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Geleitwort

Fundierte mathematische Kenntnisse sind ein integrativer Bestandteil des Studiums
der Wirtschaftswissenschaften. Insbesondere ein tief greifendes Verstandnis der Linea-
ren Algebra ist unumgénglich. Die sich aus der Matrixrechnung ergebenden Vereinfa-
chungen in struktureller Hinsicht zdhlen zum Standardrepertoire der grundlegenden
und weiterfithrenden wirtschaftswissenschaftlichen Methoden. Ohne eine Kenntnis

dieser Grundlagen sind der akademischen Weiterbildung Grenzen gesetzt.

Das vorliegende Lehrbuch ermdglicht es, diese Grenzen zu durchbrechen. Es setzt
keinerlei Vorwissen im Bereich der Linearen Algebra voraus und befdhigt somit jeden
Leser, sich umfassende Kenntnisse zu verschaffen. Das Buch eignet sich besonders fiir
den Einsatz wahrend des wirtschaftswissenschaftlichen Studiums, bzw. dessen Vorbe-
reitung, ist aber auch bei einer praktischen Implementierung matrixgestiitzter An-

wendungen sehr hilfreich.

Den Autoren gelingt es in ihrem Werk, durch das Einbinden zahlreicher Beispiele das
Verstandnis der theoretischen Erklarungen zu erleichtern. Die gewdhlte Untergliede-
rung in mathematische Grundlagenkapitel und konomische Anwendungen, welche
einen Bezug zu betriebs- und volkswirtschaftlichen Problemen herstellen, iiberzeugt
dabei in vollem Mafle. So finden die wichtigsten 6konomischen Modellformulierun-
gen aus der Linearen Algebra, wie beispielsweise das Leontief-Modell und ein Modell

der linearen Programmierung, besonderen Eingang in das Lehrbuch.

Diesem rundum gelungenen Buch wiinsche ich die verdiente breite Anerkennung in

der akademischen Lehre.

Mannheim, Januar 2004 Prof. Dr. Peter Albrecht



Vorwort zur vierten Auflage

Das vorliegende Lehrbuch erméglicht einen Einstieg in die Lineare Algebra ohne jegli-
che Vorkenntnisse und schafft ein Basiswissen, welches einen Grofdteil der Anwen-
dungen der Matrixrechnung aus Betriebs- und Volkswirtschaftslehre abdeckt. Zu-
néchst als ein die Lehre begleitendes Skriptum konzipiert, hat sich der Inhalt dieses
Lehrbuches an der Universitdt Mannheim {iber Jahre hinweg bewdhrt und wurde
standig verbessert, {iberarbeitet und erweitert. Die vierte Auflage setzt wenige kleinere

Anderungen um und ist im Vergleich zur dritten Auflage weitgehend unverandert.

Der Aufbau des Buches ist zweckméfiig und aus systematischer Sicht naheliegend.
Nach einer Definition des Rechenobjektes Matrix und der grundlegenden Matrixope-
rationen folgt eine Anwendung der Matrixrechnung zur Losung linearer Gleichungs-
systeme. Anschlieffend wird die Matrixinversion, die Determinante sowie der Rang
einer Matrix eingefiihrt und deren vielseitige Verwendung, insbesondere bei der Lo-
sung linearer Gleichungssysteme, ausfiihrlich dargestellt. Anhand der innerbetriebli-
chen Leistungsverrechnung, der innerbetrieblichen Materialverflechtung und des
Leontief-Modells werden okonomische Anwendungen der vermittelten Kenntnisse
demonstriert. Nach einer Einordnung der Matrixrechnung innerhalb der Vektorraum-

theorie folgt schliefllich die Betrachtung der linearen Programmierung.

Um dem Leser die theoretischen Formulierungen zu verdeutlichen, werden Definitio-
nen und Herleitungen nicht lediglich aneinandergereiht. Ausfiihrliche Beispiele veran-
schaulichen die dargestellten Sachverhalte. Einen besonderen Hohepunkt bildet die
umfangreiche Aufgabensammlung zu jedem Kapitel inklusive Losungsteil. Somit wird
eine Anwendung des vermittelten Wissens und die Uberpriifung des Lernerfolges

ermoglicht, was ein Selbststudium erleichtert.

Wir bedanken uns bei allen, die uns bei der Verwirklichung dieses Buches unterstiitzt
haben. Unser besonderer Dank gilt den Herren Simon Hilpert und Frank Schilbach,

die einige Ubungsaufgaben entwarfen.

Wir wiinschen Thnen viel Freude bei der Lektiire dieses Buches.

Mannheim, Februar 2011 Christoph Mayer, Carsten Weber, David Francas
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Griechisches Alphabet und mathematische Symbole

Griechisches Alphabet und mathematische Symbole

A o alpha v fiir alle (der Allquantor)
B B beta 3 es existiert ein (der Existenzquantor)
n
r ¥ gamma > x4 die Summe iiber x; voni=1bisn
i=1
A o delta A das logische Und
E g epsilon
v das logische Oder
V4 4 zeta
= das logische Nicht
H il eta
© 0 theta [a;b] das geschlossene Intervall von a bis b
I 1 iota (a;b) das offene Intervall von a bis b
K K kappa a,{} die leere Menge
A » lambda acB a ist ein Element der Menge B
M u my
a¢B a ist kein Element der Menge B
N % ny
_ : ) AcB die Menge A ist eine echte Teilmenge
B xi
der Menge B
O o omikron
AcB die Menge A ist eine unechte Teil-
II T pi
menge der Menge B
P p rho
AUB die Vereinigungsmenge der Mengen
z G sigma
A und B
T T tau
ANnB die Schnittmenge der Mengen A
Y v ypsilon
und B
@ ¢, ¢ phi
X % chi
v v psi
Q ® omega

Xl




1  Grundlagen der Matrixrechnung

1.1  Matrizen und Vektoren

Definition 1-1: Matrix

Ein zweidimensionales, geordnetes Zahlenschema AecR™" mit
den Komponenten @j €R, welches aus m Zeilen und n Spalten be-

steht, heilt (mxn)-Matrix und wird wie folgt dargestelit:

aq aq; a1
A= ajq au 3in
Am1 amj Amn

Dabei bezeichnet (m xn) [gesprochen: "m Kreuz n"] die Ordnung der Matrix. Matrizen
werden gewdohnlich mit lateinischen GrofSbuchstaben benannt. Unabhangig von ihrer
Ordnung besitzt jede Matrix genau eine Hauptdiagonale, welche alle Komponenten aj;

mit i = j enthalt.

Beispiel 1-1: Anwendung der Matrixdarstellung

Ein Unternehmen stellt n Produkte unter Verwendung von m Rohstoffen
her. aj; ist die Menge des Rohstoffs i, die zur Herstellung einer Einheit des
Produkts j benétigt wird (Produktionskoeffizient). Neben einer tabellari-
schen Darstellung der Produktionskoeffizienten (links) ist auch eine Dar-
stellung in Matrixform (rechts) moglich, durch welche die Produktionsko-
effizienten in einer Form zusammengefasst werden, die eine Anwendung

von Rechenoperationen erlaubt.

C. Mayer, Lineare Algebra fiir Wirtschaftswissenschafiler,
DOI 10.1007/978-3-8349-6727-5 1, © Gabler Verlag | Springer Fachmedien Wiesbaden GmbH 2011




Grundlagen der Matrixrechnung

1 .. j .. n Produkt
1 aiq alj .e.A1p arg alj SRR VPN
1 aj1 al] Ain aj1 al] Ajn
m Am] .- amj «e. Amn am am]. o amn
Rohstoff

Es existieren einige spezielle Matrizen, welchen besondere Bedeutung in der Matrix-

rechnung zukommt. Im Folgenden sei A eine beliebige (m x n)-Matrix.

Definition 1-2: Spezielle Matrizen

Eine Matrix ist quadratisch, falls die Anzahl der Zeilen der Anzahl

der Spalten entspricht, das heil3t falls m =n gilt, so beispielsweise:

K

Sind sdmtliche Komponenten einer Matrix Null, handelt es sich um

eine Nullmatrix, die mit 0 bezeichnet wird, so beispielsweise:
0 00O
A= =0
0 0O
Enthalt eine quadratische Matrix auf der Hauptdiagonale nur Ein-

sen und aufierhalb der Hauptdiagonale nur Nullen, ist A eine Ein-

heitsmatrix E, so beispielsweise:

O O O -~
o O -~ O
o -~ O O
-~ O O O

Als Diagonalmatrix bezeichnet man eine quadratische Matrix, de-

ren Komponenten aulerhalb der Hauptdiagonale Null sind, so bei-

spielsweise:



Matrizen und Vektoren

o O o
N O O

Obere (untere) Dreiecksmatrizen sind Matrizen, bei denen alle
Komponenten unterhalb (oberhalb) der Hauptdiagonale Null sind.
Bei einer strengeren Definition muss A zudem quadratisch sein.
Ein Beispiel fur eine untere Dreiecksmatrix ist:

4 00
A=3 10
200
Eine Treppenmatrix ist eine Matrix, in der jede Zeile mindestens ei-
ne die Zeile anfihrende Null mehr enthélt als die vorhergehende
Zeile. Sind alle Komponenten einer Zeile Null, missen alle Folge-
zeilen ebenfalls ausschlieRlich aus Nullen bestehen. Eine Trep-

penmatrix ist beispielsweise:

8 3 0 &§ -2
0 0 -8 4 1
A=10 0 0 2 1
0 0 0 0 O
0 0 0 0 O

Besitzt eine Matrix nur eine Zeile bzw. eine Spalte (gilt also m=1
bzw. n=1), so handelt es sich um einen Zeilen- bzw. Spaltenvektor.
Zeilen- und Spaltenvektoren werden in der Regel mit Kleinbuch-
staben bezeichnet und sind lediglich Spezialfdlle von Matrizen, so

beispielsweise:

A=(2 5 -6)=a B=|-1|=b

Sind alle Komponenten eines Vektors Null, wird er als Nullvektor 0

bezeichnet.

1.1



Grundlagen der Matrixrechnung

Besteht eine Matrix aus nur einer Zeile und einer Spalte (gilt also
m=n=1), so handelt es sich dabei um einen Skalar, der wie eine

reelle Zahl behandelt wird.

Hieraus lassen sich vielfdltige Relationen ableiten. Beispielsweise ist jede Treppenmat-
rix eine obere Dreiecksmatrix, nicht jedoch umgekehrt. Zudem sind quadratische

Nullmatrizen gleichzeitig Diagonal-, Dreiecks- und Treppenmatrizen.

1.2  Matrixoperationen

Auf die Definition der Matrix folgen Definitionen von géngigen Operationen mit Mat-
rizen. Dabei sind einzelne Verkniipfungen nur durchfiihrbar, falls die zu verkniipfen-

den Matrizen bestimmte Bedingungen erfiillen.

Definition 1-3: Matrixoperationen

Die Transposition einer Matrix A e R™"(Operationszeichen "™") ist
uneingeschrénkt mdglich. Hierbei werden alle Komponenten der
Matrix A an der Hauptdiagonale gespiegelt. Durch die Transpositi-
on &ndert sich die Ordnung der Matrix von (mxn) zu (nxm). Sei

beispielsweise:

Ao 12 3

4 56

1 4

So folgt: AT=|2 5
3 6

Die Addition bzw. Subtraktion zweier Matrizen A,B e R™" (Operati-
onszeichen "+" bzw. "-") ist hingegen nur fur Matrizen gleicher

Ordnung definiert, die Matrixaddition bzw. -subtraktion erfolgt

komponentenweise. Sei beispielsweise:



Matrixoperationen

A= 12 und B = 13
3 4 2 1
141 —243) (2 1
So folgt: A+B=| © e
3+2 4+1 5 B

Die Multiplikation eines Skalars keR mit einer Matrix A eR™"
(Operationszeichen "-") kann immer durchgefiihrt werden. Hier er-
geben sich die Komponenten der resultierenden Matrix durch die
Multiplikation jeder einzelnen Komponente der Matrix A mit dem
Skalar k. Sei beispielsweise:

k=2 und A = 4 3 0
8 7 -12

2.4 2.(-3) 20 _
So folgt:  k-A= ( ) _ 8 6 0
28 27 2(-12)) (16 14 -24

Die Multiplikation zweier Matrizen A eR™", BeR"! (Operations-

zeichen ) in der Form A-B ist nur definiert, falls die Anzahl der
Spalten von A mit der Anzahl der Zeilen von B Ubereinstimmt, falls
also n=k gilt. Die sich ergebende Matrix C hat dann die Ordnung
(mxl). Deren Komponenten cjj e R bestimmen sich als Verkniipfung

der i-ten Zeile von A mit der j-ten Spalte von B wie folgt:

Spalte b1j n
cj=(Zeileivon A):| | [=(ay ... ap):| i |=2 ag-bgy;
von B by g-1
Sei beispielsweise:
1230 47
A=|1 2 2 1|undB= 33 g
4160 -
0 1

1-4+2.3+3:(-3)+0-0 1.7+2.0+3-2+0-1) (1 13
So folgt: A-B= 1-4+2-3+2-(—3)+1~0 1.7+2-0+2-2+11|=|4 12
4-4+1-3+6-(-3)+0-0 4.7+1.0+6-2+0-1) (1 40

1.2



Grundlagen der Matrixrechnung

Als Fortfiuhrung der Matrixmultiplikation ist fir eine quadratische
Matrix die Potenzbildung in der Form AP mit beN maoglich. Hierbei

wird A b-mal mit sich selbst multipliziert. Sei beispielsweise:

A 4 -2
6 3
—68 —50)

So folgt: AS=A.-A.-A=
150 -93

Es existieren zahlreiche weitere Matrixoperationen, auf die an dieser Stelle jedoch

nicht ndher eingegangen wird.

1.3  Rechenregeln und Matrixrelationen

Beziiglich der zuvor genannten Matrixoperationen existieren Rechenregeln, von wel-
chen die wichtigsten im Folgenden zusammengefasst werden. Hierbei seien zunachst

A,BeR™™und c,deR.
Existenz eines neutralen Elements der Multiplikation mit einem Skalar: 1- A = A
Assoziativgesetz der Multiplikation mit einem Skalar: ¢-(d-A)=(c-d)-A
Kommutativgesetz der Multiplikation mit einem Skalar: c-A=A-c
Distributivgesetz 1 der Multiplikation mit einem Skalar: c-A+c-B=c-(A +B)
Distributivgesetz 2 der Multiplikation mit einem Skalar: A-c+A-d=A-(c+d)
Im Weiteren seien A,B,C e R™".
Existenz eines neutralen Elements der Matrixaddition: A+0=0+A=A
Existenz eines neutralen Elements der Matrixmultiplikation: A-E=E-A=A

Assoziativgesetz der Matrixaddition: A +(B+C)=(A+B)+C

Kommutativgesetz der Matrixaddition: A+ B=B+ A



Rechenregeln und Matrixrelationen

Transpositionsgesetz 1: (AT )T =A

Transpositionsgesetz 2: AT + BT = (A + B)T
Im Weiteren sei A e R™", BeR™¥, C e R¥® und D e R**!.

Assoziativgesetz der Matrixmultiplikation: A-(B-C)=(A-B)-C

Transpositionsgesetz 3: pl.ct.BT.AT= (A-B-C- D)T
Nachfolgend sei A e R™" und seien B,C e R™k,

Distributivgesetz der Matrixmultiplikation: A-B+A-C=A-(B+C)
Nun sei A eR™", v,weN.

Potenzgesetz 1: AV - A™ = AV*W

Potenzgesetz 2: (AV)W =AVY

Es existiert hingegen kein Kommutativgesetz der Matrixmultiplikation. Es gilt im

Allgemeinen also A-B#B-A.

Relationen zwischen Matrizen sind nur fiir Matrizen gleicher Ordnung definiert. Seien
A,BeR™®, so gilt A>B, falls fiir alle Komponenten a;; > b; gilt. Analoges gilt fiir
A>B, A=B, A<B und A <B. Insbesondere sei darauf hingewiesen, dass A >0 somit

nur dann gilt, falls alle a;; > 0 sind.

Beispiel 1-2: Matrixrelationen

Gegeben seien
A 3 4 B 5 5 c 2 1 D—l 1
2 7y {2 -6/ 0o -8/ (0 4

A<B,A>C,B>C

Es folgt:

Zwischen D und A, B, C lasst sich keine Relation aufstellen.

1.3



Grundlagen der Matrixrechnung

1.4 Lineare Gleichungssysteme in
Matrixdarstellung

Im Weiteren werden lineare Gleichungssysteme in allgemeiner Form mit m Gleichun-

gen und n Unbekannten betrachtet, wobei ai]-,xj,bi eR.

ajxy  +eeet alej +oet A Xy, = bl

aj1Xq +eee+ o apXx

Xj Tt ainXn = by

AmiXy oot AgXj et

amnxn

Ein lineares Gleichungssystem (LGS) kann als Vektorgleichung dargestellt werden,
wobei auf beiden Seiten des Gleichheitszeichens ein Spaltenvektor mit jeweils m
Komponenten steht. Dabei ergibt sich der linke Spaltenvektor als Matrixprodukt einer
Koeffizientenmatrix A, welche geordnet alle Koeffizienten ajj des LGS beinhaltet, mit
einem Spaltenvektor x, der geordnet alle Unbekannten X; enthélt. Vereinfacht lasst sich

das LGS somit als Matrixgleichung A-x=Db wie folgt darstellen:

all alj aln Xl b_1
aj1 aj Ain Xj 1= b1
aml amj amn Xn bm

Ergénzt man die Koeffizientenmatrix A um den Ergebnisspaltenvektor b, so entsteht

eine in zwei Matrizen unterteilte, also partitionierte, Matrix (Alb), die erweiterte

Koeffizientenmatrix genannt wird.

Beispiel 1-3: Darstellung eines LGS in Matrixform
Das LGS

3X1 + 3X2 + 5X3 =5

2X1 - X3 + 6X3 = 2

3X1 + 2X2 + 7X3 = 4




Gauf3/Jordan-Algorithmus

lasst sich in Matrixdarstellung schreiben als:

N
|
—_
(o)
X
N
Il
N

Bzw. als partitionierte Matrix:

3 3 55
(Alb)=|2 -1 6|2
3 2 74

Definition 1-4: Linear homogenes Gleichungssystem (LhGS)

Ein Gleichungssystem der Form A-x=b, bei dem der Ergebnis-
spaltenvektor b ein Nullvektor ist, also b=0, heilt linear homoge-
nes Gleichungssystem (LhGS). Ist b kein Nullvektor, so heif3t es li-

near inhomogenes Gleichungssystem.

1.5 GauB/Jordan-Algorithmus

Im Rahmen der Losungsfindung sind alle x zu bestimmen, welche die Matrixglei-
chung und somit alle Gleichungen des LGS erfiillen. Dabei ist zunachst zu klaren, ob
das LGS losbar ist, falls ja, wie viele Losungen es gibt und wie man systematisch alle
Losungen bestimmt. Im Folgenden beschranken wir uns zunachst auf LGS, welche
genau eine Losung besitzen. (Spéter wird sich zeigen, dass ein LGS entweder unlosbar,
eindeutig 16sbar oder mit unendlich vielen Losungen 16sbar ist.) Ein Verfahren zur
systematischen Losungsfindung stellt der Gaufi-Algorithmus bzw. dessen Fortfiih-
rung, der Gauf3/Jordan-Algorithmus, dar. Hierbei wird die Losung durch Anwendung

elementarer Zeilenumformungen auf die erweiterte Koeffizientenmatrix ermittelt.

1.5
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10

Definition 1-5: Elementare Zeilenumformung (EZU)

Unter dem Begriff elementare Zeilenumformung werden die folgen-
den Umformungen subsumiert, wobei die verwendeten Zeilen stets

mit romischen Zahlen bezeichnet werden:

Die Multiplikation einer kompletten Zeile mit einem Skalar

ceR\{0}, so beispielsweise:

1233|369
4 5 6 4 5 6

Das Vertauschen zweier kompletter Zeilen, so beispielsweise:

1 0 5 1 0 5
-4 5 1| llelll |4 -1 0
4 -10 -4 5 1

Die Addition bzw. Subtraktion zweier kompletter Zeilen, wobei

die zu verandernde Zeile stets zuerst genannt wird, so bei-

spielsweise:
3 9 -8 0 13 -6
7 0 2(1+ll|7 0 2
-3 4 2 -3 4 2

Zeilenmultiplikation und -addition bzw. -subtraktion kénnen zu ei-
ner einzigen EZU zusammengefasst werden. Ebenso kénnen in ei-
nem Schritt auch mehrere EZUs durchgefiihrt werden. Wird dabei
auf eine veranderte Zeile Bezug genommen, so ist diese mit dem

Index "n" far "neu" zu bezeichnen:

_21 2 0 2.01-31 ! 5 2
s 6 o -2 3 1
IV 411,

4 16 2 7




Gauf3/Jordan-Algorithmus

Eine Anwendung von EZUs auf die erweiterte Koeffizientenmatrix dndert die Losung
des zugrunde liegenden LGS nicht. (Analog zu EZUs sind auch elementare Spalten-
umformungen moglich. Es ist jedoch zu beachten, dass diese die Losung des zugrunde
liegenden LGS verdndern.) Innerhalb des GauB-Algorithmus werden EZUs solange
auf die erweiterte Koeffizientenmatrix angewendet, bis die Koeffizientenmatrix in eine
Treppenmatrix umgeformt ist. Im Rahmen des Gaufs/Jordan-Algorithmus wird die
Koeffizientenmatrix hingegen vollstindig pivotisiert, eine Treppenmatrix muss hier

nicht gebildet werden.

Definition 1-6: Pivotisierung

Bei der Pivotisierung wird eine Matrix durch die Anwendung von
EZUs derart umgeformt, dass maoglichst jede Spalte nur noch ein
Element enthélt, welches von Null verschieden ist. Solche Spalten
heiBen pivotisiert. Der Algorithmus zur Pivotisierung gestaltet sich

wie folgt:

Zunachst ist eine Komponente aj, das Pivotelement, in einer
noch nicht pivotisierten Spalte zu wahlen.

Offensichtlich kann als Pivotelement keine Null gewéahlt werden.
Daneben ist es nicht zweckmallig, eine Komponente zu wahlen,
in deren Zeile bereits ein Pivotelement enthalten ist.

Soll beispielsweise in der nachfolgenden Matrix die vierte Spal-
te pivotisiert werden, ohne die bereits pivotisierte zweite Spalte

zu zerstoren, ist folglich aj4 als Pivotelement zu wahlen.

Das Pivotelement wird im Folgenden stets mit "D" gekenn-
zeichnet.
6 0 4

2 1 2 4
7 0 -3 0

11
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Bei der strengen Pivotisierung einer Spalte ist das Pivotelement
zu Eins umzuformen, bei der schwachen Pivotisierung entfallt
dieser Schritt.

6 0 4 30 2

2 1 2 4|11:212 1 2 4
7 0 -3 0 7 0 -3 0

Anschliefend sind alle anderen Elemente in der zu pivotisieren-

den Spalte zu Null umzuformen.

30 2 [1 30 2 1
2 1 2 4[1-41(14 1 -6 0
7 0 -3 0 7 0 -3 0

Um zu einer vollstandig pivotisierten Matrix zu gelangen, ist der
Algorithmus so oft wie méglich zu wiederholen. Im genannten Bei-
spiel ist als nachstes somit nach dem Element a3 oder as3 zu pi-

votisieren. Bei Verwendung von az3 ergibt sich:

30 2 1) l-2m (% 00 1
4 1 -6 0| W:(=3) | 0 100
10

7 0 0) 1-2:lh | -7/ o

Die resultierende Matrix ist so weit wie mdglich und somit vollstan-

dig pivotisiert.

Bei einer Verwendung des Gauf3-Algorithmus werden die Losungen durch eine Riick-
tiberfithrung der erweiterten Koeffizientenmatrix in Gleichungsform bestimmt, wobei

die verbleibenden Gleichungen sukzessiv aufgeldst und riickwérts eingesetzt werden.

Beispiel 1-4: Losung eines LGS durch den Gauf3- bzw.
Gauf}/Jordan-Algorithmus

Ausgehend von der erweiterten Koeffizientenmatrix (A | b) aus Beispiel 1-3

erhalten wir bei Verwendung des Gauf3-Algorithmus:

12



B8] 3 5]5 3 3 5|5 3 3 5|5
3-1-2-1

2 162 0 [9] 8|-4|9I-1I|0 9 8|4

3 2 7|4 0 -1 2|-1 0 0 10|-5

Eine Riickiiberfithrung in ein Gleichungssystem mit anschliefendem suk-

zessiven Einsetzen fiihrt zu:

II: 10x3=-5 = x3 = —%

1I: —9X2 + 8X3 =4 = Xo :§X3

9

L: 3x1+3x2+5x3=53xl=—x2—§x3+—=—0——~[——)+—: =

Alternativ bestimmt sich die Losung durch den Gaufs/Jordan-Algorithmus

wie folgt:
3 515 9 0 23|11 0 0 [-10]] 5
5 6o 1+3-1I 1 6|0 7-1-9-1I1 . , 5
Ir+2-1I a 7-1I-2-1I1
3 2 7|4 0 191/ 8 7 0 19 |8
-1 (= _1
>l+2d 25 00 g III( 1305) 8 (1) (1) 02
10-111+19-1 B (=39)
0 0 |175) II:70 |1 0 o 52
5
%
Als Losungsvektor ergibt sich: x=| 0
_1
2

4 8 ( 1] 4
b—=—'| —=|+==0
9 9 2) 9

Gauf3/Jordan-Algorithmus

5 5(1),5 155

3 30 2)7376 2

13
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1.6  Aufgaben

Aufgabe 1.1:

A =

o O O
o O O

g0 o (308 Dg
o1 T o1 =2) _1

Geben Sie die Ordnung der Matrizen an und ordnen Sie ihnen die Begriffe quadrati-
sche Matrix, Null-, Einheits-, Diagonal-, Treppenmatrix sowie obere und untere Drei-

ecksmatrix zu.

Aufgabe 1.2:

Berechnen Sie, falls moglich, die Matrizen bzw. Vektoren A, B, c und d.

Aufgabe 1.3:
7 4 4

A§1312B22 7?C65_2012
- 112 1) 7" ’ "3 23 4 2 1)
01 1 -4

-5 2

D=|4|(-4 2 3), F=(—4 2 3).

N = O
N = O

Berechnen Sie, falls moglich, die Matrizen bzw. Vektoren A, B, C, D und F.

14



Aufgaben

Aufgabe 1.4:
123 10C(1);(1)D723
32 1) (o 4) "7\ 7 oof
101
-1
a=(1 0 -1, b=[1] c=5
-1

Berechnen Sie, falls moglich: B-D, D-B, A-B, A-CT, BT.-A-C, D2, c-A,a-b,B-c-C,
b-a,a-B, aT-C, A+D-c, D-B, a+b!

Vergleichen Sie dabei die Ergebnisse der ersten beiden Multiplikationen.

Aufgabe 1.5

A1§B111C123
B B )’_145
4 5

Multiplizieren Sie, falls moglich: C-B, B-BT, B-A, BT - AT, A-B, B-A-C, AT.CT

Aufgabe 1.6:
1 2 - 13 3 5 2 -2 U
A=-1 -3 2,13:—501,(::333,01=13
3 2 -4 3 2 2 2 4 2 Y

Berechnen Sie, falls moglich:
T T
a) x:(CT-BT-AT) —dT~(CT-A) +dT-B-C-A-E-B-E-C

b) X=(A-B-E)' +C®-A%2.0-C-A

15
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Aufgabe 1.7

Gegeben sei die folgende Matrixgleichung, die nur quadratische Matrizen gleicher

Ordnung enthélt:

a)
b)

X=(A+B+C)
Losen Sie die Klammer allgemein auf.

Es gilt nun A =B. Vereinfachen Sie zunéchst so weit wie moglich und berechnen

Sie anschliefSend X mit:

oo, a2 )

Es gilt nun neben A =B auch C= % -(A+B). Vereinfachen Sie zundchst so weit

wie moglich und berechnen Sie anschlieBend X mit:

3 1 -4
A=|-1 2
3 1 =2
d) Gilt die Gleichung (F + G)2 =F?+2.F-G+G? fiir beliebige quadratische Matrizen
gleicher Ordnung?
Aufgabe 1.8:

2 x+1 2x b5x-1
A= , B=
1 1 3 2x-3

Fiir welche Werte von x eR gilt A-B=B-A?

16



Aufgaben
Aufgabe 1.9:
4 4 1 1 5 2 5
622—14037833 6413
= 2 5 5 L3 2 s[5 s 2 _1
2 8 3|6 4 2]\
Berechnen Sie x.
Aufgabe 1.10:
228 6 0 3
430 =16 0 -6 _0543984338
= . . — + . —_— —_—
212 -1){-3 -3 3 2 ( )
-5 2 4
0o 2 1
Berechnen Sie X.
Aufgabe 1.11:
00 1 0 23 0 0 1
A={1 0 0 0| B 4o C=(1 0 0
_0001’ |78 9 _010
10 11 12
Berechnen Sie A -B sowie B-C.
Aufgabe 1.12:
Jahr
a=| Monat
Tag

"Jahr" sei eine vierstellige, natiirliche Zahl, "Monat" und "Tag" seien zweistellige, na-
tiirliche Zahlen. Geben Sie eine einfache Matrixoperation an, um den Datumsvektor

aeN in eine achtstellige, nattirliche Zahl b der Gestalt "JahrMonatTag" zu wandeln

17

1.6



Grundlagen der Matrixrechnung

Aufgabe 1.13:
i |1 2 3 4
i | -1 3 0 2
Yi 5 1 3 -2

Verwenden Sie die Vektoren x= (x1 Xy Xz x4), y :(yl Vo V3 y4) und
e =(1 11 1), um durch geeignete Matrixverkniipfungen die Skalare a,b,c eR, den

Spaltenvektor d e R*! und die Matrix F e R** zu bestimmen.

4 4, 4 ) T
a=>x, b=Xxj, C=Z(X1+Xi ), d=(x1-3y; x2-3y, Xx3-3y; x4-3y4),
i i-1 -1

X1y1  X2¥1  X3¥1 X4Y1
X1y2 X2¥2 X3Y2 X4Y2
X1y3 X2¥3 X3y3 X4Y¥3
X1Y4 X2Ya X3Y4 X4Y4

Aufgabe 1.14:

Welche der folgenden Umformungen sind EZUs? Sofern es sich um EZUs handelt,

wurden diese wie angegeben ausgefiihrt?

120 1 2 0 1201 —lyz—e—z
a) [2 1 1| 2:II-1T |1 -2 1| b) 1 E-I—Z-HI 2 1 1
341 3 4 1 3 41 3 4 1
120 1 2 0 120 1 2 0
2 1. 2/ 1/ _1
0) 1 1| WP+1 [2 1 1 d |21 1| -Lu (-2 -1 -1
3 41 10 18 1 341 3 4 1
1 2 120 20 2 40
e) |2 1 1| I+4-11 |9 6 4 fy |2 1 1| 214011 |2 1 1
3 4 341 3 41 3 41
1 1 2 0 2 0 3 4
g |2 1 1| 01I-1 |[-1 2 0 hy |2 1 1| IoI |2 1 1
3 41 3 4 1 3 41 120

18



Aufgaben

Aufgabe 1.15:
2 31 g Z 3 4V (2
2 7 a) le 2] |14
3 4
-5
2 3)(3 11 -6 2 3 b 2 3\ (5
Y e 7)1t =5 4 o) 3 ||"la)" o 4)(2
4
Bestimmen Sie a,b €R, so dass x =y gilt.
Aufgabe 1.16:
Xl — Xz + X3 =
X1 + X3 =
Xl — Xz =1

Losen Sie das Gleichungssystem nach Uberfﬁhrung in Matrixform.

Aufgabe 1.17:
X1 + X + 2X3 = 20
2X1 - X2 - 2X3 = 40
—4X1 + X + X3 = =50

Uberfiihren Sie das LGS in Matrixform, und bestimmen Sie die Losung.

Aufgabe 1.18:
8X1 - 4X2 + 2X3 = 2
—2X1 + 2X2 + X3 = 17
10X] - 6X2 + 3X3 = -5

Bestimmen Sie die Losung des LGS, nachdem Sie es in Matrixform tiberfiithrt haben.

19
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Aufgabe 1.19:

—6X1 + 2X2 + 5X3 = -1
2X1 + 22X2 + 3X3 = -3
4X1 + 4OX2 + 2X3 = -16

Uberfiihren Sie das LGS in Matrixform, und bestimmen Sie die Losung.

Aufgabe 1.20:
X7 + 2X2 = 20
3X2 + 6X3 = 40
X1 - 2X2 - 3X3 = -15

Stellen Sie das LGS in Matrixform dar, und bestimmen Sie die Losung.

Aufgabe 1.21:
9X1 + 2X2 + 6X3 - 8X4 = 6
—5X1 + 3X2 + 3X3 + 4X4 = 6
7X1 + 4X2 + 11X3 - 3X4 = 6
2X1 + Xo + 3X3 + 4X4 = 6

Losen Sie das LGS durch vollstandiges Pivotisieren (Gaufs/Jordan-Algorithmus).

Aufgabe 1.22:
2X1 + 3X2 - 2X3 = -1
X1+ 2Xp — 2Xg3 + x4 =
4xy - 2x9 + 4x3 - 2x4 = 2
—4X1 + Xo - 3X3 + 2X4 = 1

Bestimmen Sie die Losung des LGS, nachdem Sie es in Matrixform {iiberfiihrt haben.

20



Aufgaben

Aufgabe 1.23:
Xg + Xy + Xg + 6x4 = 7
-2xq - 6x3 + 6xq4 = -22
X7 + 3xp - 9%3 - 6x4 = 11
X1 + 4x3 + x4 = 9

Bestimmen Sie die Losung des LGS, nachdem Sie es in Matrixform tiberfiihrt haben.

Aufgabe 1.24:
—z%xl + 7%X2 - 4%X3 - 3X4 = 48
% X1 + 4X2 + % Xqy = - 1%
27X1 - 40X2 + 9X3 + 6X4 = -87
15 - 24x, + 6x3 + 3x4 = -9 03

Uberfiihren Sie das LGS in Matrixform, und bestimmen Sie die Losung.

Aufgabe 1.25:

Frau Lehmann hat drei S6hne mit erheblichen Gewichtsproblemen. Karl, Heinz und
Frieder wiegen zusammen ganze 335 kg. Das ist eindeutig zuviel! Die besorgte Mutter
hat auch schon die tibermaflige Erndhrung als Ursache des Ungliicks ausgemacht. Karl
isst pro Monat die Haélfte seines Ausgangsgewichts, Heinz ein Drittel und Frieder
immerhin noch ein Sechstel. Die arme Frau muss somit pro Tag 6 kg kochen, von de-

nen sie und ihr Mann jeweils nur 1 kg essen.

Sogleich schreitet sie zur Tat und verordnet strenge Didt, die nach einem halben Jahr
sehr unterschiedlichen Erfolg zeigt. Karl hat 25% seines urspriinglichen Gewichts
abgenommen, Heinz immerhin noch 20%, nur Frieder hat deutlich weniger Disziplin
an den Tag gelegt und bringt dadurch sogar 10 kg mehr als vorher auf die Waage.

Trotzdem hat das Gesamtgewicht ihrer drei S6hne um stattliche 46 kg abgenommen.

Stellen Sie ein LGS auf und berechnen Sie das neue Gewicht der drei Sohne. Gehen Sie

davon aus, dass ein Monat 30 Tage hat.

21

1.6



Grundlagen der Matrixrechnung

Aufgabe 1.26:

Sie sind Farbengrofhandler und beliefern die Malermeister Miiller, Schmidt, Schnei-

der und Schulz quartalsweise. Die Menge ausgelieferter Farbe in Hektolitern fiir 2002

und 2003 entnehmen Sie den nachfolgenden Tabellen.

Liefermengen 2002:
1. Quartal 2. Quartal 3. Quartal 4. Quartal
Miiller 75 200 150 50
Schmidt 80 300 250 50
Schneider 300 300 100 80
Schulz 100 125 100 150
Liefermengen 2003:
1. Quartal 2.Quartal 3. Quartal 4. Quartal
Miiller 100 300 100 100
Schmidt 50 200 400 100
Schneider 500 200 60 100
Schulz 100 75 100 100
a) Der Farbenhersteller ist mit Ihren Absatzzahlen unzufrieden. Er verlangt von Ih-

b)

22

nen, dass Sie die Gesamtliefermenge aus den Jahren 2002 und 2003 an den Maler-
meister Miiller in den néchsten zwei Jahren verdoppeln und die an den Malermeis-
ter Schmidt verdreifachen, wiahrend Sie den Absatz an den Maler Schneider auf ein
Zehntel der Absatzmenge und an den Maler Schulz auf die Halfte reduzieren sol-
len. Es seien Mpgo3,Mpgos € R** Matrizen, welche die obigen Liefermengen enthal-
ten und m = (2 3 110 %) sei ein Vektor, der die angestrebten Absatzverande-
rungsraten enthélt. Setzen Sie die Matrixrechnung ein, um die Gesamtmenge an
Farbe zu bestimmen, die Sie in den nachsten zwei Jahren an alle Maler liefern sol-

len.

Stattdessen will der Farbenhersteller, dass Sie in 2004 in jedem Quartal jeweils
genau 1000 Hektoliter an alle Maler zusammen ausliefern. Ihr Fahrer kennt die Ab-

satzzahlen von 2003 (siehe obige Tabelle) und will bei seinen vierteljahrlichen Fahr-



Aufgaben

ten lediglich einen einzigen Multiplikator pro Maler fiir dessen Liefermengen von
Ihnen mitgeteilt bekommen. Mehr kann er sich nicht merken. So konnte eine Ihrer
Anweisungen an den Fahrer beispielsweise lauten: "Bringe zu Malermeister Miiller
jeweils das 1,4-fache der Liefermenge des Vorjahrs." Ist die Forderung des Fahrers
realisierbar? Falls ja, stellen Sie ein LGS auf und benutzen Sie die Matrixrechnung

zur Bestimmung der vier Multiplikatoren.

23
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2 Innerbetriebliche simultane
Leistungsverrechnung

2.1 Einordnung und methodische Grundlagen

Die Kosten- und Leistungsrechnung untergliedert sich in die Kostenarten-, Kostenstel-
len- und Kostentragerrechnung. Aufgabe der Kostenstellenrechnung ist es, die Kosten,
welche nicht direkt einem Produkt (Kostentrager), sondern nur dem Ort der Kosten-
entstehung (Kostenstelle) zugeordnet werden kénnen, verursachungsgerecht auf die

Produkte zu verteilen.

Hierzu werden zwei Kostenstellenarten unterschieden. In den Hauptkostenstellen
(Hakos) findet ausschliellich die Produktion der fiir den Absatzmarkt bestimmten
Giiter statt. In den Hilfskostenstellen (Hikos) werden innerbetriebliche Leistungen
erstellt. Hikos stellen nur eine Leistungsart her und geben diese nicht an den Absatz-
markt ab. Die an den Hikos anfallenden Kosten miissen somit auf die Hakos verteilt

werden.

Die Gesamtkosten einer Hilfs- bzw. Hauptkostenstelle untergliedern sich in Primaér-
und Sekundarkosten. Priméarkosten sind Kosten fiir von aufien bezogene Produktions-
faktoren. Dagegen entstehen Sekundarkosten durch den Bezug innerbetrieblich erstell-
ter Produktionsfaktoren. Somit fallen lediglich bei der Begleichung von Primarkosten

Zahlungen an.

Im Rahmen der simultanen Leistungsverrechnung werden die direkt nur den Hilfs-
kostenstellen zuordenbaren Kosten auf die Hauptkostenstellen verteilt. Hierbei wer-
den Verrechnungspreise fiir die Leistungen der Hikos derart ermittelt, dass eine verur-
sachungsgerechte Zuordnung der Kosten auf die Hakos erfolgt. Hierfiir muss fiir jede
Hiko die Summe ihrer Primér- und Sekundarkosten der Summe ihrer insgesamt abge-
gebenen, mit den Verrechnungspreisen bewerteten Leistungen entsprechen. Bei einem

Unternehmen mit n Hikos ergeben sich somit n Gleichungen, {iber welche die n unbe-
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Innerbetriebliche simultane Leistungsverrechnung

kannten Verrechnungspreise bestimmt werden. Das resultierende LGS kann nach
Uberfiihrung in Matrixform mithilfe der im vorangegangen Kapitel vorgestellten Al-
gorithmen geldst werden. Nimmt man an, dass ausschliefllich nichtnegative Leis-
tungsverflechtungen bestehen und jede Hiko ihre Leistung weiterverrechnen kann,

sind die resultierenden Gleichungssysteme immer eindeutig l6sbar.

Da es das Ziel der simultanen innerbetrieblichen Leistungsverrechnung ist, alle Kosten
der Hikos auf die Hakos weiterzuverrechnen, muss die Summe der Priméarkosten aller
Hikos der Summe der als Sekundarkosten auf die Hakos weiterverrechneten Kosten

entsprechen. Eine Probe der Berechnung ist somit einfach moglich.

Beispiel 2-1: Bestimmung der Verrechnungspreise und der

Sekundirkosten

Ein Unternehmen produziert an den Hauptkostenstellen Schrauben und
Nagel fiir den Absatzmarkt. Hierfiir muss es eine Reparaturwerkstatt und
ein Stromkraftwerk betreiben. An der Hilfskostenstelle Reparaturwerkstatt
entstehen Primérkosten in Hohe von 20.500 € fiir Léhne und Materialien.
Die Hilfskostenstelle Stromerzeugung fiihrt zu Primarkosten von 9.500 €.
Fiir die Herstellung von 1 Million Schrauben bzw. 3 Millionen Négeln fal-
len an den jeweiligen Kostenstellen Primarkosten von 38.000 € bzw.

12.000 € an. Gegeben sind folgende Leistungsverflechtungen:

100 h

Y

Reparaturwerkstatt Stromerzeugung

A

20.000 kWh

20.000 kWh

400 h 80.000 kWh

Schraubenherstellung Nagelherstellung
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Einordnung und methodische Grundlagen

Fiir die Bestimmung der Verrechnungspreise fiir eine Arbeitsstunde der
Reparaturwerkstatt xg bzw. eine Kilowattstunde der Stromerzeugung xg

werden die nachfolgenden Gleichungen aufgestellt:

20.500 +20.000xg = 100xg +400xg +400xg (Hiko Reparaturwerkstatt)
9.500 +100xg = 20.000xg + 20.000xg + 80.000xg (Hiko Stromerzeugung)

Als Losung ergibt sich xg =25 € pro Arbeitsstunde und xg =0,1 € pro kWh.
Die Sekundarkosten der Hauptkostenstellen sind somit:

SKgchrauben = 400xg +20.000xg = 400 - 25 +20.000 - 0,1 = 12.000
SKnjsgel = 400xg +80.000xg =400+ 25 +80.000-0,1=18.000

Fiihrt man die Probe durch, zeigt sich, dass die Summe der Primérkosten
der Hikos 20.500 +9.500 = 30.000 wie erwartet der Summe der Sekundar-
kosten der Hakos 12.000+18.000 = 30.000 entspricht.

Um die Herstellkosten der einzelnen fiir den Absatzmarkt bestimmten Giiter zu ermit-
teln, sind die Gesamtkosten der jeweiligen Hauptkostenstelle durch die Produktions-
menge zu dividieren. Eine derartige Ermittlung der Herstellkosten simplifiziert die
Berechnungen der Kosten- und Leistungsrechnung, reicht aber fiir eine Veranschauli-

chung der Methodik aus.

Beispiel 2-2: Bestimmung der Herstellkosten

Die Herstellkosten von je einer Schraube bzw. je einem Nagel ergeben sich
durch die Division der Gesamtkosten der jeweiligen Hauptkostenstellen
durch die Produktionsmenge.
HKSChraube = (PKSchrauben + SKSChrauben )/ S Chraubenmenge
=(38.000 +12.000)/1.000.000 = 0,05 € pro Stiick
HKNagel = (PKNégel +SKnigel ) /Nagelmenge
=(12.000 +18.000)/3.000.000 = 0,01 € pro Stiick

27
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2.2 Aufgaben

Aufgabe 2.1:

Sie betrachten ein Unternehmen mit n Hikos und m Hakos. Welche Ordnung besitzt
die Koeffizientenmatrix der Matrixgleichung A -x =b, welche Sie zur Bestimmung der

Verrechnungspreise der innerbetrieblichen Leistungen der Hikos aufstellen?

Aufgabe 2.2:

Nachfolgend ist die Leistungsverflechtung eines Unternehmens mit den Hilfskosten-

stellen A und B sowie den Hauptkostenstellen X und Y abgebildet.

60 >
A »

A

90

30

Die Primarkosten bei Hilfskostenstelle A betragen 10.000 €, bei Hilfskostenstelle B
20.000 €. Stellen Sie ein Lineares Gleichungssystem auf, mit dem die internen Verrech-

nungspreise ermittelt werden kénnen.

Aufgabe 2.3:

Nehmen Sie an, die Primarkosten von Hiko A betragen 300 € und die von Hiko B
200 €. C, D und E stellen Hakos dar. Die innerbetrieblichen Leistungsverflechtungen
sind durch die nachfolgende Tabelle gegeben:
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an
A B ‘ C D E
von
A - 4 5 1 2
B 3 - 1 4 2

Bestimmen Sie die innerbetrieblichen Verrechnungspreise.

Aufgabe 2.4:

Ein Unternehmen besteht aus den Hilfskostenstellen A und B sowie aus der Hauptkos-
tenstelle C. Die Primdrkosten betragen 60 € bei A bzw. 40 € bei B. Ermitteln Sie die

innerbetrieblichen Verrechnungspreise bei nachfolgendem Leistungsaustausch:

an

A B C
von
A - 20 10
B 20 - 20

Aufgabe 2.5:

Eine Produktionsabteilung besteht aus drei Hilfskostenstellen A, B und C und zwei

Hauptkostenstellen X und Y, deren Leistungsaustausch nachfolgend dargestellt ist:

20 R 40 !
A | B C

40

A

A

Die Primérkosten der Hilfskostenstellen betragen 24.000 € (A), 30.000 € (B) und 52.000
€ (C). Bestimmen Sie die innerbetrieblichen Verrechnungspreise, die Sekundarkosten

der Hilfskostenstellen und die auf die Hauptkostenstellen weiterverrechneten Kosten.
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Aufgabe 2.6:

Sie arbeiten in einem Unternehmen mit drei Hilfskostenstellen A, B, C und drei
Hauptkostenstellen D, E und F. Die Priméarkosten betragen 60 € fiir A, 120 € fiir B, 30 €
fiir C. Die Leistungsverflechtungen sind wie folgt:

an
A B C D E F
von
- 2 5 2 1 -
B 2 - 1 4 1 2
4 4 - - 1 1

Berechnen Sie die Verrechnungspreise fiir je eine Leistungseinheit der drei Hilfskos-

tenstellen und die Sekundarkosten der drei Hauptkostenstellen.

Aufgabe 2.7

Gegeben sei die folgende Leistungsverflechtung;:

30
75 40 R
A < i B < ” C
90 75
80
35 115
80 120
25 20
X Y

Die Primarkosten der Hilfskostenstellen A, B bzw. C betragen 1.500 €, 5.250 € bzw.
8.800 €.

a) Stellen Sie die Leistungsverflechtungen tabellarisch dar.
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b) Bestimmen Sie die Verrechnungspreise der innerbetrieblichen Leistungen. Stellen
Sie zunédchst ein LGS auf und l6sen Sie dieses dann unter Verwendung der Matrix-

rechnung.

c) Wie hoch sind jeweils die auf die Hauptkostenstelle X und die auf die Hauptkos-

tenstelle Y weiterverrechneten Kosten?

Aufgabe 2.8:

Sie arbeiten in einem Unternehmen mit drei Hilfskostenstellen A, B, C und zwei
Hauptkostenstellen D und E. An den Kostenstellen A, B, C, D bzw. E fallen Primé&rkos-
ten in Hohe von 34 €, 52 €, 4 €, 60 € bzw. 25 € an. D produziert 400 Einheiten und gibt

diese an den Absatzmarkt ab, E hingegen nur 100 Einheiten.

Die Leistungsverflechtungen sind:

an
A B C D E
von
A - 2 3 1 2
3 - 4 2 1
C 8 6 - 2 4

a) Berechnen Sie die innerbetrieblichen Verrechnungspreise.
b) Berechnen Sie die Sekundarkosten der beiden Hauptkostenstellen.

c) Berechnen Sie die kostendeckenden Preise fiir je eine Leistungseinheit der Haupt-

kostenstelle D bzw. E.

Aufgabe 2.9:

Sie arbeiten bei einem Fernsehsender und wurden beauftragt, die Kosten einer Quiz-
sendung ndher zu analysieren. Hierzu sind Ihnen die Leistungsverflechtungen zwi-
schen den Hilfskostenstellen (Kameraleute, Moderator, Maskenbildner) und der

Hauptkostenstelle (Quizsendung) gegeben.
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Zur Herstellung einer Folge der Quizsendung miissen die Kameraleute 17 Stunden
erbringen, der Moderator arbeitet 3 Stunden fiir die Quizsendung und die Masken-
bildner sind 10 Stunden lang damit beschéftigt, die vor der Kamera auftretenden Kan-
didaten herzurichten. Der Moderator ist etwas unsicher in seinem Auftreten vor so
vielen Zuschauern. Deshalb muss er tiben und benétigt hierfiir die Assistenz der Ka-
meraleute, die ihn vor jeder Sendung 3 Stunden lang zur Selbstreflexion filmen. Im
Gegenzug obliegt es dem Moderator, auch fiir die Unterhaltung des restlichen Teams
neben den Dreharbeiten zu sorgen. Er muss mit den Kameraleuten und den Masken-
bildnern je 1 Stunde lang herumalbern. Die Maskenbildner schliefSlich sind 2 Stunden
lang damit beschaftigt, den Moderator fiir die Sendung zu schminken und investieren
4 Stunden in die Kameraleute, damit diese gegeniiber dem Saalpublikum kein allzu

schlechtes Bild abgeben.

Flir Lohne fallen bei den Kameraleuten Primarkosten von 400 €, beim Moderator

1.485 € und bei den Maskenbildnern 300 € pro Quizsendung an.
a) Zeichnen Sie ein Pfeildiagramm, welches die Leistungsverflechtungen darstellt.

b) Ermitteln Sie die Verrechnungssatze fiir je eine Arbeitsstunde der Kameraleute, des

Moderators und der Maskenbildner.

c) Wie hoch sind die Kosten einer Quizsendung?

Aufgabe 2.10:

Sie betrachten ein Unternehmen mit den Hikos A, B und C und den Hakos D und E.
Die Primarkosten betragen 100 € (A), 300 € (B) bzw. 200 € (C). Die internen Leistungs-

verflechtungen sind aus der nachfolgenden Tabelle ablesbar:

an
A B C D E
von
- 5 5 - 5
B 3 - 14 8 16
10 10 - 3 2
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Wie hoch sind die internen Verrechnungspreise und die Sekundarkosten aller fiinf

Kostenstellen?

Aufgabe 2.11:

Der Flughafenbetreiber von Frankfurt Kahn, die O. Kahn AG, stellt fiir das abgelaufe-
ne Jahr innerhalb der Kostenrechnung folgende Leistungsverflechtung fest:

1

&
<

Gepack-
abfertigung

\ 4

Lotsendienst

A

maintenance
A

Flugzeug-

BryanAir FCBAir CargoBanana

Die Kostenstellen Gepackabfertigung, Lotsendienst und Flugzeugmaintenance erstel-
len ausschliefllich Leistungen, die innerbetrieblich auf die Check-In-Kostenstellen
BryanAir, FCBAir und CargoBanana weiterverrechnet werden. Es entstehen Primar-
kosten in Hohe von 125.000 € bei der Gepéackabfertigung, 300.000 € beim Lotsendienst
und 420.000 € bei der Flugzeugmaintenance.

