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Vorwort

Theorie ohne Praxis ist leer,
Praxis ohne Theorie ist blind.

Die vorliegende »Höhere Mathematik für Ingenieure« umfaßt den Inhalt einer Vorlesungsrei-
he, die sich über die ersten vier bis fünf Semester erstreckt. Das Werk wendet sich hauptsächlich
an Studenten der Ingenieurwissenschaften, darüber hinaus aber allgemein an alle Studierenden
technischer und physikalischer Richtungen, sowie an Studenten der Angewandten Mathematik
(Technomathematik, Mathematikingenieur, mathematische Physik).

Lernende und Lehrende finden mehr in diesen Bänden, als in einem Vorlesungszyklus be-
handelt werden kann. Die Bücher sind so gedacht, daß der Dozent — dem Aufbau der Kapitel
folgend — einen »roten Faden« auswählt, der dem Studierenden den Weg in die Mathematik
bahnt und ihm die Stoffülle strukturiert. Der Lehrende wird dabei seinen eigenen Vorstellungen
folgen, etwa in der Auswahl der Beispiele, dem Weglassen gewisser »Seitenwege« , oder dem
Betonen von Sachverhalten, die für die Fachrichtung der Hörer seiner Lehrveranstaltung wichtig
sind.

Dem Studierenden sollen die Bände zur Nacharbeit und Vertiefung des Vorlesungsstoffes die-
nen, wie auch zum Selbststudium und zur Fortbildung. Die vielen Anwendungsbeispiele sollen
ihm den Inhalt dabei lebendig machen, und zusätzliche Ausführungen sein Kernwissen abrunden.
Später lassen sich die Bücher immer wieder als Nachschlagewerk verwenden. Insbesondere sind
sie zur Examensvorbereitung nützlich, wie auch im Berufsleben als greifbares »Hintergrundwis-
sen«.

Die Bände sind inhaltlich folgendermaßen gegliedert: Band I enthält die Differential- und
Integralrechnung einer und mehrerer Veränderlicher, und damit den Stoff der Vorlesungen Ana-
lysis I und II. Es wurde dabei Wert auf eine sorgfältige Grundlegung, verbunden mit praktischen
Anwendungen, gelegt. Band II hat die Lineare Algebra zum Thema, während Band III die Ge-
wöhnlichen Differentialgleichungen enthält, sowie Distributionen und Integraltransformationen.
Dabei wurde eine eher einfache, wenn auch genaue Darstellung gewählt, damit der Ingenieur
schnell zu Anwendungen vorstoßen kann. Im Band IV folgen dann die Vektoranalysis und Funk-
tionentheorie (komplexe Analysis) und in Band V Funktionalanalysis und partielle Differential-
gleichungen.

Manche Mathematikkurse für Ingenieure beginnen mit Analysis (z.B. bei Maschinenbauern),
andere mit Linearer Algebra (etwa bei Elektrotechnikern). Aus diesem Grunde wurden die Bände
I und II unabhängig voneinander gestaltet, so daß man den Kurs mit jedem dieser Bände beginnen
kann.

An Vorkenntnissen wird wenig vorausgesetzt. Schulkenntnisse in elementarer Algebra (Bruch-
rechnung, Klammerausdrücke) und Geometrie (einfache ebene und räumliche Figuren, Koordi-
natensystem) genügen. Grundsätzlich beginnt der vorliegende Lehrgang ganz »von vorne«, d.h.
mit der Erläuterung der Zahlen, und baut darauf systematisch auf. Auf diese Weise wird auch
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das meiste aus der Schulmathematik in geraffter Form wiederholt. Der Leser kann daher, je nach
Vorkenntnis, die Inhalte erstmalig lernen oder sein Wissen in das vorliegende Gerüst einordnen.

Durch viele Beispiele aus Technik und Naturwissenschaft wird der Anwendungsbezug beson-
ders herausgearbeitet. Dabei liegt weitgehend das folgende Dreischrittschema zu Grunde:

Einführungsbeispiel→ Theorie→ weitere Anwendungen

Hat man ein Einführungsbeispiel zur Motivation erläutert und dann eine Lösungstheorie dazu
entwickelt, so stellt sich meistens heraus (sonst wäre der Name »Theorie« fehl am Platze), daß
die theoretischen Hilfsmittel auch zur Lösung weiterer Probleme, ja, auch manchmal ganzer
Problemklassen, taugen. Diese brauchen mit dem Ausgangsproblem scheinbar überhaupt nicht
verwandt zu sein (z.B. die Flächeninhaltsberechnung zur Motivation der Integralrechnung gegen-
über der Berechnung der Leistung einer Dampfmaschine, der maximalen Höhe eines Weltraum-
satelliten, dem Trägheitsmoment eines Rades oder der Wahrscheinlichkeit für die Lebensdauer
eines Bauteiles. Alle genannten Probleme lassen sich mit Mitteln der Integralrechnung lösen).

Natürlich wird das obige Dreischrittschema nicht über das Knie gebrochen. Denn oft wird
auch mathematisches Instrumentarium für spätere Anwendungen oder für den weiteren Ausbau
der Mathematik bereitgestellt, wobei ein zu frühes Anheften an Anwendungen nicht möglich ist
oder den Blick für die Gliederung der Systematik verschleiert. Denn obwohl die systematische
Einführung der Mathematik nicht immer der historischen Entwicklung entspricht und ihre Ab-
straktion sich von der Praxis zu entfernen scheint, so hat sie doch unbestreitbare Vorteile: Sie
verkürzt die Darstellung, da man Verwandtes unter einheitlichen Gesichtspunkten zusammenfas-
sen kann, und bietet eine gute Übersicht, in der man sich beim Nachschlagen besser zurecht
findet. Aus diesem Grunde wurde hier ein Mittelweg zwischen Abstraktion und Anwendung ein-
geschlagen: Systematisches Vorgehen, gekoppelt mit praktischen Beispielen zur Motivation und
Vertiefung. Dabei wird durch viele Figuren der abstrakte Inhalt anschaulich gemacht.

Noch ein Wort zur »mathematischen Sprache«! Sie besteht zum größten Teil aus der Umgangs-
sprache, ergänzt durch mathematisch klar definierte Fachausdrücke und Begriffe. Man kann sa-
gen, die eigentliche mathematische Fachsprache »schwimmt« auf der Umgangssprache. Denn
ohne die Umgangssprache wäre jede Fachwissenschaft verloren und könnte sich nicht mitteilen.
Es hat sich nämlich herausgestellt, daß ein konsequentes Benutzen der exakten fachlichen Aus-
drucksformen zu sprachlichen Ungetümen führen kann, so daß auf diese Weise die Sachverhalte
viel schwieriger zu begreifen sind, ja, mitunter gar unverständlich zu werden drohen. Hier helfen
»unscharfe« umgangssprachliche Formulierungen oft weiter und steigern die Verständlichkeit.
Für das Lehren gilt nämlich der scheinbar widersprüchliche Satz: »Es ist nicht wichtig, ob sich
der Lehrende stets richtig ausdrückt, sondern nur, daß im Kopf des Zuhörers das Richtige an-
kommt!«

Ein Beispiel soll dies stellvertretend erläutern, und zwar die Sprechweise bei Funktionen.
Fachlich korrekt (und pedantisch) heißt es:
»Wir untersuchen die Funktion f : [−1, 1] → R definiert durch f (x) =

√
1− x2 für alle

x ∈ [−1,1], auf Differenzierbarkeit.«
Eine einfachere Sprechweise (wenn auch etwas unschärfer) wäre:

»Wir untersuchen die Funktion f (x) =
√

1− x2 auf Differenzierbarkeit.«
Wir können wohl davon ausgehen, daß der zweitgenannte Text vom Hörer genauso verstan-

den wird wie der erste, vielleicht sogar besser (insbesondere in einem Kapitel über reellwertige
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Funktionen einer reellen Variablen). Aus diesem Grunde werden wir uns in diesen Bänden einer
einfachen Sprechweise bedienen, die der Umgangssprache nahe steht. Bei Funktionen nehmen
wir uns die Freiheit heraus, Gleichungen als Ausdrücke für Funktionen zu verwenden, oder den
Funktionswert f (x) einfach als Funktion zu bezeichnen. Hierbei wird vorausgesetzt, daß der
Leser (etwa nach Studium des Abschnittes 1.3 in Band I) mit dem abstrakten Funktionsbegriff
vertraut ist. Die geschilderte Sprechweise (»pars pro toto«) hilft, sprachliche Überladung zu ver-
meiden. Insbesondere bei der Behandlung von Gewöhnlichen Differentialgleichungen (Band III)
würde man ohne vereinfachte Ausdrucksweise zu sprachlichen Komplikationen kommen, die
das Verständnis stark erschweren. Aus diesem Grunde bedienen wir uns, soweit wie möglich,
umgangssprachlicher Wendungen, ohne die Präzision aus den Augen zu verlieren.

Zum Schluß bedanken wir uns bei allen, die uns bei diesem Buchvorhaben unterstützt haben.
Frau Karin Lange, Herr Wolfgang Homburg und Herr Uwe Brunst haben bei Band I wertvolle
Korrekturarbeiten geleistet, wofür ihnen vielmals gedankt sei. Frau Marlies Gottschalk, Frau
Erika Münstedt und Frau Karin Wettig danken wir für ihre sorgfältigen Schreibarbeiten wie
auch Herm Klaus Strube für die Herstellung vieler Zeichnungen in Band II und III. Dem Verlag
B.G. Teubner danken wir für seine geduldige und kooperative Zusammenarbeit in allen Phasen.

Kassel, Juli 1985 Die Verfasser

Vorwort zur siebten Auflage

Der Verfasser dieses Bandes, Herr Prof. Dr. Friedrich Wille, ist am 9. August 1992 verstorben.
Die vorliegende Neuauflage wurde von Herbert Haf und Andreas Meister bearbeitet.

Aufgrund ihrer Bedeutung für die Anwendungen haben wir diesen Band durch zwei Abschnit-
te erweitert:

Zum einen durch einen konstruktiven Zugang zum Satz von Weierstraß (s. Abschn. 5.3) und
zum anderen durch verschiedene praxisrelevante Algorithmen zur Berechnung von Interpolati-
onspolynomen bzw. Splines (s. Abschn. 5.4).

Wir sind der Überzeugung, daß dieser Band dadurch an Aktualität gewonnen hat.
Ferner weisen wir darauf hin, daß unser Gesamtwerk aufgrund der Teilung von Band IV in

»Vektoranalysis« und »Funktionentheorie« nunmehr aus sechs Bänden besteht.
Unser Dank gilt Herrn Dr.-Ing. Jörg Barner für die Erstellung der hervorragenden LATEX-

Vorlage und für seine sorgfältige Mitarbeit bei den Korrekturen. Nicht zuletzt danken wir dem
Verlag B.G. Teubner für seine ständige Gesprächsbereitschaft und Rücksichtnahme auf Termin-
probleme und Gestaltungswünsche.

Kassel, Januar 2006 Herbert Haf, Andreas Meister

Vorwort zur achten Auflage

Nach einigen inhaltlichen Erweiterungen der siebten Auflage enthält die vorliegende achte Auf-
lage nur kleinere Veränderungen, u.a. wurden Druckfehler beseitigt.

Wir freuen uns darüber, daß eine starke Nachfrage diese Nachauflage so rasch erforderlich
gemacht hat und hoffen auf eine weiterhin freundliche Aufnahme dieses Bandes durch den Leser.

Kassel, Februar 2008 Herbert Haf, Andreas Meister
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1 Grundlagen

Zahlen, Funktionen und Konvergenz sind die Grundbegriffe der Analysis. In diesem ersten Ab-
schnitt werden sie erklärt und ihre wichtigsten Eigenschaften erläutert, damit für alles weitere
ein sicheres Fundament gelegt ist. Dabei beginnen wir von ganz vorne, nämlich mit den Zahlen
1, 2, 3, . . . .

1.1 Reelle Zahlen

1.1.1 Die Zahlengerade

Mathematik fängt mit dem Zählen an:

1, 2, 3, 4, 5, . . . , usw.

Wir nennen diese Zahlen die natürlichen Zahlen. Sie entstehen, mit 1 beginnend, durch fortge-
setztes Erhöhen um 1.

Der Ausdruck »natürliche Zahlen« ist sicherlich gut gewählt, denn Kinder beginnen so zu zäh-
len und in allen Kulturen beginnt mathematisches Denken mit diesen Zahlen. Die Anzahlen von
Äpfeln, Personen, Schiffen, Sternen, usw. lassen sich damit angeben, aber auch Telefonnummern,
Personalnummern, Rechnungsnummern (leider, leider) sowie Autonummern, Hausnummern und
Datumsangaben) wobei der »Anzahlaspekt« eher in den Hintergrund tritt, und wir von Ordnungs-
zahlen sprechen. Auch auf Skalen finden die natürlichen Zahlen Verwendung, z.B. auf Linealen,
Uhren und Thermometern.

Halt! Bei Thermometern kommt offenbar etwas neues hinzu, und zwar werden negative Zah-
len −1, −2, −3, . . . benutzt, sowie die Null: 0. Diese Zahlen — zusammen mit den natürlichen
Zahlen — nennt man ganze Zahlen. Eine ganze Zahl ist also eine natürliche Zahl oder das Nega-
tive einer natürlichen Zahl oder gleich Null.

Metermaß, Uhr und Thermometer zeigen schon, daß wir auch Zwischenwerte brauchen, daß
wir von halben Metern sprechen wollen, von einer 3

4 -Stunde oder von 38,3◦ Fieber, wenn wir
uns eine Grippe genommen haben.

38,3 können wir auch als 38+ 3
10 oder 383

10 schreiben.

Es dreht sich hier um Zahlen der Form

a

b

wobei a, b beliebige ganze Zahlen sind, und wobei b �= 0 ist. Diese Zahlen a
b heißen Brüche

oder rationale Zahlen. Ist b = 1, so ergeben sich dabei die ganzen Zahlen. Die ganzen Zahlen
sind also spezielle rationale Zahlen.

Alle rationalen Zahlen lassen sich als »Dezimalzahlen«, auch »Dezimalbrüche« genannt,



2 1 Grundlagen

schreiben, z.B.

3

5
= 6

10
= 0,6 ,

3765

100
= 37,65 .

Wir gehen davon aus, daß der Leser mit Dezimalbrüchen schon bekannt ist (wie könnte er sonst
Superbenzin zu 1,41 e pro Liter kaufen). Es soll daher nur einiges in Erinnerung gerufen werden.

Beginnen wir mit Beispielen für Dezimalbrüche:

6,36 ; −378,604325 ;
0,0062 ; 3,61616161 . . . ;
1,414213562 . . . (=

√
2) .

(1.1)

Dezimalbrüche haben allgemein die Form

m, a1a2a3a4 . . . ,

wobei m eine ganze Zahl ist und die a1, a2, a3, a4, . . . Ziffern aus dem Bereich 0, 1, 2, 3, 4, 5,
6, 7, 8, 9 sind. Die Punkte rechts von a4 deuten an, daß es mit a5 weitergeht, dann a6 usw., kurz,
daß nach jeder dieser Ziffern stets noch eine weitere folgt.

Sind von einer Ziffer an an alle folgenden Ziffern Null: an+1 = 0, an+2 = 0, . . . usw.,
so brechen wir die Ziffernreihenfolge bei an ab (z.B. 6,36 = 6,36000 . . .) und nennen diese
Dezimalbrüche abbrechende Dezimalbrüche. Hierbei gilt z.B.

6,36 = 6+ 3

10
+ 6

100

allgemein:

±m, a1a2 . . . an = ±
(

m + a1

10
+ a2

102
+ . . .+ an

10n

)

Ein weiterer Typ ist z.B. durch

a = 3,52761616161 . . .

gegeben, wobei die Ziffern 61 sich fortlaufend wiederholen. Wir nennen 61 die Periode des
Dezimalbruches und schreiben den Dezimalbruch auch

3,52761 .

Die Periode wird einfach überstrichen. Allgemein haben periodische Dezimalbrüche die Form

m, a1a2 . . . anb1b2 . . . bk ,

wobei die Ziffern b1b2 . . . bk in dieser Reihenfolge fortlaufend aneinandergefügt werden. b1 . . . bk

heißt die Periode der Zahl und k ihre Periodenlänge. Es gilt:
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Jede rationale Zahl kann als abbrechender oder periodischer Dezimalbruch geschrieben wer-
den und umgekehrt.

Wir machen dies an Beispielen klar, und zwar erhalten wir

10

7
= 1,42857142857 . . .

durch das bekannte Divisionsverfahren

30

28

20

14

60
...

10 : 7 = 1,42857142857 . . .

7

(Es muß sich hier eine Periode ergeben, da sich die Divisionsreste irgendwann einmal wiederho-
len müssen.)

Ist umgekehrt ein periodischer Dezimalbruch gegeben, z.B.

a = 3,527 616161 . . . ,

so bildet man

102a = 352,761 6161 . . .

(die Hochzahl 2 in 102 ist gleich der Periodenlänge) und subtrahiert:

100a = 352,761+ 0,000616161 . . .

(−) a = 3,527+ 0,000616161

99a = 349,234

also

99a = 349,234 , d.h. a = 349,234

99
= 349234

99000
.

Der Leser ist hiernach sicherlich imstande, beliebige periodische Dezimalbrüche in Brüche der
Form a/b zu verwandeln.

Man kann sich auch Dezimalzahlen denken, die nicht abbrechen und auch keine Periode ha-
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ben. Die Zahl
√

2 = 1,414213562 . . .

ist von diesem Typ. Zahlen dieser Art heißen irrationale Zahlen (also »nichtrationale« Zahlen).
Alle besprochenen Zahlen, also alle rationalen und irrationalen, nennt man reelle Zahlen.

Zusammenfassung.

natürliche Zahlen: 1, 2, 3, 4, 5, . . .

ganze Zahlen: . . ., −3, −2, −1, 0, 1, 2, 3, . . .

rationale Zahlen: a/b (a, b ganze Zahlen, b �= 0), das sind alle abbrechenden und alle
periodischen Dezimalbrüche

irrationale Zahlen: nichtperiodische, nichtabbrechende Dezimalbrüche

reelle Zahlen: alle Dezimalbrüche

Man kann die reellen Zahlen als Punkte einer Geraden veranschaulichen, der sogenannten Zah-
lengeraden (s. Fig. 1.1).

Fig. 1.1: Zahlengerade

Übung 1.1:

Verwandle die folgenden periodischen Dezimalbrüche in Brüche der Form m
n , wobei n und m

natürliche Zahlen sind: (a) 5,74; (b) 31,5271; (c) 0, 9.

1.1.2 Rechnen mit reellen Zahlen

Was wäre mit den Zahlen schon anzufangen, wenn man nicht mit ihnen rechnen könnte? Wir
wollen die Rechengesetze für reelle Zahlen zusammenstellen, getrennt in Grundgesetze und ab-
geleitete Regeln. Dabei gehen wir davon aus, daß der Leser das Rechnen mit den reellen Zahlen
schon bis zu einem gewissen Grade beherrscht. Wir werden daher die folgenden Grundgesetze
nicht näher begründen. Dies würde den Rahmen des Buches sprengen und ist einem konstrukti-
ven Aufbau des Zahlensystems vorbehalten, s. Oberschelp [43].

Grundgesetze der Addition und Multiplikation.
Je zwei reelle Zahlen a und b darf man addieren: a + b, und multiplizieren: a · b.1. a + b

heißt die Summe und a ·b das Produkt von a und b. Summe a+b und Produkt a ·b sind reelle
Zahlen, die eindeutig durch a und b bestimmt sind.
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Für alle reellen Zahlen a, b, c gilt

(A1) a + (b + c) = (a + b)+ c

(A2) a + b = b + a

(A3) für die reelle Zahl 0 gilt a + 0 = a

(A4) zu jeder reellen Zahl a gibt es genau eine reelle Zahl x

mit a + x = 0. Wir schreiben dafür x = −a

(M1) a · (b · c) = (a · b) · c
(M2) a · b = b · a
(M3) für die reelle Zahl 1 gilt a · 1 = a

(M4) zu jeder reellen Zahl a �= 0 gibt es genau eine reelle Zahl y

mit a · y = 1. Wir schreiben dafür y = 1
a oder y = a−1

(D1) a · (b + c) = a · b + a · c
(D2) 0 �= 1

Bemerkung: Die Gesetze (A1) und (M1) heißen Assoziativgesetz der Addition bzw. Multiplika-
tion, (A2) und (M2) werden entsprechend Kommutativgesetze genannt, während (D1) Distribu-
tivgesetz heißt. Die Regeln (A1) bis (D2) zusammen heißen auch die Körperaxiome der reellen
Zahlen.

Die Assoziativgesetze (A1) und (M1) bedeuten offenbar, daß es gleichgültig ist, wie man
dabei die Klammern setzt, Wir lassen sie daher auch weg und schreiben einfach a + b + c =
(a + b)+ c, abc = (ab)c. Entsprechend werden auch bei längeren Summen und Produkten die
Klammern weggelassen.

Die Subtraktion zweier reeller Zahlen a, b wird durch

a − b = a + (−b)

erklärt. Man nennt die so errechnete Zahl die Differenz von a und b.
Entsprechend führt man die Division von a und b (b �= 0) durch die Gleichung

a

b
= a · 1

b

ein. Man nennt diese Zahl den Quotienten von a und b.
Später werden wir noch weitere Grundgesetze für die reellen Zahlen kennenlernen, und zwar

die Grundgesetze der Ordnung (betreffend »größer« und »kleiner«) sowie die sogenannte Voll-
ständigkeit und die Archimedische Eigenschaft.

Doch zunächst soll klar gemacht werden, daß aus den notierten Grundgesetzen der Addition
und Multiplikation die üblichen Regeln der Bruchrechnung folgen, wie z.B. »Brüche werden
multipliziert, indem man Zähler mit Zähler und Nenner mit Nenner multipliziert«, oder »zwei

1 Der Multiplikationspunkt wird auch weggelassen: a · b = ab
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Brüche werden dividiert, indem man mit dem Kehrwert des einen Bruches multipliziert« usw.
Diese Regeln sind dem Leser sicher weitgehend bekannt, und er hat sie schon verwendet. Aus
diesem Grunde mag der eilige Leser die folgenden Herleitungen überschlagen.

Er kann sie später nachlesen, wenn er es einmal genauer wissen möchte, z.B. wenn er ge-
fragt wird, warum »Minus mal Minus Plus ergibt«. Dann kann er, nach kurzem Studium der
folgenden Seiten antworten: »Aus den Körperaxiomen der reellen Zahlen ergibt sich dies folgen-
dermaßen. . . «, und er wird ein ehrfürchtig staunendes Publikum hinterlassen.

Doch nun zur schrittweisen Herleitung der Bruchrechnungs-Regeln aus den Körperaxiomen!

Folgerung 1.1:
0 ist die einzige reelle Zahl, die a + 0 = a für alle reellen Zahlen a erfüllt, und 1 ist
die einzige reelle Zahl mit a · 1 = a für alle reellen a.

Beweis:
(i) Wäre 0′ irgendeine reelle Zahl, verschieden von 0, die ebenfalls a + 0′ = a für alle reellen
a erfüllt, so folgte speziell für a = 0: 0 + 0′ = 0. Andererseits ist aber auch 0′ + 0 = 0′, da 0
bei Addition ebenfalls nichts verändert. Somit folgt 0 = 0 + 0′ = 0′ + 0 = 0′, d.h. 0′ ist doch
gleich 0, im Widerspruch zu unserer Voraussetzung 0 �= 0′. Daher kann es kein 0′ der genannten
Art geben, d.h. 0 ist einzige reelle Zahl mit a + 0 = a für alle a.
(ii) Für 1 verläuft der Beweis entsprechend. Man hat nur 0 durch 1 und + durch · zu ersetzen.�

Folgerung 1.2:
(Lösen einfacher Gleichungen) Für alle reellen Zahlen a, b gilt:

a + x = b ist gleichbedeutend mit x = b − a

und falls a �= 0:

a · x = b ist gleichbedeutend mit x = b

a
.

Bemerkung: Für »ist gleichbedeutend mit« verwenden wir auch das Zeichen⇔. Die Aussagen
erhalten damit die kürzere Form

a + x = b⇔ x = b − a , a · x = b⇔ x = b

a
(falls a �= 0).

Beweis:
a + x = b ⇔ (−a) + a + x = (−a) + b ⇔ 0 + x = b − a ⇔ x = b − a. Entsprechend für
a �= 0: a · x = b⇔ 1

a ax = 1
a b⇔ x = b

a . �

Folgerung 1.3:
Für alle reellen Zahlen a gilt a · 0 = 0, −(−a) = a und falls a �= 0: (a−1)−1 = a.

Beweis:
(i) a · 0 = a · 0+ (a · 0− a · 0) = a · (0+ 0)− a · 0 = a · 0− a · 0 = 0.
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(ii) −(−a) = −(−a)+ (−a)+ a = 0+ a = a.
(iii) (a−1)−1 = (a−1)−1a−1a = 1 · a = a. �

Folgerung 1.4:
(Vorzeichenregeln bei Multiplikationen) Für alle reellen Zahlen a und b gilt:

a(−b) = −ab , (−a)b = −ab , (−a)(−b) = ab .

Beweis:
a(−b) = a(−b)+ ab − ab = a(−b + b)− ab = a · 0− ab = −ab.
Ferner (−a)b = b(−a) = −ba = −ab,
und schließlich (−a)(−b) = −(a(−b)) = −(−ab) = ab. �

Merkregel:

»minus mal minus gleich plus« »minus mal plus gleich minus«

Folgerung 1.5:
(Additions- und Multiplikationsregeln der Bruchrechnung) Alle reellen Zahlen a, b, c,
d mit c �= 0 und d �= 0 erfüllen die Gleichungen

a

c
+ b

d
= ad + bc

cd
und

a

c
· b

d
= ab

cd
.

Beweis:
Zunächst wird die zweite Regel bewiesen: Es ist c−1d−1= (cd)−1, wie man aus (cd)·(c−1d−1) =
(cc−1)(dd−1) = 1 erkennt. Damit gilt

a

c
· b

d
= ac−1bd−1 = ab(cd)−1 = ab

cd
.

Mit d/d = 1 und c/c = 1 folgt daraus die erste Regel:

a

c
+ b

d
= a

c
· d

d
+ b

d
· c

c
= ad

cd
+ bc

cd
= (ad + bc)

1

cd
= ad + bc

cd
. �

Folgerung 1.6:
(Divisionsregel der Bruchrechnung) Für alle reellen a, b, c, d mit b �= 0, c �= 0, d �= 0
gilt

a

b
: c

d
= ad

bc
. 2

2 Schreibweise der Division mit Doppelpunkt: x : y = x · y−1
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Beweis:
Es ist

a

b
: c

d
= (ab − 1)(cd−1)−1 = (ab−1)(c−1d) = (ad)(b−1c−1) = (ad)(bc)−1 = ad

bc
.

�

Potenzieren mit natürlichen Zahlen: Zur Abkürzung schreibt man

an = a · a · . . . · a ,
︸ ︷︷ ︸

n Faktoren

also a1 = a, a2 = a · a, a3 = a · a · a usw. an wird »a hoch n« ausgesprochen. Man sagt auch
»an ist die n-te Potenz von a« (s. Abschn. 1.1.6).

Übung 1.2:

Löse die folgenden Gleichungen nach x auf:

a) 8x − 3 = 6x + 5 , b)
3x − 2

4x + 1
= 2 , c)

5(x − 2)+ 9

(x + 1)(x − 2)− x(x + 5)
= 3 .

Übung 1.3:

Wo steckt der Fehler in folgender »Herleitung« ?:

a = b⇒ 3a − 2a = 3b − 2b⇒ 3a − 3b = 2a − 2b⇒ 3(a − b) = 2(a − b)⇒ 3 = 2 .

1.1.3 Ordnung der reellen Zahlen und ihre Vollständigkeit

Ordnung muß sein! Auch bei den reellen Zahlen! Die Ordnung drückt sich dabei in der »Kleiner-
« und »Größer-Beziehung« zwischen den Zahlen aus. Sie läßt sich besonders klar an der Zahlen-
geraden verdeutlichen:

Fig. 1.2: »Kleiner-« und »Größer-Beziehung«: a < b

In Fig. 1.2 sind zwei Punkte a und b markiert, die reelle Zahlen bedeuten sollen. Liegt — wie
hier — a links von b, so schreiben wir:

a < b ,

in Worten: »a kleiner als b« , oder auch umgekehrt b > a, in Worten: »b größer als a« .
Die Grundgesetze für diese Beziehung lauten folgendermaßen:
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Grundgesetze der Ordnung:

(O1) Für je zwei reelle Zahlen a und b gilt genau eine der drei folgenden Beziehungen:

a < b , a = b , b < a .

(O2) Aus a < b und b < c folgt a < c,

(O3) Aus a < b folgt a + c < b + c, (c beliebig reell),

(O4) Aus a < b folgt a · c < b · c, wenn 0 < c ist.

Bezeichnungen: Statt a < b schreibt man auch b > a, wie oben schon gesagt. a heißt genau
dann positiv, wenn a > 0 gilt, und genau dann negativ, wenn a < 0. Die Ungleichung a ≥ b,
wie auch b ≤ a, bedeutet, »a ist größer oder gleich b« oder anders gesagt: »b ist kleiner oder
gleich a« .

Wir nehmen an, daß die Grundgesetze der Ordnung mit dem bisherigen Zahlenverständnis
des Lesers im Einklang stehen, und begründen sie daher hier nicht weiter.

Aus den Grundgesetzen können weitere Regeln abgeleitet werden. Die wichtigsten stellen
wir in der nächsten Folgerung zusammen und deuten einige Beweise kurz an. Beim ersten Lesen
genügt es, sich die Regeln an Beispielen klar zu machen, um so mit ihnen umgehen zu lernen.

Folgerung 1.7:
Für alle reellen Zahlen a, b, c, d gelten die Regeln:

(a) a > 0 und b > 0⇒ a + b > 0 und a · b > 0

(b) a > 0⇔ −a < 0

(c) a �= 0⇒ a · a > 0, insbesondere 1 > 0, da 1 = 1 · 1 > 0

(d) a < b und c < d ⇒ a + c < b + d

(e) 0 ≤ a < b und 0 ≤ c < d ⇒ 0 ≤ ac < bd

(f) a > 0 und b < 0⇒ ab < 0

(g) a < 0 und b < 0⇒ ab > 0

(h) 0 < a < b⇒ 0 <
1

b
<

1

a

(i) 0 > a > b⇒ 0 >
1

b
>

1

a

Beweis:
(a) Aus a > 0 und b > 0 folgt a+b > a+0 = a > 0 nach (O3)3, also wegen (O2): a+b > 0.

Entsprechend ergibt (O4): 0 < a ⇒ 0 · b < ab (da 0 < b), also 0 < ab.

(b) 0 < a ⇒ 0+ (−a) < a + (−a)⇒ −a < 0.

3 Dabei entspricht a < b in (O3) der Ungleichung 0 < b, und c entspricht a. Folglich liefert (O3): 0+ a < b+ a, wie
behauptet.
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(c) Für a > 0 folgt a ·α > 0 aus (a). Ist a < 0, so−a > 0, nach (b)) also a ·a = (−a) ·(−a) >

0.

(d) (a < b und c < d)⇒ (b−a > 0 und d−c > 0)⇒ b−a+d−c > 0⇒ b+d > a+c. Die
übrigen Beweise verlaufen ähnlich und werden dem Leser für Mußestunden überlassen. �

Schließlich kommen wir zum Gesetz von der Vollständigkeit der reellen Zahlen. Es spiegelt
unsere Vorstellung wider, daß jede reelle Zahl einem Punkt der Zahlengeraden entspricht und
umgekehrt.

Zunächst denken wir uns dazu reelle Zahlen a1, a2, a3, . . . sowie b1, b2, b3, . . ., die folgender-
maßen geordnet sind:

a1 ≤ a2 ≤ a3 ≤ . . . . . . ≤ b3 ≤ b2 ≤ b1 .

Dabei entspreche jeder natürlichen Zahl n genau ein an und genau ein bn . Es gilt also allgemein
für jedes n:

an ≤ an+1 ≤ bn+1 ≤ bn .

Man sagt, die Zahlen a1, a2, . . ., b1, b2, . . . bilden eine Intervallschachtelung. Wir nehmen zu-
sätzlich an, daß die Zahlen an und bn beliebig dicht »zusammenrücken«. D.h. jede noch so kleine
positive Zahl ε wird von wenigstens einer Differenz bn − an unterschritten,

bn − an < ε ,

wenn wir n nur genügend groß wählen. Unter diesen Voraussetzungen lautet das

Grundgesetz der Vollständigkeit: Es gibt genau eine reelle Zahl x , die

an ≤ x ≤ bn

für alle natürlichen Zahlen n erfüllt.

Fig. 1.3 gibt eine Vorstellung von der Lage der Zahlen.

Fig. 1.3: Intervallschachtelung

x wird durch die Zahlen an und bn von rechts und links »eingegrenzt« . Dies entspricht voll-
kommen der geometrischen Vorstellung, daß jedem Punkt der Zahlengeraden genau eine Zahl
entspricht und umgekehrt.

Als letztes Grundgesetz geben wir das Archimedische Axiom der reellen Zahlen an. (Es läßt
sich eigentümlicherweise nicht aus den vorausgehenden Grundgesetzen beweisen, obwohl es so
selbstverständlich erscheint.)
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Archimedisches4 Axiom: Zu jeder reellen Zahl a, sei sie auch noch so groß, gibt es eine
natürliche Zahl n, die noch größer ist: n > a.

Hier ist die »reziproke Formulierung« von noch größerer Bedeutung. Sie lautet

Folgerung 1.8:
Zu jeder noch so kleinen Zahl ε > 0 gibt es eine natürliche Zahl n mit

1

n
< ε . (1.2)

Mit anderen Worten: Die Zahlen 1
n (n natürlich) werden »beliebig klein« .

Beweis:

Zum Beweis brauchen wir die Ungleichung 1/n < ε nur in der Form

1

ε
< n

zu schreiben. (Aus ihr geht (1.2) durch Multiplikation mit ε
n hervor.) Aufgrund der Eigenschaft

des Archimedes gibt es aber ein natürliches n mit n > 1/ε, womit alles bewiesen ist. �

Damit haben wir alle Grundgesetze der reellen Zahlen aufgezählt und die wichtigsten Rechen-
regeln daraus hergeleitet.

Im nächsten Abschnitt führen wir die Mengenschreibweise mit ihren einfachsten Regeln ein.
Sie gestattet es, viele Dinge sehr übersichtlich und kurz zu beschreiben und ist daher sehr bequem.
Ein Beispiel dazu vorweg: Der Satz »a ist eine reelle Zahl« läßt sich viel kürzer durch

a ∈ R

ausdrücken. Dies besagt: a ist Element der Menge R der reellen Zahlen.

1.1.4 Mengenschreibweise

Statt von den »natürlichen Zahlen« sprechen wir auch von der »Menge der natürlichen Zahlen« .
Ebenso sprechen wir von der »Menge der ganzen Zahlen« , der »Menge der rationalen Zahlen«
usw. Dabei haben wir den sogenannten »naiven Mengenbegriff« vor Augen:
Naiver Mengenbegriff: Eine Menge ist eine Zusammenfassung verschiedener Objekte unseres
Denkens oder unserer Anschauung zu einem Ganzen. Die Objekte werden die Elemente der
Menge genannt.

Beschreibt der Buchstabe M eine Menge (z.B. die Menge aller Menschen), und ist x ein
Element der Menge (ein Mensch), so schreiben wir dafür

x ∈ M

4 Archimedes von Syrakus (um 287 v. Chr. – 212 v. Chr.), antiker griechischer Mathematiker, Physiker und Ingenieur
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(sprich: »x aus M« , oder »x ist Element von M« ). Ist x dagegen ein Objekt, welches nicht zur
Menge M gehört (z.B. ein Tier), so beschreibt man dies durch

x �∈ M .

Zwei Mengen heißen genau dann gleich, wenn sie dieselben Elemente haben.

Beispiel 1.1:
Die folgenden Bezeichnungen sind üblich:

N =Menge der natürlichen Zahlen 1, 2, 3, . . .

N0 =Menge der Zahlen 0, 1, 2, 3, . . .

Z =Menge der ganzen Zahlen . . . , −2, −1, 0, 1, 2, . . .

Q =Menge der rationalen Zahlen
a

b
(mit a, b ∈ Z, b �= 0)

R =Menge der reellen Zahlen (alle Dezimalzahlen)

Weitere oft benutzte Mengen reeller Zahlen sind die sogenannten Intervalle. Diese sind Teil-
strecken der Zahlengeraden oder Halbgeraden oder R selbst. Genauer: Mit [a, b] bezeichnen wir
die Menge aller reellen Zahlen x mit a ≤ x ≤ b. Wir drücken dies kürzer aus:

[a, b] = {x ∈ R | a ≤ x ≤ b} .

Dabei bedeutet die rechte Seite die »Menge aller x ∈ R, die die Eigenschaft a ≤ x ≤ b besitzen«.
[a, b] heißt das abgeschlossene Intervall von a bis b. Auf der Zahlengeraden stellt dieses

Intervall eine Strecke dar, s. Fig. 1.4.

Fig. 1.4: Intervall [a, b]

Entsprechend werden weitere Intervalle definiert. Die folgenden Schreibweisen sind nach dem
Beispiel [a, b] unmittelbar verständlich. Dabei gelte wieder a < b:

(a, b) = {x ∈ R | a < x < b} heißt offenes Intervall von a bis b

(die »Endpunkte« a, b gehören nicht dazu)

[a, b) = {x ∈ R | a ≤ x < b} und

(a, b] = {x ∈ R | a < x ≤ b} heißen halboffene Intervalle

(jeweils ein Endpunkt gehört dazu, der andere nicht).
Die bisher genannten Intervalle werden beschränkte Intervalle genannt. Der Vollständigkeit
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halber fügen wir gleich die sogenannten unbeschränkten Intervalle an:

[a,∞) = {x ∈ R | x ≥ a}
(−∞, c] = {x ∈ R | x ≤ c}

}

abgeschlossene Halbgeraden (s. Fig. 1.5)

(a,∞) = {x ∈ R | x > a}
(−∞, c) = {x ∈ R | x < c}

}

offene Halbgeraden

und (−∞,∞) = R.

Fig. 1.5: Unbeschränkte Intervalle

Intervalle spielen im täglichen Leben schon in einfachen Fällen eine Rolle: Im Wetterbericht
hören wir z.B. von Temperaturen zwischen −2◦ bis +1◦, was nichts anderes heißt, als daß die
Temperaturangaben im Intervall (−2,1) liegen. Längenangaben wie auch Gewichte sind stets po-
sitiv, sie liegen also im Intervall (0,∞). Die Splittingtabelle der Steuer ist in Intervalle eingeteilt,
die verschiedenen Steuersätzen entsprechen, usw.

Fig. 1.6: Koordinaten Fig. 1.7: Rechteck und Kreis

Weitere anschauliche Beispiele für Mengen sind Punktmengen der Ebene. Führen wir in
üblicher Weise ein Koordinatensystem mit x- und y-Achse ein, so entspricht jedem Punkt der
Ebene genau ein Zahlenpaar (x, y), wobei x die x-Koordinate heißt und y die y-Koordinate
(s. Fig. 1.6)5.

Wir nennen Zahlenpaare daher auch Punkte (der Ebene) und bezeichnen die Menge aller
dieser Zahlenpaare als R2.

Ein Rechteck, wie in Fig. 1.7 zu sehen, besteht aus allen Punkten (x, y), für die

a ≤ x ≤ b und c ≤ y ≤ d

5 Aus dem Zusammenhang muß jeweils hervorgehen, ob (x, y) ein Punktepaar oder ein offenes Intervall bezeichnet.
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gilt. Nennen wir die Menge dieser Punkte kurz R (Rechteck), so können wir schreiben

R ={(x, y) ∈ R2 | a ≤ x ≤ b und c ≤ y ≤ d} .

Betrachten wir noch ein Beispiel, und zwar eine Kreisscheibe um 0 = (0,0) mit Radius 1,
s. Fig. 1.7. Ein Punkt (x, y) liegt genau dann in dieser Kreisscheibe, wenn sein Abstand6 von
0 kleiner oder gleich 1 ist. Der Abstand ist aber offenbar gleich

√

x2 + y2

wie man mit dem Lehrsatz des Pythagoras ermittelt (s. Fig. 1.6). Damit besteht die Kreisscheibe
K aus allen Punkten (x, y) ∈ R2 mit

x2 + y2 ≤ 1 .

Diese Punktmenge läßt sich also kurz so beschreiben:

K =
{

(x, y) ∈ R2
∣
∣

√

x2 + y2 ≤ 1

}

Fig. 1.8: Teilmenge A von M

Um mit Mengen bequem umgehen zu können, vereinbaren wir einige Bezeichnungen:

(a) {x1, x2, . . . , xn} bezeichnet die Menge der Elemente x1, x2, . . ., xn .

(b) {x | x hat die Eigenschaft E} ist die Menge aller Elemente x mit der Eigenschaft E . {x ∈
M | xhat die Eigenschaft E} ist die Menge aller Elemente x aus M mit der Eigenschaft E
(s. obige Beispiele).‘

(c) Eine Menge A heißt Teilmenge einer Menge M , wenn jedes Element von A in M liegt. Wir
beschreiben dies kurz durch

A ⊆ M oder M ⊃ A , (s. Fig. 1.8)

M heißt eine Obermenge von A. Hier ist auch der Fall denkbar, daß A = M ist (M ist also
Teilmenge von sich selbst!). Ist A aber eine Teilmenge von M , die nicht gleich M ist, so

6 Im Sinne der euklidischen Geometrie
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nennen wir A eine echte Teilmenge von M und schreiben dafür

A � M oder M � A .

(d) Gilt A ⊂ M , so besteht die Restmenge

M \ A

aus allen Elementen x ∈ M , die nicht in A liegen (s. Fig. 1.8). Es kann dabei sein, daß es
keine Elemente dieser Art gibt, nämlich wenn A = M ist. In diesem Fall sagen wir: Die
Restmenge M \ A ist leer. Das führt auf folgende Vereinbarung:

(e) Mit ∅ bezeichnen wir die sogenannte leere Menge. Dies ist eine Menge ohne Elemente. D.h.,
für jedes irgendwie geartete Element x gilt x �∈ ∅.
Wir können daher im Falle A = M für die Restmenge M \ A schreiben:

M \ A = ∅ .

(f) Als Vereinigung zweier Mengen A und B bezeichet man die Menge aller Elemente x , die
in A, in B oder in beiden Mengen liegen (s. Fig. 1.9). Sie wird symbolisiert durch

A ∪ B

(g) Die Schnittmenge (auch Durchschnitt genannt)

A ∩ B

zweier Mengen A, B ist die Menge aller Elemente x , die sowohl in A als auch in B liegen
(s. Fig. 1.9).

Fig. 1.9: Vereinigung und Schnittmenge Fig. 1.10: Die Mengen A, B, C

Man macht sich an Fig. 1.10 leicht klar, daß folgende einfache Regeln gelten:

A ∪ (B ∪ C) = (A ∪ B) ∪ C

A ∩ (B ∩ C) = (A ∩ B) ∩ C
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Es ist hier also gleichgültig, wie die Klammern gesetzt werden. Aus diesem Grunde werden
sie auch einfach weggelassen. Ferner gilt offenbar

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

M \ (A ∪ B) = (M \ A) ∩ (M \ B)

M \ (A ∩ B) = (M \ B) ∪ (M \ B)

}

wobei A ⊂ M und B ⊂ M .

Die ersten beiden Regeln entsprechen einem »Ausmultiplizieren« von Klammern (bei Zah-
len zum Vergleich: a · (b + c) = (a · b)+ (a · c)), während die nächsten beiden Regeln —
auch De Morgansche7 Regeln genannt — zeigen, daß ∪ und ∩ ausgetauscht werden, wenn
man von der linken zur rechten Seite der Gleichung übergeht.

(h) Schließlich nennen wir

(a, b)

das Paar aus den Elementen a, b. Dabei sind zwei Paare (a, b) und (c, d) genau dann
gleich, wenn a = c und b = d ist. Die Reihenfolge der Elemente a, b läßt sich im Falle
a �= b also nicht vertauschen: Es ist (a, b) �= (b, a). D.h. bei Paaren kommt es auf die
Reihenfolge der Elemente an (im Gegensatz zu Mengen {a, b} aus zwei Elementen, für die
{a, b} = {b, a} gilt).

Sind A, B Mengen, so kann man daraus die Menge aller Paare

(a, b) mit a ∈ A und b ∈ B

bilden. Sie wird mit

A × B

bezeichnet und Paarmenge oder cartesisches Produkt8 der Menge A, B genannt. Ist dabei
speziell A = B, so schreibt man kurz A2 = A × A. Auf diese Weise ordnet sich die schon
betrachtete Menge R2 = R× R hier ein.

Allgemeiner kann man dieses Konzept auch auf sogenannte n-Tupel

(a1, a2, a3, . . . , an) , mit n ∈ N ,

ausdehnen. Dabei sind (a1, . . . , an) und (b1, . . . , bm) genau dann gleich, wenn n = m ist
und ai = bi für alle i = 1,2, . . ., n. Sind A1, . . ., An Mengen, so beschreibt

A1 × A2 × . . .× An

die Menge aller n-Tupel (a1, . . . , an) mit a1 ∈ A1, a2 ∈ A2, . . ., an ∈ An . Diese Menge

7 Augustus De Morgan (1806 – 1871), englischer Mathematiker
8 Nach René Descartes (1596 – 1650), französischer Philosoph, Mathematiker und Physiker
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heißt das cartesische Produkt der Mengen A1, . . ., An . Sind alle diese Mengen gleich: Ai =
A für alle i = 1, . . ., n, so wird das cartesische Produkt der A1, . . ., An kurz An genannt.

Übung 1.4*:

In einem Vorortzug sind 60 % der Fahrgäste Männer, 70 % Raucher und und 80 % Pendler zwi-

schen Arbeitsstätte und Wohnung. Gibt es Fahrgäste mit allen drei Eigenschaften? Wieviel Pro-

zent sind es mindestens?

Verwandt ist die folgende Aufgabe:

Übung 1.5:

Eine Firma stellt elektrische Geräte her, jedes dieser Geräte setzt sich aus 4 Schaltelementen A,

B, C , D zusammen. Von den verwendeten Schaltelementen des Typs A arbeiten 95 % einwand-

frei, vom Typ B 97 %, vom Typ C 92 % und vom Typ D 89 %. (Es handelt sich um »integrierte«

Schaltungen, bei denen stets gewisse Ausfallquoten vorkommen.)

Vor dem Zusammenbau eines Gerätes ist nicht zu erkennen, welche seiner Schaltelemente

fehlerhaft sind. Wieviel Prozent einwandfrei arbeitender Geräte sind mindestens zu erwarten?

1.1.5 Vollständige Induktion

Sehen wir uns noch einmal die Menge N der natürlichen Zahlen an! Sie ist Teilmenge der Menge
R aller reellen Zahlen und hat folgende Eigenschaften:

(N1) 1 ist eine natürliche Zahl.

(N2) Ist n eine natürliche Zahl, so auch n + 1 (n + 1 wird auch der »Nachfolger« von n
genannt).

Zweifellos gilt dies entsprechend auch für die Menge Z der ganzen Zahlen oder sogar für die
Menge R aller reellen Zahlen. N ist aber dadurch ausgezeichnet, daß sie die »kleinste« Teilmenge
von R mit den genannten Eigenschaften ist, d.h.: Jede Teilmenge M von R, die 1 enthält und mit
n auch stets n + 1, ist Obermenge von N. Insbesondere kann M nicht echte Teilmenge von N
sein. Es gilt also

(N3) Jede Menge M von natürlichen Zahlen, die 1 enthält und mit n stets auch n + 1 enthält,
ist gleich der Menge aller natürlichen Zahlen.

Bemerkung: Man kann (N1), (N2), (N3) als Definition der natürlichen Zahlen auffassen, zusam-
men mit der Tatsache, daß jede natürliche Zahl auch reelle Zahl ist.

Die Eigenschaft (N3) gestattet es uns, das Beweisverfahren der vollständigen Induktion durch-
zuführen. Wir wollen dies an einem simplen Beispiel zeigen, und zwar an der Behauptung: Es
gilt

2n > n für alle n ∈ N .9
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1.1 Reelle Zahlen 21 Niemand zweifelt daran, denn für n = 1, 2, 3, usw. folgt

21 > 1 , 22 = 4 > 2 , 23 = 8 > 3 , usw.

Ist dies aber schon ein Beweis? Hier müssen wir doch aufpassen, daß es uns nicht so geht wie
dem Bauern, der seine Kuh für 100 Taler verkaufte. Er zählte das Geld nach, das aus einzelnen
Talerstücken bestand: 1, 2, 3, 4, . . . , usw. Als er bei 67 angekommen war — ein für ihn wahrhaft
mühsames Geschäft — da wischte er sich den Schweiß von der Stirn und sagte: »Hat es bis
hierher gestimmt, so wird der Rest auch stimmen!« Sprach’s und steckte das Geld in den Sack.

So geht es natürlich nicht! Zum Beweis unserer Behauptung 2n > n können wir aber folgen-
dermaßen vorgehen:

(I) Die Behauptung gilt für n = 1, denn es sich sicherlich 21 > 1.

(II) Ist die Behauptung 2n > n jedoch für ein n ∈ N richtig, so gilt sie auch für n + 1 anstelle
von n, denn es ist

2n+1 = 2 · 2n > 2 · n ,

letzteres wegen 2n > n. Wegen 2n = n + n ≥ n + 1 folgt daher

2n+1 > n + 1 .

Damit ist aber alles bewiesen. Warum? Bezeichnen wir mit M die Menge aller natürlichen Zah-
len, für die 2n > n gültig ist, so stellen wir fest: 1 ∈ M (nach (I)) und mit n ∈ M ist auch
n + 1 ∈ M (nach (II)). Also muß M die Menge aller natürlichen Zahlen sein (nach (N3)), d.h.
2n > n ist für alle natürlichen n gültig.

Entscheidend ist also, daß wir die Schritte I (Beweis für n = 1) und II (Schluß von n auf
n+ 1) durchführen können. Das führt allgemein zu folgendem Beweisschema, welches sich von
unserem Beispiel nur dadurch unterscheidet, daß die Aussage »2n > n « durch A(n) ersetzt wird.

Vollständige Induktion:

Für jedes natürliche n sei eine Aussage A(n) definiert. Man weise nun nach,

(I) daß A(1) richtig ist, und

(II) daß aus der Annahme, daß A(n) richtig ist, auch die Gültigkeit von A(n + 1) folgt.

Ist dies getan, so ist damit die Richtigkeit der Aussage A(n) für alle natürlichen n bewiesen.

Die Schlüssigkeit des Beweisverfahrens wird genauso wie im obigen Beispiel begründet. Der
Beweisschritt I heißt Induktionsanfang, II heißt Induktionsschluß.

9 Es ist an = a · a · a · . . . · a, wobei rechts n-mal der Faktor a auftritt (a ∈ R, n ∈ N).
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Beispiel 1.2:
Mit dem Beweisverfahren der vollständigen Induktion wollen wir die Formel

1+ 2+ 3+ . . .+ n = n(n + 1)

2
(1.3)

beweisen.

(I) Induktionsanfang: Für n = 1 ist die Formel zweifellos richtig, denn sie verkürzt sich dabei
auf 1 = 1 · (1+ 1)/2.

(II) Induktionsschluß: Wir nehmen an, daß (1.3) für ein bestimmtes n gilt. Es soll gezeigt werden,
daß dies auch gilt, wenn n durch n + 1 ersetzt wird. Das sehen wir so ein: Es ist

1+ 2+ 3+ . . .+ n + (n + 1) = n(n + 1)

2
+ (n + 1)

unter Verwendung der Gültigkeit von (1.3) für unser betrachtetes n. Die rechte Seite kann
aber umgeformt werden in

n(n + 1)

2
+ 2(n + 1)

2
= (n + 1)(n + 2)

2
.

Es gilt also

1+ 2+ 3+ . . .+ n + (n + 1) = (n + 1)(n + 2)

2
,

d.h. in (1.3) ist n durch n + 1 ersetzt. Damit ist alles bewiesen. �

Beispiel 1.3:
Eine bestimmte Bausparkasse teilt ihre Darlehen nach sogenannten »Bewertungszahlen« zu. Je
höher die Bewertungszahl, desto eher die Zuteilung! Die Berechnung der Bewertungszahl ma-
chen wir an folgendem Beispiel klar: Ein Sparer schließt im Oktober 2002 einen Bausparvertrag
über 10000e ab. Er hat dafür monatlich eine Sparrate von 33e zu zahlen, halbjährlich also
198e. Stichtage für die Bewertungszahl sind der 31. März und der 30. September. Die »Bewer-
tungszahl« ist die Summe der Kontostände an diesen Stichtagen in den Jahren, in denen gespart
wird. Lassen wir den Zinszuwachs hier der Einfachheit halber unberücksichtigt, so ergeben sich
für die ersten Jahre folgende Bewertungszahlen:

Halbjahr Kontostand (Gespartes) Bewertungszahl bn

31.3.03 1. 198 198
30.9.03 2. 2 · 198 198+ 2 · 198
31.3.04 3. 3 · 198 198+ 2 · 198+ 3 · 198
30.9.04 4. 4 · 198 198+ 2 · 198+ 3 · 198+ 4 · 198

usw. Nach dem n-ten Halbjahr ist die Bewertungszahl bn also gleich

bn = 198+ 2 · 198+ 3 · 198+ . . .+ n · 198 = (1+ 2+ . . .+ n) · 198 .
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Hier kommt die bewiesene Formel (1.3) ins Spiel. Danach folgt

bn =
n(n + 1)

2
· 198 . (1.4)

Wir wollen annehmen, daß das Darlehen zugeteilt wird, wenn die Bewertungszahl bn das 2,6-
fache der Bausparsumme gerade überschritten hat, wenn also

bn > 26000 ≥ bn−1

gilt. Mit (1.4) folgt daraus n = 16, wie der Leser leicht überprüft. Nach 16 Halbjahren, also nach
8 Jahren, ist der Bausparvertrag zuteilungsreif.

Varianten zur vollständigen Induktion: (a) Gelegentlich wird anstelle von (II) der folgende
Induktionsschluß durchgeführt:

(II′) Man zeigt, daß aus der Gültigkeit der Aussagen A(1), A(2), . . ., A(n) die Gültigkeit von
A(n + 1) folgt.

(Führt man die Hilfsaussage A∗(n) ein, die bedeuten soll: »Es gilt A(k) für alle k = 1,2, . . ., n«
, so ist für A∗(n) wiederum (I) und (II) erfüllt, d.h. die Ersetzung von (II) durch (II′) ist erlaubt.)
(b) Der Induktionsanfang (I) darf auch variiert werden. Ist etwa n0 eine ganze Zahl, und ist zu
jeder ganzen Zahl n ≥ n0 eine Aussage A(n) erklärt, so ist (I) zu ersetzen durch:

(I′) Man zeige, daß A(n0) richtig ist. Führt man anschließend den Induktionsschluß (II) durch,
so ist die Gültigkeit von A(n) für alle ganzen n ≥ n0 gezeigt.

(Um dies einzusehen, hat man A(n) in der Form A(n0− 1+m) zu schreiben mit m = 1,2,3, . . ..
Da nach (I′) die Aussage für m = 1 gilt, und (II) den Schluß von m auf m + 1 darstellt, ist auch
diese Variation erlaubt.)

Beispiel 1.4:
Es soll gezeigt werden, daß

2n > n2 für alle natürlichen n ≥ 5

gilt. Hier ist n0 = 5. Der Leser führe den Beweis selbst durch.

Zur Übung beweise der Leser mit dem Beweisverfahren der vollständigen Induktion folgende
Aussagen:

Übung 1.6:

Es gilt für alle n ∈ N:

(a) 12 + 22 + 32 + . . .+ n2 = n(n + 1)(2n + 1)

6

(b) 13 + 23 + 33 + . . .+ n3 =
(

n(n + 1)

2

)2
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Übung 1.7:

(Bernoullische10Ungleichung) Beweise, daß für jedes reelle x > −1 mit x �= 0 folgendes gilt:

(1+ x)n > 1+ nx für alle ganzen n ≥ 2.

1.1.6 Potenzen, Wurzeln, Absolutbetrag

Die Grundgesetze über Potenzen an und Wurzeln n
√

a werden hier in knapper Form zusammen-
gestellt.
Potenzen mit natürlichen Exponenten: Für beliebige reelle a, b und natürliche Zahlen n, m
gilt

(ab)n = anbn , an+m = anam , (an)m = anm , 0 ≤ a < b⇒ 0 ≤ an < bn . (1.5)

(Man kann dies leicht mit vollständiger Induktion beweisen.)
n-te Wurzeln:

(a) Es sei a ≥ 0 und n eine beliebige natürliche Zahl. Mit

n
√

a = x

bezeichnet man diejenige reelle Zahl x ≥ 0, deren n-te Potenz a ergibt:

a = xn .

Eine solche Zahl x existiert (wie wir später mühelos aus dem Zwischenwertsatz folgern
werden, s. Abschn. 1.6.3, Beispiel 1.48). Sie ist auch eindeutig bestimmt. (Denn wäre y ≥ 0
eine weitere Zahl mit yn = a, wobei etwa x < y ist, so folgte aus (1.5) xn < yn , was nicht
sein kann, da xn = a = yn ist. n

√
a ist also eindeutig bestimmt.)

(b) Bei ungeradem n und negativem a definiert man

n
√

a = x

als diejenige negative Zahl x , die xn = a erfüllt. Z.B. 3
√
−8 = −2. Auch sie ist eindeutig

bestimmt, wie man entsprechend begründet.

(c) Ist schließlich a < 0 und n gerade, so ist n
√

a im Bereich der reellen Zahlen nicht definiert,
da es kein reelles x gibt mit xn = a (denn für alle x ∈ R gilt xn ≥ 0 bei geradem n).

Wir halten also fest: Für gerade n ist n
√

a genau dann sinnvoll erklärt, wenn a ≥ 0 ist, für
ungerade n ist n

√
a dagegen für alle reellen a definiert.

n
√

a heißt die n-te Wurzel aus a. Für die zweite Wurzel aus a ≥ 0 schreibt man bekanntlich
kurz

√
a und nennt dies schlicht die Wurzel aus a. Wir wiederholen noch einmal ausdrücklich,

daß
√

a stets größer oder gleich Null ist, also niemals negativ!

10 Jakob I. Bernoulli (1655 – 1705), schweizerischer Mathematiker und Physiker
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Berechnung von
√

a: Eine gute Methode zur Berechnung der Wurzel aus a > 0 besteht darin,
nach folgender Vorschrift zu verfahren. Man wähle eine Zahl x0 mit x2

0 ≥ a (z.B. x0 = a falls
a ≥ 1, x0 = 1 sonst) und berechne

xn+1 =
1

2

(

xn +
a

xn

)

für n = 0,1,2,3, . . ..

Die so nacheinander gebildeten Zahlen x0, x1, x2, x3, . . . kommen der Wurzel
√

a schnell be-
liebig nahe (Begründung und Fehlerabschätzung folgen später beim Newtonschen Verfahren).
Tabelle 1.1 zeigt die Berechnung von

√
2 mit diesem Verfahren (gerundete Werte). Ab x4 ändern

sich die Zahlen in den ersten 10 Stellen nicht mehr.

Tabelle 1.1: Zur Berechnung von
√

2

n xn

0 2, 000 000 000
1 1, 500 000 000
2 1, 416 666 667
3 1, 414 215 686
4 1, 414 213 562
5 1, 414 213 562

Also
√

2
.= 1,414 213 56211

Potenzen mit rationalen Exponenten: Für beliebige natürliche Zahlen n und m vereinbart man:

a) am/n = n
√

am

{

für alle reellen a, falls n ungerade,

für alle reellen a ≥ 0, falls n gerade.

b) a0 = 1 , für alle reellen a �= 0,

c) a−m/n = 1

am/n

{

für alle reellen a �= 0, falls n ungerade,

für alle reellen a > 0, falls n gerade.

Damit ist insbesondere für alle positiven Zahlen a und alle rationalen Zahlen r die Potenz

ar

erklärt.

Folgerung 1.9:
(Rechenregeln für Potenzen) Es gilt

(ab)r = ar br , ar+s = ar as , (ar )s = ars = (as)r

0 ≤ a < b⇒ 0 ≤ ar < br

11
.= bedeutet: »gleich bis auf Rundungsfehler«
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für alle rationalen r , s und alle reellen a, b, für die die obenstehenden Ausdrücke
erklärt sind.

Die Beweise können leicht mit den vorangehenden Hilfsmitteln geführt werden.
Der Absolutbetrag |x | einer reellen Zahl x ist definiert durch

|x | :=
{

x , falls x ≥ 0

−x , falls x < 0.

Z.B.: | − 3| = 3, |7| = 7. Für alle reellen Zahlen x , y und alle rationalen Zahlen r gelten die
Regeln:

|x + y| ≤ |x | + |y| (Dreiecksungleichung),

|x − y| ≥ ||x | − |y|| ,

|xy| = |x ||y| ,
∣
∣
∣
∣

x

y

∣
∣
∣
∣
= |x ||y| falls y �= 0,

|xr | = |x |r (falls xr erklärt ist).

Übung 1.8:

Beweise: Für alle reellen x > 0, y > 0 und alle rationalen r , s gilt

(a)

(
x

y

)r

= xr

yr , (b)
xr

xs = xr−s , (c)

(
1

xr

)s

= x−rs .

Übung 1.9:

Vereinfache die folgenden Ausdrücke (d.h. schreibe sie in der Form c · xr · ys .) Dabei ist x > 0,

y > 0 vorausgesetzt:

(a)
3
√

x5 y4

4
√

16x2 y−6
, (b)

5

√

x3
√

32y6 3
√

x

1.1.7 Summenformeln: geometrische, binomische, polynomische

Sind a1, a2, a3, . . . , an reelle Zahlen, so schreibt man die aus ihnen gebildete Summe a1 + a2 +
a3 + . . .+ an auch in der Form

n
∑

k=1

ak ,

und spricht dies so aus: »Summe der ak für k von 1 bis n« . k heißt der Index des Summengliedes
ak . Für n = 1,2,3 bedeutet
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a1 =
1
∑

k=1

ak , a1 + a2 =
2
∑

k=1

ak , a1 + a2 + a3 =
3
∑

k=1

ak , (1.6)

ferner gilt

n
∑

k=1

ak + an+1 =
n+1
∑

k=1

ak (1.7)

für beliebige natürliche n.

Beispiel 1.5:

Die Summe der Quadratzahlen 12 + 22 + 32 + . . . + n2 kann kürzer durch
n∑

k=1
k2 beschrieben

werden. Nach Übung 1.1 gilt dann

n
∑

k=1

k2 = n(n + 1)(2n + 1)

6
. (1.8)

Ohne Mühe sieht man ein, daß für das Rechnen mit Summen folgende einfache Regeln gelten:

n
∑

k=1

ak +
n
∑

k=1

bk =
n
∑

k=1

(ak + bk) , c
n
∑

k=1

ak =
n
∑

k=1

cak .

Unter Verwendung von (1.6), (1.7) können sie induktiv bewiesen werden. Wir empfehlen dies
dem Leser zur Übung.

Gelegentlich läuft der Index nicht von 1 bis n, sondern allgemeiner von einer ganzen Zahl s
bis zu einer anderen ganzen Zahl t (s ≤ t):

as + as+1 + as+2 + . . .+ at =
t
∑

k=s

ak .

Diese Summen werden entsprechend behandelt.

Besonders interessant sind Summen, die durch einen »geschlossenen Ausdruck« beschrieben
werden können, wie z.B. die Summe

n
∑

k=1

k = 1+ 2+ 3+ . . .+ n = n(n + 1)

2

oder die Summe der Quadrate (1.8). Die wohl wichtigste Summe dieser Art ist die geometrische
Summe:
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n
∑

k=0

qk = 1+ q + q2 + . . .+ qn (1.9)

für beliebiges reelles q12. Wie kann man einen »geschlossenen«, einfach zu berechnenden Aus-
druck für diese Summe finden? Dies gelingt durch einen kleinen Trick. Setzen wir nämlich zur
Abkürzung

s = 1+ q + q2 + . . .+ qn (1.10)

für die Summe und multiplizieren mit q , so folgt

qs = q + q2 + q3 + . . .+ qn+1 (1.11)

Subtrahieren wir die beiden letzten Gleichungen rechts und links voneinander, so ergibt sich

s − qs = 1− qn+1

d.h. auf der rechten Seite heben sich alle Glieder bis auf zwei heraus.

Ausklammern von s auf der linken Seite ergibt

s · (1− q) = 1− qn+1 ⇒ s = 1− qn+1

1− q
(falls q �= 1).

Im Falle q = 1 ist s offenbar n + 1, wie aus (1.9) unmittelbar hervorgeht. Damit haben wir
folgendes Resultat:

Geometrische Summenformel:

n
∑

k=0

qk =

⎧

⎪
⎨

⎪
⎩

1− qn+1

1− q
falls q �= 1

n + 1 falls q = 1.

(1.12)

Beispiel 1.6:

(Sparkonto) Ein Sparer zahlt jährlich am 1. Januar 600e auf ein Sparkonto ein, mit einem Jah-
reszins von p = 6 %. Welchen Kontostand hat er nach 7-jährigem Sparen erreicht? Setzt man zur
Abkürzung q := 1+ p = 1,06, so sind nach einem Jahr offenbar 600 ·q e auf dem Konto, nach 2
Jahren (600 ·q+600)q = 600q(1+q), nach 3 Jahren (600q(1+q)+600)q = 600q(1+q+q2)

usw. Nach n Jahren enthält das Sparkonto

600q(1+ q + q2 + . . .+ qn−1) = 600 · q 1− qn

1− q

12 Das erste Glied der Summe ist vereinbarungsgemäß gleich 1, auch im Falle q = 0.
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e, wobei wir die geometrische Summenformel gewinnbringend verwendet haben. Wir setzen
n = 7 ein und erhalten einen Kontostand von 5338,48e. Der Zinsgewinn in diesen 7 Jahren
beträgt also 1138,48e.

Binomische Formel: Durch einfaches Ausmultiplizieren berechnet man die folgenden Formeln:

(a + b)2 = a2 + 2ab + b2 ,

(a + b)3 = a3 + 3a2b + 3ab2 + b3 ,

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4 .

Allgemein erhält man für beliebigen natürlichen Exponenten n und beliebige reelle a, b die

Binomische Formel:

(a+b)n = an+
(

n

1

)

an−1b+
(

n

2

)

an−2b2+
(

n

3

)

an−3b3+. . .+
(

n

n − 1

)

abn−1+
(

n

n

)

bn (1.13)

mit
(

n

k

)

:= n · (n − 1)(n − 2) · . . . · (n − k + 1)

1 · 2 · 3 · . . . · k . (1.14)

Die Ausdrücke

(
n

k

)

(sprich »n über k« ) heißen die Binomialkoeffizienten.

Beispiele:

(
10

3

)

= 10 · 9 · 8
1 · 2 · 3 ,

(
6

4

)

= 6 · 5 · 4 · 3
1 · 2 · 3 · 4 .

Merkregel zur Berechnung von

(
n

k

)

: Das Produkt der »oberen« k Zahlen n·(n−1)·. . .·(n−k+1)

dividiere man durch das Produkt der »unteren« k Zahlen 1 ·2 · . . . · k.
Der Vollständigkeit halber definiert man

(
n

0

)

:= 1 , n = 0,1,2, . . . ,

wobei man sich am ersten Glied 1 · an in (1.13) orientiert. Damit erhält die binomische Formel
die knappe Form

(a + b)n =
n
∑

k=0

(
n

k

)

an−kbk . (1.15)

Sie gilt für alle n ∈ N0.
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Das Produkt 1 · 2 · 3 · . . . · k im Nenner des Binomialkoeffizienten (1.14) wird abgekürzt
beschrieben durch k!, sprich »k Fakultät« , also:

k! := 1 · 2 · 3 · . . . · k (k ∈ N).

Für k = 1 bedeutet dies 1! = 1, sowie (k + 1)! = (k!)(k + 1) für beliebige k ∈ N. Wiederum der
Vollständigkeit halber ergänzt man die Definition durch

0! := 1 .

Damit erhält man folgende Darstellung des Binomialkoeffizienten:

(
n

k

)

= n!
k!(n − k)! für alle k ∈ {0,1,2, . . . , n}. (1.16)

Man gewinnt dies für k ≥ 1 aus (1.14) durch Erweiterung des Bruches mit (n − k)!. Für k = 0
ergibt sich die Gleichung unmittelbar. Aus (1.16) leitet man leicht folgende Formeln her:

(
n

k

)

=
(

n

n − k

)

, , k ∈ {0,1, . . . , n} (1.17)

(
n + 1

k

)

=
(

n

k

)

+
(

n

k − 1

)

, k ∈ {1, . . . , n} (1.18)

für alle n ∈ N ∪ {0}.
Der Leser überzeuge sich durch Nachrechnen von der Richtigkeit der Gleichungen.

Bemerkung: Die erste Gl. (1.17) spiegelt den symmetrischen Aufbau der binomischen Formel
wieder: Der erste Koeffizient ist gleich dem letzten, der zweite gleich dem vorletzten usw.

Die zweite Gl. (1.18) dagegen zeigt, daß man die Binomialkoeffizienten geschickt in einem
»Dreieck« anordnen kann:

1 n=0
1 1 n=1

1 2 1 n=2
1 3 3 1 n=3

1 4 6 4 1 n=4
1 5 10 10 5 1 n=5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Von der zweiten Zeile an gilt dabei: Jede Zahl ist die Summe der rechts und links über ihr stehen-
den Zahlen. Diese Anordnung der Binomialkoeffizienten nennt man das Pascalsche13 Dreieck.

Beweis:

der binomischen Formel (1.15) durch vollständige Induktion:

13 Blaise Pascal (1623 – 1662), französicher Mathematiker, Physiker, Literat und Philosoph
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(I) Für n = 0 ist (1.15) sicherlich erfüllt, denn es gilt

(a + b)0 =
(

0

0

)

a0b0 = 1 .14

(II) Ist die binomische Formel für ein n ∈ N0 richtig, so folgt für den Exponenten n + 1:

(a + b)n+1 = (a + b)(a + b)n = (a + b)

n
∑

k=0

(
n

k

)

an−kbk

= a
n
∑

k=0

(
n

k

)

an−kbk + b
n
∑

k=0

(
n

k

)

an−kbk

=
n
∑

k=0

(
n

k

)

an−k+1bk +
n
∑

k=0

(
n

k

)

an−kbk+1

In der zweiten Summe setzen wir k + 1 = k′, also k = k′ − 1. Sie erhält damit die Form

n+1
∑

k′=1

(
n

k′ − 1

)

an−k′+1bk′

Wir lassen nun den Strich einfach weg, ersetzen also k′ durch k. Einsetzen in die letzte Zeile
der obigen Rechnung und Zusammenfassung ergibt dann

(a + b)n+1 =
(

n

0

)

an+1 +
n
∑

k=1

([(
n

k

)

+
(

n

k − 1

)]

an−k+1bk

)

+
(

n

n

)

bn+1 .

Mit (1.18) erkennt man hieraus, daß die binomische Formel für n + 1 anstelle von n gültig
ist. Nach dem Prinzip der vollständigen Induktion gilt sie damit für alle n ∈ N0. �

Beispiel 1.7:
Näherungsformeln für technische Berechnungen In der Technik tritt bei Binomen (a+b)n häufig
der Spezialfall auf, daß |b| »sehr viel kleiner« als |a| �= 0 ist. Wir drücken dies durch |b| ≪ |a|
aus. Man klammert an aus und erhält

(a + b)n = an

(

1+ b

a

)n

Wir setzen ε = b/a, wobei |ε| ≪ 1 ist, und beschäftigen uns mit (1 + ε)n . Im Falle n = 2 zum
Beispiel ist

(1+ ε)2 = 1+ 2ε + ε2 ≈ 1+ 2ε , 15

14 Hier verwenden wir die stillschweigende Vereinbarung, daß im Falle a = 0 oder b = 0 einfach 00 = 1 gesetzt wird.
Normalerweise ist dies nicht erlaubt. Hier ist es aber ausdrücklich gestattet.
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wobei der Summand ε2 »vernachlässigt« wurde, da er sehr klein gegen 1+2ε ist. Man macht dies,
wenn ε2 im Rahmen der verlangten Genauigkeit (Meßgenauigkeit, Rundungsfehlerschranken)
liegt. Ist etwa ε = 1/100, so ist ε2 = 1/10000, d.h. bei Rechnen mit dreistelliger Genauigkeit
liefert ε2 schon keinen Beitrag mehr. Entsprechend kann man näherungsweise setzen

(1+ ε)n ≈ 1+ nε ,

wenn |ε| ≪ 1. Dabei stehen rechts nur die ersten beiden Glieder der binomischen Reihe. Setzen
wir hier ε = δ/n, so erhalten wir

(

1+ δ

n

)n

≈ 1+ δ (|δ| ≪ n) .

Ziehen wir schließlich auf beiden Seiten die n-te Wurzel, so folgt nach Seitenvertauschen die
Näherungsformel

n
√

1+ δ ≈ 1+ δ

n
.

Dabei haben wir uns über Fehlerabschätzungen hier großzügig hinweggesetzt. Sie folgen später
im Rahmen der Taylorschen Formel.

Polynomische Formel: Statt (a+ b)n kann man allgemeiner die Summenpotenz (a1+ a2+ . . .+
ap)

n betrachten. Für Ausdrücke dieser Art gilt eine Verallgemeinerung der binomischen Formel.
Sie heißt:

Polynomische Formel:

(a1 + a2 + . . .+ ap)
n =

∑

k1+...+kp=n

n!
k1!k2! · · · kp!

ak1
1 ak2

2 · · · a
kp
p . (1.19)

Die Summe erstreckt sich dabei über alle möglichen p-Tupel (k1, k2, . . . kp) mit

k1 + k2 + . . .+ kp = n , (1.20)

wobei die ki die Werte 0, 1, 2, . . ., n annehmen.

Die Zahlen

n!
k1!k2! . . . kp!

(1.21)

in obiger Summe heißem die Polynomialkoeffizienten. Der Beweis der Formel verläuft nach dem
Muster des Beweises für die binomische Formel.

15 Das Zeichen ≈ bedeutet »ungefähr gleich« . ≈ ist kein mathematisch exaktes Zeichen. Es wird daher nicht in stren-
gen Beweisen, Definitionen oder Sätzen benutzt, sondern nur in Beispielen und Plausibilitätsüberlegungen.
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Übung 1.10:

Leite mit Hilfe der geometrischen Reihe die folgende Formel her:

xn − an

x − a
= xn−1 + xn−2a + xn−3a2 + . . .+ an−1 ,

{

x , a ∈ R

x �= a , n ∈ N , n ≥ 2 .

Übung 1.11*:

Beweise, daß für alle n ∈ N gilt:

(
n

0

)

−
(

n

1

)

+
(

n

2

)

−
(

n

3

)

+− · · · + (−1)n
(

n

n

)

= 0 .

Übung 1.12*:

Die Torsionssteifigkeit eines Rohres mit Durchmesser d und Wandstärke s ist

Id =
π

32
(d4 − (d − 2s)4) .

Das Rohr sei dünnwandig: s ≪ d . Gib eine Näherungsformel für Id an (in Anlehnung an

Beispiel 1.7).

1.2 Elementare Kombinatorik

1.2.1 Fragestellungen der Kombinatorik

Die Kombinatorik beschäftigt sich mit Anzahlberechnungen bestimmter Gruppierungen von Ele-
menten, wie z.B. in folgenden Fragestellungen:

(a) Wieviele Fußballspiele finden in der Bundesliga während einer Saison statt?

(b) Der Vorstand eines Vereins von 20 Personen besteht aus Vorsitzendem, Schriftwart und
Kassenwart. Wieviele Möglichkeiten gibt es, den Vorstand zu besetzen? (Wer jemals erlebt
hat, wie schwer es ist, Vereinsvorstände zu finden, da sich alle drücken, der wird staunen,
wieviele Möglichkeiten es gibt!)

(c) Wie groß ist die Wahrscheinlichkeit, beim Lotto (6 aus 49) mit zwei Tippreihen sechs Rich-
tige zu erhalten?

(d) Ein Elektriker soll 12 Drahtenden mit 12 Kontakten eines Schaltbrettes verbinden. Leider
hat er den Plan für die Verkabelung zu Hause vergessen; er würde 2 Stunden brauchen, um
den Plan zu holen. Daher kommt er auf die Idee, alle Möglichkeiten der Verkabelung der 12
Drähte mit den 12 Kontakten durchzuprobieren, um so schließlich die einzige richtige zu
finden (sie wird ihm durch eine aufblitzende Kontrollampe angezeigt). Zum Ausprobieren
einer Verkabelung aller 12 Drähte benötigt er 10 Sekunden. Handelt er richtig? Oder führe
er besser nach Hause, um den Schaltplan zu holen?
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Alle diese Fragen, wie auch verwandte Probleme, lassen sich auf sechs Grundaufgaben zu-
rückführen. Wir wollen sie im Folgenden erläutern.

1.2.2 Permutationen

Erste Grundaufgabe: In wieviele verschiedene Reihenfolgen lassen sich n Elemente a1, a2, . . .,
an bringen?

Antwort: n! .

Die Frage lautet in anderer Formulierung: Wieviele n-Tupel lassen sich aus den Elementen a1,
a2, . . ., an bilden, wobei verlangt wird, daß in jedem der n-Tupel alle Elemente a1, . . ., an vor-
kommen. Jedes n-Tupel dieser Art nennt man eine Permutation der Elemente a1, . . ., an . Die
Anzahl aller dieser Permutationen nennen wir Pn . Es wird also behauptet:

Pn = n! (1.22)

Beispiel 1.8:

Die möglichen Reihenfolgen, in die sich 3 Elemente 1, 2, 3 bringen lassen, lauten

123 231 312

132 213 321 .

Es ist P3 = 3! = 6.

Beweis:

Von Pn = n!: P1 ist gleich 1, da nur ein Element a1 betrachtet wird. P2 ist gleich 2, denn a1 und
a2 lassen sich in genau zwei Reihenfolgen anordnen: (a1, a2) und (a2, a1). Ferner ist P3 = 3!,
wie das Beispiel zeigt.

Wir wollen nun von n auf n + 1 schließen und nehmen an, daß Pn = n! für ein bestimmtes n
richtig ist. Gilt dann auch Pn+1 = (n+ 1)!? Um dies einzusehen, betrachten wir alle Permutatio-
nen von a1, a2, . . ., an+1, bei denen an+1 an erster Stelle steht:

(an+1, ∗, ∗, . . . , ∗)

Die übrigen Elemente a1, . . ., an können auf den Plätzen 2 bis n + 1 genau n! Reihenfolgen
bilden, da Pn = n! vorausgesetzt wurde. Steht an+1 an zweiter Position,

(∗, an+1, ∗, . . . , ∗)

so können die a1, . . ., an auf den übrigen Plätzen wiederum n! Reihenfolgen bilden. So schließen
wir weiter. Da an+1 an n+1 verschiedenen Positionen stehen kann und für jede dieser Positionen
n! Permutationen der übrigen Elemente vorkommen, gibt es (n+1) ·n! = (n+1)! Permutationen
von n + 1 Elementen, was zu beweisen war. �
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Beispiel 1.9:
Hiermit können wir nun unserem Elektriker aus Frage d) am Anfang des Abschnittes aus der
Klemme helfen. Er ist dabei, alle möglichen Reihenfolgen von 12 Elementen (Kontaktstellen)
durchzuprobieren. Davon gibt es aber

12! = 479001600 .

Da er zum Verkabeln jeder dieser Reihenfolgen 10 Sekunden braucht, kommt er beim Durchpro-
bieren aller Möglichkeiten auf 4790016000 Sekunden, das sind mehr als 151 Jahre. Wenn man
bedenkt, daß es für ihn schwer sein wird, während dieser Zeit nicht zu essen und zu schlafen,
dann wird klar, daß er doch besser nach Hause führe und seinen Schaltplan holte.

Bemerkung: Permutationen spielen in vielen Bereichen der Mathematik eine Rolle, insbeson-
dere in der Algebra, wie z.B. in der Gruppentheorie, Körpertheorie und bei Determinanten. Auf
den letzten Aspekt wird in Burg/Haf/Wille (Lineare Algebra) [7] genauer eingegangen.

1.2.3 Permutationen mit Identifikationen

Zweite Grundaufgabe: Auf wieviele verschiedene Weisen lassen sich die Elemente

a1, a1, . . . , a1
︸ ︷︷ ︸

k1

, a2, a2, . . . , a2
︸ ︷︷ ︸

k2

, . . . , ar , ar , . . . , ar
︸ ︷︷ ︸

kr

anordnen? a1 trete dabei k1-mal auf, a2 k2-mal, usw. Die Anzahl aller Elemente ist

n = k1 + k2 + . . .+ kr .

Antwort:

n!
k1!k2! . . . kr !

(1.23)

Es ist hier also nach der Anzahl der n-Tupel gefragt, in denen a1 genau k1-mal vorkommt, a2

genau k2-mal, a3 genau k3-mal, usw., bis ar , das genau kr -mal auftritt.

Beispiel 1.10:
An einem Fahnenmast sollen übereinander 10 Wimpel hochgezogen werden, und zwar 5 weiße,
3 rote und 2 blaue Wimpel. Die 5 weißen Wimpel sehen untereinander völlig gleich aus, dasselbe
gilt für die roten und für die blauen Wimpel. Auf wieviele verschiedene Weisen läßt sich der Fah-
nenmast mit den 10 Wimpeln schmücken? (Oder anders gefragt: Wieviele verschiedene Signale
lassen sich mit den 10 Wimpeln geben?) Antwort: Die Anzahl ist

10!
5!3!2! = 2520
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Beweis:
von (1.23): Wir wollen zunächst davon ausgehen, daß die anzuordnenden Elemente mit zusätzli-
chen oberen Indizes durchnumeriert sind:

a1
1, a2

1, . . . , ak1
1

︸ ︷︷ ︸

k1

, ak1+1
2 , ak1+2

2 , . . . , ak1+k2
2

︸ ︷︷ ︸

k2

, . . . , a
k1+...+kn−1+1
r , . . . , an

r
︸ ︷︷ ︸

kr

Aus ihnen lassen sich genau n! Permutationen bilden. Ersetzen wir nun alle Elemente a1
1 , . . .,

ak1
1 durch ein und dasselbe Element a1, d.h. »identifizieren« wir die Elemente a1

1 , . . ., ak1
1 , so

werden alle Permutationen gleichgesetzt, die durch Umstellungen der a1
1 , . . ., ak1

1 auseinander

hervorgehen. Es gibt aber genau k1! Reihenfolgen der Elemente a1
1 , . . ., ak1

1 . Somit müssen wir
n! durch k1! dividieren, um die Anzahl der Permutationen zu erhalten, in denen die Elemente a1

1 ,

. . ., ak1
1 »identifiziert« sind, d.h. durch a1 ersetzt sind.

Entsprechend wird bei Identifizierung der Elemente ak1+1
2 , . . . , ak1+k2

2 durch k2! dividiert usw.
Damit ist die gesuchte Anzahl von Permutationen, in denen a1 genau k1-mal vorkommt, a2 genau
k2-mal usw. gleich

n!
k1!k2! . . . kr !

�

Beispiel 1.11:
Als weiteres Beispiel behandeln wir die Frage, wieviele verschiedene Kartenverteilungen beim
Skat möglich sind. Dabei werden 32 Karten verteilt, jeder der drei Spieler bekommt 10 Karten
und zwei Karten wandern in den »Skat« .

Hier besteht das eigentliche Problem darin, den Zusammenhang mit der Grundaufgabe der
Permutationen mit Identifikationen zu finden. Zu diesem Zwecke denke man sich die Skatkarten
zunächst verteilt. Jeder Spieler markiere nun seine Karten, und zwar schreibe der erste Spieler
auf jede seiner Karten mit Bleistift ein a, der zweite Spieler auf jede seiner Karten ein b, der
dritte entsprechend c, und die beiden Karten im Skat werden mit d markiert. Anschließend lege
man alle Karten in »systematischer« Reihenfolge auf den Tisch, d.h. zunächst alle Kreuzkarten,
dann alle Pik, dann alle Herz und dann alle Karo und jede »Farbe« in sich geordnet: As, K, D, B,
10, 9, 8, 7. Damit bilden die angebrachten Markierungen eine Permutation mit Wiederholungen,
wobei a, b, c jeweils 1O-mal vorkommen und d 2-mal. Die Anzahl aller Permutationen mit
Identifikation ist aber

32!
10!10!10!2!

.= 2,75 · 1015 .

Dies ist die Anzahl aller Kartenverteilungen beim Skat.

Bemerkung: Die Formel für die Anzahl der Permutationen mit Identifikationen ist grundlegend
in der Kombinatorik. Sie stellt einen Allgemeinfall dar, aus dem sich viele Sonderfälle herleiten
lassen.
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Beispiel 1.12:

Ein oft vorkommender Fall ist die Anordnung von Nullen und Einsen, z.B.

1 0 0 1 0 1 1 0 0 1 .

Frage: Auf wieviele verschiedene Weisen lassen sich k Einsen und m Nullen anordnen? Antwort:

n!
k!m! =

(
n

k

)

, wobei n = k + m ist.

Übung 1.13:

Ein Fußballverein hat 13 aktive Spieler. Auf wieviele verschiedene Weisen kann man die Spieler

folgendermaßen einteilen: 3 Stürmer, 3 Mittelfeldspieler, 4 Verteidiger, 1 Torwart, 2 Ersatzbank-

wärmer?

Übung 1.14*:

Jede senkrechte Spalte einer Lochkarte hat genau 12 Lochstellen. In einem bestimmten Code

werden für jedes Zeichen 3 Löcher pro Spalte gestanzt. Wieviele Zeichen kann man in diesem

Code verschlüsseln?

1.2.4 Variationen ohne Wiederholungen

Dritte Grundaufgabe: Es sei eine Menge aus n Elementen

a1, a2, . . . , an

gegeben. Aus ihr werden nacheinander k verschiedene Elemente herausgegriffen (k ≤ n). Auf
wieviele Weisen ist dies möglich? Dabei komme es auf die Reihenfolge an, in der die Elemente
entnommen werden.

Antwort

n(n − 1)(n − 2) . . . (n − k + 1) = n!
(n − k)!

Beispiel 1.13:

Aus einer Urne mit 10 durchnumerierten Kugeln werden nacheinander drei Kugeln entnommen
und in der entnommenen Reihenfolge nebeneinandergelegt, z.B.



1.2 Elementare Kombinatorik 35

Fig. 1.11: Urne mit Kugeln

Sie bilden ein Tripel. Wieviele solcher Tripel aus drei verschiedenen Kugeln lassen sich bilden?
Antwort:

10 · 9 · 8 = 720 .

Die beschriebene dritte Grundfrage läßt sich kürzer so formulieren:
Es sei eine Menge aus n Elementen a1, . . ., an gegeben. Wieviele k-Tupel aus jeweils k ver-

schiedenen Elementen lassen sich daraus bilden (k ≤ n)?
k-Tupel dieser Art heißen Variationen zur k-ten Klasse ohne Wiederholungen. »Ohne Wieder-

holungen« deshalb, weil je zwei Elemente eines solchen n-Tupels verschieden sind, sich also
kein Element darin »wiederholt«.
Bemerkung: In Anlehnung an unser Urnenbeispiel nennen wir »Variationen ohne Wiederholun-
gen« auch geordnete Stichproben ohne Zurücklegen.

Es ist nach der Anzahl der Variationen zur k-ten Klasse ohne Wiederholungen gefragt. Wir
bezeichnen diese Anzahl mit Vn,k . Es wird behauptet:

Vn,k =
n!

(n − k)!

Beweis:

Für die erste Position eines k-Tupels der beschriebenen Art haben wir n Möglichkeiten der Be-
setzung, denn alle a1, . . ., an kommen dafür in Frage. Ist die erste Position aber einmal besetzt,
so kommen für die zweite Position nur noch (n − 1) Elemente in Betracht, weil ja ein Element
schon für Platz 1 verwendet wurde. Da also auf jeden der n Fälle für Position 1 genau (n − 1)

Möglichkeiten für Position 2 kommen, ergibt dies zusammen

n · (n − 1)

Möglichkeiten, die ersten beiden Positionen zu besetzen. Für jede solche Besetzung gibt es dann
aber nur noch (n − 2) Elemente, die die dritte Stelle annehmen können. Also hat man

n · (n − 1) · (n − 2)
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Möglichkeiten, die ersten 3 Positionen zu besetzen. So schließt man weiter und erhält für die
Besetzungen aller k Stellen schließlich

n · (n − 1) · (n − 2) · (n − 3) · . . . · (n − k + 1)

Möglichkeiten, also ein Produkt aus k Faktoren, beginnend mit dem Faktor n und von Faktor zu
Faktor um 1 absteigend. �

Beispiel 1.14:
Frage b) aus Abschn. 1.2.1 wird hier beantwortet. Vorsitzender, Schriftwart und Kassierer bil-
den ein Tripel. Die Anzahl möglicher Tripel dieser Art ist also bei einer Vereinsstärke von 20
Personen gleich

20 · 19 · 18 = 6840

Beispiel 1.15:
Frage a) aus Abschn. 1.2.1: Wieviele Bundesligaspiele pro Saison? Es gibt 18 Fußballvereine
in der Bundesliga. Die Anzahl der Spiele ist gleich der Anzahl aller geordneten Paare aus 18
Vereinen, das sind V18,2 = 18 · 17 = 306.

Übung 1.15:

Aus einem Kartenspiel mit 32 verschiedenen Karten ziehen 4 Spieler je eine Karte. Wieviele

verschiedene Kartenverteilungen dieser Art gibt es?

Übung 1.16*:

Ein Autofahrer besitzt für sein Auto sechs Sommerreifen, die er gleichmäßig »abfahren« möch-

te. Aus diesem Grunde beschließt er, in jedem Sommer mit einer anderen Reifenverteilung auf

den vier Rädern zu fahren. Da sich beispielsweise links vorne ein Reifen stärker abnutzt als

rechts hinten, werden alle Räder hier unterschieden. Frage: Wird er alt genug, um das Ende

seines Vorhabens zu erleben?

1.2.5 Variationen mit Wiederholungen

Vierte Grundaufgabe: Wieviele k-Tupel lassen sich aus n Elementen

a1, a2, . . . , an

bilden? Dabei ist zugelassen, daß in jedem k-Tupel jedes ai mehrfach vorkommen darf, maximal
bis zu k-mal. Antwort:

nk (1.24)

k-Tupel der genannten Art heißen Variationen zur k-ten Klasse mit Wiederholungen. Ihre Anzahl
wird mit V nk bezeichnet. Die Behauptung lautet also



1.2 Elementare Kombinatorik 37

V n,k = nk (1.25)

Beispiel 1.16:
Wieviele Tripel lassen sich aus den 10 Ziffern 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 bilden? Die Antwort ist
leicht, denn es handelt sich hier gerade um die 3-stelligen natürlichen Zahlen, z.B. 577, wobei
wir führende Nullen mitschreiben wollen, also 001 statt 1 oder 036 statt 36. Setzen wir noch 000
statt 0, so entsprechen die

103 = 1000

Tripel aus den 10 Ziffern genau den Zahlen von 0 bis 999.

Beweis:
Zu (1.25): Für die erste Position eines k-Tupels a1, a2, . . ., an haben wir n Möglichkeiten der
Besetzung, nämlich alle a1, . . ., an . Für jede solche Besetzung haben wir in Position 2 wiederum
alle n Elemente a1, . . . an zur Auswahl. Somit gibt es

n · n = n2

Möglichkeiten, die ersten beiden Position zu besetzen. Für jede Besetzung der ersten beiden
Stellen gibt es aber n Möglichkeiten, die dritte Position zu füllen. Also hat man

n · n · n = n3

Möglichkeiten, die ersten drei Stellen des k-Tupels zu besetzen. So geht es weiter. Somit hat man
zur Besetzung des k-Tupels genau nk Möglichkeiten. �

Übung 1.17:

Das Hexadezimalsystem besteht aus den 16 Zeichen 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E,

F. Wieviele 5-stellige Kombinationen kann man daraus bilden? (dies entspricht der Anzahl aller

höchstens 5-stelligen Hexadezimalzahlen, wobei führende Nullen weggelassen werden.)

1.2.6 Kombinationen ohne Wiederholungen

Fünfte Grundaufgabe: Wieviele k-elementige Teilmengen lassen sich aus einer Menge M =
{a1, a2,. . . ,an} von n Elementen bilden (k ≤ n)? Antwort:

(
n

k

)

= n!
k!(n − k)! (1.26)

Man spricht hier von Kombinationen zur k-ten Klasse ohne Wiederholungen. Es wird also be-
hauptet, daß für ihre Anzahl Kn,k . gilt:

Kn,k =
(

n

k

)

(1.27)



38 1 Grundlagen

Beweis:

Die Elemente von M schreiben wir uns in der durchnumerierten Reihenfolge hin

a1, a2, . . . , an

und markieren die Elemente ai , die zu einer bestimmten Teilmenge gehören, durch eine darunter
geschriebene 1 und alle anderen Elemente durch 0, z.B.

a1, a2, a3, a4, a5, a6, a7, a8

0 1 1 0 1 0 1 1

für n = 8 und k = 5. Unsere Teilmenge besteht hierbei aus a2, a3, a5, a7, a8. Auf diese Weise
entspricht jeder Teilmenge von M genau ein n-Tupel aus k Einsen und m = n − k Nullen. Nach
dem letzten Beispiel in Abschn. 1.2.3 gibt es aber genau

(n
k

)

solcher n-Tupel, also gibt es auch
ebenso viele k-elementige Teilmengen von M . �

Beispiel 1.17:

Das Lotto (6 aus 49) ist für Kombinationen ohne Wiederholung wohl das bekannteste und für
viele Menschen das aufregendste Beispiel. Unsere Überlegungen zeigen, daß

(
49

6

)

= 49 · 48 · 47 · 46 · 45 · 44

1 · 2 · 3 · 4 · 5 · 6 = 13 983 816

verschiedene »Tippreihen« beim Lotto möglich sind, also fast 14 Millionen. Die Chance, 6 »Rich-
tige« zu haben, ist daher recht klein.

Folgerung 1.10:

Eine n-elementige Menge hat genau 2n Teilmengen.

Beweis:

Es gibt

(
n

k

)

k-elementige Teilmengen in der Menge, also insgesamt

(
n

0

)

+
(

n

1

)

+
(

n

2

)

+
(

n

3

)

+ . . .+
(

n

n

)

Teilmengen der Menge. Die hingeschriebene Summe ist aber nach der binomischen Formel
gleich (1+ 1)n = 2n . �

Übung 1.18:

Aus Äpfeln, Orangen und Bananen soll ein Obstsalat gemacht werden. Dabei sollen genau 10

Früchte verwendet werden, aber von jeder Sorte höchstens 5. Wieviele verschiedene Obstsalate

sind auf diese Weise möglich? (Guten Appetit).
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1.2.7 Kombinationen mit Wiederholungen

Sechste Grundaufgabe: Aus n Elementen a1, a2, . . ., an sollen Gruppierungen von k Elementen
gebildet werden, wobei jedes Element mehrfach in einer Gruppierung auftreten darf, bis zu k-mal.
Auf die Reihenfolge der Elemente kommt es dabei nicht an. Wieviele solcher Gruppierungen sind
möglich? Antwort:

(
k + n − 1

k

)

(1.28)

Gruppierungen der beschriebenen Art werden Kombinationen zur k-ten Klasse mit Wiederholun-
gen genannt und ihre Anzahl mit K n,k bezeichnet. Es wird somit behauptet:

K n,k =
(

k + n − 1

k

)

(1.29)

Beispiel 1.18:
Wieviele verschiedene Würfe sind mit 3 Würfeln möglich, wobei es auf die Reihenfolge der
Würfel nicht ankomme. Hier ist k = 3 und n = 6, also gibt es

(
k + n − 1

k

)

=
(

8

3

)

= 8 · 7 · 6
1 · 2 · 3 = 56

verschiedene Würfe.

Da es auf die Reihenfolge der Elemente einer der genannten Gruppierungen nicht ankommt,
können wir sie etwa nach aufsteigenden Indizes anordnen, z.B.

(a1, a2, a2, a5, a7, a9, a9) .

Solche k-Tupel nennen wir monotone k-Tupel. Damit läßt sich die sechste Grundaufgabe auch
so formulieren:

Wieviele monotone k-Tupel lassen sich aus n durchnumerierten Elementen a1, a2, . . ., an

bilden?

Beweis:
Von (1.29): Um einzusehen, daß die von uns gesuchte Anzahl gleich

(k+n−1
k

)

ist, fassen wir ein
Beispiel ins Auge, etwa mit n = 5 und k = 7. Ein monotones 7-Tupel aus a1, a2, a3, a4, a5 ist
also z.B. durch

(a1, a1, a1, a3, a4, a5, a5)

gegeben. Wir wollen dies etwas umdeuten, und zwar folgendermaßen: Wir denken uns fünf Kä-
sten, von 1 bis 5 durchnumeriert. Die drei Elemente a1 sollen bedeuten, daß im Kasten 1 drei
Kugeln liegen, a3 bedeute, daß im Kasten 3 eine Kugel liegt, usw. Damit entspricht unser 7-Tupel
folgendem Bild (Fig. 1.12):
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Fig. 1.12: Kästen mit Kugeln

Lasse ich aus diesem Bild alles weg mit Ausnahme der Kugeln und der Zwischenwände der
Kästen, so entsteht folgendes:

Fig. 1.13: Umdeutung

Sieh da! Dies schaut doch sehr nach einer Reihenfolge von 7 Nullen und 4 Einsen aus! Davon
gibt es aber genau

(
7+ 4

7

)

nach Abschn. 1.2.3, allgemeiner; wegen k = 7, n = 5:

(
k + n − 1

k

)

.

Dies ist die gesuchte Anzahl monotoner k-Tupel. �

Fig. 1.14: Urne mit Kugeln

1.2.8 Zusammenfassung

Die letzten vier Grundaufgaben lassen sich übersichtlich am Beispiel einer Urne mit Kugeln
darstellen. Und zwar stellen wir uns eine Urne oder einen Topf vor, in dem n durchnumerierte
Kugeln liegen. In Fig. 1.14 ist n = 10. Aus ihr sollen k Kugeln entnommen werden, z.B.: k = 4.
Wir sprechen von einer Stichprobe von k Kugeln. und zwar von einer geordneten Stichprobe,
wenn es uns auf die Reihenfolge der herausgenommenen Kugeln ankommt; von einer ungeord-
neten Stichprobe, wenn es nicht auf die Reihenfolge ankommt. Also
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geordnete Stichproben = Variationen

ungeordnete Stichproben = Kombinationen

Wir stellen uns nun zwei Gedankenversuche vor.

(1) Im ersten Versuch nehmen wir nacheinander aus der Urne k verschiedene Kugeln.

(2) Beim zweiten Versuch entnehmen wir der Urne eine Kugel, notieren ihre Nummer und
legen sie dann zurück. Dann entnehmen wir der Urne wieder eine Kugel, notieren ihre
Nummer und legen sie zurück. So fahren wir fort bis zur k-ten Kugel. Hierbei kann es
daher passieren, daß die gleiche Kugel mehrmals gezogen wird.

Beim zweiten Versuch sprechen wir von Stichproben mit Zurücklegen. Beim ersten Versuch
entsprechend von Stichproben ohne Zurücklegen. Bei Zurücklegen können also Wiederholungen
von Kugeln auftreten. Wird nicht zurückgelegt, so treten keine Wiederholungen auf.

ohne Zurücklegen entspricht ohne Wiederholungen

mit Zurücklegen entspricht mit Wiederholungen

Somit entsteht folgende Tabelle, wobei von n Elementen bzw. Kugeln ausgegangen wird:

Variationen zur k-ten Klasse ohne Wiederholungen

=
geordnete Stichproben von k Kugeln ohne Zurücklegen.

Anzahl: Vn,k =
n!

(n − k)!

Kombinationen zur k-ten Klasse ohne Wiederholungen

=
ungeordnete Stichproben von k Kugeln ohne Zurücklegen.

Anzahl: Kn,k =
(

n

k

)

Variationen zur k-ten Klasse mit Wiederholungen

=
geordnete Stichproben von k Kugeln mit Zurücklegen.

Anzahl: V n,k = nk

Kombinationen zur k-ten Klasse mit Wiederholungen

=
ungeordnete Stichproben von k Kugeln mit Zurücklegen.

Anzahl: K n,k =
(

n + k − 1

k

)

In diese Vier-Felder-Tafel ordnen sich die Permutationen (1. Grundaufgabe) ein als spezielle
Variationen zur k-ten Klassen ohne Wiederholungen, nämlich für den Fall k = n.

Die Permutationen mit Identifikationen dagegen gehen über dieses Schema hinaus. Ihre An-
zahl ist

n!
k1!k2! . . . kr !

(1.30)

(siehe Abschn. 1.2.3). Man kann aber alle übrigen Fälle, ausgenommen Variationen mit Wie-
derholungen, als Spezialfälle von Permutationen mit Identifikationen ansehen, wenn man sie
geeignet interpretiert.
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1.3 Funktionen

1.3.1 Beispiele

Viele Vorgänge in Naturwissenschaft und Technik werden durch »Funktionen« beschrieben.

Beispiel 1.19:

Die Gleichung

s = g

2
t2 mit g = 9,81

m

s2
(1.31)

beschreibt den freien Fall: Läßt man einen Körper fallen (z.B. einen Schlüssel von einem Turm
(s. Fig. 1.15), so ist er nach t Sekunden s Meter gefallen. (Dies ist streng genommen nur im
Vakuum richtig. Der Wert g = 9,81 m

s2 gilt für Mitteleuropa.)

Fig. 1.15: Zum Fallgesetz

Für jede Falldauer t können wir nach obiger Gleichung die Fallstrecke s berechnen. Es ist also
eine Vorschrift gegeben, die jedem t ≥ 0 eine bestimmte Zahl s zuordnet. Eine Vorschrift dieser
Art nennt man eine Funktion.

Beispiel 1.20:

In einem Stromkreis mit einer Spannungsquelle von U = 220 Volt und einem Widerstand R ist
die Stromstärke

I = U

R
. (1.32)

Man erkennt: Je kleiner der Widerstand R, desto größer die Stromstärke I . (U = 220 Volt
sei konstant dabei). Die Gleichung ordnet jedem Widerstand R eine Stromstärke I zu. Es liegt
wieder eine Funktion vor.
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Fig. 1.16: Stromkreis Fig. 1.17: Gleisbogen

Beispiel 1.21:

Es sei ein Gleisbogen gegeben, der Teil eines Kreisbogens ist. (Gemeint ist dabei die Mittellinie
zwischen den beiden Schienen des Gleises.) Wie groß ist der Durchmesser y des Kreises? Wir
denken uns dabei zwischen zwei Punkten P1, P2 des Gleises eine Verbindungsstrecke gezogen.
Der Mittelpunkt M der Strecke habe vom Gleis den Abstand x (s. Fig. 1.17). Die Entfernung
zwischen M und P1 sei a. Die Längen x und a seien gemessen worden, z.B. a = 10m, x =
0,75m. Den noch unbekannten Radius des Kreises nennen wir r . Wendet man den Satz des
Pythagoras auf das schraffierte Dreieck in Fig. 1.17 an, so erhält man

r2 = a2 + (r − x)2 , also r2 = a2 + r2 − 2r x + x2 .

Hier fällt r2 heraus. Auflösen nach 2r = y ergibt

y = a2

x
+ x . (1.33)

Dies ist die Berechnungsvorschrift für den Kreisdurchmesser y. Nimmt man a als fest an (was un-
ter Verwendung eines Bandmaßes konstanter Länge realistisch ist), so stellt die obige Gleichung
eine Funktion dar, die für jedes x ∈ (0, a] den Durchmesser y liefert.

(Da x normalerweise sehr klein gegen a2/x ist, kann näherungsweise mit y ≈ a2/x gerechnet
werden. So wird in der Praxis auch häufig verfahren.)

Man beschreibt eine Gleichung wie (1.33) auch abgekürzt durch

y = f (x)

1.3.2 Reelle Funktionen einer reellen Variablen

Den Beispielen des vorigen Abschnitts ist gemeinsam, daß jeweils eine Vorschrift gegeben ist,
die bestimmten reellen Zahlen andere Zahlen eindeutig zuordnet. Solche Vorschriften heißen
Funktionen. Wir präzisieren dies in der folgenden
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Definition 1.1:
Eine Vorschrift, die jedem x aus einer Menge A ⊂ R genau ein y aus einer Menge
B ⊂ R zuordnet, heißt eine Funktion von A in B. Funktionen von A in B werden
symbolisiert durch

f : A→ B , g : A→ B , . . .

Ist der Zahl x ∈ A durch die Funktion f : A→ B die Zahl y zugeordnet so beschreibt
man dies durch

y = f (x) sprich: »y gleich f von x«.

y heißt Funktionswert oder Bildpunkt von x , x heißt Argument oder Urbildpunkt von
y bezüglich f . Gelegentlich wird x auch unabhängige Variable der Funktion genannt,
insbesondere dann, wenn x noch nicht zahlenmäßig festgelegt ist, sondern als »Platz-
halter« für reelle Zahlen aus A aufzufassen ist. y heißt in diesem Zusammenhang
abhängige Variable von f .

Die Menge A wir der Definitionsbereich oder Urbildbereich von f genannt, wäh-
rend B der Bildbereich von f heißt. Als Wertebereich von f bezeichnet man die Men-
ge aller Funktionswerte f (x), mit x ∈ A. Er wird durch f (A) symbolisiert.

Natürlich gilt f (A) ⊂ B, doch braucht f (A) nicht gleich dem Bildbereich B zu sein.

Z.B. kommen bei der Funktion f : R→ R, definiert durch

y = f (x) = x2 (1.34)

als Funktionswerte alle y ≥ 0 vor. Negative Funktionswerte f (x) treten nicht auf. Der Wertebe-
reich f (R) ist also das Intervall [0,∞), während als Bildbereich R angegeben ist.

Zur Beschreibung von Funktionen f : A→ B wird neben

y = . . . oder f (x) = . . .

auch folgende Symbolik verwendet:

f : x �→ . . . ∈ B 16 , , x ∈ A

wobei B weggelassen werden darf, wenn B = R ist.

Beispiel 1.22:

Die Funktion f : [0,∞)→ R, definiert durch

f (x) = √x − 1 ,

16 Sprich: »x wird abgebildet auf f (x)«
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wird auch in der Form

f : x �→ √x − 1 , x ∈ [0,∞)

beschrieben. Im übrigen gilt folgende

Faustregel: Wie man eine Funktion beschreibt, ist völlig gleichgültig, sofern nur daraus klar
hervorgeht, was der Definitionsbereich ist, was der Bildbereich ist, und wie die Zuordnungs-
vorschrift lautet!

Die in diesem Abschnitt beschriebenen Funktionen nennt man auch ausführlicher »reelle Funk-
tionen einer reellen Variablen« , womit ausgedrückt wird, daß Funktionswerte und Variable reelle
Werte annehmen.

Übung 1.19:

Die folgenden Funktionsvorschriften beschreiben reellwertige Funktionen einer reellen Varia-

blen x . Gib die größtmöglichen Definitionsbereiche und die zugehörigen Wertebereiche dazu

an!

(a) f (x) =
√

x − 1 , (b) g(x) = 1+ x

x2 − 4x + 3
, (c) h(x) = x2

1+ x2

1.3.3 Tabellen, graphische Darstellungen, Monotonie

Um uns einen Überblick über eine gegebene reelle Funktion f : A → B zu machen, ist es
zweckmäßig, für einige Zahlen x aus A die zugehörigen Funktionswerte y = f (x) zu ermitteln
und sie in einer Tabelle zu ordnen. (Mit Taschenrechnern oder Computern ist das heute eine
Kleinigkeit.)

Für die Funktion f : R→ R, beschrieben durch

y = f (x) = x2

sind in der Tabelle 1.2 einige Werte zusammengestellt. (Da (−x)2 = x2 ist, genügt es, positive
x-Werte zu betrachten.)

Tabelle 1.2: f (x) = x2

x y = x2 x y = x2 x y = x2

0 0 0,8 0,64 1,8 3,24
0,2 0,04 1,2 1,44 2,0 4,00
0,4 0,16 1,4 1,96
0,6 0,36 1,6 2,56

Anschließend kann man die in der Tabelle ermittelten Zahlenpaare (x, y) als Punkte in einem
ebenen Koordinatensystem deuten und sie dort eintragen. Dann verbindet man diese Punkte in
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der Reihenfolge aufsteigender x-Werte durch eine Linie, die zwischen benachbarten Punkten ge-
radlinig oder schwach gekrümmt ist. Auf diese Wiese erhält man ein Schaubild (auch Diagramm
genannt) der Funktion f (s. Fig. 1.18). Es spiegelt die Funktion umso genauer wieder, je mehr
Punkte man dazu verwendet, und je genauer man sie skizziert (etwa auf Millimeterpapier).

Fig. 1.18: Schaubild von f (x) = x2

Mit geeigneten Computerprogrammen kann man Schaubilder von Funktionen bequem auf
dem Bildschirm oder Plotter erzeugen.

Die gezeichnete Linie stellt den Graphen der Funktion dar. Unter dem Graphen einer Funktion
f : A→ B versteht man, präzise gesagt, die Menge aller Paare (x, y) mit y = f (x), x ∈ A. Der
Graph von f wird durch graph( f ) symbolisiert, in Mengenschreibweise also

graph( f ) = {(x, y) | y = f (x) und x ∈ A} .

Fig. 1.18 zeigt den Graphen der Funktion f (x) = x2, f : R→ R, allerdings nur teilweise, da er
sich ja beliebig weit nach oben und seitwärts erstreckt. Der Graph dieser Funktion hat die Form
einer »Parabel« .

Beispiel 1.23:
Die durch

f (x) = 3x − 1

beschriebene Funktion f : R → R ist in Fig 1.19 skizziert. Ihr Graph ist offenbar eine Gerade
durch die Punkte (0,−1) und ( 1

3 ,0), die man erhält durch f (0) = −1 und 0 = f (x) = 3x−1⇒
x = 1

3 .

Beispiel 1.24:
Die Gleichung

y = f (x) = 1

x

beschreibt eine Funktion, die nur für x �= 0 erklärt ist, d.h. es ist f : R \ {0} → R. Ihr Graph,
s. Fig. 1.20, ist eine »Hyperbel«
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Fig. 1.19: f (x) = 3x − 1 Fig. 1.20: Hyperbel f (x) = 1
x

Beispiel 1.25:

Unsere Funktion

f (x) = a2

x
+ x , f : (0, a] → R , a = 20 ,

Aus Beispiel 1.21 (Krümmungsdurchmesser) ist in Fig. 1.21 skizziert. Sie ist natürlich nur für
0 < x ≤ a zur Berechnung von Krümmungsdurchmessern sinnvoll, wie die geometrische Her-
leitung in Beispiel 1.21 ergibt. In Fig. 1.21 wurden die Maßeinteilungen auf den beiden Achsen
verschieden gewählt. Man sieht, daß dies zweckmäßig sein kann. wenn man die Übersichtlichkeit
erhöhen will

Beispiel 1.26:

Da Funktionsgraphen als geometrische Figuren skizziert werden können, kann man auch umge-
kehrt versuchen, geometrische Figuren durch Funktionen zu beschreiben, wie z.B. die Kreislinie.
Man muß sich allerdings auf einen Halbkreis beschränken, s. Fig. 1.22, da beim Vollkreis die
Eindeutigkeit der Funktion verletzt wäre.

Wir gehen aus von einem Halbkreis mit dem Koordinatenschnittpunkt als Mittelpunkt und
mit dem Radius 1 (s. Fig. 1.22). Für jeden Punkt (x, y) auf dem Halbkreis gilt offenbar nach
»Pythagoras«

x2 + y2 = 1 ,

wobei −1 ≤ x ≤ 1, 0 ≤ y ≤ 1 ist. Auflösen nach y ergibt

y =
√

1− x2 .
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Fig. 1.21: Zur Berechnung von Gleisdurchmessern

Diese Gleichung beschreibt die Funktion f : [−1, 1] → R, deren Graph der Halbkreis in
Fig. 1.22 ist.

Funktionen brauchen nicht unbedingt durch Formeln beschrieben zu werden, wie die folgen-
den Beispiele zeigen.

Fig. 1.22: Halbkreis Fig. 1.23: Heaviside-Funktion: Einschaltvorgang

Beispiel 1.27:
Durch

y = f (x) =
{

1 , falls x ≥ 0 ,

0 , falls x < 0

ist eine Funktion f : R → R angegeben, deren Graph aus zwei waagerechten Halbgeraden
besteht, s. Fig. 1.23. Sie beschreibt einen Einschaltvorgang: Zur Zeit x < 0 ist die Spannung y



1.3 Funktionen 49

an einer Spannungsquelle 0. Zur Zeit Null wird eingeschaltet, die Spannung springt auf 1 Volt
und verbleibt in dieser Höhe für alle Zeiten x ≥ 0. Die beschriebene Funktion heißt Heaviside17-
Funktion.

Beispiel 1.28:

Entsprechend ist durch

f (x) =
{

2 , wenn n ≤ x < n + 1, n gerade,

0 , wenn n ≤ x < n + 1, n ungerade

(n ganzzahlig) eine Funktion gegeben, die sogenannte »Rechteckimpulse« darstellt, s. Fig. 1.24.
Auch diese Funktion spielt in der Elektrotechnik eine Rolle.

Fig. 1.24: Rechteckimpulse

Schließlich eine ziemlich verrückte Funktion:

Beispiel 1.29:

f (x) =
{

1 , falls x rational,

0 , falls x irrational,

mit 0 ≤ x ≤ 1, beschreibt eine Funktion f : [0, 1] → R, deren Graphen man nicht einmal
skizzieren kann. Oder könntest du es, lieber Leser? Trotzdem handelt es sich hier um eine Funk-
tion, denn es liegt eine klare Vorschrift vor, die jedem x ∈ [0,1] genau einen Funktionswert f (x)

zuordnet. Und das ist das Wesentliche!

Die grafische Darstellung von Funktionen kann auch auf andere Weise geschehen als im recht-
winkligen Koordinatensystem. Dazu führen wir zunächst einen wichtigen Begriff ein.

Definition 1.2:

Eine Funktion f : A → B (A, B ⊂ R) heißt monoton steigend, wenn für alle x1,
x2 ∈ A mit x1 < x2 gilt:

f (x1) ≤ f (x2) . (1.35)

17 Oliver Heaviside (1850 – 1925), englischer Mathematiker und Physiker
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f heißt streng monoton steigend, wenn sogar f (x1) < f (x2) statt (1.35) gilt.

Entsprechend wird monoton fallend und streng monoton fallend erklärt. Hierbei
ist f (x1) ≥ f (x2) bzw. f (x1) > f (x2) anstelle von (1.35) zu setzen. Alle diese
Funktionen heißen monotone Funktionen.

Die Funktionen der Beispiele 1.22 und 1.26 sind monoton steigend, die Gerade im Beispiel 1.22
sogar streng. Dagegen ist die Krümmungsdurchmesserfunktion im Beispiel 1.24 streng monoton
fallend.

Funktionsleitern: Ist f : I → R eine streng monotone Funktion auf einem Intervall I , wie
z.B. in Fig. 1.25a, so kann man die x- und y-Achse zusammenfallen lassen, etwa zu einer senk-
rechten Geraden, s. Fig. 1.25b. Dabei markiert man links an der Geraden die y-Werte in normaler
Anordnung, d.h. wie bei der reellen Achse üblich. Rechts markiert man die jeweiligen Urbilder x
der y-Werte, wie es Fig. 1.25b deutlich macht. Eine solche Darstellung der Funktion nennt man
Funktionsleiter.

Fig. 1.25: Monotone Funktion mit Funktionslei-
ter

Fig. 1.26: Funktionsleiter von y = log x

Gelegentlich wird auch die Markierung der y-Werte weggelassen, insbesondere dann, wenn
kein Zweifel über die Lage von y = 0 und y = 1 besteht. Man kann dann durch Anlegen eines
Lineals mit Meßskala die y-Werte jederzeit bekommen.

Ein Beispiel dafür ist die Logarithmusfunktion18, s. Fig. 1.26, deren Funktionsleiter auf Loga-
rithmuspapier vorkommt.

Übung 1.20:

Skizziere die Funktionsleiter der Funktion f : [−2,2] → R, die durch f (x) = x3 definiert ist.

18 s. Abschn. 2.4.3
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1.3.4 Umkehrfunktion, Verkettungen

Durch die Gleichung

y = 1

2
x − 1

ist eine Funktion f : R→ R beschrieben, deren Graph eine Gerade ist, s. Fig. 1.27a. Löst man
die Gleichung nach x auf, so folgt

x = 2y + 2 .

Wir können dies als eine Funktion deuten, die jedem y ∈ R ein x ∈ R zuordnet. Diese Funktion
heißt Umkehrfunktion von f , beschrieben durch f −1 : R → R. Die beiden Funktionsgleichun-
gen, durch f und f −1 ausgedrückt, lauten also

y = f (x) ; x = f −1(y) ,

s. Fig. 1.27a), b).
Es ist auch naheliegend, das eine als »Umkehrung« des anderen zu bezeichnen. In x = f −1(y)

werden die Bezeichnungen x und y auch gelegentlich wieder vertauscht, so daß die Umkehrfunk-
tion durch y = f −1(x) beschrieben wird. Man kann sie so in das gleiche Koordinatensystem wie
f einzeichnen, s. Fig. 1.27c).

Nicht jede Funktion hat eine Umkehrfunktion. Um dies zu erläutern, vereinbaren wir folgende

Definition 1.3:
Es sei f : A→ B eine Funktion.

(a) f heißt injektiv, wenn verschiedene Argumente x1, x2 ∈ A verschiedene Bild-
punkte f (x1), f (x2) haben, d.h. wenn gilt:

x1 �= x2 ⇒ f (x1) �= f (x2) .

(b) f heißt eine Funktion von A auf B, oder kurz: surjektiv, wenn der Wertebereich
f (A) von f gleich dem Bildbereich B ist, also

f (A) = B .

(c) f heißt bijektiv oder umkehrbar eindeutig, wenn f injektiv und surjektiv ist.

Beispiel 1.30:
Wir betrachten vier Funktionen (s. Fig. 1.28)

g(x) = x

1+ |x | , g : R→ R , h(x) = x2 , h : R→ [0,∞) ,

f (x) = x3 , f : R→ R , k(x) = 1+ x2 , k : R→ R .
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Fig. 1.27: Die Umkehrfunktion von f erhält man durch Spiegelung an der gestrichelten 45◦-Geraden

Fig. 1.28: Zu Beispiel 1.30:Funktionen mit verschiedenen Eigenschaften

g ist injektiv, aber nicht surjektiv, denn der Wertebereich von g ist (−1, 1), d.h. verschieden vom
Bildbereich R. h ist surjektiv, da es zu jedem y ∈ [0,∞) mindestens ein x gibt mit y = x2,
nämlich x = √y. Jedes y > 0 hat zwei Urbildpunkte: x = √y und x ′ = −√y. Es gilt daher
x �= x ′, aber h(x) = h(x ′), d.h. h ist nicht injektiv! f ist offenbar bijektiv, während k keine der
genannten Eigenschaften hat (armes k).

Damit können wir den Begriff der »Umkehrfunktion« präzise fassen.

Definition 1.4:

Es sei f : A → B bijektiv, d.h. jedes y ∈ B hat genau ein Urbild x bezüglich f .
Diejenige Funktion, die jedem y ∈ B gerade das Urbild x bezüglich f zuordnet, heißt
die Umkehrfunktion von f , symbolisiert durch f −1 : B → A.

Man kann diesen Sachverhalt auch kurz so ausdrücken: Für alle x ∈ A gilt:

y = f (x)⇔ x = f −1(y)
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Durch Einsetzen gewinnt man die Gleichungen

y = f ( f −1(y)) für alle y ∈ B ,

x = f −1( f (x)) für alle x ∈ A .

Man kann also sagen: f und f −1 »heben sich auf« , wenn sie nacheinander angewandt werden.
Der Graph der Umkehrfunktion y = f 1(x) entsteht durch Spiegelung des Graphen von y = f (x)

an der Winkelhalbierenden der positiven Koordinatenachsen (s. Fig. 1.27).
Wir ziehen die unmittelbar einsichtige

Folgerung 1.11:
Jede streng monotone Funktion f : A → B von A ⊂ R auf B ⊂ R besitzt eine
Umkehrfunktion.

Verkettungen: Will man einen Funktionswert der Funktion

y = h(x) =
√

x2 + 1 , h : R→ R ,

ausrechnen, so hat man zuerst z = x2 + 1 zu berechnen und dann y = √z. Faßt man diese
Gleichungen als Funktionsgleichungen

z = g(x) = x2 + 1 ,

x = f (x) = √z ,

auf, so wäre

y = h(x) = f (g(x)) .

Man spricht von einer Verkettung der Funktionen g und f auf der rechten Seite der Gleichung.

Definition 1.5:

Sind g : A→ B und f : B → C zwei Funktionen, so ist durch

y = f (g(x)) , x ∈ A ,

eine neue Funktion gegeben, die A in C abbildet. Sie wird mit f ◦ g bezeichnet und
Verkettung (Komposition, Hintereinanderausführung) von g und f genannt.

Die Funktion f ◦ g : A→ C ist also gegeben durch die Gleichung

( f ◦ g)(x) := f (g(x)) .

f ◦ g spricht man » f nach g « aus.
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Beispiel 1.31:

Ist g(x) = 3x4 + 2 und f (z) = 1/z so ist

( f ◦ g)(x) = f (g(x)) = 1

g(x)
= 1

3x4 + 2
.

Ganz einfach!

Übung 1.21:

Berechne die Umkehrfunktionen der folgenden Funktionen und skizziere sie.

(a) y = f (x) = 2α − 5, f : R→ R,

(b) y = g(x) = 1+ x

1− x
, g : R \ {1} → R \ {−1},

(c) y = h(x) = x

1+ |x | , h : R→ (−1,1)

1.3.5 Allgemeiner Abbildungsbegriff

Wer hindert uns eigentlich, den Funktionsbegriff auf beliebige Mengen zu übertragen? Sicherlich
niemand. Denn von der Tatsache, daß Definitions- und Bildbereiche aus reellen Zahlen bestehen,
wurde in Def. 1.1 kein Gebrauch gemacht. Wir definieren daher Funktionen) auch Abbildungen
genannt, auf beliebigen Mengen. (»Funktion« und »Abbildung« bedeuten vollkommen dasselbe.
Gewohnheitsmäßig spricht man aber in der Analysis bei reellen Bildbereichen von Funktionen
und sonst von Abbildungen.)

Im Folgenden seien A, B, C beliebige Mengen (z.B. endliche Mengen, Teilmengen des Rn ,
Punktmengen der Geometrie oder sonstige).

Definition 1.6:
Eine Vorschrift, die jedem x aus einer Menge A genau ein y aus einer Menge B zu-
ordnet, heißt eine Abbildung (oder Funktion) von A in B. Abbildungen von A in B
werden symbolisiert durch

f : A→ B , g : A→ B . . .

Ist dem Element x ∈ A durch die Abbildung f : A → B das Element y ∈ B
zugeordnet, so schreibt man

y = f (x) .

y heißt Bildpunkt von x und x Urbildpunkt von y bezüglich f . A heißt Definitions-
bereich (oder Urbildbereich) und B Bildbereich von f . Ist C Teilmenge von A, so
bezeichnet man mit f (C) die Menge aller f (x) mit x ∈ C . Die Menge f (A) aller
Bildpunkte von f heißt der Wertebereich von f . Es gilt f (A) ⊂ B. Die Menge aller
Paare (x, y) mit y = f (x) heißt Graph von f , symbolisch: graph( f ).
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Fig. 1.29: Eine Funktion bei endlichen Mengen

Zur Veranschaulichung einer Abbildung f : A → B, wobei A und B endliche Mengen sind,
kann man wie in Fig. 1.29 vorgehen: Man zeichnet zunächst Pfeile von den Urbildpunkten A zu
den jeweiligen Bildpunkten B. Abbildungen im Rn behandeln wir in den Abschnitten 6.

Übung 1.22:

Es seien f : A → B und g : B → C zwei Abbildungen, deren Komposition g ◦ f : A → B

bijektiv ist. Zeige, daß f : A → B injektiv ist und g : B → C surjektiv. Man mache sich klar,

daß dabei weder f noch g bijektiv zu sein brauchen, d.h. gib ein Beispiel an, bei dem weder f

noch g bijektiv sind, sehr wohl jedoch g ◦ f . (Es genügt, dazu Mengen A, B, C zu betrachten,

die nicht mehr als drei Elemente haben.)

1.4 Unendliche Folgen reeller Zahlen

Bei unendlichen Folgen treten uns zum ersten Male die Begriffe Konvergenz und Grenzwert ent-
gegen. Folgen erweisen sich später als unentbehrliche Hilfsmittel für höhere Grenzwertbildun-
gen, wie beim Differentialquotient, beim Integral, bei Potenz- und Fourierreihen. Damit stehen
sie am Anfang der eigentlichen Analysis, die man als die »Lehre von den Grenzwertbildungen«
bezeichnen könnte.

1.4.1 Definition und Beispiele

Zunächst betrachten wir ein Beispiel: Setzt man in die Formel an = 1/n2 nacheinander die
natürlichen Zahlen 1, 2, 3, 4, . . . anstelle von n ein, so erhält man die Zahlen

1 ,
1

4
,

1

9
,

1

16
,

1

25
, . . . (1.36)

Man spricht hierbei von einer unendlichen Folge reeller Zahlen. Allgemein:
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Definition 1.7:
Eine Vorschrift, die jeder natürlichen Zahl n eine reelle Zahl an zuordnet j heißt eine
unendliche Folge reeller Zahlen, kurz Folge genannt. Sie wird beschrieben durch

a1 , a2 , a3 , . . . , an , . . . (1.37)

oder

(an)n∈N .

Man verwendet für eine Folge auch die Kurzschreibweise (an), wenn aus dem Zu-
sammenhang klar ist, daß nichts anderes gemeint sein kann. Die Zahlen an der Folge
heißen Elemente der Folge, n nennt man den Index des Folgenelementes an .

Fig. 1.30: Darstellung einer Folge als Streckenzug

Bemerkung: Eine Folge ist nichts anderes als eine Funktion a : N→ R, deren Funktionswerte
a(n) in der Form an beschrieben werden.

Oft werden die Indizes 1, 2, 3, . . . einer Folge auch durch andere ersetzt, wie z.B. 0, 1, 2, 3,
. . . oder 2, 4, 6, . . . . Die Folgen erscheinen dann in der Gestalt

a0 , a1 , a2 , . . . , an ,

oder

a2 , a4 , a6 , . . . , a2n , . . . .

Dabei ist aber klar, welches das erste Element, das zweite) das dritte, usw. ist, so daß mittelbar
wieder jeder natürlichen Zahl ein Folgenelement zugeordnet ist.

Weitere Beispiele für Folgen sind

1 ,
1

2
,

1

3
,

1

4
,

1

5
, . . . ,

1

n
, . . . (1.38)

1

2
,

2

3
,

3

4
,

4

5
, . . . ,

n

n + 1
, . . . (1.39)

1, 4, 9, 16, 25, . . . , n2, . . . (1.40)
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− 1 , 1 ,−1 , 1 ,−1 , . . . , (−1)n , (1.41)

In Kurzform lauten sie
(

1

n

)

n∈N
,

(
n

n + 1

)

n∈N
, (n2)n∈N , ((−1)n)n∈N .

Die erste dieser Folgen (1.38) nennt man übrigens harmonische Folge. Sie hat ihren Namen aus
der Musik: Man denke sich einen Ton mit der Wellenlänge λ. Die Töne mit den Wellenlängen λ,
λ/2, λ/3, λ/4, λ/5, λ/6 bilden dann einen Durakkord, klingen also zusammen »harmonisch« .
Der Anfang der harmonischen Folge beherrscht also die klassische Harmonik.

1.4.2 Nullfolgen

Zunächst wollen wir uns mit Nullfolgen beschäftigen, d.h. Folgen, die »gegen Null streben«. Von
solch einer Folge (αn)n∈N erwarten wir sicherlich, daß man nach Wahl einer noch so kleinen Zahl
ε > 0 ein Element αn0 der Folge finden kann, dessen Betrag noch kleiner als ε ist, also

|αn0 | < ε .

Vernünftigerweise werden wir noch mehr verlangen, nämlich daß dies auch für alle auf αn0 fol-
genden Elemente gilt, d.h.

|αn| < ε für alle n ≥ n0.

In Fig. 1.31 ist dies dargestellt.

Fig. 1.31: Nullfolge (αn)

Von n0 an liegen alle Punkte (n, αn) in dem schraffierten Streifen der Breite 2ε. Die beschrie-
bene Sachlage fassen wir in folgender Definition zusammen:
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Definition 1.8:
Eine reelle Zahlenfolge (αn)n∈N wird Nullfolge genannt, wenn man zu jedem noch so
kleinen ε > 0 einen Index n0 finden kann mit

|αn| < ε für alle n ≥ n0.

Man sagt auch: (αn)n∈N konvergiert gegen Null oder strebt gegen Null und beschreibt
dies durch

lim
n→∞

αn = 0 , oder: αn → 0 für n →∞.

Beispiel 1.32:

Die harmonische Folge

1 ,
1

2
,

1

3
, . . . ,

1

n
, . . .

ist eine Nullfolge. denn zu jedem ε > 0 kann man sicherlich ein n0 finden mit 1/n0 < ε

(vgl. Abschn. 1.1.3, Folgerung 1.8). Dann gilt aber für alle n > n0 erst recht

1

n
< ε ,

d.h. die harmonische Folge strebt gegen Null.

Hilfssatz 1.1:

(a) Ist (αn) eine Nullfolge und gilt für eine weitere Folge (βn):

|βn| ≤ |αn| für alle n ∈ N,

so ist auch (βn) eine Nullfolge.

(b) Sind (αn), (βn) zwei Nullfolgen, so erhalten wir daraus die weiteren Nullfolgen

(αn + βn) , (αn − βn) , (αn · βn) , (αk
n) und (c αn)

mit beliebigen Konstanten k ∈ N und c ∈ R.

Beweis:

(a) Nach Voraussetzung gibt es zu beliebigem ε > 0 einen Index n0 mit |αn| < ε für alle
n ≥ n0. Wegen |βn| ≤ |αn| gilt dann auch |βn| < ε für alle n ≥ n0, d.h. (βn) ist eine
Nullfolge.

(b) Zu beliebigem ε > 0 gibt es nach Voraussetzung ein n0 mit |an| < ε/2 für n ≥ n0 (denn
ε/2 ist ja ebenso wie ε eine beliebige vorgegebene positive Zahl). Entsprechend existiert
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ein n1 mit |βn| < ε/2 für n ≥ n1. O.B.d.A. sei n0 ≥ n1. Damit folgt

|αn ± βn| ≤ |αn| + |βn| ≤
ε

2
+ ε

2
= ε für alle n ≥ n0 ,

d.h. (αn + βn) und (an − βn) sind Nullfolgen. Damit ist auch (αn + αn) Nullfolge, ebenso
(αn + αn + αn), usw., d.h. (mαn) mit beliebiger Konstante m ∈ N ist eine Nullfolge.
Folglich ist (cαn) mit beliebigem c ∈ R eine Nullfolge, da man nur ein m ∈ N mit m ≥ |c|
zu wählen hat, womit |cαn| ≤ |mαn| erfüllt ist, nach (a) also (c αn) Nullfolge. Wir folgern
daraus, daß auch (αn · βn) Nullfolge ist. Denn es gibt ein c > 0 mit |αn| < c für alle n,
wie Fig. 1.31 sofort klarmacht. Da (cβn) Nullfolge ist, so ist wegen |αnβn| ≤ |cβn| auch
(αn · βn) Nullfolge. Damit ist aber auch (αn · αn) Nullfolge, ebenso wie (αn · αn · αn) usw.,
kurz auch (ak

n) für festes k ∈ N. �

Mit dem Hilfssatz gewinnen wir sofort weitere Nullfolgen aus
(

1
n

)

, z.B.

(
1

n2

)

,

(
1

n
+ 1

n2

)

,

(

c · 1

n

)

mit beliebigem c ∈ R.

Beispiel 1.33:

Die geometrische Folge

1 , q , q2 , . . . , qn , . . .

ist eine Nullfolge, wenn |q| < 1 gilt. Zum Beweis setzen wir

1+ h = 1

|q| .

Durch diese Gleichung ist h bestimmt. Es ist h > 0. Unter Verwendung der Bernoullischen
Ungleichung (1+ h)n ≥ 1+ nh (s. Abschn. 1.1.5, Übung 1.2) folgt daraus

|q|n = 1

(1+ h)n
≤ 1

1+ nh
<

1

nh
.

Da

(
1

nh

)

(nach Hilfssatz 1.1) eine Nullfolge ist, so auch (qn). �

Übung 1.23*:

Beweise, daß

(
xn

n!

)

n∈N
für jedes x ∈ R eine Nullfolge ist.

Übung 1.24:

Die Amplitude einer gedämpften Schwingung mit der Frequenz f = 50s−1 hat zur Zeit t = 0

den Anfangswert A0. Nach jeder Schwingungsperiode hat sich die Amplitude um jeweils 1 %
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verringert. Nach welcher Zeit ist die Amplitude auf 0,05 A0 abgesunken?

Übung 1.25*:

Ein Betrieb stellt Rohre in 11 Größen her. Das kleinste Rohr hat einen Durchmesser von 10 cm,

das größte von 1 m. Die Zwischengrößen der Durchmesser entsprechen der Folge 10 q cm, 10

q2 cm, 10 q3 cm, . . . . Wie groß ist q? Berechne die Durchmesser aller Rohre! (Dividiert man

die 11 Werte jeweils durch 10 cm und rundet auf 2 Stellen, so erhält man die Hauptwerte der

Grundreihe R10 für Rohre.)

1.4.3 Konvergente Folgen

Die Konvergenz einer Folge (an) gegen eine beliebige Zahl a können wir leicht mit Hilfe der
Nullfolgen erklären.

Definition 1.9:
Eine reelle Zahlenfolge (an)n∈N konvergiert genau dann gegen eine reelle Zahl a,
wenn

(an − a)n∈N

eine Nullfolge ist.

a heißt Grenzwert oder Limes der Folge (an). Man beschreibt dies symbolisch durch

lim
n→∞

an = a oder an → a für n →∞

(sprich: »an gegen a für n gegen ∞«). Gelegentlich verwendet man auch die unvollständige
Schreibweise an → a. Das ist nur erlaubt, wenn aus dem Zusammenhang hervorgeht, daß »für
n → ∞« mit gemeint ist. Ferner sagt man statt »konvergiert gegen a « auch »strebt gegen a«,
»geht gegen a « oder »hat den Grenzwert a«. Jede Folge (an) hat übrigens höchstens einen
Grenzwert, d.h. es gibt höchstens ein a, das (an − a) zur Nullfolge macht. Der Leser mache sich
dies selber klar.

Beispiel 1.34:

Betrachtet man die Folge

(
n

n + 1

)

n∈N
, so sieht man, daß für steigende n die Elemente sich der

1 beliebig gut nähern. Um exakt zu prüfen, ob die Folge gegen »1 konvergiert«, bilden wir die
Differenz

∣
∣
∣
∣

n

n + 1
− 1

∣
∣
∣
∣
=
∣
∣
∣
∣

n − n − 1

n + 1

∣
∣
∣
∣
= 1

n + 1
.

(
1

n + 1

)

n∈N
ist dabei sicherlich eine Nullfolge, d.h.

(
n

n + 1

)

n∈N
konvergiert gegen 1, in Kurz-

form notiert:

lim
n→∞

n

n + 1
= 1 oder auch

n

n + 1
→ 1 für n →∞.
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Erinnern wir uns an die Definition der Nullfolge, so können wir die Konvergenz von Folgen auch
so ausdrücken:

Folgerung 1.12:
Eine reelle Zahlenfolge (an) konvergiert genau dann gegen a, wenn es zu jedem (noch
so kleinem) ε > 0 einen Index n0 ∈ N gibt, so daß für alle n ≥ n0 gilt:

|an − a| < ε.

Fig. 1.32: ε-Umgebung

Diese Formulierung ist besonders für theoretische Überlegungen grundlegend. Eine andere, recht
anschauliche Formulierung erhält man mit dem Begriff der ε-Umgebung: Ist ε > 0, so versteht
man unter der (offenen) ε-Umgebung Uε(a) von a ∈ R das Intervall

Uε(a) = (a − ε, a + ε) .

Es liegt symmetrisch um a und hat die Länge 2ε, s. Fig. 1.32.

Folgerung 1.13:
Eine reelle Zahlenfolge (an) konvergiert genau dann gegen a, wenn in jeder ε-
Umgebung von a unendlich viele Elemente der Folge liegen, außerhalb aber nur end-
lich viele.

Man erkennt, daß dies nur eine andere, sozusagen geometrische Formulierung von Folgerung 1.12
ist.

Folgen, die gegen bestimmte Grenzwerte konvergieren, heißen konvergente Folgen. Nicht
konvergente Folgen werden divergent genannt. Z.B. sind die Folgen (1.40) und (1.41) in Ab-
schn. 1.4.1 divergent.

Übung 1.26:

Zeige: Aus

lim
n→∞ xn = a folgt lim

n→∞
√

xn =
√

a .

Dabei sei xn ≥ 0 für alle n ∈ R vorausgesetzt. (Anmerkung: Zu zeigen ist, daß (
√

xn−
√

a)n∈N
eine Nullfolge ist. Man benutze dazu die Gleichung (

√
xn −

√
a)(
√

xn +
√

a) = xn − a.)

1.4.4 Ermittlung von Grenzwerten

Eine Faustregel zum Nachweis, daß eine Folge (an) gegen einen Grenzwert a strebt, besteht im
Folgenden:
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Man formt |an−a| solange um, evtl. unter Vergrößerung, bis man einen Ausdruck αn erreicht
hat, dem man unmittelbar ansieht, daß er gegen Null strebt.

Beispiel 1.35:

an =
3n+1 + 2n

3n + 1
.

Einsetzen großer n liefert an ≈ 3. Man vermutet an → 3 für n →∞ und bildet

|an − 3| =
∣
∣
∣
∣

3n+1 + 2n − 3n+1 − 3

3n + 1

∣
∣
∣
∣
=
∣
∣
∣
∣

2n − 3

3n + 1

∣
∣
∣
∣
≤ 2n

3n
.

Die rechte Seite (2/3)n strebt gegen 0, also folgt an → 3 für n →∞.

Beispiel 1.36:

Konvergiert

an = n
√

c ?

Dabei sei c > 0. Für große n erhält man mit dem Taschenrechner für n
√

c ungefähr 1, gleichgültig,
wie c > 0 gewählt wird. Wir vermuten daher, daß ( n

√
c) gegen 1 konvergiert. Zum Nachweis

bilden wir

αn = n
√

c − 1 ,

um zu zeigen, daß (αn) gegen Null strebt. Zunächst betrachten wir den Fall c ≥ 1, also αn ≥ 0,
und erhalten aus obiger Gleichung durch Umformen c = (1 + αn)n . Die Bernoullische Unglei-
chung ergibt damit

c = (1+ αn)n ≥ 1+ nαn , also c − 1 ≥ nαn ⇒
c − 1

n
≥ αn ≥ 0 .

Daraus folgt, daß (αn) eine Nullfolge ist. D.h. n
√

c konvergiert gegen 1 für n → ∞. Im Fall
0 < c < 1 ist dies ebenfalls richtig. Und zwar kann man es auf 1/ n

√
1/c = n

√
c zurückführen,

wobei n
√

1/c wegen 1/c > 1 gegen 1 strebt. Man errechnet nämlich

0 < 1− n
√

c =
(

1
n
√

c
− 1

)

n
√

c <
1

n
√

c
− 1 = n

√

1

c
− 1→ 0 für n →∞

Es gilt damit für alle positiven c:

lim
n→∞

n
√

c = 1 . (1.42)

Zur Ermittlung von Grenzwerten sind folgende Regeln grundlegend:
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Satz 1.1:
(Rechenregeln für konvergente Folgen) Aus lim

n→∞
an = a und lim

n→∞
bn = b folgt

lim
n→∞

(an + bn) = a + b, (1.43)

lim
n→∞

(an − bn) = a − b, (1.44)

lim
n→∞

an bn = a b, (1.45)

lim
n→∞

an

bn
= a

b
wenn b �= 0 und bn �= 0 für alle n. (1.46)

Beweis:
αn = an − a und βn = bn − b streben beide gegen Null. (1.43), (1.44) und (1.45) folgen damit
über den Hilfssatz 1.1 durch folgende einfache Rechnungen:

(an + bn)− (a + b) = αn + βn → 0 für n →∞
(an − bn)− (a − b) = αn − βn → 0 für n →∞
(anbn)− ab = (a + αn)(b + βn)− ab = aβn + bαn + αnβn → 0 für n →∞

Zum Nachweis von (1.46) beweisen wir einfach

lim
n→∞

1

bn
= 1

b
. (1.47)

Mit (1.45) folgt dann nämlich lim
n→∞

an ·
1

bn
= a · 1

b
. Nun zu (1.47): Wir betrachten nur solche bn,

für die
1

2
|b| < |bn| gilt, was für alle n ≥ n0 mit genügend großem n0 erfüllt ist. Damit erhalten

wir (1.47) aus
∣
∣
∣
∣

1

bn
− 1

b

∣
∣
∣
∣
=
∣
∣
∣
∣

b − bn

|bn||b|

∣
∣
∣
∣
<

∣
∣
∣
∣

b − bn

|b/2| · |b|

∣
∣
∣
∣
→ 0 für n →∞.

�

Beispiel 1.37:
Will man

an =
4n3 − 6

6n3 + 2n2

auf Konvergenz untersuchen, so dividiert man Zähler und Nenner durch n3 und erhält durch
Anwendung des bewiesenen Satzes

an =
4− 6

n3

6+ 2
n

→ 4

6
= 2

3
für n →∞,
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da 6/n3 → 0 und 2/n → 0.

Auf gleiche Weise erhält man für

an =
p0 + p1n + . . .+ pknk

q0 + q1n + . . .+ qknk

mit qk �= 0 den Grenzwert

an → pk/qk für n →∞.

Um dies einzusehen, hat man im obigen Bruch Zähler und Nenner nur durch nk zu dividieren.
Zur Untersuchung von konvergenten Folgen sind folgende Vergleichssätze nützlich:

Satz 1.2:

Gilt an → a, bn → b und an ≤ bn für alle n ab einem bestimmten n0, so folgt a ≤ b.

Beweis:

Aus an ≤ bn für n ≥ n0 folgt 0 ≤ bn − an und damit

0 ≤ lim
n→∞

(bn − an) = lim
n→∞

bn − lim
n→∞

an = b − a , d.h. a ≤ b.

�

Satz 1.3:
(Einschließungskriterium, auch Sandwich-Kriterium genannt) Gilt an → g, bn → g
und an ≤ cn ≤ bn für alle n ab einem bestimmten n0, so folgt cn → g.

Beweis:

In jeder ε-Umgebung von g liegen unendlich viele an und bn , aber nur endlich viele außerhalb.
Damit gilt das Gleiche für die cn , die ja von den an und bn eingeschlossen werden. Das heißt
aber, daß cn → g gilt. �

Beispiel 1.38:

Konvergiert bn = n
√

1+ xn mit |x | < 1? Aus 1+ xn ≥ 1− |x |n ≥ 1− |x | = δ folgt

δ ≤ 1+ xn ≤ 2

also n
√

δ <
n
√

1+ xn ≤ n
√

2. Linke und rechte Seite streben gegen 1, also gilt auch n
√

1+ xn → 1
für n →∞.

Teilfolgen: Aus der harmonischen Folge

1 ,
1

2
,

1

3
, . . .

1

n
, . . .
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können wir z.B. die Teilfolge

1

2
,

1

4
,

1

6
, . . .

1

2n
, . . .

bilden. Eine andere Teilfolge der harmonischen Folge ist

1 ,
1

4
,

1

9
,

1

16
, . . .

1

n2
, . . . .

Definition 1.10:
Als Teilfolge von (an)n∈N bezeichnet man jede Folge

an1 , an2 , an3 , . . . , ank , . . . , kurz (ank )k∈N

mit n1 < n2 < n3 < . . . < nk < . . . (nk ∈ N ).

Folgerung 1.14:
Konvergiert (an) gegen a, so konvergiert auch jede Teilfolge von (an) gegen a.

Übung 1.27*:

Konvergieren die folgenden unendlichen Folgen und wie lautet gegebenenfalls ihr Grenzwert?

an =
1+ 5n4 − 7n3

4500+ 7n−3 − 10n4
, n = 1 ,2 ,3 , . . . , bn = n

√

5+ n−2 .

1.4.5 Häufungspunkte, beschränkte Folgen

Dieser Abschnitt, lieber Leser, ist theoretischer Natur. Der hier bewiesene Satz von Bolzano-
Weierstraß wird zum Beispiel für den Beweis des Cauchyschen Konvergenzkriteriums im näch-
sten Abschnitt gebraucht. Dieses wiederum ist nützlich für viele Konvergenznachweise, wie z.B.
bei Iterationsfolgen, wie wir sie schon bei der Wurzelberechnung kennengelernt haben. Allge-
mein treten Iterationsfolgen häufig beim Lösen von Gleichungen auf (s. Newton-Verfahren).
Über diese Gedankenkette gehen die Überlegungen dieses Abschnitts wieder in die Praxis ein.
Der eilige Leser mag die Beweise zunächst überschlagen und nur Sätze und Begriffe zur Kenntnis
nehmen.

Definition 1.11:

Eine Folge (an)n∈N heißt beschränkt, wenn es ein beschränktes Intervall [A, B] gibt,
in dem alle an liegen, d.h.

A ≤ an ≤ B für alle n ∈ N.

A heißt eine untere Schranke der Folge. Das größtmögliche dieser A heißt die größte
untere Schranke oder das Infimum der Folge (an). B heißt eine obere Schranke von
(an). Die kleinste obere Schranke wird auch das Supremum von (an) genannt. Infimum
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und Supremum von an werden folgendermaßen symbolisiert:

inf
n∈N

an , sup
n∈N

an .

Zum Beispiel: Die Folge −1, 1, −1, . . ., (−1)n ist beschränkt, die Folge 1
2 , 2

3 , 3
4 , . . . , n

n+1 , . . .

ebenfalls. Supremum der ersten Folge ist 1, Infimum −1. Bei der zweiten Folge ist

inf
n∈N

n

n + 1
= 1

2
, sup

n∈N

n

n + 1
= 1 .

Interessant ist besonders die Tatsache, daß das Supremum von

(
n

n + 1

)

gleich 1 ist, obwohl alle

Elemente der Folge kleiner als 1 sind.
1, 4, 9, . . ., n2 ist ein Beispiel für eine unbeschränkte Folge.
Zunächst gilt

Satz 1.4:
Jede konvergente Folge ist beschränkt.

Beweis:
Es konvergiere (an) gegen a. Zu beliebigen ε > 0, z.B. ε = 1, kann man daher ein n0 finden
mit |an − an0 | < ε für alle n ≥ n0. Die an0+1, an0+2, an0+3, . . . bilden also eine beschränkte
Teilfolge. Nimmt man die endlich vielen a1, . . . , an0 hinzu, so wird die Beschränktheit nicht
angetastet, d.h. (an) ist eine beschränkte Folge. �

Die Umkehrung des Satzes ist falsch, wie das Beispiel −1, 1, −1, . . ., (−1)n zeigt. Immerhin
gilt aber der folgende

Satz 1.5:
(Satz von Bolzano-Weierstraß19) Jede beschränkte reelle Zahlenfolge besitzt eine kon-
vergente Teilfolge.

Beweis:
Es gibt ein Intervall [A1, B1], in dem alle an liegen. Halbiert man dieses Intervall, d.h. zerlegt
man es in zwei Teilintervalle [A1, M], [M, B1] mit M = (A + B)/2, so liegen in wenigstens
einem der beiden Teilintervalle unendlich viele an . Wir nennen dieses Teilintervall [A2, B2].
Halbiert man dies wieder, so liegen in wenigstens einem der Teilintervalle, [A3, B3] genannt,
wieder unendlich viele an . Fährt man in dieser Weise fort, so entsteht eine Folge ineinander
geschachtelter Intervalle [A1, B1] ⊃ [A2, B2] ⊃ [A3, B3] ⊃ . . ., deren Längen gegen Null stre-
ben. Nach dem Intervallschachtelungsprinzip existiert genau eine Zahl a ∈ R, die in all diesen

19 Bernardus Placidus Johann Nepomuk Bolzano (1781 – 1848), tschechischer Philosoph, Theologe und Mathematiker
Karl Theodor Wilhelm Weierstraß (1815 – 1897), deutscher Mathematiker
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Intervallen liegt. Wählt man nun nacheinander aus jedem [Ak, Bk] ein ank der Folge aus (mit
n1 < n2 < n3 < . . . < nk < . . .), so konvergiert (ank )n∈N gegen a, was zu zeigen war. �

Definition 1.12:

Als Häufungspunkt einer Folge (an) bezeichnet man jede Zahl a ∈ R, die Grenzwert
einer konvergenten Teilfolge von (an) ist.

Anders ausgedrückt: a ∈ R ist genau dann Häufungspunkt von (an), wenn es zu jeder ε-Um-
gebung Uε(a) unendlich viele n ∈ N gibt mit an ∈ Uε(a).

Damit kann man Satz 1.5 auch so ausdrücken:

Jede beschränkte reelle Zahlenfolge hat mindestens einen Häufungspunkt.

Unbeschränkte Folgen: Wir wollen noch kurz auf unbeschränkte Folgen eingehen, die natür-
lich nicht konvergent sein können. Besitzt (an) keine obere Schranke, so heißt an nach oben
unbeschränkt, man beschreibt dies symbolisch durch

sup
n∈N

an = ∞ .

Ist sie entsprechend nach unten unbeschränkt, so schreibt man dafür

inf
n∈N

an = −∞ .

Gilt darüber hinaus, daß man zu jeder noch so großen Zahl M > 0 einen Index n0 finden kann
mit an > M für alle n ≥ n0, so drückt man dies durch

lim
n→∞

an = ∞

aus. Man sagt dafür: (an) strebt gegen unendlich, oder auch (an) divergiert gegen unendlich.

Entsprechend schreibt man

lim
n→∞

an = −∞ ,

wenn (−an) gegen unendlich strebt.

Zum Beispiel ist

lim
n→∞

2n = ∞ .

Für −2, 22, −23, . . ., (−2)n , . . . jedoch gilt

inf
n∈N

(−2)n = −∞ und sup
n∈N

(−2)n = ∞ ,

während diese Folge weder gegen∞ noch gegen −∞ strebt.
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1.4.6 Konvergenzkriterien

Wie kann man erkennen, ob eine vorgelegte Folge konvergiert, insbesondere dann, wenn man
Konvergenz vermutet, aber den Grenzwert nicht kennt? Das Monotoniekriterium und das Cauchy-
sche Kriterium lassen sich zur Beantwortung heranziehen. Zunächst definieren wir monotone
Folgen.

Definition 1.13:
Eine Zahlenfolge (an) heißt genau dann monoton steigend. wenn

a1 ≤ a2 ≤ a3 ≤ . . . , d.h. an ≤ an+1 für alle n ∈ N, (1.48)

erfüllt ist. Sie heißt monoton fallend, wenn

a1 ≥ a2 ≥ a3 ≥ . . . , d.h. an ≥ an+1 für alle n ∈ N. (1.49)

Man nennt die Folge streng monoton steigend, falls in (1.48) < statt ≤ stehen darf.
Entsprechend ist (an) streng monoton fallend, wenn in (1.49) > statt ≥ stehen darf.

In jedem der genannten Fälle liegt eine monotone Folge vor.

Satz 1.6:
(Monotonie-Kriterium) Jede beschränkte monotone Folge konvergiert.

Beweis:
Ist die Folge (an) beschränkt und monoton steigend, so konvergiert sie offenbar gegen s =
sup
n∈N

an ; bei »monoton fallend« entsprechend gegen i = inf
n∈N

an . �

Das Monotoniekriterium ist in konkreten Anwendungen das wohl am meisten verwendete
Hilfsmittel zur Konvergenzentscheidung. Dazu ein Beispiel:

Beispiel 1.39:

Es sei an = 1+ 1

1! +
1

2! +
1

3! + · · ·
1

n! . Die Folge (an) ist sicherlich streng monoton steigend. Ist

die Folge auch beschränkt? Ja, denn es gilt

1

n! =
1

1 · 2 · 3 · . . . · n ≤
1

1 · 2 · . . . · 2
︸ ︷︷ ︸

n Faktoren

= 1

2n−1
,

also mit Hilfe der geometrischen Summenformel

an ≤ 1+
(

1+ 1

2
+ 1

22
+ . . .+ 1

2n−1

)

= 1+
1−

(
1
2

)n

1− 1
2

< 1+ 1

1− 1
2

= 3 .

3 ist damit eine obere Schranke der Folge, während 1 eine untere Schranke ist. Die Folge ist
daher beschränkt und monoton, woraus nach Satz 1.6 ihre Konvergenz folgt. Der Grenzwert
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dieser Folge wird e genannt. Man errechnet numerisch

e
.= 2,71828183 . 20

Während das Monotoniekriterium in praktischen Fällen häufig zu Rate gezogen wird, ist das
folgende Cauchysche Konvergenzkriterium für theoretische Konvergenzuntersuchungen wichtig.

Satz 1.7:
(Cauchysches21Konvergenzkriterium) Eine Folge (an)n∈N konvergiert genau dann,
wenn folgendes zutrifft:

Zu jedem ε > 0 gibt es einen Index n0,

so daß für alle Indizes n, m ≥ n0 gilt:

|an − am | < ε.

⎫

⎪
⎬

⎪
⎭

(1.50)

Bemerkung: Das Kriterium besagt im Prinzip, daß eine Folge genau dann konvergiert, wenn die
Differenzbeträge der Elemente beliebig klein werden, falls die Indizes nur genügend groß sind.
(1.50) heißt Cauchy-Bedingung oder ε-n0-Bedingung.

Beweis:
(I) (an) konvergiere gegen a. Wir wollen zeigen, daß die Cauchy-Bedingung (1.50) erfüllt ist:
Zu jedem ε0 > 0 existiert ein n0 mit |an − a| < ε0 für alle n ≥ n0. Für alle n, m ≥ n0 gilt dann

|an − am | ≤ |an − a| + |a − am | < ε0 + ε0 = 2ε0 .

Schreiben wir ε = 2ε0, so ist damit die Cauchy-Bedingung erfüllt.
(II) (an) erfülle die Cauchy-Bedingung. Es soll gezeigt werden, daß (an) konvergiert. Dazu
zeigen wir im ersten Schritt, daß die Folge (an) beschränkt ist. Nach dem Satz von Bolzano-
Weierstraß hat (an) dann einen Häufungspunkt a. Im letzten Schritt beweisen wir, daß (an) gegen
diesen Häufungspunkt konvergiert.
1. Schritt: Zu einem fest gewählten ε0 > 0, etwa ε0 = 1, gibt es ein n0 mit |am − an| < ε0 für
alle m > n ≥ n0. Es folgt speziell für n = n0:

ε0 > |am − an0 | ≥ |am | − |an0 | ⇒ ε0 + |an0 | > |am | .

