |z — zo| < r gilt:
|f(2)| < M. Dann ist f nach zo holomorph fortsetzbar.

Beweis.Wir nehmen wieder zp = 0 an; in 0 < |z| < r gilt die Laurententwicklung

“+o00
f(z) = > apz™ Firjedes pmit 0 < ¢ < ristdann |a,| < gf st < —1,
n=-—oo

so folgt mit ¢ — 0, dass a,, = 0 ist. Daher hat f in 0 eine hebbare Singularitat. O

Nun geben wir eine Charakterisierung der isolierten Singularitaten durch das Ver-
halten von f in der Nihe von zg an; es sei also immer f : D \ {2} — C eine
holomorphe Funktion.

Aus dem Riemannschen Hebbarkeitssatz folgt:

Satz 14.9.5 (Charakterisierung der hebbaren Singularitiiten ) Aquivalent sind:
(1) f hatin zy eine hebbare Singularitdit,

(2) Esgibteinr > 0,50 dass f in U.(z0) \ {20} beschrinkt ist,

(3) f ist nach zy holomorph fortsetzbar.

Es gilt:
Satz 14.9.6 (Charakterisierung der Pole ) Aquivalent sind:

(1)  f hatin zg einen Pol,
(2) esgibteink > 0, so dass gilt:

2+ (2 —20)Ff(2) hatin zy eine hebbare Singularitit,

2 (2 —20)* "V f(2) hatin zy keine hebbare Singularitiit,
(3)  lim f(z) = oco.

z—20
+oo
Beweis. Sei zo = 0 und f besitze die Laurententwicklung f(z) = > a,z".
Aus (1) folgt( 2): Wenn f einen Pol der Ordnung & > 0 hat, dann isf_a, r 7 0und
a_ a_
flz)= Zkk—i—..., Ff)=a_p+..., 2F7f(2) = Zk—i-...;

daraus ergibt sich Aussage (2).

Aus (2) folgt (3): Wenn die Funktion g(z) := 2z¥f(2) in 0 holomorph ist und
2*=1f(z) nicht, dann ist a, = 0 fiir n < —k und a_; # 0. Daraus folgt
g(0) = a_ # 0; es gibt dann eine Umgebung U, (0),in der |[g(z)] > ¢ > 0
ist. Somit gilt | f(z)| > |zpik fiir 0 < |z| < r und daraus folgt (3).

Den Rest des Beweises bringen wir nach dem nachsten Satz. a

Satz 14.9.7 (Satz von Casorati-Weierstrass; Charakterisierung der wesentli-
chen Singularitiiten ) Die Funktion f hat in zy genau dann eine wesentliche Sin-
gularitdt, wenn es zu jedem c € C, jedem € > 0 und jedem 6 > 0 ein z € D gibt
mit
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0<|z—2z <6 und lf(z) —¢| <e.
Man kann den Satz so formulieren:

Die Funktion kommt in jeder beliebig kleinen Umgebung einer wesentli-
chen Singularitit jedem beliebigen Wert beliebig nahe.

Aquivalent dazu ist die Aussage:

Ist zp eine wesentliche Singularitit von f, so ist fiir jedes 6 > 0 mit
Us(z0) C D die abgeschlossene Hiille von f(Us(z0) \ {20}) gleich C;
das Bild jeder punktierten Umgebung von z ist dicht in C.

Beweis. (a) Wennes einc € C, ein € > Qundein § > 0 gibt mit | f(z) —¢| > ¢ fiir
alle 0 < |z — zg| < 0, dann ist g(z) := f(zl)_c in 0 < |z — zp| < ¢ holomorph und
besitzt wegen |g(z)| < ! in 2o eine hebbare Singularitit. Dann hat aber f(z) =

g(lz) + ¢ in zp eine hebbare Singularitét (falls g(z¢) # 0 ist) oder einen Pol (falls

g(z0) = 0).

(b) Wir nehmen nun an, zu jedem ¢ € C,e > 0,6 > 0 existiere ein derartiges

z.Wenn f in z; eine hebbare Singulatitét besitzt, dann ist f in einer Umgebung von

zo beschrinkt; falls zo Polstelle ist, gilt lim f(z) = co. Beides widerspricht der
z—2z0

Voraussetzung und daher handelt es sich um eine wesentliche Singularitat. O
Wir vervollstindigen nun den Beweis von 14.9.6: Aus lim f(z) = oo folgt: f hat
zZ— 20

in 2o keine hebbare Singularitat hat und nach dem Satz von Casorati-Weierstrass
auch keine wesentliche Singularitit; also besitzt f dort einen Pol. O

Beispiel 14.9.8 (Die Bernoullischen Zahlen ) Wir untersuchen die Funktion

f:{zeClz#2nmisneZ} - C,z— : X
eZ_
Der Nenner
z Z2
e —1=Z—|—2! +...

hat in z = 0 und wegen der Periodizitat der Exponentialfunktion in den Punkten
2nmi,n € Z, eine Nullstelle 1.0rdnung. Somit hat f in z = 2nzi,n € Z,n # 0,
jeweils einen Pol 1. Ordnung; im Nullpunkt ist eine hebbare Singularitat. Setzt man
f(0) =1, soist f in einer Umgebung des Nullpunkts holomorph. Daher kann man
fin|z] < 27 in eine Taylorreihe entwickeln, fiir die wir mit noch zu bestimmenden
Koeffizienten B,, den Ansatz

[e%e] Bn .
fley=2_ "=
n=0
machen. Die B,, heiflen die Bernoullischen Zahlen (JAKOB BERNOULLI (1654 -
1705). Wir berechnen sie aus
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o0 o0
-z . — 1
2 ) |
(71_0 n! P (k+1)!

B 2
(Bo—l—Blz—l— 2?224-...)-(14- N +> - 1.

Daraus ergibt sich

also

By =1
1! By+ B1 =0

§!BO + b1+ 21!32 =0
und die allgemeine Gleichung fiir n > 2 ist:

1 By 1 By 1 By + 1 Bhpa

n ol T e 0 Ty T T ey T

Multipliziert man diese Gleichung mit n!, so erhilt man die Rekursionsformel:

(5) 0+ (1)ene (5)m s (") Bur =0

Esist By = 1 und fiirn = 2, 3,4 ist:

2B1+1=0
3By +3B1+1=0
4Bs + 6By +4B; +1=0.
Auf diese Weise berechnet man die Bernoullischen Zahlen. In 14.11.9 ergibt sich,
dass fiir ungerade n € Nmitn > 3 gilt: B,, =0 .Esistalso By =1, B; = —%
und aus der Rekursionformel erhalt man:

1 1 1 1 ) 691
By = By =— Bg = Bg = — Big = Bio = — .
2 67 4 ) 6 427 8 307 10 66’ 12 2730

Wir behandeln die Bernoullischen Zahlen nochmals in 14.11.9.

14.10 Logarithmus und Umlaufzahl

Den Logarithmus definiert man im Reellen entweder als Umkehrfunktion der Ex-
ponentialfunktion oder als Stammfunktion von Ry — R,z — 1 . Im Komplexen
ist die Exponentialfunktion C — C, z +— e?, nicht injektiv, besitzt also kein Um-
kehrfunktion; daher kann man den Logarithmus im Komplexen nicht ohne weite-
res als Umkehrfunktion der Exponentialfunktion definieren. Auch die Definition als
Stammfunktion von i bereitet Schwierigkeiten, denn die Funktion C* — C, z — i
hat nach 14.3.3 keine Stammfunktion.

Auf einem sternférmigen Gebiet G mit 0 ¢ G hat i jedoch eine Stammfunktion und
so ist es naheliegend, die Existenz eines Logarithmus auf diesem Wege zu zeigen.
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Definition 14.10.1 Eine in einem Gebiet G C C holomorphe Funktion L : G — C
heifst Logarithmusfunktion (oder Zweig des Logarithmus), wenn fiir alle = € G
gilt:

exp(L(z)) = z.
Natiirlich ist dann 0 ¢ G, denn es ist z = e*(*) # 0. Zur Vorbereitung zeigen wir:
Satz 14.10.2 Ist G C C ein Gebiet mit 0 ¢ G, so gilt:

(1) Wenn L : G — C eine Logarithmusfunktion ist, dann gilt L'(z) = ! fiir alle
z€@.

(2) Wenn F : G — C holomorph ist und F'(z) = ! gilt, dann existiert ein ¢ € C
so dass L(z) := F(z) — c eine Logarithmusfunktion ist.

Beweis. (1) Aus exp(L(z)) = z folgt: L'(z)(exp(L(z)) = 1,also L'(z) = .

(2) Aus F'(z) = ! folgt: (z- e F2)) = e F() — 2. F/(2) - e7F2) = 0;

daher ist z - e=F(*) =: C konstant. Wihlt man ¢ € C so, dass e~¢ = C'ist, so folgt
z-e F2) = e=¢oder z = eF(®)—c, O
Daraus ergibt sich:

Satz 14.10.3 (Existenz einer Logarithmusfunktion ) Ist G C C sternformig und
0 ¢ G, so gilt:

(1) Es gibt eine Logarithmusfunktion L : G — C,

(2) Sind L und L Logarithmusfunktionen in G, so existiert ein n € 7, so dass fiir

alle z € G gilt: ~
L(z) — L(z) = 27in,

(3) Fiir jede Logarithmusfunktion L gilt: Ist z = |z|e'¥(*) € G, so ist
L(z) =In|z| +ip(z) und daher ReL(z) =In|z|.

Beweis. (1) Auf dem sternformigen Gebiet G hat i eine Stammfunktion; aus dem
vorhergehenden Satz folgt dann die Existenz einer Logarithmusfunktion.

(2) Es ist exp(L(z) — L(2)) = = - ! =1 daherist ,' (L(z) — L(z)) € Z: Diese
Funktion ist stetig und ganzzahlig, also konstant gleich n € Z.

(3) Es gibt reelle Funktionen u, ¢ in G mit L(2) = u(z) +1- ¢(2).

Aus z = el(?) = eu(2) . 19(2) und |el¥(*)| = 1 folgt |z| = e*(*), also u(z) = In |z|
und somit L(z) = In |z| +1- ¢(2). |

Beispiel 14.10.4 Das Gebiet
C =C\{z+iyeC|xz<0,y=0}

ist sternformig beziiglich 1. Jedes z € C™ lasst sich eindeutig in Polarkoordinaten
z = |2]e!¥*) mit —7 < ¢(2) < +n darstellen; die Funktion

L:C” = C,z—In|z| +ip(z)

ist eine Logarithmusfunktion; fiir z € R ist L(z) = In .
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Wir kommen nun zum Begriff der Umlaufzahl I (-, ¢); diese gibt an, wie oft eine
geschlossene Kurve v den Punkt ¢ € C umlauft.

Definition 14.10.5 Es sei v : [a,b] — C eine (stetige) geschlossene Kurve und
c € C mit ¢ ¢ ([a,b]). Dann heifit

(7,0 : 1 / dz

2mi z—c
v

die Umlaufzahl von v um c.
Die Umlaufzahl ist immer eine ganze Zahl:
Satz 14.10.6 Es gilt I(v,c) € Z.

Beweis. Wir diirfen ¢ = 0 annehmen und verwenden die Bezeichnungen von 14.5.1.
Das Kurvenintegral [ dzz ist nach 14.5.2 so definiert: Man wahlt eine Zerlegung
2l

a =t <ty <...<ty, =0b und offene Kreisscheiben K; C C* und in K
Stammfunktionen L; von ! ; die L; sind also Logarithmusfunktionen und es gilt
Li(z) =In|z| +ip;(z). Mit p = y(a) = vy(b) = g ist nach 14.10.3 :

10:0) = o [V = ) - i) €

v

Damit erhalt man eine anschauliche Interpretation der Umlaufzahl:
Setzt man vy, := 7|[t;_1,t;] und z; = y(t;), so ist

/ de = Lj(2;) — Lj(zj—1) = (In[z5] — In[z—1]) +i(pj(25) — @5 (zj-1))-

Vi

Nun definiert man Winkel «; := ¢;(2;) — ¢;j(2j—1), dann ergibt sich:
I(v,0) = ! > (nfz;] —In|z_]) + ! > ay
T o £ T g £
Weil vy geschlossen ist, verschwindet der erste Summand und man erhalt:

1
I(~,0) = 271-2%'
J
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Niitzlich zur Berechnung der Umlaufzahl ist folgender Satz:

Satz 14.10.7 In jedem Gebiet G C C\v([a,b]) ist G — C, z — I(v,z) konstant.
Ist ~y eine Kurve im sternformigen Gebiet G , so gilt fiiralle z ¢ G: I(y,z) =0.

Beweis. Die Funktion G — C, z — I(v, z), ist stetig und ganzzahlig, also konstant.
Ist G sternformig und z ¢ G, soist ¢ — ' in G holomorph und besitzt eine
Stammfunktion; daher ist das Integral liber die geschlossene Kurve « gleich null.

O
Wir beweisen nun eine allgemeine Cauchysche Integralformel mit Umlaufzahl:

Satz 14.10.8 (Cauchysche Integralformel mit Umlaufzahl ) Es sei f : G — C
eine im Gebiet G holomorphe Funktion und v : [a,b] — G eine in G nullhomotope
geschlossene Kurve. Dann gilt fiir = € G \ v([a, b]):

1009 16) = o1 [ [ ac

Beweis. Wir definieren fiir z € G \ y([a, b]) wieder die Funktion ¢ : G — C,

f(Q) -

¢—
Dann ist ¢ holomorph in GG und das Kurvenintegral liber die nullhomotope Kurve -y
ist null:

0= [awac= [[Dac—se) [ X = [ 19 ac- seromiae.a

a

0) =TT s 2 4= r00)

Beispiel 14.10.9 (Die Bedeutung der Umlaufzahl bei ebenen autonomen Syste-
men gewohnlicher Differentialgleichungen )
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Wir betrachten die Gleichung
w = f(z,y)dz + g(z,y)dy = 0

aus 11.5 oder aquivalent das autonome System

T = g(x,y)
y = _f(x?y)v

das die Gleichgewichtslage (0, 0) besitze, d.h. f(0,0) = ¢(0,0). In einer punktier-
ten Umgebung U (0,0) \ {(0,0)} sei die charakteristische Funktion des Systems

G(z,y) = —f(z,y)x — g(x,y)y # 0.

Wir interessieren uns fiir die Frage, ob eine in U(0,0) \ {(0,0)} verlaufende ge-
schlossene Losungskurve v(t) = (z(t),y(t)), a <t < b, den Punkt (0, 0) umliuft.
Fiir eine bejahende Antwort miissen wir I(v,0) # 0 zeigen. Es ist (wir schreiben
kurz x statt z(¢) und auch f statt f(x(t),y(t)))

b
1(7,0) = gmi [ sty g2y () +19(0) (2 (1) — iy(t)dt =
b
= b [ el (g — i) (@ —iy)dt =

b
= 21ri rQigﬂ ((gx—fy)) +1(_fx_gy))dt

Da die stetige Funktion _m‘};i_ygy : [a, b] — R nach unserer Annahme bestindig # 0
ist, ist I (7, 0) # 0und ~ umlauft (0, 0). Die Annahme G # 0in U(0,0)\{(0,0)} ist
tibrigens im Beispiel 11.5.8 erfiillt. Ausserdem zeigt die Transformation von w = 0
auf Polarkoordinaten in 11.5, dass im Fall G # 0 die Transformation von w = 0
auf Polarkoordinaten (¢,7) eine wohldefinierte Differentialgleichung der Form
r’ = .... liefert, da der Nenner f(rcost,rsint)cost + g(rcost,rsint)sint in
[0, 2] nie verschwindet.

14.11 Der Residuensatz

Wir kommen nun zu einem der wichtigsten Satze der Funktionentheorie; dem Resi-
duensatz. Dieser ist fiir theoretische Uberlegungen wichtig, er erméglicht aber auch
die Berechnung vieler Integrale.

Zur Vorbereitung zeigen wir, dass man eine holomorphe Funktion f : D\ {zo} — C
immer zerlegen kann in einen Summanden, der in ganz D holomorph ist und in
einen in C \ {zp} holomorphen Anteil.

Satz 14.11.1 Ist f : D \ {20} — C holomorph, so existieren holomorphe Funktio-
nen
g:D—Cundh:C\{z} — Cmit
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Beweis. Es sei zgp = 0; wir wéhlen r > 0 so, dass U,.(0) C D ist und entwickeln f
um 0 in eine in 0 < |z| < r konvergente Laurentreihe:

oS —00 0 > 1
f(Z) = X%Clnzn + Z Clnzn = z;)anzn + z:la'—n(z)n'
n= n= n=

n=-—1

Die Reihe Y a_,(!)" konvergiert fiir 0 < |2| < r ; nach 4.1.1 konvergiert sie
n=1
dann fiir alle z # 0. Somit wird durch

h:C\{0} - C,z+— Z anz"
n=—1
eine holomorphe Funktion definiert. Setzt man g(z) := f(z)—h(z) fir z € D\ {0},
so gilt g(z) = > apz, fir 0 < |z| < r . Definiert man g(0) := ag, so ist g in

n=0
ganz D holomorphund in D \ {0} giltg = f — h. |

‘Wenn man dieses Verfahren iteriert, so erhalt man:

Satz 14.11.2 Ist f : D\ {z1,...,2m} — C holomorph, so gibt es holomorphe
Funktionen

g:D—C und hy=C\{z}—-C, k=1,...,m
mit
f=g+hi+...+h, in D\{z1,...,2m}

Nun kommen wir zum Begriff des Residuums:

Definition 14.11.3 Ist f : D\{z0} — C holomorphund f(z) = JFZO:O an(z—20)"
die Laurentreihe in 0 < |z — zo| < 1, so heif’t T
Res, f :=a_1
das Residuum von f in zg; fiir 0 < o < r gilt :
Resf = [ 5O
[¢—20l=0
Satz 14.11.4 (Residuensatz ) Es sei G C C ein Gebiet, es seien z1,. . ., z, paar-

weise verschiedene Punkte in G und G := Q\ {z1,.. .y 2m}. Ist dann f : G—C
eine holomorphe Funktion und +y : [a,b] — G eine geschlossene Kurve in G, die in
G nullhomotop ist, so gilt:

m

/f(z)dz = 27 ZI(’y,zk) - Res,, f.
gl

k=1
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Beweis. Wie obenist f = g + h1 + ... + h,, mit holomorphen Funktionen
g:G—C, hi:C\{z}—C; k=1,...,m.
Im Punkt z; sind die Funktionen
G, Ry ey P11, REg1y ooy P

holomorph und daher ist
Res,, hi, = Res,, f.

Ist hr(z) = Zc%k) (z—z)™ die Laurententwicklung von hy in 0 < |z —zg] , so

gilt also *) = Res,, f .In C\ {z} besitzen die Funktionen z +— (z — z)™ fir
n # —1 Stammfunktionen und daher ist [(z — z;)"dz = 0 fir n # —1. Somit
folgt: k
= n k) dz .
/hk(z)dz = n_z:oo k) /(z—zk) dz = ¢ / T 2mi-I1(7y, z1,)-Res,, f.
v Bl 8!
In G ist g holomorph und v nullhomotop, also [ g(z)dz = 0. Somit ergibt sich:
v
/f(z)dz = /g(z)dz + i/hk(z)dz =0+ 27ri~§:1(7,zk)Reszkf.
2 5 k=17 k=1
O
Beispiel 14.11.5 Wir berechnen [ %7dz. Esist 5% = L — L + 2 — . ;
daher ist das Residuum dieser Fu‘r:l‘;ilon in 0 gleich — ?}!, somit
/ M2y — o (- Ly ==
z 3! 3

|z]=1
Bei der Berechnung von [ Si;}f dz fiir ungerade n € N kann man so schliessen:
[z]=1
In der Entwicklung von Slz‘}f kommen nur gerade Potenzen von z vor, daher ist das
Residuum gleich 0, somit f Si;;z dz =0 fiirungerade n € N.

|z=1
Wir zeigen nun, wie man in vielen Fallen das Residuum einfach berechnen kann.

Satz 14.11.6 Wenn f in zg einen Pol 1.0rdnung hat, dann ist

Res, f = lim (z — z0) f(2).

zZ—20
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Beweis. Die Behauptung folgt aus (z — z0)f(2) = a—1 +ap(z — 20) +.... O

Satz 14.11.7 Wenn f in zg einen Pol der Ordnung k > 0 hat, dann ist die Funktion
9(2) == (2 — 20)* f(2) in 2o holomorph und

1

Res, f = (h—1)

'g(lcfl)(ZO).
Beweis. Wir nehmen zp = Oan;esist f(z) = “3 +...+“2' +... mita_y #0
und g(z) =a_p +...+a_1zF" 1+ ..., daher g*V(0) = (k — 1)la_;. O

Satz 14.11.8 Die Funktionen g und h seien in zy holomorph und h besitze in zg
eine Nullstelle 1.0rdnung; dann gilt:

g 9(z0)
ResZOh = h’(zo)'

Beweis. Sei zop = Ound g(z) =ap+ar1z+..., h(z) =biz+....;b1 # 0. Dann
ist nach 14.11.6:

R g_l. “aptaiz+... _ao
G TR bz by

Beispiel 14.11.9 (Die Bernoullischen Zahlen und > nés) In 14.9.8 haben wir
n=1

z

die Funktion
e*—1

untersucht und die Taylorentwicklung
z B o e
eZ—1:nz:%n!Z fir |z| <27

hergeleitet; dabei sind B,, die Bernoullischen Zahlen. Nun berechnen nun wir fiir
s € N die Residuen von

1

s 2nmi,n € Z} — C,
hs :{z € C| z # 2n7i,n € Z} CZ'—}ZS(GZ—l)

und leiten damit eine Formel fur

00
>
2s
n
n=1

her. Die Laurententwicklung von /s um 0 ist

1 B, , B Bs 1
hs(z):zsﬂz RSO STE R
n=0

und daher ist
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B
Resg hs = °
s!
Fiir die Berechnung des Residuums von hg in den Punkten 2n7i mit n # 0 setzen
wir e? = e*~ 277 ¢jp:

o0

B, N
]’LG(Z) = zs(elfl) = Zs(ezfémri,l) = le nzo kf : (Z— 2n7r1)k =

_ 1 Bo 1,
T 28 ,272n7ri_|_zS Byi+....

Nach 14.11.6 ist

By 1
g hs = 1 — 2 1) - hS = . = . .
Ress z—}g}m('z nd) - s (2) (2nmi)s  (2nmi)s

Damit sind alle Residuen von h fiir s € N berechnet.

Nun berechnen wir das Kurvenintegral von ho, tiber die Kreislinie mit dem Radius
(2m + 1)m, zeigen, dass es fir m — oo verschwindet und erhalten so eine Formel
fir ) nés

Es sei m € N, der Kreis |(| = (2m + 1)7 geht durch keine Singuraritét; im Innern
dieses Kreises liegen die Polstellen 2n7i mit —m < n < m. Aus dem Residuensatz
folgt:

1 BQS - — 1
has(C)d¢ = o
2mi 26()d¢ = + — ( 2n7r1 Zl (2nmi)?s
Cl=(2m+1)m n= ==
Bgs B, 2 1
= 2 - : .
Pt Z 2n7r1 (28! + (27i)2s 7;1 n2s

Nun schatzen wir das Integral ab: Wir setzen z = x + iy und behandeln zuerst 62171 .
Firz < —listle"—1[>1—|ef|=1—e">1—et =1 also| ' | < °.
Fir 2 > 1 istle* —1| > [e*| —1=e"—1>e—1lalso| ", [ < ;.

Damit haben wir gezeigt:

1
< % fir |z >1.
e —1 e—1

— 1
In der kompakten Menge V' := {z € C| |z > 1,[z| < 1,|y| < 7} hat .~

ez

keine Singularitiiten, ist also dort beschrankt; es gibt ein M € R, so dass fir z € V

gilt: |ez | < M; wir wihlen M > _©,. Zusammen mit der fiir |z| > 1 hergelei-

teten Abschitzung ergibt sich: Setzt man W := {z € C| |z| > 1,|y| < =}, so
ist L

| | <M fir zeW.
e —1

Diese Funktion ist also in dem gelochten Streifen W beschrankt und die gleiche
Abschitzung gilt in jedem um 2n7i, n € Z, verschobenen Streifen.
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Firn € Z sei K,, := {z € C| |z — 2n7i| < 1} die Kreisscheibe um 2n7i mit
Radius 1; es ist

1 ..
‘ez—l‘ <M firalle ze€C)\ LEJZK,L.

Die Kreislinie || = (2m 4 1)m liegt in dieser Menge und sie hat die Linge
27 - (2m + 1)7; damit ergibt sich:
1 1 d
27i f h2s(odc| < |27ri f g?s.(eCC—l) <
[C|=(2m+1)7 [¢]=(2m+1)7

M
< @mA+DT e (a2

6mi(®

—6mi(®

Daher geht dieses Integral fiir m — oo gegen 0 und man erhélt fiir s € N:

Bos 2 =1
+ \2s Z 2s =0
(28)!  (2mi)?*s ‘= n

und daraus folgt:

> 1 . 2257177_25
n=1

Bernoullische Zahlen haben wir mit der in 14.9.8 hergeleiteten Rekursionsformel
berechnet; so erhalt man:

) 5 ) N ) 6

> b= > k=G X =
n2 6 nt 90 nb 945

n=1 n=1 n=1

) 8 ) 10 )

Z 1 _ 0« Z 1 _ 07 Z 1 _ 691 71_12
n® T 9540 nl0 7 93555 nl2 7 638512875

n=1 n=1 n=1
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o0
Es ist uns keine Formel fiir die Berechnung von n2‘1+1 bekannt. Berechnet man

n=1
wie oben das Integral liber ho5.4 1, so fallen auf der rechten Seite die beiden Summen
weg und man erhalt:

Bos m —m
2‘1”1 f h28+1(<)d< = (2;«51)! + Z (2n7ril)25+1 + Z (2n7ri1)2s+1 =
[¢|=(2m+1)7 n=1 n——1
_ Basia
= (2s41)"

o0
Diese Methode liefert also keine Aussage tiber > 712§+1 ; weil das Integral fiir

m — oo gegen 0 geht, ergibt sich aus dieser Gleich?mg:

BQS+1 =0 fir seN.

14.12 Folgerungen aus dem Residuensatz

Vorbemerkung. Ist f : D — C holomorph und besitzt f in 21, ..., 2z, Nullstellen
der Ordnung ny, ..., n, so bezeichnet man mit

N:=n1+...+n,

die Anzahl der Nullstellen.
Analog definiert man fiir eine holomorphe Funktion f : D\ {wy,...,ws} — Cdie
in wi,...,ws Pole der Ordnung m1, ..., m hat, die Anzahl der Polstellen durch

P:=mi+...+ms.

Aus dem Residuensatz leiten wir her:

Satz 14.12.1 (Satziiber die Null- und Polstellen) Es sei U,.(z9) C G C C und es
seien z1,,...,zs € Up(20); die Funktion f : G\ {z1,...,2s} — C sei holomorph
und besitze in z1, . . ., zs Pole; sie besitze auf OU,.(2q) keine Nullstelle. Ist dann N
die Anzahl der Nullstellen und P die Anzahl der Polstellen von f in U, (zp), so gilt:

1 e
o / £(2) dz = N — P.

|z—z0|=r

Beweis. f besitze in p eine n-fache Nullstelle; wir berechnen das Residuum von
J} in p. Es gibt eine in p holomorphe Funktion h mit f(z) = (z — p)"h(z) und

h(p) # 0 .Dannist f'(z) = n(z —p)" " *h(z) + (z — p)"h’(z) und
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fz) _ n W)
F) " a-p h(z)

Weil }}Ll/ in p holomorph ist, erhalt man als Residuum :

f/
Res, ! = n.
Bei einer n-fachen Polstelle schliesst man analog mit —n statt n. Mit dem Residu-
ensatz ergibt sich die Behauptung. a

Wenn f keine Pole hat, so ergibt sich, wenn man diesen Satz auf z — f(z) — w
anwendet:

Satz 14.12.2 Es sei f : G — C holomorph und U,(z9) C G; sei w € C und sei
f(z) # w fiir = € 0U,(20). Dann gilt fiir die Anzahl N,, der w-Stellen von f in

o 1 £(2)
Nw = ori / f(Z)—’de

|z—zo|=r

Wir zeigen nun, wie man mit Hilfe des Residuensatzes uneigentliche reelle Integrale
berechnen kann:

Beispiel 14.12.3 Wir berechnen

+oo

/ dx
x2 —2rx+2

— 00

Bsistp(z) := 22 =22+ 2= (2 — (1 +1)) - (z — (1 — i)) und das Residuum von
p(17) im Punkt 1 +1iist 21i . Wir berechnen nun zuerst das Integral iiber den Rand des

obéren Halbkreises mit Radius r: Es sei
Y 1 [0, 7] — C,t 1 -e;

fir » > 2 liegt der Punkt 1 4 i im oberen Halbkreis mit Radius » und nach dem
Residuensatz gilt: :

+r
dz dz o1
® /p(Z) - /p(Z) A

—r Yr

Fiir r — oo geht das erste Integral gegen das zu berechnende uneigentliche Integral;
wir zeigen, dass das Integral tiber ~,- gegen O geht.
Fiir z # 0 ist
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Es gibtein R > 2mit[1 — 2 + 2| > ! fiir [z| > Rund fiir [2| > 7 > R > 2ist
dann

1 2
’p<z>
Dabher ist
/ dz < are 2 _ 2m
pz)| =
o
Fiir r — oo folgt nun aus der Gleichung (*):
+00
dx _
/ 22 —2x+2 T

Im folgenden Satz schitzt man ’q’ analog durch c";'ft' ab und erhalt:

Satz 14.12.4 Seien p, g Polynome mit grq > grp+2; q besitze keine reelle Nulstel-

le. Sind dann z1, . . ., 2z, die in der oberen Halbebene liegenden Singularitdten von
P so gilt:
q

e 5

px . p
dxr = 27i Res,. " .
/ q() — g
o j=

Der Cauchysche Hauptwert

Der Cauchysche Hauptwert ist in einer allgemeinen Situation folgendermassen er-
klart: Es sei X C R, p € X,und f : X \ {p} — R eine stetige Funktion; man
entfernt nun eine -Kugel um p, integriert tiber den Rest und lasst € gegen 0 gehen;
dann heif3t

P / flz)dz = lirré flz)dx
E—
X X\Ue(p)
der Cauchysche Hauptwert (falls dieser Grenzwert existiert.)