BryanAir und FCBAir wollten aus verschiedenen Griinden (BryanAir hat seinen Sitz
im verregneten England und FCBAir transportierte bisher ausschliefillich Fans eines
bayrischen Fufiballclubs) aggressiv am Markt Kunden werben. Deshalb verlangten sie

nur die auf sie weiterverrechneten Kosten der O. Kahn AG.

a) Wie hoch waren die auf den Check-In BryanAir und die auf den Check-In FCBAir
weiterverrechneten Kosten des Flughafenbetreibers? Und wie hoch waren die kos-
tendeckenden Preise pro Leistungseinheit der Kostenstellen Gepackabfertigung,

Lotsendienst und Flugzeugmaintenance?
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b) Bei CargoBanana fallen noch Primarkosten am Check-In in Hohe von 100.000 € an
(alle anderen Kosten konnen Sie vernachléssigen, z.B. Piloten- und Stewardessen-
gehaélter, Flugzeugabschreibungen, Verpflegung an Bord, Kerosin, usw.). Wie hoch
ist der kostendeckende Preis fiir den Transport einer Kiste Bananen, wenn 200.000

Kisten transportiert wurden?

Aufgabe 2.12:

Ein Tierzuchtbetrieb besteht aus den Hilfskostenstellen Futterproduktion, Technik und
Tierpflege sowie aus den Hauptkostenstellen Fisch- und Schildkrétenproduktion.

Die Futterproduktion liefert 1.000 kg Futter an die Fischproduktion und 700 kg Futter
an die Schildkrétenproduktion. Bei dem Futter handelt es sich um eine neuartige All-
round-Nahrung, welche daher auch in der Kantine serviert wird. Die Techniker kon-
sumieren insgesamt 20 kg, die Tierpfleger insgesamt 80 kg. Die Techniker miissen 60 h
arbeiten, um die Maschinen der Futterproduktion in Gang zu halten. Daneben benoti-
gen sie 40 h fiir die Wartung der EDV-Anlagen der Tierpfleger. Die Tierpfleger inves-
tieren 40 h ihrer Arbeitszeit bei der Fisch- und 100 h bei der Schildkrétenproduktion.
Da die Arbeiter in der Futterproduktion erfahren haben, dass das von ihnen produ-
zierte Tierfutter auch in der Kantine ausgegeben wird, benétigen sie 10 h psychologi-

sche Betreuung durch die Tierpfleger.

Die pro Periode anfallenden Primérkosten in den Abteilungen Futterproduktion,

Technik bzw. Tierpflege betragen 5.400 €, 4.900 € bzw. 6.600 €.
a) Stellen Sie den beschriebenen Sachverhalt in Form eines Pfeildiagramms dar.

b) Berechnen Sie die internen Verrechnungspreise fiir 1 kg Futter sowie eine Arbeits-

stunde der Techniker und der Tierpfleger.

c) Wie hoch sind die auf die Fisch- bzw. Schildkrétenproduktion weiterverrechneten

Kosten?
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d) Der Tierzuchtbetrieb vergrofiert sich und ziichtet nun auch Schlangen. Die neuen

Leistungsverflechtungen sind der nachfolgenden Tabelle zu entnehmen:

an | Futter- Technik Tier- Fischprod. Schildkré-  Schlangen-
von prod. pflege tenprod. prod.
Futterprod. - 20 kg 80 kg 800 kg 600 kg 300 kg
Technik 60 h - 40 h - - -
Tierpflege 10h - - 40h 80h 20h

Geben Sie die hieraus resultierenden internen Verrechnungspreise an.

Aufgabe 2.13:

Sie arbeiten in einem Unternehmen mit drei Hilfskostenstellen A, B, C und zwei
Hauptkostenstellen D und E. Die Primérkosten der drei Hilfskostenstellen liegen bei je

200 €. Die Leistungsverflechtungen sind:

an
A B C D E
von
A - 4 4 4 8
B 8 - 6 10 6
C 1 2 - 12 1

a) Berechnen Sie die innerbetrieblichen Verrechnungspreise sowie die Sekundérkos-

ten der beiden Hauptkostenstellen.

b) Bei Hauptkostenstelle D fallen zusatzlich Primarkosten in Hohe von 200 € an. Be-
rechnen Sie die kostendeckenden Preise fiir je eine Leistungseinheit der Hauptkos-

tenstelle D, wenn D 120 Einheiten an den Absatzmarkt abgibt.
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Aufgabe 2.14:

Gegeben sei die folgende Leistungsverflechtung:

8
2 N P 6
A < i B - > C
3 4
3
2 2
1 4
2 1
D E

An den Kostenstellen A, B, C, D bzw. E fallen Priméarkosten in Hohe von 34 €, 52 €, 4 €,
10 € bzw. 12 € an.

a) Bestimmen Sie die kostendeckenden Verrechnungspreise fiir je eine Leistungsein-

heit der Hilfskostenstellen A, B und C.

b) Es tritt eine weitere Hauptkostenstelle F hinzu, deren Leistungsbeziige von den
Hilfskostenstellen Sie allerdings nicht kennen. Sie wissen nur, dass die Hilfskos-
tenstelle A zur Herstellung der zusatzlichen Leistungseinheiten eine Einheit mehr
von C benétigt und dass die Primédrkosten von A auf 36 ansteigen. Zudem benétigt
die Hilfskostenstelle C zur Herstellung der zusétzlichen Leistungseinheiten eine
Einheit mehr von A. Die restlichen Leistungsverflechtungen bleiben gleich. Es er-
geben sich neue Verrechnungspreise in Hohe von x, = 6%, Xg = 22%7 und
Xc = 22%1. Wie viele Leistungseinheiten bezieht die neue Hauptkostenstelle F von
den Hilfskostenstellen A, B und C?
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Aufgabe 2.15:

Als neuer Vorsitzender eines Sportvereins betrachten Sie die folgenden wochentlichen

Leistungsverflechtungen (in Arbeitsstunden) in IThrem Verein:

2 AN
Trainerstab 1 Physu?-
3 2 therapie
> Gaststitte <

a)

b)

Skatabteilung Tennisabteilung Kegelabteilung

Ein Blick in die Gehaltsabrechnungen zeigt Ihnen, dass pro Woche Gehilter in
Hohe von 560 € fiir den Trainerstab, 170 € fiir die Gaststétte und 320 € fiir das Phy-
siotherapeutenteam anfallen. Bestimmen Sie die innerbetrieblichen Verrechnungs-
preise fiir eine Arbeitsstunde der jeweiligen Hiko. Wie hoch sind jeweils die auf die

einzelnen Sportabteilungen weiter zu verrechnenden Kosten?

Ihnen gelingt es, zusétzlich einen neuen Physiotherapeuten fiir 800 € pro Woche zu
verpflichten, seinen Assistenten stellen Sie fiir 260 € pro Woche gleich mit ein. Da
die Trainer aufgrund des gesprengten Gehaltsgefiiges sehr emp0rt sind, verdreifa-
chen Sie spontan deren Gehalt. Die internen Leistungsverflechtungen andern sich
hierdurch nicht. Verdndern sich infolge der Mafinahmen die Sekundarkosten der

Skatabteilung? Falls ja, wie und warum?

Sie griinden zusatzlich eine Schachabteilung. Fiir die Schachspieler kalkulieren Sie
eine Nachfrage von 20 Gaststéttenarbeitsstunden pro Woche. Physiotherapeutische
Betreuung wollen Sie den Schachspielern nicht zukommen lassen, auch sind Thre

Schachspieler bereits soweit fortgeschritten, dass sie keine Trainerleistung benoti-
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gen. Da Ihr Budget ohnehin schon schwer angeschlagen ist, kommen fiir Sie keine
Gehaltserhohungen (auch nicht die in b) vorgenommenen) in Frage. Welche der
nachfolgenden Aussagen sind richtig? (Eine Rechnung ist nicht erforderlich.)

i) Der Verrechnungspreis der Physiotherapeuten bleibt unverandert.

ii) Der Verrechnungspreis der Physiotherapeuten steigt.

iii) Der Verrechnungspreis der Physiotherapeuten sinkt.

iv) Alle Verrechnungspreise sinken.

v) Alle Verrechnungspreise steigen.

vi) Der Verrechnungspreis der Trainer weist die hochste relative Anderung auf.
vii) Der Verrechnungspreis der Gaststitte weist die hochste relative Anderung auf.

viii) Nur der interne Verrechnungspreis der Gaststatte sinkt.

Aufgabe 2.16:

Sie sind Geriistbauer und hiillen aufgrund einer Fassadensanierung gerade die Uni-
versitdt Mannheim ein. Ost- und Westfliigel sind dabei zwei unabhéangige Kostenstel-
len, die je nach Arbeitsintensitdt die Universitatsverwaltung unterschiedlich stark
belasten. Sie beschéftigen 7 einfache Arbeiter, welche die Geriiste stellen, von denen 3
nur am Ostfliigel und 4 nur am Westfliigel arbeiten, einen LKW-Fahrer, der die Ge-
riistteile zu beiden Gebaudefliigeln transportiert und einen Bier-Praktikanten, welcher
fiir alle das notige Bier holt. Schliefilich gehoren auch Sie als planender Geschéftsfiih-

rer zum Team.

Es ist Thre Aufgabe, die Personalkosten der drei Personalhilfskostenstellen (Bier-
Praktikant, LKW-Fahrer und Sie, der Chef) Ileistungsgerecht auf die
zwei Hauptkostenstellen zu verteilen. Im Team verdient jeder 2.000 € im Monat - ja,
auch Sie! Die einfachen Arbeiter arbeiten ausschliellich an den ihnen zugeteilten Flii-
geln des Schlosses (folglich sind deren Personalkosten direkt als Priméarkosten auf die
Hauptkostenstellen zu verrechnen). Der Bier-Praktikant bringt jedem (aufler sich
selbst) 4 Flaschen Bier am Tag (der LKW-Fahrer trinkt natiirlich seine Bierration erst

kurz vor Dienstschluss und fahrt anschliefend mit dem Taxi nach Hause). Der LKW-

38



Aufgaben

Fahrer bewidltigt die Strecke von seinem Unternehmen zur Universitdt siebenmal tag-
lich. Dabei fahrt er viermal zum Westfliigel, zweimal zum Ostfliigel und tatigt eine
Leerfahrt fiir Sie, damit Sie die tdgliche "Qualitdtskontrolle" durchfithren konnen.
Eigentlich tragen Sie gar nichts zum Projekt bei, deshalb gestaltet sich eine leistungs-
gerechte Personalkostenumlage in Threm Fall schwer. Sie entscheiden sich, Thre Perso-
nalkosten entsprechend Ihrer taglichen Aufenthaltszeit an den einzelnen Hilfs- und
Hauptkostenstellen zu verteilen (irgendetwas Produktives werden Sie da schon ma-
chen). Von 8 Stunden taglich sitzen Sie 1 Stunde im LKW, 1 Stunde lassen Sie sich beim
Bier-Praktikanten {iber Ihre heutige Bestellung aus, 3 Stunden verbringen Sie am West-

fliigel und 3 Stunden am Ostfliigel.
a) Skizzieren Sie die taglichen Leistungsverflechtungen in einem Pfeildiagramm.

b) Bestimmen Sie die leistungsgerechten Personalkostensétze der Hilfskostenstellen
(pro Bierflasche bzw. pro Fahrt und pro Stunde). Gehen Sie davon aus, dass der

Monat 20 Arbeitstage hat und jeder Arbeitstag gleich ablauft.

¢) Nun wird rationalisiert. Sie erkennen, dass alle Arbeiter auch ohne taglichen Bier-
konsum leben konnen und entlassen den Bier-Praktikanten. (Somit fehlt Ihnen
auch Thr Gesprachspartner.) Wie verandern sich die Personalkostensétze des LKW-
Fahrers und des Chefs, und um wie viel Prozent verbessern sich die taglichen Ge-

samtpersonalkosten am Ostfliigel?

Aufgabe 2.17:

Der marode Freizeitpark Matrix World hat zwei grofie Attraktionen: Eine Achterbahn

und ein Riesenrad.

Zur Aufrechterhaltung des Betriebs sind drei Gruppen von Arbeitern beschéftigt. Fiir
den Verkauf der Tickets sowie fiir die Platzzuweisung ist das hoch qualifizierte Servi-
cepersonal zustdndig. Dieses verrichtet fiir die Achterbahn 200 Arbeitsstunden pro
Woche und fiir das Riesenrad 120 Stunden pro Woche. Des weiteren arbeiten Mecha-
niker an der Instandhaltung des Parks. Um die grobsten Sicherheitsméngel zu behe-
ben, reparieren sie sowohl die Achterbahn als auch das Riesenrad jeweils 40 Stunden

pro Woche. Schliefilich ist noch eine medizinisch-psychologische Abteilung notwen-
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dig, welche sich 40 Stunden pro Woche um das gestresste Servicepersonal und 20
Stunden pro Woche um die durch ihre gefdhrliche Arbeit ladierten Mechaniker kiim-
mert. Die Mediziner und Mechaniker haben groflen Gefallen daran, sich an den At-
traktionen des Parks zu vergniigen, weshalb jede dieser Gruppen wochentlich 20 Stun-
den des Servicepersonals beansprucht. Da auch die Ausstattung der medizinischen
Abteilung ziemlich heruntergekommen ist, werden die Mechaniker fiir insgesamt 20

Stunden pro Woche zu Reparaturen benétigt.

Fiir die Lohne des Servicepersonals fallen pro Woche insgesamt 3.000 € an, die Mecha-

niker erhalten 1.500 € und die die Mediziner 2.700 €.
a) Zeichnen Sie ein Pfeildiagramm, welches die Leistungsverflechtungen darstellt.

b) Berechnen Sie die internen Verrechnungspreise fiir je eine Arbeitsstunde des Servi-

cepersonals, der Mechaniker sowie der medizinisch-psychologischen Abteilung.

c¢) Wie hoch sind die an die Achterbahn und die an das Riesenrad weiter zu verrech-

nenden Kosten?

d) Pro Woche fahren 5.000 Personen mit der Achterbahn, 3.600 nutzen das Riesenrad.
Fiir die Achterbahn und das Riesenrad muss der Betreiber jeweils eine Wochen-
miete von 2.500 € bezahlen. Den Preis fiir eine Fahrt mit dem Riesenrad hat er auf
2 € festgesetzt. Wie viel muss er pro Achterbahnfahrt verlangen, falls er einen Ge-

winn von 10.000 € pro Woche erwirtschaften mochte?

e) Durch vermehrte Unfdlle im Freizeitpark muss sich die medizinisch-
psychologische Abteilung jetzt auch um verungliickte Besucher kiimmern. Wegen
der gestiegenen Beanspruchung erhcht der Betreiber die Gehalter der Mediziner
auf 6.300 €. 40 Stunden pro Woche sind sie mit Achterbahnpatienten beschéftigt, 20
Stunden fallen jede Woche fiir Besucher des Riesenrads an. Wie verandern sich die

internen Verrechnungspreise nach diesen tragischen Vorfallen?
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3  Weiterfiihrende Matrixrechnung

3.1 Determinante

Die Determinante ist eine Kenngrofe, die nur fiir quadratische Matrizen definiert ist.
Sie ist vergleichbar mit der Quersumme ganzer Zahlen. (Mithilfe der Quersumme ldsst
sich beispielsweise ermitteln, ob eine Zahl durch 3 teilbar ist. Dies gilt fiir alle Zahlen,
deren Quersumme durch 3 teilbar ist. So hat die Zahl 437.023.158 die Quersumme
44+3+7+0+2+3+1+5+8=33 und ist folglich durch 3 teilbar.) Die Berechnung der
Determinante erfolgt anhand von Streichungsmatrizen iiber den Laplace-

Entwicklungssatz.

Definition 3-1: Streichungsmatrix

Zu jeder quadratischen Matrix A e R™" mit n > 1 14sst sich die Strei-
chungsmatrix Aije[R(”*”X(”*” durch Streichen der Zeile i und der

Spalte j von A bestimmen. Sei beispielsweise:

A=

~N b
o 0N
© O W

So ergeben sich u. a.: A —5 6 und A —1 2
g n@-AM1Tlg g 877 g

Zur Matrix A e R™™ lassen sich somit n? verschiedene Streichungsmatrizen bilden.

M

C. Mayer, Lineare Algebra fiir Wirtschaftswissenschafiler,
DOI 10.1007/978-3-8349-6727-5 3, © Gabler Verlag | Springer Fachmedien Wiesbaden GmbH 2011
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Definition 3-2: Determinante

Die Determinante einer Matrix A, welche als det(A) bezeichnet
wird, ist eine reelle Zahl und ist ausschlieRlich fir quadratische
Matrizen definiert. Uber den Laplace-Entwicklungssatz wird jeder
Matrix genau eine Determinante zugeordnet. (Hingegen kdnnen
verschiedene Matrizen dieselbe Determinante besitzen. Es ist so-
mit nicht mdéglich, aus der Determinante die zugrunde liegende

Matrix abzuleiten, nicht einmal deren Ordnung.)

Im Rahmen des Laplace-Entwicklungssatzes bieten sich zwei Vari-
anten der Berechnung, auch Entwicklung genannt, an, welche zum

selben Ergebnis fuhren.

n .
Entwicklung nach Zeile i: det(A):;(—1)'+J~aij -det(Aij)

n P
Entwicklung nach Spalte j: det(A):E(—‘I)'“ -a -det(Aij)

Die Berechnung der Determinante erfordert das n-malige Aufsummieren eines Pro-
dukts aus jeweils drei Faktoren. Der erste Faktor, (- l)”j, beeinflusst lediglich das
Vorzeichen des zu summierenden Produkts. Der zweite Faktor, ajj, reprasentiert das
Element in Zeile i und Spalte j der Matrix A. Der dritte Faktor schliefSlich, det(Ai]-),
erscheint auf den ersten Blick tiberraschend, da er dazu fiihrt, dass die Determinante
von A von einer anderen Determinante abhangt, welche wiederum nach obigem Mus-
ter zu berechnen ist. Entscheidend ist aber, dass die Ordnung von A;; geringer ist als
die Ordnung von A. Im ersten Laplace-Schritt wird die Determinante einer (nxn)-
Matrix also dargestellt durch n Determinanten von ((n—1)x(n-1))-Matrizen. Diese
lassen sich wiederum durch jeweils n—1 Determinanten von ((n —2)x (n —2))-Matrizen
ausdriicken. Diese Vorgehensweise wird so oft wiederholt, bis die Determinante von A
auf n!=n-(n-1)-...-2-1 Determinanten von (1x1)-Matrizen zuriickgefiihrt worden

ist. Fiir solche Matrizen B =(b) gilt det(B)=b.
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Es macht keinen Unterschied, ob die Determinante nach einer Zeile oder einer Spalte
entwickelt wird. Zudem spielt es keine Rolle, welche Zeile bzw. Spalte fiir die Deter-
minantenberechnung gewahlt wird. Bei einer (nxn)-Matrix bestehen fiir den ersten
Laplace-Schritt demnach 2n verschiedene Entwicklungsmoglichkeiten, die zum selben
Ergebnis fithren. Wie das nachfolgende Beispiel zeigt, ist es sinnvoll, eine Zeile bzw.

Spalte mit vielen Nullen fiir die Laplace-Entwicklung zu wéhlen.

Beispiel 3-1: Determinantenberechnung nach Laplace

Die Determinante von

wird nach der dritten Spalte entwickelt als:

1

4) N det(3 2} +(=1)*%.0- det(_ll Zj

3 1

det(A)=(-1)1*3.3. det[

Die notwendige Berechnung der Determinanten der (2x2)-Matrizen er-
folgt jeweils nach der ersten Zeile:

det(_; ;LJ _ (_1)1+1 .(—1).det(1)+(_1)1+2 .4-det(3)= 1.(_1).1_1.4_3 13

10
det[3 1](—1)1+1 -1-det(1)+(-1)*2.0-det(3)=1-1-1-1-0-3=1

1
Die Berechnung von det eriibrigt sich, da das Ergebnis hiervon oh-

1
nehin mit Null multipliziert wird. Insgesamt folgt also:

det(A)=(-1)*3.3.(-13)+ (-1)**3 2.1+ 0 =41

Im Falle von (2x2)- und (3x3)-Matrizen existieren Vereinfachungen zum Laplace-

Entwicklungssatz.
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So gilt bei (2 x 2)-Matrizen schlicht:

ded® ®load_cb
eff | 4|Fad-c

Bei (3x3)-Matrizen lédsst sich die Sarrus-Regel anwenden. Hierzu ist zundchst die
erste, dann die zweite Spalte nochmals rechts neben die Matrix zu schreiben. Die De-
terminante lasst sich dann durch Aufsummieren der Produkte berechnen, die sich
durch Multiplikation der Elemente auf den Diagonalen von links oben nach rechts
unten ergeben, und anschlieBendes Subtrahieren der Produkte, die sich durch Multi-
plikation der Elemente auf den Diagonalen von links unten nach rechts oben ergeben.
Formal dargestellt bedeutet dies:
ap1 a2 13| ai;p a4
A=lay ap ay| ay ayp
a3 a3z azz) a3 a3
det(A)= ayq-ay -as;+a-ax-as +az-az asp

—agp-apy-ajz —aszp-apz-dyy —agz-dpycan

Beispiel 3-2: Determinantenberechnung iiber die Sarrus-Regel

Die vereinfachte Bestimmung der Determinante von

1 0 3
A=0 1 2
3 -4 2
iiber die Sarrus-Regel ergibt:
0 1 0

0 1 270 1
3 -4 2)3 -4

det(A)=1-1-2+0-2-3+3-0-(-4)-3-1-3-(-4)-2:1-2-0-0
=2+0+0-9+8-0=1
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Determinante

Fiir Matrizen, deren Ordnung (3 x 3) tiberschreitet, existieren keine derartigen Verein-
fachungen. Bei speziellen Matrizen lasst sich die Determinante jedoch infolge einer

reduzierten Laplace-Entwicklung leicht ablesen:
det(E)=1

Die Determinante einer oberen oder unteren Dreiecksmatrix lasst sich als Produkt

der Komponenten auf der Hauptdiagonale bestimmen.
Enthélt eine Matrix eine Nullzeile oder —spalte, so ist deren Determinante Null.

Ebenso ist die Determinante einer Matrix Null, die zwei Zeilen (bzw. Spalten) enthalt,
die Vielfache voneinander sind. Gleiches gilt fiir eine Matrix, bei der eine Zeile (bzw.
Spalte) als Linearkombination aus anderen Zeilen bzw. Spalten hervorgeht, denn
EZUs (bzw. elementare Spaltenumformungen) wirken sich wie folgt auf die Determi-

nante einer Matrix aus:

Werden innerhalb einer Matrix Zeilen miteinander vertauscht, dndert sich bei je-

dem Zeilentausch das Vorzeichen der Determinante.

Wird in einer Matrix eine Zeile mit einem Skalar ¢ multipliziert, &ndert sich die

Determinante um den Faktor c.

Eine Addition bzw. Subtraktion eines Vielfachen einer Zeile zu einer anderen Zeile

verdandert die Determinante nicht.

Wird zusatzlich zur soeben genannten Addition bzw. Subtraktion die zu verdndernde
Zeile mit einem Skalar ¢ multipliziert, bewirkt dies hingegen eine Verdnderung der

Determinante um den Faktor c.

Eine Multiplikation der zu verdandernden Zeile mit einem Skalar fiihrt also zu einer
Veranderung der Determinante, wahrend eine Multiplikation der Zeile, mit der die

Verdnderung durchgefiihrt wird, keine Auswirkung auf die Determinante hat.

Die Determinante einer Matrix kann folglich auch durch Umformung zu einer Drei-
ecksmatrix mit anschlieSender Beriicksichtigung der Auswirkungen der durchgefiihr-

ten EZUs berechnet werden.
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Beispiel 3-3: Determinantenberechnung iiber EZUs

Um die Determinante von

-2 1 0
0 4 3 4
A=
6 4 2 -5
4 -1 0 2

zu bestimmen, wird diese in eine Dreiecksmatrix tiberfiihrt:

3 21 0 32 1 0
0 4 3 4| M-21 |0 4 3 4
6 4 2 5| 30v-a1]0 0 o -5 ¥Vl
4 10 2 05 4 6
32 1 0 32 1 0
0 4 3 0 4 3 4
00 o -5 eV o 5 4
0 0 -31 4 00 0 -5

Die Determinante der Dreiecksmatrix ergibt sich vereinfacht als Produkt

der Komponenten der Hauptdiagonale zu:

32 1 0
0 4 3

det| 0 5y, |=34:(31):(-5)=1860
00 0 -5

Bertiicksichtigt man alle Auswirkungen der durchgefiihrten EZUs auf die
Determinante von A, so folgt det(A) = % . % -(-1)-1860 = -155.

Im Folgenden sind einige Rechenregeln im Umgang mit Determinanten aufgefiihrt.

Dabei seien A,B € R™™ und ceR.
det(AT)=det(A)
det(c-A)=c"-det(A)

det(A-B)=det(A)-det(B)
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Determinante

Die Determinante einer Summe von Matrizen lasst sich nicht vereinfachen. Es ist zu

beachten, dass im Allgemeinen det(A + B)= det(A)+det(B) gilt.

Determinanten und von diesen abgeleitete Grofien sind zentrale Bestandteile wichtiger
Formulierungen aus Analysis und Linearer Algebra, welche zum Teil in den nachste-
henden Kapiteln behandelt werden. Die wichtigsten dieser Groflen werden im Fol-

genden zunéachst definiert.

Definition 3-3: Minoren

Minoren sind Determinanten von Streichungsmatrizen, bei denen
jeweils gleich viele beliebige Zeilen und Spalten gestrichen wur-
den. Sind die Indizes der gestrichenen Zeilen und Spalten gleich
(ist somit i=j), so handelt es sich um Hauptminoren. Sukzessive
Hauptminoren sind die Determinanten aller Matrizen, die durch das
sukzessive Streichen der jeweils letzten Zeile und Spalte einer
Matrix entstehen. Hierzu z&hlt auch die Determinante der Aus-
gangsmatrix selbst. Folglich besitzt eine Matrix A e R™" n sukzes-
sive Hauptminoren. Zu diesen zahlt als nullter sukzessiver Haupt-

minor det(A). Der zweite sukzessive Hauptminor von

-2 2 0 4
4 3 7 -1
A =
0 52 5
7 3 9 1

2 2
ergibt sich folglich als: det((A44)33)=det[4 3]:-14

Definition 3-4: Kofaktormatrix

Die Kofaktormatrix C zu einer quadratischen Matrix A setzt sich

aus den zu aj gehérenden Kofaktoren cj mit c; = (-1)1-det(A;) zu-

sammen. Kofaktormatrix und Ausgangsmatrix besitzen somit die
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gleiche Ordnung. So ergibt sich beispielsweise die Kofaktormatrix
von

2 1 4

A=l1 2 3

0 1 0

det(A1q) —det(Asy) det(Aq3)

als: C=|-det(Ay) det(Ay) -det(Ays)

det(Aq) —det(Az;) det(As;)

2.0-1-3 -(1-0-0-3) 1.1-0-2 3 0 1
= —((—1).0—1.4) 2.0-0-4 —(2.1—0.(—1)) =l 4 0 -2
(-1)-3-2-4 —(2:3-1-4) 2.2-1.(-1) -1 -2 5

3.2 Inverse

In Kapitel 1.2 wurden einige Matrixoperationen definiert. Dabei wurde eine Matrixdi-
vision ausgeschlossen. Anstelle der Matrixdivision tritt fiir quadratische Matrizen die
Multiplikation mit einer Inverse, dhnlich der Multiplikation mit dem Kehrwert eines

Skalars, die eine Skalardivision ersetzt.

Definition 3-5: Inverse

Eine quadratische Matrix A besitzt genau dann eine Inverse, wenn
eine quadratische Matrix B existiert, so dass A-B=E und B-A=E
gilt. B ist in diesem Fall eindeutig bestimmt, heilt Inverse von A
und wird mit A™! bezeichnet. Es gilt also A-A""=A"".A=E. Eine
quadratische Matrix, die eine Inverse besitzt, heilt regular. Besitzt

die Matrix keine Inverse, heif3t sie singular.
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Inverse

Um die Existenz einer Inverse nachzuweisen, bedient man sich der Determinante als
Kennzahl. Inversen lassen sich nur von Matrizen bestimmen, deren Determinante
ungleich Null ist. Demnach ist jede Matrix singulér, deren Determinante Null ist. Alle
anderen quadratischen Matrizen sind reguldr. Die Inverse einer reguldren Matrix kann
mithilfe von elementaren Zeilenumformungen oder {iber Ihre Kofaktormatrix be-

stimmt werden.

Jede reguldre Matrix A e R™" lasst sich durch endlich viele EZUs (bzw. elementare
Spaltenumformungen) in eine Einheitsmatrix umformen. Die Umformungen ersetzen
somit jeweils eine Multiplikation mit deren Inverse AL Im Falle von EZUs handelt es
sich um eine Multiplikation von links, im Falle von elementaren Spaltenumformungen
um eine Multiplikation von rechts. Die Anwendung derselben EZUs auf eine Matrix

IRmxn

BeR™¥ (bzw. der elementaren Spaltenumformungen auf eine Matrix B € ) erset-

zen auch hier die Multiplikation mit A~ von links (von rechts).

Handelt es sich bei der umzuformenden Matrix um die Einheitsmatrix, so erhalt man
AT E=E-A'=A"". Um die Inverse zu bestimmen, konnen folglich EZUs auf die
partitionierte Matrix (A | E) derart angewendet werden, dass in der linken Partition die
Matrix E entsteht. Die rechte Partition enthalt danach automatisch die Inverse, so dass

sich (E | A_lj ergibt.

Beispiel 3-4: Bestimmung der Inverse iiber EZUs

Eine Inversion von
2 1 3
A=|1 2 0
010

erfolgt iiber die Umwandlung von (A |E) in (E | Afl):

2 1 3|10 0 . 2 0 3|1 0 -1
1 2 00 1 I—2.II 0 0|0 1 -2|1I-2-1I
0 0olo o 1 0 1 00 0 1
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1 -2 3 I:3 10 0|0 1 2
0 1 2| IeHII |01 00 0 1
0

0 1)1, |o o 1 % _% 1

Aus (E | A‘l) lasst sich A" ablesen:

0 1 2
0 1

-0
Vi %1

Afl

Vereinfacht lassen sich die Inversen von regulédren Matrizen kleiner Ordnung erstellen.

Die Inverse einer (1x1)-Matrix A =(a)ist ¥ a R\ {0}:
-1_(1
A=)
a b
Die Inverse (2x 2)-Matrix B —[ dj istV (a-d—c-b)eR\{0}:
c

g1 1 . d -b
a-d-c-b |-c a

Der Nenner des jeweiligen Bruchs enthélt die Determinante der zu invertierenden

Matrix.

Beispiel 3-5: Inversion einer (2 x 2)-Matrix

12
Die Inverse der Matrix A = ( 10

(Y iz (S 2 D, )

Alternativ ldsst sich die Inverse einer Matrix auch tiber deren Kofaktormatrix bestim-

j kann vereinfacht bestimmt werden tiber:

men. Hierzu ist zunéchst A-CT zu bilden:
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Inverse

aip Ay An | (¢ Ci1 Cni
A CT —| a; a:: cee a. C C:: C
: =\ il ij in 1j ij nj
an1 Anj ann Cin Cin Cnn
n n n
zalj C1j Zall Cij zalj'cnj
j=1 =1 j=1

n n
anj‘clj Zal’\jlcij Zanj,cn].

s

|
U
[
—_
|
—_

Fiir die Komponenten der Hauptdiagonale gilt 2?:1 ajj - cjj = det(A). Hierbei handelt es
sich jeweils um Laplace-Entwicklungen der Determinante von A nach Zeile i (mit

i=1,...,n).

Fir die Komponenten aufierhalb der Hauptdiagonale gilt Z;‘Zlai]- =0 Vi=k.
Nachfolgend wird eine Intuition fiir die Validitat dieser Aussage gegeben. Eine durch
diese Summe berechnete Kennzahl der Matrix A ist unabhédngig von den in Zeile k
enthaltenen Komponenten, denn diese gehen nicht in die Berechnung der Kennzahl
ein. Alle Matrizen, die sich von A nur durch andere Komponenten in Zeile k unter-
scheiden, besitzen somit die gleiche Kennzahl wie A. Folglich weist auch die Matrix
diese Kennzahl auf, welche in Zeile k dieselben Komponenten enthélt wie in Zeile i. In
diesem Fall entspricht die Kennzahl gerade der Determinante von A, da dann
2?:131]' oy = Z?:laij "G =21y ¢yj (Laplace-Entwicklungen nach den inhaltsglei-

]
chen Zeilen i und k), welche aufgrund zweier gleicher Zeilen (Zeile i = Zeile k) Null ist.

Somit folgt:
det(A) - 0 0
ACT=| o det(A) - 0
0 0 det(A)
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A-CT=det(A)-E

CT=A"1.det(A)

a__ 1 ot
det(A)
Beispiel 3-6: Bestimmung der Inverse iiber die Kofaktormatrix
Zur Inversion von
2 -1 4
A=1 3
0 0

wird zundchst die Kofaktormatrix

-3 0 1
C=| 4 0 -2
-1 -2 5

und det(A)=-2 berechnet. Die Inverse ergibt sich dann als:

) -3 4 -11
Al = cT=Llo o -2
det(A) 2
1 -2 5

Fiir die Matrixinversion lassen sich als Rechenregeln im Falle reguldrer (und somit

auch quadratischer) Matrizen festhalten:
—1 -1
(A7) =a
p'.c.B".AT=(A-B-C-D)"
(cA) =1 AT v ceR\{0}

NN

cle’c(A_1 )= —detl(A)
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Wie bei der Determinantenrechnung ldsst sich auch hier keine Vereinfachung fiir die

Inverse einer Summe von zwei Matrizen finden. Folglich gilt A~ + B™! = (A+ B)_l.

Ist C die Kofaktormatrix zu A e R™", so lasst sich herleiten, dass:

det(C) =det(A)"

3.3  Matrixgleichungen

Jegliche Umformungen von Matrixgleichungen sind nur fiir quadratische Matrizen
uneingeschrankt definiert. Gegeniiber Gleichungen mit reellen Zahlen sind in Anleh-
nung an die bisher aufgefiihrten Rechenregeln bei Matrixgleichungen folgende Beson-

derheiten zu beachten:

Die Multiplikation mit der Inverse einer Matrix ersetzt die Division.

Aufgrund der Nichtkommutativitdt der Matrixmultiplikation darf die Reihenfolge
der Matrizen bei der Multiplikation nicht vertauscht werden. Somit ist zu beach-
ten, ob die Gleichung von rechts oder von links mit einer Matrix multipliziert wird.
Soll beispielsweise die Gleichung A-X=D nach X aufgelost werden, sind beide
Seiten der Gleichung von links mit der Inverse von A zu multiplizieren. Es ergibt
sich A™-A-X=A"".D, somit E-X=A""-D und schlieflich X=A""-D. Wiirde
man beide Seiten der Gleichung von rechts mit Al multiplizieren, kénnte man A

und A~! nicht zur Einheitsmatrix zusammenfassen und somit X nicht isolieren.

Steht bei einer Summe von Matrizen X alleine mit einem Skalar, so verbleibt beim
Ausklammern von X nicht der Skalar, sondern der Skalar multipliziert mit der
Einheitsmatrix passender Ordnung. Es gilt beispielsweise A-X+c-X=(A+c-E)-X,
denn (A +¢)-X ist nicht definiert. Hier wire die Summe aus einer Matrix und einer

reellen Zahl zu bilden, was im Allgemeinen nicht moglich ist.

Aufgrund der Kommutativitat der Multiplikation mit einem Skalar kann ein Skalar
in einem Matrixprodukt an jede beliebige Stelle verschoben werden, es gilt
A-X-c=A-c-X=c-A-X.
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Beispiel 3-7: Loésen einer Matrixgleichung
A-X-B=X-C+3-D-X
A-X-X-3-D-X=B-C
(A-E-3-D)-X=B-C
(A-E-3-D)'-(A-E-3-D)-X=(A-E-3-D)'-(B-C)
E-X=(A-E-3-D)"-(B-C)
X=(A-E-3.D)".(B-C)

—_

Enthalten Matrixgleichungen idempotente Matrizen, so lassen sich diese auf besonde-

re Weise vereinfachen.

Definition 3-6: Idempotenz

Eine quadratische Matrix heil3t idempotent, falls alle Potenzen die-

ser Matrix gleich sind. Sei beispielsweise:

-9 -9 6

A=|6 6 -4

6 6 4

So folgt: A=A%2=_=A"

3.4 Cramer-Regel

Liegt ein quadratisches LGS vor, also ein LGS mit ebenso vielen Gleichungen wie
Variablen, lasst sich eine Aussage iiber die Losbarkeit des LGS anhand des Determi-
nantenkriteriums treffen. Das zugrunde liegende LGS A-x=Db ist genau dann eindeu-
tig 16sbar, wenn die Koeffizientenmatrix A invertierbar ist. Die Koeffizientenmatrix ist

dann regulir und es gilt det(A)#0. Ist die Koeffizientenmatrix nicht invertierbar, han-
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Cramer-Regel

delt es sich um eine singulére Koeffizientenmatrix und es gilt det(A)=0. Das zugrun-

de liegende LGS ist dann nicht eindeutig 16sbar.

Falls eine eindeutige Losung existiert, bestimmt sich diese wie folgt:

A-x=b
At Ax=A"1p
E-x=A"1b
x=A"1.b

-CT, der Bestimmung der Inverse tiber die Kofak-

_ 1
Substituiert man A~ durch

det(A)
tormatrix, so lasst sich zeigen, wie die Losung ausschliellich durch eine Verkniipfung
von Determinanten berechnet werden kann. Dieses Verfahren wird Cramer-Regel

genannt und nachfolgend beschrieben.

n
2.bici
i=1

x=A b= .CTbo | Sb.q
det(A) det(A) i=1 )

Die Komponenten des Vektors (Z?:lbi G v Xingbiegy o XiLibiccin )T glei-
chen Laplace-Entwicklungen der Determinante einer Matrix A;j (mit j=1,...,n) nach
Spalte j. A stellt dabei eine modifizierte Koeffizientenmatrix dar, bei der die j-te Spalte
durch den Ergebnisvektor b ersetzt wird. Bei Beriicksichtigung der Determinante der

modifizierten Koeffizientenmatrizen ergibt sich der Losungsvektor als:

det(A;)

. :
X = m- det}(A j)
det(A,,)
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Beispiel 3-8: Anwendung der Cramer-Regel zur Lésung eines LGS
2X1 - Xy + 4X3 = 5
X1 + Xy + 3X3 = —4
4X1 - Xy + 8X3 = 7

Determinante von A geldst werden. Hierfiir ergeben sich:

2 -1 4 5 -1 4 2 5 4 2 -1 5
A=[1 1 3|, Aj=|—4 1 3|, Ay=|1 —4 3|, A;=[1 1 —4
4 -1 8 7 -1 8 4 7 8 4 -1 7

det(A)=-2, det(A;)=-10, det(A,)=6, det(A3)=4

Das obige LGS kann tiber die Cramer-Regel durch die Bestimmung der De-

terminanten der modifizierten Koeffizientenmatrizen A;, A,, A3 und der

Der Losungsvektor x resultiert aus der Verkniipfung dieser Determinanten:

. det(A) ) -10) (5
x=——-|det(Ay)|=—:] 6 |=|-3
det(A) -2
et(As) -2
3.5 Aufgaben
Aufgabe 3.1:

1 05 39

0 000 4

A=|-3 5 0 6 3

8 2 0 4 8

3 20 2 4

Bestimmen Sie det(A) tiber den Laplace-Entwicklungssatz.
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Aufgaben

Aufgabe 3.2:
o1 2 2 1
00 0 2 1
A=|0 7 13 -2 5|, B=
112 3 3 7
01 2 4 1

o1 2 2 1
0 0 0 10 1
0 7 13 2 5
112 3 3 7
01 2 4 1

Berechnen Sie det(A) tiber den Laplace-Entwicklungssatz. Wie grof ist det(B)?

Aufgabe 3.3:
00 0 0 1
0o 0 2 00 0 2 0
A=/0 0,5 a|, B=|0O 0 -1 1 2
3 b 1 0 4 4 a 1
2 b 0 ¢ -1
Berechnen Sie det(A) und det(B) mit a,b,ceR.
Aufgabe 3.4:
0O 0 0 O 0
0 4 0 b 3
0 0o 0 2 0 0
A=l1 & 0 4 7 3b
0 ¥ o019 by o1
v 3 1 5pt 5

Bestimmen Sie det(A)

in Abhéngigkeit von beR\{0}

iiber den Laplace-

Entwicklungssatz. Wagen Sie vorher genau ab, nach welchen Zeilen bzw. Spalten Sie

entwickeln sollten. Ist die Matrix fiir b=-0,5 regular?
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Aufgabe 3.5

Fiir welchen Wert des Parameters a €R ist det(A)=0?

Aufgabe 3.6:
2 5 4 2
-3 4 6 4
4 2 -8 -5

2?7

Welche der nachfolgend aufgefiihrten Zeilenvektoren kénnen in die vierte Zeile einge-

setzt werden, so dass gilt det(A)=0?

a) (00 0 0) b) (6 7 12 -3)
o (3 97 -6 2) d) (In6 -In7 -In36 In18)
e) (e4 e? o8 e75) f) (\/E J5 -8 \/E)
Aufgabe 3.7
a+3 2 1
A= 0 1-a 0
0 7 a+2

Bestimmen Sie det(A) in Abhédngigkeit von a eR.
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Aufgabe 3.8:
1 4 -3
A=|2 1 0
-1 4 -1

Bestimmen Sie die Kofaktormatrix zu A.

Aufgabe 3.9:
a b ¢ d
4 4 -2 4
A=
1 2 31
2 -4 2 11

Bestimmen Sie a,b,c,d €R, so dass alle sukzessiven Hauptminoren von A gleich sind

und a+b+c+d =19 gilt. Geben Sie zudem det(A) an.

Aufgabe 3.10:

Zeigen Sie, dass fir A e R™" mit det(A) =0 gilt:

_ 1
det(A ) =———
e( ) det(A)
Sie kdnnen die folgenden Formeln benutzen:
1.) det(A-B) = det(A)-det(B) 2.)det(E)=1
Aufgabe 3.11:
1 3 4 2 1 0
A=|1 0 3|, B=|0 2 2
0 3 2 1 3 3

Berechnen Sie: x = [det(A) -det(A- B)J 5. det(A . B_l)

59

3.5



Weiterfiihrende Matrixrechnung

Aufgabe 3.12:

Berechnen Sie: A 4 22 (2 2\t
erecnnen soie: = 71 3 — 3 4

Aufgabe 3.13:

A4+4a4B34C 1w
L9 11y T2 3) _det(B)( )

Berechnen Sie C. Welche Aussage konnen Sie in Abhédngigkeit des Parameters a € R

uber die Relation zwischen A und C machen?

Aufgabe 3.14:
-1 -1 0 -2 2 2 0 4 1 1 3 -1
_ _ 3/ _
_ 312 31 1/B: 19 30 913,C=1 A 10 0
2 3 -1 2 4 -
0 —% 3 0
1 0 0 O 1 0 0 O 2 1 1 0

a) Berechnen Sie det(A) tiber den Laplace-Entwicklungssatz.

b) Stellen Sie det(B) und det(C) in Abhéngigkeit von det(A) dar. Berechnen Sie in

einem zweiten Schritt die Determinanten.

det(C_l)~(det(2-A)+2-det(BT)) det(A_l)-det(C_l)ideltéB)
¢) Berechnen Sie: x = 5 - 1 -det(A‘l e .A‘l)

Aufgabe 3.15:
3 0 3 303
A=|2 -2 2|, B=|6 0 2
4 2 0 4 20

Ermitteln Sie: x = [det(Z “A)-2- det(B)] . det(A’l)
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Aufgaben

Aufgabe 3.16:

S O W
N N W O

3
2
2
1

o o = N
B W o o
o W NN
W NN R

Berechnen Sie: x = (det(A) —det(B)+ det(AT) -det(A_l)) . (1 —det(A+ B))

Aufgabe 3.17:
1 -3 4 6 4 0 1 1
2 21
a5 0 0] a3z 2
1 2 1 -4 "1 1 -5 4
1 2 2
2 1 3 =2 2 3 4 8
-1 det(A
Berechnen Sie:x:det(BZ) -det(C-A)—det(2~B)~det(C71) etA)
Aufgabe 3.18:
4 -
A=|0 i ; T
R "o 75 2
0o 0 =2
T
Berechnen Sie: X :%- B -det(4A_1) +BT .4 -det(A)-(B_l)
Aufgabe 3.19:
-1 1 2 3 4 2 1 1 1
A=|0 2 2|, B=[3 4 0| C=|1 7 2
5 3 -1 2 3 0 3 -1 2

Berechnen Sie: x = de,f(‘(y1 ‘B! 'Cil)'det(z : AT)+ 6-det(E)

det((AT)Sj -det(C™")+ det(3-0)- det(B?)
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Weiterfiihrende Matrixrechnung

Aufgabe 3.20:
3 0 0 3 6 9 1 -11
A=/1 4 0|, B=|0 2 3| C=(2 3 4
0 2 1 0 0 -2 5 6 7

- _1\4
Bestimmen Sie: x = det(AT) ' -det(A~°’ -B~C)~det((A +B) 1)

det(C)
Aufgabe 3.21:
1 2 -k
A={-2 k 1
0 k k

Fiir welche Werte von k eR existiert A~ nicht?

Aufgabe 3.22:
-5 3 a-3
A=1 a-1 O
0 -1 2

Fir welche Werte des Parameters a e R existiert die Inverse der Kofaktormatrix zu A

nicht?
Aufgabe 3.23:
4 -10
A [2 - 4] B=|3 -8
2 -3 )
-1 3

Zeigen Sie, dass A -B =E gilt. Ist B somit die Inverse von A?
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Aufgabe 3.24:

I
N © =
=N
N O W

A-(Ha) v, e

Bestimmen Sie, falls moglich, die Inversen von A, B und C.

Aufgabe 3.25:

Bestimmen Sie, falls moglich, A7 sowie B,

Aufgabe 3.26:

Gegeben seien die beiden Matrizen A eR™ und BeR*P. Unter welchen Bedingun-
gen an die Ordnungen der Matrizen finden die nachfolgenden Operationen eine Lo-

sung, bzw. sind die Operationen definiert? (Betrachten Sie jede Operation fiir sich.)

a) A’ b) A+A-B
T -1
0 ((A-BT) ) d) det(A-B)
e) det(A)-B
Aufgabe 3.27:
2 4 -2 -1 4 2
A=[-1 3 2|,B=[2 4 3
-1 -4 3 2 4 -8

Berechnen Sie, falls moglich, A7'und A? sowie B! und B%.
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Aufgabe 3.28:

2 -1 -1
b

% Vs s

Bestimmen Sie a,b,c €R so, dass A-B =E gilt.

1
A= ,B=|0
1

QL =N
N O

Aufgabe 3.29:

Es sei AeR¥* mit det(A) =0, wobei C eR¥* die zugehorige Kofaktormatrix dar-
stellt. Welche Relation (>, =, <) gilt zwischen det(A) und det(C)?

Aufgabe 3.30:

Zeigen Sie, dass fiir A e R mit det(A) = 0 gilt:
() = (a7

Sie kénnen die folgenden Formeln benutzen:

1)(A-B)f =BT-AT 2)E'=E

Aufgabe 3.31:

a) Zeigen Sie, dass die Determinante einer idempotenten Matrix A gleich Eins oder

Null ist. Sie kénnen die folgende Formel verwenden:
det(A-B-C-...-D)=det(A)-det(B)-det(C)-...-det(D)

b) Wie viele idempotente Diagonalmatrizen B € R>3 gibt es? Nennen Sie alle.
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Aufgaben

Aufgabe 3.32:

Zeigen Sie, dass unter allen idempotenten Matrizen nur die Einheitsmatrix die Deter-
minante Eins besitzt und die Determinante aller sonstigen idempotenten Matrizen

somit Null ist.

Aufgabe 3.33:
2 2 4
A=|1 3 3
0 -1 5

2
Berechnen Sie X =C' o[det(Cz) 'det(Af1 )} -A, wobei C die zu A gehorige Kofaktor-

matrix darstellt.

Aufgabe 3.34:
A 2 2 5 3 4 c 2 4
“lo 4) T4 o) 14 2

Losen Sie die Matrixgleichung: A+B-X=A-X+3-C

Aufgabe 3.35:

Losen Sie die Matrixgleichung A-X-B=C-B+A-B mit A,B,C e R™" nach X auf.

Aufgabe 3.36:

Losen Sie die Matrixgleichung 4-X-A+X-B-C=X-A-2-D nach X auf.

Aufgabe 3.37:

7 4 -9 2
Bestimmen Sie die Inverse von X, wobei X = Bl A7 sowie A= ( 3 8] und B= [ 4 8}
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Aufgabe 3.38:

oo )

Bestimmen Sie X, wobei A-X-A=B.

Aufgabe 3.39:
2 01 0 0 4
A=|3 0 2|, B=|6 2 2
250 4 20

Losen Sie die Matrixgleichung: X - X-A-A™ + A-X=B-X-0,5+B-X

Aufgabe 3.40:

i T el )

Losen Sie die Matrixgleichung: 3-X — (A - B)3 X-C-X-E=E-CT'.X

Aufgabe 3.41:
A 21 B 1 2
10/ (o3
Berechnen Sie X, wobei A-X-E3. 1 =B
det(A)
Aufgabe 3.42:

)

Losen Sie die Matrixgleichung: 7-X —det(A —E)-X - AT = A. X
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Aufgabe 3.43:
3-X-A-det(A)-E=2-X
a) Losen Sie die Gleichung nach X auf.

b) Unter welcher Bedingung bzw. welchen Bedingungen kénnen Sie die Gleichung

tiberhaupt nach X auflésen? Ist ein Auflésen nach X moglich, falls gilt:

11 11
i) A‘[1 AJ & A:(l 1)
P23
[%) 1 J
iii) A= iv) A=E
1
1
c) Bestimmen Sie, falls moglich, fiir die in Teilaufgabe b) gegebenen Matrizen A das

jeweilige X.

Aufgabe 3.44:

o-fa el 2o )

Losen Sie die Matrixgleichung: -D®>-X+D-F=D?.E-D-X-E-D-F-G

Aufgabe 3.45:
1 2 0 3
A= , B=
4 7 2 2
X' A+ X7 (det(A)-B)* ~B=X"
Gehen Sie davon aus, dass X! existiert.

a) Bestimmen Sie X und X1

1 2
b) Bestimmen Sie bei unverandertem B und A = {4 8} erneut X und X 1.
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Aufgabe 3.46:
N [2 1 1]}3 [2 3]C [—1 1}
= _ ; = 7 = 1
0 -2 3 3 6 1 A

Lésen Sie die Matrixgleichung: (A-AT)- X - X -det(B)-C=B™ - C-X

Aufgabe 3.47:

Losen Sie die Matrixgleichung X -(det(B) ‘A)f1 -:A+C-X+B-X=D nach X auf.

Aufgabe 3.48:

Losen Sie die Matrixgleichung H-E-X+E-X-H-E-H-X+X-E-H-F+X-G=X+G
mit F,G,HeR™" nach X auf. Gehen Sie davon aus, dass alle gegebenenfalls auftau-

chenden Inversen existieren.

Aufgabe 3.49:

X+X~F:FT~((F-GT)1]T'(E-G)2+G-F

Losen Sie, falls moglich, nach X auf. Gehen Sie davon aus, dass alle gegebenenfalls

auftauchenden Inversen existieren.