D.h. die Teilfolge (am) mit m > n0 ist beschränkt. Nimmt man die fehlenden a1, . . ., an0 hinzu,
so bleibt die Beschränktheit erhalten. (an) ist also beschränkt.
2. Schritt: Es existiert damit ein Häufungspunkt a der Folge (an), d.h. es gibt eine Teilfolge
(ank )k∈N von (an), die gegen a konvergiert. Zu beliebigen ε′ > 0 gibt es also ein k0 mit

|ank − a| < ε′ für alle k ≥ k0.

20
.= bedeutet »gleich im Rahmen der Rundung«

21 Augustin Louis Cauchy (1789 – 1857), französischer Mathematiker
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Ferner existiert ein n0 mit

|an − am | < ε′ für alle m, n ≥ n0.

Dabei kann man n0 sicherlich so groß wählen, daß n0 ≥ nk0 ist. Somit folgt für n ≥ n0 und
nk ≥ n0:

|an − a| ≤ |an − ank | + |ank − a| < ε′ + ε′ = 2ε′ .

Mit ε = 2ε′ folgt also |an − a| < ε für alle n > n0, d.h. (an) konvergiert gegen a. �

Das Cauchysche Konvergenzkriterium ist das wichtigste Konvergenzkriterium im systemati-
schen Aufbau der Analysis.

1.4.7 Lösen von Gleichungen durch Iteration

Es sollen Gleichungen der Form

x = f (x) (1.51)

gelöst werden, wobei die Funktion f ein Intervall I in sich abbildet. Jede Lösung x von (1.51)
heißt ein Fixpunkt von f . Die Gleichung selbst wird eine Fixpunktgleichung genannt.

Geometrisch sind die Fixpunkte von f die Schnittpunkte des Graphen von f mit der Geraden,
die durch

y = x

beschrieben ist. Sie geht durch 0 und bildet mit der x-Achse einen Winkel von 45◦, s. Fig. 1.33.

Fig. 1.33: Fixpunkt x von f

Wir versuchen, eine Lösung von (1.51) durch sogenannte Fixpunktiteration zu berechnen.
D.h. wir wählen ein x0 aus dem Definitionsintervall I von f aus und bilden nacheinander die
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Zahlen

x1 = f (x0)

x2 = f (x1)

x3 = f (x2) ,

...

kurz xn+1 = f (xn) für n = 1,2, . . . . (1.52)

Wann konvergiert die so definierte Iterationsfolge (xn) gegen eine Lösung von x = f (x)? Der
folgende Satz gibt dafür eine hinreichende Bedingung an.

Satz 1.8:
(Banachscher22 Fixpunktsatz in R) Es sei f : I → I eine Funktion, die ein abge-
schlossenes Intervall I in sich abbildet. Ferner gelte für alle x1, x2 ∈ I die Unglei-
chung

| f (x1)− f (x2)| ≤ K |x1 − x2| (1.53)

mit einer von x1, x2 unabhängigen Konstanten K < 1. Damit folgt: f hat genau einen
Fixpunkt x ∈ I . Die Iterationsfolge (xn), definiert durch xn+1 = f (xn), konvergiert
gegen diesen Fixpunkt, wobei von einem beliebigen Anfangspunkt x0 ∈ I ausgegan-
gen werden darf.

Bevor wir den Satz beweisen, soll er veranschaulicht werden. Gilt (1.53) mit einer Konstanten
K < 1, so besagt dies, daß die Funktionswerte f (x1) und f (x2) stets dichter zusammenliegen
als die Punkte x1, x2. Man nennt daher eine Funktion f , die (1.53) mit K < 1 erfüllt, eine
Kontraktion. Ihr Graph steigt verhältnismäßig sanft an oder ab, wie es Fig. 1.33 zeigt. Genauer:
Jede Sekante von f bildet mit der x-Achse einen kleineren Winkel als 45◦. (Eine Gerade heißt
Sekante von f , wenn sie den Graphen von f mindestens zweimal schneidet.)

Damit läßt sich die Iteration xn+1 = f (xn) zur Lösung von x = f (x) so darstellen, wie es die
Figuren 1.34 und 1.35 zeigen. In Fig. 1.34 ist eine steigende Funktion f dargestellt. In Fig. 1.35
eine fallende. Der Leser mache sich klar, daß im Verlaufe der Treppenlinie bzw. Schneckenlinie
in den Figuren die Iterationspunkte x0, x1, x2, . . . geometrisch gewonnen werden.

Beweis:

Des Satzes 1.8: Es sei x0 beliebig aus I gewählt und (xn) definiert durch die Iteration xn+1 =
f (xn), n = 0,1,2, . . .. Es gilt dann

|xn+1 − xn| = | f (xn)− f (xn−1)| ≤ K |xn − xn−1|

22 Stefan Banach (1892 – 1945), polnischer Mathematiker
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Fig. 1.34: Zur Iteration: f steigt Fig. 1.35: Zur Iteration: f fällt

für alle n = 1,2,3, . . .. Also folgt sukzessive

|xn+1 − xn| ≤ K |xn − xn−1| ≤ K 2|xn−1 − xn−2| ≤ . . . ≤ K n|x1 − x0| , d.h.

|xn+1 − xn| ≤ K n|x1 − x0| , für alle n = 0,1,2, . . ..

Mit n < m folgt daher

|xn − xm | = |(xn − xn+1)+ (xn+1 − xn+2)+ (xn+2 − xn+3)+ . . .+ (xm−1 − xm)|
≤ |xn − xn+1| + |xn+1 − xn+2| + |xn+2 − xn+3| + . . .+ |xm−1 − xm |
≤ K n|x1 − x0| + K n+1|x1 − x0| + K n+2|x1 − x0| + . . .+ K m−1|x1 − x0|
≤ K n(1+ K + K 2 + . . .+ K m−n−1)|x1 − x0|

= K n 1− K m−n

1− K
|x1 − x0| ≤ K n 1

1− K
|x1 − x0| ,

also

|xn − xm | ≤
K n

1− K
|x1 − x0| , (m > n) . (1.54)

Die rechte Seite kann beliebig klein gemacht werden, wenn nur n genügend groß gewählt wird,
da K n → 0 für n →∞. Zu beliebig kleinem ε > 0 suchen wir uns nun ein n0 ∈ N, so daß die
rechte Seite von (1.54) für n = n0 kleiner als ε wird. Dann ist sie auch für alle n ≥ n0 kleiner
als ε, woraus

|xn − xm | < ε

folgt für alle n, m ∈ N mit m > n ≥ n0. Nach dem Cauchyschen Konvergenzkriterium konver-
giert damit die Folge (xn) gegen einen Grenzwert x .
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x ist ein Fixpunkt von f , denn es gilt x = f (x) wegen

|x − f (x)| = |x − xn + xn − f (x)|
≤ |x − xn| + |xn − f (x)|
= |x − xn| + | f (xn−1)− f (x)|
≤ |x − xn| + K |xn−1 − x | → 0 für n →∞.

Überdies ist x der einzige Fixpunkt von f , denn wäre x ein weiterer Fixpunkt von f , so würde
folgendes gelten:

|x − x | = | f (x)− f (x)| ≤ K |x − x | < |x − x | ,

also |x − x | < |x − x |, was nicht sein kann. �

Zusatz zu Satz 1.8: Es gelten die Fehlerabschätzungen

|xn − x | ≤ K n

1− K
|x1 − x0| (a priori) (1.55)

und |xn − x | ≤ 1

1− K
|xn+1 − xn| (a posteriori) (1.56)

für alle n = 0,1,2,3, . . ..

Beweis:

(1.55) folgt sofort aus (1.54), wenn man darin m gegen∞ streben läßt. Aus (1.55) folgt aber für
n = 0

|x0 − x | ≤ 1

1− K
|x1 − x0| .

Da x0 beliebig in I gewählt werden darf, bedeutet dies für beliebiges x ∈ I anstelle von x0

|x − x | = 1

1− K
| f (x)− x0| .

Setzt man hier x = xn , so folgt (1.56). �

Bemerkung: Die meisten Iterationsverfahren zur Lösung von Gleichungen lassen sich auf den
Banachschen Fixpunktsatz zurückführen. Insbesondere gelingt dies beim Newtonschen Verfah-
ren, dem wohl wichtigsten Verfahren zur Lösung von Gleichungen.

Übung 1.28:

Löse die Gleichung

x = x3

4
+ 1

5
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im Intervall [0, 1] = I durch Iteration. Man mache sich klar, daß für f (x) = x3/4 + 1/5 die

Voraussetzungen von Satz 1.8 auf I erfüllt sind. Die Lösung x soll auf 4 Dezimalstellen nach

dem Komma berechnet werden (also mit dem Fehler von höchstens 5 ·10−5). Benutze dafür die

Fehlerabschätzung (1.56).

1.5 Unendliche Reihen reeller Zahlen

1.5.1 Konvergenz unendlicher Reihen

Definition 1.14:

Wir denken uns eine reelle Zahlenfolge

a0 , a1 , a2 , a3 , . . .

gegeben. Addiert man die Elemente nacheinander auf.

s0 = a0 , s1 = a0 + a1 , s2 = a0 + a1 + a2 usw.,

so entsteht eine neue Folge

s0 , s1 , s2 , . . . , sn , . . . .

Diese Zahlenfolge (sn) heißt die unendliche Reihe mit den Gliedern a0, a1, a2, . . ..

Man beschreibt die unendliche Reihe symbolisch durch

[a0 + a1 + a2 + . . .] oder kürzer

[ ∞
∑

k=0

ak

]

Statt »unendliche Reihe« sagen wir auch kurz Reihe. Die Summen

sn =
n
∑

k=0

ak . (1.57)

heißen Partialsummen der Reihe.

Das Wesen der unendlichen Reihe [a0 + a1 + a2 + . . .] besteht also im sukzessiven Addieren
der ak . Gerade dadurch entsteht die neue Folge (sn), auf die es ankommt. Diese Folge wird auf
Konvergenz und Divergenz untersucht. Wir vereinbaren daher in naheliegender Weise:

Definition 1.15:

Eine Reihe

[ ∞
∑

k=0

ak

]

heißt genau dann konvergent, wenn die Folge (sn) ihrer Partial-

summen konvergiert. Ist s der Grenzwert dieser Folge, also s = lim
n→∞

sn , so schreibt
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man dafür auch

s =
∞
∑

k=0

ak .

s heißt Grenzwert oder Summe der Reihe.

Eine Reihe, die nicht konvergent ist, heißt divergent.
Wir erwähnen noch, daß Reihen nicht unbedingt mit dem Index Null beginnen müssen. In der

Form [am + am+1 + am+2 + . . .], mit m beginnend, werden sie entsprechend behandelt. Wir ma-
chen uns noch einmal klar, daß Reihen nichts grundsätzlich Neues sind, sondern lediglich spezi-
elle Folgen (sn). Auf diese Folgen werden einfach alle Überlegungen des vorigen Abschnitts 1.4
angewendet, womit vieles, was über Reihen gesagt werden kann, schon erledigt ist. Die fol-
genden Ausführungen sollen hauptsächlich darüber hinausgehende Gesichtspunkte beleuchten,
z.B. wie man von Eigenschaften der Glieder ak auf die Konvergenz der Reihen schließen kann.
Doch zunächst das Paradebeispiel aller unendlichen Reihen, die geometrische Reihe:

Beispiel 1.40:
Die geometrische Reihe hat die Gestalt

[1+ q + q2 + q3 + . . .] , kürzer

[ ∞
∑

k=0

qk

]

, 23

mit einer beliebigen reellen Zahl q . Für die Partialsummen sn erhält man im Falle q �= 1 (nach
Abschn. 1.1.7, (1.12)):

sn = 1+ q + q2 + q3 + . . .+ qn = 1− qn+1

1− q
. (1.58)

Nehmen wir |q| < 1 an, so strebt die rechte Seite gegen s = 1/(1− q). Also folgt

∞
∑

k=0

qk = 1+ q + q2 + q3 + . . . = 1

1− q
, falls |q| < 1. (1.59)

Die geometrische Reihe beherrscht beispielsweise die Zinseszinsrechnung, wie überhaupt wei-
te Teile der Finanzmathematik. In der Analysis ist sie ein unentbehrliches Hilfsmittel bei der
Konvergenzuntersuchung auch anderer Reihen.

Das »Geometrische« an der geometrischen Reihe wollen wir am Beispiel der Fig. 1.36 ver-
deutlichen. Die Summe der Flächeninhalte der schraffierten Dreiecke ist

1+ 1

4
+ 1

42
+ 1

43
+ . . . = 1

1− 1
4

= 4

3
.

23 Hierbei vereinbart man q0 = 1, auch im Falle q = 0. Im übrigen ist aber 00, nach wie vor, nicht definiert.



76 1 Grundlagen

Fig. 1.36: Zur geometrischen Reihe

Nimmt man das untere Dreieck weg, so entsteht die gleiche Figur wie vorher in kleinerem Maß-
stab. Dies ist typisch für das Vorkommen der geometrischen Reihe in der Geometrie.

Beispiel 1.41:
Die harmonische Reihe lautet

1+ 1

2
+ 1

3
+ 1

4
+ . . . , kürzer

[ ∞
∑

k=1

1

k

]

.

Diese Reihe ist überraschenderweise divergent, obwohl ihre Glieder gegen Null streben. Man
sieht das so ein: Im Falle n = 2m (m ∈ N) gilt für die n-te Partialsumme:

sn = 1+ 1

2
+
(

1

3
+ 1

4

)

+
(

1

5
+ . . .+ 1

8

)

+
(

1

9
+ . . .+ 1

16

)

+ . . .

+
(

1

2m−1 + 1
+ . . .+ 1

2m

)

≥ 1+ 1

2
+
(

1

4
+ 1

4

)

+
(

1

8
+ . . .+ 1

8

)

︸ ︷︷ ︸

4 Glieder

+
(

1

16
+ . . .+ 1

16

)

︸ ︷︷ ︸

8 Glieder

+ . . .

+
(

1

2m
+ . . .+ 1

2m

)

︸ ︷︷ ︸

2m−1 Glieder

= 1+ 1

2
+ 1

2
+ 1

2
+ . . .+ 1

2
︸ ︷︷ ︸

m Glieder

= 1+ m · 1

2
→∞ für m →∞.

Beachtet man, daß die Folge (sn) streng monoton steigt, so folgt damit lim
n→∞

sn = ∞. Wir be-

schreiben dies symbolisch durch

∞
∑

k=1

1

k
= ∞ . (1.60)
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Bezeichnung: Streben die Partialsummen einer Reihe [a0 + a1 + a2 + . . .] gegen Unendlich, so
schreiben wir symbolisch

∞
∑

k=1

ak = ∞ .

Entsprechend verfährt man im Falle −∞.

Beispiel 1.42:

Die Reihe
[

1

0! +
1

1! +
1

2! +
1

3! + . . .

]

konvergiert, denn schon im Beispiel 1.39, Abschn. 1.4.6, haben wir gezeigt, daß die Folge der
Partialsummen

sn =
n
∑

k=0

1

k!

monoton steigt und beschränkt ist, also konvergiert. Der Grenzwert wird mit e bezeichnet:

e =
∞
∑

k=0

1

k!
.= 2,71828183 . (1.61)

Die Rechenregeln für konvergente Folgen lassen sich sofort auf Reihen übertragen. Man hat
sie nur auf die Partialsummen sn anzuwenden. Es folgt daher ohne weiteres:

Satz 1.9:
Konvergente Reihen dürfen gliedweise addiert, subtrahiert und mit einem konstanten
Faktor multipliziert werden.

D.h. sind

[ ∞
∑

k=0

ak

]

,

[ ∞
∑

k=0

bk

]

konvergent, so sind auch

[ ∞
∑

k=0

ak ± bk

]

,

[ ∞
∑

k=0

λak

]

, (λ ∈ R)

konvergent, und es gilt

∞
∑

k=0

(ak ± bk) =
∞
∑

k=0

ak ±
∞
∑

k=0

bk , (1.62)

∞
∑

k=0

(λak) = λ

∞
∑

k=0

ak . (1.63)

Die Beispiele 1.40 und 1.42 legen folgenden Satz nahe:
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Satz 1.10:

Bei einer konvergenten Reihe

[ ∞
∑

k=0

ak

]

konvergieren die Glieder gegen Null:

ak → 0 für k →∞

Bemerkung: Die Umkehrung des Satzes gilt nicht, wie das Beispiel der harmonischen Reihe
zeigt.

Beweis:
Nach Voraussetzung konvergiert die Folge der Partialsummen (an) der Reihe. Für jedes Glied an

gilt offenbar an = sn − sn−1. Aus dem Cauchy-Kriterium folgt, daß diese Differenz gegen Null
strebt. �

Übung 1.29*:

Beweise, daß die Reihe

[

1+ 1

3
+ 1

5
+ 1

7
+ . . .

]

gegen∞ divergiert.

Übung 1.30:

Ein Kapital von K e mit K = 150000 soll für eine Rente verwendet werden, die jeweils am

Jahresanfang auszuzahlen ist. Der Jahreszins des Geldinstitutes, bei dem das Kapital eingezahlt

wird, ist p = 6 % = 0,06. Das Kapital wird am 1.Januar eines Jahres dort eingezahlt. Die

Jahresrente beträgt R = 12000e. Sie wird jeweils am 1. Januar ausgezahlt, beginnend mit dem

Einzahlungsjahr. Wieviele Jahre kann die Rente gezahlt werden?

Hinweis: Zu Beginn des n-ten Jahres ist das Guthaben auf den Betrag

Kn = K qn−1 − R(1+ q + q2 + . . .+ qn−1)

gesunken. (Warum?) Für welches n ist Kn > 0 > Kn+1?

1.5.2 Allgemeine Konvergenzkriterien

Monotonie- und Cauchy-Kriterium werden ohne Schwierigkeiten auf Reihen übertragen.

Satz 1.11:
(Monotoniekriterium für Reihen) Eine Reihe mit nichtnegativen Gliedern ak , konver-
giert genau dann, wenn die Folge ihrer Partialsummen beschränkt ist.

Zum Beweis ist hierbei lediglich zu bemerken, daß wegen ak ≥ 0 die Folge der Partialsummen
sn = a0 + a1 + . . . + an monoton steigt. Das Monotoniekriterium für Folgen ergibt dann den
vorstehenden Satz.

Das Monotoniekriterium wird häufig auf Reihen angewandt, deren Konvergenz zwar vermu-
tet wird, deren Grenzwert jedoch nicht erraten werden kann. Wir erläutern dies an folgendem
Beispiel:
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Beispiel 1.43:

Konvergiert die Reihe

[

1+ 1

2a
+ 1

3a
+ . . .+ 1

na
+ . . .

]

mit a > 1? 24

Dies ist der Fall! Wir sehen es mit dem Monotoniekriterium folgendermaßen ein:
Alle Glieder sind positiv. Zu zeigen bleibt also, daß die Folge der Partialsummen sn beschränkt

ist. Dies wird exemplarisch für n = 15 durchgeführt. Es gilt:

s15 = 1+
(

1

2a
+ 1

3a

)

+
(

1

4a
+ . . .+ 1

7a

)

+
(

1

8a
+ . . .+ 1

15a

)

≤ 1+
(

1

2a
+ 1

2a

)

+
(

1

4a
+ . . .+ 1

4a

)

︸ ︷︷ ︸

4 Glieder

+
(

1

8a
+ . . .+ 1

8a

)

︸ ︷︷ ︸

8 Glieder

= 1+ 2 · 1

2a
+ 4 · 1

4a
+ 8 · 1

8a
= 1+ 1

2a−1
+ 1

4a−1
+ 1

8a−1

= 1+ 1

2a−1
+ 1

(2a−1)2
+ 1

(2a−1)3
= 1+ q + q2 + q3 (mit q = 1

2a−1
< 1)

< 1+ q + q2 + q3 + q4 + q5 + . . . = 1

1− q
.

Diese Abschätzung läßt sich offenbar für alle sn mit n = 2m − 1(m ∈ N) durchführen:

sn ≤
1

1− q
.

Da die Folge der Partialsummen monoton steigt, gilt die obige Ungleichung für alle n = 0, 1, 2,

. . ., d.h. (sn) ist beschränkt, woraus die Konvergenz der Reihe

[ ∞
∑

n=1

1

na

]

folgt. Ein Grenzwert

ist dabei schwerlich zu erraten. (Im Falle a = 2 strebt die Reihe z.B. gegen π2/6, was später im
Zusammenhang mit Fourierreihen gezeigt wird.)

Wir kommen nun zum Cauchy-Kriterium, welches für die Theorie der Reihen am wichtigsten
ist, wie bei Folgen.

Satz 1.12:

(Cauchy-Kriterium für Reihen) Eine Reihe

[ ∞
∑

k=0

ak

]

konvergiert genau dann, wenn

folgendes gilt: Zu jedem ε > 0 gibt es einen Index n0, so daß für alle m > n ≥ n0

24 a sei hier rational vorausgesetzt, da wir andere Hochzahlen noch nicht kennen. Doch gilt alles unverändert auch für
beliebige reelle Exponenten, wie wir nach Einführung der Exponentialfunktion sehen werden.
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stets
∣
∣
∣
∣
∣
∣

m
∑

k=n+1

ak

∣
∣
∣
∣
∣
∣

< ε (1.64)

gilt.

Beweis:
Man hat lediglich zu beachten, daß

m
∑

k=n+1

ak = sm − sn

ist, wobei sn , sm Partialsummen sind. Das Cauchy-Kriterium für Folgen liefert dann sofort obigen
Satz. �

Wie wir gesehen haben, divergiert die harmonische Reihe
[

1+ 1
2 + 1

3 + . . .
]

. Wie steht es

aber mit der Reihe
[

1− 1

2
+ 1

3
− 1

4
+ . . .

]

? (1.65)

Sie konvergiert in der Tat. Es handelt sich dabei um eine sogenannte alternierende Reihe.
Bezeichnung: Eine Reihe heißt alternierend, wenn ihre Glieder abwechselnd > 0 und < 0 sind.

Für diese Reihen gilt

Satz 1.13:
(Leibniz25-Kriterium) Eine alternierende Reihe

[a0 − a1 + a2 − a3 + a4 − . . .]

konvergiert, wenn die Folge der ak > 0 monoton fallend gegen Null strebt.

Beweis:
Wir bilden die Partialsummen zu geraden und zu ungeraden Indizes und klammern geschickt:

s2n = a0 − (a1 − a2)− (a3 − a4)− . . .− (a2n−1 − a2n) ,

s2n−1 = (a0 − a1)+ (a2 − a3)+ . . .+ (a2n−2 − a2n−1) .

Alle Klammerausdrücke sind ≥ 0, da (ak) monoton fällt. Also ist (s2n) monoton fallend und
(s2n−1) monoton steigend. Wegen

s1 ≤ s2n−1 ≤ s2n−1 + a2n = s2n ≤ s0 , (n ≥ 1) ,

25 Gottfried Wilhelm Leibniz (1646 – 1716), deutscher Philosoph, Mathematiker, Diplomat, Physiker, Historiker, Bi-
bliothekar und Doktor des weltlichen und des Kirchenrechts
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ist (s2n) durch s1 nach unten beschränkt und (s2n−1) durch s0 nach oben. Nach dem Monotonie-
kriterium konvergieren daher beide Folgen und zwar gegen den gleichen Grenzwert. Letzteres
folgt aus

s2n − s2n−1 = a2n → 0 für n →∞. �

Die alternierende Reihe
[

1− 1
2 + 1

3 − 1
4 + . . .

]

konvergiert damit. (Ihr Grenzwert ist übri-

gens ln 2, was wir im Zusammenhang mit Taylorreihen später zeigen werden.)

Übung 1.31*:

Beweise die Konvergenz der Reihe

⎡

⎣

∞
∑

k=0

2k

k!

⎤

⎦.

1.5.3 Absolut konvergente Reihen

Definition 1.16:

Eine Reihe

[ ∞
∑

k=0

ak

]

heißt absolut konvergent, wenn die Reihe der Absolutbeträge

ihrer Glieder konvergiert, d.h. wenn

[ ∞
∑

k=0

|ak |
]

konvergent ist.

Gilt dies, so ist natürlich auch die Ausgangsreihe

[ ∞
∑

k=0

ak

]

konvergent, denn es gilt

|an+l + . . .+ am | ≤ |an+1| + . . .+ |am |

für beliebige Indizes m, n. Nach dem Cauchy-Kriterium (Satz 1.12) gibt es aber zu jedem ε > 0
ein n0, so daß die rechte Seite der Ungleichung kleiner als ε ist, sofern n, m > n0 gilt. Damit gilt
dies erst recht für die linke Seite, womit das Cauchy-Kriterium für die Ausgangsreihe erfüllt ist.

Bemerkung: Absolut konvergente Reihen stellen den Normalfall konvergenter Reihen dar. Kon-
vergente Reihen, die nicht absolut konvergieren, bilden eher die Ausnahme. Entscheidend für
absolut konvergente Reihen ist, daß ihre Glieder beliebig umgeordnet werden dürfen, und daß
man Produkte solcher Reihen bilden kann. Wir formulieren dies in den nächsten beiden Sätzen.

Satz 1.14:

Absolut konvergente Reihen dürfen beliebig »umgeordnet« werden. D.h. ist

[ ∞
∑

k=0

ak .

]

eine absolut konvergente Reihe mit dem Grenzwert s, so konvergiert jede durch Um-

ordnung daraus entstehende Reihe

[ ∞
∑

k=0

ank

]

ebenfalls gegen s.26

26 In der Folge (nk ) kommt jeder Index 0, 1, 2, 3, . . . usw. genau einmal vor.
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Beweis:

Es seien

sn =
n
∑

k=1

ak und tn =
n
∑

k=1

ank

die Partialsummen der genannten Reihen. Für sie gilt nach der Dreiecksungleichung

|s − tn| ≤ |s − sn| + |sn − tn| .

Wegen |s − sn| → 0, (für n → ∞) bleibt nur |sn − tn| → 0 (für n → ∞) zu beweisen, denn
dann gilt |s − tn| → 0, was gerade die Behauptung des Satzes ist.

Zunächst bemerken wir, daß

An :=
∞
∑

k=n

|ak |

gegen Null strebt, den da

[ ∞
∑

k=0

|ak |
]

konvergiert, gilt mit s =
∞
∑

k=0

|ak | und sn =
n−1
∑

k=0

|ak |:

An = s − sn → 0 für n →∞.

Wir bilden nun

|sn − tn| = |am(n) + . . . |
≤ |am(n)| + |am(n)+1| + . . .

= Am(n) .

Dabei ist am(n) das erste Glied (mit kleinstem Index), das sich in sn − tn nicht heraushebt, das
also nur in sn vorkommt und nicht in tn . Es gilt m(n) → ∞ für n → ∞, da mit steigendem n
schließlich jedes Element ak in tn vorkommt. Damit gilt auch Am(n) → 0 für n → ∞, folglich
|sn − tn| → 0 für n →∞, was zu zeigen war. �

Konvergente Reihen, die nicht absolut konvergieren, heißen bedingt konvergent. Die Reihe

[

1− 1

2
+ 1

3
− 1

4
+− . . .

]

(1.66)

ist ein Beispiel dafür.
Man könnte sich fragen, ob willkürliches Umordnen hier auch erlaubt ist. Das ist nicht der Fall.

Es gilt sogar folgendes: Jede bedingt konvergente Reihe kann man so umordnen, daß sie gegen
eine beliebig vorgegebene Zahl konvergiert. Die Reihe (1.66) kann man z.B. so umordnen, daß
sie gegen 100 konvergiert. Man hat nur so viele positive Glieder zu addieren, bis man gerade 100
überschritten hat. Dann subtrahiert man so viele negative Glieder (in diesem Fall nur eins), bis
100 gerade unterschritten ist. Dann addiert man wieder positive Glieder, bis 100 überschritten ist,
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usw. So »pendelt man sich auf 100 ein«. Diese Andeutung möge genügen. Für Beweise verweisen
wir auf [24], S. 199, Satz 32.4 und [56], S. 141, Beispiel 4.11. In Bezug auf Anwendungen sind
diese Überlegungen von geringer Bedeutung.

Absolut konvergente Reihen gestatten uns, Produkte von Reihen zu bilden.

Satz 1.15:

Sind

[ ∞
∑

k=0

ak

]

und

[ ∞
∑

i=0

bi

]

absolut konvergente Reihen, so folgt

( ∞
∑

k=0

ak

)

·
( ∞
∑

i=0

bi

)

=
∞
∑

k=0,i=0

ak · bi , (1.67)

wobei die Indizes (k, i) in der rechten Summe alle Paare

(0,0) (0,1) (0,2) . . .

(1,0) (1,1) (1,2) . . .

(2,0) (2,1) (2,2) . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

(1.68)

in irgendeiner Reihenfolge durchlaufen. Wählt man die Reihenfolge speziell auf die
folgendermaßen skizzierte Weise:

(0,0) (0,1) (0,2) (0,3) . . .

(1,0)
ր

(1,1)
ր

(1,2)
ր

. . .

(2,0)
ր

(2,1)
ր

. . .

(3,0)
ր

. . .
ր

. . . ր

,

so folgt

( ∞
∑

k=0

ak

)( ∞
∑

i=0

bi

)

=
∞
∑

j=0

c j , mit c j =
j

∑

k=0

a j−kbk . (1.69)

Beweis:

Die Indizes (1.68) mögen in irgendeiner Weise durchlaufen werden. Auf diese Weise werden die
|akbi | zu Gliedern einer Reihe. sn sei die n-te Partialsumme dieser Reihe. Es sei m der höchste
vorkommende Index i oder k der Glieder |akbi |, welche die Summe sn bilden. Damit gilt offenbar

|sn| ≤
m
∑

k=0,i=0

|akbi | =
(

m
∑

k=0

|ak |
)(

m
∑

i=0

|bi |
)

≤
( ∞
∑

k=0

|ak |
)( ∞

∑

i=0

|bi |
)

.
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(sn) ist also beschränkt. Nach dem Monotoniekriterium konvergiert (sn). womit der Satz bewie-
sen ist. �

Übung 1.32:

Es sei ak = pk und bk = qk , wobei |p| < 1 und |q| < 1 vorausgesetzt ist. Es soll ci nach

(1.69) berechnet werden. Zeige

ci =
pi+1 − qi+1

p − q
.

1.5.4 Konvergenzkriterien für absolut konvergente Reihen

Da, wie schon gesagt, absolut konvergente Reihen wesentlich häufiger in konkreten Anwendun-
gen vorkommen als bedingt konvergente, sind die folgenden Konvergenzkriterien wichtig:

Satz 1.16:

(Majorantenkriterium) Ist

[ ∞
∑

k=0

ak

]

absolut konvergent und

|bk | ≤ |ak |

für alle k von einem k0 an27, so ist auch

[ ∞
∑

k=0

bk

]

absolut konvergent.

[ ∞
∑

k=0

|ak |
]

heißt eine Majorante von

[ ∞
∑

k=0

bk

]

.

Beweis:
Aus

[
n
∑

k=0

|bk |
]

≤
[

n
∑

k=0

|ak |
]

≤
[ ∞
∑

k=0

|ak |
]

folgt mit dem Monotoniekriterium die Behauptung. �

Beispiel 1.44:

Da

[ ∞
∑

k=0

qk

]

für |q| < 1 absolut konvergiert, gilt dies nach obigem Kriterium auch für die Reihe

[ ∞
∑

k=1

qk/k

]

.

27 D.h. für alle k ≥ k0.
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Satz 1.17:

(Quotientenkriterium) Die Reihe

[ ∞
∑

k=0

ak

]

ist absolut konvergent, wenn es eine Zahl

b < 1 gibt mit

∣
∣
∣
∣

ak+1

ak

∣
∣
∣
∣
≤ b , ak �= 0 , (1.70)

für alle Indizes k von einem Index k0 an28, Gilt jedoch von einem Index k0 an

∣
∣
∣
∣

ak+1

ak

∣
∣
∣
∣
≥ 1 , ak �= 0 , (1.71)

so ist die Reihe

[ ∞
∑

k=0

ak

]

divergent.

Beweis:

(I) Aus (1.70) folgt

∣
∣
∣
∣

ak0+1

ak+0

∣
∣
∣
∣
·
∣
∣
∣
∣

ak0+2

ak0+1

∣
∣
∣
∣
· · · |ak |
|ak−1|

≤ b · b · . . . · b
︸ ︷︷ ︸

(k − k0) Faktoren

= bk−k0 .

Die linke Seite ist offenbar gleich |ak |/|ak0 |, also folgt |ak |/|ak0 | ≤ bk−k0 , d.h.

|ak | ≤ C · bk mit C = b−k0 |ak0 | .

Da

[ ∞
∑

k=0

Cbk

]

konvergiert (gegen C ·
∞
∑

k=0

bk = C

1− b
, s. geometrische Reihe), so ist auch

[ ∞
∑

k=0

ak

]

absolut konvergent.

(II) Aus (1.71) folgt

0 < |ak0 | ≤ |ak0+1| ≤ |ak0+2| ≤ . . . .

Die ak streben nicht gegen Null, folglich divergiert die Reihe. �

Beispiel 1.45:

Die Reihe
[

q + 2q2 + 3q3 + 4q4 + . . .+ kqk + . . .
]

mit |q| < 1

28 D.h. für alle k ≥ k0.
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konvergiert absolut. Denn für den Quotienten benachbarter Glieder gilt

∣
∣
∣
∣

(k + 1)qk+1

kqk

∣
∣
∣
∣
= k + 1

k
|q| = |q| + |q|

k
≤ |q| + |q|

k0
(1.72)

für alle k ≥ k0. Man kann dabei k0 so groß wählen, daß die rechte Seite in (1.72) kleiner als 1 ist.
Nach dem Quotientenkriterium konvergiert damit die Reihe absolut.

Satz 1.18:

(Wurzelkriterium) Die Reihe

[ ∞
∑

k=0

ak

]

konvergiert absolut, wenn es eine Zahl b < 1

gibt mit

k
√

|ak | ≤ b (1.73)

für alle k ab einem Index k0. Gilt

k
√

|ak | > 1 (1.74)

für unendlich viele Indizes k, so divergiert die Reihe.

Beweis:

(I) Die Ungleichung (1.73) liefert |ak | ≤ bk . Die geometrische Reihe

[ ∞
∑

k=0

bk

]

ist also eine

Majorante von

[ ∞
∑

k=0

ak

]

, also liegt absolute Konvergenz vor.

(II) (1.74) ergibt |ak | ≥ 1 für unendlich viele k. also Divergenz. �

Bemerkung: Das Wurzelkriterium wird uns noch bei Potenzreihen (Abschn. 5.2.1) beschäftigen.
Quotienten- und Wurzelkriterium sind sogenannte »hinreichende« Kriterien. D.h. sie lassen sich
nicht umkehren: Aus absoluter Konvergenz folgt nicht allgemein die Gültigkeit der Quotienten-
bedingung (1.70) oder der Wurzelbedingung (1.73).

Aus beiden Kriterien ziehen wir nachstehende Folgerung, die in der Praxis als Kriterium für
absolute Konvergenz oder Divergenz meistens ausreicht.

Folgerung 1.15:

Für die Reihe

[ ∞
∑

k=0

ak

]

existiere

lim
k→∞

∣
∣
∣
∣

ak+1

ak

∣
∣
∣
∣
= c (ak �= 0 für alle k)
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oder

lim
k→∞

k
√

|ak | = c .

Dann folgt: Die Reihe konvergiert absolut, falls c < 1 ist, sie divergiert, wenn c > 1
ist.

Beweis:

Im Falle c < 1 sind für beliebig gewähltes b mit c < b < 1 die Konvergenzaussagen des Quo-
tientenkriteriums bzw. des Wurzelkriteriums erfüllt. Im Falle c > 1 gelten die entsprechenden
Divergenzvoraussetzungen. �

Beispiel 1.46:

Ist

[ ∞
∑

k=0

k2qk

]

(|q| < 1) konvergent? Mit ak = k2qk gilt

∣
∣
∣
∣

ak+1

ak

∣
∣
∣
∣
=
(

k + 1

k

)2

|q| → |q| für k →∞.

Wegen |q| < 1 erhält man aus Folgerung 1.15 die absolute Konvergenz der Reihe.

Übung 1.33*:

Für welche reellen Zahlen x konvergiert die Reihe

[

x − x2

3
+ x3

5
− x4

7
+− . . .

]

?

1.6 Stetige Funktionen

1.6.1 Problemstellung: Lösen von Gleichungen

Anwendungsprobleme führen oft auf Gleichungen oder Gleichungssysteme. wir beschäftigen
uns hier mit dem einfachsten Fall, nämlich einer reellen Gleichung mit einer reellen Unbekann-
ten. Sie läßt sich in der Form

f (x) = 0

beschreiben, wobei f eine reellwertige Funktion auf dem Intervall ist. Gesucht sind alle Zahlen
x aus dem Intervall, die die Gleichung erfüllen. Sie heißen Nullstellen von f .

Beispiel 1.47:

x4 + x3 + 1,662x2 − x − 0,250 = 0 (1.75)
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Diese Gleichung kommt bei der Standfestigkeitsberechnung eines Kettenkarussells vor (s. Ab-
schn. 3.3.5). Man interessiert sich dabei für Lösungen x im Intervall [0, 1]. Die linke Seite von
(1.75) stellt f (x) dar.

Will man eine solche Gleichung lösen, so wird man zunächst ganz unbefangen probieren und
einige x-Werte einsetzen. Nehmen wir an, man hat dabei für einen Punkt x = a einen negativen
Funktionswert f (a) < 0 erhalten und für x = b einen positiven Wert f (b) > 0. Dann ist zu
vermuten, daß zwischen a und b eine Zahl x mit f (x) = 0 liegt, kurz, eine Lösung von f (x) = 0.

In unserem Beispiel 1.47 gilt f (a) < 0 für a = 0 und f (b) > 0 für b = 1, wie man durch
Einsetzen sieht.

Ist die Vermutung richtig, daß sich zwischen a und b eine Lösung befindet?

Die Anschauung zeigt folgendes: Bildet der Graph von f eine »ununterbrochene« Linie zwi-
schen den Punkten (a, f (a)) und (b, f (b)), so wird diese Linie die x-Achse wenigstens in einem
Punkt (x, 0) schneiden (s. Fig. 1.37a). Er liefert f (x) = 0, also eine Lösung unserer Gleichung.

»Springt« die Funktion dagegen, wie in Fig. 1.37b skizziert, so braucht keine Lösung vorzu-
liegen.

Die Eigenschaft einer Funktion f , daß ihr Graph als »ununterbrochene« Linie erscheint, wird
Stetigkeit genannt. Diese anschauliche Formulierung ist noch etwas ungenau und für präzise
mathematische Arbeit nicht geeignet. Wir werden daher im nächsten Abschnitt die Stetigkeit
einer Funktion exakt beschreiben.

Fig. 1.37: Zur Stetigkeit

Vorerst kommen wir noch einmal auf die Gleichung f (x) = 0 zurück. wie ist sie zu »lösen«?
Ist f (a) < 0 und f (b) > 0, so kann man in der Mitte zwischen a und b, bei c = a+b

2 , den
Funktionswert f (c) berechnen. Ist f (c) > 0, so wird man eine Lösung im Teilintervall [a, c]
vermuten, ist f (c) < 0, vermutet man eine Lösung in [c, b]. Das so bestimmte Teilintervall
halbiert man wieder, usw. Dieses sogenannte Intervallhalbierungsverfahren führt bei stetigen
Funktionen zu beliebig genauer Berechnung einer Lösung von f (x) = 0 (s. Abschn. 1.6.3).

Im Beispiel 1.47 erhalten wir mit c = 0,5 zunächst f (c) = −0,147. Man vermutet daher eine
Lösung im Intervall [c, b], halbiert dies wieder usw.
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Der Leser möge den Vorgang selber mit dem Taschenrechner durchführen. Im Rahmen der
Rundungsgenauigkeit gewinnt er als Lösung von (1.75) dann x

.= 0,566. Aus Abschnitt 3.3.5
geht hervor, daß x die einzige Lösung in [0,1] ist.

1.6.2 Stetigkeit

Wir greifen noch einmal die Vorstellung auf, daß eine »stetige« Funktion auf einem Intervall
durch einen »zusammenhängenden« Graphen dargestellt werden soll, also insbesondere nicht
»springen« soll. Wir werden daher erwarten, daß f (xn) → f (x0) gilt, wenn xn → x0 konver-
giert. Genau dies wird als Stetigkeit bezeichnet:

Definition 1.17:
Eine reellwertige Funktion f heißt in einem Punkt x0 ihres Definitionsbereiches stetig,
wenn für alle Folgen (xn) aus D mit xn → x0 stets

lim
n→∞

f (xn) = f (x0) (1.76)

gilt.

Man kann diesen Sachverhalt auch in folgender übersichtlicher Form schreiben:

lim
n→∞

f (xn) = f ( lim
n→∞

xn) . (1.77)

Merkregel: Stetigkeit von f in x0 = lim
n→∞

xn bedeutet, daß f und lim
n→∞

vertauscht werden

dürfen.

Definition 1.18:
Eine Funktion f : D → R heißt stetig auf einer Teilmenge A ihres Definitionsbe-
reiches D, wenn sie in jedem Punkt von A stetig ist. Ist f stetig in jedem Punkt des
Definitionsbereiches, so heißt f eine stetige Funktion.

Beispiel 1.48:
Jede Funktion der Form

f (x) = a0 + a1x + a2x2 + . . .+ am xm , (1.78)

definiert auf R, ist stetig. Eine Funktion dieser Art heißt Polynom.
Die Stetigkeit von f sieht man so ein: Mit lim xn = x0

29 folgt auch lim x2
n = x2

0 , lim x3
n = x3

0 ,
. . . usw., denn nach Satz 1.1 konvergiert das Produkt konvergenter Folgen gegen das Produkt der
zugehörigen Grenzwerte. Entsprechendes gilt für Summen konvergenter Folgen. Also gilt

f (x0) =
∞
∑

k=0

ak xk
0 =

∞
∑

k=0

ak lim
n→∞

xk
n =

∞
∑

k=0

lim
n→∞

(ak xk
n ) = lim

n→∞

( ∞
∑

k=0

ak xk
n

)

= lim
n→∞

f (xn) .

29 Wir schreiben vereinfacht lim statt lim
n→∞, wenn keine Irrtümer entstehen können.
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Dies bedeutet aber gerade, daß f in x0 stetig ist. Da x0 beliebig aus R gewählt war, ist f eine
stetige Funktion.

Die meisten in Physik und Technik vorkommenden Funktionen sind stetig.
Zunächst wollen wir weitere allgemeine Eigenschaften stetiger Funktionen behandeln, die

man kennen sollte, wenn man klug mitreden möchte.
Der folgende Satz gibt die sogenannte ε-δ-Charakterisierung der Stetigkeit an.

Satz 1.19:
Eine reellwertige Funktion f ist genau dann stetig in einem Punkt x0 ihres Definitions-
bereiches D, wenn folgendes gilt:

Zu jedem ε > 0 gibt es ein δ > 0, so daß

für alle x ∈ D mit |x − x0| < δ stets

| f (x)− f (x0)| < ε

gilt.

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎭

(1.79)

Bemerkung: Die beschriebene ε-δ-Charakterisierung (1.79) läßt sich auf einfache Weise veran-
schaulichen. Betrachten wir dazu Fig. 1.38:

Fig. 1.38: Zur Stetigkeit

Dort wurde zu einem ε > 0 ein δ > 0 gewählt und daraus ein Rechteck mit den Seitenlängen
2δ und 2ε um den Mittelpunkt (x0, f (x0)) gebildet.

Das Rechteck ist so beschaffen, daß der Graph von f seitlich herausläuft und nicht oben oder
unten.

Immer wenn man zu jedem ε > 0 ein δ > 0 dieser Art finden kann, liegt die Stetigkeit von f
in x0 vor. Denn die Tatsache, daß kein Punkt des Graphen von f über oder unter dem Rechteck
liegt, bedeutet gerade | f (x)− f (x0)| < ε für alle x ∈ D mit |x − x0| < δ.
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Beweis:

(des Satzes 1.19): (I) Es sei f stetig in x0). Angenommen, die ε-δ-Charakterisierung (1.79) ist
nicht erfüllt. Dann gibt es ein ε > 0, zu dem man kein δ < 0 finden kann mit | f (x)− f (x0)| < ε,
falls |x − x0| < δ. D.h. für jedes δ > 0 gibt es ein xδ ∈ D|xδ − x0| < δ, das | f (xδ)− f (x0)| ≥ ε

erfüllt. Insbesondere gibt es dann zu δ = 1/n (n ∈ N) jeweils ein xn mit

|xn − x0| <
1

n
und | f (xn)− f (x0)| ≥ ε .

Die erste Ungleichung ergibt lim
n→∞

xn = x0, während die zweite zeigt, daß f (xn) nicht gegen

f (x0) strebt. Das widerspricht der Stetigkeit in x0. Also war unsere Annahme falsch, und (1.79)
gilt.

(II) Ist aber (1.79) erfüllt, so folgt daraus die Stetigkeit von f in x0. Denn ist (xn) aus D mit
xn → x0 für n → ∞, so wähle man zu beliebigem ε > 0 ein δ > 0 mit | f (x) − f (x0)| < ε,
falls |x − x0| < δ. Wegen xn → x0 gibt es ein n0 mit |xn − x0| < δ für alle n ≥ n0, also auch
| f (xn)− f (x0)| < ε für n ≥ n0. Das bedeutet aber gerade f (xn)→ f (x0) für n →∞, womit
der Satz bewiesen ist. �

Bemerkung: Bei konkreten Stetigkeitsuntersuchungen geht man meistens von der ursprüngli-
chen Definition der Stetigkeit aus (Def. 1.17), während bei theoretischen Überlegungen (mehrfa-
che Grenzwertbildungen u.a.) die ε-δ-Charakterisierung vorzuziehen ist.

Übung 1.34*:

Für welche x-Werte sind die folgenden Funktionen stetig und für welche nicht?

(a) f (x) = x−1 , f : R \ {0} → R ,

(b) g(x) =
{

x−1 für x �= 0,

0 für x = 0,
g : R→ R ,

(c) h(x) = lim
n→∞

1

x2n + 1
, h : R→ R ,

(d) k(x) =

⎧

⎨

⎩

−7x2+63x−98
x2+3x−10

für x > 2,

0 für x ≤ 2,
k : R→ R .

1.6.3 Zwischenwertsatz

Wie schon zu Beginn von Abschnitt 1.6 gesagt, erwarten wir von einer stetigen Funktion f auf
einem Intervall I , daß sie zwischen einem a mit f (a) < 0 und einem b mit f (b) > 0 eine
Nullstelle x hat (s. Fig. 1.39). Wir vermuten also, daß ihr Graph die x-Achse zwischen a und b
mindestens einmal schneidet. Dies ist die Aussage des folgenden Satzes.
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Fig. 1.39: Nullstellensatz, Zwischenwertsatz

Satz 1.20:
(Nullstellensatz) Ist f eine reellwertige stetige Funktion auf dem Intervall [a, b] und
haben f (a) und f (b) verschiedene Vorzeichen ( f (a) < 0, f (b) > 0, oder: f (a) > 0,
f (b) < 0), so besitzt f in (a, b) mindestens eine Nullstelle.

Beweis:
Der Beweis wird konstruktiv geführt, und zwar mit dem Intervallhalbierungsverfahren, welches
eine Nullstelle beliebig genau zu berechnen gestattet. Ohne Beschränkung der Allgemeinheit
nehmen wir f (a) < und f (b) > 0 an (anderenfalls wird f durch − f ersetzt). Man teilt nun
das Intervall [a, b] in der Mitte, also bei m = (a + b)/2. Ist zufällig f (m) = 0, so bricht
man das Verfahren ab, da eine Nullstelle gefunden ist. Im Falle f (m) > 0 wählt man das linke
Teilintervall [a, m] zur Weiterarbeit aus, im Falle f (m) < 0 dagegen das rechte Teilintervall
[m, b]. Das ausgewählte Teilintervall nennen wir [a1, b1]. Für seine Endpunkte gilt

f (a1) < 0 < f (b1) .

[a1, b1] wird nun abermals halbiert, usw. D.h. man bildet nacheinander für n = 1,2,3, . . . die
Zahlen

(I) mn =
an + bn

2
= Mitte von [an, bn],

(II) falls f (mn)

⎧

⎪
⎨

⎪
⎩

= 0 , so Abbruch, da mn Nullstelle,

> 0 , so an+1 := an , b + n + 1 := mn ,

< 0 , so an+1 := mn , b + n + 1 := bn .

⎫

⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎭

(1.80)

Auf diese Weise entsteht (falls kein Abbruch) eine Intervallschachtelung [a, b] ⊃ [a1, b1] ⊃
[a2, b2] ⊃ . . ., bei der die Intervallängen bn − an = (b − a)/2n gegen Null streben. Es gilt
zweifellos an → x , und bn → x . Wegen f (an) < 0 < f (bn) und der Stetigkeit von f folgt also

f (x) = lim
n→∞

f (an) ≤ 0 ≤ lim
n→∞

f (bn) = f (x) ⇒ f (x) = 0 . �
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Bemerkung: Das Intervallhalbierungsverfahren läßt sich gut auf Taschenrechnern oder program-
mierbaren Computern verwenden. Die Konvergenz der Folgen (an) oder (bn) gegen die Nullstelle
x ist zwar recht langsam, doch weist das Verfahren gerade bei der Programmierung einige Vor-
teile auf: Es ist einfach (d.h. leicht programmierbar), es ist stabil (d.h. es funktioniert bei jeder
stetigen Funktion und ist unanfällig gegen Rundungsfehler), und man kann den Rechenaufwand
vorher abschätzen, denn es gilt

|an − x | ≤ b − a

2n
, n = 1,2,3, . . . . (1.81)

Ist z.B. f eine stetige Funktion auf [0, 1] mit f (0) < 0, f (1) > 0, und will man eine Nullstelle
x ∈ (0,1) auf 6 Dezimalstellen genau bestimmen, so darf der Fehler |an − x | nicht größer als 5
·10−7 sein, d.h. es muß n so gewählt werden, daß (b−a)/2n ≤ 5 ·10−7 ist. Das kleinste n dieser
Art ist n = 21. Zusammen mit f (a) und f (b) sind damit 23 Funktionswerte zu berechnen. Wir
werden später erheblich schnellere Verfahren kennenlernen, die allerdings meist nicht so stabil
sind. Zwischen diesen beiden Eigenschaften, größere Schnelligkeit oder größere Stabilität der
Rechnung, hat man sich in der Praxis normalerweise zu entscheiden.

Beispiel 1.49:
Wir betrachten ein beliebiges Polynom ungeraden Grades n,

p(x) = a0 + a1x + a2x2 + . . .+ an xn , an �= 0 ,

und behaupten, daß mindestens eine reelle Nullstelle hat.
Der Beweis ist mit dem Nullstellensatz denkbar einfach. Man hat sich nur klar zu machen, daß

für große |x | das »höchste Glied« an xn »überwiegt«, d.h. daß alle anderen Glieder ak xk absolut
erheblich kleiner sind als |an xn|. Für genügend großes |x | ist daher das Vorzeichen von p(x)

gleich dem Vorzeichen von an xn . Da n ungerade ist, hat aber an(−x)n ein anderes Vorzeichen
als an xn . Zwischen−x und x muß sich daher eine Nullstelle von p befinden! Der Leser überprüfe
dies durch Rechnung am Beispiel

p(x) = 3+ 4x − x2 + 5x3 − 8x4 + x5

und berechne mit dem Intervallhalbierungsverfahren eine Nullstelle auf 3 Dezimalstellen genau.

Der Nullstellensatz läßt sich mühelos zum Zwischenwertsatz ausdehnen.

Satz 1.21:
(Zwischenwertsatz) Ist f : [a, b] → R eine stetigen Funktion und y eine beliebige
Zahl zwischen f (a) und f (b), so gibt es mindestens ein x zwischen a und b mit

f (x) = y .

Man sagt auch kürzer: Eine stetige Funktion f : [a, b] → R nimmt jeden Wert y zwischen f (a)

und f (b) an.



94 1 Grundlagen

Beweis:

Zum Beweis hat man lediglich auf die Funktion g(x) := f (x)− y den Nullstellensatz anzuwen-
den: Da y zwischen f (a) und f (b) liegt, müssen g(a) und g(b) verschiedene Vorzeichen haben.
Nach dem Nullstellensatz existiert daher ein x mit g(x) = 0, also f (x) = y. �

Beispiel 1.50:

Mit dem Zwischenwertsatz beweisen wir, daß zu jeder positiven Zahl a und jedem n ∈ N genau
eine positive n-te Wurzel

n
√

a

existiert (Nachtrag zu Abschn. 1.1.6). Um dies einzusehen, haben wir zu zeigen, daß die Glei-
chung

xn = a

eine Lösung x ≥ 0 besitzt. Es gilt für die stetige Funktion f (x)xn (x ≥ 0) aber f (0) < a <

f (x1), mit x1 = a+1. Nach dem Zwischenwertsatz existiert damit ein x0 ∈ (0, x1) mit f (x0) =
a, d.h. xn

0 = a. Da f auf [0,∞) streng monoton ist, ist x0 eindeutig bestimmt. Man schreibt
dafür

x0 = n
√

a .

Übung 1.35:

Wieviele Lösungen hat die Gleichung

x3 − 7

5
x2 + 28

45
x − 4

45
= 0 in [0,1]?

Berechne die Lösung(en) mit dem Intervallhalbierungsverfahren auf drei Dezimalstellen genau.

Gib vor Beginn der Rechnung an, wieviele Halbierungsschritte nötig sind!

1.6.4 Regeln für stetige Funktionen

Niemand zweifelt daran, daß Summe, Produkt und Quotient stetiger Funktionen wieder stetig
sind. Doch es will bewiesen werden!

Satz 1.22:
Sind f und g stetig in x0, so sind auch

f + g , f − g , f · g und
f

g
(falls g(x0) �= 0)

stetig in x0.
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Beweis:
Die Stetigkeit von f+g, f−g und f ·g ergibt sich unmittelbar aus Satz 1.1 unter Zugrundelegung
der Stetigkeitsdefinition 1.17. Zum Nachweis der Stetigkeit von f/g in x0 benutzen wir den
nachfolgenden Hilfssatz, der besagt, daß g(x) �= 0 ist für alle x des Definitionsbereiches von g,
die in einer gewissen Umgebung U von x0 liegen. Für jede Folge (xn) aus U mit xn → x0 folgt
daher f (xn)/g(xn)→ f (x0)/g(x0) für n →∞ (s. Satz 1.1). Also ist f/g in x0 stetig. �

Hilfssatz 1.2:
Ist f : I → R stetig in x0 ∈ I , wobei f (x0) �= 0 ist, so gibt es eine Umgebung U von
x0 mit

f (x) �= 0 für alle x ∈ U ∩ I .

Beweis:
Wir wählen ε = | f (x0)|. Dazu existiert ein δ > 0, so daß für alle x ∈ I mit |x − x0| < δ gilt:
| f (x0)− f (x)| < ε = | f (x0)|

⇒ | f (x0)| − | f (x)| < ε = | f (x0)| ⇒ 0 < | f (x)| .

Für U = (x0 − δ, x0 + δ) ist die Behauptung erfüllt. �

Beispiel 1.51:
Die Funktionen der Form

r(x) = a0 + a1x + a2x2 + . . .+ apx p

b0 + b1x + b2x2 + . . .+ bq xq
(bq �= 0) (1.82)

sind überall stetig, wo der Nenner nicht Null ist, da Zähler und Nenner stetige Funktionen darstel-
len (s. Satz 1.22, Fall f/g). Die Funktionen der Gestalt (1.82) nennt man rationale Funktionen.
Beispiele:

r1(x) = 3− x + 2x3

2− x + 6x2
, r2(x) = 1

1+ x2
, r3(x) = 8− 6x − 5x2

2+ x
.

Der Leser rechne Tabellen von Funktionswerten dieser Funktionen aus und skizziere die zugehö-
rigen Graphen. Bei r3 wird er eine kleine Überraschung erleben. Wie ist sie zu deuten?

Den folgenden Satz mache sich der Leser im Koordinatensystem anschaulich klar, bevor er
den Beweis liest.

Satz 1.23:
(Stetigkeit von Umkehrfunktionen) Es sei f eine streng monotone Funktion auf einem
Intervall I . Damit folgt

(1) Die Umkehrfunktion f −1 ist stetig auf f (I ).

(2) Ist f überdies stetig auf I j so ist J = f (I ) ein Intervall.
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Beweis:
Ohne Beschränkung der Allgemeinheit nehmen wir f als streng monoton steigend an. (Andern-
falls ersetzt man f durch − f .) Ferner dürfen wir I als offenes Intervall annehmen, denn wäre
a ein Endpunkt von I , etwa ein linker, so könnte man f auf (−∞, a] streng monoton steigend
erweitern, z.B. durch eine Gerade, die in a den Wert f (a) annimmt. Zu (1): Es sei nun y0 ein
beliebiger Punkt aus f (I ), mit y0 = f (x0). Es sei ε eine beliebige positive Zahl mit der Eigen-
schaft, daß [x0−ε, x0+ε] in I liegt (zum Stetigkeitsnachweis von f genügt es, sich auf so kleine
ε > 0 zu beschränken). Man bildet nun das Intervall ( f (x0)− ε, f (x0)+ ε) und erkennt wegen
der Monotonie von f , daß alle y = f (x) aus diesem Intervall ihre Urbilder x in (x0 − ε, x0 + ε)

haben. Ist δ der kleinere der Abstände | f (x0 − ε) − f (x0)| oder | f (x0 + ε) − f (x0)|, so folgt
damit für alle y = f (x):

|y − y0| < δ ⇒ |x − x0| < ε .

Das bedeutet aber gerade die Stetigkeit von f −1 in y0. Da y0 ∈ f (I ) beliebig war, ist f −1 somit
stetig.
Zu (2): Eine Zahlenmenge ist offenbar genau dann ein Intervall, wenn mit je zwei Punkten der
Menge auch jeder zwischen ihnen liegende Punkt zur Menge gehört. Sind nun y1 = f (x1) und
y2 = f (x2) zwei beliebige Punkte J = f (I ), so besagt der Zwischenwertsatz, daß jeder Punkt
zwischen y1 und y2 zu f (I ) gehört. Also ist f (I ) ein Intervall. �

Beispiel 1.52:
(Wurzelfunktionen) Die durch

g(x) = n
√

x (n ∈ N)

auf [0,∞) definierte Funktion ist stetig, denn sie ist die Umkehrfunktion der stetigen Potenzfunk-
tion

f (x) = xn , x ≥ 0 .

Satz 1.24:
(Komposition stetiger Funktionen) Es sei f : A→ B stetig in x0 ∈ A und g : B → C
stetig in y0 = f (x0). Dann ist auch die Komposition

g ◦ f

stetig in x0.

Beweis:
Aus xn → x0 (xn ∈ A) folgt f (xn)→ f (x0), also

(g ◦ f )(xn) = g( f (xn)) → g( f (x0)) = (g ◦ f )(x0) ,

d.h. g ◦ f ist stetig in x0. �
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Beispiel 1.53:

Wir fragen uns, ob

h(x) =
√

x2 + 1

stetig auf R ist. Mit f (x) = x2 + 1, g(y) = √y, kann man schreiben:

h(x) = g( f (x)) = (g ◦ f )(x) .

Da f stetig auf R ist und g stetig auf [0,∞), so ist h stetig auf R.

1.6.5 Maximum und Minimum stetiger Funktionen

Häufig ist nach dem größten oder kleinsten Wert einer Funktion gefragt.

Es interessiert etwa der höchste Punkt einer Flugbahn oder der niedrigste Punkt eines durch-
hängenden Hochspannungsdrahtes. Der folgende grundlegende Satz gibt Auskunft über die Exi-
stenz solcher größten oder kleinsten Werte, also der Maxima und Minima einer Funktion. Doch
zunächst einige Bezeichnungen.

Intervalle der Form [a, b] werden kompakte Intervalle genannt. Kompakte Intervalle sind also
nichts anderes als beschränkte abgeschlossene Intervalle. Nicht kompakt sind z.B. die Intervalle
(a, b), (a, b], [a,∞), R.

Wir nennen eine reelle Funktion f : A→ R nach oben beschränkt, wenn es eine Zahl C gibt
mit

f (x) ≤ C für alle x ∈ A.

C heißt eine obere Schranke von f . Die kleinste obere Schranke von f heißt das Supremum von
f und wird so beschrieben:

sup
x∈A

f (x) .

Entsprechend wird nach unten beschränkt und untere Schranke definiert (≥ statt leq). Die größte
untere Schranke von f heißt Infimum von f und wird durch

inf
∈A

f (x)

symbolisiert. f : A→ R heißt beschränkt, wenn f nach oben und nach unten beschränkt ist.

Gibt es ein x0 ∈ A, so daß f (x0) gleich dem Supremum von f ist, d.h. daß

f (x) ≤ f (x0) für alle x ∈ A

gilt, so heißt f (x0) das Maximum von f , in Formeln ausgedrückt

max
x∈A

f (x) = f (x0) .
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x0 wird dabei eine Maximalstelle von f genannt. Entsprechend werden Minimum von f ,

min
x∈A

f (x) ,

und Minimalstelle definiert.

Beispiel 1.54:
Die Funktion

f (x) = x2

mit Definitionsbereich [−1, 1] hat offenbar eine Minimalstelle bei 0 und zwei Maximalstellen
bei −1 und 1. Es gilt also

min
x∈[−1,1]

f (x) = f (0) = 0 , max
x∈[−1,1]

f (x) = f (1) = f (−1) = 1 .

Beispiel 1.55:
Schränkt man die obige Funktion f (x) = x2 ein auf den Definitionsbereich (−1, 1), so bleibt
das Minimum erhalten, doch ein Maximum besitzt sie nicht mehr! Es ist zwar f (x) < 1 für alle
x ∈ (−1,1), aber niemals = 1. f (x) kommt allerdings der 1 beliebig nahe, wenn x < 1 nahe
genug an 1 liegt. Somit gilt

sup
x∈(−1,1)

f (x) = 1 ,

wobei statt sup nicht max gesetzt werden darf!

Beispiel 1.56:
Die Funktion f (x) = 1/x mit Definitionsbereich (0, 1] ist offenbar unbeschränkt, genauer unbe-
schränkt nach oben. Nach unten ist sie natürlich beschränkt, denn es ist min

x∈(0,1]
f (x) = 1.

Ist eine Funktion f : A → R nach oben bzw. nach unten unbeschränkt, so beschreiben wir
dies durch

sup
x∈A

f (x) = ∞ bzw. inf
x∈A

f (x) = −∞ . (1.83)

In den letzten beiden Beispielen 1.55 und 1.56 existieren keine Maxima. Der Definitionsbereich
ist hier beide Male nicht kompakt. Andererseits hatten wir in Beispiel 1.54 einen kompakten
Definitionsbereich, und prompt existieren auch das Maximum wie auch das Minimum. Das läßt
folgenden Satz vermuten:

Satz 1.25:
(Satz vom Maximum) Jede stetige Funktion f auf einem kompakten Intervall [a, b] ist
beschränkt und besitzt sowohl Maximum wie Minimum. D.h. es gibt Elemente x0 und
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x1 in [a, b] mit

f (x0) ≤ f (x) ≤ f (x1) für alle x ∈ [a, b]. (1.84)

Beweis:
(I) Wir nehmen an: f ist nach oben nicht beschränkt. Dann kann man zu jedem n ∈ N ein xn ∈
[a, b] finden mit f (xn) > n. So entsteht eine Folge (xn) aus [a, b]. Da die Folge (xn) beschränkt
ist, besitzt sie eine konvergente Teilfolge (xnk )k∈N (nach dem Satz von Bolzano-Weierstraß). Ihr
Grenzwert sei x . Da f stetig ist, gilt damit

lim
k→∞

f (xnk ) = f (x) .

Andererseits ist wegen f (xnk ) > nk :

lim
k→∞

f (xnk ) = ∞ .

Beides kann nicht sein. Also war unsere Annahme falsch, und f ist nach oben beschränkt. Die
Beschränktheit nach unten ergibt sich analog.
(II) Wir zeigen nun, daß f ein Maximum besitzt. Da f beschränkt ist, existiert jedenfalls das
Supremum

sup
x∈[a,b]

f (x) =: s .

Zu jedem n ∈ N gibt es damit einen Wert f (x) mit s − 1
n < f (x) ≤ s. Statt x schreiben wir hier

xn . So entsteht eine Folge (xn) in [a, b] mit

s − 1

n
< f (xn) ≤ s , also lim

n→∞
f (xn)−∞ = s . (1.85)

(xn) besitzt eine konvergente Teilfolge (xnk ) (nach Bolzano-Weierstraß). Ihr Grenzwert sei x . Da
f stetig ist, gilt

lim
k→∞

f (xnk ) = f (x) .

Nach (1.85) ist dieser Grenzwert aber gleich s, also

f (x) = s ,

d.h. x ist eine Maximalstelle und s das Maximum von f .
Die Existenz des Minimums von f wird analog gezeigt. �

Bemerkung: Der bewiesene Satz ist Grundlage für Extremalprobleme, also Probleme, bei denen
nach Maximum oder Minimum gesucht wird. Er ist überdies wichtiges Hilfsmittel beim Beweis
des Mittelwertsatzes der Differentialrechnung. Sein Wert liegt mehr im Theoretischen.
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Übung 1.36:

Gib für die folgenden Funktionen an, ob sie nach oben oder unten beschränkt sind, und berechne

gegebenenfalls ihre Suprema, Infima, Maximal- und Minimalstellen!

a) f (x) = x2 − 10x + 22 ; f : R→ R ;
b) g(x) = 2x − 5 ; g : [0,10)→ R ;
c) h(x) = x4 − 2x2 + 3 ; h : [0,2] → R ;

d) k(x) = 1

x3
; k : (0,∞)→ R .

1.6.6 Gleichmäßige Stetigkeit

Dieser Abschnitt kann beim ersten Lesen überschlagen werden. Er stellt ein Hilfsmittel bereit,
welches wir später in Beweisen benötigen, z.B. beim Beweis der Tatsache, daß stetige Funktionen
integrierbar sind.

Das Hilfsmittel, wovon hier die Rede ist, ist der Begriff der gleichmäßigen Stetigkeit.

Fig. 1.40: Gleichmäßige Stetigkeit von Geraden

Erinnern wir uns noch einmal daran, was es heißt, daß eine Funktion f auf einer Menge
A ⊂ R stetig ist. Das bedeutet nach Satz 1.19:

Zu jedem x0 ∈ A und zu jedem ε > 0 existiert ein δ > 0 mit der Eigenschaft

|x − x0| < δ und x ∈ A ⇒ | f (x)− f (x0)| < ε . (1.86)

Hierbei hängt δ von ε und x0 ab, so daß wir statt δ auch δ(x0, ε) schreiben wollen. D.h. für
verschiedene x0 sind die δ(x0, ε) möglicherweise verschieden, selbst wenn die ε dabei gleich
sind. Ein Beispiel hierfür ist die Funktion f (x) = 1/x auf (0, 1], wie wir im nächsten Beispiel
genauer sehen werden. Hier müssen die δ(x0, ε) von x0 zu x0 verschieden gewählt werden bei
fest gewähltem ε > 0.

Andererseits gibt es aber viele Funktionen, bei denen δ > 0 so gewählt werden kann, daß es



1.6 Stetige Funktionen 101

nur von ε > 0 abhängt und nicht von x0. Wir schreiben in diesen Fällen δ(ε) statt δ.
Die einfachsten Funktionen, bei denen dies der Fall ist, sind die Geraden. Für die Gerade

f (x) = 2x(x ∈ R) überlegt man sich zum Beispiel: Zu beliebigem ε > 0 wähle man δ(ε) = ε/2.
Dann gilt für alle x1, x2 ∈ R:

|x1 − x2| < δ(ε) = ε

2
⇒ | f (x1)− f (x2)| < ε .

Anhand des Graphen von f wird dies sofort klar, s. Fig. 1.40.
Die beschriebene Eigenschaft, also die Unabhängigkeit der Zahl δ(ε) von x0, heißt gleichmä-

ßige Stetigkeit der Funktion f . Zusammengefaßt:

Definition 1.19:
Eine reellwertige Funktion f heißt gleichmäßig stetig auf A (A ⊂ D( f ) ⊂ R), wenn
folgendes gilt:

Zu jedem ε > 0 gibt es ein δ > 0, so daß

für alle x1, x2 ∈ A mit |x1 − x2| < δ stets

| f (x1)− f (x2)| < ε

gilt.

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎭

(1.87)

f heißt eine gleichmäßig stetige Funktion, wenn f auf dem gesamten Definitionsbereich D( f )

gleichmäßig stetig ist.
Es gilt nun der fundamentale

Satz 1.26:
Auf kompakten Intervallen sind stetige Funktionen gleichmäßig stetig.

Beweis:
Es sei f stetig auf [a, b]. Wir nehmen an, daß f nicht gleichmäßig stetig auf [a, b] ist, und führen
dies zum Widerspruch. Für f soll also die Verneinung von (1.87) zutreffen, d.h. es gibt ein ε0, so
daß es kein δ > 0 gibt in der in (1.87) beschriebenen Art. Das bedeutet aber:

Es gibt ein ε0 > 0, so daß für jedes δ > 0

zwei Punkte x1, x2 ∈ [a, b] mit |x1 − x2| < δ

existieren, für die

| f (x1)− f (x2)| ≥ ε0

ist.

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

(1.88)

Wir wählen dabei δ = 1
n für n = 1,2,3,4, . . . und nennen die zugehörigen x1, x2-Werte kurz

x1,n , x2,n . Die Folge (x1,n) ist beschränkt, besitzt also eine konvergente Teilfolge (x1,nk )k∈N. Ihr
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Grenzwert sei x . Wegen |x1,nk − x2,nk | < 1/nk konvergiert auch (x2,nk ) gegen x . Wegen der
Stetigkeit von f gilt

lim
k→∞

f (x1,nk ) = f (x) = lim
k→∞

f (x2,nk ) .

Das steht aber im Widerspruch zu | f (x1,nk )− f (x2,nk )| ≥ ε0. Also ist f gleichmäßig stetig auf
[a, b]. �

Bemerkung: Im Beweis wurde gar nicht benutzt, daß der Definitionsbereich von f ein Intervall
ist. Es wurde lediglich verwendet, daß er beschränkt ist und alle seine Häufungspunkte besitzt.
Eine Zahlenmenge mit dieser Eigenschaft wird kompakt genannt. Jede Vereinigung endlich vieler
kompakter Intervalle ist z.B. kompakt, jede endliche Zahlenmenge auch, wie auch die Menge
{

0,1, 1
2 , 1

3 , 1
4 , . . .

}

. Der Satz 1.26 läßt sich damit allgemeiner so formulieren: Auf kompakten

Zahlenmengen sind stetige Funktionen stets gleichmäßig stetig.
Beispiele für gleichmäßig stetige Funktionen gibt es nach Satz 1.26 wie Sand am Meer. Im

Folgenden betrachten wir daher eine ungleichmäßig stetige Funktion.

Fig. 1.41: Ungleichmäßige Stetigkeit Fig. 1.42: f (x) = x3−1
x−1

Beispiel 1.57:

Die Funktion

f (x) = 1

x
(s. Fig. 1.41)

ist auf (0, 1] nicht gleichmäßig stetig. Denn für ε0 = 1 gilt: Für jedes δ > 0 gibt es zwei Punkte
x1, x2 ∈ (0,1] mit |x1 − x2| < δ und | f (x1)− f (x2)| ≥ 1. Es genügt dabei δ < 1 zu betrachten,
denn für größere δ gilt dann die erwähnte Aussage erst recht. Der Beweis der Aussage verläuft
so: Man wähle x2 = δ und x1 = δ/2. Sie erfüllen die Ungleichung |x1 − x2| < δ und

| f (x1)− f (x2)| =
∣
∣
∣
∣

1

x1
− 1

x2

∣
∣
∣
∣
=
∣
∣
∣
∣

2

δ
− 1

δ

∣
∣
∣
∣
= 1

δ
> 1 .
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Also ist f ungleichmäßig stetig auf (0, 1].

Übung 1.37*:

Welche der folgenden Funktionen sind gleichmäßig stetig auf (0,1) und welche nicht?

a) f (x) =
√

1− x2 , b) g(x) = x + x−2 + x3 ,

c) h(x) =
{

2x , für 0 < x ≤ 1
2

−2x + 2 , für 1
2 < x < 1

, d) k(x) = lim
n→∞

2x
( x

2

)n + 1
.

1.6.7 Grenzwerte von Funktionen

Beispiel 1.58:

Zur Einführung betrachten wir die Funktion

f (x) = x3 − 1

x − 1
(s. Fig. 1.42)

die für alle x ∈ R mit Ausnahme von 1 definiert ist. Denn für x = 1 ist der Nenner Null und
damit der Bruch sinnlos.

Skizziert man die Funktion im Koordinatensystem, so erlebt man eine Überraschung: Der
Ausnahmepunkt x = 1 scheint gar keine echte Ausnahme zu sein: Würde man für x = 1 den
Funktionswert y = 3 einfügen, so würde eine durchweg stetige Funktion entstehen. Wir können
dies übrigens auch algebraisch schnell einsehen: Ein Vergleich mit der geometrischen Summen-
formel zeigt nämlich, daß

f (x) = x3 − 1

x − 1
= 1+ x + x2

für x �= 1 gilt. Die rechte Seite der Gleichungskette stellt aber eine stetige Funktion f (x) =
1+ x + x2 für alle x ∈ R dar. Sie ist die stetige Erweiterung von f auf R. Man sagt auch: f ist
(durch f ) stetig in x = 1 erweitert worden.

Das bedeutet aber: Für jede gegen 1 konvergente Folge (xn), mit xn �= 1 für alle n, gilt

lim
n→∞

f (xn) = 3 .

Diesen Sachverhalt beschreibt man kurz durch

lim
x→1

f (x) = 3 .

Beispiele dieser Art führen uns zu folgenden Vereinbarungen:

Eine Zahl x0 heißt Häufungspunkt einer Menge D ⊂ R, wenn in jeder ε-Umgebung von x0

unendlich viele Zahlen aus D liegen.
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Definition 1.20:
Es sei f : D → R eine Funktion und x0 ein Häufungspunkt des Definitionsbereiches
D. Man sagt, f (x) konvergiert für x → x0 gegen den Grenzwert c, wenn für jede
Folge (xn) aus D mit

lim
n→∞

xn = x0 , und xn �= x0 für alle n

stets folgt:

lim
n→∞

f (xn) = c .

Man beschreibt diesen Sachverhalt kurz durch

lim
x→x0

f (x) = c . (1.89)

In Definition 1.20 können wir drei Fälle unterscheiden:

1. Fall: x0 �∈ D

2. Fall: x0 ∈ D und f (x0) �= c

3. Fall: x0 ∈ D und f (x0) = c

Der erste Fall entspricht unserem Beispiel 1.58. Wir können in diesem Falle f erweitern zu einer
Funktion f , die in x0 den Wert f (x0) = c hat und sonst mit f übereinstimmt, also

f (x) =
{

c , für x = x0

f (x) , für x �= x0, x ∈ D.
(1.90)

Nun bedeutet lim
x→x0

f (x) = c daß f in x0 stetig ist.

Man nennt f die stetige Erweiterung von f in x0, oder man sagt auch: f ist in x0 stetig
ergänzt worden.

Auch im 2. Fall können wir die Funktion f nach (1.90) bilden. Sie unterscheidet sich von f
nur in x0. Dabei bedeutet lim

x→x0
f (x) = c daß f in x0 stetig ist, f aber nicht!

Im 3. Fall f (x0) = c bedeutet lim
x→x0

f (x) = c offenbar nichts anderes als die Stetigkeit von f

in x0, also

f stetig in x0 ⇔ lim
x→x0

f (x) = f (x0) . (1.91)

Wir fassen zusammen:

Folgerung 1.16:
Es sei f : D → R eine Funktion und x0 ein Häufungspunkt von D. Dann bedeutet

lim
x→x0

f (x) = c , (1.92)
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daß die Funktion

f (x) =
{

c , für x = x0,

f (x) , für x �= x0, x ∈ D
(1.93)

stetig in x0 ist. In den beiden ersten Fällen, die erläutert wurden (x0 �∈ D bzw. x0 ∈ D,
f (x0) �= c), ist f stetige Erweiterung bzw. stetige Abänderung von f in x0. Im 3. Fall
ist f = f .

Dieser Zusammenhang mit der Stetigkeit, der ja besagt, daß lim
x→x0

f (x) = c nichts anderes

heißt als die Stetigkeit von f , gestattet es, alle Regeln über stetige Funktionen in einem Punkt
auf lim

x→x0
f (x) sinngemäß zu übertragen.

Aus Satz 1.19, Abschn. 1.6.2, erhält man daher

Folgerung 1.17:
Es sei x0 Häufungspunkt des Definitionsbereiches einer reellwertigen Funktion f .
Dann bedeutet

lim
x→x0

f (x) = c

folgendes

Zu jedem ε > 0 gibt es ein δ > 0, so daß für

alle x ∈ D mit n �= 0 und |x − x0| < δ gilt:

| f (x)− c| < ε.

⎫

⎪
⎪
⎬

⎪
⎪
⎭

(1.94)

Satz 1.22, Abschn. 1.6.4, liefert

Folgerung 1.18:

Es sei x0 Häufungspunkt des Definitionsbereiches einer Funktion f wie auch einer
Funktion g. Existieren die Grenzwerte

lim
x→x0

f (x) = c und lim
x→x0

g(x) = d ,

so existieren auch die folgenden, links stehenden Grenzwerte und erfüllen die Glei-
chungen

lim
x→x0

( f (x)± g(x)) = lim
x→x0

f (x)± lim
x→x0

g(x) (1.95)

lim
x→x0

( f (x) · g(x)) = lim
x→x0

f (x) · lim
x→x0

g(x) . (1.96)
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Im Falle lim
x→x0

g(x) �= 0 gilt auch

lim
x→x0

f (x)

g(x)
=

lim
x→x0

f (x)

lim
x→x0

g(x)
, (1.97)

wobei nur solche x aus dem Definitionsbereich von g zu betrachten sind, die in einer
so kleinen ε-Umgebung von x0 liegen, daß dort stets g(x) �= 0 gilt.

Zu letzterem überlegt man sich, wie im Beweis von Satz 1.22, daß es in der Tat eine ε−Umgebung
von x0 gibt, in der überall g(x) �= 0 ist.

Übung 1.38*:

Berechne

a) lim
x→2

x2 − 5x + 6

x2 + 3x − 10
, b) lim

x→5

x2 − 25

x − 5
, c) lim

x→1

x2 + x − 2√
x − 1

, d) lim
x→1

x2 − 5x + 6

x2 + 3x − 10
.

1.6.8 Pole und Grenzwerte im Unendlichen

In diesem Abschnitt wollen wir den Grenzwertbegriff bei Funktionen auf den Fall erweitern, daß
±∞ anstelle von c oder x0 steht. Bei Resonanzvorgängen oder Einschwingvorgängen spielt dies
z.B. eine Rolle. (Trotzdem mag dieser Abschnitt vom Leser zunächst übergangen werden. Bei
Bedarf kann hier nachgeschlagen werden.)

Fig. 1.43: Pol

Beispiel 1.59:
Die Funktion

f (x) = 1

x2
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ist definiert auf R\{0} (d.h. für alle reellen x �= 0). Fig. 1.43 zeigt, daß sie in der Nähe von x = 0
beliebig große Werte annimmt. 0 ist sicherlich dabei ein Häufungspunkt des Definitionsbereiches
R \ {0}. Den in Fig. 1.43 skizzierten Sachverhalt beschreibt man durch

lim
x→0

f (x) = ∞ .

Allgemein vereinbaren wir:

Definition 1.21:

Es sei x0 Häufungspunkt des Definitionsbereiches einer reellen Funktion f . Man sagt,
f (x) strebt für x → x0 gegen∞, wenn für jede Folge (xn) des Definitionsbereiches
mit xn → x0, xn �= x0 folgendes gilt:

lim
n→∞

f (xn) = ∞ .

Diesen Sachverhalt symbolisiert man durch

lim
x→x0

f (x) = ∞ . (1.98)

Entsprechend definiert man

lim
x→x0

f (x) = −∞ und lim
x→x0

| f (x)| = ∞ . (1.99)

In all diesen Fällen nennt man x0 einen Pol von f .

Folgerung 1.19:
(a) x0 sei Häufungspunkt des Definitionsbereiches D von f . Dann bedeutet

lim
x→x0

f (x) = ∞ (1.100)

folgendes:

Zu jedem M > 0 gibt es ein δ > 0, so daß für

alle x ∈ D mit x �= x0 und |x − x0| < δ gilt:

f (x) > M .

⎫

⎪
⎪
⎬

⎪
⎪
⎭

(1.101)

(b) Für lim
x→x0

f (x) = −∞ gilt entsprechendes. Man hat nur f (x) < −M statt

f (x) > M zu setzen.

Der Beweis wird analog wie der Beweis von Satz 1.19, Abschn. 1.6.2, geführt. Er bleibt dem
Leser überlassen.
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Definition 1.22:
(a) Der Definitionsbereich D von f : D → R sei nach oben unbeschränkt. Man

sagt, f (x) strebt für x →∞ gegen eine Zahl c, wenn für jede Folge (xn) aus D
mit xn →∞ gilt

lim
n→∞

f (xn) = c .

In Formeln beschreibt man dies durch

lim
x→∞

f (x) = c . (1.102)

Ist D nach unten unbeschränkt, so definiert man entsprechend

lim
x→−∞

f (x) = c . (1.103)

(b) Anstelle von c kann auch∞ oder −∞ stehen. Alles andere wird entsprechend
formuliert.

Es wird schon etwas langweilig, aber auch hier gilt eine zu Folgerung 1.19 analoge Aussage:

Folgerung 1.20:
Unter den Voraussetzungen von Definition 1.22 bedeutet

(a) lim
x→∞

f (x) = c:

Zu jedem ε > 0 gibt es ein R > 0, so daß für

alle x ∈ D mit x > R gilt:

| f (x)− c| < ε.

⎫

⎪
⎪
⎬

⎪
⎪
⎭

(1.104)

(b) lim
x→∞

f (x) = ∞:

Zu jedem M > 0 gibt es ein R > 0, so daß für

alle x ∈ D mit x > R gilt:

f (x) > M .

⎫

⎪
⎪
⎬

⎪
⎪
⎭

(1.105)

Für−∞ anstelle von∞, sowohl unter dem Limeszeichen wie rechts vom Gleichheitszeichen,
hat man nur x < −R bzw. f (x) < −M an den entsprechenden Stellen einzusetzen.

Beispiel 1.60:
Für

f (x) = 3x3 + 2x − 1

2x3 + 6
, für x > 0,
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gilt

lim
x→∞

f (x) = 3

2
, (1.106)

denn mit beliebiger Folge xn →∞(xn > 0) erhält man

f (xn) = 3x3
n + 2xn − 1

2x3
n + 6

=
3+ 2

x2
n
− 1

x3
n

2+ 6
x3

n

→ 3+ 0− 0

2+ 0
= 3

2
.

Beispiel 1.61:
Die Funktion f (x) = 3x2 + 9 erfüllt zweifellos lim

x→∞
f (x) = ∞ .

1.6.9 Einseitige Grenzwerte, Unstetigkeiten

Definition 1.23:
(a) Es sei f : D → R eine Funktion und x0 ein Häufungspunkt des rechts von x0

liegenden Teils von D, also von D+x0
= {x > x0 | x ∈ D}. Dann bedeutet

f (x0+) := lim
x→x0
x>x0

f (x) = c , (1.107)

daß für jede Folge (xn) aus D mit xn > x0 und xn → x0 gilt:

lim
n→∞

f (xn) = c . (1.108)

c heißt dabei der rechtsseitige Grenzwert von f in x0.

(b) Völlig analog wird der linksseitige Grenzwert von f in x0 erklärt:

f (x0−) := lim
x→x0
x<x0

f (x) = c .

Statt c kann auch∞ oder −∞ stehen. Die entsprechenden Formulierungen mit ε und δ (bzw. M
und δ im Falle ±∞) werden völlig analog zu denen in Folgerung 1.17 und Folgerung 1.19 gebil-
det.

Beispiel 1.62:
Die Sägezahnkurve, wie in Fig. 1.44 skizziert, spielt in der Fernsehtechnik eine wichtige Rolle.
Sie wird beschrieben durch

f (x) =
{

x − n , für n − 1
2 < x < n + 1

2 , n ganz

0 , für x = n + 1
2 , n ganz.
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Sie ist unstetig in ± 1
2 , ± 3

2 , ± 5
2 , . . . usw.

Fig. 1.44: Sägezahnkurve

Doch gilt z.B. in x0 = 1
2 :

lim
x→1/2
x<1/2

f (x) = 1

2
(linksseitig)

und

lim
x→−1/2

x>1/2

f (x) = −1

2
(rechtsseitig)

Entsprechendes trifft in den anderen Punkten x0 = 1
2 + n (n ganz) zu. Man sagt, daß f in diesen

Punkten Sprünge hat.

Unstetigkeitsstellen: Die Sprünge in der Sägezahnkurve sind Unstetigkeitsstellen, wie sie häufig
vorkommen. Wir vereinbaren allgemein:

Eine reelle Funktion f : D → R hat einen Sprung in x0, wenn rechtsseitiger Grenzwert
f (x0+) und linksseitiger Grenzwert f (x0−) existieren, aber verschieden sind. Dabei heißt

f (x0+)− f (x0−)

die Sprunghöhe von f in x0.

Eine Funktion f : I → R (I Intervall), die in jedem beschränkten Teilintervall von I höchstens
endlich viele Sprünge hat, sonst aber stetig ist, heißt stückweise stetig. Die Sägezahnkurve wie
auch die Heaviside-Funktion (Beispiel 1.27, Abschn. 1.3.3) sind stückweise stetig.

Neben den Sprüngen haben wir Pole als Unstetigkeitsstellen kennengelernt. Hinzu kommen
Polwechsel von −∞ auf +∞, die bei

lim
x→x0
x<x0

f (x) = −∞ und lim
x→x0
x>x0

f (x) = ∞

vorliegen. (Polwechsel von∞ auf −∞ analog.)
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Ein Sprung von −∞ auf∞ liegt für f (x) = 1/x (x �= 0) im Punkt x0 = 0 vor.
Eine weitere Art von Unstetigkeitsstellen sind sogenannte Oszillationsstellen, s. Fig. 1.45.

Eine solche Stelle wird z.B. durch

f (x) = sin
1

x
, x �= 0 ,

beschrieben. (Die Funktion sin wird später im Abschn. 2.3.2 behandelt.)

Fig. 1.45: Oszillationsstelle

Wir haben an Unstetigkeitsstellen bisher behandelt:

Sprünge, Pole und Polwechsel, Oszillationsstellen.

Natürlich gibt es noch viele andere Unstetigkeitsstellen (unbeschränkte Oszillationen, sich häu-
fende Unstetigkeitsstellen und vieles mehr), doch kommen in der Praxis hauptsächlich die drei
genannten Typen vor.



2 Elementare Funktionen

2.1 Polynome

2.1.1 Allgemeines

Unter einem Polynom n-ten Grades versteht man eine Funktion der Form

f (x) = a0 + a1x + a2x2 + . . .+ an xn , mit an �= 0.

(Statt Polynom sagt man auch ganzrationale Funktion.) Die Zahlen a0, a1, . . . , an heißen die
Koeffizienten des Polynoms. Der Definitionsbereich von f ist die gesamte reelle Achse.

Die Funktion f : R→ R mit f (x) = 0 (für alle x ∈ R) heißt das Nullpolynom. Ihr wird kein
Grad zugeschrieben.

Für n = 0, 1 oder 2 erhält man z.B. die Polynome:

n = 0 : f (x) = a0 , konstante Funktionen �= 0,

n = 1 : f (x) = a0 + a1x , Geraden, steigend oder fallend,

n = 2 : f (x) = a0 + a1x + a2x2 , quadratische Polynome,

Zur Beschreibung technischer Sachverhalte werden Polynome vielfach verwendet.

Fig. 2.1: Biegelinie eines Balkens

Beispiel 2.1:

Biegelinie eines einseitig eingespannten Trägers (s. Fig. 2.1) wird beschrieben durch

y = F

6E · I
(3lx2 − x3) .

Dabei ist E · I die Biegesteifigkeit, F eine Last am freien Ende des Trägers und l seine Länge.
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Oft ist auch nach den Nullstellen von Polynomen gefragt, da sie Lösungen technischer Proble-
me darstellen können, z.B. bei der Ermittlung von Gleichgewichtslagen, Resonanzen, Schwin-
gungsfrequenzen und Instabilitäten. Schließlich sind die Polynome von großer Bedeutung als
Näherungsfunktionen für komplizierte Funktionen (s. auch Abschn. 5.3.1).

2.1.2 Geraden

Wir beginnen mit den einfachsten Polynomen, und zwar mit Funktionen der Form

f (x) = a1x + a0 . (2.1)

Sie heißen Geraden, da ihre Graphen geometrische Gerade in der Koordinatenebene sind (siehe
Fig. 2.2).
Geometrische Bedeutung der Koeffizienten a0, a1: Wir skizzieren den Graphen von f in einem
x-y-Koordinatensystem, s. Fig. 2.2. Dann gilt: a0 markiert auf der y-Achse den Schnittpunkt mit
dem Graphen von f . (Dies folgt sofort aus f (0) = a0.)

Fig. 2.2: Gerade im Koordinatensystem

Die geometrische Bedeutung von a1 geht aus Fig. 2.2 hervor: Zeichnet man ein rechtwinkliges
Dreieck mit den Ecken (0, a0), (1, a0), (1, f (1)) ein, so hat die senkrechte Seite die Länge |a1|.
(Dies folgt aus f (1) = a1 + a0, also f (1)− a0 = a1.) Dabei gilt offenbar

a1 > 0 ⇒ die Gerade steigt,

a1 = 0 ⇒ die Gerade ist horizontal,

a1 < 0 ⇒ die Gerade fällt.

a1 ist ein Maß dafür, wie stark die Gerade nach rechts ansteigt oder abfällt. Aus diesem Grunde
wird a1 die Steigung oder Richtung der Geraden genannt.
Bemerkung. Ist α der Anstiegswinkel der Geraden, so ergibt Fig. 2.2 direkt den Zusammenhang
a1 = tan α (die Tangensfunktion tan wird in Abschn. 2.3.3 ausführlich beschrieben).

Beispiel 2.2:
Bewegt sich ein Massenpunkt mit gleichbleibender Geschwindigkeit v auf einer geradlinigen
Bahn, so wird seine Bewegung beschrieben durch

y = vt + y0 .



2.1 Polynome 115

Zu jedem Zeitpunkt t kann damit der Ort y des Massenpunktes auf der Bahn berechnet werden.
Die Gleichung beschreibt eine Gerade im t-y-Koordinatensystem mit Steigung v.

Für zwei beliebige Punkte (x1, f (x1)), (x2, f (x2)) der betrachteten Geraden f (x) = a1x+a0

gilt stets

f (x2)− f (x1)

x2 − x1
= a1 . (2.2)

Der Leser rechnet dies leicht nach.
Bemerkung: Gl. (2.2) läßt sich auch geometrisch begründen: Die beiden schraffierten Dreiecke
in Fig. 2.3 sind ähnlich, haben also gleiche Seitenverhältnisse.

Folglich gilt

f (x2)− f (x1)

x2 − x1
= a1

1
.

Die linke Seite von (2.2) heißt Differenzenquotient von f bezüglich x1, x2. Geraden zeichnen
sich dadurch aus, daß die Differenzenquotienten bezüglich je zweier verschiedener Zahlen x1, x2

stets den gleichen Wert haben!

Fig. 2.3: Zum Differenzenquotient bei Geraden

Punkt-Richtungsform: Gesucht ist eine Gerade f , die durch einen bestimmten Punkt (x1, y1)

verläuft, und deren Richtung a1 bekannt ist. Wie lautet die Gleichung der Geraden? Für jeden
Geradenpunkt (x, f (x)) mit x �= x1 muß nach (2.2) gelten:

f (x)− y1

x − x1
= a1 . (2.3)

Auflösung nach f (x) ergibt die gesuchte Gleichung

f (x) = a1 · (x − x1)+ y1 . (2.4)

Einsetzen von x = x1 liefert in der Tat f (x1) = y1. (2.4) nennt man die Punkt-Richtungsform
einer Geraden.
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Beispiel 2.3:
Ein Zug fährt mit konstanter Geschwindigkeit v = 80km/h. Er passiert den Streckenkilometer
153 um 11 Uhr. Seine Bewegung wird durch eine Funktion

y = f (t) = vt + y0

beschrieben, wobei y den Streckenkilometer angibt, den der Zug um t Uhr passiert. Die Funktion
ist eine Gerade im y-t-Koordinatensystem. Wir kennen ihre Steigung v und einen ihrer Punkte,
nämlich (11, 153). Nach der Punkt-Richtungsform folgt daher

y = f (t) = 80 · (t − 11)+ 153 .

Zwei-Punkte-Form: Gegeben seien zwei Punkte (x1, y1), (x2, y2) in der Ebene mit x1 �= x2.
Gesucht ist eine Gerade f durch diese Punkte.

Da alle Differenzenquotienten von f den gleichen Wert haben, gilt für jedes x �= x1

f (x)− y1

x − x1
= y2 − y1

x2 − x1
. (2.5)

Auflösung nach f (x) liefert

f (x) = y2 − y1

x2 − x1
(x − x1)+ y1 . (2.6)

Es gilt hierbei, wie verlangt, f (x1) = y1 und f (x2) = y2. (2.6) heißt die Zwei-Punkte-Form
einer Geraden.

Beispiel 2.4:
Die Länge l eines Stabes hängt von seiner Temperatur δ ab:

l = l0(1+ αδ) . (2.7)

Dabei ist l0 die Länge des Stabes bei 0◦ C und α der Wärmeausdehnungskoeffizient des Stabes.
Die Gleichung beschreibt eine Gerade im δ-l-Koordinatensystem.

Wir nehmen an, daß uns l0 und α unbekannt sind. Messungen jedoch haben ergeben, daß der
Stab bei 36◦ C eine Länge von 4,3008 m hat und bei bei 94◦ C eine Länge von 4.3042 m. Wir
kennen also zwei Punkte der Geraden. Nach der Zwei-Punkte-Form hat (2.7) daher die explizite
Gestalt

l = 4,3042− 4,3008

94− 36
(δ − 36)+ 4,3008

.= 5,86 · 10−5δ + 4,2987 .

Es folgt l0
.= 4,2987 m und aus l0α

.= 5,86 · 10−5 m/◦ C der Ausdehnungskoeffizient α
.=

1,363 · 10−·5/◦ C.

Abschnittsform: Es ist eine Gerade f gesucht, welche die x-Achse bei A �= 0 und die y-Achse
bei B schneidet, s. Fig. 2.4.
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(A und B heißen die Achsenabschnitte der Geraden.) f geht also durch die beiden Punkte
(A, 0) und (0, B). Die Zwei-Punkte-Form liefert daher

f (x) = − B

A
x + B . (2.8)

Ist B �= 0 und schreiben wir y statt f (x), so läßt sich (2.8) in die elegante Gestalt

x

A
+ y

B
= 1 (2.9)

umformen. (2.9) heißt die Abschnittsform der Geraden.

Fig. 2.4: Zur Abschnittsform Fig. 2.5: Dachhöhe an Abseite

Beispiel 2.5:
Ein Haus habe eine Breite von 10 m und eine Dachfirsthöhe von 4 m über dem Dachboden,
s. Fig. 2.5. Bei einem Dachbodenausbau interessiert die Frage: Wie hoch ist das Dach in der
Entfernung 3,5 m von der Hausmittellinie?

Die rechte Seite der Dachlinie kann mit der Abschnittsform beschrieben werden:

x

5
+ y

4
= 1 .

Für x = 3,5 errechnen wir daraus die Dachhöhe über dem Dachboden: y = 1,2 m.

Schnittpunkt zweier Geraden: Es seien zwei Geraden f (x) = a1x + a0, g(x) = b1x + b0

gegeben, die verschiedene Richtungen besitzen: a1 �= b1. Für den Schnittpunkt (x0, y0) dieser
Geraden muß gelten:

y0 = a1x0 + a0 und y0 = b1x0 + b0 . (2.10)

Daraus lassen sich x0 und y0 berechnen: Man setzt die rechten Seiten gleich,

a1x0 + a0 = b1x0 + b0 ,

löst nach x0 auf und setzt den gefundenen Ausdruck in (2.10), linke Gleichung, ein. Dies ergibt:

x0 =
b0 − a0

a1 − b1
, y0 =

b0a1 − a0b1

a1 − b1
. (2.11)
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Im Falle a1 = b1, a0 �= b0 sind die Geraden parallel, und es existiert kein Schnittpunkt.

Fig. 2.6: Schnittpunkt zweier Geraden
Fig. 2.7: Stromkreis mit innerem und äußerem

Widerstand

Beispiel 2.6:

Der Stromkreis der Fig. 2.7 besteht aus einem Generator mit innerem Widerstand Ri , und einem
Arbeitsgerät mit äußerem Widerstand Ra . Es fließt der Strom I . Die Klemmspannung am Ge-
nerator ist U = Uq − Ri I , während sich die gleiche Spannung mit Hilfe des Widerstandes Ra

durch U = Ra I errechnet. Beide Gleichungen können als Geraden in der U -I -Koordinatenebene
aufgefaßt werden. Ihr Schnittpunkt gibt uns die Werte I und U an, die im Stromkreis vorhanden
sind. Nach (2.11) erhalten wir

I = Uq

Ra + Ri
, U = Uq Ra

Ra + Ri
.

Übung 2.1:

Durch die Punkte (1,0) und (3,2) verläuft die Gerade G1, während eine zweite Gerade G2

durch (1,4) verläuft und die Steigung a1 = −1/2 besitzt. Berechne den Schnittpunkt der beiden

Geraden.

Übung 2.2*:

Eine Flüssigkeit mit dem Volumen V = 2000 cm3 und der Dichte ρ = 1,01 g cm−3 ist durch

Mischen zweier Flüssigkeiten F1 und F2 mit den Dichten ρ1 = 0,94 g cm−3, ρ2 = 1,13 g cm−3

entstanden. Wie groß sind die Volumina V1 und V2 der beiden Flüssigkeiten F1, F2?

Übung 2.3:

Durch eine elektrische Leitung mit dem Widerstand R fließt ein Strom I . Vergrößert man den

Widerstand R um 3 Ω , so sinkt der Strom I um 1 A. Verringert man den Widerstand R um 5 Ω ,

so steigt der Strom I um 2 A. Die Spannung ist dabei konstant. Wie groß sind R und I ?
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2.1.3 Quadratische Polynome, Parabeln

In diesem Abschnitt studieren wir die Polynome zweiten Grades:

y = f (x) = a2x2 + a1x + a0 , a2 �= 0 . (2.12)

Sie werden auch quadratische Polynome genannt.

Beispiel 2.7:
Die Bewegung eines aufwärts geworfenen Körpers wird durch das quadratische Polynom

s = f (t) = v0t − 1

2
gt2

beschrieben. s ist dabei die nach t Sekunden erreichte Höhe des Körpers — genauer, seines
Schwerpunktes. v0 bezeichnet die Abwurfgeschwindigkeit und g = 9,81 m/s2 die Erdbeschleu-
nigung. (s. auch Beispiel 2.9. In Abschn. 3.3.1, Beispiel 3.36, wird die Bewegungsgleichung aus
dem 1. Newtonschen Axiom der Mechanik hergeleitet.)

Beispiel 2.8:
Ein strömendes Medium (Luft, Wasser), das mit einer mittleren Geschwindigkeit v auf einen
Körper trifft, übt die Kraft

Fw = cw A
1

2
ρv2

auf ihn aus. Fw heißt auch Strömungswiderstand des Körpers. Dabei ist cw der Widerstandsbei-
wert, A die Querschnittsfläche des Körpers und ρ die Dichte des strömenden Mediums.

Einheitsparabel: Das einfachste aller quadratischen Polynome lautet

y = f (x) = x2 .

Die geometrische Figur, die sein Graph darstellt, wird Parabel genannt, s. Fig. 2.8. Sie besitzt ei-
ne Symmetrieachse, hier die y-Achse. Ihr Schnittpunkt mit der Parabel heißt Scheitel der Parabel.
In unserer Figur ist es der Koordinatennullpunkt.

Man bezeichnet die Funktion f (x) = x2 als Einheitsparabel.
Normalparabeln: Die quadratischen Polynome der Form

y = f (x) = cx2 , c �= 0 ,

heißen Normalparabeln. Ihre Graphen sind alle untereinander ähnlich1 sie sind also, geometrisch
gesehen, alle Parabeln.

Zum Nachweis der Ähnlichkeit genügt es zu zeigen, daß der Graph jeder Normalparabel zum
Graphen der Einheitsparabel ähnlich ist. Es sei also f (x) = cx2 eine beliebige Normalparabel.

1 Zwei geometrische Figuren heißen ähnlich, wenn die eine ein maßstabsgetreues Bild der anderen ist, evtl. nach
vorangegangener Spiegelung, Drehung oder Verschiebung.
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Fig. 2.8: Einheitsparabel Fig. 2.9: Normalparabeln

Ihr Graph besteht aus allen Punkten (x, y) mit

y = cx2 .

Multipliziert man rechts und links mit c, so erhält die Gleichung die Gestalt

cy = (cx)2 .

Diese Gleichung geht aus der Gleichung y = x2 der Einheitsparabel dadurch hervor, daß y
durch cy und x durch cx ersetzt werden. y und x werden dabei um den gleichen Faktor |c|
gestreckt oder gestaucht. Also ist der Graph der Normalparabel die |c|-fache Vergrößerung oder
Verkleinerung des Graphen der Einheitsparabel (bei c < 0 nach vorangegangener Spiegelung),
woraus die behauptete Ähnlichkeit folgt.

Allgemeinfall: Wir zeigen nun, daß der Graph jedes quadratischen Polynoms

y = f (x) = a2x2 + a1x + a0

gleich dem Graphen einer Normalparabel ist (in einem parallel verschobenen Koordinatensy-
stem). Die Graphen quadratischer Polynome sind also Parabeln!

Zum Nachweis formen wir die Funktionsgleichung

y = a2x2 + a1x + a0

des quadratischen Polynoms um:
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Zuerst wird a2 ausgeklammert und dann die »quadratische Ergänzung« der ersten beiden
Glieder eingefügt:

y = a2

(

x2 + a1

a2
x + a0

a2

)

= a2

(

x2 + a1

a2
x +

(
a1

2a2

)2

−
(

a1

2a2

)2

+ a0

a2

)

= a2

(

x + a1

2a2

)2

+
(

a0 −
a2

1

4a2

)

.

Wir bringen die rechte Klammer der letzten Zeile auf die linke Seite

y −
(

a0 −
a2

1

4a2

)

= a2

(

x + a1

2a2

)2

(2.13)

und setzen zur Abkürzung

y = y −
(

a0 −
a2

1

4a2

)

, x = x + a1

2a2
. (2.14)

Damit erhält man

y = a2x2 ,

also eine Normalparabel in x-y-Koordinaten.

Fig. 2.10 zeigt die Lage des x-y-Koordinatensystems. Es entsteht durch Parallelverschiebung
aus dem x-y-Koordinatensystem. Der Koordinaten-Nullpunkt wird dabei in den Punkt (x0, y0)

mit x0 = −a1/(2a2) und y0 = a0 − a2
1/(4a2) verschoben. Damit ist die Behauptung bewiesen.

Wir fassen zusammen:

Satz 2.1:
Der Graph eines quadratischen Polynoms

y = f (x) = a2x2 + a1x + a0

ist gleich dem Graphen einer Normalparabel der Form y = a2x2 (s. Fig. 2.10). Der
Scheitel der Parabel liegt im Punkt (x0, y0) mit

x0 = −
a1

2a2
, y0 = a0 −

a2
1

4a2
. (2.15)

Im Falle a2 > 0 ist der Scheitel tiefster Punkt, im Falle a2 < 0 höchster Punkt der
Parabel.
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Fig. 2.10: Der Graph eines quadratischen Poly-
noms ist eine Parabel.

Fig. 2.11: Senkrechter Wurf: Weg-Zeit-
Diagramm

Beispiel 2.9:

Wir knüpfen an Beispiel 2.7 an:

s = v0t − 1

2
gt2 (2.16)

beschreibt die Bewegung eines senkrecht nach oben geworfenen Körpers — genauer, seines
Schwerpunktes (Reibung vernachlässigt). Gefragt ist nach der Wurfhöhe und der Wurfzeit, also
der Zeit, die er zum Steigen und Fallen benötigt. Dazu skizzieren wir den Graphen des quadrati-
schen Polynoms

s = f (t) = −g

2
t2 + v0t + 0 .

Nach Satz 2.1 gleicht er dem Graphen einer Normalparabel der Form

s = −g

2
t2

,

mit Scheitel bei

t0 =
v0

g
, s0 =

v2
0

2g
, (s. Fig. 2.11).

s0 ist die Wurfhöhe und 2t0 die Wurfzeit. Ist z.B. v0 = 20 m/s, so folgt mit der Erdbeschleuni-
gung g = 9,81 m/s2 die Wurfhöhe s0 = 20,39 m und die Wurfzeit 2t0 = 4,077 s.

Bemerkung: Mit einer einzigen Parabelschablone aus Plexiglas, wie sie handelsüblich ist, läßt
sich der Graph jedes quadratischen Polynoms f (x) = a2x2 + a1x + a0 zeichnen. Stellt die
Schablone eine Einheitsparabel mit Längeneinheit 1 cm dar, so hat man ein Koordinatensystem
mit Einheitslänge 1/|a2| cm zu zeichnen, den Punkt (x0, y0) (s. 2.15) einzutragen und in ihm
den Scheitel der Parabelschablone einzusetzen. Im Falle a2 > 0 weisen dabei die »Parabeläste«
nach oben) im Falle a2 < 0 nach unten. Computerprogramme ersetzen heute allerdings die
Parabelschablone.
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Beispiele

Quadratische Polynome, also Parabeln, treten in der Technik häufig auf.

Beispiel 2.10:
Für den Untergurt einer Flußbrücke vom Typ der Fig. 2.12a ist die Parabelform vorgeschrieben.
Auch Brückenformen aus zwei Parabelbögen kommen vor, s. Fig. 2.12b..

Fig. 2.12: Brücke mit (a) einem, (b) zwei Parabelbögen

Beispiel 2.11:
Schwach durchhängende Seile (Drähte) haben in guter Näherung Parabelform. Für die Berech-
nung von Zugkräften auf die Masten reicht dieser Ansatz aus (s. Fig. 2.13).

Fig. 2.13: Durchhängendes Seil

Beispiel 2.12:
Parabolspiegel und Parabolantennen entstehen geometrisch aus Parabeln, die um ihre Symme-
trieachse gedreht werden. Von der Fahrradlampe bis zur Radioantenne für die Aufnahme von
Weltraumstrahlung finden Parabeln Anwendung.

Beispiel 2.13:
Die Wurfbahn eines Körpers — genauer, seines Schwerpunktes, ist eine Parabel, sofern Rei-
bungskräfte dabei vernachlässigt werden dürfen.

Beispiel 2.14:
Die Skelettlinie eines Tragflügels oder einer Turbinenschaufel besteht aus den Mittelpunkten
aller einbeschriebenen Kreise, s. Fig. 2.14a. Beim Profil NACA 6321 besteht die Skelettlinie
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aus zwei Parabelstücken mit senkrechten Symmetrieachsen, deren Scheitel bei x = 0,3t und
z = 0,06t (t = Flügeltiefe) in einem Punkt zusammenfallen, s. Fig. 2.14b. Die Skelettlinie
schneidet die x-Achse an den Enden, also bei x = 0 und x = t .

Fig. 2.14: (a) Flügelprofil; (b) Skelettlinie

Übung 2.4:

Aus den Angaben des Beispiels 2.14 leite man die Gleichungen der beiden zugehörigen Parabeln

her.

2.1.4 Quadratische Gleichungen

Oft ist nach den Nullstellen eines quadratischen Polynoms

f (x) = a2x2 + a1x + a0 (a0, a1, a2 ∈ R , a2 �= 0)

gefragt, also nach denjenigen x-Werten, die

a2x2 + a1x + a0 = 0 (2.17)

erfüllen. Um sie zu finden, wird die Gleichung zunächst vereinfacht, indem man durch a2 divi-
diert. Wir erhalten

x2 + px + q = 0 (2.18)

mit p = a1/a2 und q = a0/a2. (2.17) und (2.18) haben die gleichen Nullstellen. Es gilt

Satz 2.2:
Die Nullstellen der quadratischen Gleichung (2.18) lauten im Falle (p/2)2 − q ≥ 0:

x1 = −
p

2
+
√
( p

2

)2
− q , x2 = −

p

2
−
√
( p

2

)2
− q . (2.19)

Im Falle (p/2)2 − q < 0 hat (2.18) keine reellen Nullstellen.

Wir merken an, daß im Falle (p/2)2−q > 0 genau zwei Nullstellen x1 und x2 existieren, während
im Falle (p/2)2 − q = 0 nur eine Nullstelle existiert, nämlich x1 = x2 = −p/2.
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Beweis:

Der Ausdruck x2 + px + q läßt sich umformen:

x2 + px + q = x2 + px +
( p

2

)2
−
( p

2

)2
+ q =

(

x + p

2

)2
−
(
( p

2

)2
− q

)

.

Ist
( p

2

)2 − q < 0, so ist die rechte Seite der obigen Gleichungskette positiv, kann also nicht Null
sein. D.h. (2.18) ist in diesem Falle unlösbar.

Im Falle
( p

2

)2
− q ≥ 0 bedeutet

(

x + p

2

)2
−
(
( p

2

)2
− q

)

= 0 dasselbe wie

(

x + p

2

)2
=
( p

2

)2
− q ,

d.h.

x + p

2
=
√
( p

2

)2
− q , oder x + p

2
= −

√
( p

2

)2
− q .

Links setzen wir x1 = x , rechts x2 = x und haben so (2.19) gewonnen. �

Wir bemerken ferner, daß

xi + x2 = p und x1x2 = q (2.20)

gilt, wie man leicht nachrechnet. Diese Gleichungen, Vietascher2 Wurzelsatz genannt, eignen
sich gut zur Kontrolle der Rechnung.

Beispiel 2.15:

An eine Stromquelle mit der Spannung U = 220 V werden zwei Widerstände R1 und R2 einmal
in Reihenschaltung und einmal in Parallelschaltung angeschlossen (s. Fig. 2.15). Im ersten Falle
ist die Stromstärke I1 = 0,9 A, im zweiten Falle I2 = 6 A. Wie groß sind R1 und R2?

Fig. 2.15: Reihen- und Parallelschaltung

Für die Reihenschaltung gilt bekanntlich U = I1 R1 + I1 R2 und für die Parallelschaltung
U/R1 + U/R2 = I2. Man löse die erste Gleichung nach R2 auf und setze dies in die zweite

2 François Viète (lat.: Franciscus Vieta, 1540 – 1603), französischer Advokat und Mathematiker
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Gleichung ein. Nach Umformung folgt daraus

R2
1 −

U

I1
R1 +

U2

I1 I2
= 0 .

Löst man diese quadratische Gleichung nach R1 auf, so erhält man nach (2.19) die beiden
möglichen Werte R1 = 44,922 Ω oder R2 = 199,522 Ω . Zum ersten Wert errechnet man
R2 = 199,522 Ω , d.h. es kommt für R2 gerade die zweite Lösung von R1 heraus. Damit sind
R1 = 44,922 Ω und R2 = 199,522 Ω die gesuchten Widerstände. Aus Symmetriegründen kön-
nen R1 und R2 dabei auch vertauscht werden.

Übung 2.5:

Ein Rechteck mit der Seitenlänge a = 7 cm und b = 4 cm soll in ein flächeninhaltsgleiches

Rechteck mit dem Umfang 24 cm verwandelt werden. Wie lang sind die Seiten des neuen Recht-

ecks?

Übung 2.6:

Ein Kessel wird durch zwei gleichzeitig arbeitende Pumpen in 6 Stunden gefüllt. Läßt man

aber den Kessel bis zum halben Volumen von der einen Pumpe allein füllen und dann mit der

anderen Pumpe allein die fehlende Hälfte hineinpumpen, dann benötigt man 14 Stunden. Wie

lange braucht die stärkere der beiden Pumpen, um den Kessel alleine zu füllen?

Übung 2.7:

Wird in einem Stromkreis mit 110 V Spannung der Widerstand um 10 Ω erhöht, so sinkt die

Stromstärke um 1 A. Wie groß sind Stromstärke und Widerstand?

2.1.5 Berechnung von Polynomwerten, Horner3-Schema

Wir wenden uns nun beliebigen Polynomen zu und fragen uns zunächst, wie Polynomwerte mit
möglichst geringem Aufwand berechnet werden können. Dazu benutzt man das kleine Horner-
Schema.

Kleines Horner-Schema: Die Berechnung von Polynomwerten f (x0) wird stellvertretend an
einem Polynom vierten Grades erläutert:

f (x) = a4x4 + a3x3 + a2x2 + a1x + a0 .

Die einfache Idee besteht darin, das Polynom so umzuformen:

f (x) = x(x(x(a4x + a3)+ a2)+ a1)+ a0 . (2.21)

Wollen wir nun f (x0) für ein bestimmtes x0 ermitteln, so haben wir x = x0 in (2.21) einzusetzen
und die Klammern »von innen nach außen aufzulösen«. Man berechnet also nacheinander die

3 William George Horner (1786 – 1837), englischer Mathematiker
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Zahlen

b2 = a4x0 + a3 , b1 = b2x0 + a2 , b0 = b1x0 + a1 ,

r0 = b0x0 + a0
(2.22)

Damit ist f (x0) = r0 ermittelt.
Der eleganten Systematik wegen setzt man zu Anfang noch b3 = a4, also b2 = b3x0+a3. Die

Rechnung (2.22) läßt sich in einem übersichtlichen Schema anordnen. Es heißt kleines Horner-
Schema (bezüglich x0).

x0b2x0b3 x0b0x0b1x0 = . . .

a4 a3 a2 a1 a0

b3 b2 b1 b0 r0 = f (x0) (2.23)

Man schreibt dabei zunächst die Zahlen a4, a3, a2, a1, a0 hin und führt dann die Rechnung in der
Reihenfolge durch, die die Pfeile andeuten.

Beispiel 2.16:
Zur Berechnung von f (x) = 3x4 − 2x3 + 5x2 − 7x − 12 an der Stelle x0 = 2 sieht das kleine
Horner-Schema so aus:

x0 = 2

3 −2 5 −7 −12

6 8 26 38

3 4 13 19 26 = f (2)

Die Zahlen b0, b1, . . . haben »über Zwischenrechnungswerte hinaus« eine wichtige Bedeutung:
Sie erfüllen die Gleichung

f (x) = (x − x0)(b3x3 + b2x2 + b1x + b0)+ r0 . (2.24)

Multipliziert man nämlich die beiden Klammern aus und ordnet nach den Potenzen von x , so
erhält man

f (x) = b3x4 + (b2 − x0b3)x3 + (b1 − x0b2)x2 + (b0 − x0b1)x + (r0 − x0b0) .

Koeffizientenvergleich mit f (x) = a4x4 + . . . a0 liefert

a4 = b3 , a3 = b2 − x0b3 , a2 = b1 − x0b2 , a1 = b0 − x0b1 , a0 = r0 − x0b0 .

Auflösen nach b3, b2, b1, b0, r0 ergibt aber gerade die Gl. (2.22) des kleinen Horner-Schemas.
Wir haben daher gezeigt:
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Satz 2.3:
Ist f (x) = an xn + an−1xn−1 + . . .+ a0 ein beliebiges Polynom vom Grad n ≥ 1, so
liefert das kleine Horner-Schema (bezüglich x0) den Funktionswert r0 = f (x0), sowie
die Koeffizienten eines Polynoms

fn−1(x) = bn−1xn−1 + bn−2xn−2 + . . .+ b0 , (2.25)

welches folgendes erfüllt

f (x) = (x − x0) fn−1(x)+ r0 , für alle x ∈ R. (2.26)

Großes Horner-Schema: Der letzte Satz legt den Gedanken nahe, das kleine Horner-Schema
abermals anzuwenden, und zwar auf die neu entstandene Funktion fn−1. Sie wird damit umge-
formt in

fn−1(x) = (x − x0) fn−2(x)+ r1 .

Wendet man das kleine Horner-Schema nochmal an, und zwar auf fn−2, so folgt

fn−2(x) = (x − x0) fn−3(x)+ r2 .

So kann man fortfahren, bis ein Polynom vom Grade 0 erreicht ist. Alle diese Rechnungen lassen
sich in einem einzigen Schema übersichtlich anordnen. Es wird großes Horner-Schema genannt.
Im Falle n = 4 sieht es so aus:

x0b2x0b3 x0b1

x0c2 x0c1

c2 c1 c0

x0b0x0 = . . .

a4 a3 a2 a1 a0

x0c0

r0b3 b2 b1 b0

r1

x0d0

d1 d0 r2

x0d1

x0r4

r4 r3

Großes

Hornerschema

Die oberen drei Zeilen sind das schon betrachtete kleine Horner-Schema. Die dritte bis fünfte Zei-
le stellen wieder ein kleines Horner-Schema dar, die fünfte bis siebte abermals usw. Ausgehend
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vom Polynom

f (x) =
4
∑

k=0

ak xk .

sind damit die Polynome

f3(x) =
3
∑

k=0

bk xk , f2(x) =
2
∑

k=0

ck xk , f1(x) =
1
∑

k=0

dk xk , f0(x) = r4

ermittelt. Für sie gilt nach dem oben gesagten

f (x) = f3(x)(x − x0)+ r0 , f3(x) = f2(x)(x − x0)+ r1 ,

f2(x) = f1(x)(x − x0)+ r2 , f1(x) = f0(x)(x − x0)+ r3 , f0(x) = r4 .

Setzt man f0(x) = r4 in die rechte Seite von f1(x) = . . . ein, den so erhaltenen Ausdruck in die
rechte Seite von f2(x) = . . . usw., kurz setzt man »von unten nach oben« fortschreitend ein, so
erhält man schließlich in der ersten Zeile

f (x) = r4(x − x0)
4 · +r3(x − x0)

3 + r2(x − x0)
2 + r1(x − x0)+ r0 .

Damit ist das Polynom f nach Potenzen von (x−x0) umgeordnet! Man kann dies geometrisch als
Nullpunktverschiebung auffassen, wie es die Fig. 2.16 zeigt. Setzt man nämlich zur Abkürzung
x ′ = x−x0, so bedeutet dies im Schaubild der Funktion, daß der Schnittpunkt des Achsenkreuzes
nach x0 verschoben ist.

Beispiel 2.17:

Wir berechnen das große Horner-Schema für das Polynom f (x) = 3x4 − 2x3 + 5x2 − 7x − 12
bei x0 = 2 (vgl. Beispiel 2.2).

x0 = 2

3 −2 5 −7 −12

6 8 26 38

3 4 13 19

6 20 66

3 10 33 85 = r1

26 = f (2) = r0

6 32

3 16 65 = r2

6

3 = r4 22 = r3



130 2 Elementare Funktionen

Damit ist f in folgende Gestalt gebracht:

f (x) = 3(x − 2)4 + 22(x − 2)3 + 65(x − 2)2 + 85(x − 2)+ 26 .

Das Horner-Schema spielt insbesondere bei der Berechnung von Nullstellen durch das Newton-
sche Verfahren eine Rolle (s. Abschn. 3.2.6).

Fig. 2.16: Nullpunktverschiebung x ′ = x − x0

Übung 2.8:

Verwandle das Polynom f (x) = x3− 5x2+ x − 6 mit dem großen Horner-Schema in die Form

f (x) =
3
∑

k=0

rk(x − 5)k .

2.1.6 Division von Polynomen, Anzahl der Nullstellen

Division: Es sei f ein Polynom vom Grade n und g ein Polynom vom Grade m ≤ n. In diesem
Falle kann f (x)/g(x) dargestellt werden durch

f (x)

g(x)
= h(x)+ r(x)

g(x)
, (2.27)

wobei h ein Polynom vom Grade s = m − n ist und der »Rest« r(x) ein Polynom vom Grad
kleiner als der Grad von f ist, also kleiner als n.

Die Durchführung dieser Division geht völlig analog zur schriftlichen Division zweier ganzer
Zahlen vor sich. Wir machen dies an Beispielen klar.
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Ist f (x) =
5
∑

k=0

ak xk ein Polynom 5. Grades und g(x) =
3
∑

k=0

bk xk 3. Grades, so sieht das

Rechenschema folgendermaßen aus:

(a5x5 + a4x4 + a3x3 + a2x2 + a1x + a0) : (b3x3 + b2x2 + b1x + b0)

= c2x2 + c1x + c0 +
r(x)

g(x)

c0b3x3 + c0b2x2 + c0b1x + c0b0

−(c2b3x5 + c2b2x4 + c2b1x3 + c2b0x2)

r2x2 + r1x + r0
︸ ︷︷ ︸

r(x)

−(c1b3x4 + c1b2x3 + c1b1x2 + c1b0x)

a′4x4 + a′3x3 + a′2x2 + a1x + a0

a′′3 x3 + a′′2 x2 + a′′1 x + a0

(2.28)

Hierbei geht man so vor, daß zunächst die obere Zeile und Gleichheitszeichen hingeschrieben
werden. Dann wird c2 = a5/b3 berechnet und rechts vom Gleichheitszeichen c2x2 hingeschrie-

ben. Hiermit wird
3∑

k=0
bk xk multipliziert und in die zweite Zeile links geschrieben, wie im Sche-

ma (2.28) zu sehen. Die Subtraktion der zweiten Zeile vom darüberstehenden Polynom ergibt die
dritte Zeile, s. (2.28). Danach errechnet man c1 = a′4/b3, addiert c1x zu c2x2, multipliziert c1x

mit
3∑

k=0
bk xk und schreibt dies in die vierte Zeile. Subtraktion ergibt die fünfte Zeile usw. Man

sieht: Das Verfahren ähnelt der bekannten schriftlichen Zahlendivision. In der letzten Zeile bleibt
schließlich ein »Rest« r(x) = r2x2 + r1x + r0 übrig. Mit diesem »Rest« und dem errechneten
h(x) = c2x2 + c1x + c0 ist damit Gl. (2.27) erfüllt.

Beispiel 2.18:
f (x)

︷ ︸︸ ︷

4x5 − 4x4 − 5x3 + 4x2 − x + 1 :
g(x)

︷ ︸︸ ︷

2x3 − 3x2 + 5x − 2 = 2x2 + x − 6
︸ ︷︷ ︸

h(x)

+ r(x)

g(x)
4x5 − 6x4 + 10x3 − 4x2

2x4 − 15x3 + 8x2 − x + 1

2x4 − 3x3 + 5x2 − 2x

− 12x3 + 3x2 + x + 1

−12x3 + 18x2 − 30x + 12

− 15x2 + 31x − 11
︸ ︷︷ ︸

r(x)

(2.29)

Bemerkung: Divisionen dieser Art werden bei der Integration rationaler Funktionen benötigt
(s. Abschn. 4.2.4).

Ein Sonderfall ist die Division eines Polynoms f durch ein Polynom der Form (x − x0), einen
sogenannten Linearfaktor. Sie läßt sich bequem mit dem kleinen Horner-Schema durchführen,
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denn es liefert in der unteren Zeile ein Polynom fn−1(x) =
n−1∑

k=0
bk xk und eine Zahl r0, so daß

(2.26) gilt, d.h.

f (x)

x − x0
= fn−1(x)+ r0

x − x0
(2.30)

(x �= x0 vorausgesetzt). Zwischen dem Horner-Schema und dem Divisionsverfahren (2.28) be-
steht in diesem Fall kein rechnerischer Unterschied.

Nullstellen-Anzahl: Ist f ein Polynom n-ten Grades und x1 eine Nullstelle von f , so ergibt das

kleine Horner-Schema bezüglich x1 ein Polynom fn−1(x) =
n−1∑

k=0
bk xk mit

f (x) = (x − x1) fn−1(x) . (2.31)

Denn in (2.26) ist x0 durch x1 ersetzt und r0 = f (x1) = 0. Schreiben wir die Gleichung um in

f (x)

x − x1
= fn−1(x) (x �= x1) , (2.32)

so erkennen wir:

Folgerung 2.1:
Ist f ein Polynom n-ten Grades und x1 eine Nullstelle von f , so läßt sich f durch
x − x1 »ohne Rest« dividieren. Das Resultat ist ein Polynom vom Grade n − 1.

Damit gewinnen wir den

Satz 2.4:
Jedes Polynom n-ten Grades hat höchstens n verschiedene reelle Nullstellen.

Beweis:
Ist f ein Polynom n-ten Grades und x1 eine seiner Nullstellen, so dividiert man f (x) durch
(x − x1)

k1) wobei k1 die größte ganze Zahl ist, für die die Division ohne Rest möglich ist. Nach
der obigen Folgerung ist k1 ≥ 1. Man erhält so ein Polynom f1(x) = f (x)/(x−x1)

k1 vom Grade
n− k1. Jede weitere Nullstelle von f ist auch Nullstelle von f1. Den beschriebenen Prozeß führt
man daher mit einer weiteren Nullstelle x2 für f1 genauso durch und erhält ein Polynom f2,
mit dem man den Prozeß abermals ausführt usw. Schließlich erhält man ein Polynom fm ohne
reelle Nullstellen. Dies ist spätestens der Fall, wenn fm ein Polynom vom Grade 0 ist, also nach
höchstens n Schritten. Somit kann f nicht mehr als n reelle Nullstellen haben. �

Übung 2.9:

Berechne

(12x4 + x3 − 5x2 + 4x − 5) : (3x2 + x − 2) .
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2.2 Rationale und algebraische Funktionen

2.2.1 Gebrochene rationale Funktionen

Unter einer rationalen Funktion versteht man eine Funktion der Form

f (x) = a0 + a1x + a2x2 + . . .+ an xn

b0 + b1x + b2x2 + . . .+ bm xm
=

n
∑

i=0

ai x i

m
∑

k=0

bk xk

(2.33)

mit bm �= 0 (ai , bk, x ∈ ·R). Der Definitionsbereich von f besteht aus allen reellen Zahlen mit
Ausnahme der Nullstellen des Nennerpolynoms.

Im Falle m = 0, also Nennerpolynom konstant = b0 �= 0, ist f ein Polynom. Man nennt
daher Polynome auch ganzrationale Funktionen.

Ist der Grad des Nennerpolynoms größer oder gleich 1 und der Zähler nicht das Nullpolynom,
so heißt f eine gebrochene rationale Funktion. Die Funktion heißt dabei echt gebrochen, wenn
der Zählergrad n kleiner als der Nennergrad m ist. Andernfalls heißt f unecht gebrochen.

Beispiel 2.19:

Die Funktion

f (x) = 3x − 5

4x2 + 3x − 7
ist echt gebrochen,

g(x) = 4x5 − 4x4 − 5x3 + 4x2 − x + 1

2x3 − 3x2 + 5x − 2
ist unecht gebrochen.

Nullstellen, Pole: Jede Nullstelle des Zählers von (2.33), die nicht gleichzeitig Nullstelle des
Nenners ist, ist Nullstelle von f .

Für jede Nullstelle x0 des Nenners in (2.33), die nicht auch Nullstelle des Zählers ist, gilt

lim
x→x0

| f (x)| = ∞ . (2.34)

Man nennt x0 einen Pol oder eine Unendlichkeitsstelle von f .

Wir nehmen an, daß das Zählerpolynom in (2.33) nicht das Nullpolynom ist.

Verschwinden in x0 sowohl Zähler- wie Nennerpolynom von f , so dividiert man zunächst das
Nennerpolynom durch x − x0 (x �= x0 vorausgesetzt). Ist das entstehende Polynom wiederum
Null in x0, so dividiert man es wieder durch (x − x0) �= 0 usw. Man führt dies fort, bis — etwa
nach k Divisionen — ein Polynom q gewonnen ist mit q(x0) �= 0. Das Nennerpolynom hat damit
die Form

q(x)(x − x0)
k , q(x0) �= 0 ,
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erhalten. Entsprechend formt man das Zählerpolynom um in

p(x)(x − x0)
j , mit p(x0) �= 0 .

Es folgt damit

f (x) = p(x)

q(x)
(x − x0)

j−k für x �= x0 . (2.35)

Wir sehen: Ist j < k, so hat f in x0 einen Pol, denn es gilt (2.34).

Ist j = k, so definieren wir f (x0) := p(x0)/q(x0), und ist j > k, so f (x0) := 0 (angeregt
durch (2.35)). Auf diese Weise ist im Falle j ≥ k der Definitionsbereich von f um x0 erweitert.

Beispiel 2.20:

Die Funktionen

f (x) = c

xn
(c �= 0, n ∈ N)

sind besonders einfache gebrochene rationale Funktionen. Für n = 1, c > 0 ist der Graph in
Fig. 2.17a skizziert. Er wird gleichseitige Hyperbel genannt. Für n = 2, c > 0 ist der Graph in
Fig. 2.17b abgebildet.

Für ungerade n ähneln die Graphen von f der Fig. 2.17a, für gerade der Fig. 2.17b, eventuell
an der x-Achse gespiegelt.

Fig. 2.17: (a) Hyperbel; (b) y = c/x2

Beispiel 2.21:

Das Boyle-Mariottesche4 Gesetz idealer Gase lautet pv = RT (p = Druck, v = Volumen,
R = Gaskonstante, T = absolute Temperatur). Bei konstanter Temperatur, mit der Abkürzung

4 Robert Boyle (1627 – 1691), englischer Naturforscher, Edme Mariotte (1620 – 1684), französischer Physiker
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c = RT , ergibt sich pv = c, aufgelöst nach v:

v = c

p
.

In p-v-Koordinaten beschreibt dies eine Hyperbel wie in Fig. 2.17a.

Fig. 2.18: Graph von f aus Beispiel 2.22

Beispiel 2.22:

Es sei f (x) = x3 − 13x + 12

x2 − 5x + 6
. Die Nullstellen des Nennerpolynoms sind 2 und 3, es läßt sich

daher so zerlegen: x2 − 5x + 6 = (x − 2)(x − 3). 3 ist auch Nullstelle des Zählers, 2 dagegen
nicht. Division des Zählers durch (x − 3) liefert das Polynom x2+ 3x − 4, das nach Berechnung
seiner Nullstellen 1 und -4 die Gestalt (x − 1)(x + 4) erhält. Damit läßt sich f (x) schreiben als

f (x) = (x − 3)(x − 1)(x + 4)

(x − 3)(x − 2)
für x �= 3 , x �= 2 .

Kürzen von (x − 3) �= 0 ergibt

f (x) = (x − 1)(x + 4)

x − 2
= x2 + 3x − 4

x − 2
, (2.36)

wobei wir nun auch x = 3 zugelassen haben. f hat also die Nullstellen 1 und −4, sowie den Pol
2 (s. Fig. 2.18).
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Zerlegung unecht gebrochener rationaler Funktionen

Beispiel 2.23:
In der Funktion g aus Beispiel 2.19 kann das Zählerpolynom durch das Nennerpolynom dividiert
werden, s. Beispiel 2.18, Abschn. 2.1.6. Es folgt

g(x) = 2x2 + x − 6+ −15x2 + 31x − 11

2x3 − 3x2 + 5x − 2
.

So können wir mit jedem unechten Polynom verfahren. Es gilt also

Satz 2.5:
Jede unecht gebrochene rationale Funktion läßt sich durch das Divisionsverfahren für
Polynome eindeutig in eine Summe aus einem Polynom und einer echt gebrochenen
rationalen Funktion zerlegen. Ist also

f (x) = p(x)

q(x)

eine rationale Funktion mit dem Nennerpolynom q(x) vom Grade m ≥ 1 und dem
Zählerpolynom p(x) vom Grade n ≥ m j so liefert das Divisionsverfahren für Polyno-
me aus Abschn. 2.1.6 eine Darstellung von f der Gestalt

f (x) = h(x)+ r(x)

q(x)
, (2.37)

wobei h ein Polynom vom Grade m−n ist und r ein Polynom von höchstens (m−1)−
ten Grade.

Asymptoten: Das Verhalten unecht gebrochener rationaler Funktionen f geht für große |x |
sofort aus der Zerlegung (2.37) hervor. Da r/q echt gebrochen ist, gilt r(x)/q(x) → 0 für
|x | → ∞5 (Man sieht dies sofort ein, wenn man Zähler r(x) und Nenner q(x) durch die höchste
Potenz xm des Nennerpolynoms dividiert.) Aus (2.37) folgt somit

| f (x)− h(x)| → 0 für |x | → ∞ .

f verhält sich also für große |x | ebenso wie das Polynom h. Dies führt zu folgender Definition:

Definition 2.1:
Ein Polynom heißt Asymptote einer rationalen Funktion f , wenn folgendes gilt:

| f (x)− h(x)| → 0 für |x | → ∞ .

Aus obiger Überlegung folgt damit

5 F(x)→ a für |x | → ∞ bedeutet: Für jede Folge (xn) des Definitionsbereiches von F , die lim
n→∞ |xn | = ∞ erfüllt,

gilt lim
n→∞ F(xn) = a.
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Satz 2.6:
Jede rationale Funktion f besitzt eine Asymptote!

(a) Ist f echt gebrochen, so ist die Asymptote von f die Nullfunktion.

(b) Ist f unecht gebrochen f so ist die Asymptote von f das Polynom h, das in der
Zerlegung (2.37) auftritt. (Es wird durch Division des Zählerpolynoms durch das
Nennerpolynom gewonnen.)

Wir merken zusätzlich an, daß die Asymptote von f genau dann eine Gerade ist, wenn der Grad n
des Zählerpolynoms um höchstens 1 größer ist als der Grad m des Nennerpolynoms, d.h. n ≤ m+
1. Denn in diesem Fall hat die Asymptote h den Grad 1 oder 0 oder ist gleich dem Nullpolynom.

Im Beispiel 2.22 errechnet man aus (2.36) durch die Division auf der rechten Seite (x2+3x−
4)/(x − 2):

f (x) = x + 5+ 6

x − 2

Asymptote von f ist also die Gerade h(x) = x + 5 (s. Fig. 2.18).
In Beispiel 2.23 ist Asymptote von g das Polynom h(x) = 2x2 + x − 6.

Übung 2.10:

Welche Asymptote hat die Funktion

f (x) = 2x3 − 7x2 + 2x − 1

x2 + 4x + 7
?

2.2.2 Algebraische Funktionen

Eine Funktion f heißt algebraische Funktion, wenn die Punkte (x, y) ihres Graphen einer Glei-
chung der Form

∑

i,k=0

aik x i yk = 0 (2.38)

gehorchen.6 Die Gleichung heißt algebraische Gleichung zu f .
Häufig ist zunächst eine Gleichung der Form (2.38) gegeben, und man hat die Aufgabe, sie

»nach y aufzulösen« ,d.h. eine Gleichung der Form

y = f (x) (2.39)

herzuleiten, so daß alle Paare (x, y), mit y = f (x), die Gleichung (2.38) erfüllen.

6 Hierbei setzen wir x0 = y0 = 1, auch im Falle x = 0 oder y = 0.
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Beispiel 2.24:

Wir betrachten die Gleichung

y2 + x2 = 1 , x, y ∈ R . (2.40)

Die Punkte, die dies erfüllen, bilden eine Kreislinie, wie anhand der Fig. 2.19 (mit Hilfe des
Pythagoras) klar wird. Der Kreis hat den Radius 1 und den Mittelpunkt im Koordinatennullpunkt.
Man nennt ihn Einheitskreis. Wir »lösen nach y auf«: Gleichung y2+x2 = 1 ist gleichbedeutend
mit y2 = 1− x2. Dies ist genau dann erfüllt, wenn

y =
√

1− x2 oder y = −
√

1− x2 (2.41)

ist. Hierdurch werden zwei Funktionen beschrieben:

f1(x) =
√

1− x2 , f2(x) = −
√

1− x2 . (2.42)

Definitionsbereich ist in beiden Fällen [−1, 1]. f1 beschreibt den Halbkreis oberhalb der x-
Achse, f2 entsprechend unterhalb der x-Achse. Die Graphenpunkte von f1 und f2 gehorchen
der Gl. (2.40). f1 und f2 sind also algebraische Funktionen.

Fig. 2.19: Einheitskreis Fig. 2.20: Kreis mit Radius r um (x0, y0)

Beispiel 2.25:

Analog zum vorangegangenen Beispiel beschreibt

y2 + x2 = r2 (r > 0)

einen Kreis mit dem Radius r um den Koordinatenursprung. Allgemeiner noch: Alle Punkte
(x, y), die

(y − y0)
2 + (x − x0)

2 = r2
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erfüllen, bilden einen Kreis mit dem Radius r um den Mittelpunkt (x0, y0), s. Fig. 2.20. (Man
sieht dies leicht mit Hilfe des »Pythagoras« ein.)

Beispiel 2.26:
(Nach [5]) Ein Konstruktionselement mit rechteckigem Querschnitt ist mit den Randspannungen
σx und σy belastet, wie in Fig. 2.21 skizziert. Wir denken uns einen Schnitt durch die Fläche unter
dem Winkel ϕ gegen die Waagerechte, s. Fig. 2.21. Für die an dieser Schnittlinie auftretende
Längsspannung σ und Schubspannung τ gilt

σ = σx sin ϕ + σy cos ϕ = 1

2
(σx + σy)+

1

2
(σy − σx ) cos 2ϕ 7

τ = 1

2
σy sin 2ϕ − 1

2
σx sin 2ϕ = 1

2
(σy − σx ) sin 2ϕ

Fig. 2.21: Mohrscher Spannungskreis

Quadriert man τ und σ − 1
2 (σx + σy), so erhält man aus obigen Gleichungen

(

σ − σx + σy

2

)2

+ τ 2 =
(

σy − σx

2

)2

(2.43)

Diese Gleichung beschreibt einen Kreis in der σ -τ -Ebene. Er heißt Mohrscher8 Spannungskreis.

7 Die hier benutzten Funktionen sin und cos nebst ihrer Additionstheoreme werden in Abschn. 2.3.2 ausführlich
erläutert.

8 Christian Otto Mohr (1835 – 1918), deutscher Ingenieur
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Sein Mittelpunkt liegt auf der σ -Achse. Für jeden Winkel ϕ kann man aus Fig. 2.21 die zugehö-
rigen Werte τ und σ entnehmen.

Potenzfunktionen: Besonders einfache algebraische Funktionen sind die Potenzfunktionen

f (x) = Cxn/m ,

{

n ganz,

m natürlich.
(2.44)

Der Exponent von x ist dabei eine beliebige rationale Zahl. Zunächst setzen wir n > 0 voraus. Ist
m ungerade, so kann die ganze reelle Achse als Definitionsbereich verwendet werden. Ist m gera-
de, so liegt der Definitionsbereich in [0,∞). (Denn xn/m = ( m

√
x)n ergibt nur im Falle ungerader

m für negative x einen Sinn.) Im Fall n < 0 gilt analoges. Nur 0 liegt nicht im Definitionsbereich.
f ist in der Tat algebraisch. Potenziert man nämlich y = Cxn/m mit dem Exponenten m, so folgt
ym − Cm xn = 0, also eine Gleichung vom Typ (2.38).

Für x > 0 (C = 1) sind die typischen Formen der Funktionsgraphen von f in Fig. 2.22 zu
sehen. Der Leser setze sie für den Fall, daß m ungerade ist, in dem Bereich x < 0 fort. Dabei ist
zwischen geraden n und ungeraden n zu unterscheiden.

Fig. 2.22: Typische Potenzfunktionen f (x) = Cxn/m

Beispiel 2.27:
Die adiabatische Zustandsänderung eines idealen Gases mit Druck p wird durch p/ρκ = C (C
konstant) beschrieben, also durch

p = Cρκ .

Für Luft ist κ = 1,405. Allgemein ist κ eine Materialkonstante, die als rationale Zahl angenom-
men werden darf.

Explizite Darstellung algebraischer Funktionen

Typische algebraische Funktionen sind

f (x) = x2 −
√

3− x4
√

x2 − 1
oder f (x) =

(√
x4 + 1

x2 + 1
− 2

) 2
3

+ x
7
4 .



2.2 Rationale und algebraische Funktionen 141

Allgemein gilt: Besteht ein Formelausdruck f (x) aus der Variablen x (endlich oft auftretend) und
endlich vielen Zahlen, verknüpft mit endlich vielen Rechenoperationen +, −, ·, : oder Potenzie-
rungen mit rationalen Exponenten, so ist f eine algebraische Funktion in expliziter Darstellung.

Durch schrittweises Umformen von y = f (x) kann man in diesem Falle eine Gleichung der
Gestalt (2.38) erreichen, der alle Paare (x, y) genügen, die auch y = f (x) erfüllen.

Die Umkehrung gilt nicht! Insbesondere läßt sich nicht jede algebraische Funktion durch
Formelausdrücke der genannten Art beschreiben. In der Technik haben wir es aber hauptsächlich
mit algebraischen Funktionen der beschriebenen expliziten Art zu tun.

Beispiel 2.28:

Der Luftdruck p hängt von der Höhe h über dem Erdboden ab. Bei ruhender isothermischer
Atmosphäre lautet dieser Zusammenhang

p = p0

(

1− n − 1

n

gh

RL · T0

) n
n−1

(2.45)

Die rechte Seite, abgekürzt f (h), beschreibt eine algebraische Funktion. Die Konstanten da-
zu bedeuten: p0 Bodendruck (z.B. p0 = 1,013 bar), n = 1,235 Polytropenexponent, RL =
287m2/(K · s2) spezifische Gaskonstante der Luft, T0 = 288K Temperaturkonstante, g =
9,81m/s2 Erdbeschleunigung.

Übung 2.11:

Man forme (2.45) in eine Gleichung vom Typ (2.38) um.

2.2.3 Kegelschnitte

Hier wird ein erster Einblick gegeben. In Burg/Haf/Wille (Vektoranalysis) [9], Abschn. 1.3, wer-
den Kegelschnitte ausführlich behandelt.

Ellipse: Wir gehen aus von der Gleichung

x2

a2
+ y2

b2
= 1 (a > 0, b > 0) . (2.46)

Trägt man alle Punkte (x, y), die die Gleichung erfüllen, in der x-y-Ebene ein, so bilden sie eine
Kurve, wie in Fig. 2.23 skizziert. Eine Kurve dieser Form heißt eine Ellipse. Wir können sie uns
aus einem Kreis entstanden denken, der in einer Richtung gleichmäßig gestaucht (oder gestreckt)
ist. Der Kreis selbst gilt als Spezialfall einer Ellipse.

Löst man die Ellipsengleichung (2.46) nach y auf, so erhält man

y = b

a

√

a2 − x2 oder − y = b

a

√

a2 − x2 (|x | ≤ a) . (2.47)

Die linke Gleichung beschreibt eine Funktion, deren Graph der »obere« Ellipsenbogen ist, die
rechte Gleichung entsprechend eine Funktion, deren Graph den unteren Bogen darstellt.
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Fig. 2.23: Ellipse Fig. 2.24: Planetengetriebe

In Fig. 2.23 wollen wir a > b annehmen. a, die Länge der Strecke [0, A], heißt große Halb-
achse der Ellipse. Entsprechend heißt b die kleine Halbachse. b ist die Länge von [0, B].

Ellipsen spielen in der Himmelsmechanik eine große Rolle: Die Planeten der Sonne laufen in
sehr guter Näherung auf Ellipsenbahnen. Dasselbe gilt für Satelliten im erdnahen Raum.

Will man die Bewegung eines Punktes auf einer Ellipsenbahn technisch erzeugen, so läßt sich
dies einfach mit einem Planetengetriebe konstruieren, wie es in Fig. 2.24 skizziert ist. Dabei
rollt ein Rad in einem anderen vom doppelten Radius herum. Ein beliebig markierter Punkt P
auf dem rollenden Rad bewegt sich dann auf einer elliptischen Bahn.
Hyperbel: Hyperbeln sind ebene Figuren, die durch

x2

a2
− y2

b2
= 1 (a > 0, b > 0) . (2.48)

beschrieben werden, siehe Fig. 2.25. Auflösung nach y ergibt

y = b

a

√

x2 − a2 oder y = −b

a

√

x2 − a2 (|x | ≥ a) . (2.49)

womit zwei Funktionen angegeben sind, deren Graphen zusammen eine Hyperbel bilden.
Für große |x | kann man a2 gegen x2 vernachlässigen, so daß (2.49) übergeht in

y ≈ b

a
x , y ≈ −b

a
x . (2.50)

Setzt man hier = statt ≈, so hat man die Gleichungen zweier Geraden (vgl. Fig. 2.25). An diese
Geraden schmiegt sich die Hyperbel immer besser an, je größer |x | ist. Die Geraden heißen die
Asymptoten der Hyperbel.

Hyperbeln treten auch in der Himmelsmechanik auf, z.B. als Kometenbahnen oder Bahnen
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Fig. 2.25: Hyperbel

von Satelliten, die das Sonnensystem verlassen. Ferner treten Hyperbeln bei Kühltürmen als
Querschnitt-Figuren auf, wie auch bei Düsen oder Lampenformen.
Parabel: Parabeln werden durch

y = cx2 = 0 , c > 0 ,

beschrieben Wir haben sie in Abschn. 2.1.3 ausführlich behandelt.

Bemerkung: Ellipsen, Hyperbeln und Parabeln werden Kegelschnitte genannt.
In der Tat treten sie als Schnittfiguren auf, wenn Doppelkegel und Ebenen sich schneiden

(s. Fig. 2.26). Auch die Grenzfälle — Kreis oder Punkt, zwei sich schneidende Geraden oder
eine Gerade — treten als Schnittfiguren auf. Dehnt sich der Kegel, bis er schließlich in einen
Zylinder übergeht, so können auch zwei parallele Geraden als Schnittfigur vorkommen oder eine
»leere« Schnittfigur.

Allgemeine Gleichung zweiten Grades: Wir betrachten die algebraische Gleichung

a11x2 + 2a12xy + a22 y2 + 2a13x + 2a23 y + a33 = 0 (2.51)

mit reellen Konstanten aik . Wir setzen voraus, daß a11, a12, a22 nicht alle Null sind. Damit gilt:

Gleichung (2.51) beschreibt stets einen Kegelschnitt (vgl. Burg/Haf/Wille (Vektoranalysis) [9],
Abschn. 1.3.5).

Um herauszufinden, welchen sie darstellt, werden die drei folgenden Determinanten (s. Ab-
schn. 7.2.3, bzw. Burg/Haf/Wille (Lineare Algebra) [7]) betrachtet:

D =

∣
∣
∣
∣
∣
∣

a11 a12 a13

a12 a22 a23

a13 a23 a33

∣
∣
∣
∣
∣
∣

, D1 =
∣
∣
∣
∣

a11 a12

a12 a22

∣
∣
∣
∣
, D2 =

∣
∣
∣
∣

a22 a23

a23 a33

∣
∣
∣
∣
+
∣
∣
∣
∣

a11 a13

a13 a33

∣
∣
∣
∣
.

Es ergibt sich folgende Fallunterscheidung:
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Fig. 2.26: Kegelschnitte

1. Fall

D1 = 0

D1 > 0

D �= 0

D1 < 0

D1 · a11 < 0

D1 · a11 > 0 leere Menge

Ellipse

Parabel

Hyperbel

2. Fall

D = 0 D1 = 0

D2 < 0

D2 = 0

D2 > 0

eine Gerade

leere Menge

2 parallele Geraden

2 sich schneidende GeradenD1 < 0

D1 > 0 ein Punkt
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(Die Beweise hierzu werden in Burg/Haf/Wille (Lineare Algebra) [7], Abschn. 3.9.9, geführt.)

Übung 2.12*:

Welche Typen von Kegelschnitten werden durch die folgenden Gleichungen dargestellt:

(1) 3x2 + 4xy + 5y2 + 2x + 8y + 2 = 0

(2) 5x2 + 16xy + 2y2 + 2x + 2y + 2 = 0,

(3) 4x2 − 12xy + 9y2 + 6x + 2y + 1 = 0,

(4) x2 − 4xy + 4y2 − x + 2y − 1

4
= 0.

2.3 Trigonometrische Funktionen

2.3.1 Bogenlänge am Einheitskreis

Die Menge aller Punkte (x, y) mit x2 + y2 = 1 bildet in der x-y-Ebene eine Kreislinie vom
Radius 1 um den Koordinatennullpunkt. Wir nennen sie die Einheitskreislinie. Löst man x2 +
y2 = 1 nach y auf, so erhält man

y =
√

1− x2 oder y = −
√

1− x2 (2.52)

für |x | ≤ 1. Die linke Gleichung beschreibt die obere Halbkreislinie H+ (oberhalb der x-Achse
in Fig. 2.27), die rechte dagegen die untere Halbkreislinie H−

Fig. 2.27: Kreisbogen Ka,b

Ein Kreisbogen Ka,b auf H+ ist die Menge aller Punkte (x, y) ∈ H+ mit

−1 ≤ a ≤ x ≤ b ≤ 1

(s. Fig. 2.27). Es ist unsere Aufgabe, die Länge ta,b eines solchen Kreisbogens — kurz Bogen-
länge genannt — zu definieren und zu bestimmen.
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Bemerkung: Die Grundvorstellung der Bogenlänge besteht darin, daß man sich den Kreisbogen
als dehnungsfreies Seil vorstellt, dessen Länge durch Geradeziehen und Anlegen eines Lineals
gemessen werden kann. Der eilige Leser mag sich mit dieser »Seilvorstellung« begnügen und
den Rest dieses Abschnittes überschlagen. Zum Verständnis des folgenden, insbesondere der
Anwendungen, geht ihm nichts wesentliches verloren.

Für eine saubere mathematische Fundierung reicht die Seilvorstellung allerdings nicht aus. (Was
heißt z.B. »dehnungsfrei?«) Wir definieren daher die Bogenlänge, indem wir von Streckenzügen
ausgehen.

Es sei

Ka,b =
{

(x, y) | −1 ≤ a ≤ x ≤ b ≤ 1 , y =
√

1− x2
}

der schon beschriebene Kreisbogen. Zunächst bilden wir eine Zerlegung Z des Intervalls [a, b]
mit

a = x0 < x1 < . . . < xn = b .

Die Punkte x0, . . ., xn heißen Teilungspunkte von Z . Die zugehörigen Kreispunkte

Pi = (xi , yi ) mit yi =
√

1− x2
i

(i = 0,1, . . . , n) liegen auf dem Kreisbogen Ka,b. Wir verbinden diese Punkte P0, P1, P2, . . ., Pn

durch einen Streckenzug S, wie es die Fig. 2.28 zeigt. Der Streckenzug S ist dabei die Vereinigung
aller Strecken [P0, P1], [P1, P2], . . ., [Pn−1, Pn]. Die Länge einer solchen Strecke [Pi−1, Pi ] ist
nach »Pythagoras«

√

△x2
i +△y2

i , mit Δxi = xi − xi−1 , Δyi = yi − yi−1 . (2.53)

Die Summe L(Z) dieser Streckenlängen bezeichnet man als Länge des Streckenzuges S:

L(Z) =
n
∑

i=1

√

Δx2
i +Δy2

i . (2.54)

Fügt man weitere Punkte auf dem Kreisbogen Ka,b hinzu, so werden die zugehörigen Strecken-
züge immer länger. Je mehr Punkte Pi gewählt werden und je kürzer die Teilstrecken sind, desto
näher kommt L(Z) unserer Vorstellung einer Bogenlänge. Dies führt zu folgender

Definition 2.2:
Die Bogenlänge ta,b des Kreisbogens Ka,b ist gleich

ta,b := sup
Z

L(Z) (Z Zerlegung von [a, b]).

M.a.W: Man denke sich die Menge M aller Streckenzuglängen L(Z) (zu allen denkbar-
en Zerlegungen von [a, b]). Ihr Supremum bezeichnet man als Bogenlänge von Ka,b.
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Fig. 2.28: Streckenzug als Näherung für einen Kreisbogen

Die Definition ist nur sinnvoll, wenn die Menge M der Streckenzuglängen L(Z) nach oben
beschränkt ist. Das ist aber der Fall, denn es gilt

√

Δx2
i +Δy2

i ≤ |Δxi | + |Δyi | , (2.55)

wie man durch Quadrieren sofort einsieht. Also folgt

L(Z) ≤
n
∑

i=1

(|Δxi | + |Δyi |) =
n
∑

i=1

|Δxi | +
n
∑

i=1

|Δyi | ≤ 2+ 2 = 4 .

Speziell definiert man ta,a = 0 für alle a ∈ [−1,1] und

π := t−1,1.

π ist also die Länge der Halbkreislinie H+. Wir werden später Berechnungsmethoden für π

angeben (s. Abschn. 3.2.5). Sie liefern

π = 3,141592653589793 . . .

Satz 2.7:

(Eigenschaften der Bogenlänge)

(I) Additivität (s. Fig. 2.29a) Es gilt:

ta,b + tb,c = ta,c , falls − 1 ≤ a ≤ b ≤ c ≤ 1 . (2.56)

(II) Einschließungseigenschaft: Man betrachte Fig. 2.29b: Ist δa,b die Länge der »Seh-
ne « [A, B] und τa,b die Länge des Tangentenstückes [A′, B ′], so gilt

δa,b ≤ ta,b ≤ τa,b . (2.57)
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(III) Der Quotient aus Sehnen- und Bogenlänge erfüllt

δa,b

ta,b
→ 1 für a → b oder b→ a . (2.58)

Beweis:

Zu (I): Es seien Z1, Z2 Zerlegungen von [a, b], [b, c]. Mit Z = Z1 ∪ Z2 (Zerlegung von [a, c])
folgt für die zugehörigen Streckenzuglängen

L(Z1)+ L(Z2) = L(Z) ≤ ta,c .

Geht man links zu den Suprema über, so folgt

ta,b + tb,c ≤ ta,c . (2.59)

Fig. 2.29: Zu Satz 2.7: Eigenschaften der Bogenlänge am Kreis

Ist umgekehrt Z eine beliebige Zerlegung von [a, c], so erzeugen ihre Teilungspunkte, unter
Hinzunahme von b, eine Zerlegung Z1 von [a, b] und eine Zerlegung Z2 von [b, c]. Sie erfüllen
zweifellos

L(Z) ≤ L(Z1)+ L(Z2) ≤ ta,b + tb,c .

Geht man links wiederum zum Supremum über, so folgt

ta,c ≤ ta,b + tb,c ,

mit (2.59) also ta,c = ta,b + tb,c.

Zu (II): Ersetzt man den Kreisbogen Ka,b in Fig. 2.29b durch einen Streckenzug S, wie beschrie-



2.3 Trigonometrische Funktionen 149

ben, so sieht man geometrisch leicht ein, daß für die Länge L(Z) des Streckenzuges gilt:

δa,b ≤ L(Z) ≤ τa,b .

Folglich gilt auch δa,b ≤ ta,b ≤ τa,b.

Zu (III): Die Länge q der Strecke [0, P] in Fig. 2.29b ist nach »Pythagoras« zweifellos q =
√

1− (δa,b/2)2. Mit dem »Strahlensatz« erhalten wir ferner δab : τa,b = q : 1, also folgt mit (II)

1 ≥ δa,b

ta,b
≥ δa,b

τa,b
= q =

√

1−
δ2

a,b

4
→ 1 für a → b oder b→ a.

�

Wir betrachten nun speziell die Bogenlänge tx,1 und fragen uns, wie sie von x abhängt (siehe
Fig. 2.30). Die so entstehende Funktion f (x) = tx,1 nennen wir Bogenlängenfunktion. Für sie
gilt:

Fig. 2.30: Bogenlängenfunktion

Satz 2.8:
Die Funktion

f (x) = tx,1 , −1 ≤ x ≤ 1 ,

ist stetig, streng monoton fallend und bildet das Intervall [−1, 1] umkehrbar eindeutig
auf [0, π ] ab.