Mit dem Cauchyschen Hauptwert kann man dem Integral [ f(z)dx einen Sinn
X

geben, wenn f weder Lebesgue- noch (im eindimensionalen Fall ) uneigentlich
Riemann-integrierbar ist.

Wir behandeln hier den eindimensionalen Fall und zeigen, wie man mit funktionen-
theoretischen Methoden den Cauchyschen Haupwert berechnen kann.

Definition 14.12.5 Es sei [a,b] C R, p €]a,blund f : [a,b]\ {p} — R eine stetige
Funktion. Dann heif3t

b p—¢ b
P/f(x)dx = Eh_r)r(l) /f(x)dx—i— / f(z)dz
a a p+e

der Cauchysche Hauptwert.
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Zunachst ein einfaches Beispiel:

+1 —&1 +1
Beispiel 14.12.6 Das uneigentliche Integral [ 9% = lim [ 97+ lim [ 97 exi-
21

61—>0 —1 62—>0 €2

. 1 .
stiert wegen [~ 9% = —Ine nicht.
E T

Dagegen existiert der Cauchysche Hauptwert
T Tdr  [d
P /  — lim / T / ",
xr =0 x x
—1 1 €

—€ +1
denn ! ist eine ungerade Funktion und daherist fir0 < e < 1: [ df +f dmz =0.
—1 €

Daraus folgt

Nun gehen wir von folgender Situation aus:
Wir nehmen p = 0 an; es sei a < 0 < b und D eine offene Teilmenge von C
und es gelte [a,b] C D; weiter sei f : D\ {0} — C holomorph.Wir berechnen
den Cauchyschen Hauptwert dadurch, dass wir den durch den singularen Punkt 0
gehenden Integrationsweg von a nach b ersetzen durch Kurven, die 0 umgehen.
Esseir >0,{z €C||z] <r} CDunda < —r < 0 < r < b. Wir betrachten die
beiden Halbkreise

o [0,7] — C,t 7€l By i [m,2n] — C,t s 1 el

Fiir 0 < ¢ < r ist dann nach dem Cauchyschen Integralsatz:

(1 /Ef(:c)da:—/f(z)dz+/f(a:)dw+/f(z)dz:0,

also

(2) ]Tf(a:)dx—/ f(z)dz—i—/b f(z)dz = ]Ef(:r)dx—/ f(z)dz+/bf(x)da:.

Dabher ist folgende Definition unabhangig von der Wahl von ¢:

R/bf(z)dz = /Ef(a:)d:r—/f(z)dz—l—/bf(x)dx,
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dabei umgehen wir den singularen Punkt p = 0 so, dass er rechts vom Integrations-
weg liegt. Wenn wir diesen Punkt links liegen lassen, definieren wir :

L',/bf(z)dz = ]Ef(x)dx—l—/f(z)dz—k/bf(x)dx.
a a Be €

Aus dem Residuensatz folgt

b b
3) E/f(z)dz - ’R/f(z)dz = / f(2)dz = 271 - Resof.
a a |z

|=¢

b
Ay
Qe
i > /—\ 4
a —7r\ — p € &y b
\ 1
\ /
\ ’
\ /
\
\ //
\\ ,/
S ﬁr Pid

S

Unter geeigneten Voraussetzungen kann man den Cauchyschen Hauptwert mit dem
Residuensatz berechnen:

Satz 14.12.7 Sei [a,b] C D C C, a < p < b. Die Funktion f : D\ {p} — C
sei holomorph und besitze in p einen Pol 1.0rdnung. Dann existiert der Cauchysche
Hauptwert und es gilt:

b

P [ fx)dz = ; (ﬁfbf(z)dz—l—bef(z)dz) -

a

=R f(z)dz—|—7ri-Respfzﬁfbf(z)dz—ﬂi-Respf.

[ —

Beweis. Wir nehmen wieder p = 0 an; es ist

]sf(x)dm+/bf(x)dx:R/bf(z)dz+/f(z)dz_

Nach Voraussetzung ist ~ f(z) = “.' + ag + a1z + ... in einer Umgebung
von [z| < r. Setzt man g(z) := f(z) — “,', so ist g dort holomorph, also
beschrénkt; somit [g(z| < M und daher | [ g(2)dz| < wMe. Ausserdem ist

Qe
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s

J “tdz=a_ of Eslee;t dt = ira_; und daher Eh_r)r(l) [ f(2)dz =7 -i-a_;. Daraus
@ Qe

félgt:
b b
P/f(x)dx = ’R/f(z)dz +m-i-a_q.
Die anderen Aussagen ergeben sich aus (3). O

Beispiel 14.12.8 Wir berechnen
+o0 q
x
Pty

Mit g := _“5“/3, 0* = _1_2“/3 ist 23 —1 = (z — 1)(z — o)(z — ¢*) und nach
14.11.6 ist

Res 1 = lim v—1 = 1 = 1
et o1l el - D@ -o)(z—0?) (1-o(l—-e?) 3
1 1 1 )
Res, = - —&—Z\/?).

#3-1" (o~ 1)(p—p?) 6 6

+oo
Wie in 14.12.4 zeigt man R [ wgfl = 2mi - Res, I3£1 und nach 14.12.7 ergibt
sich: B

+oo

dz . 1 1 1 0
P/x3—1 = 2771<Resgx3_1+2Res1x3_1>:—3\/3.

— 00

Auf diese Weise zeigt man:

Satz 14.12.9 Seien p, q Polynome mit grq > grp + 2 und f := 5 . Die Funktion
[ besitze auf der reellen Achse nur Polstellen 1. Ordnung x1, . ..,xy; sind dann
Z1, ..., 2m die in der oberen Halbebene liegenden Singularititen von f, so existiert
der Cauchysche Hauptwert und es gilt:

m

+o00 k
p(x) . p, 1 P
77/ dz = 27i- Res.;” + _ - Res,,
Ja@) ; Tq 2 ; q

Wir bringen noch ein Beispiel:
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Beispiel 14.12.10 (Die Distribition P;) Essei p € D,dannistalso o : R — R
eine beliebig oft differenzierbare Funktion und es existiert ein R > 0 mit ¢(x) = 0
fiir || > R. Wir berechnen

Wir definieren ¢ : R — R durch
q(x) == ‘F(m);"a(o) fir z#0und ¢(0):=¢'(0).
—€ R
Weil  differenzierbar ist, ist ¢ stetig ; nach Beispiel 14.12.6 gilt: [ rf: +[ df = 0;
€

damit ergibt sich, dass der folgende Cauchysche Hauptwert existiert:
~+oco R 0
P J “agf)dx =P [ (q(x) + ‘Fi)) dz =
-R

R —€ R
= lim ( [ a(z)dz + fq(:c)dx> +9(0) lim (f ] d) -
— £ —R €

R
R
= [ q(z)dz
“R

Man zeigt nun, dass durch
1 i
P :D—>R,<pn—>7?/(p(x)dx
T T

eine Distribution definiert wird. In der Quantenmechanik definiert man im Zusam-
menhang mit der Dirac-Distribution § die Distributionen
1 1 1 1 1 1

+ . - 5_
) '_26+27ripx’ o ._25 Qme.

14.13 Konforme Abbildungen, Stromungen

Konforme Abbildungen

Wir untersuchen zuerst, welche Eigenschaften eine durch eine holomorphe Funktion
gegebene Abbildung hat; wir zeigen, dass sie lokal eine Drehung darstellt; insbeson-
dere ist sie winkeltreu.

Satz 14.13.1 Es sei f : D — C holomorph, zo € D und f'(z0) =1 -e'¥ # 0. Ist
dann -~y : [—¢,+¢] — D eine reguldre differenzierbare Kurve mit ¥(0) = zo und
4(0) = s - €'%, so gilt fiir die Bildkurve 7 := f o ~:

5(0) = (rs) - e+,
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Beweis. Nach der Kettenregel ist 7(0) = f'(z0) - 7(0) = (rs) - e!(@F%), O
Bei jeder regularen Kurve durch zy wird also die Tangente um den gleichen Winkel
 gedreht; daher folgt:

Satz 14.13.2 Ist f : D — C holomorph,zy € D und f'(20) # 0,50 gilt: Sind
Y1, Yo reguldre Kurven durch zg, die sich im Winkel o schneiden, so schneiden sich
die Bildkurven f o vy und f o o ebenfalls im Winkel c.

Eine derartige Abbildung bezeichnet man als winkeltreu oderkonform.
Daraus ergibt sich:

Satz 14.13.3 Ist f = u+iv holomorph und verschwindet [ nirgends, so schneiden
sichu(z,y) = ¢1 und v(z,y) = co orthogonal.

Beispiel 14.13.4 In C* betrachten wir f(z) := 2% = (2% — y?) + 2izry dann ist
u = 22 — y?, v = 2xy. Die Hyperbeln 22 — 4> = ¢; und 2y = ¢, schneiden
einander orthogonal.

— zZ _

Beispiel 14.13.5 Fiir z # Osei f(2) :== [ = 7 = .7 . +i- ", DieNi-
veaulinien z = ¢ (2? + y?) und y = c2(2? + y?) sind Kreise, die sich orthogonal
schneiden.

Stromungen
Man kann Stromungen durch holomorphe Funktionen beschreiben. Wir gehen aus
vom Vektorfeld einer ebenen Stromung

v:G — R (z,y) — (p(z,y),q(z,9))

in einem Gebiet G C R2, das wir als sternformig vorausssetzen. Die Funktionen
D, q seien beliebig oft stetig differenzierbar. Von der Stromung nehmen wir an, dass
sie quellenfrei und wirbelfrei ist. Wir setzen also voraus:

(1) Pz +aqy =0, (2) Py — qz = 0.

Die erste Bedingung bedeutet div v = 0, die zweite Bedingung kann man als
Verschwinden der Rotation deuten. Nach 9.6.7 gibt es wegen (2) zu v = (p, ¢) ein
Potential v : G — R und aus (1) folgt, dass das Vektorfeld (—g, p) ein Potential
v : G — R besitzt. Es gilt also:

Ug =P, Uy = (¢ und Vg = —(q, Vy = P.
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Nun fassen wir G C C auf und setzen f := u + iv. Wegen u, = p = v, und
vy = —q = —uy sind die Cauchy-Riemannschen Differentialgleichungen erfiillt
und daher ist f : G — C holomorph. Es gilt

f/ :’LLI-F’L’U$ :p_“]
Wir schreiben (p, g) = p + iq, dann ist
fr=ptig=v.

Die Niveaumengen {(z,y) € G| u(z,y) = ¢} mit ¢ € R deutet man als Potenti-
allinien und {(z,y) € G| v(z,y) = c} als Stromlinien der durch v = f’ gebenen
Stromung.

Zu jedem quellen- und wirbelfreien Vektorfeld v in einem sternformigen Gebiet gibt
es also eine holomorphe Funktion f = u -+ iv mit f/ = v und die Niveaumengen
von u, v liefern die Strom- und Potentiallinien.

Wenn man umgekehrt von einer in einem ( nicht notwendig sternformigen ) Ge-
biet G C C holomorphen Funktion f : G — C mit f = u + iv ausgeht, so erhilt
man durch v := f ’das Vektorfeld einer Stromung , bei der man die Potential-
linien u(z,y) = const. und die Stromlinien v(z,y) = const. bereits kennt. Wir
bringen dazu einige Beispiele.

Beispiel 14.13.6 Sei f(2) := 22, also u = 22 — 3% , v = 2zy.
Dann ist das zugehorige Vektorfeld

v(z)=f(2)=2-%2 oder v(z,y) = (2z,—2y).
Die Stromlinien sind die Hyperbeln
2xy = const.,
die Potentiallinien sind die dazu orthogonalen Hyperbeln
2

xr© — y2 = const.

Es ist |f/(2)| = 2|z|, die Stromung ist also fiir grosse z schnell, in der Nihe des
Nullpunkts ist sie langsam.
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Beispiel 14.13.7 Fiir f(z) := zist f/(z) = 1, und v(z,y) = (1,0). Die Strom-
linien y = const. verlaufen waagrecht, man hat eine gleichmafige Stromung mit
Geschwindigkeit 1.

Beispiel 14.13.8 Das Gebiet
C :=C\{z+iyeClz<0,y=0}

ist sternformig und nach 14.10.3 und 14.10.4 ist dort eine (holomorphe) Logarith-
musfunktion
L(z) = In 2| + ip(2)

definiert. Fiir z € C~ ist z = |z| - €/¥(*) und das zugehorige Vektorfeld ist

L(z)=_= 1e+i“’(z)
A

mit r = |z|. Die Stromlinien sind die vom Nullpunkt ausgehenden Halbstrahlen (oh-
ne 0) ¢(z) = const. Die Aquipotentiallinien sind die Kreislinien In |z| = const.,
also |z| = const., soweit sie in C~ liegen. Es ist |L/(z)| = !; in der Nihe des
Nullpunkt ist also die Geschwindigkeit sehr gross, sie nimmt nach aussen ab. Das
Vektorfeld L’ beschreibt die von einer im Nullpunkt liegenden Quelle ausgehende
Stromung. Dies widerspricht nicht unserer Voraussetzung der Quellenfreiheit, denn
der Nullpunkt liegt nicht im Gebiet C~.

‘Wenn man einen Wirbel erhalten will, dividiert man die Funktion L durch i, dadurch
vertauscht man Stromlinien und Potentiallinien: Fiir
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f(z):=—iL(z) = p(z) —i-In|z|

ist das zugehdrige Vektorfeld f/(z) = ! und die Stromlinien sind die in C™ liegen-
den Kreislinien |z| = const. Man erhilt einen Wirbel um 0.

Man kann diese Beispiele miteinander kombinieren; die Funktion f(z) = z be-
schreibt die Stromung eines Flusses mit konstanter Geschwindigkeit, L(z) liefert
eine Quelle. Durch die in C~ holomorphe Funktion z + L(z) erhilt man dann die
Stromung eines Flusses , in dem eine Quelle liegt. Die gleichmaBige Stromung des
Flusses 14.13.7 tiberlagert sich mit der von der Quelle ausgehenden Stromung (vgl.
dazu [28]).

Biholomorphe Abbildungen

Definition 14.13.9 Seien D, D offen Mengen in C; eine Abbildung f : D — D
heif3t biholomorph, wenn f bijektiv ist und f und f 1 holomorph sind .

Zunichst erlautern wir gebrochen lineare Transformationen: Dies sind Abbildun-
gen von der Form

az+b
Z .
cz+d
Aus w = fjj_'s rechnet man aus: z = _(flf”_ 'Zb. Wir setzen ¢ # (0 voraus; ausserdem

soll diese Abbildung nicht-konstant sei, daher verlangen wir ‘ Ccl Z

# 0. Zunichst

ist auch noch z # —‘f vorauszusetzen.Es ist naheliegend, —‘f — 00 ZU setzen.
Man erweitert die komplexe Ebene durch Hinzunahme eines Punktes, den man mit

oo bezeichnet, zur Riemannschen Zahlenkugel; man setzt
C:=CuU{oo}.

Die Interpretation von C als Zahlenkugel diirfte bekannt sein: Man legt eine Kugel
S vom Durchmesser 1 auf die komplexe Ebene und projiziert vom Nordpol N aus
auf die Ebene.

N

P(x)
C

Damit kann man S \ { N} mit C identifizieren; ausserden identifiziert man noch NV
mit co. Wir setzen also

1 1
2)2 = 4}2{376]1%\ l‘%+$%+$3($3—1) =0}

und N := (0,0, 1). Die Projektion von S\ { N} in die komplexe Ebene C ist

S :={r c R® oz + 23 + (23 —
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@:S\{N}—>(C,(n;1,x2,x3)b—>xl—HxQ;
1—1’3
die Umkehrabbildung ist
»1:C—S\{N i : 2 4 yh).
SS\Ih iy e )

Setzt man noch ¢(NN) := oo, so hat man eine bijektive Abbildung

:5— C.
Nun definiert man die durch ‘Cljjr'g gegebene Abbildung so:
Es seien a,b,c,d € C,c # 0, Ccl 2 # 0, dann definiert man
Z:is fir 2z # oo, z;é—g
fC—=C,z— 00 fur z=—f
° fiir z =00
Die Umkehrabbildung ist
_mdv“’j(;b fir  w # oo, w# &
f1:C—-Cuwr 00 fiir w=7
—d fur w = 00

(&

Eine derartige Abbildung kann man immer zerlegen in Abbildungen z +— az + b
und z +—

man setzt f1(2) := cz + dund fo(2) := ! sowie f3(z) := ** %’z + ¢, dann ist

az+b

fzo fao fi(z) = ot d

Damit kann man leicht zeigen, dass bei gebrochen linearen Abbildungen Kreise
und Geraden wieder in solche iibergehen; man interpretiert dabei Geraden als Krei-
se durch co. Fiir Abbildungen z — az + b ist dies klar; es gentigt, die Aussage fiir
die Abbildung z — ! zu beweisen.

Die Abbildung z — !, ist reell geschrieben: (z,y) — (42742 — 21,2 ). Die Men-
ge A(z? +y?) + Bx + Cy + D = 0 ist fiir A # 0 ein Kreis und fiir A = 0 eine
Gerade (durch O falls D = 0) . Man setzt v = " ,,y = — qu_vz und erhalt als
Bild A + Bu — Cv + D(u? + v?) = 0, also wieder einen Kreis ( falls D # 0)oder
eine Gerade (falls D = 0).

Beispiel 14.13.10 Wir geben eine biholomorphe Abbildung der oberen Halbebene
H = {x + iy € C| y > 0} auf den Einheitskreis £ := {z € C| |2| < 1} an und
zeigen:

z—1i

®.H—FE z+— .
Z4+1
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ist biholomorph, die Umkehrabbildung ist

. w1
OV E - Hw— —i- .
w—1
Es sei z € H; zu zeigen ist ‘Z: < 1l oder |z —i| < |z + i|. Das ist anschaulich

klar: die Punkte der oberen Halbebene liegen naher bei i als bei —i. Wir rechnen
dies nach: Fiir z = z + iy € C st

[+l = 2 =i = (22 4 v+ 1)) = (22 4+ (= 1)?) = 4y,

also gilt

<1l fir y>0
=1 fur y=0
>1 fir y<O0

Damit ist alles bewiesen.

Beispiel 14.13.11 Wir behandeln nun die biholomorphen Abbildungen £ — E
des Einheitskreises und zeigen: Fiir ( € F ist

S E—FE, 2 f:é
biholomorph , die Umkehrabbildung ist
w+ ¢
1+ Cw
Aus ¢ € E und z € E folgt namlich der Reihe nach:

(1=l = [¢*) >0

2> + ¢ < 1+ [¢P)2?

|22 + ¢ = (62 + C2) < 1+ [CPIel® = (€2 + C2)
(z=Q)(z—C) < (1-¢2)(1-¢2)

' E—Ew—

und daher |®(z)| < 1. Ebenso gilt f’jr‘gfu < 1 fiir jw| < 1 und daraus folgt die
Behauptung.

Es gibt also zu jedem ( € FE eine biholomorphe Abbildung @ : £ — E mit
&(¢) =0.

Daraus fogt: Zu (1, (2 € FE existiert eine biholomorphe Abbildung ¢ : £ — E mit
®(¢1) = (2. Man kann beweisen, dass alle biholomorphen Abbildungen £ — FE
gegeben sind durch:
ia # C .
EFE—FE z—e > mit ae€R,(e€EFE.
1—-(z
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14.14 Harmonische Funktionen

Die Theorie der harmonischen Funktionen steht in engem Zusammenhang
mit der Theorie der holomorphen Funktionen, denn es gilt: Wenn f = u+iv
holomorph ist, dann sind u, v harmonisch; umgekehrt ist auf sternformigen
Gebieten jede harmonische Funktion Realteil einer holomorphen Funkti-
on. Dies ermoglicht es, aus Aussagen iiber holomorphe Funktionen Satze
iiber harmonische Funktionen herzuleiten. Insbesondere ergibt sich, dass
harmonische Funktionen beliebig oft differenzierbar und sogar analytisch
sind. Ausserdem gilt die Mittelwerteigenschaft, das Maximumprinzip und
ein Identitatssatz.

Den Begriff der harmonischen Funktion hatten wir bereits in 9.6.10 eingefiihrt:

Sei D C R? offen ; eine zweimal stetig differenzierbare Funktion
h:D—R,(z,y)— h(z,y),
hei3t harmonisch, wenn gilt:

o*h  Ph

Dh = 0x? + Oy?

0.

Fiir eine holomorphe Funktion f = w + iv haben wir gezeigt, dass sie lokal durch
eine Potenzreihe dargestelt werden kann. Daher sind w und v beliebig oft stetig
differenzierbar. Aus den Cauchy-Riemannschen Differentialgleichungen folgt:

Satz 14.14.1 Ist f = u + iv holomorph, so sind v und v harmonisch.

Beweis. Aus u, = vy und uy, = —v, folgt: Uyy = Vyy = Vzy = —Uyy, also
Ugz + Uyy = 0. Analog zeigt man die Aussage fiir v. O
Nun behandeln wir die Frage, wann eine harmonische Funktion h Realteil einer
holomorphen Funktion f ist.

Satz 14.14.2 Wenn das Gebiet G sternformig ist, dann existiert zu jeder harmoni-
schen Funktion h : G — R eine holomorphe Funktion f : G — C mit Ref = h.

Beweis. Fiir das Vektorfeld (—hy, hy) gilt (—hy)y = (hs)s; aus 9.6.7 folgt, dass

es dazu ein Potential v : G — R gibt; es ist also v, = —hy, vy, = h;. Nun
setzen wir f := h + iv; dann sind die Cauchy-Riemannschen Differentialgleichung
ha = vy, hy = —v, erfiillt und aus 14.2.1 folgt, dass f holomorph ist. O

Weil jede harmonische Funktion lokal Realteil einer holomorphen Funktion ist, er-
gibt sich, dass sie analytisch ist:

Satz 14.14.3 Jede harmonische Funktion ist analytisch, insbesondere ist sie belie-
big oft differenzierbar.

Weiter ergibt sich:
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Satz 14.14.4 (Mittelwerteigenschaft harmonischer Funktionen) Ist b : G — R
harmonisch und {z € C| |z — z| < r} C G, so gilt:

2w

1 .
h(ZO) = 27T\/h(ZO + ’I"elt)dt.
0

Beweis. Es gibt eine in einer Umgebung dieser Kreisscheibe holomorphe Funktion
f, deren Realteil h ist. Die Mittelwertformel 14.6.2 fiir f liefert durch Ubergang
zum Realteil die analoge Formel fiir 5. a
Aus dem Identitatssatz fiir holomorphe Funktionen 14.7.8 leiten wir her:

Satz 14.14.5 (Identitiitssatz fiir harmonische Funktionen.) Ist h : G — R im
Gebiet G harmonisch und verschwindet h auf einer nichtleeren offenen Menge U C
G, so ist h identisch null.

Beweis. Es sei M :={p € G| es gibt eine Umgebung V C G von p mit h|V = 0}.
Dann ist M nicht-leer und offen. Nun sei ¢ € M N G und wir wihlen eine offene
Kreisscheibe W C G um q. In W ist h Realteil einer holomorphen Funktion und 7
verschwindet in der nicht-leeren offenen Menge W N M. Aus 14.8.6 folgt h|WW = 0,
also p € M. Weil G zusammenhangend ist, folgt M/ = G und somit h = 0 in G.

O
Nun konnen wir beweisen:

Satz 14.14.6 (Maximum- und Minimumprinzip fiir harmonische Funktionen.)
Die Funktion h : G — R sei im Gebiet G C R? harmonisch. Wenn ein (xo,y0) € G
existiert mit

hz,y) < h(zo,yo) fiiralle (x,y) € G,

so ist h konstant; eine analoge Aussage gilt, wenn h(x,y) > h(xo, yo) ist.

Beweis. Wir wihlen eine offene Kreisscheibe U C G um (g, yo). In U ist h Real-
teil einer holomorphen Funktion; aus 14.8.8 folgt, dass & in U konstant ist und aus
dem Identititssatz ergibt sich, dass h in G konstant ist. O
Daraus ergibt sich:

Satz 14.14.7 Ist G C R? ein beschrinktes Gebiet und ist h : G — R stetig, h|G
harmonisch und h|0G = 0, so ist h identisch null.

Beweis. Weil G beschrinkt ist, ist G kompakt und die stetige Funktion h nimmt
in einem Punkt (zo,yo) € G das Maximum an. Wire h(zg,yo) > 0, dann folgt
(x0,90) € G und nach dem Maximumprinzip ist 4 in G und daher auch in G kon-
stant; dies ist wegen h(zo, yo) > 0 und h|0G = 0 unmdglich. Wenn h(xg,yo) < 0
ist, schliesst man analog. O
In diesem Zusammenhang behandeln wir das
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Dirichlet-Problem: Gegeben sei ein Gebiet G C R? und eine stetige Funktion
0:0G — R,

gesucht ist eine Funktion h : G — R mit folgenden Eigenschaften:

(1) in G ist h stetig

(2) in G ist h harmonisch,

(3) auf OG gilt h = p.

Aus 14.14.7 folgt, dass das Dirichlet-Problem auf einem beschranktem Gebiet
hochstens eine Losung hat.

Wir zeigen zunachst:

Hilfssatz 14.14.8 Wenn g : G1 — G2 holomorph und h : Go — R harmonisch ist,
dann ist auch h o g harmonisch.

Beweis. Lokal existiert eine holomorphe Funktion f mit Ref = h; dannist fog
holomorph und daher ist i o ¢ = Re(f o g) harmonisch. O
Damit kann man in manchen Fillen ein Dirichlet-Problem fiir ein Gebiet Gy
folgendermassen 1osen: Man geht mit einer geeigneten holomorphen Abbildung
g : G1 — (G2 zu einem ,einfacheren “Gebiet G5 lber, 10st dort das Dirichlet-
Problem durch eine Funktion h und erhélt mit h o g eine Losung auf G .

Wir erlautern dies an einem Beispiel:

Beispiel 14.14.9 Es sei
G = {(,y) eR*[ x>0,y >0};

wir suchen eine nicht identisch verschwindende stetige Funktion 7 : G — R, diein
G harmonisch ist und auf dem Rand verschwindet. Zuerst 16sen wir ein einfacheres
Problem, namlich das analoge Problem fiir die abgeschlossene obere Halbebene

H = {(z,y) € R?| y > 0}.

Offensichtlich ist die Funktion

h(z,y) :=y = Im(2)

eine Losung. Durch

g:G—H, 2+ 22

wird G holomorph auf H und AG auf OH abgebildet. Die Funktion h := h o g ist
harmonisch und 16st das Problem fiir G; man erhalt also

h(z,y) = Im(2?) = 2zy.

Die Niveaumengen von h sind Hyperbeln.
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G H R

0 0 0

Mit dieser Methode kann man leicht weitere Beispiele behandeln; etwa das Pro-
blem fiir das durch den 45°-Winkel gegebene Gebiet {(z,y) € R?| 0 < z < y};
als Abbildung wahlt man nun z — 2%, Man kann sich leicht vorstellen, wie die Ni-
veaumengen aussehen werden: Die Hyperbeln des vorhergehenden Problems wer-
den so deformiert, dass sie in den halbierten Winkelraum hineinpassen. Man erhalt
als Losung

Im(2?) = 423y — 4ay® = day(x + y)(z — y).

Beispiel 14.14.10 (Temperaturverteilung auf £) Wir gehen nochmals auf die in
10.4.20 behandelte Temperaturverteilung auf der kreisformigen Platte £ ein. Ge-
sucht ist also eine stetige Funktion 7' : E — R, die in F harmonisch ist und
auf dem Rand O F mit der vorgegebenen (zeitlich konstanten) Temperaturverteilung
o(z,y) = 10022 iibereinstimmt. Nach 14.14.2 ist T' Realteil einer holomorphen
Funktion f. Bei der Vorgabe von 10022 ist es naheliegend, f als Polynom 2. Grades
anzusetzen.