Aufgabe 3.50:

1 2 8

6/ _3 _13
A== 4 6,B:/7 é,cz 7 !
1 0 1 1 -1
0o ¥
3 -0,5

a) Bestimmen Sie: x=(2+det(E )fdet(A))

b) Ldsen Sie die Matrixgleichung: X =(C+2- E)71 ((B+C)
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Aufgabe 3.51:
4 3 2 1 3 3 4 2 3
_ _ 3/ _
A=[4 4 2,3_04 5/, C=|3 8
30 5 5 -2 1 0 4

Bestimmen Sie im Folgenden, falls moglich, die Matrix H.
a) AA\H+H-C-H+H-E=A
b) 4-H+2:0=2-H2.0

¢ H-A—(H-B-H+E-H).-H¥AB) _¢

det(C-A)-det(B™') o2

d) H=det -E-
#.det(i.l@) —det(A)
2-det(B) 11
Aufgabe 3.52:
4 -2 2 2 -1 3 -3 1 5
A=|2 4 2| B=[-1 2 -1,C=-1 3 5
-4 8 4 3 -1 2 3 1 3

Berechnen Sie X anhand der nachfolgenden Matrixgleichung;:

((AT)1~B)_l~X+(A~B‘1)T((A‘l)T~B-C2)_1-X+(2ABT—C+A-2)-X:A+B+X

Aufgabe 3.53:
8§ 2 2 1,5 05 -2,5 -3 3 37
A=/8 4 -1|, B=/-3,5 -1 6 |, C=|-7 -7 2
6 2 1 -2 -1 4 5 -6 4

Berechnen Sie X anhand der nachfolgenden Matrixgleichung:

A‘(—Z)'B-X—(C‘l~(OT))T+A-(—6)‘B‘X'(—%)'E_1:B_1~2-B-X—C~(%~C)_1.A
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Aufgabe 3.54:
-2 1 3 =31 1 11 -24
0 22 1 56 -8 8 48
B= , C=
2 31 2 -19 13 -1 -24
-3 3 0 4 -8 8 -8 0

Sie wissen, dass A e R¥* reguldr und idempotent ist und C die Kofaktormatrix zu B

ist. Bestimmen Sie, gegebenenfalls in Abhadngigkeit der nicht gegebenen Matrizen:

X = [clet(A~}3*1)-132 (a7 -C)T]_l

Aufgabe 3.55:
-1
M=E-Y-(Y" ~Y) YT
Es sei det(YT ~Y) #0, jedoch sei Y nicht quadratisch, d.h. Y existiert nicht, M ist also

2
nicht zwingend die Nullmatrix. Berechnen Sie (MT) , vereinfachen Sie dabei so weit

wie moglich.

Aufgabe 3.56:

2X1 + Xz =
5X1 + 2X2 + 4X3

I
N 01 W

5X1 + 2X2 + 6X3

Losen Sie das lineare Gleichungssystem mithilfe der Matrixinversion.

Aufgabe 3.57:
2X1 - 2X2 + X3 = 7
3X2 + X3 = 14
4X1 + X - 3X3 = 4

Losen Sie das LGS durch Inversion der Koeffizientenmatrix.
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Aufgabe 3.58:
2X1 + 3X2 - 4X3 = -18
4X1 + 3X2 + 2X3 = 10
X1 + 5X3 = 22

Losen Sie das LGS durch Inversion der Koeffizientenmatrix iiber die Kofaktormatrix.

Aufgabe 3.59:

X1 + 3X2 - X3 = 9
2X1 - 6X2 + X3 = 11
4X1 + 9X2 — 7X3 = 38

Losen Sie das Gleichungssystem unter Verwendung der Cramer-Regel.

Aufgabe 3.60:
1 -2 0
A=|13 -1 4
-1 0 -1

a) Bestimmen Sie A7!iiber die Kofaktormatrix.
T
b) Losen Sie das dazugehérige LGS A-x=bmitb=(6 2 -1/}
¢) Wie grof§ sind det(Al), det(Az) und det(A3 ), wobei Aj mit j=1,2,3 diejenige
Matrix A beschreibt, bei der die Spalte j durch den Ergebnisvektor b ersetzt wurde?

Aufgabe 3.61:
2X1 + X3 - X3 = 8
X1 - 2X2 - 4X3 = 0
3X1 + 2X2 + X3 = 11

Losen Sie das LGS mithilfe der Cramer-Regel.
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Weiterfiihrende Matrixrechnung

Aufgabe 3.62:
—X1 + 2X2 — 4X3 = 11
3X1 - Xo + 2X3 = 2
—2X1 + 3X2 — 5X3 = 12
Losen Sie das LGS mithilfe der Cramer-Regel.
Aufgabe 3.63:
2X1 + Xp + X3 = 0
4X1 — X2 = 4
2X2 + 2X3 =0

Losen Sie das LGS unter Verwendung der Cramer-Regel.

Aufgabe 3.64:
2X1 + 3X2 - X3 = 6
—3X1 - X3 + 6X3 = -4
2X1 + Xz - 4X3 = 1

Losen Sie das LGS mithilfe der Cramer-Regel.

Aufgabe 3.65:
2X1 - 4X2 + X3 = -3
X1 + Xp + X3 = 4
-X1 + Xp - X3 = 0

Losen Sie das LGS tiiber die Cramer-Regel.
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Aufgabe 3.66:
3X1 + 4X2 - 3X3 = 4
X1 - 2X2 - 3X3 = 2
5X1 + X3 = 5

Losen Sie das LGS unter Verwendung der Cramer-Regel.

Aufgabe 3.67:
X1 - Xz + 2X3 =0
3X1 - 3X2 + 4X3 =
X1 - 2X3 = 4

Losen Sie das LGS mithilfe der Cramer-Regel.

Aufgabe 3.68:

5X2 + 2X3 =1
2X1 + 4X2 + 4X3 =
3X1 - 5X2 + 2X3 = 3

Losen Sie das LGS unter Verwendung der Cramer-Regel.

Aufgabe 3.69:

a) Stellen Sie fest, fiir welche Werte des Parameters acR das nachfolgende LGS nicht

eindeutig l6sbar ist. (Die Verwendung des Determinantenkriteriums bietet sich an.)

2X1 + 3X2 + 4X3 =0
3X1 + 4X2 + 5X3 =1
4x; + 5xp + axg = 2

b) Bestimmen Sie unter Verwendung der Cramer-Regel die Losung des obigen Glei-

chungssystems. Gehen Sie davon aus, dass das LGS eindeutig l6sbar ist.

73



Weiterfiihrende Matrixrechnung

Aufgabe 3.70:

Ihnen ist nachfolgende erweiterte Koeffizientenmatrix bekannt:

c 3 -1|-4
(Alb),=|3 -2 2| 1
d -1 -2[-1

a) Stellen Sie fest, welche Beziehung zwischen c,deR gelten muss, damit das

zugrunde liegende LGS eindeutig 16sbar ist.

b) Bestimmen Sie die eindeutige Losung in Abhéngigkeit von c und d tiber die Cra-

mer-Regel.

c) Gibt es Werte fiir d, fiir die eine eindeutige nichtnegative Losung existiert, falls

c=-77 Falls ja, geben Sie an, was fiir d gelten muss.

Sie kennen nun auch:

54 1[0
(A[b),=|0 4 5|7
00 2]6

d) Losen Sie zundchst das dieser neuen erweiterten Koeffizientenmatrix zugrunde

liegende LGS.

e) Nehmen Sie d =3 an, und bestimmen Sie die Werte fur c eR, fiir welche die Lo-

sungen aus b) und d) identisch sind.

Aufgabe 3.71:
a) Was muss fiir eine Matrix gelten, damit sie regular ist?
b) Was muss fiir eine Matrix gelten, damit sie idempotent ist?

c) Wie viele reguldre idempotente (3x3)-Matrizen gibt es?
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4  Innerbetriebliche
Materialverflechtung

4.1 Einordnung und methodische Grundlagen

Nach Kapitel 2 zeigt die innerbetriebliche Materialverflechtung eine weitere 6konomi-
sche Anwendung der Matrixrechnung auf. Komplexe Produktionsprozesse werden
operabel dargestellt. Betrachtet wird im Rahmen dieses Modells ein Unternehmen,
welches in mehreren Produktionsstufen aus Rohstoffen Endprodukte herstellt. (Zur
vereinfachten Darstellung werden zundchst nur Produktionsprozesse mit zwei Pro-
duktionsstufen betrachtet. Eine Erweiterung auf beliebig viele Produktionsstufen ist

jedoch problemlos méglich.)

Aus einem Verflechtungsdiagramm, das die Produktionszusammenhénge graphisch
darstellt, lassen sich Produktionsmatrizen erstellen, welche die Produktionsfaktoren

fiir jede Produktionsstufe operabel zusammenfassen.

Definition 4-1: Produktionsmatrix

Die Produktionsmatrix Mgg € R™"

fir den Gesamtproduktions-
prozess enthélt die Mengen an Rohstoffen R; mit i=1,....,m, die zur
Produktion von je einer Einheit des Endprodukts EJ- mit j=1,...,n be-

nétigt werden.

Wird bei der Produktion mehr als eine Produktionsstufe durchlaufen, ergeben sich die
Produktionsmatrizen je Produktionsstufe analog. Die Produktionsmatrix fiir den Ge-
samtproduktionsprozess kann dann als Matrixprodukt der einzelnen Produktionsmat-

rizen berechnet werden.
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Innerbetriebliche Materialverflechtung

Beispiel 4-1: Bestimmung der Produktionsmatrizen aus einem

Pfeildiagramm

Ein Unternehmen stellt zwei Endprodukte Eq, E, her, die tiber vier Zwi-
schenprodukte Z;, Z,, Z3, Z4 aus den drei Rohstoffen Ry, R,, R5 gefertigt

werden. Fiir die Produktion ist das nachfolgende Verflechtungsdiagramm

mafigebend:
E, E,
/ \ 1 / 2
Z, Z3 Z,
Ry R, R3

Aus dem Pfeildiagramm sind die Produktionsmatrizen der einzelnen Pro-

duktionsstufen ablesbar:

Zy Zy Zy Zy Fi B2
Z, (2 0
R, (1 2 0 0 S D
Ry [0 2 1 0|=Mgyg 22 o 3|=Mz
Ry 0 0 2 2 Z3 R
4

Anhand dieses Beispiels werden im Folgenden einige Fragestellungen aufgeworfen,

die mithilfe der Matrixrechnung leicht l6sbar sind.

Um festzustellen, wie viele Einheiten der Rohstofftypen R; mit i=1,..., m zur Herstel-
lung einer Einheit des Endprodukts Ej mit j=1,..,n notwendig sind, ist die Produkti-
onsmatrix fiir den Gesamtproduktionsprozess Mgy zu berechnen. Diese ergibt sich

durch eine multiplikative Verkniipfung der einzelnen Produktionsmatrizen.
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Einordnung und methodische Grundlagen

Beispiel 4-2: Bestimmung der Gesamtproduktionsmatrix
2 0
1 2 0 0 4 1 10
MRE =MRZ'MZE = 0 2 1 0 . O 3 = 8 5
o 0 2 2 0 10
0 2

Vergegenwartigt man sich die bei der Multiplikation vorgenommenen
Schritte und die 6konomische Bedeutung der Matrizen, ist die Berech-
nungsweise leicht verstandlich. Das Element a,; in der zweiten Zeile und
ersten Spalte der Matrix Mg beispielsweise sagt aus, dass zur Herstellung
einer Einheit von E; unter anderem 8 Einheiten von R, benétigt werden.
Dieser Wert ergibt sich aus der Multiplikation der zweiten Zeile von My
mit der ersten Spalte von Myg. Hierbei gibt die erste Spalte der Matrix
Mgy an, dass zur Herstellung einer Einheit von E; genau 2 Einheiten von
Z1, 4 Einheiten von Z, und keine Einheiten von Z3 und Z, benétigt wer-
den. Die Anzahl der benétigten Einheiten von R, zur Herstellung je einer
Einheit der Zwischenprodukte findet sich wiederum in der zweiten Zeile
von Mgz . Uber die Multiplikation der zweiten Zeile von Mg, mit der ers-
ten Spalte von M zg ergibt sich folglich die Anzahl der bendtigten Einhei-

ten von R, zur Herstellung einer Einheit von E;.

Die Anzahl der benétigten Rohstoffe qgr :(Rl - Ry o Ry )T zur Herstellung
T
eines Produktionsplans qg = (E1 e By En) ergibt sich als:
qr =MRe " qg

Die Mengenvektoren q sind innerhalb des Modells stets als Spaltenvektoren gegeben.

Beispiel 4-3: Bestimmung der benétigten Rohstoffe

Zur Herstellung von 1.000 E; und 500 E, werden bei Verwendung des Ver-
flechtungsdiagramms aus Beispiel 4-1 nachfolgende Rohstoffe benétigt:
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10 11.000

1.000
qr =Mgg -qg =| 8 | 500 I 10.500
0 5.000

Neben der Menge der benétigten Rohstoffe interessieren wir uns im Weiteren fiir die
Materialkosten der Herstellung. Hierbei sind die Rohstoffpreise durch den Zeilenvek-

tor pg :(pR] - PR pRm) gegeben. Die Materialkosten je einer Einheit der

i

Endprodukte ergeben sich als:

Kg =pr -Mgg

Die Preis- und Stiickmaterialkostenvektoren p und k werden in diesem Modell stets
als Zeilenvektoren ausgedriickt. Die Materialkosten fiir ein vorgegebenes Produkti-
onsprogramm qg konnen auf zwei Wegen bestimmt werden. Entweder wird der die
Stiickmaterialkosten pro Endprodukt enthaltende Vektor kg mit dem Produktionsplan
verkniipft, also K = kg - qg berechnet. Oder der Rohstoffpreisvektor wird mit dem zur
Herstellung der gewiinschten Endproduktmenge notwendigen Rohstoffvektor multi-
pliziert, also K = pg - qr berechnet. In beiden Fillen ergibt sich als allgemeine Gesamt-

formel:

K=pgr -Mgg -qg

Beispiel 4-4: Bestimmung der (Stiick-) Materialkosten

Liegt der Preis pro Rohstoff bei pg = (2 1 1), so ergeben sich die Materi-

alkosten fiir je eine Einheit des Endprodukts als:

10 2
kg=pr -Mgg=(2 1 1):|8 5 |=(28 19)
0 10

Die Materialkosten, um den Produktionsplan qg = (1.000 500)T herzustel-

len, betragen dann:

1.000
K=kg-qg =(28 19):| " |=37.500
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Aufgaben

Abschliefiend bestimmen wir den entstehenden Gewinn, die Differenz von Erlosen
und Kosten, unter Verwendung des Verkaufspreisvektors der Endprodukte
PE = (pE1 - PE " PE, ) Fiir den durch Produktion und Verkauf je einer Einheit
der Endprodukte entstehenden Stiickgewinn gilt zunéchst:

8e =Pr —kg

Der Gewinn aus einem vorgegebenen Produktionsprogramm qg berechnet sich nun
als Produkt von Stiickgewinn und Produktionsprogramm zu G =gg-qg. Alternativ
ergibt sich der Gewinn als die Differenz des Erloses E = pg -qg und der zugehorigen

Materialkosten K = kg, - qg. Insgesamt folgt somit:

G=(pg —Pr ‘Mgg)-qg

Beispiel 4-5: Bestimmung des (Stiick-) Gewinns

Bei Verkaufspreisen fiir die Endprodukte in Hohe von pg =(45 30) be-

rechnet sich der Gewinn fiir je eine Einheit des Endprodukts als:

gp =pp —kg =(45 30)—(28 19)=(17 11)

Der Gewinn bei einer Produktion von qg = (1‘000 SOO)T liegt bei:

1.000
G=gg-qg =(17 11)- s0p |~ 22500

4.2 Aufgaben

Aufgabe 4.1:

Ein Unternehmen produziert (in Produktionsstufe 2) zwei Endprodukte E; und E, aus
vier zuvor gefertigten Zwischenprodukten Z;, Z,, Z; und Z,. Deren Anfertigung

erfolgt (in Produktionsstufe 1) unter Einsatz der drei Rohstoffe R;, R, und Rj. Die
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Zusammenhidnge zwischen Rohstoffeinsatz, Zwischenprodukt- und Endproduktferti-

gung sind der nachstehenden Skizze zu entnehmen.

Ry R, Rj3

a) Bestimmen Sie den Bedarf an Rohstoffeinheiten R; (i = 1, 2, 3) zur Produktion je

einer Endprodukteinheit E, (k=1, 2).

b) Bestimmen Sie den Bedarf an Rohstoffeinheiten R; (i =1, 2, 3) zur Produktion von

200 Einheiten des Endprodukts E; und 300 Einheiten des Endprodukts E,.

c) Wie hoch sind die Rohstoffkosten zur Produktion je einer Endprodukteinheit Ej
(k=1, 2), wenn die Preise fiir je eine Rohstoffeinheit R; (i = 1, 2, 3) dem Vektor
Pr = (4 2 1) entsprechen?

Aufgabe 4.2:

Ein Unternehmen fertigt aus den Rohstoffen Ry, R,, R3 die Endprodukte E;, E, Ej.

Sie kennen die Verflechtungsmatrix
1 41
MRE = 2 0 3 .
21 2
a) Wie hoch ist der Rohstoffverbrauch qg zur Produktion von qg =(15 10 10)T?

b) Sie kaufen Rohstoffe zum Preis pr =(4 4 10) ein. Welche Kosten entstehen beim

Verbrauch der in a) bestimmten Menge qg?
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¢) Durch den Verkauf der Produktionsmenge qg aus a) erwirtschaften Sie Erlose in
Hohe von 3 000 €. Welchen Gewinn erzielen Sie, wenn die Rohstoffpreise pg aus b)

gelten und zusétzlich noch fixe Kosten in Héhe von 1.000 € anfallen?

Aufgabe 4.3:

In einem Unternehmen werden in einem zweistufigen Produktionsprozess aus drei
Rohstoffen R, R, und Rj iiber drei Zwischenprodukte Z;, Z, und Z3 zwei Endpro-
dukte E; und E, hergestellt. Die Produktionszusammenhénge kénnen den folgenden

Matrizen enthommen werden:
4 0 2 5 2
MRZ = 2 1 2 ’ MZE = 3 1
3 21 2 2

Am Markt kann fiir eine Einheit von E; ein Preis von 150 € und fiir eine Einheit von E,
ein Preis von 100 € durchgesetzt werden. Eine Einheit von R, kostet 3 €, eine von R,

1 € und eine von Rj3 2 €. Sie mdchten jeweils 100 Einheiten von E; und E, produzieren.
a) Wie hoch ist der Rohstoffverbrauch fiir das angegebene Produktionsprogramm?
b) Wie hoch sind die Materialkosten je einer Einheit von E; bzw. E,?

c) Wie hoch ist der Gewinn (Erlos minus Materialkosten), falls Sie das angegebene

Produktionsprogramm zu den angegebenen Preisen absetzen?

Aufgabe 4.4:

In einem Unternehmen werden in einem zweistufigen Produktionsprozess aus drei
Rohstoffen Ry, R, und Rj iiber zwei Zwischenprodukte Z; und Z, zwei Endprodukte
E; und E, hergestellt. Die Produktionszusammenhénge konnen den folgenden Matri-

zen entnommen werden:
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Am Markt kann fiir eine Einheit von E; ein Preis von 133 € und fiir eine Einheit von E,
ein Preis von 122 € durchgesetzt werden. Eine Einheit von R; kostet 3 €, eine von R,
1 € und eine von Rj3 2 €. Sie produzieren 300 Einheiten von E; und 250 Einheiten von
E,.

a) Bestimmen Sie die Matrix Mgg.
b) Wie hoch ist der Rohstoffverbrauch fiir das angegebene Produktionsprogramm?
c) Wie hoch sind die Materialkosten je einer Einheit von E; bzw. E,?

d) Wie hoch ist der Gewinn (Erlos minus Materialkosten), falls Sie das angegebene

Produktionsprogramm zu den angegebenen Preisen absetzen?

Aufgabe 4.5:

Sie sind Mobelbauer und produzieren Schranke, Tische und Stiihle. Hierfiir bendtigen
Sie lediglich Holz, Schrauben und Klebstoff. Zur Herstellung eines Schranks bendtigen
Sie 9 m2 Holz, 3 Packchen Schrauben und 2 Tuben Klebstoff. Fiir einen Tisch verwen-
den Sie 2 m? Holz, 1 Packchen Schrauben und 1 Tube Klebstoff. Ein Stuhl beansprucht
lediglich 1 m? Holz und 1 Packchen Schrauben.

a) Stellen Sie die Produktionsmatrix auf.

Sie haben 1.400 Einheiten der Rohstoffe auf Lager. Zudem liegt doppelt soviel Holz

(in m?) und halb soviel Klebstoff (in Tuben) wie Schrauben (in Packchen) auf Lager.
b) Wie viele Rohstoffe der einzelnen Sorten besitzen Sie?

c) Wie viele Rohstoffe jeder Sorte bleiben im Lager, wenn Sie Schrénke, Tische bzw.

Stithle in Hohe von qg =(50 100 150)" herstellen?

1 m? Holz hat Sie 10 € gekostet, 1 Péackchen Schrauben 2 € und 1 Tube Klebstoff 3 €. Fiir
einen Schrank erzielen Sie einen Erlos in Hohe von 250 €, fiir einen Tisch in Hohe von

50 € und fiir einen Stuhl in Hohe von 15 €.

d) Wie hoch ist Thr Gewinn (Erlés minus Materialkosten), falls Sie die gesamte in c)

produzierte Menge absetzen konnen?
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Ihre Lagerhallen sind nun komplett geleert. In den Folgejahren kaufen Sie stets gerade

so viele Rohstoffe, wie Sie zur Produktion der Endprodukte benétigen.

e) Im nédchsten Jahr (Jahr 2) konnen Sie Schrianke, Tische bzw. Stiithle in Hohe von
doe =(40 80 120)" absetzen, in Jahr 3 in Hohe von qsp=(45 120 92)'. Be-
rechnen Sie die relative Gewinndnderung zum néchsten und vom nichsten zum

uiberndchsten Jahr. Wie verhalt sich der Gewinn in Jahr 3 zum Gewinn in Jahr 1?

Aufgabe 4.6:

Ihr Unternehmen stellt in drei Produktionsstufen aus drei Rohstofftypen drei ver-
schiedene Endprodukte her. Thnen sind die nachfolgenden Materialverflechtungen
zwischen Rohstoffen (R) und Vorprodukten (V), zwischen Vorprodukten und Zwi-

schenprodukten (Z) sowie zwischen Zwischenprodukten und Endprodukten (E) be-

kannt:
0,2 0,2 0,1
0,3 0,4 0,2 0,2 0,1 0,2 0,4
Mpyv=|/0,1 0,2 0,4 0,5|, M 0,3 0,4 01 M, =(0,3 0,2 0,2
o 012 0/1 012 0,3, ooz 01 02 T 0,1 0,2 0,3
7 7 7 7 0/2 O 0/3 7 7 7

Der Einkaufspreis fiir je ein Kilogramm des Rohstoffs 1, 2 bzw. 3 liegt bei 10, 20 bzw.
10 €. Sie erlésen am Markt fiir ein Kilogramm des Endprodukts 1, 2 bzw. 3 einen Be-
trag von 5, 5 bzw. 8 €. Berechnen Sie fiir alle drei Endprodukte den Gewinn (Erlos

minus Materialkosten), den Sie beim Verkauf eines Kilogramms erzielen.

Aufgabe 4.7:

In einem Unternehmen werden in einem zweistufigen Produktionsprozess aus drei
Rohstoffen Ry, R, und Ry iiber drei Zwischenprodukte Z;, Z, und Z3 drei Endpro-
dukte E;, E, und Ej5 hergestellt. Die Produktionszusammenhénge konnen den folgen-

den Matrizen entnommen werden:
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1 21 21 2
MRZ = 2 1 2 ’ MZE = 1 0 1
1 21 21 2

Am Markt kann fiir eine Einheit von E; ein Preis von 50 €, fiir eine Einheit von E, ein
Preis von 20 € und fiir eine Einheit von Ej ein Preis von 50 € durchgesetzt werden.
Eine Einheit von R; kostet 3 €, eine von R, 1 € und eine von Rj 2 €. Sie mdchten je-

weils 100 Einheiten von E,, E, und E3 produzieren.
a) Wie hoch ist der Rohstoffverbrauch fiir das angegebene Produktionsprogramm?

b) Wie hoch ist der Gewinn (Erl6s minus Materialkosten), falls Sie das Produktions-

programm zu den angegebenen Preisen absetzen?

¢) Welche Kosten entstehen dem Unternehmen, falls es einen Vorrat an Zwischen-

produkten von jeweils 50 Einheiten von Z;, Z, und Z3 herstellt?

d) Wegen einer Rohstoffkrise sind alle drei Rohstoffe nur noch zum Preis von 4 € je
Einheit erhéltlich. Der Verkaufspreis des Endproduktes E; kann auf 80 € je Einheit,
der von E, auf 50 € je Einheit erhoht werden. Wie hoch muss der Preis des dritten
Endproduktes Ej sein, um beim angegebenen Produktionsprogramm einen Ge-

winn (Erlos minus Materialkosten) von 5.000 € zu erzielen?

Aufgabe 4.8:

In einem Unternehmen werden aus fiinf Rohstoffen R; (i=1, 2, 3, 4, 5) vier Vorproduk-
te V; (i=1, 2, 3, 4), aus diesen drei Zwischenprodukte Z; (i =1, 2, 3) und hieraus wie-
derum zwei Endprodukte E; (i = 1, 2) gefertigt. Die Produktionsmatrizen fiir die ein-

zelnen Produktionsstufen seien:

2 2 4 2 3 4 3
3 2 4 4 4 10
1 2 4
MRV: 1 2 4,MVZ:2 3 O'MZE:6 10
3 2 4 4 8 10
15 2
2 4 3 2

a) Bestimmen Sie zunéachst die Produktionsmatrizen Myg, Mgg.
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b) Wie hoch ist der Rohstoffverbrauch qg bei einer Produktion von qg =(10 5)T

und wie viele Vorprodukte qy werden dabei hergestellt?

c) Die Preise fiir die Endprodukte betragen pg =(30.000 15.940). Sie produzieren
und verkaufen qg = (10 ZO)T. Fiir die Rohstoffpreise gilt: Ry kostet 7 €, R5 hinge-
gen 12 €. Die Preise von R,, R3 und R, stehen in einem festen Verhaltnis zueinan-
der: R, ist dreimal so teuer wie R3, welcher wiederum halb so teuer ist wie Ry.
Wie hoch muss der Preis von Rj sein, damit Sie einen Gewinn (Erlés minus Mate-

rialkosten) von 100.000 € erwirtschaften?

Aufgabe 4.9:

Ihr Unternehmen erzeugt aus vier Rohstoffarten zunachst drei verschiedene Zwi-
schenprodukte, welche zu zwei Endprodukten verarbeitet werden. Ihnen sind die
Produktionsmatrizen der Produktionsstufen sowie der Vektor mit den Einkaufsprei-

sen der Rohstoffe bekannt:

, pr=(0,1 0,05 0,1 0,05)

N

m

]
L
N © N

a) Wie viele Einheiten der Rohstofftypen R; mit i=1,..,4 sind zur Herstellung je
einer Einheit des Endprodukts E; mit j=1,2 notwendig?

b) Wie viele Rohstoffe qg sind zur Herstellung des Produktionsplans qg = (10 20)T
notwendig?

¢) Wie hoch sind die Materialkosten je einer Einheit des Endprodukts E; mit j=1,2?

d) Wie hoch sind die bei der Herstellung des Produktionsplans qg = (30 100)T ent-

stehenden Materialkosten?
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Aufgabe 4.10:

In einem Unternehmen werden in einem zweistufigen Produktionsprozess aus vier
Rohstoffen Ry, Ry, R3, Ry tiber drei Zwischenprodukte Z;, Z,, Z3 zwei Endprodukte
E; und E, hergestellt. Fiir diesen Produktionsprozess sind die beiden folgenden Pro-

duktionsmatrizen gegeben:

120
2 3
M 211M—41
RZ=| 1 5 3/ ZE—33
011

a) Wie hoch ist der Rohstoffverbrauch fiir die Produktion von 145 Einheiten von E;

und 60 Einheiten von E,?

b) Fir das Produktionsprogramm aus Aufgabenteil a) konnen fiir eine Einheit von E;
80 € und fiir eine von E, 60 € am Markt durchgesetzt werden. Eine Einheit von R,
kostet 2 €, eine von R, 1 €, eine von R3 1 € und eine von Ry 2 €. Wie hoch ist der

Gewinn (Erlos minus Materialkosten) fiir das Produktionsprogramm aus a)?

c) Wie viele Endprodukte miissten produziert und verkauft werden, wenn der Ge-
winn aus Aufgabenteil b) vervierfacht und von E; ebenso viel wie von E, herge-

stellt werden soll?

d) Welchen zusétzlichen Rohstoffbedarf hat das Unternehmen, um einen Sicherheits-
bestand an Zwischenprodukten von jeweils 10 Einheiten Z;, Z, und Z3 aufzubau-
en? Welche Materialkosten entstehen dem Unternehmen hierbei? Verwenden Sie

die Rohstoffpreise aus Teilaufgabe b).

Aufgabe 4.11:

Sie sind in der Logistik eines Tapetenherstellers beschéftigt, der die 2 Tapetenvarianten
"Witzig" und "Unwitzig" herstellt. Dort sind Sie fiir den Einkauf der Rohstoffe Papier,
Farbe, Leim, Korner und Plastikfolie zustandig, welche fiir die Herstellung und Verpa-
ckung der Tapeten nétig sind. Thre Firma verkauft die Tapeten in 3 verschiedenen

Paketen. Der Fertigungs- und Verpackungsprozess besteht aus 2 bzw. 3 Produktions-
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stufen (bei der Variante "Unwitzig" wird noch eine hassliche Koérnung in die Tapete

eingearbeitet). Somit stellt sich der Produktionsprozess wie folgt dar:

"Witzig"-
Paket

Kombi-
Paket

"Unwitzig'-
Paket

Tapete Tapete
"Witzig" "Unwitzig"
12 9
Rohtapete Kornung
A
4 3 2 5
Farbe Papier Leim Korner

b)

A

Plastik-
folie

Ist das obige, den Produktionsprozess beschreibende Pfeildiagramm direkt in

Produktionsmatrizen umwandelbar? Falls nein, warum nicht? Was konnten Sie

tun, damit es moglich wird? Bestimmen Sie letztendlich Mgg.

Sie sollen "Witzig"-, Kombi- und "Unwitzig"-Pakete in Hohe von qg = (10 5 S)T

an einen Kunden liefern. Reicht Thr Rohstofflager an Farbe, Papier, Leim, Kornern

und Plastikfolie in Héhe von qp = (500 350 120 220 50)T dazu aus oder miis-

sen Sie etwas nachkaufen? Falls ja, wie viel?
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Aufgabe 4.12:

Ihr Unternehmen stellt aus den Vorprodukten V; und V, die Endprodukte E; und E,

her, der Produktionsprozess wird dabei beschrieben durch:
Mon = 6 1
VE=|5 1
a) Nach einem langen Meeting sollen Sie Ihrem Chef die aktuellen Beschaffungsmen-
gen fiir die Vorprodukte qy mitteilen, doch leider sind Sie zwischendrin eingeddst

und haben die genauen Angaben nicht mitbekommen. Sie kénnen sich aber noch

an Folgendes erinnern:

Die Menge an Vorprodukt 2 ist doppelt so grofs wie die Menge an Vorprodukt 1.
Die Beschaffung von qy verursachte Kosten in Hohe von 2.000 €.

Die Beschaffungspreise fiir die Vorprodukte sind py =(4 3).

Bestimmen Sie qy .

b) Sie bekommen eine Anfrage aus der Produktion. Wie viele Einheiten der Endpro-
dukte qg konnen Sie mit einem Vorrat an Vorprodukten qy = (400 300)T herstel-

len, wenn Sie die obige Produktionsmatrix My unterstellen?

Aufgabe 4.13:

Ein Unternehmen fertigt aus den Rohstoffen Ry, R, zunichst die Vorprodukte V;,V,.
Aus diesen entstehen die Zwischenprodukte Z;, Z,, die schliellich zu den Endpro-

dukten E;, E, weiterverarbeitet werden. Sie kennen die folgenden Verflechtungsmat-

1 2 0 2 31
MRV:0 1erz:2 1rMZE:1 1

a) Bestimmen Sie die Gesamtverflechtungsmatrix Mgg.

rizen:

b) Wie hoch ist der Rohstoffverbrauch q zur Produktion von qg =(15 10)T?
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c) Wie viele Endprodukte stellt das Unternehmen mit seinem anfanglichen Zwi-
schenproduktlager in Hohe von q% =(20 15)T her, wenn das Zwischenprodukt-
lager bis auf 5 Stiick von Z, geleert wird?

Aufgabe 4.14:

Als Manager Thres neu gegriindeten Unternehmens haben Sie aus Ihrer Produktions-
abteilung folgende Zusammenhinge vorliegen: In Threm Unternehmen werden aus
drei Rohstoffarten (R) vier Vorprodukte (V) gefertigt. Aus diesen entstehen drei ver-
schiedene Zwischenprodukte (Z), die schliefSlich zu zwei Endprodukten (E) weiterver-
arbeitet werden. Da Sie sich auf die wesentlichen Dinge konzentrieren mdchten, be-

schlieien Sie, ausschliefilich Materialkosten zu beriicksichtigen.

Die Produktionsmatrizen Mgy, Myz und Mgg sehen wie folgt aus:

10

2020 011 60 100

Mpy=|1 1 0 1| Myz=|, , .| Meg=[40 55

2211 82 120
121

a) Bestimmen Sie zunéchst die Produktionsmatrizen My, und M.

b) Wie hoch sind Rohstoffverbrauch qg und Zwischenproduktbedarf q; bei einer

Produktion von qg = (5 9)T?

c) Sie kaufen die Rohstoffe zu den Preisen pg =(30 100 50) ein. Aufgrund langfris-
tiger vertraglicher Verpflichtungen verkaufen und produzieren Sie in jeder Perio-
de die Menge qg =(5 9)T zu den Preisen pg =(10.000 15.000). Wie hoch ist der

Gewinn (Erlés minus Materialkosten) unter diesen Voraussetzungen?

d) Ihr Zulieferer erhoht nun den Rohstoffpreis pg, um 10 €. Darauthin brechen Sie in
Tranen aus und bringen ihn dazu, Ihnen folgendes Alternativangebot zu machen:
Sie koénnen bei ihm statt der Rohstoffe alle Zwischenprodukte zu den Preisen
pz= (pz1 800 1.000) einkaufen. Wie hoch darf p; héchstens sein, damit Sie das
neue Angebot des Zulieferers préferieren? Ab welchem Preis py schreiben Sie

schwarze Zahlen? (Es werden weiterhin qg =(5 9)T produziert und abgesetzt.)
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Aufgabe 4.15:

In einem Unternehmen werden aus den Rohstoffen R;, R,, Rz zunéchst die Zwischen-

produkte Z,, Z,, Z5 und hieraus die Endprodukte E;, E,, E3 hergestellt. Sie kennen

nachfolgende Produktionsmatrizen:

d)

3
MRZ: 4
1

a O N

3 11 4
3 , MZE = 3 3 3
1 322

Bestimmen Sie die Gesamtproduktionsmatrix Mgg.
Wie hoch ist der Rohstoffverbrauch qg zur Produktion von qg = (35 20 40)T?

Sie kaufen die Rohstoffe zum Preis pg = (4 3 5) ein und verkaufen die Endpro-
dukte fiir pg = (200 410 320). Wie hoch sind die Materialkosten, der Erlos und
der Gewinn (Erlos minus Materialkosten) bei der Produktion der in b) angegebe-

nen Menge?

Die Rohstoffanbieter erhéhen die Preise auf pg™" = (5 5 5). Bestimmen Sie, wel-

chen Preis Sie fiir E, verlangen miissen, um den gleichen Gewinn wie bisher zu er-
zielen, wenn Sie aufgrund langfristiger Vertrage die Preise fiir E; und E3 unveran-

dert lassen miissen.

Aufgabe 4.16:

Ein Unternehmen besitzt ein Rohstofflager mit den Rohstoffen qlﬁ = (10 20 10)T und

ein Zwischenproduktlager mit den Zwischenprodukten q5 = (30 ZO)T. Die Einkaufs-

preise fiir die einzelnen Rohstoffe betragen p; =5 € pro Stiick, p, =3 € pro Stiick und

p3 =4 € pro Stiick. Die Matrix Mgy zur Erstellung der Zwischenprodukte aus den

Rohstoffen lautet:
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a) Welche Materialkosten entstehen dem Unternehmen bei einer Auffiillung seiner

Lagerbestinde auf qk ™" = (20 25 15)T und g5 = (35 25)T?

Das Unternehmen produziert zudem die Endprodukte qg :(El E, )T, die aus den

2
3 hergestellt werden. In die weiteren
Uberlegungen sollen die vorhandenen Rohstoffe nicht eingehen.

beiden Zwischenprodukten iiber My =

b) Wie viele Endprodukte stellt das Unternehmen mit seinem anfianglichen Zwi-
schenproduktlager in Hohe von q]z = (30 20)T her, wenn bis auf 19 Stiick von Z;

das Zwischenproduktlager geleert wird?

¢) Von Endprodukt E, sollen genau 8 Stiick hergestellt werden. Wie viele Mengen-
einheiten von E; konnen hochstens hergestellt werden, wenn der Lagervorrat an
Zwischenprodukten in Hohe von g5 =(30 20)T ganz zur Verfiigung steht und
von den Endprodukten nur ganze Mengeneinheiten hergestellt werden kénnen?

Wie viele Zwischenprodukte bleiben dabei auf Lager?

Aufgabe 4.17:

Zur Herstellung der beiden von Ihrem Unternehmen produzierten Endprodukte wer-

den Rohstoffe, Vorprodukte und Zwischenprodukte benétigt. Sie kennen die Verflech-

11 1 a 20
MRV: 5 2’MVZ: 71 und MZE: 0 4

Leider ist Thnen der genaue Wert des Parameters a entfallen. Sie wissen aber noch,

tungsmatrizen

dass bei einer Produktion von qg=(50 25)T der Rohstoffverbrauch
qr =(700 1.400)" betriigt. Berechnen Sie a €R.

Aufgabe 4.18:

Ihr Unternehmen stellt in zwei Produktionsschritten aus drei Rohstoffen Ry, R,, Ry

zuerst vier Zwischenprodukte 7, Z,, Z3, Z, und daraus zwei Endprodukte E;, E; her.
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Sie arbeiten als Praktikant im Controlling und sollen dem Vorstand den Gewinn (Erlos

minus Materialkosten) der letzten Woche prasentieren.

a) Der Vorstand ist ein alter Mannheimer Schiiler und verlangt, dass Sie die Gewinn-
gleichung allgemein in Matrixschreibweise aufstellen. (Vereinfachend sei ange-
nommen, dass die einzigen Erlose durch den Verkauf der Endprodukte zu
PE eR"? und die einzigen Kosten durch den Einkauf der Rohstoffe zu pg eR"®

entstehen.)

b) Nun &ffnen Sie die Biicher. Verkauft wurden 100 Einheiten E; zu je 80 € und 20 E,
zu je 50 €. Als einzige Kosten fielen die zur Produktion notwendigen Materialkos-
ten fiir die Rohstoffe an. Deren Einkaufspreis betrug 2 € je Einheit R;, 2 € je Einheit
R, und 5 € je Einheit Rj. Jetzt fehlen nur noch die Produktionszusammenhénge in
Form der Produktionsmatrizen. Uber diese, wie sollte es anders sein, haben Sie

Kaffee gekippt, weshalb sie nicht mehr vollstandig lesbar sind:

2
Mgz =| 1
1

S N

1 a
1 O/MZE:
0 2

Sie schwitzen, doch Ihr ehrgeiziger Kollege hatte in weiser Voraussicht, als die
Matrix Mgy noch vollstandig vorhanden war, den Gewinn schon berechnet. Dieser
betrug 1.080 €. Bestimmen Sie den fehlenden Wert a €R in der Matrix My, damit

Sie bei Threr Préasentation so tun kénnen, als sei alles auf Threm Mist gewachsen.

Aufgabe 4.19:

Als neuer Mitarbeiter eines Wurstherstellers offenbaren sich Ihnen die nachfolgenden
Produktionszusammenhéange. Als Endprodukte verkaufen Sie Brat-, Blut- und Leber-
wiirste. Zur Produktion dieser Delikatessen werden Schafe, Hithner, Schweine und
Rinder verwurstet. Fiir die "Herstellung" (auch Aufzucht genannt) dieser tierischen
Zwischenprodukte betreiben Sie eine Farm. Um die Tiere besonders schnell méasten zu
konnen, verfiittern Sie eine Spezialmischung aus Lowenzahn, Kornern, Blattspinat
und Karotten. Nachfolgende Graphik stellt die innerbetriebliche Materialverflechtung

in Threm gesamten Produktionsprozess dar:
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Bratwurst

Blutwurst

Leberwurst

Schafe Hiihner Schweine Rinder
A A A A
40
20
50
20 15 10 10
10 30
Lowenzahn Korner Blattspinat Karotten

In der ersten Produktionsstufe ist angegeben, wie viel Kilogramm des jeweiligen Fut-

ters ein Schaf, Huhn, Schwein bzw. Rind benétigt. Die Zahlen der zweiten Produkti-

onsstufe weisen aus, wie viele Tiere zur Herstellung je einer Tonne Bratwurst, Blut-

wurst bzw. Leberwurst benotigt werden.

a) Stellen Sie die Produktionsmatrizen Mgy und Myg auf und berechnen Sie Mgg.

b) Die Preise der Rohstoffe liegen pro Kilogramm bei:

Pr = (pLéwenzahn PKérner  PBlattspinat pKarotten) = (2 23 4)

Ihre Vertriebspartner nehmen Ihnen folgende Mengen (in Tonnen) ab:

T
qE = (qBratwurst IBlutwurst qLeberwurst) = (10 22 30)

Die Preise fiir Blut- und Leberwurst sind aufgrund vertraglicher Bestimmungen

festgesetzt auf pgiyrwurst = 6,90 € pro kg bzw. preperwurst = 9,90 € pro kg. Wie hoch

muss der Preis fiir 1 kg Bratwurst sein, wenn Sie einen Gewinn (Erl6s minus Mate-
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<)

d)

rialkosten) von 200.000 € erwirtschaften mochten? Gehen Sie davon aus, dass aufSer

den Rohstoffkosten keine weiteren Kosten anfallen.

Sie erwarten steigende Rohstoffpreise und haben deshalb in grofien Mengen ein-
gekauft. In ihrer Vorratskammer lagern 3.000 kg Lowenzahn, 15.000 kg Korner,
23.000 kg Blattspinat und 1.000 kg Karotten. Zudem hangen in Threm Kiihlhaus 40
Schafe, 102 Hiihner, 106 Schweine und 232 Rinder, die alle bereits geschlachtet sind
und nur darauf warten, zu Wurst weiterverarbeitet zu werden. Reicht die genannte
Futtermenge aus, um die in Aufgabenteil b) aufgefithrte Menge ausliefern zu kon-
nen, oder miissen Sie Futter nachkaufen? Wie sieht Ihr Lagerbestand nach dem

Verkauf aus?

Aufgrund Threr hervorragenden Fahigkeiten werden Sie von der Konkurrenz ab-
geworben. Thr neues Unternehmen stellt zwar dieselben Wurstsorten her, doch
verarbeitet es keine Rinder und bendtigt somit auch keine Karotten. Ihr Vorganger
hat folgende Produktionsmatrizen hinterlassen:

40 10 10 300 300 200

Mgz =|20 30 20| Mgg=|450 400 500
30 20 10 300 300 300

Wie viele Tiere bendtigen Sie, um den Auftrag qg =(20 20 30)T zu erfiillen?

Aufgabe 4.20:

Ein Unternehmen fertigt aus den Rohstoffen R, R,, R3 zundchst die Zwischenpro-

dukte Z,, Z,, Z3 und hieraus die Endprodukte E;, E,, E5. Sie kennen die Verflech-

tungsmatrizen

a)
b)
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1 31 1 21
MRZ =12 0 1| und MZE =2 1 3|
11 2 2 3 3

Bestimmen Sie die Gesamtverflechtungsmatrix Mgg.

Wie hoch ist der Rohstoffverbrauch qg zur Produktion von qg =(15 10 10)T?
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c) Sie kaufen die Rohstoffe ein zum Preis von pg =(5 4 5) und verkaufen die End-
produkte fiir pg =(100 200 150). Wie hoch sind die Kosten K, der Erlés E und

der Gewinn G bei der Produktion der in b) angegebenen Menge?

d) Sie bekommen das Angebot fiir 725 € eine neue Maschine zu kaufen, welche zu
einem verdnderten Rohstoffverbrauch im Produktionsprozess fiihrt. Allerdings
sind Sie noch nicht sicher, welche Spezifikationen der Parameter a in der neuen

Gesamtverflechtungsmatrix

8 13
MRS =la 7 5
9 10

erfiillen muss, damit mindestens ein Gewinn in Hohe von 1.000 € erzielt werden
kann. Bestimmen Sie den kritischen Wertebereich von Parameter a, wobei die in b)
angegebene Menge produziert werden soll und die Preise denen aus c) entspre-

chen.

Aufgabe 4.21:

Nachfolgende Produktionsmatrizen zwischen Rohstoffen, Vor-, Zwischen- und End-

produkten sind Ihnen bekannt:

6 b

4 a 2 1111 5 1

MRV:0 2 1,MVZ:5 21 2’MZE:5 6
1 21 2 6 3 4

31

Dariiber hinaus wissen Sie, dass fiir die Produktion einer Einheit von E; Rohstoffe in
Hohe von qg und fiir die Produktion einer Einheit von E, Rohstoffe in Hohe von c-qg

benotigt werden. Bestimmen Sie a,b,ceR.
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Innerbetriebliche Materialverflechtung

Aufgabe 4.22:
X11 Xpp 4
Mgpg=| 3 Xxp» Xp3
X315 X3

Wie viele Einheiten von R; werden zur Herstellung von 150 Einheiten von E, benétigt,
wenn (neben einigen Einheiten von R; und R,) genau 10 Einheiten von R3 zur Herstel-
lung von genau 5 Einheiten von E; bendtigt werden? Zusétzlich gilt 213:1 Xxjj=12 V j

sowie zj3=1xi]~ =12 V i.
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5 Leontief-Modell

5.1 Einordnung und Modellgrundlagen

Das vorherige Kapitel betrachtet einen Produktionsprozess, bei dem die Rohstoffe
extern bezogen und die Endprodukte extern abgegeben werden. Im Unterschied hier-
zu werden im Leontief-Produktionsmodell keine Rohstoffe von aufien bezogen. Die
hergestellten Endprodukte werden als einzige Produktionsfaktoren angenommen. Das
zugrunde liegende Modell wurde von Wassiliy Leontief zur Analyse von Volkswirt-
schaften und deren Industriesektoren entwickelt. Fiir seine grundlegenden Arbeiten in
diesem Bereich erhielt Wassiliy Leontief 1973 den Nobelpreis fiir Wirtschaftswissen-

schaften.

Betrachtet wird im Folgenden eine Volkswirtschaft mit n Industrien. In jeder dieser
Industrien wird genau ein Gut j mit j=1,..,n hergestellt. Alle Giiter i mit i=1,..,n
(also alle Giiter), die in der Volkswirtschaft hergestellt werden, konnen in die Herstel-
lung jedes einzelnen Guts j als Produktionsfaktor eingehen. Die Menge an Gut i, die
zur Produktion einer Einheit des Guts j benétigt wird, heifit Produktionskoeffizient aj;.
Die Produktionsmatrix Q, die alle Produktionskoeffizienten ajj enthalt, ist quadratisch
und hat die Ordnung (nxn). Die hier vorgestellten Annahmen des Leontief-Modells
lassen sich dabei auch auf Unternehmen mit entsprechenden innerbetrieblichen Ver-

flechtungen tibertragen.

Zur Verdeutlichung sei ausdriicklich darauf hingewiesen, dass mit "Gut i" und "Gut j"
auf dieselben Giiter Bezug genommen wird. Die unterschiedliche Indizierung ist le-

diglich zur Beschreibung des Produktionsprozesses notwendig.
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Beispiel 5-1: Bestimmung der Produktionsmatrix

Die Volkwirtschaft einer kleinen Insel besteht aus den drei Industrien Fi-
scherei, Holzfallerei und Rumherstellung, die folgendermafien miteinander

verbunden sind:

Die Produktion einer Tonne Fisch erfordert einen viertel Festmeter Holz
zur Instandhaltung der Fischereiboote und ein fiinftel Fass Rum, um ei-
ne Meuterei an Bord zu verhindern. Ein Zehntel des gefangenen Fischs

wird von den Fischern selbst verbraucht.

Um einen Festmeter Holz in den Palmenwéldern zu schlagen, benoti-
gen die Holzfiller bei Threr anstrengenden Arbeit eine fiinftel Tonne

Fisch und flinfviertel Fasser Rum.

Die Herstellung eines Fasses Rum erfordert einen halben Festmeter
Holz, um die Destillerien betreiben und Holzfasser fertigen zu koénnen.
Die Arbeiter sind des Weiteren nicht davon abzubringen, ein Viertel des

Rums selbst zu trinken.

Fir Giitererstellung in den jeweiligen Industrien werden ausschliefslich
Leistungen (Giiter) der drei auf der Insel vorkommenden Industrien beno-
tigt, weshalb der Produktionsprozess der Inselokonomie iiber das Leontief-
Modell formuliert werden kann. Die Verflechtungen der Inselwirtschaft

werden durch die folgende Matrix beschrieben:

an Fischerei Holzfallerei Rumbherstellung
von
Fischerei %0 % 0
Holzféllerei % 0 %
Rumbherstellung % % %l

Aus diesen Angaben kann die Produktionsmatrix mit den Produktionsfak-
toren a;; erstellt werden, welche wegen der drei betrachteten Industrien die

Ordnung (3x 3) besitzt:




Einordnung und Modellgrundlagen

Ho Y5 0
=% o %
s Y W

Zur Befriedigung der externen Nachfrage (beispielsweise von anderen Landern) nach
Gut i, y;, steht die Gesamtproduktionsmenge von Gut i, q;, abziiglich der durch die
Produktion des Produktionsplans q = (‘h - qi " 9n )T innerhalb der Volkswirt-
schaft verbrauchten Menge von Gut i zur Verfiigung. Die innerhalb der Okonomie
verbrauchte Menge von Gut i zur Produktion des Produktionsplans q berechnet sich
dabei unter der Verwendung der Produktionsfaktoren als Z;‘Zlaij-qj. Formalisiert

lasst sich fiir jedes Gut i miti=1,...,n folgern, dass gilt:
n
Yi=dqi _Zaij "qj
=1

Da n Giiter produziert werden, ergibt sich ein LGS mit n Gleichungen, welches sich in

Vektorschreibweise darstellen ldasst durch:

wobei y=(y1 ST ZRNEED yn)T den externen Nachfragevektor reprasentiert. Der
T
Vektor (Z?zlalj g Z?:laij qy z}?‘ﬂan}. .q].) entspricht dabei dem Resultat
der Matrixmultiplikation Q-q, so dass sich die zentrale Gleichung des Leontief-
Modells formulieren lasst als:
y=9-Q-q
=(E-Q)-q
(E—Q) wird dabei Technologiematrix genannt. Sie ist die Matrix, welche den Produk-
tionsvektor in einen Vektor transformiert, der angibt, welche externe Nachfrage be-

friedigt werden kann.
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Beispiel 5-2: Veranschaulichung des Leontief-Modells

Geht man von der Produktionsmatrix
0- (0,1 0, 3}
0,4 0,2

und dem Produktionsplan q=(20 SO)T aus, so berechnet sich der
Verbrauch von Gut 1 innerhalb der Volkswirtschaft folgendermafen: Zur
Herstellung einer Einheit von Gut 1 braucht man unter anderem 0,1 Einhei-
ten von Gut 1. Da aber insgesamt 20 Einheiten hergestellt werden, werden
20-0,1=2 Einheiten von Gut 1 benétigt. Zur Herstellung einer Einheit von
Gut 2 braucht man unter anderem 0,3 Einheiten von Gut 1. Hiervon sollen
aber insgesamt 30 Einheiten hergestellt werden, folglich werden hier weite-
re 30-0,3 =9 Einheiten bendtigt. Insgesamt werden bei der Herstellung des
Produktionsplans q innerhalb der Volkswirtschaft also 2+9 =11 Einheiten
von Gut 1 verbraucht. Der gleiche Rechenweg fiihrt zu einem internen

Verbrauch von 14 Einheiten von Gut 2 bei der Herstellung des Produkti-

onsplans q.

Subtrahiert man vom Produktionsplan den Verbrauch innerhalb der Oko-
nomie, verbleibt diejenige Menge, welche zur Befriedigung der externen
Nachfrage (also fiir andere Lander) zur Verfiigung steht. Dies sind fiir Gut
1 genau 20 —11 =9 Einheiten und fiir Gut 2 genau 30 —14 =16 Einheiten.

