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Geleitwort 

Fundierte mathematische Kenntnisse sind ein integrativer Bestandteil des Studiums 

der Wirtschaftswissenschaften. Insbesondere ein tief greifendes Verständnis der Linea-

ren Algebra ist unumgänglich. Die sich aus der Matrixrechnung ergebenden Vereinfa-

chungen in struktureller Hinsicht zählen zum Standardrepertoire der grundlegenden 

und weiterführenden wirtschaftswissenschaftlichen Methoden. Ohne eine Kenntnis 

dieser Grundlagen sind der akademischen Weiterbildung Grenzen gesetzt. 

Das vorliegende Lehrbuch ermöglicht es, diese Grenzen zu durchbrechen. Es setzt 

keinerlei Vorwissen im Bereich der Linearen Algebra voraus und befähigt somit jeden 

Leser, sich umfassende Kenntnisse zu verschaffen. Das Buch eignet sich besonders für 

den Einsatz während des wirtschaftswissenschaftlichen Studiums, bzw. dessen Vorbe-

reitung, ist aber auch bei einer praktischen Implementierung matrixgestützter An-

wendungen sehr hilfreich. 

Den Autoren gelingt es in ihrem Werk, durch das Einbinden zahlreicher Beispiele das 

Verständnis der theoretischen Erklärungen zu erleichtern. Die gewählte Untergliede-

rung in mathematische Grundlagenkapitel und ökonomische Anwendungen, welche 

einen Bezug zu betriebs- und volkswirtschaftlichen Problemen herstellen, überzeugt 

dabei in vollem Maße. So finden die wichtigsten ökonomischen Modellformulierun-

gen aus der Linearen Algebra, wie beispielsweise das Leontief-Modell und ein Modell 

der linearen Programmierung, besonderen Eingang in das Lehrbuch. 

Diesem rundum gelungenen Buch wünsche ich die verdiente breite Anerkennung in 

der akademischen Lehre. 

 

Mannheim, Januar 2004  Prof. Dr. Peter Albrecht 

 



 

Vorwort zur vierten Auflage 

Das vorliegende Lehrbuch ermöglicht einen Einstieg in die Lineare Algebra ohne jegli-
che Vorkenntnisse und schafft ein Basiswissen, welches einen Großteil der Anwen-
dungen der Matrixrechnung aus Betriebs- und Volkswirtschaftslehre abdeckt. Zu-
nächst als ein die Lehre begleitendes Skriptum konzipiert, hat sich der Inhalt dieses 
Lehrbuches an der Universität Mannheim über Jahre hinweg bewährt und wurde 
ständig verbessert, überarbeitet und erweitert. Die vierte Auflage setzt wenige kleinere 
Änderungen um und ist im Vergleich zur dritten Auflage weitgehend unverändert. 

Der Aufbau des Buches ist zweckmäßig und aus systematischer Sicht naheliegend. 
Nach einer Definition des Rechenobjektes Matrix und der grundlegenden Matrixope-
rationen folgt eine Anwendung der Matrixrechnung zur Lösung linearer Gleichungs-
systeme. Anschließend wird die Matrixinversion, die Determinante sowie der Rang 
einer Matrix eingeführt und deren vielseitige Verwendung, insbesondere bei der Lö-
sung linearer Gleichungssysteme, ausführlich dargestellt. Anhand der innerbetriebli-
chen Leistungsverrechnung, der innerbetrieblichen Materialverflechtung und des 
Leontief-Modells werden ökonomische Anwendungen der vermittelten Kenntnisse 
demonstriert. Nach einer Einordnung der Matrixrechnung innerhalb der Vektorraum-
theorie folgt schließlich die Betrachtung der linearen Programmierung. 

Um dem Leser die theoretischen Formulierungen zu verdeutlichen, werden Definitio-
nen und Herleitungen nicht lediglich aneinandergereiht. Ausführliche Beispiele veran-
schaulichen die dargestellten Sachverhalte. Einen besonderen Höhepunkt bildet die 
umfangreiche Aufgabensammlung zu jedem Kapitel inklusive Lösungsteil. Somit wird 
eine Anwendung des vermittelten Wissens und die Überprüfung des Lernerfolges 
ermöglicht, was ein Selbststudium erleichtert. 

Wir bedanken uns bei allen, die uns bei der Verwirklichung dieses Buches unterstützt 
haben. Unser besonderer Dank gilt den Herren Simon Hilpert und Frank Schilbach, 
die einige Übungsaufgaben entwarfen. 

Wir wünschen Ihnen viel Freude bei der Lektüre dieses Buches. 

 

Mannheim, Februar 2011 Christoph Mayer, Carsten Weber, David Francas 
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Griechisches Alphabet und mathematische Symbole 

�  �  alpha 

�  � beta 

� �  gamma 

�  	 delta 


 �  epsilon 

�  
  zeta 

�  � eta 

�  � theta 

�  �  iota 

�  � kappa 

�  � lambda 

�  � my 

�  �  ny 

�  � xi 

� � omikron 

  ! pi 

" #  rho 

$ % sigma 

& ' tau 

(  ) ypsilon 

*  +, , phi 

-  .  chi 

/  0  psi 

1  2  omega 

3  für alle (der Allquantor) 

4 es existiert ein (der Existenzquantor) 
n

i
i 1

x
5
6  die Summe über ix  von i 15  bis n 

7  das logische Und 

8  das logische Oder 

9 das logische Nicht 

: ;a; b  das geschlossene Intervall von a bis b 

< =a; b  das offene Intervall von a bis b 

>, ? @ die leere Menge 

aA� a ist ein Element der Menge � 

aB� a ist kein Element der Menge � 

C� � die Menge � ist eine echte Teilmenge 

der Menge � 

D� � die Menge � ist eine unechte Teil-

menge der Menge � 

E� �  die Vereinigungsmenge der Mengen 

� und ��

F� �  die Schnittmenge der Mengen � 

und � 
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1 Grundlagen der Matrixrechnung 

1.1 Matrizen und Vektoren 

Definition 1-1: Matrix 

Ein zweidimensionales, geordnetes Zahlenschema GA m nA �  mit 

den Komponenten ija A�, welches aus m Zeilen und n Spalten be-

steht, heißt < =Gm n -Matrix und wird wie folgt dargestellt: 

H I
J K
J K
J K5 J K
J K
J K
J K
L M

� �

� � � �
� �

� � � �
� �

11 1j 1n

i1 ij in

m1 mj mn

a a a

a a aA

a a a

 

Dabei bezeichnet < =m nG  [gesprochen: "m Kreuz n"] die Ordnung der Matrix. Matrizen 

werden gewöhnlich mit lateinischen Großbuchstaben benannt. Unabhängig von ihrer 

Ordnung besitzt jede Matrix genau eine Hauptdiagonale, welche alle Komponenten ija  

mit ji 5  enthält. 

Beispiel 1-1: Anwendung der Matrixdarstellung 

Ein Unternehmen stellt n Produkte unter Verwendung von m Rohstoffen 

her. ija  ist die Menge des Rohstoffs i, die zur Herstellung einer Einheit des 

Produkts j benötigt wird (Produktionskoeffizient). Neben einer tabellari-

schen Darstellung der Produktionskoeffizienten (links) ist auch eine Dar-

stellung in Matrixform (rechts) möglich, durch welche die Produktionsko-

effizienten in einer Form zusammengefasst werden, die eine Anwendung 

von Rechenoperationen erlaubt. 

C. Mayer, Lineare Algebra für Wirtschaftswissenschaftler,
DOI 10.1007/978-3-8349-6727-5_1, © Gabler Verlag | Springer Fachmedien Wiesbaden GmbH 2011
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11 1j 1n

i1 ij in

m1 mj mn

1 j n Produkt
1 a a a

i a a a

m a a a
Rohstoff

� �
� �

� � � � �
� �

� � � � �
� �

       

11 1j 1n

i1 ij in

m1 mj mn

a a a

a a a

a a a

H I
J K
J K
J K
J K
J K
J KJ K
L M

� �

� � � �
� �

� � � �
� �

 

Es existieren einige spezielle Matrizen, welchen besondere Bedeutung in der Matrix-

rechnung zukommt. Im Folgenden sei A eine beliebige < =m nG -Matrix. 

Definition 1-2: Spezielle Matrizen 

Eine Matrix ist quadratisch, falls die Anzahl der Zeilen der Anzahl 

der Spalten entspricht, das heißt falls 5m n gilt, so beispielsweise: 

H I
5 J KNL M

6 0
A

1 8
 

Sind sämtliche Komponenten einer Matrix Null, handelt es sich um 

eine Nullmatrix, die mit 0 bezeichnet wird, so beispielsweise: 

H I
5 5J K
L M

0 0 0
A 0

0 0 0
 

Enthält eine quadratische Matrix auf der Hauptdiagonale nur Ein-

sen und außerhalb der Hauptdiagonale nur Nullen, ist A eine Ein-

heitsmatrix E, so beispielsweise: 

H I
J K
J K5 5J K
J KJ K
L M

1 0 0 0
0 1 0 0

A E
0 0 1 0
0 0 0 1

 

Als Diagonalmatrix bezeichnet man eine quadratische Matrix, de-

ren Komponenten außerhalb der Hauptdiagonale Null sind, so bei-

spielsweise: 
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H I
J K5 J K
J K
L M

1 0 0
A 0 0 0

0 0 2
 

Obere (untere) Dreiecksmatrizen sind Matrizen, bei denen alle 

Komponenten unterhalb (oberhalb) der Hauptdiagonale Null sind. 

Bei einer strengeren Definition muss A zudem quadratisch sein. 

Ein Beispiel für eine untere Dreiecksmatrix ist: 

H I
J K5 J K
J K
L M

4 0 0
A 3 1 0

2 0 0
 

Eine Treppenmatrix ist eine Matrix, in der jede Zeile mindestens ei-

ne die Zeile anführende Null mehr enthält als die vorhergehende 

Zeile. Sind alle Komponenten einer Zeile Null, müssen alle Folge-

zeilen ebenfalls ausschließlich aus Nullen bestehen. Eine Trep-

penmatrix ist beispielsweise: 

N NH I
J KNJ K
J K5
J K
J K
J K
L M

8 3 0 5 2
0 0 8 4 1

A 0 0 0 2 1
0 0 0 0 0
0 0 0 0 0

 

Besitzt eine Matrix nur eine Zeile bzw. eine Spalte (gilt also m 15  

bzw. n 15 ), so handelt es sich um einen Zeilen- bzw. Spaltenvektor. 

Zeilen- und Spaltenvektoren werden in der Regel mit Kleinbuch-

staben bezeichnet und sind lediglich Spezialfälle von Matrizen, so 

beispielsweise: 

< =5 N 5A 2 5 6 a               
H I
J K5 N 5J K
J KNL M

3
B 1 b

5
 

Sind alle Komponenten eines Vektors Null, wird er als Nullvektor 0 

bezeichnet. 
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Besteht eine Matrix aus nur einer Zeile und einer Spalte (gilt also 

5 5m n 1), so handelt es sich dabei um einen Skalar, der wie eine 

reelle Zahl behandelt wird. 

Hieraus lassen sich vielfältige Relationen ableiten. Beispielsweise ist jede Treppenmat-

rix eine obere Dreiecksmatrix, nicht jedoch umgekehrt. Zudem sind quadratische 

Nullmatrizen gleichzeitig Diagonal-, Dreiecks- und Treppenmatrizen. 

1.2 Matrixoperationen 

Auf die Definition der Matrix folgen Definitionen von gängigen Operationen mit Mat-

rizen. Dabei sind einzelne Verknüpfungen nur durchführbar, falls die zu verknüpfen-

den Matrizen bestimmte Bedingungen erfüllen. 

Definition 1-3: Matrixoperationen 

Die Transposition einer Matrix GA m nA � (Operationszeichen "T") ist 

uneingeschränkt möglich. Hierbei werden alle Komponenten der 

Matrix A an der Hauptdiagonale gespiegelt. Durch die Transpositi-

on ändert sich die Ordnung der Matrix von < =Gm n  zu < =Gn m . Sei 

beispielsweise: 

H I
5 J K
L M

1 2 3
A

4 5 6
 

So folgt:  
H I
J K5 J K
J K
L M

T
1 4

A 2 5
3 6

 

Die Addition bzw. Subtraktion zweier Matrizen GA m nA,B �  (Operati-

onszeichen "O" bzw. "N") ist hingegen nur für Matrizen gleicher 

Ordnung definiert, die Matrixaddition bzw. -subtraktion erfolgt 

komponentenweise. Sei beispielsweise: 
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NH I
5 J K
L M

1 2
A

3 4
 und 

H I
5 J K
L M

1 3
B

2 1
 

So folgt: 
O N OH I H I

O 5 5J K J KO OL M L M

1 1 2 3 2 1
A B

3 2 4 1 5 5
 

Die Multiplikation eines Skalars Ak � mit einer Matrix GA m nA �  

(Operationszeichen " P") kann immer durchgeführt werden. Hier er-

geben sich die Komponenten der resultierenden Matrix durch die 

Multiplikation jeder einzelnen Komponente der Matrix A mit dem 

Skalar k. Sei beispielsweise: 

5k 2 und 
NH I

5 J KNL M

4 3 0
A

8 7 12
 

So folgt: 
< =

< =
H IP P N P NH I
J KP 5 5 J KJ K NP P P N L ML M

2 4 2 3 2 0 8 6 0
k A

16 14 242 8 2 7 2 12
 

Die Multiplikation zweier Matrizen GA m nA � , GA k lB �  (Operations-

zeichen " P") in der Form PA B ist nur definiert, falls die Anzahl der 

Spalten von A mit der Anzahl der Zeilen von B übereinstimmt, falls 

also 5n k gilt. Die sich ergebende Matrix C hat dann die Ordnung 

< =Gm l . Deren Komponenten ijc A� bestimmen sich als Verknüpfung 

der i-ten Zeile von A mit der j-ten Spalte von B wie folgt: 

< = < =
5

H IH I
J KJ K5 P 5 P 5 PJ KJ K
J KJ K J KL M L M

6
1j n

ij i1 in ig gj
g 1

kj

bSpalte
c Zeile i von A j a a a b

von B b
� �  

Sei beispielsweise: 

H I
J K5 J K
J K
L M

1 2 3 0
A 1 2 2 1

4 1 6 0
 und 

H I
J K
J K5 J KN
J KJ K
L M

4 7
3 0

B
3 2

0 1

 

So folgt: 

< =
< =
< =

H IP O P O P N O P P O P O P O P H IJ K J KP 5 P O P O P N O P P O P O P O P 5J K J K
J K J KJ KP O P O P N O P P O P O P O P L ML M

1 4 2 3 3 3 0 0 1 7 2 0 3 2 0 1 1 13
A B 1 4 2 3 2 3 1 0 1 7 2 0 2 2 1 1 4 12

1 404 4 1 3 6 3 0 0 4 7 1 0 6 2 0 1
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Als Fortführung der Matrixmultiplikation ist für eine quadratische 

Matrix die Potenzbildung in der Form bA  mit Ab � möglich. Hierbei 

wird A b-mal mit sich selbst multipliziert. Sei beispielsweise: 

NH I
5 J K
L M

4 2
A

6 3
 

So folgt: 
N NH I

5 P P 5 J KNL M
3 68 50

A A A A
150 93

 

Es existieren zahlreiche weitere Matrixoperationen, auf die an dieser Stelle jedoch 

nicht näher eingegangen wird. 

1.3 Rechenregeln und Matrixrelationen 

Bezüglich der zuvor genannten Matrixoperationen existieren Rechenregeln, von wel-

chen die wichtigsten im Folgenden zusammengefasst werden. Hierbei seien zunächst 
GA m nA,B �  und Ac,d � . 

��  Existenz eines neutralen Elements der Multiplikation mit einem Skalar: P 51 A A 

��  Assoziativgesetz der Multiplikation mit einem Skalar: < = < =P P 5 P Pc d A c d A  

��  Kommutativgesetz der Multiplikation mit einem Skalar: P 5 Pc A A c 

��  Distributivgesetz 1 der Multiplikation mit einem Skalar: P O P 5 P Oc A c B c (A B) 

��  Distributivgesetz 2 der Multiplikation mit einem Skalar: P O P 5 P OA c A d A (c d) 

Im Weiteren seien m nA,B,C GA� . 

��  Existenz eines neutralen Elements der Matrixaddition: A 0 0 A AO 5 O 5  

��  Existenz eines neutralen Elements der Matrixmultiplikation: AAEEA 5P5P  

��  Assoziativgesetz der Matrixaddition: C)BA()CB(A OO5OO  

��  Kommutativgesetz der Matrixaddition: A B B AO 5 O  
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��  Transpositionsgesetz 1: < =TTA A5  

��  Transpositionsgesetz 2: < =O 5 O TT TA B A B  

Im Weiteren sei m nA GA� , n kB GA� , GA k sC �  und GA s tD � . 

��  Assoziativgesetz der Matrixmultiplikation: C)BA()CB(A PP5PP  

��  Transpositionsgesetz 3: P P P 5 P P PT T T T TD C B A (A B C D)  

Nachfolgend sei m nA GA�  und seien n kB,C GA� . 

��  Distributivgesetz der Matrixmultiplikation: )CB(ACABA OP5POP  

Nun sei GA n nA � , v,wA�. 

��  Potenzgesetz 1: v w v wA A A OP 5  

��  Potenzgesetz 2: < =wv v wA A P5  

Es existiert hingegen kein Kommutativgesetz der Matrixmultiplikation. Es gilt im 

Allgemeinen also ABBA PQP . 

Relationen zwischen Matrizen sind nur für Matrizen gleicher Ordnung definiert. Seien 
GA m nA,B � , so gilt BA R , falls für alle Komponenten ij ija bR  gilt. Analoges gilt für 

BA S , BA 5 , BA T  und BA U . Insbesondere sei darauf hingewiesen, dass A 0R  somit 

nur dann gilt, falls alle ija 0R  sind. 

Beispiel 1-2: Matrixrelationen 

Gegeben seien 

H I
5 J KNL M

3 4
A

2 7
, 

H I
5 J KNL M

5 5
B

2 6
, 

H I
5 J KNL M

2 1
C

0 8
, 

H I
5 J KNL M

1 1
D

0 4
 

Es folgt: 

TA B , RA C , RB C  

Zwischen D und A, B, C lässt sich keine Relation aufstellen. 
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1.4 Lineare Gleichungssysteme in 
Matrixdarstellung 

Im Weiteren werden lineare Gleichungssysteme in allgemeiner Form mit m Gleichun-

gen und n Unbekannten betrachtet, wobei ij j ia ,x ,b A� . 

O O O O 5

O O O O 5

O O O O 5

� �
� � � � � � �

� �
� � � � � � �

� �

11 1 1j j 1n n 1

i1 1 ij j in n i

m1 1 mj j mn n m

a x a x a x b

a x a x a x b

a x a x a x b

 

Ein lineares Gleichungssystem (LGS) kann als Vektorgleichung dargestellt werden, 

wobei auf beiden Seiten des Gleichheitszeichens ein Spaltenvektor mit jeweils m 

Komponenten steht. Dabei ergibt sich der linke Spaltenvektor als Matrixprodukt einer 

Koeffizientenmatrix A, welche geordnet alle Koeffizienten ija  des LGS beinhaltet, mit 

einem Spaltenvektor x, der geordnet alle Unbekannten jx  enthält. Vereinfacht lässt sich 

das LGS somit als Matrixgleichung bxA 5P  wie folgt darstellen: 

K
K
K
K
K
K

M

I

J
J
J
J
J
J

L

H

5

K
K
K
K
K
K

M

I

J
J
J
J
J
J

L

H

P

KK
K
K
K
K
K

M

I

JJ
J
J
J
J
J

L

H

m

i

1

n

j

1

mnmj1m

inij1i

n1j111

b

b

b

x

x

x

aaa

aaa

aaa

�

�

�

�

��
����

��
����

��

 

Ergänzt man die Koeffizientenmatrix A um den Ergebnisspaltenvektor b, so entsteht 

eine in zwei Matrizen unterteilte, also partitionierte, Matrix < =b|A , die erweiterte 

Koeffizientenmatrix genannt wird. 

Beispiel 1-3: Darstellung eines LGS in Matrixform 

Das LGS 

1 2 3

1 2 3

1 2 3

3x 3x 5x 5
2x x 6x 2
3x 2x 7x 4

O O 5
N O 5
O O 5
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lässt sich in Matrixdarstellung schreiben als: 

1

2

3

3 3 5 x 5
2 1 6 x 2
3 2 7 x 4

H I H I H I
J K J K J KN P 5J K J K J K
J K J K J K
L M L M L M

 

Bzw. als partitionierte Matrix: 

< =
3 3 5 5

A|b 2 1 6 2
3 2 7 4

H I
J K5 NJ K
J K
L M

 

Definition 1-4: Linear homogenes Gleichungssystem (LhGS) 

Ein Gleichungssystem der Form P 5A x b, bei dem der Ergebnis-

spaltenvektor b ein Nullvektor ist, also b 05 , heißt linear homoge-

nes Gleichungssystem (LhGS). Ist b kein Nullvektor, so heißt es li-

near inhomogenes Gleichungssystem. 

1.5 Gauß/Jordan-Algorithmus 

Im Rahmen der Lösungsfindung sind alle x zu bestimmen, welche die Matrixglei-

chung und somit alle Gleichungen des LGS erfüllen. Dabei ist zunächst zu klären, ob 

das LGS lösbar ist, falls ja, wie viele Lösungen es gibt und wie man systematisch alle 

Lösungen bestimmt. Im Folgenden beschränken wir uns zunächst auf LGS, welche 

genau eine Lösung besitzen. (Später wird sich zeigen, dass ein LGS entweder unlösbar, 

eindeutig lösbar oder mit unendlich vielen Lösungen lösbar ist.) Ein Verfahren zur 

systematischen Lösungsfindung stellt der Gauß-Algorithmus bzw. dessen Fortfüh-

rung, der Gauß/Jordan-Algorithmus, dar. Hierbei wird die Lösung durch Anwendung 

elementarer Zeilenumformungen auf die erweiterte Koeffizientenmatrix ermittelt. 
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Definition 1-5: Elementare Zeilenumformung (EZU) 

Unter dem Begriff elementare Zeilenumformung werden die folgen-

den Umformungen subsumiert, wobei die verwendeten Zeilen stets 

mit römischen Zahlen bezeichnet werden: 

� Die Multiplikation einer kompletten Zeile mit einem Skalar 

? @Ac \ 0� , so beispielsweise: 

H I H I
PJ K J K

L M L M

1 2 3 3 6 9
3 I

4 5 6 4 5 6  

� Das Vertauschen zweier kompletter Zeilen, so beispielsweise: 

H I H I
J K J KN V NJ K J K
J K J KN NL M L M

1 0 5 1 0 5
4 5 1 II III 4 1 0
4 1 0 4 5 1

 

� Die Addition bzw. Subtraktion zweier kompletter Zeilen, wobei 

die zu verändernde Zeile stets zuerst genannt wird, so bei-

spielsweise: 

N NH I H I
J K J KOJ K J K
J K J KN NL M L M

3 9 8 0 13 6
7 0 2 I III 7 0 2
3 4 2 3 4 2

 

Zeilenmultiplikation und -addition bzw. -subtraktion können zu ei-

ner einzigen EZU zusammengefasst werden. Ebenso können in ei-

nem Schritt auch mehrere EZUs durchgeführt werden. Wird dabei 

auf eine veränderte Zeile Bezug genommen, so ist diese mit dem 

Index "n" für "neu" zu bezeichnen: 

N NH I H I
P N PJ K J K

J K J K
J K J K

OJ K J KJ K J KNL M L M
n

1 2 0 1 2 0
2 II 3 I

2 3 2 7 0 4
III : 2

2 6 2 1 3 1
IV III

4 1 6 5 2 7
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Eine Anwendung von EZUs auf die erweiterte Koeffizientenmatrix ändert die Lösung 

des zugrunde liegenden LGS nicht. (Analog zu EZUs sind auch elementare Spalten-

umformungen möglich. Es ist jedoch zu beachten, dass diese die Lösung des zugrunde 

liegenden LGS verändern.) Innerhalb des Gauß-Algorithmus werden EZUs solange 

auf die erweiterte Koeffizientenmatrix angewendet, bis die Koeffizientenmatrix in eine 

Treppenmatrix umgeformt ist. Im Rahmen des Gauß/Jordan-Algorithmus wird die 

Koeffizientenmatrix hingegen vollständig pivotisiert, eine Treppenmatrix muss hier 

nicht gebildet werden. 

Definition 1-6: Pivotisierung 

Bei der Pivotisierung wird eine Matrix durch die Anwendung von 

EZUs derart umgeformt, dass möglichst jede Spalte nur noch ein 

Element enthält, welches von Null verschieden ist. Solche Spalten 

heißen pivotisiert. Der Algorithmus zur Pivotisierung gestaltet sich 

wie folgt: 

� Zunächst ist eine Komponente ija , das Pivotelement, in einer 

noch nicht pivotisierten Spalte zu wählen. 

 Offensichtlich kann als Pivotelement keine Null gewählt werden. 

Daneben ist es nicht zweckmäßig, eine Komponente zu wählen, 

in deren Zeile bereits ein Pivotelement enthalten ist. 

 Soll beispielsweise in der nachfolgenden Matrix die vierte Spal-

te pivotisiert werden, ohne die bereits pivotisierte zweite Spalte 

zu zerstören, ist folglich 14a  als Pivotelement zu wählen. 

 Das Pivotelement wird im Folgenden stets mit " " gekenn-

zeichnet. 

H IN
J K
J K
J KJ KNL M

6 0 4 2
2 1 2 4
7 0 3 0
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� Bei der strengen Pivotisierung einer Spalte ist das Pivotelement 

zu Eins umzuformen, bei der schwachen Pivotisierung entfällt 

dieser Schritt. 

H I H IN N
J K J K
J K J K
J K J KJ K J KN NL M L M

6 0 4 2 3 0 2 1
2 1 2 4 I : 2 2 1 2 4
7 0 3 0 7 0 3 0

 

� Anschließend sind alle anderen Elemente in der zu pivotisieren-

den Spalte zu Null umzuformen. 

H IN NH I
J K J KN P NJ K J K
J K J KJ KN NL ML M

3 0 2 1 3 0 2 1
2 1 2 4 II 4 I 14 1 6 0
7 0 3 0 7 0 3 0

 

Um zu einer vollständig pivotisierten Matrix zu gelangen, ist der 

Algorithmus so oft wie möglich zu wiederholen. Im genannten Bei-

spiel ist als nächstes somit nach dem Element 31a  oder 33a  zu pi-

votisieren. Bei Verwendung von 33a  ergibt sich: 

< =

H IH IN N P J KJ K J KN NJ K J KJ K N P J KN NL M L Mn

5 0 0 13 0 2 1 II 2 III 3
14 1 6 0 III : 3 0 1 0 0

I 2 III 77 0 3 0 0 1 03

 

Die resultierende Matrix ist so weit wie möglich und somit vollstän-

dig pivotisiert. 

Bei einer Verwendung des Gauß-Algorithmus werden die Lösungen durch eine Rück-

überführung der erweiterten Koeffizientenmatrix in Gleichungsform bestimmt, wobei 

die verbleibenden Gleichungen sukzessiv aufgelöst und rückwärts eingesetzt werden. 

Beispiel 1-4: Lösung eines LGS durch den Gauß- bzw. 

Gauß/Jordan-Algorithmus 

Ausgehend von der erweiterten Koeffizientenmatrix < =A|b  aus Beispiel 1-3 

erhalten wir bei Verwendung des Gauß-Algorithmus: 
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3 3 5 53 3 5 5 3 3 5 5
3 II 2 I

2 1 6 2 0 9 8 4 9 III II 0 9 8 4
III I

3 2 7 4 0 1 2 1 0 0 10 5

H I H I H I
P N PJ K J K J KN N N P N N NJ K J K J KNJ K J K J KN N NL ML M L M

 

Eine Rücküberführung in ein Gleichungssystem mit anschließendem suk-

zessiven Einsetzen führt zu: 

III: 3 3
110x 5 x
2

5 N W 5 N  

II: 2 3 2 3
8 4 8 1 49x 8x 4 x x 0
9 9 9 2 9

H IN O 5 N W 5 O 5 P N O 5J K
L M

 

I: 1 2 3 1 2 3
5 5 5 1 5 15 53x 3x 5x 5 x x x 0
3 3 3 2 3 6 2

H IO O 5 W 5 N N O 5 N N P N O 5 5J K
L M

 

Alternativ bestimmt sich die Lösung durch den Gauß/Jordan-Algorithmus 

wie folgt: 

3 3 5 5

2 1 6 2
3 2 7 4

H I
J K

NJ K
J K
L M

 
I 3 II

III 2 II
O P
O P

 
9 0 23 11
2 1 6 2

7 0 19 8

H I
J K

NJ K
J KJ K
L M

 
7 I 9 III
7 II 2 III
P N P
P N P

 
0 0 10 5
0 7 4 2
7 0 19 8

H IN
J K

N NJ K
J K
L M

 

5 II 2 I
10 III 19 I
P O P
P O P

  
0 0 10 5
0 35 0 0

70 0 0 175

NH I
J KNJ K
J K
L M

  
< =
< =

I : 10
II : 35
III : 70

N
N   

10 0 1 2
0 1 0 0

51 0 0 2

H INJ K
J K
J K
J K
L M

 

Als Lösungsvektor ergibt sich: 

5
2

x 0
1

2

H I
J K
J K5
J K
J KNL M
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1.6 Aufgaben 

Aufgabe 1.1: 

0 0
A 0 0

0 0

H I
J K5 J K
J K
L M

,  
1 0

B
0 1
H I

5 J K
L M

,  
5 0 8

C
0 1 2
H I

5 J KNL M
,  

0 0 6
D 0 7 0

1 3 9

H I
J K5 J K
J KNL M

,  
0 0 0

F 2 8 0
0 5 0

H I
J K5 J K
J KNL M

 

Geben Sie die Ordnung der Matrizen an und ordnen Sie ihnen die Begriffe quadrati-

sche Matrix, Null-, Einheits-, Diagonal-, Treppenmatrix sowie obere und untere Drei-

ecksmatrix zu. 

Aufgabe 1.2: 

4 8 2 3 2 4
A 0 3 5 2 3 4

8 7 2 2 4 0

N NH I H I
J K J K5 OJ K J K
J K J KNL M L M

,  
2

5
B 8

2
0

H I
NH I J K5 OJ K J K
L M J K

L M

,  < = < =c 4 6 4 55 N N N ,  < =
2

d 3 2
9
H I
5 OJ K
L M

 

Berechnen Sie, falls möglich, die Matrizen bzw. Vektoren A, B, c und d. 

Aufgabe 1.3: 

2 1
3 1 2

A 3 1
1 2 1

0 1

H I
H IJ K5 P J KJ K
L MJ K

L M

,  
7 4 4 2

B 2 2 7 1
5 2 1 4

H I H I
J K J K5 PJ K J K
J K J KN N N NL M L M

,  
6 5 2 0 1 2

C
3 2 3 4 2 1

NH I H I
5 PJ K J K
L M L M

, 

< =
0

D 4 4 2 3
2

H I
J K5 P NJ K
J K
L M

,  < =
0

F 4 2 3 4
2

H I
J K5 N P J K
J K
L M

 

Berechnen Sie, falls möglich, die Matrizen bzw. Vektoren A, B, C, D und F. 

 



 Aufgaben
 1.6 

 

 15 

Aufgabe 1.4: 

1 2 3
A

3 2 1
H I

5 J K
L M

,  
1 0

B
0 4
H I

5 J K
L M

,  
1 2 0

C 0 2 1
1 0 1

H I
J K5 J K
J K
L M

,  
2 3

D
7 0
NH I

5 J K
L M

, 

< =a 1 0 15 N ,  
1

b 1
1

NH I
J K5 J K
J KNL M

,  c 55  

Berechnen Sie, falls möglich: B DP , D BP , A BP , TA CP , TB A CP P , 2D , c AP , a bP , B c CP P , 

b aP , a BP , Ta CP , A D cO N , D BN , Ta bO  

Vergleichen Sie dabei die Ergebnisse der ersten beiden Multiplikationen. 

Aufgabe 1.5: 

1 2
A 1 3

4 5

H I
J K5 J K
J K
L M

,  < =B 1 1 15 ,  
1 2 3

C
1 4 5
H I
5 J K
L M

 

Multiplizieren Sie, falls möglich: C BP , TB BP , B AP , T TB AP , A BP , B A CP P , T TA CP  

Aufgabe 1.6: 

1 2 1
A 1 3 2

3 2 4

N NH I
J K5 N NJ K
J KN NL M

,  
1 3 3

B 5 0 1
3 2 2

NH I
J K5 NJ K
J KN NL M

,  
5 2 2

C 3 3 3
2 4 2

NH I
J K5 J K
J KNL M

,  

1
12

1d 3
1

2

H I
J K
J K5
J K
J K
L M

 

Berechnen Sie, falls möglich: 

a) < = < =T TT T T T T TX C B A d C A d B C A E B E C5 P P N P P O P P N P P P P  

b) < =T 3 2X A B E C A 0 C A5 P P O P P N P  
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Aufgabe 1.7: 

Gegeben sei die folgende Matrixgleichung, die nur quadratische Matrizen gleicher 

Ordnung enthält: 

< =2X A B C5 O O  

a) Lösen Sie die Klammer allgemein auf. 

b) Es gilt nun A B5 . Vereinfachen Sie zunächst so weit wie möglich und berechnen 

Sie anschließend X mit: 

1 4
A 1 32

H I
J K5 J KNL M

 und 
2 1

C
1 3

H I
5 J KNL M

 

c) Es gilt nun neben A B5  auch < =1C A B45 P O . Vereinfachen Sie zunächst so weit 

wie möglich und berechnen Sie anschließend X mit: 

3 1 4
1A 2 02
3 1 2

NH I
J K
5 NJ K
J KJ KNL M

 

d) Gilt die Gleichung < =2 2 2F G F 2 F G GO 5 O P P O  für beliebige quadratische Matrizen 

gleicher Ordnung? 

Aufgabe 1.8: 

2 x 1
A

1 1
OH I

5 J K
L M

,  
2x 5x 1

B
3 2x 3

NH I
5 J KNL M

 

Für welche Werte von xA�  gilt A B B AP 5 P ? 
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Aufgabe 1.9: 

< =

4 4 1 1 5 2
2

2 1 4 0 8 3 3 6 4 1
x 6 2 3,7 3

1 3 3 2 1 2 5 3 8 2
1

2 8 3 6 4 2

N NX YH I H I
H IZ [J K J KNX YH I J KZ [J K J K5 N P P P N P NZ [J K J KZ [J K J KN NL M\ ] J KNZ [J K J K L MJ K J KN N NZ [L M L M\ ]

 

Berechnen Sie x. 

Aufgabe 1.10: 

< =

2 2 3
1 2 6 0 3

4 3 0 3 6 0 6 3
X 1 0 0 5 4 9 8 4 33 8

2 1 2 1 3 3 3 2
0 2 5 2 4

0 2 1

N NH I
NH IJ KN NH I H IJ KJ K5 P P N O P N NJ K J KJ KJ KN N NL M L MJ KNJ K L MJ K

L M

 

Berechnen Sie X. 

Aufgabe 1.11: 

0 0 1 0
A 1 0 0 0

0 0 0 1

H I
J K5 J K
J K
L M

,  

1 2 3
4 5 6

B
7 8 9
10 11 12

H I
J K
J K5
J K
J KJ K
L M

,  
0 0 1

C 1 0 0
0 1 0

H I
J K5 J K
J K
L M

 

Berechnen Sie A BP  sowie B CP . 

Aufgabe 1.12: 

 
H I
J K5 J K
J K
L M

Jahr
a Monat

Tag
 

"Jahr" sei eine vierstellige, natürliche Zahl, "Monat" und "Tag" seien zweistellige, na-

türliche Zahlen. Geben Sie eine einfache Matrixoperation an, um den Datumsvektor 
3aA�  in eine achtstellige, natürliche Zahl b der Gestalt "JahrMonatTag" zu wandeln 
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Aufgabe 1.13: 

i 1 2 3 4 

ix  -1 3 0 -2 

iy  5 1 3 -2 

Verwenden Sie die Vektoren < =5 1 2 3 4x x x x x , < =5 1 2 3 4y y y y y  und 

< =5e 1 1 1 1 , um durch geeignete Matrixverknüpfungen die Skalare a,b,cA� , den 

Spaltenvektor 4 1d GA�  und die Matrix 4 4F GA�  zu bestimmen. 

4
i

i 1
a x

5
5 6 ,  

4 2
i

i 1
b x

5
5 6 ,  < =4 2

i i
i 1

c x x
5

5 O6 ,  < =T1 1 2 2 3 3 4 4d x 3y x 3y x 3y x 3y5 N N N N ,  

1 1 2 1 3 1 4 1

1 2 2 2 3 2 4 2

1 3 2 3 3 3 4 3

1 4 2 4 3 4 4 4

x y x y x y x y
x y x y x y x y

F
x y x y x y x y
x y x y x y x y

H I
J K
J K5 J K
J KJ K
L M

 

Aufgabe 1.14: 

Welche der folgenden Umformungen sind EZUs? Sofern es sich um EZUs handelt, 

wurden diese wie angegeben ausgeführt? 

a) 
1 2 0 1 2 0
2 1 1 2 II III 1 2 1
3 4 1 3 4 1

H I H I
J K J KP N NJ K J K
J K J K
L M L M

 b) 

111 2 0 6 2212 1 1 I 2 III 2 1 1
II

3 4 1 3 4 1

H IN N NH I
J KJ K P N P J KJ K
J KJ K J KL M L M

 

c) 2
1 2 0 1 2 0
2 1 1 III I 2 1 1
3 4 1 10 18 1

H I H I
J K J KOJ K J K
J K J K
L M L M

 d) 

1 2 01 2 0
1 2 1 12 1 1 II3 3 3 3

3 4 1 3 4 1

H IH I
J KJ K N P N N NJ KJ K
J KJ K J KL M L M

 

e) 
1 2 0 1 2 0
2 1 1 I 4 II 9 6 4
3 4 1 3 4 1

H I H I
J K J KO PJ K J K
J K J K
L M L M

 f) 
1 2 0 2 4 0
2 1 1 2 I 0 II 2 1 1
3 4 1 3 4 1

H I H I
J K J KP O PJ K J K
J K J K
L M L M

 

g) 
H I H I
J K J KP N N NJ K J K
J K J K
L M L M

1 2 0 1 2 0
2 1 1 0 II I 1 2 0
3 4 1 3 4 1

 h) 
1 2 0 3 4 1
2 1 1 I III 2 1 1
3 4 1 1 2 0

H I H I
J K J KVJ K J K
J K J K
L M L M
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Aufgabe 1.15: 

2a 5
2 3 1 3 4 2

x 0 6
2 7 4 6 2 1

3 4

X YH I
H I H I H IZ [J K5 P O PJ K J K J KZ [J KN N NL M L M L MJ KZ [L M\ ]  

5
2 3 3 11 6 2 3 2 3 5b

y
4 7 1 5 4 0 3 0 4 24

4

NX YH I
Z [J KN X YH IH I H I H I H IZ [J K5 P P O O PZ [J KJ K J K J K J KZ [J KNL M L M L M L ML M\ ]Z [J KJ KZ [L M\ ]  

Bestimmen Sie a,bA�, so dass x y5  gilt. 

Aufgabe 1.16: 

1 2 3

1 3

1 2

x x x 4
x x 3
x x 1

N O 5
O 5

N 5
 

Lösen Sie das Gleichungssystem nach Überführung in Matrixform. 

Aufgabe 1.17: 

1 2 3

1 2 3

1 2 3

x x 2x 20
2x x 2x 40
4x x x 50

O O 5
N N 5

N O O 5 N
 

Überführen Sie das LGS in Matrixform, und bestimmen Sie die Lösung. 

Aufgabe 1.18: 

1 2 3

1 2 3

1 2 3

8x 4x 2x 2
2x 2x x 17

10x 6x 3x 5

N O 5
N O O 5

N O 5 N
 

Bestimmen Sie die Lösung des LGS, nachdem Sie es in Matrixform überführt haben. 
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Aufgabe 1.19: 

1 2 3

1 2 3

1 2 3

6x 2x 5x 1
2x 22x 3x 3
4x 40x 2x 16

N O O 5 N
O O 5 N
O O 5 N

 

Überführen Sie das LGS in Matrixform, und bestimmen Sie die Lösung. 

Aufgabe 1.20: 

1 2

2 3

1 2 3

x 2x 20
3x 6x 40

x 2x 3x 15

O 5
O 5

N N 5 N
 

Stellen Sie das LGS in Matrixform dar, und bestimmen Sie die Lösung. 

Aufgabe 1.21: 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

9x 2x 6x 8x 6
5x 3x 3x 4x 6

7x 4x 11x 3x 6
2x x 3x 4x 6

O O N 5
N O O O 5

O O N 5
O O O 5

 

Lösen Sie das LGS durch vollständiges Pivotisieren (Gauß/Jordan-Algorithmus). 

Aufgabe 1.22: 

1 2 3

1 2 3 4

1 2 3 4

1 2 3 4

2x 3x 2x 1
x 2x 2x x 1

4x 2x 4x 2x 2
4x x 3x 2x 1

O N 5 N
N O N O 5

N O N 5
N O N O 5

 

Bestimmen Sie die Lösung des LGS, nachdem Sie es in Matrixform überführt haben. 



 Aufgaben
 1.6 

 

 21 

Aufgabe 1.23: 

1 2 3 4

1 3 4

1 2 3 4

1 3 4

x x x 6x 7
2x 6x 6x 22
x 3x 9x 6x 11
x 4x x 9

O O O 5
N N O 5 N

O N N 5
O O 5

 

Bestimmen Sie die Lösung des LGS, nachdem Sie es in Matrixform überführt haben. 

Aufgabe 1.24: 

1 2 3 4

1 2 4

1 2 3 4

1 2 3 4

29 70 41x x x 3x 482 3 7
5 3 11x 4x x2 2 4
27x 40x 9x 6x 87

9915x 24x 6x 3x 2

N O N N 5

O O 5 N
N O O 5 N

N O O 5 N

 

Überführen Sie das LGS in Matrixform, und bestimmen Sie die Lösung. 

Aufgabe 1.25: 

Frau Lehmann hat drei Söhne mit erheblichen Gewichtsproblemen. Karl, Heinz und 

Frieder wiegen zusammen ganze 335 kg. Das ist eindeutig zuviel! Die besorgte Mutter 

hat auch schon die übermäßige Ernährung als Ursache des Unglücks ausgemacht. Karl 

isst pro Monat die Hälfte seines Ausgangsgewichts, Heinz ein Drittel und Frieder 

immerhin noch ein Sechstel. Die arme Frau muss somit pro Tag 6 kg kochen, von de-

nen sie und ihr Mann jeweils nur 1 kg essen. 

Sogleich schreitet sie zur Tat und verordnet strenge Diät, die nach einem halben Jahr 

sehr unterschiedlichen Erfolg zeigt. Karl hat 25% seines ursprünglichen Gewichts 

abgenommen, Heinz immerhin noch 20%, nur Frieder hat deutlich weniger Disziplin 

an den Tag gelegt und bringt dadurch sogar 10 kg mehr als vorher auf die Waage. 

Trotzdem hat das Gesamtgewicht ihrer drei Söhne um stattliche 46 kg abgenommen. 

Stellen Sie ein LGS auf und berechnen Sie das neue Gewicht der drei Söhne. Gehen Sie 

davon aus, dass ein Monat 30 Tage hat. 
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Aufgabe 1.26: 

Sie sind Farbengroßhändler und beliefern die Malermeister Müller, Schmidt, Schnei-

der und Schulz quartalsweise. Die Menge ausgelieferter Farbe in Hektolitern für 2002 

und 2003 entnehmen Sie den nachfolgenden Tabellen. 

Liefermengen 2002: 

 1. Quartal 2. Quartal 3. Quartal 4. Quartal
Müller 75 200 150 50 

Schmidt 80 300 250 50 
Schneider 300 300 100 80 

Schulz 100 125 100 150 

Liefermengen 2003: 

 1. Quartal 2. Quartal 3. Quartal 4. Quartal
Müller 100 300 100 100 

Schmidt 50 200 400 100 
Schneider 500 200 60 100 

Schulz 100 75 100 100 

a) Der Farbenhersteller ist mit Ihren Absatzzahlen unzufrieden. Er verlangt von Ih-

nen, dass Sie die Gesamtliefermenge aus den Jahren 2002 und 2003 an den Maler-

meister Müller in den nächsten zwei Jahren verdoppeln und die an den Malermeis-

ter Schmidt verdreifachen, während Sie den Absatz an den Maler Schneider auf ein 

Zehntel der Absatzmenge und an den Maler Schulz auf die Hälfte reduzieren sol-

len. Es seien GA 4 4
2003 2004M ,M �  Matrizen, welche die obigen Liefermengen enthal-

ten und < =5 1 1m 2 3 10 2  sei ein Vektor, der die angestrebten Absatzverände-

rungsraten enthält. Setzen Sie die Matrixrechnung ein, um die Gesamtmenge an 

Farbe zu bestimmen, die Sie in den nächsten zwei Jahren an alle Maler liefern sol-

len. 

b) Stattdessen will der Farbenhersteller, dass Sie in 2004 in jedem Quartal jeweils 

genau 1000 Hektoliter an alle Maler zusammen ausliefern. Ihr Fahrer kennt die Ab-

satzzahlen von 2003 (siehe obige Tabelle) und will bei seinen vierteljährlichen Fahr-



 Aufgaben
 1.6 

 

 23 

ten lediglich einen einzigen Multiplikator pro Maler für dessen Liefermengen von 

Ihnen mitgeteilt bekommen. Mehr kann er sich nicht merken. So könnte eine Ihrer 

Anweisungen an den Fahrer beispielsweise lauten: "Bringe zu Malermeister Müller 

jeweils das 1,4-fache der Liefermenge des Vorjahrs." Ist die Forderung des Fahrers 

realisierbar? Falls ja, stellen Sie ein LGS auf und benutzen Sie die Matrixrechnung 

zur Bestimmung der vier Multiplikatoren. 
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2 Innerbetriebliche simultane 
Leistungsverrechnung 

2.1 Einordnung und methodische Grundlagen 

Die Kosten- und Leistungsrechnung untergliedert sich in die Kostenarten-, Kostenstel-

len- und Kostenträgerrechnung. Aufgabe der Kostenstellenrechnung ist es, die Kosten, 

welche nicht direkt einem Produkt (Kostenträger), sondern nur dem Ort der Kosten-

entstehung (Kostenstelle) zugeordnet werden können, verursachungsgerecht auf die 

Produkte zu verteilen. 

Hierzu werden zwei Kostenstellenarten unterschieden. In den Hauptkostenstellen 

(Hakos) findet ausschließlich die Produktion der für den Absatzmarkt bestimmten 

Güter statt. In den Hilfskostenstellen (Hikos) werden innerbetriebliche Leistungen 

erstellt. Hikos stellen nur eine Leistungsart her und geben diese nicht an den Absatz-

markt ab. Die an den Hikos anfallenden Kosten müssen somit auf die Hakos verteilt 

werden. 

Die Gesamtkosten einer Hilfs- bzw. Hauptkostenstelle untergliedern sich in Primär- 

und Sekundärkosten. Primärkosten sind Kosten für von außen bezogene Produktions-

faktoren. Dagegen entstehen Sekundärkosten durch den Bezug innerbetrieblich erstell-

ter Produktionsfaktoren. Somit fallen lediglich bei der Begleichung von Primärkosten 

Zahlungen an. 

Im Rahmen der simultanen Leistungsverrechnung werden die direkt nur den Hilfs-

kostenstellen zuordenbaren Kosten auf die Hauptkostenstellen verteilt. Hierbei wer-

den Verrechnungspreise für die Leistungen der Hikos derart ermittelt, dass eine verur-

sachungsgerechte Zuordnung der Kosten auf die Hakos erfolgt. Hierfür muss für jede 

Hiko die Summe ihrer Primär- und Sekundärkosten der Summe ihrer insgesamt abge-

gebenen, mit den Verrechnungspreisen bewerteten Leistungen entsprechen. Bei einem 

Unternehmen mit n Hikos ergeben sich somit n Gleichungen, über welche die n unbe-

C. Mayer, Lineare Algebra für Wirtschaftswissenschaftler,
DOI 10.1007/978-3-8349-6727-5_2, © Gabler Verlag | Springer Fachmedien Wiesbaden GmbH 2011



 2 Innerbetriebliche simultane Leistungsverrechnung 

 26 

kannten Verrechnungspreise bestimmt werden. Das resultierende LGS kann nach 

Überführung in Matrixform mithilfe der im vorangegangen Kapitel vorgestellten Al-

gorithmen gelöst werden. Nimmt man an, dass ausschließlich nichtnegative Leis-

tungsverflechtungen bestehen und jede Hiko ihre Leistung weiterverrechnen kann, 

sind die resultierenden Gleichungssysteme immer eindeutig lösbar. 

Da es das Ziel der simultanen innerbetrieblichen Leistungsverrechnung ist, alle Kosten 

der Hikos auf die Hakos weiterzuverrechnen, muss die Summe der Primärkosten aller 

Hikos der Summe der als Sekundärkosten auf die Hakos weiterverrechneten Kosten 

entsprechen. Eine Probe der Berechnung ist somit einfach möglich. 

Beispiel 2-1: Bestimmung der Verrechnungspreise und der 

Sekundärkosten 

Ein Unternehmen produziert an den Hauptkostenstellen Schrauben und 

Nägel für den Absatzmarkt. Hierfür muss es eine Reparaturwerkstatt und 

ein Stromkraftwerk betreiben. An der Hilfskostenstelle Reparaturwerkstatt 

entstehen Primärkosten in Höhe von 20.500 € für Löhne und Materialien. 

Die Hilfskostenstelle Stromerzeugung führt zu Primärkosten von 9.500 €. 

Für die Herstellung von 1 Million Schrauben bzw. 3 Millionen Nägeln fal-

len an den jeweiligen Kostenstellen Primärkosten von 38.000 € bzw. 

12.000 € an. Gegeben sind folgende Leistungsverflechtungen: 

 

 

 

 

 

 

 

 

Reparaturwerkstatt Stromerzeugung 

100 h

Nägelherstellung Schraubenherstellung 

20.000 kWh

20.000 kWh 400 h 

400 h 80.000 kWh 
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Für die Bestimmung der Verrechnungspreise für eine Arbeitsstunde der 

Reparaturwerkstatt Rx  bzw. eine Kilowattstunde der Stromerzeugung Sx  

werden die nachfolgenden Gleichungen aufgestellt: 

S R R R20.500 20.000x 100x 400x 400xO 5 O O  (Hiko Reparaturwerkstatt) 

R S S S9.500 100x 20.000x 20.000x 80.000xO 5 O O  (Hiko Stromerzeugung) 

Als Lösung ergibt sich Rx 255  € pro Arbeitsstunde und Sx 0,15  € pro kWh. 

Die Sekundärkosten der Hauptkostenstellen sind somit: 

Schrauben R SSK 400x 20.000x 400 25 20.000 0,1 12.0005 O 5 P O P 5  

Nägel R SSK 400x 80.000x 400 25 80.000 0,1 18.0005 O 5 P O P 5  

Führt man die Probe durch, zeigt sich, dass die Summe der Primärkosten 

der Hikos 000.30500.9500.20 5O  wie erwartet der Summe der Sekundär-

kosten der Hakos 000.30000.18000.12 5O  entspricht. 

Um die Herstellkosten der einzelnen für den Absatzmarkt bestimmten Güter zu ermit-

teln, sind die Gesamtkosten der jeweiligen Hauptkostenstelle durch die Produktions-

menge zu dividieren. Eine derartige Ermittlung der Herstellkosten simplifiziert die 

Berechnungen der Kosten- und Leistungsrechnung, reicht aber für eine Veranschauli-

chung der Methodik aus. 

Beispiel 2-2: Bestimmung der Herstellkosten 

Die Herstellkosten von je einer Schraube bzw. je einem Nagel ergeben sich 

durch die Division der Gesamtkosten der jeweiligen Hauptkostenstellen 

durch die Produktionsmenge. 

< =Schraube Schrauben SchraubenHK PK SK / Schraubenmenge
(38.000 12.000) /1.000.000 0,05 € pro Stück
5 O

5 O 5

< =Nagel Nägel NägelHK PK SK / Nagelmenge

(12.000 18.000) / 3.000.000 0,01 € pro Stück

5 O

5 O 5
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2.2 Aufgaben 

Aufgabe 2.1: 

Sie betrachten ein Unternehmen mit n Hikos und m Hakos. Welche Ordnung besitzt 

die Koeffizientenmatrix der Matrixgleichung A x bP 5 , welche Sie zur Bestimmung der 

Verrechnungspreise der innerbetrieblichen Leistungen der Hikos aufstellen? 

Aufgabe 2.2: 

Nachfolgend ist die Leistungsverflechtung eines Unternehmens mit den Hilfskosten-

stellen A und B sowie den Hauptkostenstellen X und Y abgebildet. 

Die Primärkosten bei Hilfskostenstelle A betragen 10.000 €, bei Hilfskostenstelle B 

20.000 €. Stellen Sie ein Lineares Gleichungssystem auf, mit dem die internen Verrech-

nungspreise ermittelt werden können. 

Aufgabe 2.3: 

Nehmen Sie an, die Primärkosten von Hiko A betragen 300 € und die von Hiko B 

200 €. C, D und E stellen Hakos dar. Die innerbetrieblichen Leistungsverflechtungen 

sind durch die nachfolgende Tabelle gegeben: 

A 

80 10

60

90

3040

B 

X Y 
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an 
von 

A B C D E 

A - 4 5 1 2 

B 3 - 1 4 2 

Bestimmen Sie die innerbetrieblichen Verrechnungspreise. 

Aufgabe 2.4: 

Ein Unternehmen besteht aus den Hilfskostenstellen A und B sowie aus der Hauptkos-

tenstelle C. Die Primärkosten betragen 60 € bei A bzw. 40 € bei B. Ermitteln Sie die 

innerbetrieblichen Verrechnungspreise bei nachfolgendem Leistungsaustausch: 

an
von 

A B C 

A - 20 10 

B 20 - 20 
 

Aufgabe 2.5: 

Eine Produktionsabteilung besteht aus drei Hilfskostenstellen A, B und C und zwei 

Hauptkostenstellen X und Y, deren Leistungsaustausch nachfolgend dargestellt ist: 

Die Primärkosten der Hilfskostenstellen betragen 24.000 € (A), 30.000 € (B) und 52.000 

€ (C). Bestimmen Sie die innerbetrieblichen Verrechnungspreise, die Sekundärkosten 

der Hilfskostenstellen und die auf die Hauptkostenstellen weiterverrechneten Kosten. 

A C B 

Y X 

40 

1010 

100180
30 

4080 

4020 

10
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Aufgabe 2.6: 

Sie arbeiten in einem Unternehmen mit drei Hilfskostenstellen A, B, C und drei 

Hauptkostenstellen D, E und F. Die Primärkosten betragen 60 € für A, 120 € für B, 30 € 

für C. Die Leistungsverflechtungen sind wie folgt:  

an 
von 

A B C D E F 

A - 2 5 2 1 - 

B 2 - 1 4 1 2 

C 4 4 - - 1 1 

Berechnen Sie die Verrechnungspreise für je eine Leistungseinheit der drei Hilfskos-

tenstellen und die Sekundärkosten der drei Hauptkostenstellen. 

Aufgabe 2.7: 

Gegeben sei die folgende Leistungsverflechtung: 

Die Primärkosten der Hilfskostenstellen A, B bzw. C betragen 1.500 €, 5.250 € bzw. 

8.800 €. 

a)  Stellen Sie die Leistungsverflechtungen tabellarisch dar. 

A B C 

X Y 

80 120
25 20 

75 40 

30 

80 

90 75 

11535
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b) Bestimmen Sie die Verrechnungspreise der innerbetrieblichen Leistungen. Stellen 

Sie zunächst ein LGS auf und lösen Sie dieses dann unter Verwendung der Matrix-

rechnung. 

c) Wie hoch sind jeweils die auf die Hauptkostenstelle X und die auf die Hauptkos-

tenstelle Y weiterverrechneten Kosten? 

Aufgabe 2.8: 

Sie arbeiten in einem Unternehmen mit drei Hilfskostenstellen A, B, C und zwei 

Hauptkostenstellen D und E. An den Kostenstellen A, B, C, D bzw. E fallen Primärkos-

ten in Höhe von 34 €, 52 €, 4 €, 60 € bzw. 25 € an. D produziert 400 Einheiten und gibt 

diese an den Absatzmarkt ab, E hingegen nur 100 Einheiten. 

Die Leistungsverflechtungen sind: 

an 
von 

A B C D E 

A - 2 3 1 2 

B 3 - 4 2 1 

C 8 6 - 2 4 

a) Berechnen Sie die innerbetrieblichen Verrechnungspreise. 

b) Berechnen Sie die Sekundärkosten der beiden Hauptkostenstellen. 

c) Berechnen Sie die kostendeckenden Preise für je eine Leistungseinheit der Haupt-

kostenstelle D bzw. E. 

Aufgabe 2.9: 

Sie arbeiten bei einem Fernsehsender und wurden beauftragt, die Kosten einer Quiz-

sendung näher zu analysieren. Hierzu sind Ihnen die Leistungsverflechtungen zwi-

schen den Hilfskostenstellen (Kameraleute, Moderator, Maskenbildner) und der 

Hauptkostenstelle (Quizsendung) gegeben. 
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Zur Herstellung einer Folge der Quizsendung müssen die Kameraleute 17 Stunden 

erbringen, der Moderator arbeitet 3 Stunden für die Quizsendung und die Masken-

bildner sind 10 Stunden lang damit beschäftigt, die vor der Kamera auftretenden Kan-

didaten herzurichten. Der Moderator ist etwas unsicher in seinem Auftreten vor so 

vielen Zuschauern. Deshalb muss er üben und benötigt hierfür die Assistenz der Ka-

meraleute, die ihn vor jeder Sendung 3 Stunden lang zur Selbstreflexion filmen. Im 

Gegenzug obliegt es dem Moderator, auch für die Unterhaltung des restlichen Teams 

neben den Dreharbeiten zu sorgen. Er muss mit den Kameraleuten und den Masken-

bildnern je 1 Stunde lang herumalbern. Die Maskenbildner schließlich sind 2 Stunden 

lang damit beschäftigt, den Moderator für die Sendung zu schminken und investieren 

4 Stunden in die Kameraleute, damit diese gegenüber dem Saalpublikum kein allzu 

schlechtes Bild abgeben. 

Für Löhne fallen bei den Kameraleuten Primärkosten von 400 €, beim Moderator 

1.485 € und bei den Maskenbildnern 300 € pro Quizsendung an. 

a) Zeichnen Sie ein Pfeildiagramm, welches die Leistungsverflechtungen darstellt. 

b) Ermitteln Sie die Verrechnungssätze für je eine Arbeitsstunde der Kameraleute, des 

Moderators und der Maskenbildner. 

c) Wie hoch sind die Kosten einer Quizsendung? 

Aufgabe 2.10: 

Sie betrachten ein Unternehmen mit den Hikos A, B und C und den Hakos D und E. 

Die Primärkosten betragen 100 € (A), 300 € (B) bzw. 200 € (C). Die internen Leistungs-

verflechtungen sind aus der nachfolgenden Tabelle ablesbar: 

an 
von 

A B C D E 

A - 5 5 - 5 

B 3 - 14 8 16 

C 10 10 - 3 2 
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Wie hoch sind die internen Verrechnungspreise und die Sekundärkosten aller fünf 

Kostenstellen? 

Aufgabe 2.11: 

Der Flughafenbetreiber von Frankfurt Kahn, die O. Kahn AG, stellt für das abgelaufe-

ne Jahr innerhalb der Kostenrechnung folgende Leistungsverflechtung fest: 

Die Kostenstellen Gepäckabfertigung, Lotsendienst und Flugzeugmaintenance erstel-

len ausschließlich Leistungen, die innerbetrieblich auf die Check-In-Kostenstellen 

BryanAir, FCBAir und CargoBanana weiterverrechnet werden. Es entstehen Primär-

kosten in Höhe von 125.000 € bei der Gepäckabfertigung, 300.000 € beim Lotsendienst 

und 420.000 € bei der Flugzeugmaintenance. 

BryanAir und FCBAir wollten aus verschiedenen Gründen (BryanAir hat seinen Sitz 

im verregneten England und FCBAir transportierte bisher ausschließlich Fans eines 

bayrischen Fußballclubs) aggressiv am Markt Kunden werben. Deshalb verlangten sie 

nur die auf sie weiterverrechneten Kosten der O. Kahn AG. 

a) Wie hoch waren die auf den Check-In BryanAir und die auf den Check-In FCBAir 

weiterverrechneten Kosten des Flughafenbetreibers? Und wie hoch waren die kos-

tendeckenden Preise pro Leistungseinheit der Kostenstellen Gepäckabfertigung, 

Lotsendienst und Flugzeugmaintenance? 