Daher berechnen wir zunichst Re(2?) = 22 — y? auf dem Rand OF; dort ist

2?2 —y? =22 — (1 — 2%) = 222 — 1. Nun setzen wir

f(2) := 5022 + 50;

dannist Ref(x+iy) = 50(z?—y?)+50, auf OF ist dies gleich 100z2. Die Funktion
T(z,y) := Ref(x+iy) ist als Realteil einer holomorphen Funktion harmonisch und
hat die vorgegebenen Randwerte. Die Losung dieses Dirichlet-Problems ist somit

T(x,y) = Re (5022 + 50) = 50(z* — 4?) + 50.

Bei der Behandlung der Randtemperatur 10023 wird man vermuten, dass die
gesuchte Temperaturverteilung 7' Realteil eines Polynoms f dritten Grades ist.



14.15 Die Poissonsche Integralformel 459

Man geht nun aus von Rez® = 3 — 3zy?; auf 22 + y? = 1 ist Rez? gleich
2% — 3x(1 — 2%) = 42 — 3z. Nun setzt man f(z) := 252% + 752 und hat die
Losung

T(z,y) := Re (252° 4+ 752) = 25x(2% — 3y% + 3);

diese hatten wir in 10.4.20 in Polarkoordinaten angegeben.

14.15 Die Poissonsche Integralformel

Wir beginnen mit einem Beispiel einer harmonischen Funktion:
Beispiel 14.15.1 Es sei

1—(2® +9°)

w RO} =R () Ty

Wir zeigen: Diese Funktion ist harmonisch, denn sie ist Realteil einer holomorphen
Funktion:
Fiir z = 2 + iy # 1 ist namlich

1+z_(1+z)(1—2)_1—z2+z—2_1—\z\2+i 2y
-2z (1-2(1-2  [1—z2  [1—z2 |1-z?
und daher

1+2z 1—|z2
= R = .
u() ‘12 [1—z?

Wir untersuchen die Niveaumengen: Fiir ¢ € R ist u(x, y) = ¢ dquivalent zu
(c+1)z? —2cx+cy> =1—c.

Die Niveaumengen sind also Kreislinien, die alle durch den singulédren Punkt (1,0)
gehen und den Mittelpunkt auf der x-Achse haben. Durch z — E; wird der Ein-
heitskreis E biholomorph auf die rechte Halbebene {z + iy € C| x > 0} abgebildet

( vgl.14.13.10). Wenn die Singularitat der Funktion nicht im Punkt 1, sondern in
1—|z)?

einem Punkt ¢ mit |¢| = 1 liegen soll, ersetzt man z durch Z und erhalt C—af2t

Definition 14.15.2 Sei { € C, |(| = 1, dann heifst die Funktion

C—|—z_1—|z|2
(—z [¢—2?

der zum Einheitskreis E gehirende Poisson-Kern.

P(¢,2) :=Re

Fiir die folgenden Untersuchungen ist es zweckmassig, wieder die Bezeichnung
z* = ! zu verwenden:

Fir z = r-el¥ #£ 0ist 2* = ; = i - el¥. Man erhilt z* , indem man z am
Einheitskreis spiegelt.

Wir benotigen eine einfache Rechnung:
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Hilfssatz 14.15.3 Fiir z # 0, (| = 1,{ # z, gilt:
¢ ¢ 1|2

(—z (-2 (-2
Beweis.Wir beweisen die Ausssage zuerst fiir ( = 1: Es ist

1 1 _ 1,z 1—z4+z-2z 1—|z)?
l—z 1—2¢ 1—-2z 1-2z (A1-2)(1-2 |1-2*

Setzt man nun Z an Stelle von z ein und beriicksichtigt |(| = 1, also {* = (, so

erhalt man die Behauptung. a
Nun sei D eine offene Menge in R2, die vyir auch als Teilmenge von C auffassen;
es sei wieder E := {z € C| |z| < 1} und E := {z € C| |z| < 1}; wir zeigen:

Satz 14.15.4 (Poissonsche Integralform_el) Ist h : D — R eine harmonische
Funktionund E C D, so gilt fiir z =r - e € E:

27 27

h(z) = ' /h( ). P 2)dy = ! /h( ). L— 2" a9
T o ¢ ¢ 27 ¢ leld — 2|27
0 0
also
1 2m 1 B
RN it -r
hlr-e") = 27r/h(e )1—2rcos(19—t)+r2d19'

0

Beweis. Man wihlt R > 1 so, dass Ur(0) C D ist; dann existiert eine in Ug(0)
holomorphe Funktion f mit Ref = h. Fiir |z| < 1ist [2*| > 1, daher

_ 1 f(¢ 1 Q)
1z) = 27 / ¢ — ng’ 27i / ¢—z* d¢=0.
I¢l=1 <=1

Mit dem vorhergehenden Hilfssatz erhalt man , wenn man ¢ = e setzt:

f(z) = 21ri f f(—cz)dc - 21ri f gf_(cz) d¢ =
[¢]=1 [¢]=1

2 2 . .
217r I f©)- |14sz2 . ?CC = 217r Off(e“9) - P(el?, 2)dd.
I¢]=1

Der Ubergang zum Realteil liefert die Integralformel fiir 7 = Ref .
Die letzte Behauptung rechnet man nach:
|eh9 _ 2‘2 — (eiﬂ —r. eit) . (efiﬁ —r. efit) —
=1—7- (D —e 0=y _ 42 =1 — 2rcos(¥ —t) — r2.
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O
Mit der Poissonschen Integralformel stellt man also die Funktionswerte von h durch
die Werte dar, die h auf dem Rand OF annimmt. Es ist naheliegend, mit Hilfe des
Poisson-Kerns P das Dirichlet-Problem fiir den Einheitskreis zu l0sen:

Satz 14.15.5 (Losung des Dirichlet-Problems fiir den Einheitskreis ) st
0:0F - R

eine stetige Funktion und setzt man

2m
— 1 i9y | 1—|Z|2 A ..
h/:E_)R,ZI—) 27 ‘({\Q(e ) lei? —z|2 dd erZGE
0(2) fiir z € OF

so ist h Losung des Dirichlet-Problems fiir den Einheitskreis E zu o, d.h. die Funkti-
on h ist auf dem abgeschlossenen Einheitskreis stetig, in E harmonisch und auf OF
isth = p.

Dass h in E harmonisch ist, ist klar, denn z — P((, z) ist harmonisch und man
darf unter den Integral differenzieren. Auf den ziemlich schwierigen Nachweis der
Stetigkeit von h in den Randpunkten verzichten wir; einen Beweis findet man in [8].

Die Poisson-Gleichung
Wir behandeln nun das Poisson-Problem: Zu vorgegebener Funktion ¢ sucht man
eine Funktion u mit

Au = o

Man rechnet leicht nach (vgl. dazu auch Beispiel 9.6.14), dass fir
h:R*\ {0} = R,z — In ||z,

gilt
o
[E

Nun ergibt sich die Losung des Poisson-Problems fiir Funktionen ¢ mit kompaktem
Trager:

grad h(x) A h(z) =0.

Satz 14.15.6 (Poisson-Gleichung ) Ist o : R? — R eine zweimal stetig differen-
zierbare Funktion mit kompaktem Tréiger und setzt man

1
wiB R | /lnllw—é\l - ol€)de,
]RZ

so ist u zweimal stetig differenzierbar und es gilt:

Au = o.
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Der Satz wird in [8] bewiesen. Wir skizzieren die wichtigsten Beweisschritte, um
die Bedeutug der Greenschen Formel hervorzuheben. Mit ¢ := £ — x ist

1
= In ||t]| - o(t dt.
uw) =, [l ot +)
R2
Man darf unter dem Integral differenzieren und daher gilt fiir A := 68;% + 68;% :

1
(%) Au(z) = o /ln lIt]] - Ao(t + z)dt.
R2
Zu z € R? wihlt man nun R’ > 0 so, dass o(z +t) = 0 fiir [|¢|| > R’ ist. Nun wihlt

man R > R, setzt fir 0 < e < R

A ={teR? e < |t| <R}

und berechnet das Integral (*) durch f e = lin%) f ---. Aus der Greeenschen
R2 e=Pa,
Formel 13.4.7 und 13.4.8 folgt

o o
[l Ao +-0at = [ (el oo+0) - oo+, wle])ds.
A OA.

Bei der Integration liber A, ist zu beachten, dass der Integrand auf ||t|| = R ver-
schwindet; bei der Integration iiber ||| = ¢ ist die dussere Normale beziiglich A,
gleich — Hil\ . Beim ersten Summanden

0
/ In ||t]| - aVg(:lﬂ-i—t)dS
A

kann man das Integral durch ¢ In ¢ abschatzen und dies geht fiir e — 0 gegen null.
Beim zweiten Summanden rechnet man aus
. ) — T o(z+t) _
shgé@j{g o(xz +1t)- 5 Inlt]|dS ;%Htuf:g RS
2m
=— lirr(l) J o(z1 +¢e-cosp, s +e-sinp)dp = =27 - o(x).
e—0

Daraus folgt:

O
Mit der Gleichung (*) ergibt sich:

Satz 14.15.7 Ist o : R? — R eine zweimal stetig differenzierbare Funktion mit
kompaktem Triiger, so gilt fiir v € R?:

ola) = o [lla =€l Ao

R2
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Ubersetzt man dies in den Kalkiil der Distributionen, so ergibt sich:

Satz 14.15.8 (Grundlésung zu A ) Setzt man
1
: R? R 1
BB\ {0} — Ryt nle],
so ist die Distribution Ty, eine Grundlosung zu A, also
ATy, = 6.

Beweis. Ist ¢ : R? — R eine beliebig oft stetig differenzierbare Funktion mit
kompaktem Trager, so gilt nach dem soeben bewiesenen Satz

2(0) = / h(t) Ag(t) dt.
R2

Esist also () = p(0) = Th(Ap) = (AT}) () , also § = ATy, O
Fiir ¢ € D(R?) erhilt man eine Losung der Poisson-Gleichung Lu = ¢ durch

1
u(w) =, [lle =l o(0)
R2

also
u="Ty*xp="hxp.

Greensche Funktion zu A
Wir behandeln nun die Greensche Funktion zum Differentialoperator

0?02

A =
Oz? * 03

In 12.4.1 und 12.5.1 hatten wir den Begriff der Greenschen Funktion zu einem Dif-

ferentialoperator L = ag+ a3 d[i; + dff; definiert. Nun fiihren den Begriff der Green-
schen Funktion zum Differentialoperator A ein, die auf dem Rand eines gegebenen
Gebietes D C R? verschwindet; wir fassen dabei auch D C C auf und identifizieren
(z,y) mit z = z + 4y und (§,n) mit { = £ + in.

Definition 14.15.9 Es sei D C R? ein Gebiet; eine Funktion
G:{(z,()eDxD|2#(} —R
heifst Greensche Funktion zu A und D, wenn fiir alle { € D gilt:

(1) G(-,¢): D\ {¢} = R,z G(z,Q), ist stetig und in D \ {C} harmonisch,
(2) G(z,¢) =0 fiirz € 0D,
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(3) es gibt eine harmonische Funktion h(-,() : D — R,z — h(z,(), so dass fiir
z € D\ {¢} gil:

G(::0) = =, W=l +h(z,0)

Bemerkungen. Die Bedingung (1) bedeutet, dass G in z # ¢ der Differentialglei-
chung AG(-,¢) = 0 geniigt; (2) ist die Randbedingung und (3) besagt, dass G in
z = ( eine logarithmische Singularitat hat: die Funktion

1
z»—>G(z,C)—|—27T1n|z—(\

ist in den Punkt ¢ hinein harmonisch fortsetzbar.

Es ist zweckmassig, zu G eine Funktion H einzufiihren, deren Definitionsbereich
ganz D x D ist: Es sei

o h(z,¢) fir zeD
HDXDHR7(27C)'_){21‘”1nz—C| fllr ZG@D

Es gilt fur jedes ¢ € D:

(1) H(-,¢) ist stetig in D und harmonisch in D,

2) G(2,¢) = H(2,() — 5, In|z — ([ fiir 2 € D\ {¢}.

Wenn man zeigen kann, dass es (genau) ein H gibt, gilt entsprechendes auch fiir G.
Damit ergibt sich;

Satz 14.15.10 Auf einem beschrinktem Gebiet D gibt es hochstens eine Greensche
Funktion G zu A. Wenn im beschrinktem Gebiet D jedes Dirichlet-Problem losbar
ist (z.B. wenn D glatten Rand hat), dann existiert genau eine Greensche Funktion.

Beweis. Fiir ( € D ist z — H(z, () Losung des Dirichlet-Problems zur Randwert-
funktion o(z) = . In|z — ¢|. Daraus folgt die Behauptung. O
Es gilt nun:

Satz 14.15.11 Es sei D ein beschrinktes Gebiet mit glattem Rand und G die Green-
sche Funktion zu A und D ; dann gilt:
Ist o : D — R stetig und in D beliebig oft differenzierbar, so gilt: Setzt man

u:D—R,z+— — /G(Z,C)SO(OdCa
D

so ist u stetig, in D beliebig oft differenzierbar und es gilt:

Au=¢ inD und uw=0 aufdD.
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Beim Beweis dieser Aussage differenziert man wieder unter dem Integral , weil H
harmonisch ist, erhalt man:

D= = [ AG(2,Qp(Q)AC = = [ A(H(z,0) = Jinlz = ([} - 9(C)dC =
D D

o | Alln]z = () - 2(Q)d¢
D

Wie in 14.15.6 ergibt sich daraus die Behauptung.

Wir wollen nun die Greensche Funktion G' zu A zum Einheitskreis £ angeben.
Offensichtlich ist 1
G(z,0) = _ 1In|z|,
27

denn diese Funktion hat im Nullpunkt eine logarithmische Singularitat und ver-
schwindet fiir |z| = 1. Die Abbildung

EF—-F, z— 26
1—-(z

ist biholomorph und bildet OF auf OF ab ; ausserdem gilt ( — 0. Daher ist

z=¢
1—- (=2

1

Gz 0) =,

ln’

die gesuchte Funktion.

Satz 14.15.12 (Greensche Funktion zu A und E) Die Greensche Funktion zu A
zum Einheitskreis E ist (mit (* =1/ ( ):

z—C 1 1
In|z — " 1 .
o nfs— ¢+ Inlc)

1

2

Die in der Definition der Greenschen Funktion vorkommende Funktion h ist also in
diesem Beispiel

1 o1
Hz0) = ) Ils= ¢+ .

1 o1
Mz Q)= ) Ilz= ¢+ Inld,

wegen |(*| > 1ist z — h(z, ) im Einheitskreis harmonisch.
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Aufgaben

14.1. Geben Sie zu vorgegebenem Realteil u eine holomorphe Funktion f : C — C an:
A ulzy) =2zy+a b ulwy)=2ay+a® o ulwy) =" -y -y

14.2. Bestimmen Sie bei den folgenden Funktionen den Typ der isolierten Singulatitit im
Nullpunkt:

2 1 1 1
a) z b) z-sin )

er —1—2 sin z sin

14.3. Berechnen Sie folgende Integrale (r > 0):

d
a) f |Z|dZ b) f Iz‘dz C) f 22—4Zz+3
|z|=r |z|=r |z]=2
d dz z2+7z4798z7d z2+5 2 d
) f 22—-42z+3 e) f 29 z f) z—2 z
|z|=5 |z]=1 |z|=3
+oco a “+oo 24 “+oo 3q
fa. zdx z dx z°dx
14.4. Berechnen Sie:a) [ wi ,b) g o f Sat1-
—o0 —o0 —o0

14.5. Sei D C Cund sei vy : [0, 1] — D eine Kurve. Zeigen Sie, dass (—v) + + in D null-
homotop ist. (Hinweis: Eine Homotopie erhilt man, wenn man auf « immer friiher umkehrt.)

14.6. a) Zeigen Sie:
Es gibt keine holomorphe Funktion f : C — C mit (f(2))?> = z fiiralle z € C .
b) Gibt es eine holomorphe Funktion f : C* — C mit (f(z))? = z fiir 2 € C* ?.

14.7. Zeigen Sie: Jede positive harmonische Funktion » : R? — R ist konstant.

14.8. Seien b, ¢ € R und d := 4¢ — b*> > 0. Berechnen Sie

oo
dz .. dz
a) / 2 b e fiir r # /c, b) /:c2+ba:+c'
|zj=r “oo

27

14.9. Berechnen Sie (mit der Substitution z = eit) : 24sint
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Einfiihrung in die Funktionalanalysis

15.1 Zielsetzungen. Einfiihrende Bemerkungen

Das Ziel dieses Abschnitts ist die Untersuchung linearer Abbildungen, sogenannter
linearer Operatoren, in Vektorraumen unendlicher Dimension. Solche Vektorraume,
die fiir die Anwendungen interessant sind, werden durch Funktionenraume geliefert,
etwa Lo ([a, b]) oder Lo (£2), £2 C R™ offen. Diese Rdume hatten wir in 10.3.4 ken-
nengelernt. Dabei handelt es sich um Hilbertraume, die in 10.4 behandelt wurden.
Die linearen Abbildungen, die uns in erster Linie interessieren, sind Differentialope-
ratoren wie sie etwa in 12.6 (Sturm-Liouville-Operatoren oder A) eingefiihrt wur-
den. Wie schon in der linearen Algebra ist das Spektrum eines linearen Operators
Hauptgegenstand unserer Untersuchungen. Eine charakteristische Schwierigkeit bei
Differentialoperatoren besteht darin, dass sie, im Gegensatz zu den Abbildungen
der linearen Algebra, nicht auf dem ganzen zu Grunde liegenden Funktionenraum
erklart sind. Wir umgehen diese Schwierigkeit, indem wir mit der zum Differential-
operator gehorenden inversen Abbildung arbeiten, vgl. 12.6. Dazu brauchen wir die
Greenschen Funktionen, auf deren Konstruktion wir in 12.4, 14.15.10 einige Miihe
verwandt haben. Was man mit dem Spektrum eines Differentialoperators anfangen
kann, haben wir bei der Losung der Wellengleichung in 12.6.9 gesehen (Gleichung
der schwingenden Saite).

Es bereitet keine Miihe, den Begriff des Spektrums im etwas allgemeineren Rahmen
des Banachraums einzufithren und einige einfache Konsequenzen zu ziehen. Daher
gehen wir diesen Weg. Gegeniiber dem Hilbertraum weist der Banachraum eine
weniger reichhaltige Struktur auf, da es sich bei ihm zwar um einen vollstandigen
normierten Vektorraum handelt, jedoch das Skalarprodukt und damit der Begriff
der Orthogonalitat fehlt. Charakteristische Beispiele fiir Banachraume sind etwa
C%([a, b]),C([a, b]),C?([a,b]), - - . (vgl. Beispiel 15.7.1).

Primir arbeiten wir jedoch in Hilbertraumen H iiber C mit Skalarprodukt < , >,
etwa Ls([a,b]) oder Lo(£2), die zudem stets eine Hilbert-Basis ¢1, 2, ... (man
bezeichnet sie auch als vollstandiges Orthonormalsystem (VONS))besitzen. Daher
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1aBt sich jedes f € H in eine Fourier-Reihe

F=>" feen
h=1

mit den Fourier-Koeffizienten f, =< f, ¢ > entwickeln. S. hierzu 10.4.21.
Ist M C 'H ein abgeschlossener Teilraum von H, so ist

H=MaeM?"
mit einer eindeutig bestimmten Zerlegung
Hou=u +us, ug €M, us € M=+

(Satz von der orthogonalen Projektion 10.4.6).

Das aus 7.9.14 bekannte Orthogonalisierungsverfahren von E. Schmidt 1a83t sich
auf Hilbertraume H iibertragen. Damit erhalt man Orthonormalfolgen und unter
geeigneten Voraussetzungen eine Hilbertbasis.

15.2 Beschrinkte lineare Funktionale

Definition 15.2.1 Seien V, W ein normierte Vektorrdume; eine lineare Abbildung
AV — W heifit beschrankt, wenn ein ¢ > 0 existiert mit

AN < ellfl firalle feV.

Statt A(f) schreiben wir auch Af. Fiir eine lineare Abbildung A definieren wir
weiter

A
14l = swp M G jagl.

revvioy 1A jap=

|A|| = 4o ist zugelassen.

A ist genau dann beschrinkt, wenn || A|| < oo ist.
Zunachst beweisen wir eine einfache Aussage:

Satz 15.2.2 Seien V,W normierte Vektorrdume und A : V. — W eine lineare
Abildung. Die Abbildung A ist genau dann stetig, wenn A beschrdnkt ist.

Beweis. a) Sei A beschrénkt: ||Az|| < ¢||z| firz € V.Zuv € V und € > 0 wihlt
man 0 := 5 . Aus ||z — v|| < ¢ folgt dann :||Az — Av|| < c|lz —v| < b < e
Dabher ist A in v stetig.

b) Sei A stetig (in 0); dann existiert zu e = 1 ein 6 > 0 mit ||Ay|| < 1 fiir ||y|| < 4.

Istz € V,x # 0, s0 setzt man y := QH‘in. Dannist || Ay|| < 1, also ||Az|| < 3 ||z||
und mit ¢ := g folgt, dass A beschrinkt ist. O
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Wir zeigen nun : Ist V ein endlichdimensionaler Vektorraum iiber C mit Norm ||. ||
und (by, ..., b,) eine Basis von V, so konvergiert eine Folge (v); in der Norm
genau dann gegen v € V, wenn die Koeffizienten in den Basisdarstellungen dies
tun. Damit folgt, dass jede lineare Abbildung A : V' — C von selbst stetig ist. Im
unendlichdimensionalen Fall liegen die Verhaltnisse jedoch anders, wie wir noch in
15.6 genauer sehen werden. Die Stetigkeit von A ist eine besondere Eigenschaft .
Wir zeigen zuerst ( vgl. dazu [18]):

Hilfssatz 15.2.3 Ist V ein normierter Vektorraum und sind by, . ..,b, € V linear
unahhdngig, so gibt es ein ¢ > 0, so dass fiir alle x1, . .., z, € R gilt:

n n
Do lasl < el abll.
j=1 j=1

Beweis. Die Menge M := {z € R"| )" |z;| = 1} im R" ist kompakt und daher
j=1

n
nimmt die stetige Funktion M — R,z +— || > z,b;||, das Minimum m > 0 an.

j=1
Weil die by, . . ., by, linear unahhangig sind, ist m > 0; also
I wbsllzm >0 fir 3ol =1,
i=0 =

n n
Seinunz € R", 2 # 0,und s := Y |2;|. Dannist } |*’| = 1 und daher
j=1 j=1

n
oy
IR EYE
j=1
setzt man ¢ := nlw so folgt

n
s<e | bl
j=1

O
Der Hilfssatz besagt: Ist (b1, ...,b,) eine Basis von V, so existiert ein ¢ > 0, so
n

dass firv = ) x;b; gilt:
j=1

n
> sl <ol
j=1

Daraus folgt, dass bei endlich-dimensionalen normierten Vektorraumen Konvergenz
gleichbedeutend mit komponentenweiser Konvergenz ist:
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Satz 15.2.4 Sei V ein endlich-dimensionaler normierter Vektorraum, sei (Vi )keN)
eine Folge in V und v € V. Ist dann (by,...,b,) irgend eine Basis in V, und ist

v =Y x; by, v= ) x;b;, sogilt
j=1 j=1

lim vy, =v genau dann, wenn  lim x§k) =z; (j=1,...,n).

k—o0 k—oo

Beweis. Aus lim v, = v und

k—o0
n
k

>l ] < e o — v

j=1
folgt

kli)rgoxg ) =z;, (=1,...,n).

Die umgekehrte Richtung rechnet man leicht nach. O

Daraus ergibt sich:

Satz 15.2.5 Ist V ein endlich-dimensionaler normierter Vektorraum, so ist V ein
Banachraum und jede lineare Abbildung V' — W in einen normierten Vektorrraum
W ist stetig.

Beweis. a) Es sei(vg ) eine Cauchy-Folge in V. Wir wéhlen eine Basis (b1, . .., b,)
in V; fiir k, m € N ist (mit den Bezeichnungen des vorhergehenden Satzes )

n

k
Y12 — ™| < e flog — vl
j=1

Daher ist jede Folge (xgk) ). eine Cauchy-Folge, die wegen der Vollstédndigkeit von
R gegen ein x; konvergiert. Somit konvergiert (vy), gegen > x;b;.

j=1
b) Sei A : V' — W linear; wir wihlen wieder eine Basis (b1,...,b,) in V ; es gibt
ein r > 0 mit

|AbL|| < 7oy || AD|| <

Firv = ) x;b; € V ist dann nach 15.2.3
j=1

n n n
[Avll = || Y a;(Ab)| <7D fagl <vec- || D wpbil =r-c-lvll;
j=1 j=1 j=1

daher ist A beschrinkt. O

Wir gehen nun auf normierte Vektorraume, vor allem Hilbertraume, die auch un-
endliche Dimension haben diirfen, ein.

Zuerst geben wir ein einfaches Beispiel fiir eine unbeschrankte, also unstetige linea-
re Abbildung an:



15.2 Beschrinkte lineare Funktionale 471
Beispiel 15.2.6 Essei I := [0,27] und V' := C°°(I) mit der Supremumsnorm
Wfllr = suII)|f(x)| fir feV.
TE

Wie in Beispiel 6.1.1 sei fiirn € N

1,

hyn: I —-R,z— sin(n‘z).
n

Es ist . d
hn = , hn =n;
Vnllr =0 g Pallr =

daher konvergiert (h,,) gegen 0, aber (h],) nicht. Somit ist die lineare Abbildung

d d
da:'V_)V’f'_}dxf

unstetig.

Wir behandeln nun komplexe Hilbertraume H und lineare Abbildungen H — C,
die man in der Funktionalanalysis auch Funktionale nennt.

Definition 15.2.7 Eine lineare Abbildung A : H — C bezeichnet man auch als
lineares Funktional.

Ein Beispiel fiir ein stetiges oder beschranktes lineares Funktional in einem Hilber-
traum H erhélt man, indem man zu einem festen Element g € H die Abbildung A
durch

Af =<f9> feH,
festsetzt. Nach Cauchy-Schwarzist | < f,g > | < ||g] || f|| und somit ||A]| < ||g]|-
Der folgende Darstellungssatz von Riesz-Fréchet (FRIGYES (FRIEDRICH) RIESZ

(1880 -1956 ), RENE MAURICE FRECHET (1878-1973)) zeigt, dass man damit
auch alle stetigen linearen Funktionale erfaf3t hat.

Satz 15.2.8 (Darstellungssatz von Riesz-Fréchet) Sei A ein beschrdnktes lineares
Funktional im komplexen Hilbertraum H. Dann gibt es genau ein g € 'H mit

Af =< f,g> fiiralle fé€H.

g heift das erzeugende Element von A; es ist ist || A|| = ||g]|.

Beweis. Es ist leicht zu sehen, dass es hochstens ein derartiges g gibt: Wenn auch
g1 diese Eigenschaft hat, dann gilt < f,g — g1 >= 0 fiir alle f € H; setzt man
f =g —g1ein,sofolgt < g —g1,9 — g1 >= 0, und daherist g — g1 = 0.

Nun zeigen wir die Existenz von ¢ und diirfen A # 0, also Ker A # H annehmen.
Weil A stetig ist, ist Ker A abgeschlossen und aus dem Zerlegungssatz 10.4.5 folgt

H = (Ker A) @ (Ker A)*.
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Daher existiert ein h € (Ker A)L mit ||k|| = 1. Nun setzen wir ¢ := A(h) . Dann
gilt fiir jedes f € H:
Al f = A(f)-h) = c- A(f) = A(f) - A(h) = 0,
alsoistc- f — A(f)-h € Ker A. Wegen h € (KerA)~ folgt:
0 =< cf-A(f)h,h>=< cf,h >—-A(f) <hh>=< f,ch>—-A(f),

somit A(f) =< f,¢-h>; nunsetztman g:=¢-h.
Aus der Cauchy-Schwarzschen Ungleichung | < f,g > | < || f] - |lg|| folgt, wie
schon oben erwihnt, ||A|| < |lg||; aus Ag =< g,g9 >, also ||‘g’h| = |\g||, folgt

1AL = Tlgll- O

Beispiel 15.2.9 Sei H = LS (R™) und A ein stetiges lineares Funktional. Dann gibt
es also genau ein g € LS(R™) derart, dass

M:/mm
R’VL
ist fiir alle f € LS(R").

In 7.12 hatten wir zu einem Vektorraum V' den Dualraum V* aller linearen Ab-
bildungen V' — R eingefiihrt. Bei einem Hilbertraum H betrachtet man nun den
Vektorraum H’ der stetigen oder beschrinkten linearen Funktionale, der durch
15.2.1 normiert ist. Die Abbildung J, erklart durch

A — g = erzeugendes Element von A,
bildet H nach 15.2.8 normtreu auf ' ab. Es ist
J(A1 + As) = J(A1) + J(A2), J(AA) = M\J(A), X € C.

