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1. Einführung

Die Medizin ist — neben den Sozialwissenschaften — derjenige universitäre Bereich,
der am intensivsten moderne statistische Methodik benutzt. Auch wenn sich diese
nur wenig von der anderer Wissenschaftszweige unterscheidet, wird sie doch oft als
Bio– oder Medizinstatistik bezeichnet.
Das Spektrum der modernen Statistik reicht von einfachen quantitativen und gra-
phischen Methoden bis hin zu komplexen Modellen, die nur mit Hilfe der höheren
Mathematik behandelt werden können. Dabei stellt man in allen Anwendungen ei-
ne Verschiebung zugunsten des Einsatzes immer raffinierterer Methoden fest (z. B.
logistische Regression oder Survivalanalyse). Dies hängt damit zusammen, dass von
der medizinischen Forschung auch immer anspruchsvollere Fragestellungen und Pro-
jekte angegangen werden. Der Erfolg der Statistik wäre aber auch nicht denkbar
ohne die Entwicklung günstiger und leistungsfähiger Computer und die Entwick-
lung von statistischen Programmpaketen. Die Programmpakete sind heute sehr lei-
stungsfähig und benutzerfreundlich, vorausgesetzt, man versteht etwas von statisti-
schen Methoden. In der biomedizinischen Forschung Tätige werden diese Methoden
in verschiedenem Ausmass und verschiedener Vollständigkeit beherrschen (müssen).
Ein Mediziner, der überwiegend in der Forschung tätig ist, sollte die Statistik bes-
ser beherrschen als ein überwiegend klinisch tätiger. Jeder Mediziner muss heute
zumindest die Grundbegriffe der Statistik kennen und verstehen, um überhaupt
medizinische Literatur lesen zu können.
Sie haben hier eine erste Version unseres Internet–Kurses in Biostatistik vor sich.
Zur Vertiefung und Illustration des Stoffes dienen verschiedene Links:

Animation Datenanalyse Selbstkontrolle (Bitte anklicken.)

März 2004

http://www.unizh.ch/biostat/
http://www.unizh.ch/biostat/kurs/kap210.htm
http://www.unizh.ch/biostat/kurs/dat20.htm


Einführung
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1.1. Was bietet die Statistik ?

Statistische Methoden ermöglichen
• die Hervorhebung wesentlicher Zusammenhänge durch Datenreduktion und

graphische Darstellungen.

Es folgt ein Beispiel aus einem Heft des New England Journal of Medicine (einer
führenden klinischen Zeitschrift). Durch eine einfache Graphik wird die Wirkung
von Behandlungen im Zeitverlauf auf einen Blick deutlich.

http://www.unizh.ch/biostat/
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Betrachten wir einen Artikel aus dem gleichen Heft (siehe Kopie auf der nächsten
Seite). Ohne statistische Kenntnisse sind viele Artikel in medizinischen Zeitschriften
nur schwer verständlich. Emerson et al. (1986) stellten fest, dass jemand, der nur die
deskriptive Statistik beherrscht, knapp 58% der Artikel des New England Journal
of Medicine verstehen kann. Das Verständnis des t–Tests erhöht diesen Anteil auf
67%; das zusätzliche Verständnis von Kontingenztafeln erhöht ihn auf 73%. Seit
1986 ist der Anteil höherer statistischer Methoden deutlich gestiegen.

Ein Ziel dieses Biostatistik–Kurses ist es denn auch, das Studium wissenschaftlich–
medizinischer Literatur zu erleichtern.

Statistische Methoden ermöglichen es,
• aus einer Stichprobe gültige Schlussfolgerungen zu ziehen,
• die Unsicherheit der Entscheidung zu quantifizieren.

Dazu stehen gute statistische Programmpakete zur Verfügung, die zum Teil auch
benutzerfreundlich sind. Mit diesen und dem Stoff der Vorlesung sollte es möglich
sein, einfachere Auswertungen selber durchzuführen. Die meisten Beispiele in die-
sem Skript wurden mit dem Paket StatView analysiert, das auf dem Mac und auch
unter Windows läuft. Ein grosser Vorteil ist die Benutzerfreundlichkeit, es ist aber
weniger umfassend als andere bekannte Programmpakete wie SPSS und SAS.

http://www.unizh.ch/biostat/
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1.2. Grundgesamtheit und Stichprobe

Zwei zentrale Begriffe der Statistik sind Grundgesamtheit und Stichprobe. Indivi-
duen verhalten sich bei gleicher Behandlung unterschiedlich. Deshalb reicht es in

http://www.unizh.ch/biostat/
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der Medizin nicht, Einzelfälle zu dokumentieren. Es ist aber auch unmöglich und
nicht unbedingt wünschenswert, das Verhalten aller Patienten auf eine Behandlung
zu evaluieren. Dies ist einerseits eine Kostenfrage, andererseits geht es darum, Be-
handlungen mit Nebenwirkungen so sparsam wie möglich einzusetzen. Als Ausweg
können wir eine Stichprobe aus der Grundgesamtheit (Population, statistische
Grundgesamtheit) ziehen.

Die Grundgesamtheit ist die Gesamtheit aller Individuen, für welche
Schlussfolgerungen gezogen werden sollen.

Beispiele:

1. Alle Hodgkin–Patienten der Welt, die die Krankheit überstanden haben.

2. Alle männlichen Einwohner der Schweiz über 65 Jahre, die weder an einer
neurologischen noch an einer psychiatrischen Krankheit leiden.

Eine Stichprobe aus einer statistischen Grundgesamtheit ist die Menge der
Individuen, die tatsächlich beobachtet wurden.

Beispiele:

1. Stichprobe von n = 20 Hodgkin–Patienten aus einer Klinik.

2. Repräsentative Stichprobe von n = 1000 Männern aus städtischen Gebieten.

Animation

http://www.unizh.ch/biostat/
http://www.unizh.ch/biostat/kurs/ladybugequal.htm
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1.3. Empfohlene Literatur

Es gibt hunderte von Büchern zur Einführung in die Statistik. Ein grosser Teil
davon ist brauchbar. Wir wollen nur einige der anwendungsorientierten Bücher mit
ausreichendem theoretischem Anspruch erwähnen.

Altman, D. G. (1991). Practical statistics for medical research. Chapman and Hall.
Es bietet eine korrekte Statistik und sehr gute Beispiele. Aus diesem Buch
haben wir einige der vorgestellten Beispiele. 600 S.

Bland M. (1995). An introduction to medical statistics. Oxford Medical Publica-
tions.
Eine sehr gute Einführung mit vielen Beispielen und Aufgaben. 396 S.

Johnson R. A. & Bhattacharyya G. K. (1992). Statistics. Principles and methods.
2nd ed., Wiley.
Eine leichte Lektüre zum Feierabend. 700 S.

Matthews, D. E. & Farewell, V. T. (1988). Using and understanding medical stati-
stics. 2nd ed., Karger.
Im Gegensatz zu vielen anderen Einführungen bietet dieses Buch logistische
Regression und Survivalanalyse. 200 S.

Sachs, L. (2002). Angewandte Statistik: Anwendung statistischer Methoden. 10. Auf-
lage, Springer.
Im deutschsprachigen Raum das klassische Kochbuch (Nachschlagewerk) für
alle Lebenslagen seit 1968. Achtung: Kein Lehrbuch! 889 S.

http://www.unizh.ch/biostat/
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2. Deskriptive Statistik

Die Beschreibung von Daten ist die Grundlage jeder statistischen Analyse und ein
wesentlicher Bestandteil jeder Publikation. Das Ziel besteht darin, die Daten ei-
ner Stichprobe kurz und prägnant zu charakterisieren. Dies erfolgt einerseits über
statistische Kennwerte (z. B. Lage– und Streumasse) und andererseits durch gra-
phische Verfahren. Dank PC und und der Entwicklung guter, einfach handhabbarer
Programme haben graphische Methoden an Bedeutung gewonnen.
Die deskriptive Statistik unterscheidet sich von der schliessenden Statistik dadurch,
dass die Daten ohne Signifikanz präsentiert werden, und sie so ohne Wahrschein-
lichkeitsannahmen auskommt. Trotzdem verweisen wir in diesem Kapitel gelegent-
lich auf Begriffe der Wahrscheinlichkeitsrechnung (Erwartungswert, Dichte, Nor-
malverteilung). Diese Begriffe werden in Kapitel 3 erklärt.
Daten werden heute meistens mittels eines Tabellenkalkulations–Programmes oder
einer Datenbank in den Computer eingegeben. Für erstere Option ist das Programm
Excel eine beliebte und auch gute Wahl. Gut ist im Prinzip auch Filemaker, doch
gibt es Probleme beim Export der Daten in Statistik–Programme. Ein Vorteil von
Filemaker ist, dass Datenchecks leicht durchgeführt werden können. Für befristete
und nicht zu komplexe Projekte ist die Benutzung einer Datenbank nicht ange-
zeigt; die verbreitetsten Datenbanken erlauben aber den Export in die gängigen
Statistik–Pakete. Zum Verständnis der Materie ist es hilfreich, die vorgestellten
Analysen selbst durchzuführen. Um dies zu vereinfachen, bieten wir Ihnen die Da-
tensätze und ein web-basiertes Statistikprogramm an. Die entsprechenden Links

sehen so aus: Datenanalyse . Wenn Sie diesem Link folgen, werden noch einige Tipps
zur Verwendung des Programms und zum herunterladen der Daten gegeben.

http://www.unizh.ch/biostat/
http://www.unizh.ch/biostat/kurs/dat20.htm
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In der Regel werden die Daten als Tabelle eingegeben, wobei jede Zeile einen Pa-
tienten darstellt, die Kolonnen die jeweiligen Variablen. Hier sehen Sie die Daten
einer Studie als Excel–Tabelle, die später immer wieder als Beispiel dient. Hier
wurden immunologische Parameter (T4– und T8–Zellen) bei 20 Hodgkin und 20
non–Hodgkin–Patienten verglichen (siehe Abschnitt 2.4).

Patient T4-cells T8-cells ln(T4-cells) ln(T8-cells) Disease group
1 396 836 5.981 6.729 Hodgkin 1
2 568 978 6.342 6.886 Hodgkin 1
3 1212 1678 7.1 7.425 Hodgkin 1

. . .
1 9 1283 336 7.157 5.817 Hodgkin 1
2 0 2415 936 7.789 6.842 Hodgkin 1
2 1 375 340 5.927 5.829 Non-Hodgkin 2
2 2 375 330 5.927 5.799 Non-Hodgkin 2
2 3 752 627 6.623 6.441 Non-Hodgkin 2

. . .
3 9 377 108 5.932 4.682 Non-Hodgkin 2
4 0 503 163 6.221 5.094 Non-Hodgkin 2

http://www.unizh.ch/biostat/
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2.1. Haupttypen von Daten

Am Anfang ist es wichtig, sich über die verschiedenen Typen von Daten klar zu
werden. Verschiedene Datentypen bedingen nämlich verschiedene Präsentationen
und Analysemethoden.

1. Qualitative oder diskrete Messdaten

Diskrete Daten sind dadurch gekennzeichnet, dass sie nur bestimmte Wer-
te annehmen können, z. B.: {rot, grün, blau}, {O, A, B, AB}, {männlich,
weiblich} oder {0, 1, 2, . . . }, wobei diese Zahlen z. B. den Schweregrad einer
Krankheit bedeuten können.

Wir unterscheiden:

• nominal oder kategoriell (Zuordnung zu Kategorien):
Beziehung: gleich ⇐⇒ ungleich
−→ nur Anzahl und % sinnvoll
Beispiele: Geschlecht, Blutgruppe, Farbe

• ordinal (geordnet kategoriell): Beziehung: grösser ⇐⇒ kleiner (Rang-
ordnung)
Beispiele: Schweregrad einer Krankheit, Items in Fragebogen

2. Quantitative oder stetige Messdaten

Stetige Daten können idealerweise alle Werte ohne Abstufungen annehmen.
Oft ist es sinnvoll, auch ganzzahlige (also eigentlich diskrete) Werte als stetig
zu behandeln (z. B. Grösse in cm oder Zähldaten).

http://www.unizh.ch/biostat/
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Es werden noch intervallskalierte und absolutskalierte Variablen unterschie-
den, doch hat dies für die Statistik selten eine Bedeutung. Bei absolutskalier-
ten Grössen ist ein absoluter Nullpunkt vorgegeben, und dadurch kann man
auch sinnvolle Quotienten bilden. Beispiel: Temperatur in Kelvin anstatt Grad
Celsius.

In einem psychologischen Sinne ist Farbe kategoriell skaliert, durch den wissen-
schaftlichen Fortschritt kann man sie aber auch als stetig (Frequenzen von elektro-
magnetischen Wellen) auffassen.

Selbstkontrolle Animation

2.2. Darstellung von diskreten Daten

Bei der Analyse von diskreten Daten spielt die Wahrscheinlichkeit eines einzelnen
Ereignisses eine zentrale Rolle. Die relative Häufigkeit schätzt diese Wahrscheinlich-
keit.

relative Häufigkeit =
Anzahl Beobachtungen des Ereignisses

totale Anzahl Beobachtungen

• multipliziert mit 100 erhält man Prozentsätze

Achtung: Diese einfache Rechnung wird oft falsch gemacht:

”Local police are particularly pleased with decreases in the numbers of robbe-

http://www.unizh.ch/biostat/
http://www.unizh.ch/biostat/kurs/kap21.htm
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ries, break–ins and car–related crimes. In fact robberies in the area are down
by a staggering 100 per cent.“ Ayrshire Leader, 4 November 1993

http://www.unizh.ch/biostat/
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Um relative Häufigkeit in 2 Gruppen zu vergleichen, können die Anzahlen von
Erreignissen in einer Vierfeldertafel dargestellt werden.

Beispiel: Brown (1980) untersuchte an 52 Patienten, ob ein positives Röntgenbild
geeignet zur Diagnose des Auftretens von Knoten ist.
Die Vierfeldertafel für den Zusammenhang von Auftreten von Knoten und
Röntgenbefund sieht so aus:

kein Knoten (y = 0)
Knoten (y = 1)

Röntgenbefund
x = 0 x = 1

28 4

9 11

37 15

32
20
52

Die Vorhersagekraft des Röntgenbefundes wird mit Sensitivität = 11/20 = 55%
und Spezifität = 28/32 = 87% bewertet. Die Sensitivität gibt bei diagnostischen
Tests an, welchen Prozentsatz der Untersuchten zu recht als krank identifiziert
wurde. Die Spezifität wiederum zeigt, ob Gesunde auch als Gesunde anerkannt
wurden.

http://www.unizh.ch/biostat/
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Beispiel: Anteil von Blutgruppen in einer gesunden Population. So könnte die
Präsentation der Daten aussehen:

Tabelle

relative
Blutgruppe Anzahl Häufigkeit

O 2892 48%
A 2625 43%
B 570 9%

total 6087 100%

Kuchendiagramm (pie chart)

Animation

Beachten Sie, dass in der 3–dimensionalen Darstellung die Proportionen durch den
perspektivischen Effekt visuell verfälscht werden.

http://www.unizh.ch/biostat/
http://www.unizh.ch/biostat/kurs/kap22.htm
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Balkendiagramm (bar chart)

Beachten Sie, dass die Balken immer vom Nullpunkt ausgehen sollten.

Selbstkontrolle

http://www.unizh.ch/biostat/
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2.3. Darstellung von Verläufen

• Ordinale und stetige Daten

Die Darstellung von Verläufen ist ein heikles Thema. Hier eine extrem missbräuch-
liche und eine korrekte Darstellung:

Liniendiagramm
Preise

1 4 0

1 6 0

1 8 0

2 0 0

2 2 0

2 4 0

2 6 0

2 8 0

3 0 0

3 2 0

3 4 0

3 6 0

3 8 0

4 0 0

7 0 7 1 7 2 7 3 7 4 7 5 7 6 7 7

Scattergramm

Animation

Die Gründe dafür sind:
• Das Verhältnis der x– zu der y–Skala ist extrem gewählt.
• Der Nullpunkt ist nicht in der Graphik enthalten!

Es ist übrigens in gewissen Graphikprogrammen nicht einfach, den Nullpunkt in
ein Scattergramm einzubeziehen.

http://www.unizh.ch/biostat/
http://www.unizh.ch/biostat/kurs/kap23.htm
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• Benutzen Sie Ihren gesunden Menschenverstand, um zu entscheiden, ob der Null-
punkt für die Darstellung bedeutsam ist.

http://www.unizh.ch/biostat/
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2.4. Darstellung von stetigen Daten – das Histogramm

Ziel:
Verteilung der Daten graphisch zu charakterisieren, im Sinne einer ”Datendichte“
durch das Histogramm.

Vorgehen:
• Bereich der Daten in gleiche, nicht überlappende Intervalle (Zellen, Klassen) zer-

legen
• Anzahl Beobachtungen pro Intervall bestimmen

relative Häufigkeit im Intervall =
Anzahl Beobachtungen im Intervall

totale Anzahl Beobachtungen

• relative (oder absolute) Häufigkeiten über Intervalle in Balkendiagramm darstel-
len

Beispiel: Immunologische Variablen als Anzahl von T4– und T8–Zell–Anzahlen bei
verschiedenen Krebspatienten. Dies ist ein Beispiel aus dem Am. J. Med. Sci.,
das wir noch mehrmals benutzen werden:

http://www.unizh.ch/biostat/
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Für das Merkmal ”Anzahl T4–Zellen bei Hodgkin–Patienten“ sieht die Berechnung
eines Histogramms etwa so aus, wenn man Intervalle zu 500 bildet:

Anz.
Anzahl Beob. relative

Intervall T4–Zellen im Intervall Häufigkeit

1–500 171
257
288
295
396
397
431
435 8 40%

501–1000 554
568
795
902
958 5 25%

1001–1500 1004
1104
1212
1283
1378 5 25%

1501–2000 1621 1 5%

2001–2500 2415 1 5%

total 20 100%

Aus der Tabelle ergibt sich das fol-
gende Histogramm:
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Histogram

Bemerkung: ”Count“ bei der y–
Achse bedeutet Anzahl Patienten
pro Intervall.

http://www.unizh.ch/biostat/


Einführung

Deskriptive Statistik

Wahrscheinlichkeit

Testen

Regression

Testfragen

Index

Home Page

Titelseite

JJ II

J I

Seite 23 von 100

Zurück

Vollbild

Schließen

Beenden

Das Standard–Histogramm von StatView sieht so aus:
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Histogram

Animation Datenanalyse

• Vergleichen Sie diese beiden Histogramme und Sie bemerken, dass man die Gra-
phiken unterschiedlich interpretieren kann.
- Steigt die relative Häufigkeit am Anfang an?
- Gibt es Lücken?

• Eine wesentlich Erkenntnis ist, dass die Anzahl T4–Zellen (rechts–)schief verteilt
ist, d. h. dass rechts vom Häufigkeitszentrum mehr Werte als links davon auf-
treten. Eine logarithmische Transformation führt zu einer eher symmetrischen
Verteilung, ähnlich einer Normalverteilung (Gaussche Glockenkurve).

• Die Aussage eines Histogramms hängt wesentlich von der Klassenbreite und
dem Klassenzentrum ab.

Wenn man eine deutlich zu kleine Intervallänge wählt, erhält man z. B. ein sehr
variables Histogramm.

http://www.unizh.ch/biostat/
http://www.unizh.ch/biostat/kurs/kap24.htm
http://www.unizh.ch/biostat/kurs/dat21.htm
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Das Histogramm ist ein Schätzer der Wahrscheinlichkeitsdichte.

• Histogramme sind einfach und verbreitet.
• Es gibt bessere Dichteschätzer, die aber nur in professionelleren Statistikpaketen

verfügbar sind.

Eine ähnliche, wenn auch weniger prägnante Information, vermittelt die empirische
Verteilungsfunktion: Dabei steigt die Funktion treppenartig um 1/n , wenn ein
Datenpunkt dazukommt (n = Stichprobengrösse). Man spricht von “kumulativer”
Darstellung. Dass kleine Werte gegenüber grossen Werten überwiegen (d.h., dass
die Verteilung rechtsschief ist) sieht man am starken Anstieg zu Beginn, aber we-
niger gut als im Histogramm. Die empirische Verteilungsfunktion hat eine gewisse
Bedeutung bei der Analyse von Überlebenszeiten. Die Verteilungsfunktion beginnt
dadurch bei y = 0 und steigt dann an bis y = 1.

http://www.unizh.ch/biostat/
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Im allgemeinen kann man aus der kumulativen Darstellung weniger ersehen als aus
dem Histogramm, was die grössere Verbreitung des Histogramms erklärt.

2.5. Lage– und Streumasse

2.5.1. Perzentile oder Quantile

Perzentile sind Hilfsmittel zur Beschreibung der Verteilung der Daten ohne irgend-
welche Verteilungsannahmen.

Bedeutung:
1. zur Charakterisierung einer Stichprobe

http://www.unizh.ch/biostat/
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2. zur Konstruktion von Normwerten (biochemisch, anthropometrisch, psychome-
trisch)

Erklärung α% – Perzentil: α× 100% der Daten sind kleiner als das α× 100% –
Perzentil.

In der folgenden Graphik finden Sie eine Erklärung für Perzentile. Die Treppenlinie
stellt die empirische (Stichproben–) Verteilungsfunktion der Anzahl T4–Zellen für
n = 20 Hodgkin–Patienten dar. Wenn man von y = α × 100% eine Horizontale
zieht und beim Schnittpunkt mit der Verteilungsfunktion den zugehörigen x–Wert
abliest, erhält man das α× 100% Perzentil. Für das 77.5% Perzentil trifft man eine
Stufe, und damit ist dieses Perzentil eindeutig definiert. Beim 50% Perzentil oder
Median trifft man auf ein horizontales Stück und trifft damit 2 Datenpunkte. Als
Median wählt man dann den Mittelwert der 2 x–Werte.

http://www.unizh.ch/biostat/
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Genaue Definition: Mindestens α% der Daten sind gleich oder kleiner und min-
destens (100− α)% sind gleich oder grösser als das α% – Perzentil.

Quantile, in der Statistik gebräuchlich, sind das gleiche wie Perzentile bis auf den
Faktor 100 (also z. B. α – Quantil).

Wichtige Perzentile:

• Median = 50% Perzentil
Der Median ist ein Lagemass, der das Zentrum der Daten charakterisiert.

http://www.unizh.ch/biostat/
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• Quartile = 25% und 75% Perzentile
Der Abstand zwischen den Quartilen (Interquartilabstand oder englisch ”in-
terquartile range“) ist ein Streumass. Dieser Bereich enthält die zentralen 50%
der Daten.