Beweis:
Für xn → x0 (−1 ≤ xn < x0 ≤ 1) gilt

| f (xn)− f (x0)| = |txn ,1 − tx0,1| = |txn ,x0 | ≤ τxn ,x0 → 0 .

Entsprechendes gilt im Falle (−1 ≤ x0 < xn ≤ 1), woraus die Stetigkeit von f folgt. Ferner ist
f streng monoton fallend, da für (−1 ≤ x1 < x2 ≤ 1) gilt

f (x1)− f (x2) = tx1,1 − tx2,1 = tx1,x2 ≥ δx1,x2 > 0 ,
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d.h. f (x1) > f (x2). f ist also eineindeutig und bildet [−1, 1] in [0, π ] ab. Nach dem Zwi-
schenwertsatz nimmt f (x) jeden Wert zwischen f (1) = 0 und f (−1) = π an. Folglich bildet
f [−1,1] auf [0, π ] ab, womit alles bewiesen ist. �

Die Funktion f in Satz 2.8 wird später arccos (Arcus Cosinus) genannt.

Ausdehnung des Bogenlängenbegriffs auf größere Kreisbögen

In analoger Weise, wie hier geschehen, können Kreisbögen K−a,b auf der unteren Halbkreisli-

nie H− betrachtet und ihre Bogenlängen t−a,b bestimmt werden. Ja, wir können auch aus einem

»oberen« Kreisbogen Ka,1 und aus einem »unteren« K−b,1 einen neuen Kreisbogen

K = Ka,1 ∪ K−b,1

zusammensetzen, s. Fig. 2.31. Seine Bogenlänge ist definiert als die Summe der Bogenlängen
von Ka,1 und K−b,1. Entsprechend lassen sich Kreisbögen der Form

K = K−1,a ∪ K−−1,b

behandeln, die den Punkt (−1, 0) enthalten. Die so gewonnenen Kreisbögen lassen sich abermals

Fig. 2.31: Größere Kreisbögen

zusammensetzen usw. Damit ist der Bogenlängenbegriff auf Kreisbögen beliebiger Länge und
Lage ausgedehnt.

Die Einheitskreislinie selbst, aufgefaßt als H+ ∪ H−, hat die Länge 2π . Man nennt 2π auch
den Umfang des Einheitskreises.

Winkelmessung: Die Bogenlänge t ist ein Maß für den Winkel zwischen zwei Halbgeraden, die
von 0 ausgehen, s. Fig. 2.32a. t wird auch das Bogenmaß des Winkels genannt.

In der Geometrie wird das Winkelmaß üblicherweise in Grad angegeben, also in der Form: α◦

(Sprich: »α Grad«). Zwischen t und α besteht der Zusammenhang
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α

180
= t

π
. (2.60)

Damit können Bogenmaße in Gradangaben umgerechnet werden und umgekehrt.
In der Analysis ist es durchweg üblich, Winkelgrößen im Bogenmaß anzugeben9.

Länge beliebiger Kreisbögen: Wir denken uns einen Kreis mit beliebigem Radius r > 0. Durch
einen Mittelpunktswinkel mit dem Bogenmaß t wird aus der Kreislinie ein bestimmter »Bogen«
B herausgeschnitten, wie es in Fig. 2.32b gezeigt ist. Seine Länge b wird ebenfalls über einbe-
schriebene Streckenzüge definiert. Da alle Längen dabei gegenüber dem Einheitskreis um den
Faktor r gestreckt oder gestaucht sind, ist die Länge des Bogens B das r -fache des Bogenmaßes
t :

b = tr .

Insbesondere hat die gesamte Kreislinie die Länge 2πr .

Fig. 2.32: Winkelmessung; Bögen auf beliebigen Kreislinien

Übung 2.13:

Welche Bogenmaße entsprechen den folgenden Winkelmaßen:

1◦ ; 17◦34′ ; 27,7◦ ; 251◦14′47′′ ?

Dabei bezeichnet ′ Bogenminuten (60 Bogenminuten = 1◦), und ′′ Bogensekunden (60 Bogen-

sekunden = 1 Bogenminute).

Übung 2.14:

Verwandle die folgenden Bogenmaße in Gradmaße, gerundet auf Bogensekunden:

1,5231 ; 5,12178 ; 2

3
π ; 2

7
π .

9 Der Grund wird später klar. Er liegt darin, daß so sin′ = cos und cos′ = − sin gilt, was bei Winkelmessungen in
Grad nicht zutrifft.
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Übung 2.15:

Ein Rad dreht sich gleichförmig, und zwar dreht es sich in 0,142 s um den Winkel von 70◦.
Berechne die Umlaufzeit T und die Winkelgeschwindigkeit ω = 2π/T des Rades!

2.3.2 Sinus und Cosinus

Die trigonometrischen Funktionen Sinus (sin) und Cosinus (cos) eignen sich gut zur Darstellung
von Wellen, Schwingungen und sonstigen periodischen Vorgängen, wie auch zur Berechnung
von Entfernungen auf der Erde oder im Weltraum.

Zur Definition von Sinus und Cosinus betrachten wir einen beliebigen Punkt P = (x, y) auf
der Einheitskreislinie. Es gilt also x2 + y2 = 1.

Mit t bezeichnen wir die Bogenlänge des zugehörigen Kreisbogens. Damit ist der Kreisbogen
gemeint, den ein Punkt durchläuft, wenn er auf der Einheitskreislinie gegen den Uhrzeigersinn
von (1, 0) bis P wandert. Anhand der Figuren 2.33a, b, c ist klar, was gemeint ist.

Fig. 2.33: Bogenlänge t zu P

Die Komponenten unseres Punktes werden nun einfach mit sin t und cos t bezeichnet, also:

Definition 2.3:
Man vereinbart

sin t := y , cos t := x für 0 ≤ t ≤ 2π .

Sinus- und Cosinusfunktionen sind damit auf dem Intervall [0, 2π ] erklärt. Der Definitionsbe-
reich wird in folgender Definition auf die ganze reelle Zahlengerade ausgedehnt.

Definition 2.4:
Für alle t ∈ [0,2π ] und alle ganzen Zahlen k gilt

sin(t + 2kπ) = sin t ,

cos(t + 2kπ) = cos t .
(2.61)

In Fig. 2.34 ist ein Schaubild der Funktionen sin und cos skizziert.
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Fig. 2.34: Sinus- und Cosinusfunktion

Folgerung 2.2:
Für alle reellen Zahlen t gilt

(I) sin2 t + cos2 t = 1 (2.62)

(II) sin(−t) = − sin t cos(−t) = cos t (2.63)

sin(π − t) = sin t cos(π − t) = − cos t (2.64)

sin
(

t ± π

2

)

= ± cos t cos
(

t ∓ π

2

)

= ± sin t (2.65)

sin (t + 2kπ) = sin t cos (t + 2kπ) = cos t k ganz (2.66)

(III) sin(kπ) = 0 cos
(π

2
+ kπ

)

= 0 (2.67)

cos(kπ) = (−1)k sin
(π

2
+ kπ

)

= (−1)k k ganz

Für alle anderen t ∈ R, also t �= kπ/2, sind sin t und cos t verschieden von 0, 1 und
−1.

(IV) sin und cos sind stetig auf R.

Beweis:

Die Eigenschaften (I) bis (III) leitet der Leser leicht aus der Definition von sin und cos her. (Die
Eigenschaften (I) bis (III) sind übrigens unmittelbar am Schaubild (Fig. 2.34) abzulesen.) Zu
(IV): cos ist auf [0, π ] die Umkehrfunktion der stetigen Funktion f aus Satz 2.8 im vorigen
Abschnitt. Also ist cos auf [0, π ] stetig. Damit ist auch sin t =

√
1− cos2 t auf [0, π ] stetig.

Durch (2.63), (2.66) wird die Stetigkeit auf alle t ∈ R übertragen. �

Additionstheoreme: Von großer Wichtigkeit sind folgende Formeln für sin(x + y), cos(x + y).
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Satz 2.9:
Für alle reellen x und y gilt

sin(x + y) = sin x cos y + cos x sin y , (2.68)

cos(x + y) = cos x cos y − sin x sin y . (2.69)

Der Beweis wird in Abschn. 3.1.6 mit Hilfe der Differentialrechnung in eleganter Weise geführt,
weshalb wir ihn hier überspringen.

Aus den Additionstheoremen (2.68), (2.69) lassen sich viele weitere Formeln herleiten, die für
die Anwendungen wichtig sind. Setzt man z.B. x = y, so folgt

sin(2x) = 2 sin x cos x , (2.70)

cos(2x) = cos2 x − sin2 x . (2.71)

Ferner gilt

sin x + sin y = 2 sin
x + y

2
cos

x − y

2

sin x − sin y = 2 cos
x + y

2
sin

x − y

2

⎫

⎪
⎬

⎪
⎭

(2.72)

cos x + cos y = 2 cos
x + y

2
cos

x − y

2

cos x − cos y = 2 sin
x + y

2
sin

x − y

2

⎫

⎪
⎬

⎪
⎭

(2.73)

Zum Nachweis von (2.72) wendet man die Additionstheoreme auf

sin x = sin

(
x + y

2
+ x − y

2

)

und sin y = sin

(
x + y

2
− x − y

2

)

an und addiert bzw. subtrahiert beide Gleichungen. Entsprechend verfährt man bei (2.73). Der
Leser führe dies zur Übung durch.

Anwendungen

Beispiel 2.29:
Ein Rad drehe sich gleichförmig mit der Umdrehungszeit T , also der Kreisfrequenz ω = 2π/T .
P sei ein beliebiger Punkt des Rades mit Abstand a vom Drehpunkt. x- und y-Achse liegen so,
wie es die Fig. 2.35 zeigt. P überschreite die x-Achse zur Zeit t0.

Dann sind die Koordinaten zu einer beliebigen Zeit t :

x = a cos(ω(t − t0)) ,

y = a sin(ω(t − t0)) .
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Die erste Gleichung beschreibt also die horizontale Bewegung des Punktes, die zweite die verti-
kale.

Fig. 2.35: Drehendes Rad Fig. 2.36: Federpendel

Beispiel 2.30:

(Federpendel) An einer Spiralfeder mit Federkonstante c > 0 hänge ein Körper der Masse m.
Er schwinge reibungsfrei auf und ab. Die Höhe seines Schwerpunktes zur Zeit t sei x (x-Achse
weist nach unten) (s. Fig. 2.36).

Dann wird seine Bewegung beschrieben durch

x = a cos(ω(t − t0)) mit ω =
√

c

m
.

Dabei ist t0 ein Anfangszeitpunkt mit maximaler Auslenkung a.

Beispiel 2.30 ist trotz seiner Einfachheit ein typischer Schwingungsvorgang. Er zeigt, daß bei
Beschreibung von Schwingungsvorgängen (seien sie mechanisch, elektrisch oder elektromagne-
tisch) die Sinus- und Cosinusfunktion die wesentlichen mathematischen Hilfsmittel sind.

Übung 2.16:

Beweise die Formel: sin(α + β)+ sin(α − β) = 2 sin α cos β

Hinweis: Wende das Additionstheorem des Sinus auf sin(α + β) und sin(α + (−β)) an!

Entsprechend:

Übung 2.17:

cos(α + β)+ cos(α − β) = 2 cos α cos β.
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Übung 2.18:

a) sin2 α = 1

2
(1− cos(2α))

b) cos2 α = 1

2
(1+ cos(2α))

(s. ( 2.71))

Übung 2.19:

a) sin α = 1

8
(3− 4 cos(2α)+ cos(4α))

b) cos α = 1

8
(3+ 4 cos(2α)+ cos(4α))

Hinweis: Man quadriere die Formeln in Übung 2.18.

Übung 2.20:

Beweise die Formel

sin((2n + 1)t) =

⎛

⎝1+ 2
n
∑

k=1

cos(2kt)

⎞

⎠ sin t.

(n ∈ N, T ∈ R) durch vollständige Induktion. Dazu benutze man die Gleichung

sin((2n + 1)t) = sin((2n − 1)t)+ 2 sin t cos(2nt) ,

die aus (2.72), 2. Gleichung, folgt.

2.3.3 Tangens und Cotangens

Definition 2.5:
Die Funktionen Tangens (tan) und Cotangens (cot) werden folgendermaßen erklärt:

tan x := sin x

cos x
für x ∈ R mit x �= π

2
+ kπ ,

cot x := cos x

sin x
für x ∈ R mit x �= kπ .

k ganz

Die rechts notierten Ausnahmewerte von x sind gerade die Nullstellen des jeweiligen Nenners.
Fig. 2.37 zeigt die Graphen von tan und cot.
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Fig. 2.37: Tangens- und Cotangensfunktionen

Satz 2.10:
(Additionstheoreme) Es gilt

tan(x ± y) = tan x ± tan y

1∓ tan x tan y
, (2.74)

cot(x ± y) = cot x cot y ∓ 1

cot y ± cot x
(2.75)

für alle x , y, für die die Nenner nicht verschwinden und die zugehörigen Tangens- und
Cosinusfunktionen definiert sind.

Der Beweis kann mit Hilfe der Additionstheoreme für sin und cos vom Leser geführt werden.
Im Falle x = y folgt aus dem Satz

tan 2x = 2 tan x

1− tan2 x
, cot 2x = cot2 x − 1

2 cot x
. (2.76)

Umrechnung der Winkelfunktionen ineinander: Wir wollen 0 < x < π/2 annehmen. Dann
gilt wegen sin2 x + cos2 x = 1:

sin x =
√

1− cos2 x , cos x =
√

1− sin2 x . (2.77)

Wir wollen entsprechend sin x in tan x umrechnen, cos x in tan x, tan x in sin x , usw. Dazu setzen
wir (2.77) in tan x = sin x/ cos x ein und erhalten

tan x = sin x
√

1− sin2 x
=
√

1− cos2 x

cos x
. (2.78)

Quadrieren und Auflösen nach sin x bzw. cos x liefert

sin x = tan x√
1+ tan2 x

, cos x = 1√
1+ tan2 x

. (2.79)

Wegen cot x = 1/ tan x hat man damit auch entsprechende Formeln für cot x zur Hand.
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Die Formeln (2.77) bis (2.79) gelten bis auf das Vorzeichen auch außerhalb des Intervalls
(0, π/2), sofern die Nenner nicht verschwinden. Man muß dann allerdings darauf achten, ob +
oder − vor die rechten Seiten zu setzen ist.

Fig. 2.38: Zur Umrechnung der Winkelfunktionen ineinander

Bemerkung: Die Gl. (2.79) gehen sofort aus Fig. 2.38 hervor. Man braucht also nur dieses Drei-
eck zu zeichnen, um jederzeit die Formeln (2.79) herleiten zu können.

Winkelfunktionen am rechtwinkligen Dreieck: An einem rechtwinkligen Dreieck [A, B, C]
mit den Seitenlängen a, b, c und dem Winkel α bei A gilt (s. Fig. 2.39a):

Fig. 2.39: Winkelfunktionen als Seitenverhältnisse am rechtwinkligen Dreieck

sin α = a

c
, cos α = b

c
, tan α = a

b
, cot α = b

a
. (2.80)

Diese Gleichungen gehen aus der Ähnlichkeit mit dem Dreieck [0, C ′, B ′] am Einheitskreis her-
vor, wie es Fig. 2.39b zeigt. Dort gilt für entsprechende Seitenverhältnisse nach Definition von
sin, cos, tan und cot:

sin α = y

1
, cos α = x

1
, tan α = sin α

cos α
= y

x
, cot α = cos α

sin α
= x

y
.

Durch die Gl. (2.80) gelangen die Winkelfunktionen in der Geometrie zu großer Bedeutung.

Übung 2.21:

Auf einer schiefen Ebene, deren Neigungswinkel α = 35,12◦ beträgt, gleitet ein Körper mit

dem Gewicht G = 219,3 N herab. Wie groß sind die Hangabtriebskraft FH und die Normalkraft

FN (rechtwinklig zur Ebene)?
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Übung 2.22:

Beweise

(a) tan α ± tan β = sin(α ± β)

cos α cos β
, (b) cot α ± cot β = sin(β ± α)

sin β sin α
.

Hinweis: Zu (a): Man setze tan α = sin α/ cos α, tan β = sin β/ cos β und bringe die linke Seite

auf Hauptnenner. (b) entsprechend.

Fig. 2.40: Arcusfunktionen

2.3.4 Arcus-Funktionen

Die Funktionen Arcussinus (arcsin), Arcuscosinus (arccos), Arcustangens (arctan) und Arcus-
cotangens (arccot) sind die Umkehrfunktionen von sin, cos, tan und cot, definiert auf den im
folgenden notierten Intervallen.

Definition 2.6:

t = arcsin x , x ∈ [−1,1] bedeutet: x = sin t , t ∈
[

−π

2
,
π

2

]

t = arccos x , x ∈ [−1,1] bedeutet: x = cos t , t ∈ [0, π ]
t = arctan x , x ∈ R bedeutet: x = tan t , t ∈

(

−π

2
,
π

2

)

t = arccot x , x ∈ R bedeutet: x = cot t , t ∈ (0, π) .

Fig. 2.40 zeigt Schaubilder der Arcusfunktionen.
Liegt beispielsweise ein rechtwinkliges Dreieck vor, dessen Seitenlängen a, b, c wir kennen

(Fig. 2.41), so kann man mit den Arcusfunktionen seine Winkel bestimmen: Wegen a/c = sin α

ist

α = arcsin
a

c
und analog β = arccos

a

c
.
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Fig. 2.41: Winkelbestimmung aus Seitenlängen

Fig. 2.42: t = arc(x, y)

Definition 2.7:
Die Funktion Arcus, beschrieben durch

t = arc(x, y) , (x2 + y2 > 0) ,

wird geometrisch erklärt (s. Fig. 2.42): Man verbindet den Punkt (x, y) mit dem Ko-
ordinatennullpunkt durch eine Strecke. Dann ist |t | das Maß des kleineren Winkels
zwischen dieser Strecke und der positiven x-Achse. Im Falle y ≥ 0 ist dabei t ≥ 0, im
Falle y < 0 dagegen t < 0. Für y = 0, x < 0 ist t = π und für y = 0, x > 0 natürlich
t = 0 (s. Fig. 2.42a, b, c, d). |t | wird im Bogenmaß angegeben. Es ist −π < t ≤ π .

Mit der Streckenlänge r =
√

x2 + y2 wird die Funktion Arcus kurz so beschrieben:

arc(x, y) =

⎧

⎪
⎨

⎪
⎩

arccos
x

r
, für y ≥ 0,

− arccos
x

r
, für y < 0.

Bemerkung: Die Funktion wird auf Computern vielfach mit ATAN2 + bezeichnet. In der kom-
plexen Analysis wird sie auch Arg (Argument) genannt.

Bemerkung: Die trigonometrischen Funktionen sin, cos, tan, cot und die zugehörigen Arcusfunk-
tionen sind heute auf jedem wissenschaftlichen Taschenrechner zu finden. Man kann ihre Werte
durch Knopfdruck erhalten. Prinzipiell kann man ihre Werte auch geometrisch finden, d.h. durch
Zeichnen des Einheitskreises auf Millimeterpapier und Ablesen der dortigen Maße. Natürlich
ist die Genauigkeit dabei gering. Rechnerische Methoden zur beliebig genauen Ermittlung der
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Funktionswerte sin, arcsin, . . . usw. lernen wir in der Differentialrechnung kennen.

Fig. 2.43: Länge eines Schienenkreisbogens

Beispiel 2.31:
Es soll die Länge eines Schienenkreisbogens bestimmt werden, s. Fig. 2.43. Der Messung zu-
gänglich ist die Sehnenlänge s und der maximale Abstand a der Sehne vom Kreisbogen. Der
Radius r des Kreises wird nach »Pythagoras« berechnet:

(r − a)2 +
( s

2

)2
= r2 ⇒ r = s2

8a
+ a

2
.

Für den Winkel α (Bogenmaß) gilt nach Fig. 2.43

sin
α

2
= s/2

r
, also

α

2
= arcsin

s

2r
.

Die Länge l des Kreisbogens ist damit gleich

l = rα = 2r · arcsin
s

2r
.

Übung 2.23:

Ein Schuppen mit rundem Dach sei 20 m lang. Sein Querschnitt hat die Form eines Rechtecks

mit daraufgesetztem Kreissegment. Das Rechteck hat eine Höhe von 4 m und eine Breite von

8 m. Die Gesamthöhe des Schuppens ist 6,5 m. Wie groß ist die Dachfläche? (Benutze Taschen-

rechner!)

Übung 2.24:

In einem liegenden zylindrischen Tank der Länge l = 2,7 m und des Durchmessers d = 1,2 m

befindet sich eine Flüssigkeitsmenge. Durch einen von oben eingeführten Meßstab stellt man

fest, daß die Höhe des Flüssigkeitsspiegels über dem Tankboden 0,78 m beträgt. Wie groß ist das

Flüssigkeitsvolumen? Hinweis: Der Flächeninhalt eines Kreissektors mit dem Öffnungswinkel

α (Bogenmaß) ist gleich r2α/2 (r = Radius des Kreises).
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2.3.5 Anwendungen: Entfernungsbestimmung, Schwingungen

Entfernungsbestimmung: Auf der Erde und im nahen Weltraum (bis ca. 4 Lichtjahre) benutzt
man zur Entfernungsmessung große Dreiecke, deren Seitenlängen und Winkel man mißt oder
berechnet. Dazu zwei Sätze der Geometrie:

Ist ein beliebiges Dreieck [A, B, C] gegeben, so gilt mit den Bezeichnungen in Fig. 2.44
folgendes:

Sinussatz
a

b
= sin α

sin β
(2.81)

Fig. 2.44: Zum Sinus- und Cosinussatz

Cosinussatz a2 + b2 − 2ab cos γ = c2 (2.82)

(Für die Beweise wird der Leser auf die Geometrie verwiesen.) Diese Sätze sind die Grundlage
für Entfernungsberechnungen:

Wir nehmen an, daß A, B, C drei Punkte auf der Erde sind, wobei A und C so dicht zusam-
menliegen, daß wir ihre Entfernung b direkt messen können. Der Punkt B sei z.B. eine entfernte,
aber sichtbare Bergspitze. Die Entfernungen a und c sind gefragt. Man mißt nun die Winkel α

und γ , berechnet daraus β und erhält mit dem Sinussatz

a = b
sin α

sin β
, c = b

sin γ

sin β
.

Hat man die Landvermessung schon eine Weile durchgeführt und kennt in einem Dreieck A, B,
C die Entfernungen a und b sowie den Winkel γ (man befinde sich selbst beim Punkt C), so
kann man die Entfernung c von A und B mit dem Cosinussatz berechnen.

In jedem Falle muß die Vermessung mit einer Strecke bekannter Länge beginnen. Im Welt-
raum nimmt man dafür den Erddurchmesser oder für die Bestimmung größerer Entfernungen
den Durchmesser der Erdbahn um die Sonne.
Schwingungen und Wellen: Durch

y = A cos(ωt + ϕ) (2.83)
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Fig. 2.45: Harmonische Schwingung

wird eine sogenannte »harmonische Schwingung« beschrieben. Dabei sei die Variable t die Zeit
und y eine schwingende Größe, wie Länge (s. Federpendel), Druck (Schallwellen), elektrische
Spannung oder elektrischer Strom, elektrische oder magnetische Feldstärke usw.

A ≥ 0, ω > 0 und ϕ sind Konstanten. A ≥ 0 heißt Amplitude, ω > 0 Kreisfrequenz und ϕ

Phase oder Phasenwinkel. Fig. 2.45 zeigt ein Schaubild der durch (2.83) beschriebenen Funktion

f (t) = A cos(ωt + ϕ) .

Man sieht daran: A ist der Maximalwert der Funktion. Die Schwingungsdauer T ist die Zeit-
spanne von einem Maximalpunkt zum nächsten. Es muß gelten

ωT = 2π , (2.84)

denn die Cosinusfunktion wiederholt ja ihre Werte — also auch die Maximalwerte —, wenn
das Argument des Cosinus um 2π weiterrückt. Mit Gl. (2.84) kann man ω aus T gewinnen
und umgekehrt. Die Frequenz ν der Schwingung, das ist die, Anzahl der Schwingungen pro
Zeiteinheit, ergibt sich aus

ν = 1

T
= ω

2π
.

Der Graph von f in Fig. 2.45 hat die Form einer Cosinusfunktion, evtl. etwas gestreckt oder
gestaucht. Dabei ist die y-Achse um ϕ/ω nach rechts verschoben, wenn ϕ > 0 ist. Andernfalls
ist sie um |ϕ|/ω nach links verschoben. Die Zahl y0 = A cos ϕ ist der Wert der schwingenden
Größe zur Zeit t = 0.

Überlagerung von Schwingungen gleicher Frequenz

Satz 2.11:
Eine Summe gleichfrequenter harmonischer Schwingungen ist wieder eine harmoni-
sche Schwingung.

Das heißt, sind die Schwingungen Ai cos(ωt + ϕi ), (i = 1,2, . . . , n), gegeben, so
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gilt für ihre Summe

n
∑

i=1

Ai cos(ωt + ϕi ) = A cos(ωt + ϕ) (2.85)

mit gewissen Zahlen A ≥ 0 und ϕ ∈ (−π, π ]. A ist eindeutig bestimmt und ϕ im Falle
A > 0 ebenfalls.

Beweis:

Wir geben an, wie die Werte A und ϕ konkret berechnet werden. Dazu nehmen wir an, es gäbe
A und ϕ, die (2.85) erfüllen. Wendet man das Additionstheorem des Cosinus auf die linke und
rechte Seite an, so verwandelt sich (2.85) in

n
∑

i=1

(Ai cos ϕi ) cos(ωt)−
n
∑

i=1

(Ai sin ϕi ) sin(ωt) = A cos ϕ cos(ωt)− A sin ϕ sin(ωt) . (2.86)

Einsetzen von t = 0 läßt die Sinusglieder verschwinden, während Einsetzen von t = π/(2ω) die
Cosinusglieder zu Null macht. Dies ergibt die beiden Gleichungen

a :=
n
∑

i=1

Ai cos ϕi = A cos ϕ .

b :=
n
∑

i=1

Ai sin ϕi = A sin ϕ .

(2.87)

Hieraus folgt durch Quadrieren, Addieren der Gleichungen und Wurzelziehen:

A =
√

a2 + b2 . (2.88)

Im Falle a = b = 0 sind A = 0 und ϕ beliebig wählbar. Im Falle A > 0 bildet der Punkt (a, b) =
(A cos ϕ, A sin ϕ) gerade den Winkel ϕ ∈ (−π, π ] mit der positiven x-Achse, s. Fig. 2.46. Es ist
daher

ϕ = arc(a, b) =

⎧

⎪
⎨

⎪
⎩

arccos
a

A
, falls b ≥ 0,

− arccos
a

A
, falls b < 0.

(2.89)

Umgekehrt gilt: A und ϕ, berechnet nach (2.88), (2.89), erfüllen (2.87), folglich auch (2.86) und
(2.85).

Durch (2.88) und im Falle A > 0 durch (2.89) sind damit A und ϕ eindeutig bestimmt und
berechnet. �
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Fig. 2.46: Phasenwinkel ϕ Fig. 2.47: Überlagerung zweier Schwingungen

Zeigerdiagramm: Die Überlagerungen zweier Schwingungen gleicher Frequenz

A1 cos(ωt + ϕ1)+ A2 cos(ωt + ϕ2) = A cos(ωt + ϕ) ,

läßt sich gut in einem Zeigerdiagramm darstellen, wie es in Fig. 2.47 gezeigt wird. (Im Abschnitt
über komplexe Zahlen kommen wir darauf zurück.)

Der technisch wichtige Sonderfall rechtwinkliger Phasenverschiebung, d.h. der Überlagerung
zweier Schwingungen mit ϕ2 = −π/2 und ϕ1 = 0, läßt sich auf Grund von cos(ωt − π/2) =
sin(ωt) so darstellen:

A1 cos(ωt)+ A2 sin(ωt) = A cos(ωt + ϕ) ,

(A1 > 0, A2 > 0). Es ist also a = A1 und b = −A2. Somit folgt nach (2.88) und (2.89):

A =
√

A2
1 + A2

2 , ϕ = − arccos
A1

A
. (2.90)

Überlagerung zweier Schwingungen verschiedener Frequenzen, Schwebungen

Durch

f (t) = A1 cos(ω1t)+ A2 cos(ω2t + ϕ) , ω1 > ω2 , (2.91)

wird die Überlagerung zweier harmonischer Schwingungen verschiedener Frequenzen beschrie-
ben, Zur Umformung verwenden wir die Gl. (2.72) und (2.73) in Abschn. 2.3.2. Addition und
Subtraktion der Gl. (2.73) liefert nämlich

cos x = cos
x + y

2
cos

x − y

2
− sin

x + y

2
sin

x − y

2

cos y = cos
x + y

2
cos

x − y

2
+ sin

x + y

2
sin

x − y

2
.
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Wählen wir x = ω1t , y = ω2t + ϕ und setzen dann in (2.91) ein, so folgt

f (t) = (A1 + A2) cos

(
ω1 + ω2

2
t + ϕ

2

)

cos

(
ω1 − ω2

2
t − ϕ

2

)

+ (A1 − A2) sin

(
ω1 + ω2

2
t + ϕ

2

)

sin

(
ω1 − ω2

2
t − ϕ

2

) (2.92)

Wir wollen nun A1 = A2 annehmen und zur Abkürzung ω = (ω1+ω2)/2 und ω = (ω1−ω2)/2
setzen. Damit folgt

f (t) = 2A1 cos
(

ωt + ϕ

2

)

cos
(

ωt − ϕ

2

)

mit ω > ω. (2.93)

Das Produkt dieser beiden harmonischen Schwingungen beschreibt eine Schwingung mit der Fre-
quenz ω, deren Amplitude sich mit der langsameren Frequenz ω harmonisch schwingend ändert,
s. Fig. 2.48. Man nennt eine solche Schwingungsform eine Schwebung. ω heißt die Frequenz der
Schwebung.

Fig. 2.48: Schwebung

Je dichter die beiden Frequenzen ω1, ω2 der sich überlagernden Schwingungen zusammenlie-
gen, desto kleiner ist die Frequenz ω = (ω1−ω2)/2 der Schwebung, während ω = (ω1+ω2)/2
ungefähr gleich ω1 und ω2 ist.

Handelt es sich hierbei um Tonschwingungen, so hört man einen langsam an- und abschwel-
lenden Ton, ungefähr in der Tonhöhe der beiden Ausgangstöne. Spielen z.B. zwei Geiger nahezu
den gleichen Ton, so kann man diesen Effekt deutlich hören.

Übung 2.25:

In einem dreiphasigen, symmetrischen Drehstromsystem fließen bei symmetrischer Belastung

in den drei Leitern gleichgroße, jeweils um 2π/3 gegeneinander phasenverschobene Ströme.

Zeige, daß ihre Summe

i = i0 cos(ωt)+ i0 cos

(

ωt + 2

3
π

)

+ i0 cos

(

ωt + 4

3
π

)

gleich Null ist.
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2.4 Exponentialfunktionen, Logarithmus, Hyperbelfunktionen

2.4.1 Allgemeine Exponentialfunktionen

Die Funktion

f (x) = ax mit a > 0,

ist für alle rationalen Zahlen x erklärt (s. Abschn. 1.1.6). Es ist zunächst unsere Aufgabe, ax

auch für irrationale x sinnvoll zu definieren, d.h. so, daß f (x) = ax nach Möglichkeit eine
stetige Funktion wird.

Zunächst sei a > 1. Dann ist f streng monoton steigend auf der Menge der rationalen Zahlen.
Denn sind x1, x2 zwei rationale Zahlen mit x1 > x2, so können wir sie auf Hauptnenner bringen:

x1 =
p

m
, x2 =

q

m
(p, q , m ganz, m �= 0, p > q)

und erhalten

f ((x1)

f x2)
= ax1

ax2
= ax1−x2 = a

p−q
m = m

√
a

p−q
.

Es ist m
√

a > 1, denn aus m
√

a ≤ 1 würde a ≤ 1m = 1 folgen, entgegen der Voraussetzung.
Wegen p > q ist damit m

√
a

p−q
> 1, folglich f (x1) > f (x2). D.h. f steigt streng monoton.

Im Falle 0 < a < 1 ist f (x) = ax für rationale x streng monoton fallend, wegen ax =
(1/a)−x mit 1/a > 1. Für a = 1 ist f (x) = ax = 1 konstant.

Definition 2.8:
Ist a > 0 eine reelle Zahl und x eine irrationale Zahl mit der Dezimaldarstellung

x = z0, z1z2z3 . . . zn . . .

(z0 ganz, z1, z2, z3, . . . Ziffern), so bilden wir daraus die Folge der rationalen Zahlen

r0 = z0 ,

r1 = z0, z1

r2 = z0, z1z2

...

rn = z0, z1z2 . . . zn

und definieren damit

ax := lim
n→∞

arn . (2.94)
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Auf diese Weise ist

f (x) = ax , mit a > 0,

für alle reellen x erklärt. Man nennt diese Funktion die Exponentialfunktion zur Basis
a.

Fig. 2.49: Exponentialfunktionen zur Basis a

Fig. 2.49 zeigt Schaubilder für a > 1 und 0 < a < 1.
Bemerkung: Gl. (2.94) ist sinnvoll, denn die Folge (arn ) konvergiert, weil sie monoton und
beschränkt ist. (Die Monotonie folgt aus der Monotonie von (rn). Ferner liegen alle arn zwischen
ar0−1 und ar0+1, woraus die Beschränktheit folgt.)

Satz 2.12:
Jede Exponentialfunktion f (x) = ax ist stetig. Im Falle a > 1 ist sie streng monoton
steigend, im Falle 0 < a < 1 streng monoton fallend.

Der Beweis kann von Lesern, die hauptsächlich an Anwendungen interessiert sind, überschlagen
werden. Sie verlieren nichts Wesentliches.

Beweis:
(I) Im Falle a = 1 ist f (x) ≡ 1 und somit stetig.
(II) die behaupteten Monotonieeigenschaften ergeben sich unmittelbar aus der Definition der
Exponentialfunktion.
(III) Wir beweisen nun, daß f stetig in 0 ist: Es sei (xn) eine beliebige Folge mit xn → 0 und
0 < xn ≤ 1. Zu jedem xn suchen wir die größte natürliche Zahl mn mit

xn ≤
1

mn
.

Wegen xn → 0 gilt auch 1/mn → 0 für n →∞. Damit folgt

im Falle a > 1 : 1 < axn ≤ a1/mn → 1

im Falle 0 < a < 1 : 1 > axn ≥ a1/mn → 1

}

für n →∞
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(a1/mn → 1 geht aus Abschn. 1.4.4, Beisp. 1.33, hervor.) Es gilt also axn → 1 = a0, d.h. f (x) =
ax ist in 0 rechtsseitig stetig. Die linksseitige Stetigkeit ergibt sich analog. Damit ist f stetig in
0. Wir haben also gezeigt:

xn → 0 ⇒ axn → 1 . (2.95)

(IV) Hilfsbehauptung: Aus xn → x0, xn rational, folgt

axn → ax0 (2.96)

Zum Beweis betrachten wir die Folge rn → x0 aus Def. 2.8, sofern x0 irrational ist. Ist x0 rational,
so setzen wir einfach rn = x0 für alle n. Damit erhält man in beiden Fällen

axn = axn−rn arn → ax0 , (2.97)

da arn → ax0 und axn−rn → 1 nach (2.95).

(V) Die Gleichung ax = ax−x ′ax ′ ist für alle rationalen x , x ′ richtig, durch Grenzübergänge der
Form (2.96) aber auch für alle reellen x , x ′.
(VI) Gilt nun xn → x0 (xn reell), so folgt damit

axn = axn−rn arn → ax0 ,

wie in (2.97). axn → ax0 bedeutet jedoch, daß f (x) = ax in x0 stetig ist, was zu beweisen war.�

Wir stellen noch einmal heraus, was die Stetigkeit von f (x) = ax bedeutet. Sie besagt: Für jede
reelle Zahlenfolge (xn) mit xn → x0 für n →∞ gilt

lim
n→∞

axn = ax0 . (2.98)

Folgerung 2.3:

(Rechenregeln) Für alle positiven a, b und alle reellen x , y gilt

ax+y = ax ay (Additionstheorem der Exponentialfunktionen), (2.99)

(ax )y = axy , (ab)x = ax bx . (2.100)

Beweis:

Nach Abschn. 1.6.6, Folgerung 1.9, gilt dies für alle rationalen x , y, durch Grenzübergänge der
Form (2.98) aber auch für irrationale x , y. �

Bemerkung: Exponentialfunktionen gehören zu den wichtigsten Funktionen in der Analysis, in
Technik und Naturwissenschaft. Mit ihnen werden Wachstumsvorgänge, Aufschaukelungs- und
Abklingvorgänge und vieles andere mehr behandelt.
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Übung 2.26*:

Beweise, daß die Exponentialfunktion f (x) = ax (x ∈ R) für a > 1 streng monoton steigend

ist und für 0 < a < 1 streng monoton fallend.

Hinweis: Im Falle a > 1 zeige man

x1 < x2 ⇒ ax1 < ax2

für rationale Zahlen x1, x2. Anschließend lasse man für x1 und x2 beliebige reelle Zahlen —

also auch irrationale — zu.

2.4.2 Wachstumsvorgänge. Die Zahl e

Motivation: Durch y = at (a > 1) werde ein Wachstumsvorgang beschrieben, wobei t die Zeit
bedeute und y die anwachsende Größe. (Es könnte sich hier z.B. um das Bevölkerungswachstum
der Erde handeln, das in nicht zu langen Zeiträumen — etwa 50 Jahren — diesem Wachstums-
gesetz näherungsweise gehorcht. y = 1 bedeute dabei eine bestimmte Anzahl von Menschen,
y = 2 die doppelte Anzahl usw.)

Es sei a unbekannt, jedoch wollen wir annehmen, daß die »Wachstumsgeschwindigkeit« v

zur Zeit t = 0 bekannt ist. v ist dabei in guter Näherung

v ≈ at − a0

t
für kleine |t | > 0.

Kann man hieraus a, wenigstens näherungsweise, berechnen? Das ist der Fall. Umformung ergibt
nämlich, mit a0 = 1:

at ≈ 1+ vt ⇒ a ≈ (1+ vt)1/t .

Wir setzen h = vt , und erhalten damit

a ≈ (1+ h)v/h =
(

(1+ h)1/h
)v

. (2.101)

Dies gilt umso besser, je kleiner |t | ist, und damit auch je kleiner |h| ist. Wir berechnen daher
den Ausdruck

(1+ h)1/h (2.102)

für kleine |h| > 0. Für h = 10−2, h = 10−4, h = 10−6, h = 10−8 zum Beispiel erhält der
Ausdruck die gerundeten Werte

2,704813829 ,

2,718145918 ,

2,718281828 ,

2,718281828 .

(2.103)

Die letzten beiden Zahlen sind schon gleich. Probiert man noch kleinere |h|, so erhält man auf



2.4 Exponentialfunktionen, Logarithmus, Hyperbelfunktionen 171

dem Taschenrechner stets die letzte der hingeschriebenen Zahlen. Dies legt die Vermutung nahe,
daß (2.102) für h → 0 konvergiert. Wir werden dies später beweisen. Den Grenzwert nennt man
»Eulersche Zahl« e, zu Ehren des Mathematikers Leonhard Euler, also

e := lim
h→0

(1+ h)1/h . (2.104)

Der Zahlenwert von e ist, bis auf Rundungsfehler, gleich der letzten Zahl in (2.103):

e
.= 2,718281828 .

Hiermit kann man die gesuchte Zahl a aus (2.101) gewinnen, wobei wir rechts den Grenzüber-
gang h → 0 durchführen:

a = ev . (2.105)

Konvergenzbetrachtung für e: Wir wollen zeigen, daß der Grenzwert (2.104) existiert. (Der
anwendungsorientierte Leser kann diesen Beweis ohne Schaden überschlagen.)

Zunächst wird gezeigt

Hilfssatz 2.1:

Die Folge (xn) mit

xn =
(

1+ 1

n

)n

, n = 1,2,3, . . . , (2.106)

konvergiert.

Beweis:

Mit der binomischen Formel erhält man

xn =
(

1+ 1

n

)n

=
n
∑

k=0

(
n

k

)
1

nk
= 1+

n
∑

k=1

n(n − 1) . . . (n − k + 1)

k!nk

= 1+
n
∑

k=1

1

k!

k−1
∏

i=0

(

1− i

n

)

. 10

(2.107)

Dabei gilt

0 ≤ 1− i

n
≤ 1− i

n + 1
≤ 1 und

1

k! ≤
1

2k−1
. (2.108)

10 Das Produktzeichen
∏

wird analog wie das Summenzeichen
∑

verwendet; es ist
m
∏

i=1

ai = a1a2a3 · . . . · am .
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Man erkennt damit zunächst die Beschränktheit der Folge (xn):

1 ≤ xn < 1+
n
∑

k=1

1

k! ≤ 1+
n
∑

k=1

1

2k−1
< 1+

∞
∑

k=1

1

2k−1
= 3 .

Ferner ist (xn) monoton steigend, denn man berechnet:

xn+1 − xn =
n+1
∑

k=1

1

k!

k−1
∏

i=0

(

1− i

n + 1

)

−
n
∑

k=1

1

k!

k−1
∏

i=0

(

1− i

n

)

=
n
∑

k=1

1

k!

[
k−1
∏

i=0

(

1− i

n + 1

)

−
k−1
∏

i=0

(

1− i

n

)
]

+ 1

(n + 1)!

n
∏

i=0

(

1− i

n + 1

)

Die eckige Klammer ist≥ 0 wegen (2.108) und das Glied rechts ebenfalls. Also ist xn+1−xn ≥ 0,
d.h. xn steigt monoton. Zusammen mit der Beschränktheit folgt die Konvergenz der Folge (xn).�

Der Grenzwert von (xn) wird, wie schon erwähnt, e genannt:

e = lim
n→∞

(

1+ 1

n

)n

(2.109)

Satz 2.13:
Es ist

e = lim
h→0

(1+ h)1/h . (2.110)

Beweis:

Wir zeigen: Für jede beliebige Folge (hn) mit hn → 0 und mit 0 < |hn| < 1 gilt

(1+ hn)1/hn → e für n →∞ . (2.111)

1. Fall: Es sei 0 < hn < 1 für alle n. Wir setzen 1/hn = rn und bezeichnen mit kn die natürliche
Zahl, die kn ≤ rn < kn + 1 erfüllt. Damit folgt

(

1+ 1

kn + 1

)kn

<

(

1+ 1

rn

)rn

<

(

1+ 1

kn

)kn+1

.

d.h.

(

1+ 1

kn + 1

)kn+1

1+ 1

kn + 1

<

(

1+ 1

rn

)rn

<

(

1+ 1

kn

)kn
(

1+ 1

kn

)
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Wegen kn →∞ konvergieren die linke und rechte Seite gegen e (nach Hilfssatz 2.1). Also muß
auch der Ausdruck in der Mitte gegen e streben. Damit ist (2.111) im Falle hn > 0 bewiesen.
2. Fall: Es sei −1 < hn < 0. Wir setzen rn = −1/hn und führen diesen Fall auf den vorange-
henden zurück:

(1+ hn)1/hn =
(

1− 1

rn

)−rn

=
(

rn − 1

rn

)−rn

=
(

rn

rn − 1

)rn

=
(

1+ 1

rn − 1

)rn

=
(

1+ 1

rn − 1

)rn−1 (

1+ 1

rn − 1

)

→ e ·1 .

3. Fall: Für eine beliebige Folge hn → 0 mit 0 < |hn| < 1 gilt (2.111) ebenfalls. Denn bilden
die positiven hn eine Teilfolge (hnk ), so strebt der Ausdruck (1+ hnk )

1/hnk nach Fall 1 gegen e.
Dasselbe gilt für negative hn nach Fall 2. Daraus folgt die behauptete Gl. (2.111). �

Bemerkung: In Abschn. 1.4.6, Beisp. 1.39, haben wir die Eulersche Zahl e als Grenzwert der
Folge an = 1+ 1

1!+ 2
2!+ . . .+ 1

n! kennengelernt. Die Begründung dafür, daß an tatsächlich gegen

den gleichen Grenzwert strebt wie (1 + h)1/h geht später aus dem Abschnitt über Taylorreihen
hervor.

2.4.3 Die Exponentialfunktion exp(x) = ex und der natürliche Logarithmus

Definition 2.9:
Die Exponentialfunktion zur Basis e wird auch mit exp bezeichnet (s. Fig. 2.50):

exp(x) := ex , x ∈ R .

Fig. 2.50: Die Exponentialfunktion exp(x) = ex

Wenn wir in Zukunft von »der Exponentialfunktion« reden, ohne Basisangabe, so ist stets diese
Exponentialfunktion gemeint. Sie ist in der Analysis die wichtigste aller Exponentialfunktionen.
Bei unserer Motivation im letzten Abschnitt trat sie schon in Gl. (2.105) auf.
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Bemerkung: Die große Bedeutung der Exponentialfunktion exp beruht einzig und allein auf fol-
gender Tatsache (wobei wir auf die Differentialrechnung vorgreifen): Die Funktion exp ist gleich
ihrer eigenen Ableitung: exp′ = exp. Mehr noch: Sieht man von konstanten Vorfaktoren ab, so
ist exp die einzige Funktion mit dieser Eigenschaft. Dies begründet ihre überragende Bedeutung
für die Analysis.

Folgerung 2.4:
exp erfüllt für alle x , y ∈ R die Funktionalgleichung

exp(x + y) = exp(x) exp(y) . (2.112)

Beweis:
Dies folgt sofort aus ex+y = ex ey . �

Die Exponentialfunktion exp : R→ (0,∞) bildet die reelle Achse umkehrbar eindeutig auf
die Menge (0,∞) der positiven Zahlen ab. Sie besitzt daher eine Umkehrfunktion.

Definition 2.10:
Die Umkehrfunktion der Exponentialfunktion exp wird natürlicher Logarithmus ln
genannt. Das heißt

y = ln x bedeutet x = ey (x > 0, y ∈ R) . (2.113)

Die Funktion ln : (0,∞) → R bildet (0,∞) umkehrbar eindeutig auf R ab, s. Fig. 2.51. ln ist
stetig, da exp stetig ist.
Bemerkung: Alle Eigenschaften der Logarithmusfunktion können aus der Exponentialfunktion
hergeleitet werden. Beide Funktionen, exp und ln, sind also gleichsam die Seiten ein und dersel-
ben Medaille. Was für die eine Funktion gilt, kann immer auch auf die andere umgeschrieben
werden.

Fig. 2.51: Natürlicher Logarithmus

Die Gl. (2.113) lassen sich zusammenfassen, wenn wir y = ln x in x = ey einsetzen. Es folgt
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x = eln x für alle x > 0. (2.114)

Dies ist die Schlüsselgleichung für die meisten Rechnungen, in denen Logarithmen benutzt wer-
den.

Durch Einsetzen von x = ey in y = ln x erhält man analog

y = ln(ey) für alle y ∈ R. (2.115)

Daraus folgt unmittelbar

ln 1 = 0 .

Folgerung 2.5:
Für alle x > 0, y > 0 gilt

ln(x · y) = ln x + ln y (Funktionalgleichung des Logarithmus) (2.116)

ln

(
x

y

)

= ln x − ln y (2.117)

ln

(
1

y

)

= − ln y (2.118)

α ln(x) = ln(xα) für alle α ∈ R. (2.119)

Beweis:
Es ist eln(xy) = x · y = eln x · eln y , woraus (2.116) folgt. Die übrigen Gleichungen gewinnt man
analog. �

Durch die Logarithmusfunktion ln bekommen wir auch die Potenzfunktion f (x) = xα(x > 0)

mit beliebigem α ∈ R besser in den Griff. Denn wir können sie mit x = eln x darstellen durch

xα = eα ln x (2.120)

Daraus folgt, daß diese Funktion stetig ist, denn ln ist stetig und die Exponentialfunktion auch,
also auch die Komposition exp(α ln x), wie sie in (2.120) vorliegt.

Auch die allgemeine Exponentialfunktion x �→ ax (a > 0) läßt sich mit a = eln a umformen:

ax = ex ln a (2.121)

Für die Berechnung der Werte in (2.120) und (2.121) benötigen wir lediglich die Exponential-
funktion exp und die Logarithmusfunktion ln! Beide sind heutzutage auf jedem wissenschaftli-
chen Taschenrechner zu finden.

Wir haben also gesehen:

Durch die beiden Funktionen exp und ln können alle Probleme f bei denen Potenzen reeller
Zahlen auftreten, behandelt werden.
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Zum Schluß beweisen wir, daß ex folgende Grenzwertdarstellung besitzt:

Folgerung 2.6:
ex = lim

h→0
(1+ xh)1/h . (2.122)

Beweis:
Im Falle x = 0 ist dies sofort klar. Im Falle x �= 0 muß bei Grenzwertbildung 0 < |xh| < 1
vorausgesetzt werden. Mit der Abkürzung t = xh �= 0 ist der Beweis von (2.122) kindlich
einfach:

(1+ xh)1/h = (1+ t)x/t =
(

(1+ t)1/t
)x
→ ex für h → 0, d.h. t → 0.

Beim Grenzübergang wurde benutzt, daß sich ((1 + t)1/t )x stetig in t ändert. Dies ist durch die
Stetigkeit der Potenzfunktionen gesichert. �

Übung 2.27:

Ein Organismus, dessen Masse m(t) dem idealen Wachstumsgesetz

m(t) = C ekt (t Zeit)

folgt, hat zur Zeit t0 = 2 h die Masse m(t0) = 715,3 g und zur Zeit t1 = 7 h die Masse

m(t1) = 791,2 g. Berechne C und k.

Übung 2.28*:

Beweise die folgenden Grenzwert-Aussagen. (Sie lassen sich fortlaufend auseinander herleiten.)

Dabei seien n ∈ N und x , y ∈ R. (Hinweis zu (e): Man untersuche k
√

xk

eαx für x →∞!)

(a) lim
n→∞

n

2n = 0 , (b) lim
x→∞

x

ex = 0 , (c) lim
y→∞

ln y

y
= 0 ,

(d) lim
z→∞

ln z

zα
= 0 mit α > 0 (Hinweis: y = zα), (e) lim

x→∞
xk

eαx = 0 mit α > 0, k ∈ N.

Logarithmen zu beliebigen Basen

Definition 2.11:
Die Umkehrfunktion der Exponentialfunktion f (x) = ax (a > 1, x ∈ R) heißt Loga-
rithmus zur Basis a, abgekürzt loga . Das heißt

y = loga x bedeutet x = ay (x > 0, y ∈ R) . (2.123)

Die Funktion loga : (0,∞) → R bildet (0,∞) umkehrbar eindeutig auf R ab. loga ist eine
stetige Funktion, da sie Umkehrfunktion einer stetigen Funktion ist.
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Fig. 2.52: log2 als Umkehrfunktion von x �→ 2x .

Fig. 2.52 zeigt eine Exponentialfunktion f (x) = ax , mit a = 2, und die zugehörige Logarith-
musfunktion log2

11. Die Gleichungen lassen sich zusammenfassen zu

x = aloga x für alle x > 0 (2.124)

oder

y = loga(ay) für alle y ∈ R (2.125)

wobei wir (2.124) wiederum als »Schlüsselgleichung« für den Logarithmus auffassen können.
Aus der letzten Gleichung folgt sofort loga 1 = 0.

Folgerung 2.7:
Jede Logarithmusfunktion ergibt sich aus dem natürlichen Logarithmus durch Multi-
plikation mit einer Konstanten:

loga x = ln x

ln a
für alle x > 0. (2.126)

Die Konstante hat den Wert 1/ ln a.

Beweis:

Es ist x = eln x und x = aloga x = eln a loga x . Bei Vergleich der auftretenden Exponenten ergibt
sich ln x = ln a loga x . �

Damit werden alle Eigenschaften von ln, die in Folgerung 2.5 im letzten Abschnitt beschrie-
ben sind, sofort auf loga übertragen:

11 log2 wird auch durch ld abgekürzt (»Logarithmus dualis«)
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Folgerung 2.8:
Für alle x > 0, y > 0 gilt

loga(xy) = loga x + loga y , loga

(
x

y

)

= loga x − loga y , (2.127)

loga

(
1

y

)

= − loga y , α loga(x) = loga(xα) (α ∈ R) . (2.128)

Bemerkung: Von Bedeutung für die Anwendungen sind im Grunde nur drei Logarithmen, näm-
lich ln, log10 und log2 = ld. Beim Zehnerlogarithmus wird die tiefgestellte 10 auch weggelassen,
man schreibt also einfach log statt log10.

Der natürliche Logarithmus ln ist dabei der wichtigste. Man findet ihn auf jedem wissenschaft-
lichen Taschenrechner.

Der Zehnerlogarithmus liegt den Logarithmentafeln und dem Rechenschieber zugrunde. Da
diese Hilfsmittel durch den Taschenrechner weitgehend verdrängt sind, wollen wir hier nicht
näher darauf eingehen.

Der Zweierlogarithmus ld (logarithmus dualis) hat mit dem Aufkommen der elektronischen
Rechner Bedeutung erlangt. Denn die maschineninternen »Gleitkommadarstellungen« reeller
Zahlen haben die Form

0, a1a2a3 . . . an · 2t , z.B. 0,1011011101101110 · 21101,

wobei die ai die Werte 0 oder 1 annehmen. Es handelt sich bei 0, a1, a2 . . . an und t um Dualzah-
len. Für die dabei auftretende Potenz x = 2t gilt t = ld x . Hier findet der »Logarithmus dualis«
Anwendung.

Übung 2.29:

Berechne (mit Taschenrechner):

log16 3 , log8 7,539 , ld 3,789 ,
ld(52n)

ln(3n)
(n ∈ N) .

2.4.4 Hyperbel- und Areafunktionen

Die folgenden Funktionen spielen in Naturwissenschaft und Technik eine Rolle. Links stehen die
sogenannten Hyperbelfunktionen und rechts ihre Umkehrfunktionen, die Areafunktionen.

Definition 2.12:

Hyperbelfunktionen Areafunktionen

sinh x := ex − e−x

2
, x ∈ R arsinh x := ln(x +

√

x2 + 1) , x ∈ R

(Sinus hyperbolicus) (Area sinus hyperbolicus)
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cosh x := ex + e−x

2
, x ∈ R arcosh x := ± ln(x +

√

x2 − 1) , x ≥ 1

(Cosinus hyperbolicus) (Area cosinus hyperbolicus)

tanh x := ex − e−x

ex + e−x
, x ∈ R artanh x := 1

2
ln

1+ x

1− x
, |x | < 1

(Tangens hyperbolicus) (Area tangens hyperbolicus)

coth x := ex + e−x

ex − e−x
, x ∈ R \ {0} arcoth x := 1

2
ln

x + 1

x − 1
, |x | > 1

(Cotangens hyperbolicus) (Area cotangens hyperbolicus)

Fig. 2.53 zeigt Schaubilder der Hyperbelfunktionen.

Fig. 2.53: Hyperbelfunktionen

Die Herleitung der Formeln für die Umkehrfunktionen wollen wir am Sinus hyperbolicus
demonstrieren. Man geht aus von

y = arsinh x ⇐⇒ x = sinh y = ey − e−y

2

und löst die rechtsstehende Gleichung nach z = ey auf:

x = z − 1/z

2
⇒ z2 − 2xz − 1 = 0⇒ z = x ±

√

x2 + 1 .

Da z = ey > 0 ist, kann das Minuszeichen vor der Wurzel nicht eintreten. Somit folgt

ey = x +
√

x2 + 1⇒ y = ln(x +
√

x2 + 1) = arsinh x .

Der Leser führe entsprechende Rechnungen für die übrigen Hyperbelfunktionen durch.
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Die Vorzeichen± bei arcosh bedeuten, daß hier zwei Umkehrfunktionen gemeint sind, wobei
+ sich auf die Umkehrung von cosh : [0,∞)→ [1,∞) bezieht und − auf die Umkehrung von
cosh : (−∞, 0] → [1,∞), vgl. Fig. 2.53a.

Satz 2.14:
Für alle reellen Zahlen x gilt

sinh x + cosh x = ex , cosh2 x − sinh2 x = 1 (2.129)

sinh(−x) = − sinh x , cosh(−x) = cosh x . (2.130)

Additionstheoreme: Für alle reellen x , y gilt

cosh(x + y) = cosh x cosh y + sinh x sinh y , (2.131)

sinh(x + y) = cosh x sinh y + sinh x cosh y . (2.132)

Zum Beweis hat man lediglich sinh x = (ex − e−x )/2 und cosh x = (ex + e−x )/2 einzusetzen.

Anwendungen

(a) Durchhängende Seile (Hochspannungsleitungen) werden durch

y = a cosh
x

a
+ b , a > 0 und b konstant,

beschrieben, wobei die x-Achse horizontal liegt, die y-Achse vertikal nach oben weist. Der
Graph des Cosinus hyperbolicus wird daher auch Kettenlinie genannt.

(b) Die Hyperbelfunktionen und ihre Umkehrfunktionen treten oft in den Lösungen von Diffe-
rentialgleichungen auf, insbesondere bei dynamischen Problemen (freier Fall) mit quadrati-
scher Reibung, Weltraumsonden auf Bahnen ohne Rückkehr, u.a.

Übung 2.30:

Durch

y = 50 · cosh
x

50
+ b

(x und y Maßzahlen für Meterangaben) wird die Form einer Hochspannungsleitung beschrieben

(y-Achse senkrecht, x-Achse waagerecht am Erdboden). Die Leitung hänge zwischen zwei 7 m

hohen Masten, die 20 m voneinander entfernt stehen. Berechne b! Wie hoch hängt der Draht an

seinem tiefsten Punkt über dem Erdboden?
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2.5 Komplexe Zahlen

2.5.1 Einführung

Es gibt keine reelle Zahl x , die die Gleichung

x2 = −1 (2.133)

erfüllt, da die linke Seite stets ≥ 0 ist. Allgemeiner kann keine Gleichung der Form

x2 = −b2 mit b �= 0 (2.134)

durch reelle x gelöst werden. Trotzdem möchte man Lösungen dieser Gleichungen haben. Da-
zu geht man so vor: Man »erfindet« ein neue Zahl i, die nicht auf der reellen Achse liegt
(s. Fig. 2.54a), und die i2 = −1 erfüllt. Im übrigen soll mit i bezüglich Addition und Multiplika-
tion genauso wie mit den reellen Zahlen gerechnet werden. x = i ist also Lösung von x2 = −1.
Ebenso ist x = − i eine Lösung dieser Gleichung. Entsprechend erhalten wir auch Lösungen der
Gl. (2.134), nämlich x = i b und x = − i b.

Damit werden wir auf Zahlen der Form i b, mit b ∈ R geführt. Sie heißen imaginäre Zahlen.
Sie lassen sich, wie die reellen Zahlen auf einer Geraden anordnen. Diese imaginäre Achse hat
mit der reellen Achse genau einen Punkt gemeinsam, nämlich i ·0 = 0. Zur Veranschaulichung
kann man daher reelle und imaginäre Gerade in 0 rechtwinklig kreuzen, siehe Fig. 2.54b. Die
Zahl i selbst heißt imaginäre Einheit.

Fig. 2.54: Komplexe Zahlen a + i b als Punkte einer Ebene

Wir gehen nun einen Schritt weiter und untersuchen die Gleichung

x2 − 10x + 34 = 0 . (2.135)

Ist x eine Lösung, so können wir mit der »quadratischen Ergänzung« (10/2)2 = 25 die Glei-
chung so umformen:

(x2 − 10x + 25)− 25+ 34 = 0⇒ (x − 5)2 = −9
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Mit unserer Zauberzahl i folgt damit

x − 5 = i 3 oder x − 5 = − i 3 ,

also

x = 5+ i 3 oder x = 5− i 3 . (2.136)

Diese beiden Zahlen erfüllen (2.135), wie man durch Einsetzen feststellt.
Auf diese Weise kommen wir zu Zahlen der Form

a + i b (a, b ∈ R) .

Sie heißen komplexe Zahlen. Jede solche Zahl kann man als Punkt in der Ebene deuten. Die reelle
und die imaginäre Achse sind die Koordinatenachsen. Der Punkt a+i b hat darin die Koordinaten
a und b, wie es Fig. 2.54b darstellt. Die beschriebene Ebene heißt komplexe Zahlenebene.

Die Behandlung der Gl. (2.135) macht klar, daß jede quadratische Gleichung durch komplexe
Zahlen gelöst werden kann. Das allein ist schon eine genügende Motivation für die Einführung
komplexer Zahlen. Wir werden aber sehen, daß sie weit mehr leisten!

Im Folgenden fassen wir die vorangegangenen Überlegungen zusammen und verdichten sie
zu exakten Definitionen.
Bemerkung: In der Elektrotechnik schreibt man j statt i, da der Buchstabe i für die Stromstärke
verwendet wird.

2.5.2 Der Körper der komplexen Zahlen

Definition 2.13:
Komplexe Zahlen sind Elemente der Form

a + i b , mit a, b ∈ R .

Sie werden als Punkte der Ebene im rechtwinkligen Koordinatensystem dargestellt. a
und b sind die Koordinaten des Punktes a+ i b (s. Fig. 2.54b). a heißt der Realteil von
z = a + i b und b der Imaginärteil von z, beschrieben durch

Re z = a , Im z = b .

Die Realteile bilden die reelle Achse und die Imaginärteile die imaginäre Achse unse-
res Koordinatensystems. Die Menge der komplexen Zahlen wird mit C bezeichnet.

Gleichheit: Zwei komplexe Zahlen a + i b und c + i d sind genau dann gleich, wenn a = c
und b = d ist.

Abkürzungen: Man schreibt zur Vereinfachung a + i 0 = a, 0 + i b = i b, 0 + i 0 = 0, i 1 = i.
Die Zahlen i b (b ∈ R) heißen imaginäre Zahlen. Durch a + i 0 = a wird die Menge der reellen
Zahlen eine Teilmenge der Menge der komplexen Zahlen: R ⊂ C.
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Es seien z1 = a + i b und z2 = c + i d zwei beliebige komplexe Zahlen. Damit werden
folgende Grundoperationen erklärt:

Addition: (a + i b)+ (c + i d) = (a + c)+ i(b + d)

Subtraktion: (a + i b)− (c + i d) = (a − c)+ i(b − d)

Multiplikation: (a + i b)(c + i d) = (ac − bd)+ i(ad + bc)

Division:
a + i b

c + i d
= 1

c2 + d2
(a + i b)(c − i d) , falls c + i d �= 0.

Die Division ist somit auf die Multiplikation zurückgeführt.

Fig. 2.55: Addition und Subtraktion komplexer Zahlen

Addition und Subtraktion werden durch Fig. 2.55 veranschaulicht.

Wir vereinbaren schließlich

−(a + i b) := −a − i b .

Bemerkung: Die Motivation für die obige Definition der Grundoperationen besteht in folgen-
dem: Man rechne mit den Klammern genauso, wie man es von den reellen Zahlen gewöhnt ist.
Man beachte bei Multiplikation und Division lediglich, daß i2 = −1 zu setzen ist. Die Subtrakti-
on und Division sind so eingerichtet, daß sie die Umkehrungen der Addition bzw. Multiplikation
darstellen, also

z1 − z2 = z ⇐⇒ z1 = z + z2

z1

z2
= z ⇐⇒ z1 = z · z2 , (z2 �= 0) .

Die genannten Grundoperationen genügen den gleichen Gesetzen wie die reellen Zahlen. Wir
stellen die Grundregeln über das Rechnen mit komplexen Zahlen in folgendem Satz zusammen
(vgl. dazu Abschn. 1.1.2):
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Satz 2.15:
(Grundgesetze der Addition und Multiplikation) Für alle komplexen Zahlen z1, z2, z3,
z gilt

(A1) z1 + (z2 + z3) = (z1 + z2)+ z3

(A2) z1 + z2 = z2 + z1

(A3) z + 0 = z

(A4) Zu jeder komplexen Zahl z gibt es genau eine komplexe Zahl w mit

z + w = 0. Es ist die Zahl w = −z

(M1) z1(z2z3) = (z1z2)z3

(M2) z1z2 = z2z1

(M3) z · 1 = z

(M4) Zu jeder komplexen Zahl z �= 0 gibt es genau eine komplexe Zahl w

mit zw = 1. Es ist die Zahl w = 1/z

(D1) z1(z2 + z3) = z1z2 + z1z3

(D2) 0 �= 1

Die Beweise führe der Leser durch Nachrechnen, wobei lediglich (M1), (M2) und (D1) explizites
längeres Rechnen verlangen.

Bemerkung: (A1) und (M1) heißen Assoziativgesetze der Addition bzw. Multiplikation, (A2) und
(M2) heißen entsprechend Kommutativgesetze, während (D1) das Distributivgesetz genannt wird.
Alle Gesetze zusammen heißen Körpergesetze. Bezüglich Addition und Multiplikation sprechen
wir daher auch vom Körper der komplexen Zahlen.

Sämtliche Rechenregeln, wie sie in den Folgerungen 1.1 bis 1.6 in Abschn. 1.1.2 beschrieben
sind, gelten entsprechend auch für komplexe Zahlen. Denn diese Folgerungen stützen sich ja
nur auf die Grundgesetze (A1) bis (D2). Insbesondere gelten die Regeln der Bruchrechnung für
komplexe Zahlen unverändert.

Potenzen: zn mit ganzen Zahlen n wird wie üblich erklärt.

Definition 2.14:

Ist z = a + i b(a)b ∈ R) eine beliebige komplexe Zahl, so heißt

z = a − i b

die konjugiert komplexe Zahl zu z.

Geometrisch erhält man sie durch Spiegelung des Punktes z an der reellen Achse, s. Fig. 2.56.
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Fig. 2.56: Konjugiert komplexe Zahl z zu z

Folgerung 2.9:
(Rechenregeln für konjugiert komplexe Zahlen) Für alle komplexen Zahlen z, z1, z2

gilt

a) z1 + z2 = z1 + z2 , z1 − z2 = z1 − z2 , −z = −z

z1 · z2 = z1z2 ,

(
z1

z2

)

= z1

z2
(falls z2 �= 0),

zn = zn für alle natürlichen Zahlen n,

b)

Gilt

{

z = z , so ist z reell

z = −z , so ist z imaginär.

Die einfachen Beweise bleiben dem Leser überlassen zn = zn beweist man zweckmäßig mit
vollständiger Induktion).

Definition 2.15:
Den Abstand des Punktes z = a + i b von 0 bezeichnet man als Betrag |z|, siehe
Fig. 2.57a, nach »Pythagoras « gilt also:

|z| =
√

a2 + b2 .

Folgerung 2.10:
Für die Beträge der komplexen Zahlen z, z1, z2 gilt

|z1 + z2| ≤ |z1| + |z2| Dreiecksungleichung

|z1 − z2| ≥ ||z1| − |z2|| 2. Dreiecksungleichung

|z1z2| = |zl||z2| ,
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∣
∣
∣
∣

z1

z2

∣
∣
∣
∣
= |z1|
|z2|

, falls z2 �= 0,

|zn| = |z|n für alle n ∈ N,

|z2| = |z|2 = zz .

Die Beweise erfordern zwar etwas mehr Rechnung, doch lassen sie sich problemlos ausführen.
Die vorletzte Gleichung wird wieder mit Induktion bewiesen. Der Ausdruck Dreiecksunglei-
chung beruht auf der Veranschaulichung in Fig. 2.57b.

Fig. 2.57: a) Betrag |z|; b) Zur Dreiecksungleichung |z1 + z2| ≤ |z1| + |z2|

Komplexe Wurzeln: Es sei z eine gegebene komplexe Zahl. Jede komplexe Zahl w, die

w2 = z

erfüllt, heißt eine (Quadrat-) Wurzel von z, beschrieben durch

w = √z .

(Anders als bei den reellen Zahlen, bei denen
√

a ≥ 0 eindeutig bestimmt ist (für a ≥ 0), ist das
Symbol

√
z im Komplexen mehrdeutig. Wir werden aber zeigen, daß

√
z (für z �= 0) genau zwei

Werte beschreibt.) Um alle w ∈ C mit w2 = z zu finden, machen wir den Ansatz

z = x + i y , w = u + i v (x, y, u, v ∈ R) .

Damit ist w2 = z gleichbedeutend mit

(u + i v)2 = x + i y , d.h. u2 − v2 + i 2uv = x + i y .

Das bedeutet

u2 − v2 = x , 2uv = y .

Dies ist ein Gleichungssystem für die beiden Unbekannten u und v. Multipliziert man die erste
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Gleichung mit 4u2 und quadriert die zweite Gleichung, so ergibt ihre Summe

4u4 = 4u2x + y2

Setzt man hier t = u2 ein, so hat man eine reelle quadratische Gleichung für t gewonnen. Ihre
Lösungen sind

t = x

2
±
√

x2

4
+ y2

4
= 1

2
(x ± |z|) .

Da t = u2 ≥ 0 ist, gilt t = 1
2 (x + |z|), und es folgt

u = ±
√

1

2
(|z| + x) .

Im Falle u = 0 folgt x = −|z| ≤ 0 und y = 0, also −v2 = x , somit v = ±√−x . Im Falle u �= 0
folgt aus 2uv = y die Gleichung v = y/(2u). Somit erhalten wir den

Satz 2.16:
Ist z = x + i y (x , y ∈ R) eine nicht verschwindende komplexe Zahl, so gilt für ihre
komplexen Wurzeln folgendes:

Mit u =
√

1
2 (|z| + x) ist

√
z =

{

±
(

u + i y
2u

)

, falls z nicht negativ reell,

± i
√−x , falls z negativ reell.

Damit lassen sich komplexe quadratische Gleichungen

z2 + bz + c = 0 (z, b, c ∈ C)

wie im Reellen durch quadratische Ergänzung b2/4 lösen:

z2 + bz + b2

4
− b2

4
+ c = 0⇐⇒

(

z + b

2

)2

= b2

4
− c

⇐⇒ z + b

2

2

=
√

b2

4
− c⇐⇒ z = −b

2
+
√

b2

4
− c

Die komplexe Wurzel
√

hat genau zwei Werte, so daß die letzte Gleichung beide Lösungen der
quadratischen Gleichung beschreibt.
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Übung 2.31:

Berechne

(a)
(3+ i 5)(2− i 7)

3+ i 4
, (b)

1

7+ i 8
− (3+ i 2)(5+ i 6) ,

(c)
√

5− i 12 , (d)
√

(3− i 4)−3 .

Übung 2.32:

Gib alle (komplexen) Lösungen der folgenden Gleichungen an:

(a) z2 − 8z + 65 = 0 , (b) 4z + 52

z
= 24 , (z �= 0) ,

(c) z2 − (3+ i 5)z − 16+ i 4 = 0 , (d)
z + 8+ i

3z + 2− 3 i
= z − 5

z + 6 i
(z �= − 2

3 + i, z �= −6 i).

Fig. 2.58: Wechselstromschaltung

Übung 2.33:

In der Wechselstromschaltung der Fig. 2.58 ist der Scheinleitwert des Teils ohne die Spule L2

gleich

Y = 1

R1 + jωL1
+ R2 − 1

j

ωC
.

Damit ist der Scheinwiderstand der gesamten Schaltung

Z = 1

Y
+ jωL2

(s. Abschn. 4.4.3). Dabei ist j (anstelle von i) die imaginäre Einheit, wie in der Elektrotechnik

üblich, also j2 = −1. Berechne Z für die Zahlenwerte:

R1 = 6000 Ω , R2 = 4000 Ω , L1 = 0,45 H , L2 = 0,45 H , C = 2 · 10−6F , ω = 3000 s−1

(Für die Maßeinheiten gelten die Zusammenhänge H s−1 = Ω , s F−1 = Ω .).
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2.5.3 Exponentialfunktion, Sinus und Cosinus im Komplexen

Definition 2.16:
Die Exponentialfunktion exp(z) = ez ist für komplexe Zahlen z = x + i y (x, y ∈ R)

folgendermaßen definiert:

ez = ex (cos y + i sin y) . (2.137)

Folgerung 2.11:
Es gilt die Funktionalgleichung

ez+w = ez ew für alle komplexen z, w.

Beweis:
Mit z = x + i y und w = u + i v(x, y, u, v ∈ R) folgt

ez+w = ex+u+i(y+v) = ex+u(cos(y + v)+ i sin(y + v))

Die Additionstheoreme von cos und sin liefern für die rechte Seite

= ex eu(cos y cost v − sin y sin v + i(sin y cos v + sin v cos y))

= ex (cos y + i sin y) · eu(cos v + i sin v) = ez ew .

�

Ist z = x reell — also y = 0 — so liefert die Definition 2.16 den üblichen Wert ex der reellen
Exponentialfunktion. Die Definition beschreibt also in der Tat eine Erweiterung der Exponential-
funktion exp ins Komplexe.

Ist z dagegen imaginär — d.h. z = i ϕ mit ϕ ∈ R —, so liefert die Definition 2.16:

ei ϕ = cos ϕ + i sin ϕ . (2.138)

Diese Gleichung läßt sich auf einfache Weise geometrisch deuten: Der Punkt ei ϕ in der kom-
plexen Zahlenebene hat die Komponenten cos ϕ und sin ϕ, er liegt also auf der Einheitskreisli-
nie (s. Fig. 2.59). Dabei bildet die Verbindungsstrecke [0, ei ϕ] den Winkel ϕ mit der positiven
x-Achse. Läuft ϕ von 0 bis 2π , so umrundet ei ϕ einmal den Einheitskreis im umgekehrten Uhr-
zeigersinn.

Für ϕ = π folgt speziell ei π = −1, oder

ei π +1 = 0 . (2.139)

Bemerkung: Diese Gleichung wird die schönste Gleichung der Welt genannt, denn sie verbindet
in harmonischer Weise die wichtigsten Zahlen der Analysis: 0, 1, e, π und i.
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Fig. 2.59: ei ϕ auf der Einheitskreislinie

Ersetzt man in Gl. (2.138) ϕ durch −ϕ, so erhält man

e− i ϕ = cos ϕ − i sin ϕ . (2.140)

Hier wurde benutzt, daß cos(−ϕ) = cos ϕ und sin(−ϕ) = − sin ϕ ist. Wir addieren nun die
Gleichungen (2.138), (2.140) bzw. subtrahieren sie und erhalten

ei ϕ + e− i ϕ = 2 cos ϕ , ei ϕ − e− i ϕ = 2 i sin ϕ .

Auflösen nach cos ϕ und sin ϕ liefert

Folgerung 2.12:
Für alle reellen Zahlen ϕ gilt

cos ϕ = ei ϕ + e− i ϕ

2
, (2.141)

sin ϕ = ei ϕ − e− i ϕ

2 i
. (2.142)

Diese Darstellung von cos und sin ist für viele Umformungen bequem, da sich mit der Exponen-
tialfunktion sehr bequem rechnen läßt. Man zieht diese Gleichungen überdies zur Definition der
trigonometrischen Funktionen im Komplexen heran:

Definition 2.17:
Die Sinus- und Cosinus-Funktion sind für beliebige komplexe z so erklärt:

cos z = ei z + e− i z

2
, sin z = ei z − e− i z

2 i
. (2.143)

Wir bemerken dabei, daß 1/ i = − i ist, wie man nach Multiplikation der rechten und linken Seite
mit i sofort sieht.
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Bemerkung: Der Leser gewinnt hier den ersten Eindruck von der Eleganz der komplexen Ana-
lysis: Exponential- und trigonometrische Funktionen, die doch aus ganz verschiedenen Wurzeln
stammen, gehen eine harmonische Verbindung ein.

Übung 2.34*:

Beweise mit (2.143) die Additionstheoreme von sin und cos im Komplexen, d.h.

sin(z + w) = sin z cos w + cos z sin w ,

cos(z + w) = cos z cos w − sin z sin w .

2.5.4 Polarkoordinaten, geometrische Deutung der komplexen Multiplikation,
Zeigerdiagramm

Es sei z = a + i b ein beliebiger Punkt der komplexen Ebene, der ungleich 0 ist. Wir ziehen die
Strecke von 0 bis z (und versehen sie bei z mit einer Pfeilspitze). Die Streckenlänge nennen wir
r , während ϕ ein Winkel zwischen der Strecke und der positiven x-Achse ist, s. Fig. 2.60. Durch
das Paar (r, ϕ) ist z eindeutig bestimmt.

Fig. 2.60: Polarkoordinaten von z

r ist dabei nichts anderes als der Betrag von z

r = |z| =
√

a2 + b2 . (2.144)

ϕ heißt Winkel oder Argument von z, geschrieben

ϕ = arg z .

ϕ wird dabei im Bogenmaß angegeben. Dabei ist ϕ nicht eindeutig bestimmt! Mit ϕ sind auch die
ϕ+2kπ mit beliebigen ganzen k Argumente von z, wie aus Fig. 2.60 hervorgeht. Man bezeichnet
den Winkel ϕ von z, der

−π < ϕ ≤ π
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erfüllt, als Hauptargument von z, in Formeln ϕ = Arg z.
Dabei ist

ϕ = Arg z =

⎧

⎪
⎨

⎪
⎩

arc cos
a

r
, für b ≥ 0,

− arc cos
a

r
, für b < 0.

(2.145)

ϕ = Arg z ist durch z �= 0 eindeutig bestimmt. r und ϕ = Arg z heißen Polarkoordinaten von z.
Der Zahl z = 0 ordnet man als Polarkoordinaten r = 0 und ϕ beliebig aus R zu.
Umgekehrt lassen sich Realteil a und Imaginärteil b einer komplexen Zahl z aus ihren Polar-

koordinaten r , ϕ durch folgende Gleichungen gewinnen.

a = r cos ϕ , b = r sin ϕ . (2.146)

Damit folgt für z die Darstellung

z = a + i b = r(cos ϕ + i sin ϕ) = r ei ϕ

Folgerung 2.13:
Jede komplexe Zahl z läßt sich in der Gestalt

z = r ei ϕ (2.147)

darstellen, wobei r und ϕ Polarkoordinaten von z sind.

(2.147) nennen wir die Polarkoordinatendarstellung von z.
Die Multiplikation zweier komplexer Zahlen z1 und z2 läßt sich damit so beschreiben: Mit

den Polarkoordinatendarstellungen

z1 = r1 ei ϕ1 , z2 = r2 ei ϕ2

erhält man das Produkt

z = z1 · z2 = r1r2 ei(ϕ1+ϕ2) . (2.148)

Das heißt: Bei Multiplikationen zweier komplexer Zahlen multiplizieren sich die Beträge und
addieren sich die Winkel! Fig. 2.61 verdeutlicht dies.
Anwendung: Harmonische Schwingungen werden durch

A cos(ωt + ϕ) mit A ≥ 0 , ω > 0

dargestellt. Man kann dies als den Realteil der komplexen Funktion

f (t) = A ei(ωt+ϕ) (2.149)

auffassen. Aus diesem Grund wird eine harmonische Schwingung auch in der Form (2.149) an-
gegeben, wobei man (stillschweigend) vereinbart, daß die Realität durch den Realteil von f (t)
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Fig. 2.61: Multiplikation komplexer Zahlen (Addition der Winkel)

widergespiegelt wird.
Die Überlagerung zweier harmonischer Schwingungen

f1(t) = A1 ei(ωt+ϕ1) , f2(t) = A2 ei(ωt+ϕ2)

mit gleicher Frequenz ω wird dann durch

f1(t)+ f2(t) =
(

A1 ei ϕ1 +A2 ei ϕ2

)

ei ωt (2.150)

ausgedrückt (denn die Realteile summieren sich dabei, wie wir es haben wollen). Gl. (2.150)
zeigt sofort, daß bei dieser Überlagerung wieder eine harmonische Schwingung der Frequenz
ω entsteht, wie das rechts ausgeklammerte ei ωt anzeigt. In einer Zeile haben wir damit den
Satz 2.11 aus Abschn. 2.3.5 bewiesen, was die Leistungsfähigkeit der komplexen Analysis be-
leuchtet!

Die Klammer in (2.150) ist umzuwandeln in

A1 ei ϕ1 +A2 ei ϕ2 = A ei ϕ

mit geeigneten A ≥ 0, ϕ ∈ R. Hier muß allerdings komponentenweise vorgegangen werden,
analog dem Vorgehen in Abschn. 2.3.5: Mit

a := A1 cos ϕ1 + A2 cos ϕ2 ,

b := A1 sin ϕ1 + A2 sin ϕ2
(2.151)

erhält man aus Abschn. 2.3.5, (2.88), (2.89):

A =
√

a2 + b2 , ϕ = arc(a, b) =

⎧

⎪
⎨

⎪
⎩

arc cos
a

A
, für b ≥ 0,

− arc cos
a

A
, für b < 0.

(2.152)

Man kann A und ϕ auch grafisch ermitteln durch das Zeigerdiagramm in Fig. 2.62. Die Diagonale
des dort skizzierten Parallelogramms hat die Länge A und den Winkel ϕ mit der positiven reellen
Achse.
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Fig. 2.62: Zeigerdiagramm bei Schwingungen

Fig. 2.62 zeigt den Schwingungszustand zur Zeit t = 0 (genauer: Die Realteile der gezeich-
neten Punkte der komplexen Ebene geben ihn wieder). Läßt man t anwachsen, d.h. schreitet die
Zeit fort, so dreht sich das Parallelogramm gegen den Uhrzeigersinn um 0. Zur Zeit t > 0 ist es
um den Winkel ωt weitergedreht. Die Realteile der Punkte mit den »Pfeilspitzen« geben dann
die Ausschläge der Schwingungen f1, f2 und f = f1 + f2 an, für die wir uns interessieren.
Auf diese Weise entspricht jedem Zeitpunkt t > 0 eine Stellung des Parallelogramms, und der
Schwingungsablauf wird geometrisch überschaubar.

Übung 2.35:

Verwandle die folgenden Zahlen in die Polarkoordinatendarstellung

(a) − 12− i 5 , (b) 3+ i 4 , (c) (1+ i)100 .

Übung 2.36*:

Drei harmonische Schwingungen überlagern sich:

3 cos(ωt)+ 5 cos
(

ωt + π

4

)

− 8 cos
(

ωt − π

3

)

= A cos(ωt + ϕ) (ω > 0) .

Berechne A und ϕ.

2.5.5 Fundamentalsatz der Algebra, Folgen und Reihen, stetige Funktionen im
Komplexen

Polynomgleichungen

Satz 2.17:
(Fundamentalsatz der Algebra) Jedes Polynom n-ten Grades

f (z) = a0 + a1z + a2z2 + . . .+ anzn , (an �= 0, n ≥ 1) ,

mit komplexen ak und z, läßt sich in folgender Form schreiben:

f (z) = an(z − z1)(z − z2) · . . . · (z − zn) . (2.153)

Die Zahlen z1, z2, . . . zn sind die Nullstellen des Polynoms.
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Der Satz sagt also insbesondere aus, daß f mindestens eine und höchstens n Nullstellen hat.
Letzterer Fall tritt ein, wenn die z1, z2, . . ., zn paarweise verschieden sind.

Sind unter den z1, . . ., zn gleiche Zahlen, z.B. z1 = z2 = z3, so spricht man von mehrfachen
Nullstellen. Ist beispielsweise z1 = z2 = . . . = zm (m ≤ n), aber zk �= z1 für alle k > m,
so nennt man die Zahl z1 eine m-fache Nullstelle. Gl. (2.153) heißt die Zerlegung von f in
Linearfaktoren (z − zk).
Bemerkung: Der Beweis des Fundamentalsatzes wird in Burg/Haf/Wille (Funktionentheorie)
[10], Abschn. 2.2.5, geführt. Die Berechnung der Nullstellen z1, z2, . . ., zn ist auf Computern mit
beliebiger Genauigkeit möglich. (Man verwendet dazu meistens das Newtonsche Verfahren mit
gewissen Ergänzungen.) Ein stets funktionierendes Verfahren für Computer ist z.B. von Nickel
[41] angegeben worden.

Folgen und Reihen

Unendliche Folgen und Reihen von komplexen Zahlen werden analog zu reellen Folgen und
Reihen erklärt (vgl. Abschn. 1.4 und 1.5). Ihre Konvergenz wird wie im Reellen definiert. Es
gelten damit der Satz von Bolzano-Weierstraß, das Cauchysche Konvergenzkriterium und die
Rechenregeln über Folgen und Reihen entsprechend. Die Beweise können fast wörtlich über-
nommen werden. (Der Satz von Bolzano-Weierstraß wird durch die Halbierung von Rechtecken
anstelle von Intervallen bewiesen.) Lediglich Definitionen und Sätze, die Ordnungseigenschaften
enthalten (wie z.B. das Monotoniekriterium) lassen sich nicht ins Komplexe übertragen, da für
komplexe Zahlen keine Beziehungen < oder > eingeführt sind.

Der Leser mag sich in einer stillen Stunde davon überzeugen, daß die angegebenen Über-
tragungen aufs Komplexe ohne Schwierigkeiten möglich sind. Ebenso läßt sich der Begriff der
Stetigkeit auf komplexe Funktionen problemlos übertragen sowie das Rechnen mit stetigen Funk-
tionen. Auch hier gilt, daß die Grenze bei Aussagen gezogen wird, die Ordnungseigenschaften
enthalten. Der Zwischenwertsatz besitzt also keine wörtliche Entsprechung im Komplexen.

In Burg/Haf/Wille (Funktionentheorie) [10] werden diese Überlegungen aufgegriffen und wei-
tergeführt zur »komplexen Analysis«, auch Funktionentheorie genannt, s. auch [23]. Die komple-
xe Analysis erweist sich nicht nur als außerordentlich nützlich bei der Lösung technischer Pro-
bleme (Schwingungsproblem, Strömungsvorgänge, elektrische Felder usw., sie zählt überdies zu
den elegantesten Theorien der Mathematik.



3 Differentialrechnung einer reellen Variablen

Die Differentialrechnung ist die Lehre von den Veränderungen. Hier werden Wachstumsraten,
Verlustquoten, Geschwindigkeiten, Beschleunigungen, Steigungsmaße und Abstiegsraten be-
schrieben, dem Anwender zum Nutzen, dem Schüler zur Mühe, dem Mathematiker zur Freu-
de und dem Laien unverständlich. Zusammen mit ihrer Schwester, der Integralrechnung, gilt die
Differentialrechnung mit Recht als eine der großartigsten Schöpfungen des menschlichen Gei-
stes.

Sie hilft beim Lösen von Gleichungen, beim Maximieren und Minimieren, bei der Berechnung
komplizierter Funktionen, von Flächen und Rauminhalten, von Bewegungen, Kräften, Impulsen,
Energien, ja, das Zusammenspiel der Gestirne als auch der Elementarteilchen läßt sich durch die
Differential- und Integralrechnung erst verstehen.

Die Wurzel der Differentialrechnung ist dabei ganz einfach. Wir erläutern den Einstieg in
diesen Teil der Mathematik am Beispiel der Geschwindigkeit.

3.1 Grundlagen der Differentialrechnung

3.1.1 Geschwindigkeit

Geschwindigkeitsüberschreitung! — Der Polizeiwagen überholt. Aus seinem Fenster reckt sich
ein Arm mit roter »Kelle«: Anhalten! Sehr peinlich! Nach kurzer Zeit ist man um eine Erfahrung
reicher und einige Geldscheine ärmer. Die Episode verdeutlicht, daß der Begriff »Geschwindig-
keit« im täglichen Leben, bis in den Geldbeutel hinein, eine Rolle spielt. Dies führt uns auf die
Frage:

Was ist Geschwindigkeit?

Die erste Antwort lautet: Das ist die Zahl, die man vom Tacho abliest. Nicht übel, zugegeben,
aber doch nicht ganz befriedigend. So billigt man z.B. fallenden Steinen auch eine Geschwindig-
keit zu. Doch nur die wenigsten Steine haben einen eingebauten Tacho.

Was ist da zu tun?
Da wir uns mitten in einem Mathematikbuch befinden, ist der Gedanke nicht abwegig, es mit

einer mathematischen Definition zu versuchen.
Die frage lautet also: Wie kann man den Begriff »Geschwindigkeit« — genauer: »Momentan-

geschwindigkeit« — mathematisch exakt erklären?
Eine gute Frage! An ihre Beantwortung wollen wir mit lockerer Natürlichkeit und alltäglichen

Vorstellungen herangehen.
Dazu knüpfen wir noch einmal an das fahrende Auto an. Der Einfachheit halber lassen wir

das Auto geradeaus fahren. Wir nehmen an, daß es an einem bestimmten Punkt der Straße im
Zeitpunkt 0 losfährt. Zur Zeit t habe es y Meter vom Anfangspunkt aus zurückgelegt. y ist also
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Fig. 3.1: Weg-Zeit-Funktion y = f (t)

eine Funktion der Zeit:

y = f (t) .

Fig. 3.1 zeigt ein Schaubild einer solchen Funktion f .
Man greife nun zwei Zeitpunkte t0, t heraus, mit t > t0. In der Zeitspanne von t0 bis t hat das

Auto die Strecke

Δy := f (t)− f (t0) (3.1)

zurückgelegt. Die Zeitspanne selbst hat die Dauer Δt := t−t0. Die Durchschnittsgeschwindigkeit
vt0,t im genannten Zeitraum berechnet man nach der Faustregel »Weg durch Zeit«, also

vt0,t =
Δy

Δt
= f (t)− f (t0)

t − t0
. (3.2)

Je dichter t an t0 heranrückt, desto näher kommt der Wert vt0,t der Vorstellung einer Momen-
tangeschwindigkeit, also der Geschwindigkeit, die der Tacho anzeigt. Es liegt nahe, in (3.2) den
Grenzübergang t → t0(t �= t0) durchzuführen. Wir wollen annehmen, daß (3.2) dabei gegen
eine bestimmte Zahl vt0 konvergiert:

vt0 := lim
t→t0

f (t)− f (t0)

t − t0
(3.3)

Diesen Wert vt0 bezeichnet man als Momentangeschwindigkeit — kurz Geschwindigkeit — des
Autos zum Zeitpunkt t0. Die (Momentan-)Geschwindigkeit ist also Grenzwert von Durchschnitts-
geschwindigkeiten, deren Zeitspannen gegen Null streben.

Der Grenzwert (3.3) hat entscheidende Bedeutung in der Differentialrechnung. Er wird Diffe-
rentialquotient oder Ableitung von f in t0 genannt und durch f ′(t0) symbolisiert:

f ′(t0) = lim
t→t0

f (t)− f (t0)

t − t0
(3.4)

Der Ausdruck in (3.2), also die Durchschnittsgeschwindigkeit in unserem Fall, heißt allgemein
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Differenzenquotient von f bezüglich t und t0.

Wir wollen die Überlegungen an einem Zahlenbeispiel verdeutlichen.

Beispiel 3.1:

(Fallgeschwindigkeit) Ein Stein fällt in einen 10 m tiefen Brunnen. Wie groß ist die Geschwin-
digkeit, mit der er unten auftrifft? Die Bewegung des Steines (Massenpunktes) wird durch

y = f (t) = g

2
t2 mit g = 9,81

m

s2
(3.5)

beschrieben, d.h. nach t Sekunden ist er y = g
2 t2 Meter gefallen.

Wie groß ist seine Fallgeschwindigkeit vt0 zu einem beliebigen Zeitpunkt t0 während des
Fallvorgangs? — Zur Beantwortung bilden wir zunächst den Differenzenquotienten bezüglich t
und t0 (t �= t0) und vereinfachen ihn:

f (t)− f (t0)

t − t0
=

g
2 t2 − g

2 t2
0

t − t0
= g

2
· t2 − t2

0

t − t0
= g

2
· (t + t0)(t − t0)

t − t0
= g

2
· (t + t0) .

Die Klammer (t + t0) ganz rechts strebt mit t → t0 zweifellos gegen 2t0, also strebt der Diffe-
renzenquotient insgesamt gegen gt0:

f ′(t0) = lim
t→t0

f (t)− f (t0)

t − t0
= gt0 . (3.6)

Zur Zeit t0 (während des Fallvorganges) hat der Stein somit die Geschwindigkeit vt0 = gt0.
Setzen wir für t0 nun die Falldauer ein, errechnet aus

10 m = g

2
t2
0 ⇒ t0 =

√

20 m

g
.= 1,43 s ,

so erhalten wir die Aufschlaggeschwindigkeit des Steines

vt0 = g

√

20 m

g
=
√

20 m · g .= 14,0
m

s
.

Stellt man sich statt des Steines beispielsweise einen Blumentopf vor, der einem vom Fenstersims
auf den Kopf fällt, so kann man im Krankenhaus die Auftreffgeschwindigkeit nach obiger Metho-
de berechnen und damit seine Schadensansprüche stützen. Zweifellos eine nützliche Rechenart,
die Differentialrechnung!

Übung 3.1:

Eine Kugel fällt in einer zähen Flüssigkeit (z.B. Öl) nach unten. Nach einer kurzen Anfangspha-

se wird ihre Bewegung durch y = f (t) = c · (t − a) beschrieben (t Zeit, y zurückgelegter Weg,

c und a Konstanten). Wie groß ist dabei die Geschwindigkeit der Kugel?
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3.1.2 Differenzierbarkeit, Tangenten

Die Überlegungen des vorigen Abschnittes wollen wir nun allgemeiner durchführen.
Es sei f : I → R eine beliebige reellwertige Funktion Sie werde durch

y = f (x) , x ∈ I ,

beschrieben. Der Definitionsbereich I ist dabei ein Intervall oder eine Vereinigung von Interval-
len.

Als Differenzenquotient von f bezüglich zweier Punkte x und x0 aus I bezeichnet man den
Ausdruck

f (x)− f (x0)

x − x0
, x �= x0 . (3.7)

Der Grenzübergang x → x0 führt auf die folgende grundlegende Definition:

Definition 3.1:
Es sei f : I → R eine Funktion, deren Definitionsbereich I ein Intervall oder eine
Vereinigung von Intervallen ist. Man sagt, f ist differenzierbar im Punkt x0 ∈ I , wenn
der Grenzwert

lim
x→x0

f (x)− f (x0)

x − x0
(3.8)

existiert. Dieser Grenzwert wird mit f ′(x0) bezeichnet und Ableitung oder Differen-
tialquotient von f in x0 genannt.

Anstelle von f ′(x0) werden auch die Bezeichnungen

d f

dx
(x0) ,

d

dx
f (x0)

verwendet.

Geometrische Deutung: Der Differenzenquotient (3.7) ist die Steigung der Sekante an f in x
und x0, d.h. der Geraden durch die Punkte (x, f (x)) und (x0, f (x0)). Man erkennt dies an dem
schraffierten Dreieck in Fig. 3.2.

Der Grenzübergang x → x0 für den Differenzenquotienten läßt sich nun anschaulich so deu-
ten, daß x immer näher an x0 heranrückt, wobei der Abstand |x − x0| nach und nach beliebig
klein wird. Die zugehörigen Sekanten an f bezüglich x und x0 unterscheiden sich dann immer
weniger von einer Geraden, die wir Tangente an f in x0 nennen. Wir sagen auch, die Sekanten
»gehen für x → x0 in die Tangente« über, oder »die Tangente ist die Grenzlage der Sekanten«.
Dabei ist die Tangente an f in x0 diejenige Gerade t , die durch den Punkt (x, f (x0)) verläuft
und deren Steigung f ′(x0) ist. Nach der Punkt-Richtungs-Form wird die Tangente durch

t (x) = f (x0)+ f ′(x0)(x − x0) (3.9)

beschrieben. Wir halten fest:
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Fig. 3.2: Geometrische Deutung des Differentialquotienten: f ′(x0) = tan α

Durch (3.9) ist die Tangente t an f in x0 definiert. Die Tangente existiert genau dann, wenn
f in x0 differenzierbar ist.

Mit α wollen wir den Winkel der Tangente t mit der x-Achse bezeichnen.
(

−π
2 < α < π

2

)

,
s. Fig. 3.2. Die Steigung einer Geraden ist bekanntlich gleich dem Tangens des Winkels der
Geraden mit der x-Achse; folglich gilt für die Tangentensteigung

f ′(x0) = tan α , (3.10)

d.h.

Die Ableitung f ′(x0) einer Funktion ist gleich dem Tangens des Winkels α, den die Tangente
an f in x0 mit der x-Achse bildet.

Damit ist die Ableitung f ′(x0) geometrisch so klar geworden wie ein Bergquell im Frühling.

Anwendung: Die Bestimmung von Tangenten an vorgelegte Kurven ist z.B. bei der Herstellung
von optischen Linsen wichtig. Denn der Einfallswinkel eines Lichtstrahls auf eine Linse spielt
beim Brechungsgesetz eine Rolle. Der Einfallswinkel wird aber durch die Normalen, die senk-
recht auf den Tangenten stehen, bestimmt. Eine weitere wichtige Rolle spielen die Tangenten
beim Newton-Verfahren zur Lösung von Gleichungen.

Bemerkung: Differenzierbarkeit von f : I → R in x0 bedeutet die Existenz des Grenzwertes
(3.8). Hierunter versteht man ausführlicher (nach Abschn. 1.6.7, Def. 1.20):

(a) Für jede Zahlenfolge (xn) aus I mit

lim
n→∞

xn = x0 , xn �= x0 ,

konvergiert die Folge der zugehörigen Differenzenquotienten

Dn :=
f (xn)− f (x0)

xn − x0
,
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und zwar gegen einen Grenzwert A, der unabhängig von der gewählten Folge (xn) ist. A ist
die Ableitung f ′(x0).

Damit ist die Differenzierbarkeit auf die Konvergenz von Folgen zurückgeführt. Mit ihnen
können wir gut umgehen und befinden uns damit auf sicherem Terrain.

Nach Abschn. 1.6.7, Folg. 1.16, kann aber die Grenzwertbildung (3.8), und damit die Diffe-
renzierbarkeit, auch so formuliert werden:

(b) f ist in x0 genau dann differenzierbar, wenn sich die Funktion

D(x) := f (x)− f (x0)

x − x0
, x ∈ I \ {x0} (3.11)

in x0 stetig erweitern läßt. Der so entstehende Funktionswert D(x0) ist die Ableitung f ′(x0).

f ′(x0) = D(x0) := lim
x→x0

D(x) . (3.12)

Nach Abschn. 1.6.7, Folg. 1.17, läßt sich diese Grenzwertbildung auch in ε-δ-Form beschrei-
ben.

Je nach Bedarf verwendet man die eine oder andere Fassung der Differenzierbarkeit.

Beispiel 3.2:

Besonders einfache Funktionen sind konstante Funktionen: f (x) ≡ c. Dafür gilt

f (x)− f (x0)

x − x0
= c − c

x − x0
= 0 . (x �= x0)

Alle Differenzenquotienten sind Null, also ist die Ableitung f ′(x0) = 0 für jedes x0 ∈ R; man
beschreibt dies kurz durch

d

dx
c = 0. (3.13)

Beispiel 3.3:

Es sei

f (x) = xn (x ∈ R)

eine Potenzfunktion mit einer natürlichen Zahl n als Exponenten. Für den Differenzenquotienten
bezüglich x0 und x = x0 + h (h �= 0) gilt mit der binomischen Formel

f (x0 + h)− f (x0)

h
= (x0 + h)n − xn

0

h
=

n
∑

k=0

(
n

k

)

xn−k
0 hk − xn

0

h
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Das erste Glied der Summe ist xn
0 . Es hebt sich heraus, und man erhält

=

n
∑

k=1

(
n

k

)

xn−k
0 hk

h
=

n
∑

k=1

(
n

k

)

xn−k
0 hk−1 .

Für x → x0, also h → 0, bleibt nur das erste Glied nxn−1
0 der rechten Summe erhalten, also

folgt für die Ableitung

f ′(x0) = nxn−1
0

Hier schreiben wir der Einfachheit halber x statt x0 und erhalten damit die Formel

d

dx
xn = nxn−1 . (3.14)

Der Spezialfall n = 1 liefert

d

dx
x = 1 . (3.15)

Das Beispiel macht deutlich, daß

lim
x→x0

f (x)− f (x0)

x − x0
und lim

h→0

f (x0 + h)− f (x0)

h

gleichbedeutend sind. Man hat nur x = x0 + h zu setzen. Die rechte Form dieser Grenzwertbil-
dung eignet sich für praktische Berechnungen von Ableitungen gelegentlich besser.

Übung 3.2:

Berechne die Ableitungen der Funktionen f2(x) = x2, f3(x) = x3, f10(x) = x10 an der Stelle

x0 = 2.

Übung 3.3:

Zeige: f (x) = √x ist für beliebiges x0 > 0 differenzierbar, und es gilt für die Ableitung

f ′(x0) = 1

2
√

x0
.

Anleitung: Schreibe den Differenzenquotienten bezüglich x0 > 0 und x > 0 hin und verwende

dann die Formel x − x0 = (
√

x +√x0)(
√

x −√x0).

Übung 3.4:

Für welches x0 ∈ R hat die Tangente an f (x) = x2 die Steigung 1? Schreibe die zugehörige

Tangentengleichung auf. Skizziere f und die Tangente.
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Übung 3.5:

Berechne die Ableitung von f (x) = xn (n ∈ N) im Punkte x0 nochmal (auf andere Weise

als im Beisp. 3.3). Und zwar schreibe man den Differenzenquotienten bezüglich x und x0 hin:

( f (x) − f (x0))/(x − x0) = (xn − xn
0 ) : (x − x0), und wende das Divisionsverfahren für

Polynome an.

Differenzierbare Funktionen

Wir betrachten reellwertige Funktionen f , deren Definitionsbereiche D Intervalle oder Vereini-
gungen von Intervallen sind.

Definition 3.2:
Ist f : D → R in jedem Punkt des Definitionsbereiches D differenzierbar, so heißt
f eine differenzierbare Funktion. Ist f : D → R in jedem Punkt einer Teilmenge A
von D differenzierbar, so nennt man f differenzierbar auf A.

Bei einer differenzierbaren reellwertigen Funktion f : D → R kann man in jedem Punkte x ∈ D
die Ableitung f ′(x) bilden. Durch die Zuordnung x → f ′(x) ist eine neue Funktion f ′ : D → R
erklärt, die man kurz die Ableitung von f nennt.

Fig. 3.3: Funktion f (x) = x2 mit Ableitung

Beispiel 3.4:
Die Ableitung der Potenzfunktion f (x) = xn ( f : R→ R, n ∈ N) ist eine Funktion f ′ : R→ R,
beschrieben durch

f ′(x) = nxn−1 .

In Fig. 3.3 sind f (x) = x2 nebst zugehöriger Ableitung f ′(x) = 2x skizziert.

Ist eine differenzierbare Funktion in Form einer Gleichung y = f (x) gegeben, so beschreibt
man die Ableitung auch durch
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y′ = f ′(x) oder
dy

dx
= f ′(x), (3.16)

z.B.

y = x3 �⇒ y′ = 3x2 bzw.
dy

dx
= 3x2 .

Diese Schreibweisen sind in Technik und Naturwissenschaft bequem, wenn x und y physikali-
sche Größen darstellen.

Graphisches Differenzieren: Wir gehen aus vom Schaubild einer differenzierbaren Funktion f :
I → R. Zur graphischen Ermittlung der Ableitung von f in einem Punkt x0 zeichnet man — so
gut es geht — die Tangente an f in x0 ein. Zu dieser Tangente zieht man die Parallele durch den
Punkt A = (−1,0), s. Fig. 3.4a. Die Parallele schneidet die y-Achse in einem Punkt B, dessen
y-Koordinate die Ableitung y′0 = f ′(x0) ist, also B = (0, y′0). (Denn das Dreieck [A, B,0] ist
eine Kopie des Steigungsdreiecks der Tangente.) Damit ist y′0 zeichnerisch gewonnen, und der
Punkt (x0, y′0) der Ableitung f ′ läßt sich einzeichnen.

Fig. 3.4: Graphisches Differenzieren

In Fig. 3.4b ist dieser Prozeß für mehrere Punkte einer Funktion f durchgeführt. Die gewon-
nenen Ableitungspunkte werden zu einem Funktionsgraphen verbunden, wobei man auch bei
verbindenden Bögen auf »schielt«, damit sie nach Augenmaß möglichst gut die Ableitung annä-
hern.

Der so gewonnene Funktionsgraph stellt eine mehr oder weniger gute Näherung der Ableitung
f ′ dar. Für einen ersten Überblick oder bei Versagen rechnerischer Methoden erhält man so
brauchbare Ergebnisse.

Dabei ist nicht entscheidend, daß man viele Konstruktionspunkte wählt, sondern daß man in
ausgesuchten Punkten möglichst genaue Tangenten zeichnet. Punkte mit waagerechten Tangen-
ten bieten sich dafür besonders an. Der Leser übe das graphische Differenzieren an selbst ge-
zeichneten Beispielen. Dies führt zum besseren Verständnis der Ableitungsfunktion f ′. (Durch
numerische Differentiation erhält man f ′ auch leicht auf Computerbildschirmen oder Plottern.)



206 3 Differentialrechnung einer reellen Variablen

Stetigkeit differenzierbarer Funktionen. I sei ein Intervall oder eine Vereinigung mehrerer
Intervalle.

Satz 3.1:
Ist die reellwertige Funktion f : I → R in x0 differenzierbar, so ist sie dort auch
stetig.

Beweis:
Gilt xn → x0 (xn ∈ I \ {x0}), dann ergibt sich die Konvergenz des Differenzenquotienten
Dn = ( f (xn)− f (x0))/(xn − x0) gegen f ′(x0). Damit folgt

f (xn)− f (x0) = Dn · (xn − x0)→ f ′(x0) · 0 = 0

für n →∞, also f (xn)→ f (x0). Das heißt f ist stetig in x0. �

Man zieht daraus die einfache

Folgerung 3.1:
Jede differenzierbare Funktion ist stetig.

Fig. 3.5: Die Funktion f (x) = |x |

Die Umkehrung gilt nicht, wie das Beispiel der Funktion

f (x) = |x | , x ∈ R

zeigt (siehe Fig. 3.5). Diese Funktion ist nämlich stetig, aber in 0 nicht differenzierbar. Denn die
Differenzenquotienten

f (x)− f (0)

x − 0
= |x |

x

sind für x > 0 gleich 1, für x < 0 dagegen gleich −1. Sie können also für x → 0 nicht
konvergieren.

In 0 existieren aber die links- und die rechtsseitige Ableitung, die in folgender Definition
erklärt sind.
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Definition 3.3:

(Einseitige Differenzierbarkeit) Es sei f : I → R eine Funktion und x0 ein Häufungs-
punkt von I , in dem f den rechtsseitigen Grenzwert f (x0+) besitzt. Existiert der
Grenzwert

lim
x→x0
x>x0

f (x)− f (x0+)

x − x0
,

so ist f in x0 rechtsseitig differenzierbar. Der Grenzwert heißt rechtsseitige Ableitung
von f in x0. Er wird symbolisiert durch

f ′(x0+) .

Entsprechend werden linksseitige Differenzierbarkeit und linksseitige Ableitung

f ′(x0−)

erklärt. (Man ersetzt x > x0 durch x < x0.)

Es ist klar, daß die Funktion f (x) = |x | in x0 = 0 die rechtsseitige Ableitung f ′(0+) = 1
und die linksseitige Ableitung f ′(0−) = −1 hat.

Höhere Ableitungen. Ist die Ableitung f ′ : D → R einer differenzierbaren Funktion wiederum
differenzierbar, so heißt ihre Ableitung die zweite Ableitung f ′′ : D → R von f : D → R.
Durch abermaliges Differenzieren, falls möglich, entsteht die dritte Ableitung f ′′′ : D → R
usw. Eine n-te Ableitung, falls sie gebildet werden kann, bezeichnet man mit f (n) : D → R.
Existieren alle Ableitungen von f : D → R bis zur n-ten Ableitung, so nennt man f n-mal
differenzierbar. Nach Satz 3.1 sind dann f , f ′, f ′′, . . . , f (n−1) stetig, da diese Funktionen alle
differenzierbar sind. Ist überdies f (n) stetig (was nicht zu sein braucht), so heißt f n-mal stetig
differenzierbar. f heißt stetig differenzierbar, wenn f ′ existiert und stetig ist.1

Beispiel 3.5:

f (x) = xn (n ∈ N, x ∈ R) ist beliebig oft differenzierbar. Der Leser rechne für den Fall n = 4
die Ableitungen f ′, f ′′, f ′′′ usw. aus (von welcher Ableitung an sind alle folgenden Ableitungen
konstant gleich Null?)

Beispiel 3.6:

Die Funktion f : R→ R, erklärt durch

f (x) =
{

x2 , für x ≥ 0,

0 , für x < 0,

1 Es kann sein, daß f ′ existiert, aber nicht stetig ist. Ein Beispiel dafür ist die Funktion f : R → R, definiert durch
f (x) = x2 sin(1/x) (für x �= 0) und f (0) = 0. f ′(x) existiert für alle x ∈ R, insbesondere ist f ′(0) = 0, doch ist
f ′ in x = 0 unstetig! (Der Leser überprüfe dies.)
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ist nur einmal stetig differenzierbar, denn ihre Ableitung

f ′(x) =
{

2x , für x ≥ 0,

0 , für x < 0

ist zwar stetig, aber in x0 = 0 nicht differenzierbar. Der in diesem Fall vorliegende Differenzen-
quotient ( f ′(x) − f ′(0))/(x − 0) = f ′(x)/x hat nämlich für x > 0 den konstanten Wert 2, für
x < 0 dagegen den Wert 0. Er kann also für x → 0 nicht konvergieren.

Bemerkung zu Anwendungen in Technik, Naturwissenschaft und anderen Gebieten

(a) Zunächst knüpfen wir noch einmal an den Geschwindigkeitsbegriff an: Durch y = f (t)
werde die geradlinige Bewegung eines Massenpunktes beschrieben. Dabei ist y die Länge
des zurückgelegten Weges zum Zeitpunkt t . Die Geschwindigkeit des Massenpunktes ist
zum Zeitpunkt t

v = f ′(t) ,

(siehe Abschn. 3.1.1). Seine Beschleunigung b ist die zweite Ableitung

b = f ′′(t) .

Zusammen mit dem Newtonschen Grundgesetz der Mechanik K = mb (Kraft = Masse ·
Beschleunigung) ist damit der grundlegende und historisch erste Zusammenhang zwischen
Differentialrechnung und Physik gegeben. Von hier ausgehend durchdringt die Differential-
und Integralrechnung die Mechanik und im weiteren Physik und Technik.

(b) Die Ableitung f ′(x) einer Funktion ist Grenzwert der Steigungen von Sekanten an f
und stellt damit so etwas wie die Wachstumsquote der Funktion f im Punkte x dar (falls
f ′(x) ≥ 0), oder Schrumpfungsquote (falls f ′(x) ≤ 0). Diese Interpretation zeigt sofort
die vielfältigen Zusammenhänge mit allen Zweigen der Technik, Naturwissenschaft, Wirt-
schaft, Soziologie und anderen Gebieten auf.

Fig. 3.6: Zu Übung 3.6 (b)

Übung 3.6:

(a) Zeichne ein Schaubild von f (x) = x3 − x + 1 nebst allen Ableitungen.



3.1 Grundlagen der Differentialrechnung 209

(b) Differenziere die Funktion in Fig. 3.6 graphisch.

Übung 3.7*:

Wie groß ist die Beschleunigung eines fallenden Steines (Abschn. 3.1.1, Beisp. 3.1) und einer

fallenden Kugel in zäher Flüssigkeit (Abschn. 3.1.1, Übung 3.1)?

Übung 3.8*:

Beweise: f : I → R ist genau dann in x0 differenzierbar, wenn rechts- und linksseitige Ab-

leitungen von f in x0 existieren, und wenn f ′(x0−) = f ′(x0+) sowie f (x0−) = f (x0+) =
f (x0) gelten.

3.1.3 Differentiationsregeln für Summen, Produkte und Quotienten reeller Funktionen

Sind f und g differenzierbare Funktionen, so fragt man sich, ob auch f + g, f · g, f/g und
λ f (λ reell) differenzierbare Funktionen sind, und wie man ihre Ableitungen gegebenenfalls
ausrechnen kann. Dieselbe Frage stellt sich für Verkettungen f ◦ g und Umkehrfunktionen f −1.
In diesem Abschnitt beantworten wir diese Fragen. Dabei bezeichne I ein Intervall oder eine
Vereinigung mehrerer Intervalle, also den üblichen Definitionsbereich für reelle Funktionen.

Satz 3.2:
Sind f : I → R und g : I → R differenzierbar in x0 ∈ I , so gilt dies auch für f + g,
λ f (λ reelle Zahl), f · g und f/g, wobei im letzten Fall g(x0) �= 0 vorausgesetzt wird.
Die Ableitungen der genannten Funktionen errechnen sich aus folgenden Formeln:

Additivität : ( f + g)′ = f ′ + g′ (3.17)

Homogenität : (λ f )′ = λ f ′ (3.18)

Produktregel : ( f g)′ = f ′g + f g′ (3.19)

Quotientenregel :
(

f

g

)′
= f ′g − f g′

g2
(3.20)

Die Variablenangabe (x0) hat man hinzuzufügen. Sie wurde aus Gründen der Übersichtlichkeit
in den Formeln weggelassen.

Beweis:
Die Formeln ergeben sich für x → x0 sofort aus

[ f (x)+ g(x)] − [ f (x0)+ g(x0)]
x − x0

= f (x)− f ((x0)

x − x
+ g(x)− g(x0)

x − x0
→ f ′(x0)+ g′(x0) ,

λ f (x)− λ f (x0)

x − x0
= λ

f (x)− f (x0)

x − x0
→ λ f ′(x0) ,

f (x)g(x)− f (x0)g(x0)

x − x0
= g(x0)

f (x)− f (x0)

x − x0
+ f (x)

g(x)− g(x0)

x − x0

→ f ′(x0)g(x0)+ g′(x0) f (x0) ,
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f (x)
g(x)
− f (x0)

g(x0)

x − x0
=

g(x0)
f (x)− f (x0)

x−x0
− f (x0)

g(x)−g(x0)
x−x0

g(x)g(x0)
→ f ′(x0)g(x0)− g′(x0) f (x0)

g(x0)2
.

Dabei wurden die Rechenregeln für Funktions-Grenzwerte benutzt (Abschn. 1.6.7, Folg. 1.18) so-
wie die Stetigkeit von f und g in x0 (Abschn. 3.1.2, Satz 3.1). Beim letzten Grenzübergang wurde
x aus einer Umgebung von x0 genommen, in der g nirgends verschwindet (vgl. Abschn. 1.6.4,
Hilfssatz 1.2). �

Aus der Homogenität (3.18) im obigen Satz folgt für λ = −1 die einfache Regel:

(− f )′ = − f ′ (3.21)

und damit ( f − g)′ = ( f + (−g))′ = f ′ + (−g)′ = f ′ − g′, also

( f − g)′ = f ′ − g′. (3.22)

Die Quotientenregel ergibt im Falle f (x) ≡ 1 die

Reziprokenregel:

(
1

g

)′
= − g′

g2
. (3.23)

Aus der Additivität ( f + g)′ = f ′ + g′ folgt für längere Summen differenzierbarer Funktionen
sofort

( f1 + f2 + . . .+ fn)′ = f ′1 + f ′2 + . . .+ f ′n (3.24)

Es darf hier also gliedweise differenziert werden. (Der Beweis kann z.B. mit vollständiger Induk-
tion geführt werden.)

Aus der Homogenität (λ f )′ = λ f ′ folgt ferner, daß f (x) = axk (k ∈ N) die Ableitung
f ′(x) = akxk−1 besitzt. Unter Verwendung von (3.24) gewinnt man die

Folgerung 3.2:
Alle reellen Polynome sind differenzierbar. Sie dürfen gliedweise differenziert wer-
den:

p(x) =
n
∑

k=0

ak xk �⇒ p′(x) =
n
∑

k=1

akkxk−1 .

Beispiel 3.7:
(a) p(x) = 3x7 �⇒ p′(x) = 21x6

(b) p(x) = 7x2 + x6 �⇒ p′(x) = 14x + 6x5

(c) p(x) = 3+ 2

3
x − 5

4
x2 + 11

6
x3 �⇒ p′(x) = 2

3
− 5

2
x + 11

2
x2
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Der Grad eines Polynoms erniedrigt sich beim Differenzieren um 1.

Aus der Reziprokenregel (3.23) folgt für f (x) = 1/xn (mit n ∈ N) sofort f ′(x) = −nx−n−1,
und damit für alle Funktionen x �→ xm mit ganzzahligem m:

dxm

dx
= mxm−1

{

x ∈ R , falls m > 0,

x ∈ R , x �= 0 , falls m ≤ 0.
(3.25)

Beispiel 3.8:

f (x) = 1

x3
�⇒ f ′(x) = − 3

x4
, (x �= 0) .

Allgemeiner können wir mit der Quotientenregel (3.20) jede rationale Funktion p/q (p, q Poly-
nome) in allen Punkten x differenzieren, in denen q(x) �= 0 ist.

Beispiel 3.9:

Für alle x �= ±1 folgt nach (3.20)

f (x) = 5x3 − x + 3

x2 − 1
�⇒ f ′(x) = (15x2 − 1)(x2 − 1)− (5x3 − x + 3)2x

(x2 − 1)2

Aus der Produktregel (3.19) gewinnen wir für mehrfache Produkte und für höhere Ableitungen
die

Folgerung 3.3:
Überall dort, wo die Funktionen f1, . . ., fn differenzierbar sind, gilt die Regel für
Mehrfachprodukte

( f1 · . . . · fn)′ =
n
∑

i=1

f1 · . . . · fi−1 · f ′i · fi+1 · . . . fn . (3.26)

Dort, wo f und g n-mal differenzierbar sind, gilt für die n-te Ableitung von f · g die
binomische Differentiationsregel

( f · g)(n) =
n
∑

k=0

(
n

k

)

f (k)g(n−k) . (3.27)

Dabei ist f (0) = f , g(0) = g gesetzt worden.

Die Beweise beider Formeln (3.26), (3.27) führt man mit vollständiger Induktion.
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Übung 3.9:

Differenziere

f (x) = 3− 9x2 + 4x7 , g(x) = 3x5 + 2x2

1+ x4
, h(x) = 1

2+ x2
,

F(x) = (1− x + x2 − x3) ·
20
∑

k=1

kxk , G(x) = (1+ x)4 · √x (x > 0) .

Übung 3.10:

Bilde mit (3.27) die dritte Ableitung von

f (x) = (1+ x − x2 + x3)(5x−2 + x−3) .

3.1.4 Kettenregel, Regel für Umkehrfunktionen, implizites Differenzieren

I0, I1, I2 seien Intervalle oder Vereinigungen mehrerer Intervalle. Für Verkettungen f ◦ g von
Funktionen gilt folgender

Satz 3.3:
Ist g : I0 → I1 in x ∈ I0 differenzierbar, und ist f : I1 → I2 in z = g(x) dif-
ferenzierbar, so ist die Verkettung f ◦ g : I0 → I2 in x differenzierbar, und es gilt
die

Kettenregel: ( f ◦ g)′(x) = f ′(z)g′(x) . (3.28)

Mit anderen Worten: Zur Bildung der Ableitung zweier verketteter Funktionen werden
die Ableitungen der beiden Funktionen, genommen an entsprechenden Stellen, einfach
multipliziert.

Beweis:

g sei in x0 differenzierbar und f in z0 = g(x0). Wir definieren die Hilfsfunktion

r(z) :=

⎧

⎪
⎨

⎪
⎩

f (z)− f (z0)

z − z0
− f ′(z0) , für z �= z0,

0 , für z = z0,

für (z ∈ I1).

Da f in z0 differenzierbar ist, gilt lim
z→z0

r(z) = 0. Aus der Definition von r(z) gewinnt man:

f (z)− f (z0) = ( f ′(z0)+ r(z))(z − z0) ,
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folglich mit x �= x0 und z = g(x), z0 = g(x0):

( f ◦ g)(x)− ( f ◦ g)(x0)

x − x0
= f (g(x))− f (g(x0))

x − x0
= f (z)− f (z0)

x − x0

= ( f ′(z0)+ r(z))
g(x)− g(x0)

x − x0
→ f ′(z0)g

′(x0)

für x → x0. Damit ist ( f ◦ g)′(x0) = f ′(z0)g′(x0). Lassen wir hier den Index 0 fort, der nur aus
bezeichnungstechnischen Gründen angefügt war, so haben wir gerade das behauptete Ergebnis
gewonnen. �

Zur Schreibweise: Beschreibt man die Funktionen f und g im Satz 3.3 durch Funktionsgleichun-
gen y = f (z), z = g(x), also y = ( f ◦ g)(x), so erhält die Kettenregel mit den Leibnizschen
Bezeichnungen

dy

dz
= f ′(z) ,

dz

dx
= g′(x) ,

dy

dx
= ( f ◦ g)′(x)

die einprägsame Form:

Kettenregel:
dy

dx
= dy

dz
· dz

dx
. (3.29)

Damit lassen sich Berechnungen von Ableitungen verketteter Funktionen übersichtlich durchfüh-
ren:

Beispiel 3.10:
Es soll

y = F(x) = (x2 + 7x − 1)5

differenziert werden. Mit

z = g(x) = x2 + 7x − 1 und y = f (z) = z5

folgt nach der Kettenregel

F ′(x) = dy

dx
= dy

dz
· dz

dx
= 5z4 · (2x + 7) = 5(x2 + 7x − 1)4(2x + 7) .

Man nennt
dy

dz
auch die äußere Ableitung und

dz

dx
die innere Ableitung. Damit erhalten wir

zur Durchführung der Kettenregel folgende Merkregel: »Äußere und innere Ableitung sind zu
multiplizieren.«

Beispiel 3.11:

(zur Kettenregel)
dy

dx
= dy

dz
· dz

dx
:
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(a) y = F(x) = (x3 + 1)7
︸ ︷︷ ︸

z

. Mit z = x3 + 1 folgt y = z7, also

F ′(x) = dy

dx
= dy

dz
· dz

dx
= 7z6 · 3x2 = 7(x3 + 1)6 · 3x2

in verkürzter Schreibweise:

(b) y = F(x) = (3x2 − 2
︸ ︷︷ ︸

z

)⇒ F ′(x) = 9(3x2 − 2)8
︸ ︷︷ ︸

dy/ dz

äußere Abl.

· 6x
︸︷︷︸

dz/ dx

innere Abl.

.

(c) y = F(x) = (1+ x2
︸ ︷︷ ︸

z

)5 +
√

1+ x2
︸ ︷︷ ︸

z

⇒ F ′(x) =
[

5(1+ x2)4 + 1

2
√

1+ x2

]

︸ ︷︷ ︸

dy/ dz

· 2x
︸︷︷︸

dz/ dx

(Dabei wurde d
dx

√
x = 1

2
√

x
verwendet, s. Üb. 3.3.)

(d) y = F(x) =
( x

1+ x2
︸ ︷︷ ︸

z

)−3
⇒ F ′(x) = −3

(
x

1+ x2

)−4

︸ ︷︷ ︸

dy/ dz

· 1− x2

(1+ x2)2
︸ ︷︷ ︸

dz/ dx

Der Leser differenziere

F(x) = (3+ x7)12 und F(x) =
(

4− 3x + x2

1+ x4

)5

an dieser Stelle zur Übung selber.

Die Kettenregel läßt sich auch mehrfach anwenden, z.B.

dy

dx
= dy

dz
· dz

du
· du

dx
. (3.30)

Dies folgt aus

dy

dx
= dy

dz
· dz

dx
= dy

dz
·
(

dz

du
· du

dx

)

.

Hierbei wurde die Kettenregel zweimal angewendet. Entsprechend läßt sich bei dreifach und
höher verketteten Funktionen die Kettenregel mehrfach anwenden.

Beispiel 3.12:
Doppelte Anwendung der Kettenregel (3.30):

(a) y = F(x) =
(

1+ (1+ x2
︸ ︷︷ ︸

u

)12

︸ ︷︷ ︸

z

)7
.
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Mit u = 1+ x2, z = 1+ u12, y = z7 erhält man:

F ′(x) = dy

dx
= dy

dz
· dz

du
· du

dx
= 7z6 · 12u11 · 2x = 7(1+ (1+ x2)12)6 · 12(1+ x2)11 · 2x

Mit weniger Schreibaufwand rechnet man so:

(b) y =F(x) =
(

2+
(

1− x

1+ x4
︸ ︷︷ ︸

u

)5

︸ ︷︷ ︸

z

)−3

⇒ F ′(x)
︸ ︷︷ ︸

dy/ dx

= −3

(

2+
(

1− x

1+ x4

)5

︸ ︷︷ ︸

dy/ dz

)−4

· 5
(

1− x

1+ x4

)4

︸ ︷︷ ︸

dz/ du

· 3x4 − 4x3 − 1

(1+ x4)2
︸ ︷︷ ︸

du/ dx

Nach einiger Übung läßt man die »Untertitel« u, z, dy/ dx , . . . weg.

Satz 3.4:
(Differentiation von Umkehrfunktionen) f : I0 → I1 sei eine stetige, streng monotone
Funktion vom Intervall I0 auf I1, die in y ∈ I0 differenzierbar ist und dort f ′(y) �= 0
erfüllt. Dann ist die Umkehrfunktion f −1 : I1 → I0 in x = f (y) differenzierbar, und
es gilt

( f −1)′(x) = 1

f ′(y)
= 1

f ′( f −1(x))
. (3.31)

Beweis:

Es sei (xn) eine Folge aus I1 mit xn → x , xn �= x . Setzt man yn = f (xn), so erhält man

f −1(xn)− f −1(x)

xn − x
= yn − y

f (yn)− f (y)
= 1

f (yn)− f (y)

yn − y

→ 1

f ′(y)
�

Zur Schreibweise: Mit x = f (y), y = f −1(x) und

dy

dx
= ( f −1)′(x) ,

dx

dy
= f ′(y)

bekommt die Regel (3.31) die leicht zu behaltende Form:

Regel für Umkehrfunktionen:
dy

dx
= 1

dx
dy

. (3.32)
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Als Anwendung soll die durch y = x1/n (n ∈ N) definierte Funktion differenziert werden, wobei
x > 0, falls n gerade, und x �= 0(x ∈ R), falls n ungerade, vorausgesetzt wird. Die beschriebene
Funktion ist die Umkehrfunktion von x = f (y) = yn(y �= 0). Also gilt nach (3.32)

dx1/n

dx
= dy

dx
= 1

dx

dy

= 1

nyn−1
= 1

nx (n−1)/n
= 1

n
x

1
n−1 . (3.33)

Insbesondere ergibt sich für n = 2 erneut

d

dx

√
x = 1

2
√

x
, x > 0 . (3.34)

Folgerung 3.4:
Für jede rationale Zahl r gilt

dxr

dx
= r xr−1 für

{

x ≥ 0 , falls r > 1,

x > 0 , falls r < 1.
(3.35)

Beweis:

Es ist r = m/n mit n ∈ N und ganzzahligem m. Damit erhält die Funktion F(x) = xr die Form

F(x) = xm/n = (x1/n)m

Anwendung der Kettenregel liefert

F ′(x) = m
(

x
1
n

)m−1
· 1

n
x

1
n−1 = m

n
x

m
n −1 = r xr−1 . �

Differentiation implizit gegebener Funktionen

Wir betrachten als Beispiel die Ellipsengleichung

x2

a2
+ y2

b2
− 1 = 0 , a > 0 , b > 0 . (3.36)

Löst man nach y auf, so erhält man zwei Funktionen f und g, nämlich

y = f (x) = b

√

1− x2

a2
und g(x) = − f (x) (−a ≤ x ≤ a) .
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Wir wollen f differenzieren. Dazu kann man die Ellipsengleichung (3.36) direkt benutzen, wobei
man y2 durch ( f (x))2 ersetzt:

x2

a2
+ ( f (x))2

b2
− 1 = 0 für alle x ∈ (−a, a).

Rechts steht eine konstante Funktion mit dem Wert 0. Sie ist identisch mit der links beschriebenen
Funktion. Bildet man auf beiden Seiten die Ableitung, so folgt

2x

a2
+ 2 f (x) f ′(x)

b2
= 0 (−a < x < a) .

Dabei wurde auf ( f (x))2 die Kettenregel angewendet. Wir schreiben einfacher

2x

a2
+ 2yy′

b2
= 0 .

Auflösen nach y′ und Einsetzen von y = b
√

1− x2/a2 liefert die Ableitung

y′ = −b2x

a2 y
= − xb

a2
√

1− x2/a2
, (−a < x < a) .

(Für y = g(x) gilt das gleiche mit umgekehrten Vorzeichen.)
Auf diese Weise kann man allgemein vorgehen, wenn y = f (x) durch eine Gleichung

F(x, y) = 0 beschrieben wird. Dabei muß man sicherstellen, daß f (x) und F(x, f (x)) in x
differenzierbar sind. Dies erkennt man durch explizites Rechnen, wie oben, oder anhand des
Satzes über implizite Funktionen (s. Abschn. 6.4.2, Satz 6.14).

Übung 3.11:

Differenziere mit der Kettenregel

(a) y = (3+ x7)12 , (b) y =
(

4− 3x + x2

1+ x4

)5

, (c) y =
√

1+ x2 .

Übung 3.12:

Differenziere

(a) y =
√

x2
3
, (b) y =

√

1− x

1+ x
(−1 < x < 1) ,

(c) y =
√

1+√x (x > 0) , (d) y =
(

1−
√

1+ x2
)7

,

(e) y = 2x

1+
√

x2 − 1
(|x | > 1) , (f) y =

√

2x

x − 1

3

(x > 1) ,

(g) y =
√

1+
√

1+
√

1+ x2 , (h) y = x0,371 (x > 0) .
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Übung 3.13*:

y2 − x2 = r2 beschreibt für jedes r > 0 eine Hyperbel. Wie liegen die Hyperbeläste? Kann

man sie als zwei Funktionen auffassen? Differenziere die Gleichung implizit und löse nach y′

auf (ohne y = . . . einzusetzen). Wo ist in der x-y-Ebene stets y′ = 1 unabhängig von r? Zeichne

diese Punktmenge! Wo ist stets y′ = 1
2 und wo y′ = 3

2 ? Zeichne auch diese Punktmengen.

Übung 3.14:

Differenziere y2 − x = 0 implizit und leite damit erneut d
√

x
dx =

1
2
√

x
für x > 0 her!

Übung 3.15:

Differenziere implizit

(a) y2 + xy − x2 = a2 ,

(b) (a − x)y2 = (a + x)x2 (Strophoide),

(c) x3 + y3 = 3axy (Cartesisches Blatt),

(d) (ax)2/3 + (by)2/3 = r4/3 mit r =
√

a2 + b2 (Astroide).

Dabei sind a und b positive reelle Zahlen. Man skizziere die zugehörigen Punktmengen (Kur-

ven) in der x-y-Ebene (a = 1, b = 1
2 ) und überlege sich, welche Funktionen damit beschrieben

werden und wo das implizite Differenzieren dieser Funktionen erlaubt ist. (Strophoide, Carte-

sisches Blatt, Astroide werden in Burg/Haf/Wille (Vektoranalysis) [9], Abschn. 1.4, genauer

beschrieben.)

3.1.5 Mittelwertsatz der Differentialrechnung

Legt man die Sekante durch zwei Punkte (a, f (a)) und (b, f (b)) einer differenzierbaren Funkti-
on f : [a, b] → R, so zeigt die Anschauung, daß es eine Tangente an f in einer Zwischenstelle
x0 ∈ (a, b) geben wird, die zur Sekanten parallel liegt (s. Fig. 3.7).

D.h. die Steigung ( f (b) − f (a))/(b − a) der Sekante stimmt mit der Steigung f ′(x0) der
Tangente überein. Wir präzisieren dies in folgendem

Fig. 3.7: Zum Mittelwertsatz
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Satz 3.5:
(Mittelwertsatz der Differentialrechnung) Ist die reelle Funktion f stetig auf [a, b] und
differenzierbar mindestens auf (a, b), so gibt es ein x0 ∈ (a, b) mit

f ′(x0) =
f (b)− f (a)

b − a
. (3.37)

Man führt den Beweis über folgende Sätze.
Mit Extremum bezeichnen wir dabei Maximum oder Minimum einer Funktion.

Satz 3.6:
Ist die Funktion f differenzierbar auf einem offenen Intervall I , und hat f in x0 ∈ I
ein Extremum, so gilt

f ′(x0) = 0 .

Beweis:
In x0 habe die Funktion f ein Maximum. Für xn → x0 mit xn > x0 (xn ∈ I ) gilt dann

0 ≥ f (xn)− f (x0)

xn − x0
→ f ′(x0) ≤ 0 für n →∞,

und für xn → x0, xn < x0(xn ∈ I ) entsprechend

0 ≤ f (xn)− f (x0)

xn − x0
→ f ′(x0) ≥ 0 für n →∞,

folglich f ′(x0) = 0. Im Falle eines Minimums bei x0 verläuft der Beweis analog. �

Satz 3.7:
(Satz von Rolle2) Ist die reelle Funktion f stetig auf [a, b] und differenzierbar auf
(a, b), und gilt f (a) = f (b), so existiert ein x0 ∈ (a, b) mit f ′(x0) = 0.

Beweis:
Wäre f (x) = c konstant in [a, b], so folgte f ′(x0) = 0 für alle x0 ∈ (a, b), und der Beweis wäre
fertig. Wir nehmen nun an, daß f in [a, b] nicht konstant ist, und daß ein x ∈ (a, b) existiert mit
f (x) > f (a) = f (b) (andernfalls würden wir f im Folgenden durch − f ersetzen). Nach dem
»Satz vom Maximum« (Abschn. 1.6.5, Satz 1.25) besitzt f dann eine Maximalstelle x0 ∈ (a, b).
Satz 3.6 liefert f ′(x0) = 0. �

Beweis:
des Mittelwertsatzes (Satz 3.5): Man subtrahiert von f eine Geradenfunktion g mit der Steigung
der Sekante bezüglich a und b, und zwar g(x) = x · ( f (b) − f (a))/(b − a). Für die Differenz

2 Michel Rolle (1652 – 1719), französischer Mathematiker
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F(x) = f (x)− g(x) errechnet man F(a) = F(b). Der Satz von Rolle liefert dann die Existenz
eines x0 ∈ (a, b) mit

0 = F ′(x0) = f ′(x0)− g′(x0) = f ′(x0)−
f (b)− f (a)

b − a
. �

Folgerung 3.5:

Die reelle Funktion f sei auf dem Intervall I differenzierbar. Damit gilt:

(a) f ist genau dann konstant, wenn f ′(x) = 0 für alle x ∈ I erfüllt ist.

(b) f ist monoton wachsend, wenn f ′(x) ≥ 0 für alle x ∈ I erfüllt ist. Entsprechend
ist monoton fallend, wenn f ′(x) ≤ 0 auf I gilt.

Gilt f ′(x) > 0 bzw. f ′(x) < 0 auf I , so ist die Monotonie von f sogar »streng«.

Die Beweise ergeben sich unmittelbar aus dem Mittelwertsatz.

Wir leiten schließlich eine Verallgemeinerung des Mittelwertsatzes her.

Satz 3.8:

(Verallgemeinerter Mittelwertsatz) Sind die reellen Funktionen f und g auf [a, b] ste-
tig und mindestens auf (a, b) differenzierbar, und ist g′(x) �= 0 auf (a, b), so existiert
ein x0 ∈ (a, b) mit

f ′(x0)

g′(x0)
= f (b)− f (a)

g(b)− g(a)
. (3.38)

(Dabei ist g(b) �= g(a), da g wegen g′(x) �= 0 streng monoton auf [a, b] ist.)

Beweis:

Für die Funktion

F(x) := f (x)− f (a)− f (b)− f (a)

g(b)− g(a)
(g(x)− g(a))

auf [a, b] gilt F(a) = F(b) = 0, wie man leicht nachrechnet. Der Satz von Rolle liefert damit
die Existenz eines x0 ∈ (a, b) mit

0 = F ′(x0) = f ′(x0)−
f (b)− f (a)

g(b)− g(a)
g′(x0) ,

woraus durch Umformung die Behauptung (3.38) folgt. �

Übung 3.16*:

Beweise Folgerung 3.5.
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3.1.6 Ableitungen der trigonometrischen Funktionen und der Arcusfunktionen

Satz 3.9:
Sinus- und Cosinus-Funktion sind differenzierbar, und es gilt

sin′ t = cos t

cos′ t = − sin t
für alle t ∈ R. (3.39)

Fig. 3.8: Zur Ableitung von sin und cos

Bemerkung: Man kann die Ableitungen von sin und cos durch Fig. 3.8 plausibel machen: Und
zwar ist das kleine schraffierte Kreisbogendreieck nahezu ein »normales« gradlinig berandetes
Dreieck. Der Winkel bei A hat das Bogenmaß t +Δt . Somit folgt

Δy

Δt
≈ cos(t +Δt) ,

|Δx |
Δt
≈ sin(t +Δt) ,

d.h.

sin(t +Δt)− sin t

Δt
= Δy

Δt
≈ cos(t +Δt) ≈ cos t ,

−cos(t +Δt)− cos t

Δt
= |Δx |

Δt
≈ sin(t +Δt) ≈ sin t .

Die Anschauung zeigt, daß dies umso besser stimmt, je kleiner Δt ist. Man vermutet daher
sin′ t = cos t und − cos′ t = sin t .

Der Beweis des Satzes ist lediglich eine exakte Ausführung dieser Idee.

Beweis: des Satzes 3.9: Es seien t und t +Δt aus (0, π), Δt > 0. Wir setzen zur Abkürzung

x = cos t , y = sin t =
√

1− x2 , Δx = cos(t +Δt)− cos t < 0 ,

Δy = sin(t +Δt)− sin t und Δs =
√

Δx2 +Δy2 (Länge der Sehne [A, B], Fig. 3.8)
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Damit folgt für den Differenzenquotienten des Cosinus

cos(t +Δt)− cos t

Δt
= Δx

Δt
= Δx

Δs
· Δs

Δt
= −1
√

1+ (Δy/Δx)2
· Δs

Δt
. (3.40)

Nach Satz 2.7 (III), Abschn. 2.3.1, strebt Δs
Δt gegen 1 für Δt → 0. Ferner gilt dabei Δx → 0 und

somit

Δy

Δx
→ dy

dx
= −x√

1− x2
.

Damit konvergiert (3.40) mit Δt → 0 gegen

−1
√

1+
(

dy
dx

)2
· 1 = −1

√

1+ x2

1−x2

= −
√

1− x2 = − sin t .

Im Falle Δt < 0 ist Δx > 0, und man erhält völlig analog den gleichen Grenzübergang. Folglich
gilt

cos′ t = − sin t für t ∈ (0, π) .

Für die Sinusfunktion folgt mit der Kettenregel daraus

sin′ t = d

dt

√

1− cos2 t = 2 cos t sin t

2
√

1− cos2 t
= cos t , (t ∈ (0, π)) .

Damit ist die Behauptung cos′ t = − sin t , sin′ t = cos t für t ∈ (0, π) bewiesen. Durch cos t =
sin(t+π/2), sin t = − cos(t+π/2) gewinnt man die Richtigkeit der Behauptung für t = 0, durch
cos t = − sin(t−π/2), sin t = cos(t−π/2) für t = π , durch cos(−t) = cos t, sin(−t) = − sin t
für t ∈ [−π, 0], und durch cos(t + k2π) = cos t , sin(t + k2π) = sin t (k ganzzahlig) für alle
t ∈ R. �

Mit den Regeln sin′ = cos und cos′ = − sin können wir einen eleganten Beweis der Additi-
onstheoreme führen.

Satz 3.10:
(Additionstheoreme für sin und cos) Für alle reellen Zahlen x und y gilt

sin(x + y) = sin x cos y + cos x sin y, (3.41)

cos(x + y) = cos x cos y − sin x sin y. (3.42)

Beweis:

Wir setzen z := x + y, also y = z − x und setzen dies in die rechte Seite von (3.41) ein:

sin x cos(z − x)+ cos x sin(z − x) := f (x) .



3.1 Grundlagen der Differentialrechnung 223

Differenziert man diesen Ausdruck nach x , so erhält man f ′(x) = 0 für alle reellen x . Daraus
folgt, daß f (x) konstant ist, also f (x) = f (0) für alle x ∈ R. Wegen f (0) = sin z = sin(x + y)

folgt also

sin(x + y) = f (0) = f (x) = sin x cos y + cos x sin y ,

womit (3.41) bewiesen ist. (3.42) folgt analog. �

Für die Tangens- und Cotangensfunktion folgt aus tan x = sin x/ cos x und cot x = cos x/ sin x
mit der Quotientenregel sofort

Satz 3.11:
Tangens- und Cotangens-Funktion sind in allen Punkten differenzierbar, in denen sie
definiert sind, und es gilt

tan′ x = 1

cos2 x
= 1+ tan2 x , (3.43)

cot′ x = − 1

sin2 x
= −1− cot2 x . (3.44)

Für die Arcus-Funktionen, die ja die Umkehrfunktionen der trigonometrischen Funktionen auf
bestimmten Intervallen sind, erhält man ohne Schwierigkeiten

Satz 3.12:
Die Ableitungen de Arcus-Funktionen lauten

arcsin′ x = 1√
1− x2

, arccos′ x = − 1√
1− x2

für alle x ∈ (−1,1),

arctan′ x = 1

1+ x2
, arccot′ x = − 1

1+ x2
für alle x ∈ R.

Beweis:

t = arcsin x ist gleichbedeutend mit x = sin t
(

−π
2 < t < π

2

)

. Damit folgt nach der Regel für
Umkehrfunktionen (Satz. 3.4 und (3.32), Abschn. 3.1.4):

arcsin′ x = dt

dx
= 1

dx
dt

= 1

sin′ t
= 1

cos t
= 1
√

1− sin2 t
= 1√

1− x2
(|x | < 1) .

Entsprechend ergibt t = arctan x , d.h. x = tan t
(

−π
2 < t < π

2

)

:

arctan′ x = dt

dx
= 1

dx
dt

= 1

tan′ t
= 1

1+ tan2 t
= 1

1+ x2
(x ∈ R) .

arccos′ x und arccot′ x gewinnt man analog. �
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Übung 3.17:

Beweise die Ableitungsformeln für arccos und arccot.

Übung 3.18:

Differenziere

(a) y = sin(1+ x2) , (b) y = (x3 − x2 + 2) cos x ,

(c) y =
√

1+ tan x , (d) y = cot(sin x) ,

(e) y = arccos(sin x) , (f) y = arctan
1

√

1+ x2
.

Übung 3.19:

Die harmonische Schwingung eines Federpendels wird durch die Gleichung x = A sin(ωt)

beschrieben (t Zeit, x Weg, A > 0 Amplitude, ω Kreisfrequenz). Berechne Geschwindigkeit

und Beschleunigung zu beliebiger Zeit t (die erste Ableitung wird hierbei üblicherweise durch

ẋ statt x ′ beschrieben, die zweite durch ẍ usw.). Zeige ẍ + ω2x = 0. Wo sind Geschwindigkeit

und Beschleunigung betragsmäßig am größten, bei Nulldurchgängen, in Umkehrpunkten oder

woanders?

3.1.7 Ableitungen der Exponential- und Logarithmus-Funktionen

Satz 3.13:
Exponentialfunktion exp(x) = ex (x ∈ R) und natürlicher Logarithmus ln x (x > 0)

sind differenzierbar, und es gilt

d

dx
ex = ex für x ∈ R, (3.45)

ln′ x = 1

x
für x > 0. (3.46)

Beweis:
(I) Für den Differenzenquotienten der Logarithmusfunktion bzw. x > 0 und x + h > 0(h �= 0)

errechnet man

ln(x + h)− ln x

h
= ln x+h

x

h
= ln

(

1+ h
x

)

h
= ln

(
(

1+ h

x

)1/h
)

→ ln e1/x = 1

x
(für h → 0).

Der Grenzübergang ergibt sich aus Abschn. 2.4.3, Folg. 2.6. (Man hat dort x durch 1/x zu erset-
zen.) Damit ist ln′ x = 1/x für x > 0 bewiesen. Für x < 0, also |x | = −x , erhält man mit der
Kettenregel daraus

d

dx
ln |x | = d

dx
ln(−x) = 1

−x
· (−1) = 1

x
,
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und somit

d

dx
ln |x | = 1

x
für alle x �= 0.

(II) Die Ableitung von y = ex gewinnt man über die Regel für Umkehrfunktionen. Mit x = ln y
folgt

ex

dx
= dy

dx
= 1

dx

dy

= 1

ln′ y
= y = ex . �

Bemerkung: Satz 3.13 macht deutlich, warum die Exponentialfunktion exp(x) = ex (x ∈ R)

und ihre Umkehrfunktion) der natürliche Logarithmus so wichtig sind: Die Exponentialfunktion
hat sich selbst wieder zur Ableitung! Sie ist, bis auf einen konstanten Faktor, die einzige Funktion
mit dieser Eigenschaft. Wir zeigen dies im folgenden Satz 3.14.

Beim Logarithmus ln |x | springt ins Auge, daß seine Ableitung 1/x eine sehr einfache Funk-
tion ist. Sehen wir uns einmal die Potenzfunktionen f (x) = xm mit ganzzahligem m an, so fällt
an ihren Ableitungen f ′(x) = mxm−1 auf, daß die Potenz x−1 darunter nicht vorkommt. Alle
anderen ganzzahligen Exponenten tauchen in den Ableitungen auf, nur der Exponent −1 fehlt
unentschuldigt. Diese Lücke schließt gerade der natürliche Logarithmus.

Satz 3.14:
Jede auf einem Intervall I differenzierbare Funktion f die

f ′(x) = a f (x) für alle x ∈ I (3.47)

erfüllt ( a ∈ R konstant), hat die Gestalt

f (x) = c eax (c ∈ R konstant)

Beweis:
Es sei f eine reelle Funktion, die (3.47) erfüllt. Man bildet damit die Funktion

g(x) := f (x)

eax
(3.48)

und errechnet

g′(x) = − f ′(x) eax − f (x)a eax

e2ax
= 0 für x ∈ I .

(Der Zähler ist Null, da f ′(x) = a f (x) ist.) g ist also konstant:⇒ g(x) ≡ c. (3.48) liefert damit
f (x) = ceax . �

Setzt man a = 1 in (3.47), also f ′ = f , so folgt f (x) = c ex , d.h. f ist bis auf einen
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konstanten Faktor c die Exponentialfunktion exp. Dabei ist f (0) = c. Im Falle f (0) = 1 ist
c = 1 und f (x) = ex . Wir haben somit gezeigt:

Folgerung 3.6:

Die Exponentialfunktion exp(x) = ex ist die einzige auf R differenzierbare Funktion,
die sich selbst zur Ableitung hat und in x = 0 den Funktionswert 1 annimmt.

Die allgemeine Exponentialfunktion

f (x) = ax (a > 0, x ∈ R)

läßt sich in der Form

f (x) = ex ln a

schreiben und mit der Kettenregel differenzieren:

d

dx
ax = ax ln a . (3.49)

Die Umkehrfunktion loga von f (x) = ax (a > 0, a �= 1) kann nach Abschn. 2.4.3, Folg. 2.7,
folgendermaßen dargestellt werden:

loga |x | =
ln |x |
ln a

, x �= 0 . (3.50)

Speziell für x = e folgt loga e = 1/ ln a. Die Ableitung von loga |x | gewinnt man unmittelbar
aus (3.50):

d

dx
loga |x | =

1

x ln a
= loga e

x
. (3.51)

Auch die allgemeine Potenzfunktion

f (x) = xa , x > 0 ,

mit beliebigem reellen Exponenten a läßt sich nun leicht differenzieren. Wir schreiben

f (x) = ea ln x

und erhalten mit der Kettenregel die Ableitung

f ′(x) = ea ln x a
1

x
= xaa

1

x
= axa−1 ,

also
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Satz 3.15:
Die Potenzfunktion f (x) = xa(x > 0) mit beliebigem reellen Exponenten a hat die
Ableitung

d

dx
xa = axa−1 . (3.52)

Logarithmische Ableitung: Ist f : I → (0,∞) eine differenzierbare Funktion auf einem Inter-
vall I , so wird durch

F(x) := ln f (x) , x ∈ I ,

eine neue Funktion gebildet, die logarithmierte Funktion von f heißt. Ihre Ableitung erhält man
aus der Kettenregel:

d

dx
ln f (x) = f ′(x)

f (x)
. (3.53)

Man nennt dies die logarithmische Ableitung von f .

Bemerkung: Die logarithmische Ableitung bedeutet folgendes: Mit

y = f (x) , Δx = x − x0 , Δy = f (x)− f (x0) (x, x0 ∈ I )

gilt ungefähr Δy ≈ f ′(x)Δx , also

Δy

y
≈ f ′(x)

f (x)
Δx . (3.54)

Die logarithmische Ableitung f ′(x)/ f (x), multipliziert mit Δx , ergibt also ungefähr die relative
Änderung von y = f (x) bei Änderung der x-Werte um Δx .

Übung 3.20:

Differenziere

(a) y = e3x , (b) y = x4 ex , (c) y = esin x ,

(d) y = x ln x − x (x > 0) , (e) y = ln x

x
(x > 0) , (f) y = cos(ln x) ,

(g) y =
√

x2 + x ecos2 x , (h) y = a−x2
, (i) y =

√

loga(x2)+ 1 .

Übung 3.21*:

Die Temperatur einer sich abkühlenden Flüssigkeit sei x = f (t)(◦ C) zur Zeit t . f erfülle

f ′(t) = − 1
2 f (t) für alle t > 0. Zum Zeitpunkt t0 = 2 min habe die Flüssigkeit die Temperatur

x0 = 70◦ C. Gib f (t) explizit an!
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3.1.8 Ableitungen der Hyperbel- und Area-Funktionen

Wir knüpfen an die Definition der Hyperbelfunktionen sinh, cosh, tanh, coth und ihre Umkehr-
funktionen arsinh, arcosh, artanh, arcoth in Abschn. 2.4.4 an und gewinnen daraus problemlos
die Ableitungen

sinh′ x = cosh x , x ∈ R , arsinh′ x = 1√
x2 + 1

, x ∈ R ,

cosh′ x = sinh x , x ∈ R , arcosh′ x = ± 1√
x2 − 1

, x > 1 ,

tanh′ x = 1

cosh2 x
, x ∈ R , artanh′ x = 1

1− x2
, |x | < 1 ,

coth′ x = − 1

sinh2 x
, x �= 0 , arcoth′ x = 1

1− x2
, |x | > 1 .

Bemerkung: (a) Die beiden Vorzeichen ± bei arcosh′ bedeuten, daß hier zwei Funktionen ge-
meint sind, wobei sich + auf die Umkehrfunktion von cosh : (0,∞) → R bezieht und entspre-
chend − auf die Umkehrfunktion von cosh : (−∞, 0).
(b) artanh′ und arcoth′ haben zwar formal denselben Formelausdruck rechts vom Gleichheitszei-
chen, doch beziehen sie sich auf verschiedene Bereiche der x-Achse, wie rechts angegeben.

Übung 3.22:

Leite die obigen Ableitungsformeln für die Hyperbel- und Area- Funktionen her.

Übung 3.23:

Differenziere

(a) y = (x3 + sinh x)3 , (b) y = arsinh
√

x (x �= 0) ,

(c) y = x2 · sinh(x) cosh(x) , (d) y = ex

artanh x
(x �= 0) .

Übung 3.24*:

Die Kurve einer Hochspannungsleitung wird durch

y = h0 + a
(

cosh
x

a
− 1

)

, −x0 ≤ x ≤ x0 ,

beschrieben (h0, a, x0 positiv). Welchen Winkel bildet die Leitung mit der Horizontalen an den

Enden bei −x0 und x0? Dabei setze man h0 = 7 m, x0 = 15 m, a = 60 m.

3.1.9 Zusammenstellung der wichtigsten Differentiationsregeln

Die wichtigsten elementaren Funktionen sind mit ihren Ableitungen in folgender Tabelle zu-
sammengestellt. Dabei existieren die Ableitungen in allen Punkten x , in denen die Funktionen
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definiert sind. Lediglich bei xα ist zu beachten, daß im Falle α ≤ 1 zusätzlich x �= 0 vorauszu-
setzen ist. Im Folgenden seien α und c beliebige reelle Zahlen, sowie a eine beliebige positive
Zahl.

Tabelle 3.1: Elementare Funktionen und ihre Ableitungen

f (x) f ′(x) f (x) f ′(x)

c 0 arccos x − 1
√

1− x2

xα αxα−1 arctan x
1

1+ x2

sin x cos x arccot x − 1

1+ x2

cos x − sin x ex ex

tan x
1

cos2 x
= 1+ tan2 x ln x

1

x

cot x
−1

sin2 x
= −1− cot2 x ax ax ln a

arcsin x 1√
1−x2

loga |x |
1

x ln a
= loga e

x

Die Ableitungen der Hyperbelfunktionen sinh, cosh usw. sowie ihrer Umkehrfunktionen arsinh,
arcosh usw. entnimmt man der Tabelle des vorhergehenden Abschnitts.

Tabelle 3.2: Oft auftretende Funktionen und ihre Ableitungen

f (x) f ′(x) f (x) f ′(x)

Polynom
n
∑

k=0

ak xk
n−1
∑

j=0

( j + 1)a j+1x j √
x

1

2
√

x

ln g(x) (g(x) > 0)
g′(x)

g(x)

√

1+ x2 x
√

1+ x2

x ln x − x ln x
√

1− x2 (|x | < 1) − x
√

1− x2

Die folgenden Ableitungsregeln gelten überall dort, wo die Funktionen f , g differenzierbar
sind, und — im Falle der Division durch g — wo g(x) �= 0 ist.

Summenregel: ( f + g)′ = f ′ + g′ ,

Differenzenregel: ( f − g)′ = f ′ − g′ ,
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Homogenität: (λ f )′ = λ f ′ (λ ∈ R)

Produktregel: ( f g)′ = f ′g + f g′

Quotientenregel:

(
f

g

)′
= f ′g − f g′

g2

Reziprokenregel:

(
1

g

)′
= −g′

g2

Für verkettete Funktionen f ◦g schreiben wir y = f (g(x)) und setzen dabei y = f (z), z = g(x).
Damit gilt — im Falle der Differenzierbarkeit — die

Kettenregel:
dy

dx
= dy

dz
· dz

dx
.

Sie kann auch in der Form ( f ◦ g)′ = ( f ′ ◦ g)g′ notiert werden.
Ist f streng monoton und differenzierbar in x , so schreiben wir y = f −1(x), x = f (y) und

erhalten die

Regel für Umkehrfunktionen:
dy

dx
= 1

dx

dy

.

Sie läßt sich auch in der Gestalt ( f −1)′ = 1/ f ′ ◦ f −1 schreiben.

Übung 3.25:

Es sei g : I → R auf dem Intervall I ungleich Null und mindestens n-mal differenzierbar.

Beweise

dn

dxn

(
1

g

)

=
n−1
∑

k=0

(−1)n−k
(

n − 1

k

)

(n − k)!g−n−1+k · dk+1

dxk+1
g .

3.2 Ausbau der Differentialrechnung

3.2.1 Die Regeln von de l’Hospital3

Die Bestimmung eines Grenzwertes lim
x→b

f (x)/g(x) kann schwierig sein, wenn f (b) = g(b) = 0

ist. Sind f und g allerdings differenzierbar in b, und ist g′(b) �= 0, so ist die Grenzwertbildung
einfach:

3 Gulliaume Francois Antoine Marquis de l’Hospital (1661 – 1704) hat die nach ihm benannten Regeln von Johann
Bernoulli »gekauft«! Regeln, Beweise und Beispiele wurden ihm von Bernoulli — dem eigentlichen Entdecker —
mitgeteilt. de l’Hospital zahlte dafür daß er sie veröffentlichen durfte. Er schrieb 1696 das erste Lehrbuch der Dif-
ferentialrechnung. Übrigens werden die de l’Hospitalschen Regeln von Studenten oft scherzhaft die »Krankenhaus-
Regeln« genannt.
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Satz 3.16:
(Regel von de l’Hospital, elementarer Fall) Sind f : I → R, g : I → R differenzier-
bar in b ∈ I (I Intervall), und gilt

f (b) = g(b) = 0

sowie g′(b) �= 0 und g(x) �= 0 für alle x ∈ I , x �= b, so folgt

lim
x→b

f (x)

g(x)
= f ′(b)

g′(b)
. (3.55)

Beweis:
Es sei x �= b, x ∈ I . Damit folgt sofort

f (x)

g(x)
= f (x)− f (b)

g(x)− g(b)
=

f (x)− f (b)
x−b

g(x)−g(b)
x−b

→ f ′(b)

g′(b)
, für x → b.

