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Yorwort

Theorie ohne Praxis ist leer,
Praxis ohne Theorie ist blind.

Die vorliegende »Hohere Mathematik fiir Ingenieure« umfafit den Inhalt einer Vorlesungsrei-
he, die sich iiber die ersten vier bis fiinf Semester erstreckt. Das Werk wendet sich hauptsichlich
an Studenten der Ingenieurwissenschaften, dariiber hinaus aber allgemein an alle Studierenden
technischer und physikalischer Richtungen, sowie an Studenten der Angewandten Mathematik
(Technomathematik, Mathematikingenieur, mathematische Physik).

Lernende und Lehrende finden mehr in diesen Binden, als in einem Vorlesungszyklus be-
handelt werden kann. Die Biicher sind so gedacht, dal der Dozent — dem Aufbau der Kapitel
folgend — einen »roten Faden« auswihlt, der dem Studierenden den Weg in die Mathematik
bahnt und ihm die Stoffiille strukturiert. Der Lehrende wird dabei seinen eigenen Vorstellungen
folgen, etwa in der Auswahl der Beispiele, dem Weglassen gewisser »Seitenwege« , oder dem
Betonen von Sachverhalten, die fiir die Fachrichtung der Horer seiner Lehrveranstaltung wichtig
sind.

Dem Studierenden sollen die Bénde zur Nacharbeit und Vertiefung des Vorlesungsstoffes die-
nen, wie auch zum Selbststudium und zur Fortbildung. Die vielen Anwendungsbeispiele sollen
ihm den Inhalt dabei lebendig machen, und zusitzliche Ausfiithrungen sein Kernwissen abrunden.
Spiter lassen sich die Biicher immer wieder als Nachschlagewerk verwenden. Insbesondere sind
sie zur Examensvorbereitung niitzlich, wie auch im Berufsleben als greifbares »Hintergrundwis-
sen«.

Die Binde sind inhaltlich folgendermaflen gegliedert: Band I enthilt die Differential- und
Integralrechnung einer und mehrerer Verdnderlicher, und damit den Stoff der Vorlesungen Ana-
lysis I und II. Es wurde dabei Wert auf eine sorgfiltige Grundlegung, verbunden mit praktischen
Anwendungen, gelegt. Band II hat die Lineare Algebra zum Thema, wihrend Band III die Ge-
wohnlichen Differentialgleichungen enthélt, sowie Distributionen und Integraltransformationen.
Dabei wurde eine eher einfache, wenn auch genaue Darstellung gewihlt, damit der Ingenieur
schnell zu Anwendungen vorsto3en kann. Im Band IV folgen dann die Vektoranalysis und Funk-
tionentheorie (komplexe Analysis) und in Band V Funktionalanalysis und partielle Differential-
gleichungen.

Manche Mathematikkurse fiir Ingenieure beginnen mit Analysis (z.B. bei Maschinenbauern),
andere mit Linearer Algebra (etwa bei Elektrotechnikern). Aus diesem Grunde wurden die Bénde
Iund IT unabhéngig voneinander gestaltet, so dal man den Kurs mit jedem dieser Binde beginnen
kann.

An Vorkenntnissen wird wenig vorausgesetzt. Schulkenntnisse in elementarer Algebra (Bruch-
rechnung, Klammerausdriicke) und Geometrie (einfache ebene und rdumliche Figuren, Koordi-
natensystem) geniigen. Grundsitzlich beginnt der vorliegende Lehrgang ganz »von vorne«, d.h.
mit der Erlduterung der Zahlen, und baut darauf systematisch auf. Auf diese Weise wird auch
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das meiste aus der Schulmathematik in geraffter Form wiederholt. Der Leser kann daher, je nach
Vorkenntnis, die Inhalte erstmalig lernen oder sein Wissen in das vorliegende Geriist einordnen.

Durch viele Beispiele aus Technik und Naturwissenschaft wird der Anwendungsbezug beson-
ders herausgearbeitet. Dabei liegt weitgehend das folgende Dreischrittschema zu Grunde:

Einfithrungsbeispiel — Theorie — weitere Anwendungen

Hat man ein Einfithrungsbeispiel zur Motivation erldutert und dann eine Losungstheorie dazu
entwickelt, so stellt sich meistens heraus (sonst wire der Name »Theorie« fehl am Platze), daf3
die theoretischen Hilfsmittel auch zur Losung weiterer Probleme, ja, auch manchmal ganzer
Problemklassen, taugen. Diese brauchen mit dem Ausgangsproblem scheinbar tiberhaupt nicht
verwandt zu sein (z.B. die Flacheninhaltsberechnung zur Motivation der Integralrechnung gegen-
tiber der Berechnung der Leistung einer Dampfmaschine, der maximalen Hohe eines Weltraum-
satelliten, dem Triagheitsmoment eines Rades oder der Wahrscheinlichkeit fiir die Lebensdauer
eines Bauteiles. Alle genannten Probleme lassen sich mit Mitteln der Integralrechnung 16sen).

Natiirlich wird das obige Dreischrittschema nicht tiber das Knie gebrochen. Denn oft wird
auch mathematisches Instrumentarium fiir spitere Anwendungen oder fiir den weiteren Ausbau
der Mathematik bereitgestellt, wobei ein zu frithes Anheften an Anwendungen nicht moglich ist
oder den Blick fiir die Gliederung der Systematik verschleiert. Denn obwohl die systematische
Einfithrung der Mathematik nicht immer der historischen Entwicklung entspricht und ihre Ab-
straktion sich von der Praxis zu entfernen scheint, so hat sie doch unbestreitbare Vorteile: Sie
verkiirzt die Darstellung, da man Verwandtes unter einheitlichen Gesichtspunkten zusammenfas-
sen kann, und bietet eine gute Ubersicht, in der man sich beim Nachschlagen besser zurecht
findet. Aus diesem Grunde wurde hier ein Mittelweg zwischen Abstraktion und Anwendung ein-
geschlagen: Systematisches Vorgehen, gekoppelt mit praktischen Beispielen zur Motivation und
Vertiefung. Dabei wird durch viele Figuren der abstrakte Inhalt anschaulich gemacht.

Noch ein Wort zur »mathematischen Sprache«! Sie besteht zum gréften Teil aus der Umgangs-
sprache, erginzt durch mathematisch klar definierte Fachausdriicke und Begriffe. Man kann sa-
gen, die eigentliche mathematische Fachsprache »schwimmt« auf der Umgangssprache. Denn
ohne die Umgangssprache wire jede Fachwissenschaft verloren und konnte sich nicht mitteilen.
Es hat sich ndmlich herausgestellt, daB ein konsequentes Benutzen der exakten fachlichen Aus-
drucksformen zu sprachlichen Ungetiimen fiihren kann, so daf} auf diese Weise die Sachverhalte
viel schwieriger zu begreifen sind, ja, mitunter gar unverstindlich zu werden drohen. Hier helfen
»unscharfe« umgangssprachliche Formulierungen oft weiter und steigern die Verstindlichkeit.
Fiir das Lehren gilt nimlich der scheinbar widerspriichliche Satz: »Es ist nicht wichtig, ob sich
der Lehrende stets richtig ausdriickt, sondern nur, dal im Kopf des Zuhorers das Richtige an-
kommt!«

Ein Beispiel soll dies stellvertretend erldutern, und zwar die Sprechweise bei Funktionen.
Fachlich korrekt (und pedantisch) heift es:
»Wir untersuchen die Funktion f : [—1,1] — R definiert durch f(x) = +/1 — x?2 fiir alle
x € [—1,1], auf Differenzierbarkeit.«

Eine einfachere Sprechweise (wenn auch etwas unschirfer) wire:
»Wir untersuchen die Funktion f(x) = +/1 — x? auf Differenzierbarkeit.«

Wir koénnen wohl davon ausgehen, dall der zweitgenannte Text vom Horer genauso verstan-
den wird wie der erste, vielleicht sogar besser (insbesondere in einem Kapitel iiber reellwertige
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Funktionen einer reellen Variablen). Aus diesem Grunde werden wir uns in diesen Bénden einer
einfachen Sprechweise bedienen, die der Umgangssprache nahe steht. Bei Funktionen nehmen
wir uns die Freiheit heraus, Gleichungen als Ausdriicke fiir Funktionen zu verwenden, oder den
Funktionswert f(x) einfach als Funktion zu bezeichnen. Hierbei wird vorausgesetzt, daf3 der
Leser (etwa nach Studium des Abschnittes 1.3 in Band I) mit dem abstrakten Funktionsbegriff
vertraut ist. Die geschilderte Sprechweise (»pars pro toto«) hilft, sprachliche Uberladung zu ver-
meiden. Insbesondere bei der Behandlung von Gewohnlichen Differentialgleichungen (Band III)
wiirde man ohne vereinfachte Ausdrucksweise zu sprachlichen Komplikationen kommen, die
das Verstindnis stark erschweren. Aus diesem Grunde bedienen wir uns, soweit wie moglich,
umgangssprachlicher Wendungen, ohne die Prizision aus den Augen zu verlieren.

Zum Schluf3 bedanken wir uns bei allen, die uns bei diesem Buchvorhaben unterstiitzt haben.
Frau Karin Lange, Herr Wolfgang Homburg und Herr Uwe Brunst haben bei Band I wertvolle
Korrekturarbeiten geleistet, wofiir ihnen vielmals gedankt sei. Frau Marlies Gottschalk, Frau
Erika Miinstedt und Frau Karin Wettig danken wir fiir ihre sorgfiltigen Schreibarbeiten wie
auch Herm Klaus Strube fiir die Herstellung vieler Zeichnungen in Band II und III. Dem Verlag
B.G. Teubner danken wir fiir seine geduldige und kooperative Zusammenarbeit in allen Phasen.

Kassel, Juli 1985 Die Verfasser

Vorwort zur siebten Auflage

Der Verfasser dieses Bandes, Herr Prof. Dr. Friedrich Wille, ist am 9. August 1992 verstorben.
Die vorliegende Neuauflage wurde von Herbert Haf und Andreas Meister bearbeitet.

Aufgrund ihrer Bedeutung fiir die Anwendungen haben wir diesen Band durch zwei Abschnit-
te erweitert:

Zum einen durch einen konstruktiven Zugang zum Satz von Weierstral} (s. Abschn. 5.3) und
zum anderen durch verschiedene praxisrelevante Algorithmen zur Berechnung von Interpolati-
onspolynomen bzw. Splines (s. Abschn. 5.4).

Wir sind der Uberzeugung, daB dieser Band dadurch an Aktualitit gewonnen hat.

Ferner weisen wir darauf hin, da8 unser Gesamtwerk aufgrund der Teilung von Band IV in
»Vektoranalysis« und »Funktionentheorie« nunmehr aus sechs Binden besteht.

Unser Dank gilt Herrn Dr.-Ing. Jorg Barner fiir die Erstellung der hervorragenden IATEX-
Vorlage und fiir seine sorgfiltige Mitarbeit bei den Korrekturen. Nicht zuletzt danken wir dem
Verlag B.G. Teubner fiir seine stindige Gesprichsbereitschaft und Riicksichtnahme auf Termin-
probleme und Gestaltungswiinsche.

Kassel, Januar 2006 Herbert Haf, Andreas Meister

Vorwort zur achten Auflage

Nach einigen inhaltlichen Erweiterungen der siebten Auflage enthélt die vorliegende achte Auf-
lage nur kleinere Verdnderungen, u.a. wurden Druckfehler beseitigt.

Wir freuen uns dariiber, daf eine starke Nachfrage diese Nachauflage so rasch erforderlich
gemacht hat und hoffen auf eine weiterhin freundliche Aufnahme dieses Bandes durch den Leser.

Kassel, Februar 2008 Herbert Haf, Andreas Meister
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1 Grundlagen

Zahlen, Funktionen und Konvergenz sind die Grundbegriffe der Analysis. In diesem ersten Ab-
schnitt werden sie erklédrt und ihre wichtigsten Eigenschaften erldutert, damit fiir alles weitere
ein sicheres Fundament gelegt ist. Dabei beginnen wir von ganz vorne, ndmlich mit den Zahlen
1,2,3,....

1.1 Reelle Zahlen

1.1.1 Die Zahlengerade
Mathematik fangt mit dem Zihlen an:
1,2,3,4,5,..., usw.

Wir nennen diese Zahlen die natiirlichen Zahlen. Sie entstehen, mit 1 beginnend, durch fortge-
setztes Erhohen um 1.

Der Ausdruck »natiirliche Zahlen« ist sicherlich gut gewihlt, denn Kinder beginnen so zu zéh-
len und in allen Kulturen beginnt mathematisches Denken mit diesen Zahlen. Die Anzahlen von
Apfeln, Personen, Schiffen, Sternen, usw. lassen sich damit angeben, aber auch Telefonnummern,
Personalnummern, Rechnungsnummern (leider, leider) sowie Autonummern, Hausnummern und
Datumsangaben) wobei der » Anzahlaspekt« eher in den Hintergrund tritt, und wir von Ordnungs-
zahlen sprechen. Auch auf Skalen finden die natiirlichen Zahlen Verwendung, z.B. auf Linealen,
Uhren und Thermometern.

Halt! Bei Thermometern kommt offenbar etwas neues hinzu, und zwar werden negative Zah-
len —1, =2, =3, ... benutzt, sowie die Null: 0. Diese Zahlen — zusammen mit den natiirlichen
Zahlen — nennt man ganze Zahlen. Eine ganze Zahl ist also eine natiirliche Zahl oder das Nega-
tive einer natiirlichen Zahl oder gleich Null.

Metermal}, Uhr und Thermometer zeigen schon, dal wir auch Zwischenwerte brauchen, daf3
wir von halben Metern sprechen wollen, von einer %-Stunde oder von 38,3° Fieber, wenn wir
uns eine Grippe genommen haben.

38,3 konnen wir auch als 38 + % oder % schreiben.

Es dreht sich hier um Zahlen der Form

a

b

wobei a, b beliebige ganze Zahlen sind, und wobei b # 0 ist. Diese Zahlen 7 heilen Briiche
oder rationale Zahlen. Ist b = 1, so ergeben sich dabei die ganzen Zahlen. Die ganzen Zahlen
sind also spezielle rationale Zahlen.

Alle rationalen Zahlen lassen sich als »Dezimalzahlen«, auch »Dezimalbriiche« genannt,
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schreiben, z.B.

3 6
-_—= — = 0’6 N —3765 == 37,65 .
5 10 100

Wir gehen davon aus, dafl der Leser mit Dezimalbriichen schon bekannt ist (wie kdnnte er sonst
Superbenzin zu 1,41 € pro Liter kaufen). Es soll daher nur einiges in Erinnerung gerufen werden.

Beginnen wir mit Beispielen fiir Dezimalbriiche:

6,36 —378,604325 ;
0,0062 : 3,61616161 ... : (1.1)
1,414213562... (=+2).

Dezimalbriiche haben allgemein die Form
m,ajaxasds . . . ,

wobei m eine ganze Zahl ist und die a1, az, as, a4, ... Ziffern aus dem Bereich O, 1, 2, 3, 4, 5,
6, 7, 8, 9 sind. Die Punkte rechts von a4 deuten an, daf} es mit a5 weitergeht, dann ag usw., kurz,
daB nach jeder dieser Ziffern stets noch eine weitere folgt.

Sind von einer Ziffer a,, an alle folgenden Ziffern Null: a,+1 = 0, ap42 = 0, ... usw,,
so brechen wir die Ziffernreihenfolge bei a, ab (z.B. 6,36 = 6,36000...) und nennen diese
Dezimalbriiche abbrechende Dezimalbriiche. Hierbei gilt z.B.

6,36 = 6 + 3 + 6
U 10 100
allgemein:
ay a ay
iy =+ D
A1z "t et T e

Ein weiterer Typ ist z.B. durch
a =3,52761616161 . ..

gegeben, wobei die Ziffern 61 sich fortlaufend wiederholen. Wir nennen 61 die Periode des
Dezimalbruches und schreiben den Dezimalbruch auch

3,52761.
Die Periode wird einfach iiberstrichen. Allgemein haben periodische Dezimalbriiche die Form
m,ajay...a,b1by ... by,

wobei die Ziffern b1 b; . . . by in dieser Reihenfolge fortlaufend aneinandergefiigt werden. by . . . by
heif3t die Periode der Zahl und k ihre Periodenlédnge. Es gilt:
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Jede rationale Zahl kann als abbrechender oder periodischer Dezimalbruch geschrieben wer-
den und umgekehrt.

Wir machen dies an Beispielen klar, und zwar erhalten wir

10
- = 1,42857142857 . ..

durch das bekannte Divisionsverfahren

10: 7 = 1,42857142857 ...
7

30
28

20
14

60

(Es muB sich hier eine Periode ergeben, da sich die Divisionsreste irgendwann einmal wiederho-
len miissen.)

Ist umgekehrt ein periodischer Dezimalbruch gegeben, z.B.
a =3,527616161 ...,
so bildet man
10%a = 352,761 6161 . ..
(die Hochzahl 2 in 10? ist gleich der Periodenlinge) und subtrahiert:

100a = 352,761 + 0,000616161 . ..
(=) a= 3,527+ 0,000616161

99a = 349,234

also

349,234 349234
= 349,234 h. = = .
99a = 349,234, d a 99 99000

Der Leser ist hiernach sicherlich imstande, beliebige periodische Dezimalbriiche in Briiche der
Form a/b zu verwandeln.

Man kann sich auch Dezimalzahlen denken, die nicht abbrechen und auch keine Periode ha-
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ben. Die Zahl
V2 =1,414213562 . ..

ist von diesem Typ. Zahlen dieser Art heiflen irrationale Zahlen (also »nichtrationale« Zahlen).
Alle besprochenen Zahlen, also alle rationalen und irrationalen, nennt man reelle Zahlen.

Zusammenfassung.
natiirliche Zahlen: 1,2,3,4,5, ...

ganze Zahlen: ..., —-3,-2,—1,0,1,2,3,...

rationale Zahlen: a/b (a, b ganze Zahlen, b # 0), das sind alle abbrechenden und alle
periodischen Dezimalbriiche

irrationale Zahlen: nichtperiodische, nichtabbrechende Dezimalbriiche

reelle Zahlen: alle Dezimalbriiche

Man kann die reellen Zahlen als Punkte einer Geraden veranschaulichen, der sogenannten Zah-
lengeraden (s. Fig. 1.1).

Fig. 1.1: Zahlengerade

Ubung 1.1:
Verwandle die folgenden periodischen Dezimalbriiche in Briiche der Form %, wobei n und m
natiirliche Zahlen sind: (a) 5,74; (b) 31,5271; (©) 0, 9.

1.1.2 Rechnen mit reellen Zahlen

Was wire mit den Zahlen schon anzufangen, wenn man nicht mit ihnen rechnen kénnte? Wir
wollen die Rechengesetze fiir reelle Zahlen zusammenstellen, getrennt in Grundgesetze und ab-
geleitete Regeln. Dabei gehen wir davon aus, daf3 der Leser das Rechnen mit den reellen Zahlen
schon bis zu einem gewissen Grade beherrscht. Wir werden daher die folgenden Grundgesetze
nicht ndher begriinden. Dies wiirde den Rahmen des Buches sprengen und ist einem konstrukti-
ven Aufbau des Zahlensystems vorbehalten, s. Oberschelp [43].

Grundgesetze der Addition und Multiplikation.

Je zwei reelle Zahlen a und b darf man addieren: a + b, und multiplizieren: a - bl.a+b
heiB3t die Summe und a - b das Produkt von a und b. Summe a + b und Produkt a - b sind reelle
Zahlen, die eindeutig durch a und b bestimmt sind.
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Fiir alle reellen Zahlen a, b, c gilt

(A1) at+b+c)=(a+b)+c

(A2) a+b=b+a

(A3) fiir die reelle Zahl 0 gilta + 0 = a

(A4) zu jeder reellen Zahl a gibt es genau eine reelle Zahl x
mit a + x = 0. Wir schreiben dafiir x = —a

(M1) a-(b-c)=(a-b)-c

M2) a-b=b-a

M3) fiir die reelle Zahl 1 gilta - 1 = a

M4) zu jeder reellen Zahl a # 0 gibt es genau eine reelle Zahl y

mit a - y = 1. Wir schreiben dafiir y = % odery =a~!

D1) a-b+c)=a-b+a-c
(D2) 0#£1

Bemerkung: Die Gesetze (A1) und (M1) heilen Assoziativgesetz der Addition bzw. Multiplika-
tion, (A2) und (M2) werden entsprechend Kommutativgesetze genannt, wihrend (D1) Distribu-
tivgesetz heiflit. Die Regeln (A1) bis (D2) zusammen heiflen auch die Korperaxiome der reellen
Zahlen.

Die Assoziativgesetze (A1) und (M1) bedeuten offenbar, dal es gleichgiiltig ist, wie man
dabei die Klammern setzt, Wir lassen sie daher auch weg und schreiben einfach a + b + ¢ =
(a + b) + ¢, abc = (ab)c. Entsprechend werden auch bei ldngeren Summen und Produkten die
Klammern weggelassen.

Die Subtraktion zweier reeller Zahlen a, b wird durch

a—b=a+ (—b)

erklart. Man nennt die so errechnete Zahl die Differenz von a und b.
Entsprechend fiihrt man die Division von a und b (b # 0) durch die Gleichung

a 1
Z—a-=
b b
ein. Man nennt diese Zahl den Quotienten von a und b.

Spiter werden wir noch weitere Grundgesetze fiir die reellen Zahlen kennenlernen, und zwar
die Grundgesetze der Ordnung (betreffend »groBer« und »kleiner«) sowie die sogenannte Voll-
stindigkeit und die Archimedische Eigenschaft.

Doch zunichst soll klar gemacht werden, da3 aus den notierten Grundgesetzen der Addition
und Multiplikation die iiblichen Regeln der Bruchrechnung folgen, wie z.B. »Briiche werden
multipliziert, indem man Zzhler mit Zihler und Nenner mit Nenner multipliziert«, oder »zwei

1 Der Multiplikationspunkt wird auch weggelassen: a - b = ab
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Briiche werden dividiert, indem man mit dem Kehrwert des einen Bruches multipliziert« usw.
Diese Regeln sind dem Leser sicher weitgehend bekannt, und er hat sie schon verwendet. Aus
diesem Grunde mag der eilige Leser die folgenden Herleitungen iiberschlagen.

Er kann sie spiter nachlesen, wenn er es einmal genauer wissen mochte, z.B. wenn er ge-
fragt wird, warum »Minus mal Minus Plus ergibt«. Dann kann er, nach kurzem Studium der
folgenden Seiten antworten: »Aus den Korperaxiomen der reellen Zahlen ergibt sich dies folgen-
dermalen. . . «, und er wird ein ehrfiirchtig staunendes Publikum hinterlassen.

Doch nun zur schrittweisen Herleitung der Bruchrechnungs-Regeln aus den Korperaxiomen!

Folgerung 1.1:

0 ist die einzige reelle Zahl, die a + 0 = a fiir alle reellen Zahlen a erfiillt, und 1 ist
die einzige reelle Zahl mit a - 1 = a fiir alle reellen a.

Beweis:

(i) Wire 0 irgendeine reelle Zahl, verschieden von 0, die ebenfalls a + 0’ = a fiir alle reellen
a erfiillt, so folgte speziell fiir a = 0: 0 + 0" = 0. Andererseits ist aber auch 0’ +0 = 0/, da 0
bei Addition ebenfalls nichts verdndert. Somit folgt 0 = 0+ 0" = 0’ + 0 = 0/, d.h. 0’ ist doch
gleich 0, im Widerspruch zu unserer Voraussetzung 0 # 0'. Daher kann es kein 0’ der genannten
Art geben, d.h. 0 ist einzige reelle Zahl mit a + 0 = a fiir alle a.

(i) Fir 1 verlduft der Beweis entsprechend. Man hat nur 0 durch 1 und + durch - zu ersetzen.l

Folgerung 1.2:
(Losen einfacher Gleichungen) Fiir alle reellen Zahlen a, b gilt:

a+x=>b istgleichbedeutend mit x =b—a

und falls a # O:

b
a-x =>b istgleichbedeutend mit x = —.
a

Bemerkung: Fiir »ist gleichbedeutend mit« verwenden wir auch das Zeichen <. Die Aussagen
erhalten damit die kiirzere Form

b
at+x=bsx=b—a, a-x=b<& x=— (fallsa #0).
a
Beweis:
a+x=b<s (—a)+a+x=(-a)+b< 0+x =b—a << x =b— a. Entsprechend fiir
a#O:a-x:b@éax:%b@x:%. O

Folgerung 1.3:
Fiir alle reellen Zahlen a gilta - 0 = 0, —(—a) = a und falls a # 0O: @Hl=a.

Beweis:
)a-0=a-0+@@-0-—a-0)=a-0+0—a-0=a-0—a-0=0.
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(i) —(—a)=—(—a)+(—a)+a=04a =a.
(i) @ H =@ H lala=1-a=a. O

Folgerung 1.4:
(Vorzeichenregeln bei Multiplikationen) Fiir alle reellen Zahlen a und b gilt:

a(—=b) = —ab, (—a)b = —ab, (—a)(—b) = ab.

Beweis:
a(—b) =a(—b)+ab —ab=a(—b+b) —ab=a-0—ab = —ab.
Ferner (—a)b = b(—a) = —ba = —ab,

und schlieBlich (—a)(—b) = —(a(—b)) = —(—ab) = ab. O
Merkregel:
»minus mal minus gleich plus« »minus mal plus gleich minus«

Folgerung 1.5:
(Additions- und Multiplikationsregeln der Bruchrechnung) Alle reellen Zahlen a, b, c,
d mit ¢ # 0 und d # 0 erfiillen die Gleichungen

ab

a b ad + bc
2 G

d cd

b
und 4.2 2 .
c d cd
Beweis:
Zunichst wird die zweite Regel bewiesen: Es ist cld1= (ca’)’1 , Wie man aus (cd)~(c’1 d—hH =
(cc™(dd™") = 1 erkennt. Damit gilt
b ab

a2 —ac 'bd™! = ab(cd)_1 = —.
c d cd

Mitd/d = 1 und c/c = 1 folgt daraus die erste Regel:

b ¢ ad bc 1 ad + bc
T e T Tt TG = -

a+b_
5=

c

o1
Ul

Folgerung 1.6:
(Divisionsregel der Bruchrechnung) Fiir alle reellen a, b, ¢, d mitb # 0,c # 0,d # 0
gilt

:%.2
bc

Ul o

a .
=9

2 Schreibweise der Division mit Doppelpunkt: x : y = x - y*l
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Beweis:
Es ist

= (ab—1)(cd™H ' =@ (') = (@d)(b" '™ = (ad)(be) ! = %.

ST
Ul o

Potenzieren mit natiirlichen Zahlen: Zur Abkiirzung schreibt man

at=a-a-...-a,
~—
n Faktoren

alsoa! =a,a’> =a-a,a® =a-a-ausw. a" wird »a hoch n« ausgesprochen. Man sagt auch

»a" ist die n-te Potenz von a« (s. Abschn. 1.1.6).

Ubung 1.2:
Lose die folgenden Gleichungen nach x auf:
3x -2 5x—-2)4+9
a) 8x—3=6x+5, b~ =2, o =2+ =
4x + 1 x+Dx—-2)—xx+5)

Ubung 1.3:
Wo steckt der Fehler in folgender »Herleitung« ?:

a=b=3a—-2a=3b—-2b=3a—-3b=2a—-2b=3(a—-b)=2a—-b)=3=2.

1.1.3 Ordnung der reellen Zahlen und ihre Vollstindigkeit

Ordnung muB sein! Auch bei den reellen Zahlen! Die Ordnung driickt sich dabei in der »Kleiner-
«und »GroBer-Beziehung« zwischen den Zahlen aus. Sie 14t sich besonders klar an der Zahlen-
geraden verdeutlichen:

v

Fig. 1.2: »Kleiner-« und »GroBer-Beziehung«: a < b

In Fig. 1.2 sind zwei Punkte a und b markiert, die reelle Zahlen bedeuten sollen. Liegt — wie
hier — a links von b, so schreiben wir:

a<b,

in Worten: »a kleiner als b« , oder auch umgekehrt b > a, in Worten: »b grofler als a« .
Die Grundgesetze fiir diese Beziehung lauten folgendermaf3en:
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Grundgesetze der Ordnung:

(01) Fir je zwei reelle Zahlen a und b gilt genau eine der drei folgenden Beziehungen:

a<b, a=b, b<a.

(02) Ausa <bundb < cfolgta < c,
(03) Ausa < bfolgta + ¢ < b+ c, (c beliebig reell),

(O4) Ausa < bfolgta-c <b-c,wenn( < cist.

Bezeichnungen: Statt a < b schreibt man auch b > a, wie oben schon gesagt. a heifit genau
dann positiv, wenn a > 0 gilt, und genau dann negativ, wenn a < 0. Die Ungleichung a > b,
wie auch b < a, bedeutet, »a ist grofer oder gleich b« oder anders gesagt: »b ist kleiner oder
gleich a« .

Wir nehmen an, daf} die Grundgesetze der Ordnung mit dem bisherigen Zahlenverstindnis
des Lesers im Einklang stehen, und begriinden sie daher hier nicht weiter.

Aus den Grundgesetzen konnen weitere Regeln abgeleitet werden. Die wichtigsten stellen
wir in der néchsten Folgerung zusammen und deuten einige Beweise kurz an. Beim ersten Lesen
genligt es, sich die Regeln an Beispielen klar zu machen, um so mit ihnen umgehen zu lernen.

Folgerung 1.7:
Fiir alle reellen Zahlen a, b, c, d gelten die Regeln:

@ a>0undb>0=a+b>0unda-b>0
®a>0& —a<0
(c)a#0=a-a>0,insbesondere | >0,dal=1-1>0
(d a<bundc<d=a+c<b+d

) 0<a<bund0<c<d=0<ac<bd

) a>0undb<0=ab <0

(g a<0undb<0=ab>0

1 1
hO0<a<b=0<—-< -
b a

1 1
H0>a>b=0>—->—
b a

Beweis:
(@) Ausa > OQundb > Ofolgta+b > a+0 = a > Onach (03)3, also wegen (0O2):a+b > 0.
Entsprechend ergibt (04): 0 <a = 0-b < ab (da0 < b), also 0 < ab.

®0<a=0+(—a)<a+(—a)= —a <O.

3 Dabei entspricht a < b in (O3) der Ungleichung 0 < b, und ¢ entspricht a. Folglich liefert (03): 0 +a < b + a, wie
behauptet.
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(c) Fira > Ofolgta-o > Oaus (a). Ista < 0,s0 —a > 0, nach (b)) alsoa-a = (—a)-(—a) >
0.

(d (@a<bundc <d)=(b—a >0undd—c >0)=b—a+d—c >0=b+d > a+c.Die
iibrigen Beweise verlaufen dhnlich und werden dem Leser fiir Muflestunden iiberlassen. [J

SchlieBlich kommen wir zum Gesetz von der Vollstindigkeit der reellen Zahlen. Es spiegelt
unsere Vorstellung wider, dafl jede reelle Zahl einem Punkt der Zahlengeraden entspricht und
umgekehrt.

Zunidchst denken wir uns dazu reelle Zahlen ay, az, az, . . . sowie by, by, b3, . . ., die folgender-
mafen geordnet sind:

ag<ar<a3<... ...<b3<by<bh.

Dabei entspreche jeder natiirlichen Zahl n genau ein a,, und genau ein b,. Es gilt also allgemein
fiir jedes n:

ap < apy1 < bpp1 < by

Man sagt, die Zahlen ay, ay, ..., b1, by, ... bilden eine Intervallschachtelung. Wir nehmen zu-
sdtzlich an, daf} die Zahlen a,, und b,, beliebig dicht »zusammenriicken«. D.h. jede noch so kleine
positive Zahl ¢ wird von wenigstens einer Differenz b,, — a,, unterschritten,

b, —a, <c¢,

wenn wir n nur geniigend grofl wihlen. Unter diesen Voraussetzungen lautet das

Grundgesetz der Vollstindigkeit: Es gibt genau eine reelle Zahl x, die
an <x < by,
fiir alle natiirlichen Zahlen r erfiillt.
Fig. 1.3 gibt eine Vorstellung von der Lage der Zahlen.

Il l 1 L

|
T T T T 1 L
aiy az as as ... X ... bs bs ba b

L
T
v

Fig. 1.3: Intervallschachtelung

x wird durch die Zahlen a, und b, von rechts und links »eingegrenzt« . Dies entspricht voll-
kommen der geometrischen Vorstellung, dal jedem Punkt der Zahlengeraden genau eine Zahl
entspricht und umgekehrt.

Als letztes Grundgesetz geben wir das Archimedische Axiom der reellen Zahlen an. (Es 146t
sich eigentiimlicherweise nicht aus den vorausgehenden Grundgesetzen beweisen, obwohl es so
selbstverstindlich erscheint.)
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Archimedisches* Axiom: Zu jeder reellen Zahl a, sei sie auch noch so groB, gibt es eine
natiirliche Zahl n, die noch groBer ist: n > a.

Hier ist die »reziproke Formulierung« von noch groflerer Bedeutung. Sie lautet

Folgerung 1.8:
Zu jeder noch so kleinen Zahl ¢ > 0 gibt es eine natiirliche Zahl n mit

1. 1.2)

n

Mit anderen Worten: Die Zahlen % (n natiirlich) werden »beliebig klein« .

Beweis:
Zum Beweis brauchen wir die Ungleichung 1/n < e nur in der Form

- <n
€

zu schreiben. (Aus ihr geht (1.2) durch Multiplikation mit £ hervor.) Aufgrund der Eigenschaft

des Archimedes gibt es aber ein natiirliches n mit n > 1/¢, womit alles bewiesen ist. O

Damit haben wir alle Grundgesetze der reellen Zahlen aufgezihlt und die wichtigsten Rechen-
regeln daraus hergeleitet.

Im nichsten Abschnitt fithren wir die Mengenschreibweise mit ihren einfachsten Regeln ein.
Sie gestattet es, viele Dinge sehr libersichtlich und kurz zu beschreiben und ist daher sehr bequem.
Ein Beispiel dazu vorweg: Der Satz »a ist eine reelle Zahl« 148t sich viel kiirzer durch

aelR

ausdriicken. Dies besagt: a ist Element der Menge R der reellen Zahlen.

1.14 Mengenschreibweise

Statt von den »natiirlichen Zahlen« sprechen wir auch von der »Menge der natiirlichen Zahlen« .
Ebenso sprechen wir von der »Menge der ganzen Zahlen« , der »Menge der rationalen Zahlen«
usw. Dabei haben wir den sogenannten »naiven Mengenbegriff« vor Augen:
Naiver Mengenbegriff: Eine Menge ist eine Zusammenfassung verschiedener Objekte unseres
Denkens oder unserer Anschauung zu einem Ganzen. Die Objekte werden die Elemente der
Menge genannt.

Beschreibt der Buchstabe M eine Menge (z.B. die Menge aller Menschen), und ist x ein
Element der Menge (ein Mensch), so schreiben wir dafiir

xeM

4 Archimedes von Syrakus (um 287 v. Chr.—212 v. Chr.), antiker griechischer Mathematiker, Physiker und Ingenieur
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(sprich: »x aus M« , oder »x ist Element von M« ). Ist x dagegen ein Objekt, welches nicht zur
Menge M gehort (z.B. ein Tier), so beschreibt man dies durch

xX¢E€M.
Zwei Mengen heiflen genau dann gleich, wenn sie dieselben Elemente haben.

Beispiel 1.1:
Die folgenden Bezeichnungen sind iiblich:

N = Menge der natiirlichen Zahlen 1, 2, 3, ...
Np = Menge der Zahlen 0, 1, 2, 3, ...
7Z = Menge der ganzen Zahlen ..., -2, —1,0, 1,2, ...

@Q = Menge der rationalen Zahlen % (mita, b € Z, b # 0)

R = Menge der reellen Zahlen (alle Dezimalzahlen)

Weitere oft benutzte Mengen reeller Zahlen sind die sogenannten Infervalle. Diese sind Teil-
strecken der Zahlengeraden oder Halbgeraden oder R selbst. Genauer: Mit [a, b] bezeichnen wir
die Menge aller reellen Zahlen x mit a < x < b. Wir driicken dies kiirzer aus:

[a,bp]={xeR|a<x <b}.

Dabei bedeutet die rechte Seite die »Menge aller x € R, die die Eigenschafta < x < b besitzen«.
[a, b] heillit das abgeschlossene Intervall von a bis b. Auf der Zahlengeraden stellt dieses
Intervall eine Strecke dar, s. Fig. 1.4.

L d
I 1

a b

v

Fig. 1.4: Intervall [a, b]

Entsprechend werden weitere Intervalle definiert. Die folgenden Schreibweisen sind nach dem
Beispiel [a, b] unmittelbar verstidndlich. Dabei gelte wieder a < b:

(a,b) ={x e R|a < x < b} heilt offenes Intervall von a bis b
(die »Endpunkte« a, b gehoren nicht dazu)

[a,b) ={x e R|a <x <b} und
(a,b] ={x e R|a <x <b} heien halboffene Intervalle

(jeweils ein Endpunkt gehort dazu, der andere nicht).
Die bisher genannten Intervalle werden beschrdinkte Intervalle genannt. Der Vollstindigkeit
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halber fiigen wir gleich die sogenannten unbeschrdnkten Intervalle an:

[a,00) ={x e R | x > a} .
abgeschlossene Halbgeraden (s. Fig. 1.5)
(—oo,cl={xeR|x <c}

(a,00)={x eR | x > a}

Halb d
(—oo.c) =[x €R | x < c}] offene Halbgeraden

und (—o0, 00) = R.

(=e=.q] [a. =)

v

Fig. 1.5: Unbeschrinkte Intervalle

Intervalle spielen im téglichen Leben schon in einfachen Fillen eine Rolle: Im Wetterbericht
horen wir z.B. von Temperaturen zwischen —2° bis +1°, was nichts anderes heift, als dal die
Temperaturangaben im Intervall (—2,1) liegen. Lingenangaben wie auch Gewichte sind stets po-
sitiv, sie liegen also im Intervall (0, co). Die Splittingtabelle der Steuer ist in Intervalle eingeteilt,
die verschiedenen Steuersitzen entsprechen, usw.

A y-Achse
¥ [ s / s /
2R
y-Achse e == ==
| |
_______ X, A4 y
y : (%, ¥) / Hag K/ : I
| t + >
[ </< / a b x-Achse
0 x  x-Achse
Fig. 1.6: Koordinaten Fig. 1.7: Rechteck und Kreis

Weitere anschauliche Beispiele fiir Mengen sind Punktmengen der Ebene. Fiihren wir in
iiblicher Weise ein Koordinatensystem mit x- und y-Achse ein, so entspricht jedem Punkt der
Ebene genau ein Zahlenpaar (x, y), wobei x die x-Koordinate heilit und y die y-Koordinate
(s. Fig. 1.6)°.

Wir nennen Zahlenpaare daher auch Punkte (der Ebene) und bezeichnen die Menge aller
dieser Zahlenpaare als R2.

Ein Rechteck, wie in Fig. 1.7 zu sehen, besteht aus allen Punkten (x, y), fiir die

a<x<b und c<y<d

5 Aus dem Zusammenhang muf} jeweils hervorgehen, ob (x, y) ein Punktepaar oder ein offenes Intervall bezeichnet.
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gilt. Nennen wir die Menge dieser Punkte kurz R (Rechteck), so kénnen wir schreiben
R={(x,y)eR*|a<x<bund c<y<d}.

Betrachten wir noch ein Beispiel, und zwar eine Kreisscheibe um 0 = (0,0) mit Radius 1,
s. Fig. 1.7. Ein Punkt (x, y) liegt genau dann in dieser Kreisscheibe, wenn sein Abstand® von
0 kleiner oder gleich 1 ist. Der Abstand ist aber offenbar gleich

,/)cz-i-y2

wie man mit dem Lehrsatz des Pythagoras ermittelt (s. Fig. 1.6). Damit besteht die Kreisscheibe
K aus allen Punkten (x, y) € R2 mit

Xy <.

Diese Punktmenge 146t sich also kurz so beschreiben:
K = {(x,y)eR2|,/x2+y2§ 1}

M

. O

Fig. 1.8: Teilmenge A von M

Um mit Mengen bequem umgehen zu konnen, vereinbaren wir einige Bezeichnungen:
(a) {x1,x2,...,x,} bezeichnet die Menge der Elemente xy, x2, .. ., X.

(b) {x | x hat die Eigenschaft E} ist die Menge aller Elemente x mit der Eigenschaft E. {x €
M | xhat die Eigenschaft E} ist die Menge aller Elemente x aus M mit der Eigenschaft £
(s. obige Beispiele).*

(c) Eine Menge A heilit Teilmenge einer Menge M, wenn jedes Element von A in M liegt. Wir
beschreiben dies kurz durch

ACM oder MDA, (s Fig. 1.8)

M heil3t eine Obermenge von A. Hier ist auch der Fall denkbar, dal A = M ist (M ist also
Teilmenge von sich selbst!). Ist A aber eine Teilmenge von M, die nicht gleich M ist, so

6 Im Sinne der euklidischen Geometrie
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nennen wir A eine echte Teilmenge von M und schreiben dafiir

A%M oder M;A.

(d) Gilt A C M, so besteht die Restmenge
M\ A

aus allen Elementen x € M, die nicht in A liegen (s. Fig. 1.8). Es kann dabei sein, daf} es
keine Elemente dieser Art gibt, ndmlich wenn A = M ist. In diesem Fall sagen wir: Die
Restmenge M \ A ist leer. Das fiihrt auf folgende Vereinbarung:

(e) Mit ) bezeichnen wir die sogenannte leere Menge. Dies ist eine Menge ohne Elemente. D.h.,
fiir jedes irgendwie geartete Element x gilt x & @.

Wir kénnen daher im Falle A = M fiir die Restmenge M \ A schreiben:
M\A=90.

(f) Als Vereinigung zweier Mengen A und B bezeichet man die Menge aller Elemente x, die
in A, in B oder in beiden Mengen liegen (s. Fig. 1.9). Sie wird symbolisiert durch

AUB
(g) Die Schnittmenge (auch Durchschnitt genannt)

ANB

zweier Mengen A, B ist die Menge aller Elemente x, die sowohl in A als auch in B liegen
(s. Fig. 1.9).

AuB

Fig. 1.9: Vereinigung und Schnittmenge Fig. 1.10: Die Mengen A, B, C
Man macht sich an Fig. 1.10 leicht klar, da} folgende einfache Regeln gelten:

AU(BUC)=(AUB)UC
ANBNC)=ANB)NC
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Es ist hier also gleichgiiltig, wie die Klammern gesetzt werden. Aus diesem Grunde werden
sie auch einfach weggelassen. Ferner gilt offenbar

AUMBNC)=(AUB)N(AUC)

ANBUC)=(ANB)UANC)

M\ (AUB) = (M\ A)N(M\ B)

wobei A C M und B C M.
M\(ANB)= M\ B)U M\ B)

Die ersten beiden Regeln entsprechen einem » Ausmultiplizieren« von Klammern (bei Zah-
len zum Vergleich: a - (b + ¢) = (a - b) + (a - ¢)), wihrend die nichsten beiden Regeln —
auch De Morgansche” Regeln genannt — zeigen, daB U und N ausgetauscht werden, wenn
man von der linken zur rechten Seite der Gleichung iibergeht.

SchlieBlich nennen wir
(a, b)

das Paar aus den Elementen a, b. Dabei sind zwei Paare (a, b) und (c, d) genau dann

gleich, wenn a = c und b = d ist. Die Reihenfolge der Elemente a, b 148t sich im Falle
a # b also nicht vertauschen: Es ist (a, b) # (b, a). D.h. bei Paaren kommt es auf die
Reihenfolge der Elemente an (im Gegensatz zu Mengen {a, b} aus zwei Elementen, fiir die
{a, b} = {b, a} gilt).

Sind A, B Mengen, so kann man daraus die Menge aller Paare
(a,b) mit ae€A und beB

bilden. Sie wird mit
AXxB

bezeichnet und Paarmenge oder cartesisches Produks® der Menge A, B genannt. Ist dabei
speziell A = B, so schreibt man kurz A2 = A x A. Auf diese Weise ordnet sich die schon
betrachtete Menge R* = R x R hier ein.

Allgemeiner kann man dieses Konzept auch auf sogenannte n-Tupel
(a1,a2,a3,...,a,), mit n e N,

ausdehnen. Dabei sind (ay, ..., a,) und (b1, ..., by) genau dann gleich, wenn n = m ist
und a; = b; firallei = 1,2,...,n.Sind Ay, ..., A, Mengen, so beschreibt

Al XAy X ... X Ay,

die Menge aller n-Tupel (ay, ...,a,) mita; € Ay, ax € Az, ..., ay, € A,. Diese Menge

7 Augustus De Morgan (1806 —1871), englischer Mathematiker
8 Nach René Descartes (1596 —1650), franzosischer Philosoph, Mathematiker und Physiker
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heif3t das cartesische Produkt der Mengen Ay, . . ., A,. Sind alle diese Mengen gleich: A; =
Afiirallei =1, ..., n, so wird das cartesische Produkt der Ay, ..., A, kurz A" genannt.

Ubung 1.4%:
In einem Vorortzug sind 60 % der Fahrgiste Minner, 70 % Raucher und und 80 % Pendler zwi-

schen Arbeitsstétte und Wohnung. Gibt es Fahrgiste mit allen drei Eigenschaften? Wieviel Pro-
zent sind es mindestens?

Verwandt ist die folgende Aufgabe:

Ubung 1.5:

Eine Firma stellt elektrische Gerite her, jedes dieser Gerite setzt sich aus 4 Schaltelementen A,
B, C, D zusammen. Von den verwendeten Schaltelementen des Typs A arbeiten 95 % einwand-
frei, vom Typ B 97 %, vom Typ C 92 % und vom Typ D 89 %. (Es handelt sich um »integrierte«
Schaltungen, bei denen stets gewisse Ausfallquoten vorkommen.)

Vor dem Zusammenbau eines Gerites ist nicht zu erkennen, welche seiner Schaltelemente
fehlerhaft sind. Wieviel Prozent einwandfrei arbeitender Geriite sind mindestens zu erwarten?

1.1.5 Vollstindige Induktion

Sehen wir uns noch einmal die Menge N der natiirlichen Zahlen an! Sie ist Teilmenge der Menge
R aller reellen Zahlen und hat folgende Eigenschaften:

(N1) 1 ist eine natiirliche Zahl.

(N2) Ist n eine natiirliche Zahl, so auch n + 1 (n 4+ 1 wird auch der »Nachfolger« von n
genannt).

Zweifellos gilt dies entsprechend auch fiir die Menge Z der ganzen Zahlen oder sogar fiir die
Menge R aller reellen Zahlen. N ist aber dadurch ausgezeichnet, daf3 sie die »kleinste« Teilmenge
von R mit den genannten Eigenschaften ist, d.h.: Jede Teilmenge M von R, die 1 enthilt und mit
n auch stets n + 1, ist Obermenge von N. Insbesondere kann M nicht echte Teilmenge von N
sein. Es gilt also

(N3) Jede Menge M von natiirlichen Zahlen, die 1 enthilt und mit n stets auch n + 1 enthilt,
ist gleich der Menge aller natiirlichen Zahlen.

Bemerkung: Man kann (N1), (N2), (N3) als Definition der natiirlichen Zahlen auffassen, zusam-
men mit der Tatsache, da3 jede natiirliche Zahl auch reelle Zahl ist.

Die Eigenschaft (N3) gestattet es uns, das Beweisverfahren der volistindigen Induktion durch-
zufithren. Wir wollen dies an einem simplen Beispiel zeigen, und zwar an der Behauptung: Es
gilt

2" > pn firalle neN.J
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1.1 Reelle Zahlen 21 Niemand zweifelt daran, denn fiir n = 1, 2, 3, usw. folgt
2'>1, 22=4>2, 2°=8>3, usw

Ist dies aber schon ein Beweis? Hier miissen wir doch aufpassen, daf es uns nicht so geht wie
dem Bauern, der seine Kuh fiir 100 Taler verkaufte. Er zihlte das Geld nach, das aus einzelnen
Talerstiicken bestand: 1, 2, 3, 4, ..., usw. Als er bei 67 angekommen war — ein fiir ihn wahrhaft
mithsames Geschift — da wischte er sich den Schweill von der Stirn und sagte: »Hat es bis
hierher gestimmt, so wird der Rest auch stimmen!« Sprach’s und steckte das Geld in den Sack.

So geht es natiirlich nicht! Zum Beweis unserer Behauptung 2" > n konnen wir aber folgen-
dermalien vorgehen:

(I) Die Behauptung gilt fiir n = 1, denn es sich sicherlich 2! > 1.

(II) Ist die Behauptung 2" > n jedoch fiir ein n € N richtig, so gilt sie auch fiir n + 1 anstelle
von n, denn es ist

2t =2.2">2.n,
letzteres wegen 2" > n. Wegen 2n = n + n > n + 1 folgt daher

2t S 1.

Damit ist aber alles bewiesen. Warum? Bezeichnen wir mit M die Menge aller natiirlichen Zah-
len, fiir die 2" > n giiltig ist, so stellen wir fest: 1 € M (nach (I)) und mit n € M ist auch
n+ 1 € M (nach (I)). Also mufl M die Menge aller natiirlichen Zahlen sein (nach (N3)), d.h.
2" > p ist fiir alle natiirlichen n giiltig.

Entscheidend ist also, daf} wir die Schritte I (Beweis fiir n = 1) und II (Schlu3 von n auf
n + 1) durchfiihren konnen. Das fiihrt allgemein zu folgendem Beweisschema, welches sich von
unserem Beispiel nur dadurch unterscheidet, dal die Aussage »2" > n « durch A(n) ersetzt wird.

Vollstindige Induktion:
Fiir jedes natiirliche n sei eine Aussage A(n) definiert. Man weise nun nach,

(I) daB A(1) richtig ist, und
(II) daB aus der Annahme, da3 A(n) richtig ist, auch die Giiltigkeit von A(n + 1) folgt.

Ist dies getan, so ist damit die Richtigkeit der Aussage A(n) fiir alle natiirlichen n bewiesen.

Die Schliissigkeit des Beweisverfahrens wird genauso wie im obigen Beispiel begriindet. Der
Beweisschritt I heifit Induktionsanfang, 11 heilt Induktionsschlufs.

9 Esista” =a-a-a-...-a, wobeirechts n-mal der Faktor a auftritt (a € R, n € N).
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Beispiel 1.2:
Mit dem Beweisverfahren der vollstindigen Induktion wollen wir die Formel
nn+1)

1+2+3+...+n=T (1.3)

beweisen.

(@) Induktionsanfang: Fir n = 1 ist die Formel zweifellos richtig, denn sie verkiirzt sich dabei
auf 1 =1-(141)/2.

(X) Induktionsschluf3: Wir nehmen an, daf3 (1.3) fiir ein bestimmtes »n gilt. Es soll gezeigt werden,
daB dies auch gilt, wenn n durch n + 1 ersetzt wird. Das sehen wir so ein: Es ist

nn+1
1+2+3+...+n+(n+1)=%4-(;14—1)
unter Verwendung der Giiltigkeit von (1.3) fiir unser betrachtetes n. Die rechte Seite kann
aber umgeformt werden in

nn+1) +2(n+1) _(n+ D +2)
2 2 2 '

Es gilt also

n+1Dn+2)

14243+...4n+m+1) = >

d.h. in (1.3) ist n durch n + 1 ersetzt. Damit ist alles bewiesen. O

Beispiel 1.3:

Eine bestimmte Bausparkasse teilt ihre Darlehen nach sogenannten »Bewertungszahlen« zu. Je
hoher die Bewertungszahl, desto eher die Zuteilung! Die Berechnung der Bewertungszahl ma-
chen wir an folgendem Beispiel klar: Ein Sparer schlie3t im Oktober 2002 einen Bausparvertrag
iiber 10000€ ab. Er hat dafiir monatlich eine Sparrate von 33 € zu zahlen, halbjahrlich also
198 €. Stichtage fiir die Bewertungszahl sind der 31. Mirz und der 30. September. Die »Bewer-
tungszahl« ist die Summe der Kontostinde an diesen Stichtagen in den Jahren, in denen gespart
wird. Lassen wir den Zinszuwachs hier der Einfachheit halber unberiicksichtigt, so ergeben sich
fiir die ersten Jahre folgende Bewertungszahlen:

Halbjahr ~ Kontostand (Gespartes) ~ Bewertungszahl b,

31.3.03 1. 198 198

30.9.03 2. 2-198 198 +2-198

31.3.04 3. 3-198 198 +2-198+3-198

30.9.04 4. 4.198 19842198 +3-198+4-198

usw. Nach dem n-ten Halbjahr ist die Bewertungszahl b, also gleich

b, =198+2-198+3-198+...+n-198=(1+2+...4+n)-198.
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Hier kommt die bewiesene Formel (1.3) ins Spiel. Danach folgt

nn+1) '

b, = 5

198. (1.4)

Wir wollen annehmen, dafl das Darlehen zugeteilt wird, wenn die Bewertungszahl b, das 2,6-
fache der Bausparsumme gerade iiberschritten hat, wenn also

b, > 26000 > b,

gilt. Mit (1.4) folgt daraus n = 16, wie der Leser leicht iiberpriift. Nach 16 Halbjahren, also nach
8 Jahren, ist der Bausparvertrag zuteilungsreif.

Varianten zur vollstindigen Induktion: (a) Gelegentlich wird anstelle von (II) der folgende
Induktionsschluf3 durchgefiihrt:

(I') Man zeigt, daB aus der Giiltigkeit der Aussagen A(1), A(2), ..., A(n) die Giiltigkeit von
A(n + 1) folgt.

(Fithrt man die Hilfsaussage A*(n) ein, die bedeuten soll: »Es gilt A(k) firalle k = 1,2, ..., n«
, 80 ist fiir A*(n) wiederum (I) und (IT) erfiillt, d.h. die Ersetzung von (II) durch (II') ist erlaubt.)
(b) Der Induktionsanfang (I) darf auch variiert werden. Ist etwa ng eine ganze Zahl, und ist zu
jeder ganzen Zahl n > ng eine Aussage A(n) erklart, so ist (I) zu ersetzen durch:

(I') Man zeige, daB A (ng) richtig ist. Fiihrt man anschlieBend den Induktionsschluf3 (IT) durch,
so ist die Giiltigkeit von A(n) fiir alle ganzen n > n( gezeigt.

(Um dies einzusehen, hat man A (n) in der Form A(ng — 1 4+ m) zu schreiben mit m = 1,2,3, .. ..
Da nach (I') die Aussage fiir m = 1 gilt, und (IT) den SchluB von m auf m + 1 darstellt, ist auch
diese Variation erlaubt.)

Beispiel 1.4:
Es soll gezeigt werden, daB3

2

2" > n~ fiir alle natiirlichenn > 5

gilt. Hier ist nop = 5. Der Leser fiithre den Beweis selbst durch.

Zur Ubung beweise der Leser mit dem Beweisverfahren der vollstindigen Induktion folgende
Aussagen:

Ubung 1.6:
Es gilt fiir alle n € N:

nn+1)Q2n+1)
6

nn + 1))2

(@ 124224324+ . +n2=

b) 13+z3+33+...+n3=( 5



1.1 Reelle Zahlen 21

Ubung 1.7:
(Bernoullische! OUngleichung) Beweise, daB fiir jedes reelle x > —1 mit x # O folgendes gilt:

(14+x)" > 1+nx firalle ganzen n > 2.

1.1.6 Potenzen, Wurzeln, Absolutbetrag

Die Grundgesetze iiber Potenzen a” und Wurzeln /a werden hier in knapper Form zusammen-
gestellt.

Potenzen mit natiirlichen Exponenten: Fiir beliebige reelle a, b und natiirliche Zahlen n, m
gilt

(ab)* =a"b", a""" =a"d", @)"=d", 0<a<b=0<da"<b". (15

(Man kann dies leicht mit vollstindiger Induktion beweisen.)
n-te Wurzeln:

(a) Esseia > 0und n eine beliebige natiirliche Zahl. Mit
Ja =x
bezeichnet man diejenige reelle Zahl x > 0, deren n-te Potenz a ergibt:
a=x".

Eine solche Zahl x existiert (wie wir spiter miihelos aus dem Zwischenwertsatz folgern
werden, s. Abschn. 1.6.3, Beispiel 1.48). Sie ist auch eindeutig bestimmt. (Denn wire y > 0
eine weitere Zahl mit y" = a, wobei etwa x < y ist, so folgte aus (1.5) x"* < y", was nicht
sein kann, da x" = a = y" ist. &/a ist also eindeutig bestimmt.)

(b) Bei ungeradem n und negativem a definiert man
a=x

als diejenige negative Zahl x, die x" = a erfiillt. Z.B. /—8 = —2. Auch sie ist eindeutig
bestimmt, wie man entsprechend begriindet.

(c) Ist schlieRlich a < 0 und n gerade, so ist &/a im Bereich der reellen Zahlen nicht definiert,
da es kein reelles x gibt mit x” = a (denn fiir alle x € R gilt x* > 0 bei geradem n).

Wir halten also fest: Fiir gerade n ist &/a genau dann sinnvoll erklirt, wenn a > 0 ist, fiir
ungerade n ist {/a dagegen fiir alle reellen a definiert.

{/a heiBt die n-te Wurzel aus a. Fiir die zweite Wurzel aus a > 0 schreibt man bekanntlich
kurz /a und nennt dies schlicht die Wurzel aus a. Wir wiederholen noch einmal ausdriicklich,
daB /a stets groBer oder gleich Null ist, also niemals negativ!

10 Jakob I. Bernoulli (1655—1705), schweizerischer Mathematiker und Physiker
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Berechnung von ,/a: Eine gute Methode zur Berechnung der Wurzel aus @ > 0 besteht darin,
nach folgender Vorschrift zu verfahren. Man wihle eine Zahl xo mit xé > a (z.B. xg = a falls
a > 1, xop = 1 sonst) und berechne

Xn

1
Kot =5 <xn n i) firn = 0,1,2,3, ....

Die so nacheinander gebildeten Zahlen xg, x1, X2, X3, ... kommen der Wurzel /a schnell be-
liebig nahe (Begriindung und Fehlerabschitzung folgen spiter beim Newtonschen Verfahren).
Tabelle 1.1 zeigt die Berechnung von +/2 mit diesem Verfahren (gerundete Werte). Ab x4 indern
sich die Zahlen in den ersten 10 Stellen nicht mehr.

Tabelle 1.1: Zur Berechnung von \/E

Xn

2,000 000000
1,500 000 000
1,416 666 667
1,414215 686
1,414 213562
1,414213 562

Also /2 = 1,414213 56211

N AW —=O |3

Potenzen mit rationalen Exponenten: Fiir beliebige natiirliche Zahlen n und m vereinbart man:

)i = Yam fiir alle reellen a, falls n ungerade,
a) a = a’
fiir alle reellen a > 0,  falls n gerade.
b) a® =1 , fiir alle reellen a # 0,
—m/n 1 fiir alle reellen a # 0,  falls n ungerade,
c) a =
a™/™ |fiir alle reellen @ > 0,  falls n gerade.

Damit ist insbesondere fiir alle positiven Zahlen a und alle rationalen Zahlen r die Potenz

ar

erklirt.
Folgerung 1.9:
(Rechenregeln fiir Potenzen) Es gilt
(ab)r — arbr , ar+s — aras , (ar)x — ars — (as)r

O0<a<b=0<da <b"

11 = bedeutet: »gleich bis auf Rundungsfehler«
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fiir alle rationalen r, s und alle reellen a, b, fiir die die obenstehenden Ausdriicke
erklirt sind.

Die Beweise konnen leicht mit den vorangehenden Hilfsmitteln gefiihrt werden.
Der Absolutbetrag |x| einer reellen Zahl x ist definiert durch

x| X, falls x > 0
x| =
—x, fallsx <O.

Z.B.: | — 3| = 3, |7| = 7. Fiir alle reellen Zahlen x, y und alle rationalen Zahlen r gelten die
Regeln:

Ix + y| < x|+ |yl (Dreiecksungleichung),
Ix =yl = llxl =yl

X |x]
lxyl = |x[I¥], —|=-— fallsy #0,
y yl
x| = |x|" (falls x" erklart ist).
Ubung 1.8:

Beweise: Fiir alle reellen x > 0, y > 0 und alle rationalen r, s gilt
r r r . 1 s )
@ (2) =5, & 5=x" © (=) =27
y y}" xS xr

Ubung 1.9:
Vereinfache die folgenden Ausdriicke (d.h. schreibe sie in der Form ¢ - x” - y*.) Dabei ist x > 0,
y > 0 vorausgesetzt:

3/ 5.4
X 5
@ Sr——s 2y — . (b)) \/x7y/32y00x
X<y

1.1.7 Summenformeln: geometrische, binomische, polynomische

Sind a1, a2, a3, . .., a, reelle Zahlen, so schreibt man die aus ihnen gebildete Summe a; + az +
az + ...+ a, auch in der Form

n
D aks
k=1

und spricht dies so aus: »Summe der gy, fiir k von 1 bis n« . k heiit der Index des Summengliedes
ai. Fir n = 1,2,3 bedeutet
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1 2 3
01=Zak, a1+az=zak, al+az+as=zak, (1.6)
k=1 k=1 k=1

ferner gilt

n+1

n
doactan =) a (1.7)
k=1 k=1

fiir beliebige natiirliche .

Beispiel 1.5:

n
Die Summe der Quadratzahlen 12 4 22 4+ 3% + ... + n? kann kiirzer durch Y_ k? beschrieben
k=1
werden. Nach Ubung 1.1 gilt dann

(1.8)

iyl_nm+DQn+D
=
k=1

Ohne Miihe sieht man ein, daf3 fiir das Rechnen mit Summen folgende einfache Regeln gelten:

n n n n n
de—i-Zbk:Z(ak—l—bk), CZakIZCak.
k=1 k=1 k=1 k=1

k=1

Unter Verwendung von (1.6), (1.7) kénnen sie induktiv bewiesen werden. Wir empfehlen dies
dem Leser zur Ubung.

Gelegentlich lauft der Index nicht von 1 bis n, sondern allgemeiner von einer ganzen Zahl s
bis zu einer anderen ganzen Zahl ¢ (s < t):

t
as+a5+1+as+2+...+a,:2ak.
k=s

Diese Summen werden entsprechend behandelt.
Besonders interessant sind Summen, die durch einen »geschlossenen Ausdruck« beschrieben
werden konnen, wie z.B. die Summe

nin+1)

n
2:k:1+2+3+.“+n= 5

k=1

oder die Summe der Quadrate (1.8). Die wohl wichtigste Summe dieser Art ist die geometrische
Summe:
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n
Yt =1+q+q+...+4" (1.9)
k=0

fiir beliebiges reelles ¢'%. Wie kann man einen »geschlossenen, einfach zu berechnenden Aus-
druck fiir diese Summe finden? Dies gelingt durch einen kleinen Trick. Setzen wir nimlich zur
Abkiirzung

s=14+q+q¢*+...+q" (1.10)
fiir die Summe und multiplizieren mit ¢, so folgt

gs=q+q¢+¢>+... +q"! (1.11)
Subtrahieren wir die beiden letzten Gleichungen rechts und links voneinander, so ergibt sich

s—gs=1—¢g""!

d.h. auf der rechten Seite heben sich alle Glieder bis auf zwei heraus.

Ausklammern von s auf der linken Seite ergibt
1 n+1

s~(1-q)=1—q"+1=>s=% (falls g # 1).
—q

Im Falle ¢ = 1 ist s offenbar n + 1, wie aus (1.9) unmittelbar hervorgeht. Damit haben wir
folgendes Resultat:

Geometrische Summenformel:

1 _qn+1
1 " _ falls g # 1
Zq = 1—¢q (1.12)

k=0 n+1 falls g = 1.

Beispiel 1.6:

(Sparkonto) Ein Sparer zahlt jahrlich am 1. Januar 600 <€ auf ein Sparkonto ein, mit einem Jah-
reszins von p = 6 %. Welchen Kontostand hat er nach 7-jdhrigem Sparen erreicht? Setzt man zur
Abkiirzung g := 1+ p = 1,006, so sind nach einem Jahr offenbar 600 -¢g € auf dem Konto, nach 2
Jahren (600- g +600)g = 600¢ (1+¢), nach 3 Jahren (600g (1 +¢) +600)g = 600g(1+q +g?)
usw. Nach n Jahren enthilt das Sparkonto

n

1_
600g(1+q+¢”+...+¢"") =600 ¢~ a

12 Das erste Glied der Summe ist vereinbarungsgemif gleich 1, auch im Falle ¢ = 0.
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€, wobei wir die geometrische Summenformel gewinnbringend verwendet haben. Wir setzen
n = 7 ein und erhalten einen Kontostand von 5338,48 €. Der Zinsgewinn in diesen 7 Jahren
betrigt also 1138,48€.

Binomische Formel: Durch einfaches Ausmultiplizieren berechnet man die folgenden Formeln:

(a+b)> =a>+2ab+b*,
(a+b)} =a®+3a*b +3ab*> + 1>,
(a+b)* = a* + 4a°b + 64°b* + 4ab’ + b* .

Allgemein erhélt man fiir beliebigen natiirlichen Exponenten n und beliebige reelle a, b die

Binomische Formel:

(a+b)" = a”+<r1l>a”1b+(§>a”2b2+<§>a”3b3+. . .+<n " 1>ab"‘+(:>b" (1.13)

mit

(n).=n-(n—l)(n—2)~...~(n—k+1) (1.14)

k 1-2.3....-k

Die Ausdriicke (Z) (sprich »n tiber k« ) heilen die Binomialkoeffizienten.

Beispiele:
10y 10-9-8 6y 6-5-4.3
3) 1.2.37 \4) 1-2-3.-4°
Merkregel zur Berechnung von (Z) : Das Produkt der »oberen« k Zahlenn-(n—1)-...-(n—k+1)

dividiere man durch das Produkt der »unteren« k Zahlen1 -2 -...-k.
Der Vollstiandigkeit halber definiert man

n
()::1, n=012,...,
0

wobei man sich am ersten Glied 1 - a" in (1.13) orientiert. Damit erhilt die binomische Formel
die knappe Form

@+b' =Y (Z)a”_kbk. (1.15)

k=0

Sie gilt fiir alle n € No.
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Das Produkt 1 -2 -3 - ... -k im Nenner des Binomialkoeffizienten (1.14) wird abgekiirzt
beschrieben durch k!, sprich »k Fakultdt« , also:

kl:'=1-2-3.-...-k (keN).

Fiir k = 1 bedeutet dies 1! = 1, sowie (k 4+ 1)! = (k!)(k 4 1) fiir beliebige k € N. Wiederum der
Vollstiandigkeit halber erginzt man die Definition durch

0l:=1.

Damit erhilt man folgende Darstellung des Binomialkoeffizienten:

n n! .
<k> = Ho=5! fiir alle k € {0,1,2, ..., n}. (1.16)

Man gewinnt dies fiir k > 1 aus (1.14) durch Erweiterung des Bruches mit (n — k)!. Firk =0
ergibt sich die Gleichung unmittelbar. Aus (1.16) leitet man leicht folgende Formeln her:

n n

(k):<n_k>,, kelol. ... .n (1.17)
n-+1 n n
( ! >:<k>+(k—1>’ kel ..n) (1.18)

fiir alle n € N U {0}.

Der Leser iiberzeuge sich durch Nachrechnen von der Richtigkeit der Gleichungen.
Bemerkung: Die erste Gl. (1.17) spiegelt den symmetrischen Aufbau der binomischen Formel
wieder: Der erste Koeffizient ist gleich dem letzten, der zweite gleich dem vorletzten usw.

Die zweite Gl. (1.18) dagegen zeigt, da3 man die Binomialkoeffizienten geschickt in einem
»Dreieck« anordnen kann:

1 n=0

1 1 n=1

1 2 1 n=2

1 3 3 1 n=3

1 4 6 4 1 n=4

1 5 10 10 5 1 n=5

Von der zweiten Zeile an gilt dabei: Jede Zahl ist die Summe der rechts und links iiber ihr stehen-
den Zahlen. Diese Anordnung der Binomialkoeffizienten nennt man das Pascalsche'® Dreieck.

Beweis:
der binomischen Formel (1.15) durch vollstindige Induktion:

13 Blaise Pascal (1623 —1662), franzosicher Mathematiker, Physiker, Literat und Philosoph
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(I Firn = 0ist (1.15) sicherlich erfiillt, denn es gilt

(a+b)° = (0

0>Cl0b0 =1 .14

(II) Istdie binomische Formel fiir ein n € Ny richtig, so folgt fiir den Exponenten n + 1:

n
@+by* = @+ba+b =@+by. (Z)a"kbk
k=0
1 n " n
_ —k ik —k .k
=a) <k>a by (k)a” b
k=0 k=0
" n " n
_ —k+11k —kpk+1
_Z(k>a" b +Z<k>a" b
k=0 k=0

In der zweiten Summe setzen wir k + 1 = k’, also k = kK’ — 1. Sie erhilt damit die Form
n+1
Z n "Rk
kK —1
k'=1

Wir lassen nun den Strich einfach weg, ersetzen also k" durch k. Einsetzen in die letzte Zeile
der obigen Rechnung und Zusammenfassung ergibt dann

n+l _ (M) n+1 < n n n—k+1pk N+l
(a+b) —<O)a +l§([<k>+(k_l>}a b>+(n)b :

Mit (1.18) erkennt man hieraus, daf3 die binomische Formel fiir n 4 1 anstelle von n giiltig
ist. Nach dem Prinzip der vollstindigen Induktion gilt sie damit fiir alle n € Ny. U

Beispiel 1.7:

Niherungsformeln fiir technische Berechnungen In der Technik tritt bei Binomen (a + b)" hiufig
der Spezialfall auf, daB |b| »sehr viel kleiner« als |a| # 0 ist. Wir driicken dies durch |b| < |a]|
aus. Man klammert " aus und erhdlt

(a+b)t=a" <1+é>
a

Wir setzen ¢ = b/a, wobei |¢| < 1 ist, und beschéftigen uns mit (1 4 ¢)”. Im Falle n = 2 zum
Beispiel ist

(1+8)2:1+28+82%1+28,15

14 Hier verwenden wir die stillschweigende Vereinbarung, daf im Falle @ = 0 oder b = 0 einfach 00 =1 gesetzt wird.
Normalerweise ist dies nicht erlaubt. Hier ist es aber ausdriicklich gestattet.
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wobei der Summand &2 »vernachlissigt« wurde, da er sehr klein gegen 142¢ ist. Man macht dies,

wenn &2 im Rahmen der verlangten Genauigkeit (MeBgenauigkeit, Rundungsfehlerschranken)

liegt. Ist etwa ¢ = 1/100, so ist 2 = 1/10000, d.h. bei Rechnen mit dreistelliger Genauigkeit
liefert £2 schon keinen Beitrag mehr. Entsprechend kann man niherungsweise setzen

A+e"~1+ne,

wenn |g| < 1. Dabei stehen rechts nur die ersten beiden Glieder der binomischen Reihe. Setzen
wir hier ¢ = §/n, so erhalten wir

(3 n
(H;) ~14+48 (8lkn).

Ziehen wir schlieBlich auf beiden Seiten die n-te Wurzel, so folgt nach Seitenvertauschen die
Niaherungsformel

)
VI+8~1+4+—.
n

Dabei haben wir uns iiber Fehlerabschidtzungen hier groziigig hinweggesetzt. Sie folgen spiter
im Rahmen der Taylorschen Formel.

Polynomische Formel: Statt (a + b)" kann man allgemeiner die Summenpotenz (a; +a> + ...+
ap)" betrachten. Fiir Ausdriicke dieser Art gilt eine Verallgemeinerung der binomischen Formel.
Sie heif3t:

Polynomische Formel:

n! ki k k
@tat. ta)i= ) pooala’a). (1.19)
kit othp=n L2 ERE

Die Summe erstreckt sich dabei liber alle moglichen p-Tupel (k1, k2, ... k) mit

ki+ky+...+kp=n, (1.20)
wobei die k; die Werte 0, 1, 2, ..., n annehmen.
Die Zahlen
o 121
kilka!. . k! (1.21)

in obiger Summe heiflem die Polynomialkoeffizienten. Der Beweis der Formel verlduft nach dem
Muster des Beweises fiir die binomische Formel.

15 Das Zeichen & bedeutet »ungeféhr gleich« . ~ ist kein mathematisch exaktes Zeichen. Es wird daher nicht in stren-
gen Beweisen, Definitionen oder Sitzen benutzt, sondern nur in Beispielen und Plausibilititsiiberlegungen.
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Ubung 1.10:

Leite mit Hilfe der geometrischen Reihe die folgende Formel her:

n_ag" X, aelR

X a = 2 32 4 g

X —a x#a, neN, n>2.
Ubung 1.11%:

Beweise, dal fiir alle n € N gilt:
n n n n n
— — — . " =0.
(6) =)+ G) -G s rn()

Ubung 1.12%:

Die Torsionssteifigkeit eines Rohres mit Durchmesser d und Wandstiirke s ist
T4 4
Ij=—d" " —(d-2 .
d 32( ( $)")

Das Rohr sei diinnwandig: s <« d. Gib eine Niherungsformel fiir /; an (in Anlehnung an
Beispiel 1.7).

1.2 Elementare Kombinatorik

1.2.1 Fragestellungen der Kombinatorik

Die Kombinatorik beschiftigt sich mit Anzahlberechnungen bestimmter Gruppierungen von Ele-
menten, wie z.B. in folgenden Fragestellungen:

(a) Wieviele FuBlballspiele finden in der Bundesliga wihrend einer Saison statt?

(b) Der Vorstand eines Vereins von 20 Personen besteht aus Vorsitzendem, Schriftwart und
Kassenwart. Wieviele Moglichkeiten gibt es, den Vorstand zu besetzen? (Wer jemals erlebt
hat, wie schwer es ist, Vereinsvorstinde zu finden, da sich alle driicken, der wird staunen,
wieviele Moglichkeiten es gibt!)

(c) Wie grof} ist die Wahrscheinlichkeit, beim Lotto (6 aus 49) mit zwei Tippreihen sechs Rich-
tige zu erhalten?

(d) Ein Elektriker soll 12 Drahtenden mit 12 Kontakten eines Schaltbrettes verbinden. Leider
hat er den Plan fiir die Verkabelung zu Hause vergessen; er wiirde 2 Stunden brauchen, um
den Plan zu holen. Daher kommt er auf die Idee, alle Moglichkeiten der Verkabelung der 12
Drihte mit den 12 Kontakten durchzuprobieren, um so schlieBlich die einzige richtige zu
finden (sie wird ihm durch eine aufblitzende Kontrollampe angezeigt). Zum Ausprobieren
einer Verkabelung aller 12 Drihte benétigt er 10 Sekunden. Handelt er richtig? Oder fiihre
er besser nach Hause, um den Schaltplan zu holen?
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Alle diese Fragen, wie auch verwandte Probleme, lassen sich auf sechs Grundaufgaben zu-
riickfithren. Wir wollen sie im Folgenden erldutern.

1.2.2 Permutationen

Erste Grundaufgabe: In wieviele verschiedene Reihenfolgen lassen sich n Elemente ay, as, . . .,
an bringen?

Antwort: n!.

Die Frage lautet in anderer Formulierung: Wieviele n-Tupel lassen sich aus den Elementen aj,
ap, ..., a, bilden, wobei verlangt wird, daf} in jedem der n-Tupel alle Elemente ay, ..., a, vor-
kommen. Jedes n-Tupel dieser Art nennt man eine Permutation der Elemente ay, ..., a,. Die
Anzahl aller dieser Permutationen nennen wir P,. Es wird also behauptet:

P, =n! (1.22)

Beispiel 1.8:
Die moglichen Reihenfolgen, in die sich 3 Elemente 1, 2, 3 bringen lassen, lauten

123 231 312
132 213 321.

Esist P3 =3!=6.

Beweis:
Von P, = n!: P; ist gleich 1, da nur ein Element a; betrachtet wird. P ist gleich 2, denn a; und
ay lassen sich in genau zwei Reihenfolgen anordnen: (aj, a2) und (az, ay). Ferner ist P3 = 3!,
wie das Beispiel zeigt.

Wir wollen nun von n auf n + 1 schliefen und nehmen an, dal P, = n! fiir ein bestimmtes n
richtig ist. Gilt dann auch P,4; = (n 4 1)!? Um dies einzusehen, betrachten wir alle Permutatio-

nen von ai, aa, . .., dy+1, bei denen a, 41 an erster Stelle steht:
(an—&-l’ *, %, ..., k)
Die iibrigen Elemente ay, ..., a, konnen auf den Plédtzen 2 bis n + 1 genau n! Reihenfolgen

bilden, da P, = n! vorausgesetzt wurde. Steht a,| an zweiter Position,

(*aan+]5*7"'a*)

so konnen die ay, . . ., a, auf den iibrigen Pldtzen wiederum n! Reihenfolgen bilden. So schlieSen
wir weiter. Da a,, 1 an n+ 1 verschiedenen Positionen stehen kann und fiir jede dieser Positionen
n! Permutationen der iibrigen Elemente vorkommen, gibtes (n+ 1) -n! = (n+ 1)! Permutationen
von n + 1 Elementen, was zu beweisen war. O
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Beispiel 1.9:

Hiermit konnen wir nun unserem Elektriker aus Frage d) am Anfang des Abschnittes aus der
Klemme helfen. Er ist dabei, alle moglichen Reihenfolgen von 12 Elementen (Kontaktstellen)
durchzuprobieren. Davon gibt es aber

12! = 479001600 .

Da er zum Verkabeln jeder dieser Reihenfolgen 10 Sekunden braucht, kommt er beim Durchpro-
bieren aller Mdoglichkeiten auf 4790016000 Sekunden, das sind mehr als 151 Jahre. Wenn man
bedenkt, daB es fiir ihn schwer sein wird, wihrend dieser Zeit nicht zu essen und zu schlafen,
dann wird klar, dal er doch besser nach Hause fiihre und seinen Schaltplan holte.

Bemerkung: Permutationen spielen in vielen Bereichen der Mathematik eine Rolle, insbeson-
dere in der Algebra, wie z.B. in der Gruppentheorie, Korpertheorie und bei Determinanten. Auf
den letzten Aspekt wird in Burg/Haf/Wille (Lineare Algebra) [7] genauer eingegangen.

1.2.3 Permutationen mit Identifikationen

Zweite Grundaufgabe: Auf wieviele verschiedene Weisen lassen sich die Elemente

a1’a15""a1’ a2’a25"'7a2’ e 7ar,ars~~,ar
—_——

ky ky kr
anordnen? a; trete dabei ki-mal auf, ap k>-mal, usw. Die Anzahl aller Elemente ist
n=k+ky+...+k.
Antwort:

n!
I — 1.23
kilko! .. k! (123)
Es ist hier also nach der Anzahl der n-Tupel gefragt, in denen a; genau ki-mal vorkommt, a>
genau k>-mal, az genau k3-mal, usw., bis a,, das genau k,.-mal auftritt.

Beispiel 1.10:

An einem Fahnenmast sollen iibereinander 10 Wimpel hochgezogen werden, und zwar 5 weil3e,
3 rote und 2 blaue Wimpel. Die 5 weilen Wimpel sehen untereinander vollig gleich aus, dasselbe
gilt fiir die roten und fiir die blauen Wimpel. Auf wieviele verschiedene Weisen 14t sich der Fah-
nenmast mit den 10 Wimpeln schmiicken? (Oder anders gefragt: Wieviele verschiedene Signale
lassen sich mit den 10 Wimpeln geben?) Antwort: Die Anzahl ist

10!

spm — 20
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Beweis:
von (1.23): Wir wollen zunichst davon ausgehen, da3 die anzuordnenden Elemente mit zusétzli-
chen oberen Indizes durchnumeriert sind:

1 2 ky ki+1 k142
£ az

k1+k2
ap,ay,...,a;, a, a, ,

kit 41
a,’' L

g ey 5

ki ko ky

Aus ihnen lassen sich genau n! Permutationen bilden. Ersetzen wir nun alle Elemente all, e

a]f' durch ein und dasselbe Element ap, d.h. »identifizieren« wir die Elemente all, e a]f‘, SO
werden alle Permutationen gleichgesetzt, die durch Umstellungen der a%, cee alf‘ auseinander
hervorgehen. Es gibt aber genau k! Reihenfolgen der Elemente all, ceo afl. Somit miissen wir

n! durch k1! dividieren, um die Anzahl der Permutationen zu erhalten, in denen die Elemente all,

e a]](‘ »identifiziert« sind, d.h. durch a; ersetzt sind.

Entsprechend wird bei Identifizierung der Elemente a§ 1+l R a§ 1%k qurch ko! dividiert usw.

Damit ist die gesuchte Anzahl von Permutationen, in denen a; genau kj-mal vorkommt, a; genau
k>-mal usw. gleich

n!
kilkp!. .. k!

Beispiel 1.11:

Als weiteres Beispiel behandeln wir die Frage, wieviele verschiedene Kartenverteilungen beim
Skat moglich sind. Dabei werden 32 Karten verteilt, jeder der drei Spieler bekommt 10 Karten
und zwei Karten wandern in den »Skat« .

Hier besteht das eigentliche Problem darin, den Zusammenhang mit der Grundaufgabe der
Permutationen mit Identifikationen zu finden. Zu diesem Zwecke denke man sich die Skatkarten
zunichst verteilt. Jeder Spieler markiere nun seine Karten, und zwar schreibe der erste Spieler
auf jede seiner Karten mit Bleistift ein a, der zweite Spieler auf jede seiner Karten ein b, der
dritte entsprechend ¢, und die beiden Karten im Skat werden mit d markiert. Anschlielend lege
man alle Karten in »systematischer« Reihenfolge auf den Tisch, d.h. zunichst alle Kreuzkarten,
dann alle Pik, dann alle Herz und dann alle Karo und jede »Farbe« in sich geordnet: As, K, D, B,
10, 9, 8, 7. Damit bilden die angebrachten Markierungen eine Permutation mit Wiederholungen,
wobei a, b, ¢ jeweils 10-mal vorkommen und d 2-mal. Die Anzahl aller Permutationen mit
Identifikation ist aber

32!

— = =275.101.
10110'10!2!

Dies ist die Anzahl aller Kartenverteilungen beim Skat.
Bemerkung: Die Formel fiir die Anzahl der Permutationen mit Identifikationen ist grundlegend

in der Kombinatorik. Sie stellt einen Allgemeinfall dar, aus dem sich viele Sonderfille herleiten
lassen.
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Beispiel 1.12:

Ein oft vorkommender Fall ist die Anordnung von Nullen und Einsen, z.B.
1001011001.

Frage: Auf wieviele verschiedene Weisen lassen sich k Einsen und m Nullen anordnen? Antwort:

|
™), wobein =k +mist.
omt - \k

Ubung 1.13:

Ein FufB3ballverein hat 13 aktive Spieler. Auf wieviele verschiedene Weisen kann man die Spieler
folgendermallen einteilen: 3 Stiirmer, 3 Mittelfeldspieler, 4 Verteidiger, 1 Torwart, 2 Ersatzbank-
warmer?

Ubung 1.14%:

Jede senkrechte Spalte einer Lochkarte hat genau 12 Lochstellen. In einem bestimmten Code
werden fiir jedes Zeichen 3 Locher pro Spalte gestanzt. Wieviele Zeichen kann man in diesem
Code verschliisseln?

1.24 Variationen ohne Wiederholungen
Dritte Grundaufgabe: Es sei eine Menge aus n Elementen
a,az,...,day

gegeben. Aus ihr werden nacheinander k verschiedene Elemente herausgegriffen (k < n). Auf
wieviele Weisen ist dies moglich? Dabei komme es auf die Reihenfolge an, in der die Elemente
entnommen werden.

Antwort

|

n(n—l)(n_z)"'(n_k+1):m

Beispiel 1.13:

Aus einer Urne mit 10 durchnumerierten Kugeln werden nacheinander drei Kugeln entnommen
und in der entnommenen Reihenfolge nebeneinandergelegt, z.B.

)
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Fig. 1.11: Urne mit Kugeln

Sie bilden ein Tripel. Wieviele solcher Tripel aus drei verschiedenen Kugeln lassen sich bilden?
Antwort:

10-9-8 =1720.

Die beschriebene dritte Grundfrage 148t sich kiirzer so formulieren:

Es sei eine Menge aus n Elementen ay, ..., a, gegeben. Wieviele k-Tupel aus jeweils k ver-
schiedenen Elementen lassen sich daraus bilden (k < n)?

k-Tupel dieser Art heien Variationen zur k-ten Klasse ohne Wiederholungen. »Ohne Wieder-
holungen« deshalb, weil je zwei Elemente eines solchen n-Tupels verschieden sind, sich also
kein Element darin »wiederholt«.
Bemerkung: In Anlehnung an unser Urnenbeispiel nennen wir » Variationen ohne Wiederholun-
gen« auch geordnete Stichproben ohne Zuriicklegen.

Es ist nach der Anzahl der Variationen zur k-ten Klasse ohne Wiederholungen gefragt. Wir
bezeichnen diese Anzahl mit V,, x. Es wird behauptet:

n!

Vok=——
e

Beweis:
Fiir die erste Position eines k-Tupels der beschriebenen Art haben wir n Moglichkeiten der Be-
setzung, denn alle a1, ..., a, kommen dafiir in Frage. Ist die erste Position aber einmal besetzt,
so kommen fiir die zweite Position nur noch (n — 1) Elemente in Betracht, weil ja ein Element
schon fiir Platz 1 verwendet wurde. Da also auf jeden der n Fille fiir Position 1 genau (n — 1)
Moglichkeiten fiir Position 2 kommen, ergibt dies zusammen

n-(n—1)

Moglichkeiten, die ersten beiden Positionen zu besetzen. Fiir jede solche Besetzung gibt es dann
aber nur noch (n — 2) Elemente, die die dritte Stelle annehmen kénnen. Also hat man

n-(n—1)-(n—2)
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Moglichkeiten, die ersten 3 Positionen zu besetzen. So schlieft man weiter und erhilt fiir die
Besetzungen aller k Stellen schlielich

n-m—1)-n-2)-n—=3)-...-n—k+1)

Moglichkeiten, also ein Produkt aus k& Faktoren, beginnend mit dem Faktor » und von Faktor zu
Faktor um 1 absteigend. O

Beispiel 1.14:

Frage b) aus Abschn. 1.2.1 wird hier beantwortet. Vorsitzender, Schriftwart und Kassierer bil-
den ein Tripel. Die Anzahl moglicher Tripel dieser Art ist also bei einer Vereinsstirke von 20
Personen gleich

20-19-18 = 6840

Beispiel 1.15:

Frage a) aus Abschn. 1.2.1: Wieviele Bundesligaspiele pro Saison? Es gibt 18 Fuflballvereine
in der Bundesliga. Die Anzahl der Spiele ist gleich der Anzahl aller geordneten Paare aus 18
Vereinen, das sind Vig 2 = 18 - 17 = 306.

Ubung 1.15:

Aus einem Kartenspiel mit 32 verschiedenen Karten ziehen 4 Spieler je eine Karte. Wieviele
verschiedene Kartenverteilungen dieser Art gibt es?

Ubung 1.16*:
Ein Autofahrer besitzt fiir sein Auto sechs Sommerreifen, die er gleichméBig »abfahren« moch-
te. Aus diesem Grunde beschlieft er, in jedem Sommer mit einer anderen Reifenverteilung auf
den vier Riddern zu fahren. Da sich beispielsweise links vorne ein Reifen stirker abnutzt als
rechts hinten, werden alle Rédder hier unterschieden. Frage: Wird er alt genug, um das Ende
seines Vorhabens zu erleben?

1.2.5 Variationen mit Wiederholungen
Vierte Grundaufgabe: Wieviele k-Tupel lassen sich aus n Elementen
al’a25""an

bilden? Dabei ist zugelassen, daf3 in jedem k-Tupel jedes a; mehrfach vorkommen darf, maximal
bis zu k-mal. Antwort:

n* (1.24)

k-Tupel der genannten Art heilen Variationen zur k-ten Klasse mit Wiederholungen. Ihre Anzahl
wird mit V ,; bezeichnet. Die Behauptung lautet also
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Vo =nt (1.25)

Beispiel 1.16:

Wieviele Tripel lassen sich aus den 10 Ziffern 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 bilden? Die Antwort ist
leicht, denn es handelt sich hier gerade um die 3-stelligen natiirlichen Zahlen, z.B. 577, wobei
wir fithrende Nullen mitschreiben wollen, also 001 statt 1 oder 036 statt 36. Setzen wir noch 000
statt 0, so entsprechen die

10° = 1000

Tripel aus den 10 Ziffern genau den Zahlen von 0 bis 999.

Beweis:
Zu (1.25): Fiir die erste Position eines k-Tupels ay, az, ..., a, haben wir n Moglichkeiten der
Besetzung, nimlich alle ay, . . ., a,,. Fiir jede solche Besetzung haben wir in Position 2 wiederum

alle n Elemente ay, .. . a, zur Auswahl. Somit gibt es
n-n—=—n

Moglichkeiten, die ersten beiden Position zu besetzen. Fiir jede Besetzung der ersten beiden
Stellen gibt es aber n Moglichkeiten, die dritte Position zu fiillen. Also hat man

n-n-n=n

Moglichkeiten, die ersten drei Stellen des k-Tupels zu besetzen. So geht es weiter. Somit hat man
zur Besetzung des k-Tupels genau n¥ Moglichkeiten. ]

Ubung 1.17:
Das Hexadezimalsystem besteht aus den 16 Zeichen 0, 1, 2, 3,4, 5, 6,7, 8,9, A, B,C, D, E,
F. Wieviele 5-stellige Kombinationen kann man daraus bilden? (dies entspricht der Anzahl aller
hochstens 5-stelligen Hexadezimalzahlen, wobei fithrende Nullen weggelassen werden.)

1.2.6 Kombinationen ohne Wiederholungen

Fiinfte Grundaufgabe: Wieviele k-elementige Teilmengen lassen sich aus einer Menge M =
{a, ay,...,a,} von n Elementen bilden (k < n)? Antwort:

n n!
(k) T K=k (1.26)

Man spricht hier von Kombinationen zur k-ten Klasse ohne Wiederholungen. Es wird also be-
hauptet, daB fiir ihre Anzahl K, ;. gilt:

n
Kni = <k> (1.27)
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Beweis:

Die Elemente von M schreiben wir uns in der durchnumerierten Reihenfolge hin
ay,az,...,ay

und markieren die Elemente a;, die zu einer bestimmten Teilmenge gehoren, durch eine darunter
geschriebene 1 und alle anderen Elemente durch 0, z.B.

a, az, as, 44, d4as, de, daj, ag
0 1 1 0 1 0 1 1

fir n = 8 und k = 5. Unsere Teilmenge besteht hierbei aus a», a3, as, a7, ag. Auf diese Weise
entspricht jeder Teilmenge von M genau ein n-Tupel aus k Einsen und m = n — k Nullen. Nach
dem letzten Beispiel in Abschn. 1.2.3 gibt es aber genau (Z) solcher n-Tupel, also gibt es auch
ebenso viele k-elementige Teilmengen von M. O

Beispiel 1.17:

Das Lotto (6 aus 49) ist fiir Kombinationen ohne Wiederholung wohl das bekannteste und fiir
viele Menschen das aufregendste Beispiel. Unsere Uberlegungen zeigen, daf3

4 49 . 48 - 47 - 46 - 45 - 44
(9)= 948 0-45-4% _ 13983816

6 1-2-3-4-5-6
verschiedene » Tippreihen« beim Lotto méglich sind, also fast 14 Millionen. Die Chance, 6 »Rich-

tige« zu haben, ist daher recht klein.

Folgerung 1.10:

Eine n-elementige Menge hat genau 2" Teilmengen.

Beweis:

Es gibt <Z> k-elementige Teilmengen in der Menge, also insgesamt

6+ ()= G+ () ()

Teilmengen der Menge. Die hingeschriebene Summe ist aber nach der binomischen Formel
gleich (1 + 1)* = 2", O

Ubung 1.18:

Aus Apfeln, Orangen und Bananen soll ein Obstsalat gemacht werden. Dabei sollen genau 10
Friichte verwendet werden, aber von jeder Sorte hochstens 5. Wieviele verschiedene Obstsalate
sind auf diese Weise moglich? (Guten Appetit).
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1.2.7 Kombinationen mit Wiederholungen

Sechste Grundaufgabe: Aus n Elementen ay, as, . . ., a, sollen Gruppierungen von k Elementen
gebildet werden, wobei jedes Element mehrfach in einer Gruppierung auftreten darf, bis zu k-mal.
Auf die Reihenfolge der Elemente kommt es dabei nicht an. Wieviele solcher Gruppierungen sind
moglich? Antwort:

k+n-—1
< X ) (1.28)

Gruppierungen der beschriebenen Art werden Kombinationen zur k-ten Klasse mit Wiederholun-
gen genannt und ihre Anzahl mit K,  bezeichnet. Es wird somit behauptet:

_ k+n—1
Knx= < L ) (1.29)

Beispiel 1.18:
Wieviele verschiedene Wiirfe sind mit 3 Wiirfeln moglich, wobei es auf die Reihenfolge der
Wiirfel nicht ankomme. Hier ist k = 3 und n = 6, also gibt es

k+n—1 8\ 8-7-6
( k )‘(3)_1-2-3_56

verschiedene Wiirfe.

Da es auf die Reihenfolge der Elemente einer der genannten Gruppierungen nicht ankommt,
konnen wir sie etwa nach aufsteigenden Indizes anordnen, z.B.

(a1, a2, az, as, a7, ag, ag) .

Solche k-Tupel nennen wir monotone k-Tupel. Damit 146t sich die sechste Grundaufgabe auch
so formulieren:

Wieviele monotone k-Tupel lassen sich aus n durchnumerierten Elementen ay, aa, ..., aj,
bilden?
Beweis:
k+n—1

Von (1.29): Um einzusehen, daf die von uns gesuchte Anzahl gleich ( s ) ist, fassen wir ein
Beispiel ins Auge, etwa mit » = 5 und k = 7. Ein monotones 7-Tupel aus ay, az, az, a4, as ist
also z.B. durch

(a1, a1, a1, a3, a4, as, as)

gegeben. Wir wollen dies etwas umdeuten, und zwar folgendermalen: Wir denken uns fiinf Ka-
sten, von 1 bis 5 durchnumeriert. Die drei Elemente a; sollen bedeuten, daf3 im Kasten 1 drei
Kugeln liegen, a3 bedeute, dafl im Kasten 3 eine Kugel liegt, usw. Damit entspricht unser 7-Tupel
folgendem Bild (Fig. 1.12):
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‘OOO| ‘o‘oiool
1 2 3 4 5

Fig. 1.12: Kisten mit Kugeln

Lasse ich aus diesem Bild alles weg mit Ausnahme der Kugeln und der Zwischenwinde der
Kisten, so entsteht folgendes:

ooo| | o | o ‘oo
Fig. 1.13: Umdeutung

Sieh da! Dies schaut doch sehr nach einer Reihenfolge von 7 Nullen und 4 Einsen aus! Davon
gibt es aber genau

(5")

nach Abschn. 1.2.3, allgemeiner; wegen k =7, n = 5:

)

Dies ist die gesuchte Anzahl monotoner k-Tupel. (|

Fig. 1.14: Urne mit Kugeln

1.2.8 Zusammenfassung

Die letzten vier Grundaufgaben lassen sich iibersichtlich am Beispiel einer Urne mit Kugeln
darstellen. Und zwar stellen wir uns eine Urne oder einen Topf vor, in dem n durchnumerierte
Kugeln liegen. In Fig. 1.14 ist n = 10. Aus ihr sollen £ Kugeln entnommen werden, z.B.: k = 4.
Wir sprechen von einer Stichprobe von k Kugeln. und zwar von einer geordneten Stichprobe,
wenn es uns auf die Reihenfolge der herausgenommenen Kugeln ankommt; von einer ungeord-
neten Stichprobe, wenn es nicht auf die Reihenfolge ankommt. Also
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geordnete Stichproben = Variationen

ungeordnete Stichproben = Kombinationen
Wir stellen uns nun zwei Gedankenversuche vor.

(1) Im ersten Versuch nehmen wir nacheinander aus der Urne k verschiedene Kugeln.

(2) Beim zweiten Versuch entnehmen wir der Urne eine Kugel, notieren ihre Nummer und
legen sie dann zuriick. Dann entnehmen wir der Urne wieder eine Kugel, notieren ihre
Nummer und legen sie zuriick. So fahren wir fort bis zur k-ten Kugel. Hierbei kann es
daher passieren, daf} die gleiche Kugel mehrmals gezogen wird.

Beim zweiten Versuch sprechen wir von Stichproben mit Zuriicklegen. Beim ersten Versuch
entsprechend von Stichproben ohne Zuriicklegen. Bei Zuriicklegen konnen also Wiederholungen
von Kugeln auftreten. Wird nicht zuriickgelegt, so treten keine Wiederholungen auf.

ohne Zuriicklegen entspricht ohne Wiederholungen
mit Zuriicklegen entspricht mit Wiederholungen

Somit entsteht folgende Tabelle, wobei von n Elementen bzw. Kugeln ausgegangen wird:

Variationen zur k-ten Klasse ohne Wiederholungen Kombinationen zur k-ten Klasse ohne Wiederholungen

geordnete Stichproben von k Kugeln ohne Zuriicklegen. ungeordnete Stichproben von k Kugeln ohne Zuriicklegen.

! Anzahl: K "
=k nzat: Bak = g

Variationen zur k-ten Klasse mit Wiederholungen Kombinationen zur k-ten Klasse mit Wiederholungen

Anzahl: V, ; =

geordnete Stichproben von k£ Kugeln mit Zuriicklegen. ungeordnete Stichproben von k£ Kugeln mit Zuriicklegen.

vk — k—1
Anzahl: V,  =n Anzahl: K,y = (n +k >

In diese Vier-Felder-Tafel ordnen sich die Permutationen (1. Grundaufgabe) ein als spezielle
Variationen zur k-ten Klassen ohne Wiederholungen, ndmlich fiir den Fall k = n.

Die Permutationen mit Identifikationen dagegen gehen iiber dieses Schema hinaus. Thre An-
zahl ist

n!

_ 1.30
kilky!. . . k! ( )

(siehe Abschn. 1.2.3). Man kann aber alle librigen Fille, ausgenommen Variationen mit Wie-
derholungen, als Spezialfille von Permutationen mit Identifikationen ansehen, wenn man sie
geeignet interpretiert.
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1.3 Funktionen

1.3.1 Beispiele

Viele Vorginge in Naturwissenschaft und Technik werden durch »Funktionen« beschrieben.

Beispiel 1.19:

Die Gleichung
s=52 mit g=9812 (1.31)
2 s2

beschreibt den freien Fall: LBt man einen Korper fallen (z.B. einen Schliissel von einem Turm
(s. Fig. 1.15), so ist er nach ¢ Sekunden s Meter gefallen. (Dies ist streng genommen nur im
Vakuum richtig. Der Wert g = 9,81 sz gilt fiir Mitteleuropa.)

Fig. 1.15: Zum Fallgesetz

Fiir jede Falldauer ¢t konnen wir nach obiger Gleichung die Fallstrecke s berechnen. Es ist also
eine Vorschrift gegeben, die jedem ¢ > 0 eine bestimmte Zahl s zuordnet. Eine Vorschrift dieser
Art nennt man eine Funktion.

Beispiel 1.20:

In einem Stromkreis mit einer Spannungsquelle von U = 220 Volt und einem Widerstand R ist
die Stromstirke

I =—. 1.32
R (1.32)
Man erkennt: Je kleiner der Widerstand R, desto grofler die Stromstirke /. (U = 220 Volt

sei konstant dabei). Die Gleichung ordnet jedem Widerstand R eine Stromstirke / zu. Es liegt
wieder eine Funktion vor.
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P4 a
u=220V
=e
r
h
LR |
Widerstand
Fig. 1.16: Stromkreis Fig. 1.17: Gleisbogen

Beispiel 1.21:

Es sei ein Gleisbogen gegeben, der Teil eines Kreisbogens ist. (Gemeint ist dabei die Mittellinie
zwischen den beiden Schienen des Gleises.) Wie grof} ist der Durchmesser y des Kreises? Wir
denken uns dabei zwischen zwei Punkten Pj, P> des Gleises eine Verbindungsstrecke gezogen.
Der Mittelpunkt M der Strecke habe vom Gleis den Abstand x (s. Fig. 1.17). Die Entfernung
zwischen M und Pj sei a. Die Lingen x und a seien gemessen worden, z.B. a = 10m, x =
0,75m. Den noch unbekannten Radius des Kreises nennen wir r. Wendet man den Satz des
Pythagoras auf das schraffierte Dreieck in Fig. 1.17 an, so erhélt man

r2=a2+(r—x)2, also 2 =a’+r*—2rx +x>.

Hier fillt 7% heraus. Auflésen nach 2r = y ergibt

2

a
y=—+x. (1.33)
X

Dies ist die Berechnungsvorschrift fiir den Kreisdurchmesser y. Nimmt man a als fest an (was un-
ter Verwendung eines Bandmafles konstanter Lange realistisch ist), so stellt die obige Gleichung
eine Funktion dar, die fiir jedes x € (0, a] den Durchmesser y liefert.

(Da x normalerweise sehr klein gegen a?/x ist, kann niherungsweise mit y &~ a?/x gerechnet
werden. So wird in der Praxis auch héufig verfahren.)

Man beschreibt eine Gleichung wie (1.33) auch abgekiirzt durch

y=f)

1.3.2 Reelle Funktionen einer reellen Variablen

Den Beispielen des vorigen Abschnitts ist gemeinsam, daf} jeweils eine Vorschrift gegeben ist,
die bestimmten reellen Zahlen andere Zahlen eindeutig zuordnet. Solche Vorschriften heiflen
Funktionen. Wir prizisieren dies in der folgenden
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Definition 1.1:
Eine Vorschrift, die jedem x aus einer Menge A C R genau ein y aus einer Menge
B C R zuordnet, heifit eine Funktion von A in B. Funktionen von A in B werden
symbolisiert durch

f:A—-> B, g:A— B,

Istder Zahl x € A durch die Funktion f : A — B die Zahl y zugeordnet so beschreibt
man dies durch

y = f(x) sprich: »y gleich f von x«.

y heillt Funktionswert oder Bildpunkt von x, x heillt Argument oder Urbildpunkt von
y beziiglich f. Gelegentlich wird x auch unabhdingige Variable der Funktion genannt,
insbesondere dann, wenn x noch nicht zahlenméaBig festgelegt ist, sondern als »Platz-
halter« fiir reelle Zahlen aus A aufzufassen ist. y heifit in diesem Zusammenhang
abhdngige Variable von f.

Die Menge A wir der Definitionsbereich oder Urbildbereich von f genannt, wih-
rend B der Bildbereich von f heilt. Als Wertebereich von f bezeichnet man die Men-
ge aller Funktionswerte f(x), mit x € A. Er wird durch f(A) symbolisiert.

Natiirlich gilt f(A) C B, doch braucht f(A) nicht gleich dem Bildbereich B zu sein.
Z.B. kommen bei der Funktion f : R — R, definiert durch

y=rw =y (139

als Funktionswerte alle y > 0 vor. Negative Funktionswerte f(x) treten nicht auf. Der Wertebe-
reich f(R) ist also das Intervall [0, co), wihrend als Bildbereich R angegeben ist.

Zur Beschreibung von Funktionen f : A — B wird neben
y=... oder f(x)=...
auch folgende Symbolik verwendet:
fix—>...eB%  xecA

wobei B weggelassen werden darf, wenn B = R ist.

Beispiel 1.22:
Die Funktion f : [0, co) — R, definiert durch

16 Sprich: »x wird abgebildet auf f(x)«
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wird auch in der Form

fixm—Jx—1, xel0,00)
beschrieben. Im iibrigen gilt folgende

Faustregel: Wie man eine Funktion beschreibt, ist vollig gleichgiiltig, sofern nur daraus klar
hervorgeht, was der Definitionsbereich ist, was der Bildbereich ist, und wie die Zuordnungs-
vorschrift lautet!

Die in diesem Abschnitt beschriebenen Funktionen nennt man auch ausfiihrlicher »reelle Funk-
tionen einer reellen Variablen« , womit ausgedriickt wird, dal Funktionswerte und Variable reelle
Werte annehmen.

Ubung 1.19:

Die folgenden Funktionsvorschriften beschreiben reellwertige Funktionen einer reellen Varia-
blen x. Gib die grotmoglichen Definitionsbereiche und die zugehorigen Wertebereiche dazu
an!

14+x x2
@ fx)=+vx—-1, (b) g(x)=m7 ©) h<x>:1+x2

1.3.3 Tabellen, graphische Darstellungen, Monotonie

Um uns einen Uberblick iiber eine gegebene reelle Funktion f : A — B zu machen, ist es
zweckmaiBig, fiir einige Zahlen x aus A die zugehorigen Funktionswerte y = f(x) zu ermitteln
und sie in einer Tabelle zu ordnen. (Mit Taschenrechnern oder Computern ist das heute eine
Kleinigkeit.)

Fiir die Funktion f : R — R, beschrieben durch

y=f(x)=x*

sind in der Tabelle 1.2 einige Werte zusammengestellt. (Da (—x)*> = x? ist, geniigt es, positive
x-Werte zu betrachten.)

Tabelle 1.2: f(x) = x2

X y=x% x y=x% x y=x2
0 0 0,8 0,64 1,8 324
0,2 0,04 1,2 144 2,0 4,00
04 0,16 1,4 1,96

0,6 0,36 1,6 2,56

AnschlieBend kann man die in der Tabelle ermittelten Zahlenpaare (x, y) als Punkte in einem
ebenen Koordinatensystem deuten und sie dort eintragen. Dann verbindet man diese Punkte in
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der Reihenfolge aufsteigender x-Werte durch eine Linie, die zwischen benachbarten Punkten ge-
radlinig oder schwach gekriimmt ist. Auf diese Wiese erhilt man ein Schaubild (auch Diagramm
genannt) der Funktion f (s. Fig. 1.18). Es spiegelt die Funktion umso genauer wieder, je mehr
Punkte man dazu verwendet, und je genauer man sie skizziert (etwa auf Millimeterpapier).

y

y=x2

X
I | »
T 1 L

-1 0 1

Fig. 1.18: Schaubild von f(x) = x?2

Mit geeigneten Computerprogrammen kann man Schaubilder von Funktionen bequem auf
dem Bildschirm oder Plotter erzeugen.

Die gezeichnete Linie stellt den Graphen der Funktion dar. Unter dem Graphen einer Funktion
f + A — B versteht man, prizise gesagt, die Menge aller Paare (x, y) mit y = f(x), x € A. Der
Graph von f wird durch graph(f) symbolisiert, in Mengenschreibweise also

graph(f) ={(x,y) [ y = f(x) und x € A}.

Fig. 1.18 zeigt den Graphen der Funktion f(x) = x2, f : R — R, allerdings nur teilweise, da er
sich ja beliebig weit nach oben und seitwirts erstreckt. Der Graph dieser Funktion hat die Form
einer »Parabel« .

Beispiel 1.23:
Die durch
f(x)=3x—1

beschriebene Funktion f : R — R ist in Fig 1.19 skizziert. Ihr Graph ist offenbar eine Gerade

durch die Punkte (0, —1) und (%,0), die man erhdlt durch f(0) = —1und0 = f(x) =3x—1 =

_1
X—3.

Beispiel 1.24:
Die Gleichung

1
y=fx)=-
X

beschreibt eine Funktion, die nur fiir x 7# 0 erklart ist, d.h. es ist f : R\ {0} — R. Ihr Graph,
s. Fig. 1.20, ist eine »Hyperbel«
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y=3x-1

Fig. 1.19: f(x) =3x — 1 Fig. 1.20: Hyperbel f(x) = 1

Beispiel 1.25:
Unsere Funktion

Cl2

f&)=—+x, f:0,a] >R, a=20,
x

Aus Beispiel 1.21 (Kriimmungsdurchmesser) ist in Fig. 1.21 skizziert. Sie ist natiirlich nur fiir
0 < x < a zur Berechnung von Kriimmungsdurchmessern sinnvoll, wie die geometrische Her-
leitung in Beispiel 1.21 ergibt. In Fig. 1.21 wurden die MaBeinteilungen auf den beiden Achsen
verschieden gewihlt. Man sieht, daB dies zweckm:iBig sein kann. wenn man die Ubersichtlichkeit
erhohen will

Beispiel 1.26:
Da Funktionsgraphen als geometrische Figuren skizziert werden konnen, kann man auch umge-
kehrt versuchen, geometrische Figuren durch Funktionen zu beschreiben, wie z.B. die Kreislinie.
Man muB sich allerdings auf einen Halbkreis beschrianken, s. Fig. 1.22, da beim Vollkreis die
Eindeutigkeit der Funktion verletzt wére.

Wir gehen aus von einem Halbkreis mit dem Koordinatenschnittpunkt als Mittelpunkt und
mit dem Radius 1 (s. Fig. 1.22). Fiir jeden Punkt (x, y) auf dem Halbkreis gilt offenbar nach
»Pythagoras«

x2 4 yz —1,
wobei —1 < x < 1,0 <y < 1ist. Auflosen nach y ergibt

y=+v1—x2.
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Fig. 1.21: Zur Berechnung von Gleisdurchmessern

Diese Gleichung beschreibt die Funktion f : [—1,1] — R, deren Graph der Halbkreis in
Fig. 1.22 ist.

Funktionen brauchen nicht unbedingt durch Formeln beschrieben zu werden, wie die folgen-
den Beispiele zeigen.

Ay
=./1-x2

A B

¥x

Fig. 1.22: Halbkreis Fig. 1.23: Heaviside-Funktion: Einschaltvorgang

Beispiel 1.27:
Durch

1, fallsx >0,

y=J®= {0, falls x < 0

ist eine Funktion f : R — R angegeben, deren Graph aus zwei waagerechten Halbgeraden
besteht, s. Fig. 1.23. Sie beschreibt einen Einschaltvorgang: Zur Zeit x < 0 ist die Spannung y



1.3 Funktionen 49

an einer Spannungsquelle 0. Zur Zeit Null wird eingeschaltet, die Spannung springt auf 1 Volt
und verbleibt in dieser Hohe fiir alle Zeiten x > 0. Die beschriebene Funktion heiBt Heaviside!” -
Funktion.

Beispiel 1.28:
Entsprechend ist durch
2, wennn <x <n++ 1, n gerade,
fx) = s

0, wennn <x <n+ 1, nungerade

(n ganzzahlig) eine Funktion gegeben, die sogenannte »Rechteckimpulse« darstellt, s. Fig. 1.24.
Auch diese Funktion spielt in der Elektrotechnik eine Rolle.

n

1
|
|
|

— —
I
|
1%
4

Y S

-4 =3 =2 =10
Fig. 1.24: Rechteckimpulse
SchlieBlich eine ziemlich verriickte Funktion:

Beispiel 1.29:
1, falls x rational,

fx) =

0, falls x irrational,

mit 0 < x < 1, beschreibt eine Funktion f : [0, 1] — R, deren Graphen man nicht einmal
skizzieren kann. Oder konntest du es, lieber Leser? Trotzdem handelt es sich hier um eine Funk-
tion, denn es liegt eine klare Vorschrift vor, die jedem x € [0,1] genau einen Funktionswert f(x)
zuordnet. Und das ist das Wesentliche!

Die grafische Darstellung von Funktionen kann auch auf andere Weise geschehen als im recht-
winkligen Koordinatensystem. Dazu fithren wir zunichst einen wichtigen Begriff ein.

Definition 1.2:

Eine Funktion f : A — B (A, B C R) heilit monoton steigend, wenn fiir alle x1,
X2 € Amitx; < xp gilt:

fx) < fx2). (1.35)

17 Oliver Heaviside (1850—1925), englischer Mathematiker und Physiker
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f heilt streng monoton steigend, wenn sogar f(x1) < f(x2) statt (1.35) gilt.

Entsprechend wird monoton fallend und streng monoton fallend erklirt. Hierbei
ist f(x1) > f(x2) bzw. f(x1) > f(x2) anstelle von (1.35) zu setzen. Alle diese
Funktionen heiflen monotone Funktionen.

Die Funktionen der Beispiele 1.22 und 1.26 sind monoton steigend, die Gerade im Beispiel 1.22

sogar streng. Dagegen ist die Kriimmungsdurchmesserfunktion im Beispiel 1.24 streng monoton
fallend.
Funktionsleitern: Ist f : I — R eine streng monotone Funktion auf einem Intervall I, wie
z.B. in Fig. 1.25a, so kann man die x- und y-Achse zusammenfallen lassen, etwa zu einer senk-
rechten Geraden, s. Fig. 1.25b. Dabei markiert man links an der Geraden die y-Werte in normaler
Anordnung, d.h. wie bei der reellen Achse iiblich. Rechts markiert man die jeweiligen Urbilder x
der y-Werte, wie es Fig. 1.25b deutlich macht. Eine solche Darstellung der Funktion nennt man
Funktionsleiter.

y & y A x
- 30 304
— > -4
20 + % 20+2 i
' 4+ __1—» }o + 100
L 10 | | 10 :
I I » T 50
i md ooy o gl -
-4 1 -2 0 2 4 x [
' J
: L~ 10 -1o| £ 10
| ' s
| L - 20 -20 [ 5
= I
a) b) ik

Fig. 1.25: Monotone Funktion mit Funktionslei-
ter

Fig. 1.26: Funktionsleiter von y = logx
Gelegentlich wird auch die Markierung der y-Werte weggelassen, insbesondere dann, wenn
kein Zweifel iiber die Lage von y = 0 und y = 1 besteht. Man kann dann durch Anlegen eines
Lineals mit MeBskala die y-Werte jederzeit bekommen.
Ein Beispiel dafiir ist die Logarithmusfunktion!8, s. Fig. 1.26, deren Funktionsleiter auf Loga-
rithmuspapier vorkommt.

Ubung 1.20:
Skizziere die Funktionsleiter der Funktion f : [—2,2] — R, die durch f(x) = x3 definiert ist.

18 s. Abschn. 2.4.3
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1.34 Umkehrfunktion, Verkettungen

Durch die Gleichung
L 1
= —X —
)

ist eine Funktion f : R — R beschrieben, deren Graph eine Gerade ist, s. Fig. 1.27a. Lost man
die Gleichung nach x auf, so folgt

x=2y+2.

Wir konnen dies als eine Funktion deuten, die jedem y € R ein x € R zuordnet. Diese Funktion
heiBt Umkehrfunktion von f, beschrieben durch f~! : R — R. Die beiden Funktionsgleichun-
gen, durch f und f -1 ausgedriickt, lauten also

y=fx); x=f1,

s. Fig. 1.27a), b).

Es ist auch naheliegend, das eine als »Umkehrung« des anderen zu bezeichnen. Inx = f~!(y)
werden die Bezeichnungen x und y auch gelegentlich wieder vertauscht, so daf} die Umkehrfunk-
tion durch y = f~!(x) beschrieben wird. Man kann sie so in das gleiche Koordinatensystem wie
f einzeichnen, s. Fig. 1.27c¢).

Nicht jede Funktion hat eine Umkehrfunktion. Um dies zu erldutern, vereinbaren wir folgende

Definition 1.3:
Essei f : A — B eine Funktion.

(a) f heiBit injektiv, wenn verschiedene Argumente x;, xo € A verschiedene Bild-
punkte f(x1), f(x2) haben, d.h. wenn gilt:

X1 #Fx2= fx1) # f(x2).

(b) f heilt eine Funktion von A auf B, oder kurz: surjektiv, wenn der Wertebereich
f(A) von f gleich dem Bildbereich B ist, also

f(A)=8B.

(c) f heilit bijektiv oder umkehrbar eindeutig, wenn f injektiv und surjektiv ist.

Beispiel 1.30:
Wir betrachten vier Funktionen (s. Fig. 1.28)

g)=— g:R>R, h(x)=x>, h:R—[0,00)),
X

fo=x*, f:R—>R, k(x)=14+x%, k:R—R.
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a) | b) I c)

Fig. 1.27: Die Umkehrfunktion von f erhilt man durch Spiegelung an der gestrichelten 45°-Geraden

—y
—

injektiv surjektiv bijektiv keine der
Eigenschaften

Fig. 1.28: Zu Beispiel 1.30:Funktionen mit verschiedenen Eigenschaften

g ist injektiv, aber nicht surjektiv, denn der Wertebereich von g ist (—1, 1), d.h. verschieden vom

Bildbereich R. £ ist surjektiv, da es zu jedem y € [0, o) mindestens ein x gibt mit y = x2,

namlich x = ,/y. Jedes y > 0 hat zwei Urbildpunkte: x = ,/y und x" = —_/y. Es gilt daher
x # x', aber h(x) = h(x’), d.h. h ist nicht injektiv! f ist offenbar bijektiv, wihrend k keine der
genannten Eigenschaften hat (armes k).

Damit konnen wir den Begriff der »Umkehrfunktion« prézise fassen.

Definition 1.4:

Essei f : A — B bijektiv, d.h. jedes y € B hat genau ein Urbild x beziiglich f.
Diejenige Funktion, die jedem y € B gerade das Urbild x beziiglich f zuordnet, heif3t
die Umkehrfunktion von f, symbolisiert durch f~!: B — A.

Man kann diesen Sachverhalt auch kurz so ausdriicken: Fiir alle x € A gilt:

y=fx)ex= "
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Durch Einsetzen gewinnt man die Gleichungen

y=f(f""() firalle yeB,
x=fY(f(x) firalle xeA.

Man kann also sagen: f und f~! »heben sich auf« , wenn sie nacheinander angewandt werden.
Der Graph der Umkehrfunktion y = f!(x) entsteht durch Spiegelung des Graphen von y = f(x)
an der Winkelhalbierenden der positiven Koordinatenachsen (s. Fig. 1.27).

Wir ziehen die unmittelbar einsichtige

Folgerung 1.11:
Jede streng monotone Funktion f : A — B von A C R auf B C R besitzt eine
Umkehrfunktion.

Verkettungen: Will man einen Funktionswert der Funktion

y=hx)=vx2+1, h:R—R,

ausrechnen, so hat man zuerst z = x2 + 1 zu berechnen und dann y = 4/z. FaBt man diese
Gleichungen als Funktionsgleichungen

z=gx) =x>+1,
x=fx) =4z,

auf, so wire

y=hx) = f(gx)).

Man spricht von einer Verkettung der Funktionen g und f auf der rechten Seite der Gleichung.

Definition 1.5:
Sindg: A — Bund f: B— C zwei Funktionen, so ist durch

y=f(gkx), xecA,

eine neue Funktion gegeben, die A in C abbildet. Sie wird mit f o g bezeichnet und
Verkettung (Komposition, Hintereinanderausfiihrung) von g und f genannt.

Die Funktion f o g : A — C ist also gegeben durch die Gleichung

(fog)x) = f(gx)).

f o g spricht man » f nach g « aus.
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Beispiel 1.31:
Ist g(x) = 3x* +2und f(z) = 1/z soist
1 1

(fog)x) = f(gx)) = % = m-

Ganz einfach!

Ubung 1.21:
Berechne die Umkehrfunktionen der folgenden Funktionen und skizziere sie.
@ y=fx)=2a—-5 f:R->R,

1
® y=g =\ ¢ R\{1} >R\ (-1}

© y=hkx)= h:R— (—1,1)

L+ [x|”

1.3.5 Allgemeiner Abbildungsbegriff

Wer hindert uns eigentlich, den Funktionsbegriff auf beliebige Mengen zu iibertragen? Sicherlich
niemand. Denn von der Tatsache, daf3 Definitions- und Bildbereiche aus reellen Zahlen bestehen,
wurde in Def. 1.1 kein Gebrauch gemacht. Wir definieren daher Funktionen) auch Abbildungen
genannt, auf beliebigen Mengen. (»Funktion« und »Abbildung« bedeuten vollkommen dasselbe.
Gewohnheitsméfig spricht man aber in der Analysis bei reellen Bildbereichen von Funktionen
und sonst von Abbildungen.)

Im Folgenden seien A, B, C beliebige Mengen (z.B. endliche Mengen, Teilmengen des R",
Punktmengen der Geometrie oder sonstige).

Definition 1.6:
Eine Vorschrift, die jedem x aus einer Menge A genau ein y aus einer Menge B zu-
ordnet, heillt eine Abbildung (oder Funktion) von A in B. Abbildungen von A in B
werden symbolisiert durch

f:A—>B, g:A—>B

Ist dem Element x € A durch die Abbildung f : A — B das Element y € B
zugeordnet, so schreibt man

y=fx).

v heiit Bildpunkt von x und x Urbildpunkt von y beziiglich f. A heillt Definitions-
bereich (oder Urbildbereich) und B Bildbereich von f. Ist C Teilmenge von A, so
bezeichnet man mit f(C) die Menge aller f(x) mit x € C. Die Menge f(A) aller
Bildpunkte von f heiflt der Wertebereich von f. Es gilt f(A) C B. Die Menge aller
Paare (x, y) mit y = f(x) heilt Graph von f, symbolisch: graph( f).
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Fig. 1.29: Eine Funktion bei endlichen Mengen

Zur Veranschaulichung einer Abbildung f : A — B, wobei A und B endliche Mengen sind,
kann man wie in Fig. 1.29 vorgehen: Man zeichnet zunéchst Pfeile von den Urbildpunkten A zu
den jeweiligen Bildpunkten B. Abbildungen im R"” behandeln wir in den Abschnitten 6.

Ubung 1.22:

Esseien f : A — Bund g : B — C zwei Abbildungen, deren Komposition go f : A — B
bijektiv ist. Zeige, dal f : A — B injektivistund g : B — C surjektiv. Man mache sich klar,
dal dabei weder f noch g bijektiv zu sein brauchen, d.h. gib ein Beispiel an, bei dem weder f
noch g bijektiv sind, sehr wohl jedoch g o f. (Es geniigt, dazu Mengen A, B, C zu betrachten,
die nicht mehr als drei Elemente haben.)

14 Unendliche Folgen reeller Zahlen

Bei unendlichen Folgen treten uns zum ersten Male die Begriffe Konvergenz und Grenzwert ent-
gegen. Folgen erweisen sich spiter als unentbehrliche Hilfsmittel fiir hohere Grenzwertbildun-
gen, wie beim Differentialquotient, beim Integral, bei Potenz- und Fourierreihen. Damit stehen
sie am Anfang der eigentlichen Analysis, die man als die »Lehre von den Grenzwertbildungen«
bezeichnen konnte.

14.1 Definition und Beispiele

Zunichst betrachten wir ein Beispiel: Setzt man in die Formel @, = 1/n* nacheinander die
natiirlichen Zahlen 1, 2, 3, 4, ... anstelle von 7 ein, so erhilt man die Zahlen

I 1 1 1

ST T TS AE s 1.36
4 9 16 25 ( )

Man spricht hierbei von einer unendlichen Folge reeller Zahlen. Allgemein:
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Definition 1.7:

Eine Vorschrift, die jeder natiirlichen Zahl n eine reelle Zahl a,, zuordnet j heift eine
unendliche Folge reeller Zahlen, kurz Folge genannt. Sie wird beschrieben durch

a,ar,az,...,dy, ... (1.37)
oder
(an)neN-

Man verwendet fiir eine Folge auch die Kurzschreibweise (a;), wenn aus dem Zu-
sammenhang klar ist, daB nichts anderes gemeint sein kann. Die Zahlen a,, der Folge
heiflen Elemente der Folge, n nennt man den Index des Folgenelementes a;,.

an

v=

ol

o

S
12345\/89

Fig. 1.30: Darstellung einer Folge als Streckenzug

Bemerkung: Eine Folge ist nichts anderes als eine Funktion a : N — R, deren Funktionswerte
a(n) in der Form a,, beschrieben werden.

Oft werden die Indizes 1, 2, 3, ...einer Folge auch durch andere ersetzt, wie z.B. 0, 1, 2, 3,

...oder 2,4, 6, .... Die Folgen erscheinen dann in der Gestalt
ap,ay,ay,...,d,

oder
ay,a4,a6, ..., , ... .

Dabei ist aber klar, welches das erste Element, das zweite) das dritte, usw. ist, so dafl mittelbar
wieder jeder natiirlichen Zahl ein Folgenelement zugeordnet ist.
Weitere Beispiele fiir Folgen sind

1111 1

Ly oo oy — e (1.38)
2 3°4°5 n

1 2 3 4 n

ST o — e, (1.39)

2’3’4’5 n+1

1,4,9,16,25,...,n2, ...

(1.40)
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—1,1,=1,1,—1,...,(=D", (1.41)

In Kurzform lauten sie

1 n 2 _1)}’!
(;)neN ) (ﬂ + 1)n€N ) (n )nEN ) (( )nEN .

Die erste dieser Folgen (1.38) nennt man iibrigens harmonische Folge. Sie hat ihren Namen aus
der Musik: Man denke sich einen Ton mit der Wellenlidnge A. Die Tone mit den Wellenldngen A,
A2, A/3, A/4, A/5, 1/6 bilden dann einen Durakkord, klingen also zusammen »harmonisch« .
Der Anfang der harmonischen Folge beherrscht also die klassische Harmonik.

14.2 Nullfolgen

Zunichst wollen wir uns mit Nullfolgen beschiftigen, d.h. Folgen, die »gegen Null streben«. Von
solch einer Folge (o), N erwarten wir sicherlich, dal man nach Wahl einer noch so kleinen Zahl
¢ > 0 ein Element «,,, der Folge finden kann, dessen Betrag noch kleiner als ¢ ist, also

log,| < €.

Verniinftigerweise werden wir noch mehr verlangen, nidmlich da8 dies auch fiir alle auf o, fol-
genden Elemente gilt, d.h.

lan| < e fiiralle n > ny.

In Fig. 1.31 ist dies dargestellt.

o

m

N 7 757
12':8 v

Fig. 1.31: Nullfolge (o)

=
(=]
Il

Von nq an liegen alle Punkte (n, «;,) in dem schraffierten Streifen der Breite 2¢. Die beschrie-
bene Sachlage fassen wir in folgender Definition zusammen:
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Definition 1.8:
Eine reelle Zahlenfolge (&, ),en Wird Nullfolge genannt, wenn man zu jedem noch so
kleinen & > 0 einen Index n¢ finden kann mit

lay| < & fiir alle n > ng.

Man sagt auch: (o), eN konvergiert gegen Null oder strebt gegen Null und beschreibt
dies durch

lim o, =0, oder: o, > 0 firn— oc.
n— o0

Beispiel 1.32:
Die harmonische Folge

I 1 1

I, =, =,...,—,
2°3 n

ist eine Nullfolge. denn zu jedem ¢ > 0 kann man sicherlich ein no finden mit 1/ng < ¢
(vgl. Abschn. 1.1.3, Folgerung 1.8). Dann gilt aber fiir alle n > ng erst recht

- <e,
n

d.h. die harmonische Folge strebt gegen Null.

Hilfssatz 1.1:
(a) Ist (o) eine Nullfolge und gilt fiir eine weitere Folge (8,):

|Bn] < |ay| firallen € N,

so ist auch (8,) eine Nullfolge.

(b) Sind («y,), (B,) zwei Nullfolgen, so erhalten wir daraus die weiteren Nullfolgen
(on +Br), (an—PBn), (an-PBn), (a;li) und (coy)

mit beliebigen Konstanten ¥k € Nund c € R.

Beweis:

(a) Nach Voraussetzung gibt es zu beliebigem ¢ > 0 einen Index ng mit |o,| < ¢ fiir alle
n > ng. Wegen |B8,| < |o,| gilt dann auch |B,| < ¢ fiir alle n > ng, d.h. (8,) ist eine
Nullfolge.

(b) Zu beliebigem ¢ > 0 gibt es nach Voraussetzung ein no mit |a,| < /2 fir n > ng (denn
€/2 ist ja ebenso wie ¢ eine beliebige vorgegebene positive Zahl). Entsprechend existiert
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einny mit |8,| < ¢/2 fiirn > ny. O.B.d.A. sei ng > n1. Damit folgt
e ¢
loey &= Bl < lanl + |Bnl < §+§=8 fir alle n > nog,

d.h. (@, + Bp) und (a, — B,) sind Nullfolgen. Damit ist auch (o, + «;,) Nullfolge, ebenso
(otp + oy + o), usw., d.h. (ma,) mit beliebiger Konstante m € N ist eine Nullfolge.
Folglich ist (ca;,) mit beliebigem ¢ € R eine Nullfolge, da man nur ein m € N mitm > |c|
zu wihlen hat, womit |ca, | < |moy,| erfiillt ist, nach (a) also (c «;;) Nullfolge. Wir folgern
daraus, daB} auch («, - 8,) Nullfolge ist. Denn es gibt ein ¢ > 0 mit |o,| < c fiir alle n,
wie Fig. 1.31 sofort klarmacht. Da (cf,) Nullfolge ist, so ist wegen |«, 8, < |cB,| auch
(ot - By) Nullfolge. Damit ist aber auch (¢, - ;) Nullfolge, ebenso wie (o, - oo, - @) UsSW.,
kurz auch (a¥) fiir festes k € N. U

Mit dem Hilfssatz gewinnen wir sofort weitere Nullfolgen aus ( 1 ), z.B.

n
1 l+1
n?)’ n n?)’

Beispiel 1.33:
Die geometrische Folge

1
(c . —) mit beliebigem ¢ € R.
n

n

1,q,q2,... g ...
ist eine Nullfolge, wenn |g| < 1 gilt. Zum Beweis setzen wir

1
l+h=—.
lq]

Durch diese Gleichung ist & bestimmt. Es ist 4 > 0. Unter Verwendung der Bernoullischen
Ungleichung (1 + h)" > 1+ nh (s. Abschn. 1.1.5, Ubung 1.2) folgt daraus

n 1 1 1
lq|" = < < —.
(14 h)n 1+nh nh
1
Da <_h) (nach Hilfssatz 1.1) eine Nullfolge ist, so auch (¢"). O
n
Ubung 1.23%:

xn

Beweise, dal (
n!

) fiir jedes x € R eine Nullfolge ist.
neN

Ubung 1.24:

Die Amplitude einer geddmpften Schwingung mit der Frequenz f = 50s~1 hat zur Zeitr = 0
den Anfangswert Ag. Nach jeder Schwingungsperiode hat sich die Amplitude um jeweils 1 %
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verringert. Nach welcher Zeit ist die Amplitude auf 0,05 A abgesunken?

Ubung 1.25%:
Ein Betrieb stellt Rohre in 11 GroBen her. Das kleinste Rohr hat einen Durchmesser von 10 cm,
das grofite von 1 m. Die Zwischengrofien der Durchmesser entsprechen der Folge 10 g cm, 10
q2 cm, 10 q3 cm, ... . Wie grof} ist ¢? Berechne die Durchmesser aller Rohre! (Dividiert man

die 11 Werte jeweils durch 10 cm und rundet auf 2 Stellen, so erhélt man die Hauptwerte der
Grundreihe R10 fiir Rohre.)

143 Konvergente Folgen

Die Konvergenz einer Folge (a,) gegen eine beliebige Zahl a konnen wir leicht mit Hilfe der
Nullfolgen erklaren.

Definition 1.9:

Eine reelle Zahlenfolge (a,),cn konvergiert genau dann gegen eine reelle Zahl a,
wenn

(an — a)peN
eine Nullfolge ist.

a heif3it Grenzwert oder Limes der Folge (a,). Man beschreibt dies symbolisch durch

lim a, =a oder a, > a fir n— oo
n—o0

(sprich: »a, gegen a fiir n gegen oco«). Gelegentlich verwendet man auch die unvollstindige
Schreibweise a, — a. Das ist nur erlaubt, wenn aus dem Zusammenhang hervorgeht, dal} »fiir
n — oo« mit gemeint ist. Ferner sagt man statt »konvergiert gegen a « auch »strebt gegen a«,
»geht gegen a « oder »hat den Grenzwert a«. Jede Folge (a,) hat iibrigens hochstens einen

Grenzwert, d.h. es gibt hochstens ein a, das (a, — a) zur Nullfolge macht. Der Leser mache sich
dies selber klar.

Beispiel 1.34:

Betrachtet man die Folge (%) , so sieht man, daB fiir steigende n die Elemente sich der
n neN

1 beliebig gut ndhern. Um exakt zu priifen, ob die Folge gegen »1 konvergiert«, bilden wir die
Differenz

n —
n—+1 -

n—n-—1 . 1
T+l

1
( ) ist dabei sicherlich eine Nullfolge, d.h. <L> konvergiert gegen 1, in Kurz-
n+1 neN n+1 neN

form notiert:

n

lim =1 oder auch — 1 firn — oc.

n—oon 4+ 1 n—+1
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Erinnern wir uns an die Definition der Nullfolge, so konnen wir die Konvergenz von Folgen auch
so ausdriicken:

Folgerung 1.12:
Eine reelle Zahlenfolge (a;) konvergiert genau dann gegen a, wenn es zu jedem (noch
so kleinem) & > 0 einen Index ny € N gibt, so daB fiir alle n > n¢ gilt:

la, —al < e.

a-—-e a a+e
L

\J

Ug(a)
Fig. 1.32: e-Umgebung

Diese Formulierung ist besonders fiir theoretische Uberlegungen grundlegend. Eine andere, recht
anschauliche Formulierung erhélt man mit dem Begriff der e-Umgebung: Ist ¢ > 0, so versteht
man unter der (offenen) e-Umgebung U, (a) von a € R das Intervall

Ugla)=(a—¢e,a+¢).
Es liegt symmetrisch um a und hat die Lédnge 2¢, s. Fig. 1.32.

Folgerung 1.13:
Eine reelle Zahlenfolge (a,) konvergiert genau dann gegen a, wenn in jeder &-
Umgebung von a unendlich viele Elemente der Folge liegen, auflerhalb aber nur end-
lich viele.

Man erkennt, daf3 dies nur eine andere, sozusagen geometrische Formulierung von Folgerung 1.12
ist.

Folgen, die gegen bestimmte Grenzwerte konvergieren, heilen konvergente Folgen. Nicht
konvergente Folgen werden divergent genannt. Z.B. sind die Folgen (1.40) und (1.41) in Ab-
schn. 1.4.1 divergent.

Ubung 1.26:
Zeige: Aus

l_i)mC>O xn =a folgt nl_i)moo Vxn = Aa.

n

Dabei sei x,, > 0 fiir alle n € R vorausgesetzt. (Anmerkung: Zu zeigen ist, daB (/X — /@), eN
eine Nullfolge ist. Man benutze dazu die Gleichung (\/x, — +/a)(J/Xn + /@) = xp — a.)

14.4 Ermittlung von Grenzwerten

Eine Faustregel zum Nachweis, daf} eine Folge (a,) gegen einen Grenzwert a strebt, besteht im
Folgenden:
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Man formt |a;, — a| solange um, evtl. unter Vergro3erung, bis man einen Ausdruck o, erreicht
hat, dem man unmittelbar ansieht, dal er gegen Null strebt.

Beispiel 1.35:
3n+1 41
ap = ————
3+ 1

Einsetzen groBer n liefert a, ~ 3. Man vermutet a,, — 3 fiir n — 0o und bildet

lan — 3| =

3n+1 4on 3n+1 -3
)

2" -3 "
<.
41| 3n

Die rechte Seite (2/3)" strebt gegen 0, also folgt a, — 3 fiirn — oo.

Beispiel 1.36:
Konvergiert

an=%?

Dabei sei ¢ > 0. Fiir groBe n erhiilt man mit dem Taschenrechner fiir &/c ungefihr 1, gleichgiiltig,
wie ¢ > 0 gewihlt wird. Wir vermuten daher, daB (&/c) gegen 1 konvergiert. Zum Nachweis
bilden wir

0(,,:{'/?—1,

um zu zeigen, dal («,) gegen Null strebt. Zunichst betrachten wir den Fall ¢ > 1, also o, > 0O,
und erhalten aus obiger Gleichung durch Umformen ¢ = (1 + «;,)". Die Bernoullische Unglei-
chung ergibt damit

-1
c=04+ao)">1+na,, also c—1 znan:c— >a, >0.
n
Daraus folgt, daB («,) eine Nullfolge ist. D.h. {/c konvergiert gegen 1 fiir n — oo. Im Fall

0 < ¢ < 1 ist dies ebenfalls richtig. Und zwar kann man es auf 1/3/1/c = {/c zuriickfiihren,
wobei /1/c wegen 1/c > 1 gegen 1 strebt. Man errechnet ndmlich

1 1 1
O<1—(‘/E=<%—I>Q/E<%—I=\’/;—l—>0 firn — oo

Es gilt damit fiir alle positiven c:

lim oc=1. (1.42)

n—oQ

Zur Ermittlung von Grenzwerten sind folgende Regeln grundlegend:
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Satz 1.1:
(Rechenregeln fiir konvergente Folgen) Aus lim a, = a und lim b, = b folgt
n—>oo n—oo

lim (a, + by) = a + b, (1.43)
n—0o0
lim (a, — b,) = a — b, (1.44)
n—00
lim a, b, = ab, (1.45)
n—oo
lim 2% =2 wennb % 0 und b, + O fiir alle n. (1.46)
n—oo by, b

Beweis:
o = a, —aund B, = b, — b streben beide gegen Null. (1.43), (1.44) und (1.45) folgen damit
iiber den Hilfssatz 1.1 durch folgende einfache Rechnungen:

(an+by)—(a+b)=ao,+8,—0 fiirn — oo
(an—by)—(@a—b)y=0o,— B, —> 0 fiirn — oo
(anby) —ab = (a + ay)(b + B,) —ab = aB, + ba,, + @, B, — 0 firn — oo

Zum Nachweis von (1.46) beweisen wir einfach

1 1
Iim — = —. (1.47)
n—oo by, b
. o . 1 1 )
Mit (1.45) folgt dann nd@mlich lim a, - o =a- 5 Nun zu (1.47): Wir betrachten nur solche b,,,
n—od

n
1
fiir die —|b| < |b,| gilt, was fiir alle n > ng mit geniigend grofem ng erfiillt ist. Damit erhalten
wir (1.47) aus

1 1 b—b, b — b, .
— — | = — 0 fiirn — oc.
by, b 161D |b/2] - |b]
O
Beispiel 1.37:
Will man
4n3 — 6
a, = —————
6n3 + 2n?

auf Konvergenz untersuchen, so dividiert man Zihler und Nenner durch n* und erhilt durch
Anwendung des bewiesenen Satzes

4 2
— — = — fiirn — oo,
6 3
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da6/n* — Ound 2/n — 0.

Auf gleiche Weise erhélt man fiir

_Po-i-pln—i—...—i—Pknk
qgo+qin+...+ gink

an

mit g # 0 den Grenzwert
an — pr/qr firn — oo.

Um dies einzusehen, hat man im obigen Bruch Zihler und Nenner nur durch n* zu dividieren.
Zur Untersuchung von konvergenten Folgen sind folgende Vergleichssitze niitzlich:

Satz 1.2:
Gilta, — a, b, — bund a, < b, fiir alle n ab einem bestimmten rng, so folgt a < b.

Beweis:
Aus a, < b, firn > ng folgt 0 < b,, — a, und damit

0< lim (by —ay) = lim by — lim @y =b—a, dh.a<b.
n— 00 n— 00 n—00

Satz 1.3:
(Einschlieffungskriterium, auch Sandwich-Kriterium genannt) Gilt a, — g, b, — g
und a,, < cp < b, fir alle n ab einem bestimmten n¢, so folgt ¢, — g.

Beweis:

In jeder e-Umgebung von g liegen unendlich viele a, und b,, aber nur endlich viele auferhalb.
Damit gilt das Gleiche fiir die ¢,, die ja von den a, und b, eingeschlossen werden. Das heil3t
aber, dal} ¢,, — g gilt. U

Beispiel 1.38:
Konvergiert b, = +/1 + x" mit [x| < 1?7 Aus 1 +x" > 1 — |x|?" > 1 — |x| = & folgt

§<1+x"<2

also /8 < /1 + x" < 2. Linke und rechte Seite streben gegen 1, also gilt auch +/1 4+ x* — 1
fiir n — oo.

Teilfolgen: Aus der harmonischen Folge
1 9

1
-

g e e

| =
W | =
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konnen wir z.B. die Teilfolge

111 1
RV AL AL
bilden. Eine andere Teilfolge der harmonischen Folge ist

11 1 1
I, -, =, =, .=,
4 916 n?
Definition 1.10:
Als Teilfolge von (ay,),eN bezeichnet man jede Folge

anl ’ anz ’ an3 EERR ) ank LA ) kurZ (ank)kEN
mitn; <np <nz <...<ng<... (ngeN).
Folgerung 1.14:

Konvergiert (a,) gegen a, so konvergiert auch jede Teilfolge von (a,) gegen a.

Ubung 1.27%:

Konvergieren die folgenden unendlichen Folgen und wie lautet gegebenenfalls ihr Grenzwert?

1+ 5n% — 703 p
o — n n=123,...., bp=v5+n2.

ap = ,
"7 4500 + 703 — 10n?

14.5 Haufungspunkte, beschriinkte Folgen

Dieser Abschnitt, lieber Leser, ist theoretischer Natur. Der hier bewiesene Satz von Bolzano-
Weierstrall wird zum Beispiel fiir den Beweis des Cauchyschen Konvergenzkriteriums im néch-
sten Abschnitt gebraucht. Dieses wiederum ist niitzlich fiir viele Konvergenznachweise, wie z.B.
bei Iterationsfolgen, wie wir sie schon bei der Wurzelberechnung kennengelernt haben. Allge-
mein treten Iterationsfolgen hiufig beim Losen von Gleichungen auf (s. Newton-Verfahren).
Uber diese Gedankenkette gehen die Uberlegungen dieses Abschnitts wieder in die Praxis ein.
Der eilige Leser mag die Beweise zunéchst iiberschlagen und nur Sitze und Begriffe zur Kenntnis
nehmen.

Definition 1.11:

Eine Folge (a,),en heilit beschrinkt, wenn es ein beschrinktes Intervall [A, B] gibt,
in dem alle a, liegen, d.h.

A <a, <B firallen € N.

A heil3t eine untere Schranke der Folge. Das grofltmogliche dieser A heifit die grofite
untere Schranke oder das Infimum der Folge (a,). B heifit eine obere Schranke von
(an). Die kleinste obere Schranke wird auch das Supremum von (a,) genannt. Infimum
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und Supremum von a, werden folgendermaflen symbolisiert:

inf a, , sup ay, -
neN neN
Zum Beispiel: Die Folge —1, 1, ., (=1)" ist beschrinkt, die Folge 2 3 i, e, #,

ebenfalls. Supremum der ersten Folge ist 1, Infimum —1. Bei der zweiten Folge ist

1 n
inf -, sup
neNl’l+] 2 neNn+]

Interessant ist besonders die Tatsache, dal das Supremum von ( n
n

" 1) gleich 1 ist, obwohl alle

Elemente der Folge kleiner als 1 sind.

1,4,9, ..., n? ist ein Beispiel fiir eine unbeschrinkte Folge.
Zunichst gilt
Satz 1.4:

Jede konvergente Folge ist beschrinkt.