J ist also nur fastlinear, oder wie man sagt, antilinear. Auf Grund der eben ein-
gefiihrten Abbildung J identifiziert man meist H mit seinem Dualraum und sagt, H
sei zu sich selbst dual.

15.3 Lineare Operatoren in 7, die Fourier-Transformation

Nah verwandt mit den linearen Funktionalen in H sind die linearen Operatoren in
‘H. Sie bilden einen Teilraum von H oder ganz H in ‘H ab. Insbesondere brauchen
Sie also nicht im ganzen Hilbertraum erklart zu sein und ihr Wertebereich wird im
allgemeinen unendliche Dimension besitzen. Naheres wird aus den Beispielen klar.
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Definition 15.3.1 Sei H ein Hilbertraum, D ein Teilraum von H mit D # {0}. Ein
linearer Operator (lineare Transformation) 7" in H ist eine lineare Abbildung

T:D—™H,

D = D(T) heifst Definitionsbereich von T, T(D(T)) = R(T) heifpit Wertebereich
von T

Wie man sofort sieht, ist R(7) ebenfalls ein Teilraum von H.
Wir bringen einige Beispiele:

Beispiel 15.3.2 Sei H = Ly([a,b]), D = C°([a,b]). Sei K : [a,b] x [a,b] — C
stetig, etwa die Greensche Funktion zu einem Sturm-Liouville Operator wie in 12.6.
Dann ist fiir f € D das Bild von f unter T erklért durch

b
=/meﬂw@

T f ist offenbar stetig, also insbesondere aus Lz ([a, b]), und 7T ist linear.

Beispiel 15.3.3 Sei H = Ly({2), 2 C R”™ offen und beschrénkt. Sei D = H. Sei
K € Lo(2 x §2). Nach dem Satz von Fubini 10.2.6 ist fir fast alle z € (2 die
Funktion K (z,.) aus Lo({2). Fiir f € Lo({2) ist somit die Funktion

z)= | K(z,y)f(y)dy )
/

wohldefiniert. Wegen

//mmwwmwmswm//mmm%mme@

2 N N N

ist nach dem Satz von Tonelli 10.2.7 die Funktion T'f aus L4 ({2). Dariiberhinaus
gilt

T kay y) dyl? < ﬂKMW@mmm

und durch Integration beider Seiten tiber {2 folgt

1T fll Loy < 1K Lo@x ) fllLa(2)- 2

Insbesondere ist T'f € Lo({2) und wir haben mit (1) einen auf ganz H erklérten li-
nearen Operator in H definiert. 7" heift Integraloperator vom Hilbert-Schmidtschen
Typ, K Hilbert-Schmidt Kern. Auch Kerne vom Hilbert-Schmidt Typ sind uns schon
begegnet. Sei {2 = E der offene Einheitskreis der komplexen Ebene, also des R?. In
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14.15.10 hatten wir die Greensche Funktion G zu A konstruiert. In der komplexen
Schreibweise war

z=C
1- 3¢

)

1
G(z,() = o log‘

so dass jetzt fiir x das Symbol z und fiir y das Symbol ¢ stehen. Thre Integrierbar-
1/2
=t T imExE

mit einer von z, { unabhangigen Konstante, also (¢ = £ + in)

keitseigenschaften ist wegen |1 — z(| > |z — ([, In

/|G<z,<>|2dfdn < zeE,
E

mit einer von z unabhangigen Konstante (vgl.10.2.9 und 10.2.10.) Demnach ist der
Integraloperator

(Gh) (=) = / (G(= O)F(C) de di

E

vom Hilbert-Schmidtschen Typ. Er invertiert — A unter der Randbedingung u(z) =
0, z € OF (s. Satz 14.15.10). Offenbar ist der Integraloperator des ersten Beispiels
insbesondere vom Hilbert-Schmidtschen Typ, praziser: Mit Hilfe unserer Erkennt-
nisse aus dem gegenwirtigen Beispiel konnen wir ihn auf ganz Lo([a, b]) fortsetzen.
Wir werden in Satz 15.3.5 sehen, dass die beschrankte Fortsetzung auf eine und nur
eine Weise geschehen kann und somit 7" durch Festlegung auf den stetigen Funktio-
nen C°([a, b]) bereits vollig bestimmt ist.

Beispiel 15.3.4 Sei H = La([a, b]). Sei
D =D(L) = {ulu € C*([a,b]) u(a) = 0, u(b) =0}

Sei weiter
Lf=pf) +af, feD(L)

mit Koeffizientenfunktionen p € C1([a,b]), p > 0, ¢ € C%([a,b]), so dass L der
aus 12.6 bekannte Sturm-Liouville Operator ist. Offenbar ist L linearer Operator in

H.

Wir wollen nun die angefiihrten Beispiele darauf untersuchen, ob sie beschrankte
Operatoren liefern.
Zu Beispiel 15.3.2: Es ist H = La([a, b]) und fiir f € D(T) ist

ITfl < Vb—allTfllcoqas) < Vb—a sup |K(xy)|IfllLas) <

z,y€la,b]

<(b—a) sup [K(z,y)-[f]
z,y€la,b]
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Demnach ist T" beschrankt und aufierdem folgt | T|| < sup |K(z,y)|- (b— a).
z,y€la,b]

Zu Beispiel 15.3.3: Hier haben wir bereits gezeigt, dass 1" beschrankt ist und, dass

1T < K|y (2x02)

gilt. Natiirlich erlauben die Rechnungen zu diesem Beispiel auch den Schluf}, dass
der Operator T" aus Beispiel 15.3.2 beschrankt ist. Da die Argumentation im zweiten
Beispiel etwas subtiler als im ersten ist, erhalt man fiir das erste Beispiel auch mehr,
namlich die Schranke

171l < 1K || Lyabix]ab) < Su[p ) |K (2, y)| - (b—a),
x,y€la,

die also scharfer als die vorhin gewonnene ist.

Zu Beispiel 15.3.4: Differentialoperatoren sind grundsatzlich nicht beschrankt, also
nach 15.2.2 auch nicht stetig. Invertieren wir jedoch den Operator L, so erhalten
wir nach 12.6 einen Operator gemafl Beispiel 15.3.2. K ist dann die Greensche
Funktion. Dass Differentialoperatoren nicht beschrankt sind, sehen wir am Beispiel
des Sturm-Liouville-Operators L mit

Lf=f",  fir feD(L)={uecC?*0,7])| u(a)=u(b)=0}.
Fiir die Eigenfunktionen sin kz, k € N, zu den Eigenwerten k2 gilt also

||L sin kl"|L2(]0m[) _ k2
Isin k|, (jo,n) ’

so dass L nicht beschrankt sein kann.

Wir erinnern zunachst an den Begriff des dichten Teilraums aus 9.1. Offenbar liegt,
wie die Beispiele 15.3.2 und 15.3.3 zeigen, in der Auswahl des Definitionsbereiches
D(T) eine gewisse Willkiir. Falls T" beschrankt und D(T') dichter Teilraum von
H st ist diese Willkiir nur scheinbar. Man kennt dann in Wahrheit den Operator
T sogar auf ganz H. Dies zeigt

Satz 15.3.5 (Fortsetzung durch AbschlieBung) Sei T ein beschiinkter linearer
Operator in 'H mit Definitionsbereich D(T);D(T) sei dichter Teilraum von 'H .
Dann hat T eine und nur eine beschrinkte Fortsetzung T auf H. Es ist | T'|| = ||T).

Beweis. Wir setzen D := D(T"). Weil T beschrénkt ist, existiert ein ¢ > 0 mit
|ITz|| < c-||z|| firallez € D.

Nun sei © € H; wegen D = H existiert eine Folge (x,,) in D, die gegen x konver-
giert. Wegen
HTxn - TJ?mH S CH.I‘n — .Z‘mH

ist (T'z,,) eine Cauchyfolge , die also gegen ein Element T'(x) € H konvergiert.
Ist auch () eine Folge in D, die gegen = konvergiert, so ist lim(z,, — 2}) = 0
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und daher auch lim(T'z,, — Tx!,) = 0. Somit ist die Definition Tz := lim Tz,
unabhiingig von der Wahl der Folge (,,) und wir haben eine Abbildung 7" : H — H
sinnvoll definiert, die auf D mit 7" iibereinstimmt.

Wir zeigen: T ist linear:

Zu z,y € H wihlt man Folgen (z,,), (y,) in D, die gegen x bzw. y konvergieren.
Dann ist

Tz +py) = m T Az, +pyn) = Aim T (z,) 4+ plim T (y,) = AT (z) +uT (y).

Aus ||Tzy|| < ||T|| - ||zn|| fir z, € D folgt |T(x)| < ||T|| - ||=|| fir z € H.
Daraus folgt ||T|| = ||T|.

Weil es zu jedem x € H eine Folge (x,,) in D gibt, die gegen x konvergiert, ist die
stetige Fortsetzung von T" auf H eindeutig bestimmt. a

Beispiel 15.3.6 In 10.5 hatten wir die Fourier-Transformierte einer Funktion

1 —izy
TN@= / 1) dy

fir f € L1(R), also insbesondere fiir f € C§°(R) erklért. Aus dem Dichtesatz
12.1.21 wissen wir schon, dass C§°(R) dichter Teilraum von Lo (IR) ist. Man kann
nun zeigen, dass

ITf oy = 1 f oy, fe C5°(R)

gilt. Daher erlaubt 7" nach Satz 15.3.5 eine und nur eine beschrinkte Fortsetzung T
auf Ly (R), die offenbar zudem noch die Eigenschaft

ITfllLa@) = £l Lar)

besitzt. T erhilt also die Norm von Lo(R). Jedoch kann man T'f, f € Ly(R), nicht
mehr so einfach hinschreiben wie oben, da |e?*" f(.)| nicht mehr iiber R integrierbar
zu sein braucht, wenn f “nur” aus Lo (R) ist, vgl. das Ende von 10.3. Erkléren wir
die n-dimensionale Fourier-Transformierte einer Funktion durch

1 —i<z,y>
THE= e Je=r i

Rn

zunidchst fiir f € Lq(R™), also insbesondere fiir f € C5°(R™), so gelten zum Fall
n = 1 vollig analoge Aussagen, also z.B.

T(f+g)=Tf -Tgmit f,g € L1 (R"),

e /fx—

ITfllLany = £l oy, f € L2(R™).
Hierzu siehe auch die Aufgaben 15.2-15.5.

und
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Zum Auffinden weiterer Eigenschaften der Fourier-Transformierten ist es guinstig,
den Begriff des zu einem in ‘H erklarten beschrankten Operator 7" adjungierten Ope-
rators 7 heranzuziehen; aus der linearen Algebra 7.12.10 ist bereits der Begriff der
adjungierten Abbildung bekannt:

Satz 15.3.7 Sei ‘H ein Hilbertraum und T ein beschrdnkter Operator in 'H mit
D(T) = H. Dann gibt es einen und nur einen Operator T* in H mit D(T*) = H
und

<Tx,y>=<ux,T"'y >, z,y € H.

T* ist beschrankt, es gilt ||T*|| = ||T||. T* heifit die Adjungierte zu T oder der zu
T adjungierte Operator. Aufserdem gilt

Beweis: Wir beschranken uns auf die Hauptidee des Beweises. Sie besteht in der
Anwendung von Satz 15.2.8 (Satz von Riesz-Fréchet). Sei y € H fest aber beliebig.
Dann ist

Ayx :=<Tx,y >

wegen |Ayz| < [|[Tz| ||yl < [|T|| ly|| ||z|| ein beschrinktes lineares Funktional in
Hmit || Ay|| < ||T| ||ly||- Also existiert genau ein y* € H mit

Ayr =<Tz,y >=<z,y* >.

T ist dann erklart als die Abbildung y — y*. a
Das entscheidende Kennzeichen der Adjungierten ist es also, dass man mit ihrer
Hilfe T' vom ersten Faktor im H-Skalarprodukt auf den zweiten abwalzt. Vermoge
partieller Integration 1aft sich dies auch mit (unbeschrankten) Differentialoperato-
ren tun. Genauere Erlauterungen liefern die folgenden Beispiele.

Beispiel 15.3.8 Sei H = L3(£2), 2 C R™ offen und beschrinkt, K ein Hilbert-
Schmidt Kern, also aus Lo ({2 X {2). Vermoge

[ K@wiwan @ as= [ 1) [ K@ dray
2 N (] (93

ist der zu einem Integraloperator 7' vom Hilbert-Schmidtschen Typ adjungierte Ope-
rator T durch

(T*9)(y) = / K(z.y)g(z)dz, geH,
2

gegeben und somit selbst vom Hilbert-Schmidtschen Typ.

Beispiel 15.3.9 Die Fourier-Transformierte 7" in H = Lo(R™) besitzt nach Satz
15.3.7 eine (und nur eine) Adjungierte 7'*. Sie ist auch beschrankt. Wahlen wir in
5. f,g € C§°(R™), so lassen sich wortlich dieselben Rechnungen mit K (z,y) =
( \/1%) e~ ™Y gusfithren und wir erkennen, dass
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1 .
<thg>= [ 1), . [ o< gl dray
(V2m)"
R’!L R’!L
ist. Gleichzeitig gilt
<Tf,g>=<fT"g>
Da C§°(R™) nach 12.1.21 dichter Teilraum von H ist, folgt, indem wir ein be-

liebiges f € H durch C§°(R™)-Funktionen approximieren, mit der Stetigkeit des

Skalarprodukts (s. 10.4.3), dass
<f7 n /ei<'7zg(1') dx_T*g >=0,
R’!L

1
(v2r)

also

T = / @<V g(r)dr, g € CF(R™),

(vamy J

ist, sofern wir nur schon wissen, dass (1/(v27)") [ e<+*>g(z)dz in La(R")
RTL

liegt. Wegen

1

(v/2m)n

Jeraman= o et de = Tow)

R™ R™

ist dies tatséchlich der Fall. Nutzen wir wieder aus, dass C§°(R"™) dichter Teilraum
von H ist, so folgt aus (15.3.5,15.3.7) noch

1Tl = ITgll = ITgll = llgll, g € H,

so dass also auch 7™ die Norm erhalt. Auf Grund der Umkehrformel 10.5.2 wird
man vermuten, dass 7 der zu T inverse Operator ist. Auf diesen Zusammenhang
gehen wir im folgenden Paragraphen ein.

Beispiel 15.3.10 Betrachten wir Differentialoperatoren
L.= )" ba(z)D*
la|<k

der Ordnung & mit unendlich oft stetig differenzierbaren reellen Koeffizientenfunk-
tionen b, in H = Lo (R™) und setzen wir D(L) = C5°(R™). Der Operator

T* = Y (=)l D(ba(x).)
loe| <k

heiflt der adjungierte Operator und ist formal dadurch gekennzeichnet, dass im
Lo(R™)-Skalarprodukt < , > gilt

< Ly, p >=< ¢, LY >, 9,9 € C°(R").

Auf eine mathematische Prazisierung des Begriffs der Adjungierten fiir nicht tiberall
erklarte Operatoren miissen wir hier verzichten.
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Definition 15.3.11 : Sei H ein linearer Operator in H mit Definitionsbereich
D(H). D(H) sei dichter Teilraum des Hilbertraums H. Fiir alle f,g € D(H) sei

<Hf,g>=</fHg>.

Dann heifpit H hermitesch. Ist D(H) = H , so bezeichnet man H als selbstadjun-
giert.

Bemerkung. Ist H hermitesch mit D(H) = H, so ist H beschrinkt.

Beispiele:

Beispiel 15.3.12 Die Sturm-Liouville Operatoren aus Beispiel 15.3.4 sind hermi-
tesch; L aus Beispiel 15.3.10 ist hermitesch, wenn fiir alle Multiindizes p € R™ mit
|p| < k gilt:

> (=1l (2‘) DY by (x) = b,(z), € R" :

a,a>p,
|| <k

esist D(L) = D(L*) = C§°(R™). So ist A hermitesch.

Beispiel 15.3.13 Der Projektor
Pu : H —U

auf einen abgeschlossenen Teilraum I/ eines Hilbertraums (s. 10.4.6) ist hermitesch
mit D(Py) = H. Fiir weitere Beispiele s. den Anfang von 15.9, 15.10.1 und die
Beispiele 15.10.5 und 15.10.6.

15.4 Die Inverse eines linearen Operators

Wir erklaren zunachst den Begriff der Inversen eines linearen Operators

Definition 15.4.1 : Sei H ein Hilbertraum, T ein linearer Operator in 'H mit Defi-
nitionsbereich D(T') und Wertebereich R(T"). Die Abbildung T : D(T) — R(T)
sei bijektiv. Die inverse Abbildung T—1 : R(T) — D(T) heift der zu T inverse
Operator T~ 1.

Es ist leicht zu sehen, dass 7'~ ! linearer Operator in H ist mit D(T~1) = R(T),
R(T~Y) =D(T).

Beispiel 15.4.2 Sei L Sturm-Liouville Operator in H = Ly([a, b]) mit Definitions-
bereich D(L) (s. 12.6) Das Problem Lu = 0 besitze in D(L) nur die Losung u = 0.
Dann hatten wir in 12.6.6 den inversen Operator L' konstruiert.

Der folgende Satz bringt ein notwendiges und hinreichendes Kriterium dafiir, dass
der Operator T eine in ganz H erklarte beschrankte Inverse besitzt.
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Satz 15.4.3 (Kriterium von Toeplitz): Sei T' ein beschrinkter linearer Operator im
Hilbertraum 'H. Dann hat'T' genau dann einen in 'H erkldrten beschrinkten inversen
Operator T~ (insbesondere ist dann D(T 1) = R(T) = H), wenn gilt:

1) Es gibtein d > 0 derart, dass ||Tz|| > d||z|| ist, x € H.

2) IstT*x =0, so folgt x = 0.

Beispiel 15.4.4 Man sieht aus Beispiel 15.3.9 sofort, dass die Fourier-Transformierte
T in Ly(R™) eine tiberall erkldrte beschréinkte Inverse hat.

Beispiel 15.4.5 Der Operator T : Iy — o, (an) — (b,) mitby = 0, b, = an—1
fir n > 2, geniigt zwar der Bedingung 1) des Satzes von Toeplitz, aber nicht der

C
Bedingung 2). Offenbar ist R(T) # H = Iz und T kann keine iiberall erklirte
beschrankte Inverse besitzen.

Die Begriffe des linearen Operators und der inversen Abbildung lassen sich leicht
auf Banachraume tbertragen. Wir gehen darauf in 15.7 ein. Ein Satz 15.4.3 ver-
gleichbares Kriterium steht jedoch nicht zur Verfiigung, da der Begriff der Adjun-
gierten im Raum selbst ein Skalarprodukt, also einen Hilbertraum benotigt.

15.5 Unitéire Operatoren

Aus der linearen Algebra ist der Begriff der unitaren Matrix U bekannt ( Definiti-
on 7.11.3) Eine Matrix U = (u;) mit komplexen Koeffizienten heifit unitér genau
dann, wenn ihre Adjungierte mit der Inversen von U zusammenfillt. Beschrankt
man sich auf reelle n x n-Matrizen, so erhalt man die orthogonalen Matrizen. Thre
Realisierung im R™ als lineare Abbildungen sind die Drehungen, die alle Abstande
und also auch das (euklidische) Skalarprodukt im R™ ungeandert lassen. Entspre-
chendes gilt fiir die unitaren Matrizen im Hilbertraum C™. Wir wollen den Begriff
der unitaren Abbildung auf Hilbertraume iibertragen und insbesondere erkennen,
dass die Fouriertransformierte unitir ist in H = Lo(R™). Da die unitéren Abbil-
dungen das Skalarprodukt in A invariant lassen, kann man einen Sachverhalt in H
ebenso gut in der Sprache der Bilder unter einer unitaren Abbildung beschreiben.
Bei der Fouriertransformation spricht man dann vom Fourierbild irgendeiner zu un-
tersuchenden Beziehung in L2(R™). Nun zu

Definition 15.5.1 Sei H ein Hilbertraum. Ein in H erkldrter linearer Operator U
heif3t unitdir, wenn er

1) isometrisch ist, d.h. ||Uz|| = ||z|| und damit < Uz, Uy >=< x,y >, z,y € H,
gilt,

2) surjektiv ist.

Ist U unitar, so ist U bijektiv, U —1 existiert und ist in ganz ‘H erklart. Aus <
Uz, Uy >=< x,y > folgt < 2',y' >=< U~ ta/, U~y >, wenn wir 2’/ = Uz,
y' = Uy setzen. Also ist auch U ™! unitir und man sieht auch leicht, dass die
unitaren Operatoren eine Gruppe bilden.
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Satz 15.5.2 Sei U ein beschrinkter linearer Operator im Hilbertraum H mit D(U) =
‘H. U ist genau dann unitdr, wenn

UUu*=U"U=1d
gilt.
Beweis: Sei U unitar, also < f,g >=< Uf,Ug >=<U*Uf,g >undU*U = Id.
U~ ist ebenfalls unitir, also < f,U*g >=< Uf,g >=< U 'Uf, U g >
=< f,Ulg >und U* = U~L. Damit folgt U(U*) = Id. Ist nun umgekehrt
UU*) = (U*U = Id,sofolgt < U*f,U*g >=< UU*f,g >=< f,g > und
<Uf,Ug >=<U*Uf,g >)=< f,g >. U und U* sind also isometrisch. Nach

Satz 15.4.3 (Kriterium von Toeplitz) ist U* der zu U inverse Operator und es ist
DU 1Y) =R(U)=H. O

Beispiel 15.5.3 Die Fouriertransformierte in Lo (R™). Nach Beispiel 15.4.4 besitzt
die Fouriertransformierte 7" eine in ganz H erklirte beschrinkte Inverse 7~ 1. Nach
10.5.2 und 10.5.3 stimmen 7'~! und T* auf dem dichten Teilraum C§°(R™) von
Lo (R™) iiberein. Nach Satz 15.3.5 stimmen 7'~! und 7* iiberhaupt iiberein. Also
ist nach Satz 15.5.2 die Fouriertransformierte 7" unitar. Nun haben wir in 10.5.2
den Satz uber die Inversion der Fouriertransformation nur fiir n = 1 formuliert
und auch nicht bewiesen. Man kommt auch ohne diesen Satz aus, wenn man aus
Beispiel 15.3.9 die Information ||T*¢g|| = ||g|| verwendet. Wie in 7.11.11 gezeigt
wurde, folgt daraus < T*¢g, T* f >=< f, g >. Dann ist

<TfTg>=<T"'Tf g>,
<T*f,Tg>=<TT*f, g >,

f,g € La(R™) und mit Satz 15.5.2 folgt, dass die Fouriertransformierte unitir ist.

Beispiel 15.5.4 Wir suchen Losungen der Schrodinger-Gleichung

u(t,x) — iAu(t,z) =0, t >0, x € R™,
U(Oa x) = uo(‘r)a

die in Lo(R™) liegen. Die Schrodinger-Gleichung wird fiir jedes ¢ > 0 Fourier-
transformiert und die Fouriertransformierte wie in 10.5 mit ~ bezeichnet. Dann folgt

Oia(t, €) +il¢Pa(t, €) = 0, a(t, &) = e 17t a(8)

so dass wir die Losung im Fourierbild gewonnen haben (Variable &). Ubrigens ist
der Multiplikationsoperator e~i18t in L, (R™) unitr, also auch der durch

T (e I f() = "2, f € La(R")

in Lo(R™) erklirte Operator e*4.



482 15 Einfiihrung in die Funktionalanalysis
15.6 Schwache Konvergenz

Im endlichdimensionalen unitdren Raum C" gilt das Haufungsstellenprinzip von
Bolzano-Weierstraf3 . Ist der Hilbertraum unendlichdimensional, so ist dies nicht
mehr der Fall. Wir bringen ein Beispiel: Sei [y der bereits eingefiihrte Folgenraum.
Fiir ein Element z = (z),) ist || z|| erkldrt durch

]| = ZI%\Q

Sei (z®) mit 2 = (z{¥)) eine Folge in I, mit ||x(k)|| <c k= oo . Wir
sagen, dass die Folge (z(*)) schwach (in L) gegen ein z* = (x ) € konverglert
wenn

x](jk)—>x k — oo.

Die schwache Konvergenz ist also duch die komponentenweise Konvergenz erklart
(Komponenten beziiglich der Hilbertbasis *) = (6,%), k = 1,2,...). Man sieht
sofort, dass auch ||z*|| < cist. In C™ war die komponententweise Konvergenz einer
Folge aquivalent zur Konvergenz in der Norm. Nun ist es anders. Die Hilbertbasis
(0pk). k = 1,2, ..., konvergiert nach dieser Definition schwach gegen Null, obwohl
I 6)ll = L st

Der Wert des Begriffs der schwachen Konvergenz besteht darin, dass sich mit sei-
ner Hilfe das Haufungsstellenprinzip von Bolzano-Weierstrall wenigstens teilweise
in den unendlichdimensionalen Raum hiniiberretten 1at. Im Fall des allgemeinen
Hilbertraums H geben wir die

Definition 15.6.1 Sei H ein Hilbertraum. Sei (x.,,) eine Folge aus H. Man sagt,
(zr,) konvergiert fiir n — oo schwach gegen ein x* € H (in Zeichen v, — z*,
n — 0o), wenn

< Xp,y>—<at,y> n—oo,ycH.

Man kann zeigen, dass jede schwach konvergente Folge (z,,) beschrinkt ist, d.h.
lznll < ¢, neN.

Wenn es ihn gibt, ist der schwache limes offenbar eindeutig bestimmt. Wir kniipfen
an an unsere Bemerkung tiber Orthonormalsysteme in lo. Sei {1, p2,...} ein
abzihlbar unendliches Orthonormalsystem, insbesondere ist also ||¢,] = 1, n =
1,2,.... Fir y € 'H ist dann zufolge der Besselschen Ungleichung 10.4.10

oo
S l<yei> <yl
=1

Insbesondere folgt lim < ¢,,y >= 0, y € H. Damit erhalten wir ¢,, — 0,
n — 0. e

Das wichtigste Resultat im Zusammenhang mit dem Begriff der schwachen Kon-
vergenz ist das folgende Substitut fiir das Haufungsstellenprinzip von Bolzano-
Weierstrafl in Raumen endlicher Dimension.
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Satz 15.6.2 Sei H ein Hilbertraum, sei (x,,) eine beschrinkte Folge in H, d.h.
x|l < ¢,n=1,2,.... Dann gibt es eine Teilfolge (x,;) von (), die schwach ge-
gen ein x* € H konvergiert. Es ist ||z*|| < ¢ mit der bereits eingefiihrten Schranke
c.

Ein Beweis dieses wichtigen Satzes geht liber den Rahmen unserer Darstellung hin-
aus. Jedoch erkennt man aus < z,,, 2* >— [|z*||?, j — oo, und | < zp,,,2* > | <
c||z*|| sofort, dass ||z*|| < cist. Insbesondere fiihrt also die schwache Konvergenz
aus der (abgeschlossenen) Kugel {z| ||z|| < ¢} in H nicht hinaus. Wir verweisen
auf [18].

Aus 10.4.3 kennen wir bereits die Stetigkeit des Skalarprodukts (z,y) in einem
Hilbertraum 7 bei (starker) Konvergenz der Faktoren in H, d.h.

Typ — xinH, n — o0, Yy, — yin'H, n — oo impliziert

< Tp,Yn >—< T,y >, N — OQ.

Diese Aussage konnen wir mit Hilfe des Begriffs der schwachen Konvergenz
verscharfen:

Satz 15.6.3 Sei H ein Hilbertraum, sei x,, — x,n — 00, y, — Yy, n — o0. Dann
gilt < Ty, Yy >—< 2,y >, n — oo. Fiir die Konvergenz des Skalarprodukts ist es
also hinreichend, wenn ein Faktor schwach in 'H konvergiert und der andere stark.

Die gewohnliche (Norm-)Konvergenz in H bezeichnet man, um den Unterschied
zur schwachen Konvergenz hervorzuheben, auch als starke Konvergenz.

15.7 Das Spektrum eines Operators in einem Banachraum

Wir erinnern zunachst an den grundlegenden Begriff des Banachraums B (Definiti-
on 10.3.3):

B ist ein normierter Vektorraum liber R oder C, der vollstéindig ist; d.h. jede Cauchy-
folge in B ist konvergent.

Beispiele fiir Banachrdume sind nach Satz 10.3.4 die Rdume L,(I). Offenbar
hat ein Hilbertraum gegeniiber dem Banachraum eine zusitzliche Struktureigen-
schaft, namlich ein Skalarprodukt. Als weitere typische Beispiele fiir Banachraume
erwihnen wir die Rdume C* (1) der k-mal stetig differenzierbaren Funktionen:

Beispiel 15.7.1 Sei I = [a,b] C R; dann ist C°(I), versehen mit der Maximum-
norm

I fllr:= Igeaflf(x)l

ein Banachraum. Dies folgt so: Ist (f;) eine Cauchyfolge beziiglich der Norm || ||7,
so konvergiert sie nach Satz 6.1.7 gleichmissig gegen eine Funktion f, die nach
Satz 6.1.3 stetig ist.
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Wir betrachten nun den Vektorraum C! (1) der stetig differenzierbaren Funktionen.
Wenn wir C!(I) wie oben mit der Maxixmumnorm || ||; versehen, so erhalten wir
keinen Banachraum. Denn es gibt gleichmassig konvergente Folgen stetig differen-
zierbarer Funktionen, deren Grenzfunktion nicht differenzierbar ist. Wir wahlen nun
als Norm

111 = mae | £ )] 4+ masx | £/(2)| = £l + 1)

Wenn eine Folge ( f;) beziiglich dieser Norm konvergiert, so konvergieren (f;) und
(f;) gleichmissig gegenein f : I — R und nach Satz 6.1.5ist f stetig differenzier-
bar. Daher ist C!(I) mit dieser Norm ein Banachraum.