Achtung! Die Werte sind nicht eindeutig ! Verschiedene Programme können al-
so etwas verschiedene Werte liefern. Dies hat damit zu tun, dass man auf
verschiedene Arten Anteile von Daten verrechnen kann, wenn die Prozent-
rechnung nicht eine eindeutige Beobachtung ergibt.

Der Median von 9 Beobachtungen berechnet sich z. B. so, dass man diese ordnet und
die 5. Beobachtung als Median nimmt. Bei 10 Werten liegt der Median zwischen
dem 5. und 6. geordneten Wert, und man nimmt dann üblicherweise das Mittel
beider Werte.

So sieht das Vorgehen am Beispiel der Anzahl T4–Zellen aus:

http://www.unizh.ch/biostat/
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Anzahl
Nr. T4–Zellen Percentil

1 171
2 257 ←− 10% Perzentil = 272.5
3 288
4 295
5 396 ←− unteres Quartil = 396.5
6 397
7 431
8 435
9 554

10 568 ←− Median = 681.5
11 795
12 902
13 958
14 1004
15 1104 ←− oberes Quartil = 1158
16 1212
17 1283
18 1378 ←− 90% Perzentil = 1499.5
19 1621
20 2415

http://www.unizh.ch/biostat/
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Boxplots

Boxplots sind ein gutes Hilfsmittel, um optisch die Verteilung der Daten zu erfassen
und Ausreisser zu erkennen. Es handelt sich um eine Methode, die auf Perzentilen
basiert.
Das ist die einfachste Form:

Die ”Box“ gibt den Bereich vom 25. zum 75. Perzentil an, der horizontale Strich
in der Box den Median. Die Stäbe (whiskers), die aus der Box hinausführen, sind
nicht einheitlich definiert. In StatView geben sie die 10% und 90% Perzentile an.
In anderen Statistikprogrammen gehen sie vom Minimum zum Maximum oder sie
charakterisieren die Grenzen für Ausreisser und extreme Werte. In SPSS z. B. ist ein
Ausreisser eine Beobachtung, die weiter als 1.5 Interquartilabstände (Box-Längen)
von der Box entfernt ist.

http://www.unizh.ch/biostat/


Einführung

Deskriptive Statistik

Wahrscheinlichkeit

Testen

Regression

Testfragen

Index

Home Page

Titelseite

JJ II

J I

Seite 31 von 100

Zurück

Vollbild

Schließen

Beenden

So sieht der Boxplot in StatView aus:

�

�����

�����

� ���

�������

�������

�������

� � ���

�������

�������

�������

	�

���
�
�����
�����
� � �



Die unteren und oberen Querlinien (whiskers) geben die 10% und 90% Perzentile an,

”◦“ sind extreme Werte. Die Asymmetrie des Boxplots deutet auf eine rechtsschiefe
Verteilung hin: Perzentile, die symmetrisch um den Median liegen (25. und 75.
Perzentil, 10. und 90. Perzentil), haben gegen oben einen grösseren Abstand als
gegen unten. Sehr klar tritt der Extremwert bei 2415 T4–Zellen/mm3 hervor.

Besonders hilfreich sind Boxplots, wenn mehrere Merkmale bzw. Gruppen vergli-
chen werden:

http://www.unizh.ch/biostat/
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Box Plot
Grouping Variable(s): Disease

Was sieht man auf einen Blick?

• Die immunologischen Variablen sind schief verteilt, denn der Median teilt
den Interquartilsabstand nicht gleichmässig und Extremwerte sind ebenfalls
asymmetrisch.

• Offensichtlich liegen die Anzahlen von T4– und T8–Zellen bei non–Hodgkin–
Patienten tiefer und streuen weniger als bei Hodgkin–Patienten. Dies ent-
spricht der wissenschaftlichen These der Hodgkin–Studie.

• Die Anzahlen von T8–Zellen liegen tiefer als die von T4–Zellen und streuen
weniger, und zwar bei beiden Gruppen.

http://www.unizh.ch/biostat/
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2.5.2. Charakterisierung des Zentrums der Daten

• Was ist ein typischer, mittlerer Wert ?

Möglichkeiten:

1. graphisch: Histogramme und Boxplots vermitteln einen Eindruck, wo sich die
Daten befinden. Um eine objektive Zusammenfassung der Daten zu erhalten,
benötigen wir aber klar definierte Masszahlen für das Zentrum der Daten.

2. quantitativ durch den Mittelwert: Der Mittelwert (mean, average) be-
schreibt das Verhalten der Daten ”im Mittel“ (

∑
= Summenzeichen).

x = (x1 + x2 + . . . + xn) / n =
1
n

n∑
i=1

xi

Bei Normalverteilung ist der Mittelwert optimaler Schätzer des Erwar-
tungswertes.

3. quantitativ durch den Median: Der Median (median) beschreibt die ”Mitte“
der Daten. Er ist der 50% – Punkt, d. h. die Hälfte der Stichprobe liegt über
dem Median, und die andere Hälfte liegt darunter (siehe Perzentile).

Ein anschauliches Beispiel für die Unterschiede zwischen Mittelwert und Median
gibt die Einkommensverteilung. Wenn z. B. in einer Gemeinde ein extrem gutverdie-
nender Einwohner wohnt, so ist der Mittelwert relativ hoch, auch wenn die übrigen

http://www.unizh.ch/biostat/


Einführung

Deskriptive Statistik

Wahrscheinlichkeit

Testen

Regression

Testfragen

Index

Home Page

Titelseite

JJ II

J I

Seite 34 von 100

Zurück

Vollbild

Schließen

Beenden

Einwohner weniger verdienen. Der Median charakterisiert dann besser das typische
Einkommen der Bürger, während das Mittel für die Steuerkraft ein aussagekräftiger
Index ist.
Bei Verteilungen, die rechtschief sind, d. h. wo grössere Abweichungen nach oben als
nach unten auftreten, ist der Mittelwert grösser als der Median (Beispiel: Einkom-
men und viele biochemische Variablen). Bei symmetrischer Verteilung (im beson-
deren Normalverteilung) sind Median und Mittelwert identisch (Beispiel: Körper-
grösse).

Vorteile der verschiedenen Methoden:

Die Wahl zwischen Mittelwert und Median ist

• abhängig davon, ob ein typischer oder mittlerer Wert gesucht wird,

• abhängig von der Verteilung (normal, schief, gibt es Ausreisser?),

• abhängig davon, ob statistische Präzision oder Robustheit im Vordergrund
stehen.

Der folgende Vergleich soll die Unterschiede zwischen Mittelwert und Median illu-
strieren.

Der Mittelwert ist derjenige Wert, der die Daten auf einer ”Waage“ ausbalan-
ciert.

Wir gehen von einer Waage ohne Gewicht und gleich schweren Beobachtungen aus.

http://www.unizh.ch/biostat/
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Mittelwert:
n∑

i=1

(xi − x) = 0

0
�

500
�

1000 1500 2000
�

2500
�

• Entfernte Beobachtungen haben eine starke ”Hebelkraft“.

Der Mittelwert ist empfindlich gegen Ausreisser.

Median: Beim Median spielt der Abstand der Beobachtungen vom Zentrum keine
Rolle.

• Der Median ist robust gegen Ausreisser.

Animation

http://www.unizh.ch/biostat/
http://www.unizh.ch/biostat/kurs/kap27.htm
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2.5.3. Streuung oder Variabilität einer Stichprobe

• Wie stark variieren die Daten um die mittlere Lage ?

Jetzt sind also nicht die xi, sondern die (xi − x) relevant.

Möglichkeiten:

1. graphisch: Histogramme und Boxplots vermitteln einen visuellen Eindruck
der Variabilität der Daten.

2. quantitativ durch die Varianz s2: Die Variabilität ist durch die Grösse der
Abweichungen (x1 − x), . . . , (xn − x) vom Mittelwert charakterisiert.
Aufsummieren dieser Abweichungen bringt nichts, da sich positive und ne-
gative Abweichungen aufheben (Siehe dazu das Beispiel mit der Waage in
diesem Kapitel.) Die absolute Grösse der Abweichungen zu ermitteln wäre
eine mögliche Strategie. Aus theoretischen Gründen ist aber das Mittel der
Quadrate dieser Abweichungen sinnvoller. Dies wird Varianz genannt:

s2 = {(x1 − x)2 + . . . + (xn − x)2} / (n− 1)

=
1

n− 1

n∑
i=1

(xi − x)2

Der Nenner (n − 1) (anstatt n) ist mathematisch begründbar, da mit n die
Werte systematisch etwas zu hoch liegen. Für grössere n sind die Differenzen
aber klein.

http://www.unizh.ch/biostat/
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3. quantitativ durch die Standardabweichung: (standard deviation, SD)

• Störend an der Varianz ist, dass wir quadrierte Einheiten erhalten (und
damit oft grosse Masszahlen). So kann es passieren, dass bei einem mittleren
Monatseinkommen von Fr. 6900.- sich eine Varianz von 144’000 Fr2 ergibt.
Deshalb ist es gebräuchlich die Standardabweichung s als Wurzel der Varianz
anzugeben: s =

√
Varianz (z. B. in Fr.)

Die Standardabweichung des monatlichen Einkommens ist dann Fr. 1200.-.
Die Standardabweichung und die Varianz sind empfindlich gegen Ausreisser.

Bei der Normalverteilung liegen 68% der Daten im Bereich Mittelwert ± 1
SD und 95% im Bereich Mittelwert ± 2 SD.

4. quantitativ durch die Spannweite
= Maximum − Minimum
• Die Spannweite gibt den Bereich (range) aller Daten an. Sie ist stark durch

Extremwerte beeinflusst und hängt zudem von n ab.

5. quantitativ durch den Interquartilabstand (interquartile range)
= 75% Perzentil − 25% Perzentil
= oberes Quartil − unteres Quartil
= 3. Quartil − 1. Quartil
=⇒ umfasst zentrale 50% der Daten
Der Interquartilabstand ist wie die Standardabweichung ein Mass für die
Grösse des Bereichs der zentralen Daten.

http://www.unizh.ch/biostat/
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Bei der Normalverteilung ist der halbe Interquartilabstand 0.67 SD.

Es gibt keine Masszahl, die unter allen Umständen optimal ist. Weitaus am ver-
breitesten ist die Standardabweichung.

Mean ± SD

• Daten werden oft als Mittelwert plus–minus Standardabweichung summarisiert.

Mean ± SEM

• Der Standardfehler des Mittelwertes (standard error of mean, SE(x), SEM)
ist die Standardabweichung des Mittelwertes, beschreibt also die Streuung der
Masszahl ”Mittelwert“:

SE(x) = s/
√

n

Der Standardfehler beschreibt nicht die Daten, sondern die Genauigkeit einer
Schätzung. Er hat in diesem Kapitel eigentlich nichts zu suchen. Der SEM wird
trotzdem häufig verwendet, da eine kleinere Masszahl für die Variabilität besser
wirkt (Vorsicht Falle !).
Der folgende Plot zeigt die verschiedenen Masszahlen des Zentrums und der Varia-
bilität am Beispiel der Anzahl von T4–Zellen. Links: Boxplot (whiskers: Minimum–
Maximum), Mitte: mean ± SD, rechts: mean ± SE(x). In der rechten Hälfte wurde
die maximale Beobachtung gestrichen, um einen Eindruck von der Abhängigkeit
der Masszahlen von Einzelwerten zu geben.

http://www.unizh.ch/biostat/
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0
50

0
15

00
25

00

Beispiel: Statistische Masszahlen (aus StatView) für Anzahl T4– und T8–Zellen
von n = 20 Hodgkin– und n = 20 non–Hodgkin–Patienten.

Bemerkung: Die Gruppe ”Total“ (alle Patienten zusammen) macht hier wenig Sinn,
wird aber in StatView (leider) automatisch mitanalysiert.

Klicken Sie hier, um den Datensatz ’T-Zellen’ selbst zu analysieren. Datenanalyse

http://www.unizh.ch/biostat/
http://www.unizh.ch/biostat/kurs/dat23.htm
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3. Wahrscheinlichkeitsrechnung und Versuchsplanung

3.1. Ereignisse und ihre Wahrscheinlichkeiten

Wozu benötigen wir Wahrscheinlichkeitsrechnung? Oft sind wir nicht sicher, ob ein
gewisses Ereignis eintreffen wird oder nicht. Beispiele sind eine 6 bei einmal würfeln
oder schönes Wetter am nächsten Sonntag oder ob ein Patient tatsächlich Krebs hat,
wenn ein verdächtiges Röntgenbild vorliegt. Die Wahrscheinlichkeitsrechnung ist ei-
ne mathematische Methode, um diese Unsicherheit quantitativ einzugrenzen. In der
Statistik benötigen wir die Wahrscheinlichkeitsrechnung vor allem beim Hypothe-
sentesten und für Konfidenzintervalle (s. Kap 4). Dabei möchten wir z. B. nachwei-
sen, dass ein empirischer Mittelwertsunterschied nur mit kleiner Wahrscheinlichkeit
per Zufall auftreten kann (Signifikanztest). Weiter möchten wir um einen empiri-
schen Wert herum Intervalle angeben, in denen der unbekannte wahre Wert mit
95% Wahrscheinlichkeit liegt (95%-Konfidenzintervalle). Insofern erlaubt uns die
Wahrscheinlichkeitsrechnung Aussagen, die auf einer Stichprobe beruhen, auf die
Grundgesamtheit zu verallgemeinern. Die Wahrscheinlichkeitsrechnung hat zudem
Bedeutung für die stochastische Modellierung, z. B. die Ausbreitung von Epidemien
oder in der Populationsgenetik.

Wahrscheinlichkeit = relative Häufigkeit in der Grundgesamtheit

http://www.unizh.ch/biostat/
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Die Wahrscheinlichkeit wird mit P bezeichnet (für “probability”). Wenn die Wahr-
scheinlichkeit P für ein bestimmtes Ereignis E P(E) = 0.4 ist, so tritt in der Grund-
gesamtheit das Ereignis E im Mittel in 40 von 100 Fällen auf. P(E)×100 ist der
Prozentsatz, P(E) die wahre relative Häufigkeit. Beim simplen Experiment eines
Münzwurfes sind die möglichen Ereignisse die Augenzahlen 1, 2, 3, 4, 5, 6, und bei
einem gleichmässigen Würfel gilt P (E = I) = 1/6, wo I = 1, 2, . . . , 6 . Wenn ein
Patient die Praxis betritt, so hat er mit einer gewissen Wahrscheinlichkeit eine der
vier Blutgruppen, es gibt vier mögliche Ereignisse. Als Konvention gilt, dass P(E)
= 0 bedeutet, dass das Ereignis E unmöglich eintreten kann, bei P(E) = 1 tritt
das Ereignis sicher auf (z. B. tritt sicher eine Augenzahl von 1–6 bei einmal würfeln
auf). Weiter gilt für das Ereignis ”Nicht–E“, (abgekürzt Ec) P (Ec) = 1−P (E), da
ja entweder E oder Ec eintreten muss.
Beispiele:

• E1 = Körpergrösse ≤ 180 cm

• E2 = 170 cm ≤ Körpergrösse ≤ 180 cm

Solche Ereignisse sind natürlicherweise bei stetigen Variablen (siehe Kapitel 2) von
Interesse, und man kann ihnen ebenfalls Wahrscheinlichkeiten zuordnen. Z. B. ist
qualitativ klar, dass für einen erwachsenen männlichen Europäer die Wahrschein-
lichkeit höher ist, zwischen 175 und 180 cm gross zu sein, als zwischen 160 und 165
cm gross zu sein.

http://www.unizh.ch/biostat/
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3.2. Bedingte Wahrscheinlichkeit und Unabhängigkeit

Von zentraler Bedeutung sind die Begriffe der bedingten Wahrscheinlichkeit und
der stochastischen Unabhängigkeit.

Definition bedingte Wahrscheinlichkeit = Wahrscheinlichkeit, dass das Ereignis
E1 eintritt, gegeben, dass das Ereignis E2 eingetreten ist.

Beispiele:

• Wahrscheinlichkeit, dass ein Patient einen Tumor hat, wenn ein auffälliges
Röntgenbild vorliegt.

• Wahrscheinlichkeit, dass ein Kind grösser als 1.50 m ist, wenn bekannt ist,
dass es 10.5 Jahre alt ist.

Definition Unabhängigkeit von Ereignissen: E1 und E2 sind dann (stocha-
stisch) unabhängig, wenn die bedingte Wahrscheinlichkeit von E1 gegeben E2

gleich der Wahrscheinlichkeit von E1 ist (d. h. E2 hat keinen Einfluss auf E1).

Aus der Unabhängigkeit der Ereignisse E1 und E2 folgt das Produktgesetz für deren
Wahrscheinlichkeiten, das Sie vielleicht aus der Mittelschule kennen:
P [E1 trifft ein und E2 trifft ein] = P [E1 ∩ E2] = P [E1]× P [E2].
Körpergrösse und Körpergewicht sind z. B. keine unabhängigen Variablen, während
der Gesundheitszustand nacheinander aufgenommener Patienten meist unabhängig
ist (siehe auch Abschnitt 3.8). Die Unabhängigkeit von Ereignissen hat wichtige
Implikationen für die Gesetze der grossen Zahlen (siehe Kapitel 3.5), und sie hilft,
viele Formeln zu vereinfachen.

http://www.unizh.ch/biostat/
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Beispiele:
Die Häufigkeit einer Krankheit bei einem Patientenkollektiv sei p = 0.2 (20%).

– Wahrscheinlichkeit, dass 3 aufeinanderfolgende Patienten an dieser Krankheit
leiden:

P[Patient 1 und Patient 2 und Patient 3 krank] = 0.2× 0.2× 0.2 = 0.008

Das heisst, diese Wahrscheinlichkeit ist nur noch 0.8%, also sehr klein.

– Wahrscheinlichkeit, dass von 3 aufeinanderfolgenden Patienten mindestens
einer krank ist:

P[mind. 1 × krank] = 1− P[dreimal gesund] = 1− (0.8× 0.8× 0.8) = 0.49,

da P(Ec) = 1− P(E). Das heisst, diese Wahrscheinlichkeit ist fast 50%.

http://www.unizh.ch/biostat/
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3.3. Wahrscheinlichkeitsverteilungen

Für die Statistik sind Zufallsvariablen wichtiger als Ereignisse:
Den Ausgang einer Messung oder einer Beobachtung können wir als Zufallsvariable
X bezeichnen (die Bezeichnung X ist eine Konvention). Beim Würfeln kann X per
Zufall die ganzzahligen Werte 1 bis 6 annehmen, beim Messen einer Körpergrösse
sind es positive reelle Werte. Die Körpergrösse ist insofern eine Zufallsvariable, als
wir nicht wissen, wie gross der nächste Patient sein wird.
Der erhaltene Wert (X = x) nach einer Messung heisst Realisierung der Zufalls-
variablen X.

Definition Stichprobe: n Realisierungen einer Zufallsvariablen X, die uns interes-
siert: x1, . . . , xn.

Beispiel:
Wenn die interessierende Zufallsvariable die Körpergrösse 10–jähriger Knaben ist,
kann eine Stichprobe aus allen 10–jährigen Knaben eines Schulhauses bestehen.

Die Wahrscheinlichkeitsrechnung beruht auf Ereignissen, und man muss deshalb
für Zufallsvariablen passende Ereignisse konstruieren. Ereignisse der Form X ≤ z
sind wichtig, da alle anderen interessierenden Ereignisse daraus konstruierbar sind.
Dabei ist z eine von uns vorgegebene Zahl.

http://www.unizh.ch/biostat/
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Definition Verteilungsfunktion F einer Zufallsvariablen X :

F (z) = P[X ≤ z]

Die empirische (kumulative) Verteilungsfunktion, die bei den graphischen Metho-
den eingeführt wurde (siehe 2.4), ist das Datenäquivalent zum theoretischen Be-
griff der Verteilungsfunktion F (ein ”Schätzer“ für die Verteilungsfunktion F ). Ver-
teilungsfunktionen sind monoton steigend von 0 auf 1. Beispiele, die wir nachher
kennenlernen werden sind die Normalverteilung, die χ2–Verteilung und die Bino-
mialverteilung.

http://www.unizh.ch/biostat/


Einführung
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Für diskrete Zufallsvariable wird F eine Treppenfunktion; im Beispiel nimmt
die Zufallsvariable X ganzzahlige Werte ab 0 an (F entspricht einer Binomial–
Verteilung), definiert in 3.4:

x

F
(x

)

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Werte kleiner als 0 kommen mit Wahrscheinlichkeit 0 vor. Werte grösser als 12
kommen mit Wahrscheinlichkeit 2.1% vor, denn P [k < 13] = 97.9% (siehe Grafik).
Die Wahrscheinlichkeit für das Auftreten einer 2 ist 0.3% – es ist die Höhe der Stufe
der Treppenfunktion bei x = 2.

http://www.unizh.ch/biostat/
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Definition Wahrscheinlichkeitsdichte f :
a) diskrete Variable X : f(zi) = P [X = zi]
b) stetige Variable X : f(z) = F ′(Z) (Ableitung von F )

Das Histogramm ist ein Schätzer für die Wahrscheinlichkeitsdichte. Die Dichte-
funktion ist visuell informativer als die Verteilungsfunktion, was z. B. die Form und
Breite der Verteilung angeht, enthält aber grundsätzlich dieselbe Information wie
die Verteilungsfunktion.
Dichtefunktionen sind nichtnegativ, und die Wahrscheinlichkeit, dass die Zufallsva-
riable X in einem Intervall [a, b] liegt, ist die Fläche unter der Kurve über dem
Intervall [a, b].

http://www.unizh.ch/biostat/
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Sie sehen nachstehend eine Graphik der Verteilungsfunktion der Normalverteilung
(mit theoretischem Mittelwert µ und theoretischer Standardabweichung σ).
Die Körpergrösse ist approximativ normalverteilt (da multifunktionell genetisch)
und Männer haben einen Mittelwert µ = 178 cm und eine Standardabweichung σ =
7.0 cm. Informativer als die Verteilungsfunktion ist die Wahrscheinlichkeitsdichte
f = F ′ (rechts in der Graphik, ,,Glockenkurve”).

x

F
(x

)

0.
0

0.
4

0.
8

µ−2σ µ µ+2σµ−4σ µ+4σ

x

f(
x)

0
.1

/σ
.3

/σ

µ−2σ µ µ+2σµ−4σ µ+4σ

Bei normalverteilten Grössen ist die Wahrscheinlichkeit, Messungen im Intervall
(µ ± σ) zu erhalten, 68% (siehe Abschnitt 2.5.1). Die Wahrscheinlichkeit für Mes-
sungen ausserhalb des Intervalls (µ± 3σ) ist sehr klein, nämlich ca. 1%. Die Wahr-
scheinlichkeit, dass eine Zufallsvariable x in einem Intervall a bis b liegt, ist gleich
der Fläche der Wahrscheinlichkeitsdichte über diesem Intervall (oder gleich der Dif-
ferenz F (b) − F (a)). Verteilungsfunktion F und Wahrscheinlichkeitsdichte f sind

http://www.unizh.ch/biostat/
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demnach geeignet, um mit Wahrscheinlichkeiten zu rechnen.
Im Abschnitt 2.5.1 haben Sie empirische Perzentile kennen gelernt. Bei den statisti-
schen Testen werden wir theoretische Perzentile benötigen, und zwar die extremen.
Typischerweise sind dies das 2.5% und das 5% Perzentil bzw. das 97.5% oder 95%
Perzentil, sodass darunter bzw. darüber nur mit kleiner Wahrscheinlichkeit Resul-
tate zu erwarten sind. In der Graphik der Normalverteilungs–Funktion können Sie
sehen, wie man das 95% Perzentil findet: man startet bei F (x) = 0.95, geht ho-
rizontal zum Kreuzpunkte mit F und dann vertikal hinunter. Jetzt hat man das
gesuchte 95. Perzentil, in Kapitel 4 jeweils mit z0.95 abgekürzt. In der rechten Gra-
phik können Sie sehen, wie Wahrscheinlichkeiten mit Hilfe der Dichte berechnet
werden: Die Fläche unter der Dichte bis z0.95 ist gleich 0.95.

http://www.unizh.ch/biostat/


Einführung
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Sie haben statistische Kennzahlen wie Mittelwert x und Standardabweichung s
kennengelernt, um Daten einer Stichprobe zu charakterisieren (exakter: um deren
empirische Verteilung zu charakterisieren). Es gibt auch die entsprechenden theo-
retischen Grössen, welche die wahre Verteilung in der Grundgesamtheit charakte-
risieren. Zu x gehört µ und zu s2 gehört σ2. In der Statistik sagt man, dass x̄ ein
Schätzer für µ ist, und s ein Schätzer für σ.