Beweis:
Es konvergiere (a,) gegen a. Zu beliebigen ¢ > 0, z.B. ¢ = 1, kann man daher ein n( finden
mit |a, — a,,| < € fiir alle n > ng. Die apy+1, any+2, Any+3, - - - bilden also eine beschrinkte
Teilfolge. Nimmt man die endlich vielen ay, ..., a,, hinzu, so wird die Beschrénktheit nicht
angetastet, d.h. (a,) ist eine beschrinkte Folge. (]

Die Umkehrung des Satzes ist falsch, wie das Beispiel —1, 1, —1, ..., (—1)" zeigt. Immerhin
gilt aber der folgende

Satz 1.5:

(Satz von Bolzano-Weierstraf3'®) Jede beschriinkte reelle Zahlenfolge besitzt eine kon-
vergente Teilfolge.

Beweis:

Es gibt ein Intervall [A1, B1], in dem alle a, liegen. Halbiert man dieses Intervall, d.h. zerlegt
man es in zwei Teilintervalle [A1, M], [M, B;] mit M = (A 4+ B)/2, so liegen in wenigstens
einem der beiden Teilintervalle unendlich viele a,,. Wir nennen dieses Teilintervall [A;, B>].
Halbiert man dies wieder, so liegen in wenigstens einem der Teilintervalle, [A3, B3] genannt,
wieder unendlich viele a,. Fihrt man in dieser Weise fort, so entsteht eine Folge ineinander
geschachtelter Intervalle [A1, B1] D [A2, B2] D [A3, B3] D ..., deren Lingen gegen Null stre-
ben. Nach dem Intervallschachtelungsprinzip existiert genau eine Zahl a € R, die in all diesen

19 Bernardus Placidus Johann Nepomuk Bolzano (1781 — 1848), tschechischer Philosoph, Theologe und Mathematiker
Karl Theodor Wilhelm Weierstrall (1815 —1897), deutscher Mathematiker
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Intervallen liegt. Wihlt man nun nacheinander aus jedem [Ay, B] ein a,, der Folge aus (mit
ny <np <n3<...<ng<...),sokonvergiert (a,, ),eN gegen a, was zu zeigen war. O

Definition 1.12:

Als Hdufungspunkt einer Folge (a,) bezeichnet man jede Zahl a € R, die Grenzwert
einer konvergenten Teilfolge von (a,) ist.

Anders ausgedriickt: a € R ist genau dann Haufungspunkt von (a,), wenn es zu jeder ¢-Um-
gebung U, (a) unendlich viele n € N gibt mit a, € U, (a).
Damit kann man Satz 1.5 auch so ausdriicken:

Jede beschrinkte reelle Zahlenfolge hat mindestens einen Haufungspunkt.

Unbeschriinkte Folgen: Wir wollen noch kurz auf unbeschrinkte Folgen eingehen, die natiir-
lich nicht konvergent sein konnen. Besitzt (a,) keine obere Schranke, so heilit a, nach oben
unbeschrdnkt, man beschreibt dies symbolisch durch

supa, = 0.
neN

Ist sie entsprechend nach unten unbeschrdnkt, so schreibt man dafiir

inf a,, = —00.
neN

Gilt dariiber hinaus, dal man zu jeder noch so groen Zahl M > 0 einen Index n¢ finden kann
mit a,, > M fiir alle n > ng, so driickt man dies durch

lim a, = o0
n—oQ

aus. Man sagt dafiir: (a,) strebt gegen unendlich, oder auch (a,) divergiert gegen unendlich.
Entsprechend schreibt man

lim a, = —o0,
n—oo

wenn (—a,) gegen unendlich strebt.
Zum Beispiel ist

lim 2" = o00.
n—oo

Fiir —2, 2%, =23, ..., (=2)", ... jedoch gilt

inf (=2)" = —o0 und sup(—2)" = o0,
neN neN

wihrend diese Folge weder gegen oo noch gegen —oo strebt.
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1.4.6 KonvergenzKkriterien

Wie kann man erkennen, ob eine vorgelegte Folge konvergiert, insbesondere dann, wenn man
Konvergenz vermutet, aber den Grenzwert nicht kennt? Das Monotoniekriterium und das Cauchy-
sche Kriterium lassen sich zur Beantwortung heranziehen. Zunichst definieren wir monotone
Folgen.

Definition 1.13:
Eine Zahlenfolge (a,) heilit genau dann monoton steigend. wenn

ag<ap<a3=<..., dh a, <apy; firallen eN, (1.48)
erfiillt ist. Sie heilt monoton fallend, wenn
ap>ay>a3>..., dh a, >a,y firallen e N. (1.49)

Man nennt die Folge streng monoton steigend, falls in (1.48) < statt < stehen darf.
Entsprechend ist (a;) streng monoton fallend, wenn in (1.49) > statt > stehen darf.
In jedem der genannten Fille liegt eine monotone Folge vor.

Satz 1.6:
(Monotonie-Kriterium) Jede beschrinkte monotone Folge konvergiert.

Beweis:

Ist die Folge (a,) beschrinkt und monoton steigend, so konvergiert sie offenbar gegen s =
sup a,; bei »monoton fallend« entsprechend gegen i = inf a,. t
neN neN

Das Monotoniekriterium ist in konkreten Anwendungen das wohl am meisten verwendete
Hilfsmittel zur Konvergenzentscheidung. Dazu ein Beispiel:

Beispiel 1.39:

1
Esseia, =1+ TR TR T s Die Folge (ay,) ist sicherlich streng monoton steigend. Ist
n

die Folge auch beschrinkt? Ja, denn es gilt

1 1 - 1 1
n! 1-2:3.-....on " 1-2.....2 21’
—
n Faktoren

also mit Hilfe der geometrischen Summenformel

N
11 1 1‘(2) 1

an <1+ 1+§+?+...+F =1+ [ _ 1 <1+1_l=3-

2 2

3 ist damit eine obere Schranke der Folge, wihrend 1 eine untere Schranke ist. Die Folge ist
daher beschriankt und monoton, woraus nach Satz 1.6 ihre Konvergenz folgt. Der Grenzwert
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dieser Folge wird e genannt. Man errechnet numerisch

e =2,71828183.20

Wihrend das Monotoniekriterium in praktischen Fillen hédufig zu Rate gezogen wird, ist das
folgende Cauchysche Konvergenzkriterium fiir theoretische Konvergenzuntersuchungen wichtig.

Satz 1.7:

(Cauchysches®! Konvergenzkriterium) Eine Folge (an),cn konvergiert genau dann,
wenn folgendes zutrifft:

Zu jedem & > 0 gibt es einen Index ng,
so daB fiir alle Indizes n, m > ng gilt: (1.50)

la, —apm| < e.

Bemerkung: Das Kriterium besagt im Prinzip, daf} eine Folge genau dann konvergiert, wenn die
Differenzbetrige der Elemente beliebig klein werden, falls die Indizes nur geniigend grof3 sind.
(1.50) heiBt Cauchy-Bedingung oder e-no-Bedingung.

Beweis:
(D (a,) konvergiere gegen a. Wir wollen zeigen, dafl die Cauchy-Bedingung (1.50) erfiillt ist:
Zu jedem &g > 0 existiert ein no mit |a, — a| < &g fiir alle n > ng. Fiir alle n, m > ng gilt dann

lan — am| < lan —al + |a — an| < €0 + €0 = 2¢0 .

Schreiben wir & = 2¢gq, so ist damit die Cauchy-Bedingung erfiillt.

@) (a,) erfille die Cauchy-Bedingung. Es soll gezeigt werden, dal (a,) konvergiert. Dazu
zeigen wir im ersten Schritt, da3 die Folge (a,) beschrinkt ist. Nach dem Satz von Bolzano-
Weierstral hat (a,) dann einen Haufungspunkt a. Im letzten Schritt beweisen wir, daf (a,) gegen
diesen Haufungspunkt konvergiert.

1. Schritt: Zu einem fest gewéhlten g9 > 0, etwa g9 = 1, gibt es ein ng mit |a,, — a,| < &g fir
alle m > n > ng. Es folgt speziell fiir n = ny:

80>|am_an0|2|am|_|ano| = 80+|an0|>|am|~

D.h. die Teilfolge (a,,) mit m > ng ist beschriinkt. Nimmt man die fehlenden aj, . . ., a,, hinzu,
so bleibt die Beschrinktheit erhalten. (a,,) ist also beschrinkt.

2. Schritt: Es existiert damit ein Hiufungspunkt a der Folge (a,), d.h. es gibt eine Teilfolge
(an, )keN von (ay), die gegen a konvergiert. Zu beliebigen ¢’ > 0 gibt es also ein ko mit

lay, —a| <& fiiralle k > ko.

20 = bedeutet »gleich im Rahmen der Rundung«
21 Augustin Louis Cauchy (1789 —1857), franzosischer Mathematiker
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Ferner existiert ein n¢ mit
|an — am| < & fiir alle m, n > ny.

Dabei kann man ng sicherlich so grol wihlen, da3 ng > ny, ist. Somit folgt fiir n > ng und
ng = no:

lay —al < |an — an, | + |an, —a| <& +¢& =2¢".

Mit & = 2¢’ folgt also |a, — a| < ¢ fiir alle n > ng, d.h. (a,) konvergiert gegen a. O

Das Cauchysche Konvergenzkriterium ist das wichtigste Konvergenzkriterium im systemati-
schen Aufbau der Analysis.

14.7 Losen von Gleichungen durch Iteration
Es sollen Gleichungen der Form

x = f(x) (1.51)

gelost werden, wobei die Funktion f ein Intervall / in sich abbildet. Jede Losung X von (1.51)
heiflt ein Fixpunkt von f. Die Gleichung selbst wird eine Fixpunktgleichung genannt.

Geometrisch sind die Fixpunkte von f die Schnittpunkte des Graphen von f mit der Geraden,
die durch
y=x
beschrieben ist. Sie geht durch O und bildet mit der x-Achse einen Winkel von 45°, s. Fig. 1.33.

Ay

y=1f(x)

v =

Xl|— — = == =

Fig. 1.33: Fixpunkt X von f

Wir versuchen, eine Losung von (1.51) durch sogenannte Fixpunktiteration zu berechnen.
D.h. wir wihlen ein xo aus dem Definitionsintervall / von f aus und bilden nacheinander die
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Zahlen
x1 = f(x0)
x2 = f(x1)
x3 = f(x2),
Kurz xpe1 = fQr) fir n=12,.... (1.52)

Wann konvergiert die so definierte Iterationsfolge (x,) gegen eine Losung von x = f(x)? Der
folgende Satz gibt dafiir eine hinreichende Bedingung an.

Satz 1.8:
(Banachscher® Fixpunktsatz in R) Essei f : I — I eine Funktion, die ein abge-
schlossenes Intervall / in sich abbildet. Ferner gelte fiir alle x;, xp € I die Unglei-
chung

[f(x1) — f(x2)| < K|x1 — x2| (1.53)

mit einer von x1, xo unabhingigen Konstanten K < 1. Damit folgt: f hat genau einen
Fixpunkt X € . Die Iterationsfolge (x,), definiert durch x,11 = f(x,), konvergiert
gegen diesen Fixpunkt, wobei von einem beliebigen Anfangspunkt xo € / ausgegan-
gen werden darf.

Bevor wir den Satz beweisen, soll er veranschaulicht werden. Gilt (1.53) mit einer Konstanten
K < 1, so besagt dies, da} die Funktionswerte f(x;) und f(x2) stets dichter zusammenliegen
als die Punkte x1, x. Man nennt daher eine Funktion f, die (1.53) mit K < 1 erfiillt, eine
Kontraktion. Thr Graph steigt verhiltnismiBig sanft an oder ab, wie es Fig. 1.33 zeigt. Genauer:
Jede Sekante von f bildet mit der x-Achse einen kleineren Winkel als 45°. (Eine Gerade heif3t
Sekante von f, wenn sie den Graphen von f mindestens zweimal schneidet.)

Damit 148t sich die Iteration x,,+1 = f(x,) zur Losung von x = f(x) so darstellen, wie es die
Figuren 1.34 und 1.35 zeigen. In Fig. 1.34 ist eine steigende Funktion f dargestellt. In Fig. 1.35
eine fallende. Der Leser mache sich klar, da} im Verlaufe der Treppenlinie bzw. Schneckenlinie
in den Figuren die Iterationspunkte xg, x1, x2, ... geometrisch gewonnen werden.

Beweis:

Des Satzes 1.8: Es sei x( beliebig aus / gewéhlt und (x,) definiert durch die Iteration x,; =
f(xn),n=0,1,2, .... Es gilt dann

X1 = Xn| = [ fGn) — fxn—1)| < Klxp — X1

22 Stefan Banach (1892 —1945), polnischer Mathematiker
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Ay y=x £y y=x
, f
] [ i . Q
| |
R il
| |l ! | I
| i i | || |
T (I
|

I ST X l e K

Xo X1 X2 ... X X0 Xz X X4
Fig. 1.34: Zur Iteration: f steigt Fig. 1.35: Zur Iteration: f fallt
fir alle n = 1,2,3, .. .. Also folgt sukzessive

2
IXp41 — Xn| < Klxp — X501 < K7|xp—1 —xp2] < ... < K"|x1 — xol, d.h.

|Xnt1 — xn| < K"|x1 — xo|, firallen=0,1,2,....

Mit n < m folgt daher

[xn = Xm| = |(en — Xnt1) + Knt1 — Xnt2) + K42 — Xn43) + oo+ =1 — Xim)|
< xn — Xpt1| + [ Xnt1 — Xnp2| + [Xnp2 — Xpg3] + oo+ [Xp—1 — X
< K"|x; —xol + K" xy — xol + K" 2x) — x0| + ... + K™ xp — xo|
<K'U+K+K>+ ...+ K" YHx; — x|
1— Km

=K'———mM|x1 — < K"
T & lx1 — xol < T &

lx1 — xol,

also

n

- K

1Xn — Xm| < N Ix1 —xol, (m>n). (1.54)
Die rechte Seite kann beliebig klein gemacht werden, wenn nur n gentigend grof3 gewihlt wird,
da K" — 0 fiir n — o00. Zu beliebig kleinem ¢ > 0 suchen wir uns nun ein ng € N, so daf} die

rechte Seite von (1.54) fiir n = ng kleiner als ¢ wird. Dann ist sie auch fiir alle n > ng kleiner
als &, woraus

|Xn — Xm| < €

folgt fiir alle n, m € N mitm > n > ng. Nach dem Cauchyschen Konvergenzkriterium konver-
giert damit die Folge (x,) gegen einen Grenzwert x.
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X ist ein Fixpunkt von f, denn es gilt X = f(X) wegen
X = f®I =X —xn 4+ x0 — (D)
< X = xn| + [xp — X
=X = xn| + [f (xn-1) = (X

<|x—=xu|+ Klxp—1 — x| = 0 fiirn - oo.

Uberdies ist X der einzige Fixpunkt von f, denn wiire X ein weiterer Fixpunkt von f, so wiirde
folgendes gelten:

X =X =1f&)— fG)] = K[x =X| < [|x —X],
also |¥ — X| < |X — x|, was nicht sein kann. O

Zusatz zu Satz 1.8: Es gelten die Fehlerabschiitzungen

n

- K

|x1 — xo| (apriori) (1.55)

|)Cn—)_C| = 1

und |x, — x| < |Xn4+1 — xn| (a posteriori) (1.56)

1-K
firallen = 0,1,2,3, ....

Beweis:

(1.55) folgt sofort aus (1.54), wenn man darin m gegen oo streben 146t. Aus (1.55) folgt aber fiir
n=20

lxo — x| < 7 |x1 — xol -

- K
Da x¢ beliebig in I gewéhlt werden darf, bedeutet dies fiir beliebiges x € I anstelle von xg
_ 1
lx — x| = m|f(x) — xol .
Setzt man hier x = x,, so folgt (1.56). ([
Bemerkung: Die meisten Iterationsverfahren zur Losung von Gleichungen lassen sich auf den

Banachschen Fixpunktsatz zuriickfithren. Insbesondere gelingt dies beim Newtonschen Verfah-
ren, dem wohl wichtigsten Verfahren zur Losung von Gleichungen.

Ubung 1.28:
Lose die Gleichung
P
X =

775
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im Intervall [0, 1] = I durch Iteration. Man mache sich klar, daB fiir f(x) = x3/4 + 1/5 die
Voraussetzungen von Satz 1.8 auf I erfiillt sind. Die Losung X soll auf 4 Dezimalstellen nach
dem Komma berechnet werden (also mit dem Fehler von hochstens 5 - 1075 ). Benutze dafiir die
Fehlerabschitzung (1.56).

1.5 Unendliche Reihen reeller Zahlen

1.5.1 Konvergenz unendlicher Reihen

Definition 1.14:
Wir denken uns eine reelle Zahlenfolge

ap,al,ay,az, ...
gegeben. Addiert man die Elemente nacheinander auf.
so=ay,s1 =ag+ai,s2 =ag+a +ax usw.,
so entsteht eine neue Folge
80,81 582 ve s Spyene -
Diese Zahlenfolge (s;,) heifit die unendliche Reihe mit den Gliedern ay, a1, az, . . ..

Man beschreibt die unendliche Reihe symbolisch durch

o0
[ap + a1 +a> + ...] oder kiirzer |:Z ak:|
k=0

Statt »unendliche Reihe« sagen wir auch kurz Reihe. Die Summen

n
Sp = Zak. (1.57)
k=0

heilen Partialsummen der Reihe.

Das Wesen der unendlichen Reihe [ag + a; + ap + . . .] besteht also im sukzessiven Addieren
der ai. Gerade dadurch entsteht die neue Folge (s,,), auf die es ankommt. Diese Folge wird auf
Konvergenz und Divergenz untersucht. Wir vereinbaren daher in naheliegender Weise:

Definition 1.15:

o0

Eine Reihe |:Z ak:| heiflt genau dann konvergent, wenn die Folge (s,) ihrer Partial-
k=0
summen konvergiert. Ist s der Grenzwert dieser Folge, also s = lim s,, so schreibt
n—>oo
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man dafiir auch

o
5= a.
k=0

s heiit Grenzwert oder Summe der Reihe.

Eine Reihe, die nicht konvergent ist, heilit divergent.

Wir erwihnen noch, dafl Reihen nicht unbedingt mit dem Index Null beginnen miissen. In der
Form [a,, + am+1 + am+2 + . . .], mit m beginnend, werden sie entsprechend behandelt. Wir ma-
chen uns noch einmal klar, dafl Reihen nichts grundsétzlich Neues sind, sondern lediglich spezi-
elle Folgen (s,,). Auf diese Folgen werden einfach alle Uberlegungen des vorigen Abschnitts 1.4
angewendet, womit vieles, was iiber Reihen gesagt werden kann, schon erledigt ist. Die fol-
genden Ausfiithrungen sollen hauptséchlich dariiber hinausgehende Gesichtspunkte beleuchten,
z.B. wie man von Eigenschaften der Glieder a; auf die Konvergenz der Reihen schlieen kann.
Doch zunichst das Paradebeispiel aller unendlichen Reihen, die geometrische Reihe:

Beispiel 1.40:
Die geometrische Reihe hat die Gestalt

o0
[1+q+q2+q3+...], kiirzer [qu] , 2
k=0

mit einer beliebigen reellen Zahl g. Fiir die Partialsummen s, erhdlt man im Falle g # 1 (nach
Abschn. 1.1.7, (1.12)):

5 3 ; 1_qn+1
s,,:l+q+q +C] +...+6] :ﬁ (158)
Nehmen wir |¢g| < 1 an, so strebt die rechte Seite gegen s = 1/(1 — ¢g). Also folgt
o0
k 2 3 1
Y d*=1+q+q>+¢ +"':ﬂ’ falls |g| < 1. (1.59)

k=0

Die geometrische Reihe beherrscht beispielsweise die Zinseszinsrechnung, wie iiberhaupt wei-
te Teile der Finanzmathematik. In der Analysis ist sie ein unentbehrliches Hilfsmittel bei der
Konvergenzuntersuchung auch anderer Reihen.

Das »Geometrische« an der geometrischen Reihe wollen wir am Beispiel der Fig. 1.36 ver-
deutlichen. Die Summe der Flacheninhalte der schraffierten Dreiecke ist

RS S S S SR
itEtEtS Ty

23 Hierbei vereinbart man qo = 1, auch im Falle ¢ = 0. Im iibrigen ist aber 00, nach wie vor, nicht definiert.
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/ A

S

Fig. 1.36: Zur geometrischen Reihe

Nimmt man das untere Dreieck weg, so entsteht die gleiche Figur wie vorher in kleinerem Maf3-
stab. Dies ist typisch fiir das Vorkommen der geometrischen Reihe in der Geometrie.

Beispiel 1.41:
Die harmonische Reihe lautet

LTI kil ff
—+—-—4+-—-4..., iirzer — .
23 4 —k

Diese Reihe ist iiberraschenderweise divergent, obwohl ihre Glieder gegen Null streben. Man
sieht das so ein: Im Falle n = 2™ (m € N) gilt fiir die n-te Partialsumme:

1 /1 1 1 1 1 1
Snzl+§+(§+z>+(§+...+§>+(§+...+E)+...
1 1
+(W+-~+z—m>

ST (L B Y (I
= T2 44 8 8 16 T1e)

4 Glieder 8 Glieder
+ 1+ +1 —1+1+1+1+ +1
om T gm ) 2 2 2 02
2m—1 Glieder m Glieder

1
=1+m-§—>oo fiir m — oo.

Beachtet man, dal die Folge (s,) streng monoton steigt, so folgt damit lim s, = oo. Wir be-
n—od
schreiben dies symbolisch durch

]

— 0. (1.60)

| =

k=1
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Bezeichnung: Streben die Partialsummen einer Reihe [ag + a1 + a> + . . .] gegen Unendlich, so
schreiben wir symbolisch

o]

Entsprechend verfihrt man im Falle —oo.

Beispiel 1.42:
Die Reihe

1 1 1 1
ol + T + 2 + 3 + ...
konvergiert, denn schon im Beispiel 1.39, Abschn. 1.4.6, haben wir gezeigt, daf die Folge der

Partialsummen
"1

Sp = —
|

= k!

monoton steigt und beschrinkt ist, also konvergiert. Der Grenzwert wird mit e bezeichnet:

o0
1.
e= ;}E = 2,71828183. (1.61)

Die Rechenregeln fiir konvergente Folgen lassen sich sofort auf Reihen iibertragen. Man hat
sie nur auf die Partialsummen s,, anzuwenden. Es folgt daher ohne weiteres:

Satz 1.9:

Konvergente Reihen diirfen gliedweise addiert, subtrahiert und mit einem konstanten
Faktor multipliziert werden.

o0 o0 o0 o0
D.h. sind |:Z ak:|, |:Z bk:| konvergent, so sind auch |:Z ag :tbk:|, |:Z Aak:|, (A € R)

k=0 k=0 k=0 k=0
konvergent, und es gilt
o0 o oo
Dlwtb) =) aty b, (1.62)
k=0 k=0 k=0
(e.¢] o
D ar) =1 ar. (1.63)
k=0 k=0

Die Beispiele 1.40 und 1.42 legen folgenden Satz nahe:
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Satz 1.10:
o
Bei einer konvergenten Reihe |:Z aki| konvergieren die Glieder gegen Null:
k=0

ar —> 0 fir k— o0

Bemerkung: Die Umkehrung des Satzes gilt nicht, wie das Beispiel der harmonischen Reihe
zeigt.

Beweis:

Nach Voraussetzung konvergiert die Folge der Partialsummen (a,,) der Reihe. Fiir jedes Glied a,
gilt offenbar a,, = s, — s,—1. Aus dem Cauchy-Kriterium folgt, daf} diese Differenz gegen Null
strebt. (]

Ubung 1.29%:

I 1 1
Beweise, daf} die Reihe [1 + 3 + 3 + 3 +.. ] gegen oo divergiert.

Ubung 1.30:

Ein Kapital von K € mit K = 150000 soll fiir eine Rente verwendet werden, die jeweils am
Jahresanfang auszuzahlen ist. Der Jahreszins des Geldinstitutes, bei dem das Kapital eingezahlt
wird, ist p = 6% = 0,06. Das Kapital wird am 1.Januar eines Jahres dort eingezahlt. Die
Jahresrente betragt R = 12000 €. Sie wird jeweils am 1. Januar ausgezahlt, beginnend mit dem
Einzahlungsjahr. Wieviele Jahre kann die Rente gezahlt werden?

Hinweis: Zu Beginn des n-ten Jahres ist das Guthaben auf den Betrag

Kn=Kq" ' —RU+qg+q¢*+...+4¢"hH
gesunken. (Warum?) Fiir welches n ist K, > 0 > K, 41?

1.5.2 Allgemeine KonvergenzKkriterien

Monotonie- und Cauchy-Kriterium werden ohne Schwierigkeiten auf Reihen iibertragen.

Satz 1.11:
(Monotoniekriterium fiir Reihen) Eine Reihe mit nichtnegativen Gliedern ay, konver-
giert genau dann, wenn die Folge ihrer Partialsummen beschrénkt ist.

Zum Beweis ist hierbei lediglich zu bemerken, dal wegen a; > 0 die Folge der Partialsummen
s, = aop + a1 + ...+ a, monoton steigt. Das Monotoniekriterium fiir Folgen ergibt dann den
vorstehenden Satz.

Das Monotoniekriterium wird hiufig auf Reihen angewandt, deren Konvergenz zwar vermu-
tet wird, deren Grenzwert jedoch nicht erraten werden kann. Wir erldutern dies an folgendem
Beispiel:
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Beispiel 1.43:
Konvergiert die Reihe

1 1 1 . 24
1+—+—+ S+ — 4. mita > 1?
3a n¢

Dies ist der Fall! Wir sehen es mit dem Monotoniekriterium folgendermalien ein:
Alle Glieder sind positiv. Zu zeigen bleibt also, daf} die Folge der Partialsummen s,, beschrinkt
ist. Dies wird exemplarisch fiir n = 15 durchgefiihrt. Es gilt:

=1+ 1+1 T L Y
S15 = 3a 4a - 7a ga Ce 15

1 1 1 1 1 1
<1+ 2—a+2—a + 47+...+47 + 8—a+...+8—a

4 Glieder 8 Glieder
1 1 1 1 1 1
=1+2- 2_+4 47+8 8u=1+2a—1+4a—1+8a—1
1 1 1 2 3 . 1
=1+t a1y + Qi 1y3 =l+q+q +q (mitg=——7<1)
1
<1+q+q2+q3+q4+q5+...=q.

Diese Abschitzung 148t sich offenbar fiir alle s, mit n = 2™ — 1(m € N) durchfiihren:

1
=TT,
Da die Folge der Partialsummen monoton steigt, gilt die obige Ungleichung fiir allen = 0, 1, 2,
o0
1
., d.h. (s5) ist beschrinkt, woraus die Konvergenz der Reihe |:Z —a] folgt. Ein Grenzwert
n
n=1

ist dabei schwerlich zu erraten. (Im Falle @ = 2 strebt die Reihe z.B. gegen %/6, was spiter im
Zusammenhang mit Fourierreihen gezeigt wird.)

Wir kommen nun zum Cauchy-Kriterium, welches fiir die Theorie der Reihen am wichtigsten
ist, wie bei Folgen.

Satz 1.12:

(0.¢]
(Cauchy-Kriterium fiir Reihen) Eine Reihe |:Z ak:| konvergiert genau dann, wenn

k=0
folgendes gilt: Zu jedem ¢ > 0 gibt es einen Index ng, so daB fiir alle m > n > nop

24 a sei hier rational vorausgesetzt, da wir andere Hochzahlen noch nicht kennen. Doch gilt alles unverindert auch fiir
beliebige reelle Exponenten, wie wir nach Einfithrung der Exponentialfunktion sehen werden.



80 1 Grundlagen

stets
m
> al<e (1.64)
k=n+1
gilt.
Beweis:

Man hat lediglich zu beachten, daf3
m
Z Ak = Sm — Sn
k=n+1

ist, wobei s, s;, Partialsummen sind. Das Cauchy-Kriterium fiir Folgen liefert dann sofort obigen
Satz. O

Wie wir gesehen haben, divergiert die harmonische Reihe [1 + % + % +.. ] Wie steht es
aber mit der Reihe

TP S I (1.65)
L] _

Sie konvergiert in der Tat. Es handelt sich dabei um eine sogenannte alternierende Reihe.
Bezeichnung: Eine Reihe heiit alternierend, wenn ihre Glieder abwechselnd > 0 und < 0 sind.
Fiir diese Reihen gilt

Satz 1.13:
(Leibniz?-Kriterium) Eine alternierende Reihe

[ap —ai+ax —az +as —...]
konvergiert, wenn die Folge der ax > 0 monoton fallend gegen Null strebt.

Beweis:
Wir bilden die Partialsummen zu geraden und zu ungeraden Indizes und klammern geschickt:
s =ap — (a1 —az) — (a3 —as) — ... — (a2p—1 — a2n) ,
son—1 = (ap —ar) + (a2 —az) + ... + (@22 — A1) -
Alle Klammerausdriicke sind > 0, da (a;) monoton fillt. Also ist (s2,) monoton fallend und

(s2,—1) monoton steigend. Wegen

$1 < sop—1 < Sop—1 +aoy =824, < 5o, (n=>1),

25 Gottfried Wilhelm Leibniz (1646 —1716), deutscher Philosoph, Mathematiker, Diplomat, Physiker, Historiker, Bi-
bliothekar und Doktor des weltlichen und des Kirchenrechts
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ist (s2,,) durch s; nach unten beschrinkt und (s, —1) durch sg nach oben. Nach dem Monotonie-
kriterium konvergieren daher beide Folgen und zwar gegen den gleichen Grenzwert. Letzteres
folgt aus

S — Sop—1 = apy, — 0 fiirn — oo. [l

Die alternierende Reihe [1 - % + % - 41'1 +.. ] konvergiert damit. (Ihr Grenzwert ist {ibri-

gens In 2, was wir im Zusammenhang mit Taylorreihen spiter zeigen werden.)
Ubung 1.31%:

o L2
Beweise die Konvergenz der Reihe Z 1
k=0

1.5.3 Absolut konvergente Reihen
Definition 1.16:

o
Eine Reihe |:Z aki| heiB3t absolut konvergent, wenn die Reihe der Absolutbetrige

k=0
00

ihrer Glieder konvergiert, d.h. wenn |:Z lak |] konvergent ist.
k=0
o
Gilt dies, so ist natiirlich auch die Ausgangsreihe |:Z aki| konvergent, denn es gilt
k=0

lani+ ...+ aml < lapt1l + ...+ lap]

fiir beliebige Indizes m, n. Nach dem Cauchy-Kriterium (Satz 1.12) gibt es aber zu jedem ¢ > 0
ein ng, so daB die rechte Seite der Ungleichung kleiner als ¢ ist, sofern n, m > ng gilt. Damit gilt
dies erst recht fiir die linke Seite, womit das Cauchy-Kriterium fiir die Ausgangsreihe erfiillt ist.

Bemerkung: Absolut konvergente Reihen stellen den Normalfall konvergenter Reihen dar. Kon-
vergente Reihen, die nicht absolut konvergieren, bilden eher die Ausnahme. Entscheidend fiir
absolut konvergente Reihen ist, daB} ihre Glieder beliebig umgeordnet werden diirfen, und daf3
man Produkte solcher Reihen bilden kann. Wir formulieren dies in den niachsten beiden Sitzen.

Satz 1.14:

(o)
Absolut konvergente Reihen diirfen beliebig »umgeordnet« werden. D.h. ist |:Z ay ]

k=0
eine absolut konvergente Reihe mit dem Grenzwert s, so konvergiert jede durch Um-
(0.¢]

ordnung daraus entstehende Reihe |:Z anki| ebenfalls gegen 5.26
k=0

26 In der Folge (ny) kommt jeder Index 0, 1, 2, 3, ...usw. genau einmal vor.



82 1 Grundlagen

Beweis:
Es seien

n n
Sp = Zak und t, = Zank
k=1 k=1

die Partialsummen der genannten Reihen. Fiir sie gilt nach der Dreiecksungleichung
Is = tal < |s — sl + |sn — tul .

Wegen |s — s,| — 0, (fiir n — 00) bleibt nur |s, — #,| — O (fiir n — 00) zu beweisen, denn
dann gilt |s — #,| — 0, was gerade die Behauptung des Satzes ist.
Zunichst bemerken wir, daf3

o0
An =) lax|
k=n

o0 oo n—1
gegen Null strebt, den da |:Z |ak|i| konvergiert, gilt mit 5 = Z |ag| und 5, = Z lag|:
k=0 k=0 k=0

A, =5—5, >0 firn— oo.
Wir bilden nun

lsn — th] = |am(n) + ..
< lamm! + lamey+11 + ...
= App) -

Dabei ist a;,(,) das erste Glied (mit kleinstem Index), das sich in s, — #, nicht heraushebt, das
also nur in s, vorkommt und nicht in #,. Es gilt m(n) — oo fiir n — o0, da mit steigendem n
schlieBlich jedes Element gy in #, vorkommt. Damit gilt auch A,y — O fiir n — oo, folglich
|sp — t,| — O fiir n — oo, was zu zeigen war. U

Konvergente Reihen, die nicht absolut konvergieren, heilen bedingt konvergent. Die Reihe

1 1 1
l— =4+ =-—=—-+—... 1.66
[1-3+5-7+-] (1.6

ist ein Beispiel dafiir.

Man konnte sich fragen, ob willkiirliches Umordnen hier auch erlaubt ist. Das ist nicht der Fall.
Es gilt sogar folgendes: Jede bedingt konvergente Reihe kann man so umordnen, daf sie gegen
eine beliebig vorgegebene Zahl konvergiert. Die Reihe (1.66) kann man z.B. so umordnen, daf}
sie gegen 100 konvergiert. Man hat nur so viele positive Glieder zu addieren, bis man gerade 100
iberschritten hat. Dann subtrahiert man so viele negative Glieder (in diesem Fall nur eins), bis
100 gerade unterschritten ist. Dann addiert man wieder positive Glieder, bis 100 iiberschritten ist,
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usw. So »pendelt man sich auf 100 ein«. Diese Andeutung moge geniigen. Fiir Beweise verweisen
wir auf [24], S. 199, Satz 32.4 und [56], S. 141, Beispiel 4.11. In Bezug auf Anwendungen sind
diese Uberlegungen von geringer Bedeutung.

Absolut konvergente Reihen gestatten uns, Produkte von Reihen zu bilden.

Satz 1.15:

o o
Sind |:Z ak:| und |:Z bi:| absolut konvergente Reihen, so folgt
k=0 i=0

o o o
(Zak) : (Zb,-) = Y @b, (1.67)
k=0 i=0 k=0,i=0

wobei die Indizes (k, i) in der rechten Summe alle Paare

0,00 (0,1) (0,2)
(1,00 (LD (1,2)
20 @1 22 ... (1.68)

in irgendeiner Reihenfolge durchlaufen. Wihlt man die Reihenfolge speziell auf die

folgendermal3en skizzierte Weise:

0,00 (©,1) (©0,2) (03) ...

(1,0)/1(1,1)/1(1,2)/Y
(2,0)/(2,1)/ )
(3,0)/
o S

so folgt

00 oo ) J
(Z ak> <Z bl') = ch ,  mit cj = Zaj_kbk . (1.69)
k=0 i=0 j=0 k=0

Beweis:

Die Indizes (1.68) mogen in irgendeiner Weise durchlaufen werden. Auf diese Weise werden die
|agb;| zu Gliedern einer Reihe. s,, sei die n-te Partialsumme dieser Reihe. Es sei m der hochste
vorkommende Index i oder k der Glieder |ayb; |, welche die Summe s,, bilden. Damit gilt offenbar

|$nl < i lakbi| = (Ié Iakl) (glhl) = <I§Iakl> (glbil) :

k=0,i=0
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(sp) ist also beschrinkt. Nach dem Monotoniekriterium konvergiert (s, ). womit der Satz bewie-
sen ist. O

Ubung 1.32:
Es sei q; = pk und by = qk, wobei |p| < 1 und |g| < 1 vorausgesetzt ist. Es soll ¢; nach
(1.69) berechnet werden. Zeige

i+l _ il

o=" q
P—q

1.54 Konvergenzkriterien fiir absolut konvergente Reihen

Da, wie schon gesagt, absolut konvergente Reihen wesentlich hiufiger in konkreten Anwendun-
gen vorkommen als bedingt konvergente, sind die folgenden Konvergenzkriterien wichtig:

Satz 1.16:

o0

(Majorantenkriterium) Ist |:Z ak:| absolut konvergent und
k=0

br| < lak|

o0
fiir alle k von einem kg an?’, so ist auch |:Z bk:| absolut konvergent.
k=0

o0 o0
|:Z |ag |] hei3t eine Majorante von |:Z bkj| .
k=0

k=0

Beweis:

ENEENEN

k=0 k=0 k=0
folgt mit dem Monotoniekriterium die Behauptung. U
Beispiel 1.44:

(0,¢]
Da |:Z q* i| fiir |g| < 1 absolut konvergiert, gilt dies nach obigem Kriterium auch fiir die Reihe
k=0

)

27 D.h. fiir alle k > kq.
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Satz 1.17:
o
(Quotientenkriterium) Die Reihe |:Z aki| ist absolut konvergent, wenn es eine Zahl
k=0
b < 1 gibt mit
Ll < b, g #£0, (1.70)
ay

fiir alle Indizes k von einem Index kg an?3, Gilt jedoch von einem Index kg an

Ak+1
ag

>1, a#0, (1.71)

o0
so ist die Reihe |:Z ak] divergent.
k=0

Beweis:
(D Aus (1.70) folgt

el
lax—1] —

Ako+1
ak+0

Aky+2
Ako+1

b-b-....b =bo,
N—
(k — ko) Faktoren

Die linke Seite ist offenbar gleich |a|/|a, |, also folgt |ak|/|ax,| < ¥, d.h.

lay] < C-bF mit € =b7May.

oo o]
C
Da Z cp* konvergiert (gegen C - Zbk = , s. geometrische Reihe), so ist auch
1-b
k=0 k=0
o
|:Z aki| absolut konvergent.
k=0

(1) Aus (1.71) folgt
0 < laky| < lakg+1l < lagg+2l < ... .

Die ay streben nicht gegen Null, folglich divergiert die Reihe. (]

Beispiel 1.45:
Die Reihe

[q+2q2+3q3+4q4+...+qu+...] mit |g| < 1

28 D.h. fiir alle k > k.
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konvergiert absolut. Denn fiir den Quotienten benachbarter Glieder gilt

_ k1 91 91

(k + Dg*+!
‘ o r |q|=|q|+7§lql+g (1.72)

fiir alle kK > ko. Man kann dabei k( so gro3 wihlen, daf} die rechte Seite in (1.72) kleiner als 1 ist.
Nach dem Quotientenkriterium konvergiert damit die Reihe absolut.

Satz 1.18:

]

(Wurzelkriterium) Die Reihe |:Z ak:| konvergiert absolut, wenn es eine Zahl b < 1
k=0
gibt mit

Vil < b (1.73)

fiir alle k ab einem Index kq. Gilt

Vlag] > 1 (1.74)

fiir unendlich viele Indizes k, so divergiert die Reihe.

Beweis:
o0
(I Die Ungleichung (1.73) liefert |ax| < b*. Die geometrische Reihe |:Z bk:| ist also eine
k=0
o0
Majorante von |:Z aki| , also liegt absolute Konvergenz vor.
k=0
(ID) (1.74) ergibt |ar| > 1 fiir unendlich viele k. also Divergenz. O

Bemerkung: Das Wurzelkriterium wird uns noch bei Potenzreihen (Abschn. 5.2.1) beschiftigen.
Quotienten- und Wurzelkriterium sind sogenannte »hinreichende« Kriterien. D.h. sie lassen sich
nicht umkehren: Aus absoluter Konvergenz folgt nicht allgemein die Giiltigkeit der Quotienten-
bedingung (1.70) oder der Wurzelbedingung (1.73).

Aus beiden Kriterien ziehen wir nachstehende Folgerung, die in der Praxis als Kriterium fiir
absolute Konvergenz oder Divergenz meistens ausreicht.

Folgerung 1.15:
o0
Fiir die Reihe |:Z ak:| existiere
k=0

Ak+1
ag

lim

k— 00

=c (ar # 0 fir alle k)
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oder
lim |ax| =c.
k—o00

Dann folgt: Die Reihe konvergiert absolut, falls ¢ < 1 ist, sie divergiert, wenn ¢ > 1
ist.

Beweis:

Im Falle ¢ < 1 sind fiir beliebig gewéhltes b mit ¢ < b < 1 die Konvergenzaussagen des Quo-
tientenkriteriums bzw. des Wurzelkriteriums erfiillt. Im Falle ¢ > 1 gelten die entsprechenden
Divergenzvoraussetzungen. ]

Beispiel 1.46:

o0
Ist [Z kzqk:| (Ig] < 1) konvergent? Mit a; = k2¢* gilt

k=0
k+1\?
Gt | (L) lgl = |g| fiirk — oo.
ai k

Wegen |¢| < 1 erhilt man aus Folgerung 1.15 die absolute Konvergenz der Reihe.

Ubung 1.33%:

Fiir welche reellen Zahlen x konvergiert die Reihe

x2+x3 )C4+ 9

1.6 Stetige Funktionen

1.6.1 Problemstellung: Losen von Gleichungen

Anwendungsprobleme fiihren oft auf Gleichungen oder Gleichungssysteme. wir beschiftigen
uns hier mit dem einfachsten Fall, ndmlich einer reellen Gleichung mit einer reellen Unbekann-
ten. Sie 146t sich in der Form

fx) =0

beschreiben, wobei f eine reellwertige Funktion auf dem Intervall ist. Gesucht sind alle Zahlen
x aus dem Intervall, die die Gleichung erfiillen. Sie heilen Nullstellen von f.

Beispiel 1.47:
x4+ 33 +1,662x%2 — x — 0,250 = 0 (1.75)
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Diese Gleichung kommt bei der Standfestigkeitsberechnung eines Kettenkarussells vor (s. Ab-
schn. 3.3.5). Man interessiert sich dabei fiir Losungen x im Intervall [0, 1]. Die linke Seite von
(1.75) stellt f(x) dar.

Will man eine solche Gleichung 16sen, so wird man zunichst ganz unbefangen probieren und
einige x-Werte einsetzen. Nehmen wir an, man hat dabei fiir einen Punkt x = a einen negativen
Funktionswert f(a) < O erhalten und fiir x = b einen positiven Wert f(b) > 0. Dann ist zu
vermuten, dal zwischen a und b eine Zahl X mit f(x) = 0 liegt, kurz, eine Lésung von f(x) = 0.

In unserem Beispiel 1.47 gilt f(a) < O fiira = O und f(b) > O fiir b = 1, wie man durch
Einsetzen sieht.

Ist die Vermutung richtig, daf sich zwischen a und b eine Losung befindet?

Die Anschauung zeigt folgendes: Bildet der Graph von f eine »ununterbrochene« Linie zwi-
schen den Punkten (a, f(a)) und (b, f (b)), so wird diese Linie die x-Achse wenigstens in einem
Punkt (x, 0) schneiden (s. Fig. 1.37a). Er liefert f(x) = 0, also eine Losung unserer Gleichung.

»Springt« die Funktion dagegen, wie in Fig. 1.37b skizziert, so braucht keine Losung vorzu-
liegen.

Die Eigenschaft einer Funktion f, daB} ihr Graph als »ununterbrochene« Linie erscheint, wird
Stetigkeit genannt. Diese anschauliche Formulierung ist noch etwas ungenau und fiir prézise
mathematische Arbeit nicht geeignet. Wir werden daher im nichsten Abschnitt die Stetigkeit
einer Funktion exakt beschreiben.

4y Ay

\ ks
V>

- — 1w

a) b)

Fig. 1.37: Zur Stetigkeit

Vorerst kommen wir noch einmal auf die Gleichung f(x) = 0 zuriick. wie ist sie zu »l0sen«?
Ist f(a) < Ound f(b) > 0, so kann man in der Mitte zwischen a und b, bei ¢ = “erb, den
Funktionswert f(c) berechnen. Ist f(c) > 0, so wird man eine Losung im Teilintervall [a, c]
vermuten, ist f(c) < 0, vermutet man eine Losung in [c, b]. Das so bestimmte Teilintervall
halbiert man wieder, usw. Dieses sogenannte Intervallhalbierungsverfahren fiihrt bei stetigen

Funktionen zu beliebig genauer Berechnung einer Losung von f(x) = 0 (s. Abschn. 1.6.3).

Im Beispiel 1.47 erhalten wir mit ¢ = 0,5 zunéchst f(c) = —0,147. Man vermutet daher eine
Losung im Intervall [c, b], halbiert dies wieder usw.
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Der Leser moge den Vorgang selber mit dem Taschenrechner durchfiihren. Im Rahmen der
Rundungsgenauigkeit gewinnt er als Losung von (1.75) dann X = 0,566. Aus Abschnitt 3.3.5
geht hervor, daf3 x die einzige Losung in [0, 1] ist.

1.6.2 Stetigkeit

Wir greifen noch einmal die Vorstellung auf, da} eine »stetige« Funktion auf einem Intervall
durch einen »zusammenhédngenden« Graphen dargestellt werden soll, also insbesondere nicht
»springen« soll. Wir werden daher erwarten, dal f(x,) — f(xo) gilt, wenn x, — x¢o konver-
giert. Genau dies wird als Stetigkeit bezeichnet:

Definition 1.17:

Eine reellwertige Funktion f heift in einem Punkt x( ihres Definitionsbereiches stetig,
wenn fiir alle Folgen (x,) aus D mit x,, — xq stets

lim f(x,) = f(x0) (1.76)
n— 00
gilt.
Man kann diesen Sachverhalt auch in folgender iibersichtlicher Form schreiben:

Jim f (o) = f(lim x,). (L.77)

Merkregel: Stetigkeit von f in x9 = lim x, bedeutet, dal f und lim vertauscht werden
n—o00 n—oo

diirfen.

Definition 1.18:
Eine Funktion f : D — R heil}t stetig auf einer Teilmenge A ihres Definitionsbe-
reiches D, wenn sie in jedem Punkt von A stetig ist. Ist f stetig in jedem Punkt des
Definitionsbereiches, so heifit f eine stetige Funktion.

Beispiel 1.48:
Jede Funktion der Form

fx) =ao+aix +ax* + ...+ apx™, (1.78)
definiert auf R, ist stetig. Eine Funktion dieser Art heifit Polynom.
Die Stetigkeit von f sieht man so ein: Mit lim x,, = x¢?° folgt auch limx2 = x2, limx} = x{,

... usw., denn nach Satz 1.1 konvergiert das Produkt konvergenter Folgen gegen das Produkt der
zugehorigen Grenzwerte. Entsprechendes gilt fiir Summen konvergenter Folgen. Also gilt

o o o0 o0
k . k . k . k .
= = lim = lim = lim = lim .
f(x0) kg . agxg kE . ay ; X, kE T (akxy) ; (kg . akxn> ; f(xn)

29 Wir schreiben vereinfacht lim statt lim , wenn keine Irrtiimer entstehen konnen.
n—oo
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Dies bedeutet aber gerade, dal f in xo stetig ist. Da x( beliebig aus R gewéhlt war, ist f eine
stetige Funktion.

Die meisten in Physik und Technik vorkommenden Funktionen sind stetig.

Zundchst wollen wir weitere allgemeine Eigenschaften stetiger Funktionen behandeln, die
man kennen sollte, wenn man klug mitreden mochte.

Der folgende Satz gibt die sogenannte e-5-Charakterisierung der Stetigkeit an.
Satz 1.19:

Eine reellwertige Funktion f ist genau dann stetig in einem Punkt x( ihres Definitions-
bereiches D, wenn folgendes gilt:

Zu jedem ¢ > 0 gibt es ein 6 > 0, so daf
fir alle x € D mit |x — xg| < § stets

| f(x) — fxo)| <& (1.79)

gilt.

Bemerkung: Die beschriebene ¢-§-Charakterisierung (1.79) 14t sich auf einfache Weise veran-
schaulichen. Betrachten wir dazu Fig. 1.38:

Ay

S

f(x0) - -— —

N

[=2]

3

Fig. 1.38: Zur Stetigkeit

Dort wurde zu einem ¢ > 0 ein § > 0 gewihlt und daraus ein Rechteck mit den Seitenldngen
2§ und 2¢ um den Mittelpunkt (xo, f(xp)) gebildet.

Das Rechteck ist so beschaffen, daBl der Graph von f seitlich herauslduft und nicht oben oder
unten.

Immer wenn man zu jedem ¢ > 0 ein § > 0 dieser Art finden kann, liegt die Stetigkeit von f
in xo vor. Denn die Tatsache, da3 kein Punkt des Graphen von f iiber oder unter dem Rechteck
liegt, bedeutet gerade | f(x) — f(xo)| < ¢ fiir alle x € D mit |x — x| < §.
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Beweis:

(des Satzes 1.19): (I) Es sei f stetig in xp). Angenommen, die ¢-§-Charakterisierung (1.79) ist
nicht erfiillt. Dann gibt es ein ¢ > 0, zu dem man kein § < 0 finden kann mit | f (x) — f(xp)| < &,
falls |[x — xg| < 8. D.h. fiir jedes § > O gibt es ein x5 € D|xs — xo| < 8, das | f(xs) — f(x0)] = &
erfiillt. Insbesondere gibt es dann zu § = 1/n (n € N) jeweils ein x, mit

1
|x, — xol < ; und [ f(x;) — f(x0)| = ¢.

Die erste Ungleichung ergibt lim x, = xo, wihrend die zweite zeigt, dal3 f(x,) nicht gegen
n—o0

f (xp) strebt. Das widerspricht der Stetigkeit in xg. Also war unsere Annahme falsch, und (1.79)
gilt.

() Ist aber (1.79) erfiillt, so folgt daraus die Stetigkeit von f in xo. Denn ist (x,) aus D mit
Xn — xp fiir n — oo, so wihle man zu beliebigem ¢ > 0 ein § > 0 mit | f(x) — f(x0)| < &,
falls |x — xo| < 8. Wegen x,, — xq gibt es ein ng mit |x, — xo| < § fiir alle n > no, also auch
| f(xn) — f(x0)| < € fiir n > ng. Das bedeutet aber gerade f(x,) — f(xo) fir n — oo, womit
der Satz bewiesen ist. [l

Bemerkung: Bei konkreten Stetigkeitsuntersuchungen geht man meistens von der urspriingli-
chen Definition der Stetigkeit aus (Def. 1.17), wihrend bei theoretischen Uberlegungen (mehrfa-
che Grenzwertbildungen u.a.) die e-6-Charakterisierung vorzuziehen ist.

Ubung 1.34%:

Fiir welche x-Werte sind die folgenden Funktionen stetig und fiir welche nicht?

@ f)y=x"1, f:R\ {0} - R,

x~ U fiirx #0,
b) gkx) = ] g:R>R,
0 firx =0,

(¢) h(x) = lim 3 s h:R—> R,
n—>00 x4 4 |
—Tx?463x—=98 g o o
@ k(x)={ *+3x=10 " k:R>R
0 fiirx <2,

1.6.3 Zwischenwertsatz

Wie schon zu Beginn von Abschnitt 1.6 gesagt, erwarten wir von einer stetigen Funktion f auf
einem Intervall I, daf} sie zwischen einem a mit f(a) < 0 und einem b mit f(b) > O eine
Nullstelle X hat (s. Fig. 1.39). Wir vermuten also, da} ihr Graph die x-Achse zwischen a und b
mindestens einmal schneidet. Dies ist die Aussage des folgenden Satzes.
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AN

vx

- — —|m

Fig. 1.39: Nullstellensatz, Zwischenwertsatz

Satz 1.20:
(Nullstellensatz) Ist f eine reellwertige stetige Funktion auf dem Intervall [a, b] und
haben f(a) und f(b) verschiedene Vorzeichen (f(a) < 0, f(b) > 0, oder: f(a) > O,
f(b) < 0), so besitzt f in (a, b) mindestens eine Nullstelle.

Beweis:

Der Beweis wird konstruktiv gefiihrt, und zwar mit dem Intervallhalbierungsverfahren, welches
eine Nullstelle beliebig genau zu berechnen gestattet. Ohne Beschrinkung der Allgemeinheit
nehmen wir f(a) < und f(b) > 0 an (anderenfalls wird f durch — f ersetzt). Man teilt nun
das Intervall [a, b] in der Mitte, also bei m = (a + b)/2. Ist zufillig f(m) = 0, so bricht
man das Verfahren ab, da eine Nullstelle gefunden ist. Im Falle f(m) > O wihlt man das linke
Teilintervall [a, m] zur Weiterarbeit aus, im Falle f(m) < 0 dagegen das rechte Teilintervall
[m, b]. Das ausgewihlte Teilintervall nennen wir [a1, b;]. Fiir seine Endpunkte gilt

fla) <0< f(b1).

[a1, b1] wird nun abermals halbiert, usw. D.h. man bildet nacheinander fiir n = 1,2,3, ... die
Zahlen
b
@ my = % — Mitte von [ay, ba],
=0, so Abbruch, da m, Nullstelle, (1.80)

dn falls f(m,) {>0, soay+1 :=an,b+n+1:=m,,
<0, soayy1:=my,b+n+1:=b,.

Auf diese Weise entsteht (falls kein Abbruch) eine Intervallschachtelung [a, b] D [a1, b1] D
[az, b2] D ..., bei der die Intervallingen b, — a, = (b — a)/2" gegen Null streben. Es gilt
zweifellos a, — X, und b, — Xx. Wegen f(a,) < 0 < f(b,) und der Stetigkeit von f folgt also

f@) = Jim fa) <0< lim (b)) = fE) = [@)=0. O



1.6 Stetige Funktionen 93

Bemerkung: Das Intervallhalbierungsverfahren 148t sich gut auf Taschenrechnern oder program-
mierbaren Computern verwenden. Die Konvergenz der Folgen (a,,) oder (b,,) gegen die Nullstelle
X ist zwar recht langsam, doch weist das Verfahren gerade bei der Programmierung einige Vor-
teile auf: Es ist einfach (d.h. leicht programmierbar), es ist stzabil (d.h. es funktioniert bei jeder
stetigen Funktion und ist unanfillig gegen Rundungsfehler), und man kann den Rechenaufwand
vorher abschitzen, denn es gilt

_ b—a
la, — x| < TR n=1,23,.... (1.81)

Ist z.B. f eine stetige Funktion auf [0, 1] mit £(0) < 0, f(1) > 0, und will man eine Nullstelle
x € (0,1) auf 6 Dezimalstellen genau bestimmen, so darf der Fehler |a,, — x| nicht grofer als 5
1077 sein, d.h. es muB 7 so gewihlt werden, dal (b —a)/2" <5- 107 ist. Das kleinste n dieser
Artist n = 21. Zusammen mit f(a) und f(b) sind damit 23 Funktionswerte zu berechnen. Wir
werden spiter erheblich schnellere Verfahren kennenlernen, die allerdings meist nicht so stabil
sind. Zwischen diesen beiden Eigenschaften, grolere Schnelligkeit oder groflere Stabilitdt der
Rechnung, hat man sich in der Praxis normalerweise zu entscheiden.

Beispiel 1.49:
Wir betrachten ein beliebiges Polynom ungeraden Grades n,

p(x) =ao+arx +ax® + ... +ax", a, #0,

und behaupten, daB mindestens eine reelle Nullstelle hat.

Der Beweis ist mit dem Nullstellensatz denkbar einfach. Man hat sich nur klar zu machen, daf3
fiir groBe |x| das »hochste Glied« a, x” »iiberwiegt«, d.h. daB alle anderen Glieder a;x¥ absolut
erheblich kleiner sind als |a,x"|. Fiir geniigend groBes |x| ist daher das Vorzeichen von p(x)
gleich dem Vorzeichen von a,x". Da n ungerade ist, hat aber a,(—x)" ein anderes Vorzeichen
als a,x™. Zwischen —x und x muf sich daher eine Nullstelle von p befinden! Der Leser tiberpriife
dies durch Rechnung am Beispiel

p(x) =3 +4x —x2 4503 —8xt 4
und berechne mit dem Intervallhalbierungsverfahren eine Nullstelle auf 3 Dezimalstellen genau.
Der Nullstellensatz 146t sich mithelos zum Zwischenwertsatz ausdehnen.

Satz 1.21:
(Zwischenwertsatz) Ist f : [a, b] — R eine stetigen Funktion und y eine beliebige
Zahl zwischen f(a) und f(b), so gibt es mindestens ein x zwischen @ und b mit

f@®=y.

Man sagt auch kiirzer: Eine stetige Funktion f : [a, b] — R nimmt jeden Werty zwischen f(a)
und f(b) an.
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Beweis:

Zum Beweis hat man lediglich auf die Funktion g(x) := f(x) — y den Nullstellensatz anzuwen-
den: Da y zwischen f(a) und f(b) liegt, miissen g(a) und g(b) verschiedene Vorzeichen haben.
Nach dem Nullstellensatz existiert daher ein x mit g(x) = 0, also f(x) = y. O

Beispiel 1.50:

Mit dem Zwischenwertsatz beweisen wir, dafl zu jeder positiven Zahl a und jedem n € N genau
eine positive n-te Wurzel

Ya

existiert (Nachtrag zu Abschn. 1.1.6). Um dies einzusehen, haben wir zu zeigen, daf} die Glei-
chung

X =a

eine Losung x > 0 besitzt. Es gilt fiir die stetige Funktion f(x)x" (x > 0) aber f(0) < a <
f(x1), mit x; = a+ 1. Nach dem Zwischenwertsatz existiert damit ein xg € (0, x1) mit f(xg) =
a, dh. xj = a. Da f auf [0, c0) streng monoton ist, ist xo eindeutig bestimmt. Man schreibt
dafiir

x0= Ya.

Ubung 1.35:

Wieviele Losungen hat die Gleichung

3 2 .
X 5x + Sx 5 in [0,1]

Berechne die Losung(en) mit dem Intervallhalbierungsverfahren auf drei Dezimalstellen genau.
Gib vor Beginn der Rechnung an, wieviele Halbierungsschritte notig sind!

1.6.4 Regeln fiir stetige Funktionen

Niemand zweifelt daran, dal Summe, Produkt und Quotient stetiger Funktionen wieder stetig
sind. Doch es will bewiesen werden!

Satz 1.22:
Sind f und g stetig in x¢, so sind auch

Pira.  f—g.  fem wi g (Falls g(x0) # 0)

stetig in xg.
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Beweis:

Die Stetigkeit von f+g, f —g und f-g ergibt sich unmittelbar aus Satz 1.1 unter Zugrundelegung
der Stetigkeitsdefinition 1.17. Zum Nachweis der Stetigkeit von f/g in xo benutzen wir den
nachfolgenden Hilfssatz, der besagt, daf}l g(x) # O ist fiir alle x des Definitionsbereiches von g,
die in einer gewissen Umgebung U von xq liegen. Fiir jede Folge (x,) aus U mit x, — xg folgt
daher f(x,)/g(x,) = f(x0)/g(xg) fir n — oo (s. Satz 1.1). Also ist f/g in xq stetig. U

Hilfssatz 1.2:

Ist f : I — Rstetigin xg € I, wobei f(x¢) # 0 ist, so gibt es eine Umgebung U von
X0 mit

f(x)#£0 firallexeUNI.

Beweis:
Wir wihlen ¢ = | f(xp)|. Dazu existiert ein § > 0, so daB fiir alle x € I mit |[x — xp| < § gilt:

|f(x0) = fFO)] < & =f(xo)l
= fo)| = [fX)] <e=[f(xo)] =0<[f()].

Fir U = (xo — 8, xo + §) ist die Behauptung erfiillt. O

Beispiel 1.51:
Die Funktionen der Form

ao+a1x+a2x2+...+apx1’
bo + bix + box? + ...+ byx

r(x) = (by #0) (1.82)
sind iiberall stetig, wo der Nenner nicht Null ist, da Zihler und Nenner stetige Funktionen darstel-

len (s. Satz 1.22, Fall f/g). Die Funktionen der Gestalt (1.82) nennt man rationale Funktionen.
Beispiele:

3—x 423 =) 1 =) 8 — 6x — 5x2
nx)=———, nkx)=—/———.
2 2 3 24+ x

rl(x)ZZ—x+6x2’ 14+x

Der Leser rechne Tabellen von Funktionswerten dieser Funktionen aus und skizziere die zugeho-
rigen Graphen. Bei r3 wird er eine kleine Uberraschung erleben. Wie ist sie zu deuten?

Den folgenden Satz mache sich der Leser im Koordinatensystem anschaulich klar, bevor er
den Beweis liest.

Satz 1.23:

(Stetigkeit von Umkehrfunktionen) Es sei f eine streng monotone Funktion auf einem
Intervall /. Damit folgt

(1) Die Umkehrfunktion f~! ist stetig auf f ().
(2) Ist f tiberdies stetig auf /; soist J = f(I) ein Intervall.
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Beweis:

Ohne Beschrinkung der Allgemeinheit nehmen wir f als streng monoton steigend an. (Andern-
falls ersetzt man f durch — f.) Ferner diirfen wir I als offenes Intervall annehmen, denn wire
a ein Endpunkt von 7, etwa ein linker, so konnte man f auf (—oo, a] streng monoton steigend
erweitern, z.B. durch eine Gerade, die in a den Wert f(a) annimmt. Zu (1): Es sei nun yg ein
beliebiger Punkt aus f(7), mit yo = f(xo). Es sei € eine beliebige positive Zahl mit der Eigen-
schaft, daB [xo —e&, xo+ €] in [ liegt (zum Stetigkeitsnachweis von f geniigt es, sich auf so kleine
& > 0 zu beschrinken). Man bildet nun das Intervall ( f (xp) — &, f(x0) + €) und erkennt wegen
der Monotonie von f, da} alle y = f(x) aus diesem Intervall ihre Urbilder x in (xo — &, xo + €)
haben. Ist § der kleinere der Abstinde | f(xo — ) — f(xg)| oder | f(xo + &) — f(x0)|, so folgt
damit fiir alle y = f(x):

ly—yol <8 = |x —xo| <e.

Das bedeutet aber gerade die Stetigkeit von f~!in yo. Da yg € f(I) beliebig war, ist £~! somit
stetig.

Zu (2): Eine Zahlenmenge ist offenbar genau dann ein Intervall, wenn mit je zwei Punkten der
Menge auch jeder zwischen ihnen liegende Punkt zur Menge gehort. Sind nun y; = f(x1) und
y2» = f(x2) zwei beliebige Punkte J = f(I), so besagt der Zwischenwertsatz, daf} jeder Punkt
zwischen y; und y> zu f (/) gehort. Also ist f(I) ein Intervall. O

Beispiel 1.52:
(Wurzelfunktionen) Die durch

gx)=3x (neN)

auf [0, co) definierte Funktion ist stetig, denn sie ist die Umkehrfunktion der stetigen Potenzfunk-
tion

fx)=x", x>0.

Satz 1.24:

(Komposition stetiger Funktionen) Es sei f : A — B stetiginxg € Aundg: B — C
stetig in yo = f(xp). Dann ist auch die Komposition

gof
stetig in x.

Beweis:
Aus x, — xo (x, € A) folgt f(x,) — f(xp), also

(8o Nlxn) =g(f(xn)) —  g(f(x0)) = (go f)xo),

d.h. g o f ist stetig in xo. (]
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Beispiel 1.53:

Wir fragen uns, ob

h(x) =vx2+1
stetig auf R ist. Mit f(x) = x>+ 1, g(y) = /¥, kann man schreiben:

h(x) = g(f(x)) = (go fHx).

Da f stetig auf R ist und g stetig auf [0, 00), so ist & stetig auf R.

1.6.5 Maximum und Minimum stetiger Funktionen

Hiufig ist nach dem grofiten oder kleinsten Wert einer Funktion gefragt.

Es interessiert etwa der hochste Punkt einer Flugbahn oder der niedrigste Punkt eines durch-
hingenden Hochspannungsdrahtes. Der folgende grundlegende Satz gibt Auskunft iiber die Exi-
stenz solcher grofiten oder kleinsten Werte, also der Maxima und Minima einer Funktion. Doch
zunichst einige Bezeichnungen.

Intervalle der Form [a, b] werden kompakte Intervalle genannt. Kompakte Intervalle sind also
nichts anderes als beschrdnkte abgeschlossene Intervalle. Nicht kompakt sind z.B. die Intervalle
(a,b), (a,b], [a, 00), R.

Wir nennen eine reelle Funktion f : A — R nach oben beschrinkt, wenn es eine Zahl C gibt
mit

f(x) <C firalle x € A.

C heillt eine obere Schranke von f. Die kleinste obere Schranke von f heif3t das Supremum von
f und wird so beschrieben:

sup f(x).

X€eA

Entsprechend wird nach unten beschrdnkt und untere Schranke definiert (> statt leq). Die grofite
untere Schranke von f heift Infimum von f und wird durch

inf
inf f)
symbolisiert. f : A — R heilit beschrinkt, wenn f nach oben und nach unten beschrénkt ist.
Gibt es ein xg € A, so daB f(xo) gleich dem Supremum von f ist, d.h. da3
f(x) < f(xg) furallex e A

gilt, so heilit f(xg) das Maximum von f, in Formeln ausgedriickt

max f&x) = f(xo).
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xo wird dabei eine Maximalstelle von f genannt. Entsprechend werden Minimum von f,
min f(x),
X€EA

und Minimalstelle definiert.

Beispiel 1.54:
Die Funktion

fx) =x?

mit Definitionsbereich [—1, 1] hat offenbar eine Minimalstelle bei 0 und zwei Maximalstellen
bei —1 und 1. Es gilt also

xer[n_i{{l]f(X)=f(0)=0,x€11[1_fﬂll)f1]f(X)=f(1)=f(—1)=1-

Beispiel 1.55:

Schrinkt man die obige Funktion f(x) = x~ ein auf den Definitionsbereich (—1, 1), so bleibt
das Minimum erhalten, doch ein Maximum besitzt sie nicht mehr! Es ist zwar f(x) < 1 fiir alle
x € (—1,1), aber niemals = 1. f(x) kommt allerdings der 1 beliebig nahe, wenn x < 1 nahe
genug an 1 liegt. Somit gilt

2

sup  f(x) =1,
xe(=1,1)

wobei statt sup nicht max gesetzt werden darf!

Beispiel 1.56:
Die Funktion f(x) = 1/x mit Definitionsbereich (0, 1] ist offenbar unbeschrinkt, genauer unbe-
schrinkt nach oben. Nach unten ist sie natiirlich beschrinkt, denn es ist rrg(l)n1 ] fx)=1.

xe(L,

Ist eine Funktion f : A — R nach oben bzw. nach unten unbeschrinkt, so beschreiben wir
dies durch

sup f(x) =oco bzw. in£ f(x) =—o0. (1.83)

x€eA
In den letzten beiden Beispielen 1.55 und 1.56 existieren keine Maxima. Der Definitionsbereich
ist hier beide Male nicht kompakt. Andererseits hatten wir in Beispiel 1.54 einen kompakten

Definitionsbereich, und prompt existieren auch das Maximum wie auch das Minimum. Das 146t
folgenden Satz vermuten:

Satz 1.25:

(Satz vom Maximum) Jede stetige Funktion f auf einem kompakten Intervall [a, b] ist
beschrinkt und besitzt sowohl Maximum wie Minimum. D.h. es gibt Elemente x¢ und
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X1 in [a, b] mit

Ffxo) < f(x) < f(x1) firalle x € [a, b]. (1.84)

Beweis:

(I) Wir nehmen an: f ist nach oben nicht beschriankt. Dann kann man zu jedem n € N ein x,, €
[a, b] finden mit f(x,) > n. So entsteht eine Folge (x,) aus [a, b]. Da die Folge (x,) beschrinkt
ist, besitzt sie eine konvergente Teilfolge (x,, Jren (nach dem Satz von Bolzano-Weierstra$3). Ihr
Grenzwert sei x. Da f stetig ist, gilt damit

lim f(x,) = f(X).
k—o00
Andererseits ist wegen f(x,,) > ng:
lim f(x,)=00.
k—o00

Beides kann nicht sein. Also war unsere Annahme falsch, und f ist nach oben beschrinkt. Die
Beschrinktheit nach unten ergibt sich analog.

(II) Wir zeigen nun, da f ein Maximum besitzt. Da f beschrinkt ist, existiert jedenfalls das
Supremum

sup f(x)=:s.

x€la,b]

Zu jedem n € N gibt es damit einen Wert f(x) mits — % < f(x) < s. Statt x schreiben wir hier
Xpn. So entsteht eine Folge (x,) in [a, b] mit

1
§s——< f(xp) <s, also lim f(x,)—oco=s. (1.85)
n n—00

(x,,) besitzt eine konvergente Teilfolge (x,, ) (nach Bolzano-Weierstraf3). Ihr Grenzwert sei X. Da
f stetig ist, gilt

lim f(xn) = f(x).
k—o00

Nach (1.85) ist dieser Grenzwert aber gleich s, also
f&x) =s,

d.h. X ist eine Maximalstelle und s das Maximum von f.
Die Existenz des Minimums von f wird analog gezeigt. (]

Bemerkung: Der bewiesene Satz ist Grundlage fiir Extremalprobleme, also Probleme, bei denen
nach Maximum oder Minimum gesucht wird. Er ist iiberdies wichtiges Hilfsmittel beim Beweis
des Mittelwertsatzes der Differentialrechnung. Sein Wert liegt mehr im Theoretischen.
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Ubung 1.36:

Gib fiir die folgenden Funktionen an, ob sie nach oben oder unten beschrinkt sind, und berechne
gegebenenfalls ihre Suprema, Infima, Maximal- und Minimalstellen!

a) f(x):x2—10x+22; f:R—>R;
b) gkx)=2x-5; g:[0,10) - R;
o h()=x*—2x243; h:[02] > R;

d) k(x)= k:(0,00) — R.

1 .
x3’

1.6.6 GleichmébBige Stetigkeit

Dieser Abschnitt kann beim ersten Lesen iiberschlagen werden. Er stellt ein Hilfsmittel bereit,
welches wir spéter in Beweisen benotigen, z.B. beim Beweis der Tatsache, daf} stetige Funktionen
integrierbar sind.

Das Hilfsmittel, wovon hier die Rede ist, ist der Begriff der gleichmdfsigen Stetigkeit.

Y se/

fix2) [~ ?/

fxe) | =t /

A L

|
|
i |

>

X1 Xz

Fig. 1.40: GleichmiBige Stetigkeit von Geraden

Erinnern wir uns noch einmal daran, was es heifit, da} eine Funktion f auf einer Menge
A C R stetig ist. Das bedeutet nach Satz 1.19:
Zu jedem xo € A und zu jedem ¢ > 0 existiert ein § > 0 mit der Eigenschaft

x—xol<dund xe A = |f(x)— f(xo)| <e. (1.86)

Hierbei hidngt 6 von ¢ und xo ab, so dal wir statt 6 auch §(xg, ¢) schreiben wollen. D.h. fiir
verschiedene x( sind die §(xp, ¢) moglicherweise verschieden, selbst wenn die ¢ dabei gleich
sind. Ein Beispiel hierfiir ist die Funktion f(x) = 1/x auf (0, 1], wie wir im néchsten Beispiel
genauer sehen werden. Hier miissen die §(xg, &) von xo zu x¢ verschieden gew#hlt werden bei
fest gewidhltem ¢ > 0.

Andererseits gibt es aber viele Funktionen, bei denen § > 0 so gewihlt werden kann, daf3 es
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nur von € > 0 abhdngt und nicht von xo. Wir schreiben in diesen Fillen 6 (¢) statt 8.

Die einfachsten Funktionen, bei denen dies der Fall ist, sind die Geraden. Fiir die Gerade
f(x) =2x(x € R) iiberlegt man sich zum Beispiel: Zu beliebigem ¢ > 0 wihle man §(g) = /2.
Dann gilt fiir alle x, xo € R:

|x1—xz|<a<s>=§ = 1fG) — flo)l <e.

Anhand des Graphen von f wird dies sofort klar, s. Fig. 1.40.
Die beschriebene Eigenschaft, also die Unabhdngigkeit der Zahl 5(¢) von xo, heillt gleichmdi-
JPige Stetigkeit der Funktion f.Zusammengefal3t:

Definition 1.19:
Eine reellwertige Funktion f heillt gleichmdfig stetig auf A (A C D(f) C R), wenn
folgendes gilt:

Zu jedem ¢ > 0 gibt es ein § > 0, so da3

fiir alle x;, xo € A mit |x; — xp| < & stets

1.87
|f(x1) — fx)] < e (1.87)

gilt.

f heilt eine gleichmdifiig stetige Funktion, wenn f auf dem gesamten Definitionsbereich D( f)
gleichmifig stetig ist.
Es gilt nun der fundamentale

Satz 1.26:
Auf kompakten Intervallen sind stetige Funktionen gleichméaBig stetig.

Beweis:

Es sei f stetig auf [a, b]. Wir nehmen an, da} f nicht gleichmé@Big stetig auf [a, b] ist, und fithren
dies zum Widerspruch. Fiir f soll also die Verneinung von (1.87) zutreffen, d.h. es gibt ein &g, so
daB es kein § > 0 gibt in der in (1.87) beschriebenen Art. Das bedeutet aber:

Es gibt ein g9 > 0, so daB fiir jedes § > 0
zwei Punkte x, xp € [a, b] mit |[x;] — x2| < §

existieren, fiir die
(1.88)

[f(x1) — f(x2)] > €0

ist.

Wir wihlen dabei § = % firn = 1,2,3,4, ... und nennen die zugehdrigen x1, x-Werte kurz
X1,n, X2,,. Die Folge (x1, ) ist beschrinkt, besitzt also eine konvergente Teilfolge (x1,, )xen. Ihr
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Grenzwert sei x. Wegen |x1 ,, — X2,0,| < 1/ni konvergiert auch (x3 ,,) gegen x. Wegen der
Stetigkeit von f gilt

Jim, 5100 = £ = fim FG2).

Das steht aber im Widerspruch zu | f (x1,,,) — f(x2,,,)| = €0. Also ist f gleichmiBig stetig auf
[a, b]. O

Bemerkung: Im Beweis wurde gar nicht benutzt, da3 der Definitionsbereich von f ein Intervall
ist. Es wurde lediglich verwendet, dal3 er beschrdnkt ist und alle seine Hdufungspunkte besitzt.
Eine Zahlenmenge mit dieser Eigenschaft wird kompakt genannt. Jede Vereinigung endlich vieler
kompakter Intervalle ist z.B. kompakt, jede endliche Zahlenmenge auch, wie auch die Menge
12030 4

Zahlenmengen sind stetige Funktionen stets gleichmdifig stetig.

Beispiele fiir gleichmiBig stetige Funktionen gibt es nach Satz 1.26 wie Sand am Meer. Im
Folgenden betrachten wir daher eine ungleichmifig stetige Funktion.

{0,1 L1 1o b Der Satz 1.26 1iBt sich damit allgemeiner so formulieren: Auf kompakten

3
x—

. . . e . . . L. o x3—1
Fig. 1.41: UngleichmaBige Stetigkeit Fig. 1.42: f(x) = < i

Beispiel 1.57:
Die Funktion

f(x):l (s. Fig. 1.41)
X

ist auf (0, 1] nicht gleichmiBig stetig. Denn fiir ¢g = 1 gilt: Fiir jedes § > 0 gibt es zwei Punkte
x1,x2 € (0,1] mit |[x; — x2] < 8 und | f(x1) — f(x2)| > 1. Es geniigt dabei § < 1 zu betrachten,
denn fiir groBere & gilt dann die erwidhnte Aussage erst recht. Der Beweis der Aussage verlduft
so: Man wihle xo» = § und x; = §/2. Sie erfiillen die Ungleichung |x; — x2| < § und

2 1
=|Z-Z|==>1.
P

1 1
[f(x1) — f(x2)| = ‘— - —
X1 X2
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Also ist f ungleichmiBig stetig auf (0, 1].

Ubung 1.37%:
Welche der folgenden Funktionen sind gleichmiBig stetig auf (0, 1) und welche nicht?
a) f(x)=+v1-—x2, b) g(x):x+x_2+x3,
fiir0 <x < % . 2x
c) hx)= ] , d) k(x) = lim ——= .
—2x+2, firy <x<l ”—’00(7) +1

1.6.7 Grenzwerte von Funktionen

Beispiel 1.58:

Zur Einfithrung betrachten wir die Funktion

x3—

fx) =

(s. Fig. 1.42)

X —

die fiir alle x € R mit Ausnahme von 1 definiert ist. Denn fiir x = 1 ist der Nenner Null und
damit der Bruch sinnlos.

Skizziert man die Funktion im Koordinatensystem, so erlebt man eine Uberraschung: Der
Ausnahmepunkt x = 1 scheint gar keine echte Ausnahme zu sein: Wiirde man fiir x = 1 den
Funktionswert y = 3 einfiigen, so wiirde eine durchweg stetige Funktion entstehen. Wir konnen
dies iibrigens auch algebraisch schnell einsehen: Ein Vergleich mit der geometrischen Summen-
formel zeigt namlich, daf}

=1

fx) = =14x+x2

x—1

fir x # 1 gilt. Die rechte Seite der Gleichungskette stellt aber eine stetige Funktion f(x) =
l+x+. x? fiir alle x € R dar. Sie ist die stetige Erweiterung von f auf R. Man sagt auch: f ist
(durch f) stetig in x = 1 erweitert worden.

Das bedeutet aber: Fiir jede gegen 1 konvergente Folge (x,,), mit x,, # 1 fiir alle n, gilt
lim f(x,) =3.
n—oQ
Diesen Sachverhalt beschreibt man kurz durch

lim f(x) =3.

Beispiele dieser Art fithren uns zu folgenden Vereinbarungen:

Eine Zahl xq heilit Hédufungspunkt einer Menge D C R, wenn in jeder e-Umgebung von xg
unendlich viele Zahlen aus D liegen.
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Definition 1.20:
Essei f : D — R eine Funktion und x( ein Hiaufungspunkt des Definitionsbereiches
D. Man sagt, f(x) konvergiert fiir x — xo gegen den Grenzwert c, wenn fiir jede
Folge (x,) aus D mit

lim x, =xp, und x, # xo firallen
n—oo

stets folgt:

lim f(x,;) =c.
n— o0

Man beschreibt diesen Sachverhalt kurz durch

lim f(x) =c. (1.89)

X—>X0
In Definition 1.20 konnen wir drei Fille unterscheiden:

1. Fall: xo ¢ D
2.Fall: xo € D und f(x0) # ¢
3.Fall: xo e D und f(x9) =c¢

Der erste Fall entspricht unserem Beispiel 1.58. Wir konnen in diesem Falle f erweitern zu einer
Funktion f, die in xo den Wert f(xg) = ¢ hat und sonst mit f iibereinstimmt, also

— c, fiir x = xo
fx)= . (1.90)
f(x), firx # xo,x € D.
Nun bedeutet lim f(x) = ¢ daB f in xo stetig ist.
X—>X0

Man nennt f die stetige Erweiterung von f in xo, oder man sagt auch: f ist in xq stetig
ergdnzt worden.
Auch im 2. Fall kénnen wir die Funktion f nach (1.90) bilden. Sie unterscheidet sich von f
nur in xo. Dabei bedeutet XILII; f(x) = c daB f in xq stetig ist, f aber nicht!
0

Im 3. Fall f(xp) = c bedeutet lim f(x) = c offenbar nichts anderes als die Stetigkeit von f
X—>X0

in xg, also
fstetiginxg < lim f(x) = f(xo). (1.91)
xX— X

Wir fassen zusammen:

Folgerung 1.16:
Essei f : D — R eine Funktion und x¢ ein Haufungspunkt von D. Dann bedeutet

lim f(x)=c, (1.92)

X—>XQ
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daf die Funktion

v _ C, fiirx = X9,
T = f(x), firx #xp,xeD (1.93)

stetig in xg ist. IE den beiden ersten Fillen, die erldutert wurden (xg € D bzw. xo € D,
J(x0) # c), ist f stetige Erweiterung bzw. stetige Abdnderung von f in xo. Im 3. Fall

ist f = f.
Dieser Zusammenhang mit der Stetigkeit, der ja besagt, da3 lim f(x) = c nichts anderes
X—>X0

heiBt als die Stetigkeit von f, gestattet es, alle Regeln iiber stetige Funktionen in einem Punkt
auf lim f(x) sinngemdl zu libertragen.
xX—>X0

Aus Satz 1.19, Abschn. 1.6.2, erhilt man daher

Folgerung 1.17:
Es sei xo Hiaufungspunkt des Definitionsbereiches einer reellwertigen Funktion f.
Dann bedeutet

lim f(x)=c

xX—>X0
folgendes

Zu jedem ¢ > 0 gibt es ein § > 0, so dal3 fiir

allex € Dmitn # 0 und |x — xo| < § gilt: (1.94)

Lf(x) —c| <e.

Satz 1.22, Abschn. 1.6.4, liefert

Folgerung 1.18:

Es sei xo Haufungspunkt des Definitionsbereiches einer Funktion f wie auch einer
Funktion g. Existieren die Grenzwerte

lim f(x) =c und lim g(x)=4d,
xX—X( xX—X(

so existieren auch die folgenden, links stehenden Grenzwerte und erfiillen die Glei-

chungen
lim (f(x) £g(x)) = lim f(x)=£ lim g(x) (1.95)
X—>X0 xX—>X0 X—=>X0

Iim (f(x)-g(x)) = lim f(x)- lim g(x). (1.96)
xX—XxQ X—XQ xX—XQ
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Im Falle lim g(x) # 0 gilt auch
X— X0

lim £(x)

i f(x) X— X0

im = — )

x=x0 g(x) lim g(x)
xX—>X0

(1.97)

wobei nur solche x aus dem Definitionsbereich von g zu betrachten sind, die in einer
so kleinen e-Umgebung von x¢ liegen, daf3 dort stets g(x) # O gilt.

Zu letzterem iiberlegt man sich, wie im Beweis von Satz 1.22, daf3 es in der Tat eine e —Umgebung
von xg gibt, in der iiberall g(x) 7~ O ist.

Ubung 1.38%*:
Berechne
2 2 2 2
-5 6 -25 -2 -5 6
a) lim ﬂ’ b) lim X . © lim i, d) lim ﬂ
x—2 x24+3x — 10 x—5 x—=95 =1 Jx—1 x—1x243x — 10

1.6.8 Pole und Grenzwerte im Unendlichen

In diesem Abschnitt wollen wir den Grenzwertbegriff bei Funktionen auf den Fall erweitern, daf3
+o00 anstelle von ¢ oder x( steht. Bei Resonanzvorgédngen oder Einschwingvorgingen spielt dies
z.B. eine Rolle. (Trotzdem mag dieser Abschnitt vom Leser zunéchst ibergangen werden. Bei
Bedarf kann hier nachgeschlagen werden.)

v x

Fig. 1.43: Pol

Beispiel 1.59:
Die Funktion

1
f(x)ZE
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ist definiert auf R\ {0} (d.h. fiir alle reellen x 7 0). Fig. 1.43 zeigt, daB sie in der Ndhe von x = 0
beliebig groe Werte annimmit. O ist sicherlich dabei ein Haufungspunkt des Definitionsbereiches
R\ {0}. Den in Fig. 1.43 skizzierten Sachverhalt beschreibt man durch

lim f(x) = oo.

Allgemein vereinbaren wir:

Definition 1.21:

Es sei xo Haufungspunkt des Definitionsbereiches einer reellen Funktion f. Man sagt,
f(x) strebt fiir x — xq gegen oo, wenn fiir jede Folge (x,) des Definitionsbereiches
mit x, — xo, x, # xo folgendes gilt:

lim f(x,) =o00.
n—oo
Diesen Sachverhalt symbolisiert man durch

lim f(x) = co. (1.98)

X—> X0

Entsprechend definiert man

lim f(x) =—o00 und lim |f(x)| =o00. (1.99)
xX—>X0 X—=>X0

In all diesen Fillen nennt man x( einen Pol von f.

Folgerung 1.19:
(a) xo sei Haufungspunkt des Definitionsbereiches D von f. Dann bedeutet

lim f(x) = 0o (1.100)

X—> X0
folgendes:

Zu jedem M > 0 gibtes ein § > 0, so daB fiir

alle x € D mit x # xo und |x — xo| < § gilt: (1.101)
fx)> M.
(b) Fir lim f(x) = —oo gilt entsprechendes. Man hat nur f(x) < —M statt
X—>X0

f(x) > M zu setzen.

Der Beweis wird analog wie der Beweis von Satz 1.19, Abschn. 1.6.2, gefiihrt. Er bleibt dem
Leser tiberlassen.
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Definition 1.22:
(a) Der Definitionsbereich D von f : D — R sei nach oben unbeschrinkt. Man
sagt, f(x) strebt fiir x — 00 gegen eine Zahl c, wenn fiir jede Folge (x,) aus D
mit x, — oo gilt
lim f(x,) =c.
n—oo
In Formeln beschreibt man dies durch
lim f(x)=c. (1.102)
X—> 00

Ist D nach unten unbeschrinkt, so definiert man entsprechend

lim f() =c. (1.103)

(b) Anstelle von ¢ kann auch oo oder —oo stehen. Alles andere wird entsprechend
formuliert.

Es wird schon etwas langweilig, aber auch hier gilt eine zu Folgerung 1.19 analoge Aussage:

Folgerung 1.20:
Unter den Voraussetzungen von Definition 1.22 bedeutet

(@ lim f(x)=c:

Zu jedem ¢ > 0 gibt es ein R > 0, so dal} fiir

alle x € D mit x > R gilt: (1.104)
|f(x) —c| <e.
(b) lim f(x) =o0:
X—>00

Zu jedem M > 0 gibt es ein R > 0, so dabB fiir
alle x € D mit x > R gilt: (1.105)

fx) > M.

Fiir —oo anstelle von oo, sowohl unter dem Limeszeichen wie rechts vom Gleichheitszeichen,
hat man nur x < —R bzw. f(x) < —M an den entsprechenden Stellen einzusetzen.

Beispiel 1.60:
Fiir

3x34+2x —1

, firx >0,
2x34+6

fx) =
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gilt
. 3
Iim f(x) ==, (1.106)
X— 00 2
denn mit beliebiger Folge x,, — oo(x;, > 0) erhdlt man

2 1
342, -1 T2 "3 340-0 3

3 = 5 =5

) =

Beispiel 1.61:
Die Funktion f(x) = 3x% + 9 erfiillt zweifellos lim f(x) = 0o.
X—> 00

1.6.9 Einseitige Grenzwerte, Unstetigkeiten

Definition 1.23:
(a) Essei f : D — R eine Funktion und xo ein Haufungspunkt des rechts von xq
liegenden Teils von D, also von Djo = {x > x¢ | x € D}. Dann bedeutet

fxo+) = lim f(x)=c, (1.107)
X—>X(

X>X(
dabB fiir jede Folge (x,) aus D mit x,, > xo und x,, — xq gilt:

lim f () = c. (1.108)

c hei3t dabei der rechtsseitige Grenzwert von f in xg.

(b) Vollig analog wird der linksseitige Grenzwert von f in xo erklart:

flxo—) = xli)n;o fx)=c.

X<xQ

Statt ¢ kann auch co oder —oo stehen. Die entsprechenden Formulierungen mit € und é (bzw. M
und § im Falle +00) werden vollig analog zu denen in Folgerung 1.17 und Folgerung 1.19 gebil-
det.

Beispiel 1.62:
Die Sdigezahnkurve, wie in Fig. 1.44 skizziert, spielt in der Fernsehtechnik eine wichtige Rolle.
Sie wird beschrieben durch

n, fﬁrn—%<x<n+%,nganz

fo=1""

0, fﬁrx=n+%,nganz.
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Sie ist unstetig in j:%, j:%, :b%, ... usw.

Fig. 1.44: Ségezahnkurve

Doch gilt z.B. in xg = %:

1
lim f(x) == (linksseitig)
x—1/2 2
x<1/2

und

1
lim f(x)=—= (rechtsseitig)
x—>—1/2 2
x>1/2

Entsprechendes trifft in den anderen Punkten xo = % + n (n ganz) zu. Man sagt, daf} f in diesen
Punkten Spriinge hat.

Unstetigkeitsstellen: Die Spriinge in der Sdgezahnkurve sind Unstetigkeitsstellen, wie sie haufig
vorkommen. Wir vereinbaren allgemein:

Eine reelle Funktion f : D — R hat einen Sprung in xo, wenn rechtsseitiger Grenzwert
f(xo+) und linksseitiger Grenzwert f (xo—) existieren, aber verschieden sind. Dabei heif3t

f(xo+) — f(xo—)
die Sprunghohe von f in xg.

Eine Funktion f : I — R (/ Intervall), die in jedem beschrinkten Teilintervall von I hochstens
endlich viele Spriinge hat, sonst aber stetig ist, heilit stiickweise stetig. Die Sdgezahnkurve wie
auch die Heaviside-Funktion (Beispiel 1.27, Abschn. 1.3.3) sind stiickweise stetig.

Neben den Spriingen haben wir Pole als Unstetigkeitsstellen kennengelernt. Hinzu kommen
Polwechsel von —oo auf 400, die bei

lim f(x) = —oc0 und Ilim f(x) =00
X—>X0 X—> X0
X <X X>X0

vorliegen. (Polwechsel von co auf —oo analog.)
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Ein Sprung von —oo auf oo liegt fiir f(x) = 1/x (x # 0) im Punkt xo = O vor.
Eine weitere Art von Unstetigkeitsstellen sind sogenannte Oszillationsstellen, s. Fig. 1.45.
Eine solche Stelle wird z.B. durch

f(x):sinl, x #£0,
X

beschrieben. (Die Funktion sin wird spiter im Abschn. 2.3.2 behandelt.)

y

Fig. 1.45: Oszillationsstelle
Wir haben an Unstetigkeitsstellen bisher behandelt:
Spriinge, Pole und Polwechsel, Oszillationsstellen.
Natiirlich gibt es noch viele andere Unstetigkeitsstellen (unbeschrinkte Oszillationen, sich hiu-

fende Unstetigkeitsstellen und vieles mehr), doch kommen in der Praxis hauptsichlich die drei
genannten Typen vor.



2 Elementare Funktionen

2.1 Polynome

2.1.1 Allgemeines

Unter einem Polynom n-ten Grades versteht man eine Funktion der Form
f(x) =ag+aix +ax>+ ... +a,x", mita, #0.

(Statt Polynom sagt man auch ganzrationale Funktion.) Die Zahlen ay, ai, ..., a, heilen die
Koeffizienten des Polynoms. Der Definitionsbereich von f ist die gesamte reelle Achse.

Die Funktion f : R — R mit f(x) = 0 (fiir alle x € R) heifit das Nullpolynom. Thr wird kein
Grad zugeschrieben.

Fiir n = 0, 1 oder 2 erhilt man z.B. die Polynome:

n=0: f(x)=ap, konstante Funktionen # 0,
n=1: f(x) =a9+ax, Geraden, steigend oder fallend,

n=2: f(x)=a9+aix + a2x2 , quadratische Polynome,

Zur Beschreibung technischer Sachverhalte werden Polynome vielfach verwendet.

Fig. 2.1: Biegelinie eines Balkens

Beispiel 2.1:
Biegelinie eines einseitig eingespannten Trégers (s. Fig. 2.1) wird beschrieben durch

F
= —(3Ix*—x%).
y 6E-I( x°—=x7)

Dabei ist E - I die Biegesteifigkeit, F' eine Last am freien Ende des Trigers und / seine Linge.
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Oft ist auch nach den Nullstellen von Polynomen gefragt, da sie Losungen technischer Proble-
me darstellen konnen, z.B. bei der Ermittlung von Gleichgewichtslagen, Resonanzen, Schwin-
gungsfrequenzen und Instabilitidten. SchlieBlich sind die Polynome von grofler Bedeutung als
Ndherungsfunktionen fiir komplizierte Funktionen (s. auch Abschn. 5.3.1).

2.1.2 Geraden

Wir beginnen mit den einfachsten Polynomen, und zwar mit Funktionen der Form
fx)=aix+ap. .1

Sie heilen Geraden, da ihre Graphen geometrische Gerade in der Koordinatenebene sind (siehe
Fig. 2.2).

Geometrische Bedeutung der Koeffizienten agy, a1: Wir skizzieren den Graphen von f in einem
x-y-Koordinatensystem, s. Fig. 2.2. Dann gilt: ag markiert auf der y-Achse den Schnittpunkt mit
dem Graphen von f. (Dies folgt sofort aus f(0) = ap.)

AY

” Y =aiX + ag

a

Fig. 2.2: Gerade im Koordinatensystem

Die geometrische Bedeutung von a; geht aus Fig. 2.2 hervor: Zeichnet man ein rechtwinkliges
Dreieck mit den Ecken (0, ag), (1, ag), (1, (1)) ein, so hat die senkrechte Seite die Léinge |ay|.
(Dies folgt aus f(1) = aj + ao, also f(1) — ag = a;.) Dabei gilt offenbar

a; >0 = die Gerade steigt,
a; =0 = die Gerade ist horizontal,
a; <0 = die Gerade fillt.

aj ist ein Mal dafiir, wie stark die Gerade nach rechts ansteigt oder abfillt. Aus diesem Grunde
wird a; die Steigung oder Richtung der Geraden genannt.

Bemerkung. Ist o der Anstiegswinkel der Geraden, so ergibt Fig. 2.2 direkt den Zusammenhang
ay = tan« (die Tangensfunktion tan wird in Abschn. 2.3.3 ausfiihrlich beschrieben).

Beispiel 2.2:
Bewegt sich ein Massenpunkt mit gleichbleibender Geschwindigkeit v auf einer geradlinigen
Bahn, so wird seine Bewegung beschrieben durch

y=vt+)Y.
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Zu jedem Zeitpunkt ¢ kann damit der Ort y des Massenpunktes auf der Bahn berechnet werden.
Die Gleichung beschreibt eine Gerade im 7-y-Koordinatensystem mit Steigung v.

Fiir zwei beliebige Punkte (x1, f(x1)), (x2, f(x2)) der betrachteten Geraden f(x) = ajx+ag
gilt stets

flx) = fGx)
/= T —a

X2 — X1

(2.2)

Der Leser rechnet dies leicht nach.
Bemerkung: Gl. (2.2) 146t sich auch geometrisch begriinden: Die beiden schraffierten Dreiecke
in Fig. 2.3 sind d@hnlich, haben also gleiche Seitenverhiltnisse.

Folglich gilt
flo) = fx) _ a1
X2 — X1 1

Die linke Seite von (2.2) hei3t Differenzenquotient von f beziiglich x1, x». Geraden zeichnen
sich dadurch aus, daf} die Differenzenquotienten beziiglich je zweier verschiedener Zahlen x1, x>
stets den gleichen Wert haben!

Ay

flxz) = f(x1)

Y =

Fig. 2.3: Zum Differenzenquotient bei Geraden

Punkt-Richtungsform: Gesucht ist eine Gerade f, die durch einen bestimmten Punkt (x1, y1)
verlduft, und deren Richtung a; bekannt ist. Wie lautet die Gleichung der Geraden? Fiir jeden
Geradenpunkt (x, f(x)) mit x 7% x; muf} nach (2.2) gelten:

fO) =y _ al (2.3)
X —x
Auflosung nach f(x) ergibt die gesuchte Gleichung
fx)=ar-(x—x)+yr. (2.4)

Einsetzen von x = x liefert in der Tat f(x1) = y;. (2.4) nennt man die Punkt-Richtungsform
einer Geraden.
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Beispiel 2.3:
Ein Zug fihrt mit konstanter Geschwindigkeit v = 80km/h. Er passiert den Streckenkilometer
153 um 11 Uhr. Seine Bewegung wird durch eine Funktion

y=f@) =vt+y

beschrieben, wobei y den Streckenkilometer angibt, den der Zug um ¢ Uhr passiert. Die Funktion
ist eine Gerade im y-z-Koordinatensystem. Wir kennen ihre Steigung v und einen ihrer Punkte,
nimlich (11, 153). Nach der Punkt-Richtungsform folgt daher

y=f(@)=80-(—11)+153.
Zwei-Punkte-Form: Gegeben seien zwei Punkte (x1, y1), (x2, y2) in der Ebene mit x; # x».

Gesucht ist eine Gerade f durch diese Punkte.
Da alle Differenzenquotienten von f den gleichen Wert haben, gilt fiir jedes x # x;

S =y y»—n

= ) (2.5)
X — X1 X2 — X1
Auflosung nach f(x) liefert
2— )1
f(X)=y Y (x —x1)+y1. (2.6)
X2 — X1

Es gilt hierbei, wie verlangt, f(x;) = y; und f(x2) = y2. (2.6) heilit die Zwei-Punkte-Form
einer Geraden.

Beispiel 2.4:
Die Linge [ eines Stabes hiangt von seiner Temperatur § ab:

I =1o(1+as). 2.7)

Dabei ist [y die Linge des Stabes bei 0° C und o der Wirmeausdehnungskoeffizient des Stabes.
Die Gleichung beschreibt eine Gerade im §-/-Koordinatensystem.

Wir nehmen an, daf3 uns /y und « unbekannt sind. Messungen jedoch haben ergeben, dafl der
Stab bei 36° C eine Linge von 4,3008 m hat und bei bei 94° C eine Linge von 4.3042 m. Wir
kennen also zwei Punkte der Geraden. Nach der Zwei-Punkte-Form hat (2.7) daher die explizite
Gestalt

| _ 43042 — 4.3008

8 —36) 44,3008 = 5,86 - 10725 + 4,2987 .
o1 _36 " ) + +

Es folgt Iy = 4,2987 m und aus lpaz = 5,86 - 1075 m/° C der Ausdehnungskoeffizient « =
1,363 -1073/°C.

Abschnittsform: Es ist eine Gerade f gesucht, welche die x-Achse bei A # 0 und die y-Achse
bei B schneidet, s. Fig. 2.4.
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(A und B heilen die Achsenabschnitte der Geraden.) f geht also durch die beiden Punkte
(A, 0) und (0, B). Die Zwei-Punkte-Form liefert daher

B
f@)=—Zx+B. 2.8)

Ist B # 0 und schreiben wir y statt f(x), so 146t sich (2.8) in die elegante Gestalt

x oy
4L =1 2.9
A+B 2.9

umformen. (2.9) heifit die Abschnittsform der Geraden.

y

y =<

A B

o AN

Fig. 2.4: Zur Abschnittsform Fig. 2.5: Dachhohe an Abseite

Beispiel 2.5:
Ein Haus habe eine Breite von 10m und eine Dachfirsthohe von 4 m iiber dem Dachboden,
s. Fig. 2.5. Bei einem Dachbodenausbau interessiert die Frage: Wie hoch ist das Dach in der
Entfernung 3,5 m von der Hausmittellinie?

Die rechte Seite der Dachlinie kann mit der Abschnittsform beschrieben werden:

Xy
-+ ==1.
5+4

Fiir x = 3,5 errechnen wir daraus die Dachhohe iiber dem Dachboden: y = 1,2 m.

Schnittpunkt zweier Geraden: Es seien zwei Geraden f(x) = ajx + ap, g(x) = b1x + by
gegeben, die verschiedene Richtungen besitzen: a; # bj. Fiir den Schnittpunkt (xg, yo) dieser
Geraden muf} gelten:

yo=aixo+ao und yop=bixo+bo. (2.10)
Daraus lassen sich x¢ und yo berechnen: Man setzt die rechten Seiten gleich,

ayxo +ap = bixo + bo ,
16st nach xp auf und setzt den gefundenen Ausdruck in (2.10), linke Gleichung, ein. Dies ergibt:

by — agp boay — apby

x0 = @2.11)

ai—by’ 0= ay — by
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Im Falle a; = b1, ag # bo sind die Geraden parallel, und es existiert kein Schnittpunkt.

Fig. 2.7: Stromkreis mit innerem und duflerem

Fig. 2.6: Schnittpunkt zweier Geraden Widerstand

Beispiel 2.6:

Der Stromkreis der Fig. 2.7 besteht aus einem Generator mit innerem Widerstand R;, und einem
Arbeitsgerit mit duBlerem Widerstand R,. Es flieBt der Strom /. Die Klemmspannung am Ge-
nerator ist U = U, — R; I, wihrend sich die gleiche Spannung mit Hilfe des Widerstandes R,
durch U = R, 1 errechnet. Beide Gleichungen konnen als Geraden in der U -7-Koordinatenebene
aufgefaflt werden. Thr Schnittpunkt gibt uns die Werte / und U an, die im Stromkreis vorhanden
sind. Nach (2.11) erhalten wir

I — U, _ UyR,
R+ R R+ R
Ubung 2.1:
Durch die Punkte (1,0) und (3,2) verlduft die Gerade G, wihrend eine zweite Gerade G
durch (1,4) verlduft und die Steigung a; = —1/2 besitzt. Berechne den Schnittpunkt der beiden
Geraden.
Ubung 2.2%:

Eine Fliissigkeit mit dem Volumen V = 2000 cm? und der Dichte p = 1,01 gcm73 ist durch
Mischen zweier Fliissigkeiten ] und F, mit den Dichten p; = 0,94 g em3, p2=113¢g em ™3

entstanden. Wie grof} sind die Volumina V| und V, der beiden Fliissigkeiten Fy, F»?

Ubung 2.3:

Durch eine elektrische Leitung mit dem Widerstand R fliet ein Strom /. VergroBert man den
Widerstand R um 3 £2, so sinkt der Strom / um 1 A. Verringert man den Widerstand R um 5 2,
so steigt der Strom / um 2 A. Die Spannung ist dabei konstant. Wie grof} sind R und /?
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2.1.3 Quadratische Polynome, Parabeln

In diesem Abschnitt studieren wir die Polynome zweiten Grades:
y=f(x)=ax’+aix +ap, a#0. (2.12)
Sie werden auch quadratische Polynome genannt.

Beispiel 2.7:
Die Bewegung eines aufwirts geworfenen Korpers wird durch das quadratische Polynom

L 5
s=f(t)=v0t—§gt

beschrieben. s ist dabei die nach ¢ Sekunden erreichte Hohe des Korpers — genauer, seines
Schwerpunktes. vy bezeichnet die Abwurfgeschwindigkeit und g = 9,81 m/s? die Erdbeschleu-
nigung. (s. auch Beispiel 2.9. In Abschn. 3.3.1, Beispiel 3.36, wird die Bewegungsgleichung aus
dem 1. Newtonschen Axiom der Mechanik hergeleitet.)

Beispiel 2.8:
Ein stromendes Medium (Luft, Wasser), das mit einer mittleren Geschwindigkeit v auf einen
Korper trifft, iibt die Kraft

Fu = codspr
w = Cw va

auf ihn aus. F, heiBt auch Stromungswiderstand des Korpers. Dabei ist ¢, der Widerstandsbei-
wert, A die Querschnittsfliche des Korpers und p die Dichte des stromenden Mediums.

Einheitsparabel: Das einfachste aller quadratischen Polynome lautet
y= ) =%

Die geometrische Figur, die sein Graph darstellt, wird Parabel genannt, s. Fig. 2.8. Sie besitzt ei-
ne Symmetrieachse, hier die y-Achse. Ihr Schnittpunkt mit der Parabel heilit Scheitel der Parabel.
In unserer Figur ist es der Koordinatennullpunkt.

Man bezeichnet die Funktion f (x) = x? als Einheitsparabel.
Normalparabeln: Die quadratischen Polynome der Form

y=f(x)=cx*, c#0,

heiBen Normalparabeln. Thre Graphen sind alle untereinander dhnlich! sie sind also, geometrisch
gesehen, alle Parabeln.

Zum Nachweis der Ahnlichkeit geniigt es zu zeigen, da der Graph jeder Normalparabel zum
Graphen der Einheitsparabel dhnlich ist. Es sei also f(x) = cx? eine beliebige Normalparabel.

1 Zwei geometrische Figuren hei3en dhnlich, wenn die eine ein mafstabsgetreues Bild der anderen ist, evtl. nach
vorangegangener Spiegelung, Drehung oder Verschiebung.
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4y
Ay
3
X
2
y =x2

1

X

2 =1 @ 1 2

Fig. 2.8: Einheitsparabel Fig. 2.9: Normalparabeln

Ihr Graph besteht aus allen Punkten (x, y) mit
y=cx~.

Multipliziert man rechts und links mit ¢, so erhilt die Gleichung die Gestalt
cy = (cx)2 .

Diese Gleichung geht aus der Gleichung y = x? der Einheitsparabel dadurch hervor, daf y
durch ¢y und x durch cx ersetzt werden. y und x werden dabei um den gleichen Faktor |c|
gestreckt oder gestaucht. Also ist der Graph der Normalparabel die |c|-fache Vergrofierung oder
Verkleinerung des Graphen der Einheitsparabel (bei ¢ < 0 nach vorangegangener Spiegelung),
woraus die behauptete Ahnlichkeit folgt.

Allgemeinfall: Wir zeigen nun, daf3 der Graph jedes quadratischen Polynoms
y = f(x) =ax? +aix +ag

gleich dem Graphen einer Normalparabel ist (in einem parallel verschobenen Koordinatensy-
stem). Die Graphen quadratischer Polynome sind also Parabeln!

Zum Nachweis formen wir die Funktionsgleichung
y = az)c2 +a1x +a

des quadratischen Polynoms um:
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Zuerst wird ap ausgeklammert und dann die »quadratische Ergdnzung« der ersten beiden
Glieder eingefiigt:

2 2
y=a x2+a—1x—|—a—0 =ap x2+a—1x+ a_l — a_l +a_0
az a2 a 2ay 2a; a

Py ai
=ay|x+ — ap——| .
2 2a2 0 4a2

Wir bringen die rechte Klammer der letzten Zeile auf die linke Seite

2 2
aj aj
_ _ 1) = - 2.13
y (ao 4a2> a (x + 2a2> (2.13)

und setzen zur Abkiirzung

2
yzy—<a—a—1), Y=x+4 2L (2.14)

da, 2a;
Damit erhélt man
¥ = arx>,

also eine Normalparabel in x-y-Koordinaten.

Fig. 2.10 zeigt die Lage des x-y-Koordinatensystems. Es entsteht durch Parallelverschiebung
aus dem x-y-Koordinatensystem. Der Koordinaten-Nullpunkt wird dabei in den Punkt (xq, yo)
mit xg = —ai/(2az) und yp = ap — a% /(4ay) verschoben. Damit ist die Behauptung bewiesen.
Wir fassen zusammen:

Satz 2.1:
Der Graph eines quadratischen Polynoms

y = f(x) = axx’® + a1x + ag

ist gleich dem Graphen einer Normalparabel der Form y = x> (s. Fig. 2.10). Der
Scheitel der Parabel liegt im Punkt (xo, yo) mit

S - « (2.15)
0= 2ay° A= 4ay ’

Im Falle a, > 0 ist der Scheitel tiefster Punkt, im Falle a; < O hochster Punkt der
Parabel.
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Ay
As
S0 + — — — —
|
I
I
Yo o =i =i s=vot- g t2
| I
| X | t
—+ - - — - — = j— — = = = - B
Xo to
Fig. 2.10: Der Graph eines quadratischen Poly- Fig. 2.11: Senkrechter Wurf: Weg-Zeit-
noms ist eine Parabel. Diagramm
Beispiel 2.9:
Wir kniipfen an Beispiel 2.7 an:
1 2
s = vot — Egt (2.16)

beschreibt die Bewegung eines senkrecht nach oben geworfenen Korpers — genauer, seines
Schwerpunktes (Reibung vernachldssigt). Gefragt ist nach der Wurfhohe und der Wurfzeit, also
der Zeit, die er zum Steigen und Fallen benétigt. Dazu skizzieren wir den Graphen des quadrati-
schen Polynoms

s=f@t) = —§t2+vot+0.

Nach Satz 2.1 gleicht er dem Graphen einer Normalparabel der Form

mit Scheitel bei

) v(z)
Ih=—, So=

., (s.Fig. 2.11).
g 2g

so ist die Wurfhohe und 279 die Wurfzeit. Ist z.B. vg = 20m/s, so folgt mit der Erdbeschleuni-
gung g = 9,81 m/s? die Wurfhéhe so = 20,39 m und die Wurfzeit 21y = 4,077 s.

Bemerkung: Mit einer einzigen Parabelschablone aus Plexiglas, wie sie handelstiblich ist, 148t
sich der Graph jedes quadratischen Polynoms f(x) = axx? + ajx + ag zeichnen. Stellt die
Schablone eine Einheitsparabel mit Lingeneinheit 1 cm dar, so hat man ein Koordinatensystem
mit Einheitslange 1/|az| cm zu zeichnen, den Punkt (xg, yo) (s. 2.15) einzutragen und in ihm
den Scheitel der Parabelschablone einzusetzen. Im Falle ap > 0 weisen dabei die »Parabelédste«
nach oben) im Falle a < 0 nach unten. Computerprogramme ersetzen heute allerdings die
Parabelschablone.
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Beispiele
Quadratische Polynome, also Parabeln, treten in der Technik héufig auf.

Beispiel 2.10:
Fiir den Untergurt einer FluBbriicke vom Typ der Fig. 2.12a ist die Parabelform vorgeschrieben.
Auch Briickenformen aus zwei Parabelbogen kommen vor, s. Fig. 2.12b..

Fig. 2.12: Briicke mit (a) einem, (b) zwei Parabelbogen

Beispiel 2.11:
Schwach durchhingende Seile (Drihte) haben in guter Ndherung Parabelform. Fiir die Berech-
nung von Zugkriften auf die Masten reicht dieser Ansatz aus (s. Fig. 2.13).

Fig. 2.13: Durchhingendes Seil

Beispiel 2.12:

Parabolspiegel und Parabolantennen entstehen geometrisch aus Parabeln, die um ihre Symme-
trieachse gedreht werden. Von der Fahrradlampe bis zur Radioantenne fiir die Aufnahme von
Weltraumstrahlung finden Parabeln Anwendung.

Beispiel 2.13:
Die Wurfbahn eines Korpers — genauer, seines Schwerpunktes, ist eine Parabel, sofern Rei-
bungskrifte dabei vernachlissigt werden diirfen.

Beispiel 2.14:
Die Skelettlinie eines Tragfliigels oder einer Turbinenschaufel besteht aus den Mittelpunkten
aller einbeschriebenen Kreise, s. Fig. 2.14a. Beim Profil NACA 6321 besteht die Skelettlinie
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aus zwei Parabelstiicken mit senkrechten Symmetrieachsen, deren Scheitel bei x = 0,3¢ und
z = 0,06r (+ = Flugeltiefe) in einem Punkt zusammenfallen, s. Fig. 2.14b. Die Skelettlinie
schneidet die x-Achse an den Enden, also bei x = Qund x = ¢.

z
0,061
X
——
e — 1 03t t

Fig. 2.14: (a) Fligelprofil; (b) Skelettlinie

Ubung 2.4:

Aus den Angaben des Beispiels 2.14 leite man die Gleichungen der beiden zugehorigen Parabeln
her.

214 Quadratische Gleichungen

Oft ist nach den Nullstellen eines quadratischen Polynoms
f@) =ax®+aix +ay (ap,a1,ay €R, ay #0)
gefragt, also nach denjenigen x-Werten, die
ax* +aix +ay=0 (2.17)

erfiillen. Um sie zu finden, wird die Gleichung zunichst vereinfacht, indem man durch a; divi-
diert. Wir erhalten

W24 prtqg=0 2.18)

mit p = ay/az und g = ag/az. (2.17) und (2.18) haben die gleichen Nullstellen. Es gilt

Satz 2.2:
Die Nullstellen der quadratischen Gleichung (2.18) lauten im Falle (p/2)> — g > 0:
__r (2)2_ __P_ (2)2_ 2.19
X1 > TV 3 q, x2 > > q. (2.19)

Im Falle (p/ 2)% — g < 0 hat (2.18) keine reellen Nullstellen.

Wir merken an, daB im Falle (p/2)?—g > 0 genau zwei Nullstellen x| und x, existieren, wihrend
im Falle (p/2)? — g = 0 nur eine Nullstelle existiert, nimlich x| = x» = —p/2.
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Beweis:
Der Ausdruck x? 4+ px + ¢ 1dBt sich umformen:

2 2 2 2
Speractepen (8- () v (e 8- (5 o)

Ist (%)2 — g < 0, so ist die rechte Seite der obigen Gleichungskette positiv, kann also nicht Null
sein. D.h. (2.18) ist in diesem Falle unlosbar.

Im Falle (g)2 — g > 0 bedeutet (x + %)2 - <<£>2 — q) = 0 dasselbe wie

Gt

d.h.
2 2
x+§= (g) —q, oder x+§=— (g) —q.
Links setzen wir x1 = x, rechts x, = x und haben so (2.19) gewonnen. U
Wir bemerken ferner, daf3
Xi+xy=p und xjx=gq (2.20)

gilt, wie man leicht nachrechnet. Diese Gleichungen, Vietascher’ Wurzelsatz genannt, eignen
sich gut zur Kontrolle der Rechnung.

Beispiel 2.15:

An eine Stromquelle mit der Spannung U = 220V werden zwei Widerstdnde R; und R; einmal
in Reihenschaltung und einmal in Parallelschaltung angeschlossen (s. Fig. 2.15). Im ersten Falle
ist die Stromstirke /1 = 0,9 A, im zweiten Falle I, = 6 A. Wie grof} sind Ry und R;?

p—] 1 ] o o
| ==t
Ry Rz Iz
u [?l U Ri Rz
(o O

Fig. 2.15: Reihen- und Parallelschaltung

Fiir die Reihenschaltung gilt bekanntlich U = I} R + IR, und fiir die Parallelschaltung
U/R; + U/Ry, = I,. Man lose die erste Gleichung nach R; auf und setze dies in die zweite

2 Francois Viete (lat.: Franciscus Vieta, 1540 —1603), franzosischer Advokat und Mathematiker
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Gleichung ein. Nach Umformung folgt daraus

, U Uy
R] - I—]Rl + E = O .
Lost man diese quadratische Gleichung nach R; auf, so erhilt man nach (2.19) die beiden
moglichen Werte Ry = 44,922 2 oder R, = 199,522 £2. Zum ersten Wert errechnet man
Ry = 199,522 £2, d.h. es kommt fiir R, gerade die zweite Losung von R; heraus. Damit sind
Ry = 44,922 2 und R, = 199,522 §2 die gesuchten Widerstidnde. Aus Symmetriegriinden kon-
nen R und R; dabei auch vertauscht werden.

Ubung 2.5:

Ein Rechteck mit der Seitenldnge @ = 7cm und b = 4cm soll in ein flicheninhaltsgleiches
Rechteck mit dem Umfang 24 cm verwandelt werden. Wie lang sind die Seiten des neuen Recht-
ecks?

Ubung 2.6:

Ein Kessel wird durch zwei gleichzeitig arbeitende Pumpen in 6 Stunden gefiillt. L6t man
aber den Kessel bis zum halben Volumen von der einen Pumpe allein fiillen und dann mit der
anderen Pumpe allein die fehlende Hilfte hineinpumpen, dann benétigt man 14 Stunden. Wie
lange braucht die stirkere der beiden Pumpen, um den Kessel alleine zu fiillen?

Ubung 2.7:

Wird in einem Stromkreis mit 110 V Spannung der Widerstand um 10 £2 erhoht, so sinkt die
Stromstédrke um 1 A. Wie groB sind Stromstérke und Widerstand?

2.1.5 Berechnung von Polynomwerten, Horner>-Schema

Wir wenden uns nun beliebigen Polynomen zu und fragen uns zunichst, wie Polynomwerte mit
moglichst geringem Aufwand berechnet werden konnen. Dazu benutzt man das kleine Horner-
Schema.

Kleines Horner-Schema: Die Berechnung von Polynomwerten f(xp) wird stellvertretend an
einem Polynom vierten Grades erldutert:

Fx) = agx* + a3x® + arx® + ayx +ap .
Die einfache Idee besteht darin, das Polynom so umzuformen:
F@) =x(x(x(aax +az) +az) +a1) +ao . 2.21)

Wollen wir nun f (x¢) fiir ein bestimmtes xo ermitteln, so haben wir x = xg in (2.21) einzusetzen
und die Klammern »von innen nach auflen aufzulosen«. Man berechnet also nacheinander die

3 William George Horner (1786 — 1837), englischer Mathematiker
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Zahlen

by =asxg +az, by =byxo+ar,by=bjxg+a,
2 4X0 3 1 2X0 2 0 120 1 (222)
ro = boxo + ao

Damit ist f(xg) = ro ermittelt.
Der eleganten Systematik wegen setzt man zu Anfang noch b3 = a4, also by = bzxg+a3. Die

Rechnung (2.22) 14t sich in einem iibersichtlichen Schema anordnen. Es heift kleines Horner-
Schema (beziiglich xg).

as as a ai aop
X = xob3 xobo xob1 xobo
/% /% /# ~ |
b3 by b by ro = f(x0) (2.23)

Man schreibt dabei zunéchst die Zahlen aq, a3, a», ay, ap hin und fiihrt dann die Rechnung in der
Reihenfolge durch, die die Pfeile andeuten.

Beispiel 2.16:
Zur Berechnung von f(x) = 3x% — 2x3 + 5x2 — 7x — 12 an der Stelle xo = 2 sieht das kleine
Horner-Schema so aus:

3 -2 5 -7 —-12
x0=2 ‘ 6 8 26 38
v | ¥ | ¥ | ¥ |
Y y y Y Y
3 4 13 19 26 = f(2)
Die Zahlen by, by, ... haben »iiber Zwischenrechnungswerte hinaus« eine wichtige Bedeutung:
Sie erfiillen die Gleichung
&) = (x = x0)(b3x> + box? + byx + bo) + 1o . (2.24)

Multipliziert man nidmlich die beiden Klammern aus und ordnet nach den Potenzen von x, so
erhilt man

Fx) = bax* + (by — xob3)x> + (b1 — x0b2)x” + (bo — x0b1)x + (ro — xobo) -
Koeffizientenvergleich mit f(x) = asx® + ... ap liefert
as =b3, a3 =by—xob3, ax=b1 —x0by, ai=by—xob1, ao=ro— xobo.

Auflosen nach b3, by, by, by, ro ergibt aber gerade die Gl. (2.22) des kleinen Horner-Schemas.
Wir haben daher gezeigt:



128 2 Elementare Funktionen

Satz 2.3:
Ist f(x) = ap,x" + an_1x""V 4+ ... +agein beliebiges Polynom vom Grad n > 1, so
liefert das kleine Horner-Schema (beziiglich x¢) den Funktionswert ro = f(x¢), sowie
die Koeffizienten eines Polynoms

Frm1(x) = by X" 4 by ax" 2 ..+ b, (2.25)

welches folgendes erfiillt

f(x) =((x —x) fu—1(x) +rg, firallex € R. (2.26)

GroBes Horner-Schema: Der letzte Satz legt den Gedanken nahe, das kleine Horner-Schema
abermals anzuwenden, und zwar auf die neu entstandene Funktion f;,_1. Sie wird damit umge-
formt in

Sn—1(x) = (x — x0) fu—2(x) +r1.
Wendet man das kleine Horner-Schema nochmal an, und zwar auf f,,_», so folgt
Jn—2(x) = (x — x0) fu—3(x) + 12.

So kann man fortfahren, bis ein Polynom vom Grade O erreicht ist. Alle diese Rechnungen lassen
sich in einem einzigen Schema iibersichtlich anordnen. Es wird grofles Horner-Schema genannt.
Im Falle n = 4 sieht es so aus:

as as a aj ay
X0 = x0b3 xoba xobi xobo
b3 b2 b] b() ro
X0C2 X0C1 X0C0
) c1 co 1
GrofBes
Xod| Xodo Hornerschema
d do 72
X0or4
T4 r3

Die oberen drei Zeilen sind das schon betrachtete kleine Horner-Schema. Die dritte bis fiinfte Zei-
le stellen wieder ein kleines Horner-Schema dar, die fiinfte bis siebte abermals usw. Ausgehend
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vom Polynom

4
fx) = Zakxk .
k=0

sind damit die Polynome

3 2 1
HE =) bx*, pe) =) axt, A=) dx*, fox) =r
k=0 k=0 k=0

ermittelt. Fiir sie gilt nach dem oben gesagten

fx) = f3x)(x —x0) +r0, f3(x) = fo(x)(x —x0) +71,
o) = fix)(x —x0) +r2,  f1(x) = fox)(x —x0) +r3,  fo(x) =ra.

Setzt man fy(x) = r4 in die rechte Seite von fj(x) = ... ein, den so erhaltenen Ausdruck in die
rechte Seite von f,(x) = ... usw., kurz setzt man »von unten nach oben« fortschreitend ein, so
erhilt man schlieBlich in der ersten Zeile

F(x) = ra(x — x0)* - 4+r3(x — x0)* + r2(x — x0)? + r1(x — x0) +ro.

Damit ist das Polynom f nach Potenzen von (x —xg) umgeordnet! Man kann dies geometrisch als
Nullpunktverschiebung auffassen, wie es die Fig. 2.16 zeigt. Setzt man ndmlich zur Abkiirzung
x" = x—x0, so bedeutet dies im Schaubild der Funktion, daB der Schnittpunkt des Achsenkreuzes
nach xg verschoben ist.

Beispiel 2.17:
Wir berechnen das groBe Horner-Schema fiir das Polynom f(x) = 3x* — 2x3 4+ 5x2 — 7x — 12
bei xg = 2 (vgl. Beispiel 2.2).

3 -2 5 -7 —12
x0=2 6 8 26 38

3 4 13 19126 = f(2)=ro
6 20 66

3 10 33 85 =r
6 32

3 16 65=r
6

3=r4 |22=r3
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Damit ist f in folgende Gestalt gebracht:
F) =3 =2 4+22(x —2)> +65(x —2)> +85(x —2) +26.

Das Horner-Schema spielt insbesondere bei der Berechnung von Nullstellen durch das Newton-
sche Verfahren eine Rolle (s. Abschn. 3.2.6).

Ay Ay

|

|
/\/

7 |
|
ki S
x=0 |\ x'=0
|

Fig. 2.16: Nullpunktverschiebung x” = x — x0

Ubung 2.8:

Verwandle das Polynom f(x) = x3 —5x2 + x — 6 mit dem groflen Horner-Schema in die Form

3
f) =) =9k
k=0

2.1.6 Division von Polynomen, Anzahl der Nullstellen

Division: Es sei f ein Polynom vom Grade n und g ein Polynom vom Grade m < n. In diesem
Falle kann f(x)/g(x) dargestellt werden durch

f _
g(x)

r@

h ,
(x) + 200

(2.27)

wobei & ein Polynom vom Grade s = m — n ist und der »Rest« r(x) ein Polynom vom Grad
kleiner als der Grad von f ist, also kleiner als n.

Die Durchfiihrung dieser Division geht vollig analog zur schriftlichen Division zweier ganzer
Zahlen vor sich. Wir machen dies an Beispielen klar.
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5 3
Ist f(x) = Zakxk ein Polynom 5. Grades und g(x) = Zbkxk 3. Grades, so sieht das
k=0 k=0
Rechenschema folgendermaf3en aus:

(asx®> + asx*+ a3xP+ ax?+ ax+  ag) : (b3x3 + bax? + byx + by)
—(c2b3x° + cobax* + cob1x3 + crbox?) r(x)
4 3 2 =ox’+ox+eo+ —

ax®+ ayx’+ apxt+ aix+  ag g(x)
—(c1b3x* + c1bax® + c1byx* + c1box)

a§x3 + agx2 + afx+ ao
Cob3x3 + Cob2x2 + cob1x + cobg

r2x2+ rix + ro (2.28)

r(x)
Hierbei geht man so vor, dafl zunichst die obere Zeile und Gleichheitszeichen hingeschrieben
werden. Dann wird ¢ = as/b3 berechnet und rechts vom Gleichheitszeichen c2x? hingeschrie-

3
ben. Hiermit wird > bkxk multipliziert und in die zweite Zeile links geschrieben, wie im Sche-

ma (2.28) zu sehen. Die Subtraktion der zweiten Zeile vom dariiberstehenden Polynom ergibt die
dritte Zeile, s. (2.28). Danach errechnet man ¢; = a‘/t /b3, addiert c1x zu cax2, multipliziert c1x

3
mit " byx* und schreibt dies in die vierte Zeile. Subtraktion ergibt die fiinfte Zeile usw. Man

k=0
sieht: Das Verfahren dhnelt der bekannten schriftlichen Zahlendivision. In der letzten Zeile bleibt

schlieBlich ein »Rest« r(x) = rx2 4+ rix + ro ibrig. Mit diesem »Rest« und dem errechneten
h(x) = cax? + c1x + ¢ ist damit Gl. (2.27) erfiillt.

Beispiel 2.18:
f) 8(x)

457 —4x* — 53+ 4x?— x4+ 1:2x3—3x2+5x—2=2x2+x—6+@
5 4 3 2 —— g(x)
4x° —6x" + 10x° — 4x h(x)
2x4—15x3+ 8x2 — x+ 1
2x* — 3x3 4+ 5x%— 2x
—12x3+ 3x2+ x+ 1
—12x3 + 18x% — 30x + 12
—15x2 +31x — 11
N —
r(x)

(2.29)

Bemerkung: Divisionen dieser Art werden bei der Integration rationaler Funktionen benotigt
(s. Abschn. 4.2.4).

Ein Sonderfall ist die Division eines Polynoms f durch ein Polynom der Form (x — x¢), einen
sogenannten Linearfaktor. Sie 14t sich bequem mit dem kleinen Horner-Schema durchfiihren,
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n—1
denn es liefert in der unteren Zeile ein Polynom f,_j(x) = > bix* und eine Zahl ry, so daB

k=0
(2.26) gilt, d.h.

JO o+ 2

X —xo X — X0

(2.30)

(x # xo vorausgesetzt). Zwischen dem Horner-Schema und dem Divisionsverfahren (2.28) be-
steht in diesem Fall kein rechnerischer Unterschied.

Nullstellen-Anzahl: Ist f ein Polynom n-ten Grades und x; eine Nullstelle von f, so ergibt das

n—1
kleine Horner-Schema beziiglich x; ein Polynom f,_j(x) = ) brx* mit
k=0
fx) = —x1) fum1(x). (2.31)
Denn in (2.26) ist xg durch x; ersetzt und ro = f(x1) = 0. Schreiben wir die Gleichung um in

SO _ @) ), (2.32)

X — X1

so erkennen wir:

Folgerung 2.1:
Ist f ein Polynom n-ten Grades und x; eine Nullstelle von f, so 146t sich f durch
x — x1 »ohne Rest« dividieren. Das Resultat ist ein Polynom vom Grade n — 1.

Damit gewinnen wir den

Satz 2.4:
Jedes Polynom n-ten Grades hat hochstens n verschiedene reelle Nullstellen.

Beweis:

Ist f ein Polynom n-ten Grades und x; eine seiner Nullstellen, so dividiert man f(x) durch
(x — x1)k1) wobei k; die groBte ganze Zahl ist, fiir die die Division ohne Rest mdglich ist. Nach
der obigen Folgerung ist k| > 1. Man erhilt so ein Polynom f1(x) = f(x)/(x—x D% vom Grade
n — ki. Jede weitere Nullstelle von f ist auch Nullstelle von f;. Den beschriebenen Prozef fiihrt
man daher mit einer weiteren Nullstelle x» fiir f; genauso durch und erhilt ein Polynom f>,
mit dem man den Prozefl abermals ausfiihrt usw. Schlieflich erhilt man ein Polynom f,, ohne
reelle Nullstellen. Dies ist spétestens der Fall, wenn f;,, ein Polynom vom Grade 0 ist, also nach
hochstens n Schritten. Somit kann f nicht mehr als » reelle Nullstellen haben. O

Ubung 2.9:

Berechne

(2x* +x3 —5x2 +4x—5) : Bx2+x—-2).
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2.2 Rationale und algebraische Funktionen

2.2.1 Gebrochene rationale Funktionen
Unter einer rationalen Funktion versteht man eine Funktion der Form

n
E a;x'

ag+ aix +axx? + ... +ax" i

bo +bix +box? + . 4 byx™ T
> b
k=0

mit b,, # 0 (a;, bg, x € -R). Der Definitionsbereich von f besteht aus allen reellen Zahlen mit
Ausnahme der Nullstellen des Nennerpolynoms.

fx) = (2.33)

Im Falle m = 0, also Nennerpolynom konstant = by # 0, ist f ein Polynom. Man nennt
daher Polynome auch ganzrationale Funktionen.

Ist der Grad des Nennerpolynoms grofler oder gleich 1 und der Zihler nicht das Nullpolynom,
so heifit f eine gebrochene rationale Funktion. Die Funktion heifit dabei echt gebrochen, wenn
der Z#hlergrad n kleiner als der Nennergrad m ist. Andernfalls heillt [ unecht gebrochen.

Beispiel 2.19:
Die Funktion
3x —5
— - ist echt gebrochen,
f(x) S — ist echt gebrochen
4x5 —d4x* — 53 +4x? —x + 1 .
gx) = ist unecht gebrochen.

2x3 —3x2 4+5x -2

Nullstellen, Pole: Jede Nullstelle des Zéhlers von (2.33), die nicht gleichzeitig Nullstelle des
Nenners ist, ist Nullstelle von f.

Fiir jede Nullstelle xo des Nenners in (2.33), die nicht auch Nullstelle des Zahlers ist, gilt

lim |f(x)| = co. (2.34)
X—>X0

Man nennt x( einen Pol oder eine Unendlichkeitsstelle von f.

Wir nehmen an, dafl das Zihlerpolynom in (2.33) nicht das Nullpolynom ist.

Verschwinden in xg sowohl Zihler- wie Nennerpolynom von f, so dividiert man zunichst das
Nennerpolynom durch x — xo (x # xo vorausgesetzt). Ist das entstehende Polynom wiederum
Null in xg, so dividiert man es wieder durch (x — xo) # 0 usw. Man fiihrt dies fort, bis — etwa
nach k Divisionen — ein Polynom g gewonnen ist mit g (xg) 7 0. Das Nennerpolynom hat damit
die Form

g(x)(x —x0)k,  qxo) #0,
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erhalten. Entsprechend formt man das Zihlerpolynom um in

px)(x —x0)/, mit p(xo) #0.

Es folgt damit
fx) = &(x — xo)j_k fir x # xg. (2.35)
q(x)

Wir sehen: Ist j < k, so hat f in xq einen Pol, denn es gilt (2.34).
Ist j = k, so definieren wir f(xo) := p(x0)/q(xp), und ist j > k, so f(xg) := 0 (angeregt
durch (2.35)). Auf diese Weise ist im Falle j > k der Definitionsbereich von f um xq erweitert.

Beispiel 2.20:
Die Funktionen

f@) == (c#£0neN

X
sind besonders einfache gebrochene rationale Funktionen. Fiir n = 1, ¢ > 0 ist der Graph in
Fig. 2.17a skizziert. Er wird gleichseitige Hyperbel genannt. Fiir n = 2, ¢ > 0 ist der Graph in
Fig. 2.17b abgebildet.

Fiir ungerade n dhneln die Graphen von f der Fig. 2.17a, fiir gerade der Fig. 2.17b, eventuell
an der x-Achse gespiegelt.

Fig. 2.17: (a) Hyperbel; (b) y = c/x2

Beispiel 2.21:

Das Boyle-Mariottesche? Gesetz idealer Gase lautet pv = RT (p = Druck, v = Volumen,
R = Gaskonstante, T = absolute Temperatur). Bei konstanter Temperatur, mit der Abkiirzung

4 Robert Boyle (1627 —1691), englischer Naturforscher, Edme Mariotte (1620 —1684), franzosischer Physiker
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¢ = RT, ergibt sich pv = c, aufgeldst nach v:

v=—.
p

In p-v-Koordinaten beschreibt dies eine Hyperbel wie in Fig. 2.17a.

Y& | ’
5 14| //
| s
412 /
P
| ’
=+ 10 ’
: ~ Asymptote
--B |,
1
"/S/I
1 I
744 |
&
s~ 5
-6 7 \ |P0| %
t } | f } } >
' f-4-20 2 4 6 8 10
s =aT '

Fig. 2.18: Graph von f aus Beispiel 2.22

Beispiel 2.22:

x3 —13x + 12
x2—-5x+6

daher so zerlegen: x2 —5x 4+ 6 = (x — 2)(x — 3). 3 ist auch Nullstelle des Zihlers, 2 dagegen

nicht. Division des Zihlers durch (x — 3) liefert das Polynom x2 + 3x — 4, das nach Berechnung

seiner Nullstellen 1 und -4 die Gestalt (x — 1)(x + 4) erhilt. Damit 148t sich f (x) schreiben als

(x=3)x-DHx+4

fx) = G —2) fir x#3, x#2.

Essei f(x) = . Die Nullstellen des Nennerpolynoms sind 2 und 3, es 146t sich

Kiirzen von (x — 3) # 0 ergibt

x—D&x+4 x*+3x—4

fx) = — P

) (2.36)

wobei wir nun auch x = 3 zugelassen haben. f hat also die Nullstellen 1 und —4, sowie den Pol
2 (s. Fig. 2.18).
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Zerlegung unecht gebrochener rationaler Funktionen

Beispiel 2.23:
In der Funktion g aus Beispiel 2.19 kann das Zahlerpolynom durch das Nennerpolynom dividiert
werden, s. Beispiel 2.18, Abschn. 2.1.6. Es folgt

—15x2 +31x — 11

=252 -6 )
80 =2 x =64 S 5 2

So konnen wir mit jedem unechten Polynom verfahren. Es gilt also

Satz 2.5:
Jede unecht gebrochene rationale Funktion 148t sich durch das Divisionsverfahren fiir
Polynome eindeutig in eine Summe aus einem Polynom und einer echt gebrochenen
rationalen Funktion zerlegen. Ist also

_ pW)

fx) = 7

eine rationale Funktion mit dem Nennerpolynom ¢ (x) vom Grade m > 1 und dem
Zihlerpolynom p(x) vom Grade n > m  so liefert das Divisionsverfahren fiir Polyno-
me aus Abschn. 2.1.6 eine Darstellung von f der Gestalt

r(x

fx)=h(x)+ I , (2.37)
q(x)

wobei & ein Polynom vom Grade m —n ist und  ein Polynom von hochstens (m —1)—
ten Grade.

Asymptoten: Das Verhalten unecht gebrochener rationaler Funktionen f geht fiir grofie |x|
sofort aus der Zerlegung (2.37) hervor. Da r/q echt gebrochen ist, gilt »(x)/q(x) — O fiir
|x] — 00> (Man sieht dies sofort ein, wenn man Zihler r(x) und Nenner q(x) durch die hochste
Potenz x" des Nennerpolynoms dividiert.) Aus (2.37) folgt somit

|f(x) —h(x)|— 0 fir |x|— oco.
f verhilt sich also fiir gro3e |x| ebenso wie das Polynom #. Dies fiihrt zu folgender Definition:

Definition 2.1:
Ein Polynom heif3t Asymptote einer rationalen Funktion f, wenn folgendes gilt:

|f(x) —h(x)| -0 fir [x] - o0.

Aus obiger Uberlegung folgt damit

5 F(x) — a fir [x| — oo bedeutet: Fiir jede Folge (x;) des Definitionsbereiches von F, die imoo |xn| = oo erfiillt,
n

gilt lim F(x,) = a.
n—oQ
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Satz 2.6:
Jede rationale Funktion f besitzt eine Asymptote!

(a) Ist f echt gebrochen, so ist die Asymptote von f die Nullfunktion.

(b) Ist f unecht gebrochen f so ist die Asymptote von f das Polynom A, das in der
Zerlegung (2.37) auftritt. (Es wird durch Division des Zdhlerpolynoms durch das
Nennerpolynom gewonnen.)

Wir merken zusitzlich an, daf3 die Asymptote von f genau dann eine Gerade ist, wenn der Grad n
des Zihlerpolynoms um hochstens 1 grofer ist als der Grad m des Nennerpolynoms, d.h.n < m+
1. Denn in diesem Fall hat die Asymptote & den Grad 1 oder 0 oder ist gleich dem Nullpolynom.

Im Beispiel 2.22 errechnet man aus (2.36) durch die Division auf der rechten Seite ()c2 +3x —

4H/(x =2):
6
fE =x+5+——
x—2

Asymptote von f ist also die Gerade h(x) = x + 5 (s. Fig. 2.18).
In Beispiel 2.23 ist Asymptote von g das Polynom A(x) = 2x% + x — 6.

Ubung 2.10:
Welche Asymptote hat die Funktion

2x3—7x2+2x—17

feo = x244x +7

2.2.2 Algebraische Funktionen

Eine Funktion f heilt algebraische Funktion, wenn die Punkte (x, y) ihres Graphen einer Glei-
chung der Form

Z aipx'y* =0 (2.38)
i,k=0

gehorchen.® Die Gleichung heiBt algebraische Gleichung zu f .

Héufig ist zunichst eine Gleichung der Form (2.38) gegeben, und man hat die Aufgabe, sie
»nach y aufzuldsen« ,d.h. eine Gleichung der Form

y=fx) (2.39)

herzuleiten, so daf alle Paare (x, y), mit y = f(x), die Gleichung (2.38) erfiillen.

6 Hierbei setzen wir x0 = y(J = 1, auch im Falle x = 0 oder y = 0.
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Beispiel 2.24:
Wir betrachten die Gleichung

yV4+xr=1, x,yeR. (2.40)

Die Punkte, die dies erfiillen, bilden eine Kreislinie, wie anhand der Fig. 2.19 (mit Hilfe des
Pythagoras) klar wird. Der Kreis hat den Radius 1 und den Mittelpunkt im Koordinatennullpunkt.
Man nennt ihn Einheitskreis. Wir »16sen nach y auf«: Gleichung y>+x2 = 1 ist gleichbedeutend
mit y2 = 1 — x2. Dies ist genau dann erfiillt, wenn

y=+v1—x2 oder y=—v/1—x2 (2.41)
ist. Hierdurch werden zwei Funktionen beschrieben:
) =vV1=x2, folx)=—v1—-x2. (2.42)

Definitionsbereich ist in beiden Féllen [—1, 1]. f; beschreibt den Halbkreis oberhalb der x-
Achse, f> entsprechend unterhalb der x-Achse. Die Graphenpunkte von fj und f, gehorchen
der Gl. (2.40). f1 und f> sind also algebraische Funktionen.

¥ <

Xo

Fig. 2.19: Einheitskreis Fig. 2.20: Kreis mit Radius  um (xq, yg)

Beispiel 2.25:

Analog zum vorangegangenen Beispiel beschreibt
yV4+x2=r> (r>0)

einen Kreis mit dem Radius » um den Koordinatenursprung. Allgemeiner noch: Alle Punkte
(x,y), die

v —y0)* + (x — x0)* = r?
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erfiillen, bilden einen Kreis mit dem Radius r um den Mittelpunkt (xo, yo), s. Fig. 2.20. (Man
sieht dies leicht mit Hilfe des »Pythagoras« ein.)

Beispiel 2.26:

(Nach [5]) Ein Konstruktionselement mit rechteckigem Querschnitt ist mit den Randspannungen
oy und oy, belastet, wie in Fig. 2.21 skizziert. Wir denken uns einen Schnitt durch die Fliche unter
dem Winkel ¢ gegen die Waagerechte, s. Fig. 2.21. Fiir die an dieser Schnittlinie auftretende
Lingsspannung o und Schubspannung t gilt

1 1
0 =o0ysing +oycosp = E(GX +oy) + E(Uy — 0y ) COS2¢ 7

1 1
T = Eoy sin2¢ — on sin2¢ = i(oy — 0y) sin2¢p

Oy

AT Addddddi
- -
- | ag -
- | T |-
- | -

Ox = X/' > ox

| -
s I il =
- —-
| : : -

YYTTYYTY

Oy

[ii ¢;;2wt \ =
Ox A T A ol Joy, =
| [
|
| |
|
I

o ple
Ox + Oy | Oy —Ox 1

2 2

Fig. 2.21: Mohrscher Spannungskreis

Quadriert man t und o — %(ox + oy), so erhilt man aus obigen Gleichungen

2 B 2
<a _ #) +2= (%) (2.43)

Diese Gleichung beschreibt einen Kreis in der o-t-Ebene. Er heiBt Mohrscher® Spannungskreis.

7 Die hier benutzten Funktionen sin und cos nebst ihrer Additionstheoreme werden in Abschn. 2.3.2 ausfiihrlich
erldutert.
8 Christian Otto Mohr (1835—1918), deutscher Ingenieur
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Sein Mittelpunkt liegt auf der o-Achse. Fiir jeden Winkel ¢ kann man aus Fig. 2.21 die zugeho-
rigen Werte 7 und o entnehmen.

Potenzfunktionen: Besonders einfache algebraische Funktionen sind die Potenzfunktionen

n  ganz,

fo)y=cx"m, (2.44)

m natiirlich.

Der Exponent von x ist dabei eine beliebige rationale Zahl. Zunichst setzen wir n > 0 voraus. Ist
m ungerade, so kann die ganze reelle Achse als Definitionsbereich verwendet werden. Ist m gera-
de, so liegt der Definitionsbereich in [0, 00). (Denn x/™ = ( %/x)" ergibt nur im Falle ungerader
m fiir negative x einen Sinn.) Im Fall n < 0 gilt analoges. Nur 0 liegt nicht im Definitionsbereich.
f istin der Tat algebraisch. Potenziert man nimlich y = Cx"/™ mit dem Exponenten m, so folgt
y" — C"x" =0, also eine Gleichung vom Typ (2.38).

Fir x > 0 (C = 1) sind die typischen Formen der Funktionsgraphen von f in Fig. 2.22 zu
sehen. Der Leser setze sie fiir den Fall, da m ungerade ist, in dem Bereich x < O fort. Dabei ist
zwischen geraden n und ungeraden n zu unterscheiden.

[ A

n>m=>>0 m>n>0 m>0>n

Fig. 2.22: Typische Potenzfunktionen f(x) = Cx"/™

Beispiel 2.27:
Die adiabatische Zustandsinderung eines idealen Gases mit Druck p wird durch p/p* = C (C
konstant) beschrieben, also durch

p=Cp".
Fiir Luft ist « = 1,405. Allgemein ist ¥ eine Materialkonstante, die als rationale Zahl angenom-
men werden darf.

Explizite Darstellung algebraischer Funktionen

Typische algebraische Funktionen sind

——

2
7 3
fx) =x*— 3—)61 oder f(x):<x—+l_2) +xi.

x2 — x2 41
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Allgemein gilt: Besteht ein Formelausdruck f (x) aus der Variablen x (endlich oft auftretend) und
endlich vielen Zahlen, verkniipft mit endlich vielen Rechenoperationen +, —, -, : oder Potenzie-
rungen mit rationalen Exponenten, so ist f eine algebraische Funktion in expliziter Darstellung.

Durch schrittweises Umformen von y = f(x) kann man in diesem Falle eine Gleichung der
Gestalt (2.38) erreichen, der alle Paare (x, y) geniigen, die auch y = f(x) erfiillen.

Die Umkehrung gilt nicht! Insbesondere 148t sich nicht jede algebraische Funktion durch
Formelausdriicke der genannten Art beschreiben. In der Technik haben wir es aber hauptsichlich
mit algebraischen Funktionen der beschriebenen expliziten Art zu tun.

Beispiel 2.28:

Der Luftdruck p hédngt von der Hohe / iiber dem Erdboden ab. Bei ruhender isothermischer
Atmosphire lautet dieser Zusammenhang

(1ol _gh ) (2.45)
P = po P :

Die rechte Seite, abgekiirzt f(h), beschreibt eine algebraische Funktion. Die Konstanten da-
zu bedeuten: py Bodendruck (z.B. po = 1,013 bar), n = 1,235 Polytropenexponent, R;, =
287m?/(K - s?) spezifische Gaskonstante der Luft, ) = 288K Temperaturkonstante, g =
9,81m/s” Erdbeschleunigung.