Lotsendienst 

Flugzeug-
maintenance 

5 4 

3 3 

2 2 

1 

2 

1 4 

43

   2 

Gepäck-
abfertigung 

CargoBanana FCBAir BryanAir 
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b) Bei CargoBanana fallen noch Primärkosten am Check-In in Höhe von 100.000 € an 

(alle anderen Kosten können Sie vernachlässigen, z.B. Piloten- und Stewardessen-

gehälter, Flugzeugabschreibungen, Verpflegung an Bord, Kerosin, usw.). Wie hoch 

ist der kostendeckende Preis für den Transport einer Kiste Bananen, wenn 200.000 

Kisten transportiert wurden? 

Aufgabe 2.12: 

Ein Tierzuchtbetrieb besteht aus den Hilfskostenstellen Futterproduktion, Technik und 

Tierpflege sowie aus den Hauptkostenstellen Fisch- und Schildkrötenproduktion. 

Die Futterproduktion liefert 1.000 kg Futter an die Fischproduktion und 700 kg Futter 

an die Schildkrötenproduktion. Bei dem Futter handelt es sich um eine neuartige All-

round-Nahrung, welche daher auch in der Kantine serviert wird. Die Techniker kon-

sumieren insgesamt 20 kg, die Tierpfleger insgesamt 80 kg. Die Techniker müssen 60 h 

arbeiten, um die Maschinen der Futterproduktion in Gang zu halten. Daneben benöti-

gen sie 40 h für die Wartung der EDV-Anlagen der Tierpfleger. Die Tierpfleger inves-

tieren 40 h ihrer Arbeitszeit bei der Fisch- und 100 h bei der Schildkrötenproduktion. 

Da die Arbeiter in der Futterproduktion erfahren haben, dass das von ihnen produ-

zierte Tierfutter auch in der Kantine ausgegeben wird, benötigen sie 10 h psychologi-

sche Betreuung durch die Tierpfleger. 

Die pro Periode anfallenden Primärkosten in den Abteilungen Futterproduktion, 

Technik bzw. Tierpflege betragen 5.400 €, 4.900 € bzw. 6.600 €. 

a) Stellen Sie den beschriebenen Sachverhalt in Form eines Pfeildiagramms dar. 

b) Berechnen Sie die internen Verrechnungspreise für 1 kg Futter sowie eine Arbeits-

stunde der Techniker und der Tierpfleger. 

c) Wie hoch sind die auf die Fisch- bzw. Schildkrötenproduktion weiterverrechneten 

Kosten? 
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d) Der Tierzuchtbetrieb vergrößert sich und züchtet nun auch Schlangen. Die neuen 

Leistungsverflechtungen sind der nachfolgenden Tabelle zu entnehmen: 

an 
von 

Futter-
prod. 

Technik
Tier-

pflege 
Fischprod. 

Schildkrö-
tenprod. 

Schlangen-
prod. 

Futterprod. - 20 kg 80 kg 800 kg 600 kg 300 kg 
Technik 60 h - 40 h - - - 
Tierpflege 10 h - - 40 h 80 h 20 h 

 Geben Sie die hieraus resultierenden internen Verrechnungspreise an. 

Aufgabe 2.13: 

Sie arbeiten in einem Unternehmen mit drei Hilfskostenstellen A, B, C und zwei 

Hauptkostenstellen D und E. Die Primärkosten der drei Hilfskostenstellen liegen bei je 

200 €. Die Leistungsverflechtungen sind:  

an 
von 

A B C D E 

A - 4 4 4 8 

B 8 - 6 10 6 

C 1 2 - 12 1 

a) Berechnen Sie die innerbetrieblichen Verrechnungspreise sowie die Sekundärkos-

ten der beiden Hauptkostenstellen. 

b) Bei Hauptkostenstelle D fallen zusätzlich Primärkosten in Höhe von 200 € an. Be-

rechnen Sie die kostendeckenden Preise für je eine Leistungseinheit der Hauptkos-

tenstelle D, wenn D 120 Einheiten an den Absatzmarkt abgibt. 
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Aufgabe 2.14: 

Gegeben sei die folgende Leistungsverflechtung: 

An den Kostenstellen A, B, C, D bzw. E fallen Primärkosten in Höhe von 34 €, 52 €, 4 €, 

10 € bzw. 12 € an. 

a) Bestimmen Sie die kostendeckenden Verrechnungspreise für je eine Leistungsein-

heit der Hilfskostenstellen A, B und C. 

b) Es tritt eine weitere Hauptkostenstelle F hinzu, deren Leistungsbezüge von den 

Hilfskostenstellen Sie allerdings nicht kennen. Sie wissen nur, dass die Hilfskos-

tenstelle A zur Herstellung der zusätzlichen Leistungseinheiten eine Einheit mehr 

von C benötigt und dass die Primärkosten von A auf 36 ansteigen. Zudem benötigt 

die Hilfskostenstelle C zur Herstellung der zusätzlichen Leistungseinheiten eine 

Einheit mehr von A. Die restlichen Leistungsverflechtungen bleiben gleich. Es er-

geben sich neue Verrechnungspreise in Höhe von A 64x 95 , B 223x 275  und 

C 221x 815 . Wie viele Leistungseinheiten bezieht die neue Hauptkostenstelle F von 

den Hilfskostenstellen A, B und C? 

 

 

A B C 

D E 

1 4 
2 1 

2 6 

8 

3 

3 4 

22
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Aufgabe 2.15: 

Als neuer Vorsitzender eines Sportvereins betrachten Sie die folgenden wöchentlichen 

Leistungsverflechtungen (in Arbeitsstunden) in Ihrem Verein: 

a) Ein Blick in die Gehaltsabrechnungen zeigt Ihnen, dass pro Woche Gehälter in 

Höhe von 560 € für den Trainerstab, 170 € für die Gaststätte und 320 € für das Phy-

siotherapeutenteam anfallen. Bestimmen Sie die innerbetrieblichen Verrechnungs-

preise für eine Arbeitsstunde der jeweiligen Hiko. Wie hoch sind jeweils die auf die 

einzelnen Sportabteilungen weiter zu verrechnenden Kosten? 

b) Ihnen gelingt es, zusätzlich einen neuen Physiotherapeuten für 800 € pro Woche zu 

verpflichten, seinen Assistenten stellen Sie für 260 € pro Woche gleich mit ein. Da 

die Trainer aufgrund des gesprengten Gehaltsgefüges sehr empört sind, verdreifa-

chen Sie spontan deren Gehalt. Die internen Leistungsverflechtungen ändern sich 

hierdurch nicht. Verändern sich infolge der Maßnahmen die Sekundärkosten der 

Skatabteilung? Falls ja, wie und warum? 

c) Sie gründen zusätzlich eine Schachabteilung. Für die Schachspieler kalkulieren Sie 

eine Nachfrage von 20 Gaststättenarbeitsstunden pro Woche. Physiotherapeutische 

Betreuung wollen Sie den Schachspielern nicht zukommen lassen, auch sind Ihre 

Schachspieler bereits soweit fortgeschritten, dass sie keine Trainerleistung benöti-

Gaststätte 

Physio-
therapie 

Skatabteilung Tennisabteilung 

5 5 

3 2 

   2 

2 

2 2 

1210
   9 

Trainerstab

Kegelabteilung 

   1 

15 
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gen. Da Ihr Budget ohnehin schon schwer angeschlagen ist, kommen für Sie keine 

Gehaltserhöhungen (auch nicht die in b) vorgenommenen) in Frage. Welche der 

nachfolgenden Aussagen sind richtig? (Eine Rechnung ist nicht erforderlich.) 

i) Der Verrechnungspreis der Physiotherapeuten bleibt unverändert. 

ii) Der Verrechnungspreis der Physiotherapeuten steigt. 

iii) Der Verrechnungspreis der Physiotherapeuten sinkt. 

iv) Alle Verrechnungspreise sinken. 

v) Alle Verrechnungspreise steigen. 

vi) Der Verrechnungspreis der Trainer weist die höchste relative Änderung auf. 

vii) Der Verrechnungspreis der Gaststätte weist die höchste relative Änderung auf. 

 viii) Nur der interne Verrechnungspreis der Gaststätte sinkt. 

Aufgabe 2.16: 

Sie sind Gerüstbauer und hüllen aufgrund einer Fassadensanierung gerade die Uni-

versität Mannheim ein. Ost- und Westflügel sind dabei zwei unabhängige Kostenstel-

len, die je nach Arbeitsintensität die Universitätsverwaltung unterschiedlich stark 

belasten. Sie beschäftigen 7 einfache Arbeiter, welche die Gerüste stellen, von denen 3 

nur am Ostflügel und 4 nur am Westflügel arbeiten, einen LKW-Fahrer, der die Ge-

rüstteile zu beiden Gebäudeflügeln transportiert und einen Bier-Praktikanten, welcher 

für alle das nötige Bier holt. Schließlich gehören auch Sie als planender Geschäftsfüh-

rer zum Team. 

Es ist Ihre Aufgabe, die Personalkosten der drei Personalhilfskostenstellen (Bier-

Praktikant, LKW-Fahrer und Sie, der Chef) leistungsgerecht auf die 

zwei Hauptkostenstellen zu verteilen. Im Team verdient jeder 2.000 € im Monat – ja, 

auch Sie! Die einfachen Arbeiter arbeiten ausschließlich an den ihnen zugeteilten Flü-

geln des Schlosses (folglich sind deren Personalkosten direkt als Primärkosten auf die 

Hauptkostenstellen zu verrechnen). Der Bier-Praktikant bringt jedem (außer sich 

selbst) 4 Flaschen Bier am Tag (der LKW-Fahrer trinkt natürlich seine Bierration erst 

kurz vor Dienstschluss und fährt anschließend mit dem Taxi nach Hause). Der LKW-
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Fahrer bewältigt die Strecke von seinem Unternehmen zur Universität siebenmal täg-

lich. Dabei fährt er viermal zum Westflügel, zweimal zum Ostflügel und tätigt eine 

Leerfahrt für Sie, damit Sie die tägliche "Qualitätskontrolle" durchführen können. 

Eigentlich tragen Sie gar nichts zum Projekt bei, deshalb gestaltet sich eine leistungs-

gerechte Personalkostenumlage in Ihrem Fall schwer. Sie entscheiden sich, Ihre Perso-

nalkosten entsprechend Ihrer täglichen Aufenthaltszeit an den einzelnen Hilfs- und 

Hauptkostenstellen zu verteilen (irgendetwas Produktives werden Sie da schon ma-

chen). Von 8 Stunden täglich sitzen Sie 1 Stunde im LKW, 1 Stunde lassen Sie sich beim 

Bier-Praktikanten über Ihre heutige Bestellung aus, 3 Stunden verbringen Sie am West-

flügel und 3 Stunden am Ostflügel. 

a) Skizzieren Sie die täglichen Leistungsverflechtungen in einem Pfeildiagramm. 

b) Bestimmen Sie die leistungsgerechten Personalkostensätze der Hilfskostenstellen 

(pro Bierflasche bzw. pro Fahrt und pro Stunde). Gehen Sie davon aus, dass der 

Monat 20 Arbeitstage hat und jeder Arbeitstag gleich abläuft. 

c) Nun wird rationalisiert. Sie erkennen, dass alle Arbeiter auch ohne täglichen Bier-

konsum leben können und entlassen den Bier-Praktikanten. (Somit fehlt Ihnen 

auch Ihr Gesprächspartner.) Wie verändern sich die Personalkostensätze des LKW-

Fahrers und des Chefs, und um wie viel Prozent verbessern sich die täglichen Ge-

samtpersonalkosten am Ostflügel? 

Aufgabe 2.17: 

Der marode Freizeitpark Matrix World hat zwei große Attraktionen: Eine Achterbahn 

und ein Riesenrad. 

Zur Aufrechterhaltung des Betriebs sind drei Gruppen von Arbeitern beschäftigt. Für 

den Verkauf der Tickets sowie für die Platzzuweisung ist das hoch qualifizierte Servi-

cepersonal zuständig. Dieses verrichtet für die Achterbahn 200 Arbeitsstunden pro 

Woche und für das Riesenrad 120 Stunden pro Woche. Des weiteren arbeiten Mecha-

niker an der Instandhaltung des Parks. Um die gröbsten Sicherheitsmängel zu behe-

ben, reparieren sie sowohl die Achterbahn als auch das Riesenrad jeweils 40 Stunden 

pro Woche. Schließlich ist noch eine medizinisch-psychologische Abteilung notwen-
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dig, welche sich 40 Stunden pro Woche um das gestresste Servicepersonal und 20 

Stunden pro Woche um die durch ihre gefährliche Arbeit lädierten Mechaniker küm-

mert. Die Mediziner und Mechaniker haben großen Gefallen daran, sich an den At-

traktionen des Parks zu vergnügen, weshalb jede dieser Gruppen wöchentlich 20 Stun-

den des Servicepersonals beansprucht. Da auch die Ausstattung der medizinischen 

Abteilung ziemlich heruntergekommen ist, werden die Mechaniker für insgesamt 20 

Stunden pro Woche zu Reparaturen benötigt. 

Für die Löhne des Servicepersonals fallen pro Woche insgesamt 3.000 € an, die Mecha-

niker erhalten 1.500 € und die die Mediziner 2.700 €. 

a) Zeichnen Sie ein Pfeildiagramm, welches die Leistungsverflechtungen darstellt. 

b) Berechnen Sie die internen Verrechnungspreise für je eine Arbeitsstunde des Servi-

cepersonals, der Mechaniker sowie der medizinisch-psychologischen Abteilung. 

c) Wie hoch sind die an die Achterbahn und die an das Riesenrad weiter zu verrech-

nenden Kosten? 

d) Pro Woche fahren 5.000 Personen mit der Achterbahn, 3.600 nutzen das Riesenrad. 

Für die Achterbahn und das Riesenrad muss der Betreiber jeweils eine Wochen-

miete von 2.500 € bezahlen. Den Preis für eine Fahrt mit dem Riesenrad hat er auf 

2 € festgesetzt. Wie viel muss er pro Achterbahnfahrt verlangen, falls er einen Ge-

winn von 10.000 € pro Woche erwirtschaften möchte? 

e) Durch vermehrte Unfälle im Freizeitpark muss sich die medizinisch-

psychologische Abteilung jetzt auch um verunglückte Besucher kümmern. Wegen 

der gestiegenen Beanspruchung erhöht der Betreiber die Gehälter der Mediziner 

auf 6.300 €. 40 Stunden pro Woche sind sie mit Achterbahnpatienten beschäftigt, 20 

Stunden fallen jede Woche für Besucher des Riesenrads an. Wie verändern sich die 

internen Verrechnungspreise nach diesen tragischen Vorfällen? 
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3 Weiterführende Matrixrechnung 

3.1 Determinante 

Die Determinante ist eine Kenngröße, die nur für quadratische Matrizen definiert ist. 

Sie ist vergleichbar mit der Quersumme ganzer Zahlen. (Mithilfe der Quersumme lässt 

sich beispielsweise ermitteln, ob eine Zahl durch 3 teilbar ist. Dies gilt für alle Zahlen, 

deren Quersumme durch 3 teilbar ist. So hat die Zahl 437.023.158 die Quersumme 

33851320734 5OOOOOOOO  und ist folglich durch 3 teilbar.) Die Berechnung der 

Determinante erfolgt anhand von Streichungsmatrizen über den Laplace-

Entwicklungssatz. 

Definition 3-1: Streichungsmatrix 

Zu jeder quadratischen Matrix GA n nA �  mit Rn 1 lässt sich die Strei-

chungsmatrix (n 1) (n 1)
ijA N G NA�  durch Streichen der Zeile i und der 

Spalte j von A bestimmen. Sei beispielsweise: 

H I
J K5 J K
J K
L M

1 2 3
A 4 5 6

7 8 9
 

So ergeben sich u. a.: 
H I

5 J K
L M

11
5 6

A
8 9

 und 
H I

5 J K
L M

23
1 2

A
7 8

 

Zur Matrix n nA GA�  lassen sich somit 2n  verschiedene Streichungsmatrizen bilden. 

 

 

 

C. Mayer, Lineare Algebra für Wirtschaftswissenschaftler,
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Definition 3-2: Determinante 

Die Determinante einer Matrix A, welche als < =det A  bezeichnet 

wird, ist eine reelle Zahl und ist ausschließlich für quadratische 

Matrizen definiert. Über den Laplace-Entwicklungssatz wird jeder 

Matrix genau eine Determinante zugeordnet. (Hingegen können 

verschiedene Matrizen dieselbe Determinante besitzen. Es ist so-

mit nicht möglich, aus der Determinante die zugrunde liegende 

Matrix abzuleiten, nicht einmal deren Ordnung.) 

Im Rahmen des Laplace-Entwicklungssatzes bieten sich zwei Vari-

anten der Berechnung, auch Entwicklung genannt, an, welche zum 

selben Ergebnis führen. 

Entwicklung nach Zeile i: < = < =O

5
5 N P P6

n i j
ij ij

j 1
det A ( 1) a det A  

Entwicklung nach Spalte j: < = < =O

5
5 N P P6

n i j
ij ij

i 1
det A ( 1) a det A  

Die Berechnung der Determinante erfordert das n-malige Aufsummieren eines Pro-

dukts aus jeweils drei Faktoren. Der erste Faktor, < = ji1 ON , beeinflusst lediglich das 

Vorzeichen des zu summierenden Produkts. Der zweite Faktor, ija , repräsentiert das 

Element in Zeile i und Spalte j der Matrix A. Der dritte Faktor schließlich, < =ijdet A ,  

erscheint auf den ersten Blick überraschend, da er dazu führt, dass die Determinante 

von A von einer anderen Determinante abhängt, welche wiederum nach obigem Mus-

ter zu berechnen ist. Entscheidend ist aber, dass die Ordnung von ijA  geringer ist als 

die Ordnung von A. Im ersten Laplace-Schritt wird die Determinante einer < =nnG -

Matrix also dargestellt durch n Determinanten von < = < =< =1n1n NGN -Matrizen. Diese 

lassen sich wiederum durch jeweils 1nN  Determinanten von < = < =< =2n2n NGN -Matrizen 

ausdrücken. Diese Vorgehensweise wird so oft wiederholt, bis die Determinante von A 

auf < =n! n n 1 2 15 P N P P P�  Determinanten von < =11G -Matrizen zurückgeführt worden 

ist. Für solche Matrizen < =bB 5  gilt < = bBdet 5 . 
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Es macht keinen Unterschied, ob die Determinante nach einer Zeile oder einer Spalte 

entwickelt wird. Zudem spielt es keine Rolle, welche Zeile bzw. Spalte für die Deter-

minantenberechnung gewählt wird. Bei einer < =n nG -Matrix bestehen für den ersten 

Laplace-Schritt demnach 2n verschiedene Entwicklungsmöglichkeiten, die zum selben 

Ergebnis führen. Wie das nachfolgende Beispiel zeigt, ist es sinnvoll, eine Zeile bzw. 

Spalte mit vielen Nullen für die Laplace-Entwicklung zu wählen. 

Beispiel 3-1: Determinantenberechnung nach Laplace 

Die Determinante von 

1 0 3
A 1 4 2

3 1 0

H I
J K5 NJ K
J K
L M

 

wird nach der dritten Spalte entwickelt als: 

< = < = < = < = KK
M

I
JJ
L

H
N

PPNOKK
M

I
JJ
L

H
PPNOKK

M

I
JJ
L

HN
PPN5 OOO

41
01

det01
13
01

det21
13
41

det31Adet 333231

 

Die notwendige Berechnung der Determinanten der < =2 2G -Matrizen er-

folgt jeweils nach der ersten Zeile: 

< = < = < = < = < = < = 133411113det411det11
13
41

det 2111 N5PPNPNP5PPNOPNPN5KK
M

I
JJ
L

HN OO  

< = < = < = < = 13011113det011det11
13
01

det 2111 5PPNPP5PPNOPPN5KK
M

I
JJ
L

H OO  

Die Berechnung von KK
M

I
JJ
L

H
N 41

01
det  erübrigt sich, da das Ergebnis hiervon oh-

nehin mit Null multipliziert wird. Insgesamt folgt also: 

< = < = < = < = 4101211331Adet 3231 N5OPPNONPPN5 OO  

Im Falle von < =2 2G - und < =3 3G -Matrizen existieren Vereinfachungen zum Laplace-

Entwicklungssatz. 
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So gilt bei < =2 2G -Matrizen schlicht: 

bcda
dc
ba

det PNP5KK
M

I
JJ
L

H
 

Bei < =3 3G -Matrizen lässt sich die Sarrus-Regel anwenden. Hierzu ist zunächst die 

erste, dann die zweite Spalte nochmals rechts neben die Matrix zu schreiben. Die De-

terminante lässt sich dann durch Aufsummieren der Produkte berechnen, die sich 

durch Multiplikation der Elemente auf den Diagonalen von links oben nach rechts 

unten ergeben, und anschließendes Subtrahieren der Produkte, die sich durch Multi-

plikation der Elemente auf den Diagonalen von links unten nach rechts oben ergeben. 

Formal dargestellt bedeutet dies: 

3231

2221

1211

333231

232221

131211

aa
aa
aa

aaa
aaa
aaa

A
K
K
K

M

I

J
J
J

L

H
5  

< =
122133112332132231

322113312312332211
aaaaaaaaa
aaaaaaaaaAdet
PPNPPNPPN
PPOPPOPP5

 

Beispiel 3-2: Determinantenberechnung über die Sarrus-Regel 

Die vereinfachte Bestimmung der Determinante von 

K
K
K

M

I

J
J
J

L

H

N
5

243
210
301

A  

über die Sarrus-Regel ergibt: 

43
10
01

243
210
301

NK
K
K

M

I

J
J
J

L

H

N
 

< = < = < =det A 1 1 2 0 2 3 3 0 4 3 1 3 4 2 1 2 0 0
2 0 0 9 8 0 1

5 P P O P P O P P N N P P N N P P N P P
5 O O N O N 5
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Für Matrizen, deren Ordnung < =3 3G  überschreitet, existieren keine derartigen Verein-

fachungen. Bei speziellen Matrizen lässt sich die Determinante jedoch infolge einer 

reduzierten Laplace-Entwicklung leicht ablesen: 

��  < = 1Edet 5  

��  Die Determinante einer oberen oder unteren Dreiecksmatrix lässt sich als Produkt 

der Komponenten auf der Hauptdiagonale bestimmen. 

��  Enthält eine Matrix eine Nullzeile oder –spalte, so ist deren Determinante Null. 

Ebenso ist die Determinante einer Matrix Null, die zwei Zeilen (bzw. Spalten) enthält, 

die Vielfache voneinander sind. Gleiches gilt für eine Matrix, bei der eine Zeile (bzw. 

Spalte) als Linearkombination aus anderen Zeilen bzw. Spalten hervorgeht, denn 

EZUs (bzw. elementare Spaltenumformungen) wirken sich wie folgt auf die Determi-

nante einer Matrix aus: 

��  Werden innerhalb einer Matrix Zeilen miteinander vertauscht, ändert sich bei je-

dem Zeilentausch das Vorzeichen der Determinante. 

��  Wird in einer Matrix eine Zeile mit einem Skalar c multipliziert, ändert sich die 

Determinante um den Faktor c. 

��  Eine Addition bzw. Subtraktion eines Vielfachen einer Zeile zu einer anderen Zeile 

verändert die Determinante nicht. 

Wird zusätzlich zur soeben genannten Addition bzw. Subtraktion die zu verändernde 

Zeile mit einem Skalar c multipliziert, bewirkt dies hingegen eine Veränderung der 

Determinante um den Faktor c. 

Eine Multiplikation der zu verändernden Zeile mit einem Skalar führt also zu einer 

Veränderung der Determinante, während eine Multiplikation der Zeile, mit der die 

Veränderung durchgeführt wird, keine Auswirkung auf die Determinante hat. 

Die Determinante einer Matrix kann folglich auch durch Umformung zu einer Drei-

ecksmatrix mit anschließender Berücksichtigung der Auswirkungen der durchgeführ-

ten EZUs berechnet werden. 
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Beispiel 3-3: Determinantenberechnung über EZUs 

Um die Determinante von 

3 2 1 0
0 4 3 4

A
6 4 2 5
4 1 0 2

NH I
J K
J K5
J KN N
J KJ KNL M

 

zu bestimmen, wird diese in eine Dreiecksmatrix überführt: 

3 2 1 0 3 2 1 0
0 4 3 4 III 2 I 0 4 3 4

4 IV 5 II
6 4 2 5 3 IV 4 I 0 0 0 5
4 1 0 2 0 5 4 6

N NH I H I
J K J KN PJ K J K P N PJ K J KN N P N P N
J K J KJ K J KN NL M L M

 

N NH I H I
J K J K
J K J KVJ K J KN N
J K J KJ K J KN NL M L M

3 2 1 0 3 2 1 0
0 4 3 4 0 4 3 4

III IV
0 0 0 5 0 0 31 4
0 0 31 4 0 0 0 5

 

Die Determinante der Dreiecksmatrix ergibt sich vereinfacht als Produkt 

der Komponenten der Hauptdiagonale zu: 

< = < =

NH I
J K
J K 5 P P N P N 5
J KN
J KJ KNL M

3 2 1 0
0 4 3 4

det 3 4 31 5 1860
0 0 31 4
0 0 0 5

 

Berücksichtigt man alle Auswirkungen der durchgeführten EZUs auf die 

Determinante von A, so folgt < = < =1 1det A 1 1860 1553 45 P P N P 5 N . 

Im Folgenden sind einige Rechenregeln im Umgang mit Determinanten aufgeführt. 

Dabei seien GA n nA,B �  und cA�. 

��  < = < =AdetAdet T 5  

��  < = < =AdetcAcdet n P5P  

��  < = < = < =det A B det A det BP 5 P  
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Die Determinante einer Summe von Matrizen lässt sich nicht vereinfachen. Es ist zu 

beachten, dass im Allgemeinen < = < = < =BdetAdetBAdet OQO  gilt. 

Determinanten und von diesen abgeleitete Größen sind zentrale Bestandteile wichtiger 

Formulierungen aus Analysis und Linearer Algebra, welche zum Teil in den nachste-

henden Kapiteln behandelt werden. Die wichtigsten dieser Größen werden im Fol-

genden zunächst definiert. 

Definition 3-3: Minoren 

Minoren sind Determinanten von Streichungsmatrizen, bei denen 

jeweils gleich viele beliebige Zeilen und Spalten gestrichen wur-

den. Sind die Indizes der gestrichenen Zeilen und Spalten gleich 

(ist somit 5i j), so handelt es sich um Hauptminoren. Sukzessive 

Hauptminoren sind die Determinanten aller Matrizen, die durch das 

sukzessive Streichen der jeweils letzten Zeile und Spalte einer 

Matrix entstehen. Hierzu zählt auch die Determinante der Aus-

gangsmatrix selbst. Folglich besitzt eine Matrix GA n nA �  n sukzes-

sive Hauptminoren. Zu diesen zählt als nullter sukzessiver Haupt-

minor < =det A . Der zweite sukzessive Hauptminor von 

NH I
J KNJ K5 J K
J KJ K
L M

2 2 0 4
4 3 7 1

A
0 5 2 5
7 3 9 1

 

ergibt sich folglich als: < =< = NH I
5 5 NJ K

L M
44 33

2 2
det A det 14

4 3
 

 

Definition 3-4: Kofaktormatrix 

Die Kofaktormatrix C zu einer quadratischen Matrix A setzt sich 

aus den zu ija  gehörenden Kofaktoren ijc  mit < =i j
ij ijc ( 1) det AO5 N P  zu-

sammen. Kofaktormatrix und Ausgangsmatrix besitzen somit die 
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gleiche Ordnung. So ergibt sich beispielsweise die Kofaktormatrix 

von 

NH I
J K5 J K
J K
L M

2 1 4
A 1 2 3

0 1 0
 

als: 
< = < = < =
< = < = < =
< = < = < =

H IN
J K

5 N NJ K
J KJ KNL M

11 12 13

21 22 23

31 32 33

det A det A det A

C det A det A det A

det A det A det A

 

< =
< =< = < =< =
< = < = < =

H IP N P N P N P P N P NH IJ K J KJ K5 N N P N P P N P N P N P N 5 NJ KJ K J KN NJ KN P N P N P N P P N P N L ML M

2 0 1 3 1 0 0 3 1 1 0 2 3 0 1
1 0 1 4 2 0 0 4 2 1 0 1 4 0 2

11 2 51 3 2 4 2 3 1 4 2 2 1 1

 

3.2 Inverse 

In Kapitel 1.2 wurden einige Matrixoperationen definiert. Dabei wurde eine Matrixdi-

vision ausgeschlossen. Anstelle der Matrixdivision tritt für quadratische Matrizen die 

Multiplikation mit einer Inverse, ähnlich der Multiplikation mit dem Kehrwert eines 

Skalars, die eine Skalardivision ersetzt. 

Definition 3-5: Inverse 

Eine quadratische Matrix A besitzt genau dann eine Inverse, wenn 

eine quadratische Matrix B existiert, so dass P 5A B E und P 5B A E 

gilt. B ist in diesem Fall eindeutig bestimmt, heißt Inverse von A 

und wird mit N1A  bezeichnet. Es gilt also N NP 5 P 51 1A A A A E. Eine 

quadratische Matrix, die eine Inverse besitzt, heißt regulär. Besitzt 

die Matrix keine Inverse, heißt sie singulär. 
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Um die Existenz einer Inverse nachzuweisen, bedient man sich der Determinante als 

Kennzahl. Inversen lassen sich nur von Matrizen bestimmen, deren Determinante 

ungleich Null ist. Demnach ist jede Matrix singulär, deren Determinante Null ist. Alle 

anderen quadratischen Matrizen sind regulär. Die Inverse einer regulären Matrix kann 

mithilfe von elementaren Zeilenumformungen oder über Ihre Kofaktormatrix be-

stimmt werden. 

Jede reguläre Matrix n nA GA�  lässt sich durch endlich viele EZUs (bzw. elementare 

Spaltenumformungen) in eine Einheitsmatrix umformen. Die Umformungen ersetzen 

somit jeweils eine Multiplikation mit deren Inverse 1AN . Im Falle von EZUs handelt es 

sich um eine Multiplikation von links, im Falle von elementaren Spaltenumformungen 

um eine Multiplikation von rechts. Die Anwendung derselben EZUs auf eine Matrix 
n kB GA�  (bzw. der elementaren Spaltenumformungen auf eine Matrix m nB GA� ) erset-

zen auch hier die Multiplikation mit 1AN  von links (von rechts). 

Handelt es sich bei der umzuformenden Matrix um die Einheitsmatrix, so erhält man 
1 1 1A E E A AN N NP 5 P 5 . Um die Inverse zu bestimmen, können folglich EZUs auf die 

partitionierte Matrix < =E|A  derart angewendet werden, dass in der linken Partition die 

Matrix E entsteht. Die rechte Partition enthält danach automatisch die Inverse, so dass 

sich < =1A|E N  ergibt. 

Beispiel 3-4: Bestimmung der Inverse über EZUs 

Eine Inversion von 

H I
J K5 J K
J K
L M

2 1 3
A 1 2 0

0 1 0
 

erfolgt über die Umwandlung von < =A|E  in < =1A|E N : 

2 0 3 1 0 12 1 3 1 0 0
I III

1 2 0 0 1 0 1 0 0 0 1 2 I 2 II
II 2 III

0 1 0 0 0 10 1 0 0 0 1

NH I H I
J K N J K

N N PJ K J KN PJ K J KJ K L ML M
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n n

0 0 3 1 2 3 I : 3 1 0 0 0 1 2
1 0 0 0 1 2 II III 0 1 0 0 0 1
0 1 0 0 0 1 I III 1 20 0 1 13 3

H IH IN NJ KJ K
J KN VJ K
J KJ K V J KNL M L M

 

Aus < =N1E|A  lässt sich N1A  ablesen: 

N

H INJ K
J K5
J K
J KNL M

1
0 1 2

A 0 0 1
1 2 13 3

 

Vereinfacht lassen sich die Inversen von regulären Matrizen kleiner Ordnung erstellen. 

Die Inverse einer < =11G -Matrix < =aA 5  ist ? @0\a �A3 : 

< =1 1A a
N 5  

Die Inverse < =2 2G -Matrix KK
M

I
JJ
L

H
5

dc
ba

B  ist < = ? @a d c b \ 03 P N P A� : 

1 d b1B
c aa d c b

N NH I
5 P J KNP N P L M

 

Der Nenner des jeweiligen Bruchs enthält die Determinante der zu invertierenden 

Matrix. 

Beispiel 3-5: Inversion einer < =G2 2 -Matrix 

Die Inverse der Matrix 
H I
5 J K
L M

1 2
A

1 0
 kann vereinfacht bestimmt werden über: 

N H IN NH I H I H I
J K5 P 5 N P 5J K J K J K J KN N NP N PL M L M L M L M

1 0 11 2 0 2 0 21 1
1 11 0 1 1 1 11 0 1 2 2 2 2

 

Alternativ lässt sich die Inverse einer Matrix auch über deren Kofaktormatrix bestim-

men. Hierzu ist zunächst TCA P  zu bilden: 
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11 1j 1n 11 i1 n1

T
i1 ij in 1j ij nj

n1 nj nn 1n in nn

a a a c c c

a a a c c cA C

a a a c c c

H I H I
J K J K
J K J K
J K J KP 5 PJ K J K
J K J K
J K J KJ KJ K L ML M

� � � �
� � � � � � � �
� � � �

� � � � � � � �
� � � �

 

n n n
1j 1j 1j ij 1j nj

j 1 j 1 j 1

n n n
ij 1j ij ij ij nj

j 1 j 1 j 1

n n n
nj 1j nj ij nj nj

j 1 j 1 j 1

a c a c a c

a c a c a c

a c a c a c

5 5 5

5 5 5

5 5 5

H I
P P PJ K

J K
J K
J K
J K

P P P5 J K
J K
J K
J K
J K

P P PJ KJ K
L M

6 6 6

6 6 6

6 6 6

� �

� � � �

� �

� � � �

� �

 

Für die Komponenten der Hauptdiagonale gilt < =5 P 56n
ij ijj 1a c det A . Hierbei handelt es 

sich jeweils um Laplace-Entwicklungen der Determinante von A nach Zeile i (mit 

n,,1i �5 ). 

Für die Komponenten außerhalb der Hauptdiagonale gilt 5 P 5 3 Q6n
ij kjj 1a c 0 i k . 

Nachfolgend wird eine Intuition für die Validität dieser Aussage gegeben. Eine durch 

diese Summe berechnete Kennzahl der Matrix A ist unabhängig von den in Zeile k 

enthaltenen Komponenten, denn diese gehen nicht in die Berechnung der Kennzahl 

ein. Alle Matrizen, die sich von A nur durch andere Komponenten in Zeile k unter-

scheiden, besitzen somit die gleiche Kennzahl wie A. Folglich weist auch die Matrix 

diese Kennzahl auf, welche in Zeile k dieselben Komponenten enthält wie in Zeile i. In 

diesem Fall entspricht die Kennzahl gerade der Determinante von A, da dann 
n n n

ij kj ij ij kj kjj 1 j 1 j 1a c a c a c5 5 5P 5 P 5 P6 6 6  (Laplace-Entwicklungen nach den inhaltsglei-

chen Zeilen i und k), welche aufgrund zweier gleicher Zeilen (Zeile i = Zeile k) Null ist. 

Somit folgt: 

< =

< =

< =K
K
K
K
K
K

M

I

J
J
J
J
J
J

L

H

5P

Adet00

0Adet0

00Adet

CA T

��
����

��
����

��
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< = EAdetCA T P5P  

< =AdetAC 1T P5 N  

< =
T1 C

Adet
1A P5N

 

Beispiel 3-6: Bestimmung der Inverse über die Kofaktormatrix 

Zur Inversion von 

K
K
K

M

I

J
J
J

L

H N
5

010
321
412

A  

wird zunächst die Kofaktormatrix 

K
K
K

M

I

J
J
J

L

H

NN
N

N
5

5211
204

103
C  

und < = 2Adet N5  berechnet. Die Inverse ergibt sich dann als: 

< = K
K
K

M

I

J
J
J

L

H

N
N
NN

PN5P5N

521
200
1143

2
1C

Adet
1A T1  

Für die Matrixinversion lassen sich als Rechenregeln im Falle regulärer (und somit 

auch quadratischer) Matrizen festhalten: 

��  < = 11A A
NN 5  

��  < = 11 1 1 1D C B A A B C D NN N N NP P P 5 P P P  

��  < = ? @1 11c A A c \ 0c
N NP 5 P 3 A�  

��  < = < =T11T AA NN
5  

��  < =
< =Adet
1Adet 1 5N  
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Wie bei der Determinantenrechnung lässt sich auch hier keine Vereinfachung für die 

Inverse einer Summe von zwei Matrizen finden. Folglich gilt < = 11 1A B A B NN NO Q O . 

Ist C die Kofaktormatrix zu n nA GA� , so lässt sich herleiten, dass: 

��  < = < = N5 n 1det C det A  

3.3 Matrixgleichungen 

Jegliche Umformungen von Matrixgleichungen sind nur für quadratische Matrizen 

uneingeschränkt definiert. Gegenüber Gleichungen mit reellen Zahlen sind in Anleh-

nung an die bisher aufgeführten Rechenregeln bei Matrixgleichungen folgende Beson-

derheiten zu beachten: 

��  Die Multiplikation mit der Inverse einer Matrix ersetzt die Division. 

��  Aufgrund der Nichtkommutativität der Matrixmultiplikation darf die Reihenfolge 

der Matrizen bei der Multiplikation nicht vertauscht werden. Somit ist zu beach-

ten, ob die Gleichung von rechts oder von links mit einer Matrix multipliziert wird. 

Soll beispielsweise die Gleichung DXA 5P  nach X aufgelöst werden, sind beide 

Seiten der Gleichung von links mit der Inverse von A zu multiplizieren. Es ergibt 

sich DAXAA 11 P5PP NN , somit DAXE 1 P5P N  und schließlich DAX 1 P5 N . Würde 

man beide Seiten der Gleichung von rechts mit 1AN  multiplizieren, könnte man A 

und 1AN  nicht zur Einheitsmatrix zusammenfassen und somit X nicht isolieren. 

��  Steht bei einer Summe von Matrizen X alleine mit einem Skalar, so verbleibt beim 

Ausklammern von X nicht der Skalar, sondern der Skalar multipliziert mit der 

Einheitsmatrix passender Ordnung. Es gilt beispielsweise < = XEcAXcXA PPO5POP , 

denn < = XcA PO  ist nicht definiert. Hier wäre die Summe aus einer Matrix und einer 

reellen Zahl zu bilden, was im Allgemeinen nicht möglich ist. 

��  Aufgrund der Kommutativität der Multiplikation mit einem Skalar kann ein Skalar 

in einem Matrixprodukt an jede beliebige Stelle verschoben werden, es gilt 

XAcXcAcXA PP5PP5PP . 
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Beispiel 3-7: Lösen einer Matrixgleichung 

� �
� � � � � � � �

� � � �
� � � �

� �

�

�

� � � � � � �
� � � � � � �

� � � � � �

� � � � � � � � � � � � � �

� � � � � � �

� � � � � �

1 1

1

1

A X B X C 3 D X
A X X 3 D X B C

A E 3 D X B C

A E 3 D A E 3 D X A E 3 D B C

E X A E 3 D B C

X A E 3 D B C

 

Enthalten Matrixgleichungen idempotente Matrizen, so lassen sich diese auf besonde-

re Weise vereinfachen. 

Definition 3-6: Idempotenz 

Eine quadratische Matrix heißt idempotent, falls alle Potenzen die-

ser Matrix gleich sind. Sei beispielsweise: 

� �� 	

 �� �
 �

 �� �� 


9 9 6
A 6 6 4

6 6 4

So folgt:  � � ��2 nA A A .

3.4 Cramer-Regel 

Liegt ein quadratisches LGS vor, also ein LGS mit ebenso vielen Gleichungen wie 

Variablen, lässt sich eine Aussage über die Lösbarkeit des LGS anhand des Determi-

nantenkriteriums treffen. Das zugrunde liegende LGS bxA ��  ist genau dann eindeu-

tig lösbar, wenn die Koeffizientenmatrix A invertierbar ist. Die Koeffizientenmatrix ist 

dann regulär und es gilt � � 0Adet � . Ist die Koeffizientenmatrix nicht invertierbar, han-
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delt es sich um eine singuläre Koeffizientenmatrix und es gilt < = 0Adet 5 . Das zugrun-

de liegende LGS ist dann nicht eindeutig lösbar. 

Falls eine eindeutige Lösung existiert, bestimmt sich diese wie folgt: 

bAx

bAxE

bAxAA

bxA

1

1

11

P5

P5P

P5PP

5P

N

N

NN

 

Substituiert man 1AN  durch < =
TC

Adet
1

P , der Bestimmung der Inverse über die Kofak-

tormatrix, so lässt sich zeigen, wie die Lösung ausschließlich durch eine Verknüpfung 

von Determinanten berechnet werden kann. Dieses Verfahren wird Cramer-Regel 

genannt und nachfolgend beschrieben. 

< = < =

K
K
K
K
K
K
K
K
K

M

I

J
J
J
J
J
J
J
J
J

L

H

P

P

P

P5PP5P5

6

6

6

5

5

5

N

n

1i
ini

n

1i
iji

n

1i
1ii

T1

cb

cb

cb

Adet
1bC

Adet
1bAx

�

�

 

Die Komponenten des Vektors < =5 5 5P P P6 6 6� �
Tn n n

i i1 i ij i ini 1 i 1 i 1b c b c b c  glei-

chen Laplace-Entwicklungen der Determinante einer Matrix jA  (mit j 1, ,n5 � ) nach 

Spalte j. jA  stellt dabei eine modifizierte Koeffizientenmatrix dar, bei der die j-te Spalte 

durch den Ergebnisvektor b ersetzt wird. Bei Berücksichtigung der Determinante der 

modifizierten Koeffizientenmatrizen ergibt sich der Lösungsvektor als: 

< =

< =

< =

< =K
K
K
K
K
K

M

I

J
J
J
J
J
J

L

H

P5

n

j

1

Adet

Adet

Adet

Adet
1x

�

�
 

 

 



 3 Weiterführende Matrixrechnung 

 56 

Beispiel 3-8: Anwendung der Cramer-Regel zur Lösung eines LGS 

1 2 3

1 2 3

1 2 3

2x x 4x 5
x x 3x 4

4x x 8x 7

N O 5
O O 5 N
N O 5

 

Das obige LGS kann über die Cramer-Regel durch die Bestimmung der De-

terminanten der modifizierten Koeffizientenmatrizen 1A , 2A , 3A  und der 

Determinante von A gelöst werden. Hierfür ergeben sich: 

2 1 4
A 1 1 3

4 1 8

NH I
J K5 J K
J KNL M

,  1

5 1 4
A 4 1 3

7 1 8

NH I
J K5 NJ K
J KNL M

,  2

2 5 4
A 1 4 3

4 7 8

H I
J K5 NJ K
J K
L M

,  3

2 1 5
A 1 1 4

4 1 7

NH I
J K5 NJ K
J KNL M

 

< =det A 25 N ,  < =1det A 105 N ,  < =2det A 65 ,  < =3det A 45  

Der Lösungsvektor x resultiert aus der Verknüpfung dieser Determinanten: 

< =

< =
< =
< =

1

2

3

det A 10 5
1 1x det A 6 3

det A 2
4 2det A

H I NH I H I
J K J K J K5 P 5 P 5 NJ K J K J KNJ K J K J KJ K NL M L ML M

 

3.5 Aufgaben 

Aufgabe 3.1: 

1 0 5 3 9
0 0 0 0 4
3 5 0 6 3A

8 2 0 4 8
3 2 0 2 4

H I
J K
J K
J KN5
J K
J K
J K
L M

 

Bestimmen Sie < =det A  über den Laplace-Entwicklungssatz. 
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Aufgabe 3.2: 

0 1 2 2 1
0 0 0 2 1
0 7 13 2 5A
1 12 3 3 7
0 1 2 4 1

H I
J K
J K
J KN5
J K
J K
J K
L M

,  

0 1 2 2 1
0 0 0 10 1
0 7 13 2 5B
1 12 3 3 7
0 1 2 4 1

H I
J K
J K
J KN5
J K
J K
J K
L M

 

Berechnen Sie < =det A  über den Laplace-Entwicklungssatz. Wie groß ist < =det B ? 

Aufgabe 3.3: 

0 0 2
A 0 0,5 a

3 b 1

H I
J K5 J K
J K
L M

,  

0 0 0 0 1
0 0 0 2 0
0 0 1 1 2B
0 4 4 a 1
2 b 0 c 1

H I
J K
J K
J KN5
J K
J K
J KNL M

 

Berechnen Sie < =det A  und < =det B  mit a,b,cA� . 

Aufgabe 3.4: 

b

7 4

0 0 0 0 0 1
0 4 0 b 3 5
0 0 0 2 0 0

A 1 e 0 4 7 3b
b10 0 19 16 4

1b 3 1 5b 5b

H I
J KNJ K
J K
J K5 J K
J K
J K
J K
J KJ KL M

 

Bestimmen Sie < =det A  in Abhängigkeit von ? @b \ 0A�  über den Laplace-

Entwicklungssatz. Wägen Sie vorher genau ab, nach welchen Zeilen bzw. Spalten Sie 

entwickeln sollten. Ist die Matrix für b 0,55 N  regulär? 
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Aufgabe 3.5: 

2 0 1
A 1 2 a

3 1 4

H I
J K5 NJ K
J K
L M

 

Für welchen Wert des Parameters aA�  ist < =det A 05 ? 

Aufgabe 3.6: 

2 5 4 2
3 4 6 4

A
4 2 8 5
? ? ? ?

NH I
J KN NJ K5
J KN N
J KJ K
L M

 

Welche der nachfolgend aufgeführten Zeilenvektoren können in die vierte Zeile einge-

setzt werden, so dass gilt < =det A 05 ? 

a) < =0 0 0 0  b) < =6 7 12 3N  

c) < =3 97 6 2N  d) < =ln6 ln7 ln36 ln18N N  

e) < =4 2 8 5e e e eN N  f) < =2 5 8 2N  

Aufgabe 3.7: 

a 3 2 1
A 0 1 a 0

0 7 a 2

OH I
J K5 NJ K
J KOL M

 

Bestimmen Sie < =det A  in Abhängigkeit von aA� . 
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Aufgabe 3.8: 

1 4 3
A 2 1 0

1 4 1

N NH I
J K5 J K
J KN NL M

 

Bestimmen Sie die Kofaktormatrix zu A. 

Aufgabe 3.9: 

a b c d
4 4 2 4

A
1 2 3 1
2 4 2 11

H I
J KNJ K5 J KN
J KJ KN NL M

 

Bestimmen Sie a,b,c,dA�, so dass alle sukzessiven Hauptminoren von A gleich sind 

und a b c d 19O O O 5  gilt. Geben Sie zudem det(A) an. 

Aufgabe 3.10: 

Zeigen Sie, dass für n nA GA�  mit < =det A 0Q  gilt: 

< = < =
1 1det A

det A
N 5  

Sie können die folgenden Formeln benutzen: 

1.) < = < = < =det A B det A det BP 5 P                2.) < =det E 15  

Aufgabe 3.11: 

1 3 4
A 1 0 3

0 3 2

H I
J K5 J K
J K
L M

,  
2 1 0

B 0 2 2
1 3 3

H I
J K5 J K
J K
L M

 

Berechnen Sie: < = < = < =1x det A det A B 5 det A BNX Y5 P P P P P\ ]  
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Aufgabe 3.12: 

Berechnen Sie: 
2 14 2 2 2

A
1 3 3 4

N
H I H I
5 NJ K J KNL M L M

 

Aufgabe 3.13: 

4 4a 4
A

9 11
OH I

5 J K
L M

,  
3 4

B
2 3
H I
5 J K
L M

,  21C (B E)
det(B)

5 P N  

Berechnen Sie C. Welche Aussage können Sie in Abhängigkeit des Parameters aA� 

über die Relation zwischen A und C machen? 

Aufgabe 3.14: 

1 1 0 2
3 10 3 1

A
2 3 1 2
1 0 0 0

N N NH I
J KNJ K5 J KN N
J KJ K
L M

,  

2 2 0 4
9 30 9 3

B
1 4 1 0
1 0 0 0

H I
J KNJ K5 J KN N
J KJ K
L M

,  

1 1 3 1
31 10 02C
10 3 02

2 1 1 0

NH I
J K

N NJ K
5 J K

N NJ K
J KNL M

 

a) Berechnen Sie < =det A  über den Laplace-Entwicklungssatz. 

b) Stellen Sie < =det B  und < =det C  in Abhängigkeit von < =det A  dar. Berechnen Sie in 

einem zweiten Schritt die Determinanten. 

c) Berechnen Sie: 
< = < = < =< = < = < =

< =

< =

det B
1 T 1 1 15

1 1 1

det C det 2 2 det B det A det C
x

2 4 det A

NN N N

N N N

P P � O P P
5 N

P P� P �
 

Aufgabe 3.15: 

3 0 3
A 2 2 2

4 2 0

H I
J K5 NJ K
J K
L M

,  
3 0 3

B 6 0 2
4 2 0

H I
J K5 J K
J K
L M

 

Ermitteln Sie: < = < = < =1x det 2 A 2 det B det ANX Y5 P N P P\ ]  
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Aufgabe 3.16: 

2 4 0 3
1 3 3 2

A
0 0 2 2
0 0 2 1

H I
J K
J K5 J K
J KJ K
L M

,  

0 0 2 1
0 0 2 2

B
1 3 3 2
2 4 0 3

H I
J K
J K5 J K
J KJ K
L M

 

Berechnen Sie: < = < = < = < =< = < =< =T 1x det A det B det A det A 1 det A BN5 N O P P N O  

Aufgabe 3.17: 

1 3 4 6
5 0 4 0

A
11 2 1 4
2 1 3 2

NH I
J KNJ K5 J KN
J KJ KNL M

,  
2 2 1

B 2 1 2
1 2 2

H I
J K5 J K
J K
L M

,  

4 0 1 1
3 2 3 2

C
1 1 5 4

2 3 4 8

H I
J K
J K5 J KN N
J KJ K
L M

 

Berechnen Sie: < = < = < = < =1 det(A)2 1x det B det C A det 2 B det C
N N5 P P N P P  

Aufgabe 3.18: 

NH I
J K5 NJ K
J KNL M

4 3 5
A 0 1 7

0 0 2
,  

NH I
5 J K
L M

5,5 5
B

7,5 2
 

Berechnen Sie: < = < = < =N N5 P P O P P P
T1 T 11X B det 4A B 4 det A B

2
 

Aufgabe 3.19: 

1 1 2
A 0 2 2

5 3 1

NH I
J K5 J K
J KNL M

,  
3 4 2

B 3 4 0
2 3 0

NH I
J K5 J K
J K
L M

,  
1 1 1

C 1 7 2
3 1 2

H I
J K5 J K
J KNL M

 

Berechnen Sie: 
< = < = < =

< = < = < = < =

1 1 1 T

3T 1 2

det A B C det 2 A 6 det E
x

det A det C det 3 det B

N N N

N

P P P P O P
5

H I P O P ^ PJ K
L M
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Aufgabe 3.20: 

3 0 0
A 1 4 0

0 2 1

H I
J K5 NJ K
J K
L M

,  
3 6 9

B 0 2 3
0 0 2

NH I
J K5 J K
J KNL M

,  
1 1 1

C 2 3 4
5 6 7

NH I
J K5 J K
J K
L M

 

Bestimmen Sie: 
< = < = < =< =

< =

41 1T 3

1

det A det A B C det A B
x

det C

N N

N

P P P P O
5  

Aufgabe 3.21: 

1 2 k
A 2 k 1

0 k k

NH I
J K5 NJ K
J K
L M

 

Für welche Werte von kA� existiert 1AN  nicht? 

Aufgabe 3.22: 

5 3 a 3
A 1 a 1 0

0 1 2

N NH I
J K5 NJ K
J KNL M

 

Für welche Werte des Parameters aA�  existiert die Inverse der Kofaktormatrix zu A 

nicht? 

Aufgabe 3.23: 

2 1 4
A

2 3 1
NH I

5 J KN NL M
,  

4 10
B 3 8

1 3

NH I
J K5 NJ K
J KNL M

 

Zeigen Sie, dass A B EP 5  gilt. Ist B somit die Inverse von A? 
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Aufgabe 3.24: 

< =1A 425 N ,  
N NH I

5 J K
L M

1 8
B

2 4
,  

1 4 3
C 0 2 0

2 4 7

H I
J K5 J K
J K
L M

 

Bestimmen Sie, falls möglich, die Inversen von A, B und C. 

Aufgabe 3.25: 

1 1 1
A 1 2 3

1 3 6

H I
J K5 J K
J K
L M

,  
3 1 2

B 1 5 0
6 2 4

H I
J K5 NJ K
J K
L M

 

Bestimmen Sie, falls möglich, 1AN  sowie 1BN . 

Aufgabe 3.26: 

Gegeben seien die beiden Matrizen m nA GA�  und k pB GA� . Unter welchen Bedingun-

gen an die Ordnungen der Matrizen finden die nachfolgenden Operationen eine Lö-

sung, bzw. sind die Operationen definiert? (Betrachten Sie jede Operation für sich.) 

a) 3A  b) A A BO P  

c) < =
1TTA B
N

H IPJ K
L M

 d) < =det A BP  

e) < =det A BP  

Aufgabe 3.27: 

2 4 2
A 1 3 2

1 4 3

NH I
J K5 N NJ K
J KN NL M

, 
1 4 2

B 2 4 3
2 4 8

N NH I
J K5 J K
J KNL M

 

Berechnen Sie, falls möglich,  1AN  und 2A  sowie 1BN  und 2B . 
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Aufgabe 3.28: 

2 1 1
A a b c

1 1 1
8 8 8

H IN NJ K
J K5
J K
J KNL M

, 
1 2 4

B 0 1 6
1 3 2

H I
J K5 J K
J K
L M

 

Bestimmen Sie a,b,cA�  so, dass A B EP 5  gilt. 

Aufgabe 3.29: 

Es sei 4 4A GA�  mit < =det A 0Q , wobei 4 4C GA�  die zugehörige Kofaktormatrix dar-

stellt. Welche Relation (>, =, <) gilt zwischen < =det A  und < =det C ? 

Aufgabe 3.30: 

Zeigen Sie, dass für n nA GA�  mit < =det A 0Q  gilt: 

< = < =T 11 TA A
NN 5  

Sie können die folgenden Formeln benutzen: 

1.) < =T T TA B B AP 5 P                2.) TE E5  

Aufgabe 3.31: 

a) Zeigen Sie, dass die Determinante einer idempotenten Matrix A gleich Eins oder 

Null ist. Sie können die folgende Formel verwenden: 

< = < = < = < = < =det A B C D det A det B det C det DP P P P 5 P P P P� �  

b) Wie viele idempotente Diagonalmatrizen 3 3B GA�  gibt es? Nennen Sie alle. 
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Aufgabe 3.32: 

Zeigen Sie, dass unter allen idempotenten Matrizen nur die Einheitsmatrix die Deter-

minante Eins besitzt und die Determinante aller sonstigen idempotenten Matrizen 

somit Null ist. 

Aufgabe 3.33: 

2 2 4
A 1 3 3

0 1 5

NH I
J K5 J K
J KNL M

 

Berechnen Sie < = < = 2T 2 1X C det C det A ANX Y5 P P PZ [\ ]
, wobei C die zu A gehörige Kofaktor-

matrix darstellt. 

Aufgabe 3.34: 

2 2
A

0 4
H I

5 J K
L M

,  
3 4

B
4 0

H I
5 J KNL M

,  
2 4

C
4 2
H I

5 J K
L M

 

Lösen Sie die Matrixgleichung: A B X A X 3 CO P 5 P O P  

Aufgabe 3.35: 

Lösen Sie die Matrixgleichung A X B C B A BP P 5 P O P  mit n nA,B,C GA�  nach X auf.  

Aufgabe 3.36: 

Lösen Sie die Matrixgleichung 4 X A X B C X A 2 DP P O P N 5 P N P  nach X auf. 

Aufgabe 3.37: 

Bestimmen Sie die Inverse von X, wobei 1 1X B AN N5 P  sowie 
7 4

A
3 8
H I
5 J K
L M

 und 
9 2

B
4 8
NH I

5 J KNL M
. 
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Aufgabe 3.38: 

H I
5 J K
L M

2 1
A

1 0
,  

H I
5 J K
L M

1 2
B

0 1
 

Bestimmen Sie X, wobei P P 5A X A B. 

Aufgabe 3.39: 

2 0 1
A 3 0 2

2 5 0

H I
J K5 J K
J K
L M

,  
0 0 4

B 6 2 2
4 2 0

H I
J K5 J K
J K
L M

 

Lösen Sie die Matrixgleichung: 1X X A A A X B X 0,5 B XNN P P O P 5 P P O N  

Aufgabe 3.40: 

4 7
A

1 2
NH I

5 J K
L M

,  
3 7

B
1 1
NH I

5 J K
L M

,  
4 2

C
2 1
H I
5 J KNL M

 

Lösen Sie die Matrixgleichung: < =3 T3 X A B X C X E E C XP N N P N P P 5 N P  

Aufgabe 3.41: 

2 1
A

1 0
H I
5 J K
L M

,  
1 2

B
0 3
H I
5 J K
L M

 

Berechnen Sie X, wobei 3 1A X E B
det(A)

P P P 5 . 

Aufgabe 3.42: 

1 2
A

3 4
H I
5 J KNL M

 

Lösen Sie die Matrixgleichung: < = T7 X det A E X A A XP N N P N 5 P  
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Aufgabe 3.43: 

< =3 X A det A E 2 XP P N P 5 P  

a) Lösen Sie die Gleichung nach X auf. 

b) Unter welcher Bedingung bzw. welchen Bedingungen können Sie die Gleichung 

überhaupt nach X auflösen? Ist ein Auflösen nach X möglich, falls gilt: 

 i) 
11 3A

1 13

H I
J K5
J K
L M

 ii) 
1 1

A
1 1
H I

5 J K
L M

 

 iii) 
1 13A

11 3

H I
J K5
J K
L M

 iv) A E5  

c) Bestimmen Sie, falls möglich, für die in Teilaufgabe b) gegebenen Matrizen A das 

jeweilige X. 

Aufgabe 3.44: 

2 4
D

0 1
H I

5 J K
L M

,  
3 4

F
1 0
NH I

5 J K
L M

,  
1 4

G
2 1

H I
5 J KN NL M

 

Lösen Sie die Matrixgleichung: 3 2D X D F D E D X E D F GN P O P 5 P P P P N P P  

Aufgabe 3.45: 

1 2
A

4 7
H I

5 J K
L M

,  
0 3

B
2 2
H I
5 J K
L M

 

< =< =21 1 1X A X det A B B XN N NP O P P N 5  

Gehen Sie davon aus, dass 1XN  existiert. 

a) Bestimmen Sie X  und 1XN . 

b) Bestimmen Sie bei unverändertem B und 
1 2

A
4 8
H I

5 J K
L M

 erneut X  und 1XN . 
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Aufgabe 3.46: 

2 1 1
A

0 2 3
H I

5 J KNL M
,  

2 3
B

3 6
H I
5 J K
L M

,  
1 1

C 11 3

NH I
J K5
J K
L M

 

Lösen Sie die Matrixgleichung: < = < =T 1A A X X det B C B C XNP P N P N 5 N P  

Aufgabe 3.47: 

Lösen Sie die Matrixgleichung 1X (det(B) A) A C X B X DNP P P O P O P 5  nach X auf. 

Aufgabe 3.48: 

Lösen Sie die Matrixgleichung H E X E X H E H X X E H F X G X GP P O P P N P P O P P N O P 5 O  

mit n nF,G,H GA�  nach X auf. Gehen Sie davon aus, dass alle gegebenenfalls auftau-

chenden Inversen existieren. 

Aufgabe 3.49: 

< = < =
T1 2T TX X F F F G E G G F

NH IO P 5 P P P P O PJ K
L M

 

Lösen Sie, falls möglich, nach X auf. Gehen Sie davon aus, dass alle gegebenenfalls 

auftauchenden Inversen existieren. 