Theoretischer Mittelwert (,,Erwartungswert”) µ =
∫∞
−∞ xf(x)dx

Varianz σ2 =
∫ ∞

−∞
(x− µ)2f(x)dx

Standardabweichung σ =
√

σ2

http://www.unizh.ch/biostat/
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3.4. Einige wichtige Verteilungen

Es gibt eine sehr grosse Zahl von Verteilungen, die bedeutsam geworden sind. Hier
seien 3 für die Statistik wichtige Verteilungen vorgestellt.

1.Normalverteilung N (µ, σ2) (auch Gauss–Verteilung genannt).
N ist das Symbol der Normalverteilung, die folgende Dichte hat:

f(x) =
1√
2πσ

exp
(
−(x− µ)2

2σ2

)

Dabei ist ”exp“ die Exponentialfunktion. Für µ = 0 und σ2 = 1 heisst die Verteilung
Standardnormalverteilung. Die α× 100%–Perzentile der Standardnormalverteilung
werden konventionell mit zα bezeichnet.

http://www.unizh.ch/biostat/
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Die Normalverteilung ist omnipräsent wegen des zentralen Grenzwertsatzes (siehe
3.5).

Eigenschaften:

• symmetrische Verteilung (siehe auch Plot der Dichte), Median = theoretischer
Mittelwert

• charakterisiert durch 2 Parameter µ (= Populationsmittelwert) und σ (=
Standardabweichung), die intuitiv besonders einfach sind. Wenn man diese
kennt, kennt man das Wahrscheinlichkeitsgesetz.

• Die Wahrscheinlichkeiten für grosse Abweichungen vom Erwartungswert sind
klein. Die Wahrscheinlichkeit von Abweichungen grösser als 2σ vom Erwar-
tungswert µ beträgt etwa 5% (”dünne Schwänze“ der Verteilung).

So sehen Stichproben aus einer standardnormalverteilten Grundgesamtheit aus:
Animation

http://www.unizh.ch/biostat/
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2. χ2–Verteilung

Die χ2–Verteilung wird häufig gebraucht, wenn man in Kreuztabellen auf Un-
terschiede für kategorielle Daten testen will (siehe Kapitel 4). Dort werden Un-
terschiede zwischen beobachteten und hypothetischen Häufigkeiten quadriert und
aufsummiert. Seien Z1, . . . , Zν unabhängige standardnormalverteilte Zufallsvaria-
blen N (0, 1) (d. h. Erwartungswert µ = 0 und Varianz σ2 = 1). Dann ist die χ2–
Verteilung definiert als Summe der quadrierten Zi:

χ2
ν =

ν∑
i=1

Z2
i χ2–verteilt mit ν Freiheitsgraden (ν = Anzahl Summanden)

Die Freiheitsgrade werden in Programmen oft mit “df” (degrees of freedom) be-
zeichnet. Eigenschaften:

• asymmetrisch (rechts–schief)

• Erwartungswert und Varianz werden durch einen gemeinsamen Parameter ν
beschrieben µ = ν, σ2 = 2ν.

Auch hier empfiehlt sich unser Verteilungssimulator: Animation Selbstkontrolle

http://www.unizh.ch/biostat/
http://www.unizh.ch/biostat/kurs/kap54.htm
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Dichten von χ2–Verteilungen mit 2, 4 und 10 Freiheitsgraden (χ2
2, χ2

4, χ2
10).
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3. Binomialverteilung

Bei der Einführung des Testens von Hypothesen (siehe Kapitel 4) wird an n = 20
Patienten geprüft, ob ein neues Medikament eine höhere Heilungswahrscheinlichkeit
als p = 0.4 (d. h. 40%) hat. Die Anzahl k der geheilten Patienten (k = 0 bis
20 möglich) folgt einer Binomialverteilung. Falls man eine Wahrscheinlichkeit von
p = 0.4 annimmt, ergibt sich nachfolgende Wahrscheinlichkeitsverteilung für die
Anzahl Heilungen:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.
0

0.
05

0.
10

0.
15

P[k>=13] = 0.021

http://www.unizh.ch/biostat/
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Dies bedeutet, dass 13 oder mehr Heilungen nur mit einer Wahrscheinlichkeit von
2.1% zu erwarten sind.

Allgemein hat die diskrete Dichtefunktion folgende Form:

P[X = k] =
(n

k

)
pk(1− p)n−k 0 ≤ k ≤ n

•
(

n
k

)
= n!

k!(n−k)! n! = 1 · 2 · 3 . . . n (Binomialkoeffizient)

• Erwartungswert einer binomialverteilten Variablen = n p, Varianz = n p (1−p)

Selbstkontrolle

http://www.unizh.ch/biostat/
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3.5. Gesetze der grossen Zahlen

Eine Stichprobe von n unabhängigen Zufallsvariablen liefert Masszahlen, zum Bei-
spiel den Mittelwert x, die diese Stichprobe beschreiben. Eigentlich interessiert uns
der zugrundeliegende Populationswert µ.

Fragestellung: Streben die empirischen Werte (”Schätzer“, x) gegen die wahren
(theoretischen) Werte (µ), wenn die Stichprobe immer grösser wird (n −→∞)?
Die Gesetze der grossen Zahlen zeigen mathematisch, dass diese erwünschte
Eigenschaft gilt. Der zentrale Grenzwertsatz besagt, dass die empirischen Kenn-
zahlen approximativ normalverteilt sind, falls n gross ist.

Der zentrale Grenzwertsatz erklärt aber auch, weshalb die Normalverteilung so oft
in der Natur gilt und für die Statistik wichtig ist:
Viele Phänomene der Natur entstehen durch Überlagerung vieler kleiner Effekte,
so dass das Resultat etwa normalverteilt ist. Multiplikative Effekte führen hingegen
auf eine schiefe Verteilung, z. B. die χ2-Verteilung oder die lognormale Verteilung.
Multiplikative Regeln haben wir z. B. bei Messungen, die durch die Zellteilung be-
einflusst sind, weshalb viele biomedizinische Messgrössen nicht normalverteilt sind
sondern schief verteilt, (z. B. T4 und T8 Zellen in Abschnitt 2.4).
Hier ein klassisches Experiment dazu (Galtonbrett):

Animation

http://www.unizh.ch/biostat/
http://www.unizh.ch/biostat/kurs/normal/kap53.htm
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Nachstehend wird illustriert, wie das Histogramm und die empirische Verteilungs-
funktion gegen die wahre Grösse (im Beispiel die Normalverteilung bzw. deren
Dichte) konvergieren. Das Beispiel basiert auf simulierten Pseudo–Zufallsvariablen,
n = 20, 100, 500.
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Man sieht, dass das geschätzte Histogramm für kleine und mittlere Stichproben
von der wahren Wahrscheinlichkeitsdichte abweichen kann. Entsprechend vorsichtig
muss man bei der Interpretation sein.

http://www.unizh.ch/biostat/
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3.6. Transformationen von Daten und Verteilungen

Bei vielen biochemischen Daten, aber auch bei anderen Variablen wie Körperge-
wicht oder Vermögen, haben wir bei weitem keine Normalverteilung. Vielmehr er-
halten wir oft eine Dichte etwa der folgenden Form (Modalwert = Wert mit maxi-
maler Wahrscheinlichkeitsdichte):
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Die Verteilung ist rechtsschief (wie z. B. die χ2–Verteilung) und nicht wie die
Normalverteilung symmetrisch. Mittelwert, Median und Modalwert repräsentieren
unterschiedliche Aspekte eines typischen Wertes der Verteilung. Ein Nachteil einer
schiefen Verteilung ist diese Uneindeutigkeit; mindestens so gravierend ist, dass
viele statistische Verfahren — die auf der Normalverteilung basieren — nicht mehr
ohne weiteres anwendbar sind.

http://www.unizh.ch/biostat/
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Konventionellerweise werden solche Variablen X in Medizin und Ingenieurwissen-
schaften oft logarithmiert, um eine approximativ symmetrische Verteilung zu er-
halten: Y = log(X)
Damit erreicht man, dass Standardverfahren der Statistik anwendbar sind, und
zumeist wird auch die Interpretation der statistischen Analyse einfacher. Neben
der logarithmischen Transformation gibt es auch andere Transformationen.

Eine Alternative zur Transformation von Daten ist die Anwendung von Rangver-
fahren. Diese stehen aber nicht immer zur Verfügung. (Z. B. in Kapitel 4 der Mann-
Whitney-Test anstatt der t-Test.)

3.7. Schätzverfahren für statistische Kennwerte

Studien kosten Geld und Zeit, und Patienten sind nicht beliebig verfügbar. Man
möchte deshalb die Daten statistisch effizient nutzen, ”gute Schätzer“ für inter-
essierende wahre Kennwerte erhalten.
Angenommen, man möchte einen unbekannten Parameter θ schätzen, z. B. θ = µ,
den theoretischen Mittelwert. Für einen Schätzer θ̂ eines Populationsparameters θ
fordern wir mathematisch als Minimum, dass für wachsende Stichprobengrösse n
sich der Schätzer θ̂ dem wahren Wert θ immer mehr annähert:
Wenn man einen interessierenden wahren Parameter θ durch den empirischen Wert
(,,Schätzer”) θ̂ bestimmt, so stellt man folgende Minimalforderungen:

• θ̂ soll mit wachsender Stichprobengrösse n den wahren Wert θ immer besser
approximieren.

• θ̂ sollte für grosse n etwa normalverteilt sein.

http://www.unizh.ch/biostat/
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Beides ist i. A. erfüllt, und man möchte zusätzlich – quantitativ – dass die
Abweichung des Schätzwertes θ̂ vom wahren Wert θ möglichst klein ist.

Wenn der Schätzwert θ̂ systematisch zu hoch oder zu niedrig liegt, so nennt
man diese Abweichung Bias (systematischer Fehler). Idealerweise ist der Bias
null, und solche Schätzer sind ,,erwartungstreu”, d. h. in diesem Sinne optimal.
Viele — aber nicht alle — Verfahren der Statistik erfüllen diese Voraussetzung.
Zusätzlich möchte man, dass ein Schätzwert θ̂ nicht zu sehr variiert, von Stichprobe
zu Stichprobe möglichst stabil bleibt. Optimal ist es, wenn die Varianz von θ̂
möglichst klein ist (,,Minimum–Varianzschätzer”).

Bei vielen praktisch wichtigen Problemen ist es nicht möglich, einen Schätzwert
θ̂ zu berechnen, der zugleich keinen Bias (d. h. keine systematische Abweichung)
und minimale Varianz erzielt. Man hat deshalb nach einem weiteren allgemeinen
Berechnungsprinzip gesucht und es in der Maximum–Likelihood–Schätzung
gefunden.
Für diejenigen unter Ihnen, die es gern etwas genauer wüssten, geben wir noch
eine mehr mathematisch orientierte Erklärung (die Anderen können zu Abschnitt
3.8 weitergehen).

http://www.unizh.ch/biostat/
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Ein Teil des Schätzfehlers kommt vom systematischen Fehler her, und dieser wird
durch die Forderung der Erwartungstreue ausgeschlossen:

Kriterium 1: Erwartungstreue von θ̂ (”im Mittel richtig“)

E
[
θ̂ − θ

]
= 0 oder E

[
θ̂
]

= θ

E
[
θ̂ − θ

]
heisst Bias von θ̂ (”systematischer Fehler“).

Beispiele:

• Für die Ausfallstatistik eines medizinischen Gerätes wird jeden Tag festgehal-
ten

xi = 0: Gerät nicht ausgefallen

xi = 1: Gerät ausgefallen

Ein natürlicher Schätzwert p̂ für die Ausfallwahrscheinlichkeit p ist

p̂ = x̄ =
1
n

n∑
i=1

xi

Es gilt:

E[p̂] = E

[
1
n

n∑
i=1

Xi

]
=

1
n

n∑
i=1

E[Xi] = p

Also ist p̂ = x̄ erwartungstreu.

http://www.unizh.ch/biostat/
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• Wenn man zwei Geräte zugleich betreibt, so interessiert man sich für die
Wahrscheinlichkeit, dass beide zugleich kaputtgehen. Naiv würde man nehmen
p̂2 = x̄2. Aber wegen

E[x̄2] = Var(x̄) + E[x̄]2 =
p(1− p)

n
+ p2

resultiert ein Bias =
p(1− p)

n
6= 0 , der für grosse n aber unbedeutend wird.

http://www.unizh.ch/biostat/
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Kriterium 2:
Minimum–Varianz–Schätzung

Konstruiere θ̂ so, dass

Var(θ̂) = minimal

Denn es ist naheliegend, dass ein Schätzwert nicht zu variabel sein sollte.

Erwartungstreue Schätzer kleinster Varianz sind meistens gut.

Leider sind solche Schätzer nicht immer konstruierbar und auch nicht immer op-
timal, deshalb wurde in der mathematischen Statistik nach einem weiteren all-
gemeinen Prinzip gesucht. Ein solches — und auch das am weitesten verbreitete
— stellt die Maximum–Likelihood–Schätzung dar. Diese ist so definiert, dass
die Übereinstimmung des Schätzers mit den Beobachtungen optimal wird. Dabei
muss für die Daten eine Wahrscheinlichkeitsverteilung angenommen werden, z. B.
die Normalverteilung.

http://www.unizh.ch/biostat/


Einführung

Deskriptive Statistik

Wahrscheinlichkeit

Testen

Regression

Testfragen

Index

Home Page

Titelseite

JJ II

J I

Seite 66 von 100

Zurück

Vollbild

Schließen

Beenden

Variabilität zwischen Datensätzen

Sie sehen nachstehend 3 auf dem Computer simulierte normalverteilte Stichproben
mit µ = 0, σ2 = 1 und n = 20.
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Wie Sie an nachfolgender Tabelle sehen, schwanken die Mittelwerte x̄ um den Wert
µ = 0 und die Standardabweichungen s um den Wert σ = 1, mit zum Teil merkli-
chen Abweichungen.

1. 2. 3.

x̄ 0.27 -0.06 -0.25
s 0.74 1.10 0.71

Weitere simulierte Datensätze finden Sie hier: Animation

http://www.unizh.ch/biostat/
http://www.unizh.ch/biostat/kurs/kap41.htm
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Mit den Methoden der Wahrscheinlichkeitsrechnung (siehe Kapitel 3) kann man die
Varianz des Mittelwertes herleiten:

Var(x̄) =
σ2

n
,

wobei σ2 die Populations–Varianz einer Einzelmessung ist. Durch Ersetzen von σ
durch den Schätzwert s erhält man den Standardfehler (engl.: standard error of the
mean, SEM).

sx̄ = s /
√

n

Man muss zwischen s (= Standardabweichung = Variabilität in der Stichprobe)
und sx̄ (= Standardfehler = Standardabweichung des Mittelwerts = Variabilität
des Mittelwerts) klar unterscheiden. Beide haben ihren – unterschiedlichen – Platz.
Für die log–T4–Zellanzahl bei Hodgkin–Patienten erhielten wir in Kapitel 2 x̄ = 6.49
und s = 0.71. Bei n = 20 ergibt sich ein sx̄ = 0.16.

http://www.unizh.ch/biostat/
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Beispiel: Genauigkeit von Verhältnissen
n = 80 Personen wurden über Asthma befragt
k = 7 Asthmatiker wurden gefunden

Also ist die relative Häufigkeit von Asthma: p̂ = k/n = 0.088, in der Epidemiologie
Prävalenz genannt.

Wie genau ist p̂ bestimmt (n ist klein)? Dies basiert auf der Binomialverteilung, da
eine ja/nein–Befragung eine binäre Variable ergibt:

Var(p̂) =
p(1− p)

n

=⇒ sp̂ =

√
p̂(1− p̂)

n

Prävalenz–Beispiel: sp̂ = 0.032

falls p̂ = 0.5: sp̂ = 0.056

Die Formel für sp̂ zeigt, dass mittlere Häufigkeiten mehr streuen als Extreme.
Wie wir nachher sehen werden, liegt die wahre Prävalenz etwa im Intervall (p̂±2sp̂),

d. h. (0.088± 0.064), sie ist also schlecht bestimmt. Datenanalyse

http://www.unizh.ch/biostat/
http://www.unizh.ch/biostat/kurs/dat41.htm
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Bei beiden Beispielen verbessert sich die Genauigkeit des Kennwerts mit 1/
√

n und
nicht etwa mit 1/n (“Wurzel–n–Gesetz”). Dies gilt für fast alle statistischen Fra-
gestellungen und hat grosse praktische Konsequenzen: Um eine Verdoppelung der
Genauigkeit der späteren Datennanlayse zu erhalten, müssen viermal soviele Pa-
tienten in die Studie einbezogen werden. Umgekehrt steigt auch der Aufwand für
grosse Studien stärker als poportional zu n, so dass eine seriöse Versuchsplanung an-
gezeigt ist, gerade was die Wahl der Stichprobengrösse angeht. (Siehe auch Kapitel
4.)
Die Streuung eines Schätzers — den Standardfehler — erhalten wir bei den meisten
Programmpaketen mitgeliefert und damit auch ein Bild über die Genauigkeit der
Statistik.

3.8. Versuchsplanung

3.8.1. Repräsentative Stichprobe

Bei jeder Studie wollen wir — implizit oder explizit — über eine Grundgesamtheit
(Population) von Versuchseinheiten (Menschen, Tiere, Proben, Spitäler) Aussagen
machen. Üblicherweise wird eine Stichprobe, also nicht eine Population, in eine Stu-
die einbezogen, d. h. es werden n Versuchseinheiten aus der Grundgesamtheit gezo-
gen. Die Stichprobe bedingt den Zufallseffekt. Sehr wichtig ist die Wahl der Stich-
probengrösse, das ”n“. Es gibt dazu viel Literatur; einige Gesichtspunkte werden in
Kapitel 5 diskutiert. Selten unternimmt man auch eine Gesamterhebung. Beispie-
le sind die Volkszählungen oder Krankenregister (z. B. Krebsregister des Kantons
Zürich). Gesamterhebungen bedingen einen hohen Aufwand, und es können nur
relativ grobe Parameter erfasst werden. Deshalb wird neben der Volkszählung ein
Mikrozensus durchgeführt, um detailliertere sozialwissenschaftliche Ergebnisse zu

http://www.unizh.ch/biostat/
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erhalten.
Das Beispiel eines Abstracts aus dem ”British Medical Journal“ von 1996 zeigt, dass
Studien detailliert bezüglich ihres Versuchsplans (”design“) umschrieben werden
müssen, um akzeptiert zu werden.

Wie soll man die Stichprobe auswählen (”ziehen“) ?

• Sie soll repräsentativ für die Population sein (Verallgemeinerungsfähigkeit).

• Wenn mehrere Gruppen untersucht werden, sollten sie in den wesentlichen

http://www.unizh.ch/biostat/
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Merkmalen vergleichbar sein (Beispiel: Alter, Schweregrad der Krankheit).

• Unabhängigkeit der Versuchseinheiten muss gewährleistet sein; dies schliesst
Familienangehörige aus, da diese Genetik und Umwelt teilen.

• Es gibt wichtige Ausnahmen von der Unabhängigkeit:
prä–post–Vergleiche, Versuche mit Messwiederholungen, Longitudinalstudien.

Die Repräsentativität für die Population wird durch ein Bündel von Massnahmen
sichergestellt. Am wichtigsten ist die Randomisierung, was bedeutet, dass Pati-
enten nach dem Zufallsprinzip einer oder mehreren Gruppen zugewiesen werden.
Aber auch auf eine möglichst volle Teilnahme bis zum Schluss ist sehr zu achten.
Wegen der mangelnden Randomisierung lagen die Wahlprognosen in den USA
(1948) zwischen Truman und Dewey völlig daneben. Aufgrund (bequemer) Tele-
fonumfragen wurde ein klarer Sieg von Dewey prognostiziert, gewonnen hat aber
Truman. 1948 waren eben Privattelefone nicht gleichmässig über alle Bevölkerungs-
schichten verteilt, so dass sich eine Verfälschung zugunsten der Mittel– und Ober-
schicht einschlich.

Merke:

• Freiwillige sind nicht repräsentativ.

• Verweigerer sind nicht repräsentativ.

• Patienten von Uni–Kliniken sind nicht repräsentativ für stationäre Patienten
an sich (z. B. Kreisspitäler).

http://www.unizh.ch/biostat/
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3.8.2. Arten von Studien

• Beobachtungsstudien werden experimentellen Studien gegenübergestellt. Bei
letzteren wird eine Zielgrösse beeinflusst, es wird interveniert. Beispiele aus
der Medizin sind:

− Therapiestudien

− Neurophysiologische Studien

− Tierexperimente

Beispiele von Beobachtungsstudien sind:

− Bestimmung der Prävalenz einer Krankheit

− Studie der kardiovaskulären Risikofaktoren

− Vergleich dementer und gesunder alter Menschen

• Des weiteren werden prospektive und retrospektive Studientypen unterschie-
den. Retrospektive Studien aus Krankenblatt–Archiven werden wegen ihrer
beschränkten Aussagekraft nicht mehr so häufig durchgeführt. In der Epide-
miologie sind prospektive Studien durch Kohortenstudien, retrospektive durch
Fall–Kontroll–Studien (”case–control studies“) repräsentiert.