Bei gegebener Produktionsmatrix Q lédsst sich somit problemlos beantworten, wie viele
Einheiten fiir die Nachfrager aufserhalb der Volkswirtschaft verbleiben, wenn ein be-

stimmter Produktionsplan q hergestellt wird.

Beispiel 5-3: Berechnung der externen Nachfrage

Eine Volkswirtschaft stellt drei verschiedene Giiter her und besitzt die Pro-

duktionsmatrix:
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05 0 01
Q=|02 03 11
01 03 01

Bei einer Produktion von q = (150 600 300)T kann die folgende Menge y

nach auflen abgegeben werden:

10 0) (05 0 o01)](150) (45
y=(E-Q)-q=[|0 1 0|-|02 03 11| 600|=|60
00 1) l01 03 01)[(300] (75

Sehr leicht lasst sich auch die Umkehrfragestellung beantworten. Welche Mengen
miissen hergestellt werden, damit eine vorgegebene externe Nachfrage befriedigt

werden kann? Hierzu ist die zentrale Gleichung umzuformen in q=(E-Q)!-y.

Alternativ kann in Analogie zur Schreibweise A-x=b der unbekannte Vektor q in
(E-Q)-q=y auch tiber die Anwendung des Gauf}/Jordan-Algorithmus auf die erwei-

terte Koeffizientenmatrix (E-Q | y) bestimmt werden.

Beispiel 5-4: Berechnung des Produktionsplans

Der Produktionsplan q zur Befriedigung einer externen Nachfrage von
y=(411 137 274)" berechnet sich durch:

-1

10 0) (0,5 0 01 411} (1.070
q=(E-Q)'-y=[|0 1 0|-|0,2 0,3 1,1|| -|137|=|2450
00 1) (01 03 0,1 274 (1.240

Alternativ ergibt sich ausgehend von

0,5 0 -0,1]411
(E—Q ly)=[-0,2 0,7 -1,1|137
-0,1 -0,3 0,9 |274

nach einigen EZUs im Rahmen des Gauf$/Jordan-Algorithmus der Produk-

tionsplan als rechte Seite der erweiterten Koeffizientenmatrix:
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1 0 0]1.070
0 1 02450
0 0 11240

Eine weitere interessante Fragestellung ist, ob jede sinnvolle externe Nachfrage (das
heiit y >0) durch einen sinnvollen Produktionsplan (das heifit q>0) befriedigt wer-

den kann. Um dies zu beantworten, kann wahlweise eines der folgenden Kriterien

betrachtet werden:

Kriterium I: Soll ein vorgegebenes y >0 zwingend zu einem q>0 fithren, muss auf-

grund des Zusammenhangs q = (E -Q)t -y auch (E-Q)™! >0 sein.

Kriterium II (Hawkins-Simon-Bedingung): Hierbei werden die sukzessiven Hauptmi-

noren von (E —Q) betrachtet. Sind alle sukzessiven Hauptminoren gréSer Null, so gilt

(E-Q)'=>o0.

Beide Kriterien fithren stets zur gleichen Aussage, daher reicht es aus, eines der Krite-

rien zu betrachten.
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Beispiel 5-5: Analyse des Produktionsprozesses

Die Produktionsmatrix der betrachteten Volkswirtschaft sei weiterhin:

0,5 0 01
Q=(0,2 0,3 11
0,1 0,3 0,1

Bei Verwendung von Kriterium I ergibt sich:

30 3 7
(E-Q) " =22 129 44 57|20
13 15 35

Somit lasst sich jede sinnvolle Nachfrage durch eine sinnvolle Produktion

befriedigen.

Alternativ kann die Hawkins-Simon-Bedingung verwendet werden:
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0,5 0 01

det(E-Q)=det| -0,2 0,7 -1,1 :%m
-0,1 -0,3 0,9 ’
0,5 0 35
det((E_Q)%)‘det[—o,z 0,7]‘W>

det(((E-Q)s3),, | = det(0,5)=0,5>0

Alle sukzessiven Hauptminoren sind grofier als Null.

Statt der Produktionsmatrix Q kénnen zur Beschreibung der Technologie die Gesamt-
liefermatrix X und der zugehorige Produktionsvektor q gegeben sein. Die Gesamtlie-
fermatrix enthdlt die Liefermengen Xjj mit i=1,..,n sowie j=1,..,n, welche von In-
dustrie i zu Industrie j erfolgen, damit der zugehorige Produktionsplan q hergestellt
werden kann. Analog zu den Produktionskoeffizienten ajj bezeichnet X;; die Menge

von Gut i, die zur Produktion von q; Einheiten des Guts j benotigt werden.
Bei gegebenem X und q lassen sich die Elemente von Q berechnen durch:

_ X

9j

ai]'
Die Menge von Gut i, welche an Industrie j geliefert wird, damit diese q; Einheiten
herstellen kann (X;), geteilt durch die Anzahl der dort hergestellten Einheiten von
Gutj (q;) ergibt die Menge, die von Gut i an Industrie j geliefert werden muss, damit

dort eine Einheit hergestellt werden kann (aij)-

Sind statt X und q nur X und y gegeben, muss zunachst der der Gesamtliefermatrix X
zugrunde liegende Produktionsplan q berechnet werden. Dies ldsst sich sehr leicht
durchfithren. Fiir jedes Gut i entspricht die Zeilensumme von X dem internen Ge-
samtverbrauch von Gut i, der notwendig ist, um den zugrunde liegenden Produkti-
onsplan q zu realisieren. Wird hierzu die externe Nachfrage nach Gut i addiert, erhalt

man die produzierte Menge von Gut i:

n
qi = inj Vi
j=1
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Beispiel 5-6: Bestimmung der Produktionsmatrix

Eine drei Produkte herstellende Volkswirtschaft tauscht intern Giiter in

folgender Hohe aus:
20 40 15
X=/0 20 5
0 10 O

Hierbei wird eine externe Nachfrage von y = (25 35 30)T befriedigt.

Der zugrunde liegende Produktionsplan berechnet sich als Summe von in-

ternem Verbrauch und externer Nachfrage als:

3
q1 Z le Y1 20+40+15 25 100
=1

3
qQ2 |= ZXZj + Y2 |= 0+20+5 |+[35|=| 60
=1

3
q3 ZX?)]' ys3 0+10+0 30 40
j=1

Hieraus ldsst sich im Weiteren die Produktionsmatrix Q bestimmen als:
X11 X12 X13 1/ 2/ 3
Yo Y Y| [¥% B %
—| X21 X2 X23 - 1/ 1
Q=" ", Yy |F| 0 B K
X31 X32 X33 1
Va Y Va) \0 K 0

Im Rahmen des Leontief-Modells ist es wichtig zu verstehen, dass X, y und q immer
zusammen betrachtet werden miissen. Eine bestimmte angegebene Produktionsmenge
q fiithrt bei gegebener Produktionsmatrix immer zu denselben internen Liefermengen

X und derselben Menge y, die nach auflen abgegeben werden kann.
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5.2 Aufgaben

Aufgabe 5.1:

Sie kennen die Produktionsmatrix Q und den Produktionsvektor q:

0,3 0,2 0,6 400
Q=[0,4 0,4 0 | q=|350
02 0 02 300

Welche externe Nachfrage wird hiermit befriedigt?

Aufgabe 5.2:

Kann ein Unternehmen mit der Produktionsmatrix
o- 0,6 0,8
0,4 03

jede sinnvolle externe Nachfrage (yZO) durch einen sinnvollen Produktionsplan

(q>0) befriedigen?

Aufgabe 5.3:

Eine Untersuchung an Ihrer Universitdt auf Grundlage des Leontief-Modells hat erge-
ben, dass die Mensakiiche fiir die Erstellung eines Mittagsmahls einen Eigenverbrauch
von 30% hat (die Koche verschlingen also 30% des Essens selbst) und weitere 0,1 Ar-
beitsstunden des Servicepersonals beansprucht (zum Schélen der Kartoffeln). Das
Servicepersonal hingegen benétigt pro Arbeitsstunde 0,4 Portionen Mittagessen und

macht pro Arbeitsstunde 12 Minuten Pause.
a) Erstellen Sie die zugehdrige Produktionsmatrix.

b) Es werden 400 Portionen Mittagessen gekocht, wahrend das Servicepersonal

100 Stunden arbeitet. Wie viele Mittagessen kénnen noch an die Studenten als ex-
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terne Nachfrager abgegeben werden und wie viele Arbeitsstunden des Serviceper-

sonals stehen noch fiir den eigentliche Service bereit?

c) Die Studenten fragen allerdings 520 Portionen Mittagessen und 260 Stunden Servi-
ce nach. Um wie viel muss die Produktion erhoht werden, damit diese Nachfrage

befriedigt werden kann?

d) Lasst sich jede beliebige (sinnvolle) Nachfrage nach Essen und Service von Seiten

der Studenten durch eine entsprechende (sinnvolle) Produktion befriedigen?

Aufgabe 5.4:

Gegeben sind die nachfolgenden Grofien des Leontief-Modells:

aj; ap  ag by; by bz X11 X12 X13
Q=|ay ayp ayp| (E-Q)=|by by by| X=|x31 Xn X3
az| asg as by bz bsz X31 X3 X33

vy=(y1 v2 v3)  a=(a1 @ as)'

3 3
Interpretieren Sie kurz die folgenden Terme: a3, > X2j, q1—Yy1, 2.a1j, by
=1 =1

Aufgabe 5.5:

Fiir drei Abteilungen eines Unternehmens ist folgende Produktionsmatrix gegeben:

0,1 0,2 0,3
Q=/0,2 0,1 0,2
0,1 0,2 0,1

a) Welche externe Nachfrage y kann bei einer Gesamtproduktion von q; =50,

qp =100 und q3 =50 erfiillt werden?

b) Wie hoch sind die Liefermengen zwischen den Abteilungen bei der Gesamtpro-

duktion aus Teilaufgabe a)?

c) Lasst sich jede sinnvolle externe Nachfrage (y > 0) durch eine sinnvolle Produktion

(q > O) befriedigen?
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d) Bestimmen Sie die erforderliche Produktion q fiir eine externe Nachfrage von

y=(35 245 70)".

Aufgabe 5.6:

Ihnen ist die nachfolgende Produktionsmatrix gegeben:

0,5 0,1 0,3
Q=/0,2 0,5 0,2
0,1 0,5 0,5

a) Wie viele Einheiten jedes Guts muss das Unternehmen herstellen, damit jeder

Sektor 90 Einheiten nach aufien abgeben kann?

b) Kann dieses Unternehmen jede beliebige sinnvolle (das heifst nichtnegative) Nach-

frage mit einer sinnvollen (das heifst nichtnegativen) Produktion befriedigen?

Aufgabe 5.7

Ein Unternehmen besteht aus den Teilbereichen Energieerzeugung, Wasserversorgung
sowie zwei Produktionsabteilungen, welche die Produkte P und P, herstellen. Uber

die Produktionsverhéltnisse wissen Sie Folgendes:

Von einer kWh erzeugtem Strom verbraucht die Energieversorgung 10% selbst, wéh-
rend der Eigenverbrauch der Wasserversorgung je erstelltem Liter bei 0,2 1 liegt. Bei
der Erstellung einer Mengeneinheit des Produkts P; werden 0,75 kWh Strom und bei
der Erstellung einer Mengeneinheit des Produkts P, 0,5 1 Wasser verbraucht. Der Ei-
genverbrauch der Produkte P; und P, betrdgt jeweils 0,25 Mengeneinheiten des ent-
sprechenden Produkts. Um eine Mengeneinheit des Produkts P, herzustellen, braucht
man auflerdem 0,5 Mengeneinheiten des Produkts P,. Alle nicht angegebenen Produk-

tionskoeffizienten sind Null.

a) Erstellen Sie die Produktionsmatrix Q.
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b) Welche externe Nachfrage kann durch die Produktion von 30 kWh Strom, 25 1
Wasser, 36 Mengeneinheiten von P; und 40 Mengeneinheiten von P, bedient wer-

den?

¢) Ein externer Nachfrager mochte von Thnen weder Strom noch Wasser, jedoch 36
Mengeneinheiten von P und 40 Mengeneinheiten von P, beziehen. Wie viele kWh
Strom, Liter Wasser und Mengeneinheiten der Produkte P, und P, miissen Sie her-

stellen, um seinen Wunsch zu erfiillen?

Aufgabe 5.8:

15 20

Ein Unternehmen befriedigt mit der Gesamtliefermatrix X = ( 15 30

j einen externen

Konsum in Hohe von y = (1 15 75)T. Bestimmen Sie die Produktionsmatrix.

Aufgabe 5.9:

Nachfolgend ist Thnen die Gesamtliefermatrix X bei einer bestimmten Gesamtproduk-

tionsmenge q eines Unternehmens mit zwei Produktionsstatten angegeben:
15 20 60
X = , Q=
15 30 50
a) Bestimmen Sie die Leistungen y, die bei obiger Gesamtproduktion nach aufien
abgegeben werden konnen.

b) Bestimmen Sie die Produktionsmatrix Q.

c¢) Welche Gesamtproduktion q ist notwendig, um eine externe Nachfrage von

y=(60 80)T zu befriedigen?

108



Aufgaben

Aufgabe 5.10:

Sie kennen nachfolgende Produktionsmatrix eines Unternehmens:

0,2 0,2 0,5
Q=|0,1 0,5 0,3
0,3 0,2 0,6

a) Welche externe Nachfrage y kann bei einer Gesamtproduktion von

q=(500 470 610)" erfiillt werden?

b) Wie hoch sind die Liefermengen zwischen den Sektoren bei der Gesamtproduktion

aus Teilaufgabe a)?

c) Priifen Sie anhand der Hawkins-Simon-Bedingung, ob sich jede sinnvolle externe

Nachfrage (y > 0) durch eine sinnvolle Produktion (q > 0) befriedigen lasst.

d) Bestimmen Sie die erforderliche Produktion q fiir eine Nachfrage von

y=(7 14 0)".

Aufgabe 5.11:

Fiir drei Produktionsbereiche ist folgende Produktionsmatrix gegeben:

0,1 0,2 0,2
Q=|0,2 0,1 0,2
0,2 0,2 01

i zwischen den einzelnen Bereichen bei

einer Gesamtproduktion von 20 Einheiten in Produktionsbereich 1, 30 Einheiten in

a) Wie hoch sind die Gesamtlieferungen x;

Bereich 2 sowie 40 Einheiten in Bereich 3?

b) Wie hoch ist die externe Nachfrage y, die durch die in Aufgabenteil a) angegebene

Gesamtproduktion befriedigt werden kann?

c) Lasst sich jede sinnvolle externe Nachfrage (y > O) durch eine sinnvolle Produktion

(q > O) befriedigen?
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d)

Durch eine Neustrukturierung der einzelnen Produktionsbereiche ergibt sich die
folgende (neue) Produktionsmatrix:
0,3 0,2 0,2

Q=0 01 02
0 0 03

In Produktionsbereich 1 sollen genau 100 Einheiten nach aufien abgeben werden,
wiahrend in den Produktionsbereichen 2 und 3 jeweils die gleiche (noch unbekann-
te) Menge zur Nachfragebefriedigung bereitgestellt werden soll. Weiterhin ist be-
kannt, dass im Bereich 3 exakt 100 Einheiten produziert werden kénnen. Die Pro-
duktionsmengen der Bereiche 1 und 2 sind dagegen nicht bekannt. Bestimmen Sie

aus diesen Daten den kompletten Produktions- und Nachfragevektor.

Aufgabe 5.12:

Sie kennen die folgende Gesamtliefertabelle zwischen drei Wirtschaftssektoren:

a)
b)

d)

an| Sektor 1 Sektor 2 Sektor 3 Externe
von Nachfrage
Sektor 1 0 50 30 70
Sektor 2 30 30 30 110
Sektor 3 30 30 60 30

Bestimmen Sie, wie viel jeder Sektor insgesamt produziert.
Berechnen Sie die Produktionsmatrix Q dieses Unternehmens.

Wie viel muss von den einzelnen Sektoren produziert werden, damit eine externe

Nachfrage in Hohe von y = (80 100 40)T befriedigt werden kann?

Kann jede sinnvolle externe Nachfrage durch eine sinnvolle Produktion befriedigt

werden?
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Aufgabe 5.13:

Ein Unternehmen mit drei Sektoren produziert anhand nachfolgender Produktions-
matrix Q:
05 0,2 0,3

Q=/0,2 0,3 0,4
0,4 05 0,2

a) Kann dieses Unternehmen jede sinnvolle externe Nachfrage (y > O) durch einen
sinnvollen Produktionsplan (q > 0) befriedigt werden? Begriinden Sie Ihre Antwort

durch die Anwendung aller Ihnen bekannten Kriterien.

b) Berechnen Sie den Produktionsplan q und die Gesamtliefermatrix X, welche bei

Befriedigung der externen Nachfrage y = (100 100 100)T vorliegen.

c) Berechnen Sie die externe Nachfrage, die Sie mit q:(52.500 47.000 56.000)T

befriedigen konnen.

Aufgabe 5.14:

Die Verflechtungen zwischen drei Sektoren sind durch die folgende Produktionsmat-

rix Q gegeben:
0,3 01 0
Q=(02 0 0,3
0,1 0,2 0,5

Bestimmen Sie die Gesamtliefermatrix X, wenn Sie eine externe Nachfrage von

y=(118 177 236)" befriedigen.
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Aufgabe 5.15:

Fiir die Gesamtlieferungen x;; und die Produktionszusammenhinge aj; eines Unter-

nehmens mit drei Produktionsbereichen sind folgende Daten gegeben:

1 4 X13 arq 0,2 0,3
X=|2 xp 1/ Q=02 03 01
X31 2 4 0,3 dzp dsj

a) Ermitteln Sie mithilfe des Leontief-Modells die fehlenden Werte in den angegebe-

nen Matrizen.
b) Welche Leistung kann das Unternehmen nach aufien abgeben?

c) Welche Produktion ist notig, um die durch den Vektor y = (4 22 Z)Tdargestellte

externe Nachfrage zu befriedigen?

Aufgabe 5.16:
0,1 02 0,1
Q= 0 03 0,2
0,2 01 0,1

a) Kann in einem Unternehmen mit der Produktionsmatrix Q jede sinnvolle externe
Nachfrage (y =0) durch einen sinnvollen Produktionsplan (q = 0) befriedigt wer-
den? Begriinden Sie Ihre Antwort durch die Anwendung aller Ihnen bekannten

Kriterien.

b) Sie kennen zudem den zu einem bestimmten Produktionsplan q gehorigen Eigen-
verbrauch x11 =30, X5, =75, X33 =15. Bestimmen Sie den dazugehorigen Produkti-
onsplan q, die dazugehorige Gesamtliefermatrix X und die externe Nachfrage v,

die bei einer Produktion von q befriedigt werden kann.

¢) Was beschreibt die GroBe Q- q im Leontief-Modell?
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Aufgabe 5.17:

Ihnen ist bekannt, dass in einem Unternehmen mit drei Produktionssektoren zur Be-
friedigung einer externen Nachfrage von y = (6 6 6)T folgende Gesamtlieferungen

bendtigt werden:

375 369 0
X=| 0 246 117
150 0 78

Bestimmen Sie den zugrunde liegenden Produktionsvektor und einen Spaltenvektor,
der den innerbetrieblichen Verbrauch der Giiter enthilt. Mit welcher Produktionsmat-

rix produziert dieses Unternehmen?

Aufgabe 5.18:

In einem Unternehmen werden nachfolgende Leistungen ausgetauscht:

30 40 10
X=[20 20 20
10 30 20

Hierbei kann eine externe Nachfrage in Hohe von y = (20 40 4O)T befriedigt wer-
den. Wie viele Einheiten konnten von diesem Unternehmen nach aufien abgegeben

werden, falls es q = (150 140 ZOO)T produzieren wiirde?

Aufgabe 5.19:

Sie kennen die Produktionsmatrix Q eines Unternehmens:

05 0 01
Q=(0,2 0,3 11
0,1 0,3 0,1

Die Menge der produzierten Giiter wird in allen Sektoren in Tonnen gemessen. Ferner

wissen Sie, dass bei einer Produktion in Hohe von q nachfolgende Beziehungen gelten.
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Der erste Sektor gibt 30% seiner Produktionsmenge nach auflen ab. Das Gewicht der
vom dritten Sektor nach auflen abgegebenen Giiter betrdgt ein Zehntel des Gewichts
der Summe der in Sektor eins und zwei produzierten Giiter. 10% der in Sektor drei
hergestellten Giiter sind 30 Tonnen leichter als die von Sektor zwei nach auflen abge-
gebene Menge. Berechnen Sie unter Verwendung der Matrixrechnung die Gesamtpro-
duktion in jedem der drei Sektoren sowie die jeweils nach aufsen abgegebenen Men-

gen.

Aufgabe 5.20:

Sie betrachten ein Unternehmen mit drei Produktionsstatten. Jede dieser Produktions-

statten gibt Leistungen an jede andere Produktionsstétte und an die Kunden ab.

a) Bei der Gesamtproduktionsmenge q=(280 150 SOO)T betragen die Lieferver-

flechtungen:
X11 90 30
X=| 60 X922 45
120 12 X33

Weiterhin ist Ihnen bekannt, dass vom ersten Gut dreimal soviel an die Kunden
abgegeben wird wie die erste Produktionsstétte selbst von diesem Gut verbraucht.
Vom zweiten bzw. dritten Gut wird doppelt soviel an die Kunden abgegeben wie
die zweite bzw. dritte Produktionsstitte verbraucht. Komplettieren Sie die Matrix

X und berechnen Sie, wie viel von jedem Gut an die Kunden abgegeben wird.

b) Nun produzieren Sie q=(210 200 300)T bei unverdnderter Technologiematrix.
Wie viele Einheiten jedes Guts konnen bei dieser Produktion nach auflen abgege-

ben werden?

¢) Nennen Sie zwei Moglichkeiten, um festzustellen, ob jede sinnvolle externe Nach-

frage (y > 0) mit einer sinnvollen Produktion (q > O) befriedigt werden kann.

d) Wann ist die Gesamtliefermatrix X mit der Produktionsmatrix Q identisch?
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Aufgabe 5.21:

Ihnen sind nachfolgend die Produktionsmatrix und die Gesamtliefermatrix fiir den

aufgefiihrten Produktionsplan gegeben:

ar 1,1 0,2 28 X12  X13 140
Q=102 ap 03} X=|x1 0 3| q=| q
az, 0,1 as 56 7 65 130

a) Berechnen Sie die fehlenden Werte.

b) Wie viele Einheiten kann das Unternehmen bei der gegebenen Produktion nach

auflen abgeben?

c¢) Wie muss der Produktionsplan angepasst werden, wenn sich die Nachfrage auf

y =(18 6 4)" erhohe?
d) Wie muss der Produktionsplan angepasst werden, wenn die Nachfrage auf
yi=(19 10 4)T steigt?

e) Priifen Sie anhand der Hawkins-Simon-Bedingung, ob jede sinnvolle externe
Nachfrage (y > O) durch einen sinnvollen Produktionsplan (q > O) befriedigt wer-

den kann.

Aufgabe 5.22:

In einem Unternehmen werden 2 Giiter in 2 Sektoren hergestellt, wobei beide Giiter
jeweils als Input des anderen fungieren. Gegeben seien verschiedene Vektorpaare
A= (q | y), wobei q der Produktionsvektor ist und y die externe Nachfrage bezeichnet,
welche durch q befriedigt werden kann.

10

8 |4
verbrauch zur Herstellung der Giiter jeweils 30% betrédgt. Bestimmen Sie die Pro-

a) Sie kennen ein Vektorpaar A= . Weiterhin wissen Sie, dass der Eigen-

duktionsmatrix Q.
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b)

Nun ist der Eigenverbrauch der Sektoren nicht bekannt. Wie viele Vektorpaare
sind mindestens notwendig, um die Technologie (E-Q) des Unternehmens ein-
deutig bestimmen zu kénnen, wenn Sie davon ausgehen, dass die Paare keine Viel-

fachen voneinander sind? (Es gilt: A; = (q | y) # A, :(m~q Im- y) Vi#zjameR)

Das Unternehmen erlebt eine technologische Verdnderung und produziert jetzt mit

der Technologie:

(E—Q)—[% 2/5]

)

Bestimmen Sie den Produktionsvektor q zur Befriedigung von y = (20 10)T.
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6 Allgemeine lineare
Gleichungssysteme

6.1 Linearkombinationen, lineare (Un-)
Abhangigkeit

Im Folgenden beschranken wir uns auf (mx1)-Matrizen, also Spaltenvektoren mit m

Komponenten.

Definition 6-1: Linearkombination

Eine lineare Verknipfung der Form xq-a;+---+Xx,-a,, wobei
Xq,..,X, €R und ay,...,a, eR™' wird als Linearkombination (LK) der

Vektoren a;,...,a, bezeichnet.

R™! eine Linearkombination

Zur Uberpriifung, ob ein spezieller Spaltenvektor b e
der Spaltenvektoren aq,...,a, ist, wird die Vektorgleichung x;-a;+---+x,-a, =b

betrachtet und nach xq,...,x, gelost. Aus

aqg aq, by
I I E TR Y BT )
am1 Amn bm
ergibt sich das LGS
a11Xq +---+ a1nXp = bl
am1Xy +t ampnXn = bp

welches sich in Matrixschreibweise darstellen lasst als:
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ajp ot A X1 by
am1 Amn Xn bm
A-x=b

In den Spalten der Koeffizientenmatrix A befinden sich die Vektoren aq,...,a,. Der

Unbekanntenvektor x enthélt die Multiplikatoren der Linearkombination.

Ist das LGS losbar, folgt daraus, dass b eine LK der Spaltenvektoren ay,...,a,, ist. Ist
das LGS dagegen unldsbar, so ist b keine LK der Vektoren aq,...,a,.

Definition 6-2: Lineare Abhéngigkeit, lineare Unabhéngigkeit

Die Menge der Vektoren ay,...,a, heillt linear unabhangig (I. u.),
falls sich keiner der Vektoren als Linearkombination der anderen

Vektoren darstellen lasst. Andernfalls heiRt sie linear abhangig

(I. a.).

Um eine Menge von Vektoren auf lineare Unabhangigkeit zu testen, miissen nicht alle
Linearkombinationsmoglichkeiten {iberpriift werden. Die Menge der Vektoren
a,...,a, ist, analog zu oben aufgefiihrter Vektorgleichung, auch dann linear unab-
héngig, wenn sich der Nullvektor nur auf genau eine Weise als Linearkombination der
Vektoren darstellen lasst. Zur Uberpriifung, ob die Vektoren ay,...,a, L. u. sind, be-
trachtet man somit die Vektorgleichung:
ai aip | (0
Xpo| o |FeeExgel =

Am1 Amn 0

In Matrixschreibweise folgt fiir das entstehende linear homogene Gleichungssystem:

ajp coa | (x| (0
Am1 Amn Xn 0
A-x=0
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Rang

In den Spalten der Koeffizientenmatrix A befinden sich die auf lineare Unabhéangigkeit
zu tiberpriifenden Vektoren ay,...,a,,. Der Unbekanntenvektor x enthalt wiederum die

Multiplikatoren der Linearkombination.

Ist das LGS eindeutig 16sbar (die Losung fiir x ist dann der Nullvektor, es gilt x =0), so
sind die Vektoren ay,...,a,, l. u. Hat das LGS dagegen unendlich viele Lésungen, so

sind die Vektoren ay,...,a, L. a.

6.2 Rang

Definition 6-3: Rang

Der Zeilen- bzw. Spaltenrang einer (mxn)-Matrix A Matrix gibt die
Anzahl von Vektoren in einer groRtmdglichen linear unabhangigen
Teilmenge aller Zeilen- bzw. Spaltenvektoren an. Vereinfachend
wird auch von der Anzahl der linear unabhangigen Zeilen- bzw.
Spaltenvektoren der Matrix A gesprochen. Die Anzahl der I. u. Zei-
lenvektoren einer Matrix entspricht immer der Anzahl der I. u. Spal-
tenvektoren der Matrix, somit kdnnen Zeilen- und Spaltenrang zu-

sammengefasst als Rang einer Matrix, rg(A), bezeichnet werden.

Da sich Zeilen- und Spaltenrang gleichen, kann der Rang einer Matrix nie grofer sein
als das Minimum aus Zeilen- und Spaltenanzahl, es gilt somit 0 <rg(A)<min(m,n).
(Die einzige Matrix, deren Rang Null ist, ist die Nullmatrix.) Ebenso lésst sich aus der

Gleichheit von Zeilen- und Spaltenrang ableiten, dass rg(A) = rg(AT) gilt.

EZUs (bzw. elementare Spaltenumformungen) verdndern den Rang einer Matrix nicht,
da sie lediglich Linearkombinationen der Zeilen (bzw. Spalten) darstellen. Zur Be-
stimmung des Rangs einer (m x n)-Matrix kann diese mithilfe von EZUs in eine Trep-
penmatrix {iberfiihrt werden, der Rang der Matrix gleicht dann der Anzahl der Nicht-

Nullzeilen der Treppenmatrix. Alternativ kann der Rang der Matrix nach einer voll-
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standigen Pivotisierung abgelesen werden, er ergibt sich dann auch als Anzahl der

Nicht-Nullzeilen.

Eine erste Anwendungsmoglichkeit des Rangs besteht in der Uberpriifung der linea-
ren Unabhdngigkeit von Vektoren. Werden die Vektoren in die Zeilen (bzw. Spalten)
einer Matrix A tibernommen, darf sich bei linearer Unabhéngigkeit keine Zeile (bzw.
Spalte) als LK aus den anderen Zeilen (bzw. Spalten) ergeben. Es darf sich somit durch
EZUs (elementare Spaltenumformungen) keine Nullzeile (bzw. Nullspalte) in der
Matrix bilden lassen. Der Rang von A muss gleich sein mit der Anzahl der in die Zei-
len (bzw. Spalten) tibernommenen Vektoren. Eine Matrix, deren Zeilen (bzw. Spalten)
L. u. sind, fiir die also gilt rg(A)=min(m,n), wird als Matrix mit "vollem Rang" be-

zeichnet.

Beispiel 6-1: Uberpriifung der linearen Abhingigkeit von Vektoren

Zur Uberpriifung, ob die Vektoren

-1 8 5
3 6 0
a= _2,b=2 und c = 3
4 6 -1

l. u. sind, werden diese beispielsweise in die Zeilen einer Matrix {iber-

nommen, welche anschlieflend in eine Treppenmatrix umgeformt wird.

32 4)4.e 1.3 -2 4 -1 3 2 4
8 6 2 6| |0 14 38|2-IMI-II| 0 30 -14 38
5 0 3 -1 0 15 -7 19 0 0 0 0

Die Anzahl der Nicht-Nullzeilen entspricht dem Rang der Matrix und ist
demnach gleich 2. Der Rang der Matrix ist kleiner als die Anzahl der in die
Zeilen iibernommenen Vektoren, folglich sind die Vektoren a, b, ¢ 1. a. Die
grofStmogliche Teilmenge der Ausgangsvektoren, welche ausschlieSlich

1. u. Vektoren enthalt, besteht aus 2 Vektoren.

120



Losungen von linearen Gleichungssystemen

6.3 Losungen von linearen Gleichungssystemen

Eine zweite Moglichkeit der Anwendung des Rangs einer Matrix besteht in der Be-
stimmung der Losbarkeit eines LGS. Betrachtet wird nachfolgend ein LGS mit m Glei-

chungen und n Unbekannten:

aj Xy et alej +oet A Xy = bl
a;1Xq +--+ ai]'X]' +--+ ainXp = bi
amiX] +oF amXj et appXn, = by

Neben der bekannten Matrixdarstellung kann die linke Seite des LGS auch als lineare
Verkniipfung von Koeffizientenvektoren angesehen werden. In Vektordarstellung

ergibt sich das LGS in folgender Form:

ay ayj iy by
Xy Ay [+oedX | @ [+ Xy | iy (=] by
aAm1 am}' Amn bm

Der (m x 1)-Ergebnisvektor b wird dabei dargestellt als Linearkombination der (m x1)-
Koeffizientenvektoren a i die alle Koeffizienten der jeweiligen Xj enthalten. Die Vek-
torgleichung (und damit auch das LGS) ist genau dann l6sbar, wenn der Ergebnisvek-

tor eine Linearkombination der Koeffizientenvektoren ist.

Zur Uberpriifung der Losbarkeit eines LGS bzw. zur Uberprﬁfung, ob der Ergebnis-
vektor b eine LK aus den Koeffizientenvektoren a; ist, wird das Rangkriterium ver-
wendet. Dazu werden sowohl der Rang der Koeffizientenmatrix A als auch der Rang
der erweiterten Koeffizientenmatrix (A | b) betrachtet. Der erstgenannte gibt an, wie
viele der Koeffizientenvektoren a; I. u. sind. Der Rang der erweiterten Koeffizienten-
matrix gibt die Anzahl der 1. u. Vektoren in einer Menge wieder, welche neben den
Koeffizientenvektoren a; zusdtzlich den Ergebnisvektor b enthalt. Falls die Anzahl der

1. u. Vektoren in der Koeffizientenmatrix der Anzahl der 1. u. Vektoren in der erweiter-

ten Koeffizientenmatrix entspricht, ist der Ergebnisvektor b eine LK der Koeffizienten-
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vektoren aj. Gilt demnach rg(A)=rg(Alb), ist der Ergebnisvektor b eine LK der
Koeffizientenvektoren und das LGS 1dsbar. Andernfalls ist rg(A)<rg(Alb), b ist

keine LK der Koeffizientenvektoren aj und das LGS ist unlosbar.

Nachdem auf diese Weise untersucht wurde, ob ein LGS tiberhaupt 1sbar ist, kann
der Rang der erweiterten Koeffizientenmatrix dariiber hinaus dazu benutzt werden,
eine Aussage iiber die Eindeutigkeit einer moéglichen Losung zu treffen. Der Rang der
erweiterten Koeffizientenmatrix gibt die Anzahl der 1. u. Zeilen der erweiterten Koeffi-
zientenmatrix an, also die Anzahl der 1. u. Gleichungen des LGS, die von den Losun-
gen des LGS erfiillt sein miissen. Enthélt ein LGS weniger 1. u. Restriktionen als Vari-
ablen, ist also rg(Alb)<n, so kann keine eindeutige Losung bestimmt werden. Sind
die Anzahl der 1. u. Restriktionen und der Variablen hingegen gleich, das heifst, gilt
rg(A|b)=n, besitzt das LGS nicht unendlich viele Losungen.

Zusammengefasst gilt also fiir ein beliebiges LGS in Matrixdarstellung A-x=b mit
einer (m xn)-Koeffizientenmatrix der nachfolgende Zusammenhang zwischen Los-

barkeit und Rang. Das zugrunde liegende LGS mit n Variablen hat
genau eine Losung, falls rg(A) =rg(Alb) =n,
unendlich viele Losungen, falls rg(A) =rg(A |b) <n,

keine Losung, falls rg(A) <rg(A Ib).

Beispiel 6-2: Bestimmung der Losbarkeit eines LGS

Ist die Losbarkeit des LGS

4X1 + 3X2 + 2X3 - Xq = 4
8X1 + 6X2 + 6X3 - 3X4 = 11
12X1 + 9X2 + 10X3 - 5X4 = 20

zu bestimmen, so wird sowohl der Rang der Koeffizienten- als auch derje-

nige der erweiterten Koeffizientenmatrix berechnet.

32—141121432—14 4 32 -1|4
866—3111113100—13111—2~11002—13
12 9 10 -5(20 00 4 218 000 0|2
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Die erweiterte Koeffizientenmatrix besitzt einen Rang von 3, wéahrend die
Koeffizientenmatrix lediglich einen Rang von 2 hat. Das LGS ist somit un-

16sbar.

Bezieht man das Determinantenkriterium aus Abschnitt 3.4 zur Bestimmung der ein-
deutigen Losbarkeit eines LGS mit quadratischer Koeffizientenmatrix in die Uberle-
gungen mit ein, so lassen sich die folgenden wechselseitigen Zusammenhénge zwi-

schen Determinantenkriterium und Rangkriterium formulieren:

Ist die Determinante der Koeffizientenmatrix A nicht Null, so ist A invertierbar und
somit reguldr. Ein zugrunde liegendes LGS besitzt eine eindeutige Losung. Der
Rang der Koeffizientenmatrix entspricht in diesem Fall der Anzahl der Variablen
des LGS, die Koeffizientenmatrix hat vollen Rang. Gilt demnach det(A)#0, so
folgt rg(A) = n und umgekehrt.

Ist die Determinante der Koeffizientenmatrix A dagegen Null, so ist A nicht inver-
tierbar und somit singulér. Ein zugrunde liegendes LGS besitzt keine eindeutige
Losung. Der Rang der Koeffizientenmatrix ist in diesem Fall kleiner als die Anzahl

der Variablen des LGS. Gilt demnach det(A)=0, so folgt rg(A) <n und umgekehrt.

Besitzt ein LGS unendlich viele Lésungen, so konnen nicht alle Variablen eindeutig be-
stimmt werden. Die Losungsmenge L enthélt dann unendlich viele Losungsvektoren,
deren Komponenten in Abhangigkeit von freien Variablen ausgedriickt werden mdis-

sen.

Definition 6-4: Freie und gebundene Variablen

Als freie Variablen werden diejenigen Variablen bezeichnet, fur die
bei einem LGS mit unendlich vielen Lésungen beliebige reelle Zah-
len gewahlt werden kénnen. Gebundene Variablen hingegen sind
Uber das LGS an die freien Variablen bzw. an bestimmte reelle
Zahlen gebunden. Die Anzahl gebundener Variablen entspricht der

Anzahl der I|. u. Gleichungen, also dem Rang der erweiterten Koef-

fizientenmatrix. Die Anzahl freier Variablen eines LGS bestimmt
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sich als Differenz zwischen der Anzahl der Variablen insgesamt

und der Anzahl der gebundenen Variablen, somit als n—rg(Alb).

Nachfolgende vollstédndig pivotisierte Koeffizientenmatrix hat ohne
die Erweiterung um den Ergebnisvektor funf Spalten und resultiert

somit aus einem Gleichungssystem mit finf Variablen:

10 0 0 [4]2
2 0 0o o5
00 0 O 00
4 [ o [=7] o2

Die Koeffizientenmatrix besitzt drei Nicht-Nullzeilen und hat folg-
lich einen Rang von 3. Die L6sungsmenge des zugrunde liegende

LGS besitzt somit drei gebundene und zwei freie Variablen.

Um gebundene Variablen in Abhéangigkeit von freien Variablen auszudriicken, wird
die anfangliche Koeffizientenmatrix vollstindig pivotisiert. Die dabei gegebenenfalls

entstehenden Nullzeilen resultieren aus redundanten Gleichungen.

Definition 6-5: Redundante Gleichungen

Redundante Gleichungen sind Gleichungen, welche sich als Line-
arkombination aus anderen Gleichungen darstellen lassen und
somit keine neuen Informationen enthalten. Die Anzahl redundan-
ter Gleichungen eines LGS bestimmt sich als Differenz zwischen
der Anzahl der Gleichungen und dem Rang der erweiterten Koeffi-

zientenmatrix, somit als m-rg(A|b).

Als gebundene Variablen sollten die Variablen der pivotisierten Spalten gewahlt wer-
den. Existieren mehrere pivotisierte Spalten, die ihr Pivotelement in derselben Zeile

besitzen, so kann jeweils nur eine hiervon eine gebundene Variable reprasentieren.
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Spezielle Losungsvektoren ergeben sich durch das Einsetzen von beliebigen reellen

Zahlen fiir die freien Variablen.

Beispiel 6-3: Bestimmung der Losung bei unendlich vielen
Losungen
Um die Losung des LGS
4X1 + 2X2 + 3X3 - 4X4 + 6X5 = -1
14X1 + 4X2 + 3X3 + 7X4 + 6X5 = -5
—1OX1 - 4X2 - 5X3 + 3X4 - 10X5 = 3

zu bestimmen, wird die Koeffizientenmatrix vollstandig pivotisiert.

43—46—11121423—46—1
4 4 3 7 6|5 160315 63
-10 4 5 3 -10| 3 20 1 -5 211
g (1020 101 g -4
I1+3-11I
- 5 2

Die Koeffizientenmatrix besitzt drei pivotisierte Spalten (Spalte zwei, drei
und fiinf), jedoch gibt es nur zwei Nicht-Nullzeilen. Der Rang der Koeffi-
zientenmatrix ist somit zwei und das LGS besitzt folglich zwei gebundene
Variablen. Angesichts von insgesamt fiinf Variablen verbleiben drei Variab-

len, die frei gewahlt werden konnen.

Als gebundene Variable wird zunichst x, gewahlt, da die zweite Spalte
pivotisiert ist und das Pivotelement der zweiten Spalte als einziges in der
ersten Zeile liegt. Als zweite gebundene Variable ist dann entweder x5 oder
x5 zu wahlen. Deren Spalten sind ebenfalls pivotisiert, jedoch befinden sich
ihre Pivotelemente in derselben Zeile, so dass nur eine der beiden Variab-
len gebundene Variable sein kann. Die anderen Variablen sind freie Variab-

len.

Bei einer Wahl von x, und X3 als gebundene Variablen ergibt sich die Lo-

sungsmenge als:
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X1
-2 -5xq —1%x4
L =9| 142X +5x4 —2X5 |,X1,X4,X5 €R
Xy

X5

6.4 Losungen von linearen Gleichungssystemen
in Abhangigkeit von Parametern

Enthalt ein LGS Parameter, so kann sowohl die Losung als auch die Losbarkeit des

LGS von der Wahl der Parameter abhangen.

Eine einfache Moglichkeit, alle Losungen bzw. die Losbarkeit in Abhédngigkeit der
Parameter eines LGS zu bestimmen, besteht darin, die erweiterte Koeffizientenmatrix
vollstandig zu pivotisieren, so dass der Rang der Koeffizientenmatrix von den Parame-
tern unabhéngig ist. Bei der Pivotisierung kénnen EZUs in Abhéngigkeit der Parame-
ter notwendig sein, die fiir bestimmte Werte der Parameter nicht definiert sind bzw.
die Losbarkeit des LGS verandern. Die Division einer Zeile durch einen Term, der
mindestens einen der Parameter enthdlt und in Abhéngigkeit der Parameter somit
Null sein kann, ist nicht definiert fiir diejenigen Parameter(kombinationen), fiir die der
Term Null ist. Des Weiteren kann sich die Losbarkeit eines LGS verandern, wenn eine
zu verandernde Zeile mit einem Term multipliziert wird, der mindestens einen der
Parameter enthdlt und in Abhdngigkeit der Parameter Null sein kann. In diesem Fall
werden alle Koeffizienten der Gleichung zu Null und es konnen Informationen einer

Gleichung verloren gehen.

Sind derartige EZUs bei der Pivotisierung der Koeffizientenmatrix notwendig, so
muss eine Fallunterscheidung vorgenommen werden. Dabei werden die Werte der
Parameter, fiir die unzuldssige EZUs entstehen, in die erweiterte Koeffizientenmatrix
eingesetzt. Anschliefend werden dann jeweils die Losbarkeit und gegebenenfalls die
Losung des LGS separat bestimmt, wobei hier alle Formen der Losbarkeit (keine Lo-

sung, genau eine Losung oder unendlich viele Lésungen) denkbar sind.
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Beispiel 6-4: Losung eines LGS in Abhingigkeit von Parametern

Um die Losbarkeit und gegebenenfalls die Losung des nachfolgenden, die

reellwertigen Parameter a und b enthaltenden LGS

X + axp + 2x3 = 1
2X1 + 5X3 = 3
3x; + axp + axz = b

zu bestimmen, wird die Koeffizientenmatrix vollstandig (und streng) pivo-
tisiert. Zunéchst wird das Element a;, als Pivotelement gewahlt.

L fa 21 nr-1

2 0 5|3

I:a

3 a al|b
Da die EZU eine Division durch a enthalt, welche nur definiert ist, falls
a#0 gilt, muss die Losbarkeit und gegebenenfalls die Losung fiir a =0 se-
parat durch Einsetzen von a =0 in die noch nicht umgeformte erweiterte

Koeffizientenmatrix bestimmt werden. AnschliefSfend wird die erweiterte

Koeffizientenmatrix, in der a nun ersetzt ist, pivotisiert.

Fall1:a=0
10 2] 1 _
8 i ; =211, p | 2 (1) g (1) 11
M-3-1 MI+6-1I
3 00/|b 00 —6|b-3 00 0|b+3

Wie zu erkennen ist, hdangt die Losbarkeit des LGS von b ab. Betrachten wir

zuerst den Fall b+3=0.
Fall1.l:a=0,b=-3

Hier ist rg(A)=rg(Alb)=2<n=3, das LGS besitzt unendlich viele Lo-
sungen. Da x; und X3 eindeutig durch das LGS festgelegt sind, muss X, als
freie Variable gewé&hlt werden und es ergibt sich als Losungsmenge

L= {(71 Xp I)T,x2 € [R}. Im Folgenden ist dagegen b+ 3 #0.
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128

Fall1.2:a=0,b#-3
Da rg(A)=2<rg(Alb) =3, ist das LGS unlosbar.

Nach dieser ausfiihrlichen Diskussion der Losbarkeit des LGS fiir a =0 be-
trachten wir den Fall, in dem die EZU "I :a" definiert ist und fahren mit der

vollstandigen Pivotisierung fort.

Fall2:a#0
vy |y 02 -Y |-/ m:(a-7)
2.1-1/.11
0 5 | 3 . ?I 20 5 3 | 1+,
2 0 a-2|b-1 - 00 b-4) II-5-TI,

Analog zur ersten Fallunterscheidung ist eine Division durch (a —7) nicht
definiert, falls a=7. Eine separate Losungsbestimmung ist somit fiir

a—7 =0 erforderlich und fiihrt zu folgender Fallunterscheidung.

Fall2.1:a=7
1/ _1 20 5 3
02 -% “
20 5 3 |1l |0 2 —% —%
00 0 |b-4 00 0 |b-4

Die Losbarkeit des LGS hangt wiederum von b ab. Sei vorerst b—4=0.
Fall2.1.1:a=7,b=4

Es ist rg(A)=rg(Alb)=2<n=3. Das LGS besitzt somit unendlich viele

Losungen. Wahlt man X3 als freie Variable, so ldsst sich die Losungsmenge

darstellen als ﬂ_:{(%—%x3 —%4+%4x3 x3)T,x3e[R}. Sei nun
b-4=0.

Fall2.1.2:a=7,b=4
Da rg(A) =2 <rg(Alb) =3, ist das LGS unlosbar.

Ist im Folgenden allerdings a —7 # 0, so ist die Division durch (a —7) zulds-

sig und es kann mit der Pivotisierung fortgefahren werden.




Aufgaben

Fall22:a#0,a#7

020 LM
a(a-7)

20 0 3a-5b-1
a—-7

0 0 1 b-d
a—-7

Die Koeffizientenmatrix ist nun vollstandig pivotisiert. Der Rang der Koef-
fizientenmatrix ist nun unabhdngig von den Parametern. Da

rg(A)=rg(Alb)=3=n, hat das LGS in diesem Fall die eindeutige Losung:

T
[ 3a-5b-1 -a+b+3 b-4
2(a-7) 2a(a-7) a-7

6.5 Aufgaben

Aufgabe 6.1:

1 1 2
Wie lasst sich ¢ = [ zj als Linearkombination von a = [ 3] und b= [ 1] darstellen?

Aufgabe 6.2:

Sind die folgenden Vektoren linear unabhéngig? Betrachten Sie hierzu die moglichen
Losungen des linearen Gleichungssystems Xq -a+X, -b+x3-c=0.

T T

a) a=(5 -4 -5)', b=(-5 3 5)', c=(3 2 -3)

b) a=(-1 3 2)', b=(3 -5 -4)', c=(4 6 2)'
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Aufgabe 6.3:
a=(1 3 7 3),b=(2 6 2 2)', c=(1 0 3 d)'

Bestimmen Sie, ob und falls ja, wie sich ¢ mit d €R als Linearkombination von a und b

darstellen lasst.

Aufgabe 6.4:
a=(1 3 2 2),b=(2 3 3 2), c=(-3 4 -1 3),d=3 1 2 ¢)

Bestimmen Sie, fiir welches e e R sich d als Linearkombination von a, b und ¢ darstel-

len lasst und ermitteln Sie gegebenenfalls diese Linearkombination.

Aufgabe 6.5:

a=(9 6 -5)", b=(3 2 —4), c=(1 2 7)", d=(-2 4 -5)

Sind a, b, ¢, d linear abhéngig? Stellen Sie, falls mdglich, a als Linearkombination von b,

cund d dar.

Aufgabe 6.6:

Geben Sie alle Moglichkeiten an, um d als Linearkombination von a, b und c darzustel-

len. Beachten Sie, dass die Darstellung nicht eindeutig ist.

Hinweis: Gesucht ist eine Darstellung der Form a-x; +b-x, +c-x3 =d.

-7 9 -13 3,5
a=|3,5| b=|-3|, c=| 2 |, d=|3,5
6 —4 0 10
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Aufgabe 6.7:
-1 4 10
|3 b o 3 10
2l PR T e
4 3 -2

Untersuchen Sie, ob die Vektoren a, b und c linear unabhéingig sind. Geben Sie an, aus
wie vielen Vektoren die grofitmogliche Teilmenge der drei Vektoren a, b und c besteht,

welche ausschliefilich linear unabhingige Vektoren enthalt.

Aufgabe 6.8:

o[} G B

Bestimmen Sie alle Teilmengen von A bzw. B, die wiederum Teilmengen besitzen,

welche drei linear unabhangige Vektoren enthalten.

Aufgabe 6.9:
a=(1 0 1 1), b=(-1 0 3 -2)', c=(0 2 4 0)"

Sind a, b, c linear abhéngig? Stellen Sie, falls moglich, b als Linearkombination von a

und c dar.
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Aufgabe 6.10:
1 0 2 3 2 4 1 0 -1
4 1 -1 3 2 -1
-2 3 2 1 2 3 1 -1 -4
A=|2 3 0|, B=|6 4 2|, C= , D=
10 2 1 1 1 -1 4 1 0 -3 -1
0 -1 7 0 2 -1 4 6 2 -1 -6 -1
Berechnen Sie den Rang von A, B, Cund D.
Aufgabe 6.11:
2 -1 3
1 2 3 1 2 4 3 =2 7 000
A=|-2 5 -3|,B=|-2 5 13|, C=-2 -9 1|, D=|3 50 0
-5 13 -6 3 -3 4 2 7 4 9 8 2
-1 3 2
Berechnen Sie den Rang von A, B, C und D.
Aufgabe 6.12:
X1 + 2X2 + 4X3 = 3
2Xl + 2X2 + 7X3 = 5
- - x3 = -1
Bestimmen Sie die Losung des Gleichungssystems.
Aufgabe 6.13:
—X1 + 2X2 3X3 4X4 = 11
3X1 — 4X2 5X3 5X4 = -11
—2X1 + 4X2 6X3 2X4 = 2
—6X1 + 4X2 2X3 4X4 = -6
Losen Sie das LGS.
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Aufgabe 6.14:
3X1 + 5X2 - 2X3 - 4X4 = 4
X1 + 13X2 + 4X3 - 2X4 = 18
—2X1 + 15X2 + 2X3 - 3X4 = 22
6X1 - 6X2 - 3X3 - 2X4 = -13

Bestimmen Sie die Losung des Gleichungssystems.

Aufgabe 6.15:
3X1 + 8X2 + 2X3 + 2X4 = 18
—7X1 + Xy + 8X3 — 6X4 = 2
X1 + 6X2 - 2X3 + 6X4 = 2
—4X1 + 5X2 - X3 + 6X4 = -9

Losen Sie das lineare Gleichungssystem.

Aufgabe 6.16:
3X1 + 2X2 + 3X3 - 3X4 = 5
2X2 + X3 - 2X4 - X5 = 6
Xq + 4X5 = -7

a) Bestimmen Sie die Losung des LGS. Wahlen Sie x, und x5 als freie Variablen.

b) Waren anstelle von x, und x5 auch X4 und X5 gleichzeitig frei wahlbar?