Aufgabe 3.50: 

1 2 8
1A 4 64

10 22

H I
J K
J K5 N
J K
J KNL M

,  
6 3

7 8B
0 1

H IN
J K5
J K
L M

,  
13 17C
1 1

H IN
5 J KJ KNL M

 

a) Bestimmen Sie: < = < =< = 0,53x 2 det E det A
N

5 O N  

b) Lösen Sie die Matrixgleichung: < = < =1X C 2 E B CN5 O P P O  
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Aufgabe 3.51: 

4 3 2
A 4 4 2

3 0 5

H I
J K5 NJ K
J K
L M

,  

1 3 3
3B 0 52

5 2 1

H I
J K

5 NJ K
J KJ KNL M

,  
4 2 3

C 3 8 7
0 4 5

NH I
J K5 J K
J K
L M

 

Bestimmen Sie im Folgenden, falls möglich, die Matrix H. 

a) A H H C H H E AP O P P O P 5  

b) 24 H 2 0 2 H 0P O P 5 P P  

c) < = < =det A BH A H B H E H H CNP N P P O P P 5  

d) 
< = < =

< =
< =

1

3

det C A det B 2H det E
1 1 det Adet A

2 det B 11

N
H I
J KP P
J K5 P P
J K NH IP PJ KJ KJ KP L ML M

 

Aufgabe 3.52: 

4 2 2
A 2 4 2

4 8 4

N NH I
J K5 J K
J KNL M

,  
2 1 3

B 1 2 1
3 1 2

NH I
J K5 N NJ K
J KNL M

,  
3 1 5

C 1 3 5
3 1 3

NH I
J K5 NJ K
J KNL M

 

Berechnen Sie X anhand der nachfolgenden Matrixgleichung: 

< = < = < = < =
1 11 T TT 1 1 2 TA B X A B A B C X 2 B C A 2 X A B X
N NN N NH I H IP P O P P P P P O P N O P P 5 O OJ K J K

L M L M
 

Aufgabe 3.53: 

8 2 2
A 8 4 1

6 2 1

H I
J K5 NJ K
J K
L M

,  
1,5 0,5 2,5

B 3,5 1 6
2 1 4

NH I
J K5 N NJ K
J KN NL M

,  
3 3 37

C 7 7 2
5 6 4

NH I
J K5 N NJ K
J KN N NL M

 

Berechnen Sie X anhand der nachfolgenden Matrixgleichung: 

< = < =< = < = < =T 11 T 1 13A 2 B X C 0 A 6 B X ( ) E B 2 B X C C A5
NN N N _P N P P N P O P N P P P N P 5 P P P N P P P`  
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Aufgabe 3.54: 

2 1 3 2
0 2 2 1

B
2 3 1 2
3 3 0 4

NH I
J K
J K5 J KN
J KJ KNL M

,  

31 1 11 24
56 8 8 48

C
19 13 1 24
8 8 8 0

N NH I
J KNJ K5 J KN N N
J KJ KN NL M

 

Sie wissen, dass 4 4A GA�  regulär und idempotent ist und C die Kofaktormatrix zu B 

ist. Bestimmen Sie, gegebenenfalls in Abhängigkeit der nicht gegebenen Matrizen: 

< = < =
1T1 2 3X det A B B A C
N

NH I5 P P P PJ K
L M

 

Aufgabe 3.55: 

< = 1T TM E Y Y Y Y
N

5 N P P P  

Es sei < =Tdet Y Y 0P Q , jedoch sei Y nicht quadratisch, d.h. 1YN  existiert nicht, M ist also 

nicht zwingend die Nullmatrix. Berechnen Sie < =2TM , vereinfachen Sie dabei so weit 

wie möglich. 

Aufgabe 3.56: 

1 2

1 2 3

1 2 3

2x x 3
5x 2x 4x 5
5x 2x 6x 2

O 5
O O 5
O O 5

 

Lösen Sie das lineare Gleichungssystem mithilfe der Matrixinversion. 

Aufgabe 3.57: 

1 2 3

2 3

1 2 3

2x 2x x 7
3x x 14

4x x 3x 4

N O 5
O 5

O N 5
 

Lösen Sie das LGS durch Inversion der Koeffizientenmatrix. 
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Aufgabe 3.58: 

1 2 3

1 2 3

1 3

2x 3x 4x 18
4x 3x 2x 10
x 5x 22

O N 5 N
O O 5

O 5
 

Lösen Sie das LGS durch Inversion der Koeffizientenmatrix über die Kofaktormatrix. 

Aufgabe 3.59: 

1 2 3

1 2 3

1 2 3

x 3x x 9
2x 6x x 11
4x 9x 7x 38

O N 5
N O 5
O N 5

 

Lösen Sie das Gleichungssystem unter Verwendung der Cramer-Regel. 

Aufgabe 3.60: 

1 2 0
A 3 1 4

1 0 1

NH I
J K5 NJ K
J KN NL M

 

a) Bestimmen Sie 1AN  über die Kofaktormatrix. 

b) Lösen Sie das dazugehörige LGS A x bP 5  mit < =T1b 6 2 25 N . 

c) Wie groß sind < =1det A , < =2det A  und < =3det A , wobei jA  mit j 1,2,35  diejenige 

Matrix A beschreibt, bei der die Spalte j durch den Ergebnisvektor b ersetzt wurde? 

Aufgabe 3.61: 

1 2 3

1 2 3

1 2 3

2x x x 8
x 2x 4x 0

3x 2x x 11

O N 5
N N 5
O O 5

 

Lösen Sie das LGS mithilfe der Cramer-Regel. 
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Aufgabe 3.62: 

N O N 5
N O 5

N O N 5

1 2 3

1 2 3

1 2 3

x 2x 4x 11
3x x 2x 2
2x 3x 5x 12

 

Lösen Sie das LGS mithilfe der Cramer-Regel. 

Aufgabe 3.63: 

1 2 3

1 2

2 3

2x x x 0
4x x 4

2x 2x 0

O O 5
N 5

O 5
 

Lösen Sie das LGS unter Verwendung der Cramer-Regel. 

Aufgabe 3.64: 

1 2 3

1 2 3

1 2 3

2x 3x x 6
3x x 6x 4

2x x 4x 1

O N 5
N N O 5 N

O N 5
 

Lösen Sie das LGS mithilfe der Cramer-Regel. 

Aufgabe 3.65: 

1 2 3

1 2 3

1 2 3

2x 4x x 3
x x x 4
x x x 0

N O 5 N
O O 5

N O N 5
 

Lösen Sie das LGS über die Cramer-Regel. 
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Aufgabe 3.66: 

1 2 3

1 2 3

1 3

3x 4x 3x 4
x 2x 3x 2

5x x 5

O N 5
N N 5 N

O 5
 

Lösen Sie das LGS unter Verwendung der Cramer-Regel. 

Aufgabe 3.67: 

1 2 3

1 2 3

1 3

x x 2x 0
3x 3x 4x 5
x 2x 4

N O 5
N O 5

N 5
 

Lösen Sie das LGS mithilfe der Cramer-Regel. 

Aufgabe 3.68: 

2 3

1 2 3

1 2 3

5x 2x 1
2x 4x 4x 2
3x 5x 2x 3

O 5
O O 5
N O 5

 

Lösen Sie das LGS unter Verwendung der Cramer-Regel. 

Aufgabe 3.69: 

a) Stellen Sie fest, für welche Werte des Parameters Aa � das nachfolgende LGS nicht 

eindeutig lösbar ist. (Die Verwendung des Determinantenkriteriums bietet sich an.) 

  
O O 5
O O 5
O O 5

1 2 3

1 2 3

1 2 3

2x 3x 4x 0
3x 4x 5x 1
4x 5x ax 2

 

b) Bestimmen Sie unter Verwendung der Cramer-Regel die Lösung des obigen Glei-

chungssystems. Gehen Sie davon aus, dass das LGS eindeutig lösbar ist. 
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Aufgabe 3.70: 

Ihnen ist nachfolgende erweiterte Koeffizientenmatrix bekannt: 

< =1
c 3 1 4

A b 3 2 2 1
d 1 2 1

N NH I
J K5 N NJ K
J KN N NL M

 

a) Stellen Sie fest, welche Beziehung zwischen c,dA�  gelten muss, damit das 

zugrunde liegende LGS eindeutig lösbar ist. 

b) Bestimmen Sie die eindeutige Lösung in Abhängigkeit von c und d über die Cra-

mer-Regel. 

c) Gibt es Werte für d, für die eine eindeutige nichtnegative Lösung existiert, falls 

c 75 N ? Falls ja, geben Sie an, was für d gelten muss. 

Sie kennen nun auch: 

< =2
5 4 1 0

A b 0 4 5 7
0 0 2 6

H I
J K5 J K
J K
L M

 

d) Lösen Sie zunächst das dieser neuen erweiterten Koeffizientenmatrix zugrunde 

liegende LGS. 

e) Nehmen Sie d 35  an, und bestimmen Sie die Werte für cA�, für welche die Lö-

sungen aus b) und d) identisch sind. 

Aufgabe 3.71: 

a) Was muss für eine Matrix gelten, damit sie regulär ist? 

b) Was muss für eine Matrix gelten, damit sie idempotent ist? 

c) Wie viele reguläre idempotente < =G3 3 -Matrizen gibt es? 
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4 Innerbetriebliche 
Materialverflechtung 

4.1 Einordnung und methodische Grundlagen 

Nach Kapitel 2 zeigt die innerbetriebliche Materialverflechtung eine weitere ökonomi-

sche Anwendung der Matrixrechnung auf. Komplexe Produktionsprozesse werden 

operabel dargestellt. Betrachtet wird im Rahmen dieses Modells ein Unternehmen, 

welches in mehreren Produktionsstufen aus Rohstoffen Endprodukte herstellt. (Zur 

vereinfachten Darstellung werden zunächst nur Produktionsprozesse mit zwei Pro-

duktionsstufen betrachtet. Eine Erweiterung auf beliebig viele Produktionsstufen ist 

jedoch problemlos möglich.) 

Aus einem Verflechtungsdiagramm, das die Produktionszusammenhänge graphisch 

darstellt, lassen sich Produktionsmatrizen erstellen, welche die Produktionsfaktoren 

für jede Produktionsstufe operabel zusammenfassen. 

Definition 4-1: Produktionsmatrix 

Die Produktionsmatrix GA m n
REM �  für den Gesamtproduktions-

prozess enthält die Mengen an Rohstoffen iR  mit 5i 1,...,m, die zur 

Produktion von je einer Einheit des Endprodukts jE  mit 5j 1,...,n be-

nötigt werden. 

Wird bei der Produktion mehr als eine Produktionsstufe durchlaufen, ergeben sich die 

Produktionsmatrizen je Produktionsstufe analog. Die Produktionsmatrix für den Ge-

samtproduktionsprozess kann dann als Matrixprodukt der einzelnen Produktionsmat-

rizen berechnet werden. 

C. Mayer, Lineare Algebra für Wirtschaftswissenschaftler,
DOI 10.1007/978-3-8349-6727-5_4, © Gabler Verlag | Springer Fachmedien Wiesbaden GmbH 2011
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Beispiel 4-1: Bestimmung der Produktionsmatrizen aus einem 

Pfeildiagramm 

Ein Unternehmen stellt zwei Endprodukte 1E , 2E  her, die über vier Zwi-

schenprodukte 1Z , 2Z , 3Z , 4Z  aus den drei Rohstoffen 1R , 2R , 3R  gefertigt 

werden. Für die Produktion ist das nachfolgende Verflechtungsdiagramm 

maßgebend: 

 

 

 

 

 

 

 

Aus dem Pfeildiagramm sind die Produktionsmatrizen der einzelnen Pro-

duktionsstufen ablesbar: 

RZ

3

2

1

4321

M
2200
0120
0021

R
R
R

ZZZZ

5
K
K
K

M

I

J
J
J

L

H

          

ZE

4

3

2

1

21

M

20
30
14
02

Z
Z
Z
Z

EE

5

K
K
K
K
K

M

I

J
J
J
J
J

L

H
 

Anhand dieses Beispiels werden im Folgenden einige Fragestellungen aufgeworfen, 

die mithilfe der Matrixrechnung leicht lösbar sind. 

Um festzustellen, wie viele Einheiten der Rohstofftypen iR  mit m,...,1i 5  zur Herstel-

lung einer Einheit des Endprodukts jE  mit n,...,1j 5  notwendig sind, ist die Produkti-

onsmatrix für den Gesamtproduktionsprozess REM  zu berechnen. Diese ergibt sich 

durch eine multiplikative Verknüpfung der einzelnen Produktionsmatrizen. 

1E  2E  

1Z  3Z  2Z  4Z  

2R  3R  1R  

2  4 2 31

2  1  2 1  2 2
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Beispiel 4-2: Bestimmung der Gesamtproduktionsmatrix 

K
K
K

M

I

J
J
J

L

H
5

K
K
K
K
K

M

I

J
J
J
J
J

L

H

P
K
K
K

M

I

J
J
J

L

H
5P5

100
58
210

20
30
14
02

2200
0120
0021

MMM ZERZRE  

Vergegenwärtigt man sich die bei der Multiplikation vorgenommenen 

Schritte und die ökonomische Bedeutung der Matrizen, ist die Berech-

nungsweise leicht verständlich. Das Element 21a  in der zweiten Zeile und 

ersten Spalte der Matrix REM  beispielsweise sagt aus, dass zur Herstellung 

einer Einheit von 1E  unter anderem 8 Einheiten von 2R  benötigt werden. 

Dieser Wert ergibt sich aus der Multiplikation der zweiten Zeile von RZM  

mit der ersten Spalte von ZEM . Hierbei gibt die erste Spalte der Matrix 

ZEM  an, dass zur Herstellung einer Einheit von 1E  genau 2 Einheiten von 

1Z , 4 Einheiten von 2Z  und keine Einheiten von 3Z  und 4Z  benötigt wer-

den. Die Anzahl der benötigten Einheiten von 2R  zur Herstellung je einer 

Einheit der Zwischenprodukte findet sich wiederum in der zweiten Zeile 

von RZM . Über die Multiplikation der zweiten Zeile von RZM  mit der ers-

ten Spalte von ZEM  ergibt sich folglich die Anzahl der benötigten Einhei-

ten von 2R  zur Herstellung einer Einheit von 1E . 

Die Anzahl der benötigten Rohstoffe < =TR 1 i mq R R R5 � �  zur Herstellung 

eines Produktionsplans < =TE 1 j nq E E E5 � �  ergibt sich als: 

ERER qMq P5  

Die Mengenvektoren q sind innerhalb des Modells stets als Spaltenvektoren gegeben. 

Beispiel 4-3: Bestimmung der benötigten Rohstoffe 

Zur Herstellung von 1.000 1E  und 500 2E  werden bei Verwendung des Ver-

flechtungsdiagramms aus Beispiel 4-1 nachfolgende Rohstoffe benötigt: 
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R RE E

10 2 11.000
1.000

q M q 8 5 10.500
500

0 10 5.000

H I H I
H IJ K J K5 P 5 P 5J KJ K J K
L MJ K J K

L M L M

 

Neben der Menge der benötigten Rohstoffe interessieren wir uns im Weiteren für die 

Materialkosten der Herstellung. Hierbei sind die Rohstoffpreise durch den Zeilenvek-

tor < =1 i mR R R Rp p p p5 � �  gegeben. Die Materialkosten je einer Einheit der 

Endprodukte ergeben sich als: 

RERE Mpk P5  

Die Preis- und Stückmaterialkostenvektoren p und k werden in diesem Modell stets 

als Zeilenvektoren ausgedrückt. Die Materialkosten für ein vorgegebenes Produkti-

onsprogramm Eq  können auf zwei Wegen bestimmt werden. Entweder wird der die 

Stückmaterialkosten pro Endprodukt enthaltende Vektor Ek  mit dem Produktionsplan 

verknüpft, also EE qkK P5  berechnet. Oder der Rohstoffpreisvektor wird mit dem zur 

Herstellung der gewünschten Endproduktmenge notwendigen Rohstoffvektor multi-

pliziert, also RR qpK P5  berechnet. In beiden Fällen ergibt sich als allgemeine Gesamt-

formel: 

ERER qMpK PP5  

Beispiel 4-4: Bestimmung der (Stück-) Materialkosten 

Liegt der Preis pro Rohstoff bei < =112pR 5 , so ergeben sich die Materi-

alkosten für je eine Einheit des Endprodukts als: 

< = < =E R RE

10 2
k p M 2 1 1 8 5 28 19

0 10

H I
J K5 P 5 P 5J K
J K
L M

 

Die Materialkosten, um den Produktionsplan < =TEq 1.000 5005  herzustel-

len, betragen dann: 

< =E E
1.000

K k q 28 19 37.500
500

H I
5 P 5 P 5J K

L M
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Abschließend bestimmen wir den entstehenden Gewinn, die Differenz von Erlösen 

und Kosten, unter Verwendung des Verkaufspreisvektors der Endprodukte 

< =1 j nE E E Ep p p p5 � � . Für den durch Produktion und Verkauf je einer Einheit 

der Endprodukte entstehenden Stückgewinn gilt zunächst: 

E E Eg p k5 N  

Der Gewinn aus einem vorgegebenen Produktionsprogramm Eq  berechnet sich nun 

als Produkt von Stückgewinn und Produktionsprogramm zu E EG g q5 P . Alternativ 

ergibt sich der Gewinn als die Differenz des Erlöses E EE p q5 P  und der zugehörigen 

Materialkosten EE qkK P5 . Insgesamt folgt somit: 

< =E R RE EG p p M q5 N P P  

Beispiel 4-5: Bestimmung des (Stück-) Gewinns 

Bei Verkaufspreisen für die Endprodukte in Höhe von < =Ep 45 305  be-

rechnet sich der Gewinn für je eine Einheit des Endprodukts als: 

< = < = < =E E Eg p k 45 30 28 19 17 115 N 5 N 5  

Der Gewinn bei einer Produktion von < =TEq 1.000 5005  liegt bei: 

< =E E
1.000

G g q 17 11 22.500
500

H I
5 P 5 P 5J K

L M
 

4.2 Aufgaben 

Aufgabe 4.1: 

Ein Unternehmen produziert (in Produktionsstufe 2) zwei Endprodukte 1E  und 2E  aus 

vier zuvor gefertigten Zwischenprodukten 1Z , 2Z , 3Z  und 4Z . Deren Anfertigung 

erfolgt (in Produktionsstufe 1) unter Einsatz der drei Rohstoffe 1R , 2R  und 3R . Die 
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Zusammenhänge zwischen Rohstoffeinsatz, Zwischenprodukt- und Endproduktferti-

gung sind der nachstehenden Skizze zu entnehmen. 

a) Bestimmen Sie den Bedarf an Rohstoffeinheiten iR  (i = 1, 2, 3) zur Produktion je 

einer Endprodukteinheit kE  (k = 1, 2). 

b) Bestimmen Sie den Bedarf an Rohstoffeinheiten iR  (i = 1, 2, 3) zur Produktion von 

200 Einheiten des Endprodukts 1E  und 300 Einheiten des Endprodukts 2E . 

c) Wie hoch sind die Rohstoffkosten zur Produktion je einer Endprodukteinheit kE  

(k = 1, 2), wenn die Preise für je eine Rohstoffeinheit iR  (i = 1, 2, 3) dem Vektor 

< =Rp 4 2 15  entsprechen? 

Aufgabe 4.2: 

Ein Unternehmen fertigt aus den Rohstoffen 1R , 2R , 3R  die Endprodukte 1E , 2E , 3E . 

Sie kennen die Verflechtungsmatrix 

RE

1 4 1
M 2 0 3

2 1 2

H I
J K5 J K
J K
L M

. 

a) Wie hoch ist der Rohstoffverbrauch Rq  zur Produktion von < =TEq 15 10 105 ? 

b) Sie kaufen Rohstoffe zum Preis < =Rp 4 4 105  ein. Welche Kosten entstehen beim 

Verbrauch der in a) bestimmten Menge Rq ? 

2R  1R  

    2

3R  

1E  2E  

4Z  3Z  2Z  1Z  

 1   51 

2 

12

3     1 1   1
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c)  Durch den Verkauf der Produktionsmenge Eq  aus a) erwirtschaften Sie Erlöse in 

Höhe von 3 000 €. Welchen Gewinn erzielen Sie, wenn die Rohstoffpreise Rp  aus b) 

gelten und zusätzlich noch fixe Kosten in Höhe von 1.000 € anfallen?  

Aufgabe 4.3: 

In einem Unternehmen werden in einem zweistufigen Produktionsprozess aus drei 

Rohstoffen 1R , 2R  und 3R  über drei Zwischenprodukte 1Z , 2Z  und 3Z  zwei Endpro-

dukte 1E  und 2E  hergestellt. Die Produktionszusammenhänge können den folgenden 

Matrizen entnommen werden: 

RZ

4 0 2
M 2 1 2

3 2 1

H I
J K5 J K
J K
L M

,  ZE

5 2
M 3 1

2 2

H I
J K5 J K
J K
L M

 

Am Markt kann für eine Einheit von 1E  ein Preis von 150 € und für eine Einheit von 2E  

ein Preis von 100 € durchgesetzt werden. Eine Einheit von 1R  kostet 3 €, eine von 2R  

1 € und eine von 3R  2 €. Sie möchten jeweils 100 Einheiten von 1E  und 2E  produzieren. 

a) Wie hoch ist der Rohstoffverbrauch für das angegebene Produktionsprogramm? 

b)  Wie hoch sind die Materialkosten je einer Einheit von 1E  bzw. 2E ? 

c) Wie hoch ist der Gewinn (Erlös minus Materialkosten), falls Sie das angegebene 

Produktionsprogramm zu den angegebenen Preisen absetzen? 

Aufgabe 4.4: 

In einem Unternehmen werden in einem zweistufigen Produktionsprozess aus drei 

Rohstoffen 1R , 2R  und 3R  über zwei Zwischenprodukte 1Z  und 2Z  zwei Endprodukte 

1E  und 2E  hergestellt. Die Produktionszusammenhänge können den folgenden Matri-

zen entnommen werden: 

RZ

6 1
M 2 4

5 3

H I
J K5 J K
J K
L M

,  ZE
3 2

M
1 4
H I
5 J K
L M
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Am Markt kann für eine Einheit von 1E  ein Preis von 133 € und für eine Einheit von 2E  

ein Preis von 122 € durchgesetzt werden. Eine Einheit von 1R  kostet 3 €, eine von 2R  

1 € und eine von 3R  2 €. Sie produzieren 300 Einheiten von 1E  und 250 Einheiten von 

2E . 

a) Bestimmen Sie die Matrix REM . 

b) Wie hoch ist der Rohstoffverbrauch für das angegebene Produktionsprogramm? 

c) Wie hoch sind die Materialkosten je einer Einheit von 1E  bzw. 2E ? 

d) Wie hoch ist der Gewinn (Erlös minus Materialkosten), falls Sie das angegebene 

Produktionsprogramm zu den angegebenen Preisen absetzen? 

Aufgabe 4.5: 

Sie sind Möbelbauer und produzieren Schränke, Tische und Stühle. Hierfür benötigen 

Sie lediglich Holz, Schrauben und Klebstoff. Zur Herstellung eines Schranks benötigen 

Sie 9 m² Holz, 3 Päckchen Schrauben und 2 Tuben Klebstoff. Für einen Tisch verwen-

den Sie 2 m² Holz, 1 Päckchen Schrauben und 1 Tube Klebstoff. Ein Stuhl beansprucht 

lediglich 1 m² Holz und 1 Päckchen Schrauben. 

a) Stellen Sie die Produktionsmatrix auf. 

Sie haben 1.400 Einheiten der Rohstoffe auf Lager. Zudem liegt doppelt soviel Holz 

(in m²) und halb soviel Klebstoff (in Tuben) wie Schrauben (in Päckchen) auf Lager. 

b) Wie viele Rohstoffe der einzelnen Sorten besitzen Sie? 

c) Wie viele Rohstoffe jeder Sorte bleiben im Lager, wenn Sie Schränke, Tische bzw. 

Stühle in Höhe von < =TEq 50 100 1505  herstellen? 

1 m² Holz hat Sie 10 € gekostet, 1 Päckchen Schrauben 2 € und 1 Tube Klebstoff 3 €. Für 

einen Schrank erzielen Sie einen Erlös in Höhe von 250 €, für einen Tisch in Höhe von 

50 € und für einen Stuhl in Höhe von 15 €. 

d) Wie hoch ist Ihr Gewinn (Erlös minus Materialkosten), falls Sie die gesamte in c) 

produzierte Menge absetzen können? 
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Ihre Lagerhallen sind nun komplett geleert. In den Folgejahren kaufen Sie stets gerade 

so viele Rohstoffe, wie Sie zur Produktion der Endprodukte benötigen. 

e) Im nächsten Jahr (Jahr 2) können Sie Schränke, Tische bzw. Stühle in Höhe von 

< =T2,Eq 40 80 1205  absetzen, in Jahr 3 in Höhe von < =T3,Eq 45 120 925 . Be-

rechnen Sie die relative Gewinnänderung zum nächsten und vom nächsten zum 

übernächsten Jahr. Wie verhält sich der Gewinn in Jahr 3 zum Gewinn in Jahr 1?  

Aufgabe 4.6: 

Ihr Unternehmen stellt in drei Produktionsstufen aus drei Rohstofftypen drei ver-

schiedene Endprodukte her. Ihnen sind die nachfolgenden Materialverflechtungen 

zwischen Rohstoffen (R) und Vorprodukten (V), zwischen Vorprodukten und Zwi-

schenprodukten (Z) sowie zwischen Zwischenprodukten und Endprodukten (E) be-

kannt: 

RV

0,3 0,4 0,2 0,2
M 0,1 0,2 0,4 0,5

0,2 0,1 0,2 0,3

H I
J K5 J K
J K
L M

,  VZ

0,2 0,2 0,1
0,3 0,4 0,1

M
0,2 0,1 0,2
0,2 0 0,3

H I
J K
J K5 J K
J KJ K
L M

,  ZE

0,1 0,2 0,4
M 0,3 0,2 0,2

0,1 0,2 0,3

H I
J K5 J K
J K
L M

 

Der Einkaufspreis für je ein Kilogramm des Rohstoffs 1, 2 bzw. 3 liegt bei 10, 20 bzw. 

10 €. Sie erlösen am Markt für ein Kilogramm des Endprodukts 1, 2 bzw. 3 einen Be-

trag von 5, 5 bzw. 8 €. Berechnen Sie für alle drei Endprodukte den Gewinn (Erlös 

minus Materialkosten), den Sie beim Verkauf eines Kilogramms erzielen. 

Aufgabe 4.7: 

In einem Unternehmen werden in einem zweistufigen Produktionsprozess aus drei 

Rohstoffen 1R , 2R  und 3R  über drei Zwischenprodukte 1Z , 2Z  und 3Z  drei Endpro-

dukte 1E , 2E  und 3E  hergestellt. Die Produktionszusammenhänge können den folgen-

den Matrizen entnommen werden: 



 4 Innerbetriebliche Materialverflechtung 

 84 

RZ

1 2 1
M 2 1 2

1 2 1

H I
J K5 J K
J K
L M

,  ZE

2 1 2
M 1 0 1

2 1 2

H I
J K5 J K
J K
L M

 

Am Markt kann für eine Einheit von 1E  ein Preis von 50 €, für eine Einheit von 2E  ein 

Preis von 20 € und für eine Einheit von 3E  ein Preis von 50 € durchgesetzt werden. 

Eine Einheit von 1R  kostet 3 €, eine von 2R  1 € und eine von 3R  2 €. Sie möchten je-

weils 100 Einheiten von 1E , 2E  und 3E  produzieren. 

a) Wie hoch ist der Rohstoffverbrauch für das angegebene Produktionsprogramm? 

b) Wie hoch ist der Gewinn (Erlös minus Materialkosten), falls Sie das Produktions-

programm zu den angegebenen Preisen absetzen? 

c) Welche Kosten entstehen dem Unternehmen, falls es einen Vorrat an Zwischen-

produkten von jeweils 50 Einheiten von 1Z , 2Z  und 3Z  herstellt? 

d) Wegen einer Rohstoffkrise sind alle drei Rohstoffe nur noch zum Preis von 4 € je 

Einheit erhältlich. Der Verkaufspreis des Endproduktes 1E  kann auf 80 € je Einheit, 

der von 2E  auf 50 € je Einheit erhöht werden. Wie hoch muss der Preis des dritten 

Endproduktes 3E  sein, um beim angegebenen Produktionsprogramm einen Ge-

winn (Erlös minus Materialkosten) von 5.000 € zu erzielen? 

Aufgabe 4.8: 

In einem Unternehmen werden aus fünf Rohstoffen iR  (i = 1, 2, 3, 4, 5) vier Vorproduk-

te iV  (i = 1, 2, 3, 4), aus diesen drei Zwischenprodukte iZ  (i = 1, 2, 3) und hieraus wie-

derum zwei Endprodukte iE  (i = 1, 2) gefertigt. Die Produktionsmatrizen für die ein-

zelnen Produktionsstufen seien: 

H I
J K
J K
J K5
J K
J K
J K
L M

RV

2 2 4 2
3 2 4 4
2 1 2 4M
3 2 4 4
2 4 3 2

,  

H I
J K
J K5 J K
J KJ K
L M

VZ

3 4 3
1 2 4

M
2 3 0
1 5 2

,  
H I
J K5J K
J K
L M

ZE

4 10
M 6 10

8 10
 

a) Bestimmen Sie zunächst die Produktionsmatrizen VEM , REM . 
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b) Wie hoch ist der Rohstoffverbrauch Rq  bei einer Produktion von < =5 T
Eq 10 5  

und wie viele Vorprodukte Vq  werden dabei hergestellt? 

c) Die Preise für die Endprodukte betragen < =5Ep 30.000 15.940 . Sie produzieren 

und verkaufen < =5
T

Eq 10 20 . Für die Rohstoffpreise gilt: 1R  kostet 7 €, 5R  hinge-

gen 12 €. Die Preise von 2R , 3R  und 4R  stehen in einem festen Verhältnis zueinan-

der: 2R  ist dreimal so teuer wie 3R , welcher wiederum halb so teuer ist wie 4R . 

Wie hoch muss der Preis von 3R  sein, damit Sie einen Gewinn (Erlös minus Mate-

rialkosten) von 100.000 € erwirtschaften? 

Aufgabe 4.9: 

Ihr Unternehmen erzeugt aus vier Rohstoffarten zunächst drei verschiedene Zwi-

schenprodukte, welche zu zwei Endprodukten verarbeitet werden. Ihnen sind die 

Produktionsmatrizen der Produktionsstufen sowie der Vektor mit den Einkaufsprei-

sen der Rohstoffe bekannt: 

RZ

1 2 6
2 0 7

M
3 5 0
4 1 2

H I
J K
J K5 J K
J KJ K
L M

,  ZE

4 7
M 4 0

4 2

H I
J K5 J K
J K
L M

,  < =Rp 0,1 0,05 0,1 0,055  

a) Wie viele Einheiten der Rohstofftypen iR  mit i 1,...,45  sind zur Herstellung je 

einer Einheit des Endprodukts jE  mit j 1,25  notwendig? 

b) Wie viele Rohstoffe Rq  sind zur Herstellung des Produktionsplans < =TEq 10 205  

notwendig? 

c) Wie hoch sind die Materialkosten je einer Einheit des Endprodukts jE  mit j 1,25 ? 

d) Wie hoch sind die bei der Herstellung des Produktionsplans < =TEq 30 1005  ent-

stehenden Materialkosten? 
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Aufgabe 4.10: 

In einem Unternehmen werden in einem zweistufigen Produktionsprozess aus vier 

Rohstoffen 1R , 2R , 3R , 4R   über drei Zwischenprodukte 1Z , 2Z , 3Z  zwei Endprodukte 

1E  und 2E  hergestellt. Für diesen Produktionsprozess sind die beiden folgenden Pro-

duktionsmatrizen gegeben:  

RZ

1 2 0
2 1 1

M
1 2 3
0 1 1

H I
J K
J K5 J K
J KJ K
L M

,  ZE

2 3
M 4 1

3 3

H I
J K5 J K
J K
L M

 

a) Wie hoch ist der Rohstoffverbrauch für die Produktion von 145 Einheiten von 1E  

und 60 Einheiten von 2E ?  

b) Für das Produktionsprogramm aus Aufgabenteil a) können für eine Einheit von 1E  

80 € und für eine von 2E  60 € am Markt durchgesetzt werden. Eine Einheit von 1R  

kostet 2 €, eine von 2R  1 €, eine von 3R  1 € und eine von 4R  2 €. Wie hoch ist der 

Gewinn (Erlös minus Materialkosten) für das Produktionsprogramm aus a)? 

c) Wie viele Endprodukte müssten produziert und verkauft werden, wenn der Ge-

winn aus Aufgabenteil b) vervierfacht und von 1E  ebenso viel wie von 2E  herge-

stellt werden soll? 

d) Welchen zusätzlichen Rohstoffbedarf hat das Unternehmen, um einen Sicherheits-

bestand an Zwischenprodukten von jeweils 10 Einheiten 1Z , 2Z  und 3Z  aufzubau-

en? Welche Materialkosten entstehen dem Unternehmen hierbei? Verwenden Sie 

die Rohstoffpreise aus Teilaufgabe b). 

Aufgabe 4.11: 

Sie sind in der Logistik eines Tapetenherstellers beschäftigt, der die 2 Tapetenvarianten 

"Witzig" und "Unwitzig" herstellt. Dort sind Sie für den Einkauf der Rohstoffe Papier, 

Farbe, Leim, Körner und Plastikfolie zuständig, welche für die Herstellung und Verpa-

ckung der Tapeten nötig sind. Ihre Firma verkauft die Tapeten in 3 verschiedenen 

Paketen. Der Fertigungs- und Verpackungsprozess besteht aus 2 bzw. 3 Produktions-
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stufen (bei der Variante "Unwitzig" wird noch eine hässliche Körnung in die Tapete 

eingearbeitet). Somit stellt sich der Produktionsprozess wie folgt dar: 

a) Ist das obige, den Produktionsprozess beschreibende Pfeildiagramm direkt in 

Produktionsmatrizen umwandelbar? Falls nein, warum nicht? Was könnten Sie 

tun, damit es möglich wird? Bestimmen Sie letztendlich REM . 

b) Sie sollen "Witzig"-, Kombi- und "Unwitzig"-Pakete in Höhe von < =TEq 10 5 35  

an einen Kunden liefern. Reicht Ihr Rohstofflager an Farbe, Papier, Leim, Körnern 

und Plastikfolie in Höhe von < =TRq 500 350 120 220 505  dazu aus oder müs-

sen Sie etwas nachkaufen? Falls ja, wie viel? 

 

 

Farbe Papier 
Plastik-

folie Körner Leim 

Rohtapete Körnung 

Tapete 
"Witzig" 

Tapete 
"Unwitzig" 

"Unwitzig"-
Paket 

Kombi-
Paket 

"Witzig"-
Paket 

12 

  2 

4   3 

2   3   2 

5 2  1  3 4 

9 

   1     12 
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Aufgabe 4.12: 

Ihr Unternehmen stellt aus den Vorprodukten 1V  und 2V  die Endprodukte 1E  und 2E  

her, der Produktionsprozess wird dabei beschrieben durch: 

VE
6 1

M
2 1
H I
5 J K
L M

 

a) Nach einem langen Meeting sollen Sie Ihrem Chef die aktuellen Beschaffungsmen-

gen für die Vorprodukte Vq  mitteilen, doch leider sind Sie zwischendrin eingedöst 

und haben die genauen Angaben nicht mitbekommen. Sie können sich aber noch 

an Folgendes erinnern: 

 Die Menge an Vorprodukt 2 ist doppelt so groß wie die Menge an Vorprodukt 1. 

 Die Beschaffung von Vq  verursachte Kosten in Höhe von 2.000 €. 

 Die Beschaffungspreise für die Vorprodukte sind < =Vp 4 35 . 

 Bestimmen Sie Vq . 

b) Sie bekommen eine Anfrage aus der Produktion. Wie viele Einheiten der Endpro-

dukte Eq  können Sie mit einem Vorrat an Vorprodukten < =TVq 400 3005  herstel-

len, wenn Sie die obige Produktionsmatrix VEM  unterstellen? 

Aufgabe 4.13: 

Ein Unternehmen fertigt aus den Rohstoffen 1R , 2R  zunächst die Vorprodukte 1V , 2V . 

Aus diesen entstehen die Zwischenprodukte 1Z , 2Z , die schließlich zu den Endpro-

dukten 1E , 2E  weiterverarbeitet werden. Sie kennen die folgenden Verflechtungsmat-

rizen: 

RV
1 2

M
0 1
H I
5 J K
L M

,  VZ
0 2

M
2 1
H I
5 J K
L M

,  ZE
3 1

M
1 1
H I
5 J K
L M

 

a) Bestimmen Sie die Gesamtverflechtungsmatrix REM . 

b) Wie hoch ist der Rohstoffverbrauch Rq  zur Produktion von < =TEq 15 105 ? 
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c) Wie viele Endprodukte stellt das Unternehmen mit seinem anfänglichen Zwi-

schenproduktlager in Höhe von < =TL
Zq 20 155  her, wenn das Zwischenprodukt-

lager bis auf 5 Stück von 2Z  geleert wird? 

Aufgabe 4.14: 

Als Manager Ihres neu gegründeten Unternehmens haben Sie aus Ihrer Produktions-

abteilung folgende Zusammenhänge vorliegen: In Ihrem Unternehmen werden aus 

drei Rohstoffarten (R) vier Vorprodukte (V) gefertigt. Aus diesen entstehen drei ver-

schiedene Zwischenprodukte (Z), die schließlich zu zwei Endprodukten (E) weiterver-

arbeitet werden. Da Sie sich auf die wesentlichen Dinge konzentrieren möchten, be-

schließen Sie, ausschließlich Materialkosten zu berücksichtigen. 

Die Produktionsmatrizen RVM , VZM  und REM  sehen wie folgt aus:  

RV

2 0 2 0
M 1 1 0 1

2 2 1 1

H I
J K5 J K
J K
L M

,  VZ

1 0 2
0 1 1

M
2 2 2
1 2 1

H I
J K
J K5 J K
J KJ K
L M

,  RE

60 100
M 40 55

82 120

H I
J K5J K
J K
L M

 

a) Bestimmen Sie zunächst die Produktionsmatrizen RZM  und ZEM . 

b) Wie hoch sind Rohstoffverbrauch Rq  und Zwischenproduktbedarf Zq  bei einer 

Produktion von < =TEq 5 95 ? 

c) Sie kaufen die Rohstoffe zu den Preisen < =Rp 30 100 505  ein. Aufgrund langfris-

tiger  vertraglicher Verpflichtungen verkaufen und produzieren Sie in jeder Perio-

de die Menge < =TEq 5 95  zu den Preisen < =Ep 10.000 15.0005 . Wie hoch ist der 

Gewinn (Erlös minus Materialkosten) unter diesen Voraussetzungen? 

d) Ihr Zulieferer erhöht nun den Rohstoffpreis 
1Rp  um 10 €. Daraufhin brechen Sie in 

Tränen aus und bringen ihn dazu, Ihnen folgendes Alternativangebot zu machen: 

Sie können bei ihm statt der Rohstoffe alle Zwischenprodukte zu den Preisen 

< =1Z Zp p 800 1.0005  einkaufen. Wie hoch darf 
1Zp  höchstens sein, damit Sie das 

neue Angebot des Zulieferers präferieren? Ab welchem Preis 
1Zp  schreiben Sie 

schwarze Zahlen? (Es werden weiterhin < =TEq 5 95  produziert und abgesetzt.) 
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Aufgabe 4.15: 

In einem Unternehmen werden aus den Rohstoffen 1R , 2R , 3R  zunächst die Zwischen-

produkte 1Z , 2Z , 3Z  und hieraus die Endprodukte 1E , 2E , 3E  hergestellt. Sie kennen 

nachfolgende Produktionsmatrizen: 

RZ

3 2 3
M 4 0 3

1 5 1

H I
J K5 J K
J K
L M

,  ZE

1 1 4
M 3 3 3

3 2 2

H I
J K5 J K
J K
L M

 

a) Bestimmen Sie die Gesamtproduktionsmatrix REM . 

b) Wie hoch ist der Rohstoffverbrauch Rq  zur Produktion von < =TEq 35 20 405 ? 

c) Sie kaufen die Rohstoffe zum Preis < =Rp 4 3 55  ein und verkaufen die Endpro-

dukte für < =Ep 200 410 3205 . Wie hoch sind die Materialkosten, der Erlös und 

der Gewinn (Erlös minus Materialkosten) bei der Produktion der in b) angegebe-

nen Menge?  

d) Die Rohstoffanbieter erhöhen die Preise auf < =neu
Rp 5 5 55 . Bestimmen Sie, wel-

chen Preis Sie für 2E  verlangen müssen, um den gleichen Gewinn wie bisher zu er-

zielen, wenn Sie aufgrund langfristiger Verträge die Preise für 1E  und 3E  unverän-

dert lassen müssen. 

Aufgabe 4.16: 

Ein Unternehmen besitzt ein Rohstofflager mit den Rohstoffen < =TL
Rq 10 20 105  und 

ein Zwischenproduktlager mit den Zwischenprodukten < =TL
Zq 30 205 . Die Einkaufs-

preise für die einzelnen Rohstoffe betragen 1p 55  € pro Stück, 2p 35   € pro Stück und 

3p 45  € pro Stück. Die Matrix RZM  zur Erstellung der Zwischenprodukte aus den 

Rohstoffen lautet: 

RZ

1 2
M 2 1

3 1

H I
J K5 J K
J K
L M

 



 Aufgaben
 4.2 

 

 91 

a) Welche Materialkosten entstehen dem Unternehmen bei einer Auffüllung seiner 

Lagerbestände auf < =TL,neu
Rq 20 25 155  und < =TL,neu

Zq 35 255 ? 

Das Unternehmen produziert zudem die Endprodukte < =TE 1 2q E E5 , die aus den 

beiden Zwischenprodukten über ZE
2 1

M
3 2
H I
5 J K
L M

 hergestellt werden. In die weiteren 

Überlegungen sollen die vorhandenen Rohstoffe nicht eingehen. 

b) Wie viele Endprodukte stellt das Unternehmen mit seinem anfänglichen Zwi-

schenproduktlager in Höhe von < =TL
Zq 30 205  her, wenn bis auf 19 Stück von 1Z  

das Zwischenproduktlager geleert wird? 

c) Von Endprodukt 2E  sollen genau 8 Stück hergestellt werden. Wie viele Mengen-

einheiten von 1E  können höchstens hergestellt werden, wenn der Lagervorrat an 

Zwischenprodukten in Höhe von < =TL
Zq 30 205  ganz zur Verfügung steht und 

von den Endprodukten nur ganze Mengeneinheiten hergestellt werden können? 

Wie viele Zwischenprodukte bleiben dabei auf Lager? 

Aufgabe 4.17: 

Zur Herstellung der beiden von Ihrem Unternehmen produzierten Endprodukte wer-

den Rohstoffe, Vorprodukte und Zwischenprodukte benötigt. Sie kennen die Verflech-

tungsmatrizen 

RV
1 1

M
2 2
H I
5 J K
L M

,  VZ
1 a

M
2 1
H I
5 J K
L M

  und  ZE
2 0

M
0 4
H I
5 J K
L M

. 

Leider ist Ihnen der genaue Wert des Parameters a entfallen. Sie wissen aber noch, 

dass bei einer Produktion von < =TEq 50 255  der Rohstoffverbrauch 

< =TRq 700 1.4005  beträgt. Berechnen Sie aA�. 

Aufgabe 4.18: 

Ihr Unternehmen stellt in zwei Produktionsschritten aus drei Rohstoffen 1R , 2R , 3R  

zuerst vier Zwischenprodukte 1Z , 2Z , 3Z , 4Z  und daraus zwei Endprodukte 1E , 2E  her. 
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Sie arbeiten als Praktikant im Controlling und sollen dem Vorstand den Gewinn (Erlös 

minus Materialkosten) der letzten Woche präsentieren. 

a) Der Vorstand ist ein alter Mannheimer Schüler und verlangt, dass Sie die Gewinn-

gleichung allgemein in Matrixschreibweise aufstellen. (Vereinfachend sei ange-

nommen, dass die einzigen Erlöse durch den Verkauf der Endprodukte zu 
1 2

Ep GA�  und die einzigen Kosten durch den Einkauf der Rohstoffe zu 1 3
Rp GA�  

entstehen.) 

b) Nun öffnen Sie die Bücher. Verkauft wurden 100 Einheiten 1E  zu je 80 € und 20 2E  

zu je 50 €. Als einzige Kosten fielen die zur Produktion notwendigen Materialkos-

ten für die Rohstoffe an. Deren Einkaufspreis betrug 2 € je Einheit 1R , 2 € je Einheit 

2R  und 5 € je Einheit 3R . Jetzt fehlen nur noch die Produktionszusammenhänge in 

Form der Produktionsmatrizen. Über diese, wie sollte es anders sein, haben Sie 

Kaffee gekippt, weshalb sie nicht mehr vollständig lesbar sind: 

RZ

2 4 1 a
M 1 2 1 0

1 0 0 2

H I
J K5 J K
J K
L M

,  ZE

4 0
1 1

M
0 2
1 1

H I
J K
J K5 J K
J KJ K
L M

 

 Sie schwitzen, doch Ihr ehrgeiziger Kollege hatte in weiser Voraussicht, als die 

Matrix RZM  noch vollständig vorhanden war, den Gewinn schon berechnet. Dieser 

betrug 1.080 €. Bestimmen Sie den fehlenden Wert aA�  in der Matrix RZM , damit 

Sie bei Ihrer Präsentation so tun können, als sei alles auf Ihrem Mist gewachsen. 

Aufgabe 4.19: 

Als neuer Mitarbeiter eines Wurstherstellers offenbaren sich Ihnen die nachfolgenden 

Produktionszusammenhänge. Als Endprodukte verkaufen Sie Brat-, Blut- und Leber-

würste. Zur Produktion dieser Delikatessen werden Schafe, Hühner, Schweine und 

Rinder verwurstet. Für die "Herstellung" (auch Aufzucht genannt) dieser tierischen 

Zwischenprodukte betreiben Sie eine Farm. Um die Tiere besonders schnell mästen zu 

können, verfüttern Sie eine Spezialmischung aus Löwenzahn, Körnern, Blattspinat 

und Karotten. Nachfolgende Graphik stellt die innerbetriebliche Materialverflechtung 

in Ihrem gesamten Produktionsprozess dar: 



 Aufgaben
 4.2 

 

 93 

 

In der ersten Produktionsstufe ist angegeben, wie viel Kilogramm des jeweiligen Fut-

ters ein Schaf, Huhn, Schwein bzw. Rind benötigt. Die Zahlen der zweiten Produkti-

onsstufe weisen aus, wie viele Tiere zur Herstellung je einer Tonne Bratwurst, Blut-

wurst bzw. Leberwurst benötigt werden. 

a) Stellen Sie die Produktionsmatrizen RZM  und ZEM  auf und berechnen Sie REM . 

b) Die Preise der Rohstoffe liegen pro Kilogramm bei: 

< = < =R Löwenzahn Körner Blattspinat Karottenp p p p p 2 2 3 45 5  

 Ihre Vertriebspartner nehmen Ihnen folgende Mengen (in Tonnen) ab: 

< = < =TE Bratwurst Blutwurst Leberwurstq q q q 10 22 305 5  

 Die Preise für Blut- und Leberwurst sind aufgrund vertraglicher Bestimmungen 

festgesetzt auf Blutwurstp 6,905  € pro kg bzw. Leberwurstp 5,905  € pro kg. Wie hoch 

muss der Preis für 1 kg Bratwurst sein, wenn Sie einen Gewinn (Erlös minus Mate-

 20 

Blattspinat Körner Löwenzahn Karotten 

Schweine Hühner Schafe Rinder 

Leberwurst Blutwurst Bratwurst 

30

  3 

  10 

20
15 50 

 40

 40  10 

 5 

 7 

  6  2 

  3
   9

 8 

  1
  11 
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rialkosten) von 200.000 € erwirtschaften möchten? Gehen Sie davon aus, dass außer 

den Rohstoffkosten keine weiteren Kosten anfallen. 

c) Sie erwarten steigende Rohstoffpreise und haben deshalb in großen Mengen ein-

gekauft. In ihrer Vorratskammer lagern 3.000 kg Löwenzahn, 15.000 kg Körner, 

23.000 kg Blattspinat und 1.000 kg Karotten. Zudem hängen in Ihrem Kühlhaus 40 

Schafe, 102 Hühner, 106 Schweine und 232 Rinder, die alle bereits geschlachtet sind 

und nur darauf warten, zu Wurst weiterverarbeitet zu werden. Reicht die genannte 

Futtermenge aus, um die in Aufgabenteil b) aufgeführte Menge ausliefern zu kön-

nen, oder müssen Sie Futter nachkaufen? Wie sieht Ihr Lagerbestand nach dem 

Verkauf aus? 

d) Aufgrund Ihrer hervorragenden Fähigkeiten werden Sie von der Konkurrenz ab-

geworben. Ihr neues Unternehmen stellt zwar dieselben Wurstsorten her, doch 

verarbeitet es keine Rinder und benötigt somit auch keine Karotten. Ihr Vorgänger 

hat folgende Produktionsmatrizen hinterlassen: 

RZ

40 10 10
M 20 30 20

30 20 10

H I
J K5 J K
J K
L M

,  RE

300 300 200
M 450 400 500

300 300 300

H I
J K5 J K
J K
L M

 

 Wie viele Tiere benötigen Sie, um den Auftrag < =TEq 20 20 305  zu erfüllen? 

Aufgabe 4.20: 

Ein Unternehmen fertigt aus den Rohstoffen 1R , 2R , 3R  zunächst die Zwischenpro-

dukte 1Z , 2Z , 3Z  und hieraus die Endprodukte 1E , 2E , 3E . Sie kennen die Verflech-

tungsmatrizen 

RZ

1 3 1
M 2 0 1

1 1 2

H I
J K5 J K
J K
L M

  und  ZE

1 2 1
M 2 1 3

2 3 3

H I
J K5 J K
J K
L M

. 

a) Bestimmen Sie die Gesamtverflechtungsmatrix REM . 

b) Wie hoch ist der Rohstoffverbrauch Rq  zur Produktion von < =TEq 15 10 105 ? 
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c) Sie kaufen die Rohstoffe ein zum Preis von < =Rp 5 4 55  und verkaufen die End-

produkte für < =Ep 100 200 1505 . Wie hoch sind die Kosten K, der Erlös E und 

der Gewinn G bei der Produktion der in b) angegebenen Menge? 

d) Sie bekommen das Angebot für 725 € eine neue Maschine zu kaufen, welche zu  

einem veränderten Rohstoffverbrauch im Produktionsprozess führt. Allerdings 

sind Sie noch nicht sicher, welche Spezifikationen der Parameter a in der neuen 

Gesamtverflechtungsmatrix 

neu
RE

a 8 13
M a 7 5

7 9 10

H I
J K5 J K
J K
L M

 

 erfüllen muss, damit mindestens ein Gewinn in Höhe von 1.000 € erzielt werden 

kann. Bestimmen Sie den kritischen Wertebereich von Parameter a, wobei die in b) 

angegebene Menge produziert werden soll und die Preise denen aus c) entspre-

chen.  

Aufgabe 4.21: 

Nachfolgende Produktionsmatrizen zwischen Rohstoffen, Vor-, Zwischen- und End-

produkten sind Ihnen bekannt: 

RV

4 a 2
M 0 2 1

1 2 1

H I
J K5 J K
J K
L M

,  VZ

1 1 1 1
M 5 2 1 2

2 6 3 4

H I
J K5 J K
J K
L M

,  ZE

6 b
5 1

M
5 6
3 1

H I
J K
J K5 J K
J KJ K
L M

 

Darüber hinaus wissen Sie, dass für die Produktion einer Einheit von 1E  Rohstoffe in 

Höhe von Rq  und für die Produktion einer Einheit von 2E  Rohstoffe in Höhe von Rc qP  

benötigt werden. Bestimmen Sie a,b,cA� . 
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Aufgabe 4.22: 

11 12

RE 22 23

31 33

x x 4
M 3 x x

x 5 x

H I
J K5 J K
J K
L M

 

Wie viele Einheiten von 1R  werden zur Herstellung von 150 Einheiten von 2E  benötigt, 

wenn (neben einigen Einheiten von 1R  und 2R ) genau 10 Einheiten von 3R  zur Herstel-

lung von genau 5 Einheiten von 3E  benötigt werden? Zusätzlich gilt 3
iji 1x 12 j5 5 36  

sowie 3
ijj 1x 12 i5 5 36 . 
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5 Leontief-Modell 

5.1 Einordnung und Modellgrundlagen 

Das vorherige Kapitel betrachtet einen Produktionsprozess, bei dem die Rohstoffe 

extern bezogen und die Endprodukte extern abgegeben werden. Im Unterschied hier-

zu werden im Leontief-Produktionsmodell keine Rohstoffe von außen bezogen. Die 

hergestellten Endprodukte werden als einzige Produktionsfaktoren angenommen. Das 

zugrunde liegende Modell wurde von Wassiliy Leontief zur Analyse von Volkswirt-

schaften und deren Industriesektoren entwickelt. Für seine grundlegenden Arbeiten in 

diesem Bereich erhielt Wassiliy Leontief 1973 den Nobelpreis für Wirtschaftswissen-

schaften.  

Betrachtet wird im Folgenden eine Volkswirtschaft mit n Industrien. In jeder dieser 

Industrien wird genau ein Gut j mit n,...,1j 5  hergestellt. Alle Güter i mit n,...,1i 5  

(also alle Güter), die in der Volkswirtschaft hergestellt werden, können in die Herstel-

lung jedes einzelnen Guts j als Produktionsfaktor eingehen. Die Menge an Gut i, die 

zur Produktion einer Einheit des Guts j benötigt wird, heißt Produktionskoeffizient ija . 

Die Produktionsmatrix Q, die alle Produktionskoeffizienten ija  enthält, ist quadratisch 

und hat die Ordnung < =n nG . Die hier vorgestellten Annahmen des Leontief-Modells 

lassen sich dabei auch auf Unternehmen mit entsprechenden innerbetrieblichen Ver-

flechtungen übertragen. 

Zur Verdeutlichung sei ausdrücklich darauf hingewiesen, dass mit "Gut i" und "Gut j" 

auf dieselben Güter Bezug genommen wird. Die unterschiedliche Indizierung ist le-

diglich zur Beschreibung des Produktionsprozesses notwendig. 

 

 

 

C. Mayer, Lineare Algebra für Wirtschaftswissenschaftler,
DOI 10.1007/978-3-8349-6727-5_5, © Gabler Verlag | Springer Fachmedien Wiesbaden GmbH 2011
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Beispiel 5-1: Bestimmung der Produktionsmatrix 

Die Volkwirtschaft einer kleinen Insel besteht aus den drei Industrien Fi-

scherei, Holzfällerei und Rumherstellung, die folgendermaßen miteinander 

verbunden sind: 

� Die Produktion einer Tonne Fisch erfordert einen viertel Festmeter Holz 

zur Instandhaltung der Fischereiboote und ein fünftel Fass Rum, um ei-

ne Meuterei an Bord zu verhindern. Ein Zehntel des gefangenen Fischs 

wird von den Fischern selbst verbraucht.  

� Um einen Festmeter Holz in den Palmenwäldern zu schlagen, benöti-

gen die Holzfäller bei Ihrer anstrengenden Arbeit eine fünftel Tonne 

Fisch und fünfviertel Fässer Rum. 

� Die Herstellung eines Fasses Rum erfordert einen halben Festmeter 

Holz, um die Destillerien betreiben und Holzfässer fertigen zu können. 

Die Arbeiter sind des Weiteren nicht davon abzubringen, ein Viertel des 

Rums selbst zu trinken. 

Für Gütererstellung in den jeweiligen Industrien werden ausschließlich 

Leistungen (Güter) der drei auf der Insel vorkommenden Industrien benö-

tigt, weshalb der Produktionsprozess der Inselökonomie über das Leontief-

Modell formuliert werden kann. Die Verflechtungen der Inselwirtschaft 

werden durch die folgende Matrix beschrieben:  

 
 

 

 

 

Aus diesen Angaben kann die Produktionsmatrix mit den Produktionsfak-

toren ija  erstellt werden, welche wegen der drei betrachteten Industrien die 

Ordnung < =3 3G  besitzt: 

an 
von 

Fischerei Holzfällerei Rumherstellung 

Fischerei 1
10  1

5  0 

Holzfällerei 1
4  0 1

2  

Rumherstellung 1
5  5

4  1
4  
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H I
J K
J K5
J K
J K
L M

1 1 010 5
1 1Q 04 2

51 1
5 4 4

 

Zur Befriedigung der externen Nachfrage (beispielsweise von anderen Ländern) nach 

Gut i, iy , steht die Gesamtproduktionsmenge von Gut i, iq , abzüglich der durch die 

Produktion des Produktionsplans < =T1 i nq q q q5 � �  innerhalb der Volkswirt-

schaft verbrauchten Menge von Gut i zur Verfügung. Die innerhalb der Ökonomie 

verbrauchte Menge von Gut i zur Produktion des Produktionsplans q berechnet sich 

dabei unter der Verwendung der Produktionsfaktoren als n
ij jj 1a q5 P6 . Formalisiert 

lässt sich für jedes Gut i mit n,...,1i 5  folgern, dass gilt: 
n

i i ij j
j 1

y q a q
5

5 N P6  

Da n Güter produziert werden, ergibt sich ein LGS mit n Gleichungen, welches sich in 

Vektorschreibweise darstellen lässt durch: 

n
1j j1 1

j 1

n
ij ji i

j 1

n
nj jn n

j 1

a qy q

a qy q

a qy q

5

5

5

H I
PH I H I J K

J K J K J K
J K J K J K
J K J K J K

P5 NJ K J K J K
J K J K J K
J K J K J K
J K J K J KJ K J K PJ KL M L M J K

L M

6

6

6

� � �

�� �

 

wobei < =T1 i ny y y y5 � �  den externen Nachfragevektor repräsentiert. Der 

Vektor < =Tn n n
1j j ij j nj jj 1 j 1 j 1a q a q a q5 5 5P P P6 6 6� �  entspricht dabei dem Resultat 

der Matrixmultiplikation Q qP , so dass sich die zentrale Gleichung des Leontief-

Modells formulieren lässt als: 

< =
5 N P

5 N P

y q Q q
E Q q

 

< =E QN  wird dabei Technologiematrix genannt. Sie ist die Matrix, welche den Produk-

tionsvektor in einen Vektor transformiert, der angibt, welche externe Nachfrage be-

friedigt werden kann. 



 5 Leontief-Modell 

 100 

Beispiel 5-2: Veranschaulichung des Leontief-Modells 

Geht man von der Produktionsmatrix 

0,1 0,3
Q

0,4 0,2
H I
5 J K
L M

 

und dem Produktionsplan < =Tq 20 305  aus, so berechnet sich der 

Verbrauch von Gut 1 innerhalb der Volkswirtschaft folgendermaßen: Zur 

Herstellung einer Einheit von Gut 1 braucht man unter anderem 0,1 Einhei-

ten von Gut 1. Da aber insgesamt 20 Einheiten hergestellt werden, werden 

21,020 5P  Einheiten von Gut 1 benötigt. Zur Herstellung einer Einheit von 

Gut 2 braucht man unter anderem 0,3 Einheiten von Gut 1. Hiervon sollen 

aber insgesamt 30 Einheiten hergestellt werden, folglich werden hier weite-

re 93,030 5P  Einheiten benötigt. Insgesamt werden bei der Herstellung des 

Produktionsplans q innerhalb der Volkswirtschaft also 2 9 11O 5  Einheiten 

von Gut 1 verbraucht. Der gleiche Rechenweg führt zu einem internen 

Verbrauch von 14 Einheiten von Gut 2 bei der Herstellung des Produkti-

onsplans q. 

Subtrahiert man vom Produktionsplan den Verbrauch innerhalb der Öko-

nomie, verbleibt diejenige Menge, welche zur Befriedigung der externen 

Nachfrage (also für andere Länder) zur Verfügung steht. Dies sind für Gut 

1 genau 20 11 9N 5  Einheiten und für Gut 2 genau 30 14 16N 5  Einheiten. 

Bei gegebener Produktionsmatrix Q lässt sich somit problemlos beantworten, wie viele 

Einheiten für die Nachfrager außerhalb der Volkswirtschaft verbleiben, wenn ein be-

stimmter Produktionsplan q hergestellt wird. 

Beispiel 5-3: Berechnung der externen Nachfrage 

Eine Volkswirtschaft stellt drei verschiedene Güter her und besitzt die Pro-

duktionsmatrix: 
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K
K
K

M

I

J
J
J

L

H
5

1,03,01,0
1,13,02,0
1,005,0

Q  

Bei einer Produktion von < =Tq 150 600 3005  kann die folgende Menge y 

nach außen abgegeben werden: 

< =
K
K
K

M

I

J
J
J

L

H
5
K
K
K

M

I

J
J
J

L

H
P
[
[
[

]

Y

Z
Z
Z

\

X

K
K
K

M

I

J
J
J

L

H
N
K
K
K

M

I

J
J
J

L

H
5PN5

75
60
45

300
600
150

1,03,01,0
1,13,02,0
1,005,0

100
010
001

qQEy  

Sehr leicht lässt sich auch die Umkehrfragestellung beantworten. Welche Mengen 

müssen hergestellt werden, damit eine vorgegebene externe Nachfrage befriedigt 

werden kann? Hierzu ist die zentrale Gleichung umzuformen in < = yQEq 1 PN5 N . 