• Eine wichtige Unterscheidung besteht noch zwischen Querschnitts– und
Längsschnitt–Studien. Letztere werden immer wichtiger, da z. B. aus dem
Verlauf einer Krankheit wichtige Erkenntnisse gewonnen werden können. Es
steigt dabei nicht nur der empirische, sondern auch der statistische Aufwand.

http://www.unizh.ch/biostat/
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Klinische Therapiestudien

Ziel ist der Nachweis der Wirksamkeit bzw. Unwirksamkeit einer Therapie, oder die
Überlegenheit einer neuen Therapie über eine Standardtherapie. Im ersteren Fall
wird im allgemeinen eine Placebogruppe geführt, da allein die Verabreichung irgend-
einer Pille einen (psychologischen) Effekt haben kann. Zielgrösse ist der Therapie-
erfolg, der qualitativ (”geheilt“) oder quantitativ (”Veränderung des Blutdrucks“)
erhoben werden kann.
Die Resultate einer Studie im British Medical Journal 1974 über die Wirkung von
Schmerzmitteln bei Arthritis (siehe Graphiken unten) zeigen, dass Placebo einen
nicht sehr viel schwächeren Effekt hat als z. B. Aspirin. Wenn man die Farbe von
Placebo variiert, erhält man verblüffende Unterschiede, die über die therapeutischen
Differenzen hinausgehen.

http://www.unizh.ch/biostat/
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Die verschiedenen Gruppen (”Therapiearme“) sollten in allen wichtigen Punkten
(Alter, Geschlecht, Schweregrad der Krankheit) vergleichbar sein. Die Randomisie-
rung sollte dies approximativ garantieren; raffinierte Versuchspläne randomisieren

”geschichtet“, z. B. nach Altersklasse. Trotzdem sollte man mögliche ”Störgrössen“
(eben z. B. den Alterseffekt) miterheben. Man kann diese nämlich auch später, als
sogenannte Kovariaten, in der statistischen Analyse quantitativ berücksichtigen.

Zusammengefasst einige Prinzipien der Versuchsplanung:
Randomisierung:
• Gleiche Chance für alle (einer Population), in eine Stichprobe zu kommen (Re-

präsentativität)
• gleiche Chance für alle (einer Stichprobe), in eine Gruppe zu kommen (Vergleich-

barkeit)

http://www.unizh.ch/biostat/
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Standardisiertes Vorgehen:
• klare Einschluss–/Ausschlusskriterien
• klare diagnostische und experimentelle Bedingungen

Beispiel: In der Neurophysiologie ist genau festgelegt, wie und wo Elektroden auf
die Kopfhaut zu kleben sind.

Doppelverblindung:
• Verfälschung durch Subjektivität vermeiden.

Beispiel: Bei einer Therapiestudie sollte der Patient (einfach–blind) und wenn
möglich auch der Arzt (doppel–blind) nicht wissen, welches Medikament gegeben
wird.

Kontrolle:
• neue Methode mit Placebo oder Standardtherapie vergleichen
Unabhängigkeit der Versuchseinheiten:
• Beine eines Versuchstieres sind nicht unabhängig.
Adäquate Stichprobengrösse:
• Zu kleine Studien können keine klaren Ergebnisse liefern; zu grosse Stichproben

sind unter Umständen unethisch, wenn Versuchspersonen z. B. weiterhin Placebo
erhalten, obwohl die Wirksamkeit des neuen Medikaments längst feststeht.

Einfache Versuche:
• nur zwei Gruppen oder zwei Zeitpunkte vergleichen

”informed consent“:
• Ohne das Einverständnis einer Ethikkommission sind Versuchsergebnisse nicht

mehr publizierbar.

http://www.unizh.ch/biostat/


Einführung
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3.8.3. Wo kommt der Zufall her ?

Gründe für unterschiedliche Ergebnisse können sein:
1. systematisch (”Bias“) oder
2. zufällig (”Variabilität“)

Beispiele für systematische Diskrepanzen

• Messinstrument verstellt

• in Gruppe A mehr alte Patienten als in Gruppe B

• zwei behandelnde Ärzte mit unterschiedlichen (”nicht operationalisierten“)
Kriterien

Vermeidung systematischer Abweichungen durch:

• angemessene(n) Versuchsplan / Versuchsdurchführung

• statistische post–hoc Prüfungen (eventuell Kovariaten berücksichtigen)

• Trendanalysen

• Analyse der Untersuchereffekte

Zufällige Schwankungen

Zufällige Schwankungen enthalten neben dem Messfehler eine Vielzahl biologischer
Schwankungen. Wenn man alle möglichen Einflussfaktoren unter Kontrolle hätte —
wie angenähert in physikalischen Experimenten, wo man z. B. Druck, Temperatur
und Magnetfeld konstant halten kann — gäbe es nur noch den Messfehler. Die

http://www.unizh.ch/biostat/
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möglichen Schwankungen zwischen Patienten sind genetischer Art (dies macht oft
einen grossen Teil aus), können aber auch der Umwelt zugeschrieben werden (Essen,
Schlaf) oder der Lebensgeschichte (früherer Stress, Übergewicht).
Beispiel: Das Geburtsgewicht eines Kindes ist teilweise genetisch bestimmt, hängt
aber auch von der Grösse der Mutter ab (kleine Mütter haben statistisch häufiger
kleine Babies). Es hängt z. B. weiter vom Essen der Mutter ab, ob sie raucht, oder
eine chronische Erkrankung hat.
Man versucht die zufälligen Schwankungen möglichst klein zu halten, um damit
schärfere Aussagen zu erhalten. Einige Möglichkeiten sind:

• Standardisierung der Messmethode

• Kontrolle der potentiellen Einflussfaktoren

• Homogenisierung der Grundgesamtheit durch Ein– und Ausschlusskriterien
(z. B. Alter, Schweregrad der Krankheit)

Die stochastische Modellierung im biomedizinischen Bereich ist nicht primär die
Modellierung des Zufalls, sondern die Modellierung von Komplexität. Die vielen
Einflussfaktoren, die man nicht alle erfassen kann, auch gar nicht alle kennt, werden
— mit Erfolg — als stochastisch und nicht als deterministisch aufgefasst.

http://www.unizh.ch/biostat/
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4. Prüfung von Hypothesen

4.1. Was ist ein statistischer Test ?

Bei der Analyse einer Stichprobe erhalten wir mittels statistischer Kennwerte nie
Sicherheit über einen Sachverhalt, denn Kennwerte schwanken von Stichprobe zu
Stichprobe. Statistische Tests schränken diese Unsicherheit quantitativ ein: Es sind
Entscheidungsregeln, ob eine wissenschaftliche Hypothese mit grosser Wahrschein-
lichkeit zutrifft. Man möchte objektiv und quantitativ beurteilen, ob eine Differenz
oder ein Kennwert zufällig so herausgekommen ist, oder ob durch eine experimen-
telle Bedingung (z. B. eine Therapie) ein systematischer Effekt vorliegt. Subjektive
Beurteilungen sind anfechtbar, weil die selbe Datenlage durch einen Forscher eher
optimistisch, durch einen anderen eher pessimistisch eingeschätzt wird.
Statistische Tests werden heute in der medizinischen Literatur standardmässig an-
gewandt. Im Kapitel ”Subjects and Methods“ einer wissenschaftlichen Arbeit gibt es
üblicherweise einen Abschnitt, der darlegt, welche statistischen Methoden zum Ein-
satz kommen. Nachstehend ein Beispiel aus dem ”BritishMedical Journal“ von 1996.
Untersucht wird die Frage, ob der mittlere Cholesterinwert oder eine Veränderung
des Cholesterinwerts das Suizidrisiko beeinflussen. Bei solch nicht naheliegenden
Fragestellungen ist das Bedürfnis nach einer statistischen Prüfung besonders evi-
dent. Die Spalte ”P value“ gibt an, mit welcher Wahrscheinlichkeit die gefundenen
Differenzen im relativen Risiko durch Zufall zustande kommen könnten.

http://www.unizh.ch/biostat/
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Einführendes Beispiel: Ein Standardmedikament wirkt in 40% aller Fälle. Ist
ein neues Medikament besser?

In einer Studie wurden n = 20 Patienten mit dem neuen Medikament behandelt.
Falls alt und neu gleich gut wären, würden im Mittel k = 8 Patienten geheilt.
Falls weniger als 8 Patienten geheilt werden, spricht statistisch nichts für das neue
Medikament. Falls es unwesentlich mehr als 8 Patienten sind, bleiben wir unsicher,
ob dies nicht zufällig so ist. Ab einem gewissen k0 , das deutlich grösser als 8 ist,
glaubt man subjektiv an die Überlegenheit des neuen Medikaments. Kann man
dies wahrscheinlichkeitsmässig erhärten?

An einem anderen Beispiel wird diese Problematik aufgrund eines virtuellen
Experimentes erläutert:

Animation

Die Evidenz, dass für die Erfolgswahrscheinlichkeit pneu > 0.4 gilt, ist für verschie-
dene mögliche Resultate von k = ”Anzahl geheilter Patienten“ etwa wie folgt:

-

k = 0 8 k0 20

keine marginale starke Evidenz

Frage: Wie wahrscheinlich ist ein k ≥ k0 , falls doch pneu = 0.4 gilt? Anders: Mit
welcher Wahrscheinlichkeit schliesst man auf Verbesserung, obwohl keine da ist?
Falls pneu = 0.4 gilt, ist k binomialverteilt mit p = 0.4 . Daraus ergeben sich folgende

http://www.unizh.ch/biostat/
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Wahrscheinlichkeiten (aus Tabellen der Binomialverteilung):

P[k ≥ 11] = 0.128
P[k ≥ 12] = 0.057
P[k ≥ 13] = 0.021
P[k ≥ 14] = 0.006

Was schliessen wir daraus? Falls das neue Medikament nicht besser ist (d. h.
pneu = 0.4), dann ist es sehr unwahrscheinlich, dass mehr als 12 Patienten geheilt
werden. Falls wir also 13, 14 oder gar mehr Heilungen feststellen, dann ist das neue
Medikament mit grosser Wahrscheinlichkeit besser (d. h. pneu > 0.4). Angenommen,
man führt die Studie wiederholt durch: Dann würden nur in ca. 2% der Studien
mehr als 12 Patienten geheilt werden, wenn das neue Medikament tatsächlich nicht
besser ist.

Allgemeine Formulierung:

Ein Studienplan startet mit einer wissenschaftlichen Hypothese. Diese kann auf kli-
nischen oder wissenschaftlichen Erfahrungen basieren oder der Literatur entnom-
men werden.

H1 : Wissenschaftliche Hypothese oder Alternativhypothese

Beispiel: H1 : pneu > 0.4

Eine Alternativhypothese der Form pneu > 0.4 heisst einseitig, weil man sich für
Abweichungen in nur einer Richtung interessiert (hier: Verbesserung). Falls man
die wissenschaftliche Hypothese pneu 6= 0.4 (Verbesserung oder Verschlechterung)
prüfen möchte, so nennt man dies eine zweiseitige Alternative.

http://www.unizh.ch/biostat/
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Sowohl die wissenschaftliche Hypothese als auch die anschliessend zu formulieren-
de statistische Hypothese (oder Nullhypothese) beziehen sich auf die unbekannten
wahren Werte, nicht auf statistische Kennwerte (diese sind ja bekannte Zahlen!).

H0 : Statistische Hypothese oder Nullhypothese
Beispiel: H0 : pneu = 0.4

Ein statistischer Test prüft wahrscheinlichkeitsmässig die Nullhypothese, obwohl
man bei der Planung einer Studie von der wissenschaftlichen Hypothese ausgeht.
Die Schlussweise ist indirekt: Wenn die Nullhypothese aufgrund der Daten mit
hoher Wahrscheinlichkeit abgelehnt werden kann, entscheidet man sich aufgrund
dieser Evidenz für die wissenschaftliche Hypothese.
Man hat demnach zwei mögliche Entscheidungen zur Auswahl:

– verwerfe H0 und bejahe H1 oder

– verwerfe H0 nicht und betrachte H1 als nicht nachgewiesen.

Man hat dabei gemäss nachstehender Tabelle zwei Möglichkeiten, richtig zu ent-
scheiden, und zwei Fehlermöglichkeiten.

Wahrheit
Entscheidung H0 stimmt H0 stimmt nicht

H0 nicht verworfen richtig Fehler 2. Art: ”β“
H0 verworfen Fehler 1. Art: ”α“ richtig

Der α-Fehler bedeutet, eine neue Therapie oder wissenschaftliche Theorie zu
befürworten, obwohl sie nicht besser ist als die alte. Der β-Fehler impliziert, dass

http://www.unizh.ch/biostat/
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man eine neue Therapie oder Theorie nicht als besser erkennt, obwohl das in Wahr-
heit der Fall ist.
Es gibt eine Analogie zum Gerichtsverfahren eines nicht geständigen Angeklagten,
wo auch eine Entscheidung bei Unsicherheit zu fällen ist.

Gerichtsverfahren Hypothesentesten

braucht starke Evidenz Schuldspruch neue Hypothese bejahen
Nullhypothese H0 nicht schuldig alte Theorie stimmt
Alternativhypothese H1 schuldig neue Theorie stimmt
Haltung plädiere nicht schuldig behalte Nullhypothese,

ohne starke Evidenz für ausser sie sei mit den Daten
Schuld sehr unverträglich

Wir führen jetzt wichtige statistische Begriffe ein:

Definition Irrtumswahrscheinlichkeit oder Signifikanzniveau eines Tests = α
= (maximale) Wahrscheinlichkeit eines Fehlers 1. Art
= Wahrscheinlichkeit, neue Therapie oder Theorie als besser zu betrachten,

obwohl dies nicht der Fall ist.

Konventionell wird ein α = 5% oder selten 1% vorgegeben. Wenn die Daten beim
Testen eine kleinere Wahrscheinlichkeit als α ergeben, lehnt man die Nullhypothese
ab und nimmt die wissenschaftliche Hypothese an.
Meist geben Programmpakete nicht an, ob ein Resultat signifikant oder nicht signi-
fikant ist, sondern geben einen p–Wert.

http://www.unizh.ch/biostat/
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Definition p–Wert eines Tests
1. korrekt: p = kleinstes α, das noch signifikant würde.
2. lax, aber verständlicher: p = Wahrscheinlichkeit, gegeben H0 stimme, für

die Testgrösse einen so grossen oder grösseren als den aus den Daten be-
rechneten Wert zu erhalten.

Falls p ≤ α, wird die Null–Hypothese abgelehnt (und die wissenschaftliche Hypo-
these angenommen); falls p > α, wird die Null–Hypothese nicht abgelehnt. In der
Praxis wird aber ein ganz kleiner p–Wert (z. B. < 0.0001) als ”starke“ Ablehnung
von H0 gewertet und als ”hochsignifikant“ eingestuft. Auch wenn dies nicht ganz
korrekt ist, ist eine solche Interpretation tolerierbar.
Wir illustrieren die Begriffe mit dem Medikamentenbeispiel, indem wir ein Signifi-
kanzniveau von α = 0.05 vorgeben:

• Falls das Ergebnis k = 13 Heilungen ist, erhalten wir p = P[k ≥ 13] = 0.021
(”p–Wert“). Da demnach p ≤ α = 0.05 gilt, können wir H0 verwerfen und mit
5% Irrtumswahrscheinlichkeit schliessen, dass das neue Medikament besser
ist.

• Falls aber nur k = 12 Patienten geheilt werden, ergibt sich p = P[k ≥ 12] =
0.057 , so dass p > α = 0.05. Man kann also H0 nicht verwerfen, der statistische
Nachweis der Überlegenheit des neuen Medikaments ist nicht gelungen.

http://www.unizh.ch/biostat/


Einführung
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Eventuell war die Stichprobe in letzterem Fall nicht gross genug gewählt, um eine
relevante Verbesserung mit genügender Wahrscheinlichkeit festzustellen (zu kleine
Trennschärfe). Deswegen darf man in einem solchen Fall auch nicht sagen, dass
statistisch bewiesen wird, dass das neue Medikament nicht besser ist. Richtig ist zu
sagen, dass man eine Verbesserung nicht nachweisen konnte.

Selbstkontrolle

Definition Trennschärfe oder Macht (”power“) eines Tests = 1− β
= 1−Wahrscheinlichkeit eines Fehlers 2. Art
= Wahrscheinlichkeit, neue Therapie oder Theorie als besser nachzuweisen,

wenn sie tatsächlich besser ist.

Die Trennschärfe eines Tests hängt von der Stichprobengrösse n und der Effekt-
grösse ab.

Im vorher diskutierten Medikamenten–Beispiel hängt die Trennschärfe von der wah-
ren Erfolgswahrscheinlichkeit des neuen Medikaments ab. Wenn pneu = 0.8 ist (gros-
ser Effekt), dann ist die Trennschärfe 1−β = P[k ≥ 13] = 0.97 , und nichtsignifikan-
te Ergebnisse sind selten (β = 3%). Wenn das neue Medikament nur unwesentlich
besser ist als das alte (pneu = 0.5), ist 1−β = P[k ≥ 13] = 0.13 . Die Stichprobe ist
also viel zu klein, um derartige Effekte nachweisen zu können (β = 87%).

http://www.unizh.ch/biostat/
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Beispiel für die Konstruktion eines Tests

Man möchte prüfen, ob herzkranke Babies später zu laufen beginnen als gesunde
Babies. Dafür wird eine empirische Studie mit n = 20 herzkranken Kindern durch-
geführt. Deren Werte sollen mit Normwerten aus der Literatur verglichen werden,
die man als fest annimmt. Für den Beginn des Laufens liefert die Normpopulati-
on ein Mittel von µ0 = 12 Monaten mit einer Populationsstreuung von σ0 = 1.8
Monaten. Die Studie mit den herzkranken Babies ergibt ein Mittel von x̄ = 12.8 Mo-
naten (das zugehörige, unbekannte Populationsmittel sei µ). Der Einfachheit halber
nehmen wir an, dass die Standardabweichung der Norm σ0 = 1.8 auch gültig ist.

• Wissenschaftliche Hypothese: Kinder mit angeborenem Herzleiden laufen
später.
H1 : µ > µ0

• Statistische (Null–) Hypothese:
H0 : µ = µ0

http://www.unizh.ch/biostat/
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Die statistische Prüfung will nun quantitativ nachweisen, dass die Grösse der Ab-
weichung (x̄− µ0) nicht durch den Zufall erklärt werden kann:

• Berechne Differenz (x̄− µ0).

• Die Grösse von (x̄ − µ0) wird auf den Standardfehler σ0/
√

n der Differenz
bezogen. Dies Führt zur Teststatistik (Testgrösse) z:

z =
x̄− µ0

σ0/
√

n
=

0.8
1.8/
√

20
= 1.99

Die Wahrscheinlichkeit, einen so grossen oder noch grösseren Wert für die Testgrösse
per Zufall zu erhalten — obwohl die Null–Hypothese gilt — bezeichnen wir mit p
(”p–Wert“).
Um die Wahrscheinlichkeit p berechnen zu können, müssen wir eine Annahme über
die Verteilung der Daten machen. Der Einfachheit halber nehmen wir Normalver-
teilung an. In der Praxis muss dies geprüft werden.

Die folgende Tabelle zeigt die Resultate nicht nur für n = 20, sondern auch für
n = 10, 40, 80 bei identischem x̄.

n 10 20 40 80

z 1.41 1.99 2.81 3.98
p 0.079 0.023 0.0025 0.0003

http://www.unizh.ch/biostat/
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Falls p ≤ α gilt, ist die Differenz statistisch signifikant zum Signifikanzniveau α.
Demnach gilt: Bei α = 0.05 ist das Resultat signifikant für n ≥ 20, bei α = 0.01
ist das Resultat signifikant für n ≥ 40. Man sieht, dass bei grösserem Stichpro-
benumfang n die gleiche Differenz eher signifikant wird. Es scheint plausibel, dass
grössere Stichproben zu mehr statistischer Gewissheit führen. Mathematisch ge-
sprochen nimmt die Trennschärfe mit

√
n zu, ähnlich wie sich die Variabilität von

Schätzern verbessert (siehe Abschnitt 3.7). Bei gleichem n nimmt die Trennschärfe
mit (µ− µ0) und mit 1/σ0 zu, d.h., wenn die wahre Differenz grösser wird oder die
Streuung abnimmt.

Da es in der Praxis oft um den Nachweis von Mittelwertsunterschieden geht, haben
viele Testgrössen eine Form, die ähnlich zu der von z ist.

Selbstkontrolle

Allgemeines Prozedere für einen statistischen Test

• Formuliere wissenschaftliche Hypothese H1 und Nullhypothese H0 (bezogen
auf Populationswerte).

• Setze Irrtumswahrscheinlichkeit α fest.

• Es werden Daten x1, . . . , xn gesammelt.

• Definiere Test–(Prüf–)Statistik T (x1, . . . , xn).
Erwünscht ist:

– T soll empfindlich auf H1 reagieren.
– Die Verteilung von T unter Annahme der Nullhypthese H0 soll mathe-

matisch berechenbar sein.
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Typische Form für T :

– bei einseitiger Alternative:

T =
beobachteter Wert − hypothetischer Wert
Standardfehler des beobachteten Wertes

– bei zweiseitiger Alternative:

T =
∣∣∣∣beobachteter Wert − hypothetischer Wert

Standardfehler des beobachteten Wertes

∣∣∣∣
• Berechne Teststatistik für gegebene Daten x1, . . . , xn −→ T0.

• Die Verteilung FT (x) zu T sei unter der Annahme der Hypothese H0 bekannt.

• Ermittle p–Wert zu beobachtetem T0:
= Wahrscheinlichkeit, per Zufall (bei der Nullhypothese) einen so extremen
Wert wie T0 zu erhalten:

p = 1− FT (T0)

• Entscheide: Falls p ≤ α =⇒ verwerfe H0.
Falls p > α =⇒ verwerfe H0 nicht.

Für die verschiedenen wissenschaftlichen Fragestellungen gibt es eine Vielzahl von
Tests. In diesem Kapitel behandeln wir einige von grosser praktischer Bedeutung.