Ubung 2.11:
Man forme (2.45) in eine Gleichung vom Typ (2.38) um.

2.2.3 Kegelschnitte

Hier wird ein erster Einblick gegeben. In Burg/Haf/Wille (Vektoranalysis) [9], Abschn. 1.3, wer-
den Kegelschnitte ausfiihrlich behandelt.
Ellipse: Wir gehen aus von der Gleichung
2 2

X Y

ﬁ+ﬁ=1 (a>0,b>0). (2.46)
Tragt man alle Punkte (x, y), die die Gleichung erfiillen, in der x-y-Ebene ein, so bilden sie eine
Kurve, wie in Fig. 2.23 skizziert. Eine Kurve dieser Form heil3t eine Ellipse. Wir konnen sie uns
aus einem Kreis entstanden denken, der in einer Richtung gleichmiBig gestaucht (oder gestreckt)
ist. Der Kreis selbst gilt als Spezialfall einer Ellipse.

Lost man die Ellipsengleichung (2.46) nach y auf, so erhélt man

b b
y=—-va?—x2 oder —y=-var—x? (x| <a). 2.47)
a a

Die linke Gleichung beschreibt eine Funktion, deren Graph der »obere« Ellipsenbogen ist, die
rechte Gleichung entsprechend eine Funktion, deren Graph den unteren Bogen darstellt.
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¥ x

Fig. 2.23: Ellipse Fig. 2.24: Planetengetriebe

In Fig. 2.23 wollen wir a > b annehmen. a, die Linge der Strecke [0, A], heil3t grofe Halb-
achse der Ellipse. Entsprechend heift b die kleine Halbachse. b ist die Lénge von [0, B].

Ellipsen spielen in der Himmelsmechanik eine groBe Rolle: Die Planeten der Sonne laufen in
sehr guter Ndherung auf Ellipsenbahnen. Dasselbe gilt fiir Satelliten im erdnahen Raum.

Will man die Bewegung eines Punktes auf einer Ellipsenbahn technisch erzeugen, so 146t sich
dies einfach mit einem Planetengetriebe konstruieren, wie es in Fig. 2.24 skizziert ist. Dabei
rollt ein Rad in einem anderen vom doppelten Radius herum. Ein beliebig markierter Punkt P
auf dem rollenden Rad bewegt sich dann auf einer elliptischen Bahn.

Hyperbel: Hyperbeln sind ebene Figuren, die durch
x2 y2

S =1 @>0b>0. (2.48)

beschrieben werden, siehe Fig. 2.25. Auflésung nach y ergibt

b b
y=—-vVx2—a?2 oder y=—vVx2—-a? (x|>a). (2.49)
a a

womit zwei Funktionen angegeben sind, deren Graphen zusammen eine Hyperbel bilden.

Fiir groBe |x| kann man a? gegen x” vernachlissigen, so daB (2.49) iibergeht in
b b
ym-—x, y~-——x. (2.50)
a a

Setzt man hier = statt &, so hat man die Gleichungen zweier Geraden (vgl. Fig. 2.25). An diese
Geraden schmiegt sich die Hyperbel immer besser an, je grofler |x| ist. Die Geraden hei3en die
Asymptoten der Hyperbel.

Hyperbeln treten auch in der Himmelsmechanik auf, z.B. als Kometenbahnen oder Bahnen
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AY

Fig. 2.25: Hyperbel

von Satelliten, die das Sonnensystem verlassen. Ferner treten Hyperbeln bei Kiihltiirmen als
Querschnitt-Figuren auf, wie auch bei Diisen oder Lampenformen.
Parabel: Parabeln werden durch

beschrieben Wir haben sie in Abschn. 2.1.3 ausfiihrlich behandelt.

Bemerkung: Ellipsen, Hyperbeln und Parabeln werden Kegelschnitte genannt.

In der Tat treten sie als Schnittfiguren auf, wenn Doppelkegel und Ebenen sich schneiden
(s. Fig. 2.26). Auch die Grenzfille — Kreis oder Punkt, zwei sich schneidende Geraden oder
eine Gerade — treten als Schnittfiguren auf. Dehnt sich der Kegel, bis er schlielich in einen
Zylinder iibergeht, so konnen auch zwei parallele Geraden als Schnittfigur vorkommen oder eine
»leere« Schnittfigur.

Allgemeine Gleichung zweiten Grades: Wir betrachten die algebraische Gleichung
anx® 4 2appxy + any?® + 2a13x + 2a3y + azz =0 (2.51)

mit reellen Konstanten a;;. Wir setzen voraus, daf} a1, a2, az> nicht alle Null sind. Damit gilt:

Gleichung (2.51) beschreibt stets einen Kegelschnitt (vgl. Burg/Haf/Wille (Vektoranalysis) [9],
Abschn. 1.3.5).

Um herauszufinden, welchen sie darstellt, werden die drei folgenden Determinanten (s. Ab-
schn. 7.2.3, bzw. Burg/Haf/Wille (Lineare Algebra) [7]) betrachtet:

ail ap a3
D=|an a» a3 |, Di=
a3 a3 asz

arl  an
a2 a2

azy  azs
az3  asz

arl a4z
a3z ass

D, =

Es ergibt sich folgende Fallunterscheidung:
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Fig. 2.26: Kegelschnitte

1. Fall
Dy <0 oo Hyperbel
Dy =0 - Parabel
D #0
Dy-ajp<0---meevee Ellipse
D1 >0 <
Di-ay; >0----- leere Menge
2. Fall
D <0Q-------- 2 sich schneidende Geraden
/ Dy < 0 -- 2 parallele Geraden
D=0 DI =0———D,=0---------- eine Gerade
Dy>0---------- leere Menge

Dy >0 oo ein Punkt

zwei sich schneidende
Geraden

zwei parallele
GroBen
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(Die Beweise hierzu werden in Burg/Haf/Wille (Lineare Algebra) [7], Abschn. 3.9.9, gefiihrt.)

Ubung 2.12%:
Welche Typen von Kegelschnitten werden durch die folgenden Gleichungen dargestellt:
(1) 3x2 +4xy+5y2 +2x +8y+2=0
(2) 5x2 + 16xy +2y% +2x +2y +2 =0,

(3) 4x2 — 12xy +9y2 +6x +2y +1 =0,

1
“4) x2—4xy+4y2—x+2y—1=0.

23 Trigonometrische Funktionen

2.3.1 Bogenlinge am Einheitskreis

Die Menge aller Punkte (x, y) mit x> + y> = 1 bildet in der x-y-Ebene eine Kreislinie vom
Radius 1 um den Koordinatennullpunkt. Wir nennen sie die Einheitskreislinie. Lost man x2 +
y? = 1 nach y auf, so erhilt man

y=vV1—x2 oder y=—y1—x2 (2.52)

fiir |x| < 1. Die linke Gleichung beschreibt die obere Halbkreislinie H™ (oberhalb der x-Achse
in Fig. 2.27), die rechte dagegen die untere Halbkreislinie H™

Ay
Ka, b

¥ x

Fig. 2.27: Kreisbogen K, j,

Ein Kreisbogen K, , auf H™ ist die Menge aller Punkte (x, y) € H™ mit
—l<a<x<b<l

(s. Fig. 2.27). Es ist unsere Aufgabe, die Linge #, , eines solchen Kreisbogens — kurz Bogen-
ldnge genannt — zu definieren und zu bestimmen.
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Bemerkung: Die Grundvorstellung der Bogenlinge besteht darin, da3 man sich den Kreisbogen
als dehnungsfreies Seil vorstellt, dessen Linge durch Geradeziehen und Anlegen eines Lineals
gemessen werden kann. Der eilige Leser mag sich mit dieser »Seilvorstellung« begniigen und
den Rest dieses Abschnittes iiberschlagen. Zum Verstidndnis des folgenden, insbesondere der
Anwendungen, geht ihm nichts wesentliches verloren.

Fiir eine saubere mathematische Fundierung reicht die Seilvorstellung allerdings nicht aus. (Was
heiflt z.B. »dehnungsfrei?«) Wir definieren daher die Bogenlinge, indem wir von Streckenziigen
ausgehen.

Es sei

Ka,bzl(x,y)l—lgagxfbfl, y:\/l—le

der schon beschriebene Kreisbogen. Zunichst bilden wir eine Zerlegung Z des Intervalls [a, b]
mit

a=xg<x1<...<x,=>b.
Die Punkte xo, . .., x, heilen Teilungspunkte von Z. Die zugehorigen Kreispunkte

Pi=(xi,y) mit y=,/1—-x7

1

(i =0,1,...,n) liegen auf dem Kreisbogen K, 5. Wir verbinden diese Punkte Py, P1, P2, ..., P,
durch einen Streckenzug S, wie es die Fig. 2.28 zeigt. Der Streckenzug S ist dabei die Vereinigung
aller Strecken [Py, P1], [P1, P2], ..., [P.—1, Py]. Die Linge einer solchen Strecke [P;_1, P;] ist
nach »Pythagoras«

AxP+AY7, mit Axp =x;i —Xi—1, Ay =yi = Yi-1- (2.53)

Die Summe L(Z) dieser Streckenlingen bezeichnet man als Léinge des Streckenzuges S:

L(Z) = Xn:,/Axf + Ay?. (2.54)
i=1

Fiigt man weitere Punkte auf dem Kreisbogen K, ; hinzu, so werden die zugehorigen Strecken-
ziige immer ldnger. Je mehr Punkte P; gewihlt werden und je kiirzer die Teilstrecken sind, desto
niher kommt L (Z) unserer Vorstellung einer Bogenlidnge. Dies fiihrt zu folgender

Definition 2.2:
Die Bogenliinge t, 5 des Kreisbogens K, j ist gleich

ty.p :=sup L(Z) (Z Zerlegung von [a, b]).
z

M.a.W: Man denke sich die Menge M aller Streckenzuglingen L(Z) (zu allen denkbar-
en Zerlegungen von [a, b]). Ihr Supremum bezeichnet man als Bogenlinge von K p.
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Fig. 2.28: Streckenzug als Niherung fiir einen Kreisbogen

Die Definition ist nur sinnvoll, wenn die Menge M der Streckenzuglidngen L(Z) nach oben
beschrinkt ist. Das ist aber der Fall, denn es gilt

VAxE+ Ay? < 1Axi| + 1Ayl (2.55)

wie man durch Quadrieren sofort einsieht. Also folgt

n

n n
L(Z) <) (1Axi]+ Ayl =) 1Axi|+ Y 1Ayl <24+2=4.
i=1 i=1 i=1

Speziell definiert man ¢, , = O fiir alle a € [—1,1] und
Ti=1-1,1.

7 ist also die Linge der Halbkreislinie H™. Wir werden spiter Berechnungsmethoden fiir 7
angeben (s. Abschn. 3.2.5). Sie liefern

m = 3,141592653589793 . ..

Satz 2.7:
(Eigenschaften der Bogenldinge)

(I) Additivitdt (s. Fig. 2.29a) Es gilt:

tap +tpe=tge, falls —1<a<b<c<l1. (2.56)

(II) Einschliefungseigenschaft: Man betrachte Fig. 2.29b: Ist §, ;, die Lange der »Seh-
ne « [A, B] und 1, die Lénge des Tangentenstiickes [A, B'], so gilt

Sap <tlap < Tap- (2.57)
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(III) Der Quotient aus Sehnen- und Bogenldinge erfiillt

5a,h
Tab

— 1 fir a—b oder b—a. (2.58)

Beweis:
Zu (I): Es seien Z1, Z, Zerlegungen von [a, b], [b, c]. Mit Z = Z{ U Z; (Zerlegung von [a, c])
folgt fiir die zugehorigen Streckenzuglangen

L(Z1) + L(Z2) = L(Z) < tac -
Geht man links zu den Suprema iiber, so folgt

Tab + e Z1ac- (259)

A

0
a) b)

Fig. 2.29: Zu Satz 2.7: Eigenschaften der Bogenldnge am Kreis

Ist umgekehrt Z eine beliebige Zerlegung von [a, c], so erzeugen ihre Teilungspunkte, unter
Hinzunahme von b, eine Zerlegung Z; von [a, b] und eine Zerlegung Z, von [b, c]. Sie erfiillen
zweifellos

L(Z) < L(Z1) + L(Z2) <tqp +tpc .

Geht man links wiederum zum Supremum tiber, so folgt
lae = lap + e,

mit (2.59) also t5,c = ta.p + tp.c.

Zu (II): Ersetzt man den Kreisbogen K 5 in Fig. 2.29b durch einen Streckenzug S, wie beschrie-
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ben, so sieht man geometrisch leicht ein, daB fiir die Linge L(Z) des Streckenzuges gilt:
Sa,b =< L(Z) =< Tab -

Folglich gilt auch 8,5 < 146 < Tap.

Zu (III): Die Léange g der Strecke [0, P] in Fig. 2.29b ist nach »Pythagoras« zweifellos g =
V31— =(0ap/ 2)2. Mit dem »Strahlensatz« erhalten wir ferner 8,y : Tqa.p = q : 1, also folgt mit (II)

2
(Sa,b

— 1 fir a— b oderb— a.

(]

Wir betrachten nun speziell die Bogenlénge #, | und fragen uns, wie sie von x abhéngt (siche
Fig. 2.30). Die so entstehende Funktion f(x) = #, 1 nennen wir Bogenldngenfunktion. Fiir sie
gilt:

Ay

\ A

Fig. 2.30: Bogenldngenfunktion

Satz 2.8:
Die Funktion
fx)=t1, —-l1=x=1,
ist stetig, streng monoton fallend und bildet das Intervall [—1, 1] umkehrbar eindeutig
auf [0, 7] ab.
Beweis:

Fir x,, — xo (—1 <x, <xp < 1) gilt
|f(xn) - f(x0)| = |txn,1 - txo,1| = Itx,l,x0| = Txuxg — 0.

Entsprechendes gilt im Falle (—1 < x¢ < x, < 1), woraus die Stetigkeit von f folgt. Ferner ist

f streng monoton fallend, da fiir (—1 < x; < xp < 1) gilt

f&x) = fxo) = 1 —Ixy1 = Ix 0 = (Sm,xz >0,
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d.h. f(x1) > f(xp). f ist also eineindeutig und bildet [—1, 1] in [0, ] ab. Nach dem Zwi-
schenwertsatz nimmt f(x) jeden Wert zwischen f(1) = O und f(—1) = m an. Folglich bildet
fl—1,1] auf [0, ] ab, womit alles bewiesen ist. O

Die Funktion f in Satz 2.8 wird spéter arccos (Arcus Cosinus) genannt.

Ausdehnung des Bogenlingenbegriffs auf grofiere Kreisbogen

In analoger Weise, wie hier geschehen, kdnnen Kreisbdgen K, auf der unteren Halbkreisli-
nie H~ betrachtet und ihre Bogenléngen ¢, , bestimmt werden. Ja, wir konnen auch aus einem
»oberen« Kreisbogen K, 1 und aus einem »unteren« K, einen neuen Kreisbogen

K =Ki1 UK,

zusammensetzen, s. Fig. 2.31. Seine Bogenlidnge ist definiert als die Summe der Bogenldngen
von K, 1 und K, . Entsprechend lassen sich Kreisbogen der Form

K = Kfl,a U K:l,b

behandeln, die den Punkt (—1, 0) enthalten. Die so gewonnenen Kreisbogen lassen sich abermals

Fig. 2.31: GroBere Kreisbogen

zusammensetzen usw. Damit ist der Bogenlidngenbegriff auf Kreisbogen beliebiger Linge und
Lage ausgedehnt.

Die Einheitskreislinie selbst, aufgefait als H U H ™, hat die Lénge 2. Man nennt 27 auch
den Umfang des Einheitskreises.

Winkelmessung: Die Bogenlénge 7 ist ein Mal fiir den Winkel zwischen zwei Halbgeraden, die
von 0 ausgehen, s. Fig. 2.32a. t wird auch das Bogenmaf} des Winkels genannt.

In der Geometrie wird das WinkelmaB iiblicherweise in Grad angegeben, also in der Form: «°
(Sprich: »a Grad«). Zwischen ¢ und « besteht der Zusammenhang
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(2.60)

Damit konnen Bogenmafle in Gradangaben umgerechnet werden und umgekehrt.
In der Analysis ist es durchweg iiblich, WinkelgroBen im Bogenmaf anzugeben’.

Lénge beliebiger Kreisbogen: Wir denken uns einen Kreis mit beliebigem Radius r > 0. Durch
einen Mittelpunktswinkel mit dem Bogenmal # wird aus der Kreislinie ein bestimmter »Bogen«
B herausgeschnitten, wie es in Fig. 2.32b gezeigt ist. Seine Linge b wird ebenfalls iiber einbe-
schriebene Streckenziige definiert. Da alle Lidngen dabei gegeniiber dem Einheitskreis um den
Faktor r gestreckt oder gestaucht sind, ist die Linge des Bogens B das r-fache des Bogenmales
t:

b=tr.

Insbesondere hat die gesamte Kreislinie die Linge 2.

a) b)

Fig. 2.32: Winkelmessung; Bogen auf beliebigen Kreislinien

Ubung 2.13:

Welche Bogenmalfle entsprechen den folgenden Winkelmafien:
1°; 17°34"; 27,7°; 251°14'47"?

Dabei bezeichnet ' Bogenminuten (60 Bogenminuten = 1°), und ” Bogensekunden (60 Bogen-
sekunden = 1 Bogenminute).

Ubung 2.14:

Verwandle die folgenden Bogenmalfle in Gradmafle, gerundet auf Bogensekunden:

2 2
1,5231; 5,12178; —-m; =m.
3 7

9 Der Grund wird spiter klar. Er liegt darin, daB so sin’ = cos und cos’ = — sin gilt, was bei Winkelmessungen in
Grad nicht zutrifft.
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Ubung 2.15:
Ein Rad dreht sich gleichférmig, und zwar dreht es sich in 0,142s um den Winkel von 70°.
Berechne die Umlaufzeit 7 und die Winkelgeschwindigkeit w = 2w /T des Rades!

2.3.2 Sinus und Cosinus

Die trigonometrischen Funktionen Sinus (sin) und Cosinus (cos) eignen sich gut zur Darstellung
von Wellen, Schwingungen und sonstigen periodischen Vorgingen, wie auch zur Berechnung
von Entfernungen auf der Erde oder im Weltraum.

Zur Definition von Sinus und Cosinus betrachten wir einen beliebigen Punkt P = (x, y) auf
der Einheitskreislinie. Es gilt also x> + y? = 1.

Mit ¢ bezeichnen wir die Bogenlédnge des zugehorigen Kreisbogens. Damit ist der Kreisbogen
gemeint, den ein Punkt durchlduft, wenn er auf der Einheitskreislinie gegen den Uhrzeigersinn
von (1, 0) bis P wandert. Anhand der Figuren 2.33a, b, c ist klar, was gemeint ist.

A A A

Yi—

\J

- — 4=

a) b) c)

Fig. 2.33: Bogenlédnge ¢ zu P
Die Komponenten unseres Punktes werden nun einfach mit sin ¢ und cos ¢ bezeichnet, also:

Definition 2.3:
Man vereinbart

sinf :=y, cost:=x fur0<r<2m.

Sinus- und Cosinusfunktionen sind damit auf dem Intervall [0, 277] erkldrt. Der Definitionsbe-
reich wird in folgender Definition auf die ganze reelle Zahlengerade ausgedehnt.

Definition 2.4:
Fiir alle ¢ € [0,27] und alle ganzen Zahlen k gilt

sin(t + 2km) = sint,

(2.61)
cos(t + 2kmw) = cost .

In Fig. 2.34 ist ein Schaubild der Funktionen sin und cos skizziert.
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Fig. 2.34: Sinus- und Cosinusfunktion

Folgerung 2.2:
Fiir alle reellen Zahlen ¢ gilt

(@  sin’t+cos’t =1 (2.62)
{an sin(—t) = —sint cos(—t) = cost (2.63)
sin(zr —t) = sint cos(wr —t) = —cost (2.64)

. 4 4 .
sin (t == 5) = *cost cos (t == E) = *sint (2.65)
sin (¢ + 2km) = sint cos (t + 2kmw) = cost k ganz (2.66)
(1) sin(kr) = 0 cos (% +k7) =0 2.67)

costkm) = (—1)*  sin (% + kn) — (=% k ganz

Fiir alle anderen ¢ € R, also ¢t # ki /2, sind sin¢ und cos ¢ verschieden von 0, 1 und
—1.

(IV) sin und cos sind stetig auf R.

Beweis:

Die Eigenschaften (I) bis (III) leitet der Leser leicht aus der Definition von sin und cos her. (Die
Eigenschaften (I) bis (IIT) sind tibrigens unmittelbar am Schaubild (Fig. 2.34) abzulesen.) Zu
(IV): cos ist auf [0, 7] die Umkehrfunktion der stetigen Funktion f aus Satz 2.8 im vorigen
Abschnitt. Also ist cos auf [0, 7] stetig. Damit ist auch sint = +/1 — cos?¢ auf [0, 7] stetig.
Durch (2.63), (2.66) wird die Stetigkeit auf alle ¢+ € R iibertragen. O

Additionstheoreme: Von groer Wichtigkeit sind folgende Formeln fiir sin(x + y), cos(x + y).
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Satz 2.9:
Fiir alle reellen x und y gilt
sin(x + y) =sinxcosy +cosxsiny, (2.68)
cos(x + y) =cosxcosy —sinxsiny. (2.69)

Der Beweis wird in Abschn. 3.1.6 mit Hilfe der Differentialrechnung in eleganter Weise gefiihrt,
weshalb wir ihn hier iiberspringen.

Aus den Additionstheoremen (2.68), (2.69) lassen sich viele weitere Formeln herleiten, die fiir
die Anwendungen wichtig sind. Setzt man z.B. x = y, so folgt

sin(2x) = 2sinx cos x , (2.70)

cos(2x) = cos? x — sin® x . 2.71)

Ferner gilt

X X —
sinx + siny = 2sin +ycos—y
2 2.72)
. . X+y . x—y
sinx — siny = 2cos sin 5
X x —
cosx + cosy = 2cos +ycos 2y
(2.73)
. Xxt+y . x—y
Ccosx — cosy = 2sin sin >

Zum Nachweis von (2.72) wendet man die Additionstheoreme auf

. . (x+y x-—y . . fx+YyY x—Yy
sinx = sin + und siny = sin -
2 2 2 2

an und addiert bzw. subtrahiert beide Gleichungen. Entsprechend verfidhrt man bei (2.73). Der
Leser fiihre dies zur Ubung durch.

Anwendungen

Beispiel 2.29:
Ein Rad drehe sich gleichformig mit der Umdrehungszeit 7', also der Kreisfrequenz w = 27/ T.
P sei ein beliebiger Punkt des Rades mit Abstand a vom Drehpunkt. x- und y-Achse liegen so,
wie es die Fig. 2.35 zeigt. P iiberschreite die x-Achse zur Zeit .

Dann sind die Koordinaten zu einer beliebigen Zeit ¢:

X =a COS(CL)(I - tO)) ’
y =asin(w(t — ty)) .
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Die erste Gleichung beschreibt also die horizontale Bewegung des Punktes, die zweite die verti-
kale.

LG

-

éc

X
® — — — + 0 Ruhelage
m
v X
Fig. 2.35: Drehendes Rad Fig. 2.36: Federpendel

Beispiel 2.30:
(Federpendel) An einer Spiralfeder mit Federkonstante ¢ > 0 hiinge ein K&rper der Masse m.
Er schwinge reibungsfrei auf und ab. Die Hohe seines Schwerpunktes zur Zeit ¢ sei x (x-Achse
weist nach unten) (s. Fig. 2.36).

Dann wird seine Bewegung beschrieben durch

. [c
x =acos(w(t —19)) mitw=_[—.
m

Dabei ist 7y ein Anfangszeitpunkt mit maximaler Auslenkung a.

Beispiel 2.30 ist trotz seiner Einfachheit ein typischer Schwingungsvorgang. Er zeigt, daf bei
Beschreibung von Schwingungsvorgingen (seien sie mechanisch, elektrisch oder elektromagne-
tisch) die Sinus- und Cosinusfunktion die wesentlichen mathematischen Hilfsmittel sind.

Ubung 2.16:

Beweise die Formel: sin(e + 8) + sin(a — 8) = 2sin« cos 8
Hinweis: Wende das Additionstheorem des Sinus auf sin(« + 8) und sin(« 4+ (—f)) an!

Entsprechend:

Ubung 2.17:
cos(a + B) + cos(a — B) = 2cosa cos .
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Ubung 2.18:
) 1
a) sin“a = 5(1 — cos(2w))

1
b) cos? o = E(l + cos(2a))

(s. (2.71))
Ubung 2.19:
a) sina = %(3 — 4cos(2a) + cos(4a))

1
b) cosa = g(S + 4 cos(2a) + cos(4w))

Hinweis: Man quadriere die Formeln in Ubung 2.18.

Ubung 2.20:

Beweise die Formel

n
sin(@n+ D) = [ 1+2 Z cos(2kt) | sint.
k=1

(n € N, T € R) durch vollstiandige Induktion. Dazu benutze man die Gleichung
sin((2n 4+ 1)t) = sin((2n — 1)t) + 2sint cos(2nt) ,

die aus (2.72), 2. Gleichung, folgt.

2.3.3 Tangens und Cotangens

Definition 2.5:
Die Funktionen Tangens (tan) und Cotangens (cot) werden folgendermalen erkléart:

sin x T

tanx = firx € Rmitx # — + km,
coS X 2

k ganz

COos X

cotx (= — firx € Rmitx # k.
sin x

Die rechts notierten Ausnahmewerte von x sind gerade die Nullstellen des jeweiligen Nenners.
Fig. 2.37 zeigt die Graphen von tan und cot.
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| Ay I | I yA [
| | y=tanx | | y=cotx |
| I | I [
| I 1 I [
1 I | x I Iox
iz /o & T N TN\ w
2 2 2 2 2
[ | [ I [
| | [ I [
| I | I 1
Fig. 2.37: Tangens- und Cotangensfunktionen
Satz 2.10:
(Additionstheoreme) Es gilt
tan x = tan
tan(x + y) = —r =AY (2.74)
1 Ftanxtany
cotx cot 1
cot(x £ y) = XY F 2 (2.75)

coty % cotx

fiir alle x, y, fiir die die Nenner nicht verschwinden und die zugehorigen Tangens- und
Cosinusfunktionen definiert sind.

Der Beweis kann mit Hilfe der Additionstheoreme fiir sin und cos vom Leser gefiihrt werden.
Im Falle x = y folgt aus dem Satz

2 tan cot?x — 1
fan2x = — 0% o= AT (2.76)
1 —tan? x 2 cotx

Umrechnung der Winkelfunktionen ineinander: Wir wollen 0 < x < 7/2 annehmen. Dann
gilt wegen sin? x + cos? x = 1:

sinx =1 —cos?x, cosx =+ 1 —sin®x. .77)

Wir wollen entsprechend sin x in tan x umrechnen, cos x in tan x, tan x in sin x, usw. Dazu setzen
wir (2.77) in tan x = sinx/ cos x ein und erhalten

. 1_ 2
tanx = — % _ Y- TS X (2.78)

V1 —sin®x CUSPy

Quadrieren und Auflésen nach sin x bzw. cos x liefert

ti 1
sinx = Ay COSY = ——— 2.79)

V1 +tanZx VI+tanZx

Wegen cotx = 1/tan x hat man damit auch entsprechende Formeln fiir cot x zur Hand.
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Die Formeln (2.77) bis (2.79) gelten bis auf das Vorzeichen auch auBlerhalb des Intervalls
(0, 7 /2), sofern die Nenner nicht verschwinden. Man muf} dann allerdings darauf achten, ob +
oder — vor die rechten Seiten zu setzen ist.

Ji+tarex

tan x

1

Fig. 2.38: Zur Umrechnung der Winkelfunktionen ineinander

Bemerkung: Die Gl. (2.79) gehen sofort aus Fig. 2.38 hervor. Man braucht also nur dieses Drei-
eck zu zeichnen, um jederzeit die Formeln (2.79) herleiten zu kénnen.

Winkelfunktionen am rechtwinkligen Dreieck: An einem rechtwinkligen Dreieck [A, B, C]
mit den Seitenldngen a, b, ¢ und dem Winkel « bei A gilt (s. Fig. 2.39a):

Ay

B y=sino

X = COS ot

¥ x

a) b)

Fig. 2.39: Winkelfunktionen als Seitenverhiltnisse am rechtwinkligen Dreieck

. a a
sin¢ = —, cosa=—, tana=-—, cota=—. (2.80)
c G b a

Diese Gleichungen gehen aus der Ahnlichkeit mit dem Dreieck [0, C’, B'] am Einheitskreis her-
vor, wie es Fig. 2.39b zeigt. Dort gilt fiir entsprechende Seitenverhéltnisse nach Definition von
sin, cos, tan und cot:

. y X
Sino = T, cosa:T, tana =

Durch die GI. (2.80) gelangen die Winkelfunktionen in der Geometrie zu groer Bedeutung.
Ubung 2.21:

Auf einer schiefen Ebene, deren Neigungswinkel @ = 35,12° betriigt, gleitet ein Korper mit
dem Gewicht G = 219,3 N herab. Wie grof} sind die Hangabtriebskraft Fz; und die Normalkraft
Fp (rechtwinklig zur Ebene)?



2.3 Trigonometrische Funktionen 159

Ubung 2.22:
Beweise
(a) tanaitanﬂ:w, (b) cotaicotﬂ:w.
cosa cos sin B sino

Hinweis: Zu (a): Man setze tano = sina/ cos«, tan § = sin 8/ cos B und bringe die linke Seite
auf Hauptnenner. (b) entsprechend.

arc|cos

mniA

Fig. 2.40: Arcusfunktionen

2.34 Arcus-Funktionen

Die Funktionen Arcussinus (arcsin), Arcuscosinus (arccos), Arcustangens (arctan) und Arcus-
cotangens (arccot) sind die Umkehrfunktionen von sin, cos, tan und cot, definiert auf den im
folgenden notierten Intervallen.

Definition 2.6:
t =arcsinx, x € [—1,1] bedeutet: x =sint, t € [—%, %]
t =arccosx, x € [—1,1] bedeutet: x =cost, t € [0, ]
t =arctanx, x € R bedeutet: x =tant, t € (—%, %)
t =arccotx, x € R bedeutet: x =cotz, t € (0,7).

Fig. 2.40 zeigt Schaubilder der Arcusfunktionen.
Liegt beispielsweise ein rechtwinkliges Dreieck vor, dessen Seitenldngen a, b, ¢ wir kennen

(Fig. 2.41), so kann man mit den Arcusfunktionen seine Winkel bestimmen: Wegen a/c = sin«
ist

.. a a
« = arcsin — und analog S = arccos — .
c c
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b C

Fig. 2.41: Winkelbestimmung aus Seitenldngen

A A A

(x, y) (x, ¥)
’//,/<;-; -0 "“\\\\t >0
-"’J’ t<0 :: ;E t<0

(%, ¥) (%, y)

Fig. 2.42: t = arc(x, y)

Definition 2.7:
Die Funktion Arcus, beschrieben durch

t=arc(x,y), >+y>>0)),

wird geometrisch erkldrt (s. Fig. 2.42): Man verbindet den Punkt (x, y) mit dem Ko-
ordinatennullpunkt durch eine Strecke. Dann ist |¢| das Mal} des kleineren Winkels
zwischen dieser Strecke und der positiven x-Achse. Im Falle y > 0 ist dabei ¢t > 0, im
Falle y < O dagegent < 0.Firy =0, x < Oistt = 7 und fiir y = 0, x > 0 natiirlich
t = 0 (s. Fig. 2.42a, b, c, d). |¢| wird im Bogenmal} angegeben. Es ist —7 < ¢t < 7.
Mit der Streckenliinge r = +/x2 + y2 wird die Funktion Arcus kurz so beschrieben:

X
arccos — , fir y > 0,
r

arc(x, y) = x
— arccos — , fir y < 0.
7

Bemerkung: Die Funktion wird auf Computern vielfach mit ATAN2 + bezeichnet. In der kom-
plexen Analysis wird sie auch Arg (Argument) genannt.

Bemerkung: Die trigonometrischen Funktionen sin, cos, tan, cot und die zugehoérigen Arcusfunk-
tionen sind heute auf jedem wissenschaftlichen Taschenrechner zu finden. Man kann ihre Werte
durch Knopfdruck erhalten. Prinzipiell kann man ihre Werte auch geometrisch finden, d.h. durch
Zeichnen des Einheitskreises auf Millimeterpapier und Ablesen der dortigen Maf3e. Natiirlich
ist die Genauigkeit dabei gering. Rechnerische Methoden zur beliebig genauen Ermittlung der
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Funktionswerte sin, arcsin, ... usw. lernen wir in der Differentialrechnung kennen.

< s >

n o

a
2_
@

Fig. 2.43: Linge eines Schienenkreisbogens

Beispiel 2.31:

Es soll die Lidnge eines Schienenkreisbogens bestimmt werden, s. Fig. 2.43. Der Messung zu-
génglich ist die Sehnenlidnge s und der maximale Abstand a der Sehne vom Kreisbogen. Der
Radius r des Kreises wird nach »Pythagoras« berechnet:

(r—a)2+<§>2=r = r=c—+z.

Fiir den Winkel o (Bogenmaf) gilt nach Fig. 2.43
o s/2

. o s
sin— = —, also — = arcsin — .
2 2 2r

Die Linge I des Kreisbogens ist damit gleich

.S
| =ra =2r -arcsin — .
2r

Ubung 2.23:

Ein Schuppen mit rundem Dach sei 20 m lang. Sein Querschnitt hat die Form eines Rechtecks
mit daraufgesetztem Kreissegment. Das Rechteck hat eine Hohe von 4 m und eine Breite von
8 m. Die Gesamthohe des Schuppens ist 6,5 m. Wie grof3 ist die Dachfliche? (Benutze Taschen-
rechner!)

Ubung 2.24:

In einem liegenden zylindrischen Tank der Lénge [ = 2,7 m und des Durchmessers d = 1,2m
befindet sich eine Fliissigkeitsmenge. Durch einen von oben eingefiihrten Mefstab stellt man
fest, daf die Hohe des Fliissigkeitsspiegels iiber dem Tankboden 0,78 m betrdgt. Wie grof ist das
Fliissigkeitsvolumen? Hinweis: Der Flicheninhalt eines Kreissektors mit dem Offnungswinkel
o (BogenmabB) ist gleich r2a /2 (r = Radius des Kreises).
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235 Anwendungen: Entfernungsbestimmung, Schwingungen

Entfernungsbestimmung: Auf der Erde und im nahen Weltraum (bis ca. 4 Lichtjahre) benutzt
man zur Entfernungsmessung grofie Dreiecke, deren Seitenldngen und Winkel man mifit oder
berechnet. Dazu zwei Sitze der Geometrie:
Ist ein beliebiges Dreieck [A, B, C] gegeben, so gilt mit den Bezeichnungen in Fig. 2.44
folgendes:
a sino

Si t = 2.81
inussatz b~ snp ( )

Fig. 2.44: Zum Sinus- und Cosinussatz

Cosinussatz a” + b> — 2ab cos y = ? (2.82)

(Fiir die Beweise wird der Leser auf die Geometrie verwiesen.) Diese Sitze sind die Grundlage
fiir Entfernungsberechnungen:

Wir nehmen an, da3 A, B, C drei Punkte auf der Erde sind, wobei A und C so dicht zusam-
menliegen, daf} wir ihre Entfernung b direkt messen konnen. Der Punkt B sei z.B. eine entfernte,
aber sichtbare Bergspitze. Die Entfernungen a und ¢ sind gefragt. Man mifit nun die Winkel o
und y, berechnet daraus 8 und erhélt mit dem Sinussatz

sin o sin y

—, ¢c=b——.
sin 8 sin

a=>b

Hat man die Landvermessung schon eine Weile durchgefiihrt und kennt in einem Dreieck A, B,
C die Entfernungen a und b sowie den Winkel y (man befinde sich selbst beim Punkt C), so
kann man die Entfernung ¢ von A und B mit dem Cosinussatz berechnen.

In jedem Falle muf} die Vermessung mit einer Strecke bekannter Linge beginnen. Im Welt-
raum nimmt man daftir den Erddurchmesser oder fiir die Bestimmung groflerer Entfernungen
den Durchmesser der Erdbahn um die Sonne.

Schwingungen und Wellen: Durch

y = Acos(wt + ¢) (2.83)
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Ay
h{p—— T—=>l
h 4 |
®

r— Iy = Acos (ot + o)

/DN /N
N

Fig. 2.45: Harmonische Schwingung

wird eine sogenannte »harmonische Schwingung« beschrieben. Dabei sei die Variable 7 die Zeit
und y eine schwingende Grofe, wie Linge (s. Federpendel), Druck (Schallwellen), elektrische
Spannung oder elektrischer Strom, elektrische oder magnetische Feldstirke usw.

A > 0, w > 0und ¢ sind Konstanten. A > 0 hei’t Amplitude, @ > 0 Kreisfrequenz und ¢
Phase oder Phasenwinkel. Fig. 2.45 zeigt ein Schaubild der durch (2.83) beschriebenen Funktion

f(t) = Acos(wt + @) .

Man sieht daran: A ist der Maximalwert der Funktion. Die Schwingungsdauer T ist die Zeit-
spanne von einem Maximalpunkt zum nichsten. Es muf} gelten

oT =2, (2.84)

denn die Cosinusfunktion wiederholt ja ihre Werte — also auch die Maximalwerte —, wenn
das Argument des Cosinus um 27 weiterriickt. Mit Gl. (2.84) kann man @ aus 7 gewinnen
und umgekehrt. Die Frequenz v der Schwingung, das ist die, Anzahl der Schwingungen pro
Zeiteinheit, ergibt sich aus

1 w
V= — = —.
T 2n
Der Graph von f in Fig. 2.45 hat die Form einer Cosinusfunktion, evtl. etwas gestreckt oder
gestaucht. Dabei ist die y-Achse um ¢/w nach rechts verschoben, wenn ¢ > 0 ist. Andernfalls
ist sie um |@|/w nach links verschoben. Die Zahl yp = A cos ¢ ist der Wert der schwingenden
GroBe zur Zeit t = 0.

Uberlagerung von Schwingungen gleicher Frequenz

Satz 2.11:
Eine Summe gleichfrequenter harmonischer Schwingungen ist wieder eine harmoni-
sche Schwingung.
Das heifit, sind die Schwingungen A; cos(wt + ¢;), (. = 1,2, ..., n), gegeben, so
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gilt fiir ihre Summe

n
Z A; cos(wt + ¢;) = A cos(wt + @) (2.85)

i=1

mit gewissen Zahlen A > Qund ¢ € (—m, 7 ]. A ist eindeutig bestimmt und ¢ im Falle
A > 0 ebenfalls.

Beweis:

Wir geben an, wie die Werte A und ¢ konkret berechnet werden. Dazu nehmen wir an, es gibe
A und ¢, die (2.85) erfiillen. Wendet man das Additionstheorem des Cosinus auf die linke und
rechte Seite an, so verwandelt sich (2.85) in

n n
D (Aj cosg;) cos(wr) — Y (A; sing;) sin(wt) = A cos g cos(t) — Asingsin(wr) . (2.86)

i=1 i=1

Einsetzen von ¢ = 0 148t die Sinusglieder verschwinden, wihrend Einsetzen von t = 7/ (2w) die
Cosinusglieder zu Null macht. Dies ergibt die beiden Gleichungen

n
a:= ZAicosgoi = Acosg.

i=1

i (2.87)
b= ZAi sing; = Asing.
i=1
Hieraus folgt durch Quadrieren, Addieren der Gleichungen und Wurzelziehen:
A=+a%+b2. (2.88)

Im Fallea = b = 0sind A = 0 und ¢ beliebig wihlbar. Im Falle A > 0 bildet der Punkt (a, b) =
(A cos ¢, Asin @) gerade den Winkel ¢ € (—m, ] mit der positiven x-Achse, s. Fig. 2.46. Es ist
daher

arccos a , falls b > 0,
¢ = arc(a, b) = 4 (2.89)
— arccos 1 falls b < 0.

Umgekehrt gilt: A und ¢, berechnet nach (2.88), (2.89), erfiillen (2.87), folglich auch (2.86) und
(2.85).

Durch (2.88) und im Falle A > 0 durch (2.89) sind damit A und ¢ eindeutig bestimmt und
berechnet. O
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A
A
O Lo e — (a, b)

I
I

A I
I

L0 !
| > B
a

Fig. 2.46: Phasenwinkel ¢ Fig. 2.47: Uberlagerung zweier Schwingungen

Zeigerdiagramm: Die Uberlagerungen zweier Schwingungen gleicher Frequenz
Aj cos(wt + ¢1) + Aj cos(wt + ¢2) = A cos(wt + ¢) ,

1aBt sich gut in einem Zeigerdiagramm darstellen, wie es in Fig. 2.47 gezeigt wird. (Im Abschnitt
iiber komplexe Zahlen kommen wir darauf zuriick.)

Der technisch wichtige Sonderfall rechtwinkliger Phasenverschiebung, d.h. der Uberlagerung
zweier Schwingungen mit ¢ = —m/2 und ¢; = 0, 146t sich auf Grund von cos(wt — 7/2) =
sin(wt) so darstellen:

Aj cos(wt) + Ap sin(wt) = A cos(wt + ¢),

(A1 >0, A, > 0).Esistalsoa = A; und b = —Aj;. Somit folgt nach (2.88) und (2.89):

A
A=,/A?+ A, (p:—arccosxl. (2.90)

Uberlagerung zweier Schwingungen verschiedener Frequenzen, Schwebungen

Durch
f(@) = Ajcos(wt) + Ay cos(wt +¢), w1 > w2, (2.91)

wird die Uberlagerung zweier harmonischer Schwingungen verschiedener Frequenzen beschrie-
ben, Zur Umformung verwenden wir die Gl. (2.72) und (2.73) in Abschn. 2.3.2. Addition und
Subtraktion der Gl. (2.73) liefert ndmlich

x+Yy X —y Xty . x—y
COSX = COS COS — S1In —— SIn

2 2 2 2

xX+y X —Yy L Xty . x—Yy
COS y = COS COS + sin sin

2 2 2 2
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Wihlen wir x = w1t, y = wat + ¢ und setzen dann in (2.91) ein, so folgt

Wl + wy

f(t) = (A1 + Ay)cos (Tt + g) cos <¥t _ %)

. a)1+a)2 [ . w] — w2 ]
+ (A — A —_— 4 = —_—t— =
(Aq Z)Sln( > 2>s1n< 5 2)

(2.92)

Wir wollen nun A; = A; annehmen und zur Abkiirzung w = (w1 +2)/2 und ® = (w1 —wy)/2
setzen. Damit folgt

F(1) = 24, cos (w n %) cos (az - %) it © > @. (2.93)

Das Produkt dieser beiden harmonischen Schwingungen beschreibt eine Schwingung mit der Fre-
quenz w, deren Amplitude sich mit der langsameren Frequenz @ harmonisch schwingend 4ndert,
s. Fig. 2.48. Man nennt eine solche Schwingungsform eine Schwebung. w heif3t die Frequenz der
Schwebung.

Fig. 2.48: Schwebung

Je dichter die beiden Frequenzen w, w> der sich iiberlagernden Schwingungen zusammenlie-
gen, desto kleiner ist die Frequenz w = (w; — w3)/2 der Schwebung, wihrend w = (w1 + w3)/2
ungefihr gleich w; und w; ist.

Handelt es sich hierbei um Tonschwingungen, so hort man einen langsam an- und abschwel-
lenden Ton, ungefihr in der Tonhohe der beiden Ausgangstone. Spielen z.B. zwei Geiger nahezu
den gleichen Ton, so kann man diesen Effekt deutlich horen.

Ubung 2.25:

In einem dreiphasigen, symmetrischen Drehstromsystem flielen bei symmetrischer Belastung
in den drei Leitern gleichgroBe, jeweils um 27 /3 gegeneinander phasenverschobene Strome.
Zeige, daf ihre Summe

2 4
i = igcos(wt) + igcos <a)t + g]‘[) + i cos (wt + §7T>

gleich Null ist.
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24 Exponentialfunktionen, Logarithmus, Hyperbelfunktionen
241 Allgemeine Exponentialfunktionen
Die Funktion

f(x)=a* mita >0,

ist fiir alle rationalen Zahlen x erkldrt (s. Abschn. 1.1.6). Es ist zunichst unsere Aufgabe, a*
auch fiir irrationale x sinnvoll zu definieren, d.h. so, dal f(x) = a* nach Moglichkeit eine
stetige Funktion wird.

Zunichst seia > 1. Dann ist f streng monoton steigend auf der Menge der rationalen Zahlen.
Denn sind x1, x zwei rationale Zahlen mit x; > x3, so konnen wir sie auf Hauptnenner bringen:

Xy =—, X2=E (p,g,mganz,m #0, p > q)

und erhalten

X1 -
ff((x;) = aTz =g =g = a’ T,
X2 a

Esist %/a > 1, denn aus %/a < 1 wiirde a < 1™ = 1 folgen, entgegen der Voraussetzung.
Wegen p > g ist damit m./a”~? > 1, folglich f(x1) > f(x2). D.h. f steigt streng monoton.

Im Falle 0 < a < 1ist f(x) = a* fur rationale x streng monoton fallend, wegen a* =
(1/a) ™ mit 1/a > 1. Fira = 1ist f(x) = a* = 1 konstant.

Definition 2.8:
Ist a > 0 eine reelle Zahl und x eine irrationale Zahl mit der Dezimaldarstellung

X = 20,2132223 ---Zn - - -
(zo ganz, z1, 22, 23, - . . Ziffern), so bilden wir daraus die Folge der rationalen Zahlen

ro =20,
r = 20,21
r2 = 20,2122

rn = 20,2132 .-.-2n
und definieren damit

a* = lim a'™ . (2.94)

n—oo
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Auf diese Weise ist
f(x)=a", mita >0,

fiir alle reellen x erkldart. Man nennt diese Funktion die Exponentialfunktion zur Basis
a.

y4 y A

: <&
_/ ta=2) T~ (2-2)

0 X 0

v
\

=

Fig. 2.49: Exponentialfunktionen zur Basis a

Fig. 2.49 zeigt Schaubilder fiira > 1 und 0 < a < 1.

Bemerkung: Gl. (2.94) ist sinnvoll, denn die Folge (a’) konvergiert, weil sie monoton und
beschrinkt ist. (Die Monotonie folgt aus der Monotonie von (r,,). Ferner liegen alle a’™ zwischen
a1 und @’ woraus die Beschrinktheit folgt.)

Satz 2.12:

Jede Exponentialfunktion f(x) = a” ist stetig. Im Falle @ > 1 ist sie streng monoton
steigend, im Falle 0 < a < 1 streng monoton fallend.

Der Beweis kann von Lesern, die hauptsidchlich an Anwendungen interessiert sind, iiberschlagen
werden. Sie verlieren nichts Wesentliches.

Beweis:

(D Im Fallea = 11ist f(x) = | und somit stetig.

(I) die behaupteten Monotonieeigenschaften ergeben sich unmittelbar aus der Definition der
Exponentialfunktion.

(III) Wir beweisen nun, daf} f stetig in O ist: Es sei (x,) eine beliebige Folge mit x, — 0 und
0 < x, < 1. Zu jedem x,, suchen wir die groBite natiirliche Zahl m,, mit

1
Xy < — .
mpy

Wegen x,, — 0 gilt auch 1/m,, — 0 fiir n — oo. Damit folgt

imFallea > 1: 1 <a™ <a'/™ — 1
) | firn — oo
imPFalle0 <a<1: 1>a" >a/™ 1
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(al/mn — 1 geht aus Abschn. 1.4.4, Beisp. 1.33, hervor.) Es gilt also ™ — 1 = a%, d.h. fx) =
a” ist in O rechtsseitig stetig. Die linksseitige Stetigkeit ergibt sich analog. Damit ist f stetig in
0. Wir haben also gezeigt:

Xn

— 1. (2.95)

x, >0 = a
(IV) Hilfsbehauptung: Aus x,, — xo, X, rational, folgt
X _y g0 (2.96)

a

Zum Beweis betrachten wir die Folge r,, — x¢ aus Def. 2.8, sofern x irrational ist. Ist x( rational,
so setzen wir einfach r, = xg fiir alle n. Damit erhilt man in beiden Féllen

a™m =a" " "mg™ — g’ (2.97)

daa™ — a™ und a* "™ — 1 nach (2.95).

(V) Die Gleichung a* = a* ="' ist fiir alle rationalen x, x’ richtig, durch Grenziiberginge der
Form (2.96) aber auch fiir alle reellen x, x’.

(VI) Giltnun x,, — x¢ (x, reell), so folgt damit
a’n =g g’ 5 %0 ,

wie in (2.97). a* — a™ bedeutet jedoch, dal f(x) = a* in xg stetig ist, was zu beweisen war.[]

Wir stellen noch einmal heraus, was die Stetigkeit von f(x) = a* bedeutet. Sie besagt: Fiir jede
reelle Zahlenfolge (x,) mit x,, — xq fiir n — oo gilt

lim a™ =a™ . (2.98)
n—od
Folgerung 2.3:
(Rechenregeln) Fiir alle positiven a, b und alle reellen x, y gilt
a*tY = a*a® (Additionstheorem der Exponentialfunktionen), (2.99)
(@)’ =a", (ab)* =a'b". (2.100)

Beweis:

Nach Abschn. 1.6.6, Folgerung 1.9, gilt dies fiir alle rationalen x, y, durch Grenziiberginge der
Form (2.98) aber auch fiir irrationale x, y. ([l

Bemerkung: Exponentialfunktionen gehoren zu den wichtigsten Funktionen in der Analysis, in
Technik und Naturwissenschaft. Mit ihnen werden Wachstumsvorginge, Aufschaukelungs- und
Abklingvorgédnge und vieles andere mehr behandelt.
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Ubung 2.26%:
Beweise, daB die Exponentialfunktion f(x) = a* (x € R) fiir @ > 1 streng monoton steigend
istund fiir 0 < a < 1 streng monoton fallend.
Hinweis: Im Falle @ > 1 zeige man

x] < xp =a"! <a®

fuir rationale Zahlen x, x. Anschlieend lasse man fiir x; und x, beliebige reelle Zahlen —
also auch irrationale — zu.

24.2 Wachstumsvorginge. Die Zahl e

Motivation: Durch y = a’(a > 1) werde ein Wachstumsvorgang beschrieben, wobei ¢ die Zeit
bedeute und y die anwachsende Grofe. (Es konnte sich hier z.B. um das Bevolkerungswachstum
der Erde handeln, das in nicht zu langen Zeitraumen — etwa 50 Jahren — diesem Wachstums-
gesetz ndherungsweise gehorcht. y = 1 bedeute dabei eine bestimmte Anzahl von Menschen,
y = 2 die doppelte Anzahl usw.)
Es sei a unbekannt, jedoch wollen wir annehmen, daf} die »Wachstumsgeschwindigkeit« v
zur Zeit t = 0 bekannt ist. v ist dabei in guter Niherung
a —a°

VR

fiir kleine |¢] > 0.

Kann man hieraus a, wenigstens niherungsweise, berechnen? Das ist der Fall. Umformung ergibt
niamlich, mit a° = 1:

ad~l4+v = a%(1~|—vt)1/t.

Wir setzen h = vt, und erhalten damit
a~ (1 +h)"h = ((1+h)]/h>v. (2.101)

Dies gilt umso besser, je kleiner |¢] ist, und damit auch je kleiner |A] ist. Wir berechnen daher
den Ausdruck

(1+m)th (2.102)

fiir kleine |7| > 0. Fir h = 1072, h = 107*, h = 107%, h = 1078 zum Beispiel erhilt der
Ausdruck die gerundeten Werte

2,704813829,
2,718145918,
2,718281828,
2,718281828.

(2.103)

Die letzten beiden Zahlen sind schon gleich. Probiert man noch kleinere ||, so erhélt man auf
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dem Taschenrechner stets die letzte der hingeschriebenen Zahlen. Dies legt die Vermutung nahe,
daB (2.102) fiir h — 0 konvergiert. Wir werden dies spéter beweisen. Den Grenzwert nennt man
»Eulersche Zahl« e, zu Ehren des Mathematikers Leonhard Euler, also

e = hligb(l + mi/h. (2.104)

Der Zahlenwert von e ist, bis auf Rundungsfehler, gleich der letzten Zahl in (2.103):
e=2,718281828.

Hiermit kann man die gesuchte Zahl a aus (2.101) gewinnen, wobei wir rechts den Grenziiber-
gang h — 0 durchfiihren:

a=c¢e". (2.105)

Konvergenzbetrachtung fiir e: Wir wollen zeigen, dal der Grenzwert (2.104) existiert. (Der
anwendungsorientierte Leser kann diesen Beweis ohne Schaden iiberschlagen.)
Zunichst wird gezeigt

Hilfssatz 2.1:
Die Folge (x,) mit

l n
Xp = <1 + —) , n=123,..., (2.106)
n
konvergiert.

Beweis:

Mit der binomischen Formel erhilt man

3 ' (r\1 _ . xn=D . a—k+1D)
x”_<1+2> _Z<k>nk_1+k§ Kink

k=0
e . (2.107)
L _r 10
—1+Zk,_ﬂ(1 ) .
k=1""i=0
Dabei gilt
i i 1 1
0<l1—-<1- <1 und — < —. (2.108)
n n—+1 k! 2k=1

m
10 Das Produktzeichen l_[ wird analog wie das Summenzeichen Z verwendet; es ist H a; =ayaxaz - ...-am.

i=1
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Man erkennt damit zunéchst die Beschrinktheit der Folge (x;):
"1 | =1
k=1 k=1 k=1

Ferner ist (x,) monoton steigend, denn man berechnet:

n+1 1 k—1 i n 1 k—1 i
I (B B (B
k=1 i=0 k=1 i=0

n 1 k—1 ; k—1 ; ! n i
:1;5[E)(l_"H)_H)(l_E)%<n+1>!n<1_n+1>

i=0

Die eckige Klammer ist > 0 wegen (2.108) und das Glied rechts ebenfalls. Also ist x,,+1 —x, > 0,
d.h. x,, steigt monoton. Zusammen mit der Beschrénktheit folgt die Konvergenz der Folge (x,).C]

Der Grenzwert von (x,) wird, wie schon erwihnt, e genannt:

1 n
e= lim (1 + —> (2.109)
n— oo n
Satz 2.13:
Es ist
ezlymo(wh)l/h. (2.110)
Beweis:

Wir zeigen: Fiir jede beliebige Folge (h,,) mit i, — Ound mit 0 < |h,| < 1 gilt
A+ h)M e fir n— . (2.111)

1. Fall: Es sei 0 < h, < 1 fiir alle n. Wir setzen 1/ h;, = r, und bezeichnen mit k,, die natiirliche
Zahl, die k, < r, < k, + 1 erfiillt. Damit folgt

| N 1 kn | N 1 n | N 1 kn+1
< — < — .
ky, +1 Tn ky,

d.h.

( 1 kn+1
1+ ) 7 k
1\ 1\ 1
k"+11 <(1+—) <<1+—> <1+—)

1+ I'n kn kn

kn+1
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Wegen k,, — oo konvergieren die linke und rechte Seite gegen e (nach Hilfssatz 2.1). Also muf}
auch der Ausdruck in der Mitte gegen e streben. Damit ist (2.111) im Falle /#,, > 0 bewiesen.

2. Fall: Es sei —1 < h, < 0. Wir setzen r,, = —1/h, und fiihren diesen Fall auf den vorange-
henden zuriick:

1/h 1\ rp— 1\ I'n Tn 1 Tn
(I4+h)/'"={1—— = = =(1+
n Iy rm—1 rn—1
1 \"! 1
=1+ 1+ —e-l.
rp— 1 rp— 1

3. Fall: Fiir eine beliebige Folge i, — 0 mit 0 < |h,| < 1 gilt (2.111) ebenfalls. Denn bilden
die positiven &, eine Teilfolge (,, ), so strebt der Ausdruck (1 + £, k)l/ hne nach Fall 1 gegen e.
Dasselbe gilt fiir negative 4, nach Fall 2. Daraus folgt die behauptete Gl. (2.111). (]

Bemerkung: In Abschn. 1.4.6, Beisp. 1.39, haben wir die Eulersche Zahl e als Grenzwert der
Folgea, = 1+ % + % +...+ % kennengelernt. Die Begriindung dafiir, da8} a, tatsidchlich gegen
den gleichen Grenzwert strebt wie (1 4+ h)!/" geht spiter aus dem Abschnitt iiber Taylorreihen
hervor.

243 Die Exponentialfunktion exp(x) = e* und der natiirliche Logarithmus

Definition 2.9:
Die Exponentialfunktion zur Basis e wird auch mit exp bezeichnet (s. Fig. 2.50):

exp(x) :=e*, xeR.

AY

4 +

3k

y=¢e*

2L
/
T T T T T > X
-3 -2 -1 0 1 2

Fig. 2.50: Die Exponentialfunktion exp(x) = e*

Wenn wir in Zukunft von »der Exponentialfunktion« reden, ohne Basisangabe, so ist stets diese
Exponentialfunktion gemeint. Sie ist in der Analysis die wichtigste aller Exponentialfunktionen.
Bei unserer Motivation im letzten Abschnitt trat sie schon in GI. (2.105) auf.
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Bemerkung: Die gro3e Bedeutung der Exponentialfunktion exp beruht einzig und allein auf fol-
gender Tatsache (wobei wir auf die Differentialrechnung vorgreifen): Die Funktion exp ist gleich
ihrer eigenen Ableitung: exp’ = exp. Mehr noch: Sieht man von konstanten Vorfaktoren ab, so
ist exp die einzige Funktion mit dieser Eigenschaft. Dies begriindet ihre iiberragende Bedeutung
fiir die Analysis.

Folgerung 2.4:
exp erfiillt fiir alle x, y € R die Funktionalgleichung

exp(x + y) = exp(x) exp(y) . (2.112)

Beweis:
Dies folgt sofort aus e¥> = e¥e?. (|

Die Exponentialfunktion exp : R — (0, co) bildet die reelle Achse umkehrbar eindeutig auf
die Menge (0, co) der positiven Zahlen ab. Sie besitzt daher eine Umkehrfunktion.

Definition 2.10:
Die Umkehrfunktion der Exponentialfunktion exp wird natiirlicher Logarithmus In
genannt. Das heif3t

y=Inx bedeutet x =¢’ (x >0,y € R). (2.113)

Die Funktion In : (0, co) — R bildet (0, co) umkehrbar eindeutig auf R ab, s. Fig. 2.51. In ist
stetig, da exp stetig ist.

Bemerkung: Alle Eigenschaften der Logarithmusfunktion konnen aus der Exponentialfunktion
hergeleitet werden. Beide Funktionen, exp und In, sind also gleichsam die Seiten ein und dersel-
ben Medaille. Was fiir die eine Funktion gilt, kann immer auch auf die andere umgeschrieben
werden.

y 4

Fig. 2.51: Natiirlicher Logarithmus

Die Gl. (2.113) lassen sich zusammenfassen, wenn wir y = Inx in x = e” einsetzen. Es folgt
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Inx

x=ce fiir alle x > 0. (2.114)

Dies ist die Schliisselgleichung fiir die meisten Rechnungen, in denen Logarithmen benutzt wer-
den.
Durch Einsetzen von x = e” in y = Inx erhélt man analog

y =1In(e”) fiiralle y € R. (2.115)

Daraus folgt unmittelbar

Inl1=0.
Folgerung 2.5:
Fiir alle x > 0, y > 0 gilt
In(x -y)=Inx +1Iny (Funktionalgleichung des Logarithmus) (2.116)
In (f) —Inx—Iny 2.117)
y
1
In <—> =—Iny (2.118)
y
aln(x) = In(x%) fiiralle w € R. (2.119)

Beweis:
Esist e™™) = x . y = ¥ .e"Y woraus (2.116) folgt. Die iibrigen Gleichungen gewinnt man
analog. U

Durch die Logarithmusfunktion In bekommen wir auch die Potenzfunktion f(x) = x*(x > 0)
mit beliebigem o € R besser in den Griff. Denn wir kénnen sie mit x = e darstellen durch

X% = e¥Inx (2.120)

Daraus folgt, daB diese Funktion stetig ist, denn In ist stetig und die Exponentialfunktion auch,
also auch die Komposition exp(« In x), wie sie in (2.120) vorliegt.
Auch die allgemeine Exponentialfunktion x > a*(a > 0) 14Bt sich mit ¢ = ¢ umformen:

a* = e*lne (2.121)

Fiir die Berechnung der Werte in (2.120) und (2.121) benétigen wir lediglich die Exponential-
funktion exp und die Logarithmusfunktion In! Beide sind heutzutage auf jedem wissenschaftli-
chen Taschenrechner zu finden.

Wir haben also gesehen:

Durch die beiden Funktionen exp und In konnen alle Probleme f bei denen Potenzen reeller
Zahlen auftreten, behandelt werden.
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Zum Schlufl beweisen wir, daBl e* folgende Grenzwertdarstellung besitzt:

Folgerung 2.6:
e’ = Jim (1 + xh)/" (2.122)
h—

Beweis:
Im Falle x = 0 ist dies sofort klar. Im Falle x # 0 muB bei Grenzwertbildung 0 < |xh| < 1
vorausgesetzt werden. Mit der Abkiirzung ¢+ = xh # 0 ist der Beweis von (2.122) kindlich
einfach:

A+x)/h =1+ = ((1 —l—t)l/t)x e firh— 0,dht— 0.

Beim Grenziibergang wurde benutzt, daB sich ((1 + )!/7)* stetig in ¢ dndert. Dies ist durch die
Stetigkeit der Potenzfunktionen gesichert. U

Ubung 2.27:
Ein Organismus, dessen Masse m(¢) dem idealen Wachstumsgesetz
m(t) = Cekl (1 Zeit)

folgt, hat zur Zeit f5 = 2h die Masse m(tg) = 715,3 g und zur Zeit t{ = 7h die Masse
m(t;) = 791,2 g. Berechne C und k.

Ubung 2.28%*:
Beweise die folgenden Grenzwert-Aussagen. (Sie lassen sich fortlaufend auseinander herleiten.)

.. . . koo
Dabei seien n € Nund x, y € R. (Hinweis zu (e): Man untersuche y e)fo fir x — oo!)

. n . X . In
(@ lim — =0, (® Ilm —=0, () lim — =0,
n—o00 2N x—o00 eX y—oo y
. Inz . L . oxk .
(d lim — =0 mite > 0 (Hinweis:y =z%), (¢) lim — =0 mita >0,k € N.
7—>00 z« X—00 eitX

Logarithmen zu beliebigen Basen

Definition 2.11:
Die Umkehrfunktion der Exponentialfunktion f(x) = a* (@ > 1, x € R) heiit Loga-
rithmus zur Basis a, abgekiirzt log,. Das heif3t

y =log,x bedeutet x =a” (x >0,y €eR). (2.123)

Die Funktion log, : (0,00) — R bildet (0, oo) umkehrbar eindeutig auf R ab. log, ist eine
stetige Funktion, da sie Umkehrfunktion einer stetigen Funktion ist.
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y 4

Fig. 2.52: log, als Umkehrfunktion von x +— 2%.
Fig. 2.52 zeigt eine Exponentialfunktion f(x) = a*, mit @ = 2, und die zugehorige Logarith-
musfunktion log,'!. Die Gleichungen lassen sich zusammenfassen zu
x =a"%%* firallex >0 (2.124)
oder
y =log,(a”) firalley e R (2.125)

wobei wir (2.124) wiederum als »Schliisselgleichung« fiir den Logarithmus auffassen konnen.
Aus der letzten Gleichung folgt sofort log, 1 = 0.

Folgerung 2.7:
Jede Logarithmusfunktion ergibt sich aus dem natiirlichen Logarithmus durch Multi-
plikation mit einer Konstanten:

Inx
log,x = — fiiralle x > 0. (2.126)
Ina

Die Konstante hat den Wert 1/ Ina.

Beweis:
Esist x = e"* und x = ¢'%%* = el"@1°% ¥ Bei Vergleich der auftretenden Exponenten ergibt
sichlnx =1Inalog, x. d

Damit werden alle Eigenschaften von In, die in Folgerung 2.5 im letzten Abschnitt beschrie-
ben sind, sofort auf log,, libertragen:

11 log, wird auch durch 1d abgekiirzt (»Logarithmus dualis«)
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Folgerung 2.8:
Fiir alle x > 0, y > 0 gilt
X
log,(xy) =log, x +log, y, log, (;) =log,x —log, y, (2.127)
1
log,, <—) =—log, vy, alog,(x) =log,(x%) (¢ eR). (2.128)
y

Bemerkung: Von Bedeutung fiir die Anwendungen sind im Grunde nur drei Logarithmen, ndm-
lich In, log;, und log, = 1d. Beim Zehnerlogarithmus wird die tiefgestellte 10 auch weggelassen,
man schreibt also einfach log statt log.

Der natiirliche Logarithmus In ist dabei der wichtigste. Man findet ihn auf jedem wissenschaft-
lichen Taschenrechner.

Der Zehnerlogarithmus liegt den Logarithmentafeln und dem Rechenschieber zugrunde. Da
diese Hilfsmittel durch den Taschenrechner weitgehend verdringt sind, wollen wir hier nicht
niher darauf eingehen.

Der Zweierlogarithmus 1d (logarithmus dualis) hat mit dem Aufkommen der elektronischen
Rechner Bedeutung erlangt. Denn die maschineninternen »Gleitkommadarstellungen« reeller
Zahlen haben die Form

0,a1a2a3 ...a, -2', z.B.0,1011011101101110 - 21101,

wobei die a; die Werte 0 oder 1 annehmen. Es handelt sich bei 0, ay, a3 . . . @, und t um Dualzah-
len. Fiir die dabei auftretende Potenz x = 2’ gilt t = 1d x. Hier findet der »Logarithmus dualis«
Anwendung.

Ubung 2.29:
Berechne (mit Taschenrechner):
! 3 logg 7,539 1d 3,789 1d(52") (n € N)
Y ) 0 ) s ) s n .
216 28 (3"

24.4 Hyperbel- und Areafunktionen

Die folgenden Funktionen spielen in Naturwissenschaft und Technik eine Rolle. Links stehen die
sogenannten Hyperbelfunktionen und rechts ihre Umkehrfunktionen, die Areafunktionen.

Definition 2.12:
Hyperbelfunktionen Areafunktionen
X _ a—X
sinh x :=%, x eR arsinhx :=In(x +vVx2+1), xR

(Sinus hyperbolicus) (Area sinus hyperbolicus)
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e¥+e*
coshx::%, xeR arcoshx :=+In(x + vVx2—-1), x > 1
(Cosinus hyperbolicus) (Area cosinus hyperbolicus)
ef —e™* 1. 1
tanhx = —, xeR artanhx := = In —i—x, x| <1
e +e* 2 1—x
(Tangens hyperbolicus) (Area tangens hyperbolicus)
X —X 1 1
ca = e e edsetfe = sl [ = 1
G == 2 x—1
(Cotangens hyperbolicus) (Area cotangens hyperbolicus)

Fig. 2.53 zeigt Schaubilder der Hyperbelfunktionen.

cosh coth

Y

simh,/ | === -1

coth

Fig. 2.53: Hyperbelfunktionen

Die Herleitung der Formeln fiir die Umkehrfunktionen wollen wir am Sinus hyperbolicus
demonstrieren. Man geht aus von

ey — e_y

y =arsinhx 4= x =sinhy = 5

und 16st die rechtsstehende Gleichung nach z = e” auf:

—1
x=1 2/Z:z2—2x1—1=0=>z=x:l:\/x2+1.

Da z = ¢” > 0 ist, kann das Minuszeichen vor der Wurzel nicht eintreten. Somit folgt

e =x++vVx2+1=y=In(x ++vx2+1) =arsinhx.

Der Leser fiihre entsprechende Rechnungen fiir die iibrigen Hyperbelfunktionen durch.
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Die Vorzeichen =+ bei arcosh bedeuten, daf3 hier zwei Umkehrfunktionen gemeint sind, wobei
+ sich auf die Umkehrung von cosh : [0, 00) — [1, 00) bezieht und — auf die Umkehrung von
cosh : (—oo, 0] — [1, 00), vgl. Fig. 2.53a.

Satz 2.14:
Fiir alle reellen Zahlen x gilt
sinhx + coshx = e, cosh? x — sinh? x = 1 (2.129)
sinh(—x) = —sinhx , cosh(—x) = coshx . (2.130)

Additionstheoreme: Fiir alle reellen x, y gilt

cosh(x + y) = coshx cosh y + sinh x sinh y, (2.131)
sinh(x + y) = cosh x sinh y + sinh x cosh y . (2.132)

Zum Beweis hat man lediglich sinh x = (¢ —e™)/2 und coshx = (¢* +¢7¥)/2 einzusetzen.

Anwendungen
(a) Durchhingende Seile (Hochspannungsleitungen) werden durch
y = acosh i +b, a > 0und b konstant,
a

beschrieben, wobei die x-Achse horizontal liegt, die y-Achse vertikal nach oben weist. Der
Graph des Cosinus hyperbolicus wird daher auch Kettenlinie genannt.

(b) Die Hyperbelfunktionen und ihre Umkehrfunktionen treten oft in den Lésungen von Diffe-
rentialgleichungen auf, insbesondere bei dynamischen Problemen (freier Fall) mit quadrati-
scher Reibung, Weltraumsonden auf Bahnen ohne Riickkehr, u.a.

Ubung 2.30:
Durch

X
=50-cosh — +b
y cos 50+

(x und y Maf3zahlen fiir Meterangaben) wird die Form einer Hochspannungsleitung beschrieben
(y-Achse senkrecht, x-Achse waagerecht am Erdboden). Die Leitung hdnge zwischen zwei 7m
hohen Masten, die 20 m voneinander entfernt stehen. Berechne b! Wie hoch hingt der Draht an
seinem tiefsten Punkt iiber dem Erdboden?



2.5 Komplexe Zahlen 181

2.5 Komplexe Zahlen

2.5.1 Einfithrung

Es gibt keine reelle Zahl x, die die Gleichung

x2=-1 (2.133)
erfiillt, da die linke Seite stets > 0 ist. Allgemeiner kann keine Gleichung der Form

x2=—b> mith#0 (2.134)

durch reelle x gelost werden. Trotzdem mochte man Losungen dieser Gleichungen haben. Da-
zu geht man so vor: Man »erfindet« ein neue Zahl i, die nicht auf der reellen Achse liegt
(s. Fig. 2.54a), und die i> = —1 erfiillt. Im iibrigen soll mit i beziiglich Addition und Multiplika-
tion genauso wie mit den reellen Zahlen gerechnet werden. x = i ist also Losung von x> = —1.
Ebenso ist x = — i eine Losung dieser Gleichung. Entsprechend erhalten wir auch Losungen der
Gl. (2.134), ndmlich x =ibund x = —1ib.

Damit werden wir auf Zahlen der Form ib, mit b € R gefiihrt. Sie heilen imagindre Zahlen.
Sie lassen sich, wie die reellen Zahlen auf einer Geraden anordnen. Diese imagindre Achse hat
mit der reellen Achse genau einen Punkt gemeinsam, ndmlich i-0 = 0. Zur Veranschaulichung
kann man daher reelle und imaginidre Gerade in O rechtwinklig kreuzen, siehe Fig. 2.54b. Die
Zahl i selbst heifit imagindre Einheit.

A imaginére
Achse
b - = === - pa+ib
I
I
° T I reelle
IR
— J | Achse
T
-3 -2 -1 0 1 2 3 0 1 a
a) b)
Fig. 2.54: Komplexe Zahlen a + ib als Punkte einer Ebene
Wir gehen nun einen Schritt weiter und untersuchen die Gleichung
x*—10x +34=0. (2.135)

Ist x eine Losung, so konnen wir mit der »quadratischen Erginzung« (10/2)> = 25 die Glei-
chung so umformen:

(x2—10x+25) —25434=0= (x — 5> = -9
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Mit unserer Zauberzahl i folgt damit
x—5=1i3 oder x—-5=-13,
also
x=5413 oder x=5-1i3. (2.136)

Diese beiden Zahlen erfiillen (2.135), wie man durch Einsetzen feststellt.
Auf diese Weise kommen wir zu Zahlen der Form

a+ib (a,beR).

Sie heiBlen komplexe Zahlen. Jede solche Zahl kann man als Punkt in der Ebene deuten. Die reelle
und die imagindre Achse sind die Koordinatenachsen. Der Punkt a +i b hat darin die Koordinaten
a und b, wie es Fig. 2.54b darstellt. Die beschriebene Ebene heilit komplexe Zahlenebene.

Die Behandlung der GI. (2.135) macht klar, da8} jede quadratische Gleichung durch komplexe
Zahlen geldst werden kann. Das allein ist schon eine geniigende Motivation fiir die Einfithrung
komplexer Zahlen. Wir werden aber sehen, daf3 sie weit mehr leisten!

Im Folgenden fassen wir die vorangegangenen Uberlegungen zusammen und verdichten sie
zu exakten Definitionen.

Bemerkung: In der Elektrotechnik schreibt man j statt i, da der Buchstabe i fiir die Stromstérke
verwendet wird.

2.5.2 Der Korper der komplexen Zahlen

Definition 2.13:
Komplexe Zahlen sind Elemente der Form

a+ib, mit a,belR.

Sie werden als Punkte der Ebene im rechtwinkligen Koordinatensystem dargestellt. a
und b sind die Koordinaten des Punktes a +1b (s. Fig. 2.54b). a heiflit der Realteil von
z = a +1b und b der Imagindrteil von z, beschrieben durch

Rez=a, Imz=05bh.

Die Realteile bilden die reelle Achse und die Imaginirteile die imagindire Achse unse-
res Koordinatensystems. Die Menge der komplexen Zahlen wird mit C bezeichnet.

Gleichheit: Zwei komplexe Zahlen a + ib und ¢ + id sind genau dann gleich, wenn a = ¢
und b = d ist.

Abkiirzungen: Man schreibt zur Vereinfachung ¢ +i10 =a,04+ib =ib,04+10=0,il = i.
Die Zahlen ib (b € R) heiBlen imagindre Zahlen. Durch a 4+ 10 = a wird die Menge der reellen
Zahlen eine Teilmenge der Menge der komplexen Zahlen: R C C.



2.5 Komplexe Zahlen 183

Es seien z1 = a +ib und z2 = ¢ + id zwei beliebige komplexe Zahlen. Damit werden
folgende Grundoperationen erklért:

Addition: (a4+ib)+ (c+id)=(a+c)+i(b+d)
Subtraktion: (a+ib) — (c+id) =(a—c)+i(b —d)
Multiplikation: (a +1b)(c +id) = (ac — bd) + i(ad + bc)
a+ib

ct+id  A2+d
Die Division ist somit auf die Multiplikation zuriickgefiihrt.

Division:

(a+1ib)(c —id), fallsc+id #0.

1 —2Z2

Fig. 2.55: Addition und Subtraktion komplexer Zahlen

Addition und Subtraktion werden durch Fig. 2.55 veranschaulicht.
Wir vereinbaren schlielich
—(a+1ib) ;== —a —1ib.

Bemerkung: Die Motivation fiir die obige Definition der Grundoperationen besteht in folgen-
dem: Man rechne mit den Klammern genauso, wie man es von den reellen Zahlen gewdhnt ist.
Man beachte bei Multiplikation und Division lediglich, daB i = —1 zu setzen ist. Die Subtrakti-
on und Division sind so eingerichtet, daB} sie die Umkehrungen der Addition bzw. Multiplikation
darstellen, also

N—02=27 &< un=z2+22
Z
Z—lzz = z1=z-22, (22#0).
2
Die genannten Grundoperationen geniigen den gleichen Gesetzen wie die reellen Zahlen. Wir
stellen die Grundregeln iiber das Rechnen mit komplexen Zahlen in folgendem Satz zusammen
(vgl. dazu Abschn. 1.1.2):
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Satz 2.15:
(Grundgesetze der Addition und Multiplikation) Fiir alle komplexen Zahlen z1, 22, 23,
z gilt

(Al) z1+ (z2+z23) = (21 +22) + 23

A2) zi1i+zn=2+7u

(A3) z+0=z

(A4) Zu jeder komplexen Zahl z gibt es genau eine komplexe Zahl w mit
z+ w = 0.Esistdie Zahl w = —z

M) z1(z223) = (z122)23

M2) z120 = 2221

M3) z-1=z¢

(M4) Zu jeder komplexen Zahl z # 0 gibt es genau eine komplexe Zahl w
mit zw = 1. Es ist die Zahl w = 1/z

D) z1(z2 +23) = 2122 + 2123

D2) 0#1

Die Beweise fiihre der Leser durch Nachrechnen, wobei lediglich (M 1), (M2) und (D1) explizites
langeres Rechnen verlangen.

Bemerkung: (A1) und (M1) heilen Assoziativgesetze der Addition bzw. Multiplikation, (A2) und
(M2) heiBen entsprechend Kommutativgesetze, wiahrend (D1) das Distributivgesetz genannt wird.
Alle Gesetze zusammen heilen Korpergesetze. Beziiglich Addition und Multiplikation sprechen
wir daher auch vom Korper der komplexen Zahlen.

Samtliche Rechenregeln, wie sie in den Folgerungen 1.1 bis 1.6 in Abschn. 1.1.2 beschrieben
sind, gelten entsprechend auch fiir komplexe Zahlen. Denn diese Folgerungen stiitzen sich ja
nur auf die Grundgesetze (A1) bis (D2). Insbesondere gelten die Regeln der Bruchrechnung fiir
komplexe Zahlen unveridndert.

Potenzen: z"* mit ganzen Zahlen n wird wie iiblich erklért.

Definition 2.14:
Ist z = a +1b(a)b € R) eine beliebige komplexe Zahl, so heil3it

Z=a—1ib

die konjugiert komplexe Zahl zu 7.

Geometrisch erhilt man sie durch Spiegelung des Punktes z an der reellen Achse, s. Fig. 2.56.
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Fig. 2.56: Konjugiert komplexe Zahl 7 zu z

Folgerung 2.9:
(Rechenregeln fiir konjugiert komplexe Zahlen) Fiir alle komplexen Zahlen z, 71, 22
gilt
a) z21+z22=721 t+22, 21— 22=21 —22, —z=-Z

- Z 71
- Tm =72, (—‘) =2 (falls 7, # 0),
22 22

7" =7" fiir alle natiirlichen Zahlen 7,

. )z=71, so ist z reell
Gilt o
z % SO 1st Z 1maginar.

Die einfachen Beweise bleiben dem Leser iiberlassen z” = 7" beweist man zweckmiBig mit
vollstindiger Induktion).

Definition 2.15:

Den Abstand des Punktes z = a + ib von 0 bezeichnet man als Betrag |z|, sieche
Fig. 2.57a, nach »Pythagoras « gilt also:

lz| = Va*+b2.

Folgerung 2.10:
Fiir die Betridge der komplexen Zahlen z, z1, z> gilt

|z1 +z2| < |z1| + |z2|  Dreiecksungleichung
|zt — z2| = |lz1] — |z2]] 2. Dreiecksungleichung

|z122] = |z1llz2] ,
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al_ falls 75 % 0,
22 |z2]
12" = |z|" fiir alle n € N,

12| = |z|? = zZ.

Die Beweise erfordern zwar etwas mehr Rechnung, doch lassen sie sich problemlos ausfiihren.
Die vorletzte Gleichung wird wieder mit Induktion bewiesen. Der Ausdruck Dreiecksunglei-
chung beruht auf der Veranschaulichung in Fig. 2.57b.

a) b)
Fig. 2.57: a) Betrag |z|; b) Zur Dreiecksungleichung |z1 + z2| < |z1] + |z2|
Komplexe Wurzeln: Es sei z eine gegebene komplexe Zahl. Jede komplexe Zahl w, die
w- =7z
erfiillt, heilt eine (Quadrat-) Wurzel von z, beschrieben durch
w=7.

(Anders als bei den reellen Zahlen, bei denen 4/a > 0 eindeutig bestimmt ist (fiir a > 0), ist das
Symbol ,/z im Komplexen mehrdeutig. Wir werden aber zeigen, daBl /7 (fiir z # 0) genau zwei
Werte beschreibt.) Um alle w € C mit w? = 7 zu finden, machen wir den Ansatz

z=x+1y, w=u+iv (x,y,u,veR).
Damit ist w? = z gleichbedeutend mit

(u+iv)2:x+iy, d.h. uz—v2+i2uv:x+iy.
Das bedeutet

2 2

u- —v-=x, 2uv =y.

Dies ist ein Gleichungssystem fiir die beiden Unbekannten u und v. Multipliziert man die erste
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Gleichung mit 44> und quadriert die zweite Gleichung, so ergibt ihre Summe
4u* = 4u’x + y2

Setzt man hier 1 = u?

Losungen sind

ein, so hat man eine reelle quadratische Gleichung fiir  gewonnen. Thre

2

X
t=—=%,—
4

SRR Y
g T TR

N =

Dat =u? > 0ist, giltr = 1(x + |z]), und es folgt

u= :I:,/%(Izl +x).

Im Falle u = 0 folgt x = —|z] < Ound y = 0, also —v? = x, somit v = ++/—x. Im Falle u #0
folgt aus 2uv = y die Gleichung v = y/(2u). Somit erhalten wir den

Satz 2.16:

Istz =x +1iy (x, y € R) eine nicht verschwindende komplexe Zahl, so gilt fiir ihre
komplexen Wurzeln folgendes:

Mitu =,/ %(|Z| + x) ist

aE (u +1i %) , falls z nicht negativ reell,

Vi = {:I: iv/—x, falls z negativ reell.

Damit lassen sich komplexe quadratische Gleichungen
24bz+c=0 (z,b,ceC)

wie im Reellen durch quadratische Ergiinzung b* /4 16sen:

5 b2 b2 B 2_b2
Z +bz+I—Z+c_0<=) z+=) =——c¢

Die komplexe Wurzel ./ hat genau zwei Werte, so daB die letzte Gleichung beide Losungen der
quadratischen Gleichung beschreibt.
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Ubung 2.31:
Berechne
B+i5H2—-17) 1 . .
- b) —— —(3+i2)(5+16
(@ 3114 ) ()7+i8 B+12)(5+16),
(c) V5—1l12, (d VB —14)73.
Ubung 2.32:
Gib alle (komplexen) Losungen der folgenden Gleichungen an:
2 52
(@) z2—8z4+65=0, (b)4z+?=24, (z#0),
. . +8+i -5 . .
© 22— (B+i5z—16+i4=0, @ — =2 e -2 4z £ —6i).

3z+2—-31 z+46i

Ry L1

Rz

Fig. 2.58: Wechselstromschaltung

Ubung 2.33:
In der Wechselstromschaltung der Fig. 2.58 ist der Scheinleitwert des Teils ohne die Spule Ly
gleich
Ry +jwLy wC

Damit ist der Scheinwiderstand der gesamten Schaltung
V4 : +joL
=—+4jw
y T1ek2

(s. Abschn. 4.4.3). Dabei ist j (anstelle von i) die imagindre Einheit, wie in der Elektrotechnik
iiblich, also j2 = —1. Berechne Z fiir die Zahlenwerte:

R, =60002, Ry=400082, L, =045H, Ly=045H, C=2-10"°F, o =3000s""

(Fiir die MaBeinheiten gelten die Zusammenhédnge H sTl=0,sF1=g).
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2.53 Exponentialfunktion, Sinus und Cosinus im Komplexen

Definition 2.16:
Die Exponentialfunktion exp(z) = e ist fiir komplexe Zahlen z = x +1iy (x, y € R)
folgendermafen definiert:

et =e*(cosy +isiny). (2.137)

Folgerung 2.11:
Es gilt die Funktionalgleichung

Z W

efTW — et fiir alle komplexen z, w.

Beweis:
Mitz=x+iyundw =u+iv(x,y,u,v € R) folgt

e = U HOHY) — ¥ (cos(y 4 v) 4 isin(y + v))
Die Additionstheoreme von cos und sin liefern fiir die rechte Seite

=e" e"(cos y cos’' v — sin y sin v + i(sin y cos v + sin v cos y))

=¢e*(cosy +1isiny)-e“(cosv +isinv) =e*e" .
O

Ist z = x reell — also y = 0 — so liefert die Definition 2.16 den iiblichen Wert e* der reellen
Exponentialfunktion. Die Definition beschreibt also in der Tat eine Erweiterung der Exponential-
funktion exp ins Komplexe.

Ist z dagegen imagindr — d.h. z = 1@ mit ¢ € R —, so liefert die Definition 2.16:

'Y =cosg +ising. (2.138)

Diese Gleichung 1Bt sich auf einfache Weise geometrisch deuten: Der Punkt ¢'¢ in der kom-
plexen Zahlenebene hat die Komponenten cos ¢ und sin ¢, er liegt also auf der Einheitskreisli-
nie (s. Fig. 2.59). Dabei bildet die Verbindungsstrecke [0, e!¥] den Winkel ¢ mit der positiven
x-Achse. Lauft ¢ von 0 bis 277, so umrundet ¢!? einmal den Einheitskreis im umgekehrten Uhr-
zeigersinn.

Fiir ¢ = 7 folgt speziell ¢! = —1, oder

6T 41 =0. (2.139)

Bemerkung: Diese Gleichung wird die schonste Gleichung der Welt genannt, denn sie verbindet
in harmonischer Weise die wichtigsten Zahlen der Analysis: 0, 1, e, 7 und i.
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isin ¢

\J

cosg 1

Fig. 2.59: ¢'? auf der Einheitskreislinie

Ersetzt man in Gl. (2.138) ¢ durch —¢, so erhilt man
e 1% =cosp —ising. (2.140)

Hier wurde benutzt, dal cos(—¢) = cos¢ und sin(—¢) = —sin¢ ist. Wir addieren nun die
Gleichungen (2.138), (2.140) bzw. subtrahieren sie und erhalten

e?+e 'Y =2cosgp, e'?—e 'Y =2ising.

Auflésen nach cos ¢ und sin ¢ liefert

Folgerung 2.12:
Fiir alle reellen Zahlen ¢ gilt
1) —ig
cos g = % (2.141)
igp _ o—ig
sing= o —° "~ (2.142)
21

Diese Darstellung von cos und sin ist fiir viele Umformungen bequem, da sich mit der Exponen-
tialfunktion sehr bequem rechnen 146t. Man zieht diese Gleichungen tiberdies zur Definition der
trigonometrischen Funktionen im Komplexen heran:

Definition 2.17:
Die Sinus- und Cosinus-Funktion sind fiir beliebige komplexe z so erklért:
eiz+e—iz elz _e—iz

-5 ing=— . 2.143
cos z 5 sin z = ( )

Wir bemerken dabei, daB3 1/1 = — i ist, wie man nach Multiplikation der rechten und linken Seite
mit i sofort sieht.
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Bemerkung: Der Leser gewinnt hier den ersten Eindruck von der Eleganz der komplexen Ana-
lysis: Exponential- und trigonometrische Funktionen, die doch aus ganz verschiedenen Wurzeln
stammen, gehen eine harmonische Verbindung ein.

Ubung 2.34%:

Beweise mit (2.143) die Additionstheoreme von sin und cos im Komplexen, d.h.

sin(z + w) = sinzcosw + cos zsinw ,

cos(z + w) = coszcosw — sinzsinw .

2.54 Polarkoordinaten, geometrische Deutung der komplexen Multiplikation,
Zeigerdiagramm

Es sei z = a + ib ein beliebiger Punkt der komplexen Ebene, der ungleich O ist. Wir ziehen die
Strecke von 0 bis z (und versehen sie bei z mit einer Pfeilspitze). Die Streckenldnge nennen wir
r, wahrend ¢ ein Winkel zwischen der Strecke und der positiven x-Achse ist, s. Fig. 2.60. Durch
das Paar (r, ¢) ist z eindeutig bestimmt.

A

Fig. 2.60: Polarkoordinaten von z

r ist dabei nichts anderes als der Betrag von z

r=lz| =va?+b?. (2.144)
¢ heilit Winkel oder Argument von z, geschrieben
p=argz.

¢ wird dabei im Bogenmal angegeben. Dabei ist ¢ nicht eindeutig bestimmt! Mit ¢ sind auch die
¢ +2km mit beliebigen ganzen k Argumente von z, wie aus Fig. 2.60 hervorgeht. Man bezeichnet
den Winkel ¢ von z, der

T <@<m
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erfiillt, als Hauptargument von z, in Formeln ¢ = Arg z.

Dabei ist
a
arc cos — , firb > 0,
¢ =Argz = 2 (2.145)
— arccos — , fiir b < 0.
r

¢ = Argz ist durch z # 0 eindeutig bestimmt. r und ¢ = Arg z heilen Polarkoordinaten von z.
Der Zahl z = 0 ordnet man als Polarkoordinaten r = 0 und ¢ beliebig aus R zu.
Umgekehrt lassen sich Realteil a und Imaginirteil b einer komplexen Zahl z aus ihren Polar-
koordinaten r, ¢ durch folgende Gleichungen gewinnen.

a=rcosg, b=rsing. (2.146)
Damit folgt fiir z die Darstellung
z=a+ib=r(cosg +ising) =re'?

Folgerung 2.13:
Jede komplexe Zahl z 14t sich in der Gestalt

z=re? (2.147)
darstellen, wobei » und ¢ Polarkoordinaten von z sind.

(2.147) nennen wir die Polarkoordinatendarstellung von z.
Die Multiplikation zweier komplexer Zahlen z; und zp 146t sich damit so beschreiben: Mit
den Polarkoordinatendarstellungen

a=ne?,  p=nd®
erhilt man das Produkt
2=2z1-2 =rrpe®tv (2.148)

Das heil3it: Bei Multiplikationen zweier komplexer Zahlen multiplizieren sich die Betrdge und
addieren sich die Winkel! Fig. 2.61 verdeutlicht dies.
Anwendung: Harmonische Schwingungen werden durch

Acos(wt+¢) mit A>0,0>0
dargestellt. Man kann dies als den Realteil der komplexen Funktion
ft) = Ae@te) (2.149)

auffassen. Aus diesem Grund wird eine harmonische Schwingung auch in der Form (2.149) an-
gegeben, wobei man (stillschweigend) vereinbart, dafl die Realitdt durch den Realteil von f(¢)
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o ¢

Fig. 2.61: Multiplikation komplexer Zahlen (Addition der Winkel)

widergespiegelt wird.
Die Uberlagerung zweier harmonischer Schwingungen

fi(t) = Ap @O0 (1) = Ay el@ited)

mit gleicher Frequenz @ wird dann durch
AWM+ ) = (A1 e +A, ei“’z) el (2.150)

ausgedriickt (denn die Realteile summieren sich dabei, wie wir es haben wollen). Gl. (2.150)
zeigt sofort, daB bei dieser Uberlagerung wieder eine harmonische Schwingung der Frequenz
o entsteht, wie das rechts ausgeklammerte e'®’ anzeigt. In einer Zeile haben wir damit den
Satz 2.11 aus Abschn. 2.3.5 bewiesen, was die Leistungsfihigkeit der komplexen Analysis be-
leuchtet!

Die Klammer in (2.150) ist umzuwandeln in

Arel? 4 Ael¥ = Ael?

mit geeigneten A > 0, ¢ € R. Hier muf allerdings komponentenweise vorgegangen werden,
analog dem Vorgehen in Abschn. 2.3.5: Mit

a:= Ajcosg; + Axcosgr,

. . (2.151)
b:= Aysing; + Apsingy
erhilt man aus Abschn. 2.3.5, (2.88), (2.89):
a
arccos — , firb > 0,
A=+a2+b2, ¢=arc(a,b)= B (2.152)
—arccosz, firb < 0.

Man kann A und ¢ auch grafisch ermitteln durch das Zeigerdiagramm in Fig. 2.62. Die Diagonale
des dort skizzierten Parallelogramms hat die Linge A und den Winkel ¢ mit der positiven reellen
Achse.
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Fig. 2.62: Zeigerdiagramm bei Schwingungen

Fig. 2.62 zeigt den Schwingungszustand zur Zeit t = 0 (genauer: Die Realteile der gezeich-
neten Punkte der komplexen Ebene geben ihn wieder). L4t man ¢ anwachsen, d.h. schreitet die
Zeit fort, so dreht sich das Parallelogramm gegen den Uhrzeigersinn um 0. Zur Zeit ¢ > 0 ist es
um den Winkel wr weitergedreht. Die Realteile der Punkte mit den »Pfeilspitzen« geben dann
die Ausschldage der Schwingungen fi, f> und f = f} + f2 an, fiir die wir uns interessieren.
Auf diese Weise entspricht jedem Zeitpunkt ¢ > 0 eine Stellung des Parallelogramms, und der
Schwingungsablauf wird geometrisch iiberschaubar.

Ubung 2.35:
Verwandle die folgenden Zahlen in die Polarkoordinatendarstellung
@ —12-i5.  ®3+id4,  (© (1+D'P.
Ubung 2.36%*:

Drei harmonische Schwingungen iiberlagern sich:
T b 4
3 cos(wt) + 5 cos (a)t + Z> — 8cos (wt — §) = Acos(wt +¢) (w>0).
Berechne A und ¢.

2.5.5 Fundamentalsatz der Algebra, Folgen und Reihen, stetige Funktionen im
Komplexen

Polynomgleichungen

Satz 2.17:
(Fundamentalsatz der Algebra) Jedes Polynom n-ten Grades

f(Z)=a0+alz+a2Z2+...+anz”, (an #0,n>1),
mit komplexen ay und z, 146t sich in folgender Form schreiben:
f@Q=az—z21)z—z22) ... (T —2n). (2.153)

Die Zahlen z1, z2, . . . 2, sind die Nullstellen des Polynoms.
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Der Satz sagt also insbesondere aus, dal f mindestens eine und hochstens n Nullstellen hat.

Letzterer Fall tritt ein, wenn die z1, z», . . ., 2, paarweise verschieden sind.
Sind unter den zy, ..., z, gleiche Zahlen, z.B. z1 = zp = z3, so spricht man von mehrfachen
Nullstellen. Ist beispielsweise z1 = 720 = ... = 7, (m < n), aber z; # z; fir alle k > m,

so nennt man die Zahl z; eine m-fache Nullstelle. Gl. (2.153) hei3t die Zerlegung von f in
Linearfaktoren (z — zi).

Bemerkung: Der Beweis des Fundamentalsatzes wird in Burg/Haf/Wille (Funktionentheorie)
[10], Abschn. 2.2.5, gefiihrt. Die Berechnung der Nullstellen z1, z3, . . ., z, ist auf Computern mit
beliebiger Genauigkeit moglich. (Man verwendet dazu meistens das Newtonsche Verfahren mit
gewissen Erginzungen.) Ein stets funktionierendes Verfahren fiir Computer ist z.B. von Nickel
[41] angegeben worden.

Folgen und Reihen

Unendliche Folgen und Reihen von komplexen Zahlen werden analog zu reellen Folgen und
Reihen erklart (vgl. Abschn. 1.4 und 1.5). Thre Konvergenz wird wie im Reellen definiert. Es
gelten damit der Satz von Bolzano-Weierstral, das Cauchysche Konvergenzkriterium und die
Rechenregeln iiber Folgen und Reihen entsprechend. Die Beweise konnen fast wortlich tiber-
nommen werden. (Der Satz von Bolzano-Weierstrafl wird durch die Halbierung von Rechtecken
anstelle von Intervallen bewiesen.) Lediglich Definitionen und Sitze, die Ordnungseigenschaften
enthalten (wie z.B. das Monotoniekriterium) lassen sich nicht ins Komplexe iibertragen, da fiir
komplexe Zahlen keine Beziehungen < oder > eingefiihrt sind.

Der Leser mag sich in einer stillen Stunde davon iiberzeugen, daB die angegebenen Uber-
tragungen aufs Komplexe ohne Schwierigkeiten moglich sind. Ebenso 146t sich der Begriff der
Stetigkeit auf komplexe Funktionen problemlos iibertragen sowie das Rechnen mit stetigen Funk-
tionen. Auch hier gilt, dal die Grenze bei Aussagen gezogen wird, die Ordnungseigenschaften
enthalten. Der Zwischenwertsatz besitzt also keine wortliche Entsprechung im Komplexen.

In Burg/Haf/Wille (Funktionentheorie) [ 10] werden diese Uberlegungen aufgegriffen und wei-
tergefiihrt zur »komplexen Analysis«, auch Funktionentheorie genannt, s. auch [23]. Die komple-
xe Analysis erweist sich nicht nur als aulerordentlich niitzlich bei der Losung technischer Pro-
bleme (Schwingungsproblem, Stromungsvorginge, elektrische Felder usw., sie zahlt iiberdies zu
den elegantesten Theorien der Mathematik.
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Die Differentialrechnung ist die Lehre von den Verdnderungen. Hier werden Wachstumsraten,
Verlustquoten, Geschwindigkeiten, Beschleunigungen, Steigungsmalle und Abstiegsraten be-
schrieben, dem Anwender zum Nutzen, dem Schiiler zur Miihe, dem Mathematiker zur Freu-
de und dem Laien unverstindlich. Zusammen mit ihrer Schwester, der Integralrechnung, gilt die
Differentialrechnung mit Recht als eine der groBartigsten Schopfungen des menschlichen Gei-
stes.

Sie hilft beim Losen von Gleichungen, beim Maximieren und Minimieren, bei der Berechnung
komplizierter Funktionen, von Fldchen und Rauminhalten, von Bewegungen, Kriften, Impulsen,
Energien, ja, das Zusammenspiel der Gestirne als auch der Elementarteilchen 146t sich durch die
Differential- und Integralrechnung erst verstehen.

Die Wurzel der Differentialrechnung ist dabei ganz einfach. Wir erldutern den Einstieg in
diesen Teil der Mathematik am Beispiel der Geschwindigkeit.

3.1 Grundlagen der Differentialrechnung

3.1.1 Geschwindigkeit

Geschwindigkeitsiiberschreitung! — Der Polizeiwagen iiberholt. Aus seinem Fenster reckt sich
ein Arm mit roter »Kelle«: Anhalten! Sehr peinlich! Nach kurzer Zeit ist man um eine Erfahrung
reicher und einige Geldscheine drmer. Die Episode verdeutlicht, dal der Begriff »Geschwindig-
keit« im téglichen Leben, bis in den Geldbeutel hinein, eine Rolle spielt. Dies fiihrt uns auf die
Frage:

Was ist Geschwindigkeit?

Die erste Antwort lautet: Das ist die Zahl, die man vom Tacho abliest. Nicht iibel, zugegeben,
aber doch nicht ganz befriedigend. So billigt man z.B. fallenden Steinen auch eine Geschwindig-
keit zu. Doch nur die wenigsten Steine haben einen eingebauten Tacho.

Was ist da zu tun?

Da wir uns mitten in einem Mathematikbuch befinden, ist der Gedanke nicht abwegig, es mit
einer mathematischen Definition zu versuchen.

Die frage lautet also: Wie kann man den Begriff »Geschwindigkeit« — genauer: »Momentan-
geschwindigkeit« — mathematisch exakt erklaren?

Eine gute Frage! An ihre Beantwortung wollen wir mit lockerer Natiirlichkeit und alltidglichen
Vorstellungen herangehen.

Dazu kniipfen wir noch einmal an das fahrende Auto an. Der Einfachheit halber lassen wir
das Auto geradeaus fahren. Wir nehmen an, dall es an einem bestimmten Punkt der Strafe im
Zeitpunkt O losfahrt. Zur Zeit ¢ habe es y Meter vom Anfangspunkt aus zuriickgelegt. y ist also
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A y-Achse

t-Achse

L

Fig. 3.1: Weg-Zeit-Funktion y = f(¢)

eine Funktion der Zeit:

y=f@.

Fig. 3.1 zeigt ein Schaubild einer solchen Funktion f.
Man greife nun zwei Zeitpunkte #(, ¢ heraus, mit ¢ > fg. In der Zeitspanne von #( bis ¢ hat das
Auto die Strecke

Ay = f(t) — f(t0) (3.1

zuriickgelegt. Die Zeitspanne selbst hat die Dauer Ar := ¢t —ty. Die Durchschnittsgeschwindigkeit
Vs, 1M genannten Zeitraum berechnet man nach der Faustregel »Weg durch Zeit, also

- (UL 1) 52
At t—1
Je dichter ¢ an fy heranriickt, desto nidher kommt der Wert vy, ; der Vorstellung einer Momen-
tangeschwindigkeit, also der Geschwindigkeit, die der Tacho anzeigt. Es liegt nahe, in (3.2) den
Grenziibergang ¢t — fo(t # t9) durchzufithren. Wir wollen annehmen, daf (3.2) dabei gegen
eine bestimmte Zahl vy, konvergiert:

. J@©) = f()
vy = lim ——————=
O st t—1y

(3.3)

Diesen Wert vy, bezeichnet man als Momentangeschwindigkeit — kurz Geschwindigkeit — des
Autos zum Zeitpunkt #y. Die (Momentan-)Geschwindigkeit ist also Grenzwert von Durchschnitts-
geschwindigkeiten, deren Zeitspannen gegen Null streben.

Der Grenzwert (3.3) hat entscheidende Bedeutung in der Differentialrechnung. Er wird Diffe-
rentialquotient oder Ableitung von f in ty genannt und durch f'(7y) symbolisiert:

Pt — fim 1O @) o

t—1y t—1o

Der Ausdruck in (3.2), also die Durchschnittsgeschwindigkeit in unserem Fall, heif3t allgemein
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Differenzenquotient von f beziiglich t und t.

Wir wollen die Uberlegungen an einem Zahlenbeispiel verdeutlichen.

Beispiel 3.1:

(Fallgeschwindigkeit) Ein Stein fillt in einen 10 m tiefen Brunnen. Wie grof} ist die Geschwin-
digkeit, mit der er unten auftrifft? Die Bewegung des Steines (Massenpunktes) wird durch

8§ 2 . m
y= =507 mit g=9815 (3.5)

beschrieben, d.h. nach ¢ Sekunden ister y = %tz Meter gefallen.

Wie grof3 ist seine Fallgeschwindigkeit v;, zu einem beliebigen Zeitpunkt fy wihrend des
Fallvorgangs? — Zur Beantwortung bilden wir zunéchst den Differenzenquotienten beziiglich ¢
und 7y (¢ # tp) und vereinfachen ihn:

fO—fw) _5C-56 s o8 Gt0e=t) _g
t—1o t—1 2 t—1n 2 =1 2 o

Die Klammer (¢ + #p) ganz rechts strebt mit ¢t — #y zweifellos gegen 2¢, also strebt der Diffe-
renzenquotient insgesamt gegen gfo:

) — tim L0 =L@ _

t—1p t—1

8lo- (3.6)

Zur Zeit ty (wihrend des Fallvorganges) hat der Stein somit die Geschwindigkeit v,y = gfy.
Setzen wir fiir 7o nun die Falldauer ein, errechnet aus

20
0m=252 = = |70% =143s,
2 g

so erhalten wir die Aufschlaggeschwindigkeit des Steines

20
Vo = 8 Tm — /20m-g = 14,0?.

Stellt man sich statt des Steines beispielsweise einen Blumentopf vor, der einem vom Fenstersims
auf den Kopf fillt, so kann man im Krankenhaus die Auftreffgeschwindigkeit nach obiger Metho-
de berechnen und damit seine Schadensanspriiche stiitzen. Zweifellos eine niitzliche Rechenart,
die Differentialrechnung!

Ubung 3.1:

Eine Kugel fillt in einer ziihen Fliissigkeit (z.B. Ol) nach unten. Nach einer kurzen Anfangspha-
se wird ihre Bewegung durch y = f(¢) = c¢- (¢t — a) beschrieben (¢ Zeit, y zuriickgelegter Weg,
c und a Konstanten). Wie grof} ist dabei die Geschwindigkeit der Kugel?
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3.1.2 Differenzierbarkeit, Tangenten

Die Uberlegungen des vorigen Abschnittes wollen wir nun allgemeiner durchfiihren.
Essei f : I — R eine beliebige reellwertige Funktion Sie werde durch

y=/f(x), xel,

beschrieben. Der Definitionsbereich 7 ist dabei ein Intervall oder eine Vereinigung von Interval-
len.

Als Differenzenquotient von f beziiglich zweier Punkte x und xo aus I bezeichnet man den
Ausdruck

fx) — f(xo0)

X — X0

X £ Xx0. 3.7

Der Grenziibergang x — xq fiihrt auf die folgende grundlegende Definition:

Definition 3.1:

Es sei f : I — R eine Funktion, deren Definitionsbereich / ein Intervall oder eine
Vereinigung von Intervallen ist. Man sagt, f ist differenzierbar im Punkt xo € I, wenn
der Grenzwert
. S (x) = f(xo)
im ——————

X—> X0 X — X0

(3.8)

existiert. Dieser Grenzwert wird mit f’(xg) bezeichnet und Ableitung oder Differen-
tialquotient von f in xo genannt.

Anstelle von f’(xo) werden auch die Bezeichnungen

df d
E(XO) , Ef(xo)

verwendet.

Geometrische Deutung: Der Differenzenquotient (3.7) ist die Steigung der Sekante an f in x
und xg, d.h. der Geraden durch die Punkte (x, f(x)) und (xo, f(x0)). Man erkennt dies an dem
schraffierten Dreieck in Fig. 3.2.

Der Grenziibergang x — xg fiir den Differenzenquotienten 148t sich nun anschaulich so deu-
ten, da3 x immer nédher an x( heranriickt, wobei der Abstand |x — x| nach und nach beliebig
klein wird. Die zugehorigen Sekanten an f beziiglich x und x( unterscheiden sich dann immer
weniger von einer Geraden, die wir Tangente an f in xo nennen. Wir sagen auch, die Sekanten
»gehen fiir x — x¢ in die Tangente« liber, oder »die Tangente ist die Grenzlage der Sekanten«.
Dabei ist die Tangente an f in x( diejenige Gerade ¢, die durch den Punkt (x, f(xp)) verlduft
und deren Steigung f”(xo) ist. Nach der Punkt-Richtungs-Form wird die Tangente durch

1(x) = f(x0) + f(x0)(x — x0) (3.9)

beschrieben. Wir halten fest:
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A y-Achse

Tangente
¥ Sekante

00~ 1)

x-Achse

-
=

Fig. 3.2: Geometrische Deutung des Differentialquotienten: f”(xg) = tan«

Durch (3.9) ist die Tangente t an f in xo definiert. Die Tangente existiert genau dann, wenn
f in x¢ differenzierbar ist.

Mit o wollen wir den Winkel der Tangente ¢ mit der x-Achse bezeichnen. (—% <a< %),

s. Fig. 3.2. Die Steigung einer Geraden ist bekanntlich gleich dem Tangens des Winkels der
Geraden mit der x-Achse; folglich gilt fiir die Tangentensteigung

f'(x0) = tana, (3.10)
d.h.

Die Ableitung f’(xo) einer Funktion ist gleich dem Tangens des Winkels «, den die Tangente
an f in xo mit der x-Achse bildet.

Damit ist die Ableitung f’(xo) geometrisch so klar geworden wie ein Bergquell im Friihling.

Anwendung: Die Bestimmung von Tangenten an vorgelegte Kurven ist z.B. bei der Herstellung
von optischen Linsen wichtig. Denn der Einfallswinkel eines Lichtstrahls auf eine Linse spielt
beim Brechungsgesetz eine Rolle. Der Einfallswinkel wird aber durch die Normalen, die senk-
recht auf den Tangenten stehen, bestimmt. Eine weitere wichtige Rolle spielen die Tangenten
beim Newton-Verfahren zur Losung von Gleichungen.

Bemerkung: Differenzierbarkeit von f : I — R in xo bedeutet die Existenz des Grenzwertes
(3.8). Hierunter versteht man ausfiihrlicher (nach Abschn. 1.6.7, Def. 1.20):

(a) Fir jede Zahlenfolge (x;) aus I mit

lim x, =x0, X, # X0,
n—o0

konvergiert die Folge der zugehorigen Differenzenquotienten

f ) — f(xo0)

Xn — X0

D, =
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und zwar gegen einen Grenzwert A, der unabhiéingig von der gewéhlten Folge (x,) ist. A ist
die Ableitung f’(xo).

Damit ist die Differenzierbarkeit auf die Konvergenz von Folgen zuriickgefiihrt. Mit ihnen
konnen wir gut umgehen und befinden uns damit auf sicherem Terrain.

Nach Abschn. 1.6.7, Folg. 1.16, kann aber die Grenzwertbildung (3.8), und damit die Diffe-
renzierbarkeit, auch so formuliert werden:

(b) f istin xo genau dann differenzierbar, wenn sich die Funktion

D(x) = M, x €1\ {xo} (3.11)
X — X0

in xg stetig erweitern 14Bt. Der so entstehende Funktionswert D (xg) ist die Ableitung f’(xo).

f'(x0) = D(x0) := lim D(x). (3.12)
X—>X(

Nach Abschn. 1.6.7, Folg. 1.17, 148t sich diese Grenzwertbildung auch in e-§-Form beschrei-
ben.

Je nach Bedarf verwendet man die eine oder andere Fassung der Differenzierbarkeit.

Beispiel 3.2:
Besonders einfache Funktionen sind konstante Funktionen: f(x) = c. Dafiir gilt

f@) = fl)  c—c

X — Xo T x—xo

=0. (x #xo0)

Alle Differenzenquotienten sind Null, also ist die Ableitung f'(xg) = O fiir jedes x9 € R; man
beschreibt dies kurz durch

—c=0. 3.13
P (3.13)

Beispiel 3.3:
Es sei

f)=x" (xeR)

eine Potenzfunktion mit einer natiirlichen Zahl n als Exponenten. Fiir den Differenzenquotienten
beziiglich xp und x = xo + & (h # 0) gilt mit der binomischen Formel

Z (n)xg_khk — X{
fao+h) = fag)  o+m)"—xp 5\
h B h B h




3.1 Grundlagen der Differentialrechnung 203

Das erste Glied der Summe ist x’g. Es hebt sich heraus, und man erhalt

Fir x — xg, also h — 0, bleibt nur das erste Glied nx(')'_1 der rechten Summe erhalten, also
folgt fiir die Ableitung

f'(x0) = nxg~

Hier schreiben wir der Einfachheit halber x statt xy und erhalten damit die Formel

ax" =nx""1. (3.14)

Der Spezialfall n = 1 liefert

d -1 (3.15)
—X =1. .
dx

Das Beispiel macht deutlich, da3

i J(x) = f(xo0) . fo+h)— f(xo0)
im ———— und lim
X—>X0 X — Xo h—0 h

gleichbedeutend sind. Man hat nur x = xo + & zu setzen. Die rechte Form dieser Grenzwertbil-
dung eignet sich fiir praktische Berechnungen von Ableitungen gelegentlich besser.

Ubung 3.2:

Berechne die Ableitungen der Funktionen f;(x) = x2, frx) = x3, fio(x) = x10 an der Stelle
xg = 2.

Ubung 3.3:
Zeige: f(x) = 4/x ist fiir beliebiges x¢ > 0 differenzierbar, und es gilt fiir die Ableitung

I (xp) = f

Anleitung: Schreibe den Differenzenquotienten beziiglich xg > 0 und x > 0 hin und verwende

dann die Formel x — xg = (/x + /X0)(v/x — \/X0).

Ubung 3.4:

Fiir welches xg € R hat die Tangente an f(x) = x2 die Steigung 1? Schreibe die zugehorige
Tangentengleichung auf. Skizziere f und die Tangente.
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Ubung 3.5:
Berechne die Ableitung von f(x) = x" (n € N) im Punkte x¢ nochmal (auf andere Weise
als im Beisp. 3.3). Und zwar schreibe man den Differenzenquotienten beziiglich x und xq hin:
(f(x) — fxp)/(x —xp) = (x" — xg) : (x — xg), und wende das Divisionsverfahren fiir
Polynome an.

Differenzierbare Funktionen

Wir betrachten reellwertige Funktionen f, deren Definitionsbereiche D Intervalle oder Vereini-
gungen von Intervallen sind.

Definition 3.2:
Ist f : D — R in jedem Punkt des Definitionsbereiches D differenzierbar, so heif3t
f eine differenzierbare Funktion. Ist f : D — R in jedem Punkt einer Teilmenge A
von D differenzierbar, so nennt man f differenzierbar auf A.

Bei einer differenzierbaren reellwertigen Funktion f : D — R kann man in jedem Punkte x € D
die Ableitung f’(x) bilden. Durch die Zuordnung x — f’(x) ist eine neue Funktion f': D — R
erklart, die man kurz die Ableitung von f nennt.

Fig. 3.3: Funktion f(x) = x2 mit Ableitung

Beispiel 3.4:
Die Ableitung der Potenzfunktion f(x) = x" (f : R — R, n € N) isteine Funktion f' : R — R,
beschrieben durch

fl(x) =nx""1.
In Fig. 3.3 sind f(x) = x? nebst zugehériger Ableitung f’(x) = 2x skizziert.

Ist eine differenzierbare Funktion in Form einer Gleichung y = f(x) gegeben, so beschreibt
man die Ableitung auch durch
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d
y' = f'(x) oder d—)yc = f'(x), (3.16)

z.B.

dy

=3x2.
dx

bzw.
Diese Schreibweisen sind in Technik und Naturwissenschaft bequem, wenn x und y physikali-
sche Groflen darstellen.

Graphisches Differenzieren: Wir gehen aus vom Schaubild einer differenzierbaren Funktion f :
I — R. Zur graphischen Ermittlung der Ableitung von f in einem Punkt xg zeichnet man — so
gut es geht — die Tangente an f in x( ein. Zu dieser Tangente zieht man die Parallele durch den
Punkt A = (—1,0), s. Fig. 3.4a. Die Parallele schneidet die y-Achse in einem Punkt B, dessen
y-Koordinate die Ableitung y(’) = f'(xp) ist, also B = (0, y(/)). (Denn das Dreieck [A, B,0] ist
eine Kopie des Steigungsdreiecks der Tangente.) Damit ist y(, zeichnerisch gewonnen, und der
Punkt (xo, y;) der Ableitung f” 14t sich einzeichnen.

y A y Tangente

,.1.

(xo, ¥'o) 1] = /—-I\
. -1 1l |
X

A B

|
I
|
|

A At

Fig. 3.4: Graphisches Differenzieren

In Fig. 3.4b ist dieser ProzeB fiir mehrere Punkte einer Funktion f durchgefiihrt. Die gewon-
nenen Ableitungspunkte werden zu einem Funktionsgraphen verbunden, wobei man auch bei
verbindenden Bogen auf »schielt«, damit sie nach Augenmal3 moglichst gut die Ableitung anné-
hern.

Der so gewonnene Funktionsgraph stellt eine mehr oder weniger gute Naherung der Ableitung
f' dar. Fiir einen ersten Uberblick oder bei Versagen rechnerischer Methoden erhilt man so
brauchbare Ergebnisse.

Dabei ist nicht entscheidend, da3 man viele Konstruktionspunkte wihlt, sondern da3 man in
ausgesuchten Punkten moglichst genaue Tangenten zeichnet. Punkte mit waagerechten Tangen-
ten bieten sich dafiir besonders an. Der Leser iibe das graphische Differenzieren an selbst ge-
zeichneten Beispielen. Dies fiithrt zum besseren Verstindnis der Ableitungsfunktion f’. (Durch
numerische Differentiation erhilt man f’ auch leicht auf Computerbildschirmen oder Plottern.)
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Stetigkeit differenzierbarer Funktionen. / sei ein Intervall oder eine Vereinigung mehrerer
Intervalle.

Satz 3.1:
Ist die reellwertige Funktion f : I — R in x¢ differenzierbar, so ist sie dort auch
stetig.

Beweis:
Gilt x, — xo (x, € I\ {x0}), dann ergibt sich die Konvergenz des Differenzenquotienten
Dy = (f (xn) — f(x0))/(xn — x0) gegen f(xo). Damit folgt

f ) — f(x0) = D - (x4 — x0) = f'(x0)-0=0
fir n — o0, also f(x,) — f(xp). Das heifit f ist stetig in xp. |

Man zieht daraus die einfache

Folgerung 3.1:
Jede differenzierbare Funktion ist stetig.

y=Ix|

¥

Fig. 3.5: Die Funktion f(x) = |x]|
Die Umkehrung gilt nicht, wie das Beispiel der Funktion
f)=1xl, xeR

zeigt (siehe Fig. 3.5). Diese Funktion ist namlich stetig, aber in O nicht differenzierbar. Denn die
Differenzenquotienten

f@ = fO) _ x|

x—0 X

sind fiir x > 0 gleich 1, fiir x < 0 dagegen gleich —1. Sie konnen also fiir x — 0 nicht
konvergieren.

In O existieren aber die links- und die rechtsseitige Ableitung, die in folgender Definition
erklirt sind.
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Definition 3.3:

(Einseitige Differenzierbarkeit) Es sei f : I — R eine Funktion und xp ein Haufungs-
punkt von 7, in dem f den rechtsseitigen Grenzwert f(xo+) besitzt. Existiert der

Grenzwert
. J(&x) — fxo+)
im ——————~ |
X—>X0 X — X0
X>X(

so ist f in xq rechtsseitig differenzierbar. Der Grenzwert heilt rechtsseitige Ableitung
von f in xg. Er wird symbolisiert durch

f'(xo+) .
Entsprechend werden linksseitige Differenzierbarkeit und linksseitige Ableitung
f'(xo=)

erklart. (Man ersetzt x > xg durch x < xq.)

Es ist klar, daB die Funktion f(x) = |x| in x9 = O die rechtsseitige Ableitung f/(0+) = 1
und die linksseitige Ableitung f'(0—) = —1 hat.

Hohere Ableitungen. Ist die Ableitung f’ : D — R einer differenzierbaren Funktion wiederum
differenzierbar, so heiit ihre Ableitung die zweite Ableitung f” : D — Rvon f : D — R.
Durch abermaliges Differenzieren, falls moglich, entsteht die dritte Ableitung f"" : D — R
usw. Eine n-te Ableitung, falls sie gebildet werden kann, bezeichnet man mit f ™ . p > R
Existieren alle Ableitungen von f : D — R bis zur n-ten Ableitung, so nennt man f n-mal
differenzierbar. Nach Satz 3.1 sind dann f, f', f”, ..., f"~D stetig, da diese Funktionen alle
differenzierbar sind. Ist iiberdies £ stetig (was nicht zu sein braucht), so heiBt f n-mal stetig
differenzierbar. f heiBt stetig differenzierbar, wenn f’ existiert und stetig ist.!

Beispiel 3.5:

f(x) =x" (n € N, x € R) ist beliebig oft differenzierbar. Der Leser rechne fiir den Fall n = 4
die Ableitungen f’, f”, f” usw. aus (von welcher Ableitung an sind alle folgenden Ableitungen
konstant gleich Null?)

Beispiel 3.6:
Die Funktion f : R — R, erklért durch

x2, fiir x > 0,
fx) = -

0, fiirx < 0,

1 Es kann sein, daB f’ existiert, aber nicht stetig ist. Ein Beispiel dafiir ist die Funktion f : R — R, definiert durch
fx) = x2 sin(1/x) (fiir x # 0) und £(0) = 0. f/(x) existiert fiir alle x € R, insbesondere ist f'(0) = 0, doch ist
f/in x = 0 unstetig! (Der Leser iiberpriife dies.)
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ist nur einmal stetig differenzierbar, denn ihre Ableitung

2x firx >0
/ X) = ) —_ Y
NS {0, firx <O
ist zwar stetig, aber in xo = 0 nicht differenzierbar. Der in diesem Fall vorliegende Differenzen-
quotient (f'(x) — f/(0))/(x —0) = f’(x)/x hat namlich fiir x > 0 den konstanten Wert 2, fiir
x < 0 dagegen den Wert 0. Er kann also fiir x — 0 nicht konvergieren.

Bemerkung zu Anwendungen in Technik, Naturwissenschaft und anderen Gebieten

(a) Zunichst kniipfen wir noch einmal an den Geschwindigkeitsbegriff an: Durch y = f(¢)
werde die geradlinige Bewegung eines Massenpunktes beschrieben. Dabei ist y die Linge
des zuriickgelegten Weges zum Zeitpunkt 7. Die Geschwindigkeit des Massenpunktes ist
zum Zeitpunkt ¢

v=f(r),

(siehe Abschn. 3.1.1). Seine Beschleunigung b ist die zweite Ableitung

b= f"@).

Zusammen mit dem Newtonschen Grundgesetz der Mechanik K = mb (Kraft = Masse -
Beschleunigung) ist damit der grundlegende und historisch erste Zusammenhang zwischen
Differentialrechnung und Physik gegeben. Von hier ausgehend durchdringt die Differential-
und Integralrechnung die Mechanik und im weiteren Physik und Technik.

(b) Die Ableitung f'(x) einer Funktion ist Grenzwert der Steigungen von Sekanten an f
und stellt damit so etwas wie die Wachstumsquote der Funktion f im Punkte x dar (falls
f'(x) > 0), oder Schrumpfungsquote (falls f’(x) < 0). Diese Interpretation zeigt sofort
die vielfiltigen Zusammenhinge mit allen Zweigen der Technik, Naturwissenschaft, Wirt-
schaft, Soziologie und anderen Gebieten auf.

Fig. 3.6: Zu Ubung 3.6 (b)

Ubung 3.6:
(a) Zeichne ein Schaubild von f(x) = %3 — x + 1 nebst allen Ableitungen.
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(b) Differenziere die Funktion in Fig. 3.6 graphisch.

Ubung 3.7%#:
Wie gro8 ist die Beschleunigung eines fallenden Steines (Abschn. 3.1.1, Beisp. 3.1) und einer
fallenden Kugel in ziher Fliissigkeit (Abschn. 3.1.1, Ubung 3.1)?

Ubung 3.8%:
Beweise: f : I — R ist genau dann in x( differenzierbar, wenn rechts- und linksseitige Ab-
leitungen von f in x existieren, und wenn f'(xg—) = f/(xo+) sowie f(xo—) = f(xo+) =
f(xp) gelten.

3.13 Differentiationsregeln fiir Summen, Produkte und Quotienten reeller Funktionen

Sind f und g differenzierbare Funktionen, so fragt man sich, ob auch f + g, f - g, f/g und
Af (X reell) differenzierbare Funktionen sind, und wie man ihre Ableitungen gegebenenfalls
ausrechnen kann. Dieselbe Frage stellt sich fiir Verkettungen f o g und Umkehrfunktionen f~!.
In diesem Abschnitt beantworten wir diese Fragen. Dabei bezeichne I ein Intervall oder eine
Vereinigung mehrerer Intervalle, also den tiblichen Definitionsbereich fiir reelle Funktionen.

Satz 3.2:
Sind f: I — Rund g : I — R differenzierbar in x¢ € I, so gilt dies auch fiir f + g,
Af (A reelle Zahl), f - g und f/g, wobei im letzten Fall g(xg) # O vorausgesetzt wird.
Die Ableitungen der genannten Funktionen errechnen sich aus folgenden Formeln:

Additivitdit : f+e) =f+¢ (3.17)
Homogenitiit Af) = Arf (3.18)
Produktregel : (fe) = f'g + fg (3.19)

/ lo _ £of
Quotientenregel : i = M (3.20)
g g2

Die Variablenangabe (x() hat man hinzuzufiigen. Sie wurde aus Griinden der Ubersichtlichkeit
in den Formeln weggelassen.

Beweis:
Die Formeln ergeben sich fiir x — x( sofort aus

L/ () + @] = LF00) +800)] _ f0) = F(0) | g@) =gG0) |y

X — X0 X —X X — X0
Af(x) — Af(x0) :Af(X) — f(x0) S (x0) .
X — X0 X — X0
Jg(x) — fx0)g(xo) _ 2(x0) J(x) = fxo) n f(x)g(x) — 8(x0)
X — X0 X — X0 X — X0

— f'(x0)g(x0) + &' (x0) f (x0)
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0~ g _ 80 TR - FO0 SR o)z — 8/00) £ (o)
x—x $(0g(0) ” $(x0)’ |
Dabei wurden die Rechenregeln fiir Funktions-Grenzwerte benutzt (Abschn. 1.6.7, Folg. 1.18) so-
wie die Stetigkeit von f und g in xo (Abschn. 3.1.2, Satz 3.1). Beim letzten Grenziibergang wurde
x aus einer Umgebung von xp genommen, in der g nirgends verschwindet (vgl. Abschn. 1.6.4,

Hilfssatz 1.2). U

Aus der Homogenitit (3.18) im obigen Satz folgt fiir . = —1 die einfache Regel:
=NH'==f (3.21)
und damit (f — g)' = (f +(—=g))' = f'+ (—=g)' = f' — g’, also
(f-—8)'=f-¢. (3.22)

Die Quotientenregel ergibt im Falle f(x) = 1 die

1y !
Reziprokenregel: (—) = —g—. (3.23)
8

Aus der Additivitit (f + g)’ = f’ + g’ folgt fiir lingere Summen differenzierbarer Funktionen
sofort

i+ o+ v =f+H+...+ ], (3.24)

Es darf hier also gliedweise differenziert werden. (Der Beweis kann z.B. mit vollstindiger Induk-

tion gefiihrt werden.)
Aus der Homogenitit (Af) = Af’ folgt ferner, daB f(x) = ax* (k € N) die Ableitung
f'(x) = akx*~" besitzt. Unter Verwendung von (3.24) gewinnt man die

Folgerung 3.2:
Alle reellen Polynome sind differenzierbar. Sie diirfen gliedweise differenziert wer-
den:

n n
p(x) = Zakxk = p)= Zakkxkfl .
k=0 k=1

Beispiel 3.7:
(@ p(x)=3x" = p'(x)=21x°
®) px)=72+x* = p'(x)=l4x +6x°
1, 2 05 11,

2 5
(©) P(x)=3+§x—zx2+€x - P/(x):g—zx—i-?x
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Der Grad eines Polynoms erniedrigt sich beim Differenzieren um 1.

Aus der Reziprokenregel (3.23) folgt fiir f(x) = 1/x" (mit n € N) sofort f'(x) = —nx "1,
und damit fiir alle Funktionen x — x" mit ganzzahligem m:

dx™ R, fall 0,
dx xeR,x #0, falls m < 0.
Beispiel 3.8:
1 , 3
f(X)=F = f(X)=—x—4, (x #0).

Allgemeiner kdnnen wir mit der Quotientenregel (3.20) jede rationale Funktion p/q (p, q Poly-
nome) in allen Punkten x differenzieren, in denen g (x) 7 O ist.

Beispiel 3.9:
Fiir alle x # +1 folgt nach (3.20)
5x3 —x 43 , (15x2 = 1D(x2 = 1) — (5x% — x +3)2x
JO=—g9" = W= G212

Aus der Produktregel (3.19) gewinnen wir fiir mehrfache Produkte und fiir hohere Ableitungen
die

Folgerung 3.3:
Uberall dort, wo die Funktionen fi, ..., f, differenzierbar sind, gilt die Regel fiir
Mehrfachprodukte
n
Frooo =D fieefici i fixi S (3.26)
i=1

Dort, wo f und g n-mal differenzierbar sind, gilt fiir die n-te Ableitung von f - g die
binomische Differentiationsregel

f "=y (Z)f ©g=h. (3.27)

k=0

Dabei ist f© = f, g = g gesetzt worden.

Die Beweise beider Formeln (3.26), (3.27) fithrt man mit vollstdndiger Induktion.
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Ubung 3.9:
Differenziere
3x5 4+ 2x2 1

() =3 —9x% 4+ 47, == h®) ==,

S ) X 2 g(x) T (x) T2
20

F)=(1—x+x*—x%) Y kit Gx)=(1+0* Vx (x>0).
k=1

Ubung 3.10:
Bilde mit (3.27) die dritte Ableitung von

fO=0+x—x>+x)Gx2+x73).

3.14 Kettenregel, Regel fiir Umkehrfunktionen, implizites Differenzieren

Iy, I1, D> seien Intervalle oder Vereinigungen mehrerer Intervalle. Fiir Verkettungen f o g von
Funktionen gilt folgender

Satz 3.3:
Ist g : Iy — I in x € Iy differenzierbar, und ist f : Iy — [ in z = g(x) dif-
ferenzierbar, so ist die Verkettung f o g : Iy — I in x differenzierbar, und es gilt
die

Kettenregel: (fog)x) = f(2)g (x). (3.28)

Mit anderen Worten: Zur Bildung der Ableitung zweier verketteter Funktionen werden
die Ableitungen der beiden Funktionen, genommen an entsprechenden Stellen, einfach

multipliziert.
Beweis:
g sei in xq differenzierbar und f in zo = g(xp). Wir definieren die Hilfsfunktion
7)) — fz
FROZTC iy, firz £,
r(z) == =20 fir (z € I).
0, fiir z = zo,

Da f in z¢ differenzierbar ist, gilt lim r(z) = 0. Aus der Definition von r(z) gewinnt man:
z—20

f@ = fzo) = (f'(z0) + (@) (z — 20,
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folglich mit x # xo und z = g(x), zo = g(x0):
(fog)¥) = (fog)xo) _ f(8g() — f(8(x) _ f(2) = f(z0)

X — X0 X — X0 X — X0

= (o) + (e E 28N

— f(z0)&' (x0)

fiir x — xo. Damitist (f o g)'(x0) = f'(z0)g’ (x0). Lassen wir hier den Index O fort, der nur aus
bezeichnungstechnischen Griinden angefiigt war, so haben wir gerade das behauptete Ergebnis
gewonnen. (]

Zur Schreibweise: Beschreibt man die Funktionen f und g im Satz 3.3 durch Funktionsgleichun-
geny = f(2),z = g(x),also y = (f o g)(x), so erhilt die Kettenregel mit den Leibnizschen
Bezeichnungen
dy dz dy /
dz_f(z)’ dx—g(X), dx—(fog)(X)

die einpriagsame Form:

dy dy dz
Kett L —=—.— 3.29
ettenrege P & @ ( )

Damit lassen sich Berechnungen von Ableitungen verketteter Funktionen iibersichtlich durchfiih-

ren:

Beispiel 3.10:
Es soll

y=F@x) =@*+7x—1)°
differenziert werden. Mit

z:g(x)=x2+7x—1 und y=f(z)=z5
folgt nach der Kettenregel

dy dy dz

=54 2x+7) =502 +7x = D*C2x+7).
o = o T 2x+T7) x“+Tx =1D)"2x+17)

F'(x) =

dy o . dz . . . . :
Man nennt — auch die dufere Ableitung und ™ die innere Ableitung. Damit erhalten wir
zur Durchfiihrung der Kettenregel folgende Merkregel: »Aufere und innere Ableitung sind zu

multiplizieren.«

Beispiel 3.11:

d dy d
(zur Kettenregel) o_9. —Z:
dx dz dx
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(@ y=F@x) =@ +1)7. Mitz =x>+ 1 folgt y = 77, also
— —

Z

dy dy dz

=720 3x% =7(x* + 1)° - 3x?
& e E T D

F'(x) =

in verkiirzter Schreibweise:
b) y=Fx)=0Gx>—2)= F/(x) =93x>=2)%. 6
(b) vy (x) = (Gx ) = F'(x) =9(3x ) X
£ dy/dz dz/dx
suBere Abl. innere Abl.

©y=Fo) =(+22°+ 1422 Fl(x) = [5<1 Fady ﬁ} 2x

z dz/dx
dy/dz

(Dabei wurde d—‘l\/)_c = ﬁ; verwendet, s. Ub. 3.3.)

X -3 X 52
@y ) 1+ x2 = Fix) (1+x2) (14 x2)?
— —_—

z dy/dz dz/dx

Der Leser differenziere

4 —3x +x2>5

F(x)=(3+x"" und F(x)=( Ty
X

an dieser Stelle zur Ubung selber.

Die Kettenregel 1d6t sich auch mehrfach anwenden, z.B.
= L, =2, =2 . (3.30)

Dies folgt aus
dy dy dz dy dz du
dv  dz dx dz \du dx/°
Hierbei wurde die Kettenregel zweimal angewendet. Entsprechend 146t sich bei dreifach und

hoher verketteten Funktionen die Kettenregel mehrfach anwenden.

Beispiel 3.12:
Doppelte Anwendung der Kettenregel (3.30):

@ y=Fm=(1+1+x»12).

u
—
Z
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Mitu =1 +x2, z=1+ul?, y = 7! erhilt man:

dy dy dz d
Floy=2 =22 & 2 g6 10012 = 701+ (1 + 52120 1201 + 22! - 2x

dx dz du dx

Mit weniger Schreibaufwand rechnet man so:

1—x 5\ -3
(b) yZF(x)=<2+(1+x4> )
——

N e
V4
T—x\\* T—x\* 3x*—4x3—1
= Fx)=-32+—= .5 .
) ( <1+x4>> (1+x4> (1 +x%)2
dy/dx
dy/dz dz/du du/ dx

Nach einiger Ubung 146t man die »Untertitel« u, z, dy/dx, ... weg.

Satz 3.4:
(Differentiation von Umkehrfunktionen) f : Iy — I sei eine stetige, streng monotone
Funktion vom Intervall Iy auf I, die in y € I differenzierbar ist und dort f/(y) # 0
erfiillt. Dann ist die Umkehrfunktion f -l > Lhinx = f (y) differenzierbar, und

es gilt
1

1
= . 3.31
o) - 7)) ©31)

Y@=

Beweis:
Es sei (x;) eine Folge aus I1 mit x, — x, x, # x. Setzt man y, = f(x,), so erhilt man

S el O N e S 1 1 .
Xn — X T fon—f»  fOo—=f» T f@)
Yn—Y

Zur Schreibweise: Mit x = f(y), y = f~'(x) und
dy 1y dx o
dx_(f ) (x), dy—f(y)
bekommt die Regel (3.31) die leicht zu behaltende Form:
. . dy 1
Regel fiir Umkehrfunktionen: =4 (3.32)

-
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Als Anwendung soll die durch y = x/" (n e N) definierte Funktion differenziert werden, wobei

x > 0, falls n gerade, und x # O(x € R), falls n ungerade, vorausgesetzt wird. Die beschriebene
Funktion ist die Umkehrfunktion von x = f(y) = y"(y # 0). Also gilt nach (3.32)

dx'/n dy 111 1 1 333
dx _a_a_ny"*1_nx(”_l)/”_;xn ' -39

dy

Insbesondere ergibt sich fiir n = 2 erneut

d
4 i 0 (334)

1
2Jx°

Folgerung 3.4:
Fiir jede rationale Zahl r gilt

dx” >0, fall 1,
=l fir ¥ ausr = (3.35)
dx x>0, falls r < 1.

Beweis:

Esistr = m/n mit n € N und ganzzahligem m. Damit erhilt die Funktion F(x) = x" die Form
F(x) — xm/n — (xl/n)m

Anwendung der Kettenregel liefert

n\m=1 1 1_ m m_ _
F/(x):m<xn) coxn Tl = Sy = el O
n

Differentiation implizit gegebener Funktionen

Wir betrachten als Beispiel die Ellipsengleichung

x2 y2
a_2+ﬁ_120’ a>0,b>0. (3.36)

Lost man nach y auf, so erhidlt man zwei Funktionen f und g, ndmlich

2
y=f(x)=b,/1—;c—2 und g(x) =—f(x) (~a<x<a).
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Wir wollen f differenzieren. Dazu kann man die Ellipsengleichung (3.36) direkt benutzen, wobei
man y2 durch (f ()c))2 ersetzt:

2 (fx)?

~ Saie 1=0 firallex € (—a,a).

Rechts steht eine konstante Funktion mit dem Wert 0. Sie ist identisch mit der links beschriebenen
Funktion. Bildet man auf beiden Seiten die Ableitung, so folgt
2x 21 (x)f'(x)

;+—b2 =0 (—a<x<a).

Dabei wurde auf ( f(x))? die Kettenregel angewendet. Wir schreiben einfacher
2 2yy’
2
a b?

Auflésen nach y’ und Einsetzen von y = b+/1 — x2/a? liefert die Ableitung

, b*x xb
y = =,
a?y a?\/1 —x%/a?

(Fiir y = g(x) gilt das gleiche mit umgekehrten Vorzeichen.)

Auf diese Weise kann man allgemein vorgehen, wenn y = f(x) durch eine Gleichung
F(x,y) = 0 beschrieben wird. Dabei muf3 man sicherstellen, da8 f(x) und F(x, f(x)) in x
differenzierbar sind. Dies erkennt man durch explizites Rechnen, wie oben, oder anhand des
Satzes iiber implizite Funktionen (s. Abschn. 6.4.2, Satz 6.14).

(—a<x<a).

Ubung 3.11:

Differenziere mit der Kettenregel

_ 2\°
@ y=G+x)"2, <my=clf;x), © y=v1+x2.

Ubung 3.12:
Differenziere
3 1—x
@ y=vx2, ®) y= (-l<x<1),
1+x
7

© y=\1+V5 (>0, @ y=(1-Vi+2)
(e) y—zix (x| > D ) y—\/TB x> 1)
1+Vx2 -1 ’ x—1 :

@ y=y1+y1+vV1+x2, 0 y=x"7"" (x>0).



218 3 Differentialrechnung einer reellen Variablen

Ubung 3.13*:

y2 — x2 = 2 beschreibt fiir jedes r > 0 eine Hyperbel. Wie liegen die Hyperbeldste? Kann

man sie als zwei Funktionen auffassen? Differenziere die Gleichung implizit und 18se nach y’
auf (ohne y = . .. einzusetzen). Wo ist in der x-y-Ebene stets y’ = 1 unabhingig von r? Zeichne
diese Punktmenge! Wo ist stets y/ = % und wo y/ = %? Zeichne auch diese Punktmengen.

Ubung 3.14:
dyx _

Differenziere y2 — x = 0 implizit und leite damit erneut —3= —L_ fiir x > 0 her!

=37

Ubung 3.15:

Differenziere implizit

(a) y2 + xy —x2 =a2,

(b) (a — x)y2 = (a + x))c2 (Strophoide),

(©) P y3 = 3axy (Cartesisches Blatt),

(d) (ax)z/3 + (by)z/3 =3 mitr = \/m (Astroide).

Dabei sind a und b positive reelle Zahlen. Man skizziere die zugehorigen Punktmengen (Kur-

ven) in der x-y-Ebene (¢ = 1,b = %) und iiberlege sich, welche Funktionen damit beschrieben
werden und wo das implizite Differenzieren dieser Funktionen erlaubt ist. (Strophoide, Carte-
sisches Blatt, Astroide werden in Burg/Haf/Wille (Vektoranalysis) [9], Abschn. 1.4, genauer
beschrieben.)

3.1.5 Mittelwertsatz der Differentialrechnung

Legt man die Sekante durch zwei Punkte (a, f(a)) und (b, f (b)) einer differenzierbaren Funkti-
on f : [a, b] — R, so zeigt die Anschauung, daf es eine Tangente an f in einer Zwischenstelle
X0 € (a, b) geben wird, die zur Sekanten parallel liegt (s. Fig. 3.7).

D.h. die Steigung (f(b) — f(a))/(b — a) der Sekante stimmt mit der Steigung f’(xo) der
Tangente iiberein. Wir prézisieren dies in folgendem

Ay Tangente

Sekante

A B4

Fig. 3.7: Zum Mittelwertsatz
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Satz 3.5:

(Mittelwertsatz der Differentialrechnung) Ist die reelle Funktion f stetig auf [a, b] und
differenzierbar mindestens auf (a, b), so gibt es ein xo € (a, b) mit

fo) - fla

fl(xo) = b4

(3.37)

Man fiihrt den Beweis iiber folgende Sitze.
Mit Extremum bezeichnen wir dabei Maximum oder Minimum einer Funktion.

Satz 3.6:
Ist die Funktion f differenzierbar auf einem offenen Intervall /, und hat f in xg € 1
ein Extremum, so gilt

f'(x0) = 0.

Beweis:
In x¢ habe die Funktion f ein Maximum. Fiir x,, — xo mit x, > xo (x, € I) gilt dann

0> SfGxn) — f(x0)
X0

Xpn —

— f'(x0) <0 fiirn — oo,

und fiir x, — xp, x, < xo(x, € I) entsprechend

0< L ZJ@0) VS0 firn — oo,

Xp — X0
folglich f’(xo) = 0. Im Falle eines Minimums bei xq verlduft der Beweis analog.

Satz 3.7:
(Satz von Rolle?) Tst die reelle Funktion f stetig auf [a, b] und differenzierbar auf
(a, b), und gilt f(a) = f(b), so existiert ein xg € (a, b) mit f’(xg) = 0.

Beweis:

219

Wire f(x) = c konstant in [a, b], so folgte f(x¢) = O fiir alle xo € (a, b), und der Beweis wiire
fertig. Wir nehmen nun an, daf} f in [a, b] nicht konstant ist, und daf} ein x € (a, b) existiert mit
f(x) > f(a) = f(b) (andernfalls wiirden wir f im Folgenden durch — f ersetzen). Nach dem
»Satz vom Maximum« (Abschn. 1.6.5, Satz 1.25) besitzt f dann eine Maximalstelle xy € (a, b).

Satz 3.6 liefert f’(xp) = 0.

Beweis:

O

des Mittelwertsatzes (Satz 3.5): Man subtrahiert von f eine Geradenfunktion g mit der Steigung
der Sekante beziiglich a und b, und zwar g(x) = x - (f(b) — f(a))/(b — a). Fiir die Differenz

2 Michel Rolle (1652 —1719), franzosischer Mathematiker
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F(x) = f(x) — g(x) errechnet man F(a) = F(b). Der Satz von Rolle liefert dann die Existenz
eines xg € (a, b) mit

f () = f(a)

0= F'(xo) = f'(x0) — &'(x0) = f'(x0) — P

Folgerung 3.5:

Die reelle Funktion f sei auf dem Intervall I differenzierbar. Damit gilt:
(a) f ist genau dann konstant, wenn f’(x) = O fiir alle x € I erfiillt ist.

(b) f ist monoton wachsend, wenn f”(x) > O fiir alle x € I erfiillt ist. Entsprechend
ist monoton fallend, wenn f’(x) < 0 auf I gilt.

Gilt f'(x) > 0bzw. f’(x) < 0 auf I, so ist die Monotonie von f sogar »streng«.

Die Beweise ergeben sich unmittelbar aus dem Mittelwertsatz.
Wir leiten schlielich eine Verallgemeinerung des Mittelwertsatzes her.

Satz 3.8:
(Verallgemeinerter Mittelwertsatz) Sind die reellen Funktionen f und g auf [a, b] ste-
tig und mindestens auf (a, b) differenzierbar, und ist g’(x) # 0 auf (a, b), so existiert
ein xg € (a, b) mit

f'(x0) _f®)~ f@)
g'(xo)  gb)—gla)

(Dabei ist g(b) # g(a), da g wegen g’(x) # 0 streng monoton auf [a, b] ist.)