�

Beispiel 3.13:

(a) lim
x→0

sin x

ex −1
= cos(0)

e0
= 1

(b) lim
x→1

ln x

x2 − 1
= (Der Leser ergänze die rechte Seite)

Der folgende Satz verallgemeinert den bewiesenen Satz 3.16.

Satz 3.17:
(Regeln von de l’Hospital, allgemeiner Fall) Es seien f und g differenzierbare reelle
Funktionen auf dem Intervall (a, b), für die

lim
x→b

f (x) = lim
x→b

g(x) = 0

oder

lim
x→b

g(x) = ∞ oder = −∞

gilt. Es sei ferner g′(x) �= 0 auf (a, b). Damit folgt

lim
x→b

f (x)

g(x)
= lim

x→b

f ′(x)

g′(x)
(a < x < b) , (3.56)

sofern der rechtsstehende Grenzwert existiert oder±∞ ist. (Hierbei ist auch a = −∞
oder b = ∞ zugelassen.)
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Für x → a (a < x < b) gilt die entsprechende Aussage.

Der Beweis beruht auf der gleichen Idee wie beim vorigen Satz. Wir führen ihn hier nicht aus,
sondern verweisen auf [24], S. 287.

Für den Ingenieur sind die Anwendungen des Satzes wichtig. (Gelegentlich wird hier von

»unbestimmten Ausdrücken«
0

0
oder

∞
∞ gesprochen, doch wollen wir diese mißverständliche

Sprechweise besser vermeiden.) Wir beginnen mit einfachen Beispielen, die zeigen, welche Fülle
neuer Grenzwertaussagen mit Leichtigkeit aus den de l’Hospitalschen Regeln folgen.

Beispiele

Im Folgenden seien a und b beliebige positive Zahlen.

Beispiel 3.14:

lim
x→∞

eax

x
= lim

x→∞
a eax

1
= ∞ .

Daraus folgt

Beispiel 3.15:

lim
x→∞

eax

xb
= lim

x→∞

(

e(a/b)x

x

)b

= ∞ .

D.h.: Jede Exponentialfunktion eax (a > 0) geht schneller gegen∞ als jede Potenz von x . Daraus
folgt sofort

Beispiel 3.16:
lim

x→∞
p(x) e−ax = 0 für jedes reelle Polynom p.

Beispiel 3.17:

lim
x→∞

ln x

xb
= lim

x→∞
1/x

bxb−1
= lim

x→∞
1

bxb
= 0 .

Wegen loga x = ln x

ln a
(a > 0) folgt auch

lim
x→∞

(loga x)/xb = 0 .

D.h.: Jeder Logarithmus loga x geht langsamer gegen∞ als jede Potenz von x .

Beispiel 3.18:

lim
x→0

xb ln x = lim
x→0

ln x

x−b
= lim

x→0

1/x

−bx−b−1
= lim

x→0
− xb

b
= 0 (x > 0) .

Daraus folgt
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Beispiel 3.19:
lim
x→0

x x = lim
x→0

ex ln x = e0 = 1 (x > 0) .

Setzt man x = 1

n
, so folgt lim

n→∞
1

n1/n
= 1, also gilt dies auch für den Kehrwert:

lim
n→∞

√
n

n = 1 .

Beispiel 3.20:

lim
x→0

1− cos x

x2
= lim

x→0

sin x

2x
= lim

x→0

cos x

2
= 1

2
.

Hier wurden die de l’Hospitalschen Regeln zweimal hintereinander angewendet. Auch in den
folgenden Übungsbeispielen ist dies der Fall.

Beispiel 3.21:

lim
x→0

1− cos x

ex −1− x
= lim

x→0

sin x

ex −1
= lim

x→0

cos x

ex
= 1 .

Beispiel 3.22:

lim
x→0

cosh x − 1

sin2 x
= lim

x→0

sinh x

2 sin x cos x
= lim

x→0

cosh x

2(cos2 x − sin2 x)
= cosh 0

2 cos2 0
= 1

2
.

Grenzwerte von Differenzen

Mit den de l’Hospitalschen Regeln lassen sich auch Grenzwerte der Form

lim
x→b

( f (x)− g(x)) (3.57)

mit

lim
x→b

f (x) = lim
x→b

g(x) = ∞ (3.58)

bestimmen, also Grenzwerte, die verzweifelt nach∞−∞ aussehen, was ja bekanntlich verboten
ist. Sind nämlich f und g auf (a, b) differenzierbar (a = −∞, b = ∞ zugelassen) und gilt (3.58),
wobei stets a < x < b ist, so sind f (x) �= 0 und g(x) �= 0 für große x , etwa für alle x ∈ (x0, b)

mit geeignetem x0. Für diese x rechnen wir

f (x)− g(x) = 1
1

f (x)

− 1
1

g(x)

=

1

g(x)
− 1

f (x)

1

f (x)g(x)

(3.59)

und versuchen, auf den rechts stehenden Bruch die Regeln von de l’Hospital anzuwenden.
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Beispiel 3.23:

lim
x→0

(
1

sin x
− 1

x

)

= lim
x→0

x − sin x

x sin x
= lim

x→0

1− cos x

x · cos x + sin x
= lim

x→0

sin x

−x sin x + 2 cos x
= 0 .

Beispiel 3.24:

lim
x→0

(
1

x
− 1

ex −1

)

= lim
x→0

ex −1− x

x ex −x
= lim

x→0

ex −1

ex +x ex −1
= lim

x→0

ex

2 ex +x ex
= 1

2
.

Übung 3.26:

lim
x→1

ahx − x

1nx
(a > 0) , lim

x→0

1

x2

(

1− 1

cos x

)

,

lim
x→∞ x ln

(

1+ 1

x

)

, lim
x→1

(
x

x − 1
− 1

ln x

)

.

Übung 3.27:

(a) Die Plancksche4 Strahlungsformel lautet

Lλ =
c2h

λ5(ech/(kT λ)−1)
.

Man beweise durch viermaliges Anwenden der de l’Hospitalschen Regeln, daß

lim
λ→0

Lλ = 0

gilt. (Dies beschreibt auch den physikalischen Sachverhalt richtig.)

Anleitung: Man setze zweckmäßig x = ch/(kT λ) und untersuche den entstehenden Aus-

druck für x →∞.

(b) (Freier Fall mit Reibung) Wir betrachten den freien Fall eines Körpers der Masse m durch

ein zähes Medium. Der Reibungswiderstand R verhalte sich proportional zum Quadrat

der Fallgeschwindigkeit v, also R = kv2, mit einer Konstante k. Der Weg s, den der

Körper in der Zeit t zurücklegt, ist dann gegeben durch

s = m

k
ln

(

cosh

(√

kg

m
t

))

,

wobei g die Erdbeschleunigung bezeichnet.

Zeige, daß dieser Ausdruck für k → 0 gegen s = 1

2
gt2 strebt. Dies ist die bekannte

Formel für den freien Fall ohne Reibung.

4 Max Karl Ernst Ludwig Planck (1858 – 1947), deutscher Physiker
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Übung 3.28:

Wo steckt der Fehler in folgender Berechnung nach der de l’Hospitalschen Regel:

lim
x→1

x3 − 2x + 1

x2 − 1
= lim

x→1

3x2 − 2

2x
= lim

x→1

6x

2
= 3 ?

(Der richtige Grenzwert ist 1/2.)

3.2.2 Die Taylorsche5 Formel

Motivation: Da sich Polynome leicht berechnen und differenzieren lassen, ja, überhaupt bequem
handhaben lassen, möchte man auch komplizierte Funktionen wenigstens näherungsweise durch
Polynome darstellen. Wie lassen sich solche »Näherungspolynome« finden? Nach der Idee von
Taylor geht man folgendermaßen vor:

Ist f eine beliebige Funktion auf einem Intervall I um 0, so macht man den Ansatz

f (x) = a0 + a1x + a2x2 + . . .+ an xn + Rn(x) (3.60)

und verlangt, daß sämtliche Ableitungen des Polynoms

P(x) = a0 + a1x + a2x2 + . . .+ an xn (3.61)

von der 0-ten bis zur n-ten Ableitung im Punkt 0 mit denjenigen von f übereinstimmen. Dies ist
natürlich nur möglich, wenn f wenigstens n-mal differenzierbar ist, was hier zusätzlich voraus-
gesetzt sei. Als nullte Ableitung f (0) bezeichnet man die Funktion f selbst: f (0) = f .

Es soll also P so bestimmt werden, daß

f (0) = P(0) , f ′(0) = P ′(0) , . . . , f (n)(0) = P(n)(0) (3.62)

erfüllt ist. Dabei liegt der Gedanke zu Grunde, daß sich bei Übereinstimmung der ersten n Ablei-
tungen in 0 die beiden Funktionen f und P wohl nur wenig unterscheiden werden, zumindest in
genügender Nähe von 0. Der Unterschied beider Funktionen

Rn(x) = f (x)− P(x)

heißt Restglied. Man hofft, daß |Rn(x)| möglichst klein wird.
Aus (3.62) ist das Näherungspolynom P leicht zu bestimmen. Für die Ableitungen von P in

0 errechnet man ohne Mühe

P(0) = a0 , P ′(0) = 1!a1 , P ′′(0) = 2!a2 , . . . , P(k)(0) = k!ak , . . . .

Setzt man in der ersten Gleichung noch 0! = 1 hinzu, so folgt aus (3.62) für alle k = 0, 1, 2, . . .,
n

f (k)(0) = k!ak , also ak =
f (k)(0)

k! , (3.63)

5 Brook Taylor (1685 – 1731), englischer Mathematiker
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womit die Koeffizienten von P berechnet sind. Eingesetzt in (3.60) folgt also

f (x) = f (0)+ f ′(0)

1! x + f ′′(0)

2! x2 + . . .+ f (n)(0)

n! xn

︸ ︷︷ ︸

P(x)

+Rn(x) (3.64)

Allgemeinfall: Will man allgemeiner f durch ein Polynom annähern, das in der Nähe eines
beliebigen Punktes x0 ∈ I möglichst gut mit f übereinstimmt, so hat man in (3.64) 0 durch
x0 zu ersetzen und statt x den Ausdruck (x − x0) zu schreiben. Es folgt damit der allgemeine
Näherungsansatz

f (x) = f (x0)+
f ′(x0)

1! (x−x0)+
f ′′(x0)

2! (x−x0)
2+ . . .+ f (n)(x0)

n! (x−x0)
n+Rn(x) . (3.65)

Das Restglied wird wieder mit Rn(x) bezeichnet. Das Näherungspolynom

P(x) = f (x0)+
f ′(x0)

1! (x − x0)+ . . .+ f (n)(x0)

n! (x − x0)
n (3.66)

erfüllt P(k)(x0) = f (k)(x0) für alle k = 0, 1, 2, . . ., n.
Natürlich möchte man wissen, wie gut das Polynom P die Funktion f annähert, d.h. wie groß

der »Fehler« |Rn(x)| = | f (x) − P(x)| ist. Diese Frage wird durch folgenden Satz beantwortet,
in dem gebräuchliche Formeln für das Restglied angegeben sind.

Satz 3.18:

(Taylorsche Formel mit Restglied) Es sei f eine reelle, (n + 1)- mal differenzierbare
Funktion auf einem Intervall I . Sie läßt sich in folgender Form darstellen:

f (x) = f (x0)+
f ′(x0)

1! (x− x0)+
f ′′(x0)

2! (x− x0)
2+ . . . . . .+ f (n)(x0)

n! (x− x0)
n+ Rn(x) ,

(3.67)

wobei x und x0 beliebig aus I wählbar sind.

(a) Das Restglied Rn(x) kann dabei folgendermaßen geschrieben werden:

Rn(x) = f (n+1)(ξ)

n!p (x − x0)
p(x − ξ)n+1−p , Schlömilchs6 Restgliedformel.

(3.68)

Dabei ist p eine beliebige Zahl aus {1, 2, . . . , n + 1} und ξ — im Falle x �= x0

— ein Wert zwischen x und x0, dessen Lage von x , x0, p und n abhängt. (Die
genaue Lage von ξ ist normalerweise nicht bekannt.) Im Falle x = x0 ist ξ = x0

zu setzen.

6 Oscar Xavier Schlömilch (1823 – 1901), deutscher Mathematiker
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(b) Wählt man p = n + 1 in Schlömilchs Restgliedformel, so folgt der wichtige
Spezialfall

Rn(x) = f (n+1)(ξ)

(n + 1)! (x− x0)
(n+1) , Lagrangesche7 Restgliedformel, (3.69)

(c) während man im Falle p = 1 folgendes erhält:

Rn(x) = f (n+1)(ξ)

n! (x− x0)(x−ξ)n , Cauchysche Restgliedformel. (3.70)

(3.67) heißt Taylorformel von f , entwickelt um x0.

Beweis:
8 Es sei p aus {1, 2, . . . , n + 1} beliebig, aber fest gewählt. Im Falle x = x0 ist Rn(x0) = 0
(nach (3.68)) und damit (3.67) erfüllt. Wir setzen daher im Folgenden x �= x0 (x ∈ I ) voraus
und bestimmen dazu cx ∈ R so, daß

f (x) = f (x0)+
f ′(x0)

1! (x − x0)+ . . .+ f (n)(x0)

n! (x − x0)
n + cx · (x − x0)

p (3.71)

gilt: Man ersetzt nun x0 durch eine Variable z, wobei x und cx festgehalten werden, d.h. man
betrachtet die durch

F(z) := f (z)+ f ′(z)
1! (x− z)+ f ′′(z)

2! (x− z)2+ . . .+ f (n)(z)

n! (x− z)n+ cx · (x− z)p (3.72)

definierte Funktion auf I . Sie erfüllt offenbar F(x) = f (x) und F(x0) = f (x), also F(x) =
F(x0). Nach dem Satz von Rolle gibt es daher ein ξ zwischen x und x0 mit

F ′(ξ) = 0 .

Dabei hat F ′(z) für beliebige z ∈ I den Wert

F ′(z) = f (n+1)(z)

n! (x − z)n − cx p(x − z)p−1 .

wie man leicht aus (3.72) berechnet. Für z = ξ wird dieser Ausdruck Null. Auflösen nach cx

ergibt somit

cx =
f (n+1)(ξ)

n!p (x − ξ)n+1−p .

Setzt man dies in (3.71) ein, so folgt damit die Behauptung des Satzes. �

7 Jean Louis Lagrange (1736 – 1813), italienischer Mathematiker und Astronom
8 Vom anwendungsorientierten Leser kann der Beweis ohne Nachteil übersprungen werden.
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Zur Verwendung der Restgliedformeln

Wir wollen exemplarisch die Lagrangesche Restgliedformel betrachten, die am häufigsten ver-
wendet wird:

Rn(x) = f (n+1)(ξ)

(n + 1)! (x − x0)
n+1 . (3.73)

Man kann sich die Formel leicht merken, denn man hat nur das (n+1)-te Glied der Taylorformel
hinzuschreiben,

f (n+1)(x0)

(n + 1)! (x − x0)
n+1 ,

und in f (n+1)(x0) das x0 durch ξ zu ersetzen.

Das ξ ist zwar unbekannt, doch ist dies nicht so schlimm, da man normalerweise Rn(x) nicht
exakt benötigt, sondern lediglich |Rn(x)| von oben abschätzen möchte. Das ist möglich, wenn
z.B. f (n+1) in I beschränkt ist, genauer, wenn man eine Konstante M > 0 finden kann mit
| f (n+1)(x)| ≤ M in I . Das ist häufig möglich. Dann folgt aus (3.73) die Abschätzung

|Rn(x)| ≤ M

(n + 1)! |x − x0|n+1 ,

mit der sich gut arbeiten läßt.

Wir wollen dies am Beispiel der Exponentialfunktion, der Sinusfunktion und anderer Funktio-
nen zeigen.

3.2.3 Beispiele zur Taylorformel

Beispiel 3.25:

Für die Exponentialfunktion

f (x) = ex , x ∈ R ,

ist die Taylorformel schnell hingeschrieben: Wegen

ex = f (x) = f ′(x) = f ′′(x) = . . . = f (k)(x) = . . .

also insbesondere f (k)(0) = e0 = 1 für alle k = 0, 1, 2, . . . lautet die Taylorformel von ex ,
entwickelt um 0 (nach (3.67)):

ex = 1+ x

1! +
x2

2! + . . . · + xn

n! + Rn(x) mit Rn(x) = eξ xn+1

(n + 1)! . (3.74)

Dabei ist ξ ein von x und n abhängiger Wert zwischen 0 und x (im Falle x = 0 ist ξ = 0). Wegen
|ξ | ≤ |x | können wir das Restglied bequem abschätzen; es ist
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|Rn(x)| ≤ e|x | |x |n+1

(n + 1)! . (3.75)

Hieraus erkennt man sofort, daß

lim
n→∞

Rn(x) = 0 (3.76)

gilt, denn bezeichnet man die rechte Seite in (3.75) mit an , so gilt

an+1

an
= |x |

n + 2
→ 0 für n →∞ .

Damit ist

[ ∞∑

n=1
an

]

nach dem Quotientenkriterium eine konvergente Reihe, woraus an → 0 für

n → ∞ folgt und somit Rn(x) → 0 für n → ∞. Aus (3.74) ergibt sich damit die Reihenent-
wicklung

ex = 1+ x

1! +
x2

2! +
x3

3! . . . =
∞
∑

k=0

xk

k! . (3.77)

Die Reihe heißt Taylorreihe von ex um 0. Wir haben hier eine der wichtigsten und berühmtesten
Reihen der Analysis vor uns. Speziell für x = 1 gewinnen wir daraus eine Berechnungsmethode
für e:

e = 1+ 1

1! +
1

2! +
1

3! + . . . . (3.78)

Der Abbruchfehler ist dabei höchstens so groß wie das erste weggelassene Glied, multipliziert
mit e oder — da e zunächst nicht genau bekannt ist — mit 3. Mit (3.74) haben wir überdies eine
gute Formel zur Berechnung von ex für kleine x , insbesondere für 0 ≤ x ≤ 1 (für −1 ≤ x < 0
kann man ex = 1/ e−x ausnutzen). Für größere x kann man so vorgehen: Ist k ≤ x < k + 1
(k ∈ N), so bildet man

ex = ex−k · ek

berechnet ex−k mit der Taylorformel (da ja 0 ≤ x − k < 1), und multipliziert dies k-mal mit e.

Bemerkung: Es sei erwähnt, daß man auf Computern heute verbesserte Methoden verwendet.
Schließlich ist die Mathematik in den letzten 200 Jahren nicht stehen geblieben. Doch ist die
Taylorformel trotzdem eine vorzügliche Methode zur Berechnung von ex

Beispiel 3.26:
Auch Sinus und Cosinus lassen sich leicht in Taylorformeln um 0 entwickeln. Beginnen wir mit
sin x und schreiben die Taylorentwicklung hin:
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sin x = sin 0+ sin′ 0
1! x + sin′′ 0

2! x2 + . . .+ sin(n) 0

n! xn + Rn(x) .

Dann berechnen wir die darin auftauchenden Ableitungen von sin bei 0:

sin 0 = 0 ,

sin′ x = cos x ⇒ sin′ 0 = 1 ,

sin′′ x = − sin x ⇒ sin′′ 0 = 0 ,

sin′′′ x = − cos x ⇒ sin′′′ 0 = −1 ,

sin(4) x = sin x ⇒ sin(4) 0 = 0 ,

usw. Also folgt

sin x = x − x3

3! +
x5

5! −
x7

7! + . . .+ Rn(x) , mit Rn(x) = sin(n+1)(ξ)

(n + 1)! xn+1 . (3.79)

Analog errechnet man

cos x = 1− x2

2! +
x4

4! −
x6

6! + . . .+ Rn(x) , mit Rn(x) = cos(n+1)(ξ)

(n + 1)! xn+1 . (3.80)

Da | sin x | ≤ 1 und | cos x | ≤ 1 ist und damit auch | sin(n+1)(ξ)| ≤ 1, | cos(n+1)(ξ)| ≤ 1, gilt für
die Restglieder in beiden Fällen

|Rn(x)| ≤ |x |n+1

(n + 1)! .

Die rechte Seite strebt für n → ∞ gegen 0 (wie in Beispiel 3.25), also gilt Rn(x) → 0 für
n →∞.

Damit erhält man die Taylorreihen von sin x und cos x :

sin x = x − x3

3! +
x5

5! −
x7

7! + . . . =
∞
∑

k=0

(−1)k

(2k + 1)! x
2k+1,

cos x = 1− x2

2! +
x4

4! −
x6

6! + . . . =
∞
∑

k=0

(−1)k

(2k)! x2k .

(3.81)

Die Taylorentwicklungen von sin x und cos x liefern uns Berechnungsmethoden, mit denen sin x
und cos x beliebig genau ermittelt werden können, insbesondere für |x | ≤ π

4 . Durch sukzessives
Anwenden der Formeln ± sin x = cos

(
π
2 ∓ x

)

, sin x = sin(π − x), sin x = sin(x + 2kπ) (k
ganz) und entsprechender »Verschiebeformeln« für cos x kann man damit sin x und cos x auch
für beliebige x ∈ R berechnen. Dies macht die Stärke der Taylorformel deutlich! (Computer
benutzen verbesserte Formeln, ja, sie gehen oft sogar tabellarisch vor.)
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Beispiel 3.27:

Die Taylorformel der Logarithmus-Funktion ln x kann man nicht um 0 entwickeln, da die Funkti-
on dort einen Pol hat. Man entwickelt sie statt dessen um 1, also um die Nullstelle von ln x , oder
— was auf dasselbe hinausläuft — man entwickelt f (x) = ln(1+ x) um 0. Dazu errechnet man

f ′(x) = (1+ x)−1 , f ′′(x) = −(1+ x)−2 , f ′′′(x) = 2!(1+ x)−3 , . . . ,

f (k)(x) = −(−1)k(k − 1)!(1+ x)−k ,

setzt x = 0 ein und erhält die Taylorentwicklung

f (x) = ln(1+ x) = x − x2

2
+ x3

3
− x4

4
+ . . .− (−x)n

n
+ Rn(x) .

Für 0 ≤ x ≤ 1 folgt aus der Lagrangeschen Restgliedformel mit einem ξ ∈ (0, x):

|Rn(x)| = 1

n + 1
· xn+1

(1+ ξ)n+1
≤ 1

n + 1
→ 0 für n →∞ ,

während für −1 < x < 0 die Cauchysche Restgliedformel verwendet wird:

|Rn(x)| = |x ||x − ξ |n
(1+ ξ)n+1

= |x |
1+ ξ

∣
∣
∣
∣

x − ξ

1+ ξ

∣
∣
∣
∣

n

mit − 1 < x < ξ < 0 .

Wegen 1+ ξ > 1+ x und

| x − ξ

1+ ξ
| = |x | − |ξ |

1− |ξ | = |x | − |ξ |
1− |x |
1− |ξ | ≤ |x | (3.82)

folgt

|Rn(x)| ≤ |x |
1+ x

|x |n → 0 für n →∞ .

Damit erhält man die Taylorreihe

ln(1+ x) = x − x2

2
+ x3

3
− x4

4
+− . . . für − 1 < x ≤ 1 . (3.83)

Für x > 1 und x ≤ −1 liegt offenbar keine Konvergenz vor. Setzt man x = 1 ein, so gewinnt
man die bemerkenswerte Formel

ln 2 = 1− 1

2
+ 1

3
− 1

4
+ 1

5
−+ . . . , (3.84)

die sich kein Autor an dieser Stelle entgehen läßt.
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Zur Berechnung von Logarithmen kann man mit der Taylorreihe (3.83) trickreich umgehen,
und zwar so: Will man ln a für a > 0 ermitteln, so berechnet man zunächst

x = a − 1

a + 1
, woraus a = 1+ x

1− x
folgt.

Es ist |x | < 1. Damit gewinnt man aus (3.83):

ln a = ln
1+ x

1− x
= ln(1+ x)− ln(1− x) = 2

(

x + x3

3
+ x5

5
+ . . .

)

.

Die rechtsstehende Reihe gestattet eine effektive Berechnung von ln a, wenn a in der Nähe von
1 liegt. Liegt a > 0 nicht in der Nähe von 1, ist es also sehr groß oder sehr klein, so kann
man a zuerst durch eine Potenz ek dividieren (k ganz), so daß a/ ek. so nahe wie möglich bei 1
liegt. Dann berechnet man ln(a/ ek) nach obiger Methode und gewinnt damit ln a = ln(a/ ek)+
ln ek = ln(a/ ek) + k. Es sei bemerkt, daß die eingebauten Programme auf Computern heute
noch effektivere Methoden benutzen (wie z.B. Tschebyscheff-Polynome, Tabelleninterpolation
u.a.), auf die hier nicht eingegangen werden kann.

Beispiel 3.28:

(Binomische Reihe) (I) Als besonders einfache Funktion betrachten wir zunächst

f (x) = (1+ x)n mit n ∈ N , x ∈ R .

Wir errechnen die Ableitungen f (k)(x) und erhalten

f (k)(0)

k! = n(n − 1)(n − 2) . . . (n − k + 1)

k! =
(

n

k

)

, (n ≥ k) . (3.85)

Ferner ist f (n+1)(x) ≡ 0, also Rn(x) = 0 für das Restglied der Taylorformel. Damit lautet die
Taylorentwicklung von (1+ x)n um 0:

(1+ x)n =
n
∑

k=0

(
n

k

)

, (n ∈ N) . (3.86)

Dies ist die wohlbekannte binomische Formel, die hier auf neuem Weg gewonnen wurde. (Man
hat nur x = b/a zu setzen und mit an zu multiplizieren, um aus (3.86) die gewohnte Form
(a + b)n = . . . zu erhalten.)

(II) Wir setzen nun statt n ∈ N eine beliebige reelle Zahl a ein, d.h. wir wollen die Funktion

f (x) = (1+ x)a , a ∈ R , |x | < 1

in eine Taylorformel um 0 entwickeln. Dazu berechnen wir die Ableitungen

f (k)(x) = a(a − 1)(a − 2) · . . . · (a − k + 1)(1+ x)a−k .
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Analog zu (3.85) definiert man Binomialkoeffizienten

(
a

k

)

für beliebiges reelles a:

(
a

k

)

:= a(a − 1)(a − 2) · . . . · (a − k + 1)

k! für k ∈ N, nebst

(
a

0

)

:= 1 .

Damit ergibt sich f (k)(0)/k! =
(

a

k

)

und somit die Taylorentwicklung

f (x) = (1+ x)a =
n
∑

k=0

(
a

k

)

xk + Rn(x) . (3.87)

Das Restglied wird mit der Cauchyschen Restgliedformel und (3.82) folgendermaßen abge-
schätzt:

|Rn(x)| =
∣
∣
∣
∣
∣

f (n+1)(ξ)

n! x(x − ξ)n

∣
∣
∣
∣
∣
=
∣
∣
∣
∣

(
a

n + 1

)
(n + 1)x(x − ξ)n

(1+ ξ)n+1−a

∣
∣
∣
∣

=
∣
∣
∣
∣

(
a

n + 1

)
(n + 1)x

(1+ ξ)1−a

∣
∣
∣
∣
·
∣
∣
∣
∣

x − ξ

1+ ξ

∣
∣
∣
∣

n

≤
∣
∣
∣
∣

(
a

n + 1

)
(n + 1)x

C

∣
∣
∣
∣
|x |n =: αn .

Dabei ist C > 0 so gewählt, daß C ≤ |1 + ξ |1−a für alle denkbaren ξ zwischen 0 und x gilt
(|x | < 1). Für den rechts stehenden Ausdruck αn gilt aber αn/αn−1 = |x ||a − n|/n → |x |
für n → ∞, also ist

[ ∞∑

n=1
αn

]

nach dem Quotientenkriterium für Reihen konvergent) woraus

αn → 0 für n →∞ folgt, also auch

Rn(x)→ 0 für n →∞ .

Damit ergibt sich aus (3.87) die binomische Reihe:

(1+ x)a =
∞
∑

k=0

(
a

k

)

xk , |x | < 1 , a ∈ R . (3.88)

In der Technik muß man öfters (1 + x)a für »kleine« |x | < 1 berechnen. Aus (3.87) folgt für
n = 2 die brauchbare Näherungsformel

(1+ x)a ≈ 1+ ax + a(a − 1)

2
x2 , (3.89)

wobei das Restglied R3(x) vernachlässigt wird. (Ob dies im Rahmen der geforderten Genauigkeit
zulässig ist, muß mit einer der Restgliedformeln gegebenenfalls überprüft werden.) Im Falle
a = 1/2 und |x | ≪ 1 erhalten wir z.B. die Näherungsformel

√
1+ x ≈ 1+ x

2
− x2

8
. (3.90)
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Für das vernachlässigte Restglied errechnet man im Falle |x | ≤ 1/4 z.B. |R3(x)| ≤ 0,14|x |3. Der
Fehler liegt also höchstens in der Größenordnung von 0,002, was zumindest bei Überschlagsrech-
nungen akzeptabel ist.

Übung 3.29*:

Beweise

ln
1

1− x
= x + x2

2
+ x3

3
+ x4

4
+ . . . für −1 ≤ x < 1.

Übung 3.30:

Es soll sin x für |x | ≤ π
4 mit der Taylorformel (3.79) berechnet werden, und zwar mit einer

Genauigkeit von 8 Dezimalstellen nach dem Komma. Wie groß ist n zu wählen?

Übung 3.31:

Entwickle f (x) = 1/
√

1+ x für |x | ≤ 1 in eine Taylorformel um 0 für n = 3. Schätze das

Restglied R3(x) mit der Lagrangeschen Formel ab.

3.2.4 Zusammenstellung der Taylorreihen elementarer Funktionen

Im letzten Abschnitt haben wir schon Taylorreihen einiger ausgewählter Funktionen betrachtet.
Allgemein versteht man unter einer Taylorreihe folgendes:

Definition 3.4:
Ist f eine reelle, beliebig oft differenzierbare Funktion auf einem Intervall I , so lautet
die zugehörige Taylorreihe, entwickelt um x0 ∈ I :

[

f (x0)+
f ′(x0)

1! (x − x0)+
f ′′(x0)

2! (x − x0)
2 + . . .+ f (k)(x0)

k! (x − x0)
k + . . .

]

,

oder kürzer geschrieben:

[ ∞
∑

k=0

f (k)(x0)

k! (x − x0)
k

]

.

Folgerung 3.7:
Die Taylorreihe von f , entwickelt um x0, konvergiert genau dann gegen f (x), (x ∈ I ),
wenn das Restglied

Rn(x) = f (x)−
n
∑

k=0

f (k)(x0)

k! (x − x0)
k .
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für n →∞ gegen 0 konvergiert. Man schreibt dann

f (x) =
∞
∑

k=0

f (k)(x0)

k! (x − x0)
k . (3.91)

Gilt dies für alle x aus einem Intervall um x0, so sagt man: » f läßt sich in diesem In-
tervall in eine (konvergente) Taylorreihe um x0 entwickeln« oder » f besitzt in diesem
Intervall eine Taylorreihe um x0«.

Ein einfaches aber brauchbares Kriterium dafür, daß eine Taylorreihe gegen f (x) konvergiert, ist
in folgendem Satz angegeben:

Satz 3.19:
(Konvergenzkriterium für Taylorreihen) Eine beliebig oft differenzierbare Funktion
f : I → R (I Intervall) läßt sich auf I in eine konvergente Taylorreihe entwickeln,
und zwar um einen beliebigen Punkt x0 ∈ I , wenn

| f (n)(x)| ≤ C Mn für alle n ∈ N und alle x ∈ I (3.92)

gilt, wobei C und M von n und x unabhängige Konstanten sind.

Beweis:
Aus der Lagrangeschen Restgliedformel folgt mit (3.92)

|Rn(x)| ≤ C
|M · (x − x0)|n+1

(n + 1)! =: an+1 . (3.93)

Man erkennt an+1/an = M · |x − x0|/(n + 1)→ 0 für n →∞. Nach dem Quotientenkriterium

für Reihen konvergiert also
∞∑

n=1
an , woraus an → 0 folgt. �

In Tabelle 3.3 sind die Taylorreihen der wichtigsten elementaren Funktionen übersichtlich
zusammengestellt.

Die ersten sechs Taylorreihen der Tabelle sind im letzten Abschnitt hergeleitet worden. Die
Herleitungen der Taylorreihen für die Arcus-Funktionen und für sinh, cosh werden dem Leser
zur Übung überlassen. Die Konvergenz der Arcus-Funktionsreihen läßt sich auf (−1, 1) durch
Restgliedabschätzung unschwer gewinnen. Die Reihendarstellung der Arcus-Funktionen in den
Randpunkten 1 und −1 folgt dagegen aus dem Abelschen Grenzwertsatz (Abschn. 5.2). Wir
sparen die ausführlichen Überlegungen dazu und begnügen uns mit diesem Hinweis (vgl. auch
[24], Abschn. 65).

Für die Herleitung der Taylorreihen von tan x , x cot x , tanh x und x coth x verweisen wir auf
[24], Abschn. 71. Zur numerischen Berechnung der Funktionswerte tan x , tanh x usw. verwen-
det man allerdings die Taylorreihen dieser Funktionen nicht, sondern greift besser auf tan x =
sin x/ cos x , tanh x = sinh x/ cosh x Zurück, wobei sin x , cos x , sinh x und cosh x durch ihre
Taylorreihen ermittelt werden können.
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Tabelle 3.3: Taylorreihen elementarer Funktionen

Funktion Taylorreihe Konvergenzintervall

(1+ x)n =
n
∑

k=0

(
n

k

)

xk , n ∈ N ∪ {0} R

(1+ x)a =
∞
∑

k=0

(
a

k

)

xk , a ∈ R (−1,1)

ex =
∞
∑

k=0

xk

k! R

ln(1+ x) =
∞
∑

k=1

−(−x)k

k
(−1,1]

sin x =
∞
∑

k=0

(−1)k

(2k + 1)! x
2k+1 R

cos x =
∞
∑

k=0

(−1)k

(2k)! x2k R

tan x =
∞
∑

k=1

(−1)k+1 22k(22k − 1)

(2k)! B2k x2k−1
(−π

2
,
π

2

)

B2k Bernoullische Zahlen, s. Abschnittsende

x cot x =
∞
∑

k=0

(−1)k 22k

(2k)! B2k x2k (−π, π)

arcsin x = x + 1

2

x3

3
+ 1 · 3

2 · 4
x5

5
+ 1 · 3 · 5

2 · 4 · 6
x7

7
+ . . . =

∞
∑

k=0

(2k)!
22k(k!)2

x2k+1

2k + 1
[−1,1]

arccos x = π

2
− arcsin x [−1,1]

arctan x = x − x3

3
+ x5

5
− x7

7
+ . . . =

∞
∑

k=0

(−1)k

2k + 1
x2k+1 [−1,1]

arccot x = π

2
− arctan x [−1,1]

sinh x =
∞
∑

k=0

x2k+1

(2k + 1)! R

cosh x =
∞
∑

k=0

x2k

(2k)! R

tanh x =
∞
∑

k=1

22k(22k − 1)

(2k)! B2k x2k−1
(−π

2
,
π

2

)

x coth x =
∞
∑

k=0

22k

(2k)! B2k x2k (−π, π)
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In den Taylorreihen von tan und cot werden die Bernoullischen Zahlen verwendet. Sie lassen
sich rekursiv berechnen aus

B0 = 1 und
n
∑

k=0

(
n + 1

k

)

Bk = 0 für n = 1, 2, 3, . . ..

Man erhält

B1 = −
1

2
, B2 =

1

6
, B4 = −

1

30
, B6 =

1

42
, B8 = −

1

30
,

B10 =
5

66
, B12 = −

691

2730
usw.,

während B2k+1 = 0 ist für alle k = 1, 2, 3, . . ..

Übung 3.32:

Es sei f auf dem Intervall (−r, r) in eine Taylorreihe um 0 entwickelbar (r > 0). Beweise:

(a) Ist f eine gerade Funktion, d.h. f (−x) = f (x) für alle x ∈ (−r, r), so kommen in der

Taylorreihe von f nur gerade Exponenten vor, d.h. sie hat die Form
∞∑

k=0
a2k x2k .

(b) Ist f ungerade, d.h. gilt f (−x) = − f (x) auf (−r, r), so kommen in der Taylorreihe von

f nur ungerade Exponenten vor, sie hat also die Gestalt
∞∑

k=0
a2k+1x2k+1.

Übung 3.33:

Leite die Taylorreihen von sinh x , cosh x her. Gib auf I = (−r, r) eine Restgliedabschätzung

an, wobei Satz 3.19 nebst (3.93) benutzt werden kann. (Es ist dabei M = 1 zu setzen! Wie groß

ist C zu setzen?)

3.2.5 Berechnung von π9

Setzt man in die Taylorreihe von arctan den Wert x = 1 ein, so folgt wegen arctan(1) = π/4 die
überraschende Gleichung

π

4
= 1− 1

3
+ 1

5
− 1

7
+ . . . . (3.94)

Die rechts stehende Reihe heißt Leibnizsche Reihe. Zur praktischen Berechnung von π ist sie
ungeeignet, da sie sehr langsam konvergiert. Doch gibt sie eine Anregung, wie man verfahren
kann. Und zwar gewinnt man aus dem Additionstheorem

tan x + tan y

1− tan x tan y
= tan(x + y)

9 Kann vom anwendungsorientierten Leser überschlagen werden. Doch zeigt der Abschnitt, wie dieses uralte Pro-
blem mit unseren Methoden äußerst effektiv gelöst werden kann.
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mit t = tan x und s = tan y durch Übergang zur Umkehrfunktion die Gleichung arctan
t + s

1− ts
=

x + y, also

arctan
t + s

1− ts
= arctan t + arctan s . (3.95)

Mit
t + s

1− ts
= 1 erhält man links π/4. Wir wählen zunächst t = 120

119
und s = − 1

239
, woraus

t + s

1− ts
= 1 folgt, also nach (3.94)

π

4
= arctan

120

119
− arctan

1

239
. (3.96)

Nun ist aber

120

119
=

5
12 + 5

12

1− 5
12 · 5

12

, also nach (3.95)

arctan
120

119
= arctan

5

12
+ arctan

5

12
= 2 arctan

5

12
, und

5

12
=

1
5 + 1

5

1− 1
5 · 1

5

, also arctan
5

12
= 2 arctan

1

5
.

Dies alles eingesetzt in (3.96) liefert

π = 4

(

4 arctan
1

5
− arctan

1

239

)

. (3.97)

Mit der Taylorreihe von arctan, angewendet auf arctan
1

5
und

1

239
, errechnet man hieraus π

bequem mit hoher Genauigkeit. Dabei werden nur wenige Glieder der Reihen benötigt.

Übung 3.34:

Man verbessere Formel (3.97), indem man
1

5
in der Form

1

5
= t + s

1− ts
ausdrückt, und zwar mit

Werten t und s, deren Absolutwerte kleiner als
1

5
sind (z.B. t = 1

10
, s =?).

Konvexität, geometrische Bedeutung der zweiten Ableitung

Die Funktion in Fig. 3.9a ist konvex, diejenige in Fig. 3.9b konkav. Konvexe Funktionen wölben
sich »nach unten«, konkave »nach oben«.

Dabei ist auch der Grenzfall eines Geradenstücks zugelassen. Dies ist sowohl konvex wie
konkav.

Liegt eine »nach unten gewölbte« Funktion vor, die kein Geradenstück enthält, so nennt man
sie zur besseren Unterscheidung streng konvex. Entsprechend gibt es auch streng konkave Funk-
tionen.
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Fig. 3.9: Konvexe und konkave Funktionen

Wie kann man diesen anschaulichen Sachverhalt in Formeln umgießen?

Dazu sehen wir uns Fig. 3.10 an. Dort ist eine konvexe Funktion f : I → R gezeichnet.
(I Intervall). Charakteristisch für diese Funktion ist folgendes: Verbindet man zwei beliebige
Graphenpunkte (x1, y1) und (x2, y2) durch eine Strecke — »Sehne« genannt —, so liegt das
Graphenstück von f , welches sich zwischen den Punkten befindet, »unterhalb« der Sehne —
oder im Grenzfall auf der Sehne.

Das heißt: Wählen wir eine beliebige Zahl x zwischen x1 und x2 (x1 < x < x2), so ist stets

f (x) ≤ g(x) , (3.98)

wobei g die Gerade durch die beiden Punkte (x1, y1), (x2, y2) ist (y1 = f (x1), y2 = f (x2)).
Nach der »Zweipunkteform« einer Geraden gilt

g(x) = (y2 − y1)
x − x1

x2 − x1
+ y1 . (3.99)

Mit der Abkürzung

λ = x − x1

x2 − x1
(3.100)

folgt

g(x) = (1− λ)y1 + λy2 .

Die Zahl λ ist das Verhältnis der Streckenlängen x − x1 zu x2 − x1 (s. Fig. 3.10), also gilt
0 < λ < 1. Umgekehrt kann man x durch dieses Streckenverhältnis ausdrücken, indem man
(3.100) nach x auflöst:

x = (1− λ)x1 + λx2 .

Einsetzen in (3.98) ergibt

f ((1− λ)x1 + λx2) ≤ (1− λ)y1 + λy2 für alle λ ∈ (0,1).
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Fig. 3.10: Zur formelmäßigen Erfassung konvexer Funktionen

Diese Ungleichung ist charakteristisch für konvexe Funktionen. Unsere anschauliche Motivation
führt uns damit zu folgender exakten Definition:

Definition 3.5:
Eine reellwertige Funktion f heißt konvex auf einem Intervall I , wenn die Unglei-
chung

f ((1− λ)x1 + λx2) ≤ (1− λ) f (x1)+ λ f (x2)

für beliebige x1, x2 ∈ I und beliebiges λ ∈ (0,1) erfüllt ist.
Darf in der Ungleichung < anstelle von ≤ gesetzt werden, so nennt man f streng

konvex. Im Falle ≥ anstelle von ≤ wird f konkav genannt, im Falle > anstelle von ≤
streng konkav.

Statt » f ist streng konvex« sagt man auch » f hat eine Linkskrümmung«, entsprechend bei streng
konkavem f : » f hat eine Rechtskrümmung«. (Hier stellt man sich offenbar vor, daß man im
Auto auf dem Graphen von f entlangfährt in Richtung steigender x-Werte.)

Geometrische Deutung der zweiten Ableitung

Die Betrachtung der Fig. 3.9a zeigt, daß die Steigung der gezeichneten konvexen Funktion f
von links nach rechts zunimmt (oder wenigstens nicht abnimmt). f ′ ist also monoton steigend.
Das bedeutet aber f ′′(x) ≥ 0. Man vermutet sogar, daß aus f ′′(x) > 0 strenge Konvexität folgt.
Entsprechend ist eine konkave Funktion durch f ′′(x) ≤ 0 gekennzeichnet, während f ′′(x) < 0
sogar strenge Konkavheit verbürgt (zweimalige Differenzierbarkeit vorausgesetzt). Wir präzisie-
ren diese anschaulichen Überlegungen in folgendem Satz:

Satz 3.20:
Es sei f eine reelle Funktion, die auf einem Intervall I stetig ist und im Inneren I

◦

dieses Intervalls zweimal stetig differenzierbar ist. Damit folgt:

f ′′(x) ≥ 0 für alle x ∈ I
◦ ⇐⇒ f ist konvex auf I ,

f ′′(x) ≤ 0 für alle x ∈ I
◦ ⇐⇒ f ist konkav auf I .

Im Falle positiver bzw. negativer zweiter Ableitung gilt die Verschärfung:
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f ′′(x) > 0 für alle x ∈ I
◦ ⇐⇒ f ist streng konvex auf I ,

f ′′(x) < 0 für alle x ∈ I
◦ ⇐⇒ f ist streng konkav auf I .

Beweis:

(I) Es sei f ′′(x) ≥ 0 auf I
◦

. Wir zeigen, daß f konvex auf I ist, d.h. daß für beliebige x1 < x2

aus I gilt:

[(1− λ) f (x1)+ λ f (x2)] − f (x) ≥ 0 für x = (1− λ)x1 + λx2 , λ ∈ (0,1).

Man erkennt die Richtigkeit der Ungleichung durch folgende Umformung:

(1− λ) f (x1)+ λ f (x2)− f (x)

= (1− λ)( f (x1)− f (x))+ λ( f (x2)− f (x))

= (1− λ) f ′(ξ1)(x1 − x)+ λ f ′(ξ2)(x2 − x)

= (1− λ) f ′(ξ1)(x1 − x2)+ λ f ′(ξ2)(x2 − x1)

= λ(1− λ)(x2 − x1)( f ′(ξ2)− f ′(ξ1))

= λ(1− λ)(x2 − x1)(ξ2 − ξ1)
︸ ︷︷ ︸

>0

f ′′(ξ0) ≥ 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

nach Mittelwertsatz mit

x1 < ξ1 < x < ξ2 < x2

wiederum nach

Mittelwertsatz mit

ξ1 < ξ0 < ξ2

Die Konvexität ist damit gezeigt. Im Falle f ′′(x) > 0 auf I
◦

folgt insbesondere f ′′(ξ0) > 0 und
damit die strenge Konvexität. Der konkave Fall ergibt sich analog.

(II) Umgekehrt ist zu zeigen: f konvex⇒ f ′′(x) ≥ 0 auf I
◦

. f sei also konvex auf I ; damit gilt

für beliebige Punkte x1 < x < x2 aus I
◦

die Ungleichung (3.98)

f (x) ≤ g(x) ,

wobei g der Gerade durch (x1, f (x1)) und (x2, f (x2)) ist. Subtraktion von f (x1) = g(x1) und
Division durch x − x1 > 0 liefert

f (x)− f (x1)

x − x1
≤ g(x)− g(x1)

x − x1
=: m ,

wobei m die Steigung der Geraden g ist. Mit x → x1 erhält man f ′(x1) ≤ m. Analog folgt aus
f (x) ≤ g(x) nach Subtraktion von f (x2) = g(x2) und Division durch x − x2 < 0:

f (x)− f (x2)

x − x2
≥ g(x)− g(x2)

x − x2
= m ⇒ f ′(x2) ≥ m .

Zusammen erhalten wir f ′(x1) ≤ f ′(x2) für x1 < x2, also ist f ′ monoton steigend und somit

f ′′(x) ≥ 0 auf I
◦

. Der konkave Fall verläuft entsprechend. �
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Zum Beispiel: Die folgenden Funktionen sind streng konvex auf R, da ihre zweiten Ableitungen
positiv sind:

f (x) = x2 , f (x) = ex , f (x) = cosh x .

Die Funktion f (x) = x3 ist streng konvex auf (0,∞) und streng konkav auf (−∞, 0).
Der Konvexitätsbedingung kann man folgende allgemeinere Fassung geben:

Folgerung 3.8:

f ist genau dann konvex auf dem Intervall I , wenn

f

(
n
∑

i=1

λi xi

)

≤
n
∑

i=1

λi f (xi ) , (n ≥ 2) , (3.101)

gilt für beliebige x1, . . . , xn ∈ I und beliebige positive λ1, . . ., λn mit
n
∑

i=1

λi = 1.

Bei strenger Konvexität steht < statt ≤ in (3.101). Für (streng) konkave Funktionen haben
wir ≥ (bzw. >) in (3.101). Der Beweis wird mit vollständiger Induktion geführt und bleibt dem
Leser überlassen.

Die Ungleichung (3.101) führt auf weitere fundamentale Ungleichungen der Mathematik
(s. [24], Abschn. 59). Zum Beispiel erhalten wir daraus

Folgerung 3.9:
(Ungleichung des gewichteten arithmetischen und geometrischen Mittels) Für beliebi-

ge nichtnegative Zahlen a1, . . . , an und beliebige positive λ1, . . . , λn mit
n
∑

i=1

λi = 1

gilt

aλ1
1 aλ2

2 · . . . · aλn
n ≤ λ1a1 + λ2a2 + . . .+ λnan . (3.102)

Im Falle λi = 1/n für alle i erhält man die klassische Ungleichung des geometrischen
und arithmetischen Mittels

n
√

a1 · a2 · . . . · an ≤
a1 + a2 + . . .+ an

n
. (3.103)

Beweis:

ln x ist streng konkav auf (0,∞), da die zweite Ableitung negativ ist. Damit gilt nach Folge-
rung 3.8

ln

(
n
∑

i=1

λi ai

)

≥
n
∑

i=1

λi ln ai = ln
(

aλ1
1 · . . . · aλn

n

)

.



3.2 Ausbau der Differentialrechnung 253

wobei alle ai als positiv vorausgesetzt seien. Wegen der Monotonie der Logarithmusfunktion
folgt (3.102). Ist aber ai = 0, so gilt (3.102) trivialerweise. �

Übung 3.35:

Wo sind die folgenden Funktionen konvex oder konkav?

sin x , cos x , ln |x | , sinh x , arctan x , f (x) = x4 − 5x2 + 4 .

Übung 3.36:

Beweise: Ist f auf dem Intervall I konvex und streng monoton steigend, so ist die Umkehrfunk-

tion f −1 auf J = f (I ) konkav.

3.2.6 Das Newtonsche10 Verfahren

Das Lösen von Gleichungen ist eines der ersten und wichtigsten Anwendungsprobleme der Ma-
thematik. Wir wollen uns hier mit Gleichungen der Form

f (x) = 0

beschäftigen, wobei f eine reellwertige Funktion auf einem Intervall ist. Zur Lösung von f (x) =
0 soll das Newtonsche Verfahren beschrieben werden. Es beruht auf einer einfachen geometri-
schen Idee und ist doch äußerst weitreichend und für die Praxis von hoher Bedeutung.

Fig. 3.11: Zum Newtonschen Verfahren

Die Idee des Newtonschen Verfahrens läßt sich anhand der Fig. 3.11 klarmachen: Gesucht ist
die Schnittstelle x des Graphen von f mit der x-Achse (sie erfüllt f (x) = 0). Wir nehmen an,
daß ein Punkt x0 in der Nähe von x bekannt ist, den man durch Probieren oder Skizzieren des
Graphen gewonnen hat.

Man legt nun die Tangente an f in x0 und sucht ihre Schnittstelle x1 mit der x-Achse auf

10 Sir Isaac Newton (1643 – 1727), englischer Physiker, Mathematiker, Astronom, Alchemist, Philosoph und Theolo-
ge.
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(falls vorhanden). Da die Gleichung der Tangente

g(x) = f (x0)+ f ′(x0)(x − x0)

lautet, gewinnt man x1 aus g(x1) = 0, also f (x0)+ f ′(x0)(x1 − x0) = 0, d.h.

x1 = x0 −
f (x0)

f ′(x0)
.

(Dabei setzen wir f ′(x) �= 0 im ganzen Intervall I voraus.) x1 ist in den meisten Fällen eine
»bessere« Näherungslösung als x0.

Liegt x1 in I , so kann man die gleiche Überlegung abermals anwenden: Man legt an f in x1

die Tangente, berechnet deren Nullstelle x2 usw.

Man errechnet auf diese Weise sukzessive die Zahlen

xn+1 = xn −
f (xn)

f ′(xn)
(n = 0,1,2, . . .) , (3.104)

von denen wir annehmen wollen, daß sie alle in I liegen. (Es kann vorkommen, daß xn+1 für ein
n nicht in I liegt. Dann bricht das Verfahren ab.)

Die so berechnete Folge x0, x1, x2, . . . konvergiert »normalerweise« gegen die Nullstelle x
von f . »Normalerweise« heißt: unter Voraussetzungen, wie sie üblicherweise in den Anwendun-
gen erfüllt sind.

Die Folge der Zahlen x0, x1, x2, . . . heißt eine Newtonfolge zu f .

Der folgende Satz gibt hinreichende Bedingungen an, unter welchen die Newtonfolge gegen
die Nullstelle x von f strebt.

Satz 3.21:

Es sei f eine reelle, dreimal stetig differenzierbare Funktion auf einem Intervall I =
[x0 − r, x0 + r ], und es gelte f ′(x) �= 0 für alle x ∈ I . Ferner existiere eine positive
Zahl K < 1 mit

∣
∣
∣
∣

f (x) f ′′(x)

f ′(x)2

∣
∣
∣
∣
≤ K < 1 für alle x ∈ I (3.105)

und
∣
∣
∣
∣

f (x0)

f ′(x0)

∣
∣
∣
∣
≤ (1− K )r . (3.106)

Damit folgt: f hat genau eine Nullstelle x in I . Die Newtonfolge x0, x1, x2, . . ., defi-
niert durch (3.104) f konvergiert quadratisch gegen x , d.h. es gilt

|xn+1 − x | ≤ C(xn − x)2 für alle n = 0, 1, 2, . . . (3.107)
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mit einer Konstanten C . Schließlich haben wir die Fehlerabschätzung

|xn − x | ≤ | f (xn)|
M

mit 0 < M ≤ min
x∈I
| f ′(x)|. (3.108)

Beweis:
Man führt die Hilfsfunktion

g(x) = x − f (x)

f ′(x)
, (x ∈ I ) ,

ein. Damit ergibt sich die Newtonfolge aus der einfachen Iterationsvorschrift xn+1 = g(xn),
n = 0, 1, 2, . . ..

g erfüllt auf I die Voraussetzungen des Banachschen Fixpunktsatzes (Abschn. 1.4.7, Satz 1.8),
denn es ist |g′(x)| = | f (x) f ′′(x)/ f ′(x)2| ≤ K < 1, also nach dem Mittelwertsatz:

|g(x)− g(z)| = |g′(ξ)||x − z| ≤ K |x − z| für alle x , z ∈ I .

Folglich ist g eine »Kontraktion« auf I . Ferner bildet g das Intervall I = [x0 − r, x0 + r ] in sich
ab. Denn für beliebiges x ∈ I gilt mit (3.106)

|g(x)− x0| ≤ |g(x)− g(x0)| + |g(x0)− x0| ≤ K |x − x0| +
∣
∣
∣
∣

f (x0)

f ′(x0)

∣
∣
∣
∣

≤ Kr + (1− K )r = r

also auch g(x) ∈ I . Die Anwendung des Banachschen Fixpunktsatzes liefert damit die Kon-
vergenz der Newtonfolge gegen den (einzigen) Fixpunkt x von g. Er erfüllt x = g(x) =
x − f (x)/ f ′(x), d.h. f (x) = 0.

Die quadratische Konvergenz ergibt sich aus der Taylorformel von g um x für n = 1, mit
Lagrangeschem Restglied

g(x) = g(x)+ g′(x)(x − x)+ g′′(ξ)

2
(x − x)2 (ξ ∈ I ) .

Wegen g(x) = x und g′(x) = f (x) f ′′(x)/ f ′(x)2 = 0 folgt mit x = xn , g(x) = xn+1 und

C = 1

2
max
t∈I
|g′′(t)|:

|xn+1 − x | ≤ C(xn − x)2 ,

womit (3.107) bewiesen ist. (3.108) leitet man leicht aus dem Mittelwertsatz her, angewandt auf
f (xn)− f (x), wobei f (x) = 0. �

Bemerkung: Der Satz besagt im Wesentlichen: Ist die Näherungslösung x0 von f (x) = 0 »gut
genug«, so funktioniert das Newtonsche Verfahren. Denn je besser x0 die Lösung x annähert, je
kleiner also | f (x0)| ist, desto größer ist die Chance, daß Konstanten r > 0 und K > 0 existieren,
so daß (3.105) und (3.106) erfüllt sind.
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Es bleibt die Frage: Wie findet man Anfangsannäherungen x0? Wir sagten schon: Oft muß man
sie durch Probieren und Zeichnen des Funktionsgraphen suchen oder beim automatischen Rech-
nen auf dem Computer durch das Intervallhalbierungsverfahren. Im Falle konvexer Funktionen f
ist man jedoch besser dran. Hier sind wir mit jeder Anfangsnäherung erfolgreich, die f (x0) ≥ 0
erfüllt. Präzise Auskunft gibt der folgende Satz:

Satz 3.22:
Die zweimal stetig differenzierbare Funktion f : [a, b] → R sei konvex und erfülle
f ′(x) �= 0 auf [a, b]. Die Vorzeichen von f (a) und f (b) seien verschieden.

Damit folgt: Ausgehend von einem beliebigen Punkt x0 ∈ [a, b] mit f (x0) ≥ 0
konvergiert die Newtonfolge von f , und zwar gegen die einzige Nullstelle von f in
[a, b].

Zusatz: Ist f sogar dreimal stetig differenzierbar, so ist die Konvergenz quadratisch.

Beweis:
Ohne Beschränkung der Allgemeinheit nehmen wir f ′(x) > 0 auf [a, b] an. f steigt somit streng
monoton und hat daher genau eine Nullstelle in [a, b]. Fig. 3.11 zeigt, daß die Newtonfolge (xn)

monoton fällt und durch die Nullstelle x von f nach unten beschränkt ist. (Man prüft dies leicht
durch Rechnung nach.) Damit konvergiert die Newtonfolge gegen eine Grenzwert x∗. Läßt man
in xn+1 = xn − f (xn) auf beiden Seiten n gegen∞ gehen, so erhält man

x∗ = x∗ − f (x∗)
f ′(x∗)

⇒ f (x∗) = 0 ,

also x∗ = x . Der Zusatz folgt aus Satz 3.21, der ja besagt, daß bei genügend kleinem Abstand
der Näherungslösungen von x quadratische Konvergenz von (xn) vorliegt. �

Bemerkung: In der Praxis des Ingenieurs geht man meistens so vor, daß man die Newtonfolgen
x0, x1, x2, . . . einfach sukzessive durch die Vorschrift xn+1 = xn − f (xn)/ f ′(xn) berechnet,
ausgehend von einer Anfangsnäherung, die man sich irgendwie verschafft hat (durch Probieren,
Zeichnen, Konvexitätsüberlegung à la Satz 3.22 oder durch ein vorgeschaltetes Intervallhalbie-
rungsverfahren). Man kümmert sich wenig um Konvergenzsätze, sondern bricht das Verfahren

ab, wenn |xn+1− xn| »klein genug« ist (z.B. wenn
∣
∣
∣

xn
xn+1
− 1

∣
∣
∣ < 5 · 10−9, d.h. wenn xn und xn+1

auf 8 Stellen übereinstimmen). Da

|xn+1 − xn| =
∣
∣
∣
∣

f (xn)

f ′(xn)

∣
∣
∣
∣
≈ | f (xn)|

M
mit M = min

x∈U
| f ′(x)|

gilt, wenn U ein genügend kleines Intervall um die Nullstelle ist, und da | f (xn)|/M ≥ |xn − x |
die Fehlerabschätzung darstellt, ist durch |xn+1 − xn| ungefähr der Fehler |xn − x | gegeben. Es
gilt also die

Faustregel: Der Fehler |xn− x | ist nahezu gleich der Änderung beim nächsten Newtonschritt,
d.h. nahezu gleich |xn+1 − xn|.
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Für die Praxis reicht dieses »hemdsärmelige« Vorgehen in den meisten Fällen aus!

Es sei schließlich erwähnt, daß sich das Newtonsche Verfahren vorzüglich zur Nullstellenbestim-
mung von Polynomen eignet. Dabei gewinnt man die Funktionswerte f (xn) und die Ableitungs-
werte f ′(xn) für das Newton-Verfahren bequem durch das »doppelte Hornerschema«, d.h.: Ist

f (x) = a0 + a1 + a2x2 + . . .+ am xm ,

so berechnet man die ersten beiden Systeme des großen Hornerschemas (vgl. Abschn. 2.1.5):

bm−2bm−1 . . . b1 b0 r0 = f (xn)

cm−2 cm−3 . . . c0 r1 = f ′(xn)

Doppeltes Hornerschema

am am−1

xnbm−1

xncm−2 . . .

. . .

. . . a1 a0a2

xnb2 xnb1 xnb0

xnc1 xnc0

x = xn

(3.109)

Die Gleichungen r0 = f (xn), r1 = f ′(xn) ergeben sich dabei aus folgender Überlegung: Setzt
man das Schema zum großen Hornerschema fort, so erhält man

f (x) = r0 + r1(x − xn)+ r2(x − xn)2 + . . .+ rm(x − xn)m

(s. Abschn. 2.1.5). Daraus folgt unmittelbar f (xn) = r0, f ′(xn) = r1.
Wendet man also bei jedem Newton-Schritt das doppelte Hornerschema (3.109) zur Berech-

nung von Funktions- und Ableitungswert an, so hat man ein effektives Verfahren zur Ermittlung
der reellen Nullstellen des Polynoms f (vgl. [56], 4.2.6).

Diese Idee ist in [40] zu einem »automatensicheren« Verfahren weiterentwickelt worden. Man
findet das »Nickel-Verfahren« oder andere vollautomatische Verfahren heute in fast allen Pro-
grammbibliotheken elektronischer Rechenanlagen.

x0
.= 2,000000000

x1
.= 1,900995594

x2
.= 1,895511645

x3
.= 1,895494267

x4
.= 1,895494267

Fig. 3.12: a) Zur Gleichung π
2 − sin x = 0. b) Zur Berechnung der Lösung von π

2 − sin x = 0
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Beispiel 3.29:
Gelöst werden soll die Gleichung

x

2
− sin x = 0 .

Es handelt sich um die Suche nach den »Schnittpunkten« der beiden Funktionen g(x) = x/2
und sin x Die Fig. 3.12a zeigt, daß drei Schnittpunkte zu erwarten sind, einer bei 0, einer bei 2
und der dritte etwa bei −2, wobei der letzte das Negative desjenigen bei 2 ist. Wir brauchen also

numerisch nur die Lösung x in der Nähe von 2 zu berechnen. Wir setzen f (x) = x

2
− sin x . Für

diese Funktion errechnen wir die Rekursionsvorschrift nach (3.104):

xn+1 = xn −
xn/2− sin xn

1/2− cos xn
, n = 0,1,2, . . . .

Beginnend mit x0 = 2 erhält man daraus die Werte in Fig. 3.12b, die auf 10 Dezimalstellen
gerundet sind. Wir erkennen die unglaublich schnelle Konvergenz des Newton-Verfahrens, denn
schon ab x3 ändern sich die numerischen Werte nicht mehr. Die Lösung lautet also, auf 10 Stellen
genau:

x
.= 1,895494267 .

(Der Leser überprüfe mit der Fehlerabschätzung (3.108) des Satzes 3.21, daß der Fehler kleiner
als 5 · 10−10 ist.)

x0
.= 3,000000000

x1
.= 2,000000000

x2
.= 1,750000000

x3
.= 1,732142857

x4
.= 1,732050810

x5
.= 1,732050808

x6
.= 1,732050808

Fig. 3.13: a) Zur Berechnung von
√

a mit dem Newtonschen Verfahren b) Berechnung von
√

3

Beispiel 3.30:
(Berechnung von Quadratwurzeln) Es sei a > 0 gegeben, und es soll

√
a berechnet werden.

Man sieht, daß
√

a die einzige Nullstelle der Funktion f (x) = x2 − a auf [0,∞) ist. Ausge-
hend von einem x0 mit f (x0) ≥ 0 ermitteln wir die Nullstelle mit dem Newtonverfahren. Die
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Iterationsvorschrift xn+1 = xn − f (xn)/ f ′(xn) wird für unsere Funktion nach Umformung zu

xn+1 =
1

2

(

xn +
a

xn

)

n = 1,2, . . . .

Als x0 kann man x0 = a wählen, wenn a > 1 ist, und x0 = 1, falls 0 < a < 1 gilt. In jedem
dieser Fälle ist die Bedingung f (x0) ≥ 0 erfüllt, d.h. die so gebildete Folge (xn) strebt nach
Satz 3.22 quadratisch gegen

√
a. Beachtet man nun noch, daß x1 = 1

2 (x0 + a/x0) der gleiche
Wert ist, egal, ob man x0 = a oder x0 = 1 setzt, so schrumpft unsere Anfangsbedingung zu der
einfachen Regel zusammen: Man setze in jedem Falle x0 = a.

Die Tabelle in Fig. 3.13b verdeutlicht anhand der Berechnung von
√

3 die schnelle Konver-
genz. Nach nur 5 Iterationsschritten ist

√
3

.= 1,732050808

auf 10 Stellen ermittelt.
Die angegebene Methode ist eine der besten zur Berechnung von Quadratwurzeln. Die mei-

sten Computerprogramme beruhen darauf. (Bei großem a werden zuerst Zweierpotenzen abge-
spalten: a = a022k , mit 1 ≤ a0 < 4, und dann aus a0 und 22k gesondert die Wurzeln gezogen:√

a = √a02k .)

Übung 3.37:

Berechne mit dem Newtonverfahren die reellen Lösungen der Gleichung

x − x5

6
− 3

4
= 0 .

Übung 3.38:

Gib ein Verfahren zur Berechnung von 3
√

a an (a ∈ R beliebig).

3.2.7 Bestimmung von Extremstellen

Wir behandeln das Problem, Maxima und Minima einer reellen Funktion zu finden. Diese Auf-
gabe tritt in Naturwissenschaft, Technik, Wirtschaftswissenschaft usw. häufig auf. Sie steht auch
historisch mit am Anfang der Differential- und Integralrechnung und hat befruchtend auf ihre
Entwicklung gewirkt.

Zunächst einige Begriffsbildungen, damit wir wissen, wovon wir reden.

Definition 3.6:
Man sagt, die Funktion f : I → R (I Intervall) besitzt in x0 ∈ I ein lokales Maximum,
wenn es eine ε-Umgebung U von x0 gibt, in der f (x0) größter Funktionswert ist, d.h.

f (x0) ≥ f (x) für alle x ∈ U ∩ I
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Fig. 3.14: Typen von Extremstellen

gilt. x0 heißt eine lokale Maximalstelle, und die Zahl f (x0) ist das zugehörige lokale
Maximum. Gilt sogar

f (x0) > f (x) für alle x ∈ U ∩ I mit x �= x0,

so spricht man von einem echten lokalen Maximum und einer echten lokalen Maxi-
malstelle.

Entsprechend werden lokale Minima und Minimalstellen definiert, die ebenso echt oder unecht
sein können.

Das »eigentliche« Maximum einer Funktion f : I → R, also der größte Funktionswert f (x0)

auf ganz I , wird zur Unterscheidung von lokalen Maxima auch globales (oder absolutes) Maxi-
mum genannt. x0 heißt dabei globale (oder absolute) Maximalstelle. Das globale Maximum ist
natürlich auch lokales Maximum, aber nicht umgekehrt. Für Minima und Minimalstellen verein-
bart man Entsprechendes. Fig. 3.14 verdeutlicht diese Begriffe.

Der Sammelbegriff für Maximum und Minimum ist Extremum, für Maximal- und Minimal-
stelle Extremstelle.

Wie kann man Extremstellen einer Funktion ermitteln? Sehen wir uns dazu Fig. 3.14 an: Wir
erkennen, daß in den Maximalstellen x0 und x2, wie auch in der Minimalstelle x1, waagerechte
Tangenten an f vorliegen, d.h. die Ableitung f ′ von f verschwindet dort. x0, x1, x2 sind dabei
innere Punkte des Definitionsbereiches I von f . Extremalstellen können jedoch auch Randpunk-
te des Definitionsbereiches sein. Der linke Randpunkt a ist zweifellos eine lokale Minimalstelle,
während der rechte Randpunkt b sogar eine absolute Minimalstelle von f ist. Diese Überlegun-
gen führen zu folgendem Satz:

Satz 3.23:
Für jede lokale Extremstelle x0 einer differenzierbaren Funktion f auf einem Intervall
I gilt

(a) f ′(x0) = 0



3.2 Ausbau der Differentialrechnung 261

oder:

(b) x0 ist Randpunkt von I .

Beweis:
Es sei x0 eine lokale Maximalstelle. Ist x0 kein Randpunkt von I , so gibt es eine ε-Umgebung U
von x0, die ganz in I liegt, und in der f (x0)− f (x) ≥ 0 erfüllt ist. Daraus folgt

f ′(x0) = lim
x→x0
x<x0

f (x0)− f (x)

x0 − x
≥ 0 , f ′(x0) = lim

x→x0
x>x0

f (x0)− f (x)

x0 − x
≤ 0 ,

also f ′(x0) = 0. (Analog für Minimalstellen.) �

Um die Extremstellen von f zu finden, hat man also die Gleichung

f ′(x) = 0

zu lösen und anschließend die Lösungen — wie auch die Randpunkte von I — zu untersuchen.
Die Entdeckung dieser Tatsache gelang Leibniz 1675, und er war mit Recht sehr stolz darauf.
In der Menge der Lösungen von f ′(x) = 0 — zuzüglich der Randpunkte von I — sind also

alle Extremstellen von f enthalten. Umgekehrt jedoch braucht nicht jeder Punkt dieser Menge
Extremstelle zu sein!

Man denke z.B. an die Funktion f (x) = x3 auf R (s. Fig. 3.15). Für sie gilt zwar f ′(0) = 0,
doch ist x0 = 0 weder lokale Maximal- noch Minimalstelle.

Fig. 3.15: Beispiel für einen Punkt x0 mit f ′(x0) = 0, wobei x0 keine Extremstelle ist (hier x0 = 0).

Es muß also ein Kriterium her, welches uns zu erkennen hilft, welche Lösungen von f ′(x) = 0
Extremstellen sind. Ein hinreichendes Kriterium liefert der folgende Satz. Es handelt sich um das
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wichtigste Kriterium dieser Art.

Satz 3.24:
Ist f : I → R (I Intervall) zweimal stetig differenzierbar und gilt f ′(x0) = 0 für
einen Punkt x0 ∈ I , so folgt:

f ′′(x0) < 0 �⇒ in x0 liegt ein echtes lokales Maximum,

f ′′(x0) > 0 �⇒ in x0 liegt ein echtes lokales Minimum.

Beweis:
Wir notieren die Taylorformel für f um x0, und zwar für n = 1:

f (x) = f (x0)+ f ′(x0)(x − x0)+
f ′′(ξ)

2
(x − x0)

2 .

Das letzte Glied ist das Lagrangesche Restglied mit einem ξ zwischen x und x0. Wir wollen
f ′′(x0) > 0 annehmen. Da f ′′ stetig ist, gilt f ′′(x) > c > 0 in einer δ−Umgebung U von x0 (c
konstant). Beachtet man noch f ′(x0) = 0, so folgt aus der Taylorentwicklung

f (x) > f (x0)+
c

2
(x − x0)

2 > f (x0) für alle x ∈ U ∩ I mit x �= x0,

d.h. x0 ist echte lokale Minimalstelle.
Analog folgert man aus f ′′(x0) < 0 und f ′(x0) = 0, daß x0 echte lokale Maximalstelle ist. �

Damit gewinnt man die folgende Methode zur Extremwert-Bestimmung bei zweimal stetig dif-
ferenzierbaren Funktionen f : I → R (I Intervall).

Verfahren zur Bestimmung von Extremstellen

(I) Man errechnet sämtliche Lösungen der Gleichung

f ′(x) = 0 , x ∈ I ,

(mit dem Newtonschen Verfahren oder direkten Auflösungsformeln). Wir nehmen an, daß
es endlich viele sind.

(II) Für jede Lösung x0 von f ′(x) = 0 bestimmt man f ′′(x0). x0 ist eine lokale Maximalstelle,
falls f ′′(x0) < 0, x0 ist eine lokale Minimalstelle, falls f ′′(x0) > 0. Wir wollen annehmen,
daß kein anderer Fall vorkommt. (Das trifft für die meisten Anwendungen zu. Der Fall
f ′′(x0) = 0 wird in Übung 3.44 im nachfolgenden Abschnitt behandelt.)

(III) Dann errechnet man die Funktionswerte f (x0) für alle Lösungen x0 von f ′(x) = 0 sowie
für die Randpunkte von I (sofern sie zum Definitionsbereich von f gehören.). Damit sind
alle lokalen Extrema gefunden.

(IV) Ist I beschränkt und abgeschlossen, so findet man unter den lokalen Extrema leicht das
globale Maximum und das globale Minimum heraus.



3.2 Ausbau der Differentialrechnung 263

Bemerkung: Gibt es unendlich viele Nullstellen von f ′, oder gilt f ′′(x) = 0 für einige dieser
Nullstellen, so hat man weitere Untersuchungen durchzuführen (Betrachtung höherer Ableitun-
gen usw.). In den meisten Fällen kommt man aber mit dem obigen Verfahren zurecht.

Beispiel 3.31:
Wir suchen die Extremstellen der Funktion

f (x) = ex −2x + 1 , für x ∈ R

(I) Dazu setzen wir f ′(x) = ex −2 gleich Null:

ex −2 = 0 ⇐⇒ ex = 2 ⇐⇒ x = ln 2 .

Einzige Nullstelle von f ′ ist also x0 = ln 2
.= 0,693147.

(II) Für diese Nullstelle ist f ′′(x0) = ex0 > 0, also liegt in x0 eine echtes lokales Minimum
vor.

(III) Randpunkte von R gibt es nicht. Also ist x0 einzige Extremstelle und damit auch die globale
Minimalstelle von f . Die Zahl f (x0)

.= 1,613706 ist damit das globale Minimum von f .

Beispiel 3.32:
Es soll unter allen Rechtecken mit gleichem Flächeninhalt F dasjenige mit kleinstem Umfang
gesucht werden. Welche Form hat es?

Wir greifen uns irgendeines der Rechtecke heraus. Für seine Seitenlängen x und y gilt F =
x · y, und für den Umfang u = 2(x + y). Wir setzen y = F/x ein und erhalten

u = 2

(

x + F

x

)

, x > 0 .

Das globale Minimum dieser Funktion soll gesucht werden. Wir errechnen die positiven Nullstel-
len der Ableitung u′ = 2(1− F/x2):

2

(

1− F

x2

)

= 0 ⇐⇒ x =
√

F .

Die zweite Ableitung u′′ = 4F/x3 ist an dieser Stelle positiv, also liegt bei x0 =
√

F eine
Minimalstelle. Es ist die gesuchte, da es keine weitere gibt. x0 =

√
F ist aber die Seitenlänge

eines Quadrates mit Inhalt F . Die optimale Form ist also das Quadrat.

Weitere Beispiele aus Technik und Naturwissenschaft sind im Abschn. 3.3.6 angegeben.

Übung 3.39:

Bestimme alle Extremalstellen der Funktion

f (x) = x4 − 0,4x − 3,9x2 + 4,6x − 9

auf dem Definitionsbereich I = [−10,10].



264 3 Differentialrechnung einer reellen Variablen

Fig. 3.16: Kasten mit größtem Volumen

Übung 3.40*:

Aus einem rechteckigen Blech mit den Seitenlängen a = 50 cm, b = 80 cm, soll nach Heraus-

schneiden quadratischer Eckstücke ein Kasten mit größtmöglichem Volumen geknickt werden

(Kasten ohne Deckel). Wie groß ist die Höhe x des Kastens? (Vgl. Fig. 3.16)

3.2.8 Kurvendiskussion

Schaubilder von Funktionen werden gerade von Ingenieuren viel verwendet. Um den wesentli-
chen Verlauf einer reellen Funktion zu überblicken, geht man zweckmäßig die folgenden Ge-
sichtspunkte der Reihe nach durch. (Auf Computerbildschirmen lassen sich leicht Schaubilder
von Funktionen erstellen. Sie ergänzen die Kurvendiskussion graphisch und numerisch.)

(I) Definitionsbereich: Zuerst bestimme man den Definitionsbereich einer vorgelegten Funktion
f , die von einer reellen Variablen abhängt. Da f (x) häufig formelmäßig gegeben ist, muß geprüft

werden, für welche reellen x der Formelausdruck sinnvoll ist. (Für
√

x muß z.B. x ≥ 0 sein, für
1/x muß x �= 0 sein usw.) Beschreibt z.B. eine Länge, eine Masse oder eine absolute Temperatur,
so ist nur x ≥ 0+ sinnvoll. Definitionsbereiche sind in Anwendungsbeispielen normalerweise
Intervalle oder Vereinigungen endlich vieler Intervalle.

(II) Symmetrie: Man prüfe, ob eine gerade Funktion (d.h. f (−x) = f (x)) oder ungerade
Funktion (d.h. f (−x) = − f (x)) ist (evtl. nach »Nullpunktverschiebung« x ′ = x − x0, y′ =
y − y0).

(III) Nullstellen von f, f′, f′′: Man berechne die Nullstellen von f , f ′ und f ′′ und bestimme so
die Intervalle, in denen diese Funktionen positiv bzw. negativ sind. Damit ist insbesondere klar,
wo f

positiv bzw. negativ ( f (x) > 0 bzw. f (x) < 0)

streng monoton wachsend bzw. fallend ( f ′(x) > 0 bzw. f ′(x) < 0)

streng konvex bzw. konkav ( f ′′(x) > 0 bzw. f ′′(x) < 0)

ist.



3.2 Ausbau der Differentialrechnung 265

(IV) Extremstellen: Die Nullstellen von f ′, zusammen mit den Vorzeichen von f ′′, liefern
lokale Maxima und Minima. Man vergesse nicht die Randpunkte des Definitionsbereiches. (In
Punkten x mit f ′(x) = f ′′(x) = 0 sind Sonderuntersuchungen durchzuführen, s. Übung 3.44.)

(V) Wendepunkte: Man bestimme die Wendepunkte von f . Als Wendepunkt bezeichnet man
dabei jeden »Nulldurchgang« x0 von f ′′ (d.h. x0 ist Nullstelle von f ′′, und es gibt eine ε-
Umgebung U um x0, in der links von x0 die Funktionswerte von f ′′ ein anderes Vorzeichen
haben als rechts von x0). Eine hinreichende Bedingung für Wendepunkte x0 ist f ′′(x0) = 0,
f ′′′(x0) �= 0. ( f dreimal stetig differenzierbar vorausgesetzt. Für den Fall f ′′(x0) = f ′′′(x0) = 0
s. 3.44.)

Beim Durchgang durch einen Wendepunkt wechselt die Funktion von streng konvexem zu
streng konkavem Verhalten, oder umgekehrt. Da f in einer Umgebung eines Wendepunktes na-
hezu eine Gerade ist, sind die Wendepunkte technisch oft wichtig (etwa bei Federkennlinien oder
Kennlinien von Verstärkern).

(VI) Pole, einseitige Grenzwerte: Ist x0 ein Häufungspunkt des Definitionsbereiches, gehört
aber nicht dazu, so bestimme man

lim
x→x0
x>x0

f (x) und lim
x→x0
x<x0

f (x)

und entsprechend für f ′, falls möglich. Gilt lim
x→x0

| f (x)| = ∞, so heißt x0 ein Pol von f (s. Ab-

schn. 1.6.8). Man ermittle die Pole von f . Ist beispielsweise f (x) = g(x)/h(x), so sind die
Nullstellen x0 von h Pole, in denen g(x0) �= 0 ist. Im Falle g(x0) = h(x0) = 0 versuche man
lim

x→x0
f (x) durch die de l’Hospitalschen Regeln zu gewinnen.

(VII) Verhalten für große |x|, Asymptoten: Man versuche lim
x→∞

f (x) und lim
x→−∞

f (x) zu be-

stimmen, falls möglich. Allgemeiner suche man nach »einfachen« Funktionen h mit

| f (x)− h(x)| → 0 für x →∞ bzw. x →−∞.

Jede solche Funktion h heißt eine Asymptote von f . In Abschn. 2.2.1 ist dargestellt, wie man
Asymptoten von rationalen Funktionen berechnet. Die Asymptoten sind dabei Polynome. Beson-
ders interessant sind Geraden als Asymptoten. Eine Gerade als Asymptote tritt genau dann auf,
wenn der Grad des Zählerpolynoms um höchstens 1 größer ist als der des Nennerpolynoms.

Beispiel 3.33:

Es soll die Funktion

f (x) = x4 − 5x2 + 2

2x3
(3.110)

nach den genannten Gesichtspunkten »diskutiert« werden.

(I) Der Definitionsbereich von f ist R\ {0} (d.h. R ohne 0), da der Formelausdruck (3.110) für
x = 0 keinen Sinn ergibt.
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Fig. 3.17: f (x) = x4−5x2+2
2x3

(II) Symmetrie: Es gilt zweifellos f (−x) = − f (x) für alle x �= 0. f ist also eine ungerade
Funktion. Ihr Graph liegt zentralsymmetrisch zum Punkt (0, 0). Aus diesem Grunde dis-
kutieren wir im Folgenden nur x > 0, da für x < 0 sich alle Eigenschaften durch diese
Symmetrie ergeben.

(III) Die Nullstellen von f ergeben sich aus x4 − 5x2 + 2 = 0. Setzen wir z = x2, so ist
z2−5z+2 = 0 zu lösen. Man errechnet die Lösungen z1 = (5−

√
17)/2, z2 = (5+

√
17)/2,

woraus sich die positiven Nullstellen von f ergeben:

x1 =

√

5−
√

17

2
.= 0,662 , x2 =

√

5+
√

17

2
.= 2,136 .

Die Nullstellen von

f ′(x) = x4 + 5x2 − 6

2x4
und f ′′(x) = 12− 5x2

x5

errechnet man durch Nullsetzen der Zählerpolynome. Man erhält

x3 = 1 (positive Nullstelle von f ′), x4=
√

12

5
.= 1,549 (positive Nullstelle von f ′′).

Durch Berechnung einiger weiterer Werte von f , f ′, f ′′ erkennt man:

In (0, x1) und (x2,∞) ist f positiv,

in (x1, x2) ist f negativ,

in (0, x3) ist f ′(x) < 0, also f streng monoton fallend,

in (x3,∞) ist f ′(x) > 0, also f streng monoton steigend,

in (0, x4) ist f ′′(x) > 0, also f streng konvex,

in (x4,∞) ist f ′′(x) < 0, also f streng konkav.
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(IV) Einzige positive Nullstelle von f ′ ist x3 = 1. Es gilt f ′′(x3) > 0, d.h. x3 = 1 ist eine lokale
Minimalstelle mit dem lokalen Minimum f (1) = −1. x3 = 1 ist die einzige Extremstelle
in (0,∞).

(V) Einziger Wendepunkt in (0,∞) ist x4 =
√

12/5, denn x4 ist einzige positive Nullstelle von
f ′′, wobei f ′′(x4) �= 0 erfüllt ist.

(VI) In 0 liegt ein Pol von f , da der Nenner in (3.110) für x = 0 verschwindet, der Zähler aber
nicht. Es ist

lim
x→0
x>0

f (x) = +∞ , lim
x→0
x<0

f (x) = −∞ .

(VII) f (x) läßt sich umschreiben in

f (x) = x

2
+ −5x2 + 2

2x3

(Bei komplizierten rationalen Funktionen benutzt man den Divisionsalgorithmus für Poly-
nome, s. Abschn. 2.2.2). Das zweite Glied rechts strebt für |x | → ∞ gegen 0, so daß f (x)

und x/2 sich für große |x | beliebig wenig unterscheiden. D.h.: Die Gerade h(x) = x

2
ist

Asymptote von f . Der Graph von f kommt also für große |x | dem Graphen von h beliebig
nahe.

Damit haben wir einen guten Überblick über die Funktion f gewonnen. Das Schaubild
(s. Fig. 3.17) läßt sich mit diesen Angaben, vermehrt um einige wenige Funktionswerte,
skizzieren.

Bemerkung: Heute, im Zeitalter des Computers, hat man in kurzer Zeit (mit Programmierung in
ca. fünf Minuten) ein Schaubild sowie eine Tabelle von etwa 100 Funktionswerten erstellt, die
ebenfalls einen Überblick über die Funktion geben. Die Kurvendiskussion liefert aber einen tiefe-
ren Einblick in den funktionalen Zusammenhang, sozusagen einen Blick »hinter die Kulissen«,
weswegen diese Methode nach wie vor wertvoll ist.

Wie wichtig Wendepunkte, Extremstellen und Asymptoten in Physik und Technik sind, zeigt die
Diskussion der van der Waalsschen Gasgleichung.

Beispiel 3.34:

Die van der Waalssche11 Zustandsgleichung für reale Gase lautet

(

p + n2a

V 2

)

(V − nb) = n RT . (3.111)

Dabei sind p der Druck, V das Volumen, T die absolute Temperatur, n die in Mol angegebene
Gasmenge, R = 8,314J/(K ·Mol) die allgemeine Gaskonstante und a, b Stoffkonstanten. Wir

11 Johannes Diderik van der Waals (1837 – 1923), niederländischer Physiker
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wollen p in Abhängigkeit von V studieren, d.h. wir lösen nach p auf und fassen V als unabhän-
gige Variable auf:

p = fT(V ) = n RT

V − nb
− n2a

V 2
. (3.112)

Für verschiedene Temperaturen T bekommen wir verschiedene Funktionen, was durch den Index

T an f angedeutet ist.

Nur für niedrige Temperaturen läßt sich ein Gas unter steigendem Druck verflüssigen, genauer
gesagt: unterhalb einer gewissen kritischen Temperatur Tk. Ist T > Tk, so bleibt das Gas selbst
unter beliebig hohem Druck gasförmig. Die kritische Temperatur Tk ist mathematisch dadurch
gekennzeichnet, daß die zugehörige Funktion p = fTk(V ) einen Wendepunkt mit waagerechter
Tangente besitzt. Der Wendepunkt Vk. wird kritisches Volumen genannt, der zugehörige Wert
pk = fTk(Vk) kritischer Druck. Das Problem besteht also darin, Tk, trk und pk zu finden. Man
berechnet dazu

p′ = f ′T(V ) = − n RT

(V − nb)2
+ 2n2a

V 3
, p′′ = f ′′T (V ) = 2n RT

(V − nb)3
− 6n2a

V 4
. (3.113)

Es ist f ′T(V ) = 0 und f ′′T (V ) = 0 zu setzen, d.h.

n RT

(V − nb)2
= 2n2a

V 3
,

2n RT

(V − nb)3
= 6n2a

V 4
. (3.114)

Dividiert man die Seiten der linken Gleichung durch die entsprechenden Seiten der rechten Glei-
chung und schreibt V = Vk, so folgt

Vk − nb

2
= Vk

3
, und daraus Vk = 3nb . (3.115)

Einsetzen in (3.114) und (3.112) liefert die kritischen Größen T = Tk und p = pk:

Tk =
8a

27bR
, pk =

a

27b2
. (3.116)

Aus gemessenen Werten Tk und pk können hieraus a und b bestimmt werden.

Mit den neuen Variablen

τ = T

Tk
, x = V

Vk
, y = p

pk
.

geht die Gasgleichung bzw. die aufgelöste Gl. (3.112) über in

(

y + 3

x2

)(

x − 1

3

)

= 8

3
τ bzw. y = gτ (x) := 8τ

3x − 1
− 3

x2
. (3.117)
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Es folgt

y′ = g′τ (x) = − 24τ

(3x − 1)2
+ 6

x3
, y′′ = g′′τ (x) = 144τ

(3x − 1)3
− 18

x4
. (3.118)

Hierauf baut man die Kurvendiskussion der Funktionen y = gτ (x) auf:

Der Nenner (3x − 1) muß positiv sein, damit ein zusammenhängender Graph von gτ entsteht,
wie er für die Physik einzig sinnvoll ist. Also:

3x − 1 > 0 , d.h. x >
1

3
,

d.h. Definitionsbereich von gτ ist
(

1
3 ,∞

)

.

Fig. 3.18: Zur van der Waalsschen Gleichung

Für τ > 1 hat gτ keine Extrema, für τ = 1 (kritische Funktion g1) liegt bei x = 1 ein
Wendepunkt mit waagerechter Tangente, ein zweiter Wendepunkt liegt bei x

.= 1,878 mit y
.=

0,8758. Für τ < 1 treten Extrema und Wendepunkte auf, die der Leser für einzelne τ−Werte
bestimmen möge. Fig. 3.18 zeigt die Graphen einiger Funktionen gτ . Für große τ nähert sich gτ

der Zustandsfunktion idealer Gase.

Im Falle τ < 1 verhält sich das Gas in Wirklichkeit so, wie durch die waagerechten gestrichel-
ten Linien dargestellt. Hier ist das Gas teilweise verflüssigt (vgl. [28], S. 465).
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Übung 3.41:

Führe für folgende Funktionen Kurvendiskussionen durch:

(a) f (x) = x2 − 1

x2 + 4x + 5
, (b) f (x) = x2√x + 4 , (c) f (x) = 6x3

(3x − 1)2
,

(d) f (x) = xx = ex ln x , (e) f (x) = 1√
2π

e−x2/2 , (f) f (x) = x e−1/x .

Übung 3.42:

Wieviele Lösungen besitzen die folgenden Gleichungen? Man beantworte dies mit Kurvendis-

kussionen, insbesondere durch das Bestimmen der Intervalle, in denen die Funktionen streng

monoton wachsen oder fallen.

(a) ln x − x

2
+ 1 = 0 , (b) cos x = x2 − x4 ,

(c) ex = 2+ 2x + x2 , (d) arctan x = 1+ 2x − x2 .

Fig. 3.19: Zur Abhängigkeit der effektiven Spannung von der Frequenz eines Schwingkreises.

Übung 3.43:
12 Die Resonanzkurven eines elektrischen Schwingkreises (s. Fig. 3.19) sollen untersucht wer-

den. Dabei sei Ue der Effektivwert der erregenden Spannung u, die mit der Kreisfrequenz ω

harmonisch schwingt. Die Effektivwerte der Teilspannungen UC , UR , UL in Fig. 3.19 lauten

dann

UC =
Ue

C

√
(

ω2L − 1
C

)2
+ (ωR)2

, UR =
Ue R

C

√
(

ωL − 1
ωC

)2
+ R2

,

UL =
Ue L

C

√
(

L − 1
ωC

)2
+
(

R
ω

)2
,

mit: C = Kapazität, R =Widerstand, L = Induktivität.

12 Nach [4], S. 37
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Zur Untersuchung der Abhängigkeit von ω ist es zweckmäßig, »dimensionslose« Größen zu

verwenden. Mit der »Kenn-Kreisfrequenz« ω0 := 1/
√

LC verwenden wir

x := ω

ω0
, yC :=

UC

Ue
, yR :=

UR

Ue
, yL :=

UL

Ue

und errechnen mit dem »Dämpfungsfaktor« d := R
√

C/L und der Abkürzung N (x) :=
√

(x2 − 1)2 + x2d2:

yC =
1

N (x)
, yR =

xd

N (x)
, yL =

x2

N (x)
. (3.119)

Die dadurch definierten drei Funktionen fC , fR und fL sind zu diskutieren, wobei x ≥ 0 ist.

Man suche insbesondere die Maximalstellen, die den Resonanzfrequenzen entsprechen. Ferner

gebe man die Schnittpunkte der Graphen von fC , fR und fL an. Die Graphen sind für d = 0,6

zu zeichnen. Man überlege, was passiert, wenn der Dämpfungsfaktor gegen Null strebt!

Übung 3.44:

Es sei f : I → R (n + 1)-mal stetig differenzierbar und x0 ein innerer Punkt des Intervalls I .

(a) Zeige: Gilt

f ′(x0) = f ′′(x0) = . . . = f (n)(x0) = 0 und f (n+1)(x0) �= 0 ,

wobei n ungerade ist, so liegt in x0 ein Extremum (Maximum, wenn f (n+1)(x0) < 0,

Minimum, wenn f (n+1)(x0) > 0).

(b) Beweise: Gilt

f ′′(x0) = f ′′′(x0) = . . . = f (n)(x0) = 0 und f (n+1)(x0) �= 0 ,

wobei n gerade ist, so ist x0 ein Wendepunkt.

Anleitung: Sei f (n+1)(x0) > 0. Man zeige, daß f (n), f (n−1), f (n−2), . . ., abwechselnd einen

Nulldurchgang bzw. ein strenges lokales Minimum in x0 haben.

3.3 Anwendungen

Aus der Vielzahl der Anwendungen der Differentialrechnung werden einige typische Beispiele
beschrieben, die stellvertretend für ähnliche Probleme stehen.

3.3.1 Bewegung von Massenpunkten

Dieser Problemkreis ist — bei Newton — der Ausgangspunkt für die »Erfindung« der Differen-
tial- und Integralrechnung. Dabei wird die Bewegung eines Massenpunktes in einem räumlichen
cartesischen Koordinatensystem betrachtet. Die Bewegung wird durch drei Funktionen

x(t) , y(t) , z(t) (t ∈ [t0, t1])
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beschrieben, welche die drei Koordinaten des Massenpunktes zur Zeit t angeben. Wir wollen
diese Funktionen als zweimal stetig differenzierbar annehmen. Man faßt die Funktionen zu einem
Tripel zusammen:

r(t) =

⎡

⎣

x(t)
y(t)
z(t)

⎤

⎦ , (3.120)

d.h. man schreibt sie Senkrecht untereinander, klammert sie ein und beschreibt das so entstandene
»Tripel« durch r(t). 13

Die Geschwindigkeit des Massenpunktes bekommen wir durch Differenzieren der drei Funk-
tionen, wobei die Ableitung durch einen Punkt über dem Funktionssymbol gekennzeichnet wer-
den soll: ẋ(t) := d

dt x(t) usw. (dies ist bei Ableitungen nach der Zeit in Physik und Technik
üblich). Somit erhalten wir die Geschwindigkeit des Massenpunktes als folgendes Tripel:

ṙ(t) =

⎡

⎣

ẋ(t)
ẏ(t)
ż(t)

⎤

⎦ . (3.121)

Entsprechend ergibt sich die Beschleunigung des Massenpunktes durch zweimaliges Ableiten,
gekennzeichnet durch zwei Punkte über den Funktionssymbolen:

r̈(t) =

⎡

⎣

ẍ(t)
ÿ(t)
z̈(t)

⎤

⎦ . (3.122)

Beispiel 3.35:

(Gleichförmige Drehbewegung, Fliehkraft) Bewegt sich ein Massenpunkt der Masse m auf einer
Kreisbahn mit konstanter Winkelgeschwindigkeit ω > 0, so kann seine Bewegung durch

r(t) =
[

ρ cos(ωt)
ρ sin(ωt)

]

, t ∈ R , ρ > 0 , (3.123)

beschrieben werden (Kreisbahn um 0 mit Radius ρ). Die dritte Komponente z(t) ist konstant
gleich Nι/11 und daher in (3.123) weggelassen. Man errechnet daraus die Geschwindigkeit ṙ

und die Beschleunigung r̈ durch Differenzieren:

ṙ(t) =
[

−ωρ sin(ωt)
ωρ cos(ωt)

]

, r̈(t) =
[

−ω2ρ cos(ωt)
−ω2ρ sin(ωt)

]

.

Zieht man im Ausdruck ganz rechts den Faktor −ω2 vor die Klammer14 , so kann man die

13 Solche Tripel werden auch Vektoren (im dreidimensionalen Raum) genannt. Eine kurze Einführung in die Vektor-
rechnung findet der Leser in Abschn. 6.1, eine ausführliche in Burg/Haf/Wille (Lineare Algebra) [7]. Der vorliegen-
de Abschnitt ist aber in sich verständlich, so daß der Leser vorerst nicht nachzuschlagen braucht.

14 Man vereinbart allgemein λ

[

x
y

]

:=
[

λx
λy

]

für reelle Zahlen λ (und entsprechendes für Tripel), vgl. Abschn. 6.1.
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Beschleunigung in der Form schreiben

r̈(t) = −ω2
[

ρ sin(ωt)
ρ cos(ωt)

]

, d.h. r̈(t) = −ω2r(t). (3.124)

Der so errechnete Ausdruck −ω2r(t) heißt die Zentripetalbeschleunigung. Multipliziert man sie
mit der Masse m, also m r̈(t) = −mω2r(t), so erhält man (nach dem 1. Newtonschen Grundge-
setz der Mechanik) die Zentripetalkraft, die auf den Massenpunkt wirkt. Ihre Gegenkraft

mω2r(t) (3.125)

heißt Zentrifugalkraft oder Fliehkraft.
Der Abstand des Bahnpunktes r(t) von 0 ist der Radius ρ des Kreises. Man nennt diesen

Abstand den Betrag von r(t), beschrieben durch |r(t)| = ρ. Entsprechend ist mω2ρ der »Betrag«
der Fliehkraft.

Fig. 3.20: Wurfparabel

Beispiel 3.36:
(Wurf und freier Fall, ohne Berücksichtigung der Reibung) Ein Massenpunkt der Masse m wer-
de senkrecht nach oben geworfen, und zwar mit der Anfangsgeschwindigkeit v0 ≥ 0. Der Ab-
wurfpunkt sei der Nullpunkt einer nach oben weisenden y-Achse. Auf den Massenpunkt wirkt
die Gravitationskraft −mg mit der Erdbeschleunigung g = 9,81m/s2. (Dies gilt, genau genom-
men, nur für kleine Wurfhöhen von einigen 100 Metern, da für große Höhen die Kraft merkbar
abnimmt — nach dem Gravitationsgesetz.) Nach dem 1. Newtonschen Grundgesetz (Kraft =
Masse × Beschleunigung) ist damit

−mg = mÿ(t) .

Das Minuszeichen links drückt aus, daß die Kraft nach unten gerichtet ist, also in Gegenrichtung
der y-Achse. Es folgt

ÿ(t) = −g

und daraus ẏ(t) = −gt + a mit einer Konstanten a. (Man prüft dies durch Differenzieren von
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ẏ(t) leicht nach.) Die Funktion y(t) muß damit die Gestalt

y(t) = −g

2
t2 + at + b

(b konstant) haben, was man durch Differenzieren wiederum überprüft. 15 Wird der Massenpunkt
zum Zeitpunkt 0 losgeworfen, d.h. gilt y(0) = 0, so muß b = 0 sein. Ferner soll nach Vorausset-
zung ẏ(0) = v0 gelten, woraus a = v0 folgt. Damit erhalten wir die Lösung

y(t) = −g

2
t2 + v0t , t ≥ 0 . (3.126)

Diese Funktion beschreibt die Bewegung unseres Massenpunktes.16 Wäre v0 < 0, so kämen wir
zur gleichen Funktion (3.126). Im Falle v0 = 0 hätten wir den freien Fall (ohne Reibung) von
der Ruhelage aus.

Würde der Massenpunkt schräg losgeworfen, d.h. hätte er zusätzlich eine Anfangsgeschwin-
digkeitskomponente u0 in waagerechter x-Richtung, so folgte aus ẍ(t) ≡ 0 (keine Querkraft) für
den waagerechten Geschwindigkeitsanteil ẋ(t) = u0. Daraus ergibt sich x(t) = U0t + c. Wegen
x(0) = 0 ist aber c = 0, also

x(t) = u0t , t ≥ 0 . (3.127)

Die Wurfbahn wird damit durch die beiden Funktionen y(t), x(t) in (3.126), (3.127) beschrieben,
d.h. durch

r(t) =

⎡

⎢
⎣

u0t

−g

2
t2 + v0t

⎤

⎥
⎦ , t ≥ 0 . (3.128)

Setzt man t = x/u0 in y = −g

2
t2 + v0t ein, so erhält man

y = −(g/(2u2
0))x2 + (v0/u0) · x ,

d.h. die Wurfbahn ist eine Parabel (s. Fig. 3.20).

Beispiel 3.37:
(Wurf, mit Luftreibung) Ohne Beweis geben wir an: Beim Wurf eines Massenpunktes unter Be-
rücksichtigung der Luftreibungskraft, die proportional zur Geschwindigkeit angenommen wird
— mit Proportionalitätkonstante k > 0 —, gelangen wir zu

y(t) = B e−(k/m)t −mg

k
t + b , x(t) = A e−(k/m)t +a . (3.129)

15 Allgemein gilt: Ist f ′ auf einem Intervall gegeben, so ist f dort bis auf eine additive Konstante eindeutig bestimmt.
Denn für alle weiteren Funktionen g mit g′ = f ′ gilt ( f − g)′ = 0, also f − g = konstant (nach Folgerung 3.5(a),
Abschn. 3.1.5).

16 S. auch die Beispiele 2.7 und 2.9 in Abschn. 2.1.3.
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m ist die Masse des Massenpunktes und A, B, a, b sind Konstante, die aus den Anfangsbedin-
gungen bestimmt werden können (s. [56], Beisp. 5.27, S. 254, 255).

Bei den folgenden Übungen wird die Luftreibung vernachlässigt.

Übung 3.45:

Ein Massenpunkt werde von der Erdoberfläche aus abgeworfen, wobei u0 > 0 und v0 > 0 sei

(s. (3.128)). Man berechne Wurfzeit (Bedingung y(t) = 0, t > 0), ferner Wurfweite, Wurfhöhe

und Endgeschwindigkeit beim Aufschlagen.

Übung 3.46:

Ein Massenpunkt werde von einem 30 m hohen Turm schräg aufwärts unter einem Winkel von

30◦ abgeworfen. Wie groß müssen die Anfangsgeschwindigkeits-Komponenten v0 und u0 in

vertikaler bzw. horizontaler Richtung sein, wenn der Massenpunkt 60 m vom Turmfuß entfernt

auf dem Erdboden aufschlagen soll?

3.3.2 Fehlerabschätzung

Beispiel 3.38:

(Würfelvolumen) Die Kantenlänge x eines Würfels wird gemessen. Aufgrund der Meßungenau-
igkeit läßt sich nur sagen, daß die Ungleichung 8,6 cm ≤ x cm ≤ 8,8 cm gilt. Für das Volumen
V = x3 erhält man

8,63 = 636,056 ≤ V ≤ 681,472 = 8,83 . (3.130)

Man kann den Fehler auch abschätzen, indem man V = f (x) = x3 in eine kurze Taylorformel
entwickelt:

V = f (x) = f (8,7)+ f ′(8,7)(x − 8,7)+ R2

= 658,503+ 227,07 · (x − 8,7)+ R2 , 8,6 ≤ x ≤ 8,8 ,

und R2 = f ′′(ξ)(x − 8,7)2/2 mit x und ξ aus dem Intervall [8,6, 8,8] abschätzt: |R2| ≤
1

2
· 6 ·

8,8 · 0,12 = 0,264. Damit folgt wegen |x − 8,7| ≤ 0,1:

|V −658,503| ≤ 227,07 ·0,1+0,264 = 22,971 < 23 , also 635,5 < V < 681,6. (3.131)

Das ist etwa das Gleiche wie in (3.130). Kann man nun bei einer zweiten Messung die Meßge-
nauigkeit erhöhen, so daß etwa 8,66 ≤ x ≤ 8,75 gilt, so braucht man f (x) = x3, wie in (3.130)
nicht zweimal neu zu berechnen (was bei komplizierteren Funktionen f aufwendig sein kann),
sondern in (3.131) die Abschätzung 0,1 von |x − 8,7| nur durch die schärfere Abschätzung 0,05
ersetzen. Man erhält |V − 658,503| < 11,62, also die verbesserte Abschätzung

646,88 < V < 670,13 .
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Allgemeinfall: Ist x eine beliebige gemessene Zahl mit

x0 −Δx ≤ x ≤ x0 , Δx > 0

und f (x) eine daraus zu berechnende Zahl ( f zweimal stetig differenzierbar), so gilt

f (x) = f (x0)+ f ′(x0)(x − x0)+ R2 .

Für den Fehler f (x)− f (x0), der durch die Ungenauigkeit von x erzeugt wird, folgt die Fehler-
abschätzung

| f (x)− f (x0)| ≤ | f ′(x0)|Δx + |R2| ,

wobei |R2| ≤
1

2
sup

|x−x0|≤Δx
| f ′′(x)|Δx2 häufig so klein ist, daß man R2 im Rahmen der Rechen-

genauigkeit (Rundung) vernachlässigen kann.

3.3.3 Zur binomischen Reihe: physikalische Näherungsformeln

Nach der Taylorschen Formel gilt für −1 < x < 1 und a ∈ R

(1+ x)a = 1+ ax + R1(x) (3.132)

oder

(1+ x)a = 1+ ax + a(a − 1)

2
x2 + R2(x) (3.133)

mit

|Rn(x)| ≤
∣
∣
∣
∣

(
a

n + 1

)
(n + 1)xn+1

C

∣
∣
∣
∣
, wobei

1

C
=
{

(1+ |x |)a−1 , falls a ≤ 1,

(1− |x |)a−1 , falls a > 1.

Diese Formeln werden in der Physik vielfach verwendet (s. Abschn. 3.2.3, Beisp. 3.28).

Beispiel 3.39:

Für den Staudruck p an einem Flugzeug gilt nach (3.132)

p

p0
=
(

1+ κ − 1

2
M2

)κ/(1−κ)

= 1− κ

2
M2 + R2(x) , (3.134)

mit x = κ−1
2 M2. Dabei ist κ = 1,405 (für Luft), M = v/c die Machsche Zahl (v Flugge-

schwindigkeit, c Schallgeschwindigkeit) und p0 der normale Luftdruck, der bei Abwesenheit
des Flugzeuges herrschen würde. Man schätze |R2(x)| ab für M = 0,2, M = 0,5, M = 0,8.
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Übung 3.47:

Für die relativistische Masse eines Körpers gilt

m = m0
√

1− β2
mit β = v

c
. (3.135)

Dabei ist m0 seine Ruhemasse, v seine Geschwindigkeit und x = 299792,5 km/s die Licht-

geschwindigkeit. Entwickle (1 − β2)−1/2 in eine Näherungsformel nach (3.133), schätze das

Restglied R2(β2) ab für 0 < β ≤ 0,2 und 0 < β ≤ 0,5. Zeige, daß man c auch durch

300000 km/s ersetzen darf, wenn dreistellige Genauigkeit verlangt wird und 0 ≤ β ≤ 0,5 gilt.

3.3.4 Zur Exponentialfunktion: Wachsen und Abklingen

Durch die Exponentialfunktion exp(x) = ex und ihre Verallgemeinerungen f (x) = c · ax wer-
den ungestörte Wachstums- und Abklingvorgänge beschrieben, wie z.B. das Wachstum junger
Organismen oder das Abklingen von Temperaturdifferenzen. Das folgende einfache Beispiel be-
leuchtet diesen Zusammenhang auf elementare Weise.

Beispiel 3.40:

(Zellwachstum) Ausgehend von einer biologischen Zelle finde alle Δt Sekunden eine Zellteilung
statt, d.h. alle Δt Sekunden verdoppele sich die Anzahl der Zellen. Nach Δt Sekunden sind also
2 Zellen vorhanden, nach 2Δt Sekunden 4 Zellen, nach 3Δt Sekunden 23 = 8 Zellen usw. Nach
t = nΔt Sekunden, (n ∈ N), gibt es 2n = 2t/Δt Zellen. Die Anzahl der Zellen steigt also
exponentiell mit der Zeit t ∈ {0, Δt, 2Δt, 3Δt, . . .}.

Im behandelten Beispiel liegt sprunghaftes Wachstum vor. Die Untersuchung von »stetigem«
Wachstum führt zu entsprechenden Resultaten:

Ungestörtes stetiges Wachstum: Man stelle sich einen Organismus oder eine Organismenmen-
ge vor, z.B. eine Bakterienkultur. Die zugehörige Masse wachse in gleichen Zeiträumen stets um
den gleichen Prozentsatz. In diesem Falle sprechen wir von ungestörtem oder idealen Wachstum.
In jedem Zeitintervall von Δt Sekunden vermehrt sich die Masse also um den gleichen Anteil
p(Δt), z.B. um p(Δt) = 5% = 5/100. Bezeichnet m die Masse am Anfang des Zeitintervalls,
so ist am Ende des Zeitintervalls die Masse Δm = p(Δt)m hinzugekommen. Division durch
Δt �= 0 ergibt

Δm

Δt
= p(Δt)

Δt
m . (3.136)

Nimmt man an, daß m differenzierbar von t abhängt, so konvergiert der linke Ausdruck in obiger
Gleichung für t +Δt → t bei festem t . Damit konvergiert auch die rechte Seite, d.h. p(Δt)/Δt
strebt für Δt → 0 gegen einen Grenzwert a, den wir als positiv annehmen wollen, und es folgt

dm

dt
= am .
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Mit m = f (t) bedeutet dies

f ′(t) = a f (t) (3.137)

für alle t ≥ t0, wobei t0 eine Startzeit für den Prozeß bedeutet. Aus Satz 3.14 in Abschn. 3.1.7
folgt damit, daß f (t) die Form

f (t) = c eat (3.138)

hat. Ist m0 die »Anfangsmasse« zur Zeit t0, gilt also f (t0) = ceat0 = m0, so errechnen wir daraus
c = m0e−at0 . Eingesetzt in (3.138) erhalten wir das Wachstumsgesetz

m = f (t) = m0 ea(t−t0) , a > 0 . (3.139)

Ein solches Wachstum tritt z.B. auch bei Kettenreaktionen auf, doch kommt es im übrigen in
Physik und Technik selten vor. Denn Wachstumsvorgänge dieser Art (wie etwa das Aufschau-
keln von Schwingungsamplituden) führen zur Zerstörung von Apparaturen und Maschinen. Man
versucht dies daher tunlichst zu vermeiden. Häufiger treten dagegen Abklingvorgänge auf.

Abklingvorgänge: Bei einer Reihe von physikalischen Vorgängen ist die Geschwindigkeit, mit
der sich eine physikalische Größe y = f (t) vermindert, proportional zur physikalischen Größe
selbst. Da die Größe im Laufe der Zeit t kleiner wird, ist der Proportionalitätsfaktor negativ, d.h.
es gilt die Beziehung

f ′(t) = −k f (t) , mit k > 0 . (3.140)

Ist y0 der Wert der Größe zur (Anfangs-)Zeit t0, so erhalten wir wie oben (man setze a statt −k)
die Gleichung

y = f (t) = y0e−k(t−t0) , t ∈ R . (3.141)

Man spricht dabei von Abkling-oder Kriechvorgängen. Stichwortartig seien einige Beispiele dazu
genannt:

Beispiel 3.41:
(Abklingvorgänge) Abkühlung eines erwärmten Gegenstandes in kälterer Umgebung: f (t) =
Temperaturdifferenz zwischen Gegenstand und Umgebung zur Zeit t , k Materialkonstante. Bei
Erwärmung gilt Entsprechendes.

Radioaktiver Zerfall einer strahlenden Masse f (t) mit einer Materialkonstanten k. Man zeige,
daß sich die Halbwertszeit τ , das ist die Zeitdauer, innerhalb derer sich die strahlende Masse um
die Hälfte vermindert, aus der folgenden Formel ergibt:

τ = ln 2

k
. (3.142)

Chemische Reaktion unimodularer Stoffe: f (t) = Masse des noch nicht in Reaktion eingetrete-
nen Anteils. k Stoffkonstante.
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In zähes Medium eindringende Kugel (ohne Berücksichtigung der Schwerkraft): f (t) Geschwin-
digkeit der Kugel, f (t0) Geschwindigkeit zum Zeitpunkt t0 des Eindringens, k = R/m, wobei
R Reibungskonstante und m Masse der Kugel ist.

Einschalten elektrischen Stroms: Ist U die an einem Stromkreis angelegte Spannung, J (t) die
Stromstärke zur Zeit t , R der Widerstand des Stromkreises und L sein Selbstinduktionskoeffizi-
ent, so gilt

J R = U − L J ′ ,

mit f (t) := J (t)−U/R also f ′ = − R
L f , d.h. f (t) = f (0) e−Rt/L . Mit J (0) = 0 zur Zeit t = 0

des Einschaltens folgt f (0) = −U/R und somit

J (t) = U

R
(1− e−Rt/L) für t ≥ 0.

Beim Ausschalten findet ein entsprechender Vorgang statt.

Kondensatorenentladung über einen Stromkreis mit Widerstand R. Ist C die Kapazität des Kon-
densators, so gilt für die Elektrizitätsmenge Q des Kondensators zur Zeit t , die Gleichung Q =
−C R J mit der Stromstärke J zur Zeit t . Mit J = Q′, also Q = −C RQ′, folgt Q = Q0 e−t/(C R).
Für die Spannung U = Q/C am Kondensator folgt damit U = U0 e−t/(C R).

Wir betrachten schließlich noch zwei Beispiele, in der Ableitungen nach dem Weg bzw. der
Masse eine Rolle spielen.

Beispiel 3.42:
(Barometrische Höhenformel) Ist p(x) der Luftdruck und ρ(x) die Luftdichte in der Höhe x
über dem Erdboden, so gilt dp

dx = −gρ. Denn gρ−(ξ)Δx ist das Gewicht einer Luftsäule der
Grundfläche 1 und der Höhe Δx (mit einem geeigneten ξ ∈ (x, x+Δx)). Zum Gesamtdruck trägt
diese Säule also den Druckanteil |Δp| = gρ(ξ)Δx bei. Division durch Δx , Berücksichtigung
der Abnahme des Luftdruckes bei steigender Höhe (d.h. Δp < 0 falls Δx > 0), sowie Δx → 0
liefern dp

dx = −gρ(x). Mit dem Boyle-Mariotteschen Gesetz folgt p = bρ (b konstant > 0), also
zusammen p′ = −kp mit k := g/b. Daraus folgt die barometrische Höhenformel

p(x) = p(0) e−kx , x ≥ 0 .

Beispiel 3.43:
(Raketenantrieb, Brennschlußgeschwindigkeit) Es sei m0 die Startmasse einer Rakete, w die
konstante Ausströmgeschwindigkeit der Brennmasse aus den Düsen, v ihre Geschwindigkeit zur
Zeit t und m ihre Masse zur Zeit t . Gravitations- und Reibungskräfte sollen nicht berücksichtigt
werden. (Die Rakete starte also von einem Punkt des Weltalls aus, oder Gewicht und Reibung
sind vernachlässigbar klein gegen die Schubkraft.) Aus dem Newtonschen Grundgesetz und dem
Impulssatz folgt

m
dv

dt
= −w

dm

dt
.
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Mit w > 0 und dm
dt < 0 folgt dv

dt > 0, also

m = −w
dm dt

dt dv
, d.h. m = −w

dm

dv
.

Nach Satz 3.14 (Abschn. 3.1.7) erhält man daher

m = m0 e−v/w für v ≥ 0 .

Ist m1 die Masse der Rakete bei Brennschluß und v1 ihre Geschwindigkeit zu diesem Zeitpunkt,
so gilt m1 = m0 e−v1/w. Auflösen nach v1 liefert damit die Brennschlußgeschwindigkeit

v1 = w ln

(
m0

m1

)

.

3.3.5 Zum Newtonschen Verfahren

Beispiel 3.44:

(Kettenkarussell) Ein Kettenkarussell mit einer Tragstange von r = 2 m und einer Kettenlänge
von l = 4 m benötige für einen Umlauf T = 5 s. Wie groß ist der Winkelausschlag α der Kette
(s. Fig. 3.21)?

Fig. 3.21: Zum Kettenkarussell

Nach Fig. 3.21 und Beispiel 3.35 ist der Betrag der Zentrifugalkraft F = mω2(r+l sin α), mit
ω = 2π/T . Auf den Körper am Ende der Kette wirkt ferner das Gewicht vom Betrag G = mg
(g = 9,81 m/s2). Die Richtung der Resultierenden dieser beiden Kräfte ist gleich der Richtung
der Kette, beschrieben durch den Winkel α. Es gilt also

tan α = F

G
= ω2

g
(r + l sin α) .
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Mit tan α = sin α/
√

1− sin2 α und der Abkürzung x := sin α erhält man daraus

x4 + 2bx3 + (a + b2 − 1)x2 − 2bx − b2 = 0

mit b := r/ l und a := g2/(l2ω4). Einsetzen der gegebenen Zahlenwerte ergibt

x4 + x3 + 1,6620x2 − 0,2500 = 0 ,

mit gerundetem Koeffizienten 1,6620. Das Newton-Verfahren

xn+1 = xn −
f (xn)

f ′(xn)

liefert mit

f (x) = x4 + x3 + 1,6620x2 − x − 1

4
,

von der Näherungslösung x0 = 0,6 ausgehend nach 3 Schritten die Lösung x
.= 0,56585152.

Eine genauere Kurvendiskussion zeigt, daß dies die einzige Lösung in [0,1] ist. Aus x = sin α

folgt α
.= 0,60146565, das entspricht gerundet einem Winkel von 34◦ 28′.

Fig. 3.22: Freileitung zwischen zwei Masten

Übung 3.48:

(Freileitung zwischen zwei Masten) Die Kurve einer Freileitung wird beschrieben durch

y = f (x) = h0 + a ·
(

cosh
x − x0

a
− 1

)

(s. Fig. 3.22) mit gewissen reellen Konstanten h0, a x0 (s. [37], S. 68). Berechne a und x0 aus

den Höhen h1 = 10 m, h2 = 7 7 der Masten, ihrer Entfernung s = 20 m voneinander und der

Minimalhöhe h0 = 6 m der durchhängenden Leitung.
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3.3.6 Extremalprobleme

Stellvertretend für die große Anzahl von Extremalproblemen wählen wir fünf Beispiele aus Tech-
nik und Physik. Dabei knüpfen wir an den Abschn. 3.2.7 an.

Beispiel 3.45:

(Günstigste Abmessungen eines Abwasserkanals) Die Querschnittsfläche eines Abwasserkanals
habe die Form eines Rechtecks mit aufgesetztem Halbkreis (s. Fig. 3.23). Der Flächeninhalt
F der Querschnittsfläche sei fest vorgegeben. Wie sind die Seitenlängen x , y des Rechteckes zu
wählen, damit der Umfang der Querschnittsfläche (und damit die Reibung) möglichst klein wird?
Der Umfang ist

U = 2y + y + x

2
π . (3.143)

Der Flächeninhalt ist F = xy + x2

8
π , daraus folgt y = F

x
− xπ

8
.

Fig. 3.23: Kanalquerschnitt

Einsetzen in (3.143) liefert

U = f (x) := 2F

x
+ 4+ π

4
x , 0 < x <

√

8F

π
.

Erste und zweite Ableitungen lauten:

f ′(x) = −2F

x2
+
(

1+ π

4

)

, f ′′(x) = 4F

x3
.

f ′(x0) = 0 liefert

x0 =
√

8F

4+ π

.= 1,058
√

F . (3.144)

Wegen f ′′(x0) > 0 liegt bei x0 ein Minimum des Umfangs. Die minimale Umfangslänge ist
damit U0 = f (x0) =

√
(8+ 2π)F

.= 3,779
√

F .
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Beispiel 3.46:

(nach [57], Bd. II, S. 144) Der Wirkungsgrad eines Transformators ist

η = P

c + P + k P2
, (P > 0) . (3.145)

Dabei ist P die abgegebene Leistung, und c > 0 und k > 0 sind vom Transformator abhängige
Konstanten. Bei welcher Leistung ist der Wirkungsgrad am größten?

Differentiation von (3.145) nach P liefert

dη

dP
= c − k P2

(c + P + k P2)2
,

woraus durch Nullsetzen PM =
√

c/k folgt. Da dη/ dP bei PM einen »fallenden Nulldurch-
gang« hat (d.h. dη/ dP > 0 für P < PM , dη/ dP < 0 für P > PM ), liegt bei PM =

√
c/k die

gesuchte Maximalstelle.

Beispiel 3.47:

(Biegefestigkeit eines Balkens) Ein Balken mit rechteckigem Querschnitt soll aus einem zylin-
derförmigen Baumstamm geschnitten werden. Wie erreicht man maximale Biegefestigkeit des
Balkens? Die Biegefestigkeit des Balkens ist gleich

w = c · xy2 ,

wobei y die Höhe des Balkenquerschnittes und x seine Breite ist. Mit dem Durchmesser D des
Kreisquerschnitts unseres Baumes gilt y2 = D2 − x2, also

w = c(D2x − x3) , x > 0 .

Man berechnet:

w′ = c(D2 − 3x2
l3) = 0 �⇒ x0 =

D√
3

, w′′ = −c6x0 < 0 .

Folglich erhält man maximale Biegefestigkeit für die Seitenlängen x0 = D/
√

3 und y0 =√

D2 − x2
0 =
√

2/3D =
√

2x0.

Beispiel 3.48:

(Lichtbrechung und -reflexion) Ein Lichtstrahl verläuft von einem Punkt A in einem Medium 1
zu einem Punkt B in einem Medium 2, wie es die Fig. 3.25 zeigt. Die Medien sind durch eine
Ebene getrennt. Die Lichtgeschwindigkeiten c1 und c2 in den Medien 1 bzw. 2 seien konstant.

Wir wollen den Lichtweg aus dem Folgenden Fermatschen17 Prinzip herleiten: »Das Licht
schlägt immer den Weg ein, der die kürzeste Zeitdauer erfordert«. Daraus folgt unmittelbar, daß

17 Pierre de Fermat (1607 – 1665), französischer Mathematiker und Jurist
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Fig. 3.24: Balken mit maximaler Biegestei-
figkeit

Fig. 3.25: Lichtbrechung

der Lichtstrahl in jedem unserer Medien gradlinig verläuft, und daß er in einer Ebene liegt, die
senkrecht auf der Trennebene steht. Diese »Lichtstrahl-Ebene« ist in Fig. 3.25 gezeichnet.

Mit den Bezeichnungen in der Fig. 3.25 ist die Zeitdauer, die das Licht von A bis B benötigt,
gleich

t (x) = r

c1
+ s

c2
= 1

c1

√

x2 + a2 + 1

c2

√

(p − x)2 + b2 . (3.146)

Wir errechnen die Ableitungen nach x :

t ′(x) = 1

c1

x√
x2 + a2

− 1

c2

p − x
√

(p − x)2 + b2
= 1

c1

x

r
− p − x

s

= 1

c1
sin α − 1

c2
sin β .

t ′′(x) = 1

c1

√
x2 + a2 − x2√

x2+a2

x2 + a2
+ 1

c2

√

(p − x)2 + b2 − (p−x)2√
(p−x)2+b2

(p − x)2 + b2

= 1

c1

r − x2

r

r2
+ 1

c2

s − (p−x)2

s

s2
= r2 − x2

c1r3
+ s2 − (p − x)2

c2s3
.

Nullsetzen der ersten Ableitung liefert

sin α

sin β
= c1

c2
. (3.147)

Dies ist das Snelliussche18 Brechungsgesetz: »Das Verhältnis des Sinus des Einfallswinkels zum
Sinus des Brechungswinkels ist konstant«. Man erkennt t ′′(x) > 0 für alle x ∈ [0, p], da r > x
und s > p− x ist. Damit ist t ′ streng monoton steigend. Aus t ′(0) < 0 und t ′(p) > 0 folgt damit:
Es gibt genau eine Nullstelle von t ′ in [0, p]. Sie ist eine Minimalstelle von t , wegen t ′′(x) > 0.
Es gibt somit genau ein Minimum von t , charakterisiert durch (3.147).

18 Willebrord van Roijen Snell (1580 – 1626), niederländischer Astronom und Mathematiker
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Mit den Brechungsindizes n1 = c/c1, n2 = c/c2 (c = Lichtgeschwindigkeit im Vakuum)
erhält das Brechungsgesetz die Form

n1 sin α = n2 sin β . (3.148)

Das Reflexionsgesetz (Einfallswinkel = Ausfallswinkel) gewinnt man analog. Man hat lediglich
in Fig. 3.25 B an der x-Achse »nach oben« zu spiegeln. Damit laufen alle Rechnungen genauso
wie beim Brechungsgesetz, wobei zusätzlich c1 = c2 gilt. Man erhält wieder (3.147) und wegen
c1 = c2 daraus α = β, also das Reflexionsgesetz.

Beispiel 3.49:
(Wiensches19 Verschiebungsgesetz) Aus dem Planckschen Strahlungsgesetz ([28], S. 518, (27))

E(λ) = hc2

λ5
· 1

ehc/(ktλ)−1
, λ > 0 ,

soll diejenige Wellenlänge λ = λmax berechnet werden, für die das Emissionsvermögen E(λ)

maximal wird. Man berechnet dazu E ′(λ) und setzt zur Vereinfachung x =: hc/(kT λ) ein.
E ′(λ) = 0 wird dann zu x ex /(ex −1) = 5, d.h. e−x − 1 + x/5 = 0. Das Newton-Verfahren,
ausgehend von x0 = 5, liefert eine Lösung x

.= 4,965. Sie ist die einzige in (0,∞), wie man
sich überlegt. Mit x =: hc/(kT λmax) folgt das Wiensche Verschiebungsgesetz

λmax =
hc

4,965kT
, d.h. λmaxT = hc

4,965k
= const ,

wobei E ′′(λmax) < 0 zeigt, daß es sich tatsächlich um ein Maximum handelt.

Fig. 3.26: Eisenkern in Spule

Übung 3.49:

(Eisenkern in einer Spule) In das Innere einer Spule von kreisförmigem Querschnitt vom Radi-

us r soll ein Eisenkern mit kreuzförmigen Querschnitt gebracht werden (s. Fig. 3.26) Welche

Abmessungen x , y muß der kreuzförmige Querschnitt haben, wenn sein Flächeninhalt maximal

sein soll?

19 Wilhelm Carl Werner Otto Fritz Franz Wien (1864 – 1928), deutscher Physiker
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Wie groß ist der Flächeninhalt einer Ellipse, die Länge einer Freileitung, die Energie einer Gas-
menge oder die Fluchtgeschwindigkeit einer Rakete? Wie berechnet man Satellitenbahnen, den
Schwerpunkt einer Halbkugel, das Trägheitsmoment eines Kegels oder die Wahrscheinlichkeit
für den Ausfall eines Bauteils? Dieses vielfältige Spektrum von Fragen kann mit den Mitteln der
Integralrechnung beantwortet werden.

Fig. 4.1: Fläche von f auf [a, b]

Dabei geht man von einer elementaren Grundaufgabe aus, nämlich der Bestimmung der Flä-
cheninhalte krummlinig berandeter Flächen. Insbesondere beschäftigt man sich mit Flächen, die
— wie der schraffierte Bereich in Fig. 4.1 — zwischen einem Funktionsgraphen und der x-Achse
liegen. In solche Flächen kann man die meisten krummlinig berandeten Flächen zerlegen, wie
Kreise, Ellipsen usw.

Bei der Bestimmung solcher Flächeninhalte werden die Methoden der Integralrechnung ent-
wickelt. Dabei stößt man auf eine überraschende Tatsache:

Die Integralrechnung ist die Umkehrung der Differentialrechnung.

Während man in der Differentialrechnung von bekannten Funktionen die Ableitungen berechnet,
versucht man umgekehrt in der Integralrechnung aus gegebenen Ableitungen die ursprüngliche
Funktionen zu gewinnen.

Das Problem der Flächeninhaltsbestimmung wird also dadurch gelöst, daß man die Differen-
tialrechnung »auf den Kopf stellt«. Eine erstaunliche Erkenntnis!

Es ist kein Wunder, daß die Menschen seit drei Jahrhunderten von dieser Entdeckung faszi-
niert sind. Die große Kraft der Analysis und ihr ungebrochener Erfolg sind darin begründet.
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4.1 Grundlagen der Integralrechnung

4.1.1 Flächeninhalt und Integral

Einführung: Wir gehen von einer positiven beschränkten Funktion f auf einem Intervall [a, b]
aus, wie z.B. in Fig. 4.1 skizziert. Die schraffierte Punktmenge heißt die Fläche von f auf [a, b].
Sie besteht aus allen Punkten (x, y) mit a ≤ x ≤ b und 0 ≤ y ≤ f (x).

Unser Ziel ist es, den Flächeninhalt dieser Fläche zu bestimmen, ja, ihn überhaupt erst einmal
sinnvoll zu erklären. Dazu bilden wir eine Streifeneinteilung wie in Fig. 4.2, d.h. wir wählen uns

Fig. 4.2: Streifeneinteilung der Fläche

beliebige Zahlen x0, x1, . . ., xn mit

a = x0 < x1 < x2 < . . . < xn = b . (4.1)

von f auf [a, b] Die Menge der dadurch gebildeten Teilintervalle

[x0, x1] , [x1, x2] , . . . , [xn−1, xn]

nennen wir eine Zerlegung Z des Intervalls [a, b]. Mit

Δxi = xi − xi−1 , i = 1,2, . . . , n ,

werden die Intervallängen der Teilintervalle symbolisiert. Die größte dieser Intervallängen heißt
die Feinheit |Z | der Zerlegung, also

|Z | := max
i∈{1,...n}

Δxi .

Je kleiner die Zahl |Z | ist, desto»feiner« ist die Streifeneinteilung im landläufigen Sinn. In jedem
Streifen der Fig. 4.2 bildet man zwei Rechtecke, die die Fläche von f im Streifen von»innen«
und»außen« annähern. D.h. ist [xi−1, xi ] das Teilintervall zu unserem Streifen, so betrachten wir
darauf das Supremum und das Infimum von f (s. Fig. 4.3):

Mi := sup
x∈[xi−1,xi ]

f (x) , mi = inf
x∈[xi−1,xi ]

f (x) (4.2)
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Es entsteht über [xi−1, xi ] ein »inneres Rechteck« mit dem Flächeninhalt miΔxi (s. Fig. 4.3) und
ein»äußeres Rechteck« mit dem Flächeninhalt MiΔxi . Summierung über i ergibt

S f (Z) :=
n
∑

i=1

MiΔxi , genannt Obersumme von f bezüglich Z ,

s f (Z) :=
n
∑

i=1

miΔxi , genannt Untersumme von f bezüglich Z .

(4.3)

Bei genügend feiner Streifeneinteilung wird man beide Summen als Näherungen für den zu be-

Fig. 4.3: Darstellung von mi und Mi zu Unter- und Obersummen

stimmenden Flächeninhalt ansehen, jedenfalls dann, wenn der Unterschied beider Summen für
hinreichend feine Einteilung beliebig klein wird. Bei immer feineren Zerlegungen Z werden die
Obersummen S f (Z) immer kleiner (oder jedenfalls nicht größer) und die Untersummen s f (Z)

immer größer (oder wenigstens nicht kleiner): Dadurch wird nahegelegt, das Infimum aller Ober-
summen und das Supremum aller Untersummen zu bilden:

I f := inf
Z

S f (Z) , genannt Oberintegral von f ,

I f := sup
Z

s f (Z) , genannt Unterintegral von f .
(4.4)

Wir benutzen dabei die Tatsache, daß jede Obersumme von f größer oder gleich jeder Unter-
summen von f ist. Man sieht das leicht so ein: Sind s f (Z1) und S f (Z2) beliebig gegeben, so
bilde man aus Z1 und Z2 eine gemeinsame »Verfeinerung« Z , bestehend aus den Durchschnitten
der Teilintervalle von Z1 und Z2. Damit gilt zweifellos

s f (Z1) ≤ s f (Z) ≤ S f (Z) ≤ S f (Z2) .

Daraus folgt insbesondere, daß die Menge der Obersummen nach unten beschränkt und die der
Untersummen nach oben beschränkt ist, folglich I f und I f wirklich existieren. Ferner ergibt

sich I f ≤ I f .
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Für übliche Funktionen, etwa für stetige, wird man I f = I f erwarten, d.h. daß die obere

Grenze aller Untersummen gleich der unteren Grenze aller Obersummen ist.1 In diesem Fall
nennt man die gemeinsame Zahl

I f = I f =: I

den Flächeninhalt von f auf [a, b]. Dieser Flächeninhalt wird das Integral von f auf [a, b]
genannt und folgendermaßen symbolisiert:

I =
b∫

a

f (x) dx (lies: »Integral f (x) dx von a bis b«) .

Wir haben hierbei f als positiv vorausgesetzt. Doch können wir auf diese Voraussetzung auch
verzichten und das Integral entsprechend für beliebige beschränkte Funktionen definieren. Damit
gelangen wir zu folgender allgemeiner Definition, die die bisherigen Überlegungen zusammen-
faßt und auf beliebige beschränkte Funktionen ausdehnt:

Definition 4.1:
(Integraldefinition) Es sei f eine reelle beschränkte Funktion auf [a, b].

(I) Man betrachtet eine Zerlegung Z von [a, b]. Das ist eine Menge von Intervallen
[x0, x1], [x1, x2], . . ., [xn−1, xn] mit

a = x0 < x1 < . . . < xn = b .

Die x0, . . . , xn heißen Teilungspunkte von Z . Die Zahl

|Z | := max
i∈{1,...,n}

Δxi , mit Δxi := xi − xi−1

heißt die Feinheit von Z .

(II) Mit

Mi := sup
x∈[xi−1,xi ]

f (x) , mi := inf
x∈[xi−1,xi ]

f (x)

bildet man

S f (Z) :=
n
∑

i=1

MiΔxi , genannt Obersumme von f bezüglich Z ,

s f (Z) :=
n
∑

i=1

miΔxi , genannt Untersumme von f bezüglich Z ,

1 Es gibt allerdings »ausgefranste« Funktionen, für die das nicht gilt. Ein Beispiel dafür ist die Funktion, deren Wer-
te f (x) für rationale x gleich 1 sind und für irrationale x gleich 0. Doch spielen diese Funktionen in der Technik
praktisch keine Rolle.
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und

I f := inf
Z

S f (Z) , genannt Oberintegral von f auf [a, b],

I f := sup
Z

s f (Z) , genannt Unterintegral von f auf [a, b].

Infimum und Supremum werden dabei bezüglich sämtlicher denkbarer Zerle-
gungen Z von [a, b] gebildet.

(III) Stimmen Ober- und Unterintegral von f auf [a, b] überein, so heißt f integrier-
bar2 auf [a, b]. In diesem Falle heißt der gemeinsame Wert I f = I f das Integral
von f auf [a, b], beschrieben durch

b∫

a

f (x) dx .

Geometrische Deutung: Ist f auf [a, b] integrierbar und ist f (x) ≥ 0 auf [a, b], so ist das

Integral

b∫

a

f (x) dx der Flächeninhalt der Fläche von f auf [a, b], wie wir einführend schon

erklärt haben.

Ist dagegen f (x) ≤ 0 auf [a, b], so wird auch

b∫

a

f (x) dx ≤ 0. Der absolute Wert des Integrals

ist in diesem Falle als der Flächeninhalt der Fläche F = {(x, y) | a ≤ x ≤ b und f (x) ≤ y ≤ 0}
aufzufassen. F liegt unterhalb der x-Achse (s. Fig. 4.4b).

Fig. 4.4: Integral und Flächeninhalt

Ist f sowohl positiv wie negativ auf [a, b], so sind die Inhalte der Teilflächen zwischen Graph
f und x-Achse, die über der x-Achse liegen, positiv zu rechnen, und diejenigen unter der x-

Achse negativ. Die Summe dieser positiven und negativen Zahlen ergibt das Integral

b∫

a

f (x) dx (s. Fig. 4.4c).

2 Man nennt f auch ausführlicher Riemann-integrierbar.
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Übung 4.1:

Berechne mit Hilfe der Deutung als Flächeninhalt die Integrale

5∫

0

3 dx ,

1∫

0

(2x) dx ,

2∫

−1

x dx .

4.1.2 Integrierbarkeit stetiger und monotoner Funktionen

Welche Funktionen sind integrierbar? — Wir zeigen, daß vor allem stetige Funktionen integrier-
bar sind (sonst wäre es schlimm bestellt um die Analysis), aber auch stückweise stetige Funk-
tionen, monotone und stückweise monotone Funktionen auf kompakten Intervallen. Der anwen-
dungsorientierte Leser kann sich mit diesem Hinweis begnügen und ohne Schaden den Rest
dieses Abschnittes überschlagen.

Satz 4.1:
Jede stetige Funktion und jede monotone Funktion auf [a, b] sind auf diesem Intervall
integrierbar.

Beweis:
(I) Es sei f stetig auf [a, b]. Dann ist f sogar gleichmäßig stetig auf [a, b] (nach Satz 1.26,
Abschn. 1.6.6). Zu beliebig gegebenem ε > 0 gibt es daher ein δ > 0 mit | f (x1) − f (x2)| < ε,
falls |x1 − x2| < δ. Man wähle nun eine Zerlegung Z von [a, b] mit der Feinheit |Z | < δ. In
jedem Teilintervall [xi−1, xi ] (i = 1, . . . , n) von Z gibt es wegen der Stetigkeit von f Punkte

x (i)
max und x (i)

min mit

f (x (i)
max) = sup

[xi−1,xi ]
f (x) = Mi , f (x (i)

min) = inf
[xi−1,xi ]

f (x) = mi .

Es folgt unmittelbar: f (x (i)
max)− f (x (i)

min) < ε, da |x (i)
max − x (i)

min| ≤ Δxi = xi − xi−1 < δ. Für die
Differenz zwischen Obersumme S f (Z) und Untersumme s f (Z) erhält man somit:

S f (Z)− s f (Z) =
n
∑

i=1

(Mi − mi )Δxi =
n
∑

i=1

( f (x (i)
max)− f (x (i)

min))Δxi

<

n
∑

i=1

εΔxi = ε

n
∑

i=1

Δxi = ε · (b − a)

(4.5)

Da ε > 0 dabei beliebig klein gewählt werden kann, wird auch S f (Z) − s f (Z) beliebig klein,
wenn man Z geeignet wählt. Daraus folgt aber inf

Z
S f (Z) = sup

Z
s f (Z), d.h. f ist integrierbar auf

[a, b].
(II) f sei nun monoton steigend auf [a, b]. Damit ist f auch beschränkt. Z = {[x0, x1], . . . ,
[xn−1, xn]} bezeichne eine Zerlegung von [a, b] und Mi bzw. mi das Supremum bzw. das In-
fimum von f auf [xi−1, xi ]. Damit gilt zweifellos f (xi−1) = mi ≤ Mi = f (xi ), also mit
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Δxi = xi − xi−1:

S f (Z)− s f (Z) =
n
∑

i=1

(Mi − mi )Δxi ≤
n
∑

i=1

(Mi − mi )|Z | = |Z |
n
∑

i=1

(Mi − mi )

= |Z |
n
∑

i=1

( f (xi )− f (xi−1)) = |Z |( f (b)− f (a)) .

Da |Z | beliebig klein gewählt werden kann, ist inf
Z

S f (Z) = sup
Z

s f (Z), folglich ist f integrierbar

auf [a, b]. Für monoton fallende Funktionen verläuft der Beweis analog. �

Eine Funktion f heißt stückweise stetig auf [a, b], wenn f bis auf endlich viele Sprungstellen
in [a, b] stetig ist (vgl. Abschn. 1.6.9). f heißt stückweise monoton auf [a, b], wenn man eine
Zerlegung Z0 von [a, b] finden kann, so daß f zwischen je zwei Teilungspunkten monoton ist,
und wenn f überdies beschränkt ist.

Funktionen dieser Art sind ebenfalls integrierbar auf [a, b]. Zum Beweis betrachtet man nur
solche Zerlegungen Z , bei denen die Sprungstellen, bzw. die Teilungspunkte von Z0, auch Tei-
lungspunkte von Z sind. Damit verläuft die Schlußkette im Wesentlichen wie im obigen Beweis.

Übung 4.2:

Führe den letztgenannten Beweis aus.

Übung 4.3

Die Funktion f [0, π ] → R mit f (x) := sin(1/x) für x �= 0 und f (0) := 0 ist weder

stückweise stetig noch stückweise monoton (warum?). Zeige, daß sie trotzdem integrierbar auf

[0, π ] ist.

Fig. 4.5: Direktes Schätzen des Flächeninhaltes von

2∫

0

f (x) dx , mit f (x) = −1

2
x2 + x + 1

2
.
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4.1.3 Graphisches Integrieren, Riemannsche3 Summen, numerische Integration mit
der Tangentenformel

Graphische Integration: Die einfachste Methode für das praktische Berechnen von Integralen
besteht darin, den Graphen einer Funktion f auf [a, b] zu zeichnen — etwa auf Millimeterpa-
pier — und den Flächeninhalt der Funktion auf [a, b] abzulesen. (Wir setzen dabei f ohne Be-
schränkung der Allgemeinheit als ≥ 0 voraus.) Das »Ablesen« des Flächeninhaltes kann durch
Abzählen der Millimeterquadrate geschehen, die in der Fläche enthalten sind oder ihren Rand
schneiden. Die von Graph f geschnittenen dabei halb gerechnet.

Beispiel 4.1:

In Fig. 4.5 ist mit dieser graphischen Methode das Integral von f (x) = −x2/2 + x + 1/2 auf
[0, 2] bestimmt worden:

2∫

0

f (x) dx =
2∫

0

(

− x2

2
+ x + 1

2

)

dx ≈ 1,67 .

Bemerkung: Früher waren zur graphischen Integration sogenannte »Integraphen« gebräuchlich.
Das sind Geräte, mit denen man durch Nachfahren des Funktionsgraphen mit einem Leitstift den
Integralwert (näherungsweise) gewinnt. Diese Maschinen, wie überhaupt graphische Integrati-
onsmethoden, sind heute durch den Computer nahezu verdrängt. Zur schnellen überschlägigen
Bestimmung von Integralen ist die obige »Kästchenmethode« jedoch weiterhin nützlich.

Riemannsche Summen: Sowohl für die numerische Integration, wie auch für theoretische Wei-
terführungen sind Riemannsche Summen grundlegend. Es handelt sich dabei um Summen von
Rechteckinhalten, wie in Fig. 4.6 skizziert.

Fig. 4.6: Zu Riemannschen Summen

Genauer: Ist f eine beschränkte Funktion auf [a, b] und Z = {[x0, x1], . . . , [xn−1, xn]} eine
Zerlegung von [a, b], so wähle man aus jedem Teilintervall [xi−1, xi ] einen Punkt ξi beliebig aus.

3 Georg Friedrich Bernhard Riemann (1826 – 1866), deutscher Mathematiker
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Als Riemannsche Summe von f (bzgl. Z und ξ1, . . . , ξn) bezeichnet man dann

R =
n
∑

i=1

f (ξi )Δxi , mit Δxi = xi − xi−1.

(Gelegentlich schreibt man auch R f (Z , ξ) statt R, wobei ξ = (ξ1, . . . , ξn) ist.) Für eine positive
Funktion f , wie in Fig. 4.6 gezeichnet, handelt es sich offenbar gerade um die Summe von Recht-

eckinhalten. Es ist zu erwarten, daß R sich beliebig wenig vom Integral

b∫

a

f (x) dx unterscheidet,

wenn |Z | = max
i

Δxi genügend klein ist. Dieser Sachverhalt wird im folgenden Satz präzisiert.

Satz 4.2:
Für jede beschränkte Funktion f auf [a, b] gilt: f ist genau dann integrierbar, wenn
jede Folge Riemannscher Summen Rk von f , bei denen die Feinheiten |Zk | der zuge-
hörigen Zerlegung gegen Null streben, konvergiert.

Jede dieser Folgen (Rk) konvergiert dann gegen denselben Grenzwert. Dieser ist

gleich

b∫

a

f (x) dx . In Formeln:

lim
k→∞

Rk =
b∫

a

f (x) dx .

Beweis:

4 (I) Es sei f integrierbar auf [a, b] und I =
b∫

a

f (x) dx .

(Rk) sei eine beliebige Folge Riemannscher Summen von f , bei der die Feinheiten |Zk | der
zugehörigen Zerlegungen für k →∞ gegen Null streben. Wir zeigen Rk → I für k →∞.

Da f integrierbar auf [a, b] ist, existiert zu beliebigem ε > 0 eine Obersumme S f (Z) und
eine Untersumme s f (Z ′) mit

I − ε ≤ s f (Z ′) ≤ I ≤ S f (Z) ≤ I + ε . (4.6)

Wir vergleichen nun S f (Z) mit einer unserer Riemannschen Summen Rk . Dabei denken wir uns
Zk »sehr fein« , jedenfalls |Zk | < |Z |. Die Riemannsche Summe spalten wir auf in

Rk = Ak + Bk ,

wobei Ak die Summe aller derjenigen Glieder von Rk ist, die zu Teilintervallen von Rk gehören,

4 Kann beim ersten Lesen überschlagen werden.
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welche Teilungspunkte von Z enthalten. Bk ist die Summe der übrigen Glieder. Man überlegt
sich leicht, daß Bk ≤ S f (Z) gelten muß. (Man zeichne eine Figur dazu.) Ferner gilt Ak → 0 für
k → ∞. (Denn ist m die Anzahl der Teilungspunkte von Z , so kann Ak höchstens 2m Glieder
haben, da jeder Teilungspunkt von Z in höchstens zwei Teilintervallen von Zk . liegt. Da jedes
Glied von Ak absolut ≤ |Zk | sup

[a,b]
| f (x)| ist, folgt |Ak | ≤ 2m|Zk | sup

[a,b]
| f (x)| → 0 für k → ∞.)

Somit ist |Ak | < ε, falls k > k0, für ein genügend großes k0. Daraus erhält man für k > k0:

Rk = Bk + Ak ≤ Bk + ε ≤ S f (Z)+ ε ≤ I + 2ε .

Ganz rechts wurde (4.6) verwendet. Entsprechend beweist man die Ungleichungen Rk ≥ s f (Z ′)
−ε ≥ I − 2ε für k ≥ k1 (k1 genügend groß). Zusammen folgt I − 2ε ≤ Rk ≤ I + 2ε für
k ≥ K = max{k0, k1}. Das bedeutet aber, daß Rk . gegen I konvergiert.

(II) Wir setzen nun voraus, daß jede Folge Riemannscher Summen Rk von f , mit |Zk | → 0 für
die zugehörigen Zerlegungen, konvergiert. Damit konvergieren alle diese Folgen (Rk) gegen den
gleichen Grenzwert R. (Gäbe es nämlich zwei Folgen (Rk), die gegen verschiedene Grenzwerte
strebten, so würde eine Mischfolge aus beiden überhaupt nicht konvergieren, was unserer Voraus-
setzung widerspricht.) Zu zeigen ist, daß f auf [a, b] integrierbar ist. Dazu betrachten wir eine
beliebige Folge von Zerlegungen ZK von [a, b], mit |Zk | → 0 für k →∞. Man bilde die zuge-
hörige Folge von Obersummen S f (Zk). Zu jedem S f (Zk) kann man eine Riemannsche Summe
Rk von f finden mit S f (Zk) = Rk + εk , 0 ≤ εk < 1/k. (Man hat nur die f (ξi ) in Rk genügend
dicht an den Suprema Mi von f in den zugehörigen Zerlegungsintervallen zu wählen.) Wegen
Rk → R und εk → 0 folgt S f (Zk)→ R für k →∞. Entsprechend ergibt sich s f (Zk)→ R für
k →∞, wegen sup

Z
s f (Z) ≤ inf

Z
S f (Z), also

R = sup
Z

s f (Z) = inf
Z

S f (Z) .

Folglich ist f integrierbar auf [a, b], und R =
b∫

a

f (x) dx . �

Tangentenformel zur numerischen Integration: Wir denken uns eine integrierbare Funktion f
auf [a, b] gegeben — z.B. eine stetige Funktion. Ihr Integral auf [a, b] soll zahlenmäßig berech-
net werden.

Dazu bilden wir zunächst eine äquidistante Zerlegung Z = {[x0, x1], . . ., [xn−1, xn]} von
[a, b]. Äquidistant bedeutet, daß alle Teilintervalle [xi−1, xi ] gleich lang sind, also

Δxi = xi − xi−1 =
b − a

n
:= h für alle i = 1, . . ., n.

In jedem Teilintervall bestimmen wir nun den Mittelpunkt (s. Fig. 4.7a)

ξi :=
xi + xi−1

2
(i = 1, . . . , n) (4.7)

und bilden damit die Riemannsche Summe
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Fig. 4.7: Die Tangentenformel zur numerischen Integration

R =
n
∑

i=1

f (ξi )h , h = b − a

n
.

Satz 4.2 besagt, daß sich R für genügend kleine |Z | beliebig wenig vom Integral

b∫

a

f (x) dx

unterscheidet, also

b∫

a

f (x) dx = b − a

n

n
∑

i=1

f (ξi )+ b . (4.8)

Für den »Fehler« δ gilt folgende Abschätzung, die ohne Beweis mitgeteilt sei (s. [56]). f wird
dabei zweimal stetig differenzierbar vorausgesetzt:

|δ| ≤ M · (b − a)3

24n2
, wobei M ≥ | f ′′(x)| für alle x ∈ [a, b]. (4.9)

Formel (4.8), mit (4.7), heißt die Tangentenformel. Der Grund dafür geht aus Fig. 4.7b hervor:
Zeichnet man in (ξi , f (ξi )) die Tangente an den Graphen von f ein, so ist das schraffierte Trapez
inhaltsgleich zum Rechteck mit den Seitenlängen h und f (ξi ). Die Inhaltssumme dieser Trapeze
ist also gleich der Riemannschen Summe in der Tangentenformel. Mit der Tangentenformel sind
wir grundsätzlich in der Lage, jedes Integral beliebig genau zu berechnen. Mit Computern ist
dies eine Kleinigkeit. (Später werden wir noch effizientere numerische Integrationsmethoden
kennenlernen, s. Abschn. 4.2.6.)

Bemerkung: Man mache sich klar, daß mit numerischen Integrationsmethoden, wie der Tan-
gentenformel, das Problem der Integration prinzipiell, ja, sogar praktisch gelöst ist! Auf diese
Methoden kann man immer zurückgreifen, wenn andere Methoden versagen! Die numerische
Integration ist sozusagen das »Schwarzbrot« der Integralrechnung: Nicht so delikat wie Kuchen,
dafür aber gesund und nahrhaft.
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Beispiel 4.2:

Es soll

3∫

2

x2 dx berechnet werden. Wir teilen das Intervall [2, 3] in 10 gleichlange Intervalle der

Länge 1/10 ein. Die Mittelpunkte dieser Intervalle sind ξ1 = 2,05, ξ2 = 2,15, . . ., ξ10 = 2,95.
Mit der Tangentenformel (4.8) folgt damit

3∫

2

x2 dx = 3− 2

10
(2,052 + 2,152 + . . .+ 2,952)+ δ

.= 6,33250+ δ .

Da f (x) = x2 die zweite Ableitung f ′′(x) = 2 besitzt, kann in der Fehlerformel (4.10) M = 2
gesetzt werden. Für den Fehler δ gilt also

|δ| ≤ 2 · (3− 2)3

24 · 102
= 0,00083 .

(Mit dem Hauptsatz können wir später den exakten Integralwert ermitteln. Er ist 6+ 1/3.)

Übung 4.4:

Berechne mit der Tangentenformel näherungsweise die folgenden Integrale. Wähle die Zerle-

gungen dabei so, daß der »Fehler« δ jeweils absolut kleiner als 5 ·10−4 ist

2∫

0

x3 dx ,

2∫

1

ex

x
dx ,

π∫

0

sin x dx .

4.1.4 Regeln für Integrale

Bevor wir zum Hauptsatz kommen, mit dem sich viele Integrale bequem und elegant berechnen
lassen, müssen wir einige Regeln über Integrale herleiten, die wir für den Hauptsatz und den
weiteren Ausbau der Integralrechnung brauchen. Die Regeln sind anschaulich sofort einzusehen,
wenn man die geometrische Deutung der Integrale als Flächeninhalte heranzieht. Zunächst tref-
fen wir zwei Vereinbarungen:

(I) Für jede in a ∈ R definierte Funktion f setzen wir

a∫

a

f (x) dx := 0 .

(II) Ist f auf [a, b] integrierbar, so setzen wir

a∫

b

f (x) dx := −
b∫

a

f (x) dx .



4.1 Grundlagen der Integralrechnung 299

Satz 4.3:

(Integrationsregeln) Es seien f und g reelle Funktionen auf einem Intervall I , die auf
jedem kompakten Teilintervall von I integrierbar sind. Damit folgt: Auch f + g, λ f
(λ ∈ R), f · g, f/g (falls g �= 0 auf I ) und | f | sind integrierbar auf jedem kompakten
Teilintervall von I . Dabei gilt für alle a, b, c ∈ I :

(a)

b∫

a

( f (x)+ g(x)) dx =
b∫

a

f (x) dx +
b∫

a

g(x) dx (4.10)

(b)

b∫

a

λ f (x) dx = λ

b∫

a

f (x) dx (4.11)

(c)

b∫

a

f (x) dx =
c∫

a

f (x) dx +
b∫

c

f (x) dx (4.12)

Aus m ≤ f (x) ≤ M auf [a, b] folgt

(d) m(b − a) ≤
b∫

a

f (x) dx ≤ M(b − a) (4.13)

Mit C := sup
x∈[a,b]

| f (x)| erhält man

(4.14)

(e)

∣
∣
∣
∣
∣
∣

b∫

a

f (x) dx

∣
∣
∣
∣
∣
∣

≤
b∫

a

| f (x)| dx ≤ C · (b − a) . (4.15)

(Die linke Ungleichung nennt man die »Dreiecksungleichung für Integrale«.) Gilt
f (x) ≥ g(x) für alle x ∈ [a, b], so ist

(f)

b∫

a

f (x) dx ≥
b∫

a

g(x) dx . (4.16)

Sind f und g überdies stetig auf [a, b] und gilt für wenigstens ein x0 ∈ (a, b) die
strenge Ungleichung f (x0) > g(x0), so folgt sogar

b∫

a

f (x) dx >

b∫

a

g(x) dx . (4.17)
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Beweis:
Die Beweise sind so einfach (und langweilig), daß wir sie hier weglassen dürfen. Der Leser
kann sie, falls er möchte, zur Übung selber führen: Lediglich zu Teil (e) ist zu sagen, daß man
Gleichung (4.15) zweckmäßig über Riemannsche Summen beweist, und zu Teil (f), daß man

zunächst h(x) := f (x)− g(x) ≥ 0 setzt und

b∫

a

h(x) dx ≥ 0, (4.16) bzw.

b∫

a

h(x) dx > 0, (4.17),

nachweist.
Beim Beweis der letztgenannten Ungleichung bemerkt man, daß nicht nur h(x0) > 0 ist,

sondern daß wegen der Stetigkeit von h in einer Umgebung von x0 sogar h(x) ≥ h(x0)/2 > 0

ist. Also ist wenigstens eine Untersumme von h positiv, woraus

b∫

a

h(x) dx > 0 unmittelbar

folgt. �

Aus Satz 4.3 folgt mühelos

Satz 4.4:
(a) (Mittelwertsatz der Integralrechnung) Ist die Funktion f : [a, b] → R stetig, so

existiert ein ξ ∈ (a, b) mit

b∫

a

f (x) dx = f (ξ)(b − a) . (4.18)

(b) (Verallgemeinerter Mittelwertsatz der Integralrechnung) Sind f und p stetige
Funktionen auf [a, b] und ist p(x) > 0 für alle x ∈ (a, b) f so existiert ein
ξ ∈ (a, b) mit

b∫

a

f (x)p(x) dx = f (ξ)

b∫

a

p(x) dx . (4.19)

Veranschaulichung: Der Mittelwertsatz der Integralrechnung, wird durch Fig. 4.8 dargestellt,
wobei f (x) ≥ 0 auf [a, b] vorausgesetzt sei. Und zwar ist der Flächeninhalt von f auf [a, b],

also

b∫

a

f (x) dx , gleich dem Flächeninhalt des Rechtecks mit den Seitenlängen f (ξ) und (b−a).

Beweis:
Wir zeigen zunächst (b). Ist f konstant, so ist (4.19) trivialerweise richtig. Es sei daher f als
nicht konstant vorausgesetzt. Damit sind

m = min
x∈[a,b]

f (x) und M = max
x∈[a,b]

f (x)
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Fig. 4.8: Zum Mittelwertsatz der Integralrechnung

verschieden. Es gibt also ein x0 ∈ (a, b) mit m < f (x0) < M ; also gilt

mp(x0) < f (x0)p(x0) < Mp(x0) und mp(x) ≤ f (x)p(x) ≤ Mp(x) auf [a, b].

Integration der letzten Zeile ergibt nach Satz 4.3f (4.17):

m

b∫

a

p(x) dx <

b∫

a

f (x)p(x) dx < M

b∫

a

p(x) dx also

b∫

a

f (x)p(x) dx = c

b∫

a

p(x) dx

mit einem c zwischen m und M . Nach dem Zwischenwertsatz existiert ein ξ ∈ (a, b) mit f (ξ) =
c, woraus (4.19) folgt.