Nachfolgend werden graphisch die Bereiche dargestellt, in denen die Nullhypothese
verworfen bzw. nicht verworfen wird, sowie die Wahrscheinlichkeiten α (= 0.05)
und 1 − β. Dies erfolgt für den Nachweis eines Mittelwertsunterschiedes, d. h. H0 :
µ = µ0 und H1 : µ = µ1. Für die Daten wird eine Normalverteilung bekannter
Varianz angenommen.

http://www.unizh.ch/biostat/


Einführung
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Falls die Nullhypothese stimmt, d. h. µ = µ0, stellen sich die Entscheidungsbereiche
wie folgt dar:

a) Alternative zweiseitig (µ 6= µ0):

µ� 0
�

α/2=2.5%α/2=2.5%

verwerfe H�
0
� verwerfe H�

0
�verwerfe H�

0
� nicht

b) Alternative einseitig (µ > µ0 oder je nach Fragestellung auch µ < µ0):

µ� 0
�

α=5%

verwerfe H�
0

�verwerfe H�
0

� nicht

Die schraffierten Flächen geben die Wahrscheinlichkeiten an, dass die Nullhypothese
fälschlicherweise verworfen wird.

http://www.unizh.ch/biostat/
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Falls die Nullhypothese nicht stimmt und µ = µ1 > µ0 gilt, führt dies zu folgenden
Bereichen (gestrichelt: Wahrscheinlichkeitsdichte unter H0, durchgezogen unter H1)

a) Alternative zweiseitig (µ 6= µ0):

µ� 0
� µ=µ�

1

1−β

verwerfe H�
0
� verwerfe H�

0
�verwerfe H�

0
� nicht

b) Alternative einseitig (in der Graphik µ > µ0):

µ� 0
� µ=µ�

1

1−β

verwerfe H�
0

�verwerfe H�
0

� nicht
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Man sieht, dass die Trennschärfe (1 − β) bei gleicher Differenz (µ − µ0) grösser
wird, wenn man einseitig testet (die Verwerfungsgrenze ”rutscht hinunter“). Da
man manchmal so bei einseitigem Testen Signifikanz erhält, wenn dies zweiseitig
nicht möglich ist, und da Signifikanz die Publizierbarkeit verbessert, sind viele Zeit-
schriften einseitigen Tests gegenüber skeptisch (Gefahr, post–hoc eine Richtung zu
postulieren).

Macht (Trennschärfe) eines Tests

• Optimale Tests sind so definiert, dass sie bei vorgegebenem α maximale
Trennschärfe haben (Beispiel: t–Tests, falls Normalverteilung vorliegt).

• Die Macht sinkt, wenn α kleiner wird (”Unschärferelation“: wenn man den
einen Fehler kleiner macht, wird der andere grösser).

• Die Macht steigt, wenn die Variabilität kleiner wird. Dies bedeutet, dass ho-
mogenere Gruppen oder bessere Messmethodik von Vorteil sind.

• Die Macht ist bei einseitigen Tests besser.

• Die Stichprobengrösse n kann mit dem Versuchsplan so gewählt werden, dass
zum Beispiel β = 0.10 oder 0.05 erreicht wird (d. h. vorgegebene Macht 90%
oder 95%). Damit ist ein klarer Entscheid bezüglich der Nullhypothese und
der Alternative möglich.

Wir werden die Bestimmung der Stichprobengrösse jetzt näher erläutern (”Power
Analyse“). Wem das zu speziell ist, kann direkt bei Abschnitt 4.2 weiterlesen.

http://www.unizh.ch/biostat/
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Bestimmung der Stichprobengrösse

Die Bestimmung der notwendigen Stichprobengrösse soll am Beispiel des Nachwei-
ses eines Mittelwertsunterschiedes von einem vorgegebenen Wert µ0 bei bekannter
Varianz σ2

0 und unabhängigen normalverteilten Daten x1, . . . , xn erläutert werden.
Die Teststatistik ist

z =
√

n
x̄− µ0

σ0
.

Unter der Nullhypothese H0 : µ = µ0 ist z standardnormalverteilt. Zur Erinnerung:
Mit zα bezeichnen wir das α× 100 %–Perzentil der Standardnormalverteilung. H0

wird verworfen, wenn |z| > z1−α/2, da

Po[|z| > z1−α/2] = α

(siehe auch die Graphik zum Fehler erster Art bei zweiseitiger Alternative, oben).
Wenn µ = µ1 > µ0 gilt, dann ist

z =
√

n
x̄− µ1

σ0
+
√

n
µ1 − µ0

σ0
∼ N (

√
nδ, 1) .

Die Grösse δ = µ1 − µ0
σ0

ist hier die Effektgrösse.
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δ= 0

1−β=90%

verwerfe H0 verwerfe H0verwerfe H0 nicht

α/2=2.5%α/2=2.5%

︸ ︷︷ ︸√
n δ︸ ︷︷ ︸

z1−α/2

︸︷︷︸
z1−β

Die Trennschärfe 1−β erhält man aus der obigen Graphik. Für eine vorgegebene Ef-
fektgrösse δ und eine vorgegebene Trennschärfe 1−β berechnet sich die notwendige
Stichprobengrösse damit aus

√
nδ = z1−α/2 + z1−β

und folglich

n =

(
z1−α/2 + z1−β

)2

δ2 .

Die notwendige Stichprobengrösse n ist proportional zur Varianz σ2
0 und indirekt

proportional zum quadrierten Mittelwertsabstand (µ1−µ0)2. Das ist analog zur Ge-
nauigkeit von Schätzungen: Um einen halb so grossen Effekt nachweisen zu können,

http://www.unizh.ch/biostat/
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brauchen wir 4 mal so viele Beobachtungen. Die Stichprobengrösse n wächst aus-
serdem bei einer Reduktion des Signifikanzniveaus α und bei einer Erhöhung der
Trennschärfe 1− β. Diese Zusammenhänge sind aber nichtlinear und deshalb nicht
sofort zu überblicken.

4.2. Tests auf Mittelwertsunterschiede

Wenn man eine experimentelle Bedingung ändert oder eine neue Therapie erprobt,
wird man sich zuerst für Veränderungen im Mittelwert interessieren. Beim Vergleich
von 2 Gruppen gibt es im wesentlichen 3 Situationen:

• Vergleich eines Mittelwertes mit einem bekannten festen Wert (Einstichpro-
benproblem),

• Vergleich der Mittelwerte zweier unabhängiger Stichproben (Zweistichproben-
problem),

• Vergleich der Mittelwerte zweier verbundener Stichproben (gepaartes Test-
problem).

Wenn wir für die Beobachtungen eine Normalverteilung voraussetzen, werden die
Hypothesen mit t–Tests geprüft, sonst mit entsprechenden Rangverfahren. Im fol-
genden wollen wir die verschiedenen Testverfahren vorstellen.
Dabei zeigen wir auch, wie die entsprechenden Testgrössen konstruiert werden. Da-
durch kann man ein Gefühl dafür bekommen, wie das soeben beschriebene allgemei-
ne Procedere bei diesen Problemen funktioniert. Für die praktische Anwendung ist
die Kenntnis der Konstruktion der Testgrössen nicht notwendig, da die Verfahren
in allen gängigen Statistikprogrammen verfügbar sind.
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4.2.1. Einstichproben–t–Test

Beim einführenden Beispiel des Laufens von Babies benutzten wir einen Einstich-
probentest, da wir mit einer bekannten Norm — als wahr vorausgesetzt — und
nicht mit einer Gruppe von gesunden Kindern verglichen haben. Letzteres führt
auf einen Zweistichproben–Test (siehe unten). Da wir normalverteilte Daten und
eine bekannte Standardabweichung σ0 angenommen haben, resultiert eine normal-
verteilte Teststatistik z.

Beispiel: Laufen von Babies =⇒ Einstichproben–z–Test
x1, . . . , xn ∼ N (µ, σ2

0), wo σ2
0 bekannt ist

H0 : µ = µ0

=⇒ z =
x̄− µ0

σ0/
√

n
unter der Nullhypothese normalverteilt N (0, 1)

Falls aber — was im allgemeinen realistisch ist — die Varianz σ2 nicht bekannt
ist, muss sie durch s2 aus den Daten geschätzt werden. Da man somit durch eine
zufällige Grösse teilt, ist die entsprechende Statistik t nicht mehr normalverteilt.
Dies führt auf den t–Test:

Teststatistik t =
x̄− µ0

s/
√

n
Einstichproben–t–Test

Die Teststatistik t ist t–verteilt mit (n− 1) Freiheitsgraden.
Definition der t–Verteilung:

X1, . . . , Xn seien unabhängig verteilt nach N (0, 1).

http://www.unizh.ch/biostat/


Einführung

Deskriptive Statistik

Wahrscheinlichkeit

Testen

Regression

Testfragen

Index

Home Page

Titelseite

JJ II

J I

Seite 97 von 100

Zurück

Vollbild

Schließen

Beenden

Dann gilt: t =
x̄

s/
√

n
ist t–verteilt mit (n− 1) Freiheitsgraden.

Auf den folgenden Abbildungen sehen Sie, dass die t–Verteilung mit wenig Frei-
heitsgraden (d. h. n klein) beträchtlich von der Normalverteilung abweicht, für viele
Freiheitsgrade wenig (für n −→∞ wird die Approximation dann exakt).

x�

f(
x)

-4 -2 0
�

2
�

4
�

0.
0

0.
1

0.
2

0.
3

0.
4

t
�
2
�

normal

x�

f(
x)

-4 -2 0
�

2
�

4
�

0.
0

0.
1

0.
2

0.
3

0.
4

t
�
20
�

normal

Vergleich der t– und der Standardnormalverteilung: links t mit 2, rechts mit 20
Freiheitsgraden.
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Unter der Annahme, dass s = 1.8 gilt, erhalten wir beim vorangehenden Beispiel
mit x̄ = 12.8:

n 10 20 40 80

t 1.41 1.99 2.81 3.98
p 0.0961 0.0306 0.0039 0.0008

Die p–Werte sind im Vergleich zur z–Teststatistik (mit σ0 anstatt s) etwas grösser
geworden.

4.2.2. Zweistichproben–t–Test für unabhängige Stichproben

Man möchte die Mittelwerte von zwei Stichproben (von zwei verschiedenen Grup-
pen) statistisch vergleichen. In der Praxis ist dieses Problem viel häufiger als das
Einstichproben–Problem.

Beispiel: Vergleich der log–T4–Zellanzahl von Hodgkin– und non–Hodgkin–
Patienten
Gruppe 1 (Hodgkin): n = 20, x̄ = 6.49, sx = 0.71
Gruppe 2 (non–Hodgkin): m = 20, ȳ = 6.09, sy = 0.63

Die wissenschaftliche Hypothese ist: Die T4–Zellzahl bei Hodgkin–Patienten ist auch
nach der Remission erhöht verglichen mit non–Hodgkin–Patienten.

H1 : µx > µy (einseitige Alternative) H0 : µx = µy =⇒ µx − µy = 0

Die Konstruktion einer Zweistichproben–Teststatistik erfolgt nach dem bewährten
Prinzip:

http://www.unizh.ch/biostat/
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Beobachtet − Erwartet bei H0 = (x̄− ȳ)− 0 = 0.4

Liegt 0.4 genügend weit von 0 weg, so dass die Nullhypothese verworfen werden
kann? Dividiere durch den Standardfehler von (x̄− ȳ) !

Machen wir die Annahme, dass σ2
x = σ2

y = σ2 gilt, d. h. gleiche Varianz in beiden
Stichproben. Dann erhalten wir für die Standardabweichung von (x̄− ȳ):

σ

√
1
n

+
1
m

Die gemeinsame Standardabweichung σ ist nicht bekannt und muss durch s
geschätzt werden. Die Formel für die aus beiden Stichproben kombinierte (gepoolte)
Standardabweichung s lautet:

s =

√
(n− 1)s2

x + (m− 1)s2
y

n + m− 2

Damit ergibt sich als Testgrösse:

Teststatistik t =
x̄− ȳ

s

√
1
n

+
1
m

Zweistichproben–t–Test

Annahme: Seien x1, . . . , xn, y1, . . . , ym unabhängige, normalverteilte Grössen mit
gleicher Varianz.
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Dann gilt: Die Teststatistik t hat eine t–Verteilung mit n + m− 2 Freiheitsgraden.
Bei einer Datenanalyse sollten die Annahmen der Normalverteilung und gleicher
Varianz wenigstens grob geprüft werden, z. B. mittels Box–Plots.

Beispiel: Wir kehren zurück zum Vergleich von log–T4–Zellanzahl für n = 20
Hodgkin– und m = 20 non–Hodgkin–Patienten.

Nach der obigen Formel erhalten wir ein s = 0.67 und damit als Testgrösse:

t =
0.4

0.67
√

1
20 + 1

20

= 1.88

P[t ≥ 1.88] = einseitiges p = 0.034 ,
also ist p ≤ α = 0.05 : Hodgkin–Patienten haben signifikant mehr T4–Zellen.
Wie bereits erwähnt, haben einseitige Tests eine höhere Trennschärfe als zweiseiti-
ge, was zu Misbrauch führen kann. Der zweiseitige Test hat den p–Wert

p = P[t ≤ −1.88 oder t ≥ 1.88] = 0.068 : p > α = 0.05
Es ergibt sich also kein signifikanter Unterschied zwischen den beiden Gruppen.

Wenn man mehr als zwei Gruppen miteinander vergleichen will, sollte eine Varian-
zanalyse als Verallgemeinerung des Zweistichproben–t–Tests durchgeführt werden

(im Internet-Kurs nicht behandelt). Selbstkontrolle
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4.2.3. Der gepaarte t–Test

(t–Test für ”gepaarte“ oder ”verbundene“ Stichproben)

Ein relativ häufiger Fehler ist, dass der eben besprochene t–Test auch für den Ver-
gleich von Daten benutzt wird, die am selben Menschen gewonnen werden, also
nicht unabhängig sind. Dafür ist der gepaarte t–Test konzipiert.

Beispiele:

• prä–post–Vergleiche bei Therapiestudien

• Mehrfachuntersuchungen an denselben Patienten

• Vergleich EEG linke und rechte Hemisphäre

Beispiel: Es werden kardiologische Funktionen bei Typ I Diabetikern untersucht.
Es ist bekannt, dass Diabetiker schlechtere kardiovaskuläre Werte im Ver-
gleich zu Gesunden aufweisen. Die Frage, ob sich die Funktionen bei guter
Glukose–Einstellung verbessern, wurde bei n = 8 Patienten untersucht. Hier
wird die Herzrate analysiert.

x1, . . . , xn — Daten zum Zeitpunkt 1, bei schlechter Einstellung
y1, . . . , yn — Daten zum Zeitpunkt 2, bei guter Einstellung

http://www.unizh.ch/biostat/
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Man erwartet eine Erniedrigung der Herzrate bei verbesserter Einstellung
(Alternativ–Hypothese H1), was zu folgendem Hypothesenpaar führt:

H0 : µx = µy

H1 : µx > µy

Es wurden dazu die individuellen Veränderungen (post–prä Werte) di = yi − xi in
der Herzrate analysiert. Die entsprechende Formulierung der Hypothese ist dann
mit δ = µy − µx wie folgt:

H0 : δ = 0
H1 : δ < 0

Nr x y d

1 74 66 -8
2 72 67 -5
3 84 62 -22
4 53 47 -6
5 75 56 -19
6 87 60 -27
7 69 63 -6
8 71 68 -3

Mittelwert 73 61 -12
s 10 7 9.2 Zeitpunkte

�

H
er

zr
at

e

1 2
�

50
60

70
80
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Wenn man bei den di angelangt ist, reduziert sich der gepaarte t–Test formal auf
den Einstichproben–t–Test, d. h. auf folgende Teststatistik:

Teststatistik t =
d̄

sd/
√

n
Gepaarter t–Test

Unter der Annahme, dass die di normalverteilt sind, folgt die Teststatistik t unter
der Nullhypothese einer t–Verteilung mit (n− 1) Freiheitsgraden.

t =
−12

9.2 /
√

8
= −3.7

Die Wahrscheinlichkeit (t ≤ −3.7) zu erhalten ist 0.004. Man erhält demnach eine
signifikante Verbesserung bei guter therapeutischer ”Compliance“. Der Effekt ist

deutlich und deshalb bereits für n = 8 Patienten nachweisbar. Datenanalyse

Falsch wäre die Anwendung des (normalen) Zweistichproben–t–Tests.

Selbstkontrolle
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4.2.4. Rangtests: Mann–Whitney– und Wilcoxon–Test

In der Praxis sind die t–Tests oft problematisch, weil normalverteilte Daten vor-
ausgesetzt werden, bzw. weil andernfalls eine Transformation zur Normalverteilung
gesucht werden muss (z. B. logarithmieren der Anzahl T4–Zellen). Wir wollen hier
Tests vorstellen, die eine gute Trennschärfe haben, aber die Normalverteilungsan-
nahme nicht erfordern. Die Idee ist dabei, nur die Rangordnung der Daten und
nicht die Daten selbst zu benützen. Es besteht eine gewisse Ähnlichkeit zur Be-
nutzung von Median und Perzentilen als Kennwerte; diese beruhen auch auf der
Rangordnung. Daraus ergibt sich auch die Unempfindlichkeit gegen Ausreisser und
extreme Werte: Wie gross ein Wert numerisch auch sei, in der Rangordnung einer
Stichprobe der Grösse n erhält er höchstens den Rang n.

Der Test zum Vergleich der Zentren von zwei unabhängigen Gruppen und damit
das Analogon zum Zweistichproben–t–Test heisst Mann–Whitney Test. Er wird
auch Wilcoxon–Test für unabhängige Stichproben oder Wilcoxon–Rangsummen–
Test genannt. Das Analogon zum gepaarten t–Test ist der Wilcoxon–Test für
Paardifferenzen (Wilcoxon signed rank test).
Wie bei den t–Tests setzt man voraus, dass die Beobachtungen bzw. Paare un-
abhängige Zufallsgrössen sind.
Die Trennschärfe dieser Rangtests ist für ziemlich beliebige Situationen gut, auch
dann, wenn die entsprechenden t–Tests nicht gültig sind. Die Rangtests haben aber
auch bei Vorliegen einer Normalverteilung eine Trennschärfe, die nahe den optima-
len t–Tests ist. Im Zweifelsfall sollte man also immer Rangtests anstelle von t–Tests
verwenden.

Zur Illustration des Vorgehens beim Mann–Whitney Test vergleichen wir zwei un-
abhängige Stichproben x1, . . . , x6 und y1, . . . , y6 , indem wir sie in eine gemeinsa-
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me Rangordnung bringen.

Situation 1: µx ≈ µy

-f v f f v f v v f v v f
Ränge

Daten

1 2 3 4 5 6 7 8 9 10 11 12

x y x x y x y y x y y x

Der mittlere Rang der xi–Werte ist 5.8, derjenige der yi ist 7.2, so dass sie annähernd
gleich sind.

Situation 2: µy > µx

-f f v f f v f f v v v v
Ränge

Daten

1 2 3 4 5 6 7 8 9 10 11 12

x x y x x y x x y y y y

Der mittlere Rang der yi ist mit 8.5 deutlich grösser als derjenige der xi mit 4.5.

http://www.unizh.ch/biostat/
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Voraussetzung: Seien x1, . . . , xn und y1, . . . , ym unabhängige, zufällige Grössen.

Das Vorgehen ist nun wie folgt:

1. Erstelle gemeinsame Rangordnung.

2. Berechne getrennt mittlere Ränge der xi und der yi.

3. Die mittleren Ränge dienen dem Programm dazu, p–Werte zu berechnen.

Beispiel: Wir wollen wieder prüfen, ob die T4–Zellanzahl bei Hodgkin–Patienten
erhöht ist, verglichen mit non–Hodgkin–Patienten.

Die T4–Zellanzahl ist nicht normalverteilt, sondern rechtsschief, weshalb wir früher
logarithmiert haben, um den t–Test anwenden zu können.

Hier ein Ausschnitt der geordneten Werte:

Gruppe nH nH H nH nH H . . .

T4–Zellen 116 151 171 192 208 257 . . .
Rang 1 2 3 4 5 6 . . .

Es fällt auf, dass die non–Hodgkin–Patienten bei kleinen Werten stark vertreten
sind. StatView liefert einen p–Wert von p = 0.04 bei einseitigem Testen, und damit
eine signifikante Erhöhung der T4–Zellanzahl bei remittierten Hodgkin–Patienten.
Man erhält somit ein vergleichbares Ergebnis wie wenn man logarithmiert und den
t–Test (einseitiges p = 0.034) anwendet.

Selbstkontrolle
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4.3. Tests für Proportionen oder Wahrscheinlichkeiten

4.3.1. Einstichprobenfall

Man möchte prüfen, ob eine berechnete Proportion oder relative Häufigkeit von
einem vorgegebenen festen Wert signifikant abweicht.

H0 : p = p0, H1 : p > p0 respektive p < p0 (einseitig)

p 6= p0 (zweiseitig)

Der Test erfolgt mittels Binomialverteilung. Beispiele von früher sind:

1. Das Standardmedikament heilt 40% der Patienten (p0 = 0.4). Ist das neue
Medikament besser, d. h. H1 : pneu > p0 ?

2. Ist die Häufigkeit von Knabengeburten tatsächlich grösser als 0.5?
H0 : p = 0.5 = p0, H1 : p > 0.5 = p0

Die Antwort ist ”ja“, siehe Konfidenzintervalle im Abschnitt 4.6.3.
Datenanalyse

4.3.2. Zweistichprobenfall

Statistisch verglichen werden nun zwei empirische Proportionen oder Häufigkeiten.

Beispiel: Bei 34 von 113 Knaben und bei 54 von 139 getesteten Mädchen erfolgt
der Nachweis eines Grippevirus–Antikörpers. Gibt es einen Geschlechtsunterschied
in der Häufigkeit?

Man kann — ähnlich zum Zweistichproben–t–Test — die Differenz der beiden
Häufigkeiten geeignet normieren und die Testgrösse mit den Perzentilen der ap-

http://www.unizh.ch/biostat/
http://www.unizh.ch/biostat/kurs/dat53.htm


Einführung
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proximativ gültigen Standardnormalverteilung vergleichen. Für das Beispiel führt
dies auf einen zweiseitigen p–Wert von p = 0.14, d. h. der Geschlechtsunterschied ist
nicht signifikant. Natürlicher ist es aber, die Resultate als Vierfelder–Tafel darzu-
stellen und mit einem χ2–Homogenitätstest statistisch zu prüfen (siehe Abschnitt
4.4.2).

Achtung: Auch hier muss man bei gepaarten Studien — z. B. wenn die Häufig-
keit von Schmerzen vor und nach einer Behandlung bei denselben Patienten
untersucht wird — anders vorgehen (McNemar–Test).