Dies lésst sich leicht verallgemeinern: Ist k& > 1, so definiert man in C*(I) eine
Norm durch

= A0+ W+ 1P

man kann analog zeigen, dass Ck(I ), versehen mit dieser Norm, ein Banachraum
ist.

Wir geben noch ein weiteres Beispiel an:

Beispiel 15.7.2 Es sei D C R"; dann ist
B:={f: D — C| fstetig und beschrankt}

mit

If1I == sup | f(z)|
xeD

ein Banachraum.

Wir machen im folgenden Gebrauch von einem tiefliegenden Satz von Banach, dem
Satz von der inversen Abbildung, der in [18], [19], [25] bewiesen wird:

Satz 15.7.3 (Satz von Banach) Sei T' : B — B ein beschrdnkter linearer Operator
in B. T sei bijektiv. Dann ist die inverse Abbildung T~" ein stetiger linearer Ope-
rator in B mit Definitionsbereich D(T~') = B, mit anderen Worten: T ist genau
dann bijektiv, wenn T homdomorph ist.

Bei Erfiilltsein der Voraussetzungen dieses Satzes sprechen wir auch davon, dass T'
beschrankt invertierbar ist.

Definition 15.7.4 Die Menge der in B erkliirten beschrinkten linearen Operatoren
wird mit L(B) bezeichnet.

Beispiel 15.7.5 Ein Beispiel fiir einen Operator 7' € £(C°([a, b])) erhélt man so:
Man wiihlt einen Kern K € C°(I x I) und setzt

b
700 = €0, f e ([ Krw)ay
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Man erhélt ||T]| < (b—a) max | K (z,y)|. S. hierzu auch Beispiel 15.3.2.
(z,y)€la,b] x[a,b]

Es gilt sogar T'(La([a, b])) € C°([a, b]).

Wir leiten nun Kriterien her, wann ein Operator T' € £(B3) invertierbar ist.

Fir S,T € L(B) sind ST := SoT und T" := T o...oT, n € N, durch
Hintereinanderausfiihrung der Abbildungen erklért. Esist ST € L(B), T™ € L(B),
ISTI < ISIHITIL 1T < || T||™. Wir setzen T° = I, dabeiist I : B — B, x — ,
die Identitat.

o0
Mit einer Methode, die an die geometrische Reihe Y 2™ = ' fiir [z| < 1

n=0
erinnert, zeigen wir:

Hilfssatz 15.7.6 Sei T € L(B). Ist ||T|| < 1, so ist I — T beschrdnkt invertierbar

und 1
I(I-1)7" < :
L—||7||

Beweis:Seixz € B, N, M € N, M +1 < N; die Reihe

Z Tz, x € B,
n=0
ist wegen ||T'|| < 1,
N N
Y Tl < Y Tl
n=M+1 n=M+1
konvergent in B. Aus
N
(I-T7)) Tro=(I-T "z
n=0
folgt mit N — oo die Behauptung. a

Daraus ergibt sich: Wenn ein Operator in der Nahe eines invertierbaren Operators
liegt, ist er ebenfalls invertierbar.

Hilfssatz 15.7.7 Seien S,T € L(B), sei S beschrinkt invertierbar. Sei

1

S—-T| < .
IS =Tl < g

Dann ist auch T beschrdnkt invertierbar.

Beweis. Sei Q = (S — T')S~1, also ||Q|| < 1. Nach dem vorhergehenden Hilfssatz
ist I — (Q beschriinkt invertierbar. Mit Q = I — T'S~! folgt TS™! = I — Q,
T=I-Q)ST1=8"11-Q)" |

Wir kommen nun zum Begriff des Spektrums:
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Definition 15.7.8 Fiir T € L(B) definiert man:

Spektrum o(T) ={AeC| T — M nicht bijektiv}
Punktspektrum op(T) ={X € C| T — M nicht injektiv},
komtinuierliches Spektrum oc(T) = {\ € o(T) \ op(T)| (T — \I)(B) = B},
Restspektrum or(T) ={A € C| T — M injektiv, R(T — \I) # B}

X € o(T) bezeichnet man als Spektralwert; dann ist 7' — AI nicht bijektiv.

Fir A € op(T) ist T — A1 nicht injektiv; es gibt also ein x # 0 mit Tx = Az; somit

ist op(T') die Menge aller Eigenwerte.

Fir A\ € o¢(T) gilt: T — AT ist injektiv, nicht surjektiv, aber das Bild R(T — AI)

ist dicht in 3.

Ist A & o(T), so heiBt (T — AI)~! die Resolvente von T an der Stelle )\ € C.
Offensichtlich gilt:

Satz 15.7.9 Sei T € L(B). Dann ist o(T) disjunkte Vereinigung
o(T)=0cp(T)Uoc(T)Uor(T).

Nun zeigen wir:

Satz 15.7.10 Sei T' € L(B). Dann ist o(T') kompakt. Es gilt

o(T) C {z[z € C, [z| <|IT]]}-

17|

Beweis. Wir zeigen zunichst, dass o(7T') abgeschlossen ist. Sei A\g & o(T). Sei
S =T —X\ol. Also ist S beschrinkt invertierbar. Fiir alle A mit |A— | < 1/[|S7!|
gilt

1T = Aol = (T = Al = [ =X <1/S7,
so dass nach Hilfssatz 15.7.7 der Operator 7' — AI beschrankt invertierbar ist,

A — Xo| < 1/||S7Y. Also ist C — o(T) offen. Sei nun A € C, |\ > [T
S = —\I ist beschrinkt invertierbar, ™! = — 11, 1/|[S7!| = |A|. Es ist
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IS — (T = AD)|| = ||IT| < |\ = 1/||S7Y||. Mit Hilfssatz 15.7.7 folgt: T — A\l
ist beschrénkt invertierbar, also ist A ¢ o (7). Insbesondere ist o(T") beschrankt und
abgeschlossen, also kompakt. O
Aus dem Satz von Banach 15.7.3 folgt, dass (T' — M)~ ! in der offenen Menge C \
o (T') beschrinkter Operator ist. Man kann dort (T—AI)~! sogar in eine Potenzreihe
entwickeln.

Beispiel 15.7.11 Im ersten Beispiel betrachten wir den unitiren Raum C", der
vermoge < z,( >= 21C1 + . + 20, |12] = 1212 = (2,2)Y2, 2 = (21, ..., 20),
¢ = (C1, -+, Cn) zu einem Hilbertraum H wird. Sei A eine n X n-Matrix mit den
Eigenwerten Aq, ..., A,. Dann ist durch 2 — Az ein Operator T € L(H) gegeben,
fuir den gilt:

o(T) = op(T) = {1, A}y 0c(T) = or(T) = 0.

Dies liegt daran, dass im vorliegenden Fall aus der Injektivitat von T' — AI auch die
Surjektivitat folgt.

Beispiel 15.7.12 Im zweiten Beispiel wihlen wir den Hilbertraum H = L([a, b))
und definieren ein Element 7' € £(H) durch

b
(Tf)(x) = / K(z,y)f(y)dy

mit K € C%[a,b] x [a,b]) oder K € La([a,b] x [a,b]) (vgl. hierzu die ersten
beiden Beispiele in 15.3). A € C ist dann und nur dann Eigenwert von 7', wenn es
ein f € H — {0} gibt mit

f.i. in (a,b).

Beispiel 15.7.13 Im dritten Beispiel befassen wir uns mit dem in 10.4.14 ein-
gefiihrten Hilbertraum H = l5. Wir definieren wie in Beispiel 15.4.5 ein Element
T € L(H) durch die Vorschrift

T:ly— o, (x1,29,...) — (0,21, 22, ...)

T = T — 0 - I ist injektiv, aber nicht surjektiv. Also ist 0 € o (7). Offenbar ist
0 & op(T). 0 ist auch nicht in o (T'), da

I1(1,0,0,...) = (0,21, z2,...)|| > 1

ist fiir alle (z1, z2,...) € l2. Alsoist 0 in or(T).
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Wir beschlieBen diesen Paragraphen mit dem

Satz 15.7.14 Sei B ein Banachraum endlicher Dimension. Sei T € L(B). Dann ist
o(T)=op(T),  oc(T)=or(T)=0.

Beweis. Wenn 7' — A[ injektiv ist, so ist dim(7" — AI)(B) = dim B und daher
(T'—AI)(B) = B. Somitist T'— A surjektiv, also ist T'— AI beschrinkt invertierbar
(vgl. dazu Satz 7.4.9). a

15.8 Kompakte Operatoren

Definition 15.8.1 Ein stetiger linearer Operator T : B — B heifst kompakt (voll-
stetig), wenn fiir jede beschrinkte Folge (x,,) in B gilt: (Tx,) enthdlt eine konver-
gente Teilfolge.

Eine Teilmenge M C B ist kompakt, wenn sie abgeschlossen ist und jede Folge
aus M eine konvergente Teilfolge besitzt (deren limes dann in M liegt). M heifit
prikompakt, wenn M kompakt ist.

Hilfssatz 15.8.2 Sei £ = {z|z € B, ||z| < 1}. Ein stetiger linearer Operator
T : B — Bist genau dann kompakt, wenn T (E) kompakt ist.

Beweis. Sei T'(E) nicht kompakt, also 7'(E) nicht prakompakt. Dann existiert eine
Folge (yn), yn € T(E), n € N, die keinen Haufungspunkt besitzt. Wegen y,, =
Txpn, xn, € E, n € N, ist dann T nicht kompakt. Also folgt aus der Kompaktheit
von T die Kompaktheit von T'(E).

Sei T'(F) kompakt. Sei (x,,) eine beschrinkte Folge aus B. Dann ist ||x,| < M,
neNz = Al{ Zn € E,n € N (0.E.sei M > 0). (T'z),) hat einen Hiaufungspunkt
in T'(E). Es gibt also eine Teilfolge (z;,, ) mit T'z;,, — y', k — oo, in B. Also folgt
Txp, — M-y, k— oo,in B. O

Beispiel 15.8.3 Der Operator T' : I — [y, © — z, ist nicht kompakt. Sei z,, =
(0,...,0,1,0,...), dabei steht 1 an der n-ten Stelle. (x,,) hat keinen Haufungspunkt,
weil ||z, — T/, = V2, n #m, n,m € N, ist.

Hilfssatz 15.8.4 Sei K : [a,b] X [a,b] — C stetig. Dann ist

b

T : La(la,b]) — La(la,b]), f+— /K(~,s)f(s) ds

kompakter Operator in H = Lz([a, b]).

Beweis. Sei (f,) eine Folge in La([a, b]) mit || f,]|z,((a,e)) < M, n € N. Dann
gilt (vgl. Beispiel 15.3.2): Tf,, € C%([a,b]), max |T f,| < const-M, n € N. Die
Folge (T'f,,) enthilt, wie man zeigen kann, eine gleichmissig in [a, b] konvergente
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Teilfolge (T fr,).Es ist C°([a,b]) C La([a, b)), |/l £a((a,p)) < ¢ max | f| mit einer
von f € C°([a, b]) unabhingigen Konstante. Also konvergiert (T'f,,,) in Lz([a, b]).

O
Wir ersetzen jetzt den Banachraum B durch einen Hilbertraum H. Wir zeigen:

Hilfssatz 15.8.5 Sei T : H — H ein kompakter Operator und E) = Ker(T — \I);
dann gilt:

dimEy < oo fiirA#0

Beweis. Wenn E, nicht von endlicher Dimension wire, so existierte eine Folge
(zn), Tn, € Ex, n € N, derart, dass jeweils endlich viele der x1, x5, ... linear un-
abhangig sind. Das Schmidtsche Orthogonalisierungsverfahren (s. 7.9.14) liefert ei-
ne Folge (b,) mit b, € Ex,n € N, b,, L by, n # m, ||by|| = 1, n € N. Wir haben
Tb,, = A\by,, und fiir n # m ist

I Tb — Thuml = || 1bn — bimll = AV/< bre — by by — b > = |A[V/2.

Also enthilt (Tb,,) keine konvergente Teilfolge, obwohl die Folge (b,,) beschrinkt
ist. O

Satz 15.8.6 Sei H ein Hilbertraum, T : H — 'H ein kompakter linearer Operator.
Sei ¢ > 0. Dann gibt es nur endlich viele linear unabhdingige Eigenvektoren von T,
die zu Eigenwerten A mit |\| > € gehdren.

Beweis. Seien z1,72,... € H, je endlich viele seien linear unabhangig, es sei
Tz, = Ayx,. Wir wollen zeigen: A\, — 0, n — oo. Das Schmidtsche Ortho-
normalisierungsverfahren liefert e, e, ..., die paarweise orthogonal sind und die
Eigenschaft ||e,,|| = 1 haben. Diese sind aber im allgemeinen keine Eigenvektoren.
Wir zeigen zunachst

(T — A\ De, Loey,.

en liegt im C-Vektorraum, der von x4, ..., x,, aufgespannt wird, also gibt es ¢, € C

mit
n
en = E CyTy.
v=1

Sei y,, := (T — M\ 1)ey, also
Yn = Z:Zl(cyTﬂi,j - /\ncl/xl/) = Z::l Ct/(/\y - /\71,)37y7

so dass y,, im C-Vektorraum liegt, der von 21, ..., x,,—1 aufgespannt wird. Da nach
dem Schmidtschen Orthogonalisierungsverfahren e,, senkrecht auf diesem Vektor-
raum steht, ist in der Tat (T — A\, I)e,, L e,,. Also folgt

A =<Tey,, e, > .
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Da die ey, eg, ... ein Orthonormalsystem bilden, folgt aus der Besselschen Unglei-

chung (s. 10.4.10) die Konvergenz der Reihe Y (< z,e, >)? fiir z € H und daher

n=1

0= lim <uz,e, > firzeH.

n—oo

Wir zeigen jetzt, dass lim ||T’e,|| = 0 ist. Nehmen wir an, dass die ||T’e,, || nicht
n—0oo

gegen 0 konvergieren. Wegen der Kompaktheit von 7' existiert eine Teilfolge (e;,, )
von (ey,) derart, dass Te,,, — f, k — oo, in’H mit f # 0 (Man wihle eine Teilfolge
aus (T'e,,) aus, deren Normen von Null weg nach unten beschrénkt sind). Dann ist

I£11? =< Jim Tey,, f>= lim <Tey,, f>= lim <e,,"Tf>=0

wie eben gezeigt. Dies ist ein Widerspruch, also lim ||Te, || — 0. Zuletzt zeigen
n—oo

wir: |A\p| < ||Ten ]|, n € N. Aus der schon bewiesenen Relation \,, =< T'ey,, €, >
folgt
[An| =1 <Ten,en > | < || Ten| llenll = [ Tenll

Aus |\, | < || Ten||, und | Te,|| — 0, n — oo, folgt der Satz. m|
Daraus ergibt sich

Satz 15.8.7 Sei 'H ein Hilbertraum, T : H — H ein kompakter linearer Operator
in H. Dann hat T' entweder keinen Eigenwert oder endlich viele Eigenwerte oder
die Eigenwerte bilden eine Nullfolge.

Beispiel 15.8.8 Sei H = 5. Wir definieren einen Operator T € L(H) durch

(x171.27"‘) = (Oaxlv 2, , I3,

JT2: 4T3,

Zunichst ist 7' kompakt. Sei nimlich (z(™)) eine Folge in lo mit ||z(™| < M,
n € N.Mit 2™ = (2™ 2{™ ), n € N folgt aus Satz 15.6.2: Es gibt eine
Teilfolge (z(™*)) von (2(™)) derart, dass z("*) — 2* k — oco. Dannist ||z*| < M
(nk)
J

und z — x;,j eN, k — o0, s. 15.6. Wegen

2

+oo
n * n * 1 n *
|1T2) — T2 < 3 |2 — 272 + o S fal™) —aiP <
j j=N+1

~
Il
_

n . 1
™ =, 20

M) =

.
Il
_

folgt: Tx(™) — Ta* k — oo. Sei Tx = Az. Falls A = 0 ist, folgt z; = 0,

éxz =0, ..., also x = 0. Also ist 0 kein Eigenwert. Sei A # 0. Dann ist Az; = 0,

also xr1 = 0, x1 = Axo, also x2 = 0, %xz = Azg, also x3 = 0 usw., also x = 0.



15.9 Operatoren 491

Alsoist op(T) = ¢. Andererseits ist 0 € o(T"), weil T' = T — 0 - I nicht surjektiv
ist. Sei A # 0,5 =T — Al. Also ist

x x
Sz = (0— Ax1,21 — Axa, 22 — Ax3, .., T;" — A1, ..
Sei
Y= (1,92, Y3, -+ Ynt 1, ---)
aus Iy beliebig. Sei 71 = — y1,....Tns1 = — (Ynt1 — “7), ... . Wir zeigen:

(1,2, ...) € ly. Der Beweis geht so: Es ist

|zn]

|1'n+1| g ‘i\||yn+1‘ + ‘i‘l n

daher
2
‘xn+1‘ |>\\2‘l/n+1| + |>\2‘2 ‘2"2‘ )
2
Zn 1 |£L’n+1‘ |)\\2 Zn 1 |yn+1‘ + \)\|2 Zn 1 ‘Tnnz‘ )
N—-1
D= (1= |>\2\2 (n+1)2))|fn+1| \,\|2 Zn 1y + |>\\2 21|
fur2+[‘>\|]§n§N—1folgt( |/\‘Z(HH)Q)>1/2
N
Y lwanl < |MQ(HZ/HQ + a1 ).
n=2+[ 3]

Insbesondere ist S surjektiv. Wie schon bewiesen, ist S injektiv. Also haben wir
o(T) = {0}. 0 liegt nicht in o (T), weil ||(1,0,0,...) = Tz| > 1,z € H.

15.9 Selbstadjungierte beschriankte und selbstadjungierte
kompakte Operatoren in einem Hilbertraum

Der Begriff des hermiteschen Operatores wurde in Definition 15.3.11 eingefiihrt.
Ein besonders einfaches Beispiel ist eine lineare Abbildung A : C* — C",
gegeben durch die Matrix A = (a;) mit a;;, = ag;. Mit dem Skalarprodukt
< z,y >= 22:1 x;y; ist der unitire Raum C" ein Hilbertraum. Andere Bei-
spiele sind die Integraloperatoren aus Beispiel 15.3.3, wenn K (z,y) = K(y,x)
ist. Hierunter fallen die Inversen zu Sturm-Liouville-Operatoren und zu — A, da
die Greensche Funktion symmetrisch ist. Die genannten Operatoren sind alle be-
schrankt; fiir unbeschrankte s. Beispiel 15.3.12. Wir wollen in Zukunft die in einem
Hilbertraum H tberall erklarten hermiteschen Operatoren auch als (beschrankte)
selbstadjungierte Operatoren bezeichnen. Jeder in H erklarte hermitesche Operator
ist, wie man zeigen kann, beschrankt. Wenn A € C Eigenwert eines selbstadjun-
gierten Operators 7' ist, so haben wir mit z # 0 jedenfalls < Tz, z >= A||z|? und
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< Tz,x >=< z,Tz >= A||z||%. Also ist A\ = X und somit fillt jeder Eigenwert
eines selbstadjungierten Operators reell aus (vgl. 7.10.4).
Wie in Satz 7.10.5 gezeigt wurde, gilt fiir die Eigenraume eines selbstadjungierten
Operators :

Ey L E, falls X\#p.

Den nachsten Hilfssatz beweisen wir nicht, Beweise findet man in [18] und [19].

Hilfssatz 15.9.1 Sei T ein beschrinkter selbstadjungierter Operator in einem Hilbert-
raum H. Sei ¢ > 0, sei

| < Ta,z > | <c|z||?, z € H.
Dann ist | T < c.
Die Besonderheit des Hilfssatzes besteht darin, dass nicht
| <Tzy>[<clzlllyl fir z,yeH

gefordert wird, woraus sofort ||T|| < ¢ folgt, sondern nur | < Ta,z > | < c[|z|?,
x € H, woraus ||T'|| < ¢ mit Hilfe der Selbstadjungiertheit von T' geschlossen wer-
den muB. Fiir jeden Eigenwert A gilt nach Satz 15.7.3: |A| < || T||. Der folgende Satz
zeigt eine Extremaleigenschaft der Eigenwerte fiir kompaktes selbstadjungiertes 7":

Satz 15.9.2 SeiT € L(H) selbstadjungiert und kompakt. Dann ist ||T|| oder —||T|
ein Eigenwert von T.

Beweis. Ohne Einschréinkung sei 7" nicht der Nulloperator. Sei 0 < ¢ < ||T'||. Dann
kann gemaB Hilfssatz 15.9.1 nicht fiir alle z € H \ {0} die Ungleichung

| < Ta,z > | <c|z|?

gelten. Also existiert zu ¢, = ||T|| — !, n € N, ein x,, € H mit ||z,,|| = 1 und

1
17| — " < | < Tap,xp > |

Es gilt
| < Tz, xn > | < [T [|2n] < T,
also
nh_)rrgo| < Txp,xy > | =T

Nach Ubergang zu einer Teilfolge von (< Tzy, xp, >), die wir ohne Einschrankung
auch wieder mit (< Tz, z, >) bezeichnen, haben wir

lim < Tx,,z, >= A

n—oo

mit A = ||T|| oder A = —||T'||. Weil 7' kompakt ist, konnen wir die Teilfolge von
(< T'zy, xp, >) so wihlen, dass
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y = lim Tx,

n—oo

existiert. Dann ist

0 < ||T-rn - /\anQ =< Txn - /\.Tn,TJ?n - /\xn >=
= |Tzn||? = 2X < Tap, zy > +A2 <
<|TIP 4+ A2 = 2X < T2, xp >= 202 =2\ < Txp, T, > .

Wegen lim < Tx,,z, >= A folgt

lim || Tz, — Ax,|| =0,
also .
lim Az, =y, lim z, =z, = /\y.
Wir haben
Ter=T(lim x,) = lim Ta, =y =Xz
und x # 0. O

Insbesondere reicht o(7T") an den Rand des Kreises mit dem Radius ||| heran.
In Wahrheit ist o(7') C R, was wir in Satz 15.9.4 zeigen. Satz 15.9.2 vermittelt
folgendes Verfahren zur Konstruktion der Eigenwerte, das wir hier nicht in allen
Einzelheiten darstellen konnen: Sei 7' € £(H) kompakt und selbstadjungiert, 7" sei
nicht der Nulloperator.

1. Schritt: Man bestimmt u; € H mit ||u;|| = 1 und

| < Tui,us > | =max{| < Tx,z > ||z € H, ||z|] = 1}.

Dann ist Tu; = Ayug mit [\ | = max{| < Tz,z > ||z € H, |z|| =1} = ||T].
2. Schritt: M; = {Auj|A € C} sei der von u; aufgespannte abgeschlossene
Teilraum von H. Sei H; = M7 . Dann ist T'(H1) C Hi, denn fiir z € H; ist
<Tz,u; >=<z,Tu; >= A\ < x,u; >=0. T istalso aus L£(H;), kompakt und
selbstadjungiert. Falls H; # {0} ist, erhalten wir mit der Methode aus dem ersten
Schritt einen Eigenwert Ao mit [A;| > |Az|. - Auf diese Weise fahrt man fort. Wir
konnen nun das Hauptergebnis dieses Paragraphen formulieren, namlich

Satz 15.9.3 (Spektralsatz fiir kompakte selbstadjungierte Operatoren)

Sei T € L(H) kompakt und selbstadjungiert. Sei T nicht der Nulloperator. Dann
hat T endlich viele oder abzihlbar unendlich viele Eigenwerte \,, 0,1 <n < N
odern € N, die sich in der Form

1Tl =Ml = el = o = An| - bawe ([T = [M] = [A2] = [Ag] = ...

anordnen lassen. Jeder Eigenwert wird so oft notiert, wie seine endliche Vielfachheit
angibt. Es gibt ein Orthonormalsystem {uy, ..., un } bzw. {u1,ua, ...} in H mit

Tun = )\nunv
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so dass sich jedes x € 'H eindeutig darstellen ldsst als

N o
xr = E anly +x9 bzw. x = E ApUy + X0

n=1 n=1
. . L
mit an, = (x,uy), x0 € KerT. Esist KerT = (uy,us,...) ,
N o]
Tx = Z AnGpty, bzw. Tx = Z A QpUnp,.
n=1 n=1

Wenn es abzdhlbar unendlich viele Eigenwerte A\, # 0 gibt, dann ist lim A, = 0.
Ist Ker T = {0}, so bilden die uy, us, ... eine Hilbertbasis.

Beweis. Wir befassen uns mit dem Fall abzéhlbar unendlich vieler Eigenwerte \,, 7~
0. Diese werden wie vorher erldutert konstruiert. Zundchst haben wir A; mit [A;| =
IT||, dann Ao mit [A1] > |A2| usw. Sei k,, = dim E),, die Grofe dim ) ist nach
Hilfssatz 15.8.5 endlich. Wir denken uns \,, k,-mal hingeschrieben. In E,, wahlen
wir eine Orthonormalbasis {ugn), u,(cn)} aus Eigenvektoren zum Eigenwert A,,.
Weil Eigenvektoren zu verschiedenen Eigenwerten zueinander orthogonal sind, sind
die uq, uo, ... mit

_ 2 _ (2
Uk +1 = Uy "y ooy U+ ko = qu )

ein Orthonormalsystem. Sei ’):[1 der Hilbertraum, der aus dem Abschluf} aller end-
lichen Linearkombinationen der w1, us, ... besteht. In ’):[1 bildet {u1,us, ...} nach
10.4.12 eine Hilbertbasis und wir haben nach dem Zerlegungssatz 10.4.5 die ortho-
gonale Zerlegung ~ ~
H="H ®Hi.

Seix € ’):[L Wegen < Tz, u,, >= i < x,u, >= 0,n € N (f ist eine der Zahlen
A1, Ag, ... folgt T(HL) € ’HL Damit ist Ty : Hi — Hi, x +— T, aus L(H{),
kompakt und selbstadjungiert. Wenn Tp nicht der Nulloperator ist, so hat T einen
Eigenwert # 0, etwa u. Also existiert ein x # 0, x € H1 mit Tox = px. Ist p
eine der Zahlen \q, Ag, ..., so folgt: 2 € Hy, also wegen Hy N H1 = {0} jedenfalls
x = 0. Nun sei p keine der Zahlen A1, Ao, ... . Aus Satz 15.8.7 folgt: nh_)ngo An = 0.

Also gibt es einen Index j mit |A;| > |u| > |\j11]. Wir beziehen uns auf das vor
diesem Satz erlauterte Verfahren zur Konstruktion der Eigenwerte Aq, Ao, ... . Es ist
Ho =H,

IA\jl = max{| < Ty,y > ||y € H;-1, [lyll = 1},
H=M;+ Mo+ .. +Mj71 +Hj—1
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mit paarweise orthogonalen abgeschlossenen Teilrdaumen My, ..., M;_1, H;_1. Ist
x # 0 das vorhin eingefiihrte Element aus H mit Tz = px, so haben wir

j—1
x:Zajk+hj_1 mitzg € Mg, 1 <k<j—1, hj_l cH;-1.
k=1

Aus der Orthogonalitat der Eigenrdume folgt < =,z >= 0,1 < k < j — 1,
und nach Konstruktion ist < h;_1,z; >= 0,1 < k < j — 1. Alsoist 3, = 0,
1<k<j—1,2=h;_1 € H;j_1. Wir haben die Zerlegung

Hj—1=M; +H;
in paarweise orthogonale Unterraume M ;, H;. Also ist
T =z;+hj, v; € My, hj € H;,
Tx = Njzj +Thy = pr = px; + phy.
Aus Th; € H; folgt \jx; = pux;, Th; = phy, also p = Aj, im Widerspruch zu
unserer Annahme. Wie eben gezeigt, ist dann x = 0. Also hat Tj keinen von Null

verschiedenen Eigenwert. Also ist nach Satz 15.9.2 jedenfalls 7y der Nulloperator.
Also ist Hi- C KerT. Wir haben

o0
T = E ApUn + o
n=1

mit 29 € Hi-, also

Tx = Z An G Uy,

n=1

Nun miissen wir noch zeigen: KerT C 7—2% Sei namlich T'x = 0; fir n € N ist
dann < Tz, u, >= 0, also < a:,an >= A\, < x,u, >= 0, und wegen \,, # 0
folgt < x,u,, >= 0. Somitist x € Hi . Satz 15.9.3 ist bewiesen. O
Konsequenzen aus den Erorterungen dieses Paragraphen sind:
Satz 15.9.4 Sei T' € L(H) und selbstadjungiert. Dann ist o(T') C R.