Teil (a) unseres Satzes ergibt sich daraus für den Spezialfall p(x) = 1 für alle x ∈ [a, b]. �

Übung 4.5:

Es sei f integrierbar auf [a, b]. Beweise, daß F(x) :=
x∫

a

f (t) dt stetig auf [a, b] ist. (Anleitung:

Wende auf F(x1)− F(x2) =
x1∫

x2

f (t) dt Satz 4.4e an.)

4.1.5 Hauptsatz der Differential- und Integralrechnung

Es sei eine reelle Funktion f auf einem Intervall I gegeben. Unter einer Stammfunktion von f
versteht man eine Funktion F auf I , die

F ′ = f erfüllt.
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Einige Beispiele: Zu f (x) = x2 ist F(x) = x3/3 eine Stammfunktion, zu cos ist sin Stammfunk-
tion, und f (x) = ex ist Stammfunktion von sich selbst. Das Suchen von Stammfunktionen ist
also ein»umgekehrtes Differenzieren«. Seine Bedeutung bekommt dieser »Umkehrprozeß« im
folgenden Hauptsatz, der die Differential- und Integralrechnung verknüpft:

Satz 4.5:
(Hauptsatz der Differential- und Integralrechnung) Es sei f eine stetige Funktion auf
einem Intervall I . Dann ist die Funktion F , definiert durch

F(x) :=
x∫

a

f (t) dt , (x, a ∈ I ) , (4.20)

eine Stammfunktion von f .

Fig. 4.9: Zum Hauptsatz

Bemerkung Der Satz beinhaltet u.a. die Aussage, daß jede stetige Funktion auf einem Intervall
überhaupt eine Stammfunktion besitzt.

Die Funktion F in (4.20) läßt sich gut durch Flächeninhalte veranschaulichen, wie es die
Fig. 4.9 zeigt: Man erkennt, wie sich F(x) mit laufendem x ändert.

Beweis:

des Hauptsatzes: Wir haben zu zeigen, daß der Differenzenquotient (F(z) − F(x))/(z − x) mit
z → x gegen f (x) strebt. Dazu formen wir zunächst F(z) − F(x) mit dem Mittelwertsatz der
Integralrechnung um (x, z ∈ I, x �= z):

F(z)− F(x) =
z∫

a

f (t) dt −
x∫

a

f (t) dt =
z∫

x

f (t) dt = f (ξ)(z − x)

mit einem ξ zwischen z lind x . Damit folgt

F(z)− F(x)

z − x
= f (ξ) . (4.21)
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Läßt man x fest und variiert z, so hängt ξ von z ab; darum schreiben wir besser ξ(z) statt ξ . Mit
z → x folgt ξ(z)→ x , da ξ(z) zwischen x und z liegt. Damit strebt die rechte Seite von (4.21)
mit z → x gegen f (x). Folglich konvergiert auch die linke Seite von (4.21) mit z → x gegen f ,
d.h. es gilt F ′(x) = f (x). �

Wieviele Stammfunktionen besitzt eine Funktion f ? Ist F eine Stammfunktion von f , so
offenbar auch G(x) := F(x)+c mit einer beliebigen Konstanten c. Gibt es noch weitere Stamm-
funktionen von f ? Das ist nicht der Fall. Es gilt

Satz 4.6:
Ist F eine Stammfunktion von f : I → R (I Intervall), so besteht die Menge aller
Stammfunktionen von f aus den Funktionen

G(x) = F(x)+ c x ∈ I , c ∈ R .

Beweis:
Sind G und F zwei Stammfunktionen von f , so gilt (G − F)′ = f − f = 0, also ist G − F
konstant (nach Abschn. 3.1.5, Folg. 3.5a). Das heißt G(x)− F(x) ≡ c, was zu beweisen war. �

Aus dem Hauptsatz und dem gerade bewiesenen Satz 4.6 gewinnen wir nun den Kern- und
Angelpunkt der gesamten Differential- und Integralrechnung, nämlich die Berechnung von Inte-
gralen über Stammfunktionen. An dieser Stelle tut der Leser gut, eine feierliche Pause einzulegen,
denn er hat den Höhepunkt der eindimensionalen Analysis erreicht.

Die angekündigte Aussage ist in folgendem Satz niedergelegt. Er wird auch der zweite Haupt-
satz genannt:

Satz 4.7:
Ist F Stammfunktion einer stetigen Funktion f auf einem Intervall I , so gilt für belie-
bige a, b ∈ I

b∫

a

f (x) dx = F(b)− F(a) .

Beweis:

Nach dem Hauptsatz (Satz 4.5) ist durch F0(x) :=
x∫

a

f (t) dt eine Stammfunktion von f gege-

ben. Also ist F(x) ≡ F0(x)+ c nach Satz 4.6. Daraus folgt

F(b)− F(a) = F0(b)− F0(a) =
b∫

a

f (t) dt −
a∫

a

f (t) dt

︸ ︷︷ ︸

0

=
b∫

a

f (t) dt . �
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Bezeichnung: Zur Abkürzung setzt man häufig

[

F(x)

]b

a

:= F(b)− F(a) ,

also z.B.:

π/2∫

−π/2

cos x dx =
[

sin x

]π/2

−π/2
= sin

π

2
− sin

(

−π

2

)

= 1+ 1 = 2 .

Übung 4.6:

Berechne mit Satz 4.7 die Integrale

(a)

3∫

2

x2 dx (s. Beisp. 4.2) , (b)

2∫

0

(

− x2

2
+ x + 1

2

)

dx (s. Beisp. 4.1) ,

(c)

π∫

0

sin x dx , (d)

1∫

−1

ex dx , (e)

3∫

0

e2x dx ,

(f) Es sei f (t) :=
{

1 , für t ≥ 0,

−1 , für t < 0.
Beweise

x∫

0

f (t) dt = |x | .

(Ist F(x) := |x | Stammfunktion von f ?)

4.2 Berechnung von Integralen

4.2.1 Unbestimmte Integrale, Grundintegrale

Der Hauptsatz der Differential- und Integralrechnung mit der aus ihm folgenden Integralfor-
mel im Satz 4.7 gestattet es uns, die Methoden der Differentialrechnung bei der Integralberech-
nung voll auszuschöpfen: Die Integration stetiger Funktionen ist auf die Aufgabe zurückgeführt,
Stammfunktionen zu gegebenen Funktionen zu finden. Diesem Problem wenden wir uns im Fol-
genden zu.
Unbestimmtes Integral: Jede Stammfunktion F einer reellen Funktion f auf einem Intervall I
nennt man auch ein unbestimmtes Integral von f . Man beschreibt dies nach Leibniz durch

F(x) =
∫

f (x) dx (lies: »Integral f (x) dx«) .

Das Symbol auf der rechten Seite bezeichnet dabei irgend eine beliebige Stammfunktion von f .
Es gilt somit auch

F(x)+ c =
∫

f (x) dx ,
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da F(x) + c ebenfalls eine Stammfunktion von f ist. Man merke: Gilt G(x) =
∫

f (x) dx und

F(x) =
∫

f (x) dx , so darf man nicht G(x) = F(x) folgern (für alle x ∈ I ), sondern nur

G(x) = F(x)+ c mit einer Konstanten c. Bei der Verwendung von

∫

f (x) dx hat man sich also

stets bewußt zu machen, daß dieses Symbol eine Funktion nur bis auf eine beliebige additive
Konstante beschreibt.

Wir machen uns klar, daß folgende Äquivalenz gilt

F(x) =
∫

f (x) dx ⇐⇒ F ′ = f . (4.22)

Im Gegensatz zum unbestimmten Integral

∫

f (x) dx nennt man

b∫

a

f (x) dx

ein bestimmtes Integral. Bestimmte Integrale sind also Zahlen, während unbestimmte Integrale
Funktionen beschreiben.

Grundintegrale: Als Ausgangspunkt für praktische Rechnungen stellen wir eine Tabelle ele-
mentarer Funktionen zusammen (s. Tab. 4.1), deren Stammfunktionen sich aus der Differential-
rechnung unmittelbar ergeben (s. Abschn. 3.1.8 und Abschn. 3.1.9). Dabei sind die angegebenen
Funktionen f für alle x ∈ R definiert, ausgenommen dort, wo auftretende Nenner Null werden
oder Wurzeln negative Radikanden aufweisen.

Beim Integrieren liest man die Tabelle von links nach rechts, beim Differenzieren von rechts
nach links. Mit Hilfe der einfachen Regeln

∫

( f (x)+ g(x)) dx =
∫

f (x) dx +
∫

g(x) dx , Additivität, (4.23)
∫

λ f (x) dx = λ

∫

f (x) dx , Homogenität, (4.24)

für stetige Funktionen (s. Satz 4.3, (a), (b)) lassen sich aus der Tabelle der Grundintegrale schon
viele Stammfunktionen ermitteln, z.B.

∫

(3 ex +7 sin x) dx = 3

∫

ex dx + 7

∫

sin x dx = 3 ex −7 cos x ,

∫ n
∑

k=0

ak xk dx =
n
∑

k=0

ak

∫

xk dx =
n
∑

k=0

ak
xk+1

k + 1
. (4.25)

Die Integration von Produkten f (x) · g(y) und verketteten Funktionen f (g(x)) wird in den
nächsten beiden Abschnitten behandelt.
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Tabelle 4.1: Grundintegrale

f = F ′ F(x) =
∫

f (x) dx f = F ′ F(x) =
∫

f (x) dx

xa (a �= 1)
xa+1

a + 1

1

sinh2 x
− coth x

1

x
(x �= 0) ln |x | 1

cosh2 x
tanh x

ex ex

ax (a > 0 , a �= 1)
ax

ln a

1
√

1− x2
(|x | < 1)

{

arcsin x

− arccos x

sin x − cos x
1

1+ x2

{

arctan x

− arccot x

cos x sin x
1

√

1+ x2

{

arsinh x

= ln(x +
√

1+ x2)

1

sin2 x
− cot x

1

±
√

x2 − 1
(|x | > 1)

{

arcosh x

= ± ln(x +
√

x2 − 1)

1

cos2 x
tan x

sinh x cosh x
1

1− x2

⎧

⎪
⎨

⎪
⎩

(|x | < 1)

(|x | > 1)

artanh x = 1

2
ln

1+ x

1− x

arcoth x = 1

2
ln

x + 1

x − 1
sinh x cosh x

cosh x sinh x

Übung 4.7:

Berechne
∫

4

5
x7 dx ,

∫
dx

x2
,

∫ √
x dx ,

∫

1

dx√
x

,

∫

(cos x + 3x2) dx ,

∫ (

ex+1− 2

x

)

dx ,

∫

0

dx

1+ x2
,

2∫

0

4x dx ,

π/2∫

0

cos x dx .

4.2.2 Substitutionsmethode

Da das Integrieren stetiger Funktionen, d.h. das Auffinden von Stammfunktionen, gerade der
umgekehrte Prozeß wie beim Differenzieren ist, lassen sich Differentiationsregeln in Integrati-
onsregeln verwandeln. Wir wollen das in diesem Abschnitt anhand der Kettenregel durchführen.
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Substitutionsformel: Wir betrachten die Komposition zweier stetig differenzierbarer Funktionen
F und ϕ:

F(ϕ(t)) := G(t) (4.26)

(ϕ bzw. F sind dabei auf Intervallen I bzw. J definiert, wobei — wie könnte es anders sein? —
ϕ(I ) ⊆ J gilt.) Differenzieren ergibt nach der Kettenregel

G ′(t) = F ′(ϕ(t))ϕ′(t) .

Übergang zu Stammfunktionen auf beiden Seiten liefert

G(t) =
∫

F ′(ϕ(t))ϕ′(t) dt .

Mit x = ϕ(t) gilt dabei F(x) = G(t), s. (4.26), also

F(x) =
∫

F ′(ϕ(t))ϕ′(t) dt mit x = ϕ(t) (4.27)

für alle t ∈ I . Bezeichnet man nun mit f die Ableitung F ′ und setzt dies zusammen mit

F(x) =
∫

f (x) dx

in (4.27) ein, so erhält man

Satz 4.8:
(Substitutionsformel) Es sei f stetig auf dem Intervall J und ϕ stetig differenzierbar
auf dem Intervall I , wobei ϕ(I ) ⊂ J gilt. Damit folgt

∫

f (x) dx =
∫

f (ϕ(t))ϕ′(t) dt , mit x = ϕ(t). (4.28)

Merkregel: Mit der Leibnizschen Schreibweise
dx

dt
= ϕ′(t) bekommt die Substitutionsfor-

mel (4.28) die leicht zu behaltende Gestalt
∫

f (x) dx =
∫

f (ϕ(t))
dx

dt
dt , x = ϕ(t) . (4.29)

Man hat also links das x in f (x) durch ϕ(t) zu ersetzen und dann dx formal durch dt zu divi-
dieren und mit dt anschließend formal zu multiplizieren. (Man macht sich klar, daß hier keine
wirklichen Divisionen und Multiplikationen mit dt vorliegen, sondern daß sie nur optisch als
solche erscheinen. Dies erleichtert das Merken der Formel aber gerade!)
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Anwenden der Substitutionsformel »von rechts nach links«: Zunächst wenden wir Formel

(4.28) auf

∫
ϕ′(t)
ϕ(t)

dt an. Der Vergleich mit der rechten Seite von (4.28) liefert

f (ϕ(t)) = 1

ϕ(t)
, d.h. f (x) = 1

x
mit x = ϕ(t) .

Also folgt mit Vertauschen der Gleichungsseiten von (4.28):

∫
ϕ′(t)
ϕ(t)

dt =
∫

1

x
dx = ln |x | = ln |ϕ(t)| . (4.30)

Schreibt man ganz rechts und ganz links x statt t , so gewinnt man

∫
ϕ′(x)

ϕ(x)
dx = ln |ϕ(x)| . (4.31)

Diese nützliche Formel läßt eine Reihe von Folgerungen zu:

Beispiel 4.3:

Setzt man in (4.31) ϕ(x) nacheinander gleich cos x , sin x , cosh x , sinh x und ln x , so erhält man

∫

tan x dx = − ln | cos x | ,
∫

cot x dx = ln | sin x | , (4.32)
∫

tanh y dx = ln | cosh x | ,
∫

coth x dx = ln | sinh x | , (4.33)
∫

dx

x ln x
= ln | ln x | . (4.34)

Die Formeln gelten natürlich nur in Intervallen, in denen die gewählten Funktionen ϕ definiert
sind und nirgends verschwinden. Entsprechend erhält man aus (4.28):

∫

ϕ(t)ϕ′(t) dt =
∫

x dx = x2

2
= 1

2
ϕ2(t) , (4.35)

wobei f (x) = x gewählt wurde.

Beispiel 4.4:

Setzt man in (4.35) ϕ(t) = ln t und dann x statt t , so folgt

∫
ln x

x
dx = 1

2
ln2 x . (4.36)
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Häufig trifft man auf Integrale der Form

∫

f (t2)t dt . Der Vergleich mit der rechten Seite der

Substitutionsformel (4.28) zeigt, daß wir hier ϕ(t) = t2 setzen können. Es folgt wegen ϕ′(t) = 2t

∫

f (t2)t dt = 1

2

∫

f (t2)2t dt = 1

2

∫

f (x) dx = 1

2
F(x) = 1

2
F(t2) , (4.37)

wobei F eine Stammfunktion von f ist. Mit x statt t in den Ausdrücken ganz rechts und links
erhalten wir somit

∫

x f (x2) dx = 1

2
F(x2) (mit F ′ = f ) . (4.38)

Beispiel 4.5:

Setzt man für f verschiedene Funktionen ein, so gewinnt man aus (4.38) die Integrale

∫

x ex2
dx = ex2

2
,

∫

x e−x2
dx = −e−x2

2
, (4.39)

∫
x dx

1+ x2
= 1

2
ln(1+ x2) ,

∫
x dx

1− x2
= −1

2
ln |1− x2| , (4.40)

∫
x dx√
1+ x2

=
√

1+ x2 ,

∫
x dx√
1− x2

= −
√

1− x2 ,

∫
x dx√
x2 − 1

=
√

x2 − 1 ,

(4.41)

allgemein:

∫
x dx√

a + bx2
= 1

b

√

a + bx2 , (b �= 0) . (4.42)

Die Formeln gelten selbstverständlich nur in solchen Intervallen, in denen die auftretenden Nen-
ner �= 0 oder die Radikanden > 0 sind.

Die Verwendung der Substitutionsformel »von rechts nach links«, wie oben geschehen, ist nur

möglich, wenn die zu berechnenden Integrale schon in der Form

∫

f (ϕ(t))ϕ′(t) dt vorliegen.

Man muß das mit »scharfem Auge« erkennen! Dieser Glückszustand liegt aber nicht immer vor.
Aus diesem Grund ist die Ausnutzung der Formel (4.28) »von links nach rechts« häufiger, ja, auf
ihr beruht der Hauptnutzen der Substitutionsregel. Wir wenden uns dieser Methode im Folgenden
zu.

Anwenden der Substitutionsformel »von links nach rechts«: Zunächst schreiben wir die Sub-
stitutionsformel (4.28) geringfügig um, da sie dann für die Anwendungen griffiger wird. Und
zwar wird die Funktion

g(t) := f (ϕ(t)) , t ∈ I ,
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eingeführt. Dabei setzen wir ϕ′(t) �= 0 auf I voraus. Es existiert damit die Umkehrfunktion von
ϕ, die wir mit ψ bezeichnen, d.h.

x = ϕ(t)⇐⇒ t = ψ(x) .

Damit ist f (x) = g(t) = g(ψ(x)). Man setzt dies in die Substitutionsformel (4.28) ein und
erhält

∫

g(ψ(x)) dx =
∫

g(t)ϕ′(t) dt . (4.43)

Hierin ist

ϕ′(t) = dx

dt
= 1

dt

dx

= 1

ψ ′(x)
= 1

ψ ′(ϕ(t))
. (4.44)

Wir verwenden die übersichtliche Leibnizsche Schreibweise
dx

dt
und gelangen damit zu der

Folgerung 4.1:
Beschreibt g(ψ(x)) eine zusammengesetzte Funktion, wobei g stetig auf dem Intervall
I ist und ψ stetig differenzierbar auf dem Intervall J (mit ψ(J ) ⊂ I ), so folgt unter
der Voraussetzung ψ ′(x) �= 0 auf J

∫

g(ψ(x)) dx =
∫

g(t)
dx

dt
dt , mit t = ψ(x) . (4.45)

Die Substitutionsformel in dieser Gestalt soll an einem einfachen Beispiel demonstriert werden,
an dem der Leser die grundsätzliche Anwendungsmöglichkeit erkennt.

Beispiel 4.6:
∫

sin(2x) dx =?

Hier setzt man t = ψ(x) = 2x , woraus
dt

dx
= 2, also

dx

dt
= 1

2
folgt. Die Substitutionsformel

(4.45) liefert damit
∫

sin(2x) dx =
∫

sin t
dx

dt
dt = 1

2

∫

sin t dt = −1

2
cos t = −1

2
cos(2x) .

Das Beispiel zeigt folgendes: Bei Anwendung der Substitutionsformel (4.45) geht man davon

aus, daß man

∫

g(t)
dx

dt
dt »integrieren« kann, d.h. daß man eine Funktion H angeben kann mit

∫

g(t)
dx

dt
dt = H(t) , d.h. H ′(t) = g(t)

dx

dt
(4.46)
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auf I . (Aus dem Hauptsatz folgt, daß eine solche Funktion H existieren muß.) Damit wird (4.45)
zu

∫

g(ψ(x)) dx =
∫

g(t)
dx

dt
dt = H(t) = H(ψ(x)) . (4.47)

Diese Formelkette, von links nach rechts durchlaufen, ist ein hervorragendes Instrument zur Be-
rechnung vieler Integrale!

Beim Übergang zum bestimmten Integral folgt daraus für alle a, b ∈ J :

b∫

a

g(ψ(x)) dx = H(ψ(b))− H(ψ(a)) , (4.48)

wegen (4.46) also

b∫

a

g(ψ(x)) dx =
ψ(b)∫

ψ(a)

g(t)
dx

dt
dt , t = ψ(x) . (4.49)

Dies ist die Substitutionsformel für bestimmte Integrale.
An einer Reihe von Beispielen soll die Kraft der hergeleiteten Formel gezeigt werden. Zuerst

betrachten wir Integrale der Form

∫

f (ax + b) dx , mit a �= 0 .

Wir »substituieren «

t = ψ(x) = ax + b , ⇒ dt

dx
= a , ⇒ dx

dt
= 1

a
.

Ist F eine Stammfunktion von f , so liefert die Formelkette (4.47):

∫

f (ax + b) dx =
∫

f (t)
dx

dt
dt = 1

a

∫

f (t) dt = F(x)

a
= F(ax + b)

a
.

⇒
∫

f (ax + b) dx = 1

a
F(ax + b) mit F ′ = f . (4.50)

Beispiel 4.7:
Nach (4.50) ist mit a �= 0 (mit Nenner �= 0 in (b) und (c)):

(a)

∫

cos(ax + b) dx = 1

a
sin(ax + b) .

(b)

∫
dx

ax + b
= 1

a
ln |ax + b| . (4.51)
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(c)

∫

(ax + b)α dx = 1

a(α + 1)
(ax + b)α+1 (α �= −1) . (4.52)

(d) Es sollen cos x und sin x integriert werden. Aus dem Additionstheorem des Cosinus folgt
cos(2x) = cos x − sin x , mit sin x + cos x = 1 nach Umformung also:

cos x = 1

2
(1+ cos(2x)) , sin x = 1

2
(1− cos(2x)) . (4.53)

Mit der Substitution t = 2x errechnet man daraus
∫

cos2 x dx = 1

2

∫

(1+ cos(2x)) dx = 1

2

(

x + sin(2x)

2

)

= 1

2
(x + sin x cos x) .

Entsprechend wird sin x integriert. Man gewinnt so die oft benutzten Formeln

∫

cos2 x dx = 1

2
(x + sin x cos x) ,

∫

sin2 x dx = 1

2
(x − sin x cos x) . (4.54)

Fig. 4.10: Zum Flächeninhalt des Kreises

Beispiel 4.8:
(Kreisfläche) Die hergeleiteten Formeln gestatten uns den Beweis, daß der Flächeninhalt des
Einheitskreises π ist, und in der Folge, daß der Flächeninhalt eines Kreises mit dem Radius r
gleich r2π ist.

Wir nehmen uns dabei die obere Hälfte des Einheitskreises vor, s. Fig. 4.10. Sie wird durch
den Graphen der Funktion f (x) =

√
1− x2, x ∈ [−1,1], berandet. Die obere Einheitskreisfläche

hat damit den Flächeninhalt des Kreises

I =
1∫

−1

√

1− x2 dx . (4.55)

Zu seiner Berechnung integrieren wir zunächst
∫ √

1− x2 dx für |x | < 1, und zwar mit der
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Substitution x = cos t :
∫
√

1− x2 dx =
∫
√

1− cos2 t
dx

dt
dt = −

∫

sin2 t dt

= −1

2
(t − sin t cos t) = −1

2

(

arccos x − x
√

1− x2
)

,

(4.56)

d.h.

∫
√

1− x2 dx = 1

2

(

x
√

1− x2 − arccos x
)

. (4.57)

Das bestimmte Integral (4.55) — also der halbe Einheitskreisinhalt — wird damit zu

1∫

−1

√

1− x2 dx = π

2
. (4.58)

Der Einheitskreis hat somit den Flächeninhalt π . Entsprechend errechnet man den Inhalt eines
Kreises vom Radius r > 0 (Substitution t = x/r ):

2

r∫

−r

√

r2 − x2 dx = 2

r∫

−r

√

1−
( x

r

)2
dx = 2r

1∫

−1

√

1− t2
dx

dt
dt = 2r2

1∫

−1

√

1− t2 dt = r2π .

(4.59)

Beispiel 4.9:
Analog (4.56) errechnet man mit der Substitution x = cosh t für x ≥ 1:

∫
√

x2 − 1 dx = 1

2

(

x
√

x2 − 1− arcosh x
)

, (4.60)

und mit x = sinh t für x ∈ R:

∫
√

x2 + 1 dx = 1

2

(

x
√

1+ x2 + arsinh x
)

. (4.61)

Beispiel 4.10:
(Orthogonalitätsrelationen von sin und cos) Aus den Additionstheoremen der trigonometrischen
Funktionen folgt unmittelbar

sin(nx ± kx) = sin(nx) cos(kx)± cos(nx) sin(kx) ,

cos(nx ± kx) = cos(nx) cos(kx)∓ sin(nx) sin(kx) .
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Addition bzw. Subtraktion dieser Formeln liefern

sin(nx) sin(kx) = 1

2
(cos((n − k)x)− cos((n + k)x)) ,

cos(nx) cos(kx) = 1

2
(cos((n − k)x)+ cos((n + k)x)) ,

sin(nx) cos(kx) = 1

2
(sin((n − k)x)+ sin((n + k)x)) .

(4.62)

Hierbei seien n und k beliebige natürliche Zahlen. Die rechten Seiten lassen sich mit den Substi-
tutionen t = (n − k)x bzw. t = (n + k)x leicht integrieren. Es folgt:

2

∫

sin(nx) sin(kx) dx =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

sin((n − k)x)

n − k
− sin((n + k)x)

n + k
, wenn n �= k,

x − sin(2nx)

2n
, wenn n = k,

2

∫

cos(nx) cos(kx) dx =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

sin((n − k)x)

n − k
+ sin((n + k)x)

n + k
, wenn n �= k,

x + sin(2nx)

2n
, wenn n = k,

2

∫

sin(nx) cos(kx) dx =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

−cos((n − k)x)

n − k
− cos((n + k)x)

n + k
, wenn n �= k,

−cos(2nx)

2n
, wenn n = k.

(4.63)

Integration von −π bis π ergibt

π∫

−π

sin(nx) sin(kx) dx =
π∫

−π

cos(nx) cos(kx) dx =
{

0 , falls n �= k,

π , falls n = k,

π∫

−π

sin(nx) cos(kx) dx = 0 (n, k ∈ N) .

(4.64)

Diese Formeln heißen die Orthogonalitätsrelationen der trigonometrischen Funktionen. Sie spie-
len in der Theorie der Fourierreihen eine grundlegende Rolle (s. Abschn. 5.5).

Übung 4.8:

Integriere

(a)

∫

sin2(ax) dx ,

∫

cos2(ax) dx , mit a �= 0,

(b)

∫
x dx

√

x2 + ax + b
(wandle den Nenner um in (x + A)2 + B und substituiere t = x + A),
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(c)

∫
dx

sin x
(verwende sin x = 2 sin

x

2
cos

x

2
= 2 tan

x

2
cos

x

2
und substituiere t = tan

x

2
),

(d)

∫
dx

cos x
(substituiere x = t − π

2
, also cos x = sin t),

(e)

∫

sinn x cos x dx , mit nN (t = sin x),

(f)

∫

x sin(1+ x2) dx ,

(g)

∫
√

x2 − a2 dx ,

∫
√

x2 + a2 dx , mit a > 0.

4.2.3 Produktintegration

Es soll die Produktregel

(uv)′ = u′v + uv′

der Differentialrechnung in eine Integrationsformel verwandelt werden. Setzen wir u und v als
stetig differenzierbare Funktionen auf einem Intervall I voraus, so folgt aus der obigen Gleichung
durch Integration auf beiden Seiten:

u(x)v(x) =
∫

u′(x)v(x) dx +
∫

u(x)v′(x) dx .

Man bringt hier

∫

u(x)v′(x) dx auf die linke Seite und erhält

Satz 4.9:
(Produktintegration) Sind u und v stetig differenzierbare Funktionen auf einem Inter-
vall I , so gilt dort

∫

u(x)v′(x) dx = u(x)v(x)−
∫

u′(x)v(x) dx . (4.65)

Für bestimmte Integrale erhält man daraus

b∫

a

u(x)v′(x) dx =
[

u(x)v(x)

]b

a

−
b∫

a

u′(x)v(x) dx .

Die Produktintegration wird auch partielle Integration genannt.
Wie verwendet man Formel (4.65) bei der praktischen Berechnung von Integralen? Wir zeigen

dies zunächst an einfachen Beispielen.

Beispiel 4.11:

(a)

∫

x ex
︸︷︷︸

uv′

dx = x ex
︸︷︷︸

uv

−
∫

1
︸︷︷︸

u′

· ex
︸︷︷︸

v

dx = ex (x − 1) . (4.66)
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(b)

∫

x cos x
︸ ︷︷ ︸

uv′

dx = x sin x
︸ ︷︷ ︸

uv

−
∫

1
︸︷︷︸

u′

· sin x
︸︷︷︸

v

dx = x sin x + cos x . (4.67)

(c)

∫

x sin x
︸ ︷︷ ︸

uv′

dx = x(− cos x)−
∫

1 · (− cos x) dx = −x cos x + sin x . (4.68)

Was ist das Wesentliche bei der Produktintegration? Entscheidend ist, daß ein zu berechnendes

Integral der Form

∫

f (x)g(x) dx auf ein anderes zurückgeführt wird, von dem man hofft, daß

es »leichter« zu integrieren ist. Eine Richtschnur dabei ist die folgende

Faustregel: Bei der Integration eines Produktes

∫

f (x)g(x) dx wähle man denjenigen Faktor

als u(x), der sich beim Differenzieren »vereinfacht«, und denjenigen als v′(x), der sich beim
Integrieren wenigstens nicht allzusehr »verkompliziert«.

In den obigen Beispielen 4.11 wurde so vorgegangen. Es ist klar, daß die Begriffe »Vereinfachen«
oder »Verkomplizieren« nicht scharf zu definieren sind.

Immerhin kann als »Vereinfachung« angesehen werden, wenn von Potenzen u(x) = xn (n ∈
N) zu niedrigeren Potenzen der Ableitung u′(x) = nxn−1 übergegangen wird, oder wenn beim
Differenzieren

ln x in ln′ x = 1

x
, arctan x in arctan′ x = 1

1+ x2
,

arcsin x in arcsin′ x = 1√
1− x2

übergeht. Die links stehenden Funktionen sind »transzendent«, d.h. »nicht algebraisch», wäh-
rend die Ableitungen rechts algebraisch, ja, z.T. sogar rational sind.

Dagegen werden beim Integrieren die Funktionen ex , sin x , cos x sicherlich »nicht komplizier-
ter«, da ihre Stammfunktionen ex , − cos x , sin x von gleicher Bauart sind.

Trotz der Faustregel, wie auch der übrigen besprochenen Regeln, ist das »analytische Integrie-
ren« — d.h. das Auffinden von Stammfunktionen — kein glattes Geschäft. Man muß mit einem
gewissen Geschick vorgehen — was man durch Übung bekommt — und auch etwas Glück ha-
ben, was einem ohne Übung zufallen kann. Dabei passiert es immer wieder, daß man auf elemen-

tare Funktionen stößt (z.B. sin x/x oder e−x2
), die sich nicht mehr elementar integrieren lassen,

d.h. die keine elementaren Funktionen als Stammfunktionen haben. (Elementare Funktionen sind
dabei f (x) = x , ex , sin x sowie alle daraus gebildeten Kombinationen unter Verwendung von
+, −, ·, /, hoch n, n

√
(n ∈ N, Verkettung ◦ und Umkehrfunktionsbildung.) Das elementare

Integrieren (auch analytisches Integrieren genannt) ist also mehr eine Art pfiffiger Kleinkunst als
ein sicherer Rechenkalkül, im Gegensatz zum Differenzieren, bei dem man durch feste Regeln
im Bereich elementarer Funktionen stets zu den Ableitungen gelangt.

Zur Schreibweise ist bei der Produktregel zu sagen, daß der Lernende zweckmäßig u und v′

unter die entsprechenden Faktoren des zu bearbeitenden Integrals schreibt, wie in den Beispie-
len 4.11 geschehen. Dann schreibt er weiter rechts uv und u′v in der unteren Zeile hin (s. 4.11(a))
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und anschließend die entsprechenden expliziten Ausdrücke in die Zeile darüber, in der schließ-
lich rechts die Lösung steht. Später notiert er nur noch uv′, wie in Beisp. 4.11(c), oder unterläßt
auch dies, da er fähig wird, die »Unterzeile« nur noch zu denken.

In den folgenden Beispielen wird unsere Faustregel erfolgreich eingesetzt.

Beispiel 4.12:

(a)

∫

ln(x)
︸ ︷︷ ︸

u

xa
︸︷︷︸

v′

dx = ln(x)
xa+1

a + 1
− 1

a + 1

∫

xa dx = xa+1

a + 1

(

ln x − 1

a + 1

)

(4.69)

Dabei ist x > 0 und a �= −1. (Für a = −1 s. (4.36).) Insbesondere folgt für a = 0:

∫

ln x dx = x ln x − x . (4.70)

(b) Zur Berechnung von

∫

arcsin x dx benutzt man den Trick, daß man v′ = 1 setzt und u gleich

dem gesamten Integranden: u = arcsin x . Es folgt

∫

arcsin x dx = x arcsin x −
∫

x dx√
1− x2

= x arcsin x +
√

1− x2 . (4.71)

Entsprechend erhält man mit v′ = 1, u = arctan x :

∫

arctan x dx = x arctan x − 1

2
ln(1+ x2) . (4.72)

Damit lassen sich auch arccos x = π

2
− arcsin x und arccot x = π

2
− arctan x sofort integrieren.

Mit der Methode v′ = 1 erhält man entsprechend die Integrale von arsinh x , arcosh x , artanh x
und arcoth x .

(c) In listenreicher Weise führt beim Integral

∫

eax sin(bx) dx (b �= 0) das zweimalige Anwen-

den der Produktregel zum Ziel:

∫

eax
︸︷︷︸

u

sin(bx)
︸ ︷︷ ︸

v′

dx = −1

b
eax cos(bx)+ a

b

∫

eax
︸︷︷︸

u1

cos(bx)
︸ ︷︷ ︸

v′1

dx

⇒
∫

eax sin(bx) dx = −1

b
eax cos(bx)+ a

b2
eax sin(bx)− a2

b2

∫

eax sin(bx) dx .

Löst man die letzte Gleichung nach

∫

eax sin(bx) dx auf, so folgt

∫

eax sin(bx) dx = eax

a2 + b2
(a sin(bx)− b cos(bx)). (4.73)

Analog ergibt sich mit b �= 0:
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∫

eax cos(bx) dx = eax

x2 + b2
(a cos(bx)+ b sin(bx)). (4.74)

Beispiel 4.13:

(Rekursionsformeln) Mit n ∈ N gilt

(a)

∫

xn
︸︷︷︸

u

ex
︸︷︷︸

v′

dx = xn ex −n

∫

xn−1 ex dx . (4.75)

Damit ist ein Integral

∫

xn−1 ex dx übrig geblieben. Wendet man die Formel auf dieses Integral

an — (n− 1) statt n gesetzt —, so bleibt ein Integral

∫

xn−2 ex dx zu lösen. Fährt man in dieser

Weise fort, so erreicht man schließlich

∫

ex dx = ex , womit

∫

xn ex dx explizit berechnet ist.

Zusammengefaßt ergibt dies

∫

xn ex dx = ex

(

xn +
n
∑

k=1

(−1)kk!
(

n

k

)

xn−k

)

. (4.76)

(b) Völlig entsprechend erhält man die Rekursionsformeln

∫

xn sin x dx = −xn cos x + n

∫

xn−1 cos x dx ,

∫

xn cos x dx = xn sin x − n

∫

xn−1 sin x dx

(4.77)

und daraus die Summenformeln:

∫

xn sin x dx = −
n
∑

k=0

k!
(

n

k

)

xn−k cos

(

x + k

2
π

)

, (4.78)

∫

xn cos x dx =
n
∑

k=0

k!
(

n

k

)

xn−k sin

(

x + k

2
π

)

, (4.79)

(c)

∫

xa
︸︷︷︸

u

(ln x)n

︸ ︷︷ ︸

v′

dx = xa+1

a + 1
(ln x)n − n

a + 1

∫

xa(ln x)n−1 dx (a �= −1 , n ∈ N)

⇒
∫

(ln x)n dx = x(ln x)n − n

∫

(ln x)n−1 dx . (4.80)
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(d) Für n ∈ N, n ≥ 2 gilt

∫

cosn x dx =
∫

cosn−1 x
︸ ︷︷ ︸

u

cos x
︸︷︷︸

v′

dx = cosn−1 x sin x + (n − 1)

∫

cosn−2 sin x dx

= cosn−1 x sin x + (n − 1)

∫

cosn−2(1− cos x) dx

⇒
∫

cosn x dx = 1

n
cosn−1 x sin x + n − 1

n

∫

cosn−2 x dx . (4.81)

Analog folgen (mit beliebigen n, m ∈ N, n ≥ 2)

∫

sinn x dx = −1

n
sinn−1 x cos x + n − 1

n

∫

sinn−2 x dx ,

∫

sinm x cosn x dx = sinm+1 x cosn−1 x

m + n
+ n − 1

m + n

∫

sinm x cosn−2 x dx .

(4.82)

Eine andere Methode, die Integrale (4.81), (4.82) zu berechnen, besteht in der Anwendung der
Summenformeln

cos2n

sin2n

}

= 1

22n

[
n−1
∑

k=0

(±1)n−k2

(
2n

k

)

cos((n − k)2x)+
(

2n

n

)
]

mit n ∈ N (Dabei gilt in (±1)n−k das Pluszeichen für den cos2n x und das Minuszeichen für
sin2n x). Ferner ist für ungerade Potenzen

cos2n−1 x = 1

22n−2

n−1
∑

k=0

(
2n − 1

k

)

cos((2n − 2k − 1)x) ,

sin2n−1 x = 1

22n−1

n−1
∑

k=0

(−1)n+k−1
(

2n − 1

k

)

sin((2n − 2k − 1)x) .

Man gewinnt diese Formeln über cos x = (ei x + e− i x )/x und sin x = (ei x − e− i x )/(2 i) nebst
der Binomischen Formel. Integration liefert für beliebiges n ∈ N

∫

cos2n x dx
∫

sin2n x dx

⎫

⎪
⎪
⎬

⎪
⎪
⎭

=
(

2n

n

)
x

22n
+ (±1)n

22n−1

n−1
∑

k=0

(±1)k

(
2n

k

)
sin((n − k)2x)

2(n − k)
,

∫

cos2n−1 x dx
∫

sin2n−1 x dx

⎫

⎪
⎪
⎬

⎪
⎪
⎭

= (±1)n

22n−2

n−1
∑

k=0

(±1)k
(2n−1

k

)

2(n − k)− 1
·
{

sin((2(n − k)− 1)x)

cos((2(n − k)− 1)x)
.

(4.83)
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Dabei gehört wieder »Oberes zu Oberem« und »Unteres zu Unterem«.
Ein öfters vorkommender Spezialfall ist das folgende bestimmte Integral, das sich aber auch

aus (4.82) leicht ergibt:

π/2∫

0

sin2n x dx =
π/2∫

0

cos2n x dx = π

2
· 1 · 3 · 5 · . . . · (2n − 1)

2 · 4 · 6 · . . . · 2n
. (4.84)

Übung 4.9:

Leite die Formeln (4.74), (4.82) und (4.83) her.

Übung 4.10:

Berechne folgende Integrale und mache die Probe durch Differenzieren:

∫
x2 dx

√

1− x2
,

∫

(3x4 − 2x2 + x − 1) sin(5x) dx,

∫

x arcsin x dx ,

∫

x2 sinh x dx ,

∫

sin3 x dx ,

∫

cos2 x sin2 x dx ,

∫
x dx

cos2 x
.

4.2.4 Integration rationaler Funktionen

Rationale Funktionen p(x)/q(x) (p, q reelle Polynome) lassen sich elementar integrieren. Die
Integration verläuft in drei Schritten:

(I) Division p(x) : q(x), falls Grad p ≥ Grad q ≥ 1.

(II) Partialbruchzerlegung

(III) Integration der Summanden

(I) Division: Ist Grad p ≥Grad q ≥ 1, so dividiere man p durch q mit dem Divisionsalgorithmus
für Polynome, s. Abschn. 2.1.6. Man erhält damit

p(x)

q(x)
= h(x)+ r(x)

q(x)
, (4.85)

wobei h und r Polynome sind. Der Grad von r ist dabei kleiner als der Grad von q . Da man h
ohne Schwierigkeit integrieren kann, bleibt r(x)/q(x) zu integrieren. Wir haben unser Problem
also auf die Aufgabe reduziert, rationale Funktionen zu integrieren, deren Zählergrad kleiner als
der Nennergrad ist. Ist dies von vornherein der Fall, so erübrigt sich die Division natürlich.

(II) Partialbruchzerlegung: Es ist r(x)/q(x) zu integrieren. Der Grad des Polynoms r sei m, der
des Polynoms q sei n, wobei m < n ist.

Zunächst sind sämtliche Nullstellen α1, α2, . . . von q zu berechnen (mitAuflösungsformeln
oder dem Newtonschen Verfahren). Nach dem Fundamentalsatz der Algebra (Abschn. 2.5.5)
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kann man damit q(x) so darstellen:

q(x) = c(x − α1)
k1(x − α2)

k2 . . . (x − αN )kN , c �= 0 .

Die k1, . . ., kN ∈ N sind die »Vielfachheiten« der entsprechenden Nullstellen. Es ist k1 + k2 +
. . . + kN = n. Unter den Nullstellen können auch komplexe Nullstellen sein. Mit jeder echt
komplexen Nullstelle α j = ξ j + i η j (η j �= 0) ist aber auch stets die konjugiert komplexe
Zahl α j = ξ j − i η j auch Nullstelle von q , da wir q als reelles Polynom vorausgesetzt haben.

(Denn q(αk) = 0 impliziert q(αk) = q(αk) = 0 = 0). αk und αk haben überdies die gleiche
Vielfachheit k j (wie man durch sukzessives Dividieren von q durch (x − α j ) und (x − α j )

erkennt). Wir fassen zusammen:

(x − α j )(x − α j ) = x2 + βx + γ ,

wobei β = −(α j + α j ) und γ = α jα j = |α j |2 reell sind. (Für reelle x ist der Ausdruck
x2 + βx + γ stets > 0.) Damit erhält q(x) die Gestalt

q(x) = c ·
M
∏

j=1

(x − α j )
k j ·

L
∏

j=1

(x2 + β j x + γ j )
m j , (4.86)

wobei wir die reellen Zahlen β und γ entsprechend mit j indiziert haben. In diese Form muß q
gebracht werden!

Anschließend wird der Bruch r(x)/q(x) umgeformt in

r(x)

q(x)
=

M
∑

j=1

(

A j1

x − α j
+ A j2

(x − α j )2
+ . . .+

A jk j

(x − α j )
k j

)

+
L
∑

j=1

(
B j1x + C j1

x2 + β j x + γ j
+ B j2x + C j2

(x2 + β j x + γ j )2
+ . . .+

B jm j x + C jm j

(x2 + β j x + γ j )
m j

)

,

(4.87)

wobei man die Zahlen A jν , B jν , C jν durch »Zählervergleich« gewinnt. Das heißt man bringt die
rechte Seite auf »Hauptnenner« q(x) und vergleicht das Zählerpolynom rechts mit dem bekann-
ten Zählerpolynom r(x) links. Durch Koeffizientenvergleich oder Einsetzen spezieller x-Werte
(etwa der Nullstellen α j ) ergeben sich die Unbekannten A jν , B jν , C jν .

Die rechte Seite der obigen Gleichung (4.87) heißt Partialbruchzerlegung von r(x)/q(x).

(III) Integration der Summanden: Mit der Partialbruchzerlegung (4.87) ist unser Problem auf die
Aufgabe zurückgeführt, Ausdrücke der folgenden Formen zu integrieren:

A

(x − α)k
,

Bx + C

(x2 + βx + γ )k
(4.88)
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mit x2 + βx + γ > 0 für alle x ∈ R. Das geschieht durch die Gleichungen

∫
dx

(x − α)k
=

⎧

⎨

⎩

ln |x − α| für k = 1,

− 1

k − 1
· 1

(x − α)k−1
für k = 2,3,4, . . .,

(4.89)

∫
Bx + C

(x2 + βx + γ )
dx = B

2
ln(x2 + βx + γ )+ 2C − Bβ

√

4γ − β2
arctan

2x + β
√

4γ − β2
, (4.90)

∫
Bx − C

(x2 + βx + γ )k)
dx = B

2(k − 1)(x2 + βx + γ 2)k−1

+
(

C − Bβ

2

)∫
dx

(x2 + βx + γ )k
, (k ≥ 2) , (4.91)

∫
dx

(x2 + βx + γ )k
= 1

(k − 1)(4γ − β2)

[
2x + β

(x2 + βx + γ )k−1

+2(2k − 3)

∫
dx

(x2 + βx + γ )k−1

]

(k ≥ 2) . (4.92)

Durch Differenzieren überprüft man leicht die Richtigkeit der Gleichungen. (Man findet die
Gleichungen (4.90) – (4.92), indem man x2 + βx + γ = (x + δ)2 + ν2 mit δ := β/2 und
ν :=

√

γ − β2/4 schreibt und dann t = (x + δ)/ν substituiert, s. [56], S. 225 – 226).
Die ersten beiden Gleichungen (4.89) und (4.90) liefern elementare Funktionen bei der Inte-

gration. In (4.91) wird das links stehende Integral auf das Integral der Form

Ik(x) :=
∫

dx

(x2 + βx + γ )k
.

zurückgeführt. Dieses wird durch sukzessives Anwenden der Rekursionsformel (4.92) schließ-
lich auf I1(x) zurückgeführt, welches sich aus (4.90) im Falle B = 0, C = 1 ergibt. Damit ist
das Problem der elementaren Integration rationaler Funktionen gelöst.

Beispiel 4.14:
Es soll

I (x) =
∫

2x3 − x2 − 10x + 19

x2 + x − 6
dx

elementar integriert werden. Division von Zähler durch Nenner liefert zunächst

2x3 − x2 − 10x + 19

x2 + x − 6
= 2x − 3+ 5x + 1

x2 + x − 6
. (4.93)

Die Nullstellen des Nenners errechnet man leicht zu α1 = 2 und α2 = −3, also gilt x2+ x−6 =
(x − 2)(x + 3). Damit macht man den Ansatz für die Partialbruchzerlegung:

5x + 1

x2 + x − 6
= A1

x − 2
+ A2

x + 3
= A1 · (x + 3)+ A2 · (x − 2)

(x − 2)(x + 3)
.
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Aus dem Zählervergleich

5x + 1 = A1(x + 3)+ A2(x − 2)

gewinnt man durch Einsetzen von x = 2 sofort A1 = 11/5 und durch Einsetzen von x = −3 die
Konstante A2 = 14/5. Also folgt die Partialbruchzerlegung

5x + 1

x2 + x − 6
= 11

5

1

x − 2
+ 14

5

1

x + 3

Setzt man dies in (4.93) ein und integriert, so erhält man

I (x) = 2

∫

x dx − 3

∫

dx + 11

5

∫
dx

x − 2
+ 14

5

∫
dx

x + 3

= x2 − 3x + 11

5
ln |x − 2| + 14

5
ln |x + 3| = x2 − 3x + 1

5
ln(|x − 2|11|x + 3|14) .

Beispiel 4.15:

Wir wollen

I (x) =
∫

x3 − 10x2 + 7x − 3

x4 + 2x3 − 2x2 − 6x + 5
dx

analytisch integrieren. Da der Zählergrad (= 3) kleiner ist als der Nennergrad (= 4), entfällt
das Divisionsverfahren für Polynome. Man findet (durch Kurvendiskussion oder Probieren), daß
α1 = 1 eine Nullstelle des Nenners q(x) ist. Division q(x)/(x − 1) = q1(x) liefert ein Polynom,
für das α1 = 1 abermals Nullstelle ist. Also ist α1 mindestens doppelte Nullstelle des Nenners.
Division des Nenners durch (x − 1)2 liefert die Zerlegung

x4 + 2x3 − 2x2 − 6x + 5 = (x − 1)2(x2 + 4x + 5) . (4.94)

Man versucht nun x2 + 4x + 5 = 0 zu lösen und stellt fest, daß diese Gleichung keine reellen
Lösungen hat. Damit ist (4.94) die Zerlegung des Nenners q(x), die Ausgangspunkt für die
Partialbruchzerlegung ist. Die Zahl a1 = 1 ist in der Tat eine doppelte Nullstelle des Nenners.
Nach (4.87) ist folgender Ansatz zu machen:

x3 − 10x2 + 7x − 3

x4 + 2x3 − 2x2 − 6x + 5
= A11

x − 1
+ A12

(x − 1)2
+ Bx + C

x2 + 4x + 5
. (4.95)

Man bringt die rechte Seite auf Hauptnenner und erhält für die Zähler die Gleichung

x3−10x2+7x−3 = A11(x−1)(x2+4x+5)+ A12(x2+4x+5)+(Bx+C)(x−1)2 . (4.96)

Einsetzen von x = 1 läßt rechts einiges verschwinden, und man gewinnt A12 = −1/2. Wir
bringen A12(x2 + 4x + 5) nun auf die linke Seite von (4.96) und errechnen

x3 − 19

2
x2 + 9x − 1

2
= A11(x − 1)(x2 + 4x + 5)+ (Bx + C)(x − 1)2 .
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Division durch (x − 1) ergibt

x2 − 17

2
+ 1

2
= A11(x2 + 4x + 5)+ (Bx + C)(x − 1) . (4.97)

Hier liefert x = 1 die Konstante A11 = −7/10. Man setzt dies in (4.97) ein. Vergleicht man dann
die Koeffizienten von x2 rechts und links, so gewinnt man B = 17/10, und vergleicht man die
konstanten Glieder, so folgt C = −4. Zusammen also

A11 = −0,7 , A12 = −0,5 , B = 1,7 , C = −4 .

Setzt man dies in (4.95) ein und integriert, so folgt mit (4.89), (4.90):

I (x) = −0,7

∫
dx

x − 1
− 0,5

∫
dx

(x − 1)2
+
∫

1,7x − 4

x2 + 4x + 5
dx

= −0,7 ln |x − 1| + 0,5

x − 1
+ 0,85 ln(x2 + 4x + 5)− 7,4 arctan(x + 2) .

Bemerkung: (a) Das letzte Beispiel verdeutlicht nochmal, daß das unbestimmte Integral einer
rationalen Funktion sich zusammensetzt aus

• logarithmischen Gliedern

• Arcus-Tangens-Gliedern und

• einem rationalen Anteil.

Gehen wir von

∫
r(x)

q(x)
dx aus mit Grad r < Grad q , so tritt ein rationaler Anteil nur dann auf,

wenn der Nenner q(x) mehrfache Nullstellen hat.

(b) Man kann ohne Kenntnis der Nullstellen von q feststellen, ob mehrfache Nullstellen von q
vorliegen. Dies ist nämlich genau dann der Fall, wenn der größte gemeinsame Teiler (ggT) von q
und q ′ ein Polynom g von mindestens erstem Grade ist. Die Nullstellen von g sind dann gerade
die mehrfachen Nullstellen von q .

Den ggT von q und q ′ findet man mit dem »euklidischen Algorithmus«, d.h. man berechnet
mit der Polynomdivision sukzessive

q(x) : q ′(x) = h1(x)+ g1(x)/q ′(x) ,

q ′(x) : g1(x) = h2(x)+ g2(x)/g1(x) ,

g1(x) : g2(x) = h3(x)+ g3(x)/g2(x) ,

g2(x) : g3(x) = h4(x)+ g4(x)/g3(x) usw.

(4.98)

Da die Polynome g1, g2, g3, . . . streng abnehmenden Grad besitzen, muß das Verfahren abbre-
chen, z.B. bei

gm−1(x) : gm(x) = hm+1(x) . (4.99)
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Das so ausgerechnete Polynom gm ist ggT von q und q ′.

(c) Gilt Grad g ≥ 1 für den ggT g von q und q ′, so kann man nach der Methode von Ostrogradski-

Hermite5 den rationalen Anteil des Integrals

∫

r(x)/q(x) dx bestimmen ohne Nullstellenberech-

nung von q und ohne Partialbruchzerlegung (Voraussetzung Grad r < Grad q). Und zwar macht
man den Ansatz

∫
r(x)

q(x)
dx = F(x)

g(x)
+
∫

H(x)

Q(x)
dx . (4.100)

Hierbei ist Q das Polynom Q(x) = q(x)/g(x); F und H sind Polynome mit

Grad F < Grad g, Grad H < Grad Q,

die man durch Koeffizientenvergleich aus

r = F ′Q − F

(
q ′

g
− Q′

)

+ Hg (4.101)

gewinnt. (Diese Gleichung ergibt sich aus (4.100) durch Differenzieren.) In (4.100) ist F(x)/g(x)

der gesuchte rationale Anteil, während das verbleibende Integral

∫

(H(x)/Q(x)) dx auf Loga-

rithmus- und Arcus-Tangens-Glieder führt.

Übung 4.11:

Berechne die folgenden unbestimmten Integrale:

(a)

∫
x3 − 3x + 4

x2 + 2x − 15
dx , (b)

∫
3x + 2

x2 − 4x + 7
dx , (c)

∫
x dx

1+ x4
,

(d)

∫
dx

(x2 + x + 2)3
, (e)

∫
x2 + x − 1

(x3 + 4x2 + 8x)2
dx .

4.2.5 Integration weiterer Funktionenklassen

Eine rationale Funktion R(x, y) von zwei Variablen x, y ist erklärt durch folgenden Ausdruck:

R(x, y) :=

n
∑

j,k=0

a jk x j yk

m
∑

j,k=0

b jk x j yk

,

⎛

⎝

∑

j,k

|b jk | > 0

⎞

⎠ .

5 Michael Wassiljewitsch Ostrogradski (1801 – 1862), russischer/ukrainischer Mathematiker; Charles Hermite (1822 –
1901), französischer Mathematiker
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Entsprechend ist eine rationale Funktion R(x, y, z) erklärt durch

R(x, y, z) :=

n
∑

i, j,k=0

ai jk x i y j zk

m
∑

i, j,k=0

bi jk x i y j zk

,

⎛

⎝

∑

i, j,k

|bi jk | > 0

⎞

⎠ .

Die rationalen Funktionen werden also gebildet aus Potenzen von x , y, z usw. und konstanten
Faktoren, die durch +, −, ·, / verknüpft sind.

(I) Rationale Funktionen von trigonometrischen Funktionen

Dies sind Funktionen der Form

R(sin x, cos x) , also z.B.
3 cos x sin2 x

sin x + 5 cos x
.

Diese Funktionen lassen sich alle elementar integrieren. Und zwar verwendet man in

∫

R(sin x, cos x) dx (4.102)

die Substitution t = tan(x/2). Über die Additionstheoreme der trigonometrischen Funktionen
erhält man damit

sin x = 2 sin
x

2
cos

x

2
= 2 tan

x

2
cos

x

2
= 2t

1+ t2
,

cos x = cos2 x

2
− sin2 x

2
= cos2 x

2

(

1− sin2 x
2

cos2 x
2

)

= 1− t2

1+ t2
,

und x = 2 arctan t ⇒ dx

dt
= 2

1+ t2
.

Damit geht das Integral über in

∫

R

(
2t

1+ t2
,

1− t2

1+ t2

)
2

1+ t2
dt , (4.103)

also in das Integral einer rationalen Funktion von t , das analytisch integriert werden kann.

(II) Rationale Funktionen von ex

Funktionen der Form

R(ex ) = a0 + a1 ex +a2 e2x + . . .+ an enx

b0 + b1 ex +b2 e2x + . . .+ bm emx
, (bm �= 0) (4.104)
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werden mit Hilfe der Substitution t = ex , x = ln t , dx/ dt = 1/t behandelt. Ihre Integrale
werden dadurch auf Integrale von rationalen Funktionen zurückgeführt:

∫

R(ex ) dx =
∫

R(t)
1

t
dt . (4.105)

(III) Rationale Funktionen von Hyperbelfunktionen

R(sinh x, cosh x)

lassen sich in die Form (4.104) umrechnen und damit auch elementar integrieren. Eine zweite
Methode — analog zu (I) — besteht darin, t = tanh(x/2) zu substituieren. Das Integral von
r(sinh x, cosh x) wird damit

∫

R(sinh x, cosh x) dx =
∫

R

(
2t

1− t2
,

1+ t2

1− t2

)
2

1− t2
dt . (4.106)

(IV) Rationale Funktionen von Wurzelausdrücken und x

∫

R(x,
√

1− x2) dx =
∫

R(sin u, cos u) cos u du , mit x = sin u, (4.107)
∫

R(x,
√

1+ x2) dx =
∫

R(sinh u, cosh u) cosh u du , mit x = sinh u, (4.108)
∫

R(x,
√

x2 − 1) dx =
∫

R(cosh u, sinh u) sinh u du , mit x = cosh u. (4.109)

Die links stehenden Integrale sind damit auf (I) und (III) zurückgeführt. Das allgemeinere Inte-
gral

∫

R(x,
√

ax2 + 2bx + c) dx (a �= 0) (4.110)

wird auf die obigen Fälle zurückgeführt. Dazu schreibt man

ax2 + 2bx + c = 1

a
(ax + b)2 + ac − b2

a
. (4.111)

Wir kürzen ab: D := ac − b2, und erhalten die folgenden Fälle:

Fall Substitution
√

ax2 + bx + c =

D > 0 ξ = ax + b√
D

√

D

a
(ξ2 + 1) (a > 0)

D < 0 ξ = ax + b√
−D

√

−D

a
(ξ2 − 1) (a > 0 oder a <)

D = 0
√

a

(

x + b

a

)

(a > 0)
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Man sieht, daß in den ersten beiden Fällen (4.110) in Integrale der Form (4.108), (4.109) ver-
wandelt wird, während der Fall D = 0 sofort auf einen rationalen Integranden führt. Damit ist
(4.110) berechnet.

Auf das Integral (4.110) läßt sich auch

∫

R(x,
√

ax + b,
√

Ax + B) dx (4.112)

zurückführen, und zwar durch die Substitution ξ =
√

Ax + B. Der Leser führe dies aus.
Schließlich kann man

∫

R

(

x,
n

√

ax + b

Ax + B

)

dx durch ξ = n

√

ax + b

Ax + B
, n ∈ N (4.113)

in ein Integral einer rationalen Funktion verwandeln und damit analytisch integrieren.

Übung 4.12:

Berechne

(a)

∫
e2x dx

1+ ex , (b)

∫
cos x

2+ sin x
dx , (c)

∫
x2 + x + 1
√

1− x2
dx .

4.2.6 Numerische Integration

Versagt die analytische Integration, so sucht man Zuflucht zur numerischen Integration. Im Zeit-
alter des Computers ist diese»Zuflucht« durchaus zur brauchbaren »Heimstätte« geworden. Wir
wollen einige Verfahren kurz streifen. (Die »Tangentenformel« haben wir schon in Abschn. 4.1.3
kennengelernt.)

(I) Trapezformel: Es soll

b∫

a

f (x) dx berechnet werden, wobei wir die Funktion f : [a, b] → R

als zweimal stetig differenzierbar voraussetzen wollen.
Zunächst bilden wir eine äquidistante (gleichabständige) Zerlegung von [a, b] durch die Tei-

lungspunkte

x0 = a , x1 = a + h , x2 = a + 2h , x3 = a + 3h , . . . , xn = a + nh = b ,

mit der »Schrittweite« h = (b − a)/n. Die zugehörigen Funktionswerte werden mit yi :=
f (xi ), i = 0,1,2, . . . , n bezeichnet. Auf jedem Teilintervall [xi−1, xi ] betrachtet man die Nähe-
rung

xi∫

xi−1

f (x) dx ≈ h
yi−1 + yi

2
(4.114)
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Fig. 4.11: Zur Trapezformel Fig. 4.12: Zur Simpsonformel

Der Ausdruck rechts ist dabei gerade der Flächeninhalt des schraffierten Trapezes in Fig. 4.11
(yi−1 und yi positiv vorausgesetzt).

Aus dieser geometrischen Deutung resultiert der Ansatz und der Name unserer Methode. Sum-
miert man (4.114) auf beiden Seiten über i , und bezeichnet den Gesamtfehler — also den Unter-
schied zwischen rechter und linker Seite — mit δ, so erhält man

b∫

a

f (x) dx = h ·
( y0

2
+ y1 + y2 + . . .+ yn−1 +

yn

2

)

+ δ . (4.115)

Diese Formel heißt die Trapezformel. Ohne Beweis geben wir dazu folgende Fehlerabschätzung
an (s. [56], S. 239).

|δ| ≤ (b − a)
M2

12
h2 , mit M2 ≥ | f ′′(x)| auf [a, b]. (4.116)

Die Trapezregel ist um einiges ungenauer als die folgende Simpsonformel. Sie hat jedoch theo-
retisches Interesse, als Ausgangspunkt für das Rombergverfahren. Aus diesem Grunde wurde sie
hier angegeben.

(II) Simpsonformel6: Die Funktion f : [a, b] → R sei viermal stetig differenzierbar. Zur Ermitt-

lung des Integrals

b∫

a

f (x) dx zerlegen wir das Intervall [a, b] äquidistant in eine gerade Anzahl

von Teilintervallen [xi−1, xi ]. Die Teilungspunkte sind.

xi = a + ih für i = 0,1,2, . . . , n, wobei h = b − a

n
, n gerade.

Wieder wird yi := f (xi ) gesetzt.
Wir betrachten nun das erste »Doppelintervall« [x0, x2], s. Fig. 4.12. Die Idee der Simpsonfor-

mel besteht darin, durch die drei Punkte (x0, y0), (x1, y1), (x2, y2) ein Polynom zweiter Ordnung

6 Thomas Simpson (1710 – 1761), englischer Mathematiker
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(eine Parabel) zu legen, und dieses anstelle von f zu integrieren. Entsprechend geht man mit
den übrigen Doppelintervallen [x2, x4], [x4, x6], . . . vor. Anschließend summiert man über alle
Doppelintervalle.

Eine Parabel durch (x0, y0), (x1, y1), (x2, y2) findet man leicht durch die »Langrangesche
Formel«

P2(x) := y0
(x − x1)(x − x2)

(x0 − x1)(x0 − x2)
+ y1

(x − x0)(x − x2)

(x1 − x0)(x1 − x2)
+ y2

(x − x0)(x − x1)

(x2 − x0)(x2 − x1)
. (4.117)

Man erkennt, daß es sich hierbei in der Tat um ein Polynom zweiten Grades handelt. Außerdem
prüft man leicht nach, daß y0 = P2(x0), y1 = P2(x1) und y2 = P2(x2) gilt.

Die Integration

x2∫

x0

P2(x) dx führt man »gliedweise« durch, also für jedes der drei Glieder in

(4.117) einzeln. Dabei ist die Substitution x = a + ht nützlich. Man erhält

x2∫

x0

P2(x) dx = h

3
(y0 + 4y1 + y2) . (4.118)

Entsprechend erhält man für ein beliebiges Doppelintervall [x2i−2, x2i ]
x2i∫

x2i−2

Pi (x) dx = h

3
(y2i−2 + 4y2i−1 + y2i ) (4.119)

mit einer Parabel Pi durch (x2i−2, y2i−2), (x2i−1, y2i−1), (x2i , y2i ). Summation der Gl. (4.119)

über alle Doppelintervalle — also für i = 1,2, . . . ,
n

2
— liefert auf der rechten Seite eine gute

Näherung für

b∫

a

f (x) dx (falls h klein genug).

Bezeichnet δ den Fehler zwischen dieser Näherung und dem Integral, so folgt also

b∫

a

f (x) dx = h

3
(y0 + 4y1 + 2y2 + 4y3 + 2y4 + . . .+ 4yn−1 + yn)+ δ . (4.120)

Dies ist die Simpsonformel. Die Fehlerabschätzung lautet (s. [56], S. 239)

|δ| ≤ (b − a)
M4

180
h4 , M4 ≥ | f (4)(x)| auf [a, b]. (4.121)

Da der Fehler |δ| mit h4 abgeschätzt wird, sich also bei verringerndem h sehr stark verkleinert,
liefert die Simpsonformel äußerst gute Ergebnisse. Sie ist eine der besten Formeln für die nume-
rische Integration, und dabei sehr leicht anzuwenden!
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(III) Newtons pulcherrima (3/8-Regel): Gelegentlich hat man nicht die Möglichkeit, ein Inte-
grationsintervall [a, b] in eine gerade Anzahl von Teilintervallen äquidistant zu zerlegen, sondern
[a, b] ist schon von vornherein in ungerade viele Teilintervalle [xi−1, xi ] äquidistant unterteilt.
(Dies kann bei gemessenen Werten der Fall sein, die nicht mehr veränderbar sind.) In diesem

Falle geht man bei der numerischen Berechnung von

b∫

a

f (x) dx so vor: Man faßt die ersten drei

Teilintervalle zu einem »Dreifachintervall« [x0, x3] zusammen und die verbleibenden zu Dop-
pelintervallen. Auf letztere, also insgesamt auf [x3, b] wendet man die Simpsonformel an, um

b∫

x3

f (x) dx näherungsweise zu bestimmen.

Zur numerischen Berechnung des verbleibenden Integrals

x3∫

x0

f (x) dx wird durch (x0, y0),

(x1, y1), (x2, y2), (x3, y3) ein Polynom P vom Grade 3 gelegt:

P(x) =
3
∑

i=0

yi

3
∏

k=0
k �=i

(x − xk)

3
∏

k=0
k �=i

(xi − xk)

.

Dieses wird anstelle von f integriert. Man errechnet

x3∫

x0

P(x) dx = 3

8
h(y0 + 3y1 + 3y2 + y3) , mit h = x3 − x0

3
.

Es folgt

x3∫

x0

f (x) dx = 3

8
h(y0 + 3y1 + 3y2 + y3)+ δ (4.122)

mit Fehlerabschätzung

|δ| ≤ 3

40
M4h5 , mit M4 ≥ | f (4)(x)| auf [x0, x3] (4.123)

(s. [56], S. 236). (4.122) heißt » 3
8 -Regel«. Die Formel wurde von ihrem Entdecker Newton be-

geistert »pulcherrima« genannt.
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Bemerkung: Des weiteren ist das Romberg7-Verfahren zu nennen, welches auf Computern heute
das meistbenutzte Verfahren ist. Es beruht auf der Trapezregel, bei der die Schrittweite immer
weiter verkleinert wird und dabei gegen Null geht. Der Grenzwert der Trapezregel-Werte ist das
numerisch bestimmte Integral. (Es wird durch eine Extrapolationsmethode geschickt angenähert,
s. Literatur über numerische Mathematik, z.B. [29], S. 399 – 403.)

In der Simpsonformel, eventuell verbunden mit Newtons »pulcherrima«, haben wir aber schon
vorzügliche Verfahren zur numerischen Integration kennengelernt. Mit ihnen kommt man fürs
erste gut aus, insbesondere, da sie sich sehr leicht handhaben lassen.

Beispiel 4.16:
Berechnet werden soll

1∫

0

e−x2/2 dx .

(Analytische Integration ist hierbei unmöglich.) Wir verwenden die Simpsonformel. Mit f (x) =
e−x2

, xi = i/6, yi = f (xi )(i = 0,1,2, . . . , 6) folgt

1∫

0

e−x2/2 dx = 1/6

3
(y0 + 4y1 + 2y2 + 4y3 + 2y4 + 4y5 + y6)+ δ = 0,85563+ δ .

Zur Fehlerabschätzung berechnen wir

f (4)(x) = e−x2/2(x4 − 6x2 + 3) , f (5)(x) = −e−x2/2x(x4 − 10x2 + 15) .

Da f (5)(x) ≤ 0 auf [0, 1] ist, folgt, daß f (4) auf [0, 1] monoton fällt. Also hat f (4)(x) in x = 0
das Maximum auf [0, 1] und in x = 1 das Minimum. Wegen f (4)(0) = 3 und f IV(1) = −1,3
ist daher | f (4)(x)| ≤ 3 =: M4 auf [0, 1], folglich nach (4.121):

|δ| ≤ 1 · 3

180
· 1

1296
< 1,3 · 10−5 .

Damit ist 0,85563 ein Näherungswert des Integrals, der mindestens auf 4 Stellen genau ist.

Übung 4.13:

Berechne

π∫

π/2

sin x

x
dx mit der Simpsonformel bis auf einen Fehler von höchstens 10−6.

4.3 Uneigentliche Integrale

Bisher haben wir beschränkte Funktionen auf beschränkten abgeschlossenen Intervallen inte-
griert. Wir wollen die Integration im Folgenden auf unbeschränkte Intervalle und unbeschränkte

7 Werner Romberg (1909 – 2003), deutscher Mathematiker
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Funktionen ausdehnen. Man spricht dabei von uneigentlichen Integralen, im Gegensatz zu den
bisher betrachteten »eigentlichen« Integralen.

4.3.1 Definition und Beispiele

Beispiel 4.17:

Durch analytische Integration errechnet man sofort

t∫

0

e−x dx = 1− e−t .

Für t →∞ strebt die rechte Seite gegen 1. Dies wird folgendermaßen beschrieben:

∞∫

0

e−x dx := lim
t→∞

t∫

0

e−x dx = 1 .

Das links stehende Integral von 0 bis∞ ist durch den Grenzwert definiert. Man nennt

∞∫

0

e−x dx

ein uneigentliches Integral. Der Integrationsbereich [0,∞] ist hierbei unbeschränkt. Der Wert

1 =
∞∫

0

e−x dx kann als Flächeninhalt der unendlich langen (schraffierten) Fläche in Fig. 4.13

angesehen werden.

Beispiel 4.18:

Wir wollen nun eine unbeschränkte Funktion »integrieren« , und zwar f (x) = 1/
√

1− x auf
[0, 1). Auf jedem Teilintervall [0, t] ⊂ [0,1) ist f allerdings beschränkt, und man errechnet

t∫

0

dx√
1− x

=
[

− 2
√

1− x

]t

0
= −2

√
1− t + 2 .

Die rechte Seite strebt mit t → 1 (t < 1) gegen 2. Man beschreibt dies durch

1−∫

0

dx√
1− x

:= lim
t→1
t<1

t∫

0

dx√
1− x

= 2 .

Das links stehende Integral heißt wiederum ein uneigentliches Integral. Der »Integrand« ist dabei
eine unbeschränkte Funktion. Der Wert 2 des Integrals wird als Flächeninhalt der in Fig. 4.14
skizzierten Fläche aufgefaßt.
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Fig. 4.13: Zum uneigentlichen Integral

∞∫

0

e−x dx Fig. 4.14: Zum uneigentlichen Integral

1−∫

0

dx√
1− x

Die beiden Beispiele machen klar, wie man Integrale über unbeschränkte Funktionen oder
unbeschränkte Intervalle zu erklären hat.

Definition 4.2:
Ist die Funktion f auf jedem Teilintervall [a, t] von [a, b) integrierbar (b = ∞ zuge-
lassen), so definiert man

b−∫

a

f (x) dx := lim
t→b−

t∫

a

f (x) dx , 8 (4.124)

vorausgesetzt, daß der rechtsstehende Grenzwert existiert. Ist f unbeschränkt oder

b = ∞, so nennt man

b−∫

a

f (x) dx ein uneigentliches Integral.

In entsprechender Weise definiert man uneigentliche Integrale der Form

b∫

a+
f (x) dx := lim

t→a
t>a

b∫

t

f (x) dx , (4.125)

wobei auch a = −∞ zugelassen ist. Schließlich vereinbart man

b−∫

a+
f (x) dx :=

c∫

a+
f (x) dx +

b−∫

c

f (x) dx (4.126)

mit a < c < b, wobei angenommen wird, daß die uneigentlichen Integrale rechts existieren. (Die
Zeichen− und+ hinter den Integrationsgrenzen dienen zur Verdeutlichung. Sie werden oft auch

8 t → b− bedeutet t → b mit t < b, entsprechend bedeutet t → a+ den Grenzübergang t → a mit t > a.
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weggelassen, insbesondere im Falle b = ∞ oder a = −∞.) Statt »das uneigentliche Integral
existiert« sagt man auch, es »konvergiert«.

Beispiel 4.19:
Es sei α > 1 und t > 1. Damit gilt

∞∫

1

dx

xα
= lim

t→∞

t∫

1

dx

xα
= lim

t→∞

(
t1−α

1− α
− 1

1− α

)

= 1

α − 1
.

Beispiel 4.20:
∞∫

−∞

dx

1+ x2
=

0∫

−∞

dx

1+ x2
+
∞∫

0

dx

1+ x2
= lim

t→−∞

0∫

t

dx

1+ x2
+ lim

t→∞

t∫

0

dx

1+ x2

= lim
t→−∞

(arctan 0− arctan t)+ lim
t→∞

(arctan t − arctan 0) = π

2
+ π

2
= π .

Beispiel 4.21:
1−∫

0

dx√
1− x2

= lim
t→1−

t∫

0

dx√
1− x2

= lim
t→1−

arcsin t = π

2
.

Entsprechend folgt

0∫

−1+

dx√
1− x2

= π

2
, also

1−∫

−1+

dx√
1− x2

= π . (4.127)

Beispiel 4.22:
Es sei 0 < α < 1 und 0 < t < 1. Es gilt

1∫

0+

dx

xα
= t lim

t→0+

1∫

t

dx

xα
= lim

t→0+

(
1

1− α
− t1−α

1− α

)

= 1

1− α
.

Beispiel 4.23:
∞∫

0

cos x dx existiert nicht, da

t∫

0

cos x dx = sin t für t →∞ nicht konvergiert.

Übung 4.14*:

Prüfe, ob die folgenden uneigentlichen Integrale existieren, und berechne sie gegebenenfalls:

(a)

1∫

0+
ln x dx , (b)

1∫

0+

dx

x2
, (c)

∞∫

1

dx

x2
, (d)

∞∫

0

e−x sin x dx .
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4.3.2 Rechenregeln und Konvergenzkriterien

Satz 4.10:
Linearität, Produkt- und Substitutionsregel gelten auch für uneigentliche Integrale:

b−∫

a

(λ f1(x)+ μ f2(x)) dx = λ

b−∫

a

f1(x) dx + μ

b−∫

a

f2(x) dx . (4.128)

b−∫

a

u(x)v′(x) dx = lim
t→b−

(u(t)v(t)− u(a)v(a))−
b−∫

a

u′(x)v(x) dx . (4.129)

b−∫

a

f (x) dx =
β−∫

α

f (ϕ(t))ϕ′(t) dt . (4.130)

Dabei sind f1, f2 als integrierbar vorausgesetzt, f als stetig, und u, v, ϕ als stetig
differenzierbar. Ferner sei lim

t→β−
ϕ(t) = b und ϕ(α) = a.

Die Gl. (4.128) und (4.129) sind so zu verstehen: Existieren die rechten Seiten, so auch die
linken. In (4.130) gilt: Existiert das uneigentliche Integral auf einer Seite, so existiert es auch

auf der anderen Seite. Für uneigentliche Integrale der Form

b∫

a+
gilt Entsprechendes. Der einfache

Beweis darf hier übergangen werden. Im Folgenden begnügen wir uns mit der Untersuchung der

uneigentlichen Integrale

b−∫

a

f (x) dx , da für

b∫

a+
f (x) dx alles analog gilt.

Satz 4.11:
(Cauchysches Konvergenzkriterium) Es sei f integrierbar auf [a, t] für jedes t ∈

[a, b). Damit folgt: Das Integral

b−∫

a

f (x) dx konvergiert genau dann, wenn die fol-

gende Bedingung erfüllt ist:

Zu jedem ε > 0 existiert ein c ∈ [a, b), so daß für alle t, s ∈ (c, b) gilt:

∣
∣
∣
∣
∣
∣

t∫

s

f (x) dx

∣
∣
∣
∣
∣
∣

< ε.

⎫

⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎭

(4.131)

(4.131) heißt Cauchy-Bedingung für uneigentliche Integrale.
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Beweis:

9 Man setzt abkürzend F(t) :=
t∫

a

f (x) dx für t ∈ [a, b).

(I) Ist (4.131) erfüllt, so gilt für alle Folgen ak := F(tk) mit tk → b die »Cauchy-Bedingung
für Folgen«, also konvergieren alle Folgen (ak). Damit konvergieren sie alle gegen den gleichen
Grenzwert I . (Denn würden zwei dieser Folgen gegen verschiedene Grenzwerte streben, würde
die Mischfolge — nach Reißverschlußverfahren — nicht konvergieren, was nicht sein kann.) So-

mit gilt F(t)→ I für t → b−, woraus die Existenz des Integrals

b−∫

a

f (x) dx folgt.

(II) Existiert

b−∫

a

f (x) dx = lim
t→b−

F(t) = I , so heißt das: Für jedes ε > 0 existiert ein c ∈ [a, b)

mit |F(t)− I | < ε

2
für alle t ∈ (c, b). Mit t , s ∈ (c, b) folgt daher

∣
∣
∣
∣
∣
∣

t∫

s

f (x) dx

∣
∣
∣
∣
∣
∣

= |F(t)− F(s)| ≤ |F(t)− I |+ |F(s)− I | ≤ ε

2
+ ε

2
= ε . �

Beispiel 4.24:

Wir zeigen

∞∫

0

sin x

x
dx = π

2
. (4.132)

(I) Die Konvergenz des Integrals folgt mit dem Cauchy-Kriterium in Satz 4.11. Denn man erhält
für 0 < s < t mit der Produktintegration

∣
∣
∣
∣
∣
∣

t∫

s

sin x

x

∣
∣
∣
∣
∣
∣

dx =

∣
∣
∣
∣
∣
∣

[

− cos x

x

]t

s

−
t∫

s

cos x

x2
dx

∣
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣

[
cos x

x

]t

s

∣
∣
∣
∣
+

t∫

s

| cos x |
x2

dx

≤ 1

s
+ 1

t
+

t∫

s

dx

x2
= 1

s
+ 1

t
+
[

− 1

x

]t

s

= 2

s
.

Dies bleibt kleiner ε > 0 (also
2

s
< ε), wenn s > 2/ε =: c. Da wegen t > s auch t > c ist, ist

die Cauchybedingung (4.131) erfüllt, d.h. das Integral (4.132) konvergiert.

9 Dieser und die folgenden Beweise im vorliegenden Abschnitt können vom anwendungsorientierten Leser überschla-
gen werden.
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(II) Um zu zeigen, daß der Wert des Integrals
π

2
ist, betrachtet man die Hilfsfunktion

f (t) :=

⎧

⎪
⎨

⎪
⎩

1

t
− 1

sin t
, für 0 < t ≤ π

2
,

0 , für t = 0.

Sie ist stets differenzierbar, auch in 0, was man über die Umformung f (t) = sin t − t

t sin t
mit der

Taylorreihe des Sinus sieht. Für diese Funktion gilt mit Produktintegration

π/2∫

0

f (t) sin(nt) dt = −1

n

⎛

⎜
⎝

[

f (t) cos(nt)

] π
2

0
−

π/2∫

0

f ′(t) cos(nt) dt

⎞

⎟
⎠→ 0 für n →∞.

Setzt man f (t) = 1

t
− 1

sin t
links ein, so folgt

lim
n→∞

⎛

⎜
⎝

π/2∫

0

sin(nt)

t
dt −

π/2∫

0

sin(nt)

sin t
dt

⎞

⎟
⎠ = 0 . (4.133)

Beim linken Integral substituieren wir x = nt und erhalten das Integral

π/2∫

0

sin(nt)

t
dt =

n(π/2)∫

0

sin x

x
dx .

Die rechte Seite konvergiert für n →∞ gegen

∞∫

0

sin x

x
dx , also ergibt (4.133):

∞∫

0

sin x

x
dx = lim

n→∞

π/2∫

0

sin(nt)

sin t
dt . (4.134)

Das rechte Integral läßt sich direkt berechnen, wobei wir n = 2k + 1 (k ∈ N) voraussetzen. Mit
der Formel aus Übung 2.20 (Abschn. 2.3.2) erhält man nämlich:

π/2∫

0

sin((2k + 1)t)

sin t
dt = π

2
+ 2

k
∑

j=1

π/2∫

0

cos(2 j t) dt = π

2
+ 2

k
∑

j=1

1

2 j

[

sin(2 j t)

] π
2

0
= π

2
.

(4.134) liefert damit

∞∫

0

sin x

x
dx = lim

n→∞

π/2∫

0

sin(nt)

sin t
dt = lim

k→∞

π/2∫

0

sin((2k + 1)t)

sin t
dt = π

2
.
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Weitere Kriterien für die Existenz uneigentlicher Integrale sind im Folgenden zusammengestellt.
Dabei werden die auftretenden Funktionen f , g, h durchweg als integrierbar auf jedem Teilin-
tervall [a, t] von [a, b) vorausgesetzt. b = ∞ ist zugelassen.

Satz 4.12:

(Monotoniekriterium) Gilt f (x) ≥ 0 für alle x ∈ [a, b), so existiert

∫

a

f (x) dx genau

dann, wenn mit einer Konstanten k ≥ 0 gilt:

t∫

a

f (x) dx ≤ k für alle t ∈ [a, b).

Da

t∫

a

f (x) dx mit t monoton wächst, sieht man dies sofort ein.

Satz 4.13:

Existiert

b−∫

a

| f (x)| dx , so existiert auch

b−∫

a

f (x) dx , und es gilt:

∣
∣
∣
∣
∣
∣

b−∫

a

f (x) dx

∣
∣
∣
∣
∣
∣

≤
b−∫

a

| f (x)| dx .

Beweis:
b−∫

a

| f (x)| dx erfüllt die Cauchy-Bedingung, d.h. zu jedem ε > 0 gibt es ein c ∈ [a, b), so daß

für alle t , s ∈ (c, b) gilt ε >

t∫

s

| f (x)| dx ≥

∣
∣
∣
∣
∣
∣

t∫

s

f (x) dx

∣
∣
∣
∣
∣
∣

. Damit erfüllt auch

b−∫

a

f (x) dx die

Cauchy-Bedingung, ist also konvergent. Die Ungleichung des Satzes folgt durch Grenzübergang
aus

∣
∣
∣
∣
∣
∣

t∫

a

f (x) dx

∣
∣
∣
∣
∣
∣

≤
t∫

a

| f (x)| dx . �

Existiert

b−∫

a

| f (x)| dx , so heißt

b−∫

a

f (x) dx absolut konvergent. Das Monotoniekriterium ergibt

unmittelbar
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Satz 4.14:

(a) (Majorantenkriterium) Ist | f (x)| ≤ g(x) auf [a, b), und existiert

b−∫

a

g(x) dx , so

ist

b−∫

a

f (x) dx absolut konvergent, und es gilt

b−∫

a

| f (x)| dx ≤
b−∫

a

g(x) dx .

(b) (Minorantenkriterium) Ist 0 ≤ h(x) ≤ f (x) auf [a, b), und existiert

b−∫

a

h(x) dx

nicht, so existiert auch

b−∫

a

f (x) dx nicht.

Satz 4.15:

(Grenzwertkriterium) Es seien f (x) und g(x) positiv auf [a, b), und es konvergiere

f (x)

g(x)
→ L für x → b−. (4.135)

(a) Im Falle L > 0 haben

b−∫

a

f (x) dx und

b−∫

a

g(x) dx gleiches Konvergenzverhalten.

(b) Im Falle L = 0 folgt aus der Konvergenz von

b−∫

a

g(x) dx die Konvergenz von

b−∫

a

f (x) dx .

Beweis:

(I) Es sei L > 0. Aus (4.135) folgt, daß z.B. zu ε0 =
L

2
ein c ∈ [a, b) existiert mit

L − ε0 <
f (x)

g(x)
< L + ε0 für alle c ∈ [c, b).
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Es ist L − ε0 = L/2, L + ε0 = 3L/2. Somit gilt

L

2
g(x) < f (x) <

3L

2
g(x) für x ∈ [c, b).

Nach dem Majorantenkriterium haben

b−∫

c

f (x) dx und

b−∫

x

g(x) dx gleiches Konvergenzverhalten,

also auch

b−∫

a

f (x) dx und

b−∫

a

g(x) dx .

(II) Im Falle L = 0 wähle man zu ε0 = 1 ein c ∈ [a, b) mit f (x)/g(x) < 1 für alle x ∈ [c, b),

also f (x) < g(x) auf [c, b), woraus wiederum folgt, daß die Konvergenz von

b−∫

a

g(x) dx die von

b−∫

a

f (x) dx nach sich zieht. �

Beispiel 4.25:

Das Integral

∞∫

0

e−t tα−1 dt =: Γ (α) (4.136)

konvergiert genau dann, wenn α > 0 ist. Um dies einzusehen, wenden wir das Grenzwertkriteri-
um auf die Teilintegrale

I1 =
1∫

0+

e−t tα−1 dt und I2 =
∞∫

1

e−t tα−1 dt

an. Zu I1: Es strebt e−t tα−1/tα−1 = e−t → 1 für t → 0+. Da

1∫

0

tα−1 genau dann konvergiert,

wenn cx > 0 ist (vgl. Beispiel 4.22), folgt die Konvergenz von I1 in genau diesem Fall. Zu I2:

Wegen e−t tα−1/t−2 = e−t tα+1 → 0 für t →∞ und wegen der Konvergenz von

∞∫

0

t−2 dt folgt

die Konvergenz von I2 für alle α ∈ R. Zusammengenommen erhält man die Behauptung. Auf
das untersuchte Integral kommen wir in Abschn. 4.3.4, Beispiel 4.33, ausführlich zurück.
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Wir erwähnen zum Schluß folgende naheliegende Schreibweise:

b−∫

a

f (x) dx +
c∫

b+

f (x) dx =:
c∫

a

f (x) dx . (4.137)

Dabei ist vorausgesetzt, daß jedes der links stehenden Integrale konvergiert. Konvergiert

lim
δ→0+

⎛

⎝

b−δ∫

a

f (x) dx +
c∫

b+δ

f (x) dx

⎞

⎠ , (δ > 0) ,

so beschreibt man diesen Grenzwert durch

C. H.

∫

f (x) dx (4.138)

und nennt ihn Cauchyschen Hauptwert von f auf [a, c].
Existiert das Integral (4.137), so existiert natürlich auch der Cauchysche Hauptwert (4.138)

(und beide Werte sind gleich). Das Umgekehrte gilt nicht allgemein! Zum Beispiel existiert der
folgende Cauchysche Hauptwert

−C. H.

1∫

−1

dx

x
= 0 ,

während

1∫

−1

dx

x
im Sinne von (4.137) nicht konvergiert, da die Teilintegrale

0−∫

−1

dx

x
und

1∫

0+

dx

x

nicht konvergieren.

Übung 4.15*:

Beweise: Ist f (x) ≥ 0 auf [a,∞) und dort monoton fallend, so folgt aus der Konvergenz von
∞∫

a

f (x) dx , daß lim
x→∞ f (x) = 0 gilt.

Übung 4.16*:

Untersuche, ob die folgenden Integrale konvergieren:

(a)

π/2∫

0

dx√
sin x

, (b)

1∫

−1

dx√|x | , (c)

∞∫

0+

dx

cosh(1/x)− 1
, (d)

1∫

0+

ln x√
x

dx .
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4.3.3 Integralkriterium für Reihen

Das folgende Kriterium stellt einen engen Zusammenhang zwischen unendlichen Reihen und
uneigentlichen Integralen her. Es kann auf beiderlei Weise verwendet werden: zum Konvergenz-
nachweis für Reihen als auch für Integrale. In diesem Abschnitt sei f stets eine Funktion, die auf
jedem kompakten Intervall [m, t] ⊂ [m,∞) integrierbar ist.

Satz 4.16:
(Integralkriterium für Reihen) Ist f (x) auf [m,∞) positiv und monoton fallend (m
ganzzahlig), so haben

[ ∞
∑

k=m

f (k)

]

und

∞∫

m

f (x) dx

gleiches Konvergenzverhalten.

Beweis:
Es gilt f (k) ≥ f (x) ≥ f (k + 1) für jedes x ∈ [k, k + 1] und jede ganze Zahl k ≥ m. Daraus
folgt durch Integration über [k, k + 1]

f (k) ≥
k+1∫

k

f (x) dx ≥ f (k + 1) ;

Summation über k von m bis n ergibt

n
∑

k=m

f (k) ≥
n+1∫

m

f (x) dx ≥
n+1
∑

k=m+1

f (k) ,

woraus unter Beachtung der Montoniekriterien für Reihen und uneigentliche Integrale die Be-
hauptung folgt. �

Beispiel 4.26:
Aus dem Integralkriterium folgt mit f (x) = 1/xα bzw. 1/(x lnα x)

∞
∑

k=1

1

kα
und

∞
∑

k=1

1

k(ln k)α
für α > 1

konvergieren. Denn aus der Existenz von

∞∫

1

dx

xα
= 1

α − 1
folgt durch die Substitution x = ln t ,

daß auch

∞∫

1

dt

t (ln t)α
existiert (vgl. auch Beispiel 1.41, Abschn. 1.5.2.).
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Unter den gleichen Voraussetzungen wie beim Integralkriterium für Reihen gilt folgender
interessanter Satz:

Satz 4.17:

Ist f auf [m,∞) positiv und monoton fallend (m ganzzahlig) f so konvergiert

cn :=
n
∑

k=m

f (k)−
n∫

m

f (x) dx für n →∞

gegen eine Zahl c mit 0 ≤ c ≤ f (m).

Beweis:

Für x ∈ [k, k+1] gilt 0 ≤ f (k)− f (x) ≤ f (k)− f (k+1), nach Integration über [k, k+1] also

0 ≤ f (k)−
k+1∫

k

f (x) dx ≤ f (k)− f (k + 1) .

Summation über ganzzahlige k von m bis n − 1 ergibt

0 ≤
n−1
∑

k=m

f (k)−
n∫

m

f (x) dx ≤ f (m)− f (n) .

Addition von f (n) liefert 0 ≤ cn ≤ f (m). Da cn monoton fällt (denn cn+1 − cn = f (n + 1) −
n+1∫

n

f (x) dx < 0), so konvergiert cn gegen eine Zahl c ∈ [0, f (m)]. �

Beispiel 4.27:

Für f (x) = 1/x und m = 1 folgt aus Satz 4.17: Der Grenzwert

C := lim
n→∞

(

1+ 1

2
+ 1

3
+ . . .+ 1

n
− ln n

)

(4.139)

existiert. C heißt Eulersche Konstante10 und hat den Zahlenwert

C = 0,5772156649015329 . . . .

10 Leonhard Euler (1707 – 1783), schweizerischer Mathematiker; C heißt auch Euler-Mascheronische Konstante (Lo-
renzo Mascheroni (1750 – 1800), italienischer Mathematiker), von Studenten scherzhaft »Makkaroni-Konstante«
genannt.
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Übung 4.17*:

Sind die folgenden Reihen konvergent?

(a)
∞
∑

k=1

k2 e−k , (b)
∞
∑

k=2

ln k

k2
, (c)

∞
∑

k=2

ln k

k
.

Übung 4.18*:

(a) Zeige, daß

an := 1+ 1

3
+ 1

5
+ 1

7
+ · · 1

2n + 1
− 1

2
ln(2n + 1)

für n →∞ konvergiert.

(b) Knoble durch Vergleich mit der Eulerschen Konstanten C (s. Beispiel 4.27) heraus, daß

an gegen (C+ ln 2)/2 strebt.

4.3.4 Die Integralfunktionen Ei, Li, si, ci, das Fehlerintegral und die Gammafunktion

Die folgenden Funktionen sind durch Integrale definiert. Sie kommen in der Praxis immer wieder
vor und erweitern den Kreis der elementaren Funktionen. Ob man sie selbst zu den elementaren
Funktionen zählen soll, ist reine Geschmacksache.

Beispiel 4.28:
Das Integral

Ei(x) :=
x∫

−∞

et

t
dt , x < 0 , (4.140)

konvergiert. Denn es ist |t et | ≤ 1 für alle t < t0 < 0, t0 passend gewählt. Damit ist 1/t2 ≥

| et /t | für t < t0. Da

x∫

−∞

dt

t2
existiert, existiert nach dem Majorantenkriterium auch

x∫

−∞

et

t
dt .

Für x > 0 wird die Funktion Ei durch den Cauchyschen Hauptwert definiert:

Ei(x) := C. H.

x∫

−∞

et

t
dt = lim

δ→0+

⎛

⎝

−δ∫

−∞

et

t
dt +

x∫

δ

et

t
dt

⎞

⎠ , x > 0 . (4.141)

Die so erklärte Funktion Ei : R \ {0} → R heißt Exponentialintegral. Ohne Beweis geben wir
seine Reihendarstellung an. C ist hier (wie im ganzen Abschnitt) die Eulersche Konstante:

Ei(x) = C+ ln |x | +
∞
∑

k=1

xk

k · k! für x �= 0 . (4.142)
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Beispiel 4.29:

Die Substitution et = s, nebst ex = y, führt das Integral Ei(x) in (4.140) über in

Li(y) :=
y∫

0+

dx

ln s
, 0 < y < 1 . (4.143)

Für y > 1 wird wieder der Cauchysche Hauptwert herangezogen:

Li(y) := C. H.

y∫

0+

dx

ln s
= lim

δ→0+

⎛

⎝

1−δ∫

0+

dt

ln t
+

y∫

1+δ

dt

ln t
dt

⎞

⎠ , y > 1 . (4.144)

Die Funktion Li heißt Integrallogarithmus. Er erfreut sich folgender Reihendarstellung, die wir
ohne Beweis angeben:

Li(y) = C+ ln | ln y| +
∞
∑

k=1

(ln y)k

k · k! , y > 0, y �= 1 . (4.145)

Li und Ei hängen folgendermaßen zusammen:

Li(ex ) = Ei(x) , x �= 0 . (4.146)

Beispiel 4.30:

Integralsinus si und Integralcosinus ci sind definiert durch

si(x) : = −π

2
+

x∫

0

sin t

t
dt , x ∈ R , (4.147)

ci(x) : = C+ ln x +
x∫

0

cos x − 1

t
dt , x > 0 . (4.148)

Aus Beispiel 4.24 folgt si(x)→ 0 für x →∞ und wegen si(x)+ si(−x) = −π der Grenzüber-
gang si(x)→−π für x →−∞. Die Reihendarstellungen lauten:

si(x) = −π

2
+
∞
∑

k=0

(−1)k x2k+1

(2k + 1)!(2k + 1)
, (4.149)

ci(x) = C+ ln x +
∞
∑

k=1

(−1)k x2k

(2k)(2k)! . (4.150)
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Beispiel 4.31:
Man bezeichnet

ϕ(x) := 2√
π

x∫

0

e−t2
dt , x ∈ R , (4.151)

als Fehlerintegral. (Man ermittelt damit die Wahrscheinlichkeit zufälliger Abweichungen von
einem Mittelwert, d.h. von»Fehlern«.) Analytische Integration ist hierbei nicht möglich. Man
muß das Integral numerisch berechnen oder aus folgenden Reihendarstellungen ermitteln:

ϕ(x) := 2√
π

∞
∑

k=0

(−1)k x2k+1

k!(2k + 1)
(4.152)

= 2√
π

e−x2
∞
∑

k=0

2k x2k+1

(2k + 1)!! .
11 (4.153)

Die erste Reihe (4.152) erhält man aus der Taylorreihe

e−t2 =
∞
∑

k=0

(−1)k t2k

k!

durch gliederweises Integrieren von 0 bis x . (Das dies erlaubt ist, folgt aus Abschn. 5.1.2). Den
Beweis der zweiten Reihe (4.153) übergehen wir aus Platzgründen.

Für x →∞ erhalten wir folgenden Grenzwert

lim
x→∞

ϕ(x) = 2√
π

∞∫

0

e−t2
dt = 1 . (4.154)

Die Existenz des Integrals folgt mit dem Majorantenkriterium aus e−t2 ≤ e−t für t > 1. Daß der
Grenzwert 1 ist, wird später in Abschnitt 7.1.7 gezeigt.

Beispiel 4.32:
Der Vollständigkeit wegen geben wir noch die Fresnelschen Integrale S(x) und C(x) an (x ∈ R
beliebig):

S(x) = 2√
2π

x∫

0

sin(t2) dt = 2√
2π

∞
∑

k=0

(−1)k x4k+3

(4k + 3)(2k + 1)! , (4.155)

C(x) = 2√
2π

x∫

0

cos(t2) dt = 2√
2π

∞
∑

k=0

(−1)k x4k+1

(4k + 1)(2k)! . (4.156)

11 (2k + 1)!! := 1 · 3 · 5 . . . · (2k + 1)
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Beispiel 4.33:
Die Eulersche Gammafunktion ist für x > 0 durch

Γ (x) :=
∞∫

0+

e−t t x−1 dt (x > 0) (4.157)

definiert. Die Existenz dieses uneigentlichen Integrals wurde in Beispiel 4.25 bewiesen. Die ent-
scheidende Eigenschaft der Gammafunktion ist, daß sie für ganze nichtnegative Werte x Fakultä-
ten liefert, nämlich

Γ (n + 1) = n! (4.158)

für alle n = 0,1,2,3, . . . Man sagt, die Gammafunktion »interpoliert die Fakultäten«. Um (4.158)
zu beweisen, leiten wir zuerst die Funktionalgleichung der Gammafunktion her:

Γ (x + 1) = xΓ (x) . (4.159)

Sie ergibt sich durch Produktintegration:

Γ (x + 1) =
∞∫

0+

e−t
︸︷︷︸

v′

t x
︸︷︷︸

u

dt =
[

− e−t t x

]∞

0
+ x

∞∫

0+

e−t t x−1 dt = 0+ xΓ (x) .

Beachtet man Γ (1) =
∞∫

0

e−t dt = 1 = 0!, so folgt mit der Funktionalgleichung durch vollstän-

dige Induktion Γ (x + 1) = n! (Der Leser führe dies zur Übung durch.)
Allgemein liefert die Funktionalgleichung, sukzessive angewandt:

Γ (x + n) = x(x + 1)(x + 2) . . . (x + n − 1)Γ (x)

für alle x > 0 und n ∈ N. Löst man diese Gleichung nach Γ (x) auf, so kann man sie auch zur
Definition von Γ (x) für negative x benutzen: Ist x < 0 mit −n < x < −n + 1 (n ∈ ⋉), so
vereinbart man

Γ (x) := Γ (x + n)

x(x + 1)(x + 2) . . . (x + n − 1)
. (4.160)

Für ganzzahlige negative x ist Γ (x) nicht erklärt. Dort liegen Pole vor, wie man aus (4.160)
abliest. Fig. 4.15 zeigt den Graphen der Gammafunktion. Die Funktionalgleichung ist für alle x
mit x �= 0, −1, −2, . . . gültig.

Bemerkung: Die Integralfunktionen dieses Abschnitts sind samt und sonders gut tabelliert und
auf Computern programmiert. Sie stehen bei Anwendungen daher genauso bequem zur Verfü-
gung wie ex , ln x , sin x arcsin x usw.
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Fig. 4.15: Die Gammafunktion

Übung 4.19:

Leite die Reihe für Ei(x) (x < 0) aus der Taylorreihe für et her, ebenso die Reihen für si(x)

und ci(x) aus den Taylorreihen von sin x und cos x . (Dabei darf gliederweise integriert werden,

s. Abschn. 5.1.2).

4.4 Anwendung: Wechselstromrechnung

4.4.1 Mittelwerte in der Wechselstromtechnik

Effektivwerte von Spannung und Strom: Durch

u(t) = um cos(ωt) , t ∈ R , (4.161)

sei eine Wechselspannung in Abhängigkeit von der Zeit t beschrieben. f sei die zugehörige
Frequenz, ω = 2π f die Kreisfrequenz und um > 0 die Maximalspannung. Der durch u(t)
erzeugte Wechselstrom i(t) in einer bestimmten Schaltung wird durch

i(t) = im cos(ωt + ϕ) (4.162)

beschrieben. im > 0 ist die maximale Stromstärke und ϕ die Phasenverschiebung des Stromes
gegenüber der Spannung.

Der Ausschlag mancher Meßinstrumente ist proportional zu

U :=

√
√
√
√
√

1

T

T∫

0

u2(t) dt bzw. I :=

√
√
√
√
√

1

T

T∫

0

i2(t) dt . (4.163)
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Dabei ist T = 2π/ω die Schwingungsdauer von Spannung und Strom. U heißt die effektive
Spannung zu u und I der effektive Strom zu i . (Im allgemeinen mathematischen Zusammenhang
heißen U und I die quadratischen Mittelwerte (oder Effektivwerte) von u und i .)

Setzt man die expliziten Ausdrücke für u(t) und i(t) in (4.163) ein, so errechnet man U und
I mit Hilfe der Formel

∫

cos2 x dx = 1

2
(x + sin x cos x)

(s. Abschn. 4.2.2, (4.54)). Man hat in (4.163) lediglich x = ωt bzw. x = ωt +ϕ zu substituieren.
Es folgt:

U = um√
2

, I = im√
2

. (4.164)

Wirkleistung: Das Produkt

u(t) · i(t) = um cos(ωt)im cos(ωt + ϕ) (4.165)

wird die momentane Leistung genannt. Wir wollen die über eine Periode gemittelte Leistung

P = 1

T

T∫

0

u(t) · i(t) dt (4.166)

berechnen. P heißt Wirkleistung.

Zur Berechnung des Integrals schreiben wir zunächst u(t)i(t) um, und zwar muß das Produkt
cos(ωt) cos(ωt + ϕ) in eine Summe aus trigonometrischen Funktionen verwandelt werden, um
anschließend integriert werden zu können. Das geschieht mit der Formel

2 cos
x + y

2
cos

x − y

2
= cos x + cos y (4.167)

(s. Abschn. 2.3.2, (2.73)). Aus dem Ansatz

x + y

2
= ωt + ϕ ,

x − y

2
= ωt folgt x = 2ωt + ϕ , y = ϕ ,

also

2 cos(ωt + ϕ) cos(ωt) = cos(2ωt + ϕ)+ cos ϕ .

Aus (4.165), (4.164) ergibt sich damit

u(t) · i(t) = U · I (cos(2ωt + ϕ)+ cos ϕ) , (4.168)
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Somit folgt

P = U · I

T

⎡

⎣

T∫

0

cos(2ωt + ϕ) dt + cos ϕ

T∫

0

dt

⎤

⎦ .

Setzt man ω = 2π/T ein und substituiert ξ = 2ωt + ϕ, so erkennt man, daß das erste Integral
Null wird. Es ergibt sich daher die Wirkleistung zu

P = U I cos ϕ . (4.169)

Der Faktor cos ϕ heißt Leistungsfaktor.

Bemerkung: Für andere periodische Spannungs- und Stromverläufe, als in (4.161) und (4.162)
angegeben, werden die Effektivwerte der Spannung oder des Stroms ebenso nach (4.163) berech-
net wie auch die Wirkleistung nach (4.166).

Fig. 4.16: Stückweise gerader Spannungsverlauf
einer Wechselspannung

Fig. 4.17: Rechteckiger Spannungsverlauf

Beispiel 4.34:

Für die Spannung u(t) mit dem »Streckenverlauf« wie in Fig. 4.16 skizziert, errechnen wir den
Effektivwert U :

T U 2 =
T∫

0

u(t)2 dt = 2

T/2∫

0

u(t)2 dt

= 2

T/2∫

0

(

um −
2um

T
t

)2

dt = 2u2
m

T/2∫

0

(

1− 4

T
t + 4

T 2
t2
)

dt = T

3
u2

m ,

also

U = um√
3

.
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Übung 4.20:

Berechne die effektive Spannung U zu dem in Fig. 4.17 angegebenen Spannungsverlauf u(t).

4.4.2 Komplexe Funktionen einer reellen Variablen

Die imaginäre Einheit i wird in der Elektrotechnik mit j bezeichnet12, da der Buchstabe i für die
Stromstärke verbraucht ist. Wir werden daher im gesamten Abschn. 4.4 die imaginäre Einheit
mit j bezeichnen. Es gilt somit

j2 = −1 .

Die komplexen Zahlen werden damit in der Form

a + jb , mit a, b ∈ R

geschrieben.
Wir betrachten in diesem Abschnitt Funktionen der Form

z = f (λ) , λ ∈ I (Intervall),

wobei die Variable λ reell ist und der Funktionswert z komplex. Symbolisch also

f : I → C (C =Menge der komplexen Zahlen)

Da f (λ) komplex ist, hat f (λ) die Gestalt

f (λ) = u(λ)+ jv(λ) ,

wobei u(λ) der Realteil und v(λ) der Imaginärteil von f (λ) ist:

u(λ) = Re f (λ) , v(λ) = Im f (λ) .

u und v sind reellwertige Funktionen auf I . Sind u und v stetig, so nennt man den Wertebereich
von f eine Ortskurve in C.

Fig. 4.18 zeigt die Ortskurve einer Funktion f : [0, 9] → C.

Beispiel 4.35:

Eine Funktion der Form

2 = u(λ)+ jv0 (u stetig)

hat als Ortskurve eine Parallele zur reellen Achse, während

z = u0 + jv(λ) (v stetig)

12 Wenn wir es nicht direkt mit Elektrotechnik zu tun haben, werden wir, wie bisher, den Buchstaben i für die imagi-
näre Einheit verwenden. Denn i ist in Mathematik und Physik gebräuchlicher als j.
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Fig. 4.18: Ortskurve

als Ortskurve eine Parallele zur imaginären Achse hat. Eine kreisbogenförmige Ortskurve wird
durch

z = r ejϕ(λ) (ϕ : I → R stetig, r > 0)

beschrieben, und ein Geradenstück durch

z = z0 + ψ(λ)z1

mit stetigem ψ : I → R und konstanten z0, z1 ∈ C.

Definition 4.3:
(Differentiation und Integration) Es sei durch f (λ) = u(λ)+ jv(λ) eine komplexwer-
tige Funktion auf einem Intervall I gegeben.

(a) Sind u und v differenzierbar, so schreibt man

f ′(λ) := u′(λ)+ jv′(λ) .

f ′ ist die Ableitung von f . (Man schreibt wie im Reellen, f ′(λ) = d

dλ
f (λ)

usw.) f ′′, f ′′′ usw. werden analog gebildet.

(b) Sind u und v auf [a, b] integrierbar, so vereinbart man:

b∫

a

f (λ) dλ :=
b∫

a

u(λ) dλ+ j

b∫

a

v(λ) dλ .

Entsprechend für unbestimmte Integrale:

∫

f (λ) dλ :=
∫

u(λ) dλ+ j

∫

v(λ) dλ .

Differentiation und Integration werden also einzeln auf u und v angewandt.
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Beispiel 4.36:

Die Funktion f (t) := ejωt soll differenziert und integriert werden:

(a)
d

dt
ejωt = d

dt
(cos(ωt)+ j sin(ωt)) = d

dt
cos(ωt)+ j

d

dt
sin(ωt)

= −ω sin(ωt)+ jω cos(ωt) = jω(cos(ωt)+ j sin(ωt))

= jω ejωt .

(b)

∫

ejωt dt =
∫

cos(ωt) dt + j

∫

sin(ωt) dt

= 1

ω
sin(ωt)− j

ω
cos(ωt) = 1

jω
(cos(ωt)+ j sin(ω))

= 1

jω
ejωt (beachte

1

j
= −j).

Man erkennt: ejωt wird formal genauso differenziert und integriert, wie man es im Reellen ge-
wohnt ist.

Allgemein gilt folgendes Permanenzprinzip:

Satz 4.18:

(a) Für jede n-mal differenzierbare Funktion f : I → C (Intervall) gilt mit der
Abkürzung

L =
n
∑

k=0

ak
dk

dλk
(ak ∈ C)

die Gleichung

Re L f (λ) = L Re f (λ) , Im L f (λ) = L Im f (λ) (4.170)

Der »Operator L« darf also mit Re und Im vertauscht werden.

(b) ist f : I → C integrierbar auf [a, b] und c eine reelle Konstante, so gilt

Re c

∫

f (λ) dλ = c

∫

Re f (λ) dλ

Im c

∫

f (λ) dλ = c

∫

Im f (λ) dλ

(4.171)

Es darf also auch c

∫

mit Re und Im vertauscht werden.

Der einfache Beweis wird dem Leser überlassen.
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Übung 4.21:

Differenziere f (λ)2, wobei f : I → C (Intervall) differenzierbar ist.

Übung 4.22:

Berechne

∫

f (λ)2 f ′(λ), wobei f : I → R stetig differenzierbar ist.

4.4.3 Komplexe Wechselstromrechnung

Der Grundgedanke der komplexen Wechselstromrechnung ist folgender: Ist ein Wechselstrom
oder eine Wechselspannung durch eine zeitabhängige reelle Funktion gegeben, so erweitert man
sie durch Hinzufügen eines geeigneten Imaginärteiles zu einer komplexwertigen Funktion. Mit
dieser läßt sich oft einfacher und übersichtlicher rechnen. Zum Schluß der Rechnung geht man
wieder auf die Realteile zurück, die dann das gesuchte Ergebnis darstellen.

Zur Anwendung dieses Prinzips gehen wir von einem »Cosinus-förmigen« Wechselstrom i(t)
aus:

i(t) = im cos(ωt + ϕi ) , ω > 0 , im > 0 , ϕi ∈ R , t ∈ R .

Mit dem Effektivwert I = im

√
2 des Wechselstroms (s. (4.164), Abschn. 4.4.1) erhalten wir

i(t) =
√

2I cos(ωt + ϕi ) = Re
[√

2I ej(ωt+ϕi )
]

= Re
[√

2I ejϕi ejωt
]

.

Setzt man

I := I ejϕi , (4.172)

so folgt

i(t) =
√

2 Re
[

I ejωt
]

. (4.173)

Entsprechend erhält man für eine »Cosinus-förmige« Wechselspannung:

u(t) = um cos(ωt + ϕu) =
√

2 Re
[

U ejωt
]

(4.174)

mit

U = U ejϕu , (4.175)

wobei U = um/
√

2 ist. Die Größen I und U heißen komplexe Effektivwerte oder kurz Zeiger
von Strom und Spannung.

Die veränderlichen Größen I ejωt und U ejωt werden Drehzeiger oder Zeitzeiger genannt.
Denkt man sich nämlich diese Größen durch Pfeile veranschaulicht, die von 0 bis zu den Punkten
I ejωt bzw. U ejωt in der komplexen Ebene gezogen werden (s. Fig. 4.19), so drehen sich diese
Pfeile mit der Winkelgeschwindigkeit ω gegen den Uhrzeigersinn um 0. Dabei ist t die Zeit. Zur
Zeit t = 0 ergeben sich dabei die komplexen Effektivwerte I und U .
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Der Winkel zwischen I ejωt und U ejωt hat stets den gleichen Wert, nämlich ϕi − ϕu
13. Man

nennt ϕ = ϕi − ϕu die Phasenverschiebung zwischen Strom und Spannung. Die Winkelmaße ϕi

und ϕu selbst heißen die Phasen von Strom und Spannung.

Eine der Phasen ϕi oder ϕu wird als Bezugsphase willkürlich festgelegt, und zwar meistens
gleich Null gesetzt (sogenannter Nullphasenwinkel). Das kann durch geeignete Wahl des Zeit-
nullpunktes stets erreicht werden. In Fig. 4.19 wurde ϕu = 0 gesetzt.

Phasenverschiebungen bei Kondensator, Spule, Widerstand

Legt man an einem Ohmschen Widerstand vom Betrag R eine Wechselspannung u(t) an (siehe
Fig. 4.20a), so fließt durch ihn ein Wechselstrom i(t). Es gilt dabei das Ohmsche Gesetz u(t) =
Ri(t). In die komplexe Schreibweise übertragen lautet es:

U ejωt = RI ejωt . (4.176)

Fig. 4.19: Drehzeiger und Effektivwerte beim
Wechselstrom

Fig. 4.20: Ohmscher Widerstand R, Induktivität
L und Kapazität C .

Bei einer Spule mit Induktivität L , unter Vernachlässigung ihres Ohmschen Widerstandes
(Fig. 4.20b), stehen der durchfließende Strom i(t) und die angelegte Spannung u(t) in folgender
Beziehung:

u = L
di

dt
. (4.177)

Dies führt in komplexer Schreibweise zu

U jωt = L I
d

dt
ejωt = L I jω ejωt . (4.178)

Bei einem Kondensator mit Kapazität C (Fig. 4.20c) gehorchen Strom und Spannung dagegen

13 Ein negativer bzw. positiver Wert von ϕ2−ϕu gibt an, ob man durch Drehung mit bzw. entgegen dem Uhrzeigersinn
(um |ϕt − ϕu |) von I/|I | nach U/|U | gelangt.
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der Gleichung

i = C
du

dt
, (4.179)

folglich in komplexer Schreibweise

I ejwt = CU
d

dt
ejωt = CU jωejωt . (4.180)

In den hergeleiteten Gleichungen (4.176), (4.178) und (4.180) kann man stets den Faktor ejωt

herauskürzen. Damit folgen die Beziehungen:

Ohmscher Widerstand: U = RI , (4.181)

Spule: U = jωL I , (4.182)

Kondensator: U = −j
I

ωC
. (4.183)

Wählt man als Null- und Bezugsphase die Phase des Stroms, d.h. ϕi = 0, und schreibt man
ϕu =: ϕ, so ist am Ohmschen Widerstand ϕ = 0 (gleiche Phasenlage), an der Spule ϕ = π/2
(der Strom läuft der Spannung um 90◦ nach) und am Kondensator ϕ = −π/2 (der Strom eilt der
Spannung um 900 voraus).

Berechnung von Wechselströmen und -spannungen bei elektrischen Schaltungen

Wir denken uns eine elektrische Schaltung mit zwei Klemmen gegeben, eine für den Eingang
und eine für den Ausgang des Stroms. (In Fig. 4.21 sind drei Beispiele dafür gegeben.) Sind U
bzw. I die Zeiger der Spannung bzw. des Stroms bei unserer Schaltung, so definiert man den
komplexen Scheinwiderstand durch

Z = U

I
. (4.184)

Diese Definition entspricht dem Ohmschen Gesetz. Es gelten daher für alle Rechnungen mit
komplexen Scheinwiderständen das Ohmsche Gesetz und die Kirchhoffschen Regeln für die
Summe der Ströme in Knotenpunkten und die Summe der Spannungen bei Reihenschaltungen.
Auf diese Weise können Wechselstromkreise nach den gleichen Regeln wie Gleichstromkreise
berechnet werden. Zur Ermittlung von Wechselströmen und Spannungen genügt es dabei, mit
den zeitunabhängigen feststehenden Zeigern zu rechnen, anstelle der zeitabhängigen variablen
Werte i(t) = im cos(ωt+ϕi ), u(t) = um cos(ωt+ϕu). Darin liegt ein großer Vorteil hinsichtlich
Übersichtlichkeit und Einfachheit.

Schreibt man den komplexen Scheinwiderstand Z in der Gestalt

Z = R + jX , (R, X ∈ R) ,

so heißt R = Re Z der Wirkwiderstand und X = Im Z der Blindwiderstand. Bei den hier betrach-
teten »passiven« Bauelementen ist stets Re Z = R ≥ 0. (»Passive« Bauelemente enthalten keine
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Fig. 4.21: Verschiedene Wechselstromschaltungen

Stromquellen.) Im Falle Im Z > 0 heißt der Widerstand Z induktiv, im Falle Im Z < kapazitiv.
Der reziproke Wert von Z heißt der komplexe Scheinleitwert

Y := 1

Z
.

Für ihn gilt also

I = YU .

Für Ohmschen Widerstand R, Spule mit Induktivität L und Kondensator mit Kapazität C folgt
aus (4.181) bis (4.183) somit

komplexer
Scheinwiderstand Scheinleitwert

Ohmscher Widerstand R
1

R

Spule jωL − j

ωL

Kondensator − j

ωC
jωC

Mit den bereit gestellten Mitteln lassen sich Wechselströme und -Spannungen auch komplizierter
Schaltungen relativ leicht berechnen. Dies wird an folgenden Beispielen klar.

Beispiel 4.37:

Die hintereinander geschalteten Scheinwiderstände in Fig. 4.21a addieren sich zum gesamten
Scheinwiderstand der Schaltung:

Z = R + j

(

ωL − 1

ωC

)

.
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Ist beispielsweise der Spannungszeiger U der Schaltung gegeben, so erhält man den Stromzeiger
aus I = U/Z .

Mit den Zahlenwerten R = 5,5 kΩ , L = 480 mH, C = 2 μF, ω = 2500 s−1 und U = U =
20 V folgt

Z =
[

5500+ j

(

2500 · 0,48− 106

2500 · 2

)]

Ω = [5500+ j1000]Ω .= 5590 ej·0,1799 Ω

und

I
.= 20

5590
e−j·0,1799 A = (3,52− j0,64)mA .

Die Phase ϕi = −0,1799 = −10,31◦ bedeutet, daß der Strom um 10,31◦ der Spannung nach-
läuft.

Die Spannungen an den einzelnen Bauelementen errechnet man so:

U R = RI
.= (19,360− j · 3,520)V ,

U L = jωL · I
.= (0,768+ j · 4,224)V ,

U C = −
j

ωC
· I

.= (−0,128− j · 0,704)V .

Zur Kontrolle rechnet man U R +U L +U C = 20V = U .

Beispiel 4.38:

In der Schaltung der Fig. 4.21b ist der Scheinwiderstand der unteren Leitung gleich R + jωL

und derjenige der oberen Leitung
1

jωC
. Die Scheinleitwerte dieser beiden parallelen Leitungen

addieren sich (nach Kirchhoff) zum gesamten Scheinleitwert Y, also

Y = 1

R + jωL
+ jωC .

Bei vorgegebenem Spannungszeiger U erhält man die Stromzeiger aus I = UY.

Beispiel 4.39:

Für die Schaltung in Fig. 4.21c ist der Scheinleitwert Y0 des Teiles ohne die rechte Spule gleich

Y0 =
1

R1 + jωL1
+ 1

R2 − j
ωC

Damit ist der gesamte Scheinwiderstand der Schaltung gleich

Z = 1

Y0
+ jωL2 .

Mit gegebenem U folgt daraus I = U/Z .
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Übung 4.23:

Im Beispiel 4.38 (Fig. 4.21b) seien die Zahlenwerte C = 3 μF, R = 6 k Ω , L = 500 mH und

U = 10 V gegeben. Berechne daraus I , ferner die Stromzeiger I 1 zur oberen Leitung (mit C)

und I 2 zur unteren Leitung (mit R und L). Ermittle schließlich die Einzelspannungen UC, UR
und UL.

Übung 4.24:

In Beispiel 4.39 (Fig. 4.21c) seien R1 = 10 k Ω , R2 = 2k Ω , L = 300mH, C = 2,5 μF,

U = 15 V. Ermittle Y 0, Z und I .

4.4.4 Ortskurven bei Wechselstromschaltungen

Oft kommen variable Widerstände (Stellwiderstände), veränderliche Induktivitäten (Variometer)
oder veränderliche Kapazitäten (Drehkondensatoren) in elektrischen Schaltungen vor. Sie treten
in den Rechnungen als Parameter auf, von denen beispielsweise eine Spannung, eine Stromstärke
oder andere Größen abhängen. Auch die Kreisfrequenz ω taucht häufig als Parameter auf.

Wir betrachten im Folgenden elektrische Größen, die von einem Parameter abhängen. Ma-
thematisch führt dies auf komplexwertige Funktionen einer reellen Variablen. Den Wertebereich
einer solchen Funktion nennt man eine »Ortskurve«.

Beispiel 4.40:

Für die einfache Schaltung in Fig. 4.22a gilt offenbar

U (ω) = I0(R +−jωL) .

Dabei seien R = 20 Ω , L = 0,5 H und I0 = 2,6 A.
Die Spannung U (ω) hängt von der variablen Kreisfrequenz ω ab. Wir haben es hier also

mit einer komplexwertigen Funktion einer reellen Variablen zu tun, wie sie in Abschn. 4.4.2
betrachtet wurde.

Fig. 4.22: Ortskurve U (ω) (Gerade)

Die Ortskurve der Funktion U (ω) (ihr Wertebereich) ist für den Parameter ω ∈ [0 s−1,100 s−1]
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in Fig. 4.22b skizziert. Es handelt sich dabei um eine Gerade durch I0 R, die parallel zur imagi-
nären Achse liegt und bezüglich ω skaliert ist.

Ortskurven dieser Art sind in der Wechselstromtechnik nützliche Hilfsmittel, um Schaltungen
handhaben zu können. Dabei kann es sich um Funktionen der Form

U (R) , U (C) , Z(R) , Z(ω) , Z(C) , Y(R) , Y(ω) , Y(C)

und andere handeln.
Sehr häufig sind die Ortskurven Geraden oder Kreisbögen. Um erkennen zu können, ob eine

Gerade oder ein Kreisbogen vorliegt, beweisen wir die folgenden Sätze:

Satz 4.19:
Durch die Funktion

w = f (λ) = z1 + λz2 (λ ∈ R, z1, z2 ∈ C, z2 �= 0)

wird eine Gerade in der komplexen Ebene beschrieben. Mit z1 = a1 + jb1, z2 =
a2 + jb2, w = x + jy lautet die zugehörige Geradengleichung

b2x − a2 y = a1b2 − a2b1 . (4.185)

Beweis:
Die Gleichung w = z1 + λz2 liefert, in Komponenten zerlegt:

x = a1 + λa2 , y = b1 + λb2 , λ ∈ R .

Multipliziert man die erste Gleichung mit b2, die zweite mit a2, und subtrahiert die zweite von
der ersten Gleichung) so erhält man (4.185). Dies ist daher eine Geradengleichung, da z2 �= 0 ist,
also a2 und b2 nicht beide Null sind. �

Satz 4.20:
Durch

w = f (λ) = z1 + λz2

z3 + λz4
(λ ∈ R, z1 ∈ C) (4.186)

mit z1z4 �= z2z3 wird genau dann eine Kreislinie beschrieben, wenn folgendes gilt:

z4 �= 0 und z3/z4 nicht reell. (4.187)

Der Kreis hat den Mittelpunkt

zM =
z2

z4
+ z6 mit z5 :=

jz4(z1z4 − z2z3)

2z4 Im(z3z4)
(4.188)

und den Radius ρ = |z5|.



362 4 Integralrechnung einer reellen Variablen

Ist (4.187) verletzt, so beschreibt f (λ) eine Gerade. Sie verläuft durch folgende
Punkte:

im Falle z4 = 0 durch z1/z3, (z1 + z2)/z3,

im Falle z3 = 0 durch z2/z4, (z1 + z2)/z4,

im Falle z3 �= 0, z4 �= 0, z3/z4 ∈ R durch z1/z3, z2/z4.

(4.189)

Beweis:

(I) Wir betrachten zunächst den Spezialfall z1 = 1, z2 = 0, also

w = f (λ) = 1

z3 + λz4
, z4 �= 0 , z3/z4 �∈ R .

Die Voraussetzung z3/z4 �∈ R besagt, daß der Nenner z3 + λz4 keine Nullstelle hat.

Der Nenner z = z3+λx4 (λ ∈ R) beschreibt also eine Gerade, die nicht durch 0 verläuft. Mit
z = x + jy, z3 = a3 + jb3, z4 = a4 + jb4 gehorcht die Gerade nach Satz 4.19 der Gleichung

b4x − a4 y = a3b4 − a4b3 . (4.190)

Dabei ist a3b4 − a4b3 �= 0, sonst verläuft die Gerade durch 0.

Aus w = 1

z
= 1

z3 + λz4
folgt mit z = x + jy und w = u + jv:

z = x + jy = 1

w
= 1

u + jv
= u

u2 + v2
− j

v

u2 + v2
,

folglich

x = u

u2 + v2
, y = − v

u2 + v2
.

Wir setzen dies in die Geradengleichung (4.190) ein und erhalten mit der Abkürzung

D := a3b4 − a4b3

die Gleichung

b4
u

u2 + v2
+ a4

v

u2 + v2
= D , d.h. u2 + v2 − b4

D
u − a4

D
v = 0 ,

also

(

u − b4

2D

)2

+
(

v − a4

2D

)2
= a2

4 + b2
4

4D2
. (4.191)

Dies ist eine Kreisgleichung für u, v, und zwar mit dem Mittelpunkt

zM =
b4

2D
+ j

a4

2D
und dem Radius r = |zM | .
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Den Mittelpunkt können wir auch so ausdrücken:

zM =
1

2D
(b4 + ja4) =

jz4

2D
= jz4

2 Im(z3z4)
, (4.192)

denn es ist D = a3b4 − a4b3 = Im(z3z4).

(II) Es seien nun z1, z2, z3, z4 beliebige reelle Zahlen mit z1z4 �= z2z3, z4 �= 0, z3/z4 �∈ R. Man
verwandelt f (λ):

f (λ) = z1 + λz2

z3 + λz4
= z2

z4
+ z1z4 − z2z3

z4
· 1

z3 + λz4
.

Hierbei beschreibt der letzte Ausdruck 1/(z3+λz4) eine Kreislinie, also nach Multiplikation mit

z1z4 − z2z3

z4
=: z6

ebenfalls, und nach Addition von
z2

z4
auch. Der Radius ist mit (4.192):

ρ = |zM ||z6| =
∣
∣
∣
∣

z4(z1z4 − z2z3)

2z4 Im(z3z4)

∣
∣
∣
∣
,

also ρ = |z5| (s. (4.188)). Entsprechend folgt für den Mittelpunkt

z2

z4
+ z1z4 − z2z3

z4
zM =

z2

z4
+ z6zM =

z2

z4
+ z5 .

(III) Die Fälle z4 = 0, z3 = 0 oder z3/z4 ∈ R ergeben Geraden durch die angegebenen Punkte,
wie sich der Leser selbst überlegen möge. �

Fig. 4.23: Ortskurve Z(C) einer Schaltung mit Drehkondensator

Beispiel 4.41:
In der Schaltung in Fig. 4.23a kommt ein Drehkondensator vor. Es sei gegeben: L = 0,1 H,
R1 = 50 Ω , R2 = 40 Ω und die Frequenz f = 50 Hz, d.h. ω = 2π f

.= 314,16 s−1. Gesucht ist
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die Widerstandskurve der Funktion Z(C).
Nach den Kirchhoffschen Regeln ist

Z(C) = 1
1

R1 + jωL
+ 1

R − 2− j

ωC

= R1 − ω2LC R2 + jω(L + C R1 R2)

(1− ω2C L)+ jωC(R1 + R2)
.

Daraus folgt

Z(C) = z1 + Cz2

z3 + Cz4
mit

z1 = R1 + jωL ,

z2 = −ω2L R2 + jωR1 R2 ,

z3 = 1 ,

z4 = −ω2L + jω(R1 + R2) .

(4.193)

Es gilt also z1z4 �= z2z3, z4 �= 0 und z3/z4 ∈ R. Folglich gilt nach Satz 4.20:
Durchläuft C alle reellen Zahlen, so durchläuft Z(C) eine Kreislinie in der komplexen Ebene

(dem Kreispunkt z2/z4 wird dabei formal C = ∞ zugeordnet). Nach Satz 4.20, Formeln (4.188)
errechnet man Mittelpunkt zM und Radius ρ der Kreislinie und gelangt so zur Ortskurve in
Fig. 4.23b:

zM
.= 41,59+ j13,96 , ρ

.= 19,37 .

Die Skalierung wird so vorgenommen, daß man für verschiedene C-Werte die Punkte Z(C) =
(z1 + Cz2)/(z3 + Cz4) ausrechnet und daran die zugehörigen C-Werte einträgt.

Fig. 4.24: Schwingkreis Fig. 4.25: Schaltung mit Stellwiderstand

Übung 4.25:

Skizziere die Ortskurve von Z(ω) für den Schwingkreis in Fig. 4.24. Dabei ist R = 250 Ω ,

L = 50 mH und C = 5 μF.

Übung 4.26:

In Fig. 4.25 sei R = 250 Ω , L = 25 mH, L1 = 100mH und ω = 314 s−1. Skizziere die

Ortskurve des Scheinwiderstandes Z(R) und die des Scheinleitwertes Y (R).



5 Folgen und Reihen von Funktionen

Folgen und Reihen von Funktionen spielen in der Analysis und ihren Anwendungen eine be-
deutende Rolle. Wir behandeln hier, nach einem einleitenden Abschnitt, Potenzreihen und Fou-
rierreihen. Potenzreihen, deren Partialsummen Polynome sind, dienen hauptsächlich dazu, kom-
plizierte Funktionen anzunähern und sie damit berechenbar zu machen. Fourierreihen dagegen
liefern periodische Funktionen und regieren auf diese Weise Wellen- und Schwingungsvorgänge
in Naturwissenschaft und Technik.

5.1 Gleichmäßige Konvergenz von Funktionenfolgen und -reihen

5.1.1 Gleichmäßige und punktweise Konvergenz von Funktionenfolgen

Funktionenfolgen werden analog zu Zahlenfolgen definiert: Man denke sich unendlich viele
Funktionen

f1 , f2 , f3 , . . . , fn , . . . (5.1)

gegeben, die alle den gleichen Definitionsbereich D besitzen. Jeder natürlichen Zahl n ist dabei
genau eine Funktion fn zugeordnet. Wir nennen (5.1) eine Funktionenfolge auf D. Sie wird auch
kürzer durch

( fn)n∈N oder ( fn)

beschrieben. Die Zahl n in fn heißt, wie bei Zahlenfolgen, der Index von fn . Funktionenfolgen
können auch in Formen wie

f0 , f1 , f2 , f3 , . . .

f2 , f4 , f6 , . . .

f−1 , f−2 , f−3 , . . .

auftreten, in denen andere Indexfolgen als 1, 2, 3, . . . vorkommen. Dies raubt uns aber nicht den
Nachtschlaf, denn hierbei ist stets klar, welche Funktion die erste, die zweite, die dritte . . . der
Folge ist, so daß mittelbar jedem n ∈ N wieder genau eine Funktion der Folge entspricht.

Wenn im Folgenden von einer »Funktionenfolge« die Rede ist, so meinen wir dabei reellwer-
tige Funktionen einer reellen Variablen. (Gelegentlich kommen auch komplexwertige Funktio-
nenfolgen vor, was dann aber ausdrücklich gesagt wird.)

Soweit, so gut!
Wie bei Zahlenfolgen interessiert uns bei Funktionenfolgen hauptsächlich das Konvergenzver-

halten.
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Definition 5.1:
Man nennt eine Funktionenfolge ( fn) auf D punktweise konvergent, wenn für jedes
x ∈ D die Zahlenfolge f1(x), f2(x), f3(x), . . . konvergiert. Die Grenzfunktion f ist
dabei durch

lim
n→∞

fn(x) = f (x) für jedes x ∈ D

gegeben.

Dieser Konvergenzbegriff, so natürlich er ist, erweist sich für die Analysis als zu schwach.
Zum Beispiel strebt die Folge der Funktionen

fn(x) = 1

1+ x2n
, n = 1,2,3, . . . ,

punktweise gegen

f (x) =

⎧

⎪
⎨

⎪
⎩

1 , für |x | < 1,

1/2 , für |x | = 1,

0 , für |x | > 1,

wie man unmittelbar einsieht. Obwohl alle Funktionen fn stetig sind, ist die Grenzfunktion f
unstetig. Das ist unangenehm!

Man sucht daher nach einem Konvergenzbegriff für Funktionenfolgen, der diesen Mangel
nicht aufweist. Folgen stetiger Funktionen sollen im Konvergenzfall auch stetige Grenzfunktio-
nen haben. Der Konvergenzbegriff, der dies leistet, ist der der »gleichmäßigen Konvergenz«. Für
seine Definition verwenden wir die Supremumsnorm von Funktionen.

Definition 5.2:
Die Supremumsnorm ‖ f ‖∞ einer beschränkten Funktion f auf D ist das Supremum
von | f (x)| auf D, also

‖ f ‖∞ := sup
x∈D
| f (x)| . 1 (5.2)

Sind f und g beide beschränkte Funktionen auf D, so nennt man

‖ f − g‖∞ = sup
x∈D
| f (x)− g(x)|

den Abstand beider Funktionen voneinander (s. Fig. 5.1).

Offensichtlich gelten die Regeln

‖ f + g‖∞ ≤ ‖ f ‖∞ + ‖g‖∞ , (5.3)

1 Das Zeichen∞ an der Supremumsnorm dient zur Unterscheidung von anderen Funktionsnormen, auf die wir aber
nicht eingehen.
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Fig. 5.1: Darstellung von ‖ f ‖∞ und ‖ f − g‖∞

Fig. 5.2: ε-Schlauch um f

‖λ f ‖∞ = |λ|‖ f ‖∞ , für alle λ ∈ R, (5.4)

‖ f ‖∞ = 0 ⇐⇒ f (x) ≡ 0 , (5.5)

‖ f g‖∞ ≤ ‖ f ‖∞ · ‖g‖∞ . (5.6)

»Gleichmäßige Konvergenz« einer Folge ( fn) gegen eine Grenzfunktion f bedeutet nun im We-
sentlichen, daß die Abstände ‖ fn − f ‖∞ zwischen fn und f gegen Null streben. Genauer:

Definition 5.3:
Eine Funktionenfolge ( fn) auf D konvergiert genau dann gleichmäßig gegen eine
Grenzfunktion f auf D, wenn von einem Index n1 an alle Funktionen fn − f be-
schränkt sind und

lim
n→∞
n≥n1

‖ fn − f ‖∞ = 0 (5.7)

erfüllen. Wir schreiben in diesem Falle kurz

f = lim
n→∞

fn oder fn → f für n →∞ . (5.8)
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(Die verwendete Supremumsnorm ‖ . ‖∞ ist dabei wie in (5.2) erklärt.) Man sieht übrigens un-
mittelbar, daß jede gleichmäßig konvergente Folge auch punktweise konvergiert.

Veranschaulichung: (5.7) bedeutet bekanntlich ausführlich: Zu jedem ε > 0 gibt es einen Index
n0(≥ n1), so daß für alle Indizes n ≥ n0 gilt

‖ fn − f ‖∞ ≤ ε . (5.9)

Der Abstand zwischen fn und f bleibt also kleiner als ε für alle n ≥ n0. Dieser Sachverhalt ist in
Fig. 5.2 skizziert: Um den Graphen von f ist ein sogenannter ε-Schlauch (schraffiert) gezeichnet.
Darunter versteht man die Fläche zwischen den Graphen von f + ε und f − ε. Der Graph von
f verläuft in der Mitte des ε-Schlauches.

Gleichmäßige Konvergenz von ( fn) gegen f bedeutet nun, daß es zu jedem ε-Schlauch um
f einen Index n0 gibt, so daß die Graphen aller fn mit Indizes n ≥ n0 ganz in dem ε-Schlauch
liegen.

Wir merken ferner an, daß (5.9) ausführlich bedeutet:

sup
x∈D
| fn(x)− f (x)| ≤ ε ,

oder, was dasselbe besagt:

| fn(x)− f (x)| ≤ ε für alle x ∈ D (5.10)

Das heißt:

Folgerung 5.1:
Eine Funktionenfolge ( fn) auf D konvergiert genau dann gleichmäßig gegen f auf D,
wenn folgendes gilt:
Zu jedem ε > 0 gibt es einen Index n0, so daß für alle Indizes n ≥ n0 und alle x ∈ D
gilt

| fn(x)− f (x)| ≤ ε .

Bemerkung: Zunächst genügt es, sich die leichter eingängige Definition 5.3 zu merken und
anhand der Fig. 5.2 (ε-Schlauch) klar zu machen. Die Formulierung in Folgerung 5.1 hat vorwie-
gend beweistechnische Bedeutung. Der Kern bei der Formulierung der gleichmäßigen Konver-
genz in Folgerung 5.1 besteht darin, daß n0 nur von ε (und f ) abhängt, nicht aber von x . Das
heißt die Ungleichung | fn(x)− f (x)| < ε gilt für alle x , wenn n ≥ n0 ist.

Satz 5.1:
(Cauchysches Konvergenzkriterium für gleichmäßige Konvergenz) Eine Funktionen-
folge ( fn) auf D ist genau dann gleichmäßig konvergent, wenn folgendes gilt:
Zu jedem ε > 0 gibt es einen Index n0, so daß für alle n, m ≥ n0 gilt

‖ fn − fm‖∞ ≤ ε . (5.11)
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Beweis:
2(I) Es konvergiere ( fn) gleichmäßig gegen f auf D. ε > 0 sei beliebig gewählt. Zu ε/2 gibt es
dann einen Index n0 mit ‖ fn − f ‖∞ ≤ ε/2 für n ≥ n0. Daraus folgt für alle n, m ≥ n0:

‖ fn − fm‖∞ = ‖ fn − f + f − fm‖∞ ≤ ‖ fn − f ‖ + ‖ f − fm‖∞ ≤
ε

2
+ ε

2
= ε .

(II) Wir setzen nun umgekehrt voraus, daß (5.11) erfüllt ist. Dann gilt für beliebiges x ∈ D:
( fn(x)) erfüllt die Bedingung des Cauchy-Kriteriums für Zahlenfolgen, ist also konvergent. Der
Grenzwert sei mit f (x) bezeichnet. Auf diese Weise ist f : D → R definiert. Zu beliebigem
ε > 0 wählen wir nach (5.11) nun ein n0, so daß ‖ fn − fm‖∞ ≤ ε für alle n, m ≥ n0 gilt. Damit
folgt für beliebiges, aber festes x ∈ D:

| fn(x)− f (x)| ≤ | fn(x)− fm(x)| + | fm(x)− f (x)|
≤ ε + | fm(x)− f (x)| , (5.12)

falls n, m ≥ n0. Der Summand | fm(x) − f (x)| strebt für m → ∞ gegen 0, also gilt | fn(x) −
f (x)| ≤ ε für alle n ≥ n0 und alle x ∈ D. Das heißt: ( fn) konvergiert gleichmäßig gegen f . �

Übung 5.1*:

Welche Funktionenfolge konvergiert gleichmäßig?

a) fn(x) = n + 1

n
x auf [0,1], b) fn(x) = xn auf

[

0, 1
2

]

,

c) fn(x) = xn auf [0, 1], d) fn(x) = 1

1+ nx2
auf R.

5.1.2 Vertauschung von Grenzprozessen

Die folgenden Sätze bilden die Grundlage für das Arbeiten mit gleichmäßiger Konvergenz. Sie
sagen im Wesentlichen aus, daß bei gleichmäßig konvergenten Funktionenfolgen (bzw. ihren Ab-
leitungsfolgen) sich Stetigkeit, Differenzierbarkeit und Integrierbarkeit auf die Grenzfunktionen
übertragen. Ohne dies wäre mit konvergenten Funktionenfolgen kaum zu arbeiten. (Die Beweise
können beim ersten Lesen überschlagen werden.)

Satz 5.2:

Jede gleichmäßig konvergente Folge stetiger Funktionen hat eine stetige Grenzfunktion.

Beweis:

( fn) konvergiere gleichmäßig auf D ⊂ R gegen f . Die Differenz | f (x)− f (x0)| (x, x0 ∈ D) ist
abzuschätzen. Es gilt:

| f (x)− f (x0)| ≤ | f (x)− fn(x)| + | fn(x)− fn(x0)| + | fn(x0)− f (x0)| (5.13)

2 Kann zunächst überschlagen werden
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für x, x0 ∈ D. Es sei ε > 0 beliebig. Jeden der drei Summanden rechts wollen wir »unter ε/3
drücken« . Dann werden sie zusammen < ε.

Da ( fn) gleichmäßig gegen f strebt, gibt es ein fn mit | f (x)− fn(x)| < ε/3 für alle x ∈ D.
Da fn stetig ist, existiert zu x0 ein δ > 0 mit

| fn(x)− fn(x0)| <
ε

3
für alle x ∈ D mit |x − x0| ≤ δ.

Zusammen folgt aus (5.13) somit

| f (x)− f (x0)| <
ε

3
+ ε

3
+ ε

3
= ε , falls |x − x0| ≤ δ,

also ist f stetig. �

Bemerkung: Der Satz läßt sich auch so ausdrücken: Für jede gleichmäßig konvergente Folge
( fn) stetiger Funktionen gilt auf D mit x0 = lim

k→∞
xk in D:

lim
n→∞

fn

(

lim
k→∞

xk

)

= lim
k→∞

(

lim
n→∞

fn(xk)
)

. (5.14)

Es liegt also die Vertauschung zweier Grenzprozesse vor.

Satz 5.3:
Es sei ( fn) eine Folge differenzierbarer Funktionen auf [a, b]r deren Ableitungsfolge
( f ′n) gleichmäßig konvergiert. Ferner konvergiere ( fn(x0)) für wenigstens ein x0 ∈
[a, b]. Damit folgt:

(a) ( fn) konvergiert gleichmäßig gegen eine Funktion f auf [a, b] und

(b) ( f ′n) konvergiert gleichmäßig gegen f ′.

Bemerkung: Da unter den Voraussetzungen des Satzes nichts anderes eintreten kann, als daß
beide Folgen ( fn) und ( f ′n) gleichmäßig konvergieren, kann man kürzer so formulieren, ohne an
Allgemeinheit zu verlieren:

Sind ( fn) und ( f ′n) auf [a, b] gleichmäßig konvergent, so folgt mit lim
n→∞

fn = f auch

lim
n→∞

f ′n = f ′.

Die letzte Gleichung läßt sich auch so schreiben:

lim
n→∞

d

dx
fn(x) = d

dx
lim

n→∞
fn(x) . (5.15)

Die Aussage des Satzes 5.3 bedeutet daher formal, daß man lim
n→∞

und
d

dx
vertauschen darf.



5.1 Gleichmäßige Konvergenz von Funktionenfolgen und -reihen 371

Beweis:

Des Satzes 5.3: Zu (a): Auf die Funktion ( fm − fn) wenden wir den Mittelwertsatz der Differen-
tialgleichung an — bezüglich zweier beliebiger Punkte x, ξ ∈ [a, b]— und gewinnen

|( fm(x)− fn(x))− ( fm(ξ)− fn(ξ))| ≤ ‖( fn − fm)′‖∞|x − ξ | . 3 (5.16)

(Dabei seien n, m so groß, daß ( fn − fm)′ beschränkt auf [a, b] ist.) Setzt man speziell ξ = x0,
so folgt

| fm(x)− fn(x)| ≤ |( fm(x)− fn(x))− ( fm(x0)− fn(x0))| + | fm(x0)− fn(x0)|
≤ ‖ f ′n − f ′m‖∞|x − x0| + | fm(x0)− fn(x0)| .

Es sei ε > 0 beliebig gewählt. Zu ε/2 kann man einen Index n0 finden, so daß für alle n, m > n0

das erste Glied der letzten Formelzeile kleiner als ε/2 wird (beachte |x − x0| ≤ |b − a|), und
das zweite Glied ebenfalls. Zusammen werden beide Glieder kleiner als ε (für n, m > n0),
folglich ist | fm(x) − fn(x)| < ε für alle x ∈ [a, b] und n, m > n0. Das heißt: ( fn) konvergiert
gleichmäßig gegen eine Grenzfunktion f auf [a, b].
Zu (b): Wir bilden die Hilfsfunktionen

Dn(x) :=

⎧

⎨

⎩

fn(x)− fn(ξ)

x − ξ
, für x �= ξ ,

f ′n(ξ) , für x = ξ ,
D(x) :=

⎧

⎪
⎨

⎪
⎩

f (x)− f (ξ)

x − ξ
, für x �= ξ ,

lim
n→∞

f ′n(ξ) , für x = ξ .

Dabei ist ξ ∈ [a, b] fest. Aus (5.16) folgt nach Division durch |x − ξ | �= 0:

|Dm(x)− Dn(x)| ≤ ‖ f ′n − f ′m‖∞ .

Man kann ein n1 finden, so daß die rechte Seite kleiner als ε wird, für alle n, m > n1 (da ( f ′n)

gleichmäßig konvergiert). Also konvergiert (Dn) gleichmäßig auf [a, b]. Da (Dn) offensichtlich
punktweise gegen D strebt, strebt die Folge somit auch gleichmäßig gegen D. Alle Dn sind
stetig, insbesondere in ξ . Also ist nach Satz 5.2 auch D stetig in ξ , d.h. limx→ξ D(x) = f ′(ξ) =
lim

n→∞
f ′n(ξ). �

Satz 5.4:
Ist ( fn) eine gleichmäßig konvergente Folge integrierbarer Funktionen auf [a, b], so
ist ihre Grenzfunktion f = lim

n→∞
fn integrierbar, und es gilt

lim
n→∞

b∫

a

fn(x) dx =
b∫

a

f (x) dx . (5.17)

3 ‖ f ‖∞ := sup
x∈[a,b]

| f (x)|.
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Beweis:

(I) Wir schätzen die Differenz zwischen Obersumme S f (Z) und Untersumme s f (Z) von f zu
einer beliebigen Zerlegung Z von [a, b] durch Ober- und Untersummen anderer Funktionen ab:

S f (Z)− s f (Z) ≤ (S f− fn (Z)+ S fn (Z))− (s f− fn (Z)+ s fn (Z))

≤ |S f− fn (Z)| + |S fn (Z)− s fn (Z)| + |s f− fn (Z)|
≤ sup

x∈[a,b]
| f (x)− fn(x)|(b − a)+ |S fn (Z)− s fn (Z)|

+ sup
x∈[a,b]

| f (x)− fn(x)|(b − a) .

Gleichmäßige Konvergenz von ( fn) gegen f bedeutet sup
x∈[a,b]

| f (x) − fn(x)| → 0 für n → ∞.

Man kann daher zu beliebig kleinem ε > 0 ein fn finden, so daß das erste und letzte Glied
der letzten Formelzeile < ε/4 werden. Anschließend wähle man Z so, daß das mittlere Glied
kleiner als ε/2 wird. Zusammen folgt S f (Z) − s f (Z) < ε. Da ε > 0 hier beliebig ist, gilt also
inf
Z

S f (Z) = sup
Z

s f (Z), also ist f integrierbar auf [a, b].

(II) Gleichung (5.17) folgt sofort aus

∣
∣
∣
∣
∣
∣

b∫

a

fn(x) dx −
b∫

a

f (x) dx

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

b∫

a

( fn(x)− f (x)) dx

∣
∣
∣
∣
∣
∣

≤ sup
x∈[a,b]

| fn(x)− f (x)|(b − a)→ 0 für n →∞. �

Übung 5.2:

Überprüfe die Sätze 5.2 bis 5.4 am Beispiel

fn(x) = 2n+1n2x2 + (n2 + 4)xn

2n(n2 + 1)
auf [−1, 1].

Beweise zuerst, daß die Folge ( fn) auf [−1, 1] gleichmäßig konvergiert und bestimme die

Grenzfunktion f .

5.1.3 Gleichmäßig konvergente Reihen

Unendliche Reihen von Funktionen werden völlig analog zu unendlichen Reihen von Zahlen
gebildet: Ist f0, f1, f2, . . . , fn , . . . eine reelle Funktionenfolge auf einem Definitionsbereich D,
so wird durch

sn =
n
∑

k=0

fk , n = 0,1,2, . . .
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daraus eine neue Funktionenfolge s0, s1, s2, . . . gebildet. Diese Folge (sn) heißt die unendliche
Reihe — kurz Reihe — der Funktionen fk . Die fk heißen — wie bei Zahlenreihen — die Glieder
der Reihe, und die sn Partialsummen. Man beschreibt die Reihe symbolisch durch

[ ∞
∑

k=0

fk

]

oder

[ ∞
∑

k=0

fk(x)

]

mit x ∈ D.

Die Reihe ist punktweise bzw. gleichmäßig konvergent, wenn (sn) eine solche Eigenschaft hat.
Die Grenzfunktion s = lim

n→∞
sn wird auch Summe der Reihe genannt und durch

s =
∞
∑

k=0

fk oder s(x) =
∞
∑

k=0

fk(x) mit x ∈ D,

bezeichnet.

Das Cauchysche Konvergenzkriterium für Funktionenfolgen Satz 5.1, Abschn. 5.1.1) liefert
unmittelbar

Satz 5.5:
(Cauchysches Konvergenzkriterium für gleichmäßig konvergente Reihen) Eine Reihe
[ ∞
∑

k=0

fk

]

von Funktionen auf D konvergiert genau dann gleichmäßig, wenn folgendes

erfüllt ist:
Zu jedem ε > 0 existiert ein Index n0, so daß für alle Indizes n, m ≥ n0 gilt:

∥
∥
∥
∥
∥
∥

m
∑

k=n+1

fk

∥
∥
∥
∥
∥
∥
∞

≤ ε . 4 (5.18)

Zum Beweis ist lediglich anzumerken, daß
m
∑

k=n+1

fk = sm− sn die Differenz der m-ten und n-ten

Partialsumme der Reihe ist. �

Definition 5.4:

Eine Reihe

[ ∞
∑

k=0

fk

]

von beschränkten Funktionen auf D heißt genau dann gleichmä-

ßig absolut konvergent, wenn
∞
∑

k=0

‖ fk‖∞ konvergiert.

4 Es ist hier, wie früher ‖ f ‖∞ = sup
x∈D
| f (x)|.
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In diesem Fall ist

[ ∞
∑

k=0

fk

]

gleichmäßig konvergent, denn es gilt

∥
∥
∥
∥
∥
∥

m
∑

k=n+1

fk

∥
∥
∥
∥
∥
∥
∞

≤
m
∑

k=n+1

‖ fk‖∞ . (5.19)

Nach dem Cauchy-Kriterium für Reihen von Zahlen gibt es zu jedem ε > 0 ein n0, so daß die
rechte Seite in (5.19) ≤ ε ist für alle n, m ≥ n0. Damit gilt dies auch für die linke Seite in (5.19),

also ist die Reihe

[ ∞
∑

k=0

fk

]

nach Satz 5.5 gleichmäßig konvergent. Damit folgt unmittelbar das

folgende sehr nützliche Konvergenzkriterium:

Satz 5.6:

(Majorantenkriterium) Gilt für die Glieder der Funktionenreihe

[ ∞
∑

k=0

fk

]

‖ fk‖∞ ≤ αk , k = 0,1,2, . . . ,

und ist die Zahlenreihe

[ ∞
∑

k=0

αk

]

konvergent, so ist die Funktionenreihe gleichmäßig

absolut konvergent. Die Reihe

[ ∞
∑

k=0

αk

]

heißt eine Majorante für

[ ∞
∑

k=0

fk

]

.

Schließlich formulieren wir die Vertauschungssätze des letzten Abschnitts auf Reihen um. Wir
erhalten

Satz 5.7:

Sind die Glieder einer gleichmäßig konvergenten Reihe

[ ∞
∑

k=0

fk

]

stetig, so ist die

Summe
∞
∑

k=0

fk stetig.

Satz 5.8:

Es sei

[ ∞
∑

k=0

fk

]

eine Reihe differenzierbarer Funktionen auf [a, b]. Existiert der

Grenzwert
∞
∑

k=0

fk(x) für wenigstens ein x ∈ [a, b], und ist die Ableitungsreihe

[ ∞
∑

k=0

f ′k

]

gleichmäßig konvergent in [a, b], so ist auch die Funktionenreihe

[ ∞
∑

k=0

fk

]
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gleichmäßig konvergent in [a, b] und es gilt

( ∞
∑

k=0

fk

)′
=
∞
∑

k=0

f ′k . (5.20)

Unter den Voraussetzungen des Satzes darf man die Reihe also gliedweise differenzie-
ren!

Satz 5.9:

Jede gleichmäßig konvergente Reihe

[ ∞
∑

k=0

fk

]

integrierbarer Funktionen auf [a, b]

besitzt eine integrierbare Summenfunktion
∞
∑

k=0

fk auf [a, b] und es gilt:

b∫

a

∞
∑

k=0

fk(x) dx =
∞
∑

k=0

b∫

a

fk(x) dx . (5.21)

Kürzer: Gleichmäßig konvergente Reihen dürfen gliedweise integriert werden.

Übung 5.3:

Beweise mit dem Majorantenkriterium, daß die Reihe

⎡

⎣

∞
∑

k=0

1

k2
cos(kx)

⎤

⎦ für x ∈ [0,2π ]

gleichmäßig auf [0, 2π ] konvergiert. Gilt dies auch für die abgeleitete Reihe?

5.2 Potenzreihen

5.2.1 Konvergenzradius

Potenzreihen sind Reihen der Form
[ ∞
∑

k=0

ak(x − x0)
k

]

x , x0 ∈ R, ak ∈ R. (5.22)

Ihre Partialsummen sn(x) =
n
∑

k=0

ak(x − x0)
k sind Polynome. Wir haben Potenzreihen schon in

Form von Taylorreihen kennengelernt. In diesem Abschnitt wollen wir allgemeine Konvergenzei-
genschaften von Potenzreihen untersuchen. Grundlegend ist dabei der folgende Satz von Cauchy
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und Hadamard. Es genügt dabei, Potenzreihen der Form

[ ∞
∑

k=0

ak xk

]

zu untersuchen, da man

(5.22) durch die Transformation x ′ = x − x0 in diese einfache Form übertragen kann.

Satz 5.10:

(Satz von Cauchy-Hadamard5) Zu jeder Potenzreihe

[ ∞
∑

k=0

ak xk

]

gibt es ein Konver-

genzintervall (−r, r) mit folgenden Eigenschaften:

(a) Die Potenzreihe konvergiert in (−r, r) punktweise. Sie konvergiert überdies
gleichmäßig absolut in jedem kompakten Teilintervall von (−r, r).

(b) Außerhalb von [−r, r ] ist die Potenzreihe divergent.

Dabei sind auch die Fälle r = 0 und r = ∞ zugelassen. (Im Falle r = 0 ist (−r, r)

leer, und im Falle r = ∞ ist (−r, r) = R (und Aussage (b) gegenstandslos). r heißt
der Konvergenzradius der Potenzreihe.

Zusatz zu Satz 5.10: Der Konvergenzradius der Potenzreihe

[ ∞
∑

k=0

akxk

]

ist

r = 1

lim
k→∞

k
√|ak |

. (5.23)

gegeben.

Dabei wird folgendes vereinbart: Es ist lim
k→∞

k
√|ak | der größte Häufungspunkt der Folge

(
k
√|ak |

)

,

falls die Folge beschränkt ist; andernfalls ist der Ausdruck gleich∞. Im letzteren Fall rechnen
wir r = 1/∞ = 0. Ist lim

k=0

k
√|ak | dagegen = 0, so setzen wir r = 1/0 = ∞. Dieses Rechnen mit

∞ ist nur in diesem Zusammenhang erlaubt! Den Ausdruck lim
k→∞

k
√

|ak | nennt man den Limes-

superior der Folge
(

k
√|ak |

)

.

Es sei erwähnt, daß Formel (5.23) eher theoretischer Natur ist. Zum Bestimmen von Konvergenz-
radien betrachtet man spezielle Potenzreihen meistens genauer, um »vor Ort« herauszufinden,
wo sie konvergieren und wo nicht.

Beweis:

Des Satzes 5.10: Wir denken uns r nach (5.23) berechnet.

1. Fall: ϕ > 0 (r = ∞ zugelassen).

Zu (a): Wir wählen ein kompaktes Intervall in (−r, r), das wir ohne Beschränkung der Allgemein-
heit als symmetrisch annehmen: [−ξ, ξ ] ⊂ (−r, r). (Denn andernfalls könnte man es zu einem
symmetrischen kompakten Intervall erweitern.) Es folgt ξ/r < 1. Wir wählen eine beliebige

5 Jacques Salomon Hadamard (1865 – 1963), französischer Mathematiker
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Konstante q mit ξ/r < q < 1, d.h. es gilt nach (5.23)

(

lim
k→∞

k
√

|ak | · ξ
)

< q < 1

also

k
√

|ak | · ξ < q < 1

für alle k mit Ausnahme von endlich vielen, folglich für alle k > k0(k0 genügend groß gewählt).
Damit gilt

|ak |ξ k < qk für alle k > k0. (5.24)

Für jedes x ∈ [−ξ, ξ ], also |x | ≤ ξ, erhält man daraus

|ak xk | < qk für alle k > k0,

woraus nach dem Majorantenkriterium (Satz 5.6) die gleichmäßige Konvergenz der Potenzreihe
in [−ξ, ξ ] folgt.
Zu (b): Im Falle r = ∞ ist die Aussage (b) leer, es ist also nichts zu beweisen. Im Falle r ∈ R
(r > 0) dagegen folgt aus |x | > r unmittelbar |x |/r > 1, also

lim
k→∞

k
√

|ak ||x | > 1 ,

d.h.

k
√

|ak ||x | > 1 für unendlich viele k.