Aufgabe 6.17:

Eine (3x3)-Matrix A hat einen Rang von 2. Was folgt daraus fiir die Losbarkeit des
Gleichungssystems A-x=b?
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Aufgabe 6.18:
X] + Xp o+ 2x3 — 8x4 =
X1 + 2X2 + X3 — 4X4 = 5
2X1 + 3X2 + 2X3 - 7X4 = 10
3X1 + ZXZ + X3 + 2X4 = 11
Losen Sie das LGS.
Aufgabe 6.19:

Ein Gleichungssystem besitzt folgende Losungsmenge:

—2+X3
4+X3
L= /X3 eR
X3

14-2x5

a) Ermitteln Sie den Wertebereich fiir die freie Variable, fiir den sich eine nicht-

negative Losung ergibt.

b) Fiir welche Werte von aeR ist der Vektor v=(2 2a 4 a+2)T eine mogliche

Losung?
Aufgabe 6.20:
X1 + 2X2 + 2X3 + X4 = 6
2x;7 + Xp o+ X3 + 2x4 = 9
X1 + 2Xp 4+ 2x3 - X4 = 2
3X1 + 3X2 + 3X3 + 3X4 = 15

a) Losen Sie das LGS.

b) Ermitteln Sie die Wertebereiche fiir die freien Variablen, fiir die sich eine nichtne-

gative Losung ergibt. Geben Sie drei nichtnegative, ganzzahlige Losungen an.
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Aufgabe 6.21:

Il
(@)

2X;7 = Xp + 3x3

|
o

X1 + Xp - 3X3

Losen Sie das LGS und bestimmen Sie den Wertebereich fiir die freie Variable, so dass

sich nur positive Losungen ergeben.

Aufgabe 6.22:
% X1 — Xz + % X3 - % X4 = %
X1 + 3X2 - 9/2X3 + 8X4 = %
5X1 + 3X2 - 1% X3 + 12X4 = 1%
—8X1 - 6X2 + 12X3 - 22X4 = -12

a) Losen Sie das LGS mit x5 und X4 als freien Variablen.

b) Koénnen x; und X3 gemeinsam freie Variablen sein?

Aufgabe 6.23:
2X1 + 3X2 = 2
X7 + 4x, = -5
31 + x, = -1
Losen Sie das LGS.
Aufgabe 6.24:
2X1 + Xp + 4X3 + 3X4 = 2
X1 - Xo - X3 — 3X4 = 7
X1 + 2X2 + 5X3 = -5

a) Losen Sie das LGS.

b) Bestimmen Sie alle nichtnegativen Losungen des LGS.
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Aufgabe 6.25:
X1 + Xo + 2X3 - 8X4 =
X1 + 2X2 + X3 - 4X4 = 5
2X1 + 3X2 + 2X3 - 7X4 = 10
3X1 + 2X2 + X3 + 2X4 = 11

a) Bestimmen Sie die Losung des obigen Gleichungssystems.

b) Fiir welche Werte von a€R ist der Vektor v = (a +2 2 8 Z)T eine Losung des
obigen LGS?

Aufgabe 6.26:
X1 + 3X2 - X3 = 2
2x; + 5xy + 2x4 = 7
X; + 2Xp + X3 + 4x4 = 6
3X1 + 9X2 - 3X3 = 6

a) Bestimmen Sie die Losung des obigen Gleichungssystems.

T
b) Fiir welche Werte von a€R ist der Vektor v :(—2 a 2 12) eine Losung des
obigen LGS?

Aufgabe 6.27:

Geben Sie die Losbarkeit und die Losung des nachfolgenden LGS in Abhéngigkeit von

aeR an.
X7 + ax, =0
2X1 + Xp = 4
Aufgabe 6.28:
X;] + X + axzg = 7
2X1 + 4X3 =
3X1 - 2X2 + 8X3 = 6
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Losen Sie das LGS in Abhéngigkeit von a eR.

Aufgabe 6.29:
3xy - 6ax, = 3a
ax, - x5 = 1
-2x1 + 4ax3 = 0
Losen Sie das LGS in Abhéngigkeit von a eR.
Aufgabe 6.30:
ax; — 2xp + 4xz = 1
31 + 3xp — 4x5 = 1
5% + Xo + 2x3 = -1

Losen Sie das Gleichungssystem in Abhangigkeit von aeR.

Aufgabe 6.31:
5x; - X + 3axz = 0
4X1 + 5X2 - 3X3 =0
—2X1 + Xz =0

Losen Sie das LGS in Abhéangigkeit des Parametersa eR.

Aufgabe 6.32:

Il
N

Xy — Xp — Xz — 3x4

Il
N

2X1 + X + 4X3 - 3X4
X1 + 2X2 + 5X3 =

Losen Sie das LGS in Abhéngigkeit von a eR.
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Aufgabe 6.33:

—4X1 + 3X2

|
[oal )

5X1 - 4X2

—3X1 + 2X2

Unter welcher Bedingung fiir a,b,c €R ist das LGS l6sbar? Bestimmen Sie fiir diesen

Fall die Losung.

Aufgabe 6.34:

Gegeben sei die folgende partitionierte Matrix mit a e R:

1 21 a
A=(A;|Ag)=[1 2|1 2a
2 4(2 2a

a) Bestimmen Sie rg(A;), rg(Ay) und rg(A) fiiraeR.

b) Welche Aussagen konnen Sie demnach {iber die lineare (Un-) Abhéngigkeit der
Zeilen und Spalten von A, A und A treffen?

¢) Kann ein LGS A-x =b mit oben genanntem A als Koeffizientenmatrix eine eindeu-

tige Losung besitzen? Falls ja, was muss hierbei fiir a€R gelten?

d) Ist ein LGS A-x=Db mit oben genanntem A als Koeffizientenmatrix iiberhaupt
16sbar? Was muss hierbei fiir den Ergebnisvektor b = (bl b, b3)T gelten? Wiare
demnach ein LGS mit b = (1 2 a- 1)T losbar?

Aufgabe 6.35:

Es sei AeR™" (d.h. A ist eine Matrix mit m Zeilen und n Spalten). Wie Sie wissen gilt

0<rg(A)<min{m;n}. Welche Aussage konnen Sie iiber den Rang von A treffen,
a) fallsm<n?

b) falls m <n und die Matrix k Nullzeilen enthalt
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Aufgaben

¢) falls m >n und die Matrix k Nullzeilen enth&lt?

Fassen Sie Ihre Aussagen so prézise wie moglich.

Aufgabe 6.36:

a) Losen Sie das folgende LGS in Abhéngigkeit des Parameters a €R:

3 -1 1 a
-6 0 |-x=|-2a+2

2
o %
Im Weiteren betrachten Sie das folgende allgemeine LGS mit AeR™" und beR™:
A-x=b
b) Geben Sie anhand des Rangkriteriums an, unter welcher Bedingung das LGS ein-

deutig l6sbar ist.

¢) Geben Sie, falls moglich, eine Bedingung fiir beR™ an, unter welcher das LGS

unabhingig von der Gestalt der Koeffizientenmatrix A immer 16sbar ist.

d) Geben Sie, falls moglich, eine Bedingung fiir beR™ an, unter welcher das LGS

unabhingig von der Gestalt der Koeffizientenmatrix A immer eindeutig losbar ist.

e) Gehen Sie im Weiteren von einem quadratischen LGS aus, es gelte also m =n.
Konnen Sie eine Aussage tliber die Losbarkeit des abgeédnderten LGS mit transfor-

mierter Koeffizientenmatrix AT -x=b treffen, falls:
i) A-x=b eindeutig losbar ist?

ii) A-x=Db unendlich viele Losungen besitzt?

Aufgabe 6.37:
(4a+3)x; + 2xp =
3xq + X + (a-2)x3 = 2
axq + X, o+ X3 = 2

a) Losen Sie das LGS in Abhangigkeit von a eR.
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(4a+3)x; + 2x,
3xq +
axq + Xy o+
—axq +

X, + (a=-2)x3 =

X3

3x, + (a+1,5)x3 =

|
o O © O

b) Fiir welche Werte von a €R besitzt dieses um eine Gleichung erweiterte, nun ho-

mogene Gleichungssystem unendlich viele Losungen? Bestimmen Sie fiir diesen

Fall die Losung.
Aufgabe 6.38:
4x; + 3xp - 6x3 - 4xq4 = 21
2X1 + Xo - 3X3 - 2X4 = 7
7x;1 - 2ax, + X3 = 3b
-3x1 + 1,5x3 + x4 = —4a
Losen Sie das LGS in Abhéngigkeit von a,b €R.
Aufgabe 6.39:
X1 + 2X2 + 3X3 = 3
2X1 + Xy + bX3 = 2
X] — Xo 4+ axz = 2

Losen Sie das LGS in Abhéngigkeit von a,b eR.

Aufgabe 6.40:
(2a-4)x; - 4x, + (6+2b)xg = 2
2X1 + 4X2 - bX3 =1
2X1 - 4X2 + (b - 2)X3 =1

Losen Sie das LGS in Abhéngigkeit von a,b €R.
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Aufgabe 6.41:

Gegeben sei das folgende LGS in Matrixform mit a,b e R:

2 4 -1 0 4
1 4a 2 -1 |-x=| -1
3 6 0 a-Y b+7

a) Bestimmen Sie a€R so, dass die Zeilen der Koeffizientenmatrix linear abhangig

sind.

b) Bestimmen Sie a€R so, dass die Spalten der Koeffizientenmatrix linear abhéngig

sind.

c) Bestimmen Sie die Lésung des LGS in Abhéngigkeit von a,b € R.

Aufgabe 6.42:
2bX1 + 8X2 - 5X3 = 11
2bx; + 12x, + (b-6)x3 = a+9
4X2 - 4X3 = 4

Losen Sie das LGS in Abhéngigkeit von a,b €R.

Aufgabe 6.43:

2bx; + bx, + abxy ab

X; o+ %xz + %ax3 %b+1

6x; + 4x, + Dbaxzg = —2a+7/2b+2

Losen Sie das LGS in Abhéngigkeit von a,b eR.
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Aufgabe 6.44:

Sie betrachten die nachfolgende Matrixgleichung mit der Koeffizientenmatrix A und

a,beR:

a 1 1 1
2 1 2|-x=|0
01 a b

a) Bestimmen Sie det(A).
b) Bestimmen Sie rg(A) und rg(A | b).

c) Losen Sie die Matrixgleichung und geben Sie die Losung in Abhéngigkeit von
a,beR an. Geben Sie explizit an, fiir welche Werte der Parameter ein zugrunde

liegendes LGS 16sbar ist.

d) Setzen Siea=1und b=0. Geben Sie dann die Losung an.

Aufgabe 6.45:

Gegeben sei die Koeffizientenmatrix A e R™" eines allgemeinen LGS in Matrixform

A-x=b.

a) Falls rg(A)=m gilt, sind dann die Zeilen oder Spalten von A stets 1. u.? (Begriin-
den Sie Thre Antwort.)

b) Nennen Sie das Rangkriterium zur Bestimmung der Losbarkeit von LGS.
¢) Welche Losbarkeiten verbleiben fiir das LGS, falls

i) rg(A)=m gilt?

ii) rg(A)=n gilt?
d) Wie verdndert sich Ihre Antwort in Aufgabe c), falls zudem b =0 gilt?

e) Welche Losbarkeiten verbleiben fiir das LGS, falls A die (m x n)-Nullmatrix ist, also
A =0 gilt? Verdndert sich Thre Antwort, falls das LGS quadratisch ist, also m =n

gilt? Falls ja, inwiefern?
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Aufgaben

f) Gegeben sei die Matrix

4 1 =2
B=|0,5 2 -0,25
-1 3 0,5

i) Zeigen Sie eine Moglichkeit auf, die zweite Zeile der Matrix B als Linearkombi-

nation aus anderen Zeilen darzustellen.

ii) Ist auch die zweite Spalte der Matrix B als Linearkombination anderer Spalten

darstellbar?

143

6.5



7  Vektorraumtheorie

7.1 Axiome des Vektorraums

In diesem Kapitel werden die Rechenobjekte Matrix sowie Zeilen- und Spaltenvektor
néher charakterisiert. Dabei wird zunédchst der Vektorraum als eine elementare, alle
relevanten Rechenobjekte differenziert erfassende Grofie eingefiihrt. AnschliefSend
konzentrieren wir uns auf Vektorraume, welche ausschlieSlich (m x1)-Vektoren ent-
halten. Zu solchen zdhlen unter anderem Losungsmengen linear homogener Glei-
chungssysteme, womit auch hier unser Fokus auf die Losung linearer Gleichungssys-

teme wieder hergestellt ist.

Definition 7-1: Axiome des Vektorraums

Es sei V= eine Menge, auf welche die folgenden Rechenoperati-

onen definiert seien:

Vektoraddition (Operationszeichen "@®") nach der Vorschrift
YxV¥Y —-YVY. Das heillt, die Addition zweier Elemente aus V bilde
ein Element aus V ab, die Vektoraddition sei somit abgeschlos-

sen.

Multiplikation mit einem Skalar (Operationszeichen "®") nach
der Vorschrift RxY — V. Das heif3t, die Multiplikation eines Ska-
lars mit einem Element aus V bilde ein Element aus V ab, die

Multiplikation mit einem Skalar sei somit abgeschlossen.

Erfallt die Menge VY die nachfolgenden Rechengesetze, heillt Vv
Vektorraum. Die Elemente von V heilen Vektoren. Im Folgenden

seien x,y,zeV sowie a,b,c eR:
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Vektorraumtheorie

Assoziativgesetz der Vektoraddition:
(x®y)@z=x®(yDZ)

Assoziativgesetz der Multiplikation mit einem Skalar:
a®(b®x)=(a-b)®x

Kommutativgesetz der Vektoraddition:

X@Yy=y®X

Distributivgesetze der Multiplikation mit einem Skalar:
(a®z)®(b®z)=(a+b)®z, (a®x)®(a®y)=a®(x®y)
Existenz eines neutralen Elements der Vektoraddition:
Joey X®0=0®x=x

Existenz eines inversen Elements der Vektoraddition:
Jxjev X® (x)=(—x)®x=0

Existenz eines neutralen Elements der Multiplikation mit einem
Skalar:

Jieg 1®Xx =X

Es sei V die Menge aller (m x 1)-Matrizen, auf die analog zu Abschnitt 1.2 eine Vektor-
addition und eine Multiplikation mit einem Skalar fiir x,y €V und a€R definiert

seien durch:

X1 Y1 X1+y1 Xq a-xq
Xi |®| yi [=] Xity; |sowiea®| x; |=| a-x;
Xm Ym Xm T ¥Ym Xm a- Xy

Es erfiillen dann x,y €V die oben genannten Rechengesetze. (m x1)-Matrizen sind
demnach im Grunde Vektoren und die Menge aller (m x1)-Matrizen ist ein Vektor-

raum.

146



Axiome des Vektorraums

Nun sei V die Menge aller (m xn)-Matrizen, auf die analog zu Abschnitt 1.2 eine Vek-
toraddition (in diesem Fall die Matrixaddition) und eine Multiplikation mit einem

Skalar fiir A,Be VY und a €R definiert seien durch:

ajp o ap by; -+ by ajp+byp -+ ap +byy
: el o s = : : sowie
aml " Qmn bml bmn am1+bm1 amn+bmn
by - by, a-by - a-by,
a®| .= : E :
b - b a-by; - a-by,

Auch dann erfiillen alle A,B eV die oben genannten Rechengesetze. (m x n)-Matrizen

sind demnach Vektoren und die Menge aller (m x n)-Matrizen ist ein Vektorraum.

Sei dagegen V die Menge der ganzen Zahlen Z, auf die eine Vektoraddition bzw. eine
Multiplikation mit einem Skalar in iiblicher Weise fiir x,y eV und a€R definiert
seien durch:

x®@y:=x+y sowiea®x:=a-x
In diesem Fall handelt es sich bei ¥ um keinen Vektorraum, da die Multiplikation mit
einem Skalar auf Z nicht abgeschlossen ist. Wird beispielsweise als reellwertiger Ska-
lar a=0,5 und als ganzzahliges Element x =3 gewahlt, so resultiert a-x=0,5-3=1,5,

wobei das Ergebnis keine ganze Zahl und somit kein Element von V ist.

Nachfolgend sei wiederum V die Menge aller (m x1)-Vektoren, auf die allerdings
abweichend vom ersten Beispiel eine Vektoraddition und eine Multiplikation mit

einem Skalar fiir X,y € V und a €R definiert seien durch:

Xl a- Xl
X1 Y1 X1+tY1
. X ax
Xi |®yi |=| Xj+y; |sowiea®| . |=
Xm-1 a-Xm_1
Xm Ym Xm + Ym X 0
m

Nun existiert kein neutrales Element der Multiplikation mit einem Skalar, so dass stets
1®x=x gilt. In diesem Fall ist die Menge aller (m x1)-Spaltenvektoren wegen der

besonderen Definition der Multiplikation mit einem Skalar kein Vektorraum.
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7.2 Spezielle Vektorraume und Unterraume

Im Weiteren seien die Vektoraddtion und die Multiplikation mit einem Skalar auf
herkommliche Weise (analog zu Abschnitt 1.2) definiert. Wir betrachten nun die Men-

gen aller (m x 1)-Spaltenvektoren als Vektorraume, somit die verschiedenen R™.

Definition 7-2: Unterraum des R™

Falls fiir eine nichtleere Teilmenge U des R™ alle Vektorraumaxio-

me gelten, heilRt U Unterraum des R™.

Ist U ein Unterraum des R™, so miissen unter anderem die Abgeschlossenheiten der
Vektoraddition und der Multiplikation mit einem Skalar gegeben sein. Somit muss fiir
je zwei Elemente u,v e U und a €R gelten, dass sowohl die Vektorsumme von u und v
als auch das Produkt aus Skalar und Spaltenvektor in U enthalten sind, also u+veU
sowie a-ueU. Aus letztgenanntem folgt direkt, dass jeder Unterraum des R™ den
Nullvektor 0 enthélt, denn wird fiir den Skalar a =0 gewdhlt, so ergibt sich als Pro-

dukt des Skalars mit einem beliebigen Element u des Unterraums der Nullvektor.

Hieraus kann man unter anderem Folgendes ableiten:

Der R™ ist immer Unterraum des R™.

Der ausschlief8lich aus dem Nullvektor bestehende Unterraum, der Ursprung also,

ist immer Unterraum des R™.

Alle Unterrdume des R? sind demnach der R?, alle Ursprungsgeraden und der

Ursprung.

Alle Unterraume des R® sind der R, alle Ursprungsebenen, alle Ursprungsgera-

den und der Ursprung.

Es sei ausdriicklich darauf hingewiesen, dass die verschiedenen Vektorraume R™ in
keiner Beziehung zueinander stehen. Sie enthalten Spaltenvektoren unterschiedlicher
Ordnung, weshalb sie nicht miteinander verkniipft werden kénnen. Somit ist, selbst

falls n < m, der R™ kein Unterraum des R™.
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7.3 Erzeugendensystem, Basis und Dimension
von Unterraumen

Neben dem R™, der alle (m x1)-Spaltenvektoren enthilt, erfiillen auch bestimmte
Teilmengen des R™ die Anforderungen an einen Unterraum. Unterrdume des R™
werden durch ein Erzeugendensystem oder eine Basis dargestellt. Die Dimension

beschreibt den jeweiligen Unterraum néher.

Definition 7-3: Erzeugendensystem (EZS)

Enthalt die Menge A ={a,...,a,} ausschlieBlich (mx1)-Vektoren, so
bildet die Menge aller Linearkombinationen der Vektoren aus A ei-
nen Unterraum des R™. Dieser Unterraum wird mit [A] bezeichnet.

A selbst heil3t dann Erzeugendensystem dieses Unterraums.

Ein EZS ist demnach eine Menge mit endlich vielen (abzdhlbaren) Spaltenvektoren
gleicher Ordnung. Der von dem EZS erzeugte Unterraum hingegen enthalt alle Line-
arkombinationen der Vektoren des EZS, also unendlich viele. Dartiber hinaus kann
jede nichtleere Menge, welche (m x1)-Spaltenvektoren gleicher Ordnung beinhaltet,
immer ein EZS irgendeines Unterraums des R™ bilden, denn es lassen sich immer
unendlich viele Linearkombinationen aus den Vektoren des EZS bilden. Selbst wenn
die Menge nur aus einem einzigen Vektor besteht, kann dieser mit jeder beliebigen
reellen Zahl multipliziert werden, so dass immer neue Linearkombinationen des Aus-
gangsvektors entstehen. Der hierdurch gebildete Unterraum ist dann eine Ursprungs-
gerade. Jeder Unterraum wird zudem von unendlich vielen verschiedenen EZS er-
zeugt. Die einzige Ausnahme bildet der R :[{0}], welcher stets nur einen Vektor

(den Ursprung) enthalt.

Ist ein beliebiger Vektor w €[A], so ist w eine Linearkombination der Vektoren aus A,
und es gilt definitionsgemafs w =x;-aj +---+ X, -a,, . Diese Gleichung ist 16sbar, aber

nicht zwingend eindeutig 16sbar.
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Ein Erzeugendensystem eines vollstindigen R™ muss m linear unabhéngige (m x1)-
Vektoren enthalten, denn nur dann lésst sich jeder beliebige (m x 1)-Vektor als Linear-

kombination der Vektoren des EZS darstellen.

Definition 7-4: Basis

Die Menge B={by,...,b} ist eine Basis von [A], wenn sie ein Er-
zeugendensystem von [A] ist und ihre Vektoren I. u. sind. Sie bil-

det ein minimales Erzeugendensystem.

Eine Basis ist demnach ebenfalls eine Menge mit endlich vielen (abzdhlbaren) Spalten-
vektoren, denn auch sie ist ein EZS. Allerdings enthélt eine Basis eines Unterraums
nur linear unabhangige Vektoren, also die minimale Anzahl an Vektoren, die notwen-
dig ist, um den betreffenden Unterraum zu erzeugen. Derselbe Unterraum ldsst sich
durch unendlich viele verschiedene Basen darstellen. (Die einzige Ausnahme bildet

wiederum der [RO.)

Ist ein beliebiger Vektor w e[A], so ist w eine Linearkombination der Vektoren einer
Basis B von [A], und es gilt w=x;-b; +---+xy -by. Diese Gleichung ist eindeutig

16sbar.

Zwei Basen des selben Unterraums besitzen somit stets gleich viele Elemente.

Definition 7-5: Dimension

Die Dimension eines Unterraums gibt die Machtigkeit des Unter-
raums an und resultiert aus der Anzahl der Vektoren einer Basis.
(Die einzige Ausnahme bildet der Unterraum [{0}], welcher zwar
einen Vektor enthélt, jedoch die Dimension Null besitzt. Die Di-

mension eines Unterraums U wird mit dim([U) bezeichnet.

Ist die Dimension eines Unterraums gleich n, so ist jedes EZS des Unterraums, das

genau n Vektoren enthilt, eine Basis des Unterraums. Um einen n-dimensionalen
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Unterraum zu erzeugen, werden mindestens n Vektoren bendtigt. In einem n-
dimensionalen Unterraum sind hochstens n Vektoren linear unabhingig, so sind bei-
spielsweise vier Vektoren des R3 immer linear abhéngig. Eine Menge A, die diese

Vektoren enthilt, ist demnach keine Basis von [A].

Jeder Unterraum eines R™ lasst sich durch seine Erzeugendensysteme und seine Ba-
sen eindeutig beschreiben. Die Dimension gibt lediglich eine nahere Beschreibung.
Ausgehend von einem EZS eines Unterraums konnen Basis und Dimension einfach
bestimmt werden. Hierzu werden die Spaltenvektoren aus dem EZS in die Zeilen einer
Matrix geschrieben, welche durch EZUs, wie bei der Rangbestimmung, in eine Trep-
penmatrix iiberfithrt wird. EZUs fithren zu Linearkombinationen der Zeilen einer
Matrix. Die Nicht-Nullzeilen der Treppenmatrix sind folglich Linearkombinationen
der Vektoren des EZS und erzeugen somit denselben Unterraum wie das EZS. Durch
die Umformung in eine Treppenmatrix sind die entstehenden Nicht-Nullzeilen jedoch
1. u. Werden die Nicht-Nullzeilen nun wiederum als Spaltenvektoren in einer Menge
zusammengefasst, erhdlt man eine Basis des Unterraums. (Werden die Vektoren des
EZS hingegen in die Spalten einer Matrix tibernommen, miissen zur Basisbestimmung
elementare Spaltenumformungen verwendet werden, damit es sich weiterhin um
Linearkombinationen der Vektoren handelt.) Da die Dimension des Unterraums der
Anzahl der Vektoren in der Basis entspricht, ergibt sie sich auch aus dem Rang der

Matrix.

Beispiel 7-1: Bestimmung von Basis und Dimension eines

Unterraums

Sind eine Basis und die Dimension des von der Menge

1 (-1)(2
A={1]||-6]||-3
3)\-3){6

erzeugten Unterraums zu bestimmen, so werden die Vektoren aus A in die
Zeilen einer Matrix geschrieben und diese in eine Treppenmatrix {iber-

flihrt:
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1 3 113 1 1 3
I+1

1 -6 3 0o 0 [-5] o m-1 [0 -5 0

2 -3 6 0 -5 0 0 0 0

Eine Basis von [A] enthilt die Nicht-Nullzeilen der Treppenmatrix. Folg-
lich ist

eine Basis von [A]. Die Dimension von [A] entspricht dem Rang der Mat-
rix, folglich gilt dim([A])=2. A spannt somit einen zweidimensionalen

Unterraum des R auf.

7.4 Losungsmengen von linear homogenen
Gleichungssystemen als Unterraume

Die in Kapitel 6.3 betrachteten Losungsmengen von mehrdeutig losbaren linearen
Gleichungssystemen enthalten unendlich viele Losungsvektoren, doch erfiillen nicht
alle Losungsmengen die Kriterien an einen Unterraum. Losungsmengen inhomogener
LGS verletzen die Kriterien der Abgeschlossenheit beziiglich der Vektoraddition bzw.
der Multiplikation mit einem Skalar. Dagegen geniigen Losungsmengen linear homo-
gener Gleichungssysteme den Vektorraumaxiomen, Vektoraddition und Multiplikati-
on mit einem Skalar sind hier abgeschlossen. (Ausgehend von der Definition eines
Unterraums des R™ muss also zum einen die Losungsmenge des LhGS L, nicht leer
sein und eine Teilmenge eines R™ darstellen. Zum anderen miissen die auf Ly, defi-
nierten Operationen Vektoraddition sowie Multiplikation mit einem Skalar abge-
schlossen sein und die Axiome des Vektorraums erfiillen.) Eine Betrachtung von Ly,

fithrt zu:
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L4, ist nie leer, da der Nullvektor immer eine Losung des LhGS A -x =0 ist.

L1, ist immer eine Teilmenge eines R™ (m entspricht dabei der Anzahl der Variab-

len des LhGS).

Die auf L}, definierte Vektoraddition ist abgeschlossen. Sind u,v €L}, so erfiillen u
und v jeweils das LhGS, es gilt A-u=0und A-v=0.Ist L} abgeschlossen beziig-
lich der Vektoraddition, muss u+v elLy, und somit A-(u+v)=0 erfiillt sein. Auf-
grund des Distributivgesetzes ergibt sich A-(u+v)=A-u+A-v=0+0=0. Somit

ist u+v elly, immer erfiillt.

Die auf L, definierte Multiplikation mit einem Skalar ist abgeschlossen. Ist uelLy,
und ceR, so erfiillt u das LhGS, es gilt A-u=0. Ist L}, abgeschlossen beziiglich
der Multiplikation mit einem Skalar, muss c-u el }, und somit A-(c-u)=0 erfiillt
sein. Aufgrund des Assoziativgesetzes der Matrixmultiplikation und der Kommu-
tativitdt der Multiplikation mit einem Skalar folgt A-(c-u)=c-(A-u)=c-0=0.

Somit ist c-u €L}, immer erfiillt.

Falls die Vektoraddition und die Multiplikation mit einem Skalar entsprechend

Kapitel 1.2 definiert sind, erfillt L ,c R™ immer die Axiome des Vektorraums.

Da es sich bei Losungsmengen von LhGS somit immer um Unterrdume eines R™
handelt, konnen fiir diese eine Basis und die Dimension bestimmt werden. Dazu wird
der allgemeine Losungsvektor in eine Summe einzelner Vektoren zerlegt, die jeweils
nur eine der freien Variablen enthalten. Anschlieffend werden die freien Variablen aus
den einzelnen Vektoren ausgeklammert. Es entsteht eine eindeutige Darstellung aller
Losungsvektoren durch die Vektoren einer Basis der Losungsmenge. Alle Linearkom-
binationen der Basisvektoren geben alle Losungen des LhGS wieder. Die Dimension
der Losungsmenge des LhGS entspricht der Anzahl der Basisvektoren bzw. der An-
zahl der freien Variablen in der Losungsmenge. Es gilt dim (IL},) = m —rg(A10).

Beispiel 7-2: Bestimmung einer Basis und der Dimension von Ly,
Um eine Basis der Losungsmenge

[Lh: {(3X2 - 4X3 Xy Xz —Xp+ 2X3 )T s X2,X3 € [R}
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zu bestimmen, wird der allgemeine Losungsvektor so zerlegt, dass sich je-

der Losungsvektor eindeutig aus Basisvektoren darstellen lasst:

3xy —4x3 3%, —4x3 3 —4
Xo Xp 0 1 0
X3 1o i X3 X2 ey

—X5 +2X3 —Xp 2x3 -1 2

Anschlieflend werden die Basisvektoren in eine Menge

3) (4
110
B=1 0|1
1) 2

ibernommen, welche eine Basis von L}, ist. Die Dimension von L}, ent-

spricht der Anzahl der freien Variablen und ist somit 2.

7.5 Aufgaben

Aufgabe 7.1:

a) Abweichend von den tiblichen Normen sei fiir x,y,zeV=R™ die Vektoraddition

z=Xx®@Yy definiert als:

2x; falls 8i=i2+15
zi = yiz falls  0,5(i+1)eN={1,2;3;...}

Xj +y; sonst

Bestimmen Sie z firx=(4 -2 1 1 3 —7) undy=(2 4 -1 0 2 8)".
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b)

9)

d)

Aufgaben

Nun sei fiir x,y,ze ¥V =R™ die Vektoraddition z =x®y definiert als:

2x;  falls  8i=i?+15
7 =1y? falls  0,5(x;+1)eN={1;2;3;...}
Xj +y; sonst

Bestimmen Sie erneut z fiir obiges x und y.

Worin liegt die Problematik der Definition in Teilaufgabe b)? Geben Sie exakt an,

wann sie sichtbar wird.

Es sei nun V=R’ mit a=(2 -5 -2)', b=(1 3 8)', c=(3 4 1)". Bilden Sie
unter Verwendung der Definition aus Teilaufgabe a) die Vektorsummen a®b,
b®a, (a®b)®cund a®(b® c). Ist die Vektoraddition auf V abgeschlossen? Sind
das Kommutativgesetz und/oder das Assoziativgesetz bzgl. der Vektoraddition auf
V erfiillt? Existiert ein neutrales und/oder ein inverses Element der Vektoraddition

auf Y? Handelt es sich bei ¥ um einen Vektorraum?

Aufgabe 7.2:

b)

a=(1 2 1), b=(0 1 -1)", c=(1 0 2)'

Bilden die Vektoren a, b, ¢ eine Basis des R3? Stellen Sie hierzu den Vektor d e R>

allgemein als Linearkombination aus a, b und c dar.

Berechnen Sie, wie sich der spezielle Vektor e = (7 5 Z)T durch a, b und ¢ dar-

stellen 1&sst.

Aufgabe 7.3:

a)

b)

a=(2 -1 0)', b=(0 3 -2)}, c=(4 5 2)'
Bilden die Vektoren a, b und c eine Basis des R3?

Liegt der Vektor d = (6 -8 5)T in dem von a, b und c aufgespannten Unterraum

U des R3? Falls ja, stellen Sie d mittels a, b und c dar.
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Aufgabe 7.4:
vi=(1 2 0)', va=(2 0 3)", vz=(1 2 3)"

Bestimmen Sie eine Basis und die Dimension des von vy, vy, v3 aufgespannten Unter-

raums.

Aufgabe 7.5:

Geben Sie vier Basen des R° an.

Aufgabe 7.6
A:{(4 13,231,411, -3 O)T}
a) Ist A ein Erzeugendensystem des R*?
b) Welche Dimension hat [A]?
c) Bestimmen Sie eine Basis von [A].

d) Liegt der Vektor x=(8 6 S)T in [A]?

Aufgabe 7.7:
4 4 —4 8
2 b 2 6 d 0
el P T s O] s
4 -3 1 5

a) Liegtd in dem von a, b und c erzeugten Unterraum U?
b) Welche Dimension hat U?

¢) Bilden a, b und d eine Basis von U?
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Aufgaben
Aufgabe 7.8:
1 0 3 7
A 6| |3 |-7] |-9
o572
-2) \-8 5 8
Bestimmen Sie die Dimension und eine Basis von [A].
Aufgabe 7.9:
1 3 2 4
A 2 4 -1/ 10
o -1 f1] |3
1 0 1 5
a) Bestimmen Sie eine Basis und die Dimension von [A].
b) Ist A ein Erzeugendensystem des R3 oder des R*?
Aufgabe 7.10:
. 2 (1 3 1 3 2
A2—13[|32_21(E—2—2—64
- 3 7 2 7 4 s - 1 7 1 7 2 7 - 1 7 78 7 8 7 2
- 4)\l2)(5) (1

a) Bestimmen Sie je eine Basis des von A, B und C aufgespannten Unterraums.

b) Geben Sie an, welchen Unterraum die jeweiligen Mengen erzeugen. Formulieren
Sie dabei wie folgt: "Die Vektoren der Menge ... bilden einen n-dimensionalen Un-

terraum des R™".
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Aufgabe 7.11:

a) Handelt es sich bei A um ein Erzeugendensystem des R*?
b) Welche Dimension besitzt der von A erzeugte Unterraum?
c) Nennen Sie eine Basis von [A].

d) Fiir welches a €R liegt der Vektor v=(a 2 3 4)T in[A]?

Aufgabe 7.12:

2) (0 1 2 %

2\ (4) (-1
- = - 4 _
A{[J,[J,[_J},B 11,11, 13, ¢ 1,4,[0
3) (1) |4 3) |4

a) Welche Dimension besitzt der von B erzeugte Unterraum?

b) Nennen Sie eine Basis von [B].

1 4
0 ’
2

¢) Handelt es sich bei einer oder mehrerer der Mengen A, B, C, D um eine Basis eines

zweidimensionalen Unterraums des R>? Falls ja, bei welcher oder welchen?

Aufgabe 7.13:

a) Geben Sie, falls moglich, eine Basis eines dreidimensionalen Unterraums des R* an.

b) Geben Sie, falls moglich, eine Basis eines vierdimensionalen Unterraums des R3 an.
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Aufgabe 7.14:
4 4) (-2 7 10
-1 |2 1 -2 -3
A=<51 1], |38 ]9
9 4 -5 14 15
-1 2 1 -2 -3

a) Welche Dimension besitzt der von A aufgespannte Unterraum [A]?
b) Nennen Sie eine Basis von [A].

c) Wie viele linear unabhéngige Vektoren kann eine beliebige Menge B — R® hochs-

tens enthalten?

d) Wie viele linear unabhingige Vektoren muss eine Menge B  R® enthalten, damit

gilt R® [A UBJ, und was muss fiir diese gelten?

Aufgabe 7.15:
. 5 1 7 -2 -2 -3 -1
A 3 ) B 2 4 1 c 5 7 1
- 7 7 _2 7 - _4 7 —6 7 _3 7 - 3 7 3 7 _3
B 3 1 4 -4 -2

a) Erweitern Sie die Menge A so, dass der ganze R3 aufgespannt wird.
b) Erweitern Sie die Menge B so, dass der ganze R* aufgespannt wird.
c) Geben Sie eine Basis von [C] an.

d) Geben Sie die Dimension von [C] an.

Sie haben keine naheren Angaben iiber die Mengen D und [E, wissen aber, dass [[D] ein

dreidimensionaler und [[E] ein fiinfdimensionaler Unterraum des R” ist.
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e) [ sei die Vereinigungsmenge von D und E, das heifit F=D UE. Geben Sie die mog-

lichen Dimensionen von [F] an.

f) G sei die Schnittmenge von D und [E, das heilt G=[D NE. G ist nicht die leere Men-

ge. Geben Sie die moglichen Dimensionen von [G] an.

Aufgabe 7.16:

1) (=2) (-3
20 l1]]o] o
AVollollol]o
3 -1 a -1

a) Was muss fiir a,b R gelten, damit A einen zweidimensionalen Unterraum des R*

erzeugt?
b) Kann A durch entsprechende Wahl von a,b R den R3 bzw. den R* erzeugen?

¢) Setzen Sie a=1 und b=-1 und bestimmen Sie fiir diesen Fall die Dimension und

eine Basis des von A erzeugten Unterraums.

Aufgabe 7.17:

0) (2 6 6) (4
30 [ 1] ] -8 1] |-3
A=lsl [l | calf B <] | 1
6] (3] [-13 5) (-7

a) Welche Dimension besitzt der von A aufgespannte Unterraum [A]?
b) Bestimmen Sie eine Basis von [A].

c) Was muss fiir x e R gelten, damit die Vereinigungsmenge C=A UB ein Erzeugen-

densystem des R* ist?

d) Was muss fiir x e R gelten, damit die Vereinigungsmenge C=A UB ein Erzeugen-

densystem des R3 ist?
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Aufgabe 7.18:

1 2 0 3

. 2 4|
a= 1 ’ = 8 ; C= % s = _7
3

5
/2 u
a) Fiir welche u eR sind die Vektoren a, b, ¢, d linear abhangig?

b) Geben Sie in Abhangigkeit von ueR eine Basis und die Dimension des von den

Vektoren a, b, ¢, d erzeugten Unterraums [A] an.

c) Liegt der Vektor e :(u u u u)T in dem von a, b, ¢, d erzeugten Unterraum

[A]?

Aufgabe 7.19:
2 1 0 -2 0,5 4
A 1| |-1| |6 B -1 2,5 oo 2
2100l 3 1105 " )l-6
1 0) (2 -0,5 1 1

a) Bestimmen Sie eine Basis und die Dimension des von A erzeugten Unterraums.
b) Erzeugt A den [RZ, den R® oder den R*?
¢) Erzeugt AUBUC den R*?

d) Gibt es Vektoren v eR* mit v #0, welche sowohl von A als auch von B erzeugt

werden?
Aufgabe 7.20:
4) (3) | -1 5) (-15 %
A= 1], =34 B=4{|-1|, | 3 |, |-}
1 2 _5 -2 6 -1
%
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a) Welche Dimension besitzt der von A erzeugte Unterraum [A]? Nennen Sie eine

Basis von [A].
b) Ist A somit ein Erzeugendensystem des R2? Oder des R%?

c) Ist der von B erzeugte Unterraum [B] eine Teilmenge des von A erzeugten Unter-

raums [A], gilt somit [B] c[A]?

Aufgabe 7.21:

1) (4) (2) ( 4 172V 2 Y4
A —2’ 1’ 7,—10 B -9 % 22
a4l 2/ |-1/| -5 _5% ’ _1% 11
-3) (o) |2 -8 _2% ) -9

a) Welche Dimension besitzt der von A erzeugte Unterraum [A]? Nennen Sie eine

Basis von [A].

b) Erzeugen B und A den selben Unterraum, gilt somit [B]=[A]? Ist der von B er-
zeugte Unterraum Teilmenge des von A erzeugten Unterraums, gilt somit

[B]<[A]?

Aufgabe 7.22:

1Y) (0) (4 1 -2\ (4 0 3) (-2

N R R IR N -19 et

RIS A 1A Y O B U B R 7S R P
_ 5] |- 3

2] (3) (-5) |-5 7)1 % o) (2

Uberprijfen Sie, ob die Unterrdume Teilmengen von [A] sind.
a) GiltR® c[A]? b) GiltR* c[A]?

0 Gilt[B]c[A]? d) Gilt[C]c[A]?
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Aufgaben

Aufgabe 7.23:
X1 + Xo + X3 + 6X4 =0
—2X1 - 6X3 + 6X4 =0
—X1 + 2X2 - 7X3 + 2X4 =0
7X1 + 3X2 + 15X3 + 6X4 =0
a) Losen Sie das LhGS.
b) Geben Sie die Dimension der Losungsmenge an.
c) Geben Sie eine Basis der Losungsmenge an.
Aufgabe 7.24:
X1 + Xy + X3 + X4 =0
X + 2xp + 3x3 + 4x4 = 0
2x7 + 3xp + 4x3 + 5x4 = 0
X, + 2x3 + 3x4 = 0
a) Losen Sie das LhGS.
b) Bestimmen Sie eine Basis und die Dimension von L,.
) Liegtder Vektor x=(1 1 1 1)T inllL,?
Aufgabe 7.25:
O,5X1 - Xp - 1,5X3 + 0,5X4 =0
X1 + Xo - 2X3 =0
2,5X1 + 8,5X2 - 3X3 - 2X4 =0
2X1 + 5X2 - 3X3 - Xy =0

a) Geben Sie die Losungsmenge des LGS an.

b) Geben Sie eine Basis und die Dimension der Lésungsmenge an.
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Aufgabe 7.26:

X7+ 2xp 4+ 3xg3 + 4x4 + 5x5 = 0
-2X1 + 3xp + 4x3 - 4x5 = 0
4xg + Xp + 8xz3 + 4x4 + 4x5 = 0
-3x7 + 8xy + 5x3 + 8x4 + 7x5 = 0

a) Losen Sie das LhGS.
b) Bestimmen Sie eine Basis und die Dimension von L j,.

c) Geben Sie an, welchen Raum die Losungsmenge erzeugt. Formulieren Sie dabei

wie folgt: "Die Losungsmenge bildet einen n-dimensionalen Unterraum des R™".

Aufgabe 7.27:

2xy = 0,5x + x3 - x4 + 2,5x5 = 0
x; + 0,5x, + 2x3 - 3,5x4 + 5x5 = 0
6x; + 2xp + 2x3 + 7x4 + 2Ilxs = 0

X, — Xz + bx4 + 35x5 = 0

a) Bestimmen Sie die Losungsmenge des obigen Gleichungssystems.
b) Ermitteln Sie die Dimension und eine Basis des Losungsraums.

c) Handelt es sich bei der Losungsmenge um einen Unterraum des R5?

Aufgabe 7.28:

xX; + 3x + 93 - x4 + 2x5 =0
5x; + X + 3x3 - 1llx, — 10x5 = 0
2x;7 4+ Xp + 3x3 + 3x4 + 4x5 = 0
3x; - 2xp - 6x3 + 8x4 + 6x5 = 0

a) Bestimmen Sie die Losungsmenge des obigen Gleichungssystems.
b) Bestimmen Sie eine Basis und die Dimension von L ,.

A:{(o 8 413),(8 7 3 a Z)T}
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Aufgaben

c) Fiir welche aeR ist C=A ULy, ein EZS des R°?

d) Fiir welche aeR ist C =A UL, ein EZS des R*?

Aufgabe 7.29:
2x; + 3xp + 4xy =0
2x; + Xp + 4x3 - x4 =0
4X1 - 2X2 + 16X3 - 14X4 =0
X1 - Xz + 5X3 - 5X4 =0

a) Losen Sie das LhGS.

b) Bestimmen Sie eine Basis und die Dimension von L,.

98) (132) (0
19 [ 1] ]
A=1s] | a5 | |1
2] (o 0

c) Bildet die Vereinigungsmenge von I}, und A eine Basis des R*?

Aufgabe 7.30:
A:{(l 1230 ,(2011 1)T}

a) Geben Sie ein LhGS mit unendlich vielen Losungen an, dessen Losungsmenge A

zur Basis hat.

b) Bestimmen Sie die Losung des Gleichungssystems, nachdem Sie das LhGS um die

Gleichung 2xq +4x, —2x3 +3x4 =1 ergénzt haben.

c) Handelt es sich bei der Losungsmenge des Gleichungssystems aus b) um einen
Unterraum des R°? Falls ja, geben Sie eine Basis und die Dimension des Unter-

raums an.
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Aufgabe 7.31:

1 0 _% 3 1 1 2
_ 1 1
a3l 12 ] 3 2,[32/2,0//2
21110 1 |']1 1 -1 0
4 1 0 7 3 2 5

a) IstB eine Basis von [A]?

b) Sind A, oder B, oder sowohl A als auch B
menge des nachfolgenden LhGS?

ein Erzeugendensystem der Losungs-

—3X1 + 22X2 - 5X3 - X4 =0
X1 + 6X2 - X3 - Xq =0
2X1 - 3X2 + X3 - %X4 =0
10X2 - 2X3 - X4 =0
Aufgabe 7.32:
—2X1 = 2ab
X; + 2ax, = a+b-1

a,beR.
b)

<)
Unterraum des R'?
d)

Unterraum des R??

Bestimmen Sie die Losung des Gleichungssystems in Abhangigkeit der Parameter

Geben Sie die Losung des LGS fiir a=-1 und b=1 an.

Fiir welche Werte der Parameter a,b €R ist die Losung des Gleichungssystems ein

Fiir welche Werte der Parameter a,b R ist die Losung des Gleichungssystems ein
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Aufgabe 7.33:

Gegeben seien die beiden folgenden linearen Gleichungssysteme:

-2x1 + Xo + 4x3 =0

LGS 1: 3x; + 6xp - 4x3 = 0
7xX1 + 2xp + 12x3 = 0

0,55 = xo + 3x3 =0

LGS 2: X1 + 2xp — 4x3 = 0
X1 + 2%, =0

a) Losen Sie die beiden obigen LGS.

b) Geben Sie eine Basis und die Dimension der unter Teilaufgabe a) berechneten Lo-
sungen an.

c) Geben Sie, falls moglich, eine Basis und die Dimension eines Unterraums U an,

welcher nur diejenigen Vektoren enthilt, die

i) entweder das LGS 1 oder das LGS 2 erfiillen.

ii) sowohl das LGS 1 oder das LGS 2 erfiillen.
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8 Lineare Optimierung

8.1 Aufstellen eines vollstandigen linearen
Programms

Abschliefend wenden wir uns der linearen Optimierung zu. Hierbei ist stets eine
Zielfunktion gegeben, welche unter vorgegebenen Restriktionen optimiert werden
soll. Im Rahmen der linearen Optimierung sind sowohl die Zielfunktion als auch die
Restriktionen linear. Dies bedeutet, dass die auftretenden Variablen unter anderem

nicht quadratisch eingehen und nicht miteinander multipliziert werden.

Die lineare Optimierung ist eines der Hauptverfahren zur Optimierung betrieblicher
Probleme. Sie findet Anwendung in verschiedensten operativen und strategischen
Fragestellungen aus den Gebieten Logistik, Produktion, Finanzierung und Marketing.
Mit dem Simplex-Verfahren, das in diesem Kapitel ausfiihrlich behandelt wird, lassen
sich unter Verwendung geeigneter Software selbst Probleme mit hunderttausenden

Variablen und Nebenbedingungen in kiirzester Zeit 16sen.

Definition 8-1: Vollstindiges lineares Programm

Ein vollstdndiges lineares Programm ist ein Uber die nachfolgen-

den vier Punkte spezifiziertes Optimierungsproblem:

Entscheidungsvariablen (EV):

Hier werden alle im Optimierungsproblem auftretenden Variab-
len aufgefuhrt und deren Bedeutung exakt definiert. Die Ent-

scheidungsvariablen lassen sich in einem Vektor

T
x=(x; - X,) zusammenfassen.
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Lineare Optimierung

Zielfunktion (ZF):

Die Zielfunktion wird als Funktion der Entscheidungsvariablen
aufgestellt. Der Wert der linearen Zielfunktion ergibt sich dabei
jeweils durch die Multiplikation des Vektors der Zielfunktionsko-
effizienten c=(c; -+ c,) mit dem Vektor der Entscheidungsva-

riablen zu z=c-x.

Nebenbedingungen/Restriktionen (NB):

Auch in die linearen Nebenbedingungen gehen die Entschei-
dungsvariablen ein. Falls sich die Relationszeichen der Neben-
bedingungen entsprechen, ldsst sich die Koeffizientenmatrix ei-

nes Systems linearer Nebenbedingungen

in Kombination mit dem Kapazitdtsvektor der Nebenbedingun-
gen b=(b; - bm)T in Matrixschreibweise vereinfacht darstel-

len als A-x<b, A-x=b bzw. A-x>b.

Nichtnegativitadtsbedingung (NNB):

Aus Plausibilitatsgriinden wird vorausgesetzt, dass keine Ent-

scheidungsvariable einen negativen Wert annimmt, also x>0.

Alle Vektoren x, welche die NBs und die NNBs erfiillen, bilden eine zuléssige Losung
des Optimierungsproblems. Findet sich zu einem zuldssigen Losungsvektor x kein
anderer zuldssiger Losungsvektor, der zu einem héheren (Maximierungsproblem)

bzw. niedrigeren (Minimierungsproblem) Zielfunktionswert fithrt, handelt es sich bei

diesem Vektor um eine optimale Losung.
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Aufstellen eines vollstdndigen linearen Programms

Beispiel 8-1: Formulierung eines Entscheidungsproblems als

lineares Programm

Nach anhaltenden Beschwerden {iber die Qualitat des Biers auf den Feten
Ihrer hiesigen Universitdt haben Sie kurzerhand mit einigen Kommilitonen
eine eigene Kleinbrauerei gegriindet. Aufgrund Thres mathematischen Ta-
lents sind Sie fiir die Produktionsplanung der Eichenzapfen AG verant-
wortlich. Die Eichenzapfen AG bietet zwei verschiedene Biersorten an: Ein
billiges Partybier, das zu 2 € pro Liter verkauft wird und ein teures Premi-
umbier, das an Kommilitonen mit hoher Zahlungsbereitschaft zu 5 € pro
Liter verkauft werden soll. Thre Fertigungskapazitat fiir Partybier betrdgt
5.000 Liter pro Woche, wahrend Sie vom Premiumbier nur 4.000 Liter pro
Woche herstellen konnen. Beide Biersorten miissen anschlieSend noch ab-
gefiillt und verpackt werden. Neben Threm Studium kénnen Sie und Ihre
Mitstreiter allerdings maximal 16 Stunden pro Woche opfern. Sie kalkulie-
ren, dass Sie 2 Stunden fiir je 1.000 Liter Partybier benotigen, wahrend das
Abfiillen und Verpacken des exklusiven Premiumbiers 3 Stunden pro 1.000
Liter in Anspruch nimmt. Sie wollen die Produktionsplanung so durchfiih-

ren, dass der Erlos der Eichenzapfen AG maximiert wird.

Das Problem lasst sich wie folgt als lineares Optimierungsproblem formu-

lieren:
Entscheidungsvariablen:
xq = Produktionsmenge Partybier (in 1.000 1)
X, = Produktionsmenge Premiumbier (in 1.000 1)
Zielfunktion:
Z =2xq +5Xp —max (mit z als Erlos in 1.000 €)
Nebenbedingungen:
X1 <5

X2£4
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2X1 + 3X2 <16
Nichtnegativitatsbedingung:

X1,X2 >0

Abschnitt 8.2 zeigt, wie bei einem Optimierungsproblem mit zwei EVs alle optimalen
Losungen graphisch gefunden werden konnen. Die folgenden Abschnitte behandeln
das wichtigste analytische Verfahren zu deren Losung, den Simplex-Algorithmus, in
zwei Varianten. Die Abschnitte 8.3 bis 8.5 zeigen mit dem primalen Simplex-
Algorithmus die Variante auf, anhand derer bestimmte Maximierungsprobleme, die so
genannten Standardmaximierungsprobleme, analytisch gelést werden kénnen. Die
zweite Variante, der duale Simplex-Algorithmus, wird abschliefend in Abschnitt 8.6
behandelt.