(3.38)

Beweis:

Fiir die Funktion
f) — fla)

F(x) = f(x)— f(a) — m(g(x) —g(a))

auf [a, b] gilt F(a) = F(b) = 0, wie man leicht nachrechnet. Der Satz von Rolle liefert damit
die Existenz eines xo € (a, b) mit

fb) - fla)
0= F'(x0) = f'(x0) — —————¢"(x0),
0 =S g®) —g@ *
woraus durch Umformung die Behauptung (3.38) folgt. (]

Ubung 3.16*:

Beweise Folgerung 3.5.
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3.1.6 Ableitungen der trigonometrischen Funktionen und der Arcusfunktionen

Satz 3.9:
Sinus- und Cosinus-Funktion sind differenzierbar, und es gilt
sin’ t = cost 5
, . fiir alle t € R. (3.39)
cos' t = —sint
Ay
A At
sin(t+ At) T '—+— = At
Ay As
y=sint + Y- : : B
| I
| t
I [
" [ I /A% 1
+ At e a—
Y I I
I . O
0 cos(t+At) x=cost

Fig. 3.8: Zur Ableitung von sin und cos

Bemerkung: Man kann die Ableitungen von sin und cos durch Fig. 3.8 plausibel machen: Und
zwar ist das kleine schraffierte Kreisbogendreieck nahezu ein »normales« gradlinig berandetes
Dreieck. Der Winkel bei A hat das Bogenmal3 ¢ + A¢. Somit folgt

2y (t+ An |Ax| in(t + At)
— X COS ) — = sin )
At At

d.h.

sin(t + At) — sint A
( +At) :—i}%cos(t—{—At)%COSt,

cos(t + At) — cost _ |Ax|
At N

~ sin(t + At) ~ sint .

Die Anschauung zeigt, dal dies umso besser stimmt, je kleiner At ist. Man vermutet daher
sin’t = cost und —cos’ t = sinz.
Der Beweis des Satzes ist lediglich eine exakte Ausfithrung dieser Idee.

Beweis: des Satzes 3.9: Es seien ¢ und r + At aus (0, 7), Ar > 0. Wir setzen zur Abkiirzung
X = cost, y:sint:x/l—xZ, Ax = cos(t + At) —cost <0,

Ay =sin(t + At) —sint und As =,/ Ax2+ Ay? (Linge der Sehne [A, B], Fig. 3.8)
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Damit folgt fiir den Differenzenquotienten des Cosinus

cos(t + At) — cost _ Ax _ Ax As _ -1 As (3.40)
At T At As At 1+ (Ay/Ax)2 At '

Nach Satz 2.7 (IIT), Abschn. 2.3.1, strebt % gegen 1 fiir A+ — 0. Ferner gilt dabei Ax — 0 und
somit

Ay dy — —x

A)C_> dx_./l_xz.

Damit konvergiert (3.40) mit At — 0 gegen

—1
lz—zz—\/l—xzz—sint.
/ X
1+1—x2

Im Falle At < Oist Ax > 0, und man erhilt vollig analog den gleichen Grenziibergang. Folglich
gilt

cos't = —sint fir te (0,m).

Fiir die Sinusfunktion folgt mit der Kettenregel daraus

in’ t d 1 —cos?t 2costsint cost, (te(0,m))
sint = —+v1— == , ,T)).
dr 24/1 — cos? ¢

Damit ist die Behauptung cos’ r = —sin¢, sin’ 7 = cost fiir 7 € (0, 7) bewiesen. Durch cost =
sin(t+m/2), sint = — cos(t+/2) gewinnt man die Richtigkeit der Behauptung fiir # = 0, durch
cost = —sin(t—m/2), sint = cos(t —m/2) fiir t = 7, durch cos(—¢) = cost, sin(—¢) = —sint
fir t € [—m, 0], und durch cos(t + k27) = cost, sin(t + k27) = sint (k ganzzahlig) fiir alle
teR O

Mit den Regeln sin’ = cos und cos’ = — sin knnen wir einen eleganten Beweis der Additi-

onstheoreme fiihren.

Satz 3.10:
(Additionstheoreme fiir sin und cos) Fiir alle reellen Zahlen x und y gilt
sin(x 4+ y) = sinx cos y + cos x sin y, 3.41)
cos(x + y) =cosxcosy — sinx siny. (3.42)

Beweis:
Wir setzen z := x + y, also y = z — x und setzen dies in die rechte Seite von (3.41) ein:

sinx cos(z — x) + cosx sin(z — x) := f(x).
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Differenziert man diesen Ausdruck nach x, so erhdlt man f’(x) = O fiir alle reellen x. Daraus
folgt, dal f(x) konstant ist, also f(x) = f(0) fiir alle x € R. Wegen f(0) = sinz = sin(x + y)
folgt also

sin(x +y) = f(0) = f(x) =sinxcosy +cosxsiny,
womit (3.41) bewiesen ist. (3.42) folgt analog. U

Fiir die Tangens- und Cotangensfunktion folgt aus tan x = sinx/cosx und cotx = cos x/sinx
mit der Quotientenregel sofort

Satz 3.11:

Tangens- und Cotangens-Funktion sind in allen Punkten differenzierbar, in denen sie
definiert sind, und es gilt

=1+tan’x, (3.43)

tan’ x = 5
0s2 x

=—1—cot’x. (3.44)

cot' x = ——
sin® x

Fiir die Arcus-Funktionen, die ja die Umkehrfunktionen der trigonometrischen Funktionen auf
bestimmten Intervallen sind, erhélt man ohne Schwierigkeiten

Satz 3.12:
Die Ableitungen de Arcus-Funktionen lauten

1

arcsin x = —— arccos’ x = ———— fiiralle x € (—1,1),
V1 —x2 1 —x2
1 1
arctan’ x = 12 arccot’ x = T a2 fiir alle x € R.
X X

Beweis:

t = arcsin x ist gleichbedeutend mit x = sin¢ (—% <t< %) Damit folgt nach der Regel fiir
Umkehrfunktionen (Satz. 3.4 und (3.32), Abschn. 3.1.4):

. dr 1 1 1 1

arcsin x = — = — = — — _
d 7 -

dx d’t‘ sint  cost \/1 —sin2r J1—x2

(x| < 1).

Entsprechend ergibt 7 = arctanx, d.h. x =tant (-3 <t < 3):

can dt 1 1 1 1 x €R)
arctan’ x = — = — = = = X .
dx % tan't 14tan?2¢r 14+ x2

arccos’ x und arccot’ x gewinnt man analog. (]
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Ubung 3.17:

Beweise die Ableitungsformeln fiir arccos und arccot.

Ubung 3.18:

Differenziere
(a) y:sin(1+x2), (b) y= (x3 —x2—|—2)cosx,
(c) y=+1+tanx, (d) y =cot(sinx),

(e) y = arccos(sinx), (f) y = arctan

1
\/1+x2.

Ubung 3.19:

Die harmonische Schwingung eines Federpendels wird durch die Gleichung x = A sin(wt)
beschrieben (¢ Zeit, x Weg, A > 0 Amplitude, w Kreisfrequenz). Berechne Geschwindigkeit
und Beschleunigung zu beliebiger Zeit ¢ (die erste Ableitung wird hierbei iiblicherweise durch
X statt x” beschrieben, die zweite durch ¥ usw.). Zeige ¥ + w?x = 0. Wo sind Geschwindigkeit
und Beschleunigung betragsmifBig am groBten, bei Nulldurchgidngen, in Umkehrpunkten oder
woanders?

3.1.7 Ableitungen der Exponential- und Logarithmus-Funktionen

Satz 3.13:
Exponentialfunktion exp(x) = e* (x € R) und natiirlicher Logarithmus Inx (x > 0)
sind differenzierbar, und es gilt

d
P e* =¢e* firx eR, (3.45)
1
In'x = — fiirx > 0. (3.46)
x

Beweis:
(D) Fiir den Differenzenquotienten der Logarithmusfunktion bzw. x > Qund x + 2 > 0(h # 0)
errechnet man

1 h) —1 In*"  In(1+4 R\ " 1
n@x +h) oY _ e ( X)zln 1+ — — Ine'/* =~ (firh — 0).
h h h X X

Der Grenziibergang ergibt sich aus Abschn. 2.4.3, Folg. 2.6. (Man hat dort x durch 1/x zu erset-
zen.) Damit ist In’ x = 1/x fiir x > 0 bewiesen. Fiir x < 0, also |x| = —x, erhilt man mit der
Kettenregel daraus

dhlll— d111( )= ! (1)—1
dx x_dx V= T x’
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und somit
dl | x| ! fiir alle x # 0
— In|x| = — firalle x .
dx X

(II) Die Ableitung von y = e* gewinnt man iiber die Regel fiir Umkehrfunktionen. Mit x = Iny
folgt

er dy 1 1 .
de  dx dx In'y y=e
dy

Bemerkung: Satz 3.13 macht deutlich, warum die Exponentialfunktion exp(x) = e¢* (x € R)
und ihre Umkehrfunktion) der natiirliche Logarithmus so wichtig sind: Die Exponentialfunktion
hat sich selbst wieder zur Ableitung! Sie ist, bis auf einen konstanten Faktor, die einzige Funktion
mit dieser Eigenschaft. Wir zeigen dies im folgenden Satz 3.14.

Beim Logarithmus In | x| springt ins Auge, daf} seine Ableitung 1/x eine sehr einfache Funk-
tion ist. Sehen wir uns einmal die Potenzfunktionen f(x) = x" mit ganzzahligem m an, so fillt
an ihren Ableitungen f'(x) = mx™~1 auf, daB die Potenz x ! darunter nicht vorkommt. Alle
anderen ganzzahligen Exponenten tauchen in den Ableitungen auf, nur der Exponent —1 fehlt
unentschuldigt. Diese Liicke schliet gerade der natiirliche Logarithmus.

Satz 3.14:
Jede auf einem Intervall I differenzierbare Funktion f die

f/(x)=af(x) firallex el (3.47)
erfiillt (a € R konstant), hat die Gestalt

f(x) =ce®™ (c € R Kkonstant)

Beweis:
Es sei f eine reelle Funktion, die (3.47) erfiillt. Man bildet damit die Funktion
AC))
gx) = wax (3.48)

und errechnet

fl) e —f(x)ae™

e2ax

gx) = =0 firxel.

(Der Zihler ist Null, da f'(x) = af (x) ist.) g ist also konstant: = g(x) = c. (3.48) liefert damit
f(x) = ce™. O

Setzt man a = 1 in (3.47), also f/ = f, so folgt f(x) = ce*, d.h. f ist bis auf einen
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konstanten Faktor ¢ die Exponentialfunktion exp. Dabei ist f(0) = c. Im Falle f(0) = 1 ist
¢ = 1lund f(x) = e*. Wir haben somit gezeigt:

Folgerung 3.6:

Die Exponentialfunktion exp(x) = e* ist die einzige auf R differenzierbare Funktion,
die sich selbst zur Ableitung hat und in x = 0 den Funktionswert 1 annimmt.

Die allgemeine Exponentialfunktion
f(x)=a" (a>0,xeR)
146t sich in der Form

f (x) — ex Ina

schreiben und mit der Kettenregel differenzieren:
—a* =a*Ina. (3.49)
dx

Die Umkehrfunktion log, von f(x) = a*(a > 0,a # 1) kann nach Abschn. 2.4.3, Folg. 2.7,

folgendermafBen dargestellt werden:

In |x|

logy |x| = Ina ’

x#£0. (3.50)

Speziell fiir x = e folgt log, e = 1/Ina. Die Ableitung von log, [x| gewinnt man unmittelbar
aus (3.50):

d log, |x| 1 log, e (3.51)
— o = = ——, :
dx Ea I¥ xIna X

Auch die allgemeine Potenzfunktion
fx)y=x%, x>0,

mit beliebigem reellen Exponenten a 146t sich nun leicht differenzieren. Wir schreiben
Flx) = el

und erhalten mit der Kettenregel die Ableitung
f/(x)zealnxaizx“a—zax ,

also
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Satz 3.15:
Die Potenzfunktion f(x) = x“(x > 0) mit beliebigem reellen Exponenten a hat die
Ableitung
d
— x4 =ax !, (3.52)
dx

Logarithmische Ableitung: Ist f : I — (0, co) eine differenzierbare Funktion auf einem Inter-
vall 1, so wird durch

Fx):=Inf(x), xel,

eine neue Funktion gebildet, die logarithmierte Funktion von f heifit. Ihre Ableitung erhilt man
aus der Kettenregel:

d f®
S Inf = e (3.53)

Man nennt dies die logarithmische Ableitung von f.

Bemerkung: Die logarithmische Ableitung bedeutet folgendes: Mit
y=f, Ax =x —xo, Ay = f(x) = f(xo) (x,x0 € 1)
gilt ungefihr Ay ~ f/(x)Ax, also

Ay @)

y o fo

Die logarithmische Ableitung f’(x)/f (x), multipliziert mit Ax, ergibt also ungefihr die relative
Anderung von y = f(x) bei Anderung der x-Werte um Ax.

(3.54)

Ubung 3.20:
Differenziere

(a) y — eSx , (b) y — X4 e)C , (C) y — eSil‘l)( ,

dy=xlnx—x (x >0), (e)y:ln—x x>0), () y =cos(lnx),
X

(8) v = yx2 4 xeooss, W y=a, (@) y = /log,(x?) + 1.

Ubung 3.21%:
Die Temperatur einer sich abkiihlenden Fliissigkeit sei x = f(¢)(° C) zur Zeit ¢t. f erfiille
JHOE —%f(t) fiir alle r > 0. Zum Zeitpunkt 7o = 2 min habe die Fliissigkeit die Temperatur
xo = 70° C. Gib f(¢) explizit an!
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3.1.8 Ableitungen der Hyperbel- und Area-Funktionen

Wir kniipfen an die Definition der Hyperbelfunktionen sinh, cosh, tanh, coth und ihre Umkehr-
funktionen arsinh, arcosh, artanh, arcoth in Abschn. 2.4.4 an und gewinnen daraus problemlos
die Ableitungen

sinh’ x = coshx, xeR, arsinh’ x = —— xeR,
x2+1
. 1
cosh’ x = sinh x , xeR, arcosh/x=:|:2—, x>1,
xc—1
/ 1 , 1
tanhx:—z, xeR, artanhx:—z, x| <1,
cosh” x 1—x
/ 1 , 1
coth'x = —— 7> x #0, arcoth’ x = 3 x| > 1.
sinh” x 1—x

Bemerkung: (a) Die beiden Vorzeichen = bei arcosh’ bedeuten, daB hier zwei Funktionen ge-
meint sind, wobei sich + auf die Umkehrfunktion von cosh : (0, co) — R bezieht und entspre-
chend — auf die Umkehrfunktion von cosh : (—oo, 0).

(b) artanh’ und arcoth’ haben zwar formal denselben Formelausdruck rechts vom Gleichheitszei-
chen, doch beziehen sie sich auf verschiedene Bereiche der x-Achse, wie rechts angegeben.

Ubung 3.22:

Leite die obigen Ableitungsformeln fiir die Hyperbel- und Area- Funktionen her.

Ubung 3.23:

Differenziere

(@ y = (x” +sinhx)?, (b) y = arsinh/x  (x #0).

X

() y= x2. sinh(x) cosh(x) , @ y= (x #0).

artanh x
Ubung 3.24%:
Die Kurve einer Hochspannungsleitung wird durch
X
y=h0+a<coshf—1> ,  —X0 =X =xp,
a

beschrieben (h(, a, xo positiv). Welchen Winkel bildet die Leitung mit der Horizontalen an den
Enden bei —x( und x(? Dabei setze man hg = 7m, xg = 15m, a = 60m.

3.1.9 Zusammenstellung der wichtigsten Differentiationsregeln

Die wichtigsten elementaren Funktionen sind mit ihren Ableitungen in folgender Tabelle zu-
sammengestellt. Dabei existieren die Ableitungen in allen Punkten x, in denen die Funktionen
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definiert sind. Lediglich bei x“ ist zu beachten, da im Falle o« < 1 zusitzlich x # 0 vorauszu-
setzen ist. Im Folgenden seien « und c beliebige reelle Zahlen, sowie a eine beliebige positive

Zahl.

Tabelle 3.1: Elementare Funktionen und ihre Ableitungen

fx) f'(x) fx) 1)
1
c 0 arccosx ———
V1 —x2
o a—1 1
X ox arctan x 3
1+x
. 1
sin x coS X arccotx  —
1+x2
COS X —sinx e’ e’
1 2 1
tan x 3 =1+tan“x Inx -
Ccos~ x X
-1 )
cotx —— =—l—-cot®x a* a*lna
sin“ x
. 1 log, e
arcsin x 1 log,, |x| %%
1—x2 xlna X

Die Ableitungen der Hyperbelfunktionen sinh, cosh usw. sowie ihrer Umkehrfunktionen arsinh,
arcosh usw. entnimmt man der Tabelle des vorhergehenden Abschnitts.

Tabelle 3.2: Oft auftretende Funktionen und ihre Ableitungen

fx) I ) fx) I
n n—1
; 1
Polynom Zakxk Z(j +Dajpx! Jx NG
k=0 =0
g 5 x
Ing(x) (gkx)>0) 7 V1+x \/ﬁ
xIlnx —x Inx V1=x2 (x| <D —%
1—x

Die folgenden Ableitungsregeln gelten iiberall dort, wo die Funktionen f, g differenzierbar
sind, und — im Falle der Division durch g — wo g(x) # O ist.

Summenregel:

Differenzenregel:

(
(f-9'=f-¢.

f+e)=r+¢,
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Homogenitdit: ) =Af (AeR)
Produktregel: (fe) = f'g+ f¢

4 /o _ /
Quotientenregel.: (i) = —fg ng
8 8
1 -z
Reziprokenregel.: <—) =—
8 8

Fiir verkettete Funktionen f o g schreiben wir y = f(g(x)) und setzen dabei y = f(z2), z = g(x).
Damit gilt — im Falle der Differenzierbarkeit — die

dy dy dz

Kett l: .
ettenrege = & &

Sie kann auch in der Form (f o g)’ = (f’ o g)g’ notiert werden.
Ist f streng monoton und differenzierbar in x, so schreiben wir y = f~1(x), x = f(y) und
erhalten die

) S
Regel fiir Umkehrfunktionen: Frial
dy

Sie 148t sich auch in der Gestalt (f~!) = 1/f" o f~! schreiben.

Ubung 3.25:
Es sei g : I — R auf dem Intervall / ungleich Null und mindestens n-mal differenzierbar.

Beweise

d" 1 = n—k (M — 1 —n—1+k dk+l
< (;) =) (- ( L )(n —k)'g e
k=0

3.2 Ausbau der Differentialrechnung

3.2.1 Die Regeln von de 1’Hospital®

Die Bestimmung eines Grenzwertes limb f(x)/g(x) kann schwierig sein, wenn f(b) = g(b) =0
X—>

ist. Sind f und g allerdings differenzierbar in b, und ist g’(b) # 0, so ist die Grenzwertbildung
einfach:

3 Gulliaume Francois Antoine Marquis de 1’Hospital (1661 — 1704) hat die nach ihm benannten Regeln von Johann
Bernoulli »gekauft«! Regeln, Beweise und Beispiele wurden ihm von Bernoulli — dem eigentlichen Entdecker —
mitgeteilt. de I"Hospital zahlte dafiir daB er sie veroffentlichen durfte. Er schrieb 1696 das erste Lehrbuch der Dif-
ferentialrechnung. Ubrigens werden die de I’'Hospitalschen Regeln von Studenten oft scherzhaft die »Krankenhaus-
Regeln« genannt.
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Satz 3.16:

(Regel von de I’Hospital, elementarer Fall) Sind f : I — R, g : I — R differenzier-
barin b € I (I Intervall), und gilt

fb)=g(®b)=0
sowie g’(b) # 0und g(x) # O fiir alle x € I, x # b, so folgt

f@ )
1m = 5
xob g(x) g/

(3.55)

Beweis:
Es seix # b, x € I. Damit folgt sofort

O O = ()

= = — , firx — b.
gl)  glx) —gb) WO (D)

Beispiel 3.13:
@ i sin x cos(0) {
a) lim = =
x—0eX —1 e0
. Inx . . .
(b) lim 3 = (Der Leser ergénze die rechte Seite)
x—1xc—1

Der folgende Satz verallgemeinert den bewiesenen Satz 3.16.

Satz 3.17:
(Regeln von de I’Hospital, allgemeiner Fall) Es seien f und g differenzierbare reelle
Funktionen auf dem Intervall (a, b), fiir die

lim f(x) = lim g(x) =0
x—b x—b
oder

lim g(x) =00 oder = —o0
x—b

gilt. Es sei ferner g’(x) # 0 auf (a, ). Damit folgt

fO @

lim = lim (a<x<b), (3.56)
x—b g(x)  x—=b g'(x)
sofern der rechtsstehende Grenzwert existiert oder =00 ist. (Hierbei ist auch a = —oo

oder b = oo zugelassen.)

231
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Fiir x — a (@ < x < b) gilt die entsprechende Aussage.

Der Beweis beruht auf der gleichen Idee wie beim vorigen Satz. Wir fithren ihn hier nicht aus,
sondern verweisen auf [24], S. 287.
Fiir den Ingenieur sind die Anwendungen des Satzes wichtig. (Gelegentlich wird hier von

0 00
»unbestimmten Ausdriicken« — oder — gesprochen, doch wollen wir diese mi3verstindliche

Sprechweise besser vermeiden.) Wir beginnen mit einfachen Beispielen, die zeigen, welche Fiille
neuer Grenzwertaussagen mit Leichtigkeit aus den de 1’Hospitalschen Regeln folgen.

Beispiele

Im Folgenden seien a und b beliebige positive Zahlen.

Beispiel 3.14:
ax a eax
lim — = lim = 0.
xX—00 X x—oo ]

Daraus folgt
Beispiel 3.15:
ed* e(a/b)x b
lim —- = lim =00.
X—>00 X X—>00 X

D.h.: Jede Exponentialfunktion e** (a > 0) geht schneller gegen oo als jede Potenz von x. Daraus
folgt sofort

Beispiel 3.16:

lim p(x)e ™
X—> 00

=0 fiir jedes reelle Polynom p.

Beispiel 3.17:
. lnx_ . 1/x L 1 _0
xglgox_ _xi>oo bxb-1 - xin;obx_b -

1
Wegen log, x = E(cz > 0) folgt auch
Ina
lim (log, x)/x* =0.
X—>00
D.h.: Jeder Logarithmus log, x geht langsamer gegen oo als jede Potenz von x.

Beispiel 3.18:

. b . Inx . 1/X . xb

lim x”Inx = lim — = lim =lm—-—=0 (x=>0).
x—0 x—0x~b x—0 —bx—b—1 x—=0 b

Daraus folgt
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Beispiel 3.19:
limx* = lime*™ =e’=1 (x > 0).
x—0 x—0
1 . 1 o "
Setzt man x = —, so folgt lim —— =1, also gilt dies auch fiir den Kehrwert:
n n—-oon /n

lim /" =1.

n—oo

Beispiel 3.20:
. 1 —cosx . sinx . Ccosx 1
lim = lim = lim = —.
x—0 x2 x>0 2x x>0 2 2

Hier wurden die de I’Hospitalschen Regeln zweimal hintereinander angewendet. Auch in den
folgenden Ubungsbeispielen ist dies der Fall.

Beispiel 3.21:
. 1—cosx . sinx . CcoSx
lim = lim = lim =1.
x—0er —1—x x—=0e* —1 x—0 e

Beispiel 3.22:
coshx — 1 . sinh x . cosh x coshO 1
— = lim ——— = lim = =—.
x—=0 Sin2 X x—0 2sinx cos x x—0 2((;()52 X — Sin2 X) 2cos20 2

Grenzwerte von Differenzen
Mit den de I’Hospitalschen Regeln lassen sich auch Grenzwerte der Form
lim (f'(x) — g(x)) (3.57)
x—b
mit
lim f(x) = lim g(x) = o0 (3.58)
x—b x—b
bestimmen, also Grenzwerte, die verzweifelt nach co — oo aussehen, was ja bekanntlich verboten
ist. Sind ndmlich f und g auf (a, b) differenzierbar (¢ = —o00, b = 0o zugelassen) und gilt (3.58),

wobei stets a < x < b ist, so sind f(x) # 0und g(x) # O fiir groBe x, etwa fiir alle x € (xo, b)
mit geeignetem xg. Fiir diese x rechnen wir

1 1

1 1 o(x)
fO)—gw) = —— - —— = £() - fx) (3.59)
fx) g fx)gx)

und versuchen, auf den rechts stehenden Bruch die Regeln von de 1’Hospital anzuwenden.
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Beispiel 3.23:
. 1 X —sinx . 1 —cosx . sin x
Iim | — — — ) = lim - = lim - = lim - =
x—0 \ sIn x X x—0 XxSslnx x—>0Xx -CcOSx + sinx x—0 —x sinx + 2cosx
Beispiel 3.24:

Ubung 3.26:
odv . 1 1
lim (a >0), lim —(1-— ,
x—1 lnx x—0 x2 CoS X
. 1 ) x 1
lim xln(l—i—f), hm( ——).
X—00 X x—>1\x—1 Inx
Ubung 3.27:

(a) Die Plancksche® Strahlungsformel lautet

L. — c2h
AT NS (ech/ TR Z1y

Man beweise durch viermaliges Anwenden der de 1I’Hospitalschen Regeln, da3

lim L) =0
A—0 »

gilt. (Dies beschreibt auch den physikalischen Sachverhalt richtig.)

Anleitung: Man setze zweckmifig x = ch/(kT A) und untersuche den entstehenden Aus-

druck fiir x — oo.

(b) (Freier Fall mit Reibung) Wir betrachten den freien Fall eines Korpers der Masse m durch
ein zdhes Medium. Der Reibungswiderstand R verhalte sich proportional zum Quadrat
der Fallgeschwindigkeit v, also R = kvZ, mit einer Konstante k. Der Weg s, den der
Korper in der Zeit ¢ zuriicklegt, ist dann gegeben durch

o)

wobei g die Erdbeschleunigung bezeichnet.

2

1
Zeige, dal} dieser Ausdruck fiir k — 0 gegen s = 5 gt~ strebt. Dies ist die bekannte

Formel fiir den freien Fall ohine Reibung.

4 Max Karl Ernst Ludwig Planck (1858 — 1947), deutscher Physiker
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Ubung 3.28:
Wo steckt der Fehler in folgender Berechnung nach der de I’Hospitalschen Regel:
. x3—2x+1 . 3x2 -2 . b6x
lim = lim = lim — =3?
x—>1 x2-1 x—1  2x x—1 2

(Der richtige Grenzwert ist 1/2.)

322  Die Taylorsche® Formel

Motivation: Da sich Polynome leicht berechnen und differenzieren lassen, ja, iiberhaupt bequem
handhaben lassen, mochte man auch komplizierte Funktionen wenigstens ndherungsweise durch
Polynome darstellen. Wie lassen sich solche »Niherungspolynome« finden? Nach der Idee von
Taylor geht man folgendermalBen vor:

Ist f eine beliebige Funktion auf einem Intervall / um 0, so macht man den Ansatz

fx) =ao+a1x +ax* + ...+ apx" + Ry(x) (3.60)
und verlangt, daf simtliche Ableitungen des Polynoms
P(x) = ap+ a1x + axx> + ... + apx" (3.61)

von der O-ten bis zur n-ten Ableitung im Punkt O mit denjenigen von f tibereinstimmen. Dies ist
natiirlich nur moglich, wenn f wenigstens n-mal differenzierbar ist, was hier zusétzlich voraus-
gesetzt sei. Als nullte Ableitung f(?) bezeichnet man die Funktion f selbst: f©@ = f.

Es soll also P so bestimmt werden, daf}

fO=P©O, fO=P©O,..., f™0 =P"©0) (3.62)

erfiillt ist. Dabei liegt der Gedanke zu Grunde, daf3 sich bei Ubereinstimmung der ersten n Ablei-
tungen in O die beiden Funktionen f und P wohl nur wenig unterscheiden werden, zumindest in
geniigender Nidhe von 0. Der Unterschied beider Funktionen

Ry(x) = f(x) — P(x)

heilt Restglied. Man hofft, da | R, (x)| moglichst klein wird.
Aus (3.62) ist das Ndherungspolynom P leicht zu bestimmen. Fiir die Ableitungen von P in
0 errechnet man ohne Miihe

P(0) = ay, P 0) = lla , P’(0) =24y, ..., POWO) =kla, ... .

Setzt man in der ersten Gleichung noch 0! = 1 hinzu, so folgt aus (3.62) fiirallek =0, 1, 2, .. .,
n

JA()

FO0) = klax, also a = 0

(3.63)

5 Brook Taylor (1685 —1731), englischer Mathematiker
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womit die Koeffizienten von P berechnet sind. Eingesetzt in (3.60) folgt also

fx) = f(0)

i (n)
f(O) f (O)x2+...+fn(0) 4R, (x) (3.64)

2!
P(x)

Allgemeinfall: Will man allgemeiner f durch ein Polynom annéhern, das in der Nihe eines
beliebigen Punktes xo € I moglichst gut mit f {ibereinstimmt, so hat man in (3.64) 0 durch
xo zu ersetzen und statt x den Ausdruck (x — xo) zu schreiben. Es folgt damit der allgemeine
Niherungsansatz

(n)
x0)2 . 4 O (0)( —x0)" 4+ R, (x). (3.65)

fO) = f 0)+f(0)( xo>+f2(f°)

Das Restglied wird wieder mit R, (x) bezeichnet. Das Ndherungspolynom

f ( 0) 1 (x0)

P(x) = f(xp) + —x0)+ ...+ T(x — x0)" (3.66)

erfiillt P® (xq) = f® (xp) fiirallek =0,1,2,....n

Natiirlich mochte man wissen, wie gut das Polynom P die Funktion f anndhert, d.h. wie grof3
der »Fehler« |R,(x)| = | f(x) — P(x)]| ist. Diese Frage wird durch folgenden Satz beantwortet,
in dem gebriduchliche Formeln fiir das Restglied angegeben sind.

Satz 3.18:

(Taylorsche Formel mit Restglied) Es sei f eine reelle, (n 4+ 1)- mal differenzierbare
Funktion auf einem Intervall . Sie 146t sich in folgender Form darstellen:

” (n)
fx) = fx 0)+f(0)( xo)—i-f(O)(x x0) 24 f n( 0)(x x0)" + Ry (x),

2!
(3.67)
wobei x und x¢ beliebig aus / wihlbar sind.

(a) Das Restglied R, (x) kann dabei folgendermallen geschrieben werden:

(x —x0)P(x — &)"T1=P | Schiomilchs® Restgliedformel.
(3.68)

Dabei ist p eine beliebige Zahl aus {1, 2, ...,n 4+ 1} und § — im Falle x # x(
— ein Wert zwischen x und xg, dessen Lage von x, xg, p und n abhéngt. (Die
genaue Lage von & ist normalerweise nicht bekannt.) Im Falle x = xg ist & = xp
Zu setzen.

6 Oscar Xavier Schlomilch (1823 -1901), deutscher Mathematiker
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(b) Wihlt man p = n + 1 in Schlomilchs Restgliedformel, so folgt der wichtige
Spezialfall

f(n+1)(§)

R,(x) = PR (x —x0)" TV | Lagrangesche’ Restgliedformel, (3.69)
n !

(c) wihrend man im Falle p = 1 folgendes erhalt:

FME)
R,(x) = —'(x —x0)(x —&)", Cauchysche Restgliedformel. (3.70)
n!

(3.67) heiBit Taylorformel von f, entwickelt um x.

Beweis:
8 Es sei paus {1,2,...,n + 1} beliebig, aber fest gewidhlt. Im Falle x = xq ist R,(xp) = 0

(nach (3.68)) und damit (3.67) erfiillt. Wir setzen daher im Folgenden x # xo (x € I) voraus
und bestimmen dazu ¢, € R so, dal

/ (n)
f(x0) 4+ f ('x()) (x —x0)" + ¢y - (x — x0)? (3.71)

f(x)=f(xo)+T(x—xo)+..

gilt: Man ersetzt nun xo durch eine Variable z, wobei x und c, festgehalten werden, d.h. man
betrachtet die durch

/ 7 (n)
f(z)(x—z)+f(Z)(x—z)2+...+f @)
1! 2! n!

F(z) = f(2)+ (x—2)"+ce-(x—2)F (3.72)

definierte Funktion auf 7. Sie erfiillt offenbar F(x) = f(x) und F(xo) = f(x), also F(x) =
F (xp). Nach dem Satz von Rolle gibt es daher ein & zwischen x und xp mit

F'(§) =0.

Dabei hat F’(z) fiir beliebige z € I den Wert

(x —2)" —explx — )P L.

wie man leicht aus (3.72) berechnet. Fiir z = & wird dieser Ausdruck Null. Auflésen nach c,
ergibt somit

A -
e CE DO
n'p
Setzt man dies in (3.71) ein, so folgt damit die Behauptung des Satzes. (|

7 Jean Louis Lagrange (1736 — 1813), italienischer Mathematiker und Astronom
8 Vom anwendungsorientierten Leser kann der Beweis ohne Nachteil iibersprungen werden.
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Zur Verwendung der Restgliedformeln

Wir wollen exemplarisch die Lagrangesche Restgliedformel betrachten, die am héufigsten ver-
wendet wird:

f(n+1)(é:)

Ry(x) = T (x —xo)" 1. (3.73)

Man kann sich die Formel leicht merken, denn man hat nur das (n + 1)-te Glied der Taylorformel
hinzuschreiben,

£ (xg)

TE (x —xo)"t1,

und in f ("+1)(x0) das xo durch £ zu ersetzen.

Das & ist zwar unbekannt, doch ist dies nicht so schlimm, da man normalerweise R, (x) nicht
exakt benotigt, sondern lediglich | R, (x)| von oben abschditzen mochte. Das ist moglich, wenn
zB. f (+D in I beschrinkt ist, genauer, wenn man eine Konstante M > 0 finden kann mit
| £@+D(x)| < M in I. Das ist hiaufig moglich. Dann folgt aus (3.73) die Abschitzung

IR, (x)| < lx — xo|" T,

(n+1)!

mit der sich gut arbeiten 143t.
Wir wollen dies am Beispiel der Exponentialfunktion, der Sinusfunktion und anderer Funktio-
nen zeigen.

3.2.3 Beispiele zur Taylorformel

Beispiel 3.25:
Fiir die Exponentialfunktion

fx)y=¢", xeR,
ist die Taylorformel schnell hingeschrieben: Wegen

E=f=f=r'0=...= fPr=..

also insbesondere f (k) 0) = e = 1 firalle k = 0, 1, 2, ... lautet die Taylorformel von e*,
entwickelt um O (nach (3.67)):

2 n eé xn+1

=4+ b 4+ b Ryx) mit Ry(x) =
- BT " T m+ D

TR (3.74)

Dabei ist £ ein von x und n abhédngiger Wert zwischen O und x (im Falle x = O ist § = 0). Wegen
|€] < |x| konnen wir das Restglied bequem abschétzen; es ist
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e\x| |x|n+1

R, (x)| < R (3.75)

Hieraus erkennt man sofort, da3
lim R,(x) =0 (3.76)
n—oo

gilt, denn bezeichnet man die rechte Seite in (3.75) mit a,,, so gilt

ang1 x|

= — 0 fir n— o0.
a, n+2

o0
Damit ist |:Z a,,:| nach dem Quotientenkriterium eine konvergente Reihe, woraus a,, — 0 fiir
n=1
n — oo folgt und somit R, (x) — 0 fiir n — oo. Aus (3.74) ergibt sich damit die Reihenent-
wicklung

X X X Oox
=ttt =) (3.77)

Die Reihe hei3it Taylorreihe von ¢* um 0. Wir haben hier eine der wichtigsten und bertihmtesten
Reihen der Analysis vor uns. Speziell fiir x = 1 gewinnen wir daraus eine Berechnungsmethode
fiir e:
1 1 1

e:1+ﬂ+§+§+”" (3.78)
Der Abbruchfehler ist dabei hochstens so grofl wie das erste weggelassene Glied, multipliziert
mit e oder — da e zunéchst nicht genau bekannt ist — mit 3. Mit (3.74) haben wir iiberdies eine
gute Formel zur Berechnung von e* fiir kleine x, insbesondere fiir 0 < x <1 (fir—1 <x <0
kann man e* = 1/e™" ausnutzen). Fir groBere x kann man so vorgehen: Ist k < x < k + 1
(k € N), so bildet man

berechnet ¢* ¥ mit der Taylorformel (da ja0 < x — k < 1), und multipliziert dies k-mal mit e.

Bemerkung: Es sei erwihnt, da man auf Computern heute verbesserte Methoden verwendet.
SchlieBlich ist die Mathematik in den letzten 200 Jahren nicht stehen geblieben. Doch ist die
Taylorformel trotzdem eine vorziigliche Methode zur Berechnung von e*

Beispiel 3.26:
Auch Sinus und Cosinus lassen sich leicht in Taylorformeln um O entwickeln. Beginnen wir mit
sin x und schreiben die Taylorentwicklung hin:



240 3 Differentialrechnung einer reellen Variablen

sin0  sin”0 , sin®™ 0
x —_—

sinx = sin0 + T o X n!

x4+ R, (x).

Dann berechnen wir die darin auftauchenden Ableitungen von sin bei O:

sin0 =0,
sin’ x = cos x = sinf0=1,
sinx = —sinx = sin”0=0,
sin”x =—cosx = sin”0=-—1,
sin® x = sinx = sin®0= 0,
usw. Also folgt
3 5 7 o (n+1)
X X X . sin &) a1
sinx = x — ? + ; — ? +...+ Rn(x) , mit Rn(x) = mx . (379)
Analog errechnet man
2 4 6 (n+1)
X X X . Cos é) n+1
COSXx = 1—54-?—54- —i—Rn(x), mit Rn(x)—mx . (380)

Da |sinx| < 1 und |cosx| < 1 ist und damit auch | sin"*V (&)| < 1, | cos™ D (&)| < 1, gilt fiir
die Restglieder in beiden Féllen

| |n+1

(n+ D!

|Rn(x)| =

Die rechte Seite strebt fiir n — oo gegen 0 (wie in Beispiel 3.25), also gilt R,(x) — O fiir
n — oo.
Damit erhilt man die Taylorreihen von sin x und cos x:

: X 7 > L2+l
e I T ];( 1)| ’
2 4,6 k (©1)
X X ( 1)
°°SX21_2+Z__! _Z(zk)'

Die Taylorentwicklungen von sin x und cos x liefern uns Berechnungsmethoden, mit denen sin x
und cos x beliebig genau ermittelt werden konnen, insbesondere fiir |x| < %. Durch sukzessives
Anwenden der Formeln £ sinx = cos (% F x), sinx = sin(w — x), sinx = sin(x + 2knw) (k
ganz) und entsprechender » Verschiebeformeln« fiir cos x kann man damit sin x und cos x auch
fiir beliebige x € R berechnen. Dies macht die Stirke der Taylorformel deutlich! (Computer

benutzen verbesserte Formeln, ja, sie gehen oft sogar tabellarisch vor.)
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Beispiel 3.27:

Die Taylorformel der Logarithmus-Funktion In x kann man nicht um 0 entwickeln, da die Funkti-
on dort einen Pol hat. Man entwickelt sie statt dessen um 1, also um die Nullstelle von In x, oder
— was auf dasselbe hinausldauft — man entwickelt f(x) = In(1 4+ x) um 0. Dazu errechnet man

fo=0+0" ffo=-0+x72, ) =201+x72,...,
FO@) = (=D k= DI +x0)7F,
setzt x = 0 ein und erhilt die Taylorentwicklung

)C2 .X3 X4 (_x)n
f(x)_ln(l+x)_x—?—F?—ZA—...—

+ Ru(x).

Fiir 0 < x < 1 folgt aus der Lagrangeschen Restgliedformel mit einem & € (0, x):

xnt 1

R = . <
R = T e = nd

— 0 fir n— o0,

wihrend fiir —1 < x < 0 die Cauchysche Restgliedformel verwendet wird:

_ g _Em
|Rn(x)|=|x“x S|1= ] |8 mit —1<x<§&<0.
(I4&)nt 1+&|14+§
Wegen 1 +& > 1 + x und
x—§&  |x[— & 1 — x|
| | = = [x[ = [§l—F = Ix] (3.82)
1+¢ 1 —1§] 1 —&]
folgt
Xl .
IR,(x)| < ——|x|" - 0 fir n— oo.
I+x
Damit erhilt man die Taylorreihe
2 3 4
1n(1+x)=x—%+%—%+—... fir —1<x<lI. (3.83)

Fir x > 1 und x < —1 liegt offenbar keine Konvergenz vor. Setzt man x = 1 ein, so gewinnt
man die bemerkenswerte Formel

ma=1-t4l Ll (3.84)
n2=1—--4+-—-—-4+-—4... .
273 475 ’

die sich kein Autor an dieser Stelle entgehen 148t.
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Zur Berechnung von Logarithmen kann man mit der Taylorreihe (3.83) trickreich umgehen,
und zwar so: Will man Ina fiir a > 0 ermitteln, so berechnet man zunichst

a—1
X =
a—+1

14+ x
, woraus a = —— folgt.
1—x

Esist |x| < 1. Damit gewinnt man aus (3.83):

+x

X
=ln(l+x)—1n(1—x)=2(x+—+—+...>.

lnazln1
1 3 5

Die rechtsstehende Reihe gestattet eine effektive Berechnung von Ina, wenn a in der Nihe von
1 liegt. Liegt @ > 0O nicht in der Nihe von 1, ist es also sehr grof oder sehr klein, so kann
man a zuerst durch eine Potenz e* dividieren (k ganz), so daB a/ eX. so nahe wie méglich bei 1
liegt. Dann berechnet man In(a/ eX) nach obiger Methode und gewinnt damit Ina = In(a/ k) +
Ine* = In(a/ef) + k. Es sei bemerkt, daB die eingebauten Programme auf Computern heute

noch effektivere Methoden benutzen (wie z.B. Tschebyscheff-Polynome, Tabelleninterpolation
u.a.), auf die hier nicht eingegangen werden kann.

Beispiel 3.28:
(Binomische Reihe) (I) Als besonders einfache Funktion betrachten wir zunédchst
fxX)=(0+x)" mit neN, xeR.

Wir errechnen die Ableitungen f* (x) und erhalten

(k) — - -
SO0 _nt - -2)... k+1>=<”), (n=k).

3.85
k! k! k (3.:85)

Ferner ist "D (x) = 0, also R,(x) = O fiir das Restglied der Taylorformel. Damit lautet die
Taylorentwicklung von (1 + x)" um O:

n

I+ =Y (Z) . (meN). (3.86)

k=0

Dies ist die wohlbekannte binomische Formel, die hier auf neuem Weg gewonnen wurde. (Man
hat nur x = b/a zu setzen und mit a” zu multiplizieren, um aus (3.86) die gewohnte Form
(a + b)" = ... zu erhalten.)

(I) Wir setzen nun statt n € N eine beliebige reelle Zahl a ein, d.h. wir wollen die Funktion
f)=10+x, aeR, |x]<l
in eine Taylorformel um 0 entwickeln. Dazu berechnen wir die Ableitungen

FOX) =a@—D@=2)-...-(a—k+ D1 +x)%.
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Analog zu (3.85) definiert man Binomialkoeffizienten (Z) fiir beliebiges reelles a:

(a) _ala—D@—=2)-...-(a—k+1)

firk € N, nebst (©):=1.
k Xl 0

Damit ergibt sich f®)(0)/k! = (2) und somit die Taylorentwicklung

f@=a+0" =Y (a>x" + Ru(x). (3.87)

k=0 k

Das Restglied wird mit der Cauchyschen Restgliedformel und (3.82) folgendermalien abge-
schitzt:

ARG W | a 4 Dx(x— )"
IRn(x)I—‘Tx(X—S) = <n+1>W
( a ) n+ Dx x—£&" < a )(n+1)x "
= : < — | xI"=tay.
n+1)A+&-a] |1+& n+1 C

Dabei ist C > 0 so gewihlt, dal C < |1 + & |1_” fiir alle denkbaren & zwischen O und x gilt
(Jx] < 1). Fiir den rechts stehenden Ausdruck o, gilt aber o, /ovy—1 = |x|la — n|/n — |x|

o
fir n — o0, also ist [Z oz,,i| nach dem Quotientenkriterium fiir Reihen konvergent) woraus

n=1
o — 0 fiir n — oo folgt, also auch

R,(x) > 0 fir n— 0.

Damit ergibt sich aus (3.87) die binomische Reihe:

o0

(1+x)“=2(a>xk, x| <1, a €R. (3.88)

k=0 ik

In der Technik mufl man o6fters (1 4+ x)¢ fiir »kleine« |x| < 1 berechnen. Aus (3.87) folgt fiir
n = 2 die brauchbare Ndherungsformel

—1
(1+x)“%1+ax+%x2,

(3.89)
wobei das Restglied R3(x) vernachléssigt wird. (Ob dies im Rahmen der geforderten Genauigkeit
zuldssig ist, muB3 mit einer der Restgliedformeln gegebenenfalls iiberpriift werden.) Im Falle
a = 1/2und |x| < 1 erhalten wir z.B. die Ndherungsformel

2

«/1+x%1+%—%. (3.90)
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Fiir das vernachldssigte Restglied errechnet man im Falle [x| < 1/4 z.B. |R3(x)| < 0,14|x |3 Der
Fehler liegt also hochstens in der GréBenordnung von 0,002, was zumindest bei Uberschlagsrech-
nungen akzeptabel ist.

Ubung 3.29%:
Beweise
In ! +X2+XS+X4+ fir —1 < 1
=X - - —_— e ur — X < 1.
1—x 2 3 4 -
Ubung 3.30:

Es soll sinx fiir |x]| < % mit der Taylorformel (3.79) berechnet werden, und zwar mit einer

Genauigkeit von 8 Dezimalstellen nach dem Komma. Wie grof ist n zu wéhlen?

Ubung 3.31:

Entwickle f(x) = 1/4/1+ x fiir |[x| < 1 in eine Taylorformel um O fiir » = 3. Schitze das
Restglied R3(x) mit der Lagrangeschen Formel ab.

324 Zusammenstellung der Taylorreihen elementarer Funktionen

Im letzten Abschnitt haben wir schon Taylorreihen einiger ausgewéhlter Funktionen betrachtet.
Allgemein versteht man unter einer Taylorreihe folgendes:

Definition 3.4:

Ist f eine reelle, beliebig oft differenzierbare Funktion auf einem Intervall 7, so lautet
die zugehorige Taylorreihe, entwickelt um xg € I:

" (k)
[f( )+f( 0)( —XO)+fE(TO)(X—XO)2+---+#(X—XO)"JR.} ,

oder kiirzer geschrieben:

O rk)
Z ¥ (x0) (x — Xo)k .
pard k!

Folgerung 3.7:
Die Taylorreihe von f, entwickelt um x(, konvergiert genau dann gegen f(x), (x € 1),
wenn das Restglied

n (k)
R,(¥) = f(x) =) %(x —xo)*.

k=0
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fiir n — oo gegen 0 konvergiert. Man schreibt dann
o
f® (x0) k
fo) =) = —x0". (3.91)
k=0

Gilt dies fiir alle x aus einem Intervall um xp, so sagt man: » f 146t sich in diesem In-
tervall in eine (konvergente) Taylorreihe um x( entwickeln« oder » f besitzt in diesem
Intervall eine Taylorreihe um xg«.

Ein einfaches aber brauchbares Kriterium dafiir, daf3 eine Taylorreihe gegen f (x) konvergiert, ist
in folgendem Satz angegeben:

Satz 3.19:

(Konvergenzkriterium fiir Taylorreihen) Eine beliebig oft differenzierbare Funktion
f I — R (I Intervall) 146t sich auf / in eine konvergente Taylorreihe entwickeln,
und zwar um einen beliebigen Punkt xo € I, wenn

|f™(x)| < CM" firallen € Nund alle x € I (3.92)
gilt, wobei C und M von n und x unabhiingige Konstanten sind.

Beweis:
Aus der Lagrangeschen Restgliedformel folgt mit (3.92)

IM - (x — xo)|"+!

R <C———MMM ™ = . 3.93

[Rp(x)] < R An+1 (3.93)

Man erkennt a,y1/a, = M - |x — xg|/(n + 1) — 0 fiir n — oo. Nach dem Quotientenkriterium
o0

fiir Reihen konvergiert also Y a,, woraus a, — 0 folgt. [l
n=1

In Tabelle 3.3 sind die Taylorreihen der wichtigsten elementaren Funktionen iibersichtlich
zusammengestellt.

Die ersten sechs Taylorreihen der Tabelle sind im letzten Abschnitt hergeleitet worden. Die
Herleitungen der Taylorreihen fiir die Arcus-Funktionen und fiir sinh, cosh werden dem Leser
zur Ubung iiberlassen. Die Konvergenz der Arcus-Funktionsreihen 148t sich auf (—1, 1) durch
Restgliedabschidtzung unschwer gewinnen. Die Reihendarstellung der Arcus-Funktionen in den
Randpunkten 1 und —1 folgt dagegen aus dem Abelschen Grenzwertsatz (Abschn. 5.2). Wir
sparen die ausfiihrlichen Uberlegungen dazu und begniigen uns mit diesem Hinweis (vgl. auch
[24], Abschn. 65).

Fiir die Herleitung der Taylorreihen von tan x, x cot x, tanh x und x coth x verweisen wir auf
[24], Abschn. 71. Zur numerischen Berechnung der Funktionswerte tan x, tanh x usw. verwen-
det man allerdings die Taylorreihen dieser Funktionen nicht, sondern greift besser auf tanx =
sinx/cosx, tanhx = sinhx/coshx Zuriick, wobei sinx, cosx, sinhx und coshx durch ihre
Taylorreihen ermittelt werden konnen.
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Tabelle 3.3: Taylorreihen elementarer Funktionen

Funktion Taylorreihe Konvergenzintervall
n
(1+x)”:z<z>xk, n e NU {0} R
k=0
o0
(1+x)“=2<z>xk, ackR (=11
k=0
Xk
x
ex ZZ F R
k=0
Nk
n(l+x) =" (kx) (—1.1]
k=1
o0
1
sinx:z = ) 2kl R
— 2k +1)!
°° k
D" ok
cosx:Z (Zk)' R
= 2%k 72k
27 (2“% —1) _ -7 7
kL 2%-—1 T
tanx—];( 1) o Boyx (2 ,2>
By Bernoullische Zahlen, s. Abschnittsende
o 2k
xcotx—Z(— )k Bogx 2k (=m, )
133 1:3x5 1.3.5x7 S 2k x2kAL
g B N o
aresinx =+ 5t a5 Y2467 Z22kk!22k+1 [=1.1]
s (k1
Arccos X = — — arcsinx [-1,1]
3 5 7 o0 k
X X X 1) 2k+1
fanx =x — — 4+ — — — ~1,1
arctanx =x — = + 5 +. ; k—|—1x [ ]
arccot x =% — arctan x [—-1,1]
00 x2k+1
Slnhx :Z m R
k=0
o x2k
coshx = Z 0! R
k=0
2%k 1y - 7
tanh x :Z WBZI{X 7, 5
k=1
& 22k ok
x cothx ZZ @szx (—7T,7T)
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In den Taylorreihen von tan und cot werden die Bernoullischen Zahlen verwendet. Sie lassen
sich rekursiv berechnen aus

"+ 1 )
Bo=1 und Z Br=0 firn=1,2,3,....

k=0 k
Man erhilt
B = ! B, = ! B ! Bg = ! B !
1 - 2 9 2 - 6 ) 4 - 30 ’ 6 42 ’ 8 - 30 )
B 5 B 691
= —, = ——— usw,
1= 66 2= 72730

wihrend By = Oistfirallek =1,2,3, ...

Ubung 3.32:

Es sei f auf dem Intervall (—r, r) in eine Taylorreihe um O entwickelbar (r > 0). Beweise:

(a) Ist f eine gerade Funktion, d.h. f(—x) = f(x) fiir alle x € (—r, 1), so kommen in der
o
Taylorreihe von f nur gerade Exponenten vor, d.h. sie hat die Form Y azkx2k.
k=0
(b) Ist f ungerade, d.h. gilt f(—x) = — f(x) auf (—r, r), so kommen in der Taylorreihe von

o0
J nur ungerade Exponenten vor, sie hat also die Gestalt ) a4 1x2k+1.

Ubung 3.33:
Leite die Taylorreihen von sinh x, cosh x her. Gib auf I = (—r, r) eine Restgliedabschitzung
an, wobei Satz 3.19 nebst (3.93) benutzt werden kann. (Es ist dabei M = 1 zu setzen! Wie grof3
ist C zu setzen?)

3.2.5 Berechnung von r°

Setzt man in die Taylorreihe von arctan den Wert x = 1 ein, so folgt wegen arctan(1) = x /4 die
iiberraschende Gleichung

oLyl Ly (3.94)
7= 3 Ts 71 .

Die rechts stehende Reihe heifit Leibnizsche Reihe. Zur praktischen Berechnung von 7 ist sie
ungeeignet, da sie sehr langsam konvergiert. Doch gibt sie eine Anregung, wie man verfahren
kann. Und zwar gewinnt man aus dem Additionstheorem

tanx +tany
— =tan(x + y)
1 —tanxtany

9 Kann vom anwendungsorientierten Leser iiberschlagen werden. Doch zeigt der Abschnitt, wie dieses uralte Pro-
blem mit unseren Methoden duflerst effektiv gelost werden kann.
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.. t
mit# = tan x und s = tan y durch Ubergang zur Umkehrfunktion die Gleichung arctan 1 *s
x +y, also
t+s
arctan T—; = arctant + arctans . (3.95)
—ts
t 120
Mit +s = 1 erhilt man links 7 /4. Wir wihlen zunidchst f = — und s = ———, woraus
1 —ts 119 239
t+s
= 1 folgt, also nach (3.94)
1—1s
T 120 1
— = arctan —— — arctan — . (3.96)
4 119 239

Nun ist aber
— = —=_—==— alsonach (3.95)

2 5 5
arctan — = arctan — + arctan — = 2arctan — , und
119 12 12 12

5 141 5 1
— = g, also arctan — = 2 arctan — .
12 1_%.% 12 5

Dies alles eingesetzt in (3.96) liefert

1 1
7w =4 | 4arctan — — arctan — | . (3.97)
5 239

. . 1 1 )
Mit der Taylorreihe von arctan, angewendet auf arctan — und ——, errechnet man hieraus

bequem mit hoher Genauigkeit. Dabei werden nur wenige Glieder der Reihen benétigt.

Ubung 3.34:

1 1 t
Man verbessere Formel (3.97), indem man 3 in der Form — = +s ausdriickt, und zwar mit

5 1 —ts

1
Werten ¢ und s, deren Absolutwerte kleiner als 3 sind (z.B. t = 10’ s =7.

Konvexitit, geometrische Bedeutung der zweiten Ableitung

Die Funktion in Fig. 3.9a ist konvex, diejenige in Fig. 3.9b konkav. Konvexe Funktionen wolben
sich »nach unten«, konkave »nach oben«.

Dabei ist auch der Grenzfall eines Geradenstiicks zugelassen. Dies ist sowohl konvex wie
konkav.

Liegt eine »nach unten gewdlbte« Funktion vor, die kein Geradenstiick enthilt, so nennt man
sie zur besseren Unterscheidung streng konvex. Entsprechend gibt es auch streng konkave Funk-
tionen.
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s

a) konvex b) konkav

Y
\J

Fig. 3.9: Konvexe und konkave Funktionen

Wie kann man diesen anschaulichen Sachverhalt in Formeln umgie3en?

Dazu sehen wir uns Fig. 3.10 an. Dort ist eine konvexe Funktion f : I — R gezeichnet.
(I Intervall). Charakteristisch fiir diese Funktion ist folgendes: Verbindet man zwei beliebige
Graphenpunkte (x1, y1) und (x2, y») durch eine Strecke — »Sehne« genannt —, so liegt das
Graphenstiick von f, welches sich zwischen den Punkten befindet, »unterhalb« der Sehne —
oder im Grenzfall auf der Sehne.

Das heifit: Wihlen wir eine beliebige Zahl x zwischen x1 und x> (x1 < x < x3), SO ist stets

fx) <gl), (3.98)

wobei g die Gerade durch die beiden Punkte (x1, y1), (x2, y2) ist (y1 = f(x1), y2 = f(x2)).
Nach der »Zweipunkteform« einer Geraden gilt

X —x
g() = (2 — 1) Ly (3.99)
X2 — X1
Mit der Abkiirzung
X — X
A= (3.100)
X2 — X1
folgt

gx) =0 =2y +2ry2.

Die Zahl A ist das Verhiltnis der Streckenldngen x — x1 zu xp — x1 (s. Fig. 3.10), also gilt
0 < A < 1. Umgekehrt kann man x durch dieses Streckenverhiltnis ausdriicken, indem man
(3.100) nach x auflost:

X = (1 —)\.)X] +)\.x2.
Einsetzen in (3.98) ergibt

F(A=0)x; +Ax2) < (1 —A)y; + Ay, fiiralle € (0,1).
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09 | 9
I 4 *

\j

X1 X X2
Fig. 3.10: Zur formelmiBigen Erfassung konvexer Funktionen

Diese Ungleichung ist charakteristisch fiir konvexe Funktionen. Unsere anschauliche Motivation
fiihrt uns damit zu folgender exakten Definition:

Definition 3.5:
Eine reellwertige Funktion f heiit konvex auf einem Intervall 7, wenn die Unglei-
chung

S =2)xr +Axz) < (A —2) f(x1) +Af(x2)

fiir beliebige x1, xo € I und beliebiges A € (0,1) erfiillt ist.

Darf in der Ungleichung < anstelle von < gesetzt werden, so nennt man f streng
konvex. Im Falle > anstelle von < wird f konkav genannt, im Falle > anstelle von <
streng konkav.

Statt » f ist streng konvex« sagt man auch » f hat eine Linkskriimmung«, entsprechend bei streng
konkavem f : » f hat eine Rechtskriimmung«. (Hier stellt man sich offenbar vor, dal man im
Auto auf dem Graphen von f entlangfihrt in Richtung steigender x-Werte.)

Geometrische Deutung der zweiten Ableitung

Die Betrachtung der Fig. 3.9a zeigt, da} die Steigung der gezeichneten konvexen Funktion f
von links nach rechts zunimmt (oder wenigstens nicht abnimmt). f” ist also monoton steigend.
Das bedeutet aber f”(x) > 0. Man vermutet sogar, daB aus f”(x) > 0 strenge Konvexitit folgt.
Entsprechend ist eine konkave Funktion durch f”(x) < 0 gekennzeichnet, withrend f”(x) < 0
sogar strenge Konkavheit verbiirgt (zweimalige Differenzierbarkeit vorausgesetzt). Wir prizisie-
ren diese anschaulichen Uberlegungen in folgendem Satz:

Satz 3.20:
Es sei f eine reelle Funktion, die auf einem Intervall / stetig ist und im Inneren /
dieses Intervalls zweimal stetig differenzierbar ist. Damit folgt:

f"(x) > 0 fiir alle x € i <= f istkonvex auf /,
f"(x) < Ofiiralle x € I = f ist konkav auf 1.

Im Falle positiver bzw. negativer zweiter Ableitung gilt die Verscharfung:
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f"(x) > Ofiir alle x € [ f ist streng konvex auf 7,

f"(x) < Ofiir alle x € I f ist streng konkav auf /.

Beweis:

(I) Es sei f”(x) > 0 auf . Wir zeigen, dafl f konvex auf [ ist, d.h. daB fiir beliebige x; < x»
aus [ gilt:

(A=A fGD)+Af(x)] = f(x) =0 fir x=(1—-Ax1+ix2, 2e€(0,1).
Man erkennt die Richtigkeit der Ungleichung durch folgende Umformung:

A=) fx1) +Af(x2) = fx)
=0 =0(f(x1) = f(x) +A(f(x2) = f(x))
== f'EDE —x) +Af'(E) (2 —x)
= (1 =0 f'ENE1 — x2) + Af'(E2)(x2 — x1)
=21 =22 —x)(f' (&) — ')
=21 =12 —x1)(E —&1) f"(§0) =2 0

>0

nach Mittelwertsatz mit

x1<$1<x<52<x2

wiederum nach

Mittelwertsatz mit

§1<b<&

Die Konvexitit ist damit gezeigt. Im Falle f”(x) > 0 auf I folgt insbesondere f”(£9) > 0 und
damit die strenge Konvexitét. Der konkave Fall ergibt sich analog.

(I) Umgekehrt ist zu zeigen: f konvex = f”(x) > 0 auf I. f sei also konvex auf 7; damit gilt
fiir beliebige Punkte x; < x < xp aus I die Ungleichung (3.98)

fx) =gx),

wobei g der Gerade durch (x1, f(x1)) und (x2, f(x2)) ist. Subtraktion von f(x1) = g(x1) und
Division durch x — x; > 0 liefert

SO = fx) _ g0 —glx) _
=m

X — X1 - X — X1

’

wobei m die Steigung der Geraden g ist. Mit x — xj erhdlt man f’(x1) < m. Analog folgt aus
f(x) < g(x) nach Subtraktion von f(x2) = g(x2) und Division durch x — x; < O:

fo) = fe) g —gt) _

X — X X — X2

=  flx)=m.

Zusammen erhalten wir f/(x;) < f'(xp) fiir x; < x3, also ist f/ monoton steigend und somit
f"(x) > 0 auf I . Der konkave Fall verliuft entsprechend. O
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Zum Beispiel: Die folgenden Funktionen sind streng konvex auf R, da ihre zweiten Ableitungen
positiv sind:

fx) =x2, fx)=¢€", f(x) =coshx.

Die Funktion f(x) = x3 ist streng konvex auf (0, oo) und streng konkav auf (—oo, 0).
Der Konvexititsbedingung kann man folgende allgemeinere Fassung geben:

Folgerung 3.8:
f ist genau dann konvex auf dem Intervall /, wenn

f (Zm-) <Y MifG), (=2), (3.101)
i=1 i=1

n
gilt fiir beliebige x1, ..., x, € I und beliebige positive Ay, . .., Ay mit Z A= 1.
i=1

Bei strenger Konvexitit steht < statt < in (3.101). Fiir (streng) konkave Funktionen haben
wir > (bzw. >) in (3.101). Der Beweis wird mit vollstdndiger Induktion gefiihrt und bleibt dem
Leser iiberlassen.

Die Ungleichung (3.101) fiihrt auf weitere fundamentale Ungleichungen der Mathematik
(s. [24], Abschn. 59). Zum Beispiel erhalten wir daraus

Folgerung 3.9:
(Ungleichung des gewichteten arithmetischen und geometrischen Mittels) F;llir beliebi-
ge nichtnegative Zahlen ay, ..., a, und beliebige positive Ay, ..., A, mit Z Ao=1
gilt =
ai‘laé‘z ~...'a,)1‘" < May +Aay+ ...+ Aqay, . (3.102)

Im Falle A; = 1/n fiir alle i erhilt man die klassische Ungleichung des geometrischen
und arithmetischen Mittels

al+a+...+a
Jay-az ... ay < Y

n

(3.103)

Beweis:
In x ist streng konkav auf (0, c0), da die zweite Ableitung negativ ist. Damit gilt nach Folge-
rung 3.8

n n
In (ka,) > Z)‘i Ing; =1n (ai‘l . -aﬁ") )
i=1 i=1
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wobei alle g; als positiv vorausgesetzt seien. Wegen der Monotonie der Logarithmusfunktion
folgt (3.102). Ist aber a; = 0, so gilt (3.102) trivialerweise. [l

Ubung 3.35:
Wo sind die folgenden Funktionen konvex oder konkav?

sinx , cos X, In x|, sinh x , arctan x , f(x)=x4—5x2+4.

Ubung 3.36:

Beweise: Ist f auf dem Intervall / konvex und streng monoton steigend, so ist die Umkehrfunk-
tion f “laufJ = f(I) konkav.

3.2.6 Das Newtonschel? Verfahren

Das Losen von Gleichungen ist eines der ersten und wichtigsten Anwendungsprobleme der Ma-
thematik. Wir wollen uns hier mit Gleichungen der Form

fx) =0

beschiftigen, wobei f eine reellwertige Funktion auf einem Intervall ist. Zur Losung von f(x) =
0 soll das Newtonsche Verfahren beschrieben werden. Es beruht auf einer einfachen geometri-
schen Idee und ist doch duBerst weitreichend und fiir die Praxis von hoher Bedeutung.

‘ly

A ko

o X2 Xq Xo
Fig. 3.11: Zum Newtonschen Verfahren

Die Idee des Newtonschen Verfahrens 148t sich anhand der Fig. 3.11 klarmachen: Gesucht ist
die Schnittstelle X des Graphen von f mit der x-Achse (sie erfiillt f(x) = 0). Wir nehmen an,
dal} ein Punkt xo in der Ndhe von X bekannt ist, den man durch Probieren oder Skizzieren des
Graphen gewonnen hat.

Man legt nun die Tangente an f in x¢ und sucht ihre Schnittstelle x; mit der x-Achse auf

10 Sir Isaac Newton (1643 —1727), englischer Physiker, Mathematiker, Astronom, Alchemist, Philosoph und Theolo-
ge.
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(falls vorhanden). Da die Gleichung der Tangente

g(x) = f(x0) + f'(x0)(x — x0)
lautet, gewinnt man x1 aus g(x1) = 0, also f(xo) + f'(x0)(x1 — x0) = 0, d.h.

S (x0)
f(x0)

(Dabei setzen wir f/(x) # 0 im ganzen Intervall I voraus.) x ist in den meisten Fillen eine
»bessere« Ndherungslosung als xg.

X1 = X0 —

Liegt x1 in I, so kann man die gleiche Uberlegung abermals anwenden: Man legt an f in x|
die Tangente, berechnet deren Nullstelle x; usw.

Man errechnet auf diese Weise sukzessive die Zahlen

f )
S (xn)

Xntl = X — n=0,1,2,..)), (3.104)

von denen wir annehmen wollen, daB sie alle in / liegen. (Es kann vorkommen, daB x,, fiir ein
n nicht in 7 liegt. Dann bricht das Verfahren ab.)

Die so berechnete Folge xg, x1, x2, ... konvergiert »normalerweise« gegen die Nullstelle X
von f.»Normalerweise« heif3t: unter Voraussetzungen, wie sie iiblicherweise in den Anwendun-
gen erfiillt sind.

Die Folge der Zahlen xg, x1, x2, ... heilit eine Newtonfolge zu f.

Der folgende Satz gibt hinreichende Bedingungen an, unter welchen die Newtonfolge gegen
die Nullstelle X von f strebt.

Satz 3.21:

Es sei f eine reelle, dreimal stetig differenzierbare Funktion auf einem Intervall / =
[xo — r, xo + r], und es gelte f/(x) # O fiir alle x € I. Ferner existiere eine positive
Zahl K < 1 mit

f)f"(x)

()2 <K <1 firallex el (3.105)
und
;/(();‘:))) <1 -K)r. (3.106)

Damit folgt: f hat genau eine Nullstelle X in /. Die Newtonfolge xg, x1, x2, . .., defi-
niert durch (3.104) f konvergiert quadratisch gegen X, d.h. es gilt

[Xp+1 — %] < C(xp —f)z firallen =0,1,2, ... (3.107)
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mit einer Konstanten C. SchlieBlich haben wir die Fehlerabschétzung

|x, — x| < M mit0 < M < min | f’(x)|. (3.108)
M xel
Beweis:
Man fiihrt die Hilfsfunktion
fx)
gxX)=x———, (xel),
Sf(x)

ein. Damit ergibt sich die Newtonfolge aus der einfachen Iterationsvorschrift x,11 = g(x,),
n=0,1,2,....

g erfiillt auf / die Voraussetzungen des Banachschen Fixpunktsatzes (Abschn. 1.4.7, Satz 1.8),
denn es ist |g'(x)| = | f(x) f"(x)/f'(x)?| < K < 1, also nach dem Mittelwertsatz:

lg(x) —g@)| =1g'E)|lx —z| < K|x —z| firallex,zel.

Folglich ist g eine »Kontraktion« auf /. Ferner bildet g das Intervall I = [xg — 7, xo + ] in sich
ab. Denn fiir beliebiges x € I gilt mit (3.106)

f(x0)
S (xo0)

lg(x) — xo0| < |g(x) — g(x0)| + |g(x0) — xol < K|x — xo| + ’
<Kr+(0—-K)r=r

also auch g(x) € I. Die Anwendung des Banachschen Fixpunktsatzes liefert damit die Kon-
vergenz der Newtonfolge gegen den (einzigen) Fixpunkt X von g. Er erfiillt x = g(x) =
¥ — f®/f'),dh f(x)=0.

Die quadratische Konvergenz ergibt sich aus der Taylorformel von g um X fiir n = 1, mit
Lagrangeschem Restglied

g) =g® + ¢ ®x —X) + gT@)(x -3 (tel).

Wegen g(¥) = x und ¢'(X) = fX)f"&)/f (*)* = 0 folgt mit x = x,,, g(x) = Xx,41 und

1 e
C =5 max|g(n)l:

- —2
|xpp1 — x| < Clxy — %),

womit (3.107) bewiesen ist. (3.108) leitet man leicht aus dem Mittelwertsatz her, angewandt auf
f(xn) — f(x), wobei f(x) =0. [l

Bemerkung: Der Satz besagt im Wesentlichen: Ist die Ndherungslosung xg von f(x) = 0 »gut
genug, so funktioniert das Newtonsche Verfahren. Denn je besser xg die Losung X annéhert, je
kleiner also | f (xp)| ist, desto groBer ist die Chance, dall Konstanten r > 0 und K > 0 existieren,
so daB (3.105) und (3.106) erfiillt sind.
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Es bleibt die Frage: Wie findet man Anfangsanndherungen xo? Wir sagten schon: Oft mufl man
sie durch Probieren und Zeichnen des Funktionsgraphen suchen oder beim automatischen Rech-
nen auf dem Computer durch das Intervallhalbierungsverfahren. Im Falle konvexer Funktionen f
ist man jedoch besser dran. Hier sind wir mit jeder Anfangsniherung erfolgreich, die f(xp) > 0
erfiillt. Priazise Auskunft gibt der folgende Satz:

Satz 3.22:
Die zweimal stetig differenzierbare Funktion f : [a, b] — R sei konvex und erfiille
f'(x) # 0 auf [a, b]. Die Vorzeichen von f(a) und f(b) seien verschieden.
Damit folgt: Ausgehend von einem beliebigen Punkt xo € [a, b] mit f(xg) > 0

konvergiert die Newtonfolge von f, und zwar gegen die einzige Nullstelle von f in
[a, b].

Zusatz: Ist f sogar dreimal stetig differenzierbar, so ist die Konvergenz quadratisch.

Beweis:

Ohne Beschrinkung der Allgemeinheit nehmen wir f'(x) > 0 auf [a, b] an. f steigt somit streng
monoton und hat daher genau eine Nullstelle in [a, b]. Fig. 3.11 zeigt, da} die Newtonfolge (x;)
monoton féllt und durch die Nullstelle X von f nach unten beschrinkt ist. (Man priift dies leicht
durch Rechnung nach.) Damit konvergiert die Newtonfolge gegen eine Grenzwert x*. Laft man
in x,+1 = x, — f(x,) auf beiden Seiten n gegen oo gehen, so erhélt man

S

* * kY

xF=x* - 0 = f(x") =0,

also x* = X. Der Zusatz folgt aus Satz 3.21, der ja besagt, da} bei geniigend kleinem Abstand
der Nidherungslosungen von x quadratische Konvergenz von (x;) vorliegt. U

Bemerkung: In der Praxis des Ingenieurs geht man meistens so vor, dafl man die Newtonfolgen
X0, X1, X2, ... einfach sukzessive durch die Vorschrift x,1 1 = x, — f(x,)/f (x,) berechnet,
ausgehend von einer Anfangsniherung, die man sich irgendwie verschafft hat (durch Probieren,
Zeichnen, Konvexititsiiberlegung a la Satz 3.22 oder durch ein vorgeschaltetes Intervallhalbie-

rungsverfahren). Man kiimmert sich wenig um Konvergenzsitze, sondern bricht das Verfahren

Xn
Xn+1

ab, wenn |x,41 — x,| »klein genug« ist (z.B. wenn ‘ — l) <5.107%, d.h. wenn x,, und Xn+1

auf 8 Stellen iibereinstimmen). Da

S (xn) ~ | f (xn)l
S ) M
gilt, wenn U ein gentigend kleines Intervall um die Nullstelle ist, und da | f (x,)|/M > |x, — X|

die Fehlerabschitzung darstellt, ist durch |x, 1 — x,| ungeféhr der Fehler |x,, — x| gegeben. Es
gilt also die

[Xn41 — xul =

mit M = min | f'(x)|
xeU

Faustregel: Der Fehler |x,, — x| ist nahezu gleich der Anderung beim nichsten Newtonschritt,
d.h. nahezu gleich |x, 11 — x,|-
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Fiir die Praxis reicht dieses »hemdsédrmelige« Vorgehen in den meisten Fillen aus!

Es sei schlieBlich erwéhnt, daB sich das Newtonsche Verfahren vorziiglich zur Nullstellenbestim-
mung von Polynomen eignet. Dabei gewinnt man die Funktionswerte f(x,) und die Ableitungs-
werte f”(x,) fiir das Newton-Verfahren bequem durch das »doppelte Hornerschemac, d.h.: Ist

fx) =ap+ar +ax*+ ...+ apx™,

so berechnet man die ersten beiden Systeme des grolen Hornerschemas (vgl. Abschn. 2.1.5):

Doppeltes Hornerschema

X = Xp am am—1 e an al ap
l Xnbm_1 - (xn*bz - xn*bl X, bo
bm—1 bm—2 by bo | ro= f(xn)
XnCm—2 ... XnCl XnCo
5 4 | . 4 v
v v ,
Cm—2 Cm—3 co |r1=f"(xn) (3.109)

Die Gleichungen ro = f(x,), r1 = f'(x,) ergeben sich dabei aus folgender Uberlegung: Setzt
man das Schema zum grof3en Hornerschema fort, so erhélt man

F) =ro+r1(x —xu) +r2(x —x)* 4 .o A (x = x)"

(s. Abschn. 2.1.5). Daraus folgt unmittelbar f (x,) = rg, f'(x,) = r1.

Wendet man also bei jedem Newton-Schritt das doppelte Hornerschema (3.109) zur Berech-
nung von Funktions- und Ableitungswert an, so hat man ein effektives Verfahren zur Ermittlung
der reellen Nullstellen des Polynoms f (vgl. [56], 4.2.6).

Diese Idee ist in [40] zu einem »automatensicheren« Verfahren weiterentwickelt worden. Man
findet das »Nickel-Verfahren« oder andere vollautomatische Verfahren heute in fast allen Pro-
grammbibliotheken elektronischer Rechenanlagen.

Ay
14 y = sin x
& 4 xp = 2,000000000
T x1 = 1,900995594
= xo = 1,895511645
% x3 = 1,895494267
y=3 x4 = 1,895494267

Fig. 3.12: a) Zur Gleichung % —sinx = 0. b) Zur Berechnung der Losung von % —sinx =0
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Beispiel 3.29:
Gelost werden soll die Gleichung

X .
— —sinx =0.

Es handelt sich um die Suche nach den »Schnittpunkten« der beiden Funktionen g(x) = x/2
und sin x Die Fig. 3.12a zeigt, daB} drei Schnittpunkte zu erwarten sind, einer bei 0, einer bei 2
und der dritte etwa bei —2, wobei der letzte das Negative desjenigen bei 2 ist. Wir brauchen also

numerisch nur die Losung x in der Nihe von 2 zu berechnen. Wir setzen f(x) = )EC — sin x. Fur
diese Funktion errechnen wir die Rekursionsvorschrift nach (3.104):

Xn/2 — sinx,

Xn+l = Xp — , n=0,12,....

1/2 — cos xy,

Beginnend mit xg = 2 erhilt man daraus die Werte in Fig. 3.12b, die auf 10 Dezimalstellen
gerundet sind. Wir erkennen die unglaublich schnelle Konvergenz des Newton-Verfahrens, denn
schon ab x3 dndern sich die numerischen Werte nicht mehr. Die Losung lautet also, auf 10 Stellen
genau:

x = 1,895494267 .

(Der Leser tiberpriife mit der Fehlerabschétzung (3.108) des Satzes 3.21, dafl der Fehler kleiner
als 5- 10710 jst)

f(x) =x2—a

X0 = 3,000000000
x1 = 2,000000000
x5 = 1,750000000
x3 = 1,732142857
x4 = 1,732050810
x5 = 1,732050808
X6 = 1,732050808

Fig. 3.13: a) Zur Berechnung von 4/a mit dem Newtonschen Verfahren b) Berechnung von /3

Beispiel 3.30:

(Berechnung von Quadratwurzeln) Es sei a > 0 gegeben, und es soll  /a berechnet werden.
Man sieht, daB /a die einzige Nullstelle der Funktion f(x) = x> — a auf [0, c0) ist. Ausge-
hend von einem x¢ mit f(xg) > O ermitteln wir die Nullstelle mit dem Newtonverfahren. Die
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Iterationsvorschrift x,, 11 = x, — f (x,)/f’ (x,) wird fiir unsere Funktion nach Umformung zu

1 a
xn+1=5 Xp + — n=12,....

Xn

Als xp kann man xg = a wihlen, wenn a > 1 ist, und xo = 1, falls 0 < a < 1 gilt. In jedem
dieser Fille ist die Bedingung f(xg) > O erfiillt, d.h. die so gebildete Folge (x;) strebt nach
Satz 3.22 quadratisch gegen 1/a. Beachtet man nun noch, daB x; = %(xo + a/xp) der gleiche
Wert ist, egal, ob man xo = a oder xg = 1 setzt, so schrumpft unsere Anfangsbedingung zu der
einfachen Regel zusammen: Man setze in jedem Falle xo = a.

Die Tabelle in Fig. 3.13b verdeutlicht anhand der Berechnung von +/3 die schnelle Konver-
genz. Nach nur 5 Iterationsschritten ist

V3 = 1,732050808

auf 10 Stellen ermittelt.

Die angegebene Methode ist eine der besten zur Berechnung von Quadratwurzeln. Die mei-
sten Computerprogramme beruhen darauf. (Bei grolem a werden zuerst Zweierpotenzen abge-
spalten: a = a92%, mit 1 < ag < 4, und dann aus ag und 2% gesondert die Wurzeln gezogen:

Ja= Ja2k)

Ubung 3.37:

Berechne mit dem Newtonverfahren die reellen Losungen der Gleichung

Ubung 3.38:
Gib ein Verfahren zur Berechnung von /a an (a € R beliebig).

3.2.7 Bestimmung von Extremstellen

Wir behandeln das Problem, Maxima und Minima einer reellen Funktion zu finden. Diese Auf-
gabe tritt in Naturwissenschaft, Technik, Wirtschaftswissenschaft usw. hiufig auf. Sie steht auch
historisch mit am Anfang der Differential- und Integralrechnung und hat befruchtend auf ihre
Entwicklung gewirkt.

Zunichst einige Begriffsbildungen, damit wir wissen, wovon wir reden.

Definition 3.6:

Man sagt, die Funktion f : I — R (I Intervall) besitzt in xg € [ ein lokales Maximum,
wenn es eine e-Umgebung U von xq gibt, in der f(xp) grofter Funktionswert ist, d.h.

fxp) = f(x) firallexeUNI
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Ay
globales
Maximum
A
lokales lokales globales
Minimum Minimum Min.
X
B Y v
Xo X1 X2
a I=[a,b] b

Fig. 3.14: Typen von Extremstellen

gilt. xo heilt eine lokale Maximalstelle, und die Zahl f(xo) ist das zugehorige lokale
Maximum. Gilt sogar

f(xg) > f(x) furallex € UN I mitx # xop,

so spricht man von einem echten lokalen Maximum und einer echten lokalen Maxi-
malstelle.

Entsprechend werden lokale Minima und Minimalstellen definiert, die ebenso echt oder unecht
sein konnen.

Das »eigentliche« Maximum einer Funktion f : I — R, also der grofite Funktionswert f (xg)
auf ganz I, wird zur Unterscheidung von lokalen Maxima auch globales (oder absolutes) Maxi-
mum genannt. xo heiit dabei globale (oder absolute) Maximalstelle. Das globale Maximum ist
natiirlich auch lokales Maximum, aber nicht umgekehrt. Fiir Minima und Minimalstellen verein-
bart man Entsprechendes. Fig. 3.14 verdeutlicht diese Begriffe.

Der Sammelbegriff fiir Maximum und Minimum ist Extremum, fiir Maximal- und Minimal-
stelle Extremstelle.

Wie kann man Extremstellen einer Funktion ermitteln? Sehen wir uns dazu Fig. 3.14 an: Wir
erkennen, daf} in den Maximalstellen xo und x,, wie auch in der Minimalstelle x|, waagerechte
Tangenten an f vorliegen, d.h. die Ableitung f’ von f verschwindet dort. xg, x1, x» sind dabei
innere Punkte des Definitionsbereiches / von f. Extremalstellen konnen jedoch auch Randpunk-
te des Definitionsbereiches sein. Der linke Randpunkt a ist zweifellos eine lokale Minimalstelle,
withrend der rechte Randpunkt b sogar eine absolute Minimalstelle von f ist. Diese Uberlegun-
gen fiihren zu folgendem Satz:

Satz 3.23:
Fiir jede lokale Extremstelle x¢ einer differenzierbaren Funktion f auf einem Intervall
I gilt

@ f'(x)=0
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oder:

(b) xp ist Randpunkt von 1.

Beweis:

Es sei x( eine lokale Maximalstelle. Ist xg kein Randpunkt von 7, so gibt es eine e-Umgebung U
von xp, die ganz in [ liegt, und in der f(xg) — f(x) > O erfiillt ist. Daraus folgt

P = lim L8 =IO S e = fim L8O SO
X—> X0 X0 — X X—>X0 X0 — X
X <XQ X>X0
also f’(xg) = 0. (Analog fiir Minimalstellen.) O

Um die Extremstellen von f zu finden, hat man also die Gleichung
flx)=0

zu 16sen und anschlieBend die Losungen — wie auch die Randpunkte von / — zu untersuchen.
Die Entdeckung dieser Tatsache gelang Leibniz 1675, und er war mit Recht sehr stolz darauf.
In der Menge der Losungen von f’(x) = 0 — zuziiglich der Randpunkte von I — sind also
alle Extremstellen von f enthalten. Umgekehrt jedoch braucht nicht jeder Punkt dieser Menge
Extremstelle zu sein!
Man denke z.B. an die Funktion f(x) = x3 auf R (s. Fig. 3.15). Fiir sie gilt zwar f/(0) = 0,
doch ist xo = 0 weder lokale Maximal- noch Minimalstelle.

Ay

f(x) = x3

v =

Fig. 3.15: Beispiel fiir einen Punkt xo mit f/(xg) = 0, wobei x( keine Extremstelle ist (hier xg = 0).

Es muB also ein Kriterium her, welches uns zu erkennen hilft, welche Losungen von f/(x) = 0
Extremstellen sind. Ein hinreichendes Kriterium liefert der folgende Satz. Es handelt sich um das
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wichtigste Kriterium dieser Art.

Satz 3.24:
Ist f : I — R (I Intervall) zweimal stetig differenzierbar und gilt f’(xp) = O fiir
einen Punkt xo € I, so folgt:

F’(xg) <0 = in x liegt ein echtes lokales Maximum,
f’(xg) >0 = in xg liegt ein echtes lokales Minimum.

Beweis:
Wir notieren die Taylorformel fiir f um xo, und zwar fiir n = 1:
4
&)
fx) = f(xo) + f'(x0)(x — x0) + f (x —x0)%.

Das letzte Glied ist das Lagrangesche Restglied mit einem & zwischen x und xo. Wir wollen
/" (x0) > 0 annehmen. Da f” stetig ist, gilt f”(x) > ¢ > 0 in einer s—Umgebung U von xq (¢
konstant). Beachtet man noch f’(xg) = 0, so folgt aus der Taylorentwicklung

f(x) > f(xo) + %(x —x())2 > f(xo) flurallex € U NI mitx # xop,

d.h. xq ist echte lokale Minimalstelle.
Analog folgert man aus f”(xg) < Ound f’(xg) = 0, daB xo echte lokale Maximalstelle ist. (]

Damit gewinnt man die folgende Methode zur Extremwert-Bestimmung bei zweimal stetig dif-
ferenzierbaren Funktionen f : I — R (I Intervall).

Verfahren zur Bestimmung von Extremstellen

(D Man errechnet simtliche Losungen der Gleichung
ffx)=0, xel,

(mit dem Newtonschen Verfahren oder direkten Auflosungsformeln). Wir nehmen an, daf3
es endlich viele sind.

(1) Fiir jede Losung xo von f/(x) = 0 bestimmt man f”(xp). xo ist eine lokale Maximalstelle,
falls f”(xo) < 0, xo ist eine lokale Minimalstelle, falls f”'(xg) > 0. Wir wollen annehmen,
dafl kein anderer Fall vorkommt. (Das trifft fiir die meisten Anwendungen zu. Der Fall
f"(xg) = 0 wird in Ubung 3.44 im nachfolgenden Abschnitt behandelt.)

(IIT) Dann errechnet man die Funktionswerte f (xg) fiir alle Losungen xg von f'(x) = 0 sowie
fiir die Randpunkte von 7 (sofern sie zum Definitionsbereich von f gehoren.). Damit sind
alle lokalen Extrema gefunden.

(IV) Ist I beschrinkt und abgeschlossen, so findet man unter den lokalen Extrema leicht das
globale Maximum und das globale Minimum heraus.
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Bemerkung: Gibt es unendlich viele Nullstellen von f”, oder gilt f”(x) = O fiir einige dieser
Nullstellen, so hat man weitere Untersuchungen durchzufiihren (Betrachtung hoherer Ableitun-
gen usw.). In den meisten Féllen kommt man aber mit dem obigen Verfahren zurecht.

Beispiel 3.31:
Wir suchen die Extremstellen der Funktion

f(x)=e"—2x+1, firxeR
(I) Dazu setzen wir f’(x) = e* —2 gleich Null:
ef-2=0 < e&"'=2 << x=I2.

Einzige Nullstelle von f’ ist also xo = In2 = 0,693147.

() Fiir diese Nullstelle ist f”(xp) = e > 0, also liegt in xo eine echtes lokales Minimum
Vor.

(III) Randpunkte von R gibt es nicht. Also ist x( einzige Extremstelle und damit auch die globale
Minimalstelle von f. Die Zahl f(xp) = 1,613706 ist damit das globale Minimum von f.

Beispiel 3.32:
Es soll unter allen Rechtecken mit gleichem Fldcheninhalt F dasjenige mit kleinstem Umfang
gesucht werden. Welche Form hat es?

Wir greifen uns irgendeines der Rechtecke heraus. Fiir seine Seitenldngen x und y gilt F =
x -y, und fiir den Umfang u = 2(x + y). Wir setzen y = F/x ein und erhalten

F
u=2(x+—9,, x>0.
X

Das globale Minimum dieser Funktion soll gesucht werden. Wir errechnen die positiven Nullstel-
len der Ableitung u’ = 2(1 — F/x?):

2<1—£2>=0 — x=+F.

X

Die zweite Ableitung u” = 4F /x> ist an dieser Stelle positiv, also liegt bei xo = ~/F eine
Minimalstelle. Es ist die gesuchte, da es keine weitere gibt. xo = ~/F ist aber die Seitenléinge
eines Quadrates mit Inhalt 7. Die optimale Form ist also das Quadrat.

Weitere Beispiele aus Technik und Naturwissenschaft sind im Abschn. 3.3.6 angegeben.

Ubung 3.39:

Bestimme alle Extremalstellen der Funktion
F(x) =x*—0,4x —3,9x2 +4,6x — 9

auf dem Definitionsbereich I = [—10,10].
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Fig. 3.16: Kasten mit groltem Volumen

Ubung 3.40%:
Aus einem rechteckigen Blech mit den Seitenlédngen ¢ = 50cm, b = 80 cm, soll nach Heraus-
schneiden quadratischer Eckstiicke ein Kasten mit groftmoglichem Volumen geknickt werden
(Kasten ohne Deckel). Wie gro83 ist die Hohe x des Kastens? (Vgl. Fig. 3.16)

3.2.8 Kurvendiskussion

Schaubilder von Funktionen werden gerade von Ingenieuren viel verwendet. Um den wesentli-
chen Verlauf einer reellen Funktion zu iiberblicken, geht man zweckmiBig die folgenden Ge-
sichtspunkte der Reihe nach durch. (Auf Computerbildschirmen lassen sich leicht Schaubilder
von Funktionen erstellen. Sie ergénzen die Kurvendiskussion graphisch und numerisch.)

(I) Definitionsbereich: Zuerst bestimme man den Definitionsbereich einer vorgelegten Funktion
f, die von einer reellen Variablen abhéngt. Da f (x) hiufig formelmifBig gegeben ist, muf gepriift
werden, fiir welche reellen x der Formelausdruck sinnvoll ist. (Fiir /x muB z.B. x > 0 sein, fiir
1/x muB x # 0 sein usw.) Beschreibt z.B. eine Linge, eine Masse oder eine absolute Temperatur,
so ist nur x > 0+ sinnvoll. Definitionsbereiche sind in Anwendungsbeispielen normalerweise
Intervalle oder Vereinigungen endlich vieler Intervalle.

(II) Symmetrie: Man priife, ob eine gerade Funktion (d.h. f(—x) = f(x)) oder ungerade
Funktion (d.h. f(—x) = —f(x)) ist (evtl. nach »Nullpunktverschiebung« x’ = x — xp, y/ =
y = Y0)-

(II1) Nullstellen von f, f', f”: Man berechne die Nullstellen von f, f" und f” und bestimme so

die Intervalle, in denen diese Funktionen positiv bzw. negativ sind. Damit ist insbesondere klar,
wo f

positiv bzw. negativ (f(x) >0 bzw. f(x) <0)
streng monoton wachsend bzw. fallend (f'(x) > 0 bzw. f/(x) <0)
streng konvex bzw. konkav (f”(x) >0 bzw. f"(x) <0)

ist.



3.2 Ausbau der Differentialrechnung 265

(IV) Extremstellen: Die Nullstellen von f’, zusammen mit den Vorzeichen von f”, liefern
lokale Maxima und Minima. Man vergesse nicht die Randpunkte des Definitionsbereiches. (In
Punkten x mit f'(x) = f”(x) = 0 sind Sonderuntersuchungen durchzufiihren, s. Ubung 3.44.)

(V) Wendepunkte: Man bestimme die Wendepunkte von f. Als Wendepunkt bezeichnet man
dabei jeden »Nulldurchgang« xo von f” (d.h. xo ist Nullstelle von f”, und es gibt eine &-
Umgebung U um xp, in der links von xo die Funktionswerte von f” ein anderes Vorzeichen
haben als rechts von xg). Eine hinreichende Bedingung fiir Wendepunkte xq ist f”(xg) = O,
S (x0) # 0. (f dreimal stetig differenzierbar vorausgesetzt. Fiir den Fall f”(xg) = f""(x9) =0
s. 3.44.)

Beim Durchgang durch einen Wendepunkt wechselt die Funktion von streng konvexem zu
streng konkavem Verhalten, oder umgekehrt. Da f in einer Umgebung eines Wendepunktes na-
hezu eine Gerade ist, sind die Wendepunkte technisch oft wichtig (etwa bei Federkennlinien oder
Kennlinien von Verstirkern).

(VI) Pole, einseitige Grenzwerte: Ist xo ein Haufungspunkt des Definitionsbereiches, gehort
aber nicht dazu, so bestimme man

lim f(x) und lim f(x)
X—>X0 X—>X0
xX>Xx0 X<Xx0

und entsprechend fiir f”, falls moglich. Gilt lim | f(x)| = oo, so heifit xq ein Pol von f (s. Ab-
X—>X0

schn. 1.6.8). Man ermittle die Pole von f. Ist beispielsweise f(x) = g(x)/h(x), so sind die
Nullstellen xp von £ Pole, in denen g(xp) # 0 ist. Im Falle g(xo) = h(xp) = 0 versuche man
lim f(x) durch die de I’Hospitalschen Regeln zu gewinnen.

X—>X0

(VII) Verhalten fiir grofe x|, Asymptoten: Man versuche lim f(x) und lim f(x) zu be-
X—>00 X—>—00

stimmen, falls moglich. Allgemeiner suche man nach »einfachen« Funktionen 4 mit
|f(x) —h(x)] > 0 fiirx — oo bzw. x —> —o0.

Jede solche Funktion / heilt eine Asymptote von f. In Abschn. 2.2.1 ist dargestellt, wie man
Asymptoten von rationalen Funktionen berechnet. Die Asymptoten sind dabei Polynome. Beson-
ders interessant sind Geraden als Asymptoten. Eine Gerade als Asymptote tritt genau dann auf,
wenn der Grad des Zihlerpolynoms um hochstens 1 grof3er ist als der des Nennerpolynoms.

Beispiel 3.33:
Es soll die Funktion
4 2
-5 2
fay=2 20 *2 (3.110)
2x3

nach den genannten Gesichtspunkten »diskutiert« werden.

(D) Der Definitionsbereich von f ist R\ {0} (d.h. R ohne 0), da der Formelausdruck (3.110) fiir
x = 0 keinen Sinn ergibt.
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y]
3T |t y_i
T2
2—.—
1_-.
-4 -3 -1 2 X
L 1 1 1 1 L B
T T T 1 1 1 I T
-2 1 3 4
+-1
T-2
4 2
z* — Bz + 2
fla)="—2T= tog
2z°

- . _ x*-5x%42
Fig.3.17: f(x) = >3

(IT) Symmetrie: Es gilt zweifellos f(—x) = — f(x) fiir alle x # 0. f ist also eine ungerade
Funktion. Thr Graph liegt zentralsymmetrisch zum Punkt (0, 0). Aus diesem Grunde dis-
kutieren wir im Folgenden nur x > 0, da fiir x < O sich alle Eigenschaften durch diese
Symmetrie ergeben.

(III) Die Nullstellen von f ergeben sich aus x* = 5x2 42 = 0. Setzen wir z = x2, so ist
—5z42 = 0 zulosen. Man errechnet die Losungen z; = (5—+/17)/2, 20 = (5++17)/2,
woraus sich die positiven Nullstellen von f ergeben:

,/ _0662 X2 = ,/5+ =2,136.

Die Nullstellen von

x*+5x2 -6 d ) = 12 — 5x2
T S =

flo) =

errechnet man durch Nullsetzen der Zihlerpolynome. Man erhilt

12
x3 =1 (positive Nullstelle von f'), x4=,/ 5 = 1,549 (positive Nullstelle von f”).

Durch Berechnung einiger weiterer Werte von f, f/, f” erkennt man:

In (0, x1) und (x2, 00) ist f positiv,
in (x1, xp) ist f negativ,
in (0, x3) ist f'(x) < 0, also f streng monoton fallend,
in (x3, 00) ist f'(x) > 0, also f streng monoton steigend,
in (0, x4) ist f”(x) > 0, also f streng konvex,
in (x4, 00) ist f”(x) < 0, also f streng konkav.
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(IV) Einzige positive Nullstelle von f’ist x3 = 1. Es gilt f”(x3) > 0, d.h. x3 = 1 ist eine lokale
Minimalstelle mit dem lokalen Minimum f(1) = —1. x3 = 1 ist die einzige Extremstelle
in (0, 00).

(V) Einziger Wendepunkt in (0, co) ist x4 = /12/5, denn x4 ist einzige positive Nullstelle von
f”, wobei f”(x4) # 0 erfiillt ist.

(VD In 0 liegt ein Pol von f, da der Nenner in (3.110) fiir x = 0 verschwindet, der Zihler aber
nicht. Es ist

lim f(x) = 400, lim f(x) = —o0.
x—=0 x—0
x>0 x<0

(VII) f(x) laBt sich umschreiben in

x  —=5x%42
=53+ —a

(Bei komplizierten rationalen Funktionen benutzt man den Divisionsalgorithmus fiir Poly-
nome, s. Abschn. 2.2.2). Das zweite Glied rechts strebt fiir |[x| — oo gegen 0, so da} f(x)

und x /2 sich fiir groBe |x| beliebig wenig unterscheiden. D.h.: Die Gerade h(x) = ad ist

Asymptote von f. Der Graph von f kommt also fiir gro3e |x| dem Graphen von & beliebig
nahe.

Damit haben wir einen guten Uberblick iiber die Funktion f gewonnen. Das Schaubild
(s. Fig. 3.17) 148t sich mit diesen Angaben, vermehrt um einige wenige Funktionswerte,
skizzieren.

Bemerkung: Heute, im Zeitalter des Computers, hat man in kurzer Zeit (mit Programmierung in
ca. fiinf Minuten) ein Schaubild sowie eine Tabelle von etwa 100 Funktionswerten erstellt, die
ebenfalls einen Uberblick iiber die Funktion geben. Die Kurvendiskussion liefert aber einen tiefe-
ren Einblick in den funktionalen Zusammenhang, sozusagen einen Blick »hinter die Kulissenx,
weswegen diese Methode nach wie vor wertvoll ist.

Wie wichtig Wendepunkte, Extremstellen und Asymptoten in Physik und Technik sind, zeigt die
Diskussion der van der Waalsschen Gasgleichung.

Beispiel 3.34:
Die van der Waalssche'! Zustandsgleichung fiir reale Gase lautet
2
na
(p—i—W) (V —nb) =nRT . (3.111)

Dabei sind p der Druck, V das Volumen, T die absolute Temperatur, n die in Mol angegebene
Gasmenge, R = §8,314J/(K - Mol) die allgemeine Gaskonstante und a, b Stoffkonstanten. Wir

11 Johannes Diderik van der Waals (1837 —1923), niederléndischer Physiker
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wollen p in Abhéngigkeit von V studieren, d.h. wir 16sen nach p auf und fassen V als unabhén-
gige Variable auf:

nRT nZa
V—nb_W' (3.112)

p=fr(V)=

Fiir verschiedene Temperaturen T bekommen wir verschiedene Funktionen, was durch den Index
T an f angedeutet ist.

Nur fiir niedrige Temperaturen 146t sich ein Gas unter steigendem Druck verfliissigen, genauer
gesagt: unterhalb einer gewissen kritischen Temperatur Tx. Ist T > T, so bleibt das Gas selbst
unter beliebig hohem Druck gasférmig. Die kritische Temperatur 7 ist mathematisch dadurch
gekennzeichnet, daf3 die zugehorige Funktion p = fr, (V) einen Wendepunkt mit waagerechter
Tangente besitzt. Der Wendepunkt Vi. wird kritisches Volumen genannt, der zugehorige Wert
Pk = fr,(Vk) kritischer Druck. Das Problem besteht also darin, T, t und py zu finden. Man
berechnet dazu

= Yy = nRT n 2n’a "= Yy = 2nRT 6n’a (3.113)
P=m ==y e T v P TITI) Ty Ty T yr o
Esist f1(V) =0und f{(V) = 0 zu setzen, d.h.
nRT 2n2a 2nRT 6n’a
_ , - _ (3.114)

(V —nb)? V3 (V —nb)3 V4

Dividiert man die Seiten der linken Gleichung durch die entsprechenden Seiten der rechten Glei-
chung und schreibt V = Vg, so folgt

Vk — nb _ Vi
237
Einsetzen in (3.114) und (3.112) liefert die kritischen Gréen T = Ty und p = px:

und daraus Vg = 3nb. (3.115)

8a a

_ o - 3.116
27bR Pk = 7p2 (3.116)

Tx

Aus gemessenen Werten 7 und py konnen hieraus @ und b bestimmt werden.

Mit den neuen Variablen

T Vv p
y=—.

T=—, x=—,
Tx Vk Pk

geht die Gasgleichung bzw. die aufgeloste Gl. (3.112) iiber in

3 1 8 8t 3
(y~|—;> (x—g) =§r bzw. y =g;(x):= w1 2 3.117)
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Es folgt

247 6 1447 18

6 = () = e 18 3.118
Gr—12 T3 V=80 =G T (3.118)

Y =g ()=~
Hierauf baut man die Kurvendiskussion der Funktionen y = g, (x) auf:
Der Nenner (3x — 1) mulf positiv sein, damit ein zusammenhingender Graph von g, entsteht,
wie er fiir die Physik einzig sinnvoll ist. Also:

3x—1>0, dh x>

’

W =

d.h. Definitionsbereich von g ist (%, oo).

A

2,5

2,0

1.5

|
|
|
[
|
[
|
I
[
[
[
[
I
[
[
|
05 |+
[
[
[
|
1
3

Fig. 3.18: Zur van der Waalsschen Gleichung

Fir > 1 hat g; keine Extrema, fiir t = 1 (kritische Funktion g;) liegt bei x = 1 ein
Wendepunkt mit waagerechter Tangente, ein zweiter Wendepunkt liegt bei x = 1,878 mit y =
0,8758. Fiir t < 1 treten Extrema und Wendepunkte auf, die der Leser fiir einzelne 7 —Werte
bestimmen moge. Fig. 3.18 zeigt die Graphen einiger Funktionen g.. Fiir groe t néhert sich g,
der Zustandsfunktion idealer Gase.

Im Falle 7 < 1 verhilt sich das Gas in Wirklichkeit so, wie durch die waagerechten gestrichel-
ten Linien dargestellt. Hier ist das Gas teilweise verfliissigt (vgl. [28], S. 465).



270 3 Differentialrechnung einer reellen Variablen

Ubung 3.41:
Fiihre fiir folgende Funktionen Kurvendiskussionen durch:
@ 0=l =T @ fe=
’ C x244x 45 N ’ T Bx— 12’
@ f@=x" =" (@ f) = J;?e—xz/z, ® fe)=xe /¥,

Ubung 3.42:

Wieviele Losungen besitzen die folgenden Gleichungen? Man beantworte dies mit Kurvendis-
kussionen, insbesondere durch das Bestimmen der Intervalle, in denen die Funktionen streng
monoton wachsen oder fallen.

(a) lnx—%—i-l:O, (b) cosx:xz—x4,

(©) e =2+2x +x2, (d) arctanx = 1+ 2x — x2.

Uc Ur UL
—_s — >
I = 1
| |
Konden-  Wider- Spule
u sator stand

Fig. 3.19: Zur Abhingigkeit der effektiven Spannung von der Frequenz eines Schwingkreises.

Ubung 3.43:

12 Die Resonanzkurven eines elektrischen Schwingkreises (s. Fig. 3.19) sollen untersucht wer-
den. Dabei sei U, der Effektivwert der erregenden Spannung u, die mit der Kreisfrequenz w
harmonisch schwingt. Die Effektivwerte der Teilspannungen Uc, Ug, U in Fig. 3.19 lauten

dann
Ve Ue Un UeR
2 9 - 9
C\/(sz ~ &) + @R C\/<wL —ac) + R
U.L
Uy = ¢

etk (5

mit: C = Kapazitit, R = Widerstand, L = Induktivitit.

12 Nach [4], S. 37
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Zur Untersuchung der Abhéngigkeit von w ist es zweckmiBig, »dimensionslose« Grofen zu
verwenden. Mit der »Kenn-Kreisfrequenz« wq := 1/4/LC verwenden wir
® _Uc _Ug

X = —, = s = ,
py yc U, YR U,

Yo

YL = U,

und errechnen mit dem »Didmpfungsfaktor« d := R+/C/L und der Abkiirzung N(x) :=

V2 =12 +x2d2%:

_ 1 _ xd _ x2
“No BT Nwm PT N

Yo (3.119)

Die dadurch definierten drei Funktionen fc, fr und f7 sind zu diskutieren, wobei x > O ist.
Man suche insbesondere die Maximalstellen, die den Resonanzfrequenzen entsprechen. Ferner
gebe man die Schnittpunkte der Graphen von fc, fr und f7, an. Die Graphen sind fiir d = 0,6
zu zeichnen. Man iiberlege, was passiert, wenn der Dampfungsfaktor gegen Null strebt!

Ubung 3.44:

Essei f : I — R (n + 1)-mal stetig differenzierbar und x ein innerer Punkt des Intervalls 7.
(a) Zeige: Gilt
e =f"x)=...= fPxe)=0 und f"TD(xg) #£0,

wobei n ungerade ist, so liegt in xg ein Extremum (Maximum, wenn f (”‘H)(xo) < 0,
Minimum, wenn f@*D (xg) > 0).

(b) Beweise: Gilt
ey = ") =...= fP ) =0 und OV (xp) £0,
wobei n gerade ist, so ist xq ein Wendepunkt.

Anleitung: Sei £ (xy) > 0. Man zeige, daB ™, fr=D_ rn=2) " “abwechselnd einen
Nulldurchgang bzw. ein strenges lokales Minimum in xq haben.

33 Anwendungen

Aus der Vielzahl der Anwendungen der Differentialrechnung werden einige typische Beispiele
beschrieben, die stellvertretend fiir zhnliche Probleme stehen.

3.3.1 Bewegung von Massenpunkten

Dieser Problemkreis ist — bei Newton — der Ausgangspunkt fiir die »Erfindung« der Differen-
tial- und Integralrechnung. Dabei wird die Bewegung eines Massenpunktes in einem raumlichen
cartesischen Koordinatensystem betrachtet. Die Bewegung wird durch drei Funktionen

x(@), y@®, z() (¢€ln,nl)
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beschrieben, welche die drei Koordinaten des Massenpunktes zur Zeit ¢ angeben. Wir wollen
diese Funktionen als zweimal stetig differenzierbar annehmen. Man faf3t die Funktionen zu einem
Tripel zZusammen:

x(1)
r@)=|y@®|. (3.120)
z(t)

d.h. man schreibt sie Senkrecht untereinander, klammert sie ein und beschreibt das so entstandene
»Tripel« durch r(¢). 13

Die Geschwindigkeit des Massenpunktes bekommen wir durch Differenzieren der drei Funk-
tionen, wobei die Ableitung durch einen Punkt iiber dem Funktionssymbol gekennzeichnet wer-
den soll: x(t) := %x(t) usw. (dies ist bei Ableitungen nach der Zeit in Physik und Technik
iiblich). Somit erhalten wir die Geschwindigkeit des Massenpunktes als folgendes Tripel:

x(1)
Fit)=|y@® | . (3.121)
z2(¢)

Entsprechend ergibt sich die Beschleunigung des Massenpunktes durch zweimaliges Ableiten,
gekennzeichnet durch zwei Punkte iiber den Funktionssymbolen:

X(1)
Fi)y=|y@) | . (3.122)
z(1)
Beispiel 3.35:

(Gleichformige Drehbewegung, Fliehkraft) Bewegt sich ein Massenpunkt der Masse m auf einer
Kreisbahn mit konstanter Winkelgeschwindigkeit w > 0, so kann seine Bewegung durch

p cos(wt)

,osin(a)t)]’ teR, p>0, (3.123)

r(t) = [
beschrieben werden (Kreisbahn um 0 mit Radius p). Die dritte Komponente z(¢) ist konstant

gleich N¢/11 und daher in (3.123) weggelassen. Man errechnet daraus die Geschwindigkeit 7
und die Beschleunigung 7 durch Differenzieren:

F(1) = [—wp Siﬂ(wf)] ’ By = |:—w2,o cos(wt)} '

wp cos(wt) —w?p sin(wt)

2 14

Zieht man im Ausdruck ganz rechts den Faktor —w~ vor die Klammer'® , so kann man die

13 Solche Tripel werden auch Vektoren (im dreidimensionalen Raum) genannt. Eine kurze Einfiihrung in die Vektor-
rechnung findet der Leser in Abschn. 6.1, eine ausfiihrliche in Burg/Haf/Wille (Lineare Algebra) [7]. Der vorliegen-
de Abschnitt ist aber in sich verstiandlich, so da3 der Leser vorerst nicht nachzuschlagen braucht.

AX

14 Man vereinbart allgemein A [X] = |:
y Ay

:| fiir reelle Zahlen A (und entsprechendes fiir Tripel), vgl. Abschn. 6.1.
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Beschleunigung in der Form schreiben

o sin(wt)
p cos(wt)

F(t) = —wz[ ] . dh. F@) = —a?r(@). (3.124)

Der so errechnete Ausdruck —w?r (t) heift die Zentripetalbeschleunigung. Multipliziert man sie

mit der Masse m, also m¥(t) = —mw?r(¢), so erhilt man (nach dem 1. Newtonschen Grundge-
setz der Mechanik) die Zentripetalkraft, die auf den Massenpunkt wirkt. Ihre Gegenkraft

ma’r(t) (3.125)

heilt Zentrifugalkraft oder Fliehkraft.

Der Abstand des Bahnpunktes r(¢) von 0 ist der Radius p des Kreises. Man nennt diesen
Abstand den Betrag von r(t), beschrieben durch |r(t)| = p. Entsprechend ist ma?p der »Betrag«
der Fliehkraft.

b4

Fig. 3.20: Wurfparabel

Beispiel 3.36:

(Wurf und freier Fall, ohne Beriicksichtigung der Reibung) Ein Massenpunkt der Masse m wer-
de senkrecht nach oben geworfen, und zwar mit der Anfangsgeschwindigkeit vop > 0. Der Ab-
wurfpunkt sei der Nullpunkt einer nach oben weisenden y-Achse. Auf den Massenpunkt wirkt
die Gravitationskraft —mg mit der Erdbeschleunigung ¢ = 9,81m/s. (Dies gilt, genau genom-
men, nur fiir kleine Wurfhéhen von einigen 100 Metern, da fiir groe Hohen die Kraft merkbar
abnimmt — nach dem Gravitationsgesetz.) Nach dem 1. Newtonschen Grundgesetz (Kraft =
Masse x Beschleunigung) ist damit

—mg =my(t).

Das Minuszeichen links driickt aus, daf die Kraft nach unten gerichtet ist, also in Gegenrichtung
der y-Achse. Es folgt

(i) = —g

und daraus y(t) = —gt + a mit einer Konstanten a. (Man priift dies durch Differenzieren von
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y(t) leicht nach.) Die Funktion y(z) mufl damit die Gestalt
y(1) = —gﬂ Tar+b

(b konstant) haben, was man durch Differenzieren wiederum iiberpriift. !> Wird der Massenpunkt
zum Zeitpunkt 0 losgeworfen, d.h. gilt y(0) = 0, so muf} » = 0 sein. Ferner soll nach Vorausset-
zung y(0) = vg gelten, woraus a = vg folgt. Damit erhalten wir die Losung

y(t) = —%tz +ot, 1>0. (3.126)

Diese Funktion beschreibt die Bewegung unseres Massenpunktes.'® Wiire vy < 0, so kiimen wir
zur gleichen Funktion (3.126). Im Falle vg = 0 hitten wir den freien Fall (ohne Reibung) von
der Ruhelage aus.

Wiirde der Massenpunkt schrig losgeworfen, d.h. hitte er zusétzlich eine Anfangsgeschwin-
digkeitskomponente u( in waagerechter x-Richtung, so folgte aus X () = 0 (keine Querkraft) fiir
den waagerechten Geschwindigkeitsanteil x (1) = ug. Daraus ergibt sich x(t) = Upt + ¢. Wegen
x(0) = Oist aber ¢ = 0, also

x(t) =uot, t=>0. (3.127)

Die Wurfbahn wird damit durch die beiden Funktionen y(#), x(¢) in (3.126), (3.127) beschrieben,
d.h. durch

uot
r(t) = g, , t>0. (3.128)
——1 vot
> + vo
Setztman t = x/upginy = —%tz + vot ein, so erhilt man

y = —(g/Qud))x* + (vo/uo) - x,

d.h. die Wurfbahn ist eine Parabel (s. Fig. 3.20).

Beispiel 3.37:

(Wurf, mit Luftreibung) Ohne Beweis geben wir an: Beim Wurf eines Massenpunktes unter Be-
riicksichtigung der Luftreibungskraft, die proportional zur Geschwindigkeit angenommen wird
— mit Proportionalitdtkonstante k > 0 —, gelangen wir zu

8

y(6) = Be~k/mr _m?t tb,  x()=Ae WMt 4q (3.129)

15 Allgemein gilt: Ist £ auf einem Intervall gegeben, so ist f dort bis auf eine additive Konstante eindeutig bestimmit.
Denn fiir alle weiteren Funktionen g mit g’ = f’ gilt (f — g)’ = 0, also f — g = konstant (nach Folgerung 3.5(a),
Abschn. 3.1.5).

16 S. auch die Beispiele 2.7 und 2.9 in Abschn. 2.1.3.
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m ist die Masse des Massenpunktes und A, B, a, b sind Konstante, die aus den Anfangsbedin-
gungen bestimmt werden konnen (s. [56], Beisp. 5.27, S. 254, 255).

Bei den folgenden Ubungen wird die Luftreibung vernachlissigt.

Ubung 3.45:

Ein Massenpunkt werde von der Erdoberfliche aus abgeworfen, wobei ug > 0 und vg > 0 sei
(s. (3.128)). Man berechne Wurfzeit (Bedingung y(¢) = 0, t > 0), ferner Wurfweite, Wurfhohe
und Endgeschwindigkeit beim Aufschlagen.

Ubung 3.46:

Ein Massenpunkt werde von einem 30 m hohen Turm schrig aufwérts unter einem Winkel von
30° abgeworfen. Wie grol miissen die Anfangsgeschwindigkeits-Komponenten vy und uq in
vertikaler bzw. horizontaler Richtung sein, wenn der Massenpunkt 60 m vom Turmfuf entfernt
auf dem Erdboden aufschlagen soll?

3.3.2 Fehlerabschiatzung

Beispiel 3.38:

(Wiirfelvolumen) Die Kantenldnge x eines Wiirfels wird gemessen. Aufgrund der Meflungenau-
igkeit 146t sich nur sagen, daf die Ungleichung 8,6 cm < x cm < 8,8 cm gilt. Fiir das Volumen
V = x3 erhilt man

8,65 = 636,056 < V < 681,472 = 8,8>. (3.130)

Man kann den Fehler auch abschitzen, indem man V = f(x) = x3

entwickelt:

in eine kurze Taylorformel

V=, =fBN+fBNx-87+R
= 658,503 4+ 227,07 - (x =8, 7) + R, 8,6=<x <838,

1
und Ry = f"(&)(x — 8,7)2/2 mit x und & aus dem Intervall [8,6, 8,8] abschitzt: |R;| < 5 6-
8,8 - 0,12 = 0,264. Damit folgt wegen |x — 8,7| <0,1:

|V —658,503| <227,07-0,140,264 =22,971 <23, also635,5 <V <681,6. (3.131)

Das ist etwa das Gleiche wie in (3.130). Kann man nun bei einer zweiten Messung die MeBge-
nauigkeit erhohen, so daf} etwa 8,66 < x < 8,75 gilt, so braucht man f(x) = x3, wie in (3.130)
nicht zweimal neu zu berechnen (was bei komplizierteren Funktionen f aufwendig sein kann),
sondern in (3.131) die Abschidtzung 0,1 von |x — 8,7| nur durch die schirfere Abschitzung 0,05
ersetzen. Man erhilt |V — 658,503| < 11,62, also die verbesserte Abschidtzung

646,88 <V < 670,13.
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Allgemeinfall: Ist x eine beliebige gemessene Zahl mit
xg— Ax <x <x9, Ax>0

und f(x) eine daraus zu berechnende Zahl ( f zweimal stetig differenzierbar), so gilt
fx) = fxo) + f'(x0)(x — x0) + Ra.

Fiir den Fehler f(x) — f(xg), der durch die Ungenauigkeit von x erzeugt wird, folgt die Fehler-
abschdtzung

|f () = f(xo)l = |f' (x0)|Ax + | R,

1
wobei |Ry| < = sup | f” ()c)|Ax2 hiufig so klein ist, dal man R, im Rahmen der Rechen-
[x—xp|<Ax
genauigkeit (Rundung) vernachlédssigen kann.

333 Zur binomischen Reihe: physikalische Niherungsformeln

Nach der Taylorschen Formel gilt fir —1 < x < lunda € R

(14+x)*=1+ax+ Ri(x) (3.132)
oder

14+x)*=1 +ax+a(aT_l)x2+R2(x) (3.133)
mit

=], 4 )R e o e

Diese Formeln werden in der Physik vielfach verwendet (s. Abschn. 3.2.3, Beisp. 3.28).

Beispiel 3.39:

Fiir den Staudruck p an einem Flugzeug gilt nach (3.132)
p K —1 /(=) K
£ = (1 + M2> =1—-M?+ Ry(x), (3.134)
Po 2 2

mit x = %M 2. Dabei ist k = 1,405 (fiir Luft), M = v/c die Machsche Zahl (v Flugge-
schwindigkeit, ¢ Schallgeschwindigkeit) und po der normale Luftdruck, der bei Abwesenheit
des Flugzeuges herrschen wiirde. Man schitze | R (x)| ab fiir M = 0,2, M = 0,5, M = 0,8.
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Ubung 3.47:
Fiir die relativistische Masse eines Korpers gilt

m=—"0_ nit g=2. (3.135)

V1—p? c
Dabei ist m( seine Ruhemasse, v seine Geschwindigkeit und x = 299792,5km/s die Licht-
geschwindigkeit. Entwickle (1 — /32)_1/ 2 in eine Niherungsformel nach (3.133), schitze das
Restglied R2(,32) abfir0 < B < 0,2und 0 < B < 0,5. Zeige, da man ¢ auch durch
300000 km/s ersetzen darf, wenn dreistellige Genauigkeit verlangt wird und 0 < g < 0,5 gilt.

3.34 Zur Exponentialfunktion: Wachsen und Abklingen

Durch die Exponentialfunktion exp(x) = e* und ihre Verallgemeinerungen f(x) = c¢ - a* wer-
den ungestorte Wachstums- und Abklingvorgdnge beschrieben, wie z.B. das Wachstum junger
Organismen oder das Abklingen von Temperaturdifferenzen. Das folgende einfache Beispiel be-
leuchtet diesen Zusammenhang auf elementare Weise.

Beispiel 3.40:

(Zellwachstum) Ausgehend von einer biologischen Zelle finde alle Ar Sekunden eine Zellteilung
statt, d.h. alle At Sekunden verdoppele sich die Anzahl der Zellen. Nach At Sekunden sind also
2 Zellen vorhanden, nach 2A¢ Sekunden 4 Zellen, nach 3A¢ Sekunden 23 = 8 Zellen usw. Nach
t = nAt Sekunden, (n € N), gibt es 2" = 2//4! Zellen. Die Anzahl der Zellen steigt also
exponentiell mit der Zeit ¢ € {0, A, 2At,3A¢t, .. .}.

Im behandelten Beispiel liegt sprunghaftes Wachstum vor. Die Untersuchung von »stetigem«
Wachstum fiihrt zu entsprechenden Resultaten:

Ungestortes stetiges Wachstum: Man stelle sich einen Organismus oder eine Organismenmen-
ge vor, z.B. eine Bakterienkultur. Die zugehorige Masse wachse in gleichen Zeitrdumen stets um
den gleichen Prozentsatz. In diesem Falle sprechen wir von ungestortem oder idealen Wachstum.
In jedem Zeitintervall von At Sekunden vermehrt sich die Masse also um den gleichen Anteil
p(At), z.B. um p(At) = 5% = 5/100. Bezeichnet m die Masse am Anfang des Zeitintervalls,
so ist am Ende des Zeitintervalls die Masse Am = p(At)m hinzugekommen. Division durch
At # 0 ergibt

Am p(At)

— . 1
A A (3.136)

Nimmt man an, dal m differenzierbar von ¢ abhingt, so konvergiert der linke Ausdruck in obiger
Gleichung fiir t + At — t bei festem 7. Damit konvergiert auch die rechte Seite, d.h. p(Ar)/ At
strebt fiir Az — 0 gegen einen Grenzwert a, den wir als positiv annehmen wollen, und es folgt

dm

— =am.
dr
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Mitm = f(¢) bedeutet dies
f'@)=af@) (3.137)

fiir alle + > 1y, wobei fy eine Startzeit fiir den Prozel bedeutet. Aus Satz 3.14 in Abschn. 3.1.7
folgt damit, dal f(¢) die Form

f(1) =ce” (3.138)

hat. Ist mq die » Anfangsmasse« zur Zeit tg, gilt also f (ty) = ce?0 = my, so errechnen wir daraus
¢ = mpe 9%, Eingesetzt in (3.138) erhalten wir das Wachstumsgesetz

m= f(t) =mye??™ 4>0. (3.139)

Ein solches Wachstum tritt z.B. auch bei Kettenreaktionen auf, doch kommt es im iibrigen in
Physik und Technik selten vor. Denn Wachstumsvorginge dieser Art (wie etwa das Aufschau-
keln von Schwingungsamplituden) fithren zur Zerstérung von Apparaturen und Maschinen. Man
versucht dies daher tunlichst zu vermeiden. Haufiger treten dagegen Abklingvorginge auf.

Abklingvorgénge: Bei einer Reihe von physikalischen Vorgéngen ist die Geschwindigkeit, mit
der sich eine physikalische Grole y = f(¢) vermindert, proportional zur physikalischen Grofe
selbst. Da die Grofle im Laufe der Zeit ¢ kleiner wird, ist der Proportionalititsfaktor negativ, d.h.
es gilt die Beziehung

f') = —kf(®), mit k>0. (3.140)

Ist yo der Wert der Grofle zur (Anfangs-)Zeit fy, so erhalten wir wie oben (man setze a statt —k)
die Gleichung

y = f(t) = yoe K710 1 eR. (3.141)

Man spricht dabei von Abkling-oder Kriechvorgdingen. Stichwortartig seien einige Beispiele dazu
genannt:

Beispiel 3.41:

(Abklingvorgdnge) Abkiihlung eines erwidrmten Gegenstandes in kilterer Umgebung: f(¢) =
Temperaturdifferenz zwischen Gegenstand und Umgebung zur Zeit ¢, k Materialkonstante. Bei
Erwdrmung gilt Entsprechendes.

Radioaktiver Zerfall einer strahlenden Masse f(¢#) mit einer Materialkonstanten k. Man zeige,
dalB} sich die Halbwertszeit T, das ist die Zeitdauer, innerhalb derer sich die strahlende Masse um
die Hilfte vermindert, aus der folgenden Formel ergibt:

_ In2

. (3.142)

T

Chemische Reaktion unimodularer Stoffe: f(t) = Masse des noch nicht in Reaktion eingetrete-
nen Anteils. k Stoffkonstante.
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In zdhes Medium eindringende Kugel (ohne Beriicksichtigung der Schwerkraft): f(¢) Geschwin-
digkeit der Kugel, f(#y) Geschwindigkeit zum Zeitpunkt 79 des Eindringens, k = R/m, wobei
R Reibungskonstante und m Masse der Kugel ist.

Einschalten elektrischen Stroms: Ist U die an einem Stromkreis angelegte Spannung, J(¢) die
Stromstirke zur Zeit ¢, R der Widerstand des Stromkreises und L sein Selbstinduktionskoeffizi-
ent, so gilt

JR=U-LJ,
mit f(t) ;= J(t)—U/Ralso f' = -2 f dh. f(t) = £(0)e R/L. Mit J(0) = 0 zur Zeit t = 0
des Einschaltens folgt f(0) = —U/R und somit

U
J0) == e RYLY  fiirr > 0.

Beim Ausschalten findet ein entsprechender Vorgang statt.

Kondensatorenentladung iiber einen Stromkreis mit Widerstand R. Ist C die Kapazitit des Kon-
densators, so gilt fiir die Elektrizitdtsmenge Q des Kondensators zur Zeit ¢, die Gleichung Q =
—CRJ mit der Stromstirke J zur Zeit 7. Mit J = Q’, also Q = —CRQ’, folgt Q = Qge~!/(CR),
Fiir die Spannung U = Q/C am Kondensator folgt damit U = Uye /(R

Wir betrachten schlieBlich noch zwei Beispiele, in der Ableitungen nach dem Weg bzw. der
Masse eine Rolle spielen.

Beispiel 3.42:
(Barometrische Hohenformel) Ist p(x) der Luftdruck und p(x) die Luftdichte in der Hohe x
iiber dem Erdboden, so gilt %’: = —gp. Denn gp_(&)Ax ist das Gewicht einer Luftsdule der

Grundflache 1 und der Hohe Ax (mit einem geeigneten £ € (x, x+ Ax)). Zum Gesamtdruck trigt
diese Saule also den Druckanteil |[Ap| = gp(&)Ax bei. Division durch Ax, Beriicksichtigung
der Abnahme des Luftdruckes bei steigender Hohe (d.h. Ap < 0 falls Ax > 0), sowie Ax — 0
liefern % = —gp(x). Mit dem Boyle-Mariotteschen Gesetz folgt p = bp (b konstant > 0), also
zusammen p’ = —kp mit k := g/b. Daraus folgt die barometrische Héhenformel

p(x) = p0)e™, x>0.

Beispiel 3.43:

(Raketenantrieb, Brennschluf3geschwindigkeit) Es sei mq die Startmasse einer Rakete, w die
konstante Ausstromgeschwindigkeit der Brennmasse aus den Diisen, v ihre Geschwindigkeit zur
Zeit t und m ihre Masse zur Zeit ¢. Gravitations- und Reibungskrifte sollen nicht beriicksichtigt
werden. (Die Rakete starte also von einem Punkt des Weltalls aus, oder Gewicht und Reibung
sind vernachléssigbar klein gegen die Schubkraft.) Aus dem Newtonschen Grundgesetz und dem
Impulssatz folgt

dv dm

m— =—w—-.
dr dt
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Mit w > O und % < 0 folgt % > 0, also

dm dt dm
dh. m=—-—w—

dedv ' dv ’
Nach Satz 3.14 (Abschn. 3.1.7) erhilt man daher

m=—-w

m=moe V" fir v>0.

Ist m die Masse der Rakete bei Brennschluf3 und v; ihre Geschwindigkeit zu diesem Zeitpunkt,
so gilt m; = mge~"1/". Auflésen nach vy liefert damit die Brennschlufigeschwindigkeit

mo
vy = wln (—) .
mi

3.3.5 Zum Newtonschen Verfahren

Beispiel 3.44:

(Kettenkarussell) Ein Kettenkarussell mit einer Tragstange von r = 2m und einer Kettenlidnge
von / = 4 m bendtige fiir einen Umlauf 7 = 5s. Wie groB ist der Winkelausschlag o der Kette
(s. Fig. 3.21)?

Fig. 3.21: Zum Kettenkarussell

Nach Fig. 3.21 und Beispiel 3.35 ist der Betrag der Zentrifugalkraft F = m?(r +1 sin ), mit
o = 2x/T. Auf den Korper am Ende der Kette wirkt ferner das Gewicht vom Betrag G = mg
(g = 9,81 m/s?). Die Richtung der Resultierenden dieser beiden Krifte ist gleich der Richtung
der Kette, beschrieben durch den Winkel «. Es gilt also

>
tane = — = —(r +Isinw).
o G g(r sin &)
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Mit tano = sino/ m und der Abkiirzung x := sin« erhilt man daraus
x*+2bx° + (@ +b* — Dx? = 2bx —b* =0

mit b :=r/l und a := g*/(I>w*). Einsetzen der gegebenen Zahlenwerte ergibt
x* 4+ %7 +1,6620x% — 0,2500 = 0,

mit gerundetem Koeffizienten 1,6620. Das Newton-Verfahren

Sf(xn)
S (xn)

Xn+1 = Xn —
liefert mit

1
f(x)=x4+x3+1,6620x2—x—z,

281

von der Niherungslosung xo = 0,6 ausgehend nach 3 Schritten die Losung x = 0,56585152.
Eine genauere Kurvendiskussion zeigt, da} dies die einzige Losung in [0,1] ist. Aus X = sino

folgt o = 0,60146565, das entspricht gerundet einem Winkel von 34° 28'.

Fig. 3.22: Freileitung zwischen zwei Masten

Ubung 3.48:

(Freileitung zwischen zwei Masten) Die Kurve einer Freileitung wird beschrieben durch

y=fx)=hy+a- (coshx 0 _ 1)
a
(s. Fig. 3.22) mit gewissen reellen Konstanten &g, a xq (s. [37], S. 68). Berechne a und x( aus
den Hohen 41 = 10m, hy = 77 der Masten, ihrer Entfernung s = 20 m voneinander und der
Minimalhohe 4y = 6 m der durchhingenden Leitung.
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3.3.6 Extremalprobleme

Stellvertretend fiir die gro3e Anzahl von Extremalproblemen wéhlen wir fiinf Beispiele aus Tech-

nik und Physik. Dabei kniipfen wir an den Abschn. 3.2.7 an.

Beispiel 3.45:

(Giinstigste Abmessungen eines Abwasserkanals) Die Querschnittsfliche eines Abwasserkanals
habe die Form eines Rechtecks mit aufgesetztem Halbkreis (s. Fig. 3.23). Der Flacheninhalt
F der Querschnittsfliche sei fest vorgegeben. Wie sind die Seitenldngen x, y des Rechteckes zu
wihlen, damit der Umfang der Querschnittsfliche (und damit die Reibung) méglichst klein wird?

Der Umfang ist
X
U=2y+y+ En .

2

F
Der Flicheninhalt ist F = xy + %n, daraus folgt y = — — —.
X

Fig. 3.23: Kanalquerschnitt

Einsetzen in (3.143) liefert

2F 4+ 8F
U= f(x)=—+ x, O<x<,—.
X 4 T

Erste und zweite Ableitungen lauten:

) 4F

, 2F T .
fo=-S+(1+7 £ =5

4
f(x0) = 0 liefert

| 8F
x0=,/——=1,058vV F.
4+

(3.143)

(3.144)

Wegen f”(xg) > O liegt bei x¢ ein Minimum des Umfangs. Die minimale Umfangslidnge ist

damit Uy = f(x9) = /(8 + 21)F = 3,779/F.
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Beispiel 3.46:
(nach [57], Bd. II, S. 144) Der Wirkungsgrad eines Transformators ist
r (P >0) (3.145)
=, > . .
Ty PrkP?

Dabei ist P die abgegebene Leistung, und ¢ > 0 und k£ > 0 sind vom Transformator abhéngige
Konstanten. Bei welcher Leistung ist der Wirkungsgrad am groften?
Differentiation von (3.145) nach P liefert

dn c —kP?
dP ~ (c+ P +kP2)?’

woraus durch Nullsetzen Py; = ./c/k folgt. Da dn/dP bei Py einen »fallenden Nulldurch-
gang« hat (d.h. dn/dP > Ofiir P < Py, dn/dP < O fiir P > Py), liegt bei Py = /c/k die
gesuchte Maximalstelle.

Beispiel 3.47:

(Biegefestigkeit eines Balkens) Ein Balken mit rechteckigem Querschnitt soll aus einem zylin-
derférmigen Baumstamm geschnitten werden. Wie erreicht man maximale Biegefestigkeit des
Balkens? Die Biegefestigkeit des Balkens ist gleich

w=c~xy2,

wobei y die Hohe des Balkenquerschnittes und x seine Breite ist. Mit dem Durchmesser D des
Kreisquerschnitts unseres Baumes gilt y> = D? — x2, also

w:c(sz—x3), x>0.

Man berechnet:

/ 2 2 D "
w=cD"=3x3)=0 = x=-—x w’ = —cbxy < 0.

Nk

Folglich erhilt man maximale Biegefestigkeit fiir die Seitenlingen xo = D/+/3 und yp =

VD2 —x} = 273D = V2xo.

Beispiel 3.48:

(Lichtbrechung und -reflexion) Ein Lichtstrahl verlduft von einem Punkt A in einem Medium 1

zu einem Punkt B in einem Medium 2, wie es die Fig. 3.25 zeigt. Die Medien sind durch eine

Ebene getrennt. Die Lichtgeschwindigkeiten c; und ¢; in den Medien 1 bzw. 2 seien konstant.
Wir wollen den Lichtweg aus dem Folgenden Fermatschen'” Prinzip herleiten: »Das Licht

schldgt immer den Weg ein, der die kiirzeste Zeitdauer erfordert«. Daraus folgt unmittelbar, dafl

17 Pierre de Fermat (1607 — 1665), franzosischer Mathematiker und Jurist
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v

Medium 2 |

Fig. 3.24: Balken mit maximaler Biegestei-

figkeit Fig. 3.25: Lichtbrechung

der Lichtstrahl in jedem unserer Medien gradlinig verlduft, und daB er in einer Ebene liegt, die
senkrecht auf der Trennebene steht. Diese »Lichtstrahl-Ebene« ist in Fig. 3.25 gezeichnet.

Mit den Bezeichnungen in der Fig. 3.25 ist die Zeitdauer, die das Licht von A bis B benétigt,
gleich

1 1
)=+ = 2V a4 —J(p— 02402 (3.146)
1 ¢ I

Wir errechnen die Ableitungen nach x:

£ 0) 1 by 1 p—x 1x p-—x
X)) = — _ — = —— —
civxl4a? o (p—x)2+b2 car s
I 1.
= —sine — —sinf.
C1 (6]
N S Vo -2 412 — =
t”(x) _ i A/ x2+a? 4 i (p ) N (p—x)2+b?
T x2 +a? e (p—x)2+b?
2 (p—x)? 2_ 2 2 2
:ir—"T Is="— r=x s-(p=-x
cp r? c 52 c1r3 cas3 '

Nullsetzen der ersten Ableitung liefert

2 AL (3.147)

sinf ¢

Dies ist das Snelliussche'® Brechungsgesetz: »Das Verhiltnis des Sinus des Einfallswinkels zum
Sinus des Brechungswinkels ist konstant«. Man erkennt ¢ (x) > O fiir alle x € [0, p],dar > x
und s > p —x ist. Damit ist ¢’ streng monoton steigend. Aus 7' (0) < 0 und ¢'(p) > 0 folgt damit:
Es gibt genau eine Nullstelle von ¢’ in [0, p]. Sie ist eine Minimalstelle von ¢, wegen t”(x) > 0.
Es gibt somit genau ein Minimum von ¢, charakterisiert durch (3.147).

18 Willebrord van Roijen Snell (1580 —1626), niederlédndischer Astronom und Mathematiker
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Mit den Brechungsindizes ny = c/c1, np = c¢/c2 (¢ = Lichtgeschwindigkeit im Vakuum)
erhilt das Brechungsgesetz die Form

nysine =npsinf. (3.148)

Das Reflexionsgesetz (Einfallswinkel = Ausfallswinkel) gewinnt man analog. Man hat lediglich
in Fig. 3.25 B an der x-Achse »nach oben« zu spiegeln. Damit laufen alle Rechnungen genauso
wie beim Brechungsgesetz, wobei zusitzlich ¢; = c; gilt. Man erhélt wieder (3.147) und wegen
c1 = ¢ daraus @ = B, also das Reflexionsgesetz.

Beispiel 3.49:
(Wiensches"® Verschiebungsgesetz) Aus dem Planckschen Strahlungsgesetz ([28], S. 518, (27))
he? 1
E()\.) = F . —ehC/(k[)L) 1 s A > O,

soll diejenige Wellenlidnge A = Anax berechnet werden, fiir die das Emissionsvermogen E ()
maximal wird. Man berechnet dazu E’(A) und setzt zur Vereinfachung x =: hc/(kT)) ein.
E’(A) = 0 wird dann zu xe* /(e* —1) = 5, d.h. e — 1 4+ x/5 = 0. Das Newton-Verfahren,
ausgehend von xo = 5, liefert eine Losung x = 4,965. Sie ist die einzige in (0, o), wie man
sich tiberlegt. Mit x =: hc/ (kT Amax) folgt das Wiensche Verschiebungsgesetz

hc hc

Amax = ———,  dh. AmaxT =
T 4,965k T max 4,965k

= const,

wobei E” (Amax) < O zeigt, daB es sich tatsdchlich um ein Maximum handelt.

N

Fig. 3.26: Eisenkern in Spule

Ubung 3.49:

(Eisenkern in einer Spule) In das Innere einer Spule von kreisformigem Querschnitt vom Radi-
us r soll ein Eisenkern mit kreuzférmigen Querschnitt gebracht werden (s. Fig. 3.26) Welche
Abmessungen x, y muf} der kreuzformige Querschnitt haben, wenn sein Fldcheninhalt maximal
sein soll?

19 Wilhelm Carl Werner Otto Fritz Franz Wien (1864 — 1928), deutscher Physiker
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Wie grof} ist der Flacheninhalt einer Ellipse, die Linge einer Freileitung, die Energie einer Gas-
menge oder die Fluchtgeschwindigkeit einer Rakete? Wie berechnet man Satellitenbahnen, den
Schwerpunkt einer Halbkugel, das Trigheitsmoment eines Kegels oder die Wahrscheinlichkeit
fiir den Ausfall eines Bauteils? Dieses vielfiltige Spektrum von Fragen kann mit den Mitteln der
Integralrechnung beantwortet werden.

y A

Fig. 4.1: Flache von f auf [a, b]

Dabei geht man von einer elementaren Grundaufgabe aus, namlich der Bestimmung der Fld-
cheninhalte krummlinig berandeter Flichen. Insbesondere beschéftigt man sich mit Flidchen, die
— wie der schraffierte Bereich in Fig. 4.1 — zwischen einem Funktionsgraphen und der x-Achse
liegen. In solche Fliachen kann man die meisten krummlinig berandeten Fldachen zerlegen, wie
Kreise, Ellipsen usw.

Bei der Bestimmung solcher Flicheninhalte werden die Methoden der Integralrechnung ent-
wickelt. Dabei stoft man auf eine {iberraschende Tatsache:

Die Integralrechnung ist die Umkehrung der Differentialrechnung.

Wihrend man in der Differentialrechnung von bekannten Funktionen die Ableitungen berechnet,
versucht man umgekehrt in der Integralrechnung aus gegebenen Ableitungen die urspriingliche
Funktionen zu gewinnen.

Das Problem der Flidcheninhaltsbestimmung wird also dadurch gelost, dal man die Differen-
tialrechnung »auf den Kopf stellt«. Eine erstaunliche Erkenntnis!

Es ist kein Wunder, dafl die Menschen seit drei Jahrhunderten von dieser Entdeckung faszi-
niert sind. Die groBe Kraft der Analysis und ihr ungebrochener Erfolg sind darin begriindet.
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4.1 Grundlagen der Integralrechnung

4.1.1 Fldcheninhalt und Integral

Einfithrung: Wir gehen von einer positiven beschrinkten Funktion f auf einem Intervall [a, b]
aus, wie z.B. in Fig. 4.1 skizziert. Die schraffierte Punktmenge hei3t die Fidche von f auf [a, b].
Sie besteht aus allen Punkten (x, y) mita <x <bund0 < y < f(x).

Unser Ziel ist es, den Fldcheninhalt dieser Fliche zu bestimmen, ja, ihn liberhaupt erst einmal
sinnvoll zu erkldren. Dazu bilden wir eine Streifeneinteilung wie in Fig. 4.2, d.h. wir wihlen uns

e

a=Xp X1X2 b L e PRy xn=b
Fig. 4.2: Streifeneinteilung der Fliche

beliebige Zahlen xq, x1, . . ., X, mit

a=xg<Xx1<Xxp<...<x,=>b. 4.1
von f auf [a, b] Die Menge der dadurch gebildeten Teilintervalle

[xo, x1], [x1,x2], ..., [Xn—1, Xl
nennen wir eine Zerlegung Z des Intervalls [a, b]. Mit

Ax; =x; —xi—1, i=12,...,n,

werden die Intervalldngen der Teilintervalle symbolisiert. Die grofte dieser Intervalldngen heifit
die Feinheit |Z| der Zerlegung, also

|Z| == max Ax;.
iefl,...n}
Je kleiner die Zahl | Z| ist, desto»feiner« ist die Streifeneinteilung im landlaufigen Sinn. In jedem
Streifen der Fig. 4.2 bildet man zwei Rechtecke, die die Fliche von fim Streifen von»innen«
und»auBen« anndhern. D.h. ist [x;_1, x;] das Teilintervall zu unserem Streifen, so betrachten wir
darauf das Supremum und das Infimum von f (s. Fig. 4.3):

M; = sup f(x), m; = inf Jf(x) “4.2)

x€[xi—1,%] XE[Xi—1,X;
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Es entsteht tiber [x;_1, x;] ein »inneres Rechteck« mit dem Fldcheninhalt m; Ax; (s. Fig. 4.3) und
ein»duBeres Rechteck« mit dem Flacheninhalt M; Ax;. Summierung iiber i ergibt

n
S¢(Z) = Z M;Ax;, genannt Obersumme von f beziiglich Z,
= 4.3)
sp(2) = Z m; Ax; , genannt Untersumme von f beziiglich Z.

i=1
Bei geniigend feiner Streifeneinteilung wird man beide Summen als Niherungen fiir den zu be-

A

mi Q aseteselale!

B
R o >

Fig. 4.3: Darstellung von m; und M; zu Unter- und Obersummen

v

stimmenden Flidcheninhalt ansehen, jedenfalls dann, wenn der Unterschied beider Summen fiir
hinreichend feine Einteilung beliebig klein wird. Bei immer feineren Zerlegungen Z werden die
Obersummen Sy (Z) immer kleiner (oder jedenfalls nicht gréBer) und die Untersummen s ¢ (Z)
immer grofer (oder wenigstens nicht kleiner): Dadurch wird nahegelegt, das Infimum aller Ober-
summen und das Supremum aller Untersummen zu bilden:

Is:= igf Sp(Z), genannt Oberintegral von f,

44
1;:= sgp sg(Z), genannt Unterintegral von f. @4

Wir benutzen dabei die Tatsache, dal jede Obersumme von f groBer oder gleich jeder Unter-
summen von f ist. Man sieht das leicht so ein: Sind s/(Z1) und S¢(Z>) beliebig gegeben, so
bilde man aus Z; und Z; eine gemeinsame » Verfeinerung« Z, bestehend aus den Durchschnitten
der Teilintervalle von Z; und Z,. Damit gilt zweifellos

sp(Z1) =57(2) = 8§¢(2) = §¢(22).

Daraus folgt insbesondere, dal die Menge der Obersummen nach unten beschrinkt und die der
Untersummen nach oben beschrénkt ist, folglich 7y und I , wirklich existieren. Ferner ergibt

sich Lf < Tf.
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Fiir iibliche Funktionen, etwa fiir stetige, wird man [ r = 1 r erwarten, d.h. daf} die obere

Grenze aller Untersummen gleich der unteren Grenze aller Obersummen ist.! In diesem Fall
nennt man die gemeinsame Zahl

Ly=Ty=1

den Fldcheninhalt von f auf [a, b]. Dieser Flicheninhalt wird das Integral von f auf [a, b]
genannt und folgendermaBen symbolisiert:

b
I = / f(x)dx (lies: »Integral f(x)dx von a bis b«) .
a

Wir haben hierbei f als positiv vorausgesetzt. Doch konnen wir auf diese Voraussetzung auch
verzichten und das Integral entsprechend fiir beliebige beschrinkte Funktionen definieren. Damit
gelangen wir zu folgender allgemeiner Definition, die die bisherigen Uberlegungen zusammen-
faflt und auf beliebige beschriankte Funktionen ausdehnt:

Definition 4.1:
(Integraldefinition) Es sei f eine reelle beschrinkte Funktion auf [a, b].

(I) Man betrachtet eine Zerlegung Z von [a, b]. Das ist eine Menge von Intervallen
[-x01 )C]], [xls x2], R [xn—ls xn] mlt

a=x9g<Xx1<...<x,=>b.
Die xo, ..., x, heiBBen Teilungspunkte von Z. Die Zahl

|Z| ;= max Ax;, mitAx; :=x; —x;j_|
i€f{l,...,n}

heif3t die Feinheit von Z.
(1) Mit
M; ;= sup f(x), m; ;= inf ]f(x)

X€[x;i—1,%] XE[xi—1,%i
bildet man

n
Sr(Z) = Z M; Ax; , genannt Obersumme von f beziiglich Z,

i=1

n
sp(Z) = Z m;Ax; , genannt Untersumme von f beziiglich Z,

i=1

1 Es gibt allerdings »ausgefranste« Funktionen, fiir die das nicht gilt. Ein Beispiel dafiir ist die Funktion, deren Wer-
te f(x) fiir rationale x gleich 1 sind und fiir irrationale x gleich 0. Doch spielen diese Funktionen in der Technik
praktisch keine Rolle.
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und
Is:= ilef Sf(Z), genannt Oberintegral von f auf [a, b],
1, :=supsy(Z), genannt Unterintegral von f auf [a, b].
z

Infimum und Supremum werden dabei beziiglich samtlicher denkbarer Zerle-
gungen Z von [a, b] gebildet.