Potenzieren mit k ergibt |ak xk | > 1. Die Glieder der Reihe streben mit k →∞ also nicht gegen
Null. Damit ist sie divergent.

2. Fall: r = 0, d.h. lim
k→∞

k
√|ak | = ∞.

Aussage (a) des Satzes ist leer, d.h. es ist nichts zu beweisen.
Zu (b): Die Folge

(
k
√|ak ||x |

)

ist unbeschränkt für jedes x �= 0, also nach Potenzieren mit k auch

die Folge (|ak xk |). Somit ist

[ ∞
∑

k=0

ak xk

]

divergent. �

Bemerkung: Über die Fälle x = r oder x = −r in Satz 5.10 lassen sich keine allgemeinen Kon-
vergenzaussagen machen. Sie müssen von Fall zu Fall untersucht werden. Es kann Konvergenz
oder Divergenz vorliegen.

Satz 5.10 läßt sich entsprechend für allgemeine Potenzreihen

[ ∞
∑

k=0

ak(x − x0)
k

]

aufschreiben.

Das Konvergenzintervall hat dann die Form (x0− r, x0+ r). Der Konvergenzradius r ergibt sich
— nach wie vor — aus (5.23).
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Beispiel 5.1:

Wo konvergiert [x + 2x2+ 3x3+ . . .+ kxk]? Mit ak = k ist lim
k→∞

k
√

k zu bestimmen. Es gilt aber

lim
k→∞

k
√

k = 1

(s. Beisp. 3.18, Abschn. 3.2.1). Die Folge
(

k
√

k
)

hat somit nur einen Häufungspunkt, nämlich

1, und ist natürlich beschränkt. Also ist auch lim
k→∞

k
√

k = 1, somit r = 1. (−1,1) ist damit das

Konvergenzintervall der Reihe. Für x = 1 und x = −1 ist die Reihe offenkundig divergent.

Beispiel 5.2:

Die Reihe

[

x − x2

2
+ x3

3
− x4

4
+ . . .

]

ist sicherlich für |x | < 1 konvergent. Für |x | > 1 kann

keine Konvergenz vorliegen, da |xk/k| → ∞ für k →∞. Der Konvergenzradius ist also r = 1.
In den Randpunkten −1 und 1 liegt unterschiedliches Verhalten vor: Konvergenz bei x = 1,
Divergenz bei x = −1.

Eine in vielen Fällen bequeme Methode zur Bestimmung des Konvergenzradius ist die folgende:

Satz 5.11:

Es sei

[ ∞
∑

k=0

ak xk

]

eine Potenzreihe mit ak �= 0 für alle k ≥ k0. Gilt

lim
k→∞
k≥k0

∣
∣
∣
∣

ak

ak+1

∣
∣
∣
∣
= c > 0 , (5.25)

so ist c der Konvergenzradius der Reihe.

Beweis:

Wir wenden auf die Potenzreihe das Quotientenkriterium (Satz 1.17, Abschn. 1.5.4) an und bilden
dazu den Quotienten benachbarter Glieder:

∣
∣
∣
∣

ak+1xk+

ak xk

∣
∣
∣
∣
=
∣
∣
∣
∣

ak + 1

ak

∣
∣
∣
∣
|x | → |x |

c
für k →∞ (k ≥ k0).

Nach dem Quotientenkriterium liegt Konvergenz für |x |/c < 1, d.h. für |x | < c, und Divergenz
für |x |/c > 1, also |x | > c, vor. �

Übung 5.4:

Bestimme mit Satz 5.11 die Konvergenzradien der Reihen

(a)

⎡

⎣

∞
∑

k=1

k4xk

⎤

⎦ , (b)

⎡

⎣

∞
∑

k=1

xk

kk

⎤

⎦
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5.2.2 Addieren und Multiplizieren von Potenzreihen sowie Differenzieren und
Integrieren

Aus dem Satz über gliedweises Addieren von Zahlenreihen (Satz 1.9, Abschn. 1.5.1) und dem
Multiplikationssatz über absolut konvergente Reihen (Satz 1.15, Abschn. 1.5.3) folgt unmittelbar
für Potenzreihen

Satz 5.12:

Für Summe und Produkt zweier Potenzreihen

[ ∞
∑

k=0

ak(x − x0)
k

]

und

[ ∞
∑

k=0

bk(x − x0)
k

]

gilt im gemeinsamen Konvergenzbereich

∞
∑

k=0

ak(x − x0)
k +

∞
∑

k=0

bk(x − x0)
k =

∞
∑

k=0

(ak + bk)(x − x0)
k (5.26)

bzw.

∞
∑

k=0

ak(x − x0)
k
∞
∑

k=0

bk(x − x0)
k =

∞
∑

n=0

cn(x − x0)
n (5.27)

mit cn = a0bn + a1bn−1 + . . .+ anb0.

Beispiel 5.3:

Es sei

[ ∞
∑

k=0

ak xk

]

eine Potenzreihe mit Konvergenzradius r > 0. Zusammen mit der geometri-

schen Reihe
∞∑

k=0
xk = 1/(1− x) für |x | < 1 folgt aus der Produktformel für |x | < min{1, r} die

interessante Gleichung:

1

1− x

∞
∑

k=0

ak xk =
∞
∑

n=0

cn xn , mit cn = a0 + a1 + . . .+ an . (5.28)

Satz 5.13:

(Differenzieren und Integrieren von Potenzreihen) Es sei

[ ∞
∑

k=0

ak(x − x0)
k

]

eine Po-

tenzreihe mit Konvergenzradius r > 0.

(a) Die Summenfunktion

f (x) =
∞
∑

k=0

ak(x − x0)
k

darf im Konvergenzintervall (x0−r, x0+r) beliebig oft differenziert werden. Die
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Ableitungen von f erhält man durch gliedweises Differenzieren der Potenzreihe:

f ′(x) =
∞
∑

k=1

kak(x − x0)
k−1 (5.29)

(b) Auf jedem kompakten Teilintervall [a, b] des Konvergenzintervalles darf f glied-
weise integriert werden. Insbesondere hat f auf (x0−r, x0+r) eine Stammfunk-
tion, die man durch gliedweises analytisches Integrieren erhält:

x∫

x0

f (t) dt =
∞
∑

k=0

ak

k + 1
(x − x0)

k+1 . (5.30)

Beweis:

Beweis: Wir führen den Beweis o.B.d.A. mit x0 = 0. (b) geht unmittelbar aus Satz 5.9 und
Satz 5.10 hervor. Zu (a): Sei x ∈ (−r, r) beliebig und ξ eine Zahl mit |x | < ξ < r . Es ist zu
zeigen, daß die gliedweise abgeleitete Reihe

[ ∞
∑

k=1

kak xk−1

]

(5.31)

in [−ξ, ξ ] gleichmäßig konvergiert. Nach Satz 5.8 ist dann alles bewiesen. Wir schätzen die
Reihenglieder ab, wobei wir eine Hilfszahl q mit ξ/r < q < 1 verwenden nebst Ungleichung
(5.24):

|kak xk−1| ≤ k|ak |ξ k−1 = k

ξ
|ak |ξ k <

k

ξ
qk für k ≥ k0.

Nach dem Quotientenkriterium konvergiert die Reihe

⎡

⎣

∞
∑

k=k0

k

ξ
qk

⎤

⎦. Diese Reihe ist eine Majo-

rante der Ableitungsreihe (5.31), die damit gleichmäßig absolut konvergiert. �

Übung 5.5:

Berechne die Ableitung der Reihe

⎡

⎣

∞
∑

k=1

xk/k

⎤

⎦ für x = 3/4.

5.2.3 Identitätssatz, Abelscher Grenzwertsatz

Dieser Abschnitt kann beim ersten Lesen übergangen werden. Man schlägt hier nach, wenn man
den Inhalt braucht.
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Satz 5.14:
(Identitätssatz für Potenzreihen) Es seien

f (x) =
∞
∑

k=0

ak(x − x0)
k , g(x) =

∞
∑

k=0

bk(x − x0)
k

zwei Summenfunktionen von Potenzreihen, die beide in dem offenen Intervall I um
x0 konvergieren. Stimmen dann f und g auf nur irgendeiner Folge x1, x2, x3, . . . mit
lim

n→∞
xn = x0 (xn �= x0) überein, d.h.

f (xk) = g(xk) für k = 1,2,3, . . .,

so sind beide Funktionen identisch; es gilt also

f (x) = g(x) für alle x ∈ I , und ak = bk für alle k.

Beweis:
Durch Induktion: Ohne Beschränkung der Allgemeinheit setzen wir x0 = 0, also f (x) =
∞
∑

k=0

ak xk , g(x) =
∞
∑

k=0

bk xk . f und g sind in I stetig (da gleichmäßig konvergent auf kompak-

ten Teilintervallen von I ).
(I) Setzt man x = xn ein, mit xn → x0 = 0, so folgt f (0) = lim

n→∞
f (xn) = lim

n→∞
g(xn) = g(0),

also a0 = b0.

(II) Es sei erwiesen, daß a0 = b0, a1 = b1, . . ., am−1 = bm−1 ist. Die Summenfunktionen

fm(x) = am + am+1x + am+2x2 + . . .+ gm(x) = bm + bm+1x + bm+2x2 + . . .

stimmen dann für alle Folgenpunkte x = xn überein, da

fm(x) =

(

f (x)−
m−1∑

k=0
ak xk

)

xm
, gm(x) =

(

g(x)−
m−1∑

k=0
bk xk

)

xm

für x �= 0 (x ∈ I ) gilt. Wie in (I) folgert man dann, daß die freien Glieder übereinstimmen:
am = bm . Aufgrund vollständiger Induktion ist damit am = bm für alle m = 1,2, . . . gezeigt,
folglich f (x) = g(x) auf I . �

Satz 5.15:
(Abelscher6 Grenzwertsatz) Durch

f (x) =
∞
∑

k=0

ak(x − x0)
k
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sei die Summenfunktion einer Potenzreihe dargestellt, die einen endlichen Konvergenzradius
r > 0 besitzt. Ist die Potenzreihe im rechten Randpunkt x0 + r des Konvergenzintervalls
(x0 − r, x0 + r) konvergent, so ist f dort auch (linksseitig) stetig, d.h. es gilt

lim
x→x0+r
x<x0+r

f (x) =
∞
∑

k=0

akrn .

Entsprechendes gilt für Konvergenz im linken Randpunkt des Konvergenzintervalls.

Beweis:
Ohne Beschränkung der Allgemeinheit nehmen wir x0 = 0 und r = 1 an. (Andernfalls können
wir dies durch die Transformation x ′ = (x − x0)/r erreichen.) Nach Voraussetzung existiert die

Summe c := f (1) =
∞
∑

k=0

ak . Die Partialsummen seien cn := a0 + a1 + . . . + an genannt. Es

muß gezeigt werden, daß f (x)→ c für x → 1− ist. Wir benutzen dazu Formel (5.28) im letzten
Abschnitt. Sie liefert

f (x) =
∞
∑

k=0

ak xk = (1− x)

∞
∑

n=0

cn xn für |x | < 1.

Damit folgt für x ∈ (0,1):

| f (x)− c| =
∣
∣
∣
∣
∣
(1− x)

∞
∑

n=0

cn xn − c

[

1
︷ ︸︸ ︷

(1− x)

∞
∑

n=0

xn

] ∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
(1− x)

∞
∑

n=0

(cn − c)xn

∣
∣
∣
∣
∣
≤ (1− x)

∞
∑

n=0

|cn − c|xn

= (1− x)

N
∑

n=0

|cn − c|xn + (1− x)

∞
∑

n=N+1

|cn − c|xn .

Hierbei wähle man N so, daß jedes |cn − c| der rechten Summe kleiner als ε/2 ist, wobei ε > 0
beliebig vorgegeben ist. Damit ist die rechte Summe kleiner als

ε

2
· (1− x)

∞
∑

n=n+1

xn ≤ ε

2
(1− x)

∞
∑

n=0

xn = ε

2
.

Anschließend wähle man δ > 0 so, daß für alle x mit 1 − δ < x < 1 der erste Summand der
unteren Formelzeile kleiner als ε/2 ist. Damit gilt | f (x)−c| ≤ ε/2+ε/2 = ε, falls 1−δ < x < 1,
d.h. lim

x→1
f (x) = c. �

6 Niels Henrik Abel (1802 – 1829), norwegischer Mathematiker
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Besonders interessant ist die Anwendung des Abelschen Grenzwertsatzes auf Taylorreihen.
Wir ziehen die

Folgerung 5.2:
Die Funktion f sei auf einem offenen Intervall I um x0 in eine Taylorreihe entwickel-
bar (d.h. die Taylorreihe von f konvergiert auf I punktweise gegen f ). Konvergiert die
Taylorreihe auch noch in einem Randpunkt von I und ist f dort stetig f so konvergiert
sie in diesem Randpunkt gegen den Funktionswert von f .

Beispiel 5.4:
Die Taylorreihe der Arcustangensfunktion lautet

arctan x = x − x3

3
+ x5

5
− x7

7
+− . . . . (5.32)

Mit Restgliedabschätzung (Lagrange-Restglied) sieht man ohne Schwierigkeit, daß die Formel
für |x | < 1 zutrifft. Überdies erkennt man mit dem Leibniz-Kriterium, daß die Reihe für x = 1
und x = −1 auch konvergiert. Da arctan x dort stetig ist, gilt (5.32) auch für x = 1 und x = −1.
(Dies war in Abschn. 3.2.4, Absatz nach Tabelle 3.3, offen geblieben.) Für x = 1 folgt die schon
angegebene prachtvolle Formel, auch »Leibnizsche Reihe« genannt:

π

4
= 1− 1

3
+ 1

5
− 1

7
+− . . . . (5.33)

Übung 5.6*:

Zeige, daß die Taylorreihe des Arcussinus

arcsin x = x + 1x3

2 · 3 +
1 · 3x5

2 · 4 · 5 +
1 · 3 · 5x7

2 · 4 · 6 · 7 + . . .

für alle x ∈ [−1,1] gültig ist. (Die Gültigkeit für |x | < 1 ist in Abschn. 3.2.4 schon gezeigt.)

5.3 Der Weierstraß’sche Approximationssatz

5.3.1 Bemerkung zur Polynomapproximation

Die Darstellung komplizierter Funktionen als Potenzreihen — insbesondere als Taylorreihen —
geht von der Aufgabe aus, diese Funktionen zu berechnen. Durch die Partialsummen der Po-
tenzreihen sind Polynome gegeben, die die Funktionen mehr oder weniger gut approximieren
und daher zur numerischen Berechnung herangezogen werden können. Diese Aufgabenstellung
wirft mehrere Fragen auf:

(a) Kann man jede stetige Funktion beliebig genau durch Polynome approximieren?

(b) Mit welchen Polynomen geht dies am besten?
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(c) Sollte man nicht besser andere Funktionen zur Approximation verwenden, z.B. rationale
Funktionen?

Frage (a) wird durch den Weierstraß’schen Approximationssatz grundsätzlich positiv beantwor-
tet. Er besagt, daß sich jede auf [a, b] stetige Funktion f durch eine Folge von Polynomen im
Sinne der gleichmäßigen Konvergenz (s. Abschn. 5.1.1) auf [a, b] approximieren läßt. Die Poly-
nome, von denen hier die Rede ist, ordnen sich im allgemeinen aber nicht zu einer Potenzreihe.
Außerdem begnügt man sich in zahlreichen Lehrbüchern mit der Behandlung der Existenzfrage.
Das Konstruktionsproblem von Näherungspolynomen bleibt aber bestehen.

Mit Frage (b) beschäftigt sich die sogenannte Approximationstheorie ausführlich (s. z.B.
M. Müller [38]). Sie untersucht verschiedene Approximationsverfahren auf Konvergenz, Appro-
ximationsgeschwindigkeit und auch die Frage der Bestapproximation. Für numerische Belange
sind Reihen von Tschebyscheff-Polynomen von großem Interesse. Viele elementare Funktionen
werden auf Computern mit Tschebyscheff-Polynomen berechnet. Eine gut lesbare erste Einfüh-
rung findet man z.B. in E. Stiefel [52], Abschn. 7.2.

Eine andere Art, Funktionen durch Polynome zu approximieren, geht von der Interpolation
aus (s. hierzu Abschn. 5.4). Man sucht dabei zu einer Funktion f auf [a, b] ein Polynom p,
etwa vom Höchstgrad n, das an n + 1 vorgeschriebenen Stellen x0, x1, . . . , xn mit f überein-
stimmt: f (xk) = p(xk), k = 0,1, . . . , n. Hier hat sich herausgestellt, daß es für die meisten
Polynome zweckmäßig ist, den Polynomgrad n nicht zu hoch zu wählen (z.B. n ≤ 3), dafür aber
die »Interpolationspolynome« stückweise zusammenzusetzen. Solche, aus Polynomstücken zu-
sammengesetzte Funktionen nennt man Spline-Funktionen. Sie haben in der numerischen Praxis
große Bedeutung erlangt. Wir werden in Abschnitt 5.4 auf sie eingehen.

Zur Frage (c): In der Tat lassen sich durch Approximation mit rationalen Funktionen bei klei-
nerem Rechenaufwand bessere Approximationen erzielen (vgl. J. Stoer [53]). Die systematische
Entwicklung ist jedoch aufwendiger und mit gelegentlichen Fallstricken verbunden. Es gehören
hierher Kettenbrüche, rationale Interpolation, rationale Tschebyscheff-Approximation u.a. Die
leichtere Handhabung der Polynomapproximation ist dagegen ein nicht zu unterschätzender Vor-
teil. So wird man zweckmäßig von Fall zu Fall aus der Palette der Möglichkeiten die brauchbarste
Approximation herausgreifen. Die Approximationstheorie stellt zahlreiche Verfahren bereit und
diskutiert deren Eigenschaften.

5.3.2 Approximation von stetigen Funktionen durch Bernstein-Polynome

Im Folgenden wollen wir anhand eines konkreten Verfahrens zeigen, wie sich stetige Funktionen
durch Polynome approximieren lassen.

Satz 5.16:
(Weierstraß) Die Funktion f sei auf [a, b] stetig. Dann gibt es eine Folge {pn} von
Polynomen, die auf [a, b] gleichmäßig gegen f konvergiert:

‖ f − pn‖∞→ 0 für n →∞ . (5.34)

(Die Norm ‖ · ‖∞ ist in Abschn. 5.1.1, Def. 5.2 erklärt!)
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Beweis:
7 Mit Hilfe der Transformation

x ′ = x − a

b − a

sehen wir, daß wir uns anstelle von [a, b] im Folgenden auf das Intervall [0,1] beschränken
können. Für unser weiteres Vorgehen benötigen wir die binomische Formel

(a + b)n =
n
∑

k=0

(
n

k

)

an−kbk , n ∈ N (5.35)

(s. Abschn. 1.1, Formel (1.15)). Wir differenzieren (5.35) nach b und multiplizieren die entstehen-
de Gleichung mit b. Mit dem gewonnenen Resultat verfahren wir noch einmal genau so. Dadurch
ergeben sich die beiden Beziehungen (man beachte die veränderte Rolle des Summationsindex
k)

n
∑

k=0

k

(
n

k

)

an−kbk = nb(a + b)n−1 (5.36)

und

n
∑

k=0

k2
(

n

k

)

an−kbk = nb(nb + a)(a + b)n−2 . (5.37)

In den Formeln (5.35), (5.36) und (5.37) setzen wir b = x und a = 1− x und erhalten so

n
∑

k=0

(
n

k

)

(1− x)n−k xk = 1 , (5.38)

n
∑

k=0

k

(
n

k

)

(1− x)n−k xk = nx , (5.39)

n
∑

k=0

k2
(

n

k

)

(1− x)n−k xk = n2x2 + nx(1− x) . (5.40)

Wir multiplizieren nun die erste dieser Gleichungen mit n2x2, die zweite mit−2nx und die dritte
mit 1 und addieren die so entstehenden Gleichungen. Wir erhalten die Beziehung

n
∑

k=0

(k − nx)2
(

n

k

)

(1− x)n−k xk = nx(1− x) . (5.41)

7 Dieser konstruktive Beweis geht auf den russischen Mathematiker Sergei Natanowitsch Bernstein (1880 – 1968)
zurück.
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Die rechte Seite von (5.40) ist im Intervall [0,1] nicht negativ und nimmt an der Stelle x = 1
2

seinen maximalen Wert 1
4 n an (warum?). Daher gilt die Abschätzung

n
∑

k=0

(k − nx)2
(

n

k

)

(1− x)n−k xk ≤ 1

4
n . (5.42)

Nun betrachten wir die Funktion f (x) an den äquidistanten Knotenpunkten k
n (k = 0,1, . . . , n):

f
(

k
n

)

, und führen die Polynome

pn(x) :=
n
∑

k=0

f

(
k

n

)(
n

k

)

(1− x)n−k xk , (5.43)

die man Bernstein-Polynome nennt, ein. Wir weisen nach, daß diese für n →∞ auf [0,1] gleich-
mäßig gegen die Funktion f (x) konvergieren.

Wegen (5.38) und (5.43) folgt für 0 ≤ x ≤ 1

f (x)− pn(x) =
n
∑

k+0

[

f (x)− f

(
k

n

)](
n

k

)

(1− x)n−k xk (5.44)

und hieraus, mit Hilfe der Dreiecksungleichung,

∣
∣
∣
∣
∣

n
∑

k=0

[

f (x)− f

(
k

n

)](
n

k

)

(1− x)n−k xk

∣
∣
∣
∣
∣
≤

n
∑

k=0

∣
∣
∣
∣

f (x)− f

(
k

n

)∣
∣
∣
∣

(
n

k

)

(1−x)n−k xk . (5.45)

(Wir beachten dabei: (1− x)n−k xk ≥ 0 im Intervall [0,1].)
Aus der Stetigkeit von f (x) auf dem (kompakten) Intervall [0,1] folgt dort ihre gleichmäßige

Stetigkeit (s. Satz 1.26, Abschn. 1.6). Zu jedem ε > 0 gibt es daher ein δ = δ(ε) > 0 mit

| f (x1)− f (x2)| < ε (5.46)

für alle x1, x2 ∈ [0,1] mit |x1 − x2| < δ. Insbesondere ist (5.46) erfüllt, wenn wir x1 = x und
x2 = k

n setzen:

∣
∣
∣
∣

f (x)− f

(
k

n

)∣
∣
∣
∣
< ε für

∣
∣
∣
∣
x − k

n

∣
∣
∣
∣
< δ . (5.47)

Nun zerlegen wir die Summe auf der rechten Seite von (5.45) in zwei Teilsummen, wobei wir
in der ersten Summe über diejenigen Werte k ∈ {0,1, . . . , n} summieren, die der Ungleichung
∣
∣x − k

n

∣
∣ < δ genügen, während wir für die zweite Summe die Werte k mit

∣
∣x − k

n

∣
∣ ≥ δ nehmen

(s. Fig. 5.3). Für die beiden Summen verwenden wir die Schreibweisen

∑

∣
∣
∣x− k

n

∣
∣
∣<δ

. . . bzw.
∑

∣
∣
∣x− k

n

∣
∣
∣≥δ

. . .
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und kürzen sie mit S1 bzw. S2 ab. Zur Abschätzung von S1 nutzen wir (5.47) und (5.38) aus und
erhalten für beliebiges (festes) n ∈ N

0 x

x
(

x + δ

)

x − δ

∣
∣
∣x − k

n

∣
∣
∣ < δ

1

∣
∣
∣x − k

n

∣
∣
∣ ≥ δ

Fig. 5.3: Zerlegung der Summation

S1 =
∑

∣
∣
∣x− k

n

∣
∣
∣<δ

∣
∣
∣
∣

f (x)− f

(
k

n

)∣
∣
∣
∣

(
n

k

)

(1− x)n−k xk

< ε
∑

∣
∣
∣x− k

n

∣
∣
∣<δ

(
n

k

)

(1− x)n−k xk < ε

n
∑

k=0

(
n

k

)

(1− x)n−k xk < ε .

(5.48)

(Wir beachten, daß sich die Summe i.a. vergrößert, wenn wir über alle k (k = 0,1, . . . , n) sum-
mieren!)

Wenden wir uns nun der zweiten Summe S2 zu. Da f (x) im (kompakten) Intervall [0,1] stetig
ist, nimmt sie dort ihr Maximum an, d.h. es gibt ein M > 0 mit

| f (x)| ≤ M für alle x ∈ [0,1]

(s. Satz 1.25, Abschn. 1.6). Wir erhalten damit

S2 =
∑

∣
∣
∣x− k

n

∣
∣
∣≥δ

∣
∣
∣
∣

f (x)− f

(
k

n

)∣
∣
∣
∣

(
n

k

)

(1− x)n−k xk

≤
∑

∣
∣
∣x− k

n

∣
∣
∣≥δ

(

| f (x)| +
∣
∣
∣
∣

f

(
k

n

)∣
∣
∣
∣

)(
n

k

)

(1− x)n−k xk ≤ 2M
∑

∣
∣
∣x− k

n

∣
∣
∣≥δ

(
n

k

)

(1− x)n−k xk .

(5.49)

Wegen
∣
∣x − k

n

∣
∣ ≥ δ oder |nx − k| ≥ nδ folgt

(nx − k)2

n2δ2
≥ n2δ2

n2δ2
= 1
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und daher aus (5.49)

S2 ≤ 2M
∑

∣
∣
∣x− k

n

∣
∣
∣≥δ

(nx − k)2

n2δ2

(
n

k

)

(1− x)n−k xk

≤ 2M

n2δ2

∑

∣
∣
∣x− k

n

∣
∣
∣≥δ

(k − nx)2
(

n

k

)

(1− x)n−k xk ≤ 2M

n2δ2

n
∑

k=0

(k − nx)2
(

n

k

)

(1− x)n−k xk .

Hieraus ergibt sich mit (5.41)

S2 ≤
M

2mδ2
,

wobei M und δ feste positive Werte sind. Wählen wir schließlich n so groß, daß

n >
M

2εδ2
ist und setzen wir: N := M

εδ2
,

so erhalten wir

S2 ≤
M

2nδ2
<

M

2
(

M
2εδ2

)

δ2
= ε (5.50)

für alle n > N . Aus (5.48) und (5.50) ergibt sich dann

S1 + S2 < 2ε für beliebige ε > 0 und n > N

und damit wegen (5.44) und (5.45)

| f (x)− pn(x)| < 2ε =: ε̃

für alle x ∈ [0,1] und beliebige ε̃ > 0 und n > N . Damit ist Satz 5.16 bewiesen. �

Mit Hilfe von Satz 5.16 läßt sich ein analoger Satz für periodische Funktionen beweisen:

Satz 5.17:
(Weierstraß für periodische Funktionen) Es sei f eine 2π -periodische stetige Funkti-
on. Dann gibt es eine Folge {tn} von trigonometrischen Polynomen, also von Polyno-
men der Form

tn(x) = a0

2
+

n
∑

k=1

(ak cos kx + bk sin kx) (5.51)

mit

‖ f − tn‖∞→ 0 für n →∞ . (5.52)
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Beweis:
Dieser läßt sich mit Hilfe der Substitution u = cos x bzw. x = arccos u auf Satz 5.16 zurückfüh-
ren und findet sich z.B. in W.I. Smirnow [50] Teil II, Abschnitt 154.

5.4 Interpolation

Innerhalb dieses Abschnittes befassen wir uns mit Algorithmen zur Berechnung von Polyno-
men respektive Splines, die an vorgegebenen Stützstellen x0, . . . , xn ∈ R einen zugehörigen
Funktionswert f0, . . . , fn ∈ R aufweisen. Derartige Fragestellungen treten in einer Vielzahl
praxisrelevanter Problemstellungen auf. Liegen beispielsweise durch ein Experiment Meßwerte
einer physikalischen oder biologischen Größe zu bestimmten Zeitpunkten vor, so kann mittels
einer Interpolation eine näherungsweise Berechnung der betrachteten Größe für beliebige Zwi-
schenzeiten vorgenommen werden. Daneben wird im Rahmen der numerischen Integrationsme-
thoden häufig der Integrand durch ein Interpolationspolynom ersetzt, dessen exakte Integration
als Approximation an den gesuchten Integralwert genutzt wird. Derartige Verfahren werden dem-
zufolge als interpolatorische Quadraturformeln bezeichnet. Folglich basieren auch die bekann-
ten Runge-Kutta-Verfahren zur Lösung gewöhnlicher Differentialgleichungen inhärent auf den
Methoden der Polynominterpolation. Darüberhinaus stellt die Interpolation eine ganz natürliche
Vorgehensweise bei der Visualisierung geometrischer Formen oder numerischer Resultate dar,
deren Werte ausschließlich an diskreten Stellen vorliegen.

5.4.1 Polynominterpolation

Wir bezeichnen mit Πn , n ∈ N0, den Raum aller Polynome

p(x) = a0 + a1x + a2x2 + · · · + an xn (5.53)

mit reellen Koeffizienten a0, . . . , an . Entsprechend der in Abschnitt 2.1 getroffenen Definitionen
beinhaltet die Menge Πn somit neben dem Nullpolynom alle Polynome vom Grad kleiner oder
gleich n. Hiermit können wir das grundlegende Interpolationsproblem formulieren:

Zu gegebenen n + 1 Stützpunkten

(x0, f0), . . . , (xn, fn) ∈ R2

bei paarweise verschiedenen Stützstellen

x0, . . . , xn ∈ R

ist ein Polynom p ∈ Πn mit

p(xk) = fk , k = 0,1, . . . , n

gesucht.

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

(5.54)

Ein Polynom, das das Interpolationsproblem löst, wird als Interpolationspolynom, interpolieren-
des Polynom oder Interpolierende bezeichnet.

Entsprechend der obigen Aufgabenstellung müssen wir uns im Folgenden einerseits mit den
theoretischen Fragen zur Existenz und Eindeutigkeit interpolierender Polynome und andererseits
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mit praktischen Fragen zum Berechnungsaufwand, zur Fehlerabschätzung und zur stabilen Aus-
wertung befassen.

Betrachten wir das gemäß des Interpolationsproblems (5.54) gesuchte Polynom p ∈ Πn in
der Darstellung (5.53), so erhalten wir für die n + 1 Freiheitsgrade a0, . . . , an ∈ R entsprechend
n + 1 Bedingungen

n
∑

i=0

ai x i
k = fk , k = 0, . . . , n . (5.55)

Gleichung (5.55) läßt sich übersichtlich in der Form eines linearen Gleichungssystems

⎛

⎜
⎜
⎜
⎝

1 x0 x2
0 · · · xn

0

1 x1 x2
1 · · · xn

1
...

...
...

...

1 xn x2
n · · · xn

n

⎞

⎟
⎟
⎟
⎠

︸ ︷︷ ︸

:=V (x0,...,xn)∈Mat(n+1;R)

⎛

⎜
⎜
⎜
⎝

a0

a1
...

an

⎞

⎟
⎟
⎟
⎠
=

⎛

⎜
⎜
⎜
⎝

f0

f1
...

fn

⎞

⎟
⎟
⎟
⎠

(5.56)

schreiben, wodurch offensichtlich wird, daß das Interpolationsproblem genau dann eindeutig
lösbar ist, wenn die Matrix V (x0, . . . , xn) regulär ist, d.h. det V (x0, . . . , xn) �= 0 gilt, siehe
Burg/Haf/Wille (Lineare Algebra) [7].

Hilfssatz 5.1:
Die Matrix

V (x0, . . . , xn) =

⎛

⎜
⎜
⎜
⎝

1 x0 x2
0 · · · xn

0

1 x1 x2
1 · · · xn

1
...

...
...

...

1 xn x2
n · · · xn

n

⎞

⎟
⎟
⎟
⎠
∈ Mat(n + 1;R)

ist genau dann regulär, wenn die Stützstellen x0, . . . , xn ∈ R paarweise verschieden
sind, d.h.

xi �= x j für i �= j (5.57)

gilt.

Beweis:
(a) Gilt xi = x j für mindestens ein Indexpaar (i, j) mit i �= j , so ist die i-te Zeile identisch

zur j-ten Zeile und folglich V (x0, . . . , xn) nicht regulär.

(b) Ist die Bedingung (5.57) erfüllt, so ergibt sich der Nachweis mittels einer vollständigen
Induktion über n ∈ N0.

Induktionsanfang: Für n = 0 erhalten wir

det V (x0) = det(1) = 1 �= 0 .
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Induktionsschluß: Unter der Annahme, daß

det V (x0, . . . , xn) �= 0

für ein beliebiges, aber festes n ∈ N0 gilt, erhalten wir

det V (x0, . . . , xn+1)

= det

⎛

⎜
⎜
⎜
⎜
⎝

1 x0 x2
0 · · · xn+1

0

1 x1 x2
1 · · · xn+1

1
...

...
...

...

1 xn+1 x2
n+1 · · · xn+1

n+1

⎞

⎟
⎟
⎟
⎟
⎠

= det

⎛

⎜
⎜
⎜
⎜
⎝

1 x0 x2
0 · · · xn+1

0

0 x1 − x0 x2
1 − x2

0 · · · xn+1
1 − xn+1

0
...

...
...

...

0 xn+1 − x0 x2
n+1 − x2

0 · · · xn+1
n+1 − xn+1

0

⎞

⎟
⎟
⎟
⎟
⎠

= det

⎛

⎜
⎝

x1 − x0 x2
1 − x2

0 · · · xn+1
1 − xn+1

0
...

...
...

xn+1 − x0 x2
n+1 − x2

0 · · · xn+1
n+1 − xn+1

0

⎞

⎟
⎠

= det

⎛

⎜
⎝

x1 − x0 x1(x1 − x0) · · · xn
1 (x1 − x0)

...
...

...

xn+1 − x0 xn+1(xn+1 − x0) · · · xn
n+1(xn+1 − x0)

⎞

⎟
⎠ (5.58)

= (x1 − x0) · . . . · (xn+1 − x0) · det

⎛

⎜
⎝

1 x1 · · · xn
1

...
...

...

1 xn+1 · · · xn
n+1

⎞

⎟
⎠

= (x1 − x0) · . . . · (xn+1 − x0)
︸ ︷︷ ︸

�=0

· det V (x1, . . . , xn+1)
︸ ︷︷ ︸

�=0

�= 0 ,

wobei zur Herleitung der Darstellung (5.58) stets das x0-fache der ( j − 1)-ten Spalte
von der j-ten Spalte für j = 2, . . . , n + 1 abgezogen wurde. �

Hiermit sind wir nun in der Lage die erste Frage hinsichtlich der Existenz und Eindeutigkeit
positiv zu beantworten.

Satz 5.18:
Das Interpolationsproblem (5.54) besitzt stets eine eindeutig bestimmte Lösung.

Beweis:
Aufgrund der im Interpolationsproblem geforderten Eigenschaft paarweise verschiedener Stütz-
stellen x0, . . . , xn ist die im Gleichungssystem (5.56) auftretende Matrix V (x0, . . . , xn) laut
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Hilfssatz 5.1 regulär. Das Gleichungssystem (5.56) besitzt folglich für jede beliebige rechte Seite
( f0, . . . , fn)T ∈ Rn+1 eine eindeutig bestimmte Lösung (a0, . . . , an)T ∈ Rn+1, wodurch mit

p(x) =
n
∑

i=0

ai x i

das gesuchte und eindeutig bestimmte Interpolationspolynom p ∈ Πn vorliegt. �

Beispiel 5.5:

Die Berechnung des Interpolationspolynoms p ∈ Π2 zu den gegebenen Stützpunkten

k 0 1 2

xk 0 1 3
fk 1 3 2

(5.59)

werden wir nun exemplarisch auf der Basis des dargestellten intuitiven Ansatzes (5.55) durchfüh-
ren. Gemäß (5.56) ergibt sich das Gleichungssystem in der Form

⎛

⎝

1 0 0
1 1 1
1 3 9

⎞

⎠

⎛

⎝

a0

a1

a2

⎞

⎠ =

⎛

⎝

1
3
2

⎞

⎠ . (5.60)

Die Lösung kann mit dem Gaußschen Algorithmus nach Abschnitt 2.2 ermittelt werden. Wei-
tere klassische und moderne Verfahren zur Lösung linearer Gleichungssysteme werden in [36]
vorgestellt. Aus (5.60) ergibt sich

⎛

⎜
⎝

a0

a1

a2

⎞

⎟
⎠ =

⎛

⎜
⎝

1
17
6

− 5
6

⎞

⎟
⎠

und somit das Interpolationspolynom

p(x) = a0 + a1x + a2x2 = 1+ 17

6
x − 5

6
x2 ,

so daß beispielsweise für die Zwischenstelle x = 2 ∈ [x1, x2]

p(2) = 10

3

gilt.

Dieser zunächst als sehr einfach und offensichtlich erscheinende Zugang entpuppt sich bei
einer zweiten Betrachtung jedoch als unpraktikabel im Hinblick auf reale Anwendungen. Das
zentrale Problem liegt in der Matrix V (x0, . . . , xn) verborgen, dessen transponierte Matrix eine
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sogenannte Vandermonde8-Matrix repräsentiert. Derartige Matrizen V ∈ Mat(n + 1, R) wei-
sen bei wachsender Spaltenzahl n + 1 eine zunehmend größere Konditionszahl auf, so daß mit
(5.56) ein schlecht gestelltes Problem entsteht und auftretende Rundungsfehler zu drastischen
Fehlern bei dem Koeffizientenvektor (a0, . . . , an)T führen können, siehe [36]. Das so ermittelte
Polynom erfüllt daher für größere Stützpunktzahlen die geforderten Interpolationsbedingungen
gemäß (5.56) nicht notwendigerweise. Zudem ergibt sich bei praxisrelevanten Anwendungen
häufig die Situation, daß zusätzliche Stützpunkte integriert werden müssen. Bei dem präsen-
tierten Ansatz bedingt jedoch bereits die Hinzunahme eines weiteren Stützpunktes die erneute
Berechnung aller Koeffizienten.

Die Güte der weiteren Methoden zur Lösung des Interpolationsproblems (5.56) werden wir
auf der Grundlage der folgenden Zielsetzungen beurteilen.

(1) Die Berechnung und Auswertung des Interpolationspolynoms sollen stabil gegenüber auf-
tretenden Rundungsfehlern sein.

(2) Die nachträgliche Integration weiterer Stützpunkte soll effizient bezüglich des Rechenauf-
wandes sein.

(3) Die Berechnung des Interpolationspolynoms soll O(n2) arithmetische Operationen aufwei-
sen.

(4) Die Auswertung des Interpolationspolynoms an einer beliebigen Stelle soll O(n) Operatio-
nen benötigen.

Hierbei sei bemerkt, daß wir mit O stets das Landau9-Symbol verstehen. In dem vorliegenden
Rahmen ist hierbei die Interpretation f (n) = O(n p) ⇔ lim

n→∞
f (n)
n p = const ∈ R ausreichend.

Somit bedeutet O(n2) resp. O(n), daß der Aufwand maximal quadratisch resp. linear mit wach-
sendem n ansteigt. Eine exakte Definition kann [44] entnommen werden. Unter einer arithme-
tischen Operation subsumieren wir zudem Addition, Subtraktion, Multiplikation und Division
gleichermaßen. Desweiteren verstehen wir unter der Berechnung des Interpolationspolynoms
die Koeffizientenbestimmung, die für eine elementare Darstellung des Polynoms benötigt wird
und nur einmalig für jedes Interpolationspolynom durchgeführt werden muß.

Lagrangesche Interpolationsformel

Die Lagrange-Interpolation basiert auf der folgenden Idee. Seien Polynome L j ∈ Πn mit

L j (xk) = δ jk =
{

1 , j = k

0 , sonst
(5.61)

bekannt, so erhalten wir das gesuchte Interpolationspolynom p ∈ Πn zu (5.56) in der Darstellung

p(x) =
n
∑

j=0

f j L j (x) ,

8 Alexandre-Théophile Vandermonde (1735 – 1796), französischer Musiker, Mathematiker und Chemiker
9 Edmund Georg Hermann Landau (1877 – 1921), deutscher Mathematiker
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denn es gilt für k = 0,1, . . . , n

p(xk) =
n
∑

j=0

f j L j (xk) =
n
∑

j=0

f jδ jk = fk .

Die Berechnung des Interpolationspolynoms hat sich somit auf die Ermittlung der Polynome
L j , j = 0, . . . , n verschoben. Nach Satz 2.4 besitzt das Polynom L j wegen L j ∈ Πn und
L j (x j ) = 1 genau die Nullstellen x0, . . . , x j−1, x j+1, . . . , xn . Mit dem Ansatz

q j (x) = (x − x0) · . . . · (x − x j−1) · (x − x j+1) · . . . · (x − xn) =
n
∏

s=0
s �= j

(x − xs)

erhalten wir q j ∈ Πn mit

q j (xk) = 0 für k ∈ {0, . . . , n} \ { j} .

Aufgrund der Eigenschaft, daß die Stützstellen x0, . . . , xn paarweise verschieden sind, gilt zu-
dem

q j (x j ) =
n
∏

s=0
s �= j

(x j − xs) �= 0 ,

wodurch mit

L j (x) = q j (x)

q j (x j )
=

n∏

s=0
s �= j

(x − xs)

n∏

s=0
s �= j

(x j − xs)

=
n
∏

s=0
s �= j

x − xs

x j − xs

das gesuchte Polynom vorliegt.

Definition 5.5:
Zu gegebenen n + 1 paarweise verschiedenen Sützstellen x0, . . . , xn ∈ R heißen die
durch

L j (x) =
n
∏

s=0
s �= j

x − xs

x j − xs
(5.62)

für j = 0, . . . , n definierten Polynome L j ∈ Πn Lagrangesche Basispolynome.

Zusammenfassend erhalten wir aus den vorangehenden Überlegungen in Kombination mit Satz
5.18 die folgende Aussage.
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Satz 5.19:
(Lagrangesche Interpolationsformel) Zu beliebigen n + 1 Stützpunkten
(x0, f0),. . .,(xn, fn) ∈ R2 mit paarweise verschiedenen Stützstellen x0, . . . , xn ∈ R
besitzt die eindeutig bestimmte Lösung des Interpolationsproblems (5.56) die
Darstellung

p(x) =
n
∑

j=0

f j L j (x) (5.63)

mit L j ∈ Πn laut Definition 5.5.

Beispiel 5.6:

Betrachten wir wiederum die in Beispiel 5.5 gemäß (5.59) gegebenen Stützpunkte, so erhalten
wir

L0(x) =
n
∏

s=0
s �=0

x − xs

x0 − xs
= (x − x1)(x − x2)

(x0 − x1)(x0 − x2)
= (x − 1)(x − 3)

(0− 1)(0− 3)
= 1

3
(x2 − 4x + 3) .

Analog ergeben sich

L1(x) = −1

2
(x2 − 3x) und L2(x) = 1

6
(x2 − x) ,

wodurch die Lagrangesche Interpolationsformel (5.63) das Interpolationspolynom

p(x) =
2
∑

j=0

f j L j (x) = 1 · L0(x)+ 3 · L1(x)+ 2 · L2(x)

= 1

3
(x2 − 4x + 3)− 3

2
(x2 − 3x)+ 1

3
(x2 − x) = 1+ 17

6
x − 5

6
x2

ergibt, das wie erwartet mit der Lösung laut Beispiel 5.5 übereinstimmt.

Bezugnehmend auf die formulierten Zielsetzungen können wir zunächst festhalten, dass die
Darstellung der Interpolierenden p in Form der Lagrangeschen Interpolationsformel keiner Be-
rechnung bedarf, sondern direkt in der Form (5.63) verfügbar ist. Demzufolge ist die Integration
eines weiteren Stützpunktes formal ohne Zusatzaufwand möglich. Liegen die Stützstellen in ad-
äquater Entfernung zueinander, so erweist sich auch die Auswertung des Interpolationspolynoms
für beliebiges x ∈ R als stabil. Diesen positiven Eigenschaften der Methode steht jedoch ein zu
hoher Aufwand bei der Auswertung des in der Form (5.63) gegebenen Interpolationspolynoms
gegenüber. Die Auswertung eines Lagrangeschen Basispolynoms (5.62) erfordert 2n Subtraktio-
nen, n Divisionen sowie n − 1 Multiplikationen, womit sich

4n − 1 arithmetische Operationen
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ergeben. Die Auswertung des Interpolationspolynoms (5.63) ergibt folglich n + 1 Multiplikatio-
nen, n Additionen und n + 1 Auswertungen eines Lagrangeschen Basispolynoms, so daß

(n + 1)+ n + (n + 1) · (4n − 1) = 4n2 + 5n = O(n2)

arithmetische Operationen benötigt werden.

Die Darstellung des Interpolationspolynoms p gemäß der Lagrangeschen Interpolationsfor-
mel (5.63) ist folglich für eine praktische Umsetzung ungeeignet. Die Darstellung (5.63) ist
jedoch von grundlegender Bedeutung bei der Herleitung interpolatorischer Quadraturformeln,
siehe [49, 44].

Zur Reduzierung des Rechenaufwandes kann zunächst durch die Einführung der Werte

γ j :=
n
∏

s=0
s �= j

1

x j − xs
, j = 0, . . . , n

die Ermittlung dieser Größen vom Bereich der Auswertung in den Bereich der Berechnung ver-
lagert werden, wodurch auch bei wiederholter Auswertung des Interpolationspolynoms gemäß

p(x) =
n
∑

j=0

f j L j (x) =
n
∑

j=0

f jγ j

n
∏

s=0
s �= j

(x − xs) (5.64)

diese Koeffizienten nur einmal bestimmt werden müssen. Aus der Gleichung (5.64) wird nun

deutlich, daß die Problematik im Rahmen der Auswertung ihre Ursache im Term
n∏

s=0
s �= j

(x − xs)

findet.

Definieren wir

q(x) :=
n
∏

s=0

(x − xs) ,

so erhalten wir für j = 0, . . . , n die Darstellung

n
∏

s=0
s �= j

(x − xs) =
q(x)

x − x j
für x �= x j .

Damit läßt sich das Interpolationspolynom in der Form

p(x) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

q(x)

n
∑

j=0

f jγ j

x − x j
, für x /∈ {x0, . . . , xn} ,

fk , für x = xk , k = 0, . . . , n

(5.65)
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schreiben. Innerhalb der Berechnung des Polynoms ergeben sich hierdurch O(n2) arithmetische
Operationen zur Bestimmung der Koeffizienten γ0, . . . , γn . Jede Polynomauswertung bedarf da-
gegen nur noch O(n) arithmetischer Operationen, da das Hilfspolynom q außerhalb der Summe
auftritt. Folglich sind die Zielsetzungen (3) und (4) durch diesen Ansatz erfüllt.

Leider ergibt sich jedoch für

q(x)

n
∑

j=0

f jγ j

x − x j

eine hebbare Singularität bei jeder Stützstelle xk , k = 0, . . . , n, wodurch die Stabilität bei der
Auswertung des Interpolationspolynoms in der Form (5.65) verloren gegangen ist. Für Werte
x ∈ R, die sich in unmittelbarer Nähe einer Stützstelle befinden, findet formal eine numerisch
instabile Quotientenbildung mit Werten nahe Null statt.

Neville10-Schema

Betrachten wir zwei Polynome g, h ∈ Π1 mit

g(xk) = fk , k = 0 , 1 ; h(xk)− fk , k = 1,2 .

g

h

x0 x2

f0

x1

f1

f2

Dann erhalten wir das interpolierende Polynom p ∈ Π2 zu den Stützpunkten (x0, f0), (x1, f1)

und (x2, f2) durch die Kombination

p(x) = h(x)(x − x0)− g(x)(x − x2)

x2 − x0
. (5.66)

Beispiel 5.7:

Für das Standardbeispiel gemäß (5.59) stellen

g(x) = 1+ 2x

10 Eric Harold Neville (1889 – 1961), englischer Mathematiker
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und

h(x) = 7

2
− 1

2
x

die Interpolierenden zu den Stützpunkten (xk, fk) mit k = 0,1 respektive k = 1,2 dar. Mit (5.66)
ergibt sich.

p(x) = h(x)(x − x0)− g(x)(x − x2)

x2 − x0
=

(
7
2 − 1

2 x
)

(x − 0)− (1+ 2x)(x − 3)

3− 0

= 1+ 17

6
x − 5

6
x2 .

Bemerkung: Analog kann man die linearen Interpolierenden g und h bestimmen. Betrachten wir
die interpolierenden Polynome g0, g1 ∈ Π0 zu (x0, f0) respektive (x1, f1), d.h.

g0(x) = f0 und g1(x) = f1 , so liefert g(x) = g1(x)(x − x0)− g0(x)(x − x1)

x1 − x0

das Interpolationspolynom g ∈ Π1 zu den Stützpunkten (x0, f0) und (x1, f1).
Auf der dargestellten Idee basiert das Neville-Schema. Die rekursive Vorgehensweise wird

durch den folgenden Satz belegt.

Definition 5.6:

Seien j, m ∈ N0, dann bezeichne

p j, j+1,..., j+m ∈ Πm das zu den Stützpunkten (x j , f j ), . . . , (x j+m, f j+m)

gehörende Polynom mit

p j, j+1,..., j+m(xk) = fk , k = j, j + 1, . . . , j + m . (5.67)

Im Fall paarweise verschiedener Stützstellen x j , . . . , x j+m ist die Existenz und Ein-
deutigkeit des Polynoms p j, j+1,..., j+m durch Satz 5.18 belegt.

Satz 5.20:

Seien (x0, f0), . . . , (xn, fn) vorgegebene Stützpunkte zu paarweise verschiedenen
Stützstellen x0, . . . , xn , dann gilt mit j, m ∈ N0, j + m ≤ n für die Interpolations-
polynome gemäß Definition 5.6 die Rekursionsformel

p j (x) = f j (5.68)

für j = 0, . . . , n und

p j, j+1,..., j+m(x) = (x − x j )p j+1,..., j+m(x)− (x − x j+m)p j,..., j+m−1(x)

x j+m − x j
(5.69)
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für j = 0, . . . , n − 1 mit m ∈ N und j + m ≤ n.

Beweis:

Wir führen den Nachweis durch eine Induktion über m. Für m = 0 erhalten wir aus (5.68)

p j ∈ Π0 mit p j (x j ) = f j

für j = 0, . . . , n. Erfüllen für ein m ∈ {0, . . . , n − 1} die Polynome

p j, j+1,..., j+m ∈ Πm mit j = 0, . . . , n − m

die Interpolationsbedingung (5.67), dann erfüllt für alle j = 0, . . . , n − (m + 1) das durch

q(x) := (x − x j )p j+1,..., j+m+1(x)− (x − x j+m+1)p j,..., j+m(x)

x j+m+1 − x j

gegebene Polynom wegen p j,..., j+m ∈ Πm und p j+1,..., j+m+1 ∈ Πm die Bedingung q ∈ Πm+1.
Desweiteren gelten aufgrund der interpolierenden Eigenschaften der Polynome p j,..., j+m und
p j+1,..., j+m+1 die Gleichungen

q(x j ) =
(x j − x j )p j+1,..., j+m+1(x j )− (x j − x j+m+1)p j,..., j+m(x j )

x j+m+1 − x j

= p j,..., j+m(x j ) = f j ,

q(x j+m+1) = p j+1,..., j+m+1(x j+m+1) = f j+m+1 ,

sowie für k = j + 1, . . . , j + m

q(xk) =
(xk − x j ) fk − (xk − x j+m+1) fk

x j+m+1 − x j
= fk .

Aufgrund der Eindeutigkeit des Interpolationspolynoms erhalten wir somit q = p j, j+1,..., j+m+1.
�

Schematisch läßt sich das Neville-Schema in der folgenden Form darstellen:

f0= p0(x)

ց
f1= p1(x) → p0,1(x)

ց ց
f2= p2(x) → p1,2(x) → p0,1,2(x)

...
...

. . .

fn−1= pn−1(x)→ pn−2,n−1(x) . . . . . . . . . . . . . . . . . p0,...,n−1(x)

ց ց ց
fn = pn(x) → pn−1,n(x) → pn−2,...,n(x) · · · p1,...,n(x) → p0,...,n(x)

(5.70)
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Mit p0,...,n ∈ Πn liegt abschließend das gesuchte Interpolationspolynom zu den Stützpunkten
(x0, f0), . . . (xn, fn) vor. Dabei ist das Neville-Schema aus algorithmischer Sicht zur expliziten
Berechnung des interpolierenden Polynoms nicht geeignet. Vielmehr ergibt das Verfahren eine
direkte Möglichkeit zur Polynomauswertung, wodurch eine Berechnung des Polynoms analog
zur Lagrangeschen Interpolationsformel entfällt.

Beispiel 5.8:

Zur Auswertung des bezüglich der Stützpunkte (5.59) festgelegten Interpolationspolynoms p ∈
Π2 an der Stelle x = 2 ergibt sich auf der Basis des Neville-Schemas folgende Vorgehensweise.
Mit

p0(2) = f0 = 1 , p1(2) = f1 = 3 und p2(2) = f2 = 2

folgt

p0,1(2) = (2− x0)p1(2)− (2− x1)p0(2)

x1 − x0
= (2− 0) · 3− (2− 1) · 1

1− 0
= 5

sowie

p1,2(2) = (2− x1)p2(2)− (2− x2)p1(2)

x2 − x1
= 5

2
.

Abschließend erhalten wir übereinstimmend zum Beispiel 5.5

p(2) = p0,1,2(2) = (2− x0)p1,2(2)− (2− x2)p0,1(2)

x2 − x0
= (2− 0) · 5

2 − (2− 3) · 5
3− 0

= 10

3
.

Eine nachträgliche Integration eines weiteren Stützpunktes ist durch eine einfache Erweite-
rung um eine zusätzliche Zeile im Neville-Schema (5.70) möglich. Zudem entfällt die Berech-
nung des Polynoms und die Auswertung ist stabil, da Divisionen ausschließlich durch Stütz-
stellendifferenzen vorgenommen werden müssen. Jedoch ergeben sich bei der Auswertung 7
arithmetische Operationen pro Berechnungsvorschrift (5.69), so daß mit insgesamt

7 ·
n−1
∑

k=0

(n − k) = 7 ·
n
∑

i=1

i = 7
(n + 1) · n

2
= O(n2)

arithmetischen Operationen ein im Sinne der Zielsetzung zu hoher Rechenaufwand vorliegt. Den-
noch wurde durch das Neville-Schema eine rekursive Technik vorgestellt, die für die Entwick-
lung der folgenden Newtonschen Interpolationsformel von zentraler Bedeutung ist.

Newtonsche Interpolationsformel

Im Abschnitt 2.1.5 haben wir mit dem Horner-Schema eine Möglichkeit zur effizienten Auswer-
tung von Polynomen kennengelernt. Liegt das Interpolationspolynom in der Form
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p(x) = a0 + a1(x − x0)+ a2(x − x0)(x − x1)+ . . .+ an(x − x0) · . . . · (x − xn−1)

(5.71)

= a0 + (x − x0)
[

a1 + (x − x1)
[

. . .
[

an−1 + (x − xn−1)an
]

. . .
]]

(5.72)

vor, so ergibt sich bei der Auswertung der Darstellung (5.72) eine n-malige Berechnung der
Kombination

a j−1 + (x − x j−1)a j , j = 1, . . . , n ,

wodurch sich ein Gesamtaufwand von 3n = O(n) arithmetischen Operationen ergibt. Die Be-
rechnung der auftretenden Koeffizienten a0, . . . , an werden wir in Anlehnung an das Neville-
Schema mittels der sogenannten dividierten Differenzen durchführen.

Definition 5.7:
Zu gegebenen Stützpunkten (x0, f0), . . . , (xn, fn) ∈ R2 mit paarweise verschiedenen
Stützstellen x0, . . . , xn ∈ R sind die dividierten Differenzen rekursiv durch

f [x j ] = f j (5.73)

für j = 0, . . . , n und

f [x j , . . . , x j+m] =
f [x j+1, . . . , x j+m] − f [x j , . . . , x j+m−1]

x j+m − x j
(5.74)

für j = 0, . . . , n − 1 mit m ∈ N und j + m ≤ n definiert.

Analog zum Neville-Schema ergibt sich folgende graphische Darstellung der Rekursion:

f0= f [x0]
ց

f1= f [x1] → f [x0, x1]
ց ց

f2= f [x2] → f [x1, x2] → f [x0, x1, x2]
...

...
. . .

fn−1= f [xn−1]→ f [xn−2, xn−1] . . . . . . . . . . . . . . . . . . . . . . f [x0, . . . , xn−1]
ց ց ց

fn = f [xn] → f [xn−1, xn] → f [xn−2, xn−1, xn] · · · f [x1, . . . , xn] → f [x0, . . . , xn]
(5.75)

Der Aufwand zur Berechnung ergibt sich bei 3 arithmetischen Operationen pro Verknüpfung
(5.74) zu insgesamt 3

2 (n + 1)n = O(n2) arithmetischen Operationen. Vorausgesetzt, daß eine
einfache Korrelation zwischen den dividierten Differenzen und den Koeffizienten der Interpo-
lierenden gemäß (5.71) besteht, dann ergibt sich durch diese Vorgehensweise ein Algorithmus,
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der allen Zielsetzungen genügt. Die fehlende Eigenschaft werden wir durch den folgenden Satz
nachweisen.

Satz 5.21:
(Newtonsche Interpolationsformel) Zu gegebenen Stützpunkten (x0, f0), . . . , (xn, fn)

∈ R2 mit paarweise verschiedenen Stützstellen x0, . . . , xn ∈ R besitzt das Interpolati-
onspolynom p ∈ Πn die Darstellung

p(x) = f [x0]+ f [x0, x1](x − x0)+ . . .+ f [x0, . . . , xn](x − x0) · . . . · (x − xn−1) ,

wobei f [x0, . . . , x j ], j = 0, . . . , n, die dividierten Differenzen laut Definition 5.7
repräsentieren.

Beweis:
Der Nachweis ergibt sich durch eine vollständige Induktion über n ∈ N0.

Für n = 0 ist die Behauptung wegen f [x0] = f0 offensichtlich.
Sei die Aussage für n + 1 beliebige Stützpunkte mit paarweise verschiedenen Stützstellen

gültig. Für n + 2 Stützpunkte (x0, f0), . . . , (xn+1, fn+1) mit xi �= x j , i �= j , ergibt sich mit der
Notation gemäß Definition 5.6

p0,...,n(x) = f [x0]+ f [x0, x1](x− x0)+ . . .+ f [x0, . . . , xn](x− x0) · . . . · (x− xn−1) (5.76)

sowie

p1,...,n+1(x) = f [x1]+ f [x1, x2](x−x1)+. . .+ f [x1, . . . , xn+1](x−x1)·. . .·(x−xn) . (5.77)

Schreiben wir p0,...,n+1 ∈ Πn+1 in der Form

p0,...,n+1(x) = a0 + a1(x − x0)+ . . .+ an+1(x − x0) · . . . · (x − xn) , (5.78)

so erhalten wir unter Verwendung der jeweiligen Interpolationseigenschaften

p0,...,n+1(x j )− p0,...,n(x j ) = 0

für j = 0, . . . , n. Sukzessive Nutzung der obigen Gleichung mit ansteigendem Stützstellenindex
j liefert mit (5.76) und (5.78) die Identitäten

a j = f [x0, . . . , x j ] , j = 0, . . . , n .

Verbleibt noch der Nachweis für den führenden Koeffizienten an+1. Für das Polynom (5.78) gilt
einerseits

p0,...,n+1(x) = an+1xn+1 + q(x) (5.79)

mit q ∈ Πn und andererseits unter Verwendung des Satzes 5.20, Gleichung (5.69),

p0,...,n+1(x) = (x − x0)p1,...,n+1(x)− (x − xn+1)p0,...,n(x)

xn+1 − x0
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(5.76), (5.77)= f [x1, . . . , xn+1] − f [x0, . . . , xn]
xn+1 − x0

xn+1 + q̃(x) (5.80)

mit q̃ ∈ Πn . Ein einfacher Koeffizientenvergleich zwischen (5.79) und (5.80) liefert die Behaup-
tung aufgrund der Basiseigenschaft der Monome mk(x) = xk , k = 0, . . . , n+1 im Polynomraum
Πn+1. �

Beispiel 5.9:

Auf der Grundlage der Stützpunkte laut (5.59) ergibt sich

f [x0] = f0 = 1 ,

f [x0, x1] =
f [x1] − f [x0]

x1 − x0
= 3− 1

1− 0
= 2 ,

f [x1, x2] =
f [x2] − f [x1]

x2 − x1
= 2− 3

3− 1
= −1

2
sowie

f [x0, x1, x2] =
f [x1, x2] − f [x0, x1]

x2 − x0
= −

1
2 − 2

3− 0
= −5

6
.

Damit ergibt sich das zugehörige Interpolationspolynom p ∈ Π2 durch Satz 5.21 in der Form

p(x) = f [x0] + f [x0, x1](x − x0)+ f [x0, x1, x2](x − x0)(x − x1)

= 1+ 2(x − 0)− 5

6
(x − 0)(x − 1) .

Einfache Umformung ergibt in Übereinstimmung mit den Beispielen 5.5 und 5.6 die Darstellung

p(x) = 1+ 17

6
x − 5

6
x2 .

Fehleranalyse

In zahlreichen Anwendungsgebieten, speziell der numerischen Integration, stellt sich die Frage
nach der Güte der Interpolierenden bezüglich der Approximation einer gegebenen Funktion in
Abhängigkeit von der gewählten Stützstellenverteilung. Dieser Fragestellung werden wir uns
innerhalb des vorliegenden Abschnittes widmen.

Satz 5.22:
Sei f : [a, b] → R eine (n+1)-mal stetig differenzierbare Funktion und x0, . . . , xn ∈
[a, b] paarweise verschiedene Stützstellen. Für das Interpolationspolynom p ∈ Πn mit

p(xk) = f (xk) , k = 0, . . . , n
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gilt für jede Stelle x ∈ [a, b] die Fehlerdarstellung

f (x)− p(x) = w(x) f (n+1)(ξ)

(n + 1)! (5.81)

mit einer Zwischenstelle ξ = ξ(x) ∈ [a, b] und

w(x) = (x − x0) · . . . · (x − xn) .11

Beweis:

Mit w(xk) = 0 für k = 0, . . . , n folgt die Aussage zunächst für alle Stützstellen. Sei x ∈
[a, b] \ {x0, . . . , xn}, dann definieren wir

k(x) := f (x)− p(x)

w(x)
∈ R . (5.82)

Die durch

ϕ(x) := f (x)− p(x)− k(x) · w(x) (5.83)

definierte Funktion ϕ : [a, b] → R ist somit (n + 1)-mal stetig differenzierbar und besitzt
mindestens die n + 2 Nullstellen x0, . . . , xn, x ∈ [a, b]. Mehrfache Anwendung des Mittelwert-
satzes der Differentialrechnung (Satz 3.7) liefert hieraus die Existenz mindestens einer Nullstelle
ξ = ξ(x) ∈ [a, b] der Funktion ϕ(n+1). Da für x ∈ [a, b] stets

p(n+1)(x) = 0 und w(n+1)(x) = (n + 1)!

gelten, ergibt sich aus (5.83) die Darstellung

0 = ϕ(n+1)(ξ(x)) = f (n+1)(ξ(x))− k(x) · (n + 1)! .

Hiermit gilt

k(x) = f (n+1)(ξ(x))

(n + 1)!
und folglich gemäß (5.82) die Behauptung

f (x)− p(x) = w(x)k(x) = w(x) f (n+1)(ξ(x))

(n + 1)! . �

11 Die Funktion w wird häufig als Knotenpolynom bezeichnet.
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Betrachten wir eine beliebig oft differenzierbare Funktion f : [a, b] → R deren Folge von
Ableitungen gleichmäßig beschränkt ist, das heißt ein M > 0 mit

‖ f (n)‖∞ = sup
x∈[a,b]

| f (n)(x)| ≤ M

für alle n ∈ N existiert. Dann folgt unter Verwendung von

|ω(x)| = |(x − x0) · . . . · (x − xn)| < (b − a)n+1

die Eigenschaft

‖ f − p‖∞ = sup
x∈[a,b]

| f (x)− p(x)| Satz 5.21= sup
x∈[a,b]

∣
∣
∣
∣
∣

w(x) f (n+1)(ξ(x))

(n + 1)!

∣
∣
∣
∣
∣

≤ M
(b − a)n+1

(n + 1)! → 0 für n →∞ .

Unabhängig von der expliziten Wahl der paarweise verschiedenen Stützstellen ergibt sich für
wachsende Stützstellenzahl folglich eine gleichmäßige Konvergenz der Folge der Interpolations-
polynome gegen die gegebene Funktion.

Häufig treten bei wachsender Anzahl der Stützstellen jedoch Probleme bei der Approximation
der Funktion f durch die Folge von Interpolationspolynomen auf. Runge12 verdeutlichte diesen
Sachverhalt bereits 1901 sehr eindrucksvoll an der Funktion f : [−5,5] → R,

f (x) = 1

1+ x2
. (5.84)

Im Fall einer Folge äquidistanter Unterteilungen mit

xk = −5+ 10k

n
, k = 0,1, . . . , n ∈ N

können wir Fig. 5.4 den Verlauf der Runge-Funktion (5.84) und des jeweiligen Interpolations-
polynoms p0,...,n ∈ Πn entnehmen. Mit steigender Stützstellenzahl n wachsen die Oszillationen
der Interpolierenden p0,...,n derart stark an, daß für n = 20 die Runge-Funktion im benötigten
Maßstab als Konstante erscheint. Für dieses Beispiel kann sogar

‖ f − p0,...,n‖∞ = sup
x∈[−5,5]

| f (x)− p0,...,n(x)| → 0

für n →∞ nachgewiesen werden.
Generell kann daher auch bei einer beliebig oft differenzierbaren Funktion durch einfache

Erhöhung der Anzahl der Stützstellen keine Reduktion des maximalen Fehlers zwischen gegebe-
ner Funktion und zugehörigem Interpolationspolynom erzielt werden. Vielmehr existiert zu jeder
Folge von Unterteilungen mit steigender Stützstellenzahl eine stetige Funktion f derart, daß die
Folge der zugehörigen Interpolationspolynome nicht gleichmäßig gegen f konvergiert.

12 Carl David Tolmé Runge (1856 – 1927), deutscher Mathematiker
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Fig. 5.4: Runge-Funktion und zugehöriges Interpolationspolynom p0,...,n , n = 2,4,8,20.

5.4.2 Splineinterpolation

Zur Vermeidung der bei der Polynominterpolation auftretenden Oszillationen verwendet man
sehr häufig Polynome niedrigeren Grades auf Teilintervallen, die an den Intervallgrenzen geeig-
net miteinander verbunden werden. Die resultierende, stückweise polynomiale Funktion wird
Spline genannt. Wir betrachten im Folgenden stets die Stützpunkte

(x0, f0), . . . , (xn, fn) ∈ R2

mit paarweise verschiedenen und aufsteigend geordneten Stützstellen

a = x0 < x1 < . . . < xn = b .

Desweiteren sei stets

sk : [xk, xk+1] → R , k = 0, . . . , n − 1
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ein Polynom und der zugehörige Spline durch

s : [a, b] → R

mit

s(x) = sk(x) für x ∈ [xk, xk+1] , k = 0, . . . , n − 1

festgelegt. Es gilt somit

s
∣
∣
[xk ,xk+1] = sk für k = 0, . . . , n − 1 .

Splines werden entsprechend dem Grad der Basispolynome sk klassifiziert. Wir werden uns hin-
sichtlich einer intuitiven Darstellung der generellen Vorgehensweise zunächst den linearen Spli-
nes zuwenden und anschließend gängige kubische Splines vorstellen.

Lineare Splines

Lineare Splines entstehen durch lineare Verbindungen zwischen den Datenpunkten (xk, fk),
(xk+1, fk+1) für k = 0, . . . , n − 1, siehe Abbildung 5.5.

s0 s3

f0

a = x0

f1

f2

f3

f4

x1 x4 = bx3x2

s1
s2

Fig. 5.5: Linearer Spline

Wir fordern dementsprechend für den linearen Spline die Eigenschaften

s(xk) = fk , k = 0, . . . , n

und

s
∣
∣
[xk ,xk+1] ∈ Π1 , k = 0, . . . , n − 1 .

Auf jedem Teilintervall [xk, xk+1] verwenden wir den Ansatz

sk(x) = a0,k + a1,k(x − xk) .

Die Koeffizienten a0,k , a1,k ∈ R ergeben sich aus den Interpolationsbedingungen

sk(xk) = fk und sk(xk+1) = fk+1
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zu

a0,k = sk(xk) = fk

sowie

a1,k =
sk(xk+1)− a0,k

xk+1 − xk
= fk+1 − fk

xk+1 − xk
,

wodurch für k = 0, . . . , n − 1 der lineare Spline die Form

s
∣
∣
[xk ,xk+1](x) = sk(x) = fk +

fk+1 − fk

xk+1 − xk
(x − xk)

besitzt.

Kubische Splines

Der lineare Spline ist offensichtlich an den Stützstellen nicht notwendigerweise differenzierbar.
Um einen stetig differenzierbaren Spline zu erhalten, muß daher noch je eine Übergangsbedin-
gung für die Ableitung an den inneren Stützstellen x1, . . . , xn−1 gefordert werden. Damit ist es
erforderlich, daß jedes Polynom zusätzliche Freiheitsgrade erhält. Ganz kanonisch würde somit
zunächst die Betrachtung quadratischer Polynome mit sk ∈ Π2 naheliegen. Quadratische Splines
weisen jedoch oftmals ein stark oszillierendes Verhalten auf, das auf Sprünge im Krümmungs-
verhalten an den inneren Stützstellen zurückzuführen ist. Der hiermit teilweise einhergehende
Vorzeichenwechsel bei der zweiten Ableitung liefert eine Wendepunktstruktur an den Stützstel-
len. Innerhalb praktischer Anwendungen werden demzufolge üblicherweise kubische Splines
genutzt, bei denen gefordert wird, daß der resultierende Spline zweimal stetig differenzierbar
ist. Neben der interpolierenden Eigenschaft des Splines fordern wir an den inneren Stützstellen
xk , k = 1, . . . , n − 1, die Übereinstimmung der ersten und zweiten Ableitung der zugehörigen
Polynome sk−1 und sk . Betrachten wir den Ansatz

sk(x) = a0,k + a1,k(x − xk)+ a2,k(x − xk)
2 + a3,k(x − xk)

3 , (5.85)

so benötigen wir vier Bedingungen zur Festlegung der Koeffizienten. Für die Teilpolynome sk

mit k = 1, . . . , n − 1 ergeben sich aufgrund der obigen Zielsetzung die folgenden Forderungen:

Zwei Interpolationsbedingungen

sk(xk) = fk , sk(xk+1) = fk+1 . (5.86)

Zwei Steigungsbedingungen

s′k(xk) = s′k−1(xk) , s′k(xk+1) = s′k+1(xk+1) . (5.87)

Zwei Krümmungsbedingungen

s′′k (xk) = s′′k−1(xk) , s′′k (xk+1) = s′′k+1(xk+1) . (5.88)



5.4 Interpolation 409

Die Darstellung erweckt zunächst den Eindruck, daß das Interpolationsproblem überbestimmt
ist, da mit (5.86) – (5.88) insgesamt sechs Bedingungen zur Bestimmung der vier Koeffizienten
vorliegen. Da die Forderungen (5.87) und (5.88) jeweils doppelt auftreten, werden wir durch die
folgende Sichtweise erkennen, daß das Problem sogar formal unterbestimmt ist und zwei zusätz-
liche Bedingungen an den Randpunkten x0 = a und xn = b zur Schließung benötigt werden.
Zur Klärung dieses Sachverhaltes betrachten wir die vorliegenden Bedingungen pro Stützstelle.
Für die inneren Stützstellen xk , k = 1, . . . , n − 1 liegen zwei Interpolationsbedingungen

sk−1(xk) = fk , sk(xk) = fk , (5.89)

eine Steigungsbedingung

s′k−1(xk) = s′k(xk) (5.90)

und eine Krümmungsbedingung

s′′k−1(xk) = s′′k (xk) (5.91)

vor. An den Rändern x0 = a und xn = b ergibt sich dagegen nur eine Interpolationsbedingung

s0(x0) = f0 respektive sn−1(xn) = fn .

Die n + 1 Stützstellen x0, . . . , xn liefern folglich 4(n − 1) + 2 = 4n − 2 Bedingungen für 4n
Koeffizienten der n kubischen Polynome sk , k = 0, . . . , n−1. In Fig. 5.6 stellen die eingekreisten
Ziffern die Bedingungen an der jeweiligen Stützstelle dar, während die untere Zahlenfolge die
resultierenden Forderungen pro Polynom verdeutlichen.

3 4 4 4 3

14 4 44

a b

1

Fig. 5.6: Quantifizierung der Splinebedingungen

Durch die gewählte graphische Darstellung wird die Notwendigkeit je einer zusätzlichen
Randbedingung ersichtlich. Somit ergeben sich unterschiedliche kubische Splines, die in Ab-
hängigkeit von der betrachteten Randbedingung klassifiziert werden. Wir werden uns auf zwei
gängige Typen konzentrieren. Neben dem durch die Randbedingungen

s′′0 (x0) = 0 = s′′n−1(xn) (5.92)

definierten natürlichen Spline betrachten wir den vollständigen Spline der auf den Randbedin-
gungen

s′0(x0) = f ′(x0) und s′n−1(xn) = f ′(xn) (5.93)
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beruht, wobei f die zu approximierende Funktion repräsentiert.

Zur Berechnung der Koeffizienten bezeichnen wir neben dem bekannten Funktionswert fk

mit f ′k die noch unbekannte Steigung des Splines an der Stützstelle xk . Die Berücksichtigung der
unterschiedlichen Randbedingungen findet ausschließlich bei der Bestimmung der Steigungen
f ′k statt, wodurch die folgenden Berechnungsvorschriften für die Koeffizienten a0,k, . . . , a3,k ,
k = 0, . . . , n allgemeingültigen Charakter besitzen.

Aus dem Ansatz (5.85) können wir mit der Interpolationsbedingung (5.86) direkt

fk = sk(xk) = a0,k + a1,k(xk − xk)+ a2,k(xk − xk)
2 + a3,k(xk − xk)

3 = a0,k (5.94)

für k = 0, . . . , n − 1 folgern. Desweiteren ergibt sich unter Verwendung der Steigung f ′k die
Gleichung

f ′k = sk ′(xk) = a1,k + 2a2,k(xk − xk)+ 3a3,k(xk − xk)
2 = a1,k (5.95)

für k = 0, . . . , n − 1. Nutzen wir zudem die Schrittweitenbezeichnung Δxk = xk+1 − xk ,
k = 0, . . . , n − 1, so erhalten wir aus sk(xk+1) = fk+1 und s′k(xk+1) = f ′k+1 die Gleichungen

fk+1 = a0,k + a1,kΔxk + a2,kΔx2
k + a3,kΔx3

k ,

f ′k+1 = a1,k + 2a2,kΔxk + 3a3,kΔx2
k .

Einsetzung von (5.94) und (5.95) liefert das lineare Gleichungssystem

(

Δx2
k Δx3

k

2Δxk 3Δx2
k

)(

a2,k

a3,k

)

=
(

fk+1 − fk − f ′kΔxk

f ′k+1 − f ′k

)

, k = 0, . . . , n − 1 .

Elementare Auflösung der Gleichungen ergibt für k = 0, . . . , n−1 die Bestimmungsgleichungen

a2,k =
3 fk+1 − 3 fk − 2 f ′kΔxk − f ′k+1Δxk

Δx2
k

(5.96)

und

a3,k =
2 fk − 2 fk+1 + f ′kΔxk + f ′k+1Δxk

Δx3
k

. (5.97)

Bei Kenntnis der Steigungen f ′k , k = 0, . . . , n, können mit (5.94) – (5.97) die Koeffizienten aller
Polynome und folglich der gesamte Spline ermittelt werden.

Die Berechnung der Steigungen basiert für die inneren Stützstellen auf der Krümmungsbedin-
gung (5.91).

Berücksichtigen wir

s′′k (x) = 2a2,k + 6a3,k(x − xk) ,
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dann läßt sich (5.91) in der Form

2a2,k−1 + 6a3,k−1Δxk−1 = 2a2,k

für k = 1, . . . , n − 1 schreiben. Einsetzen der Koeffizientengleichungen (5.96) und (5.97) in
obige Darstellung ergibt

2
3 fk − 3 fk−1 − 2 f ′k−1Δxk−1 − f ′kΔxk−1

Δx2
k−1

+ 6
2 fk−1 − 2 fk + f ′k−1Δxk−1 + f ′kΔxk−1

Δx2
k−1

= 2
3 fk+1 − 3 fk − 2 f ′kΔxk − f ′k+1Δxk

Δx2
k

, k = 1, . . . , n − 1 .

Multiplikation mit ΔxkΔxk−1/2 und anschließendes Umordnen liefert

Δxk f ′k−1 + 2(Δxk +Δxk−1) f ′k +Δxk−1 f ′k+1

= 3

(
( fk+1 − fk)Δxk−1

Δxk
+ ( fk − fk−1)Δxk

Δxk−1

) (5.98)

für k = 1, . . . , n − 1. Wir erhalten hiermit wie erwartet das unterbestimmte Gleichungssystem
bestehend aus n− 1 Gleichungen für die n+ 1 unbekannten Steigungen f ′0, . . . , f ′n . Das System
wird nun durch Hinzunahme der zusätzlichen Randbedingungen geschlossen. Für die natürlichen
Randbedingungen ergibt sich

0 = s′′0 (x0) = 2a2,0

sowie

0 = s′′n−1(xn) = 2a2,n−1 + 6a3,n−1Δxn−1 ,

wodurch sich wiederum mit (5.96) und (5.97) die Gleichungen

2 f ′0 + f ′1 = 3
f1 − f0

Δx0
(5.99)

und

f ′n−1 + 2 f ′n = 3
fn − fn−1

Δxn−1
(5.100)

ergeben. Zusammenfassend ergibt sich mit (5.98) – (5.100) das lineare Gleichungssystem

A

⎛

⎜
⎝

f ′0
...

f ′n

⎞

⎟
⎠ = b (5.101)
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mit

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 1
Δx1 2(Δx1 +Δx0) Δx0

Δx2 2(Δx2 +Δx1) Δx1

. . .
. . .

. . .

Δxn−1 2(Δxn−1 +Δxn−2) Δxn−2

1 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ Mat(n+1, R)

und

b =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

3 f1− f0
Δx0

3
(

( f2− f1)Δx0
Δx1

+ ( f1− f0)Δx1
Δx0

)

...

3
(

( fn− fn−1)Δxn−2
Δxn−1

+ ( fn−1− fn−2)Δxn−1
Δxn−2

)

3 fn− fn−1
Δxn−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ Rn+1 .

Im Kontext des vollständigen Splines liegen durch die Randbedingungen (5.93) direkt die Stei-
gungen an den Rändern in der Form

f ′0 = f ′(x0) und f ′n = f ′(xn)

vor. Das resultierende Gleichungssystem weist wiederum die Form (5.101) auf, wobei sich die
Matrix A ∈ Mat(n + 1, R) in der Form

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0
Δx1 2(Δx1 +Δx0) Δx0

Δx2 2(Δx2 +Δx1) Δx1

. . .
. . .

. . .

Δxn−1 2(Δxn−1 +Δxn−2) Δxn−2

0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

schreibt und die rechte Seite durch

b =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f ′(x0)

3
(

( f2− f1)Δx0
Δx1

+ ( f1− f0)Δx1
Δx0

)

...

3
(

( fn− fn−1)Δxn−2
Δxn−1

+ ( fn−1− fn−2)Δxn−1
Δxn−2

)

f ′(xn)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

gegeben ist.
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Beispiel 5.10:

Anhand der Runge-Funktion f : [−5,5] → R,

f (x) = 1

1+ x2

hatten wir bei äquidistanter Stützstellenverteilung das Oszillationsverhalten interpolierender Po-
lynome studiert. Bezogen auf die Stützstellen

xk = −5+ 10k

n
, k = 0,1, . . . , n ∈ N

sind in den Abbildungen 5.7 und 5.8 neben der Runge-Funktion der natürliche beziehungsweise
der vollständige Spline für n = 4 respektive n = 20 dargestellt.

Fig. 5.7: Runge-Funktion und natürlicher Spline (links) respektive vollständiger Spline (rechts) für n = 4.

Verglichen zur Polynominterpolation (Fig. 5.4) weisen beide Splines eine deutliche Verbesse-
rung bei der Approximation der Runge-Funktion auf und zeigen den gewünschten, weitgehend
oszillationsfreien Verlauf. Zudem erkennt man keine Unterschiede bei den Ergebnissen der bei-
den Spline-Typen. Die Ursache liegt im Wesentlichen darin begründet, daß mit den natürlichen
Randbedingungen (5.92) wegen

f ′′(−5) = f ′′(5) ≈ 0.008

eine gute Approximation der exakten Krümmungswerte erzielt wurde. Schränken wir dagegen
das Definitionsgebiet der Runge-Funktion auf das Intervall [0,5] ein, so erhalten wir bei der
Stützstellenwahl

xk =
5k

n
, k = 0,1, . . . n ∈ N

für n = 4 die in Fig. 5.9 dargestellten Verläufe.
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Fig. 5.8: Runge-Funktion und natürlicher Spline (links) respektive vollständiger Spline (rechts) für n =
20.

Fig. 5.9: Runge-Funktion auf [0,5] und natürlicher Spline (links) respektive vollständiger Spline (rechts)
für n = 4.

Aufgrund der großen Diskrepanz zwischen dem exakten Krümmungswert f ′′(0) = −2 und
der natürlichen Randbedingung ergibt sich eine erhöhte Abweichung beim natürlichen Spline.
Dagegen zeigt der vollständige Spline am linken Rand ein signifikant besseres Approximations-
verhalten. Jedoch muß an dieser Stelle angemerkt werden, daß der vollständige Spline im Gegen-
satz zum natürlichen Spline zusätzliche Informationen der zugrundeliegenden Funktion benötigt,
die in realen Anwendungen häufig nicht verfügbar sind.

Bei der Herleitung der Splines sind wir stets von einer speziellen Form der Polynome sk aus-
gegangen. Naheliegend erscheint zunächst die Verwendung der klassischen Darstellung gemäß

sk(x) = a0,k + a1,k x + a2,k x2 + a3,k x3
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zu sein. Das resultierende Gleichungssystem zur Berechnung der Koeffizienten zeigt hierbei je-
doch eine unstrukturierte Form und die Hinzunahme weiterer Stützstellen erweist sich im Ge-
gensatz zur vorgestellten Methode als aufwendig und programmiertechnisch unvorteilhaft. Eine
gelungene Darstellung dieses Ansatzes findet man in [51].

Die positiven Eigenschaften kubischer Splines hinsichtlich des Oszillationsverhaltens lassen
sich nicht nur experimentell beobachten, sondern auch mathematisch beweisen. So minimiert der
vollständige wie auch der natürliche Spline die Norm

‖ f ′′‖2 :=

√
√
√
√
√

b∫

a

f ′′(x)2 dx

über die Menge aller zweimal stetig differenzierbaren Funktionen g : [a, b] → R mit g(xk) = fk

für k = 0, . . . , n. Folglich sind die vorgestellten beiden Typen kubischer Splines in diesem Sinne
optimal im Krümmungsverhalten und weisen daher minimale Oszillationen auf. Einen Nachweis
dieser Minimum-Norm-Eigenschaft wird beispielsweise in [44, 51] geliefert.

5.5 Fourierreihen

In Physik und Technik spielen periodische Vorgänge eine große Rolle. In Form von mechani-
schen oder elektrischen Schwingungen) von Wellen, Drehbewegungen u.a. treten sie vielfach
auf. Zur Beschreibung werden periodische Funktionen benutzt, unter denen die Sinus- und Cosi-
nusfunktionen eine fundamentale Rolle spielen. Das Darstellen beliebiger periodischer Funktio-
nen durch Reihen von Cosinus- und Sinusfunktionen ist dabei die mathematische Grundaufgabe.
Reihen dieser Art nennt man Fourier-Reihen zu Ehren von Jean Baptiste Joseph Fourier (1768 –
1830), der den entscheidenden Lösungsansatz fand.

5.5.1 Periodische Funktionen

Unter einer periodischen Funktion verstehen wir eine Funktion f auf R, die die Gleichung

f (x + L) = f (x) (5.102)

für alle x ∈ R erfüllt. Dabei ist L eine positive Konstante. L heißt die Periode von f . Man nennt
f auch kurz eine L-periodische Funktion.

Teilt man die reelle Achse in Intervalle der Länge L ein, etwa in Intervalle [kL , (k + 1)L]
(k ganzzahlig), so ist der Graph von f auf allen diesen Intervallen gleich, von seitlicher Ver-
schiebung abgesehen (s. Fig. 5.10). Die Funktionen sin x und cos x sind wichtige Beispiele für
periodische Funktionen. Sie haben die Periode 2π . Die Funktionen

sin(nx) , cos(nx) für n ∈ N

haben die Perioden 2π/n. Daraus folgt aber, daß sie ebenfalls die Periode 2π haben.
Zusammen mit der Funktion ϕ(x) ≡ 1 bilden sin(nx) und cos(nx) (n ∈ N) das trigonometri-

sche Funktionensystem.
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Wir merken an, daß man jede periodische Funktion f , mit Periode L > 0, leicht in eine
Funktion mit der Periode 2π verwandeln kann. Man hat nur die Substitution x = t · L/(2π)

vorzunehmen, also

f̂ (t) := f

(

t
L

2π

)

zu setzen. Die so definierte Funktion f̂ hat die Periode 2π . Es bedeutet daher keinen Verlust an
Allgemeinheit, wenn wir uns nur mit 2π -periodischen Funktionen beschäftigen.

Fig. 5.10: Periodische Funktion, mit Periode L

5.5.2 Trigonometrische Reihen, Fourier-Koeffizienten

Es sei f : R → R eine beliebige 2π-periodische Funktion. Wir stellen uns die Aufgabe, sie
durch eine Reihe der folgenden Form darzustellen:

f (x) = a0

2
+
∞
∑

n=1

(an cos(nx)+ bn sin(nx)) . 13 (5.103)

Eine Reihe dieser Gestalt heißt trigonometrische Reihe. Ist es möglich, f so darzustellen? Und
wie kann man gegebenenfalls die Koeffizienten a0, a1, a2, . . ., b1, b2, . . . berechnen? Zur Lö-
sungsfindung wollen wir zunächst annehmen, daß eine Reihendarstellung (5.103) tatsächlich
existiert, mehr noch, daß die Reihe in (5.103) gleichmäßig gegen f (x) konvergiert.

Man geht nun so vor: Beide Seiten der Gleichung (5.103) werden mit sin(kx) multipliziert
(wobei k ∈ N ist), und anschließend wird über [−π, π ] integriert. Rechts darf gliedweise inte-
griert werden — wegen der gleichmäßigen Konvergenz. Also gilt

π∫

−π

f (x) sin(kx) dx = a0

2
·

π∫

−π

sin(kx) dx+

+
∞
∑

n=1

⎛

⎝an

π∫

−π

cos(nx) sin(kx) dx + bn

π∫

−π

sin(nx) sin(kx) dx

⎞

⎠ .

13 Das a0/2 statt a0 in der Reihe geschrieben wird, hat nur mit der Eleganz späterer Formeln zu tun.
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Nun kommen die Orthogonalitätsrelationen ins Bild, s. (4.37), Abschn. 4.2.2. Danach verschwin-

den auf der rechten Seite alle Integrale bis auf eines, nämlich das Integral

π∫

−π

sin(nx) sin(kx) dx

mit n = k. Sein Wert ist π . Also gilt

π∫

−π

f (x) sin(kx) dx = bk

π∫

−π

sin2(kx) dx = bkπ . (5.104)

Multipliziert man (5.103) entsprechend mit cos(kx) und integriert über [−π, π ], so erhält man
aus den Orthogonalitätsrelationen

π∫

−π

f (x) cos(kx) dx =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

ak

π∫

−π

cos2(kx) dx = akπ , für k ∈ N,

a0

2

π∫

−π

1 dx = a0π , für k = 0.

(5.105)

Löst man die Gleichungen (5.104), (5.105) nach bk bzw. ak auf und schreibt n statt k, so erhält
man

an =
1

π

π∫

−π

f (x) cos(nx) dx , für n = 0,1,2, . . .,

bn =
1

π

π∫

−π

f (x) sin(nx) dx , für n = 1,2, . . ..

(5.106)

Damit können sämtliche Koeffizienten berechnet werden. Diese Methode der Koeffizientenbe-
rechnung ist Fouriers geniale Entdeckung. Die Ausdrücke in (5.106) heißen daher Fourier-Ko-
effizienten.

Wir hatten vorausgesetzt, daß f eine gleichmäßig konvergente Entwicklung in eine trigono-
metrische Reihe besitzt. Dies allerdings weiß man a priori nicht.

Immerhin kann man aber für jede integrierbare Funktion f auf [−π, π ] die Fourierkoeffizi-
enten nach (5.106) ermitteln und damit formal die Reihe

[

a0

2
+
∞
∑

n=1

(an cos(nx)+ bn sin(nx))

]

bilden. Sie heißt Fourier-Reihe von f . Dabei entsteht das Hauptproblem: Für welche Funktionen
f konvergiert die Fourierreihe gegen f ?

Eine für Technik und Naturwissenschaft befriedigende Antwort lautet: Für alle »stückweise
glatten« Funktionen! Wir wollen dies präzisieren:
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Definition 5.8:
Eine Funktion f , definiert auf einem Intervall I , heißt stückweise glatt, wenn folgen-
des gilt:

(a) f ist stetig differenzierbar, ausgenommen auf einer Menge von Punkten, die sich
nirgends häufen.

(b) In diesen Ausnahmepunkten xi existieren die rechts- und linksseitigen Grenzwer-
te f (xi+) und f (xi−), wie auch f ′(xi+) und f ′(xi−). Mit dem Mittelwertsatz
der Differentialrechnung folgt dann

f ′(xi+) = lim
h→0+

f (xi + h)− f (xi+)

h
,

f ′(xi−) = lim
h→0−

f (xi + h)− f (xi−)

h
.

(5.107)

(c) In allen Punkten xi ist der Funktionswert f (xi ) das arithmetische Mittel der ein-
seitigen Grenzwerte:

f (xi ) =
1

2
( f (xi+)+ f (xi−)) . (5.108)

Die letzte Forderung ist schon stark auf Fourierreihen zugeschnitten, die in Sprungstellen
tatsächlich gegen diese Mittelwerte konvergieren. Es gilt nämlich der

Satz 5.23:
(Konvergenz von Fourierreihen) Ist f : R→ R eine 2π -periodische stückweise glatte
Funktion, so konvergiert ihre Fourierreihe punktweise gegen f . In jedem kompakten
Intervall ohne Unstetigkeitsstellen von f ist die Konvergenz sogar gleichmäßig.

Den Beweis verschieben wir auf Abschn. 5.5.4.

5.5.3 Beispiele für Fourierreihen

Zunächst zwei Vorbemerkungen:

(I) Ist f eine L-periodische integrierbare Funktion auf R, so gilt für jedes a ∈ R,

L∫

0

f (x) dx =
L+a∫

a

f (x) dx für jedes a ∈ R, (5.109)

Die Integration über jedes Intervall der Länge L liefert also stets den gleichen Wert! Man
erkennt das sofort durch die Aufspaltung der Integrale in

L∫

0

=
a∫

0

+
L∫

a

,

L+a∫

a

=
L∫

a

+
L+a∫

L

, nebst

a∫

0

f (x) dx =
L+a∫

L

f (x) dx .



5.5 Fourierreihen 419

(II) Eine Funktion F , definiert auf einem symmetrischen Intervall I um 0 heißt eine

gerade Funktion, falls F(−x) = F(x) ,

ungerade Funktion, falls F(−x) = −F(x)

für alle x ∈ I gilt. Integriert man F über ein symmetrisches Intervall um 0, das wir o.B.d.A.
als [−π, π ] annehmen wollen, so gilt

π∫

−π

F(x) dx = 2

π∫

0

F(x) dx , falls F gerade,

π∫

−π

F(x) dx = 0 , falls F ungerade.

(5.110)

Wir wenden diese einfache Überlegung auf die Berechnung der Fourierkoeffizienten einer in-
tegrierbaren Funktion f : [−π, π ] → R an: Ist f gerade, so ist f (x) cos(nx) gerade und
f (x) sin(nx) ungerade. Ist dagegen f ungerade, so ist f (x) cos(nx) ungerade und f (x) sin(nx)

gerade. Damit folgt für die Fourierkoeffizienten von f aus (5.106) und (5.110):

an =
2

π

π∫

0

f (x) cos(nx) dx , bn = 0 , falls f gerade, (5.111)

bn =
2

π

π∫

0

f (x) sin(nx) dx , an = 0 , falls f ungerade. (5.112)

Folgerung 5.3:
Die Fourierreihe einer ungeraden Funktion ist eine reine Sinusreihe f einer geraden
Funktion eine Cosinusreihe (einschließlich konstantem Glied).

Beispiel 5.11:
(Sägezahnkurve) Die Funktion

f (x) =
{

ax , für −π < x < π, (a > 0)

0 , für x = π

denken wir uns zu einer 2π -periodischen Funktion auf R erweitert (s. Fig. 5.11). f ist ungerade,
also ist an = 0 für alle n = 0, 1, 2, . . .. Die bn errechnet man mit (5.112)

bn =
2a

π

π∫

0

x sin(nx) dx = 2a

π

⎛

⎝

[

− x
cos(nx)

n

]π

0
+ 1

n

π∫

0

cos(nx) dx

⎞

⎠ = 2a(−1)n+1

n
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Damit folgt die Reihendarstellung der »Sägezahnkurve«:

Fig. 5.11: Sägezahnkurve

f (x) = 2a

(
sin x

1
− sin(2x)

2
+ sin(3x)

3
−+ . . .

)

.

Setzt man hier a = 1 und betrachtet nur x-Werte aus (−π, π), so gewinnt man die Formel

x = 2

(
sin x

1
− sin(2x)

2
+ sin(3x)

3
−+ . . .

)

. (5.113)

Es ist schon merkwürdig, daß sich die wildbewegten Sinusfunktionen rechts zu einer so einfachen

Funktion, wie sie links steht, zusammenfügen! Für x = π

2
erhält man die bekannte Leibnizsche

Reihe

π

4
= 1− 1

3
+ 1

5
− 1

7
+− . . . .

Beispiel 5.12:

(Rechteckfunktion): Wir betrachten auf [−π, π ] die Funktion

ha(x) =

⎧

⎪
⎨

⎪
⎩

a , für 0 < x < π ,

0 , für x = 0, x = π, x = −π ,

−a , für −π < x < 0,

a �= 0

und denken sie uns zu einer 2π -periodischen Funktion f auf ganz R fortgesetzt (s. Fig. 5.12).
Die Funktion ist ungerade. Ihre Fourierreihe besteht also nur aus Sinusgliedern. Für die Fourier-
koeffizienten dieser Glieder errechnet man mit (5.112):

bn =
2

π

π∫

0

a · sin(nx) dx = 2a

π

[

−cos(nx)

n

]π

0
=

⎧

⎨

⎩

0 , wenn n gerade,
4a

nπ
, wenn n ungerade.

f ist zweifellos stückweise glatt. Damit folgt die Konvergenz der Fourierreihe gegen f , also
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Fig. 5.12: Rechteckfunktion

f (x) = 4a

π

(
sin x

1
+ sin(3x)

3
+ sin(5x)

5
+ . . .

)

. (5.114)

Setzt man hier x = π/2 ein und multipliziert mit π/(4a), so erhält man wieder die Leibnizsche
Reihe.

Bemerkung: Die Sägezahnkurve beschreibt beim Fernseher die waagerechte Bewegung des
Lichtpunktes über den Bildschirm. x ist dabei die Zeit und y die waagerechte Auslenkung des
Bildpunktes. Da man Sinusschwingungen durch elektrische Schwingkreise erzeugen kann und
diese überdies überlagern kann, läßt sich die Bewegung des Lichtpunktes durch die Fourierreihe
der Sägezahnkurve gewinnen. Entsprechend lassen sich Rechteckimpulse wie in Beisp. 5.12 über
eine Realisierung der Fourierreihe durch Schwingkreise erzeugen.

Fig. 5.13 zeigt die ersten drei Partialsummen der Fourierreihe der Sägezahnkurve bzw. der
Rechteckfunktion. Physikalisch handelt es sich hier um die Überlagerung von Sinusschwingun-
gen.

Fig. 5.13: Partialsummen zu Sägezahn- und Rechteckfunktion

In den folgenden Fourierreihen ergeben sich, wie im Vorausgegangenen, die Koeffizienten
durch einfache Integrationen. Der Leser überprüfe die folgenden Reihen, wobei bei der Berech-
nung der Fourierkoeffizienten partielle Integration und Substitution vordringlich angewendet wer-
den.
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Beispiel 5.13:

x2 = π2

3
− 4

(
cos x

12
− cos(2x)

22
+ cos(3x)

32
−+ . . .

)

, x ∈ [−π, π ] . (5.115)

Durch Einsetzen von x = π bzw. x = 0 erhält man die merkwürdigen Formeln

π2

6
=
∞
∑

n=1

1

n2
,

π2

12
=
∞
∑

n=1

(−1)n+1

n2
. (5.116)

Beispiel 5.14:

|x | = π

2
− 4

π

(

cos x + cos(3x)

32
+ cos(5x)

52
+ . . .

)

, x ∈ [−π, π ] . (5.117)

Hier liefert x = 0 die Reihe π2/8 = 1+ 1/32 + 1/52 + . . . .

Beispiel 5.15:

cosh(ax) = 2a

π
sinh(aπ)

(

1

2a2
+
∞
∑

k=1

(−1)k

a2 + k2
cos(kx)

)

, x ∈ [−π, π ] , a �= 0 ,

(5.118)

sinh(ax) = − 2

π
sinh(aπ)

∞
∑

k=1

(−1)kk

a2 + k2
sin(kx) , x ∈ [−π, π ] , a �= 0 . (5.119)

Beispiel 5.16:
Die Fourierreihe von eax ergibt sich aus

eax = cosh(ax)+ sinh(ax). (5.120)

Die linksstehenden Funktionen, hier nur für x ∈ (−π, π) beschrieben, denke man sich 2π -
periodisch auf ganz R erweitert, wobei in Sprungstellen, wie üblich, das arithmetische Mittel
der einseitigen Grenzwerte genommen wird. Die Fourierreihen auf den rechten Seiten stellen
dann diese periodischen Funktionen dar.

Beispiel 5.17:
Für x ∈ (0,2π) gilt

π − x

2
=
∞
∑

m=1

sin(mx)

m
, (s. Fig. 5.14a). (5.121)
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Man denke sich diese Funktion 2π -periodisch auf R erweitert, s. Fig. 5.14a.

Beispiel 5.18:
Für alle x ∈ R gilt (vgl. Fig. 5.14b)

| sin x | = 4

π

[

1

2
−
∞
∑

m=1

cos(2mx)

4m2 − 1

]

. (5.122)

Fig. 5.14: Sägezahnkurve »rückwärts « und Sinus-Betrags-Funktion

Alternierende Funktionen: Eine 2π -periodische Funktion nennen wir alternierend, wenn

f (x) = − f (x + π) für alle x ∈ R

erfüllt ist. Fig. 5.15 zeigt ein Beispiel. Bei der Berechnung der Fourierkoeffizienten einer inte-

grierbaren alternierenden Funktion zerlegt man das Integral

π∫

−π

in

π∫

−π

=
0∫

−π

+
π∫

0

, ersetzt im

Integral

0∫

−π

den Ausdruck f (x) durch − f (x + π) und substituiert t = x + π .

So erhält man

a2k = 0 für alle k = 0,1,2, . . . ,

b2k = 0 für alle k = 1,2,3, . . . ,
(5.123)

a2k+1 =
2

π

π∫

0

f (x) cos((2k + 1)x) dx , k = 0,1,2, . . . ,

b2k+1 =
2

π

π∫

0

f (x) sin((2k + 1)x) dx , k = 0,1,2, . . . .

(5.124)

Folgerung 5.4:
Eine alternierende Funktion besitzt nur Fourierkoeffizienten zu ungeraden Indizes.
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Fig. 5.15: Alternierende Funktion

Beispiel 5.19:

Die Funktion, die in Fig. 5.16 skizziert ist, lautet f (x) = x in (0, π) und ist im übrigen al-
ternierend sowie 2π -periodisch und stückweise glatt. Ihre Fourierreihe ermittelt man mit den
Gleichungen (5.123) und (5.124):

f (x) = − 4

π

∞
∑

k=0

cos((2k + 1)x)

(2k + 1)2
+ 2

∞
∑

k=0

sin((2k + 1)x)

(2k + 1)
.

Man erhält die Reihe übrigens auch leicht aus den Fourierreihen von |x | sowie der Rechteckfunk-
tion h1, wenn man beachtet, daß f (x) = |x | − π/2+ πh1(x)/2 in [−π, π ] erfüllt ist.

Fig. 5.16: Zu Beispiel 5.19

Sind alternierende Funktionen überdies gerade oder ungerade, so können wir die untenstehen-
de Folgerung ziehen, deren einfacher Beweis dem Leser überlassen bleibt.

Folgerung 5.5:

Es sei f 2π -periodisch und integrierbar. Damit gilt für ihre Fourierkoeffizienten:

f gerade alternierend ⇒ a2k+1 =
4

π

π/2∫

0

f (x) cos((2k + 1)x) dx , (5.125)
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f ungerade alternierend ⇒ b2k+1 =
4

π

π/2∫

0

f (x) sin((2k + 1)x) dx . (5.126)

Alle übrigen Fourierkoeffizienten sind Null.

Beispiel 5.20:

Der in Fig. 5.17 dargestellte periodische Spannungsverlauf u(x) soll in eine Fourierreihe ent-
wickelt werden. u ist eine ungerade alternierende Funktion. Es kommen in ihrer Fourierreihe

also nur Koeffizienten b2k+1 vor, die man nach (5.126) berechnet. Dabei wird das Integral

π/2∫

0

zerlegt in

π/3∫

0

+
π/2∫

π/3

, also

b2k+1 =
4

π

⎛

⎜
⎝

π/3∫

0

3u0

π
sin((2k + 1)x) dx +

π/2∫

π/3

u0 sin(2k + 1)x) dx

⎞

⎟
⎠

Die Auswertung der Integrale (wobei beim ersten Integral partielle Integration verwendet wird
wie bei der Sägezahnkurve) ergibt

b2k+1 =
12u0

π2
·

sin
(

(2k + 1)
π

3

)

(2k + 1)2

mit sin
(

(2k + 1)
π

3

)

=

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

√
3

2
, für k = 0,3,6, . . .,

0 , für k = 1,4,7, . . .,

−
√

3

2
, für k = 2,5,8, . . .

also

u(x) = u0
6
√

3

π2

(

sin x − sin(5x)

52
+ sin(7x)

72
− sin(11x)

112
+ sin(13x)

132
−+ . . .

)

. (5.127)

Übung 5.7:

Leite die Fourierkoeffizienten in den Beispielen 5.13 bis 5.20 explizit her.
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Fig. 5.17: Periodischer Spannungsverlauf, aus Strecken zusammengesetzt

Übung 5.8:

Berechne die Fourierreihe von f (x) = x(1+cos x), (−π < x < π) wobei wir f 2π -periodisch

auf R fortgesetzt denken. Ist die Fourierreihe gleichmäßig konvergent?

Übung 5.9:

Berechne die Fourierreihen von
∣
∣
∣sin

x

2

∣
∣
∣ und

∣
∣
∣cos

x

2

∣
∣
∣.

5.5.4 Konvergenz von Fourierreihen14

Zum Beweis des Konvergenzsatzes (Satz 5.23) schreiben wir die n-te Partialsumme der Fourier-
reihe von f hin:

sn(x) = a0

2
+

n
∑

k=1

(ak cos(kx)+ bk sin(kx)) . (5.128)

Zu zeigen ist sn(x) → f (x) für n → ∞. Dazu wird die rechte Seite umgeformt: Zunächst
werden für die Fourier-Koeffizienten ak und bk die entsprechenden Integralausdrücke eingesetzt

und
∑

mit

∫

vertauscht. So entsteht die erste Zeile der folgenden Rechnung. Mit dem Additi-

onstheorem des Cosinus folgt die zweite Zeile und über die Summenformel aus Übung 2.20 in
Abschn. 2.3.2 die dritte Zeile:

sn(x) = 1

π

π∫

−π

f (t)

(

1

2
+

n
∑

k=1

(cos(kt) cos(kx)+ sin(kt) sin(kx))

)

dt

= 1

π

π∫

−π

f (t)

(

1

2
+

n
∑

k=1

cos(k(t − x))

)

dt

= 1

π

π∫

−π

f (t)
sin(λ(t − x))

2 sin

(
t − x

2

) dt , mit λ = n + 1

2
,

14 Kann beim ersten Lesen überschlagen werden.
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= 1

π

π∫

−π

f (x + τ)
sin(λ(τ ))

2 sin
(τ

2

) dτ , mit t = x + τ ,

= 1

π

⎛

⎜
⎝

π∫

0

( f (x + τ)− f (x+))
sin(λτ)

2 sin
(τ

2

) dτ + f (x+)

π∫

0

sin(λτ)

2 sin
(τ

2

) dτ

+
0∫

−π

( f (x + τ)− f (x−))
sin(λτ)

2 sin
(τ

2

) dτ + f (x−)

0∫

−π

sin(λτ)

2 sin
(τ

2

) dτ

⎞

⎟
⎠ .

(5.129)

In den letzten beiden Zeilen streben das erste und dritte Integral bei festem x für λ → ∞ ge-
gen Null. Die Konvergenz ist gleichmäßig auf kompakten Intervallen ohne Sprungstellen von
f (s. folgender Hilfssatz). Das zweite Integral strebt mit λ → ∞ gegen π/2 (s. Abschn. 4.3.2,
Beisp. 4.24, (4.134)). Das vierte Integral ist nach Substitution τ = −τ gleich dem zweiten,
strebt also auch für λ → ∞ gegen π/2. Damit strebt sn(x) bei festem x für n → ∞ gegen
( f (x+) + f (x−))/2 und überdies gleichmäßig auf kompakten Intervallen ohne Sprungstellen
von f . �

Es bleibt folgender Hilfssatz zu zeigen. Dabei führen wir zur Abkürzung die Funktion

sx (t) :=

⎧

⎨

⎩

f (x + t)− f (x+)

2 sin(t/2)
, für t ∈ (0, π ],

f ′(x+) , für t = 0,

ein. Sie ist offenbar für jedes feste x eine beschränkte Funktion in t , was für t → 0 aus der de
l’Hospitalschen Regel folgt. Es gilt noch mehr: Ist [α, β] ein Intervall ohne Sprungstellen von
f , so gibt es ein M > 0 mit |sx (t)| ≤ M für alle t{∈ [0, π] und alle x ∈ [α, β]. Wir sagen
dafür: sx ist auf [α, β] gleichmäßig beschränkt. (Für t ∈ [δ, π ], mit einem δ > 0, ist das klar;
für t = 0 ebenfalls. Für t ∈ (0, δ) (δ klein genug) verwandelt man sx mit dem Mittelwertsatz
der Differentialrechnung — zweimal angewendet, auf Zähler und Nenner — in sx (t) = f ′(x +
t1)/ cos(t2/2) mit t1, t2 ∈ (0, t), woraus die gleichmäßige Beschränktheit folgt.)

Hilfssatz 5.2:
Für jedes x ∈ R gilt

Jx (λ) :=
π∫

0

sx (t) sin(λt) dt → 0 für λ→∞.

Die Konvergenz ist gleichmäßig auf jedem kompakten Intervall [α, β] ohne Sprung-
stellen von f .

Bemerkung: (a) Für das dritte Integral in (5.129) gilt entsprechendes.

(b) Die Beweisidee für den Hilfssatz ist einfach. Man erkennt nämlich, daß sin(λt) für große
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λ eine sehr schnelle Schwingung beschreibt (t als Zeit aufgefaßt). Nimmt man sx (t) für den
Augenblick als stetig an, so ist diese Funktion innerhalb einer Periode damit fast konstant. Das
Integral von sx (t) sin(λt) über eine Periode ist also nahezu Null. Summation über alle Perioden
ergibt dann (hoffentlich) auch beinahe Null, wobei man der Null für sehr große λ beliebig nahe
kommt. Für stückweise stetige sx ändert sich diese Argumentation nur unwesentlich.

Beweis:

Die Funktion sin(λt) wechselt jeweils im Abstand h = π/λ ihr Vorzeichen (λ > 0). Wir substi-
tuieren t = u + h in Jx (λ) und erhalten

Jx (λ) = −
π−h∫

−h

sx (u + h) sin(λu) du .

Schreibt man hier wieder t statt u und addiert dies zu Jx (λ) in seiner ursprünglichen Form, so
folgt

2Jx (λ) =−
0∫

−h

sx (t + h) sin(λt) dt +
π−h∫

0

(sx (t)− sx (t + h)) sin(λt) dt

+
0∫

π−h

sx (t) sin(λt) dt .

Mit |sx (t)| ≤ M erhält man die Abschätzung

|Jx (λ)| ≤ Mh +
π−h∫

0

|sx (t)− sx (t + h)| dt + Mh . (5.130)

Hierbei zerlegen wir

π−h∫

0

π−h∫

0

=

⎛

⎜
⎝

t1−h∫

0

+
t1∫

t1−h

⎞

⎟
⎠+

⎛

⎜
⎝

t2−h∫

t1

+
t2∫

t2−h

⎞

⎟
⎠+ . . .+

π−h∫

tm

, 15

wobei t1, . . ., tm die Unstetigkeitsstellen von sx sind. Davon kann es höchstens soviele geben
— sagen wir N — wie es Sprünge von f in [0, π ] gibt. In den Intervallen [ti − h, ti ] der Länge
h ist der Integrand |sx (t) − sx (t + h)| ≤ 2M , während er in den übrigen Intervallen aus Stetig-
keitsgründen ≤ ε ist für h ≤ h0 (dabei ε > 0 beliebig gegeben und h0 passend gewählt). Somit

15 Integrale, deren obere Grenze kleiner als die untere ist, werden hierbei 0 gesetzt.
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erhalten wir aus (5.130)

2|Jx (λ)| ≤ Mh + N · 2Mh + ε · (π − h)+ Mh < (2N + 2)M · h + επ

für h < h0. Diese Abschätzung gilt sowohl für festes x , als auch für alle x aus einem Intervall
[α, β] ohne Sprünge von f . Die rechte Seite wird aber kleiner als jedes ε∗ > 0, wenn h < h1 ist
(h1 genügend klein gewählt). Daraus folgt die Behauptung des Hilfssatzes. �

Zur Vertiefung beweisen wir

Satz 5.24:
Für alle integrierbaren Funktionen auf [−π, π ] gilt die Besselsche16 Ungleichung

a2
0

2
+

n
∑

k=1

(a2
k + b2

k ) ≤
1

π

π∫

−π

f 2(x) dx (5.131)

Dabei sind ak , bk die Fourierkoeffizienten von f .

Beweis:
Man multipliziere die quadratische Klammer im folgenden Integral aus und verwende dann die
Orthogonalitätsrelationen von sin und cos sowie die Integraldefinition der Fourierkoeffizienten.
Das heißt man berechnet

0 ≤
π∫

−π

(

f (x)−
[

a0

2
+

n
∑

k=1

(ak cos(kx)+ bk sin(kx))

])2

dx

=
π∫

−π

( f 2(x)− 2 f (x)[. . .] + [. . .]2) dx

=
π∫

−π

f 2(x) dx − π

(

a2
0

2
+

n
∑

k=1

(a2
k + b2

k )

)

�

Aus der Besselschen Ungleichung ergibt sich insbesondere für n →∞:

a2
0

2
+
∞
∑

k=1

(a2
k + b2

k ) ≤
1

π

π∫

−π

f 2(x) dx ,

d.h. die linke Reihe ist konvergent. Man erhält daraus

16 Friedrich Wilhelm Bessel (1784 – 1846), deutscher Astronom, Mathematiker und Geodät
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Folgerung 5.6:

Die Fourierkoeffizienten einer integrierbaren Funktion streben gegen Null:

lim
k→∞

ak = 0 , lim
k→∞

bk = 0 . (5.132)

Schließlich beweisen wir den

Satz 5.25:

Ist f eine stetige, stückweise glatte Funktion der Periode 2π , so konvergiert ihre Fou-
rierreihe gleichmäßig und absolut gegen f . Für ihre Fourierkoeffizienten ak , bk , folgt
sogar die Konvergenz der Reihen

∞
∑

k=1

|ak | ,
∞
∑

k=1

|bk | .

Beweis:

Aus (|A| − |B|)2 ≥ 0 folgt 2|AB| ≤ A2 + B2 Damit gilt mit A = 1

k
, B = kak :

2|ak cos(kx)| ≤ 2|ak | =
2

k
|kak | ≤

1

k2
+ (kak)

2 (5.133)

und entsprechend

2|bk sin(kx)| ≤ 2|bk | ≤
1

k2
+ (kbk)

2 (5.134)

für k ∈ N. Die Ableitung f ′ wird an ihren Sprungstellen durch das arithmetische Mittel ihrer ein-
seitigen Grenzwerte erklärt. Die Fourierkoeffizienten von f ′ sind kbk und −kak , wie man durch
partielle Integration in den Integraldarstellungen der Koeffizienten herausfindet. Die Besselsche
Ungleichung für f ′ liefert damit die Konvergenz der Reihe

∞
∑

k=1

k2(a2
k + b2

k ) .

Die obigen Ungleichungen ergeben

|ak cos(kx)+ bk sin(kx)| ≤ |ak | + |bk | ≤
1

k2
+ k2

2
(a2

k + b2
k ) . (5.135)

Da
∞
∑

k=1

(
k2

2
(a2

k + b2
k )+

1

k2

)

konvergiert, ist diese Reihe eine Majorante für die Fourierreihe

von f , wie auch für die Reihen
∞
∑

k=1

|ak |,
∞
∑

k=1

|bk |. Daraus folgt die Behauptung des Satzes. �
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Übung 5.10:

Beweise die folgende Eindeutigkeitsaussage für trigonometrische Reihen: Ist eine 2π -periodi-

sche reelle Funktion f durch eine trigonometrische Reihe darstellbar, die punktweise gegen f

strebt, so sind die Koeffizienten der Reihe eindeutig durch f bestimmt.

Anleitung: Man nehme an, daß es zwei trigonometrische Reihen gibt, die f darstellen. Dann

bilde man ihre Differenzreihe. Sie stellt die Funktion h(x) ≡ 0 dar. Was folgt daraus über die

Koeffizienten der Differenzreihe?

5.5.5 Komplexe Schreibweise von Fourierreihen

Bemerkung: Die komplexe Schreibweise bei Schwingungsvorgängen erweist sich in der Technik
als sehr brauchbar und ökonomisch. Sowohl in der Elektrotechnik, wie in der Aerodynamik,
Elastomechanik und anderen Gebieten, ist die komplexe Schreibweise bei Schwingungen üblich.

Jede stückweise glatte, 2π -periodische Funktion f : R→ R ist, wie wir gesehen haben, in eine
Fourierreihe entwickelbar:

f (x) = a0

2
+
∞
∑

n=1

(an cos(nx)+ bn sin(nx)) . (5.136)

Die Reihendarstellung wird noch übersichtlicher, wenn wir unsere Kenntnisse über komplexe
Zahlen heranziehen und

cos(nx) = ei nx + e− i nx

2
, sin(nx) = ei nx − e− i nx

2 i
(5.137)

verwenden (vgl. Abschn. 2.5.3, Folgerung 2.12). Da komplexe Reihen analog zu reellen Reihen
erklärt sind einschließlich ihrer Konvergenzeigenschaften, so können wir die Fourierreihe von f
umformen in

f (x) = a0

2
+
∞
∑

n=1

(

an
ei nx + e− i nx

2
+ bn

ei nx − e− i nx

2 i

)

= a0

2
+
∞
∑

n=1

(
an − i bn

2
ei nx +an + i bn

2
e− i nx

)

.

Dabei wurde die Gleichung 1/ i = − i verwendet, die unmittelbar aus −1 = i · i hervorgeht. Der
höheren Eleganz wegen vereinbaren wir b0 := 0 und

a−n := an und b−n := −bn (5.138)

für n = 0,1,2, . . .. (Dies ergibt sich übrigens auch »automatisch« aus den Integraldarstellungen
(5.106) der Fourierkoeffizienten.) Damit, und mit der Abkürzung

αn :=
an − i bn

2
, n ganzzahlig, (5.139)
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bekommt f (x) die Reihendarstellung

f (x) = α0 +
∞
∑

n=1

(αn ei nx +α−n e− i nx ) . (5.140)

Die m-te Partialsumme der rechten Reihe hat dabei die Form

sm(x) = α0 +
m
∑

n=1

(αn ei nx +α−n e− i nx ) =
m
∑

n=−m

αn ei nx . (5.141)

Da sie mit m →∞ gegen f (x) strebt, schreiben wir:

f (x) =
∞
∑

n=−∞
αn ei nx . (5.142)

Dabei verstehen wir unter der Summe rechts den Grenzwert

lim
m→∞

m
∑

n=−m

αn ei nx . 17 (5.143)

Bemerkung: Die elegante Schreibweise (5.142) der Fourierreihe von f erweist sich als sehr
nützlich, da sich mit der Exponentialfunktion bequemer arbeiten läßt als mit cos und sin.

Die Koeffizienten αn in (5.142) lassen sich direkt durch eine Integralformel angeben. Der Einfach-
heit halber wollen wir dabei zunächst annehmen, daß die Reihe (5.142) gleichmäßig konvergiert.
Wir multiplizieren nun (5.142) mit ei kx (k ganzzahlig), integrieren von−π bis π und vertauschen

π∫

−π

mit
∑

:

π∫

−π

f (x) e− i kx dx =
∞
∑

n=−∞
αn

∞∫

−∞
ei(n−k)x dx . (5.144)

17 Normalerweise versteht man unter
∞
∑

n=−∞
cn die Summe

∞
∑

n=0

cn+
∞
∑

n=1

c−n , d.h. es müssen zwei Grenzwerte gebildet

werden. In (5.142) meinen wir aber ausdrücklich die »symmetrische« Grenzwertbildung (5.143).
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Das rechtsstehende Integral ist dabei so zu verstehen, daß über Realteil, wie Imaginärteil, einzeln
integriert und danach summiert wird. Damit errechnet man:

π∫

−π

ei(n−k)x dx =
π∫

−π

(cos((n − k)x)+ i sin((n − k)x)) dx

=
π∫

−π

cos((n − k)x) dx + i

π∫

−π

sin((n − k)x) dx

︸ ︷︷ ︸

0

=
{

2π , falls n = k,

0 falls n �= k.

Die Summe in (5.144) reduziert sich somit auf nur ein Glied, nämlich dasjenige mit n = k.
Folglich ist die rechte Seite von (5.144) gleich αk · 2π . Bringt man 2π auf die andere Seite und
setzt n statt k, folgt

αn =
1

2π

π∫

−π

f (x) e− i nx dx . (5.145)

Diese Integralformel zur Berechnung von αn gilt allgemein, also auch wenn die Gleichmäßigkeit
der Konvergenz in (5.142) verletzt ist. Man leitet (5.145) nämlich sofort aus (5.139) her, indem
man die Integralausdrücke für an und bb einsetzt und e− i nx = cos(nx)− i sin(nx) beachtet.

Die Rückberechnung von an und bn aus αn geschieht durch an = 2 Re αn , bn = −2 Im αn

oder

an = αn + α−n , bn = i(αn − α−n) (n = 0,1,2, . . .) . (5.146)

Dabei ist α−n = αn .
Die Konvergenzsätze (Satz 5.15 und Satz 5.24) gelten für die komplex geschriebene Reihe

(5.142) entsprechend.
Bemerkung: Zur Beschreibung von Schwingungen verwenden Techniker und Physiker häufig
unmittelbar den Reihenansatz über die komplexe Exponentialfunktion, d.h.

f (t) =
∞
∑

n=−∞
αn e− i nωt . (5.147)

ω > 0 ist dabei die Kreisfrequenz der Schwingung. Mit dieser Reihe arbeitet man einfacher also
mit Sinus- und Cosinusreihen, da die Exponentialfunktion die prachtvolle Gleichung ez+w =
ez ew erfüllt.

Will man z.B. die phasenverschobene Schwingung g(t) := f (t − t0) durch eine Fourierreihe
beschreiben, so folgt aus (5.147) sofort

g(t) = f (t − t0) =
∞
∑

n=−∞
αn ei nω(t−t0) =

∞
∑

n=−∞
(αn e− i nωt )
︸ ︷︷ ︸

=:βn

ei nωt (5.148)



434 5 Folgen und Reihen von Funktionen

womit die Fourierreihe von g schon ermittelt ist! Man versuche dies zum Spaß einmal mit den
Cosinus-Sinus-Reihen. Über die Additionstheoreme von cos und sin kommt man zwar auch hin,
aber wesentlich umständlicher.

Übung 5.11:

Es sei f (x) = x

π
+
( x

π

)2
für x ∈ (−π, π). Wir denken uns f zu einer stückweise glatten

2π -periodischen Funktion fortgesetzt. Berechne die Fourierreihe von f und schreibe diese als

»Exponentialreihe« der Form (5.142) auf.

5.5.6 Anwendung: Gedämpfte erzwungene Schwingung

Um die Schwingungen eines Federpendels (mit Reibung) behandeln zu können, muß die folgen-
de Differentialgleichung gelöst werden:

mẍ + r ẋ + cx = 0 mit r > 0 , c > 0 . (5.149)

Wirkt auf den Massenpunkt des Federpendels noch eine äußere Kraft K (t) (etwa durch ein Ma-
gnetfeld), so erhalten wir die erweiterte Differentialgleichung

mẍ(t)+ r ẋ(t)+ cx(t) = K (t) , t ∈ R . (5.150)

Von großer Bedeutung für die Praxis ist der Fall, daß K eine periodische Funktion ist. Wir wollen
daher K als eine periodische, stetige, stückweise glatte Funktion voraussetzen. Ihre Periode (=
Schwingungszeit) sei T . Ingenieure und Physiker arbeiten gern mit der Kreisfrequenz ω = 2π/T .
K läßt sich nach Satz 5.24 in eine absolut gleichmäßig konvergente Fourierreihe entwickeln, die
wir in komplexer Schreibweise angeben:

K (t) =
∞
∑

n=−∞
αnei nωt .

Aus der absoluten Konvergenz folgt für t = 0, daß der Grenzwert

∞
∑

n=−∞
|αn|

existiert. Unter diesen Voraussetzungen ist folgende Frage zu beantworten: Welche zweimal ste-
tig differenzierbaren Funktionen x : R→ R erfüllen die Differentialgleichung (5.150)?

Funktionen dieser Art nennen wir Lösungen der Differentialgleichung.
Zur Beantwortung der Frage eine Vorbemerkung: Ist x0 : R → R eine Lösung von (5.150),

und ist xh : R → R eine Lösung der »homogenen« Differentialgleichung (5.149), so ist die
Summe

x(t) = xh(t)+ x0(t) , t ∈ R , (5.151)

ebenfalls Lösung von (5.150), wie man leicht nachrechnet. Mehr noch: Halten wir die Funktion
x0 fest und lassen xh in (5.151) alle Lösungen von (5.149) »durchlaufen«, so erhalten wir durch



5.5 Fourierreihen 435

(5.151) alle Lösungen unserer Differentialgleichung (5.150). (Denn ist x eine beliebige Lösung
von (5.150), so subtrahiere man x0 von ihr. x − x0 = x∗ ist aber eine Lösung der homogenen
Differentialgleichung (5.149), wie man leicht sieht. Wir schreiben daher x∗ = xh . Damit hat
x = xh + x0 die behauptete Form.)

Sämtliche Lösungen xh der »homogenen« Differentialgleichung (5.149) sind folgendermaßen
gegeben:

1. Fall r2 − 4mc > 0:

xh(t) = a e−λ1t +b e−λ2t

⎧

⎪
⎨

⎪
⎩

λ1 :=
1

2m
(r +√q)

λ2 :=
1

2m
(r −√q)

wobei q := r2 − 4mc. (5.152)

2. Fall r2 − 4mc = 0:

xh(t) = e−r t/(2m)(a + bt) . (5.153)

3. Fall r2 − 4mc < 0:

xh(t) = e−r t/(2m)(a cos(ωt)+ b sin(ωt)) mit ω :=
√

c

m
− r2

4m2
. (5.154)

Dabei sind a, b beliebige reelle Konstanten. (Zur Herleitung s. Burg/Haf/Wille (Band III) [8],
Abschn. 3.1.4)

Es bleibt uns nur die Aufgabe, eine einzige Lösung x0 unserer Differentialgleichung (5.150)
zu berechnen. Durch (5.151) haben wir dann alle Lösungen von (5.150). Die Lösung x0 nennen
wir eine partikuläre Lösung.

Lösungsberechnung: Die Fourierreihe von K gibt uns eine Idee für das Auffinden einer parti-
kulären Lösung von (5.150). Und zwar setzen wir auch x0 als Fourierreihe an mit der gleichen
Periode wie K :

x0(t) =
∞
∑

n=−∞
βn ei nωt . (5.155)

Die Reihen der Ableitung lauten

ẋ0(t) =
∞
∑

n=−∞
i nωβn ei nωt , ẍ0(t) = −

∞
∑

n=−∞
n2ω2βn ei nωt .

Dabei werden alle diese Reihen als absolut konvergent angenommen.
Setzt man die Fourierreihe in die Differentialgleichung (5.150) ein, wobei man K (t) vorher

auf die linke Seite bringt, so folgt

∞
∑

n=−∞
(−mn2ω2βn + r · i nωβn + cβn − αn) ei nωt = 0
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für alle t ∈ R. Daraus folgt, daß die Klammern verschwinden (denn sie sind die komplexen
Fourierkoeffizienten der Funktion f (t) ≡ 0), also

−mn2ω2βn + r · i nωβn + cβn − αn = 0 für alle ganzen n. (5.156)

Auflösung nach βn liefert

βn =
αn

(c − n2ω2m)+ i nωr
. (5.157)

Geht man nun umgekehrt vor und definiert die βn durch diese Gleichung sowie x0(t) durch die
Reihe (5.155), so stellt man fest, daß die Reihen von x ẋ , ẍ in der Tat absolut und gleichmäßig

konvergieren (wegen |βn| ≤ |αn|/(n2ω2m) für n2ω2m > c, und der Existenz von
∞
∑

n=−∞
|αn|).

Einsetzen in die Differentialgleichung (5.150) zeigt, daß x0 eine Lösung ist. Also zusammenge-
faßt:

Folgerung 5.7:

x0(t) =
∞
∑

n=−∞
βn ei nωt , (5.158)

mit (5.157), beschreibt eine partikuläre Lösung der Differentialgleichung (5.150).

Wir schreiben die Reihe von x0(t) schließlich in ihre reelle Form um, also als trigonometrische
Reihe.

Mit

αn =
an − i bn

2
, n = 0,1,2,3, . . . ,

erhält zunächst die Fourierreihe von K (t) die »reelle« Form

K (t) = a0

2
+
∞
∑

n=1

(an cos(nωt)+ bn sin(nωt)) .

Wir setzen αn = (an − i bn)/2 in (5.157) ein und multiplizieren Zähler und Nenner in (5.157)
mit dem »konjugierten Nenner«, also mit (c− n2ω2m)− i nωr . Eine kurze Rechnung liefert uns
βn in der Gestalt

βn =
An − i Bn

2

mit

An =
an(c − n2ω2m)− bnnωr

(c − n2ω2m)2 + (nωr)2
, Bn =

bn(c − n2ω2m)+ annωr

(c − n2ω2m)2 + (nωr)2
. (5.159)
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Folglich ist

x0(t) =
A0

2
+
∞
∑

n=1

(An cos(nωt)+ Bn sin(nωt)) . (5.160)

Damit ist eine partikuläre Lösung berechnet und unser Problem gelöst.

Anwendung auf das Schwingungsproblem: Nach dem anfangs Gesagten lautet die allgemeine
Lösung unserer Differentialgleichung (5.150)

x(t) = xh(t)+ x0(t) , (5.161)

wobei xh eine beliebige Lösung der homogenen Differentialgleichung (5.149) ist. t ist beim
Schwingungsproblem die Zeit. Nach (5.152), (5.153), (5.154) hat xh(t) stets die Gestalt

xh(t) = e−r t/(2m) g(t) , (r > 0)

mit einer Funktion g : R → R, die beschränkt ist oder von der Form a + bt ist (d.h. höchstens
»linear wächst«). Daraus folgt insbesondere

lim
t→∞

xh(t) = 0 .

Das heißt nach längerer Zeitdauer geht jede Schwingung unseres Federpendels in eine »sta-
bile Schwingung« über. Diese wird durch die Lösung x0(t) beschrieben. (In Burg/Haf/Wille
(Band III) [8], Abschn. 3.1.4, wird noch einmal ausführlich auf dieses Problem eingegangen,
wobei insbesondere das Resonanzphänomen erörtert wird.)

Das Schwingungsproblem haben wir am Federpendel erläutert. Jedoch führen auch andere
Schwingungsaufgaben, insbesondere elektromagnetische, auf die Differentialgleichung (5.150).
Diese Probleme haben wir mit der »Fourierschen Methode« alle mitgelöst.
Bemerkung: Auch weitere physikalische Probleme wie die Temperaturverteilung in einer kreis-
förmigen Platte, die Bewegungen einer schwingenden Saite u.a. können mit der Fourierschen
Methode gelöst werden. Diese Methode besteht darin, daß gewisse periodische Funktionen, die
in der Problemstellung gegeben sind, in Fourierreihen entwickelt werden, und daß auch die Lö-
sungsfunktionen als Fourierreihen angesetzt werden. Durch einen Koeffizientenvergleich, der
sich aus der Differentialgleichung des Problems ergibt, erhält man die Fourierkoeffizienten der
Lösung (siehe z.B. [25], Kap. XVIII, sowie die Literatur über theoretische Physik).

Übung 5.12:

In der Differentialgleichung (5.150) sei m = 1 kg, r = 15 Ns/m, c = 100 N/m und K (t) =
a(ωt)2 für t ∈ [−π, π ] mit ω = 0,8 s−1 und a = 20 N.

(a) Berechne die stabile Lösung x0 : R→ R.

(b) Berechne die Lösung x : R → R des Schwingungsproblems unter der Voraussetzung,

daß zur Zeit t = 0 folgendes gilt: x(0) = 0 m, ẋ(0) = 0,5 m/s.
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In Technik und Naturwissenschaft werden reelle Funktionen von mehr als einer reellen Veränder-
lichen vielfach verwendet. Man kann sie durch Gleichungen der Form

y = f (x1, x2, . . . , xn) (6.1)

beschreiben.
Im Fall n = 3, wobei x1, x2, x3 Raumkoordinaten bedeuten, fallen darunter z.B. Tempera-

turverteilungen, Druckverteilungen, elektrische Ladungsverteilungen, Massendichten, Potentiale
von Kraftfeldern usw. und im Falle von mehr als drei Variablen Hamiltonsche Energiefunktion,
Gewinnfunktionen beim Verkauf mehrerer Artikel, u.a.

Oft treten auch Systeme von mehreren reellen Funktionen der Form (6.1) auf, z.B. bei der Be-
schreibung von Kraftfeldern, Geschwindigkeitsfeldern, kurz bei »Vektorfeldern« physikalischer
Größen, aber auch bei geometrischen Projektionen, Flächendarstellungen, Verformungen, beim
Koordinatenwechsel und anderem.

Für Funktionen oder Funktionssysteme dieser Art wird im Folgenden die Differentialrech-
nung entwickelt. Dabei dienen die Gedankengänge der Differentialrechnung einer reellen Verän-
derlichen als Richtschnur.

6.1 Der n-dimensionale Raum Rn

Bei Funktionen mehrerer reeller Variabler spielen Zusammenfassungen reeller Zahlen x1, x2, x3,
. . . xn eine wichtige Rolle. Wir schreiben die Zahlen dabei senkrecht untereinander und klam-
mern sie ein. So entsteht ein Spaltenvektor, oder auch kurz Vektor genannt. Zunächst wollen wir
uns mit den Eigenschaften der (Spalten-) Vektoren beschäftigen und ihre »Geometrie« kennen-
lernen.

6.1.1 Spaltenvektoren

Ein reeller Spaltenvektor der Dimension n besteht aus n reellen Zahlen x1, x2, . . . xn , die in
bestimmter Reihenfolge angeordnet sind. Sie werden senkrecht untereinander geschrieben und
eingeklammert1:

⎡

⎢
⎢
⎢
⎣

x1

x2
...

xn

⎤

⎥
⎥
⎥
⎦

1 Bei waagerechter Schreibweise [x1, x2, . . . , xn ] spricht man von Zeilenvektoren der Dimension n. (Auch runde
Klammern werden verwendet.) Der Überbegriff für Spalten- und Zeilenvektoren der Dimension n heißt n-Tupel.
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Die Zahlen x1, . . . xn , heißen die Koordinaten des hingeschriebenen Spaltenvektors2. Zwei Spal-
tenvektoren der Dimension n

x =

⎡

⎢
⎣

x1
...

xn

⎤

⎥
⎦ , y =

⎡

⎢
⎣

y1
...

yn

⎤

⎥
⎦ :

heißen genau dann gleich, x = y, wenn sie zeilenweise übereinstimmen, d.h. wenn die Gleichun-
gen x1 = y1, x2 = y2, . . ., xn = yn alle erfüllt sind. (Spaltenvektoren verschiedener Dimensionen
n und m sind natürlich verschieden.)

Definition 6.1:
Die Menge aller reellen Spaltenvektoren der Dimension n heißt der n-dimensionale
Raum Rn .

Fig. 6.1: Punkte im R2 und im R3

Bemerkung: R1 und R werden als gleich angesehen. R2 ist die Menge aller Zahlenpaare

[

x1

x2

]

.

Wir können sie als Punkte einer Ebene mit Koordinatensystem deuten (s. Fig. 6.1a).

Die Elemente

⎡

⎣

x1

x2

x3

⎤

⎦ des R3 — auch Tripel genannt — kann man als Raumpunkte veranschau-

lichen. x1, x2, x3 sind dabei die Komponenten von x bezüglich eines räumlichen Koordinatensy-
stems (s. Fig. 6.1b).

6.1.2 Arithmetik im Rn

Wir führen folgende Rechenoperationen im Rn ein.

Definition 6.2:
Es seien

a =

⎡

⎢
⎣

a1
...

an

⎤

⎥
⎦ und b =

⎡

⎢
⎣

b1
...

bn

⎤

⎥
⎦

2 Statt Koordinaten sagt man auch Einträge oder Komponenten.
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beliebige Spaltenvektoren aus Rn . Damit ist

a + b :=

⎡

⎢
⎢
⎢
⎣

a1 + b1

a2 + b2
...

an + bn

⎤

⎥
⎥
⎥
⎦

, Addition

a − b :=

⎡

⎢
⎢
⎢
⎣

a1 − b1

a2 − b2
...

an − bn

⎤

⎥
⎥
⎥
⎦

, Subtraktion

λa :=

⎡

⎢
⎢
⎢
⎣

λa1

λa2
...

λan

⎤

⎥
⎥
⎥
⎦

, mit λ ∈ R Multiplikation mit einem Skalar

−a = (−1)a :=

⎡

⎢
⎢
⎢
⎣

−a1

−a2
...

−an

⎤

⎥
⎥
⎥
⎦

, negatives Element zu a

und a · b := a1b1 + a2b2 + . . .+ anbn , inneres Produkt.

Schließlich vereinbaren wir: Ein Spaltenvektor, dessen Komponenten alle 0 sind, wird
mit 0 bezeichnet:

0 :=

⎡

⎢
⎢
⎢
⎣

0
0
...

0

⎤

⎥
⎥
⎥
⎦

.

Beispiel 6.1:

Zu den Rechenoperationen:

[

3
5

]

+
[

4
−1

]

=
[

7
4

]

,

⎡

⎣

5
3
−2

⎤

⎦−

⎡

⎣

2
5
7

⎤

⎦ =

⎡

⎣

3
−2
−9

⎤

⎦ , 2

⎡

⎢
⎢
⎣

−5
7
6
1

⎤

⎥
⎥
⎦
=

⎡

⎢
⎢
⎣

−10
14
12
2

⎤

⎥
⎥
⎦

,

−
[

3
−9

]

=
[

−3
9

]

,

⎡

⎣

3
7
−5

⎤

⎦ ·

⎡

⎣

4
2
6

⎤

⎦ = 3 · 4+ 7 · 2+ (−5) · 6 = −4 .

Im Zusammenhang mit diesen Rechenoperationen wird Rn ein reeller euklidischer n-dimensio-
naler Vektorraum genannt, oder kürzer: reeller n-dimensionaler Vektorraum.
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Entsprechend heißen die Elemente von Rn auch reelle n-dimensionale Vektoren.
Für die eingeführten Rechenoperationen gelten folgende Regeln. Der Leser weist ihre Rich-

tigkeit ohne Schwierigkeiten nach, indem er die folgenden Gleichungen ausführlich mit Koordi-
naten hinschreibt.

Satz 6.1:
Für alle x, y, z aus Rn gilt:

(I) (x + y)+ z = x + ( y + z) Assoziativ-Gesetz für +
(II) x + y = y + x Kommutativ-Gesetz für +
(III) x + y = z ⇔ x = z − y Gleichungsumformung.

Für alle x, y ∈ Rn und alle reellen λ und μ gilt

(IV) (λ · μ)x = λ(μx) Assoziativ-Gesetz für die Multiplikation mit Skalaren

(V) λ(x + y) = λx + λ y Distributiv-

(VI) (λ+ μ)x = λx + μx Gesetze

(VII) 1x = x .

Ferner erfüllt das innere Produkt folgende Gesetze

(VIII) x · y = y · x Kommutativgesetz für ·
(IX) λ(x · y) = (λx) · y = x · (λ y) Gemischtes Assoziativ-Gesetz

(X) x · ( y + z) = x · y + x · z Distributiv-Gesetz für ·
(XI) x · x > 0 ⇔ x �= 0 positive Definitheit

Aufgrund der Assoziativ-Gesetze (I) bzw. (IV) werden in Summen x+ y+ z bzw. Pro-
dukten λμx die Klammern auch weggelassen. Das gilt auch für längere Summen und
Produkte. Die Distributiv-Gesetze (V), (VI) und (X) bedeuten, vereinfacht gesagt, daß
man »Klammern«, wie gewohnt, »ausmultiplizieren« darf.

Veranschaulichungen: (I) Die Veranschaulichung des R2 und R3 durch Punkte der Ebene bzw.
des Raumes wurde eingangs erläutert. Diese Anschauungsart ist insbesondere für geometrische
Zwecke günstig, wenn es z.B. um Geraden, Ebenen, Kreise, Kugeln usw. geht.

(II) Der genannten Veranschaulichung durch Punkte steht eine zweite Veranschaulichung gegen-
über, und zwar durch Pfeile3. Sie wird bei physikalischen Größen stärker bevorzugt, wie bei
Kräften, Geschwindigkeiten, Drehmomenten usw. Überdies gestattet sie uns, die eingeführten
Rechenoperationen grafisch zu verdeutlichen. Unter einem Pfeil versteht man dabei ein Paar
(A, B) zweier Punkte A, B einer Ebene bzw. des dreidimensionalen Raumes, wobei A und B
durch eine Strecke verbunden sind (falls A �= B). A heißt Aufpunkt und B Spitze des Pfeils.
Skizziert wird der Pfeil in »üblicher Weise«, d.h. im Falle A �= B zeichnet man die Verbindungs-
strecke von A nach B und bringt in B eine Pfeilspitze an (s. Fig. 6.2a). Im Falle A = B ist der

3 Statt »Pfeil« sagt man auch »gerichtete Strecke«.
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Pfeil einfach als Punkt A zu skizzieren. Man symbolisiert einen Pfeil mit Aufpunkt A und Spitze
B durch

−→
AB .

Wir betrachten zunächst Pfeile in einer Ebene mit einem festen Koordinatensystem.

Man sagt: Ein Vektor x =
[

x1

x2

]

aus R2 wird durch einen Pfeil
−→
AB dargestellt, wenn folgendes

gilt:

x1 = b1 − a1 ,

x2 = b2 − a2 .

Dabei sind a1, a2 die Koordinaten des Punktes A und b1, b2 die Koordinaten von B (s. Fig. 6.2a).

Man erkennt unmittelbar, daß jeder Pfeil, der durch Parallelverschiebung aus
−→
AB hervorgeht,

ebenfalls den Vektor x darstellt. Der Vektor x hat also unendlich viele Pfeildarstellungen. (dies
ist analog zu der Situation, daß ein Gegenstand verschiedene Schatten werfen kann. Der Vektor x

— also das Zahlenpaar — ist der »Gegenstand«, und die ihn darstellenden Pfeile sind gleichsam
seine »Schatten« !)

Fig. 6.2: Pfeildarstellungen von Vektoren und Rechenoperationen

Lassen sich zwei Pfeile nicht durch Parallelverschiebung zur Deckung bringen, so stellen sie
verschiedene Vektoren dar.

Im Dreidimensionalen verläuft alles analog: x =

⎡

⎣

x1

x2

x3

⎤

⎦ aus R3 wird durch jeden Pfeil
−→
AB

dargestellt, der

x1 = b1 − a1 , x2 = b2 − a2 , x3 = b3 − a3
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erfüllt, wobei a1, a2, a3 die Koordinaten von A sind und b1, b2, b3 diejenigen von B (s. Fig. 6.2b).
Addition und Subtraktion von Vektoren kann man durch Dreiecke aus Pfeilen veranschaulichen
(s. Fig. 6.2c, d). Die Multiplikation eines Vektors mit einer reellen Zahl λ führt zu Streckungen
oder Stauchungen von Pfeilen, im Falle λ < 0 zusätzlich zu einer Umkehr der Pfeilrichtung
(Fig. 6.2e). Der Vektor 0 wird als beliebiger Punkt dargestellt.

Der Leser wird aufgefordert, an Zahlenbeispielen Veranschaulichungen zu skizzieren und sich
davon zu überzeugen, daß die Darstellungen von Summen und Differenzen durch Pfeildreiecke
zutreffen (s. 6.1).

Die Pfeildarstellung legt es nahe, von der Länge eines Vektors x =
[

x1

x2

]

∈ R2 zu sprechen. Es

ist damit die Länge eines darstellenden Pfeiles
−→
AB gemeint. Nach »Pythagoras« ist diese Länge

gleich
√

x2
1 + x2

2 (s. Fig. 6.2a).

Im R3 erhält man die Pfeillänge zu x (mit den drei Komponenten x1, x2, x3) entsprechend als
√

x2
1 + x2

2 + x2
3 . (Dies folgt aus dem sogenannten »räumlichen Pythagoras «.)

Man vereinbart daher allgemein

Definition 6.3:

Als Länge, Betrag (oder euklidische Norm) eines Vektors x =

⎡

⎢
⎣

x1
...

xn

⎤

⎥
⎦ ∈ Rn bezeichnet

man

|x| =
√

x2
1 + x2

2 + . . .+ x2
n . (6.2)

Für Längen von Vektoren des Rn gelten folgende Regeln

|λx| = |λ||x| (λ ∈ R) (6.3)

|x| = 0 ⇔ x = 0 (6.4)

|x + y| ≤ |x| + | y| Dreiecksungleichung. (6.5)

Der Ausdruck »Dreieicksungleichung« geht unmittelbar aus Fig. 6.2c hervor. Die Ungleichung
bedeutet im R2 oder R3 offenbar, daß die Länge einer Dreiecksseite — hier |x + y|— kleiner
oder gleich der Summe der beiden übrigen Seitenlängen ist, also≤ |x|+| y|. Für den allgemeinen
Beweis der Dreiecksungleichung wird auf Burg/Haf/Wille (Lineare Algebra) [7] verwiesen.

Veranschaulichung des inneren Produktes: Zwei Vektoren x und y aus R2 oder R3 seien durch
zwei Pfeile dargestellt, wie es die Fig. 6.3 zeigt.

ϕ sei der kleinere Winkel, den die Pfeile miteinander bilden (der sogenannte Zwischenwinkel).
Dann ist das innere Produkt von x und y gleich

x · y = |x|| y| cos ϕ . (6.6)
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Fig. 6.3: Zum inneren Produkt

(Den zugehörigen Beweis findet der Leser in Burg/Haf/Wille (Lineare Algebra) [7].)
Insbesondere folgt: Die Pfeile von x und y stehen genau dann senkrecht aufeinander, wenn

x · y = 0 ist. (Denn genau dann ist cos ϕ = 0.) Hierdurch wird folgende Definition angeregt

Definition 6.4:
Zwei Vektoren x, y ∈ Rn stehen genau dann senkrecht (oder rechtwinklig) aufeinan-
der, wenn

x · y = 0

ist. Man beschreibt dies durch

x ⊥ y .

Schließlich gilt für alle Vektoren x, y ∈ Rn noch die sogenannte Schwarzsche4 Ungleichung

|x · y| ≤ |x| · | y|. (6.7)

Für R2 und R3 folgt sie sofort aus (6.6), da | cos ϕ| ≤ 1 ist. Der allgemeine Beweis ist wiederum
in Burg/Haf/Wille (Lineare Algebra) [7] aufgeführt.

Zusätzlich zu den genannten Operationen gibt es im R3 noch das »äußere Produkt« x × y

zweier Vektoren. Es wird berechnet durch

x × y =

⎡

⎣

x2 y3 − x3 y2

x3 y1 − x1 y3

x1 y2 − x2 y1

⎤

⎦ , mit x =

⎡

⎣

x1

x2

x3

⎤

⎦ , y =

⎡

⎣

y1

y2

y3

⎤

⎦ (6.8)

Geometrisch bedeutet es folgendes: Der Produktvektor z = x × y steht senkrecht auf x wie auf
y. Sein Betrag ist |z| = |x| · | y| sin ϕ, wobei ϕ ∈ [0, π ] der Zwischenwinkel der Vektoren x und
y ist. Schließlich bilden x, y, z ein Rechtssystem (falls ϕ > 0), vorausgesetzt, daß auch die x1-,
x2- und x3-Achse ein Rechtssystem bilden (s. Burg/Haf/Wille (Lineare Algebra) [7]).

Der Raum R3 spielt als Modell des uns umgebenden physikalischen Raums eine hervorragen-
de Rolle in Naturwissenschaft und Technik.

Physikalische Beispiele: Eine Kraft, die an einem Raumpunkt angreift, kann als Pfeil darge-
stellt werden, der in Kraftrichtung weist, und dessen Länge gleich dem zahlenmäßigen Betrag
der Kraft ist. Entsprechend können Geschwindigkeiten, Beschleunigungen u.a. durch Pfeile, und
damit durch Vektoren, dargestellt werden.

4 Hermann Amandus Schwarz (1843 – 1921), deutscher Mathematiker
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Übung 6.1:

Addiere

[

3

−1

]

und

[

−2

5

]

und skizziere diese Addition durch ein Dreieck. Führe das gleiche

für die Subtraktion durch.

Übung 6.2:

Beweise, daß |a+b|2 = |a|2+|b|2 genau dann gilt, wenn a und b senkrecht aufeinander stehen.

(Hinweis: Schreibe |a + b|2 = (a + b) · (a + b) und »multipliziere die Klammern aus«!)

6.1.3 Folgen und Reihen von Vektoren

Völlig analog zu Zahlenfolgen werden Folgen von Vektoren gebildet: Eine Folge

a1 , a2 , a3 , . . . , ak , . . .

von Vektoren des Rn ist durch eine Vorschrift gegeben, die jedem k ∈ N genau einen Vektor ak ∈
Rn zuordnet. Alle weiteren Begriffe lassen sich von Zahlenfolgen auf Vektorfolgen sinngemäß
übertragen. Insbesondere lautet die Definition der Konvergenz einer Folge praktisch genauso wie
bei Zahlenfolgen.

Definition 6.5:
Die Folge (ak)k∈N von Vektoren ak ∈ Rn konvergiert gegen a ∈ Rn , wenn es zu
jedem ε > 0 einen Index k0 gibt, so daß für alle Indizes k ≥ k0 gilt:

|ak − a| < ε ;

man beschreibt dies durch

lim
k→∞

ak = a oder ak → a für k →∞ .

a heißt Grenzwert oder Limes der Folge.

Jede Folge (ak)k∈N aus Rn zerfällt in Koordinatenfolgen. Das heißt: Schreibt man ausführlich

ak =

⎡

⎢
⎣

a(k)
1
...

a(k)
n .

⎤

⎥
⎦ , k = 1,2,3, . . . ,

so erkennt man n Zahlenfolgen (a(k)
i )k∈N (i = 1,2, . . . , n), eben die Koordinatenfolgen von

(ak)k∈N.

Folgerung 6.1:

Eine Vektorfolge (ak)k∈N konvergiert genau dann gegen a, wenn alle ihre Koordina-
tenfolgen konvergieren, und zwar gegen die entsprechenden Koordinaten von a.
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Beweis:

Konvergiert die Folge (ak) gegen a (in Rn), d.h. gilt |ak − a| → 0 für k → ∞, so konvergiert

jede Koordinatenfolge (a(k)
i )k∈N gegen die entsprechende Koordinate ai von a, und zwar wegen

|ak − a| ≥ |a(k)
i − ai | für alle k und i .

Konvergieren umgekehrt alle Koordinatenfolgen (a(k)
i )k∈N gegen die entsprechenden Koordi-

naten ai und a, so folgt wegen |a(k)
i − ai | → 0 auch

|ak − a| =

√
√
√
√

n
∑

i=1

(a(k)
i − ai )2 → 0 für k →∞,

d.h. ak → a für k →∞. �

Da also die Konvergenz von (ak) vollkommen auf die Koordinatenfolgen zurückgespielt werden
kann, kann man alle Konvergenzeigenschaften und Sätze von Zahlenfolgen auf Vektorfolgen
sinngemäß übertragen.

Es soll lediglich ein Satz hervorgehoben werden — stellvertretend für alle anderen —, näm-
lich der Satz von Bolzano-Weierstraß. Dazu vereinbaren wir, wie bei Zahlenfolgen:

Eine Folge (ak)k∈N aus Rn heißt beschränkt, wenn es ein c > 0 gibt mit |ak | ≤ c für alle
k ∈ N. Es gilt nun:

Satz 6.2:

(Satz von Bolzano-Weierstraß im Rn) Jede beschränkte Folge (ak)k∈N aus Rn besitzt
eine konvergente Teilfolge.

Beweis:

Man schreibe die Koordinatenfolgen von (ak) untereinander:

a(1)
1 , a(2)

1 , a(3)
1 , a(4)

1 , . . .

a(1)
2 , a(2)

2 , a(3)
2 , a(4)

2 , . . .

...

a(1)
n , a(2)

n , a(3)
n , a(4)

n , . . .

Alle diese Folgen sind beschränkt (wegen |a(k)
i | ≤ |ak | ≤ c). Sie haben also alle konvergente

Teilfolgen. Es gibt daher mindestens eine Indexfolge k1, k2, k3, . . ., so daß a(k1), a(k2), a(k3), . . .

konvergiert. Aus der Indexfolge k1, k2, k3, . . . denke man sich nun eine Teilfolge ausgewählt,

wieder k1, k2, k3, . . . genannt, so daß auch a(k1)
2 , a(k2)

2 , a(k3)
2 , . . . konvergiert. Aus dieser Index-

folge wird darauf wieder eine Teilfolge ausgewählt, abermals mit k1, k2, k3, . . . bezeichnet, so

daß auch a(k1)
3 , a(k2)

3 , a(k3)
3 , . . . konvergiert. Auf diese Art und Weise arbeitet man sich durch alle

Koordinatenfolgen nacheinander durch. Schließlich erhält man eine Indexfolge k1, k2, k3, . . ., so
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daß alle Teilfolgen

a(k1)
i , a(k2)

i , a(k3)
i , . . . (i = 1,2, . . . , n)

der Koordinatenfolgen konvergieren. Also konvergiert auch die Vektorfolge ak1 , ak2 , ak3 , . . .,
was zu beweisen war. �

Über Reihen

[ ∞
∑

k=0

ak

]

von Vektoren ak ∈ Rn ist nur zu bemerken, daß auch sie analog zu

Zahlenreihen gebildet werden. Insbesondere konvergiert eine Reihe

[ ∞
∑

k=0

ak

]

mit ak ∈ Rn genau

dann gegen einen Grenzwert s ∈ Rn , wenn die Folge (st)i∈N der Partialsummen

si =
i
∑

k=0

ak

gegen s konvergiert. Man schreibt dann

s =
∞
∑

k=0

ak ,

wie nicht anders zu erwarten. Damit sind Reihen auf Folgen zurückgeführt, und es ist alles gesagt.

Übung 6.3*:

Überprüfe, ob die angegebenen Folgen im R2 bzw. R3 konvergieren und gib gegebenenfalls

ihre Grenzwerte an:

ak =

⎡

⎢
⎣

k

k + 1

2−k

⎤

⎥
⎦ , bk =

⎡

⎢
⎣

k2

5k2 − k
k
√

k

⎤

⎥
⎦ , ck =

1

4k

⎡

⎢
⎣

2k2

4k + k

3k

⎤

⎥
⎦ .

6.1.4 Topologische Begriffe

Die Überschrift klingt sehr wissenschaftlich. Dabei handelt es sich hier nur darum, einige an-
schauliche Begriffe zu erklären, wie »Umgebung« eines Punktes, »innere Punkte« einer Menge,
»Randpunkte« einer Menge, »offene Menge«, »abgeschlossene« oder gar »kompakte« Menge.
Dazu brauchen wir »Abstände« und »Kugeln« im Rn , kurz: Wir betreiben »Geometrie« in Rn .

Als Abstand zweier Punkte x und y im Rn bezeichnet man die Zahl |x − y|.
Im R2 oder R3 handelt es sich dabei zweifelslos um den geläufigen euklidischen Abstand

zweier Punkte x und y. Man erkennt dies über den Satz des Pythagoras (s. Fig. 6.4a).
Es folgt, daß alle x ∈ R2 mit |x − a| ≤ r eine Kreisscheibe bilden, und zwar mit dem

Mittelpunkt a und dem Radius r (s. Fig. 6.4b). Entsprechend ergeben alle x ∈ R3 mit |x−a| ≤ r
eine Kugel um den Mittelpunkt a mit Radius r . Man vereinbart daher allgemein im Rn :
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Fig. 6.4: Abstand, Kreisscheibe, Umgebung und Randpunkt

Definition 6.6:
Die Menge

K a,r := {x ∈ Rn | |x − a| ≤ r} , a ∈ Rn , r > 0 ,

heißt abgeschlossene Kugel um a mit Radius r und

Ka,r := {x ∈ Rn | |x − a| < r} , a ∈ Rn , r > 0 ,

(also < statt ≤) offene Kugel um a mit Radius r . Man nennt beide Mengen auch
Kugelumgebungen von a im Rn .

Allgemein bezeichnet man als Umgebung eines Punktes a ∈ Rn jede Menge aus
Rn , die eine Kugelumgebung von a umfaßt (s. Fig. 6.4c).

Definition 6.7:
(a) Ein Punkt a ∈ R heißt Randpunkt einer Menge M ∈ Rn , wenn in jeder Umge-

bung von a mindestens ein Punkt aus M liegt sowie mindestens ein Punkt aus
Rn , der nicht zu M gehört (s. Fig. 6.4d). Die Menge der Randpunkte von M heißt
der Rand von M , symbolisiert durch ∂ M .