Alternativ kann in Analogie zur Schreibweise A x bP 5  der unbekannte Vektor q in 

< =E Q q yN P 5  auch über die Anwendung des Gauß/Jordan-Algorithmus auf die erwei-

terte Koeffizientenmatrix < =E Q yN  bestimmt werden. 

Beispiel 5-4: Berechnung des Produktionsplans 

Der Produktionsplan q zur Befriedigung einer externen Nachfrage von 

< =Ty 411 137 2745  berechnet sich durch: 

< =

1

1
1 0 0 0,5 0 0,1 411 1.070

q E Q y 0 1 0 0,2 0,3 1,1 137 2.450
0 0 1 0,1 0,3 0,1 274 1.240

N

N
X YH I H I H I H I
Z [J K J K J K J K5 N P 5 N P 5Z [J K J K J K J K
J K J K J K J KZ [L M L M L M L M\ ]

 

Alternativ ergibt sich ausgehend von 

< =
0,5 0 0,1 411

E Q y 0,2 0,7 1,1 137
0,1 0,3 0,9 274

NH I
J KN 5 N NJ K
J KN NL M

 

nach einigen EZUs im Rahmen des Gauß/Jordan-Algorithmus der Produk-

tionsplan als rechte Seite der erweiterten Koeffizientenmatrix: 
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1 0 0 1.070
0 1 0 2.450
0 0 1 1.240

H I
J K
J K
J K
L M

 

Eine weitere interessante Fragestellung ist, ob jede sinnvolle externe Nachfrage (das 

heißt 0y S ) durch einen sinnvollen Produktionsplan (das heißt 0q S ) befriedigt wer-

den kann. Um dies zu beantworten, kann wahlweise eines der folgenden Kriterien 

betrachtet werden: 

Kriterium I: Soll ein vorgegebenes 0y S  zwingend zu einem 0q S  führen, muss auf-

grund des Zusammenhangs < = yQEq 1 PN5 N  auch < = 0QE 1 SN N  sein. 

Kriterium II (Hawkins-Simon-Bedingung): Hierbei werden die sukzessiven Hauptmi-

noren von < =QE N  betrachtet. Sind alle sukzessiven Hauptminoren größer Null, so gilt 

< = 0QE 1 SN N . 

Beide Kriterien führen stets zur gleichen Aussage, daher reicht es aus, eines der Krite-

rien zu betrachten. 

Beispiel 5-5: Analyse des Produktionsprozesses 

Die Produktionsmatrix der betrachteten Volkswirtschaft sei weiterhin: 

0,5 0 0,1
Q 0,2 0,3 1,1

0,1 0,3 0,1

H I
J K5 J K
J K
L M

 

Bei Verwendung von Kriterium I ergibt sich: 

< = 1
30 3 7

10E Q 29 44 57 0
137

13 15 35

N
H I
J KN 5 P SJ K
J K
L M

 

Somit lässt sich jede sinnvolle Nachfrage durch eine sinnvolle Produktion 

befriedigen. 

Alternativ kann die Hawkins-Simon-Bedingung verwendet werden: 



 Einordnung und Modellgrundlagen
 5.1 

 

 103 

< =
NH I

J KN 5 N N 5 RJ K
J KN NL M

0,5 0 0,1
137det E Q det 0,2 0,7 1,1 0

1.000
0,1 0,3 0,9

 

< =< =33
0,5 0 35det E Q det 0
0,2 0,7 100

H I
N 5 5 RJ KNL M

 

< =< =< = < =33 22
det E Q det 0,5 0,5 0N 5 5 R  

Alle sukzessiven Hauptminoren sind größer als Null. 

Statt der Produktionsmatrix Q können zur Beschreibung der Technologie die Gesamt-

liefermatrix X und der zugehörige Produktionsvektor q gegeben sein. Die Gesamtlie-

fermatrix enthält die Liefermengen ijx  mit i 1,...,n5  sowie j 1,...,n5 , welche von In-

dustrie i zu Industrie j erfolgen, damit der zugehörige Produktionsplan q hergestellt 

werden kann. Analog zu den Produktionskoeffizienten ija  bezeichnet ijx  die Menge 

von Gut i, die zur Produktion von jq  Einheiten des Guts j benötigt werden. 

Bei gegebenem X und q lassen sich die Elemente von Q berechnen durch: 

j

ij
ij q

x
a 5  

Die Menge von Gut i, welche an Industrie j geliefert wird, damit diese jq  Einheiten 

herstellen kann ( ijx ), geteilt durch die Anzahl der dort hergestellten Einheiten von 

Gut j ( jq ) ergibt die Menge, die von Gut i an Industrie j geliefert werden muss, damit 

dort eine Einheit hergestellt werden kann ( ija ). 

Sind statt X und q nur X und y gegeben, muss zunächst der der Gesamtliefermatrix X 

zugrunde liegende Produktionsplan q berechnet werden. Dies lässt sich sehr leicht 

durchführen. Für jedes Gut i entspricht die Zeilensumme von X dem internen Ge-

samtverbrauch von Gut i, der notwendig ist, um den zugrunde liegenden Produkti-

onsplan q zu realisieren. Wird hierzu die externe Nachfrage nach Gut i addiert, erhält 

man die produzierte Menge von Gut i: 

i
n

1j
iji yxq O5 6

5
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Beispiel 5-6: Bestimmung der Produktionsmatrix 

Eine drei Produkte herstellende Volkswirtschaft tauscht intern Güter in 

folgender Höhe aus: 

K
K
K

M

I

J
J
J

L

H
5

0100
5200

154020
X  

Hierbei wird eine externe Nachfrage von < =Ty 25 35 305  befriedigt. 

Der zugrunde liegende Produktionsplan berechnet sich als Summe von in-

ternem Verbrauch und externer Nachfrage als: 

3
1 1j 1

j 1

3
2 2j 2

j 1

3
3 3j 3

j 1

q x y 20 40 15 25 100

q x y 0 20 5 35 60

q x y 0 10 0 30 40

5

5

5

H I
J K O OH I H I H I H I H I
J KJ K J K J K J K J K
J KJ K J K J K J K J K
J KJ K J K J K J K J K5 O 5 O O O 5J KJ K J K J K J K J K
J KJ K J K J K J K J K
J KJ K J K J K J K J K

J K J K J K J K J KJ K O OL M L M L M L M L MJ K
L M

6

6

6

 

Hieraus lässt sich im Weiteren die Produktionsmatrix Q bestimmen als: 

1311 12
1 2 3

2321 22
1 2 3

31 32 33
1 2 3

xx x 31 2
q q q 5 3 8

xx x 1 1Q 0q q q 3 8

x x x 10 0q q q 6

H I H I
J K J K
J K J K
J K J K5 5J K J K
J K J K
J K J KJ K L ML M

 

Im Rahmen des Leontief-Modells ist es wichtig zu verstehen, dass X, y und q immer 

zusammen betrachtet werden müssen. Eine bestimmte angegebene Produktionsmenge 

q führt bei gegebener Produktionsmatrix immer zu denselben internen Liefermengen 

X und derselben Menge y, die nach außen abgegeben werden kann. 
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5.2 Aufgaben 

Aufgabe 5.1: 

Sie kennen die Produktionsmatrix Q und den Produktionsvektor q: 

0,3 0,2 0,6
Q 0,4 0,4 0

0,2 0 0,2

H I
J K5 J K
J K
L M

,  
400

q 350
300

H I
J K5 J K
J K
L M

 

Welche externe Nachfrage wird hiermit befriedigt? 

Aufgabe 5.2: 

Kann ein Unternehmen mit der Produktionsmatrix 

0,6 0,8
Q

0,4 0,3
H I
5 J K
L M

 

jede sinnvolle externe Nachfrage < =Sy 0  durch einen sinnvollen Produktionsplan 

< =Sq 0  befriedigen? 

Aufgabe 5.3: 

Eine Untersuchung an Ihrer Universität auf Grundlage des Leontief-Modells hat erge-

ben, dass die Mensaküche für die Erstellung eines Mittagsmahls einen Eigenverbrauch 

von 30% hat (die Köche verschlingen also 30% des Essens selbst) und weitere 0,1 Ar-

beitsstunden des Servicepersonals beansprucht (zum Schälen der Kartoffeln). Das 

Servicepersonal hingegen benötigt pro Arbeitsstunde 0,4 Portionen Mittagessen und 

macht pro Arbeitsstunde 12 Minuten Pause. 

a) Erstellen Sie die zugehörige Produktionsmatrix. 

b) Es werden 400 Portionen Mittagessen gekocht, während das Servicepersonal 

100 Stunden arbeitet. Wie viele Mittagessen können noch an die Studenten als ex-
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terne Nachfrager abgegeben werden und wie viele Arbeitsstunden des Serviceper-

sonals stehen noch für den eigentliche Service bereit? 

c) Die Studenten fragen allerdings 520 Portionen Mittagessen und 260 Stunden Servi-

ce nach. Um wie viel muss die Produktion erhöht werden, damit diese Nachfrage 

befriedigt werden kann? 

d) Lässt sich jede beliebige (sinnvolle) Nachfrage nach Essen und Service von Seiten 

der Studenten durch eine entsprechende (sinnvolle) Produktion befriedigen? 

Aufgabe 5.4: 

Gegeben sind die nachfolgenden Größen des Leontief-Modells: 

H I
J K5 J K
J K
L M

11 12 13

21 22 23

31 32 33

a a a
Q a a a

a a a
,  < =

H I
J KN 5 J K
J K
L M

11 12 13

21 22 23

31 32 33

b b b
E Q b b b

b b b
,  

H I
J K5 J K
J K
L M

11 12 13

21 22 23

31 32 33

x x x
X x x x

x x x
,  

< =5 T
1 2 3y y y y ,  < =5 T

1 2 3q q q q  

Interpretieren Sie kurz die folgenden Terme: 23a ,  
5
6
3

2 j
j 1

x ,  N1 1q y ,  
5
6
3

1j
j 1

a ,  11b  

Aufgabe 5.5: 

Für drei Abteilungen eines Unternehmens ist folgende Produktionsmatrix gegeben: 

H I
J K5 J K
J K
L M

0,1 0,2 0,3
Q 0,2 0,1 0,2

0,1 0,2 0,1
 

a) Welche externe Nachfrage y kann bei einer Gesamtproduktion von 51q 50, 

52q 100 und 53q 50 erfüllt werden? 

b) Wie hoch sind die Liefermengen zwischen den Abteilungen bei der Gesamtpro-

duktion aus Teilaufgabe a)? 

 c) Lässt sich jede sinnvolle externe Nachfrage < =Sy 0  durch eine sinnvolle Produktion 

< =Sq 0  befriedigen? 
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d) Bestimmen Sie die erforderliche Produktion q für eine externe Nachfrage von 

� �� Ty 35 245 70 . 

Aufgabe 5.6: 

Ihnen ist die nachfolgende Produktionsmatrix gegeben: 

� 	

 �� 
 �

 �
� 


0,5 0,1 0,3
Q 0,2 0,5 0,2

0,1 0,5 0,5
 

a) Wie viele Einheiten jedes Guts muss das Unternehmen herstellen, damit jeder 

Sektor 90 Einheiten nach außen abgeben kann? 

b) Kann dieses Unternehmen jede beliebige sinnvolle (das heißt nichtnegative) Nach-

frage mit einer sinnvollen (das heißt nichtnegativen) Produktion befriedigen? 

Aufgabe 5.7: 

Ein Unternehmen besteht aus den Teilbereichen Energieerzeugung, Wasserversorgung 

sowie zwei Produktionsabteilungen, welche die Produkte 1P  und 2P  herstellen. Über 

die Produktionsverhältnisse wissen Sie Folgendes: 

Von einer kWh erzeugtem Strom verbraucht die Energieversorgung 10% selbst, wäh-

rend der Eigenverbrauch der Wasserversorgung je erstelltem Liter bei 0,2 l liegt. Bei 

der Erstellung einer Mengeneinheit des Produkts 1P  werden 0,75 kWh Strom und bei 

der Erstellung einer Mengeneinheit des Produkts 2P  0,5 l Wasser verbraucht. Der Ei-

genverbrauch der Produkte 1P  und 2P  beträgt jeweils 0,25 Mengeneinheiten des ent-

sprechenden Produkts. Um eine Mengeneinheit des Produkts 1P  herzustellen, braucht 

man außerdem 0,5 Mengeneinheiten des Produkts 2P . Alle nicht angegebenen Produk-

tionskoeffizienten sind Null. 

a) Erstellen Sie die Produktionsmatrix Q. 
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b) Welche externe Nachfrage kann durch die Produktion von 30 kWh Strom, 25 l 

Wasser, 36 Mengeneinheiten von 1P  und 40 Mengeneinheiten von 2P  bedient wer-

den? 

c) Ein externer Nachfrager möchte von Ihnen weder Strom noch Wasser, jedoch 36 

Mengeneinheiten von 1P  und 40 Mengeneinheiten von 2P  beziehen. Wie viele kWh 

Strom, Liter Wasser und Mengeneinheiten der Produkte 1P  und 2P  müssen Sie her-

stellen, um seinen Wunsch zu erfüllen? 

Aufgabe 5.8: 

Ein Unternehmen befriedigt mit der Gesamtliefermatrix 
H I
5 J K
L M

15 20
X

15 30
 einen externen 

Konsum in Höhe von < =Ty 115 755 . Bestimmen Sie die Produktionsmatrix. 

Aufgabe 5.9: 

Nachfolgend ist Ihnen die Gesamtliefermatrix X bei einer bestimmten Gesamtproduk-

tionsmenge q eines Unternehmens mit zwei Produktionsstätten angegeben: 

H I
5 J K
L M

15 20
X

15 30
,  

H I
5 J K
L M

60
q

50
 

a) Bestimmen Sie die Leistungen y, die bei obiger Gesamtproduktion nach außen 

abgegeben werden können. 

b) Bestimmen Sie die Produktionsmatrix Q. 

c) Welche Gesamtproduktion q ist notwendig, um eine externe Nachfrage von 

< =Ty 60 805  zu befriedigen? 
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Aufgabe 5.10: 

Sie kennen nachfolgende Produktionsmatrix eines Unternehmens: 

0,2 0,2 0,5
Q 0,1 0,5 0,3

0,3 0,2 0,6

H I
J K5 J K
J K
L M

 

a) Welche externe Nachfrage y kann bei einer Gesamtproduktion von 

< =Tq 500 470 6105  erfüllt werden? 

b) Wie hoch sind die Liefermengen zwischen den Sektoren bei der Gesamtproduktion 

aus Teilaufgabe a)? 

c) Prüfen Sie anhand der Hawkins-Simon-Bedingung, ob sich jede sinnvolle externe 

Nachfrage < =Sy 0  durch eine sinnvolle Produktion < =Sq 0  befriedigen lässt. 

d) Bestimmen Sie die erforderliche Produktion q für eine Nachfrage von 

< =Ty 7 14 05 . 

Aufgabe 5.11: 

Für drei Produktionsbereiche ist folgende Produktionsmatrix gegeben: 

H I
J K5 J K
J K
L M

0,1 0,2 0,2
Q 0,2 0,1 0,2

0,2 0,2 0,1
 

a) Wie hoch sind die Gesamtlieferungen ijx  zwischen den einzelnen Bereichen bei 

einer Gesamtproduktion von 20 Einheiten in Produktionsbereich 1, 30 Einheiten in 

Bereich 2 sowie 40 Einheiten in Bereich 3? 

b) Wie hoch ist die externe Nachfrage y, die durch die in Aufgabenteil a) angegebene 

Gesamtproduktion befriedigt werden kann? 

c) Lässt sich jede sinnvolle externe Nachfrage < =Sy 0  durch eine sinnvolle Produktion 

< =Sq 0  befriedigen? 
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d) Durch eine Neustrukturierung der einzelnen Produktionsbereiche ergibt sich die 

folgende (neue) Produktionsmatrix: 

H I
J K5 J K
J K
L M

*
0,3 0,2 0,2

Q 0 0,1 0,2
0 0 0,3

 

 In Produktionsbereich 1 sollen genau 100 Einheiten nach außen abgeben werden, 

während in den Produktionsbereichen 2 und 3 jeweils die gleiche (noch unbekann-

te) Menge zur Nachfragebefriedigung bereitgestellt werden soll. Weiterhin ist be-

kannt, dass im Bereich 3 exakt 100 Einheiten produziert werden können. Die Pro-

duktionsmengen der Bereiche 1 und 2 sind dagegen nicht bekannt. Bestimmen Sie 

aus diesen Daten den kompletten Produktions- und Nachfragevektor. 

Aufgabe 5.12: 

Sie kennen die folgende Gesamtliefertabelle zwischen drei Wirtschaftssektoren: 

an 
von 

Sektor 1 Sektor 2 Sektor 3 Externe 
Nachfrage 

Sektor 1 0 50 30 70 
Sektor 2 30 30 30 110 
Sektor 3 30 30 60 30 

a) Bestimmen Sie, wie viel jeder Sektor insgesamt produziert. 

b) Berechnen Sie die Produktionsmatrix Q dieses Unternehmens. 

c) Wie viel muss von den einzelnen Sektoren produziert werden, damit eine externe 

Nachfrage in Höhe von < =Ty 80 100 405  befriedigt werden kann? 

d) Kann jede sinnvolle externe Nachfrage durch eine sinnvolle Produktion befriedigt 

werden? 
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Aufgabe 5.13: 

Ein Unternehmen mit drei Sektoren produziert anhand nachfolgender Produktions-

matrix Q: 

0,5 0,2 0,3
Q 0,2 0,3 0,4

0,4 0,5 0,2

H I
J K5 J K
J K
L M

 

a) Kann dieses Unternehmen jede sinnvolle externe Nachfrage < =Sy 0  durch einen 

sinnvollen Produktionsplan < =q 0S  befriedigt werden? Begründen Sie Ihre Antwort 

durch die Anwendung aller Ihnen bekannten Kriterien. 

b) Berechnen Sie den Produktionsplan q und die Gesamtliefermatrix X, welche bei 

Befriedigung der externen Nachfrage < =Ty 100 100 1005  vorliegen. 

c) Berechnen Sie die externe Nachfrage, die Sie mit < =Tq 52.500 47.000 56.0005  

befriedigen können. 

Aufgabe 5.14: 

Die Verflechtungen zwischen drei Sektoren sind durch die folgende Produktionsmat-

rix Q gegeben: 

0,3 0,1 0
Q 0,2 0 0,3

0,1 0,2 0,5

H I
J K5 J K
J K
L M

 

Bestimmen Sie die Gesamtliefermatrix X, wenn Sie eine externe Nachfrage von 

< =Ty 118 177 2365  befriedigen. 
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Aufgabe 5.15: 

Für die Gesamtlieferungen ijx  und die Produktionszusammenhänge ija  eines Unter-

nehmens mit drei Produktionsbereichen sind folgende Daten gegeben: 

H I
J K5 J K
J K
L M

13

22

31

1 4 x
X 2 x 1

x 2 4
,  

11

32 33

a 0,2 0,3
Q 0,2 0,3 0,1

0,3 a a

H I
J K5 J K
J K
L M

 

a) Ermitteln Sie mithilfe des Leontief-Modells die fehlenden Werte in den angegebe-

nen Matrizen. 

b) Welche Leistung kann das Unternehmen nach außen abgeben? 

c) Welche Produktion ist nötig, um die durch den Vektor < =Ty 4 22 25 dargestellte 

externe Nachfrage zu befriedigen? 

Aufgabe 5.16: 

H I
J K5 J K
J K
L M

0,1 0,2 0,1
Q 0 0,3 0,2

0,2 0,1 0,1
 

a) Kann in einem Unternehmen mit der Produktionsmatrix Q jede sinnvolle externe 

Nachfrage ( Sy 0) durch einen sinnvollen Produktionsplan ( Sq 0) befriedigt wer-

den? Begründen Sie Ihre Antwort durch die Anwendung aller Ihnen bekannten 

Kriterien. 

b) Sie kennen zudem den zu einem bestimmten Produktionsplan q gehörigen Eigen-

verbrauch 511x 30, 522x 75, 533x 15. Bestimmen Sie den dazugehörigen Produkti-

onsplan q, die dazugehörige Gesamtliefermatrix X und die externe Nachfrage y, 

die bei einer Produktion von q befriedigt werden kann. 

c) Was beschreibt die Größe PQ q im Leontief-Modell? 
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Aufgabe 5.17: 

Ihnen ist bekannt, dass in einem Unternehmen mit drei Produktionssektoren zur Be-

friedigung einer externen Nachfrage von < =5 Ty 6 6 6  folgende Gesamtlieferungen 

benötigt werden: 

H I
J K5 J K
J K
L M

375 369 0
X 0 246 117

150 0 78
 

Bestimmen Sie den zugrunde liegenden Produktionsvektor und einen Spaltenvektor, 

der den innerbetrieblichen Verbrauch der Güter enthält. Mit welcher Produktionsmat-

rix produziert dieses Unternehmen? 

Aufgabe 5.18: 

In einem Unternehmen werden nachfolgende Leistungen ausgetauscht: 

H I
J K5 J K
J K
L M

30 40 10
X 20 20 20

10 30 20
 

Hierbei kann eine externe Nachfrage in Höhe von < =5
Ty 20 40 40  befriedigt wer-

den. Wie viele Einheiten könnten von diesem Unternehmen nach außen abgegeben 

werden, falls es < =5 Tq 150 140 200  produzieren würde? 

Aufgabe 5.19: 

Sie kennen die Produktionsmatrix Q eines Unternehmens: 

H I
J K5 J K
J K
L M

0,5 0 0,1
Q 0,2 0,3 1,1

0,1 0,3 0,1
 

Die Menge der produzierten Güter wird in allen Sektoren in Tonnen gemessen. Ferner 

wissen Sie, dass bei einer Produktion in Höhe von q nachfolgende Beziehungen gelten. 
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Der erste Sektor gibt 30% seiner Produktionsmenge nach außen ab. Das Gewicht der 

vom dritten Sektor nach außen abgegebenen Güter beträgt ein Zehntel des Gewichts 

der Summe der in Sektor eins und zwei produzierten Güter. 10% der in Sektor drei 

hergestellten Güter sind 30 Tonnen leichter als die von Sektor zwei nach außen abge-

gebene Menge. Berechnen Sie unter Verwendung der Matrixrechnung die Gesamtpro-

duktion in jedem der drei Sektoren sowie die jeweils nach außen abgegebenen Men-

gen. 

Aufgabe 5.20: 

Sie betrachten ein Unternehmen mit drei Produktionsstätten. Jede dieser Produktions-

stätten gibt Leistungen an jede andere Produktionsstätte und an die Kunden ab. 

a) Bei der Gesamtproduktionsmenge < =5 Tq 280 150 300  betragen die Lieferver-

flechtungen: 

H I
J K5 J K
J K
L M

11

22

33

x 90 30
X 60 x 45

120 12 x
 

 Weiterhin ist Ihnen bekannt, dass vom ersten Gut dreimal soviel an die Kunden 

abgegeben wird wie die erste Produktionsstätte selbst von diesem Gut verbraucht. 

Vom zweiten bzw. dritten Gut wird doppelt soviel an die Kunden abgegeben wie 

die zweite bzw. dritte Produktionsstätte verbraucht. Komplettieren Sie die Matrix 

X und berechnen Sie, wie viel von jedem Gut an die Kunden abgegeben wird. 

b) Nun produzieren Sie < =5
Tq 210 200 300  bei unveränderter Technologiematrix. 

Wie viele Einheiten jedes Guts können bei dieser Produktion nach außen abgege-

ben werden? 

c) Nennen Sie zwei Möglichkeiten, um festzustellen, ob jede sinnvolle externe Nach-

frage < =Sy 0  mit einer sinnvollen Produktion < =Sq 0  befriedigt werden kann. 

d) Wann ist die Gesamtliefermatrix X mit der Produktionsmatrix Q identisch? 
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Aufgabe 5.21: 

Ihnen sind nachfolgend die Produktionsmatrix und die Gesamtliefermatrix für den 

aufgeführten Produktionsplan gegeben: 

11

22

31 33

a 1,1 0,2
Q 0,2 a 0,3

a 0,1 a

H I
J K5 J K
J K
L M

,  
12 13

21 23

28 x x
X x 0 x

56 7 65

H I
J K5 J K
J K
L M

,  2

140
q q

130

H I
J K5 J K
J K
L M

 

a) Berechnen Sie die fehlenden Werte. 

b) Wie viele Einheiten kann das Unternehmen bei der gegebenen Produktion nach 

außen abgeben? 

c) Wie muss der Produktionsplan angepasst werden, wenn sich die Nachfrage auf 

< =Tcy 18 6 45  erhöht? 

d) Wie muss der Produktionsplan angepasst werden, wenn die Nachfrage auf 

< =Tdy 19 10 45  steigt? 

e) Prüfen Sie anhand der Hawkins-Simon-Bedingung, ob jede sinnvolle externe 

Nachfrage < =Sy 0  durch einen sinnvollen Produktionsplan < =Sq 0  befriedigt wer-

den kann. 

Aufgabe 5.22: 

In einem Unternehmen werden 2 Güter in 2 Sektoren hergestellt, wobei beide Güter 

jeweils als Input des anderen fungieren. Gegeben seien verschiedene Vektorpaare 

< =A q|y5 , wobei q der Produktionsvektor ist und y die externe Nachfrage bezeichnet, 

welche durch q befriedigt werden kann. 

a) Sie kennen ein Vektorpaar 
H I
5aJ K
L M

10 3
A

8 4
. Weiterhin wissen Sie, dass der Eigen-

verbrauch zur Herstellung der Güter jeweils 30% beträgt. Bestimmen Sie die Pro-

duktionsmatrix Q. 
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b) Nun ist der Eigenverbrauch der Sektoren nicht bekannt. Wie viele Vektorpaare 

sind mindestens notwendig, um die Technologie < =E QN  des Unternehmens ein-

deutig bestimmen zu können, wenn Sie davon ausgehen, dass die Paare keine Viel-

fachen voneinander sind? (Es gilt: < = < =5 Q 5 P Pi jA q|y A m q|m y  3 Q 7 Ai j m �) 

c) Das Unternehmen erlebt eine technologische Veränderung und produziert jetzt mit 

der Technologie: 

< =
1 2

2 5E Q
31

4 5

H IN
J KN 5a
J KNL M

 

 Bestimmen Sie den Produktionsvektor q zur Befriedigung von < =5
Ty 20 10 . 
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6 Allgemeine lineare 
Gleichungssysteme 

6.1 Linearkombinationen, lineare (Un-) 
Abhängigkeit 

Im Folgenden beschränken wir uns auf < =m 1G -Matrizen, also Spaltenvektoren mit m 

Komponenten. 

Definition 6-1: Linearkombination 

Eine lineare Verknüpfung der Form P O O P�1 1 n nx a x a , wobei  

A� �1 nx , , x  und GA� �
m 1

1 na , ,a , wird als Linearkombination (LK) der 

Vektoren �1 na , ,a  bezeichnet. 

Zur Überprüfung, ob ein spezieller Spaltenvektor m 1b GA�  eine Linearkombination 

der Spaltenvektoren n1 a,,a �  ist, wird die Vektorgleichung 1 1 n nx a x a bP O O P 5�  

betrachtet und nach 1 nx , ,x�  gelöst. Aus 

11 1n 1

1 n

m1 mn m

a a b
x x

a a b

H I H I H I
J K J K J KP O O P 5J K J K J K
J K J K J K
L M L M L M

� � � �  

ergibt sich das LGS 

11 1 1n n 1

m1 1 mn n m

a x a x b

a x a x b

O O 5

O O 5

�
� � � � �

�
 

welches sich in Matrixschreibweise darstellen lässt als: 

C. Mayer, Lineare Algebra für Wirtschaftswissenschaftler,
DOI 10.1007/978-3-8349-6727-5_6, © Gabler Verlag | Springer Fachmedien Wiesbaden GmbH 2011
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11 1n 1 1

m1 mn n m

a a x b

a a x b

H I H I H I
J K J K J KP 5J K J K J K
J K J K J K
L M L M L M

�
� � � � �
�

 

A x bP 5  

In den Spalten der Koeffizientenmatrix A befinden sich die Vektoren n1 a,,a � . Der 

Unbekanntenvektor x enthält die Multiplikatoren der Linearkombination. 

Ist das LGS lösbar, folgt daraus, dass b eine LK der Spaltenvektoren n1 a,,a �  ist. Ist 

das LGS dagegen unlösbar, so ist b keine LK der Vektoren n1 a,,a � . 

Definition 6-2: Lineare Abhängigkeit, lineare Unabhängigkeit 

Die Menge der Vektoren �1 na , ,a  heißt linear unabhängig (l. u.), 

falls sich keiner der Vektoren als Linearkombination der anderen 

Vektoren darstellen lässt. Andernfalls heißt sie linear abhängig 

(l. a.). 

Um eine Menge von Vektoren auf lineare Unabhängigkeit zu testen, müssen nicht alle 

Linearkombinationsmöglichkeiten überprüft werden. Die Menge der Vektoren 

n1 a,,a �  ist, analog zu oben aufgeführter Vektorgleichung, auch dann linear unab-

hängig, wenn sich der Nullvektor nur auf genau eine Weise als Linearkombination der 

Vektoren darstellen lässt. Zur Überprüfung, ob die Vektoren n1 a,,a �  l. u. sind, be-

trachtet man somit die Vektorgleichung: 

11 1n

1 n

m1 mn

a a 0
x x

a a 0

H I H I H I
J K J K J KP O O P 5J K J K J K
J K J K J K
L M L M L M

� � � �  

In Matrixschreibweise folgt für das entstehende linear homogene Gleichungssystem: 

11 1n 1

m1 mn n

a a x 0

a a x 0

H I H I H I
J K J K J KP 5J K J K J K
J K J K J K
L M L M L M

�
� � � � �
�

 

A x 0P 5  
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In den Spalten der Koeffizientenmatrix A befinden sich die auf lineare Unabhängigkeit 

zu überprüfenden Vektoren n1 a,,a � . Der Unbekanntenvektor x enthält wiederum die 

Multiplikatoren der Linearkombination. 

Ist das LGS eindeutig lösbar (die Lösung für x ist dann der Nullvektor, es gilt x 05 ), so 

sind die Vektoren n1 a,,a �  l. u. Hat das LGS dagegen unendlich viele Lösungen, so 

sind die Vektoren n1 a,,a �  l. a. 

6.2 Rang 

Definition 6-3: Rang 

Der Zeilen- bzw. Spaltenrang einer < =Gm n -Matrix A Matrix gibt die 

Anzahl von Vektoren in einer größtmöglichen linear unabhängigen 

Teilmenge aller Zeilen- bzw. Spaltenvektoren an. Vereinfachend 

wird auch von der Anzahl der linear unabhängigen Zeilen- bzw. 

Spaltenvektoren der Matrix A gesprochen. Die Anzahl der l. u. Zei-

lenvektoren einer Matrix entspricht immer der Anzahl der l. u. Spal-

tenvektoren der Matrix, somit können Zeilen- und Spaltenrang zu-

sammengefasst als Rang einer Matrix, < =rg A , bezeichnet werden. 

Da sich Zeilen- und Spaltenrang gleichen, kann der Rang einer Matrix nie größer sein 

als das Minimum aus Zeilen- und Spaltenanzahl, es gilt somit 0 rg(A) min(m,n)T T . 

(Die einzige Matrix, deren Rang Null ist, ist die Nullmatrix.) Ebenso lässt sich aus der 

Gleichheit von Zeilen- und Spaltenrang ableiten, dass 5 Trg(A) rg(A ) gilt. 

EZUs (bzw. elementare Spaltenumformungen) verändern den Rang einer Matrix nicht, 

da sie lediglich Linearkombinationen der Zeilen (bzw. Spalten) darstellen. Zur Be-

stimmung des Rangs einer < =m nG -Matrix kann diese mithilfe von EZUs in eine Trep-

penmatrix überführt werden, der Rang der Matrix gleicht dann der Anzahl der Nicht-

Nullzeilen der Treppenmatrix. Alternativ kann der Rang der Matrix nach einer voll-
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ständigen Pivotisierung abgelesen werden, er ergibt sich dann auch als Anzahl der 

Nicht-Nullzeilen. 

Eine erste Anwendungsmöglichkeit des Rangs besteht in der Überprüfung der linea-

ren Unabhängigkeit von Vektoren. Werden die Vektoren in die Zeilen (bzw. Spalten) 

einer Matrix A übernommen, darf sich bei linearer Unabhängigkeit keine Zeile (bzw. 

Spalte) als LK aus den anderen Zeilen (bzw. Spalten) ergeben. Es darf sich somit durch 

EZUs (elementare Spaltenumformungen) keine Nullzeile (bzw. Nullspalte) in der 

Matrix bilden lassen. Der Rang von A muss gleich sein mit der Anzahl der in die Zei-

len (bzw. Spalten) übernommenen Vektoren. Eine Matrix, deren Zeilen (bzw. Spalten) 

l. u. sind, für die also gilt rg(A) min(m,n)5 , wird als Matrix mit "vollem Rang" be-

zeichnet. 

Beispiel 6-1: Überprüfung der linearen Abhängigkeit von Vektoren 

Zur Überprüfung, ob die Vektoren 

K
K
K
K
K

M

I

J
J
J
J
J

L

H

N

N

5

4
2

3
1

a , 

K
K
K
K
K

M

I

J
J
J
J
J

L

H

5

6
2
6
8

b  und 

K
K
K
K
K

M

I

J
J
J
J
J

L

H

N

5

1
3
0
5

c  

l. u. sind, werden diese beispielsweise in die Zeilen einer Matrix über-

nommen, welche anschließend in eine Treppenmatrix umgeformt wird. 

1 3 2 41 3 2 4 1 3 2 4
II 8 I

8 6 2 6 0 30 14 38 2 III II 0 30 14 38
III 5 I

5 0 3 1 0 15 7 19 0 0 0 0

N NH I H IN N N NH I
O PJ K J K J KN P N NJ K J K J KO P J KJ K J KN N L ML M L M

 

Die Anzahl der Nicht-Nullzeilen entspricht dem Rang der Matrix und ist 

demnach gleich 2. Der Rang der Matrix ist kleiner als die Anzahl der in die 

Zeilen übernommenen Vektoren, folglich sind die Vektoren a, b, c  l. a. Die 

größtmögliche Teilmenge der Ausgangsvektoren, welche ausschließlich 

l. u. Vektoren enthält, besteht aus 2 Vektoren. 
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6.3 Lösungen von linearen Gleichungssystemen 

Eine zweite Möglichkeit der Anwendung des Rangs einer Matrix besteht in der Be-

stimmung der Lösbarkeit eines LGS. Betrachtet wird nachfolgend ein LGS mit m Glei-

chungen und n Unbekannten: 

O O O O 5

O O O O 5

O O O O 5

� �
� � � � � � �

� �
� � � � � � �

� �

11 1 1j j 1n n 1

i1 1 ij j in n i

m1 1 mj j mn n m

a x a x a x b

a x a x a x b

a x a x a x b

 

Neben der bekannten Matrixdarstellung kann die linke Seite des LGS auch als lineare 

Verknüpfung von Koeffizientenvektoren angesehen werden. In Vektordarstellung 

ergibt sich das LGS in folgender Form: 

H I H IH I H I
J K J KJ K J K
J K J KJ K J K
J K J KJ K J KP O O P O O P 5J K J KJ K J K
J K J KJ K J K
J KJ K J K J KJ KL M L M L ML M

�� � �
� �

� � ��

1j11 1n 1

iji1 in i1 j n

m1 mn mmj

aa a b

aa a bx x x

a a ba

 Der < =m 1G -Ergebnisvektor b wird dabei dargestellt als Linearkombination der < =m 1G -

Koeffizientenvektoren ja , die alle Koeffizienten der jeweiligen jx  enthalten. Die Vek-

torgleichung (und damit auch das LGS) ist genau dann lösbar, wenn der Ergebnisvek-

tor eine Linearkombination der Koeffizientenvektoren ist. 

Zur Überprüfung der Lösbarkeit eines LGS bzw. zur Überprüfung, ob der Ergebnis-

vektor b eine LK aus den Koeffizientenvektoren ja  ist, wird das Rangkriterium ver-

wendet. Dazu werden sowohl der Rang der Koeffizientenmatrix A als auch der Rang 

der erweiterten Koeffizientenmatrix < =A|b  betrachtet. Der erstgenannte gibt an, wie 

viele der Koeffizientenvektoren ja  l. u. sind. Der Rang der erweiterten Koeffizienten-

matrix gibt die Anzahl der l. u. Vektoren in einer Menge wieder, welche neben den 

Koeffizientenvektoren ja  zusätzlich den Ergebnisvektor b enthält. Falls die Anzahl der 

l. u. Vektoren in der Koeffizientenmatrix der Anzahl der l. u. Vektoren in der erweiter-

ten Koeffizientenmatrix entspricht, ist der Ergebnisvektor b eine LK der Koeffizienten-
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vektoren ja . Gilt demnach < = < =5rg A rg A|b , ist der Ergebnisvektor b eine LK der 

Koeffizientenvektoren und das LGS lösbar. Andernfalls ist < = < =Urg A rg A|b , b ist 

keine LK der Koeffizientenvektoren ja  und das LGS ist unlösbar. 

Nachdem auf diese Weise untersucht wurde, ob ein LGS überhaupt lösbar ist, kann 

der Rang der erweiterten Koeffizientenmatrix darüber hinaus dazu benutzt werden, 

eine Aussage über die Eindeutigkeit einer möglichen Lösung zu treffen. Der Rang der 

erweiterten Koeffizientenmatrix gibt die Anzahl der l. u. Zeilen der erweiterten Koeffi-

zientenmatrix an, also die Anzahl der l. u. Gleichungen des LGS, die von den Lösun-

gen des LGS erfüllt sein müssen. Enthält ein LGS weniger l. u. Restriktionen als Vari-

ablen, ist also < = nb|Arg U , so kann keine eindeutige Lösung bestimmt werden. Sind 

die Anzahl der l. u. Restriktionen und der Variablen hingegen gleich, das heißt, gilt 

< = nb|Arg 5 , besitzt das LGS nicht unendlich viele Lösungen. 

Zusammengefasst gilt also für ein beliebiges LGS in Matrixdarstellung bxA 5P  mit 

einer < =m nG -Koeffizientenmatrix der nachfolgende Zusammenhang zwischen Lös-

barkeit und Rang. Das zugrunde liegende LGS mit n Variablen hat 

��  genau eine Lösung, falls n)b|A(rg)A(rg 55 , 

��  unendlich viele Lösungen, falls n)b|A(rg)A(rg U5 , 

��  keine Lösung, falls )b|A(rg)A(rg U . 

Beispiel 6-2: Bestimmung der Lösbarkeit eines LGS 

Ist die Lösbarkeit des LGS 

1 2 3 4

1 2 3 4

1 2 3 4

4x 3x 2x x 4
8x 6x 6x 3x 11

12x 9x 10x 5x 20

O O N 5
O O N 5
O O N 5

 

zu bestimmen, so wird sowohl der Rang der Koeffizienten- als auch derje-

nige der erweiterten Koeffizientenmatrix berechnet. 

4 3 2 1 44 3 2 1 4 4 3 2 1 4
II 2 I

8 6 6 3 11 0 0 2 1 3 III 2 II 0 0 2 1 3
III 3 I

12 9 10 5 20 0 0 4 2 8 0 0 0 0 2

NH I H IN NH I
N PJ K J K J KN N N P NJ K J K J KN PJ K J K J KN N L ML M L M
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Die erweiterte Koeffizientenmatrix besitzt einen Rang von 3, während die 

Koeffizientenmatrix lediglich einen Rang von 2 hat. Das LGS ist somit un-

lösbar. 

Bezieht man das Determinantenkriterium aus Abschnitt 3.4 zur Bestimmung der ein-

deutigen Lösbarkeit eines LGS mit quadratischer Koeffizientenmatrix in die Überle-

gungen mit ein, so lassen sich die folgenden wechselseitigen Zusammenhänge zwi-

schen Determinantenkriterium und Rangkriterium formulieren: 

��  Ist die Determinante der Koeffizientenmatrix A nicht Null, so ist A invertierbar und 

somit regulär. Ein zugrunde liegendes LGS besitzt eine eindeutige Lösung. Der 

Rang der Koeffizientenmatrix entspricht in diesem Fall der Anzahl der Variablen 

des LGS, die Koeffizientenmatrix hat vollen Rang. Gilt demnach < = 0Adet Q , so 

folgt n)A(rg 5  und umgekehrt. 

��  Ist die Determinante der Koeffizientenmatrix A dagegen Null, so ist A nicht inver-

tierbar und somit singulär. Ein zugrunde liegendes LGS besitzt keine eindeutige 

Lösung. Der Rang der Koeffizientenmatrix ist in diesem Fall kleiner als die Anzahl 

der Variablen des LGS. Gilt demnach < = 0Adet 5 , so folgt n)A(rg U  und umgekehrt. 

Besitzt ein LGS unendlich viele Lösungen, so können nicht alle Variablen eindeutig be-

stimmt werden. Die Lösungsmenge � enthält dann unendlich viele Lösungsvektoren, 

deren Komponenten in Abhängigkeit von freien Variablen ausgedrückt werden müs-

sen. 

Definition 6-4: Freie und gebundene Variablen 

Als freie Variablen werden diejenigen Variablen bezeichnet, für die 

bei einem LGS mit unendlich vielen Lösungen beliebige reelle Zah-

len gewählt werden können. Gebundene Variablen hingegen sind 

über das LGS an die freien Variablen bzw. an bestimmte reelle 

Zahlen gebunden. Die Anzahl gebundener Variablen entspricht der 

Anzahl der l. u. Gleichungen, also dem Rang der erweiterten Koef-

fizientenmatrix. Die Anzahl freier Variablen eines LGS bestimmt 
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sich als Differenz zwischen der Anzahl der Variablen insgesamt 

und der Anzahl der gebundenen Variablen, somit als < =Nn rg A | b . 

Nachfolgende vollständig pivotisierte Koeffizientenmatrix hat ohne 

die Erweiterung um den Ergebnisvektor fünf Spalten und resultiert 

somit aus einem Gleichungssystem mit fünf Variablen: 

H I
J K
J K
J K
J K
J KNL M

1 0 0 0 4 2

2 0 3 0 0 5
0 0 0 0 0 0

4 1 0 7 0 2

 

Die Koeffizientenmatrix besitzt drei Nicht-Nullzeilen und hat folg-

lich einen Rang von 3. Die Lösungsmenge des zugrunde liegende 

LGS besitzt somit drei gebundene und zwei freie Variablen. 

Um gebundene Variablen in Abhängigkeit von freien Variablen auszudrücken, wird 

die anfängliche Koeffizientenmatrix vollständig pivotisiert. Die dabei gegebenenfalls 

entstehenden Nullzeilen resultieren aus redundanten Gleichungen. 

Definition 6-5: Redundante Gleichungen 

Redundante Gleichungen sind Gleichungen, welche sich als Line-

arkombination aus anderen Gleichungen darstellen lassen und 

somit keine neuen Informationen enthalten. Die Anzahl redundan-

ter Gleichungen eines LGS bestimmt sich als Differenz zwischen 

der Anzahl der Gleichungen und dem Rang der erweiterten Koeffi-

zientenmatrix, somit als < =Nm rg A | b . 

Als gebundene Variablen sollten die Variablen der pivotisierten Spalten gewählt wer-

den. Existieren mehrere pivotisierte Spalten, die ihr Pivotelement in derselben Zeile 

besitzen, so kann jeweils nur eine hiervon eine gebundene Variable repräsentieren. 
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Spezielle Lösungsvektoren ergeben sich durch das Einsetzen von beliebigen reellen 

Zahlen für die freien Variablen. 

Beispiel 6-3: Bestimmung der Lösung bei unendlich vielen 

Lösungen 

Um die Lösung des LGS 

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

4x 2x 3x 4x 6x 1
14x 4x 3x 7x 6x 5
10x 4x 5x 3x 10x 3

O O N O 5 N
O O O O 5 N

N N N O N 5
 

zu bestimmen, wird die Koeffizientenmatrix vollständig pivotisiert. 

4 2 3 4 6 1 4 2 3 4 6 1
II 2 I

14 4 3 7 6 5 6 0 3 15 6 3
III 2 I

10 4 5 3 10 3 2 0 1 5 2 1

H IH IN N N N
N P J KJ K

N N N NJ KJ K O P J KJ K J KN N N N N NL M L M

 

10 2 0 11 0 4
I 3 III

0 0 0 0 0 0
II 3 III

2 0 1 5 2 1

NH I
N P J K

J KO P J KN NL M

 

Die Koeffizientenmatrix besitzt drei pivotisierte Spalten (Spalte zwei, drei 

und fünf), jedoch gibt es nur zwei Nicht-Nullzeilen. Der Rang der Koeffi-

zientenmatrix ist somit zwei und das LGS besitzt folglich zwei gebundene 

Variablen. Angesichts von insgesamt fünf Variablen verbleiben drei Variab-

len, die frei gewählt werden können. 

Als gebundene Variable wird zunächst 2x  gewählt, da die zweite Spalte 

pivotisiert ist und das Pivotelement der zweiten Spalte als einziges in der 

ersten Zeile liegt. Als zweite gebundene Variable ist dann entweder 3x  oder 

5x  zu wählen. Deren Spalten sind ebenfalls pivotisiert, jedoch befinden sich 

ihre Pivotelemente in derselben Zeile, so dass nur eine der beiden Variab-

len gebundene Variable sein kann. Die anderen Variablen sind freie Variab-

len. 

Bei einer Wahl von 2x  und 3x  als gebundene Variablen ergibt sich die Lö-

sungsmenge als: 
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1

1 4

1 4 51 4 5

4

5

x
112 5x x2

,x ,x ,x1 2x 5x 2x
x
x

b cH I
d dJ K
N N Nd dJ K

d dJ K5 AO O Ne fJ Kd dJ Kd dJ KJ Kd dL Mg h

� �  

6.4 Lösungen von linearen Gleichungssystemen 
in Abhängigkeit von Parametern 

Enthält ein LGS Parameter, so kann sowohl die Lösung als auch die Lösbarkeit des 

LGS von der Wahl der Parameter abhängen. 

Eine einfache Möglichkeit, alle Lösungen bzw. die Lösbarkeit in Abhängigkeit der 

Parameter eines LGS zu bestimmen, besteht darin, die erweiterte Koeffizientenmatrix 

vollständig zu pivotisieren, so dass der Rang der Koeffizientenmatrix von den Parame-

tern unabhängig ist. Bei der Pivotisierung können EZUs in Abhängigkeit der Parame-

ter notwendig sein, die für bestimmte Werte der Parameter nicht definiert sind bzw. 

die Lösbarkeit des LGS verändern. Die Division einer Zeile durch einen Term, der 

mindestens einen der Parameter enthält und in Abhängigkeit der Parameter somit 

Null sein kann, ist nicht definiert für diejenigen Parameter(kombinationen), für die der 

Term Null ist. Des Weiteren kann sich die Lösbarkeit eines LGS verändern, wenn eine 

zu verändernde Zeile mit einem Term multipliziert wird, der mindestens einen der 

Parameter enthält und in Abhängigkeit der Parameter Null sein kann. In diesem Fall 

werden alle Koeffizienten der Gleichung zu Null und es können Informationen einer 

Gleichung verloren gehen. 

Sind derartige EZUs bei der Pivotisierung der Koeffizientenmatrix notwendig, so 

muss eine Fallunterscheidung vorgenommen werden. Dabei werden die Werte der 

Parameter, für die unzulässige EZUs entstehen, in die erweiterte Koeffizientenmatrix 

eingesetzt. Anschließend werden dann jeweils die Lösbarkeit und gegebenenfalls die 

Lösung des LGS separat bestimmt, wobei hier alle Formen der Lösbarkeit (keine Lö-

sung, genau eine Lösung oder unendlich viele Lösungen) denkbar sind. 
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Beispiel 6-4: Lösung eines LGS in Abhängigkeit von Parametern 

Um die Lösbarkeit und gegebenenfalls die Lösung des nachfolgenden, die 

reellwertigen Parameter a und b enthaltenden LGS 

1 2 3

1 3

1 2 3

x ax 2x 1
2x 5x 3
3x ax ax b

O O 5
O 5

O O 5
 

zu bestimmen, wird die Koeffizientenmatrix vollständig (und streng) pivo-

tisiert. Zunächst wird das Element 12a  als Pivotelement gewählt. 

1 a 2 1
III I

2 0 5 3
I : a

3 a a b

H I
NJ K

J K
J K
L M

 

Da die EZU eine Division durch a enthält, welche nur definiert ist, falls 

a 0Q  gilt, muss die Lösbarkeit und gegebenenfalls die Lösung für a 05  se-

parat durch Einsetzen von a 05  in die noch nicht umgeformte erweiterte 

Koeffizientenmatrix bestimmt werden. Anschließend wird die erweiterte 

Koeffizientenmatrix, in der a nun ersetzt ist, pivotisiert. 

Fall 1: a 05  

1 0 2 11 0 2 1 1 0 0 1
II 2 I I 2 II

2 0 5 3 0 0 1 1 0 0 1 1
III 3 I III 6 II

3 0 0 b 0 0 6 b 3 0 0 0 b 3

H I H I NH I
N P N PJ K J K J K

J K J K J KN P O P J KJ K J KN N OL ML M L M

 

Wie zu erkennen ist, hängt die Lösbarkeit des LGS von b ab. Betrachten wir 

zuerst den Fall b 3 0O 5 .  

Fall 1.1: a 05 , b 35 N  

Hier ist rg(A) rg(A|b) 2 n 35 5 U 5 , das LGS besitzt unendlich viele Lö-

sungen. Da 1x  und 3x  eindeutig durch das LGS festgelegt sind, muss 2x  als 

freie Variable gewählt werden und es ergibt sich als Lösungsmenge 

< =? @T
2 21 x 1 ,x5 N A� � . Im Folgenden ist dagegen b 3 0O Q . 
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Fall 1.2: a 05 , b 3Q N  

Da rg(A) 2 rg(A|b) 35 U 5 , ist das LGS unlösbar. 

Nach dieser ausführlichen Diskussion der Lösbarkeit des LGS für a 05  be-

trachten wir den Fall, in dem die EZU "I : a" definiert ist und fahren mit der 

vollständigen Pivotisierung fort. 

Fall 2: a 0Q  

< =

n

n

1 2 1 1 11 III : a 70 2a a a a a12 I IIa 12 0 5 3 2 0 5 3 I IIIaIII II2 0 a 2 b 1 II 5 III0 0 a 7 b 4

H I H I NN NJ K J KP N PJ K O PJ K
J K N J KJ KN N N PJ K N NL ML M

 

Analog zur ersten Fallunterscheidung ist eine Division durch < =a 7N  nicht 

definiert, falls a 75 . Eine separate Lösungsbestimmung ist somit für 

a 7 0N 5  erforderlich und führt zu folgender Fallunterscheidung. 

Fall 2.1: a 75  

1 1 2 0 5 30 2 7 7
1 12 0 5 3 I II 0 2 7 7

0 0 0 b 4 0 0 0 b 4

H I H IN N
J K J K

V N NJ K J K
J K J KN NL M L M

 

Die Lösbarkeit des LGS hängt wiederum von b ab. Sei vorerst b 4 0N 5 . 

Fall 2.1.1: a 75 , b 45  

Es ist rg(A) rg(A|b) 2 n 35 5 U 5 . Das LGS besitzt somit unendlich viele 

Lösungen. Wählt man 3x  als freie Variable, so lässt sich die Lösungsmenge 

darstellen als < =T3 3 3 33 5 1 1x x x ,x2 2 14 14
b c5 N N O Ae f
g h

� � . Sei nun 

b 4 0N Q . 

Fall 2.1.2: a 75 , b 4Q  

Da rg(A) 2 rg(A|b) 35 U 5 , ist das LGS unlösbar. 

Ist im Folgenden allerdings a 7 0N Q , so ist die Division durch < =a 7N  zuläs-

sig und es kann mit der Pivotisierung fortgefahren werden. 
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Fall 2.2: a 0Q , a 7Q  

< =
a b 30 2 0
a a 7

3a 5b 12 0 0
a 7
b 40 0 1
a 7

N O OH I
J KNJ K
J KN N
J KNJ K

NJ K
J KJ KNL M

 

Die Koeffizientenmatrix ist nun vollständig pivotisiert. Der Rang der Koef-

fizientenmatrix ist nun unabhängig von den Parametern. Da 

rg(A) rg(A|b) 3 n5 5 5 , hat das LGS in diesem Fall die eindeutige Lösung: 

< = < =

T
3a 5b 1 a b 3 b 4x

2 a 7 2a a 7 a 7
H IN N N O O N
5 J KJ KN N NL M

 

6.5 Aufgaben 

Aufgabe 6.1: 

Wie lässt sich 
1

c
2
H I
5 J K
L M

 als Linearkombination von 
1

a
3
H I
5 J K
L M

 und 
2

b
1
H I
5 J K
L M

 darstellen? 

Aufgabe 6.2: 

Sind die folgenden Vektoren linear unabhängig? Betrachten Sie hierzu die möglichen 

Lösungen des linearen Gleichungssystems 1 2 3x a x b x c 0P O P O P 5 . 

a) < =Ta 5 4 55 N N ,  < =Tb 5 3 55 N ,  < =Tc 3 2 35 N N  

b) < =Ta 1 3 25 N ,  < =Tb 3 5 45 N N ,  < =Tc 4 6 25  
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Aufgabe 6.3: 

< =5 N Ta 1 3 7 3 ,  < =5 N Tb 2 6 2 2 ,  < =5 Tc 1 0 3 d  

Bestimmen Sie, ob und falls ja, wie sich c mit dA� als Linearkombination von a und b 

darstellen lässt. 

Aufgabe 6.4: 

< =Ta 1 3 2 25 N ,  < =Tb 2 3 3 25 N N N ,  < =Tc 3 4 1 35 N N N ,  < =Td 3 1 2 e5  

Bestimmen Sie, für welches eA� sich d als Linearkombination von a, b und c darstel-

len lässt und ermitteln Sie gegebenenfalls diese Linearkombination. 

Aufgabe 6.5: 

< =5 N N Ta 9 6 5 ,  < =5 N Tb 3 2 4 ,  < =5 Tc 1 2 7 ,  < =5 N N Td 2 4 5  

Sind a, b, c, d linear abhängig? Stellen Sie, falls möglich, a als Linearkombination von b, 

c und d dar. 

Aufgabe 6.6: 

Geben Sie alle Möglichkeiten an, um d als Linearkombination von a, b und c darzustel-

len. Beachten Sie, dass die Darstellung nicht eindeutig ist. 

Hinweis: Gesucht ist eine Darstellung der Form 1 2 3a x b x c x dP O P O P 5 . 

7
a 3,5

6

NH I
J K5 J K
J K
L M

,  
9

b 3
4

H I
J K5 NJ K
J KNL M

,  
13

c 2
0

NH I
J K5 J K
J K
L M

,  
3,5

d 3,5
10

H I
J K5 J K
J K
L M
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Aufgabe 6.7: 

1
3

a
2

4

NH I
J K
J K5 J KN
J K
L M

,  

4
3

b
1
3

H I
J K
J K5 J K
J K
L M

,  

10
0

c
6
2

H I
J K
J K5 J K
J K
NL M

 

Untersuchen Sie, ob die Vektoren a, b und c linear unabhängig sind. Geben Sie an, aus 

wie vielen Vektoren die größtmögliche Teilmenge der drei Vektoren a, b und c besteht, 

welche ausschließlich linear unabhängige Vektoren enthält. 

Aufgabe 6.8: 

b cNH I H I H I H I H I
d dJ K J K J K J K J K5 Ne fJ K J K J K J K J K
d dJ K J K J K J K J KN N N NL M L M L M L M L Mg h

1 4 1 2 2
2 , 2 , 1 , 4 , 4

2 2 2 4 4
�  

b cNH I H I H I H I H I H I H Id d5 e fJ K J K J K J K J K J K J KN N Nd dL M L M L M L M L M L M L Mg h

1 3 2 0 2 1 2
, , , , , ,

1 3 4 5 3 4 3
�  

Bestimmen Sie alle Teilmengen von � bzw. �, die wiederum Teilmengen besitzen, 

welche drei linear unabhängige Vektoren enthalten. 

Aufgabe 6.9: 

< =5 Ta 1 0 1 1 ,   < =5 N N Tb 1 0 3 2 ,   < =5 Tc 0 2 4 0  

Sind a, b, c linear abhängig? Stellen Sie, falls möglich, b als Linearkombination von a 

und c dar. 
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Aufgabe 6.10: 

4 1 1
A 2 3 0

1 0 2

NH I
J K5 J K
J K
L M

,  
3 2 1

B 6 4 2
10 1 2

H INJ K
J K5 N
J K
J KNL M

,  

1 0 2 3
2 3 2 1

C
2 1 1 1
0 2 1 4

H I
J KNJ K5 J KN
J KJ KNL M

,  

NH I
J KN NJ K5 J KN N
J KJ KN N N NL M

2 4 1 0 1
2 3 1 1 4

D
4 1 0 3 1
6 2 1 6 1

 

Berechnen Sie den Rang von A, B, C und D. 

Aufgabe 6.11: 

1 2 3
A 2 5 3

5 13 6

NH I
J K5 N NJ K
J KN NL M

,  
1 2 5

B 2 5 13
3 3 6

N NH I
J K5 NJ K
J KN NL M

,  

2 1 3
4 3 2
2 9 1C

4 2 7
1 3 2

NH I
J KNJ K
J KN N5
J K

NJ K
J KNL M

,  
7 0 0 0

D 3 5 0 0
4 9 8 2

H I
J K5 J K
J K
L M

 

Berechnen Sie den Rang von A, B, C und D. 

Aufgabe 6.12: 

1 2 3

1 2 3

2 3

x 2x 4x 3
2x 2x 7x 5

2x x 1

O O 5
O O 5
N N 5 N

 

Bestimmen Sie die Lösung des Gleichungssystems. 

Aufgabe 6.13: 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

x 2x 3x 4x 11
3x 4x 5x 5x 11
2x 4x 6x 2x 2
6x 4x 2x 4x 6

N O N O 5
N O N 5 N

N O N N 5
N O N O 5 N

 

Lösen Sie das LGS. 
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Aufgabe 6.14: 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

3x 5x 2x 4x 4
x 13x 4x 2x 18
2x 15x 2x 3x 22

6x 6x 3x 2x 13

O N N 5
O O N 5

N O O N 5
N N N 5 N

 

Bestimmen Sie die Lösung des Gleichungssystems. 

Aufgabe 6.15: 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

3x 8x 2x 2x 18
7x x 8x 6x 2
x 6x 2x 6x 2
4x 5x x 6x 9

O O O 5
N O O N 5

O N O 5
N O N O 5 N

 

Lösen Sie das lineare Gleichungssystem. 

Aufgabe 6.16: 

1 2 3 4

2 3 4 5

4 5

3x 2x 3x 3x 5
2x x 2x x 6

x 4x 7

O O N 5
O N N 5

O 5 N
 

a) Bestimmen Sie die Lösung des LGS. Wählen Sie 2x  und 5x  als freie Variablen. 

b) Wären anstelle von 2x  und 5x  auch 4x  und 5x  gleichzeitig frei wählbar? 

Aufgabe 6.17: 

Eine < =3 3G -Matrix A hat einen Rang von 2. Was folgt daraus für die Lösbarkeit des 

Gleichungssystems P 5A x b? 
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Aufgabe 6.18: 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

x x 2x 8x 7
x 2x x 4x 5

2x 3x 2x 7x 10
3x 2x x 2x 11

O O N 5
O O N 5
O O N 5
O O O 5

 

Lösen Sie das LGS. 

Aufgabe 6.19: 

Ein Gleichungssystem besitzt folgende Lösungsmenge: 

  

3

3
3

3

3

2 x
4 x

,x
x

14 2x

N Ob cH I
d dJ KOd dJ K5 Ae fJ Kd dJ Kd dNL Mg h

� �  

a) Ermitteln Sie den Wertebereich für die freie Variable, für den sich eine nicht-

negative Lösung ergibt. 

b) Für welche Werte von aA� ist der Vektor < =Tv 2 2a 4 a 25 O  eine mögliche 

Lösung? 