(IIT) Stimmen Ober- und Unterintegral von f auf [a, b] iiberein, so heiit f* integrier-
bar? auf [a, b]. In diesem Falle heift der gemeinsame Wert 1 f = 14 das Integral
von f auf [a, b], beschrieben durch

b
/f(x)dx.

Geometrische Deutung: Ist f auf [a, b] integrierbar und ist f(x) > 0 auf [a, b], so ist das
b

Integral / f(x)dx der Fldacheninhalt der Fldche von f auf [a, b], wie wir einfithrend schon
a
erklart haben. )
Istdagegen f(x) < Oauf[a, b], so wird auch / f(x)dx < 0. Der absolute Wert des Integrals

a
ist in diesem Falle als der Fldicheninhalt der Fliche F = {(x, y) |a < x <bund f(x) <y < 0}
aufzufassen. F' liegt unterhalb der x-Achse (s. Fig. 4.4b).

g T

Fig. 4.4: Integral und Flacheninhalt

Ist f sowohl positiv wie negativ auf [a, b], so sind die Inhalte der Teilflachen zwischen Graph
f und x-Achse, die iiber der x-Achse liegen, positiv zu rechnen, und diejenigen unter der x-
Achse negativ. Die Summe dieser positiven und negativen Zahlen ergibt das Integral

b
f f(x)dx (s.Fig. 4.4c).

2 Man nennt f auch ausfiihrlicher Riemann-integrierbar.
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Ubung 4.1:

Berechne mit Hilfe der Deutung als Fldcheninhalt die Integrale
5 1 2
/3dx, /(Zx)dx, /xdx.
0 0 -1

4.1.2 Integrierbarkeit stetiger und monotoner Funktionen

Welche Funktionen sind integrierbar? — Wir zeigen, daf3 vor allem stetige Funktionen integrier-
bar sind (sonst wire es schlimm bestellt um die Analysis), aber auch stiickweise stetige Funk-
tionen, monotone und stiickweise monotone Funktionen auf kompakten Intervallen. Der anwen-
dungsorientierte Leser kann sich mit diesem Hinweis begniigen und ohne Schaden den Rest
dieses Abschnittes iiberschlagen.

Satz 4.1:
Jede stetige Funktion und jede monotone Funktion auf [a, b] sind auf diesem Intervall
integrierbar.

Beweis:

(I Es sei f stetig auf [a, b]. Dann ist f sogar gleichmifig stetig auf [a, b] (nach Satz 1.26,

Abschn. 1.6.6). Zu beliebig gegebenem ¢ > 0 gibt es daher ein § > 0 mit | f(x1) — f(x2)| < &,

falls |[x; — x3| < 8. Man wihle nun eine Zerlegung Z von [a, b] mit der Feinheit |Z| < §. In

jedem Teilintervall [x;_1, x;] (i = 1,...,n) von Z gibt es wegen der Stetigkeit von f Punkte
@)

i .
Xmax und xr(m)n mit

fa) = sup fx)=M;, f(xr(;i)n) = inf  f(x)=m;.

[xi—1,xi] Xi—1,Xi

Es folgt unmittelbar: f(xr(r';glx — f(xlgi)n) <¢g,da |xr(r';31x — xr(rii)n| < Ax; = x; — x;_1 < 4. Fur die

Differenz zwischen Obersumme Sy (Z) und Untersumme s 7 (Z) erhilt man somit:

SH(Z) —sp(Z) =Y (M; —m)Axi = Y (f(xD) — fxb N Ax;
i=1

i=1

< ZsAxi =82Ax,~ =¢-(b—a)
i=1 i=1

Da ¢ > 0 dabei beliebig klein gewihlt werden kann, wird auch Sy (Z) — s¢(Z) beliebig klein,
wenn man Z geeignet wihlt. Daraus folgt aber irzlf S¢(Z) =supsy(Z),d.h. f istintegrierbar auf
z

[a, b].

(II) f sei nun monoton steigend auf [a, b]. Damit ist f auch beschrinkt. Z = {[xq, x1], ...,
[xn—1, xn]} bezeichne eine Zerlegung von [a, b] und M; bzw. m; das Supremum bzw. das In-
fimum von f auf [x;_1, x;]. Damit gilt zweifellos f(xj_1) = m; < M; = f(x;), also mit
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AX;i = Xj — Xi—1:

SHZ) —sp(Z) =Y (M; —m)Ax; <Y (M; —mi)|Z| = |Z| Y _(M; — m;)
i=1 i=1

i=1

=1Z| ) (fGi) = fxioD) = ZI(f(b) — f(a)).

i=1
Da | Z| beliebig klein gew#hlt werden kann, ist iI}f S¢(Z) = supsy(Z), folglich st f integrierbar
z

auf [a, b]. Fiir monoton fallende Funktionen verlduft der Beweis analog. O

Eine Funktion f heilt stiickweise stetig auf [a, b], wenn f bis auf endlich viele Sprungstellen
in [a, b] stetig ist (vgl. Abschn. 1.6.9). f heilit stiickweise monoton auf [a, b], wenn man eine
Zerlegung Zg von [a, b] finden kann, so da} f zwischen je zwei Teilungspunkten monoton ist,
und wenn f liberdies beschrénkt ist.

Funktionen dieser Art sind ebenfalls integrierbar auf [a, b]. Zum Beweis betrachtet man nur
solche Zerlegungen Z, bei denen die Sprungstellen, bzw. die Teilungspunkte von Zg, auch Tei-
lungspunkte von Z sind. Damit verlduft die Schlukette im Wesentlichen wie im obigen Beweis.

Ubung 4.2:

Fiihre den letztgenannten Beweis aus.

Ubung 4.3

Die Funktion f [0,7] — R mit f(x) := sin(l/x) fir x # 0 und f(0) := 0 ist weder
stiickweise stetig noch stiickweise monoton (warum?). Zeige, daf sie trotzdem integrierbar auf
[0, 7] ist.

N

1 1
Fig. 4.5: Direktes Schitzen des Flicheninhaltes von / f(x)dx, mit f(x) =— Exz +x + 3
0
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4.1.3 Graphisches Integrieren, Riemannsche® Summen, numerische Integration mit
der Tangentenformel

Graphische Integration: Die einfachste Methode fiir das praktische Berechnen von Integralen
besteht darin, den Graphen einer Funktion f auf [a, b] zu zeichnen — etwa auf Millimeterpa-
pier — und den Flidcheninhalt der Funktion auf [a, b] abzulesen. (Wir setzen dabei f ohne Be-
schrinkung der Allgemeinheit als > 0 voraus.) Das »Ablesen« des Fldcheninhaltes kann durch
Abzihlen der Millimeterquadrate geschehen, die in der Flidche enthalten sind oder ihren Rand
schneiden. Die von Graph f geschnittenen dabei halb gerechnet.

Beispiel 4.1:
In Fig. 4.5 ist mit dieser graphischen Methode das Integral von f(x) = —x2/2 4+ x + 1/2 auf
[0, 2] bestimmt worden:

2 2 2 |
/f(x)dX=/<—?+x+§>dx%1,67.
0 0

Bemerkung: Frither waren zur graphischen Integration sogenannte »Integraphen« gebriuchlich.
Das sind Gerite, mit denen man durch Nachfahren des Funktionsgraphen mit einem Leitstift den
Integralwert (ndherungsweise) gewinnt. Diese Maschinen, wie tiberhaupt graphische Integrati-
onsmethoden, sind heute durch den Computer nahezu verdringt. Zur schnellen iiberschldagigen
Bestimmung von Integralen ist die obige »Késtchenmethode« jedoch weiterhin niitzlich.

Riemannsche Summen: Sowohl fiir die numerische Integration, wie auch fiir theoretische Wei-
terfithrungen sind Riemannsche Summen grundlegend. Es handelt sich dabei um Summen von
Rechteckinhalten, wie in Fig. 4.6 skizziert.

A
P
|
\ f /7 |
. o
| I [ N
I [ | o
| [ | o
| [ | o %
1 I 1 I - >
a & & €3 ... & b
Fig. 4.6: Zu Riemannschen Summen
Genauer: Ist f eine beschriankte Funktion auf [a, b] und Z = {[xp, x1], ..., [Xn—1, X,]} €ine

Zerlegung von [a, b], so wihle man aus jedem Teilintervall [x;_1, x;] einen Punkt &; beliebig aus.

3 Georg Friedrich Bernhard Riemann (1826 —1866), deutscher Mathematiker
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Als Riemannsche Summe von f (bzgl. Z und &, ..., §,) bezeichnet man dann
n
R = Zf(&')Axi ,  mit Ax; = x; — xi—1.
i=1

(Gelegentlich schreibt man auch R ¢(Z, &) statt R, wobei § = (&1, ..., &,) ist.) Fiir eine positive
Funktion f, wie in Fig. 4.6 gezeichnet, handelt es sich offenbar gerade um die Summe von Recht-

b
eckinhalten. Es ist zu erwarten, dafl R sich beliebig wenig vom Integral / f(x) dx unterscheidet,

a
wenn |Z| = max Ax; geniigend klein ist. Dieser Sachverhalt wird im folgenden Satz prézisiert.
1

Satz 4.2:
Fiir jede beschrinkte Funktion f auf [a, b] gilt: f ist genau dann integrierbar, wenn
jede Folge Riemannscher Summen Ry von f, bei denen die Feinheiten |Z| der zuge-
horigen Zerlegung gegen Null streben, konvergiert.
Jede dieser Folgen (Ry) konvergiert dann gegen denselben Grenzwert. Dieser ist

b
gleich f f(x) dx. In Formeln:
a
b
lim Ry =/f(x)dx.
k— 00
a

Beweis:
b
4() Essei f integrierbar auf [a, b] und [ = / f(x)dx.

a
(Ry) sei eine beliebige Folge Riemannscher Summen von f, bei der die Feinheiten |Z;| der
zugehorigen Zerlegungen fiir k — oo gegen Null streben. Wir zeigen Ry — I fiir k — oo.
Da f integrierbar auf [a, b] ist, existiert zu beliebigem ¢ > 0 eine Obersumme Sy (Z) und
eine Untersumme s 7 (Z') mit

I—e<s;(Z)<I<S;(Z)<I+¢. (4.6)

Wir vergleichen nun S 7 (Z) mit einer unserer Riemannschen Summen Ry. Dabei denken wir uns
Zi »sehr fein« , jedenfalls | Zx| < | Z|. Die Riemannsche Summe spalten wir auf in

R, = Ar + By,

wobei Ay die Summe aller derjenigen Glieder von Ry ist, die zu Teilintervallen von Ry gehoren,

4 Kann beim ersten Lesen tiberschlagen werden.
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welche Teilungspunkte von Z enthalten. By ist die Summe der iibrigen Glieder. Man iiberlegt
sich leicht, daB8 By < S7(Z) gelten muB3. (Man zeichne eine Figur dazu.) Ferner gilt Ay — 0 fiir
k — oo. (Denn ist m die Anzahl der Teilungspunkte von Z, so kann Aj hochstens 2m Glieder
haben, da jeder Teilungspunkt von Z in hochstens zwei Teilintervallen von Zy. liegt. Da jedes

Glied von Ay absolut < |Zg| sup | f(x)] ist, folgt |Ax| < 2m|Zk| sup | f(x)| — O fiir k — 00.)
[a,b] [a,b]
Somit ist |Ax| < &, falls k > ko, fiir ein geniigend grof3es ko. Daraus erhilt man fiir k& > ko:

Ry =B +Ar < Br+e<Sp(Z)+e=<1+2.

Ganz rechts wurde (4.6) verwendet. Entsprechend beweist man die Ungleichungen Ry > s7(Z’)
—& > I — 2¢ fiir k > ky (k1 geniigend grof3). Zusammen folgt I — 2¢ < Ry, < I + 2¢ fiir
k > K = max{kg, k1 }. Das bedeutet aber, dal Rj. gegen I konvergiert.

(I) Wir setzen nun voraus, dal jede Folge Riemannscher Summen Ry von f, mit |Z;| — O fiir
die zugehorigen Zerlegungen, konvergiert. Damit konvergieren alle diese Folgen (Rj) gegen den
gleichen Grenzwert R. (Gibe es ndmlich zwei Folgen (Ry), die gegen verschiedene Grenzwerte
strebten, so wiirde eine Mischfolge aus beiden iiberhaupt nicht konvergieren, was unserer Voraus-
setzung widerspricht.) Zu zeigen ist, da} f auf [a, b] integrierbar ist. Dazu betrachten wir eine
beliebige Folge von Zerlegungen Zg von [a, b], mit | Zx| — O fiir kK — oo. Man bilde die zuge-
horige Folge von Obersummen S (Zy). Zu jedem Sy (Z;) kann man eine Riemannsche Summe
Ry von f finden mit S¢(Zy) = Ry + &k, 0 < & < 1/k. (Man hat nur die f(;) in Ry geniigend
dicht an den Suprema M; von f in den zugehorigen Zerlegungsintervallen zu wihlen.) Wegen
Ri — Rund g — 0 folgt S¢(Zy) — R fiir k — oo. Entsprechend ergibt sich s ¢ (Zy) — R fiir
k — oo, wegen sgp sp(2) < irzlfo(Z), also

R =supss(Z) =inf Sy (Z).
7z VA

b
Folglich ist f integrierbar auf [a, ], und R = / f(x)dx. U
a

Tangentenformel zur numerischen Integration: Wir denken uns eine integrierbare Funktion f
auf [a, b] gegeben — z.B. eine stetige Funktion. Ihr Integral auf [a, b] soll zahlenméBig berech-
net werden.

Dazu bilden wir zunichst eine dquidistante Zerlegung Z = {[xo, x11, ..., [Xn—1, X»]} von
la, b]. Aquidistant bedeutet, daB alle Teilintervalle [x;_1, x;] gleich lang sind, also

b—a

n

:=h firallei=1,... n.

Ax,' =X;] —Xj—1 =

In jedem Teilintervall bestimmen wir nun den Mittelpunkt (s. Fig. 4.7a)

Xt Xi

§i ==y (i=1,....n A4.7)

und bilden damit die Riemannsche Summe
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A\

[
[
[
[
[
|
!
&t & & .. &n
Fig. 4.7: Die Tangentenformel zur numerischen Integration

—a

R=Y &, h="

i=1

b
Satz 4.2 besagt, dal sich R fiir geniigend kleine |Z| beliebig wenig vom Integral / f(x)dx
a

unterscheidet, also

b
b—a —
/f(x)dx =—) fE +b. (4.8)

i=1

Fiir den »Fehler« § gilt folgende Abschitzung, die ohne Beweis mitgeteilt sei (s. [56]). f wird
dabei zweimal stetig differenzierbar vorausgesetzt:

M- (b—a)’

S <
o1 =< 24n?

,  wobei M > | f”(x)| fiir alle x € [a, b]. 4.9)

Formel (4.8), mit (4.7), heilit die Tangentenformel. Der Grund dafiir geht aus Fig. 4.7b hervor:
Zeichnet man in (&;, f(§;)) die Tangente an den Graphen von f ein, so ist das schraffierte Trapez
inhaltsgleich zum Rechteck mit den Seitenldngen 4 und f(&;). Die Inhaltssumme dieser Trapeze
ist also gleich der Riemannschen Summe in der Tangentenformel. Mit der Tangentenformel sind
wir grundsitzlich in der Lage, jedes Integral beliebig genau zu berechnen. Mit Computern ist
dies eine Kleinigkeit. (Spéter werden wir noch effizientere numerische Integrationsmethoden
kennenlernen, s. Abschn. 4.2.6.)

Bemerkung: Man mache sich klar, da3 mit numerischen Integrationsmethoden, wie der Tan-
gentenformel, das Problem der Integration prinzipiell, ja, sogar praktisch gelost ist! Auf diese
Methoden kann man immer zuriickgreifen, wenn andere Methoden versagen! Die numerische
Integration ist sozusagen das »Schwarzbrot« der Integralrechnung: Nicht so delikat wie Kuchen,
dafiir aber gesund und nahrhaft.



298 4 Integralrechnung einer reellen Variablen

Beispiel 4.2:
3

Es soll / x? dx berechnet werden. Wir teilen das Intervall [2, 3] in 10 gleichlange Intervalle der

2
Linge 1/10 ein. Die Mittelpunkte dieser Intervalle sind & = 2,05, & = 2,15, ..., &9 = 2,95.
Mit der Tangentenformel (4.8) folgt damit

3
2 3-2 2 2 2 -
Py = = 22,057 + 2,157+ +2.95%) +5 £ 6,33250 + 5.
2

Da f(x) = x? die zweite Ableitung f”(x) = 2 besitzt, kann in der Fehlerformel (4.10) M = 2
gesetzt werden. Fiir den Fehler § gilt also
2.(3-2)3

52 o7 = (00083

18] <
(Mit dem Hauptsatz konnen wir spéter den exakten Integralwert ermitteln. Er ist 6 4- 1/3.)

Ubung 4.4:

Berechne mit der Tangentenformel niherungsweise die folgenden Integrale. Wihle die Zerle-
gungen dabei so, daf der »Fehler« § jeweils absolut kleiner als 5 104 ist

2 2 b4
X
3 © .
/x dx, /—dx, /smxdx.
X
0 1 0

414 Regeln fiir Integrale

Bevor wir zum Hauptsatz kommen, mit dem sich viele Integrale bequem und elegant berechnen
lassen, miissen wir einige Regeln iiber Integrale herleiten, die wir fiir den Hauptsatz und den
weiteren Ausbau der Integralrechnung brauchen. Die Regeln sind anschaulich sofort einzusehen,
wenn man die geometrische Deutung der Integrale als Fldcheninhalte heranzieht. Zunichst tref-
fen wir zwei Vereinbarungen:

(D Fiir jede in @ € R definierte Funktion f setzen wir

ff(x)dx =0.

@) Ist f auf [a, b] integrierbar, so setzen wir

a b
/f(x)dx::—/f(x)dx.
b a
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Satz 4.3:

(Integrationsregeln) Es seien f und g reelle Funktionen auf einem Intervall /, die auf
jedem kompakten Teilintervall von [ integrierbar sind. Damit folgt: Auch f + g, Af
A eR), f-g, f/g (falls g # 0 auf I) und | f| sind integrierbar auf jedem kompakten
Teilintervall von /. Dabei gilt fiir alle a, b, c € I:

b b b
(a) /(f(x)+g(X))dx =/f(X)dx+fg(X)dx (4.10)
ab b a a
(b) /Af(x)dx =A/f(x)dx “4.11)
ab c ¢ b
(© /f(X)dx=/f(X)dx+/f(X)dx (4.12)
Ausm < f(x) < M auf [a, b] folgt
b
d mbd—-a)< / fx)dx <M —a) (4.13)
Mit C := sup |f(x)| erhilt man
x€la,b]
4.14)
b b
©) /f(X)dx S/If(X)IdXSO(b—a)- (4.15)

(Die linke Ungleichung nennt man die »Dreiecksungleichung fiir Integrale«.) Gilt
f(x) = g(x) fir alle x € [a, b], so ist

b

b
® /f(X)dx Z/g(x)dX~ (4.16)

a

Sind f und g iiberdies stetig auf [a, b] und gilt fiir wenigstens ein xo € (a, b) die
strenge Ungleichung f(xo) > g(xp), so folgt sogar

b

b
/f(x)dx > fg(x)dx. (4.17)

a

299
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Beweis:
Die Beweise sind so einfach (und langweilig), daB8 wir sie hier weglassen diirfen. Der Leser
kann sie, falls er mochte, zur Ubung selber fithren: Lediglich zu Teil (e) ist zu sagen, dal man

Gleichung (4.15) zweckmifBig iiber Riemannsche Summen beweist, und zu Teil (f), da man
b b

zunichst h(x) := f(x) — g(x) > 0 setzt und / h(x)dx > 0, (4.16) bzw. /h(x)dx > 0, (4.17),

A a a
nachweist.

Beim Beweis der letztgenannten Ungleichung bemerkt man, daf} nicht nur i2(xg) > O ist,
sondern da} wegen der Stetigkeit von % in einer Umgebung von xqo sogar h(x) > h(xp)/2 > 0
b

ist. Also ist wenigstens eine Untersumme von h positiv, woraus / h(x)dx > O unmittelbar

a

folgt. t
Aus Satz 4.3 folgt miihelos

Satz 4.4:
(a) (Mittelwertsatz der Integralrechnung) Ist die Funktion f : [a, b] — R stetig, so
existiert ein & € (a, b) mit

b
/f(x)dx =fEWb—a). (4.18)

(b) (Verallgemeinerter Mittelwertsatz der Integralrechnung) Sind f und p stetige
Funktionen auf [a, b] und ist p(x) > O fiir alle x € (a, b) f so existiert ein
& € (a, b) mit

b b
/ Fp)dx = £(£) / p(x)dx. @.19)

Veranschaulichung: Der Mittelwertsatz der Integralrechnung, wird durch Fig. 4.8 dargestellt,
wobei f(x) > 0 auf [a, b] vorausgesetzt sei. Und zwar ist der Fldcheninhalt von f auf [a, b],

b
also / f(x) dx, gleich dem Flacheninhalt des Rechtecks mit den Seitenldngen f(£) und (b —a).
a

Beweis:
Wir zeigen zunichst (b). Ist f konstant, so ist (4.19) trivialerweise richtig. Es sei daher f als
nicht konstant vorausgesetzt. Damit sind

m= min f(x) und M = max f(x)
x€la,b] x€la,b]
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L B

Fig. 4.8: Zum Mittelwertsatz der Integralrechnung

verschieden. Es gibt also ein xg € (a, b) mitm < f(xg) < M; also gilt

mp(xo) < f(xo)p(x0) < Mp(xp) und mp(x) < f(x)p(x) < Mp(x) auf[a,b].
Integration der letzten Zeile ergibt nach Satz 4.3f (4.17):

b

b b
m[p(x)dx </f(x)p(x)dx <M/p(x)dx also
b

b
/f(x)p(X)dx =C/p(x)dx

a

mit einem ¢ zwischen m und M. Nach dem Zwischenwertsatz existiert ein § € (a, b) mit f(§) =
¢, woraus (4.19) folgt.
Teil (a) unseres Satzes ergibt sich daraus fiir den Spezialfall p(x) = 1 firallex € [a,b]. O

Ubung 4.5:

X
Es sei f integrierbar auf [a, b]. Beweise, daB F'(x) := / f (1) dr stetig auf [a, b] ist. (Anleitung:
a

X]
Wende auf F(x1) — F(xp) = / f(t)dr Satz 4.4e an.)

X2

4.1.5 Hauptsatz der Differential- und Integralrechnung

Es sei eine reelle Funktion f auf einem Intervall I gegeben. Unter einer Stammfunktion von f
versteht man eine Funktion F auf 7/, die

F' = f erfiillt.
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Einige Beispiele: Zu f(x) = x2ist F (x) = x3 /3 eine Stammfunktion, zu cos ist sin Stammfunk-
tion, und f(x) = e ist Stammfunktion von sich selbst. Das Suchen von Stammfunktionen ist
also ein»umgekehrtes Differenzieren«. Seine Bedeutung bekommt dieser »Umkehrprozef« im
folgenden Hauptsatz, der die Differential- und Integralrechnung verkniipft:

Satz 4.5:
(Hauptsatz der Differential- und Integralrechnung) Es sei f eine stetige Funktion auf
einem Intervall /. Dann ist die Funktion F, definiert durch

F(x) :=/f(t)dt, (x,ael), (4.20)

eine Stammfunktion von f.

v x

Fig. 4.9: Zum Hauptsatz

Bemerkung Der Satz beinhaltet u.a. die Aussage, dal3 jede stetige Funktion auf einem Intervall
tiberhaupt eine Stammfunktion besizzt.

Die Funktion F in (4.20) 148t sich gut durch Fldcheninhalte veranschaulichen, wie es die
Fig. 4.9 zeigt: Man erkennt, wie sich F(x) mit laufendem x dndert.

Beweis:

des Hauptsatzes: Wir haben zu zeigen, daf der Differenzenquotient (F(z) — F(x))/(z — x) mit
z — x gegen f(x) strebt. Dazu formen wir zunichst F(z) — F(x) mit dem Mittelwertsatz der
Integralrechnung um (x, z € I, x # z):

F(Z)—F(X)Z/f(t)dt—/f(l)dtZ/f(t)dIZf(é)(z—X)

mit einem & zwischen z lind x. Damit folgt

F(z) — F
M = f(&). 4.21)
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LaBt man x fest und variiert z, so hidngt & von z ab; darum schreiben wir besser £(z) statt &. Mit
z — x folgt £(z) — x, da &(z) zwischen x und z liegt. Damit strebt die rechte Seite von (4.21)
mit z — x gegen f(x). Folglich konvergiert auch die linke Seite von (4.21) mit z — x gegen f,
d.h.es gilt F/(x) = f(x). ]

Wieviele Stammfunktionen besitzt eine Funktion f? Ist F eine Stammfunktion von f, so
offenbar auch G (x) := F(x) 4 ¢ mit einer beliebigen Konstanten c¢. Gibt es noch weitere Stamm-
funktionen von f? Das ist nicht der Fall. Es gilt

Satz 4.6:

Ist F eine Stammfunktion von f : I — R (I Intervall), so besteht die Menge aller
Stammfunktionen von f aus den Funktionen

Gx)=Fx)+c xel, ceR.

Beweis:
Sind G und F zwei Stammfunktionen von f, so gilt (G — F) = f — f = 0, alsoist G — F
konstant (nach Abschn. 3.1.5, Folg. 3.5a). Das heifit G(x) — F(x) = ¢, was zu beweisen war. [

Aus dem Hauptsatz und dem gerade bewiesenen Satz 4.6 gewinnen wir nun den Kern- und
Angelpunkt der gesamten Differential- und Integralrechnung, nimlich die Berechnung von Inte-
gralen iiber Stammfunktionen. An dieser Stelle tut der Leser gut, eine feierliche Pause einzulegen,
denn er hat den Hohepunkt der eindimensionalen Analysis erreicht.

Die angekiindigte Aussage ist in folgendem Satz niedergelegt. Er wird auch der zweite Haupt-
satz genannt:

Satz 4.7:

Ist F Stammfunktion einer stetigen Funktion f auf einem Intervall 7, so gilt fiir belie-
bigea,b e I

b
/f(X)dX=F(b)—F(a)-

Beweis:
X
Nach dem Hauptsatz (Satz 4.5) ist durch Fy(x) := / f(¢) dr eine Stammfunktion von f gege-

a
ben. Also ist F(x) = Fy(x) + ¢ nach Satz 4.6. Daraus folgt

b a b
F(b)—F(a)=Fo(b)—Fo(a)=/f(t)dt—[f(t)dt=/f(t)dt- U
a a a

0
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Bezeichnung: Zur Abkiirzung setzt man haufig

b
I:F(x):| = F(b) — F(a),

a

also z.B.:
/2 /2 - .
/ cosxdx = | sinx =sin——sin(——)=1+l=2.
_a)2 2 2
—/2
Ubung 4.6:

Berechne mit Satz 4.7 die Integrale

2

T 1 3
(©) / sinx dx, (d) / e* dx, (e) / e2¥ dx,
0 —1 0
X

1, firt > 0,

3 2
2
1
(a) /x2 dx (s. Beisp. 4.2), (b) / (_xz +x 4+ ) dx (s.Beisp.4.1),
2 0

(f) Essei f(t) := { Beweise /f(t) dr = |x].
0

-1, fiirr < 0.

(Ist F(x) := |x| Stammfunktion von f?)

4.2 Berechnung von Integralen

4.2.1 Unbestimmte Integrale, Grundintegrale

Der Hauptsatz der Differential- und Integralrechnung mit der aus ihm folgenden Integralfor-
mel im Satz 4.7 gestattet es uns, die Methoden der Differentialrechnung bei der Integralberech-
nung voll auszuschopfen: Die Integration stetiger Funktionen ist auf die Aufgabe zuriickgefiihrt,
Stammfunktionen zu gegebenen Funktionen zu finden. Diesem Problem wenden wir uns im Fol-
genden zu.

Unbestimmtes Integral: Jede Stammfunktion F' einer reellen Funktion f auf einem Intervall /
nennt man auch ein unbestimmtes Integral von f. Man beschreibt dies nach Leibniz durch

F(x) = / f(x)dx (lies: »Integral f(x)dx«).

Das Symbol auf der rechten Seite bezeichnet dabei irgend eine beliebige Stammfunktion von f .
Es gilt somit auch

F(X)+C=/f()6)dx,
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da F(x) + c ebenfalls eine Stammfunktion von f ist. Man merke: Gilt G(x) = / f(x)dx und
Fx) = /f(x) dx, so darf man nicht G(x) = F(x) folgern (fiir alle x € I), sondern nur

G (x) = F(x) + ¢ mit einer Konstanten c. Bei der Verwendung von / f(x) dx hat man sich also

stets bewulit zu machen, dafl dieses Symbol eine Funktion nur bis auf eine beliebige additive
Konstante beschreibt.
Wir machen uns klar, daB folgende Aquivalenz gilt

F(x):/f(x)dx = F =f. 4.22)

Im Gegensatz zum unbestimmten Integral / f(x) dx nennt man

b
/ f(x)dx

ein bestimmtes Integral. Bestimmte Integrale sind also Zahlen, wihrend unbestimmte Integrale
Funktionen beschreiben.

Grundintegrale: Als Ausgangspunkt fiir praktische Rechnungen stellen wir eine Tabelle ele-
mentarer Funktionen zusammen (s. Tab. 4.1), deren Stammfunktionen sich aus der Differential-
rechnung unmittelbar ergeben (s. Abschn. 3.1.8 und Abschn. 3.1.9). Dabei sind die angegebenen
Funktionen f fiir alle x € R definiert, ausgenommen dort, wo auftretende Nenner Null werden
oder Wurzeln negative Radikanden aufweisen.

Beim Integrieren liest man die Tabelle von links nach rechts, beim Differenzieren von rechts
nach links. Mit Hilfe der einfachen Regeln

/(f(x) +g(x))dx = / f(x)dx + / g(x)dx, Additivitat, 4.23)
/ Af(x)dx = A / f(x)dx, Homogenitiit, 4.24)

fiir stetige Funktionen (s. Satz 4.3, (a), (b)) lassen sich aus der Tabelle der Grundintegrale schon
viele Stammfunktionen ermitteln, z.B.

/(3ex+7sinx)dx=3/ex dx+7/sinxdx =3e" —Tcosx,
+1

n n n k
k k X
E dx = E dx = E . 4.25
f apx™ dx ak/x X akk 1 ( )
k=0 k=0 k=0

Die Integration von Produkten f(x) - g(y) und verketteten Funktionen f(g(x)) wird in den
ndchsten beiden Abschnitten behandelt.
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Tabelle 4.1: Grundintegrale
f=F Fx)=[fwdx f=F F(x)= [ f(x)dx
xa+1
x4 (a#£1) —cothx
7 a+1 sinh2 x
1 1
- (x#0) In|x| — tanh x
X cosh” x
e’ e’
X 1 3
@ @>0,a%1)  (xl<D) aresinx
Ina /1 — x2 — arccos x
X 1 arctan x
sin x —Ccosx
1+ x2 — arccot x
. 1 arsinh x
COoS X sin x _
1+ x2 =In(x +v1+x2)
1 . 1 (x> 1) arcosh x
—cotx —— (]x] >
sin? x +/x2 1 =+In(x+vx2—1)
1
tan x
cos2 x
1.1
(x| <1 artanhx = — In Y
. 1 2 1—x
sinh x cosh x | 3 ) 41
* (x| =1 arcothx = Elnx 1
sinh x cosh x
cosh x sinh x
Ubung 4.7:
Berechne
4 7 dx dx
[ 5 =2 [vre [
1
2 /2
2 d
/(Cosx+3x2)dx, /(ex“—f) dx, [7x /4xdx, /cosxdx.
X 14 x2
0 0 0
4.2.2 Substitutionsmethode

Da das Integrieren stetiger Funktionen, d.h. das Auffinden von Stammfunktionen, gerade der
umgekehrte Prozel wie beim Differenzieren ist, lassen sich Differentiationsregeln in Integrati-
onsregeln verwandeln. Wir wollen das in diesem Abschnitt anhand der Kettenregel durchfiihren.
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Substitutionsformel: Wir betrachten die Komposition zweier stetig differenzierbarer Funktionen
F und ¢:

F(p(0) :==G{) (4.26)

(¢ bzw. F sind dabei auf Intervallen I bzw. J definiert, wobei — wie konnte es anders sein? —
o(I) C J gilt.) Differenzieren ergibt nach der Kettenregel

G'(t) = F'(p))¢'(1) .
Ubergang zu Stammfunktionen auf beiden Seiten liefert

G@) = / Fl(p)¢'(1)dt .
Mit x = @(¢) gilt dabei F(x) = G(t), s. (4.26), also

Fx)= / F'(p))g' (1) dt  mit x = ¢(1) (4.27)
fiir alle ¢ € I. Bezeichnet man nun mit f die Ableitung F’ und setzt dies zusammen mit

F(x) = / f(x)dx

in (4.27) ein, so erhilt man

Satz 4.8:

(Substitutionsformel) Es sei f stetig auf dem Intervall J und ¢ stetig differenzierbar
auf dem Intervall 7, wobei ¢ (/) C J gilt. Damit folgt

/f(X)dx =/f(<ﬂ(t))</>/(t)dt, mit x = ¢(7). (4.28)

d
Merkregel: Mit der Leibnizschen Schreibweise F): = ¢/(t) bekommt die Substitutionsfor-
mel (4.28) die leicht zu behaltende Gestalt

d
ff(X)dx=/f(<ﬂ(t))£dt, x = o(). (4.29)

Man hat also links das x in f(x) durch ¢(¢) zu ersetzen und dann dx formal durch dr zu divi-
dieren und mit d¢ anschlieBend formal zu multiplizieren. (Man macht sich klar, daB8 hier keine
wirklichen Divisionen und Multiplikationen mit dr vorliegen, sondern daf} sie nur optisch als
solche erscheinen. Dies erleichtert das Merken der Formel aber gerade!)
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Anwenden del; Substitutionsformel »von rechts nach links«: Zunichst wenden wir Formel

t
(4.28) auf / QDT(t)) dr an. Der Vergleich mit der rechten Seite von (4.28) liefert
(7

1 1 .
fle@)=—, dh fx)=—- mit x=9¢().
(1) x
Also folgt mit Vertauschen der Gleichungsseiten von (4.28):
'(t 1
/(p()dtzf—dx=1n|x|=1n|<p(t)|. (4.30)
(1) x

Schreibt man ganz rechts und ganz links x statt ¢, so gewinnt man

f 2 G = Injow)|. 431)
@(x)

Diese niitzliche Formel 148t eine Reihe von Folgerungen zu:

Beispiel 4.3:
Setzt man in (4.31) ¢(x) nacheinander gleich cos x, sin x, cosh x, sinh x und In x, so erhélt man

/tanxdx:—lnlcosx|, /cotxdx:lnlsinx|, (4.32)
/tanhy dx = In|coshx]|, /cothx dx = In|sinh x|, (4.33)
d
/ Y in|lnx|. (4.34)
x Inx

Die Formeln gelten natiirlich nur in Intervallen, in denen die gewihlten Funktionen ¢ definiert
sind und nirgends verschwinden. Entsprechend erhélt man aus (4.28):

p _ _ x2 _ 1,
e ()dt = | xdx = 5 =3¢ @), (4.35)

wobei f(x) = x gewihlt wurde.

Beispiel 4.4:
Setzt man in (4.35) ¢(¢t) = In¢ und dann x statt ¢, so folgt

1
/ X = —ln x. (4.36)
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Haufig trifft man auf Integrale der Form / ()t dr. Der Vergleich mit der rechten Seite der

Substitutionsformel (4.28) zeigt, dal wir hier ¢(¢) = 12 setzen konnen. Es folgt wegen ¢’ (1) = 2t

ff(t2)tdt = %/f(tz)Zt dt = %ff(x)dx = %F(x) = %F(ﬂ), (4.37)

wobei F eine Stammfunktion von f ist. Mit x statt # in den Ausdriicken ganz rechts und links
erhalten wir somit

/xf(xz)dx = %F(xz) (mit F' = f). (4.38)

Beispiel 4.5:
Setzt man fiir f verschiedene Funktionen ein, so gewinnt man aus (4.38) die Integrale

2 2

X —X
/xexzdxz%, /xe_xzd)C:—ez , (4.39)
x dx 1 5 x dx 1 5
/mz_ln(]+x), /l—x :—§1n|1—x|, (4.40)
xdx
1+x2, -v1 / x2 -1,
1+x vl—x V' x

“4.41)

allgemein xdx ! +bx%, (b #0) (4.42)
in: - a + bx ) .
2 va + bx? b

Die Formeln gelten selbstverstiandlich nur in solchen Intervallen, in denen die auftretenden Nen-
ner # 0 oder die Radikanden > 0 sind.

Die Verwendung der Substitutionsformel »von rechts nach links«, wie oben geschehen, ist nur
moglich, wenn die zu berechnenden Integrale schon in der Form / Fe@))¢'(t) dt vorliegen.

Man muf} das mit »scharfem Auge« erkennen! Dieser Gliickszustand liegt aber nicht immer vor.
Aus diesem Grund ist die Ausnutzung der Formel (4.28) »von links nach rechts« hiufiger, ja, auf
ihr beruht der Hauptnutzen der Substitutionsregel. Wir wenden uns dieser Methode im Folgenden
Zu.

Anwenden der Substitutionsformel »von links nach rechts«: Zunichst schreiben wir die Sub-
stitutionsformel (4.28) geringfiigig um, da sie dann fiir die Anwendungen griffiger wird. Und
zwar wird die Funktion

g(t) = fle@), tel,
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eingefiihrt. Dabei setzen wir ¢’(¢) # 0 auf I voraus. Es existiert damit die Umkehrfunktion von
@, die wir mit ¢ bezeichnen, d.h.

x=¢pt)<—=t=yx).

Damit ist f(x) = g(t) = g(¥(x)). Man setzt dies in die Substitutionsformel (4.28) ein und
erhilt

/g(lﬁ(x))dx :/g(t)(p/(t)dt. (4.43)
Hierin ist
=1 _ 1 _ 1 (4.44)
PTG T e T Ym T e '
dx

d
Wir verwenden die iibersichtliche Leibnizsche Schreibweise T); und gelangen damit zu der

Folgerung 4.1:
Beschreibt g (¥ (x)) eine zusammengesetzte Funktion, wobei g stetig auf dem Intervall
I ist und y stetig differenzierbar auf dem Intervall J (mit ¢ (J) C I), so folgt unter
der Voraussetzung ¥’ (x) # 0 auf J

d
/g(l//(x)) dx :/g(t)?: dr, mit t=1v(x). (4.45)

Die Substitutionsformel in dieser Gestalt soll an einem einfachen Beispiel demonstriert werden,
an dem der Leser die grundsitzliche Anwendungsmoglichkeit erkennt.

Beispiel 4.6:
/ sin(2x) dx =?

dr d 1

Hier setzt man ¢t = ¥ (x) = 2x, woraus — = 2, also T): = 3 folgt. Die Substitutionsformel
x

(4.45) liefert damit

. . dx 1 . 1 1
/sm(2x)dx = f sint— dr = —/smtdt = ——cost = —=cos(2x) .
dr 2 2 2

Das Beispiel zeigt folgendes: Bei Anwendung der Substitutionsformel (4.45) geht man davon

d
aus, dafl man / g T): dr »integrieren« kann, d.h. da3 man eine Funktion H angeben kann mit

/ tdxdt—Ht dh. H'@) = tdx 4.46
g()E =H(@), dh ()—g()a (4.46)
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auf /. (Aus dem Hauptsatz folgt, daBl eine solche Funktion H existieren muf3.) Damit wird (4.45)
zZu

dx
fg(w(X))dx = /g(t)a dt =H(t) = H(Y(x)). (4.47)

Diese Formelkette, von links nach rechts durchlaufen, ist ein hervorragendes Instrument zur Be-
rechnung vieler Integrale!
Beim Ubergang zum bestimmten Integral folgt daraus fiir alle a, b € J:

b

fg(lﬁ(x)) dx = H(y (b)) — H(Y (a)), (4.48)

a

wegen (4.46) also

b v (b) &
/g(W(X))dx = / 8- e, t=vy(x). (4.49)
@ ¥ (a)

Dies ist die Substitutionsformel fiir bestimmte Integrale.
An einer Reihe von Beispielen soll die Kraft der hergeleiteten Formel gezeigt werden. Zuerst
betrachten wir Integrale der Form

/f(tlJC-i-b)dx, mit a #0.

Wir »substituieren «

(=Y —ax +b, = & S a1l
= X) =ax s -— =a, -_ = .
dx dt a

Ist F eine Stammfunktion von f, so liefert die Formelkette (4.47):

/f(ax—i—b)dx:/f(t)%d;:l/f(t)dt:F(x) :F(ax—i-b)‘
a a

a

= /f(ax+b)dx = éF(ax—i—b) mit F = f. (4.50)

Beispiel 4.7:
Nach (4.50) ist mit @ # 0 (mit Nenner # 0 in (b) und (c)):

(a) / cos(ax + b)dx = c_lz sin(ax + b) .

dx 1
b =1 b|. 4.51
()fax+b anlax+| 4.51)
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o _ 1 a+1 _
(c) /(ax—i—b) dx = a(a+1)(ax+b) (¢ #—1). 4.52)

(d) Es sollen cosx und sin x integriert werden. Aus dem Additionstheorem des Cosinus folgt
cos(2x) = cosx — sinx, mit sinx + cos x = 1 nach Umformung also:

cosx = %(1 + cos(2x)), sinx = %(1 —cos(2x)) . 4.53)

Mit der Substitution ¢ = 2x errechnet man daraus

5 1 1 sin(2x) 1 .
cos xdx:i (1+cos(2x))dx=5 x4+ > :E(x—i—smxcosx).

Entsprechend wird sin x integriert. Man gewinnt so die oft benutzten Formeln

1 1
/coszxdx = E(x + sinx cos x) , /sinzxdx = E(x — sinx cosx). (4.54)

Fig. 4.10: Zum Flidcheninhalt des Kreises

Beispiel 4.8:
(Kreisfliche) Die hergeleiteten Formeln gestatten uns den Beweis, dal der Flicheninhalt des
Einheitskreises 7 ist, und in der Folge, da3 der Flicheninhalt eines Kreises mit dem Radius r
gleich r*m ist.

Wir nehmen uns dabei die obere Hilfte des Einheitskreises vor, s. Fig. 4.10. Sie wird durch
den Graphen der Funktion f(x) = +/1 — x2, x € [—1,1], berandet. Die obere Einheitskreisfliche
hat damit den Flacheninhalt des Kreises

1
Iz/\/l—xzdx. (4.55)

-1

Zu seiner Berechnung integrieren wir zunichst [ +/1 —x2dx fiir |x| < 1, und zwar mit der
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Substitution x = cost:

d
/\/1—x2dx:/\/1—costh);dtz—/sinztdt
1 1
= _E(t —sintcost) = ) (arccosx —xv1 —x2> ,

(4.56)

d.h.

/ V1—x2dx = (x\/ 1—x2— arccosx) : (4.57)

1
2

Das bestimmte Integral (4.55) — also der halbe Einheitskreisinhalt — wird damit zu
1
T
f\/l—xzdxza. (4.58)
=1

Der Einheitskreis hat somit den Fldcheninhalt 7. Entsprechend errechnet man den Inhalt eines
Kreises vom Radius » > 0 (Substitution t = x/r):

r r 1 1
2
2/\/r2—x2dx=2/,/1—(£) dx=2r/\/1—tz%dt=2r2/\/l—t2dt=r2n.
r
7 i e 5

(4.59)

Beispiel 4.9:
Analog (4.56) errechnet man mit der Substitution x = cosh¢ fiir x > 1:

1
/\/xz —1dx = > ()c\/x2 —1- arcoshx) , (4.60)
und mit x = sinh¢ fiir x € R:

/\/x2 Flde = (x\/l +x2+arsinhx) . 4.61)

1
2

Beispiel 4.10:
(Orthogonalitdtsrelationen von sin und cos) Aus den Additionstheoremen der trigonometrischen
Funktionen folgt unmittelbar

sin(nx £ kx) = sin(nx) cos(kx) % cos(nx) sin(kx) ,
cos(nx & kx) = cos(nx) cos(kx) F sin(nx) sin(kx) .
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Addition bzw. Subtraktion dieser Formeln liefern
sin(nx) sin(kx) = %(cos((n — k)x) — cos((n + k)x)),
cos(nx) cos(kx) = %(cos((n — k)x) + cos((n + k)x)) . (4.62)
sin(nx) cos(kx) = %(sin((n — k)x) + sin((n + k)x)) .

Hierbei seien n und k beliebige natiirliche Zahlen. Die rechten Seiten lassen sich mit den Substi-
tutionen t = (n — k)x bzw. t = (n + k)x leicht integrieren. Es folgt:

sin((n — k)x) B sin((n + k)x)

, wennn #k,
2 / sin(nx) sin(kx) dx = n.— k n+k
sin(2nx)
-, wennn =k,
2n
sin((n —kk)x) n sin((n +kk)x) . wennn #£ k.
2 / cos(nx) cos(kx) dx = n- nt (4.63)
sin(2nx)
- wenn n = k,
2n
cos((n — k)x) cos((n+k)x)
— _y — P , wennn #k,
2 / sin(nx) cos(kx) dx = "
cos(2nx)
-, wenn n = k.
2n
Integration von —r bis 7 ergibt
r r 0, fallsn £k
f sin(nx) sin(kx) dx = f 00S0520) o8 ) e =0 LS
w, fallsn =k,
- -7
. (4.64)
/ sin(nx) cos(kx)dx =0 (n,k e N).
-

Diese Formeln heilen die Orthogonalitditsrelationen der trigonometrischen Funktionen. Sie spie-
len in der Theorie der Fourierreihen eine grundlegende Rolle (s. Abschn. 5.5).

Ubung 4.8:

Integriere
(a) /sinz(ax) dx, /cosz(ax) dx, mita # 0,

(wandle den Nenner um in (x + A)2 + B und substituiere t = x + A),

(b)/
Va2 tax +b
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dx . X X X X L x
(c) —— (verwende sinx = 2sin — cos — = 2tan — cos — und substituiere ¢ = tan —),
sin x 2 2 2 2 2

dx . b4 .
(d) (substituiere x =t — —, also cos x = sint),
coS x 2

(e) / sin” x cos x dx, mit nN (¢ = sinx),
) /x sin(1 + x2) dx,
(2) /\/xz — a2 dx, /Vx2 + a2 dx, mita > 0.

4.2.3 Produktintegration
Es soll die Produktregel
wv) =u'v+uv

der Differentialrechnung in eine Integrationsformel verwandelt werden. Setzen wir u und v als
stetig differenzierbare Funktionen auf einem Intervall I voraus, so folgt aus der obigen Gleichung
durch Integration auf beiden Seiten:

u(x)v(x) =/u'(x)v(x)dx—I—/u(x)v’(x)dx.

Man bringt hier / u(x)v'(x) dx auf die linke Seite und erhélt

Satz 4.9:
(Produktintegration) Sind u und v stetig differenzierbare Funktionen auf einem Inter-
vall 7, so gilt dort

/u(x)v’(x) dx = u(x)v(x) — / u (x)v(x)dx. (4.65)

Fiir bestimmte Integrale erhilt man daraus

b

b b
/u(x)v’(x)dx = [u(x)v(x):| —/u’(x)v(x)dx.

a

Die Produktintegration wird auch partielle Integration genannt.
Wie verwendet man Formel (4.65) bei der praktischen Berechnung von Integralen? Wir zeigen
dies zunichst an einfachen Beispielen.

Beispiel 4.11:

(a) /xex dx:xex—/ 1 - e dx=e"(x—-1). (4.66)
—— —— ~—— ——
uv’ uv u' v
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(b) /xcosx dx :xsinx—/ 1 -sinx dx = xsinx 4+ cosx. 4.67)
— ~——— —~ =
uv’ uv u v
(c) /xsmx dx = x(—cosx) — / 1-(—cosx)dx = —xcosx +sinx. (4.68)

uv’

Was ist das Wesentliche bei der Produktintegration? Entscheidend ist, daf} ein zu berechnendes
Integral der Form / f(x)g(x) dx auf ein anderes zuriickgefiihrt wird, von dem man hofft, daf}

es »leichter« zu integrieren ist. Eine Richtschnur dabei ist die folgende

Faustregel: Bei der Integration eines Produktes / f(x)g(x) dx wihle man denjenigen Faktor

als u(x), der sich beim Differenzieren »vereinfacht«, und denjenigen als v’ (x), der sich beim
Integrieren wenigstens nicht allzusehr »verkompliziert«.

In den obigen Beispielen 4.11 wurde so vorgegangen. Es ist klar, daf} die Begriffe » Vereinfachen«
oder »Verkomplizieren« nicht scharf zu definieren sind.

Immerhin kann als »Vereinfachung« angesehen werden, wenn von Potenzen u(x) = x" (n €
N) zu niedrigeren Potenzen der Ableitung u’(x) = nx"~! iibergegangen wird, oder wenn beim
Differenzieren

. 1 . 1
Inx in Infx=—, arctanx in arctan’ x = 5
X 1+x

1
V1 —x2

ibergeht. Die links stehenden Funktionen sind »transzendent«, d.h. »nicht algebraisch», wih-
rend die Ableitungen rechts algebraisch, ja, z.T. sogar rational sind.

Dagegen werden beim Integrieren die Funktionen e*, sin x, cos x sicherlich »nicht komplizier-
ter«, da ihre Stammfunktionen e, — cos x, sinx von gleicher Bauart sind.

Trotz der Faustregel, wie auch der iibrigen besprochenen Regeln, ist das »analytische Integrie-
ren« — d.h. das Auffinden von Stammfunktionen — kein glattes Geschéft. Man muf} mit einem
gewissen Geschick vorgehen — was man durch Ubung bekommt — und auch etwas Gliick ha-
ben, was einem ohne Ubung zufallen kann. Dabei passiert es immer wieder, dal man auf elemen-

arcsinx in arcsin’ x =

tare Funktionen stoBt (z.B. sin x/x oder e’xz), die sich nicht mehr elementar integrieren lassen,
d.h. die keine elementaren Funktionen als Stammfunktionen haben. (Elementare Funktionen sind
dabei f(x) = x, e¥, sinx sowie alle daraus gebildeten Kombinationen unter Verwendung von
+, —, -, /, hoch n, (’/_ (n € N, Verkettung o und Umkehrfunktionsbildung.) Das elementare
Integrieren (auch analytisches Integrieren genannt) ist also mehr eine Art pfiffiger Kleinkunst als
ein sicherer Rechenkalkiil, im Gegensatz zum Differenzieren, bei dem man durch feste Regeln
im Bereich elementarer Funktionen stets zu den Ableitungen gelangt.

Zur Schreibweise ist bei der Produktregel zu sagen, daB der Lernende zweckmiBig « und v’
unter die entsprechenden Faktoren des zu bearbeitenden Integrals schreibt, wie in den Beispie-
len 4.11 geschehen. Dann schreibt er weiter rechts zv und v in der unteren Zeile hin (s. 4.11(a))
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und anschliefend die entsprechenden expliziten Ausdriicke in die Zeile dariiber, in der schlief3-
lich rechts die Losung steht. Spiter notiert er nur noch uv’, wie in Beisp. 4.11(c), oder unterliBt
auch dies, da er fiahig wird, die »Unterzeile« nur noch zu denken.

In den folgenden Beispielen wird unsere Faustregel erfolgreich eingesetzt.

Beispiel 4.12:

xatl 1 xatl 1
(a) /ln(x) x4 dx =In(x) - /x“ dx = Inx — —— (4.69)
\,—J\T’ a+1 a+1 a+1 a+1

u v

Dabeiistx > Ound a # —1. (Fira = —1 s. (4.36).) Insbesondere folgt fiir a = 0:

/lnxdx=xlnx—x. 4.70)

(b) Zur Berechnung von [ arcsin x dx benutzt man den Trick, da man v’ = 1 setzt und u gleich

dem gesamten Integranden: u = arcsin x. Es folgt

x dx
arcsinx dx = x arcsinx — | ———— = xarcsinx ++v 1 — x2. “4.71)
/ 1 —x2
Entsprechend erhilt man mit v = 1, u = arctan x:
1 2
arctan x dx = x arctanx — > In(1 +x°). 4.72)

. . s . s . .
Damit lassen sich auch arccos x = — — arcsinx und arccot x = — — arctan x sofort integrieren.
Mit der Methode v/ = 1 erhiilt man entsprechend die Integrale von arsinh x, arcosh x, artanh x
und arcoth x.

(c) In listenreicher Weise fiihrt beim Integral f e sin(bx) dx (b # 0) das zweimalige Anwen-

den der Produktregel zum Ziel:

1
e™ sin(bx) dx = —— €™ cos(bx) + a e™ cos(bx) dx
v Uy vi
2

1
= / e sin(bx) dx = -3 e™ cos(bx) + % e sin(bx) — Z—z / e sin(bx) dx .

Lost man die letzte Gleichung nach / €™ sin(bx) dx auf, so folgt

ax

f e sin(bx) dx = aze—+b2(a sin(bx) — b cos(bx)). (4.73)

Analog ergibt sich mit b # 0:
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ax

/ * cos(bx) dx = ¢ ) (a cos(bx) + b sin(bx)). 4.74)
x2

Beispiel 4.13:
(Rekursionsformeln) Mit n € N gilt

(a) f x* e dx=x"e" —n/x”_lex dx . 4.75)
u v

Damit ist ein Integral / n=leX dx iibrig geblieben. Wendet man die Formel auf dieses Integral
an — (n — 1) statt n gesetzt —, so bleibt ein Integral / "=2&* dx zu 16sen. Fihrt man in dieser

Weise fort, so erreicht man schlieBlich / e’ dx = ¥, womit / x"e* dx explizit berechnet ist.

Zusammengefalit ergibt dies

/x" ¢ dx =" <x" + Z(—l)kk!<z>x"_k) . (4.76)
k=1

(b) Vollig entsprechend erhilt man die Rekursionsformeln

fx" sinx dx = —x”cosx+nfx"_lcosxdx,
@.77)
n N n—1 _:
/x cosxdx =x smx—n/x sin x dx

und daraus die Summenformeln:

k
/x sinx dx = Zk‘( ) =k cos <x+ 271) , (4.78)
/x” cosx dx = Zk! ") ek gin (x + X ) | 4.79)
Pt k 2

xatl n
(c) / (lnx)” dx = (ln ' — —— | x(nx)"'dx (@ # -1, neN)
a+ a+1

= /(lnx)” dx = x(Inx)" —n /(1nx)"*1 dx. (4.80)
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(d) Firn e N, n > 2 gilt

cos" xdx = | cos" ' xcosx dx =cos" ' xsinx + (n — 1) [ cos" 2 sinx dx
—— ——
u v

=cos" ' xsinx+(n—1) / cos"2(1 — cos x) dx

1 —1
= /cos"xdx = ~cos" ! xsinx + " /cos"_zx dx . (4.81)
n n

Analog folgen (mit beliebigen n, m € N, n > 2)

) 1 . _ n—1 .
/sm"xdx:——sm” Tycosx + —— [ sin" Zxdx,
n n

m+1 n—1 (482)

sin X COS X n—1

/ sin” x cos" 2 x dx .

sin” x cos” x dx =
m+n m-+n

Eine andere Methode, die Integrale (4.81), (4.82) zu berechnen, besteht in der Anwendung der
Summenformeln

cos?" T wein {21 2n
o } = o [;(il) 2( i ) cos((n — k)2x) + <n)

2n

mit n € N (Dabei gilt in (£1)"* das Pluszeichen fiir den cos?” x und das Minuszeichen fiir

sin?" x). Ferner ist fiir ungerade Potenzen

1

o1
cos2n—1 y — i ( . ) cos((2n — 2k — 1)x),

1= on—1
c -1 _ +k—1 .
sin”"" ' x = o1 kZO(—l)" ( L > sin((2n — 2k — 1)x) .

Man gewinnt diese Formeln iiber cos x = (e + e_ix)/x und sinx = (e'* — e_i")/(2 1) nebst
der Binomischen Formel. Integration liefert fiir beliebiges n € N

/cos x dx n (£1)" 2 -1 2n\ sin((n — k)2x)
- (e nent (7) s

2
/ sin®" x dx 22 k 2(n = k)
(4.83)

2n—1
/cos xde| il @Y [ sin(@e— B — Do)
/ T2 m—k) — 1 | cos(Qn—k) — Dx)

’

sin?"~! x dx




320 4 Integralrechnung einer reellen Variablen

Dabei gehort wieder »Oberes zu Oberem« und »Unteres zu Unteremc.
Ein ofters vorkommender Spezialfall ist das folgende bestimmte Integral, das sich aber auch
aus (4.82) leicht ergibt:

/2 /2
1-3-5-...-2n—1
/sinz"xdx: /cosb‘xdx:z- (2n ). (4.84)
2 2-4.-6-...-2n
0 0
Ubung 4.9:

Leite die Formeln (4.74), (4.82) und (4.83) her.

Ubung 4.10:

Berechne folgende Integrale und mache die Probe durch Differenzieren:

x2dx

\/l—xz’

. . . x dx
/x2s1nhxdx, /s1n3xdx, /coszxsm2xdx, / 7
COs* X

4.2.4 Integration rationaler Funktionen

/(3x4 —2x% + x — D) sin(5x) dx, /x arcsin x dx ,

Rationale Funktionen p(x)/q(x) (p, g reelle Polynome) lassen sich elementar integrieren. Die
Integration verlduft in drei Schritten:

(D Division p(x) : q(x), falls Grad p > Grad ¢ > 1.
(II) Partialbruchzerlegung
(II) Integration der Summanden

(D Division: Ist Grad p > Grad g > 1, so dividiere man p durch ¢ mit dem Divisionsalgorithmus
fiir Polynome, s. Abschn. 2.1.6. Man erhélt damit

PO _ oy TH (4.85)

q(x) q(x)’

wobei i und r Polynome sind. Der Grad von r ist dabei kleiner als der Grad von g. Da man h
ohne Schwierigkeit integrieren kann, bleibt (x)/gq(x) zu integrieren. Wir haben unser Problem
also auf die Aufgabe reduziert, rationale Funktionen zu integrieren, deren Zihlergrad kleiner als
der Nennergrad ist. Ist dies von vornherein der Fall, so eriibrigt sich die Division natiirlich.

(IT) Partialbruchzerlegung: Es ist r (x)/q(x) zu integrieren. Der Grad des Polynoms r sei m, der
des Polynoms ¢ sei n, wobei m < n ist.

Zunidchst sind simtliche Nullstellen «, a2, ... von g zu berechnen (mitAuflosungsformeln
oder dem Newtonschen Verfahren). Nach dem Fundamentalsatz der Algebra (Abschn. 2.5.5)
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kann man damit g (x) so darstellen:
g(x) =clx —aD"(x —a) .. (x —an), c#0.

Die ki, ..., ky € N sind die »Vielfachheiten« der entsprechenden Nullstellen. Es ist k1 + k> +

. + ky = n. Unter den Nullstellen konnen auch komplexe Nullstellen sein. Mit jeder echt
komplexen Nullstelle a; = &; +1in; (n; # 0) ist aber auch stets die konjugiert komplexe
Zahl @; = &; — in; auch Nullstelle von ¢, da wir g als reelles Polynom vorausgesetzt haben.
(Denn g (o) = 0 impliziert g (o) = m = 0 = 0). a; und @; haben iiberdies die gleiche
Vielfachheit k; (wie man durch sukzessives Dividieren von ¢ durch (x — «;) und (x — @)
erkennt). Wir fassen zusammen:

(x—ap)x—a) =x"+px+vy,
wobei B = —(aj + ;) und y = a;a; = |oej|2 reell sind. (Fiir reelle x ist der Ausdruck

x2 4+ Bx + y stets > 0.) Damit erhilt g (x) die Gestalt

M L
gy =c-[Jax—aph - [Ja*+Bix +v)™ . (4.86)

J=1 Jj=1

wobei wir die reellen Zahlen § und y entsprechend mit j indiziert haben. In diese Form muf} ¢
gebracht werden!

AnschlieBend wird der Bruch r(x)/q(x) umgeformt in

r(x) Aj Ajiy
+.. ot
q(x) Z (x—a, (x—a)? (x—oe,)’v')
(4.87)

i1x+C; Biox +Cip Bin.x+Cip.
+IBJX+VJ (x=+Bjx+vj) (x2+ Bjx +y)"i

wobei man die Zahlen A ,, Bj,, C;, durch »Zihlervergleich« gewinnt. Das heift man bringt die
rechte Seite auf »Hauptnenner« g (x) und vergleicht das Zihlerpolynom rechts mit dem bekann-
ten Zidhlerpolynom r(x) links. Durch Koeffizientenvergleich oder Einsetzen spezieller x-Werte
(etwa der Nullstellen « ;) ergeben sich die Unbekannten A ;,,, By, Cjy.

Die rechte Seite der obigen Gleichung (4.87) heit Partialbruchzerlegung von r(x)/q(x).

(IID) Integration der Summanden: Mit der Partialbruchzerlegung (4.87) ist unser Problem auf die
Aufgabe zuriickgefiihrt, Ausdriicke der folgenden Formen zu integrieren:

A Bx+C
(x —a)k’ (x2 + Bx + p)k

(4.88)
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mit x2 + Bx + y > O fiir alle x € R. Das geschieht durch die Gleichungen

In|lx —«a| firk=1,

d
/( o = | | et (4.89)
X —« _k—l.(x—oz)k_l iirk =2,3,4, ...,
Bx+C B 2C—B 2
/# v= B+ gty + 2B rean - EEE 400
(x +ﬂx+y) 2 4y — B2 4y — B2

/ Bx — B B
@2+ Bx + y)k) = D+ Bxt pr]

Bp dx
+ (c _ 7) / ery e L @91)
/ _ 1 [ 2x + B
(2 +Bx+ )k (k— D@y — B [ (224 Bx + y)k-!
dx
202k — 3)/ R } k=2). (4.92)

Durch Differenzieren tiberpriift man leicht die Richtigkeit der Gleichungen. (Man findet die
Gleichungen (4.90) —(4.92), indem man 24+Bx+y = x4+ 8>+ v mits := /2 und
v :=/y — B%/4 schreibt und dann t = (x + §)/v substituiert, s. [56], S. 225-226).

Die ersten beiden Gleichungen (4.89) und (4.90) liefern elementare Funktionen bei der Inte-
gration. In (4.91) wird das links stehende Integral auf das Integral der Form

Li(x) = | —/——.

= [

zuriickgefiihrt. Dieses wird durch sukzessives Anwenden der Rekursionsformel (4.92) schlief3-
lich auf I (x) zuriickgefiihrt, welches sich aus (4.90) im Falle B = 0, C = 1 ergibt. Damit ist
das Problem der elementaren Integration rationaler Funktionen gelost.

Beispiel 4.14:
Es soll
2x3 —x2 —10x + 19
1 = dx
(x) / x24+x—6

elementar integriert werden. Division von Zihler durch Nenner liefert zunéchst

2x3 —x2 —10x + 19 5x 41
=2x—-34+ =——. 4.93
xX24x—6 * x24x—6 (4.93)
Die Nullstellen des Nenners errechnet man leicht zu oy = 2 und oy = —3, also gilt 24+x—6=

(x —2)(x 4 3). Damit macht man den Ansatz fiir die Partialbruchzerlegung:

Sx+1 A N Ay Al-(x+3) 4+ Ay (x—2)
x24+x—-6 x—2 x+3 (x —=2)(x +3)
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Aus dem Zihlervergleich
Sx+1=A1(x+3)+ Ax(x —2)

gewinnt man durch Einsetzen von x = 2 sofort A; = 11/5 und durch Einsetzen von x = —3 die
Konstante Ay = 14/5. Also folgt die Partialbruchzerlegung

Sx+1 11 1 +14 1
24+x—6 S5x—-2 5x+43

Setzt man dies in (4.93) ein und integriert, so erhilt man

I()—Z/dx 3/d+11/dx+14 dx
Sl TS x2T 5 ) 53

2 11 14 2 1 11 14
=x —3x+?ln|x—2|+?ln|x+3|:x —3x+§ln(|x—2| [x +3]").

Beispiel 4.15:
Wir wollen

1 / x3—10x2 +7x -3
X) =
x4 4+2x3 —2x2 —6x+5

analytisch integrieren. Da der Ziahlergrad (= 3) kleiner ist als der Nennergrad (= 4), entfillt
das Divisionsverfahren fiir Polynome. Man findet (durch Kurvendiskussion oder Probieren), daf3
o1 = 1 eine Nullstelle des Nenners g (x) ist. Division g (x)/(x — 1) = g1 (x) liefert ein Polynom,
fiir das oy = 1 abermals Nullstelle ist. Also ist @1 mindestens doppelte Nullstelle des Nenners.
Division des Nenners durch (x — 1) liefert die Zerlegung

ot 2 —ex+5=( — D224+ 4x +5). (4.94)

Man versucht nun x2 + 4x + 5 = 0 zu losen und stellt fest, daB diese Gleichung keine reellen
Losungen hat. Damit ist (4.94) die Zerlegung des Nenners g(x), die Ausgangspunkt fiir die
Partialbruchzerlegung ist. Die Zahl a; = 1 ist in der Tat eine doppelte Nullstelle des Nenners.
Nach (4.87) ist folgender Ansatz zu machen:

A —10x2+7x -3 Ay LA BxtC
X423 =202 —6x+5 x—1 (x—=12 x2+4x+5"

(4.95)
Man bringt die rechte Seite auf Hauptnenner und erhilt fiir die Zéhler die Gleichung
X 10624+ 7x =3 = Al (x — D (2 +4x+5)+ A (x> +4x +5)+ (Bx + C) (x — )% . (4.96)

Einsetzen von x = 1 1dBt rechts einiges verschwinden, und man gewinnt Aj = —1/2. Wir
bringen A12(x% 4 4x + 5) nun auf die linke Seite von (4.96) und errechnen

3 19 2 1 2 2
X —7)( +9x—§=A11(x—1)(x +4x4+5)+ (Bx+C)(x — 1)~.



324 4 Integralrechnung einer reellen Variablen

Division durch (x — 1) ergibt

17 1
x2—7+§=A11(x2+4x+5)+(Bx+C)(x—1). (4.97)
Hier liefert x = 1 die Konstante A1; = —7/10. Man setzt dies in (4.97) ein. Vergleicht man dann
die Koeffizienten von x? rechts und links, so gewinnt man B = 17/10, und vergleicht man die
konstanten Glieder, so folgt C = —4. Zusammen also

A]]=_0,7, A]2=_0757 B=177a C=-4.

Setzt man dies in (4.95) ein und integriert, so folgt mit (4.89), (4.90):

dx dx 1,7x — 4
I =-07] - 05 d
*x) x—1 /(x—1)2+/x2+4x+5 *
0,5

=—0,7In|x — 1|+ —1 +0,85In(x? + 4x + 5) — 7,4 arctan(x + 2) .
_

Bemerkung: (a) Das letzte Beispiel verdeutlicht nochmal, dafl das unbestimmte Integral einer
rationalen Funktion sich zusammensetzt aus

* logarithmischen Gliedern
* Arcus-Tangens-Gliedern und

¢ einem rationalen Anteil.

Gehen wir von % dx aus mit Grad » < Grad ¢, so tritt ein rationaler Anteil nur dann auf,
q(x

wenn der Nenner g (x) mehrfache Nullstellen hat.
(b) Man kann ohne Kenntnis der Nullstellen von g feststellen, ob mehrfache Nullstellen von g
vorliegen. Dies ist ndmlich genau dann der Fall, wenn der grote gemeinsame Teiler (ggT) von ¢
und ¢’ ein Polynom g von mindestens erstem Grade ist. Die Nullstellen von g sind dann gerade
die mehrfachen Nullstellen von q.

Den ggT von ¢ und ¢’ findet man mit dem »euklidischen Algorithmus«, d.h. man berechnet
mit der Polynomdivision sukzessive

g(x) 1 q'(x) =hi(x) + g1(x)/q' (x),
q'(x) : g1(x) = ha(x) + g2(x)/g1(x)

(4.98)
g1(x) : g2(x) = h3(x) + g3(x)/g2(x),
g2(x) : g3(x) = ha(x) + g4(x)/g3(x) usw.
Da die Polynome g1, g2, g3, ... streng abnehmenden Grad besitzen, mufl das Verfahren abbre-

chen, z.B. bei

8m—1(X) : gm(x) = hyp41(x) . (4.99)
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Das so ausgerechnete Polynom g, ist ggT von g und ¢'.

(¢) GiltGrad g > 1 fiir den ggT g von g und ¢g’, so kann man nach der Methode von Ostrogradski-
Hermite® den rationalen Anteil des Integrals | r(x)/q(x) dx bestimmen ohne Nullstellenberech-

nung von q und ohne Partialbruchzerlegung (Voraussetzung Grad r < Grad ¢). Und zwar macht
man den Ansatz

/r(X)dx: F(x)+ H(X)dx
q(x) g(x) 0x)

Hierbei ist Q das Polynom Q(x) = gq(x)/g(x); F und H sind Polynome mit

(4.100)

Grad F < Grad g, Grad H < Grad Q,

die man durch Koeffizientenvergleich aus

F—Fo_ F<g Q>+Hg 4.101)

gewinnt. (Diese Gleichung ergibt sich aus (4.100) durch Differenzieren.) In (4.100) ist F (x)/g(x)
der gesuchte rationale Anteil, wihrend das verbleibende Integral / (H(x)/Q(x))dx auf Loga-

rithmus- und Arcus-Tangens-Glieder fiihrt.

Ubung 4.11:

Berechne die folgenden unbestimmten Integrale:
x3—3x+4 3x 42 x dx
dx, dx, c — >
()/ +2x—15 ()/ —4x +7 ()/l+x4
x24x—1
@ / N / S dx
(x“4+x4+2) (x3 + 4x2 + 8x)

4.2.5 Integration weiterer Funktionenklassen

Eine rationale Funktion R(x, y) von zwei Variablen x, y ist erklért durch folgenden Ausdruck:

n

ik
2 ajux’y
Jj. k=0

e DI

Z bjkx-/yk

j.k=0

5 Michael Wassiljewitsch Ostrogradski (1801 — 1862), russischer/ukrainischer Mathematiker; Charles Hermite (1822 —
1901), franzosischer Mathematiker
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Entsprechend ist eine rationale Funktion R(x, y, z) erklédrt durch

n
Z aijkxlyjzk

i,j,k=0

R,y =b— > 1bijil > 0
Z bijkxlyjzk i,j.k
i,j,k=0

Die rationalen Funktionen werden also gebildet aus Potenzen von x, y, z usw. und konstanten
Faktoren, die durch +, —, -, / verkniipft sind.

(I) Rationale Funktionen von trigonometrischen Funktionen

Dies sind Funktionen der Form

3 cos x sin® x

R(sinx, cos x), also z.B. _
sinx + 5cosx

Diese Funktionen lassen sich alle elementar integrieren. Und zwar verwendet man in
/R(sinx, cosx)dx 4.102)

die Substitution ¢ = tan(x/2). Uber die Additionstheoreme der trigonometrischen Funktionen
erhilt man damit

. . X X X X 2t
sinx =2sin—cosS — =2tan —coS — = ——— ,
2 2 2 2 1+1¢2

20X 2
X o X X sin” 5 1—1¢
cosx:coszz—smz—zcosz—(1— 2) =

cos? 3 T 142
dx 2

und x =2arctant = — =
Damit geht das Integral iiber in

fR 21—y 2 dt (4.103)
1462 1422) 1412 '

also in das Integral einer rationalen Funktion von ¢, das analytisch integriert werden kann.

(IT) Rationale Funktionen von e*
Funktionen der Form

ap+aye* +are* +... +a, e

R(eY) =
@) by + by e* +bye2x + ... + by, em*

, (bm #0) (4.104)
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werden mit Hilfe der Substitution t+ = e*, x = In¢, dx/dt = 1/¢ behandelt. Ihre Integrale
werden dadurch auf Integrale von rationalen Funktionen zuriickgefiihrt:

/R(ex)dx :/R(t)%dt. (4.105)

(IIT) Rationale Funktionen von Hyperbelfunktionen
R(sinh x, cosh x)

lassen sich in die Form (4.104) umrechnen und damit auch elementar integrieren. Eine zweite
Methode — analog zu (I) — besteht darin, + = tanh(x/2) zu substituieren. Das Integral von
r(sinh x, cosh x) wird damit

, 20 1+12\ 2
R(sinhx,coshx)dx = | R I dr (4.106)

-2 1=12) 112

(IV) Rationale Funktionen von Wurzelausdriicken und x

/R(x, V1—x%)dx = / R(sinu, cosu) cosu du , mit x = sinu, (4.107)
/R(x, V1I+x2)dx = / R(sinhu, coshu) coshudu, mitx = sinhu, (4.108)
/R(x, Vx2—1Ddx = / R(coshu, sinhu) sinhu du, mitx = coshu. (4.109)

Die links stehenden Integrale sind damit auf (I) und (IIT) zurtickgefiihrt. Das allgemeinere Inte-
gral

/R(x,\/ax2+2bx+c)dx (a #0) 4.110)

wird auf die obigen Fille zuriickgefiihrt. Dazu schreibt man

ac — b?

1
ax? +2bx + ¢ = —(ax + b)> + 4.111)
a

Wir kiirzen ab: D := ac — b2, und erhalten die folgenden Fille:
Fall Substitution  vax2 + bx + ¢ =

D>0 s=‘”¢%b 2@+ @0

p<o0 g=%Fb [P 0 od
< S_m p £ —1) (a>0odera <)
D=0 ﬁ(x—l—é) (a>0)
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Man sieht, dafl in den ersten beiden Fillen (4.110) in Integrale der Form (4.108), (4.109) ver-
wandelt wird, wéihrend der Fall D = 0 sofort auf einen rationalen Integranden fiihrt. Damit ist
(4.110) berechnet.

Auf das Integral (4.110) 148t sich auch

/ R(x, Vax + b, V/Ax + B) dx (4.112)

zuriickfithren, und zwar durch die Substitution & = «/Ax + B. Der Leser fiihre dies aus.
SchlieBlich kann man

b b
/R(x,"ax+ )dx durch &= /& + neN 4.113)

Ax + B Ax+ B’

in ein Integral einer rationalen Funktion verwandeln und damit analytisch integrieren.

Ubung 4.12:

Berechne
2x
dx cos X x2 +x+1
) dx,
(a)/1+x ()/Hgm x ()/ — ¢

4.2.6 Numerische Integration

Versagt die analytische Integration, so sucht man Zuflucht zur numerischen Integration. Im Zeit-
alter des Computers ist diese»Zuflucht« durchaus zur brauchbaren »Heimstitte« geworden. Wir
wollen einige Verfahren kurz streifen. (Die » Tangentenformel« haben wir schon in Abschn. 4.1.3
kennengelernt.)

b
(I) Trapezformel: Es soll / f(x) dx berechnet werden, wobei wir die Funktion f : [a, b)] — R

a
als zweimal stetig differenzierbar voraussetzen wollen.
Zunichst bilden wir eine dquidistante (gleichabstindige) Zerlegung von [a, b] durch die Tei-
lungspunkte

xo=a, xi=a+h, xx=a+2h, x3=a+3h, ..., x,=a+nh=»>b,
mit der »Schrittweite« i = (b — a)/n. Die zugehorigen Funktionswerte werden mit y; :=
f(xi),i =0,1,2, ..., n bezeichnet. Auf jedem Teilintervall [x;_1, x;] betrachtet man die Néhe-
rung

Yi—1+ i

5 (4.114)

/ fx)ydx ~ h——
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a=Xg X1 e Xi=1 Xi Xn=b a=Xg Xy X2 o, xn=br
Fig. 4.11: Zur Trapezformel Fig. 4.12: Zur Simpsonformel

Der Ausdruck rechts ist dabei gerade der Flacheninhalt des schraffierten Trapezes in Fig. 4.11
(yi—1 und y; positiv vorausgesetzt).

Aus dieser geometrischen Deutung resultiert der Ansatz und der Name unserer Methode. Sum-
miert man (4.114) auf beiden Seiten iiber i, und bezeichnet den Gesamtfehler — also den Unter-
schied zwischen rechter und linker Seite — mit §, so erhilt man

b
/f(x)dx=h-(%+y1+yz+...+yn_1+y7”)+5. (4.115)
a

Diese Formel heilt die Trapezformel. Ohne Beweis geben wir dazu folgende Fehlerabschitzung
an (s. [56], S. 239).

M2 2 . "
8] < ®—a) k%, mit My>|f"()] auf [a, b]. (4.116)

Die Trapezregel ist um einiges ungenauer als die folgende Simpsonformel. Sie hat jedoch theo-
retisches Interesse, als Ausgangspunkt fiir das Rombergverfahren. Aus diesem Grunde wurde sie
hier angegeben.

(IT) Simpsonformel®: Die Funktion f : [a, b] — R sei viermal stetig differenzierbar. Zur Ermitt-
b

lung des Integrals / f(x) dx zerlegen wir das Intervall [a, b] dquidistant in eine gerade Anzahl

a
von Teilintervallen [x;_1, x;]. Die Teilungspunkte sind.

xi=a-+ih firi=0,1,2,...,n, wobeih = —a’ n gerade.
n

Wieder wird y; := f(x;) gesetzt.
Wir betrachten nun das erste »Doppelintervall« [xg, x;], s. Fig. 4.12. Die Idee der Simpsonfor-
mel besteht darin, durch die drei Punkte (xo, yo), (x1, ¥1), (x2, y2) ein Polynom zweiter Ordnung

6 Thomas Simpson (1710—-1761), englischer Mathematiker
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(eine Parabel) zu legen, und dieses anstelle von f zu integrieren. Entsprechend geht man mit
den iibrigen Doppelintervallen [x>, x4], [x4, X¢], . . . vor. AnschlieBend summiert man iiber alle
Doppelintervalle.

Eine Parabel durch (xo, y0), (x1, y1), (x2, y2) findet man leicht durch die »Langrangesche
Formel«

(x —x)(x —x2) (x —x0)(x — x2) ) (x —x0)(x — x1)
(x0 — x1)(xp — x2) 1(361 — xp)(x1 — x2) (x2 — x0)(x2 — x1)

. (4.117)

Pr(x) := yo

Man erkennt, daf} es sich hierbei in der Tat um ein Polynom zweiten Grades handelt. Auerdem
priift man leicht nach, dal yg = P>(xg), y1 = P>(x1) und y» = P>(x») gilt.

X2

Die Integration / P>(x) dx fiihrt man »gliedweise« durch, also fiir jedes der drei Glieder in

X0
(4.117) einzeln. Dabei ist die Substitution x = a + At niitzlich. Man erhalt

X2

h
/szdx = 200 +avi+ ). @.118)

X0
Entsprechend erhilt man fiir ein beliebiges Doppelintervall [x2;_2, x2;]

x2;

h
/ Pi(x)dx = g(y2i—2 +4y2i—1 + y21) (4.119)

X2i—2

mit einer Parabel P; durch (x2;—2, y2i—2), (X2i—1, Y2i—1), (X2i, ¥2;). Summation der Gl. (4.119)
iber alle Doppelintervalle — also firi = 1,2, ..., g — liefert auf der rechten Seite eine gute
b

Néherung fiir / f(x) dx (falls & klein genug).

a
Bezeichnet § den Fehler zwischen dieser Ndherung und dem Integral, so folgt also

b
h
/f(x)dx = g(yo + 4y + 2y +4y3 + 2y + ... +4yu—1 + yu) + 6. (4.120)
a

Dies ist die Simpsonformel. Die Fehlerabschitzung lautet (s. [56], S. 239)
_ % 4 4)
18] < (b —a) 180h , My = |V (x)| auf[a, b]. (4.121)

Da der Fehler |§| mit h* abgeschiitzt wird, sich also bei verringerndem / sehr stark verkleinert,
liefert die Simpsonformel duferst gute Ergebnisse. Sie ist eine der besten Formeln fiir die nume-
rische Integration, und dabei sehr leicht anzuwenden!
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(III) Newtons pulcherrima (3/8-Regel): Gelegentlich hat man nicht die Moglichkeit, ein Inte-
grationsintervall [a, D] in eine gerade Anzahl von Teilintervallen dquidistant zu zerlegen, sondern
[a, b] ist schon von vornherein in ungerade viele Teilintervalle [x;_1, x;] dquidistant unterteilt.

(Dies kann bei gemessenen Werten der Fall sein, die nicht mehr veridnderbar sind.) In diesem
b

Falle geht man bei der numerischen Berechnung von / f(x) dx so vor: Man fafit die ersten drei

a
Teilintervalle zu einem »Dreifachintervall« [xg, x3] zusammen und die verbleibenden zu Dop-

pelintervallen. Auf letztere, also insgesamt auf [x3, ] wendet man die Simpsonformel an, um
b

/ f(x) dx nidherungsweise zu bestimmen.

X3

x3
Zur numerischen Berechnung des verbleibenden Integrals / f(x)dx wird durch (xg, yo),

X0
(x1, ¥1), (x2, ¥2), (x3, ¥3) ein Polynom P vom Grade 3 gelegt:
3
[]e—x0
1
Py =)y
o
l l_[(xi — Xk)
k=0
ki
Dieses wird anstelle von f integriert. Man errechnet
X3
3 . X3 — X
[ Peodx = Zho0+ 3w+ 3y, mie b= 220
X0
Es folgt
x3
3
/f(x)dx = gh(y0+3y1 +3y2+y3) + 6 (4.122)
X0
mit Fehlerabschidtzung
3 S mi o
18] < —Mgsh”, mit My >|f"(x)| auf[xo, x3] (4.123)

40

(s. [56], S. 236). (4.122) heif3it »%-Regel«. Die Formel wurde von ihrem Entdecker Newton be-
geistert »pulcherrima« genannt.



332 4 Integralrechnung einer reellen Variablen

Bemerkung: Des weiteren ist das Romberg -Verfahren zu nennen, welches auf Computern heute
das meistbenutzte Verfahren ist. Es beruht auf der Trapezregel, bei der die Schrittweite immer
weiter verkleinert wird und dabei gegen Null geht. Der Grenzwert der Trapezregel-Werte ist das
numerisch bestimmte Integral. (Es wird durch eine Extrapolationsmethode geschickt angenéhert,
s. Literatur iiber numerische Mathematik, z.B. [29], S. 399 -403.)

In der Simpsonformel, eventuell verbunden mit Newtons »pulcherrima«, haben wir aber schon
vorziigliche Verfahren zur numerischen Integration kennengelernt. Mit ihnen kommt man fiirs
erste gut aus, insbesondere, da sie sich sehr leicht handhaben lassen.

Beispiel 4.16:
Berechnet werden soll

1

/e*"z/2 dx .

0

(Analytische Integration ist hierbei unmoglich.) Wir verwenden die Simpsonformel. Mit f(x) =
e x; =i/6,yi = f(x))(i =0,1,2,...,6) folgt

1
1/6
/e—x2/2 dx = %(yo +4y1 4 2y2 +4ys + 2y4 +4ys + yo) + 8 = 0,85563 + 5.
0

Zur Fehlerabschitzung berechnen wir
D) =e 204 —6x24+3),  fOx) = —ePxx* — 10x% + 15).

Da f®(x) < 0auf [0, 1] ist, folgt, daB £ auf [0, 1] monoton fillt. Also hat f® (x) inx =0
das Maximum auf [0, 1] und in x = 1 das Minimum. Wegen f(4) (0) = 3 und fIV(l) =-13
ist daher | f® (x)| < 3 =: My auf [0, 1], folglich nach (4.121):

18l <1- <1,3-1077.

180 1296

Damit ist 0,85563 ein Nidherungswert des Integrals, der mindestens auf 4 Stellen genau ist.

Ubung 4.13:

o
Berechne / sy dx mit der Simpsonformel bis auf einen Fehler von hochstens 107°.
X

/2
4.3 Uneigentliche Integrale

Bisher haben wir beschrinkte Funktionen auf beschridnkten abgeschlossenen Intervallen inte-
griert. Wir wollen die Integration im Folgenden auf unbeschrénkte Intervalle und unbeschrinkte

7 Werner Romberg (1909 —2003), deutscher Mathematiker
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Funktionen ausdehnen. Man spricht dabei von uneigentlichen Integralen, im Gegensatz zu den
bisher betrachteten »eigentlichen« Integralen.

4.3.1 Definition und Beispiele

Beispiel 4.17:

Durch analytische Integration errechnet man sofort

t

/efxdx:l—eft.

0
Fiir + — oo strebt die rechte Seite gegen 1. Dies wird folgendermafen beschrieben:

t

o

fe_x de:=1lm e dx=1.
11— 00

0

0

o
Das links stehende Integral von O bis oo ist durch den Grenzwert definiert. Man nennt / e " dx

0
ein uneigentliches Integral. Der Integrationsbereich [0, oo] ist hierbei unbeschrinkt. Der Wert
o0

1 = / e " dx kann als Flicheninhalt der unendlich langen (schraffierten) Fliche in Fig. 4.13

0
angesehen werden.

Beispiel 4.18:

Wir wollen nun eine unbeschrinkte Funktion »integrieren« , und zwar f(x) = 1/4/1 — x auf
[0, 1). Auf jedem Teilintervall [0, ] C [0,1) ist f allerdings beschrénkt, und man errechnet

Fodx =
0/ [-2@] =-2J1—1+2.

t
A 1—x B 0
Die rechte Seite strebt mit# — 1 (r < 1) gegen 2. Man beschreibt dies durch

2.

1— t
/‘ dx . / dx
—=lim | —— =
V1 —x r»ll V1 —x
0 t<1l 0
Das links stehende Integral heilit wiederum ein uneigentliches Integral. Der »Integrand« ist dabei
eine unbeschrinkte Funktion. Der Wert 2 des Integrals wird als Flacheninhalt der in Fig. 4.14
skizzierten Flache aufgefal3t.
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Fig. 4.13: Zum uneigentlichen Integral / e ¥ dx Fig. 4.14: Zum uneigentlichen Integral / dr
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Die beiden Beispiele machen klar, wie man Integrale iiber unbeschrinkte Funktionen oder
unbeschrinkte Intervalle zu erklédren hat.

Definition 4.2:
Ist die Funktion f auf jedem Teilintervall [a, 7] von [a, b) integrierbar (b = oo zuge-

lassen), so definiert man

b— t
/f(x)dx::tlil}?l_/f(x)dx, 8 (4.124)

vorausgesetzt, daf} der rechtsstehende Grenzwert existiert. Ist f unbeschrinkt oder
b—

b = o0, so nennt man / f(x) dx ein uneigentliches Integral.

a

In entsprechender Weise definiert man uneigentliche Integrale der Form

b b
/ f(x)dx := lim / f(x)dx, (4.125)
a+ tt?g t
wobei auch a = —oo zugelassen ist. Schliellich vereinbart man
b— c b—
/f(x) dx = / f(x)dx +ff(x) dx (4.126)
a+ a+ c

mita < ¢ < b, wobei angenommen wird, daf die uneigentlichen Integrale rechts existieren. (Die
Zeichen — und + hinter den Integrationsgrenzen dienen zur Verdeutlichung. Sie werden oft auch

8 t — b— bedeutet t — b mit t < b, entsprechend bedeutet 1 — a+ den Grenziibergang t — a mitz > a.
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weggelassen, insbesondere im Falle b = oo oder a = —o0.) Statt »das uneigentliche Integral
existiert« sagt man auch, es »konvergiert«.

Beispiel 4.19:
Esseio > 1 und ¢ > 1. Damit gilt
o0 t

) dx - 1 1
— = lim [ — = lim — = .
xo t—oo | x¢ t-o0o\ 1l —« l—« a—1

1 1

Beispiel 4.20:
oo 0 fe's] 0 t
/ dx / dx +fdx . fdx+1, /dx
_— = m m
14 x2 1+ x2 14+x2 1>-00) 14x2 r500) 14+x2
—00 —00 0 t 0
. . T 7w
= lim (arctanO — arctan?) 4+ lim (arctant — arctan0) = — + — =7
t——00 t—00 2 2
Beispiel 4.21:
1— '
/ dx . / dx i s
——— = lim ——— = lim arcsint = —.
N1 =x2 t=1-) 1 —x2  i=1- 2
0 0
Entsprechend folgt
0 q 1—- i
x b4
—— = —, also / —=u. (4.127)
/ JI—x2 2 A1 —x2
1+ —1+
Beispiel 4.22:

Essei0 <o <1und0 <t < 1. Es gilt
1

dx . dx . 1 e 1

— =t lim | — = lim - = .

xo t—0+ ) x¢ -0+ \1—« l—« l—«
0+ t

Beispiel 4.23:

o0 t

/ cos x dx existiert nicht, da / cos x dx = sint fiir t — oo nicht konvergiert.
0 0
Ubung 4.14%:

Priife, ob die folgenden uneigentlichen Integrale existieren, und berechne sie gegebenenfalls:

o0

1 1 00
(a) /lnxdx, (b) fd—; (©) /% (d /e_xsinxdx.
X X
0+ 0+ 1 0
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4.3.2 Rechenregeln und Konvergenzkriterien

Satz 4.10:
Linearitét, Produkt- und Substitutionsregel gelten auch fiir uneigentliche Integrale:
b— b— bh—
/(kfl(x) + ufa(x))dx = )\f fi(x) dx +u/ fHr(x)dx. (4.128)
b— b—
/u(x)v/(x) dx = lir1171 w(v(t) — u(a)v(a)) — / w (x)v(x)dx . (4.129)
t—=>b—
b— B—
[ rwar= [ remwna. (4.130)

Dabei sind fi, f> als integrierbar vorausgesetzt, f als stetig, und u, v, ¢ als stetig
differenzierbar. Ferner sei lirg @) =bund p(a) = a.
t—p—

Die GI. (4.128) und (4.129) sind so zu verstehen: Existieren die rechten Seiten, so auch die

linken. In (4.130) gilt: Existiert das uneigentliche Integral auf einer Seite, so existiert es auch
b

auf der anderen Seite. Fiir uneigentliche Integrale der Form / gilt Entsprechendes. Der einfache

a+
Beweis darf hier iibergangen werden. Im Folgenden begniigen wir uns mit der Untersuchung der
b— b
uneigentlichen Integrale / f(x)dx, da fiir / f(x) dx alles analog gilt.
a

a+
Satz 4.11:

(Cauchysches Konvergenzkriterium) Es sei f integrierbar auf [a, ¢] fiir jedes r €
b—

[a, b). Damit folgt: Das Integral / f(x)dx konvergiert genau dann, wenn die fol-
a

gende Bedingung erfiillt ist:

Zu jedem ¢ > 0 existiert ein ¢ € [a, b), so daB fiir alle 7, s € (c, b) gilt:

t (4.131)
/f(x)dx < €.

(4.131) heilt Cauchy-Bedingung fiir uneigentliche Integrale.
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Beweis:
t
9 Man setzt abkiirzend F(r) := / f(x)dx firt € [a, b).

a
(D Ist (4.131) erfiillt, so gilt fiir alle Folgen a; := F(#) mit #z — b die »Cauchy-Bedingung
fiir Folgen, also konvergieren alle Folgen (a;). Damit konvergieren sie alle gegen den gleichen
Grenzwert /. (Denn wiirden zwei dieser Folgen gegen verschiedene Grenzwerte streben, wiirde
die Mischfolge — nach Reifverschlulverfahren — nicht konvergieren, was nicht sein kann.) So-
b—
mit gilt F (1) —b> I fir t — b—, woraus die Existenz des Integrals / f(x) dx folgt.

(II) Existiert / fx)dx = 111[171 F(t) = I, so heifit das: Fiir jedeg & > 0 existiert ein ¢ € [a, b)
t—b—
a

mit |[F(t) —I] < g fur alle r € (c, b). Mitt, s € (c, b) folgt daher

t
e ¢
/f(X)dx =IFO)—F| <|F@O)—I+|F(s)—1| = yts=¢ U
N
Beispiel 4.24:
Wir zeigen
o
sin x T
f dx = 7 (4.132)
X
0

(D) Die Konvergenz des Integrals folgt mit dem Cauchy-Kriterium in Satz 4.11. Denn man erhlt
fiir 0 < s < r mit der Produktintegration

t t t
sinx cosx ]’ cos x cosx |’ | cos x|
— | dx = || — — 5 dx| < + 5 dx
x x o] x x x
N N N
! t
1 1 dx 1 1 1 2
<ot | S+ -] =2
S S

t x2
N

2

Dies bleibt kleiner ¢ > 0 (also — < ¢), wenns > 2/¢ =: ¢. Dawegent > s auch ¢t > c ist, ist
s

die Cauchybedingung (4.131) erfiillt, d.h. das Integral (4.132) konvergiert.

9 Dieser und die folgenden Beweise im vorliegenden Abschnitt konnen vom anwendungsorientierten Leser iiberschla-
gen werden.
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(II) Um zu zeigen, dafl der Wert des Integrals % ist, betrachtet man die Hilfsfunktion

1 1 T
- -, fiir0<t§—,
f@)y:=4{t sint 2
0, fiirt = 0.
.. . . . . sint — .
Sie ist stets differenzierbar, auch in 0, was man iiber die Umformung f(¢) = sing mit der
sin

Taylorreihe des Sinus sieht. Fiir diese Funktion gilt mit Produktintegration

/2 . /2

/ f(@)sin(nt)dt = —% |:f(t) cos(m‘):|2 — / f(t)cos(nt)dt | - 0 fiirn — oo.
0
0 0

1 1
Setzt man f(t) = — — —— links ein, so folgt
t sint
/2 /2
. sin(nt) sin(nt)
lim dr — - de | =0. (4.133)
n—00 t sin ¢
0 0

Beim linken Integral substituieren wir x = nt und erhalten das Integral

/2 n(w/2)

/ sin(nt) g — / sin x dr
t X 00

0 0 :
sin
Die rechte Seite konvergiert fiir n — oo gegen / bl dx, also ergibt (4.133):
X

00 /2 0
sin x . sin(nt)
dx = lim - dr. (4.134)
x n—00 sin ¢
0 0

Das rechte Integral 1468t sich direkt berechnen, wobei wir n = 2k + 1 (k € N) voraussetzen. Mit
der Formel aus Ubung 2.20 (Abschn. 2.3.2) erhilt man nimlich:

/2 /2

. k k z
sin((2k + 1)t) T / . T 1[ . N E T
————dt==+42 2jt)dt = — +2 — 2jt = —.
/ sint > + Z cos(2jt) > + sz sin(2jt) .2
0 j=1y j=1
(4.134) liefert damit
00 /2 /2
i in(nt in((2k + 1)t
/Smxdxz lim /sm_(”)dtz lim /S“’((_—JF))dt:Z,
X n—>00 sint k—o00 sin ¢ 2

0 0 0
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Weitere Kriterien fiir die Existenz uneigentlicher Integrale sind im Folgenden zusammengestellt.
Dabei werden die auftretenden Funktionen f, g, h durchweg als integrierbar auf jedem Teilin-
tervall [a, ] von [a, b) vorausgesetzt. b = oo ist zugelassen.

Satz 4.12:
(Monotoniekriterium) Gilt f(x) > 0 fiir alle x € [a, b), so existiert / f(x)dx genau

a
dann, wenn mit einer Konstanten k£ > 0 gilt:

t
/f(x)dx <k firallet € [a,b).
a

t

Da / f(x) dx mit  monoton wichst, sieht man dies sofort ein.
a

Satz 4.13:
b— b—

Existiert / | f (x)| dx, so existiert auch / f(x)dx, und es gilt:
a

a

b— bh—
/f(x)dx S/If(x)ldx.

Beweis:
b—

f | f (x)| dx erfiillt die Cauchy-Bedingung, d.h. zu jedem ¢ > 0 gibt es ein ¢ € [a, b), so daB
a

t t b—
fir alle t, s € (c,b) gilt ¢ > / [f(x)]dx > ff(x) dx| . Damit erfiillt auch / f(x)dx die

N N a
Cauchy-Bedingung, ist also konvergent. Die Ungleichung des Satzes folgt durch Grenziibergang
aus

t t
/f(x)dx fflf(x)ldx. 0

b— b—
Existiert / | f(x)|dx, so heif3t f f(x)dx absolut konvergent. Das Monotoniekriterium ergibt
a

a
unmittelbar
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Satz 4.14:
b—

(a) (Majorantenkriterium) Ist | f(x)| < g(x) auf [a, b), und existiert / g(x)dx, so
a
b—
ist / f(x) dx absolut konvergent, und es gilt
a

b— b—
/If(X)IdXS/g(X)dX-
a a
b—
(b) (Minorantenkriterium) Ist 0 < h(x) < f(x) auf [a, b), und existiert f h(x)dx

a
b—

nicht, so existiert auch / f(x) dx nicht.
a

Satz 4.15:
(Grenzwertkriterium) Es seien f(x) und g(x) positiv auf [a, b), und es konvergiere
PO 1 iy - b (4.135)
g(x)
b— b—

a

(a) Im Falle L > 0 haben / f(x)dx und / g(x) dx gleiches Konvergenzverhalten.
a

b—

(b) Im Falle L = 0 folgt aus der Konvergenz von / g(x) dx die Konvergenz von

b a
/ f(x)dx.

Beweis:

L
(D Essei L > 0. Aus (4.135) folgt, daB z.B. zu g9 = 0} ein ¢ € [a, b) existiert mit

f(x)

< L+¢gy firallec € [c, b).
g(x)

L—80<
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Esist L —e9 = L/2, L 4+ 9 = 3L /2. Somit gilt

L 3L .
Eg(x) < flx) < Tg(x) fir x € [c, b).

b— b—
Nach dem Majorantenkriterium haben / f(x)dx und / g(x) dx gleiches Konvergenzverhalten,
p

X
b— b—

also auchff(x) dx und/g(x)dx.

a

(II) Im Falle L = 0 wihle man zu ¢y = 1 ein ¢ € [a, b) mit f(x)/g(x) < 1 fir alle x € [c, b),
b—

also f(x) < g(x) auf [c, b), woraus wiederum folgt, da} die Konvergenz von / g(x) dx die von

a
b—

f f(x) dx nach sich zieht. [l
a

Beispiel 4.25:

Das Integral
o
/ e At = (@) (4.136)
0

konvergiert genau dann, wenn o > 0 ist. Um dies einzusehen, wenden wir das Grenzwertkriteri-
um auf die Teilintegrale

1 00
I = /e*f “'dt und L = /e*’ 1 dr
0+ 1

1
an. Zu I: Es strebt e t*~1 /11 = ¢! — 1 fiirt — 0+. Da / 1*~! genau dann konvergiert,

0
wenn cx > 0 ist (vgl. Beispiel 4.22), folgt die Konvergenz von I; in genau diesem Fall. Zu I:
o0

Wegene ™ 1*~1/172 = e~ t*+! — 0 fiir t — oo und wegen der Konvergenz von / 12 de folgt

0
die Konvergenz von I, fiir alle « € R. Zusammengenommen erhilt man die Behauptung. Auf
das untersuchte Integral kommen wir in Abschn. 4.3.4, Beispiel 4.33, ausfiihrlich zuriick.
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Wir erwihnen zum Schluf} folgende naheliegende Schreibweise:

b— c c
/f(x)dx—l—/f(x)dx::/f(x)dx. (4.137)
a b+ a

Dabei ist vorausgesetzt, daB jedes der links stehenden Integrale konvergiert. Konvergiert

b—45 c

lim /f(x)dx—i—/f(x)dx , (>0,
§—0+

b+4

so beschreibt man diesen Grenzwert durch
C.H. / f(x)dx (4.138)

und nennt ihn Cauchyschen Hauptwert von f auf [a, c].

Existiert das Integral (4.137), so existiert natiirlich auch der Cauchysche Hauptwert (4.138)
(und beide Werte sind gleich). Das Umgekehrte gilt nicht allgemein! Zum Beispiel existiert der
folgende Cauchysche Hauptwert

1
dx
—C.H.f—:O,
X

-1

1 0— 1
; de . . . . o dx dx
wihrend | — im Sinne von (4.137) nicht konvergiert, da die Teilintegrale | — und | —
X X X
—1 —1

0+
nicht konvergieren.

Ubung 4.15%:

Beweise: Ist f(x) > 0 auf [a, o) und dort monoton fallend, so folgt aus der Konvergenz von

o0
/ f()dx, daB lim_f(x) = 0 gilt

Ubung 4.16%*:
Untersuche, ob die folgenden Integrale konvergieren:
72 1

(a) f & (b) / ) 70“ ) /1 LN
Vsinx N cosh(1/x) — 1’ Jx o
0 0+ 0+

-1
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4.3.3 Integralkriterium fiir Reihen

Das folgende Kriterium stellt einen engen Zusammenhang zwischen unendlichen Reihen und
uneigentlichen Integralen her. Es kann auf beiderlei Weise verwendet werden: zum Konvergenz-
nachweis fiir Reihen als auch fiir Integrale. In diesem Abschnitt sei f stets eine Funktion, die auf
jedem kompakten Intervall [m, ¢t] C [m, 0o) integrierbar ist.

Satz 4.16:

(Integralkriterium fiir Reihen) Ist f(x) auf [m, co) positiv und monoton fallend (m
ganzzahlig), so haben

[Zf(k)] und /f(x)dx
k=m m

gleiches Konvergenzverhalten.

Beweis:
Es gilt f(k) > f(x) > f(k+ 1) fiir jedes x € [k, k + 1] und jede ganze Zahl k > m. Daraus
folgt durch Integration iiber [k, k + 1]

k+1

f(k)Z/f(X)dxzf(k+l);
k

Summation iiber k von m bis n ergibt

n+1 n+1

Zf(k)> f foyde= Y fkh),

k=m+1

woraus unter Beachtung der Montoniekriterien fiir Reihen und uneigentliche Integrale die Be-
hauptung folgt. (I

Beispiel 4.26:
Aus dem Integralkriterium folgt mit f(x) = 1/x% bzw. 1/(x In* x)

o0 ] o0
— fire > 1
]; ke Z: k(lnk)“ ure=

o0
dx 1
konvergieren. Denn aus der Existenz von / — = 7 folgt durch die Substitution x = Int¢,
x%
1

o0
daf3 auch/ rnr) existiert (vgl. auch Beispiel 1.41, Abschn. 1.5.2.).
1
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Unter den gleichen Voraussetzungen wie beim Integralkriterium fiir Reihen gilt folgender
interessanter Satz:

Satz 4.17:

Ist f auf [m, co) positiv und monoton fallend (m ganzzahlig) f so konvergiert

k=m

Cn = Zf(k)—/f(x)dx fiirn — oo

gegen eine Zahl c mit 0 < ¢ < f(m).
Beweis:
Firx e [k, k+1]gilt0 < f(k) — f(x) < f(k) — f(k+ 1), nach Integration iiber [k, k + 1] also

k+1

0< flk)— / FOOdx < £ — Fk+1).
k

Summation iiber ganzzahlige k von m bis n — 1 ergibt

n

n—1
0= 3 70~ [ fear = fam ~ fon.
k=m m

Addition von f(n) liefert 0 < ¢, < f(m). Da ¢, monoton fillt (denn ¢,+1 — ¢, = f(n + 1) —
n+1

/ f(x)dx < 0), so konvergiert ¢,, gegen eine Zahl ¢ € [0, f(m)]. U
n
Beispiel 4.27:
Fir f(x) = 1/x und m = 1 folgt aus Satz 4.17: Der Grenzwert
. 1 1 1
C=1lm |(l4+=-4+=-+4+...4+4——1Inn (4.139)
n—00 2 3 n

existiert. C heiBt Eulersche Konstante'® und hat den Zahlenwert

C =0,5772156649015329.. .. .

10 Leonhard Euler (1707 — 1783), schweizerischer Mathematiker; C heilt auch Euler-Mascheronische Konstante (Lo-
renzo Mascheroni (1750 — 1800), italienischer Mathematiker), von Studenten scherzhaft »Makkaroni-Konstante«
genannt.
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Ubung 4.17%:
Sind die folgenden Reihen konvergent?
o oo o
_ Ink Ink
@ Y e o Y @Y
k=1 k=2 k=2
Ubung 4.18%:
(a) Zeige, daf
1 1 1 1

=1l4+-4+-4+=-—4--
dni=lt gttt

1
— —1In(2 1
2n(n—i—)

fiir n — oo konvergiert.

(b) Knoble durch Vergleich mit der Eulerschen Konstanten C (s. Beispiel 4.27) heraus, daf3
ap gegen (C + In2)/2 strebt.

4.3.4 Die Integralfunktionen Ei, Li, si, ci, das Fehlerintegral und die Gammafunktion

Die folgenden Funktionen sind durch Integrale definiert. Sie kommen in der Praxis immer wieder
vor und erweitern den Kreis der elementaren Funktionen. Ob man sie selbst zu den elementaren
Funktionen zéhlen soll, ist reine Geschmacksache.

Beispiel 4.28:
Das Integral

X
t
Ei(x) = / ert, x <0, (4.140)
—00

konvergiert. Denn es ist [re/ | < 1 fiirallet < fo < 0, fo passend gewihlt. Damit ist 1/¢> >

X X
e . . . e
le' /t| fiir t < fy. Da / o existiert, existiert nach dem Majorantenkriterium auch / n dr.

—00 —00
Fiir x > 0 wird die Funktion Ei durch den Cauchyschen Hauptwert definiert:

r e! 7 e! ; el
Ei(x) := C.H. / —dr = lim / —dt —I—/—dt , x>0. 4.141)
t §—0+ t t
—0Q o

8

Die so erklirte Funktion Ei : R \ {0} — R heillt Exponentialintegral. Ohne Beweis geben wir
seine Reihendarstellung an. C ist hier (wie im ganzen Abschnitt) die Eulersche Konstante:

xk

k- k!

o0
Ei(x) = C+Inlx|+ ) fir x#0. (4.142)
k=1
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Beispiel 4.29:
Die Substitution e’ = s, nebst €* = y, fiihrt das Integral Ei(x) in (4.140) iiber in

y
d
Li(y) :=/ﬁ, 0<y<l. (4.143)
0+

Fiir y > 1 wird wieder der Cauchysche Hauptwert herangezogen:

y 1-68 y
Li(y) C.H dx li dr + / dr dt 1 (4.144)
i(y):=C.H. | — = Ilim — oy ) > 1. :
Y Ins -0+ Int Int Y
0+ 0+ 1+8

Die Funktion Li heifit Integrallogarithmus. Er erfreut sich folgender Reihendarstellung, die wir
ohne Beweis angeben:

(In y)*
k- k!

o0
Li(y) =C+1Inllny[+ ) . y>0, y#1. (4.145)
k=1

Li und Ei hingen folgendermallen zusammen:

Li(e*) = Ei(x), x #0. (4.146)

Beispiel 4.30:
Integralsinus si und Integralcosinus ci sind definiert durch

x .
b/ sin ¢

si(x):=—5+ Tdt, x eR, (4.147)
0
X
. cosx — 1
cilx):=C+1nx + fdt, x>0. (4.148)
0
Aus Beispiel 4.24 folgt si(x) — 0 fiir x — 0o und wegen si(x) + si(—x) = —m der Grenziiber-

gang si(x) — —m fiir x — —oo. Die Reihendarstellungen lauten:

T o0 x2k+l

si) = =3 +k§(_1)k Ck+DICk+ 1) (4.149)
- 0 ka

ci(x) = C +1Inx +;(—1)km. (4.150)
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Beispiel 4.31:
Man bezeichnet

() = — /Xe"z dr eR (4.151)
X) = — , X , .

T
\/_O

als Fehlerintegral. (Man ermittelt damit die Wahrscheinlichkeit zufilliger Abweichungen von
einem Mittelwert, d.h. von»Fehlern«.) Analytische Integration ist hierbei nicht méglich. Man
muf das Integral numerisch berechnen oder aus folgenden Reihendarstellungen ermitteln:

00 2k+1

P(x) = ZO e (4.152)
_2 o 2k 2k+1
x ,; oo (4.153)

Die erste Reihe (4.152) erhilt man aus der Taylorreihe

durch gliederweises Integrieren von 0 bis x. (Das dies erlaubt ist, folgt aus Abschn. 5.1.2). Den
Beweis der zweiten Reihe (4.153) tibergehen wir aus Platzgriinden.
Fiir x — oo erhalten wir folgenden Grenzwert

o0
. 2 o
lim p(x) = ﬁ/e dr=1. (4.154)
0

Die Existenz des Integrals folgt mit dem Majorantenkriterium aus e’ ? < e !fiirs > 1. DaB der
Grenzwert 1 ist, wird spéter in Abschnitt 7.1.7 gezeigt.

Beispiel 4.32:
Der Vollstiandigkeit wegen geben wir noch die Fresnelschen Integrale S(x) und C(x) an (x € R
beliebig):

2 ) 5 S ( 1)/{ 4k+3
0 = —— [ sinar = e MresTosurt @155)
0
_ 2 5 2 ( l)k 4k+1
C(x) = m(}/cos(l ydr = m};} TR (4.156)

11 Qk+DN:=1-3-5...-2k+1)



348 4 Integralrechnung einer reellen Variablen

Beispiel 4.33:
Die Eulersche Gammafunktion ist fiir x > 0 durch

I(x):= /e—f e (x> 0) (4.157)
0+

definiert. Die Existenz dieses uneigentlichen Integrals wurde in Beispiel 4.25 bewiesen. Die ent-
scheidende Eigenschaft der Gammafunktion ist, daf3 sie fiir ganze nichtnegative Werte x Fakulta-
ten liefert, ndmlich

I'n+1)=n! (4.158)

furallen = 0,1,2,3, ... Man sagt, die Gammafunktion »interpoliert die Fakultiten«. Um (4.158)
zu beweisen, leiten wir zuerst die Funktionalgleichung der Gammafunktion her:

F'x+1) =xI'x). (4.159)

Sie ergibt sich durch Produktintegration:

o0 o
o0
I'(x+1) =/ e! t* dr= [—e’ tx:| +x/e*‘ Fldr =04+ xI(x).
\,/./\,_/ 0
0+ v u 0+

o0
Beachtet man I"(1) = / e ' dt =1 = 0!, so folgt mit der Funktionalgleichung durch vollstin-

0
dige Induktion I (x 4+ 1) = n! (Der Leser fiihre dies zur Ubung durch.)
Allgemein liefert die Funktionalgleichung, sukzessive angewandt:

IF''x+n)=x(x+DHx+2)...x+n—1I(x)

fiir alle x > O und n € N. Lost man diese Gleichung nach I" (x) auf, so kann man sie auch zur
Definition von I"(x) fiir negative x benutzen: Ist x < Omit —n < x < —n+ 1 (n € X), so
vereinbart man

I'(x +n)

= ) 4.1
xx+Dx+2)...x+n—-1 (4.160)

I'(x):

Fiir ganzzahlige negative x ist I"(x) nicht erkldrt. Dort liegen Pole vor, wie man aus (4.160)
abliest. Fig. 4.15 zeigt den Graphen der Gammafunktion. Die Funktionalgleichung ist fiir alle x
mit x # 0, —1, =2, ... giiltig.

Bemerkung: Die Integralfunktionen dieses Abschnitts sind samt und sonders gut tabelliert und
auf Computern programmiert. Sie stehen bei Anwendungen daher genauso bequem zur Verfii-
gung wie e*, In x, sin x arcsinx usw.
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v

-5

It

Fig. 4.15: Die Gammafunktion

Ubung 4.19:

Leite die Reihe fiir Ei(x) (x < 0) aus der Taylorreihe fiir e’ her, ebenso die Reihen fiir si(x)

und ci(x) aus den Taylorreihen von sin x und cos x. (Dabei darf gliederweise integriert werden,
s. Abschn. 5.1.2).

4.4 Anwendung: Wechselstromrechnung

4.4.1 Mittelwerte in der Wechselstromtechnik
Effektivwerte von Spannung und Strom: Durch
u(t) =uycos(wt), teR, (4.161)

sei eine Wechselspannung in Abhéngigkeit von der Zeit ¢ beschrieben. f sei die zugehdrige
Frequenz, w = 2nf die Kreisfrequenz und u,, > 0 die Maximalspannung. Der durch u(t)
erzeugte Wechselstrom i (¢) in einer bestimmten Schaltung wird durch

i(t) =iy cos(wt + @) 4.162)

beschrieben. i, > 0 ist die maximale Stromstédrke und ¢ die Phasenverschiebung des Stromes
gegeniiber der Spannung.

Der Ausschlag mancher MeBinstrumente ist proportional zu

T
1
U= 7/142(0 dt bzw. I := (4.163)
0
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Dabei ist T = 2n/w die Schwingungsdauer von Spannung und Strom. U heif}t die effektive

Spannung zu u und I der effektive Strom zu i. (Im allgemeinen mathematischen Zusammenhang
heien U und I die quadratischen Mittelwerte (oder Effektivwerte) von u und i.)

Setzt man die expliziten Ausdriicke fiir #(#) und i (¢) in (4.163) ein, so errechnet man U und
I mit Hilfe der Formel
1
/ cos? x dx = E(x + sin x cos x)

(s. Abschn. 4.2.2, (4.54)). Man hat in (4.163) lediglich x = wt bzw. x = wt + ¢ zu substituieren
Es folgt:

U=-m _m (4.164)
Wirkleistung: Das Produkt

u(t) -i(t) = up cos(wt)iy cos(wt + ¢)

(4.165)

wird die momentane Leistung genannt. Wir wollen die iiber eine Periode gemittelte Leistung

! T
P= 7/u(r)-i(r)dr
0

(4.166)
berechnen. P heiBt Wirkleistung.

Zur Berechnung des Integrals schreiben wir zunéchst u ()i (¢) um, und zwar muf} das Produkt

cos(wt) cos(wt + @) in eine Summe aus trigonometrischen Funktionen verwandelt werden, um
anschlieBend integriert werden zu konnen. Das geschieht mit der Formel

x+y X —

2cos > cos 5 = COSX + Ccos y 4.167)
(s. Abschn. 2.3.2, (2.73)). Aus dem Ansatz

X+y

=i+, %:w; folgt x=2wi+¢, y=g¢,
also

2 cos(wt + @) cos(wt) = cos(wt + ¢) + cos ¢ .
Aus (4.165), (4.164) ergibt sich damit

u(t)-i(t) =U - I(cosQwt + ¢) + cos ),

(4.168)
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Somit folgt

r T

— U1

pZT /cos(Za)t—i-(p)dl-i-COS(P/dt .
0

0

Setzt man w = 27/ T ein und substituiert £ = 2wt + ¢, so erkennt man, daB das erste Integral
Null wird. Es ergibt sich daher die Wirkleistung zu

P=Ulcosgp. (4.169)

Der Faktor cos ¢ heil3t Leistungsfaktor.

Bemerkung: Fiir andere periodische Spannungs- und Stromverldufe, als in (4.161) und (4.162)
angegeben, werden die Effektivwerte der Spannung oder des Stroms ebenso nach (4.163) berech-
net wie auch die Wirkleistung nach (4.166).

2Um Upyj [ 1

"/

N -
e

I
|
3T __% I [

2 0

o
|- A
—

Fig. 4.16: Stiickweise gerader Spannungsverlauf

Fig. 4.17: Rechteckiger S lauf
einer Wechselspannung ig echteckiger Spannungsverlau

Beispiel 4.34:
Fiir die Spannung u(¢) mit dem »Streckenverlauf« wie in Fig. 4.16 skizziert, errechnen wir den
Effektivwert U:

T T/2
TU2=/u(t)2dt=2/u(t)2dt
0 0

T/2 s T/2
2u 4 4 T
=2/<um—Tmt> dt=2u,2n/<l—?t+ﬁt2) dt:gurzn’
0 0

also
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Ubung 4.20:

Berechne die effektive Spannung U zu dem in Fig. 4.17 angegebenen Spannungsverlauf u(z).

4.4.2 Komplexe Funktionen einer reellen Variablen

Die imaginire Einheit i wird in der Elektrotechnik mit j bezeichnet'2, da der Buchstabe i fiir die
Stromstirke verbraucht ist. Wir werden daher im gesamten Abschn. 4.4 die imaginire Einheit
mit j bezeichnen. Es gilt somit

P=-1.
Die komplexen Zahlen werden damit in der Form
a+jb, mit a,belR

geschrieben.
Wir betrachten in diesem Abschnitt Funktionen der Form

z=f(@A), Xel (Intervall),
wobei die Variable A reell ist und der Funktionswert z komplex. Symbolisch also
f: I —- C (C=Menge der komplexen Zahlen)
Da f(A) komplex ist, hat f (1) die Gestalt
FO) =u() +jv0)
wobei u(A) der Realteil und v(X) der Imaginirteil von f(X) ist:
u(x)=Re f(1), v(A) =Im f(X).

u und v sind reellwertige Funktionen auf /. Sind u und v stetig, so nennt man den Wertebereich
von f eine Ortskurve in C.
Fig. 4.18 zeigt die Ortskurve einer Funktion f : [0, 9] — C.

Beispiel 4.35:
Eine Funktion der Form

2=u(r) +jvy (u stetig)
hat als Ortskurve eine Parallele zur reellen Achse, wihrend

z=up+jv(x) (v stetig)

12 Wenn wir es nicht direkt mit Elektrotechnik zu tun haben, werden wir, wie bisher, den Buchstaben i fiir die imagi-
nére Einheit verwenden. Denn i ist in Mathematik und Physik gebréuchlicher als j.
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Fig. 4.18: Ortskurve

als Ortskurve eine Parallele zur imaginiren Achse hat. Eine kreisbogenformige Ortskurve wird
durch

z=re?®  (¢: 1 - Rstetig, r > 0)
beschrieben, und ein Geradenstiick durch
z=z0+ v M)z

mit stetigem ¥ : I — R und konstanten zg, z; € C.

Definition 4.3:
(Differentiation und Integration) Es sei durch f (1) = u(A) + jv(A) eine komplexwer-
tige Funktion auf einem Intervall I gegeben.

(a) Sind u und v differenzierbar, so schreibt man
o) =u')+jvin).

d
f! ist die Ableitung von f. (Man schreibt wie im Reellen, f/(A) = af(k)
usw.) f”, f" usw. werden analog gebildet.

(b) Sind u und v auf [a, b] integrierbar, so vereinbart man:

b b

b
/f(k)dk ;=/u(x)dx +j/v(k)dk.

a a

Entsprechend fiir unbestimmte Integrale:

/f(k)dk :=/u(k)dk+j/v(k)dk.

Differentiation und Integration werden also einzeln auf # und v angewandt.
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Beispiel 4.36:
Die Funktion f(¢) := el soll differenziert und integriert werden:
(a) d gior d(cos( 1) + jsin(wr)) d cos(wt) +j d sin(wr)
J— = — w. mn(w = — w — SIn(w
dr di ! di Y

= —wsin(wt) + jo cos(wt) = jw(cos(wt) + j sin(wt))
= jwe® .

(b) /ej‘”’ dr = /cos(a)t)dt+j/sin(wt)dt

= l sin(wt) — J— cos(wt) = ,i(cos(wt) + jsin(w))
w w jw

1 . 1
— e/ (beachte — = —j).
Jo ]

Man erkennt: e/ wird formal genauso differenziert und integriert, wie man es im Reellen ge-
wohnt ist.

Allgemein gilt folgendes Permanenzprinzip:

Satz 4.18:
(a) Fiir jede n-mal differenzierbare Funktion f : I — C (Intervall) gilt mit der
Abkiirzung
L=) a—— (aeC)
k=0
die Gleichung
ReLf(A) = LRe f()), ImLf(A) =LImf(A) (4.170)

Der »Operator L« darf also mit Re und Im vertauscht werden.

(b) ist f : I — C integrierbar auf [a, b] und ¢ eine reelle Konstante, so gilt

Rec/f()»)d)»:c/Ref()»)d)»
4.171)
Imc/f(k)dk:c/lmf(k)dk

Es darf also auch ¢ / mit Re und Im vertauscht werden.

Der einfache Beweis wird dem Leser iiberlassen.
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Ubung 4.21:
Differenziere f (A)z, wobei f : I — C (Intervall) differenzierbar ist.

Ubung 4.22:
Berechne / f ()»)2 f' (L), wobei f : I — R stetig differenzierbar ist.

4.4.3 Komplexe Wechselstromrechnung

Der Grundgedanke der komplexen Wechselstromrechnung ist folgender: Ist ein Wechselstrom
oder eine Wechselspannung durch eine zeitabhingige reelle Funktion gegeben, so erweitert man
sie durch Hinzufiigen eines geeigneten Imaginérteiles zu einer komplexwertigen Funktion. Mit
dieser 148t sich oft einfacher und iibersichtlicher rechnen. Zum Schluf3 der Rechnung geht man
wieder auf die Realteile zuriick, die dann das gesuchte Ergebnis darstellen.

Zur Anwendung dieses Prinzips gehen wir von einem »Cosinus-formigen« Wechselstrom i (¢)
aus:

i(t) =ipcos(wt +¢;)), w>0,1i,>0, g eR, reR.
Mit dem Effektivwert I = i,;+/2 des Wechselstroms (s. (4.164), Abschn. 4.4.1) erhalten wir

i(t) = /21 cos(wt + ¢;) = Re [ﬁl ei<w’+‘f’i>] — Re [ﬁI ol%i eiw’] .

Setzt man

1:=1e%, (4.172)
so folgt

i(t) = vV2Re [g ejw’] . (4.173)
Entsprechend erhilt man fiir eine »Cosinus-formige« Wechselspannung:

U(t) = ttm cos(@r + @u) = v2Re [Q ei“”] (4.174)
mit

U =U el (4.175)

wobei U = u,,/+/2 ist. Die GroBen I und U heiBen komplexe Effektivwerte oder kurz Zeiger
von Strom und Spannung.

Die verinderlichen GroBen I e/ und U el werden Drehzeiger oder Zeitzeiger genannt.
Denkt man sich niamlich diese GroBen durch Pfeile veranschaulicht, die von O bis zu den Punkten
1ei®" bzw. U el in der komplexen Ebene gezogen werden (s. Fig. 4.19), so drehen sich diese
Pfeile mit der Winkelgeschwindigkeit w gegen den Uhrzeigersinn um 0. Dabei ist ¢ die Zeit. Zur
Zeit t = 0 ergeben sich dabei die komplexen Effektivwerte / und U.
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Der Winkel zwischen / &/’ und U e/ hat stets den gleichen Wert, ndmlich ¢; — @u 3. Man
nennt ¢ = ¢; — ¢, die Phasenverschiebung zwischen Strom und Spannung. Die Winkelmafle ¢;
und ¢, selbst heilen die Phasen von Strom und Spannung.

Eine der Phasen ¢; oder ¢, wird als Bezugsphase willkiirlich festgelegt, und zwar meistens
gleich Null gesetzt (sogenannter Nullphasenwinkel). Das kann durch geeignete Wahl des Zeit-
nullpunktes stets erreicht werden. In Fig. 4.19 wurde ¢, = 0 gesetzt.

Phasenverschiebungen bei Kondensator, Spule, Widerstand

Legt man an einem Ohmschen Widerstand vom Betrag R eine Wechselspannung u(¢) an (siche
Fig. 4.20a), so flieit durch ihn ein Wechselstrom i (). Es gilt dabei das Ohmsche Gesetz u(t) =
Ri(¢). In die komplexe Schreibweise iibertragen lautet es:

Uel® = RI " . (4.176)

c) o—cﬂ——o

Fig. 4.19: Drehzeiger und Effektivwerte beim  Fig. 4.20: Ohmscher Widerstand R, Induktivitit
Wechselstrom L und Kapazitit C.

Bei einer Spule mit Induktivitdt L, unter Vernachlidssigung ihres Ohmschen Widerstandes
(Fig. 4.20b), stehen der durchflieBende Strom i (¢) und die angelegte Spannung u(¢) in folgender
Beziehung:

u=L_ . 4.177)

Dies fiihrt in komplexer Schreibweise zu
jot d jot : jot
oot = Liae’ = Lljwe”" . (4.178)

Bei einem Kondensator mit Kapazitdt C (Fig. 4.20c) gehorchen Strom und Spannung dagegen

13 Ein negativer bzw. positiver Wert von ¢, —¢,, gibt an, ob man durch Drehung mit bzw. entgegen dem Uhrzeigersinn
(um |@; — @ul) von I/|1] nach U/|U]| gelangt.
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der Gleichung
= 4.179)
i =C—, .
dr

folglich in komplexer Schreibweise
jwt d jot - Ljot
Ié =CQEeJ = CUjwe!" . (4.180)

In den hergeleiteten Gleichungen (4.176), (4.178) und (4.180) kann man stets den Faktor el®t
herauskiirzen. Damit folgen die Beziehungen:

Ohmscher Widerstand: U = R/, (4.181)
Spule: U = jwLI (4.182)
I
Kondensator: U = —j— . (4.183)
wC

Wiihlt man als Null- und Bezugsphase die Phase des Stroms, d.h. ¢; = 0, und schreibt man
¢y =: @, so ist am Ohmschen Widerstand ¢ = 0 (gleiche Phasenlage), an der Spule ¢ = /2
(der Strom lduft der Spannung um 90° nach) und am Kondensator ¢ = —m /2 (der Strom eilt der
Spannung um 90° voraus).

Berechnung von Wechselstromen und -spannungen bei elektrischen Schaltungen

Wir denken uns eine elektrische Schaltung mit zwei Klemmen gegeben, eine fiir den Eingang
und eine fiir den Ausgang des Stroms. (In Fig. 4.21 sind drei Beispiele dafiir gegeben.) Sind U
bzw. I die Zeiger der Spannung bzw. des Stroms bei unserer Schaltung, so definiert man den
komplexen Scheinwiderstand durch

=

Z= (4.184)

7

Diese Definition entspricht dem Ohmschen Gesetz. Es gelten daher fiir alle Rechnungen mit
komplexen Scheinwiderstinden das Ohmsche Gesetz und die Kirchhoffschen Regeln fiir die
Summe der Strome in Knotenpunkten und die Summe der Spannungen bei Reihenschaltungen.
Auf diese Weise konnen Wechselstromkreise nach den gleichen Regeln wie Gleichstromkreise
berechnet werden. Zur Ermittlung von Wechselstromen und Spannungen geniigt es dabei, mit
den zeitunabhdingigen feststehenden Zeigern zu rechnen, anstelle der zeitabhingigen variablen
Werte i (1) = iy, cos(wt + ¢;), u(t) = u,y, cos(wt + ¢, ). Darin liegt ein groBer Vorteil hinsichtlich
Ubersichtlichkeit und Einfachheit.

Schreibt man den komplexen Scheinwiderstand Z in der Gestalt

Z=R+ijX, (R, XeR),

so heiit R = Re Z der Wirkwiderstand und X = Im Z der Blindwiderstand. Bei den hier betrach-
teten »passiven« Bauelementen ist stets Re Z = R > 0. (»Passive« Bauelemente enthalten keine
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L c
a o— R M
- u >

[l
1l

Fig. 4.21: Verschiedene Wechselstromschaltungen

Stromquellen.) Im Falle Im Z > 0 heiflt der Widerstand Z induktiv, im Falle Im Z < kapazitiv.
Der reziproke Wert von Z heifit der komplexe Scheinleitwert

1
Y :=—.
A

Fiir ihn gilt also

I=YU.

Fiir Ohmschen Widerstand R, Spule mit Induktivitdt L und Kondensator mit Kapazitit C folgt
aus (4.181) bis (4.183) somit

komplexer
Scheinwiderstand ~ Scheinleitwert

Ohmscher Widerstand R z
Spule joL - J—
wL
Kondensator _L joC
wC

Mit den bereit gestellten Mitteln lassen sich Wechselstrome und -Spannungen auch komplizierter
Schaltungen relativ leicht berechnen. Dies wird an folgenden Beispielen klar.

Beispiel 4.37:

Die hintereinander geschalteten Scheinwiderstinde in Fig. 4.21a addieren sich zum gesamten
Scheinwiderstand der Schaltung:



4.4 Anwendung: Wechselstromrechnung 359

Ist beispielsweise der Spannungszeiger U der Schaltung gegeben, so erhilt man den Stromzeiger
aus [ = U/Z.

Mit den Zahlenwerten R = 5,5k$2, L = 480 mH, C = 2 uF, o = 2500 s~ und U=U-=
20V folgt

109 .
Z = {5500 +j (2500 - 0,48 — 2 = [5500 +j1000] £2 = 5590¢*17%° 2
2500 - 2
und
20 _.
I= e 019 A = (3,52 -j0,64)mA.
5590

Die Phase ¢; = —0,1799 = —10,31° bedeutet, daf} der Strom um 10,31° der Spannung nach-
lauft.
Die Spannungen an den einzelnen Bauelementen errechnet man so:
Ugr =RI = (19,360 —j - 3,520)V,
U; =joL-1=(0,768 4] -4,224)V,

Uy = _wJ_C 1= (—=0,128 —j- 0,704)V.

Zur Kontrolle rechnetman U, +U; + U, =20V =U.

Beispiel 4.38:
In der Schaltung der Fig. 4.21b ist der Scheinwiderstand der unteren Leitung gleich R + jwL

1
und derjenige der oberen Leitung = Die Scheinleitwerte dieser beiden parallelen Leitungen
1)
addieren sich (nach Kirchhoff) zum gesamten Scheinleitwert Y, also

1
Y= —  4iwC.
L= RyjoL T3¢

Bei vorgegebenem Spannungszeiger U erhilt man die Stromzeiger aus I = UY.

Beispiel 4.39:

Fiir die Schaltung in Fig. 4.21c ist der Scheinleitwert Y, des Teiles ohne die rechte Spule gleich
. 1 n 1
R +joL) Ry — J

oC

Y,
Damit ist der gesamte Scheinwiderstand der Schaltung gleich
Z ! +joL
= w .
=7y, Jwlz

Mit gegebenem U folgt daraus I = U /Z.
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Ubung 4.23:
Im Beispiel 4.38 (Fig. 4.21b) seien die Zahlenwerte C = 3 uF, R = 6k 2, L = 500 mH und
U = 10V gegeben. Berechne daraus /, ferner die Stromzeiger /| zur oberen Leitung (mit C)
und /, zur unteren Leitung (mit R und L). Ermittle schlieBlich die Einzelspannungen U, Up
und Uj .

Ubung 4.24:

In Beispiel 4.39 (Fig. 4.21c) seien Ry = 10k $2, Ry = 2k§2, L = 300mH, C = 2,5 uF,
U =15V. Ermittle Y), Z und [.

4.4.4 Ortskurven bei Wechselstromschaltungen

Oft kommen variable Widerstinde (Stellwiderstinde), verdnderliche Induktivitdten (Variometer)
oder verinderliche Kapazititen (Drehkondensatoren) in elektrischen Schaltungen vor. Sie treten
in den Rechnungen als Parameter auf, von denen beispielsweise eine Spannung, eine Stromstéirke
oder andere Groflen abhéngen. Auch die Kreisfrequenz w taucht héufig als Parameter auf.

Wir betrachten im Folgenden elektrische Grofen, die von einem Parameter abhingen. Ma-
thematisch fiihrt dies auf komplexwertige Funktionen einer reellen Variablen. Den Wertebereich
einer solchen Funktion nennt man eine »Ortskurve«.

Beispiel 4.40:
Fiir die einfache Schaltung in Fig. 4.22a gilt offenbar

U(w) = Ip(R + —jwL).

Dabei seien R =202, L =0,5Hund Iy = 2,6 A.

Die Spannung U (w) hingt von der variablen Kreisfrequenz w ab. Wir haben es hier also
mit einer komplexwertigen Funktion einer reellen Variablen zu tun, wie sie in Abschn. 4.4.2
betrachtet wurde.

- 100

a) b)

Fig. 4.22: Ortskurve U (w) (Gerade)

Die Ortskurve der Funktion U (w) (ihr Wertebereich) ist fiir den Parameter w € [0 s~ 1100571
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in Fig. 4.22b skizziert. Es handelt sich dabei um eine Gerade durch IR, die parallel zur imagi-
nédren Achse liegt und beziiglich w skaliert ist.

Ortskurven dieser Art sind in der Wechselstromtechnik niitzliche Hilfsmittel, um Schaltungen
handhaben zu kénnen. Dabei kann es sich um Funktionen der Form

U(R), UC), Z(R), Z(w), Z(C), Y(R), Y(w), Y(C)

und andere handeln.
Sehr haufig sind die Ortskurven Geraden oder Kreisbogen. Um erkennen zu konnen, ob eine
Gerade oder ein Kreisbogen vorliegt, beweisen wir die folgenden Sitze:

Satz 4.19:
Durch die Funktion

w=fA)=zu+rz2 AeR z1,22€C 22 #0)

wird eine Gerade in der komplexen Ebene beschrieben. Mit 71 = a; + jb, 720 =
ay + jby, w = x + jy lautet die zugehorige Geradengleichung

byx —ayy = a1by — axby . (4.185)
Beweis:
Die Gleichung w = z7 4 Azp liefert, in Komponenten zerlegt:
X =a;+ Aray, y=by+Aby, XeR.

Multipliziert man die erste Gleichung mit b;, die zweite mit ap, und subtrahiert die zweite von
der ersten Gleichung) so erhilt man (4.185). Dies ist daher eine Geradengleichung, da zp # 0 ist,

also ap und b, nicht beide Null sind. O
Satz 4.20:
Durch
+ A
w=f0)=2"22 (eRz eC) (4.186)
23+ Az4

mit z1z4 7 z2z3 wird genau dann eine Kreislinie beschrieben, wenn folgendes gilt:
74 #0 und z3/z4 nichtreell. (4.187)
Der Kreis hat den Mittelpunkt

oy = 22 tze mit zsi= jza(z124 - 2223) (4.188)
74 274 1Im(z324)

und den Radius p = |z5|.
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Ist (4.187) verletzt, so beschreibt f (1) eine Gerade. Sie verlduft durch folgende
Punkte:

imFalle z4 =0 durch z1/z3, (z1 + 22)/z3, (4.189)
imFalle z3 =0 durch z/z4, (z1 + 22)/24,
im Falle z3 # 0, z4 # 0, z3/24 € R durch z1/z3, 22/z4.

Beweis:

(I) Wir betrachten zunichst den Spezialfall z; = 1, zp = 0, also

w = f() 24 #0, z3/24a ¢ R.

3t Azg]

Die Voraussetzung z3/z4 ¢ R besagt, dall der Nenner z3 + Az4 keine Nullstelle hat.

Der Nenner z = z3 + Axq (A € R) beschreibt also eine Gerade, die nicht durch 0 verlauft. Mit
z=Xx 4]y, z3 = a3z + jb3, z4 = a4 + jbs gehorcht die Gerade nach Satz 4.19 der Gleichung

bax — asy = azbg — asbs . (4.190)
Dabei ist azbg — asbz # 0, sonst verlduft die Gerade durch 0.
1 1
Ausw=-=———folgtmitz =x +jyund w = u + jv:
Z 3+ Az
4 1 1 u . v
= X = — = = —_ s
¢ Y= u+ijv  u? 402 Ve
folglich
u v
X =—-7=, = —_——
u? + 02 Y u? 402

Wir setzen dies in die Geradengleichung (4.190) ein und erhalten mit der Abkiirzung

D := azby — asbs

die Gleichung
b +a v =D d.h u2+v2—lﬂu—a—4v—0
AR AR o D D ’
also
by 2 as \2 ai +b§
_ = — ) = . 4.191
(” 2D> + (” ZD) 4D? (4190)

Dies ist eine Kreisgleichung fiir u, v, und zwar mit dem Mittelpunkt

= =2 432 ynd dem Radius 7 = |z .
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Den Mittelpunkt kénnen wir auch so ausdriicken:

B

_— 4.192
2D  2Im(zZ3z4) ( )

1 .
M= E(ZM +jag) =
denn es ist D = azbs — asbz = Im(z3z4).

(II) Es seien nun z1, 22, 23, z4 beliebige reelle Zahlen mit z1z4 # 7223, 24 # 0, z3/z24 ¢ R. Man
verwandelt f(A):

_nitA 22 2124 — 2223 1
3+rza za 24 B+ Az

F)

Hierbei beschreibt der letzte Ausdruck 1/(z3 + Az4) eine Kreislinie, also nach Multiplikation mit

7124 — 2223
_— = 76
24

ebenfalls, und nach Addition von 2 auch. Der Radius ist mit (4.192):
Z4
Z4(z124 — 2223)

= |zmllze| = —
P 274 1Im(Z324)

also p = |z5| (s. (4.188)). Entsprechend folgt fiir den Mittelpunkt

Z 2124 — 222 Z Z
—2+MZM =—2+261M =—2+Z5.
24 24 24 24

(III) Die Fille z4 = 0, z3 = 0 oder z3/z4 € R ergeben Geraden durch die angegebenen Punkte,
wie sich der Leser selbst iiberlegen moge. (]

AlmZ
c, e 130
9 R + 20
u +10
L
a) b)

Fig. 4.23: Ortskurve Z(C) einer Schaltung mit Drehkondensator

Beispiel 4.41:
In der Schaltung in Fig. 4.23a kommt ein Drehkondensator vor. Es sei gegeben: L = 0,1H,
Ry =502, Ry =40 £2 und die Frequenz f = 50Hz, d.h. v =27 f = 314,16 s~!. Gesucht ist
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die Widerstandskurve der Funktion Z(C).
Nach den Kirchhoffschen Regeln ist

2 1 Ry — @?LCRy +jo(L + CRIRy)
£(0) = — I T (1 -w?CL)+jwC(Ri + Ry

Ry +]wL R 2 — J_

oC
Daraus folgt
71 = Ry +joL,
+C . z :—a)zLR +0)RR1

Z(C) = A2 e 2 priem (4.193)

23+ Cz4 z3=1,

24 =—w’L +jo(R| + Ry).

Es gilt also z1z4 # 7223, z4 # 0 und z3/z4 € R. Folglich gilt nach Satz 4.20:

Durchléuft C alle reellen Zahlen, so durchlduft Z(C) eine Kreislinie in der komplexen Ebene
(dem Kreispunkt z5/z4 wird dabei formal C = oo zugeordnet). Nach Satz 4.20, Formeln (4.188)
errechnet man Mittelpunkt zy und Radius p der Kreislinie und gelangt so zur Ortskurve in
Fig. 4.23b:

M = 41,59 +j13,96, p =19,37.

Die Skalierung wird so vorgenommen, dafl man fiir verschiedene C-Werte die Punkte Z(C) =
(z1 + Cz2)/(z3 4+ Cz4) ausrechnet und daran die zugehorigen C-Werte eintragt.

1
cC —»
Ig L R

Fig. 4.24: Schwingkreis Fig. 4.25: Schaltung mit Stellwiderstand

Ubung 4.25:

Skizziere die Ortskurve von Z(w) fiir den Schwingkreis in Fig. 4.24. Dabei ist R = 250 2,
L =50mH und C =5 uF.

Ubung 4.26:
In Fig. 425 sei R = 25082, L = 25mH, L; = 100mH und 0w = 314 s~L. Skizziere die
Ortskurve des Scheinwiderstandes Z(R) und die des Scheinleitwertes Y (R).



5 Folgen und Reihen von Funktionen

Folgen und Reihen von Funktionen spielen in der Analysis und ihren Anwendungen eine be-
deutende Rolle. Wir behandeln hier, nach einem einleitenden Abschnitt, Potenzreihen und Fou-
rierreihen. Potenzreihen, deren Partialsummen Polynome sind, dienen hauptséchlich dazu, kom-
plizierte Funktionen anzunihern und sie damit berechenbar zu machen. Fourierreihen dagegen
liefern periodische Funktionen und regieren auf diese Weise Wellen- und Schwingungsvorginge
in Naturwissenschaft und Technik.

5.1 GleichmiiBige Konvergenz von Funktionenfolgen und -reihen

5.1.1 GleichméBige und punktweise Konvergenz von Funktionenfolgen

Funktionenfolgen werden analog zu Zahlenfolgen definiert: Man denke sich unendlich viele
Funktionen

fi, fas By s s oo (5.1

gegeben, die alle den gleichen Definitionsbereich D besitzen. Jeder natiirlichen Zahl »n ist dabei
genau eine Funktion f, zugeordnet. Wir nennen (5.1) eine Funktionenfolge auf D. Sie wird auch
kiirzer durch

(fn)neN oder (fn)

beschrieben. Die Zahl n in f, heifit, wie bei Zahlenfolgen, der Index von f,,. Funktionenfolgen
konnen auch in Formen wie

fos fis f2. f3,
. fa, fe,
-1, f2, f-3,

auftreten, in denen andere Indexfolgen als 1, 2, 3, ... vorkommen. Dies raubt uns aber nicht den
Nachtschlaf, denn hierbei ist stets klar, welche Funktion die erste, die zweite, die dritte . ..der
Folge ist, so daB mittelbar jedem n € N wieder genau eine Funktion der Folge entspricht.

Wenn im Folgenden von einer »Funktionenfolge« die Rede ist, so meinen wir dabei reellwer-
tige Funktionen einer reellen Variablen. (Gelegentlich kommen auch komplexwertige Funktio-
nenfolgen vor, was dann aber ausdriicklich gesagt wird.)

Soweit, so gut!

Wie bei Zahlenfolgen interessiert uns bei Funktionenfolgen hauptséchlich das Konvergenzver-
halten.
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Definition 5.1:
Man nennt eine Funktionenfolge (f,,) auf D punktweise konvergent, wenn fiir jedes

x € D die Zahlenfolge fi(x), fa(x), f3(x), ... konvergiert. Die Grenzfunktion f ist
dabei durch

lim f,(x) = f(x) fiurjedes x € D

n— o0
gegeben.

Dieser Konvergenzbegriff, so natiirlich er ist, erweist sich fiir die Analysis als zu schwach.
Zum Beispiel strebt die Folge der Funktionen

fn(x)zm, n=123,...,
punktweise gegen
1, fiir [x] < 1,
fx)y=431/2,  fir|x| =1,
0, fiir |x| > 1,

wie man unmittelbar einsieht. Obwohl alle Funktionen f;, stetig sind, ist die Grenzfunktion f
unstetig. Das ist unangenehm!

Man sucht daher nach einem Konvergenzbegriff fiir Funktionenfolgen, der diesen Mangel
nicht aufweist. Folgen stetiger Funktionen sollen im Konvergenzfall auch stetige Grenzfunktio-
nen haben. Der Konvergenzbegriff, der dies leistet, ist der der »gleichmdifligen Konvergenz«. Fiir
seine Definition verwenden wir die Supremumsnorm von Funktionen.