Beweis.Sei z € C. Wir haben
(T —2I)f]| > |Imz| (T —-zD*=T-zI

Ist Im z # 0, so ist Imz| > 0 und aus (T' — zI)*f = 0 folgt f = 0. Satz 15.4.3
von Toeplitz zeigt, dass fiir Im z # 0 der Operator 1" — zI beschrankt invertierbar
ist. O
Vom Spektrum eines kompkten selbstadjungierten Operators konnen wir und dem-
nach folgendes Bild machen:

a(T)

=T 0 Il
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Satz 15.9.5 Sei T' € L(H) kompakt und selbstadjungiert. Sei 0 # op(T'). Es gebe
unendlich viele Eigenwerte A1, A2, ... vonT. Dann ist 0 € oc(T).

Beweis. Aus Satz 15.9.3 folgt,: lim A, = 0. Aus Satz 15.7.9 entnehmen wir, dass

0 € o(T) liegt. R(T) ist dichter Teilraum von H, da die Eigenvektoren w1, ug, . ..
zu A1, Az, ... in R(T) liegen und nach Satz 15.9.3 eine Hilbertbasis bilden. O

Die naheliegende Frage ist, ob genau o(T") = {0, A1, Ao, ...} ist. Wir beantworten
sie bejahend im nachsten Paragraphen, falls 7" ein Integraloperator ist. Doch wird
von dieser speziellen Gestalt von 7' kein wesentlicher Gebrauch gemacht, so dass
die Aussage allgemein gilt.

15.10 Integralgleichungen

Im folgenden sei
K :[a,b] x [a,b] — C

stetig. Sei H = Lz ([a, b]) und T der kompakte Operator in H, der gegeben ist durch

b

17@%=/K@wﬁwﬂwf€H

a

(s. hierzu auch Hilfssatz 15.8.4).
Hilfssatz 15.10.1 Sei

K(s,t) = K(t,s) fira<s,t<b.
Dann ist T hermitesch oder selbstadjungiert in H = Ly ([a, b]).

Beweis: Wir verweisen auf Beispiel 15.3.8.

Satz 15.10.2 Sei g € H = L2([a,b]) und K(s,t) = K(t,s). Sei A € C\ {0}.
Dann gilt fiir die Integralgleichung

b
(+) ﬂ@=A/K@ﬁﬂﬂa+m@

1. Wenn 1/ kein Eigenwert von T ist, dann besitzt (*) fiir jedes g € H
genau eine Losung.

2. Wenn 1/ ein Eigenwert von T ist, dann ist (*) genau dann lésbar, wenn
g€ Ef-/ y ist. In diesem Fall gibt es unendlich viele Losungen.
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Dies wird in der Physik gelegentlich als die Fredholmsche Alternative bezeichnet
(IVAR FREDHOLM (1866-1927)).
Beweis. Wegen

b
Tf(s) = / K(s,1)f(t)dt

haben wir f = \T f+goder (I —\T)f = goder (—\)- (T —A"1I)f = g zu losen.
Nach dem Spektralsatz 15.9.3 haben wir (0.E. habe T' unendlich viele Eigenwerte
A1, Aoy ... £0)

o0
g:anun+gO

n=1

mit b, =< g,u, >, go € Ker T. Fir f setzen wir an

f = Zanun +f0
n=1

mit a,, =< f,u, >, fo € Ker T. Also ist

Z(an = A\nap)un + fo = Z bnun + go
n=1 n=1

oder fo = go, (1 — A\, )a, = by, fir eine Losung f. Diese beiden Gleichungen
heiBen im folgenden “Ansatz”. Sei A™* # \,, n € N, d.h. A7 ist kein Eigen-
wert von 7' (aus dem Beweis von Satz 15.9.3 folgt, dass das von uns beschriebene
Konstruktionsverfahren alle von Null verschiedenen Eigenwerte liefert). Wir setzen
also

b 1 b, & b
T Aoy f'_z1—Mn“"+g°’

n=1

fO ‘= 4go, dan

und haben zu zeigen, dass die letzte Reihe konvergiert. Wegen lim A, = O ist

n—oo
< 2, n > ng. Daher ist

o) bn ) oo
' < t- E bal? < )
7;:1 \1 B )\)\n\ < cons |bn|* < +o00

n=1

1
‘ 1=\,

Es ist

= by
—ANT'f = 1- n X n =9g.
FoNTE = 320 M) =g

Aus dem Ansatz folgt die Eindeutigkeit. Sei jetzt A~! ein Eigenwert, d.h. \™! =
Am = ... = Amak fiirein k& € NU {0} und A~! von allen anderen Eigenwerten
verschieden. Falls (*) losbar ist, so folgt aus dem Ansatz b,,, = ... = b4 = 0,
also ist g € EIL//\. Sei umgekehrt g € EIL//\, so sind wegen b,, = (g,un), n € N,
jedenfalls b,,, = ... = b+ = 0 und man kann dann a,,,, ..., Gm 4+ beliebig wahlen
und die anderen a,, wie im Ansatz ausrechnen. O
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Satz 15.10.3 Fiir den Integralkern K gilt fiir jedes t € [a,b] die in H = Ls([a, b])
konvergente Entwicklung

K(.,t)= Z An iy, (),
n=1

Beweis: Mit K = K(.,t), t fest aber beliebig € [a,b] und f € H haben wir

b b
<ﬂK>=/ﬂ@m&mh=/K@@ﬂgmzfm)

Fiir f € KerTistalso < f, K >= 0, also K € (KerT)*. Aus Satz 15.9.3 folgt
K(,t) =Y an(t)un
n=1

mit a,(t) =< K(,t),u, >= (Tun)(t) = Mun(t) Man beachte: u,, €
C([a,b])). 0
Zum Abschluf} des ersten Teils dieses Paragraphen formulieren wir die Fredholm-
sche Alternative fiir den Integralkern K:

Satz 15.10.4 Sei A € C \ {0}. Es mogen die Voraussetzungen von Satz 15.10.2
erfiillt sein. Entweder besitzt die Gleichung

b
f—A/Kuwﬂwwzg ()

fiir jedes g € H = La([a, b]) genau eine Losung oder die homogene Gleichung

f—A/K@wﬂ@@:o )

a
besitzt eine nichttriviale Losung.

Beweis: Wenn )\~ kein Eigenwert von 7 ist, ist nach Satz 15.10.2 die Gleichung (1)
eindeutig losbar. Dann hat (2) nur die Nullosung. Hat (2) eine nichttriviale Losung,
ist \~! Eigenwert von T'. Fiir g € E; /5 — {0} ist nach Satz 15.10.2 die Gleichung
(1) nicht 16sbar. a

Beispiel 15.10.5 Sei —0co < a < b < +oo, seien p € C([a,b]), p > 0,
q € C%[a,b]) und reell. Sei Lu = +(pu’) + qu in D(L) = {ulu € C*([a,b]),
u(a) = wu(b) = 0} erklart. Lu = 0 habe nur die Losung u = 0 in D(L),
so dass nach 12.6 Lu = f € C%a,b]) eindeutig 16sbar in D(L) ist. Es ist
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u(s) = }G(s,t)f(t) dt, G = Greensche Funktion mit G € C%([a,b] x [a,b]), G
hat nur rgelle Werte. Symmetrie: G(s,t) = G(t, s). Der Kern geniigt also den Vor-
aussetzungen des Satzes 15.10.2 und den Operator G mit Gf(s) = fb G(s,t)f(t)dt
setzt man durch AbschlieBung auf H = Ly([a, b]) fort (Satz 15 .3.5;. Dann entsteht

b

Tf(s) = Gf(s) = / Gs,0)f(t)dt, f € La((a.b]),

a

T(Ly([a, b)) C C°([a, b]).

T ist kompakt, selbstadjungiertin H = Lo([a,b]). A € R\ {0} ist Eigenwert von L
d.u.n.d., wenn i (vermoge u = AT'u) Eigenwert von 7' ist. Insbesondere steht die

b
ganze abstrakte Theorie aus 15.9, 15.10 zur Verfiigung. Istnun [ G(s,t)f(t)dt =0

fiir ein stetiges f, so folgt sofort f = 0. Ist Tf = 0 fiirein f € La([a,b]), so ist
0=<Tf,u>=< f,Tw > fiir alle stetigen w. Also ist < f,u >= 0, u € D(L).
D(L) ist dichter Teilraum von Ls([a, b]), da schon C§°([a, b]) dies ist. Also ist f =
0 . Damit folgt:

0&op(T), KerT = {0}.

Jede Funktion aus L2([a, b]) ist nach Eigenfunktionen von L (oder T') in eine Fou-
rierreihe entwickelbar. Nach Satz 15.9.3 gibt es unendlich viele Eigenwerte

1
1/A1, 1/Xa,...von T, N — 0, i — 00,

7

da Lo([a,b]) unendliche Dimension hat. Aus dem Konstruktionsverfahren zur Lo-
sung des inhomogenen Problems im Beweis des Satzes 15.10.2 folgt

1

A2,...}. 3)

A1) € {OpU |

Da o(T') kompakt und R(7") D D(L) dicht sind, folgt 0 € o¢(T) und die Gleich-
heit in (3). A1, A2, ... sind genau die Eigenwerte von L. Sie haben endliche Viel-
fachheit (Genauer kann man noch zeigen: \; — +oo fiir i — c0). Man sagt “L hat
diskretes Spektrum”. Insbesondere folgt Satz 12.6.8

Beispiel 15.10.6 Seien [a, b] = [0, 7], H, D(L) wie im vorigen Beispiel,

Lu=u".
Aus —u” = Au, u € D(L) — {0}, folgt, A > 0, s. 12.6.7. Nun ist

u(x) = Asin VAz + Bcos V Az
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die allgemeine Losung von —u” = A\u (A, B konstant).
u(0) = 0 impliziert B = 0,
u(m) = 0 impliziert sin v Ar = 0, also
VA=k A=k

Die Eigenwerte sind genau die Zahlen k2, k € N. 1 ist der kleinste Eigenwert.
Also ist max (")l — 1 nach Satz 15.9.2. Sei w € D(L). Entwicklung nach den

flwll?

normierten Eigenfunktionen ¢y (z) = \/ 2 sin kx liefert zunichst fiir die Losung

von —w” = f durch Koeffizientenvergleich der Fourierreihen links und rechts

=1
w = Z kgfk(pk
k=1

wenn fj, die Fourierkoeffizienten von f sind. Seien wy, die Fourierkoeffizienten von
w. Dann setzen wir

u= (—L)%w = Z kwg k.
k=1

Die Reihe rechts konvergiert in M, da aus w € D(L), —Lw = > =, k*wypp,
sogar

Z k*wg? < 400
k=1
folgt. Es ist

) ) =1
T(-L)>w = (~L)"'(~L)2w =) WKk
k=1

<T(=L)*w, (—L)*w >=< Tu,u >= ||jw|%,
I(=L)2w|? = fJul® =< —Lw,w >= |||

Insgesamt folgt

L JJw||* < w'l|?, w € D(L)
mit 1 = kleinster Eigenwert von L als bestmoglicher Konstante. Das Gleichheitszei-
chen tritt nur fiir w = 0 und die Eigenfunktionen von L zum Eigenwert 1 ein.
Fiir Hilbert-Schmidt Kerne K mit K(z,y) = K(y, ) lassen sich zu den Sitzen
15.10.2 und 15.10.3 analoge Siatze beweisen, da der zugehorige Integralopera-
tor kompakt und selbstadjungiert ist. Die Selbstadjungiertheit folgt aus 15.3.3und
15.3.8 5. Die Kompaktheit folgt aus Aufgabe 15.9.
Betrachten wir die zur Einheitskreisscheibe FE der Ebene und Randwerten 0
gehorende Greensche Funktion. Sie stellt nach Beispiel 15.3.3 einen Hilbert-Schmidt
Kern dar, fiir den K (z,y) = K(y,z) gilt. Daher gelten fiir den Operator A un-
ter Null-Randbedingungen auf OF Aussagen, die denen aus Beispiel 15.10.5 fiir
Lu = u” entsprechen. Insbesondere hat A diskretes Spektrum.
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Im vorigen Paragraphen hatten wir uns in Satz 15.10.4 mit der sogenannten Fred-
holmschen Alternative fiir kompakte selbstadjungierte Operatoren beschaftigt. In
der Physik spielen auch nicht-selbstadjungierte Eigenwertprobleme eine Rolle. Sie
treten zum Beispiel in der Hydrodynamik auf und lassen sich dann oft als Ei-
genwertprobleme fiir Differentialoperatoren hoherer Ordnung formulieren. Den ab-
strakten Satz, der gleich folgt, werden wir daher an Hand gewohnlicher Differen-
tialoperatoren hoherer Ordnung erlautern.

Satz 15.11.1 (Fredholmsche Alternative) Es sei T ein kompakter Operator im
Hilbertraum H; dann ist T* ebenfalls kompakt, fiir A € C\ {0}ist

(I-XD)*=1-\T*,
dim Ker(I — AT') = dim Ker(I — AT)* = dim Ker(I — \T™*) < +o0

und es gilt:

o Ist dim Ker(I — AT') = 0, so hat I — AT eine in H erkliirte beschrinkte
Inverse.

o Ist dim Ker(I — A\T') # 0, so hat zu vorgegebenem y € 'H die Gleichung
(I — ATz = y genau dann eine Losung, wenn y € (Ker(I — \T)*)* ist.

Uber die Eigenwerte j = ; von 1" geben Satz 15.8.6 bzw. Satz 15.8.7 Auskunft.
Aus Satz 15.11.1 folgt, dass o(T") N (C \ {0}) nur aus Eigenwerten besteht. Da T
kompakt ist, kann 7" nicht beschrankt invertierbar sein. In diesem Fall erhielten wir
ndmlich ||Tz|| > c||z|| mit einer positiven Konstanten c. Einsetzen beispielsweise
einer Hilbertbasis 1, o, ... zeigt, dass (T'y,,) keine Cauchy-Folge enthilt, also T’
nicht kompakt ist (s. Beweis des Hilfssatzes 15.8.5). Also erhalten wir

o(T) = {pulp € C, pEigenwert von T} U {0}.

Diese Zerlegung ist nicht notwendig disjunkt, da 0 Eigenwert sein kann, aber nicht
sein muB3. 0 kann als Haufungspunkt von Eigenwerten auftreten ohne selbst Eigen-
wert zu sein. Fiir ein Beispiel verweisen wir auf 15.10.5. Fir uns ist der Fall von
besonderem Interesse, dass o.(7') = {0} ist, da er bei Differentialoperatoren auf-
tritt. In 12.4

hatten wir fiir

Lu = asu” + a1u’ + agu, v € D(L)

a; € C%[a,b]), i =0,1,2, az(z) #0, = € [a,b]
die Greensche Funktion konstruiert, obwohl die Koeffizientenfunktionen nur stetig
waren. Seien die Randbedingungen durch

D(L) = {u € C*([a,b])| u(a) =0, u(b) = 0}

festgelegt. Aus Lu = 0, uw € D(L), sollte u = 0 folgen. Das folgende Beispiel
stellt eine Erweiterung dieser Theorie dar.
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Beispiel 15.11.2 Sei m € N, seien ag, ..., agm € C°([a,b]), azm > 01in [a, ],

Lu= Xm:al,(x)u( ) fiir
v=0
ue D(L) = {ue C?®([a,b)] ula)=1'(a) =...=u™V(a) =

=u(d) = u/(b) = ... = u™ "V (b) = 0}.

Ausu = 0,u € D(L), folge u = 0. Mit Hilfe eines Fundamentalsystems konstruiert
man ahnlich wie in 12.4.6 die zugehorige Greensche Funktion, d.h. invertiert L, und
erhalt

b
L) = / G(z,y)f(y) dy

fiir die Losung von Lu = f € C%Ja,b]), w € D(L). G = L' wird durch Ab-
schlieBung (s. 15.3.5) zu einem Operator G fortgesetzt. In welchem Sinn es sich
dabei noch um die Inverse von L handelt, kann hier nicht im einzelnen erortert
werden. L muB dazu auf H>™2(2) = {ulu € C?*" '([a,b]), die Distributions-
ableitung u(®>™ liegt in Ly((a,b)), u(a) = v/(a) = ... = u™Y(a) = u(b) =
u'(b) = ... = u™=1(b) = 0} fortgesetzt werden. Diese Fortsetzung bezeichnen
wir mit L und wir haben dann in

b
-1
L7 f@) = [ 6le) ) dy, 1 € La(fa.t)
die beschrankte Inverse zu L. Nach Beispiel 15.3.8 ist durch

b
@7 f) = / G(x.y) () dy, [ € La(la,b])

der adjungierte Operator gegeben. Wie wir hier nicht zeigen konnen, ist

ko _ —1 «
(LH™t=(L )~
Obwohl wir also die Adjungierte zu L oder L im Sinne von Beispiel 15.3.10 konkret
gar nicht bilden konnen, da die Koeffizienten von L nur stetige Funktionen sind, ist
es doch moglich, tiber die Greensche Funktion zu L die Inverse zu L in die Hand zu
bekommen. Die Adjungierte L selbst steht uns nur abstrakt zur Verfligung. Wegen

-1 -1

(L =A"=@ )-ArA=(L
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Setzen wir G f (x f G(z,y)f(y)dy, f € La([a, b]), so sind die Eigenwerte von
L genau die komplexen Zahlen \ # 0, fiir die es ein f € C%([a, b]) \ {0} gibt mit
f—=(=1D)mAGf =0,also Lf — (—1)"\f =0.

Wie in 12.6 weichen wir von der linearen Algebra ab und nehmen Lu = (—1)™\u
als Eigenwertgleichung. Gibt es Eigenwerte? Die Antwort ist bejahend, es gibt
sogar abzahlbar unendlich viele, aber auch nicht mehr (s. Satz 15.8.6). Da aus
Gu = L 'u = 0 folgt, dass u = 0 ist, und H?"2(02) in Ly([a, b)) dicht liegt,

istoo(L™1) = {0}

Aufgaben

15.1. Sei H := L2([—1, 1]); zeigen Sie:

a) Ist f € H gerade und g € H ungerade, so gilt: < f,g >= 0.

b) Sei M := {f € H| fgerade}. Dann ist M ein abgeschlossener Teilraum und in der
Zerlegung H = M @ M™* ist

(Paaf) (@) = (@) + f(-2))E. i,

also 1 )
@) = (@) + f(=2) + ,(f(@) = f(~a)).

(Zerlegung von f in geraden und ungeraden Anteil.)

15.2. Seien m, X(c,q) die Fouriertransformierten der charakteristischen Funktionen

X[a,b]> X[e,d]» di€ in Aufgabe 10.13 untersucht wurden; P f bezeichne den in 14.12.5 defi-

nierten Cauchychen Hauptwert. Zeigen Sie fiir b € R:

a)
< Xla,b]s X[e,d] > =
_ (Pf en&(b a_ - Pf n&(b o .
_ 'Pf e:g(a d) _ 1d§+77f lﬁ(a c)_ 1d£>
b) Zeigen Sie

T et — 1
P/ ¢ d¢ = —|b|r.

Hinweis: Integrieren Sie (e'* — 1)/z? iiber die Kurve ¢,z der folgenden Figur:
T

Ye,R

—R —c 3 R
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Wenden Sie den Cauchyschen Integralsatz an und lassen Sie R — oo streben. Zeigen Sie
dann . N
2 ieb e
es? —1 et —1
P / e d¢ = |b|P / ¢ d¢.

15.3. a) Zeigen Sie mit Aufgabe 15.2:

< X/[J],X/[;,\d] > = < Xa,b]s X[c,d] >

b) Sei jetzt die Fouriertransformation einer Funktion f mit 7" f bezeichnet. Seien

N
) fi=3 6 X w0 i=1,2
k=1

zwei Treppenfunktionen. Zeigen Sie mit a):
<Tf1,Tfo>=< fi,f2>.

¢) Betrachten Sie die Fouriertransformation 7" auf den Treppenfunktionen. Existiert die Ab-
schliessung ?

154. a) Seien I = {z € R"| a;j < z; < b;, j = 1,...,n}und I, I> abgeschlossene
Quader des R™. Zeigen Sie fiir die Fouriertransformation

1 —i<lx
Txi(z) = o™ /e STy rdy

Rn

die Gleichung
<Txr, TX1, >=< X1, XLz > -

Hinweis: es ist

x1(x) = [ [ Xta, ;1 (z5)-

j=1
b) Seien
N
fi=> e xm, i=12
k=1 F
zwei Treppenfunktionen. Zeigen Sie
<Tf1,Tfo>=< fi,f2>.

15.5. Nach Aufgabe 15.4 kann man mit der gleichen Argumentation wie in Aufgabe 15.3
die Fouriertransformation 7" in Lo (IR"™] abschliessen und erhdlt 7. Sei f € L2(R"™) und
f(x) = 0 fiir fast alle = ausserhalb eines abgeschlossenen Quaders/. Zeigen Sie

L e iwa

Rn

. 1
TN = oy

Hinweis. Approximieren Sie f durch Treppenfunktionen ¢, die ausserhalb I verschwinden,
und verwenden Sie Satz 10.3.6.
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15.6. Sei T' : 'H — "H ein beschrankter, iiberall erklarter linearer Operator im Hilbertraum
‘H.Sei x, = x, j — ocoinH.Zeigen Sie: T'x,, = Tx, j — oo.

15.7. Sei U unitérer Opeerator im Hilbertraum 7 und A ein Spektralwert. Zeigen Sie, dass
dann |A| = 1ist.

15.8. Zeigen Sie:

exp/<—\m;) (§) = exp (— 5;) ;

1 ist also Eigenwert der Fouriertransformierten.
Hinweis: Differenzieren Sie die linke Seite nach €.

15.9. In 15.2.1 wurde die Norm ||T|| eines linearen Operators T', in 15.7.4 der C-Vektorraum
L(H) der in H erklérten beschréankten linearen Operatoren 7" : H — H eingefiihrt. Benutzen
Sie in dieser Aufgabe die folgende Aussage: Ist (V) eine Folge aus L(H), ist V € L(H),
sind die V; kompakt und

IV; =V =0, j— oo,

so istauch V kompakt. Sie diirfen weiter voraussetzen, dass man jedes K € L3 (]a, b[x]a, b[)
durch stetige Funktionen K : [a, b] X [a,b] — C in L2 (]a, b[x]a, b]) approximieren kann.
Zeigen Sie: Der zu K gehorende Integraloperator vom Hilbert-Schmidtschen Typ ist kom-
pakt.
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Losungen

s(Ety+(z—y) =z

1.1 Firz > yistmaz(z,y) = zund ) (z+y+|z—y|) =
x,y) beweist man analog.

bei y > x vertauscht man z, y. Die Aussage fir min(x

1.2 Zu e > 0 wahlt man N € N so, dass ]{, < g2 ist. Fiir n > N ist dann \/}L < €.

Aus i+ 1= yn = VI = e < 2y ol die zweite

Behauptung.

1.3 9. > ()" ist eine konvergente Majorante zum Dezimalbruch. -
. & n 1/100

Esist 0,373737... = 37 ;(150) =37, o) = oo

1.4 Die Reihe konvergiert nach dem Quotientenkriterium: Sei a,, := firn >4

ist

n 1 1\3 2
et =1 (14 1)< 2

an

3n5

k k
LS Fiirk > 2istsp = 3 ab, =5 0 (0 =0 ) = ba+1- 1= L),

n=2 n=2

o0

. 1 _ 3

daher ist §2n271 =
n=

1.6 Beweis mit vollstandiger Induktion; der Induktionsanfang n = 1 ist jeweils
klar.

a)Seil+24+...4+n=
1+2+...n+(n+1) =

n(n + 1); dann folgt
n(n+1)+(n+1)=(n+1)(5+1) = j(n+1)(n+2).

N =0 =

b)Nunsei (1 +2+...+n)?=13+23+ ...+ n3, dann folgt
(1424...4n+(n+1))? = (14+2+4...4n)?+2(14+2+.. .4+n)(n+1)+(n+1)? =
:(1+2+...+n)2 2-in(n+1)(n+1)+ (n+1)? =
=(1+2+...4n)2+n+1)?*n+1)=134+25+ ... +n3+ (n+1)>%



508 16 Losungen

1.7 Der Induktionsanfang fir m = 1ist: 1 = é -1-2-3.

Induktionsschritt: Sei die Aussage fiir ein m richtig, dann folgt:

m+1

S n? = bm(mA1)@m 1)+ (m+1)? = (m+1)§ (m(@m+ 1) +6(m+1)) =
n=1

= i(m+ 1)<2m2 +m+6m+6) = ;(m+1)(m+2)(2m + 3).
1.8 Die Behauptung folgt aus dem binomischen Lehrsatz 1.6.5 mitz = y = 1.
1.9
1 3-2  _ 3 _ 2; 14i _ (4144 _ .
3+2i = (3+2i)(3-2i) — 13 13" 1—i = (1-i)(1+i) — &
sei = ~1EV3  damnist of = ;( —143iV34+9— 3N3) — 1, daher
00 =1.-

Esist2® — 1= (v — 1)(2® + 2 + 1) und 22 + = + 1 hat die Nullstellen g und —p,
daher o3 = 1.

1.10 Fiir p(z) = 2° — 2* + 223 — 222 + o — 1ist p(1) = 0; mit dem Hornerschen
Schema rechnet man aus: p(x) : (z — 1) = 2* 4+ 22% + 1 = (22 + 1)2. Daher hat p
die Nullstellen 1; i; ; —i und es ist p(z) = (x — 1)(z —4)%(z + 7).

111 p(x) =2 -2z + z(z — 1)(x — 2) = 23 — 322 + 2
1.12 Esist b, = a, —TIL und

11 1 1 11
Un = Oni1 =, = 901 “oppe > 0 bnpr —bn =y + o0 — 0 >0,

also
b < ... <bp <bpy1 <ant1 <ap...<ai.

Daher konvergieren (ay, ), und (b,,),, und zwar gegen den gleichen Grenzwert, den
wir mit L bezeichnen. Es ist

11,1 1 11
Con=1l—g+g— 1+ ity =9, =

:(1+%+%+%+...+2n1_1+21n)—2(§+%+§+...+2}L):
:(11+2+13+4+...+12n71452n)— A+5+3+...+ )=
= 1l T Tt o tg = bn

Esistalso cg, = b, und wegen cop41 = Cop + 2n1+1 =b, + 2n1+1 existiert

lim ¢, = lim b, = L.
n—oo n—oo

2.1 a) Zue > 0 wahlt man § = . Aus |z — 2’| < 4, folgt dann:

b(z) — b)) = Jle] — 2’| < |z — a/| < 6 = =.

b) Die Funktion b(z) := || ist stetig, daher auch bo f = |f|.

OAus f = 1(f+|f)und f= = —1(f —|f|) folgt die Stetigkeit von f* und f~.
d) Nach Aufgabe 1.list maz(f, g) = 5(f + g + |f — g), also stetig; analog folgt
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die Stetigkeit von min(f, g).

2.2 Wir nehmen an, f(z) = 2® sei gleichmiBig stetig. Dann existiert zu ¢ = 1 ein
geeignetes § > 0.Nun wahlt man z > § und z > 1 und setzt 2’ := = + i Dann ist
|2/ — x| < §,aber |f(z') — f(z)| = (z + 1)* —2® > 3z > 3. Somit ist 2* nicht
gleichmafig stetig.

3.1 Seie > 0; man wihlt § > 0 so, dass fir 0 < |z — b| < § gilt:
f(r {f() f(b)’<6fallsa<ac<b‘g(qc (b)—g’(b)‘<sfallsb<x§c.

Fir z € [a,¢], 0 < |z — b| < § ist dann wegen f(b) = g(b) = h(b) und f'(b) =

g'(b): . .

und daher existiert 2’ (b) und es gilt A’ (b) = f/(b).
3.2 Esexistiert ¢'(0) = }llin% g(h);g(o) = }lLiH}) hot(h) — hm f(h) = f(0).

33 a)Sei\f( )| < M firz € R. Zuz,2’ € R, x < & existiert ein  zwischen x

und 2’ mit 7@ ) f(r) :f(g) und daher ist |f(z) — f(z)] < M|z’ — z|.
b)Zu6>Owahltman6 Tsaus |z — 2’| < dfolgt|f(x) — f(a')| < L-6 <e.

3.4 Bsist (z* — 223 —= 522 + 42 +2) : (x —1) = 23 — 2% — 62 — 2 und daher
ist f in z = 1 differenzierbar.

3.5 Wenn man die ersten Ableitungen von f ausrechnet, kommt man zu der Ver-

mutung :
k!
k
FP (@) = (1 — z)k+1

und beweist sie mit vollstandiger Induktion: Der Induktionsanfang & = 0 ist klar;
nun sei die Formel fiir ein k richtig; dann ist

f(k+1)(x) — (]{i' (1 _ x)fkfl)/ — k"(]{} + 1)<1 _ x)fkf2 — (1(]{;__;)11112

3.6 Fiir 0 < |n| < 1ist |7 7)) < |h| und daher ist f'(0) = 0.( Dies folgt auch
aus 3.1.) Somit ist
,oo 2@ firz <0
f(x)_{BxQ firz >0

Wegen
f'(h)y=f0) (2 firh<0
h " 13k firh >0
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existiert f(0) nicht.
41 2sinz cosw, —2cosxsinx, 2wcos(x?), cosx-eT  cos(e?).