Aufgabe 6.20: 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

x 2x 2x x 6
2x x x 2x 9

x 2x 2x x 2
3x 3x 3x 3x 15

O O O 5
O O O 5

N O O N 5 N
O O O 5

 

a) Lösen Sie das LGS. 

b) Ermitteln Sie die Wertebereiche für die freien Variablen, für die sich eine nichtne-

gative Lösung ergibt. Geben Sie drei nichtnegative, ganzzahlige Lösungen an. 
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Aufgabe 6.21: 

1 2 3

1 2 3

2x x 3x 0
x x 3x 0

N O 5
O N 5

 

Lösen Sie das LGS und bestimmen Sie den Wertebereich für die freie Variable, so dass 

sich nur positive Lösungen ergeben. 

Aufgabe 6.22: 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

5 51 2x x x x3 2 3 2
9 3x 3x x 8x2 2

13 155x 3x x 12x2 2
8x 6x 12x 22x 12

N O N 5

O N O 5

O N O 5
N N O N 5 N

 

a) Lösen Sie das LGS mit 3x  und 4x  als freien Variablen. 

b) Können 1x  und 3x  gemeinsam freie Variablen sein? 

Aufgabe 6.23: 

1 2

1 2

1 2

2x 3x 2
x 4x 5

3x x 11

O 5 N
N O 5 N

O 5 N
 

Lösen Sie das LGS. 

Aufgabe 6.24: 

1 2 3 4

1 2 3 4

1 2 3

2x x 4x 3x 2
x x x 3x 7
x 2x 5x 5

O O O 5
N N N 5
O O 5 N

 

a) Lösen Sie das LGS. 

b) Bestimmen Sie alle nichtnegativen Lösungen des LGS. 
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Aufgabe 6.25: 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

x x 2x 8x 7
x 2x x 4x 5

2x 3x 2x 7x 10
3x 2x x 2x 11

O O N 5
O O N 5
O O N 5
O O O 5

 

a) Bestimmen Sie die Lösung des obigen Gleichungssystems. 

b) Für welche Werte von Aa �  ist der Vektor < =5 O Tv a 2 2 8 2  eine Lösung des 

obigen LGS? 

Aufgabe 6.26: 

1 2 3

1 2 4

1 2 3 4

1 2 3

x 3x x 2
2x 5x 2x 7
x 2x x 4x 6

3x 9x 3x 6

O N 5
O O 5
O O O 5
O N 5

 

a) Bestimmen Sie die Lösung des obigen Gleichungssystems. 

b) Für welche Werte von Aa �  ist der Vektor < =5 N
T1v 2 a 2 2  eine Lösung des 

obigen LGS? 

Aufgabe 6.27: 

Geben Sie die Lösbarkeit und die Lösung des nachfolgenden LGS in Abhängigkeit von 

aA� an. 

1 2

1 2

x a x 0
2x x 4

O P 5
O 5

 

Aufgabe 6.28: 

1 2 3

1 3

1 2 3

x x ax 7
2x 4x 8
3x 2x 8x 6

O O 5
O 5

N O 5
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Lösen Sie das LGS in Abhängigkeit von Aa � . 

Aufgabe 6.29: 

1 2

2 3

1 3

3x 6ax 3a
ax x 1

2x 4ax 0

N 5
N 5

N O 5
 

Lösen Sie das LGS in Abhängigkeit von Aa � . 

Aufgabe 6.30: 

N O 5
O N 5
O O 5 N

1 2 3

1 2 3

1 2 3

ax 2x 4x 1
3x 3x 4x 1
5x x 2x 1

 

Lösen Sie das Gleichungssystem in Abhängigkeit von Aa � . 

Aufgabe 6.31: 

1 2 3

1 2 3

1 2

5x x 3ax 0
4x 5x 3x 0
2x x 0

N N O 5
O N 5

N O 5
 

Lösen Sie das LGS in Abhängigkeit des Parameters Aa � . 

Aufgabe 6.32: 

1 2 3 4

1 2 3 4

1 2 3

x x x 3x 7
2x x 4x 3x 2
x 2x 5x a

N N N 5
O O N 5
O O 5

 

Lösen Sie das LGS in Abhängigkeit von Aa � . 
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Aufgabe 6.33: 

1 2

1 2

1 2

4x 3x a
5x 4x b
3x 2x c

N O 5
N 5

N O 5
 

Unter welcher Bedingung für Aa,b,c �  ist das LGS lösbar? Bestimmen Sie für diesen 

Fall die Lösung. 

Aufgabe 6.34: 

Gegeben sei die folgende partitionierte Matrix mit Aa � : 

< =I II

1 2 1 a
A A A 1 2 1 2a

2 4 2 2a

H I
J K5 5 J K
J K
L M

 

a) Bestimmen Sie < =Irg A , < =IIrg A  und < =rg A  für Aa � . 

b) Welche Aussagen können Sie demnach über die lineare (Un-) Abhängigkeit der 

Zeilen und Spalten von IA , IIA  und A treffen? 

c) Kann ein LGS P 5A x b mit oben genanntem A als Koeffizientenmatrix eine eindeu-

tige Lösung besitzen? Falls ja, was muss hierbei für Aa � gelten? 

d) Ist ein LGS P 5A x b mit oben genanntem A als Koeffizientenmatrix überhaupt 

lösbar? Was muss hierbei für den Ergebnisvektor < =5 T
1 2 3b b b b  gelten? Wäre 

demnach ein LGS mit < =5 N Tb 1 2 a 1  lösbar? 

Aufgabe 6.35: 

Es sei m nA GA�  (d.h. A ist eine Matrix mit m Zeilen und n Spalten). Wie Sie wissen gilt 

< = ? @0 rg A min m;nT T . Welche Aussage können Sie über den Rang von A treffen, 

a)  falls m nT ? 

b)  falls m nT  und die Matrix k Nullzeilen enthält 
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c)  falls m nR  und die Matrix k Nullzeilen enthält? 

Fassen Sie Ihre Aussagen so präzise wie möglich. 

Aufgabe 6.36: 

a) Lösen Sie das folgende LGS in Abhängigkeit des Parameters Aa �: 

3 1 1 a
6 2 0 x 2a 2

3 a1 1
2 2 2 2

H I H INJ K J K
J K J KN P 5 N O
J K J K
J K J KNL M L M

 

Im Weiteren betrachten Sie das folgende allgemeine LGS mit mxnAA�  und mbA� : 

A x bP 5  

b) Geben Sie anhand des Rangkriteriums an, unter welcher Bedingung das LGS ein-

deutig lösbar ist. 

c) Geben Sie, falls möglich, eine Bedingung für mbA�  an, unter welcher das LGS 

unabhängig von der Gestalt der Koeffizientenmatrix A immer lösbar ist. 

d) Geben Sie, falls möglich, eine Bedingung für mbA�  an, unter welcher das LGS 

unabhängig von der Gestalt der Koeffizientenmatrix A immer eindeutig lösbar ist. 

e) Gehen Sie im Weiteren von einem quadratischen LGS aus, es gelte also m n5 . 

Können Sie eine Aussage über die Lösbarkeit des abgeänderten LGS mit transfor-

mierter Koeffizientenmatrix TA x bP 5  treffen, falls: 

 i) A x bP 5  eindeutig lösbar ist? 

 ii) A x bP 5  unendlich viele Lösungen besitzt? 

Aufgabe 6.37: 

O O 5
O O N 5
O O 5

1 2

1 2 3

1 2 3

(4a 3)x 2x 1
3x x (a 2)x 2
ax x x 2

 

a) Lösen Sie das LGS in Abhängigkeit von Aa � . 
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1 2

1 2 3

1 2 3

1 2 3

(4a 3)x 2x 0
3x x (a 2)x 0
ax x x 0
ax 3x (a 1,5)x 0

O O 5
O O N 5
O O 5

N O O O 5

 

b) Für welche Werte von Aa �  besitzt dieses um eine Gleichung erweiterte, nun ho-

mogene Gleichungssystem unendlich viele Lösungen? Bestimmen Sie für diesen 

Fall die Lösung. 

Aufgabe 6.38: 

1 2 3 4

1 2 3 4

1 2 3

1 3 4

4x 3x 6x 4x 21
2x x 3x 2x 7
7x 2ax x 3b
3x 1,5x x 4a

O N N 5
O N N 5
N O 5

N O O 5 N

 

Lösen Sie das LGS in Abhängigkeit von Aa,b �. 

Aufgabe 6.39: 

1 2 3

1 2 3

1 2 3

x 2x 3x 3
2x x bx 2
x x ax 2

O O 5
O O 5 N
N O 5 N

 

Lösen Sie das LGS in Abhängigkeit von Aa,b �. 

Aufgabe 6.40: 

< = < =

< =

1 2 3

1 2 3

1 2 3

2a 4 x 4x 6 2b x 2
2x 4x bx 1
2x 4x b 2 x 1

N N O O 5
O N 5
N O N 5

 

Lösen Sie das LGS in Abhängigkeit von Aa,b �. 
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Aufgabe 6.41: 

Gegeben sei das folgende LGS in Matrixform mit Aa,b �: 

2 4 1 0 4
1 4a 2 1 x 1

1 b 73 6 0 a 2

H IN N H IJ K J KJ KN P 5 NJ KJ K J KOJ KN N L ML M

 

a) Bestimmen Sie Aa �  so, dass die Zeilen der Koeffizientenmatrix linear abhängig 

sind. 

b) Bestimmen Sie Aa �  so, dass die Spalten der Koeffizientenmatrix linear abhängig 

sind. 

c) Bestimmen Sie die Lösung des LGS in Abhängigkeit von Aa,b �. 

Aufgabe 6.42: 

< =
1 2 3

1 2 3

2 3

2bx 8x 5x 11
2bx 12x b 6 x a 9

4x 4x 4

O N 5
O O N 5 O

N 5
 

Lösen Sie das LGS in Abhängigkeit von Aa,b �. 

Aufgabe 6.43: 

O O 5

O O 5 O

O O 5 N O O

1 2 3

1 2 3

1 2 3

2bx bx abx ab
3 5 1x x ax b 12 2 2

76x 4x 5ax 2a b 22

 

Lösen Sie das LGS in Abhängigkeit von Aa,b �. 
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Aufgabe 6.44: 

Sie betrachten die nachfolgende Matrixgleichung mit der Koeffizientenmatrix A und 

a,bA� : 

a 1 1 1
2 1 2 x 0
0 1 a b

H I H I
J K J KN P 5J K J K
J K J K
L M L M

 

a) Bestimmen Sie < =det A . 

b) Bestimmen Sie < =rg A  und < =rg A b . 

c) Lösen Sie die Matrixgleichung und geben Sie die Lösung in Abhängigkeit von 

a,bA� an. Geben Sie explizit an, für welche Werte der Parameter ein zugrunde 

liegendes LGS lösbar ist. 

d) Setzen Sie a 15  und b 05 . Geben Sie dann die Lösung an. 

Aufgabe 6.45: 

Gegeben sei die Koeffizientenmatrix GA m nA �  eines allgemeinen LGS in Matrixform 

P 5A x b. 

a) Falls < = 5rg A m gilt, sind dann die Zeilen oder Spalten von A stets l. u.? (Begrün-

den Sie Ihre Antwort.) 

b) Nennen Sie das Rangkriterium zur Bestimmung der Lösbarkeit von LGS. 

c) Welche Lösbarkeiten verbleiben für das LGS, falls 

 i) < = 5rg A m gilt? 

 ii) < = 5rg A n gilt? 

d) Wie verändert sich Ihre Antwort in Aufgabe c), falls zudem 5b 0 gilt? 

e) Welche Lösbarkeiten verbleiben für das LGS, falls A die < =Gm n -Nullmatrix ist, also 

5A 0 gilt? Verändert sich Ihre Antwort, falls das LGS quadratisch ist, also 5m n 

gilt? Falls ja, inwiefern? 
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f) Gegeben sei die Matrix 

  
NH I

J K5 NJ K
J KNL M

4 1 2
B 0,5 2 0,25

1 3 0,5
 

 i) Zeigen Sie eine Möglichkeit auf, die zweite Zeile der Matrix B als Linearkombi-

nation aus anderen Zeilen darzustellen. 

 ii) Ist auch die zweite Spalte der Matrix B als Linearkombination anderer Spalten 

darstellbar? 
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7 Vektorraumtheorie 

7.1 Axiome des Vektorraums 

In diesem Kapitel werden die Rechenobjekte Matrix sowie Zeilen- und Spaltenvektor 

näher charakterisiert. Dabei wird zunächst der Vektorraum als eine elementare, alle 

relevanten Rechenobjekte differenziert erfassende Größe eingeführt. Anschließend 

konzentrieren wir uns auf Vektorräume, welche ausschließlich < =m 1G -Vektoren ent-

halten. Zu solchen zählen unter anderem Lösungsmengen linear homogener Glei-

chungssysteme, womit auch hier unser Fokus auf die Lösung linearer Gleichungssys-

teme wieder hergestellt ist. 

Definition 7-1: Axiome des Vektorraums 

Es sei Q>�  eine Menge, auf welche die folgenden Rechenoperati-

onen definiert seien: 

� Vektoraddition (Operationszeichen "i") nach der Vorschrift 

G j� � �. Das heißt, die Addition zweier Elemente aus � bilde 

ein Element aus � ab, die Vektoraddition sei somit abgeschlos-

sen. 

� Multiplikation mit einem Skalar (Operationszeichen "k") nach 

der Vorschrift G j� � �. Das heißt, die Multiplikation eines Ska-

lars mit einem Element aus � bilde ein Element aus � ab, die 

Multiplikation mit einem Skalar sei somit abgeschlossen. 

Erfüllt die Menge � die nachfolgenden Rechengesetze, heißt � 

Vektorraum. Die Elemente von � heißen Vektoren. Im Folgenden 

seien A�x,y,z  sowie A�a,b,c : 

 

C. Mayer, Lineare Algebra für Wirtschaftswissenschaftler,
DOI 10.1007/978-3-8349-6727-5_7, © Gabler Verlag | Springer Fachmedien Wiesbaden GmbH 2011
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� Assoziativgesetz der Vektoraddition: 

 < = < =i i 5 i ix y z x y z  

� Assoziativgesetz der Multiplikation mit einem Skalar: 

 < = < =k k 5 P ka b x a b x 

� Kommutativgesetz der Vektoraddition: 

 i 5 ix y y x 

� Distributivgesetze der Multiplikation mit einem Skalar: 

 < = < = < =k i k 5 O ka z b z a b z, < = < = < =k i k 5 k ia x a y a x y  

� Existenz eines neutralen Elements der Vektoraddition: 

 A4 i 5 i 50 x 0 0 x x
�

 

� Existenz eines inversen Elements der Vektoraddition: 

 < = < = < =N A4 i N 5 N i 5x x x x x 0
�

 

� Existenz eines neutralen Elements der Multiplikation mit einem 

Skalar: 

 A4 k 5
�1 1 x x  

Es sei � die Menge aller < =m 1G -Matrizen, auf die analog zu Abschnitt 1.2 eine Vektor-

addition und eine Multiplikation mit einem Skalar für x,yA�  und aA�  definiert 

seien durch: 

1 1 1 1

i i i i

m m m m

x y x y

x y x y:

x y x y

OH I H I H I
J K J K J K
J K J K J K
J K J K J KOi 5
J K J K J K
J K J K J K
J K J K J KOL M L M L M

� � �

� � �
 sowie 

1 1

i i

m m

x a x

x a xa :

x a x

PH I H I
J K J K
J K J K
J K J KPk 5
J K J K
J K J K
J K J KPL M L M

� �

� �
 

Es erfüllen dann x,yA�  die oben genannten Rechengesetze. < =m 1G -Matrizen sind 

demnach im Grunde Vektoren und die Menge aller < =m 1G -Matrizen ist ein Vektor-

raum. 
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Nun sei � die Menge aller < =m nG -Matrizen, auf die analog zu Abschnitt 1.2 eine Vek-

toraddition (in diesem Fall die Matrixaddition) und eine Multiplikation mit einem 

Skalar für A,BA� und aA�  definiert seien durch: 

K
K
K

M

I

J
J
J

L

H

OO

OO
5

K
K
K

M

I

J
J
J

L

H
i
K
K
K

M

I

J
J
J

L

H

mnmn1m1m

n1n11111

mn1m

n111

mn1m

n111

baba

baba
:

bb

bb

aa

aa

�
���

�

�
���

�

�
���

�
 sowie 

K
K
K

M

I

J
J
J

L

H

PP

PP
5

K
K
K

M

I

J
J
J

L

H
k

mn1m

n111

mn1m

n111

baba

baba
:

bb

bb
a

�
���

�

�
���

�
 

Auch dann erfüllen alle A,BA� die oben genannten Rechengesetze. < =m nG -Matrizen 

sind demnach Vektoren und die Menge aller < =m nG -Matrizen ist ein Vektorraum. 

Sei dagegen � die Menge der ganzen Zahlen 	, auf die eine Vektoraddition bzw. eine 

Multiplikation mit einem Skalar in üblicher Weise für x,yA�  und aA�  definiert 

seien durch: 

yx:yx O5i  sowie xa:xa P5k  

In diesem Fall handelt es sich bei � um keinen Vektorraum, da die Multiplikation mit 

einem Skalar auf 	 nicht abgeschlossen ist. Wird beispielsweise als reellwertiger Ska-

lar 5,0a 5  und als ganzzahliges Element 3x 5  gewählt, so resultiert 5,135,0xa 5P5P , 

wobei das Ergebnis keine ganze Zahl und somit kein Element von � ist. 

Nachfolgend sei wiederum � die Menge aller < =m 1G -Vektoren, auf die allerdings 

abweichend vom ersten Beispiel eine Vektoraddition und eine Multiplikation mit 

einem Skalar für x,yA�  und aA�  definiert seien durch: 

1 1 1 1

i i i i

m m m m

x y x y

x y x y:

x y x y

OH I H I H I
J K J K J K
J K J K J K
J K J K J KOi 5
J K J K J K
J K J K J K
J K J K J KOL M L M L M

� � �

� � �
 sowie 

1 1

i i

m 1 m 1

m

x a x

x a x
a :

x a x
x 0
N N

PH I H I
J K J K
J K J K
J K J KP

k 5J K J K
J K J K
J K J KP
J K J KJ K J K
L M L M

� �

� �
 

Nun existiert kein neutrales Element der Multiplikation mit einem Skalar, so dass stets 

xx1 5k  gilt. In diesem Fall ist die Menge aller < =m 1G -Spaltenvektoren wegen der 

besonderen Definition der Multiplikation mit einem Skalar kein Vektorraum. 
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7.2 Spezielle Vektorräume und Unterräume 

Im Weiteren seien die Vektoraddtion und die Multiplikation mit einem Skalar auf 

herkömmliche Weise (analog zu Abschnitt 1.2) definiert. Wir betrachten nun die Men-

gen aller < =m 1G -Spaltenvektoren als Vektorräume, somit die verschiedenen m
� . 

Definition 7-2: Unterraum des �m 

Falls für eine nichtleere Teilmenge 
 des m
�  alle Vektorraumaxio-

me gelten, heißt 
 Unterraum des m
� . 

Ist 
 ein Unterraum des m
� , so müssen unter anderem die Abgeschlossenheiten der 

Vektoraddition und der Multiplikation mit einem Skalar gegeben sein. Somit muss für 

je zwei Elemente u,vA
  und aA�  gelten, dass sowohl die Vektorsumme von u und v 

als auch das Produkt aus Skalar und Spaltenvektor in 
 enthalten sind, also u vO A
 

sowie a uP A
. Aus letztgenanntem folgt direkt, dass jeder Unterraum des m
�  den 

Nullvektor 0 enthält, denn wird für den Skalar 0a 5  gewählt, so ergibt sich als Pro-

dukt des Skalars mit einem beliebigen Element u des Unterraums der Nullvektor. 

Hieraus kann man unter anderem Folgendes ableiten: 

��  Der m
�  ist immer Unterraum des m

� . 

��  Der ausschließlich aus dem Nullvektor bestehende Unterraum, der Ursprung also, 

ist immer Unterraum des m
� . 

��  Alle Unterräume des 2
�  sind demnach der 2

� , alle Ursprungsgeraden und der 

Ursprung. 

��  Alle Unterräume des 3
�  sind der 3

� , alle Ursprungsebenen, alle Ursprungsgera-

den und der Ursprung. 

Es sei ausdrücklich darauf hingewiesen, dass die verschiedenen Vektorräume m
�  in 

keiner Beziehung zueinander stehen. Sie enthalten Spaltenvektoren unterschiedlicher 

Ordnung, weshalb sie nicht miteinander verknüpft werden können. Somit ist, selbst 

falls n mU , der n
�  kein Unterraum des m

� . 
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7.3 Erzeugendensystem, Basis und Dimension 
von Unterräumen 

Neben dem m
� , der alle < =m 1G -Spaltenvektoren enthält, erfüllen auch bestimmte 

Teilmengen des m
�  die Anforderungen an einen Unterraum. Unterräume des m

�  

werden durch ein Erzeugendensystem oder eine Basis dargestellt. Die Dimension 

beschreibt den jeweiligen Unterraum näher. 

Definition 7-3: Erzeugendensystem (EZS) 

Enthält die Menge ? @5 �1 na , ,a�  ausschließlich < =Gm 1 -Vektoren, so 

bildet die Menge aller Linearkombinationen der Vektoren aus � ei-

nen Unterraum des m
� . Dieser Unterraum wird mit : ;�  bezeichnet. 

� selbst heißt dann Erzeugendensystem dieses Unterraums. 

Ein EZS ist demnach eine Menge mit endlich vielen (abzählbaren) Spaltenvektoren 

gleicher Ordnung. Der von dem EZS erzeugte Unterraum hingegen enthält alle Line-

arkombinationen der Vektoren des EZS, also unendlich viele. Darüber hinaus kann 

jede nichtleere Menge, welche < =m 1G -Spaltenvektoren gleicher Ordnung beinhaltet, 

immer ein EZS irgendeines Unterraums des m
�  bilden, denn es lassen sich immer 

unendlich viele Linearkombinationen aus den Vektoren des EZS bilden. Selbst wenn 

die Menge nur aus einem einzigen Vektor besteht, kann dieser mit jeder beliebigen 

reellen Zahl multipliziert werden, so dass immer neue Linearkombinationen des Aus-

gangsvektors entstehen. Der hierdurch gebildete Unterraum ist dann eine Ursprungs-

gerade. Jeder Unterraum wird zudem von unendlich vielen verschiedenen EZS er-

zeugt. Die einzige Ausnahme bildet der ? @0 0X Y5 \ ]� , welcher stets nur einen Vektor 

(den Ursprung) enthält. 

Ist ein beliebiger Vektor : ;wA � , so ist w eine Linearkombination der Vektoren aus �, 

und es gilt definitionsgemäß 1 1 n nw x a x a5 P O O P� . Diese Gleichung ist lösbar, aber 

nicht zwingend eindeutig lösbar. 
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Ein Erzeugendensystem eines vollständigen m
�  muss m linear unabhängige < =m 1G -

Vektoren enthalten, denn nur dann lässt sich jeder beliebige < =m 1G -Vektor als Linear-

kombination der Vektoren des EZS darstellen. 

Definition 7-4: Basis 

Die Menge ? @5 �� 1 kb , ,b  ist eine Basis von : ;� , wenn sie ein Er-

zeugendensystem von : ;�  ist und ihre Vektoren l. u. sind. Sie bil-

det ein minimales Erzeugendensystem. 

Eine Basis ist demnach ebenfalls eine Menge mit endlich vielen (abzählbaren) Spalten-

vektoren, denn auch sie ist ein EZS. Allerdings enthält eine Basis eines Unterraums 

nur linear unabhängige Vektoren, also die minimale Anzahl an Vektoren, die notwen-

dig ist, um den betreffenden Unterraum zu erzeugen. Derselbe Unterraum lässt sich 

durch unendlich viele verschiedene Basen darstellen. (Die einzige Ausnahme bildet 

wiederum der 0
� .) 

Ist ein beliebiger Vektor : ;wA � , so ist w eine Linearkombination der Vektoren einer 

Basis � von : ;� , und es gilt 1 1 k kw x b x b5 P O O P� . Diese Gleichung ist eindeutig 

lösbar. 

Zwei Basen des selben Unterraums besitzen somit stets gleich viele Elemente. 

Definition 7-5: Dimension 

Die Dimension eines Unterraums gibt die Mächtigkeit des Unter-

raums an und resultiert aus der Anzahl der Vektoren einer Basis. 

(Die einzige Ausnahme bildet der Unterraum ? @X Y\ ]0 , welcher zwar 

einen Vektor enthält, jedoch die Dimension Null besitzt. Die Di-

mension eines Unterraums 
 wird mit < =dim 
  bezeichnet. 

Ist die Dimension eines Unterraums gleich n, so ist jedes EZS des Unterraums, das 

genau n Vektoren enthält, eine Basis des Unterraums. Um einen n-dimensionalen 
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Unterraum zu erzeugen, werden mindestens n Vektoren benötigt. In einem n-

dimensionalen Unterraum sind höchstens n Vektoren linear unabhängig, so sind bei-

spielsweise vier Vektoren des �3 immer linear abhängig. Eine Menge �, die diese 

Vektoren enthält, ist demnach keine Basis von : ;� .  

Jeder Unterraum eines m
�  lässt sich durch seine Erzeugendensysteme und seine Ba-

sen eindeutig beschreiben. Die Dimension gibt lediglich eine nähere Beschreibung. 

Ausgehend von einem EZS eines Unterraums können Basis und Dimension einfach 

bestimmt werden. Hierzu werden die Spaltenvektoren aus dem EZS in die Zeilen einer 

Matrix geschrieben, welche durch EZUs, wie bei der Rangbestimmung, in eine Trep-

penmatrix überführt wird. EZUs führen zu Linearkombinationen der Zeilen einer 

Matrix. Die Nicht-Nullzeilen der Treppenmatrix sind folglich Linearkombinationen 

der Vektoren des EZS und erzeugen somit denselben Unterraum wie das EZS. Durch 

die Umformung in eine Treppenmatrix sind die entstehenden Nicht-Nullzeilen jedoch 

l. u. Werden die Nicht-Nullzeilen nun wiederum als Spaltenvektoren in einer Menge 

zusammengefasst, erhält man eine Basis des Unterraums. (Werden die Vektoren des 

EZS hingegen in die Spalten einer Matrix übernommen, müssen zur Basisbestimmung 

elementare Spaltenumformungen verwendet werden, damit es sich weiterhin um 

Linearkombinationen der Vektoren handelt.) Da die Dimension des Unterraums der 

Anzahl der Vektoren in der Basis entspricht, ergibt sie sich auch aus dem Rang der 

Matrix. 

Beispiel 7-1: Bestimmung von Basis und Dimension eines 

Unterraums 

Sind eine Basis und die Dimension des von der Menge 

1 1 2
1 , 6 , 3
3 3 6

b cNH I H I H I
d dJ K J K J K5 N Ne fJ K J K J K
d dJ K J K J KNL M L M L Mg h

�  

erzeugten Unterraums zu bestimmen, so werden die Vektoren aus � in die 

Zeilen einer Matrix geschrieben und diese in eine Treppenmatrix über-

führt: 
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1 1 31 1 3 1 1 3
II I

1 6 3 0 5 0 III II 0 5 0
III 2 I

2 3 6 0 5 0 0 0 0

H I H I H I
OJ K J K J KN N N N N NJ K J K J KN PJ K J K J KN N L ML M L M

 

Eine Basis von : ;�  enthält die Nicht-Nullzeilen der Treppenmatrix. Folg-

lich ist 

1 0
1 , 5
3 0

b cH I H I
d dJ K J K5 Ne fJ K J K
d dJ K J K
L M L Mg h

�  

eine Basis von : ;� . Die Dimension von : ;�  entspricht dem Rang der Mat-

rix, folglich gilt : ;< =dim 25� . � spannt somit einen zweidimensionalen 

Unterraum des 3
�  auf. 

7.4 Lösungsmengen von linear homogenen 
Gleichungssystemen als Unterräume 

Die in Kapitel 6.3 betrachteten Lösungsmengen von mehrdeutig lösbaren linearen 

Gleichungssystemen enthalten unendlich viele Lösungsvektoren, doch erfüllen nicht 

alle Lösungsmengen die Kriterien an einen Unterraum. Lösungsmengen inhomogener 

LGS verletzen die Kriterien der Abgeschlossenheit bezüglich der Vektoraddition bzw. 

der Multiplikation mit einem Skalar. Dagegen genügen Lösungsmengen linear homo-

gener Gleichungssysteme den Vektorraumaxiomen, Vektoraddition und Multiplikati-

on mit einem Skalar sind hier abgeschlossen. (Ausgehend von der Definition eines 

Unterraums des m
�  muss also zum einen die Lösungsmenge des LhGS h�  nicht leer 

sein und eine Teilmenge eines m
�  darstellen. Zum anderen müssen die auf h�  defi-

nierten Operationen Vektoraddition sowie Multiplikation mit einem Skalar abge-

schlossen sein und die Axiome des Vektorraums erfüllen.) Eine Betrachtung von h�  
führt zu: 
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��  h�  ist nie leer, da der Nullvektor immer eine Lösung des LhGS P 5A x 0 ist. 

��  h�  ist immer eine Teilmenge eines m
�  (m entspricht dabei der Anzahl der Variab-

len des LhGS). 

��  Die auf h�  definierte Vektoraddition ist abgeschlossen. Sind hu,vA� , so erfüllen u 

und v jeweils das LhGS, es gilt P 5A u 0 und P 5A v 0. Ist h�  abgeschlossen bezüg-

lich der Vektoraddition, muss hu vO A�  und somit < =P O 5A u v 0 erfüllt sein. Auf-

grund des Distributivgesetzes ergibt sich < =P O 5 P O P 5 O 5A u v A u A v 0 0 0. Somit 

ist hu vO A��  immer erfüllt. 

��  Die auf h�  definierte Multiplikation mit einem Skalar ist abgeschlossen. Ist huA�  

und Ac �, so erfüllt u das LhGS, es gilt P 5A u 0. Ist h�  abgeschlossen bezüglich 

der Multiplikation mit einem Skalar, muss P A hc u �  und somit < =P P 5A c u 0 erfüllt 

sein. Aufgrund des Assoziativgesetzes der Matrixmultiplikation und der Kommu-

tativität der Multiplikation mit einem Skalar folgt < = < =P P 5 P P 5 P 5A c u c A u c 0 0. 

Somit ist P A hc u �  immer erfüllt. 

��  Falls die Vektoraddition und die Multiplikation mit einem Skalar entsprechend 

Kapitel 1.2 definiert sind, erfüllt m
hD� �  immer die Axiome des Vektorraums. 

Da es sich bei Lösungsmengen von LhGS somit immer um Unterräume eines m
�  

handelt, können für diese eine Basis und die Dimension bestimmt werden. Dazu wird 

der allgemeine Lösungsvektor in eine Summe einzelner Vektoren zerlegt, die jeweils 

nur eine der freien Variablen enthalten. Anschließend werden die freien Variablen aus 

den einzelnen Vektoren ausgeklammert. Es entsteht eine eindeutige Darstellung aller 

Lösungsvektoren durch die Vektoren einer Basis der Lösungsmenge. Alle Linearkom-

binationen der Basisvektoren geben alle Lösungen des LhGS wieder. Die Dimension 

der Lösungsmenge des LhGS entspricht der Anzahl der Basisvektoren bzw. der An-

zahl der freien Variablen in der Lösungsmenge. Es gilt < = < =hdim m rg A|05 N� . 

Beispiel 7-2: Bestimmung einer Basis und der Dimension von h��  

Um eine Basis der Lösungsmenge 

< =? @T
h 2 3 2 3 2 3 2 33x 4x x x x 2x ,x ,x5 N N O A� �  
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zu bestimmen, wird der allgemeine Lösungsvektor so zerlegt, dass sich je-

der Lösungsvektor eindeutig aus Basisvektoren darstellen lässt: 

2 3 2 3

2 2
2 3

3 3

2 3 2 3

3x 4x 3x 4x 3 4
x x 0 1 0

x x
x 0 x 0 1

x 2x x 2x 1 2

N N NH I H I H I H I H I
J K J K J K J K J K
J K J K J K J K J K5 O 5 P O PJ K J K J K J K J K
J K J K J K J K J KJ K J K J K J K J KN O N NL M L M L M L M L M

 

Anschließend werden die Basisvektoren in eine Menge 

3 4
1 0

,
0 1
1 2

b cNH I H I
d dJ K J K
d dJ K J K5 e fJ K J Kd dJ K J KJ K J Kd dNL M L Mg h

�  

übernommen, welche eine Basis von h�  ist. Die Dimension von h�  ent-

spricht der Anzahl der freien Variablen und ist somit 2.  

7.5 Aufgaben 

Aufgabe 7.1: 

a) Abweichend von den üblichen Normen sei für mx,y,zA 5� �  die Vektoraddition 

z x y5 i  definiert als: 

< = ? @

2
i

2
i i

i i

2x falls 8i i 15

z y falls 0,5 i 1 1;2;3;
x y sonst

b 5 O
dd5 O B 5e
d Odg

��  

 Bestimmen Sie z für < =Tx 4 2 1 1 3 75 N N  und < =Ty 2 4 1 0 2 85 N . 
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b) Nun sei für mx,y,zA 5� �  die Vektoraddition z x y5 i  definiert als: 

< = ? @

2
i

2
i i i

i i

2x falls 8i i 15

z y falls 0,5 x 1 1;2;3;
x y sonst

b 5 O
dd5 O B 5e
d Odg

��  

 Bestimmen Sie erneut z für obiges x und y. 

c) Worin liegt die Problematik der Definition in Teilaufgabe b)? Geben Sie exakt an, 

wann sie  sichtbar wird. 

d) Es sei nun 35� �  mit < =Ta 2 5 25 N N , < =Tb 1 3 85 , < =Tc 3 4 15 . Bilden Sie 

unter Verwendung der Definition aus Teilaufgabe a) die Vektorsummen a bi , 

b ai , < =a b ci i  und < =a b ci i . Ist die Vektoraddition auf � abgeschlossen? Sind 

das Kommutativgesetz und/oder das Assoziativgesetz bzgl. der Vektoraddition auf 

� erfüllt? Existiert ein neutrales und/oder ein inverses Element der Vektoraddition 

auf �? Handelt es sich bei � um einen Vektorraum? 

Aufgabe 7.2: 

< =Ta 1 2 15 ,  < =Tb 0 1 15 N ,  < =Tc 1 0 25  

a) Bilden die Vektoren a, b, c eine Basis des 3
� ? Stellen Sie hierzu den Vektor 3dA�  

allgemein als Linearkombination aus a, b und c dar. 

b) Berechnen Sie, wie sich der spezielle Vektor < =Te 7 5 25  durch a, b und c dar-

stellen lässt. 

Aufgabe 7.3: 

< =Ta 2 1 05 N ,  < =Tb 0 3 25 N ,  < =Tc 4 5 25 N  

a) Bilden die Vektoren a, b und c eine Basis des 3
� ? 

b) Liegt der Vektor < =Td 6 8 55 N  in dem von a, b und c aufgespannten Unterraum 


 des 3
� ? Falls ja, stellen Sie d mittels a, b und c dar. 
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Aufgabe 7.4: 

< =T1v 1 2 05 ,  < =T2v 2 0 35 ,  < =T3v 1 2 35 N  

Bestimmen Sie eine Basis und die Dimension des von 1v , 2v , 3v  aufgespannten Unter-

raums. 

Aufgabe 7.5: 

Geben Sie vier Basen des 3
�  an. 

Aufgabe 7.6: 

< = < = < = < =? @T T T T4 1 3 , 2 3 1 , 4 1 1 , 1 3 05 N N N�  

a) Ist � ein Erzeugendensystem des 4
� ? 

b) Welche Dimension hat : ;� ? 

c) Bestimmen Sie eine Basis von : ;� . 

d) Liegt der Vektor < =5 Tx 8 6 5  in : ;� ? 

Aufgabe 7.7: 

4
2

a
6

4

H I
J K
J K5 J KN
J KJ K
L M

,  

4
2

b
1
3

H I
J K
J K5 J K
J KJ KNL M

,  

4
6

c
8

1

NH I
J K
J K5 J KN
J KJ K
L M

,  

8
0

d
5

5

H I
J K
J K5 J KN
J KJ K
L M

 

a) Liegt d in dem von a, b und c erzeugten Unterraum 
? 

b) Welche Dimension hat 
? 

c) Bilden a, b und d eine Basis von 
? 
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Aufgabe 7.8: 

1 0 3 7
6 3 7 9

, , ,
9 5 7 2
2 8 5 8

b cH I H I H I H I
d dJ K J K J K J KN N N Nd dJ K J K J K J K5 e fJ K J K J K J Kd dJ K J K J K J Kd dN NL M L M L M L Mg h

�  

Bestimmen Sie die Dimension und eine Basis von : ;.�  

Aufgabe 7.9: 

1 3 2 4
2 4 1 0

, , ,
0 1 1 3
1 0 1 5

b cH I H I H I H I
d dJ K J K J K J KNd dJ K J K J K J K5 e fJ K J K J K J KNd dJ K J K J K J KJ K J K J K J Kd dL M L M L M L Mg h

�  

a) Bestimmen Sie eine Basis und die Dimension von : ;� . 

b) Ist � ein Erzeugendensystem des 3
�  oder des 4

� ? 

Aufgabe 7.10: 

2 1 3
, ,

3 2 4
b cNH I H I H Id d5 e fJ K J K J K
d dL M L M L Mg h

� ,  
1 4 4
2 , 2 , 1
1 1 2

b cNH I H I H I
d dJ K J K J K5 e fJ K J K J K
d dJ K J K J KNL M L M L Mg h

� ,  

3 1 3 2
2 2 6 4

, , ,
1 8 8 2
4 2 5 1

b cH I H I H I H I
d dJ K J K J K J KN N Nd dJ K J K J K J K5 e fJ K J K J K J KNd dJ K J K J K J KJ K J K J K J Kd dL M L M L M L Mg h

�  

a) Bestimmen Sie je eine Basis des von �, �� und � aufgespannten Unterraums. 

b) Geben Sie an, welchen Unterraum die jeweiligen Mengen erzeugen. Formulieren 

Sie dabei wie folgt: "Die Vektoren der Menge ... bilden einen n-dimensionalen Un-

terraum des m
� ". 
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Aufgabe 7.11: 

2 3 2 3
2 2 0 4

, , ,
1 0 2 3
0 1 2 1

b cN NH I H I H I H I
d dJ K J K J K J KN Nd dJ K J K J K J K5 e fJ K J K J K J Kd dJ K J K J K J KJ K J K J K J Kd dL M L M L M L Mg h

�  

a) Handelt es sich bei � um ein Erzeugendensystem des 4
� ? 

b) Welche Dimension besitzt der von � erzeugte Unterraum? 

c) Nennen Sie eine Basis von : ;� . 

d) Für welches aA�  liegt der Vektor < =Tv a 2 3 45  in : ;� ? 

Aufgabe 7.12: 

2 4 1
, ,

1 3 1
b cNH I H I H Id d5 e fJ K J K J KNd dL M L M L Mg h

� ,  
2 0 1
1 , 1 , 3
3 1 4

b cH I H I H I
d dJ K J K J K5 e fJ K J K J K
d dJ K J K J K
L M L M L Mg h

� ,  

8
2 3

41 , 3
3 4

b cH IH Id dJ KJ Kd dJ K5 e fJ K J Kd dJ K J KJ KL Md dL Mg h

� ,  
1 4
0 , 1
2 1

b cH I H I
d dJ K J K5 e fJ K J K
d dJ K J K
L M L Mg h

�  

a) Welche Dimension besitzt der von � erzeugte Unterraum? 

b) Nennen Sie eine Basis von : ;� . 

c) Handelt es sich bei einer oder mehrerer der Mengen �, �, �, �  um eine Basis eines 

zweidimensionalen Unterraums des 3
� ? Falls ja, bei welcher oder welchen? 

Aufgabe 7.13: 

a) Geben Sie, falls möglich, eine Basis eines dreidimensionalen Unterraums des 4
�  an. 

b) Geben Sie, falls möglich, eine Basis eines vierdimensionalen Unterraums des 3
�  an. 
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Aufgabe 7.14: 

4 4 2 7 10
1 2 1 2 3

5 1 3 8 9, , , ,
9 4 5 14 15
1 2 1 2 3

b cNH I H I H I H I H I
d dJ K J K J K J K J KN N Nd dJ K J K J K J K J Kd dJ K J K J K J K J KN5 e fJ K J K J K J K J Kd dNJ K J K J K J K J Kd dJ K J K J K J K J KN N Nd dL M L M L M L M L Mg h

�  

a) Welche Dimension besitzt der von � aufgespannte Unterraum : ;� ? 

b) Nennen Sie eine Basis von  : ;� . 

c) Wie viele linear unabhängige Vektoren kann eine beliebige Menge 5D� �  höchs-

tens enthalten? 

d) Wie viele linear unabhängige Vektoren muss eine Menge 5D� �  enthalten, damit 

gilt : ;5 D E� � � , und was muss für diese gelten? 

Aufgabe 7.15: 

1 2
3 , 1
7 2

b cH I H I
d dJ K J K5 Ne fJ K J K
d dJ K J KNL M L Mg h

� ,  

1 7 2
2 4 1

, ,
4 6 3

3 1 4

b cNH I H I H I
d dJ K J K J K
d dJ K J K J K5 e fJ K J K J KN N Nd dJ K J K J KJ K J K J Kd dL M L M L Mg h

� ,  

2 3 1
5 7 1

, ,
3 3 3
4 6 2

b cN N NH I H I H I
d dJ K J K J K
d dJ K J K J K5 e fJ K J K J KNd dJ K J K J KJ K J K J Kd dN NL M L M L Mg h

�  

a) Erweitern Sie die Menge � so, dass der ganze 3
�  aufgespannt wird. 

b) Erweitern Sie die Menge � so, dass der ganze 4
�  aufgespannt wird. 

c) Geben Sie eine Basis von : ;�  an. 

d) Geben Sie die Dimension von : ;�  an. 

Sie haben keine näheren Angaben über die Mengen � und 
, wissen aber, dass : ;�  ein 

dreidimensionaler und : ;
  ein fünfdimensionaler Unterraum des 7
�  ist. 
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e) � sei die Vereinigungsmenge von � und 
, das heißt 5 E�� � 
 . Geben Sie die mög-

lichen Dimensionen von : ;�  an.  

f) � sei die Schnittmenge von � und 
, das heißt 5 F� � 
 . � ist nicht die leere Men-

ge. Geben Sie die möglichen Dimensionen von : ;�  an. 

Aufgabe 7.16: 

1 2 3 b
2 1 0 0

, , ,
0 0 0 0
3 1 a 1

b cN N H IH I H I H I
d dJ KJ K J K J KNd dJ KJ K J K J K5 e fJ KJ K J K J Kd dJ KJ K J K J KJ K J K J K J Kd dN NL M L M L M L Mg h

�  

a) Was muss für a,bA� gelten, damit � einen zweidimensionalen Unterraum des 4
�  

erzeugt? 

b) Kann � durch entsprechende Wahl von a,bA� den 3
�  bzw. den 4

�  erzeugen? 

c)  Setzen Sie a 15  und b 15 N  und bestimmen Sie für diesen Fall die Dimension und 

eine Basis des von � erzeugten Unterraums. 

Aufgabe 7.17: 

0 2 6
3 1 8

, ,
3 1 14
6 3 13

b cH I H I H I
d dJ K J K J KNd dJ K J K J K5 e fJ K J K J KN Nd dJ K J K J KJ K J K J Kd dNL M L M L Mg h

� ,  

6 4
1 3

,
x 1
5 7

b cNH I H I
d dJ K J KNd dJ K J K5 e fJ K J Kd dJ K J KJ K J Kd dNL M L Mg h

�  

a) Welche Dimension besitzt der von � aufgespannte Unterraum : ;� ? 

b) Bestimmen Sie eine Basis von : ;� . 

c) Was muss für xA�  gelten, damit die Vereinigungsmenge 5 E� � � ein Erzeugen-

densystem des 4
�  ist? 

d) Was muss für xA�  gelten, damit die Vereinigungsmenge 5 E� � � ein Erzeugen-

densystem des 3
�  ist? 
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Aufgabe 7.18: 

1
1

a
1
3

H I
J K
J K5 J K
J K
L M

,  

2
6

b
8
4

NH I
J K
J K5 J K
J K
L M

,  

0
2

c 5
2

5
2

H I
J K
J K
5 J K
J K
J K
L M

,  

3
5

d
7

u

H I
J KNJ K5 J KN
J K
L M

 

a) Für welche uA�  sind die Vektoren a, b, c, d linear abhängig? 

b) Geben Sie in Abhängigkeit von uA�  eine Basis und die Dimension des von den 

Vektoren a, b, c, d erzeugten Unterraums : ;�  an. 

c) Liegt der Vektor < =Te u u u u5  in dem von a, b, c, d erzeugten Unterraum 

: ;� ? 

Aufgabe 7.19: 

2 1 0
1 1 6

, ,
2 1 0
1 0 2

b cH I H I H I
d dJ K J K J KNd dJ K J K J K5 e fJ K J K J Kd dJ K J K J KJ K J K J Kd dL M L M L Mg h

� ,  

2 0,5
1 2,5

,
3 0,5
0,5 1

b cNH I H I
d dJ K J KNd dJ K J K5 e fJ K J Kd dJ K J KJ K J Kd dNL M L Mg h

� ,  

4
2
6

1

b cH I
d dJ K
d dJ K5 e fJ KNd dJ KJ Kd dL Mg h

�  

a) Bestimmen Sie eine Basis und die Dimension des von � erzeugten Unterraums. 

b) Erzeugt � den 2
� , den 3

�  oder den 4
� ? 

c) Erzeugt E E� � � den 4
� ? 

d) Gibt es Vektoren 4vA�  mit v 0Q , welche sowohl von � als auch von � erzeugt 

werden? 

Aufgabe 7.20: 

14 3
31 , 1 , 2

1 2 5
2

b cH INH I H Id dJ KJ K J Kd dJ K5 Ne fJ K J K J Kd dJ K J K J KNL M L Md dL Mg h

� ,  

55 15 2
11 , 3 , 2

2 6 1

b cH INH I H Id dJ KJ K J Kd dJ K5 N Ne fJ K J K J Kd dJ K J KN NJ KL M L Md dL Mg h

�  
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a) Welche Dimension besitzt der von � erzeugte Unterraum : ;� ? Nennen Sie eine 

Basis von : ;� . 

b) Ist � somit ein Erzeugendensystem des 2
� ? Oder des 3

� ? 

c) Ist der von � erzeugte Unterraum : ;�  eine Teilmenge des von � erzeugten Unter-

raums : ;� , gilt somit : ; : ;D� � ? 

Aufgabe 7.21: 

1 4 2 4
2 1 7 10

, , ,
4 2 1 5
3 0 2 8

b cH I H I H I H I
d dJ K J K J K J KN Nd dJ K J K J K J K5 e fJ K J K J K J KN N Nd dJ K J K J K J KJ K J K J K J Kd dN NL M L M L M L Mg h

� ,  

17 2 12
19 222, ,51 13 12 2

925 22

b cH I NN H I NH Id dJ K J K J KNd dJ K NJ Kd dJ K5 J Ke fJ K J KN NJ Kd dJ K J KJ KJ Kd dJ K NJ K NN L ML Md dL Mg h

�  

a) Welche  Dimension  besitzt  der  von � erzeugte  Unterraum : ;� ? Nennen Sie eine 

Basis von : ;� . 

b) Erzeugen � und � den selben Unterraum, gilt somit : ; : ;5� � ? Ist der von � er-

zeugte Unterraum Teilmenge des von � erzeugten Unterraums, gilt somit 

: ; : ;D� � ? 

Aufgabe 7.22: 

1 0 4 1
4 1 2 8

, , ,
3 1 3 4
2 3 5 5

b cH I H I H I H I
d dJ K J K J K J KN Nd dJ K J K J K J K5 e fJ K J K J K J KN Nd dJ K J K J K J KJ K J K J K J Kd dN N NL M L M L M L Mg h

� ,  

02 4
194 0

, , 231 1 2
37 1 2

b cH INH I H Id dJ KJ K J K NNd dJ Kd dJ K J K5 e fJ KJ K J K NN Nd dJ KJ K J KJ K J Kd dJ KJ KL M L Md dL Mg h

� ,  

3 2
1 1

,
4 2
0 2

b cNH I H I
d dJ K J K
d dJ K J K5 e fJ K J Kd dJ K J KJ K J Kd dL M L Mg h

�  

Überprüfen Sie, ob die Unterräume Teilmengen von : ;�  sind. 

a) Gilt : ;3 D� � ? b) Gilt : ;4 D� � ? 

c) Gilt : ; : ;D� � ? d) Gilt : ; : ;D� � ? 
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Aufgabe 7.23: 

1 2 3 4

1 3 4

1 2 3 4

1 2 3 4

x x x 6x 0
2x 6x 6x 0
x 2x 7x 2x 0

7x 3x 15x 6x 0

O O O 5
N N O 5
N O N O 5

O O O 5

 

a) Lösen Sie das LhGS. 

b) Geben Sie die Dimension der Lösungsmenge an. 

c) Geben Sie eine Basis der Lösungsmenge an. 

Aufgabe 7.24: 

1 2 3 4

1 2 3 4

1 2 3 4

2 3 4

x x x x 0
x 2x 3x 4x 0

2x 3x 4x 5x 0
x 2x 3x 0

O O O 5
O O O 5
O O O 5

O O 5

 

a) Lösen Sie das LhGS. 

b) Bestimmen Sie eine Basis und die Dimension von h� . 

c) Liegt der Vektor < =Tx 1 1 1 15  in h� ? 

Aufgabe 7.25: 

1 2 3 4

1 2 3

1 2 3 4

1 2 3 4

0,5x x 1,5x 0,5x 0
x x 2x 0

2,5x 8,5x 3x 2x 0
2x 5x 3x x 0

N N O 5
O N 5
O N N 5
O N N 5

 

a) Geben Sie die Lösungsmenge des LGS an. 

b) Geben Sie eine Basis und die Dimension der Lösungsmenge an. 
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Aufgabe 7.26: 

1 2 3 4 5

1 2 3 5

1 2 3 4 5

1 2 3 4 5

x 2x 3x 4x 5x 0
2x 3x 4x 4x 0

4x x 8x 4x 4x 0
3x 8x 5x 8x 7x 0

O O O O 5
N O O N 5

O O O O 5
N O O O O 5

 

a) Lösen Sie das LhGS. 

b) Bestimmen Sie eine Basis und die Dimension von h� . 

c) Geben Sie an, welchen Raum die Lösungsmenge erzeugt. Formulieren Sie dabei 

wie folgt: "Die Lösungsmenge bildet einen n-dimensionalen Unterraum des m
� ". 

Aufgabe 7.27: 

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

2 3 4 5

2x 0,5x x x 2,5x 0
x 0,5x 2x 3,5x 5x 0

6x 2x 2x 7x 21x 0
x x 5x 3,5x 0

N O N O 5
O O N O 5
O O O O 5

N O O 5

 

a) Bestimmen Sie die Lösungsmenge des obigen Gleichungssystems. 

b) Ermitteln Sie die Dimension und eine Basis des Lösungsraums. 

c) Handelt es sich bei der Lösungsmenge um einen Unterraum des 5
� ? 

Aufgabe 7.28: 

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

x 3x 9x x 2x 0
5x x 3x 11x 10x 0

2x x 3x 3x 4x 0
3x 2x 6x 8x 6x 0

O O N O 5
N O O N N 5

O O O O 5
N N O O 5

 

a) Bestimmen Sie die Lösungsmenge des obigen Gleichungssystems. 

b) Bestimmen Sie eine Basis und die Dimension von h� . 

< = < =? @T T0 8 4 1 3 , 8 7 3 a 25 N N�  
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c) Für welche aA�  ist h5 E� � �  ein EZS des 5
� ? 

d) Für welche aA�  ist h5 E� � �  ein EZS des 4
� ? 

Aufgabe 7.29: 

1 2 4

1 2 3 4

1 2 3 4

1 2 3 4

2x 3x 4x 0
2x x 4x x 0
4x 2x 16x 14x 0
x x 5x 5x 0

O O 5
O O N 5
N O N 5
N O N 5

 

a) Lösen Sie das LhGS. 

b) Bestimmen Sie eine Basis und die Dimension von h� . 

98 132 0
19 1 1

, ,
15 45 1
2 0 0

b cH I H I H I
d dJ K J K J KNd dJ K J K J K5 e fJ K J K J KNd dJ K J K J KJ K J K J Kd dL M L M L Mg h

�  

c) Bildet die Vereinigungsmenge von h�  und � eine Basis des 4
� ? 

Aufgabe 7.30: 

< = < =? @T T1 1 2 3 0 , 2 0 1 1 15�  

a) Geben Sie ein LhGS mit unendlich vielen Lösungen an, dessen Lösungsmenge � 

zur Basis hat. 

b) Bestimmen Sie die Lösung des Gleichungssystems, nachdem Sie das LhGS um die 

Gleichung O N O 51 2 3 42x 4x 2x 3x 1 ergänzt haben. 

c) Handelt es sich bei der Lösungsmenge des Gleichungssystems aus b) um einen 

Unterraum des 5
� ? Falls ja, geben Sie eine Basis und die Dimension des Unter-

raums an. 
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Aufgabe 7.31: 

11 0 32
3 2 23, , ,
2 1 11
4 1 70

b cH IH I H I H IN
d dJ KJ K J K J KNd dJ KJ K J K J K5 e fJ KJ K J K J Kd dJ KJ K J K J KJ K J K J KJ Kd dL M L M L ML Mg h

� ,  

1 21
1 102 2, ,

11 0
23 5

b cH I H IH I
d dJ K J KJ K
d dJ K J KJ K5 e fJ K J KJ KNd dJ K J KJ KJ KJ K J Kd dL ML M L Mg h

�  

a) Ist � eine Basis von : ;� ? 

b) Sind �, oder �, oder sowohl � als auch � ein Erzeugendensystem der Lösungs-

menge des nachfolgenden LhGS? 

1 2 3 4

1 2 3 4

1 2 3 4

2 3 4

3x 22x 5x x 0
x 6x x x 0

12x 3x x x 02
10x 2x x 0

N O N N 5
O N N 5

N O N 5
N N 5  

Aufgabe 7.32: 

1

1 2

2x 2ab
x 2ax a b 1
N 5

O 5 O N
 

a) Bestimmen Sie die Lösung des Gleichungssystems in Abhängigkeit der Parameter 

a,bA�. 

b) Geben Sie die Lösung des LGS für a 15 N  und b 15  an. 

c) Für welche Werte der Parameter a,bA� ist die Lösung des Gleichungssystems ein 

Unterraum des 1
� ? 

d) Für welche Werte der Parameter a,bA� ist die Lösung des Gleichungssystems ein 

Unterraum des 2
� ? 
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Aufgabe 7.33: 

Gegeben seien die beiden folgenden linearen Gleichungssysteme: 

LGS 1: 
N O O 5

O N 5
O O 5

1 2 3

1 2 3

1 2 3

2x x 4x 0
3x 6x 4x 0
7x 2x 12x 0

 

LGS 2: 
N N O 5

O N 5
O 5

1 2 3

1 2 3

1 2

0,5x x 3x 0
x 2x 4x 0
x 2x 0

 

a) Lösen Sie die beiden obigen LGS. 

b) Geben Sie eine Basis und die Dimension der unter Teilaufgabe a) berechneten Lö-

sungen an. 

c) Geben Sie, falls möglich, eine Basis und die Dimension eines Unterraums 
  an, 

welcher nur diejenigen Vektoren enthält, die 

 i) entweder das LGS 1 oder das LGS 2 erfüllen. 

 ii) sowohl das LGS 1 oder das LGS 2 erfüllen. 
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8 Lineare Optimierung 

8.1 Aufstellen eines vollständigen linearen 
Programms 

Abschließend wenden wir uns der linearen Optimierung zu. Hierbei ist stets eine 

Zielfunktion gegeben, welche unter vorgegebenen Restriktionen optimiert werden 

soll. Im Rahmen der linearen Optimierung sind sowohl die Zielfunktion als auch die 

Restriktionen linear. Dies bedeutet, dass die auftretenden Variablen unter anderem 

nicht quadratisch eingehen und nicht miteinander multipliziert werden. 

Die lineare Optimierung ist eines der Hauptverfahren zur Optimierung betrieblicher 

Probleme. Sie findet Anwendung in verschiedensten operativen und strategischen 

Fragestellungen aus den Gebieten Logistik, Produktion, Finanzierung und Marketing. 

Mit dem Simplex-Verfahren, das in diesem Kapitel ausführlich behandelt wird, lassen 

sich unter Verwendung geeigneter Software selbst Probleme mit hunderttausenden 

Variablen und Nebenbedingungen in kürzester Zeit lösen.  

Definition 8-1: Vollständiges lineares Programm 

Ein vollständiges lineares Programm ist ein über die nachfolgen-

den vier Punkte spezifiziertes Optimierungsproblem: 

� Entscheidungsvariablen (EV): 

 Hier werden alle im Optimierungsproblem auftretenden Variab-

len aufgeführt und deren Bedeutung exakt definiert. Die Ent-

scheidungsvariablen lassen sich in einem Vektor 

< =5 � T
1 nx x x  zusammenfassen. 

 

 

C. Mayer, Lineare Algebra für Wirtschaftswissenschaftler,
DOI 10.1007/978-3-8349-6727-5_8, © Gabler Verlag | Springer Fachmedien Wiesbaden GmbH 2011
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� Zielfunktion (ZF): 

 Die Zielfunktion wird als Funktion der Entscheidungsvariablen 

aufgestellt. Der Wert der linearen Zielfunktion ergibt sich dabei 

jeweils durch die Multiplikation des Vektors der Zielfunktionsko-

effizienten < =1 nc c c5 �  mit dem Vektor der Entscheidungsva-

riablen zu z c x5 P . 

� Nebenbedingungen/Restriktionen (NB): 

 Auch in die linearen Nebenbedingungen gehen die Entschei-

dungsvariablen ein. Falls sich die Relationszeichen der Neben-

bedingungen entsprechen, lässt sich die Koeffizientenmatrix ei-

nes Systems linearer Nebenbedingungen 

11 1j 1n

i1 ij in

m1 mj mn

a a a

a a aA

a a a

H I
J K
J K
J K5 J K
J K
J K
J K
L M

� �

� � � �
� �

� � � �
� �

 

 in Kombination mit dem Kapazitätsvektor der Nebenbedingun-

gen < =T1 mb b b5 �  in Matrixschreibweise vereinfacht darstel-

len als A x bP T , A x bP 5  bzw. A x bP S . 

� Nichtnegativitätsbedingung (NNB): 

 Aus Plausibilitätsgründen wird vorausgesetzt, dass keine Ent-

scheidungsvariable einen negativen Wert annimmt, also 0x S . 

Alle Vektoren x, welche die NBs und die NNBs erfüllen, bilden eine zulässige Lösung 

des Optimierungsproblems. Findet sich zu einem zulässigen Lösungsvektor x kein 

anderer zulässiger Lösungsvektor, der zu einem höheren (Maximierungsproblem) 

bzw. niedrigeren (Minimierungsproblem) Zielfunktionswert führt, handelt es sich bei 

diesem Vektor um eine optimale Lösung. 
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Beispiel 8-1: Formulierung eines Entscheidungsproblems als 

lineares Programm 

Nach anhaltenden Beschwerden über die Qualität des Biers auf den Feten 

Ihrer hiesigen Universität haben Sie kurzerhand mit einigen Kommilitonen 

eine eigene Kleinbrauerei gegründet. Aufgrund Ihres mathematischen Ta-

lents sind Sie für die Produktionsplanung der Eichenzapfen AG verant-

wortlich. Die Eichenzapfen AG bietet zwei verschiedene Biersorten an: Ein 

billiges Partybier, das zu 2 € pro Liter verkauft wird und ein teures Premi-

umbier, das an Kommilitonen mit hoher Zahlungsbereitschaft zu 5 € pro 

Liter verkauft werden soll. Ihre Fertigungskapazität für Partybier beträgt 

5.000 Liter pro Woche, während Sie vom Premiumbier nur 4.000 Liter pro 

Woche herstellen können. Beide Biersorten müssen anschließend noch ab-

gefüllt und verpackt werden. Neben Ihrem Studium können Sie und Ihre 

Mitstreiter allerdings maximal 16 Stunden pro Woche opfern. Sie kalkulie-

ren, dass Sie 2 Stunden für je 1.000 Liter Partybier benötigen, während das 

Abfüllen und Verpacken des exklusiven Premiumbiers 3 Stunden pro 1.000 

Liter in Anspruch nimmt. Sie wollen die Produktionsplanung so durchfüh-

ren, dass der Erlös der Eichenzapfen AG maximiert wird. 