Definition 5.2:

Die Supremumsnorm || f || einer beschriankten Funktion f auf D ist das Supremum
von | f(x)| auf D, also

[ flloo := sup lfol. ! (5.2)

Sind f und g beide beschrinkte Funktionen auf D, so nennt man

If = glleo = sup | f(x) — g(x)]

xeD

den Abstand beider Funktionen voneinander (s. Fig. 5.1).
Offensichtlich gelten die Regeln

If 4 &lloo = Il flloo + lI&lloo » (5.3)

1 Das Zeichen oo an der Supremumsnorm dient zur Unterscheidung von anderen Funktionsnormen, auf die wir aber
nicht eingehen.
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A
be

D

Fig. 5.1: Darstellung von || f|lco und || f — glloo

Ay

X
Fig. 5.2: e-Schlauch um f
Aflloo = Al flloo, firalle A € R, (5.4)
[flloo=0 <= fx)=0, (5.5)

lfglloo = I1flloo - llglloo - (5.6)

»GleichmifBige Konvergenz« einer Folge (f;;) gegen eine Grenzfunktion f bedeutet nun im We-
sentlichen, daf} die Abstinde || f;, — f|lco ZWischen f,, und f gegen Null streben. Genauer:

Definition 5.3:

Eine Funktionenfolge (f,,) auf D konvergiert genau dann gleichmdiflig gegen eine
Grenzfunktion f auf D, wenn von einem Index n; an alle Funktionen f, — f be-
schrinkt sind und

Tim | fa = flloc =0 (5.7)

n=ni

erfiillen. Wir schreiben in diesem Falle kurz

f=lim f, oder f,— f fir n— oco. (5.8)
n—oo
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(Die verwendete Supremumsnorm || . ||« ist dabei wie in (5.2) erklirt.) Man sieht iibrigens un-
mittelbar, daf jede gleichméBig konvergente Folge auch punktweise konvergiert.

Veranschaulichung: (5.7) bedeutet bekanntlich ausfiihrlich: Zu jedem ¢ > 0 gibt es einen Index
no(> ny), so dab fiir alle Indizes n > ng gilt

[fa = flloo < €. (5.9)

Der Abstand zwischen f, und f bleibt also kleiner als ¢ fiir alle n > ng. Dieser Sachverhalt ist in
Fig. 5.2 skizziert: Um den Graphen von f ist ein sogenannter e-Schlauch (schraffiert) gezeichnet.
Darunter versteht man die Flidche zwischen den Graphen von f + ¢ und f — ¢. Der Graph von
f verlauft in der Mitte des e-Schlauches.

GleichméBige Konvergenz von ( f;,) gegen f bedeutet nun, dal es zu jedem e-Schlauch um
f einen Index ng gibt, so da die Graphen aller f,, mit Indizes n > no ganz in dem g-Schlauch
liegen.

Wir merken ferner an, daf (5.9) ausfiihrlich bedeutet:

sup Ifn(x) = fO)l <&,

oder, was dasselbe besagt:

[fu(x) — f(x)| <e firallex € D (5.10)
Das heifit:
Folgerung 5.1:

Eine Funktionenfolge ( f;,) auf D konvergiert genau dann gleichmifig gegen f auf D,
wenn folgendes gilt:

Zu jedem ¢ > 0 gibt es einen Index ng, so daB fiir alle Indizes n > ng und alle x € D
gilt

Ifn(x) = f(X) <&.

Bemerkung: Zunichst geniigt es, sich die leichter eingéingige Definition 5.3 zu merken und
anhand der Fig. 5.2 (¢-Schlauch) klar zu machen. Die Formulierung in Folgerung 5.1 hat vorwie-
gend beweistechnische Bedeutung. Der Kern bei der Formulierung der gleichmifigen Konver-
genz in Folgerung 5.1 besteht darin, daf} ng nur von ¢ (und f) abhdngt, nicht aber von x. Das
hei3t die Ungleichung | f;, (x) — f(x)| < ¢ gilt fiir alle x, wenn n > ny ist.

Satz 5.1:
(Cauchysches Konvergenzkriterium fiir gleichmdflige Konvergenz) Eine Funktionen-
folge (f) auf D ist genau dann gleichmi@Big konvergent, wenn folgendes gilt:
Zu jedem ¢ > 0 gibt es einen Index ng, so daB fiir alle n, m > ng gilt

I fo — fmlloo < €. (5.11)
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Beweis:

2(I) Es konvergiere ( f,,) gleichmiBig gegen f auf D. & > 0 sei beliebig gewihlt. Zu /2 gibt es
dann einen Index ng mit || f;; — fllco < &/2 fiir n > no. Daraus folgt fiir alle n, m > ng:

&

3

=£.

1fn = fmlloo = o = F + f = fmlloo < Ifo = FI+ I = funlloo =

NSRS

(II) Wir setzen nun umgekehrt voraus, dafl (5.11) erfiillt ist. Dann gilt fiir beliebiges x € D:
(fn(x)) erfiillt die Bedingung des Cauchy-Kriteriums fiir Zahlenfolgen, ist also konvergent. Der
Grenzwert sei mit f(x) bezeichnet. Auf diese Weise ist f : D — R definiert. Zu beliebigem
& > 0 wihlen wir nach (5.11) nun ein ng, sodaB || f, — filloo < € fiir alle n, m > ng gilt. Damit
folgt fiir beliebiges, aber festes x € D:

|fn () = FOOI < [fu(X) = fn )|+ 1 fm (x) = f ()]
<

(5.12)
€ + [ fm(x) — fFOI,

falls n, m > ng. Der Summand | f;,(x) — f(x)]| strebt fiir m — oo gegen 0, also gilt | f,(x) —
f(x)| <efiirallen > ngund alle x € D. Das heifit: (f;;) konvergiert gleichmaBig gegen f. [

Ubung 5.1%:
Welche Funktionenfolge konvergiert gleichmaBig?
1
D fa) = "x auf (01, b) fulr) =" aur [0, 4],
1
C) fulx) =x" auf [0, 1], d) funlx)= auf R.
1 +nx2

51.2 Vertauschung von Grenzprozessen

Die folgenden Sitze bilden die Grundlage fiir das Arbeiten mit gleichméBiger Konvergenz. Sie
sagen im Wesentlichen aus, dal3 bei gleichmiBig konvergenten Funktionenfolgen (bzw. ihren Ab-
leitungsfolgen) sich Stetigkeit, Differenzierbarkeit und Integrierbarkeit auf die Grenzfunktionen
ibertragen. Ohne dies wire mit konvergenten Funktionenfolgen kaum zu arbeiten. (Die Beweise
konnen beim ersten Lesen {iberschlagen werden.)

Satz 5.2:
Jede gleichmi@Big konvergente Folge stetiger Funktionen hat eine stetige Grenzfunktion.

Beweis:

(fn) konvergiere gleichmifig auf D C R gegen f. Die Differenz | f (x) — f(x0)| (x, xo € D) ist
abzuschitzen. Es gilt:

|f ) = fxo)l = [f(x) = fu@ + [ fu(x) = fu(xo)| + | fu(x0) — f(x0)] (5.13)

2 Kann zunéchst iiberschlagen werden
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fiir x, xo € D. Es sei ¢ > 0 beliebig. Jeden der drei Summanden rechts wollen wir »unter &/3
driicken« . Dann werden sie zusammen < ¢.

Da (f,,) gleichméBig gegen f strebt, gibt es ein f;, mit | f(x) — f,(x)| < ¢/3 furalle x € D.
Da f, stetig ist, existiert zu xo ein § > 0 mit

€
| fn(x) — fulxo)| < 3 fiir alle x € D mit |x — xg| < 6.
Zusammen folgt aus (5.13) somit

e & ¢
If(x)—f(xo)|<§~|—§+§=s, falls [x —xol <6,

also ist f stetig. (]

Bemerkung: Der Satz 146t sich auch so ausdriicken: Fiir jede gleichmiflig konvergente Folge
(fn) stetiger Funktionen gilt auf D mit xo = klim Xi in D:
— 00

lim fn<lim xk) = lim (lim f,,(xk)> . (5.14)
n—oo k—00 k—o00 \n—00
Es liegt also die Vertauschung zweier Grenzprozesse vor.

Satz 5.3:

Es sei (f;) eine Folge differenzierbarer Funktionen auf [a, b], deren Ableitungsfolge
(f) gleichmdfig konvergiert. Ferner konvergiere (f,(xo)) fiir wenigstens ein xo €
[a, b]. Damit folgt:

(a) (fn) konvergiert gleichméBig gegen eine Funktion f auf [a, b] und
(b) (f) konvergiert gleichmiBig gegen f.

Bemerkung: Da unter den Voraussetzungen des Satzes nichts anderes eintreten kann, als daf}
beide Folgen (f,) und (f;) gleichmiBig konvergieren, kann man kiirzer so formulieren, ohne an
Allgemeinheit zu verlieren:

Sind (f,) und (f,) auf [a, b] gleichmidBig konvergent, so folgt mit lim f, = f auch
n—od
lim f, = f'.

n—0o0

Die letzte Gleichung 146t sich auch so schreiben:

lim —fn(x) i l1m Ja(x). (5.15)

n—oo dx

d
Die Aussage des Satzes 5.3 bedeutet daher formal, dal man lim und o vertauschen darf.
n—o00 X
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Beweis:

Des Satzes 5.3: Zu (a): Auf die Funktion ( f;, — f,) wenden wir den Mittelwertsatz der Differen-
tialgleichung an — beziiglich zweier beliebiger Punkte x, & € [a, b] — und gewinnen

[(fn () = 2 () = (fn(E) = FaED < I (fr = ) lloolx — &1 3 (5.16)

(Dabei seien n, m so groB, daB (f,, — fn)' beschrinkt auf [a, b] ist.) Setzt man speziell £ = xo,
so folgt

| fn (X)) = fu Q| < ([ (%) = fa (X)) = (fin(x0) — fu(X0))| + | fin (x0) — fu(x0)]
< 1fy = finllsolx = xol + | fin(x0) — fu(x0)! .

Es sei ¢ > 0 beliebig gewihlt. Zu ¢/2 kann man einen Index n( finden, so daB fiir alle n, m > ng
das erste Glied der letzten Formelzeile kleiner als ¢/2 wird (beachte |x — xo| < |b — al), und
das zweite Glied ebenfalls. Zusammen werden beide Glieder kleiner als ¢ (fiir n, m > ng),
folglich ist | f;, (x) — fn(x)| < € fur alle x € [a, b] und n, m > ng. Das heilt: (f,) konvergiert
gleichmifig gegen eine Grenzfunktion f auf [a, b].

Zu (b): Wir bilden die Hilfsfunktionen
Jn(xX) = fa(§) " f&x)— f(§) i
D= xog - WEEE o) a—g o PR
JHOR fir x = £, Gim fi6),  firy=¢.

Dabei ist & € [a, b] fest. Aus (5.16) folgt nach Division durch |x — &| # 0:

| Dy (x) = Dy()| < |1 f5 = finlloo -

Man kann ein n; finden, so daB die rechte Seite kleiner als ¢ wird, fiir alle n, m > n; (da (f)
gleichmifig konvergiert). Also konvergiert (D) gleichmifig auf [a, b]. Da (D,,) offensichtlich
punktweise gegen D strebt, strebt die Folge somit auch gleichmifig gegen D. Alle D, sind
stetig, insbesondere in &. Also ist nach Satz 5.2 auch D stetig in &, d.h. lim,.¢ D(x) = f'(§) =

lim f7(€). O
n—oo
Satz 5.4:

Ist (f,) eine gleichmifBig konvergente Folge integrierbarer Funktionen auf [a, b], so
ist ihre Grenzfunktion f = lim f;, integrierbar, und es gilt
n—oo

b b
Tlim. f e — f FG)dx. (5.17)

3 1 lloo == sup [f()I.
b]

x€la,
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Beweis:

(I) Wir schiitzen die Differenz zwischen Obersumme S¢(Z) und Untersumme s¢(Z) von f zu
einer beliebigen Zerlegung Z von [a, b] durch Ober- und Untersummen anderer Funktionen ab:

SH(Z) =sf(Z) = (Sp—f,(Z) + Sf,(2)) — (sf—1,(Z) + 5£,(Z))

S ISr—f DI+ 185,(Z) = 55, (DN + Isp— 1, (D]

< S[llpb]|f(x)—fn(x)l(b—a)-i-|Sf,,(Z)—Sf,,(Z)|
x€la,
+ sup |f(x) = fu(X)|(b—a).

x€la,b]
GleichmiBige Konvergenz von (f;) gegen f bedeutet sup |f(x) — f,(x)| — 0 fiirn — oo.

x€la,b]
Man kann daher zu beliebig kleinem ¢ > 0 ein f, finden, so da} das erste und letzte Glied

der letzten Formelzeile < ¢/4 werden. AnschlieBend wihle man Z so, dall das mittlere Glied
kleiner als ¢/2 wird. Zusammen folgt S¢(Z) — sy(Z) < €. Da ¢ > 0 hier beliebig ist, gilt also
iIZIf Sf(Z) =supsy(Z), alsoist f integrierbar auf [a, b].

z

(II) Gleichung (5.17) folgt sofort aus

b b b
/ Fo) dx — / £ dx| = / (o) = F()) d

< sup |[fu(x) = fX)|b—-a)— 0 firn— oo. O
x€la,b]

Ubung 5.2:

Uberpriife die Sitze 5.2 bis 5.4 am Beispiel

2Vl+1n2x2 + (i’l2 +4))Cn
2M(n2 4+ 1)

falx) = auf [—1, 1].

Beweise zuerst, dall die Folge (f;) auf [—1, 1] gleichmiBig konvergiert und bestimme die
Grenzfunktion f.

5.1.3 GleichméabBig konvergente Reihen

Unendliche Reihen von Funktionen werden vollig analog zu unendlichen Reihen von Zahlen
gebildet: Ist fy, f1, f2, ..., fu, ...eine reelle Funktionenfolge auf einem Definitionsbereich D,
so wird durch

n
si=Y fi» n=012, ...
k=0
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daraus eine neue Funktionenfolge so, 51, s2, ... gebildet. Diese Folge (s,) heilit die unendliche
Reihe — kurz Reihe — der Funktionen f;. Die f; heilen — wie bei Zahlenreihen — die Glieder
der Reihe, und die s,, Partialsummen. Man beschreibt die Reihe symbolisch durch

|:Z fk:| oder |:Z fk(x):| mitx € D.
k=0 k=0

Die Reihe ist punktweise bzw. gleichmdif}ig konvergent, wenn (s,) eine solche Eigenschaft hat.

Die Grenzfunktion s = lim s, wird auch Summe der Reihe genannt und durch
n—oo

5 = ka oder s(x) = ka(x) mitx € D,
k=0

k=0

bezeichnet.

Das Cauchysche Konvergenzkriterium fiir Funktionenfolgen Satz 5.1, Abschn. 5.1.1) liefert
unmittelbar

Satz 5.5:
(Cauchysches Konvergenzkriterium fiir gleichmdflig konvergente Reihen) Eine Reihe

(0.¢]
|:Z fk:| von Funktionen auf D konvergiert genau dann gleichmdflig, wenn folgendes
k=0

erfiillt ist:

Zu jedem ¢ > 0 existiert ein Index ng, so daB fiir alle Indizes n, m > ng gilt:

Z fel <e. (5.18)

k=n+1 -

m
Zum Beweis ist lediglich anzumerken, daf3 Z fr = Sm — s, die Differenz der m-ten und n-ten

k=n+1
Partialsumme der Reihe ist. O

Definition 5.4:

o0

Eine Reihe |:Z fk] von beschrinkten Funktionen auf D heillt genau dann gleichmdi-

k=0
[

Pig absolut konvergent, wenn Z Il fx llco konvergiert.
k=0

4 Es ist hier, wie frither || f||oco = sup |f(x)].
xeD
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oo
In diesem Fall ist |:Z fk:| gleichmifig konvergent, denn es gilt
k=0

Yoo = DD il (5.19)

k=n+1 00 k=n+1

Nach dem Cauchy-Kriterium fiir Reihen von Zahlen gibt es zu jedem ¢ > 0 ein ng, so daf} die

rechte Seite in (5.19) < ¢ ist fiir alle n, m > ng. Damit gilt dies auch fiir die linke Seite in (5.19),
o0

also ist die Reihe |:Z fk:| nach Satz 5.5 gleichmifig konvergent. Damit folgt unmittelbar das

k=0
folgende sehr niitzliche Konvergenzkriterium:

Satz 5.6:

o
(Majorantenkriterium) Gilt fiir die Glieder der Funktionenreihe |:Z fk:|
k=0

I filloo <ax, k=0,12,...,

oo
und ist die Zahlenreihe |:Z oek:| konvergent, so ist die Funktionenreihe gleichméafig
k=0

(0.¢] (0.¢]
absolut konvergent. Die Reihe |:Z ak] hei3t eine Majorante fiir |:Z fk:|.
k=0 k=0

SchlieBlich formulieren wir die Vertauschungssétze des letzten Abschnitts auf Reihen um. Wir
erhalten

Satz 5.7:
(o)
Sind die Glieder einer gleichmiBig konvergenten Reihe |:Z fk:| stetig, so ist die
k=0
o0
Summe Z fr stetig.
k=0
Satz 5.8:
o0
Es sei |:Z fki| eine Reihe differenzierbarer Funktionen auf [a, b]. Existiert der
k=0
(o)
Grenzwert Z fx(x) fur wenigstens ein x € [a,b], und ist die Ableitungsreihe

k=0

o0 o0
|:Z fk/j| gleichmifig konvergent in [a, b], so ist auch die Funktionenreihe |:Z fki|
k=0 k=0
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gleichmiBig konvergent in [a, b] und es gilt

(Z fk) = fi (5.20)
k=0 k=0

Unter den Voraussetzungen des Satzes darf man die Reihe also gliedweise differenzie-
ren!

Satz 5.9:

o0

Jede gleichmiBig konvergente Reihe |:Z fk:| integrierbarer Funktionen auf [a, b]

k=0
00

besitzt eine integrierbare Summenfunktion Z fx auf [a, b] und es gilt:
k=0

b

o0 o b
/ka(x)dx = Z/fku)dx. (5.21)
u k=0 k=0

Kiirzer: Gleichmifig konvergente Reihen diirfen gliedweise integriert werden.

Ubung 5.3:

Beweise mit dem Majorantenkriterium, daf die Reihe

* 1
Z — cos(kx) | fiir x € [0,27]
k=0 k

gleichmiBig auf [0, 27 ] konvergiert. Gilt dies auch fiir die abgeleitete Reihe?

5.2 Potenzreihen

5.21 Konvergenzradius

Potenzreihen sind Reihen der Form

o0
|:Z ar(x — xo)k:| x,x0 € R, a; € R. (5.22)
k=0

n
Ihre Partialsummen s, (x) = Z ag(x — xo)k sind Polynome. Wir haben Potenzreihen schon in

k=0
Form von Taylorreihen kennengelernt. In diesem Abschnitt wollen wir allgemeine Konvergenzei-

genschaften von Potenzreihen untersuchen. Grundlegend ist dabei der folgende Satz von Cauchy
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o

und Hadamard. Es geniigt dabei, Potenzreihen der Form |:Z akxk:| zu untersuchen, da man
k=0

(5.22) durch die Transformation x’ = x — xq in diese einfache Form iibertragen kann.

Satz 5.10:

o0
(Satz von Cauchy-Hadamard®) Zu jeder Potenzreihe |:Z akxk] gibt es ein Konver-
k=0
genzintervall (—r, r) mit folgenden Eigenschaften:
(a) Die Potenzreihe konvergiert in (—r, r) punktweise. Sie konvergiert iiberdies
gleichmifig absolut in jedem kompakten Teilintervall von (—7, r).

(b) AuBerhalb von [—r, 7] ist die Potenzreihe divergent.

Dabei sind auch die Fille r = 0 und r = oo zugelassen. (Im Falle r = 0 ist (—r, r)
leer, und im Falle r = oo ist (—r, r) = R (und Aussage (b) gegenstandslos). r heif3t
der Konvergenzradius der Potenzreihe.

o0
Zusatz zu Satz 5.10: Der Konvergenzradius der Potenzreihe |:Z akxk:| ist
k=0

1
. (5.23)

lim /el
k—o00
gegeben.
Dabei wird folgendes vereinbart: Es ist km x| der gropte Hiufungspunkt der Folge (/Tax]),
—00

falls die Folge beschriin_kt ist; andernfalls ist der Ausdruck gleich oco. Im letzteren Fall rechnen
wirr = 1/00 = 0. Ist llcm(l) Jlay| dagegen = 0, so setzen wir r = 1/0 = oo. Dieses Rechnen mit

oo ist nur in diesem Zusammenhang erlaubt! Den Ausdruck klim |a| nennt man den Limes-
—00
superior der Folge (¥/lax]).

Es sei erwihnt, da3 Formel (5.23) eher theoretischer Natur ist. Zum Bestimmen von Konvergenz-
radien betrachtet man spezielle Potenzreihen meistens genauer, um »vor Ort« herauszufinden,
wo sie konvergieren und wo nicht.

Beweis:

Des Satzes 5.10: Wir denken uns r nach (5.23) berechnet.

1. Fall: ¢ > 0 (r = oo zugelassen).

Zu (a): Wir wihlen ein kompaktes Intervall in (—r, r), das wir ohne Beschrinkung der Allgemein-
heit als symmetrisch annehmen: [—&, £] C (—r, r). (Denn andernfalls kbnnte man es zu einem
symmetrischen kompakten Intervall erweitern.) Es folgt £/r < 1. Wir wihlen eine beliebige

5 Jacques Salomon Hadamard (1865 —1963), franzosischer Mathematiker
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Konstante ¢ mit £ /r < g < 1, d.h. es gilt nach (5.23)
(En ,k/|ak|-g> <qg<1
k— 00
also

SNl -8 <q <1

fiir alle £ mit Ausnahme von endlich vielen, folglich fiir alle k£ > ko (ko geniigend grof3 gewihlt).
Damit gilt

lax|EF < g% fiir alle k > ko. (5.24)
Fiir jedes x € [—§, &], also |x| < &, erhilt man daraus

|akxk| < qk fiir alle k > ko,
woraus nach dem Majorantenkriterium (Satz 5.6) die gleichmifige Konvergenz der Potenzreihe
in [, &] folgt.

Zu (b): Im Falle r = oo ist die Aussage (b) leer, es ist also nichts zu beweisen. Im Falle r € R
(r > 0) dagegen folgt aus |x| > r unmittelbar |x|/r > 1, also

lim /lagllx| > 1,
k— o0
d.h.
Vlagllx| > 1 fiir unendlich viele k.

Potenzieren mit k ergibt |azx¥| > 1. Die Glieder der Reihe streben mit k — oo also nicht gegen
Null. Damit ist sie divergent.

2. Fall: r =0, d.h. kﬁ Yax] = o0.
—00

Aussage (a) des Satzes ist leer, d.h. es ist nichts zu beweisen.
Zu (b): Die Folge (f/ |a| |x|) ist unbeschrénkt fiir jedes x # 0, also nach Potenzieren mit k auch

o

die Folge (laxx*]). Somit ist |:Z akxk] divergent. Il
k=0

Bemerkung: Uber die Fille x = r oder x = —r in Satz 5.10 lassen sich keine allgemeinen Kon-

vergenzaussagen machen. Sie miissen von Fall zu Fall untersucht werden. Es kann Konvergenz

oder Divergenz vorliegen.
(0.¢]

Satz 5.10 148t sich entsprechend fiir allgemeine Potenzreihen |:Z ar(x — xo)k:| aufschreiben.

k=0
Das Konvergenzintervall hat dann die Form (xo — r, xo + r). Der Konvergenzradius r ergibt sich

— nach wie vor — aus (5.23).
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Beispiel 5.1:
Wo konvergiert [x + 2x2 4333 4+ .+ kxk12 Mit ap = k ist km Jk zu bestimmen. Es gilt aber
— 00

fim vk =1

k— 00

(s. Beisp. 3.18, Abschn. 3.2.1). Die Folge (W) hat somit nur einen Haufungspunkt, ndmlich
1, und ist natiirlich beschriinkt. Also ist auch Lim ek = 1, somit »r = 1. (—1,1) ist damit das

k— 00
Konvergenzintervall der Reihe. Fiir x = 1 und x = —1 ist die Reihe offenkundig divergent.
Beispiel 5.2:
x2 X Xt
Die Reihe |:x -3 + Ny + .. :| ist sicherlich fiir |x| < 1 konvergent. Fiir |x| > 1 kann

keine Konvergenz vorliegen, da |x¥/k| — oo fiir k — oo. Der Konvergenzradius ist also r = 1.
In den Randpunkten —1 und 1 liegt unterschiedliches Verhalten vor: Konvergenz bei x = 1,
Divergenz bei x = —1.

Eine in vielen Fillen bequeme Methode zur Bestimmung des Konvergenzradius ist die folgende:

Satz 5.11:
o
Es sei |:Z akxk:| eine Potenzreihe mit a; #~ O fiir alle k > k¢. Gilt
k=0
lim =c>0, (5.25)
k—o0 | Ak+1
k>ko

so ist ¢ der Konvergenzradius der Reihe.

Beweis:
Wir wenden auf die Potenzreihe das Quotientenkriterium (Satz 1.17, Abschn. 1.5.4) an und bilden
dazu den Quotienten benachbarter Glieder:

|x|

k+
‘|x|—> — firk — oo (k > ko).
c

ar, + 1
ax

k41X
agxk

Nach dem Quotientenkriterium liegt Konvergenz fiir |x|/c < 1, d.h. fiir |x| < ¢, und Divergenz
fur |x|/c > 1, also |x| > ¢, vor. O

Ubung 5.4:

Bestimme mit Satz 5.11 die Konvergenzradien der Reihen

[ o

k=1 k=1
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5.2.2 Addieren und Multiplizieren von Potenzreihen sowie Differenzieren und
Integrieren

Aus dem Satz iiber gliedweises Addieren von Zahlenreihen (Satz 1.9, Abschn. 1.5.1) und dem
Multiplikationssatz iiber absolut konvergente Reihen (Satz 1.15, Abschn. 1.5.3) folgt unmittelbar
fiir Potenzreihen

Satz 5.12:
o0 o
Fiir Summe und Produkt zweier Potenzreihen |:Z ar(x — xo)k :| und |:Z bi(x — xo)k:|
k=0 k=0
gilt im gemeinsamen Konvergenzbereich
o o0 o
Y arx —x0)* + ) be(x —x0)* =) (@ + bi)(x — x)* (5.26)
k=0 k=0 k=0
bzw.
o o [e¢)
D ar(x —x0)* Y br(x — x0) = enlx — x0)" (5.27)
k=0 k=0 n=0

mit ¢, = apb, + a1b,—1 + ...+ a,bo.
Beispiel 5.3:

o
Es sei |:Z akxk:| eine Potenzreihe mit Konvergenzradius » > 0. Zusammen mit der geometri-
k=0

o0

schen Reihe ) x¥ = 1/(1 — x) fiir |x| < 1 folgt aus der Produktformel fiir |x| < min{1, r} die
k=0

interessante Gleichung:

1 o0 o0
1_x2akxk=20nx”, mitc, =ag+ay; +...+ay. (5.28)
k=0 n=0

Satz 5.13:

o
(Differenzieren und Integrieren von Potenzreihen) Es sei |:Z ag(x — xo)k:| eine Po-

k=0
tenzreihe mit Konvergenzradius » > 0.

(a) Die Summenfunktion

o]

f) = a e —xo)t

k=0

darf im Konvergenzintervall (xo—r, xo+7) beliebig oft differenziert werden. Die
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Ableitungen von f erhidlt man durch gliedweises Differenzieren der Potenzreihe:

flx) =Y kar(x — x0)* ! (5.29)

k=1

(b) Aufjedem kompakten Teilintervall [a, b] des Konvergenzintervalles darf f glied-
weise integriert werden. Insbesondere hat f auf (xg —r, xo +r) eine Stammfunk-
tion, die man durch gliedweises analytisches Integrieren erhilt:

/ fod=%" k“" -0 —x0) (5.30)
o par

Beweis:

Beweis: Wir fithren den Beweis 0.B.d.A. mit xo = 0. (b) geht unmittelbar aus Satz 5.9 und
Satz 5.10 hervor. Zu (a): Sei x € (—r, r) beliebig und £ eine Zahl mit |x| < & < r. Es ist zu
zeigen, daf} die gliedweise abgeleitete Reihe

[Z kakxk_1:| (5.31)
k=1

in [—£, £] gleichméBig konvergiert. Nach Satz 5.8 ist dann alles bewiesen. Wir schitzen die
Reihenglieder ab, wobei wir eine Hilfszahl ¢ mit £§/r < g < 1 verwenden nebst Ungleichung
(5.24):

k k
lkakx* | < klaglg" " = ~JaglgF < Eqk fiir k > ko.

§
Nk
Nach dem Quotientenkriterium konvergiert die Reihe Z —qk . Diese Reihe ist eine Majo-
k=ko
rante der Ableitungsreihe (5.31), die damit gleichmifig absolut konvergiert. (|

Ubung 5.5:

o
Berechne die Ableitung der Reihe {Z xk /k:| fiir x = 3/4.
k=1

5.2.3 Identititssatz, Abelscher Grenzwertsatz

Dieser Abschnitt kann beim ersten Lesen iibergangen werden. Man schlédgt hier nach, wenn man
den Inhalt braucht.
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Satz 5.14:
(Identitdtssatz fiir Potenzreihen) Es seien

fO) =) ax—x0*,  gx) =) bilx —xo)
k=0 k=0

zwel Summenfunktionen von Potenzreihen, die beide in dem offenen Intervall / um
xo konvergieren. Stimmen dann f und g auf nur irgendeiner Folge x1, x3, x3, ... mit

lim x,, = xo (x, # xo) iiberein, d.h.
n—oo

flxp) = glxg) firk=1,2,3,...,
so sind beide Funktionen identisch; es gilt also

f(x)=gkx) firallex € I, und a; = by fiirallek.

Beweis:
Durch Induktion: Ohne Beschrinkung der Allgemeinheit setzen wir xo = 0, also f(x) =

oo o
Zakxk, glx) = Z bex. f und g sind in [ stetig (da gleichmiBig konvergent auf kompak-

k=0 k=0
ten Teilintervallen von 7).

(D Setzt man x = x, ein, mit x, — xo = 0, so folgt f(0) = lim f(x,) = lim g(x,) = g(0),
n—0o0 n—od
also ag = by.

(II) Es sei erwiesen, dal ag = by, a; = by, ..., apm—1 = b;y—1 ist. Die Summenfunktionen
(X)) =ap + apy1x + am+2x2 + .o+ gmx) =by + bpy1x + bm+2x2 +...

stimmen dann fiir alle Folgenpunkte x = x, iiberein, da

m—1 m—1
<f(x) - akxk> (g(x) - bkx">
k=0 k=0
xm xm

Sm(x) = s gm(x) =

fir x # 0 (x € I) gilt. Wie in (I) folgert man dann, daf} die freien Glieder iibereinstimmen:

am = by,. Aufgrund vollstindiger Induktion ist damit a,, = b, fiir alle m = 1,2, ... gezeigt,
folglich f(x) = g(x) auf [. O
Satz 5.15:

(Abelscher® Grenzwertsatz) Durch

fx) = Zak(x — xo)
k=0
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sei die Summenfunktion einer Potenzreihe dargestellt, die einen endlichen Konvergenzradius
r > 0 besitzt. Ist die Potenzreihe im rechten Randpunkt xo + r des Konvergenzintervalls
(xo — r, xo + r) konvergent, so ist f dort auch (linksseitig) stetig, d.h. es gilt

0
lim f(x)= E apr’ .
X—>Xx0+r

x<xé)+r k=0

Entsprechendes gilt fiir Konvergenz im linken Randpunkt des Konvergenzintervalls.

Beweis:
Ohne Beschriankung der Allgemeinheit nehmen wir xo = O und » = 1 an. (Andernfalls knnen

wir dies durch die Transformation x” = (x — x¢)/r erreichen.) Nach Voraussetzung existiert die
o0

Summe ¢ := f(1) = Zak. Die Partialsummen seien ¢, := ag + aj + ... + a, genannt. Es

k=0
muf gezeigt werden, da3 f(x) — ¢ fiir x — 1— ist. Wir benutzen dazu Formel (5.28) im letzten

Abschnitt. Sie liefert
o o
fx) = Zakxk =1 —x)chx” fiir |x| < 1.
k=0 n=0

Damit folgt fiir x € (0,1):

1

oo o0
(1—x)Zc,,x”—c|i(l—x)Zx"i| ‘
n=0 n=0

o0
< —x) ) len —clx”

|f(x) —cl =

(1 =2) (cn — )x"

n=0 n=0
N 00

= —x)Z|cn —c|x" + (1 — x) Z len — clx™.
n=0 n=N+1

Hierbei wihle man N so, daf jedes |c, — c| der rechten Summe kleiner als ¢/2 ist, wobei ¢ > 0
beliebig vorgegeben ist. Damit ist die rechte Summe kleiner als

& ad & > &
E'(l—x) Z x"fz(l—x);)x":a
n=

n=n+1

AnschlieBend wihle man § > 0 so, daf3 fiir alle x mit 1 —§ < x < 1 der erste Summand der

unteren Formelzeile kleiner als ¢/2 ist. Damit gilt | f(x)—c| < &/24¢/2 = ¢, falls1-§ <x < 1,

d.h. lirn1 fx) =c. O
X—>

6 Niels Henrik Abel (1802 —1829), norwegischer Mathematiker
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Besonders interessant ist die Anwendung des Abelschen Grenzwertsatzes auf Taylorreihen.
Wir ziehen die

Folgerung 5.2:
Die Funktion f sei auf einem offenen Intervall / um xg in eine Taylorreihe entwickel-
bar (d.h. die Taylorreihe von f konvergiert auf / punktweise gegen f). Konvergiert die
Taylorreihe auch noch in einem Randpunkt von / und ist f dort stetig f so konvergiert
sie in diesem Randpunkt gegen den Funktionswert von f.

Beispiel 5.4:
Die Taylorreihe der Arcustangensfunktion lautet
t S (5.32)
arctanx =x — —+ — — — + —.... .
3 5 7

Mit Restgliedabschitzung (Lagrange-Restglied) sieht man ohne Schwierigkeit, daf3 die Formel
fiir |x| < 1 zutrifft. Uberdies erkennt man mit dem Leibniz-Kriterium, daf die Reihe fiir x = 1
und x = —1 auch konvergiert. Da arctan x dort stetig ist, gilt (5.32) auch fiirx = 1 und x = —1.
(Dies war in Abschn. 3.2.4, Absatz nach Tabelle 3.3, offen geblieben.) Fiir x = 1 folgt die schon
angegebene prachtvolle Formel, auch »Leibnizsche Reihe« genannt:

LANNP R SR S (5.33)
=l .

Ubung 5.6%:
Zeige, dal3 die Taylorreihe des Arcussinus
1x3 1-3x7 1-3.5x7

arcsmx:x—l—ﬁ 2-4~5+2-4~6-7+.“

fiir alle x € [—1,1] giiltig ist. (Die Giiltigkeit fiir [x| < 1 ist in Abschn. 3.2.4 schon gezeigt.)

53 Der Weierstraf3’sche Approximationssatz

5.3.1 Bemerkung zur Polynomapproximation

Die Darstellung komplizierter Funktionen als Potenzreihen — insbesondere als Taylorreihen —
geht von der Aufgabe aus, diese Funktionen zu berechnen. Durch die Partialsummen der Po-
tenzreihen sind Polynome gegeben, die die Funktionen mehr oder weniger gut approximieren
und daher zur numerischen Berechnung herangezogen werden konnen. Diese Aufgabenstellung
wirft mehrere Fragen auf:

(a) Kann man jede stetige Funktion beliebig genau durch Polynome approximieren?

(b) Mit welchen Polynomen geht dies am besten?
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(c) Sollte man nicht besser andere Funktionen zur Approximation verwenden, z.B. rationale
Funktionen?

Frage (a) wird durch den Weierstraf3’schen Approximationssatz grundsitzlich positiv beantwor-
tet. Er besagt, daB sich jede auf [a, b] stetige Funktion f durch eine Folge von Polynomen im
Sinne der gleichmiBigen Konvergenz (s. Abschn. 5.1.1) auf [a, b] approximieren 146t. Die Poly-
nome, von denen hier die Rede ist, ordnen sich im allgemeinen aber nicht zu einer Potenzreihe.
AuBerdem begniigt man sich in zahlreichen Lehrbiichern mit der Behandlung der Existenzfrage.
Das Konstruktionsproblem von Nédherungspolynomen bleibt aber bestehen.

Mit Frage (b) beschiftigt sich die sogenannte Approximationstheorie ausfiihrlich (s. z.B.
M. Miiller [38]). Sie untersucht verschiedene Approximationsverfahren auf Konvergenz, Appro-
ximationsgeschwindigkeit und auch die Frage der Bestapproximation. Fiir numerische Belange
sind Reihen von Tschebyscheff-Polynomen von groem Interesse. Viele elementare Funktionen
werden auf Computern mit Tschebyscheff-Polynomen berechnet. Eine gut lesbare erste Einfiih-
rung findet man z.B. in E. Stiefel [52], Abschn. 7.2.

Eine andere Art, Funktionen durch Polynome zu approximieren, geht von der Interpolation
aus (s. hierzu Abschn. 5.4). Man sucht dabei zu einer Funktion f auf [a, b] ein Polynom p,
etwa vom Hochstgrad n, das an n 4 1 vorgeschriebenen Stellen xg, x1, ..., x, mit f iiberein-
stimmt: f(xx) = p(xx), k = 0,1, ..., n. Hier hat sich herausgestellt, daf} es fiir die meisten
Polynome zweckmaiBig ist, den Polynomgrad n nicht zu hoch zu wihlen (z.B. n < 3), dafiir aber
die »Interpolationspolynome« stiickweise zusammenzusetzen. Solche, aus Polynomstiicken zu-
sammengesetzte Funktionen nennt man Spline-Funktionen. Sie haben in der numerischen Praxis
groBBe Bedeutung erlangt. Wir werden in Abschnitt 5.4 auf sie eingehen.

Zur Frage (c): In der Tat lassen sich durch Approximation mit rationalen Funktionen bei klei-
nerem Rechenaufwand bessere Approximationen erzielen (vgl. J. Stoer [53]). Die systematische
Entwicklung ist jedoch aufwendiger und mit gelegentlichen Fallstricken verbunden. Es gehoren
hierher Kettenbriiche, rationale Interpolation, rationale Tschebyscheff-Approximation u.a. Die
leichtere Handhabung der Polynomapproximation ist dagegen ein nicht zu unterschétzender Vor-
teil. So wird man zweckmiBig von Fall zu Fall aus der Palette der Moglichkeiten die brauchbarste
Approximation herausgreifen. Die Approximationstheorie stellt zahlreiche Verfahren bereit und
diskutiert deren Eigenschaften.

5.3.2 Approximation von stetigen Funktionen durch Bernstein-Polynome
Im Folgenden wollen wir anhand eines konkreten Verfahrens zeigen, wie sich stetige Funktionen

durch Polynome approximieren lassen.

Satz 5.16:
(Weierstraf3) Die Funktion f sei auf [a, b] stetig. Dann gibt es eine Folge {p,} von
Polynomen, die auf [a, b] gleichméBig gegen f konvergiert:

I f = pulloo = 0 fiir n — co. (5.34)

(Die Norm || - ||oo istin Abschn. 5.1.1, Def. 5.2 erklart!)
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Beweis:
7 Mit Hilfe der Transformation

X —da

b—a

/
X =

sehen wir, dal} wir uns anstelle von [a, b] im Folgenden auf das Intervall [0,1] beschrinken
konnen. Fiir unser weiteres Vorgehen bendtigen wir die binomische Formel

n

@+b' =Y (Z)a”_kbk , neN (5.35)

k=0

(s. Abschn. 1.1, Formel (1.15)). Wir differenzieren (5.35) nach b und multiplizieren die entstehen-
de Gleichung mit . Mit dem gewonnenen Resultat verfahren wir noch einmal genau so. Dadurch

ergeben sich die beiden Beziehungen (man beachte die veridnderte Rolle des Summationsindex
k)

n

3 k<z>a”_kbk — nb(a + b)""! (5.36)
k=0
und
" n
Z k2 (k)a”_kbk =nb(nb +a)(a + b)" 2. (5.37)
k=0

In den Formeln (5.35), (5.36) und (5.37) setzen wir b = x und a = 1 — x und erhalten so

n

3 (Z)(l —x) kb =, (5.38)

k=0
: n n—k k
Zk<k>(1 — )" kK =y, (5.39)
k=0
Zk2<2)(1 — )" Fxk = 2% £ ax(1 = x). (5.40)
k=0

Wir multiplizieren nun die erste dieser Gleichungen mit n2x2, die zweite mit —2nx und die dritte
mit 1 und addieren die so entstehenden Gleichungen. Wir erhalten die Beziehung

3k - nx)z(,]:)(l — )" kxk = nx(1 = x). (5.41)
k=0

7 Dieser konstruktive Beweis geht auf den russischen Mathematiker Sergei Natanowitsch Bernstein (1880 —1968)
zuriick.
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Die rechte Seite von (5.40) ist im Intervall [0, 1] nicht negativ und nimmt an der Stelle x = %
seinen maximalen Wert J—tn an (warum?). Daher gilt die Abschitzung
- n 1
D te—nx)* () =0k < = (5.42)
k 4
k=0
Nun betrachten wir die Funktion f(x) an den dquidistanten Knotenpunkten % k=0,1,...,n):

f (k), und fiihren die Polynome

“ k
pa(x) =Y f (;) (Z)(l —x)" Rk (5.43)
k=0

die man Bernstein-Polynome nennt, ein. Wir weisen nach, daf diese fiir » — oo auf [0, 1] gleich-
maiBig gegen die Funktion f(x) konvergieren.

Wegen (5.38) und (5.43) folgt fiir 0 < x <1
- k
) = pax) =Y [f(x) —f (;)] (Z)(l — )" Rk (5.44)
k+0

und hieraus, mit Hilfe der Dreiecksungleichung,

I; [f(x) - f (S)] (Z)(l — )k fx)—f (S)' (Z)(l — )k (5.45)

(Wir beachten dabei: (1 — x)"*x¥ > 0 im Intervall [0,1].)

Aus der Stetigkeit von f(x) auf dem (kompakten) Intervall [0, 1] folgt dort ihre gleichmaBige
Stetigkeit (s. Satz 1.26, Abschn. 1.6). Zu jedem ¢ > 0 gibt es daher ein § = §(¢) > 0 mit

n
<

k=0

[f(x1) — fx)l <e (5.46)

fiir alle x1, xo € [0,1] mit |[x; — x2| < §. Insbesondere ist (5.46) erfiillt, wenn wir x; = x und
Xy = % setzen:

k
‘f(X) - f (r_L)

Nun zerlegen wir die Summe auf der rechten Seite von (5.45) in zwei Teilsummen, wobei wir
in der ersten Summe tiiber diejenigen Werte £ € {0,1, ..., n} summieren, die der Ungleichung
|x — %I < § gentigen, wihrend wir fiir die zweite Summe die Werte k mit |x — §| > & nehmen
(s. Fig. 5.3). Fiir die beiden Summen verwenden wir die Schreibweisen

Z ... bzw. Z
‘xff <8 )x7§’>8

< ¢ fir <. (5.47)

X — —
n
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und kiirzen sie mit S; bzw. Sy ab. Zur Abschidtzung von S; nutzen wir (5.47) und (5.38) aus und
erhalten fiir beliebiges (festes) n € N

Fig. 5.3: Zerlegung der Summation

Si= Y. ‘f(X) —f (f—l)

k

(Z) (1 _ x)nkak

‘x—;‘«?
. " (5.48)
<e€ Z (k)(l —x)t Rk < SZ (k)(l —x)"kxk <6,
R =0
(Wir beachten, dal} sich die Summe i.a. vergroflert, wenn wir iiber alle k (k = 0,1, ..., n) sum-

mieren!)

Wenden wir uns nun der zweiten Summe S, zu. Da f(x) im (kompakten) Intervall [0, 1] stetig
ist, nimmt sie dort ihr Maximum an, d.h. es gibt ein M > 0 mit

| f(x)] <M fiiralle x € [0,1]
(s. Satz 1.25, Abschn. 1.6). Wir erhalten damit

Si= Y ‘f(ﬂ—f(%)‘(’;)(l—x)”"xk
>6

k
=]

< Yy (If(x)|+‘f<s>‘) (Z)(l—x)n_kxk§2M 3 <Z>(1_x)n—kxk'

k k
‘x,;‘za ‘xfﬁ‘zé

(5.49)

Wegen |x — §| > § oder |nx — k| > né folgt

(nx —k)>  n?s?
n282 ~ n2s2

=1
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und daher aus (5.49)

(nx—k)2 n e
Sy <2M Y —s ()= kyk

e
oM ; i - ) )
=25 Z (k —nx)2<k>(1 — 0"k < 52 (k — nx)2<k>(1 — x)"kxk
i—£|=s k=0

Hieraus ergibt sich mit (5.41)

Sy < — .
2= 2ms?

wobei M und § feste positive Werte sind. Wihlen wir schlieBlich n so grof3, daf3

M
n > —— istund setzen wir: N (= — ,
282 £82
so erhalten wir
S < M M (5.50)
< =¢ .
2= me? 2<£>32
2 2
&8

fiir allen > N. Aus (5.48) und (5.50) ergibt sich dann
S1+ 82 < 2¢ fiir beliebige ¢ > Oundn > N
und damit wegen (5.44) und (5.45)
If () = pa(X)| <2e =: &

fiir alle x € [0,1] und beliebige € > 0 und n > N. Damit ist Satz 5.16 bewiesen. O

Mit Hilfe von Satz 5.16 146t sich ein analoger Satz fiir periodische Funktionen beweisen:

Satz 5.17:
(Weierstrapf; fiir periodische Funktionen) Es sei f eine 2w -periodische stetige Funkti-
on. Dann gibt es eine Folge {#,} von trigonometrischen Polynomen, also von Polyno-
men der Form

ao

n
>+ Z(ak cos kx + by sinkx) (5.51)

k=1

th(x) =

mit

If —talloo > 0 fiir n - oo. (5.52)
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Beweis:
Dieser 146t sich mit Hilfe der Substitution # = cos x bzw. x = arccos u auf Satz 5.16 zuriickfiih-
ren und findet sich z.B. in W.I. Smirnow [50] Teil II, Abschnitt 154.

54 Interpolation

Innerhalb dieses Abschnittes befassen wir uns mit Algorithmen zur Berechnung von Polyno-
men respektive Splines, die an vorgegebenen Stiitzstellen xo, ..., x, € R einen zugehorigen
Funktionswert fy, ..., fu € R aufweisen. Derartige Fragestellungen treten in einer Vielzahl
praxisrelevanter Problemstellungen auf. Liegen beispielsweise durch ein Experiment MeBwerte
einer physikalischen oder biologischen Grofle zu bestimmten Zeitpunkten vor, so kann mittels
einer Interpolation eine niherungsweise Berechnung der betrachteten Grofe fiir beliebige Zwi-
schenzeiten vorgenommen werden. Daneben wird im Rahmen der numerischen Integrationsme-
thoden héufig der Integrand durch ein Interpolationspolynom ersetzt, dessen exakte Integration
als Approximation an den gesuchten Integralwert genutzt wird. Derartige Verfahren werden dem-
zufolge als interpolatorische Quadraturformeln bezeichnet. Folglich basieren auch die bekann-
ten Runge-Kutta-Verfahren zur Losung gewohnlicher Differentialgleichungen inhirent auf den
Methoden der Polynominterpolation. Dariiberhinaus stellt die Interpolation eine ganz natiirliche
Vorgehensweise bei der Visualisierung geometrischer Formen oder numerischer Resultate dar,
deren Werte ausschlieBlich an diskreten Stellen vorliegen.

54.1 Polynominterpolation

Wir bezeichnen mit I7,,, n € Ny, den Raum aller Polynome
p(x) = ap + arx + axx® + - - - + a,x" (5.53)

mit reellen Koeffizienten ao, . . ., a,. Entsprechend der in Abschnitt 2.1 getroffenen Definitionen
beinhaltet die Menge T, somit neben dem Nullpolynom alle Polynome vom Grad kleiner oder
gleich n. Hiermit konnen wir das grundlegende Interpolationsproblem formulieren:

Zu gegebenen n + 1 Stiitzpunkten

0, f0). - -+ (n, f) € R?
bei paarweise verschiedenen Stiitzstellen
X0, ..., X, €R (5.54)
ist ein Polynom p € [T, mit
pxr) = fr, k=0,1,...,n
gesucht.

Ein Polynom, das das Interpolationsproblem 16st, wird als Interpolationspolynom, interpolieren-
des Polynom oder Interpolierende bezeichnet.

Entsprechend der obigen Aufgabenstellung miissen wir uns im Folgenden einerseits mit den
theoretischen Fragen zur Existenz und Eindeutigkeit interpolierender Polynome und andererseits
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mit praktischen Fragen zum Berechnungsaufwand, zur Fehlerabschitzung und zur stabilen Aus-

wertung befassen.
Betrachten wir das gemif des Interpolationsproblems (5.54) gesuchte Polynom p € [T, in
der Darstellung (5.53), so erhalten wir fiir die n 4 1 Freiheitsgrade ay, ..., a, € R entsprechend

n + 1 Bedingungen

n

Y aixip=fi, k=0,....n. (5.55)

i=0

Gleichung (5.55) 148t sich tibersichtlich in der Form eines linearen Gleichungssystems

1 X0 x% x(’)’ ao fo
1 x; x? - x" a
C o T = J.Cl (5.56)
U ox, x2 - x) \au fu

=V (xp,...,xn) EMat(n+1;R)

schreiben, wodurch offensichtlich wird, dal das Interpolationsproblem genau dann eindeutig
losbar ist, wenn die Matrix V (xo, ..., x,) reguldr ist, d.h. det V(xp, ..., x,) # O gilt, siche
Burg/Haf/Wille (Lineare Algebra) [7].

Hilfssatz 5.1:
Die Matrix
1 xo x% X
1 x; x12 e xy
Vixo,...,xp)=1|. = © | e Mat(n + 1; R)
1 ox, x2 - x!
ist genau dann regulér, wenn die Stiitzstellen xo, ..., x, € R paarweise verschieden
sind, d.h.
xp #xj fur i #j (5.57)
gilt.
Beweis:
(a) Gilt x; = x; fiir mindestens ein Indexpaar (i, j) miti # j, so ist die i-te Zeile identisch
zur j-ten Zeile und folglich V (xo, ..., x,) nicht regulir.

(b) Ist die Bedingung (5.57) erfiillt, so ergibt sich der Nachweis mittels einer vollstindigen
Induktion iiber n € Ny.
Induktionsanfang: Fiir n = 0 erhalten wir

det V(xg) = det(1) = 1 £ 0.



Induktionsschluff: Unter der Annahme, daf3

det V(xo, ..

-’xn)#o
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fiir ein beliebiges, aber festes n € Ny gilt, erhalten wir

det V(xq, ..., Xn+1)
2 n+1
1 x0 X X
1 x xl2 x?“
= det )
2 n+1
bodnsr Xy 0 60
2 n+1
1 X0 X X
1 n+1
0 x1—x0 x% — x? Xy
— det =% 1 0
2 2 n+1 n+1
0 xp41 — X0 X1 — X0 Xpi1 — Xo
2 2 n+1 n+1
X1 — X0 xX{ — Xx§ xj X,
= det :
2 2 n+1 n+1
Xntl — X0 X4 — X Xnt1 %o
X1 — X0 x1(x1 — xp) x{ (x1 — x0)
= det : : ; (5.58)
Xnt1 — X0 Xn+1(Xn+1 — X0) Xy (Xn41 — X0)
I x - X
= (x1 —x0) ... (Xn41 — Xo) - det
n
1 xn+1 ... xn+l
=(x1 —x0) .. (Xp+1 — x0) -det V(x1, ..., x441) #0,
#0 #0

wobei zur Herleitung der Darstellung (5.58) stets das xo-fache der (j — 1)-ten Spalte
von der j-ten Spalte fiir j = 2, ..., n + 1 abgezogen wurde. (]

Hiermit sind wir nun in der Lage die erste Frage hinsichtlich der Existenz und Eindeutigkeit

positiv zu beantworten.

Satz 5.18:

Das Interpolationsproblem (5.54) besitzt stets eine eindeutig bestimmte Losung.

Beweis:

Aufgrund der im Interpolationsproblem geforderten Eigenschaft paarweise verschiedener Stiitz-

stellen xo, . .

., X, ist die im Gleichungssystem (5.56) auftretende Matrix V (xo, . .

., Xy) laut
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Hilfssatz 5.1 regulir. Das Gleichungssystem (5.56) besitzt folglich fiir jede beliebige rechte Seite

(for .-, fu)T € R"*! eine eindeutig bestimmte Losung (ao, .. ., a,)T € R**!, wodurch mit
n .
pex) =) aix’
i=0
das gesuchte und eindeutig bestimmte Interpolationspolynom p € I, vorliegt. U
Beispiel 5.5:

Die Berechnung des Interpolationspolynoms p € I zu den gegebenen Stiitzpunkten

kK 0 1 2
xx 0 1 3 (5.59)
fi 1 3 2

werden wir nun exemplarisch auf der Basis des dargestellten intuitiven Ansatzes (5.55) durchfiih-
ren. Gemil (5.56) ergibt sich das Gleichungssystem in der Form

1 0 0\ fao 1
1 1 1 al=13]. (5.60)
1 3 9 a 2

Die Losung kann mit dem Gauflschen Algorithmus nach Abschnitt 2.2 ermittelt werden. Wei-
tere klassische und moderne Verfahren zur Losung linearer Gleichungssysteme werden in [36]
vorgestellt. Aus (5.60) ergibt sich

ap 1

17
ai = 3
@ 3

und somit das Interpolationspolynom

17 5
p(x) =ag +ajx + ayx® = 1+€x— gxz’

so daf} beispielsweise fiir die Zwischenstelle x = 2 € [xy, x2]

(2)_10
re =73

gilt.
Dieser zunidchst als sehr einfach und offensichtlich erscheinende Zugang entpuppt sich bei

einer zweiten Betrachtung jedoch als unpraktikabel im Hinblick auf reale Anwendungen. Das
zentrale Problem liegt in der Matrix V (xo, ..., x,) verborgen, dessen transponierte Matrix eine
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sogenannte Vandermonde®-Matrix reprisentiert. Derartige Matrizen V € Mat(n + 1, R) wei-
sen bei wachsender Spaltenzahl n + 1 eine zunehmend groflere Konditionszahl auf, so daf3 mit
(5.56) ein schlecht gestelltes Problem entsteht und auftretende Rundungsfehler zu drastischen
Fehlern bei dem Koeffizientenvektor (aq, ..., an)T fithren konnen, siehe [36]. Das so ermittelte
Polynom erfiillt daher fiir groB3ere Stiitzpunktzahlen die geforderten Interpolationsbedingungen
gemil (5.56) nicht notwendigerweise. Zudem ergibt sich bei praxisrelevanten Anwendungen
hiufig die Situation, daB zusitzliche Stiitzpunkte integriert werden miissen. Bei dem prisen-
tierten Ansatz bedingt jedoch bereits die Hinzunahme eines weiteren Stiitzpunktes die erneute
Berechnung aller Koeffizienten.

Die Giite der weiteren Methoden zur Losung des Interpolationsproblems (5.56) werden wir
auf der Grundlage der folgenden Zielsetzungen beurteilen.

(1) Die Berechnung und Auswertung des Interpolationspolynoms sollen stabil gegeniiber auf-
tretenden Rundungsfehlern sein.

(2) Die nachtrigliche Integration weiterer Stiitzpunkte soll effizient beziiglich des Rechenauf-
wandes sein.

(3) Die Berechnung des Interpolationspolynoms soll O (n?) arithmetische Operationen aufwei-
sen.

(4) Die Auswertung des Interpolationspolynoms an einer beliebigen Stelle soll O(n) Operatio-
nen benotigen.

Hierbei sei bemerkt, daB wir mit O stets das Landau®-Symbol verstehen. In dem vorliegenden
Rahmen ist hierbei die Interpretation f(n) = O(nP) & lim % = const € R ausreichend.
n—o0

Somit bedeutet O(nZ) resp. O(n), daB der Aufwand maximal quadratisch resp. linear mit wach-
sendem n ansteigt. Eine exakte Definition kann [44] entnommen werden. Unter einer arithme-
tischen Operation subsumieren wir zudem Addition, Subtraktion, Multiplikation und Division
gleichermallen. Desweiteren verstehen wir unter der Berechnung des Interpolationspolynoms
die Koeffizientenbestimmung, die fiir eine elementare Darstellung des Polynoms benétigt wird
und nur einmalig fiir jedes Interpolationspolynom durchgefiihrt werden muf.

Lagrangesche Interpolationsformel

Die Lagrange-Interpolation basiert auf der folgenden Idee. Seien Polynome L ; € I, mit

1, j=k

5.61
0, sonst ( )

Li(xg) =0jx =

bekannt, so erhalten wir das gesuchte Interpolationspolynom p € I1, zu (5.56) in der Darstellung

p) =" fiL;(x),
=0

8 Alexandre-Théophile Vandermonde (1735 —1796), franzosischer Musiker, Mathematiker und Chemiker
9 Edmund Georg Hermann Landau (1877 —1921), deutscher Mathematiker
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dennes gilt firk =0,1,...,n

px) =Yy fiLita) =Y fidjx = fr.
j=0 j=0

Die Berechnung des Interpolationspolynoms hat sich somit auf die Ermittlung der Polynome

Lj, j = 0,...,n verschoben. Nach Satz 2.4 besitzt das Polynom L; wegen L; € II, und
., X,. Mit dem Ansatz

Lj(x;) = 1 genau die Nullstellen xo, ..., x;—1, Xj+1, ..
n
i) = (x = x0) .. (= xjo) @ = xjg) e @ =) = [ [ = x0)
s=0
s#j
erhalten wir ¢; € [T, mit
qi(x) =0 fir ke{0,...,n}\{j}.
Aufgrund der Eigenschaft, dafl die Stiitzstellen xo, ..., x, paarweise verschieden sind, gilt zu-
dem
n
qj(x)=]]G;—x) #0.
s=0
S#J
wodurch mit
n
1_[ (x — x5)
40 _ 13 O
j SFE] — X,
Lj(x) = 'J()C‘)Z n = X'—);
LA [—[(xj—xs) s=0 J 4
s=0 S#J
s#J
das gesuchte Polynom vorliegt.
Definition 5.5:
Zu gegebenen n + 1 paarweise verschiedenen Siitzstellen xo, ..., x, € R heiflen die
durch
L x—x
Li(x)= d 5.62
=[] — (5.62)
5=
s#j
fir j =0, ..., n definierten Polynome L ; € I1, Lagrangesche Basispolynome.

Zusammenfassend erhalten wir aus den vorangehenden Uberlegungen in Kombination mit Satz

5.18 die folgende Aussage.
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Satz 5.19:
(Lagrangesche Interpolationsformel) Zu beliebigen n + 1 Stiitzpunkten
(x0, f0)se - »(Xn, fn) € R2 mit paarweise verschiedenen Stiitzstellen xg, ..., x, € R
besitzt die eindeutig bestimmte Losung des Interpolationsproblems (5.56) die
Darstellung
n
pex) =Y fiL;j(x) (5.63)
j=0

mit L; € [T, laut Definition 5.5.

Beispiel 5.6:

Betrachten wir wiederum die in Beispiel 5.5 gemiB (5.59) gegebenen Stiitzpunkte, so erhalten
wir

A% mx)—x) = D@E=3) 1o,
Loty = lj([)xo—xs = Go—xDo—x) _ O—DO-3 3% T
s;_é()

Analog ergeben sich
1 2 1 2
Li(x) = —E(x —3x) und Lr(x)= 6()6 —Xx),

wodurch die Lagrangesche Interpolationsformel (5.63) das Interpolationspolynom

2
pe) =Y fiLj(x)=1-Lo(x) +3- Li(x) +2- La(x)
j=0
17 5,

1(2 4x 4 3) 3(2 3)+1(2 y=1+
=-(x"—4x - —(x"—=3x —x"—x)= —X — =X
3 2 3 6 6

ergibt, das wie erwartet mit der Losung laut Beispiel 5.5 iibereinstimmt.

Bezugnehmend auf die formulierten Zielsetzungen konnen wir zunéchst festhalten, dass die
Darstellung der Interpolierenden p in Form der Lagrangeschen Interpolationsformel keiner Be-
rechnung bedarf, sondern direkt in der Form (5.63) verfiigbar ist. Demzufolge ist die Integration
eines weiteren Stiitzpunktes formal ohne Zusatzaufwand moglich. Liegen die Stiitzstellen in ad-
dquater Entfernung zueinander, so erweist sich auch die Auswertung des Interpolationspolynoms
fiir beliebiges x € R als stabil. Diesen positiven Eigenschaften der Methode steht jedoch ein zu
hoher Aufwand bei der Auswertung des in der Form (5.63) gegebenen Interpolationspolynoms
gegeniiber. Die Auswertung eines Lagrangeschen Basispolynoms (5.62) erfordert 2n Subtraktio-
nen, n Divisionen sowie n — 1 Multiplikationen, womit sich

4n — 1 arithmetische Operationen
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ergeben. Die Auswertung des Interpolationspolynoms (5.63) ergibt folglich n + 1 Multiplikatio-
nen, n Additionen und n + 1 Auswertungen eines Lagrangeschen Basispolynoms, so daf}

m+D+n+@n+1)-@Gn—1)=4n>+51 = O

arithmetische Operationen benétigt werden.

Die Darstellung des Interpolationspolynoms p gemall der Lagrangeschen Interpolationsfor-
mel (5.63) ist folglich fiir eine praktische Umsetzung ungeeignet. Die Darstellung (5.63) ist
jedoch von grundlegender Bedeutung bei der Herleitung interpolatorischer Quadraturformeln,
siehe [49, 44].

Zur Reduzierung des Rechenaufwandes kann zunichst durch die Einfithrung der Werte

n

1 :
vi=[lo—r Ji=0...n
J s
s=0
S#E]

die Ermittlung dieser Gréen vom Bereich der Auswertung in den Bereich der Berechnung ver-
lagert werden, wodurch auch bei wiederholter Auswertung des Interpolationspolynoms gemif3

px) =" fiLix) =Y fiv; [Jr—xo) (5.64)
= =3

diese Koeffizienten nur einmal bestimmt werden miissen. Aus der Gleichung (5.64) wird nun
n
deutlich, daB die Problematik im Rahmen der Auswertung ihre Ursache im Term [] (x — xy)
s=0
ey
findet.

Definieren wir

q(x) =[x —xy),

s=0

so erhalten wir fiir j = 0, ..., n die Darstellung

. (x)

||(x—xs)= a fir x # x; .
X —)Cj

s=0

s#J

Damit 148t sich das Interpolationspolynom in der Form

X —

n
fivi ’
q() Y =L i x ¢ {x0. ... X}
j=0t TN

Jis fir x=x¢, k=0,...,n
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schreiben. Innerhalb der Berechnung des Polynoms ergeben sich hierdurch O(n?) arithmetische
Operationen zur Bestimmung der Koeffizienten yy, . .., y;,. Jede Polynomauswertung bedarf da-
gegen nur noch O(n) arithmetischer Operationen, da das Hilfspolynom ¢ auferhalb der Summe
auftritt. Folglich sind die Zielsetzungen (3) und (4) durch diesen Ansatz erfiillt.

Leider ergibt sich jedoch fiir
n
fivi
q(x) E LI
- X — )Cj
j=0

eine hebbare Singularitit bei jeder Stiitzstelle xx, k = 0, ..., n, wodurch die Stabilitit bei der
Auswertung des Interpolationspolynoms in der Form (5.65) verloren gegangen ist. Fiir Werte
x € R, die sich in unmittelbarer Nihe einer Stiitzstelle befinden, findet formal eine numerisch
instabile Quotientenbildung mit Werten nahe Null statt.

Nevillel’-Schema

Betrachten wir zwei Polynome g, 4 € 1) mit

gxt) = fi, k=0,1; h(xe) — fi, k=12.

A P

fi-

12
fo -

Y

Dann erhalten wir das interpolierende Polynom p € IT; zu den Stiitzpunkten (xo, fo), (x1, f1)
und (x2, f>) durch die Kombination

_ h(x)(x — x0) — g(x)(x —x2)
h X2 — X0 ’

px) (5.66)

Beispiel 5.7:
Fiir das Standardbeispiel gemiB (5.59) stellen

glx)y=142x

10 Eric Harold Neville (1889 —1961), englischer Mathematiker
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und

h(x)=§—zx

die Interpolierenden zu den Stiitzpunkten (xx, fx) mit k = 0,1 respektive k = 1,2 dar. Mit (5.66)
ergibt sich.

MG =30 — g —x (37 3) G -0 - +206-3)

pOx) = X2 — Xo 3—-0
17 5
=1+€X—6.X2.

Bemerkung: Analog kann man die linearen Interpolierenden g und % bestimmen. Betrachten wir
die interpolierenden Polynome g, g1 € I1p zu (xo, fo) respektive (x1, f1), d.h.

g1(x)(x — xp) — go(x)(x — x1)
X1 — X0

go(x) = fo und gi(x)=f1, soliefert g(x)=

das Interpolationspolynom g € I1; zu den Stiitzpunkten (xg, fo) und (x1, f1).
Auf der dargestellten Idee basiert das Neville-Schema. Die rekursive Vorgehensweise wird
durch den folgenden Satz belegt.

Definition 5.6:
Seien j, m € Ny, dann bezeichne

Pj,j+1,...j+m € II,  das zu den Stiitzpunkten  (x;, f;), ..., (Xj+m, fj+m)
gehorende Polynom mit
Pjjtl,jim) = fo, k=j,j+1,....j+m. (5.67)

Im Fall paarweise verschiedener Stiitzstellen x;, ..., x4, ist die Existenz und Ein-
deutigkeit des Polynoms p; j41,..., j+m durch Satz 5.18 belegt.

.....

Satz 5.20:
Seien (xq, fo), ..., (xn, fn) vorgegebene Stiitzpunkte zu paarweise verschiedenen
Stiitzstellen xo, ..., x,, dann gilt mit j,m € Ny, j + m < n fiir die Interpolations-

polynome gemif} Definition 5.6 die Rekursionsformel
pj(x) = fj (5.68)
fir j =0,...,nund

X = X)DPj+1,.jm(X) — (X = Xjpm) Pj..... j+m—1(X)

Xjam = Xj

(5.69)

Djj+1,.j+m(X) =
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fir j=0,...,n—1mitm € Nund j +m <n.

Beweis:

Wir fithren den Nachweis durch eine Induktion iiber m. Fiir m = 0 erhalten wir aus (5.68)
pj €Iy mit p;(x;) = f;

fir j =0,...,n. Erfillen fir ein m € {0, ..., n — 1} die Polynome
Pjj+l,jtm €My mit j=0,....,n—m

die Interpolationsbedingung (5.67), dann erfiillt fiir alle j =0, ...,n — (m + 1) das durch

X =X)Pjst, jrm1(X) = (X = Xjpma1) Pj,..., j4+m (X)

Xj+m+1 — Xj

qx) =

gegebene Polynom wegen pj, . jvm € [Iyund pji1,.. jim+1 € Iy, die Bedingung g € ITy 1.
Desweiteren gelten aufgrund der interpolierenden Eigenschaften der Polynome p; . j+m und
Pj+1,.... j+m+1 die Gleichungen

(Xj =X)Pjst,. jami1 (X)) — (Xj = Xjoms D P, j+m (X))

Xj+m+1 — Xj

q(xj) =

= pj...j+m(Xj) = fj,

GXjtms1) = Pjt1,. jam+1&E jrmt1) = fjtm+1
sowiefirk=j+1,...,j+m

(ke — x) fo — Ok — Xjam+1) fi

Xjtm+1 = Xj

q(xx) = = fr.

Aufgrund der Eindeutigkeit des Interpolationspolynoms erhalten wir somit ¢ = p; j+1,..., j+m+1-

O
Schematisch 146t sich das Neville-Schema in der folgenden Form darstellen:
Jo=po(x)
N
fi=pi(x) —  po1(x)
N N
=pa(x) — 20x) — 12(x
f2=p2 P12 po,1,2(x) (5.70)
Ja—1=pn—1(x) = Pn—2.n—1 (X) e Do....n—1(x)
N N N

fin=pn(x) — Pn—1n(xX) = pp2..n(X)-- pr..a(x) = po,.nx)
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,,,,, n € I1, liegt abschlieend das gesuchte Interpolationspolynom zu den Stiitzpunkten
(x0, f0), - - - (xn, fn) vor. Dabei ist das Neville-Schema aus algorithmischer Sicht zur expliziten
Berechnung des interpolierenden Polynoms nicht geeignet. Vielmehr ergibt das Verfahren eine
direkte Moglichkeit zur Polynomauswertung, wodurch eine Berechnung des Polynoms analog
zur Lagrangeschen Interpolationsformel entfillt.

Beispiel 5.8:

Zur Auswertung des beziiglich der Stiitzpunkte (5.59) festgelegten Interpolationspolynoms p €
IT, an der Stelle x = 2 ergibt sich auf der Basis des Neville-Schemas folgende Vorgehensweise.
Mit

po2)=fo=1, pi2)=fi=3und p2(2) = o =2

folgt
2=x0)p12)—Q2—x)po2) 2-0)-3—2—-1-1
po1(2) = = -5
X1 — X0 1-0
sowie
2 — 2) —(2— 2 5
s = 2TIR@ =@ Rp@) S

X2 — X1 2.

AbschlieBend erhalten wir iibereinstimmend zum Beispiel 5.5

2— 2)—(2— 2 2-0)-2-(2-3)-5 10
p(2)=po,1,2(2)=( x0)p1,2(2) — ( X2)p0,1():( )5 —( ) _10
X2 — X0 3-0 3

Eine nachtrigliche Integration eines weiteren Stiitzpunktes ist durch eine einfache Erweite-
rung um eine zusitzliche Zeile im Neville-Schema (5.70) moglich. Zudem entfillt die Berech-
nung des Polynoms und die Auswertung ist stabil, da Divisionen ausschlieBlich durch Stiitz-
stellendifferenzen vorgenommen werden miissen. Jedoch ergeben sich bei der Auswertung 7
arithmetische Operationen pro Berechnungsvorschrift (5.69), so dafl mit insgesamt

7. Z(n—k)_7 Z (”+1) " _ om?)

arithmetischen Operationen ein im Sinne der Zielsetzung zu hoher Rechenaufwand vorliegt. Den-
noch wurde durch das Neville-Schema eine rekursive Technik vorgestellt, die fiir die Entwick-
lung der folgenden Newtonschen Interpolationsformel von zentraler Bedeutung ist.

Newtonsche Interpolationsformel

Im Abschnitt 2.1.5 haben wir mit dem Horner-Schema eine Mdglichkeit zur effizienten Auswer-
tung von Polynomen kennengelernt. Liegt das Interpolationspolynom in der Form
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p(x) =ap+ai(x —xp) +ax(x —x0)(x —x1) + ... +a,(x —x0) - ... (x —Xx—1)
(5.71)

=ap+ (x —x0) [a1 + x —x) [... [an—1 + & — xp—1)an] .. ]] (5.72)

vor, so ergibt sich bei der Auswertung der Darstellung (5.72) eine n-malige Berechnung der
Kombination

aj 1+ &—xj_1a;, j=1,...,n,

wodurch sich ein Gesamtaufwand von 3n = O(n) arithmetischen Operationen ergibt. Die Be-

rechnung der auftretenden Koeffizienten ay, ..., @, werden wir in Anlehnung an das Neville-
Schema mittels der sogenannten dividierten Differenzen durchfiihren.
Definition 5.7:
Zu gegebenen Stiitzpunkten (xg, fo), ..., (Xn, fr) € R2 mit paarweise verschiedenen
Stiitzstellen x, . . ., x, € R sind die dividierten Differenzen rekursiv durch
flxjl= G.73)
fir j =0,...,nund
f[.X‘+1,...,X'+ ]_f[X',...,X'+ —1]
Flxj, ooy Xjpm] = —2 i ! i (5.74)
Xjtm — Xj
fir j =0,...,n— 1mitm € Nund j + m < n definiert.

Analog zum Neville-Schema ergibt sich folgende graphische Darstellung der Rekursion:

Jo= flxol
Ny
Sfi=flxil  — flxo, x1]
N N
fL=flx] —  flxi,xl —  flxo, x1,x2]
fn—] =f[x,,_1]—> f[xn_z,xn_l] ...................... f[x(),...,xn_l]
N N N
fo=flxn]l — flxn—1, %] = flxa—2, Xn—1, Xl -+ fIx1, ..., x0] — flxo, ..., Xl

(5.75)

Der Aufwand zur Berechnung ergibt sich bei 3 arithmetischen Operationen pro Verkniipfung
(5.74) zu insgesamt %(n + n = O(n?) arithmetischen Operationen. Vorausgesetzt, daf} eine
einfache Korrelation zwischen den dividierten Differenzen und den Koeffizienten der Interpo-
lierenden gemiB (5.71) besteht, dann ergibt sich durch diese Vorgehensweise ein Algorithmus,
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der allen Zielsetzungen geniigt. Die fehlende Eigenschaft werden wir durch den folgenden Satz
nachweisen.

Satz 5.21:
(Newtonsche Interpolationsformel) Zu gegebenen Stiitzpunkten (xo, fo), ..., (xn, fn)
€ R? mit paarweise verschiedenen Stiitzstellen xo, . . ., x, € R besitzt das Interpolati-

onspolynom p € I, die Darstellung

p(-x) = f[x0]+f[x07xl](x_x0)+"'+f[x05 ---,xn](x_-xO)'---'(x_xn—l)v

wobei f[xg,...,x;], j = 0,...,n, die dividierten Differenzen laut Definition 5.7
reprasentieren.

Beweis:
Der Nachweis ergibt sich durch eine vollstindige Induktion iiber n € Ny.

Fiir n = 0 ist die Behauptung wegen f[xo] = fj offensichtlich.

Sei die Aussage fiir n 4+ 1 beliebige Stiitzpunkte mit paarweise verschiedenen Stiitzstellen
giiltig. Fiir n + 2 Stiitzpunkte (xo, fo), ..., (Xp41, fusr1) mitx; # x;,1 # j, ergibt sich mit der
Notation gemif Definition 5.6

Po,...n(x) = flxol+ flxo, x1](x —x0) +...+ flxo, ..., xx]J(x —x0) -...- (x —x,—1) (5.76)

Pl..nt1(x) = flxil+ flxr, xol(e—x)+. o4+ flx, oo X J(e—x) oo (x—x) . (5.77)

Schreiben wir pg, .. ,+1 € I1,41 in der Form

.....

Po,..nr1(x) =ap+ai(x —xp) + ... +app1(x —x0) - ...- (x —x5), (5.78)

Po,..n+1(xj) — po,..n(x;) =0

fiir j =0, ..., n. Sukzessive Nutzung der obigen Gleichung mit ansteigendem Stiitzstellenindex
Jj liefert mit (5.76) und (5.78) die Identititen

ajzf[wa--,xj], JZO,,n

Verbleibt noch der Nachweis fiir den fithrenden Koeffizienten a,,4 1. Fiir das Polynom (5.78) gilt
einerseits

P0,..nt1(x) = ans1x" T + g (x) (5.79)
mit g € I1, und andererseits unter Verwendung des Satzes 5.20, Gleichung (5.69),

(x —x0)p1,...n+1(x) — (x — Xuq1) po,....n(X)
Xn+1 — X0

Po,..n+1(x) =
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(5.76). 5.77) fIx1, - Xnp1] = flxo, ..., xnl
Xn+1 — X0

X4 G (5.80)

mit g € I1,. Ein einfacher Koeffizientenvergleich zwischen (5.79) und (5.80) liefert die Behaup-

tung aufgrund der Basiseigenschaft der Monome my (x) = x*,k =0, ..., n+1 im Polynomraum
Hn+l . 0
Beispiel 5.9:

Auf der Grundlage der Stiitzpunkte laut (5.59) ergibt sich

Slxol = fo=1,
Flxo. x1] = flxil = flxol _ 3 -1 _a.
X1 — X0 1—-0

_flel—flxl _2-3 1

flx1, x2] = il B

sowie
_1_
f[x(),X1,xz] — f[x19-x2] - f[-x(),XI] _ ) 2 _ _§

X2 — X 3—-0 6
Damit ergibt sich das zugehorige Interpolationspolynom p € IT, durch Satz 5.21 in der Form

p(x) = flxol + flxo, x11(x — x0) + fxo, x1, Xx2](x — x0)(x — x1)

=1+2(x—0)—§(x—0)(x—1).

Einfache Umformung ergibt in Ubereinstimmung mit den Beispielen 5.5 und 5.6 die Darstellung

=140 2
X) = —X — =X .
p 6 6

Fehleranalyse

In zahlreichen Anwendungsgebieten, speziell der numerischen Integration, stellt sich die Frage
nach der Giite der Interpolierenden beziiglich der Approximation einer gegebenen Funktion in
Abhingigkeit von der gewdhlten Stiitzstellenverteilung. Dieser Fragestellung werden wir uns
innerhalb des vorliegenden Abschnittes widmen.

Satz 5.22:
Sei f : [a, b] — R eine (n+ 1)-mal stetig differenzierbare Funktion und xo, . .., x, €
[a, b] paarweise verschiedene Stiitzstellen. Fiir das Interpolationspolynom p € IT, mit

pxx) = f(xx), k=0,...,n
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gilt fiir jede Stelle x € [a, b] die Fehlerdarstellung

_ w@®fet)
Jf&x) —pXx) = W (5.81)

mit einer Zwischenstelle £ = £(X) € [a, b] und

w(x) = (x —x0) ... (x —x,) .1

Beweis:
Mit w(xg) = 0 fir k = 0,...,n folgt die Aussage zunichst fiir alle Stiitzstellen. Sei X €
[a, b]\ {xo, ..., x,}, dann definieren wir

k@) = LD PO g (5.82)

w(x)

Die durch

p(x) = f(x) — p(x) — k(X) - w(x) (5.83)

definierte Funktion ¢ : [a,b] — R ist somit (n + 1)-mal stetig differenzierbar und besitzt
mindestens die n + 2 Nullstellen xg, ..., x,, X € [a, b]. Mehrfache Anwendung des Mittelwert-
satzes der Differentialrechnung (Satz 3.7) liefert hieraus die Existenz mindestens einer Nullstelle
£ = £(X) € [a, b] der Funktion "D Da fiir x € [a, b] stets

p" D) =0 und w" V@) =@+ 1)
gelten, ergibt sich aus (5.83) die Darstellung

0= VE@) = fOVED) k@ - (n+ DL
Hiermit gilt

FrDEE))

Ko = (n+1)!

und folglich gemif (5.82) die Behauptung

L wE®IER)
F @) = p() = wEOKED) = = O

11 Die Funktion w wird hdufig als Knotenpolynom bezeichnet.
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Betrachten wir eine beliebig oft differenzierbare Funktion f : [a,b] — R deren Folge von
Ableitungen gleichméBig beschrinkt ist, das heifit ein M > 0 mit

If ™o = sup [fP ) <M

x€la,b]

fiir alle n € N existiert. Dann folgt unter Verwendung von

lo(X)] = [(x —x0) .. - (x —x2)| < (b —a)"™!
die Eigenschaft
Satz 521 w(x) fOTD(Ex)
If =Pl = sup [f(x)— px)| "=
f Pllec xe[ar,)b] f P x€la,b] (I’l + 1)‘
b— n+l1
n !

Unabhingig von der expliziten Wahl der paarweise verschiedenen Stiitzstellen ergibt sich fiir
wachsende Stiitzstellenzahl folglich eine gleichmifige Konvergenz der Folge der Interpolations-
polynome gegen die gegebene Funktion.

Hiufig treten bei wachsender Anzahl der Stiitzstellen jedoch Probleme bei der Approximation
der Funktion f durch die Folge von Interpolationspolynomen auf. Runge'? verdeutlichte diesen
Sachverhalt bereits 1901 sehr eindrucksvoll an der Funktion f : [-5,5] — R,

fx) = (5.84)

1+x2°
Im Fall einer Folge dquidistanter Unterteilungen mit

10k
xx=-5+—, k=0,1,...,neN
n
konnen wir Fig. 5.4 den Verlauf der Runge-Funktion (5.84) und des jeweiligen Interpolations-
polynoms po...., € II, entnehmen. Mit steigender Stiitzstellenzahl n wachsen die Oszillationen
der Interpolierenden py .., derart stark an, daf3 fiir n = 20 die Runge-Funktion im bendtigten
MafBstab als Konstante erscheint. Fiir dieses Beispiel kann sogar

I f = po..nlloo= sup [f(x)—=po,..n(x)—0
xe[-5,5]

fiir n — oo nachgewiesen werden.

Generell kann daher auch bei einer beliebig oft differenzierbaren Funktion durch einfache
Erhohung der Anzahl der Stiitzstellen keine Reduktion des maximalen Fehlers zwischen gegebe-
ner Funktion und zugehorigem Interpolationspolynom erzielt werden. Vielmehr existiert zu jeder
Folge von Unterteilungen mit steigender Stiitzstellenzahl eine stetige Funktion f derart, daB} die
Folge der zugehorigen Interpolationspolynome nicht gleichmifig gegen f konvergiert.

12 Carl David Tolmé Runge (1856 —1927), deutscher Mathematiker
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f f
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Fig. 5.4: Runge-Funktion und zugehdriges Interpolationspolynom pg . ,,n = 2,4,8,20.

54.2 Splineinterpolation

Zur Vermeidung der bei der Polynominterpolation auftretenden Oszillationen verwendet man
sehr haufig Polynome niedrigeren Grades auf Teilintervallen, die an den Intervallgrenzen geeig-
net miteinander verbunden werden. Die resultierende, stiickweise polynomiale Funktion wird
Spline genannt. Wir betrachten im Folgenden stets die Stiitzpunkte

(x0, fo). -+ (. fu) € R?

mit paarweise verschiedenen und aufsteigend geordneten Stiitzstellen
a=xg<x1<...<x,=>b.

Desweiteren sei stets

se: gy xk+1] > R, k=0,...,n—1
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ein Polynom und der zugehorige Spline durch

s:la,b] > R
mit

s(x) =sp(x) fir x € [xk, xk41], k=0,...,n—1
festgelegt. Es gilt somit

s|[Xk’Xk+l] =s; fir k=0,...,n—1.
Splines werden entsprechend dem Grad der Basispolynome sy, klassifiziert. Wir werden uns hin-
sichtlich einer intuitiven Darstellung der generellen Vorgehensweise zunéchst den linearen Spli-
nes zuwenden und anschlieend gingige kubische Splines vorstellen.

Lineare Splines

Lineare Splines entstehen durch lineare Verbindungen zwischen den Datenpunkten (xx, fi),
(Xk+1, fx41) firk =0, ..., n — 1, siche Abbildung 5.5.

1

Fig. 5.5: Linearer Spline
Wir fordern dementsprechend fiir den linearen Spline die Eigenschaften

sxp)=fi, k=0,...,n
und

s| ell;, k=0,...,n—1.

(X5 Xiet-1]

Auf jedem Teilintervall [xg, x;41] verwenden wir den Ansatz

sk(x) = aox +ark(x — xg) .

Die Koeffizienten ag k., a1 x € R ergeben sich aus den Interpolationsbedingungen

se(xe) = fr und  sg (1) = frtt
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u
ao,k = sk(xx) = fi
sowie
g = sk(k+1) —aok  ferr — Sk
' Xg+1 — Xk Xkpl — Xk
wodurch fiir k =0, ..., n — 1 der lineare Spline die Form
Sier1 — fx
s x)=8x)=fkr+ —mmKx —x
‘[xk,xw]( ) =sk(x) = fk Yot _Xk( k)
besitzt.

Kubische Splines

Der lineare Spline ist offensichtlich an den Stiitzstellen nicht notwendigerweise differenzierbar.
Um einen stetig differenzierbaren Spline zu erhalten, muB daher noch je eine Ubergangsbedin-
gung fiir die Ableitung an den inneren Stiitzstellen x1, ..., x,—| gefordert werden. Damit ist es
erforderlich, daf3 jedes Polynom zusétzliche Freiheitsgrade erhilt. Ganz kanonisch wiirde somit
zunichst die Betrachtung quadratischer Polynome mit s; € IT, naheliegen. Quadratische Splines
weisen jedoch oftmals ein stark oszillierendes Verhalten auf, das auf Spriinge im Kriimmungs-
verhalten an den inneren Stiitzstellen zuriickzufiihren ist. Der hiermit teilweise einhergehende
Vorzeichenwechsel bei der zweiten Ableitung liefert eine Wendepunktstruktur an den Stiitzstel-
len. Innerhalb praktischer Anwendungen werden demzufolge iiblicherweise kubische Splines
genutzt, bei denen gefordert wird, daf3 der resultierende Spline zweimal stetig differenzierbar
ist. Neben der interpolierenden Eigenschaft des Splines fordern wir an den inneren Stiitzstellen
xr, k =1,...,n — 1, die Ubereinstimmung der ersten und zweiten Ableitung der zugehdrigen
Polynome s;_1 und s. Betrachten wir den Ansatz

sk(x) = aok + ar g (x — xp) + azp(x — x0)* +azp(x —xp)? (5.85)

so bendtigen wir vier Bedingungen zur Festlegung der Koeffizienten. Fiir die Teilpolynome sj
mitk = 1,...,n — 1 ergeben sich aufgrund der obigen Zielsetzung die folgenden Forderungen:

Zwei Interpolationsbedingungen

sk(xk) = Jfi, Sk(Xk+1) = frr1 - (5.86)
Zwei Steigungsbedingungen

sp () = 85— (x) St (k1) = Spg (ekg1) - (5.87)
Zwei Kriimmungsbedingungen

sk (o) = s3_y () Sk (k1) = s34y (k) - (5.88)
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Die Darstellung erweckt zunéchst den Eindruck, da3 das Interpolationsproblem iiberbestimmt
ist, da mit (5.86)—(5.88) insgesamt sechs Bedingungen zur Bestimmung der vier Koeffizienten
vorliegen. Da die Forderungen (5.87) und (5.88) jeweils doppelt auftreten, werden wir durch die
folgende Sichtweise erkennen, dafl das Problem sogar formal unterbestimmt ist und zwei zusitz-
liche Bedingungen an den Randpunkten xo = a und x, = b zur SchlieBung bendtigt werden.
Zur Kldrung dieses Sachverhaltes betrachten wir die vorliegenden Bedingungen pro Stiitzstelle.
Fiir die inneren Stiitzstellen xz, k = 1, ..., n — 1 liegen zwei Interpolationsbedingungen

sk—1(xk) = fie s sk(xk) = fr, (5.89)
eine Steigungsbedingung

Se—1 (k) = 53 (xk) (5.90)
und eine Kriimmungsbedingung

sp_ 1 (xx) = sy (x) (5.91)
vor. An den Réndern xo = a und x,, = b ergibt sich dagegen nur eine Interpolationsbedingung

so(xo) = fo respektive s,—1(xy) = fi -
Die n + 1 Stiitzstellen xo, . . ., x, liefern folglich 4(n — 1) + 2 = 4n — 2 Bedingungen fiir 4n
Koeffizienten der n kubischen Polynome s;, k = 0, ..., n—1. In Fig. 5.6 stellen die eingekreisten

Ziffern die Bedingungen an der jeweiligen Stiitzstelle dar, wihrend die untere Zahlenfolge die
resultierenden Forderungen pro Polynom verdeutlichen.

o ® © 6 6 0
b

AT S

3 4 4 4 3

Fig. 5.6: Quantifizierung der Splinebedingungen

Durch die gewihlte graphische Darstellung wird die Notwendigkeit je einer zusétzlichen
Randbedingung ersichtlich. Somit ergeben sich unterschiedliche kubische Splines, die in Ab-
hiingigkeit von der betrachteten Randbedingung klassifiziert werden. Wir werden uns auf zwei
gingige Typen konzentrieren. Neben dem durch die Randbedingungen

so(x0) =0 =1s,_, (xn) (5.92)

definierten natiirlichen Spline betrachten wir den volistindigen Spline der auf den Randbedin-
gungen

so(x0) = f'(x0) und s, (xn) = f'(xn) (5.93)
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beruht, wobei f die zu approximierende Funktion représentiert.

Zur Berechnung der Koeffizienten bezeichnen wir neben dem bekannten Funktionswert fi
mit f; die noch unbekannte Steigung des Splines an der Stiitzstelle x;. Die Beriicksichtigung der
unterschiedlichen Randbedingungen findet ausschlieBlich bei der Bestimmung der Steigungen
fk/ statt, wodurch die folgenden Berechnungsvorschriften fiir die Koeffizienten agy, ..., a3,
k=0,...,n allgemeingiiltigen Charakter besitzen.

Aus dem Ansatz (5.85) konnen wir mit der Interpolationsbedingung (5.86) direkt

fie = sk () = ao + ank (ox — xi) + ao i (oe — x1)? + az g (i — x0)° = aok (5.94)
fir k = 0,...,n — 1 folgern. Desweiteren ergibt sich unter Verwendung der Steigung f; die
Gleichung

fi = k() = ar g + a2, (xx — xx) + 3az g (xx — x0)* = ark (5.95)
fir k = 0,...,n — 1. Nutzen wir zudem die Schrittweitenbezeichnung Ax;y = xg41 — Xk,
k=0,...,n—1,soerhalten wir aus s (xx41) = fi+1 und s; (xp41) = fk’Jrl die Gleichungen

2 3
Jer1 = ao + ar g Axp + az Axy + a3 Ax

2
fk/-&-l =ay +2a  Axy + 3az  Axj, .

Einsetzung von (5.94) und (5.95) liefert das lineare Gleichungssystem

Axp A (a2 Sewr = fio = fiAxk P |
= s =VU,...,n— 1.
2Axy 3Ax,§ as i f]é_H - fk/

Elementare Auflosung der Gleichungen ergibt fiir k = 0, ..., n—1 die Bestimmungsgleichungen
3fke1 = 3fk — 2f{Axk — fi Axk
ary = - L (5.96)
Axj
und

2fk = 2fier1 + [LAX + [l Axk

5.97
e (5.97)

as g =
Bei Kenntnis der Steigungen fk’, k=0,...,n, konnen mit (5.94)—(5.97) die Koeffizienten aller
Polynome und folglich der gesamte Spline ermittelt werden.

Die Berechnung der Steigungen basiert fiir die inneren Stiitzstellen auf der Kriimmungsbedin-
gung (5.91).

Berticksichtigen wir

sy (x) = 2a ; + 6a3 j(x — xi),
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dann 146t sich (5.91) in der Form
2a3 j—1 + 6a3 j—1 Axp—1 = 2az &

fir k = 1,...,n — 1 schreiben. Einsetzen der Koeffizientengleichungen (5.96) und (5.97) in
obige Darstellung ergibt

23fk =3 fk—1 = 2f{_1 Axk—1 — [{Axk-1 N 62fk71 =2k + fi_ 1 Axk—1 + fAxk—
Ax,%q Axlgfl

23fk+1 =3fk = 2fi Axk — fi 1 Axk

, k=1,...,n—1.
Ax,%

Multiplikation mit Ax; Axx—1/2 und anschlieBendes Umordnen liefert

Axy fi_y + 2(Axk + Ax—1) f{ + Axi—1 fi g

(5.98)
(frer1 = A=t | (i — fie1) Axk
Axy AXxp—q
fir k = 1,...,n — 1. Wir erhalten hiermit wie erwartet das unterbestimmte Gleichungssystem
bestehend aus n — 1 Gleichungen fiir die n + 1 unbekannten Steigungen fj, ..., f,. Das System

wird nun durch Hinzunahme der zusitzlichen Randbedingungen geschlossen. Fiir die natiirlichen
Randbedingungen ergibt sich

VA
0 =s55(x0) = 2a2,0
sowie
1
0=s,_1(xn) =2a2,-1+6a3,-14x,-1,

wodurch sich wiederum mit (5.96) und (5.97) die Gleichungen

f1—fo
2 £ =3 5.99
fot fi Ao (5.99)
und
fn - fn—l
! 2f =32 5.100
fn—l + fn Axn_l ( )

ergeben. Zusammenfassend ergibt sich mit (5.98) — (5.100) das lineare Gleichungssystem

fo
Al i | =b (5.101)

5
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mit
2 1
Ax; 2(Ax; + Axo) Axo
Axp 2(Axy + Axy) Axy
A= . . . € Mat(n+1, R)
Axp—i 2(Axp—1 + Axp—2) Axp—2
1 2
und
S1—fe
3iich
(o= f)Ax (1=foAx
2 (tacfpin’ timggan)
b= : e R,
(fn_fnf )Axnf (fnf _fnf )Axnf
3( Axnl,1 2 + : Axnfz 1)
Axn—1

Im Kontext des vollstindigen Splines liegen durch die Randbedingungen (5.93) direkt die Stei-
gungen an den Rindern in der Form

fo=f'(x0) und f, = f"(xn)

vor. Das resultierende Gleichungssystem weist wiederum die Form (5.101) auf, wobei sich die
Matrix A € Mat(n + 1, R) in der Form

1 0
Axy 2(Axy + Axp) AXxg
Axp 2(Axy + Axy) Axy
A=
Axp—1 2(Axp—1 + Axp2) Axp2
0 1
schreibt und die rechte Seite durch
f'(x0)
(fo—/1Aa (f1i—=fo)A
»(dsfpen | sy

3 ((fn_fnfl)Axn72 + (fnfl_fn72)Axn71)

Axp—1 Axp—2
fCen)

gegeben ist.
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Beispiel 5.10:
Anhand der Runge-Funktion f : [-5,5] — R,

T =1

hatten wir bei dquidistanter Stiitzstellenverteilung das Oszillationsverhalten interpolierender Po-
lynome studiert. Bezogen auf die Stiitzstellen

xx=-5+—, k=0,1,....,neN
n

sind in den Abbildungen 5.7 und 5.8 neben der Runge-Funktion der natiirliche beziehungsweise
der vollstiandige Spline fiir n = 4 respektive n = 20 dargestellt.

— Runge-Funktion
- - Natirlicher Spline fiirn = 4

— Runge-Funktion

- - Vollstandiger Spline fiirn = 4

‘s 0 5 5 0 5
X X

Fig. 5.7: Runge-Funktion und natiirlicher Spline (links) respektive vollstindiger Spline (rechts) fiir n = 4.

Verglichen zur Polynominterpolation (Fig. 5.4) weisen beide Splines eine deutliche Verbesse-
rung bei der Approximation der Runge-Funktion auf und zeigen den gewiinschten, weitgehend
oszillationsfreien Verlauf. Zudem erkennt man keine Unterschiede bei den Ergebnissen der bei-
den Spline-Typen. Die Ursache liegt im Wesentlichen darin begriindet, daf3 mit den natiirlichen
Randbedingungen (5.92) wegen

F(=5) = £"(5) ~ 0.008

eine gute Approximation der exakten Kriimmungswerte erzielt wurde. Schrinken wir dagegen
das Definitionsgebiet der Runge-Funktion auf das Intervall [0,5] ein, so erhalten wir bei der
Stiitzstellenwahl

_ 5k

xx=—, k=0,1,...neN
n

fiir n = 4 die in Fig. 5.9 dargestellten Verldufe.
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— Runge-Funktion
- = Natrlicher Spline fiir n = 20

-5 0 5 -5 0 5
X X

— Runge-Funktion
- - Vollstandiger Spline fir n = 20

Fig. 5.8: Runge-Funktion und natiirlicher Spline (links) respektive vollstandiger Spline (rechts) fiirn =
20.

— Runge-Funktion — Runge-Funktion
1 - - Natrlicher Spline firn = 4 1 - - Volistandiger Spline fiir n = 4

Fig. 5.9: Runge-Funktion auf [0,5] und natiirlicher Spline (links) respektive vollstidndiger Spline (rechts)
fiir n = 4.

Aufgrund der groBen Diskrepanz zwischen dem exakten Kriimmungswert f”(0) = —2 und
der natiirlichen Randbedingung ergibt sich eine erhohte Abweichung beim natiirlichen Spline.
Dagegen zeigt der vollstindige Spline am linken Rand ein signifikant besseres Approximations-
verhalten. Jedoch muB an dieser Stelle angemerkt werden, dafl der vollstindige Spline im Gegen-
satz zum natiirlichen Spline zusétzliche Informationen der zugrundeliegenden Funktion benotigt,
die in realen Anwendungen hiufig nicht verfiigbar sind.

Bei der Herleitung der Splines sind wir stets von einer speziellen Form der Polynome s; aus-
gegangen. Naheliegend erscheint zunéchst die Verwendung der klassischen Darstellung geméf

sk(x) = aok + a1 gx + agpx* + az px’
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zu sein. Das resultierende Gleichungssystem zur Berechnung der Koeffizienten zeigt hierbei je-
doch eine unstrukturierte Form und die Hinzunahme weiterer Stiitzstellen erweist sich im Ge-
gensatz zur vorgestellten Methode als aufwendig und programmiertechnisch unvorteilhaft. Eine
gelungene Darstellung dieses Ansatzes findet man in [51].

Die positiven Eigenschaften kubischer Splines hinsichtlich des Oszillationsverhaltens lassen
sich nicht nur experimentell beobachten, sondern auch mathematisch beweisen. So minimiert der
vollstindige wie auch der natiirliche Spline die Norm

b

T / £ dx

a

iiber die Menge aller zweimal stetig differenzierbaren Funktionen g : [a, b] — R mit g(xx) = fi
firk =0, ..., n. Folglich sind die vorgestellten beiden Typen kubischer Splines in diesem Sinne
optimal im Kriimmungsverhalten und weisen daher minimale Oszillationen auf. Einen Nachweis
dieser Minimum-Norm-Eigenschaft wird beispielsweise in [44, 51] geliefert.

5.5 Fourierreihen

In Physik und Technik spielen periodische Vorginge eine grofle Rolle. In Form von mechani-
schen oder elektrischen Schwingungen) von Wellen, Drehbewegungen u.a. treten sie vielfach
auf. Zur Beschreibung werden periodische Funktionen benutzt, unter denen die Sinus- und Cosi-
nusfunktionen eine fundamentale Rolle spielen. Das Darstellen beliebiger periodischer Funktio-
nen durch Reihen von Cosinus- und Sinusfunktionen ist dabei die mathematische Grundaufgabe.
Reihen dieser Art nennt man Fourier-Reihen zu Ehren von Jean Baptiste Joseph Fourier (1768 —
1830), der den entscheidenden Losungsansatz fand.

5.5.1 Periodische Funktionen

Unter einer periodischen Funktion verstehen wir eine Funktion f auf R, die die Gleichung
f&x+L)= f(x) (5.102)

fiir alle x € R erfiillt. Dabei ist L eine positive Konstante. L heifit die Periode von f. Man nennt
f auch kurz eine L-periodische Funktion.

Teilt man die reelle Achse in Intervalle der Linge L ein, etwa in Intervalle [kL, (k + 1)L]
(k ganzzahlig), so ist der Graph von f auf allen diesen Intervallen gleich, von seitlicher Ver-
schiebung abgesehen (s. Fig. 5.10). Die Funktionen sin x und cos x sind wichtige Beispiele fiir
periodische Funktionen. Sie haben die Periode 2. Die Funktionen

sin(nx) , cos(nx) firneN

haben die Perioden 2 /n. Daraus folgt aber, daf sie ebenfalls die Periode 27 haben.
Zusammen mit der Funktion ¢(x) = 1 bilden sin(nx) und cos(nx) (n € N) das trigonometri-
sche Funktionensystem.



416 5 Folgen und Reihen von Funktionen

Wir merken an, dal man jede periodische Funktion f, mit Periode L > O, leicht in eine
Funktion mit der Periode 27 verwandeln kann. Man hat nur die Substitution x = 7 - L/(27)
vorzunehmen, also

fon L
f@:=f (IE>

zu setzen. Die so definierte Funktion f hat die Periode 2. Es bedeutet daher keinen Verlust an
Allgemeinheit, wenn wir uns nur mit 27 -periodischen Funktionen beschiftigen.

y
LI ‘ov ™ 4 "

Fig. 5.10: Periodische Funktion, mit Periode L

5.5.2 Trigonometrische Reihen, Fourier-Koeffizienten

Es sei f : R — R eine beliebige 2w -periodische Funktion. Wir stellen uns die Aufgabe, sie
durch eine Reihe der folgenden Form darzustellen:
a o
@) =3+ (ancos(nx) + by sin(nx)) . 12 (5.103)
2 n=1
Eine Reihe dieser Gestalt heillt trigonometrische Reihe. Ist es moglich, f so darzustellen? Und
wie kann man gegebenenfalls die Koeffizienten ao, a1, a, ..., b1, ba, ... berechnen? Zur Lo-
sungsfindung wollen wir zunéchst annehmen, dafl eine Reihendarstellung (5.103) tatsdchlich
existiert, mehr noch, da} die Reihe in (5.103) gleichméBig gegen f (x) konvergiert.
Man geht nun so vor: Beide Seiten der Gleichung (5.103) werden mit sin(kx) multipliziert

(wobei k € N ist), und anschlieBend wird iiber [—r, ] integriert. Rechts darf gliedweise inte-
griert werden — wegen der gleichméBigen Konvergenz. Also gilt

/ £(x) sin(kx) dx = % : / sin(kx) dx+
+ Z a / cos(nx) sin(kx) dx + b, / sin(nx) sin(kx) dx
n=1 -7 -7

13 Das ag/2 statt aq in der Reihe geschrieben wird, hat nur mit der Eleganz spéterer Formeln zu tun.
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Nun kommen die Orthogonalitdtsrelationen ins Bild, s. (4.37), Abschn. 4.2.2. Danach verschwin-
s

den auf der rechten Seite alle Integrale bis auf eines, ndmlich das Integral / sin(nx) sin(kx) dx
-7

mit n = k. Sein Wert ist 7. Also gilt
s g
f £ (x) sin(kx) dx = by [ sin?(kx) dx = by . (5.104)
—TT —T

Multipliziert man (5.103) entsprechend mit cos(kx) und integriert tiber [—m, 7], so erhilt man
aus den Orthogonalititsrelationen

T
. ax / cos>(kx)dx = agmr, fiirk € N,
fx)costkx)dx =4 (5.105)
T
- %Ofldxzaorr, fiir k = 0.
—71T

Lost man die Gleichungen (5.104), (5.105) nach by bzw. a; auf und schreibt n statt k, so erhilt
man

dn

T
1
— / f(x)cos(nx)dx, firn=20,1,2,...,
b4
- (5.106)

b
1
by, —/f(x)sin(nx)dx, firn =1,2,....
b4
—TT

Damit konnen sédmtliche Koeffizienten berechnet werden. Diese Methode der Koeffizientenbe-
rechnung ist Fouriers geniale Entdeckung. Die Ausdriicke in (5.106) heilen daher Fourier-Ko-
effizienten.

Wir hatten vorausgesetzt, da} f eine gleichmiBig konvergente Entwicklung in eine trigono-
metrische Reihe besitzt. Dies allerdings weifl man a priori nicht.

Immerhin kann man aber fiir jede integrierbare Funktion f auf [—m, ] die Fourierkoeffizi-
enten nach (5.106) ermitteln und damit formal die Reihe

|:%0 + Z(an cos(nx) + by, sin(nx))i|

n=1

bilden. Sie heifit Fourier-Reihe von f. Dabei entsteht das Hauptproblem: Fiir welche Funktionen
f konvergiert die Fourierreihe gegen f?

Eine fiir Technik und Naturwissenschaft befriedigende Antwort lautet: Fiir alle »stiickweise
glatten« Funktionen! Wir wollen dies prizisieren:
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Definition 5.8:
Eine Funktion f, definiert auf einem Intervall I, heil3it stiickweise glatt, wenn folgen-
des gilt:
(a) f iststetig differenzierbar, ausgenommen auf einer Menge von Punkten, die sich
nirgends hiufen.
(b) In diesen Ausnahmepunkten x; existieren die rechts- und linksseitigen Grenzwer-
te f(x;+) und f(x;—), wie auch f’(x;+) und f’(x;—). Mit dem Mittelwertsatz
der Differentialrechnung folgt dann

f&i+h) — fxi+)

I — 1
floi) = lim,

h
Fi—) = lim fxi+h) — fxi—) (5.107)
LT o 7 .

(c) In allen Punkten x; ist der Funktionswert f(x;) das arithmetische Mittel der ein-
seitigen Grenzwerte:

1
f&x) = E(f(xnt) + f(xi—)). (5.108)

Die letzte Forderung ist schon stark auf Fourierreihen zugeschnitten, die in Sprungstellen
tatsdchlich gegen diese Mittelwerte konvergieren. Es gilt ndmlich der

Satz 5.23:
(Konvergenz von Fourierreihen) Ist f : R — R eine 27 -periodische stiickweise glatte
Funktion, so konvergiert ihre Fourierreihe punktweise gegen f. In jedem kompakten
Intervall ohne Unstetigkeitsstellen von f ist die Konvergenz sogar gleichméBig.

Den Beweis verschieben wir auf Abschn. 5.5.4.

5.5.3 Beispiele fiir Fourierreihen

Zunichst zwei Vorbemerkungen:

(I) Ist f eine L-periodische integrierbare Funktion auf R, so gilt fiir jedes a € R,

L+a

L
/f(x)dx: / f(x)dx fiir jedes a € R, (5.109)
0 a

Die Integration iiber jedes Intervall der Linge L liefert also stets den gleichen Wert! Man
erkennt das sofort durch die Aufspaltung der Integrale in

L a L+a L+a L+a

/=/+j, /:/L+L/, nebst O/af(x)dszff(x)dx.

0 0 a a
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(II) Eine Funktion F, definiert auf einem symmetrischen Intervall 7 um O heif3t eine

gerade Funktion, falls F(—x) = F(x),
ungerade Funktion, falls F(—x)=—F(x)

fiir alle x € I gilt. Integriert man F iiber ein symmetrisches Intervall um 0, das wir 0.B.d.A.
als [—m, ] annehmen wollen, so gilt

b g

f F(x)dx = 2/ F(x)dx, falls F gerade,
- 0

P (5.110)
/ F(x)dx =0, falls F ungerade.

-7

Wir wenden diese einfache Uberlegung auf die Berechnung der Fourierkoeffizienten einer in-
tegrierbaren Funktion f : [—m, 7] — R an: Ist f gerade, so ist f(x)cos(nx) gerade und
f(x) sin(nx) ungerade. Ist dagegen f ungerade, so ist f(x) cos(nx) ungerade und f(x) sin(nx)
gerade. Damit folgt fiir die Fourierkoeffizienten von f aus (5.106) und (5.110):

T
ap = E / f(x)cos(nx)dx, b, =0, falls f gerade, (5.111)
" 0
b/
b, = % / f(x)sin(nx)dx, a, =0, falls f ungerade. (5.112)
" 0
Folgerung 5.3:

Die Fourierreihe einer ungeraden Funktion ist eine reine Sinusreihe f einer geraden
Funktion eine Cosinusreihe (einschlielich konstantem Glied).

Beispiel 5.11:
(Sdgezahnkurve) Die Funktion
ax, fir—7 <x<m, (a>0)
fx) = ,
0, firx =m

denken wir uns zu einer 2 -periodischen Funktion auf R erweitert (s. Fig. 5.11). f ist ungerade,
alsoista, = Ofiirallen =0, 1, 2, .... Die b, errechnet man mit (5.112)

T T
2a _ 2a cos(nx) 1™ 1 2a(—1)"t!
b, = — [ xsin(nx)dx = — —X + — | cos(nx)dx | = ———
b4 b/ o N n
0

n
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Damit folgt die Reihendarstellung der »Sdgezahnkurve«:

AY

|
| I | I
| / | /‘l %
4 + } —
—3m =T, 0 | 3m
| I | |
|

Fig. 5.11: Ségezahnkurve

sinx  sin(2x)  sin(3x)

f(x)=2a< —

Setzt man hier a = 1 und betrachtet nur x-Werte aus (—, ), so gewinnt man die Formel

1 2 3

2 (sinx sin(2x) n sin(3x) B +> . (5.113)

Es ist schon merkwiirdig, daB sich die wildbewegten Sinusfunktionen rechts zu einer so einfachen
Funktion, wie sie links steht, zusammenfiigen! Fiir x = 0 erhilt man die bekannte Leibnizsche
Reihe

T _, 1+1 1+
4 35 7

Beispiel 5.12:
(Rechteckfunktion): Wir betrachten auf [—s, 7] die Funktion

a, fir0 <x <m,
he(x) = 0, firx=0,x=m,x=-m, a#0
—a, fir—7 <x <O,

und denken sie uns zu einer 2 -periodischen Funktion f auf ganz R fortgesetzt (s. Fig. 5.12).
Die Funktion ist ungerade. Ihre Fourierreihe besteht also nur aus Sinusgliedern. Fiir die Fourier-
koeffizienten dieser Glieder errechnet man mit (5.112):

2 [ 2a [ cos(nx)]™ 0, wenn n gerade,
bn = —/a . sin(nx) dx = — |:— i| — 4a
i T no o —,  wenn n ungerade.
0 nw

f ist zweifellos stiickweise glatt. Damit folgt die Konvergenz der Fourierreihe gegen f, also
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Ay
r— 4 [ I
| | I |
| [ | | X
: + -+- i »
| —2r -7 0 T 2m,
| | | |
| EENETPeTS———— —-a — ]

Fig. 5.12: Rechteckfunktion

f&x)=— 7 3 5 (5.114)

4a (sinx  sin(3x)  sin(5x)

S F +...).
b4
Setzt man hier x = /2 ein und multipliziert mit 7 /(4a), so erhélt man wieder die Leibnizsche
Reihe.

Bemerkung: Die Sigezahnkurve beschreibt beim Fernseher die waagerechte Bewegung des
Lichtpunktes iiber den Bildschirm. x ist dabei die Zeit und y die waagerechte Auslenkung des
Bildpunktes. Da man Sinusschwingungen durch elektrische Schwingkreise erzeugen kann und
diese iiberdies iiberlagern kann, 148t sich die Bewegung des Lichtpunktes durch die Fourierreihe
der Sdgezahnkurve gewinnen. Entsprechend lassen sich Rechteckimpulse wie in Beisp. 5.12 iiber
eine Realisierung der Fourierreihe durch Schwingkreise erzeugen.

Fig. 5.13 zeigt die ersten drei Partialsummen der Fourierreihe der Sigezahnkurve bzw. der
Rechteckfunktion. Physikalisch handelt es sich hier um die Uberlagerung von Sinusschwingun-
gen.

A 4 Glieder
3 Glieder
2 Glieder

9 XD e

1 Glied

¥ =

Y=
|

Fig. 5.13: Partialsummen zu Sdgezahn- und Rechteckfunktion

In den folgenden Fourierreihen ergeben sich, wie im Vorausgegangenen, die Koeffizienten
durch einfache Integrationen. Der Leser iiberpriife die folgenden Reihen, wobei bei der Berech-
nung der Fourierkoeffizienten partielle Integration und Substitution vordringlich angewendet wer-
den.
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Beispiel 5.13:
5 2 4 cosx  cos(2x) + cos(3x) " cl 1 (5.115)
xXt=—=— — —4+...), xe[-mm]. .
3 12 22 32

Durch Einsetzen von x = 7 bzw. x = 0 erhélt man die merkwiirdigen Formeln

1 0 1)n+1
=> — Z (5.116)
n=1 n=1
Beispiel 5.14:
4 3 5
il — % 2 (cosx + C°S3(2x) + COSS(Zx) + ) . xel-mxl. (5.117)
Hier liefert x = 0 die Reihe 72/8 = 1 + 1/32 +1/5% +
Beispiel 5.15:
0
2a
cosh(ax) = — smh(an) < Z cos(kx)) , X€l[-mm],a#0,
B (5.118)
inhax) = — 2 sinhtam) Y S Ginen), x € [om w20 (5.119)
sinh(ax) = —— sinh(amw ———sin(kx), x€[-m 7], a . .
i = a? +k?
Beispiel 5.16:
Die Fourierreihe von e** ergibt sich aus
e = cosh(ax) + sinh(ax). (5.120)

Die linksstehenden Funktionen, hier nur fiir x € (—m, ) beschrieben, denke man sich 27-
periodisch auf ganz R erweitert, wobei in Sprungstellen, wie {iblich, das arithmetische Mittel
der einseitigen Grenzwerte genommen wird. Die Fourierreihen auf den rechten Seiten stellen
dann diese periodischen Funktionen dar.

Beispiel 5.17:
Fiir x € (0,27) gilt

o0 .
ul . oy Sm;’:’x) . (s. Fig. 5.14a). (5.121)

m=1
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Man denke sich diese Funktion 2 -periodisch auf R erweitert, s. Fig. 5.14a.

Beispiel 5.18:
Fiir alle x € R gilt (vgl. Fig. 5.14b)
411 > cos(2mx)
i =—|=-= — . 5.122
|stn x| n[z Z4m2—l:| 6-122)
m=1
y

y=|sinx|

Fig. 5.14: Sidgezahnkurve »riickwirts « und Sinus-Betrags-Funktion
Alternierende Funktionen: Eine 27 -periodische Funktion nennen wir alternierend, wenn
fx)=—f(x+m) firallex e R

erfiillt ist. Fig. 5.15 zeigt ein Beispiel. Bei der Berechnung der Fourierkoeffizienten einer inte-

b4 T 0 bid
grierbaren alternierenden Funktion zerlegt man das Integral / in / = / + / , ersetzt im
-7 -7 -7 0

0
Integral / den Ausdruck f(x) durch — f(x 4+ 7) und substituiert t = x + 7.

-
So erhilt man

ayy =0 firalle k=0,1,2,...,

(5.123)
by =0 firalle k=1,2,3,...,
2 T
Wp41 = —/f(x)cos((Zk + Dx)dx, £=0,1,2,...,
T
0
, . (5.124)
b4+ = — / f(x)sin((2k+ Dx)dx, k£=0,1,2,....
T
0
Folgerung 5.4:

Eine alternierende Funktion besitzt nur Fourierkoeffizienten zu ungeraden Indizes.
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Ay
| I
| |
| | | ! ’f__
|- 21 l—n 0 (¥ 1 ' 2n
| |
/-\ ﬁ

Fig. 5.15: Alternierende Funktion

Beispiel 5.19:

Die Funktion, die in Fig. 5.16 skizziert ist, lautet f(x) = x in (0, 7) und ist im tibrigen al-
ternierend sowie 2m-periodisch und stiickweise glatt. Thre Fourierreihe ermittelt man mit den
Gleichungen (5.123) und (5.124):

i cos((2k + 1)x) i sin((2k + 1)x)

4
FO==22 kv 2k + 1)

k=0

Man erhélt die Reihe iibrigens auch leicht aus den Fourierreihen von |x| sowie der Rechteckfunk-
tion /1, wenn man beachtet, da f(x) = |x| — w/2 4+ whi(x)/2 in [—m, ] erfiillt ist.

Ay
y=Xx

Y >

—2n -n 0 s 2n

Fig. 5.16: Zu Beispiel 5.19

Sind alternierende Funktionen iiberdies gerade oder ungerade, so konnen wir die untenstehen-
de Folgerung ziehen, deren einfacher Beweis dem Leser iiberlassen bleibt.

Folgerung 5.5:

Es sei f 2m-periodisch und integrierbar. Damit gilt fiir ihre Fourierkoeffizienten:

/2
4
f gerade alternierend = a4+ = — / f(x)cos((2k + 1)x) dx , (5.125)
T



5.5 Fourierreihen 425

/2
4
f ungerade alternierend = by = — / f(x)sin((2k + 1)x) dx . (5.126)
/4
0

Alle iibrigen Fourierkoeffizienten sind Null.

Beispiel 5.20:

Der in Fig. 5.17 dargestellte periodische Spannungsverlauf u(x) soll in eine Fourierreihe ent-

wickelt werden. u ist eine ungerade alternierende Funktion. Es kommen in ihrer Fourierreihe
/2

also nur Koeffizienten by4;1 vor, die man nach (5.126) berechnet. Dabei wird das Integral /

0
/3 7w/2
zerlegt in / + /, also
0 /3
/3 /2
4 3ug . .
byy1 = — —sin((2k + 1)x) dx + ugsin(2k + 1)x) dx
T b
0 7/3

Die Auswertung der Integrale (wobei beim ersten Integral partielle Integration verwendet wird
wie bei der Sdgezahnkurve) ergibt

) T

120 sm<(2k+l)§>

bojy1 =—5 -
T

2k + 1)2
3
£, fir k = 0,3,6, ...,
2
mit  sin ((2k + 1)1) 1 o, firk = 1,47, ...,
3
3
—£, firk =2,5,8, ...
2
also
@) V3 (. sin(5x) n sin(7x)  sin(11x)  sin(13x) n (5.127)
ux)=u sSinx — — — . . .
072 52 72 112 132
Ubung 5.7:

Leite die Fourierkoeffizienten in den Beispielen 5.13 bis 5.20 explizit her.
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u(x) = ug

4n Sr
3 3 2n

.
>

Fig. 5.17: Periodischer Spannungsverlauf, aus Strecken zusammengesetzt

Ubung 5.8:
Berechne die Fourierreihe von f(x) = x(1+4cosx), (—7 < x < 7) wobei wir f 2w -periodisch
auf R fortgesetzt denken. Ist die Fourierreihe gleichmiBig konvergent?

Ubung 5.9:

. L X x
Berechne die Fourierreihen von ‘sm 5‘ und ‘cos 3 ‘

5.5.4 Konvergenz von Fourierreihen!*

Zum Beweis des Konvergenzsatzes (Satz 5.23) schreiben wir die n-te Partialsumme der Fourier-
reihe von f hin:

sp(x) = 6l2_0 + Z(ak cos(kx) + by sin(kx)) . (5.128)
k=1

Zu zeigen ist s,(x) — f(x) fiir n — oo. Dazu wird die rechte Seite umgeformt: Zunéchst
werden fiir die Fourier-Koeffizienten a; und by die entsprechenden Integralausdriicke eingesetzt

und Z mit / vertauscht. So entsteht die erste Zeile der folgenden Rechnung. Mit dem Additi-

onstheorem des Cosinus folgt die zweite Zeile und iiber die Summenformel aus Ubung 2.20 in
Abschn. 2.3.2 die dritte Zeile:

sy (x)

17 R . .
- / 110 (E +k§(cos(kt) cos(kx) + sin(kt) sm(kx))) dr

1 J—
- / () (5 +k§cos(k(t —x))) dt

T
1 in(A(t — 1
= —/f(l)—Sln( (¢ = x) dt, mitA=n+—,
b4 . ft—xXx 2
g 2s1r1< > )

14 Kann beim ersten Lesen iiberschlagen werden.
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17 sin(A(x)) .
:—ff(x+r)—l.dr, mitf =x + 1,
T 2 sin (—)
T 2
- / Fa+ ) — Fen 4D gy e / SO 4
28111( ) 28111( )
2 2

/ Fa+1) - fo—n0CD_ 40 | pmy / SNCO_
Zsm( ) 251n( )
2 2

(5.129)

In den letzten beiden Zeilen streben das erste und dritte Integral bei festem x fiir A — oo ge-
gen Null. Die Konvergenz ist gleichméBig auf kompakten Intervallen ohne Sprungstellen von
S (s. folgender Hilfssatz). Das zweite Integral strebt mit A — oo gegen 7 /2 (s. Abschn. 4.3.2,
Beisp. 4.24, (4.134)). Das vierte Integral ist nach Substitution T = —rt gleich dem zweiten,
strebt also auch fiir A — oo gegen /2. Damit strebt s, (x) bei festem x fiir n — oo gegen
(f(x+) + f(x—))/2 und iiberdies gleichmiBig auf kompakten Intervallen ohne Sprungstellen
von f. O
Es bleibt folgender Hilfssatz zu zeigen. Dabei fithren wir zur Abkiirzung die Funktion

fx+1)— fix+)
se(t) == 2 sin(t/2) ’
x4+, fiirt = 0,

fiirz € (0, ],

ein. Sie ist offenbar fiir jedes feste x eine beschridnkte Funktion in ¢, was fiir # — 0 aus der de
I’Hospitalschen Regel folgt. Es gilt noch mehr: Ist [«, 8] ein Intervall ohne Sprungstellen von
f,so gibt es ein M > 0 mit |s,(¢)] < M fir alle t{e [0, 7] und alle x € [«, B]. Wir sagen
dafiir: s, ist auf [«, B] gleichmdflig beschrinkt. (Fur t € [8, w], mit einem § > O, ist das klar;
fiir r = 0 ebenfalls. Fiir ¢ € (0, §) (6 klein genug) verwandelt man s, mit dem Mittelwertsatz
der Differentialrechnung — zweimal angewendet, auf Zihler und Nenner — in sy (f) = f'(x +
1)/ cos(t2/2) mit tq, t» € (0, t), woraus die gleichmiBige Beschrinktheit folgt.)

Hilfssatz 5.2:
Fiir jedes x € R gilt
b
Je(A) = /sx(t) sin(At)dr — 0 fiir A — oo.
0

Die Konvergenz ist gleichméBig auf jedem kompakten Intervall [«, 8] ohne Sprung-
stellen von f.

Bemerkung: (a) Fiir das dritte Integral in (5.129) gilt entsprechendes.

(b) Die Beweisidee fiir den Hilfssatz ist einfach. Man erkennt namlich, dal sin(At) fiir grof3e
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A eine sehr schnelle Schwingung beschreibt (¢ als Zeit aufgefaflt). Nimmt man s, (¢) fiir den
Augenblick als stetig an, so ist diese Funktion innerhalb einer Periode damit fast konstant. Das
Integral von s, (¢) sin(At) iiber eine Periode ist also nahezu Null. Summation tiber alle Perioden
ergibt dann (hoffentlich) auch beinahe Null, wobei man der Null fiir sehr groe A beliebig nahe
kommt. Fiir stiickweise stetige s, dndert sich diese Argumentation nur unwesentlich.

Beweis:

Die Funktion sin(Af) wechselt jeweils im Abstand 7 = 7 /A ihr Vorzeichen (A > 0). Wir substi-
tuieren t = u + h in J, (1) und erhalten

w—h
Ji(A) = — / Sy (u + h) sin(Au) du .

—h

Schreibt man hier wieder ¢ statt # und addiert dies zu J,()) in seiner urspriinglichen Form, so
folgt

0 w—h
2J,(A) =— /sx(t + h) sin(At) dt + / (s¢(t) — s (t + h)) sin(Ar) dt
—h 0
0
+ / sy (1) sin(At) dr.
T—h

Mit s, ()| < M erhilt man die Abschitzung
w—h
|Jx(M)| < Mh + / lsx () — sx(t +h)|dt + Mh. (5.130)
0
w—h
Hierbei zerlegen wir /
0

a—h t1—h 1 th—h %) T—h
fz /+f+/+[ +...+/,15
0 0 t1—h n t2—h Im
wobei 11, ..., t,; die Unstetigkeitsstellen von s, sind. Davon kann es hochstens soviele geben

— sagen wir N — wie es Spriinge von f in [0, ] gibt. In den Intervallen [#; — A, ;] der Linge
h ist der Integrand |sy (¢) — sx(t + h)| < 2M, wihrend er in den iibrigen Intervallen aus Stetig-
keitsgriinden < ¢ ist fiir A < hg (dabei ¢ > 0 beliebig gegeben und % passend gewihlt). Somit

15 Integrale, deren obere Grenze kleiner als die untere ist, werden hierbei O gesetzt.
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erhalten wir aus (5.130)
2| x| < Mh+ N -2Mh+¢e-(m —h)+Mh < 2N +2)M - h+¢ex

fir h < hg. Diese Abschitzung gilt sowohl fiir festes x, als auch fiir alle x aus einem Intervall
[a, B] ohne Spriinge von f. Die rechte Seite wird aber kleiner als jedes ¢* > 0, wenn h < h ist
(h1 geniigend klein gewihlt). Daraus folgt die Behauptung des Hilfssatzes. [

Zur Vertiefung beweisen wir

Satz 5.24:
Fiir alle integrierbaren Funktionen auf [—, 7] gilt die Besselsche!® Ungleichung

2 n z
4 ) 1 B
5+ Y@ +bp < - f F2(x) dx (5.131)
k=1 r
Dabei sind ag, by die Fourierkoeffizienten von f.

Beweis:

Man multipliziere die quadratische Klammer im folgenden Integral aus und verwende dann die
Orthogonalitétsrelationen von sin und cos sowie die Integraldefinition der Fourierkoeffizienten.
Das heifit man berechnet

e

n 2
0< / (f(x) — |:%0 + Z(ak cos(kx) + by sin(kx)):|> dx
k=1

-7

/(f2(x) —2fOL.1+[..P"dx

b4 5 n
/ frede —m (%0 +) (at+ b,%))
“x k=1

Aus der Besselschen Ungleichung ergibt sich insbesondere fiir n — oo:
a & 1 r
0 2, 32 2
3+k;(ak +bp) < — / ) dx,
= -7

d.h. die linke Reihe ist konvergent. Man erhilt daraus

16 Friedrich Wilhelm Bessel (1784 — 1846), deutscher Astronom, Mathematiker und Geodét
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Folgerung 5.6:

Die Fourierkoeffizienten einer integrierbaren Funktion streben gegen Null:

lim ax =0, lim by = 0. (5.132)
k— 00

k— 00

SchlieBlich beweisen wir den

Satz 5.25:

Ist f eine stetige, stiickweise glatte Funktion der Periode 277, so konvergiert ihre Fou-
rierreihe gleichmdfsig und absolut gegen f. Fiir ihre Fourierkoeffizienten ay, by, folgt
sogar die Konvergenz der Reihen

o0 o0
Dlarl. Y bl
k=1 k=1

Beweis:

1
Aus (|A| — |B])? = 0 folgt 2|AB| < A 4+ B? Damit gilt mit A = o B = kay:

2 1
2|ay cos(kx)| = 2|ax| = %Ikakl =zt (kay)? (5.133)
und entsprechend
1
2|bg sin(kx)| < 2|bg| < a + (kby)? (5.134)

fiir k € N. Die Ableitung f’ wird an ihren Sprungstellen durch das arithmetische Mittel ihrer ein-
seitigen Grenzwerte erklirt. Die Fourierkoeffizienten von f” sind kby und —kay, wie man durch
partielle Integration in den Integraldarstellungen der Koeffizienten herausfindet. Die Besselsche
Ungleichung fiir f' liefert damit die Konvergenz der Reihe

oo
Y K@ + b
k=1

Die obigen Ungleichungen ergeben

. 1k
lax cos(kx) + by sin(kx)| < |ag| + |b| < ot 7(51,% +b7). (5.135)

0 2
k 1
Da E (;(a,% +b7) + k_2) konvergiert, ist diese Reihe eine Majorante fiir die Fourierreihe
k=1

o o
von f, wie auch fiir die Reihen Z lag|, Z |by|. Daraus folgt die Behauptung des Satzes. [
k=1 k=1
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Ubung 5.10:

Beweise die folgende Eindeutigkeitsaussage fiir trigonometrische Reihen: Ist eine 27 -periodi-
sche reelle Funktion f durch eine trigonometrische Reihe darstellbar, die punktweise gegen f
strebt, so sind die Koeffizienten der Reihe eindeutig durch f bestimmt.

Anleitung: Man nehme an, daf} es zwei trigonometrische Reihen gibt, die f darstellen. Dann
bilde man ihre Differenzreihe. Sie stellt die Funktion 4 (x) = 0 dar. Was folgt daraus iiber die
Koeffizienten der Differenzreihe?

55.5 Komplexe Schreibweise von Fourierreihen

Bemerkung: Die komplexe Schreibweise bei Schwingungsvorgingen erweist sich in der Technik
als sehr brauchbar und 6konomisch. Sowohl in der Elektrotechnik, wie in der Aerodynamik,
Elastomechanik und anderen Gebieten, ist die komplexe Schreibweise bei Schwingungen iiblich.

Jede stiickweise glatte, 27 -periodische Funktion f : R — R ist, wie wir gesehen haben, in eine
Fourierreihe entwickelbar:

fx) = %O + " (an cos(nx) + by sin(nx)) . (5.136)

n=1

Die Reihendarstellung wird noch iibersichtlicher, wenn wir unsere Kenntnisse iiber komplexe
Zahlen heranziehen und
einx e—inx ein)c _ e—inx
cos(nx) = +— , sin(nx) = —— (5.137)
2 21

verwenden (vgl. Abschn. 2.5.3, Folgerung 2.12). Da komplexe Reihen analog zu reellen Reihen
erklart sind einschlieBlich ihrer Konvergenzeigenschaften, so konnen wir die Fourierreihe von f
umformen in

0 inx —inx inx —inx
agp e’ +e e’ —e
f(x)=7+z<a” 2t )

n=1
o . .

) an — by, inx . an +1iby —inx

=5 + Z <T e +T e .
n=1

Dabei wurde die Gleichung 1/i = — i verwendet, die unmittelbar aus —1 = i-1i hervorgeht. Der

hoheren Eleganz wegen vereinbaren wir by := 0 und
a_, '=a, und b_,:=—-b, (5.138)

firn = 0,1,2, .... (Dies ergibt sich iibrigens auch »automatisch« aus den Integraldarstellungen
(5.106) der Fourierkoeffizienten.) Damit, und mit der Abkiirzung

= % . n ganzzahlig, (5.139)
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bekommt f(x) die Reihendarstellung

fO) =ap+ Y (@ e™ +a,e” ™). (5.140)

n=1

Die m-te Partialsumme der rechten Reihe hat dabei die Form

m m
sm(x) = ag + Z(an e fg_, e i) = Z o, e (5.141)

n=1 n=-—m

Da sie mit m — oo gegen f(x) strebt, schreiben wir:

f)= )" ape™. (5.142)

n=—oo

Dabei verstehen wir unter der Summe rechts den Grenzwert

m
. inx 17
lim Z o, e (5.143)

n=—m

Bemerkung: Die elegante Schreibweise (5.142) der Fourierreihe von f erweist sich als sehr
niitzlich, da sich mit der Exponentialfunktion bequemer arbeiten 146t als mit cos und sin.

Die Koeffizienten a, in (5.142) lassen sich direkt durch eine Integralformel angeben. Der Einfach-
heit halber wollen wir dabei zundchst annehmen, daf3 die Reihe (5.142) gleichméBig konvergiert.

Wir multiplizieren nun (5.142) mit ¢! ** (k ganzzahlig), integrieren von — bis 77 und vertauschen
T

_/ mit Z:

o]

Oo .
Z o / el =hx gy (5.144)
—00

n=—oo

/f(x)e*ikx dx =

o0 o0 o0
17 Normalerweise versteht man unter Z cp die Summe Z cn+ Z c—p, d.h. es miissen zwei Grenzwerte gebildet

n=—00 n=0 n=1
werden. In (5.142) meinen wir aber ausdriicklich die »symmetrische« Grenzwertbildung (5.143).
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Das rechtsstehende Integral ist dabei so zu verstehen, daf} iiber Realteil, wie Imaginirteil, einzeln
integriert und danach summiert wird. Damit errechnet man:

/ Q=Y gy — /(cos((n — k)x) +isin((n — k)x)) dx

—7T
T T

= / cos((n — k)x)dx +1 / sin((n — k)x)dx = !

- -

2, fallsn =k,
0 falls n # k.

0

Die Summe in (5.144) reduziert sich somit auf nur ein Glied, namlich dasjenige mit n = k.
Folglich ist die rechte Seite von (5.144) gleich o - 27. Bringt man 27 auf die andere Seite und
setzt n statt k, folgt

o = 1 f Fx)e "™ dx. (5.145)
2

Diese Integralformel zur Berechnung von ¢, gilt allgemein, also auch wenn die GleichméBigkeit
der Konvergenz in (5.142) verletzt ist. Man leitet (5.145) namlich sofort aus (5.139) her, indem
man die Integralausdriicke fiir a,, und b, einsetzt und e~ inx — cos(nx) — isin(nx) beachtet.

Die Riickberechnung von a, und b, aus «, geschieht durch a, = 2Reay,, b, = —2Ima,
oder

a, =op,+o_,, b,=i(ay—a—,) (=0,12,...). (5.146)

Dabei ist v_,, = .

Die Konvergenzsitze (Satz 5.15 und Satz 5.24) gelten fiir die komplex geschriebene Reihe
(5.142) entsprechend.
Bemerkung: Zur Beschreibung von Schwingungen verwenden Techniker und Physiker haufig
unmittelbar den Reihenansatz iiber die komplexe Exponentialfunktion, d.h.

fO = ape " (5.147)

n=—0oo

w > 01ist dabei die Kreisfrequenz der Schwingung. Mit dieser Reihe arbeitet man einfacher also
mit Sinus- und Cosinusreihen, da die Exponentialfunktion die prachtvolle Gleichung e*™% =
et e erfiillt.

Will man z.B. die phasenverschobene Schwingung g(t) := f(t — ty) durch eine Fourierreihe
beschreiben, so folgt aus (5.147) sofort

o0

g(t) — (l‘ _ tO) Z o elnw(l t()) Z (an e—inwt) einwt (5148)
————

n=—0oo n=—0oo
= lgn
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womit die Fourierreihe von g schon ermittelt ist! Man versuche dies zum Spaf} einmal mit den
Cosinus-Sinus-Reihen. Uber die Additionstheoreme von cos und sin kommt man zwar auch hin,
aber wesentlich umsténdlicher.

Ubung 5.11:
2
Es sei f(x) = l + (1) fur x € (—m, ). Wir denken uns f zu einer stiickweise glatten
i T
2m-periodischen Funktion fortgesetzt. Berechne die Fourierreihe von f und schreibe diese als
»Exponentialreihe« der Form (5.142) auf.

5.5.6 Anwendung: Gedampfte erzwungene Schwingung

Um die Schwingungen eines Federpendels (mit Reibung) behandeln zu kénnen, muf3 die folgen-
de Differentialgleichung gelost werden:

mi+rx+cx=0 mit r>0,c>0. (5.149)

Wirkt auf den Massenpunkt des Federpendels noch eine duflere Kraft K () (etwa durch ein Ma-
gnetfeld), so erhalten wir die erweiterte Differentialgleichung

mx(t) +rx(t) +cx(t) = K@), tekR. (5.150)

Von grof3er Bedeutung fiir die Praxis ist der Fall, daB K eine periodische Funktion ist. Wir wollen
daher K als eine periodische, stetige, stiickweise glatte Funktion voraussetzen. Ihre Periode (=
Schwingungszeit) sei T'. Ingenieure und Physiker arbeiten gern mit der Kreisfrequenz w = 27/ T .
K 148t sich nach Satz 5.24 in eine absolut gleichm@Big konvergente Fourierreihe entwickeln, die
wir in komplexer Schreibweise angeben:

o0
Kt)y= Y o™,

n=—oo

Aus der absoluten Konvergenz folgt fiir ¢t = 0, dal der Grenzwert

existiert. Unter diesen Voraussetzungen ist folgende Frage zu beantworten: Welche zweimal ste-
tig differenzierbaren Funktionen x : R — R erfiillen die Differentialgleichung (5.150)?
Funktionen dieser Art nennen wir Losungen der Differentialgleichung.
Zur Beantwortung der Frage eine Vorbemerkung: Ist xo : R — R eine Losung von (5.150),
und ist x5 : R — R eine Losung der »homogenen« Differentialgleichung (5.149), so ist die
Summe

x(1) =xp(t) +x0(t), teR, (5.151)

ebenfalls Losung von (5.150), wie man leicht nachrechnet. Mehr noch: Halten wir die Funktion
xo fest und lassen x;, in (5.151) alle Losungen von (5.149) »durchlaufen, so erhalten wir durch
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(5.151) alle Losungen unserer Differentialgleichung (5.150). (Denn ist x eine beliebige Losung
von (5.150), so subtrahiere man xg von ihr. x — xog = x* ist aber eine Losung der homogenen
Differentialgleichung (5.149), wie man leicht sieht. Wir schreiben daher x* = xj;. Damit hat
X = xj + xo die behauptete Form.)

Samtliche Losungen x;, der »homogenen« Differentialgleichung (5.149) sind folgendermalien
gegeben:

1. Fall r* — 4mc > 0:

1
)\.1 = ﬁ(r +\/a)

xp() =ae M fpe 2! A wobei ¢ := r? — 4mec. (5.152)
Ay = E(r —J9)
2. Fall r* — 4me = 0:
xp (1) = e /P (g 4 br). (5.153)

3. Fall r? — 4me < 0:

2
X (1) = "M (g cos(wrt) + bsin(wr)) mit o= — — —— . (5.154)
m  4m?

Dabei sind a, b beliebige reelle Konstanten. (Zur Herleitung s. Burg/Haf/Wille (Band III) [8],
Abschn. 3.1.4)

Es bleibt uns nur die Aufgabe, eine einzige Losung xo unserer Differentialgleichung (5.150)
zu berechnen. Durch (5.151) haben wir dann alle Losungen von (5.150). Die Losung xo nennen
wir eine partikuldre Losung.

Losungsberechnung: Die Fourierreihe von K gibt uns eine Idee fiir das Auffinden einer parti-
kuldren Losung von (5.150). Und zwar setzen wir auch xq als Fourierreihe an mit der gleichen
Periode wie K:

X = Y ™. (5.155)

n=—00
Die Reihen der Ableitung lauten

oo oo

Xo(t) = Z inwB, e, ¥o(t) = — Z n2w?B, e

n=—oo n=—oo

Dabei werden alle diese Reihen als absolut konvergent angenommen.
Setzt man die Fourierreihe in die Differentialgleichung (5.150) ein, wobei man K (¢) vorher
auf die linke Seite bringt, so folgt

o0
> (B 7 - ineofy + chy — an) " =0

n=—0oo



436 5 Folgen und Reihen von Funktionen
fiir alle + € R. Daraus folgt, daB die Klammern verschwinden (denn sie sind die komplexen
Fourierkoeffizienten der Funktion f(¢) = 0), also

—mn®w? By +r - inwhy + cfn — oy =0 fiir alle ganzen n. (5.156)
Auflosung nach B, liefert

On

28 (5.157)

" (¢ — n2w®m) +inor

Geht man nun umgekehrt vor und definiert die §, durch diese Gleichung sowie x((¢) durch die
Reihe (5.155), so stellt man fest, dafl die Reihen von x x, X in der Tat absolut und gleichméBig
o

m > ¢, und der Existenz von Z loen ).
n=—oo
Einsetzen in die Differentialgleichung (5.150) zeigt, daBl xo eine Losung ist. Also zusammenge-

faf3t:

konvergieren (wegen |B,| < |oy|/ (n2w*m) fiir n2w

Folgerung 5.7:
o
X =Y B, (5.158)

n=—oo

mit (5.157), beschreibt eine partikuldre Losung der Differentialgleichung (5.150).

Wir schreiben die Reihe von xq(¢) schlieBlich in ihre reelle Form um, also als trigonometrische
Reihe.
Mit
a, —ib,

oe,,:T, n=0,12,3,...,

erhilt zunzchst die Fourierreihe von K (¢) die »reelle« Form

K@) = %0 + 3 (an cos(nar) + by sin(neon)) .

n=1

Wir setzen «,, = (a, — 1b,)/2 in (5.157) ein und multiplizieren Zéhler und Nenner in (5.157)
mit dem »konjugierten Nenner, also mit (¢ — n’w?m) — i nwr. Eine kurze Rechnung liefert uns
B, in der Gestalt

A, —1B
=5

a,(c — n?

(c — n2w?m)? + (nwr)? ’

w*m) — bynowr B — bp(c — n*w?m) + aynor
"7 (e = n20?m)? + (nwr)?

Ap = (5.159)
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Folglich ist

x0(t) = % + Z(A,, cos(nwt) + By sin(nwt)) . (5.160)

n=1

Damit ist eine partikulidre Losung berechnet und unser Problem gelost.

Anwendung auf das Schwingungsproblem: Nach dem anfangs Gesagten lautet die allgemeine
Losung unserer Differentialgleichung (5.150)

x(1) = xp(t) + x0(1) , (5.161)

wobei x;, eine beliebige Losung der homogenen Differentialgleichung (5.149) ist. ¢ ist beim
Schwingungsproblem die Zeit. Nach (5.152), (5.153), (5.154) hat x;(¢) stets die Gestalt

xp(t) =e "M ey, (r>0)

mit einer Funktion g : R — R, die beschrinkt ist oder von der Form a + bt ist (d.h. hochstens
»linear wichst«). Daraus folgt insbesondere

lim x,(1) = 0.
—>o0

Das heiflit nach langerer Zeitdauer geht jede Schwingung unseres Federpendels in eine »sta-
bile Schwingung« tiber. Diese wird durch die Losung xo(¢) beschrieben. (In Burg/Haf/Wille
(Band III) [8], Abschn. 3.1.4, wird noch einmal ausfiihrlich auf dieses Problem eingegangen,
wobei insbesondere das Resonanzphidnomen erortert wird.)

Das Schwingungsproblem haben wir am Federpendel erldutert. Jedoch fithren auch andere

Schwingungsaufgaben, insbesondere elektromagnetische, auf die Differentialgleichung (5.150).
Diese Probleme haben wir mit der »Fourierschen Methode« alle mitgelost.
Bemerkung: Auch weitere physikalische Probleme wie die Temperaturverteilung in einer kreis-
formigen Platte, die Bewegungen einer schwingenden Saite u.a. konnen mit der Fourierschen
Methode gelost werden. Diese Methode besteht darin, daf3 gewisse periodische Funktionen, die
in der Problemstellung gegeben sind, in Fourierreihen entwickelt werden, und daf auch die Lo-
sungsfunktionen als Fourierreihen angesetzt werden. Durch einen Koeffizientenvergleich, der
sich aus der Differentialgleichung des Problems ergibt, erhélt man die Fourierkoeffizienten der
Losung (siehe z.B. [25], Kap. XV1II, sowie die Literatur iiber theoretische Physik).

Ubung 5.12:

In der Differentialgleichung (5.150) sei m = 1kg, r = 15Ns/m, ¢ = 100N/m und K () =
a(wt)? firt € [-7, 7] mitw = 0,851 und @ = 20N.

(a) Berechne die stabile Losung xg : R — R.

(b) Berechne die Losung x : R — R des Schwingungsproblems unter der Voraussetzung,
daB zur Zeit t = 0 folgendes gilt: x(0) = O0m, x(0) = 0,5m/s.
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In Technik und Naturwissenschaft werden reelle Funktionen von mehr als einer reellen Verdnder-
lichen vielfach verwendet. Man kann sie durch Gleichungen der Form

yzf(x]ax27'-'axn) (61)

beschreiben.

Im Fall n = 3, wobei x1, x3, x3 Raumkoordinaten bedeuten, fallen darunter z.B. Tempera-
turverteilungen, Druckverteilungen, elektrische Ladungsverteilungen, Massendichten, Potentiale
von Kraftfeldern usw. und im Falle von mehr als drei Variablen Hamiltonsche Energiefunktion,
Gewinnfunktionen beim Verkauf mehrerer Artikel, u.a.

Oft treten auch Systeme von mehreren reellen Funktionen der Form (6.1) auf, z.B. bei der Be-
schreibung von Kraftfeldern, Geschwindigkeitsfeldern, kurz bei » Vektorfeldern« physikalischer
GroBen, aber auch bei geometrischen Projektionen, Fldchendarstellungen, Verformungen, beim
Koordinatenwechsel und anderem.

Fiir Funktionen oder Funktionssysteme dieser Art wird im Folgenden die Differentialrech-
nung entwickelt. Dabei dienen die Gedankenginge der Differentialrechnung einer reellen Verén-
derlichen als Richtschnur.

6.1 Der n-dimensionale Raum R”

Bei Funktionen mehrerer reeller Variabler spielen Zusammenfassungen reeller Zahlen x1, x2, x3,
...x, eine wichtige Rolle. Wir schreiben die Zahlen dabei senkrecht untereinander und klam-
mern sie ein. So entsteht ein Spaltenvektor, oder auch kurz Vektor genannt. Zunichst wollen wir
uns mit den Eigenschaften der (Spalten-) Vektoren beschéftigen und ihre »Geometrie« kennen-
lernen.