8.2  Graphische Losung

Die graphische Darstellung linearer Programme beschrénkt sich im Folgenden auf
Optimierungsprobleme mit zwei EVs. Die moglichen Losungen entstammen dann
dem R? und kénnen in einem zweidimensionalen Koordinatensystem abgetragen
werden. Die EVs sind im Folgenden mit x; und x, bezeichnet. Existieren keinerlei
Restriktionen, bilden alle denkbaren Kombinationen von x; und X, eine zuldssige
Losung des Optimierungsproblems. Die gesamte x;-x,-Ebene bildet dann den Lo-
sungsraum. Jede Ungleichung beschrankt die zuldssigen Losungen jeweils auf eine
Halbebene, welche durch die Gerade begrenzt wird, die sich durch Ersetzen des Un-
gleichheitszeichens durch ein Gleichheitszeichen ergibt. Die Punkte, die in allen Halb-
ebenen liegen, bilden die zulédssigen Losungen. Diese Losungsmenge (Schnittmenge

der Halbebenen) ist im Allgemeinen ein Vieleck, der so genannte Simplex.

Bei den nachfolgend aufgefiihrten Beispielen gilt neben den ausdriicklich genannten

Restriktionen stets die Nichtnegativitatsbedingung x;, X, >0.
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Beispiel 8-2: Graphische Darstellung des Simplex

Betrachtet werden die Restriktionen der Eichenzapfen AG aus Beispiel 8-1.
Zunachst werden die Nebenbedingungen nach x, bzw. x; aufgeldst, um
sie leicht einzeichnen zu konnen. Die eingezeichneten Geraden x; =5,
X, =4 und x, = 1% - %xl begrenzen den Bereich der zuldssigen Losun-
gen, den Simplex. Alle x;-X,-Kombinationen, die sich auf dem Rand oder
innerhalb des Simplex befinden, stellen zuldssige Losungen fiir das Opti-
mierungsproblem dar. Sie beschreiben die realisierbaren Produktionsmog-

lichkeiten der Eichenzapfen AG.

»

X2‘

8

NB: X1S5

NB: x,i<4

NB:: x2£163—23x1

I

implex

_

0 2 4 6 8 x4

v

Die optimale Losung wird durch eine Parallelverschiebung der mit z=0 graphisch
abgetragenen ZF bestimmt. Dabei ist der Zielfunktionswert z derart zu optimieren (zu
maximieren bzw. zu minimieren), dass der Simplex gerade noch tangiert wird. Jeder
Tangentialpunkt dieser (in z optimierten) Geraden mit dem Simplex ist dann eine
optimale Losung des linearen Optimierungsproblems. Tangentialpunkte befinden sich

dabei immer (wenn auch nicht ausschliefilich) in den Eckpunkten des Simplex.

Fiir die Losung eines linearen Programms sind mehrere Arten der Losbarkeit moglich,

welche anhand der nachfolgenden Beispiele erortert werden.
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Beispiel 8-3: Eindeutige Losung

Es wird der in Beispiel 8-2 beschriebene Simplex eingezeichnet. Anschlie-
Bend wird auch die ZF der Eichenzapfen AG umgeformt und in das Dia-
gramm eingetragen. Dabei wird z maximiert, die ZF muss lediglich den zu-
lassigen Bereich gerade noch tangieren. Als umgeformte ZF ergibt sich
Xy = /52—%x1. Der x,-Achsenabschnitt dieser Geraden (%z) ist von z
abhangig, die Steigung (—%) hingegen ist von z unabhangig. Hieraus ist
auch ersichtlich, dass das Auffinden der optimalen Loésung durch eine Pa-
rallelverschiebung der Zielfunktionsgeraden geschieht.

X, A

8

\\\\Q
/
/

/ _ \\\\i::\\z;zo

0 2 4 6 8 x

Die Punkte x; =0, x, =4 und xq =5, X, =2, fiir welche die Zielfunktion je-

weils den Wert z =20 annimmt, kénnen beispielsweise keine optimale Lo6-
sungen des linearen Programms darstellen. Eine weitere Parallelverschie-
bung der Zielfunktion und damit eine ErhShung des Zielfunktionswertes
sind hier noch moglich. Die optimale Losung, und damit das optimale
Produktionsprogramm, fiir das Maximierungsproblem ist im Tangential-
punkt ablesbar und lautet hier x; =2, x, =4. Der Maximalwert der Ziel-
funktion ergibt sich durch Einsetzen dieser beiden Werte in die Zielfunkti-
onzuz=2-2+4-5=24. Generell gilt, dass die optimalen Losungen immer

in den Ecken des Simplex liegen.

174




Graphische Losung 8 A 2

Liegen die Restriktionen ungiinstig, so ist es auch moglich, dass keine zuldssige Lo-

sung existiert. Der Simplex ist dann leer.

Beispiel 8-4: Keine Lésung

Sie tiberlegen, einen Liefervertrag in Hohe von mindestens 8.000 Liter Bier
pro Woche abzuschlieSen, wobei beide Biersorten geliefert werden konnen.
In diesem Fall wére zuséatzlich die Restriktion Xq +X, 28 zu beriicksichti-
gen. Allerdings wird der Simplex dann durch eine leere Menge beschrie-
ben. Unabhéangig von der Zielfunktion lasst sich hier keine zulédssige Lo-
sung finden. Der Vertrag wire also mit den vorhandenen Mdglichkeiten

der Eichenzapfen AG nicht erfiillbar.

Xo A

8
NB: Xo 28—X1

v

Ist der zuldssige Bereich nicht leer, aber auch nicht beziiglich x; und x, beschrénkt, so
lasst sich bei einem Maximierungsproblem keine Losung finden, die nicht von einer

anderen dominiert wird. Der Zielfunktionswert kann dann unbegrenzt erhcht werden.
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Beispiel 8-5: Unendlich viele Lésungen, unbegrenzter

Zielfunktionswert

Unendlich viele Losungen bei unbegrenztem Zielfunktionswert ergeben
sich beispielsweise, wenn die Restriktionen der Eichenzapfen AG aus-
schlielich durch die Nebenbedingung Xx; <5 beschrieben werden. Der
Simplex ist in diesem Fall nicht nach oben beschrankt, der Zielfunktions-
wert kann unbegrenzt durch die Verschiebung der Zielfunktion nach oben
erhoht werden. Die Nebenbedingung x;<5 und die Zielfunktion
Z=2x7 +5xy - max lassen unendlich viele zuldssige Losungen zu, eine
optimale Losung kann jedoch nicht bestimmt werden. Es ist leicht ersicht-
lich, dass ein derartiges Problem 6konomisch nicht realistisch ist und in
der Praxis aus Fehlern bei der Problemformulierung resultieren wiirde, in

diesem Fall durch das Vergessen von Nebenbedingungen.

Xy A
8 // )
/ NB: x; <5
6
4
2
0 2 4 6 8 xq

Ist der zuldssige Bereich nicht leer und beziiglich x; und x, beschrankt, kénnen auch
unendlich viele optimale Losungen existieren. In diesem Fall nehmen die EVs ver-
schiedene Werte innerhalb eines Intervalls an, der Zielfunktionswert ist jedoch immer

gleich.
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Beispiel 8-6: Unendlich viele Losungen, eindeutiger

Zielfunktionswert

Sie haben beschlossen, den Preis fiir Premiumbier auf 3 € zu verringern, da
Ihre Preisgestaltung fiir zunehmenden Unmut auf den Unifeten sorgt.
Formal andert sich in diesem Fall die Zielfunktion, wahrend die drei Ne-
benbedingungen dagegen unverdndert bleiben. Bei Maximierung der mo-
difizierten Zielfunktion z=2x;+3X, - max fithren alle Punkte auf der
Strecke von x = (2 4)T bis x = (5 2)T zum gleichen, maximal moglichen

Zielfunktionswert z=16. Die Losungsmenge lasst sich darstellen als
T
“_Z{(Xl 1%—%X1) X1 6[2,5]}

Xy A

8

)ZF z=16

I

0 2 4 6 8 x

»
»

Auch hier liegen die optimalen Losungen in den Ecken des Simplex. Aller-
dings sind es mit x = (2 4)T und x = (5 2)T zwei Ecken, die optimale Lo-
sungen darstellen, und dementsprechend sind auch alle Punkte (Konvex-

kombinationen) zwischen diesen beiden Ecken optimale Losungen.
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8.3 Der primale Simplex-Algorithmus

Bestimmte lineare Programme, die Standardmaximierungsprobleme, lassen sich mit-

hilfe des primalen Simplex-Algorithmus systematisch 16sen.

Definition 8-2: Standardmaximierungsproblem

Ein lineares Optimierungsproblem heit Standardmaximierungs-

problem, wenn es die Form hat:
Z=C-X
A-x<b mitb>0
x>0
Alternativ findet sich haufig auch die folgende Summenschreibwei-

se fur ein Standardmaximierungsproblem mit n Entscheidungsvari-

ablen und m Nebenbedingungen:

Z=7)Gj-X
i=1
n
=1
X; >0 far i=1,...,n

Dabei ist anzumerken, dass sich eine zu minimierende Zielfunktion
Z=C-X durch die zu maximierende Zielfunktion -z = —Cc-X ersetz-
ten lasst und umgekehrt. Weiterhin gilt, dass eine 2> -Restriktion
durch Multiplikation beider Seiten mit -1 in eine <-Restriktion um-

geformt werden kann.
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Beispiel 8-7: Standardmaximierungsproblem

Das Optimierungsproblem der Eichenzapfen AG stellt folglich ein Stan-

dardmaximierungsproblem dar:

z =2Xq +5xy = max

X1 < 5
X, < 4

2x1 + 3xp £ 16
X1 , X2 =2 0

Vor Anwendung des Simplex-Verfahrens wird das Ungleichungssystem zunachst in
ein LGS tiberfiihrt, indem pro Nebenbedingung eine Schlupfvariable s; >0 eingeftihrt
wird. s; nimmt dabei die nicht benétigte Kapazitat in Restriktion j ein, die nach der
Festlegung von x noch verbleibt, um die auf der rechten Seite stehende Begrenzung

der Restriktion zu erreichen.

Beispiel 8-8: Umwandlung des Standardmaximierungsproblems

Das Maximierungsproblem der Eichenzapfen AG hat nach Einfiihrung der

drei Schlupfvariablen die Form:

X1 + 51 = 5
X2 + S» = 4
2x1 + 3xo + s3 = 16

In Matrixform lasst sich das LGS darstellen als:

X1
101 0 0)|x 5
01 01 O0f]s |=|4
2300 1)]|s 16
S3

Wihlt man fiir x beispielsweise x = (2 4)T, so nehmen die Schlupfvariab-

len die Werte s = (3 0 O)T an.
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Die zuldssigen Losungen bestehen sowohl aus den Entscheidungsvariablen als auch

aus den Schlupfvariablen.

Der primale Simplex-Algorithmus ist ein algebraisches Losungsverfahren. Die Grund-
idee des Verfahrens lasst sich allerdings auch geometrisch veranschaulichen. Aus der
graphischen Losung des linearen Programms in Abschnitt 8.2 wurde ersichtlich, dass
sich eine optimale Losung immer auf dem Rand des Simplex befinden muss. Weiter-

hin gilt, dass sich optimale Losungen immer in den Eckpunkten des Simplex befinden.

Beispiel 8-9: Geometrische Interpretation des primalen Simplex-

Algorithmus

Die in der Grafik eingezeichneten Eckpunkte kommen als optimale Losun-

gen des Optimierungsproblems der Eichenzapfen AG in Frage.

X, A
8
6
X1 :0,X2=4 X1=2,X2=4
4 (
X1 =5,xp=2
2
X1=0,X2 =0 X1 :5,X2 0
& @ >
0 2 4 6 8 x

In jedem Schritt des primalen Simplex-Algorithmus wird eine Ecke des
Simplex auf Optimalitat tiberpriift. Ist die entsprechende Losung nicht op-
timal, bestimmt das Verfahren eine neue Ecke des Simplex, die dann erneut
iiberpriift wird. Dies geschieht solange, bis der Algorithmus die optimale

Losung gefunden hat.
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Diese Eckpunkte werden durch die Werte der Entscheidungs- und Schlupfvariablen
beschrieben. Das primale Simplex-Verfahren sucht, ausgehend von einer ersten zulés-
sigen Losung, solange die Ecken des Simplex iterativ ab, bis eine optimale Losung

gefunden wird.

Im Verlauf des Simplex-Verfahrens werden zuldssige Losungen innerhalb von Sim-
plex-Tableaus dargestellt. Zur Erstellung des Anfangstableaus wird die Koeffizien-
tenmatrix der Nebenbedingungen auf der linken Seite um eine Spalte, die Basisvariab-
len enthélt, und auf der rechten Seite um eine Spalte, die die Kapazititen enthalt, er-
weitert. Als Basisvariablen werden die Variablen bezeichnet, nach welchen die
einzelnen Zeilen des Tableaus pivotisiert sind, so dass im Anfangstableau gerade die
Schlupfvariablen die Basisvariablen darstellen. Die die Basisvariablen umfassende
erste Spalte des Simplextableaus heifit Basis. Innerhalb der Tableaudarstellung werden
den Basisvariablen diejenigen Werte zugeordnet, die in derselben Zeile in der ergénz-
ten rechten Spalte stehen. Die sich nicht in der Basis befindenden Variablen nehmen
den Wert Null an. Uber die Basis wird somit jeweils eine zuldssige Losung des Maxi-
mierungsproblems dargestellt. Zudem wird das Simplextableau nach unten hin um
die mit negativem Vorzeichen versehenen Zielfunktionskoeffizienten erweitert. Unter-
halb der Schlupfvariablen befinden sich im Anfangstableau Nullen in der Zielfunkti-
onszeile. Der zu den jeweiligen zuldssigen Losungen gehorende Zielfunktionswert

lasst sich unterhalb des Kapazitatenvektors ablesen und ist im Anfangstableau Null.

Beispiel 8-10: Aufstellen des Anfangstableaus

In Fortfithrung des Beispiels ergibt sich als Anfangstableau:

Basis | x1 x» s; s» s3
s1 1 0 1 0 0]5
S 0 1 0 1 0|4
s3 2 3 0 0 1]16
Z -2 -5 0 0 01]0

Die im Anfangstableau ablesbare zuldssige Losung lautet x1 =0, x2 =0

(keine der Entscheidungsvariablen ist in der Basis, somit nehmen alle den

Wert Null an), s;=5, s =4, s3=16 (alle Kapazitdten sind vollstandig
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frei), z=0 (verstandlicherweise, da die Entscheidungsvariablen allesamt

Null sind).

Das Anfangstableau wird nun so lange nach einer bestimmten Vorgabe streng pivoti-
siert, bis in der Zielfunktionszeile keine negativen Koeffizienten mehr enthalten sind.
Da in der Basis stets diejenigen Variablen stehen, deren Spalten pivotisiert sind, an-
dern sich die Variablen in der Basis im Laufe der Pivotisierung. Mit jeder nach Vorga-
be des Algorithmus erfolgten Pivotisierung, einem so genannten Simplex-Schritt, er-
hoht sich der Zielfunktionswert (in Ausnahmeféllen kann er gleich bleiben), solange
negative Elemente in der Zielfunktionszeile existieren. Folglich endet die Pivotisie-
rung, sobald alle Elemente in der Zielfunktionszeile groBer oder gleich Null sind. Der
optimale Wert fiir die Zielfunktion und die optimalen Werte fiir die Entscheidungs-

und Schlupfvariablen sind dann gefunden.

Bei jedem Simplex-Schritt wird zundchst die Pivotspalte anhand des kleinsten Ele-
ments in der Zielfunktionszeile ausgewahlt. Die Pivotzeile wird durch die Division
der Elemente der ergénzten rechten Spalte durch die entsprechenden Koeffizienten
der Pivotspalte bestimmt (allerdings nur, falls diese positiv sind). Als Pivotzeile ist
diejenige Zeile zu wahlen, die den kleinsten Quotienten aufweist. Die Pivotspalte
bestimmt dabei die Variable, die neu in die Basis eintritt, wahrend durch die Pivotzeile
diejenige Basisvariable ausgewahlt wird, welche die Basis im Rahmen des aktuellen
Simplex-Schritts verldsst. Die Werte in der Zielfunktionszeile des Simplextableaus
konnen in jedem Simplex-Schritt folgendermafien interpretiert werden: Der mit -1
multiplizierte Wert der Elemente in der Zielfunktionszeile gibt an, um welchen Wert
sich die Zielfunktion erhoht, wenn die entsprechende Variable um eine marginale
Einheit erhoht wird. Negative Elemente in der Zielfunktionszeile zeigen also an, dass
die aktuelle Losung durch Erhéhung der Variable verbessert werden kann. Es wird
deshalb immer die Variable als neue Basisvariable ausgewahlt, die den kleinsten (ne-
gativen) Wert aufweist und somit die grofite Verbesserung der Zielfunktion pro Ein-
heit verspricht. Stehen keine negativen Werte mehr in der Zielfunktionszeile, kann die
aktuelle Losung nicht mehr durch Hereinnahme einer neuen Variablen in die Basis

verbessert werden. Die Losung ist dann optimal.
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Beispiel 8-11: Anwendung des primalen Simplex-Algorithmus

Nachfolgend ist der Verlauf des primalen Simplex-Algorithmus fiir obiges
Beispiel dargestellt. Als neue Basisvariable wird im Anfangstablau x, aus-
gewdhlt, da das zu der entsprechenden Pivotspalte gehdrende Element in
der Zielfunktionszeile den kleinsten Wert hat. Fiir x, verldsst die Variable
s, die Basis, da der Quotient in der entsprechenden Pivotzeile den kleins-
ten Wert aufweist. Das erste Element in der Pivotspalte hat dagegen keinen

positiven Wert, weswegen hier auch kein Quotient berechnet wird.

Basis | x; X, s1 sp s3
ss |1 0 1 0 0[5 —-=°
5 | o 0 1 0la :1-4 -3
s |2 3 0 0 1|16 :3=1¢3 ZT20
Z |2 5 0 000
Basis | x; X, s; sy s3
s 1 0 1 0 0|5 :1=5 % I
X, |0 1 0 1 0|4 ——— -1,
53 0 0 -3 1|4 :2=2  ziom
Z |2 0 0 5 0]20
Basis | x; Xp s; sy S3
ss [0 0 1 32 -12]3
X |0 1 0 1 0
xx |1 0 0 =32 12 |2
Z [0 0 0 2 1 |24

Da alle Werte in der Zielfunktionszeile des dritten Tableaus nichtnegativ
sind, handelt es sich hierbei um das Endtableau. Die Basisvariablen neh-
men die entsprechenden Werte aus der letzten Spalte des Tableaus an, alle
anderen Variablen nehmen den Wert Null an. Daraus ergibt sich die opti-
male Losung x1 =2, x, =4, s; =3, s =0, s3 =0 mit zugehorigem Zielfunk-

tionswert z=24.
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Nimmt eine Schlupfvariable den Wert Null an, so ist die entsprechende Kapazitit
ausgelastet. Ansonsten stehen freie Kapazititen in Hohe der Gesamtkapazitit abziig-
lich der verbrauchten Kapazitat, formal s; =b; - Zin:la]-i -x;, zur Verfligung. Anzumer-
ken ist an dieser Stelle, dass bei einer optimalen Losung weder alle Kapazitdten voll
ausgelastet, noch zwangslaufig alle Entscheidungsvariablen Teil der Basis sein miis-

sen.

8.4 Sonderfalle des primalen Simplex-
Algorithmus

In den bisherigen Erlduterungen und Beispielen zum primalen Simplex-Algorithmus
wurden nur Fille mit eindeutigen Entscheidungen und Ergebnissen betrachtet. Im
Rahmen des primalen Simplex-Algorithmus kann es allerdings zu Situationen kom-
men, bei denen die hier vorgestellten Regeln zur Auswahl der Pivotelemente keine
eindeutigen Entscheidungen liefern. Weiterhin soll in diesem Abschnitt dargestellt
werden, woran Falle mit unendlich vielen Losungen im Simplex-Tableau zu erkennen

sind.

Die Wahl der Pivotspalte erfolgt anhand des kleinsten (negativen) Elementes in der
Zielfunktionszeile, wahrend die Pivotzeile durch den kleinsten (positiven) Quotienten
aus rechter Spalte und dem entsprechenden Koeffizienten in der Pivotspalte bestimmt
wird. Hierbei kann es allerdings zu Situationen kommen, in denen diese Regeln nicht
eindeutig sind. Zum Bespiel sind Falle moglich, bei denen in der Zielfunktionszeile
zwei Elemente den kleinsten Wert aufweisen und somit zwei verschiedene Variablen
als neue Basisvariable in Frage kommen. In solchen Féllen ist die Wahl der Pivotspalte
beliebig, beide Mdglichkeiten fithren zur optimalen Losung, nur sind die durchzufiih-
renden Simplex-Schritte unterschiedlich. Das Gleiche gilt fiir Fille, bei denen die Wahl
der Pivotzeile und damit auch die Wahl der Variable, welche die Basis verlasst, nicht

eindeutig sind. Auch hier ist die Wahl beliebig.
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Beispiel 8-12: Keine eindeutige Wahl des Pivotelements

Bei einer Anderung des Preises des Premiumbiers auf 2 € ergibt sich das

folgende Anfangstableau:

Basis | x1 X2 st s» s3
s1 1 0 1 0 015
S 0 1 0 1 0|4
S3 2 3 0 0 1/|16
Z |2 2 0 0 010

Sowohl die erste als auch die zweite Spalte kommen hier als Pivotspalte in

Frage. Somit kénnen sowohl x; als auch x, als neue Basisvariable gewahlt

werden.

Fall 1: Pivotisierung der ersten Spalte (x; kommt in die Basis)

Basis | x; X, 81 sSp S3
1 o 1 0 0|5 :1=5
o1 m-2-1
s, |0 1 0 1 04 ——
Z+2-1
S3 2 3 0 0 1|16 :,Zj §
Z -2 -2 0 0 0|0
Basis X1 Xo S1 Sp S3
xx |1 0 1 0 0|5 ——— % B
s, [0 1 0 1 0[4 :1=4 o
neu
s3 | 0 2 0 1 83=2  zioam,,
Z 0O -2 2 0 010

jor}
()
2]
2.
0
X
s
X
N

S S S5 |

xx |1 0 1 0 0 |5
s, [0 0 23 1 -13]2
x, |0 1 -2/3 0 13 |2
z |0 0 23 0 23|14
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Fall 2: Pivotisierung der zweiten Spalte (x, kommt in die Basis)

Basis | x; X, s; Sp 83
ss |1 0 1 0 0|5 ~—-=°
5 | o0 0 1 o0la 1.4 II-3-11
s |2 3 0 0 1|16 :3=1¢3 20
Z |2 =2 0 0 o]0
Basis | x; x, s s; sj3
ss |1 0 1 0 0[5 :1=5 1411
X, |0 1 0 1 04 ——— 1m,
s3 0 0 -3 1|4:2=2  ziooqq
Z |2 0 0 2 0]8
Basis | x; X, s1  sp S3 2/ .
s; |0 0 1 [32] -12(3 :32=2 3
x, |0 1 0 1 0 |4 :1=4 H=Tneu
- o I+ 3410y
xx |1 0 0 =32 12|2 ——-
Z |0 0 o0 -1 1 |12 Z+Ineu
Basis | x; x, sy sp s3
s, |0 0 2/3 1 -13[2
X |0 1 23 0 13]2
xx |1 0 1 0 0 |5
Z |0 0 23 0 23|14

In beiden Féllen ergibt sich die optimale Losung x; =5, x, =2, s; =0,
Sp =2, s3=0 mit zugehorigem Zielfunktionswert z=14, nur sind die

durchzufiihrenden Simplex-Schritte und deren Anzahl verschieden.

In Beispiel 8-5 und Beispiel 8-6 wurden Falle mit unendlich vielen Losungen graphisch
veranschaulicht. Diese Fille lassen sich auch im Simplex-Tableau nachvollziehen.
Unendlich viele Losungen mit unbegrenztem Zielfunktionswert ergeben sich dann,
wenn es in der ausgewdhlten Pivotspalte kein Element mit Werten groer als Null
gibt. Das Quotientenkriterium ist somit nicht anwendbar, und es lasst sich keine Vari-

able bestimmen, die neu in die Basis eintreten soll. Das Erhohen der durch die Pi-
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votspalte ausgewahlten Variable fithrt in diesen Féllen bei keiner der bisherigen Basis-

variablen zu kleineren Werten und ist deshalb unendlich hoch méglich.

Beispiel 8-13: Unendlich viele Losungen, unbegrenzter

Zielfunktionswert im primalen Simplex-Algorithmus

Betrachtet wird das Anfangstableau der Eichenzapfen AG fiir den Fall,

dass die Nebenbedingungen wie in Beispiel 8-5 nur durch x; <5 beschrie-
ben werden (es gilt wieder die urspriingliche Zielfunktion):

Basis | x1 x» s1

s1 1 0 1]5

Z |2 -5 0|0

Die zweite Spalte wird in diesen Fall als Pivotspalte gewahlt mit x, als neu
eintretende Basisvariable. Allerdings enthélt diese Spalte keinen Wert gro-
Ber Null und es lasst sich somit kein positiver Quotient aus dem Element in
der Pivotspalte und der rechten Spalte bestimmen. Ohne den Wert der bis-
herigen Basisvariable s; verringern zu miissen, kann X, beliebig erhoht

werden.

Wiéhrend der Fall mit unbegrenztem Zielfunktionswert eher auf Fehler bei der Modell-
formulierung zuriickzufiihren ist, kommt es dagegen bei praktischen Anwendungen
sehr hdufig zu unendlich vielen Losungen mit eindeutigem Zielfunktionswert. Zu
erkennen ist dieser Fall im Endtableau des Simplex-Verfahrens daran, dass mindestens
eine der Variablen, die nicht Teil der Basis ist, einen Koeffizienten von Null in der
Zielfunktionszeile aufweist. Eine Erhohung der entsprechenden Variable verandert
den Zielfunktionswert also nicht. Im Rahmen eines weiteren Simplex-Schritts kann
diese Variable in die Basis aufgenommen werden, wodurch sich der Zielfunktionswert
aber nicht verdandert. Die Wahl der austretenden Basisvariable erfolgt wie zuvor an-
hand des Quotientenkriteriums. Aus Anwendungssicht ist die Kenntnis iiber derartige

Losungen von hoher Bedeutung, da sie es ermdglicht, mehrere optimale Alternativen
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zu identifizieren. Aus diesen Alternativen kann anschliefSend auf Basis nicht im Mo-

dell abgebildeter weiterer Faktoren ausgewahlt werden.

Beispiel 8-14: Unendlich viele Lésungen, eindeutiger

Zielfunktionswert im primalen Simplex-Algorithmus

Betrachtet wird das Beispiel 8-6, bei dem die graphische Maximierung der
modifizierten Zielfunktion z=2x; +3x, — max zu unendlich vielen optima-
len Losungen gefiihrt hat. Das entsprechende Endtableau des Optimie-
rungsproblems nach Anwendung des primalen Simplex-Algorithmus er-

gibt sich folgendermafien:

Basis | x; X, s Sp s3
s, |1 0 1 0 0|5 ~~—-7
s, | 0 0 1 0|4 :1=4 =311
s |2 3 0 0 1|16 :3=16/3 Z+3-Il
Z |2 3 0 0 0]0 B
Basis | x; X, s sy s3
S 0 1 0 0[5 :1=5 1/2-111
X, |0 1 0 1 0|4 ——— [-1IL,,,
S5 0 0 -3 1[4 :2=2 Z+2-M,.,
Z |2 0 0 3 012
Basis | x; X, s sy S3
s |0 0 1 [32] -12|3 :32=2 251
X, |0 1 0 1 0 |4 :1=4 1 .
x |1 0 0 =32 1/2 |2 —7— 1+ 34 ey
Z [0 0 0 o0 1 |16

In der Zielfunktionszeile steht bei der Variable sp, welche nicht Teil der
Basis ist, der Wert 0. Folglich kann s» in die Basis aufgenommen werden,
ohne den Zielfunktionswert zu vermindern. Nimmt man Sy an Stelle von

s1 in die Basis auf, ergibt sich das folgende ebenfalls optimale Tableau:
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Basis | x1  xo S| S» S3
S 0o 0 23 1 -1/3]|2
X2 0 1 -2/3 0 1/3
X1 1 0 1 0 0 5
Z 0 0 0 0 1 |16

Beide Tableaus beschreiben jeweils eine Ecke des Simplex, bei denen es sich
jeweils um eine optimale Losung handelt. Neben den beiden Ecken sind
auch alle Punkte zwischen diesen optimale Losungen. Aus Sicht der Ei-
chenzapfen AG kann in diesem Fall aus einer Menge von optimalen Pro-

duktionsmoglichkeiten gewdhlt werden.

Definition 8-3: Primaler Simplex-Algorithmus

Ausgehend von dem Anfangstableau, bei dem alle Schlupfvariab-
len in der Basis stehen, sind folgende drei Schritte solange zu wie-
derholen, bis in der Zielfunktionszeile keine negativen Werte mehr

stehen.

Schritt 1 (Wahl der Pivotspalte): Als Pivotspalte wird diejenige
Spalte mit dem kleinsten (negativen) Zielfunktionskoeffizienten
bestimmt. Kommen mehrere Elemente in Frage, kann zwischen

diesen Elementen beliebig gewahlt werden.

Schritt 2 (Wahl der Pivotzeile): Fur alle positiven Elemente in
der Pivotsspalte wird der Quotient aus rechter Seite und dem
entsprechenden Koeffizienten in der Pivotspalte berechnet. Der
kleinste Quotient bestimmt die Pivotzeile. Kommen mehrere
Quotienten in Frage, kann zwischen diesen Quotienten beliebig
gewahlt werden. Gibt es keine positiven Koeffizienten in der Pi-
votspalte, hat das Problem unendlich viele Lésungen bei unbe-

grenztem Zielfunktionswert, und das Verfahren bricht ab.
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Schritt 3 (Neue Basislosung, neues Simplextableau): Die Pi-
votspalte mit dem in Schritt 1 und 2 bestimmten Pivotelement ist
streng zu pivotisieren. Die zur Pivotsspalte gehdérende Variable
kommt in die Basis, wahrend die zur Pivotzeile gehdrende (alte)
Basisvariable diese verlasst. An Stelle der alten Basisvariable
wird die neue Basisvariable in die Basisspalte des Simplex-

Tableaus aufgenommen.

8.5 Interpretation des Endtableaus

Neben der optimalen Lésung und dem optimalen Zielfunktionswert enthdlt das End-
tableau noch weitere Informationen. Es lassen sich Approximationen fiir Veranderun-
gen des optimalen Zielfunktionswerts bei Veranderungen der einzelnen Kapazitdten
ablesen. Diese Sensitivitatsschatzungen y; sind in der Zielfunktionszeile in der Spalte
der Schlupfvariablen s; ablesbar. Wird Kapazitdt j um eine marginale Einheit erhoht
(gesenkt), so steigt (sinkt) der optimale Wert der Zielfunktion approximativ um y;
Einheiten. Befindet sich 5; im Endtableau in der Basis und ist demnach sj > 0, so be-
schrankt Restriktion j die optimalen Losung nicht, sie ist somit nicht bindend. Die
verfiigbare Kapazitit j wird nicht ausgelastet, weshalb eine Erhhung der Kapazitat j
nicht zu einer Erhéhung des Zielfunktionswerts fiithrt. Gilt hingegen Sj= 0, so fuhrt
eine Erhohung der nun bindenden Restriktion j im Allgemeinen zu einer Erhohung
des optimalen Zielfunktionswerts. Bei einer Verwendung von y; als Sensitivitdt des
optimalen Zielfunktionswerts wird vorausgesetzt, dass die Verdnderung der Kapazi-
tat j keine Auswirkungen auf den Verlauf des Simplex-Algorithmus hat, die optimale
Losung sich also tiber dieselben Simplex-Schritte bestimmt. Die Kapazititen b; haben
aber durchaus Einfluss auf die Wahl der jeweiligen Pivotzeile und somit auch auf den
Verlauf des Algorithmus. Unterstellt wird hier, dass marginale Variationen der Kapa-
zitdten eben nicht zu derartigen Veranderungen des Verlaufs fithren. Um die wahren
Sensitivitaten des optimalen Zielfunktionswerts zu bestimmen, muss der Simplex-

Algorithmus komplett neu angewendet werden.
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Beispiel 8-15: Sensitivititsanalyse im Endtableau

Aus dem oben berechneten Endtableau aus Beispiel 8-11

Basis | x; Xo s; sy S3
s1 0 0 1 32 -1/2|3
Xp 0 1 0 1 0
X1 1 0 0 =32 12 |2
zZ 0 0 O 2 1 |24

lassen sich als geschitzte Sensitivitdten y; =0, y, =2, y3 =1 ablesen. Fiir
die Eichenzapfen AG bedeutet dies beispielsweise, dass sich der Optimal-
wert der Zielfunktion um 2.000 € auf 26.000 € erhoht, falls die zweite Kapa-
zitat (Fertigungskapazitat Premiumbier) von 4.000 1 auf 5.000 1 erhoht wird.
Eine marginale Anderung der ersten Kapazitit (Fertigungskapazitit Party-

bier) hat hingegen keinen Einfluss auf die Losung.

Die Sensitivitdtsanalyse stellt somit ein effizientes Mittel dar, Engpéasse in einem Op-
timierungsproblem zu identifizieren (bindende Nebenbedingungen) und Empfehlun-
gen dariiber abzugeben, wo eine Kapazititserweiterung besonders viel versprechend
ist. Insbesondere bei Problemen in der Praxis, die oftmals tausende von Nebenbedin-
gungen umfassen, hat die Sensitivitdtsanalyse neben der eigentlichen Optimierung

deshalb eine immense Bedeutung.

8.6  Der duale Simplex-Algorithmus

Bisher haben wir die analytische Losung der in Definition 8-2 eingefiihrten Standard-
maximierungsprobleme betrachtet. Sollte ein lineares Programm nicht in dieser Form
gegeben und auch nicht einfach in diese umzuformen sein, ist zunéchst die Bestim-
mung einer (ersten) zuldssigen Basislosung erforderlich. Anschlieend kann der duale

Simplex-Algorithmus angewendet werden.
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Sind in einem linearen Programm >-Restriktionen vorhanden, miissen diese zundchst
durch Multiplikation mit -1 zu <-Restriktionen umgeformt werden. Der duale Sim-
plex-Algorithmus ist anzuwenden, wenn derartige Umformungen zu <-Restriktionen

mit negativen Kapazititen b; fithren oder von vornherein als <-Restriktionen mit

negativen Kapazititen b; gegeben sind.

Beispiel 8-16: Umformulierung des linearen Programms

Um mit der Eichenzapfen AG expandieren zu konnen, lassen Sie in Zu-
kunft das Verpacken und Abfiillen des Biers von einigen Freunden tiber-
nehmen. Die Bezahlung erfolgt in Form von Freibiergutscheinen fiir die
Uniparties, die Sie in Absprache mit den Partyveranstaltern in beliebiger
Menge ausgegeben konnen, ohne etwas dafiir bezahlen zu miissen. Da Thre
Freunde an ausreichend Gutscheine kommen wollen, miissen Sie diesen
zusichern, dass sie mindestens 16 Stunden pro Woche fiir die Eichenzapfen
AG arbeiten konnen. Der Zeitaufwand zum Verpacken und Abfiillen der
beiden Biersorten dndert sich durch die weiterhin manuelle Arbeit nicht.
Sie miissen die folgende neue Nebenbedingung in Ihrer Produktionspla-

nung beriicksichtigen:
2X1 + 3X2 >16

Durch Multiplikation der Nebenbedingung mit -1 ergibt sich eine <-
Restriktion und das Optimierungsproblem der Eichenzapfen AG hat die

folgende Form:

Z = 2Xq + 5xy = max

X1 < 5
X, < 4
-2x1 — 3xp < -16

[\

X1 , X2 0

Es handelt sich nunmehr um kein Standardmaximierungsproblem, da die

dritte Nebenbedingung mit by =16 eine negative Kapazitit aufweist.
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Das Aufstellen des Anfangstableaus fiihrt in diesen Féllen zu einer Basislosung, bei
der die Werte der entsprechenden Schlupfvariablen negative Werte aufweisen. Diese

Basislosung verletzt die Nichtnegativitatsbedingung und ist somit nicht zulassig.

Beispiel 8-17: Aufstellen des Anfangstableaus

Das Anfangstableau wird nach der bekannten Vorgehensweise aufgestellt:

Basis | x1 X» st S» s3
s1 1 0 1 0 0|5
) 0 1 0 1 0| 4
s3 -2 -3 0 0 1]|-16
V4 -2 -5 0 0 0O

Die Schlupfvariablen stehen wie zuvor in der Basis des Anfangstableaus,
allerdings wird in diesem Fall die Nichtnegativitatsbedingung durch die
dritte Schlupfvariable verletzt. Die Losung x; =0, x, =0, sy =5, s, =4,

s3 =—16, z=0 ist nicht zul&ssig.

Bei der Anwendung des dualen Simplex-Algorithmus wird das Anfangstableau nach
einer im Vergleich zum primalen Simplex-Algorithmus gednderten Vorgabe zunéachst
solange streng pivotisiert, bis in der Basis keine negativen Variablen mehr enthalten
sind und die so bestimmte Basislosung zuléssig ist. Ist eine zuldssige Basislosung
gefunden, muss anschliefend noch {iiberpriift werden, ob das zugehorige Simplex-
Tableau negative Elemente in der Zielfunktionszeile aufweist. Wenn ja, ist der primale
Simplex-Algorithmus in seiner bekannten Form anzuwenden. Existieren keine negati-
ven Werte in der Zielfunktionszeile, ist die durch den dualen Simplex-Algorithmus
gefundene Losung zulédssig und optimal. Dabei ist anzumerken, dass bei Anwendung

des dualen Simplex-Algorithmus negative Zielfunktionswerte auftreten kénnen.

Bei jedem Schritt des dualen Simplex-Algorithmus wird zundchst die Pivotzeile an-
hand des kleinsten (negativen) Elements in der rechten Spalte des Simplex-Tableaus
ausgewahlt. Die Wahl der Pivotspalte erfolgt anhand des groiten Quotienten aus

Zielfunktionskoeffizienten und dem entsprechenden Element in der Pivotzeile, wobei
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ein Quotient nur gebildet wird, falls der Koeffizient in der Pivotzeile negativ ist. An-
zumerken ist, dass die Quotienten sowohl negative als auch positive Werte annehmen
konnen. Sollte kein Element in der Pivotzeile negativ sein, ldsst sich keine zuldssige
Losung fiir das Optimierungsproblem finden, und das Verfahren bricht ab. Die Pivot-
zeile bestimmt dabei die Variable, welche die Basis verlasst, wahrend die neue Basis-
variable durch die Pivotspalte bestimmt wird. Wie beim primalen Simplex-
Algorithmus kann es zu Situationen kommen, bei denen die Pivotisierungsregeln des
dualen Simplex-Verfahren keine eindeutige Entscheidung liefern. In diesen Fillen

kann zwischen den in Frage kommenden Pivotzeilen beziehungsweise Pivotspalten

beliebig gewahlt werden.

Beispiel 8-18:

Anwendung des dualen Simplex-Algorithmus

Der Verlauf des dualen Simplex-Algorithmus ist nachfolgend fiir obiges
Beispiel dargestellt. Die Variable s3 verlédsst die Basis des Anfangstableaus,
da das zu der entsprechenden Pivotzeile gehdrende Element in der rechten
Spalte den einzigen negativen Wert aufweist. Fiir s; kommt die Variable
X, die Basis, deren Quotient in der entsprechenden Pivotspalte den grof3-
ten Wert aufweist. Fiir die nichtnegativen Elemente in die Pivotzeile wird

in der entsprechenden Pivotspalte kein Quotient berechnet.
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Basis | x; Xo s1 Sp S3
ss; |1 0 1 0 05
Sy 0 1 0 1 0] 4 _% I
s3 | -2 0 0 1|-16 1111,
Z |2 -5 0 0 0O Z 451,
=2 -3 - - -
=1 =5/3




Der duale Simplex-Algorithmus

Basis | X3 Xy 81 Sp  S3
_3/.
s 1 0 1 0 0 5 311
sy 0 0 1 1/3|-4/3 5 | A
X, |23 1 0 0 -1/3|16/3 III—%~IIneu
Z | 43 0 0 0 -53[80/3 24 e
:=2/3 - - - -
=2
Basis X1 Xy 81 Sy S3
s; [0 0 1 32 [1/2]|3 :12=6 2.1
xx |1 0 0 =32 -12|2 -—-— M+1/2 Loy
X 0 1 0 1 0 4 - Z+1heu
Z [0 0 0 2 -1 |24

Da alle Werte in der rechten Spalte des dritten Tableaus nichtnegativ sind,

muss das duale Simplex-Verfahren nicht weiter angewendet werden. Die

aktuelle Basislosung ist zuldssig. Allerdings steht in der Zielfunktionszeile

noch ein negativer Wert, weswegen die gefundene Basislosung nicht opti-

mal ist. Zur Optimierung ist der primale Simplex-Algorithmus anzuwen-

den, wobei sj fiir s; in die Basis kommt.

Basis | x; X, s; s; s3
S3 0 0 2 3 1|6
X1 1 0 1 0 0}5
Xp 0 1 0 1 0|4
zZ 0 0 2 5 030

Das Basislosung des vierten Simplex-Tableaus ist optimal mit den Vari-

ablenwerten x; =5, x, =4, 51 =0, s, =0, s3 =6 und zugehdrigem Zielfunk-

tionswert z =30.
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Definition 8-4: Dualer Simplex-Algorithmus

Ausgehend von dem Anfangstableau, bei dem alle Schlupfvariab-
len in der Basis stehen, sind folgende drei Schritte solange zu
wiederholen, bis in der rechten Spalte keine negativen Werte mehr
stehen. Weist das so berechnete Simplex-Tableau negative Ziel-
funktionskoeffizienten auf, ist anschlieBend der primale Simplex-

Algorithmus zur Bestimmung der optimalen L6sung anzuwenden.

Schritt 1 (Wahl der Pivotzeile): Als Pivotzeile wird diejenige
Zeile mit dem kleinsten (negativen) Element in der rechten Spal-
te bestimmt. Kommen mehrere Elemente in Frage, kann zwi-

schen diesen Elementen beliebig gewahlt werden.

Schritt 2 (Wahl der Pivotspalte): Fiur alle negativen Elemente
in der Pivotzeile wird der Quotient aus Zielfunktionskoeffizient
und dem entsprechenden Element in der Pivotzeile berechnet.
Der grofite Quotient bestimmt die Pivotspalte. Kommen mehrere
Quotienten in Frage, kann zwischen diesen Quotienten beliebig
gewahlt werden. Gibt es keine negativen Koeffizienten in der
Pivotzeile, hat das Problem keine zuldssige Loésung, und das
Verfahren bricht ab.

Schritt 3 (Neue Basislosung, neues Simplextableau): Die Pi-
votspalte mit dem in Schritt 1 und 2 bestimmten Pivotelement ist
streng zu pivotisieren. Die zur Pivotzeile gehdrende (alte) Ba-
sisvariable verldsst die Basis, wahrend die zur Pivotspalte ge-
hérende Variable in diese eintritt. An Stelle der alten Basisvari-
able wird die neue Basisvariable in die Basisspalte des Sim-

plex-Tableaus aufgenommen.
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8.7  Aufgaben

Aufgabe 8.1:

Ein Rohstoff R kann zu drei Giitern G, G, und Gj verarbeitet werden. Man benétigt
fiir G; pro Stiick 40 kg, fiir G, pro Stiick 80 kg und fiir G pro Stiick 60 kg des Roh-
stoffs R. An Arbeitszeit sind bei G; 6 Stunden pro Stiick, bei G, 7 Stunden pro Stiick
und bei G3 7 Stunden pro Stiick aufzuwenden. Im betrachteten Zeitraum stehen 2.200
Arbeitsstunden und 16.000 kg des Rohstoffs R zur Verfiigung. Aus technischen Griin-
den muss von G; mindestens die dreifache Stiickzahl wie von G, produziert werden.

Pro Stiick erzielt man bei G; einen Gewinn von 38 €, bei G, 46 € und bei G 42 €.
a) Formulieren Sie ein vollstandiges lineares Programm zur Gewinnmaximierung.

b) Wie muss das lineare Programm verdndert werden, wenn man einen Gewinn von

mindestens 9.000 € bei minimalem Rohstoffverbrauch erzielen will?

Aufgabe 8.2:

Zur Produktion der Giiter G, G, und G5 wird der Rohstoff R bené&tigt. Man benétigt
fiir G pro Stiick 40 kg, fiir G, pro Stiick 50 kg und fiir G3 pro Stiick 30 kg des Roh-
stoffs R. Es stehen dabei 1.000 kg von R zur Verfiigung.

Weiterhin ist zu beriicksichtigen, dass aus absatztechnischen Griinden der Anteil von

Gy an der Gesamtproduktionsmenge 1/2 nicht {ibersteigen darf.

Aus technischen Griinden ist zu beachten, dass von G, hochstens 10 Einheiten produ-
ziert werden koénnen und die von G, hergestellte Menge mindestens doppelt so grofs

sein muss wie jeweils die Mengen von G undGgs.
Die Erlose pro Stiick der drei Giiter betragen fiir G 45 €, fiir G, 30 € und fiir G5 25 €.
a) Stellen Sie ein vollstandiges lineares Programm zur Erlésmaximierung auf.

b) Zusitzlich soll eine Mindestproduktionsmenge fiir G3 in Hohe von 30 Einheiten

berticksichtigt werden. Stellen Sie die entsprechende Nebenbedingung auf und
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iiberlegen Sie, welche Auswirkungen die neue Nebenbedingung auf die Losbarkeit

des linearen Optimierungsproblems aus a) hat.

Aufgabe 8.3:

Das Semester ist fast beendet, die Klausuren stehen bevor. Sie beabsichtigen, jeweils
eine Klausur in Mathematik, Wirtschaftsinformatik, Technik des betrieblichen Rech-
nungswesens und Produktionswirtschaft zu schreiben. Insgesamt bleiben Thnen noch
18 Tage, um sich auf die Klausuren vorzubereiten. Sie rechnen damit, dass Sie (neben
Ihren schon vollzogenen Lernbemiihungen) fiir Mathematik, Wirtschaftsinformatik
und Technik des betrieblichen Rechnungswesens zusammen hochstens doppelt so viel
Zeit investieren miissen wie fiir Produktionswirtschaft. Fiir Technik des betrieblichen
Rechnungswesens sollten Sie nicht mehr Zeit bendtigen als fiir Wirtschaftsinformatik,
aber mindestens so viel wie fiir Mathematik. Da es nur in Produktionswirtschaft eine
Note gibt, mochten Sie so viel Zeit wie mdglich fiir die Vorbereitung auf dieses Fach
einplanen. Allerdings miissen Sie beriicksichtigen, dass Sie fiir Wirtschaftsinformatik
mindestens 4 Tage und fiir Mathematik mindestens 3 Tage Vorbereitungszeit benoti-

gen, um die Klausuren zu bestehen.
a) Formulieren Sie das Problem als lineares Maximierungsproblem.

b) Wie viele Tage investieren Sie in jedes Fach, um die Scheinklausuren zu bestehen

und in Produktionswirtschaft eine moglichst gute Note zu erzielen?

Aufgabe 8.4:

Sie sind Mitglied des Fetenkomitees der nachsten Mensafete und als Erstsemester
gerade auf einem Gewinnoptimierungstrip. Sie haben nach einer genauen Analyse des
Getrankeabsatzes erkannt, dass Méanner und Frauen unterschiedlich zum Getranke-
gewinn beitragen. Ein mannlicher Gast sorgt am Abend durchschnittlich fiir einen
Gewinn von 24 € im Gegensatz zu 14 € pro weiblichem Gast. Das wollen Sie ausnutzen

und die Karten gezielt an beide Geschlechter verkaufen.
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Sie haben Gliick, die Nachfrage (der Gasten beider Geschlechter) nach Karten ist wie
immer riesig und 1.000 Studenten und 800 Studentinnen wollen zur Party. Mehr po-
tenzielle Partygéste gibt es nicht. Leider ist die Optimierung doch nicht ganz so ein-
fach, denn wer will schon auf eine Party, auf der nur (gewinntrdchtige) Manner sind.
Der Anteil an Frauen auf der Party, die so genannte Frauenquote, darf nicht unter 35%
fallen. Zudem fasst die Mensa nicht mehr als 1.400 Leute und die Frauentoiletten plat-

zen ab 650 weiblichen Gasten aus allen Nahten, das wollen Sie auf keinen Fall.

Wandeln Sie dieses diffuse Problem in ein vollstindiges lineares Programm um.

Aufgabe 8.5:

Sie betreiben eine Pizzeria und mochten eine neue Kreation gestalten. Hierzu stehen

Ihnen unter anderem folgende Zutaten zur Verfiigung:

Produkt Packungsgrofie Preis pro Packung
Butter (b) 500 g 0,95 €
Champignons (c) 300 g 1,20 €
gekochte Eier (e) 50 g pro Ei 0,15 € pro Ei
Kase (k) 100 g 0,75 €

Mehl (1) 1kg 0,60 €
Milch (m) 1kg 0,80 €
Salami (s) 500 g 6,50 €
Tomatensauce (t) 500 g 1-€
Wasser (w) unbegrenzt kostenlos

Damit die Pizza geniefSbar wird, sind Sie an ein altes Rezept Ihrer italienischen Grof-

mutter gebunden.

Sie miissen zwischen 400 und 600 Gramm des Hauptbestandteils Mehl verwenden.
Hierzu geben Sie Wasser und Milch, wobei das Gewicht der Fliissigkeiten mindestens
40% und hochstens 2/3 des Mehlgewichts betragen soll. Sie kénnen auch noch Butter
hinzufiigen, miissen aber beachten, dass mindestens viermal soviel Mehl wie Butter
enthalten sein muss. Auf den Teig streichen Sie zwischen 300 und 500 Gramm Toma-
tensauce. Sie hatten lange keine Probleme mit Threm Cholesterinspiegel mehr und

wollen deswegen mindestens ein Ei pro Pizza zu sich nehmen. Beachten Sie aber, dass
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Sie (jeweils auf das Gewicht bezogen) mindestens ebenso viele Champignons und
viermal soviel Salami wie Eier verwenden miissen. AbschliefSend sollten Sie mindes-

tens 250 Gramm Kase tiber die Pizza streuen.

Die Entscheidungsvariablen seien als "verwendete Menge in 100 Gramm" definiert.
Benutzen Sie als Entscheidungsvariablen die oben in Klammern angegebene Kurzform
der Zutaten. Stellen Sie ein vollsténdiges lineares Programm zur Minimierung der

Herstellkosten einer Pizza auf (das Aussehen der Pizza sei nicht relevant).

Aufgabe 8.6:

Sie sind ein Viehziichter und halten Rinder, Schafe und Schweine, die allesamt nach
einem Jahr Zucht im Schlachthof "weitergenutzt" werden. Der Okonom in Thnen als
Agrarwirt will naturgeméf den jahrlichen Gewinn maximieren, der sich ausschliefilich
aus den Verkaufserlosen abziiglich der jeweiligen Einkaufspreise der Tiere zusam-
mensetzt. Die Jungtiere kosten 150 € je Mastkalb, 20 € je Mastlamm und 80 € je Mast-
ferkel. Nach einem Jahr erbringt eine Veraufierung an den Schlachthof 1.800 € pro
Rind, 180 € pro Schaf und 250 € pro Schwein.

Allerdings gibt es aufgrund einer tiberraschenden und unbegriindeten Gesetzesande-
rung Probleme mit dem Nachschub an Tiermehl zur Fiitterung. Es stehen Ihnen insge-
samt nur 1.000 kg pro Tag zur Verfiigung, wobei ein Rind 30 kg, ein Schwein 8 kg und
ein Schaf 2 kg pro Tag vertilgt. Auch mit dem Absatz von Rindfleisch lauft es wegen
einer Medienintrige momentan nicht besonders gut, Sie konnen maximal 20 Rinder
pro Jahr an den Schlachthof abgeben. Zudem streikt Thr Partner, der ja die ganze Ar-
beit auf dem Hof macht, nach "nur" 16 Stunden Arbeit am Tag. Und die Tiere brauchen
doch Zuneigung, und zwar taglich 10 Minuten pro Rind, 15 Minuten pro Schaf und 5
Minuten pro Schwein. Dem ist nicht genug, auch Ihre Stallung stellt mit 200 qm einen
Engpass dar. Sie konnen die Schafe ohne weiteres auf 1,5 qm je Schaf zusammenpfer-

chen, die Schweine brauchen aber jeweils 2 gqm und die Rinder sogar 5 qm Platz.