Das Problem lässt sich wie folgt als lineares Optimierungsproblem formu-

lieren: 

� Entscheidungsvariablen: 

 1x  :�  Produktionsmenge Partybier (in 1.000 l)  

 2x  :�  Produktionsmenge Premiumbier (in 1.000 l) 

� Zielfunktion: 

 � � �1 2z 2x 5x max (mit z als Erlös in 1.000 €) 

� Nebenbedingungen:  

 �1x 5  

 �2x 4  



 8 Lineare Optimierung 

 172 

 O T1 22x 3x 16  

� Nichtnegativitätsbedingung: 

 S1 2x ,x 0  

Abschnitt 8.2 zeigt, wie bei einem Optimierungsproblem mit zwei EVs alle optimalen 

Lösungen graphisch gefunden werden können. Die folgenden Abschnitte behandeln 

das wichtigste analytische Verfahren zu deren Lösung, den Simplex-Algorithmus, in 

zwei Varianten. Die Abschnitte 8.3 bis 8.5 zeigen mit dem primalen Simplex-

Algorithmus die Variante auf, anhand derer bestimmte Maximierungsprobleme, die so 

genannten Standardmaximierungsprobleme, analytisch gelöst werden können. Die 

zweite Variante, der duale Simplex-Algorithmus, wird abschließend in Abschnitt 8.6 

behandelt. 

8.2 Graphische Lösung 

Die graphische Darstellung linearer Programme beschränkt sich im Folgenden auf 

Optimierungsprobleme mit zwei EVs. Die möglichen Lösungen entstammen dann 

dem 2
�  und können in einem zweidimensionalen Koordinatensystem abgetragen 

werden. Die EVs sind im Folgenden mit 1x  und 2x  bezeichnet. Existieren keinerlei 

Restriktionen, bilden alle denkbaren Kombinationen von 1x  und 2x  eine zulässige 

Lösung des Optimierungsproblems. Die gesamte 1x - 2x -Ebene bildet dann den Lö-

sungsraum. Jede Ungleichung beschränkt die zulässigen Lösungen jeweils auf eine 

Halbebene, welche durch die Gerade begrenzt wird, die sich durch Ersetzen des Un-

gleichheitszeichens durch ein Gleichheitszeichen ergibt. Die Punkte, die in allen Halb-

ebenen liegen, bilden die zulässigen Lösungen. Diese Lösungsmenge (Schnittmenge 

der Halbebenen) ist im Allgemeinen ein Vieleck, der so genannte Simplex. 

Bei den nachfolgend aufgeführten Beispielen gilt neben den ausdrücklich genannten 

Restriktionen stets die Nichtnegativitätsbedingung 0x,x 21 S . 
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Beispiel 8-2: Graphische Darstellung des Simplex 

Betrachtet werden die Restriktionen der Eichenzapfen AG aus Beispiel 8-1. 

Zunächst werden die Nebenbedingungen nach 2x  bzw. 1x  aufgelöst, um 

sie leicht einzeichnen zu können. Die eingezeichneten Geraden 51x 5 , 

52x 4  und 5 N2 116 2x x3 3  begrenzen den Bereich der zulässigen Lösun-

gen, den Simplex. Alle 1x - 2x -Kombinationen, die sich auf dem Rand oder 

innerhalb des Simplex befinden, stellen zulässige Lösungen für das Opti-

mierungsproblem dar. Sie beschreiben die realisierbaren Produktionsmög-

lichkeiten der Eichenzapfen AG.  

 

 

 

 

 

 

 

 

 

Die optimale Lösung wird durch eine Parallelverschiebung der mit z 05  graphisch 

abgetragenen ZF bestimmt. Dabei ist der Zielfunktionswert z derart zu optimieren (zu 

maximieren bzw. zu minimieren), dass der Simplex gerade noch tangiert wird. Jeder 

Tangentialpunkt dieser (in z optimierten) Geraden mit dem Simplex ist dann eine 

optimale Lösung des linearen Optimierungsproblems. Tangentialpunkte befinden sich 

dabei immer (wenn auch nicht ausschließlich) in den Eckpunkten des Simplex. 

Für die Lösung eines linearen Programms sind mehrere Arten der Lösbarkeit möglich, 

welche anhand der nachfolgenden Beispiele erörtert werden. 

2x

2 4 6 8

2 

0 

4 

8 

6 

T1NB : x 5

1x

T2NB : x 4

T N2 116 2NB : x x3 3

Simplex
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Beispiel 8-3: Eindeutige Lösung 

Es wird der in Beispiel 8-2 beschriebene Simplex eingezeichnet. Anschlie-

ßend wird auch die ZF der Eichenzapfen AG umgeformt und in das Dia-

gramm eingetragen. Dabei wird z maximiert, die ZF muss lediglich den zu-

lässigen Bereich gerade noch tangieren. Als umgeformte ZF ergibt sich 

5 N2 11 2x z x5 5 . Der 2x -Achsenabschnitt dieser Geraden < =1 z5  ist von z 

abhängig, die Steigung < =N2
5  hingegen ist von z unabhängig. Hieraus ist 

auch ersichtlich, dass das Auffinden der optimalen Lösung durch eine Pa-

rallelverschiebung der Zielfunktionsgeraden geschieht. 

 

 

 

 

 

 

 

 

 

Die Punkte 51x 0, 2x 45  und 51x 5, 52x 2, für welche die Zielfunktion je-

weils den Wert 5z 20 annimmt, können beispielsweise keine optimale Lö-

sungen des linearen Programms darstellen. Eine weitere Parallelverschie-

bung der Zielfunktion und damit eine Erhöhung des Zielfunktionswertes 

sind hier noch möglich. Die optimale Lösung, und damit das optimale 

Produktionsprogramm, für das Maximierungsproblem ist im Tangential-

punkt ablesbar und lautet hier 51x 2, 2x 45 . Der Maximalwert der Ziel-

funktion ergibt sich durch Einsetzen dieser beiden Werte in die Zielfunkti-

on zu 5 P O P 5z 2 2 4 5 24. Generell gilt, dass die optimalen Lösungen immer 

in den Ecken des Simplex liegen. 

2x

2 4 6 8

2 

0 

4 

8 

6 

1x

5ZF : z 24

5ZF : z 20
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Liegen die Restriktionen ungünstig, so ist es auch möglich, dass keine zulässige Lö-

sung existiert. Der Simplex ist dann leer. 

Beispiel 8-4: Keine Lösung 

Sie überlegen, einen Liefervertrag in Höhe von mindestens 8.000 Liter Bier 

pro Woche abzuschließen, wobei beide Biersorten geliefert werden können. 

In diesem Fall wäre zusätzlich die Restriktion O S1 2x x 8  zu berücksichti-

gen. Allerdings wird der Simplex dann durch eine leere Menge beschrie-

ben. Unabhängig von der Zielfunktion lässt sich hier keine zulässige Lö-

sung finden. Der Vertrag wäre also mit den vorhandenen Möglichkeiten 

der Eichenzapfen AG nicht erfüllbar. 

 

 

 

 

 

 

 

 

 

Ist der zulässige Bereich nicht leer, aber auch nicht bezüglich 1x  und 2x  beschränkt, so 

lässt sich bei einem Maximierungsproblem keine Lösung finden, die nicht von einer 

anderen dominiert wird. Der Zielfunktionswert kann dann unbegrenzt erhöht werden. 

 

 

2x

2 

4 

8 

6 

1x0 2 4 6 8

S N2 1NB : x 8 x
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Beispiel 8-5: Unendlich viele Lösungen, unbegrenzter 

Zielfunktionswert 

Unendlich viele Lösungen bei unbegrenztem Zielfunktionswert ergeben 

sich beispielsweise, wenn die Restriktionen der Eichenzapfen AG aus-

schließlich durch die Nebenbedingung T1x 5  beschrieben werden. Der 

Simplex ist in diesem Fall nicht nach oben beschränkt, der Zielfunktions-

wert kann unbegrenzt durch die Verschiebung der Zielfunktion nach oben 

erhöht werden. Die Nebenbedingung T1x 5  und die Zielfunktion 

5 O j1 2z 2x 5x max lassen unendlich viele zulässige Lösungen zu, eine 

optimale Lösung kann jedoch nicht bestimmt werden. Es ist leicht ersicht-

lich, dass ein derartiges Problem ökonomisch nicht realistisch ist und in 

der Praxis aus Fehlern bei der Problemformulierung resultieren würde, in 

diesem Fall durch das Vergessen von Nebenbedingungen. 

 

 

 

 

 

 

 

 

 

Ist der zulässige Bereich nicht leer und bezüglich 1x  und 2x  beschränkt, können auch 

unendlich viele optimale Lösungen existieren. In diesem Fall nehmen die EVs ver-

schiedene Werte innerhalb eines Intervalls an, der Zielfunktionswert ist jedoch immer 

gleich. 

2x

2 4 6 8

2 

0 

4 

8 

6 

T1NB : x 5

1x
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Beispiel 8-6: Unendlich viele Lösungen, eindeutiger 

Zielfunktionswert 

Sie haben beschlossen, den Preis für Premiumbier auf 3 € zu verringern, da 

Ihre Preisgestaltung für zunehmenden Unmut auf den Unifeten sorgt. 

Formal ändert sich in diesem Fall die Zielfunktion, während die drei Ne-

benbedingungen dagegen unverändert bleiben. Bei Maximierung der mo-

difizierten Zielfunktion � � �1 2z 2x 3x max führen alle Punkte auf der 

Strecke von � �� Tx 2 4  bis � �� Tx 5 2  zum gleichen, maximal möglichen 

Zielfunktionswert �z 16. Die Lösungsmenge lässt sich darstellen als 

� � � �� �� � �� �
� �

T
1 1 116 2x x ,x 2;53 3� .  

 

 

 

   

 

 

 

 

 
Auch hier liegen die optimalen Lösungen in den Ecken des Simplex. Aller-

dings sind es mit � ��
Tx 2 4  und � ��

Tx 5 2 zwei Ecken, die optimale Lö-

sungen darstellen, und dementsprechend sind auch alle Punkte (Konvex-

kombinationen) zwischen diesen beiden Ecken optimale Lösungen. 
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1x
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8.3 Der primale Simplex-Algorithmus 

Bestimmte lineare Programme, die Standardmaximierungsprobleme, lassen sich mit-

hilfe des primalen Simplex-Algorithmus systematisch lösen.  

Definition 8-2: Standardmaximierungsproblem 

Ein lineares Optimierungsproblem heißt Standardmaximierungs-

problem, wenn es die Form hat: 

� z c x5 P  

� P TA x b mit Sb 0 

� Sx 0 

Alternativ findet sich häufig auch die folgende Summenschreibwei-

se für ein Standardmaximierungsproblem mit n Entscheidungsvari-

ablen und m Nebenbedingungen: 

� 
n

i i
i 1

z c x
5

5 P6  

� 
n

ij i j
j 1

a x b
5

P T6   für j 1,...,m5  

� ix 0S  für i 1,...,n5  

Dabei ist anzumerken, dass sich eine zu minimierende Zielfunktion 

z c x5 P  durch die zu maximierende Zielfunktion z c xN 5 N P  ersetz-

ten lässt und umgekehrt. Weiterhin gilt, dass eine S -Restriktion 

durch Multiplikation beider Seiten mit -1 in eine T -Restriktion um-

geformt werden kann. 
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Beispiel 8-7: Standardmaximierungsproblem 

Das Optimierungsproblem der Eichenzapfen AG stellt folglich ein Stan-

dardmaximierungsproblem dar: 

5 O j1 2z 2x 5x max 

T
T

O T
S

1

2

1 2

1 2

x 5
x 4

2x 3x 16
x , x 0

 

Vor Anwendung des Simplex-Verfahrens wird das Ungleichungssystem zunächst in 

ein LGS überführt, indem pro Nebenbedingung eine Schlupfvariable 0sj S  eingeführt 

wird. js  nimmt dabei die nicht benötigte Kapazität in Restriktion j ein, die nach der 

Festlegung von x noch verbleibt, um die auf der rechten Seite stehende Begrenzung 

der Restriktion zu erreichen. 

Beispiel 8-8: Umwandlung des Standardmaximierungsproblems 

Das Maximierungsproblem der Eichenzapfen AG hat nach Einführung der 

drei Schlupfvariablen die Form: 

O 5
O 5

O O 5

1 1

2 2

1 2 3

x s 5
x s 4

2x 3x s 16
 

In Matrixform lässt sich das LGS darstellen als: 

H I
J KH I H IJ KJ K J KJ KP 5J K J KJ KJ K J KJ KL M L M
J K
L M

1

2

1

2

3

x
x1 0 1 0 0 5
s0 1 0 1 0 4
s2 3 0 0 1 16
s

 

Wählt man für x beispielsweise < =5 Tx 2 4 , so nehmen die Schlupfvariab-

len die Werte < =5
Ts 3 0 0  an. 
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Die zulässigen Lösungen bestehen sowohl aus den Entscheidungsvariablen als auch 

aus den Schlupfvariablen. 

Der primale Simplex-Algorithmus ist ein algebraisches Lösungsverfahren. Die Grund-

idee des Verfahrens lässt sich allerdings auch geometrisch veranschaulichen. Aus der 

graphischen Lösung des linearen Programms in Abschnitt 8.2 wurde ersichtlich, dass 

sich eine optimale Lösung immer auf dem Rand des Simplex befinden muss. Weiter-

hin gilt, dass sich optimale Lösungen immer in den Eckpunkten des Simplex befinden.  

Beispiel 8-9: Geometrische Interpretation des primalen Simplex-

Algorithmus  

Die in der Grafik eingezeichneten Eckpunkte kommen als optimale Lösun-

gen des Optimierungsproblems der Eichenzapfen AG in Frage.  

 

 

 

 

 

 

 

 

 
In jedem Schritt des primalen Simplex-Algorithmus wird eine Ecke des 

Simplex auf Optimalität überprüft. Ist die entsprechende Lösung nicht op-

timal, bestimmt das Verfahren eine neue Ecke des Simplex, die dann erneut 

überprüft wird. Dies geschieht solange, bis der Algorithmus die optimale 

Lösung gefunden hat.  

2

2x

2 

4 

8 

6 

1x64 80 

5 51 2x 0,x 0

5 51 2x 0,x 4 5 51 2x 2,x 4

5 51 2x 5,x 2

5 51 2x 5,x 0
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Diese Eckpunkte werden durch die Werte der Entscheidungs- und Schlupfvariablen 

beschrieben. Das primale Simplex-Verfahren sucht, ausgehend von einer ersten zuläs-

sigen Lösung, solange die Ecken des Simplex iterativ ab, bis eine optimale Lösung 

gefunden wird. 

Im Verlauf des Simplex-Verfahrens werden zulässige Lösungen innerhalb von Sim-

plex-Tableaus dargestellt. Zur Erstellung des Anfangstableaus wird die Koeffizien-

tenmatrix der Nebenbedingungen auf der linken Seite um eine Spalte, die Basisvariab-

len enthält, und auf der rechten Seite um eine Spalte, die die Kapazitäten enthält, er-

weitert. Als Basisvariablen werden die Variablen bezeichnet, nach welchen die 

einzelnen Zeilen des Tableaus pivotisiert sind, so dass im Anfangstableau gerade die 

Schlupfvariablen die Basisvariablen darstellen. Die die Basisvariablen umfassende 

erste Spalte des Simplextableaus heißt Basis. Innerhalb der Tableaudarstellung werden 

den Basisvariablen diejenigen Werte zugeordnet, die in derselben Zeile in der ergänz-

ten rechten Spalte stehen. Die sich nicht in der Basis befindenden Variablen nehmen 

den Wert Null an. Über die Basis wird somit jeweils eine zulässige Lösung des Maxi-

mierungsproblems dargestellt. Zudem wird das Simplextableau nach unten hin um 

die mit negativem Vorzeichen versehenen Zielfunktionskoeffizienten erweitert. Unter-

halb der Schlupfvariablen befinden sich im Anfangstableau Nullen in der Zielfunkti-

onszeile. Der zu den jeweiligen zulässigen Lösungen gehörende Zielfunktionswert 

lässt sich unterhalb des Kapazitätenvektors ablesen und ist im Anfangstableau Null. 

Beispiel 8-10: Aufstellen des Anfangstableaus 

In Fortführung des Beispiels ergibt sich als Anfangstableau: 

N N

1 2 1 2 3

1

2

3

Basis x x s s s
s 1 0 1 0 0 5
s 0 1 0 1 0 4
s 2 3 0 0 1 16
Z 2 5 0 0 0 0

 

Die im Anfangstableau ablesbare zulässige Lösung lautet 5 51 2x 0, x 0 

(keine der Entscheidungsvariablen ist in der Basis, somit nehmen alle den 

Wert Null an), 5 5 51 2 3s 5, s 4, s 16 (alle Kapazitäten sind vollständig 
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frei), 0z 5  (verständlicherweise, da die Entscheidungsvariablen allesamt 

Null sind). 

Das Anfangstableau wird nun so lange nach einer bestimmten Vorgabe streng pivoti-

siert, bis in der Zielfunktionszeile keine negativen Koeffizienten mehr enthalten sind. 

Da in der Basis stets diejenigen Variablen stehen, deren Spalten pivotisiert sind, än-

dern sich die Variablen in der Basis im Laufe der Pivotisierung. Mit jeder nach Vorga-

be des Algorithmus erfolgten Pivotisierung, einem so genannten Simplex-Schritt, er-

höht sich der Zielfunktionswert (in Ausnahmefällen kann er gleich bleiben), solange 

negative Elemente in der Zielfunktionszeile existieren. Folglich endet die Pivotisie-

rung, sobald alle Elemente in der Zielfunktionszeile größer oder gleich Null sind. Der 

optimale Wert für die Zielfunktion und die optimalen Werte für die Entscheidungs- 

und Schlupfvariablen sind dann gefunden. 

Bei jedem Simplex-Schritt wird zunächst die Pivotspalte anhand des kleinsten Ele-

ments in der Zielfunktionszeile ausgewählt. Die Pivotzeile wird durch die Division 

der Elemente der ergänzten rechten Spalte durch die entsprechenden Koeffizienten 

der Pivotspalte bestimmt (allerdings nur, falls diese positiv sind). Als Pivotzeile ist 

diejenige Zeile zu wählen, die den kleinsten Quotienten aufweist. Die Pivotspalte 

bestimmt dabei die Variable, die neu in die Basis eintritt, während durch die Pivotzeile 

diejenige Basisvariable ausgewählt wird, welche die Basis im Rahmen des aktuellen 

Simplex-Schritts verlässt. Die Werte in der Zielfunktionszeile des Simplextableaus 

können in jedem Simplex-Schritt folgendermaßen interpretiert werden: Der mit -1 

multiplizierte Wert der Elemente in der Zielfunktionszeile gibt an, um welchen Wert 

sich die Zielfunktion erhöht, wenn die entsprechende Variable um eine marginale 

Einheit erhöht wird. Negative Elemente in der Zielfunktionszeile zeigen also an, dass 

die aktuelle Lösung durch Erhöhung der Variable verbessert werden kann. Es wird 

deshalb immer die Variable als neue Basisvariable ausgewählt, die den kleinsten (ne-

gativen) Wert aufweist und somit die größte Verbesserung der Zielfunktion pro Ein-

heit verspricht. Stehen keine negativen Werte mehr in der Zielfunktionszeile, kann die 

aktuelle Lösung nicht mehr durch Hereinnahme einer neuen Variablen in die Basis 

verbessert werden. Die Lösung ist dann optimal. 
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Beispiel 8-11: Anwendung des primalen Simplex-Algorithmus 

Nachfolgend ist der Verlauf des primalen Simplex-Algorithmus für obiges 

Beispiel dargestellt. Als neue Basisvariable wird im Anfangstablau 2x  aus-

gewählt, da das zu der entsprechenden Pivotspalte gehörende Element in 

der Zielfunktionszeile den kleinsten Wert hat. Für 2x  verlässt die Variable 

2s  die Basis, da der Quotient in der entsprechenden Pivotzeile den kleins-

ten Wert aufweist. Das erste Element in der Pivotspalte hat dagegen keinen 

positiven Wert, weswegen hier auch kein Quotient berechnet wird. 

N N N
5
5

N N

1 2 1 2 3

1

2

3

Basis x x s s s
s 1 0 1 0 0 5

: 1 4s 0 1 0 1 0 4
: 3 16 3s 2 3 0 0 1 16

Z 2 5 0 0 0 0

          
N P
O P

III 3 II
Z 5 II

 

5
N N N
5N

N

1 2 1 2 3

1

2

3

Basis x x s s s
s 1 0 1 0 0 5 : 1 5
x 0 1 0 1 0 4

: 2 2s 2 0 0 3 1 4
Z 2 0 0 5 0 20

          
P

N
O P

neu

neu

1 III2
I III

Z 2 III
 

N

N

1 2 1 2 3

1

2

1

Basis x x s s s
s 0 0 1 3 2 1 2 3
x 0 1 0 1 0 4
x 1 0 0 3 2 1 2 2
Z 0 0 0 2 1 24

 

Da alle Werte in der Zielfunktionszeile des dritten Tableaus nichtnegativ 

sind, handelt es sich hierbei um das Endtableau. Die Basisvariablen neh-

men die entsprechenden Werte aus der letzten Spalte des Tableaus an, alle 

anderen Variablen nehmen den Wert Null an. Daraus ergibt sich die opti-

male Lösung 51x 2, 52x 4, 51s 3, 52s 0, 3s 05  mit zugehörigem Zielfunk-

tionswert 5z 24. 
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Nimmt eine Schlupfvariable den Wert Null an, so ist die entsprechende Kapazität 

ausgelastet. Ansonsten stehen freie Kapazitäten in Höhe der Gesamtkapazität abzüg-

lich der verbrauchten Kapazität, formal n
j j ji ii 1s b a x55 N P6 , zur Verfügung. Anzumer-

ken ist an dieser Stelle, dass bei einer optimalen Lösung weder alle Kapazitäten voll 

ausgelastet, noch zwangsläufig alle Entscheidungsvariablen Teil der Basis sein müs-

sen. 

8.4 Sonderfälle des primalen Simplex-
Algorithmus 

In den bisherigen Erläuterungen und Beispielen zum primalen Simplex-Algorithmus 

wurden nur Fälle mit eindeutigen Entscheidungen und Ergebnissen betrachtet. Im 

Rahmen des primalen Simplex-Algorithmus kann es allerdings zu Situationen kom-

men, bei denen die hier vorgestellten Regeln zur Auswahl der Pivotelemente keine 

eindeutigen Entscheidungen liefern. Weiterhin soll in diesem Abschnitt dargestellt 

werden, woran Fälle mit unendlich vielen Lösungen im Simplex-Tableau zu erkennen 

sind. 

Die Wahl der Pivotspalte erfolgt anhand des kleinsten (negativen) Elementes in der 

Zielfunktionszeile, während die Pivotzeile durch den kleinsten (positiven) Quotienten 

aus rechter Spalte und dem entsprechenden Koeffizienten in der Pivotspalte bestimmt 

wird. Hierbei kann es allerdings zu Situationen kommen, in denen diese Regeln nicht 

eindeutig sind. Zum Bespiel sind Fälle möglich, bei denen in der Zielfunktionszeile 

zwei Elemente den kleinsten Wert aufweisen und somit zwei verschiedene Variablen 

als neue Basisvariable in Frage kommen. In solchen Fällen ist die Wahl der Pivotspalte 

beliebig, beide Möglichkeiten führen zur optimalen Lösung, nur sind die durchzufüh-

renden Simplex-Schritte unterschiedlich. Das Gleiche gilt für Fälle, bei denen die Wahl 

der Pivotzeile und damit auch die Wahl der Variable, welche die Basis verlässt, nicht 

eindeutig sind. Auch hier ist die Wahl beliebig. 
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Beispiel 8-12: Keine eindeutige Wahl des Pivotelements 

Bei einer Änderung des Preises des Premiumbiers auf 2 € ergibt sich das 

folgende Anfangstableau: 

N N

1 2 1 2 3

1

2

3

Basis x x s s s
s 1 0 1 0 0 5
s 0 1 0 1 0 4
s 2 3 0 0 1 16
Z 2 2 0 0 0 0

 

Sowohl die erste als auch die zweite Spalte kommen hier als Pivotspalte in 

Frage. Somit können sowohl 1x  als auch 2x  als neue Basisvariable gewählt 

werden. 

Fall 1: Pivotisierung der ersten Spalte ( 1x  kommt in die Basis) 

5
N N N
5

N N

1 2 1 2 3

1

2

3

Basis x x s s s
: 1 5s 1 0 1 0 0 5

s 0 1 0 1 0 4
: 2 8s 2 3 0 0 1 16

Z 2 2 0 0 0 0

          
N P
O P

III 2 I
Z 2 I

 

N N N
5
5N

N

1 2 1 2 3

1

2

3

Basis x x s s s
x 1 0 1 0 0 5
s 0 1 0 1 0 4 : 1 4

: 3 2s 0 3 2 0 1 6
Z 0 2 2 0 0 10

          
P

N
O P

neu

neu

1 III3
II III

Z 2 III
 

N
N

1 2 1 2 3

1

2

2

Basis x x s s s
x 1 0 1 0 0 5
s 0 0 2 3 1 1 3 2
x 0 1 2 3 0 1 3 2
Z 0 0 2 3 0 2 3 14
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Fall 2: Pivotisierung der zweiten Spalte ( 2x  kommt in die Basis) 

N N N
5
5

N N

1 2 1 2 3

1

2

3

Basis x x s s s
s 1 0 1 0 0 5

: 1 4s 0 1 0 1 0 4
: 3 16 3s 2 3 0 0 1 16

Z 2 2 0 0 0 0

          
N P
O P

III 3 II
Z 2 II

 

5
N N N
5N

N

1 2 1 2 3

1

2

3

Basis x x s s s
s 1 0 1 0 0 5 : 1 5
x 0 1 0 1 0 4

: 2 2s 2 0 0 3 1 4
Z 2 0 0 2 0 8

          
P

N
O P

neu

neu

1 III2
I III

Z 2 III
 

N 5
5

N N NN
N

1 2 1 2 3

1

2

1

Basis x x s s s

s 0 0 1 3 2 1 2 3 : 3 2 2
: 1 4x 0 1 0 1 0 4

x 1 0 0 3 2 1 2 2
Z 0 0 0 1 1 12

          

P

N

O

O

neu

neu

neu

2 I3
II I

3III I2
Z I

 

N
N

1 2 1 2 3

2

2

1

Basis x x s s s
s 0 0 2 3 1 1 3 2
x 0 1 2 3 0 1 3 2
x 1 0 1 0 0 5
Z 0 0 2 3 0 2 3 14

 

In beiden Fällen ergibt sich die optimale Lösung 51x 5, 52x 2, 51s 0, 

52s 2, 3s 05  mit zugehörigem Zielfunktionswert 5z 14, nur sind die 

durchzuführenden Simplex-Schritte und deren Anzahl verschieden.  

In Beispiel 8-5 und Beispiel 8-6 wurden Fälle mit unendlich vielen Lösungen graphisch 

veranschaulicht. Diese Fälle lassen sich auch im Simplex-Tableau nachvollziehen. 

Unendlich viele Lösungen mit unbegrenztem Zielfunktionswert ergeben sich dann, 

wenn es in der ausgewählten Pivotspalte kein Element mit Werten größer als Null 

gibt. Das Quotientenkriterium ist somit nicht anwendbar, und es lässt sich keine Vari-

able bestimmen, die neu in die Basis eintreten soll. Das Erhöhen der durch die Pi-
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votspalte ausgewählten Variable führt in diesen Fällen bei keiner der bisherigen Basis-

variablen zu kleineren Werten und ist deshalb unendlich hoch möglich.  

Beispiel 8-13: Unendlich viele Lösungen, unbegrenzter 

Zielfunktionswert im primalen Simplex-Algorithmus 

Betrachtet wird das Anfangstableau der Eichenzapfen AG für den Fall, 

dass die Nebenbedingungen wie in Beispiel 8-5 nur durch T1x 5  beschrie-

ben werden (es gilt wieder die ursprüngliche Zielfunktion): 

N N

1 2 1

1

Basis x x s
s 1 0 1 5
Z 2 5 0 0

 

Die zweite Spalte wird in diesen Fall als Pivotspalte gewählt mit 2x als neu 

eintretende Basisvariable. Allerdings enthält diese Spalte keinen Wert grö-

ßer Null und es lässt sich somit kein positiver Quotient aus dem Element in 

der Pivotspalte und der rechten Spalte bestimmen. Ohne den Wert der bis-

herigen Basisvariable 1s  verringern zu müssen, kann 2x  beliebig erhöht 

werden. 

Während der Fall mit unbegrenztem Zielfunktionswert eher auf Fehler bei der Modell-

formulierung zurückzuführen ist, kommt es dagegen bei praktischen Anwendungen 

sehr häufig zu unendlich vielen Lösungen mit eindeutigem Zielfunktionswert. Zu 

erkennen ist dieser Fall im Endtableau des Simplex-Verfahrens daran, dass mindestens 

eine der Variablen, die nicht Teil der Basis ist, einen Koeffizienten von Null in der 

Zielfunktionszeile aufweist. Eine Erhöhung der entsprechenden Variable verändert 

den Zielfunktionswert also nicht. Im Rahmen eines weiteren Simplex-Schritts kann 

diese Variable in die Basis aufgenommen werden, wodurch sich der Zielfunktionswert 

aber nicht verändert. Die Wahl der austretenden Basisvariable erfolgt wie zuvor an-

hand des Quotientenkriteriums. Aus Anwendungssicht ist die Kenntnis über derartige 

Lösungen von hoher Bedeutung, da sie es ermöglicht, mehrere optimale Alternativen 
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zu identifizieren. Aus diesen Alternativen kann anschließend auf Basis nicht im Mo-

dell abgebildeter weiterer Faktoren ausgewählt werden. 

Beispiel 8-14: Unendlich viele Lösungen, eindeutiger 

Zielfunktionswert im primalen Simplex-Algorithmus 

Betrachtet wird das Beispiel 8-6, bei dem die graphische Maximierung der 

modifizierten Zielfunktion 5 O j1 2z 2x 3x max zu unendlich vielen optima-

len Lösungen geführt hat. Das entsprechende Endtableau des Optimie-

rungsproblems nach Anwendung des primalen Simplex-Algorithmus er-

gibt sich folgendermaßen:  

N N N
5
5

N N

1 2 1 2 3

1

2

3

Basis x x s s s
s 1 0 1 0 0 5

: 1 4s 0 1 0 1 0 4
: 3 16 3s 2 3 0 0 1 16

Z 2 3 0 0 0 0

           
N P
O P

III 3 II
Z 3 II

 

5
N N N
5N

N

1 2 1 2 3

1

2

3

Basis x x s s s
s 1 0 1 0 0 5 : 1 5
x 0 1 0 1 0 4

: 2 2s 2 0 0 3 1 4
Z 2 0 0 3 0 12

           
P

N
O P

neu

neu

1 2 III
I III

Z 2 III
 

N 5
5

N N NN

1 2 1 2 3

1

2

1

Basis x x s s s

s 0 0 1 3 2 1 2 3 : 3 2 2
: 1 4x 0 1 0 1 0 4

x 1 0 0 3 2 1 2 2
Z 0 0 0 0 1 16

           neu

neu

2 I3
II I

3III I2

P

N

O P

 

In der Zielfunktionszeile steht bei der Variable 2s , welche nicht Teil der 

Basis ist, der Wert 0. Folglich kann 2s  in die Basis aufgenommen werden, 

ohne den Zielfunktionswert zu vermindern. Nimmt man 2s  an Stelle von 

1s  in die Basis auf, ergibt sich das folgende ebenfalls optimale Tableau: 



 Sonderfälle des primalen Simplex-Algorithmus
 8.4 

 

 189 

N
N

1 2 1 2 3

2

2

1

Basis x x s s s
s 0 0 2 3 1 1 3 2
x 0 1 2 3 0 1 3 2
x 1 0 1 0 0 5
Z 0 0 0 0 1 16

 

Beide Tableaus beschreiben jeweils eine Ecke des Simplex, bei denen es sich 

jeweils um eine optimale Lösung handelt. Neben den beiden Ecken sind 

auch alle Punkte zwischen diesen optimale Lösungen. Aus Sicht der Ei-

chenzapfen AG kann in diesem Fall aus einer Menge von optimalen Pro-

duktionsmöglichkeiten gewählt werden.  

 

Definition 8-3: Primaler Simplex-Algorithmus 

Ausgehend von dem Anfangstableau, bei dem alle Schlupfvariab-

len in der Basis stehen, sind folgende drei Schritte solange zu wie-

derholen, bis in der Zielfunktionszeile keine negativen Werte mehr 

stehen. 

� Schritt 1 (Wahl der Pivotspalte): Als Pivotspalte wird diejenige 

Spalte mit dem kleinsten (negativen) Zielfunktionskoeffizienten 

bestimmt. Kommen mehrere Elemente in Frage, kann zwischen 

diesen Elementen beliebig gewählt werden. 

� Schritt 2 (Wahl der Pivotzeile): Für alle positiven Elemente in 

der Pivotsspalte wird der Quotient aus rechter Seite und dem 

entsprechenden Koeffizienten in der Pivotspalte berechnet. Der 

kleinste Quotient bestimmt die Pivotzeile. Kommen mehrere 

Quotienten in Frage, kann zwischen diesen Quotienten beliebig 

gewählt werden. Gibt es keine positiven Koeffizienten in der Pi-

votspalte, hat das Problem unendlich viele Lösungen bei unbe-

grenztem Zielfunktionswert, und das Verfahren bricht ab.  
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� Schritt 3 (Neue Basislösung, neues Simplextableau): Die Pi-

votspalte mit dem in Schritt 1 und 2 bestimmten Pivotelement ist 

streng zu pivotisieren. Die zur Pivotsspalte gehörende Variable 

kommt in die Basis, während die zur Pivotzeile gehörende (alte) 

Basisvariable diese verlässt. An Stelle der alten Basisvariable 

wird die neue Basisvariable in die Basisspalte des Simplex-

Tableaus aufgenommen. 

8.5 Interpretation des Endtableaus 

Neben der optimalen Lösung und dem optimalen Zielfunktionswert enthält das End-

tableau noch weitere Informationen. Es lassen sich Approximationen für Veränderun-

gen des optimalen Zielfunktionswerts bei Veränderungen der einzelnen Kapazitäten 

ablesen. Diese Sensitivitätsschätzungen jy  sind in der Zielfunktionszeile in der Spalte 

der Schlupfvariablen js  ablesbar. Wird Kapazität j um eine marginale Einheit erhöht 

(gesenkt), so steigt (sinkt) der optimale Wert der Zielfunktion approximativ um jy  

Einheiten. Befindet sich js  im Endtableau in der Basis und ist demnach 0sj R , so be-

schränkt Restriktion j die optimalen Lösung nicht, sie ist somit nicht bindend. Die 

verfügbare Kapazität j wird nicht ausgelastet, weshalb eine Erhöhung der Kapazität j 

nicht zu einer Erhöhung des Zielfunktionswerts führt. Gilt hingegen 0sj 5 , so führt 

eine Erhöhung der nun bindenden Restriktion j im Allgemeinen zu einer Erhöhung 

des optimalen Zielfunktionswerts. Bei einer Verwendung von jy  als Sensitivität des 

optimalen Zielfunktionswerts wird vorausgesetzt, dass die Veränderung der Kapazi-

tät j keine Auswirkungen auf den Verlauf des Simplex-Algorithmus hat, die optimale 

Lösung sich also über dieselben Simplex-Schritte bestimmt. Die Kapazitäten jb  haben 

aber durchaus Einfluss auf die Wahl der jeweiligen Pivotzeile und somit auch auf den 

Verlauf des Algorithmus. Unterstellt wird hier, dass marginale Variationen der Kapa-

zitäten eben nicht zu derartigen Veränderungen des Verlaufs führen. Um die wahren 

Sensitivitäten des optimalen Zielfunktionswerts zu bestimmen, muss der Simplex-

Algorithmus komplett neu angewendet werden. 
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Beispiel 8-15: Sensitivitätsanalyse im Endtableau 

Aus dem oben berechneten Endtableau aus Beispiel 8-11 

N

N

1 2 1 2 3

1

2

1

Basis x x s s s
s 0 0 1 3 2 1 2 3
x 0 1 0 1 0 4
x 1 0 0 3 2 1 2 2
Z 0 0 0 2 1 24

 

lassen sich als geschätzte Sensitivitäten 51y 0 , 52y 2, 53y 1 ablesen. Für 

die Eichenzapfen AG bedeutet dies beispielsweise, dass sich der Optimal-

wert der Zielfunktion um 2.000 € auf 26.000 € erhöht, falls die zweite Kapa-

zität (Fertigungskapazität Premiumbier) von 4.000 l auf 5.000 l erhöht wird. 

Eine marginale Änderung der ersten Kapazität (Fertigungskapazität Party-

bier) hat hingegen keinen Einfluss auf die Lösung. 

Die Sensitivitätsanalyse stellt somit ein effizientes Mittel dar, Engpässe in einem Op-

timierungsproblem zu identifizieren (bindende Nebenbedingungen) und Empfehlun-

gen darüber abzugeben, wo eine Kapazitätserweiterung besonders viel versprechend 

ist. Insbesondere bei Problemen in der Praxis, die oftmals tausende von Nebenbedin-

gungen umfassen, hat die Sensitivitätsanalyse neben der eigentlichen Optimierung 

deshalb eine immense Bedeutung. 

8.6 Der duale Simplex-Algorithmus 

Bisher haben wir die analytische Lösung der in Definition 8-2 eingeführten Standard-

maximierungsprobleme betrachtet. Sollte ein lineares Programm nicht in dieser Form 

gegeben und auch nicht einfach in diese umzuformen sein, ist zunächst die Bestim-

mung einer (ersten) zulässigen Basislösung erforderlich. Anschließend kann der duale 

Simplex-Algorithmus angewendet werden.  
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Sind in einem linearen Programm S -Restriktionen vorhanden, müssen diese zunächst 

durch Multiplikation mit -1 zu T -Restriktionen umgeformt werden. Der duale Sim-

plex-Algorithmus ist anzuwenden, wenn derartige Umformungen zu T -Restriktionen 

mit negativen Kapazitäten jb  führen oder von vornherein als T -Restriktionen mit 

negativen Kapazitäten jb  gegeben sind. 

Beispiel 8-16: Umformulierung des linearen Programms 

Um mit der Eichenzapfen AG expandieren zu können, lassen Sie in Zu-

kunft das Verpacken und Abfüllen des Biers von einigen Freunden über-

nehmen. Die Bezahlung erfolgt in Form von Freibiergutscheinen für die 

Uniparties, die Sie in Absprache mit den Partyveranstaltern in beliebiger 

Menge ausgegeben können, ohne etwas dafür bezahlen zu müssen. Da Ihre 

Freunde an ausreichend Gutscheine kommen wollen, müssen Sie diesen 

zusichern, dass sie mindestens 16 Stunden pro Woche für die Eichenzapfen 

AG arbeiten können. Der Zeitaufwand zum Verpacken und Abfüllen der 

beiden Biersorten ändert sich durch die weiterhin manuelle Arbeit nicht. 

Sie müssen die folgende neue Nebenbedingung in Ihrer Produktionspla-

nung berücksichtigen: 

O S1 22x 3x 16  

Durch Multiplikation der Nebenbedingung mit -1 ergibt sich eine T -

Restriktion und das Optimierungsproblem der Eichenzapfen AG hat die 

folgende Form: 

5 O j1 2z 2x 5x max 

T
T

N N T N
S

1

2

1 2

1 2

x 5
x 4

2x 3x 16
x , x 0

 

Es handelt sich nunmehr um kein Standardmaximierungsproblem, da die 

dritte Nebenbedingung mit 5 N3b 16  eine negative Kapazität aufweist.  
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Das Aufstellen des Anfangstableaus führt in diesen Fällen zu einer Basislösung, bei 

der die Werte der entsprechenden Schlupfvariablen negative Werte aufweisen. Diese 

Basislösung verletzt die Nichtnegativitätsbedingung und ist somit nicht zulässig. 

Beispiel 8-17: Aufstellen des Anfangstableaus 

Das Anfangstableau wird nach der bekannten Vorgehensweise aufgestellt: 

N N N
N N

1 2 1 2 3

1

2

3

Basis x x s s s
s 1 0 1 0 0 5
s 0 1 0 1 0 4
s 2 3 0 0 1 16
Z 2 5 0 0 0 0

 

Die Schlupfvariablen stehen wie zuvor in der Basis des Anfangstableaus, 

allerdings wird in diesem Fall die Nichtnegativitätsbedingung durch die 

dritte Schlupfvariable verletzt. Die Lösung 51x 0, 52x 0, 51s 5, 52s 4, 

5 N3s 16 , 5z 0 ist nicht zulässig. 

Bei der Anwendung des dualen Simplex-Algorithmus wird das Anfangstableau nach 

einer im Vergleich zum primalen Simplex-Algorithmus geänderten Vorgabe zunächst 

solange streng pivotisiert, bis in der Basis keine negativen Variablen mehr enthalten 

sind und die so bestimmte Basislösung zulässig ist. Ist eine zulässige Basislösung 

gefunden, muss anschließend noch überprüft werden, ob das zugehörige Simplex-

Tableau negative Elemente in der Zielfunktionszeile aufweist. Wenn ja, ist der primale 

Simplex-Algorithmus in seiner bekannten Form anzuwenden. Existieren keine negati-

ven Werte in der Zielfunktionszeile, ist die durch den dualen Simplex-Algorithmus 

gefundene Lösung zulässig und optimal. Dabei ist anzumerken, dass bei Anwendung 

des dualen Simplex-Algorithmus negative Zielfunktionswerte auftreten können. 

Bei jedem Schritt des dualen Simplex-Algorithmus wird zunächst die Pivotzeile an-

hand des kleinsten (negativen) Elements in der rechten Spalte des Simplex-Tableaus 

ausgewählt. Die Wahl der Pivotspalte erfolgt anhand des größten Quotienten aus 

Zielfunktionskoeffizienten und dem entsprechenden Element in der Pivotzeile, wobei 
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ein Quotient nur gebildet wird, falls der Koeffizient in der Pivotzeile negativ ist. An-

zumerken ist, dass die Quotienten sowohl negative als auch positive Werte annehmen 

können. Sollte kein Element in der Pivotzeile negativ sein, lässt sich keine zulässige 

Lösung für das Optimierungsproblem finden, und das Verfahren bricht ab. Die Pivot-

zeile bestimmt dabei die Variable, welche die Basis verlässt, während die neue Basis-

variable durch die Pivotspalte bestimmt wird. Wie beim primalen Simplex-

Algorithmus kann es zu Situationen kommen, bei denen die Pivotisierungsregeln des 

dualen Simplex-Verfahren keine eindeutige Entscheidung liefern. In diesen Fällen 

kann zwischen den in Frage kommenden Pivotzeilen beziehungsweise Pivotspalten 

beliebig gewählt werden.  

Beispiel 8-18: Anwendung des dualen Simplex-Algorithmus 

Der Verlauf des dualen Simplex-Algorithmus ist nachfolgend für obiges 

Beispiel dargestellt. Die Variable 3s  verlässt die Basis des Anfangstableaus, 

da das zu der entsprechenden Pivotzeile gehörende Element in der rechten 

Spalte den einzigen negativen Wert aufweist. Für 3s  kommt die Variable 

2x  die Basis, deren Quotient in der entsprechenden Pivotspalte den größ-

ten Wert aufweist. Für die nichtnegativen Elemente in die Pivotzeile wird 

in der entsprechenden Pivotspalte kein Quotient berechnet. 

N N N
N N

N N N N N
5 5

1 2 1 2 3

1

2

3

Basis x x s s s
s 1 0 1 0 0 5
s 0 1 0 1 0 4

s 2 3 0 0 1 16
Z 2 5 0 0 0 0

: 2 : 3
1 5/ 3

         
N P

N
O P

neu

neu

1 III3
II III

Z 5 III
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N N

N
N

N N N N N
5 N

1 2 1 2 3

1

2

2

Basis x x s s s
s 1 0 1 0 0 5

s 2 3 0 0 1 1 3 4 3

x 2 3 1 0 0 1 3 16 3
Z 4 3 0 0 0 5 3 80 3

: 2 3
2

         

N P
N

N P

N P

neu

neu

neu

3 II2
I II

2III II3
4Z II3

 

5
N N NN N
N N N

N

1 2 1 2 3

1

1

2

Basis x x s s s

s 0 0 1 3 2 1 2 3 : 1 2 6

x 1 0 0 3 2 1 2 2
x 0 1 0 1 0 4
Z 0 0 0 2 1 24

         
P

O P
O

neu

neu

2 I
II 1 2 I
Z I

 

Da alle Werte in der rechten Spalte des dritten Tableaus nichtnegativ sind, 

muss das duale Simplex-Verfahren nicht weiter angewendet werden. Die 

aktuelle Basislösung ist zulässig. Allerdings steht in der Zielfunktionszeile 

noch ein negativer Wert, weswegen die gefundene Basislösung nicht opti-

mal ist. Zur Optimierung ist der primale Simplex-Algorithmus anzuwen-

den, wobei 3s  für 1s  in die Basis kommt.  

1 2 1 2 3

3

1

2

Basis x x s s s
s 0 0 2 3 1 6
x 1 0 1 0 0 5
x 0 1 0 1 0 4
Z 0 0 2 5 0 30

 

Das Basislösung des vierten Simplex-Tableaus ist optimal mit den Vari-

ablenwerten 51x 5, 52x 4, 51s 0, 52s 0, 53s 6 und zugehörigem Zielfunk-

tionswert 5z 30. 
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Definition 8-4: Dualer Simplex-Algorithmus 

Ausgehend von dem Anfangstableau, bei dem alle Schlupfvariab-

len in der Basis stehen, sind folgende drei Schritte solange zu 

wiederholen, bis in der rechten Spalte keine negativen Werte mehr 

stehen. Weist das so berechnete Simplex-Tableau negative Ziel-

funktionskoeffizienten auf, ist anschließend der primale Simplex-

Algorithmus zur Bestimmung der optimalen Lösung anzuwenden. 

� Schritt 1 (Wahl der Pivotzeile): Als Pivotzeile wird diejenige 

Zeile mit dem kleinsten (negativen) Element in der rechten Spal-

te bestimmt. Kommen mehrere Elemente in Frage, kann zwi-

schen diesen Elementen beliebig gewählt werden. 

� Schritt 2 (Wahl der Pivotspalte): Für alle negativen Elemente 

in der Pivotzeile wird der Quotient aus Zielfunktionskoeffizient 

und dem entsprechenden Element in der Pivotzeile berechnet. 

Der größte Quotient bestimmt die Pivotspalte. Kommen mehrere 

Quotienten in Frage, kann zwischen diesen Quotienten beliebig 

gewählt werden. Gibt es keine negativen Koeffizienten in der 

Pivotzeile, hat das Problem keine zulässige Lösung, und das 

Verfahren bricht ab.  

� Schritt 3 (Neue Basislösung, neues Simplextableau): Die Pi-

votspalte mit dem in Schritt 1 und 2 bestimmten Pivotelement ist 

streng zu pivotisieren. Die zur Pivotzeile gehörende (alte) Ba-

sisvariable verlässt die Basis, während die zur Pivotspalte ge-

hörende Variable in diese eintritt. An Stelle der alten Basisvari-

able wird die neue Basisvariable in die Basisspalte des Sim-

plex-Tableaus aufgenommen. 
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8.7 Aufgaben 

Aufgabe 8.1: 

Ein Rohstoff R kann zu drei Gütern 1G , 2G  und 3G  verarbeitet werden. Man benötigt 

für 1G  pro Stück 40 kg, für 2G  pro Stück 80 kg und für 3G  pro Stück 60 kg des Roh-

stoffs R. An Arbeitszeit sind bei 1G  6 Stunden pro Stück, bei 2G  7 Stunden pro Stück 

und bei 3G  7 Stunden pro Stück aufzuwenden. Im betrachteten Zeitraum stehen 2.200 

Arbeitsstunden und 16.000 kg des Rohstoffs R zur Verfügung. Aus technischen Grün-

den muss von 1G  mindestens die dreifache Stückzahl wie von 2G  produziert werden. 

Pro Stück erzielt man bei 1G  einen Gewinn von 38 €, bei 2G  46 € und bei 3G  42 €. 

a) Formulieren Sie ein vollständiges lineares Programm zur Gewinnmaximierung. 

b) Wie muss das lineare Programm verändert werden, wenn man einen Gewinn von 

mindestens 9.000 € bei minimalem Rohstoffverbrauch erzielen will? 

Aufgabe 8.2: 

Zur Produktion der Güter 1G , 2G  und 3G  wird der Rohstoff  R benötigt. Man benötigt 

für 1G  pro Stück 40 kg, für 2G  pro Stück 50 kg und für 3G  pro Stück 30 kg des Roh-

stoffs R. Es stehen dabei 1.000 kg von R zur Verfügung.  

Weiterhin ist zu berücksichtigen, dass aus absatztechnischen Gründen der  Anteil von 

1G  an der Gesamtproduktionsmenge 1/2 nicht übersteigen darf.  

Aus technischen Gründen ist zu beachten, dass von 2G  höchstens 10 Einheiten produ-

ziert werden können und die von 2G  hergestellte Menge mindestens doppelt so groß 

sein muss wie jeweils die Mengen von 1G  und 3G .  

Die Erlöse pro Stück der drei Güter betragen für 1G  45 €, für 2G  30 €  und für 3G  25 €. 

a) Stellen Sie ein vollständiges lineares Programm zur Erlösmaximierung auf. 

b) Zusätzlich soll eine Mindestproduktionsmenge für 3G  in Höhe von 30 Einheiten 

berücksichtigt werden. Stellen Sie die entsprechende Nebenbedingung auf und 
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überlegen Sie, welche Auswirkungen die neue Nebenbedingung auf die Lösbarkeit 

des linearen Optimierungsproblems aus a) hat. 

Aufgabe 8.3: 

Das Semester ist fast beendet, die Klausuren stehen bevor. Sie beabsichtigen, jeweils 

eine Klausur in Mathematik, Wirtschaftsinformatik, Technik des betrieblichen Rech-

nungswesens und Produktionswirtschaft zu schreiben. Insgesamt bleiben Ihnen noch 

18 Tage, um sich auf die Klausuren vorzubereiten. Sie rechnen damit, dass Sie (neben 

Ihren schon vollzogenen Lernbemühungen) für Mathematik, Wirtschaftsinformatik 

und Technik des betrieblichen Rechnungswesens zusammen höchstens doppelt so viel 

Zeit investieren müssen wie für Produktionswirtschaft. Für Technik des betrieblichen 

Rechnungswesens sollten Sie nicht mehr Zeit benötigen als für Wirtschaftsinformatik, 

aber mindestens so viel wie für Mathematik. Da es nur in Produktionswirtschaft eine 

Note gibt, möchten Sie so viel Zeit wie möglich für die Vorbereitung auf dieses Fach 

einplanen. Allerdings müssen Sie berücksichtigen, dass Sie für Wirtschaftsinformatik 

mindestens 4 Tage und für Mathematik mindestens 3 Tage Vorbereitungszeit benöti-

gen, um die Klausuren zu bestehen. 

a) Formulieren Sie das Problem als lineares Maximierungsproblem. 

b) Wie viele Tage investieren Sie in jedes Fach, um die Scheinklausuren zu bestehen 

und in Produktionswirtschaft eine möglichst gute Note zu erzielen? 

Aufgabe 8.4: 

Sie sind Mitglied des Fetenkomitees der nächsten Mensafete und als Erstsemester 

gerade auf einem Gewinnoptimierungstrip. Sie haben nach einer genauen Analyse des 

Getränkeabsatzes erkannt, dass Männer und Frauen unterschiedlich zum Getränke-

gewinn beitragen. Ein männlicher Gast sorgt am Abend durchschnittlich für einen 

Gewinn von 24 € im Gegensatz zu 14 € pro weiblichem Gast. Das wollen Sie ausnutzen 

und die Karten gezielt an beide Geschlechter verkaufen. 
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Sie haben Glück, die Nachfrage (der Gästen beider Geschlechter) nach Karten ist wie 

immer riesig und 1.000 Studenten und 800 Studentinnen wollen zur Party. Mehr po-

tenzielle Partygäste gibt es nicht. Leider ist die Optimierung doch nicht ganz so ein-

fach, denn wer will schon auf eine Party, auf der nur (gewinnträchtige) Männer sind. 

Der Anteil an Frauen auf der Party, die so genannte Frauenquote, darf nicht unter 35% 

fallen. Zudem fasst die Mensa nicht mehr als 1.400 Leute und die Frauentoiletten plat-

zen ab 650 weiblichen Gästen aus allen Nähten, das wollen Sie auf keinen Fall. 

Wandeln Sie dieses diffuse Problem in ein vollständiges lineares Programm um. 

Aufgabe 8.5: 

Sie betreiben eine Pizzeria und möchten eine neue Kreation gestalten. Hierzu stehen 

Ihnen unter anderem folgende Zutaten zur Verfügung: 

Produkt Packungsgröße Preis pro Packung 
Butter (b) 500 g 0,95 € 
Champignons (c) 300 g 1,20 € 
gekochte Eier (e) 50 g pro Ei 0,15 € pro Ei 
Käse (k) 100 g 0,75 € 
Mehl (l) 1 kg 0,60 € 
Milch (m) 1 kg 0,80 € 
Salami (s) 500 g 6,50 € 
Tomatensauce (t) 500 g 1,- € 
Wasser (w) unbegrenzt kostenlos 

Damit die Pizza genießbar wird, sind Sie an ein altes Rezept Ihrer italienischen Groß-

mutter gebunden. 

Sie müssen zwischen 400 und 600 Gramm des Hauptbestandteils Mehl verwenden. 

Hierzu geben Sie Wasser und Milch, wobei das Gewicht der Flüssigkeiten mindestens 

40% und höchstens 2/3 des Mehlgewichts betragen soll. Sie können auch noch Butter 

hinzufügen, müssen aber beachten, dass mindestens viermal soviel Mehl wie Butter 

enthalten sein muss. Auf den Teig streichen Sie zwischen 300 und 500 Gramm Toma-

tensauce. Sie hatten lange keine Probleme mit Ihrem Cholesterinspiegel mehr und 

wollen deswegen mindestens ein Ei pro Pizza zu sich nehmen. Beachten Sie aber, dass 
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Sie (jeweils auf das Gewicht bezogen) mindestens ebenso viele Champignons und 

viermal soviel Salami wie Eier verwenden müssen. Abschließend sollten Sie mindes-

tens 250 Gramm Käse über die Pizza streuen. 

Die Entscheidungsvariablen seien als "verwendete Menge in 100 Gramm" definiert. 

Benutzen Sie als Entscheidungsvariablen die oben in Klammern angegebene Kurzform 

der Zutaten. Stellen Sie ein vollständiges lineares Programm zur Minimierung der 

Herstellkosten einer Pizza auf (das Aussehen der Pizza sei nicht relevant). 

Aufgabe 8.6: 

Sie sind ein Viehzüchter und halten Rinder, Schafe und Schweine, die allesamt nach 

einem Jahr Zucht im Schlachthof "weitergenutzt" werden. Der Ökonom in Ihnen als 

Agrarwirt will naturgemäß den jährlichen Gewinn maximieren, der sich ausschließlich 

aus den Verkaufserlösen abzüglich der jeweiligen Einkaufspreise der Tiere zusam-

mensetzt. Die Jungtiere kosten 150 € je Mastkalb, 20 € je Mastlamm und 80 € je Mast-

ferkel. Nach einem Jahr erbringt eine Veräußerung an den Schlachthof 1.800 € pro 

Rind, 180 € pro Schaf und 250 € pro Schwein. 

Allerdings gibt es aufgrund einer überraschenden und unbegründeten Gesetzesände-

rung Probleme mit dem Nachschub an Tiermehl zur Fütterung. Es stehen Ihnen insge-

samt nur 1.000 kg pro Tag zur Verfügung, wobei ein Rind 30 kg, ein Schwein 8 kg und 

ein Schaf 2 kg pro Tag vertilgt. Auch mit dem Absatz von Rindfleisch läuft es wegen 

einer Medienintrige momentan nicht besonders gut, Sie können maximal 20 Rinder 

pro Jahr an den Schlachthof abgeben. Zudem streikt Ihr Partner, der ja die ganze Ar-

beit auf dem Hof macht, nach "nur" 16 Stunden Arbeit am Tag. Und die Tiere brauchen 

doch Zuneigung, und zwar täglich 10 Minuten pro Rind, 15 Minuten pro Schaf und 5 

Minuten pro Schwein. Dem ist nicht genug, auch Ihre Stallung stellt mit 200 qm einen 

Engpass dar. Sie können die Schafe ohne weiteres auf 1,5 qm je Schaf zusammenpfer-

chen, die Schweine brauchen aber jeweils 2 qm und die Rinder sogar 5 qm Platz. 

Stellen sie ein mathematisches Modell auf, das Ihren Gewinn maximiert. 
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Aufgabe 8.7: 

Ihr Unternehmen möchte ein Anti-Ageing-Getränk auf den Markt bringen und hat Sie 

damit beauftragt, eine optimale Rezeptur zu finden. Ihnen stehen Karottensaft (0,30 € 

pro Liter), Traubensaft (0,15 € pro Liter), flüssiger Honig (3 € pro Liter) und Pfeffer-

minzlikör (20% Alkohol enthaltend; 2 € pro Liter) zur Verfügung. 

Um eine gute Viskosität des Endprodukts zu erhalten, muss das Getränk aus 5% bis 

10% Honig bestehen. Es soll mindestens doppelt soviel Traubensaft wie Karottensaft 

und mehr Karottensaft als Honig enthalten sein. Zur geschmacklichen Verfeinerung 

müssen mindestens 1% Pfefferminzlikör in das Getränk. Andererseits soll das Produkt 

aber in einer anderen Verpackung auch als Aufbauprodukt für Kinder vermarktet 

werden, daher darf es höchstens 1% Alkohol enthalten. Um die medizinische Wirkung 

müssen Sie sich keine Gedanken machen, diese wird dem Verbraucher von Ihrer Mar-

keting-Abteilung je nach Bedarf suggeriert. 

Stellen Sie ein vollständiges lineares Programm auf, das unter Berücksichtigung der 

angegebenen Bedingungen die Herstellkosten minimiert. 

Aufgabe 8.8: 

Ihr Unternehmen hat ein neues Mobiltelefon entwickelt. Sie sind für die Festlegung 

der Werbeausgaben zuständig. 

Sie können Werbung in Zeitungen, im Radio, im Fernsehen und auf Litfaßsäulen ma-

chen. Ihr Budget liegt bei 250.000 €. Eine Zeitungsseite kostet 5.000 € pro Tag, 30 Se-

kunden im Radio 800 €, 10 Sekunden im Fernsehen 2.000 € und das Anmieten einer 

Litfaßsäule für eine Woche 300 €. Durch eine Zeitungsannonce erreichen Sie 20.000 

Menschen. Sie haben sowohl für das Radio als auch für das Fernsehen einen 30-

sekündigen Spot erstellt. Im Radio bringen Sie Ihr Produkt so 2.000 Personen näher, 

während der Fernsehspot von 10.000 Personen beachtet wird. Eine Litfaßsäule schließ-

lich wird in einer Woche nur von 600 Passanten wahrgenommen. Zur Vereinfachung 

können Sie davon ausgehen, dass Ihre Werbemaßnahmen stets verschiedene Men-

schen erreichen. Der Vorstandsvorsitzende besteht darauf, mindestens 10 Zeitungssei-
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ten mit entsprechender Werbung zu buchen. Litfaßsäulen hingegen hält er schlecht 

fürs Image und möchte die Nutzung dieses Mediums daher auf 200 Litfaßsäulenwo-

chen begrenzen. Aus einem fragwürdigen internen Strategiepapier geht hervor, dass 

die Werbezeit im Fernsehen diejenige im Radio nicht unterschreiten soll. Um auch eine 

gewisse eigene Note in das Problem einzubringen, möchten Sie mindestens doppelt so 

viele Fernsehminuten schalten wie Zeitungsseiten. 

Stellen Sie ein lineares Programm auf, welches die Bekanntheit des neuen Telefons 

maximiert. Formulieren Sie präzise und vollständig. 

Aufgabe 8.9: 

Sie sind ein Amateurspekulant auf dem Rohstoffterminmarkt und interessieren sich 

für Öl, Kupfer und Nickelinvestments. Als risikoneutraler Anleger wollen Sie aus-

schließlich die durchschnittlich erwartete Preissteigerung Ihres Rohstoffterminportfo-

lios maximieren. Aus historischen Datensätzen kennen Sie die Durchschnittspreisstei-

gerungen der einzelnen Terminkontrakte. Für die Ölkontrakte sind dies 4%, für die 

Kupferkontrakte 5% und für die Nickelkontrakte 6% (jeweils pro Jahr). 