4.4. Der χ2–Test

Der χ2–Test — oder besser die χ2–Statistik — eignet sich zur Beantwortung quali-
tativ unterschiedlicher Fragen. Gemeinsam ist ihnen, dass wir es mit kategoriellen
Daten zu tun haben.

4.4.1. χ2–Anpassungstest

Es geht hier darum, die empirische Verteilung kategorieller Daten mit einer vorge-
gebenen Verteilung statistisch zu vergleichen.

Beispiel: Die Genotypen A, B und C kommen nach einem Vererbungsmodell in
den Häufigkeiten 1/4, 1/2, 1/4 vor. Hier ist die Verteilung durch ein Modell
vorgegeben.

Um das Modell zu überprüfen, werden 100 Pflanzen gezüchtet, mit folgendem Er-
gebnis.

http://www.unizh.ch/biostat/
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3 Zellen:
A B C

18 55 27

Die Übereinstimmung der Daten mit dem Modell soll nun statistisch geprüft wer-
den.

H0 : pA = 1/4, pB = 1/2, pC = 1/4

Unter der Nullhypothese erwartet man Zellhäufigkeiten 25, 50, 25.

Diese Fragestellung entspricht für kategorielle Daten in etwa derjenigen eines Ein-
stichprobentests bei kontinuierlichen Daten.

Idee: Vergleiche beobachtete (”Obs“ für ”observed“) und erwartete (”Exp“ für ”ex-
pected“) Zellhäufigkeiten:

(18− 25)2, (55− 50)2, (27− 25)2

Der Standardfehler dieser quadratischen Abweichungen ist jeweils die erwartete
Zellhäufigkeit, im Beispiel 25, 50, 25. Dies folgt aus einem mathematischen Ar-
gument, dessen Details hier zu weit führen würden. Damit erhalten wir folgende
Teststatistik X2:

X2 =
(18− 25)2

25
+

(55− 50)2

50
+

(27− 25)2

25
= 2.62

http://www.unizh.ch/biostat/
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Ähnlich kann man das Problem mit k Zellen betrachten. Die Teststatistik sieht
dann so aus:

Teststatistik X2 =
∑

Zellen

(Obs− Exp)2

Exp
χ2–Anpassungstest

Die Prüfverteilung ist eine χ2–Verteilung mit (k − 1) Freiheitsgraden (siehe Ab-
schnitt 3.4). Der p–Wert ist aber nur approximativ gültig (für grosse n wird er
exakt).

Beispiel: X2= 2.62 =⇒ χ2 verteilt mit 2 Freiheitsgraden
oberes 5% Perzentil von χ2

2 = 5.99
2.62 < 5.99 =⇒ nicht signifikant

Der Versuch spricht also nicht gegen die Verteilung, die aus den genetischen Model-
len abgeleitet wurde. Beachten Sie, dass es beim χ2–Test keine einseitige Alternative
gibt, da die Vorzeichen der Abweichungen durch das Quadrieren verschwinden.

4.4.2. Testen auf Homogenität in Kontingenztafeln

Im Unterschied zu Abschnitt 4.4.1 vergleicht man nicht empirische Häufigkeiten
mit theoretischen, sondern empirische Häufigkeiten von 2 oder mehr unabhängigen
Gruppen miteinander, was in der Praxis viel häufiger ist.

Beispiel: Vergleich von Medikament A mit Medikament B an n = 150 Patienten.

http://www.unizh.ch/biostat/
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Die klinische Beurteilung des Gesundheitszustandes ist dreistufig als sehr gut,
gut bzw. schlecht gegeben.

Nach Randomisierung erhalten 80 Patienten Medikament A und 70 Patienten Me-
dikament B. Die Daten werden dann in einer Kontingenztafel (Kreuztabelle) ange-
ordnet:

sehr gut gut schlecht n

A 37 (A1) 24 (A2) 19 (A3) 80
B 17 (B1) 33 (B2) 20 (B3) 70

Total 54 57 39 150

H0 : A und B sind gleich gut, d. h. , die Wahrscheinlichkeiten für die Wirkung sind
identisch.

pA1 = pB1 = p1, pA2 = pB2 = p2, pA3 = pB3 = p3

Das Problem ist analog zu einem Zweistichproben–Problem bei kontinuierlichen
Daten.

Das Testprinzip besteht wieder darin, in jeder Zelle die beobachtete (Obs) und
erwartete (Exp) Anzahl zu vergleichen:

Teststatistik X2 =
∑

Zellen

(Obs− Exp)2

Exp
χ2–Test auf Homogenität

http://www.unizh.ch/biostat/
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Die Prüfverteilung ist eine χ2–Verteilung mit (r − 1)× (c− 1) Freiheitsgraden.
r = Anzahl Zeilen in der Kreuztabelle (r für ”rows“)
c = Anzahl Kolonnen in der Kreuztabelle (c für ”columns“)

Im Medikamenten-Beispiel ist r = 2 (Medikament A, B) und c = 3 (Rating: sehr
gut, gut, schlecht).

sehr gut gut schlecht n

A 37 (28.8) 24 (30.4) 19 (20.8) 80
B 17 (25.2) 33 (26.6) 20 (18.2) 70

total 54 57 39 150

In Klammern stehen die erwarteten Häufigkeiten, falls beide Medikamente gleich
gut sind. Sie werden berechnet, indem die Ergebnisse aus der gesamten Stichpro-
be im Verhältnis 80:70 aufgeteilt werden. =⇒ X2 = 8.22, p = P[χ2

2 ≥ 8.22] =
0.016 < 0.05 . Demnach sind die Medikamente A und B signifikant verschieden

(mit Irrtumswahrscheinlichkeit α = 0.05). Datenanalyse

Man sollte beachten, dass im Falle eines gepaarten Versuchsplans (Medikament
A und B an derselben Stichprobe erprobt) eine andere Statistik anzuwenden ist
(McNemar–Test).

Der p–Wert des χ2–Tests ist nur für grosse n gültig. Allgemein sagt man, dass die
Approximation für 2×2 Kontingenztafeln gut ist, wenn die erwarteten Häufigkeiten
(Exp) in allen Zellen ≥ 5 sind. Ist diese Voraussetzung nicht gegeben, kann man
Fisher’s exakten Test anwenden. Für allgemeine r × c Tafeln genügt es für die
Gültigkeit des χ2–Tests, dass alle erwarteten Häufigkeiten ≥ 3 sind.

http://www.unizh.ch/biostat/
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4.4.3. Test für Unabhängigkeit zweier Variablen

Im nächsten Kapitel 5 wird der Test auf Unabhängigkeit für kontinuierliche Da-
ten (mittels Korrelation) behandelt. Hier wollen wir dasselbe für diskrete Variable
untersuchen.

Problemstellung: An einer Stichprobe der Grösse n werden 2 diskrete Variable erho-
ben und in einer Kontingenztafel angeordnet. Sind die Merkmale unabhängig?

H0 : pij = pi × pj für alle i, j

Sie erinnern sich: Stochastische (statistische) Unabhängigkeit ist so definiert, dass
Wahrscheinlichkeiten multipliziert werden können.

Beispiel: An 400 Kindern wird deren Händigkeit geprüft, und es wird geprüft,
ob Vater und Mutter links– oder rechtshändig sind. Frage: Vererbt sich die
Händigkeit?

Kind
Vater × Mutter rechts links total

rechts, rechts 303 (295.8) 37 (44.2) 340
rechts, links 29 (33.1) 9 (4.9) 38
links, links 16 (19.1) 6 (2.9) 22

total 348 52 400

( ) = erwartet, falls unabhängig

H0 : kein Zusammenhang (”Händigkeit nicht genetisch bedingt“)

http://www.unizh.ch/biostat/


Einführung

Deskriptive Statistik

Wahrscheinlichkeit

Testen

Regression

Testfragen

Index

Home Page

Titelseite

JJ II

J I

Seite 114 von 100

Zurück

Vollbild

Schließen

Beenden

Teststatistik: Obwohl wir eine andere Problemstellung haben, geht alles gleich wie
beim Test zum Vergleich zweier kategorieller Stichproben (siehe Abschnitt
4.4.2). Man vergleicht beobachtete und erwartete Zellhäufigkeiten und bildet
die Summe der normierten Quadrate (= X2). Diese ist dann wieder approxi-
mativ χ2

(r−1)×(c−1)–verteilt.

Im Beispiel ist X2 = 9.15, p = P[χ2
2 ≥ 9.15] = 0.010 < α = 0.05 . Wir gehen daher

von einer Vererblichkeit der Händigkeit aus. Datenanalyse

Da die erwartete Häufigkeit in 2 Zellen kleiner als 5 ist, sollte besser Fisher’s exakter
Test benutzt werden. Damit erhält man ebenfalls einen p–Wert von 0.010, das
Ergebnis wird in diesem Beispiel also bestätigt.

Selbstkontrolle

4.5. Multiples Testen

Bisher sind wir davon ausgegangen, dass wir einen Test durchführen, um eine Hy-
pothese zu testen. Für diesen Fall wollen wir die Irrtumswahrscheinlichkeit α – meist
5% – einhalten. Oft werden in der Praxis mehrere Tests durchgeführt. Dabei wer-
den aber die Irrtumswahrscheinlichkeiten nicht mehr eingehalten, wie das folgende
Beispiel zeigt:
Wenn ich 20 mal unabhängig voneinander etwas teste, wird im Mittel bei α = 5%
ein Resultat signifikant, auch wenn in allen 20 Fällen die Nullhypothese richtig ist.

Beispiel: Studie mit 4 diagnostischen Gruppen, 20 Variablen erhoben
Naiv vergleicht man die 4 Gruppen paarweise untereinander, eine Variable
nach der anderen.

http://www.unizh.ch/biostat/
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=⇒ 120 (= 6× 20) paarweise Vergleiche möglich
=⇒ 120 statistische Tests möglich

H0 : Kein einziger Unterschied zwischen den Gruppen
H1 : Unterschied in mindestens einer Variablen

Sei α = 0.05 die Irrtumswahrscheinlichkeit für jeden einzelnen Test der paarweisen
Vergleiche. Falls H0 gilt, d. h., kein einziger Unterschied, erhalten wir trotzdem im
Mittel per Zufall 0.05 × 120 = 6 Ablehnungen von H0. Das bedeutet, dass wegen
der vielen Tests die Irrtumswahrscheinlichkeit α nicht für das multiple Testproblem
gilt.

Allgemein: Wir führen k unabhängige Tests auf nominellem 5% Niveau durch. Wie
gross ist dann die Wahrscheinlichkeit, bei Gültigkeit von H0 mindestens einen
p–Wert p < α zu erhalten (”effektives α“)?

k nominelles α effektives α

1 0.05 0.05
2 0.05 0.10
3 0.05 0.14
5 0.05 0.23

10 0.05 0.40
20 0.05 0.64
50 0.05 0.92

Das viele Testen führt also auf eine ”α–Inflation“.

http://www.unizh.ch/biostat/
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Lösungen:

1. Multivariate statistische Verfahren wie Varianzanalyse.

2. Bonferroni–Korrektur (für kleine k !)

=⇒ α[Einzeltest]=
α

k

Die Bonferroni–Korrektur ist konservativ, d. h. der Fehler 1. Art ist deutlich
kleiner als α, womit die Trennschärfe sinkt.

3. In der Versuchsplanung werden wenige strikte Hypothesen zum Testen aufge-
stellt. Die Daten werden ansonsten deskriptiv ausgewertet.

http://www.unizh.ch/biostat/
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4.6. Konfidenzintervalle (Vertrauensbereiche)

Bei Wiederholung einer Studie erhalten wir andere statistische Kennzahlen (vgl
Abschnitt 3.7). Dies ist erklärbar durch die unterschiedlichen Stichproben, was not-
wendigerweise einen Zufallseffekt mit sich bringt. Man möchte diese Zufallsschwan-
kungen in den statistischen Kennzahlen quantitativ fassen.
Da der wahre Kennwert θ (zum Beispiel θ = µ, p) nicht bekannt ist, und die
Schätzung mit statistischer Ungenauigkeit behaftet ist: Gibt es ein Intervall, in
dem θ mit hoher Wahrscheinlichkeit liegt ? (”Quantifizierung der Ungenauigkeit“)

Definition: Ein 95%-Konfidenzintervall
[
θ̂u, θ̂o

]
ist ein zufälliges Intervall, das

den unbekannten, wahren Wert θ mit Wahrscheinlichkeit 95% enthält.

In Formeln heisst dies: P
[
θ̂u ≤ θ ≤ θ̂o

]
≥ 0.95

Man kann auch allgemein (1−α)×100% Konfidenzintervalle definieren, kon-
ventionell wird aber α = 0.05 gesetzt.

Bei wiederholten Experimenten liegt man demnach in α × 100% der Fälle falsch.
Es wird offensichtlich, dass Konfidenzintervalle etwas mit dem Konzept des Signi-
fikanztests zu tun haben, weshalb wir sie hier einführen.

Nachfolgend ein Beispiel für die Wichtigkeit von Konfidenzbereichen für die bio-
medizinische Literatur. Publiziert wurde in Lancet eine multizentrische Studie zum
akuten Herzinfarkt. Die Ergebnisse stützen sich stark auf Konfidenzintervalle ab,
so dass diese bereits in der Zusammenfassung erscheinen.

http://www.unizh.ch/biostat/
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Wie man sieht, stehen Konfidenzintervalle in einem engen Zusammenhang zur
Prüfung von Hypothesen. In der obigen Studie konnte kein Unterschied in der
Sterblichkeit nach einem Herzinfarkt zwischen den Gruppen mit und ohne throm-
bolytischer Therapie nachgewiesen werden (“no significant difference”). Das heisst
aber nicht, dass es keinen Unterschied gibt. Die Konfidenzintervalle zeigen, dass es
möglich ist, dass die Therapie klinisch relevante Verbesserungen bis zu 33% bringt.
Das muss dann allerdings erst noch durch neue Studien belegt werden, da natürlich
auch die andere Grenze des Konfidenzintervalls (Verschlechterung um 12%) möglich
wäre. Der Bezug zum Hypothesentesten ist genau gesagt so, dass ein Resultat mit
α = 5% signifikant ist, wenn der Wert der Nullhypothese ausserhalb des 95%–
Konfidenzintervalls liegt.

4.6.1. Konfidenzintervall für µ bei bekanntem σ2

Aus tutoriellen Gründen sei eine etwas vereinfachte Situation vorausgesetzt.

• Eine physikalische Grösse soll mit einem Messgerät mit bekannter Streuung
σ = σ0 bestimmt werden.

• Die Messungen x1, . . . , xn seien verteilt wie N (µ, σ2
0), d. h. sie sind normal-

verteilt mit Erwartungswert µ und Varianz σ2
0 .

• Gesucht ist das (1− α)–Konfidenzintervall für µ.

(i) Der Mittelwert x̄ ist verteilt als N (µ,
σ2

0

n
), da x̄ die Varianz

σ2
0

n
hat.

(ii) Dann ist
x̄− µ

σo /
√

n
verteilt als N (0, 1).

http://www.unizh.ch/biostat/
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(iii) (1− α)–Konfidenzintervall für Erwartungswert µ bei bekanntem σ0:
x̄− z1−α/2

σ0√
n
≤ µ ≤ x̄ + z1−α/2

σ0√
n

Begründung für die Formel des Konfidenzintervalls (für Interessierte!):

x�

f(
x)

-4 -2 0
�

2
�

4
�

0.
0

0.
1

0.
2

0.
3

0.
4

α/2α/2

In der Abbildung ist α = 0.05 angenommen, mit zα/2 = −1.96 und z1−α/2 = 1.96.

• Nach Definition ist P
[
zα/2 ≤

x̄− µ

σ0/
√

n
≤ z1−α/2

]
= 1− α.

• Da die Normalverteilung symmetrisch ist, folgt zα/2 = −z1−α/2 .

• Auflösen nach µ liefert das (1− α)–Konfidenzintervall:

−z1−α/2
σ0√
n
≤ x̄− µ ≤ z1−α/2

σ0√
n

http://www.unizh.ch/biostat/
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=⇒ x̄− z1−α/2
σ0√
n
≤ µ ≤ x̄ + z1−α/2

σ0√
n

Bemerkungen:

1. Das Konfidenzintervall für µ liegt symmetrisch um x̄, was plausibel ist. Seine
Länge wird kleiner (man wird ”sicherer“), wenn die Standardabweichung σ0

sinkt oder die Stichprobe grösser wird.

2. Jedes Konfidenzintervall ist zufällig, in diesem Beispiel ist es zufällig durch
seine Lage bei x̄.

3. Die Annahme, dass die Standardabweichung der Stichprobe σ = σ0 bekannt
sei, ist im allgemeinen unrealistisch, σ muss geschätzt werden (siehe unten).

Numerisches Beispiel zur Illustration der Abhängigkeit des Konfidenzintervalls für
µ von α und n: x̄ = 0.2, σ0 = 0.1

α

n 0.05 0.01 0.001

10 [0.14, 0.26] [0.12, 0.28] [0.10, 0.30]
50 [0.17, 0.23] [0.16, 0.24] [0.15, 0.25]

200 [0.19, 0.21] [0.18, 0.22] [0.18, 0.22]

Wir sehen eine ”Unschärferelation“: Je sicherer wir sein wollen, dass der wahre Wert
im Intervall liegt, desto länger wird dann das Konfidenzintervall.

http://www.unizh.ch/biostat/


Einführung

Deskriptive Statistik

Wahrscheinlichkeit

Testen

Regression

Testfragen

Index

Home Page

Titelseite

JJ II

J I

Seite 122 von 100

Zurück

Vollbild

Schließen

Beenden

4.6.2. Konfidenzintervall für µ bei unbekanntem σ2

Beispiel: Konfidenzintervall für den Erwartungswert µ der Anzahl T4–Zellen auf
der Basis von n = 20 Hodgkin–Patienten

Problem: Die Daten sind rechtsschief, deutlich nicht normalverteilt.

Lösung: 1. Daten logarithmieren
2. logarithmierte Daten als approximativ normalverteilt betrachten

log–T4–Zellanzahl: x̄ = 6.49, s = 0.71

Die Idee ist nun, die Statistik
x̄− µ

σ/
√

n
von vorhin weiter zu verwenden, aber σ durch

s zu ersetzen: t =
x̄− µ

s/
√

n

Die Statistik t wäre standardnormalverteilt, falls wir σ und nicht s im Nenner
hätten. So gilt: t ist t–verteilt, (siehe 4.2.1), ”wackelt draussen mehr“, da s ein
Schätzer und keine feste Zahl wie σ ist (”mehr Wahrscheinlichkeit in den Extrem-
bereichen“).

Dann ergibt sich analog:

(1− α)–Konfidenzintervall für µ bei unbekanntem σ:

x̄− t1−α/2
s√
n
≤ µ ≤ x̄ + t1−α/2

s√
n

http://www.unizh.ch/biostat/
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• Die Grösse t1−α/2 ist das (1− α/2)× 100%–Perzentil einer t–Verteilung (mit
n− 1 Freiheitsgraden).

• Das Intervall ist symmetrisch um x̄.

• Die Länge des Intervalls ist abhängig von n und s, d. h. die Lage und die
Länge des Intervalls sind jetzt zufällig.

Für die log–T4–Zellanzahl erhalten wir folgende (1− α)–Konfidenzintervalle:

α = 0.05 6.14 ≤ µ ≤ 6.84
α = 0.01 5.90 ≤ µ ≤ 6.99
α = 0.001 5.76 ≤ µ ≤ 7.22

Nach Konstruktion enthält ein Konfidenzintervall im Mittel in (1 − α) × 100%
der Fälle den wahren Wert. Auf dem Computer wurden 20 Stichproben von
n = 25 normalverteilten ”Pseudo–Zufallszahlen“ simuliert (µ = 0, σ2 = 1). Für
jede Stichprobe wurde das 95%–Konfidenzintervall für µ nach obiger Formel
konstruiert. Nicht nur die Lage, sondern auch die Länge ändert sich beträchtlich.
Im Mittel würden wir auf 20 Stichproben in einem Fall erwarten, dass der wahre
Wert nicht im Konfidenzintervall liegt. Hier enthalten zufälligerweise zweimal die
Konfidenzintervalle den wahren Wert nicht. Deswegen müssen wichtige Ergebnisse
repliziert werden, denn nach der Produktregel für Wahrscheinlichkeiten ist es
äusserst unwahrscheinlich, in 2 unabhängigen Experimenten zufällig extreme
Resultate zu erhalten.

http://www.unizh.ch/biostat/
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Weitere Simulationen finden Sie hier: Animation

4.6.3. Konfidenzintervall für relative Häufigkeiten

Man kann für praktisch alle interessierenden Grössen Konfidenzintervalle berech-
nen. Wichtig ist z. B. ein Konfidenzintervall für eine wahre relative Häufigkeit,
z. B. eine Prävalenz. (Der Schätzwert für p ist p̂ = k/n, wenn z. B. bei einer
Prävalenzschätzung k von n Personen eine Krankheit haben.) Die untere Grenze

http://www.unizh.ch/biostat/
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p̂u und die obere Grenze p̂o eines Konfidenzintervalls werden relativ kompliziert
berechnet, so dass wir nur Beispiele geben:

Beispiel: Man beobachtet n = 20 Geburten, k = 7 mal wird ein Knabe geboren.

p̂ = 7/20 = 0.35

Welches ist der 95%–Vertrauensbereich für p?
Datenanalyse

• Der Vertrauensbereich ist weit, denn n ist klein.

• Der Vertrauensbereich schliesst 0.5 mit ein (gleiche Häufigkeit der Knaben-
und Mädchengeburten mit p = 0.5 ist möglich).

Das folgende reale Beispiel zeigt, dass die Annahme gleicher Häufigkeit von Knaben–
und Mädchengeburten doch nicht plausibel ist:

1950 – 1970: 1′944′700 Geburten in der Schweiz, davon 997′600 Knaben.

Ist es Zufall, dass der Schätzwert p̂ = 0.5130 für eine Knabengeburt von p = 0.5
abweicht? Das 99%–Konfidenzintervall ist (0.5121, 0.5139); d. h. das Konfidenzin-
tervall ist bei diesem grossen n sehr eng. Es schliesst 0.5 (gleiche Wahrscheinlichkeit
einer Knabengeburt) deutlich nicht mit ein. Damit ist mit α = 1% nachgewiesen,
dass Knabengeburten häufiger sind. Spekulativ könnte man einen Mechanismus der
Natur postulieren, der für mehr Knabengeburten sorgt, um ihre höhere Mortalität

im ersten Lebensjahr zu kompensieren. Datenanalyse

http://www.unizh.ch/biostat/
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5. Korrelation und Regression

Bisher wurde die statistische Analyse auf der Basis einer Messgrösse behandelt,
d. h. univariat (Ausnahme: χ2–Test). Jetzt geht es darum, Zusammenhänge zwi-
schen zwei oder mehr stetigen Variablen (bivariate, multivariate Daten) zu un-
tersuchen.