4.2 e””lnx+i~ez, 2rxlnx + x, 1_3263}“1

a3 L pel, fe(alf), -+ f)ff

4.4 a) Wendet man die I’Hospitalsche Regel zweimal an so erhalt man % ,

b) Wendet man die 1’Hospitalsche Regel zweimal an, so erhalt man das falsche Re-
sultat % : Der Zahler geht gegen 0 und der Nenner gegen 1, also ist die I’Hospitalsche
Regel ist n’icht anwendbar. Der richtige Grenzwert ist 0.

1
x

1
x

c) Wegen = |z - sin ! | < || ist der Grenzwert 0.

4.5 Fir z € R setzt man y := ar sinhz, also x = sinhy; mit w := ¥ ist dann
z = }(w— !). Daraus folgt w? — 22w — 1 = 0; daher w =  + v/22 + 1. Wegen
w=¢eY>0istw=2z+vz2+1,also e¥ =z + v22 + 1 und daher

arsinhz =y = In(z + V22 + 1).

4.6 a) f(z) == Y na" =x- Y na" ! = z. & (12«) = (15 also
n=1

< 1 10
n — J—
wn =) =51-

n=1
o0
b) Gemeint ist natiirlich )~ ! .. Wir untersuchen also in [#| < 1 die Funktion
fl@) == 3 “sesist f/(x) = > 2"t = ! _Firg(z) = —In(1 — z) ist
n=1 n=1

g'(x) = 2, = f'(z) und wegen f(0) = 0 = g(0) ist f(z) = g(x) , also (vgl.
6.2.10)

o0
und somit 21 = fL) =,
n=

4.7 Esist f'(x) = 2xlnz und f”(x) = 2(1 + Inz). In]0,e~![ist f < O und f’
streng monoton fallend ; in Je~![ist f” > 0 und f’ steigend.

Es gilt f/(!1) = 0und f/(}) = —2 sowie f/(—1) = 0. Somit ist f < 0in ]0,1]
und f’ > 0in ]1, oo[. Daher fallt f in ]0, 1[ und steigt in |1, 0o[; in z = 1 hat f das
Minimum f(1) = —J; die einzige Nullstelle von f ist /e = 1,648.. . ..

4.8 Esist nach 4.3.4 cos 2z = 1 — 2sin? z und daher ist f konstant: f(z) = % fur
z e R
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49 f(x) =2" =exp(zlnz), [f'(z)=(nz+1)- 2%, f(hy=o.
In]0, ! [ist f’ < 0, also f streng monoton fallend; in] !, co[ist f’ > 0 und f wiichst

streng monoton.
1

In ! nimmt f also das Minimum exp(— ) an.
Es 1st hrrb x-lnx = hm lfﬁ = hrr%) _11//‘12 = 0 und wegen der Stetigkeit der
Exponentialfunktion folgt .

hr%x = hr% exp(xlnz) = 1.

1
]
I
|

4.10 EsistIn(4-10% =2-In2+9-In10 = 22,1...; es reicht also, wenn das
Blatt etwa 22, 2c¢m hoch ist.

Beim doppelten Erdumfang hat man hat man In(2 - 4 - 10%) = In2 + In(4 - 10°);
es kommt also der Summand In 2 dazu und das Blatt muss um 0, 69c¢m, also etwa
7mm, hoher sein.

Man kann sich damit nicht nur das langsame Wachstum von ln z, sondern auch
das schnelle Wachstum von e” veranschaulichen: bei x = 22,1 ist e” gleich dem
Erdumfang, geht man 7mm weiter, ist es der doppelte Erdumfang.

1 1
51w | 2 de = L(in(1 +x5))‘0 = lln2

1 1
b) f e dr = 2 1+1 = %arctgy’o = T mity = 2?
c) Zwelmahge partlelle Integrationergibt : [ z? sinzdx = —z? cos z+ [ 2z cos zdx
= —a2%cosx + 2xsinx + J2sinzdr = 2xsinz — (v? — 2) cosz. Daher ist
/2
[ a?sinzdr =7 —2
0

V2
cos T—sinx _ dy __ 1 : _ :
d)f o e dr = f ) = ;In2 mity =cosz +sinz.
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5.2 a) Partielle Integration: [ zInxzdr = lnx - [ @1 ldr = 2% (lnz — })
b) [ !llnzdr=}(Inz)?

¢) Partielle Integration: [ % Inzdr = —'Inz+ [ % = -1(1+1nx)

d) Substitution y = Inx und zweimalige partlelle Integration liefert:

[(Inz)’de = [y?-eVdy = (y* —2y+2) eV =z - ((lna:)2 —2lnx—|—2).

5.3 Fiir den Nenner gllt 22 =62+ 10=(z —3)2+1>0.
a) [ (22 o 10)2 2y % = 1yt = =1 . g, mit der Substitution
y =222 —6x+10
b) [ 2" GT_Hde =} In(z? — 6z + 10)
of I73 2y = arctg(x -3),
d [ $2j’6fff+10 = [ e fela0 3 et o = 5 In(2®—62+10)+3-arctg(z—3).
54 Fir0 <z < 3isty = 2-+/1 — (22/9) und mit z = 3 - sint ergibt sich 5 der
gesuchten Flache:

3 ) w/2 w/2
f\/l—mgdx: \/1 95mt -3costdt =3 [ cos? tdt =
0 0

/2

= ‘;’(t—i—smtcost) =3r
0
und die Ellipsenflache ist 67.
5.5
w/2
an = [ sinx-sin" ! adr =
0
/2 /2
= —cosz-sin" 'z + [ cos?x-(n—1)-sin" ?zdr =
0 0
w/2
=0+ (n—1) [ (1-sin’z) sin" ?zdr = (n— )a,—2 — (n— 1)a,
0
und daher
n—1
Ap = Ap—2.
n
/2 /2

Esistag= [ de=7, a1 = [ sinzdr =1, somit
0

o

-1 m-3 31 n o -2 42
= on Top_9 a4l LT 9p iy o1 5
1 1 1
5.6 a, = [2"e"dr = z"e”| — n [z"'e®dr,dahera, = € — n-a,_1.
0 0

0
Man erhalt :
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apg=e—1, a1 =1 a0 =e—2, a3 =6 — 2e.
5.7 Esist )
/da: =In(2n) —Inn =1n2.

xT
n

Wihlt man zum Intervall [n, 2n] die Zerlegung Z = (n,n+1,...,2n —1,2n), s
istb, =5, <1n2undan:(i+...+2n171)+2 SZ—|—2 >SZ>1n2
Damit hat manb,, < In2 < a, und daraus folgt L = In2.

R
58 Seis>1und N,Re N, N < R, dannist >  n~*eine Untersumme zum
n=N+1
Integralix*‘“dm = (yi1 — gii). Daherist

=1 1 1
> oLt
ns s—1 Ns—1
n=N+1
Daraus folgt mit s = 12und N = 3:
= 1 11 1
> < .= < 1076,

Zapl2 T 110311 1948617

man hat also mit den drei Gliedern 1 + 2~ 2 4+ 3712 djese Reihe bis auf einen Fehler
< 1076 berechnet. Es ist 1 + 2712 4+ 3712 = 1,00024602. .. und nach 14.11.9 ist

S n12 = 1,00024608. . ..

l1—x x

o0 &) o0
61 [*r =1 4+ T =Y "+ Y 2" =1+ 23 " firly <1.
’ = n=1 n=1

o0
1 _ 6n+1 _
6.2 | aotadiaiies 1 Tp6 = Zox - =
" =
=l-a+a% 2" +212 -3+ ...
1 11 2"
. _ o T . . .
6.3 Esist ;" = | (4/a) = ZO 441 und daher gilt fiir [z| < a:
n=

("”*a)l(f”*b) - “ib(zia - wib) = a— b Z ( () — b= (n+1)>1‘"

6.4 Fir |z| <1 gilt: z- (vg'(z)) = 2( 4 %,)) = m<1+j§ = f(x) und daher

f(m)zx-(x~gnm"_l>/=x~(inm"> =ux- ZnQ n—1 Zn

Daraus folgt
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D g =1(,)=6

n=1

6.5 Sei g(z) := ', fiir|z| <1 gilt (vgl. Aufgabe 3.5):
o) 1 o0
0l =9 @) = (X a") =3 aln -1z

n=0 n=2
und daher
z4a? 1 o _ n—1 - _ ny _
(ms =3 2 n(n=1)a"" 4+ 3" n(n—1)z" ) =
n=2 n=2
(o]
3 n2an.

=3 (m + ngz(” + na™ + n§2(n — 1)nx”) =

n=1

6.6 Nach der Taylorschen Formel 6.2.6 existiert ein £ mit

1.3 1.5 7

. x .
sinx — (z — a1 + 5!) = - (—sing)

1 1

orm = easio0 < 2 107C folgt die Behauptung.

|| ¥
undaus ") - | —sing| <

7.1 Wir schreiben die Losungen als Zeilenvektoren, bei der Rechnung sollen sie
unbedingt als Spalten geschrieben werden.

(1) {(_17 37 2 }

(2) {(9,15,0) + ¢(—2, —3,1)| c € R}

(3) {(1,2,0,0) 4+ c1(—4,1,-1,0) + c2(5, —1,0,=1)| 1,2 € R}
(4) unlosbar

(5) {(7,=5.3) + c(3,—2,1)| c € R}

(6) {(1,-3,1,0) +¢(1,2,3,-1)| c € R}

(7) unlosbar

(8) {(8,6,0) + ¢(—1,~1,1)| c € R}

7.2 Wir geben zuerst das charakteristische Polynom x 4 an, dann die Eigenwerte
EW und schliesslich zu jedem Eigenwert einen Eigenvektor EV, die Eigenvektoren
schreiben wir in Zeilenform, beim Matrizenkalkiil miissen sie als Spalten geschrie-
ben werden. In den letzten beiden Spalten geben wir an, ob die Matrix diagonali-
sierbar (d) oder trigonalisierbar (t) ist.
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XA EW EV d
t? — 5t — 50 = (t — 10)(t + 5) 10; =5 (1,-2); (2,1) +
2t —2=(t+2)(t—1) 1, =2 (=2,1); (1,-2) +
t2—1=(-1(t+1) 1, =1 (1,1); (1,-1) +
t? — 30t + 125 = (t — 15)° 15 (1,-2) -
t2 —Tt+10 = (t —5)(t —2) 2; 5 (1,-2); (1,1) +
2 =3t+8=(t—3)°+% >0 -
3 —5t2 2 +8=(t+1)(t—2)(t—4) —1; 2; 4 (0,2,1);(1,1,0);(=5,1,-2) +
3 — 4t + 5t —2=(t—1)*(t—2) 1; 2 (0,1,0); (3,-5,1) -
13— 4t 5t —2=(t — 1)*(t — 2) 1; 2 (1,0,1);(1,1,1);(0,3,1) +
) 0 (1,0,0); (0,1,0) -

Die Matrix (6) hat keine Eigenwerte und ist daher nicht trigonalisierbar. Alle an-
deren Matrizen sind trigonalisierbar, weil x 4 zerfallt. Bei (4),(8),(10) gibt es keine
Basis aus Eigenwerten; diese Matrizen sind nicht diagonalisierbar. Die Matrizen (1),
(2), (3),(5), (7), (9) sind diagonalisierbar.Bei den Matrizen (1) und (3) sieht man dies
ohne Rechnung, denn sind sind symmetrisch und besitzen daher eine Orthonormal-
basis aus Eigenvektoren.

7.3 Aus ) Ajv; = 0folgt > . A;f(vj) = 0 und nach Voraussetzung ergibt
sichdaraus A\ =0,..., A\ = 0.

7.4 Es ergibt sich

) () (o
V2 \ o V2 \ 1
9

7.5 Die zu f gehorende Matrix ist A = | 4_9

Basis von Bild f und, wie man leicht nachrechnet, auch von Ker f ist. Daher ist
Bild f = Ker f und somit fo f = 0.

1) ; daraus folgt, dass (_%,) eine

7.6 Die zugehorige Matrix ist A = (i :§> ; sie ist offensichtlich invertierbar,
nach 7.7.14 ist A=1 = i :; = A. Daher ist f ein Isomorphismus, also Bild f

=R? und Ker f={0}. Esist A- A = E, also (f o f)(z) = = und daher f~! = f.

|

(a) esist f(e1) = —e2, f(e2) = —e1; also A = <_(1) B

—= O

(b) esist f(e1) = e1, f(e2) = —e2; also A= (1) _2)
0 1
1 0/

(c) esist f(e1) = ea; f(ea) = eq; also A= (

+H++ A+
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7.8

A? — (spA)A + (det A)E =
2 2
[ a11 + aiza aiiai2 + ai2a22 ai; + aiaze aiiaiz + azzai2
= 3 — 2
a21a11 + Q22a21 a21012 + A9 a110a21 + A22G21 Q11022 + A2

n a11a22 — a12a21 0 _ 0 0
0 ai1a22 + a12621 0 0

Dies ist ein Spezialfall des Satzes von Hamilton-Cayley:

Fiir A € K™ istimmer xa(A) = 0.

Ist A € K22 eine Matrix mit spA = 0, so folgt aus diesem Satz:
A? = —(det A)E.

In7.5ist spA = 0 und det A = 0, somit erhilt man : 42 = 0.
In7.6ist spA = 0 und det A = —1, also folgt A2 = E.

+

7.9 Esistajiass — afz = det A > 0, daher a11a22 > 0 und wegen a1; > 0 folgt
ags > 0. Fiir die Eigenwerte A1, A von A gilt dann A\; + Ay = a11 + ag2 > 0 und
A Ao = det A > 0. Aus A1 A2 > 0 folgt, dass beide Eigenwerte positiv oder beide
negativ sind. Wegen \; + A > 0 sind beide positiv.

8.1 Die Substitution v := y + x liefert v/ = v, also v = ce® und damity = ce® —x.
Die allgemeine Losung ist y = (yo + zg)e” ™ "° — .

8.2 Die homogene Gleichung y' = y hat die Losung y = cx . Variation der
Konstanten liefert mit dem Ansatz y = c(x)y die Gleichung ¢/ (z)e® + ¢(x)e* =
c(x)e” + e: ,also ¢/(z) = ! und damit ¢(z) = In z. Die inhomogene Gleichung hat
also die Losungen y = (¢ + In x) und die Losung mit y(1) = 1 ist e*(1 + Inz).

8.3 Die Losungen von ¢’ = y sind y = ce” und mit dem Ansatz y = ¢(z)e” erhilt
man ¢’ (x) = 1, also ¢(x) = z. Die Losungen sind y = (x+ ¢)e® und die allgemeine
Losung ist (@ — xg + yo - e~ 70)e”.

8.4 Trennung der Variablen ergibt 113;]2 = dx, also arctg y = z + ¢ und damit
y = tg(x + ¢). Die allgemeine Losung ist dann

o(z) = tg(x — 2o + arctg yo).

Wegen |arctg yo| < 7 gibtes ein d > 0 mit |§ + arctg yo| < 7 und daher ist ()
in | — x| < ¢ definiert.

8.5 Trennung der Variablen dyy = (a — bt)dt liefert die Losung

1
y(t) = c-exp(at — 2th).

Es ist 1
y(t) = (a = bt) - ¢ - exp(at — 217152)
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und () = 0. Sei tg := §; fiir 0 < ¢ < tgist g(t) > 0; fiir tg < tist y(¢) < 0. Die
Bakterienkultur wachst also bis zum Zeitpunkt ¢y an, hat bei ¢, den Maximalwert
y(to); dann fillt sie streng monoton, es ist y(2tg) = ¢, sie hat also bei 2t; wieder
den Anfangswert und geht fiir ¢ — oo gegen 0; fiir alle ¢ ist y(¢) > 0.( Den Verlauf
von exp(at — éth) kann man sich leicht vorstellen, wenn man zuerst die Parabel
at — %bt2 skizziert. )

8.6 cre 3% 4 cpe™?®

8.7 e % (c1 cos2x + co sin 2x)

A= <—;\1/3 _35\/?’) '

Esist xa(t) = t2 — 4t — 32 = (¢t — 8)(t + 4). Man berechnet einen auf Linge
1 normierten Eigenvektor ¢; zu 8 und einen normierten Eigenvektor ¢ zu —4. Die
Matrix 7' mit den Spalten ¢1, to ist orthogonal; man erhalt etwa

r=(35 ")

8.8 (c1 + com)e™2*
8.9 Sei

Dann ist
1 (8 0
T AT = <0 4
und ~ R
7 = 8
' = —4y
hat die Losung

N . (1 uw (O
g (D) wae (2).

Dann ist y = Ty die Losung von 4’ = Ay und man erhilt

-1 1\/3
_ 8z 2 —4x 2
Yy =cp-e ~<1 )—!—cz-e < 1 ), c1,c2 € R.
2\/3 2

8.10 Sei . .
4 1+31v3 5
-5 1-3v3)’
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dann ist
) ) 1/-1\ .. .
xa(t)=t"—2t+1=(t—1)° und ¢; = 9\ V3 ist ein Eigenvektor.

Man wahlt den Vektor 2 so, dass die Matrix 7" mit den Spalten ¢;, t5 orthogonal ist,
etwa \/
1 /-1 —/3
T= .
2 ( V3 -1 )
12
—1 _
- (12).

=17 + 20
Zj2/ - Zj27

Dann ist
Man I0st nun

aus der 2.Gleichung folgt 175 = cye® , dann ist die 1.Gleichung 71" = 71 + 2cpe®
und deren Losung ist 97 = c1e® + 2¢o(x + 1)e® . Somit ist

- z (1 s [ 2x+1
y=cie <0>—|—cze< 1 )

Dann ist y = Ty Losung von iy’ = Ay, also
1 1
= et 2 LeT . —$—1—2\/3 R
Y c1-e (;\/3> + c2-€ ((x—i—l)\/?)—% R c1,C2 € K.

9.1 Aus 0 < (Jz| — |y])? = 2% + y* — 2|ay| folgt |w22f?’/2| < 1 fiir (z,y) # (0,0)

und daher ist | f(z,y)| < |z/|fiir alle « ; daraus folgt die Stetigkeit von f in 0.
Man sieht unmittelbar, dass f,(0,0) = 0 und f,(0,0) = 0ist. Fiir (z, y) # (0, 0)ist

43 2zt — 22292
fw(xvy) - (332 +y2)27 fy(xuy) - ($2+y2)2 .
Aus fy(z,z) = 1und fy(z,2z) = — 2 fiir z # 0 folgt, dass f, und f, im

Nullpunkt unstetig sind.
Wenn f in 0 (total) differenzierbar ist, dann geht die Funktion o (z,y) = 7 (@)

CVaty?
gegen 0; fiir z > 0 ist aber p(z,z) = \}2 und daher ist f nicht differenzierbar.

9.2 Esist f;(0,0) = 0und f,(0,0) = 0 und fiir (x,y) # (0,0) ist

4 433431
(22 4 y2)2

dzy

fm(m’y) = (:L.Q _,_yg)g?

fy(xvy) =

Firy # 0ist |fz(z,y)| = ((m/y‘l)ﬁﬂ)Q | < 4|x| und daraus folgt, dass f, im Null-
punkt stetig ist.
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Durch Vertauschung von z, y erhélt man die Stetigkeit von f,.
Somit ist f stetig partiell differenzierbar, daher ist f stetig und auch (total) differen-
zierbar.

9.3 Man rechnet aus: % (0,0) =0, gg (0,0) = 0 und fiir (z,y) # (0,0) ist:

of xty + T2ty — 4y of 2% — 1323y% — day?
(z,y) = Sl (z,y) = S
Oz (z% +y?) y (22 4+ y2)
Daraus ergibt sich:
o9 = 10 Qi 1 (—4R%)
0y 3£ (O’ 0) - hi% h 8£ h) = }llli% h  h4 = —47
a of _ 1 190f IRT 1 B5 .
Oz 89(0’0) _}llli’%hé)y(h’o)_}llgoh;ﬂ = 1

94

a) h(z,y) =a* —y>

b) es gibt kein Potential
c) h(z,y) =e"¥ + xe¥
d) h(x,y,2) = 2%y + 22 +y22.

9.5 Aus cos2t = cos®t —sin?t = 1 —2sin?¢ folgt 4(sin 1)2 =2—2cost und
fir 0 < t < 2w ergibt sich: 2sin ; = /2 — 2cost . Daher ist

27 27
L,= [ \/(1—00815)2 + sin?tdt = [ V2 —2costdt =
0 0

T 27
:2fsin£dt=—4cos§ =8.
S 0

9.6 a)

2m
[vds= [ ((T cost — rsint)(—rsint) + (rcost + rsint)(r cost))dt = 2772,
o’ 0

b) [ vds = f’ ((t—t) + (t+t)>dt: 1.
v 0

1
o [vds=[ ((t—tQ) + (t+t2)(2t)>dt =3.

v 0
9.7 h(z,y) = 2 — 3xy? — 3z . a) Das Integral ist 0, weil ein Potential existiert.
b)c) Beide Integrale sind gleich h(1,1) — h(0,0) = —5.

10.1 Wenn das Kriterium gilt, dann ist K trivialerweise eine Nullmenge. Sei nun K
eine kompakte Nullmenge und € > 0 beliebig. Dann existieren Quader /;, 5 € N,
mit
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K C U I, ZM(IJ) <
j=1 j=1

Die I; konnen offen, halboffen oder abgeschlossen sein. Vergrossern wir die Kanten
um 6; > 0 und nennen den so erhaltenen offenen Quader 1 " soist [ ;CI J’ Wahlen
wir d; so klein, dass

_ ;€
ul}) = (L) <277

ist, so erhalten wir

(oo}

KcJn, Do) =37 uh) + 36 —uIy) < e

j=1 j=1

Weil K kompakt ist, konnen wir endlich viele I J’ auswahlen, die das Kriterium
erfiillen.

10.2 f ist auf ]0, w[x]O, 7[ nicht integrierbar. Wére f integrierbar,so wére nach
10.2.6 die Funktion ! iiber ]0, 7| integrierbar. Nach 10.2.2 ist dann

11

™ T—E

1 1
/ . dr= lim o dx.
sinx e—0,e>0 sSin
0 €
Es ist aber
T—¢ w/2
1 1
. o de=2- . dz, O<e<m/2.
sinx sinx
€ 1>

Wegen sinz < z auf [0, 7/2] folgt:

T—¢ w/2
1 d

/ . dx22-/ xdx:2~(1n(7r/2)—ln5)—>oo fir ¢— 0.
sin x x

€ g

Die Funktion f ist auf |0, m — §[x]d, m — &[ integrierbar, da f dort fast iberall mit der

auf |6, m— 6[x]d, 7 — §[ Riemann-integrierbaren Funktion '~ , Ubereinstimmt.
10.3 a) Sei
R
F®= [ fllelhds, G@R)=ne, [ 1) ar
lzll<Rr 0

und Ap gyn = {R < |z| < R+ h} fir h > 0. Dann ist, falls F’ und die
Grenzwerte existieren;

W) =i [ Fel) - SR R iy [ de

AR, R+h AR R+h
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Nach der Transformationsformel ist
dz = R"e,,.
lz|<R

Da f in jeden abgeschlossenen Intervall gleichmaBig stetig ist, existiert zu € > 0
ein § > 0 derart, dass

[FUl=l]) = F(R)] <

ist. Also ist
Wl Fllzl) = F(R))dz| < phes pen - (R+H)" = R™) =
AR R+h
= pnpnt MR+ (D)R" 2R 4 ).

3

nRn—te, A A<zl <R+h 0<h<o,

Damit verschwindet der erste Grenzwert in (1).

Fiir den zweiten erhilt man f(R)nR"~ e, . Fir die Differenzenquotienten, die mit
der Grundmenge {R — h < ||z|| < R} gebildet werden, ergibt sich dasselbe Ergeb-
nis. Offenbar ist ebenfalls

G'(R) = f(R)nR" 'e,.

Mir F'(0) = G(0) folgt die erste Behauptung.
b) Es ist

R
ef(z2+y2)d(3:,y) = QW/efrzrdT =x(l-— efR{z);
0

{e>+y2<R?}

/ef(zﬁyz)d(% y) =
R2
Der Satz von Fubini liefert

R2 R

/e*z{zdaz = /7.

R

also

10.4 Wir wahlen geeignete Koordinaten, namlich ¢ € [0,27[, ¢ € [0,27[,0 €
[0, r]; dabei ist  ein Winkel in der zz-Ebene und ¢} ein Winkel in der zy-Ebene.
Mit diesen ist

x (R + 0) cos pcost
y| = (R + o) cos psind =:®(p, 9, 0).
z osin ¢



522 16 Losungen

& bildet [0, 27[x [0, 27[x [0, r] auf T" ab.
Wir definieren nun die Menge

(R + 0)cos®,
M = { (R—f—g)sin&) |0§19<27r,0§g<7’} U
0
R+ ocos p,
U 0 [0<p<2m0<p<r U
osin g
(Rcos ¢
U{ Rsinﬂ)|0§19<27r,}u
0
(R+ rcosy)cost?
U (R+rcosyp)sing | |0<p<2m, 0<9<2m
{ rsin ¢ ) }

und setzen .
U :=]0,2n[x]0,27[x]0,r[ V:=T \ M.

Da die letzte Menge bei M bereits den Rand von T darstellt, kann sie fortgelassen
werden. @ bildet U auf V' ab. V ist offen. @ : U — V ist auch injektiv: es sei

01 Sin 1 = 02 Sin Y9
(R + 01 cosi)costy = (R + 02 cos ps) cos Iy
(R+ 01 cosp)sintd; = (R + 02 cos ps) sin dy

Sind cosy # 0,cosy # 0, so folgt tanv; = tanvy und ¥1 = Y5 oder ¥; =

Y9 £+ . Im letzten Fall ist cos ¥y = — cos 2. Daraus folgt
01 COS®Y1 = P2 COS P2
01SinY; = P2sines

also 01 = g2, 1 = w2 und damit ¥y = Js. Ist cos?¥; = 0, so auch cos s
und insbesondere cot¥; = cot),. Dieselbe Argumentation wie eben liefert die
Gleichheit. Wegen

—osinpcostd  —(R+ pcosy)sing  cospcosd
Jo(p,9,0) = | —osinpsingd  —(R+ pcosp)cost?d  cospsind
0COos 0 sin ¢

ist
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| det Jo(p, 7, 0)] = o(R+ gcosp) #0
in U =)0, 27[x]0, 27 [x]0, r[. Also ist @ : U — V ein Diffeomorphismus. Bis auf
eine Nullmenge ist V' = T'. Damit folgt unter Benutzung der Transformationsformel

27

@ +y?)d(z,y,2) = [

T

(R + ocosp)3ododpdd =
0
o7 (R? + 3Ro?%cos? p)dpdo = 2nRr?(R? + 27“2)-

(S OHI:\E
o WO

10.5 Esist p(S) = 2.
Wir fithren Kugelkoordinaten ein:

T 7 sin cos ¢
y | = | rsindsing | = &(p,9,7), 0<p<2m0<9d<mr>0.
z rcos

Dann ist

| det Jep, 9, 7)| = r”sind
und & bildet die offene Menge U :=]0, 27r[x]0, 7[x]0, 1] bijektiv auf die folgen-

dermassen definierte offene Menge V" ab: Es sei

M := {(rsin?,0,rcos?)| 0 <r <1,0<9 < THU{(0,0,7)] 0 <r <1}U
U {(rcose,rsing,0)] 0 < ¢ < 21,0 <r<1}U
U {(sin® cos p,sinsinp,cos )| 0 < o < 27,0 <9 < T}

Nun sei KT die abgeschlossene obere Halbkugel und V' :=K*+ \ M. Dann ist & :
U — V ein Diffeomorphismus. V fiillt die obere Halbkugel bis auf eine Nullmenge
aus. Es folgt mit der Transformationsformel:

2m
/ 7 sin o cos r? sin ¥dpdddr = 0,
0

3
™
N
3
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)

N

10.6 a) Zu berechnen ist das Volumen von
K={(z,y,2) €ER}a<2<b, 2* +y* < (f(2))?}.
Nach dem Satz von Fubini ist
b b
w(K) = / / dzdy | dz = w/(f(z))zdz.
a  \{z2+y2<(f(2))?} a
Fir f(x) =2 0 <z <1, ergibtsich ein Kegel mit dem Inhalt 7/3.

b) Wir nehmen die lineare Abbildung A = <g 2 > (; > , die die offene Einheits-

kreisscheibe E' umkehrbar stetig differenzierbar aus das Innere der Ellipse mit den
Halbachsen a und b abbildet. Die Transformationsformel liefert: das Volumen dieser
Ellipse ist wab.