(b) Ein Punkt a ∈ M , der nicht Randpunkt ist, heißt innerer Punkt von M . a ist
also genau dann ein innerer Punkt von M , wenn eine ganze Umgebung von a

in M enthalten ist. Die Menge der inneren Punkte von M heißt Inneres von M ,

symbolisiert durch M
◦

.

(c) Eine Menge M ⊂ Rn heißt offen, wenn sie nur aus inneren Punkten besteht
(also keine Randpunkte enthält).

(d) Eine Menge M ⊂ Rn heißt abgeschlossen, wenn sie ihren Rand enthält.
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(e) Die Vereinigung einer Menge M ⊂ Rn mit ihrem Rand heißt die abgeschlossene
Hülle von M , symbolisiert durch M .

Rn und die leere Menge ∅ sind sowohl offen wie abgeschlossen (denn ihr Rand ist leer). Alle
anderen Teilmengen von Rn besitzen Randpunkte, sind also entweder offen oder abgeschlossen
oder keines von beiden. Der Leser suche Beispiele zu allen drei Fällen.

Folgerung 6.2:

(a) Eine Menge M ⊂ Rn ist genau dann abgeschlossen, wenn ihre Komplementär-
menge Rn\M offen ist.

(b) Eine Menge M ⊆ Rn ist genau dann abgeschlossen, wenn mit jeder konvergen-
ten Folge (ak) aus M auch der zugehörige Grenzwert a in M liegt.

Beweis:

Die Aussage (a) ist unmittelbar klar.

Zu (b): Wir nehmen an: M ist abgeschlossen, d.h. die Komplementärmenge Rn \ M ist offen,
d.h. jeder Punkt aus Rn \ M hat eine Umgebung, die ganz in Rn \ M liegt, m.a.W: die keinen
Punkt aus M enthält, d.h. kein Punkt aus Rn\M kann Grenzwert einer Folge aus M sein, d.h. jede
konvergente Folge aus M hat ihren Grenzwert in M . �

Definition 6.8:

(a) Eine Menge M ⊂ Rn heißt beschränkt, wenn es ein r > 0 gibt mit |x| ≤ r für
alle x ∈ M (d.h. wenn M in einer Kugel um 0 liegt).

(b) Eine Menge M ⊂ Rn heißt kompakt, wenn sie beschränkt und abgeschlossen
ist.

Folgerung 6.3:

Eine Menge M ⊂ Rn ist genau dann kompakt, wenn jede Folge (ak)k∈N aus M eine
konvergente Teilfolge besitzt, deren Grenzwert in M liegt.

Beweis:

(I) Ist M kompakt, so besitzt jede Folge (ak) aus M nach Bolzano-Weierstraß eine konvergente
Teilfolge. Ihr Grenzwert muß nach Folgerung 6.2 in M liegen.
(II) Wir setzen nun voraus: Jede Folge (ak) aus M besitzt eine konvergente Teilfolge mit Grenz-
wert in M . Dann ist M beschränkt. (Andernfalls gäbe es nämlich zu jedem k ∈ N ein Element
ak ∈ M mit |ak | ≥ k, also |ak | → ∞ für k →∞. Die Folge (ak) besäße daher keine konvergen-
te Teilfolge.) Überdies ist M abgeschlossen, sonst gäbe es nach Folgerung 6.2 eine konvergente
Folge (ak) in M , deren Grenzwert a nicht in M liegt. Da jede Teilfolge von (ak) ebenfalls gegen
a strebt, hätte keine Teilfolge von (ak) einen Grenzwert in M , im Widerspruch zur Vorausset-
zung. Also ist M abgeschlossen, folglich kompakt. �
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Übung 6.4*:

Gib an, ob die folgenden Mengen im R2 offen, abgeschlossen, beschränkt oder kompakt sind,

oder nichts dergleichen. Skizziere die Mengen.

A = {x ∈ R2 | x =
[

x1

x2

]

mit |x1| + |x2| ≤ 4} ,

B = {x ∈ R2 | x · a > 2} , mit a =
[

1

3

]

,

C = {x ∈ R2 | x =
[

n

m

]

n und m ganzzahlig} ,

D = {x ∈ R2 | x =
[

x1

x2

]

mit x1 ≥ 0, x2 > 0, x ·
[

5

3

]

≤ 8} .

6.1.5 Matrizen

Da Matrizen im Folgenden vielfach gebraucht werden, wird hier das Wichtigste darüber zusam-
mengestellt. Ausführlicher werden sie in Burg/Haf/Wille (Lineare Algebra) [7] behandelt.

Definition 6.9:
Ein Zahlenschema der Form

⎡

⎢
⎢
⎢
⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

am1 am2 · · · amn

⎤

⎥
⎥
⎥
⎦

, aik reell für alle i , k,

wird (reelle) (m, n)-Matrix genannt. Man beschreibt sie auch kürzer durch

[aik]1≤i≤m
1≤k≤n

oder [aik]m,n .

Die Zahlen aik heißen Elemente der Matrix, wobei i Zeilenindex und k Spaltenindex
genannt wird. m ist die Zeilenzahl und n die Spaltenzahl der Matrix.

Zwei Matrizen A = [aik]m,n und B = [bik]p,q heißen genau dann gleich: A = B, wenn
m = p, n = q und aik = bik für alle i ∈ {1, . . . , m} und k ∈ {1, . . . , n} erfüllt ist. (d.h. wenn die
zugehörigen Schemata »deckungsgleich« sind).

Matrizen aus nur einer Zeile heißen Zeilenmatrizen und aus nur einer Spalte Spaltenmatrizen.
Die uns bekannten Vektoren Rn sind also als Spaltenmatrizen aufzufassen.

Definition 6.10:
Addition und Subtraktion von Matrizen geschehen »gliedweise«:

[aik]m,n ± [bik]m,n := [aik ± bik]m,n ,
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Multiplikation mit einer reellen Zahl λ ebenfalls:

λ[aik]m,n = [λaik]m,n .

Die Multiplikation zweier Matrizen A = [aik]m,n und B = [bik]n,q ist dagegen so
erklärt:

AB := [cik]m,q mit cik =
n
∑

j=1

ai j b jk .

Dabei ist es erforderlich, daß die Spaltenzahl des ersten Faktors A gleich der Zeilen-
zahl des zweiten Faktors B ist.

Beispiel 6.2:
[

3 −2 8
4 7 −6

]

+
[

1 5 −2
3 2 −3

]

=
[

4 3 6
7 9 −9

]

, 5

[

3 −2 8
4 7 −6

]

=
[

15 −10 40
20 35 −30

]

,

[

3 −2 8
4 7 −6

]
⎡

⎣

5 7
9 1
0 4

⎤

⎦ =
[

−3 51
83 11

]

,

⎡

⎣

2 1 0
3 −5 1
2 6 −2

⎤

⎦

⎡

⎣

5
−7
3

⎤

⎦ =

⎡

⎣

3
53
−38

⎤

⎦ .

Satz 6.3:

(Rechenregeln) Für alle reellen Matrizen A, B, C , für die die folgenden Summen und
Produkte gebildet werden können, gilt

A+ B = B + A Kommutativgesetz

(A+ B)+ C = A+ (B + C) =: A+ B + C Assoziativgesetz der Addition

(AB)C = A(BC) =: ABC Assoziativgesetz der Multiplikation

A(B + C) = AB + AC , Distributivgesetze

(B + C)A = B A+ C A .

Sind λ, μ beliebige reelle Zahlen, so folgt ferner

λ(μA) = (λμ)A =: λμA , λ(AB) = (λA)B = A(λB) =: λAB ,

λ(A+ B) = λA+ λB , (λ+ μ)A = λA+ μA .

Die einfachen Beweise werden dem Leser überlassen.

Es sei darauf hingewiesen, daß AB = B A nicht in jedem Fall gilt. Man berechnet z.B. mit

A =
[

1 0
1 0

]

, B =
[

1 1
0 0

]

,

daß AB �= B A ist!

Jede Matrix, deren Elemente sämtlich 0 sind, wird mit 0 bezeichnet. Sie erfüllt A + 0 = A

für jede Matrix A, deren Zeilen- und Spaltenzahl mit 0 übereinstimmt.
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Die folgende (n, n)-Matrix

E =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

. . .

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

heißt n-reihige Einheitsmatrix (oder Einsmatrix). Sie läßt sich kürzer so darstellen:

E = [δik]n,n mit δik :=
{

1 , für i = k,

0 , für i �= k.

Sie spielt bei Matrizen die Rolle der 1. Denn es gilt für alle (m, n)-Matrizen A und alle (n, p)-
Matrizen B:

AE = A , E B = B .

Ist A = [aik]n,m eine beliebige Matrix, so nennt man AT = [αik]m,n mit αik := aki für alle i , k
die transponierte Matrix zu A. (Sie entsteht anschaulich durch »Spiegelung« des Zahlenschemas
von A an der »Hauptdiagonalen« a11, a22, a33, . . .). Es gilt die Regel

(AB)T = BT AT

Eine Matrix heißt quadratisch, wenn Zeilen- und Spaltenzahl übereinstimmen.
Es sei A eine quadratische Matrix. Existiert dazu eine quadratische Matrix X gleicher Zeilen-

zahl wie A, die

AX = E

erfüllt, so nennt man X die zu A inverse Matrix, kurz die Inverse von A und bezeichnet X mit
A−1. (Die Inverse von A ist eindeutig bestimmt, wie in Burg/Haf/Wille (Lineare Algebra) [7]
gezeigt wird.) Es gilt

AA−1 = E und A−1 A = E . (6.9)

Die linke Gleichung ist die Definitionsgleichung von A−1. Den Beweis der rechten Gleichung
findet man in Burg/Haf/Wille (Lineare Algebra) [7].

Bemerkung: Will man die Inverse A−1 von A = [aik]n,n berechnen, ja, überhaupt herausfinden,
ob eine Inverse existiert, so setzt man A−1 = X = [xik]n,n und schreibt die Gleichung AX = E

ausführlich in allen Komponenten hin, d.h.

n
∑

j=1

ai j x jk = δik mit i, k = 1,2, . . . , n .

Jeweils für festes k erhält man ein lineares Gleichungssystem für die Unbekannten x1k , x2k , . . .,
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xnk , was es zu lösen gilt (etwa mit dem Gaußschen Algorithmus). Nur bei eindeutiger Lösbarkeit
existiert X = A−1, deren Elemente sich aus den besagten Gleichungssystemen berechnen lassen
(s. Burg/Haf/Wille (Lineare Algebra) [7], Abschn. 1.6).

Eine Matrix heißt regulär, wenn sie quadratisch ist und eine Inverse besitzt. Nichtreguläre qua-
dratische Matrizen werden singulär genannt.

Definition 6.11:
Als euklidische Norm einer reellen Matrix A = [aik]m,n bezeichnet man die Zahl

|A| :=
√
∑

i,k

a2
ik ,

wobei über alle i = 1, . . ., m und k = 1, . . ., n summiert wird.

Folgerung 6.4:
Sind A, B beliebige (n, m)-Matrizen, so gilt

|A+ B| ≤ |A| + |B| ,
|λA| = |λ||A| für alle λ ∈ R,

|A| = 0 ⇔ A = 0 .

Ist ferner C eine beliebige reelle (m, p)-Matrix, so folgt

|AC| ≤ |A||C| .
(Für die Beweise wird auf [56], Satz 6.7, S. 273 – 274, verwiesen.)

Übung 6.5:

Berechne

⎡

⎢
⎣

3 5

6 7

9 2

⎤

⎥
⎦

[

2 3

−1 0

]

,

⎡

⎢
⎢
⎢
⎣

7 2 7

9 3 9

−1 5 6

2 3 −8

⎤

⎥
⎥
⎥
⎦

[

5

−23

]

.

Übung 6.6:

Welche der folgenden Matrizen besitzen Inverse? (Zur Berechnung s. letzte Bemerkung)

[

3 −2

6 8

]

,

[

2 −4

−5 10

]

,

⎡

⎢
⎣

1 0 3

0 1 3

2 4 −2

⎤

⎥
⎦ ,

[

3 6 7

2 9 −1

]

.

Übung 6.7*:

Es seien A, B n-reihige reguläre Matrizen. Beweise:

(AB)−1 = B−1 A−1 .
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6.2 Abbildungen im Rn

6.2.1 Abbildungen aus Rn in Rm

Unter einer Abbildung f von D ⊂ Rn in eine Menge M ⊂ Rm versteht man bekanntlich eine
Vorschrift, die jedem Punkt x ∈ D genau einen Punkt y ∈ M zuordnet. Man beschreibt dies
durch

y = f (x) , x ∈ D , y ∈ M ,

oder durch f : D → M (s. Abschn. 1.3.5).
Da x und y hierbei n-Tupel bzw. m-Tupel sind,

x =

⎡

⎢
⎢
⎢
⎣

x1

x2
...

xn

⎤

⎥
⎥
⎥
⎦

, y =

⎡

⎢
⎢
⎢
⎣

y1

y2
...

ym

⎤

⎥
⎥
⎥
⎦

,

so kann man f (x) ebenfalls als m-Tupel schreiben, und zwar ausführlich in der Gestalt

f (x) =

⎡

⎢
⎣

f1(x1, · · · , xn)
...

fm(x1, · · · , xn)

⎤

⎥
⎦ , kurz f =

⎡

⎢
⎣

f1
...

fm

⎤

⎥
⎦ .

Die Komponentenfunktionen f1, . . ., fm von f sind dabei reellwertige Funktionen auf D.
Ausführlich geschrieben ist

y = f (x)

also ein System von m Funktionengleichungen:

y1 = f1(x1, x2, . . . , xn)

y2 = f2(x1, x2, . . . , xn)

...

ym = fm(x1, x2, . . . , xn)

(6.10)

(Im Falle m = 1 verkürzt sich dies auf eine Zeile, im Falle n = 1 auf eine Variable.)

Beispiel 6.3:
y1 = 3x1 − 4x2 − 1 ,

y2 = 2x1 + 5x2 + 2 .
(x1, x2 ∈ R) (6.11)

Durch diese Gleichungen wird jedem Paar

[

x1

x2

]

mit reellen x1, x2 ein reelles Zahlenpaar

[

y1

y2

]

zugeordnet. Für x1 = 2, x2 = 3 errechnet man z.B. y1 = −7, y2 = 21.
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Mit den Abkürzungen

x =
[

x1

x2

]

, y =
[

y1

y2

]

, f (x) :=
[

f1(x1, x2)

f2(x1, x2)

]

:=
[

3x1 − 4x2 − 1
2x1 + 5x2 + 2

]

erhalten die Gleichungen (6.11) die knappe Form

y = f (x) , x ∈ R2 , y ∈ R2 .

f bildet also R2 in R2 ab, was man kurz durch f : R2 → R2 ausdrückt.

Übung 6.8:

Der Leser berechne die Bildpunkte

[

y1

y2

]

der Abbildung f im Beispiel 6.3 für die Urbildpunkte

x =
[

x1

x2

]

=
[

−4

2

]

,

[

3,5

6

]

,

[

0

0

]

,

[

1

0

]

,

[

0

1

]

,

[

1

1

]

.

Welche Figur bilden die Bildpunkte der letzten vier Urbilder in der y-Ebene?

6.2.2 Funktionen zweier reeller Variabler

Die wesentlichen Gesichtspunkte der Differentialrechnung mehrerer reeller Variabler lassen sich
am einfachsten Fall verdeutlichen: Am Fall reeller Funktionen zweier reeller Variabler. Eine
solche Funktion wird durch

y = f (x1, x2) , 5

[

x1

x2

]

∈ D ⊂ R2 ,

beschrieben, oder abstrakter durch f : D → R (D ⊂ R2). Sie läßt sich auf folgende Weise
graphisch darstellen (s. Fig. 6.5).

Man skizziert ein räumliches Koordinatensystem aus x1-, x2- und y-Achse. Zu jedem Punkt
[

x1

x2

]

des Definitionsbereiches D denkt man sich den Wert y = f (x1, x2) berechnet und den

Raumpunkt

⎡

⎣

x1

x2

y

⎤

⎦

ins Koordinatensystem eingezeichnet. Die Menge dieser Raumpunkte heißt der Graph von f .

Der Graph von f erscheint als flächenartiges Gebilde, gewölbt, gebogen oder eben (s. Fig. 6.5).
Jede »Senkrechte« — d.h. jede Parallele zur y-Achse — schneidet das Gebilde höchstens einmal.
Den Definitionsbereich D (s. Fig. 6.5) kann man in die x1-, x2-Ebene unseres Koordinatensy-

5 Oft wird auch die Schreibweise u = f (x, y) verwendet, wenn es um praktische Beispiele geht.
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Fig. 6.5: Funktion zweier Variabler

stems einzeichnen. Es werden dabei

die Paare

[

x1

x2

]

mit den Tripeln

⎡

⎣

x1

x2

0

⎤

⎦ identifiziert.

(Man nennt dies die kanonische Einbettung des zweidimensionalen Bereiches D in den dreidi-
mensionalen Raum R3.)6

Beispiel 6.4:

y = f (x1, x2) = x1x2,

[

x1

x2

]

∈ R2,

Beispiel 6.5:

y = g(x1, x2) = 5x1 + 2x2 + 10,

[

x1

x2

]

∈ R2,

Beispiel 6.6:

y = h(x1, x2) =
√

1− x2
1 − x2

2 ,

[

x1

x2

]

∈ E , wobei E = {x | |x| ≤ 1} die Einheitskreisscheibe

im R2 ist.

Diese Funktionen werden durch die folgenden Fig. 6.6a, b, c veranschaulicht.
Der Graph von f ist dabei eine Sattelfläche, der von g eine Ebene und von h die Oberfläche

einer Halbkugel.
Eine zweite, viel verwendete Art der Veranschaulichung ist die der Höhenlinien (Niveaulini-

en). In Fig. 6.7a, b, c sind wieder unsere drei Beispielfunktionen f , g, h skizziert.
Diese Darstellung erhält man so: Man wählt einen festen Wert y aus, z.B. y = 1. Dann

sucht man alle Punkte x =
[

x1

x2

]

, deren Funktionswerte gleich y = 1 sind und zeichnet sie: ein.

6 Eine derartige Ausdrucksweise für so eine simple Sache kann man gut benutzen, um prüfende Professoren zu ver-
blüffen.
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Fig. 6.6: Graphen verschiedener Funktionen

Meistens handelt es sich dabei um eine oder mehrere zeichenbare Linien. Dies führt man für
weitere y-Werte durch, etwa y = 2, y = 3, usw. So entsteht das Höhenlinienbild einer Funktion.

Höhenlinien erhält man normalerweise dadurch, daß man die Funktionsgleichung y = f (x1, x2)

»nach x2 auflöst« (oder, falls günstiger, nach x1). In unseren Beispielen sieht das so aus:

y = x1x2 ⇒ x2 =
y

x1
(für x1 �= 0)

y = 5x1 + 2x2 + 10 ⇒ x2 = −
5

2
x1 +

y

2
− 5 (für x1 ∈ R)

y =
√

1− x2
1 − x2

2 ⇒ x2 = ±
√

1− y2 − x2
1 (für |x1| ≤

√

1− y2)

Rechts sind die Funktionen der Form x2 = ϕ(x1) entstanden (bei festem y), deren Graphen man
skizzieren kann. (± beschreibt zwei Funktionen.) Die Frage, wann solche Auflösungen möglich
sind — analytisch oder numerisch — ist Inhalt des später folgenden »Satzes über implizite Funk-
tionen« (Abschn. 6.4.2).

Bemerkung: Die Darstellung durch Höhenlinien kann sinngemäß auch auf die Funktionen y =
f (x1, x2, x3) von drei Variablen übertragen werden. Anstelle der Höhenlinien treten dabei Ni-
veauflächen. Sie sind durch f (x1, x2, x3) = y = konstant gegeben.

Einige technische Beispiele sind zur Übung des Lesers im Folgenden angegeben:
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Fig. 6.7: Darstellung von Funktionen zweier reeller Variabler durch Höhenlinien

Übung 6.9:

Das Gasgesetz für ideale Gase lautet

pV = RT , R = 8314
J

K · kmol
, (6.12)

mit dem Druck p, dem Volumen V und der absoluten Temperatur T des Gases. R ist die allge-

meine Gaskonstante. Jede der drei Größen p, V , T läßt sich als Funktion der übrigen auffassen,

so daß folgende drei Funktionen entstehen:

p = RT

V
︸︷︷︸

f1(T,V )

, V = RT

p
︸︷︷︸

f2(T,p)

, T = 1

R
pV

︸ ︷︷ ︸

f3(p,V )

(6.13)

wobei p > 0, V > 0, T > 0 gilt. Definitionsbereich für alle diese Funktionen ist also der

»erste Quadrant«
0
R2
+ :=

{[ x1
x2

]

| x1 > 0 , x2 > 0
}

. f3 ist bis auf einen Faktor gleich der früher

betrachteten Funktion f . Der Leser skizziere die Höhenlinienbilder der drei Funktionen.
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Bemerkung: Die van der Waalssche Zustandsgleichung für reale Gase

T = 1

n R

(

p + n2a

V 2

)

(V − nb)

{

a, b, R, konstant,
n, Gasmenge in Mol

}

, (6.14)

wurde schon in Abschn. 3.2.8, Beisp. 3.34, behandelt. Der Ausdruck rechts beschreibt eine Funk-
tion f (p, V ). Ein Höhenlinienbild ist in Fig. 3.18 in dem genannten Abschnitt gezeichnet.

Fig. 6.8: Zu Funktionen zweier Variabler in der Technik

Übung 6.10:

Ein Stahlrohr hat das Gewicht

G = ρπl(dw − w2)

wobei ρ das spezifische Gewicht des Stahls ist, p die Länge des Rohres, d der Außenwand-

durchmesser, w die Wandstärke (s. Fig. 6.8). Es handelt sich hier um eine Funktion von drei

Variablen p, d und w. Da p nur ein Proportionalitätsfaktor ist, erhält man einen Überblick,

wenn man lediglich die Funktion

f (d, w) = dw − w2 , d ≥ 0 , w ≥ 0 ,

untersucht. Der Leser skizziere diese Funktion im räumlichen Koordinatensystem!

Übung 6.11:

(nach [5], S. 172) Das Flächenmoment eines rechteckigen Balkens erhält man aus

I = bh3/12 . (6.15)

Dabei ist b die Breite und h die Höhe des Balkens (s. Fig. 6.8b). Die Zahl I geht bei der

Berechnung der Durchbiegung eines Balkens ein (s. Beisp. 2.1, Abschn. 2.1.1). Wegen dieser

Anwendung ist man mehr daran interessiert, die Balkenbreite b aus I und h zu gewinnen.

Zum Ablesen von b-Werten aus einem Höhenlinienbild ist es allerdings zweckmäßig (und in

der Technik gebräuchlich), Koordinatensysteme zu benutzen mit einer b-Achse als senkrechter
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Achse. Es kommen in unserem Falle zwei Möglichkeiten in Betracht, nämlich ein I -b-System

oder ein h-b-System (s. Fig. 6.9a, b).

Dabei ist jeweils ein Koordinatennetz aus Waagerechten und Senkrechten eingezeichnet, um

das Ablesen von Werten zu erleichtern.

Die Aufgabe des Lesers besteht darin, in beiden Netzen der Fig. 6.9 die Höhenlinien einzu-

zeichnen, in Netz (a) also die Linien zu h = konstant und in (b) zu I = konstant. Es entstehen

sogenannte Netztafeln.

Frage: Welche der beiden Netztafeln ist leichter (und präziser) zu zeichnen und damit vorzuzie-

hen?

Diese rechnerisch einfache Aufgabe soll klar machen, daß man oft mehrere Möglichkeiten

hat, eine Funktion mit mehreren Variablen zu skizzieren, und daß man sich natürlich die gün-

stigste Art aussuchen soll.

Fig. 6.9: Netztafeln für das Flächenmoment I eines Balkens (zu vervollständigen)

Übung 6.12:

Der Wechselstromwiderstand w eines Stromkreises ergibt sich aus

w =
√

R2 + L2ω2 , (6.16)

wobei R der Ohmsche Widerstand ist, L die Selbstinduktion und ω die Frequenz des Wech-

selstroms. Wir wollen ω als fest annehmen. Dann stellt die rechte Seite der Gleichung ei-

ne Funktion der Form f (R, L) dar. Man skizziere ein Höhenlinienbild für w = 1 Ω und

ω = 50/(2π) Hz.

Frage: Welches Problem hat man, wenn man auf beiden Achsen den gleichen Maßstab wählt?

Kann man durch geschickt gewählten Maßstab die Zeichnung günstiger gestalten? Welche Maß-

stabwahl auf den Achsen ist am besten?
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6.2.3 Stetigkeit im Rn

Nach den anregenden Beispielen im vorangehenden Abschnitt kommen wir nun zur harten Arbeit
zurück, nämlich zur Stetigkeit von Abbildungen aus Rn in Rm .

Es zeigt sich aber, daß die Arbeit so hart wieder nicht ist. Denn wir können das meiste von
Funktionen einer reellen Variablen übertragen, ja, nahezu wörtlich abschreiben. Im Folgenden
sei D ⊆ Rn und M ⊂ Rm .

Definition 6.12:
(a) Eine Abbildung f : D → M heißt stetig in einem Punkt x0 ∈ D, wenn für alle

Folgen (xk) aus D mit xk → x0 stets

lim
k→∞

f (xk) = f (x0)

gilt.

(b) Die Abbildung f : D → M heißt stetig auf A ⊂ D, wenn sie in jedem Punkt
von A stetig ist. Ist f stetig in jedem Punkt von D, so wird f eine stetige Abbil-
dung genannt.

Die Definition entspricht vollkommen den Definitionen 1.17 und 1.18 in Abschn. 1.6.2, in denen
die Stetigkeit für Funktionen einer reellen Variablen definiert sind.

Aus der Definition folgt sofort, daß alle Funktionen in den Beispielen und Übungen des letzten
Abschnittes stetig sind.

Die ε−δ−Charakterisierung der Stetigkeit in Satz 1.19 (Abschn. 1.6.2) gilt wörtlich auch für
Abbildungen f : D → Rm mit D ⊆ Rn , so daß wir auf eine erneute Formulierung verzichten
können. Auch der Beweis ist gleichlautend.

Der Satz über Summen, Differenzen, Produkte und Quotienten stetiger Abbildungen wird,
samt Beweis, ebenfalls übertragen (s. Satz 1.22, Abschn. 1.6.4). Er lautet hier:

Satz 6.4:
Sind f : D → Rm , g : D → Rm und h : D → R stetig in x0 ∈ D (D ⊆ Rn), so sind
auch

f + g , f − g , f · g und
f

h
(falls h(x0) �= 0)

stetig in x0.

Die gleichmäßige Stetigkeit wird analog zu Def. 1.19 (Abschn. 1.6.6) für Abbildungen aus Rn

in Rm erklärt. Es folgt, wie in Abschn. 1.6.6, die wichtige Aussage:

Satz 6.5:
Auf kompakten Mengen des Rn sind stetige Abbildungen gleichmäßig stetig.

Mit der Stetigkeit eng zusammen hängen Grenzwerte von Abbildungen. Hier haben wir nur
Abschn. 1.6.7 sinngemäß zu übertragen:
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Ein Punkt x0 ∈ Rn heißt Häufungspunkt einer Menge D ⊂ Rn , wenn in jeder Umgebung von
x0 unendlich viele Punkte aus D liegen. Def. 1.20 aus Abschn. 1.6.7 wird damit zu

Definition 6.13:
Es sei f : D → M eine Abbildung und x0 ein Häufungspunkt von D. Man sagt, f (x)

konvergiert für x → x0 gegen den Grenzwert c, wenn für jede Folge (xk) aus D mit
lim

k→∞
xk = x0 und xk �= x0 für alle k folgt:

lim
k→∞

f (xk) = c .

Dies wird kurz beschrieben durch die Gleichung

lim
x→x0

f (x) = c . (6.17)

Diese Übereinstimmung mit schon Bekanntem zeigt, daß hier eigentlich nichts Neues zu ler-
nen ist. Aus diesem Grunde weisen wir nur darauf hin, daß sich alles Folgende im zitierten
Abschn. 1.6.7 ebenso überträgt, insbesondere die Folgerung 1.18 über Summen, Differenzen,
Produkte und Quotienten solcher Grenzwerte.

Schließlich beschäftigen wir uns noch mit Polen und Grenzwerten im Unendlichen wie in
Abschn. 1.6.8. Hier überträgt sich alles über Pole völlig analog auf Funktionen f : D → R mit
D ⊂ Rn , also insbesondere die Schreibweise für einen Pol x0 von f :

lim
x→x0

f (x) = ∞ . (6.18)

Bei Grenzwerten im Unendlichen ist dagegen |x| → ∞ (statt x → ∞ oder x → −∞) zu
schreiben. Das Analogon zu Def. 1.22 in Abschn. 1.6.8 lautet:

Definition 6.14:
(a) Der Definitionsbereich D ⊂ Rn von f : D → Rm sei unbeschränkt. Man

sagt, f (x) strebt für |x| → ∞ gegen c wenn für jede Folge (xk) aus D mit
lim

k→∞
|xk | = ∞ gilt:

lim
k→∞

f (xk) = c .

In Formeln beschreibt man dies kurz durch

lim
|x|→∞

f (x) = c . (6.19)

(b) Anstelle von c kann auch ∞ oder −∞ stehen, wenn f reellwertig ist. Alles
andere wird entsprechend formuliert.

Folgerung 1.20 in Abschn. 1.6.8 (ε-Formulierung für (6.4)) überträgt man ohne weiteres.
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Damit sind wir durch! Das Grundlegende über Stetigkeit und Grenzwerte von Abbildungen
aus Rn in Rm ist nun bekannt.

Übung 6.13:

Wo ist die Funktion f (x) := x1x2

x2
1 + x2

2

im R2 definiert? Wo ist sie stetig? Existiert lim
x→0

f (x)?

Übung 6.14:

Beweise, daß die Funktion f (x) = |x| auf Rn stetig ist.

6.3 Differenzierbare Abbildungen von mehreren Variablen

In diesem Abschnitt wird die Differentialrechnung von einer reellen Variablen auf mehrere reelle
Variable ausgedehnt.

6.3.1 Partielle Ableitungen

Beispiel 6.7:

Durch

y = f (x1, x2) = 2x2
1 x3

2

ist eine Funktion von zwei reellen Variablen x1 und x2 gegeben. Fassen wir für den Augenblick
x2 als Konstante auf, so können wir den Ausdruck auf der rechten Seite nach x1 differenzieren.
Diese Ableitung wird mit

∂ f

∂x1
(x1, x2) oder kürzer fx1(x1, x2)

bezeichnet. Wir erhalten also »durch Differenzieren nach x1«:

∂ f

∂x1
(x1, x2) = 4x1x3

2 . (6.20)

Entsprechend kann man x1 als Konstante auffassen und »nach x2 differenzieren«. Es ergibt sich

∂ f

∂x2
(x1, x2) = 6x2

1 x2
2 . (6.21)

Die Ausdrücke in (6.20) und (6.21) heißen die partiellen Ableitungen von f nach x1 bzw. x2.

Beispiel 6.8:

f (x, y) = x2 y − exy .

⇒ ∂ f

∂x
(x, y) = 2xy − y exy ,

∂ f

∂y
(x, y) = x2 − x exy .
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Wir erinnern nochmal: Die erste Gleichung ergibt sich durch Differenzieren nach x , wobei y als
Konstante angesehen wird, die zweite durch Differenzieren nach y, wobei x konstant ist.

Beispiel 6.9:

f (x, y) = sin(x2 y5). Mit der Kurzschreibweise fx für
∂ f

∂x
und fy für

∂ f

∂y
erhält man

fx (x, y) = 2xy5 cos(x2 y5) , fy(x, y) = 5x2 y4 cos(x2 y5) .

Beispiel 6.10:

g(s, t) =
√

s2 + t2 mit s2 + t2 �= 0

⇒ ∂g

∂s
(s, t) = s√

s2 + t2
,

∂g

∂t
(s, t) = t√

s2 + t2
.

Beispiel 6.11:

ϕ(v1, v2, v3) = v2
1 + v4

2 + v3v1 + 1

⇒ ∂ϕ

∂v1
(v1, v2, v3) = 2v1 + v3 ,

∂ϕ

∂v2
(v1, v2, v3) = 4v3

2 ,
∂ϕ

∂v3
(v1, v2, v3) = v1 .

Der Leser, der diese Beispiele nachvollzogen hat, kann nun sicherlich partielle Ableitungen
von formelmäßig gegebenen Funktionen berechnen. Er hat nichts anderes zu tun, als alle Va-
riablen bis auf eine als konstant anzusehen und die so entstandene Funktion nach eben dieser
Variablen zu differenzieren. Das führt zu folgender allgemeiner Definition:

Definition 6.15:
Eine Abbildung f : D → Rm mit D ⊂ Rn ist in einem inneren Punkt

x =

⎡

⎢
⎣

x1
...

xn

⎤

⎥
⎦ ∈ D

partiell differenzierbar nach xk , wenn der Grenzwert

lim
h→0

f (x1, . . . , xk + h, . . . , xn)− f (x1, . . . , xk, . . . , xn)

h

existiert. (Die beiden Ausdrücke im Zähler unterscheiden sich nur in der k-ten Varia-
blen.)

Der Grenzwert heißt die partielle Ableitung von f nach xk im Punkte x. Symbo-
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lisch beschreibt man ihn durch

∂ f

∂xk
(x1, . . . , xn) , f xk

(x1, . . . , xn) , Dk f (x1, . . . , xn) .

Statt (x1, . . . , xn) wird dabei auch kürzer (x) geschrieben, oder es werden die Variablenangaben
ganz weggelassen, wenn keine Irrtümer zu befürchten sind.

f heißt partiell differenzierbar in x0, wenn alle partiellen Ableitungen
∂ f

∂xk
(x0) existieren.

Ferner nennt man f partiell differenzierbar in A ⊂ D, wenn f in jedem Punkt A partiell
differenzierbar ist. Ist f schließlich in jedem Punkt seines Definitionsbereiches partiell diffe-
renzierbar, so heißt f partiell differenzierbar.

Geometrische Veranschaulichung bei zwei Variablen: Wir denken uns den Graphen einer re-
ellwertigen Funktion

Fig. 6.10: Partielle Ableitungen

y = f (x1, x2) ,

[

x1

x2

]

∈ D ⊂ R2

als flächenartiges Gebilde dargestellt, wie es die Fig. 6.10 zeigt. f sei in

x0 =

⎡

⎣

x (0)
1

x (0)
2

⎤

⎦
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nach beiden Variablen partiell differenzierbar. x0 wird in die x1-x2-Ebene eingezeichnet.

Durch x0 werden nun zwei Ebenen gelegt, die parallel zur x1-y-Ebene bzw. zur x2-y-Ebene
liegen (s. schraffierte Flächen in Fig. 6.10). Die Ebenen schneiden aus dem Graphen von f zwei
Kurven heraus, die sich im Punkt

p0 =

⎡

⎢
⎢
⎢
⎢
⎣

x (0)
1

x (0)
2

f (x (0)
1 , x (0)

2 )

⎤

⎥
⎥
⎥
⎥
⎦

kreuzen. (Es sind die oberen Begrenzungskurven der schraffierten Flächen in Fig. 6.10.) Diese

Kurven können als Graphen der Funktionen x1 �→ f (x1, x (0)
2 ) und x2 �→ f (x (0)

1 , x2) in den
schraffierten Ebenen aufgefaßt werden. Ihre Steigungen im p0 — verdeutlicht in den eingezeich-
neten Tangenten — sind die partiellen Ableitungen fx1(x0) und fx2(x0). Das heißt fx1(x0) und
fx2(x0) sind die Tangenswerte der Winkel, die die genannten Tangenten mit der Waagerechten
bilden.7

Man nennt fxk (x0) daher auch die Steigung des Graphen von f in xk-Richtung, und zwar im
Punkt x0.

Zur Bezeichnung: Wird eine Abbildung durch eine Gleichung der Art

y = f (x1, x2, . . . , xn)

beschrieben, so werden die partiellen Ableitungen auch durch

∂ y

∂xk
statt

∂ f

∂xk

ausgedrückt. Diese Schreibweise ist in Naturwissenschaft und Technik oft sehr praktisch. Dazu
folgendes Beispiel:

Beispiel 6.12:

Das ideale Gasgesetz lautet

pV = RT , (R = konstant , p > 0 , V > 0 , T > 0) .

es wurde schon in Übung 6.9 betrachtet. Wir lösen die Gleichung nach V auf und erhalten

V = R
T

p
⇒ ∂V

∂T
= R

p
,

∂V

∂p
= − RT

p2
.

7 Wie bei Funktionen einer Variablen werden die Winkel dabei negativ gerechnet, wenn die Tangente in Richtung der
zugehörigen Variablen fällt, und positiv, wenn sie steigt.
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Auflösen nach p und T ergibt entsprechend

p = R
T

V
⇒ ∂p

∂T
= R

V
,

∂p

∂V
= . . . ,

T = pV

R
⇒ ∂T

∂p
= . . . ,

∂T

∂V
= . . . .

Der Leser schreibe die drei fehlenden partiellen Ableitungen selbst hin. Durch Nachrechnen
erkennt man, daß folgendes gilt:

∂V

∂p
· ∂p

∂T
= −∂V

∂T
.

Wir werden später sehen (s. Abschn. 6.3.4, Beisp. 6.19), daß diese Gleichungen für alle Gase
(auch nichtideale) und alle Flüssigkeiten gilt.

Übung 6.15:

Bilde die partiellen Ableitungen
∂ f

∂x
(x, y) und

∂ f

∂y
(x, y) der folgenden reellwertigen Funktio-

nen f : R2 → R:

(a) f (x, y) = x ey , (b) f (x, y) = sin(x2 + y3) ,

(c) f (x, y) = x y , (d) f (x, y) = ex cos(xy)+ x

1+ y2
.

Übung 6.16:

Bilde die partiellen Ableitungen
∂ f

∂x1
(x),

∂ f

∂x2
(x),

∂ f

∂x3
(x) der Abbildung

f (x) =

⎡

⎢
⎣

x3 sin(x1) cos(x2)

x3
1 + x2

√

1+ x2
3

sin(ex1x2x3)

⎤

⎥
⎦ , x =

⎡

⎢
⎣

x1

x2

x3

⎤

⎥
⎦ ∈ R3 .

Beachte, daß jede partielle Ableitung
∂ f

∂xk
(x) ein Vektor aus R3 ist!

6.3.2 Ableitungsmatrix, Differenzierbarkeit, Tangentialebene

Durch

f (x) =

⎡

⎢
⎢
⎢
⎣

f1(x1, x2, . . . , xn)

f2(x1, x2, . . . , xn)
...

fm(x1, x2, . . . , xn)

⎤

⎥
⎥
⎥
⎦

, x =

⎡

⎢
⎢
⎢
⎣

x1

x2
...

xn

⎤

⎥
⎥
⎥
⎦
∈ D
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sei eine Abbildung beschrieben, die in x0 partiell differenzierbar ist. Das bedeutet, daß alle Ab-
leitungen

∂ f

∂xk
(x0) für

{

i = 1, . . . , m ,

k = 1, . . . , n

existieren. Man kann diese Ableitungen in einer Matrix zusammenfassen, die wir mit f ′(x0)

abkürzen:

f ′(x0) :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂ f1

∂x1

∂ f1

∂x2
· · · ∂ f1

∂xn

∂ f2

∂x1

∂ f2

∂x2
· · · ∂ f2

∂xn
...

...
...

∂ fm

∂x1

∂ fm

∂x2
· · · ∂ fm

∂xn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (6.22)

(Das Argument (x0) wurde rechts der Übersicht wegen weggelassen.)

Die Matrix heißt Ableitungsmatrix von f in x0. (Sie wird auch Jacobi8-Matrix genannt.)

Beispiel 6.13:

Die Abbildung f : R3 → R2, definiert durch

f (x) =
[

x1 sin(x2x3)

x2
1 + x2

2 + cos x3

]

, x =

⎡

⎣

x1

x2

x3

⎤

⎦ ,

hat die Ableitungsmatrix

f ′(x) =
[

sin(x2x3) x1x3 cos(x2x3) x1x2 cos(x2x3)

2x1 −2x2 − sin x3

]

.

Die Ableitungsmatrix hat also ebenso viele Zeilen wie f , und so viele Spalten, wie es Kompo-
nenten von x gibt. Zwei Sonderfälle dazu:

Beispiel 6.14:

f (x, y) = x2 + sin(xy) (x, y ∈ R)⇒ f ′(x, y) = [2x + y cos(xy) , x cos(xy)] .

Beispiel 6.15:

f (t) =

⎡

⎣

t2

sin t
5t + t3

⎤

⎦ ⇒ f ′(t) =

⎡

⎣

2t
cos t

5+ 3t2

⎤

⎦ (t ∈ R) .

8 Carl Gustav Jacob Jacobi (1804 – 1851), deutscher Mathematiker
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Die Beispiele verdeutlichen: Eine reellwertige Funktion f (x1, x2, . . . , xn) von n Variablen hat
(falls sie partiell differenzierbar ist) eine Zeilenmatrix [ fx1 , fx2 , . . . , fxn ] = f ′(x) als Ablei-
tungsmatrix. (Hierbei werden wir zur besseren Trennung der Elemente oft Kommata eingefügt.)
Eine Abbildung f von nur einer reellen Variablen hat als Ableitungsmatrix eine Spaltenmatrix.

Mit Hilfe der Ableitungsmatrix definieren wir, was wir unter Differenzierbarkeit9 einer Abbil-
dung aus Rn in Rm verstehen wollen. Es handelt sich hierbei um eine schärfere Bedingung als sie
die partielle Differenzierbarkeit darstellt. Bei technisch wichtigen Funktionen und Abbildungen
liegt die Differenzierbarkeit normalerweise vor.

Definition 6.16:
Eine Abbildung f : D → Rm (D ⊂ Rn) heißt differenzierbar in einem inneren Punkt
x0 von D, wenn sie in x0 partiell differenzierbar ist und überdies in folgender Form
geschrieben werden kann:

f (x) = f (x0)+ f ′(x0)(x − x0)+ k(x) , (6.23)

wobei k : D → Rm eine Abbildung ist, die

lim
x→x0

|k(x)|
|x − x0|

= 0 (6.24)

erfüllt.
f heißt differenzierbar in A ⊂ D, wenn f in jedem Punkt von A differenzierbar

ist. Im Falle A = D heißt f eine differenzierbare Abbildung.

Bemerkung: (a) Im Ausdruck f ′(x0)(x − x0) wird die Matrix f ′(x0) mit der Spaltenmatrix
(x − x0) multipliziert.

(b) Der Grenzwert (6.24) besagt, daß k(x) für x → x0 »schneller« gegen Null strebt als die Dif-
ferenz (x−x0). Damit stellt die Gleichung (6.23) eine vollständige Analogie zur entsprechenden
Aussage im Eindimensionalen dar. Denn wäre f = f reellwertig und x = x eine reelle Variable,
so folgte aus (6.23) nach Umstellung:

f (x)− f (x0)

x − x0
− f ′(x0) =

k(x)

x − x0
.

Differenzierbarkeit in x0 liegt also genau dann vor, wenn die rechte Seite gegen Null strebt, wie
in (6.24) gefordert wird.

Wie kann man erkennen, ob eine Abbildung differenzierbar ist? Darüber gibt der folgende
Satz Auskunft, der im Wesentlichen sagt: Sind die partiellen Ableitungen von f stetig, so ist f

differenzierbar.

(Für den Beweis verweisen wir auf [56], Satz 6.9, S. 280.)

9 Man spricht hierbei auch von »totaler Differenzierbarkeit« oder »Frechét-Differenzierbarkeit«.
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Satz 6.6:
f : D → Rm (D ⊂ Rn) ist in dem inneren Punkt x0 aus D differenzierbar, wenn alle
partiellen Ableitungen von f in einer Umgebung von x0 existieren und in x0 stetig
sind.

Beispiel 6.16:

f (x) =
[

x3
1 x3

2

x2
1 + x2

2

]

, x =
[

x1

x2

]

∈ R2 ⇒ f ′(x) =
[

3x2
1 x3

2 3xs x2
2

2x1 2x2

]

.

Die partiellen Ableitungen — sie stehen in der Ableitungsmatrix — sind offenbar alle stetig in
R2 Nach Satz 6.6 ist f daher in ganz R2 differenzierbar.

Wählen wir z.B. x0 =
[

2
1

]

aus, so erlaubt (6.23) folgende Darstellungen von f (x):

f (x) =
[

8
5

]

+
[

12 24
4 2

] [

x1 − 2
x2 − 1

]

+ k(x)

=
[

8+ 12(x1 − 2)+ 24(x2 − 1)+ k1(x)

5+ 4(x1 − 2)+ 2(x2 − 1)+ k2(x)

]

, mit k =
[

k1

k2

]

Da |k(x)| für x-Werte, die genügend nahe bei x0 liegen, »sehr klein« ist, geben die Glieder der
rechten Seite, ohne k(x), eine gute Approximation für f (x) in der Nähe von x0 an.

Die Abbildungen aller vorausgehender Beispiele in diesem und in dem vorigen Abschnitt
(Beisp. 6.7 – 6.15) erfüllen die Voraussetzungen des Satzes 6.6, denn ihre partiellen Ableitungen
sind offensichtlich überall stetig. Somit sind alle Abbildungen dieser Bereiche differenzierbar,
und zwar in allen Punkten ihrer Definitionsbereiche.

Ein Beispiel einer Abbildung, die zwar partiell differenzierbar ist, aber nicht differenzierbar,
findet man in Übung 6.18.

Veranschaulichung: Im Falle einer reellwertigen Funktion zweier Variabler läßt sich die Diffe-
renzierbarkeit mit Hilfe von Tangentialebenen veranschaulichen:

Es sei f (x, y) dargestellt durch die in Fig. 6.11 skizzierte gebogene Fläche. f sei in x0 =[

x0

y0

]

differenzierbar, d.h. es gilt nach (6.23):

f (x, y) = f (x0, y0)+ [ fx (x0, y0), fy(x0, y0)]
[

x − x0

y − y0

]

+ k(x, y)

= f (x0, y0)+ fx (x0, y0)(x − x0)+ fy(x0, y0)(y − y0)+ k(x, y) ,

wobei (6.24) erfüllt ist. Die Glieder der rechten Seite, ohne k(x, y), bilden folgende Abbildung
g : R2 → R:

g(x, y) = f (x0, y0)+ fx (x0, y0)(x − x0)+ fy(x0, y0)(y − y0) .

Der Graph von g ist eine Ebene, die sich — wegen der »Kleinheit« von k(x, y) — an den Gra-
phen von f anschmiegt. Wir nennen diese Ebene die Tangentialebene an f in x0. (Der Ausdruck
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Fig. 6.11: Differenzierbarkeit von f in x0 und Tangentialebene

»Tangentialebene« wird auch für die Abbildung g selbst benutzt.)

Wir können daher kurz sagen:

f (x, y) ist genau dann in x0 =
[

x0

y0

]

differenzierbar, wenn es eine Tangentialebene an f in

x0 gibt.

Wir kehren noch einmal zur Definition 6.15 der Differenzierbarkeit allgemeiner Abbildungen
f : D → Rm(D ⊆ Rn) in x0 zurück. Wie in unserer zweidimensionalen Betrachtung faßt man
die ersten Glieder auf der rechten Seite von (6.23) zu einer neuen Abbildung g : Rn → Rm

zusammen:

g(x) := f (x0)+ f ′(x0)(x − x0) , (6.25)

und nennt sie die Tangentialabbildung von f in x0. Es gilt also

f (x) = g(x)+ k(x) (6.26)

mit (6.25). |k(x)| ist — intuitiv gesprochen — »sehr klein« in der Nähe von x0. Man kann
also f (x) in genügender Nähe von x0 durch g(x) ersetzen, ohne einen allzu großen Fehler
zu machen. g(x) ist aber sehr einfach zu berechnen, meistens viel einfacher als f (x) selbst.
Diese Approximation von f durch die viel einfachere Tangentialabbildung g ist der Kern- und
Angelpunkt der Differentialrechnung.
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Übung 6.17:

Schreibe für die folgenden Abbildungen und die angegebenen Punkte x0 die Gl. (6.23) hin, die

die Approximation der Abbildung durch eine Tangentialabbildung beschreibt (vgl. Beisp. 6.16).

(a) f (x, y) = x2 − y2 , x0 =
[

x0

y0

]

=
[

2

−2

]

,

(b) f (x, y) =
[

xy

ex + ey

]

, x0 =
[

x0

y0

]

=
[

1

2

]

,

(c) f (x1, x2, x3) = x1x2
2 x3

3 , x0 =

⎡

⎢
⎣

3

−2

1

⎤

⎥
⎦ .

Berechne für einige x-Werte in der Nähe von x0 (z.B. mit |x−x0| ≤ 1
2 ) die Werte f (x) und der

Tangentialabbildung g(x) (s. (6.25)). Vergleiche g(x) und f (x). Berechne insbesondere ihren

Abstand | f (x)− g(x)|.

Übung 6.18:

Wo sind die folgenden Funktionen definiert und wo differenzierbar?

(a) f (x, y) =
√

1− x2 − y2 ,

(b) f (x, y) = ln(xy) ,

(c) f (x, y, z) = sin(x) sin(y) cos(z)

x2 + y2 + z2
.

(d) Zeige, daß die Funktion

f (x, y) =

⎧

⎨

⎩

y
(

1+ cos πx
y

)

, für |y| > |x |,
0 , sonst

stetig und partiell differenzierbar in R2 ist,

jedoch nicht differenzierbar in 0.

Übung 6.19:

Es sei f : D → Rm (D ⊂ Rm) eine Abbildung, und x0 ∈ D
◦

.

Beweise: Kann man f in der Form

f (x) = f (x0)+ A(x − x0)+ ·k(x)

darstellen, wobei A = [aik ]m,n eine reelle Matrix ist und k : D → Rm eine Abbildung mit

|k(x)|/|x·−x0| → 0 für x → x0, so ist f partiell differenzierbar in x0, und es gilt A = f ′(x0).

(⇒ f ist differenzierbar in x0). Hinweis: Beim Grenzübergang x → x0 wird x so gewählt, daß

sich x nur in der k-ten Komponente xk von x0 unterscheidet (⇒ aik = ∂ fi /∂xk ).
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Fig. 6.12: Zu Übung 6.18d

6.3.3 Regeln für differenzierbare Abbildungen. Richtungsableitung

Satz 6.7:

Ist f : D → Rm (D ⊂ Rn) differenzierbar in x0, so ist f auch stetig in x0. Mehr
noch: Es gibt eine Umgebung U von x0 und eine Konstante M > 0 mit

| f (x)− f (x0)| ≤ M |x − x0| für alle x ∈ U .

Beweis:

Aus (6.23) folgt nach Umstellung

| f (x)− f (x0)| ≤ | f ′(x0)||x − x0| +
|k(x)|
|x − x0|

|x − x0| (6.27)

für alle x ∈ D mit x �= x0. Wegen |k(x)|/|x− x0| → 0 für x → x0 gilt: Es gibt eine Umgebung
U mit |k(x)|/|x − x0| ≤ 1 für alle x ∈ U . Mit M := | f ′(x0)| + 1 folgt aus (6.27) damit die
Behauptung des Satzes. �

Satz 6.8:
(Linearität) Sind f : D → Rm und h : D → Rm (D ⊂ Rn) differenzierbar in x0, so
ist auch λ f + μh (mit reellen λ, μ) in x0 differenzierbar, und es gilt

(λ f + μh)′(x0) = λ f ′(x0)+ μh′(x0) . (6.28)

Der einfache Beweis bleibt dem Leser überlassen.

Satz 6.9:
(Kettenregel) Es sei h : C → D (mit C ⊂ Rn , D ⊂ Rp) differenzierbar in x0 ∈ C und
f : D → Rm differenzierbar im Punkt z0 = h(x0). Dann ist auch f ◦ h : C → Rm
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in x0 differenzierbar, und es gilt

( f ◦ h)′(x0) = f ′(z0)h′(x0)
10 . (6.29)

Beweis:
Mit

f (z) = f (z0)+ f ′(z0)(z − z0)+ k(z) und

z = h(x) = h(x0)+ h′(x0)(x − x0)+ m(x)

folgt durch Einsetzen

( f ◦ h)(x) = f (h(x)) = f (z) = f (z0)+ f ′(z0)(h(x)− h(x0))+ k(z)

= f (z0)+ f ′(z0)(h′(x0)(x − x0)+ m(x))+ k(z)

= f (z0)+ f ′(z0)h′(x0)(x − x0)+ s(x) (6.30)

mit s(x) = f ′(z0)m(x)+ k(h(x)) . (6.31)

Wir setzen abkürzend

m0(x) := m(x)

|x − x0|
, k0(z) := k(z)

|z − z0|

für x �= x0, z �= z0 sowie m0(x) := 0, k0(z) := 0, und erhalten aus (6.31)

|s(x)| ≤ | f ′(z0)||m0(x)||x − x0| + |k0(z)||h(x)− h(x0)|
≤ | f ′(z0)||m0(x)||x − x0| + |k0(h(x))|M |x − x0|

für ein M > 0 und alle x aus einer Umgebung U von x0 (s. Satz 6.7). Wegen m0(x0)→ 0 und
k0(h(x)) → 0 für x → x0 folgt damit |s(x)|/|x − x0| → 0 für x → x0. Somit liefert (6.30)
die Behauptung des Satzes (vgl. Üb. 6.19). �

Für den häufig auftretenden Sonderfall, daß h nur von einer reellen Variablen abhängt, formu-
lieren wir den Satz noch einmal ausführlicher.

Folgerung 6.5:
Durch x = h(t), oder in Komponentenschreibweise

⎡

⎢
⎢
⎢
⎣

x1

x2
...

xn

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

h1(t)
h2(t)

...

hn(t)

⎤

⎥
⎥
⎥
⎦

,

10 Rechts werden zwei Matrizen multipliziert.
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sei eine Abbildung von einem Intervall I in D ⊆ Rn gegeben. h sei in t0 ∈ I differen-
zierbar. Ferner sei durch

y = f (x1, x2, . . . , xn) , x =

⎡

⎢
⎣

x1
...

xn

⎤

⎥
⎦ ,

eine Abbildung von D in, Rm beschrieben, die in x0 = h(t0) differenzierbar ist. Für
die zusammengesetzte Abbildung

y(t) = ( f ◦ h)(t) = f (h1(t), . . . , hn(t)) , t ∈ I ,

gewinnt man nach Satz 6.9 folgende Ableitungen in t0:

d

dt
( f ◦ h)(t0) = f ′(x0)h′(t0) =

n
∑

k=1

∂ f

∂xk
(x0)

dhk

dt
(t0) . (6.32)

Mit den Bezeichnungen
dxk

dt
= dhk

dt
(t0) und

d y

dt
:= d

dt
( f ◦ h)(t0) erhält (6.32) die

leicht zu merkende Kurzform:

d y

dt
=

n
∑

k=1

∂ y

∂xk

dxk

dt
. (6.33)

Beispiel 6.17:

Es sei

y = f (x1, x2) = x2
1 sin x2 , x1, x2 ∈ R

und x1 = h1(t) = cos t , t ∈ R ,

x2 = h2(t) = t3 .

Damit wird die Ableitung von

y = f (h1(t), h2(t)) = cos t sin t3 (6.34)

nach t mit Hilfe von (6.33) folgendermaßen berechnet:

dy

dt
= ∂y

∂x1

dx1

dt
+ ∂y

∂x2

dx2

dt
= 2x1 sin(x2) · (− sin t)+ x2

1 cos(x2) · 3t2

= 2 cos t sin(t3)(− sin t)+ cos t cos(t3)3t2 .

Das »direkte« Differenzieren von (6.34) nach t mit der Produktregel liefert natürlich dasselbe.
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Fig. 6.13: Richtungsableitung
∂

∂a
f (x0) = tan α

Richtungsableitung: Wir knüpfen noch einmal an Folgerung 6.5 an. Hat hierin h die Gestalt

h(t) = x0 + ta mit |a| = 1

(x0 ∈ Rn , a ∈ Rn , t ∈ R), so ist zweifellos h′(t) = a für alle t ∈ R. Damit folgt aus (6.32) für
t0 = 0

d

dt
( f ◦ h)(0) = f ′(x0)a

h(t) beschreibt eine »Gerade« in Rn , die für steigende t in Richtung a durchlaufen wird. (Man
vergegenwärtige sich dies im R2 oder R3.) Aus diesem Grunde nennt man f ′(x0)a mit |a| = 1
auch die Richtungsableitung von f in Richtung a und beschreibt sie durch

∂

∂a
f (x0) := f ′(x0)a . (6.35)

Im Sonderfall einer reellwertigen Funktion f wird die senkrecht geschriebene Ableitungsmatrix
f ′(x0)

T auch der Gradient von f genannt, abgekürzt: grad f (x), also

grad f (x) := f ′(x)T = [ fx1(x), fx2(x), fx3(x), . . . , fxn (x)]T .

Damit ist die Richtungsableitung von f in x0 in Richtung a (|a| = 1) gleich

∂

∂a
f (x0) = grad f (x0) · a =

n
∑

k=1

fxk (x0)ak , (6.36)

wobei a1, . . ., an die Komponenten von a sind. Die Richtungsableitung (6.36) wird maximal,
wenn a = grad f (x0)/| grad f (x0)| ist (grad f (x0) �= 0 vorausgesetzt). Man sagt daher: Der
Gradient von f weist in die Richtung des stärksten Anstiegs von f .
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Übung 6.20*:

(a) Es seien f : R2 → R und h : R→ R2 definiert durch

f (x) = ex1 sin x2 ,

[

x1

x2

]

= h(t) =
[

h1(t)

h2(t)

]

=
[

t3

1+ t2

]

also ( f ◦ h)(t) = et3
sin(1 + t2). Differenziere diese Funktion auf zwei Weisen: einmal

direkt und einmal mit (6.33).

(b) Bestimme die Richtungsableitung

∂ f

∂a
(0,0) für a = 1√

2

[

1

1

]

.

6.3.4 Das vollständige Differential

Wir gehen noch einmal von der Differenzierbarkeit einer gegebenen Abbildung f : D → Rm

(D ⊂ Rn) in x0 aus. Sie besagt, daß f (x) folgendermaßen geschrieben werden kann:

f (x) = f (x0)+ f ′(x)(x − x0)+ k(x) , x =

⎡

⎢
⎣

x1
...

xn

⎤

⎥
⎦ ∈ D , (6.37)

mit k(x)/|x−x0| → 0 für x → x0. Ausgehend von der Funktionsgleichung z = f (x) schreiben
wir abkürzend

Δz := f (x)− f (x0)

und erhalten (6.37) in der Form

Δz = f ′(x0)(x − x0)+ k(x)

Da |k(x)| für kleine |x − x0| sehr kleine Werte hat, gibt f ′(x0)(x − x0) in diesem Falle recht
genau die Abweichung δz des Wertes f (x) von f (x0) an.

In Physik und Technik werden gerne die Bezeichnungen

dx := x − x0 und dz := f ′(x0) dx (6.38)

gewählt. Beschreiben wir die Komponenten von x − x0 mit dx1, dx2, . . ., dxn , also

dx = x − x0 =

⎡

⎢
⎣

dx1
...

dxx

⎤

⎥
⎦ ,

so erhält man aus (6.38) ausführlicher:
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dz =
n
∑

k=1

∂ f

∂xk
(x0) dxk . (6.39)

Die hierdurch beschriebene lineare Abbildung — wobei dx1, . . ., dxn die reellwertigen Varia-
blen sind — heißen das vollständige (oder totale) Differential von f in x0. Diese Abbildung wird
durch d f symbolisiert, genauer d f : Rn → Rm , mit der Funktionsgleichung

d f ( dx1, . . . , dxn) :=
n
∑

k=1

∂ f

∂xk
(x0) dxk . (6.40)

Schreibt man für die linke Seite wieder dz, und setzt man ferner abkürzend

∂ z

∂xk
:= ∂ f

∂xk
(x0) ,

so wird das vollständige Differential von f in x0 durch folgende übersichtliche Gleichung ange-
geben:

dz =
n
∑

k=1

∂ z

∂xk
dxk . (6.41)

Diese Schreibweise ist in Physik und Technik sehr gebräuchlich (vgl. Beisp. 6.18 und 6.19).
Wie schon erwähnt, gibt das vollständige Differential (6.38) für kleine | dx| mit guter Genau-

igkeit die Differenz der Funktionswerte f (x)− f (x0) an. Darin liegt seine Bedeutung.
Veranschaulichung: Im Falle einer reellwertigen Funktion wird das vollständige Differential

d f in x =
[

x0

y0

]

durch

dz = d f ( dx, dy) = ∂ f

∂x
(x0, y0) dx + ∂ f

∂y
(x0, y0) dy

beschrieben. Sein Graph wird durch eine Ebene veranschaulicht. Dabei liegt ein parallel ver-
schobenes Koordinatensystem mit dx-, dy- und dz-Achse zugrunde, dessen Ursprung im x-y-z-
System die Koordinaten x0, y0, f (x0, y0) besitzt (s. Fig. 6.14).

Beispiel 6.18:
(Auswirkung von Meßfehlern) Die Schwingungsdauer eines mathematischen Pendels der Länge
l (s. Fig. 6.15) ist

T = 2π

√

l

g
.

Dabei ist g die Erdbeschleunigung. Wieviel % relativer Fehler hat man für T schlimmstenfalls
zu erwarten, wenn l und g auf höchstens 0,1% genau gemessen sind?
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Fig. 6.14: Zum vollständigen Differential Fig. 6.15: Mathematisches Pendel

Zur angenäherten Berechnung benutzen wir das vollständige Differential

dT = ∂T

∂l
dl + ∂T

∂g
dg , (6.42)

wobei dl und dg die Fehler für l und g sind. Es folgt

dT = 2πg−
1
2 · 1

2
l−

1
2 dl + 2πl

1
2

(

−1

2

)

g−
3
2 dg = 2π

√

l

g
· 1

2

dl

l
− 2π

√

l

g
· 1

2
· dg

g

⇒ dT

T
= 1

2

(
dl

l
− dg

g

)

.

Da

∣
∣
∣
∣

dl

l

∣
∣
∣
∣
≤ 0,001 und

∣
∣
∣
∣

dg

g

∣
∣
∣
∣
≤ 0,001 vorausgesetzt ist, folgt

∣
∣
∣
∣

dT

T

∣
∣
∣
∣
≤ 0,001. Der relative Fehler

von T ist also höchstens 0,1%.

Fig. 6.16: Gas im Kolben. Zu Beisp. 6.19

Beispiel 6.19:

(Anwendung auf die Gasdynamik) Volumen V , Druck p und Temperatur T eines homogenen Ga-
ses (s. Fig. 6.16) — oder einer homogenen Flüssigkeit — hängen durch Gleichungen zusammen,
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z.B. durch

V = f (p, T ) . (6.43)

(Bei idealen Gasen lautet diese Gleichung V = RT/p, bei realen Gasen oder Flüssigkeiten
anders.) Wir nehmen an, daß sich (6.43) nach p auflösen läßt, d.h. in die Gestalt

p = g(T, V )

umformen läßt (bei idealen Gasen p = RT/V ). Die angegebenen Funktionen f und g dürfen
wir als stetig differenzierbar voraussetzen. Dabei ist

α = 1

V

∂V

∂T
der Ausdehnungskoeffizient

κ = − 1

V

∂V

∂p
die Kompressibilität

⎫

⎪
⎪
⎬

⎪
⎪
⎭

abhängig von p und T ,

β = 1

p

∂p

∂T
der Spannungskoeffizient, abhängig von V und T .

Zwischen diesen Größen besteht die folgende Beziehung:

α = pβκ . (6.44)

Wir wollen diese Gleichung herleiten und betrachten dazu zunächst das vollständige Differential
von f :

dV = ∂V

∂p
dp + ∂V

∂T
dT . (6.45)

Nehmen wir für den Augenblick an, daß hier der Unterschied dV des Volumens exakt wieder-
gegeben wird und nicht nur angenähert, so ist bei konstant gehaltenem Volumen dV = 0, und
damit

0 = ∂V

∂p
dp + ∂V

∂T
dT ⇒ ∂V

∂p

dp

dT
+ ∂V

∂T
= 0 .

Da V konstant ist, dp/ dT durch ∂p/∂T ersetzbar und man erhält

∂V

∂p

∂p

∂T
+ ∂V

∂T
= 0 . (6.46)

Daraus folgt mit den Definitionen von α, κ und β sofort die behauptete Gleichung α = pβκ .

Die obige Argumentation ist wegen der genannten Annahme nicht präzise. Bei einem exakten
Beweis von (6.44) gehen wir daher so vor:

Wir setzen p = g(T, V ) in V = f (p, T ) ein:

V = f (g(T, V ), T )
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und halten nun V = V0 konstant:

V0 = f (g(T, V0), T ) .

Rechts steht eine Funktion von T , die nach Kettenregel (Folg. 6.5, Abschn. 6.3.3) abgeleitet wer-
den kann. Die linke Seite hat die Ableitung 0, da V0 konstant ist. Also folgt durch Differentiation
nach T :

0 = ∂ f

∂p

∂g

∂T
+ ∂ f

∂T

dT

dT
, (6.47)

wobei die Variablenbezeichnungen weggelassen wurden. Wegen
∂ f

∂p
= ∂V

∂p
,

∂g

∂T
= ∂p

∂T
und

dT

dT
= 1 ist die Gl. (6.45) aber mit (6.46) identisch. Damit ist (6.44) bewiesen.

Bemerkung: (a) Die beschriebene Herleitung von α = pβκ ist für das Vorgehen in Naturwis-
senschaft und Technik typisch: Zuerst wird aus einer plausiblen vereinfachenden Annahme, die
die Exaktheit nur geringfügig stört, eine Gleichung gewonnen (hier (6.45)). Gerade das vollstän-
dige Differential eignet sich für solches plausibles Schließen gut. In einem zweiten Schritt wird
dann eine exakte Herleitung »nachgeliefert«. Solche mehrstufige Herleitung und Präzisierung ist
ein gängiges und erfolgreiches Verfahren. Der berühmte Physiker E. Schrödinger hat das einmal
so beschrieben:

Es dauert fünf Minuten, die Idee einer neuen Theorie zu entwickeln. Nach einer Stunde hat
man die Gleichungen aufgestellt. Eine Woche dauert es, bis die Dimensionen aller Größen
zusammenpassen, einen Monat, bis die Vorzeichen stimmen. Und nach einem Jahr entdeckt
man, daß noch ein Faktor 1

2 fehlt.

Übung 6.21:

(Vereinfachte angenäherte Rechnung) Berechne näherungsweise 2,023,01. Führe dazu die Funk-

tion f (x, y) = x y ein (x > 0, y > 0) und ermittle f (2,02, 3,01) näherungsweise aus

f (2,3)+ d f , wobei

d f = ∂ f

∂x
dx + ∂ f

∂y
dy , ( dx = 0,02 , dy = 0,01) .

Die partiellen Ableitungen werden für x = 2 und y = 3 gebildet.

6.3.5 Höhere partielle Ableitungen

Jede partielle Ableitung
∂ f

∂xi
einer Abbildung f : D → Rm (D ⊂ Rn) ist wieder eine Abbildung

von D
◦

in Rm . Es entsteht dadurch eine zweite partielle Ableitung, für die folgende Schreibweisen
üblich sind:

∂

∂xk

(
∂ f

∂xi

)

(x0) =:
∂2 f

∂xk∂xi
(x0) =: f xi xk

(x0) =: Dki f (x0)
11
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Existiert diese Ableitung in jedem inneren Punkt von D und ist abermals ableitbar, etwa nach
x j , so entsteht entsprechend eine dritte partielle Ableitung

∂3 f

∂x j∂xk∂xi
= f xi xk x j

= D jki f .

Auf diese Weise fährt man fort und gelangt zu beliebig hohen Ableitungen f xi1 xi2 ...xi p
. Wir er-

wähnen noch, daß man bei mehrmaligem Ableiten nach einer Variablen xi abkürzend schreibt:

∂m f

∂xm
i

:= ∂m f

∂xi∂xi . . . ∂xi
.

Wird f durch eine Funktionsgleichung beschrieben, z.B. y = f (x), so werden die höheren
partiellen Ableitungen auch durch

∂2 y

∂x2
1

,
∂2 y

∂x1∂x2
,

∂3 y

∂x1∂x2∂x4
, usw.

ausgedrückt. Diese Schreibweise wird in Naturwissenschaft und Technik viel benutzt, da man
der abhängigen Variablen (hier y) häufig ansieht, welche physikalische Größe sie darstellt.

Beispiel 6.20:
f (x1, x2) = x2

1 x2. Der besseren Übersicht wegen lassen wir die Variablenangabe (x1, x2) bei
den Ableitungsfunktionen weg. Es folgt:

fx1(x1, x2) = 2x1x2 , fx2(x1, x2) = x2
1 , fx1,x2(x1, x2) = 2x2 ,

fx1x2(x1, x2) = 0 , fx1x2(x1, x2) = fx2x1(x1, x2) = 2x1 .

Auch bei den folgenden Beispielen lassen wir die Variablenangabe links weg.

Beispiel 6.21:
f (x, y) = x3 + exy .

⇒ fx = 3x2 + y exy , fy = x exy ,

fxx = 6x + y2 exy , fyy = x2 exy , fxy = fyx = (1+ xy) exy .

Beispiel 6.22:

f (x1, x2, x3) =
[

x1x2x3

sin(x1 + 2x2 + 3x3)

]

⇒ f x1
=
[

x2x3

cos(x1 + 2x2 + 3x3)

]

,

f x2
=
[

x1x2

2 cos(x1 + 2x2 + 3x3)

]

, f x1x2
= f x2x1

=
[

x3

−2 sin(x1 + 2x2 + 3x3)

]

.

11 Man beachte, daß in f xi xk
die Indizes i , k in umgekehrter Reihenfolge stehen, gegenüber den übrigen Schreibwei-

sen.
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Der Leser berechne zur Übung:

f x3
, f x1x3

, f x3x1
, f x2x3

, f x3x2
, f x1x2x3

, f x3x2x1
, f x1x1x2

, f x2x1x1
.

Es fällt auf, daß in den Beispielen f x1x2
= f x2x1

bzw. f xy = f yx gilt.

Auf die Reihenfolge der Differentiation kommt es dabei nicht an. Dies gilt auch für höhere
Ableitungen, wie im letzten Beispiel f x1x2x3

= f x3x2x1
, usw.

Hier liegt eine allgemeine Gesetzmäßigkeit vor, die in folgendem Satz formuliert ist. Dabei
führen wir noch eine Bezeichnung ein: f : D → Rm (D ⊂ Rn) heißt p-mal stetig differen-
zierbar, wenn alle partiellen Ableitungen von f , von der ersten bis zur p-ten, existieren und im
Inneren von D stetig sind. Statt »einmal stetig differenzierbar« sagt man kurz stetig differenzier-
bar.

Satz 6.10:
(Vertauschung partieller Ableitungen) Ist eine Abbildung f : D → Rm (D ⊂ Rn)
p-mal stetig differenzierbar, so kann in allen partiellen Ableitungen

f xi1 xi2 ...xik
mit 1 ≤ k ≤ p

Die Reihenfolge der xi1 , . . . , xik beliebig geändert werden, ohne daß sich die partiellen
Ableitungen selbst dabei ändern.

(Zum Beweis s. [56], Abschn. 6.2.4, S. 284 – 285)

6.3.6 Taylorformel und Mittelwertsatz

Wie im Eindimensionalen kann man auch differenzierbare Abbildungen im Rn mit Hilfe der
Taylorformel entwickeln und damit leicht berechenbare Polynome annähern.

Wir setzen voraus, daß f : D → Rm (D ⊂ Rn) eine (p + 1)-mal stetig differenzierbare
Abbildung ist. p ist dabei eine nichtnegative ganze Zahl.

Zur Aufstellung der Taylorformeln benötigen wir einige Bezeichnungen, die sich als praktisch
erweisen:

Mit

∇ :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂

∂x1

∂

∂x2

...
∂

∂xn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

wird ein symbolischer Vektor bezeichnet, der die partiellen Differentiationen nach den Variablen
x1, . . . , xn als Komponenten hat. Er heißt Nabla-Operator.
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Wir »multiplizieren« ihn skalar mit einem beliebigen Vektor

h =

⎡

⎢
⎢
⎢
⎣

h1

h2
...

hn

⎤

⎥
⎥
⎥
⎦

aus Rn und erhalten formal

h · ∇ := h1
∂

∂x1
+ . . .+ hn

∂

∂xn
=

n
∑

i=1

hi
∂

∂xi
.

Angewandt auf eine differenzierbare Abbildung f : D → Rm (D ⊂ Rn) schreiben wir

(h · ∇) f (x) :=
n
∑

i=1

hi
∂ f

∂xi
(x) . (6.48)

Es werden auch Potenzen von h · ∇ betrachtet, die formal berechnet werden, z.B.

(h · ∇)2 =
(

n
∑

i=1

hi
∂

∂xi

)2

=
n
∑

i, j=1

hi h j
∂2

∂xi∂x j
.

Dabei laufen i und j unabhängig von 1 bis n, so daß die rechte Summe n2 Glieder hat. Allgemein
berechnet man mit beliebiger natürlicher Zahl k die Potenz

(h · ∇)k =
n
∑

i1,i2,...,ik=1

hi1 hi2 · . . . · hik
∂k

∂xi1∂xi2 . . . ∂xik

.

In der Summe wird über alle k-Tupel (i1, i2, . . . , ik) mit i1, . . . , ik ∈ {1,2, . . . , n} summiert. Die
Summe hat daher nk Glieder.

Der »Operator« (h · ∇)k wird, wie in (6.48) auf f angewandt. Wir vereinbaren also:

(h · ∇)k f (x) :=
n
∑

i1,...,ik=1

hi1 · . . . · hik

∂k f

∂xi1 . . . ∂xik

(x) . (6.49)

Noch eine weitere Vorbereitung: Sind a und h beliebige Vektoren aus Rn , so bezeichnet man

[a, a + h] = {x = a + sh | 0 ≤ s ≤ 1}

als Strecke mit den Endpunkten a und a+ h. (Der Leser überzeuge sich davon, daß dieses im R2

und R3 der üblichen geometrischen Vorstellung entspricht.)
Damit formulieren wir den folgenden Satz, der die Taylorformel samt Restglied für differen-

zierbare Abbildungen beschreibt. (Zum Beweis s. [56], Abschn. 6.2.6, S. 286 – 289.)
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Satz 6.11:
(Taylorformel im Rn) Die Abbildung f : D → Rm (D ⊂ Rn) sei (p + 1)-mal stetig
differenzierbar, und [a, a+ h] sei eine im Inneren von D liegende Strecke. Damit gilt
die Taylorformel

f (a+ h) = f (a)+ 1

1! (h · ∇) f (a)+ 1

2! (h · ∇)2 f (a)+ . . .+ 1

p! (h · ∇)p f (a)+ R(a, h)

(6.50)

mit dem Restglied

R(a, h) =
1∫

0

(1− s)p

p! (h · ∇)p+1 f (a + sh) ds . (6.51)

Daraus ergibt sich die Restgliedabschätzung

|R(a, h)| ≤ |h|p+1

(p + 1)! sup
0≤s≤1

√
√
√
√

n
∑

i1,...,i p+1=1

∣
∣
∣ f xi1 ...xi p+1

(a + sh)

∣
∣
∣

2
. (6.52)

Bemerkung: In der Taylorformel ist x = a + h die eigentliche unabhängige Variable, wobei a

fest ist.
Für p = 0 folgt aus der Taylorformel

Satz 6.12:
(Mittelwertsatz im Rn) Ist f : D → Rm (D ⊂ Rn) einmal stetig differenzierbar, und
ist [a, a + h] eine Strecke im Inneren von D, so gilt

f (a + h)− f (a) =
1∫

0

(h · ∇) f (a + sh) ds (6.53)

sowie

| f (a + h)− f (a)| ≤ |h| sup
0≤s≤1

√
√
√
√

n
∑

i=1

∣
∣ f xi

(a + sh)
∣
∣
2
.

Die Wurzel rechts ist nichts anderes als die euklidische Norm der Ableitungsmatrix:
| f ′(a + sh)|.

Vom Mittelwertsatz abgesehen (p = 0), gibt es technische Anwendungen der Taylorformel haupt-
sächlich für p = 1 und p = 2, wobei f linear bzw. quadratisch angenähert wird.
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Übung 6.22:

Schreibe für die Funktion f : R2 → R, definiert durch die Gleichung f (x, y) = (x − 1)4(y −

2)3, x =
[

x

y

]

∈ R2, die Taylorformel für a = 0 und p = 2 auf. Schätze das Restglied für

|h| ≤ 1 ab.

6.4 Gleichungssysteme, Extremalprobleme, Anwendungen

6.4.1 Newton-Verfahren im Rn

Gegeben sei ein Gleichungssystem von n Gleichungen mit n Unbekannten x1, . . . , xn :

f1(x1, x2, . . . , xn) = 0

f2(x1, x2, . . . , xn) = 0

...

fn(x1, x2, . . . , xn) = 0

(6.54)

Mit

x =

⎡

⎢
⎣

x1
...

xn

⎤

⎥
⎦ und f :=

⎡

⎢
⎣

f1
...

fn

⎤

⎥
⎦

kann man das Gleichungssystem (6.54) kürzer so beschreiben

f (x) = 0 . (6.55)

Dabei sei D ⊂ Rn der Definitionsbereich von f , d.h. f bildet D in Rn ab: f : D → Rn . Wir
setzen f als stetig differenzierbar voraus.

Gesucht sind Punkte x ∈ D, die (6.55) erfüllen. Solche x heißen Lösungen der Gleichung
f (x) = 0.

Hat man schon genügend gute Näherungslösungen, so kann man mit dem Newtonschen Ver-
fahren versuchen, zu beliebig genauen Lösungen zu kommen. Das Newtonsche Verfahren für
f (x) = 0 im Rn ist dem Newton-Verfahren für Funktionen einer Variablen nachgebildet (s. Ab-

schn. 3.2.6) und zwar folgendermaßen: Liegt x0 ∈ D
◦ 12 in der Nähe einer Lösung von x = x

von f (x) = 0, so bildet man die Tangentialabbildung von f in x0:

g(x) := f (x0)+ f ′(x0)(x − x0) , x ∈ D ,

und löst anstelle von f (x) = 0 die Gleichung g(x) = 0, d.h. man sucht eine Lösung x1 der
Gleichung

g(x1) = f ′(x0)(x1 − x0) = 0 . (6.56)

12 D
◦

Inneres von D, s. Abschn. 6.1.4, Def. 6.7b
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Es handelt sich dabei um ein lineares Gleichungssystem, für das es mehrere gute Lösungsmetho-
den gibt (z.B. den Gaußschen Algorithmus, s. Burg/Haf/Wille (Lineare Algebra) [7]). Da sich g

und f in einer Umgebung von x0 nur wenig unterscheiden, ist zu hoffen, daß x1 recht nahe bei
der Lösung x von f (x) = 0 liegt, jedenfalls näher als x0.

Im Falle x1 ∈ D
◦

führt man, von x1 ausgehend, den gleichen Rechenschritt abermals durch,
d.h. man sucht ein x2 ∈ R2 mit

f (x1)+ f ′(x1)(x2 − x1) = 0 .

Liegt x2 in D
◦

, so berechnet man anschließend x3 aus

f (x2)+ f ′(x2)(x3 − x2) = 0 ,

usw. Allgemein: Ist xk ∈ D
◦

berechnet, so ermittelt man xk+1 aus

f (xk)+ f ′(xk)(xk+1 − xk) = 0 , k = 0,1,2, . . . . (6.57)

Auf diese Weise erhält man eine Folge x0, x1, x2, x3, . . ., Newtonfolge genannt, vorausgesetzt,

daß alle Matrizen f ′(xk) regulär13 sind und alle xk in D
◦

liegen. Dabei wird man von der be-
rechtigten Hoffnung beflügelt, daß die Folge x0, x1, x2, . . . , xk, . . . gegen eine Lösung x von
f (x) = 0 konvergiert.

Das beschriebene Verfahren heißt Newton-Verfahren im Rn . Multipliziert man (6.57) von links
mit f (xk)

−1 und löst nach xk+1 auf, so erhält man die Rechenvorschrift des Newton-Verfahrens
in der Form:

x0 gegeben,

xk+1 = xk − f ′(xk)
−1 f (xk) für k = 0,1,2, . . . .

(6.58)

Damit ist eine vollständige Analogie mit dem Newton-Verfahren bei einer reellen Unbekannten
gegeben (Abschn. 4.1.3).

Bei praktischen Rechnungen geht man allerdings besser von (6.57) aus. Man setzt dabei zur
Abkürzung zk+1 := xk+1 − xk , berechnet zk+1 aus

f ′(xk)zk+1 = − f (xk)

und bildet anschließend xk+1 = xk + zk+1. Wir fassen die Rechenvorschrift noch einmal zusam-
men:

Algorithmus des Newton-Verfahrens: Es sei f : D ⊂ Rn → Rn stetig differenzierbar

(I) Man wählt einen Anfangswert x0 ∈ D
◦

.

(II) Man berechnet x1, x2, x3, . . . , xk, . . ., indem man nacheinander für k = 0,1,2, . . . das

13 Eine Matrix A heißt regulär, wenn ihre Inverse A−1 existiert (s. Abschn. 6.1.5).
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Gleichungssystem

f ′(xk)zk+1 = − f (xk) (6.59)

nach zk+1 auflöst und xk+1 + xk + zk+1 bildet. Dabei wird f ′(xk) als regulär vorausge-

setzt sowie xk ∈ D
◦

für alle k = 1,2,3, . . ..

(III) Das Verfahren wird abgebrochen, wenn die xk sich innerhalb einer vorgegebenen Re-
chengenauigkeit nicht mehr ändern oder wenn k einen vorgegebenen Höchstwert erreicht
hat (z.B. k = 10).

Wie dicht die zuletzt berechnete Näherungslösung xk an der zu ermittelnden Lösung x von
f (x) = 0 liegt, ist aufgrund einer Fehlerabschätzung (s. Satz 6.13) zu überprüfen. Natürlich
kann man anstelle von (III) auch abbrechen, wenn eine Fehlerabschätzung anzeigt, daß eine ge-
wünschte Genauigkeit erreicht ist.

Beispiel 6.23:
Es sei folgendes Gleichungssystem zu lösen:

x1 −
1

3
x2

2 −
1

8
= 0 , x2 −

1

4
x2

1 +
1

6
= 0 .

Wir fassen die linken Seiten als Komponenten einer Abbildung f : R2 → R2 auf, d.h.

f (x) =
[

f1(x1, x2)

f2(x1, x2)

]

=

⎡

⎢
⎢
⎣

x1 −
1

3
x2

2 −
1

8

x2 −
1

4
x2

1 +
1

6

⎤

⎥
⎥
⎦

, x =
[

x1

x2

]

∈ R2 .

Gesucht werden Lösungen von f (x) = 0. Wir wollen dabei den Algorithmus des Newton-

Verfahrens verwenden, ausgehend von x0 =
[

0
0

]

. Die Newtonfolge x0, x1, x2, . . . ist definiert

durch

f ′(xk)zk+1 = − f (xk) , xk+1 := xk + zk+1 , k = 0,1,2, . . .

mit der Ableitungsmatrix

f ′(x) =

⎡

⎢
⎣

1 −2

3
x2

−1

2
x1 1

⎤

⎥
⎦ .

Die Rechnung enstprechend dem Algorithmus des Newton-Verfahrens ergibt Tab. 6.1 (gerundet).
Man erkennt, daß ab k = 3 im Rahmen der Rechengenauigkeit keine Änderung mehr eintritt. Bei
Rechnung mit 9 Stellen nach dem Komma ergibt das Einsetzen von x3 (s. Tab. 6.1) in f folgen-
des: f (x3) = 0 + ε mit |ε| ≤ 5 · 10−10. x3 ist also im Rahmen der Rundungsfehlergenaugikeit
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eine Lösung von f (x) = 0.

Tabelle 6.1: Zum Newton-Verfahren für Gleichungssysteme, Beispiel 6.23

Komponenten von xk

k x
(k)
1 x

(k)
2

0 0,000000000 0,000000000
1 0,125000000 -0,166666667
2 0,133764368 -1,162212644
3 0,133768871 -0,162193139

4 0,133768871 -0,162193139

Bemerkung: Man kann den Algorithmus, insbesondere bei großer Dimension n, dadurch verein-
fachen, daß man statt f ′(xk) einfach f ′(x0) setzt, also von x0 ∈ D ausgehend die Näherungslö-
sungen x1, x2, x3, . . . aus den Gleichungssystemen

f ′(x0)(xk+1 − xk) = − f (xk)

für k = 0,1,2,3, . . . ermittelt. Man nennt dies ein modifiziertes Newton-Verfahren. Der Vorteil
liegt darin, daß man bei Anwendung des Gaußschen Algorithmus die linke Seite f ′(x0)zk+1

nur einmal auf Dreiecksform bringen muß. Der Nachteil dieses Verfahrens ist dagegen, daß es
im allgemeinen langsamer konvergiert als das übliche Newton-Verfahren. Man hat also in jedem
Fall zu überlegen, nach welcher Methode man vorgehen möchte.

Zur Konvergenz: Einen Konvergenzansatz über das Newton-Verfahren findet man z.B. in [56],
Abschn. 6.3.2, S. 295 – 298. Dort werden recht allgemeine Voraussetzungen angegeben, unter
denen das Newton-Verfahren konvergiert, und zwar quadratisch (also sehr schnell). Doch sind
Konvergenzsätze dieser und verwandter Art nur von geringem praktischen Nutzen, da ihre Vor-
aussetzungen nur schwer zu verifizieren sind. Aus diesem Grunde zitieren wir nur den folgenden
einfachen Konvergenzsatz, der lediglich die grundsätzliche Berechtigung sichert, das Newton-
sche Verfahren anzuwenden.

Satz 6.13:
f : D ⊂ Rn → Rn sei zweimal stetig differenzierbar und besitze eine Nullstelle

x ∈ D
◦

: f (x) = 0. Ferner sei f ′(x) für jedes x ∈ D
◦

regulär. Dann folgt: Es gibt eine
Umgebung U von x, so daß die Newtonfolge x0, x1, x2, . . ., von einem beliebigen
x0 ∈ U ausgehend, gegen die Nullstelle x konvergiert.

Die Konvergenz ist quadratisch, d.h. es gilt für alle k = 1,2,3, . . .

|xk − x| ≤ C |xk−1 − x|2 mit einem C > 0.

Eine einfache Fehlerabschätzung lautet

|xk − x| ≤ | f (xk)| sup

x0∈D
◦
| f ′(x)−1| . (6.60)
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(Zum Beweis s. [56], S. 298, Folg. 6.7.)

Zur Näherungslösung: Näherungslösungen x0, mit denen man das Newton-Verfahren beginnt,
ergeben sich bei technischen Problemen oft aus der Realität, d.h. aus gewissen Lagen einer tech-
nischen Konstruktion. Dazu

Beispiel 6.24:
Ein Körper der Masse m sei an zwei Federn aufgehängt, wie es Fig. 6.17 zeigt. Die Federkon-
stanten seien a und b genannt. Damit gelten für die Waagerechte und die Senkrechte folgende
Kraftgleichgewichtsgleichungen:

−a · (r1 − R1) cos α + b · (r2 − R2) cos β = 0 ,

a · (r1 − R1) sin α + b · (r2 − R2) sin β = mg .

wobei r1, r2 die Längen der gedehnten Federn sind und R1, R2 die entsprechenden Federlängen
im unbelasteten Zustand. In dem Dreieck mit den Seitenlängen r1, r2 und s (= Abstand der oberen
Aufhängungspunkte) gelten folgende geometrische Zusammenhänge:

r1 sin α − r2 sin β = 0 ,

r1 cos α + r2 cos β = s .

Fig. 6.17: Elastische Aufhängung eines Körpers

Die letzten beiden Gleichungen kann man nach r1 und r2 auflösen. Man erhält unter Beach-
tung von sin(α + β) = sin α cos β + cos α sin β:

r1 =
s · sin β

sin(α + β)
, r2 =

s · sin α

sin(α + β)
.

Setzt man dies in die beiden Gleichgewichtsgleichungen ein, so erhält man ein System von zwei
Gleichungen mit den zwei Unbekannten α und β. Dies kann man mit dem Newton-Verfahren
lösen. Eine Näherungslösung ist dabei aus einer Skizze der Art der Fig. 6.17 schnell gefunden.
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Übung 6.23:

Berechne mit dem Newton-Verfahren die Gleichgewichtslage der elastisch aufgehängten Masse

in Beisp. 6.24 für m = 2 kg, s = 1 m, R1 = 0,9 m, R2 = 1,1 m, a = 11 kg/m, b = 9 kg/m.

Gesucht sind α und β.

6.4.2 Satz über implizite Funktionen, Invertierungssatz

Es geht um folgendes Problem: Durch z = f (x, y) sei eine Funktion in zwei Veränderlichen
beschrieben. Unter welchen Voraussetzungen kann man

f (x, y) = 0

nach y »auflösen« so daß eine Funktion g mit y = g(x) entsteht? Man sagt im Falle der Auflös-
barkeit: g ist eine durch f (x, y) = 0 bestimmte implizite Funktion.

Beispiel 6.25:
Man betrachte die Gleichung

2x2 + 3y = 0 , x , y reell.

Auflösen nach y ergibt y = −2x2/3, also die Gleichung einer Funktion g auf R der Gestalt
g(x) = −2x2/3. Die Funktion g ist durch die Gleichung 2x2 + 3y = 0 implizit gegeben, wie
man sagt.

Beispiel 6.26:
Die Gleichung

x2 − y2 + 1 = 0 , x, y ∈ R ,

dagegen liefert y =
√

x2 + 1 und y = −
√

x2 + 1, also zwei Funktionen und damit keine eindeu-
tig bestimmte Funktion.

Beispiel 6.27:
Schließlich läßt sich

x2 + y2 + 1 = 0 , x, y ∈ R ,

überhaupt nicht nach y auflösen, da es keine reellen Zahlen x , y gibt, welche die Gleichung
erfüllen.

Der folgende Satz gibt Auskunft darüber, wann f (x, y) = 0 eine implizite Funktion be-
schreibt.

Satz 6.14:
(über implizite Funktionen, zweidimensionaler Fall) Es sei f (x, y) eine stetig diffe-
renzierbare reelle Funktion zweier reeller Variabler. Ihr Definitionsbereich D ⊂ R2



6.4 Gleichungssysteme, Extremalprobleme, Anwendungen 493

sei eine offene Menge. Für einen Punkt

[

x0

y0

]

∈ D sei

f (x0, y0) = 0 und
∂ f

∂y
(x0, y0) �= 0 . (6.61)

Damit folgt:

(a) Es gibt ein Intervall U um x0 und ein Intervall V um y0 mit der Eigenschaft: Zu
jedem x ∈ U existiert genau ein y ∈ V mit

f (x, y) = 0 .

Jedem x ∈ U ist auf diese Weise genau ein y ∈ V zugeordnet. Die dadurch
definierte Abbildung g : U → V , mit der Funktionsgleichung y = g(x), erfüllt
also

f (x, g(x)) = 0 für alle x ∈ U .

(b) g ist stetig differenzierbar, und es gilt für jedes x ∈ U :

g′(x) = −
∂ f

∂x
(x, g(x))

∂ f

∂y
(x, g(x))

. (6.62)

Die entscheidende Voraussetzung in diesem Satz ist
∂ f

∂y
(x0, y0) �= 0. Anhand von Fig. 6.18

wird dies deutlich:

Fig. 6.18: Zum Satz über implizite Funktionen
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Der Graph von f hat im skizzierten Beispiel eine gekrümmte Schnittkurve mit der x-y-Ebene.

In x0 =
[

x0

y0

]

, einem Punkt auf dieser Kurve, ist offenbar
∂ f

∂y
(x0, y0) �= 0, denn der Graph von

f steigt hier in y-Richtung an (s. Fig. 6.18). Das Intervall U um x0 und ein zugehöriges Intervall
V um y0 sind Definitions- und Bildbereich einer (eindeutigen) Funktion g, deren Graph auf der

genannten Schnittlinie liegt. Geht man dagegen vom Punkt x1 =
[

x1

y1

]

aus (s. Fig. 6.18), der

auch f (x1, y1) = 0 erfüllt, für den aber offenbar
∂ f

∂y
(x1, y1) = 0 ist, so erkennt man, daß die

Schnittkurve f (x, y) = 0 in keiner Umgebung von x1 eine eindeutige Funktion y = g(x) liefert,
da die Schnittkurve aufgrund ihrer Bogengestalt zu jedem x-Wert zwei y-Werte mit f (x, y)

besitzt.

Die Skizze macht klar, daß
∂ f

∂y
(x0, y0) �= 0 hinreichend für die eindeutige Auflösbarkeit von

f (x, y) = 0 nach y ist. (Notwendig ist die Bedingung allerdings nicht!)
Der beschriebene Satz läßt sich nahezu wörtlich auf differenzierbare Abbildungen verallge-

meinern:

Satz 6.15:

(über implizite Funktionen, allgemeiner Fall) Durch

f (x, y) := f (x1, . . . , xm, y1, . . . , yn) =

⎡

⎢
⎣

f1(x1, . . . , yn)
...

fn(x1, . . . , yn)

⎤

⎥
⎦

sei eine stetig differenzierbare Abbildung von einer offenen Menge D ⊂ Rm+n in Rn

beschrieben. Die Variablen werden zu folgenden Vektoren zusammengefaßt:

x =

⎡

⎢
⎣

x1
...

xm

⎤

⎥
⎦ , y =

⎡

⎢
⎣

y1
...

yn

⎤

⎥
⎦ ,

[

x

y

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1
...

xm

y1
...

yn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Für einen Punkt

[

x0

y0

]

∈ D gelte

f (x0, y0) = 0 .

Ferner sei die Matrix

f y(x0, y0) :=
[

∂ fi

∂yk
(x0, y0)

]

1≤i≤n
1≤k≤n

(6.63)
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regulär. Damit folgt:

(a) Es gibt eine Umgebung U ⊂ Rm von x0 und eine Umgebung V ⊂ Rn von y0
mit der Eigenschaft: Zu jedem x ∈ U existiert genau ein y ∈ V mit

f (x, y) = 0 .

Jedem x ∈ U ist auf diese Weise genau ein y ∈ V zugeordnet. Die dadurch
definierte Abbildung g : U → V erfüllt also

f (x, g(x)) = 0 für alle x ∈ U ,

(b) g ist stetig differenzierbar, und es gilt für jedes x ∈ U

g′(x) = − f y(x, y)−1 f x(x, y) , y = g(x) , (6.64)

mit den Abkürzungen

f y(x, y) =
[

∂ fi

∂yk
(x, y)

]

1≤i≤n
1≤k≤n

, f x(x, y) =
[

∂ fi

∂xk
(x, y)

]

1≤i≤n
1≤k≤m

.

Zum Beweis des Satzes s. [56], Abschn. 6.3.3, S. 300 – 303. Unter der etwas stärkeren Vor-
aussetzung, daß f zweimal stetig differenzierbar ist (was für technische Zwecke unerheblich
ist), findet man einen eleganten Beweis des Satzes 6.14 in Burg/Haf/Wille (Band III) [8], Ab-
schn. 1.2.4 (Satz 1.4).

Im Beispiel 6.25 ist die Auflösung nach y unproblematisch. Man überzeuge sich, daß z.B. für
x0 = y0 = 0 die Voraussetzungen von Satz 6.14 erfüllt sind (zweifellos kann man hier U = R
und V = R wählen).

Fig. 6.19: Zum Beispiel 6.26
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Fortsetzung von Beispiel 6.26: Hier ist f (x, y) = x2 − y2 + 1 (D = R2) und

∂ f

∂y
= −2y .

Für x0 = 0, y0 = 1, z.B. berechnet man f (x0, y0) = 0 und
∂ f

∂y
(x0, y0) = −2 �= 0, also sind die

Voraussetzungen von Satz 6.14 erfüllt. Durch

y = g(x) =
√

x2 + 1 , x ∈ U := R , V = [1,∞)

wird eine implizite Funktion dazu beschrieben (s. Fig. 6.19).
Geht man von x0 = 0, y0 = −1 aus, so gelangt man entsprechend zu

y = g(x) = −
√

x2 + 1 , x ∈ U := R , V = [−1,−∞) .

Auch in Fällen, in denen keine formelmäßige Auflösung von f (x, y) = 0 nach y möglich ist,
kann der Satz die Existenz einer zugehörigen impliziten Funktion y = g(x) sichern. Dazu

Beispiel 6.28:
Wir betrachten f (x, y) = y + xy2 − exy für x , y ∈ R (d.h. Definitionsbereich D von f ist R2).
Hier ist die Auflösung von

f (x, y) = y + xy2 − exy = 0 (6.65)

durch elementare Umformung nicht möglich. Existiert trotzdem eine implizite Funktion y =
g(x) dazu, z.B. in einer Umgebung von x0 = 0, y0 = 1?

Zur Beantwortung berechnen wir zunächst

∂ f

∂y
(x, y) = 1+ 2xy − x exy ⇒ ∂ f

∂y
(0,1) = 1 .

Satz 6.14 liefert damit die Existenz einer differenzierbaren impliziten Funktion g : U → V
(0 ∈ U ), die f (x, g(x)) = 0 in U erfüllt. Für x �= 0 sind die Werte y = g(x) aus (6.65) mit dem
Newton-Verfahren (oder Bisektion, Regula falsi usw.) numerisch zu ermitteln. Z.B. errechnet
man für x = 0,2 aus

f (0,2, y) = y + 0,2y2 − e0,2y = 0

numerisch y
.= 1,018467. Die Ableitung in diesem Punkt ergibt sich aus (6.62). Auch die maxi-

male Größe des Definitionsintervalls U von g kann in unserem Beispiel nur numerisch ermittelt

werden (z.B. indem man die Lösungen des Gleichungssystems f (x, y) = 0,
∂ f

∂y
(x, y) = 0 mit

dem Newton-Verfahren bestimmt).
Aus dem Satz 6.15 folgt als Spezialfall
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Satz 6.16:

(Invertierungssatz) Es sei f : X → Y stetig differenzierbar, X , Y offen in Rn und
f ′(x0) regulär in einem Punkt x0 ∈ X . Damit folgt

(a) Es gibt eine offene Umgebung U von x0, die durch f umkehrbar eindeutig auf
eine offene Umgebung V von y0 = f (x0) abgebildet wird.

(b) Die dadurch bestimmte Umkehrabbildung f−1 : V → U ist stetig differenzier-
bar, und es gilt

(

f−1
)′

( y) = f ′(x)−1 für alle y = f (x) ∈ V .

Beweis:

Mit F( y, x) := y − f (x) ist eine Funktion gewonnen, die die Voraussetzungen von Satz 6.15
erfüllt (wobei x und y ihre Rollen getauscht haben). Damit geht Satz 6.16 aus Satz 6.15 hervor,
wobei lediglich zusätzlich gezeigt werden muß, daß f−1(V ) offen ist. Wegen f ( f−1(V )) = V ,
V offen, folgt das aber aus der Stetigkeit von f . �

Übung 6.24:

Gibt es zu

f (x, y) = xy + 1

2
− sin y = 0

eine explizite Funktion y = g(x) in einer Umgebung von x0 = 0, wobei y0 = π/6 ist?

( f (x0, y0) = 0).

6.4.3 Extremalprobleme ohne Nebenbedingungen

Maxima und Minima von Funktionen mehrerer reeller Variabler lassen sich mit Mitteln der Dif-
ferentialrechnung gewinnen — analog zum Fall einer Variablen. Zunächst benötigen wir eine
saubere Begriffsbestimmung. Wir vereinbaren daher, völlig analog zu Def. 3.6 in Abschn. 3.2.7:

Definition 6.17:

Es sei f : D ⊂ Rn → R eine gegebene Funktion. Ist x0 ein Punkt aus D, zu dem es
eine Umgebung U gibt mit

f (x) ≤ f (x0) für alle x ∈ U ∩ D, x �= x0,

so sagt man: f besitzt in x0 ein lokales Maximum.

Der Punkt x0 selbst heißt eine lokale Maximalstelle von f . Steht »<« anstelle
von »≤«, so wird x0 als echte lokale Maximalstelle von f bezeichnet. Entsprechend
werden lokale Minima, lokale Minimalstellen, echte und unechte, erklärt. Alle diese
Punkte nennen wir Extremalstellen oder Extremalpunkte.
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Satz 6.17:
Ist x0 ∈ D

◦
Extremalstelle einer partiell differenzierbaren Funktion f : D ⊂ Rn → R,

so gilt

f ′(x0) = 0 ,

d.h. sämtliche partiellen Ableitungen 1. Ordnung von f verschwinden in x0.

Beweis:
Es sei x0 = [x (0)

1 , x (0)
2 , . . . , x (0)

n ]T die Komponentendarstellung der Extremstelle x0 von f . Da-
mit definieren wir die Funktion

g(xk) := f (x (0)
1 , . . . , x (0)

k−1, xk, x (0)
k+1, . . . , x (0)

n ) ,

wobei k ∈ {1, . . . , n} beliebig, aber fest ist. g geht also aus f dadurch hervor, daß man nur eine
Komponente variabel macht, nämlich xk , die anderen aber festhält. Die reellwertige Funktion g

hat in x (0)
k natürlich ein Extremum, also folgt

0 = g′(x (0)
k ) = ∂

∂xk
f (x0) , �

Satz 6.17 besagt, daß die Extremalstellen aus D
◦

in der Menge der x0 mit der Eigenschaft
f ′(x0) = [ fx1(x0), . . . , fxn (x0)] = 0 zu suchen sind. Es ist also das System der Gleichungen

fxi (x0) = 0 für alle i = 1, . . . , n (6.66)

nach x0 = (x (0)
1 , . . . , x (0)

n ) aufzulösen, etwa mit dem Newton-Verfahren.
Nicht jede Lösung von f ′(x0) = 0 ist notwendig ein Extremalpunkt, was man sich an Funk-

tionen einer reellen Variablen klar machen kann (waagerechte Wendetangente!). Wir beweisen
daher folgenden Satz, der eine hinreichende Bedingung für Extremalpunkte liefert.

Satz 6.18:
Ist f : D ⊂ Rn → R zweimal stetig differenzierbar, so folgt: Ein Punkt x0 ∈ D

◦
mit

f ′(x0) = 0 ist eine

echte Maximalstelle, falls (z · ∇)2 f (x0) < 0 ,

echte Minimalstelle, falls (z · ∇)2 f (x0) > 0 ,

}

für alle z �= 0, z ∈ Rn .

Beweis:
Wir nehmen (z · ∇)2 f (x0) > 0 für alle z �= 0, z ∈ R an. Nach der Taylorformel gilt für m = 1

f (x0 + z) = f (x0)+ f ′(x0)z + 1

2

1∫

0

(1− s)(z · ∇)2 f (x0 + s z) ds ,
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wegen f ′(x0) = 0 also

f (x0 + z)− f (x0) =
1

2

1∫

0

(1− s)(z · ∇)2 f (x0 + s z) ds . (6.67)

Aufgrund der Stetigkeit der zweiten partiellen Ableitung gibt es eine Kugelumgebung U ⊂ D
von x0 mit

(z · ∇)2 f (x0 + s z) > 0 für x0 + s z ∈ U , z �= 0, 0 ≤ s ≤ 1.

Wählt man z dabei fest, so nimmt (z · ∇)2 f (x0 + s z) für ein s ∈ [0,1] sein Minimum c > 0 an
(da s �→ (z · ∇)2 f (x0 + s z) eine stetige Funktion auf [0,1] ist), also gilt

(z · ∇)2 f (x0 + s z) ≥ c > 0 , für alle s ∈ [0,1].

Damit gewinnt man aus (6.67)

f (x0 + z)− f (x0) ≥
1

2

1∫

0

(1− s)c ds = c

4
> 0 ,

also f (x0 + z) > f (x0) für jedes x0 + z ∈ U , z �= 0. x0 ist damit eine echte Minimalstelle.
Durch Übergang von f zu − f erhält man die entsprechende Aussage für echte Maximalstellen,
womit alles bewiesen ist. �

Bemerkung: Der Ausdruck (z · ∇)2 f (x0) in Satz 6.18 kann mit Hilfe der Matrix

f ′′(x0) :=

⎡

⎢
⎣

fx1 y1(x0) · · · fx1 yn (x0)
...

...

fxn y1(x0) · · · fxn yn (x0)

⎤

⎥
⎦ sowie

z =

⎡

⎢
⎣

z1
...

zn

⎤

⎥
⎦ , zT = [z1, z2, . . . , zn]

in der Form

(z · ∇)2 f (x0) = zT f ′′(x0)z =
n
∑

i,k=1

zi fxi xk zk (6.68)

geschrieben werden.

Ohne Beweis sei angegeben, daß (z · ∇)2 f (x0) = zT f ′′(x0)z genau dann > 0 für alle z �=
0 aus Rn ist, wenn alle »Hauptdeterminanten« von f ′′(x0) positiv sind. (Hauptdeterminanten
sind dabei die Determinanten derjenigen Matrizen, die durch Herausstreichen von Zeilen und
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entsprechenden Spalten aus f ′′(x0) entstehen. Zu Determinanten s. Abschn. 7.2.3, Einschub,
sowie Burg/Haf/Wille (Lineare Algebra) [7], Abschn. 3.5.7, Satz 3.45.) Um zu entscheiden, ob
(z · ∇)2 f (x0) < 0 für alle z �= 0 aus Rn ist, hat man f durch − f zu ersetzen und mit dem
genannten Kriterium (z · ∇)2(− f )(x0) > 0 für z �= 0 zu prüfen.

Das Kriterium ist für die Anwendung in Satz 6.18 für große n sehr wenig griffig. Für kleine n
(n = 2,3,4) ist es aber gut zu gebrauchen. Für n = 2 ergibt sich daraus

Folgerung 6.6:
Ist die reellwertige Funktion f (x, y) zweimal stetig differenzierbar auf D ⊂ R2, so
folgt:

Ein Punkt x0 =
[

x0

y0

]

∈ D
◦

mit

∂ f

∂x
(x0, y0) = 0 ,

∂ f

∂y
(x0, y0) = 0 und fxx fyy − f 2

xy > 0 in

[

x0

y0

]

(6.69)

ist eine

echte Maximalstelle, wenn fxx (x0, y0) < 0 ist,

echte Minimalstelle, wenn fxx (x0, y0) > 0 ist.

Dieses Kriterium ist für Funktionen von zwei Variablen sehr nützlich.

Übung 6.25:

Berechne die Extremalstellen der durch

f (x, y) = x2 + y2 + xy − 2x + 3y + 7 , x =
[

x

y

]

∈ R2 ,

definierten Funktion f : R → R und entscheide, ob es sich um echte Maxima oder echte

Minima handelt.

6.4.4 Extremalprobleme mit Nebenbedingungen

Oft ist nach den Extrema eine Funktion f gefragt, wobei noch eine Nebenbedingung

h(x) = 0

erfüllt sein muß.
Präziser geht es um folgende

Problemstellung: Gegeben sind zwei stetig differenzierbare Abbildungen f : D → R und
h : D → Rp auf einer offenen Menge D ⊂ Rn , n > p. Gesucht sind die Maximal- und
Minimalstellen der Einschränkung f |M von f auf

M := {x ∈ D | h(x) = 0} ⊂ D . (6.70)
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Eine Maximalstelle x0 von f |M ist dabei ein Punkt aus M , zu dem es eine Umgebung U ⊂ D
gibt mit

f (x) ≤ f (x0) für alle x ∈ U ∩ M .

Man nennt einen solchen Punkt x0 eine Maximalstelle von f unter der Nebenbedingung h(x) =
0. Entsprechendes vereinbart man für Minimalstellen. In beiden Fällen spricht man von Extre-
malstellen von f unter der Nebenbedingung h(x) = 0.

Alles in allem treten bei den Anwendungen Extremalprobleme mit Nebenbedingungen viel
häufiger auf als »reine« Extremalprobleme ohne Nebenbedingungen. Schon bei einfachsten geo-
metrischen Fragestellungen ist dies der Fall.
Beispiel 6.29:
Will man dasjenige Rechteck bestimmen, das unter allen Rechtecken gleichen Umfangs u0 den
größten Flächeninhalt hat, so ist f (x) = x1x2 zu maximieren, wobei x1, x2 die Seitenlängen des
Rechtecks bedeuten.

Wegen x1 ≥ 0, x2 ≥ 0 ist x =
[

x1

x2

]

dabei ein Punkt aus

D =
{[

x1

x2

] ∣
∣
∣
∣

x1, x2 ≥ 0

}

.

Die Nebenbedingung lautet u0 = 2(x1 + x2), d.h. h(x) = 0 mit h(x) = u0 − 2(x1 + x2),
h : D → R.

Die Lösung ist in diesem Falle sehr einfach zu gewinnen: Man löst h(x) = 0 nach x2 auf:
x2 = u0/2 − x1, setzt dies in f (x) = x1x2 ein und erhält eine Funktion, die nur noch von x1

abhängt: F(x1) := x1(u0/2 − x1). Aus F ′(x1) = u0/2 − 2x1 = 0 berechnet man die Lösung
x1 = u0/4, wobei F ′′(x1) = −2 < 0 zeigt, daß ein Maximum vorliegt. Wie nicht anders zu
erwarten, ist das gesuchte Rechteck mit maximalem Inhalt ein Quadrat.

In vorstehendem Beispiel konnte h(x) = 0 nach einer Komponente von x aufgelöst werden
und damit das Problem auf eine Extremalaufgabe ohne Nebenbedingungen zurückgeführt wer-
den, die mit bekannten Methoden von Abschn. 3.2.7 gelöst werden konnte.

Häufig ist das jedoch nicht ohne weiteres möglich. Folgendes Beispiel macht dies deutlich:

Beispiel 6.30:
Es soll der kürzeste Abstand zweier implizit durch G(x, y) = 0, H(ξ, η) = 0 bestimmter Kurven
der Ebene ermittelt werden. Es ist also

f (x) = (x − ξ)2 + (y − η)2 mit x =

⎡

⎢
⎢
⎣

x
y
ξ

η

⎤

⎥
⎥
⎦

zu minimieren, unter der Nebenbedingung

h(x) =
[

G(x, y)

H(ξ, η)

]

= 0 .
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Auch hier könnte man zunächst versuchen, G(x, y) = 0 und H(ξ, η) = 0 nach y bzw. η auf-
zulösen und die entstehenden Ausdrücke für y und η in (x − ξ)2 + (y − η)2 einzusetzen, um
so eine von Nebenbedingungen freie Funktion der Variablen x und η zu minimieren. Bei etwas
komplizierteren Gleichungen G(x, y) = 0 und H(ξ, η) = 0 ist das allerdings nicht mehr ohne
weiteres durchführbar, schon allein deswegen, weil y bzw. η im allgemeinen nicht eindeutig von
x bzw. ξ abhängen.

Es muß daher nach einer Methode gesucht werden, die ohne explizites Auflösen von h(x) = 0
nach einem Teil der Komponenten von x auskommt. Ein solches Verfahren ist das der Lagrange-
schen Multiplikatoren, das auf folgendem Satz beruht.

Satz 6.19:
f : D → R und h : D → Rp seien stetig differenzierbare Abbildungen auf einer
offenen Menge D ⊂ Rn , n > p, wobei die Matrix h′(x) für jedes x ∈ D den Rang
p14 hat. Damit folgt: Ist x0 ∈ D eine Extremalstelle von f unter der Nebenbedingung
h(x) = 0, so existiert dazu eine Zeilenmatrix L = [λ1, λ2, . . . , λp] mit

f ′(x0)+ Lh′(x0) = 0 . (6.71)

Die Zahlen λ1, λ2, . . . , λp heißen dabei Lagrangesche Multiplikatoren.

Das Lösungsverfahren für Extremalprobleme mit Nebenbedingungen beruht nun, gestützt auf
Satz 6.19 auf folgenden Überlegung: Jeder Extremalpunkt x0 von f unter der Nebenbedingung
h(x) = 0 ist unter der Voraussetzung von Satz 6.19 eine Lösung der Gleichungen

f ′(x)+ Lh′(x) = 0 und h(x) = 0 . (6.72)

Mit den Komponentendarstellungen

x =

⎡

⎢
⎢
⎢
⎣

x1

x2
...

xn

⎤

⎥
⎥
⎥
⎦

, h =

⎡

⎢
⎢
⎢
⎣

h1

h2
...

h p

⎤

⎥
⎥
⎥
⎦

, L = [λ1, λ2, . . . , λp] (6.73)

erhalten die Gleichungen in (6.72) die explizite Gestalt

∂ f

∂xi
(x)+

p
∑

k=1

λk
∂hk

∂xi
(x) = 0 für alle i = 1, . . . , n, (6.74)

und hk(x) = 0 für alle k = 1, . . . , p. (6.75)

Es liegen damit n + p reelle Gleichungen für die n + p reellen Unbekannten x1, x2, . . . , xn ,
λ1, λ2, . . . , λp vor, deren Lösbarkeit zu bestimmen ist. Unter den aus dieser Lösungsgesamtheit

14 D.h. h′(x) enthält für jedes x ∈ D eine reguläre (quadratische) p-reihige Teilmatrix. (Eine Teilmatrix entsteht aus
einer Matrix durch Herausstreichen von Spalten und/oder Zeilen.)
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gewonnenen Punkten x = [x1, x2, . . . , xn]T sind alle Extremalpunkte mit den Nebenbedingun-
gen h(x) = 0 zu finden.

Natürlich braucht nicht jeder dieser Lösungspunkte x ein Extremalpunkt zu sein. Da bleibt im
einzelnen stets zu untersuchen.

Gelten die Voraussetzungen von Satz 6.19, so heißt jeder Lösungspunkt x, der sich aus (6.74),
(6.75) ergibt, ein stationärer Punkt von f unter Nebenbedingungen h(x) = 0. Bei physikalischen
Untersuchungen sind diese Punkte auch dann interessant, wenn sie keine Extremalpunkte sind.
Wir skizzieren dies kurz in folgendem Beispiel.

Beispiel 6.31:

Eine grundlegende Anwendung der Lagrangeschen Multiplikatorenmethode steht im Zusammen-
hang mit dem d’Alembertschen15 Prinzip in der Mechanik. Betrachtet man nämlich ein System
von Massenpunkten in einem Kraftpotentialfeld, so sind die Massenpunkte häufig geometrischen
Bindungen unterworfen. (Abstände zwischen Massenpunkten sind konstant, die Massenpunkte
befinden sich gewissen vorgeschriebenen Kurven oder Flächen usw.) Die geometrischen Bindun-
gen schlagen sich dabei in Nebenbedingungen nieder, während das Kraftpotential eine Funkti-
on liefert, deren stationäre Punkte unter Nebenbedingungen zu berechnen sind. Die stationären
Punkte beschreiben dann Gleichgewichtslagen des Massenpunktsystems. Echte Minima ergeben
dabei stabiles Gleichgewicht, während in den übrigen stationären Punkten labiles oder indifferen-
tes Gleichgewicht herrscht.

Für einen ausführlichen Beweis des Satzes 6.19 sei auf [56], Satz 6.23, S. 305 – 308, verwie-
sen. Wir wollen den Sachverhalt hier am Falle zweier Dimensionen anschaulich und plausibel
machen. Für diesen Fall formulieren wir Satz 6.19 nochmal:

Folgerung 6.7:

(Zweidimensionaler Fall der Lagrangeschen Multiplikatorenmethode)
Durch u = f (x, y) und v = h(x, y) seien zwei reellwertige Funktionen auf einer
offenen Menge D ⊂ R2 beschrieben. Dabei sei grad h(x) �= 0 für alle x ∈ D.16

Damit folgt:
Ist x0 ∈ D eine Extremalstelle von f unter der Nebenbedingung h(x) = 0, so gilt

grad f (x0)+ λ grad h(x0) = 0 (6.76)

mit einer reellen Zahl λ.

Veranschaulichung: In Fig. 6.20 ist der Graph von f über seinem Definitionsbereich D skiz-
ziert. In D ist die durch h(x) = 0 bestimmte Kurve zu sehen. Zum besseren Verständnis sind
Höhenlinien und Fallinien in D eingezeichnet, wie auch ihre Entsprechungen auf dem Graphen
von f . Wir erkennen: Das Maximum f (x0) von f über der Kurve h(x0) = 0 hat die Eigenschaft,
daß die Kurve h(x) = 0 in der Maximalstelle x0 rechtwinklig eine Fallinie schneidet. Skizziert

15 Jean-Baptiste le Rond, genannt d’Alembert (1717 – 1783), französischer Mathematiker, Physiker und Philosoph

16 Zur Erinnerung: grad h(x) = h′(x)T =
[

∂h

∂x1
(x),

∂h

∂x2
(x)

]T

.
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man grad f (x) und grad h(x) als Pfeile mit schwarzer oder weißer Spitze, so liegen sie im Maxi-
malpunkt x0 parallel (denn der Vektor grad h(x) steht in jedem Kurvenpunkt x senkrecht auf der
Kurve h(x) = 0, und grad f (x) liegt stets in Richtung der Fallinien.) Parallelität von grad f (x0)

und grad h(x0) bedeutet aber

grad f (x0)+ λ grad h(x0) = 0 für ein λ ∈ R .

Fig. 6.20: Extrema mit Nebenbedingungen

Zum Verständnis ein simples Demonstrationsbeispiel.

Beispiel 6.32:

Gesucht sind die Extremalstellen von

f (x, y) = x2 + y2 + 3 , x, y ∈ R , (6.77)

unter der Nebenbedingung

h(x, y) = x2 + y − 2 = 0 , x, y ∈ R . (6.78)

Mit

grad f (x, y) = [2x,2y]T , grad h(x, y) = [2x,1]T
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ergibt grad f + λ grad h = 0 und h(x, y) = 0 das Gleichungssystem

2x = −λ2x , 2y = −λ , y = 2− x2 .

Die erste Gleichung ist z.B. für x = 0 erfüllt. Die übrigen Gleichungen liefern dann y = 2,
λ = −4 und f (0,2) = 7.

Fig. 6.21: Zu Beispiel 6.32

Im Falle x �= 0 ergibt die erste Gleichung nach Herauskürzen von x : λ = −1. Damit ist nach
der zweiten Gleichung y = 1/2 und nach der dritten: x = ±

√
6/2. Damit: f (±

√
6/2, 1/2) =

4,75.
Sämtliche Kandidaten für Extremstellen sind also

x0 =
[

0
2

]

, x1 =
[√

6/2
1/2

]

, x2 =
[

−
√

6/2
1/2

]

.

Das Höhenlinienbild (Fig. 6.21) zeigt, daß x0 eine Maximalstelle ist und x1, x2 Minimalstellen
sind.

Durch Einsetzen von y = 2 − x2 in f (x, y) = x2 + y2 und Untersuchung von ϕ(x) =
x2 + (2 − x2)2 auf Extremalstellen kommt hier natürlich das Gleiche heraus. Wie aber schon
erwähnt, ist das formelmäßige Eliminieren einer Variablen oft nicht möglich. Dann ist man auf
die (numerische) Lösung der Lagrangeschen Gleichungen angewiesen.

Bemerkung: Die Frage, welche Lösungen der Lagrangeschen Multiplikatorenmethoden Maxi-
ma, Minima oder nichts dergleichen sind, ist allgemein schwer zu beantworten. Aus diesem
Grund muß dies in jedem Einzelfall gesondert geprüft werden. (Durch Eliminieren der Neben-
bedingung, durch numerische Rechnung oder durch Überlegungen aus der technischen Anwen-
dung).

Eine Hilfe liefert der Satz, daß jede stetige reelle Funktion auf einem Kompaktum ihr Mini-
mum und ihr Maximum annimmt.
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Bei kompakter »Nebenbedingungsmenge«

M = {x ∈ D | h(x) = 0}

hat man daher unter den Lösungen der Lagrangemethode und den Randpunkten aus M ∩ ∂ D die-
jenigen mit maximalem Funktionswert f (x) herauszusuchen. Diese Punkte sind alle gesuchten
absoluten Maximalstellen. Für Minimalstellen gilt Entsprechendes.

Fortsetzung von Beispiel 6.32: Wir wenden die vorangehende Überlegung auf unser Beispiel
an. Die Funktionswerte der Kandidaten x0, x1, x2 für Extremalstellen sind

f (x0) = 7 , f (x1) = f (x2) = 4.75 .

Wählen wir anstelle von R2 als Definitionsbereich ein Rechteck D, das die drei Punkte x0, x1,
x2 knapp umfaßt, z.B.

D =
{[

x
y

]

| −2 ≤ x ≤ 2 , 0 ≤ y ≤ 3

}

,

so schneidet die Kurve h(x, y) = x2 + y − 2 = 0 den Rand von D genau in folgenden zwei
Punkten:

x3 =
[√

2
0

]

, x4 =
[

−
√

2
0

]

mit f (x3) = f (x4) = 5.

Da nach obiger Bemerkung nur x0, x1, x2, x3 und x4 für Maximal- und Minimalstellen in Frage
kommen, ist x0 (wegen f (x0) = 7) Maximalstelle und es sind x1, x2 Minimalstellen.

Übung 6.26:

Bestimme mit der Lagrangeschen Multiplikatorenmethode die Extremalwerte von f (x, y) =
xy (x , y ∈ R) unter der Nebenbedingung x2 + y2 − 1 = 0. Zeichne ein Höhenbild dazu.
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Ausgangspunkt der Integralrechnung mehrerer Veränderlicher ist das Problem, Rauminhalte
mehrdimensionaler Bereiche zu ermitteln — analog zur Integralrechnung einer reellen Varia-
blen, die von Flächeninhaltsberechnungen ausgeht. Die Integralrechnung einer reellen Variablen
ist im Mehrdimensionalen Richtschnur und Hilfsmittel.

Wir gelangen so zur Berechnung von Massen dreidimensionaler Körper, Schwerpunkten, Träg-
heitsmomenten, Zirkulationen, elektromagnetischen Feldenergien und vielem anderen mehr.

7.1 Integration bei zwei Variablen

Die Grundgedanken der mehrdimensionalen Integration werden zunächst am Fall zweier reeller
Variabler erklärt. Alles Wesentliche wird dabei sichtbar, verständlich und einprägsam.

7.1.1 Anschauliche Einführung des Integrals zweier reeller Variabler

Gestützt auf anschauliche Vorstellungen von Raum- und Flächeninhalt werden in diesem Ab-
schnitt Integrale zweier Variabler eingeführt und berechnet.

Wir beginnen unsere Betrachtungen mit einer reellwertigen stetigen Funktion f auf einem
kompakten zweidimensionalen Bereich B ⊂ R2. f sei nicht negativ, d.h.

f (x, y) ≥ 0 für alle

[

x
y

]

∈ B ,

und B haben einen wohlbestimmten Flächeninhalt F .
Der Graph f und der Bereich B bilden »Deckel« und »Boden« einer dreidimensionalen Men-

ge

Fig. 7.1: Integral als Rauminhalt von M
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M =

⎧

⎨

⎩

⎡

⎣

x
y
z

⎤

⎦ ∈ R3

∣
∣
∣
∣

[

x
y

]

∈ B und 0 ≤ z ≤ f (x, y)

⎫

⎬

⎭
(7.1)

(s. Fig. 7.1). Der Rauminhalt V dieser Menge M wird das Integral von f über dem Bereich B
genannt und durch

V =
∫∫

B

f (x, y) dx dy (7.2)

beschrieben. Es sind auch folgende Schreibweisen dafür gebräuchlich:

V =
∫∫

B

f (x, y) dF =
∫∫

B

f dF

oder mit nur einem Integralzeichen

V =
∫

B

f (x, y) dx dy =
∫

B

f (x, y) dF =
∫

B

f dF .

Mit der Vektorschreibweise x =
[

x
y

]

schreibt man das Integral auch in der Form

∫

B

f (x) dx

(Doppelte Integralzeichen betonen das Zweidimensionale von B) einfache Integralzeichen wei-
sen mehr auf die allgemeine Theorie hin.)

Bemerkung: Bei den Begriffen »Rauminhalt« und »Flächeninhalt« appellieren wir hier an an-
schauliche Vorstellungen des Lesers. Auf diese Weise können die Grundideen übersichtlich ver-
mittelt werden. Die analytische Präzisierung folgt in den nächsten beiden Abschnitten.

Zur Beantwortung nehmen wir zunächst B als ein achsenparalleles Rechteck an,

B =
{[

x
y

] ∣
∣
∣
∣

a ≤ x ≤ b , x ≤ y ≤ d

}

und betrachten eine beliebige Zerlegung Z = {[y0, y1], [y1, y2], . . . , [yn−1, yn], } von [c, d].
Durch die Zerlegungspunkte yi lege man zur x-z-Ebene parallele Ebenen, die die Menge M in
»Scheiben zerschneiden«, wie es die Fig. 7.2 zeigt.

Das Volumen ΔVi einer solchen Scheibe zwischen den Ebenen durch yi und yi−1 ist etwa
gleich dem Produkt aus der Scheibenbreite Δyi := yi − yi−1 und dem Flächeninhalt der senk-
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Fig. 7.2: Zur Volumenberechnung

rechten Schnittfläche bei yi , d.h.

ΔVi ≈ Δyi ·
b∫

a

f (x, yi ) dx .

Summation über alle Scheiben liefert näherungweise den gesuchten Rauminhalt V von M

V ≈
n
∑

i=1

⎛

⎝

b∫

a

f (x, yi ) dx

⎞

⎠Δyi .

Für n →∞, wobei max
i

Δyi gegen Null geht, strebt die rechte Seite gegen das Integral

d∫

c

⎛

⎝

b∫

a

f (x, y) dx

⎞

⎠ dy . 1

Die Klammer um das innere Integral wird auch weggelassen, da kein Irrtum dadurch entstehen
kann.

Der Wert dieses »Doppelintegrals« entspricht zweifellos unserer Vorstellung vom Volumen V
der Menge M , d.h.

V =
∫∫

B

f (x, y) dx dy =
d∫

c

b∫

a

f (x, y) dx dy . (7.3)

Da unsere Anschauung vom Rauminhalt sicherlich ergibt, daß es gleichgültig ist, in welcher

1 Die Funktion ϕ(y) :=
b∫

a

f (x, y) dx ist stetig in y, wie in Abschn. 7.3.1 gezeigt wird.
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Achsenrichtung man die Menge M in Scheiben schneidet, können x und y auch ihre Rollen
tauschen, d.h. es gilt:

d∫

c

b∫

a

f (x, y) dx dy =
b∫

a

d∫

c

f (x, y) dy dx . (7.4)

Diese Vertauschungsformel wird später als Satz von Fubini allgemeiner erörtert (s. Abschn. 7.1.2,
Satz 7.3).

Beispiel 7.1:

Für f (x, y) = 2− xy auf

B =
{[

x
y

] ∣
∣
∣
∣

0 ≤ x ≤ 1 , 0 ≤ y ≤ 2

}

erhalten wir

V =
∫∫

B

(2−xy) dx dy =
2∫

0

1∫

0

(2−xy) dx dy =
2∫

0

[

2x − x2 y

2

]1

0
dy =

2∫

0

(

2− y

2

)

dy = 3

(s. Fig. 7.3).

Fig. 7.3: Zu Beispiel 7.1 Fig. 7.4: Normalbereich

Der Leser rechne nach, daß bei Vertauschung von x und y dasselbe herauskommt, also

V =
1∫

0

2∫

0

(2− xy) dy dx = 3 .
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Wir wollen im Folgenden anstelle von Rechtecken allgemeinere, krummlinig berandete Be-
reiche B betrachten, und zwar solche, die »zwischen« den Graphen zweier stetiger Funktionen
h : [a, b] → R und g : [a, b] → R (mit h ≥ g) liegen, d.h.

B =
{[

x
y

] ∣
∣
∣
∣

a ≤ x ≤ b und g(x) ≤ y ≤ h(x)

}

, s. Fig. 7.4.

Einen solchen Bereich B nennen wir kurz einen Normalbereich. f : B → R sei wieder stetig
und nicht negativ. Durch analoge »Scheibenzerlegungen« wie im Rechteckfall erhalten wir das
Volumen V von M wiederum als Doppelintegral (s. Fig. 7.5).

∫∫

B

f (x, y) dx dy =
b∫

a

h(x)∫

g(x)

f (x, y) dy dx . (7.5)

Fig. 7.5: Zum Integral über einen Normalbereich Fig. 7.6: Zum Volumen der Pyramide

Beispiel 7.2:
Die in Fig. 7.6 skizzierte schiefe Pyramide P ist die Menge aller Punkte

⎡

⎣

x
y
z

⎤

⎦ mit

0 ≤ x ≤ H ,

0 ≤ y ≤ x · a/H ,

0 ≤ z ≤ x · b/H .

Mit f (x, y) := x · b/H und B =
{[

x
y

] ∣
∣
∣
∣

0 ≤ x ≤ H und 0 ≤ y ≤ x · a/H

}

ist das Volumen

der Pyramide damit

V =
∫∫

B

f (x, y) dx dy = b

H

H∫

0

x ·a/H∫

0

x dy dx

= b

H

H∫

0

[

xy

]x ·a/H

0
dx = ba

H2

H∫

0

x2 dx = ba

H2

[
x3

3

]H

0
= abH

3
.
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Beispiel 7.3:
Es soll

V =
∫∫

B

x3 y4 dx dy

berechnet werden, wobei B der in Fig. 7.7 skizzierte Viertelkreis ist. Da B ein Normalbereich ist,
folgt:

V =
r∫

0

⎛

⎜
⎜
⎝

√
r2−x2
∫

0

x3 y4 dy

⎞

⎟
⎟
⎠

dx = 1

5

r∫

0

x3(r2 − x2)
5
2 dx .

Mit u = x2 und v′ = x(r2 − x2)
5
2 (also v = −1

7
(r2 − x2)

7
2 ) liefert die Produktintegration:

V = − 1

35

[

x2(r2 − x2)
7
2

]r

0
︸ ︷︷ ︸

=0

+ 2

35

r∫

0

x(r2−x2)
7
2 dx = − 2

35

[
1

9
(r2 − x2)

9
2

]r

0
= 2

315
r9 . (7.6)

Vertauscht man die Rollen von x und y, so ergibt sich das Integral auf folgende Weise:

V =
r∫

0

⎛

⎜
⎜
⎝

√
r2−x2
∫

0

x3 y4 dx

⎞

⎟
⎟
⎠

dy = 1

4

r∫

0

y4(r2−y2)2 dy = 1

4

r∫

0

(r4 y4−2r2 y6+y6) dy = 2r9

315
.

Dieser Weg ist etwas einfacher. Man sieht, daß man durch Vertauschen der Integrationsreihenfol-
ge evtl. Rechenaufwand einsparen kann.

Fig. 7.7: Viertelkreis B Fig. 7.8: Ellipsoid
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Beispiel 7.4:
(Volumen eines Ellipsoides) Ein Ellipsoid, wie in Fig. 7.8 skizziert, besteht aus allen Punkten

⎡

⎣

x
y
z

⎤

⎦ mit
x2

a2
+ y2

b2
+ z2

c2
≤ 1 ,

wobei die positiven Zahlen a, b, c die Hauptachsenlängen des Ellipsoides sind.
Wir berechnen das Volumen eines halben Ellipsoides, und zwar das Volumen der »oberen

Hälfte« (d.h. z ≥ 0). Der »obere Deckel« des Ellipsoides — d.h. der Teil des Ellipsoidrandes mit
z ≥ 0 — wird durch x2/a2 + y2/b2 + z2/c2 = 1 mit z ≥ 0 beschrieben, also aufgelöst nach z
durch

z = f (x, y) := c

√

1−
( x

a

)2
−
( y

b

)2
, wobei

( x

a

)2
+
( y

b

)2
≤ 1 (7.7)

gelten muß. Diese Ungleichung beschreibt eine Ellipse, und zwar die Schnittfläche zwischen
dem Ellipsoid und der x-y-Ebene. Die Ellipse ist der Definitionsbereich B unserer Funktion f
in (7.7). Damit ist das halbe Ellipsoidvolumen gleich

V =
∫∫

B

c

√

1−
( x

a

)2
−
( y

b

)2
dx dy . (7.8)

Die Ellipse B läßt sich offenbar einschließen von den Graphen der beiden Funktionen

h(x) := b

√

1−
( x

a

)2
, g(x) = −h(x) , für x ∈ [−a, a].

Nach (7.5) erhalten wir damit

V =
a∫

−a

⎛

⎜
⎜
⎝

b
√

1−(x/a)2
∫

−b
√

1−(x/a)2

c

√

1−
( x

a

)2
−
( y

b

)2
dy

⎞

⎟
⎟
⎠

dx .

Zur Lösung des inneren Integrals faßt man p :=
√

1− (x/a)2 als Konstante auf und bringt
√

1− (x/a)2 − (y/b)2 durch die Substitution y = bp · t auf die

Gestalt p
√

1− t2. Die Anwendung der Substitutionsregel und Verwendung von 2

1∫

−1

√

1− t2 dt

= π (Inhalt des Einheitskreises, Abschn. 4.2.2) ergibt

V = cbπ

2

a∫

−a

(

1− x2

a2

)

dx = 2

3
abcπ .
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Das Volumen des Ellipsoides ist das Doppelte hiervon, also

Volumen des Ellipsoides:
4

3
abcπ . (7.9)

Speziell für a = b = c =: r erhält man das

Kugelvolumen:
4

3
r3π . (7.10)

Ist B kein Normalbereich, so versuche man ihn in endlich viele Normalbereiche B1, . . ., Bm zu
zerlegen (s. Fig. 7.9):

B =
m
⋃

i=1

Bi = 1 ,

B
◦
i ∩ B

◦
k = ∅ für i �= k.2

Fig. 7.9: Zerlegung in Normalbereiche

Ist dies möglich, so berechnet man das Integral von f über B als Summe der Integrale über
B1, . . ., Bm , also

∫∫

B

f (x, y) dx dy =
m
∑

i=1

∫∫

Bi

f (x, y) dx dy . (7.11)

Dies steht sicherlich im Einklang mit unseren Vorstellungen vom Rauminhalt.
Die Berechnungsformeln (7.5) und (7.11) werden allgemein auf beliebige reellwertige stetige

Funktionen auf B angewendet, also auch Funktionen mit negativen Werten. Damit ist das Integral
auch für diese Fälle erklärt.

Mit den Formeln (7.5) und (7.11) lassen sich nahezu alle praktisch auftretenden Bereichsinte-
grale in zwei Variablen berechnen!

2 B
◦

= Inneres von B
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Beispiel 7.5:

Ein Werkstück (oder Puzzlestein oder modernes Verwaltungsgebäude) habe die in Fig. 7.10a
skizzierte Form. Die Grundriß-Menge B geht aus Fig. 7.10b hervor. Das »Dach« sei parabolisch,
genauer: Der skizzierte Körper ist im R3 die Punktmenge

K =

⎧

⎨

⎩

⎡

⎣

x
y
z

⎤

⎦

∣
∣
∣
∣
∣
∣

[

x
y

]

∈ B und 0 ≤ z ≤ 2− x2

⎫

⎬

⎭

Frage: Wie groß ist sein Volumen?

Fig. 7.10: Zur Volumenberechnung in Beispiel 7.5

Der Körper K wird »oben« durch den Graphen der Funktion f (x, y) = 2 − x2 begrenzt. ( f
ist bezüglich y konstant). Sein Volumen ist damit

V =
∫∫

B

(2− x2) dx dy .

B ist kein Normalbereich, doch läßt sich B in Normalbereiche zerlegen, z.B. in die 5 Bereiche

B1, . . ., B5 der Fig. 7.10b. B1 liegt zwischen der x-Achse und dem Graphen von x �→ 1

2
(x + 1),

über dem Intervall [-1, 1]; also folgt für das Teilintegral über B1:

V1 :=
∫∫

B1

(2− x2) dx dy =
1∫

−1

⎛

⎜
⎝

1
2 (x+1)
∫

0

(2− x2) dy

⎞

⎟
⎠ dx .

Der Integrand des inneren Integrals hängt nicht von y ab und kann somit vor das innere Integral
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gesetzt werden, also:

V1 =
1∫

−1

(2−x2)

⎛

⎜
⎝

1
2 (x+1)
∫

0

dy

⎞

⎟
⎠ dx =

1∫

−1

(2−x2)
1

2
(x+1) dx = 1

2

1∫

−1

(−x3−x2+2x+2) dx = 5

3
.

Entsprechend ergibt sich für den Bereich B2, der zwischen den Graphen von x �→ 1

2
(x + 1) und

der Konstanten y = 1

2
liegt (über [-1, 0]):

V2 =
∫∫

B2

(2− x2) dx dy =
1∫

−1

1
2∫

1
2 (x+1)

(2− x2) dy dx

=
0∫

−1

(2− x2)

⎛

⎜
⎜
⎝

1
2∫

1
2 (x+1)

dy

⎞

⎟
⎟
⎠

dx =
0∫

−1

(2− x2)

(
1

2
− 1

2
(x + 1)

)

dx = 3

8
.

Ferner bezüglich B3:

V3 =
∫∫

B2

(2− x2) dx dy =
0∫

−1

5
2∫

1
2

(2− x2) dy dx = 10

3
.

Aus Symmetriegründen ist das Integral V4 (bzw. B4) gleich V2 und entsprechend V5 (bzw. B5)
gleich V1. Zusammen erhält man also das Volumen des Körpers folgendermaßen:

V =
∫∫

B

(2− x2) dx dy = V1 + V2 + V3 + V4 + V5 =
5

3
+ 3

8
+ 10

3
+ 3

8
+ 5

3
= 89

12
.

Übungen: Berechne die folgenden Integrale

Übung 7.1:
3∫

0

2∫

0

x dx dy.

Übung 7.2:
1∫

−1

2∫

0

(x2 + ey) dy dx .
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Übung 7.3:
2∫

0

1+x∫

−x

xy dy dx .

Übung 7.4:
∫∫

B

(x4 y + 3) dx dy mit B =
{[

x

y

] ∣
∣
∣
∣
∣
− 1 ≤ x ≤ 1 , x2 ≤ y ≤ 1

}

. Skizziere den Bereich B!

Übung 7.5:
∫∫

B

(5− x2 − y2) dx dy mit B =
{[

x

y

] ∣
∣
∣
∣
∣
|x | + |y| ≤ 1

}

. Skizziere B!Wie lauten die Funktio-

nen g und h zur Beschreibung von B als Normalbereich?

7.1.2 Analytische Einführung des Integrals zweier reeller Variabler

Die exakte analytische Einführung des Integrals im Zweidimensionalen — die in diesem und
dem nächsten Abschnitt gegeben wird — verläuft analog zur Einführung des Integrals bei einer
Variablen in Abschn. 4.1.1.

Als Ausgangspunkt betrachten wir eine beschränkte reellwertige Funktion f : Q → R auf
einem achsenparallelen Rechteck

Q =
{[

x
y

] ∣
∣
∣
∣

a ≤ x ≤ b und c ≤ y ≤ d

}

. (7.12)

Man beschreibt dies auch kürzer durch

Q = [a, b] × [c, d] .

Sein Flächeninhalt ist

FQ = (b − a)(d − c) .

Das Rechteck Q zerlegen wir in Teilrechtecke, wie es die Fig. 7.11 zeigt.
Das heißt wir wählen eine Zerlegung

Zx = {[x0, x1], . . . , [x p−1, x p]} von [a, b]

und eine Zerlegung

Z y = {[y0, y1], . . . , [yq−1, yq ]} von [c, d] ,

und bilden daraus die Teilrechtecke

[xi−1, xi ] × [yk−1, yk]
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Fig. 7.11: Zerlegung eines Rechtecks

für alle i = 1, . . ., p und k = 1, . . ., q . Diese Teilrechtecke numerieren wir (zeilenweise) von
1 bis m = pq durch und nennen sie Q1, Q2, . . ., Qm . Die Menge Z = {Q1, Q2, . . . , Qm} der
Teilrechtecke nennt man eine Zerlegung von Q. Der maximale Durchmesser der Qi heißt die
Feinheit der Zerlegung Z . Je kleiner die Feinheit, desto feiner die Zerlegung.

Hierauf gestützt, schlagen wir heimlich Definition 4.1 in Abschn. 4.1.1 nach und übertragen
sie analog auf das Zweidimensionale:

Definition 7.1:
Es sei f eine reelle beschränkte Funktion auf einem Rechteck Q.

(I) Z = {Q1, Q2, . . . , Qm}

sei eine beliebige Zerlegung von Q in Teilrechtecke Qi . Die Flächeninhalte der Recht-
ecke werden mit FQ bzw. FQi bezeichnet.

(II) Mit Mi := sup
x∈Qi

f (x) , mi := inf
x∈Qi

f (x) (s. Fig. 7.12)

bildet man

S f (Z) :=
m
∑

i=1

Mi FQi , genannt Obersumme von f bezüglich Z ,

s f (Z) :=
m
∑

i=1

mi FQi , genannt Untersumme von f bezüglich Z

und

I f := inf
Z

S f (Z) , genannt Oberintegral von f auf Q,

I f := sup
Z

s f (Z) , genannt Unterintegral von f auf Q.
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Infimum und Supremum werden dabei bezüglich sämtlicher denkbarer Zerlegungen
Z von Q gebildet.

(III) Stimmen Ober- und Unterintegral von f auf Q überein, so heißt f integrierbar
auf Q. In diesem Falle heißt der gemeinsame Wert I f = I f das Integral von f auf Q,
beschrieben durch

∫∫

Q

f (x, y) dx dy .

Fig. 7.12: Zum Riemannschen Integral

Bemerkung: (a) Bei dieser Definition mache man sich klar, daß jede Obersumme von f ≥ jeder
Untersumme von f ist. Man überlegt sich dies ganz analog wie im eindimensionalen Fall. Es gilt
somit stets I f ≥ I f .

(b) Statt »integrierbar« sagt man auch ausführlicher »Riemann-integrierbar« zu Ehren von Bern-
hard Riemann, auf den diese Definition zurückgeht.

Wie schon erwähnt, sind auch folgende Schreibweisen für das Integral üblich:

∫

Q

f (x, y) dx dy =
∫

Q

f (x, y) dF =
∫

Q

f dF =
∫

Q

f (x) dx (mit x =
[

x
y

]

) (7.13)

Ist nun der Definitionsbereich von f kein Rechteck, sondern eine beliebige kompakte Menge
B ⊂ R2) geht man so vor:
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Definition 7.2:
Es sei f : B → R beschränkt und B ⊂ R2 kompakt. Ferner sei Q B das kleinste
achsenparallele Rechteck in R2, das B umfaßt (s. Fig. 7.13). f wird auf Q B zu einer
Funktion f ∗ erweitert durch Nullsetzen außerhalb von B.

f ∗(x) =
{

f (x) , für x ∈ B

0 , für x ∈ Q B , x /∈ B.
(7.14)

f heißt integrierbar auf B, wenn f integrierbar auf Q B ist; man setzt

∫∫

B

f (x, y) dx dy :=
∫∫

Q B

f ∗(x, y) dx dy . (7.15)

Schreibweisen, analog zu (7.13), sind auch hier üblich.
Mit dem beschriebenen Integralbegriff können wir den Flächeninhalt einer ebenen Punktmen-

ge B exakt definieren und berechnen. Die Idee dabei ist, daß ein dreidimensionaler Körper der
Höhe 1, wie in Fig. 7.14 skizziert, einen Rauminhalt besitzt, der zahlenmäßig gleich ist dem

Flächeninhalt FB seiner Grundfläche B, also FB =
∫∫

B

1 dx dy. Das führt uns zur

Fig. 7.13: Kleinstes Rechteck um B Fig. 7.14: Zum Flächeninhalt

Definition 7.3:
Eine kompakte Menge B ⊂ R2 heißt (Jordan3)-meßbar, wenn das Integral

∫∫

B

1 dx dy (7.16)

existiert. Der Wert des Integrals ist der Flächeninhalt FB der Menge B.
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Die 1 im obigen Integral (7.16) läßt man auch weg, d.h. man schreibt

FB =
∫∫

B

dx dy . (7.17)

Ein Kompaktum aus R2 mit Flächeninhalt 0 nennt man kurz eine Nullmenge.

Satz 7.1:

Eine kompakte Menge B ⊂ R2 ist genau dann meßbar, wenn ihr Rand eine Nullmenge
ist.

Beweis:

Obersumme S1(Z) und Untersumme s1(Z) zu Z (bezüglich Q B) unterscheiden sich nur in Glie-
dern, die zu solchen Rechtecken Qi gehören, die den Rand ∂ B schneiden. Das heißt es ist

S1(Z)− s1(Z) =
∑

Qi∩∂ B �=∅
FQi .

Die rechte Summe ist eine Obersumme der Funktion f (x) ≡ 1 auf dem Rande ∂ B. ∂ B ist genau
dann eine Nullmenge, wenn diese Summe beliebig klein wird (für genügend feine Zerlegungen
Z = {Q1, . . . , Qm}), d.h. daß auch die linke Seite beliebig klein wird, d.h. daß das Integral
(7.16) existiert, d.h. daß auch B meßbar ist. �

Nach dem Satz ist jeder Normalbereich D =
{[

x
y

] ∣
∣
∣
∣

a ≤ x ≤ b , g(x) ≤ y ≤ h(x)

}

(g, h

stetig) meßbar, denn sein Rand, bestehend aus den Graphen von g und h sowie evtl. zweier
senkrechter Strecken ist sicherlich eine Nullmenge.

Die folgenden drei Sätze bilden das theoretische Fundament der zweidimensionalen Integrati-
on.

7.1.3 Grundlegende Sätze

Satz 7.2:

Jede stetige reellwertige Funktion auf einer meßbaren kompakten Menge B ist inte-
grierbar.

Beweis:

Es sei Q B das kleinste achsenparallele Rechteck, daß B umfaßt und f ∗ : Q B → R definiert
durch (7.14). f ist gleichmäßig stetig, da B kompakt ist (Satz 6.5, Abschn. 6.2.3). Folglich gibt
es zu beliebigem ε > 0 ein δ > 0 mit

| f (x1)− f (x2)| < ε , falls |x1 − x2| ≤ δ .

3 Marie Ennemond Camille Jordan (1838 – 1922), französischer Mathematiker
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Wählt man nun eine Zerlegung Z = {Q1, . . . , Qm} von Q B , deren Feinheit kleiner als δ ist, so
gilt

| f (x1)− f (x2)| < ε , für alle x1, x2 ∈ Qi ∩ B,

wobei Qi ein beliebiges Teilrechteck der Zerlegung Z ist. Damit gilt für die Differenz der Ober-
und Untersumme von f bezüglich Z (vgl. Def. 7.1):

S f (Z)− s f (Z) =
m
∑

i=1

(Mi − mi )FQi ⇒

S f (Z)− s f (Z) =
∑

Qi⊂B

(Mi − mi )FQi +
∑

Qi∩∂ B �=∅
(Mi − mi )FQi

≤
∑

Qi⊂B

εFQi +
∑

Qi∩∂ B �=∅
C FQi ≤ εFB + C

∑

Qi∩∂ B �=∅
FQi ,

wobei C = sup
Q B

f ∗(x) − inf
Q B

f ∗(x) ist. Die rechts stehende Summe wird bei genügend feiner

Zerlegung beliebig klein, da ∂ B eine Nullmenge ist. Das Glied εFB wird ebenfalls beliebig
klein, wenn man ε genügend klein wählt. Damit unterschreitet S f (Z) − s f (Z) jede noch so
kleine positive Zahl, wenn man Z nur genügend fein wählt. Das heißt f ist integrierbar auf B.�

Satz 7.3:
(Bereichsintegrale als Doppelintegrale) Es sei f : Q → R eine integrierbare Funktion
auf dem Quader Q = [a, b] × [c, d].

Existieren die Integrale

F(x) :=
d∫

c

f (x, y) dy für alle x ∈ [a, b], und

G(y) :=
b∫

a

f (x, y) dx für alle y ∈ [c, d],

so folgt

∫∫

Q

f (x, y) dF =
b∫

a

d∫

c

f (x, y) dy dx =
d∫

c

b∫

a

f (x, y) dx dy . (7.18)

Bemerkung: Die Vertauschung der Integrationsreihenfolge in (7.18) wird auch als Satz von Fu-
bini4 (für Riemannintegrale) bezeichnet.

4 Guido Fubini (1879 – 1943), italienischer Mathematiker
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Beweis:

Wir setzen zur Abkürzung I :=
∫∫

Q

f (x, y) dF .

Zu jedem ε > 0 gibt es eine Zerlegung Z = {Q1, . . . , Qm} von Q mit

s f (Z) > I − ε und S f (Z) < I + ε . 5 (7.19)

Die Zerlegung Z wird durch zwei Zerlegungen Zx und Z y mit den Teilungspunkten

a = x0 < x1 < . . . < x p = b , c = y0 < y1 < . . . < yq = d

erzeugt. Wir wollen die Teilrechtecke von Z daher mit

Qik := [xi−1, xi ] × [yk−1, yk] , i = 1, . . . , p , k = 1, . . . , q

bezeichnen und die Suprema und Infima darauf mit

Mik = sup
x∈Qik

f (x) , mik = inf
x∈Qik

f (x) .

Nun beginnt der eigentliche Beweis: Für alle y ∈ [yk−1, yk] und ein beliebiges ξi ∈ [xi−1, xi ]
gilt

mik ≤ f (ξi , y) ≤ Mik , (7.20)

nach Integration über [yk−1, yk] also

mik(yk − yk−1) ≤
yk∫

yk−1

f (ξi , y) dy ≤ Mik(yk − yk−1) .

Multiplikation mit (xi − xi−1) und Summation über i und k liefert

s f (Z) ≤
p
∑

i=1

⎡

⎣

d∫

c

f (ξi , y) dy

⎤

⎦ (xi − xi−1) ≤ S f (Z) .

Mit F(x) =
d∫

c

f (x, y) dy und (7.19) folgt

I − ε <

p
∑

i=1

F(ξi )(xi − xi−1) < I + ε . (7.21)

5 Es gibt zweifellos Zerlegungen Z1, Z2 von Q mit s f (Z1) > I − ε und S f (Z2) < I + ε. Man wähle nun als Z die
»gemeinsame Verfeinerung« von Z1 und Z2, bestehend aus allen Schnittmengen der Rechtecke aus Z1 und Z2. Für
Z gilt dann (7.19).
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Da die ξi ∈ [xi−1, xi ] frei gewählt werden können, kommt die mittlere Summe der Obersumme
SF (Zx ) wie auch der Untersumme sF (Zx ) beliebig nahe. wenn man die ξi geeignet wählt. Damit
erhält man aus (7.21)

I − ε ≤ sF (Zx ) ≤ SF (Zx ) ≤ I + ε .

Weil ε > 0 beliebig ist, folgt I =
b∫

a

F(x) dx .

Analog — durch Rollentausch von x und y — zeigt man I =
d∫

c

G(y) dy. Damit ist der Satz

bewiesen. �

Daraus ergibt sich unmittelbar der entscheidende Satz für die praktische Berechnung:

Satz 7.4:
(Berechnung von Bereichsintegralen zweier Variabler) Ist f : B → R stetig auf dem
Normalbereich

B =
{[

x
y

] ∣
∣
∣
∣

a ≤ x ≤ b , g(x) ≤ y ≤ h(x)

}

, g, h stetig, (7.22)

so folgt

∫∫

B

f (x, y) dx dy =
b∫

a

⎡

⎢
⎣

h(x)∫

g(x)

f (x, y) dy

⎤

⎥
⎦ dx . (7.23)

(Die Klammer um das innere Integral, die hier zur Verdeutlichung gesetzt wurde, läßt
man üblicherweise weg.)

Beweis:
Mit f ∗(x) = f (x) für x ∈ B und f ∗(x) = 0 für x ∈ Q B\B (Q B = [a, b] × [c, d] kleinstes
Rechteck um B) gilt nach dem vorigen Satz 7.3:

∫∫

B

f (x, y) dF =
∫∫

Q B

f ∗(x, y) dF =
b∫

a

⎡

⎣

d∫

c

f ∗(x, y) dy

⎤

⎦ dx

=
b∫

a

⎡

⎢
⎣h(x)

h(x)∫

g(x)

f (x, y) dy

⎤

⎥
⎦ dx . �

Dies ist die exakte Begründung der im Abschn. 7.1.1 anschaulich erläuterten Bereichsintegrale.
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Der Flächeninhalt FB eines Normalbereiches B, wie in (7.22) angegeben, ergibt sich nun aus

FB =
b∫

a

h(x)∫

g(x)

dy dx =
b∫

a

(h(x)− g(x)) dx . (7.24)

Fig. 7.15: Zu Beispiel 7.6

Beispiel 7.6:
Der Flächeninhalt der schraffierten Fläche in Fig. 7.15 zwischen den beiden Parabelbögen h(x) =
2− x2 und g(x) = x2 für −1 ≤ x ≤ 1 ist gleich

F =
1∫

−1

((2− x2)− x2) dx = 2

1∫

−1

(1− x2) dx = 8

3
.

Weitere Eigenschaften des Bereichsintegrals:

Satz 7.5:
(a) Es seien f und g integrierbare Funktionen auf dem Kompaktum B ⊆ R2. Dann

sind auch f + g und c f (c reell) integrierbar auf B, und es gilt:

∫∫

B

( f + g) dF =
∫∫

B

f dF +
∫∫

B

g dF , (7.25)

∫∫

c f dF = c

∫∫

B

f dF für jedes reelle c. (7.26)

(b) Es sei f auf dem Kompaktum B definiert. B sei zerlegt in kompakte Teilbereiche

B1, B2, . . ., Bm . (d.h. B = B1 ∪ B2 ∪ . . . ∪ Bm und B
◦
i ∩ B

◦
k = ∅ für i �= k.) Ist
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f auf jedem Bi integrierbar, so auch auf B, und es gilt

∫∫

B

f dF =
∫∫

B1

f dF +
∫∫

B2

f dF + . . .+
∫∫

Bm

f dF . (7.27)

Die einfachen Beweise können dem Leser überlassen bleiben. (Zum Beweis von (7.27) ist
anzumerken, daß man zu jedem Bi eine Funktion fi erklären kann mit fi (x) = f (x) auf Bi und
fi (x) = 0 sonst. Damit ist f = f1 + f2 + . . . + fm auf B, und Regel (7.27) folgt sofort aus
(7.25)).

Satz 7.6:
(Mittelwertsatz für Bereichsintegrale) Es sei f integrierbar auf dem meßbaren Kom-
paktum B ⊆ R2. FB sei der Flächeninhalt von B. Dann folgt mit m = inf

B
f (x),

M = sup
B

f (x):

m FB ≤
∫∫

B

f dF ≤ M FB . (7.28)

Ist B überdies wegweise zusammenhängend und f stetig, so existiert ein Punkt x0 ∈
B mit

∫∫

B

f dF = FB · f (x0) . (7.29)

Bemerkung: B heißt wegweise zusammenhängend, wenn sich je zwei Punkte x1, x2 aus B
durch einen Weg in B verbinden lassen. (D.h.: Es gibt eine stetige Abbildung w : [a, b] → B
mit x1 = w(a), x2 = w(b). Die Abbildung w heißt ein Weg in B. Man sagt: Der Weg verbindet
x1 und x2.)

Beweis:
(I) Mit m := inf

B
(x), M := sup

B
f (x) gilt m ≤ f (x) ≤ M in B, also nach Integration

m

∫∫

B

dF ≤
∫∫

B

f dF ≤ M

∫∫

B

dF ;

wegen FB =
∫∫

B

dF ist dies gerade die Beziehung (7.28).