Ihr Rohstoffterminportfolio unterliegt aber verschiedenen Restriktionen, denn Ihr 

Vater, Studienkollegen und Ihre Freundin wissen um Ihre dünne Erfahrung. Wegen 

des Ölbooms ist Ihre Freundin besonders zuversichtlich bezüglich der Preisentwick-

lung der Ölkontrakte und schreibt Ihnen vor, immer mehr Ölkontrakte in Ihrem Port-

folio zu halten als Kupfer- und Nickelkontrakte zusammen. Zudem ist ein alter Stu-

dienkollege Vorstand beim Kupfermonopolisten. Er hat Insiderinformationen und rät, 

mindestens 10% des Portfolios in Kupferkontrakten zu halten. Da Sie sich mit Nickel- 

und Kupfer eigentlich gar nicht auskennen, legen Sie sich hier selbst die Restriktion 

auf, dass der Portfolioanteil der Kupferkontrakte nie mehr als 5% über dem der Ni-

ckelkontrakte liegen darf, und umgekehrt. Letztendlich meldet sich Ihr Vater noch zu 

Wort und empfiehlt, nie mehr als 60% in eine Kontraktklasse zu investieren. 

Ein nicht einfaches Investmentproblem. Stellen Sie ein Lineares Programm auf, wel-

ches die Problemstellung beschreibt, wenn Sie alle Ratschläge befolgen wollen und die 
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Rohstoffkontrakte nur kaufen, nicht aber leer verkaufen können (das heißt Sie können 

keine Rohstoffkontrakte verkaufen, die sie nicht besitzen). 

Aufgabe 8.10: 

Ein örtlicher Viehzuchtbetrieb füttert Schweine mit zwei Futtersorten A und B. Die 

Tagesration eines Schweins muss die Nährstoffe I, II, und III im Umfang von mindes-

tens 8, 14 bzw. 6 Gramm enthalten. Die Tabelle zeigt die Nährstoffgehalte in Gramm 

pro Kilogramm und die Preise in € pro Kilogramm der beiden Futtersorten. 

 Sorte A Sorte B Mindestmenge 
Nährstoff I in g/kg 2 1 8 
Nährstoff II in g/kg 3 4 14 
Nährstoff III in g/kg 1 5 6 

Preis in €/kg 5 8  

Neben der Einhaltung der Mindestmengen an Nährstoffen soll der Anteil von Futter-

mischung A und B an der Tagesration jeweils nicht 2/3 übersteigen.  

Stellen Sie ein Lineares Programm zur kostenminimalen Bestimmung der Mengen (in 

Kilogramm) von Futtersorte A und B pro Tagesration auf. 

Aufgabe 8.11: 

Als vorbildlicher Student der Universität Mannheim steht Harald vor einem großen 

Problem: Er ist total gestresst. Deshalb konsultiert er seinen Hausarzt und dieser emp-

fiehlt ihm – geschockt von Haralds desolatem Zustand – sich durch exzessiven Schlaf 

zu erholen. Hierfür stehen Harald vier Schlafmöglichkeiten offen, bei welchen er sich 

mehr oder weniger effektiv erholt. 

Zunächst kann Harald in seinem Bett schlafen, wo er allerdings jede Nacht gleich lang 

schlafen muss, sonst gerät sein Schlafrhythmus aus den Fugen. Mutti schreibt ihm 

zudem altklug vor, dass er jede Nacht mindestens 5 Stunden, höchstens jedoch 

14 Stunden in seinem Bett zu verbringen hat. Nun zur "einschläfernden" Uni. Um sich 

die Chance zu erhalten, die bevorstehenden Klausuren zu bestehen, will er mindestens 



 8 Lineare Optimierung 

 204 

5 Blöcke pro Woche die Vorlesungen besuchen, höchstens allerdings 12 Blöcke, mehr 

sind aus psychischen Motiven einfach nicht möglich. Ein Viertel der Vorlesungszeit 

schläft Harald, leider erholt er sich dabei wegen des störenden Lärms der Dozenten 

nur halb so gut wie in seinem Bett. Hinzu kommen noch einige Tutorien, von denen er 

mindestens einen Block fest einplant (bei seiner hübschen Lieblingstutorin). In den 

Tutorien schläft er dreimal so gut wie in den Vorlesungen (da er ausschweifend von 

der Tutorin träumen kann) und das drei Viertel der Zeit. Damit sein Stundenplan 

einigermaßen sinnvoll ist, möchte Harald auf keinen Fall mehr Tutorien als Vorlesun-

gen besuchen. Um ein gutes Gewissen zu haben, sollte er mindestens 20 Semesterwo-

chenstunden an der Uni belegen. Außerdem hat er die Verpflichtung/Möglichkeit, 

seine Freundin Maike zu besuchen, bei der er es bis zu 30 Stunden pro Woche aushält. 

Ein Drittel der Zeit bei ihr verbringt er schlafend, jedoch ist der Schlaf wegen des stän-

digen Gejammers der Freundin nur ein Drittel so erholsam wie in seinem Bett. Um die 

Beziehung nicht zu gefährden, muss Harald mehr Zeit bei seiner Freundin als in den 

Universitätsveranstaltungen verbringen. Pro Tag isst Harald zudem drei Stunden (zu 

Hause), des weiteren arbeitet er 19 Stunden pro Woche als Hiwi an einem der Lehr-

stühle. Bei beidem ist er so beschäftigt, dass ihm nicht eine einzige Minute Schlaf ver-

gönnt ist. 

Stellen Sie ein vollständiges lineares Programm für die Schlafzeit zu Hause, die be-

suchten Vorlesungs- und Tutoriumsblöcke sowie die mit Maike verbrachte Zeit auf, 

mit dessen Hilfe Harald seine wöchentliche Erholung durch Schlaf maximieren kann. 

Gehen Sie davon aus, dass ein Block zwei Semesterwochenstunden umfasst, wobei 

eine Semesterwochenstunde genau 0,75 Zeitstunden entspricht. 

Aufgabe 8.12: 

Ein befreundeter Unternehmensberater steht vor der Herausforderung, die Produkti-

onsabläufe eines Kunden zu erfassen. Leider sind seine Kenntnisse in Powerpoint 

deutlich besser als die in Linearer Algebra, weswegen er Sie um Hilfe beim Aufstellen 

des zu Grunde liegenden mathematischen Modells bittet. Folgende Daten aus der 

Produktion des Unternehmens teilt er Ihnen mit: 
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Das Unternehmen fertigt zurzeit mit zwei Maschinen die Produkte 1P , 2P  und 3P . Die 

Absatzpreise betragen 10 € für 1P , 20 € für 2P  und 15 € für 3P .  

Auf Maschine 1 können 1P  und 2P  gefertigt werden. Die Fertigung von 1P  auf Maschi-

ne 1 verbraucht 2 Arbeitsstunden, während 2P  3 Stunden benötigt. 

Maschine 2 kann 1P  und 3P  produzieren, für beide Produkte sind dabei jeweils 4 Ar-

beitsstunden aufzuwenden. 

Auf Maschine 2 produzierte Einheiten von 1P  benötigen keine weitere Bearbeitung auf 

Maschine 1. Umgekehrt gilt, dass auf Maschine 1 produzierte Einheiten von 1P  keine 

weitere Bearbeitung durch Maschine 2 benötigen.  

Im betrachteten Zeitraum sind 1.000 Arbeitsstunden auf Maschine 1 eingeplant, auf 

Maschine 2 das doppelte Arbeitsstundenbudget. Aus tariflichen Gründen muss beach-

tet werden, dass mindestens zwei Drittel der Gesamtproduktionsmenge von 1P  auf 

Maschine 1 gefertigt wird. Aus der Marketingabteilung kommt aufgrund von geplan-

ten Werbekampagnen die Auflage, dass der Anteil von 3P  an der Gesamtproduktion 

(gemessen an der Stückmenge der produzieren Einheiten) höchstens ein Drittel betra-

gen darf. 

Formulierenden ein vollständiges lineares Programm zur Erlösmaximierung. 

Aufgabe 8.13: 

� � � � �1 2 3z x 5x 2x min 

� � �
� � � �
� � �

� �
�

1

1 2 3

1 2 3

2 3

1 2 3

x 5
2x 3x x 1
3x 4x x 2

3x 2x 2
x , x , x 0

 

Formen Sie das lineare Programm um. Handelt es sich hierbei um ein Standardmaxi-

mierungsproblem? 
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Aufgabe 8.14: 

1 2 3z x 2x 3x min5 N N N j  

N O S N
O O T
O S N

T
S

1 3

1 2 3

1 2

3

1 2 3

x 5x 5
2x 2x x 10
3x 4x 4

2x 8
x , x , x 0

 

Formen Sie das lineare Programm um. Handelt es sich hierbei um ein Standardmaxi-

mierungsproblem? 

Aufgabe 8.15: 

Kann es sich hierbei um einen Simplex handeln? 

 

 

51 2 3 4

1 

0 

2 

4 

3 

5 

1x

2x
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Aufgabe 8.16: 

5 O j1 2z x 5x max 

1 2

1 2

1

1 2

1 2

1 2

2x 2x 6
x 2x 8
x 3

0,5x 2x 16
3x x 5
x , x 0

N O T
O S

S
O T
N T

S

 

Lösen Sie das lineare Programm graphisch und geben Sie den optimalen Zielfunkti-

onswert an. 

Aufgabe 8.17: 

5 N j1 2z 6x 4x max 

2 1

1 2

2 1

1

x 4 x
x x 2
x 2x 0
x 1 0

T O
T N
N S
N S

 

Lösen Sie das lineare Programm graphisch und geben Sie den optimalen Zielfunkti-

onswert an. 

Aufgabe 8.18: 

5 O j1 2z x 1,5x max 

1 2

1 2

1

1 2

1 2

x x 1
x 2x 7
x 4 0
x x 1
x , x 0

O S
O T
N T
S N

S

 

Lösen Sie das lineare Programm graphisch und geben Sie den optimalen Zielfunkti-

onswert an. 
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Aufgabe 8.19: 

Folgende Zielfunktion sei zu maximieren: 1 2z ax bx5 O  

Welche Punkte des nachfolgenden Simplex kommen als Lösung in Frage, falls gilt: 

a) a 0, b 0R R  b) a 0, b 0R U  

c) a 0, b 0U R  d) a 0, b 0U U  

Aufgabe 8.20: 

5 O j1 2z 3x 4x max 

1 2

1 2

1 2

2x 3x 6
2x x 5
x , x 0

O T
O T

S
 

Ermitteln Sie die optimale Lösung mithilfe des Simplex-Algorithmus und geben Sie 

die geschätzten Sensitivitäten an. 
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Aufgabe 8.21: 

1 2z 6x 5x max5 O j  

1 2

1 2

1 2

4x 2x 40
x 3x 20
x , x 0

O T
O T

S
 

Lösen Sie das obige Standardmaximierungsproblem mit Hilfe des Simplex-

Algorithmus. Geben Sie optx , opts , opty  und optz  an. 

Aufgabe 8.22: 

5 O j1 2z 3x 5x max 

1 2

1 2

1 2

1 2

x 4x 50
3x 2x 60
2x 8x 110
x , x 0

O T
O T
O T

S

 

Geben Sie die optimalen Werte für die Variablen 1x  und 2x , den zugehörigen Zielfunk-

tionswert und die geschätzten Sensitivitäten an. Welche Kapazitäten sind ausgelastet? 

Aufgabe 8.23: 

1 2z 20x 18x max5 O j  

1 2

1 2

1 2

1 2

4x 13x 400
16x 12x 880
8x 2x 660
x , x 0

O T
O T
O T

S

 

Bestimmen Sie das Optimum dieses Standardmaximierungsproblems über den Sim-

plex-Algorithmus. Geben Sie an, wie sich der Optimalwert der Zielfunktion ändert, 

wenn Sie jeweils die einzelnen Kapazitäten um eine marginale Einheit verringern. 
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Aufgabe 8.24: 

5 O O j1 2 3z 5x x 4x max 

1 2 3

1 2 3

1 2 3

2x 3x x 30
x 4x 2x 50
x , x , x 0

O O T
O O T

S
 

Verwenden Sie den Simplex-Algorithmus, um die optimale Lösung und die geschätz-

ten Sensitivitäten zu bestimmen. 

Aufgabe 8.25: 

1 2 3z 3x 2x x max5 O O j  

1 2 3

1 2 3

1 2 3

2x 3x 2x 100
4x 2x x 100
x , x , x 0

O O T
O O T

S
 

Bestimmen Sie mithilfe des Simplex-Algorithmus die optimale Lösung, den zugehöri-

gen Wert der Zielfunktion und die geschätzte Veränderung dieses Werts bei Erhöhung 

der ersten bzw. der zweiten Kapazität um je eine Einheit. 

Aufgabe 8.26: 

Lösen Sie das nachfolgende Standardmaximierungsproblem mit Hilfe des Simplex-

Algorithmus, geben Sie optx , opts , opty  und optz  an. 

1 2 3z 3x 2,5x 4x max5 O O j  

1 2 3

1 2 3

1 2 3

x x 2x 40
6x 3x 2x 80
x , x , x 0

O O T
O O T

S
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Aufgabe 8.27: 

Lösen Sie das nachfolgende Standardmaximierungsproblem mit Hilfe des Simplex-

Algorithmus, geben Sie optx , opts  und optz  an. 

1 2 3z 3x 4x 2x max5 O O j  
O O T
O O T

S

1 2 3

1 2 3

1 2 3

x 4x 2x 40
x 2x x 30
x , x , x 0

 

Aufgabe 8.28: 

Lösen Sie das nachfolgende Standardmaximierungsproblem mit Hilfe des Simplexal-

gorithmus, geben Sie optx , opts , optz  und die Sensitivitäten opty  an. 

1 2 3z 6x 2x 5x max5 O O j  

1 2 3

1 2 3

2 3

1 2 3

4x x 4x 20
2x 2x 2x 40

x 3x 10
x , x , x 0

O O T
O O T

O T
S

 

Aufgabe 8.29: 

Ermitteln Sie für nachfolgendes Maximierungsproblem die optimale Lösung mithilfe 

des Simplex-Algorithmus und geben Sie die geschätzten Sensitivitäten der optimalen 

Lösung bei Kapazitätserhöhungen an. 

1 2 3z x 3x 2x max5 O O j  

1 2 3

1 2 3

1 2 3

x 4x 2x 30
2x 4x x 24
x , x , x 0

O O T
O O T

S
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Aufgabe 8.30: 

1 2 3z 4x 5x 6x max5 O O j  

1 2 3

1 2 3

1 2 3

1 2 3

2x 3x 3x 70
x 2x 3x 30

3x 4x 4x 80
x , x , x 0

O O T
O O T
O O T

S

 

Ermitteln Sie die optimale Lösung mithilfe des Simplex-Algorithmus und geben Sie 

die geschätzten Sensitivitäten an. 

Aufgabe 8.31: 

1 2 3z 4x 3x 5x max5 O O j  

1 2 3

1 2 3

1 2 3

1 2 3

4x x 4x 30
2x 1,5x 2x 20
x x 3x 30
x , x , x 0

O O T
O O T
O O T

S

 

Ermitteln Sie die optimale Lösung mithilfe des Simplex-Algorithmus und geben Sie 

die geschätzten Sensitivitäten an. 

Aufgabe 8.32: 

1 2 3z 4x 5x 6x max5 O O j  

1 2 3

1 2 3

1 2 3

1 2 3

1x 4x 3x 60
2x 4x x 80
3x 2x 4x 60
x , x , x 0

O O T
O O T
O O T

S

 

Ermitteln Sie die optimale Lösung mithilfe des Simplex-Algorithmus und geben Sie 

die geschätzten Sensitivitäten an. 
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Aufgabe 8.33: 

1 2 3z 4x 3x 2,5x max5 O O j  

1 2 3

1 2 3

1 2 3

1 2 3

2x x x 40
x 3x 1,75x 35

6x 2x x 140
x , x , x 0

O O T
O O T
O O T

S

 

Bestimmen Sie mithilfe des Simplex-Algorithmus die optimalen Werte für die Ent-

scheidungsvariablen, die freien Kapazitäten und Sensitivitäten in diesem Fall sowie 

den optimalen Wert der Zielfunktion. 

Aufgabe 8.34: 

1 2 3z 4x 2x 3x max5 O O j  

1 2 3

1 2 3

1 2

1 2 3

3x x 4x 40
2x 2x 2x 30
2x x 20
x , x , x 0

O O T
O O T
O T

S

 

Verwenden Sie den Simplex-Algorithmus, um die optimale Lösung und die geschätz-

ten Sensitivitäten zu bestimmen. 

Aufgabe 8.35: 

1 2 3z 6x 5x 5x max5 O O j  

1 2 3

1 2 3

2

1 2 3

1 2 3

4x 6x 3x 60
2x 2x x 60

4x 40
4x x 2x 20
x , x , x 0

O O T
O O T

T
O O T

S

 

Ermitteln Sie die optimale Lösung mithilfe des Simplex-Algorithmus und geben Sie 

die geschätzten Sensitivitäten an. 
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Aufgabe 8.36: 

1 2 3z 2x 5x 4x max5 O O j  

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

2x 3x x 48
x 4x 3x 60

2x 2x 2x 50
3x x 3x 70
x , x , x 0

O O T
O O T
O O T
O O T

S

 

Bestimmen Sie mithilfe des Simplex-Algorithmus die optimalen Werte für die Ent-

scheidungsvariablen, die freien Kapazitäten und Sensitivitäten in diesem Fall sowie 

den optimalen Wert der Zielfunktion. 

Aufgabe 8.37: 

5 O j1 2z 2x 3x max 

T
T

O T
S

1

2

1 2

1 2

x 4
2x 6

2x 3x 10
x , x 0

 

Lösen Sie das lineare Programm zunächst graphisch und anschließend mit dem Sim-

plex-Algorithmus. Welche Lösungseigenschaften weist das lineare Programm auf? 

Aufgabe 8.38: 

5 O j1 2z x 2x max 

N O T
N O T

S

1 2

1 2

1 2

3x 4x 10
2x 2x 20
x , x 0

 

Lösen Sie das lineare Programm zunächst graphisch und anschließend mit dem Sim-

plex-Algorithmus. Welche Lösungseigenschaften weist das lineare Programm auf? 
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Aufgabe 8.39: 

5 O j1 2z x 3x max 

O S
O T
N T

S

1 2

1 2

1 2

1 2

3x x 6
1 2x x 7 2
2x 2x 4
x , x 0

 

Ermitteln Sie die optimale Lösung mithilfe des Simplex-Algorithmus und geben Sie 

die geschätzten Sensitivitäten an. Verwenden Sie, falls nötig, den dualen Simplex-

Algorithmus. 

Aufgabe 8.40: 

5 O j1 2z 2x 5x max 

T
O T
O S

S

1

1 2

1 2

1 2

2x 5
x 2x 10

3x 2x 12
x , x 0

 

Ermitteln Sie die optimale Lösung mithilfe des Simplex-Algorithmus und geben Sie 

die geschätzten Sensitivitäten an. Verwenden Sie, falls nötig, den dualen Simplex-

Algorithmus. 

Aufgabe 8.41: 

5 O O j1 2 3z x 3x 2x max 

O O T
O O S

O S
S

1 2 3

1 2 3

1 3

1 2 3

x 2x x 6
4x x 2x 4
3x x 5
x , x , x 0

 

Bestimmen Sie mithilfe des Simplex-Algorithmus die optimalen Werte für die Ent-

scheidungsvariablen. Verwenden Sie, falls nötig, den dualen Simplex-Algorithmus. 
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Aufgabe 8.42: 

5 O O j1 2 3z x 2x x max 

O O S
O O T

S

1 2 3

1 2 3

1 2 3

x 3x 2x 3
4x 2x 6x 4
x , x , x 0

 

Bestimmen Sie mithilfe des Simplex-Algorithmus die optimalen Werte für die Ent-

scheidungsvariablen. Verwenden Sie, falls nötig, den dualen Simplex-Algorithmus. 

Aufgabe 8.43: 

5 O O j1 2 3z x 5x 2x max 

O T
O O T

S
S

2 3

1 2 3

3

1 2 3

2x 2x 10
2x 4x 2x 8

2x 4
x , x , x 0

 

Bestimmen Sie mithilfe des Simplex-Algorithmus die optimalen Werte für die Ent-

scheidungsvariablen. Verwenden Sie, falls nötig, den dualen Simplex-Algorithmus. 

Aufgabe 8.44: 

5 O O j1 2 3z 2x 4x x max 

O O T
O S
O T

S

1 2 3

2 3

1 3

1 2 3

x 2x x 20
2x 3x 6

2x x 24
x , x , x 0

 

Ermitteln Sie die optimale Lösung mithilfe des Simplex-Algorithmus und geben Sie 

die geschätzten Sensitivitäten an. Verwenden Sie, falls nötig, den dualen Simplex-

Algorithmus. 
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Aufgabe 8.45: 

N

N

N N

1 2 3 1 2 3

1

2

3

x x x s s s
31 1s 0 1 0 152 2 2

1s 1 0 0 0 1 1 2
1 1 1x 1 0 0 62 2 2

Z 0 3 p 0 0 0 p 1 36

 

 

a) Für welche Werte des Parameters pA� ist das obige Simplex-Tableau ein End-

tableau? 

b) Ermitteln Sie für p 45  die optimale Lösung mithilfe des Simplex-Algorithmus und 

geben Sie die geschätzten Sensitivitäten an. 

c) Wie verändert sich für p 45  die optimale Lösung, wenn Kapazität 2 um eine Ein-

heit gesenkt wird? 

Aufgabe 8.46: 

1 2 3 4 1 2 3

1

1

4

x x x x s s s
6 7 4s 0 2 0 1 525 5 5

37 4x 1 1 0 0 265 5 5
2 1 2x 0 1 1 0 165 5 5

12 4 2Z 0 1 0 0 1165 5 5

N N

N N

N

N

 

a) Erläutern Sie, warum es sich bei dem gegebenen Tableau weder um ein Anfangs- 

noch um ein Endtableau handeln kann. 

b) Wie lautet das zugrunde liegende vollständige lineare Programm? (Auf eine Defi-

nition der Entscheidungsvariablen kann hier verzichtet werden.) 

c) Ermitteln Sie die optimale Lösung und die geschätzten Sensitivitäten. 
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Aufgabe 8.47: 

Sie werden nach Ihrem Studium beim KGB als Industriespion eingestellt. Im Rahmen 

Ihrer geheimdienstlichen Tätigkeit (nach einem Imbiss mit der Sekretärin des Chefs 

eines Großkonzerns) fällt Ihnen folgendes Simplex-Tableau in die Hände: 

1 2 3 1 2 3x x x s s s
? 0 1 0 1 0 1 20
? 0 0 2 2 1 2 40
? 1 0 1 0 0 1 20
Z 0 0 0 3 0 1 140

N
N  

Sie erkennen sofort die Brisanz des Materials und machen sich an die Untersuchung. 

Bei den Entscheidungsvariablen ix  muss es sich eindeutig um Produktionsziffern für 

die Spitzenprodukte des Konzerns handeln. Jetzt endlich kommen sie an alle Informa-

tionen, an denen Ihre Auftraggeber so brennend interessiert sind. 

a) Erläutern Sie, woran Sie erkennen, dass das vorliegende Tableau ein Endtableau 

ist. 

b) Bestimmen Sie, welche Entscheidungsvariablen sich in der Basis befinden, und 

lesen Sie dann den Produktionsvektor ab. Welche Ressourcen stehen dem Konzern 

noch zur Verfügung? 

Bis hierher hätten auch die anderen Agenten des KGB mithalten können, doch jetzt 

zeigt sich Ihre gute Ausbildung. Sie verblüffen Ihre Auftraggeber mit Zusatzinforma-

tionen. 

c) Berechnen Sie vom Endtableau ausgehend das Anfangstableau. 

d) Finden Sie heraus, welches Gewinnmaximierungsproblem dem Unternehmen 

zugrunde liegt. 

e) Bestimmen Sie den Kapazitätsbedarf bei Erstellung des optimalen Produktions-

plans. 
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Aufgabe 8.48: 

1 2 3z x x 3x max5 O O j  

1 2 3

1 2 3

1 2 3

1 2 3

x 2x 4x 40
2x 3x 4x 60
x x x 30
x , x , x 0

O O T
O O T
O O T

S

 

a) Ermitteln Sie die optimale Lösung mithilfe des Simplex-Algorithmus und geben 

Sie die geschätzten Sensitivitäten an. 

Verändert sich die optimale Lösung durch Hinzunahme einer der nachfolgenden Re-

striktionen? Bestimmen Sie gegebenenfalls die neue optimale Lösung und die ge-

schätzten Sensitivitäten. 

 

b) 1 2 34x 20x 5x 120O O T  

c) 2 34x 5x 20O T  

Aufgabe 8.49: 

Sie kennen die optimale Lösung eines Standardmaximierungsproblems: 

< =Topt 5x 525 , < =Topt 5s 0 025 . 

a) Diese Lösung wurde mit dem Simplex-Algorithmus bestimmt. Wie viele Zeilen 

und Spalten hat das zugrunde liegende Simplex-Tableau (inklusive Basis und Ziel-

funktionszeile, aber ohne etwaige Variablenkopfzeile)? 

b) Stellen Sie ein zugehöriges Endtableau auf und füllen Sie so viele der Zellen wie 

möglich aus (nur unter der Kenntnis der optimalen Lösung). Schreiben Sie dabei 

die Entscheidungsvariablen in aufsteigender Reihenfolge in die oberen Zeilen der 

Basis, die Schlupfvariable in die untere Zeile. Wie viele Zellen können nicht näher 

bestimmt werden? 
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c) Nun kennen Sie zusätzlich die approximierten Sensitivitäten der optimalen Lösung 

auf Veränderungen der Anfangskapazitäten. Diese seien: < =Topt 9 1y 04 45  

Integrieren Sie diese Information in das unter Teilaufgabe b) erstellte Tableau und 

füllen Sie die restlichen Zellen zeilenweise mit Buchstaben (a-g) auf. Diese seien: 
3a 45 , 1b 45 N , 1c 25 N , 1d 25 , 1e 45 , 3f 45 N  und optg z5  

 Bestimmen Sie das Standardmaximierungsproblem, welches durch den Simplex 

gelöst wurde (als vollständiges lineares Programm) und optg z5 . 

Aufgabe 8.50: 

Ihr Unternehmen stellt zwei Güter her, der Produktionsprozess unterliegt vier Restrik-

tionen. Ihnen ist der nachfolgende Simplex bekannt: 

Daneben kennen Sie die zugrunde liegenden Restriktionen teilweise: 

1 2

1 2

2 1

2 1

? x 2 x 32 (I)
0,75 x ? x ? (II)

? x ? 1,5 x (III)
? x 57 ? x (IV)

O T
O T
T N
T N

 

0 
8 12 18

19

3 

12 

14 

16 

1x  

2x  

(IV) 

(III) 

(II) 

(I) 



 Aufgaben
 8.7 

 

 221 

a) Vervollständigen Sie die zugrunde liegenden Restriktionen. 

b) Ermitteln Sie das optimale Produktionsprogramm, die freien Kapazitäten und den 

Erlös durch den Verkauf der Güter, wenn ihr Unternehmen mit einer Einheit von 

Produkt 1 bzw. 2 einen Erlös von 6 € bzw. 4 € erzielt. Geben Sie auch die geschätzte 

Veränderung des optimalen Werts der Zielfunktion bei einer Änderung der einzel-

nen Restriktionen an. 

c) Es besteht die Möglichkeit, Ihr Unternehmen komplett in eine andere Region um-

zusiedeln. Sie können Ihre Produkte nur in der Region verkaufen, in der Ihr Un-

ternehmen angesiedelt ist. In der neuen Region würden Sie für Produkt 1 nur noch 

3 € pro Einheit erlösen. Der Preis für Produkt 2 bliebe unverändert. Andererseits 

hätten Sie bei einer Umsiedlung jedoch die Möglichkeit, freie Kapazitäten zu ver-

mieten. Für die Vermietung je einer Einheit von Kapazität 1, 2, 3 bzw. 4 würde Ihr 

Unternehmen 1, 2, 3 bzw. 4 € erlösen. Der Vorstand möchte von Ihnen wissen, wel-

chen Gesamterlös das Unternehmen in der neuen Region erzielt, wenn auch dort 

der Verkaufserlös der hergestellten Produkte maximiert wird. Arbeiten Sie zudem 

die optimale Lösung unter Berücksichtigung des Vermietungserlöses aus und stel-

len sie Ihre Überlegungen dem Vorstand vor. 

Aufgabe 8.51: 

Nachdem Ihre Beratungsaktivitäten abgeschlossen sind, kommt Ihr Bekannter einige 

Zeit später völlig aufgelöst zu Ihnen. Er hat ein Unternehmen bei der Anschaffung von 

drei neuen Maschinen unterstützt, jedoch sind aufgrund eines eingefangenen Virus 

auf seinem Computer fast alle notwendigen Einstellungen der Maschinen verloren 

gegangen. Konkret sind die Parameter a, b und c des folgenden linearen Programms 

zu bestimmen. 

1 2z = 3x + 6x maxj  

1 2

1

2

x ax b
2x c

ax b

O T
T
T
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Er kann sich nur noch daran erinnern, dass die Kapazität b der Maschinen 1 und 3 

jeweils doppelt so groß ist wie die Kapazität c von Maschine 2. Zusätzlich hat er noch 

das Endtableau des obigen linearen Programms, dessen Einträge aber ebenfalls nur 

noch teilweise vorhanden sind. Zudem weiß er noch, dass die Lösung des linearen 

Programms eindeutig war. 

1 2 1 2 3

1

3

Basis x x s s s
? ? ? 1/ 3 ? 0 ?
x ? 0 0 ? ? 5
s ? ? 1 ? ? ?
Z ? ? 2 0,5 0 45

N
 

Bestimmen Sie die Parameter a, b und c. 

Hinweis: Überlegen sie zunächst, wie mit Hilfe des Endtableaus die Werte für 1x  und 

2x  bestimmen können (Eine Anwendung des Simplex-Algorithmus ist nicht erforder-

lich). 

Aufgabe 8.52: 

Ihr Unternehmen kann drei verschiedene Produkte herstellen. Die Fertigung der Er-

zeugnisse erfolgt an drei verschiedenen Maschinen, deren Kapazität begrenzt ist. Lei-

der ist Maschine 3 defekt, ihre Kapazität liegt derzeit bei Null Einheiten. Aus Prestige-

gründen wollen Sie diese Anlage soweit reparieren, dass ihre Kapazität mindestens 

eine Einheit beträgt. Ihnen liegen zwei Angebote zum Wiederherstellen der Maschine 

vor. Beide Anbieter können die Maschine wieder auf �A� Kapazitätseinheiten aus-

bauen. Der Anlagenbauer Helmut veranschlagt für die Wiederherstellung von � Ka-

pazitätseinheiten Kosten in Höhe von � [Tausend €]. Die Konkurrentin Brigitte setzt 

hierfür 20,1�  [Tausend €] an. 

Ihr spiritueller Berater Hagen warnt Sie davor, eine Kapazität in Höhe von n10 2P  mit 

? @0n 0;1; 2;3;A 5 ��  für Maschine 3 in Erwägung zu ziehen. Dies könne zu ungeahn-

ten Komplikationen führen. Sie vertrauen ihm völlig und befolgen den Hinweis. 

Die Praktikantin Monika hat bereits die Maschinen- und Produktionsspezifikationen 

ermittelt und für Sie aufbereitet. Die zu beachtenden Beschränkungen sind: 
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1 2 3

1 2 3

2 3

1 2 3

4x 4x 2x 20 (Maschine 1)
2x x 0,5x 10 (Maschine 2)

2x 4x (Maschine 3)
x , x , x 0

O O T
O O T

O T �
S

 

ix  steht hierbei führt die hergestellte Menge von Produkt i. Diese wird in Tonnen ge-

messen. Ihr Gewinn beim Verkauf einer Tonne von Gut 1, 2 bzw. 3 beträgt 5, 8 bzw. 6 

Tausend €. 

Wie entscheiden Sie sich bezüglich der Instandsetzung von Maschine 3, wie sieht Ihr 

optimales Produktionsprogramm aus und wie hoch ist Ihr maximaler Gewinn? Ver-

wenden Sie zur Lösung dieser Aufgabe den Simplex-Algorithmus. 
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Lösungen

Kapitel 1 

Aufgabe 1.1: 

  A B C D F 

Ordnung < =3 2G  < =2 2G  < =2 3G  < =3 3G  < =3 3G  

quadratische Matrix  x  x x 

Nullmatrix x     

Einheitsmatrix  x    

Diagonalmatrix  x    

Treppenmatrix x x x   

obere Dreiecksmatrix (x) x (x)   

untere Dreiecksmatrix (x) x   x 
 

Aufgabe 1.2: 

1 10 2
A 2 6 9

10 3 2

H I
J K5 J K
J K
L M

,  < =c 0 15 N  

B und d können nicht berechnet werden. 

Aufgabe 1.3: 

H I
J K5 J K
J K
L M

7 4 5
A 10 5 7

1 2 1
,  

3 20 16 17
C

0 8 7 8
H I
5 J K
L M

,  
0 0 0

D 16 8 12
8 4 6

H I
J K5 NJ K
J KNL M

,  F 145  

B kann nicht berechnet werden. 

C. Mayer, Lineare Algebra für Wirtschaftswissenschaftler,
DOI 10.1007/978-3-8349-6727-5, © Gabler Verlag | Springer Fachmedien Wiesbaden GmbH 2011
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Aufgabe 1.4: 

2 3
B D

28 0
NH I

P 5 J K
L M

,  
2 12

D B
7 0
NH I

P 5 J K
L M

,  T 5 7 4
A C

7 5 4
H I

P 5 J K
L M

,  T 4 6 5
B A C

16 40 12
H I

P P 5 J K
L M

,  

2 25 6
D D D

14 21
NH I

5 P 5 J KNL M
,     

5 10 15
c A

15 10 5
H I

P 5 J K
L M

,  a b 0P 5 ,  
NH I
J KP 5 NJ K
J KNL M

1 0 1
b a 1 0 1

1 0 1
,  

3 3
D B

7 4
NH I

N 5 J KNL M
,  < =Ta b 0 1 2O 5 N  

Alle anderen Ausdrücke können nicht berechnet werden. Die Ergebnisse von B DP  

und D BP  unterscheiden sich, da bei der Matrixmultiplikation das Kommutativgesetz 

keine Gültigkeit besitzt. 

Aufgabe 1.5: 

TB B 3P 5 ,  < =B A 6 10P 5 ,  < =B A C 16 52 68P P 5 ,  T T 15 25
A C

23 39
H I

P 5 J K
L M

 

Alle anderen Multiplikationen sind nicht definiert. 

Aufgabe 1.6: 

a) X kann nicht berechnet werden. 

b) 
5 10 2

X 10 2 8
9 2 1

N NH I
J K5 N NJ K
J KNL M

 

Aufgabe 1.7: 

a) Allgemein: 2 2 2X A A B A C B A B B C C A C B C5 O P O P O P O O P O P O P O  

b) 2 2 2 117
X 4 A 2 A C 2 C A C

26 63
NH I

5 P O P P O P P O 5 J KNL M
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c) 2

7 1 42
25 25 5 7X A 24 4 2 2

5 3 82

H IN N
J K
J K5 P 5 P N
J K
J KNL M

 

d) < = < = < =2 2 2F G F G F G F F G G F GO 5 O P O 5 O P O P O  

Die in der Aufgabenstellung angegebene Gleichung gilt nicht allgemein, da sich 

die beiden mittleren Terme nur dann zu 2 F GP P  zusammenfassen lassen, falls 

F G G FP 5 P  gilt. 

Aufgabe 1.8: 

x 25  

Aufgabe 1.9: 

x 375 N  

Aufgabe 1.10: 

23 22 3 11 26
X

2 14 7 16 40
N NH I

5 J KNL M
 

Aufgabe 1.11: 

7 8 9
A B 1 2 3

10 11 12

H I
J KP 5 J K
J K
L M

,  

2 3 1
5 6 4

B C
8 9 7
11 12 10

H I
J K
J KP 5
J K
J KJ K
L M
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Aufgabe 1.12: 

 < =5 Pb 10.000 100 1 a  

Aufgabe 1.13: 

5 P 5Ta x e 0,  5 P 5Tb x x 14,  < =5 P O 5T Tc x e x 14,  < =TT Td x 3 y 16 0 9 45 N P 5 N N ,  
N NH I
J KN NJ K5 P 5 J KN N
J KJ KNL M

T

5 15 0 10
1 3 0 2

F y x
3 9 0 6

2 6 0 4

 

Aufgabe 1.14: 

Bei den Umformungen b), c) und g) handelt es sich nicht um EZUs. 

Bei e) handelt es sich zwar um eine EZU, diese wurde aber auf die falsche Zeile ange-

wendet. 

Aufgabe 1.15: 

a 75 N ,  b 05  

Aufgabe 1.16: 

< =Tx 0 1 35 N  

Aufgabe 1.17: 

< =Tx 20 60 305 N  
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Aufgabe 1.18: 

< =Tx 4 10 55
 

Aufgabe 1.19: 

< =T8 5 10x 3 6 35 N  

Aufgabe 1.20: 

< =T11x 8 6 35  

Aufgabe 1.21: 

< =Tx 2 7 3 15 N  

Aufgabe 1.22: 

< =Tx 3 1 2 105 N  

Aufgabe 1.23: 

< =Tx 17 8 2 05 N N  

Aufgabe 1.24: 

< =T3 1x 2 04 25 N N  

Aufgabe 1.25: 

< = < =T T
Karl Heinz Friederg g g 105 84 1005  
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Aufgabe 1.26: 

a) < = < =P O P 5T
2002 2003m M M 1 1 1 1 7.029 

b) Über das LGS 

H I H I
J K J K
J K J KP 5J K J K
J K J KJ K J K
L M L M

Müller

SchmidtT
2003

Schneider

Schulz

m 1.000
m 1.000

M
m 1.000

m 1.000

 ergibt sich: 

H IH I J KJ K J KJ K 5 J KJ K J KJ KJ K J KJ KL M L M

Müller

Schmidt

Schneider

Schulz

10m 9
m 0

m 0
m 80

9

 

Kapitel 2 

Aufgabe 2.1: 

Die Koeffizientenmatrix A hat die Ordnung < =n nG . 

Aufgabe 2.2: 

A B

A B

180x 90x 10.000
60x 130x 20.000

N 5
N O 5

 

Aufgabe 2.3: 

< = < =TT
A B 100 100x x 3 35  

Aufgabe 2.4: 

< = < =T T
A Bx x 4 35  
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Aufgabe 2.5: 

< = < =T T
A B Cx x x 500 200 1.0005  

ASK 16.0005 ,  BSK 50.0005 ,  CSK 28.0005 ,  XSK 51.0005 ,  YSK 55.0005  

Aufgabe 2.6: 

< = < =T T
A B Cx x x 15 20 12,55 ,  DSK 1105 ,  ESK 47,55 ,  FSK 52,55  

Aufgabe 2.7: 

a) an
von 

A B C X Y 

 A - 75 80 80 35 
 B 90 - 40 25 20 
 C 30 75 - 115 120 

b) < = < =T T
A B Cx x x 30 60 405  

c) XSK 8.5005 ,  YSK 7.0505  

Aufgabe 2.8: 

a) < = < =5T T
A B Cx x x 12 10 4  

b) DSK 405 ,  ESK 505  

c) DHK 0,255  € pro Stück,  EHK 0,755  € pro Stück 
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Aufgabe 2.9: 

b) < = < =5T T
Kamera Moderator Maskex x x 45 340 40  

c) QuizshowSK 2.1855  

Aufgabe 2.10: 

< = < =T T
A B Cx x x 24,1 15,5 21,55  

ASK 261,55 ,  BSK 335,55 ,  CSK 337,55 ,  DSK 188,55 ,  ESK 411,55  

Aufgabe 2.11: 

a) < = < =
T T

Gepäckabfertigung Lotsendienst Flugzeugmaintenancex x x 20.000 35.000 40.0005  

 BryanAirSK 325.0005 ,  FCBAirSK 290.0005  

b) CargoBananaSK 230.0005 ,  CargoBananaGK 330.0005  

 5Bananenp 1,65 € pro Kiste 

Kameraleute Moderator Maskenbildner 

Quizsendung 

17 3 

3 

10 

1 1 

2 

4 a) 
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Aufgabe 2.12: 

b) < = < =
T T

Futterprod. Technik Tierpflegex x x 5 50 605  

c) Fischprod.SK 7.4005 ,  Schildkrötenprod.SK 9.5005  

d) Die internen Verrechnungspreise ändern sich nicht. 

Aufgabe 2.13: 

a) < = < =T T
A B Cx x x 15 10 205 ,  DSK 4005 ,  ESK 2005  

b) 5Dp 5  € pro Einheit 

Aufgabe 2.14: 

a) < = < =T T
A B Cx x x 12 10 45  

b) F bezieht nun 3 Einheiten von A, keine Einheit von B und 3 Einheiten von C. 

 

 

Futterprod. Technik Tierpflege 

 

Fischproduktion 
 

Schildkröten-
produktion 

1.000 100 

40 700 

20 40 

10 

80 

60 

a) 
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Aufgabe 2.15: 

a) < = < =
T T

Trainerstab Gaststätte Physiotherapeutenx x x 30 10 205  

 SkatSK 1505 ,  TennisSK 5605 ,  KegelnSK 3405  

b) Ja, die Sekundärkosten der Skatabteilung ändern sich. Zunächst führen die gestie-

genen Primärkosten der Hikos Trainerstab und Physiotherapie zu höheren Ver-

rechnungspreisen dieser Hikos. Da die Gaststätte Leistungen von diesen bezieht, 

ändert sich auch ihr Verrechnungspreis und somit auch die Sekundärkosten der 

Skatabteilung. Dies geschieht, obwohl die Skatabteilung direkt keine Leistungen 

vom Trainerstab und den Physiotherapeuten in Anspruch nimmt. 

c) Richtig sind die Aussagen iii), iv) und vii). 

Aufgabe 2.16: 

b) < = < =T T
Bier LKW Chefx x x 3,23 18,48 16,435  

c) < = < =5
TT

LKW Chef 50 50x x 3 3  

 Ostflügel _ vorherGK 425,055 ,  Ostflügel _ nachherGK 383,335  

 Prozentuale Verbesserung: 9,81% 

Bier LKW Chef 

Westflügel Ostflügel 

16 3 

3 12 

4 1 

1 

1 

4 2 

a) 

4 
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Aufgabe 2.17: 

a) 

b) < = < =
T T

Servicepersonal Mechaniker Medizinerx x x 15 30 605  

c) AchterbahnSK 4.2005 ,  RiesenradSK 3.0005  

d) Achterbahnp 35  € pro Fahrt 

e) Die internen Verrechnungspreise verändern sich nicht. 

Kapitel 3 

Aufgabe 3.1: 

< =det A 1.0405 N  

Mechaniker 

Mediziner 

Riesenrad 

120   200 

20 20 

   20

20 

  40 

Service-
personal 

Achterbahn 

    40 

   40 
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Aufgabe 3.2: 

< =det A 25 ,  < =det B 25  

Aufgabe 3.3: 

< =det A 35 N ,  < =det B 165 N  

Aufgabe 3.4: 

< =det A 6b 35 O , A ist somit singulär für b 0,55 N  

Aufgabe 3.5: 

9a 25  

Aufgabe 3.6: 

Bei a), c), d) und f) ist die dritte Spalte ein Vielfaches der ersten Spalte und somit 

< =det A 05 . 

Aufgabe 3.7: 

< = < = < = < =det A a 3 1 a a 25 O P N P O  

Aufgabe 3.8: 

1 2 9
C 16 4 0

3 6 9

NH I
J K5 N NJ K
J KNL M
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Aufgabe 3.9: 

5a 8,  b 65 ,  c 35 ,  d 25 ,  < =det A 85  

Aufgabe 3.10: 

< = < =
1 1det A

det A
N 5   < =det APllllj   < = < = < =

< =
1 det A

det A det A
det A

N P 5   mllljlaut 1.)   < =1det A A 1N P 5   

llj  < =det E 15   mllljlaut 2.)   1 15   q. e. d. 

Aufgabe 3.11: 

x 1355 N  

Aufgabe 3.12: 

12 15
A

5,5 6
H I
5 J KNL M

 

Aufgabe 3.13: 

H I
5 J K
L M

16 24
C

12 16
 

Für a 3U  ist C AR , für a 35  ist C AS , für a 3R  lässt sich keine Relation aufstellen. 

Aufgabe 3.14: 

a) < =det A 55  

b) A lässt sich durch die EZUs III IO , < =2 IN P  und 3 IIP  in B umwandeln, folglich ist 

< = < = < =det B 2 3 det A 305 N P P 5 N . 
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 A lässt sich durch die EZUs < =1 IN P , < =1 IIN P , 1 III2 P , n nII IIIV  und < =1 IVN P  sowie 

anschließende Transposition in C umwandeln, folglich ist 

< = < = < = < = < = < = < =T 51det C det C 1 1 1 1 det A2 25 5 N P N P P N P N P 5 . 

c) x 105  

Aufgabe 3.15: 

x 65  

Aufgabe 3.16: 

5x 1 

Aufgabe 3.17: 

x 405  

Aufgabe 3.18: 

H I
5 J K
L M

10 20
X

30 40
 

Aufgabe 3.19: 

x 25  

Aufgabe 3.20: 

x 125 N  
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Aufgabe 3.21: 

Für ? @k 1;0A N  existiert keine Inverse von A. 

Aufgabe 3.22: 

Die Kofaktormatrix ist singulär, wenn die zugehörige Matrix A singulär ist, und um-

gekehrt. Dies tritt ein, falls 7a 115 . 

Aufgabe 3.23: 

B ist nicht die Inverse von A. A ist nicht quadratisch und besitzt somit keine Inverse. 

Aufgabe 3.24: 

< =1A 42N 5 N ,  N H I
5 P J KN NL M

1 4 81B
2 112

,  1
7 8 3

1C 0 02
2 2 1

N

H IN N
J K
J K5
J K
J KNL M

 

Aufgabe 3.25: 

N
NH I

J K5 N NJ K
J KNL M

1
3 3 1

A 3 5 2
1 2 1

 

B besitzt keine Inverse, da hier Zeilen Vielfache voneinander sind. 

Aufgabe 3.26: 

a) m n5  b) n k p5 5  

c) n p5  und m k5  d) m p5  und n k5  

e) m n5  
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Aufgabe 3.27: 

1AN  existiert nicht,  2
2 4 2

A A 1 3 2
1 4 3

NH I
J K5 5 N NJ K
J KN NL M

 (A ist idempotent), 

1
44 24 20

1B 22 12 1
132

0 12 12

N
NH I
J K5 P NJ K
J KNL M

,  2
5 4 30

B 12 36 16
10 8 72

H I
J K5 NJ K
J KN NL M

 

Aufgabe 3.28: 

3a 45 N ,  1b 45 ,  3c 45  

Aufgabe 3.29: 

Aus 
< =

1 T1A C
det A

N 5 P  lässt sich < = < =n 1det C det A N5  herleiten, wobei hier n 45  gilt. 

< =det A 1U N   W   < = < =det C det AU  

< =det A 15 N   W   < = < =det C det A5  

< =1 det A 0N U U   W   < = < =det C det AR  

< =0 det A 1U U   W   < = < =det C det AU  

< =det A 15   W   < = < =det C det A5  

< =det A 1R   W   < = < =det C det AR  

Aufgabe 3.30: 

< = < =T 11 TA A
NN 5   

TAPlllj  < = < =T 11 T T TA A A A
NN P 5 P   laut 1.)mlllj  

< =T1A A ENP 5   mlj  TE E5   laut 2.)mlllj  E E5   q. e. d. 
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Aufgabe 3.31: 

a) Wenn 2A A5  gilt, muss auch nA A5  gelten. Da jeder Matrix eindeutig eine De-

terminante zugeordnet ist, folgt aus 2A A5 , dass < = < =2det A det A5  für alle 

< =det A A�  gilt. 

 
< = < =2det A det A5   mllllllllljlaut Multiplikationssatz   < = < =2det A det A5   < =Nlllljdet A   

< = < =< =det A det A 1 0P N 5   W   < = < =det A 0 det A 15 8 5   q. e. d. 

b) Es existieren 32 85  Diagonalmatrizen. Diese sind: 

1 0 0
0 1 0
0 0 1

H I
J K
J K
J K
L M

, 
0 0 0
0 1 0
0 0 1

H I
J K
J K
J K
L M

, 
1 0 0
0 0 0
0 0 1

H I
J K
J K
J K
L M

, 
1 0 0
0 1 0
0 0 0

H I
J K
J K
J K
L M

, 
0 0 0
0 0 0
0 0 1

H I
J K
J K
J K
L M

, 
1 0 0
0 0 0
0 0 0

H I
J K
J K
J K
L M

, 
0 0 0
0 1 0
0 0 0

H I
J K
J K
J K
L M

, 
0 0 0
0 0 0
0 0 0

H I
J K
J K
J K
L M

 

Aufgabe 3.32: 

52B B  
NPlllj

1B  (nur und immer möglich, falls < =det B 0Q )  5B E 

Falls < =det B 0Q  (im Fall idempotenter Matrizen ist dann zwingend < =det B 15 ), gilt 

somit 5B E. Ist QB E, muss gelten < =det B 05 . 

Aufgabe 3.33: 

7X 42 E5 P  

Aufgabe 3.34: 

10 11
X

7 10,5
N NH I

5 J K
L M

 

Aufgabe 3.35: 

N5 P O1X A C E 
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Aufgabe 3.36: 

< =< =N5 N P P O 1X C 2 D 3 A B  

Aufgabe 3.37: 

1 79 46
X A B

59 70
N NH I
5 P 5 J KNL M

 

Aufgabe 3.38: 

N N NH I
5 P P 5 J K

L M
1 1 1 2

X A B A
0 1

 

Aufgabe 3.39: 

H I
J K
J K5 N N
J K
J KJ K
L M

22 23
1 1X 02 2
6 2 2

 

Aufgabe 3.40: 

1X E25 P
 

Aufgabe 3.41: 

NH I
5 J KNL M

0 3
X

1 4
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Aufgabe 3.42: 

1 171X
3 96

H I
5 P J KNL M

 

Aufgabe 3.43: 

a) < = < = 1X det A 3 A 2 E N5 P P N P  

b) Nur falls < =det 3 A 2 E 0P N P Q  ist X bestimmbar. Dies ist bei ii), iii) und iv) erfüllt. 

c) i) X kann nicht bestimmt werden. ii) 
0 0

X
0 0
H I
5 J K
L M

 

 iii) 
1 31X
3 19
H I

5 N P J K
L M

 iv) X E5  

Aufgabe 3.44: 

1,25 4,5
X

1 2
N NH I

5 J K
L M 

Aufgabe 3.45: 

a) 
H I

5 P J K
L M

2 91X
8 123

,  N NH I
5 P J KNL M

1 12 91X
8 216

 

b) 
H I

5 P J K
L M

2 01X
3 63

,  N H I
5 PJ KNL M

1 6 01X
3 24

 

Aufgabe 3.46: 

31 23 3X
50 2 2

H IN
J K5 P
J KNL M
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Aufgabe 3.47: 

N
H I
5 P O O PJ K
L M

1
1X E C B D

det(B)
 

Aufgabe 3.48: 

< = < = 1X F G 2 H G E N5 O P P O N  

Aufgabe 3.49: 

X G5  

Aufgabe 3.50: 

a) 5 n1x 4 

b) 
527 8X

8 56 7 8

H IN
J K5 N P
J KNL M

 

Aufgabe 3.51: 

a) Die Gleichung kann nicht nach H aufgelöst werden. 

b) H 05  

c) 
103 48 61

H 95 42 57
10 4 7

N NH I
J K5 NJ K
J KNL M

 

d) H 57 E5 P  
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Aufgabe 3.52: 

1X E25 P  

Aufgabe 3.53: 

8 2 2
X 8 4 1 A

6 2 1

H I
J K5 N 5J K
J K
L M

 

Aufgabe 3.54: 

Die einzige reguläre, idempotente Matrix ist die Einheitsmatrix, es gilt 5A E. 

31 56 19 8
1 8 13 81X
11 8 1 848
24 48 24 0

N N NH I
J KNJ K5 P J KN N
J KJ KN NL M  

Aufgabe 3.55: 

< = < =

< = < =

N

N N

H IH IJ K5 N P P P 5J KJ KL ML M
H I H I5 N P P P P N P P P 5J K J K
L M L M

2T2 1T T T 2

1 1T T T T

M E Y Y Y Y M

E Y Y Y Y E Y Y Y Y M

 

Aufgabe 3.56: 

< =T1 3x A b 5 7 2
N5 P 5 N N
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Aufgabe 3.57: 

< =Tx 4 3 55  

Aufgabe 3.58: 

< =Tx 2 2 45 N  

Aufgabe 3.59: 

< =T1x 7 135 N  

Aufgabe 3.60: 

a) N
N NH I

J K5 P N N NJ K
J KNL M

1
1 2 8

1A 1 1 4
3

1 2 5
 

b) < =5 N N
T3x 2 2 2  

c) < =1det A 65 ,  < =2det A 65 N ,  < = 5 N3 9det A 2 

Aufgabe 3.61: 

< =5 N Tx 2 3 1  

Aufgabe 3.62: 

< =5 N Tx 3 1 3
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Aufgabe 3.63: 

< =Tx 0 4 45 N
 

Aufgabe 3.64: 

< =Tx 13 5 55 N  

Aufgabe 3.65: 

< =Tx 3 2 15 N
 

Aufgabe 3.66: 

< = < =T Ta b c 0,9 0,7 0,55
 

Aufgabe 3.67: 

< =5 N N N
Tx 1 6 2,5  

Aufgabe 3.68: 

< =5 N N
Tx 6 2 5,5  

Aufgabe 3.69: 

a)  < = 5 Ndet A 6 a, falls 5a 6 ist das LGS somit nicht eindeutig lösbar. 

b) 
NH I H I

J K J K5 P N O 5 NJ K J KN J K J K
L M L M

18 3a 3
1x 12 2a 2

6 a
0 0

  (Sofern Qa 6 ist die Lösung also unabhängig von a.) 
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Aufgabe 3.70: 

a) 21c 4d 2Q N  

b) 
7

1x 4c 9d 21
2c 8d 21

3c 5d 21

H I
J K5 P N O NJ KN O J KN OL M

 

c) 7 d 09N T T  

d) < =Tx 1 2 35 N  

e) c 55  

Aufgabe 3.71: 

a) Eine Matrix ist regulär, falls sie invertierbar ist. Sie ist quadratisch und ihre Deter-

minante ist nicht Null. 

b) Eine Matrix ist idempotent, falls alle Potenzen dieser Matrix gleich sind. Dies ist 

für die Matrix A bereits erfüllt, falls gilt 2A A5 . 

c) Eine, nur die Einheitsmatrix ist regulär und idempotent. 

Kapitel 4 

Aufgabe 4.1: 

a) RE

7 1
M 17 3

2 2

H I
J K5 J K
J K
L M

 

b) < =TRq 1.700 4.300 1.0005  
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c) � �Ek 64 12�  

Aufgabe 4.2: 

a) � �TRq = 65 60 60  

b)  K 1.100�  

c)  G 900�  

Aufgabe 4.3: 

a) � �TRq = 3.600 2.600 3.300  

b)  � ��Ek 135 65  

c) �G 5.000 

Aufgabe 4.4: 

a) 
� 	

 �� 
 �

 �
� 


RE

19 16
M 10 20

18 22
 

b) � �� T
Rq 9.700 8.000 10.900  

c) � ��Ek 103 112  

d) �G 11.500 

Aufgabe 4.5: 

a) RE

9 2 1
M 3 1 1

2 1 0

� 	

 �� 
 �

 �
� 


 

b) � �TRq 800 400 200�  
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c) Es bleiben keine Rohstoffe auf Lager. 

d) Gewinn 10.3505  

e) 12Gewinn 20%� 5 N ,  23Gewinn 20%� 5 ,  U3 1Gewinn Gewinn  

Aufgabe 4.6: 

< =Eg 1,34 0,16 0,415  

Aufgabe 4.7: 

a)  < =5
T

Rq 1.400 2.200 1.400  

b)  5Gewinn 2.800 

c)  5ZK 1.250  

d)  5
3Ep 120 

Aufgabe 4.8: 

a) VE

60 100
48 70

M
26 50
50 80

H I
J K
J K5 J K
J KJ K
L M

,  RE

420 700
580 960
420 690M
580 960
490 790

H I
J K
J K
J K5
J K
J K
J K
L M

 

b) < =TRq 7.700 10.600 7.650 10.600 8.8505 ,  < =TVq 1.100 830 510 9005  

c) 
3Rp 15  € pro Stück 
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Aufgabe 4.9: 

a) RE

36 19
36 28

M
32 21
28 32

H I
J K
J K5 J K
J KJ K
L M

 

b) < =TRq 740 920 740 9205  

c) < =Ek 10 75  

d) Materialkosten 1.0005  

Aufgabe 4.10: 

a) < =5 T
Rq 1.750 2.195 3.595 1.255  

b)  Gewinn 3.4005  

c) < =TEq 400 4005  

d) < =TRq 30 40 60 205

Materialkosten 2005

Aufgabe 4.11: 

a) Nein, der Produktionsprozess ist nicht direkt in Produktionsmatrizen umwandel-

bar, denn verschiedene Rohstoffe (bzw. Zwischenprodukte) gehen direkt in die 

Endprodukte (bzw. andere Zwischenprodukte höherer Produktionsstufen) ein und 

überspringen somit Produktionsstufen. Um die REM  zu bestimmen, können in je-

der Produktionsstufe weitere Zwischenprodukte eingeführt werden. Dies führt zu: 

  RE

24 24 24
18 18 18
0 11 22M
0 20 40
2 3 2

H I
J K
J K
J K5
J K
J K
J K
L M
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b) Ihr Rohstofflager reicht nicht aus. Sie müssen < =TRq 0 0 1 0 05  nachkaufen. 

Aufgabe 4.12: 

a) < =TVq 200 4005  

b) < =TEq 25 2505  

Aufgabe 4.13: 

a) 
H I

5 J K
L M

RE
16 8

M
7 3

 

b) < =5
T

Rq 320 135  

c) < =5
T

Eq 5 5  

Farbe Papier 
Plastik-

folie Körner Leim 

Rohtapete 2 Körnung 

Tapete 
"Witzig" 

Tapete 
"Unwitzig" 

"Unwitzig"-
Paket 

Kombi-
Paket 

"Witzig"-
Paket 

12 

   2 

4   3 

2     3       2

5 2  1  3 
4   9 

 1 

    12 

Plastikfolie* Rohtapete 1 

Plastik-
folie** 

  1 

 1  1 
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Aufgabe 4.14: 

a) RZ

6 4 8
M 2 3 4

5 6 9

H I
J K5 J K
J K
L M

,  ZE

2 0
M 12 5

0 10

H I
J K5 J K
J K
L M

 

b) < =TRq 1.200 695 1.4905 ,  < =TZq 10 105 905  

c) Gewinn 5.0005  

d) Gewinn bei Einkauf der Rohstoffe: -7.000 

 Gewinn bei Einkauf der Zwischenprodukte: 
1Z11.000 10 pN P  

 Der Kauf der Zwischenprodukte ist folglich zu präferieren, falls 
1Zp 1.800U . Der 

Gewinn des Alternativangebots ist positiv, falls 
1Zp 1.100U . 

Aufgabe 4.15: 

a) RE

18 15 24
M 13 10 22

19 18 21

H I
J K5 J K
J K
L M

 

b) < =TRq 1.890 1.535 1.8655  

c) Materialkosten 21.4905  

 Erlös 28.0005  

 Gewinn 6.5105  

d) 
2Ep 6585  € pro Stück 

Aufgabe 4.16: 

a) Materialkosten 2855  

b) < =5 T
Eq 2 7  

c) < =TEq 1 85  W  < =TZq 20 15  
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Aufgabe 4.17: 

5a 3 

Aufgabe 4.18: 

a) < =E R RE EGewinn p p M q5 N P P  

b) a 35  

Aufgabe 4.19: 

a) RZ

20 10 0 0
0 30 20 15

M
50 0 40 40
0 0 0 10

H I
J K
J K5
J K
J KJ K
L M

,  ZE

3 5 0
7 6 0

M
2 3 9
8 1 11

H I
J K
J K5
J K
J KJ K
L M

,  RE

130 160 0
370 255 345

M
550 410 800
80 10 110

H I
J K
J K5
J K
J KJ K
L M

 

b) Bratwurstp 5,305  € pro kg 

c) Sie müssen 1.000 kg Karotten nachkaufen, während 4.000 kg Körner im Lager 

verbleiben. 

d) < =TZq 140 440 8005  

Aufgabe 4.20: 

a) 
H I
J K
J K
J K
L M

RE

9 8 13
M = 4 7 5

7 9 10
 

b)  < =TRq = 345 180 295  

c)  K =3.920  €,  5E 5.000  €,  G = 1.080 € 

d)  Ta  2  
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Aufgabe 4.21: 

 a 45 ,  b 85 ,  16c 195  

Aufgabe 4.22: 

1Rq 6005  

Kapitel 5 

Aufgabe 5.1: 

< =5 Ty 30 50 160  

Aufgabe 5.2: 

Nein, da < =det E Q 0N U  ist. 