Mögliche Fragestellungen sind:

• Besteht eine Beziehung zwischen den Variablen ?

• Wie stark ist die Beziehung ?

• Welche Form hat die Beziehung ?

• Kann eine Variable von primärem Interesse aus der Beobachtung anderer
Variabler vorhergesagt werden ?

http://www.unizh.ch/biostat/
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5.1. Bivariate Daten

Man beobachtet zwei stetige Variable (x, y) an der selben Beobachtungseinheit
und erhält paarweise Beobachtungen (x1, y1), (x2, y2), . . . , (xn, yn).
Beispiel: Zusammenhang zwischen Gewicht und Grösse.

Jede Korrelations– oder Regressionsanalyse sollte mit dem Ausdruck des Scatter-
gramms (Streudiagramm) begonnen werden, Beispiel: Nächste Seite.

Die folgenden Daten, die wir in diesem Kapitel analysieren wollen, wurden
von R.W. Johnson (Carleton College, Northfield, MN) zur Illustration der Regres-
sionsanalyse zur Verfügung gestellt. In dieser Stichprobe wurden bei 252 Männern
der Prozentsatz an Körperfett, Alter, Gewicht und 10 Körperumfangsmasse
bestimmt. Dabei wurde die Körperdichte mittels einer Wägung unter Wasser
relativ aufwendig exakt gemessen und mittels gewisser Eichformeln in pro-
zentuales Körperfett umgerechnet. Ein hoher Anteil an Körperfett stellt ein
Gesundheitsrisiko dar; aus praktischen Gründen möchte man das Körperfett aus
einfach zu ermittelnden Körpermassen approximativ bestimmen, wofür sich die
Regressionsmethode eignet.
Es erweist sich tatsächlich, dass man das Körperfett bei Männern mittels multipler
Regression bequem aus leicht zu bestimmenden Parametern schätzen kann (siehe
Abschnitt 5.6 ).

http://www.unizh.ch/biostat/
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Das folgende Scattergramm zeigt den Zusammenhang von Gewicht und
Körpergrösse in der von Ausreissern befreiten Stichprobe von 241 Männern.
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Man erhält so einen visuellen Eindruck vom Zusammenhang zwischen den Varia-
blen. In diesem Fall erhärtet sich die Vermutung, dass Gewicht und Körpergrösse
zusammenhängen.

http://www.unizh.ch/biostat/
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5.2. Korrelation und ihre Eigenschaften

Eine Korrelation (auch Produkt–Moment Korrelation oder Pearson Korrelation ge-
nannt) misst, wie stark der lineare Zusammenhang, die lineare Übereinstimmung
zwischen x und y ist.
Der Korrelationskoeffizient wird wie folgt berechnet:

Kovarianz: Cov(x, y) = sxy =
1

n− 1

n∑
i=1

(xi − x̄)(yi − ȳ)

Varianz: s2
x =

1
n− 1

n∑
i=1

(xi − x̄)2, s2
y =

1
n− 1

n∑
i=1

(yi − ȳ)2

Korrelation: r =
sxy

sx sy
=

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
∑

(yi − ȳ)2

http://www.unizh.ch/biostat/
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Die Plausibilität des Zählers kann man anhand von 3 Datenpunkten graphisch
verstehen:

x

y

+

+-

-

+

+

+

- -
-

ȳ

x̄

Rechts oben und links unten von den Mittelwerten der Variablen geben Beobach-
tungen einen positiven Beitrag zur Kovarianz und damit zur Korrelation; links
oben und rechts unten einen negativen Beitrag. Damit ist die Korrelation ungefähr
0, wenn sich die Beobachtungen auf alle 4 Quadranten verteilen. Sie wird deutlich
positiv, wenn sich die Beobachtungen um eine Gerade mit positiver Steigung grup-
pieren, d. h. im Quadranten I und III. Bei Messungen vorwiegend im Quadranten
II und IV wird sie negativ.

http://www.unizh.ch/biostat/
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Plausibilität des Nenners:

Die Korrelation r wird durch diese Normierung mit den Standardabweichungen von
den Masseinheiten unabhängig und ist damit besser interpretierbar.

Eigenschaften:

−1 ≤ r ≤ 1

r = 1 =⇒ deterministisch positiver linearer Zusammenhang zwischen x und y

r = −1 =⇒ deterministisch negativer linearer Zusammenhang zwischen x und y

r = 0 =⇒ kein linearer Zusammenhang

Allgemein gilt:

• Das Vorzeichen gibt die Richtung des Zusammenhangs an.

• Die Grösse gibt die Intensität des Zusammenhangs wieder.

http://www.unizh.ch/biostat/
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Die folgenden Illustrationen zeigen Daten mit unterschiedlich starkem Zusammen-
hang. Man beachte, dass die Korrelation nur den linearen Zusammenhang misst,
unter Umständen kann die Korrelation für gewisse deterministische nichtlineare
Zusammenhänge Null werden. Werte, die in der x– und y–Richtung extrem liegen,
können eine starke Korrelation vortäuschen.
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Beispiel: In einer Studie an 45 anämischen Patienten (Baumann Kurer et al.,
British J. Haematology, 1995) wurde untersucht, ob die invasive Messung des
Eisengehaltes im Knochenmark durch eine einfache Blutprobe (Ferritingehalt
im Blutserum) ersetzt werden kann.
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Die Stichprobenkorrelation ist r = 0.72 . Man sieht aber, dass die Werte nicht
gleichmässig um eine Gerade streuen, eine Gerade nicht zu diesen Daten passt. Die
Korrelation wird stark durch weit aussen liegende Werte oben rechts bestimmt.

• Da lineare Zusammenhänge am einfachsten zu behandeln sind, sollte man
versuchen, durch Transformation auf einen linearen Zusammenhang zu kom-
men.

http://www.unizh.ch/biostat/


Einführung

Deskriptive Statistik

Wahrscheinlichkeit

Testen

Regression

Testfragen

Index

Home Page

Titelseite

JJ II

J I

Seite 134 von 100

Zurück

Vollbild

Schließen

Beenden

• Da weit vom Mittelwert entfernte Beobachtungen die Korrelation stark be-
einflussen, sollte man versuchen, die beiden Variablen so zu transformieren,
dass sie annähernd normalverteilt sind.

Häufig erfüllen Transformationen die beiden Forderungen gleichzeitig.

log of serum ferritin
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Im Beispiel ist die Stichprobenkorrelation nach der log–Transformation des Serum
Ferritins r = 0.85, die Daten streuen gleichmässig um eine Gerade (diese heisst
Regressionsgerade, siehe unten).

http://www.unizh.ch/biostat/
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• Da lineare Zusammenhänge am einfachsten zu behandeln sind, sollte man ver-
suchen, durch Transformation auf einen linearen Zusammenhang zu kommen.

• Da weit vom Mittelwert entfernte Beobachtungen die Korrelation stark be-
einflussen, sollte man versuchen, die beiden Variablen so zu transformieren,
dass sie annähernd normalverteilt sind.

• Häufig erfüllen Transformationen die beiden Forderungen gleichzeitig, wie in
diesem Beispiel.

Hier können Sie testen, ob Sie das Prinzip des Korrelationskoeffizienten verstanden
haben:

Animation

http://www.unizh.ch/biostat/
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5.3. Tests auf linearen Zusammenhang und Konfidenzintervalle

Als nächstes soll geprüft werden, ob überhaupt ein linearer Zusammenhang zwi-
schen den beiden Variablen statistisch nachzuweisen ist.

Nullhypothese: Die wahre Korrelation ρ ist gleich 0 (”kein Zusammenhang“).
Annahme: (x, y) gemeinsam normalverteilt

Die folgende Testgrösse T ist mathematisch–statistisch begründet. Sie folgt einer
t-Verteilung mit (n− 2) Freiheitsgraden.

Teststatistik: T = r

√
n− 2
1− r2

∼ tn−2

Sie ist insofern plausibel, als T betragsmässig klein wird, wenn r nahe bei 0 liegt
(=Nullhypothese) und immer grösser wird mit wachsender Grösse des Betrags von
r (wo die Nullhypothese immer unplausibler wird).

Beispiel: Zusammenhang von Gewicht und Körpergrösse bei Männern.
n = 241 , r = 0.55

=⇒ T = 7.9 > t239;0.975 = 1.97, p < 0.0001
Es besteht also ein signifikanter Zusammenhang zwischen Körpergrösse und Ge-
wicht. Die Angabe eines Konfidenzintervalls ist für die Korrelation noch wichtiger
als für die bisherigen statistischen Kennwerte. Mit etwas Erfahrung vermittelt die
Angabe von n und (x̄, s) auch ein Gefühl für die Variabilität dieser Kennwerte,
was aber bei der Korrelation nicht der Fall ist. Das Konfidenzintervall liefert ein
Intervall, in dem die wahre Korrelation mit grosser Wahrscheinlichkeit liegt.

http://www.unizh.ch/biostat/
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Im Beispiel ist ρ im Intervall (0.46, 0.64) mit Wahrscheinlichkeit 1−α = 0.95 (95%–
Konfidenzintervall für ρ). Konfidenzintervalle für die Korrelation können ziemlich
gross werden, wenn die Stichprobe mässigen Umfang hat.

5.4. Ausreisser und Gefahren der Korrelationsrechnung

• Wie wirken sich Ausreisser aus, und wie behandle ich sie ?
• Wie kann man bei Nicht–Normalverteilung die Korrelation schätzen und testen ?

Beispiel: Körpergrösse und Masse von Männern
In der vollen Stichprobe von 252 Männern sah das Scattergramm vor der Elimina-
tion von Ausreissern so aus:
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Wir erhalten r = 0.31 und p = 0.0001. Die Ausreisser senken also die Korrelati-
on von 0.55 auf 0.31, eine deutliche Verfälschung der Realität. Negativ wirkt sich

http://www.unizh.ch/biostat/
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vor allem der unsinnige Wert von knapp 80 cm für die Körpergrösse bei einem
Körpergewicht von über 90 kg aus. (Vermutlich handelt es sich um einen Tippfeh-
ler.)

Spearmans Rangkorrelation

Ähnlich wie wir früher auf Rangverfahren zurückgegriffen haben, um von der Nor-
malverteilungsannahme loszukommen (Beispiel Mann–Whitney–Test), stützen wir
uns auch hier auf die Rangordnung der Daten ab, um robustere Resultate zu erhal-
ten.

Vorgehen:

1. Man bringt x1, . . . , xn und y1, . . . , yn getrennt in Rangreihen.

2. Man korreliert die Ränge miteinander anstatt die Zahlen selber.

Dadurch wird der Einfluss von Ausreissern begrenzt. Im Beispiel ergibt sich jetzt
Spearmans Rangkorrelationskoeffizient rS = 0.52 und p < 0.0001 (bei den kor-
rekten Daten: rS = 0.55, p < 0.0001). Rangkorrelationen können die Daten nicht

”reparieren“, aber die Auswirkungen falscher oder atypischer Werte mildern.

http://www.unizh.ch/biostat/
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Gefahren der Korrelations–Rechnung

1. Bei 10 Variablen gibt es 45 mögliche Korrelationen. Man muss sich demnach
davor hüten, einzelne signifikante Korrelationen überzubewerten (siehe Pro-
blem des multiplen Testens).

2. Heterogenitätskorrelation: Am Beispiel von Stimmfrequenz und Körpergrösse
bei Männern und Frauen sieht man eine negative Korrelation (r = −0.60,
p = 0.006), obwohl die Werte sowohl für die Gruppe der Männer als auch für
die der Frauen unkorreliert sind.
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3. Allgemeine Trends führen zu Scheinkorrelationen über die Zeit: Der Preis von
Benzin und die Scheidungsrate korrelieren, da beide einen Zeittrend aufweisen.

4. Trivialkorrelationen: Wenn man die Körpergrösse mit 12 (= x) und mit 20
Jahren (= y) misst, müssen die Werte gut korrelieren, da ja y = x + z gilt,
wobei z der Zuwachs von 12 bis 20 Jahren ist.

5. Konfundierung durch 3. Variable: Die Anzahl der Störche und Geburten in
einem Kanton korreliert stark (”Bringt der Storch die Kinder?“). Die kon-
fundierende Variable, die beide Grössen gleichsinnig beeinflusst, ist hier die
Grösse des Kantons.

http://www.unizh.ch/biostat/
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6. nichtlineare Zusammenhänge:

x

(x
-1

0.
5)

^2

5 10 15 20

0
20

40
60

80

Hier erhält man r = 0, obwohl ein deterministischer aber quadratischer Zu-
sammenhang deutlich ist.

7. Extreme Datenpunkte: Das frühere grafische Beispiel (siehe 5.1) mit einem
gleichsinnig in der x– und der y–Richtung extrem verschobenem Wert zeigt,
dass eine grosse Korrelation (im Beispiel 0.95) durch einzelne Werte vor-
getäuscht werden kann, ohne dass ein allgemeiner Zusammenhang besteht.
Aber auch extreme Datenpunkte in der x– oder y–Richtung können die Kor-
relation übermässig beeinflussen.

Selbstkontrolle
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5.5. Einfache lineare Regression

• Die einfache Regressionsanalyse ist die statistische Analyse der Wirkung einer
stetigen Variablen x auf eine andere Variable y. Die Beziehung ist also im Un-
terschied zur ungerichteten Korrelationsanalyse gerichtet.

x = unabhängige Variable, erklärende Variable, Prädiktor (oft nicht zufällig: Zeit,
Alter, Messpunkt)

y = abhängige Variable, erklärte Variable, Zielvariable, Outcome, Response

Ziel: Nicht nur die Stärke und Richtung (↗,↘) des Zusammenhangs soll bestimmt
werden, sondern es soll ein quantitatives Gesetz formuliert werden: Wie ändert
sich y , wenn x sich ändert ?

http://www.unizh.ch/biostat/
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Beispiel: Das Körpergewicht ist ein naheliegendes Mass für Übergewicht. Wie wir
aber gesehen haben (Scattergramm, Abschnitt 5.1), hängt es von der Körper-
grösse ab und ist demnach als Mass für Übergewicht nicht geeignet. Die fol-
gende Regressionsgleichung quantifiziert dies.

Regression: y = Gewicht, x = Höhe, n = 241

ŷ = −99.7 + 1.01× x, r2 = 0.31, p < 0.0001

Wie schwer sind Männer? Die beste Voraussage ist ȳ =80.7 kg. Die Standardabwei-
chung der Messwerte um diesen Vorhersagewert beträgt SD = sy = 11.8 kg.
Wie schwer sind Männer von 175 cm? Die Zusatzinformation der Körpergrösse
ändert die Vorhersage des Gewichts, indem der Wert der Regressionsgeraden für
x = 175 cm genommen wird: ŷ = −99.7 + 1.01 × 175 = 77.0 kg. Die Standard-
abweichung der Messwerte um diesen Vorhersagewert beträgt se = 9.8 kg. Wir
erhalten demnach exaktere Aussagen über das Gewicht, wenn wir die Körpergrösse
berücksichtigen. Allgemein gilt, dass wir exaktere Ergebnisse erhalten, wenn wir
über ein Regressionsmodell wichtige Einflussgrössen berücksichtigen.

http://www.unizh.ch/biostat/
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In der Klinik wird oft der ”body mass index“ (BMI = Gewicht/Höhe2) als Mass für
Übergewicht benutzt. Die Frage ist, ob der BMI tatsächlich von der Körpergrösse
nicht beeinflusst ist.
Regression y = BMI = Gewicht / Höhe2, x = Höhe

ŷ = 19.2 + 0.034× x, r2 = 0.005, p = 0.27

hoehe

bm
i

160 170 180 190 200

20
25

30

Der BMI ist nicht oder nur wenig mit der Körpergrösse korreliert. Damit liefert er
ein einfaches Mass für Übergewicht.
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5.5.1. Statistisches Modell der Regression

yi = f(xi) + εi i = 1, . . . , n

f = Regressionsfunktion, ”wahrer Verlauf“
εi = unbeobachtbare, zufällige Schwankungen (Fehler oder Rauschen). Die Resi-

duen εi schwanken um 0 (Mittelwert der Ei = 0) und haben die Varianz
σ2.

Das Problem der Bestimmung von f vereinfacht sich sehr, wenn wir f als eine
lineare Funktion annehmen (”lineare Regression“).

f(x) = a + b x

Damit sind nur noch der Achsenabschnitt (intercept) a und die Steigung (slope) b
der Gerade a + b x unbekannt und müssen aus den Daten bestimmt (”geschätzt“)
werden.
Hier können Sie selbst Daten eingeben und die Regressionsanalyse rechnen:

Animation

http://www.unizh.ch/biostat/
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Beispiel: Apriori sind sowohl prozentuales Körperfett als auch der BMI als Masse
für Übergewicht bei Männern von Interesse.

x = BMI (in kg/m2)
y = Körperfett (in %)

bmi

bo
dy

fa
t

20 25 30 35

0
10

20
30

40

Geradengleichung: bodyfat = −27.6 + 1.84× BMI, r2 = 0.52, p < 0.0001
Interpretationen:

1. Männer mit einem BMI von 25 kg/m2 haben im Mittel 18% Körperfett.

2. Wenn sich der BMI um 1 kg/m2 erhöht, resultieren im Mittel 2 % mehr
Körperfett.

http://www.unizh.ch/biostat/
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5.5.2. Die Methode der kleinsten Quadrate

Der Anpassung der Gerade an die Daten ist intuitiv dann am besten, wenn die
Abstände der Messpunkte von der zu bestimmenden Geraden im Mittel klein sind
(”method of least squares“).

• Übliche Methode zur Schätzung von a und b: Es werden die vertikalen Abstände
zur Geraden betrachtet, die zu bestimmen ist, und zwar — wie bei der Varianz
— in der quadrierten Form.

bmi

bo
dy

fa
t

20 25 30 35

0
10

20
30

40

Animation Selbstkontrolle
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Sei ŷi der Wert der geschätzten Regressionsgerade (= â + b̂ xi) bei einem Wert xi .

Wähle die Schätzung der Parameter so, dass die quadratische Abweichung

S(â, b̂) =
n∑

i=1

(yi − ŷi)2

minimal wird !

Die resultierenden Schätzwerte für a und b sind:

Steigung: b̂ =

∑
(xi − x̄)(yi − ȳ)∑

(xi − x̄)2
= r

sy

sx

Achsenabschnitt: â = ȳ − b̂ x̄

Man erhält diese Formeln über die Lösung eines Systems zweier linearer Gleichungen
(”Normalgleichungen“) in â und b̂.

http://www.unizh.ch/biostat/
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5.5.3. Durch die Regression erklärte Varianz

bmi

bo
dy

fa
t

20 25 30

0
10

20
30

40

x̄ xi

ȳ

ŷ = ȳ + b̂ (x− x̄) yi − ȳ
b̂(xi − x̄)

{yi − ŷi {

Wir haben gesehen, dass eine Variable y um so besser durch die Variable x erklärt
werden kann, je grösser die Korrelation r zwischen beiden Variablen dem Betrage
nach ist. Wir können also einen Teil der Variabilität von y durch die Regression
auf x erklären. Aus mathematischen Überlegungen ergibt sich, dass diese ”erklärte
Varianz“ als

s2
reg = r2s2

y

http://www.unizh.ch/biostat/
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berechnet werden kann. Die Grösse r2 gibt also den Anteil der Varianz von y, der
durch Kenntnis von x erklärt wird und ist in diesem Sinne bedeutsamer als r selber
(”Bestimmtheitsmass“). Im Spezialfall r = ±1 liegen alle Punkte auf einer Geraden,
und es bleibt keine Variabilität bei y mehr übrig, wenn man x berücksichtigt. Die
Varianz (”Residualvarianz“)

s2
res = (1− r2)s2

y

ist der Teil, der übrigbleibt, ein Schätzer der Varianz σ2 der Residuen εi. In obiger
Figur ist s2

res die Varianz der Abstände der Daten von der Regressionsgeraden.
Die Regressionsanalyse von y = bodyfat auf x = BMI hat ein r2 = 0.52 ergeben.
Das bedeutet, dass der BMI das Körperfett – der eigentliche, aber nicht leicht zu
bestimmende Risikofaktor – nur etwa zur Hälfte erklären kann. Dies liegt nicht
daran, dass der BMI einen grossen Messfehler hat, sondern daran, dass der BMI z.
B. auch vom Körperbau und der Muskelmasse abhängt.
Die Beobachtungen streuen um Regressionsgerade mit SD

sres =
√

1− r2 sy

r 0.3 0.5 0.7 0.9 0.99
√

1− r2 0.95 0.87 0.71 0.44 0.14

Dies bedeutet, dass selbst eine beträchtliche Korrelation zwischen 0.5 und 0.7 die
Standardabweichung nicht sehr stark reduziert. Mit diesem Phänomen hängt zu-
sammen, dass Vorhersagen i. A. wenig exakt sind. Ein Beispiel ist die Vorhersage
der Erwachsenengrösse in der Kindheit.

Prüfen Sie, ob Sie dies verstanden haben: Selbstkontrolle
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5.5.4. Tests und Konfidenzintervalle in der linearen Regression

Hat die Variable x überhaupt einen Einfluss auf y, d. h. ist b 6= 0 ? Statistisch
bedeutet diese Frage, dass man testen will, ob sich y mit x systematisch ändert.
Dabei benötigen wir die folgenden mathematischen Annahmen:

• Die Fehler εi sind unabhängig.

• Die Fehler sind normalverteilt N (0, σ2) mit konstanter Varianz σ2.

Nullhypothese: b = 0

Die Nullhypothese ist äquivalent dazu, dass die Korrelation Null ist (siehe 5.3).
Unter der Annahme einer gemeinsamen Normalverteilung von (x, y) ergibt sich der
gleiche Test wie auf Korrelation ρ = 0.

In der Regressionsanalyse gilt:

• Alle Analysen werden bedingt für gegebene Werte x1, . . . , xn durchgeführt.

=⇒ Regressionsanalysen sind einfacher als Analysen der Korrelation.