Stellen sie ein mathematisches Modell auf, das Ihren Gewinn maximiert.
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Aufgabe 8.7:

Ihr Unternehmen mochte ein Anti-Ageing-Getrank auf den Markt bringen und hat Sie
damit beauftragt, eine optimale Rezeptur zu finden. Ihnen stehen Karottensaft (0,30 €
pro Liter), Traubensaft (0,15 € pro Liter), fliissiger Honig (3 € pro Liter) und Pfeffer-
minzlikor (20% Alkohol enthaltend; 2 € pro Liter) zur Verfiigung.

Um eine gute Viskositat des Endprodukts zu erhalten, muss das Getrank aus 5% bis
10% Honig bestehen. Es soll mindestens doppelt soviel Traubensaft wie Karottensaft
und mehr Karottensaft als Honig enthalten sein. Zur geschmacklichen Verfeinerung
miissen mindestens 1% Pfefferminzlikor in das Getrank. Andererseits soll das Produkt
aber in einer anderen Verpackung auch als Aufbauprodukt fiir Kinder vermarktet
werden, daher darf es héchstens 1% Alkohol enthalten. Um die medizinische Wirkung
miissen Sie sich keine Gedanken machen, diese wird dem Verbraucher von Threr Mar-

keting-Abteilung je nach Bedarf suggeriert.

Stellen Sie ein vollstandiges lineares Programm auf, das unter Beriicksichtigung der

angegebenen Bedingungen die Herstellkosten minimiert.

Aufgabe 8.8:

Ihr Unternehmen hat ein neues Mobiltelefon entwickelt. Sie sind fiir die Festlegung

der Werbeausgaben zustandig.

Sie konnen Werbung in Zeitungen, im Radio, im Fernsehen und auf Litfafssdulen ma-
chen. Thr Budget liegt bei 250.000 €. Eine Zeitungsseite kostet 5.000 € pro Tag, 30 Se-
kunden im Radio 800 €, 10 Sekunden im Fernsehen 2.000 € und das Anmieten einer
Litfafsaule fiir eine Woche 300 €. Durch eine Zeitungsannonce erreichen Sie 20.000
Menschen. Sie haben sowohl fiir das Radio als auch fiir das Fernsehen einen 30-
sekiindigen Spot erstellt. Im Radio bringen Sie Thr Produkt so 2.000 Personen naher,
wihrend der Fernsehspot von 10.000 Personen beachtet wird. Eine Litfalsdule schliefs-
lich wird in einer Woche nur von 600 Passanten wahrgenommen. Zur Vereinfachung
kénnen Sie davon ausgehen, dass Ihre Werbemafinahmen stets verschiedene Men-

schen erreichen. Der Vorstandsvorsitzende besteht darauf, mindestens 10 Zeitungssei-
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ten mit entsprechender Werbung zu buchen. LitfaBsdulen hingegen hélt er schlecht
fiirs Image und mochte die Nutzung dieses Mediums daher auf 200 LitfaSsaulenwo-
chen begrenzen. Aus einem fragwiirdigen internen Strategiepapier geht hervor, dass
die Werbezeit im Fernsehen diejenige im Radio nicht unterschreiten soll. Um auch eine
gewisse eigene Note in das Problem einzubringen, mochten Sie mindestens doppelt so

viele Fernsehminuten schalten wie Zeitungsseiten.

Stellen Sie ein lineares Programm auf, welches die Bekanntheit des neuen Telefons

maximiert. Formulieren Sie prazise und vollstandig.

Aufgabe 8.9:

Sie sind ein Amateurspekulant auf dem Rohstoffterminmarkt und interessieren sich
fiir Ol, Kupfer und Nickelinvestments. Als risikoneutraler Anleger wollen Sie aus-
schlieSlich die durchschnittlich erwartete Preissteigerung Ihres Rohstoffterminportfo-
lios maximieren. Aus historischen Datensitzen kennen Sie die Durchschnittspreisstei-
gerungen der einzelnen Terminkontrakte. Fiir die Olkontrakte sind dies 4%, fiir die

Kupferkontrakte 5% und fiir die Nickelkontrakte 6% (jeweils pro Jahr).

Ihr Rohstoffterminportfolio unterliegt aber verschiedenen Restriktionen, denn Ihr
Vater, Studienkollegen und Ihre Freundin wissen um Ihre diinne Erfahrung. Wegen
des Olbooms ist Thre Freundin besonders zuversichtlich beziiglich der Preisentwick-
lung der Olkontrakte und schreibt Thnen vor, immer mehr Olkontrakte in Threm Port-
folio zu halten als Kupfer- und Nickelkontrakte zusammen. Zudem ist ein alter Stu-
dienkollege Vorstand beim Kupfermonopolisten. Er hat Insiderinformationen und rat,
mindestens 10% des Portfolios in Kupferkontrakten zu halten. Da Sie sich mit Nickel-
und Kupfer eigentlich gar nicht auskennen, legen Sie sich hier selbst die Restriktion
auf, dass der Portfolioanteil der Kupferkontrakte nie mehr als 5% tiber dem der Ni-
ckelkontrakte liegen darf, und umgekehrt. Letztendlich meldet sich Thr Vater noch zu

Wort und empfiehlt, nie mehr als 60% in eine Kontraktklasse zu investieren.

Ein nicht einfaches Investmentproblem. Stellen Sie ein Lineares Programm auf, wel-

ches die Problemstellung beschreibt, wenn Sie alle Ratschlage befolgen wollen und die
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Rohstoffkontrakte nur kaufen, nicht aber leer verkaufen konnen (das heifst Sie konnen

keine Rohstoffkontrakte verkaufen, die sie nicht besitzen).

Aufgabe 8.10:

Ein ortlicher Viehzuchtbetrieb fiittert Schweine mit zwei Futtersorten A und B. Die
Tagesration eines Schweins muss die Néhrstoffe I, II, und III im Umfang von mindes-
tens 8, 14 bzw. 6 Gramm enthalten. Die Tabelle zeigt die Nahrstoffgehalte in Gramm

pro Kilogramm und die Preise in € pro Kilogramm der beiden Futtersorten.

Sorte A Sorte B Mindestmenge
Nahrstoff I in g/kg 2 1 8
Nabhrstoff Il in g/kg 3 4 14
Nahrstoff III in g/kg 1 5 6
Preis in €/kg 5 8

Neben der Einhaltung der Mindestmengen an Nahrstoffen soll der Anteil von Futter-

mischung A und B an der Tagesration jeweils nicht 2/3 {ibersteigen.

Stellen Sie ein Lineares Programm zur kostenminimalen Bestimmung der Mengen (in

Kilogramm) von Futtersorte A und B pro Tagesration auf.

Aufgabe 8.11:

Als vorbildlicher Student der Universitdt Mannheim steht Harald vor einem grofien
Problem: Er ist total gestresst. Deshalb konsultiert er seinen Hausarzt und dieser emp-
fiehlt ihm — geschockt von Haralds desolatem Zustand — sich durch exzessiven Schlaf
zu erholen. Hierfiir stehen Harald vier Schlafméglichkeiten offen, bei welchen er sich

mehr oder weniger effektiv erholt.

Zunéchst kann Harald in seinem Bett schlafen, wo er allerdings jede Nacht gleich lang
schlafen muss, sonst geradt sein Schlafrhythmus aus den Fugen. Mutti schreibt ihm
zudem altklug vor, dass er jede Nacht mindestens 5 Stunden, hochstens jedoch
14 Stunden in seinem Bett zu verbringen hat. Nun zur "einschldfernden” Uni. Um sich

die Chance zu erhalten, die bevorstehenden Klausuren zu bestehen, will er mindestens
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5 Blocke pro Woche die Vorlesungen besuchen, hochstens allerdings 12 Blocke, mehr
sind aus psychischen Motiven einfach nicht méglich. Ein Viertel der Vorlesungszeit
schléft Harald, leider erholt er sich dabei wegen des stérenden Larms der Dozenten
nur halb so gut wie in seinem Bett. Hinzu kommen noch einige Tutorien, von denen er
mindestens einen Block fest einplant (bei seiner hiibschen Lieblingstutorin). In den
Tutorien schlaft er dreimal so gut wie in den Vorlesungen (da er ausschweifend von
der Tutorin trdumen kann) und das drei Viertel der Zeit. Damit sein Stundenplan
einigermafSen sinnvoll ist, méchte Harald auf keinen Fall mehr Tutorien als Vorlesun-
gen besuchen. Um ein gutes Gewissen zu haben, sollte er mindestens 20 Semesterwo-
chenstunden an der Uni belegen. Auflerdem hat er die Verpflichtung/Moglichkeit,
seine Freundin Maike zu besuchen, bei der er es bis zu 30 Stunden pro Woche aushalt.
Ein Drittel der Zeit bei ihr verbringt er schlafend, jedoch ist der Schlaf wegen des stan-
digen Gejammers der Freundin nur ein Drittel so erholsam wie in seinem Bett. Um die
Beziehung nicht zu gefidhrden, muss Harald mehr Zeit bei seiner Freundin als in den
Universitatsveranstaltungen verbringen. Pro Tag isst Harald zudem drei Stunden (zu
Hause), des weiteren arbeitet er 19 Stunden pro Woche als Hiwi an einem der Lehr-
stiihle. Bei beidem ist er so beschéftigt, dass ihm nicht eine einzige Minute Schlaf ver-

gonnt ist.

Stellen Sie ein vollstandiges lineares Programm fiir die Schlafzeit zu Hause, die be-
suchten Vorlesungs- und Tutoriumsblocke sowie die mit Maike verbrachte Zeit auf,
mit dessen Hilfe Harald seine wochentliche Erholung durch Schlaf maximieren kann.
Gehen Sie davon aus, dass ein Block zwei Semesterwochenstunden umfasst, wobei

eine Semesterwochenstunde genau 0,75 Zeitstunden entspricht.

Aufgabe 8.12:

Ein befreundeter Unternehmensberater steht vor der Herausforderung, die Produkti-
onsabldufe eines Kunden zu erfassen. Leider sind seine Kenntnisse in Powerpoint
deutlich besser als die in Linearer Algebra, weswegen er Sie um Hilfe beim Aufstellen
des zu Grunde liegenden mathematischen Modells bittet. Folgende Daten aus der

Produktion des Unternehmens teilt er Ihnen mit:
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Das Unternehmen fertigt zurzeit mit zwei Maschinen die Produkte P;, P, undP;. Die

Absatzpreise betragen 10 € fiir P, 20 € fiir P, und 15 € fiirP;.

Auf Maschine 1 konnen P; und P, gefertigt werden. Die Fertigung von P; auf Maschi-

ne 1 verbraucht 2 Arbeitsstunden, wahrend P, 3 Stunden benétigt.

Maschine 2 kann P; und P3 produzieren, fiir beide Produkte sind dabei jeweils 4 Ar-

beitsstunden aufzuwenden.

Auf Maschine 2 produzierte Einheiten von P; bendtigen keine weitere Bearbeitung auf
Maschine 1. Umgekehrt gilt, dass auf Maschine 1 produzierte Einheiten von P; keine

weitere Bearbeitung durch Maschine 2 benétigen.

Im betrachteten Zeitraum sind 1.000 Arbeitsstunden auf Maschine 1 eingeplant, auf
Maschine 2 das doppelte Arbeitsstundenbudget. Aus tariflichen Griinden muss beach-
tet werden, dass mindestens zwei Drittel der Gesamtproduktionsmenge von P; auf
Maschine 1 gefertigt wird. Aus der Marketingabteilung kommt aufgrund von geplan-
ten Werbekampagnen die Auflage, dass der Anteil von P3 an der Gesamtproduktion
(gemessen an der Stiickmenge der produzieren Einheiten) hochstens ein Drittel betra-

gen darf.

Formulierenden ein vollstandiges lineares Programm zur Erldsmaximierung.

Aufgabe 8.13:

Z =—X1 — 95X —2X3 — min

—X1 > -5
2x7 + 3x, - x3 = -1
37 + 4xp + x3 < 2
3xy + 2x3 = 2
X1 , X2 , Xz =2 0

Formen Sie das lineare Programm um. Handelt es sich hierbei um ein Standardmaxi-

mierungsproblem?
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Aufgabe 8.14:

Z =—X1 —2Xy —3X3 = min

-Xq + 5x3 = -5
2x;1 + 2xp + x3 < 10
3x1 + 4x, > 4
2x3 < 8
X1 , X2 , X3 =2 0

Formen Sie das lineare Programm um. Handelt es sich hierbei um ein Standardmaxi-

mierungsproblem?

Aufgabe 8.15:

Xo A

1 <G
0 1 2 3 4 5 x

Kann es sich hierbei um einen Simplex handeln?
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Aufgabe 8.16:

Z =Xq +5Xy —> max

-2X; + 2x, < 6
X1+ 2xp = 8
X1 > 3

0,5 + 2x, < 16

3x; - X < 5
X1, Xp =2 0

Losen Sie das lineare Programm graphisch und geben Sie den optimalen Zielfunkti-

onswert an.

Aufgabe 8.17:

Z = 6Xq —4x, = max

X £ 4 4+ x4
X1 £ X - 2
X, — 2x¢ =2 0
xx - 1 =20

Losen Sie das lineare Programm graphisch und geben Sie den optimalen Zielfunkti-

onswert an.

Aufgabe 8.18:

z =x1 +1,5x, = max

X;] + X 21
X; + 2y < 7
x; — 4 =<0
X; 2 X — 1
X7, Xp =0

Losen Sie das lineare Programm graphisch und geben Sie den optimalen Zielfunkti-

onswert an.
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Aufgabe 8.19:

i

v

Folgende Zielfunktion sei zu maximieren: z = ax; + bx,

Welche Punkte des nachfolgenden Simplex kommen als Losung in Frage, falls gilt:

a) a>0, b>0 b) a>0, b<0
¢) a<0, b>0 d) a<0, b<0
Aufgabe 8.20:

z = 3xq +4x, = max

2X1 + 3X2 < 6
2X1 + Xy < 5
X1 ’ Xo > 0

Ermitteln Sie die optimale Losung mithilfe des Simplex-Algorithmus und geben Sie

die geschatzten Sensitivitaten an.
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Aufgabe 8.21:

z = 6Xx1 + 5x, — max

4x; + 2x, < 40
X1 + 3X2 < 20
X1 ; Xo > 0

Losen Sie das obige Standardmaximierungsproblem mit Hilfe des Simplex-

Algorithmus. Geben Sie x°P!, s°P!, y°P* und z°P" an.

Aufgabe 8.22:

z = 3Xq + 5xp — max

x; + 4x, < 50
3 + 2x, < 60
2x; + 8x, < 110

X1, X = 0

Geben Sie die optimalen Werte fiir die Variablen x; und x,, den zugehorigen Zielfunk-

tionswert und die geschétzten Sensitivitaten an. Welche Kapazitdten sind ausgelastet?

Aufgabe 8.23:

z =20xq +18x, — max

4x; + 13x, < 400

16x; + 12x, < 880
8x; + 2x, < 660
X1, X = 0

Bestimmen Sie das Optimum dieses Standardmaximierungsproblems iiber den Sim-
plex-Algorithmus. Geben Sie an, wie sich der Optimalwert der Zielfunktion dndert,

wenn Sie jeweils die einzelnen Kapazitdten um eine marginale Einheit verringern.
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Aufgabe 8.24:

Z = 5Xq + X5 +4X3 —> max

2X1 + 3X2 + X3 < 30
X1 + 4X2 + 2X3 < 50
X1 ; Xp ; X3 > 0

Verwenden Sie den Simplex-Algorithmus, um die optimale Losung und die geschétz-

ten Sensitivitaten zu bestimmen.

Aufgabe 8.25:

Z =3Xxq +2X5 + X3 —> max

2X1 + 3X2 + 2X3 < 100
4X1 + 2X2 + X3 < 100
X1 ’ Xo ’ X3 > 0

Bestimmen Sie mithilfe des Simplex-Algorithmus die optimale Losung, den zugehori-
gen Wert der Zielfunktion und die geschitzte Veranderung dieses Werts bei Erhhung

der ersten bzw. der zweiten Kapazitiat um je eine Einheit.

Aufgabe 8.26:

Losen Sie das nachfolgende Standardmaximierungsproblem mit Hilfe des Simplex-
Algorithmus, geben Sie x°P", s°P!, y°Pt und z°P" an.

z =3x1 +2,5X5 +4x3 = max

X1 + Xo + 2X3 < 40
6X1 + 3X2 + 2X3 < 80
X1 , X , x3 = 0
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Aufgabe 8.27:

Losen Sie das nachfolgende Standardmaximierungsproblem mit Hilfe des Simplex-

[(§)

Algorithmus, geben Sie x°P', s°?' und z°P' an.

z =3xq +4X, +2X3 = max

x; + 4x, + 2x3 < 40
Xy + 2X2 + X3 < 30
X1 P Xp , X3 > 0

Aufgabe 8.28:

Losen Sie das nachfolgende Standardmaximierungsproblem mit Hilfe des Simplexal-

gorithmus, geben Sie x°P!, s°P', z°P' und die Sensitivititen y°P! an.

Z = 6Xq1 +2X5 +5x3 = max

4x; + X 4+ 4x3 =< 20
2x1 + 2xp + 2x3 < 40
Xy, + 3x3 < 10

X1 ., X , Xz =2 0

Aufgabe 8.29:

Ermitteln Sie fiir nachfolgendes Maximierungsproblem die optimale Losung mithilfe
des Simplex-Algorithmus und geben Sie die geschétzten Sensitivitdten der optimalen

Losung bei Kapazitatserhchungen an.

Z =Xq +3Xy +2X3 — max

X1 + 4X2 + 2X3 < 30
2X1 + 4X2 + X3 < 24
X1 , Xo ’ X3 > 0
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Aufgabe 8.30:

Z =4xq + 5%, + 6X3 — max

2x;7 + 3xp + 3x3 < 70
Xp + 2xp + 3x3 < 30
3x; + 4x, + 4x3 < 80
X1 , X» , xz3 =2 0

Ermitteln Sie die optimale Losung mithilfe des Simplex-Algorithmus und geben Sie

die geschatzten Sensitivitaten an.

Aufgabe 8.31:

z = 4xq + 3%, +5x3 = max

4x; + X+ 4xz < 30
2xy + 1,5xp + 2x3 < 20
X1 + X + 3x3 < 30
XX , X , x3 = 0

Ermitteln Sie die optimale Losung mithilfe des Simplex-Algorithmus und geben Sie

die geschatzten Sensitivitaten an.

Aufgabe 8.32:

Z =4xq + 5%, + 6X3 — max

Ixy + 4x, + 3x3 < 60
2x; + 4x, + x3 < 80
31 + 2xp + 4x3 < 60
X1 , X , X3 = 0

Ermitteln Sie die optimale Losung mithilfe des Simplex-Algorithmus und geben Sie

die geschatzten Sensitivitaten an.
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Aufgabe 8.33:

z =4xq + 3%, + 2,5x3 — max

2x;7 + Xy o+ X3 < 40

x; + 3%, + 175x3 < 35
6x1 + 2Xp + X3 < 140
X1, X2, X3 > 0

Bestimmen Sie mithilfe des Simplex-Algorithmus die optimalen Werte fiir die Ent-
scheidungsvariablen, die freien Kapazitdten und Sensitivitaten in diesem Fall sowie

den optimalen Wert der Zielfunktion.

Aufgabe 8.34:

Z =4xq + 2X5 + 3X3 — max

3x7 + Xp + 4x3 < 40
2x; + 2xp + 2x3 < 30
2x1 + Xy < 20
X1 , X , X3 = 0

Verwenden Sie den Simplex-Algorithmus, um die optimale Losung und die geschétz-

ten Sensitivitaten zu bestimmen.

Aufgabe 8.35:

Z = 6x1 + 5x5 + 5x3 = max

4x; + 6xp + 3x3 < 60
2x; + 2xp + x3 < 60
4x, < 40

47 + Xp + 2x3 < 20
X1 , X , X3 = 0

Ermitteln Sie die optimale Losung mithilfe des Simplex-Algorithmus und geben Sie

die geschétzten Sensitivitdten an.
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Aufgabe 8.36:

z =2xq + 5%y + 4x3 — max

2x; + 3xp + x3 < 48
X; + 4x, + 3x3 < 60
2x1 + 2xp + 2x3 < 50
3 + xp + 3x3 < 70
X1 , X , xz3 =2 0

Bestimmen Sie mithilfe des Simplex-Algorithmus die optimalen Werte fiir die Ent-
scheidungsvariablen, die freien Kapazitdten und Sensitivitaten in diesem Fall sowie

den optimalen Wert der Zielfunktion.

Aufgabe 8.37:

z = 2xq + 3X, = max

X1 < 4
2x, < 6

2x;7 + 3x, < 10
X1 , X = 0

Losen Sie das lineare Programm zunéchst graphisch und anschliefend mit dem Sim-

plex-Algorithmus. Welche Losungseigenschaften weist das lineare Programm auf?

Aufgabe 8.38:

Z =Xq +2Xp = max

—3X1 + 4X2 < 10
—2X1 + 2X2 < 20
X1 , Xo > 0

Losen Sie das lineare Programm zunéchst graphisch und anschlieffend mit dem Sim-

plex-Algorithmus. Welche Losungseigenschaften weist das lineare Programm auf?
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Aufgabe 8.39:

Z =X1 + 33Xy — max

3xg; + X =2 6
1/2x; + xp < 7/2
2x; - 2xp < 4
X1, X = 0

Ermitteln Sie die optimale Losung mithilfe des Simplex-Algorithmus und geben Sie
die geschatzten Sensitivititen an. Verwenden Sie, falls nétig, den dualen Simplex-

Algorithmus.

Aufgabe 8.40:

Z = 2Xq + 5xy = max

2xq < 5
X7 + 2x, < 10
31 + 2x, 2 12
X1 , X =2 0

Ermitteln Sie die optimale Losung mithilfe des Simplex-Algorithmus und geben Sie
die geschidtzten Sensitivititen an. Verwenden Sie, falls notig, den dualen Simplex-

Algorithmus.

Aufgabe 8.41:

Z = X1 + 3Xy +2X3 = max
X1 + 2X2 + X3
4X1 + Xo + 2X3
3X1 + X3

vV IV IV IA
S Ul =

X1 , Xo , X3

Bestimmen Sie mithilfe des Simplex-Algorithmus die optimalen Werte fiir die Ent-

scheidungsvariablen. Verwenden Sie, falls notig, den dualen Simplex-Algorithmus.
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Aufgabe 8.42:

Z = X7 + 2X5 + X3 —> max

X1 + 3X2 + 2X3 > 3
4X1 + 2X2 + 6X3 < 4
X1 , Xp ; X3 > 0

Bestimmen Sie mithilfe des Simplex-Algorithmus die optimalen Werte fiir die Ent-

scheidungsvariablen. Verwenden Sie, falls notig, den dualen Simplex-Algorithmus.

Aufgabe 8.43:

Z = X1 + 5X5 +2x3 — max

2x, + 2x3 < 10

2x; + 4x, + 2x3 < 8
2x3 > 4

XT , X , X3 =2 0

Bestimmen Sie mithilfe des Simplex-Algorithmus die optimalen Werte fiir die Ent-

scheidungsvariablen. Verwenden Sie, falls nétig, den dualen Simplex-Algorithmus.

Aufgabe 8.44:

z =2x1 +4X, + X3 = max

X1 + 2xp + x5 < 20
2X2 + 3X3 > 6

2X1 + X3 < 24
X1 ; Xp ; X3 > 0

Ermitteln Sie die optimale Losung mithilfe des Simplex-Algorithmus und geben Sie
die geschidtzten Sensitivititen an. Verwenden Sie, falls notig, den dualen Simplex-

Algorithmus.
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Aufgabe 8.45:
X1 X2 X3 51 52 53
s | % % o 1 0o -¥| 15
s, | 1 0o 0 0 1 Y
xs | Yoo ¥ o1 0 0o Wil
V4 0 3-p 0 0 0 p-1| 36
a) Fiir welche Werte des Parameters p €R ist das obige Simplex-Tableau ein End-
tableau?
b) Ermitteln Sie fiir p =4 die optimale Losung mithilfe des Simplex-Algorithmus und
geben Sie die geschatzten Sensitivitaten an.
c) Wie verdndert sich fiir p=4 die optimale Lésung, wenn Kapazitit 2 um eine Ein-
heit gesenkt wird?
Aufgabe 8.46:
X1 Xp X3 X4 51 Sp S3
s [0 2 -8 0 1 74 4|5
x| 1 -1 7% 0 0 4% =32
xg [0 1 24 1 0 -} 2116
1 12 4 2
z|o -1 122 0 0o 4% 2 |16
a) Erlautern Sie, warum es sich bei dem gegebenen Tableau weder um ein Anfangs-
noch um ein Endtableau handeln kann.
b) Wie lautet das zugrunde liegende vollstandige lineare Programm? (Auf eine Defi-
nition der Entscheidungsvariablen kann hier verzichtet werden.)
c) Ermitteln Sie die optimale Losung und die geschétzten Sensitivitaten.
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Aufgabe 8.47:

Sie werden nach Ihrem Studium beim KGB als Industriespion eingestellt. Im Rahmen
Ihrer geheimdienstlichen Tétigkeit (nach einem Imbiss mit der Sekretédrin des Chefs

eines Grofskonzerns) fallt Ihnen folgendes Simplex-Tableau in die Hande:

‘ X] Xp X3 S1 S, S3 ‘
?10 1 0 1 0 -1|20
?10 0 2 2 1 2|40
2?11 0 1 0 0 11|20
Z|0 0 0 3 0 1140

Sie erkennen sofort die Brisanz des Materials und machen sich an die Untersuchung.
Bei den Entscheidungsvariablen x; muss es sich eindeutig um Produktionsziffern fiir
die Spitzenprodukte des Konzerns handeln. Jetzt endlich kommen sie an alle Informa-

tionen, an denen Thre Auftraggeber so brennend interessiert sind.
a) Erlautern Sie, woran Sie erkennen, dass das vorliegende Tableau ein Endtableau
ist.

b) Bestimmen Sie, welche Entscheidungsvariablen sich in der Basis befinden, und
lesen Sie dann den Produktionsvektor ab. Welche Ressourcen stehen dem Konzern

noch zur Verfiigung?

Bis hierher hdtten auch die anderen Agenten des KGB mithalten kénnen, doch jetzt
zeigt sich Thre gute Ausbildung. Sie verbliiffen Ihre Auftraggeber mit Zusatzinforma-

tionen.
c) Berechnen Sie vom Endtableau ausgehend das Anfangstableau.

d) Finden Sie heraus, welches Gewinnmaximierungsproblem dem Unternehmen

zugrunde liegt.

e) Bestimmen Sie den Kapazitdtsbedarf bei Erstellung des optimalen Produktions-

plans.
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Aufgabe 8.48:

Z = X1 + Xy + 3X3 = max

X; + 2xp + 4x3 < 40
2x; + 3xp + 4x3 < 60

X] + X + x3 =< 30

X1 , X , X3 =2 0

a) Ermitteln Sie die optimale Losung mithilfe des Simplex-Algorithmus und geben

Sie die geschatzten Sensitivitdten an.

Verédndert sich die optimale Losung durch Hinzunahme einer der nachfolgenden Re-
striktionen? Bestimmen Sie gegebenenfalls die neue optimale Losung und die ge-

schéatzten Sensitivitaten.

b) 4x; + 20x, + 5x3 < 120

c) 4x, + b5xz < 20

Aufgabe 8.49:

Sie kennen die optimale Losung eines Standardmaximierungsproblems:
t T opt T
P =(% 5),s%=(0 %% o).
a) Diese Losung wurde mit dem Simplex-Algorithmus bestimmt. Wie viele Zeilen
und Spalten hat das zugrunde liegende Simplex-Tableau (inklusive Basis und Ziel-

funktionszeile, aber ohne etwaige Variablenkopfzeile)?

b) Stellen Sie ein zugehoriges Endtableau auf und fiillen Sie so viele der Zellen wie
moglich aus (nur unter der Kenntnis der optimalen Losung). Schreiben Sie dabei
die Entscheidungsvariablen in aufsteigender Reihenfolge in die oberen Zeilen der
Basis, die Schlupfvariable in die untere Zeile. Wie viele Zellen kénnen nicht naher

bestimmt werden?
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¢) Nun kennen Sie zusatzlich die approximierten Sensitivitdten der optimalen Losung
T

auf Veranderungen der Anfangskapazititen. Diese seien: y°P'= (% 01 4)
Integrieren Sie diese Information in das unter Teilaufgabe b) erstellte Tableau und

fullen Sie die restlichen Zellen zeilenweise mit Buchstaben (a-g) auf. Diese seien:
-3 -_1 -_1 -1 -1 __3 — zopt
a—A,b— A,C— /Z,d—/z,e—A,f— Aundg—z

Bestimmen Sie das Standardmaximierungsproblem, welches durch den Simplex

gelost wurde (als vollstandiges lineares Programm) und g = 2P,

Aufgabe 8.50:

Ihr Unternehmen stellt zwei Giiter her, der Produktionsprozess unterliegt vier Restrik-

tionen. Thnen ist der nachfolgende Simplex bekannt:

X2 A
16 0
14 (It
12

(1)
3
v)
0 g X1
8 12 18
19

Daneben kennen Sie die zugrunde liegenden Restriktionen teilweise:

?0x + 2 x < 32 (D
0,7 x4 + ? xo < ? (1)

? 0 x < 0?7 - 15 xg (Il)

? 0 xp <57 - 7 x4 (IV)
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a) Vervollstandigen Sie die zugrunde liegenden Restriktionen.

b) Ermitteln Sie das optimale Produktionsprogramm, die freien Kapazitdten und den

)

Erlos durch den Verkauf der Giiter, wenn ihr Unternehmen mit einer Einheit von
Produkt 1 bzw. 2 einen Erlds von 6 € bzw. 4 € erzielt. Geben Sie auch die geschétzte
Veranderung des optimalen Werts der Zielfunktion bei einer Anderung der einzel-

nen Restriktionen an.

Es besteht die Moglichkeit, Ihr Unternehmen komplett in eine andere Region um-
zusiedeln. Sie konnen Thre Produkte nur in der Region verkaufen, in der Ihr Un-
ternehmen angesiedelt ist. In der neuen Region wiirden Sie fiir Produkt 1 nur noch
3 € pro Einheit erlésen. Der Preis fiir Produkt 2 bliebe unverandert. Andererseits
hétten Sie bei einer Umsiedlung jedoch die Moglichkeit, freie Kapazitaten zu ver-
mieten. Fiir die Vermietung je einer Einheit von Kapazitit 1, 2, 3 bzw. 4 wiirde Ihr
Unternehmen 1, 2, 3 bzw. 4 € erlosen. Der Vorstand mochte von Ihnen wissen, wel-
chen Gesamterlos das Unternehmen in der neuen Region erzielt, wenn auch dort
der Verkaufserlos der hergestellten Produkte maximiert wird. Arbeiten Sie zudem
die optimale Losung unter Beriicksichtigung des Vermietungserldses aus und stel-

len sie Thre Uberlegungen dem Vorstand vor.

Aufgabe 8.51:

Nachdem Ihre Beratungsaktivitidten abgeschlossen sind, kommt Thr Bekannter einige

Zeit spater vollig aufgeldst zu Ihnen. Er hat ein Unternehmen bei der Anschaffung von

drei neuen Maschinen unterstiitzt, jedoch sind aufgrund eines eingefangenen Virus

auf seinem Computer fast alle notwendigen Einstellungen der Maschinen verloren

gegangen. Konkret sind die Parameter a, b und c des folgenden linearen Programms

zu bestimmen.

z =3Xx1+ 6X, —> max

X7 + ax, < b
2X1 < c
ax, < b
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Er kann sich nur noch daran erinnern, dass die Kapazitdt b der Maschinen 1 und 3
jeweils doppelt so grof8 ist wie die Kapazitdt ¢ von Maschine 2. Zusatzlich hat er noch
das Endtableau des obigen linearen Programms, dessen Eintrdge aber ebenfalls nur
noch teilweise vorhanden sind. Zudem weif3 er noch, dass die Losung des linearen

Programms eindeutig war.

Basis X1 Xo S1 Sy S3
7 ? 2 1/3 2 0 ?
x; | ? 0 0 ? ? 5
s3 | 2 7 a1 2 ? ?
V4 ? ? 2 0,5 0 45

Bestimmen Sie die Parameter a, b und c.

Hinweis: Uberlegen sie zundchst, wie mit Hilfe des Endtableaus die Werte fiir x; und
X, bestimmen konnen (Eine Anwendung des Simplex-Algorithmus ist nicht erforder-

lich).

Aufgabe 8.52:

Ihr Unternehmen kann drei verschiedene Produkte herstellen. Die Fertigung der Er-
zeugnisse erfolgt an drei verschiedenen Maschinen, deren Kapazitit begrenzt ist. Lei-
der ist Maschine 3 defekt, ihre Kapazitdt liegt derzeit bei Null Einheiten. Aus Prestige-
griinden wollen Sie diese Anlage soweit reparieren, dass ihre Kapazitdt mindestens
eine Einheit betrdgt. Thnen liegen zwei Angebote zum Wiederherstellen der Maschine
vor. Beide Anbieter konnen die Maschine wieder auf A €N Kapazititseinheiten aus-
bauen. Der Anlagenbauer Helmut veranschlagt fiir die Wiederherstellung von A Ka-
pazitdtseinheiten Kosten in Hohe von A [Tausend €]. Die Konkurrentin Brigitte setzt

hierfiir 0,122 [Tausend €] an.

Thr spiritueller Berater Hagen warnt Sie davor, eine Kapazitit in Hohe von 10-2" mit
neN(={0;1;2;3;...} fir Maschine 3 in Erwdgung zu ziehen. Dies konne zu ungeahn-

ten Komplikationen fiihren. Sie vertrauen ihm vo6llig und befolgen den Hinweis.

Die Praktikantin Monika hat bereits die Maschinen- und Produktionsspezifikationen

ermittelt und fiir Sie aufbereitet. Die zu beachtenden Beschrankungen sind:
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Aufgaben

20 (Maschine 1)
10 (Maschine 2)
by (Maschine 3)
0

4X1 + 4X2 + 2X3
2X1 + X o+ 0, 5X3
2X2 + 4X3

vV IA AN

X1 ’ X9 ’ X3

x; steht hierbei fiihrt die hergestellte Menge von Produkt i. Diese wird in Tonnen ge-
messen. Thr Gewinn beim Verkauf einer Tonne von Gut 1, 2 bzw. 3 betrédgt 5, 8 bzw. 6

Tausend €.

Wie entscheiden Sie sich beziiglich der Instandsetzung von Maschine 3, wie sieht Ihr
optimales Produktionsprogramm aus und wie hoch ist Ihr maximaler Gewinn? Ver-

wenden Sie zur Losung dieser Aufgabe den Simplex-Algorithmus.
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Kapitel 1
Aufgabe 1.1:
A B C D F

Ordnung (3x2) (2x2) (2x3) (3x3) (3x3)
quadratische Matrix X X X
Nullmatrix X
Einheitsmatrix X
Diagonalmatrix X
Treppenmatrix X X X
obere Dreiecksmatrix (x) X (x)
untere Dreiecksmatrix (x) X X
Aufgabe 1.2:

1 10 2

A=|2 6 9|, c=(0 -1
10 3

B und d konnen nicht berechnet werden.

Aufgabe 1.3:
A 170 i i C 3 20 1617 D (1)6 Z 102 F=14
- "o 8 7 8) | g
1 -8 4 6

B kann nicht berechnet werden.
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Ldsungen

Aufgabe 1.4:
2 3 2 12 (57 4y o 4 6 5
B-D= , D-B= , A-C = , B -A-C= ,
28 0 7 0 7 5 4 16 40 12
1 1
p-p.p-| > ° e AN N 1 8 1
B B VRV _15105'a""a’10_1'

(3 3 T
D—B_[7 4], a+b =(0 1 -2)

Alle anderen Ausdriicke konnen nicht berechnet werden. Die Ergebnisse von B-D
und DB unterscheiden sich, da bei der Matrixmultiplikation das Kommutativgesetz

keine Giiltigkeit besitzt.

Aufgabe 1.5

L ) . r o (1525
B-B' =3, B-A=(6 10), B-A-C=(16 52 68), A" -C ‘(23 39}

Alle anderen Multiplikationen sind nicht definiert.

Aufgabe 1.6:

a) X kann nicht berechnet werden.

-5 10 -2
b) X=10 -2 -8

9 2 -1
Aufgabe 1.7

a) Allgemein: X=A?+A-B+A-C+B-A+B’+B-C+C-A+C-B+C?

b) X=4-A242.A.C+2-C-A+C2 = -2 117
26 63
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75 1 4
o X=250.A%=25/.1-5/ 7/ 2
% 3 -8

d) (F+G)*=(F+G)-(F+G)=F2+F-G+G-F+G?
Die in der Aufgabenstellung angegebene Gleichung gilt nicht allgemein, da sich
die beiden mittleren Terme nur dann zu 2-F-G zusammenfassen lassen, falls

F-G=G-Fgilt.

Aufgabe 1.8:
x=2
Aufgabe 1.9:
x=-37
Aufgabe 1.10:
23 22 -3 11 26
2 -14 7 16 40
Aufgabe 1.11:
7 8 9 2 3 1
A-B=|1 2 3| B-C > 6
'_1011121'_ 7
11 12 10
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Aufgabe 1.12:

b=(10.000 100 1)-a

Aufgabe 1.13:

a=x-e"=0, b=xx"=14, c=x-(e" +xT)=14, d=x"-3.y"=(-16 0 -9 4},

-5 15 0 -10
e yT e -1 3 0 =2

3 9 0 -6

2 6 0 4

Aufgabe 1.14:
Bei den Umformungen b), ¢) und g) handelt es sich nicht um EZUs.

Bei e) handelt es sich zwar um eine EZU, diese wurde aber auf die falsche Zeile ange-

wendet.

Aufgabe 1.15:

a=-7, b=0

Aufgabe 1.16:

x=(0 -1 3)"

Aufgabe 1.17:

x=(20 60 -30)"
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Aufgabe 1.18:
x=(4 10 5)"
Aufgabe 1.19:
T
x=(% % '%)
Aufgabe 1.20:
x=(8 6 1%)T
Aufgabe 1.21:
x=(2 7 3 1)
Aufgabe 1.22:
x=(3 -1 2 10)'
Aufgabe 1.23:
x=(17 -8 -2 o)
Aufgabe 1.24:
x=(2 % 0 ‘%)T
Aufgabe 1.25:

(gKarl 8Heinz  8Frieder )T = (105 84 100)T
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Aufgabe 1.26:

a) m-(Maopp +Magz)-(1 1 1 1)T=7.029

10

Mygitter | (1-000 Mygiiller %

3 M em 1.000 Mgehni 0
b) Uber das LGS My -| ™t |= ergibt sich: | | sehmidt | _

Mgchneider 1.000 Mgchneider 0

MSchulz 1.000 Mghulz 8%

Kapitel 2

Aufgabe 2.1:

Die Koeffizientenmatrix A hat die Ordnung (nxn).

Aufgabe 2.2:
180x, - 90xg = 10.000
—60x, + 130xg = 20.000

Aufgabe 2.3:
T T
(XA XB) :(1003 10%)

Aufgabe 2.4:

(xa x5) =(4 3)'
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Aufgabe 2.5:

(xa xg xc) =(500 200 1.000)"

SK 4 =16.000, SKg =50.000, SKc =28.000, SKy =51.000, SKy =55.000

Aufgabe 2.6:
(xa xg xc) =(15 20 12,5)", SKp =110, SKy =47,5, SKy =52,5
Aufgabe 2.7:
a) an
A B C X Y
von
A - 75 80 80 35
90 - 40 25 20
C 30 75 - 115 120

b) (xa xg xc) =(30 60 40)"

) SKy =8500, SKy =7.050

Aufgabe 2.8:

a) (XA XB XC)T=(12 10 4)T

b) SKp =40, SKg =50

c¢) HKp =0,25 € pro Stiick, HKg =0,75 € pro Stiick
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Aufgabe 2.9:
a) 4
3 2
Kameraleute >  Moderator Maskenbildner
1 1
17 3 10
v
Quizsendung

b) (XKamera XModerator XMaske)T :(45 340 4O)T

C) SKQuizshow =2.185

Aufgabe 2.10:
(xa xp xc) =(241 155 21,5)"

SK, =261,5, SKy =335,5, SK¢ =337,5, SKp =188,5, SKg =411,5

Aufgabe 2.11:

T T
a) (XGepéckabfertigung XLotsendienst XFIugzeugmaintenance) :(20'000 35.000 40'000)

SKBryanAir =325.000, SKgcpair =290.000

b) SKCargoBanana =230.000, GKCargoBanana =330.000

PBananen = 1,65 € pro Kiste
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Aufgabe 2.12:
a) 10
20 - 40
Futterprod. | ”| Technik ”| Tierpflege
60
80
1.000 100
40 700
. . Schildkroten-
Fischproduktion produktion

T T
b) (XFutterprod. XTechnik XTierpﬂe ge ) = (5 50 60)
<) SKFiSChpI'Od. =7.400, SKSChﬂdkr'dtenprod. =9.500

d) Die internen Verrechnungspreise andern sich nicht.

Aufgabe 2.13:
a) (xa xp xC)T=(15 10 20)T, SKp =400, SKg =200

b) pp =5 € pro Einheit

Aufgabe 2.14:
a) (xa xp xc) =(12 10 4)'

b) F bezieht nun 3 Einheiten von A, keine Einheit von B und 3 Einheiten von C.
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Aufgabe 2.15:

T

T
a) (XTrainerstab XGaststatte XPhysiotherapeuten) (30 10 20)

SKsjat =150, SKrenpis =560, SKiegeln =340

b) Ja, die Sekundarkosten der Skatabteilung dndern sich. Zunachst fithren die gestie-
genen Primédrkosten der Hikos Trainerstab und Physiotherapie zu hoheren Ver-
rechnungspreisen dieser Hikos. Da die Gaststatte Leistungen von diesen bezieht,
andert sich auch ihr Verrechnungspreis und somit auch die Sekundarkosten der
Skatabteilung. Dies geschieht, obwohl die Skatabteilung direkt keine Leistungen

vom Trainerstab und den Physiotherapeuten in Anspruch nimmt.

c) Richtig sind die Aussagen iii), iv) und vii).

Aufgabe 2.16:
a) 1
4 A 1 A
Bier ” LKW < i Chef
1
4
16 4 2 3
3 12
Westfliigel Ostfliigel

T T
b) (Xpier XLxw Xcher) =(3,23 18,48 16,43)
T T
) (XLkw  XChef ) =(503 5%)
GKOstﬂﬁgelfvorher =425,05, GKOstﬂﬁgelinachher = 383,33

Prozentuale Verbesserung: 9,81%
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Aufgabe 2.17:
a)
20 R
Service- 40 ..
Mediziner
personal 20 20
> Mechaniker
20 ~
40 40
120 200
Riesenrad Achterbahn

T
b) (XSerVicepersonal XMechaniker XMediziner) (15 30 60)

T

©) SKachterbahn = 4-200, SKRiesenrad =3.000

d) PAchterbahn =3 € pro Fahrt

e) Die internen Verrechnungspreise verandern sich nicht.

Kapitel 3

Aufgabe 3.1:

det(A)=-1.040
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Aufgabe 3.2:
det(A)=2, det(B)=2
Aufgabe 3.3:
det(A)=-3, det(B)=-16
Aufgabe 3.4:
det(A)=6b+3, Aist somit singular fiir b=-0,5
Aufgabe 3.5:
a=%
Aufgabe 3.6:

Bei a), c), d) und f) ist die dritte Spalte ein Vielfaches der ersten Spalte und somit
det(A)=0.

Aufgabe 3.7
det(A)=(a+3)-(1-a)-(a+2)
Aufgabe 3.8:
-1 2 9
C=/-16 4 0
3 69
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Aufgabe 3.9:
a=8, b=6, c=3, d=2, det(A)=8
Aufgabe 3.10:
det(A™") = L AAL, det(AT!)- det(A) = det(A)  tawty det(A™-A)=1
det(A) det(A)
——> det(E)=1 Saut2) 1o q.e.d.
Aufgabe 3.11:
x=-135

Aufgabe 3.12:

N 12 15

|55 6

Aufgabe 3.13:

co 16 24
112 16

Fir a<3ist C> A, fur a=3 ist C> A, fiir a>3 lasst sich keine Relation aufstellen.

Aufgabe 3.14:
a) det(A)=5

b) A lasst sich durch die EZUs III+1, (-2)-1 und 3-1I in B umwandeln, folglich ist
det(B)=(-2)-3-det(A)=-30.
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A lasst sich durch die EZUs (-1)-1, (-1)-1I, 12 10, IT, <> 1D, und (-1) -1V sowie

anschliefende Transposition

det(C) = det(C") = (-1)-(-1)- 15 (

in (@ umwandeln, folglich

—1)-(-1)-det(A) =%4.

ist

c) x=10
Aufgabe 3.15:
x=6
Aufgabe 3.16:
x=1
Aufgabe 3.17:
x=40
Aufgabe 3.18:
X 10 20
30 40
Aufgabe 3.19:
x=2
Aufgabe 3.20:
x=-12
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Aufgabe 3.21:

Fiir k e {-1;0} existiert keine Inverse von A.

Aufgabe 3.22:

Die Kofaktormatrix ist singuldr, wenn die zugehorige Matrix A singulér ist, und um-

gekehrt. Dies tritt ein, falls a = %1.

Aufgabe 3.23:

B ist nicht die Inverse von A. A ist nicht quadratisch und besitzt somit keine Inverse.

Aufgabe 3.24:
L8 7 -8 3
-1 a1 1
— (- Bl=—. - 1
Al =(-42), 5 (_2 _J, C 0o o
-2 2 1
Aufgabe 3.25:
3 3 1
Al=|3 5 -2
1 -2 1

B besitzt keine Inverse, da hier Zeilen Vielfache voneinander sind.

Aufgabe 3.26:

a) m=n b) n=k=p

¢) n=pund m=k d) m=pundn=k
e) m=n
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Aufgabe 3.27:
2 4 2
Al existiert nicht, A’2=A=|-1 -3 2 (A ist idempotent),
-1 4 3
. —44 24 20 5 4 30
B! 3 2 12 -1, B*>=|12 36 -16
0 12 -12 -10 -8 72
Aufgabe 3.28:
a:_%l b:%/ C:%
Aufgabe 3.29:
Aus A7l = dt;@;) .CT lasst sich det(C) = det(A)n_1 herleiten, wobei hier n =4 gilt.
e

det(A)<-1 = det(C)<det(A)
det(A)=-1 = det(C)=det(A)
-1<det(A)<0 = det(C)>det(A)
0<det(A)<1 = det(C)<det(A)
det(A)=1 = det(C)=det(A)

det(A)>1 = det(C)>det(A)

Aufgabe 3.30:
( A-1)T :( AT)*l AT ( A—l)T. AT :( AT)*l_ AT lautl)

T
(A-Afl) =FE «— ET=F 22 , E_F q.-e. d.
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Aufgabe 3.31:

a) Wenn AZ=A gilt, muss auch A" = A gelten. Da jeder Matrix eindeutig eine De-
terminante zugeordnet ist, folgt aus A%*=A, dass det(A2) =det(A) fiir alle
det(A)eR gilt.

det(Az) :det(A) laut Multiplikationssatz det(A)2 :det(A) —det(A)
det(A)-(det(A)-1)=0 = det(A)=0vdet(A)=1 q.e.d.

b) Es existieren 23=8 Diagonalmatrizen. Diese sind:

10 0)(0O 0 O0)(1 0 0)(1 0 O0)(0 O O)(1 O O0)(O O O)(O O O
010[,/010[,{00O0|01O0|0O0O0,/0O0O0[|O01O0/000
o010 010 0 1){0 0 0){0O 0 1){0 O 0Jl0O O 0)l0 O O
Aufgabe 3.32:

-1
B2-p -8 (nur und immer moglich, falls det(B)#0) B=E

Falls det(B)#0 (im Fall idempotenter Matrizen ist dann zwingend det(B)=1), gilt
somit B=E. Ist B#E, muss gelten det(B)=0.

Aufgabe 3.33:
X=42" E
Aufgabe 3.34:
X -10 -11
7 105
Aufgabe 3.35:

X=A".C+E
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Aufgabe 3.36:
X=(C-2-D)(3-A+B)™
Aufgabe 3.37:
A B -79 46
(59 70
Aufgabe 3.38:
1 2
X=A"1.B-A=
o)
Aufgabe 3.39:
2
2 %2 2
X=-1 0o -}
6 2 2
Aufgabe 3.40:
X=1-E
Aufgabe 3.41:
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Aufgabe 3.42:

Aufgabe 3.43:
a) X=det(A)-(3-A-2-E)"!

b) Nur falls det(3- A —2-E)# 0 ist X bestimmbar. Dies ist bei ii), iii) und iv) erfiillt.

00
¢) i) X kann nicht bestimmt werden. ii) X:[0 Oj
L 113 o XE
iii) =503 1 iv) X =

Aufgabe 3.44:
X -1,25 4,5
1 2
Aufgabe 3.45:

1(2 9) 4 1 (12 9
X==. Xx1o—.
A X3 (8 12]’ 16 [ 8 —2}

1(2 0y .4, 1(6 0
X==- Xt==.
o) 3 (3 6}’ 4 (—3 2)

Aufgabe 3.46:

31 _
w3 [ 2
5 (2 2
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Aufgabe 3.47:

-1
X = -E+C+B| -D
(det(B) ]

Aufgabe 3.48:

X=(F+G)-(2-H+G-E)™

Aufgabe 3.49:

Aufgabe 3.50:
a) x= i%

Aufgabe 3.51:

a) Die Gleichung kann nicht nach H aufgelst werden.

b) H=0
-103 48 61
o H=| 95 -42 57
10 -4 7
d) H=57-E
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Aufgabe 3.52:
X=1E
Aufgabe 3.53:
8 2 2
X=|8 4 -1|=A
6 2 1
Aufgabe 3.54:

Die einzige reguldre, idempotente Matrix ist die Einheitsmatrix, es gilt A =E.

31 56 -19 -8
1 1 -8 13 8
8111 8 -1 -8
24 48 24 0

X=

Aufgabe 3.55:

(MT)2 :[[E—Y-(YT -Y)fl ~YTJT]2 =M2

:[E_Y.(YT~Y)71-YTME—YA(YT.Y){YTj:M

Aufgabe 3.56:

x=A"-b=(5 7 —%)T

245




Ldsungen

Aufgabe 3.57:
x=(4 3 5)
Aufgabe 3.58:
x=(2 2 4)f
Aufgabe 3.59:
T
_ 1 _
x=(7 14 1)
Aufgabe 3.60:
1 -2 -8
a) A’lzl. 1 -1 -4
3

-1 2 5

b x=(2 2 -3)

o) det(A;)=6, det(Ay)=-6, det(A3)=-%

Aufgabe 3.61:

x=(2 3 -1)'

Aufgabe 3.62:

x=(3 1 -3)"
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Aufgabe 3.63:
x=(0 -4 4)f
Aufgabe 3.64:
x=(13 5 5)'
Aufgabe 3.65:
x=(3 2 -1)'
Aufgabe 3.66:
(a b o) =09 07 05)
Aufgabe 3.67:
x=(-1 -6 -2,5)"
Aufgabe 3.68:
x=(-6 -2 5,5)
Aufgabe 3.69:

a) det(A)=6-a, falls a =6 ist das LGS somit nicht eindeutig 13sbar.

18 -3a 3
b) x= | =12+2a |=| -2 | (Sofern a = 6 ist die Losung also unabhangig von a.)
-a
0 0
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Aufgabe 3.70:

a) c¢4d—2y2

7
b) X:m' *4C+9d*21
€A | 3co5d 421
o —74<d<0

4 x=(1 2 3)'

e) c=5

Aufgabe 3.71:
a) Eine Matrix ist reguldr, falls sie invertierbar ist. Sie ist quadratisch und ihre Deter-
minante ist nicht Null.

b) Eine Matrix ist idempotent, falls alle Potenzen dieser Matrix gleich sind. Dies ist

fiir die Matrix A bereits erfiillt, falls gilt AZ=A,

¢) Eine, nur die Einheitsmatrix ist reguldr und idempotent.