Aufgabe 5.3: 

a) 
0,3 0,4

Q
0,1 0,2
H I
5 J K
L M

 

b) < =Ty 240 405  

c) < =Tq 600 350� 5  

d) Ja, da < = 1E Q 0NN S  ist. 
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Aufgabe 5.4: 

23a : verbrauchte Menge von Gut 2 zur Herstellung einer Einheit von Gut 3 
3

2j
j 1

x
5
6 : innerbetrieblich verbrauchte Menge von Gut 2 zur Herstellung des Pro-

duktionsplans q 

1 1q yN : innerbetrieblich verbrauchte Menge von Gut 1 zur Herstellung des Pro-

duktionsplans q 
3

1j
j 1

a
5
6 : innerbetrieblich verbrauchte Menge von Gut 1 zur Herstellung je einer Ein-

heit der Güter 

11b : der Anteil der produzierten Einheiten von Gut 1, der zur Befriedigung des 

innerbetrieblichen Verbrauchs der anderen Produktionsstätten 2 und 3 und 

der externen Nachfrage nach Gut 1 zur Verfügung steht 

Aufgabe 5.5: 

a) < =Ty 10 70 205  

b) 
5 20 15

X 10 10 10
5 20 5

H I
J K5 J K
J K
L M

 

c) Ja, da alle sukzessiven Hauptminoren von < =E Q 0N R  sind. 

d) < =Tq 175 350 1755  

Aufgabe 5.6: 

a) < =Tq 2.600 2.500 3.2005  

b) Ja, da alle sukzessiven Hauptminoren von < =E Q 0N R  sind. 
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Aufgabe 5.7: 

a) 

0,1 0 0,75 0
0 0,2 0 0,5

Q
0 0 0,25 0
0 0 0,5 0,25

H I
J K
J K5
J K
J KJ K
L M

 

b) < =Ty 0 0 27 125  

c) < =Tq 50 55 60 885  

Aufgabe 5.8: 

1 1
10 6Q

1 1
10 4

H I
J K5
J K
L M

 

Aufgabe 5.9: 

a) < =5 Ty 25 5  

b) H I
5 J K
L M

0,25 0,4
Q

0,25 0,6
 

c) < =5
Tq 280 375  

Aufgabe 5.10: 

a) < =Ty 1 2 05  

b) 
100 94 305

X 50 235 183
150 94 366

H I
J K5 J K
J K
L M

 

c) < =det E Q 0,001 0N 5 R ,  < =< =33det E Q 0,38 0N 5 R ,  < =< =< =33 22
det E Q 0,8 0N 5 R  

 Jede sinnvolle externe Nachfrage lässt sich somit befriedigen. 
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d) < =Td aq 7 q 3.500 3.290 4.2705 P 5 , da d ay 7 y5 P   

Aufgabe 5.11: 

a) 
2 6 8

X 4 3 8
4 6 4

H I
J K5 J K
J K
L M

 

b) < =Ty 4 15 265  

c) Ja, da < = 1E Q 0NN S  ist. 

d) < =Tq 200 100 1005 ,  < =Ty 100 70 705  

Aufgabe 5.12: 

a) < =Tq 150 200 1505  

b) 
0 0,25 0,2

Q 0,2 0,15 0,2
0,2 0,15 0,4

H I
J K5 J K
J K
L M

 

c) < =5 Tq 163 196 170  

d) Ja, da alle sukzessiven Hauptminoren von < =E Q 0N R  sind. 

Aufgabe 5.13: 

a) Ja, da < = 1
180 155 145

E Q 160 140 130 0
190 165 155

N
H I
J KN 5 SJ K
J K
L M

 bzw. alle Hauptminoren von < =E Q 0N R  

sind. 

b) 
48.000

q 43.000
51.000

H I
J K5 J K
J K
L M

,  
24.000 8.600 15.300

X 9.600 12.900 20.400
19.200 21.500 10.200

H I
J K5 J K
J K
L M

 

c) < =Ty 50 0 3005  



Kapitel 5 L

 259

Aufgabe 5.14: 

69 43 0
X 46 0 207

23 86 345

H I
J K5 J K
J K
L M

 

Aufgabe 5.15: 

a) 13x 35 ,  22x 65 ,  31x 35 ,  11a 0,15 ,  32a 0,15 ,  33a 0,45  

b) < =Ty 2 11 15  

c) < =Tcq 2 q 20 40 205 P 5 , da c by 2 y5 P  

Aufgabe 5.16: 

a) Ja, da < = 1
0,61 0,19 0,11

1.000E Q 0,04 0,79 0,18 0
527

0,14 0,13 0,63

N
H I
J KN 5 P SJ K
J K
L M

 bzw. alle Hauptminoren von 

< =E Q 0N R  sind. 

b) 
300

q 250
150

H I
J K5 J K
J K
L M

,  
30 50 15

X 0 75 30
60 25 15

H I
J K5 J K
J K
L M

,  
205

y 145
50

H I
J K5 J K
J K
L M

 

c) Q qP  ist der innerbetriebliche Verbrauch bei Herstellung des Produktionsplans q. 

Aufgabe 5.17: 

< =Tq 750 369 2345 ,  < =
T

3 3 3 T
1j 2 j 3j

j 1 j 1 j 1
x x x 744 363 228

5 5 5

H I
J K 5
J K
L M
6 6 6  

1 1 02
2 1Q 0 3 2

1 105 3

H I
J K
J K5
J K
J KJ K
L M
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Aufgabe 5.18: 

< =Ty 29 42 1035  

Aufgabe 5.19: 

< =Tq 150 600 3005 ,  < =Ty 45 60 755  

Aufgabe 5.20: 

a) 11x 405 ,  22x 155 ,  33x 565 ,  < =Ty 120 30 1125  

b) < =Ty 30 90 1385  

c) Sind die sukzessiven Hauptminoren von < =E Q 0N R ? 

 Sind alle Komponenten der Matrix < = 1E Q 0NN S ? 

d) X Q5 . gilt, falls < =Tq 1 1 15 . 

Aufgabe 5.21: 

a) 
0,2 1,1 0,2

Q 0,2 0 0,3
0,4 0,1 0,5

H I
J K5 J K
J K
L M

,  
28 77 26

X 28 0 39
56 7 65

H I
J K5 J K
J K
L M

,  
140

q 70
130

H I
J K5 J K
J K
L M

 

b) < =Ty 9 3 25  

c) < =Tcq 2 q 280 140 2605 P 5  

d) < =Tdq 335 170 3105  

e) < =det E Q 0,05 0N 5 R ,  < =< =33det E Q 0,58 0N 5 R ,  < =< =< =33 22
det E Q 0,8 0N 5 R  

 Jede sinnvolle externe Nachfrage lässt sich somit befriedigen. 
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Aufgabe 5.22: 

a) 
3 1

10 2Q
34

25 10

H I
J K5
J K
L M

 

b) Es sind 2 Vektorpaare notwendig. 

c) < =5 Tq 80 50  

Kapitel 6 

Aufgabe 6.1: 

c 0,6a 0,2b5 O  

Aufgabe 6.2: 

a) a, b, c sind linear abhängig. 

b) a, b, c sind linear unabhängig. 

Aufgabe 6.3: 

c lässt sich für d 25  als LK der Vektoren a und b darstellen als: c 0,5a 0,25b5 O  

Aufgabe 6.4: 

d lässt sich für e 85 N  als LK der Vektoren a, b und c darstellen als: d 5a 2b 2c5 O O  
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Aufgabe 6.5: 

a, b, c und d sind linear abhängig. a lässt sich darstellen als: a 2b c 2d5 N N  

Aufgabe 6.6: 

Es gibt unendlich viele Möglichkeiten, um d als LK von a, b und c darzustellen: 

< = < =P O P N O P O P N O P 51 1 1a x b 2,5 1,5 x c 2 0,5 x d  mit A1x �  

Aufgabe 6.7: 

Der Rang einer Matrix, welche die Vektoren enthält ist zwei. Somit sind die Vektoren 

l.a., die größtmögliche l.u. Teilmenge enthält zwei Vektoren. 

Aufgabe 6.8: 

Mit 

1
a 2

2

H I
J K5 NJ K
J K
L M

,  
4

b 2
2

H I
J K5 J K
J KNL M

,  
1

c 1
2

H I
J K5 J K
J KNL M

,  
2

d 4
4

NH I
J K5 J K
J KNL M

 und 
2

e 4
4

H I
J K5 J K
J KNL M

 

sind die folgenden Mengen sämtliche Teilmengen von �, die Teilmengen besitzen, 

welche drei linear unabhängige Vektoren enthalten: ? @a,b,c ,  ? @a,c,e ,  ? @b,c,d ,  ? @b,c,e ,  

? @c,d,e ,  ? @a,b,c,d ,  ? @a,b,c,e ,  ? @a,c,d,e ,  ? @b,c,d,e ,  ? @a,b,c,d,e  

Für � können keine Mengen existieren, die Teilmengen besitzen, welche drei linear 

unabhängige Vektoren enthalten, da die Vektoren dem 2
�  entstammen. Hier sind 

mehr als zwei Vektoren immer l. a. 

Für eine Matrix A gilt stets )m,nmin()A(rg0 TT . Eine Matrix, welche Vektoren aus 

dem 2
�  enthält, hat also maximal einen Rang von 2 und somit gibt es maximal 2 l. u. 

Vektoren. 
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Aufgabe 6.9: 

a, b, c sind linear unabhängig. 

Aufgabe 6.10: 

< =rg A 35 ,  < =rg B 25 ,  < =rg C 45 ,  < =rg D 35  

Aufgabe 6.11: 

< =rg A 25 ,  < =rg B 25 ,  < =rg C 35 ,  < =rg D 35  

Aufgabe 6.12: 

< =? @T
3 3 3 31 12 3x x x , x2 25 N N A� �

 

Aufgabe 6.13: 

< =? @T
3 3 3 35 x 4 2x x 2 , x5 O O A� �

 

Aufgabe 6.14: 

< =? @T
2 2 2 2 22 x x 3 2x 4 3x , x5 N O N N O A� �

 

Aufgabe 6.15: 

< =T1 1 1 1 170 73 9024 41 71x x x x , x13 13 13 13 13 26
b c5 N N O N O Ae f
g h

� �  

Aufgabe 6.16: 

a) < =T2 5 2 2 5 5 5 2 58 4 x 3x x 8 2x 7x 7 4x x ,x ,x3 3
b c5 O O N N N N N Ae f
g h

� �  



L Lösungen

 264

b) 4x  und 5x  sind nicht gleichzeitig frei wählbar, da die beiden Variablen nur in ge-

genseitiger Abhängigkeit ausgedrückt werden können. 

Aufgabe 6.17: 

Das LGS ist nicht eindeutig lösbar. 

Aufgabe 6.18: 

< =? @T
4 4 4 4 43 3x x 2 5x x ,x5 N O A� �  

Aufgabe 6.19: 

a) : ;A3x 2;7  

b) 5a 4 

Aufgabe 6.20: 

a) < =? @T
1 2 2 1 1 2x x 1 x 4 x ,x ,x5 N N A� �  

b) : ;1x 0; 4A ,  : ;2x 0;1A ,  A	1 2x ,x  

 Spezielle Lösungen sind beispielsweise < =T0 0 1 4 , < =T1 0 1 3  und 

< =T0 1 0 4 . 

Aufgabe 6.21: 

< =? @T
3 3 30 3x x ,x5 A� �  

Es gibt keine positive Lösung. 
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Aufgabe 6.22: 

a) < =T3 4 3 4 3 4 3 43 1 4 7x x x x x x ,x ,x2 2 3 3
b c5 O N N Ae f
g h

� �  

b) Ja, 1x  und 3x  können gemeinsam frei gewählt werden. 

Aufgabe 6.23: 

Das LGS ist unlösbar. 

Aufgabe 6.24: 

a) < =? @T
3 3 3 33 x 4 2x x 0 ,x5 N N N A� �  

b) Es existieren keine nichtnegativen Lösungen. 

Aufgabe 6.25: 

a) < =? @T
4 4 4 4 43x 3 x 5x 2 x ,x5 N O O A� �  

b) Es existiert kein a, für das v eine Lösung des LGS ist. 

Aufgabe 6.26: 

a) < =? @T
3 3 3 38 5x 2 2x x 0,5 ,x5 N N O A� �  

b) Für a 25  ist v eine Lösung des LGS. 

Aufgabe 6.27: 

Keine Lösung für 1a 25  

Genau eine Lösung für ? @1a \ 2A N� : NH I5 J KN NL M

T4a 4x
1 2a 1 2a
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Aufgabe 6.28: 

Unendlich viele Lösungen für a 15 : < =? @T
3 3 3 34 2x 3 x x ,x5 N O A� �  

Genau eine Lösung für ? @a \ 1A� : < =Tx 4 3 05  

Aufgabe 6.29: 

Keine Lösung für a 15  

Unendlich viele Lösungen für a 05 : < =? @T
2 20 x 1 ,x5 N A� �  

Genau eine Lösung für ? @a \ 0;1A� : < =
< = < =

T
a a 2 3 a 2x

a 1 2 a 1 2 a 1
H IO O
5 J KJ KN N NL M

 

Aufgabe 6.30: 

Keine Lösung für a 0,45 N  

Genau eine Lösung für a 0,4Q N : 
T2,2 5,72 2,64x 0,2 0,4

a 0,4 a 0,4 a 0,4
H I
5 N N N NJ KO O OL M

 

Aufgabe 6.31: 

Unendlich viele Lösungen für a 0,55 : < =Th 3 3 3 33 3x x x ,x14 7
b c5 Ae f
g h

� �  

Genau eine Lösung für a 0,5Q : < =Tx 0 0 05  

Aufgabe 6.32: 

Keine Lösung für a 5Q N  

Unendlich viele Lösungen für a 55 N : 

< =? @T
3 4 3 4 3 4 3 43 x 2x 4 2x x x x ,x ,x5 N O N N N A� �  
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Aufgabe 6.33: 

Für c b 2a5 O  ist das LGS (eindeutig) lösbar mit: < =Tx 2a 3c 3a 4c5 N N  

Aufgabe 6.34: 

a) < =
1 falls a 0

rg A
2 falls a 0

5b
5 e Qg

 

 < =Irg A 15  

 < =II
1 falls a 0

rg A
2 falls a 0

5b
5 e Qg

 

b) In IA  sind die Zeilen und die Spalten für aA�  l. a. 

 In IIA  sind die Zeilen für aA�  l. a., die Spalten sind für a 05  l. a. und für 

? @a \ 0A�  l. u. 

 In A sind die Zeilen und die Spalten für aA�  l. a. 

c) Ein zugrunde liegendes LGS ist nie eindeutig lösbar, da < =rg A n 4U 5  stets gilt. 

d) Ein zugrunde liegendes LGS ist lösbar (und zwar mit unendlich vielen Lösungen), 

falls 3 1a 0 b 2bQ 7 5  oder 2 1 3 1a 0 b b b 2b5 7 5 7 5 . Andernfalls hat das LGS keine 

Lösung. Der Vektor b ist somit für a 35  eine Lösung, sonst nicht. 

Aufgabe 6.35: 

a) < =T T0 rg A m 

b) < =T T N0 rg A m k  

c) < = ? @T T N0 rg A min m k;n  

Aufgabe 6.36: 

a) < =? @T
1 1 1x 3x a 1 1 ,x5 N O A� �  

b) Ein LGS ist eindeutig lösbar, falls < = < =rg A rg A|b n5 5  gilt. 
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c) Nur falls Tb 05  gilt, ist ein LGS unabhängig von der Gestalt der Koeffizientenmat-

rix A immer lösbar, denn es gilt: < = < =rg A rg A|05  

d) Dies ist unmöglich, denn ein LGS ist nie unabhängig von der Gestalt der Koeffi-

zientenmatrix A immer eindeutig lösbar. Dazu müsste < = < =rg A rg A|b n5 5 , also 

insbesondere < =rg A n5  gelten, was unabhängig von b ist. 

e) i) Falls A x bP 5  eindeutig lösbar ist, gilt < = < =rg A rg A|b n5 5 . Aus 

< = < =Trg A rg A|b nT T  und < = < =Trg A rg A n5 5  ergibt sich 

< = < =T Trg A rg A |b n5 5 , weshalb auch TA x bP 5  eindeutig lösbar sein muss. 

 ii) Falls A x bP 5  unendlich viele Lösungen besitzt, gilt < = < =rg A rg A|b n5 U . Da 

< = < =Trg A rg A n5 U , folgt, dass TA x bP 5  nicht eindeutig lösbar sein kann. Eine 

Aussage über die Validität von < = < =T Trg A rg A |b5  ist dagegen nicht möglich. 
TA x bP 5  kann unendlich viele Lösungen oder keine Lösung haben. 

Aufgabe 6.37: 

a) Keine Lösung für 1a 25 N  

 Unendlich viele Lösungen für a 35 : < =T2 2 2 29 31 2 x x x ,x15 15 5 5
b c5 N N Ae f
g h

� �  

 Genau eine Lösung für ? @1a \ ;32A N� : 
T3 7a 5 3x

2a 1 2a 1 2a 1
N O NH I5 J KO O OL M

 

b) Unendlich viele Lösungen für 1a 25 N : < =? @T
3 3 3 31x x x ,x25 N A� �  

Aufgabe 6.38: 

Für a,bA� existiert eine eindeutige Lösung: < =Tx 2a 7 3b 2a 4,5b5 N  

Aufgabe 6.39: 

Keine Lösung für a b 3 0N O 5  

Genau eine Lösung für a b 3 0N O Q : 
T7a b 12 8a 5b 6 3x

3a 3b 9 3a 3b 9 a b 3
N O N N OH I5 J KN O N O N OL M
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Aufgabe 6.40: 

Keine Lösung für a b 5 0O O 5  und a 4Q  

Unendlich viele Lösungen für a 45  und b 95 N : 

< =T3 3 3 351 1 x x x ,x2 2 2
b c5 O N Ae f
g h

� �  

Genau eine Lösung für a b 5 0O O Q : 
< = < = Tb 1 4 a9 b 4 ax

2a 2b 10 4a 4b 20 a b 5
H IN P NO N
5 J K

O O O O O OL M
 

Aufgabe 6.41: 

a) 1a 25 N  

b) aA�  

c) Keine Lösung für 1a 25 N  und b 0Q  

 Unendlich viele Lösungen für 1a 25 N  und b 05 : 

  < =T2 4 2 4 4 2 41 7 2 22x x x x x ,x ,x3 3 3 3
b c5 N N O Ae f
g h

� �  

 Unendlich viele Lösungen für 1a 2Q N  und bA�: 

  

< =

< =

2

2

2
2

2

7a b 3,5 4a 4 x
3 a 0,5 3

x
,x2a 2b 1 8a 4 x

3 a 0,5 3
b 4x

a 0,5

b cO O OH IN Od dJ KOd dJ K
d dJ K
d dJ Kd d5 AO O N Oe fJ KOd dJ KOd dJ K
d dJ KOd dJ KJ KOd dL Mg h

� �  

Aufgabe 6.42: 

Keine Lösung für b 05  und a 9Q  sowie für b 35 N  und a 6Q  

Unendlich viele Lösungen für b 05  und a 95 : 
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< =? @T
1 1x 2 1 ,x5 A� �  

Unendlich viele Lösungen für b 35 N  und a 65 : 

< =? @T
3 3 3 31 1 x 1 x x ,x2 25 N O O A� �  

Genau eine Lösung für ? @b \ 3;0A N�  und aA� : 
< =

T
3a 3b 27 a b 3 a 6x
2b b 3 b 3 b 3

H IN O O O N N
5 J KJ KO O OL M

 

Aufgabe 6.43: 

Keine Lösung für aA�  und ? @3 1b \ 0; a2 3A N�  

Unendlich viele Lösungen für aA�  und b 05 : 

 < = < =< =T3 3 3 31 1 23a 1 ax a 2 2ax x ,x5 2 5
b c5 N O O O N Ae f
g h

� �  

Unendlich viele Lösungen für aA�  und
 

3 1b a2 35 N : 

 < =T3 3 3 33 5 51 1a ax a 2ax x ,x8 12 2 4 6
b c5 N O O N Ae f
g h

� �  

Hinweis: Für 2a 95  ist b 05  und die beiden Lösungsmengen sind identisch. 

Aufgabe 6.44: 

a) < = 5 O2det A a 2 

b) Da < = 5 O R2det A a 2 0 für alle Aa �  gilt, ist stets < = 5 5rg A n 3, und damit weiter 

< = 5 5rg A b n 3, da A quadratisch ist. 

c) 

O N PH I
J KOJ K
N P O P P O PJ K5 J KOJ K

N P O PJ K
J KOL M

2

2

2

2 a 3 b
a 2

2 a 2 a b 2 bx
a 2

2 2 b a b
a 2

 

 Das LGS ist für alle Aa,b �  lösbar. 
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d) H I5 NJ K
L M

T2 2x 1
3 3

 

Aufgabe 6.45: 

a) < =rg A  gibt die Anzahl der l.u. Zeilen und Spalten der Matrix A an. Gilt für eine 

Matrix GA m nA �  < = 5rg A m, so sind die Zeilen stets l.u. (Nur falls zudem 5n m  

gilt, die Matrix A also quadratisch ist, sind auch die Spalten l.u.) 

b) Falls < = < =5 5rg A rg A b n  gilt, ist das LGS eindeutig lösbar. 

 Falls < = < =5 Urg A rg A b n  gilt, besitzt das LGS unendlich viele Lösungen. 

 Falls < = < =Urg A rg A b  gilt, ist das LGS unlösbar. 

c) i) Das LGS kann eindeutig lösbar sein oder unendlich viele Lösungen besitzen, da 

zwangsläufig auch < = 5rg A b m  gilt. 

 ii) Das LGS kann eindeutig lösbar sein oder unlösbar sein, aber nie unendlich 

viele Lösungen besitzen. Zwar ist weiterhin die Relation zwischen < =rg A  und 

< =rg A b  unbekannt, jedoch gilt < = 5rg A n, was unendlich viele Lösungen aus-

schließt. 

d) Falls 5b 0  gilt, ist das LGS immer lösbar, da dann stets < = < =5rg A rg A b  gilt. 

 i) Das LGS kann eindeutig lösbar sein oder unendlich viele Lösungen besitzen, da 

die Relationen zwischen < = < =5rg A rg A b  und n unbekannt ist. 

 ii) Das LGS ist eindeutig lösbar, da sich dann < = < =5 5rg A rg A b n  ergibt. 

e) Falls A die < =Gm n -Nullmatrix ist, gilt < = 5rg A 0. Die Anzahl der Zeilen der Koeffi-

zientenmatrix bzw. die Anzahl der Variablen eines LGS muss stets größer Null 

sein, also gilt Rn 0, woraus folgt: < = Urg A n. Da die Relation zwischen < =rg A  und 

< =rg A b  allerdings unbekannt ist, kann das LGS unendlich viele Lösungen besit-

zen oder unlösbar sein. 

 Die Tatsache, dass 5m n gilt, ändert die Antwort nicht. 
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f) i) Sei 
H I
J K5 J K
J K
L M

a
B b

c
, so muss, damit die 2. Zeile eine Linearkombination der ande-

ren beiden Zeilen ist, die Gleichung 1 2x a x c bP O P 5  lösbar sein. Das heißt, 

a c x b
H I
J K P 5J K
J K
L M

 muss lösbar sein. Hier ist 
H I H I
J K J K5 5J K J K
J K J K
L M L M

rg a c rg a c b 2, somit ist die 

2. Zeile ist eine Linearkombination der anderen, wobei P O P 5157 a c b26 26 . 

 ii) Sei B d e f
H I
J K5 J K
J K
L M

, so muss, damit die 2. Spalte eine Linearkombination der 

anderen beiden Spalten ist, die Gleichung 1 2x d x f eP O P 5  lösbar sein. Das heißt, 

d f x e
H I
J K P 5J K
J K
L M

 muss lösbar sein. Hier ist jedoch 
H I H I
J K J KUJ K J K
J K J K
L M L M

rg a c rg a c b  und die 

2. Spalte ist somit keine Linearkombination der beiden anderen. 

Kapitel 7 

Aufgabe 7.1: 

a) < =Tz 6 16 2 0 6 645  

b) < =Tz 4 16 2 1 6 645  

c) Zuweisung ist nicht eindeutig für: 3x  bzw. 5x  ? @\ ungerade natürliche ZahlenA� , 

das heißt, falls ? @3 5x x 1; 3; 5;7;9;11;8 B � . 

 Zuweisung ist widersprüchlich, falls zudem 2
3 32x yQ  bzw. 2

5 52x yQ  

d) Die Abgeschlossenheit bzgl. einer Vektoraddition von x und y ist erfüllt: 

 < =T 3a b 3 9 4i 5 N A�  
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 Das Kommutativgesetz bzgl. einer Vektoraddition ist nicht erfüllt: 

 < = < =T Ta b 3 9 4 b a 3 25 16i 5 N Q i 5  

 Das Assoziativgesetz bzgl. einer Vektoraddition ist nicht erfüllt: 

 < = < = < = < =T Ta b c 6 16 8 a b c 6 256 4i i 5 N Q i i 5 N  

 Es existiert kein neutrales Element der Vektoraddition: 

 Gleichgültig, ob ein Element von links oder von rechts addiert wird, der Ergebnis-

vektor besteht an der zweiten Stelle nur aus dem Quadrat des zweiten Elementes 

des rechten Vektors und an der dritten Stelle nur aus dem doppelten des dritten 

Elementes des linken Vektors. Somit kann kein neutrales Element der Vektoraddi-

tion existieren. 

 Es existiert kein inverses Element der Vektoraddition: 

Begründung wie oben. 

 � ist somit kein Vektorraum, da mehrere Vektorraumaxiome nicht erfüllt sind. 

Aufgabe 7.2: 

a) a, b und c bilden eine Basis des 3
� , da 1 2 3d x a x b x c5 P O P O P  eindeutig lösbar ist 

mit: < =T1 2 3 1 2 3 1 2 3x 2d d d 4d d 2d 3d d d5 N O O N N N N  

b) e 7a 19b 14c5 N O O  

Aufgabe 7.3: 

a) a, b und c bilden keine Basis des 3
� , da sie linear abhängig sind. 

b) d ist keine LK der Vektoren a, b und c und liegt somit nicht im Unterraum 
. 
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Aufgabe 7.4: 

: ;< =dim 25�  mit ? @1 2 3v ,v ,v5� ,  eine Basis von : ;
1 0
2 , 4
0 3

b cH I H I
d dJ K J K5 Ne fJ K J K
d dJ K J K
L M L Mg h

�  

Aufgabe 7.5: 

Vier Basen des 3
�  sind beispielsweise: 

1 0 0
0 , 1 , 0
0 0 1

b cH I H I H I
d dJ K J K J K
e fJ K J K J K
d dJ K J K J K
L M L M L Mg h

,  
1 2 2
3 , 4 , 0
4 0 2

b cNH I H I H I
d dJ K J K J KNe fJ K J K J K
d dJ K J K J K
L M L M L Mg h

,  
2 0 0
0 , 1 , 0
0 0 1

b cH I H I H I
d dJ K J K J K
e fJ K J K J K
d dJ K J K J K
L M L M L Mg h

,  
1 1 3
0 , 1 , 3
4 0 1

b cH I H I H I
d dJ K J K J K
e fJ K J K J K
d dJ K J K J K
L M L M L Mg h

 

Aufgabe 7.6: 

a) Nein, da 4o� �  ist. 

b) : ;< =dim 35�  

c) Eine Basis von : ;
1 0 0
0 , 1 , 0
0 0 1

b cH I H I H I
d dJ K J K J K5 e fJ K J K J K
d dJ K J K J K
L M L M L Mg h

�  

d) Ja, da : ; 35� �  ist. 

Aufgabe 7.7: 

a) dB
 

b) < =dim 35
  

c) Nein, da dB
 ist.. 
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Aufgabe 7.8: 

: ;< =dim 35� ,  eine Basis von : ;

b cH I H I H I
d dJ K J K J KN Nd dJ K J K J K5 e fJ K J K J KNd dJ K J K J KJ K J K J Kd dN N NL M L M L Mg h

1 0 0
6 3 0

, ,
9 5 5
2 8 55

�  

Aufgabe 7.9: 

a) : ;< =dim 35� ,  eine Basis von : ;

1 0 0
2 2 0

, ,
0 1 7
1 3 13

b cH I H I H I
d dJ K J K J KNd dJ K J K J K5 e fJ K J K J KNd dJ K J K J KJ K J K J Kd dNL M L M L Mg h

�  

b) � erzeugt weder den 3
�  noch den 4

� , sondern einen dreidimensionalen Unter-

raum des 4
� . 

Aufgabe 7.10: 

a) Eine Basis von : ;
2 0

,
3 7

b cH I H Id d5 e fJ K J K
d dL M L Mg h

� , : ;
1 0 0
2 , 10 , 0
1 3 1

b cH I H I H I
d dJ K J K J K5 e fJ K J K J K
d dJ K J K J K
L M L M L Mg h

� ,  : ;

1 0 0
2 4 0

, ,
8 25 32

2 2 1

b cH I H I H I
d dJ K J K J KNd dJ K J K J K5 e fJ K J K J KNd dJ K J K J KJ K J K J Kd dN NL M L M L Mg h

�  

b) Die Vektoren der Menge � bilden einen zweidimensionalen Unterraum des 2
� . 

 Die Vektoren der Menge � bilden einen dreidimensionalen Unterraum des 3
� . 

 Die Vektoren der Menge � bilden einen dreidimensionalen Unterraum des 4
� . 

Aufgabe 7.11: 

a) Nein, da die Vektoren l. a. sind. 

b) : ;< =dim 25�  
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c) Eine Basis von : ;

0 3
2 23 ,
1 0

2 1
3

b cH I NH Id dJ K J KNd dJ Kd dJ K5 J Ke fJ KJ Kd dJ KJ KJ Kd dJ K L Md dL Mg h

�  

d) Falls a 65 N  gilt : ;vA � . 

Aufgabe 7.12: 

a) : ;< =dim 25�  

b) Eine Basis von : ;
2 0
0 , 1
2 1

b cH I H I
d dJ K J K5 e fJ K J K
d dJ K J K
L M L Mg h

�  

c) Nur � ist eine Basis eines zweidimensionalen Unterraums des 3
� . 

Aufgabe 7.13: 

a) Benötigt wird eine Menge mit 3 l. u. Vektoren, welche je 4 Elemente besitzen, z. B.: 

1 0 0
0 1 0

, ,
0 0 1
0 0 0

b cH I H I H I
d dJ K J K J K
d dJ K J K J K5 e fJ K J K J Kd dJ K J K J KJ K J K J Kd dL M L M L Mg h

�  

b) Im 3
�  kann sich ein Unterraum maximal in 3 Dimensionen ausdehnen. Es gibt 

somit keinen vierdimensionalen Unterraum des 3
� . Man bräuchte eine Menge mit 

4 l. u. Vektoren, welche je 3 Elemente besitzen. Dies ist nicht möglich. 

Aufgabe 7.14: 

a) : ;< =dim 35�  
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b) Eine Basis von : ;

4 0 0
1 3 0

5 4 1, ,
9 5 2
1 3 0

b cH I H I H I
d dJ K J K J KNd dJ K J K J Kd dJ K J K J KN5 e fJ K J K J Kd dNJ K J K J Kd dJ K J K J KNd dL M L M L Mg h

�  

c) � kann höchstens fünf l. u. Vektoren enthalten. 

d) � muss zwei linear unabhängige Vektoren enthalten, ferner muss gelten 

: ;< =dim 5E 5� � . 

Aufgabe 7.15: 

a) neu

1 2 1 0 0
3 , 1 , 0 , 1 , 0
7 2 0 0 1

b cH I H I H I H I H I
d dJ K J K J K J K J K5 Ne fJ K J K J K J K J K
d dJ K J K J K J K J KNL M L M L M L M L Mg h

�  

b) neu

1 7 2 1 0 0 0
2 4 1 0 1 0 0

, , , , , ,
4 6 3 0 0 1 0

3 1 4 0 0 0 1

b cNH I H I H I H I H I H I H I
d dJ K J K J K J K J K J K J K
d dJ K J K J K J K J K J K J K5 e fJ K J K J K J K J K J K J KN N Nd dJ K J K J K J K J K J K J KJ K J K J K J K J K J K J Kd dL M L M L M L M L M L M L Mg h

�  

c) Eine Basis von : ;

1 0 0
1 4 0

, ,
3 12 0
2 12 36

b cNH I H I H I
d dJ K J K J K
d dJ K J K J K5 e fJ K J K J KNd dJ K J K J KJ K J K J Kd dN NL M L M L Mg h

�  

d) : ;< =dim 35�  

e) : ;< = ? @dim 5;6;7A�  

f) : ;< = ? @dim 0;1;2;3A�  

Aufgabe 7.16: 

a) Falls a 15  und b 35  erzeugt � einen zweidimensionalen Unterraum des 4
� . 

b) � kann weder den 3
�  noch den 4

�  erzeugen. 
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c) : ;< =dim 35� ,  eine Basis von : ;

1 0 0
2 3 0

, ,
0 0 0
3 5 4

b cH I H I H I
d dJ K J K J KN Nd dJ K J K J K5 e fJ K J K J Kd dJ K J K J KJ K J K J Kd dNL M L M L Mg h

�  

Aufgabe 7.17: 

a) : ;< =dim 25�   

b) Eine Basis von : ;

2 0
1 1

,
1 1

3 2

b cH I H I
d dJ K J K
d dJ K J K5 e fJ K J KNd dJ K J KJ K J Kd dL M L Mg h

�  

c) ? @x \ 5A N�  

d) Da 4, D� � �  sind, lässt sich niemals ein Unterraum des 3
�  erzeugen. 

Aufgabe 7.18: 

a) Die Vektoren a, b, c, d sind damit für alle Au �  linear abhängig. 

b) : ;< = < =
5 Nb

5 5 e Q Ng

2 falls u 1
dim rg A

3 falls u 1
� , 

 Falls 5 Nu 1, dann ist unter anderem 

b cH I H I
d dJ K J K
d dJ K J K5 e fJ K J Kd dJ K J KJ K J Kd dL M L Mg h

1 0
1 8

,
1 10
3 10

�  eine Basis von: ;� . 

 Falls Q Nu 1, dann ist unter anderem 

b cH I H I H I
d dJ K J K J K
d dJ K J K J K5 e fJ K J K J Kd dJ K J K J KJ K J K J Kd dL M L M L Mg h

1 0 0
1 8 0

, ,
1 10 0
3 10 1

�  eine Basis von: ;� . 

c) Für 5 Nu 1 ist < = < =5 R 5rg B 3 rg A 2 und der Vektor e liegt nicht in: ;� . 

 Für Q Nu 1 ist < = < =5 5rg B rg A 3 und der Vektor e liegt in : ;� . 
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Aufgabe 7.19: 

a) Eine Basis von : ;

2 0
1 3

,
2 0
1 1

b cH I H I
d dJ K J KNd dJ K J K5 e fJ K J Kd dJ K J KJ K J Kd dNL M L Mg h

� ,  : ;< =dim 25�  

b) Eine Menge 4D� �  kann niemals den 2
�  oder den 3

�  erzeugen. Da 

: ;< = < =4dim 2 dim 45 U 5� �  ist, kann � nicht den kompletten 4
�  erzeugen. 

c) E E� � � erzeugt den 4
�  nicht, da : ;< =dim 3E E 5� � �  ist. 

d) Es existieren 4vA�  mit v 0Q , welche sowohl von � als auch von � erzeugt wer-

den, da : ; : ;< = : ;< = : ;< = : ;< =dim dim dim dim 2 2 3 1 0F 5 O N E 5 O N 5 R� � � � � �  ist. 

Aufgabe 7.20: 

a) : ;< =dim 35� ,  eine Basis von : ;
1 0 0
0 , 1 , 0
0 0 1

b cH I H I H I
d dJ K J K J K5 e fJ K J K J K
d dJ K J K J K
L M L M L Mg h

�  

b) � ist EZS des 3
� . 

c) Ja, da � den gesamten 3
�  erzeugt.  

Aufgabe 7.21: 

a) : ;< =dim 35� , eine Basis von : ;

001
012

, , 1524
2043 3 3

b cH IH IH Id dJ KJ KJ KNd dJ KJ KJ K5 e fJ KJ K NJ KNd dJ KJ KJ KJ Kd dJ K J KN NL M L M L Mg h

�  

b) Es gilt : ; : ;D� � , aber nicht : ; : ;5� � . 
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Aufgabe 7.22: 

a) Der 3
�  kann niemals Teilmenge eines Unterraums des 4

�  sein. 

b) Nein, da : ;< = < =4dim 3 4 dim5 U 5� �  ist. 

c) Ja, da : ;< = : ;< =dim 3 dim5 5 E� � �  ist. 

d) Nein, da : ;< = : ;< =dim 3 4 dim5 U 5 E� � �  ist. 

Aufgabe 7.23: 

a) < =? @T
h 3 3 3 33x 2x x 0 ,x5 N A� �  

b) < =hdim 15�  

c) Eine Basis von h

-3
2
1
0

b cH I
d dJ K
d dJ K5 e fJ Kd dJ KJ Kd dL Mg h

�  

Aufgabe 7.24: 

a) < =? @T
h 3 4 3 4 3 4 3 4x 2x 2x 3x x x ,x ,x5 O N N A� �  

b) < =hdim 25� ,  eine Basis von h

1 2
2 3

,
1 0
0 1

b cH I H I
d dJ K J KN Nd dJ K J K5 e fJ K J Kd dJ K J KJ K J Kd dL M L Mg h

�  

c) hxB�  

Aufgabe 7.25: 

a) < =? @T
h 1 1 3 3 1 3 1 3x x 2x x 3x 7x ,x ,x5 N O N O A� �  
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b) Eine Basis von h

1 0
1 2

,
0 1
3 7

b cH I H I
d dJ K J KNd dJ K J K5 e fJ K J Kd dJ K J KJ K J Kd dNL M L Mg h

� ,  < =hdim 25�  

Aufgabe 7.26: 

a) < =Th 3 5 3 5 3 3 5 5 3 519 3 522x x , x 2x , x , x x , x ,x ,x7 7 2 2
b c5 N O N O N Ae f
g h

� �  

b) < =hdim 25� ,  eine Basis von h

19 17
222

7
0,1
53 22
10

b cH IN H Id dJ K J K
d dJ KN J K
d dJ K J K5 e fJ K J Kd dJ K JN Kd dJ K J KJ Kd dJ K L ML Mg h

�  

c) Die Lösungsmenge bildet einen zweidimensionalen Unterraum des 5
�  

Aufgabe 7.27: 

a) < =Th 4 5 4 5 4 5 4 5 4 53 1x 2x 2x 4x 3x x x x ,x ,x2 2
b c5 N N N N N Ae f
g h

� �  

b) < =hdim 25� ,  eine Basis von h

3 2
2

42
1,3 2
01
10

b cNH I H IN
d dJ K J KNNd dJ K J K
d dJ K J K5 Ne fJ K J Kd dJ K J Kd dJ K J KJ KJ Kd dL ML Mg h

�  

c) Ja, da 5
h D� � , h Q >�  und h�  abgeschlossen bezüglich der Vektoraddition und 

der Multiplikation mit einem Skalar ist und die Axiome der Vektorraumtheorie  er-

füllt. 

Aufgabe 7.28: 

a) < =? @T
h 4 5 3 4 3 4 5 3 4 52x 2x 3x x x x x ,x ,x ,x5 N N N O A� �  
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b) Eine Basis von h

0 2 2
3 1 0

1 0 0, ,
0 1 0
0 0 1

b cN NH I H I H I
d dJ K J K J KNd dJ K J K J Kd dJ K J K J K5 e fJ K J K J Kd dJ K J K J Kd dJ K J K J Kd dL M L M L Mg h

� , < =hdim 35�  

c) ? @a \ 2A�  

d) Mit Vektoren des 5
�  lässt sich niemals ein Unterraum des 4

�  erzeugen. 

Aufgabe 7.29: 

a) < =Th 2 2 2 23 1x x x 0 ,x2 2
b c5 N Ae f
g h

� �  

b) Eine Basis von h

3
2

1
1

2
0

b cH IN
d dJ K
d dJ K5 e fJ K
d dJ K
d dJ K
L Mg h

� , < =hdim 15�  

c) Nein, da : ;hD� �  und : ;< = < =4dim 3 dim 4X Y5 Q 5\ ]� �  ist. 

Aufgabe 7.30: 

a) Beispielsweise: 

  
1 2 3 4 5

2 3 4 5

3 4 5

x 6x x x 4x 0
5x x x 2x 0

3x 2x x 0

N O O N 5
N O O N 5

N N 5
 

b) < =Th 5 5 5 5 5 55 31 17 1 2 1 4x x x x x ,x11 11 11 11 11 11 11 11
b c5 O N O N Ae f
g h

� �  

c) Nein, da h�  nicht abgeschlossen bezüglich der Multiplikation mit einem Skalar 

und nicht abgeschlossen bezüglich der Vektoraddition ist. 

Aufgabe 7.31: 

a) Die Vektoren in � sind l. a., somit kann � keine Basis eines Unterraums sein. 
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b) � ist ein Erzeugendensystem von h� . 

Aufgabe 7.32: 

a) Keine Lösung für a 05  und b 1Q  

 Unendlich viele Lösungen für a 05  und b 15 : < =? @T
2 20 x ,x5 A� �  

 Genau eine Lösung für a 0Q : 
Ta b 1 abx ab

2a
O N OH I5 NJ K

L M
 

b) < =Tx 1 15  

c) Da 2D� �  ist, ist � kein Unterraum des 1
� . 

d) Falls entweder a 0 b 15 7 5  oder falls a 1 b 05 7 5  ist. 

Aufgabe 7.33: 

a) LGS 1: < = < =5 5rg A rg A 0 n, das LGS ist eindeutig lösbar mit < =? @T
h,1 0 0 05� . 

 LGS 2: < = < =5 Urg A rg A 0 n, das LGS hat unendlich viele Lösungen: 

 < =? @T
h,2 2 2 22x x 0 ,x5 N A� �  

b) Beide LGS sind homogen, die Lösungen der LGS sind somit Unterräume. 

 LGS 1: < =h,1dim 05� , einzige Basis: 
0
0
0

b cH I
d dJ K
e fJ K
d dJ K
L Mg h

 

 LGS 2: < =h,2dim 15� , eine Basis: 
b cNH I
d dJ K
e fJ K
d dJ K
L Mg h

2
1
0

 

c) i) Gesucht sind eine Basis und die Dimension von h,1 h,25 E
 � � , falls 
  ein 

Unterraum ist. Da h,1 h,2C� � , folgt h,25
 � . h,2�  ist ein Unterraum des 3
�  

mit bekannter Basis und Dimension (siehe Teilaufgabe b)). 



L Lösungen

 284

  (Bei Interpretation der Fragestellung als "ausschließliches oder" entspricht der 

gesuchte Raum dem oben angegebenen Raum, jedoch ohne den Nullvektor. Da 

dann unter anderem die Abgeschlossenheitsanforderungen nicht erfüllt sind, 

handelt es sich nicht um einen Unterraum. Somit lässt sich keine Basis und kei-

ne Dimension angeben.) 

 ii) Gesucht sind nun eine Basis und die Dimension von h,1 h,25 F
 � � , falls 
  ein 

Unterraum ist. Da h,1 h,2C� � , folgt h,15
 � . h,1�  ist ein Unterraum des 3
�  mit 

bekannter Basis und Dimension (siehe Teilaufgabe b)). 

Kapitel 8 

Aufgabe 8.1: 

a) EV: 1x  :5  Anzahl der hergestellten Güter 1G  

 2x  :5  Anzahl der hergestellten Güter 2G  

 3x  :5  Anzahl der hergestellten Güter 3G  

 ZF: 5 O O j1 2 3z 38x 46x 42x max 

 NB: 
1 2 3

1 2 3

1 2

40x 80x 60x 16.000
6x 7x 7x 2.200

x 3x

O O T
O O T

S
 

 NNB: 1 2 3x ,x ,x 0S  

b) ZF: 5 O O j1 2 3z 40x 80x 60x min 

 NB: 
1 2 3

1 2 3

1 2

38x 46x 42x 9.000
6x 7x 7x 2.200

x 3x

O O S
O O T

S
 

 EV und NNB ändern sich nicht. 
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Aufgabe 8.2: 

a) EV: 1x  :5  Produktionsmenge Gut 1 

 2x  := Produktionsmenge Gut 2 

 3x  := Produktionsmenge Gut 3 

 ZF: 5 O O j1 2 3z 45x 30x 25x max 

 NB: 

1 2 3
11 1 2 32

2

2 1

2 3

40x 50x 30x 1.000
x (x x x )
x 10
x 2x
x 2x

O O T
T P O O
T
S
S

 

 NNB: S1 2 3x , x , x 0 

b)  Neue Nebenbedingung: S3x 30. 

 Das LP hat keine zulässige Lösung mehr. 

Aufgabe 8.3: 

a) EV: m :5  Lernzeit für Mathematik in Tagen 

 w :5  Lernzeit für Wirtschaftsinformatik in Tagen  

 t :5  Lernzeit für Technik des betrieblichen Rechnungswesens in Tagen 

 p :5  Lernzeit für Produktionswirtschaft in Tagen 

 ZF: 5 jz p max 

 NB: 

m w t p 18
m w t 2p

m t w
w 4
m 3

O O O T
O O T

T T
S
S

 

 NNB: m,w,t,p 0S  

b) m 35 , w 45 , t 35 , p 85  mit zugehörigem optz 85  



L Lösungen

 286

Aufgabe 8.4: 

EV: f :5  Anzahl der Frauen, welche die Party betreten dürfen 

 m :5  Anzahl der Männer, welche die Party betreten dürfen 

ZF: 5 O jz 14f 24m max 

NB: 

f 800
f 650

m 1.000
f m 1.400

13m f7

T
T
T

O T

T

 

NNB: f ,m 0S  

Aufgabe 8.5: 

EV: siehe Aufgabenstellung 

ZF: 5 O O O O O O O jz 0,19b 0,4c 0,3e 0,75k 0,06l 0,08m 1,3s 0,2t min  

NB: 

4 l 6
20,4l w m l3

4b l
3 t 5

e 0,5
c e
s 4e
k 2,5

T T

T O T

T
T T

S
S
S
S

 

NNB: b,c,e,k,l,m,s,t,w 0S  
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Aufgabe 8.6: 

EV: 1x  :5  Anzahl der gehaltenen Rinder 

 2x  :5  Anzahl der gehaltenen Schafe 

 3x  :5  Anzahl der gehaltenen Schweine 

ZF: < = < = < =5 N O N O N 5 O O j1 2 3 1 2 3z 1.800 150 x 180 20 x 250 80 x 1.650x 160x 170x max 

NB: 

1 2 3

1 2 3

1 2 3

1

30x 2x 8x 1.000
10x 15x 5x 16 60
5x 1,5x 2x 200

x 20

O O T
O O T P
O O T

T

 

NNB: 1 2 3x ,x ,x 0S  

Aufgabe 8.7: 

EV: k :5  Karottensaft-Anteil am Getränk 

 t :5  Traubensaft-Anteil am Getränk 

 h :5  Honig-Anteil am Getränk 

 p :5  Pfefferminzlikör-Anteil am Getränk 

ZF: 5 O O O jz 0,3k 0,15t 3h 2p min 

NB: 

0,05 h 0,1
t 2k
k h

0,01 p 0,05
k t h p 1

T T
S
R

T T
O O O 5

 

NNB: k,t,h,p 0S  

 

 

 



 L Lösungen 

 288 

Aufgabe 8.8: 

EV: z :5  Anzahl der Werbeseiten in Zeitungen 

 r :5  Anzahl der Werbespots im Radio [zu je 30 Sekunden] 

 f :5  Anzahl der Werbespots im Fernsehen [zu je 30 Sekunden] 

 l :5  Werbung auf Litfaßsäulen [in Litfaßsäulenwochen] 

ZF: 5 O O O jz 20.000z 2.000r 10.000f 600l max 

NB: 

5.000z 800r 6.000f 300l 250.000
z 10
l 200
f r

0,5f 2z

O O O T
S
T
S
S

 

NNB: z,r,f ,l 0S  

Aufgabe 8.9: 

EV: Ölx  :5  Anteil der Ölkontrakte im Portfolio 

 Kux  :5  Anteil der Kupferkontrakte im Portfolio 

 Nix  :5  Anteil der Nickelkontrakte im Portfolio 

ZF: 5 O O jKu NiÖlz 0,04x 0,05x 0,06x max 

NB: 

Ku Ni Öl

Ku

Ni Ku

Ku Ni

Ku NiÖl

Ku NiÖl

x x x
x 0,1

x 0,05 x
x 0,05 x

x , x , x 0,6
x x x 1

O U
S

O S
O S

T
O O 5

 

NNB: Ku NiÖlx ,x ,x 0S  

 



Kapitel 8 L

 289

Aufgabe 8.10: 

EV: Ax  5: Menge Sorte A in kg 

 Bx  5: Menge Sorte A in kg 

ZF: 5 O jA Bz 5x 8x min 

NB: 
< =
< =

A B

A B

A B

A A B

B A B

2x x 8
3x 4x 14
x 5x 6

2x x x3
2x x x3

O S
O S
O S

T P O

T P O

 

NNB: SA Bx , x 0  

Aufgabe 8.11: 

EV: h :5  Schlaf pro Nacht zu Hause in Stunden 

 v :5  Anzahl der besuchten Vorlesungsblöcke pro Woche 

 t :5  Anzahl der besuchten Tutoriumsblöcke pro Woche 

 m :5  Bei Maike verbrachte Zeit pro Woche in Stunden 

ZF: 5 O P P O P P O P3 3 3 31 1 1 1z 7h v t m4 2 2 4 2 2 3 3  

  5 O O O j3 27 17h v t m max16 16 9  

NB: 

< =

5 h 14
5 v 12

t 1
v t

2v 2t 20
m 30

3 3v t m2 2
3 37h v t m 24 3 7 192 2

T T
T T

S
S

O S
T

O U

O O O T N P N

 

NNB: h,v,t,m 0S  
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Aufgabe 8.12: 

EV: 1x  := Produktionsmenge 1P  auf Maschine 1 

 2x  := Produktionsmenge 1P  auf Maschine 2 

 3x  := Produktionsmenge 2P  

 4x  := Produktionsmenge 3P  

ZF: �1 2 3 4z = 10(x + x ) + 20x  + 15x max 

NB: 

� �
� �

� � �

� �

1 3

2 4

1 1 2

4 1 2 3 4

2x 3x 1.000
4x 4x 2.000

2x (x  x )3
1x (x + x + x  + x )3

 

NNB: �1 2 3 4x , x , x , x 0  

Aufgabe 8.13: 

� � � �1 2 3z x 5x 2x max 

�
� � � �

� � �
� � � �

�

1

1 2 3

1 2 3

2 3

1 2 3

x 5
2x 3x x 1

3x 4x x 2
3x 2x 2

x , x , x 0

 

Umformung zum Standardmaximierungsproblem ist nicht möglich. 

 

 

 

 



Kapitel 8 L

 291

Aufgabe 8.14: 

1 2 3z x 2x 3x max5 O O j  

N T
O O T

N N T
T
S

1 3

1 2 3

1 2

3

1 2 3

x 5x 5
2x 2x x 10
3x 4x 4

2x 8
x , x , x 0

 

Umformung zum Standardmaximierungsproblem ist möglich.  

Aufgabe 8.15: 

Nein, da es sich nicht um eine konvexe Menge handelt. 

Aufgabe 8.16: 

Die graphische Lösung führt zu: < =Toptx 4 75 , optz 395  

Aufgabe 8.17: 

Die graphische Lösung führt zu: < =Toptx 2 45 , optz 45 N  

Aufgabe 8.18: 

Die graphische Lösung führt zu: < =Toptx 4 1,55 , optz 6,255  

Aufgabe 8.19: 

a) D b) B,C,BC 

c) A,D,E,AE,ED d) A,B,AB 
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Aufgabe 8.20: 

< =Topt 9 1x 4 25 ,  < =Topts 0 05 ,  optz 8,755 ,  < =Topt 5 1y 4 45  

Aufgabe 8.21: 

< =Toptx 8 45 ,  < =Topts 0 05 ,  optz 685 ,  < =Topty 1,3 0,85  

Aufgabe 8.22: 

< =Toptx 14 95 ,  < =Topts 0 0 105 ,  optz 875 ,  < =5 Topty 0,9 0,7 0  

Somit sind die Kapazitäten 1 und 2 voll ausgelastet. 

Aufgabe 8.23: 

< =Toptx 41,5 185 ,  < =Topts 0 0 2925 ,  optz 1.1545 ,  < =Topt 3 47y 010 405  

Aufgabe 8.24: 

< =Topt 10 70x 03 35 ,  < =Topts 0 05 ,  optz 1105 ,  < =Topty 2 15  

Aufgabe 8.25: 

< =Toptx 12,5 25 05 ,  optz 87,55 ,  < =Topt 51y 4 85  

Aufgabe 8.26: 

< =Toptx 0 20 105 ,  < =Topts 0 05 ,  optz 905 ,  < =Topty 1,75 0,255  
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Aufgabe 8.27: 

< =Toptx 30 0 05 ,  < =Topts 10 05 ,  optz 905  

Aufgabe 8.28: 

opt Tx (2,5 10 0)5 ,  opt Ts (0 15 0)5 ,  optz 355 ,  opt Ty (1,5 0 0,5)5  

Aufgabe 8.29: 

< =Toptx 6 0 125 ,  < =Topts 0 05 ,  optz 305 ,  < =Topty 1 05  

Aufgabe 8.30: 

< =Toptx 24 0 25 ,  < =Topts 16 0 05 ,  optz 1085 ,  < =Topt 62y 0 5 55  

Aufgabe 8.31: 

< =Toptx 0 5 6,255 ,  < =Topts 0 0 6,255 ,  optz 46,255 ,  < =Topt 3 7y 08 45  

Aufgabe 8.32: 

< =Toptx 12 12 05 ,  < =Topts 0 8 05 ,  optz 1085 ,  < =Topty 0,7 0 1,15  

Aufgabe 8.33: 

< =Toptx 17 6 05 ,  < =Topts 0 0 265 ,  optz 865 ,  < =5 Topty 1,8 0,4 0  
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Aufgabe 8.34: 

< =Toptx 8 4 35 ,  < =Topts 0 0 05 ,  optz 495 ,  < =Topty 0,6 0,3 0,85  

Aufgabe 8.35: 

< =Topt 20 20x 0 3 35 ,  < =Topt 40s 0 40 035 ,  opt 200z 35 ,  < =Topt 5 5y 0 09 35  

Aufgabe 8.36: 

< =Topt 53 31 41x 5 5 55 ,  < =Topt 37s 0 0 0 55 ,  optz 855 ,  < =Topt 1y 0 1 025  

Aufgabe 8.37: 

Das Problem weist unendlich viele Lösungen bei begrenztem Zielfunktionswert auf. 

Die Lösungsmenge lässt sich darstellen als < = : ;b c5 N Ae f
g h

T
1 1 110 2x x ,x 0,5;43 3�  mit 

5optz 10. 

Aufgabe 8.38: 

Eine optimale Lösung kann nicht bestimmt werden, da das Problem unendlich viele 

Lösungen bei unbegrenztem Zielfunktionswert aufweist. 

Aufgabe 8.39: 

< =Toptx 1 35 ,  < =Topts 0 0 85 ,  < =Topty 0,2 3,2 05 ,  optz 105  

Aufgabe 8.40: 

< =Toptx 1 4,55 ,  < =Topts 3 0 05 ,  < =Topty 0 2,75 0,255 ,  optz 24,55  



Kapitel 8 L

 295

Aufgabe 8.41: 

< =Toptx 0 0 65 ,  < =Topts 0 8 15 ,  < =Topty 2 0 05 ,  optz 125  

Aufgabe 8.42: 

< =Toptx 0 2 05 ,  < =Topts 3 05 ,  < =Topty 0 15 ,  optz 45  

Aufgabe 8.43: 

< =Toptx 0 1 25 ,  < =Topts 4 0 05 ,  < =Topty 0 1,25 0,255 ,  optz 95  

Aufgabe 8.44: 

< =Toptx 12 4 05 ,  < =Topts 0 2 05 ,  < =Topty 2 0 05 ,  optz 405  

Aufgabe 8.45: 

a) : ;Ap 1; 3  

b) < =Toptx 0 10 15 ,  < =5
Topt 1s 0 02 ,  optz 465 ,  < =5

Topt 82y 03 3  

c) < =Topt 61 2x 0 6 35 ,  < =Topt 1s 0 0 25 ,  opt 2z 44 35 ,  < =5
Topt 82y 03 3  

 Veränderung: < =Topt 1 1x 0 6 3� 5 N ,  < =Topt 1 1s 0 2 2� 5 N ,  opt 4z 3� 5 N  

Aufgabe 8.46: 

a) Es kann kein Anfangstableau sein, da eine Zielvariable in der Basis steht. Ein End-

tableau kann es nicht sein, da die Zielzeile nicht vollständig 0S  ist. 
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b) 5 O O O j1 2 3 4z 2x 3x 2x 4x max  

 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

2x x 2x x 120
2x x 4x 3x 100
x 3x 3x 4x 90
x , x , x , x 0

O O O T
O O O T
O O O T

S

 

c) < =Toptx 42 16 0 05 ,  < =Topts 20 0 05 ,  optz 1325 ,  < =Topt 3 4y 0 5 55  

Aufgabe 8.47: 

a) Alle Werte in der Zielzeile sind 0S . 

b) Die Basis enthält die Variablen der pivotisierten Spalten, also 2x , 2s  und 1x . 

 < =Toptx 20 20 05 ,  < =Topts 0 40 05  

c) 

1 2 3 1 2 3

1

2

3

x x x s s s
s 1 1 1 1 0 0 40
s 0 2 2 0 1 0 80
s 1 0 1 0 0 1 20
Z 4 3 4 0 0 0 0N N N

 

d) 5 O O j1 2 3z 4x 3x 4x max 

e) Kapazitätsbedarf: < =Toptb s 40 40 20N 5  

Aufgabe 8.48: 

a) < =Toptx 20 0 55 ,  < =Topts 0 0 55 ,  optz 355 ,  < =Topt 1 1y 02 45  

b) Die Restriktion ist bei der Produktion optx  aus a) nicht bindend, die optimale Lö-

sung ändert sich somit nicht. 

c) < =Toptx 22 0 45 ,  < =Topts 2 0 4 05 ,  optz 345 ,  < =Topt 1 1y 0 02 55  

Aufgabe 8.49: 

a) Das Simplex-Tableau hat 4 Zeilen und 7 Spalten. 
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b) Es können 9 Werte nicht näher bestimmt werden. 

 

1 2 1 2 3

1

2

2

x x s s s
5x 1 0 ? 0 ? 2

x 0 1 ? 0 ? 5
5s 0 0 ? 1 ? 2

Z 0 0 ? 0 ? ?

 

c) ZF: 5 O j1 2z 5x 3x max 

 NB: 
1 2

1 2

1 2

2x x 10
x 2x 15

2x 3x 20

O T
O T
O T

 

 NNB: 1 2x ,x 0S  

 opt 55z 25  

Aufgabe 8.50: 

a) 

1 2

1 2

1 2

1 2

0,5x 2x 32 (I)
0,75x 1,5x 27 (II)
1,5x x 30 (III)
3x x 57 (IV)

O T
O T
O T
O T

 

b) < =Toptx 18 35 ,  < =Topts 17 9 0 05 ,  optz 1205 ,  < =5 Topty 0 0 4 0  

c) Bei veränderter ZF ergibt sich: < =Toptx 12 125 ,  < =Topts 2 0 0 95 ,  optz 845  

 Die Vermietung der freien Kapazitäten in der neuen Region erbringt 38 €, was zu 

einem Gesamterlös von 122 € führt. Die beste Möglichkeit ist jedoch umzusiedeln, 

nichts zu produzieren und alle Kapazitäten zu vermieten. Dies erbringt 404 €. 

Aufgabe 8.51: 

 a 35 ,  b 205 ,  c 105  
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Aufgabe 8.52: 

Anlagenbauerin Brigitte sollte Maschine 3 auf 7 oder 8 Einheiten ausbauen. Sie erhält 

dafür 4.900 € bzw. 6.400 €. Das optimale Produktionsprogramm lautet dann 

< =Topt 3 7x 02 25  bzw. < =Toptx 1 4 05 , der Unternehmensgewinn liegt bei 

35.500 € - 4.900 € bzw. 37.000 € - 6.400 € = 30.600 €. 
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