=⇒ Die Verteilung der unabhängigen Variablen x wird nebensächlich.

http://www.unizh.ch/biostat/
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Beispiel: Körperfett in Abhängigkeit vom BMI bei Männern.
Mit dem Programm StatView erhält man den folgenden Ausdruck:

241
0

.718

.516

.514
5.547

Count
Num. Missing
|R|
R Squared
Adjusted R Squared
RMS Residual

Regression Summary
bodyfat vs. bmi

-27.617 2.939 -27.617 -9.398 <.0001
1.844 .116 .718 15.957 <.0001

Coeff ic ient Std. Error Std. Coeff. t -Va lue P-Value
Intercept
bmi

Regression Coefficients
bodyfat vs. bmi

Die Regressionsgerade (Regression Coefficients) ist

̂bodyfat = −27.6 + 1.84× bmi

Das Bestimmtheitsmass r2 (R Squared) hat den Wert 0.52, d. h. 52% der Variabilität
des Körperfetts können durch die Regression auf den BMI erklärt werden. Die
Standardabweichung der Residuen(RMS Residual) ist sres = 5.55. ”P–value“ sind

http://www.unizh.ch/biostat/
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die p–Werte der statistischen Tests. Der Regressionskoeffizient ist signifikant (p =
0.0001), also wird ein Zusammenhang bestätigt.

Konfidenzintervall für die Regressionsgerade

Statistikprogramme bieten (1− α)–Konfidenzintervalle für den Wert der Regressi-
onsgeraden a + bx für einen gegebenen Wert von x, und tragen diese Konfidenzin-
tervalle in den Regressionsplot ein:

bmi

bo
dy

fa
t

20 25 30

0
10

20
30

40

Für einen BMI von z. B. 25 kg/m2 können wir aus der Graphik ablesen, dass der
mittlere Körperfett–Wert mit 95%iger Sicherheit zwischen 15.8 und 19.2 % liegt.

http://www.unizh.ch/biostat/
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Vorhersageintervall für zukünftige Beobachtungen

Ziel ist es, vorauszusagen, in welches Intervall eine zukünftige Beobachtung für
gegebenes x∗ mit hoher Wahrscheinlichkeit zu liegen kommt.
Das Vorhersageintervall ist wesentlich breiter als das Konfidenzintervall, weil sich
die Variabilität der geschätzten Regressionsgerade (Konfidenzintervall) und die Va-
riabilität des Fehlers der zukünftigen Beobachtung (σ2) addieren.

Achtung: Es besteht Verwechslungsgefahr mit dem Konfidenzintervall.

Die punktweisen Vorhersageintervalle werden üblicherweise in den Regressionsplot
für alle x eingetragen:

bmi

bo
dy

fa
t

20 25 30

0
10

20
30

40
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5.6. Multiple Regression

Im Datensatz mit y = prozentuales Körperfett hat man als mögliche Prädikatoren
neben x = BMI auch Alter und diverse leicht zugängliche Körpermasse. Es ist
zu hoffen, dass mit mehreren Prädikatoren das Körperfett besser bestimmt. ist.
Allgemein: Wenn man anstatt einer Einflussgrösse x deren k hat (x1, . . . , xk), so
könnte man nach dem bisherigen Stoff k einfache (univariate) Regressionsanalysen
durchführen. Damit kann man aber das Zusammenspiel der k Prädiktoren nicht
erfassen. Deshalb möchte man eine Regressionsanalyse mit allen k Einflussgrössen
in einem Modell durchführen. Damit stellt sich das Problem, passende Modelle zu
finden und statistisch zu prüfen.
Es gibt eine Reihe von Gründen, anstelle von mehreren einfachen Regressionsana-
lysen eine multiple Regressionsanalyse durchzuführen:

1. Man möchte mögliche Effekte von zusätzlichen ”Stör“–Variablen in einer Stu-
die eliminieren, bei der grundsätzlich nur eine Einflussgrösse von Interesse ist.

Beispiel: Häufige Störgrösse ist das Alter. y = Blutdruck, x1 = Dosierung
Hypertensivum, x2 = Alter.

2. Man möchte mögliche Prognosefaktoren erforschen, von denen wir nicht wis-
sen, ob sie alle wichtig oder zum Teil redundant sind.

Beispiel: y = Stenose, x1 = HDL, x2= LDL, x3 = BMI, x4 = Rauchen, x5

= Triglyceride.

3. Man möchte eine möglichst genaue Formel zur Vorhersage der abhängigen aus
den erklärenden Variablen entwickeln.

http://www.unizh.ch/biostat/
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Beispiel: y = Erwachsenengrösse, x1 = Grösse als Kind, x2 = Grösse der
Mutter, x3 = Grösse des Vaters.

4. Man möchte die Wirkung einer Variablen x1 auf eine andere Variable y
studieren, wobei der Einfluss weiterer Variablen x2, . . . , xk berücksichtigt
wird.

http://www.unizh.ch/biostat/
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Neben dem BMI ist der ”waist–hip–ratio“ (Taille–Hüft–Quotient) ein bekanntes
Mass für Übergewicht bei Männern. Wir interessieren uns dafür, ob durch die
Kenntnis beider Masse eine bessere Schätzung des Körperfetts möglich ist, als wenn
wir nur eines kennen.
StatView liefert den folgenden Ausdruck:

241
0

.811

.657

.654
4.677

Count
Num. Missing
|R|
R Squared
Adjusted R Squared
RMS Residual

Regression Summary
bodyfat vs. 2 Independents

-70.141 4.955 -70.141 -14.156 <.0001
70.367 7.100 .512 9.911 <.0001

.953 .133 .371 7.187 <.0001

Coeff ic ient Std. Error Std. Coeff. t -Va lue P-Value
Intercept
we i s t / h i p
bmi

Regression Coefficients
bodyfat vs. 2 Independents
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In der Regressionsgleichung der multiplen Regression gibt es statt einer mehrere
unabhängige Variable x1, . . . , xk:

y = a + b1x1 + b2x2 + · · ·+ bkxk + ε

In unserem Beispiel sieht die geschätzte Regressionsgleichung für k = 2 so aus:

Körperfett = −70− 0.95× BMI + 70× waist–hip–ratio

Die Regressionskoeffizienten in der multiplen Regression beschreiben den Einfluss
einer unabhängigen Variablen bei festgehaltenen anderen Variablen.

Versuch einer Erklärung:
Beide Übergewichtsmasse liefern zusätzlich zum jeweils anderen Mass eine signifi-
kante Information über das Körperfett (beide p < 0.0001). Bei gleichem BMI haben
Männer mit dickem Bauch mehr Fett, da der Bauch typischerweise nicht aus Mus-
kelpaketen besteht. Bei gleichem ”waist–hip–ratio“ führt ein hoher BMI zu weniger
Fett. Dies ist überraschend, denn der BMI für sich allein würde zu mehr Fett führen.
Die Erklährung ist, dass bei gleichem Bauchumfang ein hoher BmI auf viel Mus-
kelmasse hinweist. Der Prozentsatz erklärter Varianz steigt durch den zusätzlichen
Prädiktor von 52% auf 65%, was man als praktisch bedeutsam ansehen kann.

http://www.unizh.ch/biostat/
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6. Testfragen
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Mit diesen Testfragen können Sie sich selber testen, ob Sie die Vorlesung in ihren
Grundzügen verstanden haben.
Um die Aufgaben zu bearbeiten, müssen Sie sie zuerst durch einen Mausklick auf
’Start’ aktivieren und erst dann Ihre Antwortwahl anklicken.

Start Was ist ein Abdomen?

1. Der Hinterleib des Menschen.
Ja Nein

2. Der Hinterleib des Gliederfüssers.
Ja Nein

3. χ2 = 0 belegt eindeutig, dass die Nullhypothese richtig ist.
Ja Nein

4. Die vorhergehende Antwort passt nicht zu der gestellten Frage.
Ja Nein

Auswertung
Wenn Sie auf ’Auswertung’ klicken, erhalten Sie (logischerweise) eine Auswertung
Ihrer Antworten. Die richtigen Antworten erhalten Sie, wenn Sie Ihren Computer
mit dem Worten ’Korrigiere’ dazu auffordern.
Mit dem ’Zurück’–Button springen Sie ungefähr an diejenge Textstelle, zu der die
Aufgabe gehört.

Viel Spass!! Zurück
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Start Welche der folgenden Merkmale sind diskret?

1. Gewicht
Ja Nein

2. Diagnose
Ja Nein

3. Blutdruck
Ja Nein

4. Blutgruppe
Ja Nein

5. Kopfumfang
Ja Nein

6. Geschlecht
Ja Nein

Auswertung Zurück
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Start Welche der folgenden Merkmale können durch ein Kuchendiagramm darge-
stellt werden?

1. Augenfarbe
Ja Nein

2. Blutgruppe
Ja Nein

3. Körpergrösse
Ja Nein

4. Geschlecht
Ja Nein

5. Temperatur
Ja Nein

Auswertung Zurück
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Die Schulterbreite von 15-jährigen
Knaben (n=120) und 15-jährigen
Mädchen (n=112) werden mit Hil-
fe der folgenden Boxplots verglichen.
Welche Interpretationen sind stim-
mig?

3 2

3 4

3 6

3 8

4 0

4 2

4 4

4 6

Knaben Mädchen

Box Plot

Start

1. Ein Kind mit einer Schulterbreite kleiner als 34cm ist immer ein Mädchen.
Ja Nein

2. Bei den Mädchen ist die Streuung kleiner als bei den Knaben.
Ja Nein

3. Ein Boxplot basiert auf Perzentilen.
Ja Nein

4. Der Strich in der Box stellt den Mittelwert dar.
Ja Nein

5. Bei den Knaben hat es prozentual mehr Beobachtungen in der Box als bei den
Mädchen.

Ja Nein

Auswertung Zurück
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Start Ein Patient spürt nach der Einnahme eines Medikamentes Langeweile, wirft
einen Fünfliber 10 mal und erhält k-mal Kopf.

1. Die Wahrscheinlichkeit, 5-mal Kopf zu erhalten ist grösser als die Wahrschein-
lichkeit immer Kopf zu werfen

Ja Nein

2. Die Wahrscheinlichkeit, k-mal Kopf zu erhalten, ist für alle k von 0 bis 10 gleich
(1/11).

Ja Nein

3. Die Anzahl der Würfe, in denen der Kopf oben liegt, ist normalverteilt mit
µ = 5 und σ = 10.

Ja Nein

4.

5. Die Anzahl der Würfe, in denen der Kopf oben liegt, ist binomialverteilt mit
p = 0.5 und n = 10.

Ja Nein

Auswertung Zurück
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Start Die Variable x sei normalverteilt mit Mittelwert 1 und Standardabweichung
1. Welche der folgenden Antworten sind richtig?

1. Die Variable x kann nur positive Werte annehmen
Ja Nein

2. Die Fläche unter der Dichte von x = 0 bis x = 2 ist ungefähr 0.68 .
Ja Nein

3. Die Fläche unter der Dichte von x = 0 bis x = 2 ist ungefähr 0.95 .
Ja Nein

4. Der Wert der Verteilungsfunktion an der Stelle x = 2 ist ungefähr 0.84 .
Ja Nein

5. Der Wert der Verteilungsfunktion an der Stelle x = 2 ist ungefähr 0.975/,.
Ja Nein

Auswertung Zurück

http://www.unizh.ch/biostat/


Einführung
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Start Beim Test einer Nullhypothese H0 gegen eine Alternativhypothese H1 bedeu-
tet eine Wahrscheinlichkeit α = 0.05 für den Fehler 1. Art: die Wahrscheinlichkeit
ist höchstens 0.05 dafür, dass man

1. H1 annimmt, wenn H1 richtig ist
Ja Nein

2. H0 beibehält, wenn H0 richtig ist
Ja Nein

3. H0 nicht ablehnt, wenn H1 richtig ist
Ja Nein

4. H0 ablehnt, obwohl H0 richtig ist
Ja Nein

5. H1 fälschlicherweise ablehnt
Ja Nein

Auswertung Zurück
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Start Ein kontrollierter Versuch eines neuen Medikamentes führte zu dem Schluss,
dass es signifikant besser als ein Placebo ist: p < 0.05.
Welche der folgenden Behauptungen bevorzugen Sie?

1. Man ist jetzt sicher, dass das Medikament besser als ein Placebo ist.
Ja Nein

2. Falls das Medikament nicht effektiv ist, ist die Wahrscheinlichkeit, solche Re-
sultate zu erhalten, kleiner als 5%.

Ja Nein

3. Der beobachtete Effekt des Medikaments ist mit 95% Sicherheit klinisch rele-
vant.

Ja Nein

4. Das Medikament hat nur bei 5% der Patienten nicht gewirkt.
Ja Nein

Auswertung Zurück
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Start Die Normalverteilung spielt eine wichtige Rolle in der Statistik. Welche der
folgenden Merkmale oder Eigenschaften treffen auf die Normalverteilung zu?

1. Die Normalverteilung ist symmetrisch um den Mittelwert.
Ja Nein

2. Sie lässt sich nicht auf Patienten anwenden, da diese nicht ein Normalkollektiv
darstellen.

Ja Nein

3. Es liegen ca. 90% der Daten im Intervall (x± 2s).
Ja Nein

4. Es liegen ca. 95% der Daten im Intervall (x± 2s).
Ja Nein

5. Die Normalverteilung wird in der Medizin ausschliesslich für Normen verwen-
det.

Ja Nein

Auswertung Zurück
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Start 22 gesunde Probanden wurden in einer Druckkammer hyperbaren Bedingun-
gen ausgesetzt. Mit einem gepaarten t–Test (α = 5%) wurde geprüft, ob ein Unter-
schied zwischen dem Blutvolumen durchs Auge vor dem Versuch und 10 Minuten
nach dem Versuch festzustellen ist. Der p–Wert betrug 0.08. Welche Aussagen sind
richtig?

1. Die Nullhypothese lautet: Es gibt keinen Unterschied.
Ja Nein

2. Bei 8% der Probanden bestand kein signifikanter Unterschied zwischen den
Messwerten.

Ja Nein

3. Die Nullhypothese ist zu verwerfen.
Ja Nein

4. Bei 8% der Probanden bestand ein signifikanter Unterschied zwischen den
Messwerten

Ja Nein

5. Die Nullhypothese lautet: Es gibt einen Unterschied.
Ja Nein

6. Die Nullhypothese kann nicht verworfen werden.
Ja Nein

Auswertung Zurück
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Start
Welche Tests setzen normalverteilte Daten voraus?

1. gepaarter t–Test
Ja Nein

2. ungepaarter t–Test
Ja Nein

3. χ2–Tests
Ja Nein

4. Mann–Whitney Test
Ja Nein

5. Wilcoxon–Test für gepaarte Stichproben
Ja Nein

Auswertung Zurück
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Start Gegeben seien zwei Grundgesamtheiten mit den Erwartungswerten µ1 und µ2

und der Varianz σ2. Daraus werden 2 Stichproben gezogen und deren Mittelwerte
mit dem t–Test für unverbundene Stichproben überprüft. Dabei wird die Power
grösser, wenn alle Grössen gleich bleiben, aber

1. der Stichprobenumfang grösser wird
Ja Nein

2. die Irrtumswahrscheinlichkeit α grösser wird
Ja Nein

3. der Betrag der Differenz |µ1 − µ2| grösser wird
Ja Nein

4. die Varianz σ2 grösser wird
Ja Nein

Auswertung Zurück
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Start
Bei einem χ2–Test ergibt sich für den Wert der Prüfgrösse χ2 = 0. Was besagt
dieses Ergebnis?

1. Dieses Ergebnis ist unmöglich, da die Prüfgrösse nur positive Werte annehmen
kann.

Ja Nein

2. Aufgrund des Testergebnisses behält man die Nullhypothese bei; ein β–Fehler
ist bei dieser Entscheidung jedoch nicht auszuschliessen.

Ja Nein

3. χ2 = 0 belegt eindeutig, dass die Nullhypothese richtig ist.
Ja Nein

4. χ2 = 0 belegt eindeutig, dass die Alternativhypothese richtig ist.
Ja Nein

5. Ob man die Null– oder die Alternativhypothese annimmt, ist abhängig von der
Grösse des α–Fehlers.

Ja Nein

Auswertung Zurück
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Start
Zwischen der Körpergrösse von Kindern und der Grösse der beiden Eltern wird eine
Korrelation von r=0.17 gefunden. Welche Aussagen teffen zu?

1. Die Korrelation misst, wie gross der Unterschied in den Werten zwischen Eltern
und Kindern ist.

Ja Nein

2. Die Grösse stimmt Eltern und Kindern in 71% der Fälle gut überein.
Ja Nein

3. Die Kinder sind im Mittel 0.71cm grösser als ihre Eltern (säkulärer Trend).
Ja Nein

4. Die Korrelation ist ein Mass für die Übereinstimmung zwischen 2 Variablen.
Ja Nein

5. Wenn man die Körpergrösse der Eltern kennt, kann man die Variabilität bei
den Kindern zu 50% erklären.

Ja Nein

6. Die Körpergrösse von Kindern und Eltern zeigt eine gewisse Übereinstimmung.
Ja Nein

Auswertung Zurück
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Start
In einer Untersuchung der Korrelation zwischen der Plasmakonzentration und dem
Effekt eines Medikamentes erhält man: r=+0.14, p<0.001, N=83. Welche der fol-
genden Aussagen ist richtig?

1. Es besteht ein starker Zusammenhang zwischen der Konzentration und dem
Effekt.

Ja Nein

2. Der Zusammenhang ist statistisch gesichert.
Ja Nein

3. Es besteht nur ein schwacher Zusammenhang.
Ja Nein

4. Je grösser die Plasmakonzentration, desto gros̈ser der Medikamenteneffekt.
Ja Nein

5. Je kleiner die Plasmakonzentration, desto grösser der Medikamenteneffekt
Ja Nein

Auswertung Zurück
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Start
Die Regressionsgerade von x auf y geht stets durch

1. ...den Nullpunkt des Koordinatensystems (0,0).
Ja Nein

2. ...den Schwerpunkt(x,y).
Ja Nein

3. ...mindestens zwei Punkte der Punktwolke.
Ja Nein

4. ...mindestens einen Punkt der Punktwolke.
Ja Nein

Auswertung Zurück
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Index

χ2, siehe chi2

Alternative, siehe Hypothese
Ausreisser, 140

empfindlich gegen, 33
robust gegen, 33

Balkendiagramm, 16
bar chart, siehe Balkendiagramm
Beobachtungen, siehe Daten
Bestimmtheitsmass, 154
Bias, 61
Binomialverteilung, 54
Bonferroni–Korrektur, 115
Boxplot, 28

chi2–Test, 107
chi2–Verteilung, 52

Daten, 12
absolutskalierte, 13
diskrete, 12, 13
extreme, 144
intervallskalierte, 13

kategorielle, 12
nominale, 12
ordinale, 12
paarweise, 129
qualitative, 12
quantitative, 12
stetige, 12, 19
Streuung der, 34
Transformation von, 58, 135, 137
Variabilität der, 34
Zentrum der, 31

Dichte, siehe Wahrscheinlichkeits-
dichte

Effektgrösse, 83, 92
Einstichprobenproblem, 94
Ereignis, 39

unabhängiges, 41
Erwartungswert, 31, 49

Fehler
1. Art, 82
2. Art, 83
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Fisher’s exakter Test, 111

Gesetz der grossen Zahlen, 56
Grundgesamtheit, 7

Häufigkeit, relative, 13, 19, 39, 126
Heterogenitätskorrelation, 142
Histogramm, 19
Homogenität, 109

Test auf, 110
Hypothese

Alternativ–, 79
einseitig, 89
zweiseitig, 89

Null–, 80
Prüfung von, 76
statistische, 80
wissenschaftliche, 79

Interquartilabstand, 26, 35
interquartile range, siehe Interquartil-

abstand
Irrtumswahrscheinlichkeit, 82

Klassenbreite, 22
Klassenzentrum, 22
Konfidenzintervall, 116, 116, 138, 156

für die Regressionsgerade, 158
Konfundierung, 143
Kontingenztafel, 109
Korrelation, 49, 128, 131

Heterogenitäts–, 142
Rang–, 141
Schein–, 142
Trivial–, 143

Kovarianz, 49
Kuchendiagramm, 15

least squares, siehe Schätzung, Klein-
ste Quadrate

Liniendiagramm, 17

Macht, 83, 91
Mann–Whitney Test, 103
McNemar Test, 107, 111
Median, 26, 31, 33
Mittelwert, 31, 32, 49
Mittelwertsunterschiede, Test auf, 94

Normalgleichungen, 152
Normalverteilung, 50, 56

p–Wert, 83
Perzentil, 24
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pie chart, siehe Kuchendiagramm
power, siehe Macht
Prävalenz, 65
Programmpakete, 6
Proportionen, Test für, 106

Quantil, 24
Quartil, 26

Randomisierung, 69
Rangkorrelation, 141
Rangtest, 103
Regression, 128

einfache lineare, 145
multiple, 160

Residualvarianz, 154

Scattergramm, 17, 129
Schätzung

erwartungstreue, 60
Kleinste Quadrate, 149
Maximum–Likelihood, 63, 122
Minimum–Varianz, 63

Scheinkorrelation, 142
Signifikanz, 82

ohne, 10
Signifikanzniveau, 82

Spannweite, 35
Spearmans Rangkorrelation, 141
standard deviation, siehe Standard-

abweichung
standard error, siehe Standardfehler
Standardabweichung, 35, 49
Standardfehler, 36, 67
Stichprobe, 7, 8, 43

repräsentative, 67
Stichprobengrösse, 92

t–Test
Einstichproben–, 94
gepaarter, 100
ungepaarter, 97
Zweistichproben–, 97

t–Verteilung, 95
Test

auf Homogenität, 110
auf Mittelwertsunterschiede, 94
auf Unabhängigkeit, 112
F–, siehe F–Test
für Proportionen, 106
Fisher’s exakter, 111
in der linearen Regression, 156
Mann–Whitney, 103
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McNemar, 107, 111
multipler, 113
Rang–, siehe Rangtest
statistischer, 76
t–, siehe t–Test
Wilcoxon, 103

für Paardifferenzen, 103
für unabhängige Stichproben,

103
Rangsummen, 103
signed rank, 103

Therapiestudie, 71
Transformation

von Daten, 58, 135, 137
Trennschärfe, 83, 91
Trivialkorrelation, 143

Unabhängigkeit, 41
Test auf, 112

Varianz, 34, 49
Verlauf, 17
Versuchsplanung, 67
Verteilung, 43

Binomial–, 54
chi2–, 52
Normal–, 50, 56

schiefe, 58
t–, 95

Verteilungsfunktion, 44
empirische, 23

Vertrauensbereich, siehe Konfidenzin-
tervall

Vorhersageintervall, 159

Wahrscheinlichkeit, 13, 39
bedingte, 41

Wahrscheinlichkeitsdichte, 23, 46
Wilcoxon Test, 103

für Paardifferenzen, 103
für unabhängige Stichproben, 103
Rangsummen, 103
signed rank, 103

Zentraler Grenzwertsatz, 56
Zufall, 74
Zusammenhang

linearer, 131, 133, 138
nichtlinearer, 144
quadratischer, 144

Zweistichprobenproblem, 94
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