Kapitel 4

Aufgabe 4.1:
7 1
a) MRE= 17 3
2 2

b) qg =(1.700 4300 1.000)"
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o kg=(64 12)

Aufgabe 4.2:
a) qr=(65 60 60)"
b) K=1.100

¢) G=900

Aufgabe 4.3
a) qg= (3600 2600 3.300)"
b) kg=(135 65)

¢) G=5.000

Aufgabe 4.4:

19 16
a) MRE: 10 20
18 22

T

b) qg =(9.700 8.000 10.900)

o kg=(103 112)

d) G=11.500
Aufgabe 4.5:
9 21
a) MRE =3 1 1
210

b) qr =(800 400 200)"
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¢) Es bleiben keine Rohstoffe auf Lager.
d) Gewinn =10.350

e) AGewinny, =-20%, AGewinn,ys =20%, Gewinng < Gewinn,

Aufgabe 4.6:

gp =(1,34 0,16 0,41)

Aufgabe 4.7
a) qg =(1400 2200 1.400)"

b) Gewinn =2.800

o) K, =1.250
d) PE3 =120
Aufgabe 4.8:
420 700
60 100
580 960
M 4870 M 420 690
a) Myg = 26 50 |© MRE=
580 960
50 80
490 790

b) qg =(7.700 10.600 7.650 10.600 8.850)', qy =(1.100 830 510 900)"

¢) Ppr, =1 € pro Stiick
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Aufgabe 4.9:
36 19
M 36 28
A Mre=| 3 o
28 32

b) qr =(740 920 740 920)"
o kg=(10 7)

d) Materialkosten =1.000

Aufgabe 4.10:

a) qr=(1750 2195 3595 1255)'
b) Gewinn =3.400

) qp=(400 400)"

d) qr=(30 40 60 20)'

Materialkosten = 200

Aufgabe 4.11:

a) Nein, der Produktionsprozess ist nicht direkt in Produktionsmatrizen umwandel-
bar, denn verschiedene Rohstoffe (bzw. Zwischenprodukte) gehen direkt in die
Endprodukte (bzw. andere Zwischenprodukte hoherer Produktionsstufen) ein und
iiberspringen somit Produktionsstufen. Um die Mgg zu bestimmen, kénnen in je-
der Produktionsstufe weitere Zwischenprodukte eingefiihrt werden. Dies fiithrt zu:

24 24 24
18 18 18
0 11 22
0 20 40
2 3 2
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"Witzig'-
Paket

Kombi-
Paket

"Unwitzig"-
Paket

Tapete Tapete Plastik-
"Witzig" "Unwitzig" folie**
1 % \ \
Rohtapete 1 Rohtapete 2 Koérnung Plastikfolie*
A
12 3 2 5 1
4 9
Plastik-
Farbe Papier Leim Korner folie

b) Ihr Rohstofflager reicht nicht aus. Sie miissen qg = (0 010 O)T nachkaufen.

Aufgabe 4.12:

a) qy=(200 400)"

b) qg=(25 250)

Aufgabe 4.13:

b) qr =(320 135)"

O qs=(5 5)
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Aufgabe 4.14:
6 4 8 2 0
a) MRZ =2 3 4 ’ MZE =12 5
56 9 0 10

b) qr=(1200 695 1490)", qz=(10 105 90)"
c¢) Gewinn =5.000
d) Gewinn bei Einkauf der Rohstoffe: -7.000
Gewinn bei Einkauf der Zwischenprodukte: 11.000 10 pz,

Der Kauf der Zwischenprodukte ist folglich zu préferieren, falls pz <1.800. Der

Gewinn des Alternativangebots ist positiv, falls p; <1.100.

Aufgabe 4.15:
18 15 24
a) Mgg=|13 10 22
19 18 21

b) qr =(1.890 1535 1.865)"
¢) Materialkosten =21.490
Erl6s = 28.000
Gewinn = 6.510

d) pg, =658 € pro Stiick

Aufgabe 4.16:

a) Materialkosten =285
T

b) qg=(2 7)

9 qe=(1 8) = qz=(20 1)'
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Aufgabe 4.17:
a=3
Aufgabe 4.18:
a) Gewinn =(pg —pr -Mgg)-qg
b) a=3
Aufgabe 4.19:
20 10 0 O 3 5 0 130 160 O
M_0302015M_760M_370255345
D Mrz=l 50 o 40 a0 MZET|2 53 o] MRE=|550 410 s00
0O 0 0 10 8 1 11 80 10 110

b) PBratwurst = 5,30 € pro kg

c) Sie miissen 1.000 kg Karotten nachkaufen, wahrend 4.000 kg Korner im Lager

verbleiben.

d) qz=(140 440 800)"

Aufgabe 4.20:

9 8 13
a) MRE =4 7 5
7 9 10

b) qr=(345 180 295)"
) K=3920€ E =5000 € G=1.080€

d) a<?2
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Aufgabe 4.21:

- — =1

a=4, b=8, c= 619
Aufgabe 4.22:
qr, =600

Kapitel 5
Aufgabe 5.1:

y=(30 50 160)"
Aufgabe 5.2:

Nein, da det(E-Q) <0 ist.

Aufgabe 5.3:

0,3 0,4
2 Q-(0] o)

01 0,2
b) y=(240 40)'
) Aq=(600 350)"

d) Ja, da(E-Q)'>0ist.
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Aufgabe 5.4:

danz:

3
2 X2j*
=1

verbrauchte Menge von Gut 2 zur Herstellung einer Einheit von Gut 3

innerbetrieblich verbrauchte Menge von Gut 2 zur Herstellung des Pro-

duktionsplans q

q1—y1: innerbetrieblich verbrauchte Menge von Gut 1 zur Herstellung des Pro-
duktionsplans q

3

2 aj:  innerbetrieblich verbrauchte Menge von Gut 1 zur Herstellung je einer Ein-

=1

] heit der Giiter

bi1: der Anteil der produzierten Einheiten von Gut 1, der zur Befriedigung des
innerbetrieblichen Verbrauchs der anderen Produktionsstédtten 2 und 3 und
der externen Nachfrage nach Gut 1 zur Verfiigung steht

Aufgabe 5.5:

a) y=(10 70 20)"

5 20 15

b) X=|10 10 10

5 20 5

¢) Ja, da alle sukzessiven Hauptminoren von (E—Q) > 0 sind.

d) q=(175 350 175)'

Aufgabe

5.6:

a) q=(2600 2500 3.200)"

b) Ja, da alle sukzessiven Hauptminoren von (E - Q) >0 sind.
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Aufgabe 5.7:

01 0 075 0
0 02 O 0,5
0 0 025 0
o 0 05 0,25

a) Q=

b) y=(0 0 27 12)'

9 q=(50 55 60 88)"

Aufgabe 5.8:
{0 )
Mo Vs
Aufgabe 5.9:
a) y=(25 5)'
b (0,25 0,4
) Q=025 06

o q=(280 375)"

Aufgabe 5.10:
a) y=(1 2 0)

100 94 305
b) X=| 50 235 183
150 94 366

¢) det(E-Q)=0,001>0, det((E-Q),;)=0,38>0, det(((E—Q)33)22):0,8>0

Jede sinnvolle externe Nachfrage lasst sich somit befriedigen.
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d) q*=7-9*=(3500 3.290 4.270)T, dayd=7.y

Aufgabe 5.11:
2 6 8
a) X=[4 3 8
4 6 4
T
b) y=(4 15 26)

) Ja, da(E-Q)'>0ist.

d) q=(200 100 100), y=(100 70 70)"

Aufgabe 5.12:

a) q=(150 200 150)"

0 025 0,2
b) Q=02 0,15 0,2
0,2 0,15 0,4

o q=(163 19 170)"

d) Ja, da alle sukzessiven Hauptminoren von (E - Q) >0 sind.

Aufgabe 5.13:
180 155 145
a) Ja, da (E—Q)71: 160 140 130 |20 bzw. alle Hauptminoren von (E-Q)>0
190 165 155
sind.
48.000 24.000 8.600 15.300
b) q=|43.000|, X=| 9.600 12.900 20.400
51.000 19.200 21.500 10.200

9 y=(50 0 300)"
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Aufgabe 5.14:

69 43 0
X=|46 0 207
23 86 345

Aufgabe 5.15:
a) X13:3, X22:6, X31:3, 311:0,1, a32:0,1, a33:0,4
b) y=(2 11 1)'

9 q°=2-q=(20 40 20)',dayc=2.y"

Aufgabe 5.16:

1000 0,61 0,19 0,11
a) Ja, da (E—Q)71:;~ 0,04 0,79 0,18 |>0 bzw. alle Hauptminoren von
0,14 0,13 0,63

(E-Q) >0 sind.

300 30 50 15 205
b) q=|250|, X=| 0 75 30| y=|145
150 60 25 15 50

c) Q-q ist der innerbetriebliche Verbrauch bei Herstellung des Produktionsplans q.

Aufgabe 5.17:

T
3 3 3
q=(750 369 234)T, (lej PSS Zx3j] =(744 363 228)T
j=1 j=1 j=1

%10
Q- 0 %
%o
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Aufgabe 5.18:
y=(29 42 103)"
Aufgabe 5.19:
q=(150 600 300)", y=(45 60 75)"
Aufgabe 5.20:

a) x11=40, x =15, x33=56, y=(120 30 112)"

b) y=(30 90 138)"

¢) Sind die sukzessiven Hauptminoren von (E-Q)>0?
Sind alle Komponenten der Matrix (E - Q)71 >0?

d) X=Q.gilt fallsq=(1 1 1)".

Aufgabe 5.21:
0,2 1,1 0,2 28 77 26 140
a) Q=|0,2 0 03| X=|28 0 39| q=| 70
0,4 01 0,5 56 7 65 130

b) y=(9 3 2)'

9 q°=2-q=(280 140 260)'

d) q4=(335 170 310)

¢) det(E-Q)=0,05>0, det((E-Q);;)=0,58>0, det(((E—Q)33)22):0,8>0

Jede sinnvolle externe Nachfrage ldsst sich somit befriedigen.
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Aufgabe 5.22:

vello

b) Essind 2 Vektorpaare notwendig.

9 q=(80 50)"

Kapitel 6

Aufgabe 6.1:
c=0,6a+0,2b

Aufgabe 6.2:
a) a, b, csind linear abhéngig.

b) a, b, ¢ sind linear unabhangig.

Aufgabe 6.3:

c lasst sich fiir d =2 als LK der Vektoren a und b darstellen als: ¢ =0,5a +0,25b

Aufgabe 6.4:

d lasst sich fiir e = -8 als LK der Vektoren a, b und c darstellen als: d = 5a +2b + 2¢
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Aufgabe 6.5:

a, b, cund d sind linear abhangig. a lasst sich darstellen als: a =2b —c—2d

Aufgabe 6.6:

Es gibt unendlich viele Moglichkeiten, um d als LK von a, b und c darzustellen:

a-xy+b-(-2,5+1,5-x7)+c-(-2+0,5-x1) =d mit x; eR

Aufgabe 6.7:

Der Rang einer Matrix, welche die Vektoren enthilt ist zwei. Somit sind die Vektoren

lLa., die grofitmagliche L.u. Teilmenge enthalt zwei Vektoren.

Aufgabe 6.8:
Mit
1 4 1 -2 2
a=|-2|,b={ 2|, c=|1| d=| 4 |unde=| 4
2 -2 -2 —4 —4

sind die folgenden Mengen samtliche Teilmengen von A, die Teilmengen besitzen,
welche drei linear unabhéngige Vektoren enthalten: {a,b,c}, {a,c,e}, {b,c,d}, {b,ce},

{c,de}, {a,b,c,d}, {a,b,ce}, {acde} {bcde}, {abcde}

Fiir B konnen keine Mengen existieren, die Teilmengen besitzen, welche drei linear
unabhdngige Vektoren enthalten, da die Vektoren dem R? entstammen. Hier sind

mehr als zwei Vektoren immer 1. a.

Fiir eine Matrix A gilt stets 0 <rg(A) < min(n,m). Eine Matrix, welche Vektoren aus
dem R? enthilt, hat also maximal einen Rang von 2 und somit gibt es maximal 2 1. u.

Vektoren.
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Aufgabe 6.9:

a, b, ¢ sind linear unabhéngig.

Aufgabe 6.10:
rg(A)=3, 1g(B)=2, 1g(C)=4, rg(D)=3
Aufgabe 6.11:
rg(A)=2, rg(B)=2, rg(C)=3, rg(D)=3
Aufgabe 6.12:
T
IL:{(2—3X3 %—%Xg’ X3) ’ X3€[R}
Aufgabe 6.13:
[L:{(5+x3 4+2x3 X3 2)T, X3 e[R}
Aufgabe 6.14:
T
|L={(-2+X2 Xo 3—2X2 —4+3X2) , X2 E[R}
Aufgabe 6.15:

[L:{(Xl s~V ~"Az+Wax —9%3+7%6X1)T,X1E[R}

Aufgabe 6.16:
T
a) [Lz{(%+%x2+3x5 Xy =8-2Xp—7x5 —7—4xX5 x5) ,x2,x5e[R}
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b) x4 und Xs5 sind nicht gleichzeitig frei wahlbar, da die beiden Variablen nur in ge-

genseitiger Abhéangigkeit ausgedriickt werden konnen.

Aufgabe 6.17:

Das LGS ist nicht eindeutig 16sbar.

Aufgabe 6.18:

[L:{(373X4 X4 2+5x4 x4)T,x4e[R}

Aufgabe 6.19:
a) x3€[2;7]

b) a=4

Aufgabe 6.20:
a) [L:{(Xl Xo 1—X2 4—X1)T,X1,X2 E[R}

b) x;€[0;4], x, €[0;1], x1,x, €Z

Spezielle Losungen sind beispielsweise (O 01 4)T, (1 01 S)T

(010 4).

und

Aufgabe 6.21:
IL:{(O 3X3 X3)T,X3 E[R}

Es gibt keine positive Losung.
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Aufgabe 6.22:

a) [L:{(%+%x3—x4 %X3_%x4 X3 X4)TrX3/X4E[R}

b) Ja, x; und x3 kénnen gemeinsam frei gewé&hlt werden.

Aufgabe 6.23:

Das LGS ist unlosbar.

Aufgabe 6.24:
a) L= {(3 —X3 —4 —2X3 X3 O)T /X3 € [R}

b) Es existieren keine nichtnegativen Losungen.

Aufgabe 6.25:
T
a) l:{(73X4 +3 X4 5X4 +2 X4) X4 ER}

b) Es existiert kein a, fiir das v eine Losung des LGS ist.

Aufgabe 6.26:
T
a) |L={(875X3 *2+2X3 X3 0,5) /X3 E[R}

b) Fiir a=2 ist v eine Losung des LGS.

Aufgabe 6.27:

Keine Losung fiir a = %

—4a 4 jT
1-2a 1-2a

Genau eine Losung fiiraeR \ {—%}: X = (

265




Ldsungen

Aufgabe 6.28:
Unendlich viele Losungen fiira=1: L = {(4 —2x3 3+X3 X3 )T ,X3 € [R}

Genau eine Losung fiiraeR \ {1}: x=(4 3 O)T

Aufgabe 6.29:

Keine Losung fiira=1

Unendlich viele Losungen fiira=0: L = {(0 Xo —1)T , Xy € [R}

T
a(a+2) 3 a+2 J

Genau eine Losung fliraeR \ {0;1}: x =
& eR\{0;1) [a—l 2(a-1) 2(a-1)

Aufgabe 6.30:

Keine Losung fiir a =-0,4

a+0,4  a+0,4 | a+0,4

Genau eine Losung fiir a # —0,4: X =[ 2,2 2 572 4 2,64

Aufgabe 6.31:
T
Unendlich viele Losungen fiir a=0,5: L1, :{(%4x3 %x3 x3) ,X3 € [R}

Genau eine Losung fiir a=#0,5: x = (0 0 O)T

Aufgabe 6.32:
Keine Losung fiir a # -5

Unendlich viele Losungen fiir a = -5:

[L:{(3—x3+2x4 —4-2X3—-X4 Xz x4)T,x3,x4e[R}
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Aufgabe 6.33:

Fiir c =b +2a ist das LGS (eindeutig) 16sbar mit: x = (Za -3c 3a- 4C)T

Aufgabe 6.34:
A 1 fallsa=0
a) 1g(A)= 2 fallsa=0
rg(A)=1

A 1 fallsa=0
rg( H)_ 2 fallsa=0

b) In Aj sind die Zeilen und die Spalten fiiraeR 1. a.

In Ap sind die Zeilen fiir acR 1. a., die Spalten sind fiir a=0 L a. und fiir

aeR\{0} L u.
In A sind die Zeilen und die Spalten fiiraeR 1. a.
¢) Ein zugrunde liegendes LGS ist nie eindeutig 16sbar, da rg(A) <n =4 stets gilt.

d) Ein zugrunde liegendes LGS ist 16sbar (und zwar mit unendlich vielen Lésungen),
falls a#0Abz =2b; oder a=0Ab, =b; Abs =2b;. Andernfalls hat das LGS keine

Losung. Der Vektor b ist somit fiir a=3 eine Losung, sonst nicht.

Aufgabe 6.35:
a) 0<rg(A)<m
b) 0<rg(A)<m-k

¢) 0<rg(A)<min{m-k;n}

Aufgabe 6.36:
a) L= {(x1 3x;—a+1 l)T,xl e[R}

b) Ein LGS ist eindeutig losbar, falls rg(A) =rg(Alb)=n gilt.
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9

d)

e)

Nur falls b=0T gilt, ist ein LGS unabhéngig von der Gestalt der Koeffizientenmat-
rix A immer l6sbar, denn es gilt: rg(A) =rg(A10)

Dies ist unmoglich, denn ein LGS ist nie unabhéngig von der Gestalt der Koeffi-
zientenmatrix A immer eindeutig losbar. Dazu miisste rg(A)= rg(A | b) =n, also

insbesondere rg(A) =n gelten, was unabhéangig von b ist.

i) Falls A-x=b eindeutig l6sbar ist, gilt rg(A)=rg(Alb)=n. Aus
rg(AT)Srg(Alb)Sn und rg(A):rg(AT):n ergibt sich
rg(AT) = 1rg(AT | b) =n, weshalb auch AT .x=b eindeutig 16sbar sein muss.

ii) Falls A -x=b unendlich viele Losungen besitzt, gilt rg(A)=rg(Alb)<n.Da

rg(A)= rg(AT) <n, folgt, dass AT .x=b nicht eindeutig l6sbar sein kann. Eine
Aussage tiber die Validitat von rg(AT) = rg(AT | b) ist dagegen nicht moglich.

AT .x=b kann unendlich viele Loésungen oder keine Losung haben.

Aufgabe 6.37:

a) Keine Losung fiir a=— /2

Unendlich viele Losungen fiira=3: L = {(%5 - %5 Xy  Xp % - %xz )T

-3 7a+5 -3 jT
2a+1 2a+1 2a+1

Genau eine Losung fiir a€R \{—%;3} X = [

T
b) Unendlich viele Losungen fiir a = —%: L= {(x3 —% X3 x3) ,X3 € [R}

,Xo € [R}

Aufgabe 6.38:

Fiir a,b €R existiert eine eindeutige Losung: x = (2a 7 3b 2a-4, 5b)T

Aufgabe 6.39:

Keine Losung fiira-b+3=0

-7a+b-12 8a-5b+6 3

Genau eine Losung fiira—b+3 #0: x:(
3a-3b+9 3a-3b+9 a-b+3

i
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Aufgabe 6.40:
Keine Losung fiira+b+5=0 und a #4
Unendlich viele Losungen fiira=4 und b =-9:

L ={(y2+y2x3 -5 ><3)T,><3 e[R}

9+b (b-1)-(4-a)

4-a

4a+4b+20

Genau eine Losung fiira+b+5#0: x=
2a+2b+10

a+b+5

T

Aufgabe 6.41:
a) a= —%
b) aeR
¢) Keine Losung fiir a = - /2 und b #0
Unendlich viele Losungen fiir a = —% und b=0:

LZ{(ZXZ—%X4—% Xp 23X4+% X4)T,X2,X4€[R

Unendlich viele Losungen fiir a # —% und b eR:

7a+b+3,5+4a+4
3(a+0,5) 3
X2
2a+2b+1 -8a+4
+
3(a+0,5) 3

X2

,Xp €R

X2

+4

X2

a+0,5

|
J

Aufgabe 6.42:
Keine Losung fiir b=0 und a #9 sowie flir b=-3 und a# 6

Unendlich viele Lésungen fiir b=0 und a=9:
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L ={(x1 2 1)T,x1 e[R}

Unendlich viele Losungen fiir b= -3 und a =6:

[L:{(—%'F%Xs 1+X3 X3)T,X3 eR

T
-3a+3b+27 a+b-3 a-6
2b(b+3) b+3 b+3

Genau eine Losung fiir beR \{-3;0} und aeR: x =(

Aufgabe 6.43:
Keine Losung fiiraeR und beR\\ {O;%a —%}

Unendlich viele Losungen fiira€R und b =0:

ﬂ_:{(—%(3a+1)+%ax3 %(a+2)—2ax3 x3)T,x3e[R}

Unendlich viele Lésungen fiir a€R und b =3 Ha-— %:

ﬂ_:{(%a—%z+%ax3 %a+%—2ax3 x3)T,x3 e[R}

Hinweis: Fiir a =% ist b=0 und die beiden Losungsmengen sind identisch.

Aufgabe 6.44:
a) det(A)=a?+2

b) Da det(A)=a’+2>0 fiir alle a eR gilt, ist stets rg(A)=n =3, und damit weiter
rg(A | b)=n=3, da A quadratisch ist.

2+a-3-b
a’+2
| 2-a+2-a-b+2-b
- a’+2
2-2-b+a-b
a’+2

Das LGS ist fiir alle a,b eR 16sbar.

270



Kapitel 6

T
d) x:(l —E zj
3 3
Aufgabe 6.45:

a) rg(A) gibt die Anzahl der Lu. Zeilen und Spalten der Matrix A an. Gilt fiir eine
Matrix A eR™" rg(A)=m, so sind die Zeilen stets L.u. (Nur falls zudem n=m

gilt, die Matrix A also quadratisch ist, sind auch die Spalten 1.u.)

b) Fallsrg(A)= rg(A \ b) =n gilt, ist das LGS eindeutig 16sbar.
Falls rg(A)=rg(A | b)<n gilt, besitzt das LGS unendlich viele Losungen.
Falls rg(A) <rg(A | b) gilt, ist das LGS unlosbar.

c) i) Das LGS kann eindeutig l6sbar sein oder unendlich viele Losungen besitzen, da

zwangslaufig auch rg(A \ b) =m gilt.

ii) Das LGS kann eindeutig 16sbar sein oder unldsbar sein, aber nie unendlich
viele Losungen besitzen. Zwar ist weiterhin die Relation zwischen rg(A) und
rg(A \ b) unbekannt, jedoch giltrg(A)=n, was unendlich viele Losungen aus-
schlief3t.

d) Falls b=0 gilt, ist das LGS immer 16sbar, da dann stets rg(A) = rg(A \ b) gilt.
i) Das LGS kann eindeutig 16sbar sein oder unendlich viele Losungen besitzen, da
die Relationen zwischen rg(A) = rg( Al b) und n unbekannt ist.
ii) Das LGS ist eindeutig losbar, da sich dann rg(A) = rg(A | b) =n ergibt.

e) Falls A die (m xn)-Nullmatrix ist, gilt rg(A) =0. Die Anzahl der Zeilen der Koeffi-
zientenmatrix bzw. die Anzahl der Variablen eines LGS muss stets grofser Null
sein, also gilt n >0, woraus folgt: rg(A)<n. Da die Relation zwischen rg(A) und
rg(A \ b) allerdings unbekannt ist, kann das LGS unendlich viele Losungen besit-

zen oder unldsbar sein.

Die Tatsache, dass m =n gilt, &ndert die Antwort nicht.
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f) i) SeiB= b |, so muss, damit die 2. Zeile eine Linearkombination der ande-

ren beiden Zeilen ist, die Gleichung x;-a+x,-c=b losbar sein. Das heifst,
| |

\
| | |

a i ¢ |-x =b muss losbar sein. Hier ist rg| a i cl=rgla i c | b |=2, somit ist die
| |

[

|
| |
2. Zeile ist eine Linearkombination der anderen, wobei 7/26 -a+ 1%6 -c=b.

[
| |
ii) Sei B=|d i e i f |, so muss, damit die 2. Spalte eine Linearkombination der
| |
[

anderen beiden Spalten ist, die Gleichung x; -d +x, - f = e 16sbar sein. Das heif3t,
| | |

d i f |-x=e muss losbar sein. Hier ist jedoch rg| a i cl<rgla i c|b|und die
| | |
|

2. Spalte ist somit keine Linearkombination der beiden anderen.

Kapitel 7

Aufgabe 7.1:
a) z=(6 16 2 0 6 64)
b) z=(4 16 2 1 6 64)

¢) Zuweisung ist nicht eindeutig fiir: x3 bzw. x5 €R\ {ungerade natiirliche Zahlen},

das heifSt, falls x3 v x5 ¢ {1;3;5;7;9;11;...}.
Zuweisung ist widerspriichlich, falls zudem 2x; # y3 bzw. 2xs # y%
d) Die Abgeschlossenheit bzgl. einer Vektoraddition von x und y ist erfiillt:

a®b=(3 9 —4)' eR’
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Das Kommutativgesetz bzgl. einer Vektoraddition ist nicht erfiillt:

a®b=(3 9 —4) zb®a=(3 25 16)'

Das Assoziativgesetz bzgl. einer Vektoraddition ist nicht erfiillt:

(a®b)@c=(6 16 -8)' »a®(b®c)=(6 256 —4)

Es existiert kein neutrales Element der Vektoraddition:

Gleichgiiltig, ob ein Element von links oder von rechts addiert wird, der Ergebnis-
vektor besteht an der zweiten Stelle nur aus dem Quadrat des zweiten Elementes
des rechten Vektors und an der dritten Stelle nur aus dem doppelten des dritten
Elementes des linken Vektors. Somit kann kein neutrales Element der Vektoraddi-

tion existieren.

Es existiert kein inverses Element der Vektoraddition:

Begriindung wie oben.

V ist somit kein Vektorraum, da mehrere Vektorraumaxiome nicht erfiillt sind.

Aufgabe 7.2:

a) a, bund cbilden eine Basis des R, dad=x;-a+x, b+ X3 -c eindeutig losbar ist

mit: x = (—Zdl + d2 + d3 4d1 - d2 - 2d3 3d1 - d2 - d3 )T

b) e=-7a+19b+14c

Aufgabe 7.3:

a) a, bund cbilden keine Basis des [RS, da sie linear abhangig sind.

b) dist keine LK der Vektoren a, b und c und liegt somit nicht im Unterraum U.
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Aufgabe 7.4:
1 0
dim([A])=2 mit A ={v;,v,,v3}, eineBasis von[A]=1| 2|, | 4
0 3
Aufgabe 7.5:
Vier Basen des R sind beispielsweise:
1) (0) (O 1 2 -2 2 0 1) (1) (3
0 7 1 7 O 7 3 ’ —4 7 O ’ 0 ’ 1 7 ’ 0 ’ 1 7 3
0) l0) (1 4 0 2 0) \0) (1 4) 10
Aufgabe 7.6:

a) Nein, da A R ist.

b) dim([A])=3

1 0 0
c) EineBasis von [A]={|0|, |1}, |0
0 0

d) Ja,da[A]= R3 ist.

Aufgabe 7.7
a) deU
b) dim(U)=3

c¢) Nein,dadeU ist..
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Aufgabe 7.8:
1Y(0Y)( 0
dim([A])=3, eine Basis von [A] = _96 , _53 , _05
2)|-8)(-55
Aufgabe 7.9:
1) (0) (0
a) dim([A])=3, eine Basis von [A] = 5 j ;
1) (-3) |13

b) A erzeugt weder den R3 noch den [R4, sondern einen dreidimensionalen Unter-

raum des R*.

Aufgabe 7.10:
1 0 0
1 0 0
Eine Basis von [A] = 2) (0 [B]=4|21, |10, |0, [C]= 2 Ny 0
a) Eine “Ual 7 —1,3,1, RIIAP AR
2 -2 -1

b) Die Vektoren der Menge A bilden einen zweidimensionalen Unterraum des R>.
Die Vektoren der Menge B bilden einen dreidimensionalen Unterraum des R°.

Die Vektoren der Menge C bilden einen dreidimensionalen Unterraum des R*.

Aufgabe 7.11:
a) Nein, da die Vektoren 1. a. sind.

b) dim([A])=2
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0 (=3
- 2
¢) Eine Basis von [A]= f’ 1o

% 1

d) Fallsa=-6 gilt ve[A].

Aufgabe 7.12:

a) dim([[B]) =2

2) (0
b) Eine Basis von [B]=4/0, |1
2 1

¢) Nur D ist eine Basis eines zweidimensionalen Unterraums des RS.

Aufgabe 7.13:

a) Bendtigt wird eine Menge mit 3 1. u. Vektoren, welche je 4 Elemente besitzen, z. B.:
1 0 0
0 1 0
ool |1
0 0 0
b) Im R3 kann sich ein Unterraum maximal in 3 Dimensionen ausdehnen. Es gibt

somit keinen vierdimensionalen Unterraum des R>. Man briuchte eine Menge mit

4 1. u. Vektoren, welche je 3 Elemente besitzen. Dies ist nicht moglich.

Aufgabe 7.14:

a) dim([A])=3
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4 0

-1 0

b) Eine Basis von[A]=<| 5 |, | 4|, |1
-5 2

-1 3 0

¢) B kann hochstens funf 1. u. Vektoren enthalten.

d) B muss zwei linear unabhingige Vektoren enthalten, ferner muss gelten

dim([A UB])=5.

Aufgabe 7.15:
1 2 1 0 0
a) Apeu=313 -1} 10|, 11|10
7 -2 0
1 7 -2 1 0 0 0
b B 2 1 0 1 0 0
) neu 4 ’ -6 7 -3 7 0 7 0 7 1 ’ 0
3 1 4 0 0 0 1
-1 0
Eine Basi C 1 4 0
¢) Eine Basis von [C] = Sl o
-2 12 -36

d) dim([C])=3
e) dim([[F]) € {5;6;7}

f) dim([G]){0;1;2;3}

Aufgabe 7.16:
a) Fallsa=1und b =3 erzeugt A einen zweidimensionalen Unterraum des R*.

b) A kann weder den R noch den R* erzeugen.

277




Ldsungen

1 0 0
-2 -3 0
) dim([A])=3, eine Basis von [A]= 0l o

Aufgabe 7.17:

a) dim([A])=2

2 0

. . 1 1

b) Eine Basis von [A]= nag
3 2

¢) xeR\{-5}

d) Da A,Bc R* sind, lasst sich niemals ein Unterraum des R3 erzeugen.

Aufgabe 7.18:

a) Die Vektoren a, b, ¢, d sind damit fiir alle u eR linear abhéngig.

2 falls u=-1

b) dim([A]):rg(A):{g falls u=-1

Falls u = -1, dann ist unter anderem B= eine Basis von[A].

10
10

W == =
N

8
10 |/
10

Falls u # -1, dann ist unter anderem B= eine Basis von[A].

W = ==
= O O O

¢) Fiiru=-1istrg(B)=3>rg(A)=2 und der Vektor e liegt nicht in[A].

Fiir u # -1 ist rg(B) =rg(A) = 3 und der Vektor e liegt in [A].
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Aufgabe 7.19:
2 0
. . 1 1-3 .
a) Eine Basis von [A]= 51 o It d1m([A]):2
1 -1

b) Eine Menge AcR* kann niemals den R? oder den R3 erzeugen. Da

dim([A]) =2< dim([R4) =4 ist, kann A nicht den kompletten R* erzeugen.
¢) AUBUC erzeugt den R* nicht, da dim([AUBUC])=3 ist.

d) Es existieren v e R* mit v = 0, welche sowohl von A als auch von B erzeugt wer-

den, da dim ([A]n[B]) = dim ([A]) + dim ([B]) - dim ([A UB])=2+2-3=1>0 ist.

Aufgabe 7.20:
1 0 0
a) dim([A]) =3, eine Basis von [A]=4|0|, | 1], |0
0 0
b) A ist EZS des R3.
¢) Ja, da A den gesamten R® erzeugt.
Aufgabe 7.21:
1 0 0
2 1 0

a) dim([A]):B,eineBasisvon[A]: :4 Aol Z1s

-3 % _ 2%

b) Es gilt [B] c[A], aber nicht [B] =[A].
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Aufgabe 7.22:

a) Der R® kann niemals Teilmenge eines Unterraums des R* sein.
b) Nein, da dim([A])=3 <4 = dim(R*} ist.

¢) Ja, dadim([A])=3=dim([A UB])ist.

d) Nein, da dim([A])=3 <4 =dim([AUC]) ist.

Aufgabe 7.23:
a) [Lhz{(—3x3 2X3 X3 O)T,x3 € [R}
b) dim(Ly)=1

-3

2
c¢) Eine Basisvonl =

Aufgabe 7.24:

a) [Lh = {(X3 + 2X4 —2X3 —3X4 X3 X4)T,X3,X4 € [R}

1) (2
2| |-3
b) dim(lLy)=2, eine Basis vonLp=1/ |,
0) (1
c) xely
Aufgabe 7.25:

a) [Lh:{(xl —X1+2X3 X3 —3x1+7x3)T,x1,x3e[R}
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1 0
. . -1 ]2 .
b) Eine Basis von L, = ol l1lr dlm(th):Z
-3) \7
Aufgabe 7.26:
T
a) ﬂ_h:{(—l%x3+x5, —22/7x3 +2X5, Xz, %x3—/2x5, x5) ,X3,X5 e[R}
_19
7 1
_227 2
b) dim([Lh)=2, eine Basis von L, = 1 || 0
% ||
0 1

¢) Die Losungsmenge bildet einen zweidimensionalen Unterraum des R’

Aufgabe 7.27:
T
a) [Lh:{(—%x4—2x5 —2x4 —4x5 3x4—%x5 X4 x5) ,x4,x5e[R}

_% -2

-2 —4
b) dim([l_h) =2, eine Basis von L}, = 3 |, —%

1 0

0 1

¢) Ja,dalyc R5, L h#= @ und L, abgeschlossen beziiglich der Vektoraddition und
der Multiplikation mit einem Skalar ist und die Axiome der Vektorraumtheorie er-

fallt.

Aufgabe 7.28:

a) [Lh:{(—2x4—2x5 -3X3+X4 Xz Xg x5)T,x3,x4,x5e[R}
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0 -2 -2
-3 1 0
b) Eine Basisvonly=<| 11,10, | 0 ,dim([Lh)=3
0 1 0
0 0 1

) aeR\{2}

d) Mit Vektoren des R® lisst sich niemals ein Unterraum des R* erzeugen.

Aufgabe 7.29:

a) [Lhz{(—%xz Xp %xz O)T,xze[R}
72

b) Eine Basis von Ly, = 11 ,dim([Lh):l

el

0

¢) Nein, dalLyc[A]und dim([A]) =3=# dim([ﬂkq) =4 ist.

Aufgabe 7.30:

a) Beispielsweise:

X1 - 6X2 + X3 + X4 - 4X5 =0
- 5X2 + X3 + Xy - 2X5 =0
3X3 - 2X4 - X5 =0

b LYo %o Ya-Hos Yt Fa-Hs ) s ek}

¢) Nein, da L}, nicht abgeschlossen beziiglich der Multiplikation mit einem Skalar

und nicht abgeschlossen beziiglich der Vektoraddition ist.

Aufgabe 7.31:

a) Die Vektoren in B sind 1. a., somit kann B keine Basis eines Unterraums sein.

282



Kapitel 7

b) B ist ein Erzeugendensystem von IL,.

Aufgabe 7.32:
a) Keine Losung fiira=0 und b#1

Unendlich viele Losungen fiira=0und b=1: L = {(0 Xo )T Xy € [R}

a+b-1+ab)!
Genau eine Losung fiir a # 0: x = [—ab 2—)
a
b) x=(1 1)"
c) Dal c R2 ist, ist L kein Unterraum des R!.

d) Falls entwedera=0Ab=1oder fallsa=1Ab=0 ist.

Aufgabe 7.33:

a) LGS1:1g(A)=rg(A | 0)=n, das LGS ist eindeutig I6sbar mit L}, ;= {(0 0 O)T}.
LGS 2: rg(A) =rg(A | 0) <n, das LGS hat unendlich viele Lsungen:
Ly o= {(—2x2 Xo 0)T ,Xo € [R}

b) Beide LGS sind homogen, die Losungen der LGS sind somit Unterraume.

0
LGS 1: dim([L h,l) =0, einzige Basis: {| 0
0

-2
LGS 2: dim([L h,2 ) =1, eine Basis: 1| 1

c) i) Gesucht sind eine Basis und die Dimension von U=Ly, jUlly, 5, falls U ein
Unterraum ist. Da Ly, <Ly, 5, folgt U=Ly, 5. Ly, 5 ist ein Unterraum des R3

mit bekannter Basis und Dimension (siehe Teilaufgabe b)).
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(Bei Interpretation der Fragestellung als "ausschliefiliches oder" entspricht der
gesuchte Raum dem oben angegebenen Raum, jedoch ohne den Nullvektor. Da
dann unter anderem die Abgeschlossenheitsanforderungen nicht erfiillt sind,
handelt es sich nicht um einen Unterraum. Somit lasst sich keine Basis und kei-

ne Dimension angeben.)

ii) Gesucht sind nun eine Basis und die Dimension von U=1L}, 1Ny, 5, falls U ein
Unterraum ist. DalLy, 1c Ly, 5, folgt U=y, 1. L}, 1 ist ein Unterraum des R mit

bekannter Basis und Dimension (siehe Teilaufgabe b)).

Kapitel 8

Aufgabe 8.1:

a) EV:  x; = Anzahl der hergestellten Giiter G;
X, = Anzahl der hergestellten Giiter G,
X3 = Anzahl der hergestellten Giiter G3

ZF:  z=38xq +46x, +42x3 = max

40x; + 80x, + 60x3 < 16.000
NB: 6%, + 7xy + 7x3 < 2200
X1 > 3X2

NNB: X1,X2,X3 >0

b) ZF:  z=40x; +80x; +60x3 — min

38x; + 46x, + 42x3 > 9.000
NB: 6%, + 7xy + 7x3 < 2200
X1 > 3X2

EV und NNB &dndern sich nicht.
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Aufgabe 8.2:

a) EV:  xq = Produktionsmenge Gut 1
X, =Produktionsmenge Gut 2

x5 =Produktionsmenge Gut 3

ZF:  z=45xq +30x, +25x3 — max

40x; + 50x, + 30x3 < 1.000
X; < V(xq+x3+X3)
NB: Xy < 10
Xy = 2xq
Xy = 2x3

NNB: xq, x5, x320
b) Neue Nebenbedingung: x5 > 30.

Das LP hat keine zuladssige Losung mehr.

Aufgabe 8.3:

a) EV: m := Lernzeit fiir Mathematik in Tagen
w = Lernzeit fiir Wirtschaftsinformatik in Tagen
t = Lernzeit fiir Technik des betrieblichen Rechnungswesens in Tagen

p = Lernzeit fiir Produktionswirtschaft in Tagen

ZF: z=p — max

m + w + t + p < 18
m + w + t < 2p
NB: m < t <
w > 4
m = 3

NNB: m,w,t,p=0

b) m=3, w=4, t=3, p=8 mit zugehdrigem Z°Pt =g
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Aufgabe 8.4:

EV: f = Anzahl der Frauen, welche die Party betreten diirfen

m = Anzahl der Ménner, welche die Party betreten diirfen

ZF: z =14f + 24m — max

f < 800
f < 650
NB: m < 1.000
f + m < 1400
m < 13 7t
NNB: f,m>0
Aufgabe 8.5

EV:  siehe Aufgabenstellung

ZF: z=0,19b+0,4c+0,3e+0,75k + 0,061 +0,08m +1,3s + 0,2t — min

4 < 1 < 6
2
0,41 < w + m < Al
4b < 1
NB: 3 < t < 5
e > 0,5
c =2 e
s > 4de
k > 25

NNB: b,c,ek,I,m,s,t,w>0
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Aufgabe 8.6:

EV:  Xxq := Anzahl der gehaltenen Rinder

Xp = Anzahl der gehaltenen Schafe

X3 = Anzahl der gehaltenen Schweine

ZF:  z=(1.800-150)x; + (180 — 20)x, + (250 — 80)x3 = 1.650x7 + 160x, + 170x3 — max

30X1 +
1OX1 + 15X2
5X1 + 1, 5X2 + 2X3

NB:

NNB: x1,X5,x32=0

2X2

+ 8xz < 1.000
+ 5x3 < 16-60
< 200
x; <20

Aufgabe 8.7:

EV: k := Karottensaft-Anteil am Getrank

t := Traubensaft-Anteil am Getrank

h = Honig-Anteil am Getrank

p = Pfefferminzlikor-Anteil am Getrank

ZF:  z=0,3k+0,15t+3h +2p — min

0,06 <

NB:
0,01 <
k + t

h

t
k
p
+

NNB: k,th,p>0

IV A

5NV

0,1
2k
h
0,05
+ p =1
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Aufgabe 8.8:

EV:  z = Anzahl der Werbeseiten in Zeitungen
r = Anzahl der Werbespots im Radio [zu je 30 Sekunden]
f = Anzahl der Werbespots im Fernsehen [zu je 30 Sekunden]

1 = Werbung auf Litfaf§saulen [in Litfaf$saulenwochen]

ZF:  z=20.000z + 2.000r +10.000f + 6001 — max

5.000z + 800r + 6.000f + 3001 < 250.000

z 2 10

NB: I < 200
f > r

0,5f > 2z

NNB: z,r,f,1>0

Aufgabe 8.9:

EV:  xg = Anteil der Olkontrakte im Portfolio
Xku ‘= Anteil der Kupferkontrakte im Portfolio

xn; = Anteil der Nickelkontrakte im Portfolio

ZF:  z2=0,04x, +0,05xy, +0,06xy; — max

XKu + XNji < Xol
XKu > 0,1
XNi T 0, 05 > XKu
NB:
XKu + 0, 05 > XNji
XOI s XKu s XNi < 0,6
XOI + Xgku *tOXNE = 1

NNB:  x¢yp, Xk Xni 20
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Aufgabe 8.10:

EV: x5 :=Menge Sorte Ain kg
xg :=Menge Sorte A in kg

ZF:  z=>5x, +8xg — min

8
14
6

%-(XA +Xp)
%-(XA +Xp)

2XA + Xp
3XA + 4XB

vV vV IV

NB: XA + 5XB

IA

XA

IA

XB

NNB: x4, xg =0

Aufgabe 8.11:

EV:  h = Schlaf pro Nacht zu Hause in Stunden
v = Anzahl der besuchten Vorlesungsblocke pro Woche
t = Anzahl der besuchten Tutoriumsblécke pro Woche

m := Bei Maike verbrachte Zeit pro Woche in Stunden
. — 1/.1/.3 3/.3/.3 /.1
ZF: Z‘””AA /2v+ i A AHA /3m

=7h+%6v+2%6t+%m—>max

5 < h < 14

5 < v < 12

t > 1

A t

NB v o+ 2t > 20
m < 30

%V + %t < m

7h + 3v + 3t + m < (24-3)7-19

NNB: h,v,t,m>0
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Aufgabe 8.12:

EV:  xq =Produktionsmenge P; auf Maschine 1
X, =Produktionsmenge P; auf Maschine 2
x5 =Produktionsmenge P,
x4 =Produktionsmenge P;

ZF:  z=10(x;+x,) +20x3 + 15x4 — max

IN

1.000
4x, + 4xy 2.000

NB:
X 24+ x)

%‘(X1+X2+X3 +Xy)

2X1 + 3X3

vV IA

IN

X4

NNB: X1, X9, X3, X4 >0

Aufgabe 8.13:

Z = X1 + 5%, +2x3 — max

X1 < 5
2x1 - 3%, + x5 < 1
3x; + 4xp; + x3 <2
- 3x; - 2xg5 < 2

T , X , x3 =2 0

Umformung zum Standardmaximierungsproblem ist nicht moglich.
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Aufgabe 8.14:

Z = X1 +2X, +3x3 = max

X1 - 5x3 < 5
2x;1 + 2xp + x5 =< 10
-3x1 - 4%, < 4
2x3 < 8

X1, X , x3 =2 0

Umformung zum Standardmaximierungsproblem ist mdglich.

Aufgabe 8.15:

Nein, da es sich nicht um eine konvexe Menge handelt.

Aufgabe 8.16:

Die graphische Losung fiihrt zu: x°P' = (4 7)T , 2Pt =39

Aufgabe 8.17:

Die graphische Losung fiihrt zu: x°Pt = (2 4)T, 7Pt =_4

Aufgabe 8.18:

Die graphische Losung fiihrt zu: x°Pt = (4 1,5)T, 7Pt =6,25

Aufgabe 8.19:
a) D b) B,C,BC
¢) A,D,E,AE,ED d) A,B,AB
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Aufgabe 8.20:

X =(% Vz)Tf P =(0 0)', 2P =8,75, yP'=(3 %)T

Aufgabe 8.21:

<OPt =(8 4)T, opt :(O O)T, 40Pt —68, yopt =(1,3 O,S)T

Aufgabe 8.22:
XP =(14 9)', P =(0 0 10)', 2 =87, yP'=(0,9 0,7 0)°

Somit sind die Kapazitdten 1 und 2 voll ausgelastet.

Aufgabe 8.23:

Pt = (41,5 18)", sP'=(0 0 292)', 2 =1154, yP' =(3) 47/, O)T

Aufgabe 8.24:

xP=(104 0 704)', P =(0 0)', 2P =110, yP' =(2 1)

Aufgabe 8.25:

xPt=(12,5 25 0)', 2% =87,5, yP' =(}, %)T

Aufgabe 8.26:

xPE=(0 20 10)", st =(0 0), %' =90, y°Pt=(1,75 0,25)"
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Aufgabe 8.27:

(30 0 )T, (10 0, 2 o0

Aufgabe 8.28:

xPt=2,5 10 0)F, s°P'=(0 15 0)T, z°P' =35, yP'=(1,5 0 0,5

Aufgabe 8.29:

P =(6 0 12)7, P =(0 0), 2% =30, yP'=(1 0)'

Aufgabe 8.30:

xP (240 2)', P =(16 0 0)F, 2P =108,y =(0 % )

Aufgabe 8.31:

XF=(0 5 6,25), P =(0 0 6.25)7, 2P =465, yP=(3 7 o)

Aufgabe 8.32:

xP=(12 12 0)', $P=(0 8 0)', 2P =108 yP=(07 0 1)’

Aufgabe 8.33:

xP=(17 6 0)', P =(0 0 26)", 2P =86, yP' =(18 04 0)'
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Aufgabe 8.34:

xPL=(8 4 3), sP'=(0 0 0), 2P =49, y®'=(0,6 0,3 0,8)"

Aufgabe 8.35:

Aufgabe 8.36:

XPU= (534 3L A1) P —(0 0 0 374), Z2P=ss, v =(0 1 15 o)

Aufgabe 8.37:
Das Problem weist unendlich viele Losungen bei begrenztem Zielfunktionswert auf.

T
Die Losungsmenge ldsst sich darstellen als [L:{(x1 1%_%x1) X1 e[0,5;4]} mit

z°Pt =10.

Aufgabe 8.38:

Eine optimale Losung kann nicht bestimmt werden, da das Problem unendlich viele

Losungen bei unbegrenztem Zielfunktionswert aufweist.

Aufgabe 8.39:

xPt=(13), s =(0 0 8), yP'=(0,2 3,2 0)F, 2P =10

Aufgabe 8.40:

xPL(14,5)", PP =(3 0 0), yP'=(0 2,75 0,25)", z°P' =245
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Aufgabe 8.41:

xPL=(0 0 6), Pt =(0 8 1)), yP'=(2 0 0), zP'=12

Aufgabe 8.42:

Pt =(0 2 0)F, Pt =(3 0)F, yP=(0 1), 2P =4

Aufgabe 8.43:

xPt=(0 1 2)7, s =(4 0 0), yP'=(0 1,25 0,25), 2%P' =9

Aufgabe 8.44:

xPE=(12 4 0), Pt =(0 2 0)f, yP'=(2 0 0)", 2P =40

Aufgabe 8.45:

a) pe[L;3]

b) ¥ =(0 10 1)T, P =(0 14 0)', 2% =46,y (2% 0 )

0 XM =(0 6 ), < =(0 0 ), 2w,y (34 % o)

Verinderung: Ax°P" :(O % —A)T, As®P! :(0 —% %)T, AzOPt :_%

Aufgabe 8.46:

a) Es kann kein Anfangstableau sein, da eine Zielvariable in der Basis steht. Ein End-

tableau kann es nicht sein, da die Zielzeile nicht vollstandig >0 ist.
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b) z=2xq +3x, +2x3 +4x4 = max

2x1 + Xo o+ 2x3 + x4 < 120
2x; + X + 4xg + 3xq4 < 100
X7 + 3xp + 3x3 + 4x4 < 90
X1, X , Xz , x4 =2 0

9 XT=(2 16 0 0)f, P =(20 0 0)f, 2P =132,y =(0 ¥ 4

Aufgabe 8.47:
a) Alle Werte in der Zielzeile sind > 0.

b) Die Basis enthélt die Variablen der pivotisierten Spalten, also x,, s, und X;.

xPt=(20 20 0), sP'=(0 40 0)

X] Xp Xz S1 Sp S3
s;|1 1 1 1 0 040

¢ [0 2 2 0 1 080
s3/1 0 1 0 0 1120
Z|-4 -3 4 0 0 0|0

d) z=4xq+3x, +4x3 - max

e) Kapazititsbedarf: b—sP' = (40 40 20)T

Aufgabe 8.48:
a) x®=(20 0 5), % =(0 0 5), 2P =35y =(14 1 o)

b) Die Restriktion ist bei der Produktion x°P! aus a) nicht bindend, die optimale Lo-

sung dndert sich somit nicht.

<) xopt:(ZZ 0 4)T, SOpt:(z 04 O)T' 2Pt =34, yopt:(o 12 0 %)T

Aufgabe 8.49:

a) Das Simplex-Tableau hat 4 Zeilen und 7 Spalten.
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b) Es konnen 9 Werte nicht ndher bestimmt werden.

X1 X2 S1 S2 S3
|1 0 2 0 ?|%
|0 1 2 0 215
510 0 2 1 ?2(%
Zl0o 0 72 0 ?2]>2

c) ZF:  z=>5xq+3x, - max

2X1 + X < 10
NB: x4 + 2x, < 15

2X1 + 3X2 < 20
NNB: X1,X2 >0
opt _ 55
2% =%

Aufgabe 8.50:

0,5X1 + 2X2 < 32 (I)
0,75, + 15x, < 27  (II)
15x, + x, < 30 (I
3, + x, < 57 (IV)

b) xPt=(18 3)), sP'=(17 9 0 0), 2P =120, y*'=(0 0 4 0)"
¢) Bei verinderter ZF ergibt sich: x°P' =(12 12)T, soPt =(2 00 9)T, 2Pt =84

Die Vermietung der freien Kapazititen in der neuen Region erbringt 38 €, was zu
einem Gesamterlds von 122 € fiithrt. Die beste Moglichkeit ist jedoch umzusiedeln,

nichts zu produzieren und alle Kapazitiaten zu vermieten. Dies erbringt 404 €.

Aufgabe 8.51:

a=3, b=20, c=10
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Aufgabe 8.52:

Anlagenbauerin Brigitte sollte Maschine 3 auf 7 oder 8 Einheiten ausbauen. Sie erhalt

daftir 4.900 € bzw. 6400 €. Das optimale Produktionsprogramm lautet dann
T

xOPt = (% 7/2 0) bzw. x°P!= (1 4 O)T, der Unternehmensgewinn liegt bei

35.500 € - 4.900 € bzw. 37.000 € - 6.400 € = 30.600 €.
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