6.1.1 Spaltenvektoren

Ein reeller Spaltenvektor der Dimension n besteht aus n reellen Zahlen x1, x2, ...x,, die in
bestimmter Reihenfolge angeordnet sind. Sie werden senkrecht untereinander geschrieben und
eingeklammert':

xq
x2

Xn

1 Bei waagerechter Schreibweise [x, x2, ..., Xp] spricht man von Zeilenvektoren der Dimension n. (Auch runde
Klammern werden verwendet.) Der Uberbegriff fiir Spalten- und Zeilenvektoren der Dimension n heifit n-Tupel.
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Die Zahlen x1, . . . x, heiBlen die Koordinaten des hingeschriebenen Spaltenvektorsz. Zwei Spal-
tenvektoren der Dimension n

X1 V1

Xn Yn

heien genau dann gleich, x = y, wenn sie zeilenweise tibereinstimmen, d.h. wenn die Gleichun-

gen x| = yi, X2 = y2, ..., X, = y, alle erfiillt sind. (Spaltenvektoren verschiedener Dimensionen
n und m sind natiirlich verschieden.)
Definition 6.1:
Die Menge aller reellen Spaltenvektoren der Dimension n heifit der n-dimensionale
Raum R”.
xa-Achse
¥ IR3
A x2-Achse S =i S o
IR2 i 4 7
Hmtomm o e 4 x:[ j| - X 7 |
| X2 I(_ lr | xe-Achse
[ —»
’ I e
I 11 Achse S 1 | %
WS T e s s rd
X1
x1-Achse
a) ‘ b)

Fig. 6.1: Punkte im R2 und im R3

Bemerkung: R! und R werden als gleich angesehen. R? ist die Menge aller Zahlenpaare [ij

Wir konnen sie als Punkte einer Ebene mit Koordinatensystem deuten (s. Fig. 6.1a).
X1
Die Elemente | x | des R — auch Tripel genannt — kann man als Raumpunkte veranschau-
X3
lichen. x1, x3, x3 sind dabei die Komponenten von x beziiglich eines rdumlichen Koordinatensy-
stems (s. Fig. 6.1b).

6.1.2 Arithmetik im R”

Wir fiihren folgende Rechenoperationen im R” ein.

Definition 6.2:
Es seien
aiy by
a= und b= :
a b,

2 Statt Koordinaten sagt man auch Eintrdge oder Komponenten.
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beliebige Spaltenvektoren aus R”. Damit ist

a1 + b1

ax + b

a-t+b:= , Addition

_an + bn_
mar— by ]

a) — by
a—b:= . , Subtraktion

a, — by

Aa = . , mitleR Multiplikation mit einem Skalar

Aay,

—ay
—ay
—a=(—la:= . ) negatives Element zu a

—ay

unda - b :=a1b; +axby + ...+ a,b, , inneres Produkt.

SchlieBlich vereinbaren wir: Ein Spaltenvektor, dessen Komponenten alle O sind, wird
mit 0 bezeichnet:

0
0
0:=|.
0
Beispiel 6.1:

Zu den Rechenoperationen:

_ -5 —10
5 2 3
3 4 7 7 14
HEARIRHE {_32 “BIEIS e|T e ]
— 1 2
3 _3 3 4]
- - 7|2 =3447 245 -6=—4.
-9 9 _s 6

Im Zusammenhang mit diesen Rechenoperationen wird R” ein reeller euklidischer n-dimensio-
naler Vektorraum genannt, oder kiirzer: reeller n-dimensionaler Vektorraum.
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Entsprechend heiflen die Elemente von R” auch reelle n-dimensionale Vektoren.

Fiir die eingefiihrten Rechenoperationen gelten folgende Regeln. Der Leser weist ihre Rich-
tigkeit ohne Schwierigkeiten nach, indem er die folgenden Gleichungen ausfiihrlich mit Koordi-
naten hinschreibt.

Satz 6.1:
Fiir alle x, y, z aus R” gilt:

DO x+y)+z=x+(y+2 Assoziativ-Gesetz fiir +
amn x+y=y+x Kommutativ-Gesetz fiir +
) x+y=z & x=2z-—y Gleichungsumformung.

Fiir alle x, y € R” und alle reellen A und p gilt

av) x-wx = r(ux) Assoziativ-Gesetz fiir die Multiplikation mit Skalaren
V) Ax+y) =Ax+ XLy Distributiv-

V) A4+ w)x = Ax + ux Gesetze

(VID) Ix=x.

Ferner erfiillt das innere Produkt folgende Gesetze

(VIII) X-y=y-x Kommutativgesetz fiir -

(IX) AMx-y)=(Ax)-y=x-(Ay) Gemischtes Assoziativ-Gesetz
X)) x-(Qy+z)=x-y+x-z Distributiv-Gesetz fiir -

XD x-x>0 & x#0 positive Definitheit

Aufgrund der Assoziativ-Gesetze (I) bzw. (IV) werden in Summen x + y +z bzw. Pro-
dukten Aux die Klammern auch weggelassen. Das gilt auch fiir lingere Summen und
Produkte. Die Distributiv-Gesetze (V), (VI) und (X) bedeuten, vereinfacht gesagt, daf3
man »Klammern«, wie gewohnt, »ausmultiplizieren« darf.

Veranschaulichungen: (I) Die Veranschaulichung des R? und R3 durch Punkte der Ebene bzw.
des Raumes wurde eingangs erldutert. Diese Anschauungsart ist insbesondere fiir geometrische
Zwecke giinstig, wenn es z.B. um Geraden, Ebenen, Kreise, Kugeln usw. geht.

(I) Der genannten Veranschaulichung durch Punkte steht eine zweite Veranschaulichung gegen-
iiber, und zwar durch Pfeile’. Sie wird bei physikalischen GréBen stirker bevorzugt, wie bei
Kriften, Geschwindigkeiten, Drehmomenten usw. Uberdies gestattet sie uns, die eingefiihrten
Rechenoperationen grafisch zu verdeutlichen. Unter einem Pfeil versteht man dabei ein Paar
(A, B) zweier Punkte A, B einer Ebene bzw. des dreidimensionalen Raumes, wobei A und B
durch eine Strecke verbunden sind (falls A # B). A heilit Aufpunkt und B Spitze des Pfeils.

Skizziert wird der Pfeil in »iiblicher Weise«, d.h. im Falle A # B zeichnet man die Verbindungs-
strecke von A nach B und bringt in B eine Pfeilspitze an (s. Fig. 6.2a). Im Falle A = B ist der

3 Statt »Pfeil« sagt man auch »gerichtete Strecke«.
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Pfeil einfach als Punkt A zu skizzieren. Man symbolisiert einen Pfeil mit Aufpunkt A und Spitze
B durch

—

AB.
Wir betrachten zunichst Pfeile in einer Ebene mit einem festen Koordinatensystem.

—
Man sagt: Ein Vektor x = |:i1:| aus R? wird durch einen Pfeil AB dargestellt, wenn folgendes
2

gilt:

x1=by —a,

x2=by—ap.

Dabei sind a1, a; die Koordinaten des Punktes A und b, b, die Koordinaten von B (s. Fig. 6.2a).

Man erkennt unmittelbar, daf} jeder Pfeil, der durch Parallelverschiebung aus ﬁ hervorgeht,
ebenfalls den Vektor x darstellt. Der Vektor x hat also unendlich viele Pfeildarstellungen. (dies
ist analog zu der Situation, daf} ein Gegenstand verschiedene Schatten werfen kann. Der Vektor x
— also das Zahlenpaar — ist der »Gegenstand«, und die ihn darstellenden Pfeile sind gleichsam
seine »Schatten« !)

A

a) b)

2x

c) d) e)
Fig. 6.2: Pfeildarstellungen von Vektoren und Rechenoperationen

Lassen sich zwei Pfeile nicht durch Parallelverschiebung zur Deckung bringen, so stellen sie
verschiedene Vektoren dar.
X
Im Dreidimensionalen verliuft alles analog: ¥ = | x» | aus R? wird durch jeden Pfeil AB
x3
dargestellt, der

x1=by—ay, xo=by—az, x3=b3—a3
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erfiillt, wobei ay, a», a3 die Koordinaten von A sind und by, by, b3 diejenigen von B (s. Fig. 6.2b).
Addition und Subtraktion von Vektoren kann man durch Dreiecke aus Pfeilen veranschaulichen
(s. Fig. 6.2c, d). Die Multiplikation eines Vektors mit einer reellen Zahl ) fiihrt zu Streckungen
oder Stauchungen von Pfeilen, im Falle . < 0 zusitzlich zu einer Umkehr der Pfeilrichtung
(Fig. 6.2¢e). Der Vektor 0 wird als beliebiger Punkt dargestellt.

Der Leser wird aufgefordert, an Zahlenbeispielen Veranschaulichungen zu skizzieren und sich
davon zu iiberzeugen, dafl die Darstellungen von Summen und Differenzen durch Pfeildreiecke
zutreffen (s. 6.1).

Die Pfeildarstellung legt es nahe, von der Léiinge eines Vektors x = I:ilil € R? zu sprechen. Es
2

ist damit die Léange eines darstellenden Pfeiles A B gemeint. Nach »Pythagoras« ist diese Linge
gleich x12 + x% (s. Fig. 6.2a).
Im R3 erhilt man die Pfeillange zu x (mit den drei Komponenten x1, x, x3) entsprechend als

\ /)cl2 + x% + x32. (Dies folgt aus dem sogenannten »raumlichen Pythagoras «.)
Man vereinbart daher allgemein

Definition 6.3:
X1
Als Léinge, Betrag (oder euklidische Norm) eines Vektors x = | . | € R" bezeichnet
Xn
man
|x|=\/x12+x%+...+x,%. (6.2)
Fiir Langen von Vektoren des R” gelten folgende Regeln
|Ax| = |Allx] (A € R) (6.3)
x]|=0 & x=0 (6.4)
| +y| <|x|+ |yl Dreiecksungleichung. (6.5)

Der Ausdruck »Dreieicksungleichung« geht unmittelbar aus Fig. 6.2¢ hervor. Die Ungleichung
bedeutet im R? oder R? offenbar, daB die Linge einer Dreiecksseite — hier |x + y| — kleiner
oder gleich der Summe der beiden tibrigen Seitenldngen ist, also < |x|+|y|. Fiir den allgemeinen
Beweis der Dreiecksungleichung wird auf Burg/Haf/Wille (Lineare Algebra) [7] verwiesen.

Veranschaulichung des inneren Produktes: Zwei Vektoren x und y aus R? oder R? seien durch
zwei Pfeile dargestellt, wie es die Fig. 6.3 zeigt.

¢ sei der kleinere Winkel, den die Pfeile miteinander bilden (der sogenannte Zwischenwinkel).
Dann ist das innere Produkt von x und y gleich

x-y=|x|[y|cosg. (6.6)
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Fig. 6.3: Zum inneren Produkt

(Den zugehorigen Beweis findet der Leser in Burg/Haf/Wille (Lineare Algebra) [7].)
Insbesondere folgt: Die Pfeile von x und y stehen genau dann senkrecht aufeinander, wenn
x -y = 0ist. (Denn genau dann ist cos ¢ = 0.) Hierdurch wird folgende Definition angeregt

Definition 6.4:
Zwei Vektoren x, y € R” stehen genau dann senkrecht (oder rechtwinklig) aufeinan-
der, wenn
x-y=0

ist. Man beschreibt dies durch

x Lly.

SchlieBlich gilt fiir alle Vektoren x, y € R” noch die sogenannte Schwarzsche* Ungleichung
lx -yl < lx[- |yl (6.7)

Fiir R? und R? folgt sie sofort aus (6.6), da | cos ¢| < 1 ist. Der allgemeine Beweis ist wiederum
in Burg/Haf/Wille (Lineare Algebra) [7] aufgefiihrt.

Zusitzlich zu den genannten Operationen gibt es im R3 noch das »#uBere Produkt« x x y
zweier Vektoren. Es wird berechnet durch

X2y3 — X3)2 X1 y1
XXy=|x3y1—x1y3|, mit x=|x2(, y=|»m (6.8)
X1y2 — X2)1 X3 y3

Geometrisch bedeutet es folgendes: Der Produktvektor z = x x y steht senkrecht auf x wie auf
y. Sein Betrag ist |z| = |x]| - |y| sin ¢, wobei ¢ € [0, 7] der Zwischenwinkel der Vektoren x und
y ist. SchlieBlich bilden x, y, z ein Rechtssystem (falls ¢ > 0), vorausgesetzt, daf} auch die x1-,
x2- und x3-Achse ein Rechtssystem bilden (s. Burg/Haf/Wille (Lineare Algebra) [7]).

Der Raum R? spielt als Modell des uns umgebenden physikalischen Raums eine hervorragen-
de Rolle in Naturwissenschaft und Technik.

Physikalische Beispiele: Eine Kraft, die an einem Raumpunkt angreift, kann als Pfeil darge-
stellt werden, der in Kraftrichtung weist, und dessen Linge gleich dem zahlenméBigen Betrag
der Kraft ist. Entsprechend kdnnen Geschwindigkeiten, Beschleunigungen u.a. durch Pfeile, und
damit durch Vektoren, dargestellt werden.

4 Hermann Amandus Schwarz (1843 —1921), deutscher Mathematiker
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Ubung 6.1:

-2
Addiere 3 und 5 und skizziere diese Addition durch ein Dreieck. Fiihre das gleiche

fiir die Subtraktion durch.

Ubung 6.2:

Beweise, daB [a+b|2 = |a|?+|b|? genau dann gilt, wenn a und b senkrecht aufeinander stehen.
(Hinweis: Schreibe |a + b|2 = (a + b) - (a + b) und »multipliziere die Klammern aus«!)

6.1.3 Folgen und Reihen von Vektoren
Vollig analog zu Zahlenfolgen werden Folgen von Vektoren gebildet: Eine Folge
ay,az,asz,...,ag, ...

von Vektoren des R” ist durch eine Vorschrift gegeben, die jedem k € N genau einen Vektor a; €
R”" zuordnet. Alle weiteren Begriffe lassen sich von Zahlenfolgen auf Vektorfolgen sinngemif3
iibertragen. Insbesondere lautet die Definition der Konvergenz einer Folge praktisch genauso wie
bei Zahlenfolgen.

Definition 6.5:
Die Folge (ax)ren von Vektoren ay € R" konvergiert gegen a € R”, wenn es zu
jedem & > 0 einen Index kg gibt, so daB fiir alle Indizes k > kg gilt:

lay —a| < ¢;
man beschreibt dies durch

kl_i)n;oak:a oder a; —>a fir k— oco.
a heifit Grenzwert oder Limes der Folge.

Jede Folge (ax)ken aus R” zerfillt in Koordinatenfolgen. Das heifSt: Schreibt man ausfiihrlich

o
a, = : , k=123, ...,
oo,
so erkennt man n Zahlenfolgen (ai(k))keN (i = 1,2,...,n), eben die Koordinatenfolgen von
(@k)keN-
Folgerung 6.1:

Eine Vektorfolge (ay)ren konvergiert genau dann gegen a, wenn alle ihre Koordina-
tenfolgen konvergieren, und zwar gegen die entsprechenden Koordinaten von a.
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Beweis:
Konvergiert die Folge (aj) gegen a (in R"), d.h. gilt |ax — a] — O fiir k — o0, so konvergiert
jede Koordinatenfolge (a,.(k))keN gegen die entsprechende Koordinate a; von a, und zwar wegen
lax — a| > |a* — a;| fiir alle k und i.

Konvergieren umgekehrt alle Koordinatenfolgen (al.(k)) reN gegen die entsprechenden Koordi-

naten ¢; und a, so folgt wegen |ai(k) —a;| — 0auch

n
Z(ai(k) —a;)? = 0 firk — oo,

i=1

lay —al =

d.h. a; — a firk — oo. U

Da also die Konvergenz von (ay) vollkommen auf die Koordinatenfolgen zuriickgespielt werden
kann, kann man alle Konvergenzeigenschaften und Sitze von Zahlenfolgen auf Vektorfolgen
sinngemdl iibertragen.

Es soll lediglich ein Satz hervorgehoben werden — stellvertretend fiir alle anderen —, nim-
lich der Satz von Bolzano-Weierstrall. Dazu vereinbaren wir, wie bei Zahlenfolgen:

Eine Folge (ax)ren aus R” heifit beschrinkt, wenn es ein ¢ > 0 gibt mit |ax| < ¢ fiir alle
k € N. Es gilt nun:

Satz 6.2:

(Satz von Bolzano-Weierstraf3 im R™) Jede beschriankte Folge (aj)rcn aus R” besitzt
eine konvergente Teilfolge.

Beweis:

Man schreibe die Koordinatenfolgen von (a;) untereinander:

aV, a®, a® a®
) a?, a® a® .

oV a® o a®

Alle diese Folgen sind beschrinkt (wegen |ai(k)| < lar| < c). Sie haben also alle konvergente
Teilfolgen. Es gibt daher mindestens eine Indexfolge k1, k2, k3, .. ., so da3 a(kl), ak) gk
konvergiert. Aus der Indexfolge ki, k2, k3, ... denke man sich nun eine Teilfolge ausgewihlt,
wieder ki, k2, k3, ... genannt, so daB auch aékl), agm, aék” , ... konvergiert. Aus dieser Index-
folge wird darauf wieder eine Teilfolge ausgewihlt, abermals mit &y, k2, k3, ... bezeichnet, so
daB auch agk'), ang), a§k3), ... konvergiert. Auf diese Art und Weise arbeitet man sich durch alle

Koordinatenfolgén nacheinander durch. Schlielich erhilt man eine Indexfolge k1, k2, k3, . . ., so
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daf alle Teilfolgen

o g | )

5 i 5 i y e e

(i=12,....n

der Koordinatenfolgen konvergieren. Also konvergiert auch die Vektorfolge ay,, ai,, @i, ...,
was zu beweisen war. O

o
Uber Reihen |:Z ak:| von Vektoren ay € R™ ist nur zu bemerken, daf3 auch sie analog zu

k=0
0

Zahlenreihen gebildet werden. Insbesondere konvergiert eine Reihe |:Z a k:| mit a; € R" genau

k=0
dann gegen einen Grenzwert s € R”, wenn die Folge (s);cN der Partialsummen

i
Si = Z aj
k=0

gegen s konvergiert. Man schreibt dann

o0
= a.
k=0

wie nicht anders zu erwarten. Damit sind Reihen auf Folgen zuriickgefiihrt, und es ist alles gesagt.

Ubung 6.3*:
Uberpriife, ob die angegebenen Folgen im R? bzw. R3 konvergieren und gib gegebenenfalls
ihre Grenzwerte an:

k ©2 2k2
1
ap=|k+1 | bp=|5k2—k|, % =x 4k 4k
2—k W 3/(

6.14 Topologische Begriffe

Die Uberschrift klingt sehr wissenschaftlich. Dabei handelt es sich hier nur darum, einige an-
schauliche Begriffe zu erkldren, wie »Umgebung« eines Punktes, »innere Punkte« einer Menge,
»Randpunkte« einer Menge, »offene Menge«, »abgeschlossene« oder gar »kompakte« Menge.
Dazu brauchen wir » Abstinde« und »Kugeln« im R”, kurz: Wir betreiben »Geometrie« in R”.

Als Abstand zweier Punkte x und y im R” bezeichnet man die Zahl |x — y]|.

Im R? oder R? handelt es sich dabei zweifelslos um den geliufigen euklidischen Abstand
zweier Punkte x und y. Man erkennt dies iiber den Satz des Pythagoras (s. Fig. 6.4a).

Es folgt, daB alle x € R? mit |[x — a| < r eine Kreisscheibe bilden, und zwar mit dem
Mittelpunkt @ und dem Radius r (s. Fig. 6.4b). Entsprechend ergeben alle x € R> mit |x —a| < r
eine Kugel um den Mittelpunkt @ mit Radius . Man vereinbart daher allgemein im R":
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Kreisscheibe
um a

X2 +

yz T+

yl= TV Pt o=y
[x=y|=1/(x1=y1)? +(x2 - y2) Umgebung von a

a)
Randpunkt a von M,
d) a mit einer Umgebung
Fig. 6.4: Abstand, Kreisscheibe, Umgebung und Randpunkt
Definition 6.6:
Die Menge

Koy ={xeR'"||x—a|<r}, acR", r>0,
heillt abgeschlossene Kugel um a mit Radius r und
Koy ={xeR'"||x—a|l<r}, acR", r>0,

(also < statt <) offene Kugel um a mit Radius r. Man nennt beide Mengen auch
Kugelumgebungen von a im R”".

Allgemein bezeichnet man als Umgebung eines Punktes a € R” jede Menge aus
R”, die eine Kugelumgebung von a umfalt (s. Fig. 6.4c).

Definition 6.7:
(a) Ein Punkt a € R heilit Randpunkt einer Menge M € R”, wenn in jeder Umge-
bung von a mindestens ein Punkt aus M liegt sowie mindestens ein Punkt aus
R”, der nicht zu M gehort (s. Fig. 6.4d). Die Menge der Randpunkte von M heift
der Rand von M, symbolisiert durch M.

(b) Ein Punkt @ € M, der nicht Randpunkt ist, heit innerer Punkt von M. a ist
also genau dann ein innerer Punkt von M, wenn eine ganze Umgebung von a
in M enthalten ist. Die Menge der inneren Punkte von M heilit Inneres von M,

symbolisiert durch M.

(c) Eine Menge M C R”" heilit offen, wenn sie nur aus inneren Punkten besteht
(also keine Randpunkte enthilt).

(d) Eine Menge M C R" heilit abgeschlossen, wenn sie ihren Rand enthéilt.

449
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(e) Die Vereinigung einer Menge M C R" mit ihrem Rand heiBt die abgeschlossene
Hiille von M, symbolisiert durch M.

R” und die leere Menge ¢ sind sowohl offen wie abgeschlossen (denn ihr Rand ist leer). Alle
anderen Teilmengen von R” besitzen Randpunkte, sind also entweder offen oder abgeschlossen
oder keines von beiden. Der Leser suche Beispiele zu allen drei Fillen.

Folgerung 6.2:

(a) Eine Menge M C R”" ist genau dann abgeschlossen, wenn ihre Komplementér-
menge R"\ M offen ist.

(b) Eine Menge M C R” ist genau dann abgeschlossen, wenn mit jeder konvergen-
ten Folge (ay) aus M auch der zugehdrige Grenzwert @ in M liegt.

Beweis:
Die Aussage (a) ist unmittelbar klar.

Zu (b): Wir nehmen an: M ist abgeschlossen, d.h. die Komplementidrmenge R" \ M ist offen,
d.h. jeder Punkt aus R” \ M hat eine Umgebung, die ganz in R" \ M liegt, m.a.W: die keinen
Punkt aus M enthilt, d.h. kein Punkt aus R\ M kann Grenzwert einer Folge aus M sein, d.h. jede
konvergente Folge aus M hat ihren Grenzwert in M. U

Definition 6.8:

(a) Eine Menge M C R" heilit beschrdankt, wenn es ein r > 0 gibt mit |x| < r fiir
alle x € M (d.h. wenn M in einer Kugel um 0 liegt).

(b) Eine Menge M C R”" heifit kompakt, wenn sie beschrinkt und abgeschlossen
ist.

Folgerung 6.3:

Eine Menge M C R”" ist genau dann kompakt, wenn jede Folge (aj)rcn aus M eine
konvergente Teilfolge besitzt, deren Grenzwert in M liegt.

Beweis:

(D Ist M kompakt, so besitzt jede Folge (ay) aus M nach Bolzano-Weierstrall eine konvergente
Teilfolge. Ihr Grenzwert muf3 nach Folgerung 6.2 in M liegen.

(I) Wir setzen nun voraus: Jede Folge (ay) aus M besitzt eine konvergente Teilfolge mit Grenz-
wert in M. Dann ist M beschrdinkt. (Andernfalls gibe es ndmlich zu jedem k£ € N ein Element
ay € M mit |ag| > k, also |ay| — oo fiir k — oo. Die Folge (ay) besidfie daher keine konvergen-
te Teilfolge.) Uberdies ist M abgeschlossen, sonst gibe es nach Folgerung 6.2 eine konvergente
Folge (ax) in M, deren Grenzwert a nicht in M liegt. Da jede Teilfolge von (ay) ebenfalls gegen
a strebt, hitte keine Teilfolge von (ay) einen Grenzwert in M, im Widerspruch zur Vorausset-
zung. Also ist M abgeschlossen, folglich kompakt. (]



6.1 Der n-dimensionale Raum R” 451

Ubung 6.4%:
Gib an, ob die folgenden Mengen im R2 offen, abgeschlossen, beschrinkt oder kompakt sind,
oder nichts dergleichen. Skizziere die Mengen.

A:{xeR2|x:|:xl:| mit |x| + |x2| < 4},
X2

2 . 1
B={xeR°|x-a>2}, mta= N

C={x¢e R? | x = |:n:| n und m ganzzahlig} ,
m

D:{xeR2|x:|:xli| mitxlzo,x2>0,x-|:5i|§8}.
X2 3

6.1.5 Matrizen

Da Matrizen im Folgenden vielfach gebraucht werden, wird hier das Wichtigste dariiber zusam-
mengestellt. Ausfiihrlicher werden sie in Burg/Haf/Wille (Lineare Algebra) [7] behandelt.

Definition 6.9:
Ein Zahlenschema der Form
ayp a2 -+ Al
azl axp - Ay . )
, ajy reell fiir alle i, k,
Aml Am2 **° dmn

wird (reelle) (m, n)-Matrix genannt. Man beschreibt sie auch kiirzer durch

laik], -, oder [aiklmn -
1<k=n

Die Zahlen a;; heilen Elemente der Matrix, wobei i Zeilenindex und k Spaltenindex
genannt wird. m ist die Zeilenzahl und n die Spaltenzahl der Matrix.

Zwei Matrizen A = [ajx]m,n und B = [bji]p 4 heilen genau dann gleich: A = B, wenn
m=p,n=qundaj, = bj; furallei € {l,...,m}und k € {1, ..., n} erfiillt ist. (d.h. wenn die
zugehorigen Schemata »deckungsgleich« sind).

Matrizen aus nur einer Zeile heillen Zeilenmatrizen und aus nur einer Spalte Spaltenmatrizen.
Die uns bekannten Vektoren R” sind also als Spaltenmatrizen aufzufassen.

Definition 6.10:
Addition und Subtraktion von Matrizen geschehen »gliedweise«:

[aik]m,n + [bik]m,n = [ajx £ bik]m,n s
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Multiplikation mit einer reellen Zahl )\ ebenfalls:

)\[aik]m,n = [)Laik]m,n .

Die Multiplikation zweier Matrizen A = lajxlm,n» und B = [bir]y 4 ist dagegen so
erklart:

n
AB = [Cik]m,q mit c¢jp = Zai/b./k .
j=1

Dabei ist es erforderlich, dafl die Spaltenzahl des ersten Faktors A gleich der Zeilen-
zahl des zweiten Faktors B ist.

Beispiel 6.2:
3 -2 8 n 1 5 -2 |4 3 6 5 3 -2 8| |15 —10 40
4 7 —6 3 2 3|77 9 9| 4 7 —6| |20 35 -=30|’
3 0 3 5 7 3 5 2 1 0 5 3
A7 —6 9 1|= g3 11l 3 -5 1 -7 =1 53
0 4 2 6 =2 3 -38
Satz 6.3:

(Rechenregeln) Fiir alle reellen Matrizen A, B, C, fiir die die folgenden Summen und
Produkte gebildet werden konnen, gilt

A+B=B+ A Kommutativgesetz
(A+B)+C=A+(B+C)=:A+ B+ C Assoziativgesetz der Addition
(AB)C = A(BC) =: ABC Assoziativgesetz der Multiplikation
AB+C)=AB+ AC, Distributivgesetze

(B+C)A=BA+CA.
Sind X, u beliebige reelle Zahlen, so folgt ferner
AMuA) = (M)A =: AuA, MAB) = (MA)B = A(AB) =: \AB,
MA+ B)=1A+ 1B, A+ u)A=1A+puA.

Die einfachen Beweise werden dem Leser iiberlassen.

Es sei darauf hingewiesen, da AB = B A nicht in jedem Fall gilt. Man berechnet z.B. mit

1 0 11
A=[1 0}’ Bz[o 0}’

dal AB # BA ist!

Jede Matrix, deren Elemente simtlich O sind, wird mit 0 bezeichnet. Sie erfiillt A + 0 = A
fiir jede Matrix A, deren Zeilen- und Spaltenzahl mit 0 iibereinstimmt.
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Die folgende (n, n)-Matrix

100 - 0
010 0
g_|0 01 0
00 0 1

heiflt n-reihige Einheitsmatrix (oder Einsmatrix). Sie 148t sich kiirzer so darstellen:

1, firi =k,

E =[§; mit  §j =
[ zk]n,n ik 0, fiir i 7& k.

Sie spielt bei Matrizen die Rolle der 1. Denn es gilt fiir alle (m, n)-Matrizen A und alle (n, p)-
Matrizen B:

AE =A, EB=B.

Ist A = [aix]n.m eine beliebige Matrix, so nennt man AT = [@iklm.n mit o 1= ay; fir alle i, k
die transponierte Matrix zu A. (Sie entsteht anschaulich durch »Spiegelung« des Zahlenschemas
von A an der »Hauptdiagonalen« ai1, az;, ass, .. .). Es gilt die Regel

(AB)T = BTAT

Eine Matrix heift guadratisch, wenn Zeilen- und Spaltenzahl iibereinstimmen.
Es sei A eine quadratische Matrix. Existiert dazu eine quadratische Matrix X gleicher Zeilen-
zahl wie A, die

AX =E

erfiillt, so nennt man X die zu A inverse Matrix, kurz die Inverse von A und bezeichnet X mit
A~!. (Die Inverse von A ist eindeutig bestimmt, wie in Burg/Haf/Wille (Lineare Algebra) [7]
gezeigt wird.) Es gilt

AAT'=E und AT'A=E. (6.9)
Die linke Gleichung ist die Definitionsgleichung von A~!. Den Beweis der rechten Gleichung

findet man in Burg/Haf/Wille (Lineare Algebra) [7].

Bemerkung: Will man die Inverse A 'von A = [aik]n.n berechnen, ja, iiberhaupt herausfinden,
ob eine Inverse existiert, so setztman A~ = X = [xix]n.» und schreibt die Gleichung AX = E
ausfiihrlich in allen Komponenten hin, d.h.

n
Zaijxj'k =6 mit i,k=1,2,...,n.
j=1
Jeweils fiir festes k erhélt man ein lineares Gleichungssystem fiir die Unbekannten xyz, x2¢, - . -,
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Xnk, was es zu 16sen gilt (etwa mit dem GauB3schen Algorithmus). Nur bei eindeutiger Losbarkeit
existiert X = A™!, deren Elemente sich aus den besagten Gleichungssystemen berechnen lassen
(s. Burg/Haf/Wille (Lineare Algebra) [7], Abschn. 1.6).

Eine Matrix heil3t reguldr, wenn sie quadratisch ist und eine Inverse besitzt. Nichtregulédre qua-
dratische Matrizen werden singuldr genannt.

Definition 6.11:
Als euklidische Norm einer reellen Matrix A = [a;k ], bezeichnet man die Zahl

Al:= > a2,
ik

wobei tiberallei = 1,...,mund k = 1, ..., n summiert wird.

Folgerung 6.4:
Sind A, B beliebige (n, m)-Matrizen, so gilt

|A+ B| <|A| +|B],
IMA| = [A]|A| firalle A € R,
A|=0 <& A=0.

Ist ferner C eine beliebige reelle (m, p)-Matrix, so folgt
[AC| < |A]|C].
(Fiir die Beweise wird auf [56], Satz 6.7, S. 273 —274, verwiesen.)

Ubung 6.5:
Berechne
7 2 7
Z 3 [2 3} 9 3 9 [5}
-1 0 -1 5 6 —23
9 2
2 3 =8
Ubung 6.6:

Welche der folgenden Matrizen besitzen Inverse? (Zur Berechnung s. letzte Bemerkung)

[3 —2} [2 —4} (1) (1) i [3 6 7}
6 8 -5 10 s 4 2 9 —1
Ubung 6.7*:

Es seien A, B n-reihige reguldre Matrizen. Beweise:

AB)'=p1a"!.
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6.2 Abbildungen im R"

6.2.1 Abbildungen aus R” in R”

Unter einer Abbildung f von D C R" in eine Menge M C R™ versteht man bekanntlich eine
Vorschrift, die jedem Punkt x € D genau einen Punkt y € M zuordnet. Man beschreibt dies
durch

y=fx), xeD, yeM,

oder durch f : D — M (s. Abschn. 1.3.5).
Da x und y hierbei n-Tupel bzw. m-Tupel sind,

X1 V1
X2 »

X = ) y= )
Xn Ym

so kann man f(x) ebenfalls als m-Tupel schreiben, und zwar ausfiihrlich in der Gestalt

Silxr, -, xn) h
fx) = : , kurz f=|
Sm(x1, -, xn) Sm
Die Komponentenfunktionen fi, ..., f, von f sind dabei reellwertige Funktionen auf D.
Ausfiihrlich geschrieben ist
y=[fx)

also ein System von m Funktionengleichungen:

yi= filxt,x2, ..., %)

Y2 = falxi, X2, ..., Xn)
(6.10)
ym = fm(xl, xZa LICIO ) xn)
(Im Falle m = 1 verkiirzt sich dies auf eine Zeile, im Falle n = 1 auf eine Variable.)
Beispiel 6.3:
=3x; —4x, — 1,
NEREIRT L dineR) 6.11)

V2 =2x1+5x2+ 2.

Durch diese Gleichungen wird jedem Paar Bli| mit reellen x1, x> ein reelles Zahlenpaar B li|
2 2

zugeordnet. Fiir x; = 2, xp = 3 errechnet man z.B. y; = -7, y, = 21.
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Mit den Abkiirzungen
x1 Vi Si(x1, x2) 3x1 —4xy — 1}
x = , = , x) = =
[XJ ) [yz} S ) [fz()q, xz)} [ZM +5x2+2
erhalten die Gleichungen (6.11) die knappe Form
y=f(x), xeR* yeR?,
f bildet also R? in R? ab, was man kurz durch f : R? — R? ausdriickt.

Ubung 6.8:

Y1
y2

ool I el i E B O B F A

Welche Figur bilden die Bildpunkte der letzten vier Urbilder in der y-Ebene?

Der Leser berechne die Bildpunkte |: :| der Abbildung f im Beispiel 6.3 fiir die Urbildpunkte

6.2.2 Funktionen zweier reeller Variabler

Die wesentlichen Gesichtspunkte der Differentialrechnung mehrerer reeller Variabler lassen sich
am einfachsten Fall verdeutlichen: Am Fall reeller Funktionen zweier reeller Variabler. Eine
solche Funktion wird durch

y=f(x1,x2), > [xl:| € D CR?,
X2

beschrieben, oder abstrakter durch f : D — R (D C R?). Sie l:iBt sich auf folgende Weise
graphisch darstellen (s. Fig. 6.5).
Man skizziert ein raumliches Koordinatensystem aus xi-, x2- und y-Achse. Zu jedem Punkt

[il} des Definitionsbereiches D denkt man sich den Wert y = f(x1, x2) berechnet und den
2

Raumpunkt

X1
X2
y

ins Koordinatensystem eingezeichnet. Die Menge dieser Raumpunkte heilit der Graph von f.
Der Graph von f erscheint als flichenartiges Gebilde, gewolbt, gebogen oder eben (s. Fig. 6.5).

Jede »Senkrechte« — d.h. jede Parallele zur y-Achse — schneidet das Gebilde hochstens einmal.

Den Definitionsbereich D (s. Fig. 6.5) kann man in die x1-, x2-Ebene unseres Koordinatensy-

5 Oft wird auch die Schreibweise u = f(x, y) verwendet, wenn es um praktische Beispiele geht.
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Graph von f

X4
Fig. 6.5: Funktion zweier Variabler

stems einzeichnen. Es werden dabei

X1
. x . . . o
die Paare I:xl] mit den Tripeln X2 identifiziert.
2
0

(Man nennt dies die kanonische Einbettung des zweidimensionalen Bereiches D in den dreidi-
mensionalen Raum R3.)°

Beispiel 6.4:
y = f(x1, x2) = x1x2, [xl} e R2,
X2

Beispiel 6.5:
y = g(x1, x2) = 5x1 + 2x2 + 10, [jﬂ e R?,
2

Beispiel 6.6:
y = h(xi,x) = /1 —x} —x3, [il] € E, wobei E = {x | |x| < 1} die Einheitskreisscheibe
2

im R? ist.

Diese Funktionen werden durch die folgenden Fig. 6.6a, b, ¢ veranschaulicht.

Der Graph von f ist dabei eine Sattelfliiche, der von g eine Ebene und von h die Oberfliche
einer Halbkugel.

Eine zweite, viel verwendete Art der Veranschaulichung ist die der Hohenlinien (Niveaulini-
en). In Fig. 6.7a, b, c sind wieder unsere drei Beispielfunktionen f, g, h skizziert.

Diese Darstellung erhdlt man so: Man wihlt einen festen Wert y aus, z.B. y = 1. Dann

X . . . . . .
sucht man alle Punkte x = |:x1:|’ deren Funktionswerte gleich y = 1 sind und zeichnet sie: ein.
2

6 Eine derartige Ausdrucksweise fiir so eine simple Sache kann man gut benutzen, um priifende Professoren zu ver-
bliiffen.
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-

a)

X1 X2

c)

Fig. 6.6: Graphen verschiedener Funktionen

Meistens handelt es sich dabei um eine oder mehrere zeichenbare Linien. Dies fiithrt man fiir
weitere y-Werte durch, etwa y = 2, y = 3, usw. So entsteht das Hohenlinienbild einer Funktion.

Hohenlinien erhilt man normalerweise dadurch, dal man die Funktionsgleichung y = f(x1, x2)
»nach x, auflost« (oder, falls giinstiger, nach x). In unseren Beispielen sieht das so aus:
y

Yy =X1x2 = x=_ (fiir x; # 0)
1

5
y=5x14+2x+10 => x2=—§x1+%—5 (fir x; € R)

y=4l-x}—x3 = xp==2/1-y2—x} (fir|x|</1-y?)

Rechts sind die Funktionen der Form x; = ¢(x1) entstanden (bei festem y), deren Graphen man
skizzieren kann. (£ beschreibt zwei Funktionen.) Die Frage, wann solche Auflosungen moglich
sind — analytisch oder numerisch — ist Inhalt des spiter folgenden »Satzes tiber implizite Funk-
tionen« (Abschn. 6.4.2).

Bemerkung: Die Darstellung durch Hohenlinien kann sinngemif auch auf die Funktionen y =
f(x1, x2,x3) von drei Variablen iibertragen werden. Anstelle der Hohenlinien treten dabei Ni-
veauflachen. Sie sind durch f(x1, x2, x3) = y = konstant gegeben.

Einige technische Beispiele sind zur Ubung des Lesers im Folgenden angegeben:
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Xz
Axz 5
/ \ X "*ﬂ
0
y:—g 11 Y=: \ :D
5:_1 -y=0 ;;1 -2 . )5.1_
b } > Xy 2 o
y=1 = 1 y=-1 y=\0
y=2 ey y==-2
y=3 y=-3 y=\-10
\ / y= 20
-5
a)y = X1 Xz b)y=5x1+2x2+10

) y=+/1-x3-x3

Fig. 6.7: Darstellung von Funktionen zweier reeller Variabler durch Hohenlinien

Ubung 6.9:
Das Gasgesetz fiir ideale Gase lautet
J
pV=RT, R=8314——, (6.12)
K - kmol

mit dem Druck p, dem Volumen V und der absoluten Temperatur 7' des Gases. R ist die allge-
meine Gaskonstante. Jede der drei Groen p, V, T 146t sich als Funktion der tibrigen auffassen,

so dal3 folgende drei Funktionen entstehen:

) V= RT T = ! 1% (6.13)
pP= = 5 = RrP .
~— —— ——
ST,V F(T,p) f3(p.V)

wobei p > 0,V > 0, T > 0 gilt. Definitionsbereich fiir alle diese Funktionen ist also der

0
»erste Quadrant« R2 := {[11] | x; > 0, x2 > 0}. f3 ist bis auf einen Faktor gleich der frither
betrachteten Funktion f. Der Leser skizziere die Hohenlinienbilder der drei Funktionen.
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Bemerkung: Die van der Waalssche Zustandsgleichung fiir reale Gase

1 n2a a,b, R, konstant,
r= nR (p + W) (V = nb) { n, Gasmenge in Mol |’ (©6.14)

wurde schon in Abschn. 3.2.8, Beisp. 3.34, behandelt. Der Ausdruck rechts beschreibt eine Funk-
tion f(p, V). Ein Hohenlinienbild ist in Fig. 3.18 in dem genannten Abschnitt gezeichnet.

Fig. 6.8: Zu Funktionen zweier Variabler in der Technik

Ubung 6.10:
Ein Stahlrohr hat das Gewicht

G = prl(dw — wz)

wobei p das spezifische Gewicht des Stahls ist, p die Linge des Rohres, d der Aulenwand-
durchmesser, w die Wandstirke (s. Fig. 6.8). Es handelt sich hier um eine Funktion von drei
Variablen p, d und w. Da p nur ein Proportionalititsfaktor ist, erhilt man einen Uberblick,
wenn man lediglich die Funktion

fd,w)y=dw—w?, d>0, w=>0,
untersucht. Der Leser skizziere diese Funktion im rdumlichen Koordinatensystem!

Ubung 6.11:

(nach [5], S. 172) Das Fldchenmoment eines rechteckigen Balkens erhilt man aus
1 =bh3/12. (6.15)

Dabei ist b die Breite und i die Hohe des Balkens (s. Fig. 6.8b). Die Zahl I geht bei der
Berechnung der Durchbiegung eines Balkens ein (s. Beisp. 2.1, Abschn. 2.1.1). Wegen dieser
Anwendung ist man mehr daran interessiert, die Balkenbreite b aus / und /# zu gewinnen.

Zum Ablesen von b-Werten aus einem Hohenlinienbild ist es allerdings zweckmifig (und in
der Technik gebriuchlich), Koordinatensysteme zu benutzen mit einer b-Achse als senkrechter
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Achse. Es kommen in unserem Falle zwei Moglichkeiten in Betracht, ndmlich ein /-b-System
oder ein h-b-System (s. Fig. 6.9a, b).

Dabei ist jeweils ein Koordinatennetz aus Waagerechten und Senkrechten eingezeichnet, um
das Ablesen von Werten zu erleichtern.

Die Aufgabe des Lesers besteht darin, in beiden Netzen der Fig. 6.9 die Hohenlinien einzu-
zeichnen, in Netz (a) also die Linien zu 4 = konstant und in (b) zu I = konstant. Es entstehen
sogenannte Netztafeln.

Frage: Welche der beiden Netztafeln ist leichter (und priziser) zu zeichnen und damit vorzuzie-
hen?

Diese rechnerisch einfache Aufgabe soll klar machen, dal man oft mehrere Moglichkeiten
hat, eine Funktion mit mehreren Variablen zu skizzieren, und dal man sich natiirlich die giin-
stigste Art aussuchen soll.

AD Ab

25 . . N 25
cm cm ‘
20 : : ! - 20 F---——-----I
15 | I I SN S 15 SR -
10 — ~ — D[+ S S S A

s ! 1 | | 5 | | S

I h

0 > 0 | | | »

1000 2000 3000 cm# 12 14 16 cm
a) b)

Fig. 6.9: Netztafeln fiir das Flichenmoment / eines Balkens (zu vervollstindigen)

Ubung 6.12:

Der Wechselstromwiderstand w eines Stromkreises ergibt sich aus
w=+vVR?+L22, (6.16)

wobei R der Ohmsche Widerstand ist, L die Selbstinduktion und @ die Frequenz des Wech-
selstroms. Wir wollen w als fest annehmen. Dann stellt die rechte Seite der Gleichung ei-
ne Funktion der Form f(R, L) dar. Man skizziere ein Hohenlinienbild fir w = 1£2 und
o = 50/(2n) Hz.

Frage: Welches Problem hat man, wenn man auf beiden Achsen den gleichen Maf3stab wihlt?
Kann man durch geschickt gewidhlten Maf3stab die Zeichnung giinstiger gestalten? Welche Mal-
stabwahl auf den Achsen ist am besten?



462 6 Differentialrechnung mehrerer reeller Variabler

6.2.3 Stetigkeit im R"

Nach den anregenden Beispielen im vorangehenden Abschnitt kommen wir nun zur harten Arbeit
zuriick, ndmlich zur Stetigkeit von Abbildungen aus R" in R™.

Es zeigt sich aber, daf die Arbeit so hart wieder nicht ist. Denn wir konnen das meiste von
Funktionen einer reellen Variablen iibertragen, ja, nahezu wortlich abschreiben. Im Folgenden
sei D C R" und M C R™.

Definition 6.12:
(a) Eine Abbildung f : D — M heilt stetig in einem Punkt xo € D, wenn fiir alle
Folgen (xx) aus D mit x; — X stets

kl—l>nolo S xp) = f(xo0)

gilt.
(b) Die Abbildung f : D — M heilt stetig auf A C D, wenn sie in jedem Punkt

von A stetig ist. Ist f stetig in jedem Punkt von D, so wird f eine stetige Abbil-
dung genannt.

Die Definition entspricht vollkommen den Definitionen 1.17 und 1.18 in Abschn. 1.6.2, in denen
die Stetigkeit fiir Funktionen einer reellen Variablen definiert sind.

Aus der Definition folgt sofort, daB alle Funktionen in den Beispielen und Ubungen des letzten
Abschnittes stetig sind.

Die ¢ — §—Charakterisierung der Stetigkeit in Satz 1.19 (Abschn. 1.6.2) gilt wortlich auch fiir
Abbildungen f : D — R™ mit D C R", so daB wir auf eine erneute Formulierung verzichten
konnen. Auch der Beweis ist gleichlautend.

Der Satz iiber Summen, Differenzen, Produkte und Quotienten stetiger Abbildungen wird,
samt Beweis, ebenfalls tibertragen (s. Satz 1.22, Abschn. 1.6.4). Er lautet hier:

Satz 6.4:
Sind f:D—R", g:D— R"undh: D - Rstetiginxg € D (D € R"), so sind
auch

f+g. f-g. f-g und% (falls h(xo) # 0)
stetig in x.

Die gleichmdifige Stetigkeit wird analog zu Def. 1.19 (Abschn. 1.6.6) fiir Abbildungen aus R"
in R™ erklart. Es folgt, wie in Abschn. 1.6.6, die wichtige Aussage:

Satz 6.5:
Auf kompakten Mengen des R” sind stetige Abbildungen gleichmiBig stetig.

Mit der Stetigkeit eng zusammen hingen Grenzwerte von Abbildungen. Hier haben wir nur
Abschn. 1.6.7 sinngemil zu iibertragen:
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Ein Punkt xo € R" heifit Haufungspunkt einer Menge D C R”, wenn in jeder Umgebung von
xo unendlich viele Punkte aus D liegen. Def. 1.20 aus Abschn. 1.6.7 wird damit zu

Definition 6.13:
Essei f : D — M eine Abbildung und x( ein Haufungspunkt von D. Man sagt, f (x)
konvergiert fiir x — x( gegen den Grenzwert ¢, wenn fiir jede Folge (xx) aus D mit
klim x; = xo und x; # x fiir alle k folgt:
—> 0
lim f(x;) =c.
k— 00
Dies wird kurz beschrieben durch die Gleichung

lim f(x)=c. 6.17)

X—>X0

Diese Ubereinstimmung mit schon Bekanntem zeigt, daB hier eigentlich nichts Neues zu ler-
nen ist. Aus diesem Grunde weisen wir nur darauf hin, daf sich alles Folgende im zitierten
Abschn. 1.6.7 ebenso iibertrigt, insbesondere die Folgerung 1.18 iiber Summen, Differenzen,
Produkte und Quotienten solcher Grenzwerte.

SchlieBlich beschiftigen wir uns noch mit Polen und Grenzwerten im Unendlichen wie in
Abschn. 1.6.8. Hier iibertrégt sich alles iiber Pole vollig analog auf Funktionen f : D — R mit
D c R”, also insbesondere die Schreibweise fiir einen Pol xo von f:

lim f(x) =o00. (6.18)
X—>X

Bei Grenzwerten im Unendlichen ist dagegen |x| — oo (statt x — oo oder x — —o00) zu
schreiben. Das Analogon zu Def. 1.22 in Abschn. 1.6.8 lautet:

Definition 6.14:
(a) Der Definitionsbereich D C R” von f : D — R™ sei unbeschrinkt. Man
sagt, f(x) strebt fiir |x| — oo gegen ¢ wenn fiir jede Folge (xx) aus D mit
lim |xi| = oo gilt:
k— 00
lim f(xz) =c.
k— 00

In Formeln beschreibt man dies kurz durch

lim f(x)=c. (6.19)

|x|—o00

(b) Anstelle von ¢ kann auch co oder —oo stehen, wenn f reellwertig ist. Alles
andere wird entsprechend formuliert.

Folgerung 1.20 in Abschn. 1.6.8 (¢-Formulierung fiir (6.4)) iibertrdgt man ohne weiteres.
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Damit sind wir durch! Das Grundlegende iiber Stetigkeit und Grenzwerte von Abbildungen
aus R” in R™ ist nun bekannt.

Ubung 6.13:
Wo ist die Funktion f(x) := — % im R? definiert? Wo ist sie stetig? Existiert lim f(x)?
Xq + X5 x—0
Ubung 6.14:

Beweise, daB die Funktion f(x) = |x| auf R” stetig ist.

6.3 Differenzierbare Abbildungen von mehreren Variablen

In diesem Abschnitt wird die Differentialrechnung von einer reellen Variablen auf mehrere reelle
Variable ausgedehnt.

6.3.1 Partielle Ableitungen
Beispiel 6.7:
Durch

y = fx1, x2) = 2x7x3

ist eine Funktion von zwei reellen Variablen x; und x, gegeben. Fassen wir fiir den Augenblick
x7 als Konstante auf, so konnen wir den Ausdruck auf der rechten Seite nach x; differenzieren.
Diese Ableitung wird mit

0
_8f (x1,x2) oderkiirzer fy, (x1, x2)
X1

bezeichnet. Wir erhalten also »durch Differenzieren nach x«:

)
—f(m, x2) = 4x1x3 . (6.20)
0x1

Entsprechend kann man x; als Konstante auffassen und »nach x; differenzieren«. Es ergibt sich

)
—f(xl, x2) = 6x7x3 . 6.21)
0x2

Die Ausdriicke in (6.20) und (6.21) heiBlen die partiellen Ableitungen von f nach xj bzw. x;.

Beispiel 6.8:
[y =x2y —e.

P 9 ,
=>—f(x,y)=2xy—ye”, —f(X,y)zxz—xe” .
0x ay
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Wir erinnern nochmal: Die erste Gleichung ergibt sich durch Differenzieren nach x, wobei y als
Konstante angesehen wird, die zweite durch Differenzieren nach y, wobei x konstant ist.

Beispiel 6.9:

a a
f(x,y) = sin(x2y?). Mit der Kurzschreibweise f, fiir a—f und fy fiir 8_f erhélt man
X y

fr(x,y) =2xy° cos(x?y%),  fy(x,y) = 5x%y* cos(x?y”) .

Beispiel 6.10:
g(s, 1) =~/s2+2mits>+12#£0
N ag( 0 s Bg( " t
— (5, t) =, —(,1)= —.
ds Vs2412 ot V2 +12
Beispiel 6.11:

@(v1, v2, v3) = V7 + V5 + v3v; + 1

R17 dp d¢
= (v, v2,v3) =201 +v3, ——(v1,v2,03) =4v3, ——(v1,V2,V3) = V1.
vy vy av3

Der Leser, der diese Beispiele nachvollzogen hat, kann nun sicherlich partielle Ableitungen
von formelméBig gegebenen Funktionen berechnen. Er hat nichts anderes zu tun, als alle Va-
riablen bis auf eine als konstant anzusehen und die so entstandene Funktion nach eben dieser
Variablen zu differenzieren. Das fiihrt zu folgender allgemeiner Definition:

Definition 6.15:
Eine Abbildung f : D — R™ mit D C R” ist in einem inneren Punkt

X1
x=|:1€D

Xn

partiell differenzierbar nach xj, wenn der Grenzwert

i fOr, oo xk+h, oo x0) — f(X1, ooy Xk ey X))
im
h—0 h

existiert. (Die beiden Ausdriicke im Zdhler unterscheiden sich nur in der k-ten Varia-
blen.)
Der Grenzwert heilt die partielle Ableitung von f nach xi im Punkte x. Symbo-
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lisch beschreibt man ihn durch

0
af(x17°"7xn)7 ka(xl’”-,xn), Dkf(xl:---,xn).
Xk

Statt (x1, ..., x,) wird dabei auch kiirzer (x) geschrieben, oder es werden die Variablenangaben
ganz weggelassen, wenn keine Irrtiimer zu befiirchten sind.

d
[ heiBt partiell differenzierbar in x(, wenn alle partiellen Ableitungen a—f(xo) existieren.
Xk

Ferner nennt man f partiell differenzierbar in A C D, wenn f in jedem Punkt A partiell
differenzierbar ist. Ist f schlieBlich in jedem Punkt seines Definitionsbereiches partiell diffe-
renzierbar, so heiit f partiell differenzierbar.

Geometrische Veranschaulichung bei zwei Variablen: Wir denken uns den Graphen einer re-
ellwertigen Funktion

y =1f(x1, x2)

X1

Fig. 6.10: Partielle Ableitungen

y = f(x1,x2), [xl] e D c R?
x2

als flachenartiges Gebilde dargestellt, wie es die Fig. 6.10 zeigt. f sei in

)
X
X0 =
)
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nach beiden Variablen partiell differenzierbar. x( wird in die x1-x2-Ebene eingezeichnet.

Durch xg werden nun zwei Ebenen gelegt, die parallel zur x;-y-Ebene bzw. zur x,-y-Ebene
liegen (s. schraffierte Fldachen in Fig. 6.10). Die Ebenen schneiden aus dem Graphen von f zwei
Kurven heraus, die sich im Punkt

0)
X

Py = Xy
0 0
f(Xf ), xé )

kreuzen. (Es sind die oberen Begrenzungskurven der schraffierten Flachen in Fig. 6.10.) Diese
Kurven konnen als Graphen der Funktionen x; — f(x1, xéo)) und xp — f (xl(o), x2) in den
schraffierten Ebenen aufgefat werden. Ihre Steigungen im p, — verdeutlicht in den eingezeich-
neten Tangenten — sind die partiellen Ableitungen fy, (xo) und f, (xo). Das heiit fy, (xo) und
fx,(x0) sind die Tangenswerte der Winkel, die die genannten Tangenten mit der Waagerechten
bilden.”

Man nennt fy, (xo) daher auch die Steigung des Graphen von f in xi-Richtung, und zwar im
Punkt xg.

Zur Bezeichnung: Wird eine Abbildung durch eine Gleichung der Art

y:f(x17‘x27"'9xn)

beschrieben, so werden die partiellen Ableitungen auch durch

0 0
A statt —f
0Xx 0Xf

ausgedriickt. Diese Schreibweise ist in Naturwissenschaft und Technik oft sehr praktisch. Dazu
folgendes Beispiel:

Beispiel 6.12:

Das ideale Gasgesetz lautet
pV=RT, (R=konstant, p>0,V >0,T>0).

es wurde schon in Ubung 6.9 betrachtet. Wir Iosen die Gleichung nach V auf und erhalten

T aV R 1% RT
V = R— = — = —, _— =
D oT p ap p

5

7 Wie bei Funktionen einer Variablen werden die Winkel dabei negativ gerechnet, wenn die Tangente in Richtung der
zugehorigen Variablen fillt, und positiv, wenn sie steigt.
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Auflosen nach p und T ergibt entsprechend

T ap R ap
=R_ = — = o T, T e
P=1y aT V' v
v 9T aT
r=P" o 2 _  Z_
R ap 9V

Der Leser schreibe die drei fehlenden partiellen Ableitungen selbst hin. Durch Nachrechnen
erkennt man, daf folgendes gilt:

vV op Vv
ap 9T  dT '

Wir werden spiter sehen (s. Abschn. 6.3.4, Beisp. 6.19), dafl diese Gleichungen fiir alle Gase
(auch nichtideale) und alle Fliissigkeiten gilt.

Ubung 6.15:
of

a
Bilde die partiellen Ableitungen a—f(x, y) und a—(x, y) der folgenden reellwertigen Funktio-
x y
nen f : R? > R:

@ f,y)=xe’, () flx,y) =sin(x?+)7),

© fy)=x", (@ fx y) =e"cos(xy) + —

1+y2

Ubung 6.16:
d d d
Bilde die partiellen Ableitungen —f(x), —f(x), —f(x) der Abbildung
dx1 ox 0x3
x3 sin(x1) cos(x7) X
fO=|x+x2/1+x2 |, x=|x eR’.
sin(e*1¥2¥3) X3

a
Beachte, daf} jede partielle Ableitung a—f(x) ein Vektor aus R3 ist!
Xk

6.3.2 Ableitungsmatrix, Differenzierbarkeit, Tangentialebene
Durch
Silxr, x2, .o, xp) X1
fa(xi, x2, .0y xp) X2
fx) = ) , x=|.|€eD

Sm(x1, %2, ..., xp) Xn
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sei eine Abbildung beschrieben, die in x( partiell differenzierbar ist. Das bedeutet, daf} alle Ab-
leitungen

af i=1,....,m,
—(x fur
axk(O) k=1,....n

existieren. Man kann diese Ableitungen in einer Matrix zusammenfassen, die wir mit f’(xq)
abkiirzen:

[ofi  9fi of1 7]
e e
of2  dfs af2
flxo):=|8x1 dx2  Ax |- (6.22)
afm afm afm
Loxi  ox2  0x,

(Das Argument (xo) wurde rechts der Ubersicht wegen weggelassen.)
Die Matrix heiBt Ableitungsmatrix von f in x¢. (Sie wird auch Jacobi®-Matrix genannt.)

Beispiel 6.13:
Die Abbildung f : R? — R?, definiert durch

. X1
x1 sin(xpx3)
fxX)=1 » 2 X=1x21,
Xy + x5 + cos x3
X3

hat die Ableitungsmatrix

f/(X)=[

sin(xpx3) x1x3cos(xpx3) x1xpcos(xpx3)
2x1 —2x7 —sinx3 ’

Die Ableitungsmatrix hat also ebenso viele Zeilen wie f, und so viele Spalten, wie es Kompo-
nenten von x gibt. Zwei Sonderfille dazu:

Beispiel 6.14:
fx,y) =x? +sin(xy) (x,y € R) = f(x,y) = [2x + ycos(xy), xcos(xy)].

Beispiel 6.15:
12 2t
f() = sint = f/(t) =| cost (t eR).
5t+13 5+312

8 Carl Gustav Jacob Jacobi (1804 — 1851), deutscher Mathematiker
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Die Beispiele verdeutlichen: Eine reellwertige Funktion f(x1, x3, ..., x,) von n Variablen hat
(falls sie partiell differenzierbar ist) eine Zeilenmatrix [ fx,, fey»---» fx,] = f'(x) als Ablei-
tungsmatrix. (Hierbei werden wir zur besseren Trennung der Elemente oft Kommata eingefiigt.)
Eine Abbildung f von nur einer reellen Variablen hat als Ableitungsmatrix eine Spaltenmatrix.

Mit Hilfe der Ableitungsmatrix definieren wir, was wir unter Differenzierbarkeit® einer Abbil-
dung aus R” in R" verstehen wollen. Es handelt sich hierbei um eine schérfere Bedingung als sie
die partielle Differenzierbarkeit darstellt. Bei technisch wichtigen Funktionen und Abbildungen
liegt die Differenzierbarkeit normalerweise vor.

Definition 6.16:
Eine Abbildung f : D — R™ (D C R") heilit differenzierbar in einem inneren Punkt
xo von D, wenn sie in x¢ partiell differenzierbar ist und iiberdies in folgender Form
geschrieben werden kann:

Fx) = f(xo) + f'(xo)(x — x0) + k(x), (6.23)
wobei k : D — R eine Abbildung ist, die

lim @l _ 0 (6.24)

x—x0 |[x — X0 -

erfullt.
[ heiBt differenzierbar in A C D, wenn f in jedem Punkt von A differenzierbar
ist. Im Falle A = D heif3t f eine differenzierbare Abbildung.

Bemerkung: (a) Im Ausdruck f'(xo)(x — xo) wird die Matrix f’(x() mit der Spaltenmatrix
(x — xo) multipliziert.

(b) Der Grenzwert (6.24) besagt, daB3 k(x) fiir x — x¢ »schneller« gegen Null strebt als die Dif-
ferenz (x —x¢). Damit stellt die Gleichung (6.23) eine vollstindige Analogie zur entsprechenden
Aussage im Eindimensionalen dar. Denn wire f = f reellwertig und x = x eine reelle Variable,
so folgte aus (6.23) nach Umstellung:

f@) = fxo) ., k(x)
LTI ixe

X — XQ X — X0

Differenzierbarkeit in x liegt also genau dann vor, wenn die rechte Seite gegen Null strebt, wie
in (6.24) gefordert wird.

Wie kann man erkennen, ob eine Abbildung differenzierbar ist? Dariiber gibt der folgende
Satz Auskunft, der im Wesentlichen sagt: Sind die partiellen Ableitungen von f stetig, so ist f
differenzierbar.

(Fiir den Beweis verweisen wir auf [56], Satz 6.9, S. 280.)

9 Man spricht hierbei auch von »totaler Differenzierbarkeit« oder »Frechét-Differenzierbarkeit«.
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Satz 6.6:

f:D— R" (D C R") ist in dem inneren Punkt x( aus D differenzierbar, wenn alle
partiellen Ableitungen von f in einer Umgebung von x( existieren und in x stetig
sind.

Beispiel 6.16:

3,3 2.3 2
X7 X X1 3xtx5  3xex
fo=| 7 0 x=| |eR = fe=| 7 TR
xl2 + x% X2 2x1 2x7
Die partiellen Ableitungen — sie stehen in der Ableitungsmatrix — sind offenbar alle stetig in

R? Nach Satz 6.6 ist f daher in ganz R? differenzierbar.
Wihlen wir z.B. x¢ = [ﬂ aus, so erlaubt (6.23) folgende Darstellungen von f(x):

ro=[]+[2 ¥ v
8+ 12(x1 —2) +24(x2 — 1) + ki (x) mit k= |k
S5+ 41 =2)+ 2(x2 — D)+ ka(x) | o

Da |k(x)] fiir x-Werte, die geniigend nahe bei x¢ liegen, »sehr klein« ist, geben die Glieder der
rechten Seite, ohne k(x), eine gute Approximation fiir f(x) in der Nidhe von x¢ an.

Die Abbildungen aller vorausgehender Beispiele in diesem und in dem vorigen Abschnitt
(Beisp. 6.7—6.15) erfiillen die Voraussetzungen des Satzes 6.6, denn ihre partiellen Ableitungen
sind offensichtlich iiberall stetig. Somit sind alle Abbildungen dieser Bereiche differenzierbar,
und zwar in allen Punkten ihrer Definitionsbereiche.

Ein Beispiel einer Abbildung, die zwar partiell differenzierbar ist, aber nicht differenzierbar,
findet man in Ubung 6.18.

Veranschaulichung: Im Falle einer reellwertigen Funktion zweier Variabler 146t sich die Diffe-
renzierbarkeit mit Hilfe von Tangentialebenen veranschaulichen:
Es sei f(x, y) dargestellt durch die in Fig. 6.11 skizzierte gebogene Fldche. f sei in xg =

Bﬂ differenzierbar, d.h. es gilt nach (6.23):

f(x’ Y) = f(x01 )’0) + [fx(x()v YO)» fy(-xOs )’0)] |:§ :f}g} +k(xv Y)

= f(x0, y0) + fx(x0, yo)(x — x0) + fy(x0, y0)(y — y0) + k(x, y),

wobei (6.24) erfiillt ist. Die Glieder der rechten Seite, ohne k(x, y), bilden folgende Abbildung
g :R* > R:

g(x,y) = f(xo, yo) + fx(x0, y0)(x — x0) + fy(x0, Y0) (¥ — y0) .

Der Graph von g ist eine Ebene, die sich — wegen der »Kleinheit« von k(x, y) — an den Gra-
phen von f anschmiegt. Wir nennen diese Ebene die Tangentialebene an f in x¢. (Der Ausdruck
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421 I =
/7 | Tangentialebene ™~ "

v<

e

»5

Fig. 6.11: Differenzierbarkeit von f in x und Tangentialebene

»Tangentialebene« wird auch fiir die Abbildung g selbst benutzt.)

Wir konnen daher kurz sagen:

f(x, y) ist genau dann in xog = |:y21| differenzierbar, wenn es eine Tangentialebene an f in

x0 gibt.

Wir kehren noch einmal zur Definition 6.15 der Differenzierbarkeit allgemeiner Abbildungen
f D — R™(D C R") in x( zuriick. Wie in unserer zweidimensionalen Betrachtung faf3t man
die ersten Glieder auf der rechten Seite von (6.23) zu einer neuen Abbildung g : R* — R™”
zusammen:

g(x) == f(xo) + f'(x0)(x — x0), (6.25)

und nennt sie die Tangentialabbildung von f in x¢. Es gilt also
f(x)=gx)+k(x) (6.26)

mit (6.25). |k(x)| ist — intuitiv gesprochen — »sehr klein« in der Néhe von x¢. Man kann
also f(x) in geniigender Nihe von x( durch g(x) ersetzen, ohne einen allzu groflen Fehler
zu machen. g(x) ist aber sehr einfach zu berechnen, meistens viel einfacher als f(x) selbst.
Diese Approximation von f durch die viel einfachere Tangentialabbildung g ist der Kern- und
Angelpunkt der Differentialrechnung.
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Ubung 6.17:

Schreibe fiir die folgenden Abbildungen und die angegebenen Punkte x( die Gl. (6.23) hin, die
die Approximation der Abbildung durch eine Tangentialabbildung beschreibt (vgl. Beisp. 6.16).

@ flr,y) =x2—y%, *o= XO}:[Z]
| Yo -2
_ Xy _ _xo _ 1
o ron-l0] e[
[ 3
(©) f(xq,x2,x3) =x1x%x§a xp=|-2
1

Berechne fiir einige x-Werte in der Néhe von x() (z.B. mit |x —x(| < %) die Werte f(x) und der
Tangentialabbildung g(x) (s. (6.25)). Vergleiche g(x) und f(x). Berechne insbesondere ihren
Abstand | f(x) — g(x)].

Ubung 6.18:

Wo sind die folgenden Funktionen definiert und wo differenzierbar?

@ f(x,y)=41-x2—)2,

() f(x,y) =Inlxy),

sin(x) sin(y) cos(z)
x24y2 422

(d) Zeige, daBl die Funktion

© fx,y,2)=

Fory) = y (1 + cos ”y—x) , fir |y| > |x|,

s sonst

stetig und partiell differenzierbar in R2 ist,

jedoch nicht differenzierbar in 0.

Ubung 6.19:

Essei f : D — R™ (D C R™) eine Abbildung, und x( € D.
Beweise: Kann man f in der Form

S @) = fxo) + Alx —x0) + -k(x)

darstellen, wobei A = [a;i]m,n eine reelle Matrix ist und k : D — R™ eine Abbildung mit
lk(x)|/|x-—x¢| — Ofiirx — x,soist f partiell differenzierbarin x¢, und es gilt A = f’(x).
(= f istdifferenzierbar in x()). Hinweis: Beim Grenziibergang x — xg wird x so gewihlt, da
sich x nur in der k-ten Komponente x; von x¢ unterscheidet (= a;; = 9f;/0xg).
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d

Z 7
AT
¥

Fig. 6.12: Zu Ubung 6.18d

6.3.3 Regeln fiir differenzierbare Abbildungen. Richtungsableitung

Satz 6.7:
Ist f: D — R™ (D c R") differenzierbar in xg, so ist f auch stetig in xo. Mehr
noch: Es gibt eine Umgebung U von x( und eine Konstante M > 0 mit

|f(x) — f(x0)] < M|x —xo| firallex € U.

Beweis:
Aus (6.23) folgt nach Umstellung

[k (x)]
|x — xol

|f(x) — f(x0)| < |f (xo)llx — x0| + |x — xo (6.27)

fiir alle x € D mitx # xo. Wegen |k(x)|/|x —xo| — O fiir x — x gilt: Es gibt eine Umgebung
U mit |k(x)|/|x — xo| < 1 fiiralle x € U. Mit M := | f'(xq)| + 1 folgt aus (6.27) damit die
Behauptung des Satzes. (]

Satz 6.8:
(Linearitdt) Sind f : D — R™und h : D — R™ (D C R") differenzierbar in x, so
ist auch A f + wh (mit reellen A, p) in x differenzierbar, und es gilt

(A f + 1h) (x0) = 1 f'(x0) + ph'(x0) . (6.28)

Der einfache Beweis bleibt dem Leser iiberlassen.

Satz 6.9:
(Kettenregel) Esseih : C — D (mit C C R”, D C RP?) differenzierbar in xo € C und
f : D — R™ differenzierbar im Punkt z9p = h(x(). Dannistauch f oh : C — R™
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in x differenzierbar, und es gilt

(f oh) (x0) = f'(zo)h'(x0) '°. (6.29)

Beweis:
Mit
f@) = f(zo) + f'(zo)(z — z0) + k(z) und
z =h(x) = h(xo) + h'(x0)(x — x0) + m(x)
folgt durch Einsetzen
(foh)(x) = f(h(x)) = f(z) = f(z0) + f'(z0)(h(x) — h(x0)) + k()
= f(zo) + f'(zo) (W' (x0)(x — x0) + m(x)) + k(z)

= f(zo0) + f'(zo)h (x0)(x — x0) + s(x) (6.30)
mit s(x) = f'(zo)m(x) + k(h(x)). (6.31)

Wir setzen abkiirzend

fiir x #£ x0, 2 # zo sowie my(x) := 0, ko(z) := 0, und erhalten aus (6.31)

s () < [f'(zo)|lmo(x)[lx — xo| + [ko(2)||h(x) — h(x0)]|
< |f'(zo)lmo(x)||x — xo| + [ko(h(x))|M|x — xo|
fiir ein M > 0 und alle x aus einer Umgebung U von x (s. Satz 6.7). Wegen mo(x9) — 0 und

ko(h(x)) — 0 fir x — xq folgt damit |s(x)|/|x — xo| — O fiir x — x¢. Somit liefert (6.30)
die Behauptung des Satzes (vgl. Ub. 6.19). O

Fiir den héufig auftretenden Sonderfall, da8 & nur von einer reellen Variablen abhingt, formu-
lieren wir den Satz noch einmal ausfiihrlicher.

Folgerung 6.5:
Durch x = h(t), oder in Komponentenschreibweise
x1 hi(7)
x2 ha (1)
Xn hn (2)

10 Rechts werden zwei Matrizen multipliziert.
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sei eine Abbildung von einem Intervall 7 in D € R” gegeben. & sei in 1y € [ differen-

zierbar. Ferner sei durch

X1

yzf(x17x25"'axn)’ X = E ’

Xn

eine Abbildung von D in, R™ beschrieben, die in xg = h(fy) differenzierbar ist. Fiir

die zusammengesetzte Abbildung

yO)=(fohl)®) = f(h@),....h (1)), 1€,
gewinnt man nach Satz 6.9 folgende Ableitungen in #y:

d . dh
S oM@ = £/l w) =Y a—i(mefao) .

k=1

dye  diy dy

(6.32)

d
Mit den Bezeichnungen & = F(“’) und — = E(f o h)(ty) erhilt (6.32) die

dr -’
leicht zu merkende Kurzform:

dy _i dy dx
dr _k—l ox; dr

Beispiel 6.17:

Es sei

y=f(x1,x) =xisinxy, x;,xelR
und x; =h;(t) =cost, teR,

X0 =ha(t) =13,
Damit wird die Ableitung von
y = f(hi(t), ha(1)) = costsint>
nach ¢ mit Hilfe von (6.33) folgendermalen berechnet:

dy  dy dx dy dxz

4+ — —= =2x;sin(xy) - (—sint) + x7 cos(x) - 312

dr — 9x dr d0xp dt
= 2costsin(t3)(— sint) + cost cos(t3)3t2 .

(6.33)

(6.34)

Das »direkte« Differenzieren von (6.34) nach ¢ mit der Produktregel liefert natiirlich dasselbe.
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A \ o

"

H
AR N
a

Xo

‘X! hm \
. . . a
Fig. 6.13: Richtungsableitung a—f(xo) =tano
a

Richtungsableitung: Wir kniipfen noch einmal an Folgerung 6.5 an. Hat hierin A die Gestalt
h(t) =x0+ta mit|a] =1

(xo € R",a € R",t € R), so ist zweifellos k'(¢) = a fiir alle # € R. Damit folgt aus (6.32) fiir
to=0

d
E(f o h)(0) = f'(x0)a
t
h(t) beschreibt eine »Gerade« in R”, die fiir steigende ¢ in Richtung a durchlaufen wird. (Man

vergegenwartige sich dies im R? oder R3.) Aus diesem Grunde nennt man f’(xo)a mit |a| = 1
auch die Richtungsableitung von f in Richtung a und beschreibt sie durch

3
2l @0 = f "(x0)a . (6.35)

Im Sonderfall einer reellwertigen Funktion f wird die senkrecht geschriebene Ableitungsmatrix
f/(x0)T auch der Gradient von f genannt, abgekiirzt: grad f (x), also

grad f(x) := f/0)" = [ o, ®), fr, (), fis (), .oy fr, COIT.

Damit ist die Richtungsableitung von f in x¢ in Richtung a (la| = 1) gleich

a n
g/ (*0) = grad f(xo) -a = > faxo)ak . (6.36)
k=1
wobei ay, ..., a, die Komponenten von a sind. Die Richtungsableitung (6.36) wird maximal,

wenn a = grad f(xg)/| grad f(xo)| ist (grad f(xg) # 0 vorausgesetzt). Man sagt daher: Der
Gradient von f weist in die Richtung des stirksten Anstiegs von f.
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Ubung 6.20%:
(a) Esseien f : R? — Rund & : R — R2 definiert durch

_ oM x|, (mo| _| 7
f(x) =¢e"Tsinx,, |:X2i| =h@) = [hz(t)i| = |:1 +t2}

also (f o h)(t) = ¢’ ’ sin(1 + t2). Differenziere diese Funktion auf zwei Weisen: einmal
direkt und einmal mit (6.33).

(b) Bestimme die Richtungsableitung

6.3.4 Das vollstiandige Differential

Wir gehen noch einmal von der Differenzierbarkeit einer gegebenen Abbildung f : D — R™
(D € R") in x¢ aus. Sie besagt, daB f(x) folgendermalien geschrieben werden kann:

x1
fx)=fxo)+ ffX)(x—x0)+k(x), x=|:|eD, (6.37)

Xn

mitk(x)/|x —xg| — 0 fiir x — xo. Ausgehend von der Funktionsgleichung z = f(x) schreiben
wir abkiirzend

Az = f(x) — f(x0)
und erhalten (6.37) in der Form
Az = f'(x0)(x — x0) + k(x)

Da |k(x)| fiir kleine |x — x| sehr kleine Werte hat, gibt f'(x0)(x — x¢) in diesem Falle recht
genau die Abweichung §z des Wertes f(x) von f(x() an.
In Physik und Technik werden gerne die Bezeichnungen

dx :==x —x9 und dz:= f'(xg)dx (6.38)
gewihlt. Beschreiben wir die Komponenten von x — x¢ mit dxj, dx», ..., dx,, also

dx,

so erhilt man aus (6.38) ausfiihrlicher:
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n

0
dz=)" —f(xo) dxy . (6.39)
0X
k=1
Die hierdurch beschriebene lineare Abbildung — wobei dxi, ..., dx, die reellwertigen Varia-

blen sind — heiflen das vollstindige (oder totale) Differential von f in x¢. Diese Abbildung wird
durch df symbolisiert, genauer d f : R" — R™, mit der Funktionsgleichung

n

0
df(dxy, ..., dx,) = Z a—i(xo) dxy . (6.40)
k=1

Schreibt man fiir die linke Seite wieder dz, und setzt man ferner abkiirzend
oz df
dxy  Oxk

so wird das vollstdndige Differential von f in xo durch folgende iibersichtliche Gleichung ange-
geben:

n
0z
dz = — dxg . 6.41

Diese Schreibweise ist in Physik und Technik sehr gebrduchlich (vgl. Beisp. 6.18 und 6.19).
Wie schon erwihnt, gibt das vollstindige Differential (6.38) fiir kleine | dx| mit guter Genau-

igkeit die Differenz der Funktionswerte f(x) — f(x() an. Darin liegt seine Bedeutung.

Veranschaulichung: Im Falle einer reellwertigen Funktion wird das vollstindige Differential

dfinx = [xo] durch
Yo

of of
dz = df(dx, dy) = ——(x0, yo) dx + ——(x0, yo) dy
ox ay

beschrieben. Sein Graph wird durch eine Ebene veranschaulicht. Dabei liegt ein parallel ver-
schobenes Koordinatensystem mit dx-, dy- und dz-Achse zugrunde, dessen Ursprung im x-y-z-
System die Koordinaten xq, yo, f(x0, yo) besitzt (s. Fig. 6.14).

Beispiel 6.18:
(Auswirkung von Meffehlern) Die Schwingungsdauer eines mathematischen Pendels der Lénge
[ (s. Fig. 6.15) ist

I
T =21 |—.
g

Dabei ist g die Erdbeschleunigung. Wieviel % relativer Fehler hat man fiir 7 schlimmstenfalls
zu erwarten, wenn / und g auf hochstens 0,1% genau gemessen sind?
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rd

X

Fig. 6.14: Zum vollstéindigen Differential Fig. 6.15: Mathematisches Pendel

Zur angeniherten Berechnung benutzen wir das vollstindige Differential

dT = = di + — dg, (6.42)
8

d

Da

dl
T < 0,001 und < 0,001. Der relative Fehler

8
von T ist also hochstens 0,1%.

< 0,001 vorausgesetzt ist, folgt

Gas I

Fig. 6.16: Gas im Kolben. Zu Beisp. 6.19

Beispiel 6.19:

(Anwendung auf die Gasdynamik) Volumen V', Druck p und Temperatur T eines homogenen Ga-
ses (s. Fig. 6.16) — oder einer homogenen Fliissigkeit — hingen durch Gleichungen zusammen,
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z.B. durch
V=[fpT). (6.43)

(Bei idealen Gasen lautet diese Gleichung V = RT/p, bei realen Gasen oder Fliissigkeiten
anders.) Wir nehmen an, daf} sich (6.43) nach p auflosen 14t, d.h. in die Gestalt

p=gT,V)

umformen 148t (bei idealen Gasen p = RT/V). Die angegebenen Funktionen f und g diirfen
wir als stetig differenzierbar voraussetzen. Dabei ist

10V
o = —— der Ausdehnungskoeffizient

VorT I

1 9V abhingig von p und 7,
k = —— — die Kompressibilitit

V ap

10
B= - 8_§ der Spannungskoeffizient, abhéngig von V und T'.
p

Zwischen diesen Groflen besteht die folgende Beziehung:
o = pPk. (6.44)

Wir wollen diese Gleichung herleiten und betrachten dazu zunéchst das vollstindige Differential
von f:

dV = —dp+ —dT. (6.45)
P

Nehmen wir fiir den Augenblick an, da3 hier der Unterschied dV des Volumens exakt wieder-
gegeben wird und nicht nur angenéhert, so ist bei konstant gehaltenem Volumen dV = 0, und
damit
v av av dp aV
=5 ———+t ==
ap oT ap dT ~ oT

Da V konstant ist, dp/dT durch ap/9T ersetzbar und man erhilt

av a av
& + == (6.46)
ap oT 0T

Daraus folgt mit den Definitionen von «, ¥ und 8 sofort die behauptete Gleichung o = pB«.

Die obige Argumentation ist wegen der genannten Annahme nicht prizise. Bei einem exakten
Beweis von (6.44) gehen wir daher so vor:
Wirsetzen p =g(T,V)inV = f(p,T) ein:

V=/f@TV),T)
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und halten nun V = V{ konstant:

Vo= f(g(T, Vo), T).

Rechts steht eine Funktion von 7', die nach Kettenregel (Folg. 6.5, Abschn. 6.3.3) abgeleitet wer-
den kann. Die linke Seite hat die Ableitung 0, da V{y konstant ist. Also folgt durch Differentiation
nach T':

_9f dg | Af dT

O__ N ——
ap oT = T dT

(6.47)

- . . of avV  og ap
wobei die Variablenbezeichnungen weggelassen wurden. Wegen — = —, — = — u

ap ap 0T oT
dr

Frd = 1 ist die GI. (6.45) aber mit (6.46) identisch. Damit ist (6.44) bewiesen.

nd

Bemerkung: (a) Die beschriebene Herleitung von o = ppBk ist fiir das Vorgehen in Naturwis-
senschaft und Technik typisch: Zuerst wird aus einer plausiblen vereinfachenden Annahme, die
die Exaktheit nur geringfiigig stort, eine Gleichung gewonnen (hier (6.45)). Gerade das vollstén-
dige Differential eignet sich fiir solches plausibles Schlieen gut. In einem zweiten Schritt wird
dann eine exakte Herleitung »nachgeliefert«. Solche mehrstufige Herleitung und Prizisierung ist
ein gingiges und erfolgreiches Verfahren. Der beriihmte Physiker E. Schrodinger hat das einmal
so beschrieben:

Es dauert fiinf Minuten, die Idee einer neuen Theorie zu entwickeln. Nach einer Stunde hat
man die Gleichungen aufgestellt. Eine Woche dauert es, bis die Dimensionen aller Gréfen
zusammenpassen, einen Monat, bis die Vorzeichen stimmen. Und nach einem Jahr entdeckt
man, daB3 noch ein Faktor % fehlt.

Ubung 6.21:
(Vereinfachte angendiherte Rechnung) Berechne niherungsweise 2,02391 Fiihre dazu die Funk-
tion f(x,y) = xY ein (x > 0, y > 0) und ermittle f(2,02, 3,01) ndherungsweise aus
f(2,3) 4+ df, wobei

af af
df = —dx+ —dy, (dx=0,02, dy=0,01).
0x ay

Die partiellen Ableitungen werden fiir x = 2 und y = 3 gebildet.
6.3.5 Hohere partielle Ableitungen
a
Jede partielle Ableitung a—f einer Abbildung f : D — R™ (D C R") ist wieder eine Abbildung
X

von D in R™. Es entsteht dadurch eine zweite partielle Ableitung, fiir die folgende Schreibweisen
tiblich sind:

d (9 32
— (—f> (x0) =: f (x0) =t fyx (¥0) =1 Di f(x0) !

dxp \ Ox; 0x0x;
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Existiert diese Ableitung in jedem inneren Punkt von D und ist abermals ableitbar, etwa nach
xj, so entsteht entsprechend eine dritte partielle Ableitung

Bf

X 0xy0x; fx’x"xf i f

Auf diese Weise fahrt man fort und gelangt zu beliebig hohen Ableitungen f X . Wir er-

Xiy - Xip
wihnen noch, da3 man bei mehrmaligem Ableiten nach einer Variablen x; abkiirzend schreibt:

omf . "f

3)6;" o Bx,-axi ce 8xi ’

Wird f durch eine Funktionsgleichung beschrieben, z.B. y = f(x), so werden die hoheren
partiellen Ableitungen auch durch

3y 3y %y
ax? T 3x10xy 9x10x20x4

usw.
ausgedriickt. Diese Schreibweise wird in Naturwissenschaft und Technik viel benutzt, da man
der abhéngigen Variablen (hier y) hiufig ansieht, welche physikalische GroBe sie darstellt.

Beispiel 6.20:

f(x1,x) = xlzxz. Der besseren Ubersicht wegen lassen wir die Variablenangabe (x1, x2) bei
den Ableitungsfunktionen weg. Es folgt:

2
Sa @, x) =2x1x2,  fo,(x,x2) =x7,  fy,o@1,x2) = 2x7,

fxlxz(XI’XZ) = Oa fxlxz(-xl»-xz) = fx2x1 (thz) = 2.X] .

Auch bei den folgenden Beispielen lassen wir die Variablenangabe links weg.

Beispiel 6.21:
flx,y)=x3+ev.

= fx=3x2+yexy, fy=xe",
fex = 6x + y? eV, fy = xZe®, foy = fyx =0 +xy)e? .

Beispiel 6.22:

o X1X2X3 _ X2X3
S 0,x3) = |:Sin(x1 +2x2 + 3x3)] = Iu= |:C°S(x1 +20+ 3x3)] ’

fo= X1X2 f —f _ X3
*2 7 1 2cos(x) + 2xp +3x3) |’ xxve T Sex T 2 6in(xy 4+ 2x0 4+ 3x3) |

11 Man beachte, daf3 in f x;x;, die Indizes i, k in umgekehrter Reihenfolge stehen, gegeniiber den iibrigen Schreibwei-
sen.
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Der Leser berechne zur Ubung:

fx3 ’ fxpcg s fxyq ’ fqu ’ fxycz s fxlxz)q s fX3x2x1 ’ fx1x1x2 ’ fxmxl .

Es fillt auf, da in den Beispielen f , = f,,,, bzw. f, = f,, gilt.

Auf die Reihenfolge der Differentiation kommt es dabei nicht an. Dies gilt auch fiir hohere
Ableitungen, wie im letzten Beispiel f 1,y = fiyxpx, USW-

Hier liegt eine allgemeine GesetzméiBigkeit vor, die in folgendem Satz formuliert ist. Dabei
fiihren wir noch eine Bezeichnung ein: f : D — R™ (D C R") heilit p-mal stetig differen-
zierbar, wenn alle partiellen Ableitungen von f, von der ersten bis zur p-ten, existieren und im
Inneren von D stetig sind. Statt »einmal stetig differenzierbar« sagt man kurz stetig differenzier-
bar.

Satz 6.10:
(Vertauschung partieller Ableitungen) Ist eine Abbildung f : D — R™ (D C R")
p-mal stetig differenzierbar, so kann in allen partiellen Ableitungen
fx,-lx,-z...x,-k mlt 1 S k S p
Die Reihenfolge der x;,, . .., x;, beliebig gedndert werden, ohne daf sich die partiellen
Ableitungen selbst dabei dndern.

(Zum Beweis s. [56], Abschn. 6.2.4, S. 284 —285)

6.3.6 Taylorformel und Mittelwertsatz

Wie im Eindimensionalen kann man auch differenzierbare Abbildungen im R” mit Hilfe der
Taylorformel entwickeln und damit leicht berechenbare Polynome annéhern.

Wir setzen voraus, dal f : D — R™ (D C R") eine (p + 1)-mal stetig differenzierbare
Abbildung ist. p ist dabei eine nichtnegative ganze Zahl.

Zur Aufstellung der Taylorformeln bendtigen wir einige Bezeichnungen, die sich als praktisch
erweisen:

Mit
ax;
d
V= X2
| dx, |

wird ein symbolischer Vektor bezeichnet, der die partiellen Differentiationen nach den Variablen
X1, ..., X, als Komponenten hat. Er heiit Nabla-Operator.
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Wir »multiplizieren« ihn skalar mit einem beliebigen Vektor

hi
h

hy
aus R” und erhalten formal
9 9 " 9
h-Vi=h—+...+h,— = hi— .
! 0X1 + + i 0xy, ; ! 0Xx;

Angewandt auf eine differenzierbare Abbildung f : D — R (D C R") schreiben wir

9
(h-V)f(x):= Zhia—){(x). (6.48)
i=1 !

Es werden auch Potenzen von A& - V betrachtet, die formal berechnet werden, z.B.

V)2 = ) = . ]
(h ) (; hl ax,‘> Zl hlh] 8xl~8xj

inj=

Dabei laufen i und j unabhiingig von 1 bis 7, so daB die rechte Summe n? Glieder hat. Allgemein
berechnet man mit beliebiger natiirlicher Zahl k die Potenz

n k
0
h-V)k = E hihi, ... -hjj———— .
hovr= 2, hahi M oxi, 0xi, .. 0%,
i1,i,...,ik=1
In der Summe wird iiber alle k-Tupel (i1, ia, ..., ix) mitiy, ..., ig € {1,2, ..., n} summiert. Die

Summe hat daher n* Glieder.
Der »Operator« (h - V)K wird, wie in (6.48) auf f angewandt. Wir vereinbaren also:

k : *f
-V f)= Y hiyoohy———(x). (6.49)

ik
ax,-l coo ax,-k

Noch eine weitere Vorbereitung: Sind a und h beliebige Vektoren aus R”, so bezeichnet man
[a,a+hl={x=a+sh|0=<s<1}

als Strecke mit den Endpunkten a und a 4 h. (Der Leser iiberzeuge sich davon, daf} dieses im R?2
und R3 der iiblichen geometrischen Vorstellung entspricht.)

Damit formulieren wir den folgenden Satz, der die Taylorformel samt Restglied fiir differen-
zierbare Abbildungen beschreibt. (Zum Beweis s. [56], Abschn. 6.2.6, S. 286 —289.)
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Satz 6.11:
(Taylorformel im R™) Die Abbildung f : D — R™ (D C R”) sei (p + 1)-mal stetig
differenzierbar, und [a, @ + h] sei eine im Inneren von D liegende Strecke. Damit gilt
die Taylorformel

fla+h) =f(a)+%(h~V)f(a)+%(h~V)2f(a)+...+%(h-V)pf(a)+R(a,h)

(6.50)
mit dem Restglied
a, h) = f - (h V)P*! f(a + sh)ds. 6.51)
Daraus ergibt sich die Restgliedabschdtzung
h Ll 5 h ’ 6.52
|R(a, h)| _moqgl Z ‘fxil..‘xip_'_] (a +sh)| . (6.52)

i1semsipp1=1

Bemerkung: In der Taylorformel ist x = a + h die eigentliche unabhingige Variable, wobei a
fest ist.
Fiir p = 0 folgt aus der Taylorformel

Satz 6.12:

(Mittelwertsatz im R") Ist f : D — R™ (D C R") einmal stetig differenzierbar, und
ist [a, a + h] eine Strecke im Inneren von D, so gilt

fla+h) — fa) = /(h V) f(a+ sh)ds (6.53)
0

sowie

[f@a+h)— f@] <kl sup | > |f(a+sh).
i=1

<§‘<

Die Wurzel rechts ist nichts anderes als die euklidische Norm der Ableitungsmatrix:
| f/(a + sh)|.

Vom Mittelwertsatz abgesehen (p = 0), gibt es technische Anwendungen der Taylorformel haupt-
sédchlich fiir p = 1 und p = 2, wobei f linear bzw. quadratisch angenihert wird.
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Ubung 6.22:
Schreibe fiir die Funktion f : R? — R, definiert durch die Gleichung f(x,y) = (x — 1)4(y -

23, x = e R2, die Taylorformel fiir @ = 0 und p = 2 auf. Schitze das Restglied fiir
y

|h| <1 ab.

6.4 Gleichungssysteme, Extremalprobleme, Anwendungen

6.4.1 Newton-Verfahren im R”

Gegeben sei ein Gleichungssystem von n Gleichungen mit n Unbekannten x1, ..., x,:

filx1, %2, ... %) =0
frlx1,x2, . x0) =0

(6.54)
fn(-xlv X2y e ,_xn) =0
Mit
i fi
x = und  f =] :
n o
kann man das Gleichungssystem (6.54) kiirzer so beschreiben
fx)=0. (6.55)

Dabei sei D C R" der Definitionsbereich von f, d.h. f bildet D in R* ab: f : D — R". Wir
setzen f als stetig differenzierbar voraus.

Gesucht sind Punkte x € D, die (6.55) erfiillen. Solche x heilen Losungen der Gleichung
fx)=0.

Hat man schon geniigend gute Niherungslosungen, so kann man mit dem Newtonschen Ver-
fahren versuchen, zu beliebig genauen Losungen zu kommen. Das Newtonsche Verfahren fiir
f(x) = 0im R” ist dem Newton-Verfahren fiir Funktionen einer Variablen nachgebildet (s. Ab-
schn. 3.2.6) und zwar folgendermaBen: Liegt xo € D2 in der Nihe einer Losung von x = x
von f(x) = 0, so bildet man die Tangentialabbildung von f in xq:

gx) = f(xo) + f(xo)(x —x0), x€D,

und 16st anstelle von f(x) = 0 die Gleichung g(x) = 0, d.h. man sucht eine Losung x; der
Gleichung

g(x1) = f'(xo)(x1 —x0) =0. (6.56)

12 DO Inneres von D, s. Abschn. 6.1.4, Def. 6.7b
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Es handelt sich dabei um ein lineares Gleichungssystem, fiir das es mehrere gute Losungsmetho-
den gibt (z.B. den Gauf3schen Algorithmus, s. Burg/Haf/Wille (Lineare Algebra) [7]). Da sich g
und f in einer Umgebung von x( nur wenig unterscheiden, ist zu hoffen, dafl x| recht nahe bei
der Losung X von f(x) = 0 liegt, jedenfalls ndher als x.

Im Falle x| € D fiihrt man, von x| ausgehend, den gleichen Rechenschritt abermals durch,
d.h. man sucht ein x, € R? mit

fx)+ fxDx2—x)=0.
Liegt x5 in D , S0 berechnet man anschlieend x3 aus
fx2) + flx2)(x3 —x2) =0,

. Q .
usw. Allgemein: Ist x; € D berechnet, so ermittelt man x| aus

fx)+ ffx) @i —x0) =0, k=0,1.2,.... (6.57)
Auf diese Weise erhilt man eine Folge x¢, x1, X2, X3, ..., Newtonfolge genannt, vorausgesetzt,
daB alle Matrizen f'(xy) reguléirl?’ sind und alle x; in D liegen. Dabei wird man von der be-
rechtigten Hoffnung befliigelt, da die Folge x¢, x1, x2, ..., Xg, ... gegen eine Losung X von

f(x) = 0 konvergiert.

Das beschriebene Verfahren heiflt Newton-Verfahren im R". Multipliziert man (6.57) von links
mit f(x )~ und 16st nach x x+1 auf, so erhilt man die Rechenvorschrift des Newton-Verfahrens
in der Form:

xo gegeben,

’ -1 .. (6.58)
X1 =X — f(xp)” fxg) fir k=0,1,2,....

Damit ist eine vollstindige Analogie mit dem Newton-Verfahren bei einer reellen Unbekannten
gegeben (Abschn. 4.1.3).

Bei praktischen Rechnungen geht man allerdings besser von (6.57) aus. Man setzt dabei zur
Abkiirzung zyx41 := Xkx4+1 — Xg, berechnet z541 aus

fx)zre1 = — f(xx)

und bildet anschlieBend x| = xi + Zx+1. Wir fassen die Rechenvorschrift noch einmal zusam-
men:

Algorithmus des Newton-Verfahrens: Es sei f : D C R" — R" stetig differenzierbar

() Man wihlt einen Anfangswert xg € D.

(I) Man berechnet x1, x3, X3, ..., Xk, . . ., indem man nacheinander fiir k = 0,1,2, ... das

13 Eine Matrix A heif3t reguldr, wenn ihre Inverse A~ existiert (s. Abschn. 6.1.5).
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Gleichungssystem

f'x)zrg1 = —f (xx) (6.59)

nach zx 1 auflést und x| + X + z441 bildet. Dabei wird f’(xy) als regulér vorausge-
setzt sowie X € D fiir alle k = 1,2,3,....

(II) Das Verfahren wird abgebrochen, wenn die xj sich innerhalb einer vorgegebenen Re-
chengenauigkeit nicht mehr dndern oder wenn k einen vorgegebenen Hochstwert erreicht
hat (z.B. k = 10).

Wie dicht die zuletzt berechnete Niherungslosung x; an der zu ermittelnden Losung X von
f(x) = 0 liegt, ist aufgrund einer Fehlerabschitzung (s. Satz 6.13) zu iiberpriifen. Natiirlich
kann man anstelle von (III) auch abbrechen, wenn eine Fehlerabschitzung anzeigt, daf3 eine ge-
wiinschte Genauigkeit erreicht ist.

Beispiel 6.23:
Es sei folgendes Gleichungssystem zu 16sen:
1, 1 1, 1
——x;——-=0, - = -=0.
X1 3x 3 X2 4x1 + 6

Wir fassen die linken Seiten als Komponenten einer Abbildung f : R?> — R? auf, d.h.

1, 1
X|— X5 — =
S1(x1, x2) 3 8 xi 2
X)) = = . X = S R .
Feo |:f2(xl,x2) 1 2—1-1 X2
m-gxte
Gesucht werden Losungen von f(x) = 0. Wir wollen dabei den Algorithmus des Newton-
Verfahrens verwenden, ausgehend von xo = |:81| Die Newtonfolge xg, x1, X2, ... ist definiert

durch

&0z = —f(xp),  Xkp1 =Xk +2k41, k=0,1,2,...

mit der Ableitungsmatrix

2
1 )
f/(x) = 1
—EX] 1

Die Rechnung enstprechend dem Algorithmus des Newton-Verfahrens ergibt Tab. 6.1 (gerundet).
Man erkennt, da ab k = 3 im Rahmen der Rechengenauigkeit keine Anderung mehr eintritt. Bei
Rechnung mit 9 Stellen nach dem Komma ergibt das Einsetzen von x3 (s. Tab. 6.1) in f folgen-
des: f(x3) = 0+ & mit |e] < 5- 10710, x5 ist also im Rahmen der Rundungsfehlergenaugikeit
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eine Losung von f(x) = 0.

Tabelle 6.1: Zum Newton-Verfahren fiir Gleichungssysteme, Beispiel 6.23

Komponenten von x
(k) (k)
*1 *2

0,000000000  0,000000000
0,125000000  -0,166666667
0,133764368  -1,162212644
0,133768871  -0,162193139

0,133768871  -0,162193139

AW —=O|x

Bemerkung: Man kann den Algorithmus, insbesondere bei grofer Dimension n, dadurch verein-
fachen, daB man statt f’(xy) einfach f’(x¢) setzt, also von x( € D ausgehend die Niherungsls-
sungen X1, X2, X3, . . . aus den Gleichungssystemen

F x0)Xpg1 — xp) = — f(xk)

fir k = 0,1,2,3, ... ermittelt. Man nennt dies ein modifiziertes Newton-Verfahren. Der Vorteil
liegt darin, daB man bei Anwendung des GauBschen Algorithmus die linke Seite f’(x0)zii1
nur einmal auf Dreiecksform bringen muf}. Der Nachteil dieses Verfahrens ist dagegen, dal} es
im allgemeinen langsamer konvergiert als das tibliche Newton-Verfahren. Man hat also in jedem
Fall zu iiberlegen, nach welcher Methode man vorgehen mochte.

Zur Konvergenz: Einen Konvergenzansatz iiber das Newton-Verfahren findet man z.B. in [56],
Abschn. 6.3.2, S. 295-298. Dort werden recht allgemeine Voraussetzungen angegeben, unter
denen das Newton-Verfahren konvergiert, und zwar quadratisch (also sehr schnell). Doch sind
Konvergenzsitze dieser und verwandter Art nur von geringem praktischen Nutzen, da ihre Vor-
aussetzungen nur schwer zu verifizieren sind. Aus diesem Grunde zitieren wir nur den folgenden
einfachen Konvergenzsatz, der lediglich die grundsitzliche Berechtigung sichert, das Newton-
sche Verfahren anzuwenden.

Satz 6.13:
f : D Cc R" - R" sei zweimal stetig differenzierbar und besitze eine Nullstelle
¥eD: f (&) = 0. Ferner sei f’(x) fiir jedes x € D reguldr. Dann folgt: Es gibt eine
Umgebung U von X, so da} die Newtonfolge xg, x1, X2, ..., von einem beliebigen
xo € U ausgehend, gegen die Nullstelle X konvergiert.
Die Konvergenz ist quadratisch, d.h. es gilt fiir alle k = 1,2,3, ...

|xy —X| < C|x3_1 —X)*> miteinem C > 0.
Eine einfache Fehlerabschétzung lautet

e — %] < |f (xn)] sup If )7 (6.60)

xoeD
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(Zum Beweis s. [56], S. 298, Folg. 6.7.)

Zur Niherungslosung: Niherungslosungen x(, mit denen man das Newton-Verfahren beginnt,
ergeben sich bei technischen Problemen oft aus der Realitit, d.h. aus gewissen Lagen einer tech-
nischen Konstruktion. Dazu

Beispiel 6.24:

Ein Korper der Masse m sei an zwei Federn aufgehingt, wie es Fig. 6.17 zeigt. Die Federkon-
stanten seien a und b genannt. Damit gelten fiir die Waagerechte und die Senkrechte folgende
Kraftgleichgewichtsgleichungen:

—a-(rp — Ry)cosa+b-(p— Ry)cosBp=0,
a-(r1 — Ry sina+b-(2— Ry)sin =mg.

wobei ry, ry die Lingen der gedehnten Federn sind und R;, R, die entsprechenden Federldngen
im unbelasteten Zustand. In dem Dreieck mit den Seitenlédngen r, r» und s (= Abstand der oberen
Aufhingungspunkte) gelten folgende geometrische Zusammenhinge:

risinae —rpsinf =0,

ricosa+rpcosf=s.

2

%,
X
>

Ri ny % r2 R2 y
\ unbelastet
belastet
< m
L /

Fig. 6.17: Elastische Aufhingung eines Korpers

Die letzten beiden Gleichungen kann man nach r; und r, auflésen. Man erhilt unter Beach-
tung von sin(« + B) = sina cos B + cos « sin f:

s -sin B s - sina

= — s rn=———.
sin(a + B) sin(a + B)

Setzt man dies in die beiden Gleichgewichtsgleichungen ein, so erhilt man ein System von zwei
Gleichungen mit den zwei Unbekannten « und . Dies kann man mit dem Newton-Verfahren
16sen. Eine Niherungslosung ist dabei aus einer Skizze der Art der Fig. 6.17 schnell gefunden.



492 6 Differentialrechnung mehrerer reeller Variabler

Ubung 6.23:

Berechne mit dem Newton-Verfahren die Gleichgewichtslage der elastisch aufgehidngten Masse
in Beisp. 6.24 firm = 2kg,s = 1m, Ry = 0,9m, Ry = 1,1m, a = 11kg/m, b = 9kg/m.
Gesucht sind o und B.

6.4.2 Satz iiber implizite Funktionen, Invertierungssatz

Es geht um folgendes Problem: Durch z = f(x, y) sei eine Funktion in zwei Verdnderlichen
beschrieben. Unter welchen Voraussetzungen kann man

fx,y)=0

nach y »auflosen« so daf3 eine Funktion g mit y = g(x) entsteht? Man sagt im Falle der Auflos-
barkeit: g ist eine durch f(x, y) = 0 bestimmte implizite Funktion.

Beispiel 6.25:
Man betrachte die Gleichung

2x> 43y =0, «x,yreell
Auflssen nach y ergibt y = —2x2/3, also die Gleichung einer Funktion g auf R der Gestalt

g(x) = —2x?/3. Die Funktion g ist durch die Gleichung 2x? + 3y = 0 implizit gegeben, wie
man sagt.

Beispiel 6.26:
Die Gleichung

x2—y2+1:O, x,yeR,

dagegen liefert y = +/x2 + 1 und y = —+/x2 + 1, also zwei Funktionen und damit keine eindeu-
tig bestimmte Funktion.

Beispiel 6.27:
SchlieBlich 146t sich

x2+y2+l:O, x,y R,

tiberhaupt nicht nach y auflosen, da es keine reellen Zahlen x, y gibt, welche die Gleichung
erfiillen.

Der folgende Satz gibt Auskunft dariiber, wann f(x, y) = O eine implizite Funktion be-
schreibt.

Satz 6.14:

(iiber implizite Funktionen, zweidimensionaler Fall) Es sei f(x, y) eine stetig diffe-
renzierbare reelle Funktion zweier reeller Variabler. Ihr Definitionsbereich D C R?
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sei eine offene Menge. Fiir einen Punkt BO} € D sei
0

0
F(xo.y0) =0 und %(xo,yo#o. ©6.61)

Damit folgt:

(a) Es gibt ein Intervall U um x( und ein Intervall V um yo mit der Eigenschaft: Zu
jedem x € U existiert genau ein y € V mit

fx,y)=0.

Jedem x € U ist auf diese Weise genau ein y € V zugeordnet. Die dadurch
definierte Abbildung g : U — V, mit der Funktionsgleichung y = g(x), erfiillt
also

f(x,g(x)) =0 firalle xeU.

(b) g ist stetig differenzierbar, und es gilt fiir jedes x € U:

0
/ AT
g0 =g —r

ay

, (6.62)
(x, g(x)

493

a
Die entscheidende Voraussetzung in diesem Satz ist a—f(xo, yo) # 0. Anhand von Fig. 6.18
Yy

wird dies deutlich:

Fig. 6.18: Zum Satz iiber implizite Funktionen
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Der Graph von f hat im skizzierten Beispiel eine gekriimmte Schnittkurve mit der x-y-Ebene.

X0

0
Inxg = , einem Punkt auf dieser Kurve, ist offenbar 8—f(x0, yo) # 0, denn der Graph von
0 y

f steigt hier in y-Richtung an (s. Fig. 6.18). Das Intervall U um x( und ein zugehoriges Intervall
V um yp sind Definitions- und Bildbereich einer (eindeutigen) Funktion g, deren Graph auf der

genannten Schnittlinie liegt. Geht man dagegen vom Punkt x| = |:)y611| aus (s. Fig. 6.18), der
1

auch f(x1, y;) = O erfiillt, fiir den aber offenbar B—(x 1, y1) = 0 ist, so erkennt man, daf} die
y

Schnittkurve f(x, y) = 0 in keiner Umgebung von x| eine eindeutige Funktion y = g(x) liefert,
da die Schnittkurve aufgrund ihrer Bogengestalt zu jedem x-Wert zwei y-Werte mit f(x, y)
besitzt.

0
Die Skizze macht klar, da3 a—f(xo, yo) # 0 hinreichend fiir die eindeutige Auflosbarkeit von
y
f(x,y) = 0nach y ist. (Notwendig ist die Bedingung allerdings nicht!)

Der beschriebene Satz 148t sich nahezu wortlich auf differenzierbare Abbildungen verallge-
meinern:

Satz 6.15:
(iiber implizite Funktionen, allgemeiner Fall) Durch
fl(-xlv R} )’n)
S, y) = fX1, . X V1o ) = :
Su(x1, oo yn)

sei eine stetig differenzierbare Abbildung von einer offenen Menge D C R”*" in R"
beschrieben. Die Variablen werden zu folgenden Vektoren zusammengefaf3t:

h
X1 Y1
x Xm
X = N = s =
Y [y} Y1
Xm Yn
L Yn |
. X0
Fiir einen Punkt |:y :| € D gelte
0
f(xO’ yO) = 0 .
Ferner sei die Matrix
afi
fy(xo. yo) = [a—’<xo, yo>] (6.63)
Yk 1<i<n
1<k<n
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reguldr. Damit folgt:

(a) Es gibt eine Umgebung U C R™ von x( und eine Umgebung V C R” von y,
mit der Eigenschaft: Zu jedem x € U existiert genau ein y € V mit

fx,y)=0.

Jedem x € U ist auf diese Weise genau ein y € V zugeordnet. Die dadurch
definierte Abbildung g : U — V erfiillt also

fx,gx)=0 firalle xeU,

(b) g ist stetig differenzierbar, und es gilt fiir jedes x € U

g =—fx.n " frx.y).,  y=g, (6.64)
mit den Abkiirzungen

8,~ 31‘
fy(xay): I:ai(x7y)i| s fx(xay): I:i(x’y)i| .
Yk 1<i<n 0x I<i<n

1<k<n l<k=m

Zum Beweis des Satzes s. [56], Abschn. 6.3.3, S. 300—-303. Unter der etwas stirkeren Vor-
aussetzung, dal f zweimal stetig differenzierbar ist (was fiir technische Zwecke unerheblich
ist), findet man einen eleganten Beweis des Satzes 6.14 in Burg/Haf/Wille (Band III) [8], Ab-
schn. 1.2.4 (Satz 1.4).

Im Beispiel 6.25 ist die Auflosung nach y unproblematisch. Man iiberzeuge sich, daf} z.B. fiir
xo = yo = 0 die Voraussetzungen von Satz 6.14 erfiillt sind (zweifellos kann man hier U = R
und V = R wihlen).

Fig. 6.19: Zum Beispiel 6.26
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Fortsetzung von Beispiel 6.26: Hier ist f(x, y) = x> — y2 + 1 (D = R?) und

o _

=—-2y.
ay Y

a
Fiir xo = 0, yo = 1, z.B. berechnet man f (xg, yo) = 0 und 8—f(xo, yo) = —2 # 0, also sind die
y

Voraussetzungen von Satz 6.14 erfiillt. Durch

y=gx)=vx24+1, xeU:=R, V=[1,00)

wird eine implizite Funktion dazu beschrieben (s. Fig. 6.19).
Geht man von xg = 0, yop = —1 aus, so gelangt man entsprechend zu

y=8x)=—vVx2+1, xeU:=R, V=[-1-00).

Auch in Fillen, in denen keine formelmifBige Auflosung von f(x, y) = 0 nach y moglich ist,
kann der Satz die Existenz einer zugehorigen impliziten Funktion y = g(x) sichern. Dazu

Beispiel 6.28:
Wir betrachten f(x, y) = y + xy> —e* fiir x, y € R (d.h. Definitionsbereich D von f ist R?).
Hier ist die Auflésung von

f,y)=y+xy*—e¥ =0 (6.65)

durch elementare Umformung nicht moglich. Existiert trotzdem eine implizite Funktion y =
g(x) dazu, z.B. in einer Umgebung von xg = 0, yo = 1?

Zur Beantwortung berechnen wir zunichst

a a
—f(x,y)=1+2xy—xexy = —f(0,1)=1.
ay dy

Satz 6.14 liefert damit die Existenz einer differenzierbaren impliziten Funktion g : U — V
(0 e U),die f(x, g(x)) = 0in U erfiillt. Fiir x # 0 sind die Werte y = g(x) aus (6.65) mit dem
Newton-Verfahren (oder Bisektion, Regula falsi usw.) numerisch zu ermitteln. Z.B. errechnet
man fir x = 0,2 aus

£0.2,3) =y +0.2y* =" =0
numerisch y = 1,018467. Die Ableitung in diesem Punkt ergibt sich aus (6.62). Auch die maxi-
male GroBe des Definitionsintervalls U von g kann in unserem Beispiel nur numerisch ermittelt
0
werden (z.B. indem man die Losungen des Gleichungssystems f(x, y) = O, a—f(x, y) = 0 mit
y

dem Newton-Verfahren bestimmt).
Aus dem Satz 6.15 folgt als Spezialfall
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Satz 6.16:

(Invertierungssatz) Es sei f : X — Y stetig differenzierbar, X, Y offen in R” und
f'(x0) regulir in einem Punkt xo € X. Damit folgt

(a) Es gibt eine offene Umgebung U von x¢, die durch f umkehrbar eindeutig auf
eine offene Umgebung V von y, = f(xo) abgebildet wird.

(b) Die dadurch bestimmte Umkehrabbildung f Ly 5 Uist stetig differenzier-
bar, und es gilt

(r) @ =rw™" firdley=fwev.

Beweis:

Mit F(y,x) := y — f(x) ist eine Funktion gewonnen, die die Voraussetzungen von Satz 6.15
erfiillt (wobei x und y ihre Rollen getauscht haben). Damit geht Satz 6.16 aus Satz 6.15 hervor,
wobei lediglich zusitzlich gezeigt werden muB, daf3 f ~1(V) offen ist. Wegen f(f Tvy=v,
V offen, folgt das aber aus der Stetigkeit von f. (I

Ubung 6.24:

Gibt es zu
1 .
f(x,y):xy—l—i—smyzo

eine explizite Funktion y = g(x) in einer Umgebung von xg = 0, wobei yg = /6 ist?

(f (x0, y0) = 0).

6.4.3 Extremalprobleme ohne Nebenbedingungen

Maxima und Minima von Funktionen mehrerer reeller Variabler lassen sich mit Mitteln der Dif-
ferentialrechnung gewinnen — analog zum Fall einer Variablen. Zunichst bendtigen wir eine
saubere Begriffsbestimmung. Wir vereinbaren daher, vollig analog zu Def. 3.6 in Abschn. 3.2.7:

Definition 6.17:

Essei f : D C R" — R eine gegebene Funktion. Ist xo ein Punkt aus D, zu dem es
eine Umgebung U gibt mit

f(x) < f(xp) furallex €e UND,x # xy,

so sagt man: f besitzt in x¢ ein lokales Maximum.

Der Punkt x¢ selbst heifit eine lokale Maximalstelle von f. Steht »<« anstelle
von »<«, so wird x als echte lokale Maximalstelle von f bezeichnet. Entsprechend
werden lokale Minima, lokale Minimalstellen, echte und unechte, erklart. Alle diese
Punkte nennen wir Extremalstellen oder Extremalpunkte.
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Satz 6.17:
Istxg € D Extremalstelle einer partiell differenzierbaren Funktion f : D C R" — R,
so gilt
fl(xo)=0,

d.h. sa@mtliche partiellen Ableitungen 1. Ordnung von f verschwinden in x.

Beweis:
Es sei xg = [xfo), xéo), x0T

mit definieren wir die Funktion

die Komponentendarstellung der Extremstelle xo von f. Da-

0 0 0
g(xk) = f(xf )7 "'5x]5_)1’xk9x]£_;:15 "'7x;(10) E)

wobei k € {1, ..., n} beliebig, aber fest ist. g geht also aus f dadurch hervor, dal man nur eine
Komponente variabel macht, namlich x, die anderen aber festhilt. Die reellwertige Funktion g

0
k

hat in x; ' natiirlich ein Extremum, also folgt

0
0= g/(ngo)) = B_xkf(x())’ O

Satz 6.17 besagt, dafl die Extremalstellen aus D in der Menge der x( mit der Eigenschaft

F(x0) = [fx,(x0), - .., fx,(*x0)] = 0 zu suchen sind. Es ist also das System der Gleichungen
S, (x0) =0 fiirallei=1,...,n (6.66)
nach xg = (x](O) e, x,SO)) aufzuldsen, etwa mit dem Newton-Verfahren.

Nicht jede Losung von f/(xo) = 0 ist notwendig ein Extremalpunkt, was man sich an Funk-
tionen einer reellen Variablen klar machen kann (waagerechte Wendetangente!). Wir beweisen
daher folgenden Satz, der eine hinreichende Bedingung fiir Extremalpunkte liefert.

Satz 6.18:
Ist f : D C R" — R zweimal stetig differenzierbar, so folgt: Ein Punkt xo € D mit
f'(x0) = 0ist eine
echte Maximalstelle, falls (z - V)zf(xo) <0,
5 fur alle z # 0, z € R".
echte Minimalstelle, falls (z - V)“ f(xg) > 0,

Beweis:
Wir nehmen (z - V)2 f (xo) > O fiir alle z # 0, z € R an. Nach der Taylorformel gilt fiir m = 1

1
1
fxo+2) = f(xo) + f'(xo)z + 3 /(1 —5)(z- V)’ f(xo+s52)ds,
0
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wegen f'(xg) = 0 also
1

1
fxo+2) = flxo) =3 /(1 —5)(z- V)* f(xo +s52)ds. (6.67)

0

Aufgrund der Stetigkeit der zweiten partiellen Ableitung gibt es eine Kugelumgebung U C D
von x¢ mit

(z- V) f(xo+sz)>0 firxo+szeU,z#0,0<s<1.

Wihlt man z dabei fest, so nimmt (z - V)2 f(xo + sz) furein s € [0,1] sein Minimum ¢ > 0 an
(dast+— (z- V)Zf(xo + s7) eine stetige Funktion auf [0, 1] ist), also gilt

(z-V)2 f(xg+sz)>c>0, firallesel[0,1].

Damit gewinnt man aus (6.67)

1
Fro+2) — fxo) = %f(l—s>cds=§>o,
0

also f(xo +2) > f(xp) fiir jedes xo + z € U, z # 0. x¢ ist damit eine echte Minimalstelle.
Durch Ubergang von f zu — f erhilt man die entsprechende Aussage fiir echte Maximalstellen,
womit alles bewiesen ist. (I

Bemerkung: Der Ausdruck (z - V)? f(x¢) in Satz 6.18 kann mit Hilfe der Matrix

fxlyl(xO) leyn(xO)

[ (x0) = : : sowie
Sray (¥0) - fr,y, (X0)
21

=11, ' =1[z1.22, ... 2l
Zn
in der Form
n
-V f(x0) =2"f"(x0)z = ) zi fruZk (6.68)

ik=1
geschrieben werden.

Ohne Beweis sei angegeben, daB (z - V)2 f(xo) = z' f”(x0)z genau dann > O fiir alle z #
0 aus R” ist, wenn alle »Hauptdeterminanten« von f"(xo) positiv sind. (Hauptdeterminanten
sind dabei die Determinanten derjenigen Matrizen, die durch Herausstreichen von Zeilen und
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entsprechenden Spalten aus f”(xo) entstehen. Zu Determinanten s. Abschn. 7.2.3, Einschub,
sowie Burg/Haf/Wille (Lineare Algebra) [7], Abschn. 3.5.7, Satz 3.45.) Um zu entscheiden, ob
(z - V)2 f(x0) < O fiir alle z # 0 aus R” ist, hat man f durch — f zu ersetzen und mit dem
genannten Kriterium (z - V)2(— f)(xo) > O fiir z # 0 zu priifen.

Das Kriterium ist fiir die Anwendung in Satz 6.18 fiir grof3e n sehr wenig griffig. Fiir kleine n
(n = 2,3,4) ist es aber gut zu gebrauchen. Fiir n = 2 ergibt sich daraus

Folgerung 6.6:

Ist die reellwertige Funktion f(x, y) zweimal stetig differenzierbar auf D C RZ, so
folgt:

. X0 o
Ein Punkt xg = |:y :| € D mit
0

of af . X0
a0 30 =0 20,30 =0 wnd fucfyy = S5 >0 in M (6.69)
ist eine

echte Maximalstelle, wenn fyx(xg, yo) < 0 ist,

echte Minimalstelle, wenn f,,(xg, yo) > 0 ist.

Dieses Kriterium ist fiir Funktionen von zwei Variablen sehr niitzlich.

Ubung 6.25:

Berechne die Extremalstellen der durch

f,y)=x24+y*+xy—2x+3y+7, x=|:x:|e]R2,
y

definierten Funktion f : R — R und entscheide, ob es sich um echte Maxima oder echte
Minima handelt.

6.4.4 Extremalprobleme mit Nebenbedingungen
Oft ist nach den Extrema eine Funktion f gefragt, wobei noch eine Nebenbedingung
h(x) =0

erfiillt sein muB.
Priziser geht es um folgende

Problemstellung: Gegeben sind zwei stetig differenzierbare Abbildungen f : D — R und
h : D — RP auf einer offenen Menge D C R", n > p. Gesucht sind die Maximal- und
Minimalstellen der Einschriankung f |y von f auf

M:={xeD|h(x)=0}CD. (6.70)
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Eine Maximalstelle xo von f|p ist dabei ein Punkt aus M, zu dem es eine Umgebung U C D
gibt mit

f(x) < f(xp) fiurallex e UNM.

Man nennt einen solchen Punkt x( eine Maximalstelle von f unter der Nebenbedingung h(x) =
0. Entsprechendes vereinbart man fiir Minimalstellen. In beiden Fillen spricht man von Extre-
malstellen von f unter der Nebenbedingung h(x) = 0.

Alles in allem treten bei den Anwendungen Extremalprobleme mit Nebenbedingungen viel
hiufiger auf als »reine« Extremalprobleme ohne Nebenbedingungen. Schon bei einfachsten geo-
metrischen Fragestellungen ist dies der Fall.

Beispiel 6.29:

Will man dasjenige Rechteck bestimmen, das unter allen Rechtecken gleichen Umfangs u den
groBten Flicheninhalt hat, so ist f(x) = x1x2 zu maximieren, wobei x1, xp die Seitenléingen des
Rechtecks bedeuten.

. X ..
Wegen x1 > 0, x3 > Qistx = [xl] dabei ein Punkt aus
2

p={[3)

X2

Die Nebenbedingung lautet up = 2(x; + x2), d.h. A(x) = 0 mit A(x) = ug — 2(x1 + x2),
h:D— R.

Die Losung ist in diesem Falle sehr einfach zu gewinnen: Man 16st #(x) = 0 nach xp auf:
Xy = ug/2 — x1, setzt dies in f(x) = x1x2 ein und erhilt eine Funktion, die nur noch von x;
abhingt: F(x1) := x1(ug/2 — x1). Aus F'(x1) = ug/2 — 2x; = 0 berechnet man die Losung
X1 = up/4, wobei F”(x;) = —2 < 0 zeigt, daB ein Maximum vorliegt. Wie nicht anders zu
erwarten, ist das gesuchte Rechteck mit maximalem Inhalt ein Quadrat.

X1, X2 ZO} .

In vorstehendem Beispiel konnte /(x) = 0 nach einer Komponente von x aufgeldst werden
und damit das Problem auf eine Extremalaufgabe ohne Nebenbedingungen zuriickgefiihrt wer-
den, die mit bekannten Methoden von Abschn. 3.2.7 gelost werden konnte.

Haufig ist das jedoch nicht ohne weiteres moglich. Folgendes Beispiel macht dies deutlich:

Beispiel 6.30:
Es soll der kiirzeste Abstand zweier implizit durch G (x, y) = 0, H (£, n) = 0 bestimmter Kurven
der Ebene ermittelt werden. Es ist also

X
f)=x—6*+ @y —n? mit x = g
n

zu minimieren, unter der Nebenbedingung

CTGn]
hx) = [H(s, n)] =0.
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Auch hier konnte man zunichst versuchen, G(x, y) = 0 und H (&, n) = 0 nach y bzw. n auf-
zuldsen und die entstehenden Ausdriicke fiir y und 7 in (x — £€)2 + (y — n)? einzusetzen, um
so eine von Nebenbedingungen freie Funktion der Variablen x und 1 zu minimieren. Bei etwas
komplizierteren Gleichungen G(x, y) = O und H (&, n) = 0 ist das allerdings nicht mehr ohne
weiteres durchfiihrbar, schon allein deswegen, weil y bzw.  im allgemeinen nicht eindeutig von
x bzw. & abhédngen.

Es muf} daher nach einer Methode gesucht werden, die ohne explizites Auflosen von k(x) = 0
nach einem Teil der Komponenten von x auskommt. Ein solches Verfahren ist das der Lagrange-
schen Multiplikatoren, das auf folgendem Satz beruht.

Satz 6.19:
f:D — Rund h : D — RP seien stetig differenzierbare Abbildungen auf einer
offenen Menge D C R", n > p, wobei die Matrix h’(x) fiir jedes x € D den Rang
p'* hat. Damit folgt: Ist xq € D eine Extremalstelle von f unter der Nebenbedingung
h(x) = 0, so existiert dazu eine Zeilenmatrix L = [A, A2, ..., A,] mit

f(x0) + LA (xg) =0. (6.71)
Die Zahlen Ap, A5, ..., A, heilen dabei Lagrangesche Multiplikatoren.

Das Losungsverfahren fiir Extremalprobleme mit Nebenbedingungen beruht nun, gestiitzt auf
Satz 6.19 auf folgenden Uberlegung: Jeder Extremalpunkt x( von f unter der Nebenbedingung
h(x) = 0 ist unter der Voraussetzung von Satz 6.19 eine Losung der Gleichungen

f/(x)+Lh (x)=0 und h(x)=0. (6.72)

Mit den Komponentendarstellungen

X1 hl
X2 ha

X = . El h= . ’ Lz[)‘d»)"zv"'s)‘*p] (673)
Xn hp

erhalten die Gleichungen in (6.72) die explizite Gestalt

) LY
—f(x)+Z,\k—"(x)=0 firallei =1,...,n, (6.74)
8xl- p 8xi

und hiy(x) =0 furallek=1,...,p. (6.75)

Es liegen damit n + p reelle Gleichungen fiir die n 4+ p reellen Unbekannten x1, x2, ..., Xz,
A1, A2, ..., Ap vor, deren Losbarkeit zu bestimmen ist. Unter den aus dieser Losungsgesamtheit

14 D.h. k' (x) enthilt fiir jedes x € D eine regulire (quadratische) p-reihige Teilmatrix. (Eine Teilmatrix entsteht aus
einer Matrix durch Herausstreichen von Spalten und/oder Zeilen.)
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gewonnenen Punkten x = [x1, xp, ..., xn]T sind alle Extremalpunkte mit den Nebenbedingun-
gen h(x) = 0 zu finden.

Natiirlich braucht nicht jeder dieser Losungspunkte x ein Extremalpunkt zu sein. Da bleibt im
einzelnen stets zu untersuchen.

Gelten die Voraussetzungen von Satz 6.19, so hei3t jeder Losungspunkt x, der sich aus (6.74),
(6.75) ergibt, ein stationdrer Punkt von f unter Nebenbedingungen h(x) = 0. Bei physikalischen
Untersuchungen sind diese Punkte auch dann interessant, wenn sie keine Extremalpunkte sind.
Wir skizzieren dies kurz in folgendem Beispiel.

Beispiel 6.31:

Eine grundlegende Anwendung der Lagrangeschen Multiplikatorenmethode steht im Zusammen-
hang mit dem d’Alembertschen'> Prinzip in der Mechanik. Betrachtet man nimlich ein System
von Massenpunkten in einem Kraftpotentialfeld, so sind die Massenpunkte hdufig geometrischen
Bindungen unterworfen. (Abstinde zwischen Massenpunkten sind konstant, die Massenpunkte
befinden sich gewissen vorgeschriebenen Kurven oder Fldchen usw.) Die geometrischen Bindun-
gen schlagen sich dabei in Nebenbedingungen nieder, wihrend das Kraftpotential eine Funkti-
on liefert, deren stationidre Punkte unter Nebenbedingungen zu berechnen sind. Die stationédren
Punkte beschreiben dann Gleichgewichtslagen des Massenpunktsystems. Echte Minima ergeben
dabei stabiles Gleichgewicht, wihrend in den iibrigen stationédren Punkten labiles oder indifferen-
tes Gleichgewicht herrscht.

Fiir einen ausfiihrlichen Beweis des Satzes 6.19 sei auf [56], Satz 6.23, S. 305308, verwie-
sen. Wir wollen den Sachverhalt hier am Falle zweier Dimensionen anschaulich und plausibel
machen. Fiir diesen Fall formulieren wir Satz 6.19 nochmal:

Folgerung 6.7:
(Zweidimensionaler Fall der Lagrangeschen Multiplikatorenmethode)
Durch u = f(x,y) und v = h(x, y) seien zwei reellwertige Funktionen auf einer
offenen Menge D C R? beschrieben. Dabei sei gradh(x) # 0 fiir alle x € D.!6
Damit folgt:
Ist xo € D eine Extremalstelle von f unter der Nebenbedingung #(x) = 0, so gilt

grad f(xg) +Agrad h(xg) =0 (6.76)

mit einer reellen Zahl A.

Veranschaulichung: In Fig. 6.20 ist der Graph von f iiber seinem Definitionsbereich D skiz-
ziert. In D ist die durch 2(x) = 0 bestimmte Kurve zu sehen. Zum besseren Verstindnis sind
Hohenlinien und Fallinien in D eingezeichnet, wie auch ihre Entsprechungen auf dem Graphen
von f. Wir erkennen: Das Maximum f(x() von f iiber der Kurve h(xg) = O hat die Eigenschaft,
daf die Kurve A(x) = 0 in der Maximalstelle x¢ rechtwinklig eine Fallinie schneidet. Skizziert

15 Jean-Baptiste le Rond, genannt d’ Alembert (1717 —1783), franzosischer Mathematiker, Physiker und Philosoph
dh an T

16 Zur Erinnerung: grad h(x) = h’(x)T =|—), — )] .
dax d0xp
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man grad f(x) und grad h(x) als Pfeile mit schwarzer oder weifler Spitze, so liegen sie im Maxi-
malpunkt x( parallel (denn der Vektor grad i (x) steht in jedem Kurvenpunkt x senkrecht auf der
Kurve A(x) = 0, und grad f(x) liegt stets in Richtung der Fallinien.) Parallelitédt von grad f(x¢)
und grad h(xo) bedeutet aber

grad f(xg) + Agrad h(xg) =0 firein A e R.

X2
/ grad f (x)
/
'fl X4
h(x)=0
Fig. 6.20: Extrema mit Nebenbedingungen
Zum Verstindnis ein simples Demonstrationsbeispiel.

Beispiel 6.32:
Gesucht sind die Extremalstellen von

fa,y)=x*+y*+3, x,yeR, (6.77)
unter der Nebenbedingung

h(x,y) =x>4y—-2=0, x,yeR. (6.78)

Mit

grad f(x, y) = [2x,2y]7, grad h(x, y) = [2x,1]7
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ergibt grad f + A gradh = 0 und i (x, y) = 0 das Gleichungssystem
2x = —A2x, 2y=—A, y=2-—x>.

Die erste Gleichung ist z.B. fiir x = 0 erfiillt. Die tibrigen Gleichungen liefern dann y = 2,
A= —4und f(0,2) =17.

Hohenlinien
von f

A B

—h{x,y)=0

Fig. 6.21: Zu Beispiel 6.32

Im Falle x # 0 ergibt die erste Gleichung nach Herauskiirzen von x: A = —1. Damit ist nach
der zweiten Gleichung y = 1/2 und nach der dritten: x = #+/6/2. Damit: f(£+/6/2,1/2) =
4,75.

Samtliche Kandidaten fiir Extremstellen sind also

o _[v6)2 _[-6)2
Das Hohenlinienbild (Fig. 6.21) zeigt, dal x( eine Maximalstelle ist und x1, x, Minimalstellen
sind.
Durch Einsetzen von y = 2 — x% in f(x,y) = x*> + y* und Untersuchung von ¢(x) =
x2 + (2 — x2)? auf Extremalstellen kommt hier natiirlich das Gleiche heraus. Wie aber schon

erwihnt, ist das formelméBige Eliminieren einer Variablen oft nicht moglich. Dann ist man auf
die (numerische) Losung der Lagrangeschen Gleichungen angewiesen.

Bemerkung: Die Frage, welche Losungen der Lagrangeschen Multiplikatorenmethoden Maxi-
ma, Minima oder nichts dergleichen sind, ist allgemein schwer zu beantworten. Aus diesem
Grund muf dies in jedem Einzelfall gesondert gepriift werden. (Durch Eliminieren der Neben-
bedingung, durch numerische Rechnung oder durch Uberlegungen aus der technischen Anwen-
dung).

Eine Hilfe liefert der Satz, daB} jede stetige reelle Funktion auf einem Kompaktum ihr Mini-
mum und ihr Maximum annimmt.
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Bei kompakter »Nebenbedingungsmenge«
M={xeD|h(x)=0}

hat man daher unter den Losungen der Lagrangemethode und den Randpunkten aus M N9 D die-
jenigen mit maximalem Funktionswert f(x) herauszusuchen. Diese Punkte sind alle gesuchten
absoluten Maximalstellen. Fiir Minimalstellen gilt Entsprechendes.

Fortsetzung von Beispiel 6.32: Wir wenden die vorangehende Uberlegung auf unser Beispiel
an. Die Funktionswerte der Kandidaten x, x|, x» fiir Extremalstellen sind

fxo) =7, [f(x1) = f(x2)=475.

Wiihlen wir anstelle von R? als Definitionsbereich ein Rechteck D, das die drei Punkte X0, X1,
x7 knapp umfafit, z.B.

Dz{m|—25x52,05ys3},

so schneidet die Kurve A (x,y) = x> + y — 2 = 0 den Rand von D genau in folgenden zwei
Punkten:

T Vﬂ T [_ﬂ mit f(x3) = f(xs) =5.

Da nach obiger Bemerkung nur x¢, X1, X2, x3 und x4 fiir Maximal- und Minimalstellen in Frage
kommen, ist x( (wegen f(xg) = 7) Maximalstelle und es sind x 1, x, Minimalstellen.

Ubung 6.26:
Bestimme mit der Lagrangeschen Multiplikatorenmethode die Extremalwerte von f(x,y) =
xy (x, y € R) unter der Nebenbedingung X2+ y2 — 1 = 0. Zeichne ein Hohenbild dazu.
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Ausgangspunkt der Integralrechnung mehrerer Veridnderlicher ist das Problem, Rauminhalte
mehrdimensionaler Bereiche zu ermitteln — analog zur Integralrechnung einer reellen Varia-
blen, die von Flicheninhaltsberechnungen ausgeht. Die Integralrechnung einer reellen Variablen
ist im Mehrdimensionalen Richtschnur und Hilfsmittel.

Wir gelangen so zur Berechnung von Massen dreidimensionaler Korper, Schwerpunkten, Trag-
heitsmomenten, Zirkulationen, elektromagnetischen Feldenergien und vielem anderen mehr.

7.1 Integration bei zwei Variablen

Die Grundgedanken der mehrdimensionalen Integration werden zunéchst am Fall zweier reeller
Variabler erklart. Alles Wesentliche wird dabei sichtbar, verstindlich und einpragsam.

7.1.1 Anschauliche Einfithrung des Integrals zweier reeller Variabler

Gestiitzt auf anschauliche Vorstellungen von Raum- und Flicheninhalt werden in diesem Ab-
schnitt Integrale zweier Variabler eingefiihrt und berechnet.

Wir beginnen unsere Betrachtungen mit einer reellwertigen stetigen Funktion f auf einem
kompakten zweidimensionalen Bereich B C R?. f sei nicht negativ, d.h.

flx,y) >0 firalle [’y‘] €B,

und B haben einen wohlbestimmten Fldcheninhalt F.
Der Graph f und der Bereich B bilden »Deckel« und »Boden« einer dreidimensionalen Men-

ge

Fig. 7.1: Integral als Rauminhalt von M
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X
M = y e R?
Z

m €Bund 0<z< f(x,y) (7.1)

(s. Fig. 7.1). Der Rauminhalt V dieser Menge M wird das Integral von f iiber dem Bereich B
genannt und durch

V= / / fx, y)drdy (72)
B

beschrieben. Es sind auch folgende Schreibweisen dafiir gebrauchlich:

V:é/f(x,y)dF:/B/de

oder mit nur einem Integralzeichen

V=/f(x,y)dxdy=/f(x,y)dF=/de.
B B B

Mit der Vektorschreibweise x = |:)yc] schreibt man das Integral auch in der Form

/f(x)dx
B

(Doppelte Integralzeichen betonen das Zweidimensionale von B) einfache Integralzeichen wei-
sen mehr auf die allgemeine Theorie hin.)

Bemerkung: Bei den Begriffen »Rauminhalt« und »Fldcheninhalt« appellieren wir hier an an-
schauliche Vorstellungen des Lesers. Auf diese Weise konnen die Grundideen iibersichtlich ver-
mittelt werden. Die analytische Prizisierung folgt in den néchsten beiden Abschnitten.

Zur Beantwortung nehmen wir zunichst B als ein achsenparalleles Rechteck an,

#={[}

und betrachten eine beliebige Zerlegung Z = {[yo, y11. [y1, y21. ..., [¥n—1, yal, } von [c, d].
Durch die Zerlegungspunkte y; lege man zur x-z-Ebene parallele Ebenen, die die Menge M in
»Scheiben zerschneiden«, wie es die Fig. 7.2 zeigt.

a<x<b, x§y§d}

Das Volumen AV; einer solchen Scheibe zwischen den Ebenen durch y; und y;_; ist etwa
gleich dem Produkt aus der Scheibenbreite Ay; := y; — y;—; und dem Fldcheninhalt der senk-
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Fig. 7.2: Zur Volumenberechnung

rechten Schnittfliche bei y;, d.h.

b
AV = Ay; -/f(x,yi)dx-
a

Summation iiber alle Scheiben liefert ndherungweise den gesuchten Rauminhalt V von M

b
n
Ve /f(x,yi)dx Ay; .
i=1 \g4

Fiir n — oo, wobei max Ay; gegen Null geht, strebt die rechte Seite gegen das Integral
1

d

b
/ /f(x,y)dx dy.]

c

Die Klammer um das innere Integral wird auch weggelassen, da kein Irrtum dadurch entstehen
kann.

Der Wert dieses »Doppelintegrals« entspricht zweifellos unserer Vorstellung vom Volumen V
der Menge M, d.h.

d b
V=//f(x,y)dxdy=//f(x,y)dxdy- (7.3)
B c a

Da unsere Anschauung vom Rauminhalt sicherlich ergibt, dafl es gleichgiiltig ist, in welcher

b
1 Die Funktion ¢(y) := / f(x, y)dx ist stetig in y, wie in Abschn. 7.3.1 gezeigt wird.
a
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Achsenrichtung man die Menge M in Scheiben schneidet, konnen x und y auch ihre Rollen
tauschen, d.h. es gilt:

d b b d
//f(x,wdxdy://f(x,y)dydx. (7.4)

Diese Vertauschungsformel wird spéter als Satz von Fubini allgemeiner erortert (s. Abschn. 7.1.2,
Satz 7.3).

Beispiel 7.1:
Fir f(x,y) =2 — xy auf

B:{B”Ofxfl,Ofyfz}

erhalten wir

2 1
V= //(Z—xy)dxdy :/[(2—xy)dxdy =
B 00

(s. Fig. 7.3).

S—
]
)
=
|

|><
|
<
[
=)
o
<
Il
oY,
Yauwy
(V]
|
0=
N—"
o
~
Il
W

¥

Fig. 7.3: Zu Beispiel 7.1 Fig. 7.4: Normalbereich

Der Leser rechne nach, daf3 bei Vertauschung von x und y dasselbe herauskommt, also

12
V://(Z—xy)dydx:3.
0 0
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Wir wollen im Folgenden anstelle von Rechtecken allgemeinere, krummlinig berandete Be-
reiche B betrachten, und zwar solche, die »zwischen« den Graphen zweier stetiger Funktionen
h:la,b] > Rund g : [a,b] — R (mit h > g) liegen, d.h.

p={]

Einen solchen Bereich B nennen wir kurz einen Normalbereich. f : B — R sei wieder stetig
und nicht negativ. Durch analoge »Scheibenzerlegungen« wie im Rechteckfall erhalten wir das
Volumen V von M wiederum als Doppelintegral (s. Fig. 7.5).

a<x<bund g(x) <y < h(x)} , s.Fig.7.4.

b h(x)
f f(x,y)dxdy=/ [ Sx,y)dydx. (7.5)
B a g(x)

|| IP
il

¥ =
¥ x

l&——H —p

Fig. 7.5: Zum Integral iiber einen Normalbereich Fig. 7.6: Zum Volumen der Pyramide

Beispiel 7.2:

Die in Fig. 7.6 skizzierte schiefe Pyramide P ist die Menge aller Punkte
X 0<x<H,
y mit 0<y<x-a/H,
z 0<z<x-b/H.

X

Mit f(x,y) :=x-b/H und B = {|:y

:H0§x§Hund0§y§x~a/H}istdasVolumen

der Pyramide damit

H .
V://f(x,y)dxdy:%/ f xdydx
B 0

0
H H
/'|: i|x.a/Hd ba / 24 ba [x3] abH
Xy x=— [ xdx=—|—| = .
0 2 H?| 3 ], 3
0 0

SIS
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Beispiel 7.3:
Es soll

Vv =//x3y4dxdy
B

berechnet werden, wobei B der in Fig. 7.7 skizzierte Viertelkreis ist. Da B ein Normalbereich ist,
folgt:

r VVZ—XZ r
1
V:/ / x3y4dy dx:§/x3(r2—x2)%dx.
0 0 0
: 2 / 2 2\ 3 1 2 2.1 5. . . .
Mitu = x“und v’ = x(r° — x°)2 (alsov = —5(r — x“)2) liefert die Produktintegration:

r

_ lras 21’2/221_212 201 2
V= g[x (r x)2]0+§ x(re—x%)2dx = 5 §(r x)ZO—ﬁr.(7.6)

0
=0

Vertauscht man die Rollen von x und y, so ergibt sich das Integral auf folgende Weise:
r VI‘Z*XZ r r 9
1 1 2r
V= 34 | dv = = 40,2229 2_/44_226 6ydy = 2
/ / x7ytdx | dy 4/ (r"=y)dy =7 [ 7y =2rty 4y dy =
0 0 0 0

Dieser Weg ist etwas einfacher. Man sieht, dal man durch Vertauschen der Integrationsreihenfol-
ge evtl. Rechenaufwand einsparen kann.

Fig. 7.7: Viertelkreis B Fig. 7.8: Ellipsoid
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Beispiel 7.4:
(Volumen eines Ellipsoides) Ein Ellipsoid, wie in Fig. 7.8 skizziert, besteht aus allen Punkten

X Cox2 g2 Z2<1
y mit ;+ﬁ+c_2_ )
b4

wobei die positiven Zahlen a, b, ¢ die Hauptachsenldngen des Ellipsoides sind.

Wir berechnen das Volumen eines halben Ellipsoides, und zwar das Volumen der »oberen
Hilfte« (d.h. z > 0). Der »obere Deckel« des Ellipsoides — d.h. der Teil des Ellipsoidrandes mit
z > 0 — wird durch x?/a® + y?/b* + z2/c* = 1 mit z > 0 beschrieben, also aufgeldst nach z
durch

= rwni=oi- (5 = () wobei (2)+(2) =1 7

gelten mufl. Diese Ungleichung beschreibt eine Ellipse, und zwar die Schnittfliche zwischen
dem Ellipsoid und der x-y-Ebene. Die Ellipse ist der Definitionsbereich B unserer Funktion f
in (7.7). Damit ist das halbe Ellipsoidvolumen gleich

V= / [efi=(C) - () arar. 78)

Die Ellipse B 146t sich offenbar einschlieen von den Graphen der beiden Funktionen

h(x) i=by/1 — (;—C)Z ¢(x) = —h(x), firx e [—a,al.

Nach (7.5) erhalten wir damit

a [ b 1=(x/a)?

=IO G e e

4 \cby/1-(x/a)?

Zur Losung des inneren Integrals faBt man p := /1 — (x/a)? als Konstante auf und bringt
V1= (x/a)?> — (y/b)? durch die Substitution y = bp - 1 auf die

1
Gestalt p+/1 — 2. Die Anwendung der Substitutionsregel und Verwendung von 2 / V1—12de
—1

= 7 (Inhalt des Einheitskreises, Abschn. 4.2.2) ergibt

2

—a

v chm r ] x2 d 2b
= — — — ) dx = —abcr .
a? 3
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Das Volumen des Ellipsoides ist das Doppelte hiervon, also
o 4
Volumen des Ellipsoides: §abcn . (7.9)
Speziell fiir a = b = ¢ =: r erhélt man das
43
Kugelvolumen: §r . (7.10)

Ist B kein Normalbereich, so versuche man ihn in endlich viele Normalbereiche By, ..., B, zu
zerlegen (s. Fig. 7.9):

BNB =0firi #k2

Fig. 7.9: Zerlegung in Normalbereiche

Ist dies moglich, so berechnet man das Integral von f tiber B als Summe der Integrale tiber
Bi, ..., By, also

/ff(x,wdxdy:Z/ fx,y)dxdy. (7.11)

B i=1"pg

Dies steht sicherlich im Einklang mit unseren Vorstellungen vom Rauminhalt.