Im Falle FB �= 0 folgt

m ≤ 1

FB

∫∫

B

f dF ≤ M . (7.30)
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(II) Es sei B wegweise zusammenhängend. Im Falle FB = 0 folgt (7.29) sofort aus (7.28). Im
Falle FB �= 0 wähle man einen Punkt x1 aus B mit f (x1) = m, und einen Punkt x2 ∈ B mit
f (x2) = M . w : [a, b] → B, beschrieben durch x = w(t), sei ein Weg, der x1 und x2 verbindet.

Damit nimmt f (w(t)) jeden Wert zwischen m und M an, auch c =
∫∫

B

f dF/FB , s. (7.30). Es

gibt somit einen Punkt w(t0) = x0 mit f (x0) = c, was zu beweisen war. �

Fig. 7.16: Zu Übung 7.6
Übung 7.6*:

Berechne
∫∫

B

(ex + sin y) dx dy

für den in Fig. 7.16 skizzierten Bereich B.

Übung 7.7:

Berechne

∫∫

B

4xy dx dy für B =
{[

x

y

] ∣
∣
∣
∣
∣

0 ≤ x ≤ 1 , g(x) ≤ y ≤ h(x)

}

mit g(x) = x2, h(x) = 2− x . Skizziere B!

7.1.4 Riemannsche Summen

Es sei B ein meßbares Kompaktum aus R2, das in meßbare wegzusammenhängende Kompakta

ΔB1, ΔB2, . . ., ΔBm zerlegt ist, wie es z.B. die Fig. 7.17 zeigt. (B =
m⋃

i=1
ΔB
◦
i , ΔB

◦
i ∩ΔB

◦
k = ∅

für i �= k).
Die Menge

Ẑ = {ΔB1, ΔB2, . . . , ΔBm}

heißt eine allgemeine Zerlegung von B. Der maximale Durchmesser der ΔBi heißt die Feinheit
|Ẑ | der Zerlegung Ẑ .

Ist f eine stetige reelle Funktion auf B, so wird die Summe
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Fig. 7.17: Allgemeine Zerlegung

R =
m
∑

i=1

f (xi )FΔBi (7.31)

mit beliebigem xi ∈ ΔBi als eine Riemannsche Summe zu Ẑ bezeichnet. Sie wird als Näherung

für das Integral

∫∫

B

f dF angesehen, die umso besser ist, je kleiner die Feinheit von Ẑ ist. Daß

diese Vorstellung richtig ist, wird durch folgenden Satz ausgedrückt.

Satz 7.7:

(über Riemannsche Summen) Es sei f : B → R stetig auf dem meßbaren Kompaktum
B ⊆ R2. Ẑ1, Ẑ2, Ẑ3, . . . sei eine Folge allgemeiner Zerlegungen von B, wobei die Fol-
ge der Feinheiten |Ẑk | mit k → ∞ gegen Null strebt. Wählt man zu jeder Zerlegung
Ẑk eine Riemannsche Summe Rk , so folgt

Rk →
∫∫

B

f dF für k →∞ .

Beweis:

Da f gleichmäßig stetig auf B ist, gibt es zu beliebigem ε > 0 ein k0 > 0, so daß für alle
Ẑk = {ΔBk

1 , ΔBk
2 , . . . , ΔBk

mk
} mit k > k0 folgt

| f (x)− f (x̃)| < ε für alle x, x̃ ∈ ΔBk
i .

Ferner gilt nach dem Mittelwertsatz (7.29):

∫∫

B

f dF =
mk∑

i=1

∫∫

ΔBk
i

f dF =
mk∑

i=1

f (zi )FΔBk
i
, zi ∈ ΔBk

i .
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Damit folgt

∣
∣
∣
∣
∣
∣

Rk −
∫∫

B

f dF

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣

m
∑

i=1

f (x
(k)
i )FΔBk

i
−

m
∑

i=1

f (zi )FΔBk
i

∣
∣
∣
∣
∣

(xk
i ∈ ΔBk

i )

≤
m
∑

i=1

∣
∣
∣ f (x

(k)
i )− f (zi )

∣
∣
∣ FΔBk

i
≤

m
∑

i=1

εFΔBk
i
= εFB für k > k0.

Daraus folgt die Behauptung des Satzes. �

Bemerkung: Beim Lösen technischer oder naturwissenschaftlicher Probleme stößt man immer
wieder auf Ansätze, bei denen Naturvorgänge zunächst durch Riemannsche Summen angenähert
beschrieben werden. Von den Riemannschen Summen geht man dann über verfeinerte Zerle-
gungen zu Integralen über. Für diese »mathematischen Modellierungen« der Natur liefert der
vorstehende Satz die Rechtfertigung. Erste Beispiele dazu gibt der folgende Abschnitt an.

7.1.5 Anwendungen

Schwerpunkte: Den Schwerpunkt eines Systems von endlich vielen Massenpunkten berechnet
man folgendermaßen: Haben die Massenpunkte die Massen m1, m2, . . ., mn und sind die Punkte
x1, x2, x3, . . ., xn ihre Orte im Raum R3, so ist der Schwerpunkt dieses Systems durch

xs =
1

M

n
∑

i=1

mi xi (7.32)

gegeben. Dabei ist M =
n
∑

i=1

mi die Gesamtmasse des Systems. (Statt Schwerpunkt sagt man

auch Massenmittelpunkt).
Bei einem realen Körper (mit nichtverschwindendem Volumen) knüpft man an die Massen-

punktsysteme und damit an Formel (7.32) an. Man denkt sich nämlich den Körper in kleine
Teilstücke zerlegt, die man wie Massenpunkte behandelt, d.h. man wendet auf sie die Formel
(7.32) an. Damit bekommt man eine Näherung für den Schwerpunkt des Körpers. Läßt man den
maximalen Durchmesser der Teile gegen Null gehen, so erhält man als Grenzfall den Schwer-
punkt des Körpers.
Flächenschwerpunkte: Diese Idee wollen wir zunächst auf dünne ebene Platten anwenden. Wir
idealisieren sie zu ebenen Flächenstücken der Dicke Null. Ein solches mit Masse belegtes Flä-
chenstück B ist in Fig. 7.18 skizziert. B sei meßbar und kompakt.

Wir denken uns B in meßbare, wegweise zusammenhängende Teile ΔBi (i = 1, . . . , n) zer-
legt, etwa durch Rasterung, s. Fig. 7.18. Aus jedem ΔBi wählen wir ein xi aus.

Ist durch ρ(x) die Flächendichte der Masse auf B gegeben (gemessen in g/cm, so können wir
ρ(x) auf jedem Teilstück ΔBi als nahezu konstant annehmen. Die Masse von ΔBi ist damit

Δmi ≈ ρ(xi )FΔBi . 6
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Fig. 7.18: Zum Flächenschwerpunkt

Mit der Gesamtmasse M unserer Platte erhalten wir den Schwerpunkt xs der Platte näherungs-
weise aus (7.32):

xs ≈
1

M

n
∑

i=1

Δmi xi ≈
1

M

n
∑

i=1

ρ(xi )xi FΔBi

Bei immer feiner werdender Rasterung, wobei der maximale Durchmesser der ΔBi gegen Null
gehen soll, erhalten wir schließlich für den Schwerpunkt

xs =
1

M

∫∫

B

ρ(x)x dF . (7.33)

Die Gleichung besteht aus zwei Koordinatengleichungen. Das Integral ist dabei einzeln für jede
Koordinate zu bilden.

Die Masse M selbst hängt mit ρ(x) durch

M =
∫∫

B

ρ(x) dF

zusammen, wie sich aus einer analogen Überlegung ergibt. Im Falle konstanter Flächendichte ρ0

folgt daher M = ρ0

∫

B

dF = ρ0 FB , und damit für den Schwerpunkt die Formel

xs =
1

FB

∫∫

B

x dF . (7.34)

Mit xs =
[

xs

ys

]

, x =
[

x
y

]

, also in Koordinaten:

6 FΔBi
= Flächeninhalt von ΔB − I .
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xs =
1

FB

∫∫

B

x dx dy , ys =
1

FB

∫∫

B

y dx dy (7.35)

ist B ein Normalbereich:

B =
{[

x
y

] ∣
∣
∣
∣

a ≤ x ≤ b , g(x) ≤ x ≤ f (x)

}

mit stetigen Funktionen g, f , so folgt

xs =
1

FB

b∫

a

⎛

⎜
⎝

f (x)∫

g(x)

x dy

⎞

⎟
⎠ dx = 1

FB

b∫

a

x( f (x)− g(x)) dx , (7.36)

ys =
1

FB

b∫

a

⎛

⎜
⎝

f (x)∫

g(x)

y dy

⎞

⎟
⎠ dx = 1

2FB

b∫

a

( f 2(x)− g2(x)) dx . (7.37)

Mit diesen Formeln lassen sich die Flächenschwerpunkte oft leicht berechnen. Dazu ein Beispiel.

Fig. 7.19: Zum Schwerpunkt einer Halbkreisfläche

Beispiel 7.7:

(Schwerpunkt einer halbkreisförmigen Platte) Der Halbkreis H liege so, wie in Fig. 7.19 skiz-
ziert:

H =
{[

x
y

] ∣
∣
∣
∣
− r ≤ x ≤ r , 0 ≤ y ≤

√

r2 − x2

}

, r > 0 .

H ist ein Normalbereich. Die Flächendichte sei konstant. Nach (7.36) und (7.37) folgt damit für
die Komponenten des Schwerpunktes:

xs =
2

r2π

r∫

−r

x
√

r2 − x2 dx = 0 ,
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da der Integrand eine ungerade Funktion ist, und

ys =
1

r2π

r∫

−r

(r2 − x2) dx = 4r

3π
.

Kurvenschwerpunkte: Eine glatte Kurve7 in der Ebene sei durch

x = g(t) , y = f (t) , (a ≤ t ≤ c)

gegeben. ( f , g sind dabei stetig differenzierbare Funktionen auf [a, b]) und es ist ġ(t)2+ ḟ (t)2 �=
0 für alle t ∈ [a, b].) Die Kurve stelle einen dünnen Draht, ein dünnes Seil oder ähnliches dar. ρ

sei die konstante Massen-Kurvendichte, also ρ = m/L , wobei m die Masse des Drahtes (Seiles
o.ä.) ist und L seine Länge. Es sei durch

a = t0 < t1 < t2 < . . . < tn = b

eine äquidistante Zerlegung von [a, b] gegeben, mit

Δt = ti − ti−1 für alle i = 1, . . . , n .

Wir schreiben mit xi = g(ti ), yi = f (ti ), entsprechend Δxi = xi − xi−1, Δyi = yi − yi−1 und

Δsi =
√

Δx2
i +Δy2

i .

Δsi ist näherungsweise die Länge des Kurvenstückes zu [ti−1, ti ]. Damit gilt für den Schwerpunkt
des Drahtes (oder Seiles) nach (7.32) ungefähr:

xs ≈
1

m

n
∑

i=1

xiρ ·Δsi =
1

L

n
∑

i=1

xi
Δsi

Δt
Δt , ys ≈

1

m

n
∑

i=1

yiρ ·Δsi =
1

L

n
∑

i=1

yi
Δsi

Δt
Δt ,

nach Grenzübergang entsprechend der anfangs skizzierten Idee also:

xs =
1

L

b∫

a

x
√

ẋ2 + ẏ2 dt ,

ys =
1

L

b∫

a

y
√

ẋ2 + ẏ2 dt ,

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

mit

{

x = g(t) ,

y = f (t) .
(7.38)

Die Kurvenlänge L errechnet man dabei (n. Burg/Haf/Wille (Vektoranalysis) [9], Abschn. 1.2.1)
aus

7 Die ausführliche Kurventheorie nebst vielen Beispielen findet der Leser in Burg/Haf/Wille (Vektoranalysis) [9],
Abschn. 1. Ableitungen nach t werden hier mit einem Punkt markiert, z.B. ġ(t).
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L =
b∫

a

√

ẋ2 + ẏ2 dt . (7.39)

Im Spezialfall x = t , y = f (t) können wir einfach t durch x ersetzen:

y = f (x) .

Wir haben es hier mit einer Kurve zu tun, die einfach durch den Funktionsgraphen von f gegeben
ist, In diesem Falle ergibt sich der Kurvenschwerpunkt aus (7.38) folgendermaßen:

xs =
1

L

b∫

a

x
√

1+ (y′)2 dx ,

ys =
1

L

b∫

a

y
√

1+ (y′)2 dx ,

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

mit y = f (x). (7.40)

Dabei ist die Kurvenlänge L =
b∫

a

√

1+ (y′)2 dx .

Flächenmomente: In der Festigkeitslehre benötigt man zur Behandlung von Biegungen Flächen-
momente von Querschnittsflächen. Ist B eine solche Querschnittsfläche, die in einer x-y-Ebene
liegt (s. Fig. 7.20), so verwendet man folgende Flächenmomente (die auch Momente zweiter
Ordnung heißen):

Axiales Flächenmoment

bezüglich der y-Achse:
Iy =

∫∫

B

x2 dx dy ,

Axiales Flächenmoment

bezüglich der x-Achse:
Ix =

∫∫

B

y2 dx dy ,

Gemischtes Flächenmoment

bezüglich der x- und y-Achse:
Ixy =

∫∫

B

xy dx dy ,

Polares Flächenmoment

bezüglich des Koordinatenursprungs:
Ip =

∫∫

B

(x2 + y2) dx dy 8 .

Das gemischte Flächenmoment heißt auch Deviationsmoment oder Zentrifugalmoment. Das
polare Flächenmoment (verwendbar bei Torsionsuntersuchungen) läßt sich durch die axialen Flä-

8 Statt x ist in der Technik hier auch der Buchstabe z häufig anzutreffen.
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Fig. 7.20: Zum Flächenmoment

chenmomente ausdrücken:

Ip = Iy + Ix .

Beispiel 7.8:
(Axiales Flächenmoment Iy eines gleichseitigen Dreiecks) Aus Symmetriegründen brauchen
wir nur über die rechte Dreieckshälfte B zu integrieren (Fig. 7.21) und das Integral doppelt zu
nehmen:

Iy = 2

∫∫

B

x2 dx dy = 2

a/2∫

0

⎛

⎜
⎝

(a−2x)
√

3/2∫

0

x2 dy

⎞

⎟
⎠ =

√
3

a/2∫

0

x2(a − 2x) dx =
√

3

96
a4 .

Fig. 7.21: Zum axialen Flächenmoment eines
gleichseitigen Dreiecks

Fig. 7.22: Zum polaren Flächenmoment einer
Ellipse

Beispiel 7.9:
(Polares Flächenmoment Ip einer Ellipsenfläche bezüglich des Mittelpunktes) Die Ellipse sei
durch

x2

a2
+ y2

b2
= 1
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beschrieben. Aus Symmetriegründen braucht das polare Flächenmoment nur von der Viertelel-
lipsenfläche B berechnet zu werden (s. Fig. 7.22) und dieses mit 4 multipliziert zu werden. Also
insgesamt

Ip = 4

∫∫

B

(x2 + y2) dx dy = 4

a∫

0

⎡

⎢
⎢
⎣

b
√

1−x2/a2
∫

0

(x2 + y2) dy

⎤

⎥
⎥
⎦

dx

= 4

a∫

0

[

x2b

(

1− x2

a2

)1/2

+ b3

3

(

1− x2

a2

)3/2
]

dx

Man substituiert x = a sin t und erhält

Ip = 4ab

π/2∫

0

[

a2 sin2 t cos t + b2

3
cos t

]

cos t dt

= 4ab

π/2∫

0

[

α2 cos t +
(

b2

3
− a2

)

cos t

]

dt

= a3bπ + ab

(
b2

3
− a2

)
3π

4
(s. Abschn. 4.2.3, (4.81))

⇒ Ip =
abπ

4
(a2 + b2) . (7.41)

Für den Spezialfall a = b =: r erhalten wir daraus das polare Flächenmoment einer Kreisscheibe
bezüglich des Mittelpunktes:

Ip =
π

2
r4 . (7.42)

Durch Subtraktion zweier Flächenmomente dieser Art gewinnt man daraus das polare Flächen-
moment eines ringförmigen Rohrquerschnittes bezüglich des Mittelpunktes (s. Fig. 7.23):

Ip =
π

2
(R4 − r4) (7.43)

(R = äußerer Radius, r = innerer Radius des Kreisringes).

Übung 7.8:

Zeige, daß der Schwerpunkt einer dreieckigen ebenen Platte mit konstanter Flächendichte ρ0

der Schnittpunkt der Seitenhalbierenden ist.
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Fig. 7.23: Zum polaren Flächenmoment eines Ringes

Übung 7.9:

Berechne das polare Flächenmoment eines regelmäßigen Sechsecks bezüglich seines Mittel-

punktes (a = Seitenlänge des Sechseckes).

Übung 7.10:

Berechne das axiale Flächenmoment Iy einer Kreisscheibe mit Radius r > 0. Dabei verlaufe

die y-Achse durch den Mittelpunkt des Kreises.

7.1.6 Krummlinige Koordinaten, Transformationen, Funktionaldeterminanten

Das wichtigste Beispiel für krummlinige Koordinaten in der Ebene sind die uns geläufigen Po-
larkoordinaten.

Dabei wird bekanntlich jeder Punkt x =
[

x
y

]

der Ebene durch seinen Abstand r vom Koordi-

natenursprung und den Winkel ϕ zwischen der x-Achse und der Strecke von 0 bis x beschrieben.
Es gilt

x = r cos ϕ , r =
√

x2 + y2 ,

y = r sin ϕ , ϕ = arc(x, y) ,

9 (7.44)

wobei r ≥ 0 und −π < ϕ ≤ π ist.
Die Linien r = konstant sind konzentrische Kreise um den Punkt 0, die Linien ϕ = konstant

dagegen Geraden durch 0. Einige sind in Fig. 7.24 skizziert. Sie bilden ein krummliniges Gitter,
das sich über die Ebene erstreckt. Aus diesem Grunde spricht man hier von krummlinigen Koor-
dinaten. Lassen wir den Punkt 0 einmal außer Acht, so beschreiben die Gleichungen x = r cos ϕ

9 Dabei ist arc(x, y) =
{

arccos(x/r) , für y ≥ 0,

− arccos(x/r) , für y < 0,
s. Abschn. 2.3.4. Im Falle x > 0 gilt auch arc(x, y) =

arctan(y/x),
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und y = r sin ϕ eine eineindeutige Abbildung des Streifens

G∗ =
{[

r
ϕ

] ∣
∣
∣
∣

r > 0 , −π < ϕ ≤ π

}

(s. Fig. 7.25) der (r, ϕ)-Ebene auf die x-y-Ebene ohne 0. Hieran orientieren wir uns im Folgen-
den.

Fig. 7.24: Polarkoordinaten als typische
»krummlinige« Koordinaten Fig. 7.25: Bereich G∗ für die Punkte

[

x
ϕ

]

Allgemeiner Fall krummliniger Koordinaten in der Ebene

Durch

x = g(u, v)

y = h(u, v)
,

[

u
v

]

∈ G∗ ,

[

x
y

]

∈ R2 ,

sei eine stetig differenzierbare Abbildung von G∗ in R2 gegeben. Mit den Abkürzungen

x :=
[

x
y

]

, u :=
[

u
v

]

, T :=
[

g
h

]

, T (G∗) =: G ,

beschreiben wir sie kürzer durch

x = T (u) , u ∈ G∗ ,

oder: T : G∗→ G.
Die Ableitungsmatrix von T — auch Funktionalmatrix genannt — hat die Form

T ′ =
[

gu gv

hu hv

]

,
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wobei gu , gv , hu , hv — wie üblich — die partiellen Ableitungen von h und g sind. Ihre Determi-
nante10

det T ′ =
[

gu gv

hu hv

]

= guhv − gvhu (7.45)

heißt die Funktionaldeterminante von T . Mit Blick auf die Funktionsgleichungen x = g(u, v),
y = h(u, v) bezeichnet man sie auch durch

∂(x, y)

∂(u, v)
.

Diese Schreibweise ist in Naturwissenschaft und Technik beliebt, da ihre Symbolik an die parti-
ellen Ableitungen erinnert, die in ihr stecken.

Für das Folgende setzen wir voraus

(a) G und G∗ seien Gebiete, d.h. offene und zusammenhängende11 Mengen (in R2).

(b) T : G∗→ G sei umkehrbar eindeutig und stetig differenzierbar.

(c) Die Funktionaldeterminante von T ist überall in G∗ von Null verschieden:

det T ′(u) �= 0 für alle u ∈ G∗.

Da G∗ zusammenhängend ist, folgt, daß det T ′(u) entweder positiv in ganz G∗ ist, oder nega-
tiv in ganz G∗.

Eine Abbildung T : G∗→ G dieser Art heißt eine Transformation von G∗ auf G.
In Fig. 7.26 ist eine Transformation T : G∗ → G(u ∈ G∗, x ∈ G) bildlich dargestellt. Die

Linien u = konstant und v = konstant sind in der u-v-Ebene achsenparallele Geraden; in der
x-y-Ebene ergeben sie ein krummliniges Netz, das den Bildbereich G überzieht.

Zur Veranschaulichung der Funktionaldeterminante betrachten wir das schraffierte Rechteck
ΔG∗ in Fig. 7.26a. Seine Kantenlängen seien Δu und Δv, und der linke untere Eckpunkt habe
die Koordinaten (u0, v0). Die vier Eckpunkte des Rechtecks ΔG∗ sind damit

u0 =
[

u0

v0

]

, u1 =
[

u0 +Δu
v0

]

, u2 =
[

u0

v0 +Δv

]

, u3 =
[

u0 +Δu
v0 +Δv

]

.

Durch T wird unser Rechteck ΔG∗ auf den schraffierten Bereich ΔG in Fig. 7.26b abgebildet.
ΔG hat nahezu Parallelogramm-Gestalt, wenn Δu und Δv klein genug sind. Dieses »Parallelo-
gramm« wird aufgespannt von den Vektoren

ΔT 1 = T (u1)− T (u0) ≈
∂T

∂u
(u0)Δu ,

ΔT 2 = T (u2)− T (u0) ≈
∂T

∂v
(u0)Δv .

10 Unter einer Determinante einer 2× 2-Matrix A =
[

a b
c d

]

versteht man die Zahl det A := ad − bc.

11 Eine offene Menge heißt zusammenhängend, wenn sie sich nicht in zwei offene Mengen zerlegen läßt.
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Fig. 7.26: Zur Transformation T : G∗ → G.

Die lineare Algebra lehrt, daß der Flächeninhalt dieses Parallelogramms gleich dem Absolutbe-
trag der Determinante det(ΔT 1, ΔT 2) ist, deren Spalten die Vektoren ΔT 1 und ΔT 2 sind. Für
den Flächeninhalt ΔF des Bereiches ΔG folgt damit

ΔF ≈ | det(ΔT 1, ΔT 2)| ≈
∣
∣
∣
∣
det

(
∂T

∂u
(u0),

∂T

∂v
(v0)

)∣
∣
∣
∣
ΔuΔv . (7.46)

Die rechtsstehende Determinante ist die Funktionaldeterminante von T , also

ΔF ≈ | det T ′(u0)|ΔuΔv (7.47)

≈
∣
∣
∣
∣

∂(x, y)

∂(u, v)

∣
∣
∣
∣
u0

ΔuΔv . 12 (7.48)

Dividieren wir durch den Flächeninhalt ΔF∗ = ΔuΔv des Rechteckes ΔG∗ im Urbildbe-
reich, so folgt

ΔF

ΔF∗
≈
∣
∣
∣
∣

∂(x, y)

∂(u, v)

∣
∣
∣
∣
u0

. (7.49)

Schließlich lassen wir den Durchmesser D(ΔF∗) :=
√

Δu2 +Δv2 von ΔF∗ gegen Null streben
und erhalten

lim
D(ΔF∗)→0

ΔF

ΔF∗
=
∣
∣
∣
∣

∂(x, y)

∂(u, v)

∣
∣
∣
∣
u0

. (7.50)

Den exakten Beweis dieser plausiblen Formel übergehen wir hier. (Die Formel folgt aus der
allgemeineren Transformationsformel für Integrale, s. nächster Abschnitt.)

Formel (7.50) kann anschaulich so interpretiert werden:

12 Die Abhängigkeit von u0 wird bei
∂(x, y)

∂(u, v)
— falls erforderlich — durch ein tiefgestelltes u0 angegeben.
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Die Funktionaldeterminante einer ebenen Transformation ist betragsmäßig das lokale
Flächeninhalts-Verhältnis zwischen Bild- und Urbildflächen.

Beispiel 7.10:
Die Funktionaldeterminante der Transformation auf Polarkoordinaten ergibt sich aus x = r cos ϕ,
y = r sin ϕ:

∂(x, y)

∂(r, ϕ)
=

∣
∣
∣
∣
∣
∣
∣
∣

∂x

∂r

∂x

∂ϕ

∂y

∂r

∂y

∂ϕ

∣
∣
∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣

cos ϕ −r sin ϕ

sin ϕ r cos ϕ

∣
∣
∣
∣
= r cos 2ϕ + r sin2 ϕ = r . (7.51)

Wir erwähnen noch, daß die Koordinatenlinien ϕ = konstant und r = konstant in der x-y-Ebene
rechtwinklig zueinander stehen. Dies spiegelt sich in T u · T v = 0 wider. Die Polarkoordinaten
fallen damit unter den Begriff der orthogonalen Koordinaten.

Komposition von Transformationen

Es seien T : G∗ → G und S : G → H zwei ebene Transformationen. Für ihre Komposition
S ◦ T folgt

det(S ◦ T )′(x) = det S′( y) det T ′(x) , mit y = T (x) . (7.52)

Der Leser rechnet dies leicht explizit nach, wenn er Satz 6.9, Abschn. 6.3.3,
betrachtet, d.h. (S ◦ T )′(x) = S′( y)T ′(x). Mit den Funktionsgleichungen

[

z1

z2

]

=
[

S1(y1, y2)

S2(y1, y2)

]

,

[

y1

y2

]

=
[

T1(x1, x2)

T2(x1, x2)

]

für die Transformationen S und T bekommt (7.52) die leicht zu merkende Gestalt

∂(z1, z2)

∂(x1, x2)
= ∂(z1, z2)

∂(y1, y2)
· ∂(y1, y2)

∂(x1, x2)
. (7.53)

Wir wenden diese Formel speziell auf die Umkehrabbildung T−1 von T an, bei der T−1 ◦T = I

die identische Abbildung x = I(x) ist. In obiger Gleichung (7.53) haben wir also zi = xi

einzusetzen. Wegen

∂(x1, x2)

∂(x1, x2)
=
∣
∣
∣
∣

1 0
0 1

∣
∣
∣
∣
= 1

folgt damit aus (7.51):

∂(y1, y2)

∂(x1, x2)
= 1

∂(x1, x2)

∂(y1, y2)

, (7.54)
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wobei links das Argument x =
[

x1

x2

]

einzusetzen ist und rechts das zugeordnete Argument y =
[

y1

y2

]

= T (x).

Übungen: Berechne die Funktionaldeterminante der folgenden Transformationen:

Übung 7.11:

x = au + bv ,

y = cu + dv ,

}

lineare Abbildung

a, b, c, d reelle Konstanten mit ad − bc �= 0.

Übung 7.12:

x = ρ cosh ξ cos η ,

y = ρ sinh ξ sin η ,

}

elliptische Koordinaten ξ , η

(ρ > 0 konstant).

Skizziere die Linien ξ = konstant und η = konstant.

Übung 7.13:

x = 1

2
(u2 − v2)

y = uv ,

⎫

⎬

⎭

parabolische Koordinaten

(u2 + v2 �= 0).

7.1.7 Transformationsformel für Bereichsintegrale

Analog zur Substitutionsregel bei einer Variablen gilt die im Folgenden angegebene Transforma-
tionsformel für Integrale im R2 (und ganz entsprechend auch im Rn .).

Satz 7.8:

Es sei T : G∗ → G eine Transformation des Gebietes G∗ ⊂ R2 auf das Gebiet
G ⊂ R2. (D.h.: T ist stetig differenzierbar, umkehrbar eindeutig, und die Funktional-
determinante det T ′(u) ist für alle u ∈ G∗ positiv oder für alle u ∈ G∗ negativ). Ferner
sei B∗ eine kompakte meßbare Teilmenge von G∗, und f sei eine stetige reellwertige
Funktion auf dem Bereich B = T (B∗).

B ist damit auch meßbar, und es gilt die Transformationsformel

∫∫

B

f (x) dx =
∫∫

B∗

f (T (u))| det T ′(u)| du . (7.55)

Mit der Koordinatenschreibweise

x =
[

x
y

]

, u =
[

u
v

]

,

[

x
y

]

= T (u) =
[

g(u, v)

h(u, v)

]
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und

det T ′(u) = ∂(x, y)

∂(u, v)

erhält die Transformationsformel (7.53) die explizite Form

∫∫

B

f (x, y) dx dy =
∫∫

B∗

f (g(u, v), h(u, v))

∣
∣
∣
∣

∂(x, y)

∂(u, v)

∣
∣
∣
∣

du dv . (7.56)

Bemerkung: (a) Durch die Ähnlichkeit mit der Substitutionsregel bei einer Variablen läßt sich
die Transformationsformel in dieser Form gut behalten: Die Zeichen dx dy werden formal zu
∣
∣
∣
∣

∂(x, y)

∂(u, v)

∣
∣
∣
∣

du dv »erweitert«.

(b) Der Satz gilt auch, wenn det T ′(u) = 0 auf einer Nullmenge N ⊂ B∗ gilt oder die Einein-
deutigkeit von T nur in G∗\N erfüllt ist. (Bei Transformation auf Polarkoordinaten brauchen wir
daher den Punkt 0 nicht als Ausnahmepunkt zu betrachten.)

Der exakte Beweis der Transformationsformel ist sehr umfangreich. Der daran interessierte
Leser wird deswegen auf [25], Abschn. 205, S. 473 – 485, verwiesen.

Allerdings läßt sich der Satz anschaulich sehr gut plausibel und glaubhaft machen. Dazu be-
trachten wir Fig. 7.27, die die Transformation T von B∗ auf B veranschaulicht. B∗ ist durch
achsenparallele Geraden in endlich viele »Maschen« ΔB∗k . (k = 1,2, . . . , m) zerlegt. Ihre Bilder
ΔBk := T (ΔB∗

kT ) zerlegen B = T (B∗), wie z.B. im rechten Bild skizziert. Mit uk sei ein be-
liebig ausgewählter Punkt aus ΔB∗k . bezeichnet und mit xk = T (uk) sein Bild in ΔBk . (für alle
k = 1, . . . , m). Den Flächeninhalt von ΔB∗k nennen wir ΔF∗k , den von ΔBk entsprechend ΔFkτ

(k = 1, . . . , m).

Fig. 7.27: Zur Transformationsformel

Nach den Überlegungen im letzten Abschnitt (s. (7.49)) gilt

ΔFk ≈ | det T ′(uk)|ΔF∗k .
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Damit folgt für das Integral von f über B approximativ

∫∫

B

f (x) dx ≈
m
∑

k=1

f (xk)ΔFk

≈
m
∑

k=1

f (T (uk))| det T ′(uk)|ΔF∗k ≈
∫∫

B

f (T (u))| det T ′(u)| du .

Strebt hierbei der maximale Durchmesser der Flächenstücke ΔFk gegen Null, so ist es plausi-
bel, daß für die entstehenden Grenzwerte Gleichheit eintritt, d.h. daß die Transformationsformel
dabei entsteht.

Einige Beispiele sollen die Kraft der Transformationsformel beleuchten.

Beispiel 7.11:

(Lineare Transformationen) Eine lineare Transformation der Ebene R2 in sich ist durch

x = a11u + a12v ,

y = a21u + a22v ,
mit a11a22 − a12a21 �= 0 ,

gegeben. Mit der Matrix

A =
[

a11 a12

a21 a22

]

, sowie x =
[

x
y

]

u =
[

u
v

]

lautet die Transformationsgleichung kürzer

x = Au , mit det A �= 0 .

Damit folgt für beliebige ebene Bereichsintegrale stetiger Funktionen f (nach (7.53)):

∫∫

B

f (x) dx dy = | det A|
∫∫

B

f (Au) du dv .

Für Drehungen und Spiegelungen ist | det A| = 1. Damit folgt: Bereichsintegrale sind gegen
Drehungen und Spiegelungen des Koordinatenkreuzes invariant. Insbesondere gilt dies damit für
Schwerpunkte und Trägheitsmomente von Körpern, was aus der Physik auch nicht anders zu
erwarten ist.

Beispiel 7.12:

(zu Polarkoordinaten) Der Schwerpunkt einer ebenen Platte von der Form eines Kreissektors K
soll bestimmt werden, s. Fig. 7.28. Die Massen-Flächendichte ρ0 sei konstant auf K . α sei der
Öffnungswinkel und R der Radius des Kreissektors. Die y-Komponente des Schwerpunktes von
K ist aus Symmetriegründen 0. Die x-Komponente x0 des Schwerpunktes ergibt sich nach (7.33)
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aus

x0 =
1

α

2
R2

∫∫

K

x dx dy .

Mit der Transformation x = r cos ϕ, y = r sin ϕ auf Polarkoordinaten folgt aus der Transforma-
tionsformel (7.54):

x0 =
2

αR2

α/2∫

−α/2

R∫

0

r cos(ϕ) · r dr dϕ = 2

αR2

α/2∫

−α/2

cos ϕ

⎡

⎣

R∫

0

r2 dr

⎤

⎦ dϕ

= 2R

3α

α/2∫

−α/2

cos ϕ dϕ = 4

3
R

sin α
2

α
.

Fig. 7.28: Zum Schwerpunkt eines Kreissektors

Beispiel 7.13:
Der Flächeninhalt einer Ellipse

E =
{[

x
y

] ∣
∣
∣
∣

x2

a2
+ y2

b2
≤ 1

}

, a > 0 , b > 0 , ist FE =
∫∫

E

dx dy .

Zur bequemen Auswertung des Integrals benutzt man der Ellipse angepaßte λ, t, definiert durch
die Transformation

x = aλ cos t , y = bλ sin t . (7.57)

Für λ = 1 und 0 ≤ t ≤ 2π beschreibt dies gerade den Rand der Ellipsenfläche. Die Funktional-
determinante dazu ist

∣
∣
∣
∣
∣
∣
∣
∣

∂x

∂λ

∂x

∂t

∂y

∂λ

∂y

∂t

∣
∣
∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣

a cos t −aλ sin t
b sin t bλ cos t

∣
∣
∣
∣
= abλ .
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Die Transformationsformel (7.54) ergibt für die Ellipsenfläche den Inhalt

FE =
1∫

0

2π∫

0

abλ dt dλ = ab2π

1∫

0

λ dλ = abπ .

Entsprechend wird das Trägheitsmoment eines elliptischen Zylinders berechnet. Ja, für die mei-
sten Integrale

∫∫

E

f (x, y) dx dy

auf der Ellipsenfläche ist die Transformation auf die Koordinaten (7.57) oder elliptische Koor-
dinaten (s. Abschn. 7.1.6, Üb. 7.12) zweckmäßig.

Beispiel 7.14:

Das Gaußsche Fehlerintegral

I =
∞∫

−∞
e−x2

dx

kann mit der zweidimensionalen Integrationstechnik elegant berechnet werden. (Mit Integrati-
onsmethoden einer reellen Variablen ist es analytisch nicht berechenbar!)

Das Integral wird als Grenzwert

I = lim
n→∞

In , mit In =
n∫

−n

e−x2
dx ,

geschrieben. (Der Grenzwert existiert, da e−x2 ≤ e−|x | für |x | ≥ 1 ist, und

∞∫

−∞
e−|x | dx =

2

∞∫

0

e−x dx = 2 existiert.) Der »Pfiff« besteht darin, I 2
n zu untersuchen und die Integrationsva-

riable einmal x und einmal y zu nennen:

I 2
n =

n∫

−n

e−x2
dx ·

n∫

−n

e−y2
dy =

n∫

−n

n∫

−n

e−(x2+y2) dx dy .

Dies ist ein Doppelintegral auf dem Quadrat

Qn = [−n, n] × [−n, n] .
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Wir vergleichen es mit den entsprechenden Integralen über den Kreisscheiben Kn und K√2n um

0 mit den Radien n bzw.
√

2n: Wegen Kn ⊂ Qn ⊂ K√2n (s. Fig. 7.29) gilt

∫∫

kn

e−(x2+y2) dx dy ≤ I 2
n ≤

∫∫

K√2n

e−(x2+y2) dx dy .

Nun werden die beiden Integrale links und rechts auf Polarkoordinaten transformiert: x = r cos ϕ,
y = r sin ϕ.

Fig. 7.29: Zum Fehlerintegral

∞∫

−∞
e−x2

dx

Es folgt

2π∫

0

n∫

0

e−r2
r dr dϕ ≤ I 2

n ≤
2π∫

0

√
2n∫

0

e−r2
r dr dϕ .

Eine Stammfunktion von r �→ e−r2
r ist offenbar r �→ 1

2
e−r2

Damit lassen sich die Doppelinte-

grale rechts und links analytisch berechnen:

π(1− e−n2
) ≤ I 2

n ≤ π(1 · − e−2n2
) .

Rechte und linke Seite streben mit n →∞ gegen π , folglich auch I 2
n . Somit ergibt sich I 2 = π ,

also nach Wurzelziehen:

∞∫

−∞
e−x2

dx = √π . (7.58)

Diese Formel spielt insbesondere in der Wahrscheinlichkeitslehre eine wichtige Rolle.
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Übung 7.14:

Berechne

∫∫

K

4
√

x2 + y2 dx dy auf der Einheitskreisscheibe K ⊂ R2. Anleitung: Transformiere

auf Polarkoordinaten.

Übung 7.15:

Berechne das Trägheitsmoment eines elliptischen Zylinders bezüglich seiner Mittelachse. Wäh-

le dabei die Bezeichnungen aus Beisp. 7.9 in Abschn. 7.1.5. Hinweis: Benutze die Transforma-

tion auf elliptische Koordinaten (7.55).

Übung 7.16:

Zeige, daß der Schwerpunkt x0 einer ebenen Platte bei linearer Transformation x = Au mit-

transformiert wird, also x0 = Au0 (u0 = Schwerpunkt nach Transformation).

7.2 Allgemeinfall: Integration bei mehreren Variablen

Die Behandlung von Integralen bei drei und mehr Variablen verläuft völlig analog zu dem be-
schriebenen zweidimensionalen Fall.

7.2.1 Riemannsches Integral im Rn

Die Definition von Integralen mehrerer Variabler folgt nahezu wörtlich derjenigen, die in Ab-
schn. 7.1.2 für zwei Variable gegeben wurde. Sie stützt sich lediglich auf Quader, den Analoga
zu Rechtecken im Höherdimensionalen.

Fig. 7.30: Quader

Definition 7.4:

(a) Eine Menge der Form

Q =

⎧

⎪
⎨

⎪
⎩

x =

⎡

⎢
⎣

x1
...

xn

⎤

⎥
⎦

∣
∣
∣
∣
∣
∣
∣

ai ≤ xi ≤ bi für i = 1, . . . , n

⎫

⎪
⎬

⎪
⎭

heißt ein n-dimensionaler Quader. Dabei sind a1, . . ., an , b1, . . ., bn beliebi-
ge reelle Zahlen mit ai < bi für alle i . Man beschreibt den Quader auch als
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kartesisches Produkt von Intervallen in der Form

Q = [a1, b1] × [a2, b2] × . . .× [an, bn] . (7.59)

(b) Die Zahl

VQ := (b1 − a1)(b2 − a2) . . . (bn − an)

heißt Inhalt oder Volumen des Quaders Q. Faßt man die ai bzw. die bi in zwei
Vektoren a = [a1, . . . , an]T, b = [b1, . . . , bn]T zusammen, so ist

δQ := |b− a| (7.60)

der Durchmesser des Quaders Q (s. Fig. 7.30).

(c) Für jedes Intervall [ai , bi ] in der Darstellung

Q = [a1, b1] × . . .× [an, bn]

des Quaders sei eine Zerlegung Zi mit Teilungspunkten

ai = x (i)
0 < x (i)

1 < x (i)
2 < . . . < x (i)

mi
= bi

gegeben. Daraus werden alle möglichen Teilquader der Form

[x (1)
k1−1, x (1)

k1
] × [x (2)

k2−1, x (2)
k2
] × . . .× [x (n)

kn−1
, x (n)

kn
]

gebildet. Diese werden in irgendeiner Reihenfolge durchnumeriert und mit Q1,
Q2, . . ., Qm bezeichnet. Die Menge

Z = {Q1, Q2, . . . , Qm}

heißt eine Zerlegung von Q.

Damit übertragen wir die Definition des (Riemann-) Integrals auf den n-dimensionalen Fall
völlig entsprechend wie in Definition 7.1:

Definition 7.5:
(Riemannsches Integral im Rn)

(I) Es sei f eine reelle beschränkte Funktion auf einem n-dimensionalen Quader Q.

Z = {Q1, . . . , Qm}

sei eine beliebige Zerlegung von Q in Teilquader. Die Inhalte der Teilquader Qi

werden mit VQi bezeichnet.
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(II) Mit

Mi := sup
x∈Qi

f (x) , mi := inf
x∈Qi

f (x) (7.61)

bildet man

S f (Z) :=
m
∑

i=1

Mi VQi , genannt Obersumme von f bezüglich Z ,

s f (Z) :=
m
∑

i=1

mi VQi , genannt Untersumme von f bezüglich Z 13 und

I f := inf
Z

S f (Z) , genannt Oberintegral von f auf Q,

I f := sup
Z

s f (Z) , genannt Unterintegral von f auf Q.

Infimum und Supremum werden dabei bezüglich sämtlicher denkbarer Zerlegun-
gen Z von Q gebildet.

(III) Stimmen Ober- und Unterintegral von f auf Q überein, so heißt f
(Riemann-)integrierbar auf Q. In diesem Falle heißt der gemeinsame Wert
I f = I f das (Riemannsche) Integral von f auf Q, beschrieben durch

∫

Q

f (x) dx .

Auch andere Schreibweisen, wie
∫∫

. . .

∫

︸ ︷︷ ︸

Q

f (x1, x2, . . . , xn) dx1 dx2 . . . dxn =
∫

Q

f dV (7.62)

usw. sind üblich.

Für beliebige kompakte Integrationsbereiche von f wird das Integral auf den Quader-Fall wie
folgt zurückgeführt (völlig analog zu Def. 7.2 in Abschn. 7.1.2).

Definition 7.6:
Es sei f : B → R beschränkt und B ⊂ Rn kompakt. Ferner sei Q B der kleinste
Quader in Rn , der B umfaßt. f wird auf Q B erweitert zu

f ∗(x) =
{

f (x) , für x ∈ B,

0 , für x ∈ Q B \ B.

13 Jede Obersumme von f ist ≥ jeder Untersumme von f , wie man sich leicht überlegt.
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f heißt integrierbar auf B, wenn f ∗ integrierbar ist auf Q B und man setzt

∫

B

f (x) dx :=
∫

Q B

f ∗(x) dx .

Auch hier sind andere Schreibweisen, wie in Abschn. 7.1.2, geläufig. Insbesondere im Falle
dreier Variabler schreibt man die Variablen gern als x , y, z. Integrale in drei Variablen werden
daher vielfach in der Form

∫∫∫

B

f (x, y, z) dx dy dz

beschrieben.

Definition 7.7:
(Inhalt einer Menge, auch Volumen genannt) Eine kompakte Menge B ⊂ Rn heißt
(Jordan-) meßbar, wenn das Integral

∫

B

1 dx (7.63)

existiert. Sein Wert wird Inhalt (Volumen) VB von B genannt.

Die 1 im Integral (7.63) wird auch weggelassen.
Im Falle dreier Variabler spricht man vom Rauminhalt. Ein Kompaktum mit Inhalt 0 nennt

man eine Nullmenge, und man gewinnt wie im R2 den Satz:

Satz 7.9:
Eine kompakte Menge B ⊂ Rn ist genau dann meßbar, wenn ihr Rand eine Nullmenge ist.

Ganz entsprechend werden die Sätze 7.2 bis 7.7 auf den Rn übertragen, wobei die gleichen
Beweisideen wie im R2 verwendet werden. Darum wird auf die Beweise auch nicht mehr einge-
gangen, sondern die Sätze werden im Folgenden hintereinander formuliert.

7.2.2 Grundlegende Sätze

Satz 7.10:
Jede stetige reellwertige Funktion auf einem meßbaren Kompaktum B in Rn ist inte-
grierbar.

Satz 7.11:
(Bereichsintegrale als Mehrfachintegrale) Es sei f : Q → R eine integrierbare Funk-
tion auf dem Quader

Q = [a1, b1] × [a2, b2] × . . .× [an, bn]
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Existieren die Integrale innerhalb der Klammern in der folgenden Formel, so gilt

∫

Q

f (x) dx =
b1∫

a1

⎛

⎝

b2∫

a2

⎛

⎝

b3∫

a3

⎛

⎝. . .

⎛

⎝

bn∫

an

f (x1, x2, . . . , xn) dxn

⎞

⎠ . . .

⎞

⎠ dx3

⎞

⎠ dx2

⎞

⎠ dx1

(7.64)

Die gleiche Aussage gilt bei beliebiger Vertauschung der Variablen x1, . . ., xn und
entsprechender Vertauschung der Integrationsgrenzen ai , bi .

Bemerkung: (a) Die Klammern in der Schreibweise der Mehrfachintegrale (s. (7.64)) läßt man
auch weg.

(b) Die Existenz der Integrale in den Klammern ist gesichert, wenn f stetig ist.
Da Quader als Integrationsgebiete zu speziell sind, definieren wir — wie im Zweidimensiona-

len — Normalbereiche.

Definition 7.8:

Unter einem Normalbereich in Rn verstehen wir eine Menge der Form

B =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x1

x2

x3
...

xn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ Rn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

g1 ≤ x1 ≤ h1

g2(x1) ≤ x2 ≤ h2(x1)

g3(x1, x2) ≤ x3 ≤ h3(x1, x2)

...

gn(x1, . . . , xn−1) ≤ xn ≤ hn(x1, . . . , xn−1)

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

, (7.65)

wobei g2, . . ., gn , h2, . . ., hn stetige reellwertige Funktionen sind, und g1, h1 reellwer-
tige Konstante. Dabei gilt gi ≤ hi für alle i .

Man spricht auch von einem Normalbereich B, wenn die Reihenfolge der Indizes 1, 2, . . ., n
in (7.65) beliebig umgestellt ist. Normalbereiche sind meßbar, was man ähnlich wie im Zweidi-
mensionalen einsieht. Damit gilt der für die praktische Integralberechnung entscheidende Satz:

Satz 7.12:
Ist f : B → R eine stetige Funktion auf einem Normalbereich B, wie er in Def. 7.8
angegeben ist, so gilt

∫

B

f (x) dx =
h1∫

g1

⎛

⎜
⎝

h2(x1)∫

g2(x1)

⎛

⎜
⎝

h3(x1,x2)∫

g3(x1,x2)

⎛

⎜
⎝. . .

⎛

⎜
⎝

hn(x1,...,xn−1)∫

gn(x1,...,xn−1)

f (x1, . . . , xn) dxn

⎞

⎟
⎠ . . .

⎞

⎟
⎠ dx3

⎞

⎟
⎠ dx2

⎞

⎟
⎠ dx1 .

(7.66)
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Die Klammern werden auch weggelassen. Für andere Reihenfolgen der Indizes 1, 2, . . ., n gilt
natürlich entsprechendes.

Durch »Auflösen der Integrale von innen nach außen« kann man mit dieser Formel die Zah-
lenwerte von Integralen bestimmen.

Nützlich für die Integralberechnung sind ferner die Formeln des Satzes 7.5, (Abschn. 7.1.3),
der völlig entsprechend auch im Rn gilt. Es handelt sich um Integrale bezüglich f + g, cg sowie
über Zerlegungen von B. Man schlage dort nach.

Auch der Mittelwertsatz, Satz 7.6, überträgt sich ohne weiteres auf den mehrdimensionalen
Fall, so daß auf seine erneute Formulierung hier verzichtet werden kann.

Schließlich gilt der gesamte Abschnitt über Riemannsche Summen, vor allem Satz 7.7 (nebst
Beweis), ganz entsprechend im Rn für beliebige n. Insbesondere der dreidimensionale Fall kommt
bei der Mathematisierung technischer Vorgänge (Strömungen, elastische Körper, elektromagne-
tische Felder) oft vor.

7.2.3 Krummlinige Koordinaten, Funktionaldeterminante, Transformationsformeln

Die Überlegungen der Abschn. 7.1.6 und 7.1.7 werden hier ohne wesentliche Änderungen auf
den Rn ausgedehnt.

Eine Abbildung T : G∗ → G eines Gebietes14 G∗ ⊂ Rn auf ein Gebiet G ⊂ Rn nennen wir
eine Transformation, wenn T umkehrbar eindeutig ist, ferner stetig differenzierbar, und wenn die
Funktionaldeterminante det T ′(u) in G∗ von Null verschieden ist:

det T ′(u) �= 0 für alle u ∈ G∗. 15

Ausführlich geschrieben hat x = T (u) die Form

⎡

⎢
⎢
⎢
⎣

x1

x2
...

xn

⎤

⎥
⎥
⎥
⎦
= T (u) =

⎡

⎢
⎢
⎢
⎣

g1(u1, . . . , un)

g2(u1, . . . , un)
...

gn(u1, . . . , un)

⎤

⎥
⎥
⎥
⎦

.

Dabei nennt man u1, . . ., un krummlinige Koordinaten in G (Beispiele sind Kugelkoordinaten,
Zylinderkoordinaten u.a., die wir später betrachten).

Mit dieser Koordinatenschreibweise hat die Funktionaldeterminante die ausführliche Gestalt:

det T ′(u) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∂g1

∂u1
(u) · · · ∂g1

∂un
(u)

...
...

∂gn

∂u1
(u) · · · ∂gn

∂un
(u)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (7.67)

14 Offen und zusammenhängend (letzteres heißt: nicht in zwei offene Mengen zerlegbar).
15 Zum Begriff der Determinante lese man den kurzen Einschub am Ende dieses Abschnittes oder Burg/Haf/Wille

(Lineare Algebra) [7], Abschn. 3.4.
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Für die Funktionaldeterminante det T ′(u) ist, insbesondere in Naturwissenschaft und Technik,
auch folgende Schreibweise üblich

det T ′(u) =: ∂(x1, x2, . . . , xn)

∂(u1, u2, . . . , un)
. (7.68)

Wie im zweidimensionalen Fall gilt für die Komposition z = S(T (x)) der Transformationen
z = S( y), y = T (x) die übersichtliche Gleichung

∂(z1, . . . , zn)

∂(x1, . . . , xn)
= ∂(z1, . . . , zn)

∂(y1, . . . , yn)
· ∂(y1, . . . , yn)

∂(x1, . . . , xn)
. (7.69)

(Zum Beweis verwendet man die Kettenregel — Abschn. 6.3.3, Satz 6.9 — und den Determinan-
ten-Multiplikationssatz, s. Burg/Haf/Wille (Lineare Algebra) [7], Abschn. 3.4.5). Insbesondere
folgt im Fall S = T−1:

∂(y1, . . . , yn)

∂(x1, . . . , xn)
= 1

∂(x1, . . . , xn)

∂(y1, . . . , yn)

.

Im folgenden Satz wird nun die Transformationsformel für Integrale im Rn angegeben. Der Satz
entspricht vollkommen dem Satz 7.8 für den R2, den wir in Abschn. 7.1.7 kennen und lieben
gelernt haben.

Satz 7.13:
Es beschreibe T : G∗ → G eine Transformation des Gebietes G∗ ⊂ Rn auf das Ge-
biet G ⊂ R. Ferner sei B∗ ⊂ G∗ kompakt und f eine stetige reellwertige Funktion
auf B = T (B∗). Der Bereich B ist damit auch meßbar, und es gilt die Transformati-
onsformel:

∫

B

f (x) dx =
∫

B∗

f (T (u))| det T ′(u)| du . (7.70)

Mit der Schreibweise (7.68) erhält die Formel die ausführlichere Form:

Transformationsformel:
∫

B

f (x1, . . . , xn) dx1 . . . dxn =
∫

B∗

f (T (u1, . . . , un))

∣
∣
∣
∣

∂(x1, . . . , xn)

∂(u1, . . . , un)

∣
∣
∣
∣

du1 . . . dun . (7.71)

In dieser Gestalt läßt sich die Transformationsformel leicht merken, da man im rechten Integral
den Ausdruck du1 . . . dun nur formal gegen ∂(u1, . . . , un) zu kürzen (und f in Abhängigkeit
von x1, . . ., xn zu schreiben) hat, um das linke Integral zu bekommen,

Für den (sehr langen) exakten Beweis verweisen wir wieder auf [25], Abschn. 205. Die Be-
weisidee ist die gleiche, wie im Falle von zwei Variablen im Abschn. 7.1.6 erläutert.
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Die wichtigsten Beispiele krummliniger Raumkoordinaten in Naturwissenschaft und Technik
sind Zylinder- und Kugelkoordinaten. Wir behandeln sie in den nächsten Beispielen. Vereinzelt
treten auch »elliptische Gegenstücke« auf, die elliptischen Zylinderkoordinaten und die rotations-
elliptischen Koordinaten, wie auch parabolische Entsprechungen, nämlich die parabolischen
Zylinderkoordinaten und die rotationsparabolischen Koordinaten (s. folgende Übungen sowie
Burg/Haf/Wille (Vektoranalysis) [9], Abschn. 3.3.6). Der Zusammenhang dieser Koordinaten
mit Schwingungsproblemen wird z.B. in [48] erläutert.

Beispiel 7.15:

(a) (Zylinderkoordinaten)

x = r cos ϕ ,

y = r sin ϕ ,

z = z .

⎫

⎪
⎬

⎪
⎭

(r ≥ 0,0 ≤ ϕ ≤ 2π, z ∈ R) .

Diese Gleichungen beschreiben die Transformation von Zylinderkoordinaten r , ϕ, z auf die Ko-
ordinaten x , y, z des dreidimensionalen Raumes. Ihren Namen haben die Zylinderkoordinaten
daher, daß für r = konstant > 0 und variable ϕ ∈ [0,2π ] und z ∈ R die zugehörigen Punkte
[x, y, z]T ∈ R3 einen Zylinder beschreiben, dessen Achse die z-Achse ist, und dessen Radius r
ist. Die Funktionaldeterminante dieser Transformation ist

∂(x, y, z)

∂(r, ϕ, z)
=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∂x

∂r

∂x

∂ϕ

∂x

∂z

∂y

∂r

∂y

∂ϕ

∂y

∂z

∂z

∂r

∂z

∂ϕ

∂z

∂z

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

cos ϕ −r sin ϕ 0
sin ϕ r cos ϕ 0

0 0 1

∣
∣
∣
∣
∣
∣

= r .

Folglich lautet die Transformationsformel für diesen Fall

∫∫∫

B

f (x, y, z) dx dy dz =
∫∫∫

B∗

f (r cos ϕ, r sin ϕ, z)r dr dϕ dz . (7.72)

Häufig ist B dabei ein Zylinder oder Zylinderrohr oder ein Winkelausschnitt davon. D.h. B∗ ist
ein Quader

B∗ = [r1, r2] × [ϕ1, ϕ2] × [z1, z2] mit

0 ≤ r1 < r2 , 0 ≤ ϕ1 ≤ ϕ2 ≤ 2π , z1 < z2 .

Damit folgt explizit für ein stetiges f :

∫∫∫

B

f (x, y, z) dx dy dz =
z2∫

z1

ϕ2∫

ϕ1

r2∫

r1

f (r cos ϕ, r sin ϕ, z)r dr dϕ dz . (7.73)
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(b) (Kugelkoordinaten)

x = r cos ϕ cos δ ,

y = r sin ϕ cos δ ,

z = r sin δ ,

⎫

⎪
⎬

⎪
⎭

(r ≥ 0 , 0 ≤ ϕ ≤ 2π , −π

2
≤ δ ≤ π

2
) . 16

Ein Punkt P = [x, y, z]T in R3 wird hiermit durch r , ϕ und δ beschrieben, wie es die Fig. 7.31
zeigt.

Die Funktionaldeterminante ist gleich

∂(x, y, z)

∂(r, ϕ, δ)
=

∣
∣
∣
∣
∣
∣

cos ϕ cos δ −r sin ϕ cos δ −r cos ϕ sin δ

sin ϕ cos δ r cos ϕ cos δ −r sin ϕ sin δ

sin δ 0 r cos δ

∣
∣
∣
∣
∣
∣

= r2 cos δ . (7.74)

Folglich gilt die Transformationsformel

r = Abstand von 0,

ϕ = Längengrad,

δ = Breitengrad.

Fig. 7.31: Kugelkoordinaten

∫∫∫

B

f (x, y, z) dx dy dz =
∫∫∫

B∗

f (r cos ϕ cos δ , r sin ϕ cos δ , r sin δ)r2 cos δ dr dϕ dδ .

Ist — wie vielfach — B eine Kugel, Hohlkugel oder ein Ausschnitt davon, beschrieben durch

B∗ = [r1, r2] × [ϕ1, ϕ2] × [δ1, δ2] ,

16 ϕ entspricht den »Längengraden« und δ den »Breitengraden« bei der Erdkugel. δ ist hier Null am Äquator. In der
Physik ist es beliebter, δ = 0 am »Nordpol« zu setzen und δ von 0 bis π laufen zu lassen (δ = π : »Südpol«),
vgl. Burg/Haf/Wille (Vektoranalysis) [9], Abschn. 3.3.6. In der Koordinatentransformation sind dabei nur sin δ und
cos δ zu vertauschen.
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so wird

∫∫∫

B∗

im letzten Integral ersetzt durch

δ2∫

δ1

ϕ2∫

ϕ1

r2∫

r1

.

Einschub: Zur Berechnung einer Determinante

D =

∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann

∣
∣
∣
∣
∣
∣
∣
∣
∣

=: det A (mit A = [aik]n,n)

kann man für kleine n die expliziten Formeln benutzen, d.h. für n = 2 und n = 3:

∣
∣
∣
∣

a11 a12

a21 a22

∣
∣
∣
∣
= a11a22 − a12a21 , (7.75)

∣
∣
∣
∣
∣
∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣
∣
∣
∣
∣
∣

= a11a22a33 + a12a23a31 + a13a21a32 (7.76)
− a11a23a32 − a12a21a33 − a13a22a31 .

Für beliebiges n gilt allgemein:

D =
∑

(k1,...,kn)

sign(k1, k2, . . . , kn)a1k1a2k2 . . . ankn . (7.77)

Summiert wird dabei über alle Permutationen (k1, . . . , kn) des n-Tupels (1, 2, . . . , n), und es ist

sign(k1, . . . , kn) =
{

1 , wenn (k1, . . . , kn) gerade Permutation,

−1 , wenn (k1, . . . , kn) ungerade Permuation.

Eine Permutation (k1, . . . , kn) heißt gerade, wenn sie durch eine gerade Anzahl von Vertau-
schungen zweier Elemente aus (1, 2, . . . , n) hervorgeht; andernfalls heißt sie ungerade.

Für n ≥ 4 berechnet man Determinanten allerdings zweckmäßiger mit dem »Gaußschen
Algorithmus«, s. Burg/Haf/Wille (Lineare Algebra) [7], Abschn. 3.4.3.

Übungen: Berechne die Funktionaldeterminanten der folgenden Transformationen auf krummli-
nige Koordinaten im R3.

Übung 7.17:

(Parabolische Zylinderkoordinaten)

x = −1

2
(u2 − v2) ,

y = uv ,

z = z ,

⎫

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎭

(u, v, z ∈ R) .
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Übung 7.18:

(Rotationsparabolische Koordinaten)

x = uv cos ϕ ,

y = uv sin ϕ ,

z = 1

2
(u2 − v2) ,

⎫

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎭

(u, v ∈ R , ϕ ∈ [0,2π ]) .

Übung 7.19:

(Elliptische Zylinderkoordinaten) (c > 0 konstant)

x = c cosh u cos v ,

y = c sinh u sin v ,

z = z ,

⎫

⎪
⎪
⎬

⎪
⎪
⎭

(u, z ∈ R , v ∈ [0,2π ]) .

Übung 7.20:

(Rotationselliptische Koordinaten) (c > 0 konstant)

(a) (Gestreckt-rotationselliptisch)

x = c

√

(u2 − 1)(1− v2) cos ϕ ,

y = c

√

(u2 − 1)(1− v2) sin ϕ ,

z = cuv ,

⎫

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎭

(|u| ≥ 1 , |v| ≤ 1 , ϕ ∈ [0,2π ]) .

(b) (Abgeplattet-rotationselliptisch) (c > 0 konstant)

x = c

√

(u2 + 1)(1− v2) cos ϕ ,

y = c

√

(u2 + 1)(1− v2) sin ϕ ,

z = cuv ,

⎫

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎭

(u ∈ R , |v| ≤ 1, ϕ ∈ [0,2π ]) .

Übung 7.21:

KR ⊂ R3 sei eine Kugel um 0 mit Radius R > 0. Berechne mittels Kugelkoordinaten

(a)

∫

KR

√

x2 + y2 + z2 dx dy dz , (b) lim
R→∞

∫

KR

1
√

x2 + y2 + z2
dx dy dz .
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Übung 7.22:

KR,ρ sei die Hohlkugel, bestimmt durch ρ ≤
√

x2 + y2 + z2 ≤ R in R (ρ > 0). Berechne

lim
ρ→0

∫

KR,ρ

1
√

x2 + y2 + z2
dx dy dz .

Fig. 7.32: Rauminhaltsberechnung

7.2.4 Rauminhalte

Es sei D ⊂ Rn−1 ein Normalbereich, und es seien g : D → R, h : D → R zwei stetige
Funktionen mit g(x1, . . . , xn−1) ≤ h(x1, . . . , xn−1) auf D.

g und h »schließen einen Bereich B ein«, wie es Fig. 7.32 im Falle des R3 zeigt:

B :=

⎧

⎪
⎨

⎪
⎩

x =

⎡

⎢
⎣

x1
...

xn

⎤

⎥
⎦

∣
∣
∣
∣
∣
∣
∣

⎡

⎢
⎣

x1
...

xn−1

⎤

⎥
⎦ ∈ D und g(x1, . . . , xn−1) ≤ xn ≤ h(x1, . . . , xn−1)

⎫

⎪
⎬

⎪
⎭

.

B ist natürlich wiederum ein Normalbereich. Es gilt der naheliegende

Satz 7.14:
Unter den obigen Voraussetzungen ist das Volumen VB des Bereichs B ⊂ Rn gleich

VB =
∫

D

(h − g) dx1 . . . dxn−1 . 17 (7.78)

Bemerkung: Im einführenden Abschn. 7.1.1 wurde die Formel (7.78) schon zur Rauminhalts-
berechnung von Ellipsoiden u.a. verwendet (Beispiele 7.2 bis 7.5). Der Beweis des Satzes folgt
unmittelbar aus Definition 7.7 (Abschn. 7.2.1) und aus Satz 7.12 (Abschn. 7.2.2). Man hat in
diesem Satz nur das innerste Integral (über dxn) aufzulösen.

17 Das Argument (x1, . . . , xn−1) wurde der Übersichtlichkeit wegen bei h und g weggelassen.
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Faßt man dagegen die inneren (n − 1)-Integrale in Satz 7.12 (7.64) zu einem Integral zusam-
men:

ϕ(x1) :=
h2(x1)∫

g2(x1)

h3(x1,x2)∫

g3(x1,x2)

. . .

hn ...∫

gn ...

f dxn . . . dx2 dx2 ,

so folgt aus Satz 7.12 (mit f (x) ≡ 1 auf B):

VB =
b∫

a

ϕ(x1) dx1 . (7.79)

Diese Formel ist der Kern des Satzes von Cavalieri18 (auch Prinzip des Cavalieri genannt):

Satz 7.15:
(Satz von Cavalieri) Ist B ein Normalbereich, wie in Definition 7.8 (Abschn. 7.2.2)
angegeben, und ist ϕ(x1) das (n − 1)-dimensionale Volumen des Schnittes {x ∈ B |
x1 = konstant} durch B (a ≤ x1 ≤ b), so ergibt sich der Rauminhalt VB von B aus
obiger Formel (7.79).

Bemerkung: Eine etwas allgemeinere Formulierung, bei der B nur als meßbar vorausgesetzt
wird, findet man bei [25], S. 468. Für Anwendungszwecke reicht es aber, B als Normalbereich
vorauszusetzen.

Fig. 7.33: Allgemeine Pyramide

Beispiel 7.16:
(Allgemeine Pyramide) Es sei ein Normalbereich G in der x2-x3-Ebene gegeben und ein Punkt
S = [h, S2, S3]T mit h > 0 (s. Fig. 7.33). Die zugehörige allgemeine Pyramide besteht aus allen
Punkten, die auf Verbindungsstrecken von G nach S liegen (s. Fig. 7.33). G ist die Grundfläche,
S die Spitze der Pyramide und h ihre Höhe.

18 Bonaventura Francesco Cavalieri (1598 – 1647), italienischer Mönch, Mathematiker und Astronom
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Ein Schnitt Gx1 in der Höhe von x1 ∈ [0, h] durch die Pyramide hat einen Flächeninhalt
ϕ(x1), der quadratisch mit dem Abstand h − x1 von der Spitze S zunimmt, also:

ϕ(x1) = c(h − x1)
2 (c ≥ 0) .

Für x1 = 0 ergibt dies den Flächeninhalt FG von G, also ϕ(0) = ch2 = FG, somit c = FG/h2,
d.h.

ϕ(x1) =
(h − x1)

2

h2
FG .

Mit (7.79) (Cavalieri) folgt damit für den Rauminhalt der Pyramide

h∫

0

(h − x1)
2

h2
FG dx1 =

FG

h2

h∫

0

(h − x1)
2 dx1 =

FG

3
, (7.80)

d.h. »Grundflächeninhalt mal Höhe durch 3«.

Beispiel 7.17:

(Nach Wörle-Rumpf [57] Bd. III, S. 40) Volumen einer T-Verbindung aus Zylindern (s. Fig. 7.34a)

Fig. 7.34: T-Verbindung aus Zylindern

Das Volumen des Körpers in Fig. 7.34a besteht aus den Volumina V1 = r2πl und V2 =
r2πh, abzüglich des Volumens V3 des Teiles, in dem sich die beiden Zylinder überschneiden
(s. Fig. 7.34b). Dieser Teil hat als waagerechte Schnitte Rechtecke, und zwar in Höhe z ein
Rechteck mit den Seitenlängen

√
r2 − z2 (in y-Richtung) und 2

√
r2 − z2 (in x-Richtung). Nach
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dem Satz von Cavalieri ist damit

V3 =
r∫

−r

2(r2 − z2) dz = 8

3
r3 .

Damit ist das Volumen der T-Verbindung

V = V1 + V2 − V3 = πr2(l + h)− 8

3
r3 .

Übung 7.23:

Berechne den Rauminhalt einer Kugel um 0 mit Radius r > 0 nochmals, und zwar mit dem

Satz des Cavalieri (im R3).

Hinweis: Die Formel für den Flächeninhalt eines Kreises darf als bekannt vorausgesetzt werden.

Fig. 7.35: Rotationskörper Fig. 7.36: Rotationsparaboloid

7.2.5 Rotationskörper

Rotationskörper kommen in der Technik besonders häufig vor. Sie lassen sich relativ einfach
behandeln.

Definition 7.9:
Es sei f : [a, b] → R eine nirgends negative, stetig differenzierbare Funktion. Die
Menge B aller Punkte [x, y, z]T ∈ R3 mit x ∈ [a, b] und y2 + z2 ≤ f (x)2 nennt
man einen Rotationskörper (s. Fig. 7.35). f heißt die erzeugende Funktion des Ro-
tationskörpers. Seine Mantelfläche ist die Menge M der Punkte des Rotationskörpers,
die y2 + z2 = f (x)2 erfüllen.

Das Volumen V des beschriebenen Rotationskörpers ergibt sich unter Verwendung der Trans-
formation y = r cos ϕ, z = r sin ϕ, x = x aus der Transformationsformel:

V =
∫∫∫

B

dx dy dz =
b∫

a

2π∫

0

f (x)∫

0

r dr dϕ dx =
b∫

a

2π
f 2(x)

2
dx ,
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also

Volumen des Rotationskörpers: V = π

b∫

a

f 2(x) dx . (7.81)

Beispiel 7.18:
(Volumen eines Rotationsparaboloids der Länge h) (s. Fig. 7.36) Erzeugende Funktion ist

y = f (x) = c
√

x , (c > 0) . Damit ist das gefragte Volumen: V = π

h∫

0

c2x dx = π

2
c2h2 .

Bemerkung: Man kann den Rauminhalt eines Rotationskörpers auch direkt motivieren durch
Riemannsche Summen

S =
n
∑

k=1

π f (ξk)
2Δxk .

Die Summenglieder sind dabei die Volumina von (flachen) Zylindern (»Scheiben«), in die man
den Rotationskörper näherungsweise zerschneidet.

Der Flächeninhalt der Mantelfläche eines Rotationskörpers — erzeugt von f : [a, b] → R
— wird durch folgende Formel berechnet:

F = 2π

b∫

a

f (x)

√

1+ f ′(x)2 dx . (7.82)

Bemerkung: Die Formel wird motiviert durch Riemannsche Summen

S = k
n
∑

k=1

2π f (ξk)

√

Δx2
k +Δy2

k ,

die das Integral approximieren. Die Summanden sind dabei die elementargeometrischen Flächen-
inhalte der Mantelflächen von Kegelstümpfen, in welche der Mantel sich (wie in dünne Ringe)
zerschneiden läßt. Eine exakte Begründung wird im Rahmen der Flächeninhaltstheorie in Burg/-
Haf/Wille (Vektoranalysis) [9], Abschn. 2.2.1, nachgeliefert.

Beispiel 7.19:
(Kugeloberfläche) Erzeugende Funktion der Kugel K ⊂ R3 um 0 mit Radius r > 0 ist f (x) =√

r2 − x2, x ∈ [−r, r ]. Damit ist der Flächeninhalt der Kugeloberfläche

F = 2π

r∫

−r

√

r2 − x2

√

1+ x2

r2 − x2
dx = 2πr

r∫

−r

dx = 4πr2 .
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Ist g eine reelle rotationssymmetrische Funktion auf einem Rotationskörper B (der von f :
[a, b] → R erzeugt wird), so kann man g in der Form

g(r2) , mit r2 = z2 + y2

schreiben. (g kann eine Temperatur, eine Ladungsdichte oder ähnliches beschreiben). Das Inte-
gral

I =
∫∫∫

B

g(z2 + y2) dx dy dz

läßt sich stark vereinfachen und damit leichter berechnen, wenn man wieder die Transformation
y = r cos ϕ, z = r sin ϕ, x = x anwendet. Es folgt mit einer Stammfunktion G von g (d.h. G′ =
g), die G(0) = 0 erfüllt:

I =
b∫

a

2π∫

0

f (x)∫

0

g(r2)r dr dϕ dx = 2π

b∫

a

[
1

2
G(r2)

] f (x)

0
dx ,

also

I = π

b∫

a

G( f 2(x)) dx . (7.83)

Guldinsche Regeln: Für Volumen V und Mantelflächeninhalt FM eines Rotationskörpers gelten
die folgenden Guldinschen19 Regeln: Ist f : [a, b] → R( f (x) ≥ 0) die erzeugende Funktion
des Rotationskörpers, so bezeichnet man die Fläche zwischen f und der x-Achse, d.h.

A =
{[

x
y

] ∣
∣
∣
∣

a ≤ x ≤ b , 0 ≤ y ≤ f (x)

}

,

als die erzeugende Fläche des Rotationskörpers. [xs, ys]T sei ihr Schwerpunkt.

Der Graph von f heißt die erzeugende Kurve des Rotationskörpers. Der Kurvenschwerpunkt
sei [ξs, ηs]T Damit erhalten wir:

1. Guldinsche Regel (für Rotationskörper): Das Volumen V eines Rotationskörpers erhält man
als Produkt aus dem Flächeninhalt FA der erzeugenden Fläche und der Länge ihres Schwer-
punktweges bei einer vollen Drehung. In Formeln:

V = FA · 2πys .

19 Paul Guldin, ursprünglich Habakuk Guldin (1577 – 1643), österreichischer Astronom und Mathematiker
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2. Guldinsche Regel (für Rotationskörper): Der Mantelflächeninhalt F eines Rotationskörpers
ist das Produkt aus der Länge L der erzeugenden Kurve und der Länge ihres Schwerpunktwe-
ges bei einer vollen Drehung:

F = L · 2πηs .

Der Beweis der 1. Guldinschen Regel folgt unmittelbar aus (7.81) und

ys =
1

2FA

b∫

a

f 2(x) dx

(s. Abschn. 7.1.5, (7.37)). Die 2. Guldinsche Regel ergibt sich aus (7.82) und

ηs =
1

L

b∫

a

f (x)

√

1+ f ′(x)2 dx

(s. Abschn. 7.1.5, (7.40)).

Übung 7.24:

Es sei K ein Kegelstumpf, erzeugt von f (x) = 1+ 1/2, 0 ≤ x ≤ 1. Berechne

∫∫∫

K

r er2
dx dy dz , mit r =

√

y2 + z2.

Hinweis: Benutze (7.83).

Übung 7.25:

Berechne den Flächeninhalt eines Parabolspiegels (Fahrradlampe), der als Mantelfläche eines

Rotationskörpers mit der Erzeugenden f (x) = 6
√

x , x ∈ [0,8], aufgefaßt werden kann.

Übung 7.26*:

Berechne den Rauminhalt und Oberflächeninhalt eines Torus, der durch Rotation einer Kreis-

scheibe um die x-Achse erzeugt wird, wie es die Fig. 7.37 zeigt. (Hinweis: Benutze die Guldin-

schen Regeln.)

7.2.6 Anwendungen: Schwerpunkte, Trägheitsmomente

Schwerpunkte: Den Schwerpunkt s ∈ R3 eines realen Körpers errechnet man aus

s = 1

m

∫∫∫

B

rρ(r) dV . (7.84)
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Fig. 7.37: Zum Volumen und Oberflächeninhalt des Torus

Dabei ist m die Masse des Körpers, B ⊂ R3 der räumliche Bereich, den er einnimmt, und ρ(r)

die Massendichte des Körpers an der Stelle r ∈ B. ρ sei als integrierbar vorausgesetzt. Die
Motivation der Formel verläuft völlig entsprechend wie die Überlegungen in Abschn. 7.1.5.

Das Integral (7.84) wird komponentenweise ausgewertet. Es beschreibt also eigentlich drei
Bereichsintegrale:

x0 =
1

m

∫∫∫

B

xρ(r) dV , y0 =
1

m

∫∫∫

B

yρ(r) dV , z0 =
1

m

∫∫∫

B

zρ(r) dV , (7.85)

mit s = [x0, y0, z0]T Für die Masse m gilt dabei

m =
∫∫∫

B

ρ(r) dV .

Ist die Dichte ρ(r) = ρ0 konstant und V das Volumen des Körpers, so folgt mit Vρ0 = m die
einfachere Formel

s = 1

V

∫∫∫

B

r dV . (7.86)

Beispiel 7.20:
Eine quadratische Pyramide mit der Grundseitenlänge a und der Höhe h sei so in ein räumliches
Koordinatensystem eingebettet, wie es die Fig. 7.38 zeigt. Wir nehmen konstante Dichte an. Der
Bereich B, den die Pyramide ausfüllt, besteht aus allen Punkten [x, y, z]T mit

0 ≤ x ≤ h , −ax

2h
≤ y ≤ ax

2h
, −ax

2h
≤ z ≤ ax

2h
.
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Fig. 7.38: Schwerpunkt einer Pyramide

Sein Volumen ist bekanntlich V = a2h/3. Damit gilt für die x-Komponente des Schwerpunktes

x0 =
1

V

∫∫∫

B

x dV = 1

V

h∫

0

x

⎛

⎜
⎝

ax/(2h)∫

−ax/(2h)

⎛

⎜
⎝

ax/(2h)∫

−ax/(2h)

dz

⎞

⎟
⎠ dy

⎞

⎟
⎠ dx = 3

h3

h∫

0

x3 dx = 3

4
h .

Da aus Symmetriegründen y = z = 0 für die anderen Koordinaten des Schwerpunktes gilt, folgt

s =
[

3

4
h,0,0

]T

. D.h.: Der Schwerpunkt der Pyramide liegt auf der Mittelachse in der Entfernung

3

4
h von der Pyramidenspitze.

Trägheitsmomente: Das Trägheitsmoment eines Massenpunktes bezüglich einer Achse20 im
Raum ist J = mr2. Dabei ist m die Masse des Massenpunktes und r sein Abstand von der Ach-
se. Bei einem realen (ausgedehnten) Körper geht man so vor, daß man ihn in kleine Teilkörper
zerlegt denkt und jeden Teilkörper als Massenpunkt auffaßt. Die Summe der Trägheitsmomen-
te dieser Massenpunkte bezüglich einer Achse ist dann näherungsweise das Trägheitsmoment
des Körpers. Durch verfeinerte Zerlegungen kommt man durch Grenzübergang wieder zu einem
Integral. Dieses liefert das Trägheitsmoment des Körpers.

Rechnerisch sieht dies so aus: Bezeichnet man mit Δmi (i = 1, . . . , n) die Massen der Teilkör-
per und mit ri die zugehörigen Abstände von der Bezugsachse, so gilt für das Trägheitsmoment
J des Körpers bezüglich der Achse:

J ≈
m
∑

i=1

r2
i Δmi

Dabei können wir Δmi ≈ ρ(xi )ΔVi setzen, wobei ΔVi das Volumen und xi ein beliebiger Punkt

20 Achse=Gerade.
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des i-ten Teilkörpers ist. ρ(x) beschreibt die Massendichte. Es folgt

J ≈
m
∑

i=1

ρ(xi )r
2
i ΔVi .

Ersetzt man diese Summe durch das entsprechende Integral, so erhält man das Trägheitsmoment

J =
∫∫∫

B

ρ(x)r2(x) dV . (7.87)

Dabei ist B ⊂ R3 der Bereich, den der Körper im Raum einnimmt und r(x) der Abstand des
Punktes x von der Bezugsachse. Ist ρ(x) = ρ0 konstant — was am meisten vorkommt —, so
erhält man

J = ρ0

∫∫∫

B

r2(x) dV . (7.88)

Zur Behandlung von konkreten Beispielen wählen wir oft die x-Achse im R3 als Bezugsachse.
Mit x = [x, y, z]T folgt damit r(x) =

√

y2 + z2, also für das Trägheitsmoment bezüglich der
x-Achse

Jx = ρ0

∫∫∫

B

(z2 + y2) dx dy dz . (7.89)

In analoger Weise werden die Trägheitsmomente Jy und Jz bezüglich der y- und z-Achse gebil-
det. Bezeichnet m die Masse des Körpers und V sein Volumen, so können wir für ρ0 einsetzen:

ρ0 =
m

V
.

Beispiel 7.21:
(Trägheitsmoment eines Zylinders bezüglich einer Querachse) Liegt der Zylinder so, wie es
Fig. 7.39 zeigt, so ist sein Trägheitsmoment bezüglich der x-Achse gleich

Jx = ρ0

r∫

−r

⎡

⎢
⎢
⎣

√
r2−x2
∫

−
√

r2−x2

⎡

⎢
⎣

l/2∫

−l/2

(y2 + z2) dz

⎤

⎥
⎦ dy

⎤

⎥
⎥
⎦

dx

= ρ0

r∫

−r

⎡

⎢
⎢
⎣

√
r2−x2
∫

−
√

r2−x2

(

y2l + l3

12

)

dy

⎤

⎥
⎥
⎦

dx = ρ0

r∫

−r

[
2

3
· l(r2 − x2)3/2 + l3

6
(r2 − x2)1/2

]

dx .
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Fig. 7.39: Zum Trägheitsmoment Jx eines Zylinders

Mit der Substitution x = r sin t folgt

Jx = ρ0

⎛

⎜
⎝

2

3
lr4

π/2∫

−π/2

cos4 t dt + l3

6

π/2∫

−π/2

r2 cos2 t dt

⎞

⎟
⎠⇒ Jx = ρ13

πlr2

12
[3r2 + l2] .

Zwei Sonderfälle sind hervorzuheben, in denen die Rechnungen einfacher sind: Erstens Träg-
heitsmomente von Säulen, wo nur ein Doppelintegral auszuwerten ist, und zweitens von Rotati-
onskörpern, bei denen sich alles auf ein einfaches Integral reduziert.

Trägheitsmomente von Säulen: Unter einer Säule wollen wir hier einen Körper verstehen, des-
sen räumlicher Bereich B in jeder Schnittebene senkrecht zur x-Achse die gleiche Querschnitts-
figur Q aufweist (s. Fig. 7.40). Das Trägheitsmoment Jx bezüglich der x-Achse ist dann bei
konstanter Massendichte ρ0:

Jx = ρ0

a+h∫

a

⎛

⎜
⎝

∫∫

Q

(y2 + z2) dz dy

⎞

⎟
⎠ dx ⇒ Jx = ρ0h

∫∫

Q

(y2 + z2) dy dz . (7.90)

Dabei ist h die Höhe der Säule und Q die Querschnittfläche in der y-z-Ebene. Wir sehen hier
mit verhaltener Freude, daß das Integral rechts in (7.90) gerade das polare Flächenmoment Ip

von 0 ist, wie in Abschn. 7.1.5 erläutert. Also gilt

Jx = ρ0hIp . (7.91)

Damit lassen sich alle Beispielrechnungen aus Abschn. 7.1.5 sofort verwenden. (Wir erwähnen
aber, daß — physikalisch gesehen — das Flächenmoment der Biegungslehre mit dem Massen-
trägheitsmoment nichts zu tun hat. Lediglich mathematisch führt beides auf das gleiche Dop-
pelintegral, was für uns natürlich kein Grund zur Trauer ist.)

Die Beispiele 7.9 und 7.10 aus Abschn. 7.1.5 liefern uns über (7.90) unmittelbar folgendes:
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Fig. 7.40: Säule

Beispiel 7.22:

Trägheitsmomente (bezüglich der Mittelachse)

elliptischer Zylinder

(a, b = Halbachsenlängen)
Jx =

π

4
ρ0ab(a2 + b2)h

Kreiszylinder

(Radius r )
Jx =

π

2
ρ0hr4

Rohr

(r , R = innerer bzw. äußerer Radius)
Jx =

π

2
ρ0h(R4 − r4)

Dabei: h = Höhe, ρ0 =Massendichte

Das Trägheitsmoment einer sechseckigen Säule möge der Leser unter Benutzung von Übung 7.9
(Abschn. 7.1.5) berechnen.

Trägheitsmomente von Rotationskörpern können mit Formel (7.83) auf die Berechnung von
einfachen Integralen reduziert werden. Ist f : [a, b] → R die Erzeugende des Rotationskörpers,
so ist sein Trägheitsmoment bezüglich der Rotationsachse:

Jx =
π

2
ρ0

b∫

a

f 4(x) dx ρ0 =
m

V
. (7.92)
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Beispiel 7.23:

Mit (7.92) berechnet man leicht die folgenden Trägheitsmomente Jx bezüglich der Rotationsach-
sen:

Körper Erzeugende Trägheitsmoment

Kugel

mit Radius r ,

Masse m,

Volumen V = 4

3
r3π

f (x) =
√

r2 − x2 ,

−r ≤ x ≤ r

Jx =
π m

2 V

r∫

−r

(r2 − x2) dx

= 2

5
mr2

Kegel

mit Höhe h und

Radius r der

Grundfläche,

Masse m,

Volumen V = π

3
r2h

f (x) = r

h
,

0 ≤ x ≤ h

Jx =
π m

2 V

h∫

0

( r

h
x
)4

dx

= 3

10
mr2

Der Steinersche Satz: Bei allen vorangegangenen Beispielen verlief die Bezugsachse für das
Trägheitsmoment durch den Schwerpunkt des jeweiligen Körpers. Will man das Trägheitsmo-
ment bezüglich einer anderen, dazu parallelen Achse berechnen, braucht man nicht erneut zu
integrieren, sondern kann mit dem folgenden Steinerschen21 Satz die Berechnung auf den Fall
der Achse durch den Schwerpunkt zurückführen:

Satz 7.16:

(Steinerscher Satz) Das Trägheitsmoment eines Körpers22 bezüglich einer beliebigen
Achse ist gleich der Summe des Trägheitsmoments bezüglich einer durch den Schwer-
punkt gehenden parallelen Achse und des Trägheitsmomentes der im Schwerpunkt
vereinigt gedachten Masse bezüglich der erstgenannten Achse.

Beweis:

Das Trägheitsmoment

Jx = ρ0

∫∫∫

B

(y2 + x2) dx dy dz

eines Körpers bezüglich der x-Achse wird umgeformt: Es seien xs, ys, zs die Schwerpunktkoor-
dinaten. Wir substituieren

x = xs + u , y = ys + v , z = zs + w

21 Jakob Steiner (1796 – 1863), schweizerischer Mathematiker
22 Die Massendichte ρ0 des Körpers sei dabei konstant.
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und erhalten aus der Transformationsformel wegen
∂(x, y, z)

∂(u, v, w)
= 1:

Jx = ρ0

∫∫∫

B∗

((ys + v)2 + (zs + w)2) du dv dw ,

wobei die Substitution B∗ auf B abbildet. Es folgt nach Ausmultiplizieren der Klammern mit der
Abkürzung du dv dw = dV :

Jx = ρ0(y2
s +z2

s )

∫∫∫

B∗

dV+ρ0

⎡

⎣2ys

∫∫∫

B∗

v dV + 2zs

∫∫∫

B∗

w dV

⎤

⎦+ρ0

∫∫∫

B∗

(v2+w2) dV .

(7.93)

Die Integrale in der eckigen Klammer sind Null, da
1

VB

∫∫∫

B∗

v dV und
1

VB

∫∫∫

B∗

w dV die

2. und 3. Komponente des Schwerpunktes im u-v-w-System sind. In diesem System ist aber

nach Konstruktion [0, 0, 0, ]T der Schwerpunkt! Wegen ρ0

∫∫∫

B∗

dV = ρ0VB = m (Masse des

Körpers) und
√

y2
s + z2

s =: r (Abstand des Schwerpunktes von der x-Achse) ist das erste Glied
in (7.93) gleich r2m. Das letzte Glied in (7.93) ist aber das Trägheitsmoment Ju bezüglich der
u-Achse (= Parallele zur x-Achse durch den Schwerpunkt). Also folgt

Jx = Ju + r2m . (7.94)

Das ist aber gerade die Aussage des Steinerschen Satzes. �

Beispiel 7.24:
Das Trägheitsmoment einer Kugel (mit Radius r und Masse m), deren Mittelpunkt von der Be-

zugsachse die Entfernung a hat, hat nach dem Steinerschen Satz den Wert J = 2

5
mr2 + ma2 .

Übung 7.27*:

Berechne das Trägheitsmoment Jx des Torus aus der Übung 7.26 (ρ0 = Dichte).

Übung 7.28*:

Berechne das Trägheitsmoment Jx eines Tetraeders

T =

⎧

⎪
⎨

⎪
⎩

⎡

⎢
⎣

x

y

z

⎤

⎥
⎦

∣
∣
∣
∣
∣
∣
∣

x + y + z ≤ 1 , x ≥ 0 , y ≥ 0 , z ≥ 0

⎫

⎪
⎬

⎪
⎭

, ρ0 = 1 g/cm3 .

Übung 7.29*:

Berechne den Schwerpunkt einer Halbkugel (Dichte konstant).
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7.3 Parameterabhängige Integrale

Wir betrachten Funktionen der Form

F(t) :=
b∫

a

f (x, t) dx , t ∈ I ,

wobei t ein Intervall ist und f : [a, b] × I → R eine Funktion, die für jedes festgewählte t ∈ I
bezüglich x integrierbar ist. Wir fragen nach Stetigkeit, Integrierbarkeit und Differenzierbarkeit
von F . (Entsprechende Sätze für uneigentliche Integrale sind in Burg/Haf/Wille (Band III) [8],
Anhang, angegeben. Sie stehen dort im Zusammenhang mit Integraltransformationen.)

7.3.1 Stetigkeit und Integrierbarkeit parameterabhängiger Integrale

Satz 7.17:
Ist f : [a, b] × I → R stetig, so ist auch F stetig auf I .

Beweis:
Es sei t0 beliebig aus I . Wir haben

F(t)− F(t0) =
b∫

a

( f (x, t)− f (x, t0)) dx) , t ∈ I , (7.95)

abzuschätzen. Dazu wählen wir ein genügend kleines Intervall [t0 − α, t0 + α] um t0, so daß

R = [a, b] × ([t0 − α, t0 + α] ∩ I )

ein kompaktes Rechteck wird. F ist auf R gleichmäßig stetig (s. Satz 6.5, Abschn. 6.2.3), d.h. zu
jedem ε > 0 existiert ein δ > 0 (δ ≤ α), so daß

| f (x, t)− f (x, t0)| < ε , für alle t ∈ I mit |t − t0| < δ und alle x ∈ [a, b]

gilt. Damit ergibt sich für diese t aus (7.95) die nachfolgende Ungleichung, die unseren Satz
beweist:

|F(t)− F(t0)| < ε(b − a) . �

Satz 7.18:
Ist f : [a, b] × [A, B] → R stetig, so folgt:

B∫

A

F(t) dt =
B∫

A

b∫

a

f (x, t) dx dt =
b∫

a

B∫

A

f (x, t) dt dx .
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Dieser Satz folgt unmittelbar aus den Sätzen 7.3 und 7.2 in Abschn. 7.1.3. Bemerkung. Beide
Sätze gelten entsprechend auch für Bereichsintegrale

F(t) =
∫

B

f (x, t) dx , x ∈ B ⊂ Rn , t ∈ I .

Die Beweise werden mit ganz analogen Überlegungen geführt.

7.3.2 Differentiation eines parameterabhängigen Integrals

Satz 7.19:
Es sei eine Funktion der Form

F(t) =
b∫

a

f (x, t) dx , t ∈ I (Intervall) ,

gegeben, wobei die reellwertige Funktion f auf [a, b] × I stetig ist und dort eine

stetige partielle Ableitung
∂ f (x, t)

∂t
besitzt. Damit ist F auf I differenzierbar, und es

gilt

F ′(t) =
b∫

a

∂ f (x, t)

∂t
dx . (7.96)

Bemerkung: Man kann die Behauptung kurz so ausdrücken: »Es darf unter dem Integralzeichen
differenziert werden.«

Beweis:
Da f (x, t) nach f partiell differenzierbar ist, folgt aus dem Mittelwertsatz der Differentialrech-
nung (einer Variablen):

f (x, t)− f (x, t0)

t − t0
= ft (x, τx) , (7.97)

mit x ∈ [a, b], t �= t0(∈ I ) und einem τx zwischen t und t0.
ft ist stetig, also gleichmäßig stetig auf jedem kompakten Rechteck R = [a, b]×([t0−α, t0+

α] ∩ I ). Somit gibt es zu jedem ε > 0 ein δ > 0 (δ < α) mit

| ft (x, τx)− ft (x, t0)| < ε , falls |t − t0| < δ,

(Denn dann ist auch |τx − t0| < δ) Gl. (7.97) liefert daher
∣
∣
∣
∣

f (x, t)− f (x, t0)

t − t0
− ft (x, t0)

∣
∣
∣
∣
< ε , falls |t − t0| < δ,
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woraus nach Integration über x folgt:

∣
∣
∣
∣
∣
∣

F(t)− F(t0)

t − t0
−

b∫

a

ft (x, t0) dx

∣
∣
∣
∣
∣
∣

≤ ε(b − a)

für |t − t0| < δ. Dies beweist unseren Satz. �

Bemerkung: Auch dieser Satz gilt entsprechend für Bereichsintegrale

F(t) =
∫

B

f (x, t) dx ,

wobei der Beweis nahezu gleichlautend ist.

Beispiel 7.25:
Das Integral

F(t) =
2∫

1

ext

x
dx , t �= 0 ,

läßt sich nicht analytisch integrieren (doch sehr wohl numerisch). Die Ableitung jedoch ergibt
sich als elementare Funktion durch »Differentiation unter dem Integralzeichen«:

F ′(t) =
2∫

1

∂

∂x

ext

x
dx =

2∫

1

ext dx = 1

t

[

ext

]2

1
= e2t − et

t
.

Übung 7.30:

Differenziere nach t :

2π∫

π

sin(xt)

x
dx ,

4∫

2

ex2t

x
dx ,

5∫

1

1

x
√

1+ x2t2
dx .

7.3.3 Differentiation bei variablen Integrationsgrenzen

Allgemeiner als im vorigen Abschnitt sollen nun die Integrationsgrenzen des Parameterintegrals
auch noch variabel sein:

F(t) :=
ψ(t)∫

ϕ(t)

f (x, t) dx , t ∈ I (Intervall).
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Dabei seien ϕ und ψ stetig differenzierbare Funktionen auf I , und f nebst
∂ f

∂t
seien stetig auf

einem Bereich B ⊂ R2, der die Graphen von ϕ und ψ enthält sowie jeden Punkt »zwischen den

Graphen«, d.h. jeden Punkt

[

x
t

]

mit t ∈ I und x zwischen ϕ(t) und ψ(t).

Die Differentiation von F(t) ist ganz einfach — und läßt sich leicht merken — wenn man
zunächst die untere und obere Grenze mit y und z bezeichnet und die entstehende Funktion von
drei Variablen ins Auge faßt:

F∗(t, y, z) :=
z∫

y

f (x, t) dx .

Diese Funktion ist offenbar nach allen drei Variablen stetig partiell differenzierbar (nach z und y
auf Grund des Hauptsatzes des Differential- und Integralrechnung, nach t wegen Satz 7.19).

Mit der Substitution

t = τ , y = ϕ(τ) , z = ψ(τ)

differenziert man F∗ nach der Kettenregel (Folg. 6.5, Abschn. 6.3.3):

dF∗

dτ
= ∂ F∗

∂t

dt

dτ
+ ∂ F∗

∂y

∂y

∂τ
+ ∂ F∗

∂z

∂z

∂τ
.

Die Argumente (τ, ϕ(τ ), ψ(τ)) von F∗ wurden der Übersichtlichkeit wegen weggelassen. Die
letzte Gleichung liefert explizit

F ′(τ ) =
ψ(τ)∫

ϕ(τ)

fτ (x, τ ) dx · 1+ ψ ′(τ ) · f (ψ(τ), τ )− ϕ′(τ ) · f (ϕ(τ ), τ ) .

Ersetzen wir hier τ durch t , so erhalten wir die Ableitungsformel

F ′(t) =
ψ(t)∫

ϕ(t)

ft(x, t) dx · 1+ ψ ′(t) · f (ψ(t), t)− ϕ′(t) · f (ϕ(t), t) . (7.98)

Beispiel 7.26:

(zur Balkenbiegung) Ein Balken, wie in Fig. 7.41 skizziert, besitzt im Schnitt bei x die Querkraft

Q(x) = A −
x∫

0

p(t) dt .
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Fig. 7.41: Zur Balkenbiegung

Dabei beschreibt p(t) die Belastung des Balkens pro Längeneinheit an der Stelle x , und A ist die
Auflage-Reaktionskraft links. Das Biegemoment bei x ist

M(x) = Ax −
x∫

0

(x − t)p(t) dt .

Wir wollen zeigen, daß die Ableitung des Biegemoments gleich der Querkraft ist. Dies ergibt
sich sofort aus Formel (7.98) (wobei x und t ihre Rollen getauscht haben):

M ′(x) = A − d

dx

x∫

0

(x − t)p(t) dt = A −
x∫

0

p(t) dt − 1 ·
[

(x − t)p(t)
]

t=x
︸ ︷︷ ︸

0

= Q(x) .

Übung 7.31:

Differenziere F(t) =
1+t2
∫

t

sin(xt)

x
dx , t ∈ R.
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A Lösungen zu den Übungen

Zu den mit ∗ versehenen Übungen werden Lösungswege skizziert oder Lösungen angegeben.1

Zu Kapitel 1

Zu Übung 1.4: Die Mindestprozentzahl x ergibt sich aus
100− x = (100− 60)+ (100− 70)+ (100− 80). Der Leser überlege, warum.

Zu Übung 1.11: Schreibe die binomische Formel für (1+ (−1))n hin.

Zu Übung 1.12: Id =
π

32
d4 · (1− (1− 2s

d
)4) ≈ π

32
d4 · (1− (1− 4 · 2s

d
)) = π

4
d3s.

Zu Übung 1.14: Loch bedeute 1, Lochstelle ohne Loch bedeute 0.

Zu Übung 1.16: Es gibt 6 ·5 · 4 · 3 = 360 Möglichkeiten. Der Autofahrer erlebt das Ende seines Versuches
nicht.

Zu Übung 1.23: Schreibe:
xn

n! =
x

1

x

2

x

3
. . .

x

n
. Wähle n0 so, daß

∣
∣
∣
∣

x

n0

∣
∣
∣
∣
<

1

2
ist. Für alle x ≥ n0 gilt dann:

∣
∣
∣
∣

xn

n!

∣
∣
∣
∣
=
∣
∣
∣
∣

xn0

n0!

∣
∣
∣
∣
·
∣
∣
∣
∣

x

n0 + 1

∣
∣
∣
∣

∣
∣
∣
∣

x

n0 + 2

∣
∣
∣
∣
· · ·

∣
∣
∣

x

n

∣
∣
∣ ≤

∣
∣
∣
∣

xn0

n0!

∣
∣
∣
∣
·
(

1

2

)n−n0

→ 0 für n →∞.

Zu Übung 1.25: Grundreihe R1O für Rohre:
|1,00|1,25|1,60|2,00|2,50|3,15|4,00|5,00|6,30|8,00|10,00|
Zu Übung 1.27: lim

n→∞ an = −1/2, lim
n→∞ bn = −1

Zu Übung 1.29: Zur Beweisidee siehe Beispiel 1.39 (harmonische Reihe).

Zu Übung 1.31: Beweise zunächst
2k

k! < (
1

2
)k−4 für k ≥ 4: vgl. 1.23

Zu Übung 1.33: Konvergenz liegt vor für alle x ∈ (−1,1].
Zu Übung 1.34: Stetigkeitsbereiche (a) R\{0} ( f ist stetig!), (b) R\{0} (g ist unstetig in 0), (c) R\{−1,1},
(d) R.

Zu Übung 1.37: Gleichmäßig stetig sind f und h1 da sie stetig auf [0, 1] fortgesetzt werden können
(vgl. Satz 1.26). Ungleichmäßig stetig ist g (0 ist Pol!), unstetig ist k (Sprung in x = 2).

Zu Übung 1.38: Dividiere in (a), (b), (d) Zähler und Nenner mit dem Divisionsverfahren für Polynome
(s. Abschn. 2.1.6). In (c) multipliziere Zähler und Nenner mit (

√
x + 1).

1 Aufgaben werden durch gedruckte Lösungen oft entwertet. Daher wurde nur bei wenigen Aufgaben Lösungen und
Hinweise gegeben
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Zu Kapitel 2

Zu Übung 2.2: Volumengleichung V1 + V2 = V und Massengleichungen ρ1V1 + ρ2V2 = ρV lassen sich
als zwei Geraden im V1-V2-Koordinatensystem deuten. Gesucht: Schnittpunkt.

Zu Übung 2.12: Man berechne D, D1 und, falls nötig, Da11 bzw. D2, und entscheide nach dem vorange-
gangenen Schema.

Zu Übung 2.26: Es sei a > 1 und x1 < x2, wobei x1, x2 rational sind. Damit gilt ax2/ax1 = ax2−x1 > 1
(nach Abschn. 1.1.6, Folg. 1.9 und Übung 1.8b). Damit gilt ax2 > ax1 . Sind z1, z2 reell, also evtl. irrational,
und gilt z1 > z2, so gibt es rationale x1, x2 mit z1 < x1 < x2 < z2. Nähert man z1 und z2 durch rationale
Zahlen beliebig genau an, so folgt durch Grenzübergang jedenfalls

az1 ≤ ax1 < ax2 ≤ az2 ,

also az1 < az2 , was zu zeigen war. (Im Falle 0 < a < 1 betrachte man zunächst 1/ax und schließe analog.)

Zu Übung 2.28: (a) Mit an = n/2n folgert man an =
n

2(n − 1)
an−1 ≤ 0,75an−1 für n ≥ 3. Das liefert

(induktiv) für n ≥ 3: an ≤ (0,75)n−2a2 → 0 (für n →∞).

(b) folgt wegen x/ ex < x/2x (x > 0), (c) folgt mit y = ex aus (b). (d), (e) klar!

Zu Übung 2.34: Benutze Def. 2.16.

Zu Übung 2.36: Fasse die cos-Ausdrücke als Realteile komplexer Funktionen von t auf, wie in (2.149).
Errechne damit A und ϕ analog zum vorangehenden Text.

Zu Kapitel 3

Zu Übung 3.1: Geschwindigkeit = c.

Zu Übung 3.7: Beschleunigung = g bzw. = 0.

Zu Übung 3.8: Es sei (xn) eine Folge aus I mit xn → x0 für n → ∞. Man bildet Δn := ( f (xn) −
f (x0))/(xn − x0). Gibt es nur endlich viele xn ≤ x0 (bzw. xn > x0), so strebt Δn offenbar gegen f ′(x0+)

(bzw. f ′(x0−)). Gibt es sowohl unendlich viele xn ≤ x0 wie auch unendlich viele xn > x0, so formieren
diese zwei Teilfolgen von (Δn), deren eine gegen f ′(x0−) und deren andere gegen f ′(x0+) strebt. Wegen
f ′(x0−) = f ′(x0+) strebt damit (Δn) auch gegen diesen gemeinsamen Wert, der somit f ′(x0) genannt

werden darf.

Zu Übung 3.13: Implizites Differenzieren liefert 2yy′ − 2x = 0, also yy′ = x . Für y′ = 1 folgt y = x .
Dies beschreibt die Winkelhalbierende der positiven Koordinatenachsen; usw.

Zu Übung 3.16: Für beliebige x1, x2 ∈ I mit x1 < x2 gilt nach dem Mittelwertsatz (Satz 3.5): f (x2) −
f (x1) = f ′(ξ)(x1 − x2) mit einem ξ ∈ (x1, x2). Im Falle (a) ist die rechte Seite = 0, im Falle (b) ist sie
stets ≥ 0 (bzw. > 0, ≤ 0, < 0). Daraus folgen die Behauptungen.

Zu Übung 3.21: Benutze Satz. 3.15.

Zu Übung 3.29: Verwende ln
1

a
= − ln a.

Zu Übung 3.37: Lösungen x1
.= 0,80706937, x2

.= 1,24143200.

Zu Übung 3.38: Wende das Newtonverfahren auf f (x) = x3 − a an.

Zu Übung 3.40: Volumen V = x(50 − 2x)(80 − 2x). Suche das Maximum dieser Funktion von x , und
zwar im Intervall [0, 50/2].
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Zu Kapitel 4

Zu Übung 4.3: Es sei ε > 0 beliebig (klein) und Z eine Zerlegung von [0, π ], deren erstes Teilintervall
[π, ε/4] ist, und für die folgendes gilt: Die durch Z erzeugte Zerlegung Z ′ von [ε/4, π ] sei so, daß S f (Z ′)−
s f (Z ′) < ε/2 ist. (Das ist erreichbar, da f auf [ε/4, π ] stetig, also auch integrierbar ist.) Für die Zerlegung
Z von [0, π ] ist aber sicherlich

M1 = max
[0,ε/4]

f (x) = 1 , m1 = min
[0,ε/4]

f (x) = −1 , also

S f (Z)− s f (Z) = M1
ε

4
+ S f (Z ′)−

(

m1
ε

4
+ s f (Z ′)

)

= ε

2
+ S f (Z ′)− s f (Z ′) < ε .

Da ε > 0 beliebig (klein) ist, folgt inf
Z

S f (Z) = sup
Z

s f (Z), d.h. f ist integrierbar auf [0, π ].

Zu Übung 4.14: (a), (c), (d) existieren, (b) nicht.

Zu Übung 4.15: f (x) ≤
x∫

x−1

f (x) dx ≤
∞∫

x−1

f (x) dx → 0 für x →∞.

Zu Übung 4.16: (b) konvergiert, da

1∫

0+

dx√
x

,
∫ 0−
−1

dx√−x
konvergieren.

Mit dem Grenzwertkriterium (Satz 4.15) erkennt man:

(a) konvergiert, da
√

x/
√

sin x → 1 für x → 0+,

(b) konvergiert nicht, da

(
1

x

)2

/
(

cosh( 1
x )− 1

)

→ 2 für x →∞t ,

(c) konvergiert nicht, da e1/x /
(

cosh( 1
x )− 1

)

→ 2 für x → 0+.

(d) konvergiert, da (ln x/
√

x)/x−·3/4 = x1/4 ln x → 0 für x → 0+, und da

1∫

0+
x−3/4dx konvergiert.

Zu Übung 4.17: Benutze Satz 4.15.

Zu Übung 4.18: Benutze Satz 4.16.

Zu Kapitel 5

Zu Übung 5.1: (a), (b) konvergieren gleichmäßig, (c), (d) nicht. ((c), (d) konvergieren aber punktweise!)

Zu Übung 5.6: Für jede Partialsumme sn(x) der rechten Seite gilt offenbar sn(x) < arcsin x < arcsin 1,
falls |x | < 1. Also folgt sn(1) = lim

x→1−
sn(x) ≤ arcsin 1 für alle n ∈ N. Die Folge sn(1) ist also be-

schränkt und monoton, folglich konvergent. Entsprechendes gilt für sn(−1). Mit dem Abelschen Grenz-
wertsatz (Satz 5.14) folgt damit die in der Aufgabe behauptete Reihendarstellung.
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Zu Kapitel 6

Zu Übung 6.3: lim
k→∞

ak =
[

1
0

]

, lim
k→∞

bk =
[

1/5
1

]

, lim
k→∞

ck =

⎡

⎣

0
1

3/4

⎤

⎦.

Zu Übung 6.4: A und C abgeschlossen, B offen, D nichts dergleichen.

Zu Übung 6.7: (B−1 A−1)AB = B−1(A−1 A)B B−1 E B = B−1 B = E ⇒ (B−1 A−1) = (AB)−1.

Zu Übung 6.13: Zur Beantwortung betrachte die Geraden im R2, die durch die Gleichungen x1 = 0,

x2 = 0 bzw. x1 = x2 gegeben sind. Untersuche lim
x→0

f (x) auf jeder dieser Geraden!

Zu Übung 6.20: (a) Man orientiere sich an Beispiel 6.17.

(b) f ′(x) =
[

∂ f

∂x1
(x) ,

∂ f

∂x2
(x)

]

=
[

ex1 sin x2, ex1 cos x2
]

⇒ ∂ f

∂a
= f ′(0,0)a = [0 , 1]

[

1/
√

2
1/
√

2

]

= 1√
2

.

Zu Kapitel 7

Zu Übung 7.6:

∫∫

B

(ex + sin y) dx dy =
2∫

0

⎡

⎢
⎣

1−x/4∫

x/4

(ex + sin y) dy

⎤

⎥
⎦ dx

=
2∫

0

[

| ex y − cos y|
]1−x/4
x/4 dx =

2∫

0

[

ex − x

2
ex − cos

(

1− x

4

)

+ cos
x

4

]

dx

=
[

ex −1

2
(x − 1) ex +4 sin x

(

1− 1

4

)

+ 4 sin
x

4

]2

0

= 1

2
e2+8 sin

1

2
− 4 sin 1− 3

2
.

Zu Übung 7.26: Torus: Volumen V = FA · 2π R = r2π · 2π R = 2r2 Rπ2, Oberflächeninhalt F =
L · 2π R = 2πr · 2π R = 4r Rπ2.

Zu Übung 7.27: Benutze Formel (7.88) mit f (x) = R +
√

r2 − x2 und g(x) = r −
√

r2 − x2, d.h.
berechne:

Jx =
π

2
ρ0

r∫

−r

[ f 4(x)− g4(x)] dx .

Es ergibt sich

Jx = ρ0 · 2π2r R2
(

R2 + 3

4
r2
)

.

Mit der Masse m = ρ0V = ρ0 · 2π2 Rr2 erhält man das Trägheitsmoment des Torus in der Form

Jx = m

(

R2 + 3

4
r2
)
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Zu Übung 7.28: Jx =
∫∫∫

T

(y2 + x2) dx dy dz =
1∫

0

⎡

⎢
⎣

1−z∫

0

⎡

⎢
⎣

1−y−z∫

0

(y2 + z2) dx

⎤

⎥
⎦ dy

⎤

⎥
⎦ dz

= 1

30
[g cm2].

Zu Übung 7.29: R Radius der Halbkugel. Der Schwerpunkt liegt auf der Symmetrieachse, um
3

8
R vom

Kugelmittelpunkt entfernt, in der Halbkugel.

Zu Übung 7.31:

F ′(t) =
1+t2
∫

t

∂

∂t

sin(xt)

x
︸ ︷︷ ︸

cos(xt)

dx + 2t
sin((1+ t2)t)

1+ t2
− 1 · sin t2

t
⇒ F ′(t) = 1+ 3t2

t + t3
sin(t + t3)− 2

t
sin t2 .



Symbole

Einige Zeichen, die öfters verwendet werden, sind hier zusammengestellt.

A⇒ B aus A folgt B
A⇔ B A gilt genau dann, wenn B gilt
x := x ist definitionsgemäß gleich
Zur Mengenschreibweise s. Abschn. 1.1.4
x ∈ M x ist Element der Menge M , kurz: »x aus M«
x �∈ M x ist nicht Element der Menge M
{x1, x2, . . . , xn} Menge der Elemente x1, x2, . . ., xn
{x | x hat die Eigenschaft E} Menge aller Elemente x

mit Eigenschaft E
{x ∈ N | x hat die Eigenschaft E} Menge aller Elemente

x ∈ N mit Eigenschaft E
M ⊂ N , N ⊃ M M ist Teilmenge von N (d.h. x ∈ M ⇒

x ∈ N )
M ∪ N Vereinigungsmenge von M und N
M ∩ N Schnittmenge von M und N
M\A Restmenge von A in M
∅ leere Menge
A × B cartesisches Produkt aus A und B

A1 × A2 × . . .× An cartesisches Produkt aus A1, A2,
. . ., An

N Menge der natürlichen Zahlen 1, 2, 3, . . .
Z Menge der ganzen Zahlen
Q Menge der rationalen Zahlen
R Menge der reellen Zahlen
(x1, . . . , xn) n-Tupel
[a, b], (a, b), [a, b), (a, b] beschränkte Intervalle
[a,∞), (a,∞), (−∞, a], (−∞, a), R unbeschränkte

Intervalle
C Menge der komplexen Zahlen (Abschn. 2.5.2)
⎡

⎢
⎣

x1
.
.
.

xn

⎤

⎥
⎦ Spaltenvektor der Dimension n (Abschn. 6.1.1)

Rn Menge aller Spaltenvektoren der Dimension n
(wobei x1, x2, . . ., xn ∈ R) (Abschn. 6.1.1)

Weitere Bezeichungen

|x | (für x ∈ R) 1.1.6
n
∑

k=0

ak 1.1.7

n! 1.1.7(
n

k

)

1.1.7

f : A→ B 1.3.2, 1.3.5
f −1, f ◦ g 1.3.4
(an)n∈N 1.4.1
lim

n→∞ an 1.4.3

Uε(a) 1.4.3
lim

x→x0
1.6.7, 1.6.8

f (x0+), f (x0−) 1.6.9
sup
x∈A

f (x), inf
x∈A

f (x) 1.6.5

π 2.3.1
e 2.4.2
i 2.5.1, 2.5.2
z, |z| (für z ∈ C) 2.5.2

f ′,
d f

d x
3.1.2

b∫

a

f (x) d x 4.1.1

[

F(x)
]b
a 4.1.5

∫

f (x) d x 4.2.1

C. H.

∫

f (x) d x 4.3.2

‖ f ‖∞ 5.1.1
lim

n→∞ fn 5.1.1

lim 5.2.1
Πn 5.4.1
Mat(n + 1, R) 5.4.1
det V 5.4.1
O( . ) 5.4.1
x + y, λx 6.1.2
x · y, |x| 6.1.2
x × y 6.1.2
%AB 6.1.2

Ka,r , K a,r 6.1.4

∂ M , M
◦

, M 6.1.4
(aik )1≤i≤m

1≤k≤n

, (aik )m,n 6.1.5
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|A| 6.1.5
∂ f

∂xk
6.3.1

∂2 f

∂xk∂x j
6.3.5

∫∫

B

f (x, y) d x d y 7.1.1

∂(x, y)

∂(u, v)
7.1.6

∫

Q

f (x) d x 7.2.1

∫∫

Q

. . .

∫

f (x1, . . . , xn) d x1 . . . d xn 7.2.1

∂(x1, x2, . . . , xn)

∂(u1, u2, . . . , un)
7.2.3

det A 7.2.3
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Stichwortverzeichnis

A
Abbildung, 54, 455

– differenzierbar in A ⊂ D, 470
– differenzierbare, 470
– eineindeutige, 537
– Grenzwert einer, 462
– konvergente, 463
– partiell differenzierbar nach xk , 465
– partiell differenzierbare, 466
– stetig auf A ⊂ D, 462
– stetig in einem Punkt, 462
– stetige, 462

abbrechender Dezimalbruch, 2
Abelscher Grenzwertsatz, 381
abgeschlossene

– Halbgerade, 13
– Hülle, 450
– Kugel, 449
– Menge, 449

abgeschlossenes Intervall, 12
abhängige Variable, 44
Abklingvorgang, 277, 278
Abkühlung eines Gegenstandes, 278
Ableitung, 353

– äußere, 213
– dritte f ′′′, 207
– dritte partielle, 483
– innere, 213
– linksseitige, 206
– logarithmische, 227
– n-te f (n), 207
– partielle, 464
– partielle von f nach xk , 465
– rechtsseitige, 206
– von f , 204
– von f in t0, 198
– von f in x0, 200
– zweite f ′′, 207
– zweite partielle, 482

Ableitungsfolge, 370
Ableitungsmatrix, 469, 537
Ableitungsreihe, 374
Abschnittsform der Geraden, 117
absolut konvergente Reihe, 81
Absolutbetrag, 23
Abstand

– zweier Funktionen voneinander, 366
– zweier Punkte im Rn , 448

Abwasserkanal, 282
Achsenabschnitte einer Geraden, 117
Addition

– komplexer Zahlen, 183
– von Matrizen, 451

Additionstheorem
– der Exponentialfunktion, 169

Additionstheoreme
– der Sinus- und Cosinusfunktionen, 154, 222
– der Tangens- und Cotangensfunktionen, 157

Additivität, siehe Eigenschaften der Bogenlänge, 209,
305

Ähnlichkeit geometrischer Figuren, 119
äquidistante Zerlegung, 296
äußere Ableitung, 213
algebraische Funktion, 137

– in expliziter Darstellung, 141
algebraische Gleichung zu f , 137
allgemeine

– Exponentialfunktion, 226
– Potenzfunktion, 226
– Pyramide, 559
– Zerlegung, 527

alternierende Reihe, 80
Amplitude, 163
Anfangsnäherung, 256
Anzahl, 1
Approximationssatz

– Weierstraß’scher, 384
– Weierstraß’scher für (algebraische) Polynome, 384
– Weierstraß’scher für periodische Funktionen, 389

Approximationstheorie, 384
Archimedisches Axiom, 10
Arcus, 160
Arcuscosinus, 150, 159
Arcuscotangens, 159
Arcussinus, 159
Arcustangens, 159
Areafunktionen, 178
Argument, 44
Argument einer komplexen Zahl, 191
arithmetisches Mittel, 252
Assoziativgesetz

– der Addition komplexer Zahlen, 184
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– der Addition reeller Zahlen, 5
– der Multiplikation komplexer Zahlen, 184
– der Multiplikation reeller Zahlen, 5

Astroide, 218
Asymptote, 136

– der Hyperbel, 142
– einer rationalen Funktion, 265

axiales Flächenmoment, 533

B
Bakterienkultur

– Wachstum einer, 277
Balken

– Biegefestigkeit eines, 283
Banachscher Fixpunktsatz, 71
barometrische Höhenformel, 279
Bausparkasse, 19
bedingt konvergente Reihe, 82
Berechnung

– der Nullstellen eines Polynoms, 195
– der Nullstellen von Polynomen, 257
– des Flächeninhalts einer ebenen Punktmenge, 520
– einer Determinante, 556
– eines Interpolationspolynoms, 392
– von e, 239
– von

√
a, 21

– von Integralen über Stammfunktionen, 303
– von ln a, 242
– von Logarithmen mit der Taylorreihe, 242
– von π , 247
– von Polynomwerten, 126
– von Quadratwurzeln, 258
– von Wechselspannungen, 357
– von Wechselströmen, 357

Bernoullische
– Ungleichung, 21
– Zahlen, 247

Bernstein-Polynome, 386
Beschleunigung, 208

– Darstellung als Vektor, 445
– eines Massenpunktes, 272

beschränkte
– Folge, 65
– Funktion, 97
– Menge, 450

beschränktes Intervall, 12
Betrag

– der Fliehkraft, 273
– einer komplexen Zahl, 185

Bewegung
– einer Kugel in einer zähen Flüssigkeit, 199
– eines aufwärts geworfenen Körpers, 119, 122, 273
– eines Federpendels, 155
– eines Massenpunktes, 114, 199, 208
– eines Massenpunktes auf einer Kreisbahn, 272
– eines Massenpunktes im R3, 271

– eines Punktes auf einer Ellipsenbahn, 142
– eines Rades, 155
– eines Steines, 199
– eines Zuges, 116

Bewegungsgleichung, 119
Beweis

– durch vollständige Induktion, 18
– konstruktiver, 92

Bezugsphase, 356
Biegefestigkeit

– eines Balkens, 283
Biegemoment, 576
Biegung

– eines Balkens, 575
bijektive Funktion, 51
Bildpunkt, 44, 54
Binom, 28
Binomialkoeffizient, 26
binomische

– Differentiationsregel, 211
– Formel, 26, 242, 385
– Reihe, 242, 243

Blindwiderstand, 357
Bogenlänge, 145
Bogenmaß, 150
Boyle-Mariottesches Gesetz, 134, 279
Brennschlußgeschwindigkeit

– einer Rakete, 279
Bruch, 1

C
cartesisches

– Blatt, 218
– Produkt, 16

Cauchy-Bedingung, 69
– für uneigentliche Integrale, 336

Cauchy-Kriterium für Reihen, 79
Cauchysche Restgliedformel, 237
Cauchyscher Hauptwert, 342
Cauchysches

– Konvergenzkriterium, 68
– Konvergenzkriterium für gleichmäßige Konvergenz,

368
– Konvergenzkriterium für uneigentliche Integrale,

336
Cavalierisches Prinzip, 559
chemische Reaktion, 278
Cosinus, 152
Cosinus hyperbolicus, 179, 180
Cotangens, 156
Cotangens hyperbolicus, 179

D
d’Alembertsches Prinzip, 503
Dämpfungsfaktor, 271
Definitionsbereich, 44, 54
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Deviationsmoment, 533
Dezimalbruch, 1

– abbrechender, 2
– Periode des, 2

Dezimalzahl, 1
Diagramm, 46
Differentialgleichung, 434

– homogene, 435
– Lösungen der, 434
– partikuläre Lösung der, 435

Differentialquotient, 198
– von f in x0, 200

Differentiation einer komplexwertigen Funktion
f (λ) = u(λ)+ jv(λ), 353

Differentiationsregel
– binomische, 211
– für das Produkt ( f · g) von Funktionen, 209, 229

– für den Quotienten
(

f
g

)

von Funktionen, 209, 229

– für die logarithmierte Funktion von f (x), 227
– für die reziproke Funktion, 210, 229
– für die Summe ( f + g) von Funktionen, 209, 229
– für die Umkehrfunktion f −1, 215, 229
– für die Verkettung ( f ◦ g) von Funktionen, 212, 213,

229
– für die wichtigsten elementaren Funktionen, 229
– für Mehrfachprodukte, 211

Differenz, 5
Differenzenquotient

– von f bezüglich t und t0, 199
– von f bezüglich x und x0 aus I , 200
– von f bzgl. x1, x2, 115

differenzierbare Funktion, 204
Differenzierbarkeit

– einseitige, 207
– linksseitige, 207
– partielle, 465, 470
– rechtsseitige, 207
– totale, 470

dimensionslose Größe, 271
Distributivgesetz

– für komplexe Zahlen, 184
– für reelle Zahlen, 5

divergente
– Folge, 61
– Reihe, 75

dividierte Differenzen, 401
Division

– komplexer Zahlen, 183
– reeller Zahlen, 5
– von Polyomen, 130

Drehbewegung, 415
– gleichförmige, 272

Drehzeiger, 355
Dreieck

– gleichseitiges, 534
– Pascalsches, 27

Dreiecksungleichung, 23, 444
– für Beträge komplexer Zahlen, 186
– für Integrale, 299

Durchschnitt, 15
Durchschnittsgeschwindigkeit, 198

E
echt gebrochene Funktion, 133
echte Teilmenge, 15
effektive Spannung, 350
Effektivwert, 270, 350

– der Spannung, 349
– des Stroms, 349
– komplexer, 355

Eigenschaften
– der Bogenlänge, 147
– der Exponentialfunktion, 169
– der Logarithmusfunktion, 174

Einbettung
– kanonische, 457

Einheitskreis, 138
Einheitskreislinie, 145
Einheitsmatrix, 453
Einheitsparabel, 119
Einschaltaltvorgang (elekrischer Strom), 279
Einschließungseigenschaft, siehe Eigenschaften der

Bogenlänge
Einschließungskriterium, 64
einseitge Differenzierbarkeit, 207
Eisenkern, 285
elektrischer

– Schwingkreis, 270
– Strom, 279

Element
– einer Folge, 56
– einer Matrix, 451
– einer Menge, 11

Ellipse, 141
– Flächeninhalt einer, 544
– große Halbachse der, 142
– kleine Halbachse der, 142

elliptische Zylinderkoordinaten, 557
ε-n0-Bedingung, 69
ε-Umgebung, 61
ε-δ-Charakterisierung der Stetigkeit, 90, 462
ε-Schlauch, 368
Erwärmung eines Gegenstandes, 278
erzeugende Fläche

– des Rotationskörpers, 563
erzeugende Funktion

– der Kugel, 562
– eines Rotationskörpers, 561

erzeugende Kurve
– eines Rotationskörpers, 563

euklidische Norm
– einer reellen Matrix, 454
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– eines Vektors, 444
Euler-Mascheronische Konstante, 344
Eulersche

– Gammafunktion, 348
– Konstante, 344
– Zahl, 171

explizite Formeln zur Berechnung einer Determinante,
556

Exponentialfunktion
– allgemeine, 226
– komplexe, 433
– zur Basis a, 168

Exponentialintegral Ei, 345
Extremalproblem, 99
Extremalpunkt, 497
Extremalstelle, 497
Extremstelle, 260
Extremum, 219, 260

F
Fakultät, 27
Fall

– freier, 42
– freier ohne Reibung, 273

Federpendel, 155
Fehlerabschätzung, 73, 276
Fehlerintegral

– Gaußsches, 545
Feinheit einer Zerlegung, 288, 290, 518, 527
Fermatsches Prinzip, 283
Fixpunkt

– von f , 70
Fixpunktgleichung, 70
Fixpunktiteration, 70
Fläche

– des Kreises, 312
– von f auf [a, b], 288, 291

Flächendichte
– einer Masse, 529
– konstante, 530

Flächeninhalt, 288, 291, 507
– einer ebenen Punktmenge, 520
– einer Ellipse, 544
– einer Jordan-meßbaren Menge B, 520
– eines Normalbereichs, 525

Flächenmoment
– axiales (bzgl. der x-Achse), 533
– axiales (bzgl. der y-Achse), 533
– axiales (eines gleichseitigen Dreiecks), 534
– einer Querschnittsfläche, 533
– eines rechteckigen Balkens, 460
– gemischtes (bzgl. der x- und y-Achse), 533
– polares (bzgl. des Koordinatenursprungs), 533
– zweiter Ordnung, 533

Fliehkraft, 272, 273
Folge, 56

– beschränkte, 65
– der Partialsummen, 448
– der zugehörigen Differenzenquotienten, 201
– divergente, 61
– Elemente einer, 56
– gegen unendlich strebende, 67
– geometrische, 59
– Grenzwert einer, 60
– größter Häufungspunkt einer, 376
– Häufungspunkt einer, 67
– harmonische, 57
– konvergente, 61
– Limes einer, 60
– monoton fallende, 68
– monoton steigende, 68
– nach oben unbeschränkte, 67
– nach unten unbeschränkt, 67
– Null-, 57
– streng monoton fallende, 68
– streng monoton steigende, 68
– unbeschränkte, 66
– unendliche reeller Zahlen, 55
– von Vektoren, 446

Formel
– binomische, 26
– polynomische, 29

Fourier-Koeffizient, 417
Fourierreihe, 417

– gleichmäßig und absolut konvergente, 430
Fouriersche Methode, 437
freier Fall, 42

– mit Reibung, 234
– ohne Reibung, 273

Freileitung zwischen zwei Masten, 281
Frequenz, 163
Fundamentalsatz der Algebra, 194
Funktion, 42

– algebraische, 137
– alternierende, 423
– beschränkte, 97
– bijektive, 51
– differenzierbar auf A, 204
– differenzierbar im Punkt x0 ∈ I , 200
– differenzierbare, 204
– echt gebrochene, 133
– erzeugende der Kugel, 562
– erzeugende eines Roataionskörpers, 561
– ganzrationale, 113, 133
– gebrochen rationale, 133
– gerade, 264
– gleichmäßig stetige, 101
– Graph einer, 46
– Heaviside, 49
– Höhenlinienbild einer, 458
– implizite, 492
– Infimum einer, 97
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– injektive, 51
– integrierbar auf [a, b], 291
– integrierbar auf B, 520
– konkav auf einem Intervall, 250
– konstante, 113
– konvex auf einem Intervall, 250
– Maximalstelle einer, 98
– Maximum einer, 97
– Minimalstelle einer, 98
– Minimum einer, 98
– monoton fallende, 50
– monoton steigende, 49
– nach oben beschränkte, 97
– nicht algebraische, 316
– n-mal differenzierbare, 207
– n-mal stetig differenzierbare, 207
– Nullstellen einer, 87
– obere Schranke einer, 97
– Oszillationsstellen einer, 111
– periodische, 415
– Pol einer reellwertigen, 107
– Polwechsel einer, 110
– rationale, 95, 133, 211
– Riemann-integrierbar auf Q, 549
– Sprünge einer, 110
– Sprunghöhe einer, 110
– Stammfunktion einer, 301
– stetig differenzierbare, 207
– stetige, 89
– streng konkav auf einem Intervall, 250
– streng konvex auf einem Intervall, 250
– streng monoton fallende, 50
– streng monoton steigende, 50
– stückweise glatte, 418
– stückweise stetig auf [a, b], 293
– stückweise stetige, 110
– stückwese monoton auf [a, b], 293
– Supremum einer, 97
– surjektive, 51
– transzendente, 316
– trigonometrische, 152
– Umkehr-, 51, 52
– umkehrbare, 51
– unbeschränkte, 333
– unecht gebrochene, 133
– ungerade, 264, 266
– ungerade alternierende, 425
– Unstetigkeitsstellen einer, 110
– untere Schranke einer, 97
– Verkettung von, 53
– von A in B, 44

Funktionaldeterminante, 538
– der Transformation auf Polarkoordinaten, 540
– Veranschaulichung der, 538

Funktionalgleichung
– der Exponentialfunktion, 174

– des Logarithmus, 175
Funktionalmatrix, 537
Funktionenfolge

– gleichmäßig konvergente, 367
– punktweise konvergente, 366

Funktionswert, 44

G
Gammafunktion, 348

– Funktionalgleichung der, 348
ganzrationale Funktion, 133
Gas

– ideales, 269, 459
– reales, 481

Gasdynamik, 480
Gasgesetz für ideale Gase, 459
Gaußsches Fehlerintegral, 545
Gebiet, 538
gebrochen rationale Funktion, 133
gemischtes Flächenmoment, 533
geometrische

– Folge, 59
– Reihe, 75
– Summe, 24

geometrisches Mittel, 252
geordnete Stichproben

– mit Zurücklegen, 41
– ohne Zurücklegen, 35

gerade
– Funktion, 264
– Permutation, 556

Gerade, 101, 114
– Abschnittsform der, 117
– Achsenabschnitte der, 117
– Punkt-Richtungsform der, 115
– Richtung der, 114
– steigende oder fallende, 113
– Steigung einer, 114
– Zwei-Punkte-Form der, 116

gerichtete Strecke, 442
Geschwindigkeit, 197

– Darstellung als Vektor, 445
– eines Massenpunktes, 272
– eines Massespunktes, 208

Gesetz
– Boyle-Mariottesches, 134
– Ohmsches, 356

gleichförmige Drehbewegung, 272
Gleichheit

– von Elementen einer Menge, 12
– von Matrizen A und B, 451
– zweier komplexer Zahlen, 182
– zweier Spaltenvektoren, 440

gleichmäßige Stetigkeit, 100, 462
Gleichung

– algebraische zu f , 137
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– quadratische, 124
– schönste der Welt, 189
– van der Waalssche, 267

Gleisbogen, 43
Glied

– einer Reihe, 74
– einer Reihe von Funktionen, 373
– einer Summe, 25

Gradient einer Funktion, 477
Graph einer Funktion, 46, 456

– Steigung des, 467
Grenzfunktion, 366, 367
Grenzwert, 55

– einer Abbildung, 462
– einer Folge, 60
– einer Folge von Vektoren, 446
– einer Reihe, 75
– im Unendlichen, 463
– linksseitiger einer Funktion, 109
– rechtsseitiger einer Funktion, 109

Grenzwertkriterium
– für uneigentliche Integrale, 340

Grenzwertsatz
– Abelscher, 381

größte untere Schranke, 65
große Halbachse der Ellipse, 142
großes Horner-Schema, 128
Grundaufgabe

– erste, 31
– zweite, 32
– dritte, 34
– vierte, 36
– der Integralrechnung, 287
– fünfte, 37
– sechste, 39

Grundgesetz
– archimedisches Axiom, 10
– der Vollständigkeit der reellen Zahlen, 10
– Newtonsches der Mechanik, 208, 273

Grundgesetze
– der Addition komplexer Zahlen, 184
– der Addition reeller Zahlen, 4
– der Multiplikation komplexer Zahlen, 184
– der Multiplikation reeller Zahlen, 4
– der Ordnung reeller Zahlen, 8
– über Potenzen an und Wurzeln n√a, 21

Guldinsche Regeln, 563

H
Häufungspunkt

– einer Folge, 67
– einer Menge, 463
– einer Menge D ⊂ R, 103

Halbgerade
– abgeschlossene, 13
– offene, 13

Halbkugel, 457
halboffenes Intervall, 12
harmonische

– Folge, 57
– Reihe, 76
– Schwingungen, 163, 192

Hauptargument, 192
Hauptdeterminante, 499
Hauptsatz der Differential- und Integralrechnung, 302
Hauptwerte der Grundreihe, 60
Heaviside-Funktion, 49
Hintereinanderausführung von Funktionen, 53
Hochspannungsleitung, 180
Höhenlinien, 457
Höhenlinienbild einer Funktion, 458
Homogenität, 209, 305
Horner-Schema

– doppeltes, 257
– großes, 128
– kleines, 126

Hülle
– abgschlossene, 450

Hyperbel
– gleichseitige, 134

Hyperbelfunktionen, 178
– Ableitung der, 229
– Ableitung der Umkehrfunktionen der, 229

I
ideales

– Gas, 269
– Wachstum, 277

Identitätssatz für Potenzreihen, 381
imaginäre

– Achse, 181
– Einheit, 181

implizite Funktion, 492
Impulssatz, 279
Index

– einer Funktionenfolge, 365
– eines Folgenelementes, 56

Induktion
– vollständige, 17

Induktionsanfang, 18
Induktionsschluß, 18
Induktivität, 270, 356
Infimum, 65

– einer Funktion, 97
injektive Funktion, 51
innere Ableitung, 213
innerer Punkt

– einer Menge M ∈ Rn , 449
– eines Definitionsbereiches, 260

Inneres
– einer Menge M ∈ Rn , 449

Integral
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– bestimmtes, 305, 311
– Riemannsches von f auf Q, 549
– unbestimmtes, 304
– uneigentliches, 333, 334
– von f auf [a, b], 290, 291
– von f auf Q, 519
– von f über dem Bereich B, 508

Integralkriterium für Reihen, 343
Integrallogarithmus Li, 346
Integration

– analytische, 316
– einer komplexwertigen Funktion f (λ) =

u(λ)+ jv(λ), 353
– elementare, 316
– numerische, 297
– partielle, 315
– rationaler Funktionen, 320

Integrationsregeln, 299
Interpolation, 384
Interpolationsbedingung, 409
Interpolationsproblem, 389
Intervall, 12

– abgeschlossenes, 12
– beschränktes, 12
– beschränktes und abgeschlossenes, 97
– halboffenes, 12
– kompaktes, 97
– offenes, 12
– unbeschränktes, 12

Intervallhalbierungsverfahren, 88, 92
Intervallschachtelung, 10
Inverse, 453
Invertierungssatz, 497
irrationale Zahl, 4, 167

J
Jacobi-Matrix, 469
Jahreszins, 78

K
kanonische Einbettung, 457
Kapazität, 270, 356
Kegelschnitte, 143
Kenn-Kreisfrequenz, 271
Kettenkarussell, 88, 280
Kettenregel, 212, 213, 229, 306, 474
Kirchhoffsche Regeln, 357
klassische Harmonik, 57
kleine Halbachse der Ellipse, 142
kleines Horner-Schema, 126
kleinste obere Schranke, 65
Knotenpolynom, 404
Koeffizienten

– eines Polynoms, 113
Körperaxiome

– der komplexen Zahlen, 183

– der reellen Zahlen, 5
Kombinationen

– mit Wiederholungen, 39
– ohne Wiederholungen, 37
– zur k-ten Klasse mit Wiederholungen, 39
– zur k-ten Klasse ohne Wiederholungen, 37

Kommutativgesetz
– der Addition komplexer Zahlen, 184
– der Addition reeller Zahlen, 5
– der Multiplikation komplexer Zahlen, 184
– der Multiplikation reeller Zahlen, 5

kompakte
– Intervalle, 97
– Menge M ⊂ Rn , 450
– meßbare Menge, 520
– Zahlenmenge, 102

komplexe
– Exponentialfunktion, 433
– quadratische Gleichung, 187
– Zahl, 182
– Zahlenebene, 182

komplexer Scheinwiderstand, 357
Komponentenfunktion, 455
Komposition, siehe Verkettung von Funktionen
Kondensatorentladung, 279
konjugiert komplexe Zahl, 184
konkav, 250
konstante Flächendichte, 530
Kontostand, 19
Kontraktion, 71
konvergente

– Folge, 61
– Reihe, 74

Konvergenz, 55
– einer Zahlenfolge, 60
– gleichmäßige, 366, 373
– punktweise, 373
– quadratische, 254

Konvergenzkriterium
– Cauchysches, 68
– Cauchysches für gleichmäßig konvergente Reihen

von Funktionen, 373
– Cauchysches für gleichmäßige Konvergenz, 368
– Cauchysches für uneigentliche Integrale, 336
– für Taylorreihen, 245

Konvergenzradius einer Potenzreihe, 376
konvex, 250
Koordinaten

– elliptische, 541, 545
– krummlinige, 552
– parabolische, 541
– rotationselliptische, 554
– rotationsparabolische, 554

Koordinatenfolge, 447
Koordinatennetz, 461
Koordinatensystem, 13
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Kraft, 119, 208
– Darstellung als Pfeil, 445

Kreisbogen, 145
Kreisfläche, 312
Kreisfrequenz, 163, 270, 434
Kreisscheibe, 14, 448
Kriechvorgang, 278
kritische Temperatur, 268
kritischer Druck, 268
kritisches Volumen, 268
Krümmungsbedingung, 409
krummlinige Koordinaten, 552
kubische Splines, 408
Kugel, 448

– abgeschlossene, 449
– erzeugende Funktion einer, 562
– in zähes Medium eindringende, 279
– offene, 449

Kugelkoordinaten, 554, 555
Kugelumgebung von a im Rn , 449
Kurve, 141

– glatte, 532
– Länge einer, 532

Kurvenschwerpunkt, 533

L
Lagrangesche

– Basispolynome, 394
– Interpolationsformel, 393, 395
– Multiplikatoren, 502
– Multiplikatorenmethode, 503
– Multiplikatorenmethode(zweidimensionaler Fall),

503
– Restgliedformel, 237

Landau-Symbol, 393
leere Menge, 15
Lehrsatz des Pythagoras, 14
Leibniz-Kriterium für alternierende Reihen, 80
Leibnizsche Reihe, 247
Leistung

– momentane, 350
Leistungsfaktor, 351
Lichtbrechung, 283
Lichtreflexion, 283
Limes, 60
Limes-superior, 376
lineare

– Splines, 407
– Transformation, 543

Linearfaktor, 131
Linearität, 474
Linkskrümmung, 250
logarithmische Ableitung, 227
Logarithmus

– dualis, 177
– natürlicher, 174

– zur Basis a, 176
– zur Basis 10, 178

lokales
– Maximum, 259, 497
– Minimum, 260, 497

M
Majorante, 374
Majorantenkriterium, 84

– für gleichmäßig absolute Konvergenz von
Funktionenreihen, 374

– für uneigentliche Integrale, 340
Massenmittelpunkt, 529
mathematisches Pendel, 479
Matrix

– inverse, 453
– Multiplikation mit einer reellen Zahl, 452
– quadratische, 453
– reelle, 451
– reguläre, 454
– singuläre, 454
– Spaltenzahl der, 451
– transponierte, 453
– Zeilenzahl der, 451

Maximalstelle
– absolute, 260
– echte, 498, 500
– echte lokale, 260, 497
– einer Funktion, 98
– globale, 260
– lokale, 260, 497
– von f unter der Nebenbedingung h(x) = 0, 501

Maximum
– absolutes, 260
– echtes lokales, 260
– einer Funktion, 97
– globales, 260
– lokales, 259, 497

Mehrfachintegral, 551
Menge, 11

– abgeschlossene, 449
– beschränkte, 450
– endliche, 55
– Häufungspunkt einer, 463
– Inhalt einer, 550
– Jordan-meßbare, 520, 550
– kompakte, 450
– leere, 15
– meßbare, 520
– offene, 449
– Vereinigung, 15
– Volumen einer, 550
– wegweise zusammenhängende kompakte, 526

meßbarer Normalbereich, 521
Methode

– von Ostrogradski-Hermite, 325
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Minimalstelle
– absolute, 260
– echte, 498, 500
– echte lokale, 260, 497
– einer Funktion, 98
– globale, 260
– lokale, 260, 497

Minimum
– absolutes, 260
– echtes lokales, 260
– einer Funktion, 98
– globales, 260
– lokales, 260, 497

Minorantenkriterium
– für uneigentliche Integrale, 340

Mittelwertsatz
– der Differentialrechnung, 219
– der Integralrechnung, 300
– für Bereichsintegrale, 526
– im Rn , 486
– verallgemeinerter der Integralrechnung, 300

Mohrscher Spannungskreis, 140
momentane Leistung, 350
Momentangeschwindigkeit, 198
monoton

– steigende Funktion, 49
monotone k-Tupel, 39
Monotoniekriterium, 339

– für Folgen, 68
– für Reihen, 78

Multiplikation
– komplexer Zahlen, 183
– zweier Matrizen, 452

N
n-Tupel, 16, 439
n-te Wurzel, 21
Nabla-Operator ∇, 484
Näherungsfunktionen, 114
natürliche Zahlen, 1
natürlicher Spline, 409
n-dimensionaler Quader, 547
negativ, 9
negative Zahlen, 1
Netztafel, 461
Neville-Schema, 397, 398
Newtonfolge, 254, 488
Newtonsche

– Interpolationsformel, 400, 402
– pulcherrima (3/8-Regel), 331

Newtonsches
– erstes Axiom der Mechanik, 119
– Grundgesetz der Mechanik, 208, 273, 279
– Verfahren, 130, 195, 253
– Verfahren (im Rn ), 488
– Verfahren (modifiziertes), 490

Niveaulinien, 457
Normalbereich, 511, 551

– Flächeninhalt des, 525
– meßbarer, 521

Normalparabel, 119
Nullfolge, 57, 60
Nullmenge, 521, 550
Nullphasenwinkel, 356
Nullpolynom, 113
Nullpunktverschiebung, 129
Nullstelle

– einer gebrochenen rationalen Funktion, 133
– einer reellwertigen Funktion, 87
– eines Polynoms, 114
– mehrfache, 195, 324

Nullstellensatz, 92

O
obere Halbkreislinie, 145
obere Schranke, 65

– einer Funktion, 97
Oberintegral

– von f , 289
– von f auf Q, 519, 549
– von f auf [a, b], 291

Obermenge, 15
Obersumme

– von f bzgl. Z , 289, 291, 518, 549
offene Menge, 449
offenes Intervall, 12
Ohmscher Widerstand, 356
Ohmsches Gesetz, 356
Ordnungszahl, 1
orthogonale Koordinaten, 540
Orthogonalitätsrelationen, 417

– von sin und cos, 313
Ortskurve, 352, 360
Oszillationsstellen, 111

P
p-Tupel, 29
Paar, 16
Paarmenge, 16
Parabel, 119
Parabelschablone, 122
parabolische Zylinderkoordinaten, 554, 556
Partialbruchzerlegung, 320
Partialsumme, 373
Partialsummen einer Reihe, 74
partielle Integration, 315
Pascalsches Dreieck, 27
passives Bauelement, 358
Periode

– des Dezimalbruchs, 2
periodische Funktionen, 388
Permanenzprinzip, 354



600 Stichwortverzeichnis

Permutation, 31
– gerade, 556
– mit Identifikationen, 32, 41
– ungerade, 556

Pfeil, 442
– Aufpunkt des, 442
– Spitze des, 442

Phase, 163
Phasenverschiebung

– rechtwinklige, 165
– zwischen Strom und Spannung, 349, 356

Phasenwinkel, 163
Plancksche Strahlungsformel, 234
Plancksches Strahlungsgesetz, 285
Planetengetriebe, 142
Pol, 107, 265, 463

– einer gebrochenen rationalen Funktion, 133
polares Flächenmoment, 533

– einer Ellipsenfläche bzgl. des Mittelpunktes, 534
– einer Kreisscheibe bzgl. des Mittelpunktes, 535
– eines ringförmigen Rohrquerschnittes bzgl. des

Mittelpunktes, 535
Polarkoordinaten, 536, 540

– einer komplexen Zahl, 192
Polarkoordinatendarstellung, 192
Polwechsel, 110
Polynom, 89

– als Asymptote einer rationalen Funktion, 136
– Division durch Linearfaktor, 131
– n-ten Grades, 113
– quadratisches, 113, 119

Polynomialkoeffizient, 29
polynomische Formel, 29
Polynomraum, 389
positiv, 9
positive Definitheit, 442
Potenz, 8
Potenzfunktion, 96, 140, 202

– allgemeine, 226
– mit beliebigem α ∈ R, 175

Potenzreihe, 375
– gliedweises Differenzieren einer, 380
– gliedweises Integrieren einer, 380
– Identitätssatz für, 381
– Konvergenzradius einer, 376

Produkt
– cartesisches, 16
– reeller Zahlen, 4
– von Reihen, 83

Produktintegration, 315
Produktregel, 209
Punkt

– der Ebene, 13
– stationärer, 503

Punkt-Richtungsform einer Geraden, 115
Punktmengen der Ebene, 13

punktweise konvergente Reihe von Funktionen, 373
Pyramide

– allgemeine, 559
– quadratische, 565

Pythagoras, 185
– Lehrsatz des, 14

Q
Quader, 522

– n-dimensionaler, 547
quadratische

– Ergänzung, 121, 187
– Mittelwerte, 350
– Pyramide, 565

Querkraft, 575
Quotient, 5
Quotientenkriterium, 85
Quotientenregel, 209

R
radioaktiver Zerfall, 278
Raketenantrieb, 279
Rand

– einer Menge M ∈ Rn , 449
Randpunkt

– einer Menge M ∈ Rn , 449
– eines Definitionsbereiches, 260

rationale
– Funktion, 95, 133
– Zahl, 1

Rauminhalt, 507, 550
Rechenregeln

– der Bruchrechnung, 5, 184
– der Exponentialfunktion, 169
– für konjugiert komplexe Zahlen, 185
– für konvergente Folgen, 63
– für Matrizen, 452
– für stetige Funktionen, 94
– für Vektoren im Rn , 442

Rechteck, 13
Rechteckfunktion, 420
Rechtskrümmung, 250
reelle Zahl, 4
Regel von de l’Hospital

– allgemeiner Fall, 231
– elementarer Fall, 230

Reihe
– absolut konvergente, 81
– alternierende, 80
– bedingt konvergente, 82
– binomische, 242, 243
– divergente, 75
– geometrische, 75
– gleichmäßig absolut konvergente, 373
– gliedweise differenzierbar, 375
– gliedweise integrierbar, 375
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– Grenzwert einer, 75
– harmonische, 76
– konvergente, 74
– Leibniz-Kriterium für eine alternierende, 80
– Leibnizsche, 247
– Partialsummen einer, 74
– Summe einer, 75
– trigonometrische, 416
– unendliche, 74
– von Funktionen, 373

Reihen
– Cauchy-Kriterium für, 79
– Monotoniekriterium für, 78
– Produkte von, 83
– von Vektoren, 448

Rekursionsformel, 318
Rente, 78
Resonanzkurve eines elektrischen Schwingkreises, 270
Restglied, 235
Restgliedabschätzung, 486
Restgliedformel

– Cauchysche, 237
– Lagrangesche, 237
– Schlömilchsche, 236

Restmenge, 15
Reziprokenregel, 210
Richtungsableitung, 477
Riemann-integrierbar, 291
Riemannsche Summen, 294, 528, 552
Riemannsches Integral

– im Rn , 548
– von f auf Q, 549

Rohr, 60
Romberg-Verfahren, 332
rotationselliptische Koordinaten, 554, 557

– abegeplattete, 557
– gestreckte, 557

Rotationskörper, 561
– erzeugende Fläche eines, 563
– erzeugende Funktion des, 561
– erzeugende Kurve eines, 563
– Flächeninhalt der Mantelfläche eines, 562
– Mantelfläche des, 561
– Volumen des, 562

rotationsparabolische Koordinaten, 554, 557
Runge-Funktion, 405

S
Sägezahnkurve, 109, 419
Sandwich-Kriterium, 64
Sattelfläche, 457
Satz

– Steinerscher, 570
– über Bereichsintegrale als Doppelintegrale, 522
– über Bereichsintegrale als Mehrfachintegrale, 550
– über implizite Funktionen (allgemeiner Fall), 494

– über implizite Funktionen (zweidimensionaler Fall),
492

– über Produktintegration, 315
– über Riemannsche Summen, 528
– vom Maximum, 98
– von Bolzano-Weierstraß, 66
– von Bolzano-Weierstraß im Rn , 447
– von Cauchy-Hadamard, 376
– von Cavalieri, 559
– von Fubini für Riemannintegrale, 522
– von Rolle, 219
– zur Berechnung von Bereichsintegralen zweier

Variabler, 524
– zur Komposition stetiger Funktionen, 96
– zur Stetigkeit von Umkehrfunktionen, 95

Schaubild, 46
Scheinleitwert, 188

– komplexer, 358
Scheinwiderstand

– komplexer, 357
Scheitel einer Parabel, 119
Schienenkreisbogen, 161
Schlömilchs Restgliedformel, 236
Schlüssel, 42
Schnittmenge, 15
schönste Gleichung der Welt, 189
Schwarzsche Ungleichung, 445
Schwebung, 166
Schwerpunkt, 530

– einer ebenen Platte von der Form eines Kreissektors,
543

– einer Kurve, 533
– eines Drahtes, 532
– eines Systems von Massenpunkten, 529

Schwingkreis
– elektrischer, 270

Schwingung, 433
– eines Federpendels (mit Reibung), 434
– gedämpfte erzwungene, 434
– harmonische, 163, 192
– phasenverschobene, 433

Schwingungsdauer, 163, 350
– eines mathematischen Pendels, 479

Simpsonformel, 329
Sinus, 152
Sinus hyperbolicus, 179
Snelliussches Brechungsgesetz, 284
Spaltenmatrix, 451, 470
Spaltenvektor, 439

– Einträge des, 440
– Komponenten des, 440
– Koordinaten des, 440
– Multiplikation mit einem Skalar, 441
– negatives Element zu einem, 441

Spaltenvektoren
– Addition zweier, 441
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– inneres Produkt zweier, 441
– Subtraktion zweier, 441

Spannungszeiger, 355
Spline, 406

– kubischer, 408
– linearer, 407
– natürlicher, 409
– vollständiger, 409

Spline-Funktionen, 384
Splineinterpolation, 406
Spule, 285
stabiles Verfahren, 93
Stammfunktion, 301
stationärer Punkt, 503
Staudruck an einem Flugzeug, 276
Steigungsbedingung, 409
Steinerscher Satz, 570
stetige

– Abänderung, 105
– Erweiterung, 103, 105
– Erweiterung von f , 104

Stetigkeit, 88, 89, 169
– gleichmäßige, 100, 462

Stichprobe
– mit Zurücklegen, 41
– ohne Zurücklegen, 41
– ungeordnete, 40, 41
– von k Kugeln, 40

Streckenzug, 146
Strömungswiderstand eines Körpers, 119
Stromzeiger, 355
Strophoide, 218
Substitutionsformel, 307

– für bestimmte Integrale, 311
Substitutionsmethode, 306
Subtraktion

– komplexer Zahlen, 183
– reeller Zahlen, 5
– von Matrizen, 451

Summe
– einer Reihe, 75
– einer Reihe von Funktionen, 373
– geometrische, 24
– reeller Zahlen, 4
– Riemannsche, 528

Supremum, 65
– einer Funktion, 97

Supremumsnorm, 366
surjektive Funktion, 51
Symmetrie, 266
Symmetrieachse einer Parabel, 119

T
T-Verbindung aus Zylindern, 560
Tangens, 156
Tangens hyperbolicus, 179

Tangente
– an f in x0, 200

Tangentenformel, 297
Tangentialabbildung, 472, 487
Tangentialebene, 471
Taylorformel

– für (1+ x)n um 0, 243
– für ex , 238
– für die Logarithmus-Funktion, 241
– für Sinus- und Cosinus, 239
– im Rn , 486
– mit Restglied, 236
– von f entwickelt um x0, 237

Taylorreihe
– von ex um 0, 239

Teilfolge, 65
Teilmenge, 14

– echte, 15
Teilungspunkte einer Zerlegung, 146, 290
Torsionssteifigkeit eines Rohres, 30
totales Differential von f in x0, 479
Trägheitsmoment, 567

– bezüglich der x-Achse, 567
– bzgl. der Mittelachse, 569
– eines elliptischen Zylinders, 545
– eines Rotationskörpers bzgl. der Rotationsachse,

569
– eines Zylinders bezüglich einer Querachse, 567
– von Säulen, 568

Transformation
– lineare, 543
– von G∗ auf G, 538

Transformationsformel, 541, 553
Transformator

– Wirkungsgrad eines, 283
transponierte Matrix, 453
Trapezformel, 329
trigonometrische Reihe, 416
trigonometrisches Funktionensystem, 415
Tripel, 440
Turm, 42

U
Umfang

– des Einheitskreises, 150
Umgebung

– eines Punktes im Rn , 449
umkehrbare Funktion, 51
Umkehrfunktion, 51, 52
unabhängige Variable, 44
unbeschränktes Intervall, 12
unecht gebrochene Funktion, 133
uneigentliches Integral

– absolut konvergentes, 339
unendliche

– Folge reeller Zahlen, 55
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– Reihe, 74
Unendlichkeitsstelle

– einer gebrochenen rationalen Funktion, 133
ungeordnete Stichprobe, 41
ungerade

– Funktion, 264, 266
– Permutation, 556

ungestörtes stetiges Wachstum, 277
Ungleichung

– Bernoullische, 21
– Besselsche, 429
– des geometrischen und arithmetischen Mittels, 252
– Schwarzsche, 445

Unstetigkeitsstellen, 110
untere Halbkreislinie, 145
untere Schranke, 65
Unterintegral

– von f , 289
– von f auf Q, 519, 549
– von f auf [a, b], 291

Untersumme
– von f bzgl. Z , 289, 291, 518, 549

Urbildbereich, 44, 54
Urbildpunkt, 44, 54

V
van der Waalssche Zustandsgleichung

– für reale Gase, 267, 460
Vandermonde-Matrix, 393
Variable

– abhängige, 44
– unabhängige, 44

Variationen
– mit Wiederholungen, 36
– ohne Wiederholungen, 34
– zur k-ten Klasse mit Wiederholungen, 36
– zur k-ten Klasse ohne Wiederholungen, 35

Vektor, 439
– Betrag eines, 444
– euklidische Norm eines, 444
– Länge eines, 444

Vektoren
– senkrecht aufeinander stehende, 445

Vektorraum
– reeller euklidischer n-dimensionalar, 442

verallgemeinerter Mittelwertsatz, 220
Vereinigung zweier Mengen, 15
Verkettung von Funktionen, 53
Vertauschung

– der Integrationsreihenfolge, 522
– partieller Ableitungen, 484

Vertauschungsformel, 510
Vietascher Wurzelsatz, 125
vollständige Induktion, 17, 18
vollständiger Spline, 409
vollständiges Differential von f in x0, 479

Vollständigkeit
– der reellen Zahlen, 10

Volumen
– einer Menge, 550
– eines Ellipsoides, 513
– eines Rotationsparaboloids der Länge h, 562
– eines Würfels, 275

Vorschrift, siehe Funktion

W
Wachstum

– ideales, 277
– ungestörtes, 277

Wachstumsvorgang, 277
Wechselstromwiderstand, 461
Weg, 526
Weierstraß’scher Approximationssatz, 384, 388

– für (algebraische) Polynome, 384
– für periodische Funktionen, 388

Wellenlänge, 57
Wendepunkt, 265, 271
Wertebereich, 44, 54
Widerstand

– induktiver, 358
– kapazitiver, 358
– Ohmscher, 270, 356

Widerstandsbeiwert, 119
Wiensches Verschiebungsgesetz, 285
Wirkleistung, 350, 351
Wirkungsgrad

– eines Transformators, 283
Wirkwiderstand, 357
Würfelvolumen, 275
Wurf

– mit Lustreibung, 274
– ohne Reibung, 273
– senkrechter, 122

Wurzel
– komplexe, 186
– n-te aus einer reellen Zahl, 21

Wurzelfunktionen, 96
Wurzelkriterium, 86

Z
Zahl

– Bernoullische, 247
– imaginäre, 181, 182
– irrationale, 4, 167
– komplexe, 182
– konjugiert komplexe, 184
– natürliche, 1
– negative, 1
– rationale, 1
– reelle, 4

Zahlengerade, 4
Zahlenpaar, 440
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Zehnerlogarithmus, 178
Zeigerdiagramm, 165, 193
Zeilenmatrix, 451, 470
Zeilenvektor, 439
Zeitzeiger, 355
Zellwachstum, 277
Zentrifugalkraft, 273
Zentrifugalmoment, 533
Zentripetalbeschleunigung, 273
Zerfall

– radioaktiver, 278
Zerlegung

– äquidistante, 296, 328

– allgemeine, 527
– einer Funktion in Linearfaktoren, 195
– eines Intervalls [a, b], 288
– eines Quaders Q, 548
– eines Rechtecks, 517
– Feinheit der, 288, 290, 518, 527
– von [a, b], 290

Zwei-Punkte-Form einer Geraden, 116
Zweiter Hauptsatz, 303
Zwischenwertsatz, 93
Zylinder

– Trägheitsmoment bezüglich einer Querachse, 567
Zylinderkoordinaten, 554