10.7 a) Sei p < q. Aus der Holderschen Ungleichung folgt:
[1s1raz = [ 1110z < aye e,
T 1

Hieraus folgt a)
b) Sei
fla) = {(1)/\/|37| fir [z[<1,2#0,

sonst

dannist f € L1 (R), da f sowohl bei Null als auch im Unendlichen integrierbar ist.
f ist jedoch nicht aus Ly(R), da ! nicht bei Null integrierbar ist. g(x) =

1
el 1+[a|

2
ist aus Ly(R), da (1 +1\r\) bei Null und im Unendlichen integrierbar ist. 1+1\r\ ist

jedoch nicht im Unendlichen integrierbar, also ist g nichtin L; (R).
c)Bsistr <p,r<gq, 1= ; + ; Die Holdersche Ungleichung liefert

r/p
[isrigras < { [1srac) ([l
T 1 T
Fiir A = 0 oder A = 1 ist nichts zu zeigen. Sei

d) X € [0,1] folgtaus | > 1 > 1.
also0 < A < L Auf f:=[f|*, g:=|[f['"*konnenwirwegen ; = + |
Teil ¢) anwenden.

r/q

>
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10.8 a) f ist ungerade, also a,, = 0 fiir n € Nj.

+m
1 2
by, = /x sinnzdr = ~(—1)"!
T n

—T

durch partielle Integration. Also

b) g ist ungerade, also a,, = 0 fiirn € Ny.

“+7 0 T
b=} [ g(x)sinnzdz =} [(—h)sinnazdz + | [hsinnzdz =
S “r 0
0 falls n gerade

fLZ falls n ungerade

===

1092) | < froygn > —< fog> | <|< fo—fign > |+ < fign—9g>]<

[ = FI - Ngnll + 1171 - [lgn = gll-
Wegen ||g., — gll = | llgnll — llg]l | ist (J|gn]||) als konvergente Folge beschrinkt.

Daraus folgt die Behauptung.
b) Mit a) und der Orthonormalitat der u,, in 10.4.18 folgt

+7 0o 00 2
JIf@Pde =< f.f>= Y anamdu+ > bbimdu + 750 =
—r n,l=1 n,l=1

= x| S @+ f]

n=1

c¢) f ist ungerade, also a,, = 0 fiir n € Ny. Durch wiederholte partielle Integration

folgt
i 12 2r?
bn = 3. sinnadr = (—1)" -,
7T/x sinnzdz = (—1) <n3 " ))

indem man die Potenz x> sukzessive erniedrigt. Damit liefert b) die Gleichung
2 . T = /12 272 <. /144 48n%  dnt
77T:/a:dx:7rn§_:l<n3—n>:7rn§_:l<n6—n4 +n2>.

—T

Einsetzen der gegebenen Werte fiir die Reihen tiber n12 und 734 liefert
né 945"
n=1

10.10 Wir benutzen || f||> =< f, f > und erhalten
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N
a) |f = X2 fuenl* =
k=1

N N N ~
= HfHQ—];lfk < f,or > —kzlfk < @kaf>+k;1fkfl < Qg1 >=

N N
= A7 =2 2 1fel* + 3 1fl®.
k=1 k=1

N N N

b) [ f— 2 ceprl* = IF+G|> mit F:= f— 3 frpr, G:= 3 (fx — c&)pr.
k=1 k=1 k=1

Wir haben

<F+GF+G>=|F|*+2Re < F,G > +|G|* =

n N N N
=112 =D+ len = ful? +2Re < £ = fror s D (fr— cx)pr > -
k=1 k=1 k=1 k=1

Mit

N N N N
<f=d feens D (Fe—e)or >= D filfu —er) = D filfu —cr) =0

k=1 k=1 k=1 k=1

folgt die Behauptung.

10.11 Wir miissen nur die Fourierreihe von 100z*| E bestimmen. Mit 24| R =
C1084 4 und 005230 = 5 (1 + cos2¢p) :folgtl: cost ¢ = 1}1 + 5 cos2p + ; cos® 2p =
1+t 5c0820+ ,(5(1+cosdy) = g + 5 cos2¢p + ¢ cosde.

Die Fourierentwicklung von 100 cos* ¢ ist daher

75 25
100 cos® ¢ = 5 + 50 cos2¢p + 5 cos 4y
und die Temperaturverteilung auf E ist in Polarkoordinaten
75 25
T(r,p) = 9 + 5072 cos 2¢ + 5 r cos 4.

Mit der Methode von 14.14.10 berechnet man zuerst Rez* und Rez? : Auf OF
ist Rez? = 8z% — 822 + 1 und Rez? = 222 — 1. Damit errechnet man: Setzt man
f(z) =% (2" + 422 + 3) und

25
T(z,y) :==Ref(z+iy) = " (a" = 62%y° + y* + 42® — 4y* + 3),

2
so ist T als Realteil von f harmonisch und auf OF ist T'(z, y) = 100z
10.12 a) Es gelte das Kriterium. Dann ist

1£; = FI? = 1£5]1* = 2Re < fj, f > +I|£]I* = 0, j — oo.
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Ist umgekehrt lim f; = fin A, so folgt aus || f; — fI| > | ||/l — || f]l |, dass
J—00
lim || f;|| = || f]| gilt. Aus der Ungleichung von Cauchy-Schwarz ergibt sich
| <firg>—=<fg>1<Ifi=gll-lgll

und daraus die Behauptung.
b) Wir wihlen g = f. Dann folgt

| < fi f>=lFI?l = 0.
Mit | < fi, f> =2 1> |1 <fif> [ = [fII* | erhalten wir fir || f]| > 0,
dass es zu jedem € > O ein N = N(e) gibt, so dass fiir j > N gilt:

AP <ellfl+ 1< £ fi > T < elf I+ 1A -

Wir wihlen eine Teilfolge (f;,) mit || ;.|| — lim inf |/ f;|| und dividieren durch
j—oo

[l |- Fiir || f|| = 0 ist nichts zu zeigen.

10.13 x[q.p) € L1(R) ist klar. Wir haben

too b
X(a,0)(§) = \/1% f e\ [ ) (z)dz = \/1% Je e dr =

e i 0
\/2 (b—a) firé =0

10.14 a) | 27" |ist um 0 und damit auf R beschrinkt. Damit ist {(q,1) bei 0
quadratintegrierbar. Wegen
o—igh _ efiga

¢ \5I2

ist X[q,5] auch im Unendlichen quadratintegrierbar.
b) Es ist

E g TOO e

[ atde+ [ e =

— 00 €

e '

— f (cos§2b—1 +i qlnfb 1>d£+ f (cosz%b—l_’_lsl?z&b) d£

Da sinéb ungerade ist, ist

€ +oo

sin £€b sin&b

¢ d¢ + / e d¢ = 0.
—o0 +e

Die Reihe fiir cos £b— 1 beginnt mit der Potenz £2b? und enthilt nur gerade Potenzen

von &b . Falls die Limiten der Aufgabe existieren, hidngen sie also nur von || ab.



528 16 Losungen

Da ©* 552}’ ~1 bei Null beschriinkt ist und wegen des Faktors 512 im Unendlichen
integrierbar ist, ist sogar >~ aus L, (R).

52
10.15 Esist
1 fir 0<z—y<1

X(@—y) = {0 sonst

also

_J1 fir y<zundy>z-1
X(x_y)_{o sonst ’

und mit z = z — y ergibt sich

1 S
X x(z /X dy——/x(Z)dZ=
0

; .
[d= x fir 0<z<1
0
= 1 =
[ zdz2 2—zfir 1<z<2
rx—1
0 0 fir z>2
Somit folgt
“+o0 1 x
(@) = [ 0 e-ux@dy = [ee-ds = [ (en()ds =
— 00 0 x—1
0 0 fir <0
J 2z Ly fir 0<z<1
1 x
={ [ 2dz+ [2dz = —2?+3z—3 fir 1<z<2
rx—1 1
[ dz 122 -3x+ 9 fir 2<z<3
1
0 0 fir >3
y ya
1 X * X 1+ X KX % X
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Hinweis: x % x *...* x liefert die aus der Numerik bekannten B-Splines.

11.1 Wir setzen M’ := {(z,y) € R?| (*)? 4 (¥)* = 1}. Es sei

f@,y) = (%) +(¥)* = 1,inR?\ {(0,0)} ist grad f # 0 und daher ist M’ eine
eindimensionale Untermannigfaltigkeit des R2. Nun zeigen wir: M = M'. Wegen
(ac;)st)2 + (b~sli)nt)2 =1list M C M/.

Nach 4.3.19 existiert zu (x,y) € M’ eint € [0,27] mit 7 = cost und § = sint;
daraus folgt M’ C M.

Einen Atlas kann man so erhalten: Sei () := (acost, bsint); ein Atlas ist z.B.

(h =] =m 7, o 0(l —=m7)), (T2 =]0,27, ¢, ¢ (10, 27])).

11.2 a) M ist das Nullstellengebilde von f(x1, 22, 23) := 23 — 7322 ;

es ist grad f(x1,72,23) = (—2x122, —22, 1) und dieser Gradient verschwindet
nirgends.

b)p(ty,ta) = (t1,t2, t3ts).

c¢) Esist grad f(0,0,0) = (0,0, 1) und dieser Vektor ist eine Basis von N, M.
Weiter ist 0f (£) = (1,0,2t1ta) , 57 (t) = (0,1,3) und ((1,0,0), (0,1,0)) ist
eine Basis von T, M.

11.3 Wenn M eine eindimensionale Untermannigfaltigkeit des R? mit (0,0) € M
ist, dann gibt es eine offene Umgebung U = I x I’ von (0,0) und

(1) eine beliebig oft differenzierbare Funktion g : I — I’ mit

MNU = {(z,y) € Uly=g(x)} oder

(2) eine beliebig oft differenzierbare Funktion /4 : I’ — I mit

MAU = {(z,9) € Ulz = hly)}.

a) Im Fall (1) ist z - g(x) = O fiir z € I und fiir x # 0 ist dann g(z) = 0. Wegen der
Stetigkeit von g folgt g(x) = 0 fiir alle z € I. Dann wire aber M NU = {y = 0};
ein Widerspruch. Im Fall (2) schliesst man analog.

b) Im Fall (1) ist 23 = (g(x))? > 0 fiir z € I, aber fiir x < 0 ist 2® < 0.

Im Fall (2) ist y? = (h(y))?, also h(0) = 0. Zweimaliges Differenzieren liefert

h(y) - (6h’(y))2 + 3h(y)h” (y)) = 2; aber fiir y = 0 verschwindet die linke Seite.
11.4 a) Wie in Beispiel 9.6.8 erhalten wir
h =32+ la1a® + Jaga®y + aswy® + a4;f +ey) =
= 1y% + bizPy + Lbowy® + Lbsy® + by,
woraus folgt:
1
bl = 2&2, b2 = 2a3.
b) Die Taylorentwicklung von - um (0, 0) lautet

h(x,y) = h(0,0) + x* + y* + Terme hoherer Ordnung.
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Ohne Einschriinkung sei 2(0,0) = 0. Der Graph von h im R? ist demnach in der
Nihe des Nullpunkts ein ,,Krater “mit Minimum in (0, 0), aus dem die Hyperebenen
z = c die Niveaulinien als geschlossene Wanderwege herausschneiden.

11.5 a) Aus
(wf)y = nfy + 1y f = (19)e = 1ga + ptayg
folgt
w(fy = 92) = g — iy f-

b) Aus a) folgt

padzy® — 922y = p(92” — 4y?).
Hieraus entnimmt man den Ansatz

1 1

Ho = Ho Hy == H = ezp(—(Inz +Iny)),

also

1
0=+ fir zy #0.
Y

11.6

a) T =a%y?
b) 7 existiert nicht, denn dw # 0.
c) 7 = yidx — 22dy — e®dz.

12.1 Wir haben fiir irgendein Intervall I [(f — g)edz = 0, ¢ € C5°(I). Sei

T
h € Lo(I). Nach Satz 12.1.21 existiert eine Folge (y,,) in C§°(I) mit ¢,, — h in
Ly(I). Alsoist [(f — g)hdz = O fiir alle h € Ly(I). Damit folgt f = g f. i.
T

12.2 Fiirm € Nund ¢ € C§°(R") ist

+oo )
(€ +1DRE) =y, [ (€7 +De T p(x)dr =
oo m . +oo
- \/1271' _f (=)™ ggom (€7 )p(@)da + _f els‘”g@(m)dx) =

oo 3 2m +0o0 .
= o | ST L p(@)de + [ e p()da |
—00

— 00

Insbesondere fillt § fiir |{| — oo schneller als jede Potenz von 1/|¢| ab. Also

+oo
konvergiert > (k). Daherist mit T}, := Ty, :

k=—o0

+oco n

. n + . nooo
Tu(p) = \/1% / k_z e"“(p(m)dxzk; \/1% e~k y(r)dr = _Z: o(k),
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woraus die Behauptung folgt.

12.3 Fiir p € D ist

i<k

= ‘%kT((—l)‘j‘Dj(ajw)) =T ( 2 (—Uij(ajw)) :

12.4 Ein Fundamentalsystem zu Lu = 0 wird durch e\/m, e~ VA gebildet. Wir
bestimmen

m(z) = Ae¥?* 4 BenVA mit y(—1) =0, 57 (1) =1
me(z) = AeV2® 4 BemV2 mit  py(+1) =0, nh(+1) = 1;

und erhalten

Damit ergibt sich

mih —mamh =, (@Y — 72V
nOm(z) = (Ae\//\t + Be_\/M) ) (Ae\//\m + Be—x/)mc)7

m(thna(z) = (AeV™ 4 BemVA) . (Ae¥Ae 4 BemVie),
woraus mit dem Hinweis folgt:

G (,1)
G"(x,t)

sinh(VA(1 4 z)) - sinh(VA(1 — 1))
sinh(VA(1 — z)) - sinh(VA(1 4 1)).

_ -1
T VAsinh(2v/A)
_ -1

T VAsinh(2V/A)
Die Greensche Funktion ist also negativ in | — 1, +1[x] — 1, +1].

12.5 Wir haben fiir eine Eigenfunktion v € D(L) zum Eigenwert \:
Au = —qu — (pu')’
b b
Alul? = [(=@)lufPdz + [plu'*d > [(=g)|ul*dz = gollu]*.

a

Mit ||ul|? > 0 folgt die Behauptung.

12.6 Esist
b b b X
0= [lgrur — (puy)uzdz = [ qruiugdz + [ pujusde — [pujus], .

Andererseits gilt
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b b b b
0= [lgouz — (puy)Jurdz = [ guurupdz + [ pujusde — [pujusl, .
a a

Wegen uq(a) = uq(b) = 0ist [quul] = 0. Damit folgt

b
0= /(q1 — q2)uauzde + p(a)uy (a)us(a) — p(b)uy (b)us (D).

a

Annahme: us hat keine Nullstelle in ]a, b[. Ohne Einschridnkung sei uz > 0in ]a, b[.
Dann sind uz(a) > 0, uz(b) > 0. Wegen uq(a) = u1(b) =0, ug > 0in]a, b[ sind
uf(a) >0, uf(b) <O0.Damit ist

b
0< / (a1 — @2)uruadz + p(a)d; (a)uh(a) — p(B)ech (B (),

a

und dies ist ein Widerspruch.

13.1 Bsist [ y?dz + 23 ydy—0+ftdt fdt—i—O:—% und
0Q

[ y?dx + 23ydy = [(32? y—2y)dxdy——2.

oQ Q

132 a)Esist [ = [+ [ — [ mity : [1,2] = Rt (¢, 1),
O0A Yrooov2 78
v2 1 [2,4] — R2,t— (2,1), 73 : [1,2] — R2,t s (t,12).
2 2
Daheristé){‘ I;darzlft:dt+0—fgdt: 3
b) Nach Gauss ist [ I; de=—[2 by ( )dxdy = —i—f > dedy =
DA A

) 2
v dedy = [ 2?
Y 1

v
d 2 * 2 1
| dr = 1f [ ] dlef(x—l)dxzz.

I
=
By,
By

1

13.3 [y sin(zy)dedy = [ (fy . sin(xy)dx)dy =[[- cos(my)](l)dy =
Q 0 Vo 0
= [(=cosy + 1)dy = [~siny +y]j =
0

1 [ V1-g? 1 I
134 a) direkt: [aydedy = [| [ ayde|dy = [5 - [22])"0 " do =
A o\ 0 0

1
[3-(1—a?)de =

0
b) mit Polarkoordinaten z = r - cos ¢, y = r - sin ¢ ergibt sich:



m/2

1
Jaydedy = [ [ rcose - rsing - r - dpdr =
A 0 0

1 z2 1

13.5 [ [dyde = [(a® — 2%)dz = .
0

0 g3
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1
2

o,

13.6 Eine Karte zu M ist ¢ : R? — M, (t1,t2) — (t1,t2,t3t2).
Esist wop = (2t1tadts +tidts) Adty + tidty Adty = (—t3 +17)dty Adts =0 ;
somitergibtsich [w= [ woe=0.

A eia

13.7 a) Sind ey, ey, e3 die drei Einheitsvektoren des R? , so ist

r3 [Sin2 go]

o=/ dr

=0

a X (b X C) = (ag(blcg — bgcl) — ag(bg,q — blcg)) e +
+ (az(bacs — bsca) — ai(bica — bacy)) €2 +
+ (al(bgcl — blcg) — Cl2(b263 — bgCQ)) es.

Vergleich mit < a,c > b— < a,b > c zeigt die Behauptung.
b) v x v ist orthogonal zu v und daher tangential. Nach a) ist

o o 4] o
Jo (Gt x 20y xv) == ), (vx (Bt < 38)) =
) b)
Oty )

:= a(t) x v(t) das Gewiinschte.

_ 1 v Op \ . Op
- \/g ) Oto oty

13.8 Nach Aufgabe 13.7 a) leistet v(t)
13.9 a) Aus Aufgabe 13.7 b) folgt:

. _ 1 (a8 (_ Op 9 o¢
Div (v xv) = Ja ot (5 <V 50 >)+ g <V 50 >
1 _ ov Oy ov Oy
_\/g <0t1’0t2>+<0t2’8t1> :
_ 1 ¢ dp
b) <rotv,v >= Vo <(8t1 X atz),rotv>,
3
Op o Op  _ T Op; 0w
ot Oty ijk ot Oty ks
i,5,k=1
3 o
Um
OtV = 3 Eumk Hyl €k
l,m,k=1
3 3
_ L. L Op; 0P vm
\/g < rot v,V > = ijlz’n:l_l (kz_:lsz]kslmk> dt1 Oty Oz
_ Y s i 0pj dvm _
= ZZ . (52l5jm - 5315"“) T oty Btgj 1z
i,3,l,m=

Oy
- <V’ oty

3
= 3 dip; Op; Ov;
- Oty Ots Ox;

ij=1

Bp; Op; v,
Ot1 Ots am_j

),

):

533
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3
. 1 O 0pi Dpj | Ou; D Dp;
Div (v xv) = Nz igz:l ( Ox; Ot Oty Ox; Oty Ot )’

also
Div (v xv) = — <rotv, v, >.
13.10 Wir bentitzen Aufgabe 13.8 und Aufgabe 13.7 sowie Satz 7.9.39 und erhalten:
J(Diva)dS = [Div(rxv)dS=—[<rotv,y >dS=— [ v-dt =
A A A

0A
[DA] |0A]

_ t _ t _
__Of<v’\|t\|>ds_ Of<1/><a,HtH>d3—
|8A| [OA|
= [ det(a, H:H,V) ds= [ <amn> ds.
0 0

14.1

a) f(z)=—iz?+z

b) Uze(z,y) + uyy(z,y) = 2 # 0, daher existiert kein f.

o) f(z)=22+iz

14.2 a) hebbar, b) wesentliche Singularitat, ¢) Pol 1. Ordnung,

d) sin i hat Nullstellen in nl n € Z, in 0 liegt also keine isolierte Singularitat.

T

27
143 a) [ |z|dz = [ rir-etdt =0.
|z|=r 0
2m )
o) [ Zldz= [ rorietdt = 2rmi
|z|=r 0

c)d)Esist 22 —42+3 = (2 —1)(z — 3); das Residuum in z = 1 ist lim
iy
Integral ¢) gleich —mi und d) ist 0.

e) Das Residuum von z~7 4 727° — 9822 ist 0 , daher auch das Integral .

z—1 _
22—4243
= — % Analog ergibt sich: Das Residuum in z = 3 ist é Dabher ist das

z—2
—8 und das Integral ist gleich —167i.

2
f) Mit w = z — 2 ergibt sich (22_5) = "'_fu“g”“"', somit ist das Residuum gleich

14.4 Man berechnet diese Integrale mit 14.12.4. a) Die in der oberen Halbebene ge-

legenen Polstellen von _,% | sind z; = 1\/+2i und 25 = _\}‘;. Mit p(2) := 2, q(z) :=
2%+ 1 erhilt man nach 14.11.8: Res.,” = 1) = |1, = — | und Res.,” = {;
somit ist das Integral = 0.

b)Nun setzt man p := 2* und erhilt:Res., | = 425? = 4 = \{f(l — i) und
Res.,t = \éz (=1 —i); somit ist das Integral gleich }mv/2.

R
. . . . 3
¢) Dieses Integral existiert nicht, denn es ist @iﬁ = }L In(R*+1).
0
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14.5 Eine Homotopie von  zu p := (0) ist

[ Aet-(-s)  fir 0

A IA

1
t 2
t<1

IA INA

Fiir jedes s € [0, 1] lduft die Kurve ¢ — h(t, s) von p bis zum Punkt (1 — s) und
dann zurtick nach p; fiir s = % kehrt sie auf halbem Weg um; fiir s = 190 kehrt sie
bereits bei y( },) um.

14.6 a) f hatin O eine Nullstelle einer Ordnung k > 1; dann hat f? eine Nullstelle
der Ordnung 2k # 1. Oder : aus (f(2))? = z folgt £(0) = 0und 2f(2) - f'(2) = 1;
fiir z = 0 ein Widerspruch.

b) nein: denn aus (f(2))? = z fir = € C* folgt: fir 0 < |2| < list |[f(2)]* =
|z|? < 1, dann hat f in 0 eine hebbare Singularitit und dies widerspricht a).

14.7 Zu h existiert eine holomorphe Funktion f : C — C mit Ref = h; dann ist
f : C — H eine Abbildung in die obere Halbebene H. Es gibt eine biholomorphe
Abbildung @ : H — E. Die Abbildung ®o f : C — E ist nach Liouville konstant,
also auch f und somit auch h.

14.8 ) Das Polynom p(z) = 22 + bz + ¢ hat die Nullstellen z; = ~*4V¢ und

29 = ’b’;\/d; esist |z1] = |z2| = Ve Firr < \/cist 11) in |z| < r holomorph und
das Integral ist 0.
- . dz _ o 1 1 . 1_ 1 _ 1
Firr > /c 1st| lf v = 2mi(Res., , + Res., ). Esist Res., , = = i
Z|=Tr

und Resz,”l) = _ 1 Daherist Ik p‘%j) =0.

zZo—2z21

|z|=r
—+o00

b)Esist [ p%;) = 2mResZ1; = 2;;.
14.9 Mit z = '’ istsint = . ( — !) und
27T at _ f 11 1.(-iz: ‘2d2 .
5 2-+4sint 21 2+, (z— 1) iz 21 4iz+22-1
Das Polynom p(z) = 2% + 4iz — 1 hat die Nullstellen 2; = i- (—2 4+ V/3); 20 =
i-(=2—1+/3); esist|z1] < 1 < |22| und Reszlll) = Zlizz = 211/3. Mit dem
Residuensatz ergibt sich dann:
2m

dt _ d _ 27

24sint 2 f p(z) V3
0 |z|=1
15.1 a ) Mit der Substitution y = —z erhalt man:
1 1 1
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b) Sei f, — f in H, f,gerade. Dann gibt es eine Teilfolge (f,;) von (fy) mit
fn; — ffiin] —1,1[. Also ist f gerade. Offenbar ist

[y (@) = Fa))| § € H} € M C {(9(a) +g(~2)) = g(a)| g € M},

Daher gilt das Gleichheitszeichen. Der ,,Anteil “Paqf von f in M ist eindeutig

bestimmt. } ( f(x)— f(—)) ist ungerade und daher orthogonal zu ; (f(z)+ f(—x)).
Daraus folgt die Behauptung.

15.2 a) Wir haben nach den Aufgaben 10.13 und 10.14

oo . . . .
< T > = e J & (070 o) (60— € g =

+oo
L (7» & (e 1) dg-...).

1 iz
/22 (€ 1) =0

Ye,R
weiter ist )
li #—1)dz=0
v
|z|=R,Imz>0
. 1,4 - 1
lim 9 (e —l)dz:lhm dz =m.
£—00 z e—0 z
|z|=R,Imz>0,neg.or. |z|=¢,...
Damit folgt
e —1
| e tae=n
— 00

Aus Aufgabe 10.13 folgt
et —1 b| — 1
P / d¢="P / COS£| ‘

Die Variablensubstitution = |b|£ liefert die Behauptung.
15.3 a) Aus der vorhergehenden Aufgabe 15.2 folgt

~ ~ 1
< Xla,b]> X[c,d] >= _2(|b_d‘ - |b_d‘ - |a_d‘ + |a—c\ :I(a,b,c,d).
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Dieser Ausdruck ist gerade < X[q4,8]5 X[e,d] > -
b) folgt aus a)
¢) Zu zeigen ist, dass die Treppenfunktionen (1) in Lo (R) dicht liegen. Zunéchst ist

R =

(@

[k, +k].

k=1

Nach Satz 10.2.2 (Konvergenzsatz von Lebesgue) haben wir in Ly (R)

f'X[—k,k]_)fv k — oo.

Wir konnen uns daher auf f € Lo(R) beschréinken, die ausserhalb eines Interfalls
[a, b] f. ii. verschwinden. Nach 10.1.8 gibt es eine Folge (¢;) von Treppenfunktionen,
die f. ii. gegen f konvergieren. Wir konnen annehmen, dass sie ausserhalb [a, b]
verschwinden. Sei £ € N und

k falls  f(x)

>
fe(x) :=4q f(x) falls —k<f
<

k
(
—k falls f(z) < -

x) <k
k
Dann sind auch die ¢ j;, Treppenfunktionen und

tik — fr f.U. inR, j — oo,

tjr =0 ausserhalb [a,b].
Wir haben die Majoranten

[fel <1fl, keN,in [a,b]

[tik]| <k in [a,D]
und
frotie =0

ausserhalb [a, b]. Weiter erhalten wir f;, — f f. i. R. Aus 10.2.2 (Konvergenzsatz
von Lebesgue) folgt

I fe = fllow) — 0, & — oo.
Ebenso haben wir

Itjk — fellLym®) — 0, j — o0
fir jedes £ € N. Damit folgt die Dichtheit der Treppenfunktionen in Ly (R); die
Treppenfunktionen bilden einen C-Vektorraum. Wir konnen also 7" abschliessen.

15.4 Es seien [ay), b§1)], [a§»2), b§»2)} die Kanten von I, I3, = 1,...,n; aus dem
Satz von Fubini folgt

—~

*

—

< Ty sy >12(m) = ) < Tx[a(n b<1>]’TX[a<z> RONES 210
Jj i Jj

J

—

< X[a) 0] X[o® p®] > La(®) =< X115 XIo > Lo (R)
Jj 7 Jj 7

j=1
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(*) nach der vorhergehenden Aufgabe 15.3.
b) folgt aus a).

15.5 Sei also (¢ ) eine Folge von Treppenfunktionen, die ausserhalb I verschwinden
und in Lo(R) gegen f konvergieren. Dann ist

‘(x/zlw)n <Rf e i<TY> f(y)dy — [ e_i<””’y>tj(y)dy)’ <

R

(Vam)n f\f WAy | < oy @ISf =il Lo

Insbesondere ist die Konvergenz gleichmaBig in = € R™. Nach 10.3.6 konvergiert
eine Teilfolge (T7,) f. i. in R™ gegen T f.

15.6
<Tap,g >=<xp, Tg > (2, Tg >=<Tz,g>.

nach 15.3.7
15.7 Sei |A\| < 1. Dann ist

1T =Xzll = @ = ADlzll, 1O =Xall = (1 = [AD]=].-
Nach 15.4.3 besitzt U — A eine iiberall erkldrte beschrénkte Inverse. Fiir [A| > 1
folgt

(U =Nzl = (|A = D=], 1(U* = Nzl = (Al = 1)z
und U — X hat ebenfalls nach 15.4.3 eine uberall erklarte beschriankte Inverse.

15.8 Mit
“+o0

1 —iéx —z?
F(§) = \/271_/6 o o7 24y

— 00

folgt:

+oo 5 +oo N
V2rF'(€) =i [ e (—ze™® /H)dz =i [ e d (e7/2)dz =

— 00 — 00

= ¢ +fooe—15m e 2dy = —¢\/2rF ().

Alsoist (&) = F(0)-e~€"/2. Aus der Lésung zu Aufgabe 10.3 b) wissen wir, dass
F(0) = 1ist.

15.9 Seialso K; — K in La(]a,b[x]a,b[), K stetigin [a, b] X [a,b]. Nach 15.8.4
sind Integraloperatoren K; kompakt. K — K; ist auch vom Hilbert-Schmidtschen
Typ. Also ist nach Beispiel 15.3.3

1K = Kl < 1K = Kjl L (ablx]ab)-
Daraus folgt die Behauptung.
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