Die Berechnungsformeln (7.5) und (7.11) werden allgemein auf beliebige reellwertige stetige
Funktionen auf B angewendet, also auch Funktionen mit negativen Werten. Damit ist das Integral
auch fiir diese Fille erklart.

Mit den Formeln (7.5) und (7.11) lassen sich nahezu alle praktisch auftretenden Bereichsinte-
grale in zwei Variablen berechnen!

2 B =Inneres von B



7.1 Integration bei zwei Variablen 515

Beispiel 7.5:

Ein Werkstiick (oder Puzzlestein oder modernes Verwaltungsgebidude) habe die in Fig. 7.10a
skizzierte Form. Die Grundrif3-Menge B geht aus Fig. 7.10b hervor. Das »Dach« sei parabolisch,
genauer: Der skizzierte Korper ist im R die Punktmenge

X
K = y [xi|eBund0§z§2—x2
B y

Frage: Wie grof} ist sein Volumen?

AY B
B;‘x‘-. 85
b — = =

-2
Bs

-1
Bt
B2/ - B+ X

b) -1 0 1

Fig. 7.10: Zur Volumenberechnung in Beispiel 7.5

Der Korper K wird »oben« durch den Graphen der Funktion f(x, y) = 2 — x? begrenzt. (f
ist beziiglich y konstant). Sein Volumen ist damit

V=f/(2—x2)dxdy.
B

B ist kein Normalbereich, doch 146t sich B in Normalbereiche zerlegen, z.B. in die 5 Bereiche

1
By, ..., Bs der Fig. 7.10b. B; liegt zwischen der x-Achse und dem Graphen von x — E(x + 1),
iiber dem Intervall [-1, 1]; also folgt fiir das Teilintegral iiber Bj:

1 %(x—t—l)

Vi :=//(2—x2)dxdy=/ / 2—x*dy | dx.
Bl 0

-1

Der Integrand des inneren Integrals hdngt nicht von y ab und kann somit vor das innere Integral
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gesetzt werden, also:

1 FG+1) 1 1
2 a1 1 3 2 5
Vi= | 2—x%) dy| dx= | 2—x )E(x—i—l)dx = 3 (—x7—x“+2x+2)dx = 3
-1 0 -1 -1

1
Entsprechend ergibt sich fiir den Bereich B;, der zwischen den Graphen von x +— 3 (x 4+ 1) und

1
der Konstanten y = 5 liegt (tiber [-1, O]):

12
V2=//(2—x2)dxdy=f / (2 —x>)dydx
B

“Hla+D
0 3 0
—/(2—x2) / d dx—/(Z—x2) l—l(x—l—l) clx—3
- o R 272 S
-1 3+ -1
Ferner beziiglich Bs:
03
5 5 10
Vi = 2—x%)dxdy = (2—x)dydx=?.
B, -1

Aus Symmetriegriinden ist das Integral V4 (bzw. Bs4) gleich V;, und entsprechend Vs (bzw. Bs)
gleich Vj. Zusammen erhilt man also das Volumen des Korpers folgendermaBen:

0.3, 5 8

5 3

V= 2—x)dxdy=Vi+Va+Va4+Va+Vs==4 -4 —+ -+ =—.

ff( W)dedy =Vi+ Vit Vs+Vat+Vs=o+ o+ +ot+r=1
B

Ubungen: Berechne die folgenden Integrale

Ubung 7.1:
32
//xdxdy.
00

Ubung 7.2:
12

//(x2+ey)dydx.

-10
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Ubung 7.3:
2 1+x
/ xydydx.
0 —x

Ubung 7.4:
f/(x4y+3)dxdy mit B = i |:x:| ’ —-1<x<1, x2 <y< 1}. Skizziere den Bereich B!
y
B

Ubung 7.5:

/ (5—x% -y} dxdy mit B = { [ﬂ
B

nen g und / zur Beschreibung von B als Normalbereich?

x|+ |yl < l}. Skizziere B! Wie lauten die Funktio-

7.1.2 Analytische Einfithrung des Integrals zweier reeller Variabler

Die exakte analytische Einfithrung des Integrals im Zweidimensionalen — die in diesem und
dem nichsten Abschnitt gegeben wird — verlduft analog zur Einfithrung des Integrals bei einer
Variablen in Abschn. 4.1.1.

Als Ausgangspunkt betrachten wir eine beschrinkte reellwertige Funktion f : Q — R auf
einem achsenparallelen Rechteck

o={:]

Man beschreibt dies auch kiirzer durch

afxfbundcfyfd}. (7.12)

0 =la,b] x[c,d].
Sein Flicheninhalt ist
Fo=0bB-a)d—-c).

Das Rechteck Q zerlegen wir in Teilrechtecke, wie es die Fig. 7.11 zeigt.
Das heifit wir wihlen eine Zerlegung

Zy ={[x0, x1], ..., [xp—1,xp]} von [a,b]
und eine Zerlegung

Zy ={[yo, y1l. .- -, [¥g—1. ¥4I} von [c,d],
und bilden daraus die Teilrechtecke

[xi—1, xi1 X [Yk—1, Y&l
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A Q
d=yq 1 : I
Q| Qe Q3|‘
N
Yz 1+ — T 1
Y'I T T ':_h_f___'
Qm
C=Yo + | |
t i f t t } —>
a=Xp X1 X5 EEGiawE Xp=b

Fig. 7.11: Zerlegung eines Rechtecks

firallei = 1,..., pund k = 1, ..., q. Diese Teilrechtecke numerieren wir (zeilenweise) von
1 bis m = pg durch und nennen sie Q1, Q», ..., Q. Die Menge Z = {Q1, O>, ..., On} der
Teilrechtecke nennt man eine Zerlegung von Q. Der maximale Durchmesser der Q; heilit die
Feinheit der Zerlegung Z. Je kleiner die Feinheit, desto feiner die Zerlegung.

Hierauf gestiitzt, schlagen wir heimlich Definition 4.1 in Abschn. 4.1.1 nach und tibertragen
sie analog auf das Zweidimensionale:

Definition 7.1:
Es sei f eine reelle beschriankte Funktion auf einem Rechteck Q.

D Z={01, 02, ..., 0nm}

sei eine beliebige Zerlegung von Q in Teilrechtecke Q;. Die Flacheninhalte der Recht-
ecke werden mit Fp bzw. Fgp, bezeichnet.

) Mit M; := sup f(x), m; = inf f(x) (s. Fig. 7.12)
xeQ; xX€Q;

bildet man
m
Sp(Z) = Z M;Fp,, genannt Obersumme von f beziiglich Z,
i=1

m
sp(Z2) = ZmiFQ,. , genannt Untersumme von f beziiglich Z
i=1

und
If:= irZ1f Sf(Z), genannt Oberintegral von f auf Q,

I, :=supsy(Z), genannt Unterintegral von f auf Q.
z
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Infimum und Supremum werden dabei beziiglich samtlicher denkbarer Zerlegungen
Z von Q gebildet.

(IITI) Stimmen Ober- und Unterintegral von f auf Q tiberein, so heifit f integrierbar
auf Q. In diesem Falle heift der gemeinsame Wert 1 f = L4 das Integral von f auf Q,
beschrieben durch

M

v=<

Fig. 7.12: Zum Riemannschen Integral

Bemerkung: (a) Bei dieser Definition mache man sich klar, daf jede Obersumme von f > jeder
Untersumme von f ist. Man tiberlegt sich dies ganz analog wie im eindimensionalen Fall. Es gilt
somit stets [ p > 1 ,

(b) Statt »integrierbar« sagt man auch ausfiihrlicher »Riemann-integrierbar« zu Ehren von Bern-
hard Riemann, auf den diese Definition zuriickgeht.

Wie schon erwihnt, sind auch folgende Schreibweisen fiir das Integral {iblich:

/f(x,y)dxdy:/f(x,y)dF:/de:/f(x)dx (mit x = |:);]) (7.13)
0 o) 0 0

Ist nun der Definitionsbereich von f kein Rechteck, sondern eine beliebige kompakte Menge
B C R?) geht man so vor:
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Definition 7.2:
Es sei f : B — R beschrinkt und B C R? kompakt. Ferner sei Qp das kleinste
achsenparallele Rechteck in R?, das B umfaBt (s. Fig. 7.13). f wird auf Qp zu einer
Funktion f* erweitert durch Nullsetzen auerhalb von B.

fx), firx € B

(7.14)
0, firx € Qp,x ¢ B.

fre) = {

f heilt integrierbar auf B, wenn f integrierbar auf Q p ist; man setzt

/[f(x,y)dxdy o= //f*(x,y)dxdy. (7.15)
OB

B

Schreibweisen, analog zu (7.13), sind auch hier iiblich.

Mit dem beschriebenen Integralbegriff konnen wir den Fldcheninhalt einer ebenen Punktmen-
ge B exakt definieren und berechnen. Die Idee dabei ist, daf3 ein dreidimensionaler Korper der
Hohe 1, wie in Fig. 7.14 skizziert, einen Rauminhalt besitzt, der zahlenméaBig gleich ist dem

Fldacheninhalt Fg seiner Grundfliche B, also Fp = / / 1dx dy. Das fiihrt uns zur
B

Z

V<

Fig. 7.13: Kleinstes Rechteck um B Fig. 7.14: Zum Flicheninhalt

Definition 7.3:
Eine kompakte Menge B C R? heit (Jordan®)-mef3bar, wenn das Integral

// 1dxdy (7.16)
B

existiert. Der Wert des Integrals ist der Fldcheninhalt Fp der Menge B.
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Die 1 im obigen Integral (7.16) 1a6t man auch weg, d.h. man schreibt

FB=// dxdy. (7.17)
B

Ein Kompaktum aus R? mit Flicheninhalt 0 nennt man kurz eine Nullmenge.

Satz 7.1:
Eine kompakte Menge B C R? ist genau dann mefbar, wenn ihr Rand eine Nullmenge
ist.

Beweis:

Obersumme S1(Z) und Untersumme s1(Z) zu Z (beziiglich Q p) unterscheiden sich nur in Glie-
dern, die zu solchen Rechtecken Q; gehoren, die den Rand 9 B schneiden. Das heifl3t es ist

$1(Z)—s1(Z)= Y. Fy,.
QiNdB#D

Die rechte Summe ist eine Obersumme der Funktion f(x) = 1 auf dem Rande 9 B. 9 B ist genau
dann eine Nullmenge, wenn diese Summe beliebig klein wird (fiir geniigend feine Zerlegungen
Z = {01,..., Om}), d.h. daB auch die linke Seite beliebig klein wird, d.h. dal das Integral
(7.16) existiert, d.h. daB auch B mefbar ist. ([l

Nach dem Satz ist jeder Normalbereich D = { |:;C}i|

a<x<b, g(X)SySh(x)}(g,h

stetig) mefbar, denn sein Rand, bestehend aus den Graphen von g und 4 sowie evtl. zweier
senkrechter Strecken ist sicherlich eine Nullmenge.

Die folgenden drei Sitze bilden das theoretische Fundament der zweidimensionalen Integrati-
on.

7.1.3 Grundlegende Siitze

Satz 7.2:

Jede stetige reellwertige Funktion auf einer mefbaren kompakten Menge B ist inte-
grierbar.

Beweis:

Es sei Qp das kleinste achsenparallele Rechteck, dal B umfaBt und f* : Qp — R definiert
durch (7.14). f ist gleichmiBig stetig, da B kompakt ist (Satz 6.5, Abschn. 6.2.3). Folglich gibt
es zu beliebigem ¢ > 0 ein § > 0 mit

[f(x1) — f(x2)| <&, falls |x;—x2] <§.

3 Marie Ennemond Camille Jordan (1838 —1922), franzosischer Mathematiker
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Wihlt man nun eine Zerlegung Z = {Q1, ..., On} von Qp, deren Feinheit kleiner als § ist, so
gilt
If(x1) — f(x2)| <&, firallex;,x2 € Q;NB,

wobei Q; ein beliebiges Teilrechteck der Zerlegung Z ist. Damit gilt fiir die Differenz der Ober-
und Untersumme von f beziiglich Z (vgl. Def. 7.1):

SH(Z) —sp(Z) =Y (M; —mi)Fg, =

SHZ)—sp(Z)= > (Mi—mi)Fg,+ Y (M;—mj)Fg,

Q;CB QiNAB#YP
< > eFg,+ Y, CFp <eFg+C Y Fo,.
Q;CB 0:N3I B 0iNdBAY

wobei C = sup ) — 1nf f*(x) ist. Die rechts stehende Summe wird bei geniigend feiner

Zerlegung beheblg klein, da dB eine Nullmenge ist. Das Glied ¢ Fp wird ebenfalls beliebig
klein, wenn man ¢ geniigend klein wihlt. Damit unterschreitet S¢(Z) — s¢(Z) jede noch so
kleine positive Zahl, wenn man Z nur geniigend fein wéhlt. Das heifit f ist integrierbar auf B.0J

Satz 7.3:
(Bereichsintegrale als Doppelintegrale) Es sei f : Q — R eine integrierbare Funktion
auf dem Quader Q = [a, b] X [c, d].
Existieren die Integrale

F(x) ::/f(x,y) dy firalle x € [a,b], und

G(y) = / f(x,y)dx firalley € [c,d],

so folgt

b d d b
// f(x,y>dF=/ff<x,y>dydx =//f<x,y>dxdy. (7.18)
Q a c¢ c a

Bemerkung: Die Vertauschung der Integrationsreihenfolge in (7.18) wird auch als Satz von Fu-
bini* (fiir Riemannintegrale) bezeichnet.

4 Guido Fubini (1879 — 1943), italienischer Mathematiker
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Beweis:
Wir setzen zur Abkiirzung [ := f/ fx,y)dF.
0
Zu jedem ¢ > 0 gibt es eine Zerlegung Z = {Q1, ..., Oy} von Q mit

sp(Zy>1—¢ und Sp(Z)<I+e.? (7.19)
Die Zerlegung Z wird durch zwei Zerlegungen Z, und Z, mit den Teilungspunkten

a=x)<X1<...<xp=b, c=y<y1<...<y;=d
erzeugt. Wir wollen die Teilrechtecke von Z daher mit

Oik = Ixi—t, xil x [yk—t, ], i=1,....,p, k=1,...,¢q

bezeichnen und die Suprema und Infima darauf mit

M = sup f(x), mix = inf f(x).
xeQik x€Qik

Nun beginnt der eigentliche Beweis: Fiir alle y € [yx—_1, yx] und ein beliebiges & € [xj_1, x;]
gilt

mix < f(&i,y) < Mik, (7.20)

nach Integration iiber [yr—1, yi] also

Yk
mik(Yk — Yi—1) < / féE,y)dy < Mix(ye — yi—1) -

Yk—1

Multiplikation mit (x; — x;_1) und Summation iiber i und k liefert

d
p
sp(2) <Y /f@i,y)dy (xi —xi-1) < S7(2).

i=1 |

d
Mit F(x) = / f(x,y)dyund (7.19) folgt

P
I—e<Y FE)xi—xi-1) <I+e. (7.21)

i=1

5 Es gibt zweifellos Zerlegungen Zy, Z; von Q mits(Zy) > [ —eund S¢(Z3) < I + ¢. Man wiihle nun als Z die
»gemeinsame Verfeinerung« von Z1 und Z;, bestehend aus allen Schnittmengen der Rechtecke aus Z und Z5. Fiir
Z gilt dann (7.19).
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Da die & € [x;_1, x;] frei gewidhlt werden kdnnen, kommt die mittlere Summe der Obersumme
SF(Z,) wie auch der Untersumme sr (Z, ) beliebig nahe. wenn man die &; geeignet wéhlt. Damit
erhilt man aus (7.21)

I —e<sp(Zy) <Sr(Zy) <1+e.
b

Weil ¢ > 0 beliebig ist, folgt I = / F(x)dx.

a
d

Analog — durch Rollentausch von x und y — zeigt man [ = / G (y) dy. Damit ist der Satz

C
bewiesen. O

Daraus ergibt sich unmittelbar der entscheidende Satz fiir die praktische Berechnung:

Satz 7.4:

(Berechnung von Bereichsintegralen zweier Variabler) Ist f : B — R stetig auf dem
Normalbereich

B = { |:);i| a<x=<b,glx)<y< h(x)} , g, h stetig, (7.22)
so folgt

b | h(x)
[[ remasay=[| [ reenay | ax. 1.23)
B a |g)

(Die Klammer um das innere Integral, die hier zur Verdeutlichung gesetzt wurde, 1403t
man iiblicherweise weg.)

Beweis:
Mit f*(x) = f(x) firx € Bund f*(x) = 0 firx € Qp\B (Qp = [a, b] x [c, d] kleinstes
Rechteck um B) gilt nach dem vorigen Satz 7.3:

b d
/f f(x,y>dF=// f*(x,y)szf /f*(x,y)dy dx
B Op a c
b h(x)
=/ h(x) / f(x,y)dy | dx. O

a g(x)

Dies ist die exakte Begriindung der im Abschn. 7.1.1 anschaulich erlduterten Bereichsintegrale.
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Der Fldcheninhalt Fp eines Normalbereiches B, wie in (7.22) angegeben, ergibt sich nun aus

b h(x) b

Fp = / / dydx = f(h(x) —g(x))dx. (7.24)
a g(x) @
Fig. 7.15: Zu Beispiel 7.6
Beispiel 7.6:

Der Flicheninhalt der schraffierten Fliche in Fig. 7.15 zwischen den beiden Parabelbogen A (x) =
2 — x?und g(x) = x> fir —1 < x < 1 ist gleich

! 1
F=/((2—x2)_x2)dx=2/(1_xz)dxz?
-1

-1

Weitere Eigenschaften des Bereichsintegrals:

Satz 7.5:

(a) Es seien f und g integrierbare Funktionen auf dem Kompaktum B C R2. Dann
sind auch f 4+ g und cf (c reell) integrierbar auf B, und es gilt:

//(f+g)dF=//de+//ng, (7.25)
B B

B
// cfdF = c// fdF fiir jedes reelle c. (7.26)
B

(b) Essei f auf dem Kompaktum B definiert. B sei zerlegt in kompakte Teilbereiche
By, By, ..., By.(dh. B=B UB,U...UByund B, N B, = ¢ fiiri # k.) Ist
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f auf jedem B; integrierbar, so auch auf B, und es gilt

é/de=[1/de+{2]de+...+3/’/de. (7.27)

Die einfachen Beweise konnen dem Leser iiberlassen bleiben. (Zum Beweis von (7.27) ist
anzumerken, dal man zu jedem B; eine Funktion f; erkldren kann mit f;(x) = f(x) auf B; und
fi(x) = 0 sonst. Damit ist f = f1 + f> + ...+ fm auf B, und Regel (7.27) folgt sofort aus
(7.25)).

Satz 7.6:
(Mittelwertsatz fiir Bereichsintegrale) Es sei f integrierbar auf dem mefbaren Kom-
paktum B C R2. F, p sei der Fliacheninhalt von B. Dann folgt mit m = iII}f f(x),

M =sup f(x):
B
mFBSf/deSMFB. (7.28)
B
Ist B iiberdies wegweise zusammenhingend und f stetig, so existiert ein Punkt x¢ €
B mit
/ fdF = Fp - f(xo). (7.29)
B

Bemerkung: B heillit wegweise zusammenhdngend, wenn sich je zwei Punkte x1, x, aus B
durch einen Weg in B verbinden lassen. (D.h.: Es gibt eine stetige Abbildung w : [a, b] — B
mit x; = w(a), x2 = w(b). Die Abbildung w heilit ein Weg in B. Man sagt: Der Weg verbindet
x1und x».)

Beweis:
@ Mitm := igf(x), M :=sup f(x) giltm < f(x) < M in B, also nach Integration

B
mé/de/I; degMé/dF;

wegen Fp = // dF ist dies gerade die Beziehung (7.28).

B
Im Falle Fp # 0 folgt

mgi//desM. (7.30)
Fp
B
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(II) Es sei B wegweise zusammenhingend. Im Falle Fp = 0 folgt (7.29) sofort aus (7.28). Im
Falle Fp # 0 wihle man einen Punkt x| aus B mit f(x;) = m, und einen Punkt x, € B mit
f(x2) =M. w: [a,b] - B,beschrieben durch x = w(z), sei ein Weg, der x| und x; verbindet.
Damit nimmt f(w(¢)) jeden Wert zwischen m und M an, auch ¢ = // fdF/Fp,s. (7.30). Es

B
gibt somit einen Punkt w(fy) = xo mit f(x9) = c, was zu beweisen war. O

Fig. 7.16: Zu Ubung 7.6
Ubung 7.6%:

Berechne

/ (¥ +siny)dx dy
B

fiir den in Fig. 7.16 skizzierten Bereich B.

Ubung 7.7:

Berechne

frows (L

mit g(x) = x2, h(x) =2 — x. Skizziere B!

0<x=1, gx)<y=<h

7.1.4 Riemannsche Summen
Es sei B ein meBbares Kompaktum aus R?, das in meBbare wegzusammenhingende Kompakta
ABy1, ABy, ..., ABy, zerlegt ist, wie es z.B. die Fig. 7.17 zeigt. (B = [nj Aéi, Aﬁi N Aék =0
fiir i k). =
Die Menge
7 ={ABy, ABy, ..., ABy)

heilit eine allgemeine Zerlegung von B. Der maximale Durchmesser der A B; heilt die Feinheit
|Z| der Zerlegung Z.
Ist f eine stetige reelle Funktion auf B, so wird die Summe
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Fig. 7.17: Allgemeine Zerlegung

R=) f@i)Fap (731)

i=1

mit beliebigem x; € AB; als eine Riemannsche Summe zu 7 bezeichnet. Sie wird als N dherung

fiir das Integral / f f dF angesehen, die umso besser ist, je kleiner die Feinheit von Z ist. DaB

B
diese Vorstellung richtig ist, wird durch folgenden Satz ausgedriickt.

Satz 7.7:

(éiber Riemannsche Summen) Es sei f : B — R stetig auf dem meBbaren Kompaktum
B CR2 7y, Z,, Z3, ... sei eine Folge allgemeiner Zerlegungen von B, wobei die Fol-
ge der Feinheiten | Z| mit k — 0o gegen Null strebt. Wihlt man zu jeder Zerlegung
Zk eine Riemannsche Summe Ry, so folgt

Rk—>//de fir k— o0.
B

Beweis:

Da f gleichmifig stetlg auf B ist, gibt es zu beliebigem ¢ > 0 ein ky > 0, so daB fiir alle
Zk = {ABK, ABk ... } mit k > kg folgt

|f(x) — f(®)| <e firallex,¥ € ABF.

Ferner gilt nach dem Mittelwertsatz (7.29):

//de Z/ fdF = Zf(zl)FABA zi € ABF.

AB"
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Damit folgt

Rk—l[/de =
B

m m
= Z )f(x,gk)) - f(Zi)‘ Fypt = ZSFAB{C =¢Fp firk > ko.
i=1

i=1

(x¥ e ABH

Y &g =D F@)F
i=1

i=1

Daraus folgt die Behauptung des Satzes. ]

Bemerkung: Beim Losen technischer oder naturwissenschaftlicher Probleme sto3t man immer
wieder auf Ansitze, bei denen Naturvorgidnge zunéchst durch Riemannsche Summen angenéhert
beschrieben werden. Von den Riemannschen Summen geht man dann iiber verfeinerte Zerle-
gungen zu Integralen iiber. Fiir diese »mathematischen Modellierungen« der Natur liefert der
vorstehende Satz die Rechtfertigung. Erste Beispiele dazu gibt der folgende Abschnitt an.

7.1.5 Anwendungen

Schwerpunkte: Den Schwerpunkt eines Systems von endlich vielen Massenpunkten berechnet

man folgendermalen: Haben die Massenpunkte die Massen m 1, mo, . .., m, und sind die Punkte
X1,X2,X3, ..., X, ihre Orte im Raum R3, so ist der Schwerpunkt dieses Systems durch
1 n
xx=E;§;mmi (1.32)
1=

n
gegeben. Dabei ist M = Zmi die Gesamtmasse des Systems. (Statt Schwerpunkt sagt man
i=1
auch Massenmittelpunkt).

Bei einem realen Korper (mit nichtverschwindendem Volumen) kniipft man an die Massen-
punktsysteme und damit an Formel (7.32) an. Man denkt sich ndmlich den Korper in kleine
Teilstiicke zerlegt, die man wie Massenpunkte behandelt, d.h. man wendet auf sie die Formel
(7.32) an. Damit bekommt man eine Naherung fiir den Schwerpunkt des Korpers. La3t man den
maximalen Durchmesser der Teile gegen Null gehen, so erhélt man als Grenzfall den Schwer-
punkt des Korpers.

Flidchenschwerpunkte: Diese Idee wollen wir zunéchst auf diinne ebene Platten anwenden. Wir
idealisieren sie zu ebenen Fliachenstiicken der Dicke Null. Ein solches mit Masse belegtes Fli-
chenstiick B ist in Fig. 7.18 skizziert. B sei mef3bar und kompakt.

Wir denken uns B in meBbare, wegweise zusammenhingende Teile AB; (i = 1, ..., n) zer-
legt, etwa durch Rasterung, s. Fig. 7.18. Aus jedem A B; wihlen wir ein x; aus.

Ist durch p(x) die Flichendichte der Masse auf B gegeben (gemessen in g/cm, so konnen wir
p(x) auf jedem Teilstiick AB; als nahezu konstant annehmen. Die Masse von AB; ist damit

Am; ~ p(x;)Fap, . °
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Fig. 7.18: Zum Flichenschwerpunkt

Mit der Gesamtmasse M unserer Platte erhalten wir den Schwerpunkt x der Platte ndherungs-
weise aus (7.32):

1 & I ¢
X~ m ;Amixi ~ i ;P(xi)xiFABi
i= 1=

Bei immer feiner werdender Rasterung, wobei der maximale Durchmesser der AB; gegen Null
gehen soll, erhalten wir schlieBlich fiir den Schwerpunkt

Xg = % // p(x)xdF . (7.33)
B

Die Gleichung besteht aus zwei Koordinatengleichungen. Das Integral ist dabei einzeln fiir jede
Koordinate zu bilden.
Die Masse M selbst hingt mit p(x) durch

M://p(x)dF
B

zusammen, wie sich aus einer analogen Uberlegung ergibt. Im Falle konstanter Flichendichte pq

folgt daher M = py / dF = poFp, und damit fiir den Schwerpunkt die Formel

B
! // dF (7.34)
Xy = — x . .
S Fg
B
. Xg X . .
Mit xy = [ i| X = |: ], also in Koordinaten:
s y

6 FAp. = Flicheninhalt von AB — 1.
1
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1 1
- dxdy, = e dxd 7.35
Xs FBé/x Y, Ys FBé/yxy (7.35)

ist B ein Normalbereich:

s={]}

mit stetigen Funktionen g, f, so folgt

1
Xy = —
s Fp

a
_1
yS_FB

a

b

b

a<x=<bh, g(x)sxff(X)}

\g(X)

\g(X)

S

xdy

S

ydy

b
dx = L/x(f()c) —g(x))dx, (7.36)
Fp
b
a = [P0 - wyar, (7.37)
2Fp

Mit diesen Formeln lassen sich die Flichenschwerpunkte oft leicht berechnen. Dazu ein Beispiel.

Beispiel 7.7:

bt &

Fig. 7.19: Zum Schwerpunkt einer Halbkreisfliche

(Schwerpunkt einer halbkreisformigen Platte) Der Halbkreis H liege so, wie in Fig. 7.19 skiz-

ziert:

H:H:)yc”—r§x§r,0§y§\/r2—x2}, r>0.

H ist ein Normalbereich. Die Flichendichte sei konstant. Nach (7.36) und (7.37) folgt damit fiir
die Komponenten des Schwerpunktes:

T r2r

.
2
Xs /x\/rz—xzdxzo,
—r
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da der Integrand eine ungerade Funktion ist, und
== f (r — xz) dx =
remw

Kurvenschwerpunkte: Eine glatte Kurve’ in der Ebene sei durch
x=g@), y=f0, (@=r=o

gegeben. ( f, g sind dabei stetig differenzierbare Funktionen auf [a, b]) und es ist §(£)2+ f (1) #
0 fiir alle ¢ € [a, b].) Die Kurve stelle einen diinnen Draht, ein diinnes Seil oder dhnliches dar. p
sei die konstante Massen-Kurvendichte, also p = m /L, wobei m die Masse des Drahtes (Seiles
o.4.) istund L seine Linge. Es sei durch

a=ty<h<h<...<tp,=>b
eine dquidistante Zerlegung von [a, b] gegeben, mit
At =t; —t;_y furalle i=1,...,n.

Wir schreiben mit x; = g(¢;), yi = f (), entsprechend Ax; = x; — x;_1, Ay; = y; — yi—1 und

As; = ,/Axlz + Ayl.z.

As; ist ndherungsweise die Linge des Kurvenstiickes zu [#;_1, #;]. Damit gilt fiir den Schwerpunkt
des Drahtes (oder Seiles) nach (7.32) ungefihr:

n n

1 « 1 As; 1 « 1 As;
xs~;;xi,o~Asi=22xiEAt, ys~;;yip'Asi=z2yiEAt,
1= 1= 1= 1=

nach Grenziibergang entsprechend der anfangs skizzierten Idee also:

b
1 v2 o2
= \/ dr,
L/x xXc+y
a
b
ys=l/y,/5c2+)72dt
L b
a

Die Kurvenldinge L errechnet man dabei (n. Burg/Haf/Wille (Vektoranalysis) [9], Abschn. 1.2.1)
aus

Xs

mig] ¥ =80 (7.38)
y=f@.

7 Die ausfiihrliche Kurventheorie nebst vielen Beispielen findet der Leser in Burg/Haf/Wille (Vektoranalysis) [9],
Abschn. 1. Ableitungen nach ¢t werden hier mit einem Punkt markiert, z.B. g(z).
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b
L= f,/fcl + 324t (7.39)
a

Im Spezialfall x = ¢, y = f(¢) konnen wir einfach ¢ durch x ersetzen:

y=fx).

Wir haben es hier mit einer Kurve zu tun, die einfach durch den Funktionsgraphen von f gegeben
ist, In diesem Falle ergibt sich der Kurvenschwerpunkt aus (7.38) folgendermafBen:

b
1
X = Z/x 14+ (y)2dx,
“b mit y = f(x). (7.40)
1
ﬂ=Z/QVPHVVM,
a

b
Dabei ist die Kurvenlinge L = /,/ 14 (y)2dx.
a

Flichenmomente: In der Festigkeitslehre benotigt man zur Behandlung von Biegungen Fldchen-
momente von Querschnittsflachen. Ist B eine solche Querschnittsfliche, die in einer x-y-Ebene
liegt (s. Fig. 7.20), so verwendet man folgende Fldchenmomente (die auch Momente zweiter
Ordnung heilen):

Axiales Flachenmoment 2
beziiglich der y-Achse:
B

Axiales Flichenmoment I / / 2drd
= X s
beziiglich der x-Achse: * Y Y
B
Gemischtes Flichenmoment
o Ixyz//xydxdy,
beziiglich der x- und y-Achse:
B
Polares Flichenmoment ! / /‘( 2, 2) dedy 8
= X b .
beziiglich des Koordinatenursprungs: P Y Y
B

Das gemischte Flichenmoment heilit auch Deviationsmoment oder Zentrifugalmoment. Das
polare Flichenmoment (verwendbar bei Torsionsuntersuchungen) 146t sich durch die axialen Fla-

8 Statt x ist in der Technik hier auch der Buchstabe z hiufig anzutreffen.
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AY

55
Al

Fig. 7.20: Zum Flichenmoment

v >

chenmomente ausdriicken:
I =1+ I.

Beispiel 7.8:

(Axiales Fldachenmoment Iy eines gleichseitigen Dreiecks) Aus Symmetriegriinden brauchen
wir nur iiber die rechte Dreieckshilfte B zu integrieren (Fig. 7.21) und das Integral doppelt zu
nehmen:

a/2 [ (a—2x)v/3/2 a2
2 2 2 V3 4
Iy=2//x dxdy=2f / x=dy =\/§fx(a—2x)dx=%a.
B 0

(=}
(=}

L 2%

Fig. 7.21: Zum axialen Flichenmoment eines  Fig. 7.22: Zum polaren Flichenmoment einer
gleichseitigen Dreiecks Ellipse

Beispiel 7.9:

(Polares Fldchenmoment I, einer Ellipsenfliche beziiglich des Mittelpunktes) Die Ellipse sei
durch

Q |><
ST
+
2=
Il
—_



7.1 Integration bei zwei Variablen 535

beschrieben. Aus Symmetriegriinden braucht das polare Flichenmoment nur von der Viertelel-
lipsenfliche B berechnet zu werden (s. Fig. 7.22) und dieses mit 4 multipliziert zu werden. Also
insgesamt

a | ba/1—x2/a?
Ip=4//(x2+y2)dxdy=4/ / (x> +yHdy | dx
B 0 0

|

a 2\ 1/2 3 2\ 3/2
X b
=4 h(1-= —(1- d
[lo(-5) +5(-5) ]«
0
Man substituiert x = a sin ¢ und erhilt
/2 b2
Ip=4ab/ |:a2 sinztcost+?cost:| costdt

0
/2

b2
=4dab / |:oz2 cost + (? — az) cost:| dr
0

3 > L\ 3w
=a’br +ab( = —a®) 7= (s Abschn. 4.2.3, (4.81)

b
= = %(a2 +b2). (7.41)

Fiir den Spezialfall « = b =: r erhalten wir daraus das polare Flichenmoment einer Kreisscheibe
beziiglich des Mittelpunktes:

Ip=2r%, (7.42)

Durch Subtraktion zweier Flichenmomente dieser Art gewinnt man daraus das polare Flidchen-
moment eines ringférmigen Rohrquerschnittes beziiglich des Mittelpunktes (s. Fig. 7.23):

= %(R4 — % (7.43)

(R = duBerer Radius, » = innerer Radius des Kreisringes).

Ubung 7.8:

Zeige, daBl der Schwerpunkt einer dreieckigen ebenen Platte mit konstanter Flidchendichte pg
der Schnittpunkt der Seitenhalbierenden ist.
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Ay

Fig. 7.23: Zum polaren Flichenmoment eines Ringes

Ubung 7.9:

Berechne das polare Flichenmoment eines regelmifligen Sechsecks beziiglich seines Mittel-
punktes (a = Seitenlénge des Sechseckes).

Ubung 7.10:

Berechne das axiale Flichenmoment /Iy einer Kreisscheibe mit Radius » > 0. Dabei verlaufe
die y-Achse durch den Mittelpunkt des Kreises.

7.1.6 Krummlinige Koordinaten, Transformationen, Funktionaldeterminanten

Das wichtigste Beispiel fiir krummlinige Koordinaten in der Ebene sind die uns geldufigen Po-
larkoordinaten.

Dabei wird bekanntlich jeder Punkt x = [i] der Ebene durch seinen Abstand » vom Koordi-

natenursprung und den Winkel ¢ zwischen der x-Achse und der Strecke von 0 bis x beschrieben.
Es gilt

— — 2 2
X =rcosg, r=4/X"+y, 9 (7.44)

y:rSinwa wZarc(xvy)v

wobeir > Ound —7 < ¢ < 7 ist.

Die Linien r = konstant sind konzentrische Kreise um den Punkt 0, die Linien ¢ = konstant
dagegen Geraden durch 0. Einige sind in Fig. 7.24 skizziert. Sie bilden ein krummliniges Gitter,
das sich iiber die Ebene erstreckt. Aus diesem Grunde spricht man hier von krummlinigen Koor-
dinaten. Lassen wir den Punkt 0 einmal aufier Acht, so beschreiben die Gleichungen x = r cos ¢

é S ) fiiry > 0, .
arccos(x/r) wy = s. Abschn. 2.3.4. Im Falle x > 0 gilt auch arc(x, y) =

9 Dabei ist arc(x, y) = ..
—arccos(x/r), fury < 0,

arctan(y/x),
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und y = r sin ¢ eine eineindeutige Abbildung des Streifens

o[l

(s. Fig. 7.25) der (r, ¢)-Ebene auf die x-y-Ebene ohne 0. Hieran orientieren wir uns im Folgen-

r>0,—n<<p§n}

den.

AYD

Y-

Fig. 7.24: Polarkoordinaten als typische ) ) e 1 X
»krummlinige« Koordinaten Fig. 7.25: Bereich G™ fiir die Punkte

Allgemeiner Fall krummliniger Koordinaten in der Ebene
Durch

x=g,v
8( )’ u cG*. X c R2 ’
y =h(u,v) v y
sei eine stetig differenzierbare Abbildung von G* in R? gegeben. Mit den Abkiirzungen
—|* N — |8 *y .
o] wef] reff]. rer=o,
beschreiben wir sie kiirzer durch

x=T@m, ueG",

oder: T : G* — G.

Die Ableitungsmatrix von T — auch Funktionalmatrix genannt — hat die Form

r_ | 8u v
r=ln k]
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wobei gy, gv, hu, hy — wie liblich — die partiellen Ableitungen von /2 und g sind. Thre Determi-
nante!'?

detT' = I:iz i;] = guhy — gvhu (7.45)

heif3t die Funktionaldeterminante von T. Mit Blick auf die Funktionsgleichungen x = g(u, v),
y = h(u, v) bezeichnet man sie auch durch

a(x, y)
Au,v)

Diese Schreibweise ist in Naturwissenschaft und Technik beliebt, da ihre Symbolik an die parti-
ellen Ableitungen erinnert, die in ihr stecken.
Fiir das Folgende setzen wir voraus

(a) G und G* seien Gebiete, d.h. offene und zusammenhingende'! Mengen (in R?).
(b) T : G* — G sei umkehrbar eindeutig und stetig differenzierbar.

(¢) Die Funktionaldeterminante von T ist iiberall in G* von Null verschieden:

detT'(u) # 0 fiir alle u € G*.

Da G* zusammenhingend ist, folgt, daB det T () entweder positiv in ganz G* ist, oder nega-
tiv in ganz G*.

Eine Abbildung T : G* — G dieser Art heifit eine Transformation von G* auf G.

In Fig. 7.26 ist eine Transformation T : G* — G(u € G*, x € G) bildlich dargestellt. Die
Linien # = konstant und v = konstant sind in der u-v-Ebene achsenparallele Geraden; in der
x-y-Ebene ergeben sie ein krummliniges Netz, das den Bildbereich G tiberzieht.

Zur Veranschaulichung der Funktionaldeterminante betrachten wir das schraffierte Rechteck
AG* in Fig. 7.26a. Seine Kantenlidngen seien Au und Av, und der linke untere Eckpunkt habe
die Koordinaten (u, vg). Die vier Eckpunkte des Rechtecks AG™* sind damit

uo — uo S uo + Au w — uo ua — uog + Au
0= v | L= Vo ’ 27 v+ Av | 3T v+ Av |

Durch T wird unser Rechteck AG* auf den schraffierten Bereich AG in Fig. 7.26b abgebildet.
AG hat nahezu Parallelogramm-Gestalt, wenn Au und Av klein genug sind. Dieses »Parallelo-
gramm« wird aufgespannt von den Vektoren

oT
AT =T (uy) — T(up) = E(”O)A”a

or
ATy = T(uz) — T(uo) ~ —=(uo)Av.

10 Unter einer Determinante einer 2 x 2-Matrix A = [i Z] versteht man die Zahl det A := ad — bc.

11 Eine offene Menge heiflt zusammenhéngend, wenn sie sich nicht in zwei offene Mengen zerlegen laft.
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- /ll
Y20 Jav )
Uo| Au U1

Fig. 7.26: Zur Transformation T : G* — G.

Die lineare Algebra lehrt, daf3 der Flicheninhalt dieses Parallelogramms gleich dem Absolutbe-
trag der Determinante det(AT 1, AT>) ist, deren Spalten die Vektoren AT| und AT, sind. Fiir
den Fldcheninhalt AF des Bereiches AG folgt damit

oT

aT
AF ~ |det(AT;, ATy)| ~ det(a—(uo), ; (vo))‘AuAv. (7.46)
u v

Die rechtsstehende Determinante ist die Funktionaldeterminante von T, also

AF ~ | det T' (ug)| AuAv (7.47)
N ‘3(*” Audv. 12 (7.48)
31, ) |y

Dividieren wir durch den Flicheninhalt AF* = AuAv des Rechteckes AG* im Urbildbe-
reich, so folgt

(7.49)

AF  19(x,y)
AF* a(u, v)

uo

SchlieBlich lassen wir den Durchmesser D(AF*) := +/ Au? + Av? von AF* gegen Null streben
und erhalten

(7.50)

. AF a(x,y)
lim =
D(AF*)—0 AF* a(u, v)

uo
Den exakten Beweis dieser plausiblen Formel iibergehen wir hier. (Die Formel folgt aus der

allgemeineren Transformationsformel fiir Integrale, s. nichster Abschnitt.)
Formel (7.50) kann anschaulich so interpretiert werden:

a(x, y)
a(u, v)

12 Die Abhingigkeit von u( wird bei — falls erforderlich — durch ein tiefgestelltes u( angegeben.
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Die Funktionaldeterminante einer ebenen Transformation ist betragsmadBig das lokale
Flacheninhalts-Verhiltnis zwischen Bild- und Urbildfiichen.

Beispiel 7.10:
Die Funktionaldeterminante der Transformation auf Polarkoordinaten ergibt sich aus x = r cos ¢,
y = rsin¢:
dx  0Jx
a(x,y) _|dr  dgp
o(r.g) |3y dy
ar  9¢

cosg —rsing
sing  rcosg

‘:r0052<p+rsin2(p=r. (7.51)

Wir erwidhnen noch, daf die Koordinatenlinien ¢ = konstant und » = konstant in der x-y-Ebene
rechtwinklig zueinander stehen. Dies spiegelt sich in T, - T, = 0 wider. Die Polarkoordinaten
fallen damit unter den Begriff der orthogonalen Koordinaten.

Komposition von Transformationen

Esseien T : G* — G und S : G — H zwei ebene Transformationen. Fiir ihre Komposition
S o T folgt

det(SoT) (x) =det S’ (y)detT'(x), mit y=T(x). (7.52)

Der Leser rechnet dies leicht explizit nach, wenn er Satz 6.9, Abschn. 6.3.3,
betrachtet, d.h. (S o T)'(x) = S'(y)T’(x). Mit den Funktionsgleichungen

2| _ [S101, y2) yi| _ | Tix1, x2)
&) Sr(y1,y2) |’ 2 T>(x1, x2)
fiir die Transformationen § und T bekommt (7.52) die leicht zu merkende Gestalt

9(z1,22) _ 9(z1,22) 3(y1,¥2)
A(x1,x2)  A(y1,y2) A(x1,x2)

(7.53)

Wir wenden diese Formel speziell auf die Umkehrabbildung 7! von T an,beider T™' o T = I
die identische Abbildung x = I(x) ist. In obiger Gleichung (7.53) haben wir also z; = x;
einzusetzen. Wegen

d(x1, x2) ’1 0

i L e S -1
d(x1,x2) |0 1‘

folgt damit aus (7.51):
0y, y2) 1

a(x1, x2) TA(x,x2)
9(y1, y2)

(7.54)
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. x| . .
wobei links das Argument x = [xl} einzusetzen ist und rechts das zugeordnete Argument y =
2

yi|
|:y21| =T (x).

Ubungen: Berechne die Funktionaldeterminante der folgenden Transformationen:

Ubung 7.11:
X =au+ bv, lineare Abbildung
y=cu+dv ,} a, b, c, d reelle Konstanten mit ad — bc # 0.
Ubung 7.12:
x = pcoshé&cosn, elliptische Koordinaten &, n
y = psinh&sinn, } (o > 0 konstant).

Skizziere die Linien & = konstant und n = Konstant.

Ubung 7.13:

1
X = f(uz - vz)} parabolische Koordinaten

2
R W? +v? #0).

7.1.7 Transformationsformel fiir Bereichsintegrale

Analog zur Substitutionsregel bei einer Variablen gilt die im Folgenden angegebene Transforma-
tionsformel fiir Integrale im R? (und ganz entsprechend auch im R”.).

Satz 7.8:

Es sei T : G* — G eine Transformation des Gebietes G* C R? auf das Gebiet
G c R% (D.h.: T ist stetig differenzierbar, umkehrbar eindeutig, und die Funktional-
determinante det T/ (u) ist fiir alle u € G* positiv oder fiir alle u € G* negativ). Ferner
sei B* eine kompakte meBbare Teilmenge von G*, und f sei eine stetige reellwertige
Funktion auf dem Bereich B = T (B*).

B ist damit auch meBbar, und es gilt die Transformationsformel

/f f(x)dx:// F(T @))|det T (u)| du . (7.55)
B*

B

Mit der Koordinatenschreibweise

_|x _|u x| | g, v)
=[] =[] [lere-fi]
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und

a(x,y)

det T/ (u) = )

erhilt die Transformationsformel (7.53) die explizite Form

A(x, y)
d(u, v)

/ f(x,y)dxdy = // f(g(u,v), h(u, v)) ‘ dudv. (7.56)

B B*

Bemerkung: (a) Durch die Ahnlichkeit mit der Substitutionsregel bei einer Variablen LBt sich
die Transformationsformel in dieser Form gut behalten: Die Zeichen dx dy werden formal zu
‘ A(x, y)

a(u, v)

du dv »erweitert«.

(b) Der Satz gilt auch, wenn det T’ (u) = 0 auf einer Nullmenge N C B* gilt oder die Einein-
deutigkeit von T nur in G*\ N erfiillt ist. (Bei Transformation auf Polarkoordinaten brauchen wir
daher den Punkt 0 nicht als Ausnahmepunkt zu betrachten.)

Der exakte Beweis der Transformationsformel ist sehr umfangreich. Der daran interessierte
Leser wird deswegen auf [25], Abschn. 205, S. 473 —485, verwiesen.

Allerdings 146t sich der Satz anschaulich sehr gut plausibel und glaubhaft machen. Dazu be-
trachten wir Fig. 7.27, die die Transformation T von B* auf B veranschaulicht. B* ist durch
achsenparallele Geraden in endlich viele »Maschen« AB,f. (k=1,2, ..., m) zerlegt. Ihre Bilder
ABy =T (AB;T) zerlegen B = T (B*), wie z.B. im rechten Bild skizziert. Mit uy sei ein be-
liebig ausgewihlter Punkt aus AB;:. bezeichnet und mit x; = T (u;) sein Bild in AB;. (fiir alle
k =1, ...,m). Den Flicheninhalt von ABZ‘ nennen wir AF,:‘ , den von A By, entsprechend A Fj«
k=1,...,m).

Fig. 7.27: Zur Transformationsformel

Nach den Uberlegungen im letzten Abschnitt (s. (7.49)) gilt

AF, ~ |det T (ug) | AF} .
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Damit folgt fiir das Integral von f iiber B approximativ

ff f)dx ~ ) f(x0)AF
B k=1

~ Y F(T ()| det T/ (up) |AFy ~ // f(T )| det T'(w)| du .
B

k=1

Strebt hierbei der maximale Durchmesser der Flachenstiicke A Fy gegen Null, so ist es plausi-
bel, daf} fiir die entstehenden Grenzwerte Gleichheit eintritt, d.h. dafl die Transformationsformel
dabei entsteht.

Einige Beispiele sollen die Kraft der Transformationsformel beleuchten.

Beispiel 7.11:

(Lineare Transformationen) Eine lineare Transformation der Ebene R2 in sich ist durch

X =aju-+anv, .
mit ajjaz —apay #0,
y =au+anv,

gegeben. Mit der Matrix

A= i dn , sowie x = x u= “
azy  a y v
lautet die Transformationsgleichung kiirzer

x =Au, mit detA #0.

Damit folgt fiir beliebige ebene Bereichsintegrale stetiger Funktionen f (nach (7.53)):

/ff(x)dxdy:|detA|//f(Au)dudv.
B

B

Fiir Drehungen und Spiegelungen ist |det A| = 1. Damit folgt: Bereichsintegrale sind gegen
Drehungen und Spiegelungen des Koordinatenkreuzes invariant. Insbesondere gilt dies damit fiir
Schwerpunkte und Triagheitsmomente von Korpern, was aus der Physik auch nicht anders zu
erwarten ist.

Beispiel 7.12:

(zu Polarkoordinaten) Der Schwerpunkt einer ebenen Platte von der Form eines Kreissektors K
soll bestimmt werden, s. Fig. 7.28. Die Massen-Fldachendichte pg sei konstant auf K. « sei der
Offnungswinkel und R der Radius des Kreissektors. Die y-Komponente des Schwerpunktes von
K ist aus Symmetriegriinden 0. Die x-Komponente x¢ des Schwerpunktes ergibt sich nach (7.33)
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aus
1
X0 = a—//xdxdy.
—R2
2 K

Mit der Transformation x = r cos ¢, y = r sin ¢ auf Polarkoordinaten folgt aus der Transforma-
tionsformel (7.54):

a/2 R a2 R
2 2
xozm / /rcos(<p)~rdrd<p=m / cos @ /rzdr de
—a/2 0 —a/2 0

Fig. 7.28: Zum Schwerpunkt eines Kreissektors
Beispiel 7.13:
Der Fldcheninhalt einer Ellipse

#={[}

Zur bequemen Auswertung des Integrals benutzt man der Ellipse angepalite A, t, definiert durch
die Transformation

%2 y2
;—}—ﬁfl}, a>0,b>0, ist FE=//dxdy.
E

X =akcost, y=bAsint. (7.57)

Fir A = 1 und 0 < ¢ < 27 beschreibt dies gerade den Rand der Ellipsenflache. Die Funktional-
determinante dazu ist
ox dx

% o __|acost —alsint
dy 9dy| |bsint bicost

ar ot

=abl.
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Die Transformationsformel (7.54) ergibt fiir die Ellipsenfliche den Inhalt

1 27 1
ngffabkdtdk=ab2n/)\d)»=abn.
0 0 0

Entsprechend wird das Trigheitsmoment eines elliptischen Zylinders berechnet. Ja, fiir die mei-
sten Integrale

// Fx. y)dxdy
E

auf der Ellipsenfliche ist die Transformation auf die Koordinaten (7.57) oder elliptische Koor-
dinaten (s. Abschn. 7.1.6, Ub. 7.12) zweckmdifig.

Beispiel 7.14:
Das Gaufssche Fehlerintegral

o0
1= / e dx
—0o0

kann mit der zweidimensionalen Integrationstechnik elegant berechnet werden. (Mit Integrati-
onsmethoden einer reellen Variablen ist es analytisch nicht berechenbar!)

Das Integral wird als Grenzwert

n

I = lim I,, mit In:/efx2 dx,

n—oo
—n

o0
. .. 2 . . _
geschrieben. (Der Grenzwert existiert, da e™ < e fir |x] = 1 ist, und / e Ml dx =
—00

o0

2 / e dx = 2 existiert.) Der »Pfiff« besteht darin, /> zu untersuchen und die Integrationsva-
. 0 . .
riable einmal x und einmal y zu nennen:

n n n n
I,% = /e_xz dx - /e_yz dy ://e_(xz"'yz) dxdy.

—n —n —n—n

Dies ist ein Doppelintegral auf dem Quadrat

0, =[—n,n] x[—n,n].
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Wir vergleichen es mit den entsprechenden Integralen iiber den Kreisscheiben K, und K 5 um
0 mit den Radien n bzw. v/2n: Wegen K, C Q,, C K 55, (s. Fig. 7.29) gilt

// e—(x2+y2) dxdy < 13 < // e—(x2+y2) dxdy .
k’l

K /3

Nun werden die beiden Integrale links und rechts auf Polarkoordinaten transformiert: x = r cos ¢,
y = rsing.

24
K. 5,

W

¥ x

4
|/
N

o
Fig. 7.29: Zum Fehlerintegral / e dx
—00

Es folgt

27 n 27 /21

f/e_rzrdrdwflfgffe_rzrdrdw.
00 0

. . 2 . I _
Eine Stammfunktion von r +— e~ r ist offenbar r 3 e "

* Damit lassen sich die Doppelinte-
grale rechts und links analytisch berechnen:

r(l—e ™)y <I><m(l-—e ).

Rechte und linke Seite streben mit n — oo gegen r, folglich auch Inz. Somit ergibt sich /2 = 7,
also nach Wurzelziehen:

/ e dx = /7. (7.58)

Diese Formel spielt insbesondere in der Wahrscheinlichkeitslehre eine wichtige Rolle.
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Ubung 7.14:

Berechne / / ,4/ x2 + y2 dx dy auf der Einheitskreisscheibe K C R2. Anleitung: Transformiere

K
auf Polarkoordinaten.

Ubung 7.15:

Berechne das Triagheitsmoment eines elliptischen Zylinders beziiglich seiner Mittelachse. Wih-
le dabei die Bezeichnungen aus Beisp. 7.9 in Abschn. 7.1.5. Hinweis: Benutze die Transforma-
tion auf elliptische Koordinaten (7.55).

Ubung 7.16:

Zeige, daBl der Schwerpunkt x( einer ebenen Platte bei linearer Transformation x = Au mit-
transformiert wird, also xg = Aug (ug = Schwerpunkt nach Transformation).

7.2 Allgemeinfall: Integration bei mehreren Variablen

Die Behandlung von Integralen bei drei und mehr Variablen verlduft vollig analog zu dem be-
schriebenen zweidimensionalen Fall.

7.2.1 Riemannsches Integral im R”

Die Definition von Integralen mehrerer Variabler folgt nahezu wortlich derjenigen, die in Ab-
schn. 7.1.2 fiir zwei Variable gegeben wurde. Sie stiitzt sich lediglich auf Quader, den Analoga
zu Rechtecken im Hoherdimensionalen.

b
|
i ol o
rd
rd
Fd
a
Fig. 7.30: Quader
Definition 7.4:
(a) Eine Menge der Form
X1
O={x= a; <x; <bjfiri =1,...,n
Xn
heiBit ein n-dimensionaler Quader. Dabei sind ay, ..., a,, b1, ..., b, beliebi-

ge reelle Zahlen mit @; < b; fiir alle i. Man beschreibt den Quader auch als
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kartesisches Produkt von Intervallen in der Form
0 =lai,b1] x [az, ba] x ... X [an, by]. (7.59)
(b) Die Zahl
Vo = (b1 —a)(by —az) ... (by — an)

heilt Inhalt oder Volumen des Quaders Q. Fafit man die a; bzw. die b; in zwei
Vektoren a = [ay, ..., ay]%, b = [b1, ..., b,y]¥ zusammen, so ist

8o = 1b—al| (7.60)
der Durchmesser des Quaders Q (s. Fig. 7.30).
(c) Fiir jedes Intervall [a;, b;] in der Darstellung
0 =la1,b1] x...x[ay, by]
des Quaders sei eine Zerlegung Z; mit Teilungspunkten
a; =x(()i) <x§i) <x§i) < ... <x,(,il,) = b;
gegeben. Daraus werden alle moglichen Teilquader der Form

1 1 2 2
[x,il)_l,xlil)] X [xliz)_l, xlgz)] X ... X [x,ijil,x,g:)]

gebildet. Diese werden in irgendeiner Reihenfolge durchnumeriert und mit Q1,
0>, ..., O bezeichnet. Die Menge

Z={Qla QZ?"'?QW}

heifit eine Zerlegung von Q.

Damit iibertragen wir die Definition des (Riemann-) Integrals auf den n-dimensionalen Fall
vollig entsprechend wie in Definition 7.1:

Definition 7.5:
(Riemannsches Integral im R™)

(I Essei f eine reelle beschrinkte Funktion auf einem n-dimensionalen Quader Q.

ZZ{QI’---an}

sei eine beliebige Zerlegung von Q in Teilquader. Die Inhalte der Teilquader Q;
werden mit V, bezeichnet.
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) Mit

M; := sup f(x), m; ;= inf f(x) (7.61)
x€Q; x€Q;

bildet man

m
Sp(Z) = Z M;Vg,, genannt Obersumme von f beziiglich Z,

i=1

m
sp(Z) = Zmi Vo;, genannt Untersumme von f beziiglich Z 13 und
i=1

7f = i%f S¢(Z), genannt Oberintegral von f auf Q,

1, :=supsy(Z), genannt Unterintegral von f auf Q.
V4

Infimum und Supremum werden dabei beziiglich simtlicher denkbarer Zerlegun-
gen Z von Q gebildet.

(ITII) Stimmen Ober- und Unterintegral von f auf Q {iberein, so heifit f
(Riemann-)integrierbar auf Q. In diesem Falle heifit der gemeinsame Wert
Iy = I ; das (Riemannsche) Integral von f auf Q, beschrieben durch

/ f(x)dx.
0
Auch andere Schreibweisen, wie
/f...[f(xl,xg, e, Xp)dxpdx ... dxy, :/de (7.62)
N e’ Q
0

usw. sind iiblich.

Fiir beliebige kompakte Integrationsbereiche von f wird das Integral auf den Quader-Fall wie
folgt zuriickgefiihrt (vollig analog zu Def. 7.2 in Abschn. 7.1.2).

Definition 7.6:

Es sei f : B — R beschrinkt und B C R" kompakt. Ferner sei Qp der kleinste
Quader in R”, der B umfalit. f wird auf Q p erweitert zu

fx), fir x € B,

=1, firx € Qg \ B.

13 Jede Obersumme von f ist > jeder Untersumme von f, wie man sich leicht iiberlegt.



550 7 Integralrechnung mehrerer reeller Variabler

f heiBt integrierbar auf B, wenn f* integrierbar ist auf Q p und man setzt

/f(x)dx :=/f*(x)dx.
B OB

Auch hier sind andere Schreibweisen, wie in Abschn. 7.1.2, geldufig. Insbesondere im Falle
dreier Variabler schreibt man die Variablen gern als x, y, z. Integrale in drei Variablen werden
daher vielfach in der Form

// f(x,y,z)dxdydz
B

beschrieben.

Definition 7.7:
(Inhalt einer Menge, auch Volumen genannt) Eine kompakte Menge B C R" heifit
(Jordan-) mef3bar, wenn das Integral

/ | dx (7.63)

B
existiert. Sein Wert wird Inhalt (Volumen) Vp von B genannt.

Die 1 im Integral (7.63) wird auch weggelassen.
Im Falle dreier Variabler spricht man vom Rauminhalt. Ein Kompaktum mit Inhalt O nennt
man eine Nullmenge, und man gewinnt wie im R? den Satz:

Satz 7.9:
Eine kompakte Menge B C R” ist genau dann mef3bar, wenn ihr Rand eine Nullmenge ist.

Ganz entsprechend werden die Sétze 7.2 bis 7.7 auf den R” iibertragen, wobei die gleichen
Beweisideen wie im R? verwendet werden. Darum wird auf die Beweise auch nicht mehr einge-
gangen, sondern die Sitze werden im Folgenden hintereinander formuliert.

7.2.2 Grundlegende Siitze

Satz 7.10:
Jede stetige reellwertige Funktion auf einem meBbaren Kompaktum B in R” ist inte-
grierbar.

Satz 7.11:

(Bereichsintegrale als Mehrfachintegrale) Es sei f : O — R eine integrierbare Funk-
tion auf dem Quader

0 =la1, b1] x [az, bal x ... X [ay, by]
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Existieren die Integrale innerhalb der Klammern in der folgenden Formel, so gilt

by by b3 by
/f(x)dx:/ / / [f(xl,XQ,...,xn)dx,, dX3 de dxl
(] ai 2 3 n
(7.64)
Die gleiche Aussage gilt bei beliebiger Vertauschung der Variablen xi, ..., x, und

entsprechender Vertauschung der Integrationsgrenzen a;, b;.

Bemerkung: (a) Die Klammern in der Schreibweise der Mehrfachintegrale (s. (7.64)) lait man
auch weg.

(b) Die Existenz der Integrale in den Klammern ist gesichert, wenn f stetig ist.

Da Quader als Integrationsgebiete zu speziell sind, definieren wir — wie im Zweidimensiona-
len — Normalbereiche.

Definition 7.8:

Unter einem Normalbereich in R" verstehen wir eine Menge der Form

. g1 <x1 < h
1
X g2(x1) <x2 < ha(xy)
B=1{|%|ecRr" g3(x1, x2) <x3 < h3(x1, x2) . (7.65)
Xn
gn(x1, ..., xp—1) <x, < hn(x1, ..., Xp—1)
wobei g2, ..., gn, h2, . . ., h, stetige reellwertige Funktionen sind, und g1, & reellwer-

tige Konstante. Dabei gilt g; < h; fiir alle i.
Man spricht auch von einem Normalbereich B, wenn die Reihenfolge der Indizes 1, 2, ..., n
in (7.65) beliebig umgestellt ist. Normalbereiche sind mef3bar, was man dhnlich wie im Zweidi-
mensionalen einsieht. Damit gilt der fiir die praktische Integralberechnung entscheidende Satz:

Satz 7.12:

Ist f : B — R eine stetige Funktion auf einem Normalbereich B, wie er in Def. 7.8
angegeben ist, so gilt

hy f ha(xy) [ h3(xy,x2) B (X150 X0—1)
/f(x)dx:/ / / /f(xl,...,x,,)dxn oo | dxz | dxp | dxg.
B 81 2(x1)  \ga(x1,x2) n (X1 50y Xn—1)

(7.66)
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Die Klammern werden auch weggelassen. Fiir andere Reihenfolgen der Indizes 1, 2, ..., n gilt
natiirlich entsprechendes.

Durch »Aufldsen der Integrale von innen nach auflen« kann man mit dieser Formel die Zah-
lenwerte von Integralen bestimmen.

Niitzlich fiir die Integralberechnung sind ferner die Formeln des Satzes 7.5, (Abschn. 7.1.3),
der vollig entsprechend auch im R” gilt. Es handelt sich um Integrale beziiglich f + g, cg sowie
tiber Zerlegungen von B. Man schlage dort nach.

Auch der Mittelwertsatz, Satz 7.6, iibertrdgt sich ohne weiteres auf den mehrdimensionalen
Fall, so daf} auf seine erneute Formulierung hier verzichtet werden kann.

SchlieBlich gilt der gesamte Abschnitt iiber Riemannsche Summen, vor allem Satz 7.7 (nebst
Beweis), ganz entsprechend im R” fiir beliebige n. Insbesondere der dreidimensionale Fall kommt
bei der Mathematisierung technischer Vorgidnge (Stromungen, elastische Korper, elektromagne-
tische Felder) oft vor.

7.2.3 Krummlinige Koordinaten, Funktionaldeterminante, Transformationsformeln

Die Uberlegungen der Abschn. 7.1.6 und 7.1.7 werden hier ohne wesentliche Anderungen auf
den R" ausgedehnt.

Eine Abbildung T : G* — G eines Gebietes!'* G* c R” auf ein Gebiet G C R” nennen wir
eine Transformation, wenn T umkehrbar eindeutig ist, ferner stetig differenzierbar, und wenn die
Funktionaldeterminante det T’ (1) in G* von Null verschieden ist:

detT'(w) #0 firalleu € G*.

Ausfiihrlich geschrieben hat x = T (u) die Form

X1 gr(uy, ..., up)
X2 gz(ul,...,un)
=T@) = .
Xn gn(ut, ..., up)
Dabei nennt man u1, ..., u, krummlinige Koordinaten in G (Beispiele sind Kugelkoordinaten,

Zylinderkoordinaten u.a., die wir spéter betrachten).
Mit dieser Koordinatenschreibweise hat die Funktionaldeterminante die ausfiihrliche Gestalt:

081 081
@) e
detT'(w) = | : coL (7.67)
0 0
ai’:(m ai”m)
n

14 Offen und zusammenhéngend (letzteres heifit: nicht in zwei offene Mengen zerlegbar).
15 Zum Begriff der Determinante lese man den kurzen Einschub am Ende dieses Abschnittes oder Burg/Haf/Wille
(Lineare Algebra) [7], Abschn. 3.4.
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Fiir die Funktionaldeterminante det 7' (u) ist, insbesondere in Naturwissenschaft und Technik,
auch folgende Schreibweise iiblich

a(x1, x2, ...,
det T/(u) —. ('xl xz xﬂ)

AL BRI (7.68)
a(ulv Uz, ..., ul’l)

Wie im zweidimensionalen Fall gilt fiir die Komposition z = S(7'(x)) der Transformationen
z = S(y), y = T (x) die tibersichtliche Gleichung

8(117"'5Zn) — a(Z]5"'7ZYZ) . a()’lw--,Yn)
OX1, ..., xn) OOV, yn) O(XL, ..., Xn)

(7.69)

(Zum Beweis verwendet man die Kettenregel — Abschn. 6.3.3, Satz 6.9 — und den Determinan-
ten-Multiplikationssatz, s. Burg/Haf/Wille (Lineare Algebra) [7], Abschn. 3.4.5). Insbesondere
folgt im Fall $ = T~

O, - syn) 1

Axy, ..., xn)  O(x1, .. X))
a(yh""yn)

Im folgenden Satz wird nun die Transformationsformel fiir Integrale im R" angegeben. Der Satz
entspricht vollkommen dem Satz 7.8 fiir den R2, den wir in Abschn. 7.1.7 kennen und lieben
gelernt haben.

Satz 7.13:
Es beschreibe T : G* — G eine Transformation des Gebietes G* C R" auf das Ge-
biet G C R. Ferner sei B* C G* kompakt und f eine stetige reellwertige Funktion
auf B = T (B*). Der Bereich B ist damit auch meBbar, und es gilt die Transformati-
onsformel:

/f(x)dx =/f(T(u))|detT’(u)|du. (7.70)
B B*

Mit der Schreibweise (7.68) erhilt die Formel die ausfiihrlichere Form:

Transformationsformel:

(X1, - Xn)

—— duy ... du,. (7.71
e R SR

/f(xl,...,xn)dxl...dxn=/f(T(u1,...,u,,))‘
B B*

In dieser Gestalt 146t sich die Transformationsformel leicht merken, da man im rechten Integral
den Ausdruck du; ... du, nur formal gegen d(u1, ..., u,) zu kiirzen (und f in Abhingigkeit
von X1, .. ., X, zu schreiben) hat, um das linke Integral zu bekommen,

Fiir den (sehr langen) exakten Beweis verweisen wir wieder auf [25], Abschn. 205. Die Be-
weisidee ist die gleiche, wie im Falle von zwei Variablen im Abschn. 7.1.6 erldutert.
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Die wichtigsten Beispiele krummliniger Raumkoordinaten in Naturwissenschaft und Technik
sind Zylinder- und Kugelkoordinaten. Wir behandeln sie in den nichsten Beispielen. Vereinzelt
treten auch »elliptische Gegenstiicke« auf, die elliptischen Zylinderkoordinaten und die rotations-
elliptischen  Koordinaten, wie auch parabolische Entsprechungen, namlich die parabolischen
Zylinderkoordinaten und die rotationsparabolischen Koordinaten (s. folgende Ubungen sowie
Burg/Haf/Wille (Vektoranalysis) [9], Abschn. 3.3.6). Der Zusammenhang dieser Koordinaten
mit Schwingungsproblemen wird z.B. in [48] erldutert.

Beispiel 7.15:
(a) (Zylinderkoordinaten)

X =rcosg,
y=rsing, (r>=00<¢p<2mzeR).
z2=2z.

Diese Gleichungen beschreiben die Transformation von Zylinderkoordinaten r, ¢, z auf die Ko-
ordinaten x, y, z des dreidimensionalen Raumes. IThren Namen haben die Zylinderkoordinaten
daher, daB} fiir r = konstant > 0 und variable ¢ € [0,27] und z € R die zugehorigen Punkte
[x,y, z]T € R3 einen Zylinder beschreiben, dessen Achse die z-Achse ist, und dessen Radius r
ist. Die Funktionaldeterminante dieser Transformation ist

ox ox Ox

ar d¢ 0z .
3(x, v, 2) 3y 3y dy cgs ¢ —rsing 0
— X =|— — —|=|sing rcosgp O|=r.
a(r, ¢, z) or d¢ 0z 0 0 {

dz dz 0z

or Jd¢ 0z

Folglich lautet die Transformationsformel fiir diesen Fall

// f(x,y,z2)dxdydz = // f(rcosg,rsing, z)rdrdepdz. (7.72)
B B*

Hiufig ist B dabei ein Zylinder oder Zylinderrohr oder ein Winkelausschnitt davon. D.h. B* ist
ein Quader

B* = [r1,r2] x [¢1, ¢2] X [z1,22] mit
O0<ri<r, 0@ =@pm=<2r, z1<2.

Damit folgt explizit fiir ein stetiges f:

2 2 "
///f(x,y,z)dxdydz:///f(rcosgp,rsimp,z)rdrdwdz. (7.73)
B

1 1 n
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(b) (Kugelkoordinaten)

X =FrCcosS¢cosd,

SRS}
IA
(o2
IA

l\)\!/:l

>

y =rsingcoss, r=0,0<¢<2m, —

z=vrsind,

Ein Punkt P = [x, y, z]T in R3 wird hiermit durch r, ¢ und § beschrieben, wie es die Fig. 7.31
zeigt.
Die Funktionaldeterminante ist gleich

COS®Ccosd —rsingcosd —rcosgsind
8()C, ys Z) . . . 2
————— = |singpcosd rcospcosd —rsingsind|=r-coss. (7.74)
3(r. ¢.9) sin § 0 r cosd

Folglich gilt die Transformationsformel

r = Abstand von 0,
¢ = Lingengrad,
8 = Breitengrad.

Fig. 7.31: Kugelkoordinaten

// f(x,y,z)dxdydz:f/ f(rcosgpcosé§, rsingcoss, rsin8)rzcos8drd<pd8.
B B*

Ist — wie vielfach — B eine Kugel, Hohlkugel oder ein Ausschnitt davon, beschrieben durch

B* = [r1, r2] x [@1, ¢2] % [81, 821,

16 ¢ entspricht den »Lingengraden« und & den »Breitengraden« bei der Erdkugel. § ist hier Null am Aquator. In der
Physik ist es beliebter, § = 0 am »Nordpol« zu setzen und § von 0 bis 7 laufen zu lassen (§ = m: »Siidpol«),
vgl. Burg/Haf/Wille (Vektoranalysis) [9], Abschn. 3.3.6. In der Koordinatentransformation sind dabei nur sin § und
cos § zu vertauschen.
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b g
so wird / / f im letzten Integral ersetzt durch / / / .
B* 81 91 1
Einschub: Zur Berechnung einer Determinante
ail a2 - Qg
azy axp - 4y )
D= . ) . | =:detA (mit A = [air]n,n)
anl dp2 - dpn

kann man fiir kleine » die expliziten Formeln benutzen, d.h. firn = 2 und n = 3:

ai a2
=apjax — anal, (7.75)
az; ax

a1 ap an
ax] a4z a3 = ap1axass + a12a3az) + ajzaz1az; (7.76)
a1 azx asz| —ajaxaz — ajpd21ass — aj3andsi .

Fiir beliebiges n gilt allgemein:

D= Y signtki.ky. ... . kn)aik,ax, - - an, - (7.77)
(klwnkn)
Summiert wird dabei iiber alle Permutationen (ky, .. ., k) des n-Tupels (1, 2, ..., n), und es ist
. 1, wenn (kyq, ..., k,) gerade Permutation,
sign(ky, ..., ky) = .
-1, wenn (ky, ..., k,) ungerade Permuation.
Eine Permutation (kq, ..., k,) heiBit gerade, wenn sie durch eine gerade Anzahl von Vertau-
schungen zweier Elemente aus (1, 2, ..., n) hervorgeht; andernfalls heil3t sie ungerade.

Fiir n > 4 berechnet man Determinanten allerdings zweckmifBiger mit dem »Gauf3schen
Algorithmus, s. Burg/Haf/Wille (Lineare Algebra) [7], Abschn. 3.4.3.

Ubungen: Berechne die Funktionaldeterminanten der folgenden Transformationen auf krummli-
nige Koordinaten im R3.

Ubung 7.17:

(Parabolische Zylinderkoordinaten)

1

22
X = 2(u v7)

)

y = uv (u,v,z € R).

=2,
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Ubung 7.18:

(Rotationsparabolische Koordinaten)

X = UV CosS ¢,

y =uvsing, (u,veR, ¢ €[0,27]).

[P
Z_E(u v7),

Ubung 7.19:

(Elliptische Zylinderkoordinaten) (¢ > 0 konstant)

x =ccoshucosv,

y =csinhusinv, (u,zeR, vel02nr]).
z=2,
Ubung 7.20:

(Rotationselliptische Koordinaten) (¢ > 0 konstant)

(a) (Gestreckt-rotationselliptisch)

x = c\/(u2 - - UZ)COS(p,
y=c /(MZ — D1 —vz)sin(p, (lul =1, vl =1,¢9€[0,27]).

Z = cuv,

(b) (Abgeplattet-rotationselliptisch) (¢ > 0 konstant)

X =c,/(u2—|—1)(l —Uz)COS(p,
y=c/(u2—|—1)(l—v2)sin(p, umeR,v[<1,9€[0,2r]).

zZ=cuv,

Ubung 7.21:

KR C R3 sei eine Kugel um 0 mit Radius R > 0. Berechne mittels Kugelkoordinaten

R—o0

1
(a) /,/xz—{—yz—‘rzzdxdydz, (b) lim /7dxdydz.
Va2 4y 422
KR Kr

557
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Ubung 7.22:
KR, p sei die Hohlkugel, bestimmt durch p < Vx24+y2 4272 < RinR (p > 0). Berechne

lim

1
p=0 / Vx2+yr+22
KR,y

dxdydz.

AX3

X1
Fig. 7.32: Rauminhaltsberechnung

7.2.4 Rauminhalte

Es sei D C R""! ein Normalbereich, und es seien g : D — R, h : D — R zwei stetige
Funktionen mit g(x1, ..., x,—1) < h(x1, ..., x,—1) auf D.
g und & »schlieBen einen Bereich B ein«, wie es Fig. 7.32 im Falle des R? zeigt:

X1 X1
B:=Jx=]": : e Dund g(x1,...,xp—1) <xp <h(x1,...,Xp—1)

Xn Xn—1

B ist natiirlich wiederum ein Normalbereich. Es gilt der naheliegende

Satz 7.14:
Unter den obigen Voraussetzungen ist das Volumen Vg des Bereichs B C R" gleich
Vg = /(h —gdx;...dx,—y . (7.78)
D

Bemerkung: Im einfiihrenden Abschn. 7.1.1 wurde die Formel (7.78) schon zur Rauminhalts-
berechnung von Ellipsoiden u.a. verwendet (Beispiele 7.2 bis 7.5). Der Beweis des Satzes folgt
unmittelbar aus Definition 7.7 (Abschn. 7.2.1) und aus Satz 7.12 (Abschn. 7.2.2). Man hat in
diesem Satz nur das innerste Integral (iiber dx,) aufzulésen.

17 Das Argument (x, ..., X,—1) wurde der Ubersichtlichkeit wegen bei 4 und g weggelassen.
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Faf3t man dagegen die inneren (n — 1)-Integrale in Satz 7.12 (7.64) zu einem Integral zusam-
men:

ha(xy) h3(xp,x2)  hg...
pxy) = fdx,...dxydx;,

82(x1) g3(x1,x2) 8n--

so folgt aus Satz 7.12 (mit f(x) = 1 auf B):

b
VB = /fp(xl)dxl- (7.79)

a

Diese Formel ist der Kern des Satzes von Cavalieri'® (auch Prinzip des Cavalieri genannt):

Satz 7.15:
(Satz von Cavalieri) Ist B ein Normalbereich, wie in Definition 7.8 (Abschn. 7.2.2)
angegeben, und ist ¢ (x1) das (n — 1)-dimensionale Volumen des Schnittes {x € B |

x1 = konstant} durch B (@ < x; < b), so ergibt sich der Rauminhalt Vg von B aus
obiger Formel (7.79).

Bemerkung: Eine etwas allgemeinere Formulierung, bei der B nur als meBbar vorausgesetzt
wird, findet man bei [25], S. 468. Fiir Anwendungszwecke reicht es aber, B als Normalbereich
vorauszusetzen.

A X1 S

2

"

X2

Fig. 7.33: Allgemeine Pyramide

Beispiel 7.16:

(Allgemeine Pyramide) Es sei ein Normalbereich G in der x;-x3-Ebene gegeben und ein Punkt
S =1h,S, S3]T mit 2 > O (s. Fig. 7.33). Die zugehorige allgemeine Pyramide besteht aus allen
Punkten, die auf Verbindungsstrecken von G nach S liegen (s. Fig. 7.33). G ist die Grundfliche,
S die Spitze der Pyramide und & ihre Hohe.

18 Bonaventura Francesco Cavalieri (1598 — 1647), italienischer Monch, Mathematiker und Astronom
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Ein Schnitt G, in der Hohe von x; € [0, i] durch die Pyramide hat einen Flicheninhalt
¢(x1), der quadratisch mit dem Abstand 2 — x| von der Spitze S zunimmt, also:

p(x1) =cth—x1)* (c>0).

Fiir x; = 0 ergibt dies den Fldcheninhalt Fg von G, also ¢(0) = ch? = Fg, somit ¢ = Fg//’lz,
d.h.

(h —x1)?
h2
Mit (7.79) (Cavalieri) folgt damit fiir den Rauminhalt der Pyramide

p(x1) = Fg.

h h
(h — x1)? FG ’ Fg
[ Fean =58 [h—mpan = 22 (7.80)
0 0

d.h. »Grundfilicheninhalt mal Hohe durch 3«.

Beispiel 7.17:
(Nach Worle-Rumpf [57] Bd. I11, S. 40) Volumen einer T-Verbindung aus Zylindern (s. Fig. 7.34a)

Fig. 7.34: T-Verbindung aus Zylindern

Das Volumen des Korpers in Fig. 7.34a besteht aus den Volumina V| = r?x/ und Vo =
r2mh, abziiglich des Volumens V3 des Teiles, in dem sich die beiden Zylinder iiberschneiden
(s. Fig. 7.34b). Dieser Teil hat als waagerechte Schnitte Rechtecke, und zwar in Hohe z ein
Rechteck mit den Seitenlingen /72 — z2 (in y-Richtung) und 2+/r2 — z2 (in x-Richtung). Nach
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dem Satz von Cavalieri ist damit

r

8
V3 = /Z(r2 —zz)dz = §r3.

—r

Damit ist das Volumen der T-Verbindung

2 83
V=Vi+V,—-V3=nmr (l+h)—§r .

Ubung 7.23:

Berechne den Rauminhalt einer Kugel um 0 mit Radius » > 0 nochmals, und zwar mit dem
Satz des Cavalieri (im ]R3).

Hinweis: Die Formel fiir den Fldcheninhalt eines Kreises darf als bekannt vorausgesetzt werden.

Fig. 7.35: Rotationskorper Fig. 7.36: Rotationsparaboloid

7.2.5 Rotationskorper

Rotationskérper kommen in der Technik besonders hiufig vor. Sie lassen sich relativ einfach
behandeln.

Definition 7.9:

Es sei f : [a,b] — R eine nirgends negative, stetig differenzierbare Funktion. Die
Menge B aller Punkte [x, y, z]T € R3mitx € [a, b] und y2 +72 < f(x)2 nennt
man einen Rotationskorper (s. Fig. 7.35). f heilit die erzeugende Funktion des Ro-
tationskorpers. Seine Mantelfliiche ist die Menge M der Punkte des Rotationskorpers,
die y2 + z2 = f(x)? erfiillen.

Das Volumen V des beschriebenen Rotationskorpers ergibt sich unter Verwendung der Trans-
formation y = r cos ¢, z = r sing, x = x aus der Transformationsformel:

27 f(x)

b b 2
V://fdxdydz://frdrd(pdx:/anz(x)dx,
B 0 0 a

a
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also

b
Volumen des Rotationskorpers: V =m / f2 (x)dx. (7.81)
a

Beispiel 7.18:
(Volumen eines Rotationsparaboloids der Linge h) (s. Fig. 7.36) Erzeugende Funktion ist

h
b4
y=f(x)= c/x, (c>0). Damitistdas gefragte Volumen: V =& / Axdx = Eczhz.
0

Bemerkung: Man kann den Rauminhalt eines Rotationskorpers auch direkt motivieren durch
Riemannsche Summen

S = nfE)’Ax.

k=1

Die Summenglieder sind dabei die Volumina von (flachen) Zylindern (»Scheiben«), in die man
den Rotationskorper ndherungsweise zerschneidet.

Der Flicheninhalt der Mantelfliiche eines Rotationskorpers — erzeugt von f : [a,b] — R
— wird durch folgende Formel berechnet:

b
F = 2n/f(x),/1 + F/(x)2dx. (7.82)

Bemerkung: Die Formel wird motiviert durch Riemannsche Summen

S =k 2mf (&) Ax} + A7,

k=1

die das Integral approximieren. Die Summanden sind dabei die elementargeometrischen Flichen-
inhalte der Mantelflichen von Kegelstiimpfen, in welche der Mantel sich (wie in diinne Ringe)
zerschneiden 146t. Eine exakte Begriindung wird im Rahmen der Flacheninhaltstheorie in Burg/-
Haf/Wille (Vektoranalysis) [9], Abschn. 2.2.1, nachgeliefert.

Beispiel 7.19:

(Kugeloberfliche) Erzeugende Funktion der Kugel K € R3 um 0 mit Radius » > 0 ist f(x) =
1% — x2, x € [—r, r]. Damit ist der Flicheninhalt der Kugeloberfliche

r
dx = an/ dx = 4nr?.

—r

.
2
F:2n/\/r2—x2 1+ 2x 5
r2—x
—r
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Ist g eine reelle rotationssymmetrische Funktion auf einem Rotationskorper B (der von f :
[a, b] — R erzeugt wird), so kann man g in der Form

g(rz) ,  mit r? =72 + y2

schreiben. (g kann eine Temperatur, eine Ladungsdichte oder @hnliches beschreiben). Das Inte-
gral

1=//fg<z2+y2>dxdydz
B

1aBt sich stark vereinfachen und damit leichter berechnen, wenn man wieder die Transformation
y =rcosg, z=rsing, x = x anwendet. Es folgt mit einer Stammfunktion G von g (d.h. G’ =
g), die G(0) = 0 erfiillt:

27 f(x) b

[y

b
1 fx)
1:// / g(rz)rdrdwdx:Zn/[EG(rz)} dx,
a 0 0 a 0
also
b
I :n/G(fz(x))dx. (7.83)

a

Guldinsche Regeln: Fiir Volumen V und Mantelflicheninhalt Fy; eines Rotationskorpers gelten
die folgenden Guldinschen'® Regeln: Ist f : [a,b] — R(f(x) > 0) die erzeugende Funktion
des Rotationskorpers, so bezeichnet man die Flache zwischen f und der x-Achse, d.h.

+={[}

als die erzeugende Fldiche des Rotationskorpers. [xg, ys]* sei ihr Schwerpunkt.
Der Graph von f heif3t die erzeugende Kurve des Rotationskorpers. Der Kurvenschwerpunkt
sei [&;, nS]T Damit erhalten wir:

afxfb,OSySf(X)},

]T

1. Guldinsche Regel (fiir Rotationskorper): Das Volumen V eines Rotationskorpers erhilt man
als Produkt aus dem Flidcheninhalt Fa der erzeugenden Fliche und der Linge ihres Schwer-
punktweges bei einer vollen Drehung. In Formeln:

V = Fa - 2mys.

19 Paul Guldin, urspriinglich Habakuk Guldin (1577 — 1643), osterreichischer Astronom und Mathematiker
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2. Guldinsche Regel (fiir Rotationskorper): Der Mantelflicheninhalt F eines Rotationskorpers
ist das Produkt aus der Liange L der erzeugenden Kurve und der Lénge ihres Schwerpunktwe-
ges bei einer vollen Drehung:

F=L 2nn.
Der Beweis der 1. Guldinschen Regel folgt unmittelbar aus (7.81) und

_L/b 2( )dx
yS_ZFA frx

(s. Abschn. 7.1.5, (7.37)). Die 2. Guldinsche Regel ergibt sich aus (7.82) und

b
s = %/f(x)\/lJrf’(x)?dx

(s. Abschn. 7.1.5, (7.40)).
Ubung 7.24:

Es sei K ein Kegelstumpf, erzeugt von f(x) =1+ 1/2,0 < x < 1. Berechne

2
///rer dxdydz, mitr =+/y2+z2.
K

Hinweis: Benutze (7.83).

Ubung 7.25:

Berechne den Flidcheninhalt eines Parabolspiegels (Fahrradlampe), der als Mantelfliche eines
Rotationskdrpers mit der Erzeugenden f(x) = 6./, x € [0,8], aufgefaBt werden kann.

Ubung 7.26%:
Berechne den Rauminhalt und Oberflicheninhalt eines Torus, der durch Rotation einer Kreis-
scheibe um die x-Achse erzeugt wird, wie es die Fig. 7.37 zeigt. (Hinweis: Benutze die Guldin-
schen Regeln.)

7.2.6 Anwendungen: Schwerpunkte, Trigheitsmomente

Schwerpunkte: Den Schwerpunkt s € R3 eines realen Korpers errechnet man aus

s = l /// ro(r)dVv. (7.84)
m
B
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Fig. 7.37: Zum Volumen und Oberflicheninhalt des Torus

Dabei ist m die Masse des Korpers, B C R3 der ridumliche Bereich, den er einnimmt, und o(r)
die Massendichte des Korpers an der Stelle r € B. p sei als integrierbar vorausgesetzt. Die
Motivation der Formel verlduft vollig entsprechend wie die Uberlegungen in Abschn. 7.1.5.

Das Integral (7.84) wird komponentenweise ausgewertet. Es beschreibt also eigentlich drei
Bereichsintegrale:

1 1 1
xozn—1///x,o(r)dv, yozgf/fyp(r)dv, z()=n—1/[/z,0(r)dV, (7.85)
B B B

mit s = [xo, Yo, zo] " Fiir die Masse m gilt dabei

mzfgffpmdv.

Ist die Dichte p(r) = po konstant und V das Volumen des Korpers, so folgt mit V,, = m die
einfachere Formel

s:é/lf/rdv. (7.86)
B

Beispiel 7.20:
Eine quadratische Pyramide mit der Grundseitenldnge a und der Hohe 4 sei so in ein rdumliches
Koordinatensystem eingebettet, wie es die Fig. 7.38 zeigt. Wir nehmen konstante Dichte an. Der
Bereich B, den die Pyramide austfiillt, besteht aus allen Punkten [x, y, Z]T mit
ax ax ax ax
<

- << =
= =V T St S
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Fig. 7.38: Schwerpunkt einer Pyramide

Sein Volumen ist bekanntlich V = ¢%h /3. Damit gilt fiir die x-Komponente des Schwerpunktes

h ax/Qh) [ ax/(2h) h
—lff/dv—lf / /dd dx—3/3d—3h
X0 = % X =V X Z y =3 x“dx = e
B 0 —ax/(2h) \—ax/(2h) 0

Da aus Symmetriegriinden y = z = 0 fiir die anderen Koordinaten des Schwerpunktes gilt, folgt

T
s = [Zh,O, 0:| . D.h.: Der Schwerpunkt der Pyramide liegt auf der Mittelachse in der Entfernung

Zh von der Pyramidenspitze.

Trigheitsmomente: Das Trigheitsmoment eines Massenpunktes beziiglich einer Achse® im
Raum ist J/ = mr?2. Dabei ist m die Masse des Massenpunktes und r sein Abstand von der Ach-
se. Bei einem realen (ausgedehnten) Korper geht man so vor, dal man ihn in kleine Teilkorper
zerlegt denkt und jeden Teilkorper als Massenpunkt auffallt. Die Summe der Trigheitsmomen-
te dieser Massenpunkte beziiglich einer Achse ist dann nidherungsweise das Trigheitsmoment
des Korpers. Durch verfeinerte Zerlegungen kommt man durch Grenziibergang wieder zu einem
Integral. Dieses liefert das Tragheitsmoment des Korpers.

Rechnerisch sieht dies so aus: Bezeichnet man mit Am; (i = 1, ..., n) die Massen der Teilkor-
per und mit »; die zugehorigen Abstinde von der Bezugsachse, so gilt fiir das Trigheitsmoment
J des Korpers beziiglich der Achse:

m
J ~ ZrizAm,-
i=1

Dabei konnen wir Am; =~ p(x;)AV; setzen, wobei AV; das Volumen und x; ein beliebiger Punkt

20 Achse=Gerade.



7.2 Allgemeinfall: Integration bei mehreren Variablen 567

des i-ten Teilkorpers ist. p (x) beschreibt die Massendichte. Es folgt
m
T~y pxirtAv.
i=1

Ersetzt man diese Summe durch das entsprechende Integral, so erhidlt man das Trdgheitsmoment

J =///p(x)r2(x)dV. (7.87)
B

Dabei ist B ¢ R3 der Bereich, den der Korper im Raum einnimmt und r(x) der Abstand des
Punktes x von der Bezugsachse. Ist p(x) = po konstant — was am meisten vorkommt —, so
erhilt man

J = po /// r2(x)dv . (7.88)
B

Zur Behandlung von konkreten Beispielen wihlen wir oft die x-Achse im R3 als Bezugsachse.
Mit x = [x, y, z]T folgt damit r(x) = /y2 + z2, also fiir das Trigheitsmoment beziiglich der
x-Achse

Jy = po f f (22 +y?)dxdydz. (7.89)
B

In analoger Weise werden die Trigheitsmomente Jy und J, beziiglich der y- und z-Achse gebil-
det. Bezeichnet m die Masse des Korpers und V sein Volumen, so konnen wir fiir pg einsetzen:

m
PO = v
Beispiel 7.21:

(Tréigheitsmoment eines Zylinders beziiglich einer Querachse) Liegt der Zylinder so, wie es
Fig. 7.39 zeigt, so ist sein Triagheitsmoment beziiglich der x-Achse gleich

PR RV/E N )
szp()/ / /(y2+z2)dz dy | dx
- oy e
ARG 3 - 3
:p()/ / (yzl—i—i—Z) dy dx:po/|:§ol(rz—x2)3/2+%(rz—x2)1/2:| dx .
B =
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D

e
A

Fig. 7.39: Zum Trigheitsmoment Jx eines Zylinders

1

b

N
¥

X

v

Mit der Substitution x = r sint folgt

/2 3 /2 5
2 [ l
Jx = po §Zr4 / cos*rdr + I3 / r2cos’tdr | = Jy = ,0]3%[3?‘2 +12].
—/2 —/2

Zwei Sonderfille sind hervorzuheben, in denen die Rechnungen einfacher sind: Erstens Trig-
heitsmomente von Sdulen, wo nur ein Doppelintegral auszuwerten ist, und zweitens von Rotati-
onskorpern, bei denen sich alles auf ein einfaches Integral reduziert.

Trigheitsmomente von Sidulen: Unter einer Sdule wollen wir hier einen Korper verstehen, des-
sen rdumlicher Bereich B in jeder Schnittebene senkrecht zur x-Achse die gleiche Querschnitts-
figur Q aufweist (s. Fig. 7.40). Das Tragheitsmoment Jx beziiglich der x-Achse ist dann bei
konstanter Massendichte pg:

a+h

Jx = po / //(y2 + 2% dzdy | dx = Jyx = poh //(y2+z2)dydz. (7.90)
0 0

a

Dabei ist & die Hohe der Sdule und Q die Querschnittfliche in der y-z-Ebene. Wir sehen hier
mit verhaltener Freude, dal das Integral rechts in (7.90) gerade das polare Flichenmoment I,
von 0 ist, wie in Abschn. 7.1.5 erldutert. Also gilt

Jx = pohly . (7.91)

Damit lassen sich alle Beispielrechnungen aus Abschn. 7.1.5 sofort verwenden. (Wir erwéhnen
aber, da3 — physikalisch gesehen — das Flichenmoment der Biegungslehre mit dem Massen-
tragheitsmoment nichts zu tun hat. Lediglich mathematisch fiihrt beides auf das gleiche Dop-
pelintegral, was fiir uns natiirlich kein Grund zur Trauer ist.)

Die Beispiele 7.9 und 7.10 aus Abschn. 7.1.5 liefern uns iiber (7.90) unmittelbar folgendes:
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__4§§’s

Az

R
S

N
Py

4
X
Fig. 7.40: Séule
Beispiel 7.22:
Triagheitsmomente (beziiglich der Mittelachse)
.
elliptischer Zylinder !
? ’ N Jx = z,()()ab(a2 +bHh
(a, b = Halbachsenlingen) 4
Kreiszylinder @ T
Jx = = pohr*
(Radius r) ) o
C»
Rohr E b4
. ) . Jx = 5 poh(R —r%)
(r, R = innerer bzw. duBerer Radius) 2

Dabei: # = Hohe, pg = Massendichte

569

Das Triigheitsmoment einer sechseckigen Siule moge der Leser unter Benutzung von Ubung 7.9

(Abschn. 7.1.5) berechnen.

Trégheitsmomente von Rotationskorpern konnen mit Formel (7.83) auf die Berechnung von
einfachen Integralen reduziert werden. Ist f : [a, b] — R die Erzeugende des Rotationskorpers,
so ist sein Trdgheitsmoment beziiglich der Rotationsachse:

b
T m
A=5m/ﬂmm =7
a

(7.92)
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Beispiel 7.23:

Mit (7.92) berechnet man leicht die folgenden Triagheitsmomente Jy beziiglich der Rotationsach-
sen:

Korper Erzeugende Trigheitsmoment
Kugel ’
mit Radius 7, ) fo AT, = = /(ﬂ —xY)dx
Masse m, r<x<r ' —r

43 B _2 2
Volumen V = —rm = Smr

3
Kegel
mit Hohe h und @ h 4
Radius r der fx) = r Jy = Tm / (lx) dx

. - (h) fe= h 2 k
Grundfldche, 0<x<h 0
Masse m, - = imr2
10

Volumen V = %rzh

Der Steinersche Satz: Bei allen vorangegangenen Beispielen verlief die Bezugsachse fiir das
Tragheitsmoment durch den Schwerpunkt des jeweiligen Korpers. Will man das Trigheitsmo-
ment beziiglich einer anderen, dazu parallelen Achse berechnen, braucht man nicht erneut zu
integrieren, sondern kann mit dem folgenden Steinerschen?!' Satz die Berechnung auf den Fall
der Achse durch den Schwerpunkt zurtickfiihren:

Satz 7.16:

(Steinerscher Satz) Das Trigheitsmoment eines Korpers>? beziiglich einer beliebigen
Achse ist gleich der Summe des Trigheitsmoments beziiglich einer durch den Schwer-
punkt gehenden parallelen Achse und des Triagheitsmomentes der im Schwerpunkt
vereinigt gedachten Masse beziiglich der erstgenannten Achse.

Beweis:
Das Trigheitsmoment

Jx=po// (% + %) dx dy dz
B

eines Korpers beziiglich der x-Achse wird umgeformt: Es seien xs, ys, zs die Schwerpunktkoor-
dinaten. Wir substituieren

xX=xs+u, y=y+v, z=2zstw

21 Jakob Steiner (1796 — 1863), schweizerischer Mathematiker
22 Die Massendichte pg des Korpers sei dabei konstant.
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00 y.2)

und erhalten aus der Transformationsformel wegen =
o(u, v, w)

Jx =po///((ys+v)2+(zs+w)2)dudvdw,
B*

wobei die Substitution B* auf B abbildet. Es folgt nach Ausmultiplizieren der Klammern mit der
Abkiirzung dudvdw = dV:

Jx = ,oo(ysz—i-zg) /// dV+po 2y3///vdV +2zs///de +po///(v2+w2)dV.
B* B* B* B*

(7.93)

1 1
Die Integrale in der eckigen Klammer sind Null, da e / / / vdV und e / / / wdV die
B B
B* B*

2. und 3. Komponente des Schwerpunktes im u-v-w-System sind. In diesem System ist aber

nach Konstruktion [0, 0, 0, 1T der Schwerpunkt! Wegen pg / / / dV = pgVg = m (Masse des
B*

Korpers) und /2 + z2 =: r (Abstand des Schwerpunktes von der x-Achse) ist das erste Glied
in (7.93) gleich r2m. Das letzte Glied in (7.93) ist aber das Trigheitsmoment J, beziiglich der
u-Achse (= Parallele zur x-Achse durch den Schwerpunkt). Also folgt

=Ju+rim. (7.94)
Das ist aber gerade die Aussage des Steinerschen Satzes. (]
Beispiel 7.24:
Das Triagheitsmoment einer Kugel (mit Radius r und Masse m), deren Mittelpunkt von der Be-
zugsachse die Entfernung a hat, hat nach dem Steinerschen Satz den Wert J = “mr?® +ma®.
Ubung 7.27%:

Berechne das Trigheitsmoment Jx des Torus aus der Ubung 7.26 (py = Dichte).

Ubung 7.28%:

Berechne das Trigheitsmoment Jx eines Tetraeders

T={|y||x+y+z<1,x>0,y>0,2>0}, py=1lg/em’.

Ubung 7.29%:
Berechne den Schwerpunkt einer Halbkugel (Dichte konstant).
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7.3 Parameterabhiingige Integrale

‘Wir betrachten Funktionen der Form
b
F(@) = /f(x,t)dx, tel,
a

wobei ¢ ein Intervall ist und f : [a, b] x I — R eine Funktion, die fiir jedes festgewéhlte r € 1
beziiglich x integrierbar ist. Wir fragen nach Stetigkeit, Integrierbarkeit und Differenzierbarkeit
von F. (Entsprechende Sitze fiir uneigentliche Integrale sind in Burg/Haf/Wille (Band III) [8],
Anhang, angegeben. Sie stehen dort im Zusammenhang mit Integraltransformationen.)

7.3.1 Stetigkeit und Integrierbarkeit parameterabhiingiger Integrale

Satz 7.17:
Ist f : [a, b] x I — R stetig, so ist auch F stetig auf /.

Beweis:
Es sei # beliebig aus 1. Wir haben

b
F(l)—F(to)=/(f(x,t)—f(x,to))dX), tel, (7.95)

abzuschitzen. Dazu wihlen wir ein geniigend kleines Intervall [7y — «, t9 + «] um 79, so dafl
R=la,b] x (to —a,to+a]NI)

ein kompaktes Rechteck wird. F ist auf R gleichmaBig stetig (s. Satz 6.5, Abschn. 6.2.3), d.h. zu
jedem & > 0 existiertein § > 0 (§ < «), so daB

|f(x,t) — f(x,t0)| <&, flraller € I mit|t —1| <5 undallex € [a,b]

gilt. Damit ergibt sich fiir diese ¢ aus (7.95) die nachfolgende Ungleichung, die unseren Satz
beweist:

|F(t) — F(to)| < e(b—a). O

Satz 7.18:
Ist f : [a, b] x [A, B] — R stetig, so folgt:

B

B b b B
/F(t)dtz//f(x,t)dxdtz//f(x,t)dtdx.
A a A

A a
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Dieser Satz folgt unmittelbar aus den Sétzen 7.3 und 7.2 in Abschn. 7.1.3. Bemerkung. Beide
Sitze gelten entsprechend auch fiir Bereichsintegrale

F(t):/f(x,t)dx, xeBCR", tel.
B

Die Beweise werden mit ganz analogen Uberlegungen gefiihrt.

7.3.2 Differentiation eines parameterabhéingigen Integrals
Satz 7.19:
Es sei eine Funktion der Form

b
F(@) = f f(x,t)dx, 1t € I (Intervall),

gegeben, wobei die reellwertige Funktion f auf [a, b] x [ stetig ist und dort eine

af (x,t . . . .
stetige partielle Ableitung fgct ) besitzt. Damit ist F auf I differenzierbar, und es
gilt
b 0
, 1
Fl() = / % dx . (7.96)

a

Bemerkung: Man kann die Behauptung kurz so ausdriicken: »Es darf unter dem Integralzeichen
differenziert werden.«

Beweis:
Da f(x, t) nach f partiell differenzierbar ist, folgt aus dem Mittelwertsatz der Differentialrech-
nung (einer Variablen):

f@ = fGt) _

f— t() f[(xv TX) ) (797)

mit x € [a, b], t # fo(€ I) und einem ¢ zwischen ¢ und .
f; ist stetig, also gleichmiBig stetig auf jedem kompakten Rechteck R = [a, b] x ([to—«, o+
a]N ). Somit gibt es zu jedem ¢ > Oein § > 0 (§ < o) mit

| fi(x, ) — fi(x, t0)| <&, falls|t—1| <3,
(Denn dann ist auch |ty — f| < 8) Gl. (7.97) liefert daher

f&x, 1) — f(x,10)

t—1

— fitx,t0)| <&, falls|t —1] <34,
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woraus nach Integration iiber x folgt:

b
F(t)— F(&
f0) = o) _/ft(X,lo)dx <eb—a)
t—1o
a
fiir |t — 19| < 8. Dies beweist unseren Satz. U

Bemerkung: Auch dieser Satz gilt entsprechend fiir Bereichsintegrale

F(l)=ff(x,t)dx,
B

wobei der Beweis nahezu gleichlautend ist.

Beispiel 7.25:
Das Integral

zext
F(t):/—dx, t#0,
X
1

148t sich nicht analytisch integrieren (doch sehr wohl numerisch). Die Ableitung jedoch ergibt
sich als elementare Funktion durch »Differentiation unter dem Integralzeichen«:

2 9 et 2 1 2 et _ ol
F’(t)=/——dx= efdx=—-|e"| = )
ox x t I t
1 1
Ubung 7.30:
Differenziere nach ¢:
21 4 5 5
/ sin(xt) & /ex t d / 1 &
Joox ’ ) X ’ ! x /1 + x212

7.3.3 Differentiation bei variablen Integrationsgrenzen

Allgemeiner als im vorigen Abschnitt sollen nun die Integrationsgrenzen des Parameterintegrals
auch noch variabel sein:

(40)
F(t) = f f(x,t)ydx, t eI (Intervall).

p(t)
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0
Dabei seien ¢ und 1 stetig differenzierbare Funktionen auf 7, und f nebst B_J; seien stetig auf
einem Bereich B C R?, der die Graphen von ¢ und v enthilt sowie jeden Punkt »zwischen den

Graphen, d.h. jeden Punkt |:);:| mit ¢ € I und x zwischen ¢(¢) und V¥ (¢).

Die Differentiation von F(¢) ist ganz einfach — und 146t sich leicht merken — wenn man
zundchst die untere und obere Grenze mit y und z bezeichnet und die entstehende Funktion von
drei Variablen ins Auge faft:

F*(t,y,2) Z=/f(x,t)dx.
y

Diese Funktion ist offenbar nach allen drei Variablen stetig partiell differenzierbar (nach z und y
auf Grund des Hauptsatzes des Differential- und Integralrechnung, nach ¢ wegen Satz 7.19).

Mit der Substitution

r=rt, y=¢(1), z=1Y(t)

differenziert man F* nach der Kettenregel (Folg. 6.5, Abschn. 6.3.3):

dF*_aF* dt+3F*3y+3F*3Z
dr 9t dr = 9y at 9z dT

Die Argumente (7, ¢(t), ¥ (7)) von F* wurden der Ubersichtlichkeit wegen weggelassen. Die
letzte Gleichung liefert explizit

v (r)
Fl(7) = / fe,Ddx - 14+9'(0) - f@ (), 0) = ¢'(D) - flp(), D).

@(7)

Ersetzen wir hier t durch ¢, so erhalten wir die Ableitungsformel

V(1)
F'(t) = f fibe, ydx - 1+9'@) - fFW @), 1) — @' (1) flo®), ). (7.98)

@)

Beispiel 7.26:
(zur Balkenbiegung) Ein Balken, wie in Fig. 7.41 skizziert, besitzt im Schnitt bei x die Querkraft

X

Ox)=A —/p(t)dt-

0
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AA

\

p(x)

il . rd
— x —

Fig. 7.41: Zur Balkenbiegung

Dabei beschreibt p(¢) die Belastung des Balkens pro Langeneinheit an der Stelle x, und A ist die
Auflage-Reaktionskraft links. Das Biegemoment bei x ist

M(x) = Ax —/(x —t)p(t)dr.
0

Wir wollen zeigen, dafl die Ableitung des Biegemoments gleich der Querkraft ist. Dies ergibt
sich sofort aus Formel (7.98) (wobei x und ¢ ihre Rollen getauscht haben):

X

d X
M (x)=A- . /(x —Dp(t)dr = A — / p@)dr —1-[(x —)p(®)],_ = 0x).
— —
0 0 0

Ubung 7.31:
1+12
Differenziere F(t) = /

t

sin(xt)

dx,t e R.
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A Losungen zu den Ubungen
Zu den mit * versehenen Ubungen werden Losungswege skizziert oder Losungen angegeben.1

Zu Kapitel 1

Zu Ubung 1.4: Die Mindestprozentzahl x ergibt sich aus
100 — x = (100 — 60) + (100 — 70) + (100 — 80). Der Leser iiberlege, warum.

Zu Ubung 1.11: Schreibe die binomische Formel fiir (1 + (—1))" hin.

i} 2 2
Zu Ubung 1.12: I; = %d“ A== 5)4) ~ %d“ A=(1—4. gs)) - %d3s.

Zu Ubung 1.14: Loch bedeute 1, Lochstelle ohne Loch bedeute 0.

Zu Ubung 1.16: Es gibt 6 -5 - 4 - 3 = 360 Moglichkeiten. Der Autofahrer erlebt das Ende seines Versuches
nicht.

.. X" XXX X . X 1. . .
Zu Ubung 1.23: Schreibe: — = ——— ... —. Wihle ng so, dal | —| < = ist. Fiir alle x > n¢ gilt dann:
n! 123 n no 2
X" "o X X0 n—no
— =] |— ‘7‘ — 0 fiirn — oo.
n! no! ng+1 n0+2 no‘

Zu Ubung 1.25: Grundreihe R10 fiir Rohre:
[1,00]1,25]1,60|2,00|2,50|3,15]4,0015,00|6,30|8,00/10,00]

Zu Ubung 1.27: lim a, = —1/2, lim b, = —1
n—o0 n—o0
Zu Ubung 1.29: Zur Beweisidee siche Beispiel 1.39 (harmonische Reihe).
N , AR A
Zu Ubung 1.31: Beweise zunéchst o < (5) firk > 4:vgl. 1.23

Zu Ubung 1.33: Konvergenz liegt vor fiir alle x € (—1,1].

Zu Ubung 1.34: Stetigkeitsbereiche (a) R\{0} (f ist stetig!), (b) R\{0} (g ist unstetig in 0), (c) R\{—1,1},
(dR.

Zu Ubung 1.37: GleichmiBig stetig sind f und h; da sie stetig auf [0, 1] fortgesetzt werden kdnnen
(vgl. Satz 1.26). UngleichmiBig stetig ist g (O ist Pol!), unstetig ist k (Sprung in x = 2).

Zu Ubung 1.38: Dividiere in (a), (b), (d) Zihler und Nenner mit dem Divisionsverfahren fiir Polynome
(s. Abschn. 2.1.6). In (c) multipliziere Zihler und Nenner mit (4/x + 1).

1 Aufgaben werden durch gedruckte Losungen oft entwertet. Daher wurde nur bei wenigen Aufgaben Losungen und
Hinweise gegeben
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Zu Kapitel 2
Zu Ubung 2.2: Volumengleichung V| + V, = V und Massengleichungen p; Vi + paVa = pV lassen sich
als zwei Geraden im V7-V,-Koordinatensystem deuten. Gesucht: Schnittpunkt.

Zu Ubung 2.12: Man berechne D, D und, falls nétig, Dajj bzw. D, und entscheide nach dem vorange-
gangenen Schema.

Zu Ubung 2.26: Es sei a > 1 und x| < x;, wobei x1, x, rational sind. Damit gilt a*2/a*! = g*27%1 > |
(nach Abschn. 1.1.6, Folg. 1.9 und Ubung 1.8b). Damit gilt a*? > a*!. Sind z, z, reell, also evtl. irrational,
und gilt 71 > zp, so gibt es rationale x|, xp mit z; < x| < x7 < zp. Ndhert man z; und z, durch rationale
Zahlen beliebig genau an, so folgt durch Grenziibergang jedenfalls

a“l <a® <a*? <a*?,

also a®l < a*2, was zu zeigen war. (Im Falle 0 < a < 1 betrachte man zunéchst 1/a* und schlieBe analog.)
Zu Ubung 2.28: (a) Mit a,, = n/2" folgert man a, = ﬁan_l < 0,75a,,_1 fiir n > 3. Das liefert
n—

(induktiv) fir n > 3: a, < (0,75)" 24y — 0 (fiir n — 00).
(b) folgt wegen x/e* < x/2*(x > 0), (c) folgt mit y = e* aus (b). (d), (¢) klar!
Zu Ubung 2.34: Benutze Def. 2.16.

Zu Ubung 2.36: Fasse die cos-Ausdriicke als Realteile komplexer Funktionen von 7 auf, wie in (2.149).
Errechne damit A und ¢ analog zum vorangehenden Text.

Zu Kapitel 3

Zu Ubung 3.1: Geschwindigkeit = c.
Zu Ubung 3.7: Beschleunigung = g bzw. = 0.

Zu Ubung 3.8: Es sei (x,) eine Folge aus I mit x, — xq fir n — oco. Man bildet A, := (f(xn) —
F(x0))/(xn — xg). Gibt es nur endlich viele x;,, < xq (bzw. x;; > xg), so strebt A, offenbar gegen f’(xg+)
(bzw. f'(x¢—)). Gibt es sowohl unendlich viele x, < x( wie auch unendlich viele x,, > x(, so formieren
diese zwei Teilfolgen von (4,,), deren eine gegen f’(xo—) und deren andere gegen f’(xg+) strebt. Wegen
f(xo—) = f'(xp+) strebt damit (A,) auch gegen diesen gemeinsamen Wert, der somit f’(xp) genannt
werden darf.

Zu Ubung 3.13: Implizites Differenzieren liefert 2yy’ — 2x = 0, also yy’ = x. Fiir y/ = 1 folgt y = x.
Dies beschreibt die Winkelhalbierende der positiven Koordinatenachsen; usw.

Zu Ubung 3.16: Fiir beliebige x1, xp € I mit x| < x, gilt nach dem Mittelwertsatz (Satz 3.5): f(xp) —
fx)) = f(€)(x; — x2) mit einem & € (x1, x2). Im Falle (a) ist die rechte Seite = 0, im Falle (b) ist sie
stets > 0 (bzw. > 0, < 0, < 0). Daraus folgen die Behauptungen.

Zu Ubung 3.21: Benutze Satz. 3.15.
.. 1
Zu Ubung 3.29: Verwende In — = —Ina.
a

Zu Ubung 3.37: Losungen x; = 0,80706937, xp = 1,24143200.
Zu Ubung 3.38: Wende das Newtonverfahren auf f (x) = x3 —aan

Zu Ubung 3.40: Volumen V = x(50 — 2x)(80 — 2x). Suche das Maximum dieser Funktion von x, und
zwar im Intervall [0, 50/2].
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Zu Kapitel 4

Zu Ubung 4.3: Es sei ¢ > 0 beliebig (klein) und Z eine Zerlegung von [0, ], deren erstes Teilintervall
[, &/4]ist, und fiir die folgendes gilt: Die durch Z erzeugte Zerlegung Z’ von [&/4, 7] sei so, daB Sf(Z’)—
S (Z') < /2 ist. (Das ist erreichbar, da f auf [¢/4, 7] stetig, also auch integrierbar ist.) Fiir die Zerlegung
Z von [0, 7r] ist aber sicherlich

M1=[(I)1’1€a/7§]f(x)=1, mlz[ggi/rh]f(x)z—l, also
£ ’ € ’ € ’ ’
Sp(2)=s5p(Z) = M5+ Sp(Z) = (mig +5,(Z)) = 5 +5,(Z) =52 <.

Da ¢ > 0 beliebig (klein) ist, folgt i%f Sf(Z) = sup Sf(Z), d.h. f ist integrierbar auf [0, ].
Z

Zu Ubung 4.14: (a), (c), (d) existieren, (b) nicht.

X o0
ZuI"Jbung 4.15: f(x) < / fx)dx < / f(x)dx — O firx — oo.

x—1 x—1

1
. . . dx 0— dx .
Zu Ubung 4.16: (b) konvergiert, da / ﬁ’ f—l — konvergieren.
0+
Mit dem Grenzwertkriterium (Satz 4.15) erkennt man:

(a) konvergiert, da /x/+/sinx — 1 fiir x — 0+,

1 2
(b) konvergiert nicht, da (7) / (cosh(%) — 1) — 2 fiirx - ooy,
X
(c) konvergiert nicht, da el/x / (cosh(};) — l) — 2 fiirx — 0+.
1
(d) konvergiert, da (In )c/\/f)/)cf'g/4 =x/4Inx - 0 fir x - 0+, und da / x 7 *dx konvergiert.
0+
Zu Ubung 4.17: Benutze Satz 4.15.

Zu Ubung 4.18: Benutze Satz 4.16.

Zu Kapitel 5
Zu Ubung 5.1: (a), (b) konvergieren gleichmifig, (c), (d) nicht. ((c), (d) konvergieren aber punktweise!)

Zu Ubung 5.6: Fiir jede Partialsumme s, (x) der rechten Seite gilt offenbar s, (x) < arcsinx < arcsin 1,
falls [x] < 1. Also folgt s,(1) = lirrll sp(x) < arcsinl fiir alle n € N. Die Folge s, (1) ist also be-
x—>1—

schrinkt und monoton, folglich konvergent. Entsprechendes gilt fiir s, (—1). Mit dem Abelschen Grenz-
wertsatz (Satz 5.14) folgt damit die in der Aufgabe behauptete Reihendarstellung.
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Zu Kapitel 6
.. ) 1 . 1/5 . 0
Zu Ubung 6.3: lim a; = , lim by = , lim e =1 1 |.
k— 00 0f k>0 1 k—o00 3/4

Zu Ubung 6.4: A und C abgeschlossen, B offen, D nichts dergleichen.
ZuUbung 6.7: (B~'A"HYAB=B"'(A"'A)BB"'EB=B 'B=E= (B~'A~)=(AB)" L.

Zu Ubung 6.13: Zur Beantwortung betrachte die Geraden im R2, die durch die Gleichungen x; = 0,
xp = 0bzw. x| = xp gegeben sind. Untersuche limO f(x) auf jeder dieser Geraden!
X—

Zu ﬂbung 6.20: (a) Man orientiere sich an Beispiel 6.17.

,_ii o e o of _ _ vz _ L
b) f'(x)= |: (x), (x)i| [ I'sinxy, e 1cosxz] = %a f£(0,0)a =10, 1] [l/ﬁ =5
Zu Kapitel 7
Zu Ubung 7.6:
2 [ 1—x/4
/ (ex—f—siny)dxdy:/ / (e +siny)dy | dx
B 0 | x/4
2 2
:/[|exy—cosy| )1{/:/4 / fe —cos(l Z)—i—cos%} dx
0 0

=|e* l(x e +4sinx (1 1 —}—4sinf ’
B 2 4 4]
1 1 3
= —e?>+8sin~ —4sinl — .
2 2 2

Zu Ubung 7.26: Torus: Volumen V = F4 - 2R = r2x - 27 R = 2r’Rn2, Oberflicheninhalt F =
L-27R =2mr - 27 R = 4rRn?.

Zu Ubung 7.27: Benutze Formel (7.88) mit f(x) = R + vr2 —x2 und g(x) = r — vVr2 —x2, dh.

berechne:
,
bid
5=To0 [ 1740 = g war,
Es ergibt sich
2 02(p2, 32
Jx =pg - 2n°rR R—|—Zr .

Mit der Masse m = pogV = pg - 272 Rr? erhilt man das Trigheitsmoment des Torus in der Form

3
Jx =m (R2 + Zr2>
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1 1—z| 1-y—z
Zu Ubung 7.28: Jx :/f (y2+x2)dxdydz:/ / / 2 +z5dx | dy | dz
T 0 0 0
2].

= 55 leem

.. 3
Zu Ubung 7.29: R Radius der Halbkugel. Der Schwerpunkt liegt auf der Symmetrieachse, um §R vom
Kugelmittelpunkt entfernt, in der Halbkugel.

Zu Ubung 7.31:
1thza i in((1 4 12 in 12 1+ 312 2
S t S o)t t t
F'(t) = / 751n(x) dx+2tbm(( + ))—1~Sln = F'(1) = + sin(t+t3)—fsin12.
ar x 1+12 t t 413 t
t _V_J

cos(xt)



Symbole

Einige Zeichen, die ofters verwendet werden, sind hier zusammengestellt.

A= B aus AfolgtB

A & B A gilt genau dann, wenn B gilt

X = x ist definitionsgemif gleich
Zur Mengenschreibweise s. Abschn. 1.1.4

xXeM x ist Element der Menge M, kurz: »x aus M«
x ¢ M x istnicht Element der Menge M
{x1,x2,...,x,} Menge der Elemente x1, xp, ..., X5

{x | x hat die Eigenschaft E} Menge aller Elemente x
mit Eigenschaft £

{x € N | x hat die Eigenschaft £} Menge aller Elemente
x € N mit Eigenschaft E

M C N,N DM M ist Teilmenge von N (d.h.x e M =
x €N)

M UN  Vereinigungsmenge von M und N
M NN  Schnittmenge von M und N
M\A Restmenge von A in M

[ leere Menge
A X B cartesisches Produkt aus A und B

Weitere Bezeichungen

|x| (firx e R) 1.1.6
n

doap 117
k=0

n! 1.1.7

0

f:A— B 132,135
flfog 134

(an)peny 14.1

lim a, 143
n—oo

Ug(a) 1.4.3

lim 1.6.7,1.6.8
X—>X0

fxo+), flxo—) 1.69

sup f(x), inf f(x) 1.6.5
XeEA XEA
7 2.3.1

242
25.1,252
|z] (firz € C) 2.5.2

e
i
Z,
df
L — 3.12
! dx

Al X Ay x ... x A, cartesisches Produkt aus Ay, Aj,

couAp
N Menge der natiirlichen Zahlen 1, 2, 3, ...
Z Menge der ganzen Zahlen
Q Menge der rationalen Zahlen
R Menge der reellen Zahlen
(x1,...,xn) n-Tupel

[a, b], (a, b), [a, D), (a, b] beschrinkte Intervalle
[a, o0), (a, 00), (—00, a], (—o0, a), R unbeschrinkte

Intervalle
C Menge der komplexen Zahlen (Abschn. 2.5.2)
X1
Spaltenvektor der Dimension n (Abschn. 6.1.1)
Xn
R" Menge aller Spaltenvektoren der Dimension n

(wobei x1, x2, ..., X, € R) (Abschn. 6.1.1)

b
/f(x)dx 4.1.1

a

[Fw]) 415
/f(x)dx 421

C.H./f(x)dx 432

[flloo  5.1.1
ngmw fn 5.1.1
lim 5.2.1
I, 54.1
Mat(n + 1, R) 5.4.1
detV 54.1
O(.) 54.1
x+y,Ax 6.1.2
x-y,|x| 6.1.2
XXy 6.1.2
AB 6.1.2

Kayr.Kay 6.1.4
AM, M, M 6.14

(@ik) 1 <j <> @ikIm,n 6.1.5
1<k=n
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IA| 6.1.5 /f(x)dx 72.1

a

i 6.3.1 Q

Xy

32f /f.../f(xl,...,xn)dxl...dxn 7.2.1

6.3.5

0xy 0xj o
dedy 711 d(xy, x, ..., Xn) 723

/ fx,y)dxdy 7.1. Auy, U, ..., un) e

B det A 7.2.3

a(x,y)

7.1.6

da(u, v)
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Halbgerade Inneres

— abgeschlossene, 13 — einer Menge M € R", 449

— offene, 13 Integral



— bestimmtes, 305, 311

— Riemannsches von f auf Q, 549

— unbestimmtes, 304

— uneigentliches, 333, 334

—von f auf [a, b], 290, 291

—von f auf Q, 519

—von f iiber dem Bereich B, 508
Integralkriterium fiir Reihen, 343
Integrallogarithmus Li, 346
Integration

— analytische, 316

— einer komplexwertigen Funktion f(1) =

u(r) +jv(r), 353

— elementare, 316

— numerische, 297

— partielle, 315

— rationaler Funktionen, 320
Integrationsregeln, 299
Interpolation, 384
Interpolationsbedingung, 409
Interpolationsproblem, 389
Intervall, 12

— abgeschlossenes, 12

— beschrinktes, 12

— beschrinktes und abgeschlossenes, 97

— halboffenes, 12

— kompaktes, 97

— offenes, 12

— unbeschrinktes, 12
Intervallhalbierungsverfahren, 88, 92
Intervallschachtelung, 10
Inverse, 453
Invertierungssatz, 497
irrationale Zahl, 4, 167

J
Jacobi-Matrix, 469
Jahreszins, 78

K
kanonische Einbettung, 457
Kapazitit, 270, 356
Kegelschnitte, 143
Kenn-Kreisfrequenz, 271
Kettenkarussell, 88, 280
Kettenregel, 212, 213, 229, 306, 474
Kirchhoffsche Regeln, 357
klassische Harmonik, 57
kleine Halbachse der Ellipse, 142
kleines Horner-Schema, 126
kleinste obere Schranke, 65
Knotenpolynom, 404
Koeffizienten

— eines Polynoms, 113
Korperaxiome

— der komplexen Zahlen, 183
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— der reellen Zahlen, 5
Kombinationen
— mit Wiederholungen, 39
— ohne Wiederholungen, 37
— zur k-ten Klasse mit Wiederholungen, 39
— zur k-ten Klasse ohne Wiederholungen, 37
Kommutativgesetz
— der Addition komplexer Zahlen, 184
— der Addition reeller Zahlen, 5
— der Multiplikation komplexer Zahlen, 184
— der Multiplikation reeller Zahlen, 5
kompakte
— Intervalle, 97
—Menge M C R", 450
— mefbare Menge, 520
— Zahlenmenge, 102
komplexe
— Exponentialfunktion, 433
— quadratische Gleichung, 187
— Zahl, 182
— Zahlenebene, 182
komplexer Scheinwiderstand, 357
Komponentenfunktion, 455
Komposition, siehe Verkettung von Funktionen
Kondensatorentladung, 279
konjugiert komplexe Zahl, 184
konkav, 250
konstante Flichendichte, 530
Kontostand, 19
Kontraktion, 71
konvergente
— Folge, 61
— Reihe, 74
Konvergenz, 55
— einer Zahlenfolge, 60
— gleichméBige, 366, 373
— punktweise, 373
— quadratische, 254
Konvergenzkriterium
— Cauchysches, 68
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— Cauchysches fiir gleichmiBig konvergente Reihen

von Funktionen, 373

— Cauchysches fiir gleichmifige Konvergenz, 368

— Cauchysches fiir uneigentliche Integrale, 336

— fiir Taylorreihen, 245
Konvergenzradius einer Potenzreihe, 376
konvex, 250
Koordinaten

— elliptische, 541, 545

— krummlinige, 552

— parabolische, 541

— rotationselliptische, 554

— rotationsparabolische, 554
Koordinatenfolge, 447
Koordinatennetz, 461
Koordinatensystem, 13
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Kraft, 119, 208
— Darstellung als Pfeil, 445
Kreisbogen, 145
Kreisfliche, 312
Kreisfrequenz, 163, 270, 434
Kreisscheibe, 14, 448
Kriechvorgang, 278
kritische Temperatur, 268
kritischer Druck, 268
kritisches Volumen, 268
Kriimmungsbedingung, 409
krummlinige Koordinaten, 552
kubische Splines, 408
Kugel, 448
— abgeschlossene, 449
— erzeugende Funktion einer, 562
— in zéhes Medium eindringende, 279
— offene, 449
Kugelkoordinaten, 554, 555
Kugelumgebung von a im R”, 449
Kurve, 141
— glatte, 532
— Liénge einer, 532
Kurvenschwerpunkt, 533

L
Lagrangesche
— Basispolynome, 394
— Interpolationsformel, 393, 395
— Multiplikatoren, 502
— Multiplikatorenmethode, 503
— Multiplikatorenmethode(zweidimensionaler Fall),
503
— Restgliedformel, 237
Landau-Symbol, 393
leere Menge, 15
Lehrsatz des Pythagoras, 14
Leibniz-Kriterium fiir alternierende Reihen, 80
Leibnizsche Reihe, 247
Leistung
— momentane, 350
Leistungsfaktor, 351
Lichtbrechung, 283
Lichtreflexion, 283
Limes, 60
Limes-superior, 376
lineare
— Splines, 407
— Transformation, 543
Linearfaktor, 131
Linearitit, 474
Linkskrimmung, 250
logarithmische Ableitung, 227
Logarithmus
— dualis, 177
— natiirlicher, 174

— zur Basis a, 176

— zur Basis 10, 178
lokales

— Maximum, 259, 497

— Minimum, 260, 497

M
Majorante, 374
Majorantenkriterium, 84

— fiir gleichméBig absolute Konvergenz von

Funktionenreihen, 374

— fiir uneigentliche Integrale, 340
Massenmittelpunkt, 529
mathematisches Pendel, 479
Matrix

— inverse, 453

— Multiplikation mit einer reellen Zahl, 452

— quadratische, 453

—reelle, 451

— regulire, 454

— singulére, 454

— Spaltenzahl der, 451

— transponierte, 453

— Zeilenzahl der, 451
Maximalstelle

— absolute, 260

— echte, 498, 500

— echte lokale, 260, 497

— einer Funktion, 98

— globale, 260

— lokale, 260, 497

—von f unter der Nebenbedingung k(x) = 0, 501
Maximum

— absolutes, 260

— echtes lokales, 260

— einer Funktion, 97

— globales, 260

— lokales, 259, 497
Mehrfachintegral, 551
Menge, 11

— abgeschlossene, 449

— beschrinkte, 450

— endliche, 55

— Héufungspunkt einer, 463

— Inhalt einer, 550

— Jordan-meBbare, 520, 550

— kompakte, 450

— leere, 15

— meBbare, 520

— offene, 449

— Vereinigung, 15

— Volumen einer, 550

— wegweise zusammenhingende kompakte, 526
meBbarer Normalbereich, 521
Methode

— von Ostrogradski-Hermite, 325



Minimalstelle

— absolute, 260

— echte, 498, 500

— echte lokale, 260, 497

— einer Funktion, 98

— globale, 260

— lokale, 260, 497
Minimum

— absolutes, 260

— echtes lokales, 260

— einer Funktion, 98

— globales, 260

— lokales, 260, 497
Minorantenkriterium

— fiir uneigentliche Integrale, 340
Mittelwertsatz

— der Differentialrechnung, 219

— der Integralrechnung, 300

— fiir Bereichsintegrale, 526

—im R", 486

— verallgemeinerter der Integralrechnung, 300

Mohrscher Spannungskreis, 140
momentane Leistung, 350
Momentangeschwindigkeit, 198
monoton

— steigende Funktion, 49
monotone k-Tupel, 39
Monotoniekriterium, 339

— fiir Folgen, 68

— fiir Reihen, 78
Multiplikation

— komplexer Zahlen, 183

— zweier Matrizen, 452

N
n-Tupel, 16, 439
n-te Wurzel, 21
Nabla-Operator V, 484
Niherungsfunktionen, 114
natiirliche Zahlen, 1
natiirlicher Spline, 409
n-dimensionaler Quader, 547
negativ, 9
negative Zahlen, 1
Netztafel, 461
Neville-Schema, 397, 398
Newtonfolge, 254, 488
Newtonsche
— Interpolationsformel, 400, 402
— pulcherrima (3/8-Regel), 331
Newtonsches
— erstes Axiom der Mechanik, 119
— Grundgesetz der Mechanik, 208, 273, 279
— Verfahren, 130, 195, 253
— Verfahren (im R™), 488
— Verfahren (modifiziertes), 490
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Niveaulinien, 457
Normalbereich, 511, 551
— Flidcheninhalt des, 525
— meBbarer, 521
Normalparabel, 119
Nullfolge, 57, 60
Nullmenge, 521, 550
Nullphasenwinkel, 356
Nullpolynom, 113
Nullpunktverschiebung, 129
Nullstelle
— einer gebrochenen rationalen Funktion, 133
— einer reellwertigen Funktion, 87
— eines Polynoms, 114
— mehrfache, 195, 324
Nullstellensatz, 92

(0]
obere Halbkreislinie, 145
obere Schranke, 65

— einer Funktion, 97
Oberintegral

—von f, 289

—von f auf Q, 519, 549

—von f auf [a, b], 291
Obermenge, 15
Obersumme

—von f bzgl. Z, 289, 291, 518, 549
offene Menge, 449
offenes Intervall, 12
Ohmscher Widerstand, 356
Ohmsches Gesetz, 356
Ordnungszahl, 1
orthogonale Koordinaten, 540
Orthogonalititsrelationen, 417

— von sin und cos, 313
Ortskurve, 352, 360
Oszillationsstellen, 111

P
p-Tupel, 29
Paar, 16
Paarmenge, 16
Parabel, 119
Parabelschablone, 122
parabolische Zylinderkoordinaten, 554, 556
Partialbruchzerlegung, 320
Partialsumme, 373
Partialsummen einer Reihe, 74
partielle Integration, 315
Pascalsches Dreieck, 27
passives Bauelement, 358
Periode

— des Dezimalbruchs, 2
periodische Funktionen, 388
Permanenzprinzip, 354
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Permutation, 31
— gerade, 556
— mit Identifikationen, 32, 41
— ungerade, 556
Pfeil, 442
— Aufpunkt des, 442
— Spitze des, 442
Phase, 163
Phasenverschiebung
— rechtwinklige, 165
— zwischen Strom und Spannung, 349, 356
Phasenwinkel, 163
Plancksche Strahlungsformel, 234
Plancksches Strahlungsgesetz, 285
Planetengetriebe, 142
Pol, 107, 265, 463
— einer gebrochenen rationalen Funktion, 133
polares Flachenmoment, 533
— einer Ellipsenfliche bzgl. des Mittelpunktes, 534
— einer Kreisscheibe bzgl. des Mittelpunktes, 535
— eines ringférmigen Rohrquerschnittes bzgl. des
Mittelpunktes, 535
Polarkoordinaten, 536, 540
— einer komplexen Zahl, 192
Polarkoordinatendarstellung, 192
Polwechsel, 110
Polynom, 89
— als Asymptote einer rationalen Funktion, 136
— Division durch Linearfaktor, 131
— n-ten Grades, 113
— quadratisches, 113, 119
Polynomialkoeffizient, 29
polynomische Formel, 29
Polynomraum, 389
positiv, 9
positive Definitheit, 442
Potenz, 8
Potenzfunktion, 96, 140, 202
— allgemeine, 226
— mit beliebigem o € R, 175
Potenzreihe, 375
— gliedweises Differenzieren einer, 380
— gliedweises Integrieren einer, 380
— Identititssatz fiir, 381
— Konvergenzradius einer, 376
Produkt
— cartesisches, 16
—reeller Zahlen, 4
— von Reihen, 83
Produktintegration, 315
Produktregel, 209
Punkt
— der Ebene, 13
— stationirer, 503
Punkt-Richtungsform einer Geraden, 115
Punktmengen der Ebene, 13

punktweise konvergente Reihe von Funktionen, 373
Pyramide

— allgemeine, 559

— quadratische, 565
Pythagoras, 185

— Lehrsatz des, 14

Q
Quader, 522

— n-dimensionaler, 547
quadratische

— Erginzung, 121, 187

— Mittelwerte, 350

— Pyramide, 565
Querkraft, 575
Quotient, 5
Quotientenkriterium, 85
Quotientenregel, 209

R
radioaktiver Zerfall, 278
Raketenantrieb, 279
Rand
—einer Menge M € R", 449
Randpunkt
—einer Menge M € R", 449
— eines Definitionsbereiches, 260
rationale
— Funktion, 95, 133
— Zahl, 1
Rauminhalt, 507, 550
Rechenregeln
— der Bruchrechnung, 5, 184
— der Exponentialfunktion, 169
— fiir konjugiert komplexe Zahlen, 185
— fiir konvergente Folgen, 63
— fiir Matrizen, 452
— fiir stetige Funktionen, 94
— fiir Vektoren im R”, 442
Rechteck, 13
Rechteckfunktion, 420
Rechtskriitmmung, 250
reelle Zahl, 4
Regel von de I’Hospital
— allgemeiner Fall, 231
— elementarer Fall, 230
Reihe
— absolut konvergente, 81
— alternierende, 80
— bedingt konvergente, 82
— binomische, 242, 243
— divergente, 75
— geometrische, 75
— gleichmiBig absolut konvergente, 373
— gliedweise differenzierbar, 375
— gliedweise integrierbar, 375



— Grenzwert einer, 75
— harmonische, 76
— konvergente, 74
— Leibniz-Kriterium fiir eine alternierende, 80
— Leibnizsche, 247
— Partialsummen einer, 74
— Summe einer, 75
— trigonometrische, 416
— unendliche, 74
— von Funktionen, 373
Reihen
— Cauchy-Kriterium fiir, 79
— Monotoniekriterium fiir, 78
— Produkte von, 83
— von Vektoren, 448
Rekursionsformel, 318
Rente, 78
Resonanzkurve eines elektrischen Schwingkreises, 270
Restglied, 235
Restgliedabschitzung, 486
Restgliedformel
— Cauchysche, 237
— Lagrangesche, 237
— Schlomilchsche, 236
Restmenge, 15
Reziprokenregel, 210
Richtungsableitung, 477
Riemann-integrierbar, 291
Riemannsche Summen, 294, 528, 552
Riemannsches Integral
—im R", 548
—von f auf Q, 549
Rohr, 60
Romberg-Verfahren, 332
rotationselliptische Koordinaten, 554, 557
— abegeplattete, 557
— gestreckte, 557
Rotationskorper, 561
— erzeugende Fliche eines, 563
— erzeugende Funktion des, 561
— erzeugende Kurve eines, 563
— Flicheninhalt der Mantelflidche eines, 562
— Mantelfliche des, 561
— Volumen des, 562
rotationsparabolische Koordinaten, 554, 557
Runge-Funktion, 405

S
Sagezahnkurve, 109, 419
Sandwich-Kriterium, 64
Sattelfldche, 457
Satz
— Steinerscher, 570
— tiber Bereichsintegrale als Doppelintegrale, 522
— iiber Bereichsintegrale als Mehrfachintegrale, 550
— iiber implizite Funktionen (allgemeiner Fall), 494
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— iiber implizite Funktionen (zweidimensionaler Fall),
492
— iiber Produktintegration, 315
— iiber Riemannsche Summen, 528
— vom Maximum, 98
— von Bolzano-Weierstraf3, 66
— von Bolzano-Weierstral im R”, 447
— von Cauchy-Hadamard, 376
— von Cavalieri, 559
— von Fubini fiir Riemannintegrale, 522
—von Rolle, 219
— zur Berechnung von Bereichsintegralen zweier
Variabler, 524
— zur Komposition stetiger Funktionen, 96
— zur Stetigkeit von Umkehrfunktionen, 95
Schaubild, 46
Scheinleitwert, 188
— komplexer, 358
Scheinwiderstand
— komplexer, 357
Scheitel einer Parabel, 119
Schienenkreisbogen, 161
Schlomilchs Restgliedformel, 236
Schliissel, 42
Schnittmenge, 15
schonste Gleichung der Welt, 189
Schwarzsche Ungleichung, 445
Schwebung, 166
Schwerpunkt, 530
— einer ebenen Platte von der Form eines Kreissektors,
543
— einer Kurve, 533
— eines Drahtes, 532
— eines Systems von Massenpunkten, 529
Schwingkreis
— elektrischer, 270
Schwingung, 433
— eines Federpendels (mit Reibung), 434
— geddmpfte erzwungene, 434
— harmonische, 163, 192
— phasenverschobene, 433
Schwingungsdauer, 163, 350
— eines mathematischen Pendels, 479
Simpsonformel, 329
Sinus, 152
Sinus hyperbolicus, 179
Snelliussches Brechungsgesetz, 284
Spaltenmatrix, 451, 470
Spaltenvektor, 439
— Eintrédge des, 440
— Komponenten des, 440
— Koordinaten des, 440
— Multiplikation mit einem Skalar, 441
— negatives Element zu einem, 441
Spaltenvektoren
— Addition zweier, 441
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— inneres Produkt zweier, 441 Tangente

— Subtraktion zweier, 441 —an f in xg, 200
Spannungszeiger, 355 Tangentenformel, 297
Spline, 406 Tangentialabbildung, 472, 487

— kubischer, 408 Tangentialebene, 471

— linearer, 407 Taylorformel

— natiirlicher, 409 —fiir (1 4+ x)" um 0, 243

— vollstindiger, 409 — fiir e*, 238
Spline-Funktionen, 384 — fiir die Logarithmus-Funktion, 241
Splineinterpolation, 406 — fiir Sinus- und Cosinus, 239
Spule, 285 —im R", 486
stabiles Verfahren, 93 — mit Restglied, 236
Stammfunktion, 301 —von f entwickelt um xq, 237
stationdrer Punkt, 503 Taylorreihe
Staudruck an einem Flugzeug, 276 —von e* um 0, 239
Steigungsbedingung, 409 Teilfolge, 65
Steinerscher Satz, 570 Teilmenge, 14
stetige —echte, 15

— Abinderung, 105 Teilungspunkte einer Zerlegung, 146, 290

— Erweiterung, 103, 105 Torsionssteifigkeit eines Rohres, 30

— Erweiterung von f, 104 totales Differential von f in x(, 479
Stetigkeit, 88, 89, 169 Tragheitsmoment, 567

— gleichméfBige, 100, 462 — beziiglich der x-Achse, 567
Stichprobe — bzgl. der Mittelachse, 569

— mit Zuriicklegen, 41 — eines elliptischen Zylinders, 545

— ohne Zuriicklegen, 41 — eines Rotationskorpers bzgl. der Rotationsachse,

— ungeordnete, 40, 41 569

— von k Kugeln, 40 — eines Zylinders beziiglich einer Querachse, 567
Streckenzug, 146 — von Séulen, 568
Stromungswiderstand eines Korpers, 119 Transformation
Stromzeiger, 355 — lineare, 543
Strophoide, 218 —von G* auf G, 538
Substitutionsformel, 307 Transformationsformel, 541, 553

— fiir bestimmte Integrale, 311 Transformator
Substitutionsmethode, 306 — Wirkungsgrad eines, 283
Subtraktion transponierte Matrix, 453

— komplexer Zahlen, 183 Trapezformel, 329

—reeller Zahlen, 5 trigonometrische Reihe, 416

— von Matrizen, 451 trigonometrisches Funktionensystem, 415
Summe Tripel, 440

— einer Reihe, 75 Turm, 42

— einer Reihe von Funktionen, 373

— geometrische, 24 U

— reeller Zahlen, 4 Umfang

— Riemannsche, 528 — des Einheitskreises, 150
Supremum, 65 Umgebung

— einer Funktion, 97 — eines Punktes im R", 449
Supremumsnorm, 366 umkehrbare Funktion, 51
surjektive Funktion, 51 Umkehrfunktion, 51, 52
Symmetrie, 266 unabhiéngige Variable, 44
Symmetrieachse einer Parabel, 119 unbeschriinktes Intervall, 12

unecht gebrochene Funktion, 133

T uneigentliches Integral
T-Verbindung aus Zylindern, 560 — absolut konvergentes, 339
Tangens, 156 unendliche

Tangens hyperbolicus, 179 — Folge reeller Zahlen, 55



— Reihe, 74
Unendlichkeitsstelle

— einer gebrochenen rationalen Funktion, 133
ungeordnete Stichprobe, 41
ungerade

— Funktion, 264, 266

— Permutation, 556
ungestortes stetiges Wachstum, 277
Ungleichung

— Bernoullische, 21

— Besselsche, 429

— des geometrischen und arithmetischen Mittels, 252

— Schwarzsche, 445
Unstetigkeitsstellen, 110
untere Halbkreislinie, 145
untere Schranke, 65
Unterintegral

—von f, 289

—von f auf Q, 519, 549

—von f auf [a, b], 291
Untersumme

—von f bzgl. Z, 289, 291, 518, 549
Urbildbereich, 44, 54
Urbildpunkt, 44, 54

\
van der Waalssche Zustandsgleichung

— fiir reale Gase, 267, 460
Vandermonde-Matrix, 393
Variable

— abhingige, 44

— unabhéngige, 44
Variationen

— mit Wiederholungen, 36

— ohne Wiederholungen, 34

— zur k-ten Klasse mit Wiederholungen, 36

— zur k-ten Klasse ohne Wiederholungen, 35
Vektor, 439

— Betrag eines, 444

— euklidische Norm eines, 444

— Lénge eines, 444
Vektoren

— senkrecht aufeinander stehende, 445
Vektorraum

— reeller euklidischer n-dimensionalar, 442
verallgemeinerter Mittelwertsatz, 220
Vereinigung zweier Mengen, 15
Verkettung von Funktionen, 53
Vertauschung

— der Integrationsreihenfolge, 522

— partieller Ableitungen, 484
Vertauschungsformel, 510
Vietascher Wurzelsatz, 125
vollstéindige Induktion, 17, 18
vollsténdiger Spline, 409
vollstandiges Differential von f in x(, 479
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Vollstandigkeit
— der reellen Zahlen, 10
Volumen
— einer Menge, 550
— eines Ellipsoides, 513
— eines Rotationsparaboloids der Linge /i, 562
— eines Wiirfels, 275
Vorschrift, siehe Funktion

w
‘Wachstum

— ideales, 277

— ungestortes, 277
Wachstumsvorgang, 277
Wechselstromwiderstand, 461
Weg, 526
Weierstrall’scher Approximationssatz, 384, 388

— fiir (algebraische) Polynome, 384

— fiir periodische Funktionen, 388
Wellenlidnge, 57
Wendepunkt, 265, 271
Wertebereich, 44, 54
Widerstand

— induktiver, 358

— kapazitiver, 358

— Ohmscher, 270, 356
Widerstandsbeiwert, 119
Wiensches Verschiebungsgesetz, 285
Wirkleistung, 350, 351
Wirkungsgrad

— eines Transformators, 283
Wirkwiderstand, 357
Wiirfelvolumen, 275
Wurf

— mit Lustreibung, 274

— ohne Reibung, 273

— senkrechter, 122
Wurzel

— komplexe, 186

— n-te aus einer reellen Zahl, 21
‘Waurzelfunktionen, 96
Wurzelkriterium, 86

Z
Zahl
— Bernoullische, 247
— imagindire, 181, 182
— irrationale, 4, 167
— komplexe, 182
— konjugiert komplexe, 184
— natiirliche, 1
— negative, 1
— rationale, 1
—reelle, 4
Zahlengerade, 4
Zahlenpaar, 440
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Zehnerlogarithmus, 178
Zeigerdiagramm, 165, 193
Zeilenmatrix, 451, 470
Zeilenvektor, 439
Zeitzeiger, 355
Zellwachstum, 277
Zentrifugalkraft, 273
Zentrifugalmoment, 533
Zentripetalbeschleunigung, 273
Zerfall

— radioaktiver, 278
Zerlegung

— aquidistante, 296, 328

— allgemeine, 527

— einer Funktion in Linearfaktoren, 195

— eines Intervalls [a, b], 288

— eines Quaders Q, 548

— eines Rechtecks, 517

— Feinheit der, 288, 290, 518, 527

—von [a, b], 290
Zwei-Punkte-Form einer Geraden, 116
Zweiter Hauptsatz, 303
Zwischenwertsatz, 93
Zylinder

— Trégheitsmoment beziiglich einer Querachse, 567
Zylinderkoordinaten, 554



